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SUMMARY

Measurements of low energy phonons in the lattice
vibrational spectrum of Spinel, MgA€z04 obtained by
inelastic neutron scattering spectrometry are reported.
Acoustic mode frequencies supplemented by infrared and
Raman data have been used to refine rigid ion and shell
models with polarizable oxygen ions, both with and without
central forces. The elastic, high and low frequency
diselectric constants and apparent charge tensors have been
calculated. Best fit to normal modes is achieved by a ten
parameter shell model with axially symmetric forces,

The heat capacities of thess models together with
those based on the parameters of Thompson (1977) and
Striefler and Barsch (1972) have been found over a range
of temperatures. In this respect Thompson's model is
shown to be inaccurate. '

Landau's theory of second order phase transitions
has been used to predict possible structural deformations
from Fi3m to other cubic and tetragonal symmetries. The
soft modes and resultant space groups are found to be
A -Fi3m, T -I424 and Tig—IlH_/a.
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CHAPTER 1

STRUCTURE AND MODELS OF THE CRYSTAL DYNAMICAL
'- BEHAVIOUR OF SPINELS




1.1 Introduction.

The construction of a theoretical model is necessary for the
description of the physical behaviour of a crystalline solid. Tha extent
to which the model describes the observed physical behaviour is limited
by the various simplifications and assumptions which have to be made
in order to perform calculations, This necessity is actually advan-
tageous as it allows the important features of the physical processes
to be elucidated. For example the inclusion of electronic polarization
solely due to the presence of an electric field in models for alkali
halides (Lyddane and Herzfeld, 1938) was found to give inferiour results
compared to a similar model which neglected polarization completely
(Kellermann, 1940). These attempts led in turn to the very successful
shell models based on the work of Dick and Overhauser (1958) that include
field polarization terms and also the overlap interaction of the
electron wave functions of neighbouring ions,

The most-successful mathematical fiction for the description
of crystal dynamical behaviour is the assumption that the inter-
particle forces are linearly related to small displacements of ths
constituent particles from their equilibrium positions. This together
with consideration of crystal periodicity enables the solid to be re-
garded as a system of independent waves called normal modes . an
quantisation is included the energy of a normal mode may be specified
by the numuer of quanta, phonons, of energy Hw for that particlar
crystal state, Models based on these criteria are Eapable, in
principls, of describing propertieslsuch as normal mode dispersion,
one phonon infrared and Raman spectra, elasticity and heat capacity.
However some crystal properties such as themal expansion and multi-
phonon spectra elude this formalism.-;

To perform calculations further assumptions must be made

concerming the form of the potential for particlarinteractions which

-l-



depends not only on the type of crystal, eg ionic or covalent, but
also on phenomema such as polarizability. TFor covalent crystals ths
interaction potential at present evades analytical description and in
pratice is often only described by a set of parameters fixed by fitting
the model predicted quantities to existing experimental data. However
in ionic crystals at least the form of the overall attractive Coulomb
potential is well known and ohly the short range, essentially repulsive
interactions need be parameterised. Models for simple crystals have
been very successful and provide surprisingly accurate descriptions
of the vibrational behaviour, see ‘fig.l.l which shows the fit of models
to measured dispersion curves.of NaI. The physics of the processes
which the models describe then is well uml erstood., Therefore crystals
of a more complex nature may now be modelled with a fair degree of
confidence, In practice extrapolation to more complex crystals re-
quirés the use of auxilliary techniques which were not essential for
simple cases. The most important is the application of group theory to
exploit crystal symmetry properties, not only for the purposa of normal
mode classification but also to reduce the quantity of computation
needed. Despite the availability of thess techniquss and the relative
simplicity of the systems which have been studied, modelling of structures
of greater complexity than the perovskites (five ions per unit cell,
Cowley 1964) is uncommon., The most complex crystals considered appear
to be gadolinium molybdate, Gda (Mo%)a ; with thirty four ions per unit
coll and fluorapatite, Caio(PO4)eFa, with forty two ions per cell
(Boyer and Hardy, 1973b and Boyer and Fleury, 1974 respectively).
‘Normal model analysis has been extended to include anharmonic
terms in the equations of motion (Cowley, 1963a) although calculations
even for simple compounds are formidable. Possibly the most important
development is the concept of a soft mode of vibration proposed by
Cochran (1960) to account for the ferroelectric transition. of barium

~ titanate. A soft mode is generally considerd as a normal mode whose
- D
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frequency decreases substantially as the transition temperature is
approached and which is responsible for the structural phase trans-
ition. For example strontium titanate has two modes that show
anomalous temperature dependence. The mode at the zone centre is that
normally associated with the perovskite ferroelectric transition.
However the phase transition to a tetragonal structure which actually
occurs is due to a soft mode at the zone boundary (Cochran and Zia,
1968). Subsequently the phase transitions of several structures have
been interpreted in this fashion ~ see Scott (1974) for a review of
theory and experimental results. Previously it had been realised that
if the transition was second order, the possible changes of space group
and the symmetry species of the normal mode responsible could be
predicted (Landau and Lifshitz, 1960a). The technique is not completely
reliable as most structural phase transitions are first order. A
notable example is the phase transition in A1l5 compounds from a cubic
to a tetragonal structure, found by Shirane and Axe (1971) to go to

a space group discounted on symmetry grounds (Perel et al, 1968).



1.2 Spinel Compounds.

Most crystals of compounds with the formula ABgX4 have structures
related to that of the mineral MgA£304 (Muller and Roy, 1974) known as
spinel, The highest symmetry form of the structure can be described
as formed by a nearly close packed cubic array of anions X2~ with the
cations A%, B®* distributed among certain interstices. In the normal
structure the divalent cations lie in sites around which the anions are
arranged as a perfect tetrahadron (A sites) while the trivalent are
situated in interstices having anions arranged with near octahedral
symmetry (B sites). The important features of this unit cell containing
eight formula units were first elucidated by W.H.Bragg (1915). The
overall and ion site symmetries then conform to the space group
Fd3u(07). The close packing is slightly distorted to accommodate the
metal ions by small anion movements in <111> directions from the
tetrahedral ion. Table 1.1 lists the coordinates and site symmetries
of this structure. The oxygen position parameter is given as u
equal to %/ + 8.

In an ideal spinel with perfect close packing & has the valus
zero, In practice § is usually greater than zdro although rarely
negative values are found (Muller and Roy 1974). The twelve oxygen-
oxygen neighbours are separated into groups corresponding to three
distinct distances. The three nearest neighbours are equivalent by
face centred translations to the group of three neighbours at the
furthest distance. The remaining six anions which lie at an inter-
mediate distance in sites almost corresponding to the close packed
positions are not so related. The site symmetry of the A site
(43m) is mintained irrespective of the value of & while the
octahedral site distorts from cubic (m3m) to a trigonal (3m)
symmetry in such a way that the anions are equidistant from the
trivalent cation, Figure 1.2 illustrates the ideal spinel structure,

the whole unit cell being generated by placing identical contents

= 5w
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in octants connected by an edge (Gorter 1954).

Apart from the normal distribution of cations described, othar
arrangements are possible. Positioning of half the trivalent cations
on the A sites with the remaining cations sharing B sites gives rise
to the inverse or equipoint (Wyckoff, 1965) structure. Intermediate
situations also arise and are known as partially inverse structures.
The space group remains unchanged when the cations are randomly dis-
tributed on various A and B sites, TFor example in the normal dis-
tribution the structure is centro symmetrical about the B sites. The
symmetry is reduced in the inverse structure when the cations order so
as to remove the centre of inversion, The highest symmetry is then
described by the Fij(Tda) space group. Haas (1965) has considered
this and othor possible orderings on group thsoretical grounds with the
intention of predicting the order of the phase change from Fd3m,

The large number of compounds with structures related to MgA£:04
is in large part due to the range of different cations whicﬁ may be
substituted into the structure. Spinels are often grouped into series
classified by the anions eg, oxides, sulphides, selenides, tellurides
(the last may also act as a cation in this structure eg.ZnzCozTe Os.
Different trivalent cations may be substituted for B®% and a variety
of divalent cations for A®*. However cations of othsr valencies may be
introduced into the structure provided the condition of charge neutrality
is maintained eg. Naz W&'0,%",

The ability to predicf the distribution of the cations over the
A and B sites is important in the study of properties of series of
compounds where say the series is to be restricted to normal spinels
only (eg Grimes and Collett, 1971a) and the development of magnetic
materials (Grimes,1975). Dunitz and Orgel (1957b) and McClure (1957)
calculated site energies for transition metal ions on crystal field
theory alone, Miller (1959) extended the calculations to non transition

metals by including the effects of the Madelung energy as well as a
-8 =



short range repulsive interaction term due to electron orbital overlap
between neighbouring ions. The results (shown in table 1.2) are in
broad agreement with the previous estimates for transition metals
(though notably not zinc) and with the later thermodynamic calculat-
ions of Navrotsky and Kleppa (1967). Particularly notable are the
site preference energies of Zn®* and In®* for the tetrahedral site
and that of chromium for the octahedral site. The correlation between
the anion u parameter and inversion (u = 0.387, normal and u = 0.380,
inverse) noted by Gorter (1954) has been shown by Thompson and Grimes
(1977a) to be related to changes in the Madelung energy with cation
distribution. The balance of ensrgy terms_ may be small allowing the
distribution of cations to be determined by the method of preparation.
Tor example when slowly annealed CuFez04 is fully inverse but when

quenched from the synthesis temperature is only partially inverse

(Smit and Wijn, 1959).



Aston University

lustration removed for copyright restrictions

Site Preference Energies (after Miller (1959))

TABLE 1.2

- 10 -



1s35 Lattice Dynamical Studies of Spinels,

l.3.1 General.

Initial attempts to provide a descriptive basis for spinel
dynamics were concerned almost completely with the interpretation of
ths infra red spectra. All mathematical models were essentially
extensions of the Wilson,Decius and Cross (1955) formulation of mole-
cular vibrations until Sammis (1971) introduced a rigid ion, central
force model for the calculation of elastic constants. Striefler and
Barsch (1972) then used a similar model to calculate all the Brillouin
zone centre frequencies and pressure derivatives of elastic constants
together with the first model calculation for dislectric behaviour.
Thompson (1977) later extended this type of model to account for dis-
persion throughout the Brillouin zons,

For the interpretation of light scattering spectra it is only
necessary to consider Brillouin zone centre frequencies as eslectro-
magnetic radiation with energies in the phonon range has much greater
wavelengths, TFor one phonon spectra the simultaneous requirements of
conservation of energy and crystal momentum demand that only phonons
with almost zero wave vector are involved. The spinel structure may
be regarded as a face centred cubic lattice with a basis of fourteen
ions situated about each lattice point. Of ths corresponding forty
two normal modes (three degrees of freedom for each of ths fourteen
ions) only those of the appropriate symmetry interact with light
radiation. TFor infrared absorption the mode must have a non zero
dipole moment whereas for Raman scattering the mode must transform
as a second rank tensor to enable light interaction with the polarize
bility of the atoms, It is only in the long wavelength limit
(q = %g - 0) that non cancelling values for these quantities are
produced in all unit cells,

1.3.2 Waldron Model.

Waldon (1955) measured the infrared spectra of several ferrites
& 19 =



ferrites (MFe304,M = Co,Fe,Mg,Mn,Ni,2Zn) which were essentially compased
of two strong broad peaks that did not display any narrowing at liquid
nitrogen temperatures. To interpret these spectra Waldron, although
realising that isolated molecular groupimgs did not occur in the spinel
structure, proposed the simplification that the two formula units in
the basis could be regarded as two MO4 and one Feq tetrahedra. The
normal modes were then classified accordi ng to the point group

ZBm(Td) which predicted eight infrared modes, one of which must always
be discarded as it represents a translation of the whole crystal
against which there is no restoring force and therefore the mode has
zero frequency. Three further frequencies were removed as "intemally
inactive™ by imposing equivalence of the two MO4 tetrahedra and sites

®* jon positions. Thus the symmetry of the

of .inversion at the Fe
problemn was effectively raised to m}m(oh) known to be appropriate

for Fd3m spinels. ZEach 6£ygen is considered as bonded to the three
nearest neighbour trivalent cations in directions parallel to thse
edges of the crystallographic cubic cell and to the nearest neighbour
divalent cation in a direction at forty five degrees to the orthogonal
axes (see fig.l.3). Vibrations of the oxygen ion along the tetra-
hedral ion-oxygen bond were considered to have a higher frasquency

(v1) than those at right angles to it (va). The lower frequency

modes vz and vg involve motions of the cations in isotropic fields

of force. As only two infrared bands were detected any model, if it
was not to be overdetermined, could have at most two diéposabla para=-
meters, These werse chosen to be force conétants f4,fs representing
tetrahedral ion-oxygen and octahedral ion-oxygen bond stretching
respectively (thé notation is that of Bruasch and D'Ambrogio,1972).

The potential energy is then given by

2V =1, 2 I'ta+ fa 2 I‘oa (l'l)
ry,To are components of displacement along the direction of the

appropriate bond. Symmetry coordinates and simple expressions for
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the frequencies of the infrared modss were obtained. The frequency vy
of one of the modes was found to be identically zero because no bond
bending force constants were assumed. Therefore MO4 groups were
effectively isolated without any restoring force for ths bond bending
vibration present, The two major peaks were assigned to vy and vz in
descending frequency and the possibility that they were of multiphonon
origin was discarded as v;_/v:a o ..]E in approximate agreement with the
force constant expressions with f4 = fg. The ratio f,_/fa was found to
vary from almost two (CoFeaO4,fy= 0.85,f,= 1.66 in units of 10° dynes/om)
to seventy five per cent of this value (MnFeaO4,fz = 0.92,f1 = 1.4).
Various of the quantities such as compressibility, specific hsat
capacity and infraréd band intensitites were calculated for various of
the compounds considered and found to be in reasonable agreement with
experiment where data was available. Waldron's calculations were the
most extensive in the range of properties obtained from one model until
the publication of the rigid ion model (Striefler and Barsch, 1972).
Grimes and Collett (1971b) re-examined the spectra of NiFez04 and

Fes0, and found them to consist of four promiment absorptions in
agreement with Waldron's prediction. This model was extensively used
(Hafner 1961,Grimes and Collott 1971a) until Bruesch and D 'Ambrogio
(1972) developed a model which incorporated bond bending. Grimes and
Collett (1971a) studied the infrared spectra of the series
MgCrxA&a_xO,, and used Waldron's model to obtain valués of the force
constants at the end points., However their claim that the difference
between the values they obtain for the force constants and those
obtained by Hafner (1961) was due to a modification of Waldron's theory
to allow for vg # O was erronsous. Hafner, following Waldron, obtained
fa from the equation for vz and used the equations for v; and vz to
determine the constant f4 whereas Grimes and Collott used only the
equations for v; and va. More importantly this method of calculation

gave an almost constant value of f, together with consideration of



Waldron's compressibility relations and cohesion theory led Grimes and
Collett to emphasize the linear relationship of v; and vz to the
reciprocal of the squars root of the effective octahedral mass and
also to the unit cell volume. These relationships hold almost per-
fectly for the full range of the series,

Hafner (1961) studied a large number of infrared spectra of
which the normal to inverse series are particularly important, In-
cluded in these are the series MgAfl304- MgGaz0s4 and MgAlz04-MgFez0,4
although Hafner and Laves (1961) show that synthetic MgA£;04 is
partially inverse (now supported by evidence from others, Navrotsky
and Kleppa (1967), Schmocker and Waldner (1976). He noted that the
ma jor effect of going from a normal to an inverse structure was to
broaden the two intense high frequency bands. Waldron's model was used
throughout although it was indicated that it was likely to be a better
approximation for inverse spinels because in normal structures,
especially where the tetrahedral ion is large in comparison to the
octahedral ion, anion packing produces considsrable oxygen-oxygen
compression, This effect was considered to require the use of oxygen-
oxygen force constants, which are absent in Waldron's model, for an
accurate description. It was generally found that the force constants
decreased with decreasing cation radius and were sensitive to cation
distribution., The ratio f3/fs varies from two to one reaffirming
that A®*X4*®" tetrahedra do not exist as molecular groups,

1:3.5 Gmu}; Theoretical Analyses of Zone Centre Optic Modes.

White and DeAngelis (1967) prodiced the first full group
theoretical analysis of the q = O phonons for a spinel structure,

The forty two vibrations were classified among the irrcducible repre-
sentations of the point group m3m (0,) with which the factor group
of the space group Fd}m(Oh") is isomorphic,

I'= L't 2A2u+ 2Eu+21‘2u+ Ai

e gt Eg-|-3Tag + 5T4u (1.2)

Representatives A,E,T are non, two-and three-fold degenerate respectively.

~ 15 =



Representations Aig’Eg and Tag are Raman active and may be distinguished
by a polarizaticn analysis of the incident and scattered light., Of the
five T4y modesone, of necessity has zero frequency, the remaining four
are infrared active. This reduction was also performed for other
spinel space groups which arise as a result of cation ordering on
particular sites, However to assign specific atomic motions to the
modes White and DeAngelis introduced the assumption that the basis may
be regarded as consisting of four B ions and two AO4 molecules. The
modes were then classified as translatory or rotating, with modes

that did not fit into this scheme designated as internal. This
categorization was then used to interpret the Raman spectra of

NazW0s and NagMoOs, spinels in which the concept of molecular groups
is most likely to hold, However when considering infrared data these
authors appear to have reverted to Waldron's system.

Verble (1973) performed a similar analysis using the Waldron
basis of three tetrahedra (one Bs and two AO4) to obtain a different
assignment of the terms translational, rotational and internal. The
White and DeAngelis work was criticsed for excluding rotational pro-
perties of the B, tetrahedron., However the White and DeAngelis basis
is not identical to Waldron's as the B ions appear to have been
considered as independent entities - not as a tetrahedral group. From
their remarks on that paper it is not clear if Preudhomme and Tarte
(19?Da) also appreciated this point. Verble points out that two of the
triply degenerate Tag Raman modes and two of the infrared Tiy modes
derive from the same irreducible representation of the molecular
group. Therefore if the molecular model was to have any validity a
close frequency correlation is expected between these modes.,

Lutz (1969) presented the first complete set of symmetry co-
ordinates for the q = O spinel phonons, appropriate linear com-
binations of which form the eigenvectors of the normal modes. In

contrast to White and DeAngelis examination of the symmetry coordinates



led to the conclusion that there did not appear to be any obvious tet-
rahedral group vibrations although it might be possible to consider
some as octahedral group vibrations,

1.3.4 Qualitative Infrared Analysis,

Preudhomme and Tarte have produced a very important series of
papers (1970a, 1970b, 1970c, 1971) on the infrared spectra of spinels,
both on measurement and interpretation, although quantitative models
were not proposed., Reviewing previous work they point out that
Waldron's assignation of the highest frequency band to vibrations in
which the oxygen ion oscillates along the direction of the oxygen-
tetrahedral ion bond is only appropriate if this bond is stronger than
the octahedral cation-oxygen bond. Considering data from previous
compounds containing "isolated" A0, tetrahedra (eg. KMnO4) they con~
clude that for cations of similar valency and electronic structure
"the valency state is generally the most important factor in determining
the cation oxygen bonding force and corresponding vibrational frequency,"
Thus Waldron's approximation is expected to hold for I-VI and normal
II-IV spinels (the roman numerals refer to the valency of the A and B
cations in ABzXq). For II-III and inverse II-IV compounds the
situation is less clear. By comparison with absorption data for various
"condensed" (i.e. linked by edges with other octahedra) octahedra eg.
Ag it was suggested that the highest frequency mode could be assigned
to stretching vibrations of octahedral groups for these latter com-
pounds. These claims were supported by data from an isotopic sub-
stitution study of lithium in LiCrG,04 spinels where a low frequency
mode is assigned to the LiO; vibration. The authors criticise the group
theoretical analysis method of interpreting infrared data for the
spectra of a continuous series of solid solutions eg.ZnA&a_xCr&Q4,

x =0 +> 2, In the course of substitution the bands change from their
initiai forms and positions at one end point to those at the other

essentially by one of two major processes:
w 1] =



(i) The band remains almost constant in intensity and continuously
changes frequency between the end points,

(31) Two bands appear in the spectra between the end points with
frequencies close to each end member and the strength of each
mode varies in proportion to the concentration of each component.

Wakamura et al.(1973) have used the terminology from studies of
binary alloys: one mode type and two mode type to désc;ibe these pro-
cesses in spinels. It must be remembered that these figures have no
relation whatsoever with the degeneracy associated with the normal

mode involved. Preudhomme and Tgrte describe the onset of the second

process at low concentrations as associated with vibrations of

localised groups. Intermediate behaviour between the two extremes

of these processes has also been observed. The group theory criticism

arises because throughout the series the space group as revealed by

X-rays does not change, thus usually only four bands are expected. The

extra bands produced from the type (ii) frocess are therefore not

explained., Experimentally Preudhomme and Tarte argued that to attempt

a reasonable interpretation of the infrared spectra of spinels know-

ledge of correlations between the nature of the cations and the observed

frequencies is required. Throughout this series of papers however the
authors do not consider the effects of anion substitution and the in-
formation it would reveal of anion-anion interactions, Using the
methods of homogeneous substitution in families of pure spinels, study
of the continuous series produced by isomorphic replacement and also the
method of isotropic substitution the authors investigated in great
detail a wide range of oxide spinels. Analysis of normal II-III spinels
showed that the spectra were typified by having two broad intense bands
at high frequencies with two much weaker but sharp bands at lower fre-
quencies (fig.l.4). The broadness and shape of the higher frequency

bands to some extent depended on the preparation of the compound. Even

at maximum sharpness the bands are asymmetric. The lower frequency bands
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appear to have been unaffected. For these compounds it was concluded
that the high frequency bands vy and vy were the vibrations of octa-
hedral groups. The two lower bands were assigned to complex vibrafions
of both cations., An important exception, in magnesium aluminate, is
the assignation of the va type vibration to a shoulder lying between
vs and va. ZnA¢304 is another anomalous aluminate as it consists of
three strong, broad peaks and one weak, sharp band. This behaviour
was thought to be related to the moderate mass of the trivalent
cation. Preudhomme and Tarte later (1971) made the suggestion that
the highest frequency band in normal structures could be assigned to
the vibration between the highest valency cation and the oxide ion
regardless of the ion's site symmetry. In all these studies poly-
crystalline powdet samples were used, however later comparison of
single crystal data (0'Horo et al. 1972 on MgA¢304 and Boldish and
White, 1978a on CdIngS,) with the frequencies obtained from powder data
showed no significant differences. Therefore powder sample spectra
can be considered a reliable source of the absorption frequencies
associated with the irreducible representation Tiy.
1.3.5 Four Force Constant Model.

Bruesch and D'Ambrogio (1972) proposed a dynamical model for the
q = 0 spinel phonons which has become the most popular model to date.
Very similar to work by Shimanouchi et al. (1961) it is an extension of
the Wilson,Decius and Cross (1955) formalism for molecular vibrations
appropriate to crystals especially where co-valent bonding is involved.
Their dynamical matrix which has to be diagonalised to give the optic
mode frequencies may be expressed as a product of matrices GxF. The G
matrix contains only information on the atomic masses and internal
coordinate information, the F matrix is dependent on the force field
only. Wilson,Decius and Cross derived G as the inverse of the kinetic
energy matrix and F as the potential energy matrix of the system.

Bruesch and D'Ambrogio did not explicitly write their equations in this
-m-



manner but in an equivalent form. Only nearest neighbour force constants
were assumed with no interaction between stretching and bending type
included. Four force constants were used with the oxygen parawm. set
at u = %/g
. f,  A-X stretch

fa X-A-X bend

fa B-X stretch

fy X-B-X bend
If the oxygen parameter had been set at u = %;5 + § two f4 type constants
would have been required for the two different sets of X-B-X angles
(cos¢ o~ = 88 and cos¢ ~ 83). When block diagonalised by the symmetry
coordinates the elements of the dynamical matrix are given by
particularly simple equations suitable for rapid calculation. The model
then may be easily applied to other spinel structures without modifi-
cation as the constituent equations are independent of the oxygen
parameter, Bruesch and D'Ambrogio used the model for the analysis

of the known Raman and infrared data of the normal spinels CdCraSe,

and CdCrgSge=With the parameters

f1 fa fa f« in 10° dynes/cm
CdCraSey 1.4 0.05 0.7 0.03
CdCr354 1.5 0.07 0.81-[- 0.02

agreement with observed data was about 10% or better. It is interesting
to note that the ratio of f,_/fa is again about two and the magnitudes
of the bending force constants are about fifty to cne hundred times
smaller than the stretching constants. This indicates how good an
approximation Waldron's very simple model had been. The very low
frequency (75 cm *) infrared band of CdCreSey was shown by the model

to be an almost pure bending mode of the Cr-Se-Cr angles. Presumably
this is the mode which in Waldron's theory would have had zero fre~

quency because of the lack of bending force constants. The authors

attempted to distinguish between internal angd external modes by
R - I



increasing the f; and fy force constants to establish rigid units and
found that only the A:.g’Eg and the two Tag high frequency modes may
be regarded as internal, and that the optically inactive modes Tag
and Ty, are translational. However the other modes including all the
T:.u modes are impossible to classify in this fashion, The agthors
application of the normal coordinates to the observed influence of
magne tic ordering on the optically active modes was less successful,
Boldish and White (19782 used the same model for seven sulphide spinels
for which they had measured the infrared and Raman spectra
(AB2S4,A=Cd,Mg,Zn;B=Sc,Yb,Tm). Of the five Raman modes expected only
four were detected except in the casesof Zn,MgSczS4 where the fifth
band could not be unambiguously assigned as the missing fundamental
frequency. The Aig mode frequency has a fairly linear relationship

to cell volume whilst the lowest infrared mode varies linearly with
the square root of the mass of the A ion. The assignment of the two
highest frequency bands is associated with the octahedral ion while

the second lowest band has a complex nature agrees with the usual
Preudhomme and Tarte classifications. The computed relative intem-
sites for the infrared modes agreed well with experiment although
better for cadmium than magnesium compounds.

Wakamura et al.(1973) used a slightly modifisd form of the four
force. constant model to account for the infrared spectra of continuous
series of spinels (ngZni_x Cr§Sa4,Cden1_xGrgSe4) although Preud-
homme and Tarte analyses indicate that anharmonic forces are
significant., TFirstly the force constants for the two end points were
calculated, then for the mixed crystal the force constants for the
tetrahedral ion are givew as functions of composition

f1(x)

fa(x)

with the mass of the ion at the tetrahedral site taken as

]

xf's (HgCraSes) + (1-x)f1(ZnCraSey) (1.3)

xfa(HgCrzSes) + (1-x)f2(ZnCraSeq) (1.4)

n(x) =x m(Hg) + (1-x) m(2Zn) (1.5)
- 29 .



where the series (Hg,Zn)CraSeq has been used as an example. The T
frequencies were calculated as functions of composition for the force
constants f3 and f4 fixed at each end point values., Considering the
simplicity of the model the fit to the experimental data is good. For
modes which change frequency by type (i) process the values predicted
using each end point value for fz and f4 are close to each other. For
the type (ii) process which occurs for the lowest band in (Hg,Zn)CraSeq
the predicted frequencies for each end point value of fj and f3 are
closer to the experimsntal data than to each other. Overall the fit is
better for the two high frequency modes but much worse for the lower
pair, in particular the second lowest which is often associated with a
complicated vibrational form,

Although model calculations have rarely been used to actually
predict propertiés of spinels Shimuzu et al. (1975) used the four
force constant model to provide evidence that the CdInS4 spinel could
not be considered as having a normal structure above the phase transition
temperature below which the cations are ordered on A sites., Comparing
with a similar model for CdCrzS, the authors attributed the worse fit
for CdInSy to its greater ionicity.

1.3.6 Ionicity Among Spinels.

Despite the great success of the four force constant model the
above remark, if true, would indicate that the parameter values for
more ionic spinels could not be interpreted clearly. In any fitting
procedure for these compounds the force constant values obtained must
have incorporated effects of the long range Coulomb forces. Thus any
appreciation of the values of the variables in terms of a change in a
particular bond stretch or bend is obscured. Especially important for
ionic compounds is explicit inclusion of their dielectric behaviour,
in particular the longitudinal-transverse splitting of the infrared
modes. This effect is due to the addition of an extra restoring force
72.E for these modes, where Z is an effective charge tensor and E the

macroscopic electric field. This field is produced by the slowly varying
- 23 .



polarization associated with this type of optic vibration and may be
shown from Maxwell's equations (Born and Huang, 1954) to act in the
direction of mode propagation, Thus the extra restoring force has
maximum value for infrared modes with dipole moments parallel to the
direction of wave propagation (longitudinal) and is zero for modes with
dipole moments at right angles to the wave vector (transverse modes).
Cochran and Cowley (1962) have shown that the dipole moments in cubiec
crystals must lie along the cube edges. The effects of the infrared
splitting are then made apparent for spinels through the Lyddans-Sachs-
Teller relation (equations (2.68)) which relates the ratio of the
longitudinal and transverse modes to that of the high and low frequency
dielsctric constants. Altematively the longitudinal and transverse
modes may be obtained from zeros and poles, respectively, of the
frequency response of the dielectric constant (Kurosawa, 1961). In
practice these frequencies are obtained by analysis of the reflectance
spectra of single crystals either by a Kramers-Kronig method (Landau
and Lifshitz 1960b) or using an oscillator model (Barker 1964). The
former method is somewhat more objective as it only depends on causality
and linearity of the dielectric susceptibility to the electric field,
the latter model may always be improved by introducing further para-
meters.

Although true absorption spectra are the result of an incident
electromagnetic wave coupling with the transverse infrared modes the
longitudinal-transverse mode splitting also affects powder infrared
cata. Preudhomme and Tarte (1970c) note that the absorption spectra
are the effect of both reflection and true absorption phenomena with
the possibilities of either the longitudinal and transverse modes
appearing separately or as a single average band depending on particle
size and temperature. Boldish and White (1978a) comparing single

crystal and powder data for CdInaSs show that the fitted absop tion®
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band frequency from reflectance data is at greatest variance with that
of the absorption spectra for the mode with the greatest longitudinal-
transverse splitting.

Kramers-Kronig analyses have been performed for three spinels,
CdIngSs (Shimizu et al. 1975), FesO4 (Schlegel et al. 1979),
MgA220, (0'Horo et al. 1973) of which longitudinal frequencies have
only been published for MgA£204 (Grimes et al. 1978). Several cal-

culations based on the classical oscillator model have been performed,

the results summarized in table 1.3.
The elements of the apparent charge matrix Z in the product
Z.E are functions not only of the ionic charge but also polarizility
and charge exchange between bonds. For instance Szigeti (1949,1950)
by showing that values of effective charge less than unity were
required to account for the infrared spectra of alkali halides de-
monstrated the need for dynamical models to include polarizability
effects. On the other hand Zallen (1968) has shown that although a
crystal may have constituents with zero ionic charge it may still
exhibit one phonon infrared spectra from polarization effects alone
provided there are at least three atoms in the basis. The values
of the apparent charge amongst IV-VI compounds appear to be related
to charge exchange amongst the bonds (eg. Littlewood and Heine, 1979) .
However Mitra and Marshall (196)4) have shown that there is a
proportionality between the effective Szigeti charge and the fractional
increase in the infrared frequencies due to mode splitting for a
range of II-VI and III-V compounds. Although the Szigeti charge
and the apparent charge tensor are not the same quantity (see section
6.1 and Cochran 1960) thesé may be related to each other for alkali
halide structures. Boldish and White (1978b) have used this approach

to classify the ionicity of spinels by defining a mode ionicity
1(5) = {8 = vpl9) (1.6)
)
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E(O G(m)
CdCraSa(a) vy | 389.9 374.2 - - 9.79 | 7.8(b)
vp | 376.9 321.6 - -
I 0,03 0.08 - -
CdCraSes(a) vy, 291.4 281.3 - - 10.3 9.0(a)
Vi 281.1 266.2 - -
I 0.04 0.06 - -
CaCraSes(b)* | v | 292.0 281.0 | 189.0 | 76.0 [12.8 [10.2
vp | 287.0 264.,0 | 187.0 | 74.0
I 0.02 0.06 0.01 0.03
ZnCrzSeq (c) v, | 300.5 289.0 21.0 87.5 |11.0 9.0
Y 296.0 272.5 | 199.0 | 87.5
I 0.02 0.06 0.01 0
HgCraSeq(c) vy 290.0 281.0 172.0 60.0 13.2 [10.8
vp | 287.0 270.0 | 1.0 | 57.5
I 0.01 0.0L4 0.01 0.04
CdInaS, (d) vy | 339 270 172 69 - -
vp | 207 215 171 68
I 0.10 0.26 0.01 0.01
MgA£204 (e) vy 855 630 - 305 8.42(f) 2096(3)
Vp 670 485 - 305
I 0.28 0.3 ~ 0

*Using the Lyddane-Sachs-Teller relation for the top two bands and

the measured value e€(o) = 9(a) the value of 10.6 is obtained for

€(0).

a) Lee - (1971), (b) Bongers and Zanmarchi (1968), (c¢) Wakamura st al,

(1976), (d) Yamamoto et al. (1973), (e) Grimes et al. (1978),

(f) Wang and Zanzucchi (1971), (g) Vedam et al. (1975)

TABLE 1.3 - Ionicity of Spinels,
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where j labels the infrared modes. The concept of relating ionicity

to mode splittings in spinels is less apparent than in alkali

halides where only one mode occurs. From table 1.3 it can be seen

that MgA£304 is the most ionic of the spinels listed although much
less s0 than Mg0 (I = 0.79, Jasperse et al. 1966) or the alkali
halides Na®§ I = 0.6 and KBr I = 0,46 (Jones et al., 1961). In all
spinels listed the longitudinal-transverss splitting is only sig-
nificant for the two high frequency modss., The sulphides and selenides
have frequency band splittings about one sixth the size of those in
MgAl204, the only exception being CdInzSsq. Also noteworthy is the much
greater elactroniﬁ polarizability for the covalent compounds as
indicated by the high values of €(w), (Where these are unreferenced
in Table 1.3 thej are obtained from the oscillation models). It could
then be supposed that model calculations which account for the Coulomb
field but excluded polarizability would be a good approximation for

MgA2304 but of dubious value for covalent spinels.
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1.3.7 Rigid Ion Models. )

Sammis (1971) used a rigid ion model to calculate elastic con-
stants of various compounds including MgA£204. Central forces were in-
cluded together with a scale factor for the ionic charges to account
for polarizability. As the calculations were not very successful for
spinel Sammis concluded that explicit account must be taken of non-
central forces and polarizability.

In 1972, Striefler and Barsch reported calculations for
MgA2304 of the Brillouim zone centre optic frequencies, elastic
constants and their pressure derivatives and microscopic Gruneisen
parameters. Central forces together with nominal charges were used.
The short range, repulsive forces were taken to be effective between
nearest neighbours for cation-oxygen interactions and out as far as
the first group of neighbouring oxygens for the anion interactions,
The corresponding parameters were determined from the central force
equilibrium conditions, ths Eg mode frequency and the two lowest infra-
red frequencies, Overall agreement with experiment is fairly good
although notable exceptions are the Aig and highsst ng modes,

Striefler and Barsch also presented the results of an extended
model which included three body forces based on that of Basu and
Sengupta (1968) for alkali halides. The optimization of this model
was somawhat inconsistent as the central force conditions were waived
and the short range parameters of ths original model held constant.
However the additional parameter improved the fit to the elastic
constants.

Thompson (1977) extended the rigid ion model to include para-
metric charges and interactions between all the anion groups formed
when & is greater than zero (section 1.2) with non~central forces.
Calculations were performed for Fes04 and MgA£304 throughout the

Brillouin zone with emphasis on fitting the acoustic modes to the

DG



inelastic neutron scattering data. Samuelson and Steinsvoll (1974)
measured the lower energy dispersion curves for FezO4 using triple
axis and time of flight spectrometers. Thompson (1977) measured
portions of the MgA£s04acoustic curves with a rotating crystal time
of flight spasctromater.

More detailed discussion of the MgA£30, models will be made in
Chapter 6, by comparison with the models obtained in this work. Errors
were made in the calculation of the elastic constants in both rigid
ion models. Thompson classified the modes by inspection of the
eigenvectors rather than by group theory which led to some inaccuracies
at the zone centrs.

The model fit te Feg04 dispersion curves was superior to that
of MgA€204, a surprising result considering the more complex nature
of the material, it is inverse and has electron hopping conduction,
Some of the adjustable parameters however appear unlikely eg. charge
on the oxygen ion of -0.9e.

It is pertinent to note that all these authors recommend the
introduction of parameters to describe the polarizability of the

ions,



1.4 Lower Symmstry Space Group for Spinels.

Many spinels undergo phase changes to lower symmetry structures,
the olivine-spinel and ordering space group alterations have already
been mentioned (see section 1.2). Magnetite (Fes04) undergoes a phase
transition to a trigonal structure (Iizumi and Shirane, 1975) due to
coupling between charge density and phonons, The resultant cubic
lattioeinstability is associated with a soft mods.

Extremely common are transitions from cubic to tetragonal
structures as a consequence of the pressure of transition ions with
orbitally degenerate ground states eg Cu®*,Mn®* (Dunitz and Orgel,

1957&). The Jahn-Teller effect produces local distortions to remove
the degeneracy which order with reduction of temperature to produce a
long range symmetry reduction (Finch,Sinha and Sinha, 1957). Although
it is claimed that a Raman mode softening is associated (Siratori
et al. 1965) no theoretical justification has been put forward, nor
have the Raman spectra been measured through the phase transition,
However, Siratori (1967) has observed softening of the lowest infra-
red mode for NiCrz04 and Fe V,04, the latter accompanied by some broaden-
ing attributed to phonon relaxation. Kino et al. (1972) have observed
a markad decrease in the ultrasonic velocity of the transverse mode
in the [110] direction with velocity proportional to cii-c1z2. This
was interpreted as a soft mode due coupling between electronic ordering
and macroscopic strains, Similar effects have been seen in Fes04
(Moran and Luthi, 1969).

Any theoretical interpretation of crystal phase transitions
requires as a minimum knowledge of the space group of one of the
phases if not both. Therefore Grimes' proposal (1971,1972a) that
soms spinel compounds may be more accurately assigned to the space
group F43m, then requires examination.

The Fi3m structure may be obtained from Fd3m by allowing the
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anions forming the two tetrahedra in the basis to move outwards in
<111> directions by different extents in the two groups., Alternatively
or accompanying the above the same space group may be obtained by
small displacements of the octahedral ions in <111> directions,
alternative tetrahedra of B site ions having displacements in opposite
directions.

The coordinates for the basis positions are given in table
1.4. 'The centre of symmetry of the Fd3m structure is eliminated re-
moving the equivalence of the two tetrahedra of anions about the A
site and that of the A ions themselves. The anion positions ars con-
trolled by the xz and x3 parameters which may be exprassed as
%/e + 82, /g + 8a, the octahedral ions by X1 = ®/s + 81. The Fd3m
structure may be recoveralby setting 8z = 83, 81 = 0. The octahedral
site symmetry has now been reduced from.?h to 3m, together with the
elimination of glide planes,

The change of reference space group was originally forwarded
to explain the various physical behaviour of the series Mg(Crana;x)04
and Zn, Mg Crz04. Both Grimes and Collett (1971a) and Tarte and
Preudhomme (1963) observed increasing complexiity of infrared spectra
with x until nine bands appear in MgCrzOs. Grimes and Hilleard (1969)
discovered an accompanying increase in Debye Waller factor for the
Mg(Cr,AL)04 series in a similar fashion to that of a Jahn Teller
series. Lou and Ballentyne (1968) studying the optical fluorescence
spectra of Mg(CrxAsa_x)O4 single crystals found, above 2wif% of
Chromium, a selection rule identifying the B site symmetry as 3m, which
is incompatible with Fd3m. Electron spin measurements of Stahl-Brada
and Low, (1959) also indicate trigonal distortions orientated in <111>
directions about the octahedral sites. The evidence supﬁorts the
view that structural distortions exist in MgCrs04 and that the space

group which is compatable with these various phenomena is F43m. This

~space group both contains Cav symmetry for the octahedral ions and



Point Symmetry

3m
43m
L3m
3m
3m

Position Coordinates

Xy 9Xa 9Xd 3Xa 5X1 3K 3XL X1 ,X25X2,X1,X1;
0,0,0;

S I I
2494

Bl

Xa ,X3 X2 ;X2 ,X2,X2 3X3 ,X3 ,X23X2,X2,X3;

X3 5X3 ,Xa ;X3 yXa yX3 ;X3 ,X3 3X5 X3 X3 X3}

Atom Positions of the Basis for Spinels

in Space Group FL3m

TABLE 1.4

- BT



gives rise to seven infrared modes (White and DeAngelis, 2967).

Further plausibility arguments were employed to extend the range
of spinels more appropriately assigned to the Fl3m space group ( Grimes
1972a ,1973). Theoretical explanation of the increase of low frequency
dielectric constants of some spinel ferrites with decreasing tempera-
ture by two to four orders of magnitude (Polder, 1950) was hampered
by the impossibility of introducing the concept of permanent dipoles for
an Fd3m structure, Psaters and Standley (1958) found that the tempera-
ture and frequency dependence of the dielectric constant for magnesium
manganese ferrite displayed behaviour very similar to that of true
dielectric relaxation, An order of magnitude calculation indicated that
dipole moments produced by a charge separation of the order of 0.1%
were required to explain the high frequency dielectric constant at
20°C. Grimes (1971) considered displacements of the octahedral ions
in MgCrz04 to be responsible for the change of space group. Moreover
Grimes (1975) realised that these displacements in FZ}m produced
permanent dipole moments that were arranged in an antiferroelectric
manner,

Kino and Luthi (1971) discovered a brosd softening of the shear
mode elastic constant around 40K for ZnCrs04. Similar effects have been
observed in other materials eg. FesO4 (Moran and Luthi 1969) and
NiFs304 (Gibbons 1957) but these contain Jahn Teller ions. If this
softening is interpreted according to the selection rules of Nowick and
Heller (1965), Nowick (1968) the presence of a defect with trigonal
distortion may be infezred,

Direct evidence has been sought using electron, neutron and X-ray
diffraction, In principle the groups may be distinguished by the ob-
servation of reflexions of the type {hko} with h+k = 4n+2,h,k even
which are forbidden in an Fd3m structure. Such reflections have been

observed in electron diffraction patterns from single crystals

. MgA&,0, and MgFe;0, . Hwang et al. 1973, MnFez04 Berg et al, 1976.
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Hwang eliminated the possibility of double diffraction by choosing a
specimen with a [001] orientation. Reflections of the type h,k = 2n
are the only ones occurring in the zero layer of reciprocal space and
providing suitably thick crystals are selected it is impossible to
obtain reflexions of type h+k = 2n+2 by double diffractions Mishra
and Thomas (1977) have reported that the forbidden reflections dis-
appear at 450°C in MgA£z04 and reappear on cooling. As no micro-
structural changes were found that could result in the transition
involving two coexisting phases it was concluded that the phase
transition was of the second order.

Smith (1978) has criticised these experiments because the
possibility of rediffraction of strong reflections in the first order
layers had been discounted. Electron diffraction experiments were
performed on the mineral Mgo.ss Feo.1sA0204 to demonstrate that the
intensity of the (200) reflections ts almost wholly due to double
diffraction,

Neutron measurements have been similarly impeded by multiple
diffraction effects (Thompson and Grimes, 1977b). However careful
experiments by Samuelson (1974) and Samuelson and Steinsvoll (1975)
showed negligible intensity for the (002) reflection in FegO4s

X-ray diffraction hawever is less susceptible to these effects
as the spread of wavelength is much smaller, Also X-ray measurements
in comparison to electron diffraction data readily lend themselves
to structural analysis. Thompson (1977) pointed out that the structural
analysis by Marumo et al. (1974) of NigSiO4 could be reinterpreted in
terms of FL3m. Eight peaks had been found in a Fourier difference
synthesis map about the Ni ion lying in <111> directions. These were
attributed to the charge density asphericity around the cation.

Similar X-ray data has been analysed by Thompson (1977) from a
spherical single crystal mounted on a four circle diffractometer. In

this case 3,968 non Friedel related reflections were collected which
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could be reduced to 242 non equivalent reflections including 20 Fd3m-for-
bidden reflections. The overall residual factors were found to be
R = 2.6% for Fd3m and R = 2./¢% for Fi3u. Hamiltons R factor test showed

that the space group FTi.jm could be taken as correct with 99.50% certainty.
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1.5 Dynamical Calculations for FL3m Spinel.

Model calculations of the same nature as those for the Fd3m
structure have not been attempted with the exception of Grimes and
Collett work discussed in section 1.3.l. Grimes (1972) has made cal-
culations of the infrared absoxptibﬁ frequencies assuming them to be
due to a two phonon process.

The conservation of crystal momentum requires that the phonon
wave vectors are related by qi = + qa with the energy conservation
law simultaneously satisfied hvs + hva = hv(photon). Absorption peaks
then correspond to discontinuities in the combined density of the states
produced when the sum of the slopes of the two dispersion curvss in-
volved are zero. When the wave vectors are at the Brillouin zone
boundary the discontinuities may be analysed in terms of phonons at
critical points on the Brillouin zone surface.

Grimes noted that if the phonons involved were acoustic then the
ensrgies of these modes at the zone boundaries calculated from elastic
constants with the assumption of linear dispersion had half the
energies of the infrared bands (see table 1.5).

Taking these to be the two phonon processes responsible Grimes
made ths tacit assumption that the structure was given by a space group
such as Fi3m. Lax (1965) proved that any structure containing the
inversion symmetry operation cannot give rise to overtone states i.e,
two phonon processes involving phonons from the same branch. This has
been confirmed for the Fdlm spinel structure by the group theoretical
analysis of the multiphonon modes by Gashimzade and Rustamov(1975). It is
possible however to form combination absorption bands not only from
interactions of phonons belonging to different irreducible represen-
tations but also between phonons belonging to distinct repetitions of
ths same phonon branch,

Noting the general relationship between discontinuities of the

density of states curve and the intersection of phonon dispersion curves
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Aston University

llustration removed for copyright restrictions

Correlation of Infrared and Phonon Energies
in MpA£z0, (after Grimes (1972b)).

TABLE 1.5
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with the zone boundary Grimes found an empirical relationship for the
specific heat capacity as a function of the inf'rared frequencies and
corresponding density of states (fig.l.6)
- =(8) (8 B

where vi~vs are the infrared frequencies in wave numbers in order of
descending magnitude, E and D are Einstein and Debye functions
respectively.

This formula fits experimental data within experimental un-
certainty and also was adequate for the sensible estimation of the

lattice contribution of various ferrites (Grimes 1974).
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1.6 Outline of Present Work,

Despite the extensive range of infrared spectra, increasing
quantity of Raman data and large number of elastic constant measure-
ments available for spinels very little attempt has been made to con-
sider these measurements as aspects of a single vibrational spectrum
of a particular material. Dynamical models for covalent spinels have
been restricted to the calculation of Brillouin zone centre frequencies
without extension to calculation of other quantities such as macro-
scopic tensors. Partly this is due to lack of experimental data,
measurements of selenium and sulphide spinels generally post dating
those on the more ionic oxide spinels.

The situation is somewhat better for MgA€z0,4 and FegO4 where
the infrared and Raman spectra, elastic constants and specific heat
capacity have been measured, including the longitudinal mode frequencies
of the infrared band for MgA€304. These compounds are the only spinels
for which dispersion curves have been extensively measured (Watanabe
and Brockhouse 1962, Samuelson and Steinsvoll 1974 on Fes0O4 and Thompson
and Grimes 1977c on MgA€204).

These ionic materials require models which take explicit account
of the long range Coulomb force. Rigid ion models have been proposed
by Striefler and Barsch (1972) and Thompson (1977) but it is the
opinion of all these authors that improvements are expected by the
inclusion of polarizability terms.

In Chapter 2 the background theory to the various models is
presented for which this author takes no credit, Chapter 3 is con-
cemed with the group theoretical analysis of the vibrational modes
necessary for ths identification of the various branches of the dis-
persion curves for a complex material. Also derived are sof't modes
for second order phase transitions to near cubic tetragonal structures
together with the identification of the irreducible representation
associated with the Fd3m-F43m phase transition. Chapter 4 presents
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some new measurements of the low energy dispersion curves for MgA€z;04
obtained from inelastic neutron scattering. Finally two rigid ion and
shell models for MgA€304 are described in Chapter 5. Chapter 6 contains

discussion and conclusions drawn from the work presented.



CHAPTER 2

LATTICE DYNAMICS THEORY.




2.1 Bom-von Karman Theory.

The Born-von Karman formalism (Borm & Huang, 1954) is based on
the assumptions of the existence of a crystal potentiﬁl function which
describes the binding of the atoms and the adiabatic approximation,

The latter requires that the electrons instantaneously follow the
nuclear motions. These continuous adjustments occur if ths fre-
quencies of the nuclear motions are much smaller than those of the
electronic transition frequencies. The approximation is therefore valid
for materials with a large band gap. The crystal is considersd as per-
fect, infinite in extent and stress free, Also it is supposed the
crystal is at OK and zero point effects may be ignored., The tempera-
ture conditions ensure that the equilibrium configuration of the crystal
corresponds to a minimisation of .the potential energy when the previous
assumptions are imposed,

The equilibrium position of the xth nucleus in the 8th cell is
given by

r(¢,k) = r(€) + r(k) (2.1)
where h

(€ = Cings Losar Lany | (2.2)
RK=1,2 .son, n being the number of atoms in the primitive unit cell,
£4,82,¢3 are integers and aj,ap,az are the basis vectors of the crystal
lattice.

For small displacements u(£,«) of the ions from their equilibrium

positions the crystal potential may be expressed in a Taylor expan-

sion
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Q - @O + @1 + Qa + ece (2.3)

where
w= ) (mlm) s (2.4)
lka °
w= ) ) (& ,C)auﬁ(,,.,c.)) u, (e k)ug(e) (2.5)
Lra L'k'B °

The derivatives are evaluated at the equilibrium positions of the atoms.
This expansion is valid for most solids with the exception of helium
where the root mean square displacement is %» of the lattice constant.

The & term is a potential reference level and may be scaled to
zero, The first order termm &, = O since the crystal is considered to
be in equilibrium with the atoms at their rest positions r(%k). If
the potential had been expanded with respect to displacements from
rest positions which were not the equilibrium positions the @; temm
would not necessarily be zero., This is important in ths study of the
temperature - dependence of the structure of crystals in which the
atom positions are not determined by symmetry alone (Leibfried and
Ludwig 1961) and the effects of externally imposed stresses and
strains on crystal properties (Ganesan et al. 1970),

In the harmonic approximation the series is cut off after the
$2 term as higher order terms are considered small in comparison
to $; and neglected. The crystal potential is now completely described
by the second order differential term of the series expansion, Trun-
cation af'ter the second order term means that in this formalism crystals
would have elastic constants which are temperature and pressure
independent, zero thermal expansion and zerc thermal conductivity

(Peierls 1955),

The a component of the force on atom (&k) is
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_ 2%
Fa(ex) = - EE;(Z:;) (2.6)
and so the equation of motion for this atom of mass m, for a dis-

placement in the a direction is given by

n, (60 = - Z‘ RCRDD WD) (2.7)
L'k'p

where

¢@5(&K’8'K') = aua?gx)auﬁ(&'x')> (2.8)

The equation of motion is similar in form to Hooke's Law governing the
small amplitude extension of a spring.

Ths quantities ¢qﬁ act as force constants giving the negative
of the force in the direction a on atom (£k) due to a small unit dis-
placement of atom (€'«') in the f direction.

Symmetry properties of the crystal lattice and invariance con~
ditions impose restrictions on the indices in ¢qﬁ's which 1imit the
number of actually independent force constants. Newton's third law
requires

qbaﬂ(&K,&'K') = Sbﬂa(&"":‘e") (2.9)
Translational periodicity of the lattice requires physical quantities
such as potential to be invariant after a lattice translation.

Thus ¢hﬁ(&x,&'x') depends only on the relative cell indices ¢-£' and
not on € and &' independently.

As the et force on an atom is zero after a uniform trans-
lation of ths entire crystal the potential function must also be in-

variant against any arbitrary translation. Consider the expansion

6116?61:) = ¢a(x) + Z%ﬁ(&x,&'fc')uﬁ(&'x') (2.10)

Lrk'p

If all the nuclei are displaced by the same arbitrary vector

i 4G
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i ad -
uﬁ(&'x') = ¢, and since EE;TZE) remains unchanged we have

B
Zf“ﬁ(“'w) =0 (2.12)

Therefore the terms (€x,2k) is not considered as a second order
of

differential term but is defined by thes summation
1
8,5tk 26) = - Z MORTD (2.12)
AN

where the prime on the summation indicates that terms £'k' = £k
are excluded. The self force constant is the negative sum of force
constants describing the forces acting on a particular atom due to
all other atoms,
Because of the periodicity of the lattice plane wave solutions

for ua(tx) in equation (2.7) may be assumed

u,(ex) = 8,750 (ka)owp (1a.x(ek)-10(a)t) (2.13)
where q is the wave vector of the travelling wave of circular frequency

w(q). Substitution in equation (2.7) leads to

PR 6D =) D gkt ,a)05(k") (2.14)
xiﬁl’

or in matrix notation
w? = [DIU (2.15)

where the elements of the dynamical matrix are given by

Dqg(xx',q)=(mxmx,)_% Z¢aﬁ(&fc,6'x')exp(iqr(&'x',&x)) (2.16)
¢ :
with
r(etkt e) = x(e'k?) = 2(2k) (2.17)

The infinite number of simultaneous equations in (2.7) have now been
reduced to a set of 3n equations where n is the number of atoms in

"the primitive unit cell., The condition for solubility is
& :
'[D] = sqﬁaxk"'= 0 (2.18)
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The 3n solutions are tha eigenvalues wa(qj), for each value of which
there are a set of valuss for the displacements Ua(xq,j). The eigen-
vectors of [D], €(kg,j) describe the displacement patterm in the mode
of wavevector g, branch j (j = 1,2 ... 3n).

As a direct consequence of Newton's third law (2.9)

D:ﬁ (kk'q) = qﬁd(x'x-q) (2.19)
where the asterisk denotes complex conjugation, Thus the dynamical
matrix is Hermitian and therefore has real eigenvalues w®. In order
that the crystal is stable the w(qj) must also be real since from
(2.13) it is seen that the vibration amplitudes will otherwise increase
exponentially along the positive or negative direction of the time
axis, The condition for this is that the principal minors of the
dynamical matrix should be positive.

The appearance of three of the modes which tend to zero fre-
quency linearly as q tends to zero is due to the translational in-
variance condition. These modes are the acoustic modes. The remain-
ing 3n-3 modes which tend to a finite limit at infinite wavelengths

(@ = 27/A) are called ths optic modes,

2.2 Quantum Treatment.

A quantum mechanical approach yields essentially the same re-
sults as the above classical method but is useful for connecting
lattice dynamics with neutron scattering results. This outline
follows Ziman, 1960 and Venkateraman et al., 1974.

The Hamiltonian is expressed in terms of displacements u(£«)

and momentum p(£«x)

H = EE: paaéix) + zz: u(ex)¢qﬁ(8x6'xl)u(6'ml) (2.20)
Lra Lxl'lk'of

This is transformed to a more convenient form using

- A =



(k) = @ MF ) a(e)exp(iax(ed) (2.21)
£
P (kq) = (me)“% Z?a(w)exp(f-iqr(é,x)) : (2.22)
£
P(ai)eglka) = ) Dygleta) ep(k'a) (2.23)
K'B

which, when substituted, leads to

Hod ) PR () ) Qi) (2.2

gKa qkK'of
Now defining
Q(qd) = Z Qa(»'fq)e; (xq3) (2.25)
P(qj) = ZPa(xq) e (g (2.26)
Ko

we may obtain

H=3 Z [p-'@s)x»cqa)w*(qa)e*cqj)q(qa)] (2.27)

qJ
Thus we have used (2.23) regardless of the problem being quantum

mechanical. The quantity Q(qj) is the normal coordinate and w(qj)
the normal mode frequencies. In the quantum approach u,p,Q and P
are all regarded as operators.

The form of the Hamiltonian (2.27) is that of the sum of the
Hamiltonians of 3nN harmonic oscillators.

Introducing new operatofs a(qj) and a*(-qj) by (Maradudin

et al. 1971) ,
a) = (zatgy)) (¢ (a9)+a’ (-a) (2.28)
P(q3) = i(%ﬂﬂf(a(qj)-a*(-qw) (2.29)
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Then
. z Bolad) (4 (q5)a* (a3)+a* (a3)a(ai)) (2.30)

QJ

and E = Z nw(qi) (a(ad)+L) (2.31)

ad
and in terms of the normal mode coordinate the displacement in mode

(qj) is written

30000 )E ) o (ratda(ag)em (ia.x(e) (2.32)

qJ
The annihilation a(qj) and creation a*(qj) operators follow the

standard relationships
a*(qJ) In(ad)>

a(qi) [n(qd)>

(n(a3)+1)Eln(qs)+1> (2.33)
(n(a3))Z]a(as)-1> (2.34)

@ (ad)>p= (exp(“—ﬁg-;ﬂ) = 1)? (2.35)

whare <D>T is the thermodynamic average of operator O, This formalism

[}

<a* (a3)a(a3)>g

is useful in describing the deexcitation and excitation of oseillatars
by external sources such as thermal neutrons.

The quantum treatment permits two equivalent interpretations.
Either the crystal is a set of JnN distinguishable oscillators each
being in various states labelled by n(gj) = 0,1, ... and
E(qd) = [n(qj)+%]ﬁwj(q). Alternatively the crystal may be described
as a set of indistinguishable particles (phonons) labelled by quantum

numbers (q,j), the number in any state being given by n(qj).

2.3 Rigid Ion Model.

In the previous sections the explicit form of the potential
has not been considered, Some numerical calculations have been under-
taken in which the force constants ¢hﬁ are treated as disposable para-

meters varied to fit the available experimental data. This approach
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is most commonly found in calculations for covalent crystals such as
Germanium (Herman, 1959). The situation for metals is more satisfactory
where pseudopotentials are employed (Harrison 1966)., Cowley (1962b)
has shown that the form of the equations of motion from a first order
perturbation quantum mechanical theory (based on work by Mashkevich,
1961) is equivalent to those obtained by a phenomenological approach
for ionic and covalent crystals. However it is generally impossible to
obtain the matrix elements required from first principles. Any form of
potential assumed for ionic crystals is therefore likely to be an
oversimplification,

In ionic crystals the potential energy may be considered as
arising from two sources (i) the long range Coulomb potential, the form
of which is well known, tending to collapse the crystal and (ii) a short
range overlap potential of nearby ions tending to explode the crystal.

The Rigid Ion model of Kellermann (1940) is the most simple model
to use this kind of potential. The ions are considered as rigid and
unpolarizable. The Coulomb potential is then considered only to act be-
tween point charges and may be calculated to any desired degree of
accuracy. The short range interactions may be described by functional
‘forms of the potential such as bexp(-r/p) or br P with b and p deter-
mined by comparison with experiment or used as disposabie parameters.,

It is assumed the two contributions to the potential are indepen-
dent and separable allowing the total potential to be written as

2 = &+ & (2.36)

where C and R represent the Coulomb and short range contributions re=-

spectively. Similarly for the dynamical matrix

c R
Do,ﬁ(m"aq} = D@(“":Q) + Daﬁ(x’":Q) (2-37)
The Coulomb contribution can be written in terms of the dimensionless
coefficients Cuﬁ(xx'q) introduced by Kellermann (1940) which only

depend on the crystal structure
—m-



D[;ﬁ(xx'q)z(mxmw)"% -:-:ZKZK,Caﬁ(xx'q)—SKK,% m_x. szncaﬁ(lm",qﬂ))
K" (2.38)

where ch is the change on ion k per electron and v is the volume

of the pimitive unit cell. The final term in (2.38) arises from the

translational invariance of the lattice. The Coulomb force constants

are given by

i 1
bop(tirt'e') = 2,2, ma(ﬁx)mﬂ(z-x-) TExn-rleny| (-39

with

Q) ==\ 2 exp(iglr(¢'k')-r(2x) 1)
Ca‘e(K‘C Q) = - Z ma(tx)auﬂ(&'x') x?r(i'g')..;p(.&g)' (2e1|0)
’x

The short range contribution may be reduced to a similar dimensionless

matrix Raﬂ(qmc') using two parameters A and B where

A=§:§; '-‘,;f.wb(lrl)) ) B = ( ) (2.22)
=

where A is evaluated parallel to the line joining the ions and B per-

pendicular. Thus

SACIOENCEINRE ML (2.42)

where
1]r.r :
- %|Za’B (a-B) + & B (2.43)
[?ﬁ B
with indices (&x&'k') suppressed

R g(ke') = Z #glexeriYomp (ialr(eter)-x(6)]) (2.4)

In matrix notation the dynamical matrix may be written as

D= %i [m‘%] [zczm] [M"‘ﬁ] (2.45)

a

where D is Hermitian of order ’n,Z and M are diagonal containing the
ionic charges and the square roots of the masses respectively., The
results of this section apply for general wave vectors greater than

q =0, but not at ¢ = 0 itself, becaise of the problem of the divergence



of the Coulomb series in the limit of infinite wavelengths. The com-
parison of macrosccpic quantities with the theory in this region and
the mathematical method used to overcome this diffiailty is discussed
in section 2.5.

One macroscopic quantity which may be evaluated directly for
the Rigid Ion model is the high frequency dielectric constant €(w). The
polarization of a crystal may be approximated by the polarizabilities @

of the ions with the local electric fields Ei

P = iZ‘,.NiaiEi (2.46)
and with the susceptibility given by X = P/E

€(e) = 1+hmx (2.47)
Therefore if the ions are unpolarizable (ai = 0) the dielectric con-

stant has a value of unity.

2.4 Shell Modsl,

To overcome the limitations of the Rigid Ion model with respect
to the high frequency dielectric constant, various models which take
account of polarizability have been developed. The first, by Lyddane
and Herzfeld (1938), assigned an electronic polarizability «. to each
ion and included the induced dipoles in the equations of motion, Using
the then available values of @ the model was unstable., It wassparent
that another polarization mechanism, believed due to the short range
overlap potential must also be included. Dick and Overhauser (1958)
suggested that each atom could be considered to consist of a non
polarizable core linked by a harmonic spring to a spherical shell re-
presenting the outer electrons. The overlap interaction was found to
have the form bexp(-r/p) where r is the intershell distance rather
than the internuclear separation. In general the effect of this inter-
action is to reduce the electronic polarization induced by the electric
field., Dick and Overhauser also suggest a further polarization mechanism.
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Due to Pauli's exclusion principle the electron density in the overlap
region is reduced and may be represented by a point "exchange charge".
This is then compensated by an adjustment of the shell charges, This
model was developed by Cochran and co-workers (Cochran 1959, Woods
et al. 1960) for ionic crystals. The exchange charge mechanism was not
explicitly included but in effect was considered as contributing to the
dipole distortion. ©Short range core-core and core-shell interactions
were introduced. Subsequently several further modifications have been
introduced such as the breathing shell model (Shroder 1966), the in-
corporation of three body forces (Basu and Sengupta, 1968) and the
deformable shell model (Hardy 1962).

The model used in this study is based on that for sodium chloride
with only the anions polarizable (Woods et al. 1960).

For an atom k¥ the ionic charge Zx may be expressed as the sum
of shell charge Yk and core charge XK. Each core is linked to its
shell by a force constant Kaﬁ(x) which is not assumed to be isotropic.

The other force constants are denoted by

:; (ek,e'xt) = (az 1(-6x)d.u NI AT -)) (2.48)

where i,J = c,s where ¢ denotes core and s denotes shell, ¢}J(6x,&'x')

denotes the coupling of i of atom (Zk) with j of (£€'k') with
ij ;
¢ (ek,e'k') = 0 for i £ ; (2.49)
B

as this is already denoted by Kaﬂ(x). The short range forces are in-
dicated in figure (2.1). The long range Coulomb forces are described
by Kellermann's coefficients (equation (2.40)). Newton's third law is
taken into account by having the force constants symmetric in the sets
of indices (iék), (je'k').

With the definitions for (€x) # (£'k')
¢AA ~ ¢cc " ¢cs " ¢SS )

¢§D ¢FS . ¢SS
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¢DA - ¢SC - ¢SS

¢PD = ¢§S

the potential in the harmonic approximation is now given by

& =1 Z Z {gszg(&x,&'x')ua(&x)uﬁ(&'x')+¢g'g(&x,&'fc')ua(£m)w(&'x')

Lkattk'p

- qﬁnqg (&x,&'x')wa(&x)uﬂ(&'Jc')+q5Dal]; (&x,c'x')wa(&x)wﬂ(s'ﬁc')}’

+ 5 z Kaﬁ(x)wa(&x)wﬂ(zx) (2.51)
Lkaf —

where A indicates atoms and D induced dipoles.
To maintain the adiabatic approximation the mass of the shells

is assumed to be zero. The equations of motion then become

e _ - a@
mK ua(sx) - ala Lx (2 52)
5 = 2%
- av.aitxj

Using wave solutions

ua(&x) = m;% Ua(xq)exp(iqr(éfc) - iw(q)t)
1 (2.53)
w (ex) =m 2 W (ka)exp(iqr(¢,x)-iv(q)t)

and the following definitions (a) for the short ‘range parts of the

potentials

n;gwq) . Z @gﬁ%wmexpciqcrcm-rcm->
&l

i,J = A,D

Raﬁ(xx'q) = Dﬁg(xx'q)

1

T a(ki'a) = Doglic'a) (2.54)

&ﬁ(m'q)

Dﬂg(;cx'q) + SKK,qu(x)
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(b) for the Coulomb part;

[zcz] = [0**°]
[zeY] = [0**°] (2.55)
[vcz] = [pP%C)
[rcr] = [p°°]
the equations of motion can be rewritten in matrix form as
w*(q)U = [M'%][R+zcz][li"1f]U + [M-%] [T+ZCYL[M-1E]W
0=[7* 4+ vcz]u + [R+ YOYIW (2.56)

This is, eliminating W

W?(QU = [M_%]{[RJCZ.'! - [r+zcy][B+v0oy] %[ E*m:z]}[m‘%]u (2.57)
The final term in the braces is the corre&tion to ths Rigid Ion modsl
for polarizability. This equation may be furthsr simplified using
approximations introduced by Cowley et al. (1963). To represent all

the short range forces as interacting through the shells it is assumed
that T = R for all q and A= ReK. In particularT = R for q = O removes
the overdetermination involved in specifying the polarizability in

terms of the shell charge Y together with the relative core-shell dis-
placement w. This approximation has also been successfully used for

the relatively complex material, SrTi0s (Cowley, 1964).

2.5 Macroscooic Quantities,

In the long wavelength limit the equations and quantities of
the dynamical theory must be directly related to those of ths marco-
scopic treatment, For ionic crystals some ma thematical difficulties
are incurred due to the long range nature of the Coulomb interaction,
The electrical and mechanical effects are impossible to separate because
the actual ionic motions set up an electric field. Therefore the stress
(Saﬁ) tensox is not related to the strain @iqﬁ) tensor through Hooke's

law but instead is given by

- B =



Say = Z Cay,BA oA 'z °g,ay 58 (2.56)
By B '

and also the dielectric polarization “Pa’ is given by

P, = z °y By sﬁy + Zaqg Eﬁ (2.59)
By B

where c,e,a and E are the elastic,.piezoelectric, dielectric suscept-
ability tensors and the macroscopic electric. field respsctively. The
macroscopic equation of motion for a.plane wave travelling through the

medium is then

paa, = Z( any:ﬁh qz\q?) g+ 1 Z( Zeﬁ,ayqy By (2.60)

B YA B y

A further complication is the irregularity of the Coulomb contribution
in the long wavelength 1imit the magnitude of which depends on the
direction from which the origin of reciprocal space is approached,
This is overcome by recognising that the irregular part is related to
the macroscopic electric field of the crystal and may be separated out
from the dynamical equations of motion (Huang, 1949). TFor the shell
modsl the equations may be rewritten as

AU

AU + BW - ZE (2.61)
0= CU+ DW - YE

where, for example, matrix A corresponds to [R+ZCZ] of (2,56) after

separation of the macroscopic electric field E. A perturbation tech-

nique, "the method of long waves" (Bormn and Huang, 1954), can then be

used to obtain expressions for 1-'.ha macroscopic tensors in terms of the

dynamical theory quantities. The matrices, after separation of the

electric field, are expanded in the fomrm

- B =



G(eq) = G(q=0) + ie ZGg,"qy . Z SN (2.62)
Y ' YA
where € is the expansion parameter and A;") is the first derivative
of A with respect to qy etc.
Cowley (1962c) has performed these calculations for the shell
modsl., Only the main results will be given here and the effects of

polarization indicated. The expression for the elastic constant is

c A = (a8, yAl +[ﬁY:M] = [ﬁ)‘-:“‘/l + (ay,BA) (2.63)
oB,Y.
where the square brackets correspond to contributions from external

strain and the round brackets from intemal strain. The square brackst

term is given by

_ -1 (2) '
[of, 2] = (87°v,) Bogya (KK'5a=0) (2.64)
Kie!
and surprisingly does not contain any contribution from polarization.
The round bracket term is given by the much more complex expression
(ay,pA) = =(4rPv)"2) [ B pfo)=2 gla), glaplod=2c2)] (5 g5)
a’ y _ A y . A o8
Ki!
where the (mc‘,q:O) indices have been suppressed. L{9=% i35 the pssudo-
inverse of the dynamical matrix formed by deleting thre-ae TOWS and
colums, inverting the resultant (3n-3) x (3n~-3) matrix, and replacing
ths three rows and columns with all elements set at zero. This device

must be employed because the translational invariance condition makes

the actual dynamical matrix singular. The matrix F; is definéd by

F(2) _ pC2) _ glo)plo)=1,(1) (2.66)
Y Yy . . = ¥

For the Rigid Ion model equation (2.65) reduces as the second term of
the right hand side is zero, the correction terms in the dynamical
matrix are also zero and F(y") = Ag/").

In crystals for which ewsry ion is at a centre of symmetry
= 58



equation (2.63) is simplified as all round bracket terms are then zero.

The high frequency dielectric tensor is given by

eqﬁ(w) + l+hm ZE:Y[JB(KK',q;O)+Y Clkx'yg=0)Y T %Y (2.67)
KK -
where C refers to the matrix of Kellermann coefficisnts., To reduce to
the Rigid Ion model set ¥ =0 and K = « in the definition of A
(equation 2.54) and ths dielectric constant becomes unity in agreement
with previous remarks.
The low frequency dielectric constant may be obtained from

the Lyddans-Sachs-Teller (1941) relation as generalised by Cochran

and Cowley (1962). For cubic materials this becomes

eaa(o) =1 mL(q;O) (2.68)
o o gy

where L and T refer to modes that have dipole moments lying either along
the direction of propagation (longitudinal) or perpendicular to it
(transverse modes). It is emphasised that, even in a cubic material,
these modes may involve ionic motions in neither of these directions
provided that these motions do not produce a non zero dipolc moment.
Finally it is noted that in general it is impossible to obtain
an explicit expression for the electronic polarizability of the ions,
Only in the case of diagonally cubic crystals (i.e. crystals in which
each ion is in an environment of at least tetrahedral symmetry) can the
electronic contribution to the polarization of the crystal be written
in terms of a product af,a the ion polarizability and £ the local
electric field at the ion site. In all other crystals ths local field

varies over the ion sites,
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CHAPTER 3.

THE APPLICATION OF GROUP THEORETICAL ANALYSIS.




3,1 Availability of Group Theoretical Techniques,

The devalopment of group theorefical techniques has allowed the
non specialist to sensibly interpret models and measurements of complex
crystals which may be of less interest to lattice dynamics experts. As
each atom has three degrees of freedom and because of crytal anisotropy
the phonon dispersion system even for a fairly simple structure may be
quite complex. In such circumstances the application of group theory
allows any simplification which may be involved because of the symmetry
of the problem to be fully exploited before calculations are performed.
The phonon spectrum may then be clarified by classification of the
different branches according to their symmetry, as group theory predicts
the essential degeneracies of the normal modss and gives information on
the motions involved, Similarly the dynamical matrix may be simplified
and the independent elements numbered and identified, Various selection
rules may be obtained, for example, two phonon infrared absorption and
possible second order structural phase transitions.

It must be emphasized, however, that despite the great advantages
to be gained by this application no quantitative information may be
obtained, TFor instance a mode may be predicted to be Raman active but
no explicit indication is given of the expected intensity or frequency.

Maradudin and Vosko (1968) produced an influential paper con-
taining a complete theory for the analysis of normal mode vibrations-
which has been subssquently extended by various authors; Warren (1968),
Venkateraman and Sahni (1970) and Warren (1974). This theory was at
first applied-to simple structures such as diamond. Extension to more
complex structures involves the manipulation of large matrices, a
tedious process prone to error (see Stirling, 1972b on Cowley's 196)
symmetry coordinates for perovskite). Worlton and Warren (1972) produced
a computer program to perform these manipulations based on the
Maradudin and Vosko treatment of the theory. This program has undergone

several modifications and an updated version produced (Warren and
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Worlton 1979, 1976) which includes exteimsions for time reversal in-
variance and the treatment of molecular crystals., This program has
been used to perform the complete analysis of the symmetry of the

lattice vibrations of several crystals (Warren and Worlton, 1973).

3,2 Outline of the Maradudin and Vosko Formalism,

The space group of a crystal is that collection of symmetry
operations which leave the spatial configuration of the crystal
structure invariant. These operations consist of rotations,roto
inversions, translations and their combinations. The effect of a space

group operation on an atom position is given by

{s|v(s)+x(2') }x(ex) = Sx(ex)+ V(s) + x(&') (3.1)
= x(L K)
where [S|V(S)+x(£')} is the symbol denoting the particular space group
operation which consists of a rotation or rotoinversion represented
by a 3 x 3 orthogonal matrix S, a fractional translation V(S) (i.e. one
smaller than any primitive translation of the crystal) associated with
the operation S and a translation equivalent to the lattice vector x(&!).
If an origin of coordinates can be found for which the fractional trans-
lations associated with all the rotationary operations are all zero the
crystal has the symmetry of one of the seventy three symmorphic space
groups. Otherwise the space group is described as nonsymmorphic,
The effect of a space group operation on a displacement vector is
given by
ua'(I.K) = Saﬂuﬁ(z;c) (3:2)

Thus the displacement at the (€k) site is rotated and transferred to
the (LK) site. Similarly the invariance of the crystal potential under
space group operations leads to the transformation law for the atomic
force contents:

b = 5, (k€Y 5 (3.3)

uv



The central problem however is concerned with the Fourier transformed

dynamical matrix and its eigenvectors:

w*(qd)e(ai) = D(a)e(ad) (3.4)
Maradudin and Vosko considered the dynamical matrix in a form different
to that in equation (2.16) which was periodic in q and related to
(2.16) vy |
nﬁ; (kx',q) = exp(=(ar(£'e*,2k))D g(kK",4q) (3.5)

However in the following discussion the form of the dynamical matrix
in (2.16) will be assumed and the equatiors modified accordingly. This
form of ths dynam$cal matrix is not periodic with g, nor are the eigen-
vactors, Thus
D(g- 6) = exp[iG.(x(x) - x(x'))ID(q) (3.6a)
e(q-G,J)= exp[iG.x(«)]e(qJ) (3.6b)
where G is a reciprocal lattice translation vector, The effect of a
space group operation on a normal mode (2.13) propagating with wave
vector q is to produce a normal mode of wave vector Sq. The frequency
of the normal mode is invariant as the relative atom positions are un-
changeds:
w?(qd) =0*(8q,3) (3.7)
Equation (3.7) stridly only applies if the mode is not degensrate,
However, if more than one mode does have the same eigenfrequency the
labelling j=j' is convenient. A similar argumnt is used to obtain the
effect of a space group operation on the eigenvectors. Thus
e(Sq,3) = Mg, {V(5)+x(e!)}e(ai) (3.8)
where I'is a 3n x 3n matrix. If attention is restricted to those
elements of the space group, the rotational part of which leave the
wave vector invariant or send it into a wave vector equivalent by a
reciprocal lattice translation
8q = q = G(S) (3.9)
the matrices T commute with the dynamical matrix. This subgroup of
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the space group of the crystal is known as the group of the wave vector,
Maradudin and Vosko showed that the matrices I then provide a repre-
sentation of the space group of the wave vector but did not use them
for the discussion of the normal mode.symmetry properties. The sub-
group containing only the rotational elements of the space group which
satisfy (3.9), known as the point group 'of the wave vector, was then
considered. The matrices T{gS) given by
T(aS) = exp[iq(V(s)+x(€))Ix(q, {8|V(S)+x(¢)}) (3.10)
Taﬂ(fcﬁc',q,s) = SqGB(K,F(K‘,5))exp[iG.(x(;c)-V(S)I (3.11)
are unitary and provide a multiplier representation for the point group
of the wave vector
7(q,5;)T(a §5) = Aa,R;,R5)T(,R;R) (3.12)
where the multiplisr A is given by
Ma,R, 5R,) = exp[i6(q,8).V(s,) ] (3.13)
The argumnts of the exponentials in (3.11) and (3.13) are zero for
symmorphic space groups and the interior of the Brillouin zone for
nonsymworphic space groups. The Kronecksr delta in (3.11) shows that
the matrix T only has nonzero values for atoms % with which the
the atoms k' are brought into coincidence by the rotation S. As with
the matrices T for the space group of the wave vector, the matrices T
also commute with the dynamical matrix, Using this fact in ths eigen-
value equation (3.4) we have
D(q) {T(q,8)e(q,3)} =0*(a,J) {T(q,5)e(q,d)} (3.14)
The quantitiss {Te} are eigenvectors of the dynamical matrix with the

same eigenvalues as e(qj) and may be expressed by the linear combination
n(p')
o
T(q,8)e(q,0p) = Z 71p(08)e(a,0p") (3.15)

pl= 2
with j replaced by op where p labels the eigenvectors with eigenvalues
w?(q,0) and o labels the distinct eigenvalues., The n(p) dimensional

matrices rc'constituta an irreducible multiplier representation of the
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point group of the wave vector g with the same multipliers as T(gS).
This argument assumes that all the degeneracy is dus to symmetry pro-
perties thus preventing interaction among the eigenvalues e(qop!) of
different op' which should only occur if, accidentally,
w(q’oipi) = m(q,cﬁpj). If the eigenvectors were already known the
matrices T would be block diagonalised by a similarity transform with
e(q). To include the possibility that T(q,S) may contain anirreducible
miltiplier representation more than once the index. o is replaced by
sa where 3 labels th2 irreducible representation and a the repetition.
The eigenvectors can then be classified, for a given wave vector accord-
ing to the irreducible representation 5 by which they transform under
the operations of the point group of the wave vector, a and p label
the repetition and degeneracy of this representation.

In equation (3.15) the eigenvectors may be taken as basis vectors
for r°, However the choice is not uniqus and another set may be chosen
in terms of which the eigenvectors can be expressed as a linear com-

bination. Such a set may be obtained by the use of a projection

operator

Ppp,(q,o‘) < Eéglz rgpl(QJSJ*T(q’S) (3.16)
' S

on an arbitrary 3n dimensional vector ¢ for fixed p'

E(q,0p) = P, ,:(2,0)¢ (3.17)
where n(o) is the dimensionality of representation o and g the ordsr
of the point group of ths wave vector q.

E(q,0p) is a linear combim tion of eigenvectors e(q,o p), the co-
efficients of which are dependent on the dynamics of the problem. However
if the irreducible representation s only appears once in the decomposition
of T(g,S) the set E(q,0p), p = 1, n(s) may be taken as the eigenvectors
for the representation. The E(q,op), known as symmetry coordinates,
give thse relative motion of the atoms in the eigenvectors,

After orthonormalisation the 3n x 3n matrix E(q) will block



diagonalise the matrices T(gS) and the dynamical matrix D(q) after suit-

able rearranging of the columns., In the latter case the sequence is
such that the repetition index a varies before the degeneracy index p
for each irreducible representation s. This produces a block diagonal-
ised matrix consisting of p identical n(s)xn(s) blocks for each repre-
sentation. Ths eigenfrequencie; of ths dynamical matrix are obtained

by only diagonalising one such block for each irreducible representation.

Apart from labelling the phononspectrum the above simplification
is the most important result obtained from group theory, one which has
made the modelling of complex crystals possible. As the computer time
required for each diagonalisation is proportional to ths cube of the
order of the matrix, any reduction in the size of the matrices in-
volved results in a great economy, especially when an iterative fitting
procedure is used.

Further degeneracies can arise from the time reversal invariance
of the equations of motion, however as none are produced for the
directions of wavevector q and space group used here thess will not
be considered furthar. Accidental degeneracies resulting from the
ceassing of normal modes in the phonon spectrum are not predicted by
group theory and this gives rise to some difficulty in labelling.

Modes of different representations do not interact and may be labelled
as in fig.3.la, while modes of the same irreducible representation
which "cross" do interact. In the latter circum tance it is in general
impossible to say if two branches are touching or in fact crossing.
Usually the former point of view is taken and the modes are labelled

as in fig.3.1b.

3.3 Previous Analyses for Fd}m(og) Spinels.

A number of group theoretical analyses of the spinel structure
have already been performed for various facets of the dynamical

problem, Haas (1965) determined which of the space groups that result
e e
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from different orderings of the cations over the octahedral and tetra-
hedral sites may be obtained from Fd3m by a second order phase transition.
Gashimzade and Rustamov (1975) have presented the selection rules for
Raman and infrared activity in two and three phonon processes. Several
authors, now, have decomposed the set of matrices T(q,S) for the point
group at zero wave véctor to obtain the numbers and types of irreducible
representations present (White and DeAngelis 1967, Lutz 1969, Bruasch

and D'Ambrogio 1972, Boldish and White 1978a). The last three authors
have also published symmetry coordinates for q‘= (0,0,0). The decomposit-

ion may be obtained from the equation
1
a() =3 ) (3 =0,0) 2(s0,9) (3.18)
S

where g is the order of the point group (for 0,,8 = 48), X(q,0) the
character (sum of the diagonal alamants)af the matrices that correspond
to the elements of the point group for the irreducible rspresentation
o. x(gS) is similarly the character of T(q = 0,S). a(c) is the number
of times the irreducible representation o is contained in T(qS). The

resulting equation

x(q = 0,8) = z a(o)x(q = 0,0) (3.29)
(o
is known as a compatability relation.

In Maradudin and Vosko's treatment the point group of the wave
vector is obtained by considering only the rotational part of those
elements of the space group which leave the wave vector invariant,
in this case the point group Oh (n3m) is obtained., In a factor group
analysis the subgroup of the space group obtained by removing all
lattice translations is considered. This group is not the point group

0, but a group which is isomorphic to it (i.e. the elements have a

h

one to one correspondence to those of Oh). This difference occurs



because an origin cannot be chosen in the spinel structure such that the
fractional translations associated with the rotational elements of the
space group are all simultaneously zero. The group cannot therefore

be a point group as elements other than pure rotations are includad.
However both approaches immediately yield identical results at the
Brillouin zone centre. The characters of the irreducible represen-
tations are readily available in tables, The characters of the

T(q=0,S) are given by

x(q =0,8) =n(8)(+ 1 + 2cos[6(s)]) (3.2)
where 6(S) is the angle associated with the rotational part of the
element S, the plus and minus signs are used for rotations and roto-
inversions respectively, n(8) are the number of ions left unmoved by
S. At points on the Brillouin zons boundary equation (3.18) has to be
modified to take account of the phase factor in equation (3.11).

The nomenclature for group theoretical data is not standardised
(for review see Warren, 1968). In table 3.1 the characters of the
irreducible representations are given with common notations for ths
rotation elements and irreducible representations. In connection with
spinels the electron band system (Bouckaert et al. 1936) of labelling
the representations is used by Haas,Gashimzade and Rustamov whereas
authors studying one phonon optical activity invariably have employed
the labelling of molecular dynamics (Wilson et al. 1955). In this thesis
I shall use a hybrid nctation. The zone centre shall be labelled as
the point T but the irreducible representations shall be labelled
according to the molecular system both to facilitate comparison with
other work and to have the advantage of the letter revealing the mode
degeneracy immediately (A =1, E = 2, T = 3), For all other points
of the Brillouin zone Bouckaerts notation will be used. The
Schyoenflies and international notation for point and space groups
(Intemational Tables, 1962) will both be used, usually together unless

it is repetitious,
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The decomposition for the zone centre has already been given in
equation (1.2). The Raman and infrared active modes may be obtained by
examination of the basis vectors for this irreducible representations
(often included with the character tables). Raman activity is
associated with the polarizability tensor and therefore it may be shown
that Raman active modes must transform as a second rank, symmetric
tensor under the group operations (Loudon 1967). Thus the basis vectors
of these representations must be linear combinations of ab, with
a,b = x,y,z for example x°+y>+ z2. Inspection reveals that Aig’Eg’mag
are Raman active. Similarly infrared activity depends on the dipole
moment of a moda. As this is proportional to a vector any mode which
transforms as a component of a vector is potentially infrared active.
For Fd3m (Oﬁ) the T irreducible representation carries the whole
of the vector representation. It must be reiterated that these
selection rules only indicate potentially optically active modes, the
degree of activity depends on the dynamics of the problem. Of the five
Tiu modes that appear in the decomposition one must be discounted from
being optically active to allow the three acoustic modes to have zero
frequency at zero wave vector. Of ths remaining four threefold Tiu
modes any splitting due to the effect of the macroscopic field is not
predicted. This degeneracy removal could be predicted if infrared

activity was considered as occurring at small but finite wave vector as

no point in the Brillouin.zone has higher symmetry than the zone centre.

3,4 Symmetry Coordinates.

For present purposes Warren and Worlton's modified program (Group
2, 1974) was obtained from the Computer Physics Communications program
library, Queens University, Belfast, After adaptation for use on the
CDC 7600 computer at the University of Manchester Regional Computer
Centre, a small errorwas found in that part of the program which

produced symmetry coordipates suitable for the form of the dynamical
-m_



matrix used in this thesis, The only numerical data required are the
ion position coordinates of the basis and ths wave vectors of interest.
Generalised versions of T(q,S) and the projection operators are used
throughout to include possible consequences of time reversal degeneracy.
One effect of this is that the eigenvectors are related to the symmetry
coordinates by linear combinations with wholly real coefficients (Warzen,
1974). The space group of ths crystal and the irreducible multiplior
representations are generated internally. The character table for the
particular wave vector is printed, followed by the decomposition of the
group of the wavevector. The irreducible representations . are only

only labelled by a number and have to be identified by comparison with

a standard set of character tables.

The independent elements of the dynamical matrix are identified
and the combinations of these which form the elements of the blocks in
the transformed dynamical matrix are listed. The number of independent
elements found is often lower than that predicted from theory (Casella,
1975). This occurrence for the spinel structure is probably due to the
largs number of independent elements expected, over 130 for most wave
vectors. The program identifies the elements by inspecting a symmetry
reduced random matrix. The differences between the elements may be too
small to be distinguished. Fortunately this disparity is not important
as it is quicker and more accurate to construct dynamical matrices for
complex structures and models from general terms rather than from special
equations for particular elements, However at zero wave vector the number
of independent elements predicted (thirty three) is in agreement with
the number found. It should be emphasized that the number of non-zero
elements can be less because of the simplicity of the potential functicn
used. The independent elements of the short range and Coulomb matrices
at g =0 are.tabulated.in Appendix I in terms of the quantities defined
in Chapter 5. Also given in Appendix II are equations for the elements

of the block diagonalised dynamical matrix of the optically active
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modes for a rigid ion model. The matrix inversion in the shell equation
(2.57) would make the corresponding equations too complicated to be
worth tabulating. The equations given are accurate for all modes except
the two lowest T which are sensitive to the approximations made in
the expressions for the short range contributions,

Bearing in mind tha% the number of ion types taking part in any
normal mode vibration may ﬁot exceed the number of times the mode
appears in the decomposition of the vibrational spectrum (Montgomery,
1968) it is instructive to perform the reduction (3.18) for each of
the ion types. Inspection of the results (Table 3.2) shows that in the
interior of the Brillouin zone most modes involve all ion types, the
exceptions being Az,A:' and Az which do not involve the magnesium ion.
The decomposition at the zone centre is more informative. The infrared
modes Tau may involve all ion types but the Raman active modes
A L,E,T

18" 8" 28
and Eg modes are completely dependent on the oxygen sublattice

do not involve the aluminium ions. In particular the Azg

vibrations. The optically inactive modes Aau’Eu’Tzu’Tig’ on the other
hand have no magnesium ion components., These decompositions act as
useful checks on the symmetry coordinates and therefore the eigenvectors,
The symmetry coordinates for the Brillouin zone centre and the lines
A, 2,5 are tabulated in Appendix III, To reduce the amount of space re-
quired that part of the symmetry coordinates which are necessarily zero
are not given. As no symmetry operation can exist which interchanges
nonequivalent ions the only parts of the symmetry coordinates which
need be given are those involving one species of ion,

The Gamma point symmetry coordinates are illustratéd in fig.3.2,.
The axis may be taken towards the top of the page, the x axis to the
right, with the y axis entering the plane of the diagram obliquely.
The basis is drawn as three tetrahedra for convenience only are not

considered as independent units. One partner only is given for the

threefold representations, the others may be obtained by rotation of
-T2 =



Irreducible No.of Modes Containing| Total No.,
Representation Al Mg O0x of Modes
A:. g - - 1 1
Eg - - 1 1
T:Lg - - S 1
ng - 1 2 3
Azu 1 = A8 &
E a 1 ~ 1 2
T - 2 1 2 5
Tau i 3 - 1 2
Az 3 2 6 - 11
Az 1 - 2 3
As L 2 8 Ly
24 3 2 4 12
22 & 1 5 8
Ja 4 2 7 13
24 3 i i 5 9
A1 2 1 i 7
Ayt 1 - 2 3
A 1 - 2 3
4! 2 1 b 7
A, - 2 6 31

Tonic Sublattice Contributions to the Irreducible
Representations at the point I and along Lines
A,% and A of Brillouin Zons.

TABLE 3,2
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the vectors through ninety degrees about the axaes. Repeated -reprasent_
ations have more than one ion type involved sometimes with more than
one vector associated with the same ion typse. In the latter case the
atom may vibrate in the plane of the vectors. The even modss (denoted
by subscript g) are invariant under the action of the inversion
operator, therefore ions interchanged by inversion have oppositely
directed vectors. Throughout it must be remembered that the actual
amplitudes of vibration are determined by the force constants., The
symmetry coordinates only provide information conceming the relative
motion of the ions in a given mode. The A:Lg mode consists of motions of
the oxygen ions in <111> directions from the tetrahedral ions. In ths
Am modes these moticns for the two oxygen tetrahedra are oppositely
directed. The T1g and Tau modes may be considered as rotationary motions
of the tetrahedra about the z axis, In the former the rotations are in
the sams direction but in the latter they have opposite senses. The
infrared modes Tm have aluminiums and oxygen motions in the zy plarme
while the magnesium ions vibrate parallel to the z axis, The Raman
active Tag modes again have the magnesium ions vibrating parallel to thés
z axis but in opposite directions. The oxygen ions move in planes.
parallel to the xy directions to distort their tetrahedra. The symmetry
coordinates produced by the program for the doubly degenerate modes

Eg and Eu are complex quantities, witn the partners obtained by complex
conjugation., As the dynamical matrix at q = 0 is a real quantity and as
the irreducible representations of the point group Oh may be taken as
real this is an unnecessary complication. The effect arises from the

form of the matrices

exp(6) O _/cosf-siné
S(60) = a) S(6 . b .
(0) = (Ghept-(e)) (&) 50 5320°) (v) (3.21)
obtained by the program, Matrices of the form (3.21a) are employed
rather than the conventional choice (3.21b) the use of the matrices
of type (3.21b) is found to be equivalent to taking the real and

v



imaginary parts of a single partner for choice (3.21&) as separate
partners for that representation., This method has been used to obtain
the diagrams for the Eg and Eu representations, Es(2) and Eu(l) have
ionic motions in xy directions producing complicated twisting dis-
tortions of the tetraheda. Eu(2) and Eg(l) have ionic motions in xy
and xz directions tending to flatten the tetrahedra in planes parallel
or perpendicular to the z axis. The diagrams given here are drawn in
the manner of Verble's (1973) Raman mode illustrations, However Verble
appears to have grouped together symmstry coordinates of the Tbg
representation to form partners from suggested eigenvectors without
having explained the basis on which these groupings were chosen. The
highest frequency mode was taken to comprise only of distortions of the
oxygen tetrahedra in XY directions. The two lower frequency modes had
ion motions only in the z directions, the two frequencies being dis-
tinguished by having the magnesium ions either opposing the oxygen
tetrahedra motions or moving in the same sense. While these arguments
are plausible they are not of necessity the only arrangements that may
occur, The actual eigenvectors produced would depend on interionic
forces which are likely to vary among different spinel materials. The
normal coordinates, howeéver, apply for all Fd3m spinels, Lutz (1969)
diagrams are more complex as more ions than constitute the

basis are included. However the same criticism applies here for the
Tag and.T1u modes.

The aymmetr& coordinates for wave vectors greater than zero are
in gensral complex as the ionic motions are then no longer constrained
to be vectors in a single direction or plane and differ in phase corres-
ponding to a vibrational ellipsoid which may be non-spherical, In
general the phase is also a function of the magnitude and direction of
the wave vector. Even along high symmetry directions in the Brillouin
zone the symmetry coordinates may not be completely described as

transverse or longitudinal where the terms refer to ionic motions
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-perpendicular or parallel to the wave vector. The compatability re-
lations between the Brillouin zone centre representations and those
along the high symmetry lines A(qqq), 2(qq0) and A(q00) are given in
table 3.3. Inspection of the symmetry coordinates confirms that only
those representations compatible with T1u may have dipole'moments. In-
variably the dipoles would be aligned either perpendicularly or
parallel to the wave vector., Lven these representations may have some
symmetry coordinates with ionic motions at variance with the direction
of the dipole moment. These coordinates however do not have a net
dipole moment. The miu representations also give the acoustic modes at
small wave vectors.

In directions A only A;' and Az have purely transverse components
but it is As which carries the transverse components of the acoustic
wave, Similarly Aa is transverse but Az carries the transverse com=-
ponent of the acoustic mode. It is notable that none of these optic
transverse modes have Mg ions participating. In the 2 direction it does
not appear possible t2 classify any mode as completely transverse, The
longitudinal acoustic modes belong to the identity representations in
each case, A1,A1,2%1. Along the lines A and 2, ions which were equivalent
become distinct. In the former case ions at the corners of the tetrahedra
along the [111] direction become inequivalent to the other comers,
Similarly in the X direction with the axis along the [110] direction.
In all cases the Mg ions remain equivalent. The q = 0 data from the
program has been checked by hand., The symmetry coordinates for ths zone
interior have been verified by their ability to block diagonalise the
relevant dynamical matrix with none of the other elements exceeding
0.003 and eigenvalues in agreement with those from the diagonisation
of the full matrix to 0.01 THs. The symmetry coordinates for the zone
boundary proved to be incorrect as the block diagonalisation was in-
complete, large non block elements, both real and imaginary were found.

In practice the X point modes have been examined using the compatability

w98 =



T A A 2

Aig As Ay Ja

Eg As Dy + B3 Jo+ X
T.e Aa + Aa At o+ A S2a + 35 + 3
T.g Ay * 23 L' + g Za + Ja + g
A Ay At Ja

E, As Ayt + Aa? Ja+ 2

Pua Ay + As Ay + A Ja + 22 + 3
Tau Ay + A3 A2'+A5 Jp + Za + 3

Compatability Relations Between I Point
Representations and Those for the Lines

AyA and 2

TABLE 3.3
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relations

Xs = 21 + 23 = 4! + Az
Xa = 22 + 24 = & + 43!
X3 = 2 + 24 = &g
Yo = 3u + Z = Ay

The L point modes have been classified according to their dimensions
as the eigenvectors of the full matrix were too inaccurate to resolve

the even and odd representations,



3.5 Structural Phase Transitions from Fd3m Spinels,

In recent years it has become customary to characterise
structural phase transitions by reference to the softening of one of
the normal modes. This mode,the frequency of which decreases markedly
near the transition temperature has ionic displacements of the same
symmetry as that occurring in the crystallographic change. The
frequency softening results from a decrease in the restoring force
owing to a "freezing in" of these displacements. In Cochrans treat-
ment (1960) the structural transition is characterised by a single eigen-
vector., Landan (1937) had previously considered second order transitions
on symmetry grounds with what is now recognised as a soft mode classi-
fied by a single irreducible representation. Soft modes have been
found experimentally for both first and second order transitions. How=-
evef only Landau's theory enables these to be predicted from structural
information alone., It is also possible to predict the space group to
which the crystal may distort.

Several phase transitions are known to exist for spinels.
Those resulting from ionic ordering have been reviewed by Haas (1965).
The soft mode for electronic ordering in Feg04 was predicted by Yamada
(1974) and confirmed by Shirane et al. (1975). Most structural trans-
itions have been to the tetragonal system via long range ordering of
distortions produced by cations exhibiting the Jahn-Teller effect
(Dunitz and Orgel 1957a). Marked softening of elastic constant (Kino
et al.1972) and band splittings in the infrared spectra (Siratorliet el.
1967) have been observed for such transitions, The latter author
claims that the transition is accompanied by the softening of a Raman
active mods without providing any Jjustification. One of the diffi-
culties in assigning a soft mode here is that the space group of the
lower symmetry phase is rarely given. Mishra and Thomas (1977) have
reported a phase change from Fd3m to FL3m for magnesium aluminate,

Examination of the experimental data suggests that the phase transition



is second order, in agreement with Haas (1965) work. However, the
symmetry of a possible soft mode has not yet been suggested,

As it seems improbable that neutron beam time will be allocated
for the direct observation of soft modes at the Brillouin zone boundary
the remainder of this chapter will be devoted to transitions produced
by an irreducible representation of zero wave vector. That is only
those transitions in which the volume of the unit cell is left un-
changed will be considered. In particular only cubic and tetragonal
systems in the low symmetry phase will be investigated as data for other
structural transitions among spinels is sparse. To make general pre-
dictions it appears that Landau's theory must be used despite criticisms
(Dimmock 1963, Kadanoff et al, 1967). Therefore only possible second

order transitions will be given.

3.6 Soft Mode Prediction

3.6.1 Landau Theory

A second order transition is taken to be one in which the state
of a crystal and its related thermodynamic functions change continuously.
However derivatives of these functions, such as specific heat, change
discontinuously through the transition. Landau (Landau and Lifshitz,
19602) considers a probability distribution function p(x,y,z) of the
atom positions which is invarient under all operations of the space
group G of the high symmetry phase. This may be expanded as a linear

series of the basis functions ¢ of the irreducible representations

5 Z Zc(n,1)¢(n,1o (3.21)
n i

where n is the irreducible representation and i the number of functions
in its basis, The expansion always includes the identity represen-
tation, function po, of the space group which is invariant under all

its symmetry operations. Thus p may be rewritten as
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p = po + EE: E[:c(n,i)¢(n:i) = po = &p (3.22)
n L

The symmetry of the transition point is assumed to be that of the high
symmetry phase. Therefore, in general p has lower symmetry. Towards
the transition point the coefficients ¢ vary continuously to zero from
the low symmetry side to give the high symmetry group at the transition
point., It is assumed that the state of the body may be described by a
single scalar thermodynamic potential as a function of temperature,
pressura and a parameter which gives a measure of the difference from
the actual atomic configuration to that of the high symmetry phase,

in this case c(n,i). The thermodynamic potential may then be expanded

as a power series of c¢(n,i) and various conditions imposed to enable the

space groups to which the crystal may distort to be identified. These
conditions arise from the minimisation of the thermodynamic potential

to give stable conditions at the transition point and its invariance

under the operations of the space group. Also it is assumed that there
exists a line of phase transition points between the two phase rather
than a single point on a temperature egainst pressure graph.

Instead of Landau's original treatment which becomes rather
tedious (e.g. see Liubarskii 1960) a simplified method due to Birman
(Birman 1966, Goldrich and Birman, 1968) was applied.

The conditions on the irreducible representation responsible for
the phase transition are then given as:

1) It is impossible to construct a third order invariant from functions
which transform 1like the irreducible representation. That is the
third order symmetric product does not contain the identity repre-
sentation of the high symmetry space group.

2) The first order spatial derivatives of c¢(n,i) for this value of n
must be zero., This has the effect (Landau and Lifshitz 1960), that
the second order antisymmetric product of the representation must
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3)

L)

5)

contd.

not contain any representation by which the components of a vector
transform (in this work Tiu)‘

The irreducible representation is compatable with the identity re-
presentation of the lower symmetry space group. In particular if
the lower symmetry space group contains only half the number of
symmetry elements of the high symmetry space group a second order
phase transition is always possible,

If the same irreducible representation is compatable with two space
groups, one of which is a subgroup of the other and ité decomposition
with respect to these groups contains the identity representation

of each once only, then the transition to the group with the lower
symmetry of the two is forbidden. This condition, known as the chain
subduction criterion, like condition 1 arises from the assumption
that the phase transition does not occur at an isolated point on a
pressure temperature graph. Condition 1 is necessary in this respect
but not sufficient.

The irreducible representation corresponds to a physical field. This
conditionwas introduced by Birman (1966) as implied in most
physical arguments, Here the physical field would be the set of

normal coordinates at the given wave vector.

3,6.2 Application to Spinels with Fd3m (oh’)Symmatry.

Considering cubic and tetragonal distortions. which leave the

volume of the unit cell unchanged the relevant point groups are
Ca (J+) ’ Sa (Z) L] C4h(l|-/m) ’ D4 (14.22) 3 c‘v(m) ,D,d@-’-ﬂl) ]
D, (&/mmm) ,1(23), T, (43m), Ty (n3), 0(432), O, (m3m)

Condition 1 is applied by considering the characters of the irreducible

representations of Oh and those of their symmetric triple products

given by (Liubarskij 1960).

(XJ*(8) = 3x(5°) + $x(s?) X(5) + - 2x%(5)
- B



and decomposing. This condition leaves only the irreducible repre-

T, . Application of condition 2 is

sentations.A_,E Tiu’Tau’ 18

au’ u?
similarly performed using
x}?(8) = £x(8%) + 2x*(s)

This leads to no further simplification., It is pertinent to note that
while the symmetric square product of Tig contains the vector repre-~
sentation the antisymmetric product does not. This has caused some
difficity among other workers performing a similar analysis (see
Perel et al. 1968). As T1g is the only even representation remaining
it is the only one that may be compatable with the identity represen-
tation of point groups containing tﬁe inversion. As it is incom-
patable with D and T, these point groups are eliminated. Candidate
structures are obtained by inspection of the space group tables
(International Tables 1972). The process is simplified by remembering
that if a particular ion type is not involved in the irreducible
representation (Table 3.2) compatable with a particular point group
that ion type will have positions completely determined by symmetry
in the corresponding space group. Table 3.4 summarises the results,

Of the cubic space groups Td? and T? the latter is eliminated
by the chain subduction criterion (condition 4). Inspection of the
soft mode A, (fig.3.2) to F43m shows that the aluminium motions are
in the same directions as predicted by Grimes (19?3). However as the
oxygen motions are determined by a single symmetry coordinate an
important condition is imposed: for the transition to be second order
the ionic displacements of the two oxygen tetrahedra must be opposite
in direction and equal in extent from the Oh7 (Fd3m) positions,
As no X-ray measurements have been made just above and below the
transition temperature (450°C) it is not known if this holds. However
there is no evidence of contradictory data, Grimes (1979) gives the
8 parameters for the oxygen ions when single crystal data of MgAe304

is refined to Td? as
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Irreducible
Representation

A

2u

3u

T
g

T
au

E_,T
u’ 1

E,

Aau’Eu’T

7eg

au

A:au’Eu’T:au

Point Space
Group Group
e T," (Fi 3u)
T 72 (F23)
8
C,ny C4h(IlH_/ a)
11
C,v cw(thd)
Cq G5 (Tha)
Da D:'° (I4422)
Se s2 (1%)
i3 T
D,a D33 (T424d)

Candidate Structures for Phase Transition From Fd3m,

TABLE 3.
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d1= 0.0136(1) 82 = 0.0116(9)

but when refined to 0h7

§ = 0,0126(0) + 0.0003

The differences between 81,8z and & are equal in extent withinthe
error. It is of course expected that a least square refinement

of a '.L‘ﬂ_’l structure to 0h7 should produce a delta which is an

average of 8; and &a

Madelung constant calculations give nearly equal
values for the two structures as M(Fd3m) = 132.650,
M(F43n) = 132.835. This 0.1 percéntage difference corresponds
to only a 0,33 eV actual difference in the cohesive energy. Thus
it can be assumed that if this transition actually occurs non-

Coulomb contributions will also be important,

Application of the subduction criterion removes

C4 with respect to C‘h,c - and Dq and also S, with respect to

4
D .. The T _ transformation to C** is also eliminated as this
ad iu av

structure may not be achieved by small displacements from the

Oh7 space group.

The atom position coordinates for the remaining structures
are given in the International Tables with respect to a body centred
tetrahedron. By rotating through forty five degrees about the z axis

the resulting coordinates may be compared to the symmetry coordinates,
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Thus ths Eu—D4 transition and the possibilities of the Aau and Eu
as soft modes foz'D;E are removed. Then the only possible second order

transitions are:-

Tie Coy (Thy/2)

Ty Dzz (I%24a)
The position coordinates of the spinel ions in these space groups are
given in table 3.5 (with respect to body centred tetragonal axes).

A second order transition is only possibls ¢f the y and z oxygen para-
meters have the values 2u and u is in Oh7 at the transition point.

Of these two structures only D:E has been observed and that
arises in CuCrs04 (Prince 1957) and CuRhs0, (Bertaut et al. 1959).
Both of these compounds have a c¢/a ratio less than unity. Whereas it
is more common for tetragonal spinels to have tha Hausmannite structure
(D:E)with a ¢/a ratio greater than ons., Of the two compounds more is
known about CuCrz04. The transition occurs in the latter at 600°C
(Siratori, 1967) and at room temperature four infrared bands are
observed. The decomposition of the space group at the zone centre is
now

“T' = 6As+ 3Az+ 3B+ 8B+ 11E
where Az is optically inactive and the remaining modes all Raman active,
Howe%er the representations Bz and E also give rise to a total of
nineteen possible infrared bands.

In both the compounds given the distortion to the tetragonal
structure is believed to be due to the Jahn-Teller copper ions. However
according to Gehring and Gehring (1975) the transition will be first
order for spinels of this type. However it may be that there are
actually two competing mechanisms present, one the softening of the

Tau mode and the other the ordering of the Jahn-Teller distortions.
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Atom Positions for Spinels in Hace Groups Ir.2d and
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CHAPTER L

INELASTIC NETRON SCATTERING FORM MgA£z0,




4.1 Inelastic Neutron Scattering

4.1.1 Thermal Neutrons

Following de Broglie, the neutron wavelength energy relation-

ship
h h 9.04L ©
= - = = A in

is such that thermal neutrons with energies about 6THz have wave-
lehgths around l.BK. Thus neutrons with typical phonon energies have
wavelengths of the order of interparticle distances in solids. In
comparison other common probes such as X-rays have similar wavelengths
but much greater energies whereas infrared radiation with similar
energies has much greater wavelength . It follows that any inelastic
interaction between thermal neutrons and phonons would result in a
large fractional change in both the wavevectors and energies of the
neutrons, This relationship together with the zero charge on the neutron
allows the exploitation of experimental techniques employing thermal
neutrons as a probe, for the examination of the vibrational properties
of bulk condensed matter. To date, inelastic neutron scattering is
the only reliable method for tracing phonon dispersion curves through-
out the Brillouin zone. The neutrons magnetic moment also allows
magnetic interactions to be studied (see Jacrot and Riste 1969, for
review).

The principal sources of high fluxes of thermal neutrons are,
at present, nuclear fission reactors. The neutron velocity distri-
butions in the thermal region is almost Maxwellian with a peak wave-
length given approximately by

Mpoase = /(SigTm)? (1.2)
where m is the neutron mass and T the moderator temperature, kB and h
are the Boltzmann and Planck constants respectively. To produce peak
intensity in other regions the peak position may be displaced by heating

or cooling parts of the moderator, Long wavelength neutrons are pro-
duced by introducing a liquid deuterium source. High energy neutrons
- 90 -



are obtained using heated graphite,
In scattering experiments a narrow range of wavelengths are
selected from the Maxwellian spectrum either by Bragg reflection from

crystals or by mechanical monochromators,

L4.,1.2 Scattering Theory.

As the wavelengths of thermal neutrons are much greater than
the dimensions of the nuclei with which they interact the scattered
waves from a single nucleus are essentially spherical and can be written
as

4 == 3 ox(i X o) (4.3)
where b is a constant known as the scattering length. The total cross
section for scattering from a single fixed nucleus is given by
o = 4ab® (L4odt)

In general b may be dependent on the energy of the incident neutrons and
complex, the imaginary part corresponding to absorption. Nuclei ex~-
hibiting these characteristics - although useful for shielding are not
often employed in scattering experiments. The scattering lengths of
most nuclei are almost totally real and energy independent for incident
thermal neutrons., The spin state of the nuclsus and the particular
isotope involved, however have an important effect on the value of b,
As the present state of nuclear theory does not allow scattering lengths
to be accurately calculated they are experimentally determined quantities,

A theorstical expression for the partial differential cross
section fdr scattering from an assembly of nuclei may be obtained which
gives the number of neutrons scattering into a solid angle dQ with

final energy in the range E' to E' + dE' (Squires, 1978):-

o %z b(3)b(3")[<exp(-1Q.R(3*,0)exp(1Q.R(3,t))> x

JJ! e
x expFwt)dt (4.5)

where k,k' are the wave numbers of the incident and scattered neutrons
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respectively. E,E' the corresponding energies

Q=k-k'=6G+gq (4.6)
fu= E-E' = & (-k1?) (4e7)

G is a reciprocal lattice vector
<A> denotes the thermal average of the included operator A.
The R(j,t) are the Heisxberg operators corresponding to the positions
of the jth nucleus at time t. To obtain this expression various
assumptions have been made

i} The Born Approximation holds

ii) The scattering potential of a nucleus j may be represented

by the short range Fermi pseudo potential

vi(z) = 2 3 g(xR(3,4) ‘ (4.8)
iii) The b's are real, energy independent quantities which allows
them to be taken outside the thermal average.
In practice the cross section measured for a particular system is due
to scattering from a large number of nuclei, Therefore the vglues of
b(j) may be replaced by averages over their isotopic and spin concen-
tration, Further, if various isotopes of a particular nucleus type are

distributed randomly over the sites of these nuclei the following hold

(3N b(3) = (B)® I £ (4.9)
5(3") v(3) = (b%) 3 e (4.10)

where the bar denotes an average. These allow equation (4.5) to be

replaced by the sum of two cross sections known as the coherent and

incoherent cross sections

d%c o
— = COH k'
(d& dB"* i X 21rn Z[ <3'3> exp(=-iwt)dt (4.11)
2. COH . jj'
s o,
._ o A
(d& dE —?— T T z f <jj>axp( iwt)dt (4.12)
~ AINCOH

where oy, = 47(b)? and rNe= lrrr[ b2-(b) ]

Incoherent scattering then is due to a correlation between” the positions



of the same nucleus at different times and does not give rise to
interference effects. Alternatively coherent scattering does, as it is
largely a correlation between different nuclei at different times.
Incoherent scattering cross sections are usually smaller than their
coherent counterparts with the notable exceptions of hydrogen and
vanadium which are almost totally incoherent scatterers,

The partial differential cross section for one phonon co-
herent scattering from a harmonic crystal mey be shown to be given

by (Lomer and Low, 1965)
2 3 Ve - -
%) - (2l Z Ebna 7 M(qa))z 8(q¥a-G)n(n+3+3)/20(a3)
a
COH qd G

-W |?

Z%‘(x)expcm.r(o,m))q.etm,qm‘%e E

K

(413)

b

K

the upper and lower signs indicating processes in which phonons are
created and annihilated respectively. The average number of phonons

n in any state is given by equation (2.35). Examination of (4.13) shows
that the cross section is higher for phonon creation than for
annihilation. Taken to the 1limit T -» O all phonons are in their ground
states and thus may not give up any energy. Bearing in mind the de-
finition of tw, equation (4.7) the first delta function in (4.13) ex-
presses conservation of energy between the neutrons and phonons,
Similarly the second delta function expresses the conservation of neutron
momentum and phonon crystal momentum with G as a reciprocal latﬁice
vector, TFor phonon dispersion curves these two delta functions will

be simultaneously satisfied only for discrete values of q and w thus
giving rise to peaks rather than continua. In comparison the corres-
ponding equation for one phonon incoherent scattering does not have a
delta function for crystal momentum conservation, The partial
differential cross section the. is continuous in q. In practice

incoherent scatterd ng, if present contributes to the background in



coherent scattering experiments.

The relative amplitudes and phases of the normal modes are
accounted for by the polarization vectors e(qj) in the final term
called the "dynamic structure factor". Here Wx is the Debye-Waller
factor which is‘linear in Q. Thus although the structure factor
inereases with Q because of the factor Q.e, the effect of exp(dwx)
eventually dominates., Although the dynamical equations which give
the frequencies and polarization vectors are periodic with the
Brillouin zone the inelastic neutron structure factor repeats in a
volume of reciprocal space given by

exp(iG.r(0,x)) =1 (4.1%)
for all atom positions in the unit cell. For structures in which
all the atoms have coordinates which are simple fractions of the cell
dimensions the repeat volume is readily given. For spinels with &
set to zero the repeat volume is a cube bounded by the reciprocal
Yattice vectors [8,0,0],(0,8,0],(0,0,8]. However in general § is not
zero and the repeat volume is effectively infinite. Calculation of
the structure factor is important in planning and interpretation of
scattering experiments, particularly for complex crystals. By suit-
able choice of crystal orientation the product Q.e may be made to
vanish  for modes with polarization vectors that must be essentially
transverse to the dirsction of Q. Also the intensity of any particular
mode varies characteristically in different parts of reciprocal space
within the structure factor repeat zone, Therefore comparison of the
intensities of the same mode measured in different regions enables it
to be identified. Measursment of dispersion curves is often an
iterative process requiring a dynamical model to provide information
for structure factor calculations and a knowledge of the dispersion
curves to improve the model parameters.

In an experimental measurement the delta functions in equation

(4.13) are found to be spread out into peaksbecause of effects such
g



as instrumental resolution and anharmonicity not incorporated in the
derivation of the partial differential cross section. Thse total
cross section measured is then the integral of (4.13) over the delta

functions and is given by (Brockhouse, 1966)

k! n ; X )
oy(kok?) = § (04 [F(3,QF [7(3)|7* (4515)
where the dynamical structure factor has been represented by F(j,a)
and
- hk! ok
3 7*= |1 2 57 Vg 0(a,9)] (4.16)
As will be indicated later, the expression for the Jacobian J may be

simplified for certain specialised types of scan with a triple axis

spectrometer,

L,2 Neutron Spectromstry

4.2.1 Triple Axis Spectrometers

Any experiment in which coherent inelastic scattering of
neutrons is to be measured must have facilities for the selection of
incident neutrons of known wavevector and the simultaneous energy and
wave vector analysis of the scattered neutrons. Spectrometers which
have these capabilities may ba divided into two major types = triple
axis and time of flight, although hybrids also exist (see Dolling
1974 for review). Time of flight spectrometers usually consist of
a la rge number of fixed detectors set at known angles and distances
from the target. With this instrument a large number of neutrons may
be recorded simultaneously but it is difficult to preselect the point
in (qw).space to be investigated. The triple axis spectrometer, by
comparison is quite wasteful of neutrons but it is possible to
accurately choose the region of (q,w) space to ba examined before the
scan is performed., This leads to two main advantages over time of
flight instruments for the investigation of dispersion curves in
crystals:

i) It is possible to measure the curves along chosen high symmetry
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i) contd.
directions in the Brillouin zone thus enabling a useful
classification of phonons by group theorstical labels to
be made.
ii) Intensitites of phonon peaks measured at equivalent points
in the structure factor repeat volume may be compared. Thus
the mode may be identified by correlating these intensities
with those predicted from structurs factor calculations based
on a dynamical model.
Fig.k.l shows a schematic plan of a triple axis spectrometer (Brockhouse,
1961) and corrssponding reciprocal space diagram, Neutrons of energy

E are selected from the continuous spactrum by Bragg reflection:

¢ = 2|k| siné (4.17)

M
from the monochromating crystal. The energies of neutrons scattered
by the sample through an angle ¢ are similarly examined by Bragg
reflection from an analysing crystal. The relative positions of the
monochromator sample and analyser tables enable the wave vector
directions to be determined.

The particular choice of analyser and monochromator crystals

and collimator C,, used depends on the experiment to be performed

(1)
(i.e. resolution desired, neutron energies involved etc)., Mono-
chromator crystals are large single crystals with good scattering
characteristics - no absorption or incoherent scattering but large
coherent scattering cross sections. However crystals with small mosaic
spread less than ~4° (Iyengar 1965) reject too large a fraction of the
incident neutron intensity. The mosaic spread of such crystals may

be increased by thermal or mschanical distortion. Metallic crystals
have high reflectivity and tho right order of mosaic spread. The wave-~

length range 0.5-2X can be covered using reflections from copper, lead
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and aluminium crystals. One problem is order contamination in the
chosen wavelength due to multiple Bragg scattering. This may be
avoided by use of reflections from crystals for which the structure
factor of the second order is zero e.g. Ge(11l),(222) absent,

The detector usually consists of an array of *°BFs; or %He
gas detectors. Neutrons undergo reactions with the gas nuclei to
produce charged particles that are detected by the ionization
generated as the particles move through the gas. The latter detectors
are favoured because of the higher cross section of the (n,p) reaction
involved, and sm ller physical dimensions,

The monochromater table is situated in a fixed position either
at the end of a hole in the reactor shielding or at the end of a guide
tube, The other crystal tables and detector unit interconnected, as
in fig.4.1l by a beam and rail assembly as in the original model
(Brockhouse, 1961) or in the tanzboden (dance floor) type mounted on
platforms that rise on air pads from the laboratory floor for position-
ing, connected by beams.

Triple axis spectrometers operate in the plane of the incident
and scattered neutrons. The conservation equations (4.6) and (4.7)
then only involve components of the vectors Q,k,k' in the scattering
plane, The components of Q given in terms of ths measured quantities
are
-|k|sing = [ke| sin(¢-9)
x| cosy - |ke| cos(¢-¢)

where the quantities are defined as positive by the arrows in fig.4.l.

Qs
Qa2

(4.18)

Equations (4.18) with the conservation of energy constitute a set of
three relations containing four unknown quantities. To specify an
experimental point it is usual to fix the value of either the incident
or scattered energy of the neutrons, In performing a scan in a
particular direction in (q,w) space the instrumental quantities re-

quired are calculated in the computer "controlling" the experiment,



Triple axis spactrometers allos ths use of two powerful modss
of scan., The constant energy or constant E (Sinclair and Brockhouse,
1960) scan is particularly useful for measurement of dispersion curves
with steep gradients., The energy exchange is fixed while the change
in wavevector Q is varied in a set direction equivalent to scanning
across a range of q values, For the constant wave vector or constant
Q scan (Brockhouse, 1961),howevsr, Q is maintained at a set value while
the energy exchange is varied over a given range. From (4.6) it canbe
seen that this method maintains q at a constant value. Figures 4.2
and 4.3 illustrate these modes for fixed incident nsutron energy. The
equation for the measured cross section (4.15) is simplified for these

scan modes as the Jacobian for the constant energy scan is given by

nlc
7] = 'ﬁg’!'vq w(g,J) (4.19)

while for the constant Q scan it is simply unity.

4.2.2 Resolution and Focussing.

When the spectrometer is set to measure ths scattered in-
tensity from a particular point in (Q,w) space, scattering from
adjacent points will also be detected. This is a result of the finite
resolution of the instrument due,in large part to the imperfect
definition of neutron path by the collimators and the mosaic spread
of the monochromator and analyser crystals., The problems of triple axis
resolution have been reviewed by Nielsen and Bjerrum Moller (1969).
If the collimator transition probabilities and crystal mosaic spread
are assumed to have Gaussian distribution a suitable resolution
function may be given by (Cooper and Nathans, 1967)

R = Ro exp(~% f,j Mij xixj) 1, ® 1,2,3,4 (4.20)

with the Xi corresponding to AQa, Aqy,AQg and Aw. The elements to

Mij are obtained from the spectrometer specification., This function

is the probability of detecting scattering from points around the
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position in (Q,w) space at which the spectrometer has been set, The
intensity of the peak is given by convolving R(AQ,Aw) with the
scattering cross section of ths sample. From (4.20) it is seen that
contours of R are ellipsoids in (Q,w) space. The dimensions and
orientation of the ellipsoids are determined by the finensss of the
mosaic structure, the collimation and ths configuration of the
spectrometer.

In certain situations finite resolution has ths effect of dis-
placing the céntre of the observed peak from the true phonon co-
ordinates (Quw). For example, as most of ths measured intensity is
from scattering in the plane of the spsctrometer, vertical colli-
mation is relatively relaxed. Thus for two phonons which are degenerate
in the scattering planes shifted or split peaks may be observed if the
degeneracy is removed as Q moves out of the plane.(Cowley and Pant
1970).

An increase in peak height relative to the background, re-
ferred to as focussing, may be obtained by an optimized arrangement
between the orientation of the resolution ellipsoid and the slops of
the dispersion curve. Assuming the dimensions and orientation of the
ellipsoid are unaltsred during the small changes of configuration of
the spectrometer during a scan it may be seen from fig.L4.4 that the
sharpness of the peak obtained is proportional to the "rate" at which
the ellipsoid traverses the curve, Particularly for steep curves with
gradients similar to that of the long axis of the ellipsoid the curve
will be most rapidly crossed using a suitable constant energy scan,
The diagram also shows that although the total cross section, i.e.
integrated intensity for a constant Q scan is independent of the
gradient of the dispersion curve, the measured peak shape may be
drastically affected. Graphical and numerical msthods have been
developed which enable focussed configurations to be predicted
before performing the scan. (Peckham et al. 1967).
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4.2,3 Order Contamination.

Order contamination in the neutron wavelength brought about
by multiple Bragg scattering has already been discussed. Spurious
peaks may also occur in one phonon coherent inelastic scattering
experiments by another process which may be easily eliminated. Bragg
scattering may occur in the specimen which producas a reflected beam
in the dirsction of the analyser. These neutrons can then be de-
tected even when the analyser is not set to measure this wave vector
(Dolling, 1974). A similar process starting with diffuss scattering
f;mm the monochromator which is then Bragg reflected by the othsr
crystals also occurs. The measured peak often has a similar intensity
to the phonon peaks but is usually sharper. This peak will in general

disappear if the same scan is performed with a different incident

or sattered wavelength.

4.3 Experimental Measurements.

Magnesium aluminate, MgA€304, is a particularly .-straight for-
ward spinel on which to perform neutron scattering experiments as the
constituent nuclei have very small or zero incoherent scattering
lengths and none of the ions are magnetic. The scattering longths for
aluminium (0.345 10™*% cm) and oxygen (0.577 10722 cm) are well
established and may be obtained from the Intamz;.tional Tables for
Crystallography.

However over ths years there has been some discrepancy in the

valus reported for magnesium:

b COH/J'O- 1%2:m binc/lo- 13¢em
0.520 0.155 International Tables (1972)
0.537 0.089 Koester (1977) '

The estimate of the incoherent scattering length has thus decreased
and is taken here to be zero,

As neutron-phonon interactions are fiirly weak and neutron bean
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intensities low counting rates must be improved by the use of large
single crystals as samples. The specimen employed had an approximate
volume of 5 x 10% mm® and was roughly cylindrical about a [110] growth
axis., The only previous neutron scattering msasurements of this
material were made by Thompson and Grimes (1978) on the same sample,
Using the rotating crystal time of flight spectrometer at AWRE

Ald ermaston most of their data was collected at 523K. Present measure-
ments were made at room temperature with the IN3 triple axis spectro=-
meter at the Institute Laue-Langevin(I.L.L)during 22-26 August 1977.
This spectromster, of the Tanzboden type, has the sample and analyser
crystal tables and the detector mounted on air pads that raised these
components from a marble floor for position changes. Experiments are
controlled by a computer linked to the I.L.L. Carine system. The
spectrometer was set up to use the (111) reflection from copper as

the monochromator and the (002) reflection from pyrolytic graphite

for the analyser. The detector consisted of an array of five helium
three (°He) counters grouped together as a unit,

Six Bragg reflections from an aluminium oxide powder (A€;03)
were used to align the instrument and determine various off'sets.

The energy resolution was obtained from a scan of the incoherent in-
elastic scattering from a vanadium standard, the half width at half
maximum, 0,32 THz, is taken as an indication of the resolution
(figeld5).

Initially measurements were peformed with the [001] axis of
the sample crystal vertical so that phonons could be measured in the
reciprocal plane perpendicular to this direction. Thus access was
gained to previously unmeasured modes with wave vectors in the [110]
direction with polarisations essentially transverse in [110] directions.
As it proved impossible to unravel the optic modes in the [110] and
[100] directions the majority of measurements were taken with the

[13.'0] axis of the sample vertical. For simplicity attention was con-
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centrated on phonon curves with propagation vectors in <111> directions.
Figures 4.6(a)-4.6(d) show a selection of measured peaks, the effect

of focussing is apparent in 4.6(a). As the flux intensity from the
reactor fluctuates in time intensities are recorded over the interval
in which a monitoring counter in the incident beam detects a preset
number of events rather than over a given time period. Measurements
were usually taken with the magnitude of the scattered wave vector k!
maintained constant at 2.65 or 2.8 E"". However a few were made at other
wavelengths and some with constant iﬁcident wave vector at 3 or 3.5EL1.
Constant k' has the advantage that the integrated intensity is a diréct
measure of the scattering power of the crystal because the X * factor
in equation (4.15) is essentially cancelled by the 1/(veloci%y)
efficiency of most detectors.

The effect of contamination in the incident and scattered wave-
lengths is to replace equations (4.6) and (4.7) by
rk - sk!

(k)= (sk")?)
2m

where r and s are integers that are not simultaneously equal to unity.

Q
Tw

(4e20)

Only small values of these integers need to be considered as the in-
tensity of the neutron spectrum decreases with increase of energy.
Regions of (Q,w) space in which (4.20) are satisfied may be avoided
by the use of diagram such as figd./and the corresponding one for fixed
incident energy. Lines corresponding to k = 2k', ®,3k' etc. are plotted
on a diagram of E' against energy transfer hv., Wavelengths related to
energies that are removed from these lines and less than the maximum
energy transfer (for IN3 17THz for zero E or E') may be used to avoid
spurious peaks.

Considering only long wavelength acoustic modes wherein all
atoms in adjacent unit cells vibrate in phase the dynamical structure

factor in equation (4.13) may be approximated to
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_ ’ W iQ:
Q.6 (k,q3) Z B(x)exp(10.2(0,4))m, 2o (4.21)

Neglecting the Debye Waller factor the terms to the right of the
summation are merely the static structure factor. Calculations show
that this term is maximum at the reciprocal lattice points (440),
(400) and (444) in desceﬁding order. The BriIIOuin'zOne which has the
greatest structure factor for a particular mode is now determined by
Q.e where, for acoustic modes, the eigenvectors may be taken as purely
longitudinal or transverse, This approximation, however, was not
applicable for optic modes. The zones used for the measurement of

X point frequencies and one of ths transverse optic modes in the [lll]
direction were found by trial and error. Table 4,1 1lists the zones
used for the measurements of modes in some high symmetry directions

in the Brillouin zone. The labels L and T refer to the spectrometer
configurations used which would have been ideal if the mode were purely
longitudinal or transvers respectively. OSome phonons gave rise to
peaks in both configurations., Tabls 4.2 contains lists of the phonons
measured here, following Brokchouse and Stewart (1956) the error is
taken as one quarter of the full width at half maximum. These arc

diagrammed in fig.4.8 whers the drawn lines are guides to the eye

only.

4.4, Discussion of Results,

The results obtained (table 4.2) are in good agreement with
those of Thompson and Grimes (1977). There is no discernible difference
between their measurements at elevated temperatures (usually 522K)
and the corresponding measurements on the triple axis spectrometer at
room temperature. The majority of tho results are extensions of these
same modes, However, the frequencies of the lower"transverse" acoustic

mode Tg in the T110] direction and the partial optic branches in the
' - 109
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TABLE 4.1 Zones Used for Observation of Phonons.

Brillouin Zone Mode Type

1400 T[£00]
L[fo0]

T[LL01]

422 T[¢¢¢]
L0 Tz20]
Ly T[LeL]

| n{zee]

640 Ll¢Lo0]

L and T refer to configurations of the
spectrometer to measure longitudinal
and transverse modes.



TABLE 4.2 - Observed Phonons in Magnesium Aluminate

{-Reduced Wave Vector

v-Mode Frequency

Longitudinal [£ZC] Transverse [{L{] Longitudinal [££0]
z v (TH 2) v(THz) 5 v(THz)
0.05 6.9+0.5 0.05 | 60904 0.2040.0k | &
0.05 8.130.2 0.05 | 8.3:0.2 0.2530.04 | 5
0.05 9.3+0 4 0.05 | 9.240.4 0.3240 .05 6
0-071‘0.02 5-5 0915 5.5"_’003 00}+ 6-5"’052
0.09+0.02| 8.5 0.5 | 6.8440.14 0.5 6.650 ok
0.100,04| 2.5 0.2 | 6.540.14 0.5 84420 .2
0.1 7.540 .4 0.2 | 7.540.3 0.6 6.8+0.2
0.1 8,7+0.3 0.25 | 6.250.1 0.7 7.130.3
0.12+0.04| 3 0.25 | 7.4%0.2 0.9 5.9:0.3
0.1540 .04 3.5 0.3 | 6.3+0.25 0.9 6.840.3 |
0.1640.03( 8 0.3 | 7.140.2
(-] L ] 40.
0:2050.03| 5 0.3 | 6Du0ns | [Trmeverse (0] ()
0.2~ 8.740.5 0.4 | 6.640.3 y(THz)
0.2240.02| 5 0ok | 4.0%0.25 ek 2468017
0.2310.03| 5.5 0.45 | 6.540,2 o2 Dl
0.25 9.640.2 0.45 | 4.430.2 0'4 §°é:0°2
0.27+0.03| 6 £ R
0.2740.03| 7.5 Tongitudinal [L00] ]| o° 4'3‘?5- : >
0.32%0.03| 7 z »(THz) o 5*1;0'2
0.3610.03| 8 0.3540.05 & % 2
0.3640.03| 8.5 0.44%0.04 5 b 4 At
0.37+0.03| 9 05430 .04 R 5.0
0.4340.04| 9.5 0.67+40.04 7
0.70+0.04 7.5 Transverse| L0 |(T .
— 0.9 10.040. i vETHzg ]
Brillouin -
Zone Point| v(THz) | g.z 2'1?5-0515
T 6.530.5 Transverse] Z00 ] 0'4 b 4:0'
r 7.7490.2 | [T¢ v (THz ) si2 | Josies
T 9,2+0.3 0.3 2,340 62 . 4405
R 0 4 3 1:'{) 2 0.7 6 910.3
L lralis0 3 : s 0.7 | 8.0%0.3
0-5 508"‘0-3 o
L 8.640.3 s OLle
. 0.7 5-0l003
p 5.940.3 0.8 5.5%0.2
3z 6.850.2 0.9 5.840,2
X 9.840.3
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[lllI direction were previously unrecorded. The effects of the
dynamical structure factor are particularly appareét for the latter
curves as neither optic branch could be completely traced out in a
single Brillouin zone. Calculations of the structure factor reveal
great variation . in intensity throughout the zone, even for acoustic
modes. Fig.Lk.9 illustrétas this for thse lowest A; modes in the

(444) zone, the calculations having been performed using eigenvectors
for the best fit shell model (see Chapter 5). In principle calculat-
ions of this sort enable Brillouin zones to be chosen in which mximum
intensity may be expected for any given mode. However, in practice
calculations from the eigenvectors proved inconsistent and inconclusive.
Ths curves in fig.4.9 were obtained using a program written in Algol
and are completely at variance both in trend and order, with those
calculated by an equivalent Fortran program. The problem. lies in
the actual calculation of the eigenvectors (see section 5.4.3), it
appears impossible to calculate these accurately for a 42 x 42 complex
matrix.

Table 4.3(b) compares the sound velocities obtained from the
initial :slopes of the neutron curves to those deduced from elastic
constants given by Chang and Barsh (1973). The relations connecting
the elastic constants and acoustic velocities are given in table 4.3(a).
In all cases the quantities from the ultrasonic method are lower, hence
the elastic constants deduced from neutron data would be larger,
Similar effects have been observed for other materials including
magnetite (Samuelson and Steinsvoll, 1974) but in general the dis-
crepancies from either method do not give consistently higher or lower
velocities., The two types of slastic constant have different thermo-
dyhamic naturss, Ultrasonic measurements are made in the first sound
region wherein the frequency of the probe is much less than the
reciprocal lifetime of the phonon. Thus the phonons may be considered

as a gas in thermal equilibrium. On the other hand neutron measure-
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Mode Elastic Wave
Polarization [Direction] Veldcity
L[100] ACii/p
7[100] NCea/p
L[110] N(C14+C12+2C44)/(2p)
74 [110] N (C12-C13)/(2p)
7o [110] NCaa/p
nLl111] d(C14+2C13+4044)/(3p)
r{111] N (C11~C13+Cas)/(3p)

For MgAlz0s p = 3.581 g/cm®

TABLE 4.3a ~ Mode Elastic Velocities

Probe

Ultrasonics
(Chang and Barsch,1973)

Neutrons

Elastic Constants (10**dynes/cm®)
Cas Caa Cia
2.808 1.547 1.523

3.86 1.57 2.3

TABLE 4.3b - Elastic Constant Measurements
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ments are made with a higher frequency probe in the region known as
zero sound (Liebfried and Ludwig 1961). Here the phonons have in-
sufficient time for collisions to occur during each period of the
sound wave. Cowley (1967) has considered these effects in detail,
particularly with respect to the symmetry of the indices of the
elastic constant tensors. In a harmonic solid these constants would
be equal but if anharmonicity is significant they may be markedly
different, For a cubic crystal tha two elastic constants, isothermal

(for neutrons), adiabatic (for ultrasonics) are related by

cAD=g?SG + (TV/6) o® (4e22)
where C is the hesat capacity and a the coefficient of expansion. Thus
in general the ultrasonic measurements are expocted to be greater
than the neutron elastic constant by (TV/ )o® which is a positive
quantity. Thus although Samuelson and Steinsvoll have suggested that
the discrepancies in their results for the spinel Fes04 may be accounted
for by the difference in elastic constants thils does not seem to be
the cass for MgA€z204 where the expected inequality is violated.

The difference then is probably due, in this case, to the
effects of the resolution function and scattering cross section, As
already indicated the measured intensity is given by convolving the
resolution function with the scattering cross section. For small wave
vector acoustic modes the latter, in particular is a rapidly varying
quantity. Computer calculations (e.g. Fujii et al. 1974 on Argon)
have shown that peak positions for these phonons may be offset by
about 5% of their observed valuss. This effect may then contribute
to the observed differences in the results from the two different
techniques. In all cases howsver the differences are within the

error of the neutron measurements.
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CHAPTER 5
RESULTS FROM MODEL CALCULATIONS.




5.1 Simplifying Assumptions,

The intention is to use rigid ion and shell models, outlined
in Chapter 2, to describe tho dynamical behaviour of magnesium
aluminate. The number of adjustable paramsters that could be used is
very large, However, apart from the difficulties of refining vastly
complex models, any sensible interpretation of the results requires
simplification of the problem so that the important quantities may be
elucidated. Various assumptions are made to reduce the number of
parameters, From Chapter 1 it is apparent that the properties of
magnesium aluminate are probably most accumately aséignad to the space
group F43m rather than Fd3m. However the latter was assumed for model
calculations as the differences in ionic positions between the two
structures are minute and the higher symmetry ensures a reduction in
the number of independent interactions. Taking MgA¢304 to be com-
plotely normal the fourteen ions in the basis, which give rise to a
dynamical matrix of order 42 x 42, are labelled according to table 5.1,

As magnesium aluminate is one of the more ionic spinels (ses
section 1.3.6) it is convenient to use shell models equivalent to
early models for alkali halides (Cowley et al. 1963). The bonding is
taken as completely ionic therefore the valence states are assumed to

=20, Z

- 28). Further,

be at their nominal values (zA& = 3e, zMg
because of the larger size of the anions compared to the cations only
the oxygen ions are considered polarizable. Matrices S and T of
equation (2.54) are set equal to the inter-ion short range matrix R
at all values of wave vector thus representing all short range inter-
actionslas acting through the shells. In compaiison it is usual in
studies of materials in which covalont bonding is thought significant
to assume these matrices to be related by a numerical factor deter-
mined during model refinement,

In alkali halides all anions are at sites of cubic symmetry

and therefore the intra-ion core-shell interactions aré isotropic.
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Ion Label k Position

A 1 0,0,0

Ae 2 0,4+

Aé 3 4:0:%

Al 4 %250

e 5

Mg é ore’s

0x 7 348,348,348
Ox 8 §+8,-8,-8
0x 9 =8y=5,5+8
0x 10 -8,548,=8
0x 11 =0, 5=0,5=0
0x 12 =5, 8, 8
0x 13 & y5=0, &
0x 14 8, & ,5=0

Labelling of Tonic Positions

in the Basis

TABLE 5.1




Consequently the shell charge Y and short range intra-ion core-shell
force constant K matrices are diagonal. In spinel, however this
condition is not imposed by symmetry. As shown in fig.l.3 the oxygen
site is trigonal with the unique axis lying along the Mg-O bond. In
general the 3 x 3 submatrix of the dynamical matrix of type
Dqﬁ(B,B,q;O) has a form similar to
A B

(B A -% (5.1)

\B =B .
which when referred to a set of principal axes at that ion site re-

duces to the diagonal form

D 0 0 where D = A + 2B
(o g 0) C=A-3B (5.2)
0 0 C

The submatrices of Y and K (and also the polarizability tensor
for an oxygen ion then, by symmetry have a minimum of two independent
paramsters each. Ingeneral when referred to the cubic axes these
matrices have both on and off diagonal terms and different but related
forms depending on the relative orientation of the site. This com=-
plexity was avoided by arbitrarily assuming the core-shell to be
isotropic (i.e. setting D = C), thus making (5.1) and (5.2) equal re-
gardless of anion site, This is expected to be a falr approximation
for magnesium aluminate as the measured value of & (0,012)"' is very
close to the value (8 = 0.0125) at which the Mg-0 and A¢-0. distances
are equal, although of course, the charges on the neighbouring cations
emphasize the uniaxial symmetry. Alternatively the cations may be
considered as lying in the interstices of the surrounding oxygen ions,
The oxygen intra-ion interaction may then be greatly influenced by the
effects of the surrounding oxygen shells. As the oxygen ion arrange-
ment is almost perfect face centre cubic packing the anions may be
thought to lie in sites of effectively diagonally cubic symmetry.

Thereforethe Y and K matrices may reasonably be taken as diagonal,
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The rigid ion models are taken to be limiting cases of ths
corresponding shell models with ¥ = 0 and K = 10%°, these values
having been found to give the same frequencies as a "pure" rigid ion
model to an accuracy of at least 0.01 THz, Note that it is necessary
to set both the Y and K parameters to the values given above simultane-
ously. For instance setting Y = O only, yields a shell model with
uncharged shells and somewhat "soft"™ ions which has quite different

eigenvalues to thoss of the rigid ion model.

5.2 Matrix Elements.

5.2.1 Elements of the Short Range Interaction Matrix R.

The short range inter ion interactions are given in terms of
the parameters A and B defined by equations (2.41), one pair A,B
assigned to each independent distance, For the cations the inter-
action is considered to occur only between the metal ions and their
nearest neighbour oxygen ions, The short range interactions with
magnesium then only involve the four anions at distance dt which form
the tetrahedron about the cation site, fig.5.l1l. Similar conditions
exist for aluminium ions which lie at the centre of oxygen octahedra,
fig.5.2. Ths six oxygen ions surrounding each aluminium site are
equidistant from the centre (distance do) even though ths octahedron
is distorted when the oxygen & is greater than zero. The short range
interactions assumed for the oxygen ions are more complicated to
account for the expected electron cloud overlap effects due to their
large diameters. Therefors not only the nearest neighbour cation
interactions are included (fig.l.3) but also those of the surrounding
twelve anions. In an ideal spinel structure (& = 0) the neighbouring
oxygens would be equidistant. The effect of having a non-zero § is to
separate these ions into three groups at slightly different distances
from the central oxygen. These anions of index A,B,C say are at tho

nearest neighbour distance di. Another three lons, equivalent to the
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Fig 5.1 Tetrahedral Ion Fnvironment

Eig 5.2 Octahedral Ton Fnvironment
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Distance 0-A,B,C d
0-AB.C d,
0-PQ,R d,
Oxygen-0xygen Environment

Fig 5.3
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Interaction Separation Distance

A¢ - 0
Mg - 0
01 - 01

02 - 02

03 - 03

a = lattice

do = a| & ~8/2+38°
a, = al3(# + 3)
al2(% -~ 9)
da = alZ + 48

ds

ds = &JE(% + 8)

parameter

Associated Parameters

AO,BO
AysBy
Ay,By

B

Aa’ 2

AS)BE

Interionic Distances and Associated

Short Range Interaction Parameters

TABLE 5.2
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above by face centred translations lie at the greatest oxygen neigh-
bour distance ds. The remaining six are in sites.at an intermsdiate
distance da. Fig.(5.3) displays the oxygen-oxygen environment. The
short range parameters and inter ion distances are summarized in table
5.2. In total there are five pairs of parameters A,B corresponding

to the five distinct distances.

The dimensionless elements of the matrix R are now readily
given in terms of thesé parameters by substituting equation (2.43)

in equation (2.44). The translational invariance terms are given by

Rog(KKQ) == 8, ZRaﬁ(xx-,qu) (5.3)
K.

and are always regular. The independent elements at q=0 are given in

Appendix I in terms of the adjustable paramsters and interaction

distances of table 5,2,

5e2.2 Coulomb Coefficients,

The Coulomb coefficients are the elements of the dimensionless
matrix C in the equations of motion (2.57). Unlike the short range
matrix these coefficients are completely detemined by the crystal
structure and form of the potential (see equations (2.39) and (2.40))
and do not depend on any adjustable parameters. Each coefficient
may be evaluated by a device due to Ewald (see ﬁorn and. Huang 1954)
in which the slowly convergent summation of equation (2.40) is replaced
by two rapidly convergent series, one in real space the other

in reciprocal space as given below
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I q):l;.'irz (64#99) (G 5*8) oy (-a4q)2/4e® Yexp (1(G4q) o [r(K) =2 (k) 1)
¢ lexq]?

- %Tﬁ’é £ 2 Hog(c x(¢',x",K))expligux(e k", k) ]} (5.4)
Aw
where

o) = 28 [.’:erfc(IYI)+(z+lyI“+6;y| = : l i

|y|®
- 2u 2 2
|erte(lyl) + Zlylexp(-y?)], (5.5)
|yl
erfc(x) is the complementary error function
x
orfo(x) = 1 -f / exp(=0%)dp (5.6)
T

and ¢ is the parameter chosen %to obtain fast convergence of both series
to give the final result. A value of 3.0 gave approximately equal rates
of convergence on both series for spinel.

Caﬁ(xx'q) is not regular at gq=0 as it comtains the temm
qaqﬂ/qa, the limit- of which as q tends to zero depends on the
direction from which the origin of the Brillouin zone is approached.
The non regular term is related to the macroscopic electric field
which 1ifts the degeneracy of threefold infrared T:u modes predicted
by group theory. However, it is still possible to consider the q=0
dynamical matrix where the first term of the reciporcal space series
of equation (5.4) has been omitted, since its inclusion only affects
the predicted frequencies of infrared modes with dipole moments in the
direction of the considered wave vector.

It is of interest to note that whereas the translation invariance

terms of ZCZ in the equation of motion are given by

=81 Z, ZZK.. Caﬁ(m",q=0) (5.7)
K
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the translation invariance terms for the shell terms ZCY, YCZ and YCY

may be shown to be identidal (Stirling 1972a, Venkateraman et al.1975)

“ e T ) Byn Ogglke"a0) (5.8)

xﬂ

5.3 Central Forces.

The short range forces given so far in terms of force constants
defined by equation (2.41) are known as axially symmetric forces.
Cochran (1971a) has shown that uss of these forces without restraints
is equivalent to the inclusion of a volume dependent term in the
expression for the potential, Th2§ may be removed by using central
forces and the imposition of the static equilibrium conditions. The
short range forces may be ma@e central if the parameter B is redefined
in terms of the first derivative of the potential function as

2v
B= —+ 1240 (5.9)

e r dr

The Coulomb forces are already central in nature,

The static equilibrium conditions are a balance between the
essentially attractive Coulomb forces in the crystal and the essentially
repulsive short range forces. This is achieved by minimizing the
crystal potential energy with respect to both constant volume distort-
ions of the whole crystal (macroscopic strain) and with respect to
any internal position parameters (internal strain) as all atoms are
assumed to be at their equilibrium positions. The second condition may
be shown to be equivalent to the imposition of rotational invariance
on the crystal potential function (Boyer 1974).

In spinsl the potential energy ¢ is a function of both the
lattice parameter a and the oxygen position paramecter &, Therefore
the static equilibrium conditions are given in tems of derivatives

of ¢ with respect to these quantities. In principle the potential

function includes electronic polarization effects and so for spinsl
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contains an extra structural parameter to describe the symmetry
allowed displacements of the oxygen shells relative to their cores.
However as Coulomb contributions to crystal statics are usually well
accounted for in terms of the nominal ionic charges and tha actual
IdiSplaeement is unknown this possibility will not be considered. The
alternative is to replace the oxygen core positions in tha Coulomb
coefficients of the type core~core and core-shell by positions of

the type (u-R,u-R,u-R) and re-evaluating and replacing Koy b

K., exp(iq.R) where R is a parameter to be determined by modd refine-
ment. This method was used by Cran and Sangster (1974a) to model
MnFz, As the calculation of the Coulomb coefficients is a fairly
lengthy process this method besides intwoducing an extra parameter
would be prohibitively expensive in computer time for a structure

of the complexity of spinel. It is worthwhile to point out that
although it may be thought that the shell displacements relative to
the cores could be obtained by comparison of neutron and X-ray

data (e.g. as suggested by Smit (1968) this would be difficult to
achieve in practice as X-rays in general, are insensitive to the dis=-
tortion of the valence electron arbitals,

The potential energy per formula unit for spinel, first given
by Striefler and Barsch (19?2) is
" ¢ +ug, (d,)+ 12¢0(do)+ 6a(da)+ 12¢a (da)+6¢s(ds) (5.10)
where the Coulomb contribution in terms of the Madelung constant per

formula unit M is given by -

2
4)0 = - "S"'M (5'11)

The corresponding static equilibrium conditions in terms of B and M

are : : ' '
M+8&t33t + 2400°Bo+ 1201°Bs + 2402°Ba + 12a3B3 = 0 (5.12)
'g_}g -2 o, B, +24(5-38)Bo+2l 2a1B1~968Ba~ 242 agBs= 0 (5.13)
A3 :

where @, = di/é.



M may be calculated from the Ewald transformation of the series (BOrn

and Huang 1954)

¥ = % « % ' aZKZK,
) (k) e(en)| G-1)

Lt

Thompson and Grimes (1977a) have calculated M for several values of

8 taking one of the factors 7 to the right of the summation and using

a/2 as a reference length., In comparison L used the expression as

given and obtained the following expression for M in terms of the

ionic charges
1 3 2 2_ - _
M= x (3’9685ZA&+3'21312M3 +1.25612Q_x2.025AZAeZMg 29.73492A&Zox
- 11.56142Mgz°x) (5.15)
which is quite different from theirs at 8 = 0.012:-

a2
M=-0.0 7923 ,t1:090 5zf{g—7.62430x-3.0760 Z, 6zMg- 23.1182, Zox™9 .BomMgzmc
(5.16)

although both give the same answer 132.65. The coefficients are not

different by a factor of 2 as the convergence factor in the Ewald

transform has also to be changed with reference length to make the

result independent of this parameter.

The derivative of M with respect to § was evaluated by taking
a + 0.0001 variation in & = 0.012. As expressions like the above

are too inaccurate for this purpose the Ewald transformation was used

in full to give

(%’% = 299.9 + 0.4 (5.17)
&= 0.012

which is in fair agreement with the Striefler and Barsd value of
300.16 but shows that Thompson's (1977) value of 301.6 is quoted to

too many significant figures,
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5.4 Refinement of Models

5.4.1 The Models

The equation of motion with the approximations mentioned

included is given by

4#(%) V3= R+zcz+2T-[R+ch+YT][Rm+YCI+YT]"*[ﬁuycznrmjl} xMJ
(5.18)
zT ana'xr are matrices that include the translation invariance terms
for the associated ionic and shell Coulomb terms. M,Z,Y,K are 42 x 42
diagonal matrices containing the reciprocal square root of the ionic

masses, the ionic charges the shell charges and the short range core-

shell force constants respectively. The values of all the elements

of M and Z and those of K and Y pertaining to metal ions are held

fixed for all models. Only in the shell models are the elements of

Y and K for the anions variable, having values YOx and Kﬁx for all
eight oxygens in the basis, otherwise these are set at rigid ion
values Y = 0, K = 10%°,

Inspection of Appendix I shows thatat q=0 the oxygen-oxygen
paraheters Ai,As and By,Bsof the matrix R always occur together.Thus
at the I point in the Brillouin zone Az,B; may be set to zero and Ay,By
adjus ted to give the same eigenfrequencies. Although these pairs of
parameters are decoupled at finite wavevectors it is reasonable to
reduce the number of parameters by imposing the above condition for
two reasons (i) the short range interactions are expected to decrease
exponentially in strength with increasing distance, thus Ap and Bj
are expected to be much smaller thaen A; and By (ii) most of the ex-
perimental data to which tﬁe models are refined is concentrated at
or near the zone centre, Any separate refinement of these pairs of
parameters is then unreliable because the decoupling phase factors

in this region are small,
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Striefler and Barsch (1972) used the argument of decreasing
influence with distance also to set Az,Bs; to zero. However, investi-
gation revealed that these parameters had the greatest influence on the
highest frequency Tag Raman mode for several sets of short range para-
meter and thus.were retained. Consequently the most generalised shell
model has ten disposable parameters: Ao,At,Ai,Aa,Bg,Bt,Bi,Bg,thand Kbx'

Two pairs of models were investigated, each pair consisting
of a shell model and corresponding rigid ion model enabling the effects
of polarization to be directly ascertained., The first pair used
central forces with equations (5.,12) and (5.13) solved for B; and Bj.
The imposition of the static equilibrium conditions would not then
unrealistically effect model refinement as these parameters are
usually the smallest. In comparison the second pair were optimized
without imposing any restrictions. It is possible in principle to
impose stability constraints which are of similar fombut inequivalent
to the equilibrium conditicns. However this was not undertaken.
Despite their unphysical nature models of this type are expected to
indicate the degree to which the assumption of central forces is

appropriate.

5442 Refinement.

The models were optimized to fit the observed Azg’Eg’Tag
Raman frequencies, the two highest frequency infrared absorption
mode® and the acoustic modes. The last mentioned were taken at two sets
ot positions in the Brillouln zone, firstly close to the origin at
(0.05,0.05,0.05),(0.05,0.05,0.0),(0.05,0.0,0.0) and then approximately
half way to the zone boundary at (0.25,0,25,0.25),(0.4,0.4,0.0)
(0.5,0.0,0.0). Although group theory predicts four infrared modes the
Kramers-Kronig analysis of single crystal reflectance data only reveals

three, At present it is uncertain to which of the two lower modes the

lowest observed frequency corresponds,. It is reasonable to assume the
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modss used are actually the highest infrared bands as the Kramers-Kronig

analysis shows the largest longitudinal-transverse splittings for
these modes (0 'Horo et al. 1973) in qualitative agreement with the
rigid ion models of both Striefler and Barsch and Thompson,

Refinement to room temperature data is inconsistent as the
models are based on the assumption that the crystal is at OK (section
2.1). Leibfried (1963) has argued that the temperature variation of
the experimental data be extrapolated to OK and the models refined to
the resulting quantities. However this is not common practice and is
impossible here where the data temperature dependence is unknown,

The refinements were performed using a non-linear least squares
fitting procedure following a method given by Dolling (1976),

minimizing the function X given by

X = (N=V)"% x' (5.19)
where . .
[n) -
(13 = |-CALC OBS] (5.20)
[2"’0133 &idnps

Aw is the error on the observed frequency, N and V are the number of
experiment al frequencies used and the number of adjustable parameters
respectively. To achieve stable models it was necessary to weight the
acoustic mode frequencies., A disparity of say (-l)a(THz)a for these
modes compared to say (+6)2(THz)® for an optic mode has much less
effect on the fitting parameter but may result in vibration amplitudes

that increase exponentially in time.

5e4.3 Numerical Calculations

The necessary calculations were performed with programs written
in Fortran and Algol 60 evaluated on the CDC 7600 computer at the
University of Manchester Regional Computer Centre, Matrix manipulations
were performed using the appropriate subroutine of the Numerical

Algorithms Group subroutine library.



Before diagonalisation the 42 x 42 dynamical matrix was block
diagonalised by a similarity transformation with the appropriate
symmetry coordinate matrix obtained from Warren and Worlton's (1974)
group theory program, The largest block that then had to be
diagonalised was a 14 x 14 matrix for the As modes,

As the Coulomb coefficient matrix C and the elements of the
symmetry coordinates are independent of the disposable parameters these
quantities were calculated once, stored and used throughout the re-
finements,

As mentioned previously the numerically evaluated eigenvectors
of the full dynamical matrix unfortunately have proved unreliable.

It transpires that in the subroutine used, FO2AXA/F, orthogonal eigen-
vectors are always produced the elements of which may be particularly
sensitive to small changes in the dynamical matrix.

Belisly Results.

Table 5,3 lists the values of the refined parameters for the
models together with those of previous workers, Quantities in square
brackets are either held fixed for the model, such as the Y and K
parameters in the rigid ion models or determined by static equilibrium
conditions, The errors quoted were obtained from the non linear least
squares procedure. The fitting parameters are given with Aw set to
unity, all weighting removed from the acoustic modes and evaluated
for fit half way through the Brillouin zone. The zone centre fre-
quencies are given in table 5.4 together with the experimental values
where known. Again quantities in brackets were not used in refinement.
The longitudinal infrared frequencies, labelled T;u are those of the
corresponding mode in the [gqqq] direction evaluated at Iq/qmaxl = 0.05.
In view of the irregularity of the macroscopic electric field con-
tributicn this choice of direction is arbitrary. However these fre-

quencies are approximately central between the corresponding eigen-



MODELS

Central Force - Unrestrained Previous
arameters Rigid Ton Shell |Rigid Ion| Shell SB* |Thompson
Ao 435.5 +0.3| 431.240.3 [449.040.2 [463.340.3 [137.42| 425
A 319.9 +0.2| 325.740.04/305.240.2 |304.040.2 |296.52| 190
A -16.140.2 3.640.2-39.940.3| 1.8+0.2| 75.04] 135
Az 15.140.3 | 11.240.4| 10.440,2| 2.440.4| = | =10
As - - - - - | 43
Bo ~68.940.2 | =67.940.3 |=77.540 .4|=76.8+0.4|=73.71] =42
By ~90.140.5 | =90.540.6 |-82.840.3|-80.430.5{=50.24| =-17.5
By [-21.33] | [-21.93] | 29.8+0.3| 14.240.2| -8.0 | =5
Ba [9.37] [9.22] | 5.54#0.6] 5.9+0.4 = | =9
B, - - - - - -
ox [10%°]  [1027.540.1 [10"°] |9u8.5:0.1' =~ -
o o]l ~2,2110.03 (0] -2,640.03 - -
Zo (3] (3] [3] (3] (3] 2.95
Z, [2] (2] (2] (2] (2] 1.14
%sx (-2] [-2] [-2] [-2] | [-2]| -1.76
X' 9.99 4,96 8.67 342 - -
X 1.25 0.83 1.4k 0.86

*SB ~ Striefler and Barsch Modsl

TABLE 5.3 = Model Parameters
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M 0 D E L S
Central Force Unrestrained Previous
PMode Expt. | Rigid Shell | Rigid Shell | SB*  |Thompson
(THz) | Ton (THz) | (THz) Ton (THz)| (THz) (THz) |(THz)
Aig 23,16 | 26.69 22.88 24,59 21.83 30.94 | 35.03
Eg 12.30 6.68 7.43 12,04 12.20 12.23 | 16.32
Tig = 5'63 4451 13-87 11'75 7091 9077
AL - 20.53 19.86 18.84 20,16 23.65 | 27.36
- 31.53 29.07 30.67 27.88 32.62 | 34.96
e - 25,54 21.92 26.35 20,31 | 26.01 | 25.45
au - 5.42 5.17 L.77 4,99 4.58 5.84
- 12.13 11.00 17.16 14.67 | 11.73 | 12.09
T 9.32 | 9.37 9,50 9.19 9,12 | 10.04 | 8.68
%€ |14.75 | 13.10 13.19 12,02 12.85 | 12.07 | 14.09
20.12 | 26.79 22,07 26,94 21.11 28.15 | 28.43
u [9.15]] 5.12 5.42 5.43 5.69 9.23 | 10.62
. - 12.95 12.70 12.80 13.45 | 12.54 | 17.25
14,54 | 14.29 14.63 14,47 15.56 | 17.25 | 20.68
20.09 | 21.87 21.72 21.81 22,16 21,78 | 23.46
Tt | [9.15])] 9.47 9.22 9.48 9.34 | 10.96 | 11.03
il [ 14,30 14,61 1445 15.37 | 17.21 | 20.37
(18.89] | 20,93 20.76 20,94 22,05 21.12 | 23.12
[25.63] | 37.00 30.42 36.91 29.12 | 37.08 | 36.08
P
I :ﬁ [2.751]25.61 15.13 23,30 12.20 | 11.54 | 4.5
e(w)|[2.95]] 1 1.47 1 1.75 1 1
€(0) | [8.42]|25.6 22,2} 23,3 21,3 11,54 | Lob5

*SB ~ Striefler and Barsch Model

TABLE .5;4.-. -Zone Centre Frequencies apd Dielectric Constants
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values for the [qqq] and [q00] directions. The high and low frequency
dielectric constants are also included in this table, the former
evaluated from (2,67), the latter from the Lyddane-Sachs-Teller
relation,

The complexity of the phonon spectrum is revealed in the
diagram of the low energy dispersion curves of the unrestrained
shell model (fig.5.4). Connectivities of points of the Brillouin zone
boundaries were established using the comptatability relations and
extrapolation, The available symmetry coordinates did not fully
block diagonalise the dynamical matrix at these points. The fit to
the acoustic modes is shown in fig.5.5a~5.5f. For clarity only the

relevant modes have been drawn.

5.5 Elastic Constants

For a cubic material the three non zero elastic constants

are given from equation (2.63) by

Cis = Cy1 11 = [aa,aa] + (aa,aa) ' (5.21)
Ciz = Ci1,22 = 2[a8,08] - [aa,p8] - (aa,BB) (5.22)
Cas = Ca3,33 = [aa,fB] - (aB,08) (5.23)

where the equivalent constant in Voigt notation is given on the far
left. The square bracket terms have been calculated using Bormm and
Haang (1954) explicit expressions as corrected by Cowley (1962a). Their
contribution to the elastic constants may be given as the sum of the

following short range and Coulomb expressions -
(;gj) 632 = 8(3 - 5)%ho 4 °1, (A4+2,) (3+8)? + L(AssBs)($-28) +

+ h(AafBa)(% + 28)2 4 %(43+Ba) ‘ (5.24)
"_222 ) CSR = —ERo(3-8)" + °roh (2+8)%- 2R B, (245)7 +
+(2A1-6B3) (5+28)*+(245~6Ba) (3+28) *+ZAa— 2Ba (5.25)
@:) C3% = 8Bo (% ~8)° + °/a(A,+2B,) (3+8)+2(As+By) (3+28)°
a
+ 2(Aa+Bs)(7+28)% + Z(A2+3Ba) (5.26)

v _a\ .c 3 2 2
(;: ) Csia = -2.021Zt =L ;5L7 0 +kizox+2.533Zozt+kgz%zox+
+ kazozox ' (5.27)
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where the oxygen dependent coefficients ki,ka,ks are given in table
5.5 for a range of § values., It may be shown from the explicit ex-

pressions and the definition of the Madelung constant that the remain-

ing Coulomb contributions may be obtained from

Cir = - 20 (5.28)
Cip2Cia = - M (5.29)
The above expressions (from (5.22) onward)differ from earlier
work by Thompson and/or Striefler and Barsch although some of the dis-
crepancies may be merely typing errors. The expressions given are be-
lieved to be correct (5.24)-(5.26) have been confirmed
(1) By computer calculation of the generalised terms. The
small discrepancies which occur are due to the approxi-
mations made in obtaining the expressions, mainly occurring
in the coefficients of Ao and Bo. In view of this, the full
Borm and Huang expressions were used in all calculations
presented here,
(11) The corresponding results for F4i3m symmetry were derived
by setting the &'s in Fi3m to give an Fd3m situation the
same expressions are obtained.
(iii) As there are only three ions at each distance d; and dj
from a central anion but six at dz it is expected that
if § is set to zero and the relevant A and B terms set
equal to Az and Bz the sum of the d; and d; terms equals
the d3 term. Inspection of the expressions shows that
this holds,
Similarly it has been found that equation (5.27) holds for the
coefficients of similar expressions for the Coulomb contributions
C:a and Cf.. Sammis (1971) also gives equations equivalent to (5.28)
and (5.29) whereas those used by Striefler and Barsch are quite

different.



kg kg kg 5
-8.666 =-1.477 11.528 0.0
~8.283 -2,008 12.059 0.016
-7.981 ~2,556 12,4 0.012
-7.764 -3.121 . | 12.691 0.008
=7.633 -3.699 12.826 0.004
~7.589 ~14..289 12,861 0.000
~7.633 -4.888 12,813 | -0.004
~7.764 =5.49L 12.696 -0.008

Oxygen Dependent Coefficients of the Expression

for c‘ji

TABLE 5.
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Unfortunately it is not possible to give explicit expressions
for the round bracket terms becausé of the matrix inversion involved
in their definition (equation (2.65)).

An alternative method is to use expressions for the velocities
of the acoustic modes (table 4.3a)with a least squares fitting pro-
cedure to obtain the values of the elastic constants, This method had
to be resorted to for the shell models,

Table 5.6 compares the elastic constants obtained, the terms
formila and curve refer to the use of equations (5.21)-(5.23) and the
method outlined in the previous paragraph respectively. Also included
is a comparison of the Striefler and Barsch results as given in their
paper (1972,text) and as given by my calculations from the general
formulae (formula). The acoustic data is that of Chang and Barsch
(1973).

The two values quoted for C44 of the unrestrained rigid ion
model when calculated from equations (5.21)=(5.23) are results obtained
for different sets of indices that should be equivalent to 4, In
section 5.3 on central forces it was mentioned that the minimisation
of the crystal potential with respect to intermal strain, to which
the round bracket terms correspond, is identical to the imposition of
rotational invariance, Therefore, as this constraint was not applied
to the model in question the index equivalent mentioned was illusory.
Rotational invariance does not affect the symmetry of the square
bracket terms in a cubic material.

Overall there is closer agreement with the neutron values of
the elastic constant than those obtained by ultrasonics; certainly
the difference from the Cauchy - like condition C44 = C43 is
emphasized. This accord is not unexpected as the model acoustic
modes are dependent on the fit to the experimental data obtained by
neutron spectrometry. Taking into account the fit of these models to

the acoustic mode data, particularly at low g, these results may be
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Elastic Constants (10** dynes/cm)

Cag Cqa Cya
Experiment Ultrasonics 2,808 1.547 1.532
Neutrons 3,86 1.57 2.3

Rigid Ion (CF) Curves 331 1.58 1.86
Formula T 1.58 1.87

Shell (CF) Curves 3.28 1.60 1.90
Rigid Ion(U) Curves 3.32 1.56 1.69
Formula 3.35 1.57(2.2) | 1.06

Shell (U) Curves 3.36 1.57 1,76
SB* Text 3.49 1.63 1.68
Formula 3.45 1.64 L T2

CF -~ Central Force Model

U = Unrestrained Model

¥*SB = Striefler and Barsch Model

TABLE 5.6 - Elastic Constants
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taken as more accurate estimates of the isothermal elastic constants
than those obtained directly from neutron data which are greatly

affected by scatter of data points.

5.6 Heat Capacity Calculations

The accuracy of dynamical models cannot be reliably tested by
comparison of predicted and measured molar heat capacities as these
quantities are well known to be insensitive to the form of the normal
mode frequency distribution. However these computations are a useful
null test in that any large discrepancy in the comparison of these
values would indicate a major error in the model.

At constant volume the molar heat capacity in terms of the

frequency distribution g() is given by (Born and Huang 1954)
N - -
by = ﬁ_ﬁ' kBE/.-,(zv)aexp(zv)(exp(zv)-l) 2g(v)av (5.30)

where z = h/kgT with k, as Boltzmann's constant, N, = Avogadro's
number, n the number of molecules per basis and N the number of unit

cells of the crystal. The frequency distribution is normalised by

j g(v)av = 3 (5.31)

o
where s is the number of particles in the basis. Using this and the

high temperature approximation for the exponentials in equation 5.20
it is easily shown that the molar heat capacity tends to the classical
value %?-NARE, which is 174.6 JAK for spinel,

In computatidnsoverflbw errorswhich may occur where high fre-
quency and low temperature are taken together were avoided by taking
advantage of Stirling's (1972a) hint to rewrite e®(6%-1)? as
S iR g

To obtain the frequency distribution the full 42 x 42 Her-

mitian dynamical matrix was diagonalised over a grid of wave-vectors

= k8 <



in the irreducible l/hSth of the Brillouin zone:. By symmetry this
irreducible zone may be taken to be in the quadrant for which qx’qy
and q, are positive. The wave vectors on this zone may then be

taken as those which satisfy the following conditions:-

12 a2 29 20 (5.31)
q, + qy +q, < a;a
In the calculations the principal axes were divided into
eighths and the dynamical matrix diagonalised for the resulting 29
wave vectors of the type (hx,hy,hh)'gg. The frequency distribution

for the whole Brillouin zone was obtained by weighting the contri-

butions from each wave vector according to the following scheme.

Wavevector Indices Weight (w!

hx=hy=hz;§0 8
%=%#%=0 12
hx.:hy;fhz;éo 2l
hx;éhy-‘-'-hzzo 6
hx;!hy=hz}£0 24

= 0 24

h, #bg £ by
n Ah Ab, £ O 18
with the following applied in tum to account for sharing of points

with other zones

_ w

h + yy +h = 1.5x8 /2
w

h, = 8 /2

There are then a total of 511 points on this mesh for the whole zone.
This number is also taken to be the number of unit cells N in the
crystal. The complete frequency distribution g(v) was therefore com-
piled from. 511 x 42 = 24,462 frequencies.

The origin has been excluded as the calculations would have
of necessity ignored the effect of the macroscopic electric field on

the infrared modes making them all threefold degenerate. The effect of

the omission is not serious as the associlated weighting factor, value
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one, is the lowest in the whole zons,

Although the grid is very coarse (even Kellermann, 1940 used
56 wavevectors in the irreducible segment) it is believed to be of
sufficient density for heat capacity calculations., The parameter
which decided the g?ia size used, was the required program execution
time, For example Algol 60 programs for rigid ion models use more than
eighteen minutes core time to calculate thé frequency distribution,

The distributions obtained for the modsls are shown in figs,
5.6a~5,.6f plotted as histograms of number of frequencies against
frequency. The frequency range has been divided into "bins" of 1THz
width, the curve shown being obtained by connecting the midpoint of
each bin,

Equation (5.20) has been used to determine the heat capacity
from each of the models for a range of temperatures. This, of course,
uses the tacit assumption that the normal mode frequencies are tem-
perature invariant.

Table 5.7 compares ths molar heat values for the models with
those obtained from experiment. The experiment values of Cv are those
given by Grimes (1972b) derived from the measurements of heat capacity
at constant pressure by King (1955). Although there is no difference
between these quantities in the hammonic approximation it is conven-
tional to relate the model calculated quantitics to Cv'

In all models the classical value for heat capacity is

attainsd in the temperature range 1300-1500K.,
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Temperature (K) 300 260 220 180 140 100 60
Cp(J/K) Experiment (a) | 116.16] 103.29 | 87.45 | 68.05 | 45.35 | 22,71 6.1k
Experiment (b) | 114.53 | 102,16 | 86.78 | 67.72 | 45.19 |22.70| 6.14
Rigid Ion (CF) | 116.1%4 | 105.54 | 92.44 | 76.27 | 56.60 |33.89|12,.28
Shell (CF) | 120.34 | 109.58 | 96,08 | 79.29 | 58.87 |35.39|12.28
Cv(J/K) | Rigid Ion (U) | 110.29 | 98.58 | 84.27 | 67.01 |47.05 |26.13| 8.19
Shell (U) | 115.28 | 103.26 | 88.23 | 69.86 [48.55 |26.49| 8.13
SB* 110.37 | 99.52 [ 85.81 | 69,09 {48.99 [26.35| 6.80
Thomp son 102,11 | 90.00 | 75.64 | 58.90 [40.08 [20.74| 5.49

(a) King  (1955)
(b) Grimes (1972b)

CF - Central Force Model

U = Unrestrained Model

*SB -~ Striefler and Barsch Model

TABLE 5.7

— Heat Capacities
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CHAPTER 6

DISCUSSION OF RESULTS




6.1 The Force Constants

It has been shown (Leigh et al. 1971, Cochran 1971b) that, even
in principle, it is impossible to obtain the force constants of a solid
from ansideratim of lattice frequencies alone. The set of force con-
stants so obtained will not be unique regardless of the number of in-
dependent frequencies taken into account and the degree of accuracy to
which the model fits the data. Dolling et al. 1965 have reported such
a case where two different sets of parameters fit the data almost equally
well,

To obtain a unigue and correct set of force constants it is
necessary to measure the eigenvectors of some of the normal modes. This
is possible using inelastic neutron spectromstry (Harada et al. 1970)
although rarely performed. The eigenvectors are expanded in terms of
the symmetry coordinates and the coefficients deduced from measurements
of intensity of the same mode in different Brillouin zones within the
inelastic scattering cross section repeat volume, However in materials
such as spinel which do not have every ion at a centre of symmetry the
coefficients cannot all be taken as real., This raises a problem similar
to that in crystallography where structure factors of crystals without
a centre of symmetry have to be obtained from intensity measurements.

In both cases phase information has been lost and the problem consequently
made more complicated.

An alternative is to use isotopia: substitution thus changing
the atomic masses but not the force constants. However neither method
is beliseved to be particularly accurate.

Bearing this in mind and also Cochran's comment that "it seems
improbable in practice that there ever will be an equivalent set of force
constants having a shorter range than the correct set" it is neverthe-

less of interest to compare the parameters of the various models and

examine their implications.
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Table (5.3) lists the parameters for the models used in this
work together with those of Striefler and Barsch (1972) and Thompson
(1977). As the latter model gives markedly low values for heat
capacity (table 5.7) and in general does not agree with the optic mode
frequencies (table 5.4) it will not be considered further.

The Striefler and Barsch model (SB) assumed central forces
with short range potentials of the type

¢ = G ex(-ry/p;) (6.1)
where Ty is the ith independent distance. The A and B parameters are
then obtained from equations (2.41) and (5.9). It was further assumed
that the p, for the AM~0 and Mg-0 interactions were equal. The remain-
ing Go,Gt,Gi and Pospy parameters were determmined from the static
equilibrium conditions (5.12) and (5.13), the E, mode and fitting to
the two lowest infrared absorption frequencies as given by O 'Horo
et al. (1973).

All models have similar values for Ao,At and Bg. Amongst my
models the value of Bt is greater in magnitude than By whereas the
opposite is true for SB which may reflect the difference in data used
for optimization.

There is much less agreement amongst the oxygen force constants.
However in all models the magnitude of the oxygen-oxygen interaction
parameters are less than the cation-oxygen patameters, even among the
central force models where Bs and Bz are obtained from the static
equilibrium conditions. This seems reasonable as the inter-oxygen
distances are greater than. anion-oxygen intervals, also in view of the

tight oxygen packing it is not expected that these repulsive inter-

actions would be large.

Expressing the central force model paramsters in terms of
potentials of the form of (6.1), the following values of p are

obtained:
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Rigid Ion Shell Model SB

po(g) 1 0.305 0.30%4 0.325
py(R) 0.540 0.533 0.325
Pi(%) -3,42 15.7 0.275
pa(A) -1.78 -2,35 -

The value of the octahedral parameter po agrees well with that found
by Striefler and 3arsch and is typical of values found in other

structures (Catlow et al. 1977). Py in my models was not set equal

to po and its greater magnitude may reflect the larger magnesium ion
radius (A¢ = 0.553, Mg = 0.583 and oxygen has a radius of 1.422,
Shannon and Prewitt, 1968). The negative sign.on most oxygen para-
meters and their magnitude indicates the short range repulsion actually
rapidly incfeasas with distance, However, as these parameters are in
part determined by the central force conditions it may not be physically
meaningful to compare them with the independent parameters pe and Py
The %aluas-of Yox obtained imply that the core of the oxygen
has a small positive charge, But this parameter by itself has no
clear physical interpretation as demonstrated in models for othar
materials where anomalously large value of Y are found e.g. -4.Lke
for F in MnFs from Cran and Sangster (1974a). Often Y and X are com-

bined to give the electronic polarizability of the ion using equations

such as
YO xa v8. 38
- m 6 . 2
¢ Kbx+Rxx(77’q=o) ( )

However as pointed out in section 2,5 the polarizability of particular
ions may only be formally expressed in this manner for diagonally
cubic crystals. Although, the very concept has been challenged, for
example, by Pantelides (1975) who shows that even for alkali halides
the high frequency dielectric constant is determined by intsr-ion
rather than intra-ion interactions. Hence the idea of associating

a polarizability with individual ions is meaningless, although in

covalent crystals the converse appears to be true, Neverthdess an
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experimantal value for the polarizability of ths oxygen ion in MgA£:0,
has been given by Brun and Hafner (1962) as 0.75Ka. Using equation
(6.2) comparable values of 0.7733 for the shell model and 0.5LE3

for the central force shell model are obtained. Continuing the fiction
of diagonally cubic oxygen sites it is instructive to apply the

Clausius-Mosotti relationship:

L an;+1
Ea. Z % = () +2 (6'3)
i

where the summation is over the oxygen ions in the basis. Substituting
the experimental value of €(w) (from Vedam et al, 1975) the result
for - is 1.5535, twice as large as either the experimental or shell
model results. On the other hand substitution of the shell model
polarizability gives €(w) = 1.73 in good agreement with the value
calculated from equation (2.67), €(w) = 1.75. Therefore as eguations
(6.2) and (6.3) work well with only oxygen polarizable it appears that
the contribution to the dielectric susceptibility from thoe cations is
significant if made polarizable. Emphasizing Pontelides' conclusions,
Bilz et al. (1975) have shown that it may be important to parameterize
very small cations, such as A€ here, in terms of K and Y in shell
models, The argument is that regions of heavy anion shell ovarlap are
equivalent to placing dipoles at cation sites. A similar conclusion
was reached by Cowley et al. (1963) who pointed out that this situation
arises because the shell model does not take into account the de-
formability of the electron clouds.

The valua of the dielectric constant substituted in equation
(6.3) must be wholly real but in real crystals anhamonicity leads to
complex constants and therefore multiphonon contributions which have
been ignored here,

A different way in which the effect of the shell model para-

meters may be revealed, for any structure, is through the apparent
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charge matrix. It is common in rigid ion models, for example, to have

the ionic charges as variable parameters to account for possible
polarizability of the ions. In the models presented here the ionic
charges are maintained at their nominal values to reprasent an ionic
s0lid and by comparison to determine the effect of polarizability. The

apparent charge matrix may be evaluated by the following equation

(Cowley, 1962¢c)
X = 2z - B(Oplo)-iy (6.4)

where the matrices are defined iﬁ seé%ion 2.5. The product of this
charge with the macroscopic electric field provides thes extra restoring
force which raises the longitudinal infrared modes above the transverse,
As rigid ion models are well known to give too high values for the fre-
quencies of the longitudinal infrared modes it is expected that the
apparent charges are less than the nominal charges. For ths unrestrained
shell model the value of the apparent charge on the long diagonal for
the oxygen ion is ~1.63e and for the central force shell model =l.748.
However in both cases the sum of the elements on any row for the anions
must equal -2e as the oxygen is the only ion polarizable. In neither
case does the magnitude of the off diagonal elements exceed 0.,1l5e. It
should be noted that the apparent charge given by equation (G.L) is not
the effective charge of Szigeti (1949,1950). That quantity may only be
defined for diagonally cubic materials and for these substances may be
related to the apparent charge matrix via the high frequency dielsctric
constant (Cochran 1969).

Although a 25% reduction from the nominal charge has been
effected resulting in a drop of up to 7THz in the highest frequency

infrared mode (Table 5.4) it is insufficient as thsese modes are

still 5THz too high compared to expsrimental values,
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6.2 Comparison with Experimental Data

From the fitting parameters in table 5.3 it 6an be seen that the
superior agreement with the refinement data of the unrestrained modals
is insufficient to justify the use of two extra parameters, Comparison
of the acoustic mode graphs (figs.5.5) and the zons centre frequencies
(table 5.4) reveals that the inferior fit of the central force models
can be almost entirely attributed to the 50% discrepancy in the E,
mode frequency. Striefler and Barsch (1972) have shown that if the
central force model is extended to include three body forces of the
type of Basu and Sengupta (1968) about the magnesium ion the Aig and
highest ng frequencies may be varied without affecting the infrared
modes, Although it is now known that the top '1‘ag mode is greatly
influenced by the Az and Bz parameters it is expected that the in-
clusion of such forces could improve the central force models by
allowing readjustment of the Eg frequency without detriment to the
fit of the other modes.

All models fit the acoustic dispersion curves from neutron
data fairly well, particularly in the A and A directions, Along
these high symmetry lines the curves are almost linear to the zone
boundary. This type of behaviour is not unexpected for complex
crystals which tend to have large unit cells and hence smaller
Brillouin zons volumes with consequently less space in which to
exhibit dispersion phenomena, In figs.5.5 calculated curves of thse
same representation have been drawn conventionally in that these do
not cross each other. However as these points do not in general dis-
appear with small changes of the parameters but simply mowe I believe
these regicons to be areas of actual curve crossing. Therefore the fi%
of the mod els to the neutron data must often be considared in terms
of two modes of a given irreducible representation and not just the
lowest or acoustic mode as diagrammed. Referring back to the T point

the interfering modes are usually the ng mode for the A direction
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and ths Tau along the A line. Together with the lowest Eu moda the
latter frequency was often found to be imaginary in the process of
model refinement. Striefler and Barsch also reported a similar
difficulty with this optically inactive mode. In Chapter 3 it has
been shown that the Tzu will be soft for a second order transition

to the tetragonal space group I42d. However although such a transition
has been reported for CuCrz04 none has yet been reported for MgA€z04.

Agreement in the 2 direction is not as good, particularly the
lowest transverse 3 mode at the zone boundary. The lack of data
for the other acoustic modes inhibits discussion of the fit towards
the zone boundary.

Considering the simplicity of the SB model and its deter-
mination of parameters from zone centre data aily the fit to theacoustic
modes is impressive. In comparison to the othar models thes acoustic
curves are somewhat steeper as reflected in ths larger elastic con-
stants (table 5.6). Using the method given by Striefler and Barsch
(1972) I am in agreement with these authors that the intemal strain
contributions to the elastic constants for cis and cia depend on the
Aag and E_ modses and for cgq depends only on Tag modes., However care
must be taken with the non-rotationally invariant (unrestrained) models
as the T:Lg mode which transforms as an antisymmetric second rank
tensor will also contribute to c44.

Although the calculated elastic constants for all models do
not agree well with those from ultrasonic data this does not imply that
they are incorrect. As explained in section 4.4 the elastic constants
from neutron data, which the models reflect, are of a different thermo=-
dynamic nature to the ultrasonic measuremcents, The disparity between
the two data sets is due to the presence of anharmonic effects,

Examining table 5.4 it is noticeable that the lowest Aau’Eu’Tau

and T, modss have similar values for all models even though thsse

were not used in model optimization. This is a result of the refinement
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of the cation-oxygen parameters to coincidentally almost equal values
particularly those relating to ths aluminium oxygen interaction, 1In
contrast modes such as Eg and EL‘:Lg which are known from group theory
only to involve oxygen motions (table 3.2) vary markedly between
models.

The effect of polarizability is apparent for all high fre-
quency models, not only the longitudinal T;u modes where it produces
a rgduction of up to 7THz but also Raman active modes Aag’ the highest
Tag modes and the inactive Eu and to a greater extent Aau modes,

In all models including SB there is agreement that an infrared
absorption band exists in the region 12,5-13.5 THz. This was expected
for the SB model which was refined to that frequency, however this is
not the case for the models presented hers, Thers has been some doubt
that the experimental mode at 12.8 THz was a pure one-phonon mode in
view of its low intensity and the absence of a corresponding discontin-
uity in the Kramers-Kronig analysis. But in all my modsls the ratio
of the longitudinal to the transverse frequency for this mode has the
smallest value of the four infrared bands. Therefore it seems reason-
able to conclude that the mode at 12.8 THz is in fact a one-phonon mode
for MghA€z04.

Grimes et al. (1978) have shown that the ratio of the experi-
mental values of the dielectric constants e(o) and €(0) is very clcse
to that of the product of the ratios (wL/mT)’ for the infrared fre-
quencies - that is, the Lyddane-Sachs~Teller (LST) relation  holds, As
discussed in the previous section the calculated values of €(e) from
the shell models are about 50% low, The static dielectric constants from
the LST relation (equation (2.68)) have values about 23 compared to 8.4
(Wang and Zanzucchi 19?1). Among the calculated values the greatest
contribution to the product of the frequency ratios is from the
splitting of the lowest T, mode (table 5.4). Ignoring this contri-
bution the values obtained €(0) are in the range 7.6-8. Thus it would
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appear that the infrared mode found experimentally at 9.23 THz is also

of one phonon origin and the lowest infrared band in MgA€304, although

the models predict a much lower value.

The two lowest infrared bands had been excluded from the data
used for model refinement because the existence of the higher of this
pair was in doubt and the speculation by Striefler and Barsch (1972)
that there may be an infrared mode lower than that at 9.23 THz. In re-.

trospect it appears that the model parameters may have been improved if

this data had been included.

6.3 Heat Capacity:Comparison with Experiment and Grimes Interpretation,

As the models have been refined to room temperature data com-
parison should only be made to the experimental value at 300K, In
general agreement is good with the exception of Thompson's model
which predicts a value about 10% less than that me asured (table 5.7). As
heat capacity is insensitive to details in the frequency distribution
of the normal modes this difference demonstrates that the Thompson
model is unsatisfactory. The low value is produced by over population
of the high frequency end of the density of states.

If the assumption of thermally insensitive normal modss is
valid the temperature variation of heat capacity is well accounted for
by the unrestrained and SB models. However my central force models
consistently predict high values with decrease of temperature.

The frequency distributions of each model pair (figs,5.6) are
very similar, the shell model spectra terminating approximately 7THz
lower than the corresponding rigid ion model. All spectra have two major
prominences at 5.5 THz and about 14 THz. Another common feature which
is more distinct in the central force models is a peak at about 10 THz.
The breadth of this feature producss the characteristically higher heat
capacities for this type of model, It is interesting to note that

the Thompson's time of flight spectra from inelastic neutron scattering
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rdveals a region of intensity between 10 to 30 THz corresponding to un-
resolved optic modas with the highest peak at 13-15 THz. This data
however is unsatisfactory because resolution and structure factor
variation effects are unknown.

Comparing with Grimes (1972b) distribution, fig. 1.6 produced
from Einstein and Debye functions at the infrared absorption frequencies
the highest frequency peak does not have a counterpart in these spectra,
From table 5.4 it is found that although it may be possible to relate the
first two mentioned peaks to the first and thirﬁ infrared bands this is
purely fortuitous. For example the Tag’Tau and T'iu modes have similar
frequencdi es,

To account for heat capacities up to room temperature any pro-
posed density of states need only be es;entially correct below the
frequency equivalent of 300K ie: 6.25 THz as ths population factors for
modes of higher frequency will be less than unity. Therefore the con-
tribution of peaks at frequencies higher than that of the lowest inffa—
red absorption mode at 9.23 THz (equivalent to 443K) will be small and
decrease with reduction of temperature.

To obtain the proposed density of states Grimes showed that the
acoustic mal es intercepted the zone boundary at frequencies approxi-
mately half that of the infrared modss when calculated from elastic
constants and assuming a linear q dependence, This variation has now
been shown by experiment to be essentially true. Then if the modes
at the zone boundary are supposed to interact with themselves the infra-
red spectra could be explained in terms of two phonon modes. This is a
tacit assumption of at most Fi3n symmetry for an Fd3m structure does not
allow overtone states, However it may not be necessary to make this
simplification., Consider table 6.1 of the X point frequencies for the
unrestrained shell mode. The selection rules of Gashimzade and

Rustamov (1975) show that the only groupings of irreducible represen-
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Mode Frequenciss

.xi (THz) | Xa(THz) | Xo(THz) | X, (THz)

7.4 0| 1031 | 4.9 6.08

10.87 12,09 | 7.08 | 10.54

15.39 17.46 11.91 14.31

17.68 13.18 16.40

18.59 14.98 23.29

24.18 16.85

26.48

X Point Frequencies of the Unrestrained
Shell Model

TABLE 6.1
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tations that do not produce combination states anr14x4,§xaand X1Xa.
Acoustic modes intersect the zone boundary from the [100] direction
at X; and Xs points and from the [110] direction at Xs and X4 modes.

These may then interact with each other to give similar sum frequencies,

for example,

X2.X3 = 4.91 + 10.31 = 15.22 THz
Xl.X} = }-|-09l + 10 087 = 15¢78 THZ
X4.X3 = L4.91 + 10.51 = 15.42 THz

which are approximately the same as the third infrared absorption band
for the model at 15.56 THz (table 5.4).
Therefore Grimes' calculation for c; appears to work because
i) The insensitivity of the heat capacity to the form of the
frequency distribution.

ii) The proposed frequency distribution need only be reasonably
accurate below the frequency of the first infrared to account
for heat capacities 5ver a temperature range up to room tem-
perature.

iii) The approximation of linearaoustic modes is good, Howaver
because of the large number of optic modes and allowed
transitions it is virtually possible to combine any zone
boundary frequency with the others to produce sum or difference

modes approximately equal to the infrared absorption fre-

quencies.

6.4 Four Force Constant Model.

The models discussed so far describe magnesium aluminate as a
completely ionic crystal. Partial covalent bonding may be represented
in this formalism by allowing the core charges to be variable, Whils
this is a common paramaterization it is somewhat difficult to separate
such effects from those due to polarizable atoms. To enable a quick

comparison to be made between ionic and co-valent effects the zone
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centre frequencies have been calculated using the four force constant
model described in the introduction (section 1.3.5). As the matrix
elements given by Bruesch and D'Ambrogio (1972) were used the model
describes MgA£z04 as a covalent,.. normal spinel with § set to zero.
The eigenfrequencies and force constants are given in table 6.2,

In comparison to the ionic models the fit to the higher fre-
quency Tag and T;u modes is improved although the value obtained for
Aig is somewhat low, Attempts to fit all four infrared modes resulted
in imaginary values for the frequencies of the Eu and Anu modes. Unlike
the models of covaleant spinels described in Chapter 1 the ratio f,:fs
is far removed from 2:1. The near zero value of f3 results in modes
involving aluminium-oxygen bond stretching such as Eu and Anu having
low frequencies, The high value of f;, the aluminium-oxygen bond bend-
ing constant, raises the frequencies of modes such as Tau above that
found in ionic models. Thus it would appear that the likelihood of
phase transitions by either of the Aau or Tau modes predicted in

Chapter 3 depends on the degree of covalency present in MgA€304.

6.5 Conclusions and Suggestions for Possible Further Work,

The lattice dynamics of magnesium aluminate are well described
by models in which the crystal is treated as completely ionic. Cation=-
oxygen interactions dominate the lower frequency spectra end Madelung
energy. The inclusion of polarizability for the oxygen ions improves

the fit of the higher frequency modes but is insufficient to completely
describe the materials dielectric behaviour.

The unrestrained models are in closer agreement with experi-
mental data than those employing central forces, The optimization
parameters, however indicate that the improvement does not justify the

increased number of parameters., It is doubtful that this is an accurate

conclusion as the number of parameters used is comparable to the
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Mode Experimental Four Force Constant
(THz) Model (THz)
A 23.16 20.96
18
. 12,31
E 12.3 3
T, - 9439
A - : 4.29
au - 21.17
E - L.13
u - 21.1%
Tau - 13.47
- 14.79
T, 9.32 7.87
& 14,75 14,80
20.12 20.53
T 9.15 11.97
i - 14.67
14054 ' 15.68
20.09 : 20.91
Force Constant f4 fa fs fq
(mdyn./K) 0.697 | 0.222 | -0.072] 0.498

Four Force Constant Model: Zone Centre Frequencies and
Parameters

TABLE 6.2
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number of data points. The greatest disparity between these models 1lies
in the predicted frequency of the Eg Raman modes probably due to the
difference in oxygen-oxygen short range parameters.

Of the previous models that of Striefler and Barsch describes
the low frequency region of the spectrum well, However Thompson's
generalised rigid ion model is unsatisfactory because of its failurse to
fit the heat capacity data to a reasonable degree of accuracy. The
success of Grimes formula for these quantities is due to the essential
validity of the assumption of linear acoustic modes and the fact that
it is only necessary to get the frequency distribution correct at low
fraquencies. The four force constant model works fairly well for this
compound but reasonable interpretation of its parameters is impossible
because of the neglect of Coulomb effects., However it does show that
the possible phase transition to the Fi3m structure brought about by the
softening of an Azu mode is probably due to short range effects.

Two soft modes are predicted for possible second order phase
transitions to tetragonal structures - T, (T4se/a), Tm(IZ'.zd). The
latter being the only structure of the two that has been reported and
its soft mode Tau has often been found to be unstable during the re-
finement of the ionic models. As this mode has a highsr frequency in
the four force constant model this transition - if it is to occur in

MgA£304 is probably due to long range Coulomb effects,

The models presented here could doubtless be improved by the
introduction of extra parameters to account for covalent and further
polarization effects. However the lack of experimental data and the
vast amount of computer time required for optimization would not make
the task worthwhile. The best that could probably be done for MgA€z04
is to re-optimize the models presented here to include the two lower
reported infrared modes that are now known to have a one-phonon origin,
Although even this-is unlikely to increase understanding of the dynamics

much further. In view of the linear acoustic modes and fairly flat
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optic modes it would probably be more profitable to construct models

to represent the zons centre behaviour for a series of spinels,
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APPENDIX I

Independent Elements of the Short Range R and Coulomb C
Interaction Matrices at the Brillouin Zone Centre

The elements given below  include translational invariance terms
for the short range matrix but not for the Coulomb matrix. In both
cases, elements of the type Ma‘s(fcfc') for the magnesium ions (k,k'=5,6)
are zero when a # B. For general labelling of ions and short range

parameters see Tables 5.1 and 5.2 in main text.

] v t ?a 1 *
k k' a B 3% Cqﬁ (k') 2 Rqﬁ(xx )
1 1 1 1 4,189 Ao+2Bo
1 2 1 1 L..479 0
13 1 1 ~8.523 0
15 1 1 ~4.189 0
1 7 1 1 -4.,189 0
18 1 1 ~39.006 -Ao/2
19 11 13.220 -Bo/2
5 5 1 1 -4.189 %{At+2Bt)
5 6 1 1 -4,189 0
5 7 1 1 -4,189 0
51 1 1 ~4.189 - 2(a,+2B)
7 7 1 1 -4.189
7 8 1 1 5.158 -‘EBﬁBa)
7 9 1 1 -8.862 -z A1+Aa+Bg_+Ba)
711 1 1 -4,189 0
712 1 1 ~4.257 -Ba
713 1 1 -8.411 ~5(A3+B3)
11 1 2 0.0 2(Ao-Bo) 8/(3=25)
12 1 2 0.0 0
15 1 2 3,374 0
1 7 1 2 -0.965 0
18 1 2 -2.868 -(8/2) (Ao=Bo)/(%=8)
1 9 1 2 0,124 ~0
5 7 1 2 3,009 0
511 1 2 -18.60L -3(A.-B,)
7 7 1 2 0.0
7 8 1 2 0.0 0
7 9 1 2 ~15.446 ~%(A1+As=(B1+B3))
711 1 2 -0,183 0
712 1 2 0.0 0
1 3 1 3 =14.461 0
713 1 3 14,242 %(A3~Ba)

*Only terms linear in & havd been retained in the expressions for the
elements of the short range matrix R. It is to be noted however that

the translational invariance term Ria(11l) contains a linear contribution

for the sum of elements equivalent to Rm(19)' These terms which are
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almost zero when taken alone do contribute. significantly to the

translation invariance term in summation,
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APPENDIX IT.

Expressions for the Elements of the Block Diagonalised Matrix
for the Optically Active Modes in Rigid Ion Models

. e?
All elements are quoted in units of /va.

zo,zt,zox are the charges on the octahedral tetrahedral and
oxygen ions respectively in units of e,

Similarly the ionic masses are given by mo’mt’mox'

Mode: A:.

D(1,1) = Z (7.461)+2 zt(39 57)+z’ (96.365)+

OKO

+A/24Bo+ho/2 -(§§§72)(Ao—Bo)+2(A1+A3)+ZBg

Frequency of Aig = JD(1,1) x %ﬂ THz
ox

Mode: E
P
D(1,1) = zoxzo(21.402)+zoxzt(—7.218)+zgx(u.787)+
) )
+ Bt/2+Bo<l - (W2)) +Ao<% + W)) + %(Ai .|.Aa)+
+ %(B1+B3)+2B3

Frequency of Eg = JD(1,1) x %ﬂ THz
ox

Modes: T

———

D(1,1) = ¥aA +2Bt)/ht

tZox(61:13) + 43(A-B ) Amem

- D(1,3)=5(ay+2B, ) Amm
D(2,2)={zazox(lz.108)+ztzox(23.973)+z:x(63.135)+ (oA +B,)+

& 1 8
+BO<1 +(;‘:—372)>0A0<2 —(m) A1+A3+Aa+-]31+Ba+Ba}/mo

D(2,3)=12,2,,(~6.572)+2,2 . (22.05)+23 (~40.8)+|2(3(A ~B, )~

D(1,2)=(z

- sy (bo-Bo)-hatBa) Vi,
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D(3,3)={2,5,,(16.755)+2,Z  (8.378)+Z0" (33.509)+ 4(A +2B,)+

+Bo+ho/2+4Bo+2A, }/mox
Taking the three eigenvalues of this symmetric matrix to be fi’

the corresponding frequencies v, are given by

v; = 5.157in .THz
Modes: T

il

D(1,1)= 'zoa(5?.01)+zozt(1.63)+Zozox(47.16)+AQ<1 +G:‘-28,:3-)) +

o))

.D(1,2)= 2,2 (-9 543)+2 c)zox(ls 304)4-(%)(%-30)} /mo
D(1,3) = Zo2,(13 .496)/Imm,

D(1,4) 5 zozox(hB.049)+Ao/J§)yjmomox

D(1,5) =

OOX

(-13.65) - 7225y AO-BOJ} o

D(2,2)= ztzo(8.578)+zo(8-378)+Zozox(33.51)+Ao+2Bo] /mo
D(2,3) = 2,2,(-11.848) I,

D(20) | 22,(9-258) + Epylho-20) | MEGES,

D(2,5) = zozox(-23.695)-%(ﬁo-Bo)] /\’“‘T’ox

D(3,3) = z:(-a.37s>+%(at+23t)} o

D(3,4) = thox(—)"l"'lo 9)4:%(At-nt)} /Jm_tg

D(3,5) {ztzox(-16.756)-§(at+25t)} /Jﬁt_m;‘

a 3
D (kL) —[Zozox(lz.108+thox(25-975)+Zox(18.125)+ i(20,43,) +

+ Ba(l + CEW2))AD<% -(#)) + Ai+A3+B1+Ba+ AB% /mox
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D(5,5) = zozox(16.755)+zozt(8.378)+ %(At+2Bt)+Bo+Ao/2} /mox

Taking the five eigenvalues of this symmstric matrix to be

fi’ the corresponding frequencies v, are given by

v, = 5.157in THz
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APPENDIX ITT

Symmetry Coordinates at the Point T and Along Lines A,A,J

The symmetry coordinates are tabulated in such a fashion as
only to show those parts of each forty two dimensional vector
that are not necessarily zero. As no symmetry operation may inter-
change inequivalent ions only the sublocks shown in fig.III-1
for each ion type have been given. For clarity even amongst thesse,
zero value elements are represented by a dot. All other elements
are given by a symbol (eg.g) equivalent to the complex exponential
of a given angle, for example

g = exp(i6).

The angles given in the tables refer to the symmetry co-
ordinates at q/qmax = 0,05 for each direction, except of course
at the I point. The asterisks indicate complex conjugation

and i retains its usual meaning, J-1.

The elements are listed in the order of the labelling of
the ions in Table 5.1: rh(x),ﬁ =1,2,3; kK = 1,2 Jalhja
changing most rapidly.
To block diagonalise the dynamical matrix ths coordinates
have to be first normalised and arranged in order of the repetition
index for each representation varies before the part or index.
The coordinates given then have to be multiplied by phase factors

exp(-iq.r(«)) to agree with the form of the dynamic matrix used

in this thesis.
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I' Modes: Symmetry Coordinates

Syubol Angle
a -60°
b -90°
1 0°
Repre~
seﬁtation Aau Tsu Tiu Eu
Partner 1 1 2 5 1 2 3 1 2
1 1 -1 . 1 . 1 . . 1| =ia | ia¥
1 (-1 . 1 1 ° . 1 1 o | =la¥ ie
1 N 1 -1 . 1 1 N 1 - b | b
l —1 1 [ -1 * -1 . - 1 -i& ia*
-1 |-1 . -1 1 . . 1l =1 . ia%-ia
-1 . 1 1 o 1 1 » -1 . bY b
-1 1 1 . 1 o -1 ° ° 1 ia —i.a.*
1 1 . -1 |-1 . . 1 (-1 . ~ia¥ ia
-1 . | =1 -1 o 1 =1 . 1 o b% b
-1 |=1 |=-1 . -1 o 1 . . 1 ia |-ia
-1 1 . 1 (-1 . o 1 1 . iaM-ia¥*
1 . -1 1 . 1 | -1 . =1 | . b| b*
Repotit- | 5 1 | 1 1 {1212 2] 1|2 1] 1
ion
Octahedral Ions
Representation +3 ~3u
Partner 1 2 3 1 2 3
o . 1 ] ] l
. 1 » . 1 o
l - - 1 - -
. . "l . . l
™ -1 - - 1 ]
- . . 1 ° o
Repetition 1 1 1 3 3 3

Tetrahedral Ions
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I Point Modes

_.._J...lﬂ_ a1—._l el] -1__4 a.l-.l _...I__I-_ Y G ! -_I—*1_l. —
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5] 1 ! i it i I
| ] ¢} o] =]l e}l ] o] ]| oj )] sjrdjd] o (8]
| i 1 ! i 1
] o] *}r=i] o] e]—] o] || o} o]~ o] o)l o] olrd] o] *l] o] N
B I 1 ! 1
ol | of )] o|—|] }A] ] ejd]] ]| —] ]|} o]}~ o
i [} I i I I
ol=] ] o] o] ol—} o] o] ] +| o]—} o] e]l] ] ol]| o] oj] » MYy
a0 l | ! |
@ |
& A o] o]l o =]—] o[ Hl=] ==l Al A A )
1 11 1|t ! | 1
o] ofrd] o] ef ] o of ] o] =} ] +] o]~} o] =]] of *|]| ] *|~ —AJ
| I I !
—~
aaNnRNonRERnROORENOEEAREER
3 )
a ||| A A S S S A A S S A ™
=5 et | I RN it
aaeE RN R R R
=}
O
=
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w0 @ o
o o +
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Anions
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T point Modes

Representation Ti“ l Eg Eu
Partner 1 2 3 1 2 1 2
1 . 1 . . 1 a a¥* ~ia ia*
1 . - 1 1 o a* a ~ia* | ia
. 1 1 . 1 . 1 1 b b¥*
1 o =1 R n 1 a a* | ~ia | ja*
1 . . 14 -1 . -a* a ia* |-ia
N 1 1 . 1 ol =1 |=1 b*| b
-1 . 1 . o l| -a |-a* ia |~-ia*
~1 . . 1 o 2% | -2 ~ig¥* | ia
o 1] -1 . -1 . 1 1 b b*
1 o =1 . . 1| =a |-a* ia |-ia*
-1 . . 1) -1 o a* a ~ia* | ia
. 1] =1 . 1 . =1 -1 b* b
1 . 1 . o 1] -a |=-a* | -ia | ia*
1 . - 1 1 . -a¥* | -a ~-ia* | ia
. 1] 1 . 1 o | =1 (-1 b b*
-1 o =1 o . 1] -a |-a* ~ia iag®
1 R . 1] -1 «| =a* |-a ia* |~-ia
o 1 1 o | =1 s 1 1 b*| b
1 o =1 . . 1 a a¥* ia |=ia*
-1 . . 1 -1 . -a¥ | -a . ia
. 1] -1 o 1 . 1 1 b* b
-1 . 1 o ° 1 a a* ia |[-ia*
-1 . 1 1 . a* a ia* |~ia
S 1] 1 o | =1 o =1 =1 b b*
Repetition L 5l 4 5 4 5 1 1 2 2

Anions (contd)
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A Modes: Symmetry Coordinates

1

Symbol Angle Symbol Angle
a 90° g 45°
b -81° h 330
c 45° k -27°
a n° 72 -15°
e 39° m =87°
f -21°
Representation Ay Qf As
Partner 1 1 1 2
a - » -] d- ) ) - "'d* ) . -
a . - . -d* . - ° d . . .
a | o « | 2% . - © a¥ . . .
o b . ° . e ° o o A & o ° Octahedra.l
. . | b b o o | £ _g* o o kiik Ions
« | e |b ~b| o | lhiih = A £ =il
olalb] =b] el olklik |, ] o ] 2]. g*
- b @ . e [ o o o a8 - °
P bl o | o | £HE 5 . h| ih
o bw )b b| « | - L& £* | . » ml| im
o | alb -b| | . | mim . . 1169 &%
S S o] o B ol o « |=Db ol s
Repetition 11213 T3 24 3] M B 1 20 3l
Repetition Ay Ay
Partner 1 2
c [ ic | g]| g*| € =1L
c ic L1-ie | g g* Tetrahedral Ions
c | ic |ieq 2*[ie* Z¥
-c* | dic*[-¢%-il*|-g* -
-c* | ic¥|-gM —g [—£* | ~il*
—-c* ic*|ie| -& |ié -£
Repetition L 515/ 61 5 6

- 185 =



A Modes

Representation Ay Aa
Partner 1 i

] o - ic . - o o

ro- [+ . o ic . . . .

c . . ic . . . .

o c . P - 5 3 e

. o c . . ic ¢ ic

. ° C . - ie - Lic

. . ] . . ic c ie

. o C ° . ie - ic

- (4] . . ic @ » .

® . c o ° ie -c fic

. C . . ic 2 . s

s o c . o ic ¢ fie

-o¥ s s ic* . » . -

-c* . o i |- S0% o . . .

—-c* o ~ ek ® . . s

a —C* o [ ] ic‘ - [ -
i P ~c* w ° ie* | —c* | 1c*
o . -c¥ A - ie* c¥* |=ic*
. o -c¥ . . ic* c* |-ic*

. |=c* s » ic* = . o

s A —c* = ° ic*| —c* | ic*

o . -c* o . ic*® | —c* ic*
. o | =cC* o o« | ic* c* |=ic*

a -c¥ 2 2 ic* : e [

Repetition 6 7 8 9 {10 | 11 2 3
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A Modes: Symmetry Coordinates

Symbol Angle
a 0~
b -85.5°
c -83.25°
a 45°
e ~40.5°
Representation| 44 Ayt Ag A Aa!
Partner 1 1 1 2 i 1
a . o | =A* “ s d . . a .
. a a d » d¥ —-d*{ ., [=-d | a - a
= a | a* d M a¥l d*¥*| . {=d ] a*| . a
a . . . d* » - - . . a .
. a* a-* d. . d* _d* . _d- E-* . B*
. | a*|a |-d . d¥ d*| ., |=-d!| a . ar
b . . - ie » - -8 - | . -b -
. I-b |Db e . is [-ie « | =8 | =b 2 b
. b b e « |=ie |=ie . o | =b « |=b
b - - . —'iB . . a L . -b .
. b b e = ie |-ie .| =8 b . | =b
. |I-b Fb | e . |=ie |=ie .| el b .| b
Repetition 1412 |1 11f 2 3] 1) 2 3[ 14 3.} 2
Octahedral Ions
Representation | Ag As Ast
Partner 1 ji B 2 L
o] © . ° o "'ic
- —iO * . -iC o
-;* : ? 'f : —ic* Tetrahedral Ions
. o ic*| ~icf* ., .
. [ o | =C¥ »
Repetition 30 41 51 4 5 3
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A Modes

- 189 -

mggiggen" Ay Ay' Bz - g
Partner 1 1
d o —-a* o . . . . d » d* °
N a . | -d¥|] d a*| d4d |-4* N d . a*
. d . | =d*] ~d | =d*| -d a* o d . a*
d o ~d* . . . . o d o a* °
. -d . a¥*| ~d —-d*| =d ax = ~d s -d*
. -d . q* d d d -d* = =d . s R
ie*| o o¥ R . E - o | ~ie* . e :
. ie* . o¥|-ie*| e*| ie* e* . ~ie¥ . e*
.~ |-ie* | . |-e*|-ie*| e*| ie* | e* . ie* | . ~g*
ie* - e* . . . L] s ~le* = ot 2
. |-ie* | . |=-e*| ie*| —e*|-ie* |-e* o =de*| o S
N 1e* A e*| ie*| ~a*|-io¥* |-o¥* . ie* o -g*
—ak . d . . o ° ° ~ig* . ha o
1T —a*| . | &l -a*|-a | —da* | a . | de*| . | -e*
L —a* | . d ax*| d a* [=d . |-ie* | . ke
~-d* . d o » . o . =d* s ~d S
. a* . -d da* d d* |=d . a* . d
.| -a*] . |-d | ~d*}=d | -d d . a* 1 . d
ie . -8 . - . » ° -ie . -8 .
. |=ie o ie e |=-ie =] ° ~ie . 8
R ie . -8 is a |=-ie e . ie . e
. . -0 - o . . ° -ie . -8 °
T . | ie . |=6 |-ie |~ | ie |=-8 o ie o =8
o =18 . e |-ie -8 ie -8 o -ie 0 8
Repetit-l 1 5 ) ¢ | 7| 2 | 3| 2 |3 4 5| 6 7
ion
Anions




A Modes

Representation bs
Partner © 1 2
d ' » » d* - [ d-* - ) "d . *
-] v d . . a* - o L] a* . . -d
» ' e d- - . -d-* - d—* - . d )
-d - . ! . '-d-* s L =d* ° . d‘ . »
e 1d | o d o a*_ . ° o | d*| . | d
. | o d . . "d-‘ - ax* . 0 =d ®
—-ie* . . | e* . . | e* R . | ie*| . .
. =ie¥ o | . ey . I . o« | &% o | o |=ie*
. | o lie*] . o | e*| . |-8*| . . |=ie¥ .
ie*i . . -e¥ » o -o* » » —-ie™* . .
o I‘-ie* - - e* o L - 8* . » "ia*
. | o Jie*] . .| 8% o | -e*| . . fie*| .
e ! e o |=d* . . |=-d* . . | ~d . .
. ol . | .l-a*| . |=a*| . | . 1-d |.
s Fd . . afq . . . d ° . d
d t - - _d* -] - d* . . d- - .
. » —d. o . -d* * -d‘ [ 0 -d °
. k=4 . 5 a* o o . -d* » . d
e . . |=is = » is . D =) » -
. o8 . . -ie . tie . . _|-© °
. | © . . |=i® . . . lie . . |=8
-8 - - is . . . . - -8 . °
° o —0 . ° . o . - e |=8 *
. =) - s ) . o o o » « |=8
Repetition 6 |7 |8 l9 f10111 |6 7 18 9 {10 ‘11
Anions (contd)
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3 Modes: Symmetry Coordinates

Symbol Angle
a 90"
b -81°
c ~85.5°
a -76.5°
e 45°
f ~54.°
Representation 21 23 24 a3
Partner 1 1 1 1
a . . a . a . . a . . .
a . . a¥ o a* = . a . . .
. a . . . » » . - a » »
. ° c o C. o C ® B - C .
- . . c o c « |=C » . « |=cC .
™ . L] - - L L c - . . c
° . c N . c . . .« |=c .
. . c .« |~-C . |=C . . . c .
. - . o . . « |=C . . . [+
b . o -b . b » - "b . ! e .
b - - b - -b L] o -b . . | .
-] =b . . o . . ° ° b . | .
Repetition 1 21 3 1 211121311 24 3| 4
Octahedral Ions
Representation| 1 Za_ |24 23
Partner 1 1 |1 1
d . | =id | d | id »
a | . id |-d | id | . Tetrahedral Ions
. |id* . . . d
—d*] , | —id*| =d*|-1d*] .
-d*| . id*| 4*|-id*| .
o id- . o - "'d-'
Repetition 4 1 5 3 L| 516
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2 Modes

- 192 =

Represen-
tation Za Za
Partner 1 - 2
8 1. . - B | -e* . 8 ° ° . e¥
8 . . . . —e* . . . . | —-6*
. a » . . - =k - - » . .
o % e - . e » . =] -a% . .
. . f "if* - - - . f ‘-if M e
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5 f : 5 : o | =if . . . . .
- . f -‘1f . - L ] -f if‘ . -
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F . | —e*] e ° . . . |—6* a . .
. ™ -f* —if* . . L] - —f‘ “if* - .
. o . « | ic . . . . o« ) ic >
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"-f* . . » ° ""if* o ""f* . ° . if*
- f‘ ° . o * ""if* L] . ] . o
Repetitiod 6 | 7|1 8] 9l10 ] 11} 12| » b5 1 6) 7138
Anions




2 Modes
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