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ABSTRACT

Correlation and convolution are based on the idea of getting
the response of one function to another. When the data is
available in two dimensional transparency form it is convenient

to use optical systems.,

Different techniques of performing the correlation and
convolution operations in coherent and noncoherent light are

described. Their applicationsin optics are mentioned.

A random-dots code is presented. This was used for coding
dilute and continuous—tone pictures. The coded pictures were
decoded by correlating them with the code. Coherent and non-
coherent correlation methods were employed. In the coherent
method a complex filter was used and the coded pictures were
decoded by coherent optical filtering. The noncoherent method
is based on the idea of reversing the rays involved in the
coding process. The two methods are compared,the effect of
the decoding on dilute and continuous-tone objects is
illustrated, noise analysis is given and the decoded images

resolution is considered.

Theories of formation of Fourier images are discussed. A

confusion is shown to exist between Fourier images derived from




related objects. Coherent and noncoherent correlaticn
experiments are reported. Thelr results serve to confirm the

possibility of confusion.

Finally a new method of noncoherent spatial filtering ,

using blocking filters, is presented.
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INTRODUCTION

Correlation and convolution have many applications in optics
particularly in optical data processing. In the first chapter of this
thesis the Fourier and the Fourier transform theories are described.
These are necessary for understanding the correlation and the

convolution operations discussed in the same chapter.

The second chapter is a survey of the correlation and convolution
techniques and applications. This chapter describes the basic idea of
all the correlators and the correlation techniques used in the
experimental work. It shows as well the relation between these
techniques. Many other techniques and applications are described in
order to give a substantial background to the use of correlation and
convolution in optics. The chapter starts with an important optical
principle that involves convolution viz, Image Formation. It then
reviews the different techniques and applications used in coherent
light. These include coherent spatial filtering, holographic and
non holographic correlation techniques. The other sections of the

chapter review the techniques and applications in non-coherent light.

Research was carried out on three main subjects. Chapter 3
describes the coding and the decoding of objects. Chapter 4 discusses
the correlation of Fourier lmages and Chapter 5 applies the ldea of

blocking filters, used in coherent systems, to spoectra produced

noncoherently by convolution.

The idea of coded sources started when Barrett thought of solving




the prohlem of power efficiency in X-ray imaging by constructing

an anticathode in the form of a zone-plate. This would form a coded
blur spot from each point in the person being X-ray photographed and a
sharp picture could be subsequently recovered in coherent light. 1In
chapter 3 a random-dots plate is presented as a new code for X-ray
tube anticathodes. This was initially suggested by Dickeas a coded
aperture in X-ray astronomy. The random-dots plate was, however,

used in this work as a coded source.

Investigaticns on the effect of the number and sizes of the
dots are reported. Coherent and non-coherent methods of decoding
were employed. In the coherent method a Fourier transform hologram
was used as a complex filter and the coded pictures were decoded by
coherent spatial filtering. A novel technique of recording the
hologram outside the transform lens focus is described. The non-
coherent method is based on a new idea of reversing the rays

involved in the process of coding.

Objects are classified into two distinctive types, continuous-
tone and dilute. The effects of the decoding on dilute and continuous-
tone objects are thoroughly investigated. In both decoding methods
a new technique of increasing the signal to noise ratio by an appropriate
control of the exposure time was used. The main conclusions of the
experiments in this chapter are (1) The dilute object gets decoded
better than the continuous-tone object (2) The equal dots code
decodes the coded photographs better than the nonequal dots code
(3) Increasing the number of dots in the code produces better results
with the dilute object and worse with the continuous-tone object (4)

The coherent light decodes the coded photographs better than the




non-coherent light. The basic reason lies in the fact that in any
coding-decoding situation a point in the.object appears as a peak in
the image surrounded by a shoulder region. The effectiveness of the
process depends on (a) the height of the peak/the height of the
shoulder, (b) the area under the peak/aea under the shoulder and (c)
the percentage of the original object representing luminous or
transparent points. If the percentage is small (dilute object) the

effect of overlap from nearby shoulders is also small, and factor (a)

is dominant. In the case of continuous tone objects the factor (b)

is dominant.

It is, however, not necessary to use a random-dots cr a zone-
plate as a code. Any object that has an autocorrelation function close
to a delta function can be used, like the spoke plate code suggested

in chapter 2.

A review of the previous work carried out on Fourier images 1is
outlined in chapter 4. A confusion is shown to exist between Fourier
images derived from related repeated objects. Theories of formation
of Fourier images are discussed. Fourier images derived from the
same object are found to be equivalent to each other. 1In other words
they all have the same spatial frequencies and therefore any one of

them generates the others. Their Fourier transforms have been

found to have the same amplitude but different phase. Coherent and
noncoherent correlation experiments on Fourier images are reported.

The type of results obtained from the coherent experiments 1is
different from that in the noncoherent experiment. The results in both

cases, however, confirm the idea of confusion mentioned above.



Different techpiques for improving the matched filters used in
the coherent experiment were tried. The best one was found to be
bleaching the hologram with the reversal bleach process and centring
it over the transform lens focus with the aid of a microscope.
Different techniques were also tried in order to get good and uniformly
exposed correlograms in the non-coherent experiment. The best

technique was found to be by Dodging.

An attempt at reconstructing the Fourier images with the
computer was carried out. The main order Fourier image reconstructs
well. Suborders failed to reconstruct. This is attributed to the
conversion of the amplitude contmst object to a phase contrast

image.

Chapter 5 deals with a device for producing the Fourler transform
non-coherently by convolution. An account for an experiment that
uses a new method of non-coherent spatial filtering with blocking

filters is present.




CHAPTER 1

INTRODUCTION TO CORRELATION AND CONVOLUTION

1.1. Fouriler Series

Fourier analysis has played an important role in the
development of communication theory and information processing.
The concept of spatial frequencies has made it possible to
apply Fourier techniques, used in the communication theory, to
optics. This led to a vast development in processing the

information by optical means.

In Modern optics it is possible to regard any plane
object as composed of a set of spatial frequencies. That is,
it may be built up by superimposing a set of gratings of
different spacings, orientations and contrasts. This
consideration makes the Fourier theory form the basis of

optical data processing.

J.B.J.Fourier (1768 - 1830) realized that any periodic
function can be represented as the sum of sinusoidal functions
which have periods which are integral submultiples of the
period of the original function. Full treatment of this

early work is dealt with by Carslow (1).

The function f(x) is defined as a periodic function if it




is well defined, bounded, has only a finite number of maxima

and minima and has only a finite number of discontinuities in
o T T ..

the interval - 5 < X<5. These conditions are called

Dirichlets conditions. The periodicity condition is

f(x) = £(x + nT) where n is an integer and T is the period.

According to Fourier's Theorem the series representing

the periodic function f(x) is written as :

2Tnx
Cn cos <——'T— +¢I—1>

=]

i
NJOC
+

™M 3

£ (%)

=}

and is called a Fourier Series. Each term in the series has
an amplitude Cn and a phase angle ¢n' The phase angle provides
the freedom necessary for relative displacements of the terms
of the series along the x — axis. The determination of these
quantities for each term of the series is called Fourier
analysis., Co is the average algebraic height under the curve
£(x) in the interval - %»<;x<:%u In optical data processing
Co corresponds to the total light flux transmitted through the
data when in the form of a two dimensional transmission

function contained on a photographic transparency.

Sometimes it is more convenient to write the series in

the form :

[oe]
f(x) =~§+'§3 A_ Cos —= + B Sin =
n:




o1 = C and B = - Si
where An Cn os ¢n n n Cn 1n¢n

In Fourier analysis the pairs A and Bn have to be
n
evaluated for each value of n.

For finding out the ccefficients Ao’ A.n and B the above
n

series has to be integrated, multiplied by Cos Z;nx and

integrated and multiplied by sin Zmnx and integrated

T
respectively. By doing this we get:
' T
+-¢
1 /2
Ao =7 | E_f(X) dx
2
T
+>_
1 2 2
A == f(x) cos X dx
n T _T T
2
+I—.
1 2 2
B = = '/ f(x) sin X 4x
n T ) T
)

Using complnz notationc the Fourier series is expressed
by

f(x) = X D e T

n=-

Allowing the summation to extend over negative values of
n as well as over positive values, makes it possible to express

any periodic function real or imaginary by such a series.

-27inx
For finding out the coefficient Dn multiply by e T




. . T
and integrate over the interval - 5

to to get

o[-

o]
|

T -217nx
/ 5 F(x) e T dx
T

2
Dn and f(x) are called the Fourier transform pair for

periodic functions as it will be shown in the following

sections.

It is worthwhile mentioning the relation between Dn and

cC , viz:
n

1 ]
Dn =3 C e

1.2. Even and 0dd Functions

A function is defined as odd if £(x) = —f(-x) and even if £(x)=f(-x)

The Fourier coefficient for a periodic even function f£(x) is

T .
' 7 =27T1inx
Dn =§:- T f(x) e T dx
2
By replacing x by -x' we get
1 %— 2minx’ .
D = - T f(-x") e T dx
i T
2
T
1 2 27inx’
— o ' 1
=7 .[l ") e T dx
2
*
=D




ot

Any function Dn for which Dn = Dn” must be completelyv real;
hence the coefficients for an even function are purely real.
. - . :'c
Similarly an codd function leads to the result Dn = =D
which shows that the coefficients for an odd function are purely

imaginary.

1.3 Fourier Transforms.

Most functions used in optics are nonperiodic functions.
A nonperiodic function is the one that varies arbitrari&
within infinite limits. The generalization of Fourier theory

for the inclusion of arbitrary phenomena is possible only with

the aid of theory in statistics and probability (2).

There is a certain class of aperiodic functiors known as
transient functions, These are found to be more relevant with
optical data processing. A transient function is one that
varies randomly within finite interval but whose value is zero

outside that interval.

Consider a wave of period T in which each unit is made of
a nonperiodic function. This wave is represented by a Fourier
series whose fundamental frequency is the frequency of the wave.
When the period T increases without increasing the nonperiodic
function's interval, the overall shape of the Fourier spectrum

remains the same but the spacings between its spikes decrease.




As the period T is extended to infinity a truc transient function
is approached. The frequency spectrum, centaining both phase and
amplitude, becomer continuous and is called the Fourier transform(Z).

s is illustrated in Figure 1.1.

p-e

Th

The Fourier transform is represented mathematically by an

integral which replaces the summation of the Tourier scries. The

"
. . 2rn . .
discrete harmonilc term —5 is replaced by variable frequency

term 2mu and the cosfficient Dn is replaced by the Complex

frequency function F(u) multiplied by the frequency increnent
q y y q 3

du. This produces the Fourler transform pair :

- 27iux

f(x) = / F(uw) e du
i -27iux

F(u) = £(x) e dx

These are more often used in optics in the two dimensiornal

form :
o © 211 (ux + vy)
f(x,y) = / F(uy) e du dv
© f -2ri (ux + vy)
F(u,v) = f(x,y) e dx dy

A common notation for the Fourier transformation operation

1S

£ (x,y) . F (uv)
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where the forward arrow indicates the Fourier transformaticn

and the backward arrow indicates the inverse transformation.
It should be noted in the previous equations that the only

difference between direct and invarse transforms is a

reversal of co—ordinates.That is, the expcnent of the

3 - . . 2n(ux + vy
direct transform 1s written as e y) and that of the

. . . =27 (ux + vv) .
inverse transform is written as e ‘ 7. For this

reason some books do not distinguish between the two.

If f(x,y) and F(u,v) are complex functioans taer the Fourier
transformation will be :

o go
~

£7 (xy) 7 F o (cu,mv)

1.4, Transform Theorems

Threce fundamental relations, that have uses in optical data
processing and wavefront reconstruction are mentioned in this

section; these are :

l.4.1 Linearity Theorem

This theorem states that the transform of a sum of two
functions is the sum of the transforms of these functions. This

can be expressed as

af(x,y) + bg (x,y) Za T(u,v) + bG (u,v)

o9}
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A scale change in the space demain causes sn inverse change
in the frequency domsin, plus a chenge in the overall ampilitude

of the spectrum. This can be represented by this equation:

z
& b

f(ax,byv) -+ ! F(

n)’c:

1.4.3 Shift Thecrem

This theorem tells us that a translation in the position
of a function in one domain results in a phase shift in the other

domain. This cen be written as

=211 (x u+y v
(x_uty v)

en]

f(x—xo, y~yo)i (u,v) e

1.5. Transformation of a real functicn

In optical data processing the input data is usually real.
Furthermore, complex input data can be used in coherent systems
only. Real functions can be transformed into either sine or
cosine transform or both while complex functions can only have the
usual exponential form of Fourier transform. If f(x) is a real

function then by Fourier transformation :

f(x)

o8]

© 2miux
/' e F(u) du

[ee)

oriu ® —27iux'
e CTLUX f(x') e dax! du

I




o [ sminl{x-x")

= / / f(x") e dx' du

Since f(x') is real <hen by neglecting the sine term in the

expansion cf the exponertial we get :

w4 o
f{x) = '/ f(x'") cos Zru(x-x") dax' du
o —o
o o
= 2 /' cos 2mux cos 2mux' £(x')dx' }cu
O co

+ 2 .[ sin 2Tux / sin 2wux'f(x')dx' du
o _

20
(o)

cos 2mux'f(x') dx' is called the cosine transform and is

-—c

denoted by Fc(u).

/ sin 2nux'f(x') dx' is called the sine tramsform aud is
-0

denoted by F_(u).

The previcus equation can be written in terms of Fq(u)
and Fc(u) as :

fi(x) = 2 cos 2nux Fc(u)du + 2/~ sin 27mux FS(u) du

o o]

If f(x) is real and even then the cosine transform is the
Fourier transform, and if it is real and odd then the sinc

transform is the Fourier transform,

1.6 Convolution

The convolution process is the one which one function is

10




reversed and slic elong second functicn. 7The area of the prcduct
of the functions as function of the displacewent is the
conveluiion.

Mathematically the convolution is def

[y¥]

o

.Tized by :
e = [ 500,

a

For simplicity it is frequently convenient to write the
convolution in the form :

gls) = £,(XDE, (s)

Convelution involves evaluvating
values of

the integral for all the
s in the range -»<g<e , In practice nonperiodic
functions are sampled between finite limit

accordingly take finite linits.

and s will

Lnpuc
limits of the transcience.

In the optical case,
functions are of the transient type and s is governed

by the
1.6.1

Convolution Properties

The operation of convolution has many of the same properties
of multiplication. Convolution is

commutative

= f
, ® f, =£,0f

1
associative

f = f
f@(E, L) £, @f) @ 5
and distributive

fl ® (f2 + f3)

O+ @f

}—
—



These properties have many useful applications in optics since
they make it more easy to manipulate relations involving

convolutions.

1.6.2. Convolution Theorem

One of the main points of interest in convolution is that
the transform of a product of functions results in the

convolution of their transforms.

If Fl(u) and Fz(u) are the Fourier transforms of fl(x) and
fz(x) respectively then by using the shift theorem, we get

® 2miu(s—x)

f2 (s = x) = / FZ(U) e du

-0

By substituting this equation into the convolution integral we

get :

o © 2riu{s~—x)

g(s) = ‘[ fl(X) [i[ Fz(u) e du } dx

-0 —co

Reversing the order of integration:

o 2mius o -2miux
g(s) = j' Fz(u) e [ /ufl(x) e dx} du
© -2miux
now /l fl(x) e = Fl(u)

- CO

The convolution integral becomes :

® 2mius

g(s) = ./ Fl(u) FZ(U) e du

OO



This equation shows that’the Fourier transform of the
product of two functions is the convolution of their Fourier
transforms'” which is the statement of the first form of

the convolution theoremn.

Writing the above equation using the inverse Fourier

transform, gets :

© -2mius
g(s) e ds

F. (u) F,(u)
1 2 J o

This tells us that''the Fourier transform of the
convolution of two functions is the product of their Fourier

transforms'", which is the statement of the second ferm of the

convolution theorem.

In general the convolution theorem is denoted by

£1(0) @£y(x) 7 Fyu) Fyu)

The convolution theorem is often more convenient to be used
in applied optics since the absence of complex conjugates can
assist analysis or interpretation of transforms. The special
case of convolution when f_, = f_ 1s called autocomve lution.

1 2

1.7 Correlation

Correlation, in general,.is the same as convolution
except that there is no reversal of the sliding function. The

correlation of fl 71 th f2 1s defined by



h{s) =L[ fi (%) fz(s + x) dx

This, customarily, is denoted by

h(s)= £,(s) * £,(s)

fg(s) is the complex conjugate of f(s). When f(s) is real,
£ (s) = £(s). The correlation integral can be written

alternatively as

[ee]

h(s) = /f fi (x=s) £,(x) dx

-0

This form is derived from the first one by substituting the
variables. If fl(s) = f2(s), the term autocorrelation is
applicable. When fl(s) # fz(s), the term crosscorrelation

is applied.

1,7.1. Correlation propertize

Correlation is similar to convolution from the point that
they are both distributive and associative, but it differs

from it in that it is not commutative
= %
If h(s) fl(s) fz(S)

then h(-s) = fz(s) % fl(s)

Correlation becomes the same as convolution, when either

function is even,
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Crosscorrelation often results in a peaked distribution.
This is especially true when cne function is identical with part
of the other. This property has applications in pattern
recognition where the peak indicates the presence of the
pattern to be recognized. In scome pattern recognition systems
the peak indicates the position as well as the presence of

the wanted pattern.
Autocorrelation of random functions results in a delta
function., This is used to decode previously coded pictures as

will be described in Chapter 3.

1.7.2 Correlation Theorem

Consider the product Fl(u) Fz(u). According to the
convolution theorem the transform of the product of two functions

is the convolution of their transforms, therefore:
% %
Fi(w) Fo(w) >~ £,(0) @f, (-x)

The convolution is reversing an already reversed function. This
results in no reversal of the sliding function and the convolution

becomes correlation. Hence the above equation becomes

*

* *
Fl (u) F2 (u) =~ fl(x) f2 (x)

which 1s the correlation theorem formula.




(a) The Crosscorrelaticn Theorem

The cross correlation theorem says that the transform
of the crosscorrelation of two functions is the product of their
transforms. This is denoted by

o
~

FG) FE, (0 2z Fl(w) T,

(b) The autocorrelation Theorem

The autocorrelation theorem says that the transform of the
autocorrelation of a function is the squared modulus of the

transform of that function. This may be written as
* kS N 2
f(x) * £ (x) 2 ]F(u)l

This is derived from the crosscorrelation theorem by putting

fl(x) = fz(x) = f(x), and by using the mathematical theorem
2

that F(u) F*(u) = |F(u)

If x is replaced by t then the autocorrelation function will
be called self coherence function and the squared modules of
the Fourier transform of the function f(t) will be called power
spectrum. The fact that the power spectrum is the Fourier
transform of the self coherence function is known as the Wiener-

Khinchin theorem.

1.7.3 Parseval's Theorem

This theorem is generally interpretable as a statement of

conservation of energy. 1t is derived from the correlation

le




theorem by puttinr & = o, It's general icrm is

[m f“1 (%) £, (x)dx = [m F; (W F,() cu

-CC

In optics it 1s quite often quoted in the form

/m/m ]f(x,y)[z dx dy = /‘00 /ﬂmlF(u,V)iz du dv

.
— oo - cc —co =ool

1.8 Dirac Delta Function

The two-dimensional Dirac delta function &(x-a, y~b), widely
used in optical correlation technique, is a function which Las
infinite amplitude,zero width and unit area. The delta function
can be represented as the limit, as h - », of a rectangular pulse

of width 1/h and height h.

The following are the more important properties of the

delta function

co X:y:o

1. §(x,y) = {
-0 otherwise
>
2. // §(x,v) dx dy =1 any €>o
I e
1
3. §(ax,by) = :Zg] §(x,y)

©

4. // §(xta, v + b) g(x,y) dx dy = g(za,*b)

The last property is called the sifting property of the

delta function.




-
o

The Fourier transform of <(x~a, y-b) can -¢ obtained by
=271 {ux+vy)

substituting e for g(x) in the sifting property

formula,

Therefore

-211(ua + vb)
¢(x-a,y-b) 2 e

This equation shows that the amplitude spectrum of the delta
function is a continuous spatial frequency function of Unit

height, which extends over the whole spatizl frequency domain,

The phase spectrum on the other hand changes steadily with changing the

value of (a,b).

The delta function is used in optics to represent a point

source of light, or a spatial pulse of unit area,
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TECHNIGUES AND APPLICATIONS OF

CORRELATION AND COXNVOLUTION

2.1. Image Formation

2.1.1. Coherent Light

Image formation in coherent imaging systems is based on
the convolution of the amplitude point spread function
(amplitude impulse response) with the object. This is

represented by the equation

Ql (X9Y)= h<X>Y) ®QO (X',}")

where Qi(x,y) is the image complex amplitude,Qo(X',y') is
the object complex amplitude and h(x,y) is the amplitude point

spread function of the coherent system.

Defining the Fourier transform of these three quantities

as

4

qi (s,t) Qi (x,y)

q, (s,t) 50q, (xy)

H (s,t) 5 h(x,y)

Then by applying the convolution theorem of 1.6.2 to




the convolution equation zhove, we get
a (s,t) =18 (s,t) a (s,t)

This equation represents the preccess of image formation in
the Fourier space.H(s,t) is called the coherent transfer
function. It is a measure of the Imaging efficiency of the

coherent system.

While H(s,t) was defined as being the transform of the
coherent point gpread function, the latter is itself defined
as the Fourier Transform cf the pupil function. This tells
us that the pupil function and the uoherent transfer function
are equivalent. Therefore, for diffraction limited coherent
systems, where the pupil function is equal to unity inside the
pupil and zero outside it, the coherent transfer function has
the same values of unity and zero.

2.1.2, Noncoherent light

The imaging process in the noncoherently illuminated

imaging systems follows the following equation

G, (x,y) = kG,y)@ G, (x',y")

where G.(x,y) is the image intensity distribution, Go(x;y')
i
is the object intensity distribution and k (x,y) is the intensity

point spread function of the system.




In order to write the equation of image formztion in the
Fourier space, let us define the Fourijer transform of the above

three quantitites

gi (S,t) : Gi(xsy)

4

g. (s,t)

o GO(XSY)

K (s,£) > k(x,y)

By applying the comvolution theorem of 1.6.2 to the convolution

equation above, we get
Sl (S,t) = K(S,t) gO(S,t)

which is the Fourier space relation.

K(s,t) is called the optical transfer function (abbreviated
OTF) of the systems. Its modulus ]K(s,t)l is called the
modulation transfer function. As with the coherent transfer
function, the O0.T.F., is & measure of the efficiency of the

imaging system.

Bearing in mind that k(x,y) is related to h(x,y) by the

following equation
2
k (5y) = [hGy |0,

it can be seen that K(s,t) is the Fourier transform of
2
lh (x,y)lz. But the Fourier transform of |h(x,y)[ , by the

autocorrelation theorem of 1.7.2, is the correlation of the




coherent transfer function H(s,t) with its complex conjugate.
Therefore K(s,t) is equivalent to the correlation of H(s,t)
with its complex conjugate. It foilows from this, after taking
into account that H(s,.t) is equivalent to the pupil function,

that the OTF X(s,t) 1s represented by the area of overlap of

two correlating pupil funmctions.

2.1.3. Examples of Imaging systems

(1)  Converging lens

The point spread fuanction of a nonaberrated converging
lens is approximately a delta function. Therefore by convolving
thevobject function with the delta function,; one can get an

exact representation of the object in the image plane.

If the lens is aberrated, however then the image will be

modified according to the aberration function.

(2) Diffraction limited pinhole

The point spread function of a diffraction limited pinhole is

approximately a delta-function. Therefore, similar to the
non~aberrated lens, it produces in the image plane an exact

representation of the object.

(3) Coded Aperture

If a plurality of pinholes of certain distribution
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is used in forming the inmage then tteir impulse response is the
convolution of the impulse response of a single pinhole with the
pinboles distribution. Bur the impulse responsc of a single

pinhole is a delta function, therefore the equation of image formation

becones

G, (y) = §(x,y) @5 (x,9)® 6, (x',y")

where S (x,v) represents the pinholes distribution function

The correlation of amy function with a delta function

results the function, therefore
G (x,y) =S (x,y) ® 6, (x5 ¥")

This equation can be extended to any continous—tone or
dilute transparency (the definitions of these are found in 3.3)
where S(x,y) represents the transparency function. G; (x,y)
in this case, is called the coded image and S(x,y) is called the

code or the coded aperture.

2.2. Coherent spatial filtering

Spatial filtering in coherent light is usually done by
manipulating the Fourier Transform of the input data. The
manipulation is done by inserting a spatial filter at the
back focal plane of the Fourier transform lems. This multiplies
the Fourier transform of the input function with the filter
function. A second Fourier transform lens transforms the

multiplication to a convolution which is the filtered
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Spatial filters can e classified into the fcllewing types

2.2.1. Blocking filters

m

These filters are usually opaque masks withacertain aperture
(or apertures) that omit the unwanted frecuencies of the spectrum.
They are simple to make and to use but have the disadvantage
that because of theirsharp cutoff they produce at the image plane,
i.e. at the second transformation plane, a diffraction pattern which
is the Fourier transform of the sharp edge of the mask's aperture.
This phenomenon is called ringing because of its similarity to
the ringing produced in electrical circuits due to a sharp cutoff
filter. A method for reducing the ringing effect is described in
Chapter 5.

2.2.2. Amplitude filters

These filterxrs operate on the amplitude, but not the phase,
of the transform. They are usually.produced by recording the
wanted amplitude - distribution on a film or by controlled
evaporation of metal on a glass substrate.

2.2.3. Phase filters

Here only the phase is operated upon but not the amplitude.
The filters are often produced by using an evaporated layer of
material such as magnesium fluoride or by bleaching amplitude filters
that are recorded on photographic films.

2.2.4 Complex filters

This is the general type of filters, in which both the

amplitude and the phase of the Fourier transform are operated
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upon. Originally, the avp’itude and the phase portions were
made separately by the rethods described abeve. Teodav the f{ilters
are produced by nolography or by computer generation, 3cth

forms of ccnstruction utilise the same basic principle te record

the continuously varyiry thase function. By analogy with
communication techniques, the function to te recorded is ctored
on a spatial carrier freguency, which consistsof an array of
fins lines drawn on 2 trensparent substrate. The amplitude part
of the filter function is recorded as a variation in contrast

of the lines, whilst the phase is stored as a variation in

position of the lines.

The holographically c—ade filter is prepered on photographic
film or plate of very high resclution, by making a direct
recording of the interference pattern formed between the transfcrm

of the required signal and a reference wave.

The computer generated filter is prepared by computing the form
of the Fourier transfoerm with the computer. Photoreduction then
yields the required filter. To avoid having to print a continuously
varying grey scale, corresponding to the amplitude variations
in the transform, the transform is printed as an array of small
dots in much the same way as in halftones are in the printing

industry.

By altering the position of the regularly spaced dots in




27
the ctransform, changes in phasc can be simclzted on the computer
generated hclczram,

2.3 Corr=iztion and ccenvclution with mtched Filters
In Figure 2.1, a matched filter is reccrded using a uniform
plane reference wave propagating at an angle < with respect to
the optical axis of the lenses. The total distribution in the
transform plane P, is
A
% ¢
. ( 2 Yo s 1ax,
- - e
A f > Af o
Xy Yy
where H T TF i1s the spectrum of h(xryl), AO is a
real constant zad ¢ = 27 Sin €/X.
The recorcding of the above distribution with a photographic
film results in
~-iax .
2 .12 i 2 . lax
AO + ;E + Aoﬂ e +AOH" e 2
If the information to be filtered is denoted by
g(Xl,yl) then the distribution just behind the filter is
~ilax ;
X, Yy 5 2 2 . 1ax77
Gl = , —= [A + |H|T + A He +AH e o
~f Af o o o) |

Lens L, Fourler-transforms this distribution to give

3
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vy o+ g (x,y) @ (h(s,y) * he (w,v)

A gls,7y @n(x + £ sin 8,y) + Al 5(,v) % h (x-f sin 6, v)

Zhe firstterm gives an image of the input g(xlyl) on—axis
and trhe second adds the convolution of the input with the
avtcccrrelation cof the function for which the filter was

formeZ, The next twc terms are of greater interest. The third

terz shows that, centred at x = =f <in 8, the convolution cf
g{x,v, with h(x,y) is produced. The last term represents
the ccrrelation of g(x,y) witn h(x,y) centred at x = £ sin £,

Zf g(x,v) happens tc be similar to h(x,,y) then the last
term of the above formula will change to an autocorrelation.
The e:tcorrelation is originated from the multiplication of H
. - - . * . 3

with its complex conjugate H , This produces a uniform plane
wave that will be focussed to a spot by the lens L3. On the
other hand, the wave giving rise to the convolution is not
multizlied by its conjugate and is rot converted to a plane

weve, Consequently it cannot produce a spot at plane P3 but

a smeared or spread-out distribution.

The spatially filtered image is often recorded at the
correlation position of the out-put of the spatial filtering

syste=. The following are some of the applications of matched
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filters

2.3.1. Image restoration

Correcting aberrated images was the prime motivation for
the work in optical processing carried out by Marechal and
Crose (1). 1Images are usually blurred due to lens aberration,
defocussing or camera or object's motion. In order to correct
a blurred image, its Fourier transform has to be multiplied by the
inverse of the Fourier transform of the blur function. This
ideally gives a straight line multiplied by the Fourier transform
of the original image. The second transformation then gives
the original image convelved with a delta function, which is

the original image.

The filter may be synthesised by computer generation or by

separate preparation of the amplitude and the phase portionms.

The problem that arises quite often in synthesising the
filter is that the value of the filter function is required to
be infinity when the Fourier transform of the blur function
contains zero values, an impossible solution. Further processing
can be carried out to getaflatter transfer function, but in

most cases the zero frequencies are not recovered.




Tsujiuchi illustrated the technique of image deblurring in
his review paper (2). Yu discussed the grcblems of image
restoration in his book (3) and qucted scme references about the

subject,

2.3.2. Decoding coded photcgraphs

Coded apertures were suggested (4) for imaging the
electromagnetic waves that cannot be imaged with ordinaty lenses.
Zone-plates were first used as coded apertures. These formed
coded photographs that were decoded by illuminating them with a

coherent light.

If, however, the source of the electromagnetic waves is
needed to be coded (but not the camera's eperture) then the
coded photographs may be decoded by spatial filtering. A
Fourier transform hologram of the out-of-focus point spread
function of the code is made. This is used as a spatial
filter in a coherent spatial filtering system. The coded
photograph is correlated with the code. This produces the
decoded image af the correlation position of the output of

the coherent system.

Randomly distributed transparent dots on opaque surround

were also used as a code (5, 6, 7). Both the randomdots

code and the zone-plate have an autocorrelation function equal

to a delta function. The spcke plate of Figure 2.2 may also
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be used as =z code gince i1ts autocorrelatics fuucrion iz a delta

functiorn <

The icea of coding and decoding is mcre fully discussed
in Chapter 3 in which & ccherent spatial filtering system is
used to decode photographs couded with a random - dots code.
2.9 describes the methods of decoding tae photographs in

noncoherent light,

2.3.3., Pattern recognition

.

Pattern recognition in coherent light is commenly based
upon the use of holographically produced matched filters. A
Fourier tronsform heolegram is usually recorded fer the
pattern or patterns to be recognized. The input data is then
simultaneously or sequentially applied to the hologram
(the matched filter).A correlation spot appears at the system's
out-put whenever a pattern similar to a reccrded one enters
the input. In the case of filters with several recorded patterns,
the position of the correlation spots indicates the pattern
that exists at the input. Multiple-pattern filters are usually
synthesised by recording each pattern with a different reference

beam angle (8a, 9).

The earliest work on pattern recognition with a holeographic
spatial filtering system, was done by Vander Lugt (10). He applied

his idea of holographically synthesised matched filters teo




character recognition and e detection of isoluted signal in
randem noise. Later he discussed the problem of complex spatial

filtering in more detail (11, 12).

Character recognition using a similar method to that of
Vander Lugt was reported by Binns, Dickinson and Watrosiecwicz

(13) and by Lowenthal and Belvaux (14),

A scmewhat different approach to character reccgnition
was described by Gabor (15) in which veriants of letters cculd
be identified using a single photographic plate. Keyte (16)
described a character recognition system based on Gabor's
method; and also discussed the problems of finger print

recogniticn, airphotographs recognition and radar signal processing.

A main problem in pattern recognition by holography is that
some cross—correlations have correlation spots with intensities
comparable to those of autocorrelations. A method for discrimination

enhancement is described by Cathey (17).

2.3.4., TFourier Images

Correlaticn and convolution with matched filters can be
used for many other applications. In Chapter 4 a coherent
correlation experiment is described in which Fourier images

derived from different objects are correlated.




Several Fourier trensiorm hclograms were recerded. Each
fcr a sample frem ore of the Fouricr images. The holograme
were then used as spatial filters snd the samples were allowed
to cerrelate with the rest of the images. The result of the
correlation is drewn cn a table. Tals seems (o cenfirm the
possibility of confusion in icdentifying images formed in
coherent light (20). The Fourier images and the correlation

experiment are described in more detail in Chapter 4,

2.4, Correlation usingasingle lensless Fresnel hologram.

In many applications of coherent optical det@ processing
one needs to record either the Fourier transform or its
interference with another (reference) wave (10). Normally, the
intensity variations in these light fields are significantly
larger than the dynamic range of the recording media. It was
shown (18) that getting the autocorrelation using this
technique was complicated by the appearance of additional
(artifactual) rings that result from clipping of the power

spectrum due to the limited range of the photographic film.

Eieringer(19) has shown that the effective dynamic range
for optical correlation analysis can be increased by making use
of holograms of diffuse objects. A Fresnel hologram is
recorded for an object using a coplaner point source as
reference beam. If the hologram is reconstructed using a

point source at an arbitrary position in the original object

34
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plane and a positive lens is used to record the conjugate image,
then the geometric image obtained at the back focal plane of
the lens is ccnsidered as the impulse response of the hologram

lens system.

Reconstruction of the hologram using, as a reference
beam, a different object produces,by convolving the geometric
image of this object with the geometric impulse response of
the system, the desired cross-correlation (or autocorrelation,
if the original object is used for the reconstruction)in the

back focal plane of the lens.

2.5. Nonholczraphic ccherent correlaters

2.5.1, Correlaters with relative motion

Many mathematical operations can be carried out using
purely optical techniques (21). Multiplication can be
achieved by combining together the transparencies to be
multiplied and recording a contact print for their
combination. Integration can be performed by simply collecting
all of the light transmitted through a transparency and focussing
it onto a point. A detector at that point then records the

integration.

A coherent optical system performing the multiplication

and the integration operations together was discussed by Curtona




et al (22). Silva and Rogers (23) described a ccherent
correlator working cn the samec principle of multiplication and
integration as that of Curtona et al but the shift needed

for the correlation operation is provided by scanning one

transparency over the other, as shown in Figure 2.4.

Similar correlater was reported by Stroke (24). The
multiplication in this correlater was performed by imaging one
of the transparencies over the other. A lens then integrates

the transmitted light and focuses it onto the detector.

Because of the coherent nature of the light a term of
2miux
the form e Af appears in the correlation integral due
to the Fourier transform property of the integrating lens.
This term can be suppressed by minimising the area of the

photodetector or by placing a suitable pinhole at the focus

of the integrating lens thus making x*o,

2.5.2, Spatial heterodyning

In this correlation technique;spectra of the two signals
to be correlated are multiplied directly using the Fourier
transforming apparatus of Figure 2.5a. The resultant record
may then be retransformed to get the correlation (Figure 2.5b)

(40 - 43).

This process can be used to identify spatial distributions




Figure 2.4

Apparatus for Correlatimn with relative motion.

S = source; Ll= Collimater; L2 = Integrating

lens; D = photodetector. B is scanned across
A and the correlation function is obtained
sequentially from the detector output

(After Silva and Rogers)
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by heterodyning a referernce distribution with the field of
view to be searched. Its main advantage is that there is no
critical positioning problem as in the spatial filtering

technique.

2.6. Noncoherent correlaters

2.6.1., Advantages and limitations of noncoherent light

Using noncoherent light in correlation processes has
many advantages. The most important of these advantages are
redundancy (in other words the invulnerability to noise) and
parallel processing (25). It has. however, the disadvantage
of restriction to real positive functions. The restriction
to real functions is not too serious as until now there are
few transducers available in coherent optics that can modulate
both amplitude and phase continously and independently. The
restriction to positive functions is a very serious limitation
as any function with negative values must be subject to the
addition of a positive dc term throughout its range. This
reduces the contrast of the input, and as processing proceeds
these dc bias terms accumulate and cause very serious

difficulties.

Optical modulation may be used to overcome the problem
of dc bias. Examples of temporal modulation are shown

References(33) and (44)?and of spatial modulations in




References(6,7 and 23).

Another restriction in noncoherent systems is that a single
channel cannot convey as much information as the coherent
system as this leads it to depart from the laws of geometrical

optics on which the noncoherent systems are designed (8b).

2.6.2. Correlation without motion

Noncoherent correlaters, in general, are based on the
device suggested by Haag and others (26-28) to developaPatterson
projection. This is defined as the autocorrelation pattern
of a proposed crystal structure that can be calculated easily

and compared with the x-ray results.

If the system shown in Figure 2.4 1is illuminated with
diffuse noncoherent light it can still perform the correlation
operation. The awkward and time consuming mechanical scanning,

however, is not needed in this case. The two transparencies

can be separated by a finite distance(Figure 3.15) and the parallax

between them provides the correlation shift.

The entire correlation process is performed simultaneously
and is represented as points in the focal plane of lens. A point
in the correlation (x,y) plane is equivalent to a particular

displacement (p,q) in the second transparency D and is related



to the separation distance d and and the focal length f by

vy 2 2 y 22
P_*9_ X *y
d
Another advantage of this correlater is that the first
pattern (the input) is not necessarily presented in the form
of a transparency. Any diffusely illuminated or self
illuminating object can be used. This correlater is used in
Chapter 4 to correlate Fourier images derived from different

objects. A full description of the experiment is reported in

4.5,

2,6.3. Autocorrelaters

If a lens is used to image the noncoherent source on the
correlating transparencies then the entire optical system becomes
symmetrical, A single transparency may then be used to obtain
the autocorrelation. This may be done by placing a mirror at the
plane of symmetry. The mirror reflects the transmitted light
back through the same transparency; therefore producing
autocortelation (Figure 2.6 ), Optical arrangements for
performing autocorrelation are described by Horwitz and Shelton

(29) and Kovasznay and Arman (30).

Bromley (34) discussed a noncoherent technique for cross-
correlating a one dimensional function with a library of stored

signals simultaneously.
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Figure 2.6 Noncoherent autocorrelater



2.6.4. Correlation with a synthesisec impulse-response

It has been shown in 2.1.2 that images are formed in
noncoherent light by convolving the object function with the
irradiance point spread function of the cptical system. If the
image however is recorded at a finite distance away from the
conjugate plane (Figure 2.7) then the record will represent
the convolution of the object with the out of focus point
spread function of the optical system. A mask may then be
introduced into the system's aperturc tc manipulate the point
spread function ., This results in the convolution of the
object with the mask at the out of focus plane. This
principle was used by Trabka and Roetling (31) in pattern
recognition. Its basic idea is similar to the idea of Haag's
correlater (26) but the point of view is sufficiently different

to have had a separate discussion,

2.6.5 Correlation with a spatial frequency filter

A useful variation of the correlater of Figure 3.15 is
obtained by removing the lens and reducing the scale of pattern

D so that the rays converge naturally on the detector plane F.

If x and t are the scales of the two correlating
transparencies and p is the distance between them then the
detectort location can be calculated using the theorem of
similar triangles. From Figure 2.8 it can easily be shown

that the detector must be placed at a distance @ from the
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Figure 2.7 Correlation with a synthesised impulse-response



second transparency. Such correlztors were used by McLachlan (32)

and Leifer et al (33) in pattern recognition.

A particular case of this ccrrelater is one which has its

second transparency replaced withh a linear grid having a sinisoidal

variation of transmission. The new system can detect the presence

of any frequency that has a certezin relation with the grid's
frequency. The correlation between the grid and the input
transparency produces a sharp chedow on the detector plane.
This shadow indicates the presence of a frequency x = in the

object (the input transparency) that can be calculated using

the theorem of similar triangles.

In Figure 2.8 if t is the grid's spatial period and x is
the object's corresponding spatiel period then it is clear
from the similar triangles that

t _ X
ptq

Therefore, the detected frequency

_1 _ q
* t(p+q)

By varying the spacing and the orientation of the grid any
other frequency in the input pattern can be picked up. The
system is therefore acting as a spatial frequency filter or a

Fourier coefficient calculator. Another way of picking up

]
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different frecuencics is to move the gric Se¢=ween the shadowing

plane (detector) and the cbject. This makes the system pick up
. -1 . .

frequencies between t and o. he grid cen also be rotated

to detect frequencies of any orientaticn.

2.7 Pattern recognition with noncoherent light

There are three basic applications of correlation to the

recognition of patterns.

2.7.1. General correlation

The given pattern is correlated with the set of known
patterns and the one giving the best correlation (usually
characterised by a bright central maximum) determined by one
or more photo-detectors, provides the identity of the pattern.
Disadvantages are : 180° rotational ambiguity, rendering in
the case of character recognition characters such as 6 and 9
indistinguishable, there is no shift variance, i.e. the
position of the correlatiou pattern in the detector plane

depends on the position of the input pattern in the object plane.

This method of recognition was discussed by McLachlan {32)
who showed that identical patterns have larger common area,
when they are brought into maximum coincidence, than unlike
. patterns. This means that an autocorrelation has a higher

Waximum in the centre than a cross—correlation.

7
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2.7.2. Autocorrelatiog

IThis is only possible for the pattern in the form of a
transrarency. Every pattern has a certain autocorrelation
function characteristic of itself. Therefore, by examining
the auvtocorrelation plane different patterns can be identified.
Autoccrrelation can be made shift invariant but 180° rotational
ambiguity remains. Systems using autocorrelation for pattern

recognition are described by Holden(35) and Horwitz and Shelton(29).

2.7.3, Correlation with discrete frequency gratings

Tnis is used, in character recognition, to analyse the .
frequency content of characters and provides a means of
recognizing characters by measuring Fourier coefficients.

(33)

Leifer et al have shown that any character in the Arabic numerals
0,1,....,9 can be recognized by measuring a three of its
Fourier coefficients. They, therefore, correlate a composite
grid, consisting of the three frequencies, with the characters
in the manner described in 2.6.5. The correlation of a character

with one of the frequencies produces a correlation pattern.

The contrast of the correlation pattern (the shadow) corresponds

to the amplitude of the given Fourier coefficient and the
position corresponds to the phase. Therefore, by measuring the
contrast and the position of the shadow for each of the three

frequencies the character can be identified.




2.8 Noncoherent Fourier transformations

It is possible to generate an entire Fourier transform
temporally within practical Irequency limits by convolving the
input intensity distribution function optically with a single
sinewave grid and continually varying the sampling frequency
by controlling the spacing between the pattern and the grid.

A two dimensional transform is constructed by altering the
orientation of the grid after each frequency sweep. Alternatively,
the grid can be continuously rotated, and the sampling frequency
slowly changed. Many similar experimental correlograms and

Fourier transforms are described by Rarber (36).

Fourier transforms can zlso be obtained by convolving the
input pattern with a multiplicity of sinusoidal transmission
gratings of various spatial frequencies and orientations. This
method is employed in the noncoherent Fourier transformer (37)

and is described in more detail in Chapter 5.

2.9.Noncoherent decoding of coded pictures

2.9.1. Pictures decoding using a simple noncoherent correlater

We have seen in 2.3.2 that coded apertures can be used to
image radiations that cannot be imaged by ordinary lenses. Zone-
plates are usually used as coded apertures. These form coded
photographs that may be decoded by reducing their scale and

placing them in a coherent beam of light.




The main problem in this kind of decoding is the
diffraction pattern due to the negative power of the zone-plate
If an off-axis zone-plate is used to separate spatially the dc
term then a half-tone screen must be placed in front of the
object to translate its low frequencies into the passband of the
zone—plate. This leads to a decrease of efficiency and to
addition of noise to the decoded photograph. The coherent
system has the added disadvantage of vulnerability to optical
disturbances like dust,flare and scatter. These drawbacks
of the coherent decoding lead to the idea of using nocoherent

light to decode coded photographé.

It is known that the autocorrelation function of a
zone-plate is a delta function (23). Therefore, 1f a coded
photograph (blurred zone-plate) is correlated with a sharp
zone-plate, using the noncoherent correlater of Figure 3.15,

then the detector at the output of the system will record

the convolution of the blurred zone-plate with the sharp zone-plate.

If the sharp zone-plate is represented by Z(x,y), the
original object by O(x,y) and the blurred zone—-plate by B(x,v)

then the correlater's output will be

Z(x,y) * B(x,y)

But B(x,y) = Z(x,y) * 0(x,y) (Reference 32)




Therefore the correlator's cutput bSecomes

Z(x,y) * 2 (x,y) * O6(x,y)

§(x,y) * 0(x,y)

0(x,y)

It must be borne in mind ,however, that the autocorrelation

function of a zone-plate is not exactly a delta-function.

Silva and Rogers (23) have shown that the autocorrelation
function of a zone-plate consists of a central peak and a
shoulder. The central peak, which gives a delta-function-like
effect, can be regarded as due tc the positive focussing action
of the zone-plate. Arcund it is a shoulder that corresponds

to the straight-through wave and the negative focussing action
of the zome-plate. 1In order to get better approximation to

a delta—-function the pho&ographic clipping technique described

by AlqazzaZz and Rogers (6) must be used.

2.9.2. Noncoherent decoding by ray reversal

This method is particularly useful in decoding coded
photographs produced by systems using coded-sources. In these
systems random—dots are more often used, as a code, than a

zone-plate (6,38,39).

The coded photograph is placed hack in its original position

in the coding system and a photographic plate is placed in




the position of the original object (Figure 3.43). If the
code transparency is imaged on the photographic plate from the
other side of the system with the same magnification as in the
coding operation then the photographic plate will record the
convolution of the code with the coded photograph which is the
decoded image. This technique is described in more detail in

3.6.
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CLEAPTER 3

DECCDING PREVIOUSLY CODED PICTURES

3.1 Introduction

1
i

The fundamental principles of holography were first laid
down by Gabor in 1948 (1). In 1950 Rogers (2) called attention
to the similarities Letween Cabor's holograms and Fresnel zone
plates. He showed that each ohject point was encoded as a quasi-
zone plate, with the object's transverse location given by the
transverse location of the zone plate's centre, and the object's
depth given by the scale c¢f the zone plate. The object's
relative intensity is given by the contrast of the zone plate.
This idea leads to the shadow casting technique of Mertz and
Young(3) where these zone plates are produced by a noninterferometric
method. It is not practicable to focus X-rays under conditions
applying in X-ray astronomy and particularly in rockets or
satellites above the earth's atmosphere. On the other hand,

an X-ray source can be made to cast a shadow of an etched metal

mask on a photographic plate.

In the Mertz and Young technique a finite number of X-ray
sources (X-ray stars) are allowed to cast the shadaw of an etched

metal mask representing a zone plate on a photographic plate.




Lach source will throw a shadowgraph of the zone nlate ontc =

different arez of the photographic rlate. The plate is then
developed and if :.ecessary its scale is photographically
reduced so that each zone plete image has a convenient focal
lengti of say 10 -~ 50 mm. Vhen placed in 2 coherert beam ezch
zone plate image produces a bvight spot on the common focal
plane, These bright spots are a map ¢f the original X~ray

stars.

In 1972 Barrett {4) and Rogers et ::1 (5, 6) thought cof
applying :he Mertz and Young teCHhique to gammra ray imaging n
nuclear medicine. This brings us tc the codad blurring

technique.

In nuclear medicine images are rormally formed on a gamma
ray detector by means of lead pinholes or multichannel
collimators. These apertures suffer from low geometric
efficiencies and low resolutior. To increase these two factors
the dose of the radicactive material given to the patient has

to be increased. This might endanger the life of the patient.

Barrett (7) realized that if a lead zone plate is used as
an aperture for imaging the gamma ray it will form a coded blur
spot from.each point in the person being photographed and that a
sharp picture can be subsequently recovered in coherent light.
This technique is found to lead to a great increase in efficiency

as well as resolution. It has the added benus thatpoints in the

patient




lying at different distances from the gamma ray detector reccrd

zone plates on a differeni scale and subseguently reconstruct at

different distances freom the record. The recording is therefore

genuirely three-dimensional.

Later in the same year Barrett(8) thought of applying the

idea of zone plate shadow casting to X-ray tubes.

In X~ray tubes, all the rays emanate from a small focal
spot, and the image is simply a geometric shadow of the cobject.
In order to increase the resolution of the image, a small focal
spot has to he used, -ut this leads to loss of power or to
rapid appeararce of hcles in the enticathode. Hence a compromise

must he made between resolution and power efficiency.

Barrett constructed an ¥~ray anticathode with a zone
plate pattern etched on it, When he allowed the electron beam
to flood the anticachode the emitted X-ray formed a coded
record of the ohject being X-ray photographed. The coded record

is then recovered in coherent light.

Mertz and Young (3) had realized that the disadvantage
of using a zone plate as & ccode is that each fecal spot, produced
by each zone plate image, is surrounded by a halo due to the
beam diverging from the yirtual focus of the zone plate. Off-axis

zone plates had been used to spatially separate the dc term,
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but this bes the dicadvantage tha:t the ohieat's frequencies

should be in the pass_band of the zoune plate.

This probiem is thought to be solved (9,10) by using a
halftone screen to heterodyne the object spectrum into the
passband ¢f the zonme plate but this leads to a decrease of
efficiency. The half tone screen tends to obstruct some of

the photons and prevents them from reeching the detector .

Dicke (11) sugzested use of an irregular system
of pinholes as & coded wzperture in Z-ray astroaomy and suggested

severa’ methods feor decoding the coded inage.

This chapter describes a code made of irregulsr transparent
dots on opaque surrounding. Algazzaz and Rogers (12) thought
of using this type of code as a coded-source for coding pictures
in noncoherent radiation. The dots can be regarded as an
array of X-ray anticathodes (13); use of 'such an array leads to
a great increase of the efficiency of the system over the

efficiencies of systems that use single anticathode.

Pictures are coded by convolving them with the code.
This is done by allowing each point of the code to record the
whole picture on a photographic plate, the résultant photograrh

is the coded image.




For decoding a cecded picture, the coded nicture has to be
convolved sgain with the code. Two decoding methods are

. In the fi

o=
oL

I

described in this chap ccherent spatial

-

filtering system is employed while in the second & non coherent
system, based on the idea of reversing the rays ianvoived in

the process of coding5 is used.

3.2, Theory

[

\

Tc generalize the problem, we assure that a three dimensicnal

object fl(x,y,z) is coded by the rendom dots code g(x,y). The
cede lies in a plane st a distance D from the observation plane.
Let ¥ and y_ be the dimensions of the out-of-focus point
spread functiop cof the code preduced by layer n in ithe cbject at
distance Z'1 from the cbservation plane. The ceding process is

I

a convolution of the code with the object to be coded. Hence

the coded picture 1is

m
-
f£,(x5,y) = 2 tg(xn,ytﬁ @ xy)

n:

1
wahere g(Xn,yn) represent the out-of-focus point spread function
of the code for nth layer and fln(x,y) represents the ntt layer

of the object along the z-direction.

Two method were employed to decode the coded picture. In
the first method, non_coherent light was used and the coded

picture was decoded by teversing the ceys involved ia the coding




o
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process. The second method emploved coherent light and the

coded picture was decoded by spatial filtering.

In the non_coherent way of decoding, the code transparency
was put at a distance 2f from the lens and the coded picture
was put on the other side of the lens, at a distance 2f-D from

it.

If the code transparency is illuminated by non coherent

light, the irradiance immediately behind it is

I = IO g (x,y)

Where Io is the irradiance at the plane of the code transparency.
The lens convolves the code with the coded picture. The convolution

in space 1is

2. {g(xn,yn) ®h (Xay) ®f2 (X’Y)J

.7

where h (x,y) is the irradiance impulse response of the
optical system., If the spatial-frequency response of the signal
is within the 1imits of the spatial-frequency response of the
optical system, then h(x,y) can be approximated by a delta

function. Hence the previous formula becomes

m
n§1 {g(xn,yn) ® £ (x,y)j

By substituting for fz(x,y), we find that a photographic plate

located at distance z. from the coded picture records
J




g(x.,y.) * ¢ (X]-, y.) zg £ (x,y)

Lol
w

m r ~’
* 2% i g<Xj’yj) * g<Xn’yn) ® fln (X’y)J j
e

The autocorrelation function of random-dots is approximately

a delta function; therefore

e

1.= £ . (x,y)
it Y

Hence the photographic plate records the reconstruction of the
jth layer of the object. Other layers (the second part of the
equation) are smeared out and contribute to the noise in the

photograph.

Exact reversal of rays in the decoding process exactly
reverses the magnification and the image is recovered at the same

size as the object from which it formed.

The second method of decoding the coded pictures made use
of Fourier transform holography (14). This was used to record a
hologram of the out-of-focus point spread function of the code.
The convolution of the coded picture with the code was done by
using the coded picture as a signal for reconstructing the

hologram.

Because coherent light was usedsh(x,y) becomes the




,
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amplitude impulse respense of the optical system. This weas
subsequently approximated by deita function. The decoded
image was received at the output of the hclogram by a 33 =n
camera. Klotz and Weiss (15 have described 4 method ir waich

different layers of cbject could be recovered by movinz the

coded picture back and forth along the optical bench.

3.3. Distinction between dilute and centinuous tone objects

The extent to which the ccded pictures deccde depends not only
cn the autocorrelation paitern of the code, which must peak

sharply, but aiso on the nature of the orizinal pict:re.

Pictures are usually either contintous—tone or dilute. 2
picture is defined as diluta when‘the information carried is very
much less than the theoretical maximum, as in the case of white
letters on a black surround, or the case of line~drawings. The
picture will often be a black and white representation with at
least 90 per cent of the area either black or white, and the
smaller fraction of the other colour. Continuous—tone pictures
on the other hand have '"grey" tone which range from black to white.
Normal portraits and photographs in newspapers, are examples of
the continuous—tone pictures. The dilute and the continuous—tone
pictures used in the experiment are shown in Figure 3.1 and

Figure 3.2 respectively,

i
fee







3.4, Noise Coasideration

In the dilure decodaed plcture, the noise due to the

shoulder of the avtccorrelation pattern falls mainly or completely
outside the outlires of the picture. The roise irradiance in

this case 1s 1/N of the irradiance of the signal,where N is the
number cof dots in the code. Heuce by decrezsing the exposure
time so that the density recorded on the photographic pilate due

to noise is approximately the same as the fog level of the plate,

we can obtain a very high signal to noise ratio.

Cn the other hand the decoded continuous-tone picture has

ratio of the irteszrated irradiance

o]

poor contrast, because th

rt
fmp
(]

in the central pezk to integrated irrediance in the shoulder
is low, and decreessing the exposure time cannot reduce the

effect of the noise,

If we have N dots, then the central peak has weight N and
the integrated surround has weight N(N-1) so that the signal-to-
noise ratio will be 1/(N-1). From this, we can see that, as
the number of dots decrease, the signal-to-noise ratio increases,

but at the expense of efficiency, hence a compromise is necessary.

The autocorrelator pattern (Figure 3.3) of 15 random dots
consists of a circular spot at the centre that has a weight

equivalent to the irradiance from 15 dots, and 210 dots surrounding




Figure 3.3

S.N.R.control

circle
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it. If wve assuime that the central half of ihe autocorrelation
pattern is responsible for the decoding effect with a
continuous tone objecct, then by drawing a circle (Figure 3.2) on the

autccorrelation pattern such that 105 dots lie inside it, we

getsigna]~t0wnoise ratio of crder of magnitude 1/1.

The diameter of this 50 per cent circle is of the same order
cf magnitude as the spread of the original dot code. In
ocher words we do no% expect any increase of sharpness when we
non coherently decode a continuous—tone object, but simply

a loss cof contrast.

3.5 The coherent decouding

3.5.1 The code transpareacy

Codes with different number of dots were used. The one
which is described in this experiment consists of five

randomly distributed dots. This was made as follows.

Five dots of negligible size were drawn on graph paper
so that the vector differences between them had different
magnitudes and orientations. To check for the randomness
of the dots, their autocorrelation pattern should be drawn.
This was dope by allowing each dot of the five dots pattern
to draw the pattern. Alternatively, each one of the dots

could be passed over a certain point om the graph.paper

R




and the rest of the dots were drawn at cach step. This point
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would represent a peak at the centre of the autocorrelation pattern

The peak is surrounded by 20 dots. Any aggregation of
dots on some axis of the autocorrelation pattern would indicate

some symmetry of the dots in the corresponding direction.

The dots pattern was then enlarged by drawing it on a
graph paper using larger scale. The graph paper was put over
a white cardboard and the positions of the five random dots
were marked on cardboard using a pin. Circles were drawn
on the cardboard with their cenfres at the pin-marked points.
The diameter of the circles were chosen to be about 1/20 of the
average distance between the dots, The circles were blackened
by waterproof drawing ink using a technical pen. The cardboard
was then photographed on Ilford N4O process plates. These were
developed for three minutes using Kodak D8 developer, given
slight rinse in clean water then put in Kodafix fixer for three
minutes, washed for half an hour then left to dry. When the
plates were dried they were put on a light box with the emulsion
side up. Very fine holes were observed in the emulsion, these
were due to dust particles attached to the emulsion before
processing. The holes were spotted using Johnson liquid opaque

spotter. This would prevent the extraneous holes from confusing

the code.




3.5.2 Coding of pictures

The apparatus used for coding pictures is shown in Figure 3.4.
It consisted of a light box with a diffuse screen on which the
code plate was placed. A contact printing frame was placed 12 cm
from the code plate. It contained the transparency to be coded,
a spacer, and a photographic plate. The distance between the
frame and the code plate controls the exposure time whilst the
spacer thickness controls the amount of blurring and they are
related to one another. A spacer having thickness of 3mm
was found to be convenient for producing a significant blur in the

photographic plate.

The photographic plate recorded the convolution of the

code function with the transparency function (16) which is the

coded image. i
I1ford special lantern soft plates were used to produce

a blurred picture for the continuous—tone object shown in Figure 3.2.

For the dilute object shown in Figure 3.1 Llford N30 ordinary

plates were used. Usinga25 watts lamp for the light box, the

exposure times used for recording the coded continuous-tone

picture (Figure 3.5) and the coded dilute picture (Figure 3.6)

were 105 seconds and 40 minutes respectively.

Because the decoding process requires the use of a positive

coded transparency, the coded negative was printed by contact
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Figure 3.4 Apparatus for coding pictures. A =

photographic plate; B = spacer; C =
contract-printing frame; D = the picture
to be coded; E = random-dots plate; F =
black cover to obstruct stray light;

G = ground-glass screen; H = diffuse
light source -






printing,to produce a positive cqded transparency. Again
I1ford lantern plates were used for the continuous-tone picture and

T1ford N30 plates were used for the dilute picture.

The negative transparency was put in a contact printing frame
with emulsion side up and the photographic plate was put over 1t
with emulsion side down, the back cover was put and clamped
then the frame was turned, put under printing projector and the
photographic plate was exposed. The projector was put in a
maximum height position so that the light coming out of
it expose the plate uniformly.A ;est Stwip was used to determine
the right exposure time. The exposure time for both the dilute

and the continuous—tone pilctures was 4 seconds.

Both the N30 and the lantern plates were developed in P Q ot
Universal developer. The developer was diluted by 1:9 and kept
at 21°C. The plates were developed for three minutes, with
continuous agitation of developer, rinsed with water then fixed
and washed in the usual way. The back of the plates was
cleaned from grit marks by cleaning tissue. The grit masks

came from water and precipitate over the back of the plates.

3.5.3 Mounting the coded pictures

In coherent systems phase retardations occur when coherent

light passes through a photographic plate. Such phase

retardations are primarily due to emulsion thickness

variations. These thickness variations are of two sorts. One



is the coarse variation? which is a departure from optical
flatness of the emulsion and base. The other is the fine
variation which is a result of random fluctuations in the
density of developed silver grain. This fine scale

variation is strongly dependent upon the exposure of the film.

Coherent spatial filtering systems are usually phase
sensitive, therefore it is necessary to remove these phase
retardations. For this reason, the coded transparencies were

thought to be put in an index-matching liquid gate.

Glass plates, having the same size as the coded photographs
viz : 31" x 31" (8.2. x 8.2 cm), were examined for optical
flatness by means of Twyman-Green Interferometer. The
Interferometer was first adjusted to maximum visibility by
equating the optical path lengths of its two arms. The test
mirror was then slightly tilted to give about 10 fringes in the

field of view.

The plates were first examined for wedge existence. This
was done by putting the glass plate in front of the test
mirror such that it covers half of it. This enable the
directions of inclination of both the fringes formed over
the glass plate and the fringes formed over the uncovered
part of the test mirror to be observed. 1f these two

directions are not exactly parallel then a wedge exists in
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the glass plate.

However, it 1s more important to examine the
plates for optical hills and valleys because these are more
cumbersome in coherent systems. This was done by putting the
glass plate in front of the test mirror and trying to get
minimum number of fringes, or no fringes if possible. No
fringes indicates that the glass plate is free from optical
nonuniformity. A closed fringe structure indicates the
existence of either hill or valley. These could be distinguished
by pressing gently the back of the test mirror, if the closed
fringe structure expands then a valley exists and if it

contracts then a hill exists.

Several plates with minimum number of fringes of two or less
were chosen. These were cleaned by soft tissue and polishing
cloth. The photographic plate to be mounted was cleaned as
well, then a single drop of Sira mountant emulsion was put over
the centre of the photographic plate. Another was put over the
centre of one of the glass plates. The two drops then joined
together by lowering the glass plate slowly over the
photographic plate. This would avoid the cccurrence of bubbles
in the mountant. The two plates then squared up and put in a
box of the same size as the plates. A 750gm weight was put over
the plates and left for two days ti1l the mountant spread
uniformly over the emulsion. The other side of the photographic

plate was then mounted in the same way.

The Sira mountant has a refractive index close to the
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refractive indices of both the glass and the emulsion,
therefore the optical path length through the liquid gate is
expected to be constant.
The liquid gate was examined by Twyman—Green interferometer,
several fringes were observed, indicating some inhomogeneity
in the glass. This was attributed to the fact that the
photographic plate had a base made from a normal window glass

and therefore it was optically inhomogeneous.

The variation of optical path length along the liquid
gate tends to localize the correlation effect and therefore

only part of the coded picture is expected to decode. Other

parts of the picture decode by scanning the hologram with
the signal beam. In some cases there may exist a position on B
the hologram in which@large part of the coded picture is

decoded.

3.5.4 The Coherent Correlator

The apparatus used in decoding the coded picture is shown
in Figure 3.7. It is based on the system suggested by Vander Lugt 17
for synthesing complex spatial frequency filters and consists of
1. A heavy and rigid table with two 28 x 35 x 15 cm. pieces of
expanded polystyrene over it, serving as antivibration mountings.
2. Double rail type optical bench, of length 200 cm, mounted
over the polystyrene blocks and includes bench carriers which

were designed to take optical components mounted on pillars 10 mm
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in diameter. The optical bench was considered too heavy for

any vibration to occur.

The whole apparatus was situated in an isolated sub-basement
room. This would prevent any disturbance due to vibration, temperature
change or airflow from spoiling the holographic record.

3. Laser

He-Ne lasers have been found to be ideally suited for use in
cohercnt optical systems. Their output power and wavelength are
very convenient for our sort of experiment. For this reason
Spectra-physics He-Ne Laser (Model 155) was used. This gave an
output of 0.5 mw and wavelength 632.8 nm. The output was

continucus and uniphase, i.e. the laser could be operated in

the TEMOO mode, giving a single output beam with an approximate

GCaussian distribution of intensity across it.

An important requirement of the laser is that its output
power and wavefront intensity profile must be constant during
the period of experiment. This is particularly important
during exposure of the hologram, when the intensity must be

carefully controlled.

The output power and wavefront intensity profile depend
to a large extent on the state o1 tuning of the laser. This
refers to the alignment of the end reflectors of the resonating

cavity, optimum power being obtained when the reflectors were




perfectly aligned. This also gave the best intensity profile.

A period of about twenty minutes was usually allowed, for

the laser to warm up, before recording the hologram. This would
enable the laser to produce more stable output. The stability
of the laser output could be checked with Fabry Perot etalon.
A stable laser will produce no drift and no split in the

interference fringes of the etalon,

3. The beam expander and spatial filter.

A small negative lens was used to diverge slightly the
laser beam from a virtual source. The beam needed to be
diverged in order to fill the entrance pupil of a microscope
objective. This would make full use of the objective and in
particular would increase the divergence of the beam after the
objective., Beck type objective of X20 power was used to bring
the slightly diverging beam to a real focus. A fine pinhole,
acting as spatial filter, was placed at the focus. This would
block out the scattered light, due to dust, scratches or any
other imperfection in the preceding optical components, and
prevent it from passing beyond the focal plane of the objective.

If the scattered light was passed, it would produce diffraction

irregularities in the divergent beam. The pinhole was aligned

wvith the microscope objective by the method of successive

approximation described by Rogers (18).




4 Lenses
The collimator and transform lens have very similar tasks

although the first was required to image an axial point source,

whereas the second was required to give good performance over

the range of spatial frequencies likely to be encountered,

The collimator was a large f£/6.3 aircraft lens having a
nominal focal length of 91.4 cm. This was placed on the
optical bench such that the pinhole lies at its focal point,
hence, the light emerges parallel from the other side of the lens,
The focussing of the pinhole with respect to the collimator
was done by viewing the pinhole, through the collimator, with a
pre—set collimating telescope. A neutral density filter of
value 1.0 was used for this purpose and the collimator's position
was adjusted so that a sharp image of the pinhole appeared in

the telescope.

The diameter ofthe collimated beam was 9.8 cm. Half of this
beam was allowed to fall on the transparent object and the light
diffracted by the object was focussed, by means of an f/3 lens,
on the hologram. The lens served as a transform lens and had a
focal length of about 14.6 cm. The other part of the beam was
used as the reference beam in recording the hologram. This has
been done by mounting a suitable right angle prism under the
transform lens to refract the beam so that it falls on the

hologram.
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5. Object

This was a photographic plate mounted between two optical flats,
as described in Section 3.5.3, and was situated at the back focal
plane of the transform lens. The bench carrier holding the object
was designed such that it allows the lower half of the collimated
beam to pass freely to the right angle prism to provide the
reference beam. It consists of two vertical rails with long slot
alone one of them. The object was slid between the rails and its
position was controlled with a bolt screwed to the slotted rail,

as shown in Figure 3.7.

6. Hologram

The hologram was situated at the back focal plane of the
transform lens. 1t was mounted over a carrier having three degrees
of freedom. This allowed the hologram to be recorded outside
the transforn iens focus. It allowed it, as well, to be centred
on the back focal plane of the lens. The formation of holograms

beyond the focal plane will be discussed in Chapter &.

The hologram itself was I1ford Holographic plate 9 x 6 cm
in size. The plates were supplied in the standard size, viz,
9 x 12 cm. and were cut into two pieces, in a jig before being
used. The cutting was dome in complete darkness and the plates

were kept in a light tight box until needed.




7. Telescope and Camera

ie

The naked eye could be used to view the hologram
reconstruction, but in order to view the fine details of the
reconstruction, a telescope, set for viewing at infinity, was
normally used. This was put in a horizontal position when the
hologram response (i.e. the hologram reconstruction by the
unmodulated beam) was needing to be checked. Otherwise, it was

pointed along the direction of the reference beam,

The correlated image was photographed with Fed 35 mm
camera., This was either set for photograrhing at infirity or
used without a lens. It was mounted over a special carrier so
that its aperture fell below the holegram (the telescope was

remcved) and its optical axis was along the reference beam.

Photographing the correlated images had lots of advantages.
The effect of the confusing speckles could be reduced, the
correlograms could be printed on larger scale and compared with
each other, and the most important thing is that the unwanted
noise could be minimised by making use of the nonlinearity of

the photcgraphic process, as explained in Section 3.5.6.

A schematic d iagram of the apparatus is shown in Figure 3.8.
Any single point on the object, since it lies in the front focal
plane of the transform lens gives rise to a parallel beam of light

. . £ 1
emerging from the lems. This strikes the parallel reference
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bear at an angle on the hologram plate procucing a straight
system cf interference fringes. This angle varies as the
single poilnt moves over the object plane so that the spacirng

and orientaticn of the hologram fringes uniquely relate to

the position of the cbject points.

A hologram may be recordec using this apparatus'processed
and then repositioned. When the nonmoculated reference beam
is allowed to interact with the recorded fringes, it recongtructs
the cbject at infinity. This may be observed with a

telescope aligned along the axis of the transform lens.

Tf the reference beam is now blocked up and the cbject
beam is allowed to fall on the hologram then a fraction of
the beam will pass straight through forming the zero order
image of the object. There are also two diffracted beams,
one upward and one downward. These may be observed in turn

by tilting the telescope.

In the upward reconstruction any single point on the
object reconstructs from the hologram a complete representation
of the whole object., If all the points on the object act
simultaneously on the hologram, the resuiting image is the
autocorrelation of the object with the reconstruction. The
downward reconstruction on the other hand, because it is

inverted, results in the convolution of the object with the

reconstruction.




3.5.5. DMaking the filter.

A szmple of the out of focus point spreoad function of
the code was needed on the same scale as in the coded chotographs
tc make the helographic spatial filter . For this rezcson the
coding apparatus mentioned in section 5.2 was used. The sharp
picture was replaced by a thin metal foil with a little hole in
the middle. The hole was made with a watchmaker's drill of
suitable diameter.A Iarge diameter makes the dots recorded con
the phetographic plate overlap.A very small diameter, on the
cther hand, makes the exposure time, needed to record the
point spread function inconveniently long. Therefore a

compromise 1s necessary.

A hole having a diameter of 0.25 mm was used. This
required an exposure time of 2} hours for the photographic plate
to record the dots with fairly good contrast., The result was
checked with a microscope .o confirm the photographic density

and contrast.

I1ford N40 process plates were used in taking the
photographs. These were developed with Kodak D8 developer

diluted by 1:1.

A positive print of the dots-sample was made by contact

printing (exposure time was 8 seconds), to give fine holes

in a substantially black surrcund. The same plates and
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developer were used. The cdots-sample trensparency was chen
mounted between two optically flat glass-plates and was put
in the object's place of the coherent correlator. -lford
Lolograrhic plates were used to reccrd the fourier transform

hologram.

The methods emplcyed to improve the quality of holographic
reconstruction are described in Chapter 4., The best hologram
was recorded with 0.4 neutral density filter in the signal's
beam. No change in the heclogram's position was sought.
Expcsure time was six seconds and.the hologram was developed
with Ilford PQ Universal developer diiuted by 1:9. Development

time was five minutes.

3.5.6. Decoding of pictures

The coded pictures were placed in the coherent correlator
with their orietnation and emulsion side corresponding to the
orientation and emulsion side of the code-sample which the

hologram was made from.

In decoding the coded pictures, the unmoculated
reconstructing beam of the coherent correlator was not needed,

therefore, it was blocked up by a black sheet of paper.

The hologram must be inserted in the focal plane of the

Fourier tranform lens, otherwise the correlation 1S only correct

84
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at one point of the field. This wes donz by moving the
hologram back and forth aloung the optical bench so ihat the
signal beam emerging from the transfam lens focuses on the

emulsion of the hologram.

The signal beam should focus exactly on the holographic spot.
Therefore the exact position of the holographic spot has to be
fcund. This was done by shiring white light on the holecgram
and trying to pick up the positicn of the spct by means of &
hizh powered eyepiece. Once the position of the spot was
found, the signal beam focusing on the holegraphic plate was

broucht to focusg on the holographic spot.
5 &

Two reconstructions were observed,the first represents
the correlation of the coded picture with the code and was
viewed by looking at the hologram along the direction of
the reconstructing beam (the unmodulated beam). The second
represents the comvolution and was viewed by looking at the
hologram slong a direction making the same angle with the
horizontal as the direction of the reconstructing beam but

with a negative sign,

The reconstruction corresponding to the correlation 1s

the one which was expected to give a decoded 1mage, therefore

a 35 mm camera was put behind the hologran with its axis along

the dircction of the reconstructing beam. Since the decoded

L ' . . . - ; =Ns was
lmage is formed at infinity, therefore, the camera lens
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one mlinute was tried.

time of
] .9)

irst, an exposure
would expose the film at the middle of its H & D curve. 3ut this
(Figure
Then

rq

its H& D

produced a lot of noise in the decoded photogreph
due to the shoulder region of the attocorrelation pattern.

This was done

it wes decided to expose the film near the toe of

d for

curve, in order to eliminate the shoulder vegion.
from the shoulder region was abcut the same as the fog level cf

by decreasing the exposure time so that the density vecorded

The exposure time neede

the film, as in Figure 3.,10.

doing this was two seconds.
35 mm film was used, This was developed in
Development time was 8; minutes

Tlford FP4
Unitol developer diluted by 1:9.
and fixing time was five minutes.
and correlation patterns

3.5.7.
dots. The pattern consists of a central spot which is

Convolution
Figure 3.11 shows the autocorrelation pattern of the five

The figure

responsible for the decoding, surrounded by twenty dots which
ocorrelaticn

contribute to the noise in the decoded picture.
illustrates as well the bisymmetry property of the aut
pattern. The method employed to record the autocorrelation
pattern was to use the code-sample, used to make the hologram,
The reccnstruction

as a signal to reccustruct the hologram.
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corresponding to correlation, was then photographed by the 35 mm

camera .

For getting the convolution (Figure 3.12) the transparency
was inverted and a photograph was taken along the same

direction used before.

It was noted that the intensity of the central spot of
the autocorrelation pattern decreases to a minimum (Figure 3.13)
then increases again (Figure 3.14) as the hologram was shifted
awvay from the focus of the signal_beam. This was thought to be
due to change in the phase of the autocorrelation pattern as

the signal beam scans the hologram.

The autocorreiation and convolution patterns could be
alternatively produced by using the noncoherent correlator
(Figure 3.15) mentioned in Chapter 2. Two copies of the code
transparency were put in the noncoherent correlator so that

their orientations were the same.

The diffuse light at the input of the apparatus would

produce the autocorrelation pattern on the ground glass screen

at the output. The ground glass screen could be replaced by

a photographic plate for recording the autocorrelation pattermn.

The pattern was faint, therefore a sensitive plate like I1ford HP3

was used. If one of the two transparencies was inverted, then










Figure 3.15
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the photcgraphic plate wiuid 1ecord the convolution.
Two sorts of the 5 CQots code were used in the experiments.
One having dots of equal weights (i.e, their Zdiamecters are the
same, Figure 3.16) and another having dcts of urequal weights
(i,e. their diameters are not the same, TFigure 3,17) . The
autocorrelaticn and convolution patterns of the equal and the

non equal dots are shown in Figures 3.18, 3.19, 3.20 and 3.21.

Figure 3.22 shows what the nonccherent correlator records
when one of the equal dots transparencies is rotated by 2G degrees
while figure 3,23 shows wha“ it records when onc of the nqual

dots lransparencies is turned frontside back. Fach one of these

two figures represents a crosscevrelation pattern. The general
formuia for crosscorrelaticn is
o o
l[‘/ f.(x,y) fz(x + s, v tr)dxdy
L
—~—C0 =00
In Figure 3,92 the twe functions £, and f, are similar except

1 2

that one of them was rotated counterclockwise, by 90 degrees,
with respect to the other. Therefore the cross correlatlion

function can be written as

(/ ‘/ f(x,y) f (s~y, x + r) dx dy

Figure 3.23 ,on the other hand, was produced by changing
the signs of the x — axis of one of the functions leaving the

- . . s A : 1 unction, in
Y - axis signs unchanged. The crossccrrelation func >
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Figure 3.16 Five random-dots having equal weight
i
i
o
N
il
[
[
[

Figure 3.17 Five random-dots having nonequal weight













this case, 1s therefore

[ee] [e9)

[ / £Gn,y) £(smx, vir) dx dy

J
—_c0 -0
Tte expected number of dots in the convolution pattorn

(Figures 3.19 and 3.21) is 25 while the observed one is 23.

This is thought to be due to dots overlapping and lens cut off.

It can be shown in Figures 3.19 and 3.21 that the
convolution pattern is asymmetrical., This property is used
to distinguish the convolution pattern from the symmetrical

pattern shown in Figure 3.23,

The convolution and autccorrelation patterns can be
alternatively drawﬁ by a graphical method.For drawing the
convolution pattern resulting from the convoluticn of two
systems of 5 random dots; each one of the dots,of one of the
systems, is allowed to draw the 5 dots of the other system,

The resulting convolution is shown in Figure 3.24.

If, on the other hand, the autocorrelation pattern is
wanted, one of the 5 dots system must be rotated by 180 degrees
and again each one of the dots of one of the systems is allowed
to draw the five dots of the other system. The resulting auto-

correlation pattern is shown in Figure 3.25.

It can be noted in the last two paragraphs that drawing
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Figure 3.24 Convolution pattern of the 5 random-dots;
drawn by the graphical method

Autocorrelation pattern of the 5 random-dots:;

Figure 3.25 pat
drawn by the graphical method
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the autocorrelation pattern requires the inversion of one of the

systems of five dots while drawing the convolution pattern
does not. This is the reverse of what the experimental

procedure demands.

The correlation pattern shown 1in Figure 3.23 can be
drawvn graphically by inverting one of the dots systems
turning it front side back then correlating it with the same

method described above (Figure 3.26). Figure 3.22 can be

drawn graphically by turning one of the dots systems by 90 degrees

then correlating it with the other system as shown in Figure 3.27.

3.5.8 Results

Figures 3.28 and 3.29 show the decoded dilute and continuous.-

tone pictures in the coherent experiment that had been ccded

by equal dots. Figures 3,30 and 3.31 show the decoded dilute and

continuous~-tone pictures that had been coded by nonequal
dots. It can be noticed that the equal dots code produce
better decoded pictures than the nonequal dots code. This

is becuase, in the extreme case, the largest dot in the non-
equal dots code behaves like a delta function. This produces
five delta functionms in the autocorrelation patterm. Since
the decoding process needs single delta function, therefore,
no decoding is expected to result.

Surprisingly some decoding was observed (Figures 3.32,
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Figure 3.26 The crosscorrelation pattern of Figure 3.23
drawn by the graphical method o

Figure 3.27 The crosscorrelation pattern of Figure 3.22

drawn by the graphical method









3,33, 3.34 and 3.35) when the coded pictures were turned

upside down in the coherent correlator. This position
corresponds to the convolution position of the dots. The
convolution pattern of the five dots has 25 dots. These are
supposed to have equal intensities when the signal beam

falls exactly on the centre of the hologram. But as the
hologram is shifted laterally away from the lens focus, the

dots start to twinkle. A position along the hologram, may

exist in which some of the dots have intensities higher than

the rest. One of these dots, or may be an assembly of them

may act as delta function which decodes the pictures., The
decoded dilute picture shown in Figure 3.35 illustrates this
theory. The convolution pattern has 25 dots, therefore, one
expects to see 25 letters for each letter to be coded. But
since some of the letters are brighter than the rest,therefore,
they show better in the decoded picture, especially if the toe of
the H &D curve is used. This can be shown more clearly in the
decoded letter O of the word OF, where it is easy to see that it

is brighter than the rest of letters 0.

The experiment reported in this section was repreated
using a code consisting of 15 random dots (Figure 3.36). The
autocorrelation pattern of the dots is shown in Figure 3.37.
nd is surrounded by

The central peak has a weight of 15 dots a

210 dots. The decoded dilute and continuous—tone pictures are
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chown in Figures 3.3% and 3.40.

The 15 dots decode the dilute picture better than the
5 dots. The peak of the 15 dots autocorrelation pattern has
a weight of 15 dots while that of the 5 dots has a weight of
5 dots., In both cases each dot in the shoulder region has
a weight of 1.‘ Since most of the noise fall outside the main
1ines of the picture therefore the contrast of the decoded
dilute picture is higher  when 15 dots code is used. Hence

the 15 dots decode better.

The decoded continuous—tone picture, on the other hand,
shows less improvement when 15 dots are used. This 1s due to
the fact that the signal to noise ratio in the case of the
15 dots is lower than that of the 5 dots. The SNR 1s shown,
in section 3.4, to be equal to 1/(N~1). Therefore, as the

number of dots increases the SNK decreases.

The dilute picture doesn't get affected by the increase
of the amount of noise because most of the noise fall outside
the main lines of the picture. Therefore, by careful
decrease of the exposure time, the noise intensity is
decreased and we end up with a decoded picture with high
contrast.

The continuous—tomne picture,however, does get affected






by the 1lncrease of the amount of ncise and decreasing the
exposure time cannot reduce the cecffect of the noise. Therefore
b

as the number of dots in the code increases, the contrast of

the decoded continuous—~tone picture decreases.

3.6 The noncoherent decoding

Noncoherent light was used to decode the dilute and continuous—
tone pictures shown in Figures 3.1 and 3.2. <he method
employed was based on the idea of reversing the rays involved in the

rocess of coding.
P g

The 15 random dots code shown in Figure 3.36 was used for
producing the coded pictures. (Figures 3.41 and 3.42). The

coding process was the same as the one described in Section 5.2 and

the same apparatus was used.

The apparatus used for decoding the coded pictures is
shown in Figure 3.43. It consists of a 1/1 magnification lens,
which was constructed from two 20 cm. F/2.9 lenses, combined by
placing together their ébject sides. A light box with a diffuse
window was placed on one side of the lens and a ground-glass
screen on the other side. The code transparency was put on the
light-box window; its position and‘that of the ground-glass

screen were arranged so that an image of the same S1z€ as the

object was formed on the screen. A contact-printing frame was
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inserted between the lens and the screen, 12 cm from the
latter. The frame contained a photographic plate, the 3 mm
spacer, used in the coding process, and the coded photograph.
The coded photograph was the negative of the photograph
produced by the process of coding. This was placed so that

it was oriented the same way as it was in the coding apparatus.

In decoding the photograph, the photographic plate was
exposed at the toe (Figure 3,10) of its E and D curve. This

would reduce the amount of noise in the decoded photograph.

I1ford EP3 photographic plates were used to record the decoded
image. The plates were developed with P G Universal developer
diluted by 1/9; development time was three minutes. The plates

were then fixed, washed and dried as before.

The exposure time needed to decode the dilute picture;
was 0.5 seconds. The continuous—tone picture needs shorter
exposure time in order to be decoded, Therefore,a large sheet

of neutral density filter was put over the code transparency

in order to increase the exposure time for the continucus—tone object.

The best exposure time needed to decode the continuous-tone plcture

was found to be two seconds. The decoded dilute and contlnuous=

tone pictures are shown in Figures 3.44 and 3.45 respectively.






a non redundant autocorrelation pattern, the reak has weicht N and
he integrated surround weigh N{N- ' - i

the integ e veigh NX(N-1). Therefore, the signal
to noise ratio is 1/(N-1). This assumes that the correlation
is in intensity. If in amplitude, the signal to noise ratio

is higher, viz 1/ V(N=1). Therefore the coherent correlator

is to be expected to give better results than the noncoherent.

3.8 Resolution Consideration

If we have got a large number of randoﬁly distributed
dots then the thecretical limiting resolution is determined by
the minimum distance between them. A single dot or a pinhole
of diameter D gives the same spatial resolution as an irregular

system of dots with minimum distance between dots D.

The only frequencies F o in the object that get decoded

I
are those which fall in the passband of the random-dots code.
If these frequencies are denoted by H then the condition for

resolution 1is

o

360° 0.36 mm 360 e ;
Py > < < 2 Z nm

n=o m=0 an B %00 m=2.37mm

Where 0.36 mm and 2.37 mm are the minimum and maximum distances,

respectively, between dots in the out of focus point spread

function of the 15 dots.

. ~tion is of
The size of the out of focus poilnt spread function 1S ©

. : N letters
the same order of magnitude as the size of OF DIFFRACTION lette



-
pos
o

and the minimum distance between dots is of the same order of
magnitude as the height of the fourth row of the dilute picture.
Therefore, the first, second and third rows decode well, because

they fall in the middle of the passband of the dots, the fourth and the
sixth show little improvement and the fifth does not show any

sign of decoding.

As the defocus distance, in the coding process increases
the scale of the out of focus point spread function increases
and therefore the resolution lower limit increases. Therefore,
we do not expect any decoding when the defocus distance is
increased so that the lower band width frequency of the code is

higher than the upper band width frequency of the object.
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CHAPTER 4

FOURIER TMAGES

1. Introduction

The idea of forming an image of an object in two stages
has long been recognized. 1In 1873 Ernst Abbe (1) succeeded in
formulating the principles involved in the formation of images
in the micrescope. According to Abbe's theory, the imzge in the
microscope is formed in two steps. TIn the first step Fraunhofer
diffraction pattern of the cbject is formed at the beck focal
plane of the lens. Ia the second step the Fraunhcfer pattern
diffracts intc a Fresnel pattern, at a further distance from
the lens, which is the image. These two steps, although in
reality following each other immediately, nevertheless can be

separated if so desired.

Image formation by holography (2,3) is a two stage process

as well. A Fresnel diffraction pattern of the object is recordec

120

in the first stage. The record is called 2 hologram arnd 1t contAalos

anplitude as well as phase information about the object. The

second stage involves reconstructing this NOlOgr

it with an unomdulated coherent beam.

. . . . C
A question may arise. Does there exist an object whi h

diffracts into an image of itself in a single stag

. 1 1at
An observation made by Fox Talbot (4) in 1836 showed tha

am by illuminating

e of diffraction ?



such an object exists. This object is, in its simplest form
. ‘m,

4 linear diffraction grating. If the grating is illuminated
with coherent light, then at finite distances from the grating,
exact images of the grating are formed. Lord Rayleigh (5)
first deduced the distance between reconstructions of the
grating for parallel monochromatic light. Cowley and Moodie
(6) obtained a Fourier series expression for the amplitude

of the diffraction images and therefore called them Fourier

images .

Intermediate images, other than the object's reconstructicn,
were also cbserved (6,7,8). These were termed Fresnel 1images by
Winthrop and Werthington (9). Fresncl images were thought to

play a role in the vision of insects (10,11).

Fourier images may be regarded as a special case of in-line
hoiography wnerethe object and its hologram are identical. If a
parallel beam of light is used to produce the Fourier images
then the distance between the hologram and its reconstruction
is the focal length of the hologram, as defined by zone plate
analogy (12). According to the calculations of Rayleigh (5)

the focal length of a linear diffraction grating is 2—_;;_ where

a is the repeat distance of the grating. RoOgers (11) however,
found that a replica of the grating can be found at a distance
2

a
of % from the grating, but this is shifted by 7 - fie

called thisahalf order image . Square and hexagonal lattices



122

t.ave focal lenyths of hk and E;M‘ respectively,
A collimated beam of light produces a large number of

Fourier lmages. Eech 1mage acts as its own hologram and produces

the next image. These .mages are produced at distances of Nf from

the diffraction grating. When N is an integer representing the

order number and f is the focal length of the grating. The

number of orders produced depends on the lateral extent of the

grating and on the coherence length of the light source.

Suborders or intermediate images can be observed at distances
£ . . .
iy from each reconstruction.These suborders differ from the main
orders in phase and in peneral are more corplex than the main
orders. It is desirable that the original grating be largely

opaque to develop clear suborders (13).

Rogers(11l) compiled a list of multiplicities of the suborder
image patterns of a grating anc a hexagonal array of pinholes.

In order to account for his eXperimental results he made

calculations by computer for both the linear grating (14) and

the hexagonal array (15). In these calculationeg he established

the position, spacing and phases of the diffraction 1mages.

‘resnel
Winthrop and Worthington (9) presented a theory of Irest

images for plane periodic object. Their analysis resulted from

. iodic
applying the Fresnel-Kirchoff equation to a plane perio
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object in monochromatic light. This leacde to consideraticn of
[ S L dlCnN O

multiplicity, shift of crigin, phases, and intensities of the

Tresne| patterns.

4.2. Confusion in recognition of images formed in coherent light

Coherent light is, quite often, used for illuminating the
object in microscopy. This 1s particularly true in the case of
electron microscopy, where the electrons proceed from a very
fine source and the illumination is therefore very coherent.

Such coherent illumination gives rise to definite diffraction
patterns (17) which may have highe? contrast and greater
subjective sharpness than the true image of the object. If there
is not a priori knowledge or hypothesis about a given

structure, one can fccus through a series of diffraction

patterns and not know which to choose as the true image.

Coherently illuminated repeated objects give rise to
Fourier Imeges. These are usually high comntrast repeated
structures., Therefore, if one does not know the object

forming the Fourier Images thenene may choose, as the true

image, an Intermediate Fourier Image of a certain shape that

may resemble a different object. It has been shown (16) that

; di Fourier
such confusion occurs between one of the intermediate F

: 5 e in
Images of a graphite structure lattice and one of the ma

order Fourier Images of a hexagonal array of black dots.



Tew gy Moodie ( . . .
Cewley and Meodie (6) clained that diffraction processe
ction processes

could be used 1n electron microscopy to produce an enlarsed
O

image of a crystal lattice or other repeated structure, and that
the image could be isclated from the rest of diffraction
patterns. This claim conflicts with the idea expressed above
and was modified later (8). But the fact that it was made,

confirm the idea of confusion.

4.3, Theorems governing the formation of Fourier Images

(1) Huygens' principle

According to Huygens' principle, every peint of a wavefront
may be considered as the source of a small secondary wavelet
which spreads in all directions from the point at the wave
propagation velocity. A mnew wavefront is found by constructing
a surface tangent to all the secondary wavelets. Therefore
given the amplitude and relative phase of a wavefront on an
initial surface, the amplitude and phase of the wavefront at
any subsequent time can be calculated. By an extension of the
method, an amplitude—phase pattern can also be calculated at
any prior time. The pattern in this case is regarded as a
virtual pattern, observable only by an imaging system receiving
light after passage through the initial surface.

. i i0
Fourier Images, in all cases,are Fresnel diffraction

patterns of the original repeated object. Therefore, they

are, by Hugyhens principle, equivalent to each other. If

Photographs are taken for these Fourier Images then the phase
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c formation will be lost a he re oA 4 ..
informa i t and the recorded images will lock

different.

Huy gens principle can also be used to calculate the
Fourier transform of complex objects. If a complex object
is placed in the front focal plane of a lens and illuminated
by collimated coherent light then the zmplitude-phase or
complex pattern formed in the back focal plane of the lens
is called the Fourier transform of the complex object. The
amplitude content of the Fourier transform is called the
Fraunhofer diffraction pattern. We cannot, of course, see

the amplitude but we see its squared modulus, or the

intensity pattern.

Fourier images generated from the same object have
Fourier Transforms that have the same amplitude but different
phase. The phase of any of these transforms differs from the

phase of another by a term of the form

271 azl
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whereq is the angle between the axis and a ray from the centre

of the transform lens to a given point in the back focal plane

and p represents the Newtonian distance from the front focal

plane of the lens to the planes of the Fourier images. The

transforms of the Fourier Images thus appear the same visually,

i.e, they have the same Fraunhofer pattern, as defined above.

1 1 attern
The fact that these images all have the same Fraunhofer diffraction pa
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ig a reason fcr the belief E they . C
is 4 reaso elief that they are not easily distinguished,

: - Lo N o NN - ~ s . .
igure 4.1 shows five photozraphs of Fourier Imeges with
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their correspoading Fraurhofer dif raction patterns. Four of
these images were derived from a graphite structure lactica

and the fifth was frcm a lattice of small hexagonal dots (the
graphite structure lattice and the snall hexagonal dots lattice
are shown in Figure 4.2). The Fourier images derived from the
graphite structure have the same Fraunhofer pattern. This is

different from the Fraunhofer pattern of the Fourier image

derived from the small hexagonal dots lattice,

The Fourier images derived from the same object have the
same spatial frequencies and this is the reason why they have
the same Fraunhofer pattern. The Fourier image derived from the
different object, on the other hand, has different spatial
frequencies and therefore it produces different Fraunhofer

pattern,

Photographs of Fourier images derived from the same

object look different (Figure 4.1). The reason is that the

lateral phase of the Fresnel diffraction pattern (the Fourier

image) changes along the beam. This phase change tends to

redistribute the spatial frequencies in the Fourier 1mage.

Therefore, photographs taken at different positions along

the beam show different Fresnel patterns because of the









different arrangement of the spatial frequencies, Study of

these arrangements may lead us to determine the phase and

position of the Fourier images in the beam.

(2) Booker, Ratcliff and Shinn's Theorem (11)

This theorem states that the generalized autocorrelation
function of the Fresnel diffraction pattern is the same as
that of the field distribution which gives rise to it. This
means that the complex autocorrelation patterns of the various
Fourier images must be the same.- This theorem arises from
the fact (19) that there is a definite relationship between
the autocorrelation pattern and the corresponding angular
power spectrum, Since all Fresnel patterns (or Fourier
images), generated from the same object, have the same
angular power spectrum, therefore, they must have the same
complex autocorrelation pattern. Making the usual assumption

of patterns of infinite lateral extent, it is clear that the

angular power spectrum is independent of Fresnel diffraction.

As soon as a photograph is taken it is at once apparent

that we lose phase information and hence can no longer

calculate the complex autocorrelation pattern of the field

L . t
from the photograph. Nevertheless 1t 18 reasonable to eXpec

i o1 ] 7111
that the basic repeat distances of the original object w

i i -ing case
feature in the photograph, except in the interesting

] d into a
where an amplitude contrast object has transforme

- 5) that
pure phase contrast image. It has also been observed (15)
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other repeat distances appear prominently, but these are

harmonies of the basic frequency.

The Booker, Ratcliff and Shinn theorem is omne of the
greatest power and generality. It defines a property of any
coherent system of Fresnel diffraction patterns. It can be
regarded as defining a minimal degree of information conveyed
by the wavefront, information which is invariant and
indestructible in normal uninhibited propagation. The

complex autocorrelation function is thus the invariant

representation of the minimal information in the beam.

It was thought useful to make correlation experiments
between a number of Fourier image photographs. In view of the
confusion mentioned in section 4.2 between simple hexagonal
lattices and graphite structures, examples from each series
are included. The results serve only to confirm the

possibility of confusion.

4.4 . Coherent correlation experiment

The Fourier images transparencies, used in this experiment,

were originally made by Mr.Barry Brooks, for use on & different

experiment. Drawings of small hexagonal dots, large hexagonal

. i .2
dots, honeycomb lattice and graphite structure (Figure 4.2)

. . . ced to about
were photographed so that their dimensions were redu

2.5 x 4 mm. The photographic plate was mounted between two

ight.
optical flats and was put in a parallel coherent beam of 1ligh



—
Lt
-

f 1 7 2 rec , 1 N oa] - . ,
Fouriler 1mages were produced. The Fourier images that had aen
] = =

interesting arrangement vere photographed by a 35 mm camera
J - (ol
moving along the beam. The Fourier images were then printed

on Ilford N30 plates so that they had dimensions of 4 x 2.5 cm

Five transparencies were used as objects in this experiment.,
Each was derived as a Fourier image, four of them were from a
graphite structure, the fifth was from a lattice of small
hexagonal clcts. Each one of these transparencies was put

between two optical flats.

4.4,1 1Initial Procedure

A circular hole of about 2 mm, in diemeter was punched
on middle of large piece of black cellotape. The cellotape
was arranged to cover the small dots transparency such that
only one or two cells can appear. The transparency was then
put at the front focal plane of the transform lens of the
coherent correlater used in Chapter 3. Fourier transform

hologram was recorded at the back focal plane of the lens.

After processing this hologram it was mounted on 1ts

original position, such that the holographic spot fell on the

focus of the transform lens. This was checked with a

ation efficiency
watchmaker's lens. In order to check for the correl

. st checked.
of the hologram its reconstruction efficiency has to be

ction
The signal beam was obstructed and the hologram reconstru



No

was viewed by looking along the obstructed beam, The reference
beam was then obstructed and the telescope was put behind the
hologram so that its objective facing the holographic spot and
its optical axzis parallel to the direction of the obstructed
reference beam. When the signal beam was allowed to fall on the
hologram, correlation spots were observed on the object's

cells. When the cellotape was removed from the transparency,
correlation spots were seen to cover a?l the dots pattern, the
reason for that is because the pattern is of similar cells.

One hologram was taken, by the same method described above,
for each of the four graphite structure lattices and for the
small hexagonal dots lattice. Each of these five holograms was
allowed to correlate with each of the five lattice patterns and
the correlation patterns produced were photographed using

Fed F/2.8 camera Ilford FP4 film. The extent of correlation

in these patterns is illustrated in the following table :

Transparency Hologram of Hologram of Hologram of Hologram of Hologram of

No transparency transparency transparency transparency transparency
No 26 No 29 No 30 No 32 No ?3

(small (Graphite (Graphite (Graphite (Graphite
hexagonal Structure) Structure) Structure) Structure)
dots)

26 Good Good Cood Good Good

29 Bad Good Good Good Good

30 Good Good Good Good Good

32 Bad Bad Good Good Good

33 Bad Bad Bad Bad Bad

Table 4.1



4.4.2 Practical consideration

The transform lens in the coherent correlator produces a

very fine diffraction pattern on the hologram plate. This is

more evident when the object used to form the hologram is large.

Tn this case the intensity of the signal beam over the plate

will be about 3 or 4 orders of magnitude greater than the

reference beam. This will produce low contrast holographic

fringes and the reconstruction will therefore be very poor.

This can be overcome in either or both of two ways.

1, Introducing neutral density f@lter into the signal beam :
Neutral density filters absorb light of all wavelengths

equally throughout the visible spectrum and thus permits the

reduction of light intensity by a definite ratio.

Kodak Wratten neutral density filters were used. These
are gelatine filters of denmsity running from O.1 up to 2.0
according to the manufacturer's specifications. Other
densities can be built up by combining two or more filters.
The use of gelatine filters has the advantage that they are

thin and therefore do not produce any change in the signal

beam path length, even when they are combined. Care was

taken in handling the filters since they are easily vulnerable

to pollution.

. . s i t+yv of the signal
The filter's aim is to equate the intensity

1 rast
beam with the reference beam and therefore produce high cont

holographic fringes. The value of the filter used depends on

. - iect. The
the size and the intensity transmittance of the obj
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filters were usually put in front of the transform lens

2. Recording the hologram outside the transform lens focus:

The hologram was usually shifted out of the focal plane by an
amount of 2 = 10 7% of the basic focal length, during recording
and brought back to the focal plane during reconstruction,
This was done in order to utilize higher light intensity during
reconstruction corresponding to relatively weaker one during
recording. This would produce brighter and more evident
reconstructions. The intensity of the signal beam in the
recording would be reduced as well, resulting in improvement in

the fringes contrast and therefore the reconstructed image.

4.4,3 .Improving the matched filter

Correlation tables between number of transparencies and
their holograms should be symmetrical round their autocorrelation
axes, and their autocorrelation positions should show good
correlation (i.e. bright distinct dots). This is not the case
with Table 4.1 which shows a bad symmetry as well as having a

bad autocorrelation patterm.

The main source of error in the experiment was the matched

filter.,synthesis of the matched filter needed critical

. . : ure
combination of neutral density filter, defocusing and expes

time. In the experiment of Section 4.4.1, 3 cm defocus

distance, ND.O.8 neutral density filter and two seconds exposure time



were used. TFor producing better results the following

techniques were suggested
1. Use of low contrast developer

In order to use all the information in the holographic
spot, the hologram was recorded with very short defocus
distance. This needed more neutral density filters to be put

into the signal beam.

I1ford Holographic plates were usually used for recording
the holograms. These were developed with Kodak D8 developer
diluted by 1 :1. The D8 developef is a high contrast
developer which tends to increase the density of the holographic
spot, especially at the central part. If a hologram is
recorded near the transform lens focus then the central part of
the spot will act as a stop that reduces the resolution of the

reconstructed image.

In order to overcome this problem, a low contrast developer

like I1ford PG Universal was used instead of the D8 developer.

The development time was pushed up to 5 minutes instead of the

3 minutes used with the D8 developer.

: i i ction
Five holograms for the five transparencies used 1n Se

4.4,1 were recorded and developed with PQ Universal. The

j nd a ND, 1.5
exposure time was 4 seconds defocus distance was 3 mm, 2

neutral density filter was in the beam.



The transparencies were allowed to correlate with the
> h ot}

hologram and the correlation table was drawn (Table 4 2)

S —
Transparency Hologram of Hologram of Folcgram of Hologram of MHeoloeram of
No. Transparency Transparency Transparency Transparency Tranéparencv
No 26 No 29 No 30 Yo 32 No 33
(small (Graphite (Graphite (Graphite (Graphite
hexagonal Structure) Structure)  Structure)  Structure)
dots)
26 Good Good Good Good Good
29 Good Good Good Good Good
30 Good Good Good Good Bad"
32 Bad Good Good Good Bad
33 Good Bad Bad Bad Geod
Table 4.2

2. Bleaching the filter

The matched filter may be bleached to form a phase hologram
with a high diffraction efficiency. The bleaching process

dissolves (or changes into transparent compounds) the metallic

silver from the emulsion, leaving "holes" that introduce an

effective phase variation in the wave transmitted.

Chromium Intensifier (with double strength HC1) was employed

. Th
to bleach the five holograms used to produce Table 4.2 €

. d in running
holograms were put in the bleach for 3 minutes, washe S

. wounted on
water for 10 minutes then dried. They were then mo

. onstructed
their original position in the optical bench and rec



by the unmodulated reconstructing beam. The reconstrucped
~ < Lelln ttec

L L

image was brighter than before but it was degraded by flare

light. The degracation was more severe when the hologram
logra

was reconstructed with the signal beam. The correlation

image in this case was completely obstructed bv noise and

flare.

The flare light was primarily caused by a low frequency
modulation due to the speckle pattern that was recorded on
the plate. These modulaticns could be reduced by processing
the plate with the reversal bleach process (20) .In this
process the index of refracticn is greatest when the emulsion
is thinnest. This causes a partial cancellation of the low
spatial frequency modulation and thgrefore reduces the flare
about the image.

Five holograms were recorded for the five transparencies
that were used in the experiment. The recording was made witn
the holograms 3 mm. out of focus and a ND.1.5 neutral density
filter in the signal beam. The holograms were processed with
the reversal bleach process. A detailed description of the
process can be shown in Reference 20.

The transparencies were allowed to correlate with the

holograms and the correlation table was drawn (Table 4.3)

Lo

~)
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rency Hologram of Holeogram of

Transpa Ho],ogram of Holoerar - 1 -
No. Iransparency Transparency Transparency Tranixfu of vologram of
Yo 26 No 29 nsparency Transparcncy
(small : No 30 No 32 No 33
sma (Graphite (Graphite (Graphite (Crapth
hexagonal Structur St ] . -
dots) e) Structure) Structure) Structure)
R
26 Good Good Good Good Good
29 Bad Good Good Good Bad
30 Good Good Good Good Good
32 Bad Bad Bad Good Good
33 Good Goced Good Good Good
Table 4.3

3. Centring the holographic spot
In this method, the five holograms processed by the
reversal bleaching were centred, more accurately, at the lens

focus,

Each one of the holograms was first placed at the transform
lens focus by the usual method described in 4.4.1. The undiffracted

light emerging from the hologram was then received on a white

sheet of paper. The shadow of the hologram was observed on the

paper. The hologram was then moved along the bench till the

shadow covers the whole aperture of the undiffracted light.

This brought the hologram exactly on the focal plane of the

lens. The pinhole filtering the laser beam was then dealigned

so that weak beam of light emerged from it. A microscope was
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placed in a horizontal pesition along the bench so that it
focussed on the Traunhofer diffraction pattern of the object.
The holographic spot was then brought to the diffraction
pattern so that its zero order fell on the middle of the spot.

The microscope was then removed, the laser realigned and the

correlation position viewed.

The correlation patterns of the five transparencies were

observed. The extent of the ccrrelation is shown in Table 4.4,

Transparency Hologram of Hologram of Hologram of Hologram of Hologramz of

No. Transparency Transparency -Transparency Transparency Transparency
No 26 No 29 No 30 Mo 32 No 33

(small {(Graphite (Graphite (Graphite (Graphite
hexagonal Structure) Structure) Structure) Structure)
dots)

26 Good Good Good Good Good

29 Good Good Good Bad Good

30 Good Good Good Good Good

32 Bad Bad Bad Good Good

33 Bad Bad Good Good Good

Table 4.4

Five holograms were prepared with ND.O.7 neutral density filter, 3 mm.

. sed with
defocus distance and 4 seconds exposure time. These were processe

PG Universal in the usual way. They were then positioned at the

transform lens focus and centred there by the method described above.

jation table
The correlation patterns were observed and the correla

was drawn (Table 4.5).
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Transparency }%Ologram of Hologram of Hologram of Hologram of FHoloor c
No Transparency Transparency Transparency Transparency f_,?flfw o
No 26 No 29 No 30 No 32 eyt
(small ) ) No 33
hexagonal (Craphite {Graphite (Granhite (Craphite
Py Cfom iy o gee _ - . £ 2L =
dots) Structure) Structure) Structure) Structure)
26 Good Good Gcod Bad Cood
29 Bad Good Gocd Bad Good
30 Good Goed Good Good Good
32 Bad Bad Bad Good Bad
33 Bad Good Gocd Good Good
Table 4.5

4, Correlating with a larger object sample

The hole in the mask used in recording the hologram was
increased in size such that it covered one fourth of the lattice
structure., Holograms were recorded for the five lattices and
processed in the usual way. They were then allowed to correlate
with the five lattices using the holographic spot centring

technique. The extent of correlation is shown in Table 4.6

\“_—‘
TranSparenCy Hologram of Hologram of Hologram of Hologzram of Hologram of
No Transparency Transparency Transparency Transparency Transparency
No 26 No 29 No 30 No 32 No ?3
(small (Graphite (Graphite (Graphite (Graphite
hexagonal Structure) Structure) Structure) Structure)
dots)
\\\‘-—;
26 Good Good Good Good Good
29 Good Good Good Good Good
30 Good Good- Good Good Good
32 Bad Bad Bad Good Bad
Good Good




143

4.4.4, Conclusions

The main source of difficulty in formulating Tables 4.1 -
4.6 was the judgment on whether a particular correlation pattern

represents a good or a bad correlation.This arises from the

fact that there is no distinct limit between the two.

The different methods of improving the correlation in the
coherent correlater did not produce perfect symmetry in the
correlation table. Nevertheless it can be seen, in general,
that transparency No, 32 has bad correlation with transparencies
No, 26, 29 and 30 and transparency No. 33 has bad correlation
with transparency No. 29. Therefore the optimum correlation table

can be put as shown in Table 4.7.

Transparency Hologram of Hologram of Hologram of Hologram of Hologram of

No Transparency Transparency Transparency Transparency Transparency
No 26 No 29 No 30 No 32 No :33

(small (Graphite (Graphite (Graphite (Graphite
hexagonal Structure) Structure) Structure) Structure)
dots)

26 Good Good Good Bad Good

29 Good Good Good Bad Bad

30 Good Good Good Bad Good

%2 Bad Bad Bad Good Good

3 Good Bad Good Good Good

— o

Table 4.7



Bleaching the holograms with the revergal bleach proc
ess

and centring it over the transform lens focus with the micros
cope
was the best method for producing better correlation

It produced a

single deviation from the optimum correlation table cited zbove

a .
The coherent correlater does not correlate the spatial

frequencies of the Fourier images only, but the phases between

them as well. We shall call this Complex Spatial Frequency.

Fourier Images produce good correlation when their complex
spatial frequencies are similar, or in other words the arrangement

of their spatial frequencies is similar.

The small hexagonal dots and the graphite structure have
common spatial frequencies. Therefore,there may exist a Fourier
Image derived from one of them, which has Similar complex
spatial frequencies as a Fourier image derived from the other and
therefore produce good correlation. On the other hand, there
may exist some Fourier Images derived from the same object but

have different complex spatial frequencies and therefore produce

bad correlation.

Table 4.7 confirms this idea. It shows that transparency

No 26, of small hexagonal dots, correlate with transparency No 30,

of graphite structure. It shows as well that transparency No 29

: ] being
does not correlate with transparency No 32 in splte of both g

' : .5 show
from the same graphite structure. Figures 4.3, 4.4 and 4.5 s
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1 W 3 1
sree examples of the correlatio F 1 i 3
o P n of Fourier images, an auto-
correlation pattern, a bad correlation between two Fourier images
v - 14(;AO e
ived from the graphite struct i o i
deriv grap cture lattice and a good correlation

between two Fourler images derived from the graphite structure

lattice and the small hexagonal dots lattice.

Fourier images derived from the same object are expected
to produce good correlation when they are correlated with each
other. On the other hand they are expected to produce bad
correlation when they are correlated with Fourier images derived
from a different object. The fact, illustrated in Table 4.7,
that they do not follow this rule confirms the idea of confusion

reported in 4.2.

4.5, Noncoherent correlation experiment

Five new Fourier images were printed on Ilford N30 plates
from the 35 mm film mentioned in 4.4 that contains photographs
of the Fourier images. Two of these 1mages were derived from

the honeycomb lattice, two from the graphite structure lattice

and one from the large hexagonal dots lattice. The noncoherent

correlater (Figure 3.15) mentioned in Chapters 2 and 3 was

used to correlate the five resulting transparencles.
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4.5.1, Producing the correlograms

e photographic densiti i ;
The T grap nsities of the five transparencies were
different. The following method was us y ;
g L vas used for calculating the
exposure times needed for recording the different correlation

patterns H

The five transparencies were masked with a black tape
such that they all had the same aperture, viz., 35 x 23 mm. They
were then placed over a masked light box, and a light meter was

used to record their intensity transmittances. These were as

follows

Transparency  Light meter  Normalized Normalized intensity

No. reading intensity transmittance
transmittance  approximated to n€-

earst 0.50

13 9.75 1.00 1.00

29 9.50 0.97 1.00

31 9.50 0.97 1.00

33 4,80 0.49 0.50

38 5.20 0.53 0.50

Table 4.8

: : arencies
The intensity transmittance of a cormbination of transp

can be found by mutliplying their Corresponding intensity

. . . - 1{tance
transmittances. The normalized intensity transmittd



approximated to pearest0.2f, of oy

the five transparencies is shown in ft!

Transparency
No.

13
29
31
33

38

The exposure time multiplying factor is 1/the normalized
intensity transmittance,

in terms of the exposure time multiplying factor as

Transparency
No

13
Z9
31
33

38

re

13

1.00

1.00

1.00

0.50

13

T
L

29 31
1.00 1.00
1.00 1.00
1.00 1.00
0.50 0.50
0.50 0.30

able 4.9

29

Table 4.10

31

cembination of two of

e following table

33

0.50

0.50

0.50

0.25

33

Therefore, Table 4.9 can be written

38

A~
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In order to record the autcocer atio at
Y : utocorrelation patterns another set
of Fourier images was printed on the same scale and using the
o
same exposure time as the first set. The resultant transparencies

were then masked with a similar mask as before.

Each transparency of the first set was allowed to correlate
with the transparencies of the second set. The exposure times

were 3 seconds, 6 seconds and 12 seconds, depending on the

multiplying factor, shown in Table 4,10, of the two transparencies.

The Fourier Images were symmetrical round their x and y axes.
Therefore, inverting one of the transparencies would not produce
any change in the correlation pattern. However, the transparencies
needed to be squared up very well with respect to each other so that

no error would arise due to a transparency rotation.

The apparatus (Figure 3.,15) used in correlating the
Fourier image transparencies consisted of a diffuse light source,

two metal frames for holding the two transparencies, £/2.9 lens.

and a dark slide holder with a ground glass screen. The screen

fell at the focal plane of the lens when no dark slide was
in the holder. When a dark slide was inserted in the holder the

photographic plate in the dark slide fell at the focal plane of

the lens,

screen
The correlation patterns observed on the ground glass
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;s contrast; for i o5 .
had low con H this reason, high contrast photegraphic

plates like Ilford N40 were used. These were developed with 1:1
Kodak D8 developer. The correlograms, however, looked as if
they were nonuniformly exposed. This slow variation in the
photographic density was thought to be due to two factors.

The first was that the source was not perfectly diffuse, in other
words it was not truly Lambertian. The second was that some

of the rays were missing the lens and therefore giving rise to

what is called vignetting.

4,5,2 Correcting the correlograms

Severzl methods were tried to produce uniform correlation
patterns. These are

1, Printing the correlograms with their defocussed image.

A diffuse light source was placed at the back focal plane of an
£/6.3 aircraft camera lens. The focussing ~f the source with
respect to the lens was done with the help of a pre-set collimating
telescope as described in 3.5.4. The lens gave rise to a variety
of bundles of parallel rays (each from one source point) at angles

round the lens axis. The nonuniformly exposed correlogram was

placed, over the optical bench, behind the collimating lens. A

; i he
ground glass screen was placed over another carrier behind t

correlogram. This was moved along the bench so that the

» d
correlogram image was completely blurred. It was then replace

with I1ford N30 photographic plate.



In order to get complete cancellation of the slow
AV,

ariations
in density the contrast in the photographic plate should be

adjusted for a gamma equal to 1. TFor this reason a small

photographic wedge was placed in front of the photographic plate
so that it covered a small part of the plate.

This was supported
with a window glass plate as shown in Figure 4.6, The wedge was
compared with its reproduction; if they looked the same, then the
gamma is 1. Another way of checking the contrast was to combine

the wedge with its reproduction; if they produced a uniform

grey at the middle then the gamma is 1.

The photographic plates were developed for 5 minutes in
Kodak Universal developer diluted by 1:15. The best exposure
time was found to be 64 minutes. This produced a very dim
mask. The correlogram was combined with this mask and the
combination was printed on grade 4 paper with a printing
projector. The exposure time needed to produce the print was
inconveniently long. It was noted, as well, that the print was
still having some variations in density. This was due to the
fact that exposing and processing the mask was so critical that
it was very difficult to get a mask with a gamma exactly equal
to l.Figure 4.7 shows a nonuniformly exposed photograph and 1ts
"corrected" image. Figure 4.8 shows the mask used for the

Correction,
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Figure 4.6

The arrangement used for producing density-variation

correction mask. A = Diffuse light source; B = Ground-
he size of the

glass screen; C = mask for controlling t
source; D = collimating lens; E = correlogram plate;

F = ordinary glass plate for holding the photographic
wedge; G = photographic wedge; H = spacer of the same
thickness as the wedge; I= photographic plate; d
defocus distance; £ = the front focal plane of the lens
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9. Masking the light source or the photeographic plate with the

autocorrelatlon pattern of the transparencies apertures

In this method, the noncoherent correlater was used to
produce the autocorrelation pattern of the metal frames used for
holding the Fourier image transparencies. In cther words, it
was used to produce the autocorrelation pattern of the
transpareﬂcics apertures. Tte pattern represents the
nonuniformity of the output of the correlation system. If this
was used to mask the licht source or the photographic plate of

the system then the density variation at itis cutput would be

corrected or reduced.

The photographic plate used to produce the mask was Ilferd
N30. This was processed in the same way as in the first method.
Several exposures were tried and the resultant plates were put
consecutively over the light source, the transparencies were
placed on their helders and the correlation pattern was observed
over a ground glass screen at the correlater's output. The
mask that gave a uniform density distribution was chosen. This
was combined with I1lford N4O process plate and the combination
was placed at the correlater's output. The process plate was
exposed and proceesed in the usual way. The resultant correlation
The mask had acted

Pattern had low contrast and low resolution.

as a diffuser and therefore reduced the contrast and the

resolution of the pattern.



A thin, transparent glass plate was rcunted, with Sit
mountant, over the mask. This would produce a uniform emulsion
thickness and therefore reduce the light scatteringz. Th
mask was tried., The correlation pattern cbtained showed so—e
improvement but it was still not quite satisfactory. Figure 4.9
shows a nonuniformly exposed photograph and its "corrected"

image. Figure 4,10 shows the mask used for the correction.

3. Dodging

The two preceding methods had the disadvantage that thev

18]

need critical exposure time and critical processing. Th
grain structures of the mask and the original plate add and

therefore increase the noilse 1n the corrected correlation patternp

In dodging, the printing projector was used to project the
image of & nonuniformly exposed correlogram on a high contrast
photographic paper. A circular hole was made in a black piece
of cardboard. This was inserted between the projector's lens
and the printing frame and was moved so as to control the

exposure time of the different parts of the correlation

pattern,

After some practice this method produced quite uniform

correlation patterns. Figure 4.11 shows a nonuniformly exposed

PhOtOBraph and its corrected image.


















mlte structure and honeycowmb lzziice is the necative of

SRS

33 * 29 of graphite structure and zra-hite structure)

4 correllogram negative of ancther means that one of the
corre_ating transparencies in the nezative correlogram differs
from its corresponding one in the positive correlogram by 90°
(This can be proved by comparing the correlogram of two sine
zone tlates with the correlogram c¢f =z sine and a cosine zone-
plates ). The same idea of confusion =mentioned above applies to

these correlation patterns.

4.6 Reconstruction of Fourier imagzes by the computer

Consider the problem of a coherent light wave travellingz
in the <z direction and incident norzzlly on a thin linear
diffrzction grating. The grating is situated at plane O (Figure
4.13). 1In order to calculate the Fresnel diffraction pat*2vn

at plane P, consider Huygens®' principle.

For upward going wave we have a phase path to the wavefront
0of D cos 8 and an extra phase path to plane P of x sin 6§ .
For lower wave we have a phase path to the wavefront of D ccs &

less z phase path of x sin & .

Let us confine ourselves to a small angle. Therefore,

~ N 62
sin €= 6 and cos = 1- 5 .
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Figure %4.13 Formation of Fourier izages by Fresnel

diffraction
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The disturbances arriving at [

38
[t
(0]

The amplitude A, of phase path D

The amplitude A, of phase path D cos 5+ = sin €

1

[@y]

The amplitude A 1cfphase path D cos - X sin 6

If we take as zero the phase path D assoclated with
AO and subtract it from the rest then the above three formulas

become

Zero phase path
D (cos 8 - 1) + x sin 8

D (cos 8 - 1) -~ x sin 8

Using now our approximation above we get
0

e2
D(" —2—)'*‘ X 6

2
0
D(=--—)=x686
2

The diffraction pattern, at plane P, is therefore

represented by the series

2 \

-

n=+p 21Ti eiD 3
x xen -~ )

n=-p n
where An is the symmetrical Fourier Coefficient of the object

and p is the number of orders taken in the calculation,

Let f be the focal length of the diffraction grating. 1In
other words f is the distance between two reconstructions of

the grating. The suborder number m can therefore be defined
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2
The distance D is shown, in 4.1, to be equal to gi
m

From the grating's diffraction formula d sin 8 = n)we cet
n

hence, the Fresnel diffraction pattern expression becomes

.{ 2%\ an
n=+p —1) nX a’-//“' o

. A - \
by L
n=-p

Wang mini.computer was used for calculating the Fourier
images., The computer uses the language BASIC. One period of
the grating was used as the input. This is shown in Figure 4, 14.
The height of the input was taken to be v, its width 27 and

the black to white ratio 1l:1. It must be noted that

where d is the grating repeat distance and £ is the amount of d
which is white. Since d was put equal to 2m, therefore the

series above becomes

n=+p 2 }
. mn
> “{“X N

=2
s}

represents the phase of the Fourier image and is called

g

The suborder number m is shown (13) to be equal to the lines



b
(o))
w

multiplicity of the Fourier image. Thereicre, 1in order to
calculate the object's reconstruction, = tzs to be put equal to 1;

otherwise a  can be put equal to zero.

In order to use the above series in the computer it has

to be modified as follows :

+ —-inx+1i2
P n
f(x) = A + 2 A e
o n
n=%ti
tp
= A + A (cos nx - 1 sin nx) (cos a + 1 sin a )
o n n n
n=*1
ip
=A + > A (cos nx cosa_ + sin nx sin a_ )
fe] =t1 n n “
I p
. 2 . .
+1 A  (cos nx sin o T sin ni cos an)
n
n=t1

where f(x) reupresents the amplitude of the resultant pattern

p
Let A + A (cos nx cos a_ + sin nx Sina ) = a
e} n=t1 n n n
tp .
0s nx sin o in nx cos a =
5 A (c =S n)
n=*1

Therefore the intensity of the resultant pettern is

fz(x) = a2 + b




1* - Pty A PR A R 4 R
he coefficients A anc A are calculated as follows

A = %—; / f(x) G

il
SN
e
&N
=]
@}
/

o)
= I
2
1 T
A = > T £(x) cos nx dx
n ~
o T
_ 1 s
Py 2 7 COS nx dx
o)
=1 om
L Sin 5

Figure 4.15 shows the reconstruction of the object

shown in Figure 4.14. o was tut equal to 0 and therefore -

the Fourier Components of the object add in phase and we get

the reconstruction. The progran for doing this is shown in

Appendix 1.

The reconstruction is sampled onto 32 points, M is the

sampling number and p is 40,

A trial was carried out for getting the reconstruction
of suborder numbers 2 and 4. In this case @ was put equel

2
n2 T and n T

2 4

to

No satisfactory results appeared in the computer output. Th

respectively (Appendices 2 and 3).

1
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Figure 4.14 One period of a square wave diffraction

grating used as an input for calculating
the Fourier images by the computer
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Figure 4.15 The Computer's reconstruction of one period of the

square wave diffraction grating. The reconstruction
is shifted by one half of the repeat distance
(Section 4.1 ),




-
o

reason for that seemsto be the conversion of the amplitude
contrast object into phase contrast image. The values of the
imaginary part of the series are indication of such

conversion.
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NONCORERENT ESPATIAL FILTRRING BY

ELOCKING FILTERS

5.1, The Fourier Transformer

o™

We nave seen in Chapter 2 that any Fourier coefficient of
an input pattern can be obtained by convolving the pattern with

an appropriate sinusoidal grid,.

If the pattern is represznted by F(x,y) and the sinuscidal
prid by cos(ux + vy) then the ccsine Fourier coefficient will

be

C (u,v) =‘/ /, F(x,y) cos (ux + vy) dx dy

—_—00 .00
The convolution shift is assumed zero in this case. u and
v define the spacing and orientation of the grid, and the

direction of maxime in the detector plane.

The sine Fourier coefficient is obtained by convolving the

pattern with a sine grid .

In order to get the Fourier transform, the pattern F(x,y)
has to be convolved with a set of sinusoidal grids of different

spacings and orientations. This can be obtained by different
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ways (1,2). The simplest woy is to make two zore-plates overlap
(2,3). This generates linear fringes (moire rattern) whose
spacing is inversely related to the separation of the zone-plate
centres (4). By arranging that the zone-plates are notr in the
same plane, a range of frequencies can be observed simultaneously.
Parallax effects as the observer moves around will

thus generate moire fringes of variable frequency, The

pattern F{x,y) is then placed anywhere between the zone plates

or tehind them and an integrating lens is used to focus each

skew parallel bundie of rays onto the corresponding point in

the back focal plane of the lens. Any one c¢f these points represents

a Fourier coefficient and the whole pattern represents the

Fourier transferm (Figure 5.1).

The transform given by this device, however, is the cosine
Fourier transform. If the sine Fourier transform is required
then one of the zone-plates has to be replaced by a phase-
shifted zone~plate (sine zone-plate). Thic is similar to the
normal zone-plate (cosine zone-plate) except that the zones are

shifted 1y 90°.

If R represents the radius of the mth boundary between
m
zones and R) represents the radius of the innermost boundary

of the cosine zone-plate then Rn for the ccsine zone-plate 1s
* it

R =R, Vm mo=1,2,3,00nnn..
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Figure 5.1 The Fourier transformer
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and for sine the zone—pliste 1is

o

2
g Js e e canme e

R_=Ry Vo] =1,

It is not necessary to use zone-plates in this device.

U

Any plate that produces linear moire frinze system can be
used. If two Girard Crids are uced instead of twc zowne-
plates a Tourier transform is still obtaired. The output

however,appears as though it is reflectec in the line x = vy

with respect to the zone~plates cutput.

This method of obtaining Fcurier transfcrms is phase-
sensitive. This can be seen by moving ths cbject, for instance
vertically,and observing the Fourier trzn:ziorm plane. The

transform changes from light to dark and vice versa.
This correspornds to the case of in-phase and anti-phase
conditions between the waves generated tv the zone-plates (moire

fringes) and the Fourier components of the cbject,

The idea of obtaining the Fourier transform in this
way is similar to the idea of obtaining tke Fourier trarsform
in the coherent way. In both cases, the function to be transformed
is multiplied by a particular wavefront ard integrated. In
the noncoherent method the required wavefront is generated as
a moire pattern between two suitably separated zone-plates.

In the coherent method, the wavefront is the wedge fringe
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- oy a1y LR e
system between i€ ircident wevefront end the diffrace

el

wavefront.

5,2, The spatial filtering svsten

Blocking filters are used in coherent opticial data
processing to perferm many useful spatial filtering operations

(e.g. Raster removal, additive roise remcvel, Half-tone

Y

removal...etc) They are usally placed in the back foczl

plane of the Fourier transform lens to block out the
unwanted frequencies of the cbiect. The rest of the s;ectra

is then transformed back, with ancther lens, to form the

filtered image (Figure 2.1).

If the output of the nonc-herent FTourier transiormer
mentioned in the last section is used as an input for ancther
similar transformer then the object's frequencies will be
transformed twice. This will form an image similar to the

o . - n 1.i
original object at the seccnd transformer output. Blocking

filters may then be placed at the first transformer output
to omit the unwanted frequencies (Figure 5.2)

oherent
This system has all the advantages of the nonc

3 - fey "Z2VS
. - —[l(\tr oL ‘59}~,
Systems, The input can be represented in a va b
: tical
i <lop screen, OPt
€.g. an opaque ccpy, transpareicys television
can

. ' me technquES
image, reflection....etc. Therefore, real tim

[ _ he added adventages
v easily applied to this system- Tt has the




of being phasc sensizive, redundant and less expensive.,

The Fourier trznsform paftern produced by the noncokerent
transformer is different frem that produced in a coherent
light. Zvery spot in the noncoherent Fourier transform
contairs all the information about the object. Therefore,
blocking cut part of the spectrum with a blocking filter does
not prevent all the Irequencies of the cbject from passing
through, For this reeson a ground gless screen was placed at
the output of the first Fourier trensformer. The weuld distort
all the informstion in the filter plane and change it into sn

intensity variaticns.

5.3  Experiment

The object used in the experiment was a cross-grating
(Figure 5.3). This has a Fourier transform of the shape shown
in Figure 5.4. The filter was a horizontal slit cut into a
white sheet of paper. The sheet was oiled with a machine-oil so
that no sharp edge would appear on the diffuse screen. This
would prevent the sharp edge of the filter from being transformed
by the second transformer and therefore prevent the unwanted
ringing effect, mentioned in 2.2.1, from occurring. The hcrizontal
slit was designed to produce a linear grating of vertical lines

at the system's output,

The diffuse light source was a 100 watts lamp. This
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wis fourd te be not strong enough to produce a Fourier trancfornm
rettern with a« high intensity and contvast. Kodak Carousel
jector was,therefore, used as z light scurce. Scveral diffu
screens were placed behind the object to render the projected light
ciZfuse. The Fourier trensform pe-tern was still not bright

enough, the contrast was nct high enough and no image could be

observed at the system's output.

A television link wes next used to enhance the brightuess
znd contrast., The output of the first transformer was displayed
or. a television screen., This was used as an input for the
second transformer. The contrest was very good but the
brightness cf the spots was poor. Any attempt tc increase thre
Erightness of the television monitor would decrease the cortrast

of the Fourier transform pattern.
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APPENDIX 2

Program for reconstructing a Fourier
image of suborder No 2
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APPENDIX 3

Program for reconstructing a Fourier
image of suborder No.4
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