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ABSTRACT

The most perfectly structured metal surface observed
in practice is that of a field evaporated field-ion
microscope specimen. This surface has been characterised
by adopting‘various optical amalogue techniques. Hence a
relationship has been determined between the structure of
a single plane on the surface of a field-ion emitter and
the geometry of a binary zone plate. By relating the
known focussing properties of such a zone plate to those
obtained from the projected images of such planes in a
field-ion micrograph, it is possible to extract new

information regarding the local wmagnification of the image.

Further to this, it has been shown that the entire
system of planes comprising the field-ion imaging surface
may be regarded as a moiré pattern formed between over-
lapping zone plates. The properties of such moiré zone
plates are Tirst established in an analysis of the moiré
paftern formed between zone plates on a flat surface.

When these ideas are applied to the field-ion image it
becomes possible to deduce further information regarding
the precise topography of the emitter. It has also become
possible to simulate differently projected field-ion

images by overlapping suitably aberrated zone plates.

Low-energy ion bombardment is an essential preliminary
to much surface research as a means of producing chemically
clean surfaces. Hence it is important to know the nature

and distribution of the resultant lattice damage, and



the extent to which it may be removed by annealing.

The field-ion microscope has been used to investigate
such damage because its characterisation lies on the
atomic scale. The present study is concerned with the
in situ sputtering of tungsten emitters using helium,
neon, argon and xenon ions with energies in the range
100eV to" 1 keV, together with observations of the effect
of annealing. The relevance of these results to surface

cleaning schedules is discussed.
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CHAPTER ONE

INTRODUCTION

1.1 Preliminary considerations

The characterisation and attainment of clean metal
surfaces is an essential preliminary to all surface
research, otherwise the effects of contamination and
imperfect topography may have a crucial part to play
on the surface chemistry and crystallography of the
subsequent experiment.

An ideal model system is provided for the character-
isation of a clean metal surface by the field-ion
microscope. The fTield evaporated field-ion emitter
possesses a somewhat arbitrary topography, but because
the technique is capable of atomic resolution, this
topography can be precisely defined, Moreover, the
preparation of aﬁ atomically clean surface is made
almost routine by the process of fTield evaporation.

In aadition, the ability of the field-ion microscope

to resolve the individual atomic structure of a metal
surface combined with the capacity to strip off surface
atoms one by one and hence to reveal in detail the
structure of the sub—su?face regions makes this instrument
a powerful tool in surface research.

The present study will show that established
techniques in experimental optics can be applied to the
characterisation of the detailed atomic structure of the
field-ion emitter and its image. By setting up suitable
analogue models it is possible to determine new information
concerning the detailed topography of the specimen and the

pProcesses of image formation,



'

An investigation into the effects of conventional
cleaning techniques will also be described. Here, the
field-ion microscope has been used to study the
processes occurring at the atomic level during low-
energy ion bombardment of tungsten field-ion emitters.
The extent to which subsequent lattice disorder is

removed by annealing will also be reported,

1.2 Relevant Literature

It is not intended to provide a full account.of the
various imaging techniques and theory as there are now
books available on the topic of field-ion microscopy.
Thus it is intended only to give a brief description of
the basic principles of the field-ion microscope and the
interpretation of its images.

Three books are available on the topic, all are
entitled 'Field-ion Microscopy'. The first is a short
course edited by Hren and Ranganathan (1968). The other
tﬁo are written by Mlller and Tsong (1969) and Bowkett
and Smith (1970). In addition, there are a number of
general review articles, the most recent of which
Southworth (1970) and Smith D. A. and Smith G.D.W. (1970)
provide readable introductions to the subgect. A
review of the metallurgical aspects has been made by

Ralph (1970).

1.3 The basic principles of image formation

The detailed atomic structure of the crystal lattice
may be studied indirectly using a variety of techniques.
These techniques usually rely on the diffraction of some

form of radiation such as X-rays or electrons, by the



regular arrays of atoms present in the crystal. The limit
of resolution of the technique is a function of the wave-
lengﬁh of radiation used. The diffraction of electrons,
as utilised in the transmission electron microscope,

even in its most sophisticated form is only Just within
reach of distinguishing features occurring on the atomic
scale. By using a completely different method of image
formation, the field-ion microscope is capable of
resolving the position at a single atom (Miller (1960)).
Both the field emission microscope and the field-ion
microscope can be loosely defined as point projection
devices. In the field emission microscope, the image

is carried from the specimen to the screen by electrons
originating in the specimen itself, whereas in the
field-ion microscope the image is conveyed by positive
ions formed near to the specimen surface.

Figure 1.1 depicts-schematically, the layout of a
simple field-ion microscope. The specimen is usually
made by electropolishing a sharp point on the end of a
piece of wire typically lcm. long. The radius of the
specimen is usually in the region lOOR—lOOO&. The
specimen is mounted with electrical connection to a H.T.
power supply and occasionally with access to an electrical
heating circuit. The specimen is mounted in a vacuum
system and points in the direction of a fluorescent screen.
An imaging gas, conventionally helium, is then leaked into
the vacuum chamber to a suitable pressure. The specimen
mounting leads not only enables a positive potential to
be applied to the specimen, but also provide a heat

conduction path to the cryogenic coolant (usually liquid

nitrogen).
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Figure 1.1. A schematic diagram of a simple field-ion microscope.
' (Courtesy H. N. Southworth).
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The extremely sharp curvature of the specimen tip
enables an electric field of several volts per Angostrgm
to be generated by applying a potential of a few kilovolts.
This fTield strength attracts imaging gas to the specimen
surface by polarisation forces, positive ions are then
fTormed in.the viscinity of the specimen and these are
repelled and form a projected image of the local Tield
‘fluctuations existing on the specimen surface when they
strike the Tlat fluorescent screen. In practice, the
regions of highest Tfield correspond to the position of
protruding atoms on the specimen surface. Hence a pencil
beam of ions excites one bright spot on the screen
corresponding to each protruding atom on the surface.
Thus a direct image of the atomic distribution of the tip
surface is produced.

The Tield-ion emitter is usually approximated to
correspond to a hemispherical section taken through an
infinite crystal lattice. The intersection of this
hemispherical surface produces an interdependantly
faceted structure. Drechsler and Wolf (1958) and Miller
(1960) have constructed a ball model corresponding to a
(Oll) orientated tip which may be compared with the
field-ion image (figure 1.2(a)). When those atoms which
protrude most and those that protrude second most are
emphasised (by painting them with fluorescent paint and
illuminating the model with ultra-violet light), the
similarity to the general appearance of a field-ion
micrograph is good (figure 1.2(b)). For comparison
figufe 1.3 is a field-ion micrograph of tungsten.

A considerable advantage of the Tield-ion microscope



Figure 1.2 (&) A ball model of a (011) orientated tungsten field~ion

emitter. 1 _
(After ¥Miller (1960)),
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is that of fTield evaporation. This facility enables an
atom by atom dissection of the specimen microstructure

to be made by the controlled removal of surface atoms.

By increasing the applied voltage to some value above that
required for the Tield ionisation of imaging gas, metal
atoms are evaporated (or desorbed) as ions. The process
of Tield evaporation is responsible for the characteristic,
almost hemispherical shape of field-ion microscope
specimens,

Several factors affect the potential resolution of
the microscope. For instance, the imaging gas pressure
must be sufficiently low to ensure that the mean free
path is high and thus collisions which may deviate the
ions from their original trajectories afe minimised.
However, the most important factor is the velocity of
the imaging ion transverse to the electrostatic line of
force at the site of Tield ionisation. Hence the
specimen is cooled to a low temperature (usually liquid
nitrogen). Thus.the incoming gas atom thermally accommodates
itself to the specimen temperature via a hopping process
(illustrated in fiéure 1.6) and its lateral wmomentum is
then small. Mliller (1960) has obtained an expression
for the potentiai resolution 6 assuming the lateral

momentum component to be the limiting Tactor.

=L P
6 - (6x10 Tr)z i

F ceees(l.1)

where T is the tip temperature

.

r is the radius of the specimen

and F is the field strength required for ionisation.



ield-ion microgradh of tungsten, and below,

~arm illustrating the indexing of rield-icn planes,






As a general rule, better resolution is obtained with
decreasing specimen temperature. The resolution is such
that interatomic spacings of 3& can be resolved. The
resolution of the microscope to normal displacements in
the specimen atomic structure is much better and G.D.W.
Smith (1971) reported a potential resolution of 0.35,
hence the extreme sensitivity of field-ion images to
interstitial atoms. Certainly the resolution of point
defects introduced by ion bombardment is possible (see
chapter 6).

The important processes of field ionisation and field
evaporation will now be discussed. It is not intended to
conduct a searching enquiry into these processes, but
simply to present a concise picture of the more well
established ideas so that in ensuing chapters we can
be aware of the processes involved in image formation and
the development of the well;defined specimen surface

topography.

1.3.1. Field ionisation

The theory of field ionisation is at present highly
unsatis%actory. Only a synopsis of the classical theory
is presented here, but this is sufficient to highlight
some of the physical processes involved.

Field ionisation can be considered to be a quantum
mechanical tunnelling process (Inghram and Gomer (1954))
whereby an electron is effectively transferred from the
thermally accommodated gas atom to the metal. The electron
is able‘to tunnel through a potential barrier which has
been narrowed by the high electric field, as illustrated

in figure 1.4. The potential energy barrier is further
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reduced by image forces which attract the electron to
the image of the ion-electron dipole, in the conducting
surface. Figure 1.4 also shows the gas atom at a critical
distance Xc from the emitter surface, it can be seen that
if the atom approaches the surface, the electron energy
level in the metal must be reduced below the Fermi level
in the metal and hence the tunnelling probability must be
reduced because of the low number of vacant sites to which
the electron may tunnel,

This critical distance for ionisation has been shown

by Miller (1960) to be:

Xc = l:g

eF A .....(1.2)
where I is the ionisation energy, # is the work function,
T the applied electric field and e is the electronic charge.
For helium Xc is typically about 5A. It has been found
that most of the ions are formed in an ionisation zone
just outside Xc with a width of only O.lSA (Tsong and Miller
(1964)). Although this rather simple model helps in the
understanding of field ionisation, it has several short-
comings. For instance regional brightness (Cranstoun (l972)),
the hydrogen promotion effect (Miller (1967)) and gas promoted
field desorption have not yet been adequately explained.
However, recent discoveries by Mﬁller, McLane and Panitz
(1968) and Jason, Burns and Inghram (1965) may point a way
tb a more fruitful theory. Muller, McLane and Panitz (1968)
using the atom probe field-ion microscope have proposed that
an apex-adsorbed imaging gas atom is involved in the process,
a comparative i1llustration of the effect of this discovery

on field ionisation is shown in figure 1.6. A different
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Figure 1.5,(a).. Potential energy curve for an ion in the presence
of an applied electric. field. :

Figure 1.9.(b). The atomic state is stable but ionisation is complete
before the maximum in the curve is reached, and evaporation occurs
over the Schottky hunp. (¢). The icnic state is stable and the
maximum in the curve corresponds to the point of intersection of the
atomic and ionic curves.  (Courtesy H. W. Southworth).
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approach to the problem has been taken by Forbes (1971)
who has examined variations in gas concentration above
imaging sites. For a deeper insight into this somewhat
controversial topic, Muller (1972) has reviewed current

thoughts on the subject.

1.3.2. Field evaporation

If the applied electric field is raised sufficiently
above that required to obtain an image, the removal of
surface atoms is observed. The process begins at a well
defined field, and the rate of removal of atoms increases
rapidly with field. The phenomenon is manifested by the
collapsing to the centre of the diroular facet structure
composed of imaged atoms around each surface plane.
Continued field evaporation of a newly prepared specimen
preferentially removes any topographical irregularities
and eventually reveals the characteristic field evaporated
end form which is free from adsorbed contamination.

However, although field evaporation enables the
sub-structure of a specimen to be revealed, it is also
responsible for the main limitation of the technique. The
characteristic field Fi for the best imaging conditions
for any metal is clearly associlated with the best image
voltage (B.I.V.) and is dependent primarily on the
ionisation energy of the imaging gas. It is clear that
for stable field-ion images Fi must be less than the
field necessary to field evaporate the specimen Fe, di.e.
Fi<Fe. If this is not the case imaging conditions cannot
be obtained. Recent work, using ultra-high wvacuum
microscopes and imaging gases with relatively low

ionisation energies (such as neon and argon) has enabled



many non-refractory metals to be examined in the field-ion
microscope (for example Boyes and Southon (1972)).

In the absence of an applied electric field, the
energy Qo required to desorb an atom, as an ion from a

surface is given by (Miller (1960)), (Gomer (1961)).

Qo = A+ 2nin - ng ceeea(1.3)
where ann is the sum of the ionisation energies.

Miller (1960) suggests that field evaporation occurs
by direct thermally activated evaporation of an ion over
a potential barrier Q which is reduced by Qo, by the
applied field. Using this argument the following expression

is obtained for the critical field of evaporation:-

F :n'—Be—-3 [/\ + ZnIn—nQ'—len% ]2.....(1.4)
o)
where n is the charge on the ion, t is the time constant
for evaporation and to is the reciprocal of the lattice
vibration frequency. This expression may then be modified
to take into account the double layer which screensgs the

applied field due to a dipole moment ne/q where q is a

screening distance. Hence:-

F =n Je > [ /\+~Ebln - ng + %(aa—ai)Fz

neF

- kT 1n (¢ )]? vee..(1.5)

where ai and da are the polarisabilities of the ion and
atom respectively.

These equations are derived from a study of the atom
and ion-potential curves close to the surface of the
specimen and the way these curves are modified by the
presence of the applied field (see figure 1.5). Other

possibilities that have been considered, include tunnelling



Figure 1,6 TField jonisation on the emitter surface. The model on
the left hand side illustrates the conventional view of a freely
. hopping polarised image gas atom whilst the model on the right hand
gide shows how the possibility of an apex-adsorbed image gas atom

might affect the process. (After tmller (1972).



through the potential barrier especially at low temperature
field evaporation. A review of the different approaches
that have been made is available (Brandon (1966)), but

like field ionisation, the physical understanding of the
processes involved is incomplete. More searching articles
are available, for instance McKinstry (1972) and Vesely
and Ehrlich (1973). Taylor (1970) has also considered

the subject in some detail.

1.4 The topography of the field-ion specimen surface

The ball models and the general appearance of the
field—ion emitter have already been briefly discussed in
section 1.3. Figure 1.2 shows that the locus of the
positions of the protruding atoms is polygonal, but
approximately circular and corresponds to Tacets on the
ball model where certain crystal planes are parallel to
the surface. Thus each set of circular facets corresponds
to a crystallographic plane. Further, the step height of
each set of circular Ffacets is equal to the interplaner
separation of that plane. In the micrograph of tungsten
shown in figure 1.3, the wvarious planes are indexed by
inspection in a way that is crystallographically consistent.
Clearly the prominence of each plane in the field-ion
image will depend on its interplanar spacing (Drechsler
and Wolf (1958)), (Moore and Ranganathan (1967)) this
point is further discussed in chapter 3.

Tt is possible to show (chapter 3) that the square
of the radius of the nth ledge rn2 is proportional to n.
This provides the basis for an optical analogue that exists
between the geometry of a field-ion plane and that of the

binary zone plate. This analogue and the new information



it provides are considered in chapter 3.

The entire image can be considered to be an inter-
dependent moiré pattern formed by overlapping such binary
zone plates (chapter 3), a purely mathematical approach
(chapter 4) may then be used to determine the relationship
between the individual planes on the field-ion emitter.

Evidence that the hemispherical end form approximation
is inadequate has been provided by profiles of field-ion
tips obtained using the electron microscope (Norden and
Bowkett (1967) and Loberg and Norden (1968)). Fortes 1971(a),
1971(b) has attempted to derive an approximate equation
to describe the shape of the profile and concludes that
a cubic expression is applicable. Matters are further
complicated by the discovery of Hren, Moore and Spink (1972)
that the detailed shape of the emitter is sensitive to the
rate of field evaporation. They show that high rates of

removal of material produces a more hemispherical end form.

1.5 The emitter radius

The most commonly used method of determining the local
radius of curvature of a field-ion emitter was first
described by Drechsler and Wolf (1958). The method
consists of coﬁnting thé number of net plane rings n
between two planes of known angular separation © in the
field-ion micrograph. From figure 1.7 it is clear that
if the step height d(h,k,1,) is known, then the local radius

11

of curvature R is given by the formula:-

R = nd
1 - cos O veeoel(1.6)

As an example, consider the local radius of curvature

between the planes (002) and (206) on the field-ion micro-
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Figure 1.7. The model of the field-ion emitter used to calculate the
local radius of curvature, R, by the method of Drechsler and
Worf (1958). The number, n, of net plane rings between the
centres of two planes (h1k111) and (hpk,1l,) of known angular

separation are counted and R is then found from equation (1:64)0




graph of iridium shown in figure 4,9 in chapter 4. The
number of net (002) plane rings between (002) and a
position corresponding to the centre of the (206) plane

is 15 and the angular separation between the poles of the
same planes is 18° 26!, From tables the step height of
an (002) plane in iridium is 1.919%. Hence by substituting
in equation (1.6) for n, d and 6, R is found to be 5624 ,

Although this method is simple to use, it does contain
considerable inacouraéies:—

(1) The phase factors of the two planes are ignored
and hence there may be considerable error in the value of
n. This is particularly serious when measuring the radius
of low radius specimens and in situations where the radius
of curvature is to be determined across a small angular
separation; in both cases n is likely to be small.

(2) Unless the atoms in the plane (hzkzlz) are fully
resolved, it is sometimes difficult to assess which atom
positioned on the edge of the first net ring of the plane
(hzkzlz) corresponds to the ring through the cenfre of that
plane associated with (hlklll) and hence, once more, n is
difficult to assess.

These and other problems associated with this method
of radius measurement héve been considered by Crawford (1973).

Using this method, Drechsler and Wolf (1958) calculated
radius values over a number of regions on a tungsten micro-
graph and found that these values varied by a factor of L.
This has been used extensively as evidence that the emitter
profile cannot even be approximately hemispherical. However,

other methods of radius determination suggest that such

wild variations are incorrect (chapter 4).»
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In order to circumvent this wide variation in local
radius, Drechsler and Wolf (1958) used an "average tip

radius" which they defined as:-
Rav = 33X n ((011)-(123))4 C eeeed(1L7)

where n ((Oll)—(lZB)) is the number of net rings between
the planes (Oll) and (123) on a tungsten specimen.
Drechsler and Wolf (1958) also pointed out two other
methods of radius measurement. The first method involves
measuring the applied voltage when imaging a specimen and
hence knowing the correct field for the ionisation of a
particular image gas, the radius of the specimen can be
found. The second method relies on the provision of a
fully resolved image where an arc distance d can be
measured by counting rings of known interatomic separation
within a known subtended angle (between the poles of two

planes). Hence from the equation (1.8), R may be obtained
d = RO ceeeo(1.8)

An alternative and more general method of determining
the local radius of curvature from data derived from the

micrograph is presented in chapter 4.

1.6 Computer simulation of field-ion images

Moore (1962) was the first to use the "thin shell"
model to determine - which atoms on the surface of a field-
ion emitter would give rise to image points following a
general postulate made by Muller (1960) that atoms
protruding most from the specimen were imaged. This model
led directly to the computer simulation of field-ion
images. Computer simulation is of great value to field-

ion image interpretation because of the power of the
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computer to evaluate quantitatively the etfects of
simple assumptions about the nature of the field
evaporated surface. The 'thin shell! model can also
be interpreted in terms of a moire analogue and this
is discussed in chapter 4.

Moore assumed that the Tield-ion emitter represented
an ideal, spherical surface which he defined as consist-
ing of those atoms of an infinite crystal whose centres
lie just within a spherical envelope. Moore then
suggested that only those atoms which lie within a thin
spherical shell of thickness, p, would give rise to image
points (illustrated in Tigure 1.8). Thus by considering
a sphere cut by a (lOO) plane giving‘approximately
circular contours the position of any atom could be
referred to an x-y co-ordinate system. The system could
be used for both f.c.c. and b.c.c. materials. Moore then
assumed that the projection relationship between the
three-~dimensional lattice and the image plane was ortho-
graphic. A typical result of this Torm of simulation is
shown in fTigure 1.9. The similarity to a real field-ion
image is quite good. Further, the relative prominence of
the vafious planes and the number of planes along any one
zone are consistent with a real image of equivalent average
radius. |

Moore and Ranganathan (1967) found the p, the shell
thickness, decreased in size with increasing specimen
radius. They also considered the development ofT field-ion

planes and found that the appearance of a plane was

independent of p but dependent on R; they present a
table of planes which ought to be developed at certain

specimen radii. An explanation of this phenomenon based on
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L

Figaure 1.8 . The basis of the "thin shell® model (loore (1962)),
for the interpretation of the field~ion imaging surface.

(Brandon (1966)).

v

Aston University

lllustration has been removed for copyright
restrictions

Figure 1. 9. A typical example of a computer simulated field-ioa

image, (loore (1962)).
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moirg theory is given in chapter 3.

Moore (1967(a)) has also extended the computer
simulation technique to solid solution alloys by
assuming that each alloy species behaves differently
to field evaporation (Southworth and Ralph (1969)),
but the same with respect to their imaging properties.

The technique has also found importance in the sim-
ulation of extended defects, Tor example Brandon and
Perry (1967) and Sanwald and Hren (1968) have managed to
simulate dislocation contrast in b.c.c. and f.c.c. lattices,
A curious result was obtained by Taylor (1970) investigat-
ing the effect of emitter shape on the computed image.
Taylor found that Moore's hemispherical assumption was
difficult to improve on and found that if the ellipsoidal
axes determined from electron micrographs of emitters were

used, totally unrealistic images were obtained.

1.7. Experimental detadils

Unless otherwise stated, all the experiments to t.e
described in subsequent chapters were carried out in é
bakeable, stainless steel, ultra-high wvacuum (U.H.V.)
field-ion microscope. This microscope, which is available
commercially from Vacuum Generators Limited, was built
around the vacuum system illustrated in figure 1.10.
Essentially, the pumping system consists of three separate
vacuum pumps; a 40 l.s.—l Mullard ion pump, a liquid
nitrogen trapped 2" mercury diffusion pump (backed by a
rotary pump) and a 6" titanium sublimation pump. Each
of these pumps had an individual function, but all were

complementary in action. The ion pump (bakeable) was

used to pump the microscope down during bakeout and was
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capable of the lowest ultimate pressure. The diffusion
pump was used whilst imaging with a continuous flow of
some inert gas (the action of the dion pump virtually
precludes its use with the noble gases at high pressures).
The titanium sublimation pump was situated such that
imaging gas could pass through a freshly evaporated
titanium layer which removes active contaminent gases,

but of course, cannot pump inert gases. Using this system
pressures of 5 x J.O_‘lO torr (as measured using a V.I.G.

10 ion gauge) were achieved routinely.

A total of six highly sensitive M06 leak valves (see
figure 1.10) controlled the flow of B.0.C. grade X inert
or other gases.,

The specimen support cylinder was clamped by means
of copper Jjaws (see figure 1.11) which were directly
connected to a cryoganic system comprising of an inner
snd outer dewar which was filled with coolant (usually
liquid nitrogen).

The specimen high voltage was supplied by a 30kV
Brandenburg power supply equipped with an easily
adjustable polarity such that field emission microscopy
could also be performed,

The microscope was also fitted with a channel plate
converter image intensifier (Turner et al. (1969)) which
required two Brandenburg H.T. power supplies to control
the image intensity and the focus. An external permanent
magnet (approx. 150 gauss) was also required to focus the
image. Not only does the use of the channel plate
drastically reduce the photographic exposure times to

about 10 seconds (at an imaging gas pressure of about
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1 x lO—h Torr), but it also makes practicable the use

of gases other than helium for imaging. Hence gases

such as neon and argon have been used successfully in
‘situations where a reduced applied electric field has

been necessary (Lewis and Gomer (1969), Van Oostrom (1970@0)
and Cranstoun and Pyke (1971)).

Several modifications and improvements have been
made to the original design of the field-ion microscope
and these have been described in detail by Summers (1973).
Modifications made necessary by the inclusion of the
jon source and the development of a specimen temperature

controller will be described briefly where relevant.
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CHAPTER TWO

ZONE PLATES AND MOIRE PATTERNS

2.1 Introduction

The purpose of this chapter is to establish the ground-
wbrk required in order to draw various optical analogues
which are subsequently shown to exist with the surface atomic
structure of a clean field-ion emitter. These optical
analogues enable new information to be extracted from field-
ion micrographs. Almost all the techniques required to
perform these analyses are developed in this chapter.
Although these techniques are primarily developed for their
subsequent use in field-ion microscopy, thgy also possess
importance in certain optical applications such as synthetic
holography. Many of the techniques introdhqed fof the
mathematical solution of moiré patterns are new and it is
felt that these techniques possess a potentially wide
applicability.-

Initially, the focusing and geometric properties of
various types of zone plate are considered. In parficular
the distinction between the Fresnel zone plate and the binary
zone plate is investigated. This is of crucial importance
in chapter 3 where it is shown that the image of a single
field-ion plane can be considered to be a kind of binary
zone plate.

The moirg phenomenon is then introduced. The philosophy
and thé various mathematical methods of soalving problems
invdlving the moiré effect are briefly discussed. Finally
two particular moiré patterns are systematically analysed.
Both of these moiré patterns are important in the optical

analogue interpretation of field-ion micrographs. The first
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to be considered is the moire pattern produced by overlapping
zone plates. This situation is shown to be the optical
analogue of the field-ion image in chapter 3, the mode of
formation of moiré zone plates being‘similar to the geometric
formation of field-ion planes. The second moiré pattern to
be examined is that formed by overlapping a zone plate and

a grid structure. The grid is analogous to the structure

of the crystal lattice and the zone plate corresponds to a
projected contoured envelope similar in shape to a field-ion
emitter.

Thus in subsequent chapters it is shown that field-ion
images way be interpreted in terms of moiré pattern form-
ation and that such an analysis enables new data to be
extracted. Conversely, a new insight into.the mechanism
of field-ion image formation is gained from comparing
actual images with those obtained by moiré simulation,
using several overlapping zone plates of an appropriate
nature. The analysis used relies heavily on the new methods

of treatment developed in this chapter.

2.2. Introduction to the zone plate

The zone plate is a familiar pattern in physical optics.
It cccurs naturally as the interfTerence pattern produced by
twe coherent wavefronts, or as the hologram of a point
object (Rogers (1950)). If the zone plate is fabricated
in-the form of an optical transparenéy, with alternative
opaque and transparent half-period zones, it behaves somewhat
as a lens, (Jenkins and White (1964)). When the transparency
is illuminated with a plane wave of monochromatic light,
part of the light is diffracted into a converging spherical

wave to form a bright focal spot while some of the light
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is diffracted into a diverging wave which appears to emanate
from a virtual focal spot. The zone plate behaves simult-
aneously as a positive and negative lens.

There are many different types of zone plate, but the
best known type is the Fresnel zone plate which does not
occur naturally, but has to be constructed mechanically
(for instance, Rogers (1966)) or by computer (Engel and
Hefziger (1973)). The distinction between the Fresnel and
non-Fresnel type of zone pléte is not only important in
holography, but also in the analogy drawn between the
binary zone plate and the fTield-ion plane (see chapter 3).
In this section the various forms of zone plate will be
characterised and a method wili‘be developed for calculating
_the focal length in terms of ‘zone radius and zone Sseparation.
- These formulae are subsequently important in the inter-—
preation of the moirg_pattern produced.by overlapping =zone

plates.

2.2.1 The Fresnel zone plate

The various properties of the Fresnel zone plate have
been investigated extensively which is not surprising in
view of its many applications. Zone plate - theory based on
holography has been developed by Horman and Chau (1967).
The possibility of utilising its chromatic properties in
spectroscopy has stimulated investigation into its imaging
properties (Childers and Stone (1969)), particularly
resolving power, (Stigliani and Mittra (1967)). More
recently investigation has been prompted in its use as a
focusing device for vacuum ultraviolet'rédiation and soft

X-rays (Pfeifer, Ferris and Yén(l973)).



2.2.%J_ The geometrical properties of the Fresnel zone plate
The Fresnel (or Soret) zone plate is composed of a
series of concen?ric circles, the radii of which are approx-

imaﬁely proportional to the square root of an integer n,
where n=0,1,2 and is the number of the ring. Half period
zones are formed by making alternate zones completely opaque
and transparent as illustrated in figure (2.1(a) and (p)).
The Fresnel zone plate then consists of annular zones each

of equal area. The general cartesian equation of the Fresnel

zone plate is:-
ceeee(2.1)

where r; is the radius of the first ring.

_ZJLL}Q The focal properties of the Fresnel zone plate

A plane wave of monochromatic light when transmitted
through the transparent zones interferes constructively at
a point on the zone plate axis;,this-point is termed the
focal point and is situated at a distance T from the zone
plate, where f is the focal length. The Fresnel zone plate
exhibits an infinite series of real (and virtual) focal
points atrdistances * f/2P+l where P = 0,1,2,..corresponding
to the odd order diffraction patterns. The intensity of the
point image is a maximum when P=0; this is the condition for
the principal focal length. The intensity of successive
images then decreases as P increases, the number of observ-
able images depends on the aperture size of the zone plate
and the number of zones,

The principal focal length of a Fresnel zone plate is

usually given by the formula:-

n) ’ ceeeol(2.2)









where r is the outer circle defining the nth zone., It

is also possible to obtain an expression Tor f in terms

of the zone separation and average zone radius (see

fignre 2.2). This is sometimes more convenient particularly
in the interpretation of the moire pattern Tormed by the

superposition of zone plates, from equation (2.1):

2 —
rn - nfx . ) 00000(203)
and
2
rn+l = (.l.’l"*‘].)f‘kI ocooo(zoh‘)

where Tl is the radius of the outer circle defining the
(n+1)th zone.
From equations (2.3) and (2.4)

2 2

r-, -1, = fA ' ceeeo(2.5)
Expanding: .
(rn+l + rn) (rn+l—rn) = f). ocooo(2.6)

Now, (rn rn) is the width of the (n+l)th zone, that

+1

is, Ar, and (rn +Ih) is twice the average radius of that

+1

zone, that is, r (see figure 2.2a).

Therefore from (2.5):

2rAr

£ == . ceeea(2.7)

2.2.2.3. The phase factor of a Fresnel zone plate

All equations so far encountered Tor the Tocal length
of a Fresnel zone plate have assumed that in equation (2.1)

s . 2 . . . .
the factor multiplying r is always integral. This is not

1
always the case, for instance compare fTigure 2.l(a) and
figure 2.l(b), each of which depicts a Fresnel zone plate.

The central zone of the zone plate shown in figure 2.1(a)

is transparent while the zone plate depicted in fTigure 2°l(b)



(a)

(b)

' i g late,
Figure 2,2 (a) Circle radius and zone width for a Presnel zone P
~ (b) Zone radius and zone separarion for a binary zone

plate,
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displays an opaque central zone. The phase of these two
Fresnel zone plates differs by ®/2. A phase term 6 is

devised where O £ 6 £ 1 such that equation (202) becomes:

r % = (n+ Q) ) ceeeo(2.8)

n
The question now arises, is the fTocal length of a zone
Fresnel zone plate independent of phase?

Inserting O into equation (2.3) and (2.4):

rn2 = (n+6)f)\ .....(2.9)
r;il = (n+1+O)f  eeees(2.10)
then:
2 2
ro,, - T, = fA | ceeea(2.11)

A - ceeea(2.12)
Thus the phase factor can take any Qaer between zero
and one, corresponding to 180°, but the focal length always
remains constant. The phase Tactor of a Fresnel zone plate
is easily measured; a plot of rn2 against n gives a straight
line which intersects the n axis at between n=0 and n=1,
Equation(2.8)also shows that the focal length of the zone

Plate is given by the gradient of this line.

2.,2.2. Other types of zone plate

Rogers (1950) appears to be the first to recognise the
existance of a non-Fresnel type of zone plate when invest-
igating the analogy between the zone plate and the hologram.
Holographic theory has in turn been used to describe wvarious
types of zone plate encountered when mutually coherent
spherical and plane wavefronts interfere (Horman and Chau

(1967)). Waldman (1966) and more recently Shulman (1970)
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have both considered in detail the effects of wvarious
transmission amplitude functions, in particular Shulman
compares the imaging properties of these zone plate
variations.

By definition, the Fresnel zone plate is constructed
of annular zones of constant zone area ®Af and is also
characterised by sharply defined radius boundaries at
r, = (nxf)%. If the amplitude transmittance of a Fresnel
zone plate is plotted against radius, a discontinuous
square wave function is obtained as illustrated in fTigure
2.3. Considering real foci only, besides the bright
principal focus at f, there also exists higher order
foci, located successively at distances equivalent to
£/3, £/5, £/7...etc.

Fresnel zone plates are never obtained naturally by
the interference of two coherent wavefronts, even when the
photography is distortion free. The zone plate pfoduced
under these conditions does not possess sharply defined
padius bpundaries; neither does it possess a series of
imageso The transmission fTunction of an optically produced
zone plate in terms of its radius is an increasing
frequency sinusoidal waveform as shown in figure 2.3.
(Shulman (1970)). This zone plate, which has been termed
a Gaﬁor zone plate, has only one reai focus, no higher
order foci exist. One rather curious aspect appears if
the relative intensities of the principal fTocal spot of
the Fresnel and Gabor zone plates are compared. Although
the Gabor zone plate is capable of forming only one image
compared with the theoretically infinite number of the

Fresnel zone plate; the intensity of the image point of
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the Gabor zone plate is (’)t/l#)2 that of the principal
image intensity of the Fresnel zone plate (Horman and
Chau (1967)).

Although Gabor zone plate is theoretically feasible
in practice it is rather more difficult to obtain. The
non-linear nature of the photographic process distorts
the.contrast of the optically produced zone plate such as
to produce a binary (or generalised) zone plate, (Horman
and Chau (1967)). The effect of this non-linearity is
depicted in figure 2.3, the crests of the sine wave are
tfuncated and the troughs flattened such that an approx-
imately square wave function is produced. Although the
contrast of the binary zone plate produces well defined
radius boundaries, they do not all occur at (nx?)%_, a
point illustrated by figure 2.4. This figure, which is
ea photograph of an optically produced zone plate, shows
that although the area of the full period zones (transparent
and opaque) are equal, the area of the half period zones
are unequal. The reiative sizes of these areas depends
on the length of exposure of the photographic’plate. The
maximum diffraction efficiency at the principal focus
was found by Chau (l969(a)) to occur at a density of 0.5.
The binary zone plate is also characterised by its imaging
behaviour; not only does it produce the principal focal
point ,but also produces higher order foci located at
F/2, £/3, ©/4, £/5..., etc. corresponding to both odd and
even diffraction terms.

The focal length of a binary zone plate is more
difficult to define than the Fresnel zone plate because

it does not possess a constant periodicity; r, is not
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necessarily proportional to n. However it is possible

to construct an equation similar to equation (2.7)
although re-definition of certain dimensions is required.
In équation (2.7) the Quantity Ar has been defined fTor

a Fresnel zone plate. For the case of a binary zone
plate Ar must be replaced by Ap, the zone separation

(see figure 2.2(b)), where Ap = 2Ar. In order to make
the notation consistant r must be replaced by p, the
average radius of alternate zones. |

Hence for other types of zone plate:

A ceeos(2.12)

Just as in the case of the Fresnel zone plate it can
be shown that the Tocal length of a binar& zone plate is
independent of the phase Tactor. Once again 6 can take
values O < o) < 1.

There also exists a number of types of zone plate
which possess a novel appearance, but which are not
directly relevant to the theme of this thesis. Nevertheless
these figures are of importance in thics and hence deserve
mention in passing. For example, the linear zone plate
(figure 2.5(a)) has an action similar to the cylindrical
lens. The so called tquantized' zone plate is illustrated
ip figure 2.5(b) has been used in chéracter recognition
work (Leifer, Rogers and Stephens (1969)). The moiré
pattern produced by overlapping two of each of these zone
pPlates consists of a series of moire linear zone plates

. 7 . ]
Or moire 'quantized' zone plates respectively.
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2.3 Introduction to moire patterns

Moiré patterns are formed whenever two or more periodic
struotﬁres are superimposed. For the moire effect to be
diécernible to the eye, there is a general requirement
that these periodic structures should contain alternate
solid and open regions. This requirement is often met in
everyday life. The word moiré itself, is derived from the
French word for "watered" and it is often used in connection
vwith a fabric called moiré silk. This fabric produces a
rather pleasing shimmering effect which is due to the
méiré pattern caused by overlapping weave.

Unfortunately, the moiré& phenomenon is not always so
beneficial. For example, the moiré effect has been shown
.to be a serious drawback to the television transmission of
holograms, (Rogers and Leifer (1970)). The previous section
drew attention to the zone plate analogy with holography
(Rogers (1950)). If a Fresnel zone plate is transmitted
ohto a television screen, a moiré pattern is formed consisting
of a symmetrical array of zone plates formed to each
side of the original (see figure 2.6). These moirée zone
pPlates are Tormed by the interaction between the Fresnel
zone plate and the television raster ;ines, which acts
effectively as a fine grating,(this moiré pattern is
subsequently analysed in section 2.8.) Thus, when a
‘ho;ogram, which has been transmitted via a television
receiver, is reconstructed, "ghost" images appear in positions
corresponding to the positions of the moiré zone plates.

Moiré patterns are also a potential hazard and
artifact in printing. The periodic array of half tone

dots used to print newspaper and magazine illustrations
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sometimes interacts with a periodic content within the
illustration. Although this effect can be minimised by
arranging the angle made by the dots with the offending
illustration, many examples can be found particularly
in physics Journals. For example, Tigure 2.7 is an
illustration which appeared in the literature (Leifer,
Walls and Southworth (1973)) and should be compared with
figure (2.16) which is the original. The faint zone plates
appearing in figure (2.7) and not appearing in fTigure (2.16)
are spurious and are the result of the superimposition of
the half tone dot array (which is similar to a grid), on

/
the various zone plates in the original.

The first moiré& pattern to be analysed was that Tormed
by the overlap of two diffraction gratingé and it was
carried out by Lord Rayleigh (1874). In this way he was
able to test the quality of his gratings by taking advantage
of the huge moiré magnification; a discontinuous moiré
pattern implies a defective grating. This technique has
since been extended to test replica diffraction gratings
and has been investigated in detail by Guild (1956).

The development of moire techniques in engineering
has been extensive especially as a precise means of
measurement. Moiré patterns are also particularly
important in the analysis of strain,rthis aspect has
stimulated a number of reviews, the most notable of which
are by Theocaris (1969) and Durelli and Parks (1970).

By comparison, the physical interpretation and exploitation
of the moiré phenomenon is not quite so advanced. Recently,
however popular articles by Oster and Nishijima (1963) and

Stecher (1964) appear to have stimulated a greater aware-



Figure 2.6

Figure 2.7

When a zone plate is transmitted onto a television screen,
a series of moiré zone plates are formed., Thus, when a
hologram is transmitted onto a television screen, 'ghost!?

images appear. (After Rogers and Leifer (1970)).

Koire pattern hazards in printing. This figure which has
been printed using half tone dots should be compared with
the original (figure 2.16). The zone plates appearing in
this figure and not appearing in figure 2,17 are spurious
and are a result of the superposition of the half tone dot

array.
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ness of the subject. Fortunately, an important contribution
has since been made by Oster, Wasserman and Zwerling (1964)
who were able to formulate, in a completely general manner,
an indicial representation of the moiré effect enabling

a simple mathematical analysis of any moiré pattern,
provided the structure of the overlapping figures is known.
However, there still remains a large number of physical
situations where the moiré analogy has not received a

sufficiently thorough investigation.

2.4 The philosophy of moiré patterns

A moiré pattern has been defined by Oster, Wasserman
and Zwerling (l96h) as the locus of points of intersection
of two superimposed Tigures. The moiré phenomenon has
also been variously described as anlinterference pattern
(Durelli and Parks (1967)) and as a diffraction effect
(Guild (1956)). The moiré effect is observable if certain
criteria are met. The overlapping two dimensional Tfigures
must contain some kind of periodicity and must involve
alternate transparent and opaque zones. The visual detection
of the moiré effect is also facilitated if the physical
dimensions of the elements composing the overlapping
figures are comparable. However, under the original
definition of_avmoiré pattern, the moiré pattern need not
be visible.

Consider the simplest case of the superimposition of
equispaced parallel lines (or grating). If the angle ©
bétween the gratings is changed, then as © increases, the
moire fringes will change and at séme point a different
Tringe system appears to take form. Let us examine this

system more closely. Initially, let the two gratings lie
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superimposed such that 6 = 0° and no moire effect is
apparent. Now rotate one grating with respect to the
other; immediately a coarse, dominant moiré pattern appears
consisting of straight parallel lines (see Tigure 2.8(a)).
These lines move closer and closer together as © idincreases
until at © = 45° the moiré effect is almost indistinguish-
able due to the uneveness of the fringes and their close
proximity. This moiré system continues to fade until

0 = 180° and the gratings are exactly superimposed once
more. At O = 90°, however, two fringe systems become
equivalent although at fTirst sight it is difficult to
trace the moiré effect at all (see Tigure 2.8(b)). As ©
increases from 90° to 135°, a new fringe system becomes
more dominant and is the mirror image of the first., This
system is most readily visually detected when © is > 135°,
Figure 2.8(c) illustrates this moiré pattern at 6 above
150°, This fringe system becomes more and more dominant
as the fringe spacing widens until at © = 180° (or 09)

rhe fringe spacing is infinite. Rotation clockwise
(909>6>0°) results in the first set of moire fringes and
'these are known as the subtractive moire pattern, whereas
rotation anticlockwise 180°>06>90° shows the additive moire
pattern. The reasons for this terminology will become
clear later when the indicial equation representation
method i? investigated. The point at which 6 = 180° is
known as the commutative moiré boundary. Theocaris (1969)
has defined the boundary as the region which contains
individual rectangles or squares. .Hence a second
commutative moire boundary must exist at 6 = 90°, This

boundary is the condition at which the visibility of the



Tigure 2.8. I1lustrating the
concept of a commtative moire
boundary. © is the angle
bétween the two gratings.

(a) represents the subtractive

moire effect,

(b) represents the conditions
where both the subtractive and
the additive moire conditions

are equivalent,

(¢) represents the additive

.
moire effect.

——

(a)
90> § >0°

(b)
8=90

(¢)
180> 6>90°
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moiré pattern is decided. However both the additive and
subtractive moiré patterns extend over the full range of
intersecting angles even thought they may not be visually
discernible. Indeed, higher order moiré patterns may

exist which may never be perceivable whatever the conditions,
Hence in the case of some physical analogue situations,

care must always be taken not to discard the possibility

.of certain modiré fringes, just because their wvisual
perception is difficult.

Although a moiré pattern is the locus of points of
intersection, visually it may be something quite different.
Clase inspection of figure (2.8(a)) for instance will
reveal that the straight line moiré fringe perceived by
the eye is in reality composed of a'sawtoéth configuration
comprising of parts of the two overlapping gratings plus
the intersection point., The eye is able to integrate over
this configuration, if the interelement spacing is not
too coarse, and hence able to conceive the straight line.

- Obviously, the greater the number of lines the grating
bossesses per unit area, the less important this sawtooth
becomes. Thus as a general rule the greater the number of
oOverlapping elements available the greater the quality
(and hence visibility) of the moiré pattern.

Although the eye has.relatively little difficulty in
picking out the moiré fringe formed by the opaque inter-
sections, this is not the case for the corresponding
‘transparent fringe. Theocaris (1969) has shown that
there are good physical reasons for this. The gratings
used in figure (2.3) for instance have a transmissivity

that is either totally opaque or transparent, there is no
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smooth variation incorporating grey tones. Hence when
two gratings are overlapped the intersecting points can
be made up in three different ways:-

a) opaque element on opaque element

b) opaque element on transparent element

c) transparent element on transparent element
The intersections formed by situations (a) and (p) produce
opaque intersections and only (c) produces a transparent
intersection. There can be no continuous transparent
intersection and hence no completely transparent fringe
exists, making their visual detection difficult.

The major importance of the moirf phenomenon is its
role as an analogue computer (Oster and Nishi gjima (1963))'
The moiré pattern is able to obtain a solﬁtion to the
inférference between two periodic functions and is then
able to visually display it, making it ideal as a teaching
aid., Initially, however, the physical system which it is
wished to simulate must first be made suitable Ffor moire.,
It must be contoured and Prepared in order to meet the
requirements for a wvisual moiré pattern. For most
pPhysical systems, a natural.periodicity exists and its
contouring in terms of equal increments of the particular
physical dimension in question is not difficult., Oster
has Prepared many contoured patterns of conical sedtions
by a method of projective geometry. Each element in the
-pattern corresponds to taking increments of equal height
Over the conic and then projecting this increment orthogonally
into the plane. For instance, a Fresnel zone plate is shown
to be the orthographic projection of a parabaloid which is

Contoured such that each zone corresponds to a Tixed



R ——S—————
_33__

incremental height. ' This contouring process is not Just
limited to physical objects, but is equally well applicable
to such subjects as electrostatics where equal increments
off equipotential may be taken. In the case of Tield-ion
microscope specimens,contours have been taken in order to
correspond to successive atomic layers (see chapter L),
This contouring technique can also be applied to light,
acoustics, electromagnetic radiation and water waves,

to name but a few situations. The moire pPattern analogue
technique also has the advantage that it is not only
useful in thé interpretation of situations involving

two physical systems, but also effortlessly produces the

solution to any multifunctional problem.,

2.5 The mathematical solution of moiré patterns

Many methods exist for the mathematical interpretation
of moiré bpatterns. Several authors have shown that in the
case of superimposed parallel grids, a simple geometrical
argument can be successful; A vectorial approach has also
been invoked for this particular pattern (Rogers (1959)).
The most general method, however, for solving the
mathematics of moire patterns is that developed by Oster,
Wasserman and Zwerling (1964) and is termed the indicial
T'epresentation method. One Turther technique exists
whereby the transmissivity of the overlapping figures is
‘Considered, this technique has been largely neglected
although it could prove the most generally applicable
method of all. In this section, these methods are explained
and in each case an example is used in order to compare

and contrast their relative merits.,
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2.5.1. The geometric interpretation of moiré patterns

Several authors have followed Lord Rayleigh (1874) in
using simple geometry to solve the moire pattern produced
by overlapping tWo sets of parallel, equispaced straight
lines. Notable amonst these authors have been Nishi jima
and Oster (1964) and Stecher (1964). This method of
solution is rather limited in practice because it demands
that the moiré pattern must be easily geometrically related
to the original overlapping figures. For this reason it
has only been used to analyse the pattern produced by
overlapping equispaced parallei lines although Nishi jima
and Oster (1964) have used this technique to describe
the moire pattern involving overlapping figures consisting
of parallel lines whose spacing conformed.to a Gaussian
distribution.

Consider the example of two overlapping gratings
inclined at an angle ©, The first grating consists of
lines separated by a distance a, the second grating
consists of lines separated by a distance b, (where a#b).
From figure 2.9 it can be seen that the moiré pattern
consists of equidistant straight lines with spacing d.
These fringes are represented by the dotted lines, and
make an angle with the b spaced grating of‘y.

It follows directly that:-

sin w . b Singg o
(a®+b™ 2abcos o)

N

ceeeo{2.13)

and
d = ab -
(a2+b2—2abcos 0)2 ceeso(2.1l)
of course, when a = b
d = a

2 sin /2 00000(2015)



X

Figure 2,9, 4 diagram of the meiré pattern produced by overlapping

two gratings of spacing a and b respectively. The moiré pattern

consists of a grating of spacing equal to d (dotted lines).
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2.5.2. The indicial representation method for the analysis

-~ . <
ol molre patterns

This method was developed by Oster, Wasserman and
Zwerling (1964) and is the most commonly used approach
for handling problems concerned with the moiré phenomenon.
The method has been slightly modified subsequently by
Oster‘(l96h) and Durelli and Parks (1967).

Fundamentally, each set of overlapping figures is
considered to be an indexed Tamily of lines or curves.
It is found that the resulting moiré fringes are most
pronounced when the indices at the intersection satisty
certain criteria. Consider the superposition of two Tamilies
of curves. The first indexed family of curves is represented
by the equation:

F(x,y) = { (h) ceoee(2.16)

The second indexed Tamily of curves is likewise
represented by the equation:

G(x,y) = & (k) ceees(2.17)

The quantities h and k are indexing parameters running
over some subset of real parameters and x and y are the
co-ordinates of any point on the figure. The function
F(x,y) and G(x,y) determine the geometrical form of the
Tigures, while the functions Y (h) and & (k) determine the
spacing of the elements of which the figure is composed.
The superposition of the Tigures represented by equations
@.l6)and @.l?)produces a moire pattern which is a set of
curves for which p satisfies the indicial equation:

6 (h,k) = p ceees(2.18)
where p runs Over some subsets of real integers.,

The conditions for the formation of a visible moiré

Pattern are usually satisfied when O (h,k) =h #+ k
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When the positive sign is taken in equation (2.19), the
additive moiré pattern is formed, if the negative sign is
taken the result is the subtractive moiré pattern,

However, the most general equation Ffor moiré pattern
formation, whether visible or non visible, is of the form:

ah £ bk = p ceeos(2.20)
where a and b are rational numbers taking values 0,1,2,3..
etc. (Oster (1964)).

An example of the use of this indicial (or parametric)
equation method should indicate how the technique avoids
some rather inelegant mathematics. Reconsider the moire
pattern formed by the two gratings superimposed in figure
2.9, The first grating is dindexed such that each opaque
element is given a value hzO,il,iZ,iB...efc., and similarly

for the second grating k=0,%1,%2,%f3,,.etc. The equation

of’ the first grating then becomes x = bh .o...(2.21)
where F(x) = % and Y (h) = n,

For the.second grating:

y = X éot 6 - ak
sin6 ceeal(2.22)

where G(x) = (x_cos9 - vy sino)
a

and @(k) = k
The moiré fringes represented by the dotted line in
figure 2.9 corresponds to the subtractive moiré pattern
and is the case satisfied by a = b = 1. Thus the indicial
quation for this situation is:-
 h -k =p ’ ceessl(2.23)
Substitutihg for h and k from equations (2.20) and (2.21),

the equation for the moiré pattern is:-

y = x(b cCosO - a) - _pa
b sin®o sin®o cee..(2.24)

R ———
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which can be rewritten as:-
y = x cot W - _pd
siny ceo..(2.25)

EFquating corresponding coefficients:-

d = ab
- 2 2 5 )
(a +b —2abCOSQ) 00000(2.20)
and sin Y = b sin0

(a2+b2—2abcos©)% ceesa(2.27)

If equations (2.26) and (2.27) are now compared with
equations (2.13) and (2.14), they will be found to be
identical. The indicial equation method has reproduced
the result obtained by pure geometric calculation.

The indicial equation technique is invaluable when
figures consisting of two dimensional elements are handled,
A geometric solution to the moiréd pattern formed by these
more complicated situations becomes very unwieldy and
impractical. The indicial equation approach is especially
convenient when interpreting the moiré pattern formed by
the overlap of a number of figures. In these cases the
indicial equation is simply expanded and takes the fTorm
ah * bk * c1..., = p vee..(2.28)

The number of terms on the left hand side of this
eéquation corresponds to the number of figures overlapped.
As an example, the reader is referred to section 2.6.6.

where the case of three overlapping zone plates is considered.

2.5.3. Transmission function representation method

. - . P . -~

Theocaris (1909) has described the process of moire
pattern formation as a mechanical interference phenomenon.

Herein lies a clue to a new and important technique for

- \ g . . . . 7 .
the mathematical solution of moiré patterns because it
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implies that moiré effect is caused by the mechanical
interception of light by the rulings of the figure or
the points of intersection. Only the moire effect
produced by the combination of gratings has ever been
investigated in this way. Both Theocaris (1969) and
Durelli and Parks (1970) have considered this simple
case because of its importance in strain analysis.
Subsequently, however, the moirg rattern formed by the
superposition of zone plates will be considered using this
technique (section 2.8). |

The central concept of this technique is that any
Tigure can be described in terms of its transmission
function. For example the simple grating can be considered
to have a transmission Tunction rather like a square wave
pattern as illustrated in figure 2.10. The transmittance
is either full or zero. However, if we follow Theocaris
(1969) and describe this function as a sum of sinusoid;l
Tunctions then the mathematics become very complicated,
Instead, a sine wave approximation is made (Shulman (1970))
such that the transmission function T(x) of the grating
(or any other figure) can be described by the expression:-

1 . 2TX
T(x) = $(1 + A sin =&2 ceese(2.29)

where A is a transmission Tactor, x is a distance and P is
the pitch or wavelength of the particular function used.
The numbers ¥ and 1 are utiliséd to preserve the d.c.
nature of light. The sine wave approximation is illustrated
with the square wave in fighre 2.10.

Let us now consider the total.transmittance after we
have combined any two Tigures face to face as illustrated

in Tigure 2.11, If incoherent illumination of intensity
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Figure 2,10, The sine wave approximation to a square wave.

LT(x) I (X)Ty(x;)

Figure 2,11.  The total transmissivity of two overlapped functions.

Light of incidence intensity I, passes throcugh the first systen

and emerges with intensity IOTl(xl), subsequent passage through

& second system modifies the intensity still further to ToT1(x1)T2(x0),
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I, is incident on the first face of the first figure, then
after the light is transmitted through this first Tigure
the spatial intensity will now not be Is5 but will have
altered as a Tunction of the transmission coefficient

from L, to IOTl(xl). Subsequent transmission through the
second figure will modify the intensity again such that
the final intensity Tsz becomes: -

T,T, = Io[Tl(xl)][Tz(xz)] ceese(2.30)

An analysis of the right hand side of this equation
will then reveal any new periodicities and these will be
related to the Tormation of a moirée pattern.

In order to illustrate this technique, the case
considered by Durelli and Parks (1970); the combination of
two gratings of unequal pitch will be used. For the detailed
mathematics of this case the reader is referred to these
authors, but the technique can be illustrated in a diagramatic
way. The moiré pattern resulting from the combination of
two gratings of unequal pitch is shown in Tigure 2,12, it
consists of a grating with a piﬁch p3 much greater than
either of the two originals (pl and p2).

Where: 1l 1 1

Py~ Py P, | ceeea(2.31)
This moirg pattern can be understood by reference to

.figure 2.13. Figure 2.13(a) and figure 2.13(b) represent

the sinusoidal approximation of the two gratings, if these
are superimposed the interference will produce a transmission
Tunction illustrated in figure 2,13(c). The effect is to
modify the sine wave by slow modulation of the total
transmission Tunction and this corresponds to the observed

moirg fringes in figure 2.12. The detailed structure within



Figure 2.12 The noire pattern produced by superimposing gratings of

unequal pitch.

Pigure 2,13 The solution of woire paitierns by the transmission

function represeniation nmelhoed, (a) and (b) represent the sine
wave ayproximation o Two gratings of unegual pitch, vnen theso

in figure 2,12 (above), (Durelli and Farks (1970).
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the general envelope is produced by the various harmonics
present. An expression identical to equation (2.30) can
be obtained by the geometric approach (Stecher (1964)).

A new application of this technique is described later in

this chapter.

2.6. The Moiré Pattern Produced by Overlapping Zone Plates

2,6.1. Introduction

The earliest detailed study of moiré patterns produced
by two overlapping zone plates was reported by Oster,
 Wasserman and Zwerling (l96h). This study considered
the case of two identical zone pPlates whose centres were
separated by a distance comparable to the diameter of the
central zone. Under these conditions the resulting moiré
patterns consist of parallel straight lines. Goldfischer
(1964) observed that when the separation between the centres
of the two zone plates. is large compared to the diameter of
the central zone, the most prominent moiré pattern consists
of many more zone plates which are centred along the lino
Joining the centres of the original zone plates (see figure
2.14). Further studies of this observation have been
reported by Moser and co-workers (1964) Oster (1967) and
Chau (1969(b)). The analysis has been extended to the
general case where the two zone plates have different focal
lengths by Chau (1970). The case of three overlapping
zone plates has been considered briefly by Moser and co-
workers (196L4),

In the present work a more systematic analysis of the
phenomenon is bresented and some new relationships regarding
the formation of the moiré patterns are deduced. These are

shown to possess a more general applicability.

* MUCh of the work presented in this section has been published
ih Optica Acta. (1973) 20 33.
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2.6.2. General Analysis

The most general analysis may be obtained by consid-
ering the two overlapping zone plates to have not only
different focal lengths, but also differing phase factors,

E& and 62. Thus: -

(x——s)2 + Y2 = hmfél)rlz ceees(2.32)

and

N (n+52)r22 eee..(2.33)

represent two zone plates whose centres are separated by a
distance, s, the origin of the coordinate axes coinciding
with the centre of the zone plate defined by equation
(2.33). The principal focal lengths of the two zone plates
are given by ri/k and rgk respectively, where )\ is the
wavelength of the light used; myn = 0,1,2,3., .... are

. s . 2 2 2,2
positive integers. Assume that rl> v, and let rl/r2 = k>1,
O<61 or 62<l.

The method used for solving the moiré pattern resulting

from the two overlapping fTigures relies on the use of an

indicial equation of the form:-

am ¥ bn = p coeeel(2.34)
where m and n are indices defined in equations (2.32) and
(2.33). The parameters a and b are non zero positive
integers; the resultant p will run over some subsets of
the real integers. If we eliminate m and n from equations

(2.32), (2.33) and (2.34) we obtain:-

.[x "(E%EE;f + y2 =(3§%E)[P I(aiik) (Srazk)+aéai bé&]
1

veeee(2.35)

Equation (2;35) has been structured in a similar manner
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to equations (2.32) and (2.33) and describes the fTamily
of moire zone plates (henoeforth MZP) that Torm the most
prominent part of the moird pattern. Two separate cases
must be considered. The Tirst is where the MZP are sit-—

uated inbetween the two original zone plates (0O<x<s)

whereupon: -
2 T 2 2
as 2 _ 71 1 s abk
* - Y =GEmn)l® ~(z+og) o2 )+ aéﬁ * béé]
: 1

ceeee(2.35(a))

In figure 2.14 the two original zone plates are shown
located at x=0 and x=s and it is easy to recognise five
MZP fTormed in between, while a further Tour are discernible
on close examination, The position, prominence and
indexing of these MZP are discussed later in the section.
The second case occurs where the MZP lie outside the

original zone plates (x<0, s<x), whereupon:-—

r 2 1 szabk N
- [=x “(E%EE)]Z + Y2 :(E%EE)[P +(a—bk)( . 2 )+aEﬁ—nE&]

1
ceeeo(2.35(b))

In figure 2.14 it is possible to detect a total of

four MZP which lie in this region.

2.6.3. The Focal Length of a Moiré Zone Plate

2.6.3.1., MZP within 0<x<s

From equation (2.35(a)) the foecal length, f( b) of
a,
the MZP defined by a and b is given by:-
‘ 2
- _ (rl ) 2
(a,b) = "%/ Ta+bk) ‘ ceeos(2.36)

- In section 2.6.2, it was stated that for the MZP the
Parameters a and b must be non zero positive integers.
However, it is possible to include the two original zone

Plates in this notation by allowing a and b to assume the
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values (a=l, b=0) and (a=0, b=1). This can be proved by
substituting these values of a and b in equation (2.35(a)).
In particular, by substituting them into equation (2.36)

we find that:-

R 2

f(1,0) =71 /* ceeea(2.37)
and > 2

- (fi_ 1 _ 2

*(0,1) » 'k cerea(2.38)

These are the values of the focal lengths of the two original
zone plates.

From equations (2.36) and (2.37):-

N T(14o)
(a,b) T Ta+vk) ceee(2.39)

Substituting the expression Tor k obtained from equations

(2.37) and (2.38), this becomes:-

T = f(l’o) - f(]-,O) f(o,l)
(a,b) [a+b‘f(l’o) ] af(0,1)+bf(l,0) .,,,,(2.40)
¥(o,1)

which rearranges to give:-

1 a b
+

Tab) T(1,0)  T(o,1) C veees(2.41)

Equation (2.41) determines the foéal length of the
whole series of MZP formed between the two original zone
pPlates by varying the parameters a and b in the indicial
eqﬁation (2.34). 1In particular, when a=b=1 the MZP formed
is the most prominent one (greatest focal length), and it
is interesting to note that equation (2.41) then becomes
equivalent to the lens combination formula.

If a and b are given the specific values (a=al) and

(b:bl)’ equation (2.41) becomes:-

1 I LS |
f(al,bl) *(1,0) *(0,1) ceeso(2.12)
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Similarly, when (a:az) and (b:bz):—

a b
1 _ 2 + 2

f(agybg) ) f(l’O) f(o’l) "“'(2'[“3)

Now consider the MZP whose parameters have the wvalues (a:aB)and

(b=b3) such that:-
ag T 81 T A el (2.40)
and
Py =Py * Py veeo(2.45)
then: -
b
1 . _ 3 73
Flagiby)  F(1,0) T(0,1) ceeen(2.56)

Substituting from equation (2.44) and (2.45):-

1 - . b, +b,
“(ayibg)  T(1,0) 0 F(0,1) voeea(2.47)
rearranging:-—
a b a b
. 1 _ (fl . fl ) + (fz vz 2
(a3,b3) (1,0) “(0,1) (1,0) ~(0,1)
ceoos(2.48)
that is:-
1 _ 1 N 1
T T T
(ag,p,) (a;:py) (ay,b,) vee..(2.149)

Equation (2.49) is an extremely important result
because it means that the focal length of any MZP can be
calculated directly from the focal lengths of two previous
zone plates in the series. It should be noted that

a, # a, and b, # b, simultaneously as (al’bl) and (az,bz)

2

would then define the same zone plate in the series.

When this result is considered in conjuction with that
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derived in section 2.6.4.1. (equation (2.60)), it can be
seen that two different approaches may be made towards
determining the formation of the MZP. These are
illustrated in Table 2,1, where, for simplicity, k has
been put equal to one. The location of the centres of
the MZP is also tabulated here.

In the comprehensive approach the MZP may be considered
to be generated by a weighted sum of the two original zone
plates. 1In the sequential approach, on the other hand, the
MZP are generated one at a time as the linear sum of the
two previous zone plates in the series, which may be

. . 7 . . . . ~
either moire or original, or a combination of the two.

2.6.3.2., M,Z.P, in the region x<0,s<x

Following through the above types of analysis for this
second situation yields the following result. For the
comprehensive approach, the focal length of the MZP whose

indices are (a,b) is given by:-

1 a b

Ta,p) | T(1,0) f(o0,1) ceeoo(2.50)

where the modulus notation is introduced in order to keep
the fTocal lengths positive.
The sequential approach developed in section 2.6.3.1.

may also be applied to this situation, using equation(2.49).

2.6.4., The Location of a Moire Zone Plate

2.6,4.1, MZP within 0<x<s

The distance, d of the MZP of indices (a,b)
»

a,b)’
from the original zone plate (0,1), situated at the

coordinate origin, is given by:-

d _ as
(a,b) - a + bk 00000(2-51)
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Table 2.1

Comprehensive and sequential approaches to MZP formation

(f(oyl) = f(l,o) = f; 0<x<S)

MZP,Of 1 Comprehensive Sequential L.
indices = h aboroach Position
(a,b) I(a,b) approac PP
(1,1) 2/f = 1/f + 1/f 1/t + 1/ s/2
(1,2) 3/f% = 1/f + 2/% 1/% + 1/f% s/3
(1,1)
(2,1) 3/f = 2/f + 1/% l/f(l’l)+ 1/t 2s/3
(1,3) L/f = 1/f + 3/7 1/t + 1/T s/l
| (2,1)
(3,1) L/¢ = 3/f + 1/f /% + 1/F 3s/L4
(2,1)
(2,3) 5/% = 2/f + 3/F YTy oyt YT 1| 28/5
(3,2) 5/% = 3/f + 2/% L/201 1) YE (o 1)| 38/5
etc. etc. etc, etc, etc.,
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Therefore its distance from the other original zone plate,

(1,0) is:-
d = s - —2s = . Dks
S = 9a,b) a + bk  a + bk ceees(2.52)
b ..
These distances, g%%z and g:%ﬁ, are the radii, r(o 1) and
?

r(l 0)? of the zones of the two original zone rlates that
?
overlap at the centre of the MZP, (a,b).

The Tocal length of a zone plate can be expressed as

follows:-—-

2r Ar
i = ( )b) (a}b)
,'(a’b) - X 00000(2053)

where r(a b) is the average radius of any zone
9
and Ar is the width of the same zone.
(avb)
Therefore, at the centre of the MZP (a,b):

A

3 T C T L
(l,O) ZAr(l,O) ~a + bk ‘....(2.524-)
whereupon: -
Ar = I(lyo)x (a " bk)
(1,0) 2bks ceesa(2.55)
and
r = fLO7l)X = as
(O’l) ZAr(O’l) - a + bk n00¢o(2056)

whereupon: -~

T A(a 4bk)
Arip,1) = (O’é)as ceoes(2.57)

Substituting the expression f(l O)/k for f(o 1) in equation
b b
(2.57):-

Ar - f(l,o)x(a +<bk)
(O’l) Zaks . 0900'(2058)

Thus from equations (2.59 and (2.58):-

20,1) _ b
a

Ar(1,0) ceees(2.59)
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i

Equation (2.59) shows that the MZP (a,b) is centred
at the point where the zone widths of the two original
zone plates are in the ratio b:a. 1In particular the
zone widths are equal Tor the case of the most prominent
MZP, (l,l), Tformed inbetween the two originals,

Using the sequential épproach which ctonsiders the MZP
(aB’bB) to be the most prominent zone plate generated by
the overlap of two zone plates (alibl) and (azpz) we Tind

that an analysis similar to the above yields:-

A
r(al’bl)

A (ay,b,) ceeo.(2.60)

This result means that at the centre of any MZP the
zone widths of the two directly generating zone plates are
equal, and is therefore a general condition for locating
the centres of a whole series of MZP, This is a new result
and one which leads to fTurther applications in the inter-
pretation of field-ion micrographs (see chapter 3).

THe positions of the MZP that are formed may be found
.using a graphical construction based on equation (2.59).
Figure 2,15 plots zone widths, Ar, against r Tor two zone
pPlates which, for simplicity, have 61 ::62 = 1 and k = 1,
Strictly, the function of Ar against r is a step functioh
but has been drawn as a continuous curve for clarity and
convenience. Also plotted in this figure are integral
"multiples of Ar. Thus, for example, the position of the
Mzp, (3,1) is found from the point at which the BAr(O,l)
curve intersects the Ar(l,o) curve,

Figure 2.15 also reveals a limitation on the number
off MZP that may be formed. For example, there can be no

MZP whose indices are (9.1) since the relevant Ar curves



Figure 2.14 The moiré pattern formed between two overlapping zone
plates for vhich k=1, but §,=8. (The zone plates used

to produce this jllustration are courtesy of H.H.L. Chan),

Figure 2,15 A grephizal method for locating the position of a iZP.
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fail to intersect, for the particular values of s and r
for which the curves have been drawn. There is a further
limitation on the number of MZP that may be detected by
the eye: there should, for example be a MZP (5,3) located
in between (3,2) and (2,1), but this is not discernible
in Figure 2.14. (Note however that Chau (1969(b) has
shown that MZP not visible to the eye may still be
detected by observing their focussing action using a
collimated laser beam).

It is possible to consider the visibility of a M2zP
in two ways. Firstly, the greater is its ring radius and
spacing (and hence focal length), the more prominent it
should appear. Thus higher index MZP will be less
prominent. Secondly, the greater the nuwmber of overlap
points erming the rings, the more readily will the MZP
be detected. Thus all other parameters being equal, the
more zones there are making up the original zone plates,
the more readily detected will be the MZP. Again higher
index MZP will suffer more on this basis.

The coordinate centre of a MZP of known indices (a,b)
is given by x = as/(aibk)’ enabling a Tairly accurate
‘value of k to be obtained from measurements made on the
moire pattern, Thus if a zone plate of known focal length,
fl’ is available, then in this way it is quite easy to
determine the focal length of an unknown zone plate,

12=Il/k, without the need for its direct measurement,

2.6.4,2, MZP in the region x<0,s<x

If the comprehensive approach is applied to the MZP
formed in the above region it results in an equation

identical to equation (2.59). The reason Tor this may
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may be seen from Tigure 2.15 where Ar has been plotted

to either side of the centres of the original zone plates.

Thus, fTor ekample, the MZP (3,1) formed in s<x is located
oint where the T curve intersects the Ar

at the 8% (0,1) 2%(1,0)

curve in this region, and so on.

As would be expected, the sequential approach again

results in an equation identical to equation (2.60).

2.6.5. The phase of a moiré zone plate

2.6.5.1. The phase Tactor

Unlike its Tocal length and position, the phase factor,
a(a,b) off a MZP does depend on the phase Tactors of the
two original zone plates. However, a certain amount of
care must be exercised in determining its wvalue. The
Tollowing expression, taken from equation (2.32), for an
original.zbne plate, contains its periodicity m:O,l,Z;j...

and phase O<E§<l, i.e.:
(m +61) . 00009(2.61)

The equivalent expression from, say, equation (2.35(a)),

a MZP, is:-
: 1 szabk & 8
ro- 2
[P (a+bk7 ( 2 ) + a l + b 2] --0.0(2.b~)
r
1
but the similarity is deceptive: ©p is not directly equiv-

alent to m, and hence the remainder of this expression is

not equal to 6 An illustration should make this

(a:b).
clear. Taking the situation where, for simplicity,
k=1, 6l=E§=O and s/rlle, then, for the MZP (1,2), the
expression (2.62) becomes equal to [p-66%]. This
€Xpression must always be positive, and for the minimum

value or P, say pi, must be <l. Here, therefore, p; must

€qual 67, and the phase factor, 6(1 5} is 1/3. Thus b
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takes the values 607 68, 69.e-

Tn general, therefore, the phase factor of the MZP

is given by:-

2
. 1 s a ’
6(a,b):[Pl - r5+bk)( rlzk)+ a61 + bE&] .....(2-63)

A further point that must be considered 1s that this
mathematical treatment considers only a series of
concentric circles, and does not differentiate between
those which enclose opadque areas, and those which enclose
transparent areas, as in the actual zone plate. Thus if
we consider two series of circles of identical dimensions,
in one case the Tirst zone being opadue, and in the other
case transparent, then considering these as zone plates
we should say that their phase difference was 0.5.

However the mathematical analysis would define theilr

phases as being equal.

2.6.5.2. The phase shift

If the moire pattern formed between two zoﬁe plates
is observed while the distance between their centres, S
is increased, it is noted that, while the relative
positions of the MZP remain the same, within 0<x<s the
rings forming the MZP are continously decreasing in
radius until they collapse to zero at their centre. Thus
the phase of the central ring decreases from one to zero,
whereupon the next ring becomes the central one, and
follows suit .

The total number of rings collapsed when the separ-
ation increases Trom S to s!' is given by: -

abk (52 2)

0 = Tawbk)ry? - s

....9(2.6u)

%
?
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This quantity, AO 1is termed the phase shift. Again
1t must be realised that the analysis refers to the
individual rings and hence the numerical value of the
phase shift will be twice the number of complete phase
cycles of the zone plate.

The rings making up the MZP which are formed outside
the two original zone plates increase in radius with
increasing s, and a similar procedure to the above may
be adopted to determine the appropriate values of phase

factor and phase shift for this situation.

2.6.6. Moiré zone plates produced by three overlapping

zone plates

2,6,6.1, General analysis

The MZP pattern formed by three overlapping zone
plates is shown in figure 2.16(a). The three original

zone plates can be represented by:-

(x—s)2 + Y2 = (m+Ea)r12 ceoeo(2.65)
x° 4 y2 | = (n+é§)r22 ceoes(2.66)
(x-51)% + (y=t)% = (quE)r32 ceeeo(2.67)

their centres being at co-ordinates (s,0), (0,0) and (s',t)

respectively (see figure 2.16(b)). The principal focal

2 2 2
lengths are given by fi_, 2" and I3 respectively; m, n
A A A

and q = 0,1,2,3,... are positive integers. Assume that

2 2 2 2
r, >r >
1 o> and Ty r3 and let r] =k > 1 and Ty -k 0> 1.

> -7 2
I‘2 1“3
The indicial equation now becomes : -
+ + .
am - bn -~ cq = p coeee(2.68)

where a, b and ¢ are positive dintegers.



Figare 2.16  The moiré pattern formed between three overlapping zone

plates.
(a) Photograph of the moire pattern.
(v) Co-ordinate diagranm.

(¢) 1Indexing of the patiern.
=) 54
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Eliminating m, n and g from equations (2.65) and (2.68)

[ (a2 iCkzs')]Z + [y (*ek,t) 2
X— T
féibklickz) (aibkl—ckz)

2

1

N T [Pz
(aZbk;Fck,)

2
r (abkls +aCk2(S—S')2+t2)ibcklk2(§2+t2)

rlz(aibk ickz)

1
+ a0 18, 28] .....(2.69)
Equation (2.69) represents the Tamily of MZP,
Four separate cases can be considered: firstly and
most important, case A, where the MZP are situated within
the triangle formed by the lines Jjoining the centres of

the three original zone plates, whereupon:-—

(as+ckzs‘) 2 (ckzt) 2
[X_(a+bkl+ck2)] + [y (a+bkl+ck2)]

2 ' 2 2 ,2 2 2
r, (abk,s +ack2((s—s') +t )+bcklk2(s' +t7))

_ 1
“(a+bk +ck27[P*

1 rlz(a+bk +ck2)

1
+ a61 + bEE + c 3]
‘ eess.(2.70)
The remaining three cases, B,C and D are the MZP that

lie outside the above mentioned triangle (see Tigure 2.16(b))

and will not be developed further here.

2.6.6,2, Focal length

From equation (2.70) the focal length T of the

(a,b,c)
MZP defined by a,b and ¢ is given by:-
' 2
Tr
1 1
f =
(a,b,c,) ( A )(a+bkl+ck2)

ceeoo(2.71)

As before it is possible to include the original zone
bPlates in the notation by allowing a, b and c to assume
the values (a=l, b=0, ¢=0) (a=0, b=l, ¢=0) and (a=0, b=0, c=1).

Then Tollowing the method developed in section 2.6.3.1.,
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we Tind that:-

1 _ a + b c

— P~ + =
(a,b,c) *(1,0,0) *(0,1,0) T(0,0,1).....(2.72)

This represents the comprehensive approach. Using the
sequential approach for the MZP (ah’ b, s Ch) where

a) =a, +oa, + a3, bhzbl + b2 + b3 and c)=cqy + Co + 03,
it can be shown that:-

1 1 N 1 + 1

f(ahybhacu) I(alablacl) I(azybzscz) I(aBsb37C3)

veoes(2.73)
The use of equation (2.72) and (2.73) are illustrated
in figure 2.16(c) by considering the MZP (3,2,1). This
can be considered as generated by the original 3 zone
plates by letting a=3, b=2 and c=1 in eqﬁation (2.72)
or as generated by MZP's (1,1,0) and (1,1,1) and original

:l’

zone plate (l,0,0) by letting a4:3, b4:2’ 04:1, ay

blzl, cq

equation (2.73).

=1, b,=0, and c¢,=0 in

=0, a2=l, b 3

=1, 02:1, a

2 3 3

It can also be considered as being formed from
either MZP's (1,1,1) and (2,1,0) or MZP's (1,1,0) and
(2,1,1) or MZP (2,2,1)and original zone plate (1,0,0).
This represents an extension of the sequential approach
simply by combining two of the three terms on the right
hand side of equation (2.73) - there being 3 possible
ways of doing this.

This point is perhaps more easily illustrated when
considering the most prominent MZP (l,l,l). This can be
considered as formed from either the 3 original zone
plates, or from 3 possible combinations of an original

zone plate and a MZP, namely (1,0,0) and (0,1,1) or
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(O,l,O) and (1,0,1) or (0,0,1) and (1,1,0) each MZP of

course being formed from the other two originals,

2.6.6.3. Location and phase

From equation (2070) it can be Seen that the co-
odinates of the centre of the MZP (a,b,c) within the

triangle are:-—

as+ck,s! ck.t
(o o)
a+bkl+ck2 , a+bkl+ck2

The phase factor of the MZP (a,b,c) within the
triangle can also be obtained from equation (2.70) with

reference to equation (2.63).

o) _ Pl_[abklsz+ack2((s—s')2+t2)+bck k., 2t )]

(a,b,c)

(a+bk +ck2)

r 2
1 1
+aQ_+b§2 3 ceeeo(2.7h)
This can be simplified because J«s—s‘)2+t2)is the inter-
centre distance between zone plates (1,0,0) and (0,0,1)
2 .2, . . . .

and N(s'"+t7)is the intercentre distance between (0,1,0)
and (0,0,1) which we can term 813 and 823 respectively.

To complete the notation we shall term S, the intercentre

distance between zone plates (l,0,0) and (O,l,O), 812
(see Tigure 2.16(b)).

Sip = S | vooos(2.75)

S15 = ¥(s-51)%+t?) cooos(2.76)
and  S,, = V(s'2+t?) ceeeo(2.77)
Therefore: - 2

= Pi- [abklslz+a°k2513+b0k 2" 231
a,b,e, rlz(a+bkl+ck2)
+ asl + b52 + 083 .””(2.78)

A more effective method of dealing with these complex
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expressions could be to use the extension to the

sequential approach discussed in the previous section.

2.6.7. Conclusions

Several new relationships have been put forward
regarding the fTormation of moirg zone plates. These
have been enabled by including the original zone plates
in the indicial nomenclature used to describe the MZP,
Using the established, comprehensive approach, it has
been possible to express the focal length of the MZP
by an expression similar to the lens combination fTormula,
and to express the position of the MZP in terms of the
zone widths of the two original zone plates, the
expressions in both cases being weighted by the indices
(a,b) of the MZP,

An alternafive, sequential, approach has been devised,
which allows the MZP to be regarded as generated by the
linear combination of two earlier (and in general, moiré)
zone plates in the series. In particular this latter
approach permits a rather simpler anélysis to be made of
the much more complex problem of the overlap of three
zone plates, Some consideration has been given to the
phase of the MZP, and a distinction made beitween phase
factor and phase shift.

The relevance of MZP formatién to the technique of
SYnthetic holography has been discussed by Chau (1969(b)).
The latter technique involves the superposition of several
zone plates (Conger, Long and Parks (1968) and it is
apparent that extraneous ghost images could also be formed
due to the moire effect. It is suggested here that there

may be further applications in connection with microscopy
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and related techniques. For example, zone plates have
been used Tor focusing soft X-radiation (Mgllenstedt,
Von Grote and Jonsson (1963)) and as correction plates
for use with the objective lens in high resolution
electron microscopy (Hoppe et al (1969)). It might be
possible to use the moiré effect to produce a variable
range of zone plates possessing different Tocal leﬁgths
and phase Tactors.

Probably the most important aspect of this work,
however, lies in the interpretation of field-ion micro-
graphs. 1In chapter 3 using techniques developed in this
section it has been possible to interpret the Tield-ion
image in terms of moiré pattern formation. Also a new
insight into the mechanism of field-ion image formation
has been obtained by simulation, using several overlapping
zone plates of an appropriate nature. The analysis used
relies heavily on the new methods of treatment developed

in this section.

2.7. An analysis of the moiré;pattern produced by over-

lapping zone plates using the transmission FTunction

representation technique

In the previous section it was shown that the indicial
representation approach may be used to analyse the moiré
pattern produced by overlapping zone plates. It would be
instructive, however, to briefly reproduce the most
important results contained therein by way of the
transmission function representation technique which was
outlined concisely in subsection (2.5.3.). This will not
only serve to demonstrate this new technique, but will

. 7
also provide new information concerning the moire pattern
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produced by overlapping zone plates.
In subsection (2.5.3.) it was shown that the general
sinusoidal approximation for a series of square wave

contours is:-—

D(x) = H(L + A sin 22x 46) e (2.79)

In this instance the term S, is introduced to describe

the phase of the zone plate. This expression, in Tfact,
accurately describes the transmission function of a

Gabor (or sinusoidal) zone plate found to occur in
holography. The Tocal length of the generalised or binary
zone plate has been shown in section 2.3 to be given by

the expressioni:-

r = pAD
A
Therefore Ap = %%

Substituting Ap(:%%)for p and p for x in equation (2.79),
the equation of a zone plate Talbl centred at the co-

ordinates S,0 in the x,y Cartesian system becomes:-

. 2
Tl(albl) = %(l + Al sin 27 O~ -+Salbl (2 80)
kfa b e ¢ 0 0 0 .
171
but p2 = (X_S)Z + y2

Therefore substituting in equation (2.80) for p2

sin 2x((x-5)2+y%) +da b,

Tl(al bl) =3 (1 + A

1
eeeos(2.81)

The corresponding equation for a zone plate centred

at (x—s), O of focal length T is:—

ayb,
T, (a,b,) = % (1 + A, sin 2x(x>+ 2)-Pga b,)
alashy) =3 2 —T§-El; 2P2
a
2 2 0.000(2082)

When the two zone plates are superimposed, face to

face, the equation for the total transmissivity of the
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system is found by utilising equation (2.29) in subsection

2.5.3. and is equal to:-

.7, = 1/4% (1 + Ay sin 2m(x2+y2)-+8a2b

12 _ 2
Klazbz

2 2
+ A, sin 2n((x-s)"+y S
1 Kfalbl + albl + A1A2

[sig 2ﬂ(x2+y2)+,ga b,]
Ia2b2 m2 2

2 2
x [Sin 27((}(—5) +y +Sa b ]

Ceeee.(2.83)
The two Tirst order terms in equation (2.83) reproduce
the equations for the original zone plates as described in
equations (2.81) and (2.82). The second order term in this
equation describes the transmission function of the moiré
pattern., The sum and difference modulation terms corres-

ponding to the additive and subtractive moiré'pattern may

be extracted using the standardrtrignometric identity:-
sin A sin B = 3 (cos(A-B)-cos(A+B)) ceeea(2.84)

The additive moiré pattern corresponds to the case

% cos(A+B) whilé the subtractive moiré pattern is given

by % cos(A-B). Taking the case of the additive moiré

pattern only.

TasbotTagb fasobss 2
Ta3b3 = LﬁKAlAQ cos %?[f 22 = = l(x%f =
< v “Tapby tajby a1by

apbp

20\
-S Ia2b2—l

(Tagby Fagbg)a b, galbl'*gazbz]
ceese(2.85)
Equation (2.85) has been structured in the same way
as equations (2.81) and (2.82) so that by comparing
coefficients, the moiré pattern is a zone plate whose

focal length f is given by the formula:-

a3b3
1 Tajpy * Taspo

Tagb 4 Tajby Tagzb,



which rearranges to give:-

1 N S 1

fasbsg Taiby Fagby enn(2.86)

This equation is identical to equation (2.49) which was
obtained in the previous analysis.
The location of this MZP is also obtained by comparing

coefficients and is given by the expression:-

T s
apby
Taiby T Tagbp ceee.(2.87)
f - _— ¢ 5
but albl/Iazbz = k and hence the above expression reduces

to s/14; which is again identical to the location calculated
in the previous analysis and corresponds to the case where
a=1l, b=1, that is the most prominent MZP,

Also contained within equation (2.85) is infTormation
concerning the detailed transmissivity of the moiré pattern.
This information is important when considering its
visibility. In this case the transmissivity of the MZP
is 1/8 A1A2 compared with the value of Al/2 and A2/2 for
the original zone plates. This technique is ideal for
situations where the particular shape of the transmission
function is critical. For instance, in the distinction
between the various types of zone plate (see subsection

2.2.3), which is of importance in holography.

2.8. The moiré pattern produced by the superpostion of an

equispaced grating on a zone plate.

2.8.1, Introduction

. . 7

The first observation of the moire pattern produced
between an equispaced grating and a zone plate was made by
Oster and Nishijima (1963). Its analysis was conducted by

Oster, Wasserman and Zwerling (1964), and subsequently



carried out in more detail by Stecher (1964). The analysis
has since received attention by Oster (1967) and Theocaris
(1969) .

The moire pattern usually associated with this system
consists of a multiple replication of the zone plate arrayed
symmetrically about the zone plate in a direction perpen-
dicular to the straight lines composing the grating, (see
figure 2.17). Only Stecher (1964) has discovered that
by varying the pitch of the grating, a moiré pattern
congisting of moiré zone plates (henceforth MZP) of
differing focal length may be obtained. Stecher (1964)
attempted the analysis of this effect, but no serious,
thorough investigation has been made. Stecher (1964) has
also made the observation that by overlabping a grid
structure with a zone plate, a twp dimensional array of
moire zone plates is obtained.

In this chapter a more systematic analysis of the
phenomenon is carried out using techniques developed
elsewhere (section 2.6). By considering the grid structure
to act effectively as two perpendicularly inclined gratings
and by using an indicial equation involving three terms,

a rigorous mathematical analysis can be performed for

the first time.

2.8.2. General Analysis

For the most general case, allow the zone plate to
bossess a phase factor 5. Hence the equation of a zone
plate centred at (0,0)in an x,y co-ordinate system is:-

x>+ y% = 2% (m +9) ceee(2.88)



The equation of an equispaced grating, spacing d, orientated

parallel to the y axis dis:-
X = ind 00000(2089)

Vd
The technique used Tor the solution of the moire pattern
resulting from the overlapping of two figures consisting of
two indexed families of curves or lines relies on the use

of the indicial equation:-
am ¥ bn = p

However, Theocaris (1969) has shown that in this particular
instance the subtractive moiré effect is dominant for positive
values of x and the additiie moiré effect is dominant for
negative values of x. Thus the moiré pattern is symmetric
fabout the y axis. In order to simplify the analysis we shall
consider only the additive moiré pattern,but will let the
grating take positive and negative values of x, hence
pPreserving the symmetry. The indicial equation now takes

the fTorm:-

am - bn = P oooo-(2090)

14

If we now eliminate m and n from equations (2.88), (2.89)

and (2.90), we obtain:-

r .2 2.2
-ﬁé—[P 2. + S ]

L'-arl 00000(2091)

1l

bk 2 2
(x £ 22)7 + y

Where the term k is a constant and equal to rlz/d'
Equation (2.91) has been structured in a similar manner to
equation (2.88) and it describes an array of MZP located
along the x axis.

Figure 2.18 depicts the moiré pattern formed between a
Zone plate and a finely spaced grating. A series of MZP

are formed some of which replicate the original zone plate,



Fieure 2.17 The moiré-pa’ctern formed by the superposition of a zone

plate and a coarse grating.

Figure 2,18 The moire pattern formed by overlapping a zone plate and

a fine grating,
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but between each of this type of zone plate MZP!'s of
varying dimensions can be found. The location, prominence
and indexing of these MZP will subsequently be discussed

in this section.

2.8.3., The focal length of a moire zone plate

From equation (2.91) the Tocal length I(a,b) of the MZP
as defined by its indices a and b is given by:-

f(a,b) = r
| an cees.(2.92)

The original zone plate would take the indices a=l1, b=0,
in this indicial system. This may be verified by substituting
these values into the general equation (2.91). By substitut-
ing these values into equation (2.92) we find that:-

f(O,l) = T 2
N veees(2.93)

This is the value of the focal length of the original
zone plate. From equation (2.92) it can be seen that the
focal length of an MZP is dependent only on the focal length
of the original zone plate and the value of a. It is
independent of the grating spacing.

From the equations (2.92) and (2.93):-

f(a,b = T
: ’iiig) ceeoo(2.98)
or - 1 - a

I(a,b) f(l’o) 00900(2095)

Equation (2.95) determines the focal length of the
entire series of MZP., For a particular value of a, the
focal length will always be the same, The value of b only
determines the location of the MZP,

Consider the MZP whose parameters possess the values

(a:aB) and (b:bB)'
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Such that ag = a, + a, ceeed(2.96)
and by = b, + b, ceee.(2.97)
- P £
Then “agby = 2(1,0) = 2(1,0)
as a;ta, ceee.(2.98)
Hence __ 1 = 1 + L
Ia3bj Taiby IaZbZ ceees(2.99)

Equation (2.99) is an important result and is identical
to that obtained for the MZP formed between two overlapping
zone plates. However, there is one important difference.
The values of b within equation (2.99) are redundant as they
have no infTluence on the focal length of the MZP. Thus
equation (2.99) may be generalised further by substituting
the parameter b which can take any value.

Thus 1 — 1 + nl

Tasb  taip  Tagp coesa(2.,100)

The general conclusions drawn appertaining to the similar
equation derived Tor the case of overlapping zone plates are
also valid in this instance. Two different approaches may
be made ir determining the mode of formation of the MZP.
These have been investigated in the case of overlapping zone
Plates in the pPrevious section., In this case, the problem
is slightly different. Not only do we have the original zone
pPlate of focal length T, but wé have a whole series of MZP of
the same focal length occurring whenever a=1,. .In this case,
we must consider the formation of MZP of focal length less
han © to be Fformed by pairs of MZP wheré a=1 for the comp-
rehensive’approach; the sequential approach is unatffected.

To clarify this, table 2.2 shows the mode of Tormation of
MZP formed between the original zone plate and the MZP(1,1)

which is located at a distance k/2 from (1,0).
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Thus in the comprehensive approach, the MZP are
considered to be Tormed by a weighted sum of the two
original zone plates. In the sequential mode, the MZP
are Tormed by the linear sum of the two previous prominant

MZP in the series.

2.8.4, The location of the moiré zone plate

The distance d( of the MZP from the original zone

a7b)

plate (l,O), situated at the origin is contained within the

general equation (2.91).

3 d, —i.?..l.{.
‘ (a,b) 2a ceeos(2.101)

The radius of the original zone plate at the centre of the
original zone plate (a,b) must also be d(a b) *
?

The focal length of a zone plate has been shown to be:-

£ - 2r a, Ar a,
(a,b) ( bi s cee..(2.102)
Hence:
£(1,0) *(1,0)%%(1,0)

A ..o..(Z.lOB)

I

Substituting for r ) from equation (2.101):

(1,0

2y — P_]‘{_: AI‘
I(l,o) T a “%J_O)

eeoo(2.104)

2 -~
but k = rl/é. Therefore f(l,O) = aRa,b)ArlO
d .....(2.105)
but f(l,O) = I(a,b)b. Hence Arq g

oo

d ceee(2.106)

Equation (2.106) shows that the MZP (a,b) is formed
when the ratio of the zoné separation to the grating
Spacing is equal to b/a. This confirms and generalises
an observation made by Stecher (1964). Here is was observed
that at the most prominent MzP ((1,1) in our parametric
system) was formed when the zone separation of the zone

bplate was equal to d. For MzP (1,1) equation (2.106) becomes:



Ar
__1_1‘_)—1) = 1 ..oo'(2.107)

d

This relationship will lead to new applications in the
interpretation of Tield-ion micrographs where a similar
relationship exists between the zone widths of two Tield-
ion planes at the centre of a subsiduary plane.

The location of the MZP may also be found using a
graphical construction which is based on equation (2.106)
and is similar to Tigure 2.15, used to locate MZP formed
between two overlapping zone plates. In fTigure 2.19 the
zone separations Ar are plotted versus x Tor the original
zone plate centred at the co-ordinate origin. This
produces the Tamiliar 'hanging curtains!'! effect. Super-
imposed on this is the function, grating. spacing versus
x which is, of course, a straight line parallel to the x
-co-ordinate. Also plotted in this fTigure are integral
multiples of Ar and d. Hence, for instance the MZP (3,2)

is found at the point where the 3Ar curve intersects

(1,0)
the 2d straight line.

As before, this figure also reveals the limitations
on the number of MZP that are allowed. For instance, in
this system, there can be no MZP (1,11) since there can
be no intersection point. The number of MZP is also
limited by the finite number of =zones in the zone plate
and the finite pitch of the grating. For example the

curve O9Ar Tails to intersect the 1d straight line

(1,0)
on the figure. The x co-ordinate is a function of the
humber of zones contained inthe zone plate and so for
the number of zones allowed Ffor in Tigure (2.19), the

MZP(9,1) is not possible. This MZP would be possible

if the grating pitch was increased by a factor of tenfold.
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Figure 2,19 A graphical method for locating the position of H.Z.P.

formed by superimposing a zone plate with a grating.
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This may also provide a useful method of determining
the focal length of a zone plate. The co-ordinate centre
of a MZP (ab) is given by:-

brl2

X T 2ad

Thus if a grating of known pitch d is available, it is

quite simple to measure x and knowing a and b, r may

1

be calculated. Hence for a particular wavelength ), the
' 2
focal length I‘l/k can be found.

2.8.5. The phase Factor of a moiré zone plate

The phase Tactor of a MZP has already been defined
in section (2.6.5). The phase Tactor in this system for
a particular MZP depends on the location of the MZP (and
hence the grating pitch) and the phase Tactor of the original
~zone plate. The phase Tactor of an MZP(a,b) is given by

the expression:-

2 2
b Ty
Sab = (—-——5— + S - Pl)
ha d ceose(2.108)
In this case the value of Pi is an integral number
such that (pi + 1) > b2 rlgf > Pi, Thus the phase factor
ab can only take l,tad2 values 1 > Sab > 0.

2.8.6., The moire pattern produced by overlapping a zone

plate with a grid structure

2.8.6.1 General analysis
The two dimensional array of MZP formed by this system
is illustrated in figure 2.20., The original zone plate is

Tepresented by the equation:-

X2 + y2 = I‘lz(m+g) onooc(20109)

The equation of a grid can be broken down into two expressions

describing two sets of equispaced gratings orientated



Piguare 2,20 The moire pattern formed by the superposition of a zone

plate and a grid structure,
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perpendicular to each other. For simplicity we shall
consider only the case of a square mesh i.e. when the
pitch of the two gratings is equal. Hence the equation
of an equispaced grating with spacing d orientated
parallel to the y axis is:-

x = * nd eeees(2.110)
Similarly, the equation of an equispaced grating parallel
to the x-axis is:- | ‘

y = % qd f.o..(z.lll)

The zone plate is situated at the origin of an Xy
co-ordinate system and its principal focal length is
given by rli&, m, n and g = 0, 1, 2, 3.,.. are positive
integers.

Utilising the indicial equation (igﬁoring the sub-
tractive moiré effect Tor reasons outlined earlier).

am + bn + cq = p eeeso(2.112)
where a, b and ¢ are positive integers.

Eliminating n, n and q from equations (2.109), (2.110),
(2.111) and (2.112).

2 2

bk 2 2 T1 Kk 2 2
(2307 + (v £ 852 - a(p+—_§Z—(b+c)+g)
I‘l a

coees(2.113)
Let us now examine the location and focal length of

these MZP,

2.8.6.2, The focal length of a moiré zone plate

Equation (2.113) corresponds to a series of MZP of
focal length Fap given by:-

b ¥ 2
T(a,b) = T1 .
a) voeeos(2.114)

As before, the focal length is independent of the grid

Structure and is solely a fTunction of the Tocal length of
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the original zone plate. Once more, the focal length of
the original zone plate corresponds to the case (1,0).
Hence following the method used in subsection 2.8.3. we

find that Tor the comprehensive approach:-

N S a
Y(a,b,c) (1,0) ceeeo(2.115)
For the sequential approach where ah :(al + a2 + a3)

bh = (bl + b2 + b3)’ and Cp = (Cl + C, + 03) it can
easily be shown that:-

1 _ 1 + 1 + 1
i T F T T
(ahybyc) (al,b,c) (32’b9c) (339]390)

ceeoo(2.116)

where b and c¢ can take any integral values.

2.8.6.3. The location and phase Tactor of an MZP

Equation (2.113) shows that the centresof the MzP(a,b)
are located at the co-ordinates (igg), (igg). The distance
between this point and the origin, corresponds to the

radius r(o l) of the original zone plate &is given by:-
b

- ((Bky2 | (cky2y%
To,1) = ((F)7 + (2a> ) ceoo.(2.117)
Simplifying
r _ 5_(b2+ 2)%
(071) 2a © 00090(20118)

Using the method developed in subsection(2.8.4,) it can
be shown that:-—
Argy 1
d 1
a(b2+02)2 00000(20119)

That is, at the location of the centre of MZP (a,b,c), the
ratio of the zone width of’ the original zone plate at that

‘ 1
boint and the grating pitch d is a(b2+c2) 2,
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Following the previous analysis, the phase factor

of an MZP (a,b,c) is given by the expression:-—

2
%(a,b,c) . > (b2+02) + S - Py
4rl a ceses(2.120)

p. 2
where "1 + 1 2 _k (b2+c2) . S > Py,

T 2a
1

2.8.7. Summary and conclusions

This section represents the fTirst systematic invest-
igation of the properties of the moiré patterns Tormed
between a zone plate and a grating and a zone plate and
a grid structure. Using techniques developed previously
(section 2.6), several new relationships have been put
forward regarding the mode of formation of moirs zone
plates. 1In order to generalise the approach to include
all types of zone plate, the reader is referred to section

22,2,k where methods have been developed. By the inclusion
ot the original zone plate into the parametric nomenclature,
the sequential and comprehensive approaches fTormed in
section 2.6 to explain the formation of MZP due to the

- superposition of zone plates, have been extended and modified
to explain the formation of MZP in this system.

The relevance of MZP to synthetic holography has been
discussed Previously and the MZP formed by this-method
will be important. However the most important application
off this study is felt to be in the interpretation of field-
ion micrographs, An analogue may be drawn between the zone
bPlate and a single field-ion plane.(chapter 3). The zone
plate may also represent the projected contours of a shape
Similar to that of a Tield-ion emitter., If a zone plate

is then overlapped with a grid structure, the resulting
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moire pattern resembles a field-ion micrograph., In this
case the grid structure represents the crystal lattice.

It is hoped that the present study will lead to a better
understanding of the zone width phenomenon at the centre

of a (hkl) field-ion plane.



Table 2.2

MZP,Of 1 Comprehensive {Sequential .
indices = approach a oach Position
a;b (a,b) bp pproac

2,1 -Z/f /% + 1/1"ll 1/ + :L/fll k/U4
3,1 3/% 2/t + 1/f,, |1/f + 1/f(21) k/6
3,2 3/ 1/f + 2/fll 1/fll + 1/f2l k/3

[ L/ 3/% + 1/fll l/f21 + 1/7 k/8
4,3 /¢ 1/ + 3/fll l/fll + 1/f32 3k/8
5,2 5/T b/ + 1/F,, 1/, + 1/f31 k/5
5,3 5/t 1/ + l+/fll 1/fZl + 1/f32 3k/10
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CHAPTER THRIE

OPTICAL ANALOGUES OF FIELD-ION MICROSCOPY

3.1. Introduction

This chapter discusses the optical analogues that
may be derived between the geometry of a single plane
in the field-ion image, and a zone plate, and between
the interdependant system of ring structures composing
the entire field-ion image, and the moire pattern Tormed
between overlapping zone plates. Subsequently, the
applications of such analogues to the interpretation
of'field—ion micrographs are discussed.

The zone plate has been dealt with already in
chapter 2; only the aspects of fuﬁdamental relevance
will be briefly reviewed here. It is well known that
a zone plate behaves in a similar fashion to a lens in
that it brings incident radiatioﬁ to a focus. Reference
to figure 3.1(a) will illustrate the familiar Fresnel
zone plate, which consists of alternate black and white
circular zones, which, to a Tirst approximation, are of
equal area. A more general case is the binary zone
plate (Horman and Chau (1967)), shown in figure 3.1(b).
Here the series of black zones are not necessarily equal
in area to that of the white. The image of a single field-
ion plane, fTigure 3.1(0), possesses a striking similarity
to the binary zone plate, and it will be shown that it
does indeed possess this zone plate geometry. Hence it
is possible to utilise the focussing properties of such
images to extract new informatidn from the micrograph.
The complicated microscope projection introduces a degree

of spherical aberration into the focus and this will be



Figure 3.1 The zone plate analogy with the field-ion plane.
illustration shows the similarity in sppeerance between :~
(a2) A Fresnel zone plate
(b) A binary zone plate

(c) A field-ion plane

This
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discussed theoretically,

It was shown in chapter 2 that a visible moiré
pattern may be formed when two or more periodic
structures are overlapped, the loci of the points at
which the elements making up each structure overlap
will themselves Torm a pattern which may be apparent
to the eye. A zone plate is an example of such a
periodic structure, and the moire prattern produced
by the overlap of two zone pPlates consists of a number
of’ additional zone plates, of different dimensions,
centred upon the line joining the centres of the two
original zone plates (fqr a complete analysis see
chapter 2). An example of such a moire pattern is
shown in figure 3.16(F)and this should Be compared with
figure 3.16(a) a region of a Tield-ion micrograph
depicting a number of planes within a zone. Again the
similarity is striking, and it will be shown by using
techniques developed in chapter 2, that the entire
Tield-ion image may indeed by interpreted in terms of
moiré pattern theory. Once more, this analogue enables
new kinds of information to be obtained from Tield-ion

micrographs,

3.2. The zone plate analoguet

3.2.1. Zone plates in terms of progection geometry

All types of zone plates may be conceived in terms
of projective geometry, these concepts are introduced

here and are subsequently used to derive the zone plate

T Part of the work presented in this chapter has been
published in J. Appl. Phys. Lett (1973) 23 161.
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analogue of a single field-ion plane.

3.2.1.1. The Fresnel zone plate

The exact relationship between the radius, T ot
the nth ring of a Fresnel zone plate, and its Tocal
length, ¥, is given by:-

2.2
n

_ - A '
e S " ceees(3.1)

Usually ©>>) and this may be approximated to:-

r © = nf) coeeo(3.2)
In terms of projective geometry, equation (3.1) is
equivalent to the figure produced when a hyperboloid
which has been cut by incremental equally spaced planes
at right angles to its axis, is progected in a direction
parallel to its axis onto a plane surface. Equation
(3.2) on»the other hand, is equivalent to a paraboloid
treated similarly.

If we now consider a épherical surface cut by a
series of parallel planes a distance d apart, (figure
3.2) then the radii of the rings thus defined on its
surface may be determined using the Sagitta formula,
thus: -

r.© = nd(2R - nd) ‘ ceose(3.3)
where R is the radius of the sphere. This may now be

written as:-

I‘nz = 2Rnd -_ n2d2 10000(304)

Providing R>>d we may neglect the term n?d® from
which it may be seen that the projection of such a
figure, perpendicular to the sefies of parallel planes,
is almost as good an approximation to the exact zone

. . 2
plate geometry as is the progected paraboloid viz. T o n.



Figure 3.2 A schematic diagram of a field-ion plane used to show

- that it possesses zons plate geometry, i.e. rn20( n.
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A more general expression for the Tocal length of
a zone plate has been derived in chapter 2 and in the
case of the Fresnel zone plate it can be shown that

equation (3.2) reduces to:-

£ = 2rAr
A eeees(3.5)

where » and Ar are defined by Tigure 3.3(8). This
equation is useful in that it deTines the Tocal length
of an annular region, and hence could be applied-to a
zone plate whose Tocal length was not constant with
distance from the axis (i.e. spherically aberrated).
This aspect will be considered in more detail later in

this chapter.

3.2.1.2, The binary zone plate

In terms of projective geometry, a binary zone plate
may be described as the Tigure produced when two
concentric spheres (i.e. a thin shell) are cut by
incrementally spaced planes, and then projected onto
a flat surface as before, This is illustrated in
Tigure 3.3(b). We must now replace the quantities
r and Ar by p and Ap, whereupon the formula Tor the

focal length of an annulus now becomes:-

3 | cer. (3.6)
Comparison of the situation represented by
Tigures 3.3(3) and 3.3(b) shows that fTor outer spheres
of the same radius, R, and planes of the same spacing,
d, the binary zone plate will possess twice as many
zones Tor a given value of n. fhis may be demonstrated
by considering the shell thickness in Tigure 3.3(b) to

equal d/2, whereupon the binary zone plate becomes the
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Figure 3.3 The geometry of a single plane on the field-ion surface,

| (a), showing the stepped atomic structure and the equivalent Fresnel
Zone plate in orthographic projection with alternate zones appearing
black and white, and (b),'showing the relative areas imaged and

Donimaged, and the equivalent binary zone plate.
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special case of a Fresnel zone plate, but with twice
as many zones as in figure 3.3(a). It will be seen
that by taking this special case of a binary zone
plate, we can make subsequent calculations involving

binary zone plates that much easier.

3,2.2. The geometry of a field-ion plane

It has been shown by Moore (1962) that the general
appearance of the field-ion image may be understood. by
taking a thin sphericalvshell through the crystal
lattice and by considering that only those atoms which
lie within the shell give rise to image points. This
model is illustrated for a single plane on the imaging
surface by means of Tigure B.M(a). Typically the shell
thickness would be about one tenth the stép height of
the plane, and comparison of figure 3.3(b) and 3.4(a)
shows that the appearance of such a plane, if projected
orthographically as before, is identical to that of the
binary zone plate: the imaged atoms Torm the white zones,
and the non-imaged ones the black zones.

We may calculate the fTocal length of the Tield-ion
zone plate defined in figure 3.4 in the following way.
Strictly equation (3.6) should be used since the zone
Plate is a binary one. However the calculation becomes
vVery much simpler if we instead calculate the special
¢ase of this for which the shell thickness equals d/2
i.e. the equivalent Fresnel zone plate (formed by planes
whose separation is d/2), as discussed at the end of the
Previous section and shown in figure 3.4(b). The focal
length of the latter is identical to that of the binary

zone Plate; it is only the total diffracted intensity
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2t the focal point that is different (Horman and Chau
(1967))° (While this latter quantity does itself, in
principle, contain information on the zone plate, the
field—ion analogy is not sufficiently accurate to

justify attempting to use it here).

3.2.3. The focal length of a single Tield-ion plane

The geometric similarity between the image of a
single crystal plane in a Tield-ion micrograph, and a
Fresnel zone plate was Tirst pointed out by Vali and
Gordon (1967) and investigated subsequently by Southworth,
Leifer and Walls (1973). Since one property of a zone
plate is its ability to focus collimated light, Vali
and Gordon (1967) have proposed that a suitably magnified
field-ion image could be Tocussed using coherent light,
and information extracted from the Tocal lengths obtained
Tfrom each plane., However theéir subsequent analysis is
Tundamentally incorrect on a number of points.

Figure 3.5(a) shows the stepped atomic structure of
a single plane at the apex of a field-ion emitter of
radius R, Fach parallel atomic plane is a distance, d,
apart, and the radii of the rings thus defined on the
emitter surface may be determined using the Sagitta

-
tormula as before, and hence from equation 3.4:-

I‘n = 2Rnd 0000'(3'7)

As Vali and Gordon point out, the condition that rn2 @ n
€quals that for the construction of a Fresnel zone plate,
and the schematic above figure 3.5(a) shows the resulting
aPPearance of such a zone plate with alternate zones made

transparent and opaque.



© Atoms imoging
o Atoms not imaging

Pigure 3.4 (a) The zone plate formed by adopting the 'thin shell!
model,

(b) The equivalent Fresnel zone plate formed if we let
the shell thickness be 4/2,

(o (b)

Figure 3.5 (a) The zone plate formed by projecting the stepped
structure of the emitter, compared with
(b) The zone plate formed by adopting the thin shell

criterion for imaging.



Using equation (3.5) for the focal length, f,
of a Fresnel zone plate.
Where:

Ar = rn+_]_ - rn 10000(3.8)

and

2 ceees(3.9)

In this case the Tocal length of such a zone plate

becomes: —
~  _ 2/ n+l n r -
£ o= 573 ) (Tn+l n) eee..(3.10)
= 2
r o= I'n+l2 ~ Th
A ceeee(3.11)

Substituting values fTor r 2 and r 2 obtained using
n+1l n
equation (3.7) this becomes:-

f = 2Rd
A ceesa(3.12)

This expression may be seen to contain information on
the emitter radius and the spacing of the atomic planes
cansidered.

Strictly the zone plate considered so Tar is that
obtained by orthogonal projection of the stepped
structure of the emitter surface onto the tangent
Plane at the apex, hence producing unit magnification.
In practice magnifications of severél million times
are produced in the field-ion microscope, since an
image of the emitter surface is proJjected onto a
Tluorescent screen placed some distance, say T, away.
Ir, following Vali and Gordon, we assume the projection
to be a radial (or gnomonic) one, then the zone plate
is magnified linearly by a factor T/R, whereupon

equation (3.12) becomes:—



R) ceeea(3.13)

This equation is identical to that deduced by Vali and
Gordon, ignoring any further (linear) magnification
between the image and the transparency used in the
focussing experiment.

However this derivation ignores the real nature of
the Tield—-ion imaging surface. Moore (1962) has shown
that the latter may most readily be illustrated by
taking a thin shell through the crystal lattice, and
by considering only those atoms which lie within the
shell to give rise to image points. This is illustrated
in figure 3.5(b). Thus the imaged atoms form the white
zones and the non-imaged atoms on the surface the black
zones, as shown schematically for an orthogonal projection,
above this figure. The resulting kind of zone plate is
the binary zone plate, and its focal length may be no
longer expreséed by the formula used by Vali and Gordon,
since the black and white =zones are no longer equal in
area, Furthermoré it is evident that, for.a given value
of n, the binary zone plate contains twice as many zones
as in the Fresnel case. Using the appropriate expression
Tor the ftocal length of a binary zone plate, equation
(3.6), it is possible to show that in the above situation,
the ctorresponding equation to equation 3,13 is:-

2
s . I%d

S ceeeo(3.1h)

a Tactor of 2 different from that of Vali and Gordon.
A Turther error lies in their assumption of a
radial bProjection., In practice the stereographic

Projection is a better approximation (Brenner (1962)),
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although even this is not exact. If we assume a
stereographic projection then the magnification factor,
T/R, must be replaced by T/2R, and hence the fTocal
length defined by equation (3.14) becomes a fTurther
factor of L4 smaller. If other projection relationships
are considered a different correction Tactor becomes
necessary.

Vali and Gordon also made the assumption that the
magnification factors fTor such projections are linear.
Actually the factors T/R (for radial) and T/2R (for
stereographic) are themselves approximations, and
ideally should include some Tunction of 9, the angle
that a given point on the emitter surface subtends at
the centre. The net effect of this would be to introduce
a certain degree of spherical aberration into the =zone
plate image, since the rn2 & n relationship is not
carried over precisely from the emitter to the image
plane. Equation (3;5)Vis useful here in that in this
Torm it allows the fTocal length of successivé-zones to
be calculated, and hence the degree of spherical
aberration to be evaluated. In practice it turns out
that, providing B is small (as it is for the.first few
rings around an axially located plane), then the above
function of 9 is unity and the magnification Tactors
used are good approximations.

However only one plane can lie at the apex of the
emitter. The remaiqder are located around its hemi-
Spherical surface, their poles subtending various, and
Row substantial, angles 6, with the emitter axis. The

images of the resulting zone plates will now display



e

more substantial aberrations since their magnification
is no longer linear. Only fTor the sterographic case

do the zoneé project as circles and even then the
latter are not quite concentric, introducing some
biased degree of astigmatism into the zone plate.

with other projections the aberrations introduced will
be more complex. For example fTigure 3.6 shows the image
of a Fresnel zone plate constructed on the surface of

a sphere, whose axis makes an angle of 30° with the
projJection axis, projected (a) radially and (b) stereo-
graphically. The aberration is considerably less in
the latter case, although still present.

When it is realised that the emitter radius need,
not be a constant, it becomes apparent‘that obtaining
an exact expression for the focal length of any given
zone plate image is not a simple matter, involving as
it does, not only T and d, but also local radius and
local magnification (the latter being a function of R,

0 and the projection relationship). Thus it is not
even true that, as stated by Vali and Gordon (1967),
images of crystallographically equivalent planes will
necessarily exhibit the same focal length. Furthermore
their suggestion that the technique could be used to
measure interplanar distances at great magnification
is not realistic; the uncertainties involved are too
great, and in any case such data is already well known
Trom X-ray analysis. Rather, the fTocussing technique
may be used to determine the local image magnification
(and hence the projection relationship), providing that

the local radius of the emitter, together with the other



Tigure 3.6 The appearance of a Fresnel zone plate such as that in
figure 3.3, but inclined at an angle of 50 to the emitter axis,

projected (a) radially and (b) stereographically.
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parameters in the expression Tor the focal length are

known. The detailed theory and applications of this

technique are described in chapter 5.

3.2.4' The Tocussing properties of a single Tield-ion plane

3,2.4.1. The phase factor of a field-ion plane

So far we have implicitly assumed that the Tield-
ion plane is of maximum diameter. In general, field
evaporation will have left it at some intermediate size
and its centre will lie at a distanoé 54 from the outer
sphere where O< 8<l; The term O is the field evaporation
phase factor and is discussed in more detail in chapter 4.
It is necessary here to show that the Tocal length of
a field—ion plane, as in the case of a.zone plate, does
not depend on the phase, or in this case the stage of
field evaporation of the plane. Numbering the ledges
0,L,2,3,.. i1t can be seen that:-

rn2 = 2Rd(n+ 8) veese(3.15)
and similarly:-

2

r ., = 2Rd(n+l+§) | } coese(3.16)

Substitution of equations (3.15) and (3.16) into equation
(3.11) involves the subtraction of the above two terms,
the phase factors cancel and we are again left with
equation (3.12) for the focal length.

This result is to be expected as conventional zone
Plates do not necessarily have their zone radii
ekpressed directly by equation (3.15 and it is necessary
b0 include a similar factor 8 also referred to as the
Phase (chapter 2). The Fresnel zone plate shown in

tlgure 3.1(a) does have a phase of zero, but the binary
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zone plate shown in Tigure B.l(b) does not, Differences

in phase do not affect the Tocal length of either the

zone plate or the fTield-ion plane.

3.2.4.2. The spherical aberration of a projected Tield-

ion Elane

Spherical aberration is a term usually used to
describe the common observation that lenses do not
refract all the incident radiation to a common focal
point. The term can also be used to describe the same
irregularity displayed by zone plates. In this case,
due to some dirregularity in the annulus structure,
light is not diffracted to a common point on the =zone
plane axis. The focal length variation along this axis
is sometimes referred to as longitudinal spherical
aberration, In this section we shall attempt to predict
the extent of the longitudinal spherical aberration for ’
a projected field-ion plane in terms of the number of
ring n, for a particular value of R, The analysis is
performed using the stereographic and the radial
projections, both commonly used in the analysis of
micrographs. The data derived from the analysis will
have a bearing on the usefulness of focussing field-
ion micrographs as a means of obtaining information.

a) The spherical aberration of an axially situated

field-ion plane projected stereographically

Consider the situation depicted schematically in
Tigure 3.7. A plane lies perpendicular to the emitter
axls and is situated so that its'poié lies a distance
T from the imaging plane. The image consists of a

Serie o . . . n
1es of concentric rings which correspond to the
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Figure 3.7, The schematic model used to calculate the spherical
aberration of a field-ion plane projected stereographically.

(Equation 3.22.).
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circular facets existing on the specimen surface
(assuming that the specimen is hemispherical). It

;s a property of the stereographic projection that
circles project as circles (Phillips(l962))and hence
for this projection the image consists of circular
rings. In Tact this would also be the case Tor non-
axial planes provided they are projected stereographically.
For an axially situated plane, a circular image pattern
occurs regardless of projection providing that the
projection point is situated on the emitter axis. IT
the racius of each individual circular fTacet is ro

(see Tigure 3.7) then the radius of their magnified
images is X Farlier in this chapter it was shown
that the Tield-ion plane in the image Qas analogous

to the binary zone plate. Hence the appropriate
equation to determine the fTocal length of a projected
field-ion plane is equation (3.6). This equation is
also particularly convenient as it allows the fTocal
length of each annulus comprising the zone plate to

be found.' Thus the radius of the nth zone in the image
P is given by the equation:-

X X
' _ _h+ n+l

P > - ceeea(3.17)

The expression for the appropriate zone separation Ap is:-
Ap = Xn+l - Xn 90000(3018)

Let us examine once more, figure 3.7 from the similar
triangles APQQ!' and APOO! it can be seen that:-

T + 2R .
2R — nd cooon(3‘19)

X

n
—
r

n

but from equation (3.8) r =N (2Rnd), hence substituting
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in equation (3.19)we obtain: -~

for rn
T + 2R
nxn = 2R - 5oV (2Rnd) coese(3.20)

gimilarly, it can be shown that:-

Xn+l = gR+_2}(2n+l)dN/_(2R(n+l)d)

eeeea(3.21)
Hence by obtaining p and Ap from equations (3.17), (3.18),
(3.20) and (3.21), the focal length ¥ is given by the

equation:—

s = (T+2R)2Rd (n+1)

) [(2R—(n+l)d)2 - Tiﬁ%53721 (5.22)

Thus Tor a given lattice spacing d and specimen
radius R, this equation enables the percentage change
in © to be found as a Tunction of the ring number n.
Tungsten dis usually (Oll) orientated and the (Oll)
interplanar spacing is 2.239&. Typical radius of
curvature values for fTield-ion emitters are 200 and
5004 . Equation (3.22) has been used to calculate the
theoretical percentage change in the Tocal length as
a function of ring number for these two particular
values of the local radius of curvature and these are
bPresented graphically in figure 3.8. Immediately it
can be seen that the focal length varies almost linearly
with ring number and that spherical aberration is
reduced with increasing local radius of curvature.

~For example if the focal length of the 5th annulus is
compared with the first then for a specimen of 2004
radius there is almost a 9%3% change and fTor a specimen

of 5004 radius there is only a 23% change.
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Figure 3,8, e spherical aberration of a'field-ion plane situated at
the emitter apex, projected stereographically. The percentage

change in focal length, f, is plotted as a function of ring number, n.
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b) Spherical aberration of an oxially situated field-

ion plane projected radially N

For a Tield-ion plane proJected radially (i.e.
the image corresponds to the situation where the faéeted
surface structure appears to have been projected from
a point on the specimen axis corresponding to the
centre of curvature of the specimen (figure 3.9). In
this case, by a similar argument to that used above
for the stereographic projection, the fTocal length of

a field-ion plane in the image is given by:-

. =(T+R)2Rd n+1 __n ]
A (R-(n+1)d)®*  (R-nd)? cee.o(3.23)

i Figure 3.10 depicts the percentage variation in T
as a Tunction of ring number n. As before, the results
suggest an approximately linear relationship of fTocal
length with ring nuwber. In this case, for instance,
the Tifth annulus displays a focal length of 20% for
a 200f radius specimen and only about 7% for a SOOR

radius specimen.

From these calculations it is clear that the effect
of spherical aberration is reduced with increasing
emitter radius. Comparing the spherical aberration
Caused by the two prOJeétions considered, it is also
clear that in general, the stereographic progjection
gives the least aberrated images. This is fortunate
because of the two, the stereographic projection is a
Tar better approximation to the actual projection oper-
ating in the microscope. Indeed, if the projection
Proposed by Brandon (1964) (see chapter 5) is used then

the aberration would be reduced still further. Thus



Figure 3,9, The schematic model used to calculate the spherical

aberration of a field-ion plane projected radially.
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Figure 3,10, 1mhe spherical aberration at a field-ion plane situated av
tl}e enitter apex projected radially. The percentage change in
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from these calculations it may be concluded that
Spherical aberration is not too serious a hazard in
obtaining information from field-ion micrographs using
the focussing technique‘as the inaccuracies that they
jntroduce are within the experimental accuracy with
which focal lengths may be measured.

Further aberrations arise, however when planes
which are inclined at an angle to the axis of the
emitter are considered. If the projection is stereo-
graphio then the image will still consist of a series
of circles, but they will not quite be concentric,
introducing some biased degree of astigmatism into the
zone plate image, in addition to the spherical aberration.
With other projection relationships the images will
become aberrated in a much more complex Tashion.
However when order of magnitude estimages of these
aberrations are compared with those which result in
practice from variations in the local radius of the
emitter, R, it is evident that they also may be ignored.

Hence in order to relate measured focal lengths
from field-ion images to the corresponding imaging
bParameters, it is necessary only to use the appropriate
formulae from Table 3.1, having first taken account of
any (constant) magnification factor (which must be
Squared) between the original image, and the subsequent

transparency used in the focussing experiment.



- 89 -

TABLE 3.1

PROJECTION FOCAL LENGTH, T
. ZT d( )
Gnomonic cos“@
hi 2T2d 1
Stereographic [(l+cosQ) ]
2T dr2 9+l
Brandon [ o5 ]

(2+cos0)<
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3.3 The moirg zone plate analogue

3.3.1. A moiré interpretation of the field-ion imaging

surface

The similarity between the moiré pattern Tormed by
overlapping zone plates (figure 3.16(f)) and the field-
ion image (Figure 3.16(a)) was first noted by Oster (1964),
Tt led him to raise the serious question as to whether
all the planes which one would identify in the image,
actually correspond to crystallographic Tacets on the
imaging surface, or whether the appearance of some might
result from some optical moiré effect due to the overlap
of more prominent plane images to either side.

As a result of this suggestion a detailed analysis
of the atomic confTiguration on the surface of a Tield-
ion emitter has been undertaken., The conclusion is
that if moiré pattern analysis is applied to the over-
lap of a number of planes on the specimen surface, then
the moird patterns which they would form are identical
with the planar structures that are predicted to occur
on purely crystallographic grounds. Furthermore the
entire imaging surface may be regarded as a complex
interdependent moire pattern. Indeed, rather than
implying the existence of spurious imaging effects,
the moiréd relationship enables new information to be
obtained from microgréphs since it becomes possible,

Tor the first time, to relate the properties of several
bPlanes to one another.

The treatment referred to is a purely mathematical
analysis of the interaction of sets of imaged atoms,

and i . -
d in no way involves the concept of a zone plate.
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Nevertheless if it can be shown that the same result
can be obtained in terms of overlapping zone plates,
then there are a number of moirg zone plate relation-
ships which may be used to obtain further information
from the image.

Note that, while the single zone plate analogue
necessarily deals with the image, involving potentially
unknown terms in magnification and projection, the
moiré analysis — which deals with relationships, and
not with absolute measurements - may be applied directly
to the emitter surface. The conclusions apply equally
well to the image since there is a one-~to-one corres-

pondence between dimaging surface and image (see chapter

L.

3.3.2. Moiré zone plates on a Tlat surface

It is possible to consider a-zone plate to be the
hologram of a single point (Rogers (1950)), since, if
it is illuminated with a collimated laser beam, the
'image' produced is that of a point - the Ffocust. Hence
zone plates are of considerable importance in sythetic
holography, and a great deal of attention has been paid
to the moiré patterns that are Tormed as a result of
the overlap of such zone plates. A recent re-examination
of the problem in chapter 2 has produced a number of new
relationships which are directly relevant to the present
work,

Principally these are that the zone widths (Ar or Ap)

°f the original zone plates are equal at the point where

T in the same way one could consider a field-ion micrograph
O be the hologram of the progjected plane normals OI each
Plane that is imaged on the emitter surface.
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the most prominent zone plate in between is formed,
and that the reciprocal of the focal length of the
latter is the sum of the reciprocals of those of the

two original zone plates.

3.3.3. Zone plates on a spherical surfTace

In all this work it will be convenient to consider
the equivalent Fresnel zone plate (figure 3.4(b)) rather
than the true binary case: the conclusions to be drawn
are identical. Thus Tigure 3.11 illustrates a zone
plate formed on a spherical surface by parallel planes
of separation d/2, and whose axis is OP. Our interest
lies in the moiré pattern that will be produced when
the ring structure which is centred on OP overlaps with
another ring structure centred, for example on 0Q,

The moiré effect at any one point dis produced by the
overlap of the two periodic structures incident at that
point., It Tollows therefore that in considering the
formation of a possible-moiré zone plate centred, say,
on the point, M, then it is the focal properties at M
itself that are relevant.

At M the zone width, Ar', is defined as AA‘',
Strictly AA' is an arc of the sphere, but if we consider
it to approximate to a section of the tangential plane
at M, then we may use the flat‘zone plate equation (3.5)
where r!' now becomes the distance from the axis of the
zone plate to the centre of the annulus of width Ar',
The angle POM is defined as © and hence AA'P" also

l’

equal s Ql. Thus : -

AAY = Art = d/,sino, ceeeo(3.20)



normal to (hiki!i)

A

Figure 3.11  The model used to account for the focal length‘of a zone
plate formed on a spherical surface., The focal length is a

function of B,
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prom the triangle P'OM it can be seen that:-

= Rtano
I" a l 000'0(3.25)

By substituting equations (3.24) and (3,25) into
equation (3.5), the focal length, f(@l), of a zone at
a point M,'subtending an angle Ol with the zone plate

axis, is given by:i-

f(gl) Rtané, d

inG
Asin 1

= Rd

XCOSQl ..000(3026)

As a check, the Tocal length at Ql = 0°, f(@i), is

given by:-

£(6¥) = =Rda ‘
(61 T ceeeo(3.27)

which is equivalent to equation (3.14), although arrived
at differently. It follows therefore that:—

o ~(~0

£(e,) = £(o7)

cosgl 000‘0(3028)

. / . ~
3.3.4. Moiré zone plates on a spherical surface

Referring again to figure 3.11, we shall consider
two Plane§ on the surface of a field-ion emitter,
(hlklll)’ centred upon OP, and (hzkzlz), centred upon
0Q, the angle between OP and 0Q being Y. OM is the
axis of a possible moiré zone plate, and makes angles
©, and ©, with OP and 0Q respectively.

From a purely crystallographic standpoint we expect
that there will be a whole range of planar facets lying
in the zone between (hlklll) and (h2k212), whose

indices (hkl) are given by the Weiss zone law, viz:i-

m(n k1) + n(hk,1,) = (hkl) e (3.29)
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where 1M,

n are positive integers. The interplanar

spacing of the plane (hkl) is given by:-

a

1
(h° + k° + 1%)2 . (3.30)

d(nx1)

where a 1is the lattice parameter of the metal. We are,
confining our attention here to the case of a cubic
crystal, the analysis is later extended to cover
hexagonal structures and clearly the analysis can be
extended to other cases. It is sufficient merely to
consider the most prominent moiré zone plate Tormed in
between the two original ones, since the remainder may
then be generated by repeating the analysis between

one original and the Tirst moiré zone plate, and so on,
Since the prominence of a plane increases with increasing

d-spacing (Moore and Ranganathan (1967)), the most

prominent (hkl) plane, (h3k313) will be that of lowest
indices, namely that for which m = n = 1, viz:-

h. =

(hyky1y) + (hykyly) (hykq1,) eeeeo(3.31)

The angle O, which the plane (h_k_.1,) makes with, say,

1 3373
(h2k212) s is given by:—

h h + k. .k,. + 1312

cos O = 3 2 3
2

2
L
(h,% + Xk 24172
2
coooo(3‘32)
. - L] /
The aim is to establish whether the moire zone plate
' relationships developed Tor the Tlat case, may be extended
to the spherical situation, and hence correctly predict
that the most prominent moiré zone plate Tormed at M,
should possess identical characteristics to the crystallo-

graphic plane (hjk These characteristics are, (a) its

5315)

angular location with respect to either one of the originals,



p—

(b) its focal length, or equivalent d-spacing.

Location of the moiré zone plate
We shall use the equal zone widths relationship

(a)

described in chapter 2 i.e.
ceees(3.33)

These quantities may be obtained using equation (3.24)

and hence:-
d(hlklll) i d(hzkzlz) :
2 sin Ol 2 sin @2 .....(B.BQ)
Substituting Ol =Y - 92, and expanding we fTind that:-
d(h k;1;) sin 0, = d(h,k,1,) [siny cos6, - cosy 5ing@]
o-oao(3¢35)
- 2. \% 2
Substituting (1 - cos 92)2 for sin ©,, and (1 - cos”y
for sin Y, and rearranging:-
d : '
‘ 2 i
[J.}.l_l.]’s.l_];l) + cCOSs Y] 2
“(nk,1,)
y = cos‘O
d(hlklll) | 2 2 |
= + cos Y] [1 - cos Y]
(hpk,1,) veeee(3.36)
Since :
. _ hlh2 + klk2 + lll2
°s Y = ) > 5T > > 2.2
2
(0% + %, + 1,7)% (h," + k," + 1,7)
ceeee(3.37)

equation (3.36) becomes :—
h,(hy + hy) + k,y(ky + k) + 1,(1, +1,) .
2 2\ % 2 2 12
+ 1,%)% [(hy+ hy) "+ (ke k) "+(1y+15) "]

cos ©O =
2 (n 2 4 k,
00000(3038)
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Hence the moiré zone plate Tormed at M makes an angle
0. with 0Q, such that its indices (hkl) must be given
2

by h=hl+h2’ k:kl+k2, l:ll+12, by comparison with
equation (3.32). Thus the indices (hkl) derived using
the moiré approach do equal the (h3k313) of equation

(3.31), derived crystallographically.

(b) Focal length of the moire zone plate

If £, is the fTocal length of the plane (hlklll)

1
and f2 the focal length of the plane (h2k212) then at M:

£.(e,) = Rd
1Vl (h k1)
Acos ©

1 A eee..(3.39)

which, using equation (3.30) becomes:

fl(Ol) = Ra
2
Ncos ©; (h =+ k %+ 1,9)2 (4 40)

j=

Similarly

f2(92) = Ra
Acos ©

2 00000(3041)

Knowing that the indices (hkl) of the moiré zone plate
ibed at

are related to (hlklll) and (h2k212) as described a

the end of the previous section, we can evaluate cos Ql

and cos ©, using equation (3.32). We use the result

obtained earlier in chapter 2 that, Tor the most prowminent

zone plate (hkl), formed between (hlk 1,) and (h2k212)

171
11 1
. - F tF
3 l 2 cooco(j'uz)

In terms of a spherical surface this becomes:-

f3 r,(05) fz(gz) .....(B.hj)
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gubstituting we find that:-
2 2 2\% 2 2 2.1
1L N (hl +kl +ll ) cos(—)l +(h2 +1<;2 +12 ) cos 92]
f3 Ra

ceeeo(3.h4)

Evaluating cos O and cos 0, this becomes:-

£, = Ra 1
2 2 2
[(hl+h2) +(kl+k2) +(ll+12) ]

ol

ceeeo(3.h45)

Hence this refers to a zone plate whose effective d-

spacihg is given by > Z -, which is again that
(h, % +k,_ “+1 )2
3 3
of the crystallographic plane located at M,

3.3.5. The moiré zone plate analopue for hexagonal close

packed materials

The angle Y between the normals to the two planes

1
(h lllll) and (h k21212) for a hexagonal close packed

material where c/a represents the ratio of prism height

to edge is given by the formula: 2
10 1 Ja
vos ¥ hob, + kyk, + 3(kgh, + hik,) + 5=5 1,1,

i 2 ‘2 2 aZ
| {(h +hk, +k, )(n2 +h ko, 4k, +i:§ 1,

veeea(3.46)

The corresponding interplaner spacing is given by: -

d = E{ 32 2} 1
(hkil) 3(h thk+k > +3/47T )
C . oooo‘(BolL?)

Just as in the case of the cubic lattice we expect
a range of planar facets to be formed lying in the zone

bet . ' .o
ween (h ) and (h2k21212) whose indices are

ikt
given by the Weiss zone law. Let us again consider
only the most prominent moiré zone plate formed in

between the two originals. Again, we are able to

characterise the moiré zone plate by way of its angular
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location and its Tocal length, both of which should be

identioal to the equivalent crystallographic plane
(h3k3i313)-

Following the analysis in section 3.3.4.(a) for the
cubic system, the location of the moiré zone plate is
controlled'by equatién (3.33). By substituting
appropriate values for cos Y and the interplanar spacing

into equation (3.36) we find:-

cos 0, = hz(hl+h2)+k2(kl+k2)+%((kl+k2)h2+(hl+h2)k2)
| +3a2
e 2(1 +1 )l
2 2
%((hl+h2) +(hl+h2)(kl+k2)+(kl+k2))(h2 +h,k,+k,
+233 1 %

ko= 2 ).a...(3°48)
Thus the moire zone'plate formed at M makes an angle ©
with 0Q such that its indices are given by h = hl+h2,
k = k,+k, and 1 = ll+l2 in comparison with equation (3.46).
Once agadin the indices (hkil) derived using the moiré
zone plate analogue reproéuce the crystallographically
derived relationship.
The equivalent inferplanar spacing may also be found
in a manner identical to that used for the cubic system
in equation (3.39) and then substituting in equation (3.35)
for the appropriate values of fl(Ql) and fZ(QZ), it is
possible to show that the focal length f3 of the most

. . Vd .
prominent moire zone plate is:-

1
f3 :B L;a . 2 2
- 3(hy+h,) % (i +,) Z4(ny +hy) ~ (i, +k )1 (141,
by ceeoo(3.19)
This refers to a zone plate whose effective inter-
2 1
Planar spacing is given by (%% > a 322)2

2
h3 + h3k3 + k:3 + E 02
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which again corresponds to the equivalent crystallo-
graphic plane located at M,

Although the method has been shown to work for
both cubic and hexagonal systems only, the method is
quite general and can be shown to work by merely

inserting the appropriate values Tfor the interplanar

angle and the interplanar spacing.

3.4, The crystallographic development of the field-ion

sEecimen

The position and prominence of field-ion planes

has been investigated using iterative computer methods
by Moore and Ranganathan (1967), however these Tactors
may be studied more analytically employing the 'hanging
curtains! diagram method developed in éhapter 2. The
method is based on equation (3.33) which states that

at the centre of a field-ion plane, the zone widths of
the two intersecting planes are equal, Figure 3.12
plots zone widths Ar versus © (for tungsten, the angle
substended by a point on the Tield-ion surface to the
(011) plane). TFor simplicity, let the phase Tactors

of the two major planes considered by zero, i:gl S(Oll):
S(llO)’ although we are only considering the bcc structure
(e.g. tungsten), the method is completely general._ As
before with the moiré zone ﬁlate cbnstruction, the
- Tunction of Ar versus O is a step fTunction, but has been
drawn continuous for clarity. Also plotted are the
integral multiples(harmonics) of Ar. Thus, Tor example
the position of the plane (132) is found at the point

of intersection of the 2Ar(110) and Ar(01l) curves.

The position of any Tield-ion plane can be found in
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this manner by finding the intersection of some

harmonic of Ar(Oll) with the corresponding harmonic

of Ar(llO). To be completely general, it is possible

to overlap the curves of less prominent planes than

(011) to obtain the position of other planes, but

the use of the magjor planes in figure 3.12 again leads

to clarity. |

This figure also reveals the limitation on the

number of field-ion planes that may be formed at a

given specimen radius. First we must consider more
closely the fTorm of the curves in figure 3.12., As

these curves are in actual préctice stepped Tunctions,
the curves possess a plateau symmetric about the Ar axis.
The position of this plateau is a function of the
specimen radius and hence it is possible that once

this is taken into account then some cufves cannot
intersect and thus the development of the plane they
represent is precluded. Thus the plateau of the curves
is governed by the radius of the specimen, and it is

the position of this plateau which determines the
development of a field-ion plane. The position and

size of this plateau can be Tound with respect to Ar

and © by using the following argument. Consider the
simple illustration of a single field-ion plane g%
. radius R in figure 3.2. The hemisphere is cut by
incremental planes of interplanar spacing d. Consider
@ point p subtending an angle © to the centre of
Curvature 0, then (neglec£ing phase Ffactors) we have
Tromthe Saggitta Tormula:

2R - nd = R2 Sinzg ..0-0(3'50)
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2.2
put 2Rnd>>nd
2 . 2
therefore 2Rnd = R sin o veeee(3.51)

Hence sin® =V(2nd)*
R 0‘0.0(3‘52)

Now, as we are primarily concerned with the step
function at the Tirst ring, substituting n=1 into equation

(3.52) we Tind:-

P

sin 6 =W (24d)
R

ceeee(3.53)

This equation determines the angle subtended by
the first ring (at maximum size). If this equation is
used to plet © versus R, i.e. the angle subtended by
the Tirst ring as a function of specimen radius, a
curve illusfrated in Tigure 3.13 is found. Figure 3.13
shows the Torm of the plot using tungsfen (d = 2.239&)
as an example, taking values of R between 100A and 12004.
Thus we find that for R = 900k, the angle © subtended
by the First ring is 4° 3! whereas Ffor R = 1004,
0 = 12° 12', If the pertinent information is then
transferred from figure 3.13 to figure 3.12 the number
of possible intersections is reduced, thus reducing
the number of possibly developed planes in the field-
ion image. An example should make this clear. Consider
a field-ion micrograph of tungsten; the specimen radius
of curvature is approximately 200%k. From figure 3.13,
the first ring of the specimen subtends about 8.5° and

the corresponding plateau is drawn AB (dashed lines) onto

* _ ~ - . -~
Note that a new method of measuring local radius of
curvature can be extracted from this equation. From

equation (3.16), Ar = d , thus substituting in
5ino 5
equation (3.52) we find R = 2nAr_.

d
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Figare 3,13. The angle subtended by the first ring of a field-ion
plane (assuming the plane to have zero phase f actor) as a function
of the local radius of curvature of the emitter. These results

are for the case of tungsten (d = 2,239 3).
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figure 3.12, thus making a 5A0r(011) - Ar(011) inter-
section impossible, thus a (561) plane cannot exist

on the field-ion specimen of radius 2004 . In principle
it is possible to predict the exact specimen radius at
which a plane will appear in the image.

Although, in principle, a plane will be represented
on the specimen surtace, it may not be visible. Moore
and Ranganathan (1967) imposed a rather artifical
condition on the visibility of a plane in a particular
zone in the fTield-ion micrograph suggesting that the
plane must be evident on the surface as a flat area
representiqg at least two dinter-row distances along
the zone. In principle, a plane could be represented
by a single row distance, but nevertheiess may not be
recognisable., Just as ih the case of moiré zone plates,
the visibility of field-ion planes can be considered in
two ways. Firstly, the greater its ring radius (and
hence interplanar spacing) the more prominent it should
?Ppear. This is the almost trivial conclusion made by
Drechsler and Liepack (1965) which is certainly true
on the specimen, but may be altered in the image by
local magnification effects (see chapter 5). Secondly
the greater the number of overlap points (atoms)

Torming the rings then the more readily it is recognised.
Thus the more zones making up the major field-ion

planes, the more readily detected will be the vicinal

~ pPlanes. Once again, the higher index planes suffer

more on this basis. In general, the higher the inter-

secting point with relation to the Ar axis in figure 3.12,

the less prominent the plane will be.
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Hence if it is possible to predict the radius R
at which a plane will appear, this may be a means of
indicating anomalous behaviour. Hence if the emitter
- has”different radii of curvature (assymetric) or if
the specimen‘contains defects or has been thermally
treated then as Moore and Ranganathan point out,
these effects may upset the ideal sequence of appear-

ance of planes.

. - . . —~ ~ . . . -
3.5. Moire simulation of field—-ion dmage projections

3.5.1. Introduction

Tt has been shown that the complex patterns obtained
using the field-ion microscope can be considered as a
moirg phenomenon. This interpretation. has been extended
by relating the moire patterns produced by overlapping
zone considering the Tormation of moifg zone plates
(MZP) on a spherical surface.

A further extension of this approach is possible
by considering the projectior of the MZP Tormed on a
spherical surface onto a plane surface, and relating the
results to thé field-ion image projection. Experiment-
ally, this is achieved by first projecting the =zone
plates and then overlapping the "quasi-zone plates"

~ . /
$0 produced, to form the moire patterns.

3.5.2. The production of quasi-zone plates by optical

progection

'The apparatus required to produce the "quasi-zone
plates" (QzP) is illustrated in figure 3.14 and represented
SChematically in figure 3.15. The zone plate was produced
by bPainting alternate zones on the surface of a 9 inch

Tadius perspex hemisphere such that the separation oI



Figure 3.14 A photogtaph of the apparatus used to obtain 'quasi zome
plates! which are subsequently used to simulate field-ion

nicrographs,
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the centres of each transparent zone measured in a
direction parallel to TO was a constant 'a! (see figure
3.16). The distance 'a' was 1/10 inch, and the number
of transparvent zones totalled approximately 85.

The painted hemisphere was then mounted as shown
in figures 3.14 and 3.15 in contact with an opal glass
projection screen, it being possible to vary the angle
0 which the hemisphere made with the symmetrical
position (i.e. when T, T' and P are coincident). The
light source S was a pointolite lamp which acted
effectively as a point source. The distance between
0 and S was NR where R is the radius of the sphere.

S was mounted on an optical bench so that N could be
varied. Light Tfrom S produced a shadoﬁ of the painted
hemisphere on the screen, which could be photographed
from the other side.

Photographs of the projected shadow were taken on
Kodalith ortho film type B-at values of N=0,3,1 and 2
and at various values of ©., The value N=3 was used
because N=0 proved difficult to photograph and results
were not always satisfactory. The values of N=0, 1
and 2, correspond to the gnomonic, stereographic and
Brandon (1964) projeétion respectively. The angles
45° ang 55° were chosen to correspond to the angles the
(lOO) plane makes with the (110) and (111) planes

Téspectively for reasons which will become apparent

later.



L
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Figure 3.15. A schematic plan of the simulation apparatus.

i on to
Figure 3,16, A schematic diagram of the zone plate painted

the perspex hemisphere.
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P . o~
The moire patterns resulting from the super-

3.5.3e

position off the quasi-zone plates

(a) Two_zone plates

Two QZP with 6 = 45° were overlapped for each of
thé values of N=0,%,1 and 2, The results are illustrated
jn figure 3.17 (b);(C),(d) and (e) respectively. The
four projections illustrated in Tigure 3.17 can be.
compared with the two overlapping zone plates jllustrated
in figure 3.17(f)4and also with the region of the field-
ioh micrograph of (OOZ) orientated iridium shown in
figure 3.17(a).

(b) Three zone_ plates

ThreerZP with 6 = 55° were also overlapped for
each of the wvalues N:O,%,l and 2. The results are
illustrated in figure 3.18(a),(b),(c) and (d). The
four projections illustrated in Tigure 3.18 can this
time be compared with the three overlapping Fresnel
zone plates shown in Tigure 3.18(e).

(c) Pive zone plates

Four QZP with © = 90° and one quasi-zone plate
with 0 = 0° were overlapped for the value of N=} and
the result is illustrated in figure 3.18(f).

™

i

3.5.4. Interpretation

(a) A single zone plate

Several QZP are illustrated in figure 3.19, these

Correspond to the projections N=0 and N=1 and values

4
i

°T © = 0°, 15° and 30°., Figures 3.17, and 3.18 also
show QZP for N=0,%,1 and 2 for various values of ©.

The distortion and spherical aberration of

d.ﬂ"», . . -
literently projected zone plates and field-ion



Figure 3.17 The moiré'pattern formed by overlapping two zone plates,

(a) A region of a field-ion micrograph of iridium,

(b) The moire pattern formed by two quasi-zone plates produced
using the Brandon (W=2) projection.

(¢c) The moiré pattern formed by superimposing two quasi-zone
plztes produced using the stereographic, (N=1) projection.

(d) The moire pattern formed by overlapping two N=z, quasi-zone
plates. .

() The noire pattern formed by overlapping two Fresnel zone

plates.




SO=N(P)

0=N (o)

T=N(9)

N(2)




FPigure 3.18 The moire pattern simulation of field-ion micrographs,

(a) By overlapping three radially projected quasi-zone plates,
(v) By overlapping three N=0.5 projected quasi-zone plates,
(¢) By overlapping three stereographically projected quasi-zone
plates.

(a) By overlapping three Brandon (1964), N=2, projected quasi-
zone plates.

(e) The moire pattern formed by overlapping three Fresnel zone
plates.

(f) The moire pattern simulation of a field-ion micrograph

produced by overlapping four N=% projected quasi-zone plates.
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planes has been discussed previously in this chapter
and effects due to varying local magnification are
dealt with in chapter 5. Comparison of the distortion
produced by radial and stereographic projections as
illustrated in Tigure 3.19 reveals that the apparent
distortion'is greater for the radial projection. In
both cases distortion increases with an increasing
value of ©O.

In the case of the radial projection, at 6 = 0°,
the QZP consists of concentric circles, but as ©
increases to 15° and then to 30° the distortion
produces non-uniform elliptical shapes. The major
axis of these ellipses lies in a direction parallel
to a line drawn through the centre of éhe projection
and the centre of the projected QZP. This should be
compared with the elliptical figures produced by the
Brandon (1964) (N:Z) projection, where the major axis
lies perpendicular to this same direction.

In the stereographic case (N=1) figure 3.19 shows
that at all values of 8, circles project as circles
and the QZP still consist of a set of circles. However
distortion does occur, but this time in a more subtle
Tashion, The QZP produced under these circumstances
consists of a series of non-concentric circles. The

effect increases with increasing 6, and the circle
Centres are arrayed on the line Jjoining the centre of
Projection and the centre of the QzP,

It is clear that when © = 0 For all projections

the qzp always consists of concentric circles, this

is g . . . .
lso known to be the case in field-ion microscopy.



Figure 3. 19 Illustrating the appearance of a quasi-zone plate
projected either radially or stereographically. This figure also
illustrates the variation of appearance with @, the angle subtendeq
by the hemisphere to the symmetrical position (see figure 3,15),

Cc [o ]
for values of =0, 15° and 30 .
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Image distortions corresponding to both the N=0O, N=1
N=2 etc., arec commonly found in field-ion planes and
these are sometimes attributed to specimen assymetry,

but clearly the simulations in figure 3.19 show that

proJection can also produce these effects.

(b) Two zone plates

A sequence of simulations involving the overlap
of two QZP together with, for comparison, part of a
field-ion micrograph of iridium and the moiré pattern
formed by overlapping two conventional Fresnel zone
plates are shown in figure 3.17.

The simulations depicted in figure 3.17(b),(c),(d)
and (e) are not strictly comparable with a Tield-ion
microscope image of an fcc, structure such as that shown 4in
Tigure 3.17(a). This is because in oxrder to accurately
simulate an fcc or becce. structure, two models similar to
that illustrated schematically in figure 3.16 are required
to conform with crystallographic parity. One model would
have twice the 'a' spacing (equivalent to interplanar
ﬂmcing) of the second model. If only one model is available
then simple cubic structures only may be accurately simulated.
However it is still possible to obtain information on
the effect of projection in the field-ion image by observ-
ing the general shape of the QZP and the moir& QZP. In each
°f the four simulations depicted here, the two original

QzZPp correspond to {022} planes situated at an angle 0=45°

irom the emitter axis, where the plane the apex of the
tteld-ion micrograph (figure 3.17(a)) is an {002} plane. The
Prominence of the various QZP in the simulations do not strict-

1
Y correspond to the prominence of the Tield-ion planes
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in Tigure 3.17(a), but would correspond to that of a
simple cubic structure.

An overall similarity in appearance can be seen
to exist between the patterns shown in figure 3.17.
This indicates some consistency in their derivation.
Tn each case the pattern is Tormed by some type of
zone plate be it quasi-, Fresnel or a field-ion plane.

In every case, the "zone lines" between the centres
of the "originals" of each pattern is straight, even
though the "originals" making up figures 3.17(a),(b),
(d) and'(e) are non-circular and in figure 3.17(c),
non concentric. Also, in each case the central Tigure
situated at © = O (field-ion plane, QZP or MZP) always
consists of a series of concentric ciréles, regardless
of projection, e&en though in some instances the over-
lapping "originals" are irregularly elliptical., In
fhose cases where the "original" zone plates are
elliptical (i.e. figure 3.17(a),(b),(d),(e)) then the
moiré zone plates not at the centre are also elliptical.,
The distortion of the various ellipses increases with
increasing values of ©,

The stereographic simulation (figure 3.17(c))
Produces a moiré pattern consisting of a series of
¢ircular QzP, These QZP are non confocal; the effect
increases with increasing 0. All other QZP simulations
display elliptical original QZP and moiré QZP. A
condition for the formation of elliptical figures
is met if NAL. T¢ N>1 the ellipses have their major
4Xes perpendicular to the line drawn through the
Projection centre and the centre of the QZP. VWhereas

if .
N<1, the major axes of the ellipses lie parallel to the line.
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(c) Three zonc_ plates

e

The moiré pattern produced by overlapping 3 oxr 5
QzP or 3 Fresnel zone plates are illustrated in Tigure
3,18. Figures 3.18(a),(b),(c),(d) are produced by
overlapping three QZP where © = 55°, Figure 3.18(e)
is the moire pattern produced by three Fresnel_zone
plates and figure 3.18(f) is the moiré pattern produced
by overlapping L QzZP (©6=90°) and 1 QzP (6=0°),.

Once again there is an overall similarity between
the simulations, the moiré pattern produced by overlapping
3 Fresnel zone plates and a field-ion micrograph. The
original QZP used in this situation are similar to
those used in the 2 zone plate case except that © is
now 55°, not 45°,, the distortion has thus increased.
In the N=0 casc (figurc 3.18(a)) the cllipsicity of the
QZP has made photography difficult. The shapes of the
individual QZP are dependant on N in a similar manner
to that discussed in the 2 case. Once again, even
though 3 QZP are now overlapped, the central moiré
QZP is circular, The‘shapes of the other MZP are in
general elliptical (except for the sterographic case)
and vary in a fashion discussed previously.

An important point arises from the shapes of the
Zone lines between the original QZP, For the moire
Pattern produced by overlapping zone plates, the zone
lines between the original zone plates are straight.

In a1 the moiré simulations all these zone lines are
Curved justAas in field-ion microscopy. What is more

int : .
eresting is that the amount of curvature depends

N projects s
Projection, Close inspection of figure 3.18 revecals that

the
cu - . . . . S
Tvature increases with increasing N from N=0 to N=2.
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Although the present moiré simulations only
acmnetely represent the patterns expected Trom simple
cubic structures, information can still be obtained
regarding the shapes of planes and zone lines in the
mﬁﬂected image. This information, which has not been
obtained by computer simulation, can be obtained as a
function of both 0 and N, This new insight into the
various image distortions jntroduced by the projection
may provide a simple gqualitative means of determining
which type of projection is operative in different
regions cf the micrograph. Also planes which appear
assymmetric in the image, may not be assymmetric en the
specimen surface, but their appearance.has merely been
distorted in the imaging processS. Not only are the
shapes of the planes important in determining projection,
but hOW it appears that information is available from

the relative curvature of zone lines.

3.6, Discussion

Tt has been demonstrated that the image of a £ield-
ion plane is geometrically similar to a epecial kind of
20ne plate, termed a binary zone plate. Hence it is
Possible to use the Tocussing properties of a zone plate

tO Ob .
» tain new information from field-ion micrographs.

When
the local image magnification is taken into account,

the ¢
e focal length of a field-ion plane can be related to

its 3
interplanar spacing, d, the emitter—to—screen

dist : _ .
ance, T, the emitter radius, R, and the projection

Poing . . cos
't as defined by the parameter, N. Chapter 5 discus®e

s variations

th.e a -
. Pplications of this analysis, and include

with ¢,
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Tt has also been shown that the entire emitter
gurface may be regarded as a moiré pattern formed
botween overlapping zone plates, and it will be
interesting to discuss the Tundamental reason why
this should be so. Basically it stems from the fTact
that the underlying crystal structure of the specimen
may itself be regarded as a moire pattern. This is
shown by Tigure 3.20, which is a schematic diagram
of a crystal structure in two dimensions. Fach set
of crystal planes, Tor example (l) and (2), consists
of a number of parallel straight lines ofT periodicity
equal to the interplanar spacing. These two sets of
straight lines intersect each other at the atom
positions, and it is the wvarious patte?ns that these
points of intersection make that define the resultaﬁt
moiré pattern., Thus, for example, planes such as (3)
and (4), shown by the broken lines, may be regarded
as moiré patterns formed between (1) and (2). The
entire crystal structure is an interdependent moirg
pattern. The zone plate configuration which\occurs
on the emitter surface is formed at the poinf where
each set of crystal planes is tangential to the thin
shell described in section 3.2.2. Since each of these
Plane images is already related to every other by this
- latter moirs analysis, it will necessarily be related
by the overlapping zone plate analysis.

At the same time the overlapping zone plate
treatment doés give rise to several new relationships
in the interpretation of field-ion micrographs, and

theq . .
€lr application is also discussed. The most
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Figure 3,20 The crystal lattice regarded as a moiré pattern.



- 112 -

. . . . . 7
important new relationship derived in the moire analysis

is that which states that at the centre of any field-

ion plane, the effective exposed ledge widths Ap of

any two planes that can be considered to have Tormed
that plane (from the Weiss zone law) are equal. This
leads directly to a new conception of how radius affects
the appearance Or visibility of high index Tield-ion
planes.

A further outcome of this approach is that it is
possible to project zone plates formed on a spherical
surface onto a plane, using different angular and
projection relationships, and then to overlap the
aberrated zone plates thus produced. 1In this way it
is possible to simulate the appearance of field-ion
images, and the procedure also gives a Turther insight
into the formation of moiré zone plates, this time of
a.-distorted nature.

Indeed the whole discussion of this chapter is of
a wider interest than the field-ion situation on its
own, In a very general way it demonstrates that it
is possible to solve moiré patterns in three dimensions
and also that the relationships governing moire zone
plate formation in two dimensions may themselves be
extended directly to three. In principle the approach
could be used to solve moiré patterns Tormed over any
fon-planar surface, given a suitable set of reference
Coordinates, such as supplied by the crystal lattice

10 the present example.
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CHAPTDR FOUR

A_MOIRE INTERPRETATION OIF FIELD-ITON MICROSCOPY

————

4.1 Tntroduction

A visual moire pattern may be Fformed when two
periodic structures are overlapped. The loci of the
points at which the elements making up each structure
overlap, will themselves Torm a pattern, which may be
apparent to the eye. Detection of such moiré patterns
is facilitated if the periodic structure is composed
of alternately transparent and opaque elements, and
if the dimensions of these elements are similar in the
two structures.*

These points have been illustrated in the previous
chapters. For example in chapter 3, it has been shown
that a single field—ion plane is a special kind of zone
plate and that the Tield-ion image may be interpreted
as a moiré zone plate phenomenon. The overlap of three
zone plates produces a two-dimensional array of moiré
zone plates as shown in figure 4.1(a), the Fformation
and properties of such moire zone plates has been
discussed in detail in chapter 2. If figure 4.1(a) is
compared with figure h.l(b) which is the region of a
Tield-ion micrograph of iridium showing several planes,
the similarity between these two Tigures is very striking.
It has 1ed Oster (1964) to suggest that the circular
Tegilons in field-ion micrographs which are believed to
¢orrespond to high index crystallographic planes on the
SPecimen surface, may, instead, be moiré patterns formed

b .
¥ more Prominent planes located on either side.

*
Part o
art of the work prescnted in this chapter has been

Published in Philosophical magazine (1973) 21 915-



Figure 4.1 (a) The moire pattern formed by three overlapping zone

plates.
(b) A region of a field-ion micrograph of iridium,
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This suggestion carries with it serious implications.
while one would probably not doubt that the more
prominent ring patterns correspond to genuine low
index, facets on the specimen surface, it might be that
the iess prominent ring patterns, if formed by an optical
moiré effect, do not occur in the position, or have the
properties off, the higher index planes which they are
believed to represent. This would have serious conse-
quences in both the structural and the crystallographic
analysis of Tield-ion micrographs.

It will be demonstrated in this chapter that
conventional techniques of moiré pattern analysis may
be extended to provide a description of the entire
field-ion image. However it turns out that in no case
do the position and properties of a plane whose
appearance is predicted by the moiré analysis, differ
from those expected from a purely crystallographic
apprcach., In addition to demonstrating that the
existing interpretation of field-ion micrographs is
after all correct, the analysis may be extended to
provide new information concerning the detailed shape
of the field-jion emitter.

The key to this analysis is the realisation that it
is unnecessary to deal directly with the field-ion
- image, involving as it does an unknown, and pessibly
Variable, Projection relationship with the emitter.
Instead it is possible to consider the emitter itself,
®PPlying straightforward geometric arguments. This is
becauSe’ in the field-ion situation, the loci of the

POInts at which the elements of the two generating
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gtructures overlap, are the individual atoms. Since

there is @ one—-to-one correspondence between image
points and atoms, it is possible to consider the

atomic distribution of the emitter surface instead

of the image point distribution in the micrograph.

h,2. Moire analysis

Although the discussion so Tar has concerned the
formation of optical moiré patterns whioﬂ are discernible
to the eye, it is possible to treat thé problem of moiré
pattern formation in a completely general mathematical
fashion.

Consider the moiré pattern to be fTormed by the

overlap of two original periodic structures of the Torm:-

g (m) ceena(Ba1)

F(x,y)
and

G(x,y) = @(n) RN )
respectively, where m and n are indexing parameters runn-
ing over some subset of the real integers, thus defining
the periodicity of the structure, and x, y are the
co-ordinates of any point on the structure, with respect
to some co-ordinate axes.

When these two structures are overlapped the
resultant moiré pattern is a further periodic structure
of the form:-—

H(x,y) = o(p) » ceeed(B.3)
where p is again an indexing parameter. 1In general the
Possible values of p are determined by an indicial
€quation of the form (Oster, Wasserman and Zwerling (1964)-

Y(m,n) = p ceeao(B)

In .
the present work the general indicial equation (4.h)
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nay be reduced simply to:-

hm + kn = P 'Ccoo(ll’o5)

where h, k are the integers 0,1,2,3,... These define

a series ot moirg patterns, which tend to become less
promihent optically with increasing magnitude of h and k.
Equation (4.5) may be extended to:-

hm + kn + 1lg = P ceeeo(B.6)

when the moire pattern is Tormed by the overlap of three

original periodic structures.

4.3, Geometrical approach

In this section we shall review the distribution of
planes on the surface of the Tield-ion emitter that
would be expected from purely geometrical considerations.
For simplicity at this stage it will be assumed that this
surface is a hemisphere of constant radius, R, and that

its crystal structure is cubic.

k.3.1, The formation of a planar Facet

Each planar facet occurs where a particular crystallo-
graphic plane of atoms lies parallel to the emitter
surface, as shown in Tigure L ,2, If we assume that
there is an imaged atom at each point where successive
bparallel planes intersect the surface, then the image
will consist of a éeries of conceﬁtric circles of image
- Points, as shown at the top of the figure. The figure
is schematic only, and the true radius of these circles
"ill be related to that of the ledge of atoms giving rise
to this image both by the magnification and by the
Projection relationship.

The Prominence of a plane is usually deTined in
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terms of its interplanar spacing (Moore and Ranganathan
(1967))- Thus the lower are its indices, the greater
is its interplanar spacing, and the greater will be
poth the radius and the separation of its rings of
image points. However no precise meaning may be

attached to this latter statement unless a concept

which we shall term the phase factor of the plane is

considered.

4,3.2. The phase factor of a planc

The importance of the phase factor in the geometrical
interpretation of field-ion micrographs is discussed
more thoroughly in section 4.5, together with details
of how such information may be obtained using the moireé
analysis. Here we shall merely define what is meant by
the term phase, and discuss its efTfect on the numbering
of the ledges shown in figure 4.2,

During field evaporation, the radius of the top
ledge, r oy will alter from its maximum value, T = (ZRd)%,
at which point its phase equals one, to its minimum value,
r, = 0, when the final atom has Just been removed. At
this point its phase equals zero., In general its radius
will be given by rs 2’(2R8d)% where &d is the distance
between the centre of the top ledge and the spherical

énvelope, Therefore 0 < 6 < 1. The parameter S is

termed the Phase Tactor of the plane and its value

decreases from 1 to O as the phase of the top ledge
decreases from 1 to 0. Thus the numbering of the
ledges begins 0, 1, 2, ... n, and the radius of the nth

1
ledge, rn ~ (ZRd(n +S ))2.
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Distribution of planes over the emitter surface

b33
In order to serve as a basis for comwparison with
the moiré approach (section 4.4) let us consider the
distribution of planes over the emitter surfTace.
Figure 4.3 shows one quadrant of a stereographic

progection. Planes lying in the [001] zone, between

(100) and (010), may be generated by operation of the
Weiss zone law:

n(100) + xk(o10) = (hkO) ceeeo(Ba7)
where h and k are positive integers. The interplanar

spacing of the (hk0) plane, d(hkO) is given by:-
1

d(1h10) a/(h2 + K2)? ceoso(l.8)

where a is the lattic parameter of theAméterial. (There

are restrictions on the values that h and k may take,
depending on whether the crystal structure is simple, body-
centred or face-centred cubic, but consideration of this
point will be delayed until section 4.5). The position

of the (hkO) plane may be defined by the angle, ©, that

it makes with (100), where:-

cos O = h
(h2 + k2)

[\l

ceses(4.9)

More generally, we may consider a plane (nk1l) which
is generated by the operation:-

h(100) +.k(01o) + 1(oo1) = (hkl) cesso(l.10)
whose interplanar spacing is given by:-

'd(hkl) = a/(h® + k° + 12)% voeoe(l.11)
and whose position, defined by the angle, ©, which it
makes with,

say, (001), is given by:-

Cos Q@ =

(n? + 12 + 17)2 el (B.12)
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Figure 4, 2, Schematic diagram showing a radial section through a
field=ion emitter and the correspohding appearance of

the image.

(001) - (010)

(hko)
(100)

My .
Bure 4. 3. Quadrant of a stereographic projection showing the

location of the planes considered in the noire analysis.
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EquatiOHS (h.9) and (4.12) are of course special cases

of the general equation Tor the angle, 6, between two

1.) and (h, k, 1)) viz.

planes (hyk;ly 2%t
. hlh2 + klk2 + lll2
cos - 2 2 2\%,. 2 2 2\ %
(hl + k] o+ ll) (h2 + kg + 12)

ooooo(z‘*‘nlB)
We shall now see how the equations which are quoted

in this section compare with those evolved using the

moiré analysis.

4.4 Moiré analysis

Y. h.,1, Overlap of two systems of circles

4h,4h,1,1, Rquation of the original circles

A single plane on the surface of ?he Tield-ion
emitter will be considered as a series of concentric
circles of imaged atoms. When two such systewms of
circles are overlapped, the imaged atoms which lie ét
the pOints of intersection will define the moiré pattern,
and this will be shown to consist of further systems of
circles. As a starting point we shall consider the two
original systems of circles to correspond to the (100)
and (010) plaues, as shown in figure .k, The centres
of these circles are separated by a 90° arc, and the
circles are numbered 0,1,2,..., m and 0,1,2,...,0
respectively,

From figure 4.2 it ﬁay be seen that the mth circle

°T the (100) system, say, will have angular radius s,

where:

cos s = R"d(loo)(m+ S(lOQl)
m R

(4.14)

o 0 0 00
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We may separate out Trom this equation a Tactor

A = (l_ag(loo)/R), which contains the phase information,
whereupon:-—

cos s, = A - ma/R .o...(h.lS)
since d(lOO) = d(OlO) a, the lattice parameter.,

Let x, y be longitude and latitude respectively
with respect to the equator, (100) - (010), of any
point on the mth ciréle of the system (100), measuring
longitudes Trom (100), figure 4.5. Then, by the ¢osine
rule for spherical triangles,

cos s = ©OS X COS Yy ceoeo(k.16)
and hence

cos x cos y = A - ma/R ceoed(k.17)
is the equation of this circle.

Similarly, the equation of the nth circle of the
(OlO) system is:- |

cos (x-90°) cos y = B - na/R ceees(H.18)
where B = (1 - a3k010)/R)' This reduces to:-

sin x cos y = B - na/R voose(l.19)

Equations (4.17) and (4.19) correspond to equations (4.1)

and (4.2) in the generalfcase.

b.h.1.2, Generation of the moire pattern

Let h and k be given positive integers. Consider
the pairs of circles from the two systems which satisfy
the indicial equation (4.5).. These will intersect in
a set of points (x,y) satisfying equations (4.17), (k.19)
and (4.5). Multiplying equations (4.17) and (4.19) by

h ang respectively, and then eliminating m and n we get:

cos y(h cos x + k sin x) = h(A—ma/R)+k(B—na/R)
...,.(4.20)

= hA + kB - pa/R_(y o1)

LR I 4



Pigure 4.4, Spherical surface showing the overlap of two systems of

circles corresponding to the (100) and (010) planes,

F. '. ’ ” I
ﬂlgure 4.5,  Sperical triangle within the mth circle about (100) used.

to define S .
m
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2 2\5
jviding throughout by (h" + x7)°

D
h k . hA+kB-pa/R
—rrereeme 4 CO S X h ey 1 S1ND X =
2\ 5 2 AN =
cos ¥ (hz . kz)g (h + k7)2 (h2+k2)2
00000(4.22)
Define © = tan~— (k/h), as shown in figure L4.6(a). Then

equation (k.22) may be written:-

hA+kB-pa/R
N
(h2+k2)2
oooo-(ll’o23)

cos y (cos x cos © + sin x sin 0) =

or
hA+kB a

cos y cos (x - 8) = —F—>5=1 - - 1
(h2+k2)2 R(h2+k2)2 ceeos(l.2h)

Comparing equation (4.24) with equations (4.17) or
(4.18) we can see that, for each comwbination of h and k,

. . / 3 - -~ -~
it defines a moire pattern consisting of a system oif
circles of periodicity, p, whose centre is at longitude
6, where 9 may be defTined by:-—
2 2,3

cos © = h/(h” + k%) ceeeo(l.25)
Equation (4.24) corresponds to the general equation (4.3).
It is evident that these systems of circles may be regarded
as being generated by planes whose separation d(hko)
(introducing a third parameter, 1 = 0, for internal
COnsistency) is given by:-

d(hkO) = (hz n sz% veeso(k.26)

nof=

The expression (ha + kB)/(h2 + kz) contains information
- O the phase of the moire system of circles, and is dis-
cussed further in the section 4.5.

The important result of the above analysis is that

®Quation (4.25) and (4.9), and (4.26) and (4.8)

T 3
eSPeCtlvely, are identical.



Figure 4.6.(a) Definition of 6 in terms of h and'k.

(h% . k)2

F'
8ure 4.6,(b)  Definition of A in terms of h, k and L.
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Overlap of three systems of circles

.2

while the two system case is much the easier to
follow, @ complete treatment of the field-ion situation

. . e . .
necessitates considering the moire interaction of three

systems of circles.

4. 4.2.1., Eguation of the original circles

To begin with we consider three fundamental families
of circles (100), (01Q) and (001), which are separated by
90° arcs on the sphere, as shown in FTigure 4.7. As
pbefore (100) - (010) is regarded as the equator; (001)
is regarded as the pole, and longitudes are measured Trom
(100) . , .

The systems of circles corresponding to (100) and
(010) will be represented by equations (4.17)and(4.19),
just as before. To find the equation for the (001) case
consider figure 4.8. P is a point wﬁose co-ordinates
of longitude and latitude are X, y, and which is located
on the qth circle arouna (001). The meridian arc (00L1)
- P is constructed, and is produced to meet the equator

(100) - (010) in Q. Then (001)-@ = 90°, P-Q = y and

hence:_

Sq = (OOl) -~ P = 900 - ¥ . ,..99(4.27)
Therefore

Cos Sq = sin v 00000([""28)

BY comparison with figure 4.2 it can be seen that:-

COs Sq = C - qa/R 01000(2""29)

where ¢ = (l~a6(001)/R), and hence

sin y = ¢ - ga/R eeess(B.30)
This 4 -
*S 1s the equation for the system of circles corres-—
PR
Ponding to (001)~ (x is arbitrary for these circles and

SO doa e
%es not enter the eanatian)



Faaat

Figure 4.7, Spherical surface showing the parameters involved in the
analysis of the overlap of three systems of circles

centred on (100), (010) and (001).

Figure 4, 8.

\\;;E;Esy\-h“-__~___ tj |

Relatj .
equat ook between a point, P, on the gth circle around (001) and the
ori .
*al line (100) - (010), used to define sq.




It will facilitate the subsequent discussion of
the moiré analysis if we pre-empt its conclusions to

suppose that the moirdé pattern will be Tound to consist
of a family of patterns, each consisting of a system of
concentric circles, Just as in the two system case.

We shall consider one member of this family, corres-
ponding to the specific indexing parameters (hkl), to

be centred at a point M, figure 4,7, whose longitude and
latitude are 6, A respectively, T is a general point
(longitude x and latitude y) on one of the circles
centred on M and whose angular radius is sp. M and T
are Jjoined to (OOl) by great circle arcs, so that

M - (001) = /2 - )\ and T-(001) = %/2 - y.

Applying the cosine rule to the spherical triangle

M-T - (001), we get cos 5, = cos (x/2-)) cos (x/2-y)

+ sin (%x/2-)) sin (%x/2-y) cos (x-0) eeeeo(k.31)
or
cos Sp = sin x sin y + cos A cOs y coOs (X*Q)

ceees(B.32)
Equation (4.32) is the x,y equation of this circle.

If we suppose that the system of circles centred on
M and of a periodicity represented by a varying parameter

P, are generated by the intersection with the sphere of

a series of planes of separation d(hkl)’ then, by
Comparison with figure 4.2 and equation (k.15) we may
write:—
- p o P(nin)
°08 8p =D - —% veeoe(8.33)
whereupon

: d
hikl
Cos )\ cos (X—Q) cos y + sin ) sin y =D - ?.Lﬁ_c__)
ooocO(l‘"Bh)

is . . i
the equation of this system of circles, where D is

an .
¢XPression relating to their phase.
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. - L.
Generation of the moire pattern

14‘0402.2.

Again we define three positive integers, h,k,l.
The moire pattern is Tound by eliminating m, n and q
srom the indicial equation (4.6) using equations (4.17),

(4.19) and (4.30), whence:-

Cosy(thSX+k sin X) + 1 SinY:hA'*‘kB‘*‘lC—pa/R

R 2
As before we divide throughout by (h® + k , and define
-1 ) .
an angle © = tan (k/h) figure 4.6(a), whereupon:-

( Q) + sin h _ bA+kB+1C pa
cos y cos (x- "(h242)% (h2+k2)% R(h2+k2)%

eeeeo(B.35)

1
(n? )
1
1 5 ol (02412 +17) 2
angle )\ = tan 1/(h“+k")? figure 4.6(b) whereupon:-

Now multiply throughout by and define an

hA+kB+1C pa )

=5 5 o 17 1

(h2+k2+12)2 R(h2+k2+12)2
.0..‘(4036)

cos )\ cos(x-6) cos y + sin )\ sin y =

If equation (4.36) is compared with equation (4.34)
then it may be seen that, for a given (hkl) the moiré
pattern that it describes is indeed a system of circles
of periodicity p, centred at longitude ©, latitude X.
Their position may, FTor example, be defined by the angle
(W/2~X) between their centre and (00l), where from
Tigure 4.6(b):-

1
1
(n2 42 +17) 2 ceeeo(8.37)

cos (x/2-)) =

They are generated by planes whose separation d(hkl) is

given by:-

d(h1 = a
<) (h2+k2+12)% veoeo(l.38)

and " 3 Cal - . . .
the information concerning their phase 1S contained

i
B the expression: hA + kB + 1,C

1
(h2 + k% 4 12)2




The important result of the above analysis is that
equations (4.37) and (4#.12) and (4.38) and (#.11) are

jdentical.

L. h.3. Generalised moiré analysis

The above analyses, which consider the Tormation of
nmiré patterns from a number of originals by means of
a varying range of indices h, k, 1, corresponds to the
approach to moirg zone plate Tormation used by Chau
(1969(a)), and which we have termed the comprehensive
approach. An alternative, sequential, approach, has
been developed in chapter 2 which, in the present
context, would consider the formation of a moiré system
of circles in indices (hhkhlh) as the single consequence
of overlapping three systems of circles (hlklll),

(h2k212) (h3k31 ) such that:-

3
hl" = hl + h2 + h3 00000(4039(a))
Ky = kg + ky kg ceeeo(B.39(b))
lh = ll + 12 + 13 ooooo(u’039(c))

A similar analysis to that developed in section 4.4.2

reveals that the system of circles that forms the resultant
. -

moilre pattern is centred at a point which makes an angle O,

with say, (h k 1 ) such that
1 1 1

h_h
cos @ = 17 ORI llla

2,2 25, 2 2 23
(hl+kl+ll)2(h4+k4+ﬁb2 veeo.(k.10)

4nd is generated by planes whose separation is given byi-

o}

d =
(hyk, 1)

of=

> p)
(hy, +p +1) ceeso(lol1)

£

Similar to before, equations (4.40) and (4.13) and
(4.41)

and (4.1) are conjugate.
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The importance of this most general treatment is
that the identicalities between the geometrical approach
(section %.3) and the moiré approach (section 4.l) will
continue to hold even if one considers the Tormation of
moiré patterns between planes which are themselves moire
patterns of the three original (100), (010) and (001)
Indeed the distinction of the three original

planes.

systems 1is lost, and the whole emitter surface must be

considered as an interdependent moiré pattern.

4,5 The phase Ffactor

In the geometrical analysis of field-ion micro-
graphs, the importance of the phase Tactor of a plane
has rarely been recognised. However, neglect of this
final fraction of an interplanar spacing can introduce
substantial errors into determinations of the emitter
radius, using for example, the method due to Drechsler
and Wolf (1958). Its appreciation is necessary also in
consideration of plane prominence, and can be shown to
have a crucial effect on analyses of ledge width effects
such as that by Fortes and Ralph (1967).

The method of obtaining the phase information from
the moirg analysis itself provides a means of determin-
ing the local radius of the emitter. For simplicity
the analysis is confined to the case where the moirg
Plane is fTormed between only two other planes, all
three lying in the same zone, c.f. section b1,

If we once again consider the two original sets oI

¢ircles to correspond to (100) and (010), then the angular
radij S, and S, of their mth and nth circles, respectively

a . .
Te given by an equation similar to (4.1l4) viz.
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R-d(100) (m+§(100))

COS Sm = R CO.G.(L{'.Z"Z)
ma

=4 - R oo (B43)
R~ag

where A = ____JJHZQ)
R

veeoo(blk)

and cos S = R“d(om)(mg(om))
R coeeo(B.15)
na :
=P - % vevno(B.06)

where B = E:ifig;g) .
R 000.0("“047)

The equivalent expression Tor the moiré plane (hkO) is
given by equation (4.24) where 55 is the angular radius

of the pth circle, viz.

hA + kB a
R(h +k )2 ' -00..(14'048)

P (h2+k2)%

However, the similarity between equations (4.43) or
(4.45) and equation (4.48) is deceptive. Although, in
equation (4.48), the quantity a/(h2+k2)% is the inter-
planar spacing of the moiré plane, the parameter p is
not directly equivalent to m or n, since while the latter
take values 0, 1, 2, 34405 P, which is equal to hm + kn,
has an initial value which cannot be zero. Thus an
additional operation is needed in order to extract the
bphase information from this sort of moiré expression
(see chapter 2).

The key point to note is that if we extract the

wantity dq ooy (m o+ ') om the right hand side of

(100)) Ir

cquation (4-42) then for the minimum value of m, m ..~ 0,

this expression is equal to 8 times the interplanar

(100)
SPacing of (100), where 0<& <1. To find the corresponding

a .
P I’ameters(hkl)’ which must again obey 0<%hkl)<l’ we

nn - R .
st structure the right hand side of equation (4.48) in
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milar way to equation (4.4k2) and then Tind the value

a si
of P = P sn® Equation (4.48) is equivalent to:-
mai
cos s h(R‘aSlOO) F k(B2 9010))
p I s
R(h +k2)2 oocno(l“‘cl{’9)
h+k a 8
- R| —E— | - —%—, |n kS
| [(h2+k2)%] (022 [ (100) T *o010) * p}
R
ceees(4.50)
h+k a §
=R+ R| —5—m—r - 1| - === |n§ + k§ + pl

00000(4-51)
which is now in the same Torm as equation (4.42).
. 1 . .4 . -
Since a/(h2+k2)2 is the interplanar spacing of the
moirg plane (hkO), the quantity:-

R (1741 a (hﬂ%)] " hé’(100) * k5(010) P
ceseo(l.52)

when p = p .

is equal to S(hkl) min

A numerical example should make this clear. Let

R

1

o ' 1
380 L, h = 3, k = 4 (and therefore (h2+k2)2 = 5),

a = 2.0ﬁ5kloo) = 0,2 S = 0.7, then expression 4,52

(010)
equals: -

- 380 + [2.7 + p] . 00000(4053)
and si " d
ince 0<-380+(2.7 + pmin)<l’pmin must equal 378 (an
hence p takes th<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>