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MAGNETIC ELECTRON LENSES BASED ON THE 

UNIFORMLY MAGNETIZED ELLIPSOID 

Adil Abdullah Laili Alshwaikh 

This thesis is concerned with mathematical models of magnetic pole- 
piece lenses. It extends the well-known square-top field model, which 
gives a good representation of double polepiece lenses to the calculation 
of spiral distortion and chromatic change in magnification and rotation, 

The main aim of the project however is to propose and evaluate the 
uniformly magnetised ellipsoid as a possible basis for an understanding 
of the electron-optical properties of magnetic single pole-piece lenses, 
The special case of a magnetized hemisphere is shown to be of special 
importance since it provides a realistic model for such lenses and is 
adapted to mathematical analysis. For convenience, this model will be 
called the spherical model. 

On the basis of this model, the coefficients of spherical aberration , 
Chromatic aberration and image distortion of single pole-piece lenses in 
various modes of operation have been calculated. The results so obtained 
enable one to select conditions of operation for minimum lens defects. 

The results of this theoretical investigation give a valuable insight 
into the behaviour of practical single pole piece lenses, whose focal 
properties could not previously be accounted for in detail. 

The analysis of the spherical model has also been extended to the 
calculation of the pre-field characteristics and the aberration coeff- 
icients of chromatic change in magnification and rotation. The results 
are compared with the known characteristics of conventional lenses. 

Two modes of operation of single-pole lenses are considered in some 
detail, One is the possibility of using such a lens as a single-field | 
condenser objective lens. The other relates to the possibility of com- 
bining two single-pole lenses in a projector system that is free from spiral 

distortion. 

Finally, the ideas and results obtained from the theoretical analysis 

are compared with presently available experimental data on single-pole 

Lenses: 

Key Words 

Aberration correction, electron microscopy, electron optics, lens aberration, 
lens. computations, magnetic lens, magnetic lens model, snorkel lenses, 

spherical aberration, spherical field model, spiral distortion, square top 

field model.
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Le INTRODUCTION 

Several electron optical features and elements are common to all 

types of electron microscopes such as the transmission (TEM), scanning 

(SEM) and Scanning Transmission electron microscope (STEM). They are 

similarly shared by many other related instruments, including the 

electron-probe microanalyser and the electron diffraction camera, An 

important element in all these electron optical instruments is the 

magnetic electron lens. 

The iron-free solenoid is an interesting example of a magnetic lens:. 

It may consist of either a wire or tape wound round a non-magnetic inte 

and has an appreciably lower spherical aberration (Basset and Mulvey, 1969) 

than that of conventional lenses. A noteworthy investigation has been 

carried out by Marai (1977) on a wide range of these lenses. 

1.1 The Magnetic Pole-piece Lens 

Magnetic lenses in which the magnetic field is created by energizing 

coils and iron pole-pieces can be divided into two categories, double 

pole-piece lenses and single pole-piece lenses. 
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Fig. 1.1 Schematic cross-section of a symmetrical double- 

pole magnetic lens.



1.1.1 Double pole-piece magnetic lens 
  

The most commonly used magnetic electron lenses are double pole 

lenses (fig.1.1); they consist essentially of a coil of wire wound on 

a core of ferromagnetic material of high magnetic permeability. The 

iron core of the lens is bored to a diameter D along the axis of the 

coil to allow the electron beam to pass through a gap of width S which 

is formed between two iron pole-pieces. The axial magnetic field in 

the gap S is therefore non-uniform and this gives rise to the refractive 

action of the lens, the properties of which can be expressed in terms 

of the ratio S/D of gap width to inner diameter. 

* Many authors have published useful studies covering these lenses. 

Amongst these may be mentioned the papers by Liebmann and Grad (1951), 

Durandeau and Fert (1957), (Fert and Durandeau, 1967) and later still a 

comprehensive review by Mulvey and Wallington (1969). If the diameters, 

are unequal, then the axial field distribution of the double pole lens 

will become asymmetrical. Some of the important properties of assymet- 

rical double-pole lenses were discussed by Liebmann (1951, 1955A, 1955B), 

Yanaka and Watanabe (1966). 

1.1.2 Single pole-piece lenses 

If we divide a double pole piece lens in two, midway between the 

pole-pieces, we will then be left with two single pole-piece lenses} 

each lens now has one polepiece called the snout.Fig.(1.2) shows single 

pole lenses (snorkel) used for SEM and for STEM and TEM (Mulvey, 1974). 

Several papers have now been published giving account of the development 

of se lens, such as those of Mulvey and Newman (1973A), Mulvey (1974) 

and Mulvey and Marai (1974).
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Fig. 1.2 The single pole lens. (a) Single pole-piece 
tens for SEM; (b) Singe pole piece lens for 
STEM and TEM. 

Such a lens may be used as an objective lens in TEM and STEM 

(Mulvey, 1974) or otherwise as a projector and objective lens (Mulvey 

and Newman, 1973B), (Juma and Mulvey, 1975). Some experimental single 

pole lenses have been developed in this department by Mulvey and his 

colleagues. These miniature lenses are often simply called a mini-lens. 

Some basic experiments on these lenses have been done by Mulvey and 

Newman (1972, 1973A and 1973B), Juma and Mulvey (1955), Lambrakis et 

al (1977) and Elkamali and Mulvey (1977). 

For cooling the winding of this type of lens, water is directly 

applied to them, and this has been proved as being very effective. 

Further research is now taking place in this department to improve 

appreciably the efficiency of the cooling method. 

1.1.3 The axial magnetic field distribution 

The magnetic field of a lens can be produced in a number of diff-



erent ways. One way is to employ current-carrying coils without a 

magnetic circuit. In this way it is possible to concentrate the 

magnetic flux within a limited region and to obtain a higher field 

with a given coil. The axial value of this field, which is produced 

from an iron-free coil, can be easily calculated by the Biot-Savart 

law. 

This magnetic field, brought about by the coil can also be assoc- 

iated with a high permeability magnetic circuit; this becomes saturated 

when the magnetic induction reaches a value of around 2.2 Tesla, Basics 

ally, there are four different methods for calculating the axial magnetic 

field distribution. The first is the relaxation method (Liebmann and 

Grad, 1951) which applies to scalar potentialsand is used also to find 

the field inside the magnet), then there is the differential finite 

element method (Munro 1972); alternatively one may choose the integral 

finite element method (Trowbridge etal, 1972), or proceed experimentally 

by the Hall-probe gaussmeter method. The last two methods were used 

‘to measure the axial field distribution of some experimental single 

pole lenses mentioned in various parts of this thesis. The last method, 

however, is not usually capable of measuring the field distribution 

inside the snout itself because a standard gaussmeter probe cannot 

usually be inserted in the bore of the lens. 

If high permeability material are uniformly magnetized a magnetic field 

will be produced outside the solid. The field outside solids may be 

calculated mathematically, many magnetic problems of this type were in 

fact solved back in the nineteenth century. One such problem solved 

in this way is that of the uniformly magnetized iron sphere (Kelvin, 

1872). These sources of fields can also be determined, in special



cases, by the use of an electrostatic analogy as illustrated in the work 

on the uniformly magnetized ellipsoid. Finally, the few lenses which 

have permanent magnets can have their field distribution calculated by 

one of the well-known analytical equations descibed by Grivet (1972). 

1.2 Mathematical models for magnetic lenses 
  

Magnetic field models are analytical expressions that represent the 

axial field distribution B(z) of magnetic lenses. Such models make the 

electron-optical properties of the field distribution easy to study and 

interpret. 

Each model gives a design basis for a lens, especially when the model 

is capable of being realised physically. 

In various aspects of electron-optics research, different mathem- 

atical models were proposed to represent the axial field distribution 

Bz). Some of these will now be summarized because reference will be 

made to them at different parts of this thesis. 

Many field models deal exclusively with double-pole lenses, Examples 

are the Glaser Bell-shaped field (Glaser, 1941B), that of Grivet-Lenz 

(Grivet, 1952 and Lenz, 1950), the "'three-halves field" (Kanaya,1955) 

and the square-top field (Durandeau and Fert, 1957). While the expon- 

ential field (Marai and Mulvey, 1974) and the spherical field (Alshwaikh 

and Mulvey, 1977) deal with single pole lenses. 

A large selection of papers has appeared containing the first type 

of model, plus the analytical expression for its aberration. A few of



the names which come to mind in connection with these are those of 

Scherzer (1937), Kanaya (1955), Kamminga (1968), Hawkes (1972) and 

Grivet (1972). It was Kanaya and his colleagues (1976) who developed 

the mathematical expression that generalizes the above models. 

The main purposes of this thesis are (a) to extend the theoretical 

study of double pole piece lenses by using their mathematical models. 

This study includes some important aberrations such as spiral distortion: 

(b) to investigate - . some theoretical pole piece lenses,since it 

is difficult to apply the double pole piece lens model to single pole 

piece lenses; (c) to find realistic models and thus an optimum design 

pole piece lens, where a correlation exist with its actual pole piece 

structure; (d) to study in detail one of the more realistic model named 

uniformly magnetized sphere (Alshwaikh and Mulvey, 1977) and to invest- 

igate its applications. In addition, the above model is used in this 

thesis to find the optical characteristics and aberrations of single 

pole piece lenses, 

1.2.1 Models for double polé piece: lenses 
  

A summary is given here of the properties of two specific mathemat- 

ical models for double pole piece lenses. These two models are useful 

for checking numerical calculations. In addition it is possible to 

extend the range of previous calculations to include certain aberrations 

such as spiral distortion, chromatic change in magnification and chromatic 

change in rotation. 

Such programs can then prove fruitful in the study of focal proper- 

ties and various aberrations for new types of lenses.



Constant axial field (square top field) 

The homogeneous field BCA) = BS of field width S between abscissa 

Zn $/2, as shown in fig.1.3 is most useful as a first approximation 

because any field distribution can be divided into successive intervals 

and each interval treated as a separate square-top field (rie.4., 4), 
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Fig. 1,3 The square top field model and the definition 
of the main focal parameters 

  

      

  

          

Fig. 1.4 A magnetic field distribution divided into 
successive square top fields



The corresponding paraxial ray equation may be written: 

d?r/dz* + kK2r =0 att 1) 
where 

Va 
K = (e/8mv,, J (z) 

and (e/m) is the ratio of charge to mass of the electron. Vi eS 
x 

relativistically corrected accelerating voltage and r is the height 

of the trajectory through the field, For an incident ray of initial 

slope ze and distance x5 from the axis, the trajectory at any point at 

a distance z from the origin takes the form 

t= r,cos[K(S/2+z) J + (r1/k) sin[K(S/2+z) ] weet ec) 

The slope r' of the ray is given by 

a = ricosLK(S/2+z) J - Kr sin[K(S/2+z) ] ees eke 

The objective focal distance Zo (see £19,173) is siven by 

a (m/2K - S/2] < wna) 

The projector focal length (f,) obeys the relation 

s/f. = (KS) sin(KS) rates Glo!) 

Equation (1.5) applies also for Fah} up to an excitation KS = 1/2, and 

the objective focal length when 25 is inside the lens (i.e. KS > 1/2)
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Fig. 1.5 The focal properties of the square top 
field model 

The Bell-shaped field 
  

This field is described by the function 

B(z) = B/ C1+(z/d)21" ARE Ss 

where d = half of the half-width and the maximum field (B,) occurs at 

the lens centre (fig.1.6) and n is an integer
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Fig. 1.6 The Glaser Bell-shaped model and 
the definition of 'half-width' @d) 

This investigation is concerned with the case n = l, 

Ls e Putting k = eB, 7d? /8mV Ww = (1+k?)?, @ = tan 

The general solution of equation (1.1) for this field is 

r/d = sinwd/wsind 

The slope r' at z= -e is given by 

r' = -sinwt/w 

The projector focal length has the value 

48 = WCosecuT 

General form of double-pole lens fields 
  

*(z/d) 

(1.8) 

(1.9) 

(2510) 

There are many models which deal with double pole lenses but each 

of them is restricted to a particular type of field. So the generaliz- 

ation of previous models is highly desirable. Kanaya et al (1976) have 

made an attempt to present a complete solution of magnetic lens models. 

The magnetic field distribution of half width (d) are described in the
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general form 

B(2n/d) = B (1p?) ‘2M amg-1) /2) Pasi) 

where the function ) is related to the coordinate z/d as 

Re 

SC 2yae -(1-?) (1.12) 
ar : we ; 

The parameter (m¢) takes on the special values 0.5, for the constant 

field, 1 for the Lenz-Grivet field, 1.1 for the three-halves field and 

1.5 for the Bell-shaped field. It should be noted that n is related 

to mp through a special function shown later in fig. 4.1. 

The paraxial ray equation of the above general form is given by 

(1-p?) (d?y/dp?) - 2map(dy/dp) + K*y =O — ... (1.13) 

L 
where Ks (e/8mvV .) * hwy ee 

Equation (1.13) can be solved in terms of the hypergeometric function F, 

= AFLa,B,y, (bes) ] + BOSH Lye Peasiy, 8+1y, 267; @81)/2) 

C114) 

where A and B are constants with 

at+Bt+l = 2M y= Me, ag = -K? 

Kanaya and his colleagues, derived exact analytical expressions for 

all the important optical properties as a function of the parameter Mp 

It is therefore possible to select designs of minimum aberration.



ao 

1.2.2 Models for single pole lens 
  

A difficult task arises if an attempt is made to apply the above 

models to single pole lenses. 

Mulvey and Newman (1973) found that it is not possible to apply the 

above field distributions to a single pole lens. It is necessary there- 

of 
fore to look for models from which the properties single-pole lenses can 

be deduced. 

The exponential field 
  

The axial field distribution of the exponential field takes the form 

B(z) = B exp . (-22n2/d) ‘ica Cae 

where By is the maximum field and (d) is the total width of the axial 

field distribution from the maximum field to the axial point where the 

field drops to half the maximum, 

Glaser (1952) derived the paraxial ray equation for this field as 

follows: 

(d?y/d&?) + 1/E(dylE) + Y = 0 ae wees te) 

where Y = r/d and & = (K/&n2)exp.(-z2n2/d). 

The curve representing the model (fig.1.7) consists of two parts, 

a steep part coinciding with the vertical axis and an exponentially 

decaying part. For the sake of convenience the vertical part will be 

called the steep edge while the other part will be called the sloping 

edge.
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A particular solution when the ray is incident on the sloping part 

of the field starting at z = © with initial height r = 1 and r' =0 

(fig.1.7), the solution of equation (1.16) takes the form 

r/d = J (8) = J (K/2n2. exp. (-22n2/d) <2 oe C2) 

An extensive investigation of this case was carried out by Marai (1977). 

His results are as follows: 

L 
os > lee eNU/ VO) 2 Sete 8 el 26) F/d 

Bs 
where 2, is always positive (i.e. NI/V,.* Aa): 

The focal lengths takes the form: 

1 1 
a a ce <2 tie = fp/d = 7.77NT/V,, .J1 (0.1857 NI/V. ) 

(152/) 

Notice that this equation for a only applies in the region 

1 
#2 1, 

O< NI/V,,* < 13, For NI/V,“ > 13, the objective focal length is 

constant and given by 

tohid = 1/2n2.E,.J1(&1) = 1.156 oes eee 

Fig.1.8 shows the parameters z,/d and 4 as a function of 

3 1, 
excitation parameters NI/V,? for two zones. The general optical 

to 
properties of this field according these analytical expressions 

with some aberration parameters, such as chromatic (C.) and spherical 

aberration (C.) coefficients are shown in fig.1.9. 

The general solution for this field is discussed in detail in 

chapter 3, The results obtained with the ray incident on the sloping
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edge agree with those obtained by Marai (1977):. The special case of 

the ray incident on the steep edge is also treated. 

The exponential field (Marai, 1977) has proved satisfactory when 

applied to certain single-pole lenses, but the model has several imper- 

fections. One of these is that objective focal length, chromatic 

aberration coefficient and spherical aberration coefficient are constant. 

in the region NI/NI, > 1.0, (fig. 1.9) while they increase slowley for 

real field distributions. 

It may well also share some of the disadvantages of certain double 

pole fields namely that it may not satisfy Laplace's equation... fhis 

means that it is not readily possible to correlate the axial field dist- 

ribution with the physical structure of the magnetic circuit. 

It may therefore be more profitable to start with a known magnetic 

structure whose magnetic field can be calculated analytically. It 

therefore seems useful to investigate the fields due to different geo- 

metrical shapes of soft iron placed in a uniform magnetic field, 

l,2n0 “Fielas due to a uniformly magnetized solid 
  

It is difficult to correlate the exponential field model with an 

actual pole piece structure of single pole piece lenses (see fA oes 22), 

and so find an optimum design, For this reason, it seemed desirable 

to have a method whereby the effect of pole shape of the lenses can be 

readily investigated. Consider, for example, the magnetic potential 

(Q) at an external point P due to a uniformly magnetized solid, fig.1.10.



=e EO ae 

  

Magnetic solid R 

  

o 
A
Y
 

\ 

ALO Pi: 

é KY) 
Ai lee) 7) 9 

oo (X, Y,2 
oe 

or       

Fig.1.10 Uniformly magnetized solid. QR is 
: proportional to the intensity I of 

magnetization. QP is the optical 
axis. 

The following method (Ramsey, 1937) can be used. 

We may regard the magnet as composed of a large number of elementary 

magnets of moment IdV, where I and dV are the intensity of magnetization 

and volume element respectively. Let X;,y1,21 be: the coordinates of 

a point Q at such an element. Let P be an external point (x,y,z) and 

let QP = r make an angle 8 with direction of I. Take the axis of x 

in the direction of I. Then the potential at P due to the elementary 

magnet is IdV cos0/r* or IdV (l/r). Hence the potential at P due 

to the whole solid is given by 

a it 
Q = 1] Say oe) oY aL ee) 

Integrating through the volume, putting 

ee Mm (x-))* * Cy-y¥1)* + f2-21)7 fet ba) 

ee 
so that Tore aS



gas 

Therefore 

Ol 
On= -f Ts Fx bp) AV 

- 0 Idv or Qos Ss aed a 

But : IdV/r represents the potential at P fig.1.10. due to uniform 

distribution of matter of density I, so that the potential of the 

magnet can be found by applying the operator -0/dx to the potential 

of this uniform distribution of matter. 

Magnetic field due to a magnetized ellipsoid 
  

It is a long and complicated procedure to determine the field inside 

and outside a ferromagnetic ellipsoid placed on a uniform magnetic field, 

(Elo a) 

  

Fig.1.11 Short ellipsoid of infinitely permeable 
material in a uniform field 

For our purpose it is sufficient to state the main formulas only. 

Assuming an ellipsoid with variable axis x,y,z inside the ellipsoid 

had semi-axis a,b and c. Using 6 = x/a = y/b = 2/c. dA is defined by 

Webster (1897) as 

x?/(a7+A) + y?/(b7+A) + 22/(c2+d) = 67 gee (heae)
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When 6 = 0,A = © and when 6 = 1, \ has a value which we will call o 

defined by 

x*/(a2+0) + y?/(b2+0) + 27/(c?+0) = 1 Sal. 3a 

By using the notation % for potential and R, as 

Ry = (a2+h) (b2+A) (c2+A) # 4b (3 354) 

we can use the results given by Webster (1897) in the form 

dQ/dx = -2mabex f dA/(a*+d) . Ry pean (3.35) 
oO 

and for internal point 

bd 
9N/9x = -2mabcx J dd/(a?+A) . Ry nee (1.96) 

0 

b oO 

put A (0) = = J dA/(A +q2) . Ry {1 37) 
oO 

Notice that A,,A2 and A3 are obtained by putting a,b,c respectively 

for q. 

Suppose that the major axis (a) of the ellipsoid is parallel to 

the x-axis and the uniform magnetic field lies in the same direction. 

The potential on the axis is then Q = ~Box The following express- 

ions are for the porential inside (2, ) and outside (2) when a homo- 

geneous ellipsoid of permeability €2 is introduced in the field (Durand 

1966 and 1968). 

214, (6) 
Qo : " ro)

 

iy
 ' (1598) 
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The self-demagnetizing factors L, M and N can be denoted by 4m7A, (0), 

where n = 1,2,3 respectively. SO (N) can be written for an ellipsoid 

with a # b = c when the ellipsoid is ellongated. 

N= 4m(1/e?-1)[(1/2e) log. (1+e/1-e) <2 pve £440) 

and the eccentricity (e) is given by 

athe et ae eer ayy 

When the ellipsoid is oblate 

1, i 
N = 4n£1/e2-(1-e2)* . sin” 'e/e? J -SC1 349) 

1, 
with e = Elnee* seri TAL ao) 

The magnetic force (H) inside a magnetised ellipsoid induced by an 

external original force (H') is given by the equation (Ewing, 1891) 

H/H' = 1/(NK+1) see (L444) 

Where K is magnetic succeptibility and N takes the values in equations 

(1.40) and (1.42). The last parameter is called the magnetization 

factor by Professor H. duBois (Ewing, 1891).
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The uniformly magnetized iron sphere 

The iron sphere is a special case of the uniformly magnetized ellip- 

soid, and it seemed useful to investigate its electron-optical propert- 

ies, since the analytical solution for the magnetic potential due to such 

a sphere has already been calculated (Kelvin, 1872). 

If a sphere is placed inside a uniform magnetic field, it will take 

up a uniform field too (Kelvin 1872), fig.(1.12). If the external 

field is Bo/2 and the sphere has a radius (a), then the potential inside 

the sphere (Q; ) follows the relation 

Q, = -[1.5(u+2) JB rcosé poe the) 

while the potential outside the sphere (2) is 

O) a Bes. 
Qy cg Cri 7? 7 c0s0 st Gl; 46) 

where yt = the permeability, r = the radius vector and @ is the angle 

between r and the direction of magnetization (z-axis). Both r and 

6 are shown in fig.(1.12) ae 
aA 

oe - va 
=A a 
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Fig. 1.12 The uniformly magnetized sphere (Kelvin, 
1872) and the geometrical parameters 0, 

a andr.
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The field due to different solid shapes need more experimental 

investigation and analysis. This thesis deals with one important 

and useful case, that is the sphere as will be shown later in Chapter 

3 and uniformly magnetized sphere model (Alshwaik and Mulvey, 1977) 

called in this work spherical field. 

This field is considered in more detail in Chapter 3. It may 

also be worth mentioning that all the work in this thesis dealing 

with single pole lenses is based on this class of field. Chapter 

3 shows also some experimental results for various fields due to 

different solid shapes. 

1,3. The image defects of magentic lenses 
  

The quality of magnetic lens depends not only upon the pakauiad 

electron optical characteristics but also upon the aberrations. The 

importance of a particular aberration depends on the function of the 

magnetic lenses. For intermediate and projector magnetic lenses, the 

radial and spiral distortions are the most important. For an objective 

lens, only the spherical and the chromatic aberrations are important. 

The chromatic changes in magntification and in rotation are serious for 

all lenses. The first three cause a shift of the image point, while 

the fifth aberration rotates the image, the chromatic aberrations being 

responsible for image blurring. 

1.3.1 Image distortion 

Image distortion takes place if the lens does not bend the incoming 

rays in.strict proportion to their radial distance from the axis. 

If the angle of rotation is not independent of the radial distance 

of the incoming rays from the axis, spiral distortion will occur in the
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image. In radial distortion the image of each object point is shifted 

radially from the Gaussian image point either outwards, (pin-cushion 

distortion) or inwards (barrel distortion). The deviation Ap of the 

Gaussian image at the image plane is given by 

oh 2 CORT foe M.r) ve Gee) 

where tT, is the distance of the incoming ray from the axis and M is the 

magnification. The deviation Ap in spiral distortion is given by 

(49) .., = Di, Minas sl 

where Dead and Dep are the radial and spiral distortion coefficients in 

the standard notation which are most widely used. In spiral distortion 

the deviation Ap is at right angles to the image radius 0. 

By using the relation op = M.T)> these image distortion then become 

it 8 (Ap/P) ag Lae se eet td ae) 

Ul = 

2 (Ap/p) ee ree tig roa Loa O)) 

The kind of distortion (pin-cushion or barrel) given by (1.49) depends 

upon the sign of Boog The appearance of some of these image dist- 

ortions for a square mesh object, taken from Nasr (1978), are shown in 

étage 1.13,



  

(c)        
Ce) cd)     

  

Fig.1.13 Typical image distortion patterns for a square 
mesh object, (a) perfect image; (b) spiral 
distortion; (c) pin-cushion radial distortion; 

(d) barrel radial distortion; (e) distorted 
image with mixed defects 

By using the standard notation (Hawkes, 1972) and the rays X,Y 

described in Chapter 2 the coefficient Od for purely magnetic field 

are given as follows 

Boag = $5788) (O/26mN 3 f E2e/nv,)B*(2) + $B1(z) 

- B'(z)B"(z)] Y°X dz aa Ciee ed 

Here dashes denote differentiation with respect to z. For projector 

lenses in particular the integration is carried out from object plane 

to image plane which are assumed to be at infinity. 

The numerical analysis was carried out by using the following 

expressions using Scherzer's expression (1937) for Dead
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0 

Daa = (3/8f"p) + (e/16mvV,) | [B'? + (3.¢/8mV_,) BY (z) 

B*(z) (Y"/Y)*IY'xdz 

(1.52) 

Dees (1/16V,)@e/mv,,) 7 f. B(z)£ (3e/8m) B? (z) 

+ VC (YAY? de 
(1.53) 

Both radial and spiral distortion coefficients depend on the geometry 

of the lens and its excitation. For double pole lenses, the radial and 

Spiral distortion for different S/D ratios have been calculated by 

Liebmann (1952). The correction of radial distortion was examined by 

Haine and Page (1956), and Kynaston and Mulvey (1963). 

One of the ideas of how to set about this correction was suggested 

by Hillier (1945), where the correction lens is placed at the focal 

point of the main projector lens. Both lenses were excited by the 

same number of ampereturns, 

For both single and double pole lenses, radial distortion can be 

lL 
zero at the excitation parameter (NI/V) which is just above the excit- 

ation parameter at which the maximum magnification will occur. 

A section of the research on the aberrations of single pole lenses 

has been carried out by Marai and Mulvey (1975), and by Alshwaikh and 

Mulvey (1977). A further extensive study of radial distortion in 

Single pole lenses is given in Chapter 4, which includes a universal 

curve for the spiral distortion of all double pole magnetic lenses.
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1.3.2 The lens aberrations 
  

Two aberrations are specifically harmful for an objective lens; the 

first is spherical aberration which is the most important geometrical 

defect. This occurs when the outer regions of the lens have a stronger 

focusing effect than the region close to the axis. The result is that 

a point in the object plane will not be imaged as a point in the image 

plane but as a disc of radius Ar, where 

Ae a a3 vow Clg) 

Here a, is the semi-aperture of the electron beam in image space 

and Cc. is the spherical aberration coefficient, which varies with lens 

geometry and excitation as well as with the relative positions of the 

object and image planes. 

The second aberration produces a blurring of the image known as 

chromatic aberration. Fluctuation in the lens focal length, due to 

a spread in electron energy and variations in lens excitation result 

in the superposition on the final screen of images of different sizes. 

There is then a consequent loss of image definition, and hence the 

aberration. 

If the accelerating potential (V) and/or the lens excitation (NTI) 

fluctuate, chromatic aberration will arise in the image, and the image 

point will appear blurred. This gives the contribution of the aberr- 

ation disc of radius Cae) around the image 

i Ca CAV/V) Pee ao)



in which AV/V is due either to a fluctuation of the applied voltage or 

to a loss in energy of electrons passing through specimen, The coeff- 

icient C. is for chromatic aberration, and 0, is the angular aperture 

of the beam in object space. 

The calculation of the coefficient C. and C. were discussed by 

Glaser (1933) originally using the point eiconal function and Scherzer 

(1937) using the electron path method. Later. on (1952) Glaser, carried 

out an intensive study on these coefficients and extensive research has 

been made into them by recent authors. 

The spherical aberration coefficient can be written as 

as 
y 

C. = (e/96mV ) [ (2e/mV )B" (z) + 5B'2(z) - B(z)B'"(z) Jh'dz 
oe 

0 

(1.54) 

here dashes denote differentiation with respect to z. The integration 

is carried out from object plane (z,) to image plane (25). 

To avoid the difficulty of calculating the second derivative B" in 

C. the numerical analysis was carried out by using the following express- 

ions for the coefficient C, and Cy (Hawkes, 1972 and Grivet, 1972). 

Die 
a 

C. = (e/128mV,) | [ (3e/mV ,) BY (z) + 8B'2(z) - 8B7(z)(h'/h}Jh*dz 
Ss zs 

(1.55) 

et 
C. = (-e/8mv,) | B(z)h?dz 64> (1556) 

Z 
Oo
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Numerous publications have appeared concerning these aberrations, 

such as those of Der Schwartz and Makarova (1968) for iron free coils, 

as well as Basset and Mulvey (1959). Mulvey and Wallington (1973) 

present a very useful review and critical comparison for a wide range 

of double pole lenses. 

Both spherical and chromatic aberrations have been calculated for 

Single pole piece lenses by Juma (1975), Marai and Mulvey (1975), Alshwaikh 

and Mulvey (1977), Juma and Alshwaikh (1979). A detailed account is 

given in Chapter 4. 

1.3.3 The problem of the slope of the magnetic field distribution 
  

B(z) becoming infinite 
  

Some of the aberration coefficients such as the spherical aberration 

coefficient Cy and the radial distortion coefficient Dead depend directly 

on the slope B'(z) of the magnetic field distribution. However, when 

calculating such fields, a mathematical difficulty can arise if such a 

field distribution has an infinite slope at one or more points. 

Some field models contain two distinct mathematical functions and 

their intersection point has two derivatives, one of them equal to infin- 

EEY There is also another problem when the slope is not known at a 

certain point. 

This problem arises especially when calcualting C. and Dad for the 

square top field, and for single pole lens models when the rays are incid- 

ent from the negative direction fig. 1.14, (i.e. they enter the steep 

edge of the field).
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Fig. 1.14 Axial field distribution of a single-pole 
lens showing the two characteristics 

Some authors committed conceptual errors in their calculations of 

Cc. and Patt Marai (1976) shows the values of De ca (dotted lines in 

Fig. 1.15) for the exponential field and Kanaya et al (1976) in their 

calculation for Cy for the square top field. Both authors calculated 

the coefficients by ignoring the presence of the vertical function. 

  

      

  

  

Fig. 1.15 Radial and spiral distortion coefficients 
of exponential field model according to 
Marai (1976).



Equation 1.59a is not correct for the square-top field, because these 

There is a major difficulty when trying to find these coeffiecients 

in the square top field, that is the problem of the infinite value of the 

magnetic flux derivative (B"'). However, Kanaya et al (1976) formulated 

expressions for C, for square top field. They appear in standard 

notations as 

C_/S= [1/6sin* (KS) ] [3+(2/6)singO-(1/40)sin40] for 6 < 1/2 

Cl. 59.8) 

and C_/S = 1/48 Lone W72<20 5 8 ee teen 

n 

1, 
Since 6 = 0.1863 NI/V,.* ‘ 

values hold only by ignoring the effect of the boundaries at which the 

axial field BS has an infinite slope and so the correct value of . 

should approach infinity. 

However, the above expression of C. Can be used to sive an idea 

about the values of spherical abberation when the function has a very 

steep slope. More discussion about this problem are to be found in 

Chapter 4. 

1.3.4 Quality factors of projector lenses 

The quality of the image formed by a projector lens depends not 

only on the distortion coefficient (D) but also the projector focal 

length (fp). A relevant dimensionless factor (Q) can be found from the 

relation governing distortion.



Sa 

Ap/p = D.r? <5 42 40) 

where D is the distortion coefficient. It is easy to deduce from (1.60) 

with reference to fig.1.16 that 
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Fig.1.16 Schematic electron trajectory in the final 

connector stage of an electron microscopy 

Ap/p = D(p/L)?. fp 

with Ap/p = Q?(p/L )? 

L 
the result being Bie fp cc. LIea 

‘The quality factor (Q) has been used to compare different projector 

lenses (Marai and Mulvey, 1977). This factor is used for both spiral 

and radial distortion corresponding to that of D.
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It is important to remember that this definition of Q applies to 

one lens only and is not relevant when used as the distortion parameter 

for a complete lens system designed to remove distortion. The factor Q 

is independent on ‘the kind of image distortion. For this purpose new 

definition of this quality factor is introduced in Chapter 4. However, 

this factor is very suitable for investigating the possibility of reducing 

the length of viewing chamber of an electron microscope as this involves 

only the final projector lens, since the other lenses do not significantly 

contribute to the image distortion 

1.3.5 Comparison of objective lens 
  

In order to compare the performance of different objective lenses an 

absolute standard is needed. This should inolve not only aberration 

coefficient but also technological factors such as the maximum flux density. 

This factor may refer either to the maximum permissable flux density in 

the polepieces, or the maximum current density in the windings of super- 

conducting lenses. | 

Mulvey and Wallington (1973) made use of these relevant parameters 

1 1 o- ae which take the form CoB OV. for spherical aberration and C Bava for 

chromatic aberration. 

It was also possible to use the corresponding absolute parameters 

as =e 
eB ae oe By to compare values of the projector focal 
O2077 Ob} Oo x 

wv 

Fee 

length, focal distance and objective focal length respectively for diff-— 

erent lenses. 

These parameters are used throughout this thesis for comparison 

purposes. The mathematical procedures for finding these parameters are 

discussed in Chapter 4. 

1.3.6 Aberration coefficients for double pole lenses 

Mei gticel expressions for the coefficients of double pole lenses 

are useful in the design of such lenses or to select optimum designs with 

minimum defects. Two models are commonly used for these purposes.



One of them is the well-known Glaser bell-shaped field and the other 

is the square top field, which is frequently used as the basis for univ- 

ersal curves of focal properties. 

The distribution coefficient Dad? the chromatic and spherical 

coefficients Cc, and C, are listed for the bell-shaped field by many 

authors, see for example, Kanaya (1958) and Hawkes C1972)" 2a's 

C/d = tk?cosec (m/w) /2u pou (Te Gam 

Dad? = 3 sin?wn/2(4k?+3)+mk*w+wm/4w- (2k?+3) /4w? (4k24+3) 

(1.63) 

ce k? /4u?~ (4k? -3) sin(2m/w) /8(4k?+3) cosec’ (m/w) 

(1.64) 

Fig. 1.17 shows how these coefficients vary with lens excitation. 

An extensive investigation has been carried out by Kamminga et al, 

  

(1968) on the Cc. and C. aberrations. 20 7 T T T 

Fig.1.17 Chromatic Cc. and spherical 

C. aberration coefficients 

of Glaser bell-shaped field model 
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He gave a general expression for the Glaser field and discussed 

several particular cases. On the other hand C. can be also written 

in a form depending on object position 25 and magnification (Hawkes, 

1968). This takes the form: 

4 j 4 i 
Ds a; (z/d) and 2 b, (1/M) eel OS) 

i=0 9, 

where as and b; are tabulated as a function of K* in the above mentioned 

paper. The dependence of Cc. on Zz, is ‘even simpler: according to Hawkes 

(1968). 

C= - AK? d(1+z,)/2(1+K?) ¥? Sa vet leGh) 

The parameters Dp (distortion) and C. (chromatic aberration) appear 

in standard notations for square top field (Marai (1977), Kanaya et al 

(1976)) as 

eo = 03/8 + (07/2)sin(26) pee CGP) 

C./S = [1/2sin? (KS) ][1+(1/26)sin(26)] for 6 < 1/2 

(1.68a) 

= a for on/2-<- 0: <1, ane (CL 68D) 

The chromatic coefficient C. is plotted as a function of lens 

excitation KS in fig.1.18



  

  

  

      
Fig.1.18 Chromatic aberration coefficient of the 

square-top field model 

1.3.7 Optimization of magnetic lenses 

Many papers have been published on the optimum design of magnetic 

lenses, (Kanaya et al (1976)) (Szilagyi (1976), (1977)). A review of 

the literature of double pole lenses shows that spherical and chromatic 

aberrations are the aberrations that affect objective lenses most. These 

aberrations cannot be completely corrected as shown mathematically by 

Scherzer, (1936). 

The smallest known spherical aberration coefficient can be achieved 

by the use of very thin coils (Bassett and Mulvey, 1969) but there are 

practical difficulties in realising such a lens. Marai (1977) found 

that there is an optimum geometry for iron-free lenses namely when the 

coil thickness is Be tenth of the mean diameter. Marai (1977) also 

found that S/D,, = 0.1, the spherical aberration parameter decreases as 

D,/D, increases till the change in spherical indicator is very small and 

1 a ~6 
reaches a constant equal to 2.8xi0mIV “ at D,/D, = 999.
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Fig.1.19 shows the case mentioned above with the case Do/D,; = 19 

which is plotted by Mulvey and Wallington (1973) with the parameter 
1 

<2 C. BOY at-.around. 3. The figure also shows the theoretical limits 

calculated by Moses (1972) and Tretner (1959) 
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Fig. 1.19 Absolute spherical aberration parameter 
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While iron-free coils have been proposed as objective lenses they 

are not suitable as projectors. This is due to the fact that the spiral 

distortion parameter on is slightly worse (by 10%) than that of conven- 

tional lenses. 

It seems that iron pole piece lenses are more effective as projectors 

than iron-free lenses. 

Marai (1977) for example, showed that, at minimum focal length 

(i.e. NI/NI9= 1) where radial distortion is nearly zero, the spiral 

distortion quality factor Qsn is the region of unity for all symmetrical 

double pole piece lenses.



It appears, however, that a better projector lens factor can be 

devised by using a single pole lens as described in Chapter 4. 

Furthermore, the single pole lenses based on the uniformly magnet- 

ized sphere model (Alshwaikh and Mulvey 1977) have an encouragingly low 

spherical aberration coefficient value. This point is discussed 

further in Chapter 4. 

1.3.8 Chromatic change in magnification and rotation 
  

The aberrations known as chromatic change in magnification and 

chromatic change in rotation are important in high resolution electron 

microscopes. Their effect on the image is that an image point departs 

from its Gaussian position as the energy of the electron is varied. 

Chromatic change in magnification results in loss of image definition 

in the marginal zone of the images because a number of images of differ- 

ent sizes is superimposed resulting in blurring; the effect gets worse 

towards the outer regions as the field of view is increased. 

This image blurring is caused by the electron energy spread in the 

beam arising from fluctuations in lens excitation and accelerating voltage, 

or by energy losses in the specimen. 

The resulting image distortion ay,/r may be written 

Ar /t = CE (AV/V) - (2AI/I)] a fs se OL pe) 

Bie 1.20a shows the chromatic defects for the special case when the 

incident illumination is parallel to the axis and of very narrow aperture. 

The sketch (a) on the right shows the chromatic aberration and chromatic 

change in magnification by ignoring, in thi§ instance, the chromatic



change in rotation. 
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The radius of a circle of confusion is Ar. and the 

displacement of its centre from the unaberrated image point is Ar 
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bette 

Zero loss i i 

electrons \ ee 

a 
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of confusion     

Fig. 1.20 Image appearance with chromatic defects 

If Ar, is the tangential component of the image displacement. The 

chromatic change in the rotation angle (d6) produces a circumferential 

blurring Ar, in the image at height r from the axis. Thus we have 

C,. then takes the form 

GOs GL dv 
aoe kay coor aL) 

Since Ary = rd0, equation (1.71) may be rewritten as 

Ar Gre cate sy AV 
eeeaios oo Cae: pire tie levapey 

a 

dr, dV dI 
Co =(—)/C-2—- Saher) 

- Rh V I
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The effect of chromatic change in rotation is shown in fig.1.20b 

in addition with other chromatic defects. The radial displacement is 

Ar, and the circumferential displacement is Arg. 

For convenience the terms Ch and C.. are used for coefficients of 

chromatic change in magnification and in rotation respectively, while 

the subscripts 0, i and p will represent quantities concerned with the 

objective, intermediate and projector lens respectively. 

By using the electron path method, Scherzer (1936) derived formulae 

for both Ch and Ch. Many authors, (e.g. Morito (1954) and Kanaya, (1955)) 

used these formulas to calculate the corresponding coefficients for obj- 

ective lenses. The formulae are as follows _ 

Ds 
1 

= -c/8mV,, | B (z) ghdZz ve Ie 
zo 

Oo L z 
Ch = ~’s(e/8mV_.) | B(z)dz Pee oy 

Z 
0 

where g and h are particular solutions of the paraxial ray equation defined 

in Chapter 2. Most publications have been concerned mainly with the 

coefficients of the objective lens; only a few papers deal with the 

projector lens. One of the original investigations into projector lens 

coefficients was that of Morito (1957). Hawkes (1972) tabulated similar 

expressions using one of the most convenient forms of the chromatic change 

coefficients as shown below 

ce = -(e/8mV,,) f: B2 (z)xYdz ae Chere 

C. = (e/1onv,)? [ @@pae | Le eek o/c) 

Here X and Y stand for two independent particular solutions of the paraxial 

ray equation. These analytical solutions are given in Chapter 3 and the 

numerical solutions in Chapter 2.



1.4 Characteristic of the pre-field 
  

The pre-field is that part of the magnetic field in front of the 

specimen. The pre-field can be as strong as the main imaging field and 

therefore can exert a considerable influence on the illuminating system. 

The theory of the pre-field was originally developed by Marton and Hutter 

(1944) for the bell-shaped field. Riecke (1962) has carried a comprehen- 

sive analysis of the pre-field of a mangetic objective with a Glaser bell- 

shaped field. He extended the idea pointed out by Glaser (1941) to obtain 

a very short focal length and low aberration coefficients by situating the 

object at the centre of the lens. In the lens which has this kind of 

field called 'condenser-objective' the spherical aberration was apprec- 

iably lower than that where the specimen were placed outside the magnetic 

field. 

The practical realization of a symmetrical condenser-objective lens 

was due to Riecke and Ruska (1966). The first half of the field acts as 

a short focal length condenser lens while the second half acts as a short 

focal length objective. 

Double pole lens pre-field 

Consider first the general case of a condenser-objective with 

variable specimen position. 

A good model for a doublepole lens is the rectangular field dis- 

tribution tie. 1.23 consisting of a uniform field of strength Bor confined 

between two planes A and B separated by a distance S. The ODVeCE. 1S 

placed at O at an arbitrary distance from the lens centre. The pre-field 

is bounded between A and O, and converges the electron beam from .. to rs
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Mulvey and Wallington (1973) found that the pre-field focal length 

(f.) and focal distance (Z_.) follow the relations 
pre pre 

[w/2. (NI/NI,) sin {m/2. (NI/NI,-1)}1"" Pt 9B) Fh
 

i
 wn ut 

pre 

1 

N
 

Be
 mn
 

Hi nee 1/2(1-NI,/NI) + (m/2(NI/NI,)tan{m/2(NI/NI,-1)}] 

(15:79) 

where 2 ore is measured from the centre of the pre-field and NI, is the 

excitation over the length OB. 

It is possible to express the lens gap (S) and the fractional 

reduction of the illumination radius (i.e. r/Y,) = Me of the beam, 
e 

in terms of the excitation ratio (NI/NI,) as 

n
 iH) 5 

8.44 ve /B,) Uy (NI/NI,) | Cf Our ou 

= ul : 1 bet sin(> -NI/NI,) oe te HY)
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Fig.1.22 Absolute focal properties for a lens with 
S >D (square-top field) in the excitation 
range 1 < NI/NI, Ses 

Fig. 1.22 shows the absolute focal-properties f .,.2z and M as 
pre" pre pre 

functions of the relative excitation parameter NI/NI while the Universal 

Curve fig.1.23 shows the relative focal properties. This Universal 

Curve is valid in the range of NI/NI) between 0.8 and 2.3 
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Fig. 1.23 Relative focal properties of the pre-field 
(Universal Curve) valid for all values of 
S/D in the excitation range 0.8 < NI/NI m2
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The characteristics of the pre-field of single pole piece lens are 

discussed in Chapter 6. 

1.5 Correction of Aberrations 
  

1.5.1 Rotation-free projector system 
  

Image rotation may be eliminated by using two or more magnetic lenses 

designed to have an overall rotation of zero, resulting in the so-called 

‘rotation-free' system. The first attempt to eliminate image rotation 

was that of Stabenow (1935), later followed by Becker and Wallraff (1940), 

all three of whom investigated the possibility of obtaining a rotation- 

free magnetic lens system by using two iron-free coils. 

The first to report the use of two separate coils and lens gaps 

connected in a co-operative mode of operation was Ruska (1934). He did 

not, however, mention the possibility of employing this lens in a rotat- 

ion-free mode. With a double projector, Prebus (1942) used such a double 

gap projector lens in an early experimental microscope. However, it was 

not possible to operate the lens gaps in a rotation-free mode. 

Kanaya (1958) and Kanaya and Ishikawa (1958) discussed the theory of 

rotation-free imaging. They suggested the use of a rotation-free projector 

lens in order to avoid the astigmatism caused by the misalignment of elec- 

tron lens elements. Juma and Mulvey (1974) described the successful per- 

formance of miniature rotation-free projector lenses in an electron 

microscope with the aid of double polepiece lenses and also with single 

poleiece lenses (Juma and Mulvey, 1975) 

Each of these projector systems consisted of two identical magnetic 

lenses mounted back to back, The excitation of each lens gap was
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equal and opposite, so that the net rotation was always zero. Further 

results concerning rotation free electron microscopes have been given by 

Juma and Mulvey (1975), also by Juma (1975). 

The rotation-free projector system is the subject of investigation 

in this thesis as a possible system for correcting spiral distortion, 

(Chapter 7). 

1.5.2 Correction of spiral distortion 
  

Spiral distortion is probably the most important aberration affect - 

ing the projector system of the electron microscope. It is mainly prod- 

uced by the final projector lens, and is extremely difficult to correct 

(Marai and Mulvey, 1977). Spiral distortion does not affect the res- 

Olving power of the microscope but makes quantitative analysis of the 

shape and size of object details difficult. 

The spiral distortion Ap/p at an image point of radius p is given 

by 

Ap — (£,°D,.) (p/L)? = eo o2 Pd 823 
p 

Where L is the distance between the focal point of the projector 

and the flourescent screen (see fig.1.16), and a is the semi-angle sub- 

tended by the fluorescent screen at the focal point of the projector 

lens, The remaining parameters have already been defined. 

Chapter 7 is concerned with a mathematical analysis of a two mag- 

netic lens system devised for the correction of spiral distortion. The 

advantages of correcting spiral distortion lie not only in the fact
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that the image is then a faithful copy of the object, but certain extra 

benefits can be derived, namely a substantial reduction in the length 

and volume of viewing chamber, and consequently a reduction in the sens- 

itivity to the microscope to external alternating magnetic stray fields 

and mechanical vibrations. Both of these factors are important in 

obtaining very high resolution in the electron microscope. 

A projector lens of low spiral distortion making use of permanent 

magnetic lenses has been described by KWbozoe et al, (1978). Unfortunately 

no photographs of the resulting images have yet been published and so it 

is not possible to evaluate the results. 

A system with two single pole piece lenses were also used for corr- 

ecting spiral distortion. Work in this direction was etiea by Marai 

(1977) and was continued by Lambrakis et al (1977) who used the miniature 

high voltage single pole lens described by Mulvey and Newman (1973) as a 

projector, They used as a correcting intermediate lens a single pole 

piece lens with 8mm bore designed by Juma (1975) for the 100Kv EM6 rot- 

ation-free projector system. A 30KV 'Intercol' electron optical bench 

was used in the above experiment. In one of their best photographs the 

Spiral distortion was reduced by a factor of 4 (from 12% to 3%). 

Finally, a full-scale experiment in the EM6 is now taking place to 

examine the effect of this correction system by Mulvey and his collabor- 

ators, and then to determine the optimum arrangement for cofrecting spiral 

distortion.



2. COMPUTATIONS 

The use of a digital computer facilitates the calculation of focal 

properties and aberrations of magnetic electron lenses. Furthermore, 

it is used for numerical solution of problems when an analytical solution 

is not available. 

2.1 Numerical integration for particular rays 
  

the -velatirons: (1,55) 75 -(1556).2:() 52). (1653) 674) and: (1.76). for 

Ce 0. 2 
sec D 

me and oe respectively contain particular solutions 
tad?: sp? 

for the paraxial ray equation. The following procedure shows the 

numerical solution for any magnetic field. 

  

2.1.1. The fundamental rays Y and Y 

The solution denoted by Y (fig. 2.1) is specified by the condition 

lim Y(z) =1, lim Y'(z) =0 

Z>-00 Z-r=00 

In physical terms Y(z) is a ray incident from infinity at a hight 

equal to unity and travelling parallel to the z-axis 
  

Lens region 

aeoeee ae “Y(z) 

  Zz 

' 
' 
1 
1 

1 
1 
! 
' 
| 
! 

  

  X:(2) 4   
Fig. 2.1 _The rays Y(z), X(z) and Y(z) used in the 

computation procedure 

This Y(z) can be obtained analyticallyand then used to check the
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numerical solution for its path. The calculation of this ray was performed 

by dividing the field into a number of successive intervals, each interval 

similar to a square top field (fig. 1.4), so the equations for this part- 

icular field are applicable. 

Then a series of successive operations was performed through the 

field in which r and r' at the end of one interval are taken as the 

initial r. and r '' for the next. 
° 

The accuracy depends upon the number of intervals chosen; a hundred 

sections or more is adequate for an accuracy of one per cent. Yuasa 

ray satisfying the conditions cn = 1 and Ys = 0 at the image plane which 

7S: usually.at: infinity (figs2.1). 

The trajectory is calculated starting with the initial condition 

and then throughout the field up to the point at which ray Y intersects 

the z axis. 

2.1.2 The particular solution X(z) 
  

The ray X(z) (fig.2.1) is the solution following the boundary 

condition lim X(z) = Z-Z) Physically this means that if the lens 

Z+=00 

were removed a ray incident from field free space would intersect the 

axis at z = 25 with unit slope. 

This ray X(z) was computed by first calculating the ray Y and then 

normalising it by dividing ¥ by the value (-r') at the point r = O (i.e. 

yj).
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Z,.135.- Tnespanticular solution h(z)vand<oGz) 
  

h(z) is the ray satisfying the condition that at the object position 

h(z,) = 0, the slope hy’ (2) =], This ray (fig.2.2) is usually used for 

objective lens aberrations 

  

          

The object 

Z h(z) 
&(Z)— 

1 é 

2 (4 a 

4 

fig. 2.2 The rays h(z) and g(z) used in the computation 
procedure 

By choosing the image plane z; to be at infinity, the ray leaves the field 

parallel to the axis. The numerical integration is actually carried out 

in the reverse direction by starting with a ray which enters the field 

parallel to the z-axis; when this ray intersects the axis at the object 

plane the integration is Stopped. The initial height of the ray is 

unity, so the computed trajectory was normalised so that the slope at 

the object point Zz, was equal to unity. This was done by dividing the 

Yay trajectory by the last r' value (i.e. r' (r=0)). 

In similar way the ray g(z) can be selected to be the solution 

that is parallel to the axis at z = Zo and unit distance from it 

g(a): = 35-802.) = 0. 

2.2 The main programs 

Five main programs have been written for various purposes and some



modifications were done to extend their usefulness. The first three 

programs which were originally written by Marai (1977) were used for 

electron optical focal properties, aberrations and distortions. 

2.2.1 Program for calculating the electron optical properties 

This program contains three main parts as follows: 

(a) The first part computes the 'distance function' A(z) from the 

relation 

A(z) = B(z)/NI pers dad <1) 

where B(z) is the axial field distribution obtained from measured data 

or calculated from the known methods such as the finite element method 

(Munro, 1972) or finite integrated element method (Trowbridge et al 

LS 72s 

In the case of field models, equation (2.1) was rewritten as 

A(z) = B(z)/du, NI bea hase) 

for the convenience of the computations and to give the discretization 

of results, where d- is a constant dependent upon the field deduced from 

Ampere's theorem 

4.00 

| B.GzZ)-.d2> = Uy NI 

00 

The function A(z) is independent of the excitation NI and hence the 

program calculates it once and for all and then B(z) can easily be found 

by using one of the equations (2.1) and (2.2).
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(b) The second part of the program calculates the trajectories at any 

values of NI as explained in (2.1) by using the relation 

bh 

k = (e/8mV_,) *.NI.A(z) pe tES) 

It is necessary to remember that the unit of length in all parameters 

is the half-width when the program is run for a field model. 

(c) The final part calculates the electron optical parameters eenad Z¢ 

and fo as follows 

fesse! obj (2.4) 
(r=0) 

Zp = 2 (220) (255) 

f is given by the reciprocal of the slope of the ray entering the field 

with the condition cm 1 and at = 0 at the point where the ray leaves 

the lens field. 

This program called 'DATA BZ' uses FORTRAN IV and is listed in 

APPENDIX (10.1). 

2.2.2 Program for calculating chromatic and spherical aberration 

coefficients 

The program called 'CABERRATION', whose particular application for 

the spherical field is listed in APPENDIX (10.2), is used to calculate 

chromatic and spherical aberration coefficients. 

The first three parts are similar to those in the program 'DATA BZ! 

and the parameters B(z), B'(z), h(z) and h' are the same, There are two
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Fig. 2. 3 Flow diagram of the computer program 'CABERRATION'



more steps however, 

(d) The cumulative summation of the contributions to C, and Cc. from 

each element from equations (1.55) and (1.56) is carried out over all 

the field. 

(e) The print-out of the relevant electron-optical quantities Cus Cy; 

x 

NI/V,?, Ze and fy with two sensitive indicators for high performance 

Magnetic lenses (Mulvey and Wallington, 1973) namely 

1 
a be eG 6 C.(B,/V.)10° and fopj Bo/ Vs ) 10 

The flow diagram of this program is shown in fig.2.3. 

2.2.3 Program for the calculation of radial and spiral distortion . 
  

coefficients 

This program follows the same procedure in the previous programs 

and the calculations of rays Y, Y and X are carried out. 

The last two steps of the program are modified to calculate the 

radial and spiral distortion and to print out the coefficient a and 

Dep with the relevant coefficients for the projector lens such as f? 

NI/V c d fe? ana Oe 

Numerical results of D.. and ae give the coefficients (Liebmann, 

1952): as 

while the output in case of models is d°D 5 and d*D,. Here R is the 

radius of the lens bore and d is the half-width of the model field.
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Fig. 2.4 Flow diagram for the program 'CDISTORTION' 

 



The program 'CDISTORTION' which is used for the spherical pole 

piece model, is listed in APPENDIX (10.3), and its flow diagram in 

i224; 

2.2.4 Program for the calculation of pre-field electron-optical 

parameters 

The program 'PREFIELD' listed in APPENDIX (10.4) deals with the 

rest of the field used as objective field. So this program follows 

a similar procedure to that for calculating the aberration coefficients 

Co and Cy; but the calculation of the rays and the summation of deh C. 

and C, have been stopped at the point (Z,.). 

The objective distance (2Z,) can be found for the original field 

from an analytical expression or from the output of 'CABERRATION' when 

it is run for the original field. 

The output of this program gives the relevant electron-optical 

quantities of the pre-field such as Z ‘ 
L 

ue and NI/V_*, Also Z 
pre pre Yr F 

and the corresponding value of r are printed for checking. 

The aberration coefficients C, and Cc. for the pre-field are printed 

in the output as well. The flow diagram of 'PREFIELD' : 3s shown in 

Te 245% 

2.2.5 Program for the calculation of spiral distortion for two 
  

successive square top fields 
  

This simple program is called 'SPIRALCOREC' APPENDIX GlOs5 ein 

this case, one of the most important parameters is Den for two success- 

ive square top fields separated by a distance (L,/S), which is found
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from the relation derived in Chapter 7. 

Other useful quantities such as projector focal length (Fp) of two 

fields, magnification (M,) of first lens and final magnification (M,,) 

are calculated in this programdirectly from the equations (A5.18), (A5.9) 

and (AS.17) respectively. 

The results from this program are discussed in Chapter 4. 

2.3 Modification of previous program 
  

The programs discussed in this chapter can be used with analytical 

field distributions. They can also be used with measured or calculated 

field data. The changeover of each program from analytical to numerical 

or vice versa is done in the first part of each program. The second 

part of each program enables one to change the direction of the rays by 

changing one statement. 

2.3.1 Program for calculating chromatic change in magnification 

and rotation 

The computation of chromatic change of magnification and rotation 

for objective lenses can be carried out using the expressions (1.74) and 

Clio75) tor = and Ge respectively. 

The similar Peocedwra of 'CABBERATION' was done and the calcul- 

ation of rays h(z), X(z) and Y(z) was performed. When the same para- 

meters are calculated for the projector lens, equations (1.76) and 

Clee-7)' for c and of are used, and the numerical integration is carried 

throughout the fields as in the 'CDISTORTION' program.
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2.3.2 Programs for correcting systems 
  

To investigate the possibility of correction of spiral distortion, 

chromatic change in magnification and chromatic change in rotation, a 

system of two lenses was used. The two lenses can consist of two 

single pole lenses, two double pole lenses or a combination of a single 

pole lens and a double pole lens. 

All optical and aberration characteristics can be studied by using 

the same programs discussed before with the condition that the sum of 

the two fields of the lenses are considered as one field. This efrerts 

the calculation of the distance function only in part one of each 

program, 

2.4 Program checking 

2.4.1 Checking by comparison with analytical results 
  

Many checks were carried out to examine the accuracy of the 

programs, 

The Glaser bell-shaped field is a wellknown field distribution and 

its aberration coefficients such as Co; Cc, and D.. have been calculated | 

analytically (Hawkes, 1972). The results were subsequently used by 

Marai (1977) to test the first three programs and there is excellent 

agreement between the calculated results and thos obtained analytically. 

In particular, the value of ood for very weak lens (i.e. NI/V, 4 = 0) 

is 0.25 which is the same value obtained analytically. 

A similar check for C.. and Ch of the bell-shaped field using a 

modified program (2.3.1) was performed by the present author; this 

showed full agreement between calculated results and those found analy-
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tically by Morito (1953) and Kanaya(1955). 

The calculted results for the focal properties eS me and 2h: 

compared favourably with those calculated analytically for various 

models, such as those done by Marai (1974) for the exponential field 

in one axial direction, and by the present author for the same field 

in the other axial direction, and also for both directions in the 

spherical pole piece field. 

Glaser (1952) showed that the minimum value of the chromatic. 

aberration is (0.712d) for the exponential field; the same result 

was found by Marai numerically (1977); using the second program, 

The distortion coefficients of double pole lens computed by Marai 

(1977), when contrasted with the results by Liebmann (£952):;. give 

satisfactory agreement except for spiral distortion which showed slight 

differences (Marai and Mulvey, 1977). 

2.4.2 Checking by comparison with experimental results 
  

The first experimental check consisted of comparing the computed 

results for the aberration coefficients of iron-free coils obtained by 

Marai (1977) with thos calculated experimentally (Bassett and Mulvey, 

LOGDs) 4 

For the X-ray mini lens, whose axial field distribution follows 

spherical field model well (Christofides, 1978) there is good agreement 

between the experimental results for Ce and those found numerically for 

the spherical field model



The programs were run for many single pole lenses and the experi- 

mental results show an agreement within 10% which is reasonably within 

the experimental error. 

Juma and Alshwaikh (1978) studied one of the important lenses 

APPENDIX (10.8%). This study reflects the agreement between the 

experimental measurement and the computation for C, and f performed 

by the program. 

Juma (1975) studied the 30kV snorkel lens, 100kV snorkel lens, 

4mm bore single pole lens and 8mm bore single pole lens. His results 

confirm the agreement of the computed results with the experimental 

results.



3. MATHEMATICAL MODELS AND THEIR ELECTRON OPTICAL 

PROPERTIES 

In some of the double polepiece lens models that were 

described in Chapter l, it was found (Mulvey and Newman, 

1973) that it was very difficult to apply them to single 

polepiece lenses. Therefore, it is important to look at 

models that can give a representation of these single 

polepiece lenses and thus from these models, all the focal 

properties of magnetic lenses can be calculated. 

3.1 Models for single polepiece lenses 

In single polepiece lens (Mulvey, 1976) the axial 

magnetic field falls rapidly from a high value at the 

poleface. The main imaging field is therefore essentially 

outside the Jens structure, whilst low aberration coeffi- 

cients are preserved. Such lenses become a practical 

possibility when the lens excitation is concentrated into 

the region of the single polepiece by means of high current 

density windings. The focal properties of such lenses 

differ appreciably from those of conventional twin-pole- 

piece lenses. For example, the objective focal length 

increases slowly with increasing lens excitation and the 

spherical aberration and image distortion can be appreciably 

lower than those of conventional lenses. This is a 

consequence of the differences in the axial field distri- 

butions (Marai and Mulvey 1974). 

In the following, some fields were studied. 

3.1.1 The exponential field model 
  

The axial field distribution for single polepiece lens



can be represented as a first approximation by the exponen- 

tial field model of Glaser (1952) which Marai (1977) did 

a study on the field for the ray incident at the sloping 

edge of the field. Some characteristics were found not too 

far to those of some experimental lenses. This field has 

analytical solution for the two cases at the incident rays. 

These two solutions can be found from equation (1.16) which 

has two linearly independent solutions makes and Y, (8) 

(McLachlan, 1955), and namely, Bessel functions of zero 

order of the first and second kind respectively. In 

particular, YX, (8) is Neumann's Bessel function of the second 

kind and zero order. Hence 

r/d AJ, (&) + BY, (&) Pays fea) 

xi /d AJ. (é) + BY’ () a teats Lane) 

where dashes indicate first derivatives of the correspondirm 

Bessel functions. 

The study of this field when the ray incident at the 

sloping edge is summarised in Chapter 1. The other 

solution which gives the analytical results can be used to 

check the numerical solution. This case is discussed in 

detail as follows: 

A particular solution for a ray incident on the steep edge 
  

of the field 

Suppose the initial conditions are ro 1 and ry =O 

at z = 0, figure (1.7), then both equations (3.1) and (3.2) 

can be written for A and B as follows: 

A = ~¥6 7K 696 + Yj% 0) ie wk A eed 

B= df kato, = YS%0) seas L345 OT=
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Using Ampere's law B(z)dZ = LONI, one obtains 

L 
k = 0.1287 NI/V_* owe a ee) 

The objective focal distance (Z5) is found by putting 

i.e. J (8) 7X, (8) eB et tae \a.0) 

The slope r'/d of the ray at a distance z from the origin 

is given by 

r'/a = M2.&[ agi(&) + BY1(5) ]iceseeeeee (33.7) 

5 For an excitation parameter NI/V less than 13, the 

objective and projector focal lengths for the exponential 

field are the same and equal to the reciprocal of the 

slope of the ray at z = 0. It is also clear that the 

objective focal length fon3/4 is constant for higher 

values of the excitation parameter, and takes the value 

Bf = l/ines Saget) + By, ( E43. 8 
obj 

Figure (3.1) shows z,/d and Fone? corresponding to different 

5 
values of the excitation parameter NI/V,. ° 

‘ T a t 
  

Fig. (3.1) The parameters 

ce sand 2 “as ae Lunction 
obj oO 

of excitation parameter 

NI/V,7 for the exponen- 

tial field model for the 

ray incident at the steep 

  

edge. 
  r i NI/V       

These results have good agreement with those found by 

numerical solution using the program 'CABERRATION'. This 

agreement confirms that the numerical method is accurate
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for use with models that do not have an analytical 

solution. 

The exponential field model exhibits certain properties 

that differ from those from experimentally measured field 

distributions. Some of these characteristics include 

chromatic aberration which is found experimentally to 

increase as the excitation parameter NI/v" is increased 

in the range NI/v? > 13. However, for the exponential 

field distribution, the chromatic and spherical aberration 

coefficients remain constant in this region. 

A disadvantage of the exponential field is the difficuty 

of correlating this model with an actual polepiece structure, 

with the object of obtaining an optimum design. For this 

reason, therefore, it seemed desirable to search for a’ more 

realistic model and to investigate the effect of the pole- 

piece (snout) shape on the field distribution. 

3.1.2 An iron cylinder in a uniform magnetic field 

Some useful experiments were done in the electron-optics 

laboratory in this department with the co-operation of 

Ridha (1977) to find the field distribution produced by a 

magnetised iron cylinder in a uniform field. For the 

measurement of axial field distribution a Hall-probe 

gaussmeter was used. 

To get meaningful results, three solenoids were used, 

plus a Helmholtz coil. The solenoids had different 

dimensions and numbers of turns. The Helmholtz coil con- 

sisted of two identical coils 22cm in diameter and of 29 

turns each. The spacing of the coils was llem. and the
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wire diameter 0.O04cm. A Eail-probe gaussmeter was used 

to measure the axial field distribution. The fields 

produced by each of these coils were measured before 

placing the iron cylinders in them. 

Three cylinders, with different dimensions, were used. 

All were made from the same material (soft iron). Each 

cylinder was placed in each of the fields produced by the 

four coils. Using the gaussmeter, the fields were measured 

with the presence of the cylinders. Later, the field due to the 

coils alone was subtracted from the latter readings in 

order to obtain the field due to the cylinders on their own. 

The results obtained approximately fitted the bell-shaped 

model shown in figure (3.2). 

  

  

eer 
8 mae db wa The asxval field distribution 

due to cylinder 1 a 

we x KK The axial field distribution 
due: to cylinder 2 

6) er? ee e 7 

The axial field distribution 

due to cylinder 3 

A The Bell-shaped model es 

a 

ee oe 

| 7 [Ol 
x Mceeemnscssealsensen       

  

  

Fig. (3.2) The Bell-shaped model compared with 

experimental points due to magnetized 

cylinders in the uniform field.
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Unfortunately, it is difficult to find an analytical 

solution for this case. So it seemed useful to examine 

the magnetic field due to uniformly magnetized solids which 

have analytical expression such as the ellipsoid. 

'3,1,.3 ' An iron ellipsoid in a uniform magnetic field 

If there is a uniform magnetic field (B and 
original) 

an ellipsoid with semi-axis a, b and c is placed inside 

this, it is induced with a uniform field too (Webster, 

1897). The magnetic field (B.) inside the ellipsoid with 

c = b depends upon the factor N , where N which is called 

the magnetization factor by Professor H. duBois (Ewing, 

189)5)) takes: theavalues in .Gb.40) md:(1042)% 

The ellipsoid magnification (i.e. B,/8 ) ean 
original 

be: found from (1.44) as 

B_/B . = 4nufiu-1) NPT) Py. (3,9) original 

Figure (3.3) shows this relation for high permeability 

and it is clear that the value BL/8 in the case of 
original 

the sphere is three, since N takes the value 47/3. This is 

discussed later. 
  

  

  

    

Figure (3.3) Magnetic field ratio (B,/B OLea 3 ) 
original’ 

uniformly magnetized ellipsoid as a function of N



- 65 - 

On the other hand, figure (3.4) shows the magnification 

parameter BL /8 as a function of the ratio a/b where 
original 

a ify the direction of the original field. To test this 

fact experimentally, few ellipsoids with various values of 

a/b were used. The ellipsoid magnification of these ellip- 

soids are measured by using the same procedure described in 

(§ 2.2.2) and the experimental points are shown as crosses 

in figure (3.4) 

  T T Ba ge 
t B (z) with ellipsoid 
  

m= B (z) without ellipsoid    

  

   
    
   

eo 
ratio of a magnetized eo 

Fig.(3.4) The magnetic field 

ellipsoid as a function of 

C= 2 4@ - 

Theoretical curve 

+ + + Experimental points _ 

24 ee 
Equations: (1.38) and (1.39) are very useful to find 

the axis-ratio (a/b) ie 

      

analytically the magnetic field due to the uniformly magne- 

tized ellipsoid. 

By assuming uw is very large, the field B(Z) is in 

Z-direction and Sonya the original uniform field but 

leaving the magnetization in the iron, the external field 

along the Z-axis due to the ellipsoid itself follows 

approximately the relationship 

B(Z) = B, (ab? /Z°*) eo a ie
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This implies that Z y a. To make this equation applicable 

at Z >O, it can be written as 

B(Z) = Bo/I 142/ (ab? }/3] ° pia 8 0:9 5's mie 

The half-width (d) of this field distribution is 

given by 

1/5 
d = 0.26 (ab?) isi Ska big bove So hk 

For convenience, equation 3.10b ts written as 

B(A)) mae (8.847) 2 /5[ 2849 + 2/ab?, Ss ou: 3, 1D 

Uniformly magnetized sphere is a special case of the 

ellipsoid with a=b=c, then the equation (3.11) takes the 

form 

d = 0.26a @eeneewweneeoe eee eeeee S13 

and (3.12) is applicable for the sphere. This expression is 

called spherical field model. Moreover, it is important 

to remember that the maximum value of the field (B,) is 

located at the end of magnetized body. 

|The experimental ‘investigation 

Experimental investigation of the shape of the axial 

field distribution due toa magnetized ellipsoid was carried 

out with the co-operation of Ridha (1977) in our laboratory. 

In these experiments the ellipsoids were used with dimensions 

b=c and a in the magnetization direction. 

Two ellipsoids with ratios a/b = 3/1.25 and 1,.25/3 were 

used. Both of them gave a magnification (1.e..:the*ratio of 

the field with iron in place of that with no iron in place)



OW) eae 

OF 5.8ne-242 respectively which is in agreement with the 

theoretical result in Figure (3.4). On the other hand the 

field distribution due to a magnetized ellipsoid agrees very 

well with the spherical Single-pole field (3.12) as shown 

ina tgure(3,3)., 

  

fizyBo 
le a 

, 444 & Axial field distribution 
due to ellipsoid No. 1. 

+ ++ 4 Axial field distribution + 
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Spherical field model 

    
   

8 

      

    

    Z/q 

Fig. (3.5) The axial field distribution of the 

spherical model compared with the 

experimentally measured field due to 

a uniformly magnetized ellipsoid. 

The sphere is, of course, a particular case of the 

ellipsoid; it is easier to study theoretically and 

easier to manufacture. It was therefore considered to 

be more profitable to study the uniformly magnetized 

iron sphere. 
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3.2 The Spherical pole-piece model 

3.2.1 Uniformly magnetized iron sphere 

RAMZ) 

d=0-760. 
Fig. (3.6) The spherical B 

field due to uniformly 

magnetized hemisphere 
— 

  
By assuming that up is very large and that the field B(z) 

1s in tue 2edirection. (i.e, Af 6= 0,.¢ uz) ,..then the 

magnetic field inside the sphere (B, ) according to equation 

(1.45) is 

Bin = 782/oz = 3/28, 0.6" 0:0 66 OR eae Site (3°. 14) 

and the field outside the sphere CB ste? according to 

equation (1.46) is 

a 3753 Bout = BA/2 He B, fa Peed vce WWs Aes CAO T ER) 

Subtracting the original uniform field (BO/2) the magnetized 

iron sphere follows the relationship 

B(z) = B, (a/z) * Moe 6 atatecs a 0 sieves olets 4ae mi GeO) 

Notice that z is measured from the centre of the sphere 

in the direction of magnetization and By is the uniform flux
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density in the sphere in the same direction. The equation 

is a special case from the general form (3.10). 

The spherical single-pole piece field figure (3.6) 

refers, of course, to the external flux density so that 

z/a is never less than unity. The axial flux density in 

the iron sphere itself is constant as shown in figure 

(3.6). For convenience the spherical pole piece model 

is sometimes simply called the 'spherical field' in this 

thesis. The equation 3.16 can be written as 

B(z) = B,/[1+z/a] ° See OE ei ye SEAT 

The half width (d) of this distribution is given by 

d=0.26a as in (3.13), then (3.17) rewritten as 

OB AS aa 
B(z) = e606 69:0 ¢ 28 0 © 8.6: 3-6 31S 

[3.847 + z/a]? 

  

' 3.2.2 Investigation of the spherical pole-piece model | 

The investigation of the practical value of the spherical 

model was done experimentally and by using results available 

in the literature which were thought to be useful. A 

series of experiments was carried out to study the fields 

produced by iron spheres placed in uniform magnetic fields. 

The method used is described in (83.1.2). The fields due 

to each of four coils previously described were used in 

turn to magnetize each of three iron spheres whose 

diameters were 1.3, 1.5 and 3.0cm respectively. After 

the usual subtraction of the fields of the coils, the 

results obtained show that the fields produced by uniformly 

magnetized spheres fit exactly the spherical model.
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Although the results presented in this work show 

the significance of spherical snouts, a search of the 

literature did not reveal a lot of work on this important 

shape. The work of Munro and Wells (1976) by using 

Munro's method (1972), the only one that the author is 

aware of being of value using the results of the above two 

authors and taking into account the effects due to the 

coils and plates, the resulting field was in reasonable 

agreement with the spherical model described in equation 

(3.18). Figure (3.7) shows the spherical field distri- 

bution found by Munro and Wells (1976) compared with the 

spherical field model. 

] | | | 
B(z) Tesla 

at 1000 At. 

  

    

  

  

Field distribution of 

snorkel lens. 

(Munro and Wells, 1976) () le 

Se eo, ne eee Spherical field ° 

Zoom 

~ 046 0420-08 0.94 
Fig. (3.7) The axial magnetic field distribution due 

    
to snorkel lens, Munro and Wells (1976) with 

spherical tip, compared with spherical field.



  

Figs -G378) -Cytinder with 

spherical end cap 

  

  

  

Another experimental investigation was done for a 

cylinder with spherical end cap (fig. 3.8). 
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Fig. (3.9) The axial field distribution of a magnetized . 

cylinder with a spherical end cap. 

The axial field distribution due to this shape was 

measured and plotted in Figure (3.9). It is clear that 

this field follows the spherical single-pole field as 

does the field due to the ellipsoid.



ead een 

3.2.3 The general ‘solution of the spherical field model 

The paraxial ray equation (1.1) for this field is 

given by 

dt 
gt si ave (Bo Ae he. rn. 64. (3,18) 

The general solution of this equation (Appendix 10.6) is 

r/a =(z/a)” AJ, (u) + BI, (ud | tore (3 220) 

where J, (u) and J 1 (u) are Bessel functions of order one 4 “4 

quarter and these solutions are linearly independent (or 

distinct) and constitute a fundamental system. A and B 

are arbitrary constants. 

Putting u =ka*/22? 2.0.8 O60. 6:8) 6 6.8 tos oe 

by where k = (e/8m) *. (2u,) (NI/V,.*) = 0.3725 (NI/v,*) 
The slope r' may be written as 

  

i. , (0) ]+a(z/ay ¥| as, (u hae ae 

' aka! + BIL, (u) ( Be | pe {9,22) 

By using the rule v. = +[3,-1-3,44), where v any real 

number, equation (3.22) reduces to 

' —_ 
a 

. 
r= “Tlz7ay [> (u) TF ak 4 BJ ayeR, bee (u) 

Ady (OU) +BI_¢ (u) “Bay (u)) . . (3.23) 
3.2.4: Particular rays _in the spherical field 

' The electron optical characteristics of certain rays 

under different boundary conditions are determined below:
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(a) Consider a ray starting at z = © with unit height 

r/a = 1 and zero slope (r'=0). It may be remarked that as 

z+ 0O, J_1(z) = ©, then the solution of the paraxial ray 
4 

equation under these boundary conditions is given by 

Alshwaikh and Mulvey (1977) (Appendix 10.7) as 

r/fa = (2/a) 7a, (u) es ase ck ie (3528) 

L 

Skint A = 2*K*T5/4 no ee 5 5) 

where I is a-Gamma function. Hence 

A = 0.164/ (NI/V,,*) 4 Ses kin eee (3.26) 

Substitution of (3.21) and (3.25) into (3.24) gives 

the following equations 

r/a = Ole receg adi af SAS inzyvy] (3.27) 
(NTZV 54) ah. Bee 

It should again be noted that z > 3.847d. If we make 

r/fd = 1at2z22=© we obtain 

ae a ee 2.758 ere (NT /V 2). selene) 
(NI/V,. :7 Z* far 

The slope r'(z) of the ray at a distance (z) is given 

  

    

by 

BT, ‘3 . 0.186 X, 
r' = : -:. (NI/V Si J (NI/V | cts vee) 

(z/a) /* 574 22 /a? r 

L775 a 2 15 + | 
and r' = : . (NI/V ees oe [ 8 (NI/V,, | (37.30) 

(z/a) 27? S74t gat
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Note that r' is dimensionless and "57, is the Bessel 

function of order 5/4. In the particular case where z =a 

(measured from sphere centre), an important parameter in 

electron optics arises, namely 

Beg 
' is 2) 4 5 ole ee. 0 Cli (NE /Ve,") 9). Tg, [0.286 (NI/V, See 

(b) The ray for which r/a a... ang: x" = 0. 
a Pe (2=z.) 

By substituting these conditions into equations (3.27) 

and (3.29) and using U, = K/R (z/a¥ ] wwe obtain 

0 = Aggy (0) + BaJ_3 (U,) Reae Crear ts es (a,0¢! 

ela). (Re de ds (Ve) -Gey el oe. al ea) 
c/a : obi hc 5/4 ¢ oO “S74 c 

= J, (Ue)] awe fins son (3.383) 

The solution is 

r/a=(z_/a)* [A J, (U.)4B.5_,(U,) ] (3.34) . Ad, (U,) #BQJ_y (Uy on 8 eh ee ie ; 

and r'= [a/2(z,/a) 7] [Ady (U,) +B J_y (UI) -K/ (2,/a) 77. 

AJ (U,) -AJ 
Q’-3 

5/4, Ue) Bos, Ue) “Bory Ue] Pei lee (3,35) 

where Aj=(z,/a)°/ * Ty (Wg) /& [-I_y OQ)I_y Wp) 
“4 

+ ie oy + Ty We) Ig 7 (Ug) Ty We) Ty (UQ)] ces (3936)
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9/5 
B =-(z./a) & 4 f_ “ (U,) /K b Ty (0) I me (U,) +d (UL)o 4 p

e
 -% 

+ TCH) Tgy, (Og) Fy 1) 3, 0) (3. 3) 

(c) Consider the special case in which the ray defined in 

(hb): is. brought to a focus at the tip of the sphere, i.e. 

r/a (2/a=1) 72 and L tedlest) oes The. solution for r and x! 

as follows 

r/a=A1J, (K/2)+Bid_, (K/2) eh¥le sel cdkecdn areveweus, fue e cine (3238) 
4 

r'=a/2 | Ai Jy (K/2) +BiT_, (K/2) | -K [A194 (6/2) Ards (k/2), 

#B1T_g 7 (R/2) Bid, (K/2)| seve (3439) 

See oy el Tt Be a 

    

  

where Ai = 

Me tac) ane) ye) Oh ( 2) oe 

See e ee sessoee (K/2)+J_, (K/2) 55, (K/2) 
4 4 

vei aeeeU) 

J_s (K/2) -Jg , (K/2) - (1/2K) J, (K/2) 
Tee ses ae ae 4: a re 

Dag ang 15/2) a SBP Std RAY gS 2)0_ Sy ART 8) 

~cee eet tN, (K/2) de (K/2): wees e (3-41) 

3.3 ‘Focal Properties of the Spherical Pole-Piece Field 
  

3.3.1. The properties when the ray incident on the sloping 
part of the spherical field 

The rays described by the equation (3.28) intersect 

the axis at points distance (z) from the origin, (i.e, at 

the surface of magnetized sphere) where Zn=2U/k, where UL,
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is the value at which J,(n) = 0. 
4 

From tables (Jahnke et al, 1960) these values . mean 

that there is only one focus at distance Zany from the origin 

given by ; 

ae 
Z./d = (NI/V,. ) -3.847 coe er eee anene ($42) 

or Zp/a = 0.26ANI/V,.*) * el ror peer ae re (343) 

Equations (3.42) and (3.43) are applicable only when 
L 

NI/V,.* 315. The second term in both equations should be 

omitted when the origin is taken at the centre of the 

sphere, 

The projector focal length (f,) and objective length 

: 
s 2 

4 (F ob3) in the range of excitation parameters NI/V,. 14 

are the same and can be deduced from the relation eget ir = 

1/r'. Then from the last equation it can be found that: 

t/a = 6.29 (0NI/V")8/I5 p.186(nt/v, 7... 

cecee (3.44) 

or £p/an1.63 (NIV, ") 8/35, [o.186 (wx/v,*)] veus > 3185) 

The calculated values of f/4 over a wide range of 

excitation parameter are therefore straightforward. In 

like manner we find that (Mclachlan, 1955) 

L is 7) Barres ake, ee Se TU fhe so ck (3.46) 2u 

The corresponding values of 2a (u) are calculated 
4



eo po 

and both J, (u) and J_,(u) are taken directly from tables 
4 

-—3 a 

of fractional order Bessel function (N.A.M.L., 1948). To 

find the values of r' at the point z(F), the equation 

(3.30) becomes 

r'= 17,93 (NI/V,7) "3g, (31)" ss pak sae eet a ed 
4 

assuming z/a = (K/2U1) 2 bis lele ster chess Case Cao 

The objective focal length (£645) at the excitation 

* parameter NI/V,. 314 (i.e. positive Z) is derived from 

‘ i = ' = the equation (3.47) by putting fob $/x sand Oey 

0.48 then 

ae 5,5 £4p4/4 = 0.447 (NI/V, Wows 6 is eke eee ee 13.49) 

0.116 (NI/V,.*) Cie eet eee £3680) fop5/4 

It is useful to remember at this stage that the 2a LOR 

5 
excitation parameter NI/V~ <15 can be calculated by the 

relation 

ape tft) = Fd, eeoeeeoeeeeeeeeeeeeeee (3-351) 

The variation of £,/a, £op3/4 and 2/4 as a function 

L 
of the excitation parameter NI/V,.’ are shown in figure 

(3430) .
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Fig. (3.10) The focal properties of the spherical 

field model 

This curve covers the first two zones of operation and 

shows that fo and f obi are equal at the excitation 

parameters <14,. In the first zone and the minimum focal 

length in this zone equals 1.693d (0.4a) and occurs at 

a NI/V,* = 14. 

At an excitation parameter greater than 14, the 

objective focal length (£555) is directly proportional 

to (NI/v,.7) 4. Figure (3.10) also shows that the second 

minimum projector focal length has the value 1.428d 

which occurs at NI/V,* = 31. From the analytical 

aaiublon it is clear that the third minimum t occurs 

at excitation parameter 48 with avalue equal to 1.288d.
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_3.3.2 Focal properties of the spherical field for the 
Tay incident on the steep slope of the field 

The same electron-optical properties were studied for 

the case when the rays are incident on the steep edge of 

the single-pole field. The investigation was done by using 

a numerical method which is described in Chapter 2. A 

check for some points was made using the analytical 

solution described in (§3.2.3). The numerical method is 

more efficient than the analytical method since in the latter 

these are chains of mathematical operations containing 

higher functions, each of which can introduce an san is 

the calculations. 

The numerical method for calculating tO is listed in 

the first part of the program (CDIST@RTIGN) while f obi and 

Zin calculations are listed in the first part of the program 

(CABERRATIZN). To check the accuracy of these two programs 

they were used for the positive direction, and the results 

show excellent agreement with the analytical solution, as 

shown in table (3.1). 

  

  

“Analytical Numerical 
Focal parameters methods methods 

Minimum f. at first two 4-690, 1,430)’ 1.69da,1.46d 
P zones 

Minimum * op4/4 1.69d 1.090 
i 

fo at NT/V,. = 20 34:78 3.68 

ee Sony at NI/V_ = 20 299 2.001 

fet NTSV ies 10 2.09 2.09 p ¥ 

7. f obj at NI/V,. = 10 2.09 2.09         
  

Table 3.
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One of the important properties of the spherical 

field is that the lens becomes a focal (telescopic ray 

path) at an excitation parameter 22.36, 39.5 and 56.5 

respectively. 

3.4 Application of the Magnetized Sphere Model 

The magnetized sphere model is closer than any other 

model to the field distribution in single pole piece 

lenses. However, in addition to the field due to the 

snout, there is another field produced by the coils them- 

selves, and the total field of the lens is the summation 

of these two fields. The investigation of several lenses 

shows that there is hardly any effect from the coils, and 

some total fields follow the spherical model, but in this 

case the half-width is related to dimensions of the 

snout and coil. In particular the thin coils did not have 

an important effect on the field shape, since it also 

followed the spherical models. Figure (3.11) shows the 

spherical field compared with the field of iron-free coil 

coil at the case D /D. = 19 calculated by Biot-Savart law. 

  ra T T T T | 

B(z)/B, =    
Fig. (3.11) The axial ----- Spherical field model 

Field distribution due 7 

to acoil,D /#D =19 

  

magnetic field distri- 

bution of an iron-free 0.6 a 
\ 

\ 
coil of outer to inner err ay 

r 0.4 d = 3.5cm 7 
diameter D /D =19 

compared with that of - 0.2 ioe Safe     the spherical field model. 1 2



3.4.1 Lenses with a conical-shaped snout 

To investigate the field caused by a conical-shaped 

Snout, two lenses constructed by Mulvey (figures (3.12) 

and (3.13))with 2cm snout and lmm hole, their field 

distributions were calculated by the Rutherford Laboratory 

using the integral form of the finite element method 

(Trowbridge et al, 1972). 

Fig.(3.12) Schematic diagram 

of a single pole lens with 

conical snout (AR1) AR! 2 

cm.» 

\ 

  

  (a) Symmetrical half 

  
  

  

          
    

  

of the lens showing finite V2 oe 

elements. YY sans en % 

(b) Complete lens with 4 

equivalent spherical CS : a 

polepiece (dotted line) Zep hia 

(equivalent radius VAVAVAVAN   
        

a = 3.1cm) CE (b) 
            

This method divides the iron circuits of the lens and 

the exciting coil into small elements, the number and shape 

of which are chosen according to the accuracy required. The 

magnetic field from the coil is calculated by the Biot- 

Savart law. The magnetic flux in each element is calculated 

by an integral method taking into account the magnetic 

field of the coil and the magnetising effect of the other
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iron elements. The total field at any point is the sum 

of the field produced by the coil and that produced by 

the iron circuit. For convenience these two lenses are 

denoted by AR1 and AR2. 

Fig.(3.13) Schematic cross- 
  

    

            

section of lens AR2 with 2. CM» AS 
s x 

the equivalent spherical y . \ 

polepiece (dotted line) =) 
      
  

(equivalent radius a=1.9cm) 

Figure (3.14) shows the field distributions for AR1 

(crosses) and AR2 (squares) compared with spherical pole- 

piece field distribution which has a slope found to be a 

close on three on log-log paper. It can be seen that 

lenses AR1 and AR2 are a close fit to this distribution. 

  

  

7 Val T v v eee eT ¥ Fs, if eer teen = 

ie eee SpNenical filelo model a 
f E Field distribution a 

t lei of Lens ARL 
in ++4-+ Field distribution 4 
bene of Lens AR2 Ge 
— a . 

a 
; 

03 | - ss 
¢ «o 

ee = ty fa 
rm -O2 ta sf ; @ 

4a 

.O1 ‘p2 | 4 eg ee oe Bie ee kd     
Fig. (3.14) The magnetic field distributions for lens 

AR1 (crosses) and lens AR2 (squares) compared 

with that of spherical field model on log-log 

paper.
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Using the Biot-Savart law the program BZAXIAL 

(Chapter 2)was used to calculate the field for the two 

lenses and to subtract from it, the field due to the coils 

and back Sia kes ene This should give the magnetic 

field due to the magnetized snouts only. 

These results are plotted in figures (3.15) and (3.16) 

and the important conclusion drawn is that the magnetic 

field due to conical iron snouts do not deviate too much 

from the spherical pole-piece model. 

  

  

  

  

    
  

  

    

  

   

      

    

    

   

  

  
     
  

  

: : "ARI r r 
\ BO) . _ B(z) AR2 

\ \ | 
«| ~ Bis 

N 

1.0.8 5; < J 

\----The effect 

of the coil ----The effect 
of the coil 

-0.6 - -| 

The total field 
The total field 

O; 

mete The effect ” - 
of the iron The effect 

ot. of the iron 

0.2 - 

an : eee 

fe eae jee ee           

  

pic, (3.25) Pig. .(4426) 

Fig. (3<15). The total axial magnetic field distribution of 

lens ARI and the contribution of the exciting coil to the 

total field. 

Fig. (3.16): The total. axial magnetic field distribution of 

lens AR2 and the contribution of the exciting coil to the 

total field;
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Both two spherical single pole models are plotted in 

figures (3.15) and (3.16) and can be produced by replacing 

the existing pole pieces by equivalent spheres. Dimen- 

Sions of equivalent spheres are shown in figures (3.12) and 

(Fe ead x 

The electron-optical characteristics and aberration 

coefficients for two possible directions of the ray are 

shown in figure (3.17) for AR1 while figure (3.18) shows 

similar characteristics for the other lens. 

Prom figure. (3,47). it isttound that f 5 (min) is 

equal to 1.8mm and occurs at an excitation parameter NI/V,." 

= 15, and from other figure F is equal to 1.2mm. p (min) 

Both and f are the same up to the minimum projector bj 
focal length position and than f obj slowly decreases for 

1 
excitations NI/V_* higher than 15 in AR1 and 16 in AR2. 
  

  

  

    

  

  

T T t T 

= ARI 
PLO 

Pe 8 4 

40 a 

+ 4 4 

tobi 
hcg a y ps 4 

2 j Lea =a 
  

Fig. (3.17) Electron focal properties and aberration 

coefficients for lens ARl.



  

  

  

  

          
Fig. (3.18) Electron focal properties and aberration 

coefficients for lens AR2. 

3.4.2 An experimental single pole-piece lens 

Fig. (3.19A) shows the construction and the field 

distribution of an 8mm bore minilens used for the spiral 

distortion correction system in an EM6 electron microscope. 

“The field was measured by Elkamali (1978) using a hall 

probe Gaussmeter, and is found to fit well into spherical 

pole-piece model. 

The great advantage of this lens is that its wide bore 

makes it possible for a Hall probe Gaussmeter to be used to 

measure the field distribution. It was not possible to do 

this in other lenses because of the very narrow bore
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of those lenses. Previous investigators do not seem to 

have been interested in the field in this part of the lens. 

The significance of this field is that it gives an idea of 

the shape and magnitude of the field on the negative part 

of the z-axis. There is no doubt that this result has its 

practical value and interpretation, the reason being that 

when a bore is drilled in a spherical snout this negative 

part of the field is bound to exist. 

This lens is one of many examples which show that 

single-pole lenses even if used without exact spherical 

snouts can be important because of their approach to the 

spherical model. 

3.4.3: Objective lenses for high resolution 

A practical ultrahigh resolution lens (UHP) fig. (3.20a) 

was developed by K. Shirota et al (1977) with aberration 

constants (i.e. c. and Cy) better than those of conventional 

lenses. The reduction of aberration was ‘done by decreasing 

the half width value of the field distribution and 

increasing the peak value. The first effect was achieved 

by reducing pole-piece dimensions. 

It is worth looking at the field distribution of this 

lens since its lower part seems to be conical. When the 

image rotation method was used for this purpose, it was 

found that the field produced by the lower half exactly 

fitted the spherical model figure (3.20b). We can>thus 

suggest the use of spherical pole-pieces in electron 

microscopes fitted with double-pole lens (UHP) like JCM- 

100C and 100CX. Values of Cy = },05mm: and o = O. 7mm



  

  

B(z) 
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T3200 Gauss 

    
     

single pole Lens 
with 8mm bore 

2400, 

te ee 
~ Spherical field 

  
  

  

  

  
  

  

  

      

  

  

  

      
          
  

  

Fig. (3.19) (a) Field distribution and (b) Construction 

of an experimental corrector single pole- 

piece lens with an 8mm bore 
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which are found experimentally can be achieved by 

spherical pole piece lens with a radius of approximately 

4mm. 

  

  

  

Px
. L 

  
  

            

  

        

  

Ze 
j 

      

  

Fig. (3.20) (a) Schematic diagram of an asymmetrial 

objective lens (Shirota et al, 1977) showing 

(1) Anti-contamination trap (2) Upper pole- 

piece (3) Lower polepiece 

(b) The axial field distribution measured 

by image rotation. (--- --gpherical field 
model ) 

3.4.4) Mini-x-ray single polepiece lens 

An experimental lens that had been made in this 

department was slightly modified to meet the necessary 

requirements for using it for an A=Lay source. The 

general cross-section is shown schematically in figure 

(3.22). “This lens field. distribution was the best-check
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for the validity of spherical model because the magnetic 

field distribution of this lens figure (3.23) was 

measured not only by Hall probe Gaussmeter and image 

rotation method (Christofides, 1978) but by the finite 

element method (Ferrier, 1978) as well. 

Figure (3.24) shows some focal properties, and 

experimental points for object plane which are in good 

agreement with theoretical results of spherical model, 

noticing that this lens was operated with non-preferred 

direction. 

  

  

      
Fig. (3.22) Schematic cross-section of X-ray minilens. 

(Christofides, 1978)showing (1) Copper 

wire coil (119 turns) (2) Snout (3) Specimen 

holder (4) Aperture.



  

  

  

  

41.0 ‘ - if T 

i. ———— Magnetic field dist. of 4 
x-ray minilens 

| Spherical model 

          

  

  

Pig. (3.23). “THe axial field diserimution a. 
mini X-ray lens compared with 
  

  

        

  

     
    

  

    

      

     

    

Fig. 

i ] T T T T t T 
mm 

re 20 Spherical field i 

eee x-ray minilens 

rete +++ +Experimental a 

points of Zo 
ib] 

( Christofides, * 

1978) 

a 

taaariae fi 

4 

J l 4 J rl 4 J 1 

(3.24) The focal properties and experimental points 

of object plane for mini X-ray lens



  

3.4.5) Electron probe analysis superconducting lens 

Another important example of asymmetric lens is the 

one designed by Dietrich et al (1977), in which the stray- 

field above the coil is responsible for the electron 

optical effect. A schematic diagram of the lens was shown 

in figure (3.25) while figure (3.26) shows its field 

distribution compared with the spherical field. 
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Fig (3.2 5) . Shielding lens for microprobe analysis | deflection systems for scanning mode; 2 stigmator; 3 detec- 

tor for Auger electrons; 4 detector for secondary electrons; 5 detector for back scattered electrons, 6 Silidetector for energy dis- 

persive Y-ray analysis; 7 specimen holder Gocation for scanning mode); 8 further magnifying lenses; 9 detector for scattered elec- 

trons; 10 superconducting shielding; 11 vacuum chamber, 12 electron energy loss spectrometer, a distance between edge of shicld- 

ing cylinder and zero position on z axis, defined by maximum induction Bg; 21,22 abscissac tor first and second crossover at 150 

kV. 

Fig. (3.26) Comparison of the axial field distribution 

of the superconducting lens of Dietrich et 

al (1977) and that of the spherical field.
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‘It was noticed that the spherical field fits a part 

of this superconducting lens field, because the other 

part of the lens field is influenced by the presence 

of the shielding cylinder. The examination of this lens 

gives an idea of the wide range of applications of 

spherical lens; applications in probe analysis is certainly 

one of them. Finally, the results obtained from many 

lenses show that the spherical model appears to be the 

most appropriate model available for describing the focal 

properties for single pole lenses. 

3.5 Peak Position in Single-Pole Lenses 
  

One of the most important difficulties in theoretical 

studies for single pole lenses is that of determining the 

position of the peak axial field. This problem does not 

arise in symmetrical fields. It is, however, a serious one 

in asymmetric fields. 

Liebmann (1955) found a relation between the position 

of maximum field with respect of lens bore ( 2 /R2) and 

the bore ratio (Ri1/R2). The present author examined the 

relation between the position of the peak with respect 

to the snout surface (+z) and the half width of the nega-. 

tive part of the asymmetric field distribution (d2).



  

      
  

Fig. (3.27) The relationship between the relative peak 

position (z/4) and the field asymmetrical 

ratio d2/d. 

The result shows that a similar relation can be 

obtained using known field distributions for recently 

developed single pole lenses designed by various researchers 

in this laboratory. Those included various single pole 

lenses with different holes whose field distribution 

measured by Juma (1975). 

Figure (3.27) was plotted for z_/a versus d,/d, where 

d is the original half-width. This curve can be used to 

determine the nagative part of the field distribution 

when experimental techniques are unavailable for that 

purpose. One of the useful applications of this method 

is that used by Juma and Alshwaikh (1979) for experimental 

single pole lenses.



4. MAGNETIC LENS ABERRATIONS 

4.1 Methods of comparison between the magnetic lenses 

The quality factor (Q) was introduced in Chapter 1, 

Equation (1.61) relates this factor to the distortion 

coefficient (D). However, on inspection, it becomes 

Clear that this equation gives values for Q which do not 

have physical meanings. Thus when the distortion coeffi- 

cient is negative, the quality factor should have a nega- 

tive value. This does not always happen as the sign of 

f ob5 may make the sign of Q opposite to that of (Do. TO 

get rid of this ambiguity, a further rearrangement of 

equation (1.61) was necessary. The new modified equation 

can be written as 

Q = (sign of D) [e211] tae 4.1 

This equation is efficient particularly in computation 

procedures. 

an {452) f was introduced under the square root sign 

to become Je so as to make it always positive.Furthermore, 

the square root of the absolute value of D is taken for the 

same reason. To cater for the sign of D, we used (sign of 

D) outside the square root. 

The equation 4.1 proposed to 

Q's of £. /| | | * Benes wear She 
Ge pit 

In 4.2 the same idea was used for and D..° ‘The 

difference between (4.2) and (4.1) is that in the latter, 

modulus D was placed in the denominator and the square
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root multiplied by D. This multiplication introduces D 

with its original sign. Thus in each case, Q takes the 

same sign as D, 

One of the best examples is that for radial distortion, 

when the quality factor is positive the radial distortion 

is barrel while the n@gative means the pincushion distor- 

tion. 

For most mathematical models, in actual fact, the 

parameters are calculated in the form, Co/d, C/d, £/4, 

Z/d and f ob9Zo° It is thus necessary to calculate 

(Bd/v,.7) in order to deduce the above sensitive indicators. 

The parameter (Bgd) can be found from the relation 

Byd = d, UNI abr 8 e606 o0 ete (4.3) 

where a, depends on the type of the field in question. 

If the Kanaya parameter (m,) is used as an indicator of 

the type of field, then d¢ is related to Mp as ince. (3012) 

  

y 7 qT q s § YT 

d : : n Fig.(4.1) The half-width | max. (1.763) | 
m 2.0 pee 2b 

; ‘ imi Obl 
function (d_) as a function f 

_— ~ 

of the parameter (m,) 

= ve > aa    



a ei 

It is worth noting that according to Kanaya's notation 

(Kanaya et al, 1976) d- is (n/m). It takes the values 0.5 

and 0.318 for square top field and Glaser Bell-shape. 

4.2 Theoretical limits of performance of magnetic lenses 

There are theoretical limits for focal properties and 

aberrations which actual lenses Cannot reach. 

The general expressions formulated by Kanaya et al (1976) 

were used in this work to find the theoretical Limits. It 

may be helpful here to tabulate in table 4.1 some results 

which are used to calculate theoretical limits of some : 

aberration coefficients. 

  

  

  

Table 4.1 

Character eu value NI/V,.* M- d-=Byd/y NI 

fob. fd 0.567 18.62 GC, 5) 0.5612 

7/8 0.956 wove 0.62 0.56 

C./d 0.414 18.62 0.62 0456 

Ci/d Ov 291 a3.9 oO 0.19 

0.394 18.62 0.61 0.5612           
  

If the shape of the field distribution is fixed, essen- 

tially there will in reality be : a minimum value of .. and 

ee excitation assuming saturation lens is used to 

find the theoretical limit for Coe The = yalue of 

6 [ctv *x 10 mtv *| according to table 4.1 is about 2.3375
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while the same indicator was calculated by Moses (1972) as 

2330 and.bv-lretner (1959) as 2.225), 

mae ye 
The chromatic sensitive indicator CBU Bing CT a 

5 a 

its theoretical limit takes the value 5.42Xlom7.V’ since 

£ 1s5.0,56: tor the field: with Me = 0.62 6 ks 

value of chromatic sensitive indicator is quite close to 

the value d 

that reported by Mulvey and Wallington (1973) for the iron 

pole pieces lens in the case S/D = 00. The corresponding 

value of spherical aberration Ce to this value is 0.394, 

lying at excitation 18.52 and giving the value of (C.B.v-4) 

5.173Xi0er v.72. This value is just above 7% which is 

more than the value mentioned by Mulvey and Wallington (1973) 

for the lenses beyond the value of S/D = 2. 

The theoretical limits of the focal length sensitive 

yf 

indicators £ BV ied fy 5Bet “are calculated in 

a similar way resulting in 12.52%\0p?.v.~? and 7.4 4ximr.v.7 2 

The last parameter according to the paper mentioned above 

takes the value 6.75Xt0wl .v72 corresponding to the iron pole 

pieces lens with S/D=2. Kanaya et al (1976) reported that : 

the best actual lens is the one which has a(C BV? 55. 4K1anitv 

which is close to the value given by Mulvey and Wallington 

(1973) for the lens with S/D=”, Kanaya's value is still 9%. 

above the theoretical limit, while the same lens has a cB! 

value of about Ler on LV@hick is not too far from the value 

of 4.8 for iron polepieces with S/D=2, a value which is well 

above the theoretical limit. 

It is probable that one may reach a lower value of abso- 

-k 
lute spherical aberration parameter CoBLV * than that men- 

tioned above by using a thin coil having D,/D,=19 and a 

spherical single polepiece snout of small radius inside this
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4,3 The problem of a magnetic field with infinite gradient 

Biz) 
The radial distortion DS. a) and spherical aberration 

(C.) coefficients are strongly dependent on the gradient of 

the magnetic field distribution when the ray incident at the 

steep edge as described in (§1.3.3). However, this problem 

arises especially for single polepiece lens models. 

BEY Bo 
  

   

  

Steep _.} \,_ Sloping edge 
Fig. (4.2) The spherical edge 

field distribution showing 

two possible edges Jb Ne: 

Yi» Prt   5 

An example of the problem confronted in this project 

        

is that of the spherical field Fig. (4.2). Fig. (4.3) shows 

that at the singular point z=0, there are two slopes, the 

first belonging to spherical field function and found analy- 

| = -0.78 
dz Iz=0 

as [4B (z) /az] at Z=O equal to -0.78 

tically as 

While the other slope is infinite. This arises from the 

assumed vertical function f{x).
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Fig. (4.3) Variation of axial field gradient B’(Z) asa 

function of Z for spherical field model. 

To leave this point out of the numerical analysis would 

give a wrong result for C. and D,. It is easy to check the 
ad* 

results obtained by ignoring this point. One of the most 

significant methods of checking is to ensure that the sen- 

sitive aberration parameter (C.B.V, *)obtained by ignoring 

the slope in the first step of the calculation for either 

the exponential or spherical field has passed the theoretical 

limit of the above indicator. There is also a great differ- 

ence in the Se cone of a‘caliculation of Ce using this method 

as compared with that found from practical single pole lenses. 

(84.5). 

There are two possible methods of solving this problem. 

The first is used analytically, while the other is frequent- 

ly used for numerical analysis.
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The basis of first method is created by the generali- 

zation of the aberration coefficients, making the general 

formula dependent on a factor which is a function of “the 

fields or B’(z). One example of this method is expressed in 

the discovery of Kanaya et al (1976). He found a general 

expression for the spherical aberration coefficient (C,) in 

in terms of a parameter m-, which can then he used to cal- 

culate (C.) approximately for the square top field by making 

mM. @pproach 0.5. It is likely that (Dog) for the same 

field can also be calculated using the same method. But it 

is a great conceptual error to calculate oP for exact square 

top field as Kanaya et al did (1976) because they are in 

fact ignoring the field boundary. 

The second method satisfactorily used by the author to 

solve the infinite slope problem is by repla~ing the infinite 

slope by a segment of a suitable function in the negative 

z-direction. This method is generally used in mathematics 

to solve problems in discontinuous functions. 

  

  

  
  

  

  
Fig. (4.4) A series of analytical functions representing 

the possible field distribution inside the lens snout
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Certain conditions must be attached to the choice of 

function f(z) used in fig. (4.4); for example, the total 

area under the curve is constant, (constant excitation): and 

that the peak position is sited corresponding to the half- 

width (d,) [ §(3.7) ] with both d, and d, as shown in 
Page (454)", 

At the position of maximum field, there are two slopes 

coming from two functions. To avoid this an auxiliary func- 

tion with a slope equal to zero is used to connect the two 

functions. This also serves to make the final function 

closer to realistic asymmetric lenses. The great advantage 

in using this method for the spherical field is that it 

makes this field more realistic. This is because there are 

no real lens fields with sharp edges; in practice there is 

an axial field caused by the presence of the hole in the 

snout to the pole-piece. 

The shape of the function f(x) strongly affects the 

values of Ce and aa when the ray incident from the steep 

edge of the field, so it is important to determine the func- 

tion in the negative z-direction in any calculations for oS 

and Dead for single pole lenses. 
  B(z)/B. I y | 

L.0 

T 

a 
v I 

It 

B(z) 

6 z/d     
  

| 
Fig. (4.5) Axial field distribution of the single polepiece 

incorporating analytical functions for negative 

Z-direction
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In accordance with this, .two auxillary functions are 

used to achieve the above aim. One of them is the Glaser 
Bell~shaped field with half width (2d,); the spherical field with 

half-width (d.) is also wsed. 

peceeae this project is not primarily concerned with a 

study of the functions describing the field within the snout 

and its effect on aberrations, the present author modified 

the method mentioned above to solve this problem. The method 

used is to join the certain functions without changing the 

value or position of magnetic field peak as in fig. (4.5). 
° 

Fig. (4.6) shows Daa/d for the spherical field in the 

positive z-direction using a series of Glaser Bell-shaped 

functions inside the snout with various values of the para- 

meter q where q stands for the ratio dj/d, . 

RL ac May} also shows Similar results which are 

  

  

  

    

  

  

Fig. (4.6) Calculated radial distortion coefficient of the 

spherical field assuming a spherical field 

distribution inside the snout 

obtained when using spherical function series for the function



  

  

      ont? 
  

Fig. (4.7) Calculated radial distortion coefficient of 

the spherical field assuming a spherical field 

distribution inside the snout 

  

         ae 
  

  

Fig. (4.8) Calculated spherical aberration coefficient Ce 

of the spherical field distribution assuming 

a spherical field distribution inside the snout
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inside the snout. The general shape of os confirms that 

the Dad values depend upon the shape of the field distri- 

bution inside the single pole-piece snout. 

The same method was used to find Ce for the spherical 

field model by adding a series of spherical fields of small 

half-width to represent the field inside the snout (fig. 4.83% 

  

Fig. (4.9) Calculated spherical 

aberration coefficient C. of 

a series of a symmetrical    q = di/do 

ee 

The general shape of the results for Daa shows a close 

field distribution (Dosse,1941) 

d =d +d, 
    b

r
 

L
h
 uo
   

  

parallel with that found by Liebman (1952) for double pole 

lenses. A similar agreement for Ce was also obtained with 

that found by Dosse,. (1941) for asymmetrical lenses (fig, 4.9). 

Investigations of some experimental single-pole lenses 

show that they have an approximately spherical field inside 

the snout with q values between 1/4 and 1/7. So the numeri- 

cal results for single-pole lenses aberrations using the 

addition of the above-mentioned functions is quite applicable. 

4.4 Aberration of .single pole lenses 

It is impossible mathematically to correlate either a 

spherical or an exponential model with the general expression 

of Kanaya's model; it is therefore difficult to obtain the 

eta t ion coefficients for single pole lenses analytically. 

Consequently, most aberration coefficients are calculated 

numerically as described in Chapter 2.
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4.4.1 Chromatic and Spherical aberrations of the 
‘ ‘spherical field 

As the chromatic and spherical aberrations of a lens 

are closely related to the objective focal length (E63) " 

of the spherical field will be directly proportional to the 

square root of the excitation parameter NI/V,.?(Alswaikh 

and Mulvey, 1977). This will occur when the ray is incident 

from the sloping side in the case of strong lenses 

5 bse, NI/V." 315) 

When the ray is incident on the field in the other 

direction (i.e. onto the steep slope of the field), both 

Cos and C. are approximately inversely proportional to the. 

excitation parameter in the region NI/NI, “1.0% Cy 

strongly depends on the function inside the snout. 

The coefficients Cy and Ce for the spherical field 

model were calculated numerically using Scherzer's formula 

(Scherzer, 1937) by means of a digital computer. The pro- 

gram used for this purpose was CABERATION which is des- 

cribed in chapter 2. 

This showed that when the ray incident on the sloping 

part of the field, the minimum chromatic aberration co- 

efficient (C.) is equal to 0.96d (0.25a) and the minimum 

spherical aberration coefficient for the C, is equal to 

0.39d (O.la) at an excitation parameter NI/V,.? = 15°" Phe 

ne value of O.la is an especially low one for a magnetic 

lens.
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Fig. (4.10) Aberration coefficients of the spherical 

field as a function of the excitation para- 
+ 

meter NI/V,.* for the two possible modes of 

operation 

It is also clear that “o/Ey = 0.56 and C/£,70-23. 

These two coefficients corresponding to the excitation 

parameter are shown in fig. (4.10). Solid lines are used 

for the case when the ray is incident on the gradually 

sloping end of the field while the dotted lines are used 

in the same graph for other direction (i.e. the ray 

incident on negative z direction). 

-} 
The chromatic and spherical parameters C_B\V : 

ee 6a -6.27 
and C\BLV ’ take the values 9.47xl0ml-V and 3.82xl0m.|V, 

The last indicator is 20% more than the best actual double



pole lenses. 

SON 

rs The parameter [coBoV | for both 

spherical field and exponential may be shown for one 

direction of rays as in fig. (4.11). 
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Absolute spherical aberration parameter 

cB for the spherical field (solid 

line) .and the exponential field (dotted 

line). 

It is noticeable from (4.10) that the coefficient 

sits and Cy decrease as the excitation parameter increases for 

the field when the ray is incident on the steep edge. The 

preferred direction for Co is when the rays' incident from 

the steep edge of the field. This direction gives a 

different value of Ce depending upon the shape of the 

function inside the snout. 

The increase in Cyr . and f ob3 in respect to NI/V_ 

agrees with 

single pole 

% 

the characteristic properties observed in 

lenses. It suggests that the spherical field
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model is a remarkably realistic one. 

Since both the exponential and spherical field models 

are relevant to single pole lenses, it may be useful to 

compare their properties from this point of view. A 

critical study shows that as well as there being no big 

difference in their general characteristics, they also 

yield a similar general asymmetric behaviour. 

The spherical field model predicts that the objective 

focal length will be proportional to (NI/v,.4) # for an 

excitation parameter greater than that at minimum focal 

length (i.e. NI/V,7=14) , while in the exponential field, 

the model predicts that it will be constant (Glaser, 1952 

and Marai and Mulvey, 1974). The same trend occurs for 

those parameters such as ee and Cy which are closely re- 

lated to objective focal length. Figure (4.11) shows the 

properties in absolute terms for the exponential field and 

the spherical field. According to this, the spherical 

field has a lower spherical aberration, that is closer to 

the absolute minimum spherical aberration limit than is 

that of the exponential field. 

4.4.2 Image distortion of single pole lenses 
  

The determination of the distortion coefficients for 

the spherical field distribution has confirmed the general 

characteristics of the asymmetric field distributions 

previously referred to by Marai and Mulvey (1975). 

The numerical method can also be used to calculate 

radial and spiral distortion coefficients by using program 

CDISTIORTION. 

Fig. (4.12) shows the quantity a d* plotted.with
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respect to the excitation parameters NI/NI, where NI, is 

the excitation at minimum projector length. The figure 

shows the distortion coefficients when the beams entering 

either the steep edge of the field (dotted lines) or in the 

opposite direction (solid lines); note that the solid lines 

are always below the dotted ones. The curve of Do for 

the case when the ray is incident on the steep edge of the 

field (i.e. negative z-direction) was calculated by adding 

a spherical function with q=d /a,= 4 to represent the 
Z 

field inside the snout (cf§4.3). 

At NI/yI, in particular, Dsp for the first mentioned 

mode of operation is five times greater than the other mode. 
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Pig. (4.12) The distortion coefficients ee and Dep for 

the spherical field as a function of the exci- 

L 
tation parameter NI AY for the two possible 

modes of operation noticing that od in both 

5 
directions reach zero at NI/V_ = 16.
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Fig. (4.12) also shows that the value of os d* starts 
ad 

L 
at 0.21 for an excitation parameter of NI/V_."= ©." or, the 

positive direction of ray (i.e. the ray incident on the 

sloping side of the field). This starting value is similar 

to that of most double pole lenses. 

In the case when the beamisincident at the steep edge 

the snout of the projector lens faces the fluorescent 

screen in TEM, while when the ray is incident on the sloping 

edge of the field (i.e. positive z-direction) the snout is 

facing the incoming parallel beam, in the projector lens 

of TEM. 

The maximum value of Doo when the beam comes from 

the positive side of z-direction is about 0.29 at NI/V,* 

= 7; it then falls steadily to zero at NI/V,." e 16. This 

coefficient also falls to zero at the same excitation para- 

meter the beam travels in the opposite direction. 

This shows that the radial distortion of this field 

when the snout faces the parallel incoming beam in TEM is 

always less than that for the beam entering the field in 

the opposite direction. This conclusion appears to be 

true for every asymmetric field so far encountered. It is 

clear that the lens is in its preferred mode of operation | 

as projector when the ray incident on the sloping edge (i.e. 

the snout facing the incoming beam in the case of TEM). 

Single pole lenses, however, whose axial field distri- 

bution can be described by the spherical field, should 

therefore have a lower distortion coefficient than those of 

the best double pole lenses. To represent this fact, fig. 

(4.13) has been plotted between O25 and Q..g 28 a function 

| Of NI/NI..
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Fig. (4.13) Quality factor Q for image distortion in 

the spherical field model together with the 

relative image magnificationM/™. Favourable 

orientation (full line), unfavourable (dotted 

line). 

When the coefficient Gosg passes through zero (i.e. 

NI/NI ~ 1.0) Q5p is about 0.78, which is 30% less than 

that for conventional lenses. This shows strongly the 

advantage of using single pole lenses as projector lenses. 

In addition to O values in=fig. (4.13) the: relative 

magnification (M/M,) is also plotted to give an overall 

view of the erea of operation for the spherical field in 

its preferred direction. 
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It is important to remember that the main advantage of 

the spherical field is that it is a physically realisable 

magnetic field. All its characteristics can be related to 

the radius and flux density of a uniformly magnetized 

sphere of high permeability. 

4.5 Aberrations of some experimental single pole lenses 

The electron-optical properties of single pole lenses 

cannot be predicted from the data of the conventional lenses 

(Marai and Mulvey, 1974). From the previous statement one 

can conclude that if the effect of the coil on the axial 

field distribution of a single pole lens is small or takes 

a spherical function in shape, the total field of the lens 

will be approximately spherical in nature. 

A single polepiece magnetic lens produces asymmetrical 

axial field distribution of distinctive shape. Thus there 

are two modes of operation according to the direction of 

the toxdient electron beam.The first (see Fig.4.2) corresponds 

to a parallel neam entering the field from the sloping 

side of the field distribution (i.e. its snout facing the 

incoming paralies beam in the case of projector of TEM). 

The second corresponds to a parallel beam entering the 

steep slope of the field (i.e. with the snout facing the 

screen in the case of a projector of TEM), 

The first mode of operation is the preferred 

direction for a projector lens because of its lower 

spiral distortion.
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To investigate the aberrations of practical lenses 

several types of lenses were investigated as follows: 

4.5.1 Single pole lenses with conical shape 
  

The two lenses AR1 and AR2 have been described with 

their focal properties in 83.6.1 calculations of chromatic 

and spherical aberrations were carried out numerically. The 

results show that at the excitation for minimum focal 

length the ratio Ci/¢ a O..22 and CO/ft om O755- for AR 
obj obj 

while that of AR2 for the same parameters are 0.237 and 

0.567 respectively. 

Comparison can then be made with the corresponding 

ratios for the spherical field distributions (i.e. C3/*on3 

= 0.235 and C./f = 0.56). Fig. (3.13?) shows the para- 
obj 

meters of Cy and Cy with other focal properties correspon- 

ding to the excitation parameter(NI/V)" in both modes of 

operation for AR1 while fig. (3.1%) shows the same pheno- 

menen for AR2. 

The two figures demonstrate that the coefficients Cy 

and o increase slowly for excitation parameters greater 

than NI/NI, = 1. These results confirm as in the case of 

spherical field model that minimum values of Cy and om and 

fp occurs at NI/NI=1. 

A sensitive test for these lenses acting as 

objective lenses, figure (4.14) is plotted by using the 

=i, 5 
parameters C5BLYY and fopjPovr as axis. From 

fig. (4.14) it will be seen that for AR1 the corresponding 

on No e 4/2 
value is 3.60 mIV and for AR2 3.43x10 MTN; these are 

lower values compared with that of double pole lenses 

(Mulvey and Wallington, 1973).
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% Fig. (4.14) The parameter CBO as a function of 

fey > for lenses AR1 and AR2 

Numerical calculations were carried out to find the 

radial and spiral distortion coefficients for the two lenses. 

These two coefficients D and D can be related to 
rad sp 

Liebmann's (1952) coefficients Da and C Sp of radial and 

spiral distortion respectively by the relations 
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Cc. and Cap for lens AR1 and 
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lens AR2 in the two possible 

beam directions 
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Fig. (4.15) shows the variations of the coefficients Cy 

and esp in both directions of the lens for the two lenses. 

From figure (4.15) it may be seen that Cy starts ata Value, 

Dao 20-4 for AR1 and 10.4 for AR2. It decreases with 

increasing excitation and reaches zero at NI/V, =O eAe LO 

AR1 and 18.6 for AR2. The same figure also shows the point 

of zero radial distortion, Cae O occurs at an excitation 

NI/NI=1.1 (i.e. higher than that required for minimum focal 

length) The same figure shows that a considerable difference 
  

¢ y. 7 T z 

. V4 or cade a leemadl 
L 1.2 Ser s e “4 

\ ei oe es 

i aie 

Fig. (4.16) The quality] 0.8 Je 

factors Qsp. and Qeaa: 1 

for lens AR1l and lens [ 5 a 

VA AR2. | 0.4 M/M, vu Te2 a 

(1). ARI 
& (2) AR2 NI 4 yee 

0.4 0.8 ee 
| 1 L 1 L 1 1     
  

between the values of the radial and spiral distortion co- 

efficients occurs in the two ways of operation. 

The distortion quality factors 255 and Gna for spiral 

distortion and radial distortion were also calculated for 

the two lenses in the two modes of operation as a function 

of the relative excitation parameter (M/M.) The results 

are shown in fig. (4.16) 

Typical results tabulated in table (4.2) enable one to 

make a comparison between the performance of experimental
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single polepiece lenses and results calculated from various 

models. 

  

  

  

          

Table 4.2 

- 
The lenses a zeo Cov £6 Beve, Q.p (min) 

Exponential field 0.315 0.632 4.2 0.78 
(Marai and Mulvey 

1974) 

Spherical field 0.235 0.56 3.8 0.738 
(Alshwaikh and 

Mulvey, 1977) 

ARL (84.5.1) Osan Ooo 2.6 o.8 

Ane. (54.5.1) O.aor 0.567 aha 0.84 

I=xperimental pole 0.25 0.6 3.4 0.84 
lens (Juma and 

Alshwaikh) 

Double pole lenses 4.8 <Q 
(Mulvey and 

Wallington, 1973 
  

  
It is noticeable that from Table 4,2 the spherical 

field model gives Co/f5 253 8% less than and Rafts 

that for exponential field. 

Moos Experimental Single-pole lens 

The experimental single pole 100 KV miniature lens 

designed by Juma (1975) is of importance here because some 

of the expected low aberrations have been proved experimen- 

tally as a projector lens in an AEI EM6 electron microscope. 

This lens was constructed by removing one pole from the l0OOKV 

miniature double polepiece projector lens (fig. 4.17).
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  27mm dia. ———>       
Fig. (4.17) Cross-section of the lOOKV miniature double 

polepiece lens. 

The cross-sectional diagram of the single polepiece lens, 

description of its materials, method of cooling and finding 

of the field distribution are described in more detail by 

Juma and Alshwaikh (1979) (Appendix 8). 

This lens was tested under the microscope at 75KV for 

both directions to the electron beam. The imaging proper- 

ties of the lens were recorded in both orientations at a 

constant projection distance (300mm) between the polepiece 

tip and the photographic plate. In both orientations the 

lens magnification is therefore the same since the pro- 

jector focal length at a given excitation is the same. 

The distortion in the final image is due chiefly to the 

distortion of this lens, since the contribution of the 

intermediate lens is negligible. 

The projector focal length for the single and double 

pole lenses found experimentally are plotted in fig. (4.18) 

together with the computed results found by the program
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DDISTORTION (Chapter 2) by using the measured field distri- 

bution. 
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Fig. (4.18) Calculated and experimentally determined 

projector focal length for miniature single 

and double pole lenses described by Juma(1975) 

Fig. (4.19) shows the variation of Ca and sp asa 

function of NI/v,? for the two modes of operation. 
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Fig. -(4.19) Comparison of calculated and experimental values 

of Da and sp as a function of the excitation 

5 parameter NI/V,. for a single pole lens.



a a 

These coefficients are closely related to the corres- 

ponding coefficients for double pole lenses in the case of 

non-preferred direction (i.e. the snout facing the fluores- 

cent screen in the case of TEM). For the preferred direc- 

tion, the coefficient Ca decreases continuously with increase 

in excitation parameter. As for the Cap coefficient it 

increases very slowly where at minimum projector focal 

length the value of Cen is about twice that of Ca which 

is well accepted in microscopy. The computed results are 

plotted in the same curve and there is very good agreement 

between experimental and computed results. 

Comparing the results in the two directions it is again 

confirmed that the most favourable arrangement for low 

distortion is that of the first direction (i.e. the pole- 

piece facing the incoming parallel electron beam (Marai and 

Mulvey, 1975). 

At higher excitations, the Cp coefficient of the lens 

operated by the second mode increases sharply, while in the 

opposite direction, this coefficient is slowly increased 

with noticeable fluctuation from NI/V,,4= 12 tosle.. whe 

results in general are similar to that for the spherical 

field model. 

The focal properties of the experimental lens as an 

objective lens were computed; the results showed that C.=3mm 

i 
at maximum magnification (i.e. NI/V,°=14). 

The.relative results corresponding to (£0) are tabula- 

ted for comparison in table 4.2. The above-mentioned value 

of Co is when the ray is incident in the steep edge of the 

field distribution (first mode of operation). The value of
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Cy for this direction will be discussed by Juma and Alshwaikh 

(1979) (Appendix 8) 

The performance figures of this experimental single pole- 

piece lens may be applied directly to the design of objective 

and projector lenses of high resolution microscopy. This 

can be done, by scaling the dimensions of this accordingly. 

It seems feasible to design electron-optical columns for 1mv 

with dimensions comparable to those of present conventional 

1LOOKV instruments. 

4.5,.3Particular investigations for various single pole lenses 

The previous discussion shows that many single-polepiece 

lenses have properties corresponding to that of spherical 

field model. However, to avoid repetition it may be suffi- 

cient to select a typical single pole lens from those that 

have been used successfully in practice by members of elec- 

tron-optics group in the Physics department. 

(a) The lOOKV objective lens described by Marai and Mulvey 

(1974) has been studied in detail by Marai (1977). At the 

time it was considered that this lens was in very good agree- 

ment with the prediction of the exponential model but it now 

appears that the spherical field model gives an even closer , 

approximation. One of the characteristics which illustrates 

this point is shown in the curve of Fig. (4.20) which shows 

the quality factor (Q) asa function of NI/NI.. 

(b) The chromatic and spherical aberrations of the x-Lay 

mMinilens described in §2.5 were calculated by the present author 

and by Professor R.P. Ferrier who used Munro's method (Munro, 

1972).
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The results (fig. 4.21) show excellent agreement between 

two calculations for Cur but there is about 10% difference 

in calculation of Co. The reason is to be found in (a). 

Differences in the experimentally measured and calculated 

axial field distributions, and (b) some doubt in the Munro 

Calculation about the exact number of ampere-turns enclosed 

by the field. These factors are discussed by Juma and 

Alshwaikh (1979). The figure also shows some experimental 

points of oa measured by Christofides (1979) ana these points 
L are denoted as crosses. The parameter Cea for 

the preferred direction is shown in fig. (4.22). The mini- 
maa 

-k mum parameter (C BoV : ' ) of this lens is 3.7mmmtv 2 which 

is an encouragingly small value. Fig. (4.23) shows Cy and Ce 

for the lens in both directions. 

(c) Another practical lens successfully tested in the high 

voltage electron microscope is the 1MV lens described by 

Mulvey and Newman (1973).



Fig. (4.21) Comparison 

of the chromatic (Cc) 

and spherical abbera- 

tion of mini X-ray 

lens calculated by 

the finite element 

method and from ex- 

perimentally measured 
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Fig. (4.22) The para- 

-% meter CAP. asa 

-% function of Soho" 

for an experimental 

x-ray minilens 

Fig. (4.23) The calcu- 

lated values of the 

parameters C. 

and Ce for experi- 

mental x-ray minilens 

in the two possible 

ray directions 
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The electron optical properties of this lens were found 

numerically by Marai (1977) by using measured and calculated 

field distributions, and it was studied before experimentally 

by Newman (1975). Some of the selected properties are that 

of Cur as £ and fu which are used in fig. (4.24) to com- 
b3 

pare it with the similar parameters of the spherical field. 

  

30}-    Ba eet eee spherical field    
20}- 

10 

ae laa. en as aR ae       

Fig. (4.24) Comparison of the focal properties of a 

1MV single-pole calculated by an integral element 

method (Trowbridge et al, 1972) and those calculated 

from the spherical field model (dotted line). The 

equivalent sphere (a) = 2.16cm. 

(d) There are two single pole lenses described by Juma 

(1975) and tested under EM6. One of them is a projector 

single pole lens with 8mm bore and the other is an objec~- 

tive lens. The present author chose the experimental points 

of the projector to compare its focal length with that of
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spherical field in fig. (4.25). The parameters of Cy and 

Ge were selected from the objective lens characteristics 

(Juma 1975) to compare with those parameters of spherical 

field found numerically (fig. 4.26). 

The results of all single pole lenses discussed in this 

chapter confirmed the conclusion found by Spherical model. 

In both cases Ca and esp are lower for the first 

mode of operation (i.e. the snout facing the parallel 

incoming beam). The lens performance is better than that 

of a conventional lens in the first mode but worse than 

that of a conventional lens in the second mode. 

The C4 value for both modes of operation starts at the 

5 same point (i.e. NI/V,. =O) when there is a smooth segment 

of field at negative z-direction. 
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Fig. (4.25) Experimentally determined projector focal 

length of a single pole lens compared with that 

calculated from the spherical field model
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Fig. (4.26) Aberration coefficients a and C. for a 

Single pole lens with 8mm bore compared with 

those calculated from the spherical field 

model. 

The general shape of spiral distortion was that there is 

a sinusoidal fluctuation thus proving the idea discussed 

later in Chapter 7, 

The results obtained from single pole lenses have a 

quality factor smaller than that of double pole lenses. 

The general results found from those experimental lenses 

provides a strong argument that single pole lenses in the 

first mode of operation are the preferred lenses as DrO= 

jector, while the other mode of Operation is preferred as 

objective lens of low chromatic aberration.
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Comparison between the lenses which have different 

geometry of the snouts shows there is a large difference 

in radial distortion. One can then conclude that the radial 

distortion and spherical aberration are strongly affected 

by the fields shape inside the snout. 

Finally, the calculation of spherical aberration and 

radial distortion coefficients for practical lenses are 

very important since it depends on the slope B’(z) of the 

field distribution. The agreement between the results of 

both spherical aberrations and radial distortion calculated 

from such lenses and that of spherical field strongly 

supports the idea explained in section §4.3, that it is 

necessary to join a segment of realistic field in negative 

z-direction to represent the field inside the snout to 

obtain a correct result for the coefficients which depend 

on second derivative of axial field distribution. 

Numerical analysis using the spherical field model and 

various rea]. lenses has shown that single pole lenses based 

on the magnetized sphere should be used as objective with 

the ray incident on the sloping edge of the field for 

lower spherical aberration. This mode of operation has the 

advantage that both spherical and chromatic aberration 

coefficients, as well as the objective focal length, have 

their lowest values at the same excitation parameter (NI/V,.? 

= 14). 

For example, if a magnetized sphere of 10mm diameter is 

used, it would have C, and C, values of 1.3mm and 0.5mm 

% 
respectively and occurs at NI/V,. =15. So the single pole 

lens with spherical snout is recommended as objective lens.
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It has an appreciably lower spherical aberration parameter 

-} =f 
(CoB LV, ) of 3.8 X lo mtv, while for the best double-pole 

objective lens is about 4.8 xX 10° °mry™ 2 (Mulvey and Wallington 

1973): In addition, more space can be gained in the speci- 

men region without an appreciable loss of resolving power 

(Mulvey, 1974) which is not the case in double polepiece 

lens. 

When the ray is incident on the steep edge of the field, 

the single polepiece lens has a low chromatic aberration 

coefficient Cyr while the spherical parameter sn vs is high 

depending on the magnitude of the slope of the field inside 

the snout. Since Ca depends on the magnetic field inside 

the snout, one experimental field distribution was investi- 

gated to see if lower values of Cy could be obtained togetter 

with acceptable low values of Cu: This lens was studied in 

detail by Juma and Alshwaikh (Appendix 8). 

More investigations are required to study the possible 

use of the single polepiece lens, as an objective, with the 

ray incident on the steep edge of the axial magnetic field 

distributicn, in order to give small values of both ne and 

Ges 
s
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5. CHROMATIC CHANGE IN MAGNIFICATION AND ROTATION 

5.1 General expressions of chromatic change coefficients 

The literature survey and fundamental equations are in 

Chapter 1. Some extended work done here to obtain the uni- 

versal curve for chromatic changes in magnification and in 

rotation for double polepiece lens and then to study simi- 

lar characteristics for single polepiece lens, Equation 

(1.70) is the general form of the chromatic change in magni- 

fication (Cc). Since lens current can usually be stabili-. 

zed adequately it is permissible to neglect the term dI/I. 

The equation (1.70) reduces to the form 

cm (Ar /r) /(AV/V) oe < a8 ecu (5.1) 

In general for any lens is related to K as 

KR = constent . v7? ei. (5.2) 

where the constant holds the value (e/8m) *B 4 then it is easy 

to show that 

dK /K = -~i (AV/V) eee ee eee 65:.°3)) 

Putting last equation in (5.1), then it may be written as 

cS = (Ar _/x) (K/-2dK) 0.0.0 6 e-ale © (5.4) 

By using the same approximation, equation (1.73) reduces 

to 

ene (dr,/r) /(aV/V) eouepes (Reo) 

It will be appreciated that since the fractional changes 

-~4 ; 
in electron energy are quite small (e.g.-410 °) the magni- 

tude of the relative change in magnification is small. Thus 

the change in magnification can be expressed as 

Ar _° =Af Li mat 
“r at eae (1: ae m ) ae mee eeeee (5.6)
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where m,is the magnification due to the lens. By combining 

this equation with equation (5.4) gives 

PP yh er ay ee Af Com a (e)e: (ty) = SS - ge ew, (567) 
m 

It is also useful to know that a variation in the exci- 

ting current Ai has a similar effect to that of a change in 

kinetic energy of the electron (eAV), so 

AV/V = -2AI/I gevesee, (348) 
/ 

5-2 Chromatic change. coefficients of double pole lens 

The Chromatic change aberrations of double pole ieee can 

be studied through double pole models. In this thesis two 

models have been chosen; the first is the Glaser-Bell shaped 

model because it is a model well studied Stacy while 

the square top field model is used to give universal curves 

for double pole lens. 

Boe oe 
Tt 

and C. for the Glaser-Bell shaped field 

Morito (1954) gave the formulae for both coefficients 

for the projector lens according to the Glaser-Bell shaped 

field as follows: 

aa 

cP. a Cimunwcot ‘ont Tepe 1S 95 

BN dey cP= - (w+) ee eee 

Similar expressions were reported by Kanaya (1955) ,while 

Hawkes (1972) derived equation (5.9) with respect to magni- 

fication only. For the objective lens, Kanaya (1955) and 

Morito (1954) derived the equations 

© _ (w2=1) cos (1/w) 
oS oteta aa Wis la iR. wee C5) saeL)
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a ee) 
eo = oe ee ie reraes eens (O22) 

Both authors reported that Glaser (1941) gave different 

expressions which are as follows: 

© _ T(w?=1) 
Cn. De sin a7 oy ecovceeee C5 <l3)) 

Ss m (w2=1) 7 
C= ee ae (55.14) 

The equations (5.13) and (5.14) gave lower values than those 

of the correct value. 

Again, Kanaya et al (1976) gave the formulae for the 

coefficients as a function of the degree of flux concentra- 

tion (me), and by assigning to M the value 1.5 for the 

case of the bell-shaped model then the results can be con- 

sidered to be essentially the same. 

The dependence of e? on object distance (Z)) was derived 

by Hawkes (1968) and may be written as 

3 
Catan ey (OTERO? Sa od (5,45) 

Kanaya (1955) formulated the coefficients corresponding 

to the three halves power field, and Morito (1954) calculated 

Cn for the intermediate lens. He proved that C.. is the same 

for both intermediate and projector lens. 

The theoretical results obtained for the Bell-shaped 

field from the above equations together with the experimental 

data reported by Morito (1954) were used by present author 

to check the accuracy of the program used to calculate 

citi? toad by the chromatic change in magnification and in ro- 

tation for both double and single polepiece lens. This 

numerical procedure is shown in Chapter 2.
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Figure (5.1) shows very good agreement between analyti-= 

cal (solid lines) and numerical results (dotted lines) for 

the Glaser-Bell shaped model. 
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tion (dotted lines) Analytical 
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5.2.2 Universal curves for C_ and C_ for double-pole lenses 
‘Tt 

An electron passing through the specimen loses energy 

and therefore has a trajectory different from that of an 

electron that has not lost energy. These trajectories are 

represented by the solid (no-loss) and broken (energy loss) 

lines in Fig. (5.2). 

Referring to equation (1.2), the height of the trajectory 

at points Zo and S/2 is as follows:
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Fig. (5.2) Paraxial rays through a square top field. 

Solid line (no energy loss) Dotted line (with 

energy loss) 

Tite=2)~ ry cosk (z+S/2) Seige C576) 

9 (z3S/2) ry coskKS ie sacs Ccthe (517) 

Hence 

Cas * 
ra = Kr sinks FE Oe be ese (5:18) 

Substituting the value of ry from equation (5.16) into 

equations (5.17) leads to 

r,cosks 

ro =-__—__ooOoOoOoOoO Sisls tater Siete 6 ; (5219) 

cosK (z_ +S/2) 

“r,k sinkS 

DA rere eececeeeeeee (5.20) 

cosk (z +S/2)
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The image height r is given from figure (5.2) by 

— Ds ile , 
D etiod, + L x9 he Lr, © 0.68.8 @ 0 6° ¢ (5723) 

ti the small contribution of ro is ignored. 

Substituting equation (5.18) into (5.21) and differen- 

tiating r with respect to K, we obtain 

bee S ; Sage = [ + ScotKS + (z+ 5) tank (2,45) | ‘ (55223) 

(a) Chromatic change coefficients for objective lens 

Substitution of equations (5.22) into (5.4), give 

oe (ce Jf (By = 4 [LaKscotKs+x (2,48 ) tank (z,+8/2) CB ce +) 

putting Z S/2-1/2K, then 
° 

Cm -& (14> cotks) eeeeeevseeeoeeeeeveeesneee C5524) 

Gquation (5.24) may be written as 

cf = -4 [14d cot {(0.1863 Ni) (NI yj a a eae) 2 2 v.? Nt 
x. oO 

and the universal curve is 

ct NI oes one 4 [ied fofon we: (2203 nt) eoeeeoeeeeveeee (5326) 

Since( .0.1863 NI/V,7) = 2.0306 (Mulvey and Wallington, 1973) 

the latter equation shows that fe takes the value zero at 

NI/NI=1.062. 

Deviations in the electron path and speed can occur from 

two causes. One is due to the changes in accelerating vol- 

tage and the other to energy losses in the specimen. 

When we consider energy losses in the specimen and the 

aberrated electron path will start to deviate from the
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ordinary electron path at Zo and will start off with the same 

slope Figure (5.2). 

If the co-ordinate and slope of the aberrated ray at the 

distance (x) from z, are 4 and r’ it may easily be shown 

by applying equation (1.3) that 

5 = rj} cosKx-Ky sinkx Pee eter ec eve ge Laser 

This expression gives the slope of the aberrated ray 

at the end of the field in terms of the beam energy repre- 

sented by kK. 

Substituting the above value of r’ in (5.21), takes 

the form 

r= Lr} cosKx-KLy sinkx Mota a crete e oust (55:28) 

differentiation with respect to K gives 

aE: ' bs - ; 
aK =-Lxry sinkx LKr)x coskz Lr, sinkKx ......e-. (5.29) 

where x = S/2 - Zo Br elie oe 6 @cbvenale eretes ts are (5.30) 

Alternatively, substituting equations (5.28) and (5.29) 

in equation (5.4) the same expression as in (5.25) is 

obtained. Thus wes for an objective lens is similar for 

fluctuations in accelerating voltage and for energy losses 

in the specimen, and so (5.25) can be used for universal 

5 curve for objective lens at the region NT/V > 8.43 (i.e. 

ks 31/2) 

It must be remembered that the coefficient has been evalua- 

ted for the case of the incident electron beam on the lens 

parallel to the axis, which is a good approximation to the 

normal use of an electron microscope at lower magnification
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where the illumination is spread out by the condenser. 

The universal curve for Cin versus NI/NI is shown in 

figure (5.3) and it contains also ce at the region NI/NIU< 

O.. 773 (nI/v 7 $8.43) which is found by using the equation of 

the projector lens, because ce and er follow the same re- 

lation for the weak lens (i.e. 0<1/2). 

Equation (1.74) is used to obtain Cor this applies to two 

cases. The first is for a strong lens when an * W/ ais TE 

the integration limits are taken between t/2K and -S/2, we 

get 

oO CxS a9/4 mor |O30/ 2huv vin che oe KBB} 

For a weak lens the chromatic change in rotation for the 

objective lens ee takes the same value for the projector 

lens, and hence, 

a = &kS = 0/2 for (6< 0.5m) Lee chee 

(b) c and CY. for projector lens 
C   

From equation (1.5), differentiation f with respect to K 

  

df 
Dee BOOS Ree k oe 

dK w  Sin* KS Sin KS R2 stress (5493) 

Hence df 1 1 

axe © (g-) = 8 cot Ks - = rats incre ead 
Pp 

Substituting equation (5.7) in (5.34) 

df 
or = == . Ge WLLsKS Coe Ker cs abn. ps a8) 

Pp 

“This equation can also be obtained by using an analysis 

similar to that for objective lens. Equation (5.21) may be
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written as 

r= ~LKr, sinks 

: : EIN Ne = 
which gives (aR) =< SLORe COCKS): | os cakes 2 aa (5533:6)) 

and then leads easily to (5.35). To use equation (5.36) 

L as a universal curve for ch or : at the region NI/V* < 

8.43, it is convenient to put it in the form 

cP = -4[1+ 0.1863 (Sto) (NT) cot(o.1863%Zo . ey 
2 NI v2 NI 

oO Oo 

Bee NI NI So oF 4 [142.03 (yr Sot 12. C35 VL vnedh © if 5.97) 

Figure (5.3) is the universal curve for double pole 

lenses chromatic change coefficients and is plotted for Cr 

oO 
Ce ’ Cr. The last coefficient cr can be found by 
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Fig. (5.3) Universal curve a " 

for the coefficient of 

chromatic change in magni: 

fication and in rotation 1 Oo 

for a double pole lens, 

  based on the square top 0.5 1.5 

field model   

o
s
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substituting Amperes law (i.e. f Blz)dz = UNI) in the 

equation (5.10) to obtain 

Chog evita! Guts ja Nie cee O29 (5.38) 
r "s r Oo 2 eeeee . 

This result agrees with that which was found previously 

using the Glaser Bell shaped equation (5.9). 

  

Sukeo: ADDLLCauson on G and C,. for double pole lenses 

Many modeis such as the bell-shaped and Grivet-Lenz 

models are relevant to double pole lenses and can be used to 

confirm the universal curve (5.3) found analytically by 

using the square top field. They show as in?figure (5.4) 

excellent agreement with the universal curve with only very 

slight shift (less than 10%) of CF found from the Grivet 

Lenz model at high excitation (i.e. NI/NI > las 

qT ¥ N T 

Glaser Bell 
1,2 shaped model 

Fig. (5.4) Universal curve ++ ++ Grivet-Lenz 
model 

  

    

   
     

  

for the coefficient of 

chromatic change in 

magnification and in 

rotation based on the 

Glaser bell-shaped 

field and the Grivet- 

Lenz field.       
To check the applicability of the universal curve for 

chromatic change coefficients of double pole lens, two 

double pole lenses were studied, one of them was used as 

projector and the other is objective and their field Gistri- 

butions were measured by Elkamali (1978). (Fig. 5.5).
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These field distributions were used to calculate the 

chromatic coefficients for both lenses and the coefficients 

are shown on the universal curves as crosses (Figures 5.6 

and .5.:/). 

It is clear that the coefficients found from real 

magnetic field distributions consistent with the results 

derived from the models from which the universal curves were 

derived. 

9.3 Chromatic change coefficients of single-pole lens 

The computation of oy or and On was carried out by using 

the special program described in Chapter 2 in the same way as 

the double-pole lens. The same was also done for Ce for which 

analytical solutions exist for any field distribution. This 

was used as a check for the numerical procedure, 

5.3.1 The coefficient for projector lens 

The analysis shows that both chromatic change in
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Fig.(5.6) The coefficients of chromatic change in 

magnification and rotation for conventional 

projector lenses (crosses) compared with the 

universal curve (solid line) 
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Fig.(5.7) Coefficients of chromatic change of magnification 

and of rotation for a conventional objective lens 

plotted on a universal curve.
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magnification or in rotation for single pole lenses has a 

universal curve. This fact was proved by using experimental 

and spherical pole-piece model. This universal curve in the 

projector lens case applies for both modes. of operation 

(i.e. independent of ray direction). 

The solid line in Figure (5.8) shows the universal curve 

for projector single-pole lens found by using single pole 

models while crosses indicate same properties for lOOKV 

single-pole lenses whose field distribution and focal pro- 

perties were described in Chapter 3. The latter lens was 

used to confirm the applicability of the universal curve, 

The conclusion to be drawn from the above results is that 

the chromatic change in magnification in the case of single- 

pole projector lenses is approximately the same as that of 

double pole lenses. 

Zt is clear fromFigure (5.8) -that cE is directly pro- 

portional to the excitation parameter and that C,. (NI /NI) is 

approximately equal to 1.33. 

5.3.2 The coefficients for the single pole objective lens 

The characteristics of the chromatic change coefficients 

of objectives obtained by numerical calculation are ai Pferent 

from those found for projectors. While the ray direction has 

no effect on GF and CP, both e and Ce are affected by the 

Yay direction. 

It is noticeable that when the ray enters from the steep 

end of the field, ae always has a lower value than that 

obtained for a ray from the other direction. Thus when NI/NI, 

= 1, the value of C.. for a ray from the steep end is half the
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Fig. (5.8) 

change in magnification and rotation for a single polepiece 

Universal curve of the coefficients of chromatic 

projector lens for both modes of operation, using mathe- 

matical model 

(crosses). 

(solid line) and experimental 1l0O0OKV lens 

  

  

  

      
  

Fig. (5.9) The coefficients of chromatic change 

fication and of rotation for a single-polepiece 

lens in two modes of operation, 

model, 

using spherical 

exponential field model and 100KV lens. 

of magni- 

objective 

field
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value for a ray from the other direction. 

For a ray entering from the sloping end, cy is pro- 

portional to NI/NI, over the range NI/NI, ¥1.0 when 

NI/NI*1, C.. takes approximately the constant value 1.21. 

It seems that the oe value for single pole lenses is 

lower than that for double pole lenses. When the ray 

comes from the steep edge of the field we also have values 

for CL lower than from the other direction and it is 0.74. 

This comparatively large value is less by an amount 

6% than that found from double pole lens which is 1/4. 

It seems that the preferred direction is that when the 

ray enters from the steep edge of the single-pole lens 

field; 

Figure (5.9) summarizes the above mentioned charac- 

teristics for Cy and also ala for both modes of operation. 

The figure also shows that weak single pole lenses (NI/NI 

<O.3) have the same values for the coefficients in either 

direction. 

5.4 Two projector single pole lens systems 

It is desirable in a projector system to eliminate 

image rotation which results from a change in the excita- 

tion of the intermediate and projector lenses. The chief 

objection to this defect is that it makes it inconvenient 

to interpret certain diffraction micrographs, namely those 

where the diffraction pattern of a crystalline structure 

and the corresponding image of the crystal is superimposed 

with different orientations.
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The same numerical procedure was carried out to 

investigate the effect of two single pole lenses, the full 

distribution of the two lenses being considered as one 

combined field. The results show that the rotation 

vanishes as expected under the condition pnt) 9 es 

These results confirm that it is possible to use 

miniature single pole piece lenses as a rotation-free 

system (Juma and Mulvey, 1975). 

It was useful, however, to investigate ol For <a 

rotation free system by varying the distance between the 

  

two lenses (i.e. L/d). 

Pid. (oveQ) es as a function 

5 of NI/V,. for rotation-free 

system for various L/d values 

    

  

  

Figure (5.10) shows ri for a rotation-free system 

plotted against NI/V,. for various L/d values. These 

results lead to the same universal curve for the single 

pole lens when oat is plotted against NI/NI, and confirm 

the.fact that e US  ZeOrOn 

To gain more insight into the use of two projector 

lenses as a system the excitations of the two lenses were 

then adjusted so as to produce the same image rotation, 

(i.e. lens current in the same direction). The computed 

values of Cy and CL so obtained are shown in Figure (5.11)
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Fig, (5.12) The ‘universal 
  

curve of Ca and relative 

excitation parameter NI/NI, 
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If the quantity NI/NI, is used as x-axis instead of 
: L 

NI/V (it is shown in Figure (5.12) that Cc, is again on 

the universal curve while o tS*not.. This is because the 

field outside the area between the snouts of twe lenses has
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been ignored. 

The calculations of chromatic change in magnification 

and in rotation for the square top field and spherical 

field model show that there is a universal curve for the 

projector lens and that the chromatic change coefficients 

(i.e. Cin and Cc.) for single pole lens is slightly higher 

than those of double pole lens. 

These results also show that when the snout is facing 

the incoming parallel beam in the case of TEM, both CH 

and C.. have low values in the case of single-pole objective 

lens than those of the double pole objective one. This 

mode of operation is again the preferred one for obtaining 

low values of Cra 

A further conclusion drawn from these results is that 

it is easy to have a rotation-free system with minimum 

chromatic change in magnification; in such cases excitation 

parameters depend upon the distance between the two lenses. 

A system of two magnetic lenses separated by a certain 

distance is recommended to obtain the optimal minimization 

of chromatic changes in magnification and in rotation.
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6... CHARACTERISTICS: OF THE PRE-EIELD 
  

The summary of the characteristics of the double 

polepiece lens is mentioned in ( 1.4). The following 

chapter deals only with the similar work for the single 

polepiece lens. 

  

  

Main field 

Pre-field ~~
 es

 

Steep 
edge NX 

      

  

  

Fig.(6.1) Axial distribution of pre-field and main-field 

in the single-pole lens showing focal proper- 

oe of the pre-field. ties f 
pr pre e 

6.1 Single-pole lens pre-field 
  

There are two possible directions for beam entry ina 

single-pole field because of the asymmetry in the field 

(Marai and Mulvey, 1975). Accordingly, there are two 

possible arrangements for the prefield. The first consists 

of the field bounded by the sharp edge of the field and the
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object (Fig. 6.1). In this case the ray enters the main 

field from the positive z-direction. (This case may he 

called high flux pre-field). 

The pre-field focal length fore for this mode of operation 

is 

_ ’ = ’ fore = ri/r Le Bec eae baeee Ss (6713) 

and from Fig. (6.1), the pre-field focal distance (Zora) 

is oe a i = 

then a Zore = Zany +r, x fore Pats ahiesce 406 2) 

Equation 6.2 is also valid for the second mode of operation 

when the pre-field and main field exchange places (Fig6.2) 

i.e. low flux pre-field. 

  

     

  

object plane 

    
      

Fig. (6.2) Low-flux density pre-field of single polepiece 

lens. 

For the spherical polepiece model which is a realistic 

model for single-pole lenses (Alshwaikh and Mulvey, 1977) ,
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the telescopic ray path occurs at an excitation parameter 

NI/V,," = 22.36. A strong pre-field is created followed by 

an imaging field of low aberration when a specimen is placed 

at a distance Zo = 0.8d (0.2a). In this case the condenser- 

objective lens of Riecke and Ruska (1966) is achieved. Fig. 

(6.3) shows the above case with two possible directions of 

the illuminating beam. 

Ca ane ee 
  

0.6 ore, 4 _— 

NI/V_. =22- 36 

  

        

  

  

Fig.(6.3) Telescopic ray path in the spherical field 

model. 

The electron optical properties of the pre-field for 

the first mode of operation is shown in solid line in (Fig. 

6.4) while dotted line refers to the case where the main 

field is bounded between the sharp edge of the field and the 

object. The bra Fisid in this case has been constituted 

by the remaining field (i.e. high flux pre-field). 

From the two figures it is noticeable that at an excita- 

. ¥ 

tion parameter NI/NI, = 1.6 one obtains a symmetrical con- 

denser-objective ’.
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Fig. (6.4) The electron-optical properties of the 

pre-field of the single pole lens 

6.2 Aberrations of the single-pole nre-field 
  

Using the program 'PRE field' to calculate spherical 

and chromatic aberration coefficient of single-pole pre- 

field. 

It is seen from Figure 6.5 that the coefficients o 

and Cy both decrease slowly to a minimum with increasing 

ampere-turns and then increase again. The same occurs for 

the other mode of operation. Solid and dotted lines in 

Fig. (6.5) are presented for both above cases respectively. 

From Fig. (6.5) one notices that the four curves have minima 

% i 
at NI/NI. = lO" ole ely NI/V,. "= 22.36). The minimum values



for Cc /dand c /A for 
Cc Ss 

Oye 

the first mode of operation are 0.5 

and 0.8 respectively while for the second mode cfdis eae 

and Cy depends upon the field distribution inside the 

snout as discussed in chapter 2. 

The preferred mode of operation will depend on the 

optical characteristics that are required in a particular 

application. The preferred mode for chromatic aberration, 

as example, is the high-flux density pre-field. 

Comparing these results with those in chapter 4, we 

notice that the minimum of both coefficients of the pre-| 

field in the first mode.differ 

rig, th. >) C, of the single 

pole lens pre-field in two 

possible modes of operation.} 9 

me for the low flux density 

pre-field mode. 

by only 2% from the 

pole objective, but 

of NI/NI.. For the 

both Co and . take 

  ‘ 

\ 

  

  

    

corresponding coefficients for a single- 

they occur of course at different values 

second mode of operation the pre-field, 

the same values as in a single-pole 

objective case for the same excitation parameter which occurs 

usually at N/V, 3 een 30.
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7. THE CORRECTION OF SPIRAL DISTORTION 

7.1 Spiral Distortion for one Lens 
  

It follows from the discussion in Chapter 4 that for 

the square top field model, the spiral distortion coeffi- 

cient can be represented by the relation (A9.5) as 

ie Ok aa 2 1 sp a ne Sin 26 obra bk oc Go eee (7. ) 

L L 
where @= KS = (e/8m) 4 (BS/V,,*) = 0.1863NI/V_* coe 626 2) 

The above relations are derived in (Appendix 9). 

However, the spiral distortion of single pole lens or 

other model can be found numerically by the program 

"CDISTORTION' (Chapter 2) using Scherzer's equation 

(Scherzer, 1937). 

7.1.1 Universal curve for spiral distortion 

The parameter 0 has been defined in the relation 

5 
Oe oe 0.1863 NI /V,. ae 2.0306:/ eeeeeee CES) 

where NI/V,? = 10.9 for the square top field (Mulvey and 

Wallington, 1973). 84 is assumed to be the corresponding 

value of @at the minimum focal length of the lens. 

Equation (7.1) can be written as 

Doe mee BP PON He 62 Poe sin’ (26. 6%) 
oe ae 2 ¥ (>) 8 a Go 

Oo Oo 

3 Zi 

BO sete ey + 0.51 (5. 5 bi 406 be yo Te) 
“ee 6 89 6 Oo oO 

Let Dsp0 be the value of spiral distortion coefficient at 

the angle of rotation O45 then from equation (4.1)



re a Dee 
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From equations 7.4 and 7.5 it follows that 

Q SP = (5)°+ 0.12 (3) Sin 4,06 (a) a 7 26) 
SP, oO 6, 

a NT \3 MT : NI 2 
ie = (wr, . ed 2 at Nr sin 4.06 (OT ro 4 e723 

SP, " . ; 

The latter equation proves that the relative spiral 

distortion coefficient Dep/ spo differs from the cube of 

the relative excitation (NI/NI,) ° by a small additional 

oscillatory term which depends on the value of NI/NI.. 

A similar relation with slight difference was obtained by 

Marai and Mulvey (1977) 

The first term becomes remarkably accurate for 

conventional lenses and the general expression is approxi- 

mately in agreement with the results found by Liebmamn (1952) 

for various twin lenses. There is another relation found 
2x6 5 uf 3/D\ENS ) 

by Huang (1977) and takes the form CS 2..4(e er 

7.1.2 Finite conjugate effect 

In a projector lens the object distance is not always 

at an infinite distance from the corresponding magnetic 

projector lens. So in the calculation of spiral distortion 

the finite conjugates of the final projector lens must be 

taken into consideration. 

It is convenient to study the spiral distortion coeffi- 

cient rea of the constant field to assess the magnitude 

of this effect analytically (fig. 7.1).



  

  

    
    

  

  Tel   
Fig.(7.1) Ray with finite conjugate in the square top 

field. Fig.(7.2) Relation between the object 

distance u, the field width s, and image 

distance w for the square top field 

The equation (A.9.13) is re-arranged here as 

  

  
  

  

oe. v3 2 in K3 x3 | sin(2K2S) 
= a + — 

Dep 8 oe Ko (Gr,) 

ron r3 2 Kor2r$ 
- Kore (e,) sin(2K.,S) - Z co32K2S 

Korr 0 

+ 4 eoeee eee i.) 

noticing: that De is denoted spiral distortion coefficient 

in the case that the ray does not come from infinity. 

Prom. toe cig. Clase) itis teund that 

r,/u = r5 ae ec elerec eee Cae) 

where u is the distance between the source and the lens



  

Fio.{7.3).. the ratio 

D sp/ "spo as a 

function of object 

distance u/S   

  

    

Equation (7.8) is then written as 
K3 Sin(2K2S He HSIN 9 

D a | (4S + ee) (14+ Ge) - 7 «=COS2K28 
sp. 8 Kea Ksu 4u 

ou Ko ‘ 
~ TWF sin (228) + 7 | Lo. eoeeeevee eee C7 #0) 

where u is the distance between the source and the 

nearest boundary of the field (fig. 7.1) 

Letting K2S = @, and rearranging equation (7.10) 

leads to 

2 ao 0» 03sin20 sin20 02C0S2 0 

Dsp.° =(—— + sts)? Ton 8 Bina) © © Aas s) 

sin26> 02 2 
Oa CUPS) * Se (7.11) 

uA A 63 062 sin202 62 02 sin262 

Pao a ie SS ae Bare) eaters). Bta7e):* 

rae 82cos282 ‘ x3 ies te eat, oe ak ee Be F422) 

4(u/S) I . 

For a certain value of 02, equation 4.9 gives the 

variation of spiral distortion coefficient of the square
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top field with wu when rj = 1. And it is clear that the 

first two terms equal to D * 
spo. 

An important case is that where 0) = 7T/2 (i.e. when 

the magnification is near its maximum and the radial dis- 

tortion is nearly zero). The spiral distortion D ane 

calculated from 7.12 under these circumstances is given 

"Ss st = t+ pos 7 (7513) sp. 16 a u S) a 4 (u S) eseeeeeveene . 

. a 3 
noting that DSp0® io. T /16 eoeeeeeeeee eevee e@ (7 . 14) 

a A 4 Sere S 
then DSp./ spo — [1+=2 ( a ) + Te (=) ] eeeeeveeee (205) 

Fig. 7.3 shows the relation between D sp spo* a fLuncreion 

Of 4. 

Let V be the distance from the far boundary of the 

field to the point at which w= © 44rd. 74), sehen from 

equation (1.2) and (1.3) 

    

TY, ope ee Ok eee eee e ees eens (730163) 

Yy: ve eee 
so Vv = oF = aaa = UK2 ees etn eee a (eT) 

at 

noticing that K as mentioned before 

The magnification of the lens (m) defined as 

oe OFS 

tote On 5S. * 

+ 0.58 

aa oe Oy oS 

and takes the value 

  

for the case 09= 7/2 as a particular case 

iFans 

m = Ca/s): * O> - : eS Se ae eae ey 
(u/S)+ 0.5



ey 0). 

where the value of 0.5S represents the position of the 

principal plane of the lens which in this particular case 

(i.e. 62 = 7/2) is approximately at the middle of the lens. 

Both (D sp’ spo! and m can be found by substituting 

the value of u/S in the equations 7.15 and 7.18 respective- 

iy; To plot the graph in fig. (7.4 .) various. values of 

D go%Dg és and m can be calculated for a range of u/S 

values. 

P 

  

; | | 

D 
dees eke 

oO 

Pee 
Fig.(7.4)a The ratio 

Dep/ spo as a function| |, 

of the ratio of 

conjugates (m) |4 

      Oe ee Oe 
| | 

Fig. (7.4a) shows the relation betw D een Bap! S00 and 

m which are taken for a wide range of values. The graph 

approximately obeys the relation 

Pea! V eae Ce Ree OF Le ABM es gee LO) 

But within the range O< m <l, the curve is better 

approximated by the relation



  

    

  

  

Fig.(4.4b) The ratio fm (Bo 8/9. no) as a function of 

ratio of conjugates (m) 

= ee 
Dey’ Pspo 7 © eoseewmeoeeeveeeseeeeseeeeeeve Gai20) 

and this fact is shown in fig. (7.4b) 

7.2 Mathematical analysis for spiral distortion correction 
  

The possibility of correcting spiral distortion can be 

examined mathematically in a rotation-free system (Fig.7.5). 

(i.e. the lenses with equal and opposite currents). The 

system contains two lenses; one is the corrector which has 

a spiral distortion coefficient Dep 1) 3 

this coefficient is reduced by a factor m? when the aberra- 

tion is referred to the final image plane, wWi2re m is 

the magnification of the intermediate lens (i.e. magnifica- 

tion due to corrector lens at the projector lens). The 

second lens is the projector whose spiral distortion 

coefficient is Dep (2) « The two lenses are separated by 

ae distance i). (Pao. 74.9)



1D Oa 
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Fig. 7.5 System for correcting spiral distortion with 

two square top field distributions 
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a ~~ Magnification 
a (1) L,/S = 0.72 

: Oh tO ai fe 2.08" 
x ee L2/S = 100     

  

Fig. (7.6) The total spiral distortion coefficient 

and final magnification for various distances 

(Li/S) between the two square top fields
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Fig. (7.7) The total spiral distortion coefficient 

(DT) for two square top fields for various 

excitation parameters in the final field 

Referring to fig. (7.5) it can be shown (Appendix 9) 

that 

M/s. Fla eo <e, Com. Guy Os, Si By Cs es ee eee Le poe 

The magnification M; due to the first lens at the 

second lens is derived in Appendix (A10), and the equation 

AlO.9 is 

Mi = Yo = -(u/S)@isin6; = cos0,-(L/S) 60isin6, acete Cisie LD cio 

The total spiral distortion D of the final image is 
Tsp



= OO aa 

produced from the contribution from the final lens and that 

from the first lens i.e. an amount equal to Dep (1) /Mi- 

In the rCtation free system the Dmsp takes the value 

Otis 20h) UE eee) ard (7.238) 

by substituting the values of parameters in equationse (7.1) 

(731): and (7.22): the value. of DT, may be written as 

1 pT40it+ sin26, 

ee ee 4u203 -u?03sin262-4602-2u02 
sp u sin 04 ‘ +5in26, + 2UG,605262\ (7 935) 

Pp 

Fig. (7.6) shows the curve of DI 5p versus (SE) (i.e. 617° /0), £36) 

for various L/d . 

Also the final magnification of the system (M,) found by 

the equation Al0.20 is plotted in the same figure. By using 

a fixed distance DT, 

* 

p again is plotted as a function of 

(NI/V*), for various values of 62 (fig. 7.7). 

It is clear mathematically from 7.23 that there is no 

minimum value for DT Sp + -00O. But we can find a solution 

for any value of DTS p° By rewriting 7.23 using the symbol 

D instead of DT Sp to avoid difficulties 

40i1+sin20, 
Ques gee 

Su™D sin? 9. 

- 4u703 - u?263 sin262-402-2u02 

+ sin20. + 2u8»cos28o eoeoeeeveeve CE. 24) 

then equation 7.24 takes the form 

~485-sin26, 

u? (8D+403+03sin202) + u(202-282c0s202) + (—syqz75>-— 

+ 40o- sin20,= 0 eveeveevee C25) 

It is clear that this equation is a second order 

equation and can be solved by the relation
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L 
ee -B+[B?+4Ac] ? 

oA coeeeeeee eee @ (5.26) 

where A = 8D+403+03 sin20> ci ha eet ewes ol eee 

B = 202-202 cos209 eoeceoeveeoeoeree ee ee ee eo (fi, 26)) 

-40,-sin20, 

and C= Scceinto.. + 469-sin202 sie pie be ow (7. 26¢e) 

We are concerned with the case where DT Sp =.0,) so 

it is necessary to put D=O in the equation 7.25 and 7.26a 

to obtain the suitable distance between the two lenses in 

a certain value at 6; and 02. It is useful to know that the 

general equation (7.26) is valid only for positive u. 

Special cases « 

By operating the projector lens at an excitation of 

NI/V,3 = 8.43 [ i.e. 02=m/2] which is in the region of 

maximum magnification and low radial distortion, “the 

parameters A, B and C take the values 

-40,-sin20, 

3 - ¥ ; . o eee A /2 Bow. Wee ok are + 27 

Equation 7.26 then becomes 
-40,-sin201 

u/S = wiles + i, [4n?- 213 ( + an) ] 7 Ces pacri ee 
T sin20, 

Assuming that the corrector lens is operated at an 

excitation which is an odd multiple of 1/2 (i.e. 6,;= nt/2) 

where n is odd number, it follows then that 

u/S = Li/S cis ceavew Pheeel 

For values of n=3, 5 and 7 a spiral distortion 

correction is obtained at the distances (Li /S) =0.°2; 

1.08 and 1.37 respectively. That is mean spiral distor- 

tion can be corrected under special conditions of 63 - and
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82 by choosing the suitable distance between the two 

lenses. 

It may be useful to look at the results of some 

other special cases of 82 such as 1/4, 3m/4 and 31/2. 

To avoid unnecessary repetition of elaborate mathematical 

derivations, the final results obtained from equation 

7.26. for 81 = nm7/2 are tabulated in table 7.1. 

  

  

  

  

    

Table: 7-1 

The values of u/S = L,/S in which DT sy = O 

01> 6, = 1/2 0, = 30/2 6, = 50/2 | 01=710/2 

Boy 

w/4 1.0029 242683 3,096 Bho et 

w/2 QO <0 0; 1202 1.0866 1.3698 

31/4 L,/S_is negative 0.3919 0.6273 0.8007 

S172 L/S is negative OO ; 6 1522 0.2235           
  

From the above analysis, it is clear that it is 

impossible to obtain spiral distortion correction with the 

condition 6; = 0>. 

This shows that spiral distortion can be corrected. For 

the excitation N/V, of the correcting lens greater than 

the value at which the spiral correction occurs, the spiral 

distortion appears to be increased again without reverse of 

sign. However, the above results are sufficient to indicate
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the feasibility of correcting spiral distortion by using 

two twin-pole lenses. Another advantage of this arrange- 

ment in the TEM is the reduction in the length of the 

viewing chamber. 

The investigation of the system with two single pole 

lenses came as a result of the work done on the two square- 

top field system. When a system with two single pole lenses 

is used, it is found that no correction is achieved when 

the two lenses have the same excitation parameter. In 

this type of arrangement, the spiral distortion vanishes 

when the radial distortion approaches infinite values (i.e. 

the excitation parameter in which telescopic ray path takes 

place). When the radial distortion vanishes, the spiral 

distortion takes a value lower than that for one single- 

pole lens.
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8. CONCLUSION 

Theoretical and experimental investigations have been 

carried out for conical, cylindrical and ellipsoidal pole- 

piece shapes in a single polepiece magnetic lens. The 

uniformly magnetized sphere model appears to account well 

for the measured focal properties of sirgle polepiece 

lenses. This model is also remarkably close to the field 

distribution of other kinds of single pole lenses with non- 

spherical polepieces. This mode therefore provides a firm 

basis for understanding single polepiece lenses and their 

application in electron microscopy and electron microanalysis. 

It has been shown experimentally that a uniformly magnetized 

ellipsoid gives essentially the same kind of field distri- 

bution as a magnetized sphere. However, further analysis 

of the field from a solid is required. 

When a single-polepiece is used as a projector lens, 

there is a preferred direction of the asymmetrical 

field. Thus the incoming parallel electron beam from the 

objective lens should be incident on the sloping part of 

the field. This was proved theoretically using the 

spherical field model. This has also been confirmed using 

some real field distributions. To supplement these theo- 

retical conclusions, experimental work was undertaken in 

collaboration with Jina (Appendix 8) using a lOOkV lens. 

These experimental results fully confirm the above con- 

clusions. As a practical example,in a TEM projector when 

the polepiece tip faces the incoming electron beam, the 

resulting distortion at maximum magnification, for a given 

projection distance, is about 44% less than that for the
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corresponding value for conventional symmetrical projector 

lens. What is more significant, however, is that this 

spiral distortion can be corrected completely using two 

Single polepiece lenses facing each other. This has been 

shown mathematically, and experiments by colleagues are now 

in progress to varify this result. 

The question as to whether there is a "correct" orien- 

tation of the single polepiece lenses in an objective lens 

is still difficult to answer. This analysis of computed 

focal properties for an objective lens using the spherical 

field distribution as well as other real distributions indi- 

cates that at an excitation parameter NI/V,? = 14 and with 

an arrangement in which the incoming illuminating beam is 

incident at the- slopingedge of the field ( . the preferred 

direction for a projector ) leads to essentially Smafler sphe- 

rical aberration coefficient than that obtained with an 

arrangement in which the poleface is turned through 160°: 

However, in this second arrangement, the spherical aberra- 

tion is strongly dependent upon tie field inside the snout. 

So, as the field distribution inside the snout becomes more 

steep, the spherical aberration becomes higher. It is gene- 

rally true for this mode of operation that there is no opti- 

mum excitation for minimum spherical aberration. The Sie 

value falls steadily with excitation, levelling off at 

excitation parameters in the region of NI/v,.? @ 456: 71 

should be pointed out that since this excitation is much 

higher than in the first mode, it will usually be necess- 

ary to scale up the lens dimensions to avoid magnetic 

saturation of the polepiece. Each lens therefore should be
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designed individually according to the special require- 

ments of a particular instrument (TEM, STEM or SEM objec- 

tive). In some cases it may be advantageous to use the 

Single polepiece lens as a "condenser-objective' at low 

aberration. 

Finally, the relevant calculations show that chromatic 
change in magnification and in rotation for single pole- 

piece projector lenses are similar to those for double pole 

lenses. However, for an objective lens, there is a pre- 

ferred direction in which these aberrationsare somewhat 

lower than those of conventional lenses. 

We can therefore conclude that it is feasible to con- 

struct an entire electron microscope (TEM or STEM) using 

single polepiece lenses. They will produce a final image 

with significantly fan aberrations than those of conven- 

tional lenses. 

In addition, the inherently compact form of these lenses 

will result in a significant reduction in the length of the 

electron optical column.
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10. APPENDICES 

10.1 Computer Program 'DATA-BZ' 

TRACE 1 

TRACE 2 
MASTER ADIL 

THIS PROGRAM USED To CALCULATE THE FIELD DIS. OF THE COILS. 

REAL MUO 

NIMENSION AVC112) cAZC1912) 6 A106142) A191 (6192) pAZ0(112) eAP2E112)4 

4AS 04112) AP 6412) ,AZ6112) -R26112) ,AZAC112) 2X 6112) 

MUORGL*S. 14% 010.84 087.9) 
720.0 

REAN(C1,3)01 1024528 

FORMATC3F8,5-FR.1) 

WKITEC?],110)01,b268.P 
FORMATCTH1) 3X0 F7e oe CXR? B,O6X0F?7. 3p OKM 0 FB. 1) 

ALPHA®=D2/D1 
RETASS/D1 
WRITE C2, 999) ALPHASBETA 

FORMATCTH ¢8X%s FS. 9-¢8Xe FB. 5) 

ADSMUO/ C2. 401 *RETAWCALPHA?1.)) 
ho §-Ka1.112 
A1CK)BBETA@7Z 
A2(K)=HETA#Z 
ALO CK) BT #SQRTO1 FAT CK WAT CKD) 
A117 CK FAL PHAtSQRTCALPHAWALPHAtAY CKD HAT CK) 
A2Z20CKI RT. #SurRTC1. tA2 CK Ae CK) 
A2Z22CKIBALPHASSQRTCALPHARALPHAPAI CK) AL CK)) 

ASCKISAT CK) *ALOG CATT OKI SATN(CK)) 
AP CK) BAZ CK) *ALOGCAZ2 CK) /A206K)) 
AZCKIBCASCK) HAPCK)) ®A0 
¥CK)2Z 

RZ(KIBAZ CK) eP 
WRETEC2],20) 2282(K) pAZ2(K) 
FORMAT(CTH ¢€5.1.8X%¢F14,8,8X,F17.11) 

7=240.1 

q0-70°5 
75240.5 

CONTINUE 

STOP 
FND
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10.2 Computer Program ' CABERRATION' 

TRACE 1 

MASTER ADT, 

THES PROGRAM IS USED TO EXAMINE THE CUBIC RELATION ETELN 
THE RESULTS ARE wIlTH RESPECT TO HALF WIpTH VALUE 
THIS PROGKAH TO EAAYINE THE CUBre RELATION FIELD 
THE RESULTS RESPECT TO HALF WIDTH VALUE 
THE PROGRAH USES THE MEAN VALVE OF AZ BETHEEN THE TyO 2 INTERVALS <TO 

w
s
 
S
o
 

20 

299 

CONSTRUCT THE ELECT29N TRAJECTORY USING THE PARAXTAL RAY EQUATION, NISENSTON KUCVI2Y GAC1G2) ¢ALMOT82) FMV C182) EZ 0182) @ RMAC1B2), IRMV C162) ARNC1 82) ,A2C182) 326102) ,AZAC1B2) XX 0462) 
bDIKBENS TON B1013490F4(18126F2(161)-R 61851), R10184) DIMENS Tut ALCCVG22 GALT C1 BAY GALIC (182) + RACIBP) RAC (132) RAS(AG2) TRIAC C192), R1AC182) ,H6182) PALCIRZ)D,GO1E2) ,CACTE?S?) , 4200182) SBSORTCT, O¥10, we ("19.9769 .1 (10, ## (831,948, )906, 534410 wel?) READ(1e44)N- 

FORNATCI4) 
7a+54,945 
DO 5 KS4,N 

AZCKY SS, BO8PHP/ (3, 34de Zz) wHd, 
X(K) a2 

LECK E8019 Gb To: 3 
AZACKISCAZ CK) HAZ (KH4)I/2,0 
AZC(KISAZACK) wad, 
AZDCKIMAZC CK) WAZACK) 
AZVCKIMCAZ CK RAZ CKR1DI/ (KCK) eK (eH)? 
AZI CCK) BAZI CK) AZT ON) 
TF 62"4,00030,6,8 
2eZ= 4 
GO -F0 5 
RCK) al, 06 
R1¢kK)#0,0 
242-0.5 
CONT TAUE 
00 20 Kal, 

AZMNCKI RAZA Ci e2 eK) 
XH OKI EX Cmte) 

CONTINUE 
WRITE(2,999) 
FORHATC//,4%,!' & T/Sart(ve)d!,oxr,? FPROJ(M)',18X,! DRADTAN (MG m2>)9,O 

Xe! DSPIRE(i1(e2d0',5x Ke tak VOX, 'Qs!)
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9 READ (1,911) 80,R991,P1 

141 BPORHAT CARS 1685.42 
TF (p4213,0-6 

Ab120 , O04490 4354194 w*?. 

AR2@=son, ¥AR1 

AbSSSORT (C2 OwAb1) ees, /4, 

AubGdsee, #Ab 1 

RHOsd 0 

RHOGsO,4 

nO 7 Ke2,h 
ZOaK CK) xX (KR) 
GICKISSHAZA CK) #1 
FICK) SC9S 091 CK) 20) 

F2CKISSINGG1 CK) 20) 
ROEKIBROwWET CK I+ROTEE 2 CK)/G1 CK) 
RACK) ROR CKI€R CKR1))0/2, 
RAC CK BRACK I wRACK) 

~ RADCK) BRACC HE) RACK) 
RICK RROD EET CKD GT CK) ROWE 2 OK) 
 RIACKIBOR OR ORR TIA CX CKD eK ORT DD 
RIACCKIBRIACK I eRIACH) 

WOK SRTACCKI/ZRAC OK) 
ZHSECKH CK) XC Ke 1) 

GACKIBSwWAZIN CK) #P 4 

PNT CK RCOS COM CK) # 2M) 
FM2CKIRSINGGN CK) a2) 
RE CKIVRRNO we CRD ROT HEH 2 OK) GM OK) 
RNACKIBCRA CK RIC KET 2, 

RAT CKIBRHOD eR CK GA CK) A RMOwWFMO CK) 

RMOsRN CK) 

RHOFwsREF CK) 

28 ROSRC(K) 
ROTsRICK) 
CEC ETON) GO. Toece 

FPROGST SARI CK) 
7 CONTINUE 
FSEEPROJ*EP ROY 

no 40 Kaée,h 

GACK I BBRBA CHS em) we PROT 
49 CONTINUE 

~ FoeO, 9 

§SOs0,9 

DU 40 Kee, 

DXBX CK ek CK) 

FOBENSCAZIC CK HAE CH CALZL CK) ww ae RH OCKIHAZC CK) eRAD CK HGACKD*DX 
FSDSFSDH(S tH CKI/SCARGHALZOC CK) DD wAZD CK) RAC CK) HDX 

“AO COATIUUE 
ADSS.O/ C8, OWES) HALT WED 

Soe AS S#*ESD 
QRESQARTCABSCAD)) wFRPiP OG 

ASSSORTCAES (SD)) FPR OU 

WRITE C2112) PT eFEROJ,AD,SD,OR EQS 
£92 FORHATCAH 6 SX FS, ap aK E17 a Pe BAe EV Pr OX F144 BPX e FP, Se SK, ES, 3) 

GO TO 9 

43 stop 
END



O
n
o
o
n
N
 

A4 

10.3 Computer Program 'CDISTORTI@N 

TRACE 1 
TRACE 2 
MASTER ADIL 
THIS PROGRAM IS USED TO EXAMINE THE CUBIC RELATION ELELD 
THE- RESULTS ARE WITH RESPECT WALFYWIDTH VALiE 
THE PROGRAM USES THE MEAN VALUE OF 42 BETUERN THE TUG 2 LiTp aVaLls 
CONSTRUCT THE ELECTRON TRAJECTORY USING THE BAKAALAL RAY EQuaTtiok 
DIMENSION A16175)¢A269175) 6A106175) -AI1 09179) -AZ0C175), AP 20175), 

~~ * DTMENSTON G616175)0616175) -F20175) -R(175) 890175) 
== DIMENSTON: AZO61752.¢421 (475) 602406175) eRAC175) oe RAC(1 75), BRS CUPS 

TRIACO175) -RIAC175) -H0175) 
ANU BG, S545e10. aa (27, 2 
GESQRTOO, 2410, me (12,9791) #AMUO 

= REARS I 97 eon 

7? FORMATCI4) 
7=454,00 

99 DO 5 K34.N 
AZCK)B56, 8957677 (3, 3401555472) «es, 
X(K) 82 
if {e(6) GT 0000) G0-75-%4 
AZMs2AZCK) 

4 TECKLEQ,13Gn TO 3 

AZACKIBCAZCK) #AZCK9199/2 0 
AZCCKIBAZACK) weD, 
AZT CKIBCAZC KI RAZ ERATIIA CK CKD ed CK H1)) 
AZ1C CK BAZ CK) AZICK) 
1F-6274,.000)6,6,8 
zaz=0,1 
GO f0 7 
RCK3 24 6 

R1¢K) 89,0 
282Z80,5 
WRITEC2 259) Re X CK) FAZ OK) 

FORHATCI5S,2F10,7) 
CONTINUE 
WRITE (2-300)A2H 

B00 FORHATCAHOF10K)5H AZMReF146,112 

WRITE(2,500) 
500 FORMAT CAH4 74X03 “Fr 5KpOH NI/V41/20 aXe SH COe14Ke 3H CSeT3K eS Fils J 

114 XsHH CSMe1OX26H FORM) 

nm 
—
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GQ READ(1T211)R0,R94 7P4 

44 FORHATC254,1,F5.1) 
PR O6p4)737070 

ABT a(GeP1)we?, 
AB2e3.*AB1 

AB3=Ab1/2, 
pO 7 KROQ, 

ZOBCKCKI XC Ket )) 
GICKI BGHAZA CK) #p4 
F4¢K) BCOS (G1 (CK) *20) 
F2CK) SS INGG1 (KI wZ0) 

= ROK) BROWET CKD FROT EP CK) / G1 CK) 

RACKIECROKIeR OC KRI1D)/2, 
= RAC CK BRACKI RACK) 

RAS CK) BRAC CK) wkAC CK) 
R1CKIBROV HEI CK eR GI CK wR wee 2 CK) 

RIACKIBCRIKIMR (KTS CX CRI MX (KOT) ) 
RIACCKIBRIACK) wRIACK) 
HOCK) BRIACCK)/RACCR) 

IF CR(KI) 31-34-28 
34 UICeERIACC CK) 

FOBJe1,/RIACK) 
7FaxcK) 
G0 TO 29- 

28 ROBRCK) 

ROVeRICK) 
LEGK Lan) GO. TO: 4 

UIC aRTAC CK) 
FOBYR1,/RIACK) 

ZFBEORS HR OK) 
7? CONTINUE 

20 UISsulCwull 
FC#O.9 
FS#0,9 
DO 910 Ke2,N 
OXMCXCKI 9X Ck=1)) 

FCRECHAZC CK) wRAC CK) & DX 

FSBES*CAZ10 CK) Abe # CAZE CKD * 2. mH CK) HAZE CRD DeRAS CK) & DX 
IF OROKI927727,10 - 

10 CONTINUE 
2? CCmCABT HFC) /U1IC 

CSPCABS*FS)/U1S 
CSHECS*AZH (10, % 40,0) *PF RAMI 

FOB JMBFORU#AZH (10, e #6, 9) PT HANIA 

WRITECA 691120 ZF ePIC OeCS  FUBU  USH FU gel 
$F) FORHATIUEN 7 Ske hB eS eS KES aT SKEET Se he SK ek Se le DK R42 FSX, Flo 

1#10 .5) 
60 TO -9 

13 stop 
END
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10.4 Computer Program ' PREFIELD' 

TRACE 1 
MASTER ADIL 
THIS PROGRAM 1S USED TO EXAMINE THE CUBIC RELATION FIELD 
THE PROGRAM USES THE MEAN VALVE OF AZ BETWEEN THE TWO 2 INTERVALS TC CONSTRUCT THE ELECTRON TRAJECTURY USING THE PARAXIAL RAY EQUATION 
DIMENSION Aq (eee) 4A2C222) 4A1 06222) ¢A44 (222) pAZU C222) »AZ2(222), 

TASC222) APC 226) - ALC 222) B26 222) , ALAC 222) , x C222) 
DIMENSION G1 C€22)0F16222) ¢F 26222) RK 222) ,R1 (222) 
DIMENSION ALC 2229 ALI 6226) -AL4 C6222), RAC 222) »RACK 222) - RAS (222), 

WRIAC (E22), RIALS22) HC222) 
AMUOSS, S345a1U, Hm le7, ) 

GRSQRTCO,2*109%%612,9/9 42 ¥AMUO 
22*40,0 
Na204 

99 nO 5 Ke4q,N 

AZ(K) #56, 895707/(5,546472) *e3, 
X(K) 52 
TF CXOKY LEQ, Qu, god AZMBAZ(K) 
TE°K,EQ9,1)9G0 TO 3 
AZACKIBCAZCK)*AZ(Km1))/2,0 
AZCCKIBAZACK) wae, 
AZT CKIBCAZCKIPAZC KTS CXS KI XC KeT)? 
AZVCCKI GAZI CKI AZT CK) 
WRITECZ, 182K, ACK) FAZCK) p ALT CK) 

1B FORMATCHH pl4e5X,F10,6,5xX¢F9, 6, 5X0 F 12,6) 
25260, 95 

GY TO 5 
3 RCKya1,0 

R1¢K)#0,0 
27280405 

5 CONTINUE 
WRInEC2,300)ACM 

500 FORMAT(QHO10A4+5H AZMEGF14,491) 
WRITEC2,910) 

110 FORMATC//+25Xe ELECTRON OPTICAL PROPERTIES Of MAGNETIC PREFYELDS!) 
WRIve (2,141) 

a. FORMATO// 9X e'ZOBINsOXe mp bXe HN I/SQRTCVRY 6X ZPRE/DI 11K, EDRE/ 
WD e41X,1COV,VIX, ICS", 13K," REZFI) 8D
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9 READ C1-912P1,4F1 

19 FORMATCE5,9,F°,3) 
1F€P492493,0¢0 
FCRQ.O 
p580,U 

p04 0 
p0180,0 

ABT ( GHP) wee, 
AB2n3,*AR1 

ABSeAB1/2, 

MBINTCC10,0mZF1)/0,0540,5) 41 
po 7 Kep,M 

ZOBCK CK eX CK) 
GICK) BGwHAZACKI #P4 
F1CK) SCOS (G1 CK) wZU) 
FeCK)BSINCG1(K)wzZ0) 
ROCK wROWET CK) *ROT*F2CK)/61¢K) 
RACKIBCRIK) #RiKmq 2/2, 
RACCKIBRACK) RACK) 
RAS CK) BRACCK) *RACCK) 
RICKI FROWMET (CRD RGT CK) *ROWF 2 CK) 
RIACKIBEROC KIERO KOTIIS CXC KI KOKO) ) 
RIACCK) MRIACKIMRIACK) 
HOCK) B@RIACCK)/ RAC CK) 
ROBR CK) 
ROTeRICK) 
DXB eX CKeX (Ket) ) 
FCREC*AZC EK) #KAC CK) HDX 
FSERS*CAZ{CCKI HABER CALC (KI HD, MH CK WAZC CK) WRAS CK) DX 
CeCe WE Me GO° To -¢ 
UIiCeRTAC(K) 
FPREe*T /RICK? 

ZPREmFPREWR(KI*ZF1 

RZFeRCKY 
GO T0 29 

7 CONTINUE 

29 uISautCwuIC 
CCB (ABT wEC)/UIC 
CSB(AB3aFS)/U1S 

WRITEC2,112)Z241,MeP1,2P 
412 FORMATC/,4H 09X,FS,4,5X 

1105579X,F8,4) 

69 T0 9 
13 sTOp 

END 

Sot SXeh ee Te SX E10, 5p SXeFk
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10.5 Computer Program 'SPIRALCOREC' 

TRACE 1 
MASTER STF4 

DIMENSION P(66),8S9 (666) ,AKS1 (60) ,AD1(66) ,AD2 (65) ADS (456) ,X (66) 
DIMENSTON U666),U8666),AM1 666) 1AM2 (66) ,DSP1 (660) -DSP2(66),08PT (G0), 

TFPROY 696) 7Q8 (66) sAMF C646) 
THIS PROGRAMM TO INVESTIGATE THE POSSIPILITY TO CURRECT SPIRALDIS, 
BY YVSING TOW SUCCESSIVE SQUARE TOp FIELD BY SEBARATION 11! 
REAL | 

P1#22,0/7,0 
PYSsPIl Py] 

PYCaPISwpl] 
PRe8 45 

Ai2s100,0 
BSFa4,*PI*40, 4H (7. ) PF 
AKSFBSQRT C4644 Ow 0719 LL (9 L1H S71, dw. dD HBSE 

ADFIBSIN(2,OWAKSF) 
ADF2eCOS (C2, OWAKSF) 
VBAKSF 
READ CT OIL 
FORMAT CE7, 4) 
TF(L99*40-0 

WRITE C2 +6IL 
FORMAT CF7,4) 
WRITE (C207) 

FORMATCTH »3XetINI/SQRTCVR)'AXe  ERPROI' 8X, DSPIRALI',6X,'DOSPIKAL2' 
+SXe "DEP, TOTALIIXe 'QS'sOXe FIR MAG. ' 6 SXe'KLMAG,/LO") 
DO § KR1,00 

P«K)aFLOATC(K) 

BS(K)F4. *PLH10,¥* E77, HP OCK) 
AKS1CKISSURTC1 6810, HOI, dO LT HO10, HOST LD HAL ODD BS OK) 
ANT (CK) SSINCAKS4 (K)) 
AD2¢K) ®COS CAKS1(K)) 
AD3¢(K)#ADT EK) #AD1 CK) 
KCK) BPADZ0K)/AKS1 6K) /AD1 CK) 
UCK) @LeX CK) 

USCK) BUCK wUCK) 
DSP1CKISAKS1 CK m#3,0/2,04AKS1 CK) HAKS1 CK) SIN G2], OWAKS1 OK) /3,0 
TecucK)) 10,10,11 
DSP2(K)50,0 
GO: 7F0-12 
DSP2¢(K)31.937892540,78539816/US (KI 40. 7853984 6/U CK) 
AMT CKI MADR CK) mL wAKS1 CK) ADT CK) 
DSPTCKIFOSPTCKY/SAMT CK) SAMICK) =DSP2CK) 
FPROJ CK 4, 0/(AKS1 (CK) WADI CK COS CAKSE) FAKSERADZ CK) HSINCAKSE) MAKS1 

1 CK) #AKSF el wADT CK) &®SINCAKSF)) 
AMF (K) 892, /PIWAKS1 CK) HADI CK) @PI/ 2, OAL 2eAHT CK) 
QS (CK) BABS CRPROJ CKD) #DSPT CK) /SQRTCABS CDSPT(K))) 
WRITEC 2, BIPCKI,FPROJCK) -DSP4 CK) -DSP2CK) ,DSPTCK) ,QS CK) ce AM1 OK) AME CK 

1) 

—_
 

B FORMATSTH 5X eka 2c SX oF BeAr SK KO Ge SK PFI he SK EO ee SK PED, CHSX had 

5 

9 

1,5X,F10,2) 

CONTINUE 
GO TO $ 
STOP 
END
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10.6 The general solution of the paraxial ray equation 

for the spherical single-pole field 

The axial flux density distribution outside a uniformly 

magnetised sphere may be expressed as 

B(z) = By Oe es coe Ca eee 

where z is the distance from the centre of the sphere 

measured in the direction of magnetization and By is the 

uniform flux density in the sphere in the same direction. 

Equation (A6.1) refers of course to the external flux 

density so that z/a is never less than unity. 

The paraxial ray equation is given by 

2 2 ee go ee Oe. ecg ie cc eye 
daz? 8mV_. 

where r is the radial height of the electron path, e/m is 

the ratio of charge to mass of the electron, and v is the 

relativistically corrected accelerating voltage 

i.e. V = V(1 + 0.978) x 107 °v) 

co 

since o B(2): dZ = Wy NI 

= 06 

© 

a 7s ~ 
a By (a is ) dz = He NI 

=0O 

B.a = 2u_ NI She ee aes eceletee pete KAO) 
oO oO 

By substituting (AG.2) cand (AG, 3) in<(A.6.2) the paraxial 

ray takes the form 

, 4 

Ba Pee on, ac, ae eA) 
dz? 8 : m V Z 

ae
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Putting y = r/a and x = z/a, equation (A6.4) may be written 

2 

Tg Re eee tg en OR, Be: (A6.5) 
d*x 

where k= y= . 2u, Sh = 0.3726 SL... (a6.6) 
Fs? oe 

5 ag = 

ig: ye ee at x = O then near this point we have approximately 

> gaeee 
8 

then A 
Vic Se seers eB Kah C 

an 

again let us try the transformation y = t/x* ....  (A6.7) 

then y'" = £°/7x" = 44/x% 

Gt , 

and yl! = Sem oo + 20t cooeew ee eee (A6.8) 

ay x? x? 

Substituting equations A6.7 and A6.8 in A6.5 

2 

etek eo REE 4 (20 + a) & =O. (06.9) 
a 

This type of equation can be solved using Bessel functions. 

The general equation 

Keto & x (l=2a)at! + 1 (6 yu’) 24 ghen ty? [+ 0 

(A6.10) 

has the general solution (McLACHLAN, 1955) 

a ae [A 3, Comoe oe. (Re yee ees RO TLL) 
n 

Comparing equations (A6.9) and (A6.10) 

-8 = 1- 20, hence a = 4,5 

MER OD TO cars cro votes Oa he eee Rives ensue) 

and k2 x | iat a*y* x (2Y)



All 

hence by comparison again 

md = Oy. hen -y° =°+2 and k*=: p*y7* 

The above relations lead to 8 k/2 

By substitution of the values a and y in equation (A6.12) 

n= %. Clearly the nature of solution depends on whether 

k? is positive or negative, physically k* is positive 

whether the field B(z) is negative or positive. 

Thus the solution described by equation (A6.11) reduces 

to 

bit x) Plage (K/2 x?) 408 Ty gte/2, °F 
1/4 

and the general solution for equation (A6.5) is 

Yee Te AK/2 Xk). .+ Bae (6/2 eed be TAGs) So 
1/4 -1/4 

Or 

* v/a°= (e/a? [A u (kat /2e7)} 4.8 0 (ka? /2z7) ] 1/4 -1/4 

* The author is grateful to Mr. N. Kerruish of the 
Department of Mathematics of this University for his 
help and advice in solving this equation.
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THE MAGNETISED IRON SPHERE, A REALISTIC ‘THEORETICAL MODEL FOR SINGLE- 
POLEPIECE LENSES 

- A Alshwaikh and T Mulvey 

Department of Physics, The University cf Aston in Birmingham, 
B4 7ET, U.K. 

1. Introduction 

In a single-polepiece lens (Mulvey 1976) as shown, for example, in 
Figure la, the axial magnetic field falls rapidly from a high value at 
the poleface. The main imaging field is therefore essentially outside 
the lens structure, whilst low aberration coefficients are preserved. 
Such lenses become a practical possibility when the lens excitation is 
concentrated into the region of the single polepiece by means of high 
current density windings. The focal properties of such lenses differ 
appreciably from those of conventional twin-polepiece lenses. For 
example, the objective focal length increases slowly with increasing 
lens excitation and the spherical aberration and image distortion can 
be appreciably lower than those of conventional lenses. This isa 
consequence of the differences in the axial field distributions (Marai 
and Mulvey 1974). ‘The axial field distribution can be represented to 
a first approximation by the exponential field model of Glaser (1952) 
but it is difficult to correlate this model with an actual polepiece 
Structure, and so find an optimum design. For this reason, it seemed 
desirable to look for a more realistic model. A uniformly magnetized 
sphere seemed to be a good starting point. 

2. The uniformly magnetized sphere 

Consider the external magnetic field produced by a uniformly magnetiz- 
ed iron sphere (Fig.1lb). Lord Kelvin (1872) has calculated the magne- 
tic potential due to such a sphere; ‘from his expression, we may 
deduce the axial flux density distribution in the direction of magne- 
tization (Fig.1lc} as follows: 

joy 
B, = By (a/z) kid Cee cet. Sele cies an aiete Miie's oC) 

if the permeability of the iron is large. Here By is the uniform flux 
density in the iron sphere of radius a and z is the axial distance 
from the centre of the sphere, measured in the direction of magnetiza- 
tion. For the external field, z is, of course, never less than a. 
From Equation (1) the 'half-width' d of the distribution (Fig.lc) is 
equal to 0.26a. Thus, a magnetized sphere of lOmm diameter would pro- 
duce two field distributions each with a ‘half-width' of 1.3mm, which 
suggests that its focal length would be of the same order of size, a 
convenient value for electron microscopy. Consider one of these dis- 
tributions as shown in Fig.lc which corresponds to a uniformly maone- 
tized hemisphere bounded by an infinite plane of high permeability. 

3. Focal properties 

From Equation (1) the paraxial ray equation 

x" + (e B2/OmvV ) vr =0 wees. eee oe aaie wx bape Shel 
z x
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iron plate magnetised sphere 

    
   

  

specimen EA = 
Cc 

electron beam ee 
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8 coil vey 
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Fig.l. Development of the magnetized sphere model 

becomes xr" + fe (B, a?/e?)*/em v,| Vis hs Perle Cp ies 6 Caee CS) 

where dashes denote differentiation with respect to 2; yr is the 
radial height of the ray and e/m is the ratio of charge to mass of the 

electron. This equation has an analytical solution in. terms of Bessel 

functions. Thus, for a ray of unit height starting at an infinite 

axial distance away, the trajectory is given by: 

“y 2 \ z\2 1.6406 arf MA a aes 48) 
a lw serenennpeetenictictag ni 0.186 — _— 

() (nrv,")" " [ z? (7)] 

where J, is the Bessel function of order 4, Vy is the relativistically 

corrected accelerating voltage and NI is the excitation required to 

maintain the axial field distribution from z = a to z =o 

p 
{hs

 

i.e. NI = f Bz .eeee ee. Ry ey ce ak 

The corresponding slope r' of the ray is given by 

‘ 2 
r' = 0.611 (Ve bol Js] 0.186 25 = ee ce 

” ve 4 z ee 

where Jey is the Bessel function of order Phi 

Equations (4) and (6) allow the paraxial focal properties to be deter- 

mined directly by reference to Tables of Bessel functions. In particu 

lar the minimum projector and objective focal lengths coincide at a 
value of f/a = 9.43 for an excitation parameter of NI/V,? = 14. Thus 
a sphere of 1Omm diameter would produce a minimum focal length of about 

2mm. At greater excitations the objective focal length is given by 

y z *) £op3/8 = 0.116 NI/V Ses tee S EVO CE as C6 ot (7) 

The objective focal length thus increases slowly as the excitation is 

increased, a characteristic feature of single-polepiece lenses. The 

focal properties of the spherical field distribution calculated in this
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way are shown in Figure 2. Here the projector and objective focal lengths, and the objective focal distance from the tip of the hemi- sphere are shown as a function of the excitation parameter NI/vy?, The focal properties are plotted in terms of the ‘half-width’ da rather than the radius a in order to facilitate comparison with other field distributions. The corresponding values relative to the radius a can be readily obtained from the relation a = 3.846d, 

' f ! i 
  

Fig.2. Focal 

roperties of 

a uniformly 

magnetised Sriertemeteroceanagtal 
sphere 

im 4 ‘.    4 
Oo kote 

+ 8 1.2 hee = 
4. Lens excitation 

      
Nothing has yet been said about the method of magnetizing the hemis- 
phere. The magnetizing coil will, in general, produce an additional 
field on the axis which must also be considered. However, if high 
current density coils are mployed, as indicated in Fig.la, it ‘seems 
likely that the stray field from the coil will play only a secondary role in the imaging process. It should also be pointed out that in order to employ such lenses in the TEM it is necessary to bore a hole along the axis of the sphere. This can be done without changing the 
essential features of the present calculations. 

5. Aberrations 

The corresponding Spherical and chromatic aberration coefficients Cs/d 
and Cc/d respectively, of the spherical field distribution, calculated 
numerically by Scherzer's formula, are also plotced in PLO. 2 vor 
excitation parameters greater than that corresponding to minimum focal 
length, the curves are similar in shape to that of the objective focal 
length, i.e. the aberration coefficients increase only slowly with 
increasing excitation. In particular the minimum value of Cs/d = 0.4 
or Cs/a = 0.1. Thus a sphere of 1Omm in diameter would have a Cg 
value of O.5mm, an encouragingly small value. 

iG. Image distortion 

Low values of spherical aberration are often associated with low 
values of radial and spiral image distortion. The distortion in the 
image of an electron microscope does not depend directly on the 
corresponding radial or spiral distortion coefficient D but ona
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dimensionless quantity Q (Marai and Mulvey 1977) where Q = pk, fp 

being the projector focal length associated with D. Qsp (spiral dis- 

tortion) has a minimum value of about unity for all conventional 

-double-polepiece lenses and does not depend significantly on lens geo- 

metry. Figure 3 shows the Q factors for the magnetized sphere model 

for both radial and spiral distortion as a function of the lens exci- 
tation parameter NI/V,;2. The relative magnification M/Mo is also 
plotted as a function of excitation. In the region of maximum magni- 
fication, the radial distortion parameter Qr is small, as in conven- 

tional lenses, but the spiral distortion parameter Qsp is appreciably 

lower than that of conventional lenses. 

  oO —» 

  

  

  
  

Fig.3. Quality factors Qsp and Q;y for spiral and radial distortion 
of a uniformly magnetized sphere 
  

7. Conclusion 

It would appear that the uniformly magnetized sphere model provides a 

realistic basis for the understanding of single polepiece lenses and 

their application in electron microscopy. 
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10.8 Single-polepiece projector and objective magnetic 

lenses for the electron microscope 

* 

S.M. Juma and A. Alshwaikh 

(A paper to be presented at the Electron Microscopy and 

Analysis Group Conference in September (EMAG 79) in 

Sussex) 

Department of Physics, The University of Aston in 

Birmingham, B4 7ET, England 

ABSTRACT 

There are two possible directions for the illuminating 

electron beam to enter the axial field of single-polepiece 

lenses. The preferred direction was determined for both 

projector and objective lenses using an experimental 

miniature 100 kV single-polepiece electron lens. The 

importance of this investigation is that it demonstrates 

the possibility of constructing a high resolving power 

objective lens for the TEM or STEM. In addition, such a 

lens can be used as a low-distortion projector lens. The 

lens described can be scaled up for employment in a million 

volt electron microscope. 

  

* 

-At present lecturer in the Department of Physics, 

College of Science, University of Baghdad, Iraq.
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Introduction 

The focal properties of single-polepiece lenses differ 

appreciably from those of conventional double-polepiece 

lenses. The axial magnetic field of a single-polepiece 

lens is strongly concentrated by the single polepiece 

rather than by two closely spaced polepieces;this field 

falls rapidly from a high value at the polepiece tip 

resulting in a small "half-width". Two models have been 

introduced to represent the axial field distribution of 

such a single-polepiece lens. The exponential field model 

(Marai and Mulvey 1974) gave a good first approximation | 

but it was difficult to correlate this model with an actual 

polepiece structure, and so find an optimum design. The 

uniformly magnetized iron sphere model (Alshwaikh and Mulvey 

1977) seemed to be a more realistic theoretical model for 

single-polepiece magnetic electron lenses. Both models 

have shown that single-polepiece lenses can have lower 

aberrations than those of conventional lenses. 

Single-polepiece lenses have been used both as objective 

and projector lenses in experimental scanning and scanning 

transmission electron microscopes (Mulvey and Newman 1975) 

and transmission electron microscope (Juma and Mulvey 1975). 

However, no evidence has yet been given for the best orien- 

tation of the polepiece tip with respect to the illuminating 

electron beam. The focal properties of an experimental 

single-polepiece lens described in this paper are investi- 

gated both as an objective and as a projector lens. Con- 

clusions have been drawn for the best utilization of the 

Single-polepiece lenses in the field of electron microscopy.
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'The experimental single-polepiece lens 
  

Figure 1 shows a cross-sectional diagram of a 100 kv 

miniature lens of unusual design. The lens has interchangea- 

ble lids of different materials. If the lid is made of a 

non-ferromagnetic material the lens becomes a single pole- 

piece lens of 2 mm bore. However, if an iron lid is used 

the lens becomes a conventional double-polepiece lens of 

2 mm bore diameter (D) and 3 mm gap (S), i.e. S/D = cos 

giving a minimum projector focal length (£P) a Ofi 1.8 mm; n 
L 

as calculated from the equation Pel gn” O55 (S74 0.45 n*).%, 

Other values for the gap width are also possible. 

This substantial reduction in lens volume, and therefore 

weight, is brought about by the use of miniature coils, 

efficiently water-cooled. The lens is excited by two flat 

coil windings of 12 mm inner diameter and 38 mm outer 

diameter which provide sufficient ampere-turns for operation 

up to an accelerating voltage of 100 kV vo ILO" KV). 2" Bach 

coil is 5 mm wide and has 190 turns of 24 SWG (0.56 mm 

diameter) insulated copper wire arranged in eight layers. 

The two coils are connected in series. Thus the lens is 

excited by 380 turns capable of carrying a current of 

about 15 amperes, an excitation of more than 5500 ampere- 

turns. The miniature lens requires an input power of 

about 500 watts for such an excitation. The cooling water 

circulates directly around the coils, which are separated 

from each other and from the lens casing by a gap of about 

AE mm This direct cooling is very effective, since it 

enables the wire to carry a current of over fifteen times 

the normal maximum rating without overheating. Water-flow
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rates are not critical but in the experiments a flow rate 

of about 1 iitre/min was maintained. The mean temperature 

rise in the coil is about 100°c, comparable with that of 

conventional lenses. The heating-up time constant is 

quite short, less than one minute. However, the transfer 

of heat to the outer casing is negligible, 

The focal properties of the experimental single-pole- 

piece lens were computed from the axial flux density distri- 

bution. This field distribution was measured by a Hall- 

effect probe. Because of the construction of the lens, it 

was not possible to place the Hall probe at a smaller dis- 

tance than z = 10 mm from the polepiece tip. The field 

distribution in the important range O0<z<10 mm was estimated 

by considering (a) the exponential behaviour of the main 

part of the field, (b) the position of the maximum axial 

peak with respect to the polepiece tip and the steep decrease 

of the field inside the lens structure as determined on 

large scale models (Juma 1975). The self-consistency of 

the ecweted field distribution was checked by Ampere's 

Law eo tere eo : a 
where Bo is the axial flux density distribution along the — 

axis z, NI is the number of ampere-turns producing the 

field distribution and Uy = 40 x ZO"! henry/m. Figure 2 
shows the axial field distribution of the experimental 

single-polepiece lens at 2200 ampere-turns where the 

maximum flux density (BO = 0.39T) is about 1 mm away from 

the polepiece tip. The flux density falls to a negligible 
value at a value of gz = -10 inside the iron polepiece 

and at z, 50 mm outside the polepiece. This Shape of field 
distribution is typical of all Single-polepiece lances
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Single-polepiece projector lens 

The experimental 1OOkV miniature lens was tested as 

a projector by placing it in the diffraction stage under 

the final projector lens of the AEI EM6 electron microscope. 

It was supported by two brass flanges and aligned about 

the axis of the water pipes. The lens was cooled by the 

same cooling system of the microscope. Figure 3 shows the 

change in projector focal length when the lens is converted 

from a double-polepiece (iron lid) to a single-polepiece 

(brass lid). The figure shows that in the region of maximum 

magnification the projector focal length of the single-pole- 

piece lens is more sensitive to the change in excitation 

than that of the double-polepiece lens. The agreement 

between the computed and the experimental results for the 

single-polepiece lens is excellent (within 5%). The minimum 

projector focal length of the single-polepiece lens is 

higher than that of the double-polepiece lens and occurs at 

a higher excitation. 

The miniature single-polepiece lens was then tested in 

the EM6 electron microscope as the final projector lens (the 

original second projector lens is switched off) at 75kV in 

two orientations (i) with the polepiece tip facing the 

incident beam and (ii) with the polepiece tip facing the 

fluorescent screen. The imaging properties of the lens 

were recorded in both orientations at a constant projection 

distance (300 mm) between the polepiece tip and the photo- 

graphic plate. In both orientations the lens magnification 

is the same since the projector focal length at a specific 

excitation is the same. It should be mentioned, however, 

that the contribution of the EM6 electron microscope inter-
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mediate lens to the distortion of the final image on the 

photographic plate is negligible whether the excitation 

of the intermediate and the final single-polepiece projec- 

tor lenses are co-operative or opposing. Therefore, the 

distortion in the final image is due chiefly to the dis- 

tortion of the final single-polepiece projector lens. 

Figure 4 shows the variation of the radial distortion 

coefficient, Ca and the spiral distortion coefficient CSp 

4 
* for the two directions with the excitation parameter NI/V,. 

of entry into the lens of a parallel electron beam. For 

a projector lens, when the polepiece tip faces the fluores- 

cent screen, the behaviour of the Cg and esp curves is 

similar to that of the double-polepiece lenses. However, 

when the polepiece tip faces the incoming electron beam, 

the Ca coefficient decreases continuously with increase of 

excitation while the CSD coefficient increases only very 

slowly; at maximum magnification the value of esp considera- 

bly lower than that of a conventional lens. Thus the 

curves show that the most favourable arrangement for low 

distortion is for the polepiece tip facing the incoming 

parallel electron beam (Marai and Mulvey 1975). 

Figure 5 shows two micrographs taken under the same 

conditions (magnification = 5500X at NI/V,," = 14) which 

are the first of their kind in electron micrsocopy. In 

the region of maximum magnification, the radial distortion 

coefficients are very small for both orientations as in 

double-polepiece lenses but it is smaller by a factor of 

three at a negligible value (0.008) when the polepiece
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tip faces the incoming parallel electron beam. However, 

the spiral distortion coefficients which are appreciably 

lower than that of double-polepiece lenses are largely 

different from each other, as shown by the micrographs in 

Figure 6, by a factor of more than three. At higher excita- 

tions, the Csp coefficient of the lens whose polepiece tip 

faces the fluorescent screen increases sharply, while in 

the opposite direction, this coefficient is nearly constant 

from NI/V,.7 = 12 to 18. Hence single-polepiece projector 

lenses should be operated with their polepiece tip facing 

the incident electron beam in order to obtain full advan- 

tage of their superior optical properties. Correction Sf 

the spiral distortion of the final projector lens with its 

polepiece tip in the favourable direction can be done by 

another single-polepiece lens with its polepiece tip in the 

unfavourable direction (Marai and Mulvey 1977, Lambrakis 

et al 1977). These results are important to the design of 

single-polepiece projector lenses which can have apprecia- 

bly lower distortion coefficients than those of the best 

double-polepiece lenses. 

Single-polepiece objective lens - : 
  

The need for new objective lenses is not so much to 

improve resolving power, which is already near the theoreti- 

cal limit, but to improve operational performance by 

removing restrictions placed on specimen size and mani- 

pulation. These restrictions usually arise from the fact 

that a high resolution objective lens has two polepieces 

with small bores separated by a relatively small gap. By 

employing a single-polepiece lens as an objective more 

space can be gained in the specimen region without
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essential loss of resolving power (Mulvey 1974). Thus 

single-polepiece objective lenses provide minimum obstruc- 

tion of the X-rays and other emissions from the specimen, 

particularly when excited by miniaturised coil windings. 

The focal properties of the experimental single-pole- 

piece lens as an objective were computed for the two direc- 

tions of entry of the electron beam. Considering the 

objective focal length, for Figure 6 shows that when the 

beam is incident on the steep edge of the field (i.e. the 

polepiece tip faces the incoming electron beam) fy decreases 

continuously below the curve of the opposite orientation as 

5 
the excitation parameter NI/V,. exceeds 10. The single- 

polepiece lens can have an objective focal length fo of the 

same order as that of double-polepiece lenses (~/1lmm) at 

high excitation as shown by the dashed curve in Figuixe 6. 

When the spherical aberration coefficient Cy is taken into 

consideration, Figure 7 shows that it is best to have the roy 

incident on the sloping edge of the field (i.e. the pole- 

piece tip facing the fluorescent screen) since Cy is small 

at low excitations (1.3mm at NI/V,* = 14), However, the 

variations of the quotient C./f, with the excitation para- 

meter NI/V,.* (Figure 8) shows that it is best for low Cy 

to have the polepiece tip facing the fluorescent screen. 

Figure 8 shows that C ft. = 0.25 at NI/V,.? = 14; a very 

low quotient and excitation. At higher excitations, C./f, 

remains nearly constant when the polepiece tip faces 

the fluorescent screen. Thus single-polepiece lenses can 

be operated at low excitations giving very small values
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Or Cy although Eo is relatively large. However, small 

- value is more important than small foe Therefore, 

the first arrangement is the best since it has the smallest 

Cy value. 

The variation of the chromatic aberration coefficient 

1 
Cy with the excitation parameter NI/V,.*, Figure 9, is the 

same (Cy = 3mm) for the two directions of the electron beam 

Ui iatest 3: NI/V,." exceeds 14. At high excitations the Cy coeffi- 

cient of the lens whose polepiece tip faces the incoming 

beam is smaller than that of the other direction. Consider- 

ing the variation of C/to quotient with the excitation 

5 parameter NI/V,. , Figure 10 shows that the two curves for 

the two different orientations of the lens, meet at very 

high excitations. At the excitation of NI/V,.* = 14 where 

C/f, and C4/f, both have minimum values when the polepiece 

tip faces the fluorescent screen, the specimen is positioned 

at the polepiece surface as shown in Figure 11; the axial 

magnetic field inside the lens structure acts as a pre-field 

for this lens orientation. When the polepiece tip faces 

the incoming electron beam, the curves of for oe and Cy 

show that the lens behaves like a conventional symmetrical 

lens since the tail of the field distribution curve is not 

used in imaging but a strong pre-field condenser. 

The variation of the lens resolution parameter CB Vs 

% with the excitation parameter NI/V for the two possible 

orientations of the lens is shown in Figure 12. It can be 

k 
seen that best resolution is obtained at Ni” = 14 when 

the polepiece tip faces the fluorescent screen, where the 

6 L 1 
parameter CB Av. reaches a minimum value of 3.4 x 10
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mtv" *, When the polepiece tip of the lens faces the in- 

coming electron beam the CB: curve falls steadily with 

increasing excitation it never attains the above value.Thus 

as far as the ultimate resolution is concerned for a given 

value of Ba it is better to have the polepiece tip of a 

single-polepiece objective lens facing the fluorescent 

-ik 
Oty £) 

1 a 
screen. The minimum value of CB. (9:4) ¥ 10 

at the favourable orientation of the polepiece is lower 

than that for the best double-polepiece objective lens 

6 5 which is 4.8 x 10 ‘mtv , (Mulvey and Wallington 1973). 

The best resolving power of this experimental single- 

polepiece lens obtained by substituting for Ce. and ie in 

the well known expression for resolving power as limited 

by spherical aberration and diffraction is given by 

  

ae 
2. Oh ae ke 

new Wee See where C_ = 3.4 x 10 Ee Og Am : m 
e B vs 

m ic 

= mL % Hence Gin = 38 x 10 fAV Be) 

For example, when this lens is operated at l100kV (V.=110kv) , 

the maximum axial flux density Ba produced at 4650 ampere- 

turns is-O.825 2. Therefore, the minimum resolving power 

of this experimental single-polepiece objective lens is 

O. 22mm ee ee or 1.76A° for By = 2 Tesla. This value of d 

is excellent compared with the best double-polepiece objec- 

tive lenses used in high voltage electron microscopes (Mulvey 

1977). A purpose-built single-polepiece objective lens can, 

of course, have a better resolution. 

The curves showing the focal properties of the experimental
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single-polepiece objective lens for the two possible 

directions of entry of the electron beam are shown in 

Figure 13. It can be seen from Figure 13a that short 

objective focal lengths and small aberration coefficients 

can be obtained at high excitations when the polepiece 10 

faces the incoming electron beam. However, when the pole- 

piece tip faces the fluorescent screen, Figure 13b acceptably 

small aberration coefficients can be obtained at comparative- 

ly low excitations (NI/V,.) with a high resolving power 

( 6=2.2a°), 

A purpose-built single-polepiece objective lens can he 

designed with the polepiece protruded outside the lens 

structure without seriously affecting its focal properties 

in order to have more freedom for the specimen and other 

equipments. The presence of the iron polepiece ensures 

that asymmetrics in the lens winding do not significantly 

affect the symmetry of the axial field distribution. These 

properties are useful in the design of transmission electron 

microscopes and scanning transmission electron microscopes 

particularly high voltage microscopes.
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Application to high voltage electron microscopy 

The performance figures of this experimental single- 

polepiece lens may be applied directly to the design of 

objective and projector lenses for high voltage microscopy. 

If the dimensions of a magnetic lens and its number of 

ampere-turns are scaled by a factor m, the Magnetic field 

produced at corresponding points in the original and scale 

model will be the same. Consider therefore an increase of 

accelerating voltage from 100kv (V_=110kv) to LOOOkV (V_=2000kV) . 

If, for example,: the exnerimental lens is scaled-up m times 

where m = (2000/110) # = 4.26, the projector focal length will 

be scaled-up by the same factor i.e. tO = 24.3mm, and hence 

the magnification will be reduced m times. The distortion 

coefficients Ca and CSp are dimensionless and are therefore 

unaffected by scaling operations. The lens diameter and 

height will be scaled-up by m to 200 mm and 85 mm respective- 

ly, i.e. the volume and hence weight will be scaled-up by 

m? (i.e. 77.3X). The dimensions of such a scaled-up model 

are less than half those of the normal IMV projector lenses 

and are comparable to those of conventional 100kV lenses. 

The power consumption will increase by a factor of m? (i.e. 

18.2X).. The bore size will increase by a factor of m to a 

value of 8.5mm. There are advantages in such a large bore 

Since it enables a vacuum liner to be inserted in order to 

improve the vacuum (Juma and Mulvey, 1975). It therefore 

seems feasible to design electron-optical columns for IMV 

with dimensions comparable to those of present conventional 

l1oOOkV instruments.
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Conclusions 

It has been proved experimentally that a single- 

polepiece projector lens should be positioned on the axis 

so that the polepiece tip faces the incoming parallel 

electron beam emerging from the preceding objective lens. 

In this mode of operation, small radial distortion coeffi- 

cients are obtained as in double-polepiece lenses but the 

spiral distortion coefficient sp is appreciably lower. 

The correct orientation of the single-polepiece in an 

objective lens is a more complicated matter. The analysis 

of computed focal properties for a single polepiece objec- 

tive lens indicate that at excitation parameter NI/V,,7=14 

(as used in conventional objective lenses) the arrangement 

in which the polepiece is placed between specimen and image 

plane leads to a lower spherical aberration thon the arrange- 

ment in which the polepiece is turned through Teor, and the 

specimen is placed between the polepiece and image plane. 

However, at high excitations (NI/V,.? = 40) the second arrange- 

ment can also produce comparable values of spherical aberra- 

tion coefficient, and possibly better values for the chromate 

aberration coefficient. 

In order to exploit the advantages of each arrangement, 

care must be taken to design the lens so that the poleface 

works at the highest permissible flux density. 

The results on this experimental lens can be useful in 

the design of high resolution transmission and scanning trans- 

mission electron microscopes consisting of single-polepiece.
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objective and projector lenses. Also this lens design 

can be scaled exactly and so simulate accurately the 

electron-optical conditions in a million volt electron 

microscope. 
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Figure l Cross-section of miniature electron lens for 

100 kV electron microscope. 
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Figure 2 Axial flux density distribution of the 

experimental single-polepiece miniature 

lens at an excitation of 2200 ampere-turns. 
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Raigure: 5 Micrographs of a line grating of the same 

field of view taken when the second projector 

lens in the EM6 electron microscope is the 

experimental miniature single-polepiece lens 

operated near its minimum projector focal 

two directions of entry of a parallel electron 
length, showing different distortions for the 

beam.
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10.9 Analytical expression for the spiral distortion . 

coefficient of a single square top field 
  

Spiral distortion coefficient (D3? for purely magnetic 

field on object and image plane at infinity is given by 

a, 3 e 2 ae % 2 oe TeV; ( —s- B (z) pes (z)4+V_ = \y dz 

eeenenevee (A9,1) 

where Y is the particular solution with the boundary 

condition 

#1,.¥ = 0 
(z=-@) (z= -~) 

Applying the above equation to a single-square top field, 

will take the form 

1 3 3 1 a sz ie) UUme) FERS v aes Tome) B(2) D ba 

i < oo 

    

yu? CUZ, eeeeeeeee (A9.2) 

lo wo
 ny
 

N ~
—
 

: ee PULEING Ko = ey 

© co 

ae es 2 a 2 
Psp wir k ry. az +zxf vy az eoereereveeeeeere eevee (A9.; 3) 

OO 

From the solution of paraxial ray equation for a parallel 

beam of electrons 

¥.= r= 7x, Cos [K (5+z)] 
oie e hie ele e060 ese“e ie (AO. 4) 

¥y'= 2 4 -K xr. Sin [K (s/2+ z)] 

Substituting A9.4 in A9.3 and changing limits of integration, 

then 
t Ss Ss 

x? f Cos? (Kz) 9? 4+ ze Sin? (Kz) dz 

Oo oO 

]
o
 

D 
sp
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aie ie wea xr eed core 8 IK 5yoin ( Z) 

Oo 

sae [ Sin (2KS) -o- L 4S + eae pean 

putting KS = 6;, thus 

OO es : sp" s* = a + a7 San 26 (A9.5) 

A ’ 

Or otis S Sty |: Dyas 
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bi ee 
4 oe 

        Zt
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au 
5 we
 

t *~ + ku
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System for correcting spiral distortion with two 

Square top field distribution. 

To find the spiral distortion for the second magnetic 

lens in rotation free system (fig. A9.1), it is important 

that we should first go through the boundary conditions 

From the figure 

5 il Y1/X = r2/ (L+x) 

xX = 4ri/r{ = Cosk;S/-k SinkS 
Cosk,S 

am Veo a : a ‘ Yo = (L+x)r{ (L ki Sin «18> (-k Sin k,S) 

using k2S = 62, it is apparent that the boundary conditions 

for second magnetic lens are
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Y2 Cos@y = =(8/5):64 Sin6é, eete. ara poe O) 

I es rj = -k Sin 6, eeeeeeeeeeeees (A9.7) 

Applying the above boundary conditions to the equation 

3.2 and 3.3 they become 

, 

Y = r2 Cos(kz) + 7? Sin(kz) Bacco gs ERO OR) | 

Y’ = r$ Cos(kz) - kr2 Sin(kz) Paoeene {RO 9) 

These equations are substituted again in equation 

A9.3 to find the spiral distortion (0. .) in the second lens 

ae ‘ : x3 2 Dep = 4K J (x2 Cos (kz) + - Sin(kz)] az 
oO 

S 
2 

+ kk Lie Cos(kz) - rok Sin (kz) ] AZ (AI .1O) 

oO 

By using the mathematical formulas 

SCos* (kz) = kz +i Sin (2kz) 

fsin® (kz)dz = }z - 5p Sin(2kz) (A9.11) 

fcos(kz) Sin(kz)dz = — sin? (kz) 
2k 

we get 

s ie oe 2rer : rig 
a 313 anes ee . . Psp = %k 5 + Ti Sin(2kz) + “ae Sin* (kz) + —3ET 

r3" Sin(2kz)1° r3*z rs? 2reor3 : 
ene L ie ce . ee ae . Sear + 4k 5 + Te Sin (2k2) 5 Sin ttkz) 

O 

r3K*z rik? Ss 
=F ee = an sin (2k) | uae 8 (A9.12) 

Oo
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2 28 , 3 20 oho ars 6ror3 Se ht3eh kh Se 8 ae ee )Sin2ks + Sin? (k5) 8 k2 2k 2k3 k?2 

7 rie : rs? rs 2rors 
+ =" (—ez + r5)S + (3 = xR) Sin2ks - “a Sin? (Ks) | 

; ri? : . Sin (2kS) ; re 2roxl “2rart 
x = E henprge + rs) + r (ri- ae) + ee —zr~Cos2ks| 

This equation could be written as 

        

me 3n2 ‘ 3 2 , 5 Skins [4s , Sin 2ks l eee ( ra ) [4s ee Laks) 
P 8 k 8 kro k 

“Sin. (2kS) kror3 krex? 
+ c = a Cos2kS + oo 

: ere | Sin2ks ei KS ede cg 
DSp = 88a (4S + r ) [1+ igs? ae se.) Sin (2kS) 

SKY ors ier 
a 4 Cos2kS + 4 eoeeee (A9.13) 
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10.10 Magnification and focal length of two rectangular 

field distributions of width S and separation L 1 
* r 
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A trajectory through two successive square top field 

          

2 
The general solution of the paraxial ray equation — fe 

dz? 
k?r = O for a square top field takes the form 

r = A Cos kz + Sin kz aie oso etene en cana (41:0 51) 

where r is the displacement of the ray from the optical 

axis, A and B are constants and k = Uo NI (e/8Vm) @, 

The refractive power (F) is given by the derivative r’ 

of equation (A10.1) 

ry = Ak Sin kz + Bk Cos kz Gea ie Bore a (AN0%2) 

Using the boundary conditions 

Oost ere. Sr vate. =O 
’ 

Oo
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Equations Al0.1 and Alo.2 may be written as 
r’ 

r= ry Cos kz i a BO a ci ee (A10. 3) 

r= “2 keSinike + rs COST 2 ec me le eee (Al10.4) 

To determine the ray trajectory through two similar 

successive magnetic fields, consider the two field distri- 

bution as in Figure Alo.1, 

For the first field, the boundary conditions are Fe i 

ro = 0, then the equations 3 and 4 which describe the 

trajectory in field 1 become 

Yr = Cos kz and Ra tetie vis 06s Veco eees  (ALO5) 

ree “ky San), Ge Per ee (ALO 6.) 

The ray emerges at z = S where 

= Cosk, S CRO CEO OO 8 OOOO. © 6.86 koe ene (ALO7) 

’ _— 
ts ky tt) 

eee ee io 
(A10. 8) 

After emerging from the first field, the ray traverses 

a distance Ly along the optical axis and then enters the 

second field. The boundary conditions in field IT at z=L 

+ S are 

P= To and ro = rf thus 

re=3r) - (L/S) Sin ky S eee ees C6 CARLO. 9) 

r3= ry = -k Sin ky Paw he tae Cs oe cee OAL, Loe 

The ray trajectory in field II is 

r3 r = r2 Cos kz [z - (L,+8)] + Ky Sin ke[z - (L,+S8)] (Alo.11) 

r’= r$ Cos ke [z= (L, +8) ] + Yok. Sin k2[z-(L, +8) ] (A10.12) 

At the point where the ray leaves the second lens, namely
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where z = Ly + 22S we obtain 

r3 
F934 amo COS Kos tf = Sine kas 7. gs rs oe “RPAO. LaF 

r3 rg Cos koS Lo. oun) koS o See 6:9 6° (A10.14) 

Substituting for rz and ri in equations Al0.16 and AlO.17 

k 
= is ; ee ae r3 = Cos ky Cos k2S Lik, Sin k,S Cos k2S a Sin ik,S 

rj =- [k, Sin k,S Cos kz2S + kp Cos k,S Sin k2S -k,k2L, 

Sin k,S Sin ks] 

putting k,s = Oy and k2S = 62 

Rt Yr3 = Cos Oy Cos 02 - (L,/S) 6,Sind, i o> Sin6,SinO» (19.15) 

Beis ge. . . = : . r3 = [9,Siné@,Ccos6, + @2Cos 0,Sin®2 0,92 (L,/S)Sin 6, Sind] 

FVEC See (A10.16) 

If the image is projected onto a screen at a distance Ly» 

from the point z = Ly +2 s the beam will strike the screen 

at a radial displacement Me from the optical axis 

L 
ak eee ; 

Mp = Cos 8, Cos 82 qe 94 Sino, Cos 62 

8 Lio x ; “g; Sin@, Sind, -~- [0, Sin®, Cos 62+ 82 Cosé,Sin6» 
2 

L 
i ‘ 

~6, 92 g Sind, Sind. | eoeeeree eee ese ee see (10.47) 

The combined projector focal length of the double lens : 
a A- 10.16 

: ; aoe 8) : 
system es is given by Ee oor then from equation Al0.16 

tye -[@, Sin@, Cos82 + 82 Cos8,Sin 6, 
. 

L 
tare ; call 

-0)82 (s—) Sin 8, Sin 82] oeeeeeeoeeee eee (10.18)
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The special case of 02 =1/2 

When the second lens is operated at a constant excitation 

t(NT/V,.*) = 8.43} i.e. O2 = 1/2 then 

8) 2 
Y3 = —— Sind,Sin02 Fe 04 Sin 64) 

r3 5 [cose, - 8; (L,/S) sind, | 

and 

L -2 Le: B/S. 8 ee {1/[cose, - 8, (g=)Sin6,]} (A10.19) 

The final magnification is given by: 

L 
‘ee 

L 
2 : cl: 

Me =- = [9, sine, ] - (=)5 [cosé 
£ 1 

(A1L0. 20)




