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Knowledge is not happiness, and science 

but an exchange Of ignorance for that 

which is another kind of ignorance 

Byron
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ABSTRACT 

The low energy phonon dispersion system in Spinel, 

MgA@204, has been investigated by neutron inelastic scatter 

ing using time of flight spectrometry and the observed data 

used to refine the twelve mom u o 
+n- 
vo 

model constructed on the rigid ion harmonic approximation of 

Kellermann. It is demonstrated that the same approximation 

may be used to give a good description of the dynamical 

behaviour of Magnetite, Fes30,4, previously studied by Samuelsen 

and Steinsvall. Comparison of the ten repulsive parameters which 

describe the ion overlap interactions and the effective ionic 

charges shows that the former are very similar in the two cases 

and correspond te non-central forces, The good electrical 

conductivity in Magnetite, arising from electron hopping, is 

apparently accommodated within the rigid ion model primarily 

through modification of the effective ionic charges. 

The elastic constants in spinels have contributions 

from both intemal and external strains and expressions have 

been derived in terms of the model parameters for the latter. 

These have been used together with a numerical evaluation of the 

intemal contributions to powise theoretical estimates of the 

elastic constants of both Spinel and Magnetite, which are in fair 

agreement with the experimental values. 

From examination of the eigenvectors of the model at 

phonon wavevector q ~ 0, two’ infra-red active modes of vibration have 

been identified. However the derived frequencies are in poor 

agreement with those observed and this is believed to be a con- 

sequence of assuming the ions to be unpolarisable.



(ii) 
Conventionally the crystal structure of cubic spinel 

compounds is referred to the space group Fd3m, but there is a 

considerable body of experimental evidence inconsistent with 

this description. A more general, unified and consistent 

description is provided by the lower symmetry space group 

F43m. Therefore a very careful analysis based on single crystal 

X-ray and neutron diffraction studies of MgAée04 has been carried 

out and is also presented. Very precise atom positions have been 

derived from the analysis and it is concluded that the symmetry 

of magnesium aluminate is more correctly described by the space 

group Fi 3in.



  
    

 



hie 

1.1) General 

It is an implicit assumption underlying the whole of 

science that any experimental observation conceming a given 

phenomenon is consistent with the remaining experimental facts, 

It then follows that any 

sistent with all the related fants and that if any one of them 

lies outside this description then that theory must be deemed to 

have failed. 

The study of solid state physics is no exception to 

this general principle. It has been clearly established in 

particular, that the spaeial arrangement of the atoms in a 

crystalline solid, especially their local and overall symmetry, 

is closely correlated with the physical behaviour that may be 

exhipited. Crystals with structures which include a centre of 

symmetry, for example, cannot abet piezoelectricity 

(Wooster, 1949). Similarly, though a crystal may be ionic, if 

its structure ini centro-symmetrical then there can be no net ionic 

dipole moment even if we allow the possibility of vibrational motion, 

i.e. ferroelectricity is impossible. 

A beautiful illustration of these ideas may be found 

amongst the perovskite structures of which BaTi0gs is an 

excellent example. Above a temperature of about 393%, this. 

crystal has the centro-symmetrical cubic structure shown in 

figure 1.la and in this form behaves as a classic dielectric 

material, As the temperature is lowered through the Curie point, 

however, the Ba?* and Ti** ions become displaced in the same sense 

to produce a spontaneous dipole moment, Simultaneously, the same 

displacements destroy the cubic symmetry so that the appearance of 

the ferroelectric property, arising from the presence of the per 

manent dipoles, is associated with the formation of the non-



 
 

 
 

 
 

 
 

  
  

 
 

  
 
 

 
   

  
  

 



centrosymmetrical tetragonal phase shown in figure 1.1b (Shirane, 

Danner and Pepinsky ,1957). 

Structural deformations are extremely common among the 

perovskites (see forexample the PbZr03-PbTi0g system Sawaguchi , 

1953) - in one case, a structural instability gives rise to 

antiferroelectricity. Here the dipole moments are arranged in 

opposite senses, and cancel leaving no net dipole moment per unit 

volume. This property is notoriously difficult to recognize, but 

is characterised in some cases by the high dielectric constants 

observed experimentally at low frequencies. 3 

In reality the physical situation is more complicated than 

we have so far described,for atoms in solids do not remain stationary 

but vibrate in a localized region of space centred on their mean 

positions. The vibrations take place against the forces within the 

solid, and such forces must clearly have attractive and repulsive 

components which cancel at certain points to provide positions of 

stable equilibrium, These forces may be short range, like those in 

covalent crystals where electron sharing is responsible for the 

crystal cohesion, or long range like the Coulomb interaction found 

in ionic crystals, such as the alkali halides. Any scientific des- 

cription which attempts to explain the vibrational behaviour of the 

atoms in crystalline solids must therefore come to terms with this 

complexity. 

The most convenient mdthesmatical way of describing 

vibrational behaviour is to assume that all the atoms in a solid 

interact throush forces whica obey Hooke's law. This leads to the 

harmonic approximation in which the atoms vibrate in parabolic 

potential wells, The crystal as a whole may then be reganied as a 

system of independent sinusoidal waves called normal modes of 

vibration. If further the concept of quantisation is built into
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(n+4). 

the model so that each normal mode carries an energy \hw (a phonon), 

then a description of the solid can be obtained which explains 

some Of the salient features of its physical behaviour. Pro- 

perties like specific heat capacity, phonon dispersion, elasticity, 

infra-red absorption spectra and the scattering of light by the 

Raman effect, for example, may all be immediately encompassed by 

this type of model. There are, however, certain properties which 

go beyond the scope of such a simple description. The pressure and 

temperature dependence of the elastic constants, thermal expansion 

and thermal conductivity depend on interactions between the phonons 

and to include these aspects of the behaviour of real solids, the 

model must be extended to include terms representing anharmonicity. 

More recently it appears that there is an important 

connection between structural transitions and instabilities in 

certain normal modes of vibration, following a proposition by 

Cochran (1960) that the phonomenon of ferroelectricity in BaT40, 

type compounds is directly associated with anomalous behaviour of 

a certain transverse optic vibration. This is best illustrated 

through the Lyddane~Sachs-Teller relationship (Lyddane et a1.191) 

which has been generalized by Cochran (1959a)to include structures 

containing several atoms per unit cell as 

2 
& Oo 
ign AL Ati 

€ yee 
ce ee 

where Ons and. Ons are the normal mode angular frequencies of the 

on transverse optic (TO) and longitudinal optic (LO) long wave- 

length vibrations, The temperature dependence of ¢ in BaTiO, is 
fe) 

then explained by a decrease in the frequency of one particular 

TO vibration, a process which is known as "softening". Since 1960 

experimental evidence on a number of compounds, using neutron
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inelastic scattering, has confirmed this basic concept and it is now 

thought that “soft modes" are the driving mechanism for many 

structural transitions - see Shirane (1974) for an up to date 

review. 

1.2) The Spinel Compounds. 

Compounds having a chemical formula of the kind ABaxX%,, 

frequently crystallise with a structure related to that of the 

mineral Magnesium Aluminate (MgA1204) known as Spinel. Usually 

ionic in character, they are classified according to the anion 

X2- as oxide, sulphide, selenide and telluride spinels. In such 

compounds charge neutrality is maintained through the cations A and 

B which are most freqently 2+ and 3+ ions respectively, but other 

configurations such as Mg?” ge*t* 0,7 or Na’ we* o* are possible. 

Evidently a large variety of metal ions may be substituted for A 

and B and it is therefore perhaps not surprising that the spinels 

are among the most extensive series of related chemical compounds 

known, Indeed, more than two hundred different spinels have been 

prepared and it is this chemical diversity, when combined with the 

special character of the crystal structure (to be described) which 

is responsible for the wide range of physical behaviour exhibited by 

this remarkable family of compounds. 

Important magnetic properties of practical importance 

a oe Coe” arise in spinels whenever transition ions like Fe®* ,Ni 

are present. For example, the spinel ferrites being simultaneously 

* both ferrimagnetic and electrically insulating are widely exploited 

in the modem telecommunications industry, as their low eddy current 

and hystersis losses make them useful materials for high frequency 

applications. Other materials exploited in this way include 

Magnetite which has been used as a coating for magnetic recording
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tapes and certain manganese ferrites which are useful as magnetic 

switches and memory cores. 

Among more recent applications is the use of single 

crystal Magnesium Aluminate as substrate material for the 

epitaxial growth of thin films of silicon and related semi- 

conductors (Manasevit and Forbes 1966). The same material is also 

used as the basis for an ultrasonic delay line at microwave fre- 

quencies. 

A general review of the industrial applications of the 

spinel group of compounds has been given by Grimes (1975) For a 

comprehensive appraisal of the properties of the magnetic spinels 

see Smit (1971). 

1.3) The Spinel Structure. 

1.5.49 Space Group Fd3m. 

According to the conventional description, the Spinel 

structure is based upon a nearly close packed cubic arrangement 

of the anions in which the metal ions occupy certain interstitial 

positions. The essential features of the unit cell, containing 8 

molecular units shown in figure 1.2,were first described by 

Nishikawa (1915) and by W.H.Bragg (1915) who studied both MgAla04 

and Fes04. 

Two types of interstices arise, and in the arrangement 

described as the Nomal structure, *;, of the 64 possible 

tetrahedral positions (A-sites) are Occupied by the divalent 

cations while 4 of the 32 possible octahédral interstices (B-sites) 

contain trivalent ions, The local site symmetries and overall 

symmetry then correspond to the crystallographic space group Fd3n, 

the details of which are given in table 1.1. The cations a in 

special positions, and the structure is centrosymmetrical about
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the Besite. Since it is often useful to choose the latter as 

origin of coordinates the atom positions for this case are also 

given in Table 1.1. In either case, the anion positions are 

specified in terms of a positional parameter, the u~parameter, 

which, for an ideal spinel where the oxygen sublattice is perfectly 

packed,and a conventional choice of origin, has a value of wee 

In practice u is often larger, and for u > 8), the anions 

move in <111> directions outwards from the nearest tetrahedral site. 

Ths abyaseat destroys the perfect octahedral geometry surrounding 

the B-sites and results in a distortion from cubic point symmetry 

m3m, to the toner trigonal point symme try 3m. enent of the 

anions in this sense also creates three different anion-anion se- 

parations and for certain combinations of the lattice parameter (a) 

and internal parameter (u) one of these bonds can be under severe 

compression, so that there is a considerable overlap of the electronic 

orbitals of these two anions. This has important consequences for 

the structure and lattice dynamics of the spinel compounds which we 

discuss in more detail in chapters 2 and 5. 

In the description so far the cation distribution has been 

assumed to be that corresponding to the Normal Spinel structure, 

but other distributions of the cations over the A and B-sites are 

possible of which one combination is known as the Inverse structure 

(Barth and Posnjak, 1932; Wyckoff, 1951). In this case, half the 

trivalent cations occupy the tehrahedral interstices while the 

divalent cations together with the remaining trivalent cations share 

thuse dich octahedral surroundings. It is also possible for the 

cation arrangemen® to be intermediate between these two situations 

and the structure is then said to be partially inverted. Sometimes, 

indeed , ordering of the various cations over the interstitial sites 

can take place and this leads to other structures with quite difftermt
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overall symmetries, see for example Cheary (1971). 

According to this description then, any given cubic 

spinel structure may be characterized completely, within the 

space group Fd3m, by the three parameters, a,u and i the inversion, 

where the extent of the latter is believed to be a function of 

the Madelung energy, cationic size relative to interstitial site 

radius and the electronic configurations of the cations involved 

(Miller, 1959). The last factor mentioned here is connected with 

the crystal field effects which always arise when transition ions 

with non~spherical electronic ground states are present. According to 

McClure (1957) such ions are stabilized to an extent which depends 

upon the symmetry of their local environment, some environments 

being particularly favourable. In the case of the Spinel structure 

his calculations show that this effect gives rise to an octahedral 

site preference (see table 1.2) which for some ions, notably Cr**, 

is the dominant factor determining the cation distribution . Thus 

- chromites, A Cr2X4, are invariably predicted to be Normal and this 

is in agreement with experimental observation. 

Among other compounds, such as the ferrites, on the 

other hand, the balance between the different energy terms can be 

quite delicate so that the cation distribution in these cases can 

often be influenced by methods of preparation, CoFeg04, for example, 

adopts the inverse structure when carefully annealed but is only 

partially inverted when quenched from the sintering temperature. 

As will be discussed later, different arrangements of 

the cations over the two kinds of interstitial site leads to 

important changes in the Madelung energy and this in tum is be- 

lieved to account for the correlation between inversion and anion 

position parameter u. According to Gorter (1954), for example, 

Normal and Inverse compounds typically adopt structures with u = .387 

and u = .38 respectively.



Table 1.2: Crystal field data for transition metal ions 

(after McClure see text) 
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1.3.2 Space Group Fi3m 

As emphasized in section 1.1 the physical properties of 

solids are closely so Are la tod-with the spacial configuration of 

the atoms in their structures and the spinel compounds would 

normally be expected to conform with this general principle. 

Detailed consideration of the properties of a number of members 

of the spinel family have shown, however, that this is not the 

case (see sections 1.4, 1.5 and 1.6) and it was therefore pro- 

posed by Grimes (1971) that the symmetry of many of this class 

of compounds is more correctly described by the lower symmetry 

space group Flin, the details of which are given in table 1.3, 

This altemative structure is acentric, for the 32 

anions of the original unit cell now divide into two groups whose 

position coordinates are separately determined by parameters X, 

and x, respectively. The A-site cations, though retaining 

surroundings with tetrahedral symmetry and remaining at the same 

fixed positions as before, thus become crystal lographically dis~ 

tinguishable. In addition, the B-site cations are no longer 

restricted to occupying the geometric centres of the oxygen 

octahedra but are allowed to move in a [111] direction, their 

displacements being controlled by a further positional parameter 

x, This latter displacement together with the division of the 

anions produces a different trigonal distortion at the B-sites so 

that the original inversion symmetry is removed. 

The "ideal spinel" corresponds to xg = °/3; x, = V/s, 

X4 = een and now when the anions are displaced from the perfectly 

packed’ configuration they again move in <l1l> directions but in 

the two groups to different extents. The combined effect of this 

together with that produced by x, is indicated by the arrows in 

figure 1.3. Finally, if parameters x,,xo and xg are constrained
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5- parameters describe atom shifts from the 

perfect configuration (see section 2.5) 
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so that x = °/s and xg = $x, then the symmetry once more 

corresponds to Fd3m,. 

1.4) Physical evidence in favour of F43m symmetry. 

e447) Indirect evidence. 

Crystallographic phase transitions are extremely common 

among the spinel compounds, the transformation usually involving 

a change from cubic to tetragonal symmetry with decreasing tem- 

perature. According to Dunitz and Orgel (1957) and Goodenough (1963) 

this may be understood as a manifestation of the Jahn-Teller effect, 

as the compounds concerned invariably contain transition ions like 

Cu®*, Fe?* or Mn®* in which the electronic ground states are 

orbitally degenerate. In such spinels, it is believed that local 

structure distortions develop above the transition temperature in 

the cubic phase and that these increase in orientational coherence 

as the temperature decreases until their influence is eventually 

sufficient to induce an overall structural change (see for example 

Finch, Sinha and Sinha, 1958). The physical evidence supporting 

this description of the cubic phase includes the observation of 

Debye-Waller factor enhancement in x-ray diffraction (Cervinka, 

1965), Méssbauer spectra (Tanaka,Tokoro and Aiyama, 1966) and 

complexities in the infra-red absorption spectra (Brabers,1969). 

The latter are particularly significant as the additional absorption 

bands can be shown to correspond with those from a tetragonal spinel 

(e.g.Mng0,) by examination of the spectra across a compositional 

range like Mo Fe fs: 

In contrast to compounds of this kind, a cubic spinel 

series such as Mg [Cr,, Ag v4 would be expected to be physically 

well behaved. The Cr®* ion has the most marked octahedral site 

preference of any in the first transition series (table 1.2) and an
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electronic ground state s octahedral surroundings with no orbital 

degeneracy, when Hund's rules are obeyed, i.e. no Jahn-Teller 

effect is expected. Nevertheless, X-ray diffraction studies by 

Grimes and Hilleard (1970) showed that increasing x in this: series 

was accompanied by substantial increase in Debye-Waller factor in 

exactly analogous manner to the earlier observations of Cervinka 

on the Jahn-Teller series Mn, Peas The conclusion was drawn 

that structural distortions must also exist in the chromite series 

and, moreover, that they must increase in severity with increase 

in chromium content, 

Very similar conclusions were reached by Lou and 

Ballentyne (1968) from a study of the optical fluorescent spectra 

from a series of synthetic single crystals of the MglCr Ae 10. 

Spinel group, an important feature of these spectra being, that 

above a chromium concentration of 2wt% a new selection rule is 

observed which identifies the symmetry of the octahedral site 

occupied by Cr®* ionsas 3m, The significance of the latter lies 

in the fact that it is incompatible with the crystallographic 

space group to which the spinel structure is normally referred but 

consistent with the X-ray diffraction observations, for if the 

local trigonal distortions had been of conventional 3m symmetry 

an increase in severity would have been brought about through an 

increase in the oxygen position parameter u. According to Grimes 

and Hilleard, however, no change in this parameter was detectable 

within experimental error, 

Experimental investigations of the electron spin 

resonance spectrum of the Cr®* ion in natural Spinel (Stahl-Brada 

and Low, 1959) confirms local trigonal symmetry around the Cr** 

ion with a [111] direction as an axis of symmetry. iotdver os was 

emphasized by Henning and van den Boom (1973) electron spin resonance



does not clearly distinguish between trigonal point symmetries 3m 

and 3m, and the only indication of the former symmetry is that the 

splitting of the Cr°* ion energy levels deduced for zero magnetic 

field indicates a stronger trigonal field than one would expect 

of on the basis of the space group Fd3m. The latter assumes Ps _ = : 2 

course, that the Cr** ion itself does not modify the B site pro- 

vided by its host material, magnesium aluminate, 

In experiments such as these in which magnesium aluminate 

is lightly doped with chromium, the local structural distortions 

might be expected to be dispersed among the octahedral sites accord- 

ing to the distribution of the Cr®°* ions, but it is possible, however, 

to envisage local 3m distortions which are organised in a regular 

periodic manner throughout the whole crystal (see figure Ti). 26 

the latter case, it is difficult to escape the conclusion that the 

distortion of the octahedral sites is something inherent -in the 

‘Spinel structure which corresponds to a change of space group 

symmetry to Fl3n. 

According to this view a change in physical behaviour 

through a spinel series can be understood as arising from a change 

in the degree of structural asymetry rather than as a change in the 

proportion of distorted to undistorted material and thus the change 

of space group was used by Grimes and Collett (197la) to account 

for changes in the complexity of the infra-red absorption spectrum 

through the series MglCr Ae 04. Their observations, similar 

to those of Brabers (1969) on the Jahn-Teller series Wn Fe Oa; 

were made on some polycrystalline samples previously investigated 

by X-ray diffraction (Grimes and Hilleard, 1970) and showed an 

increase in the number of absorption peaks from four in MgAlg0,4 

up to nine in MgCr04. Now it should be emphasized that the 

reproducibility of infra-red spectra from polycrystalline samples
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FIGURE 1.4 Octahedral ion sublattice
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is not very good, for the number of peaks appearing and their 

shapes areinfiluenced to some extent by particle size and methods 

of preparation [see for example in the case of the spinel com- 

pounds, De Angelis, 1969]. Nevertheless,it mst be significant 

that similarly complex, though not identical spectra, have been 

reported for MgCra04, by severd different observers (Hafner 1961; 

White and De Angelis, 1967; Tarte and Preudhomme , 1971) and that 

in no circumstances has a simple spectrum been observed from this 

compound. 

In contrast to the observations of Grimes and Collett, 

it is interesting to note that studies of the infra-red spectra 

from the spinel series Zn,Mg  Cra0, carried out by Tarte and 

Preudhomme (1963) reveal a decrease in complexity with increasing 

zinc content. Assuming that this indicates a reduction in the 

severity of the trigonal distortions, as Grimes (1971) points out, 

an . almost distortion free ZnCrg0, could then be expected and 

Significantly, earlier examination of this compound by X-ray 

diffraction had yielded a Debye-Waller factor of 0.3642 (Raccah, 

Bauchard and Wold, 1966) which is only one third of that observed 

with MgCre0,4. 

Recapitulating then, the physical evidence from a number 

of different sources strongly supports the case for believing 

that structural distortions exist in the spinel series ug(Cr Ad ]0s. 

Moreover, it is evident that a unified and consistent explanation 

of all the related experimental facts is provided by referring 

the crystal structure to the space gtoup Fu3m. 

Now the possibility that the chromites are alone among 

the closely related spinel compounds in possessing a crystal 

structure of F43m symmetry must be considered to be very unlikely 

and it was therefore suggested by Grimes (1971,197%) that the
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spinel structure might more generally be referred to F3m. It 

had been known for many years, for example, that some of the spinel 

ferrites have dielectric constants which can rise by several orders 

of magnitude, typically 10? to 10*, at low frequencies (see for 

instance the observations of Polder (1960) on certain Mn-Zn and 

Ni-Zn ferrites) and it would seem natural to explain these 

observations in terms of permanent dipoles similar to those found 

in BaTi0g. However, as Fairweather,Roberts and Welch (1952) 

realised, ferroelectricity is excluded by the centrosymmetric 

space group Fd3m to which the crystal structure had conventionally 

been referred and consequently the interpretation of low-frequency 

dielectric behaviour has presented considerable theoretical 

difficulties. In some cases, because measurements were made on 

polycrystalline specimens, it has been possible to explain the ex- 

perimental observations in terms of a phenomenological model (Koops , 

1951) where the dielectric is considered to be composed of good 

conducting crystallites separated by poor conducting intersurface 

layers, On the other hand, the resistivity and dielectric behaviour 

reported by van Uitert (1956) for certain Ni-Mn ferrites and by Peters 

and Standley (1958) for Mg-Mn ferrite appear to be quite different. 

The latter authors in particular were clearly seeking a crystallographic 

explanation as they state that (for ig | Mn gne204) -#e. "The temperature 
aa 

and frequency dependence of the dielectric constant is very similar 

to that found when tre dielectric relaxation is occurring ... and 

an explanation of the results ... in terms of the relaxation of 

permanent dipoles within the ferrite is envisaged. An order of 

magnitude calculation suggests that the high dielectric constant at 

low frequencies found at 200°C may be explained by the presence 

of permanent dipole moments of the order of 0.5 debye, indicating 

° 

an effective charge separation of the order of 0.14."
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These Miieeectons are clearly of considerable import- 

ance in the context of the proposed change of space group for 

spinel, for the order of magnitude of the ionic displacements en- 

visaged by Grimes as responsible for the change of symmetry, 

accounts precisely for the magnitude of the dipole moment estimated 

by Peters and Standley. Moreover, as emphasized by Grimes (1973a), 

the symmetry of the ionic paen bes in Fl3m, shown in figure 1.4 

is consistent with the absence of ferroelectricity noted by Fair 

weather et al. for the dipole moments, which are created are 

arranged in opposite senses so that the property should be anti- 

ferroelectricity. 

1.4.2) Direct evidence. 

In principle, it is possible to distinguish between the 

two space groups proposed for spinel by conventional crystallo- 

graphic methods, for reflexions of the type {hk} with 

h+k = 4n + 2 are systematically extinguished by the diamond glide 

planes of the space group Fd3m, whereas they are allowed under 

Fi3m symmetry. Sach "forbidden" reflexions have only been de- 

finitely reported, however, following the observations of electron 

diffraction pattems from single crystals. For example, the 200 

and 420 reflexions have been observed with single crystals of 

MgA1204 and MgFe20, by Hwang, Heuer, and Mitchell (1973) while 

200, 420, 600 were ported for single crystal MnFe204 grown 

epitaxially by van den Berg, Lodder and Mensinga (1976). The latter, 

incidentally, provided a very nice confirmation of the inter. 

pretation of the dielectric behaviour, of the polycrystalline 

material of similar composition,proposed by Peters and Standley 

(see section 1.4.1). 

The electron diffraction technique has been criticised 

as inappropriate when used in this way because the unusually
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short wavelength at high voltages leads to severe multiple 

diffraction effects and therefore ambiguous interpretation. How- 

ever, elegant experimental procedures have been adopted in the 

case of spinel to totally eliminate the multiple atremictl on process 

as a source of intensity for the forbidden reflexions. The trick 

as Hwang et al. realised is to choose a specimen with [oo1] 

orientation for then only reflexions of the type h,k = 2n can 

occur in the zero layer of reciprocal space and, providing suitably 

thick crystals are chosen, if is impossible to obtain reflexions of 

the type h+k = 4n + 2 by double diffraction. The possibility that 

the forbidden reflexions arise from higher order wavelength 

contamination may also be excluded as the voltage in an electron 

microscope is stabilised to an exceptional degree (i part in io}, 

i.e. the electron wavelength is extremely well defined. 

Unfortunately the electron diffraction technique does not 

lend itself readily to structural analysis, but from comparing ratios 

of intensities Heuer and Mitchell (1975) have estimated the extent 

of the off-centring of the A€®* ion to be just less than 0.014. 

These results, of course, do not exclude the possibility 

that the reflexions may be thermally excited. It is well known, 

for example, that if the cohesive forces have a considerable 

anharmonic component then reflexions can be produced which ordinarily 

would be accidental. absences of the space group (see for example, 

the classic case of the 222 reflexions of diamond [Dawson and 

Willis, 1967] and silicon [Keating, Nunes, Batterman and Hastings, 

1971]. 

In the case of neutron and X-ray diffraction on single 

crystals of Spinel, finite intensity is observed at the positions 

corresponding to the foroidden reflexions, but it proves GUDE Cus 

to eliminate multiple diffraction effects particularly at wave-
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lengths which are suitable for revealing structural detail (see 

for example section 2.2.4, The effect is more serious in neutron 

diffraction than with X-rays, the dispersion spread for the latter 

being at least two orders of magnitude smaller than the former, 

i.e. dA/d (neutrons) ~ 1% whereas Sa/A (X-rays) .~ 0.01% because 

of the sharpness of the characteristic lines. Thus careful ex- 

periments are required to eliminate multiple scattering of neutrons 

as a source of intensity for these reflexions. Such experiments 

have been performed on magnesium aluminate (Samelsen and Steinsvoll 

1975) and Magnetite (Samelsen, 1974). In both cases attention was 

centred on the 0.0.2 reflexion but the results showed negligible 

intensity. This does not exclude the space group F43n, however, 

since it is possible to envisage suitable atom shifts, to both sets 

of oxygen ions and the octahedrally coordinated cation, which would 

in any case make the intensity for the 0.0.2 reflexion vanishingly 

small (see Heuer and Mitchell 1975). 

Perhaos the most remarkable direct evidence for Fi3m 

symmetry is provided by a recent structure analysis of the normal 

2-4. spinel y — NigSi O04 where the presence of a residual electron 

density in the final Fourier difference synthesis was revealed 

(Marumo, Isobe, Saito, Yagi and Akimoto, 1974). In this case, 

intensities were collected using MoKa X-radiation and 212 

independent reflexions were used in a least squares refinement 

based on the space group Fd3m to achieve an overall reliability 

index R = 1.7% with individual anisotropic temperature factors. The 

final Fourier difference synthesis showed eight quite prominent 

peaks 0 6h from the Ni ion in the 8 [111] directions. The hei ght 

of these peaks was on average about Dek" 3 and the authors attributed 

their existence to the charge density asymmetry around the Ni?* ion. 

However, a simpler interpretation based on the space group Fi,3m now 

seems more likely.



1.5) Distortion mechanism. 

As explained in section 1.4.1, the Cr®* ion in an 

octahedral environment would not be expected to be subject to the 

Jahn-Teller effect when in its normal ele ate nits ground state. 

Confirmation of the latter may be obtained from measurements of 

magnetic susceptibility and in the case of MgCre0,4 in which it is 

believed that the structural distortions are exceptionally marked, 

such measurements have shown that the Cr®* ion is indeed in its 

normal "high spin" state (Lotgering, 1962). The Jahn-Teller 

mechanism for producing structure distortions is then eliminated 

in this case and by analogy with the behaviour of small impurity 

ions in alkali halides it was therefore suggested by Grimes (1971), that 

the Cr®* ion displacements might be produced through the local 

electrostatic potential conditions at the B sites. 

These ideas were supported particularly by the case of 

ZnFe20, where the calculations of Hudson and Whitfield (1967) and 

experimental studies of °’Fe Méssbauerspectrum by Evans ,Hafner and 

Weber (1972) showed that the potential at the centre of an octahedral 

Site is a maximim and thus by symmetry that there must be, in fact, 

two positions of minimum energy lying either side along a [111] axis 

through the site (Grimes 1974b) « A large cation in such a situation 

(see figure 1.5) would be held at the centre of symmetry through the 

repulsive interactions with neighbouring anions but smaller cations 

such as Fe®* or Cr** might be able to move nearer to positions of 

Minimum energy and would thus become displaced off-centre (Grimes 

1971; 1972a). 

Detailed confirmation of the mechanism clearly can only 

come through careful refinement of the structure parameters of a 

series of spinel compounds, ideally at several different beie me oo non 

Nevertheless, a rough indication that the above description is along



A= Barrier height 

FIGURE 1.5 Potential energy distribution along a [111] axis 

through an octahedral site
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the right lines has been obtained by Grimes (1972a) from a simple 

analysis of the presently available Debye-Waller factor data 

from X-ray diffractions studies of zinc and cadmium spinels. For 

these compounds it was assumed that a Debye Waller factor more 

‘representative of the vibrational character of each structure could 

be estimated from the monatomic relation, 

= SEO <A 
(see International Tables, volume 2) providing m was interpreted 

as mean atomic weight and @ estimated from the four most prominant 

infra-red absorption bands. The excess Debye-Waller factor for each 

zine or cadmium compound could then be derived by comparison with 

the corresponding X-ray diffraction data and as figure 1.6 shows 

there is then quite a good correlation with the radius corresponding to the 

octahedral nearest neighbour distance. 

It should be noted finally, that such a mechanism also 

accounts quite naturally for the difference between the infra-red 

absorption spectra of magnesium and zine chromite without invoking 

special properties for the Cr®* ion, On the new view, the increase 

in anion "u" parameter following the introduction of the Zn?* ion 

onto the tetrahedral site, together with the smaller lattice constant 

of ZnCra04 must lead to a smaller volume being available to the Cr** 

jon and therefore toa closer approximation to Fd3m symmetry. A 

similar argument would apply to the Aé®* ion in MgAé,0, for 

although this ion is smaller than the cre* ion a considerable re- 

duction in the lattice parameter occurs with decreasing x in the 

series Mg[Cr A€ O04. 
x 2—X



p
o
u
p
n
b
s
 

s
n
i
p
n
a
 

ayis 
[P4Pp2yN4I0 

sSuIDBH 
104904 

Aa]]DAA-2Aqaq 
sse2xq 

9°L 
J
U
N
O
 

  
 
     

a
 

ww 
ul 

a
 

: 

0-4 
0-9 

O°s 
"
7
 

Ps 
0-¢ 

v
Z
 

Or 
i
w
u
z
 

O
'
4
D
 
P
2
 

Ospuz|o"0 

94UuZ 
y
O
 

-9°O 

Pactiyp5 
8:0 

-OrL 

r
o
o
k
 

  
(Tt “ lg any ey 

t ss 

ema: LE



1.6) Dynamic properties. 

1.6.1) Ultrasonic measurements. 

Ultrasonic measurements of the velocities of sound and 

therefore of the elastic constants have been made on a mumbo of 

spinels and this has provided further insight into the nature of 

the phase transitions occurring in these compounds. In NiCre0, 

for example, a Jahn-Teller system, there is a remarkable relaxation 

of the T, [110] mode as the temperature decreases towards 310% below 

which this material becomes tetragonal (Kino,Ltithi and Mullen,1973). 

The possibility of such relaxations was first emphasized 

by Born (1940) who pointed out that for cubic crystals the elastic 

constants must satisfy the conditions 

C11 + 2042 > 0 

C11 — Cag > 0 

Cy. 6 

for mechanical stability. Any structural defect may lead to an 

elastic relaxation corresponding to one of these Tr and the 

symmetry of the defect may then be inferred from the selection rule 

observed (Heller and Nowick, 1965). Thus in the Jahn-Teller spinels 

which generally transform to tetragonal symmetry, at sufficiently 

low temperatures, it is the mode corresponding to (C11-Cic) which 

relaxes. 

Other spinel compounds, however, behave quite differently, 

Wltrasonic investigations on ZnCre0,, for example, (Kino and Luthi, 

1971) show a softening of the shear mode elastic constant C4, in 

the neighbourhood of 40°K, which is consistent with the presence of 

a defect with trigonal symmetry and therefore with the off centr ing 

Of ‘tha Cre ion along a E133] direction. Similar eaercarione have 

been made on NiFe204 (Gibbons, 1957) and on Magnetite, Fes04 (Moran 

and Luthi, 1969).
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The latter material is particularly interesting, for 

Magnetite actually undergoes a phase transition at 119°C in which 

the lower temperature phase was, at one time, believed to be of 

orthorhombic symmetry (Bickford, 1953; Hamilton 1958). More recent 

evidence, however, (Vieland, 1975; Iizumi and Shirane, 1975) has 

confirmed the initial interpretation of Rooksby and Willis (1953) who 

concluded that the low temperature form of Magnetite has trigonal 

symmetry. 

1.6.2) Infra-red absorption spectra. 

In the absence of any complete and adequate description 

of the lattice dynamics for compounds with the spinel structure the 

interpretation of the infra-red spectra since 1955 has been based on 

a theory proposed by Waldron (1955). In this model the two molecules 

in. the rhombohedral primitive unit cell are divided into three groups 

namely, two AO, tetrahedra comprised of four oxygen ions each 

witn an A cation at the centre and one By, tetrahedron the latter 

being composed of the four octahedral cations. The vibrations of 

each of these groups are then classified according to the species 

of the point group Td or 13m which is also supposed to be appropriate 

for the vibrations of the crystal as a whole. Waldron was thus led 

to the conclusion that there should be four infra-red active modes of 

vibration, 

Since Waldron's paper, extensive experimental investi- 

gations have confirmed the presence of four primary infra-red active 

absorgtion peaks (see White and De Angelis (1967) for a useful 

review). These are, however, often accompanied by a number of 

weaker peaks or shoulders (Hafner 1961). In a few cases, as explained 

in section 1.4.1, it has been possible to relate these extra peaks 

to the presence of structural distortions associated with the B-site 

but mostly their origin hes remained unexplained.
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Few attempts have been made to account for the infra-red 

spectrum in terms of the vibrations of the crystal lattice as a 

whole, 5 ak attributable, no doubt, to the almost complete absence 

of any detailed phonon spectra on these compounds, which in turn is 

probably due to the difficulty of obtaining suitably large single 

crystals of spinel oxides on which neutron inelastic scattering 

measurements can be performed. Indeed, Magnetite is the only spinel 

compound so far where some detail of the low energy phonon dispersion 

system has been uncovered (Samuelsen and Steinsvoll, 1974). The 

inertia to set up dynamical models to describe the vibrations of 

these compounds has therefore been considerable. Without experimental 

data on the acoustic and low energy optic modes of vibration it is 

virtually impossible to obtain reliable information even from the 

simpler dynamical models, such as the rigid ion model of Kellermann 

(1940), for in the case of spinel even this model contains twelve 

adjustable parameters (see Chapter 5). 

The first attempts to account for the infra red spectrum 

of Spinel in this conventional manner were made by Striefler and 

Barsh (1972). No phonon measurements existed on this compound at 

that time and this, coupled with the fact that forty two modes of 

vibration are expected in Spinel, makes the interpretation of the 

infra-red spectrum rather formidable. Nevertheless, Striefler 

and Barsh attempted to fit the observed infra-red and Raman spectra 

at zero wavevector using the rigid ion model. Their results are in 

poor agreement with the observed peaks except where the model was 

constrained to fit. This is perhaps not surprising for earlier results 

of other workers on simpler ionic compounds have shown that the rigid 

ion model can be in error as mich as 50% for optical modes. 

Prior to this work, a quite different interpretation 

had been proposed by Grimes(1974b) in which both prominent and
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minor features of the infra-red spectrum were accounted for on a 

two-phonon mechanism, According to this view the absorption péaks 

correspond to critical points on the surface of the Brillouin zone 

rather than to the zone centre I, 

In the case of a two-phonon process, wave vector con- 

servation requires that qi + q2 ~ O and energy conservation 

that hws + hwg = hw where w1,wg and w are the angular frequencies 

of the two phonons and the incident photon respectively. Grimes 

noted that if the phonons concerned were acoustic then the energies 

at the Brillouin Zone boundary as calculated from the known elastic 

constants (and assuming negligible dispersion !) were approximately 

half the energies of the infra-red bands and that a correspondence 

between the two could be obtained along the lines indicated in 

table 1.4. 

In this connection it should be noted that overtones, 

i.e. two phonon processes involving phonons from the same branch, 

are not permitted when the space group is centrosymmetrical (e.g. 

Fd3m) but could occur if the space group were Fu3m. For example, 

two-phonon overtone states are forbidden for diamond (Fd3m symmetry) 

but permitted within the selection rules for zinc blends (Fi3m 

symmetry) [Johnson, 1965]. Thus, the correct interpretation of the 

infra-red absorption spectrum from Spinel is intimately tied up 

with the problem of correct space group assignment. 

1.6.3) Measurements of heat capacity. 

The contribution from the lattice to the specific heat 

of a crystalline solid depends on the phonon density of states and 

providing this is known, for example from measurements of the phonon 

dispersion curves, it is then possible to evaluate the heat capacity. 

It is also well known that discontinuities in the density of states



  

Table 1.4: Correlation of infra-red and phonon energies 
(after Grimes, 1972a) 
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function, known as van Hove singularities (van Hove, 1953) corres- 

pond to critical points on the phonon dispersion curves and that 

the frequencies of the latter can be identified in the infra-red 

absorption spectrum when this arises from two-phonon processes (see 

for example, Johnson and Loudon, 1964). 

In the case of MgA204, the primary infra-red absorption 

bands arise from two-phonon processes according to Grimes (see 

section 1.6.2) and he therefore proposed a simulated density of 

states leading to an expression for the heat capacity of the form 

2a(H)+2@) -2@)0@) 
where @ = hv, /« were determined from the four frequencies v, 

of the infra-red absorption spectrum. This theoretical heat capacity 

is compared with the experimental data of King (1955) in figure 1.7 

which also shows the equivalent density of phonon states. The fit 

to the experimental heat capacity is truly remarkable but great 

caution should be observed in drawing conclusions from this, as the 

heat capacity is fairly insensitive to the density of states function. 

Nevertheless, it must be significant that this same formula has also 

proved adequate for the estimation of the lattice contribution to the 

heat capacity in several ferrites (Grimes 1974a). The case of zine 

ferrite is particularly interesting as this compound appears to exhibit 

a Schottky anomaly which has been interpreted by Grimes(1974b) to 

provide an estimate of the height of the potential barrier at the 

centre of the octahedral sites. In ZnFeg0,4 the barrier height works 

out at 14.8+ .5 * 10°° eV so that when the thermal energy is of this 

order the Fe®* ions are presumably able to hop between the two 

equivalent minima,
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1.7) Scope of the present work, 

In spite of considerable technological and scientific 

interest in the spinel group'of compounds and extensive investi- 

gation of a wide range of their properties it is surprising to 

discover that their physical behaviour is really rather poorly 

tooa. In many cases the proviems are intimately connected 

with the lattice dynamics of the spinel structure on which very 

little information has been derived to date. Present knowledge 

as described in sections 1.6.1 and 1.6.2,is limited to a few 

measurements of the velocities of sound and to the observation of 

the infra-red absorption spectra - the latter obtained chiefly from 

samples of polycrystalline material. Inelastic neutron scattering 

studies have been made on only one material to any extent - Magnetite, 

Fe304 (Watanabe and Brockhouse 1962; Samuelsen and Steinsvoll, 1974 - 

the latter appearing after the commencement of the present work) and 

even here, results have been limited to an investigation of the 

acoustic and low lying optical modes, 

In the work to be described the major objective has been 

to carry out an investigation of the acoustic phonon dispersion system 

in Magnesium Aluminate by inelastic neutron scattering and to construct 

a theoretical model of the dynamical behaviour of the same material 

along the lines of the rigid ion Kellermann theory for sodium chloride. 

The experimental results from both Feg04 and MgA@204 have been 

correlated with the aid of the adjustable parameters of this model and 

an initial indication of the disposition of the complete dispersion 

system of phonon branches has been obtained in each case. The corres- 

ponding eigenvectors have been used to identify those branches 

expected to be infra-red active. 

Finally in view of the very extensive indirect physical 

evidence favouring a crystal structure with F43m symmetry for the
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spinel group of oi Santa and the direct evidence for this symmetry 

in the case of MgAfa04 in particular (Hwang, Heuer and Mitchell, 

1973; Heuer and Mitchell, 1975), it seemed worth attempting a more 

complete structure analysis based on single crystal diffraction 

data such as might provide the detailed information on atom positions 

so lacking at the present time. This investigation was based on 

measurements obtained through conventional X-ray and neutron 

diffractometry and is described in Chapter 2.



CHAPTER 2 

REFINEMENT OF THE STRUCTURE PARAMETERS FOR SPINEL.



2.1) Introduction. 

Because Bragg reflexions of the type {hko} with 

(h+k) = 4n + 2 are systematically extinguished by the diamond 

glide planes in Fd3m but permitted in Fim, the problem of deciding 

to which space group Spinel properly belongs is apparently quite 

straightforward, However, when the atomic displacements responsible 

for the difference of symmetry are very small and when more than one 

kind of atom can contribute to the "forbidden" reflexions so that 

the intensity of some of the latter are in any case vanishingly 

small, the problem assumes quite a different order of difficulty. 

In addition, because of the very high symmetry of both Fd3m and 

Fl3m space groups, it turns out that multiple diffraction effects 

are unusually important and this further complicates the problem of 

detecting the decisive "forbidden" reflexions (see 2.2.4 below). 

This last difficulty had not been realised at the outset 

of the present study. It was thought, indeed, that the ideal 

technique for the study of the small structural distortions believed 

to exist in MgAé204, following the work of Hwang,Heuer and Mitchell, 

would be neutron diffraction. It was known, for example, that the 

overall fit to structural data was often superior in neutron 

diffraction than in X-ray diffraction (see for instance Coppens, 

1968).  Moreover,following the early work by Bacon (1952) it was 

known that neutrons could distinguish Magnesium and Aluminium atoms, 

while the difference between the X-ray scattering factors of these 

two elements was thought to be too small to distinguish experimentally. 

Thus , heusinn diffraction would provide an estimate of the extent 

of the inversion in MgAég04 which would otherwise have remained an 

unknown quantity. | 

The initial experiments in neutron diffraction with some 

5mm cube samples of MgAé204 (cut from larger melt grown single



crystals obtained from R.R.E. aivein) revealed two practical 

difficulties of totally unexpected magnitude namely multiple 

diffraction and extinction, Investigations of the former showed 

immediately that although it might be possible to detect one or two 

"forbidden" reflexions given access to neutrons of much longer wave- 

length (the first experiments used A= 1.1814) it would not be 

possible to make such measurements at any wavelength adequate for 

revealing the suspected structural detail corresponding to F43m 

symmetry. <A structure parameter refinement based on neutron 

diffraction data would therefore have to rely on careful intensity 

measurements of reflexions whose presence could be unambiguously 

recognised i.e. on the conventional spinel reflexions alone. 

Extinction effects, similarly,.were so severe that some 

correction for this aberration was clearly essential. In the 

initial experiments, for example, dramatic intensity variations 

were observed among the Bragg reflexions which are symmetry 

related i.e. equivalent. Since it was hoped eventually to exploit 

the existence of a large number of equivalents in Spinel a spherical 

crystal sample would have been advantageous but at that time this 

was thought too difficult to produce because of the hardness of 

the material (Spinel has a hardness of 8 on Mohs! scale). 

The greatest difficulty in practice, however, turned out 

to be the problem of obtaining access to neutrons with a wave- 

length short enough to permit the collection of high order data. 

The D9 instrument at the Institut Max von Laue-Paul Langevin 

(I.L.L) would have been ideal since this was mounted on a hot source 

with wavelengths in the range 0 .6--0.8A but demand for this instrument 

was too great so that measurements eventually had to be made on the 

D15 four circle diffractometer with a wavelength of 1.176A. 

Realisation that these difficulties might preclude a 

decisive result on the symmetry question for MgA€204 led to



further consideration of the use of X-ray diffraction. However, 

facilities for the study of single crystals at Aston were severely 

limited so that collaboration with another crystallographic group 

had to be arranged. Fortunately, at this time, a group at the 

H.H.Wills Laboratory in the Physics Department, University of 

Bristol, under the direction af Dr.H.F.Kay were interested in 

the reproducibility of intensity data derived from their new 

Nonius four-circle, computer controlled, X-ray diffractometer, 

and were looking for single crystals with high symmetry (providing 

a large number of equivalent reflexions) as potential test specimens, 

A collaboration was therefore agreed whereby the Bristol group 

would carry out a program of measurements over half a hemisphere 

of reciprocal space using Molybdenum Ka radiation and a spherical 

Single crystal to be provided by Aston who would also carry out 

an assessment of the data and the refinement of the structure 

parameters. 

Thus, two sets of data were ultimately obtained, one 

set being through neutron diffraction and the other through the 

X-ray diffraction technique. The former are described in section 2.3 

and the latter in 2.4 and a comparison of the results obtained is 

made in 2.5. But first we discuss the practical difficulties in more 

detail. 

2.2) Practical difficulties. 

2.2.1) Scattering form factors. 

" According to the kinematical theory of the diffraction 

of X-rays (James 1948) and neutrons (Bacon 1962) the integrated 

intensity of the h.k.é planes from an infinitesimal volume 6&V 

is proportional to &V, thus,
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where Q is the well known reflexion coefficient which has the 

form, 

2\2 
2 (8 22513 2 

0 = Ge) NEA Lp ace Zee 

for X-rays and, 

Q = 5 a tp [Pel 2,3 

for neutrons. In these expressions e?/mc? is the classical radius 

of the electron, N is the number of unit cells per unit volume 

and A the wavelength of the incident radiation. The Lorentz factor 

L, is a function of the angle @ at which p is observed: it 

depends on the diffraction geometry and corrects for the different 

rates at which the reciprocal lattice points sweep through the 

Ewald sphere. The polarisation factor p, is another quantity 

which depends on the scattering angle @ , but in neutron diffraction 

there are no polarisation effects associated with nuclear Bragg 

scattering and p is unity. 

In the usual formalism for X-ray scattering, the 

structure factors Puke are related to the atomic form factor 

fo for each of the different atoms in the unit cell, where the 

latter in numerical calculations have been derived as a function of 

Sino/rA from a theoretical model of the electronic configurations 

of the atoms concerned. Such calculations should ideally take 

account of the fact that the innermost electrons can have binding 

energies comparable with the energy of the X-ray photon and thus 

resonant frequencies close to the frequency of the incident 

radiation, Though of lesser importance for the lighter elenents, 

the X-ray scattering is modified by this effect so a more precise 

representation is achieved by writing 

f.0 Pe: + a0%o4+ 2 At" 2a 

where the dispersion corrections Af and Af" arise from the



She 

anomalous scattering and to a good aporoximation can be assumed 

independent of the scattering angle. For the analysis of the 

diffraction data from Spinel atomic form factors fg calculated 

by Cromer and Waber (1965) for the Mg?* and Ag®* ions were used 

together with those calculated by Tokonami (1965) for the 077 ion, 

Dispersion corrections calculated by Cromer (1965) were applied 

to the Mg?* and Aé** ions their values being 0.05, 0.07e for 

Af and Af" respectively for both ions. The dispersion correction 

Sop Shot. lon, i negligible. 

“In neutron diffraction the expression for the structure 

factors Fike iS Fiendiost to that in X-ray diffraction except that 

each atomic form factor f is replaced by the coherent neutron 

scattering length b, of the corresponding nucleus; there are 

two important differences,.. however, arising from the latter. To 

begin with, the coherent neutron scattering length,is independent 

of the scattering angle @ since the nucleus is effectively a point 

scattering source and secondly, because of inadequate theory, 

neutron scattering lengths are experimentally determined quantities. 

In the neutron diffraction analysis of Spinel the scatter. 

ing lengths were taken from the International Tables Volumes 3 and 4 

as follows:- 

"Me 
Dae 

Do 

u 0.52 x 10° 77 om 

O PSub: x 107 2? om 

ul 0.577 x 10°*? om 

There is no anomalous scatter from these nuclei, as is true for 

most nuclei with a fon notable exceptions such as Cd. For a 

useful review of nuclear sc@ttering lengths see Bacon 1962. 

Now the description for both X-ray and neutron — 

Scattering summarised above has tacitly assumed that the ene 

in the crystal are at rest whereas in reality they vibrate quite
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vigorously aoout their mean positions and this must be taken into 

account before comparing theoretical and measured structure 

factors. If the atomic motions canbe regarded as isotropic, for 

example, the form factors (atomic or nuclear) may be written 

f exp[-B sin? 9/7] 2.5 

where B is the isotropic Debye-Waller or temperature factor and 

is related i a the mean square displacement from the mean 

position of an atom perpendicular to the reflecting planes by, 

B = 81? ur 2.6 

More generally, the effect of temperature on the 

diffracted intensities is treated by introducing the possibility 

of anisotropic vibrations where the exponent of equation 2.5 is 

replaced by, (Cruickshank, 1956) . 

-(bash*+2baehk + 2bygh + beak? +2bagk¢ + baal?). 267 

The anisotropic thermal motion of each atom may then be represented 

by a vibrational ellipsoid for which the temperature factors 

bia,bdaa etc. define the principal axes and their direction cosines, 

Note that the six parameters bisbie form a 3 x 3 real symmetric 

matrix in which the number of independent parameters may be reduced 

by the symmetry of the environment of each atom, In particular, 

for the Spinel structure under consideration the following re- 

strictions are imposed on these temperature parameters; the 

Magnesium ions are in sites of cubic symmetry, thus 

Baa= Dez= Dosa, Dag= big= beg= 0; while the Aluminium and 

Oxygen ions are in sites of trigonal symmetry thus, 

Daa= Dag = baa, bag = bag = bag. Finally it should be 

emphasized that equations 2.5 and 2.7 are valid . only in the 

harmonic approximation, the effect of anharmonicity on the thermal 

parameters has been discussed by Dawson (1967) and Willis (1969).



2.2.2) Absorption correction. 

An X-ray beam passing through a crystal of thickness 

t is attenuated in accordance with the relation, 

I =Io exp(-yt). 2.8 

momce nm tet a5 2 at debt - CSLiUa VLULL where Ig is the incident hea 

coefficient which can be evaluated from 

ae 

ae wy) %> a 

° 

Ve being the volume of the unit cell in A®, yw is in cm + and 

g, is the total photon-atom interaction cross-section and is 

measured in barns/atom, The summation is over all the atoms 

in the unit cell. 

Thus, the extent of the attenuation effect (loosely 

referred to as absorption) depends not only on the atoms present, 

but for a particular reflexion also on the total path length of 

the X-rays through the crystal, that is, on the shape of the 

crystal. Such effects thus can lead to systematic errors in 

the observed intensities which are difficult to remove unless the 

erystal is cylindrical or spherical in shape. In the latter case 

the "absorption corrections " have been derived by Bond and are 

tabulated in the International Tables Vol.2 as a function of pR 

where Ris the radius of the crystal. 

In the case of the X-ray diffraction experiment on 

Spinel uR was 0.28 for the small spherical crystal investigated 

(Molybdenum Ka-radiation) which gave an absorption correction 

(A*) varying by only 3% over the entire angular range i.e. 

AY = 1,52.at @-=.0° to &* = 1347. at G = 90°. Nevertheless, the 

correction was applied. No correction was necessary for the 

neutron diffraction study, however, since all the nuclei in
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MgAt204 have negligible neutron absorption, 

2.2.3) Extinction. 

Equation 2.1 is idealised in so far as it only 

applies to crystals of infinitesimal volume whereas in real 

crystals important physical processes arise which tend to modify 

the integrated intensity and introduce systematic error. One of 

these has already been discussed (section 2.2.2), but another 

factor first examined by Darwin (1914) often turns out to produce 

even more dramatic reductions in the intensity of the diffracted 

beam. This effect is known as extinction. 

If the crystal is perfect so that all the atoms are 

positioned with perfect periodicity throughout the whole crystal 

volume then the reduction in the intensity of the diffracted 

beam due to Bragg reflexion is known as "primary extinction". In 

practice, real crystals usually possess irregularities in their 

atomic arrangement, like dislocations, point defects, stacking 

faults, etc, which tend, very slightly, to spoil the perfection 

of their periodicity, Real crystals were first imagined by 

Darwin (1914) to be composed of small mosaic blocks which in 

themselves are perfect and diffract the beam coherently. Between 

the mosaic blocks, however, he supposed that there is no coherence. 

In an extreme case it could be imagined that there is negligible 

primary extinction within the mosaic blocks and the crystal is then 

said to be "ideally mosaic", 

Attenuation of the beam between mosaic blocks of 

identical orientation is known as "secondary extinction" and the 

extinction correction which is..generally applied to X-ray OLE 

neutron data is usually that relating to this secondary process 

and is based on the diffraction theory proposed by Zachariasen
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(1967) in which the integrated intensity p, of the diffracted 

beam is written as, 

p a PJ 210 

whe re Pi. is the kinematical integrated intensity of equation 

Zoi and y is the extinction factor. To work out some functional 

form for y, the mosaic model of Darwin is idealised even further, 

in that the mosaic blocks, or domains, are assumed spherical and 

their misalignment is assumed to obey an isotropic angular 

Gaussian distribution, 

w(A) = J2 g exp(-2n*g?a?). 2.11 

Thus, the extinction in real crystals, within the limits of the 

model is characterised by two parameters: the mean domain radius 

r, and the quantity g which is related to the mosaic spread 7, 

by 

ht ty Se 4 530e: mon 2,12 
eo 

where A, is the half width of the angular distribution function 
2 

for the orientation of the domains, 

Zachariasen then derives the extinction factor as, 

“Z of pe y= 0 + 2 pi = 2.13 

where pn is the polarisation factor given by 

pn = $ (1+ Cos?" 26) 2.14 

Now if the half width of the distribution function w is much 

greater than the angular width of a reflexion from a single 

domain, classified by Zachariasen as a type I crystal, (probably 

the case for many real crystals) then x is given by 

x=gQtT 2645 

and then the extinction depends on the mosaic spread parameter
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A,. Whereas if the reverse is true (type II crystals) then x is 
2 

given by, 

x=erxXtqt 2416 

and the extinction depends on the mean domain radius and not on 

the mosaic spread, JZachariasen points out that real crystals 

might be expected to behave in between these two extremes but 

if the wavelength is constant then the form of the correction is 

not altered and equations 2.15 and 2.16 are degenerate, i.e. they 

apply identical corrections, Note that in these two expressions 

T is the total path length through the crystal for a particular 

crystal setting, The extinction correction thus depends on the 

shape of the crystal and consequently it is useful to have a 

spherical crystal for investigation,for then 7 can be considered 

as a constant. 

In our X-ray data this secondary extinction correction 

was applied to Fcale as a type I correction, the parameter g 

being refined in the least squares analysis, Whereas in the 

neutron data the extinction correction was applied to Fobs based 

on the above theory but following in the manner of Cooper,Rouse and 

Willis (1968) where the correction may be written 

A+
 

F corr =Fobs (1 + KF obs Cosec 26)*. ac7 

In this expression the corrected structure factor is Fcorr and 

k is a constant to be determined. 

It should be emphasized that although Zachariasen's 

theory accounts reasonably well for the extinction properties 

of crystals it is nevertneless based on an idealized model of the 

crystal and at best can orly be an approximation. The only really 

satisfactory way to ensure that extinction is removed from the 

data is to correct experimentally. One method, for example, 

involves collecting data from a range of crystals of various



diameters and with the intensities on an absolute scale it is 

possible to extrapolate to zero path length, but this would have 

involved carrying out still further measurements. 

2.2.4) Multiple diffraction, 

We have emphasized in the introduction to this thesis 

and also in this chapter that serious problems are encountered 

when trying to estimate the intensities of the weak forbidden 

reflexions, particularly at wavelengths which are suitable to 

reveal structural detail. This difficulty is not one of counting 

statistics which can, of course, be overcome, but is due to a real 

crystal effect known as "double diffraction", the occurrence of 

which in both X-ray and neutron diffraction is well known, and was 

first investigated by Renninger (1937). We recall here the 

essential features and principles which give rise to these effects. 

Multiple reflexions occur whenever two or more reciprocal 

lattice vectors lie on the surface of the Ewald sphere similtaneously. 

One of these may be described as the operative reflexion (H,K,L) 

and the other as the cooperative reflexion (h,k,é). The vector sum 

then produces a double diffracted beam which appears as the primary 

diffraction from the (H+h,K+k,L+¢) planes. The effect is observed 

experimentally by rotating about the (H+h,K+k,L+¢) scattering vector. 

We present here, an analysis of double diffraction which 

gives rise to an observable intensity for the (002) reflexion from 

a single crystal of Spinel of volume 125 mm®, by neutron diffraction. 

The measurements were taken on the four circle MkVI diffractometer 

at A.E.R.E Harwell with a neutron wavelength of A = 1.1814. The 

crystal orientation is shown in figure 2.1, and the maltiple 

diffraction pattem was collected by rotating about the 002 scatter 

ing vector through the azimuthal or crystal angle 4, and is show



  

  

  

PLANE 

Le [1.0.0] 

TAL ANGLE 

er [100] 

      
0.0.2 SCATTERING VECTOR 

FIGURE 2.1 Crystal orientation
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in figure 252, 2% possesses the expected symmetry, being re- 

flected through 0° and 45° and has been indexed in the manner of 

Cole, Chambers and Dunn (1962), where the reference vector was 

chosen to be (100). For clarity only some of the indices of 

the operative reflexions are shown in the diagram. 

Because of the large dispersion spread of monochromatized 

neutron beams, some reflexions may remain in a condition to contri- 

bute . to the observed intensity over several degrees. Figure 2.2 

demonstrates this quite clearly where a dispersion spread of 

+ 1%, typical of neutron diffraction has been assumed. The 

upper part of figure 2.2 shows the product of the structure factors 

for the operative and cooperative reflexions at a mean wavelength 

of 1.1814 and gives an indication of the observed intensity profile. 

It must be emphasized that this is only a crude representation, 

as the observed profile must be an integration over all the 

reflexions at a particular crystal setting; an example of a more 

complete analysis can be seen in the paper by Moon and Shull (1964). 

These experimental results show that substantial double 

diffraction occurs in Spinel at this wavelength and because of this 

we cannot come to any definite conclusions conceming the obser- 

vation of a genuine intensity for the 0.0.2 reflexion. Furthermore, 

theseeffects are obviously not isolated to the 0.0.2 refiswien and 

this must clearly imply that many of the other intensities suffer 

from systematic error originating from this source. 

Although it is possible to correct for this aberration 

following the method of Moon and Shull, it would involve consider 

able numerical labour, especially when the wavelength of the 

radiation is suitable to reveal a large number of reflexions. As 

a result corrections of this nature are rarely applied.
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2.3) Results from the neutron diffraction study. 

In the neutron diffraction experiment the sample chosen 

for investigation was a small flux grown single crystal (kindly 

supplied by Dr.E.A.D.White of Imperial College, London) which had 

been ground with diamond powder. into a sphere of diameter 

1.62 + .10 mm. 

The integrated intensities from this crystal were 

obtained using the four-circle MkVI diffractometer ( D15) on 

the high flux nuclear reactor at the I.L.L Grenoble. With this 

diffractometer a wavelength of A = 1, 1764. with a dispersion 

spread SA/A ~ 1% is obtained by reflecting the collimated neutron 

beam originating from the reactor core, from the 3.3.1 planes of 

a copper monochromater with a take off angle 2@m=90° and this gives a 

neutron flux at the specimen of about 10’ns-* cm ?. Focussing 

then occurs at a detector angle of 6 = 6m after which the re- 

solution deteriorates rapidly, [for a discussion of focussing 

effects in neutron spectrometers and ose aspects of the pro- 

duction of monochromatic neutron beams see Amdt and Willis (1966) 

"and also E gelstaff (1965)]. 

The incident intensity of the neutron beam was monitored 

by a ?%5y fission chamber and the intensity of the Bragg peak of 

each step in the scan was collected, by a BFs counter,for a time 

corresponding to the collection of 20,000 monitor counts. This 

lead to integrated intensities for the strong reflexions ~ 200,000 

counts while the very weak reflexions such as 1.3.7 were of the 

order of a few 100, with backgrounds typically 0 ~ 2 counts in each 

step. The angular width of the scan over the peak was taken to 

be five times the computed half width of the peak, and this was 

varied in accordance with the resolution of the spectrometer. The 

computed full width at half height (F.W.H.H) was derived from the
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formula (in &grees) 

F.W.H.H = 0.74 - 0.55 tan@ + 0.30 tan*6@ 

and is shown as the dotted line in figure 2.3 which also shows 

the bold line, the F.W.H.H of some of the observed peaks ee 

ur Spin wstal, As a result of this variable range over 

which the Bragg peaks were collected the step size was altered so 

tet the number of stage in the peak was always maintained within 

the range 40 to 70 steps, a procedure adopted to enhance experi- 

mental efficiency. A standard intensity, in this case the 0.0.4 

reflexion, was inserted after every ten reflexions and although 

this varied by as much as 4% throughout the measurements no 

systematic trend was observed. : 

Finally the data reduction was performed by the I.L.L 

College V data reduction system (Lehmann and Wilson, 1975) which 

was specially designed to deal with all the aspects which have 

been mentioned above. Since there are no polarisation factors 

associated with nuclear Bragg reflexions p was unity and the 

Lorentz factor was 1/sin2@ as normal beam geometry was employed to 

collect the data. 

Over the seven days of measurement 455 nbn. Prieanl re- 

lated integrated intensities, extending over three quadrants of 

reciprocal space, were collected and these were subsequently reduced 

to 66 independent reflexions. As in the X-ray data, which will be 

discussed in the next section, large variations were observed in the 

groups of equivalent reflexions, particularly amongst the strong re- 

flexions. This data, however, appeared to have some systematic 

trends correlated with patterns of hké indicies, see for example 

table 2.1 which shows the measured equivalent orders of the h,h,h 

reflexions. The structure factors shown here are on the same scale 

as those appearing in our final analysis given in table 2.2, Attempts
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to explain these variations on the basis of anisotropic extinction 

following the method of Coppens and Hamilton (197) proved un- 

successful, and so the data which was used for refinement was 

selected by the same procedure which we used in the case of the 

X-ray data (to be described in the next section) and led +o the 

rejection of approximately 0% of the individual measurements. 

With all the intensities reduced to structure factors, 

a comparisonwas made between Fobs and Fealc, for the two space 

groups Fd3m and F43m, by the method of least squares which minimizes 

the residual function 

s 

Res = : We (Fobs - Fealc)? 2019 

1L=1 

where We is the weight applied to the ge observation and s is 

the number of independent observations (in the case of the neutron 

data 66 observed structure factors). For an account of the method 

of least squares applied to crystal structure determination, the 

reader is referred to the International Tables Volume 2 and to 

Lipson and Cochran (1966) where a useful comparison of both Fourier 

and least squares methods applied to structural analysis can be found. 

The method of least squares has the advantage over Fourier techniques 

in that it is readily aA ptea by computers and today several well 

established crystallographic least squares computer programmes are 

in operation. AILthe crystal structure analysis reported in this 

thesis was performed with the X-ray '72 system (1972) on the ICL 1906A/ 

CDC7600 computer at the University of Manchester. 

Before any refinement was attempted with the neutron data 

the data was approximately corrected for extinction by fitting our 

measurements to twenty observed structure factors from some neutron 

powder data on MgAé204 kindly provided by Dr.Willis of A.E.R.E.Harwell.



Table 2.1 h.h.h equivalent orders from 
neutron data 

  

Fobs 

Fobs 

Fobs 

Fobs   

(a,h,h) 

(hy.by h) 

(hh, hh) 

(1y,h,.h) 

  

  

he ee) be 2 h =) hes 

1.95 6.78 9.36 8.69 

2.02 9.98 13.00 11.06 

1.95 Tech 92 8.61 

~ 9.27 4259 10.9%     

Wide



This gave initial determinations of the relative scale factor and 

extinction parameter k of equation 2.17. Initial refinements of the 

data were then restricted to the space group Fd3m with the strong 

reflexions, those with Fobs > 10, removed from the analysis. This 

gave a better determination of the scale factor, although at the same 

time the structure parameters including three temperature factors were 

allowed to vary to give a first approximation to the structure. The 

strong Fobs were then fitted to the calculated structure factors by 

adjusting the extinction parameter, which increased by 2%, giving a 

final value for k of .0205 * .0008 x 107* cm*, Further refinements 

with all the data produced little change in the parameters and reason- 

able agreement was obtained with the overall reliability index R defined 

aS, 

ae 2 |Fobs-Fealc | 2.20 

2 Fobs 

of 2.9 percent. Inversion was introduced by allowing the scattering 

lengths of the Mgand Aé@ nuclei to vary independartly which produced 

the final refinement under Fd3m symmetry summarized in table 2.2 with 

an R-factor of 2.6 percent. This also gives, assuming the scattering 

length by 
4 

length in which there appears to be some slight uncertainty, since the 

is well established, an estimate of the magnesium scattering 

value appearing in the International Tables Volume 3 is 

0.54 + .01 x 10°** cm whereas the value initially derived by Bacon 

(1952) from measurements on MgO and MgAég0,4 powder is 

0.52 + 01 x 10°*? cm, which was also the value obtained by Sabine (1965) 

from studies on MgO a few years later. The inversion parameter i, 

and the magnesium scattering length can then be obtained from the 

solutions of the simultaneous equations representing the inversion 

db 
% 

2bo 

(1-4) Oye + ib, 2 yee 

(2-1) bag + iby, 2yee 

where bh and by are the refined values of the tetrahedral and
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octahedral site neutron scatteringlengths and were found experi- 

mentally to have values of 0.51 + .01 x 10°* om ana 

0.36 + 01 x 10°*” cm respectively. This yielded an inversion 

of 15 + 9% and a coherent scattering length for Magnesium of 

0.54 + .02 x 10°** cm in agreement with the higher value of the 

Intemational Tables Volume Ds 

Allowing the structure to refine on Fh3m, with individual 

isotropic temperature factors and the neutron scattering lengths 

fixed at bo and be gave a slight improvement with R = 2.4% The 

results from this analysis are shown in table 2.2 next to the Fd3m 

refinement. The final parameters deduced for the space groups 

Fd3m and Fl3m are compared with the corresponding parameters derived 

from the X-ray results in tables 2.5 and 2.6 respectively and are 

discussed in section 2.5. 

2.4) Results from the X-ray diffraction study. 

In the X-ray diffraction experiment the sample chosen was a 

small melt grown single crystal of Spinel, supplied by R.R.E Malverm 

and this was again shaped into a sphere of diameter 0.48 + .02 mm by 

erimdae with diamond powder. As explained in 2.1 the measurements 

on this crystal were obtained with a Nonius four-circle X-ray 

diffractometer at the University of Bristol. The radiation employed 

was fP—filtered MoKa and was generated with the X-ray tube operating 

at 4OKV so as to eliminate harmonic contamination of the beam. The 

radiation was also reflected from a pyrolytic graphite monochromator 

at @, = 6.07° after reflexion from the crystal to minimise white 

‘ radiation background. 

In all 3,968 non-Friedel related reflexions were collected 

Over a period of six weeks during which the diffractometer returned 

after every tenth reflexion to measure a standard intensity which in 

this case was the 4.2.2 reflexion. A systematic drift of several
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percent was observed in this standard so all the integrated in- 

tensities were corrected for this drift by linear interpolation 

to the fixed reference, 

Five attenuation filters were used throughout the experi- 

ment to reduce the intensity of the diffracted beam by different 

known ratios so as to enable a wide range of integrated intensities 

to be observed. The measurements were then scaled according to 

these various attenuation factors so that the whole range of measure- 

ments could be referred to a single relative scale. The integrated 

intensities were corrected for the angular dependence terms Lp, and 

as normal beam geometry was used for each measurement, the Lorentz 

factor has the value L = 1/Sin2@, but because of the presence of the 

monochromator the polarisation factor, 

p = 3(Cos*@ + Cos*2¢) 2.23 

was used. 

Because Spinel belongs to the cubic crystal system many 

of the observed intensities are symmetry related i.e. equivalent, 

for example LiKe = Tee etc. In our measurements, where one com— 

plete hemisphere of reciprocal space was examined, reflexions of 

the general type hké contained 24 equivalents, while hko and hhk 

contained 12, hho 6, hhh 4 and hoo only 3 equivalents. Thus 

the 3968 observed integrated intensities could be reduced to 242 

independent reflexions including 20 forbidden reflexions of the type 

hko with h+k = 4n + 2, It should be emphasized here that these 

latter reflexions are extremely weak and although many were actually 

observed it was exceedingly difficult to eliminate double rage Saas 

effects as a possible cause for their intensity (see section 2.2.4) 

and therefore it was thought best to exclude these reflexions from 

the structure refinements that follow,



The Sopivaient observations of each of the 242 in- 

dependent reflexions were collected together into groups, and the 

results illustrate the difficulty in obtaining accurate intensities, 

for fairly large variations, typically D to 30%, were often 

observed among the equivalent reflexions within these groups. Now 

it is unlikely that these discrepancies can arise from counting 

statistics because a large number of counts were collected for most 

reflexions (i.e. typical intensities of the intermediate reflexions 

were about 100,000 ~ 200,000 counts) and, moreover, repeated 

measurements on the same hké reflexion over a period of time were 

always observed to lie well within the statistical counting 

uncertainties which surely indicates that the positioning of the 

various diffractometer shafts is not the cause. The explanation 

of these variations probably lies in the nature of real crystals 

and demonstrates the importance of effects such as anisotropic 

extinction and double diffraction, however,no evidence could be 

found of any systematic trends or pattems with particular values 

of hké indicies, within the groups of equivalents, as one might 

expect with these crystal effects. 

Clearly some averaging process over the equivalent 

reflexions was necessary in order to obtain a data set with a high 

degree of intemal consistency. For reflexions with 12 or more 

equivalents, the following procedure was adopted: the range of the 

observed intensity of each group was divided into a number of classes 

and a histogram was plotted with the, frequency of occurrence of intensity I 

against the class width. Fairly typical reflexions analysed by this 

method are shown in figures 2.4a,b and as can be seen from these 

diagrams the intensity spread is very nearly represented by a Gaussian 

distribution, despite the small number of observations. The integrated 

intensities used in the analysis were therefore taken to be the mean 

of the intensities enveloped by the Gaussian curve. This method of
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to the high angle data, which is where small atom shifts are ex- 

pected to be more important, while at the same time down weighting 

the strong reflexions at low angles as these are seriously affected 

by extinction. Further refinements of all the parameters’ [six in 

this case] led to convergence of the least squares with an overall 

reliability index, R, of 2.8%. 

With the same weighting scheme and with the scale and 

extinction parameters held constant the structure was then refined 

assuming the space group Fi3m to be applicable. The number of 

structure parameters in this case was extended to eight, including 

three positional parameters and five temperature parameters. To 

enhance the sensitivity of the data to small shifts of the atoms we 

chose, from separate calculations of the geometric structure factors 

on the space group Fim, the 50 most sensitive reflexions, these 

inevitably tuming out to be weak reflexions with Fobs generally 

below 30. With this group of selected data only the three parameters 

X4,Xg and xg were refined and this gave a first approximation to the 

atom positions, These values were then used as starting parameters 

for a refinement of all the model parameters with the complete data 

set and the R-factor dropped to 2.7% | 

The effect of inversion was investigated by examining the 

behaviour of a different selected group of data, namely that with 

Fobs < 30 and Sin@é/A < .78. This region was chosen because it is 

practically insensitive to any other parameter, i.e. the low value 

of Siné/A makes the effect of atom positions and temperature re- 

latively unimportant,and similarly the lowish value of Fobs makes 

these reflexions fairly insensitive to the scale and extinction 

factors. 

In taking account of inversion, the scattering picte re 

are changed according to the inversion formulae, defined previously
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data selection led to the rejection of more than 10% of the data. 

Finally for reflexions with fewer equivalents a straight average 

was taken except where there was an obvious foreign result. The 

number of equivalents used to derive Lobs for each reflexion is 

shown in column 2 of table 2.3. The integrated intensities shown 

in column 3 of table 2.3 have the angular dependence terms L and 

p removed and were reduced to structure factor by correcting for 

absorption (see section 2.2.3). 

Initial refinement of the data was restricted to the 

space group Fd3m with the cations assumed to have their normal 

arrangement, and only the intermediate intensities were used so that 

an approximate value of the relative scale factor c, could be 

derived together witn the oxygen positional parameter and isotropic 

temperature factors. With these factors then held constant the 

extinction parameter g was refined a as this is closely 

correlated to both the scale factor and the temperature parameters. 

Note, in the computer program CRYLSQ of the X-ray system the extinction 

correction is applied to Feale following the method recommended by 

Larson (1967) which is based on Zachariasen's theory of X-ray 

diffraction and is formally identical to the latter except that the 

correction is applied to F rather than I, the appropriate equation 

being, 

ae 

: b2 x\" Feale = |F,| (1 + 2 Dl *) Sick 

whe re .. is the kinematical structure factor and Fcalc the cal- 

culated structure factor with extinction. 

At this stage each observation was weighted according to 

the expression Wi xy where x depends on Sing as follows: 

if Sing > ./107 then x = 1 otherwise x = Sin@/.7107 and y ts 

related to Fobs by: if Fobs > 30 then y = 30/Fobs otherwise y is 

unity. This scheme was employed to try and establish a good fit
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in equation 2,21 and 2.22 but with the neutron scattering lengths 

(b) replaced by the corresponding stomic form factors (f). The 

inversion was determined from plotting the R-factor against the 

percentage inversion which is shown in figure 2.5, and as can be 

seen there is a fairly well defined minimum in the neighbourhood 

of 17.5%. It should be emphasized that the inversion is not 

accurately determined in X-ray diffraction since the atomic form 

factors for the Mg**and Aé°* ions show in figure 2.6, are very 

similar, To be realistic therefore the inversion is estimated to 

be 1705 + 5% 

Introducing inversion into both space groups improved 

the overall R-factor by 0.1% in both cases and some further 

slight manual corrections of the order 4 ~1% were made to the 

scale and extinction parameters giving final values of c = .285.6 +1.5 

and g = 3440 + 50, to improve the overall appearance of the data. 

This gave a better balance between the positive and negative dis-— 

crepancies (AF's) where AF is defined as AF = Fobs-Fcalc. 

The calculated structure factors of the final refine- 

ment witn isotropic temperature factors appear in columns I and 

II of table 2.3 for Fa3m (R = 2.7%) and Fh3m (R = 2.66) symmetry 

respectively. The introduction of anisotropic temperature para- 

meters led to a better agreement between Fobs and Fceale for both 

Space groups investigated and the results of these are shown in 

columns II and IV for Fd3m (R = 2.6%) and Fh3m (R= 2.4%) re- 

spectively. The structure parameters from this analysis are com- 

parcd=in.tabile 2.7. 

During the analysis a breakdown of the R-factor into 

various categories in terms of Fobs and Sin@/A was found to be 

immensely helpful in that it highlighted certain regions of the 

observations which were not fitting particularly well. The final
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Table 2.3: X-ray results on Spinel 

K .UNovot Intensity —. Ff obs 
Equiv obs Fd3m 

QO. 4 2 3700163 1396860. 1395607, 
0 8 2 3687998 139.69 140.54 
On2 3 491455 50.85 49.79 
0 16 2 449576 48.43 48.40 
ee 4 892108 68./6 : 65675 
262.5 8 363396 43.82 42.10 
2/10 8 243559 Beeo5 33.37 
2 14 9 25529 ASSO Bee 
2°18 8 34251 A656. 2 13606 
4 4 5 5A0521:7 164.28 167.86 
4.8 9 1273540 82.12 79 47 
4 12 10 1223110 80.19 - 80535 
4 16 8 99226 22074. 22674 
6:16 5 442368 48.40 48.15 
6-10 8 17038 9246 9228 
6 14 10 123471 25 aS0o ee le 
6 418 = 0.00 246 
e 8 3 1810625 97.51 96.95 
S212 8 235342 35.04 34.54 
8.416 9 270025 B65 37690 

102.10 4 176662 50.377 32.16 
10 14 8 4237 4.70 4.87 
12.12 5 387069 44.93 44.30 
Led 4 531697 SSee0 3. 4676 
dS 10 1552355 90.64 88.10 
A725 8 2204518 107.95 106.24 
ae 8 2258 3.45 1.94 
AS 9 236408 35038) 34.69 
qe 7 184321 Sded dy a 3606 
113 9 479590 DOets . 50605 
1:15 8 9522 7205 6-62 
Acdles: 9 59504 17.61 17.44 
TAS 6 9024 6 084 640 
3S. 9 7956 049 6 043 
3ee5 23 179667 30.82 29.52 
Shee 20 Sds723 S2e14 2 O0sc5 
Seo 9 856624 67530 678 
Se t5 10629 747 7.03 
S615 a9 85771. 21220 20.66 
S55 18 21823 11.94 11.68 
See cae 192877 346-72 30.43 
3.049 a7, 6082 5252 5258 
5.25 12 410992 46.60 45.92 
Soe. 23 664940 59.34 59.36 
Deg 24 904791 69.00 70229 
De aed AS 600 1.78 096 
DiS 22 115203 24.53 24.56 
2 5 2 38099 14.10 13.86 
5a d7 18 178698 30.56 30.47 
3 19) 16 4925 5.05 4.97 
Tod 10 11908 7292 751 
a9 23 38358 14.20 14.07 
Te A 25 59060 U7s61. 18.06 

a 14 226347 34.36 33.83 
115 18 8579 6269 6 260 
Tae 18 26794 11.83 11.60 
952 9 8 151760 28024 28206 
OM Aa 21 134399 26 49 26254 

F43m 

139.63 

140.53 

49.52 

48.53 

65.83 

42.05 

35655 

14630 

1303] 

167.84 

79 228 

80.32 

22 248 

48.44 

9.18 

26603 

045 

96.95 

34.34 

37298 

32253 

4.97 

44.42 

47.88 

88.08 

106.33 

2005 

34.65 

i it a Be 

50613 

17.34 

682 

6-65 

29452 

50:76 

6729 

Tess 

20.64 

11275 

30.66 

5292 

45.96 

59.38 

70236 

2eis 

24.44 

14.09 

30.57. 

5039 

7681 

14.04 

18.10 

34,02 

6.84 

11.58 

27695 

26269 

Fd3m 

139.68 
140.57 
49.86 
48.53 
65671 
42.24 
aa52% 
11.44 
13.06 

167.88 
79.54 
80.44 
22.87 
47.82 
9.69 

25.35 
226 

97.05 
a4 74. 
38.10 
31.68 
4.37 

44.53 
47.62 
88.14 

106.08 
2607 

34.45 
31.16 
49.84 
6.54 

a7eeT 
645 
6229 

29.52 
50.90 
67218 
7.00 

20.65 
11.70 
30.43 
5659 

45.53 
59.49 
69.92 
441 

24.20 
13.98 
30.19 
4.88 
7.60 

14.22 
18.05 
33.96 
663 

41,73 
27260 
26.73 

bles 

F43m 

139.66 

140.42 

49.85 

48.36 

ODieire 

42011 

33642 

11.28 

12-97 

167.80 

79.49 

80.21 

22693 

47.80 

9.47 

25.630 

96.81 

34.70 

37.93 

31.64 

4.57 

44.32 

Aes: 

sisi skal 

106.10 

2094 

34.52 

31.20 

49.71 

Gai: 

17.28 

6.86 

6,45 

29261 

50.78 

67ed1 

7210 

20673 

11077 

30.37 

5266 

45.65 

59.44 

69.83 

2043 

asa 

14.22 

30.08 

4.97 

766 

14.37 

18.04 

33291 

670 

11.78 

27264 

26077
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k 1 No of Intensity Fobs Fcale I Feale II Fealc III Fecale Iv 
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Equiv obs Fd3m F43m Fd3m F43m 

a © eae 3 275803 37.93 37.95 38.00 37.54 37.41 
9.48. 47 756 1.99 4003 tof? o87 1.63 
9 T7:. As 29273 12.32 13.08 12.93 12.75 12676 
ttt a 9940 7220 6.84 7203 6.90 6.95 
414.493>..22 9877 7.18 6.61 6.55 6.81 6.95 
11.48 5.22 18108 9.72 8.68 8.78 8.59 8.73 
13°35 39782 14.41 14.50 14.35 14041 14.12 

2a 4 186663 31.43 33.38 33.40 33.44 33439 
258. 40 588604 55.78 53.18 53620 $3.23 53.19 
2 ee 4 154771 28.60 20.57 "=. 20a8e 29,45 29.52 
2208 > 48 267841 37.66 37635 37.44 37.30 37.19 
2 ae ee 150325 28.12 30.31 30.16 30.14 30.12 
2 aa eg 75988 19.99 19.94 20.07 19.98 19.86 
2:iG6@e- 40 92656 21.99 2531 22.18 22210 22.04 
S46. - 10 31143 12.74 42529 12.47 12.24 12.28 
2 46 8 78469 20225 19.19 19.01 18.97 18.78 
4246 210 21387 10.63 9.40 9.58 9.63 9.71 
4%.6:- 24 414457 46.80 46.15 46.29 46.02 45.95 
Ae. 28 20599 10.44 10.02 10.25 10.30 10.41 
+ 39 78978 20.37 20.43 20.48 2059 20.43 
442 304 17277 9.53 9.23 9.41 9.47 9.50 
48 22 68675 18.93 18.87 19.09 18.74 18.65 
48 30 12123 7.95 7.62 7.78 7879 7085 
448 36 8635 6071 6.10 6.23 6.22 610 
6 6 8 183193 a 33.22 33.07 33.05 33.07 
6&8 92 116629 24.78 25637 25445 25.49 25034 
6 10.33 110610 28542 26.05 25291 25.83 25.85 
6 Az 47 66386 18.64 18.62 18.75 18.53 18.46 
6 i 0 75538 19.85 20.13 19.90 19.87 19.78 
6 2e.....28 20459 10.33 10.23 10.49 10631 10.34 
6 we. 45 65065 18.38 47673 17.54 TTT 17.69% 
Ss aa 39450 14.40 14.47 14.70 14.87 14.89 
8 40° 93 87900 21249 21.96 oo ytd 21.83 21.75 
6 a8 44105 15.15 14.94 15.19 15429 15.34 
844° 33 16978 9.41 9.02 9,22 9.16 9,07 
8 16° 48 30643 12.66 12.60 12.80 12.88 12.90 

1) 1 75032 19.79 20.62 20.35 20.33 20.28 
10 45." oe 24867 11.39 11.03 11.24 41645 11.09 
0.46 48 59078 17.55 17.28 17,04 16.95 16.88 
10 46°. 46 17661 9.58 9.51 9.87 9.41 9.63 
a2 ea 54123 16.80 16.18 16.42 16.54 16.56 
12 4 a 26328 17472 11.00 11.34 10.88 10.96 

3 4 683474 60.11 57.18 57.00 57.20 57.06 
oo. 9 1162499 78.37 77029 77034 717043 77034 

2 ae 38139 14.214 13.97 14.07 13.89 13.96 
a 9 78390 20.33 20.03 20.03 20.21 20.26 
3 44 9 73340 19.64 19.84 19.90 19.75 19.84 

48° 46 326697 41.34 41.56 41.75 41.70 - 41.57 
o-15 46 18189 9.74 9.65 9.97 9.73 9.83 
3 47 9 47360 15472 15.04 15.01 15215 15015 
3 19 8 7980 6.43 5.78 6229 5.69 6.23 
~ ee eae 1280184 82.26 82.64 82.68 82.54 82.50 

2. ae 6653 5.93 5.80 5.82 6.00 6023 
5 Sap 124914 2562 25.75 25.64 25.58 25.66 
e443 24 140602 27264 27.69 27.80 29595 27620
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Equiv 

20: 
22 
20 
2d 
22 
24 
21 
18 
18 

7 

AD, 
2a 
18 
18 
Ld. 
20 
16 

7 

4 
8 

a2 
7 

10 
6 
9 

aa 
20 

ee 
AD 
22 
20 
asl 
20 
21 
Ag 
16 

2a 
16 
18 

aed 

7. 

obs 

315594) 
Sod 

37019 
107028 
318252 
29978 
33655 
e509 

122249 
373448 

4238 
46100 
41039 
87999 
10921 

102845 
8802 

112353 
2111355 

6781 
2410052 

1774 
332681 

656 
356001 
85975 
10879 

182155 
11267 
1537 
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487767 
4522 

631399 
1453 
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5068 
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SOLD 
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1393203 
40727 

211498 
143904 
346458 

23975 
46749 

2209017 
304206 

1048 
27787 
31143 
8/353 

466643 
SILT 

F obs Pecarc. fof eaic ii. F calc Tit F care 

Fd3m F43m Fd3m F43m 

40.59 41.04 41.13 40.89. 40.81 
4.16 3.74 4.4% 3.64 3.83 

43.99 13.68 13.60 13.56 13.63 
23073 24.84 24.80 24.66 24.66 
40.91 42.33 42.46 42.56 42.46 
412.53 12.67 12.94 12.86 12 083 
13.25 1a a4 42.10 12 oe 13238 
6.99 6.57 7.00 6.39 7,00 

25425 25.10 25.33 25.29 25218 
44.28 46.44 46.45 46.20 46.12 
4.70 4.50 4.50 4.72 4.96 

15.51 15252 15-36 4537 15.35 
14.64 14.61 14.67 14.76 14.76 
21635 21.92 22.02 21.74 21-70 
7.55 1.93 7.55 7.00 7.56 

23.16 eee 22.77 22.84 22276 
677 7.08 7581 7233 7.46 

24.10 23.50 23.54 23226 23621 
104.86 104.32 104.20 104.37 104.32 

5.99 5.45 6e17 5.60 6.40 
442,79 . 116.78 116.76 116.85 116.63 

3.05 2.85 2.90 2.91 3.08 
41.76 Gites? 41.03 41.41 41.38 
4.85 1229 aoe 1.229 +98 

43.08 42.66 42.69 42.82 42.64 
21.35 21239 24,32 21.73 21253 
7.56 7.40 7.49 7260 7.63 

30.96 32.90 32.49 31.82 Si .00 
7.67 7.45 7.58 7.63 Ta72 
2.83 1.91 1.95 2228 aad 
6.37 6025 6655 6-39 650 

50.66 51013 50.93 $4.27 54.21 
4.87 4.51 4.74 4.60 4.88 

57639 58.70 58.76 58.88 58.64 
2275 2524 2.49 2014 2245 

16.87 1730 a7 011 17651 47-57 
+675 235 046 243 034 
5.14 4.85 5.12 4.93 5.08 

23.78 24.24 24.59 23275 23.73 
4.9% Act? 4.18 4.20 4.25 

24,81 21234 24.19 21.58 21.60 
85.90 87.64 87.76 87.18 87.15 
14.65 14.37 14625 14.45 14.59 
33.33 34.86 34.84 34.30 34.38 
27.49 28.66 2872 28.80 28.84 
42.51 45.07 45.17 44.61 44.47 
3.52 335 4.00 S94 3.55 

1562 16 238 16 026 15-99 16.01 
34.14 35.80 35.88 35.98 - 35.89 
40.00 41.83 41.87 41.87 41.81 
2034 1665 4.93 aoa 2.05 

12204 11.69 11.75 11.91 11.99 
12.74 42470 42.79 1e77 12.81 
24.36 21.58 rae yy 2) 21063 21.56 
49.44 §2232 52.43 58.77 51.63 
4.44 4.10 4.07 4.24 4.54 

IV
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Aiat 
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10 
23 
ag 
fel: 
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8 
2 
2 

10 
AS 

2 

10 
6 
4 

obs 

78864 
26647 
44913 
ado. 

289 
142113 
142209 
154423 
83885 
2a ted 
61641 
20501: 
25895 
10193 
27743 
64216 
21202 
58706 
5067 
49711 
35570 
69929 
10606 
8658 

140146 
15794 
24532 
26898 
87564 

106860 
923 

22906 
12276 
eee: 

883219 
12007 

1g 287, 
S92 

189610 
93990 

13452 
562 

254451 
112609 
67864 

162490 
859 

2460 
A789 

46500 
2411 

16715 
2534 

20.228 
11.80 
15.30 
19.36 
1.22 

27216 
2iheS 
28.49 
20.98 
10.64 
deo 
it<32 
11.67 
7230 

12.03 
18.30 
10.50 
17.50 
16.25 
16.12 
13.64 
19.18 
7045 
6-72 

27203 
9.09 

al ei2a7 
11.85 
21237 
23.61 
2.19 

10.93 
8.01 
6012 

67.94 
7.01 

24.94 
4.21 

31.34 
22414 
8.38 
Le 72 

36.40 
24.424 
18.81 
29214 
2e11 
3609 
3505 

15657 
Je D5 
9.31 
366 

Pucalenr 

Fd3m 

A1etd 
11.86 
15.42 
19.02 

ood 

28.19 
29.47 
293.39 
2269 
10.99 
18.43 
11.08 
11.48 
736 

12621 
18.78 
10.35 
18.75 
16.19 
16.16 
13.29 
5a 16 
Leod 
6-70 

27646 
9.76 

11.04 
11.72 
21a 
23482 
1.83 

11.87 
7256 
Deo 

69.07 
7236 

25218 
Seok 

30.76 
22295 
7299 
1.64 

35.16 
25-480 
sie 
3269 
1.262 
3249 
2289 

15-37 
3.01 
8.74 

2632 

y 
s 

5/7 

Cale dd bP acalc Trt Focalc =v; 

F43m 

214263 
12.00 
15.54 
19.12 

269 
28235 
2938 
29:57: 
2247 
11.17 
18.28 
11.33 
11.68 
745 

12.42 
19.07 
10.52 
18.63 
16 041 
15.84 
13.49 
16.05 
762 
7200 

27269 
10.12 
10.99 
ato 
22212 
23.84 
1.63 

12224 
7247 
5055 

69.12 

7249 
25.203 
Seo 

30.88 
2552 
8.07 
1.86 

35230 
25477 
O65 
32.88 
leo, 
S03) 
2065 

16.07 
3443 
8296 
3264 

Fd3m 

21021 
12.03 
15.52. 

196d 7 
053 

2a 1D 

29.26 
29.210 
22.243 
AdeZ2D 
18.14 
10.87 
Ade 7 
7072 

12.48 
18.44 
10.58 
18.44 
15.87 
15.83 
13.58 
16.06 
7285 
6 238 

oiled ak 
10.06 
11525 

11.68 
22218 
2317 
LeoD 

12225 
7077 
5-68 

69424 
7.50 

25441 
3-55 

30.98 
22649 
Seno 
1.18 

35.40 
26235 
19.42 
32.220 
1.44 
3.264 

3.00 
16.04 
343 
8.94 
1285 

F43m 

21021 
12.13 
LoeoS 
19.14 
1.09 

27363 
29.33 
29205 
22240 
11.12 
18.09 
11.06 
11.88 
Le5D 

12.54 
18.43 
10.64 
18.45 
15.93 
15.69 
13.63 
16.03 
8.02 
6.97 

27.64 
10.12 
11226 
AevtT: 
22615 
23-71 
2216 

12225 
7.84 
5-74 

68.98 
SEE, 

25242 
364 

30.84 
22450 
8.22 
1.67 

35424 
25022 
19.41 
32.05 
1258 
3081 

3205 
15.93 
3258 
9.09 
3-71



Table 2.4: Analysis of ‘the R-Factor 

Breakdown of the R-factor in percent in terms of F obs 

58. 

  

  

              

  

  

  

Group No .of Refinement Refinement Refinement Refinement 
F obs planes rT Te er Iv 

0-5 26 18.6 ite. 18.0 955 

5-10 Be 4.4 326 45 3.3 

10-15 34 203 202 204 2.3 

15-20 26 265 228 206 208 

20-25 25 209 3.0 205 204 

25-30 14 3.6 3-8 3-3 3.3 

30-35 a3 3.4 3.4 301 342 

35-40 6 1.4 Bh 1.6 tor 

40-45 10 228 3.0 205 225 

45-50 5 nigo 1.8 2.20 220 

50-55 5 363 3.2 324 344 

55-60 3 223 223 204 203 

60+ 18 1.7 1.7 1.6 1.6 

Breakdown of the R-factor in percent in terms of Sin98/) 

Group No of Refinement Refinement Refinement Refinement 
Sin6/, planes a aes IIt Iv 

0-213 a 10.2 10.0 1065 10.3 

013—.26 4 Ze 223 pes 2.3 

026—239 iy 361 Sie 301 320 

0 39—252 12 1.6 124 1.6 1.5 

052— 065 au 205 204 204 203 

65-278 24 209 229 207 207 

78=.91 36 2-4 204 203 2e1 

291-1.04 42 209 206 206 202 

1.04-1.17 54 Sen 3.0 3.0 2.9 

1217—1.30 2 4.7 4.0 4.5 205             
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breakdown of the R~factor, shown in table 2.4, also illustrates 

a number of interésting features which will be discussed in the 

next section where we examine the results of the neutron and 

X-ray diffraction. 

2.5) Discussion. 

The parameters for the space groupFd3m with individual 

isotropic temperature factors derived from the neutron and X-ray 

diffraction analysis, shown in table 2.5, agree within the standard 

derivations, estimated from the least squares refinement on these 

parameters, The derived oxygen position parameter is also in 

agreement with previous estimates (Fischer, 1967; Rouse, Thomas 

and Willis, 1976). 

On the Ane hand, only some of the parameters derived 

for the space group F43m with the neutron results are in agree- 

ment with those estimated from the X-ray data, see table 2.6, 

namely the oxygen position parameters (xg and xs) and the tem- 

perature factors B B 
BL? 0X3" Foxes 

(xa) for both sets of data agree only because of the larger error 

The aluminium position parameter 

on this parameter with the neutron data. The temperature factors 

for the magnesium atoms, however, exhibit anomalous behaviour in that 

completely different results were found for these parameters from 

the neutron diffraction. It seems highly unlikely that this is 

associated with a real physical difference in the vibrations of the 

nuclei and electrons for these atoms since the magnesium vibrational 

parameters for the two sets of data are in excellent agreement when 

we refine the results with the space group Fd3m. We can possibly 

attribute the difference to two causes, firstly the number ‘of 

reflexions used to derive the structure with neutron diffraction 

was only 66 which may be too few to determine the parameters 

accurately. Secondly, and more likely, these two parameters might



Table 2.5: Structure parameters in 

Spinel with space group Fd3m 

  

  

  

  

X-ray data Neutron data 

Anion ~ 3876 2 3874 
u-parameter + .0001 = .0003 

oO ° 
2 2 

Bue 036 oe oO deh 240 = 06k 

ne ; Bae 032 + .O1A 036 + .06A 

Oo, p. 
Box 48 + 014 54 + 6A 

Oye - 054 + 202107 *7 om 

ay “ * 

: 17.5 + 5% 15 + 9% 

R 2.7% 2.6%        



Gis 

well be correlated in the least squares analysis since the unit 

cell contains relatively few magnesium nuclei, i.e. 8 compared 

with 16 aluminium and 32 oxygen nuclei; thus the nuclear scatter 

ing is dominated by the oxygen. For the relatively few réflexions 

where the scattering is predominamily from the magnesium the two 

temperature factors in the neutron data have similar effects. In 

contrast, in the X-ray data, although some correlation between 

these two parameters may be present it is likely to be less serious 

since there were many more reflexions used in the analysis and the 

main contribution to the structure factors originates from the 

metal ions. 

The best agreements between Fobs and Fcale for both 

space groups was obtained from the X-ray analysis with anisotropic 

temperature factors and the final parameters are shown in table 

2.7. The overall R-factor was only 0.2% better for Fy3m but it 

should be noted that most of this difference arises from an 

improved fit to the weak and high order structure factors where one 

would expect small atom movements to be of greater importance. This 

is best illustrated by a breakdown of the R~factor into various 

groups of Sin@/A and Fobs as shown in table 2.4 for all the X-ray 

refinements, The differences between refinements III and IV are 

also demonstrated by figure 2.7 where we have plotted this division 

of the R-factor analysis as a histogram where the number of reflexions 

in each category are given above the class widths. The group 

Sin@/A = 0 to 0.13 contains only the 111 reflexion and the large 

discrepancy between Fobs and Feale is attributed, at least in part 

together with similar discrepancies to a few other low angle re- 

flexions such as 22) and 113 to an overestimate of the integrated 

intensity. Such effects arise because the absorption gies 4A the 

P-filtered MoKa emission spectrum is so close to the Bragg peak that 

the background tends to be underestimated. No attempt has been made



(
p
e
r
c
e
n
t
)
 

R
—
F
a
c
t
o
r
 

R-
— 

Fa
ct
or
 

( 
pe
rc
en
t 

) 

— o i 
@ 1 

a 4 
o 1 

wo 1 
  

    
  

  

      

  
  

  

7 12 21 24 36 42 54 21                     

20 

184 

164 

145 

12- 

104 

13 

  

8- 

24 

26   

*39 65 “O91 1-17 

Sin O07 

----- Fd3m_ Anisotropic Temperature Factors 

F43m_ Anisotropic Temperature Factors 

      

37 

  

  
    

  

  

  

  

  

34 26 25 14 13 6 10 5 5 3 18 

  
                        

10 15 20 25 30 35 40 45 50 55 60+ 

F obs 

FIGURE 2.7 Analysis of R 

 



Table 2.6: Structure parameters in Spinel 

with space group Fi3m 

  

  

  

X-ray Data Neutron Data 

Position 
parameters 

Une (x1) o62h7 2626 ok eOOd: 

+ 20002 

Un, (4s) 23888 23885 
ie + 20002 + 0005 

Ups (¥s) ~8633 »8637 + 20005 
+ 20002 

Temperature 
parameters 

o o 
Buran (0 30,0) 28 st 0242 063 a -20A? 

44 : vs 
Bi go (#9494) 43 + 02K? 2h + 15A 

° o 
Bag (1x44) 033 + .02A° 238% 0547 

0 

    
° 

Box (¥a¥2%2) 252 + otek 61 + a 

Boyo(xexexs) 42 + .02A? 248 + .10A? 

INVERSION 17.5% 15% 

R 2.6% 20%         

62.
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to correct for this effect, which is only significant at low 

angles, although following the recent work of Nelmes (1975) in 

retrospect it might have been desirable to have done this, 

We emphasize also that the Lee Or the high 

order reflexions in Fd3m are unlikely to originate from thermal 

diffuse scatter (T.D.S), which peaks under the Bragg peak, and can 

lead to an underestimation of the intensity since an approximate 

correction for T.D.S, requiring a knowledge of the elastic ee 

introduced by Pryor (1966) and discussed in the book by Pryor and 

Willis (1975), accounts for only 1% of the intensity. Thus, despite 

the problems of obtaining reliable intensity measurements of the 

weak reflexions it seems likely in view of the result that F3m 

symmetry consistently improves the weak and high angle reflexions 

that the change of space group is significant. 

In the refinement of any crystal structure the introduction 

of extra variables into the least squares analysis will normally lead 

to a better agreement between the observed and calculated structure 

factors simply because there are fewer restraints on the model. 

Since we wish to distinguish between two structures which are similar 

it is necessary to ask the question; Is the gain in the R-factor 

significant or is it just a manifestation of the introduction of extra 

parameters? This is a difficult question to answer, but a solution 

can be obtained from the R-factors using the statistical significant 

levels derived by Hamilton (1965), who tests the R-factor ratio 

Ri/Ro*, by linear hypothesis tests (Hamilton 1964). In this ratio 

  

*This analysis should strictly be based on the generalised R-factors 

which are defined as R = iw, (|Fol,-|F,1,)°/2 7, |Fo|,7 32 but 

Hamilton emphasizes that the ratio R4/Ry is insensitive to the 

method by which the R-factor is computed and that the conventional 
R-factor is adequate for most purposes.
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Ri is the R-factor for the unrestrained model and Ro is the 

R-factor for the model containing fewer parameters, With this 

approach, it turns out that we can reject the hypothesis that 

the space group cannot be Fi3n, with at least 99.0% certainty 

which means that the gain in R-factor when the X-ray data is 

refined under Fl3m symmetry must be considered very significant 

indeed. Similar tests with the two neutron refinements, however, 

shows that the above hypothesis can only be rejected in this case 

with 9% certainty. 

The bond lengths between the atoms can be evaluated 

from the formulae derived in table 2.8, where the 8 parameters 

defined describe the shifts from the ideal configuration. The 

actual estimates of the bond teaches in Magnesium Aluminate fron 

refinements III and IV together with the standard deviations derived 

from the least squares analysis are shown in table 2.9. As can 

be seen the bond lengths differ by about .010 ~ .030A from the 

corresponding values in Fd3m, the bond lengths in the latter case 

being evaluated by constraining the equations of table 2.8 with 

64 = O and & = dg= S =u — "hex 

We can compare theS3e bond lengths with the numerical 

significance levels suggested by Cruickshank (1949), who gives the 

following criterion, 

If P represents the probability that a bond length dy, 

having standard deviation o{d,) could be observed greater than a 

bond length dg having standard deviation o(de) by 8€ by chance: 

then 

if P > 5% & is not significant 

if 5%2P>1% & is of possible significance 

if 1%> P> 0.1% & is significant, and 

if P<0.1% 8 is said to be highly significant.



  

66.6. 

Table 2.8 Bond Lengths for Fh3m 

  

  

Mg1-02 5.13534 (*/ 3+5s) 

Mg2-01 d=13 a (*7 5489) 

ios a = aj[5(612#80")=28s SarH( Sut da)+ “/ a6] 
x a/) {1-( 62484 )+16( 827+ 547)-3284 89+ oo 3) 

Ag O02 d= aul [3( 847 +837) +284 Sg~4( Ss-54)+ *;46] 

~ 7, i 1-L.( 88-81) +16( 837+5,7) +328, 85+ wnet 

01-01 d = al2 (28) 

01-01 d = al2 (44268) 

02-02 d = al2 (-28,) 

02-02 d = al2 (4+28,) 

01-02 d = al [3(827+857)-28355 + 475] 

~ Sh 1+2.( 847+837)-859 83 + ve 
2 

@ = lattice constant Ol = OX1(xpxpxe ) 

ey 02 = OX2(xexgx¢) 

oe F  Rghe Wye 

8s = "7g - Xz 

   



Table 2.9 Bond lengths in Spinel 

67. 

  

  

  

Fd3m Fi 3m 

Bond Distance o Bond Distance o 
° 0 ° ° 

A A A A 

Mg-O 1.926 0.002 Mg1-02(4,) Lacie 0.003 

Mg2-01(4, ') 1.94.2 0 003 

AL-0 1.92). 0.002 A&O01 (do) 1.914 0 004. 

A£-02(do') 1.934 0 004 

0-0 2.570 0 003 01-01(d,) 2.545 0.005 

02-0 2(de) 2.593 0.005 

0-0 2.865 0 .001- 01-02(dg) 2.865 0.001 

0-0 3.146 0 .00 3 01-0X a, ') ia Te 0.005 

02-0 2( dg ') 34123 0.005 

    ° 
a* = 8,083 + .001A 

* estimated by Bristol 
group from diffractometer 
control matrix, 

   



68. 

The probability P due to random errors is given by the normal 

error curve as, 

P= 4$[1 = erf(x)] 

where x = 3¢/( 207 (az) +20? (da))2. 

Applying these to the differences between the bond 

lengths calculated from Fd3m and Flim space groups we obtain 

the following results: 

Bond o 
Bond Difference(A) a P 

dy. Mgl-02 oO Ly eid” << 1% 

d,'  Mg2-01 2016 Salk ce se 

do A£-O1 010 TAT 133% 

do? -Ass02 010 oo. Loe 

da 01-01 2025 209° 2a 

dg 02-02 2023 2.2080 425i 

at Oi bee 305 < 1% 

an %. 2.08 023 Pay 2 4 18 

Thus, all the bond differences on Cruickshank's criterion are 

highly significant except for the A€-O bonds and these border on 

the possibly significant/significant categories. Once again, 

therefore, analysis supports the contention that the structure 

of MgA@204 is more correctly described by the space group Fh3m. 

The structure factors of the forbidden reflexions cal- 

culated from the best X-ray and neutron diffraction data refine- 

ments under the space group FL3m are shown in table 2.10. In the 

X-ray case about $ of the forbidden reflexions within the angular 

range of the diffractometer are well below the minimum detectable 

limit which was optimistically estimated to be approximately 1.2 

electrons. Of the remainder the 0.0.6 reflexion is the strongest 

and possibly offers the best chance of an unequivocal observation 

of a "forbidden reflexion". In the neutron data the 0.0.6 is the
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only reflexion above the minimum detectable limit which in this 

case apoeared to be about 0.4 x 1072? om, 

An estimate of the intensity of the forbidden reflexions, 

excluding the 0.0.%'s, was obtained by the same procedure used to 

derive the intensities of the other reflexions (section 2.4). Two 

types of histogram were observed and are shown below. If the 

pattern was of type I then the intensity was thought to be below 

the detectable limit of the diffractometer and was given the value 

zero, If, on the iver hand, the distribution was of type II, then 

the intensity was given the value corresponding to the mean of the 

"Gaussian" distribution. Table 2.10 

Type I Type I] 

mean w few 
100’s 

fr
eq
ue
nc
y 

fr
eq
ue
nc
y 

  

Intensity Intensity 

compares these estimates of the forbidden relfexions with the 

calculated values. In most cases there is a fair correspondence 

between these values which is remarkable considering how very 

weak they are and the considerable double diffraction effects. 

Finally, the small atom movements giving rise to 

the Fi3m symmetry are shown in figures 2.8 and 2.9. The former 

figure indicating both tetrahgdral sites while the latter shows 

the surroundings of the octahedral ion which is normally at 

22,2 (cross-hatched in the diagram). Note that these diagrams 

are drawn for the ideal configuration with the origin at an oxygen 

site and the arrows indicate the senses of the <lll> displacements



heok 

ry QO Intensity thought to be below the observable limit 

1 No of Intensity 

10 

14 

18 

12 

16 

10 

14 

12 

16 

10 

14 

a2 

16 

14 

Table 2.103 Forbidden: Reflexions 
  

Equiv 

10 

ae 

Ae 

10 

2 

10 

2 

akae 

‘Ad 

ad 

a2 

obs 

~ 400 

~ 300 

F obs 

1236 

1245 

1-70 

1.44 

1.25 

FE’ calc 

Refinement 

Te 

3.81 

4.91 

1.98 

2012 

1222 

2033 

0.20 

0.87 

1.22 

1.91 

1.13 

0.12 

0.23 

0.80 

0.37 

2207 

1287 

-F cale 

Refinement 

IV 

3.93 

4.88 

eo. 

1-72 

1.47 

2041 

0.04 

0.92 

0.90 

2052 

2285 

023 

2206 

0.62 

0.45 

0.05 

0.61 

0.59 

1.45 

1.60 

70. 

F43m 

Neutron data 

Py cale.in 10: cm 

0.16 

0.18 

0.20 

0.06 

0.31 

0.17 

No estimate was made,because there are too few equivalents



corresponding to Fi3n symmetry. The diagrams also show the 

origin of all the distances given in table 2.9. Figure 2.10 

shows how two sections labelled 4 and B of the structure are 

fitted together to complete one unit cell of Spinel.
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CHAPTER 3 

LATTICE DYNAMICS IN TH® HARMONIC APPROXIMATION.
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3.1) Born von Karman Theory of Lattice Dynamics. 

3.1.1) Basic theory. 
Although for many purposes a crystalline solid may be 

regarded as an idealised elastic continuum it is now generally 

recognised that the vibrational spectrum of a real crystal can 

differ appreciably and that this distinction can only be satis-— 

factorily explained along the lines first suggested by Born and 

von Karman (1912,1913). The theory which they developed takes 

account of the discrete nature of crystal structures and is the 

foundation upon which all recent work on lattice dynamics, includ- 

ing that presented here, is based. A brief outline of the essential 

ideas is therefore given in this chapter; the standard work of 

reference is that of Born and Huang (1954). The theory is based 

on a number of assumptions of which the most important are:- 

i) the crystal structure is periodic and infinite in extent, 

ii) the harmonic approximation and 

iii) the adiabatic approximation. 

In an infinite three dimensional periodic lattice the position of 

the a nucleus in the go unit cell can be expressed as, 

p(ék) = 2r(t) + x(k) nak 

where the suffix k = 1,2 ... n, there being n atoms in the 

primitive unit cell and the lattice vector r(£) is defined as 

r(Z) = £4 as + €2 ae + Lg as 542 

£4 ,%2 ain Ceo belne integer, and a1,a2,a3 are the basis vectors 

of the primitive unit cell. 

Each nucleus is displaced from its equilibrium position 

and such displacements are represented by the vectors u(¢k). ag the” 

displacements are small then the total potential energy of the 

crystal $, may be expanded as a series in powers of the displace- 

ments, using the multivariable Taylor series expansion;
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Since ¢o is merely a reference potential, the reference may be 

chosen as zero. The term ¢4 expressed as, 

nD ape) st - 
| £ka 

0 

involves only terms of the first differential and as these de- 

rivatives are evaluated at the equilibrium positions of the atoms, 

this, term is also zero. 

In the harmonic approximation the series is truncated 

after the second term so that small vibrations are controlled 

by the second differential of the potential, through the term 

¢a which is, 

ga = 4 As aa) ug(ék)u,(2'k') BIAS 

| 

cs 

fka £'k'g 
Qo 

For most purposes a second order theory such as this is 

adequate even though ideally harmonic crystals have zero thermal 

expansion, no thermal conductivity, elastic constants which are 

independent of temperature and pressure, and other properties not 

exhibited by real crystals. Higher order or anharmonic theories 

where interactions between normal modes of vibration can be accounted 

for, are required to understand the more realistic behaviour. Fora 

discussion of anharmonic theories see Maradudin and Flinn (1963). 

Finally, it is implicitly assumed that the electrons instantaneously 

take up the configuration of the displaced nuclei, which is probably 

reasonably valid providing that the electronic band gap is very much 

greater than the vibrational energies of the lattice. This is the 

adiabatic approximation believed to be most closely satisifed by 

ionic crystals.



The 

Now, the a-component of the force acting on atom (£k) 

ae 0 
F (ek) = Way" 3.6 

Substituting 3.5 into 3.6 and differentiating, the equation of 

42, 

Mh u (2k) =- : byg( eke" )u (otk!) 357 

£'k'p 

has been written as byg(tk,£'k') sand Mt is the mass. where a | 
gu _(£k)du £'k!) 

a B 

The quantities, “P99 correspond to force constants giving the 

  

° 

@ component of the force exerted on atom (£k) when atom (é'k') is 

given unit displacement in the B-direction. The symmetry properties 

of the crystal lattice impose restrictions on the indices in the 

expressions for ¢1,¢2,¢3 etc, and limit the number of independent 

force constants. In addition, the structural periodicity of an 

ideal crystal requires that if the lattice is translated by a vector 

r(&) then the lattice once more coincides with itself. Under such 

a translation, physical quantities such as potential, polarisability, 

electric field, etc. must be invariant. The force constants 

~b yg oes") can then only depend on the relative cell indices 

£-£', and not on £ or é' independently. 

Consider the effect when the nuclei are displaced by 

the same vector, say ¢, from their equilibrium positions, this 

represents a translation of the lattice as a whole. The derivative 

a¢/ du, (£k) is given by, 

bq(k) + ys byglth, 0" )eg . "38 
£'k'B 

Since the potential energy of the lattice is unchanged by this
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uniform translation, the value of the derivative ag/ du, (€k) mast 

be independent of ¢€ and must therefore vanish. This leads to 

relations of the type, 

in
 

\O
 We tie 2h) ge hole BD 

By Os : Es ae 

1k! £k 

and thus one defines a "self-force constant" involving only atom 

(€k) as, 

/ 

byg (tk, 2k) =- byg tk, €'k') 3.10 

61k? 

the prime on the summation indicates that the term @'k' = &k is 

omitted. This term is known as tranelational invariance and has 

important consequences when numerical calculations are attempted. : 

The equations of motion 3.7 represent a set of simultaneous 

linear differential equations infinite in number. But because of 

the periodicity of the lattice we can introduce the normal modes of 

vibration. which decouple the equations and reduce their number, 

Hence, assuming a plane wave solution of the type, 

uw (2k) =i 2 U,(«,a) exp (iger(2k) - iw(q)t) Sule 

where q = 27. is the wave vector for a travelling wave of wavelength 

A. and angular frequency w(q) and r(£k) the vector previously defined 

(3.1), the equation of motion becomes 

F(a) Ugg) =) Dygliee' aU, (tsa) 3.22 
k's 

Which in matrix notation may be written 

v0 = (DU eerie 

The dynamical matrix, B, is then given by
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Dggltetoa) = Oda) ® ) typ ( tise! JexmLign {e(eret)nx(¢i)}] 5.24 
! 

If there are n atoms in the primitive unit cell equation 

53.15 is a set of jn linear equations, with a condition for.- 

: solubility which is, 

D ag (k" 5a) - w 5 up a1 | = 0 5.15 

This is an equation of Pa degree in w*, the squared normal mode angular 

frequencies, the 3n solutions being the eigenvalues w*(q,j) for 

each value of which there are a set of values for the displacements 

U (ka) J) The eigenvectors of matrix D, e(ka, J) can be chosen 

orthogonally and are related to U for they determine the pattem 

of nuclear displacements when the wave of angular frequency w is 

propagated through the lattice. The index j takes integer values 

only i.e. j = 1,2 eee Jn and is used to label and identify the 

branch of the dispersion system to which the phonon or normal mode 

w(a,4) belongs. 

Newton's third law implies that the force constants are 

invariant for permutations of the indices, so that 

bag (£k,2'k!) = [oe 3aLe 

and as a result it follows that, 

D- (kc*,g) = D, (k'k,gq), Pay | . op = Ba - 
whe re D yg (Kk' 5a) is the complex conjugate of D yg (kk! 54) « Therefore 

D yg (kk! 5a) defines a 3n *» jn Hermitian matrix and accordingly all 

the eigenvalues are real. In order that w® should be positive, so 

that the normal mode frequencies are real, the principle minors of 

matrix D must all be positive, which is the condition to produce a 

stable crystal lattice. 

As q>0, w70O for 3 of the 3n normal modes of vibration, 

These are the acoustic modes, and in the limit q » O correspond to
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elastic waves in the solid. The remaining 3n—3 vibrational modes 

have finite frequencies as q +O. These are the optic modes and 

some may couple to infra-red radiation, providing certain conditions 

are met, and in the case of Spinel will be discussed later, 

3.1.2) The force constants. 

Before any numerical calculations can be attemped to 

examine dispersion relations, and physical properties of crystals, 

it is necessary to determine the force constants - Fog° This is 

the central problem in calculations of the dynamics of atoms in 

crystal lattices, and can sometimes prove difficult, for in the 

most part, the interatomic potential has no unique mathematical 

form, and consequently the forces acting between atoms are unknown. 

The problem is sometimes overcome by refining directly the ig 

as independent parameters to obtain a fit with the experimental 

dispersion curves. This has been carried out mainly for covalent 

crystals, such as Germanium (Pope]963), where nineteen independent 

force constants were fitted to forty-seven observed phonon fre- 

quencies taken from the results of Brockhouse and Iyengar (1957). 

Alternatively a functional form for the potential may be assumed 

and parameters describing this potential, through the independent 

interactions can be refined. This has been successfully applied to 

the problem of the solid inert gases, see for example,Horton and 

Leech (1963). 

As a result of the difficulty conceming force constants 

several theoretical approximations have been developed, the most 

successful being the shell model of Dick and Overhauser (1958) in 

which the electron clouds surrounding the nuclei are represented 

by rigid shells. Since the forces between electrons and nuclei, 

electrons and electrons can then be represented it is possible to a 

certain extent to reconcile the polarisation effects of the various
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atoms, Historically, this model was first applied to the alkali 

halides (Cochran, 1959b , Woods et al. 1960) but more recently 

has also been applied to covalent materials like Germanium 

(Cochran 1959e¢ ; Dolling 1963) and to other ionic crystals like 

the Perovskites, an example of which is SrPi0g (Stirling,1972). 

The theory of lattice dynamics in ionic crystals is 

somewhat simpler than that for covalent and other crystals, for 

at least the form of part of the interionic potential namely, the 

Coulomb potential is well known. But, whichever model is employed 

to describe the vibrational behaviour of this type of solid the re- 

pulsive contribution to the potential function is always represented 

by a function of a number of adjustable parameters. Shell ibaa 

have produced superior descriptions of the vibrational properties 

Of, 2.0n3C igs than those provided by the less sophisticated 

but simpler Rigid Ion model of Kellermann(1940). However it mst 

be emphasized that substantial information can be obtained from the 

latter and models of this type often offer a very good first 

approximation to the phonon dispersion curves in structures like 

Spinel where numerical calculations have not previously been attempted. 

In a later chapter we treat the vibrations of Spinel under this 

approximation, so the essential features of the Rigid Ion model will 

now be described, 

3.2) Ionic Crystals in the Rigid Ion Approximation. 

If it can be assumed following Kellermann (1940) that the 

ions in an ionic crystals are rigid, spherical and do not overlap, 

that is, that they can be treated as point charges, then the 

crystal potential can be expressed as.
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Cit 

where r = [r(é'k') - r(£k)| and the ionic charge on the eo 4 

has been written as eZ,. The overlap potential v(r) may be 

-n 

asunh ac hm nw do Awe SUCn 2S OF ol w GCap approximated by mathematical forms (~x/p) 

and is usually restricted to nearest neighbour ions only. The 

parameters b and n, or A and p are then adjustable parameters 

which may be refined directly. 

The crystal potential, is split into Coulomb and re- 

pulsive (overlap) parts and correspondingly the force constants 

are also divided by writing, 

byg\&k,£'k!) . bug (€k,2'k!) + $' (ek, £'k'), 3.19 
of 

where the suffix C and R represent the Coulomb and repulsive 

components respectively. Similarly, the dynamical matrix divides 

so. that, 

! C R 1 
Dg 2a) me Dg (#54) a D yg (ck 29) 3.20 

In this expression the Coulomb contributions are normally written 

as, 

p® (udc',q) = (a JES ze Gag (ie = bee ZC (kK",0) 3.21 ag ** 93, cer YUE et : kk = eae : 
i 

where the C glk", a) are the dimensionless coefficients introduced 

by Kellerman which depend only on the crystal structure, and is 

is the volume of the primitive unit cell. The second term arises 

from the translational invariance property. The Coulomb force 

constants are now defined as 

C (ek,e'k!) = 2.2 gee 3,22 
Pug ' ) = By By Gu (2k) dug (2*K") : 

and the self force constant as, 

foe tg wie S 
Pog (ek, 2k ).2= 6 a.) Zh a (2k) au,(2"E") 5023 

&'k!



Hence, 

es : 
C kkt = er ae. ag 24) a (2k) du, (2% ") expligqer] 2a 

£t 

This slowly convergent Coulomb series is transformed by Ewald's 

transformation (Ewald 1921) into two rapidly convergent series, 

one a sum in real space the other in reciprocal space. 

The tepulsive contribution to the dynamical matrix is 

expressed as 

D age") = 0) $yg(k,"k!) exp (ig.z) 5.25 
2° 

and is reduced to the dimensionless coefficients of Kellerman 

by introducing two parameters defined as, 

ye 2v ag" A= a Sf = 

Pen ot, 

where A is evaluated parallel to the line joining the interacting 

3.26 

  

se 

particles and B perpendicular to this line, both derivatives being 

evaluated at the equilibrium positions of the ions. The repulsive 

contribution can then be written thus, 

2 

Dp (ee" a) = (uu) R yg (ck" 4) 3.27 
a 

whe re 3 

CAT (tk, 2k") nq (lk, 6%") 

eee oe) 
a ed) Se z A(ék,£'k') + 

  

ry(ék,é'k')r,(€k,é'k!) | Z 

[r(ek, 27k") [= J | 

x exp [igq. {r(2'k") - x(k) }] Peee 

  

+ B(2k,2'k!)} 8. - Lag 

and the sum of £' extends over nearest neighbours of the same type 

only. The self force constant is derived from the translational 

invariance and is
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B g(a) = 3 Rag (tee? ,0) 3.29 
k! 

where the prime on the summation indicates the term k = k' is 

omitted. 

Finally the dynamical matrix in matrix notation, ex- 

cluding translational invariance is 

a 
[D] = 2 [un2] ( (¢] [2] + [R] | [M2] 7 

Note: the translational invariance has to be added to this matrix 

before diagonalisation to obtain the normal mode angular fre- 

quencies. Matrix R is parameterised in tems of the A's and B's for 

each independent interaction involved with the structure under 

consideration. Matrix Z is diagonal and contains the ionic charges 

which can also be regarded as parameters of the model, and which 

by adjustment can be used to compensate, rather inadequately, for 

polarization effects. This was first pointed out by Szigeti (1949) 

who showed in particular that the static dielectric constant in 

NaCé is comparable with the experimental value providing the ionic 

charge is slightly less than its nominal value, i.e. Zeff = .74 

These parameters then are also at our disposal to effect a fit with 

the experimental dispersion curves. 

It should be emphasized that in the description given so 

far, the harmonic vibrations of a crystal lattice have been con- 

sidered in the rigid ion approximation for wave vectors greater 

than zero. The long wavelength limit has not been discussed in 

any detail, because of certain mathematical difficulties which arise 

from the divergence of the series 3.25 as q 0. Nevertheless, the 

latter region is of some importance as it is in this region that the 

macroscopic properties of the crystal are directly comparable with 

the theory. We therefore outline in the next section how the elastic 

and dielectric properties of ionic crystals may be accommodated
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within the dynamical theory. 

3.3) Elastic and Dielectric properties. 

In the long wavelength limit the vibrations of the atoms 

calculated from the dyna mical theory must re 

in the crystal, but in ionic crystals mathematical difficulties 

arise as q>0O. As a consequence equation 3.12 has to be solved 

-by a perturbation method due to Bor (Born and Huang 1954) which 

involves expanding the dynamical matrix with respect to the wave- 

vector q« The details of this method will not be given here, 

but since some of the results are needed for Spinel we briefly 

indicate their origin. 

In classical elasticity theory Hooke's Law relates stress 

and strain tensors by the elasticity tensor, according to the 

relation, 

Pe y Cay, Ba SBA es 
BA 

where 5,8,C are the stress,strain and elasticity tensors re- 

spectively. The equation of motion for a plane elastic wave of 

wavevector q, is given by, (see Bom and Huang) 

. [ ] 
Mee : | a ay,pr y%a ee ae 

ep | A 

u being the displacement and p the mass density. In the pertur 

bation method developed by Born quantities appear which can be 

identified with the square bracket term, and hence the elements 

of the elasticity tensor can be evaluated in terms of the parameters 

of the model employed, describing the dynamics. For ionic crystals, 

however, equation 3.32 is incorrect as electrical effects produced 

by the motion of the ions cannot be divorced from the mechanical 

effects so that true elastic waves do not exist in this case. This
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problem is overcome in Bom's treatment by regarding all ionic 

crystals as piezoelectric. Thus in ionic crystals associated 

with the plane elastic wave 

u(x,t) = Uy exp (£q.x - iwt) 

there is an electric field whose amplitude is given by, 

B(zst)= EB, exp(éq.x - iut), 

and the stress is related by the tensor equation, 

Soy a Cay eBA “BA a » “Bay =e So 

By B 

Similarly, thé dielectric polarisation is given by the tensor 

equation, 

Py = i °a.8y aay t > ap Hg? Beole 

B By 

whe re 4 og is an element of the dielectric susceptibility tensor 

i) ay a component of the piezoelectric tensor and E is the 
3 

macroscopic electric field. The true equation of motion for a 

plane wave is therefore, 

gas ye % Cayspr ty5r Pet) y “B say Be pan 
y BO yA B 

and from the perturbation theory quantities can be identified with 

the terms in the square brackets to give the components of the 

elastic, dielectric and piezoelectric tensors. 

In general a crystal structure will contain more than one 

atom per lattice point, and when such a structure is deformed the 

resulting strain at a point arises from two sources, called intemal 

and external strain. The external strain is identified with the 

strain of classical elasticity theory and arises when the structure 

is deformed homogeneously. (A homogeneous deformation is defined 

aS one in which the lattice remains as a perfect Bravais lattice.)



Internal strain, on the other hand, arises from the relative 

movements of the atoms within a single unit cell. The additional 

energy per cell due to a general deformation therefore depends on 

both of these contributions. In equilibrium the energy of the 

lattice mst be a minimum, therefore it follows that the extemal 

strain determines the size and shape of a unit cS6ll, whereas the 

internal strain defines the relative positions of the atoms within 

the cell. 

Normally then, the elastic constants of a given structure 

will have contributions from both internal and extemal sources 

and will be given by, 

Gop ak =[ag, yA] + [By,oA] - [PA,ay] + (ay,Ba) 336 

where the square bracket terms correspond to extemal strain and 

the round brackets to intemal strain, These terms can be derived 

from the perturbation method and for the details of the expressions 

see Born and Huang (195) and also the remarks by Cowley (1962). For 

crystals where every atom is at a centre of symmetry the contribution. 

from the intemal strain is zero. 

Finally, the elements of the dielectric constant tensor 

in the long wavelength can be evaluated fron, 

ha? 2 Z, Z = omen k k! 7 t _ <a fe ee : ag ck") Deo7 

a 
where the matrix Tis related to the dynamical matrix at q=0, 

see Born and Huang, and €ag the static dielectric tensor. As a 

consequence of assuming the ions to be unpolarizable the high 

frequency dielectric constant is unity, for the Clausius-Mossotti 

relationship can be expressed as, 

Coes dig 

Reo. oS >, % 3238 

a 

  

there being N; ions each of polarizability a; per unit volume, 

Strictly speaking, this relationship is only true providing every
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ion is at a site of cubic symmetry and thus experiences the 

Lorentz field. However, even if this is not so the above result 

for ¢€ =1is not affected since the polarisation in a crystal 

may be expressed approximately as the product of the pquaciganiaition 

of the ions times the local electric field (Bi ood ? 

1164 Bp = > Ny, Bog (t)» 

a. 

and in a isotropic cubic medium the dielectric constant relative 

to vacuum is defined as ¢€ = 1+47xX, where the susceptibility, 

va Pa, Thus, if a, =O thene =1.



CHAPTER 4 

EXPERIMENTAL DISPERSION CURVES FOR MgAde04
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4e1) Neutron Inelastic Scattering. 

4.21.1) The neutron spectrum, 

The neutron flux in a reactor is in thermal equilibrium 

with a moderator at temperature T so that there will be a ‘velocity 

distribution with the form of a Maxwellian spectrum. The peak of 

this spectrum in tems of neutron wavelength normally occurs at 
° 

approximately 1 A but is given more explicitly by, 

a,eak = h/ (etm) 4.1 

Where h = Plamk's constant 

ke = Boltzmann's constant 

m = neutron mass. 

Only a narrow range from this distribution is normally usefully 

utilized in diffraction experiments. A narrow band of wavelengths 

can be selected by Bragg reflexion from a single crystal with a 

, suitable interplanar spacing, and the choice of a crystal mono- 

chromator is governed by the particular experimental requirements. 

For example, resolution, range of incident neutron energies, 

intensity of the incident bean, are among the factors which may 

be considered. 

In this non-relativistic region, the wavelength of 

a neutron is related to its velocity and energy by, 

A = 3.96/v = 9.0LL/JE A be? 

when the neutron velocity v is in kms * and the enoueyi, 4 in 

meV. Thus, the thermal neutrons with a wavelength in the neigh- 

bourhood of 1 A have energies and momenta comparable to those of 

lattice vibrations in crystals. They are therefore usefully exploited 

for the experimental examination of phonon dispersion curves.
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4.1.2) Neutron-Phonon Interaction. 

The scattered wave from any given nucleus may be des- 

cribed as a spherical wave of wavevector k given by, 

~iker 
e Liat 

i 
Io

’ 

¥,=- 

where the scattering length, b, is characteristic of that nucleus. 

The phase of the scattered wave depends on the precise position 

of the scattering nucleus, and as the velocity of the nueleus 

is comparable to the neutron velocity the neutron wave equation 

is unlike the classical wave equation. In particular, the expected 

scattering power differs from that of the normal optical Huygen's 

construction, in that Doppler shifts change the scattered frequencies. 

Bach nucleus is at every instant a potential source ofa spherical 

wave coherent in phase with the incident wave, and the scattered 

waves interfere so that at a large distance from the sample the 

outgoing wavefront represents neutrons of various energies and 

momenta, Two cases then need to be considered namely, that the 

nuclei are at rest or alternatively, that the nuclei are in motion. 

In the former case,only elastic scattering, that is, nuclear Bragg 

scattering is possible. In the latter, where the nuclei are in 

motion, the scattered neutrons can have their energy changed by 

hw and their momenta by hQ. The scattering system has then changed 

its dynamic state by just these quantities, and this corresponds 

to inelastic scattering. 

The scattering length, b, has two components a coherent and 

an incoherent part, as a consequence of the details of the nuclear 

structure. They may be thought of crudely as arising as follows; 

Suppose the nucleus has spin S so that the compound nucleus ‘formed 

by reaction with the incident neutron has spins +4. Then some 

random time delay can occur before the neutron gains enough energy
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to be re-emitted. In this case therefore, it is emitted incoherently. 

Alternatively, the neutron may be scattered instantaneously from 

the nucleus with no discontinuity in its motion and then it is 

scattered coherently. If the solid contains one nucleus per unit 

eV Cee SS ew t ( R 

NN 

osha is ae = har BP 1h n 

nn 

nén 

where b is the coherent scattering length and N is the number of 

unit, colds in the crystal. Fortunately most nuclei are good 

coherent point sources, with notable exceptions such as vanadium 

and hydrogen. 

In any neutron diffraction experiment the quantity 

actually observed is the differential scattering cross section, 

which is defined as the number of neutrons per sec scattered into 

solid angle @Q., having an energy between E and E+dE, in the 

direction of the nuclear detector, normalised to the incident flux. 

For one-phonon coherent scattering the differential scattering 

cross-section is given by, (see for example Egelstaff (1965)), in the 

harmonic approximation, 

ae ae y. =, 6(hw + hf) x) 3@ 29-8") x 

qs 
a* 

x h (neg + 3)/2f x 
5 2 

Wi - i . ‘ ale — 

x ys De e- *Zkg ok My * @ 

k 

  

The first & function here takes account of the conservation of 

energy, while the second incorporates the crystal momentum con- 

servation law. These two conditions define the scattering surfaces
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“in reciprocal space. The next factor gives the phonon population 

as the probability of finding a phonon with energy hf at a ten- 

perature T and is given by the Bose distribution, 

n= [exp (he/xr) - ae be6 

The final term in the equation is the "dynamic structure-factor" 

and this takes account of the amplitudes and phases of the various 

vibrating nuclei through the polarisation vectors ak WF, is the 

Debye-Waller factor, k and ko are the diffracted and fholdent , 

wave vectors, Q is the scattering vector, r, is a vector in 

real space giving the position of the Bae nucleus of mass M, 

in the unit cell. The summation of k extends over the unit eveHEdb 

g is the phonon wavevectorand s is a label giving the number of 

states with the same Qs Vis the volume of the crystal and a 33.8 

vector of the reciprocal lattice. The dynamical structure factor 

has important consequences when experiments are attempted since 

this quantity can alter very rapidly in reciprocal space. It is 

therefore essential. to ensure that the dynamical structure factor 

has a favourable value for the measurement of a given phonon, 

Even though each Brillouin zone contains the same infor 

mation about the phonons in the crystal, the neutron—phonon inter 

action varies throughout reciprocal space but repeats with a 

periodicity given by, 

£4* rs ‘ . Ce el: Lon aL r, of the unit céll 47 

and this periodicity is known as the "structure factor zone", In 

the case of Spinel with 6 =0, this is a cube bounded by the 

reciprocal vectors (8,0,0); (0,8,0); (0,0,8).



hele3) Experimental observation of phonons. 

Three functions must be performed in convential in- 

elastic scattering experiments. Firstly, neutrons in a small 

velocity interval have to be selected from the incident beam; this 

can be achieved with suitable monochromators and collimators. 

Secondly, an energy analysis mist be performed in order to 

establish the energy exchange and finally, the angle of scatter- 

ing with respect to the incident beam and with respect to the 

sample orientation must be measured to determine the momentum 

exchange, These conditions are satisfied by triple axis spectro- 

meters and also by time of flight spectrometers. In the former 

the incident neutron beam, of wavewctor ko, is selected by a 

crystal monochromater and the beam scattered by the sample in a 

direction k! is energy analysed by an analyser crystal. At the same 

time the angular relationship between ko, k' the final wavevector, 

and the scattering vector (Q = d* £93 Ko- k') can be measured to 

determine the momentum change. In the latter a narrow range of 

neutron velocities is selected by a curved slot rotor, rotating 

crystal, etc. this defines the incident wavevector ko and a 

neutron pulse in time. An energy analysis is performed by timing 

the neutrons over a predetermined distance. Similarly,the angular 

relationship between the counters and the sample can be measured, 

establishing the momentum change. Time of flight spectrometers 

usually consist of a large number of counters which are equally 

spaced and move as a rigid body. At one particular setting each 

counter has a set angular relationship to the incident beam, which 

defines the direction for the scattered neutron beam, k'. The 

magnitude of k' is proportional to the square root of the ene rey 

of the scattered beam, and when the two & functions of equation 4.5 

are satisfied the ends of the k' vectors trace out a portion of the 

scattering surface in reciprocal space [Schmunk, Brugger and
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Randolph, 1967]. The phonon energy and momenta can be deter. 

mined for phonons in symmetry directions by interpolation, pro- 

viding the scattering surface crosses a Symmetry axis. Since 

this time of flight technique was used to measure the phonon 

dispersion curves in Magnesium Aluminate with the use of a rotating 

crystal spectrometer, this particular apparatus will now be 

discussed in more detail. 

4.2) The R.X.S.Spectrometer. 

The three conditions mentioned above are satisfied in 

the rotating crystal spectrometer, (Brockhouse 71958) where 

pulses of neutrons are produced by Bragg reflexion from a single 

crystal rotating at high angular velocities. In the work to be 

described the Rotating Crystal Spectrometer at A.W.R.E Aldermaston 

on the 5MW Swimming Pool Reactor was used (Carlise, 1973) This 

spectrometer shares the neutron beam from a He/Da cold source with 

a curved slot rotor time of flight spectrometer and is shown 

schematically in figure 4.1. 

When the neutrons are in thermal equilibrium with the 

liquid Hg/Dz cold source the peak of the Maxwellian distribution 

Occurs at approximately elias A cylindrical single crystal of 

lead of diameter 50mm is rotated about the [211] direction, at a 

frequency of 167Hz, giving two 111 reflexions per revolution, equally 

Spaced in time, and a neutron flux at the Sample of approximately 

10* ns’*+ om *, From the Brage condition 88 ’ 

4d: Sing =: A 4.8 

a wavelength of mt is selected at 26 = 90°, second and higher order 

contamination being removed by the Beryllium filter which removes 

neutrons with energies greater than 5meV. 

On the R.X.S. spectrometer the detector consists of eight 

adjacent °He proportional counters, at a pressure of 4 atms, each
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with dimensions 25mm dianeten and 200mm in length, the eae canes 

sion being perpendicular to the scattered beam and parallel to the 

rotation axis of the crystal. Now, each neutron pulse is defined 

in time, there being approximately 3000 ws between each pulse, see 

figure 4.2. A time delay Ty is introduced electronically to allow 

the neutrons ample time to reach the sample position, before a time 

analysis begins, The detectors are then divided electronically 

into n time channels of m us per channel and thus an energy analysis 

can be performed. 

Neutrons which are scattered elastically through the 

system will arrive at the detector at a time TS. This determines 

the zero energy exchange, whereas those scattered inelastically 

by gaining energy from the sample, will increase in velocity, and 

therefore arrive at the detector earlier, with a time Tim Hence, 

Tie < qT, since only upscattering can be usefully employed in this 

type of spectrometer. The spectrum in each counter is collected 

over a period of time; for our experiments this was typically two 

or three days, and stored by a PDP8 computer. Unfortunately only 

4 counters could be used simultaneously and only 128 channels were 

available. Hence the amount of data which could be collected in 

any one particular analysis was severely limited. 

An important feature of the R.X.S. spectrometer, arising 

from the relatively high angular velocity of the rotating crystal, 

is that the diffracted neutrons have their velocities shifted by 

the Doppler effect, (A discussion of neutron diffraction by moving 

crystals can be found in Buras and Giebullowiez, 1972). Conse- 

quently if the direction of rotation is suitably chosen so that the 

Slower neutrons are reflected first then time focussing occurs 

(Meister ,1967 ). For the A.W.R.E spectrometer the focal length 

is 2.86m and the total flight path is 3m (Ross and Carlisle 1975). 

The spectrometer therefore possesses good focussing properties. Other
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factors governing the energy and momentum resolution are 

discussed by Ross and Carlile (1975), who show in particular, 

that SB/E varies from 3% up to 1o% for an energy exchange between 

O and 30 meV but deteriorates rapidly for higher energy exchanges. 

In the present experiments the value of the initial time 

of flight was measured by timing the neutrons over a standard 

flight path, and a value of 1018 + 3yent +" obtained corresponded 

to an energy of 5 meV or a wavelength of 4.034 which is in good agree— 

ment with previous measurements (Carlile 1973). The flight path, 

(the sample detector distance) was also measured and found to be 

1.999 + .005m with negligible variation over the angular range of 

the detector. 

4.3) Phonons in Magnesium Aluminate. 

Although the neutron-phonon interaction produces finite 

measurable intensity, it mist be emphasized that it is not a 

particularly strong interaction and this factor coupled with the 

relatively low intensity of neutron beams, makes the observation 

of phonons time consuming. Enhancement of the experimental 

efficiency can be achieved by the use of large single crystals, 

since the one-phonon differential scattering cross-section depends 

on the phonon density of states, which in turn is dependent on 

the crystal volume, In the present experiments, for example, the 

specimen of Magnesium Aluminate used to investigate the phonon 

Spectra was a large single crystal (purchased from the Radar Research 

Establishment, Malvern) with an approximate volume of 5 x 10* mm°, 

The shape was roughly cylindrical, as the crystal had been pulled 

from a melt, the growth axis being a [110] direction. 

In investigating the phonon dispersion curves in Spinel 

  

*the units normally used in time of flight spectrometry are usm + 
which is the reciprocal neutron velocity.
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a number of necessary preliminary calibration experiments were 

performed each time the crystal was positioned on the spectrometer, 

and these will now be described. In each case ,a[110 ] crystallo-— 

graphic direction was aligned along the goniometer axis. - 

The zero crystal angle os which was defined to be the 

angle which makes oo and ko coincident, was determined from a 

rock-scan or w-scan on the 220 planes, For this, the R.X.S was 

operated as a normal single crystal spectrometer with the four 

proportional counters (1,2,3,4) coupled together, and a typical 

result is shown in figure 4.3, The zero angle was derived from the 

expression, 

855 = Ya20 - Cos”* [1ds20|/2) x0] ] bed 
where the positive rotation direction is defined in figure 4.6. 

With the crystal set at weao the detector bank was scanned 

over the 220 reflexion and in this manner the angular separation 

of the four counters was determined together with the angular position 

of the detector centre, 6,» see figure 4.4. This allowed the detector 

zero @ to be defined by, 

90 = 9, + 26220 4.10 

where the positive rotation direction of the detector is also de- 

fined in figure 4.6. Finally, with the instrument operating as a 

time of flight spectrometer the zero energy exchange was determined 

by the following procedure: using the Bragg 220 reflexion to scatter 

nuetrons elastically through the system the time of flight spectra 

in each of the four counters was collected. These are shown in 

figure 4.5. The mean chahnel number, ir was determined statistically 

from the expression, 

t. 2 2% he 
  

whe re Ny is the number of counts in channel I. This expression may
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be used because the background count is negligible. Since the 

channel width is n ys and this peak corresponds to a time of 

flight of 1018 ysm* we must therefore have, 

1018 = ni/é 4.12 
sehen COP CS 
WLS LO | 1 hé flight path which is 2m. So in the example shown wu

 

in figure 4.5 for the counter No.l the peak corresponds to a time 

of flight of 1036.2 us, but since this must equal 1018 ys a 

correction of 18.2 us was subtracted from the whole spectrum 

in this particular counter, and similarly for all other counters, 

Figure 4.5 also shows what the mean channel would be if the channel 

width were 12 ys and not 18 us. This is significant for some of 

the experiments which were performed, see section 4.5. 

In carrying out measurements of the phonons according to 

this technique, and with this particular spectrometer, it should be 

understood that it is a prerequisite to have some prior knowledge 

of the phonon energies and their polarisations, in order that a 

suitable region of reciprocal space may be chosen where the dynamic 

structure factor favours their observation, With this knovledge, 

the spectrometer was set up to measure a phonon of energy, Ep, and 

wavevector, g, by the following procedure: since the energy of the 

scattered neutron beam from the sample En = Ep + Eo where Eo is the 

energy of the incident beam, the corresponding wavevector magnitude 

may be determined fron, 

fe \) bel3 

The scattering vector Q is show in figure 4.6 where it is shown 

firstly on the right hand side of this diagram with the crystal 

set at the zero angle eas as Q = d* + q. It can be brought into 

the correct position, shown on the left hand side of the diagram, 

by rotating the crystal through the angle X+P+D. Movement of the
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detector to 95 = 7 - @ completed the momentum triangle 

k', Kko,Q- The magnitude of these vectors and the angles shown 

in figure 4.6 are calculable from the following formulae, 

Cos *[(ko7+k!? — Q?)/2kok"] @ = 

XK = Cos”*[(ko*+Q? = k!®)/2k00] 
P = Cos” *[h+k/(]2. (h?+k?+¢?)) ] 

Q = lalla*|cos m; 

D= Six *(lal/\9| x Sin m) yolh 

Measurements on the phonon dispersion curves in Spinel 

were restricted to the acoustic phonons, and for small, q, an 

estimate of the phonmenergy was obtained from classical elasticity 

theory as this gave the initial gradients of the acoustic dispersion 

branches. The elastic wave velocities depend on the elastic 

eae (see for example Kittel, 1969) and for cubic symmetry in 

particular these sound velocities are given in table 4.1. The 

density p of Magnesium Aluminate is 3.581 gem °, and the elastic 

constants are also known to good accuracy, see chapter oe 

In the acoustic modes particularly those of long wave-— 

length the polarisation vectors e” in the dynamic structure factor 

of expression 4.5 do not vary rapidly and furthermore for very long 

wavelengths all the atoms in most unit cells will be moving in phase. 

In this case it is fair approximation to take the term Q.e” from 

under the summation sign so that the dynamic structure factor becomes 

proportional to, 

igse, 72,1" 415 

whe re Puke is the structure factor and . is, the polarisation 

of the phonon. Now, since the elastic continuum theory specifies 

the polarisations of the particular modes of vibration as longitudinal 

(L) and transverse (T) in table 4.1, it becomes possible to establish 

which Brillouin zone offers a maximum for the observation of a long
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wavelength acoustic shone. In table 4.2 we have divided the 

acoustic phonons in Spinel according to the Brillouin zone where 

maximum intensity can be obtained and once the dispersion branches 

were located they were, as far as possible, followed out to the zone 

boundary by successive measurements, 

However, because of the limitations of the instrument 

employed it was not always possible to achieve these ideal conditions, 

shown in table 4.2. In particular, measurements in the (4,0) zone 

were not possible until the energy exchange reached at least meV. 

Therefore the T[001] mode could not be measured in this zone. Of 

the possible alternatives the 222 zone was the most desirable, but 

even here the intensity obtained from the phonons was far from ideal 

and consequently less reliability is placed on the measurements of 

this dispersion branch. 

A selection of the results obtained are shown in figures 

4.7 to 4,12. Each figure is divided into three parts, part (a) shows 

the time of flight spectrum, where the scale has been converted to 

phonon frequency, part (b) the section of the scattering surfaces traced 

out by the ends of the k' vectors, and part (c) shows the interpolation 

on these scattering surfaces to obtain phonons in the symmetry directions. 

4.4) Discussion of the Results. 

As explained previously, the phonon dispersion surfaces can 

be represented by two & functions but whenever measurements are 

attempted, these phonons will always be convolved with the instrumental 

resolution function. Invariably therefore the peaks actually observed 

in practice are Gaussian, and a statistical analysis is needed to 

derive the mean and standard deviation, the latter providing a 

measure of the uncertainty in the mean. To obtain reliable results 

it is desirable to have a good estimate of the background intensity, 

and a peak which is well resolved, conditions not always achieved in
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wave velocities in cubic crystals. 

  

{[001] direction [110] direction [111] direction 
  

Ts 

  

1 

\e) 

Att 
Za 

AN \ 

Cag, 
p 

a
e
 

a 
i   a) 

De 

  

+= (6 s-Ca2 +044) 

il: \ 2p Ys 

Zs 
Sp 

d ; 

eve Ca 

  

Table 4.2; Favourable zones for the observation of acoustic phonons. 

  

(0.0.4) Zone 

Crystal Orientation [710] 

( 404.0 ) Zone 

  

  
Tz [110] 

% [001] 

y {2227   
T [001] 

L [110] 

Lb: (132)   
  

 



99 » 

time of flight spoctromatete: Usually, because of the nature 

of the experiments, the conditions for one phonon coherent scatter 

ing are satisfied simultaneously for more than one dispersion branch 

at a time and often the observed peaks are not clearly resolved. In 

view of this difficulty it was decided that the mean phonon energies 

were best obtained by a visual estimate but where possible the mean 

was determined by bisecting the full width of half height (F.W.H.H) 

of the peak and by these methods it was possible to estimate the 

mean peak position in the time of flight spectrum to about plus or 

minus one channel number which gives an uncertainty in the scattered 

neutron time of flight, from this source, of about 12 us. 

The effects of the dynamic structure factor (section 4.1.2) 

were often observed. For example, the time of flight spectra shom 

in 7(a) shows a peak which decreases in intensity as one scans from 

counter 4 to 2 and in counter 1 this peak has disappeared. This can 

be understood by examination of figure 7(b) which shay s how the "tips" 

of the k* vectors trace out a portion of the scattering surface. The 

peak referred to above corresponds to the dispersion surface closest 

to the centre of the 0.0.4 zone. This small section of the scatter 

-ing surface crosses the [3314 symmetry direction and was interoolated 

in 7(c) as a longitudinal [111] acoustic phonon, When we trace this 

scattering surface back towards the [110 ] direction the vector dot 

product Qos, in equation 4.15 tends to zero, thus the observed peak 

decreases in intensity. 

In figures 9(a) to 12(a) the spectra had been shifted in 

frequency from those shown in figures 7(a) and 8(a), in order that 

a larger energy exchange could be observed. This was achieved by 

determining the elastic peak with 18 us channels and then ‘switching 

to 12 ws channels. Several normalisation experiments were per- 

formed by observing the same inelastic peak with both configurations 

and no correction was necessary. In all these spectra a general
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plateau of intensity was observed between 10 TH and 30 TH This 

intensity almost certainly corresponds to one—phonon coherent 

scattering from some of the 39 optic phonon branches, but un- 

fortunately the resolution of the spectrometer in this region is 

too poor to resolve any detailed information, but it does give an 

indication of the maximum phonon frequency, which appeared to be 

typically about 30 THe 

Finally, because only upscattering can be usefully 

employed in this type of spectrometer, and because of the re- 

latively high energy (compared with kT) of the acoustic phonons 

in Spinel it was necessary to heat the crystal. This improves the 

count rate since it ensures that the phonon states are highly 

populated, The results were therefore collected at different 

temperatures, i.e. 273 + 5K, 523 + 10°%K and 673 + 10K, with the 

majority of measurements being performed at 523°%K. These measure- 

ments are tabulated in table 4.3 and as far as experimental errors 

would permit, no "softening" of the observed phonon modes was 

detected. The results are displayed graphically in figure 5 where 

our calculations of the normal modes of vibration from the rigid 

ion model are compared with the experimental values. In this 

diagram the dashed lines at the origin represent the velocities 

of sound,
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Table 4.3: Phonon measurements in Spinel 
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CHAPTER 5 

A THEORETICAL MODEL FOR THE DYNAMICAL BEHAVIOUR 
OF SPINEL AND MAGNETITE,
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5.1) Introduction. 

As explained in Chapter 1, the physical behaviour of 

the cubic ionic spinels is not consistent with the conventionally 

assumed crystallographic space group Fd3m. Similarly, in Chapter 2, 

new and very precise diffraction evidence was presented to show that 

smali atom shifts to the octahedral cations and oxygen arise in 

MgA#204 ,so that this structure is more correctly referred to the 

symmetry Fh3m. Nevertheless, since the lattice dynamics of a 

Spinel had never previously been examined theoretically, it seemed 

advisable that initial investigations should be based on a minimum 

number of adjustable parameters, Therefore, in the dynamical cal- 

culations to be described in this chapter, the spinel structure was 

assumed to correspond to the space group Fd3m. 

At the present time, adequate experimental data on the 

low energy phonon dispersion system is only available for two 

members of the spinel family,namely, MgAé.0,4 itself, for which 

some measuremants have been obtained in this study, and Magnetite, 

Fes04, for which Samelsen and Steinsvoll (1974) have carried out 

a similar limited investigation. These two materials are interesting 

to compare, however, in so far that the former corresponds quite 

closely to the normal cation arrangement (for Simplicity is wild tbe 

assumed to be ideally normal with u = 0.387 or & = 0.012) while 

Magnetite is known to be an almost completely inverse spinel 

(Shull, Wollan and Kochler, 1951; Hamilton 1958) with oxygen 

position parameter u = 0.379 (6 = 0.004). In both cases, the 

materials will be treated as ionic which should be a good approxi- 

mation for Spinel at least, Magnetite, on the other hand, has quite 

a good electrical conductivity at room temperature. Nevertheless, 

since the mechanism responsible for this property is thought to be 

associated with electrons hopping from Fe?* to Fe®* ions on neigh~ 

bouring octahedral sites,(Verwey, Haagman and Romiejn, 194.7) the
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ionic approximation may be reasonable. Finally, it should be 

noted that magnetic exchange interactions arise in Magnetite 

which might also be expected to have some influence on the dynamics 

through magnon-phonon coupling,but again, for reasons of simplicity, 

this has been neglected. 

Assuming, then, that the space group is Fd3m, the 

rhombohedral primitive unit cell must contain fourteen 

dynamically independent ions, and these have been labelled accord- 

ing to table 5.1 with positions as shown in figure 5.1. The 

corresponding dynamical matrix is thus of order 42 and the elements 

of this mtrix were arranged in 9 sub matrices of order 14 according 

as @ and Sbecome the x,y and z components in turn giving xx, xy,xz 

etc, and within each sub matrix k and k' have values 1 to 14 in- 

creasing Monotonically with k for the rows and k' for the columns. 

The diagonal matrices M and Z of equation 3.30 contain the masses 

and ionic charges respectively arranged along the leading diagonal 

in corresponding order. For example, the first fourteen diagonal 

elements of Z comprise of the two tetrahedral charges followed by 

four octahedral charges and then the eight anion charges, this 

pattern being repeated three times to complete the Z array. 

5.2) The Coulomb coefficients. 

The Coulomb coefficients, as explained in Chapter 3, 

are reduced to the dimensionless form of Kellermann and these are 

the elements of matrix C in equation 3.24. Bach element was 

evaluated by the Ewald transformation (Ewald 1921) which enables 

the elements of mtrix C to be expressed as g summation of two series 

One in real space,and the other in reciprocal space, bothof which 

are arranged to be rapidly convergent. The result may be written



  

  
  

        
FIGURE 5.1 The Primitive Unit Cell of Spinel



Table 5s Labelling of the ions in the primitive unit cell. 
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Label 
k Tons Site Symmetry Position 

1 Mg, Fe°* 43m ao. 

2 Mg, Fe°* 4.3m z,=,2 

3 Ae, Fe22* 3m 0 2670 

ip AL, Fe72* 3m o ,t, 4 

5 Ag, e223 3m 4,0, 2 

6 Ag, e22* 3m + ji, 0 

7 0 3m 4+5,-5,5-8 

8 0 3m gd, 8 & 

9 0 3m 5 ,-5, 8 

10 0 3m 8 , 8 58 

a 0 3m 8-4, &5, 6-4 

12 0 3m Sx, -8, -5 

13 9) 2m -5,5-4, -5 

Ly 0 3m -5,5-4, -6   
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GC ig (kk" »a) = knd (4,+4,)(4,+a5) exp (-|a*+q|?/4R? x 

oe atag|* 

x exp id*.(x(k)-2(k')] + A,9(xk",g) 5.1 

where d* is a vector of the reciprocal lattice, and in the case 

1c reciprocal lattice is body centred cubic and ar 

is given by d* = — (h,k,2). The phonon wavevector, q, is also 

, : 21 
a vector of this space given by,q = " (a, +d,54,)« 

The function 4 gk" 4a) is a complicated expression in 

crystal space given by, 

-2e° 3 H (et) exp(ig.r) 5.2 oe oe 

in this expression,the vector £ is related to the vector, r, in 

the spinel structure by, 

£= xv(tk,é'k')/a 5.3 

where a is the lattice constant. It has components x,y,z the 

x-component being, 

x = éx/2 - Xt 5k 

x, y and z being integers generating the face centred cubic 

symmetry, and Hy. and Eyres the fractional coordinates of the ions. 

The function Hyg (=) oe 

r 
a Y 2 -p* set with g(r) = 1- = i e ? dp Jeo 

where a@ and @ are the x,y and z coordinates in turn. For the tem 

£ = 0 in equation 5.2 ¢(r) is replaced by, 

r 
2) eS : 

¢(r) = “= | e? dp 56 
Jt 

So, 

Hxy(e£) = -a(e£) dxy + b(<é) x Say
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whe re a(ef) = sé) eae exp (—«?£? ) 23. 548 
e & Aveo? 

and b(ef) = 2 -— + nee exp (~e7 4?) re exp(~e74?) 5.9 
e & al re? £? Na : 

) defined aq 
ii 
- 

From these expressions the elements of Gig(kk", 

by equation 5.1 can be evaluated, The parameter R in 5.1 is re- 

lated to e by R = e/a, € being a pure number which controls the 

convergence of each series. When both series have converged,the 

elements of Cg (kk 5a) are independent of ¢ and the value of ¢ 

is adjusted until this condition has been achieved. In the present 

calculations,a value for e of 3.0 was found to provide convergence 

at about the same rate in the real and reciprocal series for both 

Spinel and Magnetite. The Coulomb translational invariance term 

of equation 3.21 can also be evaluated from expression 5.1 but in 

this case the term d* = 0 must be excluded from the summation of 

the reciprocal series. 

5.3) The repulsive coupling coefficients. 

In the rigid ion model ,the short-range repulsive forces 

are parameterised in terms of two constants A and B, defined by 

equation 3.26, per interaction of the same type, and are often 

restricted to the interaction between nearest neighbours. For the 

spinel compounds we therefore consider nearest neighbour inter 

actions between the tetrahedral ion and its surrounding oxygen ions, 

and the octahedral ion and its nearest oxygens. Figures 5.2 and 5.3 

show the oxygen ions which are the nearest neighbours to the 

tetrahedral and octahedral ions respectively. The latter gives only 

One B-site, whereas the former shows both AO, tetrahedra which occur 

in the primitive unit cell. In addition, because of the comparatively 

large size of the oxygen ion (radius ~ 1.48) it seemed likely that
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considerable ig eeuaction between neighbouring oxygen ions would 

occur even though thesa are second nearest neighbours. These 

next nearest neighbour interactions have therefore been included 

in the analysis. 

Now, in an ideal spinel each oxygen ion is surrounded by 

twelve neighbouring oxygen ions all at the same distance, but in 

practice,as a result of the displacements of the anions from their 

perfect configuration,the oxygen-oxygen separations divide into three 

groups. Three different anion-anion interactions must therefore be 

considered and these may be characterised by the three separation 

distances d,,dg and ds, from the shortest to the longest respectively, 

as shown in figure 5.4,with reference to the oxygen ion which we 

have labelled number 7. This ion has three neighbouring oxygen 

ions of the ons 8,9,10 at a distance dy; six neighbouring oxygens 

at a distance dg, i.e. two ions of each type 12,13,14; and finally, 

three at a distance dg which are ions of the type 8,9,10. The five 

different types of repulsive interaction incorporated into the 

present model may therefore be summarised as in table 5.2. 

The ten short range parameters corresponding to these 

repulsive interactions must be specified before the elements of the 

repulsive matrix (matrix R) can be evaluated through equation 

3.28, for each element depends upon some combination of the repulsive 

parameters as well as a phase factor related to qe At q=0, for 

example, the independent elements are as shown in table 5.3 which also 

gives the elements of Cg (ick 40). 

In the dynamical model then, there are a total of twelve 

parameters, ten describing the short range interactions and two 

ionic charges (the third charge being fixed by the necessity for 

electrical neutrality) available for adjustment to fit the experimental 

dispersion curves. 

Further assumptions can be invoked which limit the number



Ait? Mg2* 

  

  

  

  
    

        
FIGURE 5.4 Oxygen lon environment



108. 

of independent parameters, for example, if the short range inter. 

actions can be described by central forces,then certain relation— 

ships between the five B parameters can be deduced from the 

equilibrium conditions of the spinel structure (see Chapter 6). Also, 

a considerable reduction in the number of parameters,can be achieved 

the oxygen-oxygen interaction could be 

described by a mathematical functional form such as Ar or 

b exp(-r/p), for then only two parameters describe all three anion- 

anion interactions. However, this is probably an oversimplification, 

and it was perhaps hardly surprising that initial attempts to refine 

models of this type proved unsuccessful, in many cases producing 

negative normal mode squared angular frequencies which correspond 

to theoretical instability. Only when the model was given its 

complete freedom, all twelve parameters being treated independently, 

could a satisfactory fit to the experimental dispersion curves be 

obtained for Magnetite and Spinel (see later). 

5.4) Numerical calculations. 

Computer programs were written to calculate the elements 

of matrix R and C, these being evaluated with the CDC7600/ICL 196A 

computer at the University of Manchester Regional Computer Centre. 

The 1764 elements of matrix C were evaluated for all three principal 

crystallographic cubic directions [0.0.¢], [¢.¢.0] and [¢,é.¢] 

at intervals of reduced wavevector Aé = .1 from € = .1 to the 

Brillouin zone boundaries, for both Magnetite and Magnesium Aluminate. 

Since spinel has a face-centred cubic lattice, the Brillouin zone 

has identical symmetry to that of NaCé and is show in figure 5.5% 

The results of these calculations were then stored on magnetic tape 

and used throughout the refinement of the model parameters.’ The 

independent elements are given as a function of q in . the-Appendix,.



  
FIGURE 5.5a Brillouin zone for the F.C.C. lattice
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Table 5.2: Summary of the short range interactions, 

Interaction Parameters Separation distance 

Tetrahedral 

site 

Mg-O a 
pie Bo, A, dy = aks (++ S)a 

Fe°*-0 cee 

Octahedral 
site 

AL-O do = 50 - 8/2 + “Va6 
; Bo Ao 

Fe-2*_0 = (maja 

Anion 

01-01 eke da = J 2(4 - 28)a 

02-02 Ba Ag dg = [SJ2(1+1687)+ ...Ja 

03-03 Be phy dg = J 2(4+28)a 

a= Lattice constant 0 =3t = 6
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Table 5.3: Contributions to the sub matrices Rxx, 
Rey, Gan, Oxy at q =O 
  

elements of Rxx(kk',0) elments of Cxx(kk',0) 

Kok! § = 00h 2.2 B=. 2012 

P49, 3(A,+2B, ) -4..189 -1..189 

Soe 0 -4..189 ~4.189 

ee 0 -4..189 -4..189 

1 7 = =*76(A,+2B,) —4..189 =4..189 
eat “0 -4..189 -4..189 

5.78 = (Ao +2Bo) —4.6189 -4..189 

ar db 0 bel-79 bek79 

a oo 0 ~8.523 ~8.523 

Zo cae Oo =4.2189 4..189 

x25 “Ao /2 -35.387 -39.006 

ag -Bo/2 11.653 13.220 

7 7 © 3(As+4o+By+Bs)+A2+2Bo+5(Ba+Bg)+ 
—4..189 ~4..189 

+ *;6(A,+2B,) + Ao/2 + Bo 

7s ~3(B3+ Bz) 40553 54158 

73 ~Z(A1+A3+B1+Bs) -8.560 -8.862 

7 a6 0 —4..189 -1..189 

he id -Ba bolt Sly 4.257 

733 ~$(Ag+Bz ) -8.510 -8.411
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Table 5.3: Continued 

elements of elements of Cxy(kk',0O) 
Rxy (kk,0) 

mK § = 004 ve be 

ue 0 0 0 

1 3 0 505 7k 50374 

1 7 -*;6(A,-B,) ~22,368 ~-18.04, 

5 25 % 28(Ao~Bo)/(4-8) 0 0 

a 0 0 0 

3 6 0 -14.0461 -14.461 

8 8/2(Ao-Bo)/(4-8) -.852 -2.868 

> 28 so -.011 ~ 124 

- 7 ) 0312 — 2965 

7 7 — & #*;6(A,~B,)+5(Ao~-Bo)/(a-8)+ 0 0 
+4(A1—B1+Ag-Bs )—$(Ag-Ba ) 

Jee = 0 0 0 

7 ag —5(A1—B1+As~Bs) 14.568 -15 446 

Too 0 20 20 2183 

Tk +3 (Ag~Bz ) 14.04.36 14.6242
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Matrix R yan peneretad for each set of the ten parameters 

describing the overlap forces as these were adjusted together with 

two independent ionic charges to effect a fit with the experimental 

dispersion curves. Initial refinement was performed for € = .1 in 

all three directions, and when satisfactory results were obtained, the 

calculation was then extended in steps of A€é = .1 to the zone 

boundaries for further refinement in the [0.0.¢] and [é.¢.¢] 

directions. Refinement of the model calculations in the [é.€.0] 

direction was only continued out to € = .3 in Magnetite and Se et 

in Spinel,as the LA[110] dispersion branch is then confused with the 

low lying optic modes,and mode identification becomes a severe problem, 

This problem is alleviated to a certain extent in the other directions 

as an immediate classification can be made into tneyoma and 

longitudinally polarised modes of vibration, for the former are 

twofold degenerate, It is, therefore, possible in the majority of 

cases to identify each mode, as they are sufficiently well separated 

in terms of energy, by displaying the results graphically. 

The refinement of the twelve model parameters in Magnetite 

was based on the experimental results shown in table 5.4. These 

are some of the results of Samuelsen and Steinsvoll but as the actual 

numerical values were not given,the values appearing in table 5.4 were 

derived by interpolation from a large scale graph, and possibly some 

accuracy may have been lost. 

The model parameters for Spinel itself have been derived 

from the experimental measurements of the previous chapter and the 

Observations used in the analysis are given in table bee 

Full matrix diagonalisation of the dynamic matrix D was 

employed, and was performed using the computer programs of the 

Nottingham algorithms group libraries (Nag Library).The routines 

used were FO2AWA, FO2AXA, the former giving only the eigenvalues 

of matrix D, whereas the latter also produces the eigenvectors of
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matrix D but is somewhat slower in its operation. Both routines 

reduce D to a tridiagonal matrix and the diagonalisation is per 

formed by the QL algorithm (see Bowdler,Martin and Reinsch 1968; 

Peters and Wilkinson 1970). 

Care must be taken to ensure that the Coulomb translation 

invariance terms are added before diagonalisation. Therefore the 

elements of C gk" ,0) were calculated and stored on magnetic tape, 

The independent elements of this matrix are given in table 5.3. 

Prior to diagonalisation of D, the summation of the second term in 

521 was performed by recalling the elements of C_,(kk',0). This 
op 

is then added to D in form defined by equation 3.30. 

The refined parameters derived by fitting the theory to 

the experimental low energy dispersion curves is shown in table 5.6. 

The errors appearing in this table were deduced from examining the 

deterioriation in the fit to the dispersion curves as each rake aan 

was varied in turn. The optic modes and transverse acoustic modes 

are sensitive to changes in the B parameters, ionic changes and the 

parameter Ag, i.e. a reduction of around 5.10% in the B-parameters 

resulted in a drop in the lowest optic mode frequency of about 5% 

On the other hand, the acoustic modes, especially the longitudinal 

acoustic vibrations, were found to depend primarily on the A para 

meters and alterations of about 15% gave approximately 5% variation 

to these frequencies at intermediate phonon wavevectors. In Spinel 

itself because of the almost complete absence of useful data on the 

optical modes of vibration we could not identify with certainty 

which optic mode should belong to the observed optic phonon branch 

in the [é.¢.é] direction and as a result the errors given in 

table 5.6 may not reflect the true uncertainties in the model para- 

meters (especially when one considers the recent results on U0g 

(Dolling, Cowley and Woods, 1965) where it has been shown that two 

totally different sets of parameters produce 

equally good descriptions of the phonon



Table 5.6) Refined values of the adjustable parameters. 

  

  

        

Parameter Fe30,4 MgAl204 

B. ~9.0 + 35 ~Lied + 1.0 

i, 96 + 10 10 «2.0 

Bo -16 + 05 ~42 +2 

Ao 237 & W 425 + 35 

Ba 50d + 05 ~) + oD 

Aa 46 +5 13 Pld 

Ba 6.5 + 05 ~S + 1 

Ag 28 + 5 -10 +1 

Bs ~405 + 05 m4 + 05D 

As i ie 45 +5 

Z,. 1230 + 05 1.14 + 05 

Zo calo + 05 2092 + s05 

i -0.9 -1.76 

e a, = Tetrahedral charge 

e Z, = Octahedral charge 

e Zo = Oxygen charge   
  

114.
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dispersion curves.) 

Diagrams of the low energy dispersion system for Magne tite 

and Spinel are shown in figures 5.5 and 5.6 respectively, where the 

model calculation on these compounds are compared with the experimental 

values. The modes of vibration, particularly in the [é.€.0] direction 

were tracked through the zone with heip from the eigenvectors. To 

give an indication of the total dispersion system, the phonon curves 

have been plotted in [0.0.é¢] and [¢.é.¢] directions in figures 5.7 

and 5.8. ‘Following Samelsen and Steinsvoll, in figure 5.5 the open 

symbols are measurements performed with the crystal orientated along 

a [110] axis, whereas the closed symbols are measurements in the 

[001] orientation. The square symbols correspond to longitudinal 

modes and the circular symbols to transverse modes. 

5.5) The elastic constants. 

In cubic structures there are three independent elastic 

constants and in the dynamical theory developed by Born are given 

by equation 3.36, which reduce in this case to, 

Cos = [aa,aa] + (aa,aa) 5.10 

Cig = 2[ a8, of ] 2 [aah] x [aa,pp | bell 

Ca = Lap , of r [of , of J ete, 

The explicit expressions for the bracketed tems are given by Born 

and Huang (equations 31.38 and 31.39) and discussed by Cowley (1962). 

The external strain contribution to the elastic constants can be 

divided into two parts, i.e. on and a etc. where the suffices 

Rand C represent the repulsive and Coulomb contributions respectively. 

The internal strain contributions, in the round brackets ,involve 

rather complicated summations which include a matrix related to 

the inverse of D yg (ck ,0)* and therefore cannot be separated in 

  

*The elements of this matrix have the contributions associated 

with the macroscopic electric field removed.



Table 5.4: Observed phonons in Magnetite (after Samelsen 
and Steinsvoll) 

  

    

  

          

  

  

            

  

  

          
  

[0.0 .€] 
oy TA LA “EG LO 

Tnax | v, TH, vy; TH, v, TH, yu, 

ol o40 + .05 085 + 005) 4.45 +.10 

ee 085 + 05 1-7 + 05] 4.40 +.10 

oo | 2020: #05 «12.55 + 0511.10 4210 
oh [1.60 + 210. 13635 + 05] 4.35 4.10 
5 1.95 + 05 4e25 + 010} 4.30 +.10 

25 2.355 + 05 5.005 + .20| 4.25 +.10 | 5.65 + .15 

et $2665: 4.05 4.104104 5.7. + .15 
8 2.90 + .10 4,00 +.10 | 6.25 + .15 

9 5.15 + 05 8.90 +210 | 6.0 + 215 

1.0 13.0 4 10 3.90 +.10 | 7.00 + .15 

[é.€. 0] 
q/ TAs TAg LA LO 
Gnax v, TH, v, TH, v, TH, v, THe 

a 050 + 05 050 + 05] 1.0 + 05) 4.40 + .10 

po 1.05 + 05 | 1.05 4.05) 2.50 4 .05| 4.25 4 .10 
3 200 + 05 | 1.7 + 05} 3.60 + .05] 4.0 + .10 

[é.€.¢ ] 

q/ TA LA LO 

tnax v, TH, v, TH, v, TH, 

ol 0/0 + 05 1.50 + .05 4ehO + 220 

ne TAL 05 7 2190 + 205 | 1.85 4 a0 
+a 22005 + .05 heed + 010 3-H + 210 

ot 2265 + 205 545 + 10 3.65 + 210 

25 505-4 010° | 6225.4 610.) 3.154 410 

116.
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Table 5.5 Observed phonons in Spinel. 

  

  

          
  

  

  

            
  

  

[0.0.¢] 

: Snax on oo 

ol «9 + 10 1.8 + .10 

ce 1.90 + .10 2.5 + 210 

ao 2.0 + .10 O.7 + ab9 

oy, de70 + 15 be? + 225 

25 4e20 + .0 58 + 2 

ee 6.7% 235 
wf 706 + 035 

8 : 8.2 + .40 

09 8.8 + 40 

1.0 8.9 + 40 

[é.€.0] 

TAs LA 
se i oH v, TH, 

el 1.2 + 210 2.0 + 210 

2 24+ 210 4.0 + 220 

03 76) ©, ibd bel + 225 

ot 4e5 + 220 

[é.€.€] 

W/q TA LA Unknown 
max Ue TH Vy TH, Ce 

: Z, 

ad 1.2 + .10 2.8 + 215 

22 243 +010 4.2 + 220 

03 Bel ELD 106 + 0355 Sete 655 

od. 4.0 + . Ded + ahd 6.6% 235 

5 lng? + 420 10.2 + 50 | 6.6 + .35           
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the same manner, 

The repulsive contributions from the external strain 

components are then given by the following expressions :-— 

R 26 

cas = FE [8 a (des)® + Af By (Es8)* + Ado (S-a)? 
ths ($25)? + ABs (3-25)? + Ag/h+Bo/h 

+4A3(5+28)? + ABs ($+28)°| 5.13 

He 22 (2h (avg) = op. (vd)? = ang (d-s)2 Cg = via > “Ne = ie - 8Bo (3-8) : 

+2A4 (4-28)? — 10Bs (4-25)? + Ap/h-Bo/h 

+ 2ks(4+28)? - 20B9(4+28)?| 5 oly 

Ca 207 [ (445)? 2B (des)? 2A, (4-25)? 
se a Za, (S38)? - $B, (M+5)?+ 2A, (5-28) 

—2B1 (4-25)? + Ag/8-Ba/8 + 2A5(4+28)? 

- 2B9(4+28)9| 515 

These expressions are only approximate as they ignore terms beyond 

the second order in § but should yield values correct to four 

significant figures. 

The Coulomb contribution to the square bracket terms may 

be reduced to a sum of terms involving products of the charges 

as the Ewald transformation permits the expansion (Cowley, 1962) 

Oe ee eer Ce ke ok xy Via t meer Soy oa 

Qa
 

Ul 

HEL, + Kenko. | 5.16 
where the coefficients ky, etc. depend only on the structural 

arrangement of the ions and eZ, , eZ, and peo are the tetrahedral, 

Octahedral and anion charges respectively. The coefficients 

ki,kg and ky are constant for any spinel since they are independent 

of the internal parameter § because they involve only the A ‘and 

B-site ions which are in fixed positions, while ks,ks and kg involve 

the anion positions and therefore 8.
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All of the coefficients were evaluated from the expressions 

given by Cowley and the values of the fixed constants were found 

to be, 

ky kg ky 

Ciao e208 =o l50 2.529 

Ca Seep “1.987 -3.503 

a0 0.118 6457.) au8c395 

the constants ks,ks and kg are given as a function of § for the 

elastic constants Gi. a a in table 5.7 a,b and c re- 

spectively. 

Unfortunately the intemal strain contribution cannot 

be separated in this manner for the reasons given. The detailed 

calculations in this case were carried out using the parameters 

of table 5.6 for Magnetite and Spinel respectively and the 

results from the intemal contributions to the elastic constants 

are shown in table 5.8. The final values for the theoretical 

elastic constants obtained after adding the contributions from 

intemal and extemal strain together are also compared with the 

experimental values in this table. 

The fit to the elastic constants in Spinel is poor and 

may be due to the uncertainties in the refined parameters for this 

model. Nevertheless, the calculated values are similar to the 

experimental values, in so far as Cauchy's condition is nearly 

Satisfied and C11 is greater than C1g. The agreement between the 

clastic constants in Magnetite at 300°, however, is much better 

despite the considerable discrepancy between different sets of 

experimental measurements. The results of Moran and Luthi (1969) 

obtained through ultrasonic measurements of sound velocities are 

probably much more accurate than those of Doraiswami (194.7) whose 

results were based on elastic measurements from natural crystals of



Table 5.7: 

ore 2008 

ba 2004 

ANN 
eVVY 

2004, 

2008 

2012 

2016 

00 20 

- .008 

- 004 

2000 

004 

.008 

2012 

2016 

- .008 

= 004 

2000 

004 

2008 

2012 

.016 

Coulomb contributions to the elastic constants, 

Cc 

(a) Contributions to C4, 
  

Ks 

-7.767 

—72633 

-70587 

-7.628 

-7.756 

-72971 

~8.270 

-8.652 

Ks 

—5 250k. 

~4.899 

~4.03501 

-3.712 

—3.134 

-2.570 

-2,021 

1.491 

c 

(b) Contributions to Cy 

ke 

-8.248 

-8.387 
-8.4.32 
-8,388 

-8.253 
-8.028 

-7.708 
~7.296 

ks 

2 Addy 

1.746 

1.083 

- 0155 

- /31 

-1.279 

-1.798 

c 

(c) Contributions to C44 

Kg 

-2.178 

~2.283 

-2.319 

-2.288 

-2.189 

-2.023 

-1.788 

-1.486 

Ks 

2.609 

2.107 

1.624 

Loup? 

~/09 

22f0 

- 135 

= 529 

LAS 1S 

22.0 

12.879 

12.84 

Aes tae 

12.459 

12.077 

11.547 

ke 

~22.818 

-22.598 

—22.265 

~21.798 

-21.173 

-20.371 

~19 2364 

-18.137 

-8.216 

-8.079 

-7.903 

-7.681 

-72405 

-7.069 

-6.665 

-6.186 

ix.



  

Table 5.8 Elastic constants in Spinel and Magnetite. 

Blastic Constants in Spinel in units of 10** dyns cm 

12]. 

  

  

          

Elastic ¢ * ih ¢_ (Int) | Theoretical even 
Constant ay ae: a [Re.c] 

Casa 59 440 -38.08 1.0 22.352 2729 

C12 24.051 - 5.29 | -0.7 18.52 1553 

Caa 12.67 9-97 739 18.74 15.3       

Elastic Constants’in Magnetite in units of 10** dyns cm ? 
  

  

              

: R C C erin nt 

caeeaee ay eee Theoretical Re [4 JRef [3] 

Casa 55453 - 10.88] 0.1 24.675 23.6 | 26.73 

Cag Ade mm: Bete | 70,05 8.74 - {10.60 

Cas 6.79 0.57] -0.2 7216 76061 9578 

Ref A; Moran and Luthi (1969) 

Ref B;: Dorai swami (1947) 

Ref C: Lewis (1966) 
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Magnetite. The calculated values certainly fit the ultrasonic 

measurements better than the static measurements. Unfortunately 

Moran and Luthi did not measure any sound velocity which is 

dependent on the elastic constant Cyg. Nevertheless, it is probably 

not unreasonable to suppose that this constant might be lower tian 

he value quoted by Doraiswami and so the calculated value for Cig 

seems a fakr figure.
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6.1) The dispersion curves for Fes0, and MgAf.0,4. 

The fit to the experimental dispersion curves shown in 

figures 5.5 and 5.6 is reasonably good, particularly in the case 

of Magnetite. However, it is typical of the physically unrealistic 

rigid ion model in that when the acoustic modes have been fitted 

at small values of the phonon wavevector q, they deviate from the 

experimental observations near to the Brillouin zone boundaries. 

The theoretical predictions for Magnetite, nevertheless reveal a 

number of remarkable features. For example, Samuelsen and 

Steinsvoll from their measurements of the dispersion in LA [001] 

reasonably assumed that this mode passes through the point q = 0.6, 

Pe BAe TH» and continues on to meet the zone boundary at XK, at 

(TH In contrast, the present calculations indicate that this 

dispersion branch bends over severely at q = 0.5 to join the 

TAa([110], at the critical point X. The higher energy phonons 

identified by Samuelsen as belonging to the LA[001] are fitted 

instead quite nicely by one of the longitudinal optic branches. 

Evidently, further experimental work is needed to clarify this dis- 

crepancy. 

The agreement between experiment and theory in the [110] 

direction appears superficially to be better than it actually is, 

for theoretically the two transverse acoustic branches in this 

direction cross over at about [0.3, 0.3, 0], so that TAs 

apparently fits the experimental TA, branch and vice-versa. It 

seems unlikely that confusion between these modes could occur 

experimentally, as the dynamic structure factor would be expected 

to make the neutron-phonon interaction negligible for TA, with the 

crystal orientation in a (110) zone and negligible for TAg in the 

(001) zone, Nevertheless, Samelsen et al. make only ect cies 

assignments to the higher energy phonons from these branches so that 

some uncertainty concerning the true situation here must remain until
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further experimental investigation has been carried out. The 

longitudinal acoustic [110] branch fits quite well, however, at 

least out to [0.3, 0.3, 0] and also reproduces, though not very 

faithfully, the bending feature in the neighbourhood of 

[025, 0.5, 0}, 

In the case of magnesium aluminate, MgAé20,, there 

is really insufficient data on which to base a dynamical model 

with twelve parameters, in so far that, so little detail of the 

lower lying optic modes has been uncovered that there is some 

uncertainty as to whether the correct optic mode has been fitted. 

This chiefly affects the B parameters and to some sxtent the ionic 

charges as the settaliaes are to all intents determined by the 

measured data from the acoustic branches. Apart from this slight 

uncertainty the theoretical fit seems to be quite satisfactory, 

in the present context. 

6.2) Madelung constants for Spinels. 

Before embarking on a discussion of the equilibrium 

conditions in spinels and their connection with the repulsive 

parameters, an expression for the Coulomb potential of the Spinel 

structure is required, and this is conveniently expressed in terms 

of the Madelung constant per formula unit. 

Madelung constants in spinels have been derived previously 

by Verwey and Heilmann (1947) and Verwey, de Boer and van Santen 

(1948) but recently, calculations by Striefler and Barsh (1972) 

on MgA€204 have shown that the earlier results may be in error by 

about 3% for §>0O. The calculations of the Madelung constants 

for a range of different spinel compounds was thereford repeated 

as a precaution before undertaking the more detailed investigations 

of the lattice dynamics. 

The electrostatic energy per formula unit can be generally
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expressed as 

oe 6.1 

where, a, is the lattice constant, M the Madelung constant and 

e, the electronic charge. M can be evaluated from the series 

7 

k é'kt |n(4'k')-xr(£k) | 

where the prime on the summation indicates that the terms 

&'k' = £k are excluded, the rest of the symbols having their 

usual meaning. The expression 6.2 gives the Madelung constant per 

conventional unit cell and as this contains eight molecules, the 

Madelung constant per formula unit is a half of Moe The 
asl 

series 6.2 is transformed by Ewald's method to improve its con- 

vergence (see Appendix II of Born and Huang),and in the present 

case is then divided according to the possible combinations of the 

products of the ionic charges in the same manner as for the elastic 

constants of the previous chapter. The final result is obtained in 

the forn, 

2 k 28 Pe M = 1.091 2, 0.079Zo0 3.07622, + ki2,_ + 

+keZ oe + kgZ,Z, @s3 

where eZ,» eZ, and eZ are the octahedral cation, tetrahedral 

cation, and anion charges respectively. The coefficients 

ky,kg and kg then depend on the anion positions and are tabulated 

as:.a function of..6 =u — wie in table 6.1 which covers a wide 

range of observed u-parameters for the spinel compounds, The 

variation of the coefficients ky,keg and kg is also shown graphically 

in figures 6.1, 6.2 and 6.3 respectively. 

In table 6.2 the results of the present calculations are 

compared with those of Verwey,and as can be seen they agree well 

at §6 =O but are slightly lower for § > 0. In each case the anion



Table 6.1: Coefficients for partial sums contributing 
to the Madelung constant 

  

    

        

Delta ky ke ks 

- .010 —72528 -12.664. -19 841 

- .008 —7 448 ~12.353 -20 .122 

- .004 -7 0342 -11.766 ~2 695 

0 -7.306 -11.221 -21.284 

004 ~7o341 -10.716 -21.885 

008 —7 46 -10 .246 ~22.4.97 

012 -7624. - 9.89 -23.118 

016 -7.875 - 9.403 —28.. 7h 

020 -8.204. ~ 9.02. -2h..573     
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Table 6.2: Madelung constants in spinels. 

  

  

2 ee 3 3 - o 4. 2 
8 Ref Ref Ref 

-.010 | 124.72 G5), 33 143.10 

—.008 | 125.55 at 142.05 

— 004 | 127.06 130.96 140 .07 

O | 128.56] 128.6 130.78 | 130.8 138,21-~ 1138.2 

004 | 130.01] 130.8 130.611 130.9 136.44. | 136.3 

008 | 131.38] 132.9 PM .45 7231.2 13k 13k8 

.012 | 132.65] 135.0 130.20 | 131.3 252.98 Lodloeus 

e016 | 133.77 129.89 131.23 

O20: P15. 72 129.45 129.40                 

Ref = Verwey, de Boer and van Santen (1948). 
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charge is assumed to be -2,and the tetrahedral and octahedral 

cation charges are as given at the column heading, e.g. 2-3 

indicates 2, =e Or 2, = 3. The calculations agree well with the 

results of Streifler and Barsh who found M to be 132.65 with the 

normal arrangement of cation in Spinel with § = .012. 

Finaily, it should be emphasized that the form of the 

results for M given here, i.e. equation 6.3, is valid for any 

arrangement of the cations within the space group Fd3m. Thus 

the Madelung constant may be evaluated to two decimal places 

immediately for any spinel for which the cation distribution, 

and therefore the effective tetrahedral and octahedral charge, is 

known. 

6.3) Equilibrium conditions in Spinel. 

Clearly, since crystals with spinel structure exist, 

the attractive Coulomb forces must balance the repulsive forces 

to produce positions of stable equilibrium for the ions. In the 

spinel structure, referred to the space group Fd3m, the total 

potential energy per molecule ¢, is described by the two para- 

meters a and 6.2 The equilibrium conditions then lead to two 

conditions which must be satisfied given by, 

Oe oe yd ae" 
da. et 

° 

ul oO
 

w
e
 64 

89 

In these expressions the Coulomb component of the potential ¢, 

can be found from the Madelung constant, i.e. from the previous 

section, as 

e 
gd a —e G65 

The overlap contribution to the total potential per molecule was 

first given by Striefler and Barsh (1972) as,



fog! 3 

Gt = kd, (2) +12$0(r) + 6¢a(r) + 12ga(r) + 6de(r) 6 

where by represents the tetrahedral-oxygen interation, ¢o- the 

octahedral-oxygen interaction, and ¢1,¢2 and ¢3 represent the 

three different oxygen-oxygen interactions. Thus the two- conditions 

6.4 lead to the equations 

    

one 4 © + 12 2¢0() + 6 2ealr)| ‘ 
a = ar ar | 

tHry r=Fo ae 

+ 12 2¢a(r) + 6 24a(r) ae 67 
or or 

P=Ig L=Pg 

and 

2 

- 5M yy, 262) + 12.260) | + 6 Seale) 
06 

60 80 89 roe) 

      

I oO
 ada (r) + 12 a5 6.8 + 6 S¢0(z) 

    

50 do 

In this form, the equilibrium conditions are not 

particularly useful, however, for in the formulation of the 

general theory of lattice dynamics due to Born and von Karman, the 

vibrations of the atoms are controlled solely through the second 

and higher order differentials of the potential, and the first 

differential is completely eliminated. This difficulty was 

resolved by Born by introducing the boundary condition that in the 

long wavelength limit q > 0 the acoustic modes must correspond to 

elastic waves in the crystal, and this condition leads to the 

translational invariance terms in the oie for the Dynamical 

matrix. 

Thus the equilibrium conditions 6.7 and 6.8 cannot be 

easily built into the equations of motion unless it is assumed 

that the repulsive interactions can be described by central
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forces (not necessarily valid in the spinel compounds), for 

then the B parameters of equation 3.26 can be written as, 

a Is (r)| 6.9 

I
R
 

“
8
 

In this form,the B-parameters can be substituted into equations 

6.7 and 6.8 and the expressions first derived by Striefler and 

Barsh obtained, 

M+ 8f,7 B, + 2hfo* Bo + 12f17By + 2hf,"Bag + 12f3°Bg=0 6.10 

and 

= - ao B, + zu - la) Bo + 2) J2f4B, = 
3 

- 968Bg — 2J2fsB, = 0 6.11 

where the little f's represent r/a for each interaction (i.e. 

f, = r,/as fo = rofa etc, and W =4-— 8). 

For these expressions the Madelung constant M can be 

calculated from equation 6.3 and @M/a8 evaluated from the 

variation of M in the neighbourhood of §& for the spinel concermmed. 

A good approximation to the latter quantity can also be obtained 

by taking the gradient graphically from figures 6.1, 6.2 and 6.3, 

in which case the major source of error arises from 0k,/065 as 

ke and ks are nearly linear functions of §. However,the error in 

ak1/98 can be minimised by noting that ky is very closely described 

by a parabolic function of § and can be approximated by the equation, 

~ky = 221087 + 7.306 6.12 

and gence aki/95 = 44208, With this procedure, 

aM 
08 

= 2022 

2 ‘ 

X 053.04 “ox + 105 .382,2, ~ 1558822 6.13 

which yields a value of 301.6 as compared with 300.16 according
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to the calculation heebared by Striefler and Barsh for 

MgAt204. 

From a substitution of M and @M/@5 into 6.10 and 6.11 

corresponding equilibrium conditions can be found for both Spinel 

and Magnetite. It is found, however, that in neither case can 

these conditions be satisfied by the B-parameters which have 

been derived from fitting the experimental dispersion curves. 

They are satisfied more closely when M and @M/a& are calculated 

with the effective ionic charges but there fee substantial 

discrepancy even then which lies significantly outside experi- 

mental uncertainty. This should not be viewed as a oeeesation 

of the theory for the equilibrium conditions 6.10 and 6.11 are 

founded on a central force approximation to the overlap component 

of the interaction between the ions, The present result may be 

indicative, however, that within the context of the rigid ion model 

the repulsive forces are indeed more correctly described by non 

central interactions between the ion cores. 

It should be emphasized here that severe limitations 

are inevitably imposed on any interpretation based on comparisons 

with the physically unrealistic rigid ion model, for it is well 

known that the electronic polarization of the ions plays an importmt 

role in determining the shape and features of phonon dispersion 

curves. To illustrate this one need only examine an analysis of 

the dispersion curves for the alkali halides,a typical example of 

which is given in the work of Woods, Cochran and Brockhouse (196) 

on Nal. In this case, a simple shell model was dip ioied to take 

account of the polarizability of the iodine ion only, and*their 

results show that this simple shell model produces a mich improved 

fit to the dispersion curves compared with the onuene amenid m rigid 

ion model. It is interesting to note, however, that in simple 

compounds of this type, where every atom is at a centre of symmetry
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that the expressions for the elastic constants are unaffected by 

the polarizabilities of the ions (Woods, Cochran and Brockhouse, 

196; Szigeti, 1950). This, of course, may not be true for the 

spinels as only the B-site ion is at a centre of symmetry 

(within the space group Fd3m) and significantly the Cauchy condition 

is violated by many spinel compounds, including Fes0,4 (see Grimes 

1973b for a useful collection of elastic constant data for the 

spinel compounds). 

6.4) Discussion of the model parameters. 

6e4e1) Repulsive parameters. 

As shown in table 5.6 the repulsive parameters which 

describe the overlap forces between the ions are found to be 

very similar in Magnetite and Spinel. In both of these compounds 

the octahedral Ao parameter has the highest value, the next 

highest being the tetrahedral parameter A,, and so on. The +? 

oxygen-oxygen overlap parameters are particularly interesting, 

Intuitively one might have expected the oxygen-oxygen iteraction 

‘to fall off rapidly with the separation between these ions so 

that, for example, A, > Ag > Ags corresponding to the sequence 

d1 < dg <dg. This is not the case, however, for instead, both 

MgA@204, and Feg04 have Ay > Ag > Ag, this pattem being more 

prominent in the former compound where the range of d-values is 

wider (see table below). 
° 

Bond distance A 

  

MgAé204 |  Fes04 

Ol - 01 (a1) 2.583 2.873 

02-02 (dg) 2.854 2.968 

03:05: (dg) 3.132 3.063 

° 
Note: O-O contact distance = 2.76 A 

Now, as the largest ion in the spinel structure, 077



(a) Dipole =Dipole O1-01 Interaction 

(b) Dipole- Dipole 03-03 Interaction 

     
(C) . Dipole=Dipole O2-O2_ Interaction 

FIGURE 6.4 Dipole = Dipole Interactions 

between the O*” Ions
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is also the most polarizable and it is generally supposed (see 

for example Hudson and Whitfield, 1967) that for symmetry 

reasons the dipole moment is orientated with the axis along the 

[111] direétion joining each oxygen to its nearest neighbour 

tetrahedral cation and directed in the same sense. Thus, the 

dipole arrangement is similar for 01-Ol and 03-03 interactions 

where each pair of dipoles lie in one plane and tilted towards 

one another (see figures 6.4a and b) but totally different for 

the 02-02 interaction (figure 6.4c). In the latter case thé two 

dipoles lie an parallel planes but rotate relative to each other 

through an angle ¢€ and this difference, presumably, is the 

qualitative explanation for the anomalous value of the Ag 

parameters in MgAé204 and Fes304. 

6.4.2) The ionic charges. 

It is often the case, when refining parameters describing 

the inter-atomic forces within the context of the rigid ion model, 

to allaw the charge on the ions to take values different from their 

nominal values, and normally this improves the agreement between 

theoretical and experimental dispersion curves. A procedure such 

as this is justified on the grounds that the electrons surrounding 

the nuclei of the ions extend over a finite region of space, and that 

local distortions of the ionic cores occur in the regions of overlap 

between neighbouring ions, giving rise to dipole moments. So in 

general ions must be treated as polarizable, but this is not possible 

within the rigid ion model and the introduction of an adjustment 

to the ionic charges effectively provides some compensation for this 

theoretical imperfection. The rigid ion model is still, -however, 

inadequate for a satisfactory description of the high g and optical 

parts of the phonon dispersion system and in particular is totally 

inadequate with regard to the dielectric properties of ionic crystals.



13h. 

This is inevitable for assuming the ions to be unpolarizable 

automatically fixes the high frequency dielectric constant as 

unity (see ae 3.3). In practice the high frequency dielectric 

constant for MgAt204 is 2.92 (Wangand Zanzucchi, 1971) and this 

can be theoretically accountdfor almost entirely by the polarizability 

of the oxygen, through the Clausius—Mossotti relation. At low eres 

quencies, however, the rigid ion model should be more reliable and 

in fact a static dielectric constant of 4.71 was found which 

compares quite favourably with the lowest frequency measurement to 

date of 8.42 at 100 H., (Wang and Zenzucchi, 1971). 

Usually, the refined charges give values lower than the 

nominal charges on the ions, and the present calculations on 

Spinel and Magnetite are consistent with this. In the case of 

Spinel, for example, the effective charges turming out to be 

= 1.14, 4% = 2.95 and 2 = -1.76 as compared with the nomial 
4, = Ox 

values of ie 2s > 3 and =-2. Thus, the octahedral charge 
20x 

within the errors of the refinement (see table 5.6), is virtually 

maintained at its nominal value, and this is, of course, consistent 

with A€°* being the smallest ion in this particular compound, and 

therefore least polarizable. 

On the other hand, the oxygen ion is 12% below the 

nominal value, a reduction similar to that observed with 07” in 

SrfiO0s, by Stirling (1972). This ion is the most polarizable in 

Spinel as it is the largest,and the outermost electrons are 

expected to be more loosely bound than those in the metal ions. 

One might therefore have expected this charged to be modified. 

Not much significance should be attached to the value of the 

tetrahedral charge By» for this is linked to the charge on the 

oxygen through the requirement of éharse neutrality. 

The effective charges found for Magnetite are rather 

interesting,as these values viz. g, = 1.50, ion 1.15 and
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ioy -0.9 are very low compared with their nominal values of 

Zi, = Oe Feo 225-and. <7 -2. As the overlap parameters A and B ° 

for the different repulsive interactions are so similar to those 

of MgA#204,it seems most likely that these unusual charge dis- 

crepancies arise from treating Magnetite as a purely ionic com-~ 

pound, It may be significant, for example, that the reduction in 

the tetrahedral charge as a fraction of the nominal charge at this 

site is almost the same in MgAég0,4 and Fe304, i.e. the additional 

reduction in Sie is primarily associated with the change in the 

octahedral cation charge ZB. If this interpretation is correct, 

then it would appear that the presence of electron hopping con- 

ductivity is equivalent to giving an enhanced polarizability to 

the octahedral metal ions, 

6.5) The infra~red spectrum. 

Normally, the treatment of the absorption of infra-red 

radiation in crystals is considered in terms of the generation of 

single phonons. In a "one-phonon process", like this the conser 

vation laws require that the energy of the photon is the same as 

the energy of the phonon, so that v a i444 
photon ¥ yhonon” In addition, 

the conservation of momentum requires that Iohoton = Sononon® 

However, the wavelength of the infra-red photon is very long com- 

pared with the dimensions of the unit cell and thus its wave- 

vector may be effectively set to zero. Therefore, "one-phonon 

processes" can only occur at the centre of the Brillouin zone, that 

is, at the critical point I. Furthermore, a change of dipole moment 

mist be produced, so that for example, in an optic vibration one type 

of sublattice must effectivaymove as a rigid body relative to the other 

ions, in order to satisfy this condition, and thus be infra-red active, 

To establish the optical vibrations which can be infra-red 

active, from the dynamical theory for Spinel, we require the phonon
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frequencies at zero wavevector, and also the pattem of the ionic 

displacements, so that we can identify from the 39 possible optical 

modes of vibration those which can produce a change of dipole 

moment. The phonon frequencies at the critical point IT are obtained 

from the diagonalisation of D gg (kk? ,0) and these are shown in table 

6.3 for Magnetite and Spinel. For comparison, the eigenvalues at 

the critical points X ad L, evaluated from diagonalisation of 

D yg (k" 4g) with the appropriate q, are also listed in tables 6.4. 

and 6.5 and could be used to predict the frequencies of the two 

phonon absorption bands when the selection rules are known. 

Examination of the eigenvectors at q = 0 shows that only 

two patterms of displacement, corresponding to two 3-fold, degenerate . 

modes can produce a change of dipole moment. This pattem is similar 

in Spinel and Magnetite and is shown in table 6.6 which gives details 

for one of each degeneracy. The details of the other two related 

modes may be derived from a cyclical permutation of the MY. and Z 

coordinates. The frequencies to which these modes of vibration 

correspond are marked with an asterisk in table 6.3. 

It should be emphasized here,that in calculating the 

elements of Dog (ek! 50) from equation 5.1 the term associated with 

the macroscopic electric field is excluded since this term does not 

possess a unique limit as q+0O. However, the macroscopic electric 

field has important consequences when considering vibrations in 

which the rative motion of the ions creates a dipole moment,for then 

the ions experience a force exerted by the macroscopic electric field 

when they are vibrating longitudinally (i.e. parallel to q) and thus 

the longitudinal modes have a higher frequency than the corres— 

ponding transverse modes (see Born and Huang). As a result -the 
  

*The elements of D ag (*«,0) are the modified coefficients of Bor and 

Huang which exclude terms associated with the macroscopic electric 
field.
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degeneracy of the two 3-fold modes, marked with the asterisk in 

table 6.3 is in part removed and the frequency of the longitudinal 

mode has been obtained by interpolation back to zero gq from 

Gos ~ (0,0,*1) and is therefore shown in brackets. 

The dynamical model for Magnetite thus. predicts two infra- 

red active modes of vibration, one predominantly involving the motion 

of the tetrahedral cation sublattice relative to the rest of the 

structure, which is vibrating to a lesser extent in antiphase 

(type I),and one where the octahedral cation and oxygen sublattices 

vibration in antiphase with the tetrahedral ion sublattice stationary 

(type II). 

It is interesting to note the observations of Preudhomme 

and Tarte (1971) who investigated the effects of isotopic sub- 

stitution on the infra-red spectrum fou a range of normal 2-3 spinels. 

Their observations show that when the tetrahedral cation is sub- 

stituted by a heavier isotope only the two lowest frequency modes 

shift, whereas when the octahedral cation is substituted for a 

heavier isotope the frequency of all four infra-red bands decreases 

slightly. This is inconsistent with the one-phonon absorption spectra 

of type I and type II vibrations predicted from the dynamical theory, 

for the latter corresponds to the two high frequency bands. 

When the calculated values are compared with the experi- 

mental values for the observed infra-red absorption frequencies 

(tabe 6.7) for both Magnetite (Grimes and Collett, 1971b) and 

MgA€20, (O'Horo, Frisillo and White, 1973) the agreement is found 

to be poor. We can probably attribute the discrepancies to two 

reasons., Firstly, the optical vibrations are very sensitive to 

changes in the parameters of the model, and it may be possible 

by further adjustments of these parameters to improve the fit with 

the experimental infra-red frequencies without deteriorating the
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fit to the other modes. Secondly, the rigid ion model is well known 

to produce errors of as much as 30-40% for some optic vibtations in 

relatively simple structures, such as the alkali halides, see for 

example, Woods, Cochran and Brockhouse (1960). 

Finally, the model predicts only two modes of vibration 

which are infra-red active, whereas Four adsorption peaks are normaliy 

observed the two higher frequencies being the stronger. Therefore, 

the model provides additional support for a change of space group 

and/or indicates that the interpretation of the infra-red spectra in 

terms of one-phonon processes is incorrect.
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Table 6.3: Phonon frequencies at the critical point —[ 

  

MgA £204 Fes0, 

Frequency Degeneracy Frequency Degeneracy 

y TH, vy TH, 

Lo 3 0 3 

5 Bh. 3 Le deli 3 

L 8.68 3 L 4e51* (5.97) 3 

9el7 3 5.16 3 

L 10.62* (13.64) 3 6.62 3 

12.09 3 8.88 2 

13.56 2 10.79 1, 

14.09 3 oe,07 3 

16.30 2 16.08 3 

17.26* (36.04) 3 16.23 2 

20 .66 2 L 17.76" (21.76) 2 3 

23.045 3 19.68 3 

25 ohh | 2 190 7h 3 

27.38 eg 22, 2h, 1 

28.41 3 22.37 1 

oe 1 22.52 3 

34099 1 22.78 2 

L= Lattice mode



Table 6.4: Phonon frequencies at the critical point X. 

Mghé204 

Frequency Degeneracy 

v TH, 

5-93 2 

6.70 2 

8.87 2 

9275 2 

TO GOD 2 

sale, aif, 2 

11.47 2 

11.74 2 

12,05 2 

13 ead 2 

14.655 2 

Ti.co 2 

18.29 2 

19 54. 2 

21.33 2 

21.84 2 

22.90 2 

25.92 2 

26.83 2 

30 .87 2 

34-640 2 

Fe30,4 

Frequency Degeneracy 

v TH 

3.01 2 

3.70 2 

4.01 2 

4.69 2 

5.58 2 

6./2 2 

7.03 2 

75k 2 

8.85 2 

14.52 2 

16.16 2 

17.24 2 

18.55 2 

ao eae: 2 

19.61 2 

19.96 2 

2 .12 2 

2.73 2 

20.76 2 

let 2 

21250 2 

140.



Table 6.5: Phonon frequencies at critical point L. 

Mghl204 

Fre quency Degeneracy 

v TH, 

3.9 2 

5elk 1 

6.75 2 

9036 2 

9.56 i 

10 .03 1 

10.16 z 

10 .84 Zz 

Lk sap 2 

11.96 1, 

tee 2 

T2677 2 

13.0 2 

29009 1 

16.05 2 

16.10 2 

18.92 2 

19.67 2 

20.75 2 

21.36 an 

23.02 1 

25 04 1 

e912 2 

26.36 2 

29.56 1 

53.84. a 

54-042 d. 

35.68 z 

  

Fe30, 

Fre quency Degeneracy 

v TH, 

5025 2 

5 034. 2 

3.76 1 

3-97 2 

4059 1 

5052 ; 

5 50 Z 

6.34 ¥ 

6.67 2 

8.32 x 

8.50 2 

9.06 1 

15.9 2 

15.97 2 

16 42 J. 

16.51 2 

8 1 

18.88 2 

19.28 2 

19.28 1 

19.51 i. 

19.62 2 

2 .66 1 

21.00 1 

22.10 2 
21.16 2 
22 dp 1. 

22.67 i 

as



Table 6.6: Higenvectors of infra-red active modes of vibration, 12. 

Type I = lowest mode. frequency 

  

Atom type xX Xi Z 

(Ry os 

1 - 031 -.015 -.613 

2 - 031 ~.015 -.613 

3 2040 0035 196 

Ps -.020 00352 0193 

5 20358": -.026 +195 

6 -.019 -.023 aoe 

1 e005 200 3 LOD 

8 2005 00 3 0105 

9 2005 2003 2105 

10 2005 2003 2105 

a. 0005 e003 105 

2 2005 003 e105 

LD e005 2003 «105 

14 2005 200 3 OD 

Type II - higher I-R band 

Atom type xX MF Z 

(K) 
z 0 0 -.010 

2 0 0 -.010 

3 - 053 -.069 2296 

4 2055 - .068 2297 

2 - 058 e042, 0292 

6 2060 OL), 2292 

7 - 050 - 040 -.268 

8 048 — 040 -.268 

9 — 054, 2063 02/3 

10 0053 2062 -.273 

et - 050 — 040 -.268 

xe 2048 - 040 -.268 

ad — 054. 063 eels 

14. 0053 -062 -.2/3
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Table 6.7: Comparison of experimental and theoretical 

infra-red frequencies 

MgA290y 

Infra-Red absorption peaks in om? 

Experiment! Theory (type of vibration) 

305 

428 

485 304 AD) et 

670 S75e ae) 

Fe30, 
  

  

Infra-Red absorption peaks in on + 

Experiment? Theory (type. of vibration) 

178 

268 

590 * 1L5@,-() a 

570 DIZ, (Gis) a 

T = Transverse, 

1 O'Horo Frisillo and White (1975) 

2 Grimes and Collett (1971b)



CHAPTER 7 

SUMMARY OF CONCLUSIONS AND SUGGESTIONS FOR 
FURTHER WORK.
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7.1) Summary of pict ons. 

It has been shown for both Spinel and Magnetite that the 

Simple rigid ion model can account quite well for the acoustic 

modes of vibration at small and intermediate values of the phonon 

wavevectors, and thus provides a fair correlation with the observed 

elastic constants. In order to obtain this fit it was necessary 

to allow the dynamical model its complete freedom, which corresponds 

to describing the ion core interactions by non-central, axially 

symmetry, forces. The interaction between the oxygen ions separated 

by the intermediate distance appears to be quite different in 

character from the other two types of oxygen-oxygen interaction, and 

this is apparently connected with the orientation of the dipole 

moments which would be created when the electron cléuds surround- 

ing the oxygen nuclei are deformed. Compensation for the polarisation 

of the constituent ions is also accomplished by a reduction in the 

ionic charges, where the effective charges are lower than their 

nominal values. 

In many respects, the theoretical model for Magnetite provides 

a better description of the dynamical behaviour of this compound than 

the corresponding model for Spinel, which is surprising when one 

considers the added complications in the former, Firstly, the 

electronic configurations of the ferrous and ferric are not closed 

shell configurations and therefore would be expected to deviate more 

from a point charge approximation than the Mg** and Aé®* ions. Secondly, 

there is the added complexity of the electrical conductivity of 

Fe,0,. Nevertheless, the results are encouraging for they seem to 

indicate that the crystal cohesion in M&gnetite is predominantly ionic 

in character, and similar to Spinel itself, It appears that the 

electrical conductivity is accommodated in the rigid ion nodet through 

a drastic reduction in the effective ionic charge of the ion occupying 

the octahedral site. It is, however, difficult to separate this effect
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from the reduction o the effective charge due to the compensation for the 

polarizability of the anions. It seems likely that electron 

hopping creates a localized charge in the neighbourhood of the 

octahedral site which is loosely bound to the nuclei and thus very 

polarizable. Models where the polarizability of the ions can be 

directly taken into account may provide a more complete under. 

standing of this point, but because of the additional parameters 

which would be introduced in this type of model more experimental 

data than that presented here is necessary. 

It has also been shown that the rigid ion model, HO 2 

the two spinel compounds investigated, provides an interpretation 

of the infra-red spectrum in terms of one-phonon processes. Two 

infra-red active modes are predicted for Magnetite and 

Spinel, but the actual derived frequencies do not agree with those 

observed. | Also, the ion movements arewconsistent with the 

frequency shifts of the various modes observed through isotopic 

substitution. 

Finally,the detailed analysis of the X-ray and neutron 

diffraction patterns from Magnesium Aluminate has revealed that 

there is : Significant gain in the overall fit when the data is 

refined under Fu3m symmetry. In view of this it is difficult to 

escape the conclusion that the symmetry of Spinel is more correctly 

described by the space group F43m. If this is the case ,then the 

change of symmetry must influence the lattice dynamics of this compound 

as the overlap forces depend sensitively on the separation distances 

Of. the ions < 

7.2) Suggestions for further work. 

The eigenvectors giving the sense of the ion displace- 

ments for the infra-red active modes can be used to locate which 

Brillouin zone offers a high intensity from the neutron—phonon
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interaction for the observation of these modes using neutron 

inelastic scattering. One might thus be able to correlate the 

neutron measurements with infra-red measurements to establish more 

at least in part 

precisely whether the infra-red spectrum could be described) by one— 

phonon processes. 

An obvious extension of the Genamtont model in Spinel 

would be to include the polarizability of the oxygen ion through 

a rigid shell approximation. This should provide the possibility 

of a better physical description of the phonon dispersion curves. 

However, a model of this type would involve many more parameters 

and there seems little point in extending the description in this 

way until more experimental infomation on the dispersion system 

is available. Introduction of the polarizability of the oxygen 

ion through the rigid shell approximation in Magnetite could 

provide a more precise explanation of how the electrical con- 

ductivity is accommodated within the dynamical representation, 

since at least part of the reduction in the ionic charges associated 

with the polarization effects is then removed. 

Because the cubic spinel compounds are all related by a 

common structure, in the long term they offer a unique opportunity 

er studying the repulsive forces acting between metal ions and 

oxygen ions. For example, one could investigate an aluminate 

series such as MeA%204 or the octahedral cation could be 

substitute creating compounds like say MgMe204. It would therefore 

be possible to investigate ineractions between different cations 

and the anions under very similar circumstances, A remarkable 

feature of the spinel compounds from a dynamical viewpoint is the 

presence of three oxygen-oxygen interactions in the same relatively 

simple material and this gives the possibility of inteaticasing the 

O-O interaction in the same conditions over a fairly wide range of 

0 ° 
interatomic distances (i.e. between about 265A and 05h
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Finally, in ies of the very precise diffraction evidence 

for MgAé204 which shows that the structure of Spinel is more 

correctly described by Fi.3m symmetry, it seems likely that most 

cubic spinels do not accurately conform to Fd3m symmetry. This 

must clearly have implications conceming the interpretation of 

the magnetic behaviour of spinel ferrites since the magnetic 

exchange interactions depend sensitively on the separation between 

the magnetic ions. This will, of course, also affect the inter 

pretation of the dynamical behaviour of Spinel which has been 

presented here. Moreover,if the mechanism for creating off-centre 

ions (i.e. potential maxima at the B-sites)is correct , then 

the corresponding forces might be expected to have considerable 

anharmonic components. To be physically realistic one should then 

consider a dynamical description based on F43m symmetry with 

anharmonic terms and polarizability of the various constituent ions 

included. However, this may be impractical at the present time 

as the experimental and computational labour would be enormous and 

it is doubtful, indeed, whether very much more would really be 

learmt from such a monumental effort.
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Indpendent Coulomb coefficients ee 

for Spinel
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Oo 

10 

10 

aa 

12 

14 

Elements of CL fe) for Spinel 

  

5/ Sma 
Bed 
4.143 

4.136 

—4.204 

4.147 

—40125 

4.423 

-8.417 

-8.510 

4.176 

—38.985 

seede 

13.078 

52101 

—8.756 

—8.849 

4.265 

4.203 

-8.2307 

8.397 

  

ane thes 70.064. direction 

/ BS 2 

pe ok ae ope 
0.000 -3.793 0.000 -3.210 

0.000 --3.723 0.000 -2.944 

0.575 4.317.-1.698  -4.482 

0.086 -—3.822 0.270  -3.231 

0.581 --4.409 1.711 -4.178 

0.000 3-982 0.000 32147 

0.000 -7.584 0.000 -6.008 

0.000 8.413 0.000 -8.257 

-0.040 3.727 -0.121 -2.954 

-0.276 ~-38.826 -0.830 38.564 

0.091. 13.147 0.275. 13.044 

20723 11-964 7.962 9.832 

—0.411 4.649 1.214 3-793 

0.217 9 -7.921 0.646 -6.340 

0.000 -8.746 0.000 -8.581 

-0.182 -4.837 -0.529 -5.778 

0.000 3.784 0.000 Palos 

0.000 -7.485 0.000 -5.939 

-0.103  -8.292 -0.313 -8.119 

25 
imag 
0.000 

0.000 

—2-730 

0.498 

2037, 

0.000 

0.000 

0.000 

—0.206 

12395 

0.465 

126572 

1.951 

1.067 

0.000 

-0.824 

0.000 

0.000 

-0.532 

4S 
reat 

—22605 

~-1.884 

4.595 

—2 483 

4.992 

2016 

~3 850 

—8 .046 

—1.903 

—38.292 

122940 

6-864 

22615 

—4.178 

8.416 

—6 741 

deo 15 

-3.800 

-72938 

=.7 

imag 
0.000 

0.000 

32594 

0.817 

S605 

0.000 

0.000 

0.000 

—0.296 

-1.975 

02662 

16.105 

2.569 

1.484 

0.000 

-1.038 

0.000 

© 0.000 

-0.779 

148. 

q/ 
rea 

-0.648 

42535 

-1.704 

-5 086 

0.693 

12325 

-8.009 

-0.676 

-38.103 

422870 

3.038 

1.2221 

-1.648 

8.314 

—72349 

0.659 

-1.308 

-7.807 

=e9 

imag 
0.000 

0.000 

4.209 

16272 

4.143 

0.000 

0.000 

0.000 

-0.393 

—22571 

0.866 

18.150 

-3.103 

1.900 

0.000 

1.126 

0.000 

0.000 

-T.042
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Elements of Co KK DD) for Spinel 

  

ate thes 0.061 direction 
  

. Gnax”** 

real 

8.284 

8272 

8.408 

8.293 

8.2430 

32994 

10019 

82273 

254774 

—260157 

32655 

17.697 

82531 

4.104 

16.979 

imag 
0.000 

0.000 

1.0150 

-0.172 

-1.162 

0.000. 

0.000 

0.079 

0.184 

5.445 

0.195 

0.000 

0.364 

0.000 

0.206 

q Gnaxn 

real 

72858 

70.446 

8.663 

72643 

8.819 

3602 

16.827 

70452 

25679 

32271 

17.492 

9.674 

6/04: 

16 858 

imag 
0.000 

0.000 

3396 

-0.539 

3.421 

0.000 

0.000 

0.241 

0.555 

—234927-15 6924 

0.568 

0.000 

1.058 

02000 

02622 

qq =05 
Max 

real 

62420 

5-889 

8.964 

6 463 

92435 

20858 

16516 

5-908 

252520 

-19 .663- 

20547 

172161 

11.556 

20936 

16.238 

imag 
0.000 

9-000 

5 0460 

—0.996 

750474 

0.000 

0.000 

0.411 

0.930 

25.144 

0.883 

0.000 

1.648 

0.000 

1.073 

4.966 

92995 

1-835 

-160207 

3.804 

254352 

—72149 

0.000 

0.000 

0.593 

1.313 

—13.0278=324210 

1.563 

16 6832 

130482 

1.884 

15.876 

1.084 

0.000 

22063 

0.000 

1.2558 

149 

9.069 

32408 

10.172 

0.€32 

16.017 

12352 

254234 

-6 616 

0.424 

16.628 

14.698 

0.649 

15.615 

vevvr 

22545 

82286 

0.000 

0.000 

0.785 

12705 

—36.30 

1eid3 

0.000 

20252 

0.000 

22085
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Elements of Cig, ete? for Spinel 
  

32398 

-18.567 

3.032 

—14.561 

-—0.967 

—2 2872 

—-0.122 

-15.505 

0.184 

0.000 

14.301 

in”. the: 0.061 direction 
  

1.917 

—-0.463 

0.000 

-0.025 

-0.025 

0.000 

0.005 

02298 

0.299 

-18.259 

3.203 

-14.976 

0.975 

-2.906 

-0.122 

-15.949 

00.196 

0.000 

14,744 

12357 

0.000 

4.599 

-0.074 

-0.072 

0.000 

0.015 

0.872 

0.887 

32879 

—17.592 

3.478 

-15.792 

-0.979 

—2 962 

—0.092 

—16 684 

0.216 

0.000 

15.474 

imag 
nN 

e Vv 0.06 

-7 2306 

Droit Ha: 

94223 

22156 

0.000 

-7.280 

-0.122 

-0.114 

0.000 

0.024 

1-376 

1.445 

-16.478 

3.743 

—16 2504 

-0.953 

~3.019 

-0.064 

0.235 

0.000 

16.2215 

-2.786 

0.000 

—9 0325 

—0.168 

-0.145 

0.000 

0.032 

Leb. 

1.945 

150. 

0.00 -10.475 

4.267 4.089 

-14.824 14.972 

3.862 -3.188 

~16 993 0.000 

—0.821-10.448 

~3.054 -0.211 

-0.031 -0.164 

—17.918 0.000 

0.248 0.036 

0.000 1.963 

16.663 22363



kt 

Elements of Ck" 9g) for Spinel 

  

real 

0.000 

0.000 

36525 

—18.528 

20965 

0.000 

14.301 

—0.955 

—2 863 

~0.124 

-2 2837 

-15.285 

0.000 

0.180 

0.000 

14.085 

in: the 0.60.15 -direction 
  

imag 
0.000 

0.000 

-0.453 

12330 

0.442 

0.000 

0.000 

-0.078 

06519 

-0-010 

—0.375 

02570 

-0.058 

-0.168 

0.2000 

a/4 =52 

“{ “max 

real 

6.000 

0.000 

20945 

-17.918 

20622 

0.000 

-13.029 

0.125 

2-592 

-13.999 

12.2832 

2 

imag 

0.000 

0.000 

12221 

36995 

1.187 

0.000 

0.000 

-0.228 

12364 

~0.025 

—1.091 

1.703 

-0.154 

—0.315 

-0.488 

0.000 

qa as 

real 

0.000 

0.000 

20216 

—16 695 

12965 

0.000 

-—10.507 

-0.717 

26752 

-0.127 

20115 

11.449 

0.000 

0.116 

0.000 

S 
’ 

imag 
0.000 

0.000 

—1.2612- 

6 0666 

1.551 

0.000 

0.000 

-0.358 

1.688 

—0.032 

1.712 

20812 

-0.394 

-0.756 

0.000 

Vmax?” 
real 

0.c00 

0.000 

12221 

14.876 

1.077 

0.000 

-6 e856 

—0.485 

—2 2650 

-0.129 

10441 

-72755 

0.000 

0.063 

0.000 

62753 

imag 
0,000 

0.000 

1.489 

92318 

1.400 

0.000 

0.000 

—-0 460 

12331 

-0.029 

-20182 

3-865 

0.161 

-0.323 

~0.949 

0.000 

L5Le 

GS anne? 

real 

0.000 

0.000 

0.2120 

—12 545 

0.109 

02900 

2386 

-0.196 

—22539 

9.131 

0.626 

30221 

0,000 

0.009 

0.000 

Ze son 

imag 
0.000 

0.000 

-0.861 

11.869 

0.752 

0.000 

0.000 

~02525 

02395 

0.017 

—22463 

4.803 

-0.062 

—0.126 

-1.050 

0.000



in:
 

iv
 

  

  

Elements. of Cio. fkK' sg) for Spinel 

in’ the «161.0%: direction 

o/ Tmax ** 9/9 inax™° q/Taax™*? onae ee 

wes) snag peer ang real imag real imag 

22047 0.000 12630 0.000 0.669 0.000 -0.766 0.000 

22042 0.000 1.655 0.000 1.035 0.000 02424 0.000 

22061 0.580 1.813 1.833 12381 3.306 0.851 4.899 

Zetoo: 16702 20678 4.501 3.700 5.667 52033 4.685 

22078 -0.079 1.944 -0.086 12670 0.300 1.249. 1.094 

2,026 -Q257 1-485 -0.777 0.443 -1.777 . -0.881 -1.140 

22077 -0.587 1.48 -1.862 1.746 -3.387 12516 —5.066 

22165 -1.720 20736 —4.544 3.866 -5.715 52310 -4.720 

10.679 0.000 9.978 0.000 8.406 0.000 52750 0.000 

20275 0.000 -2.490 0.000 -2.581 0.000 -2.084 0.000 

-22037 0.000 -0.484 0.000 20262 0.000 52421 0.000 

22050 0.039 Teles: 0.103 deeee 0.129 0.754 0.096 

320376 -5.714 -29.596 16.620 -24.033-26.103 -15.822-33.423 

192336 2.886 17.946 7.985 14.930 11.364 10.066 12.762 

195481 0.275 196512 0.926... 19.022. 16977 18.693: 7.931 

11.355 -0.410 10.632 -1.169 92016 —1.795 60304 -2.315 

20613 0.195 -2.818 0.588 =-2.900 1.007 -2.406 1.481 

20375 0.412 -0.811 1.222 1.959 1.974 5.164 2.547 

20169 0.184 20776 0.95 4.009 1.111 52665 2.703 

10.457 0.203 9.762 0.554 8.212: 0.738 5-607 0.660 

20165 -0.102 -2.383 0.275 -2.486 -0.359 -2.016 -0.307 

-26219 0.000 -2.945 0.000 4.364 0.000 -6.206 0.000 

—20669 -0.023 -3.387 -0.096 -4.798 -0.193 —6 639 0.220 

261757 Oe539 2e828 16422 4.147 1.782 5-908 1.467 

7-1-2931 0.000 -0.419 0.000 2.258 0.000 50344 0.900 

152. 

imag 

0.000 

real 

-1.980 

0.050 0.000 

0.286 6.063 

62077 12816 

0.664 1.867 

1.901 -0.482 

12210 -6.327 

60415 —1.829 

2-065 0.000 

-0.817 0.000 

72671 0.000 

00481 0.000 

-52543 -—37.609 

Se 78, 126947 

18.434 2.498 

20565 —2.849 

1.143 1.941 

feni6., 2eove 

6.983 26155 

2.008 0.283 

-0.792 -0.121 

-72647 0.000 

-8.083 -0.100 

1630706507 

72595 0.000



10 

10 

anit 

12 

14 

12 

—4,.084 

4.123 

—4.318 

—42156 

—4.2053 

4.153 

42331 

~8 404 

4.074 

1.100 

13.040 

—38.962 

-8.742 

4.75% 

—4..337 

—8.293 

4.438 

Jeoo7 

~4.349 

Elements of C_,(kk' yg) for Spinel 
  

in the 1.1.0 directicg 

  

ed 15 

0.000 

0.000 

0.000 

-0.078 

22829 

-0.551: 

0.214 

-0.824 

—0.369 

-0.102 

0.000 

0.000 

0.000 

a/4 

real 

32625 

—5 2356 

-3.888 

—2.970 

—3.896 

52472 

-7.488 

0.968 

-3 2450 

11.650 

-38.624 

-72814 

1.623 

-52552 

-7.380 

5 889 

Cel} 7 

-5 656 

“eS 
max 

imag 
0.000 

verve 

3-724 

0.000 

0.000 

0.000 

—0.207 

8.635 

1.652 

0.581 

2443 

-1.919 

-0.279 

0.000 

0.000 

0.000 

ceviv 

-7.2400 

-3.340 

-0.387 

3.493 

-72712 

52825 

4.525 

22444 

9.103 

-38.045 

6.117 

-3.917 

-8.018 

5.727 

8.728 

9.097 

-3.924 

wevvev 

60774 

0.000 

0.000 

0.000 

-0.257 

14.738 

—26754 

0.788 

-32947 

2.221 

-0.379 

0.000 

0.000 

0.000 

—1.702 

-10.067 

—2 497 

1.762 

~3.2032 

-10.620 

—3.667 

-10.841 

-—1.508 

-2.188 

0.000 

102132 

0.000 

0.000 

0.000 

-0.191 

52756 20.661 

~37.387 

—3 898 

-10.328 

-11.330 

32591 

12412 

13.278 

11.815 

-3.863 

0.833 

-5.094 

-32503 

0.353 

0.000 

0.000 

0.000 

1536 

-12.155 

-1.329 

3.801 

-2420 

—122890 

1.248 

-15.341 

0.961 

1.965 

-36 868 

1.422 

-15.033 

-13.965 

-1.217 

15.294 

16.165 

-14.613 

122126 

0.000 

36738 

0.000 

12.655 

0.000 

0.00 

0.000 

0.000 

24,968 

-4 996 

0.908 

-5 2343 

=46311 

-0.163 

0.000 

0.000 

0.000



kt 

tall 

12 

Pp 
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10 

11 

12 

La 

12 

14 

Elements of Cry ETD) for Spinel 

  

an the’ 144.0. direction 
  

G/Gaax7*t 

real 

Oe225 

6 363 

9-503 

22948 

-12.082 

24.824 

Geie5 

32281 

6-198 

-72623 

5 416 

3-387 

6 e035 

50146 

Be30/, 

6.198 

62202 

20 2449 

212652 

imag 
0.000 

0.000 

-0.917 

0.000 

20662 

0.000 

02894 

0.000 

0.000 

0.000 

-0.158 

0.140 

-0.020 

0.158 

-0.140 

-0.057 

1.136 

-0.240 

—0.170 

0.000 

0.000 

0.000 

9.000 

ae 

real 

5 2669 

6.988 

82342 

3.269 

-10.259 

24.322 

7-867 

3366 

5,036 

-3.437 

3.143 

50541 

4.355 

4.879 

50576 

19.881 

21.077 

4.614 

imag 
0.000 

0.000 

—2.704 

0.000 

8.206 

0.000 

20614 

0.000 

0.000 

0.000 

—0.491 

0.168 

-0.073 

0.491 

-0.168 

-02123 

3.306 

—0 666 

-0.535 

0.000 

0.000 

0.000 

0.000 

Wa" 
real 

4.265 

82148 

6 0337 

32973 

-7.016 

2303/5 

Devas 

34695 

4.328 

3645 

2-585 

2604 

3354 

72585 

2 6604 

4.326 

24858 

22788 

4.429 

18.932 

202102 

20891 

36079 

05 

imag 

0.000 

0.000 

4.288 

0.000 

13.344 

0.000 

4.062 

0.000 

0.000 

0.000 

-0.862 

-0.456 

-0.148 

0.863 

0.456 

-9 2.074 

eGo. 

-9.908 

-0.953 

0.000 

0.000 

0.000 

0.000 

a Taye! 

real 

20100 

92518 

32896 

4.988 

—2 2978 

222184 

3-160 

4.335 

20736 

11.262 

9.214 

e139 

1.402 

9.214 

12739 

20722 

10.711 

0.960 

22919 

17.843 

19.932 

1.2090 

Ae i83 

imag 
0.000 

0.000 

—5 0406 © 

0.000 

18.013 

0.000 

4.948 

0.000 

0.2000 

0.000 

1.235 

-1.722 

0.201 

deeso 

Vol22 

0.057 

6 e232 

-0.833 

-1.405 

0.000 

0.060 

0.060 

0.000 

154-6 

ao enee 

real 

0.279 

10.483 

12307 

50836 

1.202 

21.268 

0.536 

4.953 

0.934 

16 6347 

10.351 

0.613 

0.042 

10.351 

0.613 

0.918 

16.190 

12198 

17.021 

18.113 

0.366 

16.196 

imag 
0.060 

0.000 

—5.911 

0.000 

202727 

0.000 

52128 

0.000 

0.000 

0.000 

1.514 

—2 2883 

—0.135 

Te51g 

2 «883 

0.093 

6 6061 

-0.398 

-1.810 

0.000 

0.000 

0.000 

0.000



  

  

k! q/Gragtet 

real imag 
al 0.000 0.000 

2.3 e000 34.562 

3 32400 0.136 

4 -3.301 1.045 

7 =18.416 3.229 

8 18.566 0.588 

11. oaeae no oee 

12 =2.943 ~0.903 

4 _=0.121 0.000 

—14.362 

0.959 -1.633 

8 2838 -0.399 

Ne
} 

-0.131 -0.034 

10 =2.877 0.504 

8 +-0.118 -0.060 

9 +-15.344 0.568 

at 0.185 -0.116 

ae, 0.118 0.297 

13 14.145 0.296 

14 0.000 0.129 

12 -0.178 0.126 

Elements of . CL (kK 4g) for Spinel 

in the 1.1.0 direction 

Fina @*3 © Sr Ui Soa aga 
real imag real imag real imag 0.000 0,000 0.000 0,000 0.000 0,000 

0.000 --4.264 0.000 5701 0.000 ~5.073 

30558 0.365 32589 0.503 20942 0.556 

mau//0- 2.067 . 615930. 3.866 “10121 3.467 

“16.885 9.204 -13.662 13.861 ~8.447 16.663 

182289 1.693 17.870 2.450 £70483: © 2.370 

3.188 -0.025 30236 -0.018 22680 -~0.076 

22458 ~2.489 12649 ~3,374 ~0.954 -—3.046 

-0.967 0.000 ~-2.053 0.000 -20397 0.000 
0.000 -13.545 0.000 ~14.703 0.000 -8.340 0.000 

0.905 -4.451 -0.745 -5.937 -0.391 5.283 

20606 -1.154 ~—2.142 ~1.785 1.439 -2.234 

0.185 -0.09%  -0.246 -0.124 -02237 —0.133 

meeFe? 16532.  =2998 2.347 22943 2.309 

0.944 -0.194  ~2.005 0.327. 20292 =0,352 

14.503 1.663 -12.617 2.678 -92203 3.669 

0.196 ~0.332 0.203 ~0.480 0.171 =-1.460 

0.941 0.843 1.987. 1.239 fecat, ts3e0 

130336 0.813 11.516 1.102 8.199 1.008 

0.000 0.366 0.000 0.520 02000 0.536 

0.146 0.360 ~0.096 0.518 -0.048 0.494 

Usgo 24,934 0.000 1.587 0.000 1.351 
13 9.000 0.462 

ove 

J ng 

Wax =e 

real 

0.000 

0.000 

12186 

—0.632 

12369 

172260 

12123 

—0.508 

1.078 

-3.102 

0.200 

~0.513 

-0.102 

—2 684 

-1.502 

—-3.918 

0.076 

0.933 

32045 

0.000 

-0.017 

0.000 

imag 

0.000 

—20076~ 

0.567 

1.425 

17.407 

1.018 

0.287 

1.257 

0.000 

0.000 

—2 209 

=2 267 

-0.132 

0.795 

~0.160 

4.710 

-0.195 

1.213 

02436 

02209 

0.211 

0.536
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Elements. of CL -(kK' yg) for Spinel 

  

in the, 1.1.1. direction 
  

O/Snaxeet 

real 

0.000 

0.000 

0.000 

0.191 

0.096 

" 0.000 

-0.100 

0.500 

0.174 

0.086 

8.238 

4.119 

—34.406 

17203 

0.000 

8.913 

4.457 

0.000 

8.593 

4 07 

Ag AT 

0.012 

-4.013 

9.493 

8.025 

imag 

0.000 

0.000 

0.000 

20265 

1.132 

0.000 

-0.329 

0.165 

—2 2289 

12145 

0.000 

0.000 

-5.983 

Zooey 

0.000 

-0.820 

q/4 Zee 
max 

real 

0.000 

0000 

0.000 

0.720 

-0.360 

0.000 

-0.369 

0.185 

0657 

—0.329 

6-997 

32499 

imag 
0.000 

0.000 

0.000 

4.292 

22146 

0.000 

0.587 

0.294 

~4.345 

20173 

0.2000 

0.000 

—33.165-11.787 

16.582 

0.000 

72657 

-2.829 

9.000 

8.981 

—4.490 

4.938 

0.044 

—3-405 

9.877 

6-809 

5-894 

0.000 

-1.610 

0.805 

0.000 

0.389 

-0.195 

—0.032 

-0.355 

4/Fyax™*? 

real 
0.000 

0.000 

0.000 

1.462 

-0.732 

0.000 

0.360 

M6337. 

imag 
0.000 

0.000 

0.000 

5858 

22929 

0.000 

-0.721 

0.362 

-0.669 2.793 

5074 

20537 

0.000 

0.000 

—31.086-17.232 

15.543 

0.000 

5-708 

-2.854 

0.000 

8.616 

0.000 

-2.339 

ed 70 

0.000 

0.547 

G/a =e4 
max 

real 
0,000 

0.000 

0.000 

20246 

~1.123 

0.000 

-1.037 

0.518 

22055 

—1.027 

22663 

—12332 

imag 
0.000 

0.000 

0.000 

6-783 

3.391 

0.000 

-0.708 

02354 

6.911 

30455 

0.000 

0.000 

—28 2.16 7-22.137 

14.083 

0.000 

Beaoo 

1.627 

0.000 

9.850 

-4.925 

11.068 

0.000 

-0.334 

-0.019 

24248 

0.203 

0-000 

-0.406 

156.6 

Se 

real imag 
0.000 0.000 

0.000 0.000 

0.000 0.000 

22882 6.958 

~1.441 -3.479 

0.000 0.000 

-1.221 -0.560 

0.610 0.280 

2.641 -7.125 

-1.321 3.562 

0.000 0.000 

0.000 0.000 

=244433-26.348 

12.212 13.174 

0.000 0.000 

0.528 -3.475 

=Gs064's 45787 

0.000 0.000 

9.996 0.755 

-4.998 -0.387 

=5.444 0.000 

0.179 24366 

0.010 0.132 

10.888 0.000 

—0.020: -0.263



kt 

10 

Lt 

12 

14 

-13.991 

22-693 

-9.778 

10.754 

18.413 

Elements of Sy a for Spinel 

  

in the 
ae 

Lote? direction 
  

4/Ipag*1 

real imag 

4.133 0.000 

4.266 —1.549 

72532 -02337 

0.827 0.558 

Thscieveh alee oye 

4.524 

1919 

-14.288 -0.761 

7.144 0.447 

1.162 -0.459 

6.961 —1.350 

3.983 0.000 

0.000 

3.131 -1.697 

4.282 0.126 

32925 -0.025 

3.986 —- 0.062 

Neaoe 

4.185 -0.241 

0.298 

19.617 -.0.000 

4.222 -0.055 

0,008 

0.289 

12.734 

VAnaxk?? 
real 

32989. 0.000 

4.472 

7435 -0.758 

0.856 1.2126 

60661 2.2930 

222397 32831 

-13.924 -—1.648 

6.981 0.972 

1.106 -0.889 

64266 —2.634 

3.385 0.000 

8-337 0.000 

3.593 —3.200 

Aetta 0.254 

3.520 0.062 

3.399 -0.142 

9.286 2.219 

3.634 -0.499 

18.366 0.586 

19.569 0.000 

4.309 ~0..090 

30277 0.030 

-38.148 0.520 

0.89 

2586 0.478 

imag 

20923 

8.716 | 

APS ay 2? 

real imag 

3-812 0.000 

4.732 -—3.982 

70265 —1.315 

0.883 1.564 

5-587 4.218 

-10.700 12.274 

2109247 5.727 

132370 ~7.742 

6-706 14625 

1.002 -1.258 

52159 -3.794 

2457 0.000 

~6.075 0.000 

3.868 -4.351 

1.013 0.387 

20900 0.337 

22489 -—2.252 

-6.974 3.209 

22753 —0.784 

18.304 0.861 

19.509 0.000 

42418 -O.99 

2407 0.075 

5.923 oO
 

264 i
 

pS
 

Pent: ‘Leen 

22649 0.686 

ae 

real imag 

3.669 0.000 

4.939 —4.656 

72019 —~2.008 

0.880 1.860 

4.184 5.310 

~7.2986 14.935 

216295). 16096 

12.700 -6.052 

62327 2.2404 

0.843 -1.534 

32720 —4.781 

1-291 0.000 

-3.201 0.000 

4.140 -5.060 

0.829 - 06531 

20147 0.819 

1.2348 -0.040 

-4.024 4.051 

1-612 -1.092 

18.246 1.122 

19.457 0.000 

4.506 -0.055 

12285 0. 146 

—3.101 0.627 

45565. 10525 

1.438 0.860 

20-529 

-0.712 

18.211 

19.438 

157.6 

Wag? 9 

real imag 
32615 0.00 

4.947 —-4.948 

60714 —2.781 

0-823 1.987 

20000 6457 

4.741 16.511 

92425 

-12.001 -5.510 

50874 3.4252 

0.626 -—1.690 

22057 -5.549 

0.000 0.000 

0.000 0.000 

4.228 -5.312 

0.642 0.692 

16362 14468 

0.088 -0.581 

4.687 

0.323 -1.403 

1.376 

0.000 

4.540 0.000 

0.018 0.237 

0.035 0.459 

0.127 1.683 

0.075 0.990
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