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SUMMARY 

Electron optical properties of single-pole magnetic electron lenses. 

Fathi Zakaria Ali Marai, Ph.D., 1977. 

The thesis is concerned with the study of Single-polepiece lens 
characteristics. These show, among other things, that the correction 
of spiral distortion in the electron microscope is feasible with a 
projector system using single-polepiece lenses for the intermediate 
and final projector lenses. It is shown that the optimum design for 
such a system is two single-pole lenses facing each other, in which 
the intermediate lens, with large bore, works as a correcting lens. 
Such an arrangement has the advantage of increasing the field of 
view and considerably reducing the length of the viewing chamber 
compared with that of current electron microscopes, especially high 
voltage electron microscopes. A critical appraisal of Scherzer's 
equation for the spiral distortion coefficient shows why it is 
difficult to design a correcting system for spiral distortion 
consisting entirely of conventional electron lenses. 

Calculations for iron-free coils, which are relevant to 
superconducting windings have also been made. These show that there 
is a real optimum shape for such a lens, when used as an objective, 
in order to have minimum spherical aberration. However no such 
optimum could be found for coil lenses when used as projectors. 

It is shown that the focal properties and aberration of practical 
single-polepiece lenses, can be deduced from the focal properties of 
the little known mathematical model of the exponential field 
distribution of Glaser. Finally some experimental results are 
described showing the feasibility of an improved high voltage 
projector lens and the possibility of correcting spiral distortion 
in magnetic projector lenses. 
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1. INTRODUCTICN 

1.1 Progress in electron microscopy 
  

1.1.1 The Transmission Electron Microscope (TEM) 
  

In 1933, the first transmission electron microscope surpassing 

the optical microscope in resolution was built by Ruska. Since that 

time many attempts have been made to improve the quality of the 

electron microscope image so as to increase its usefulness in many 

fields of practical application. The improvements were concerned 

essentially, with the vacuum system, the electron gun and the 

electro-static and magnetic electron lenses. These improvements 

lead to high magnification and high resolution. In this respect, the 

search for a perfect lens, having minimum electron-optical defects, 

was necessary. Many theoreticians, such as Walter Glaser and Otto 

Scherzer to name only two, worked out the fundamentals of electron 

optics. In parallel with this, the work of developing the electron 

microscope itself, was carried out by Ruska, Brliche, Mahl, Marton 

and many others. In spite of these efforts, the distortionsin the 

final image produced in the electron microscopes are still one of the 

most important problems in electron optics and electron microscopy, 

especially the anisotropic spiral distortion. To reduce this 

distortion, it was necessary, in conventional electron microscopes, 

to increase the length of the final projector stage, the so-called 

"projection distance" between lens and viewing screen, in order to 

restrict the image to rays passing close as possible to the electron- 

optical axis. This reduces the field of view as well as increasing 

the size and therefore the cost of the instrument. In this thesis, 

we shall discuss the properties of a new kind of lens, the "single- 

pole lens" and the advantages of using it in the projector system of



an electron microscope. 

1.1.2 Scanning electron microscope (SEM) 
  

The study of solid specimens and surfaces requiresa different 

instrument from the transmission electron microscope. This is the 

scanning electron microscope (SEM) employing scanning coils that scan 

an electron probe across the specimen under investigation. This kind 

of electron microscope uses demagnifying lenses to form the electron 

probe, and an image is produced using secondary electrons from the 

specimen. Generally speaking, the resolution in scanning electron 

microscopes is poorer than that~ of transmission electron microscopes, 

but this is accepted as the price for its advantage in ete tees 

specimens. Crewe and his collaborators achieved better resolution in 

a scanning microscope, by forming the image sequentially, point-by- 

point, in a thin transmission specimen, which scanned by a small 

electron probe of atomic dimension. This instrument is known as the 

scanning transmission electron microscope (STEM). Such an instrument 

can also benefit from the new types of lenses investigated here. 

1.1.3 High voltage electron microscope (HVEM) 

The main defect that together with the electron wavelength limits 

the resolution in electron microscopes is the spherical aberration 

of the objective lens. The resolving power of an electron microscope 

can in principle be improved by employing high accelerating Olesen. 

Increasing the accelerating voltage from 100 KV to 1000 KV should 

improve the resolving power by a factor of two. This is the starting 

point in building a high resolution electron microscope. The first 

very high voltage electron microscope (1.5 MV) was built in France 

by Gaston Dupouy; the first micrographs were obtained in 1960. 

Because of technological difficulties this instrument did not in fact 

surpass the 100 KV TEM in resolving power. The interest in building
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and improving high voltage electron microscopes has since been 

continued in many places. In the Cavendish Laboratory, Cosslett and 

Smith produced a 750 KV instrument which formed the prototype for the 

AEI EM? million volt microscope. In Japan a whole range of commercial 

high voltage electron microscopes has been.produced. In 1970 an 

experimental 3 MV electron microscope was produced by Dupouy in the 

Toulouse Laboratory. These instruments were very successful but were 

largely scaled-up versions of 100 KV electron microscopes. Further 

electron-optical investigations which are the subject of the present 

thesis suggests that considerable improvements in such instruments 

should be possible. 

1.2 Magnetic electron lenses 
  

1.2.1 Iron-free coils 

An iron-free solenoid is the simplest form of a magnetic lens. 

It can consist of a wire or tape winding on non-magnetic core. Such 

lenses have recently become of renewed interest for superconducting 

lenses. The axial flux density produced by the coil can be calculated 

easily by Biot-Savart law. A detailed investigation of the 

properties and aberrations of this kind of lens is given in Chapter 4. 

It is shown that optimum designs for such a lens do in fact exist. 

1.2.2 Double-polepiece lenses 
  

The most commonly used magnetic electron lenses are the double 

polepiece lenses as introduced by Ruska in 1933. They consist 

essentially of a wire winding on a core of ferremagnetic material 

of high magnetic permeability. The iron core of the lens is bored 

to a diameter D along the axis of the coil to allow the electron beam 

to pass through a gap of width S is formed in the iron circuit 

between the two iron polepieces. The uniform magnetic field in the 

gap S is disturbed near the axis of the lens where the axial hole 

is located, and this causes the refractive action of the lens. The
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properties of this kind of lens can be expressed in terms of the ratio 

S/D of gap width to inner diameter. In Chapter 4, a recalculation of 

the distortion coefficients of such lenses has been made with 

improved data. These calculations have also beenextended to the 

calculation of the distortion coefficients of lens geometries not 

previously studied in order to complete the picture of conventional 

double-polepiece lenses. In Chapter 2, the properties of two field 

models, the bell-shaped and square-top field distributions, that 

could be useful for double-polepiece lenses,are given in detail. 

1.2.3 Single-polepiece lenses 
  

If a double polepiece lens is cut in half and one of the halves 

is removed, one will be left with a "single-polepiece" lens. The 

shape of the axial magnetic field distribution in this case differs 

radically even from that of an asymmetrical double-polepiece lens. 

In particular, the field distribution falls outside the lens 

structure and the peak position of the field is located outside the 

lens a few millimeters from the poleface (snout). The focal 

properties of this kind of field distribution cannot be predicted 

from the published data for conventional lenses, and hence, it was 

necessary to search for a mathematical field model that was at least 

a first approximation to that of single-polepiece lenses. It was 

eventually found that the little-known exponential field distribution 

first discussed by Glaser (1952) could be useful. In Chapter 2, the 

properties of the exponential field model are discussed and 

evaluated in detail. The most important characteristic of the 

exponential field distribution, and in fact of all asymmetric field 

distributions, is that the lens aberrations are sensitive to the 

direction in which the electron enters the field distribution. This 

can be turned to advantage in the electron microscope. In Chapter 5,
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the properties of two practical designs of single-polepiece lenses, 

for the 100 KV and high voltage electron microscope, are discussed 

in detail. 

1.2.4 Superconducting lenses 
  

Some alloys such as niobium - tin, have the property of losing 

all electrical resistance at liquid helium temperatures. In the 

presence of a magnetic field above a critical value, the super- 

Pembcerite 4 destroyed, even if the material is maintained below 

the critical temperature. 

In the high voltage electron microscope, where one needs a high 

lens excitation NI in order to achieve high peak value of the 

magnetic field distribution without dissipating energy in the windings, 

superconducting lenses can be usefully employed. Superconducting 

screens can also be used in order to prevent the field distribution 

from spreading along the axis, since magnetic flux cannot penetrate 

into a superconductor. The maximum current density that can be 

achieved in superconducting windings depends on manufacturing methods 

but can be of the order of 20,000 A/em* or more compared with perhaps 

200 A/em= in conventional windings. Superconducting windings are 

therefore much more compact than conventional ones. 

1.2.5 Miniature lenses 

Miniature lenses, using direct water cooling of the type 

developed in this University by Mulvey and his collaborators, have 

successfully proved themselves as having as good if not better 

electron-optical properties thanthose of conventional lenses. The 

reduction in lens size comes about since the current density of 

20,000 A/em= is comparable with that of superconducting 

lenses. This is achieved by using a flow of cold water for cooling 

the lens winding (cf. Juma 1975). Miniature single-pole lenses
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have proved themselves particularly as projectors in the high 

voltage electron microscope, (Chapter 5). Moreover they seem 

especially suitable for the correction of spiral distortion in the 

electron microscope. In Chapter 6 an experiment is described for 

correcting the spiral distortion by means of two single-pole lenses. 

1.3 Rotation-free projector system 
  

The image rotation caused by changing the excitation of the 

intermediate and projector lenses makes it inconvenient to interpret 

selected area diffraction micrographs in which the diffraction 

pattern of a crystallinestructure and the corresponding image of the 

crystal is superimposed with different orientations. A rotation-free 

projector system in the electron microscope can eliminate this 

trouble. Today the use of miniature lenses, especially single- 

polepiece lenses, makes it possible, and Juma and Mulvey (1975) 

have produced the first rotation-free micrograph, taken by the EM6 

electron microscope, in which the intermediate and projector lenses 

were replaced by a rotation-free system using simple polepiece 

lenses in which the diffraction pattern and the image of the crystal 

have the same orientation at any value of magnification. In this 

thesis a detailed study has been made of the electron-optical 

properties of projector systems for both conventional and single- 

polepiece lenses.
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2. MATHEMATICAL MODELS FOR THE AXIAL FIELD DISTRIBUTION 
  

2.1 Magnetic field models. All the focal properties of magnetic 
  

electron lenses may be calculated once the axial magnetic field 

distribution B(Z) of such a lens is known. The ideal method for 

determining the axial field distribution is to measure it accurately. 

However, this is not easy and an analytical expression that can 

adequately represent the actual field distribution is very useful in 

interpreting the electron-optical properties of a lens. It also gives 

a basis for the design of magnetic electron lenses. These analytical 

expressions are known as magnetic field models. 

2.2 Magnetic field models for double-pole lenses. There are two 

magnetic field models which are useful in the study of double- 

polepiece magnetic lenses, Glaser's 'bell-shaped' model and the 

'square-top' field model. 

2.2.1 The bell-shaped field model. Glaser's bell-shaped field 
  

(Glaser 1941 b) takes the form 

max 
32) = __—_— 2.1 

1+ ofan 

where Bay is the maximum magnetic field at the centre of the 

lens at Z = O and a is half of the 'half-width' of the 

field as shown in figure 2.1. 

B(Z) * 

{ 
| 
| 
| 

see nes 

  

Figure (2.1). Glaser's bell-shaped field.
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Putting X = - and Y = = the paraxial ray equation becomes 

a-Y © af Be 
— + serene ern eres o oO Cee 

ax? 8 m vo 41% aye 

fo 22 
This is of the form as te U =. 0 203 

ag 

2 e aé Be 
where wy = 1+ K- =1+———— and V_ is the relativistically 

o mV, r 

corrected accelerating voltage. 

Now U (f) = Y (%) sin g 

I { > where 2 = = cot g (7> B>0) 

with % defined geometrically as in figure 2.2. 

  v 
  

  

Figure 2.2. Geometrical illustration of the substitution X = cot g 

2.2.1 a The asymptotic focal properties of the bell-shaped field 

If we start with a ray of height Y = 1 and slope Y' = O at @ = 0 or 

Z =o, the solution of equation 2.3 will be of the form 

te ee a. 
wsin @



-9- 

and Y's ~ (sin wf. cos § -Wsin Z. cos w) Ze 

which gives y =- — 2.6 

at B= 7 or X=- o (the slope at the asymptotic image plane). 

The projector focal length is given by \ 

“ae. 
= = 7! => weosec wB 267 

i 

Figure 2.3 shows the projector focal length £/a against the 

excitation parameter NI/v,? calculated directly from equation 2.7 

by the computer using the program described in 3.2.2. The figure 

shows good agreement between the curves calculated analytically and 

those calculated numerically. The ienuns of NIV? corresponding to 

different values of K were calculated as follows: 
co 

  

Since | B(Z) dZ = uy NI 

i 7 Z 
Since X= a1 & B(X) dX = i. NI 

Hence 2aB i. oo tan 1x | = yu NI 
o 4 2 ° ° 

+ X 
0 

Thus a8 = ee NE a kev NT 2.8 
T 

e.13 2 Se eee _ NI 
fa) eM YE 

= 4h x 107° fe ~~ = e x 107° , NI a. Sn vz 5-93 v2 9 

r r 

Equation 2.9 enables us to use the excitation parameter NIV? 

directly; equations 2.9 and 2.8 were used in the numerical 

calculation of the focal properties and aberration coefficients of the 

bell-shaped field model, carried out by the computer.
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Figure 2.3 Projector focal length of 'bell-shaped' field as a function 

of excitation parameter NI/V 3
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Figure 2.3 shows that the minimum projector focal length Say 

in the first zone of operation equals 1.465a and occurs at an 

excitation parameter NI/ve = 17.28 corresponding to a Ke value 

= 1.05 (K = 1.025). 

2.2.1 b The aberrations of Glaser's bell-shaped field. Glaser's 

bell-shaped field is one for which the aberration coefficients can 

be calculated analytically (Hawkes, 1972). The analytical expressions 

for the spherical aberration coefficient Co the chromatic 

aberration coefficient C, and the radial distortion coefficient D 

as defined in Hawkes, (1972) at high magnification are given below 

in terms of a, where 2a is the half-width distribution of the field. 

  

Ma K* q aK? - 3 er 4 

a ae = ee ain( cosec 2 2.10 a 
a kw 8 te +3 - - 

c a : 
— ££ = ——« cosec 2.10 b 
a 29 w 

“x oe sin’ wo : TKe cot wr | aK + 3 2.11 

oe ys w bh w°(4K° + 3) 

The first two coefficients have been studied extensively by 

previous authors. We have concentrated on working out the variation 

of the radial distortion coefficient D of equation 2.11 as a function 

of the excitation parameter NI/ve. Figure 2.4 shows the variation 

of the radial distortion coefficient as a function of excitation 

parameter n/ve calculated analytically using equation 2.11. For 

small values of NI/v2, aD = 0.25; it then increases steadily until 

it reaches a maximum value 0.36 at an wiv value equal to 10.7. 

It then falls rapidly to zero at NIV = 19.8, before changing sign 

(indicating the presence of barrel distortion). The radial 

distortion coefficient is zero when NI/NI, = 1.146.
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. 2.4 Radial distortion of Glaser's 'bell-shaped' field yy
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(analytical solution)
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As a check we calculated the radial and spiral distortion 

coefficients of Glaser's bell-shaped field numerically using 

Scherzer's general expressions (Scherzer 1937), (Grivet 1972), for 

combined electric and magnetic fields, namely, 

ao 

et See |, ik ys Se (2 wx) F zs ee YY" XP eee a ( me 

2 

G 2 ‘ 5 12 g! y! 3 n“' 

EPG REFS FE) 
Bork 

e B | 
+ os a a sivisiees, (ee dere 

° 

and 

G - Bye of on fae 
ee ge eS Gee oe 

° 

ae - a et 8 GH 2y' ) | toe |S | = (298452--2 oe ee 12 las 2 @ Y B : 

°° 

where 

tt 4 2 aH Wee t ! ete ae yee BO CAN Ey ey Swe 
| \ ) . aa g ) ao" 5a) ge * 10 a G-) i 2 

The integration is carried out from the object plane (2) to the 

image plane (z,). In expressions 2.12 a and 2.12 b, G is the 

magnification, % is the electrostatic potential and Y and X are two
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solutions for the paraxial ray equation.F and F are the radial and 

spiral distortion coefficients as defined by Scherzer (1937), in the 

most general case. The deviation Ap of the Gaussian image at the 

image plane is given by 

( Ap ) = F r? and ( Ap des = y. zz 3 eeoene Zone) 
rad ° 

where ry is the initial height of an electron beam entering the 

field of the lens. The Gaussian image radius p is given by 

p = Gr eeeee 2.14 

Hence, the distortion in the image at the image plane ps is given by: 
p 

  

  

3 Por fh 
( = = =D bo e eocee 2.15 a 

p gc SS; rad “o 

and 

3 2: + 
( 22) > = = D r eoeee 215°) 

P /sp G eS sp o 

at 

Dad = = and Deo = = are standard notation today for the radial and 

spiral distortion coefficients (Hawkes, 1972). For purely magnetic 

field and an object and image plane at infinity they are given by 

  

  

3 e | Poe 3° eek 
D =—= + B (Z)" + #—— B(Z) 
rad af 16 mV, : 8 nv, 

7 

t a4 

- B~(z) (¥) ee az civic BeMb
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and 

a me | ae i. fx\* 
Do = eV, (rz) | B(Z) 5 . B CZ) a (2 a adZ eevee 2el7, 

— © 

where Y and X are the two solutions of the paraxial ray equation with 

the following boundary conditions. 

Lim ie = =o) 15 a = aa 0 ereee 2.18 a 

and 

‘ 
e 

Lim Xo = oar Z- Zs! xX (2 es aa = 1 rr 2.18 b 

Equations 2.16 and 2.17 apply to any ray Y, satisfying the 

condition YX = 1 at the object plane, starting from the same point 

in the object plane and ending at the same point on the image plane. 

The total distortion that any of these rays suffered during its 

path through the field, at the image plane will be the same, since 

all come to the same point on the image plane (figure 2.5a). In 

practice we choose a ray with initial slope 0 for convenience. 

“fe image plane 

oe Peo i 
\ 

—_> ei dh % PN i 

me ae | 

Figure (2.5a). Illustration of the ray Y.
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to and ue are the projector focal length and the relativistic 

accelerating voltage along the z-axis of the lens. 

In calculating the radial and spiral distortion coefficients 

for Glaser's bell-shaped field above, we used the substitution 

B(Z) =   5 . By = BR(Z) - By 

where BR(Z) = ——— Ss | noting that from equation 2.8 we obtain 
1Hz 

a 

a B(Z) = 4 x 107? NI. B R(Z) eoeoe 2.19 

The computed results for 2D and aD. for the bell-shaped field 
d 

are represented by the solid lines of figure 2.5 b. The crosses 

show the analytical points of the radial distortion coefficient 

a“D. The figure shows excellent agreement between the calculated 

results and those obtained analytically. This indicates high 

accuracy in the program used for the calculation. 

Another check on the values of aD. is given by using the 
a 

approximation that when the lens is very weak the radial distortion 
c 

coefficient is approximately equal to =: From equations 2.7 and 
f 

2.10 we get 

2 Cc 
Lim a = 0.25 eevee eecO a = 
(= 0) £? 

which is the same as obtained from both analytical and calculated 

values of a“D. 

2.2.2 Square-top field model 

Because of the simplicity of the paraxial ray equation for a ray 

passing through a constant magnetic field, the square-top field model 

is most convenient for evaluating the paraxial properties of
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magnetic electron lenses. No real lens has exactly the square-top 

field distribution, but to a first approximation we can divide any 

axial field distribution into successive intervals each of constant 

field strength and thus treat each region as a separate square top 

field. 

2.2.2 a Electron optical properties of the square-top field 

The paraxial ray equation 

ar e B°(z) 
—_- -_ zr = 0 eeeve 2.21 

aze tas 

is easily solved for a paraxial ray passing through a square-top 

field with a constant axial field B (Z). For an incident ray of 

initial sloper, and distance ry from the axis (Figure 2.6), the 

trajectory is given by 
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Figure (2.6). The square-top field. 
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and the slope r' of the ray 

r' =r' at WS 4 z) -Kr sin K(S . 2\| eeeen eeee 0 
° | \2 ) 2 | 

where Z is the axial distance from the centre of the lens (figure 

2. a BZ) 
2.6): Kk" = ao where S is the width of the field. 

ir 

If the initial slope e of the ray equals zero, equations 2.18 

reduce to r= r, cos K G * 2) teowee Cooe a 

oo 

nie ree r, sin » @ + ') ive 20s * 

and 

.
 
“"
 

The slope r of the ray at r = O is equal to r = 
obj 

From equation 2.23b r is given by: 

cw) cave 2a 
° \2 ° 

where 4, is the objective "focal distance", i.e. for which r = 0 

  
  

Hence 

area ges re 
25 ‘asa cE 2 | e@eeee 2e25 

4 1 
ang. f= . = 

obj . / s ; ae ee 
K sin c Z., is | K ay K (& = ‘) 

i if = 2.26 Lele obj - KS @eeeoeoe e 

Equation 2.26 applies only when 25 is inside the lens. For a weak 

lens, i.e. up to an excitation KS = g » the projector and objective 

focal lengths are the same and are given by
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r r ° ° 
se ok F Bin tke 

(Z = 5) ° 

2g 4 

: ee Dis 
1Ce iS = KS sin (KS) eeoee Coes 

The point at which the asymptote to the ray at Z = 2 intersects the 

axis is at a distance Z, from the origin given by 

Z = ae cot (KS) eevee 2.28 
p 2K 

and hence, the principal plane of the lens P, is at a distance 24 

from the origin, where 

  

45 cosec KS\_/S . cot (KS) cosec (KS) 
204 = (4 om K )°G + K = K ) e@eoeoee 2.29 

Z Z Z 
Figure 2.7 illustrates the variation of +73 and os with KS. tal

o 

2.2.2 b An analytical expression for the spiral distortion 

coefficient of the square-top field 

In general, the square-top field does not lend itself 

mathematically for the calculation of aberrations. This is because 
2 

most of the coefficients depend on the derivatives cs ’ ae etc. 

az 

of the axial field distribution. For the square-top field, the 

infinite slope at the boundaries of the field distribution causes 

a mathematical difficulty in calculating the derivatives and hence 

makes the calculation of the coefficients virtually impossible. 

However, for some coefficients, such as the spiral distortion 

coefficient (Equation 2.17), when the integration process takes 

place between Z = - o and Z= + o, we can avoid this difficulty, 

as will be shown later. It seemed worth investigating, therefore, 

the possibility of deriving an analytical expression for the spiral 

distortion coefficient for the square-top field model, a topic which
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Figure 2.7 Variation of = ‘ - and a with excitation parameter 

KS for the square-top field
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to the best of our knowledge has not previously been discussed in the 

literature. 

Equation 2.17, when applied to a single square-top field, will 

take the form 

  

4 3 : 3 ie 3 e B°(2) | 2 1 /2e r2 
Pep = 16 Ga) “ha eel 76( av, ) Ne [x o 

:» which reduces to 

3/2. ey, 3/e | 2 | 3 B (2) 2 4 B(Z) 12 
Dep =f Gs) ns, Sug | YoaZ + (fe) . 7 Y¥oa0Z 

a 

  

ee ¥° az +EK |v az 2 Be 

where - = § (2) Y Oe ic 

Substituting from equations 2.23 into 2.30 and putting Z = 5, XS = 1 

and i = O, we get for a parallel beam of electrons entering the lens 

5 s 

B® 2 K? | 6os“(Ks) dZ + t K? | sin’ (KS) dz 
ie) 0 

s Ss 

; K? 3 4 ==; 3/ (1 + eos (2KS)) dZ + 5 [oe - cos (2KS))daZ 

° oO 

s 

= K? 32.4 z sin (2KS) + Z - 2. sin (2KS) ee 2K : 2K 

° 

3 : 
= sin (2KS) 

Thus Dep = | + eer | eeeoe Cent 

3 5 
Z = “ > sin (2KS) sess Gre



nek oe 

  

S Dod 

  
| !       

J 

I tt 31 - 
4 2 4 

4°215 8°43 12-645 16-86 
2 

Fie, 2.8:. 8 Dsp against K values for the square-topped field
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Equation 2.31 gives the spiral distortion coefficient for any square- 

top field in terms of S, the width of the field, and K, the 

excitation parameter. Equation 2.31 shows that the spiral 

distortion coefficient expression has two terms; the first is 

directly proportional to S; and the second is an oscillating term 

varying as sin (2KS). Figure 2.8 shows the variation of ae 

values with excitation parameter K for the square top field. The 

variation of the spiral distortion oheetistente with excitation 

parameter K, is of the same form as that of conventional magnetic 

electron lenses. It starts from zero when K = 0, increases slowly 

at weak excitations, then increases rapidly with increasing K. In 

the region of minimum projector focal length, it is the dominant 

aberration. 

In the numerical integration process for calculating the spiral 

distortion coefficient for any axial field distribution, we simply 

calculate the contribution to the aberration as given by equation 

2.17 for each element of the field. The total distortion of the 

image plane is then the sum of these individual contributions from 

the object plane to the image plane. Since, we usually approximate 

the field in each element by a constant field, this suggests that 

equation 2.30 can be applied to an individual element. In particular 

we can apply the general solution of the paraxial ray equation for 

the square-top field, equations (2.22) to a single element and 

hence to a series of such elements. In this case we will call the 

ray height at the Ae element, Yss and the initial height and slope 

of the ray for this field element Yio and . respectively. This 

is illustrated in Figure 2.9 a.
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Figure (2.9a). The height Y, and Slope Y, of a ray through each 

element in the field. 

An expression for the contribution to spiral distortion 

! 

coefficient from each element i can be obtained by replacing Y and Y 
! 

in equation 2.30 by Y; and yy and using equations 2.22 for the 
t 

solution of the paraxial ray equation with Yio and Ys as the 

initial condition for each element. Thus,we obtain 

5 t 
x. 

Dey = 2” | (¥, cos (KS) + <2 sin (Ks))* as + 
0 

Ss 

1 ' 2 
ir K rc. cos (KS) - Yio K sin (KS))“ as seaee eee 

0 

Equation 2.28 readily reduces to 

ee / ‘ia? 5 4 sin_(2Ks) fee v2 
eee to \ ey 7 ee a.) cis 

: ce Yio 
- eo cos (2KS) eeese 2.59



oe 

The bar on the left hand side of expression 2.33 indicates that this 

expression applies to an intermediate stage of computation in the 

calculation of the distortion coefficient. It can also be applied 

to the calculation of distortion in two successive square-top field 

lenses. Here the ray enters the second lens with a height rte and 

slope ee This procedure will be used in Chapter 6 to calculate a 

system of successive lenses, as in the electron microscope. 

Equation 2.33 reduces, as it should, to equation 2.31 if we 

! 

put Ys = 7 and Ye = O corresponding to a parallel incoming ray. 

2.2.2 ¢ The effect of the finite conjugates on the spiral 

distortion coefficient of the square-top field 
  

In operating the projector system of the electron microscope, 

the object distance is not always at an infinite distance from the 

corresponding magnetic projector lens, and so the finite conjugates 

of the lens must be taken into consideration when calculating the 

distortion. In order to assess the magnitude of this effect 

analytically, it is convenient to study the spiral distortion 

coefficient of the square-top field for the case of finite 

conjugates (Figure 2.9b). 
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Figure (2.9b). Finite conjugate of a ray with the square-top field.
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Equation 2.33 can be written in the form 

3 

it 

we sp io io 

3 ae 
Y° ea +e Y- aCe) 

sin (2KS)| kK ' 
ais + x —- %,, Ys cos (2KS) 3. 2.54 a 

Considering equation 2.31 we get 

1 2 ! 

Ye: ; 
— A (220 K 2/210 
Dep = e Dep 1 + ee ( ~ + <2) cos (2KS) 

2 

eS / Yio 
+ — (==) sin (2KS) oe 2634 b 

4 +5 

If U is the axial distance from the source to the nearest edge of 

the field distribution (figure 2.9b), we have 

Ha) oe i.e. =— = Eo = gt 
U io a

l
o
 

hence [C= ee 2 ae es 
40 U 

Substitution from 2.35 into 2.34b with the initial condition 

  

Yao = 1 gives 

ae 4 K sin (2KS) be 1+ - cos (2KS) + ————> “a eaae 
sp sp Ke wr a 4 ue 

Equation 2.36 gives the variation of spiral distortion coefficient 

of the square-top field with 7 = 1, 

For example, consider the case where the excitation parameter 

KS = m/2 corresponding to the minimum focal length position; where 

the radial distortion is approximately zero. In this case K = 7/2S
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and D. =D — 717/168. Equation 2.36 becomes 

  

° 

3 2 
“ T 4 (3) 2] @ D = a -— | = +— [{ = 

SP, ee ne \D we (eo 

2 
4 {Ss 2:./.5 

whe 73(7) + B(q) sp, poses Bee 

Figure 2.10 shows the form of the relation between D. and U. If 
° 

U is greater than 2S, Bs is approximately constant and equal to 
° 

>. - For U smaller than 28, D.,, is approximately inversely 
° ° 

proportional to ie 

Furthermore, if U is the distance from the source to the 

nearest boundary of the field and v is the distance from the far 

boundary of the field to the point at which 7 * O (figure 2.11), 

then we have, at KS = 7/2, 

Principal plan 
  

io | >       

  

Figure (2.11). Definition of the distances U, S, and v for the 

square-top field. 
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But : v= 5 a = a eerece 2.38 

xk K 

’ 1 
frome. 55 ya = Tq 

q 

SO v= ae. eeees 2.39 

UK 

The magnification of the lens in this case 

- v4 0.5725 
M = U iz 0.5 S eevee 2.40 

where the value of 0.5 S represents the position of the principal 

plane of the lens which in this case (KS = 7/2) approximately at the 

middle of the lens. 

From equation 2.40 we can calculate M when U takes a 

different value. The aim is to get a similar expression to that of 

weak glass lenses, where 

D ep = (1s Mm)? cove 2e41 
SP sp 

But, of course, the power of the term (1 + M) could be different. 

However, plotting log Deo values of the square-top field against 
° 

log (1 + M), where M is given by 2.40, gives us two regions, the 

first from M = 0 to 0.44 in which the power of (1 + M), is about 

O.7 and the second from M = 0.44 to © in which the power of (1 + M) 

is approximately two, like the case of glass system. The resultant 

curves are shown in figure 2.12.
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2.3 A magnetic field model for *Single-Polepiece' lenses 

(The 'exponential-field' model) 

Althouch the magnetic field models described in $2.2 give a 

remarkably good representation of the properties of double polepiece 

magnetic electron lenses, it is found (Mulvey and Newman, 1973) to 

be very difficult to apply them to single-polepiece lenses. In fact, 

the axial field distribution from this type of lens is approximately 

exponential in character. This gives importance to the further 

study of the little-known and neglected exponential field model of 

Glaser (appendix 1) and its electron optical properties. 

The axial field distribution in the exponential field model 

takes the form 

-z ln2 
a eoeee 2.42 B(Z) = Bm(Z) + e   

where d is the width of the field at its half height (figure 2.13). 

The corresponding paraxial ray equation, as given by Glaser (1952), 

may be written: 

2 

Se + K> ae x ine x = 0 eeere 2.43 

ax 

where 

e BY (z). 4° 
Y= = Mes 2 K> = — 

a a Sav 

Changing the variable from X to ¢, where 

€= an < — eeone00 2.44 

ln2 

we obtain 

a*y 1 ay 
ee eeere 2.45
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Fig. 2.13 The exponential field model
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which is a differential form of the Bessel function of zero order. 

The solution of equation 2.45 for a ray entering the field at 

Z = owith an initial height Y = 1 and initial slope Y" =eOn ds 

given by 

i _ PROS SEN mee LD 
¥(Z) = J568) = Yo (nz an5.° ¢ d ) tive ee 

where Ji6€) is the Bessel function of zero order. 

This ray intersects the axis at points distant Zn from the 

origin where 

Zee oo «ln n In2 eooee 2.47 pum: 
ine 

where me is the value at which Jos) = 0. These values are 

G4 = 2.4048, é, = 5.5201, & . . 

n= 1 means that there is one focus only at distance an from 

the origin, given by 

d K 
25 = In2 e in 4.667 eevee 2.48 

co 

Since ee dZ = UNI 

0 © 

| 22 e a = HNI ° ln2 eoees 2.49 

Oo 

And we have 

/ aw Bd NI 
K = = 0.128 erece Ca O 

(@) VF ee: 2 
ze 7 

Substitution from 2.50 in 2.48 gives 

Bee due yet 3.69 2.51 a = ° oe 7. ° eevee e 

x
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Equation 2.47 is applicable only when ao is in the region Z = 0 
Z. 

to Z=e, Also = 0 when a 13. This means equation 2.51 
Yr 

applies for excitation parameters oa greater than 13. 
v 

r 
1 

The slope Y (Z) of the ray at a distance Z from the origin is 

  

given by 

\ dy (2) d ¥ (Z) = a3 = az. (95.467) 

da dé 1ln2 
= aé Jos) az = = a6 v, CS) eeeene Gene 

For an excitation parameter NI/v,? less than 13, the objective and 

the projector focal length for the exponential field are the same 

and equal to the reciprocal of the slope of the ray at Z= 0. For 

larger excitation parameters 2p is pomietre (equation 2.51), and 

the objective focal length Fob; is given by 

Fob; 1 
a ~ 2g 7,0G) = 1.156 eoree eo 

The objective focal length is consequently constant for excitation 

parameters NI/V,* 213. The chromatic and spherical aberrations 

are also constant over this region. This is a consequence of the 

fact that, for an exponential curve, the shape of the trajectory 

does not vary with excitation. 

2.3.1 Electron-optical properties of the exponential field model 

For the exponential field the projector focal length is given 

by the reciprocal of the slope of the ray at the distance Z = 0. 

At Z = 0, we have 

  

Soe oe NI 4 
°O a Ine e ln2 ee eeeoe aa 

r 

 



  

since 

4 

¥ (z) = eo + a, 

then 

h * 

¥ tO) = pt eS) 

_ 0.1287 NI 3% 5 
ode ee 

xr 

and therefore 

ie AE 7 
oo =" One ae So 

- 

NI NI TNE me J, (0.1857 ee 
V Vv 

+ 4 _ 

f 
The calculation of ie values over a wide range of excitation 

parameter SS is therefore straightforward. The corresponding 
V 

x 

values of Jf) and J,() are taken directly from tables of Bessel 

functions, or they can be calculated numerically. 

Figure 2.14 shows the variation of t/a, ton3/4 and Z./4 

as a function of the excitation parameter SS over a wide range 

Y, 

of = covering the first three zones of operation. In the first 
V 

z 

zone of operation in which the excitation parameter NI/V,? < Ag 

the projector and objective focal lengths are equal. Minimum 

focal length of the lens occurs at NI/v,? = 13. The objective 

focal length is constant for excitation parameters greater than 

13; its value is 1.156d which is the same as that of the minimum 

projector focal length f Figure 2.14 shows that the 
Pp min’ 

objective distance oe is zero at the position of minimum focal 

length. The second and third minimum projector focal lengths
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(zones 2 and 3) have values of 0.77 d and 0.614 d respectively and 

occur at excitation parameters nr/v,? = 33 and 48 respectively. 

The lens becomes afocal at NIV? values of 20.6, 38.5 and 

56.5 respectively. At an excitation parameter NIV? = 20.6, the 

telescopic ray path through the exponential field occurs as 

illustrated in figure 2.15. By placing a specimen at a distance 

Z = 0.7 d along the axis, a strong pre-field is created followed 

by an imaging field of low aberrations @s will be shown later) in 

a similar manner to that achieved by the condenser-objective lens 

of Riecke and Ruska (1966) The figure also shows two possible 

directions for the illuminating beam, the preferred direction 

being determined by the operational requirements of a particular 

microscope. 

2.3.2 Chromatic and spherical aberration of the exponential field 
  

model 
As the chromatic and spherical aberrations of a lens are 

strongly felated to the pbaectiee focal length, one can expect that 

these aberration coefficients of the exponential field models will 

be constant over the range of excitation for which the objective 

focal length is constant. Indeed Glaser (1952) showed analytically 

that the chromatic aberration coefficient for the exponential field, 

in the range of excitation mentioned above, is constant and equal to 

02721 ds 

The present author has calculated the chromatic and spherical 

aberration coefficients C, and C. numerically by Scherzer's formulae, 

using a digital computer, for the exponential field model with the 

aid of the computer program described in section 3.3). To give an 

idea of the accuracy of the computer program, the calculated 

value of Mo was found to be 0.722 d, in good agreement with the



ae 

  

  

  

  

          

Fig. 2.15 The telescopic ray path through the exponential 

field
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analytical solution. Thus C./f is equal to 0.632. The calculated 

value of Cos which was not calculated by Glaser in his brief 

treatment of the exponential field, was found to be 0.363 d, 

i.e. C/t = 0.315, a plausible result, not too different from the 

values obtained with other types of lenses. The calculated c/a 

and c/a values together with the objective and projector focal 

lengths of the exponential field over the first zone of operation, 

are illustrated in figure 2.16. 

2.3.3 Radial and spiral distortion coefficients of the 

exponential field model 
  

The determination of the distortion coefficients of the 

exponential field is very important, since it may be used to 

characterise asymmetric field distribution (Appendix 2), in the 

same way as the square-top field may be used to characterise 

conventional two-pole lenses. The coefficients Ds of radial and 
d 

Dep of spiral distortion have been calculated numerically for the 

exponential field model, using a digital computer to evaluate 

equations 2.16 and 2.17. Because of the asymmetry of the field 

distribution, there are two possibilities for the direction of entry 

for the beam. The calculation was therefore done for the two 

directions of the entering beam, and the results are shown in figure 

2.17. The solid lines represent the case where the entering beam 

comes from the negative Z direction, and the dotted lines represent 

the beam entering from the positive Z direction. Figure 2.17 shows 

that for the radial distortion coefficients, in both cases the 

on value starts at excitation parameter se = O, with a value 
V 

ze 

of 0.25 as was the case for the bell-shaped field model. As the 

excitation of the lens increases, the value of aa: for the case



ee oe 

  

  

x 

        
  

Fig. 226 Chromatic and spherical aberration 

coefficients of the exponential field 

model
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of the beam coming from - Z direction, increases more rapidly than 

the one in the opposite direction and reaches a maximum value about 

0.87 at NI/V,? value equal approximately 10, and then falls more 

rapidly to zero at NI/V,? = 14, The maximum value of co for 

the beam coming from the positive side of Z direction is about O.46 

at NIV, = 7, and then falls steadily to reach zero at NIV,” ~ 15. 

This shows that the radial distortion of the exponential field for 

the beam coming from the exponential side of the field is only about 

half that for the beam entering the field the other way round. 

The same is true for the spiral distortion coefficient. The 

most favourable arrangement for low spiral distortion is for the 

beam to enter the field from the exponential side. In this case 

the ratio between the two values of aD! for the two directions 

of the guberine beam, is one third at NIV? = 13. This ratio 

increases at NI/v,? is increased. Also, we see that there is a 

little fluctuation in the value of aD in the case of the 

favourable direction, this is similar to the relation found for the 

spiral distortion coefficient of the square-top field as 

represented by the 'sine' term of equation 2.31. 

The determination of the most favourable arrangement for low 

distortion is relevant to the design of single-pole projector 

lenses which can have appreciably lower distortion coefficients 

than those of the best double pole-piece lenses.
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De COMPUTER FRCGRAMS FOR CALCULATING ELECTRON-OPTICAL 

PROPERTIES AND ABERRATIONS 

Digital computers are now used widely in numerical analysis in 

electron optics. The use of digital computers enables us to get rapid 

and accurate results for the focal properties and aberrations of 

magnetic electron lenses; computing the axial field distribution is 

especially useful for the practical design of such lenses. 

Starting with a program for calculating the electron trajectories 

through an axial field distribution of an iron-free lens, (Marai, 1973), 

three main programs have been written for calculating electron optical 

properties, chromatic and spherical aberration coefficients and radial 

and spiral distortion coefficients for any magnetic field distribution. 

3.1 A program for calculating the electron-optical properties 

of magnetic electron lenses 

This program calculates the electron-optical properties of a 

given magnetic field distribution by solving the paraxial ray equation 

for a ray passing through that field. Once the trajectory of the ray 

is known, the electron-optical parameters, such as the objective focal 

J 

Zes can be deduced. 

length fobs? the projector focal length ‘ and the objective distance 

The axial field distribution can be obtained from calculated or 

measured data, or can be calculatedaalytically from a field model, 

or calculated from the Biot-Savart Law for the iron-free lenses, or 

directly using one of the well-known methods, such as the relaxation 

method (Liebmann and Grad, 1951) or the finite element method 

(Munro, 1972). From a knowledge of the axial field distribution B(Z) 

and the ampere-turns NI, the program computes a quantity A(Z), known



is: 

as the 'distance function', where 

A(Z) = ae fee oe 

on the assumption that we are dealing with unsaturated iron. The 

function A(Z) is independent of the excitation NI of the lens, and 

hence the program calculates it once only. The magnetic field at any 

point Z on the axis is given by multiplying the number of ampere-turns 

by the function A(Z) at that point. 

The second step in the program is to calculate the electron 

trajectory at any value of NI. To do so, we first divide the field, 

given in the first stage of the program, into a number of successive 

intervals, over each we average the value of the function A(Z). The 

original field given is thereby converted into a 'staircase' field 

(figure 3.1). For each interval, equations 2.22 are applied; this 

gives the solution of the paraxial ray equation for a constant 

magnetic field. We then perform a series of successive operations 

through the field in which r and r’ of one section are taken as ry 

and me for the next. 

The number of intervals and the interval width are suitably 

chosen in order to ensure the required accuracy without excessive 

computer time. 

Finally, the required electron-optical parameters Fobj and Z. 

are calculated as follows: 

Fob; = eo eee 302 

3 (= 0) 

Ze e Zr = 0) e@oe0ee 5e5



Figure 3.1 
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The flux density distribution converted into a 'staircase' 
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A flow diagram of the computer program (Data BZ). 
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For a paraxial ray entering the field with initial radial height 

r,s 1 and initial slope a = O, the projector focal length t is 

given by the reciprocal of the slope of the above ray at the point 

where the ray leaves the lens field. The output of the computer can, 

if needed, be fed to a graph-plotter giving directly the ray pattern 

through the field distribution. This program (Appendix 3), called 

‘DATA BZ', uses FORTRAN 4. A flow diagram is given in figure 3.2. 

3.2 A program for calculating chromatic and spherical aberration 

coefficients of magnetic electron lenses 

The computation of chromatic and spherical aberration coefficients 

o. and Ge is carried out using the expressions given by Glaser (1933) 

and Scherzer (1936), 

2. 
2 

€ Shen om 
Cs = ~ Sav | B (Z) xs az e@eerse 3.4 

Z 
° 

e -e 4 Po te ‘ ° e c / ("Tara | x] Be + 83m - 8a) (a) oo 3 
Z 

° 

in which B(Z) is the axial field along the Z-axis, B’ is the derivative 

of the field with respect to Z, and x is a ray satisfying the condition 

t 
that at the object position xe O and the slope xy als 

object plane 

Jf 

“| Sah 

IX 920 é 
XG 

Figure (3.3) Illustration of the ray X.
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For both chromatic and spherical aberration coefficients we chose 

the image plane 2; to be at infinity, i.e., the ray x leaves the lens 

field parallel to the axis Z (figure 3.3). In practice the process of 

numerical integration is carried out in reverse direction, i.e. one 

starts with a ray which enters the lens field parallel to the Z-axis 

and the integration stopped at the point where the ray intersects the 

axis, i.e., at the object plane 25° The initial height of the ray 

used in the calculation was 1, so the computed trajectory was 

normalised so that the slope at the object point 2, was equal to 

unity. This was done by multiplying the ray trajectory by £4 

{ since fobj = Vz! (2). 

The computer program, called 'DABERRATION' (Appendix 4), for 

calculating the aberration coefficients, was constructed for use with 

any magnetic field distribution, e.g. from published or calculated 

debe as well as analytical field models. The first part of the 

program is very similar to the program 'DATA-BZ', and in which the 

calculations of the parameters B(Z), 3(Z), xX, and x! take place. In 

this part of the program the quantities Fobd? Z5 and the coefficients 

of the terms in equations 3.4 and 3.5 are also calculated. 

In the second part of the program, the summation operation, for 

the individual contribution to equations 3.4 and 3.5 from every’ 

interval of the magnetic field distribution, takes place. The output 

of the program gives the relevant electron-optical quantities 

6 1 4 
2 3 aS Ae Cor Cys NIM, Zor foyas Cy (ByYV,*) 10°, and £,, (B/V,*) 10°. 

J 

The last two parameters are sensitive indicators (Mulvey and 

Wallington, 1973) of magnetic electron lens optimisation. 

AS a check on the program, the value of C./4 was calculated for 

the exponential field distribution, where d is the 'half-width' of 

the exponential field. This was found to be 0.722 compared with the 

calculated value of 0.721, obtained analytically (Glaser 1952).
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A flow diagram for the computer program 'DABERRATION' is given in 

figure 3.4. 

3-5 A program for the calculation of radial and spiral distortion 

coefficients of magnetic electron lenses 

The calculation of the distortion coefficients Dad and Dot from 

equations 2.16 and 2.17, follows a similar procedure to that of 

calculating the aberration coefficients Cy and eas In calculating 

the distortion coefficients, the intecration must be carried out over 

the entire field distribution. In calculating the radial distortion 

coefficient Dad? two particular solutions of the trajectory equations 

are needed, namely, Y and X as defined in equation 2.18. This makes 

the computation of Dad more complicated. The two rays Y and X are 

shown in figure 3.5. 
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Figure (3.6). Definition of Y 

In order to calculate the trajectory of the ray X, we first 

calculate the trajectory for the ray ¥ (figure 3.6). fis a ray for 

which 1 = 1 and qt, = O at the image plane. The trajectory is 

calculated with a ray of unit height and zero slope starting at the 

image plane; the trajectory is then calculated throughout the field 

distribution up to the point from which we start the calculation for 

the ray Y. Im order to find the ray X, we then normalise the ray 

path of the ray Y, as explained previously, by mutliplying it by the 

value -f r- V/¥,- 
proj ° 

The program for calculating the distortion coefficients, called 

'D DISTORTION', is also constructed so that the relevant coefficients 

can be obtained for any magnetic field distribution, including those 

of field models. The full program is given in Appendix 5 and a flow 

diagram is shown in figure 3.7. 

The first part of the program calculates the parameters B(Z), 

B (2), a x, X and the average value of each parameter over each 

interval of the magnetic field distribution. In this part of the 

: a eNe 
program, foro} is calculated for the corresponding v2) the
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excitation of the magnetic lens. 

In the second part of the program, the contribution to equations 

2.16 and 2.17 from each interval of the magnetic field distribution is 

calculated; these contributions are then summed to give the values of 

the coefficients Pea and Deo corresponding to the excitation parameter 

NIv,?. For field models it is convenient to express the distortion 

coefficients in the form aD, where a is the half-width of the field 

distribution. The output from this program gives the quantities 

NIW,?, z D proj’ Prada and Deo respectively. The coefficients Dy and 

a can be related to Liebmann's (1952) coefficients of radial and 

spiral distortion C a and CoD respectively by the relations 

Cc =D) Re and Ma iD} R- eoeee 3.6 

p sp 

where R is the radius: of the lens bore. 

! 

3.4 The effect of the slope B(Z) of the field distribution on 
  

the calculation of the aberration coefficients 
  

In calculating some of the aberration coefficients, such as the 

spherical aberration coefficient . (equation 3.5) and the radial 

distortion coefficient Poe (equation 2.16) which depend directly on 

the slope B (2) of the magnetic field, a mathematical difficulty arises 

in a field distribution that has an infinite slope at one or more 

points. An example is the exponential field model (figure 2.13). 

Figure 3.8 shows the slope B’(z) as a function of Z for the 

exponential field model. At the singular point Z = 0, there are two 

Slopes, the first is given from the analytical expression 

dB(Z) dad. , ,-ine 2/4 
as Ae 

nine, 1n2 
ooo hd) & a ee 2 ee at,
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(2) | 

I
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Figure (3.8). B’(Z) as a function of Z 

where Ba is the maximum field at Z = O, and d is the half-width of 

the exponential field. 

The second slope at Z = 0 is infinite; this arises from the 

fact that the field strength at Z = O drops suddently from its 

maximum value Bn to zero. From the strictly mathematical point of 

view the coefficients C. and ee for this field will become 

infinite if the numerical calculation is allowed to proceed in the 

normal way at this point. This seems to be a difficult problem 

facing the electron optics researcher when trying to calculate the 

aberrations of a field distribution like the square-top magnetic 

field distribution.
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For this reason it was important to calculate several field 

distributions from actual single polepiece lenses in order to 

compare the results with those calculated from the exponential 

field.
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4, ABERRATIONS OF MAGNETIC ELECTRON LENSES 
  

4.1 Aberrations of iron-free coils 

The improvement of the resolution of the TEM and STEM can be 

achieved mainly by reducing the aberration of the objective lens. The 

reduction of spherical aberration requires a high magnetic flux 

density; this is limited by the saturation of the lens material or by 

the ‘critical current' if a superconducting winding is used. Thus to 

improve the iron-free electron-optical performance, super-conducting 

coil lenses could be employed. Many publications (Der Schwartz and 

Makarova, 1968) have appeared concerning the electron-optical 

properties and aberrations of iron-free coils, but none of them, in 

fact, found an optimum lens design for the use as objectives or 

projectors. Moreover in the paper by Der Schwartz and Makarova cited 

above, the authors did not present their results in a convenient form 

for finding such an optimum design if it in fact exists. Furthermore, 

the practice of relating the electron optical properties to an 

arbitrary scale of length, e.g. the inner diameter Dy (Figure 4.1), 

makes it extremely difficult to compare the results obtained from . 

lenses of different shape and size. On the other hand, if a parameter 

such as D_, the mean diameter of the coil = (D4+ D,)/2, figure ae 

where D5 is the outer diameter,is taken as the unique geometrical 

parameter for a set of coils with different D/D, values and 

different widths, then relating the electron-optical properties of 

these lenses to that mean diameter will give a reasonable and 

acceptable way of comparison.
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Figure (4.1). Iron-free coil with rectangular cross section. 

In calculating the aberrations of magnetic electron lenses, 

sensitive parameters for the minimisation of lens aberrations like 

C. Bade and £ obj BV, (tulvey and Wallington, 1973) were 

calculated for a wide range of iron-free coils with outer to inner 

diameter ratio DJD, ranging between 3 and 999 and width to mean 

diameter ratio S/d, ranging from 0.001 to 0.5. The computer program 

'"DABERRATICN', described in Chapter 3, was used for this calculation, 

and as a check on the program, the results of spherical aberration 

coefficient CJD, obtained for the coil with Do/D, = 19 were 

compared with those obtained by Bassett and Mulvey (1969) for the 

same lens. The results are in good agreement and are shown in 

figure 4.2.
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——— calculated 

X= Basset and Mulvey     L | 

20 Nive a 
  

Figure 4.2 Spherical aberration ratio C5 /D, for iron-free coil 

with D,/D, = 19
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4.1.1 Iron-free coils with minimum spherical aberration 

a) Optimum S/D value for iron-free coils 

It was previously thought that a very thin coil would be the best 

in order to get the smallest spherical aberration coefficient (Bassett 

and Mulvey, 1969, Mulvey and Wallington, 1973). However, calculation 

4 
of the parameter C_ B JY 2 for different shapes of iron-free coils 

s max r 

shows that there is an optimum size of such lenses, corresponding to 

a width to mean diameter ratio S/d, of 0.1. Figure 4.3 shows the 

ee 4 Eee é 
variation of the minimum Ce Bi in value for coils with D/D, = 19, 

24 and 32, respectively, as a function of s/D The results show an 

optimum value of S/d, = 0.1 for all these lenses. 

b) Optimum ratio D/D, for iron-free coils 
  

It was also thought that as the outer to inner diameter ratio of 

the iron-free coil lenses is increased, the spherical aberration 

coefficient of the lens would get smaller. This would imply that the 

"best! lens would be one with Do/D, equal to infinity. Calculation of 
i 

2 ae 4 the parameter Cy Sats for excitation parameters NIV, up to 40 

were made for different iron-free coil lenses with different shape 

and size. For lenses with S/D, different from 0.1 the graph of the 
4 

peur 3s . 
minimum values of Ge i against D/D, shows that there are real 

optimum values for D/D, within range (3< D./D, <999), (figure 4.4). 

For example, with lenses with S/d, = 0.005, i.e. thin coils have an 

optimum D3/D, value nearly equal to 28. The minimum Ce Ba/V 

corresponding to this ratio is 3.06 mm ary /*: After this minimum 

de 
as we increase the ratio Do/D4s the value of Ce Bn / Vy increases 

: : : . 4 
more rapidly until D/D, is about 250, the increase in C_ Bede 

becomes slower and slower until it reaches a saturation value just 

over 4.22 ons ance tor D/D, ratios greater than 1000. For lenses 

with s/D, = 0.1, the figure shows different behaviour of the minimum
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4 

s ‘ -1/2 
C. EY. values. It starts with a value equal to 3.575 mm.mT.V 

at D/D, = 3, and falls very rapidly as the Do/D, ratio increases 

until the ratio is about 40. The decrease of C_ B JX 2 becomes much 
Ss max r 

slower as DW/D, exceeds 40, and for D./D, = 100 or more the change of 

2, Ce Bas eet is very small and reaches approximately a constant value 

3 2 4 equal to 2.87 mm.mT.V * at D/D, = 999. This value of Cc. Pst. de 

is the smallest value, to my knowledge, that has been calculated for 

any iron-free coil up to the present. These results, again, confirm 

that the optimum size of the lens occurs at S/D., = 0.1. 

c) The minimum C BYY 3 values of iron-free coils and the 
s r 
  

theoretical limits of magnetic lenses 
  

The theoretical limit of C_ B ot 3 =eo sce” in nv for the 
s Max r 

field distribution of magnetic lenses was first given by Tretner 

(1959). Recently Moses (1972) gave a revised value for that limit 

3 3 equal to 2.338 mm.mT.V ©. Any lens with a value of Co Bal he 

close to these limits can be regarded as ideal as far as a spherical 

aberration is concerned and hence will be suitable as an objective 

lens in a high resolution electron microscope. A comparison of the 

iron-free coil lenses described above with the theoretical values of 

4 
Tretner and Moses shows that the minimum value of C_ B ae 2 found 

s max r 

for the lens with S/D,, = 0.1 and D/D, = 999 is the lowest value 

calculated for any objective lens up to now. Figure 4.5 shows the 

ot oe 4 ; 
variation of Cc. at against f ha for the iron free 

obj Baa 

lenses D,/D, = 19, 24 and 999. The first two lenses with S/d, 

ratio = 0.005 but S/d, for the last one is 0.1. The figure also 

shows the limits given by Tretner and Moses.
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Fig. 4.4 Optimum outer to inner diameter ratio D,/D, for iron-free 

coils
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4.1.2 Distortion coefficients of iron-free coil lenses 
  

When we talk about projector lenses in the electron microscope, 

the important parameters will be the radial and spiral distortion 

coefficients of these lenses, as well as the minimum projector focal 

length. In order to employ iron-free coil lenses as projectors, it 

would be useful if we could find an optimum design for this purpose, 

as was the case with the objectives. The computer program 

'D DISTORTICN', described in Chapter 3, was used to calculate the 

distortion coefficients for a wide range of iron-free coils, with 

different S/d, and D/D, values. The results are illustrated in 

figures 4.6 and 4.7. 

a) In figure 4.6, the radial and spiral distortion coefficients 

rig a + : sai C5 = BO oa and C. = HDL are shown for a range of iron-free 
P 

lenses of constant ratio D2/D, = 19 but having S/D,, =’ 0,005, 0.05, 

0.1, 0.5 and 1.0 respectively are shown as a function of NI/NI,. 

Here R denotes the inner bore radius. The figure shows that both 

Cy and Cap decrease as the ratio S/D, increases. This behaviour is 

similar to that of the calculations of Liebmann (1952) for double- 

pole lenses (Liebmann, 1952). For the very thin coils the radial 

distortion changes from pincushion to barrel at NI/NI, = 1.2, while 

the change for the very wide coils occurs at NI/NI, = 1.05. The 

changing point for the lenses with different S/d, ratios lies between 

the two values mentioned above. The difference in the value of 

ne (Cc, at NI/NI, = 0) between very wide lenses and the very thin 

ones is of the order 10. So from the point of view of the distortion 

coefficient only, the lenses with high S/D,, ratio seem better, but a 

check of the important parameter < = fo (D,.)? (see Appendix 6) 

of these lenses shows only a slight difference in the actual 

distortion, for a given screen diameter and projection length, since
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the 9 value for all these lenses is about the same 5 a 4.7 Bt 

NI/NI, = 1). So for iron-free coil lenses there is no preferred 

S/D., value for use as a projector lens. 

b) In figure 4.7 the spiral distortion parameter Q_ =f. (D_)* Sp bo eR > 

3, 19, 99 and of coils with radius of outer to inner diameter D/D, 

all having the same width to mean diameter ratio s/D., 0.1, are 

’ shown as a function of the relative excitation parameter of the lenses 

NI/NI,. The figure shows that the lens with D/D, = 3 has a slightly 

smaller minimum value of a = 0.91 compared with 0.96 for the lens 

with Do/D, = 99 at NI/NI, = 0.65. But at the minimum focal length 

position (NI/NT, = 1) where the lens is usually operated, the ap 

value of all these lenses are about the same and equal 1.1. This 

result is very similar to that of the double-polepiece lenses 

(Appendix 6) except that the value of . of the latter is around 1. 

From the properties of the iron-free coil lenses we conclude 

1. when the iron-free coils are used as 
objectives there is a preferred width for 
the coil, in order to achieve better 
resolution, namely s/D,, = 0.1. With that 

ratio of S/d, = 0.1, the coils with higher 

D/D4 ratio will be better. 

2. When iron-free coils are used as projectors, 
there is no practical optimum shape or size 
for the coil used, since all give essentially 
the same amount of distortion. 

4.2 Aberration of double-polepiece lenses 

4.2.1 Liebmann's (1952) calculation of the radial and spiral 

distortion coefficients of double-pole lenses 
  

The radial and spiral distortion coefficients Ca = DR and 

Cp = Deak where Ris the radius of the lens bore, were calculated 

by Liebmann (1952), for four conventional double-pole lenses with
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gap to diameter ratios S/D equal to 0.2, 0.6, 1 and 2 respectively. 

His results for radial distortion show that for any lens ,an excitation 

can be found at which the resulting image is free from radial 

distortion. Liebmann's results also show that, for a given excitation, 

as S/D increases the value of Ca decreases. 

For spiral distortion, Liebmann found a similar behaviour to 

that for the radial distortion coefficient insofar as the spiral 

distortion coefficient Can decreases as the ratio S/D increases. The 

coefficient Cap is very small at low lens excitation and then 

increases continuously as the excitation of the lens increases. 

Figure 4.8 shows the variation of the coefficients C, and Ce 
° 9 

d 

against S/D values,on log-log paper, as found by Liebmann. Here, 

C,. denotes the value of Ca at very low excitation, and Cop denotes 
° ° 

the value of Oe at (NI/NI) = 1. When the relative value Cal Pas 

a 

° 

is drawn as a function of the eines excitation parameter 

A ic = (nz/nz,)* on log-log paper, Liebmann obtained a single 

straight line as shown in figure 4.9, on which the calculated values 

for all lenses with different S/D values lie. This line has a slope 

fe 2.72 
1.36, which means that Cao! oan varies as (NI/NI,) - More 

° 

recently, from a study of the spiral distortion of the square-top 

field distribution (see Appendix 6), it was found that the relative 

spiral distortion coefficient De Msp varies as the cube of the 
° 

relative excitation NII, but there is an additional oscillatory 

term which is a function of (NII, )* and the total spiral distortion 

coefficient is the sum of the two terms.
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Figure 4.8 C, and Csp, as a function of S/D as given by Liebmann 
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4.2.2 Recalculation and extended computation for the radial 

and spiral distortion coefficients of double-pole lenses 

from improved data of the axial field distributions 

The radial and spiral distortion coefficients of a wide range of 

double-pole lenses were calculated by the author using the computer 

program 'D DISTORTION' described in Chapter 3. The range of gap to 

bore S/D went from 0.2 to 8. The best available data for the field 

distribution were used in these calculations; it is likely to be 

slightly more accurate than those used by Liebmann. The aims of 

repeating Liebmann's calculations were as follows: 

lee To test for the computer program used in the present 

calculation. 

2. To extend the work to cover a larger range of lenses with S/D 

up to 8, which is close, electron-optically, to S/D =o . 

3. To see if there were any significant differences between 

Liebmann's direct method to calculate image distortion by 

calculating a third-order ray, and the present method, which 

relies on Scherzer's equation. 

The re-calculation of the radial and spiral distortion coefficients of 

the lenses with S/D 0.2, 0.6, 1 and 2, shows that Cy for the first 
° 

three lenses are essentially the same as those obtained by Liebmann. 

For the lens S/D = 2, the calculated Cy was about 0.12, compared with 

O.1 in Liebmann's calculation. For aii tone lenses, there is a 

difference between the maximum Cy value obtained by Liebmann and those 

computed by the 'D DISTORTION’ program. The latter is lower by an 

average of 20 percent. For lenses with S/D = 2 and higher, the 

curve for Cy decreases continuously with increasing excitation 

parameter NIWV,?, at first slowly and then more rapidly as the
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Figure 4.10 Radial Ca and spiral oe distortion coefficients of 

double-pole lenses with gap width to inner diameter 

ratios S/D = 0.2, 0.6, 1 and 2, calculated from the 

improved data for the axial field distribution. The 

crosses represent Liebmann's values 
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excitation NIV? of the lens approaches the excitation nryv,2 

corresponding to minimum focal length. The excitations for radial 

distortion-free operation (Cy = ©) agree in all cases with the values 

obtained by Liebmann. Figure 4.10 shows the values of C3 and Coa 

calculated by the program 'D DISTORTION' (solid line) together with 

Liebmann's values for Cy and op (crosses) for comparison reasons. 

This shows excellent agreement as to the shape of the function, but 

there is a systematic difference in the absolute values of Cop? ours 

being some 4% less than those of Liebmann. We can therefore be 

reasonably confident in applying this program to novel situations. 

A further check on the program consisted in calculating the 

radial and spiral distortion coefficients of the miniature double- 

pole objective lens for the EM6 transmission electron microscope, 

extensively studied by Juma (1975). This lens has an S/D value 

equal to 1. The axial field distribution of the lens was measured 

by means of a Hall probe Gauss meter. The corresponding distortion 

coefficients were then calculated by the computer program 

'D DISTORTION', the results of which are shown in figure 4.11. The 

calculated values, for the same lens, from the improved data of the 

field distribution and Liebmann's values are given on the graph, 

from which we see that the values of C, and Cop calculated from the 
d 

measured field and the improved field distribution data are identical 

and the agreement between these and Liebmann's value is very good, 

except at the peak value of the radial distortion coefficient curve. 

Figure 4.12 shows the variation of the coefficients Ca and Con 

for two lens geometries that were not calculated by Liebmann, (S/D=4,- 

S/D = &), The motive for studying these two lenses was to complete 

our information about the distortion characteristics of all double- 

pole lenses distortion, since the lens with S/D = 8 is, to a large 

extent, representative of the case S/D = q@ , which presents some
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Figure 4.11 C, and Con for the lens S/D = 1, calculated from a measured 

field distribution
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mathematical difficulties in computing its aberration as mentioned 

previously. From figure 4.12 we see that the radial distortion 

coefficient Cy starts at a low value, Cy 

0.028 for S/D = 8; it decreases steadily with increasing excitation 

ot 0.059 for S/D = 4 and 

4 

and reaches zero at NIV? = 11 for S/D = 4 and 9.9 for S/D = 8. 

Figure 4.10 shows that in the range O< S/D< 2 the point of zero 

radial distortion, C, = 0, occurs at an excitation KI/V_? higher 
d 

than that for minimum focal length. At the ratio S/D = 2, the point 

of zero radial distortion occurs before the excitation for minimum 

focal length (figure 4.12); for larger S/D values, the points of 

zero radial distortion fall increasingly below that for minimum focal 

length. From figure 4.12, we can see that the spiral distortion 

coefficient Con for each lens has essentially the same shape as those 

of lower S/D, but with reduced magnitude by a factor of about 10. 

These new results enable one to see more clearly that the spiral 

distortion coefficient varies as the cube of the excitation parameter 

NIWV,?. 

4.3 Aberrations of single-polepiece magnetic electron lenses 
  

AS a Single-polepiece magnetic electron lens produces an 

asymmetrical axial magnetic field distribution of atatinetae shape, 

its first-order focal properties and aberrations can, to very good 

approximation, be represented by those of the exponential field 

distribution of Glaser (1952), (see Appendices 1 and 2). Indeed, the 

lens aberrations of single-polepiece lenses are very similar to those 

of the exponential field distribution. In Chapter 5, the electron 

optical properties and aberrations of two practical single-pole 

lenses will be discussed in more detail. But, in general, we can say 

that for any single-pole lens there are two modes of operation 

according to the direction of the incident electron beam. The first
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Figure 4.12 Radial Ca and spiral oe distortion coefficients for 

lenses with S/D = 4 and 8 calculated from the 

improved data of the axial field distribution
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corresponds to its entering the field of the lens from the ‘smooth! 

Side of the field distribution, the second corresponds to entry from 

the side where the axial field changes abruptly. Accordingly, there 

is always a preferred direction for a single-pole lens depending on 

the particular application. For example, when a single-pole lens is 

used as a projector in an electron microscope, the preferred direction 

is that with its poleface (snout) facing the incoming electron beam. 

This way round, the distortion of the image is reduced by a factor of 

3 compared with that obtained when the lens snout faces the 

fluorescent screen. 

4.4 The final projector stage of the electron microscope 

The projector stage of an electron microscope should provide a 

distortion-free image, at a suitable magnification, on a fluorescent 

screen or photographic plate. Other lens defects in this stage are 

not in general of importance in limiting the performance of the image. 

The projector stage originally consisted of one lens, but in modern 

instruments consists of several projector lenses. However, only the 

final projector lens contributes significantly to image distortion. 

This is generally kept within prescribed limits by placing the 

photographic plate at a considerable distance, typically 50 cm from 

the final projector lens. It therefore seemed useful to investigate 

whether it would be possible to reduce the length of the viewing 

chamber by an appreciable amount while maintaining image distortion 

below the prescribed amount on a standard size screen or photographic 

plate. In the following section some important parameters in the 

design of the final stage of the microscope will be discussed.
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Figure 4.13 A diagram showing electron trajectory in the final 

projector stage
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4.4.1 Important parameters in the design of the final stage of the 
  

electron microscope 

Considering figure 4.13, the distortion (Ap /p ) of the image is 

given by 

Rear eee Dee Tt : eoeoee 41 

where P is the radial height of the Gaussian ray in the image, D is 

the distortion coefficient (radial or spiral) and r is the height of 

the incident beam. If L is the projection distance and ‘. the 

projector focal length, equation 4.1 may be written as: 

2 
ee o(£) ot: e eeeoeee 4.2 

p L P 

or 

Ap 2 (pe = +. #@ 
where Q = ( >)? t will be called the distortion parameter. It will 

be shown that this parameter is much more relevant than the distortion 

coefficient D in isolation. From equation 4.2, there will be a minimum 

value of L for a given image radius p and a given amount of distortion. 

This is given by: 

EQ es ee be 
(Ap /p)? 

Q is thus a crucial parameter in the design of the final stage of the 

microscope, a lower Q value corresponding to lower distortion, other 

things being equal. A comparison of different kinds of projector 

lenses based on the parameter Q will give a correct idea about the 

best lens for the final projector lens. The value of Rsp -( De.) tf 

for double-polepiece lenses with gap width ratio S/D between 0.2 and



= oO7= 

infinity are shown in figure 4.14 as a function of lens excitation 

parameter NI/NI,. In addition, the Q values for the exponential field 

distribution in its two modes of operation are given for comparison 

purposes. From the figure for double-polepiece lenses, it is clear 

that there is very little difference in the Sep values over this wide 

range of S/D of double-pole lenses, in spite of an order of magnitude 

difference in the distortion coefficients. Higher S/D values lead to 

slightly lower Q value but from a practical point of view, all 

double-polepiece lenses may be taken to have the same Q value and 

hence produce the same distortion for a given image size and 

projection distance. At minimum focal length (NI/NI, = 1), where the 

radial distortion is nearly zero the Qe value of all double-pole 

lenses is in the region of 1. The exponential field, which is a good 

approximation to that of single-pole lenses, has an appreciably lower 

Qsp value for the preferred direction of entry to the field. Not 

only is a2 low (about 0.78), but also it is nearly constant over a 

wide range of NI/NI, (0.7 to 1.05). In the same range of excitation, 

the Rsp value for the non-preferred direction of entry into the 

exponential field is nearly doubled at corresponding excitation values. 

This suggests the possibility of using single-pole lenses in a 

correcting system for spiral distortion. In order to fix ideas, 

consider a spiral distortion of 2% and a radial distortion of 1% with 

image radius p = 50 mm. Table 4.1 gives the L values for the 

different double-pole lenses (providing there is no restriction from 

the lens bore) together with the corresponding value of L for the 

preferred direction of the exponential field, L of the preferred 

direction of a practical design of single-polepiece lens (miniature 

HV single-pole lens, discussed in the next chapter), and the L value 

for the bell-shaped field distribution.
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Figure 4.14 The projector distortion parameter Qep ‘as a function of 
the relative excitation parameter NI/¥Z, for double-pole 

lenses and the exponential oa
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Lens L cm NI/NI, F/tp9 
  

Exponential field 
model (preferred 
direction) 27.25 0.972 1.0052 

Miniature H.V. single- 

pole lens 28.96 0.94 1.0064 

Double-pole lenses 

S/D = 2 33.22 0.862 1.044 

S/D = 1 34.7 0.843 1.056 

s/D = 0.2 35.68 0.997 1.042 

Bell-shaped field 38.6 0.898 1.0067             

Table (4.1). The minimum projection distance L for various double- 

pole lenses compared with that of the exponential field (preferred 

direction) and bell-shaped field wen (“2 = (ie) = O.02; 9 = SCM. 
P J/sp P /rad 

Another useful parameter when optimising the design of the final 

projector stage is the value of of; For a fixed value of p and L, 

the distortion is directly proportional to ei For the same lenses 

shown in figure 4.14, figure 4.15 shows the variation of os as a 

function of the relative excitation parameter NI/NI,- From the figure 

we see that the spiral distortion resulting from the preferred 

direction of the exponential field is about 40% less than that of the 

double-pole lenses in the useful region of excitation around the 

position of minimum focal length. This again indicates that single- 

pole lenses could advantageously be used as projectors. 

A third parameter is important in designing the final projector 

stage of the microscope, that is the field of view of the projector
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lens. The larger the field of view, the more area of the object that 

can be seen and investigated. The field of view of double-pole lenses 

is limited by the lens bore. In a single-pole lens with the preferred 

direction of operation, the principal plane of the lens is located 

outside the body of the lens itself, while the focal point is located 

very close to the tip of the poleface of the snout, especially when 

the lens is operated near its maximum magnification. That means a 

large field of view can be obtained with the single-pole lenses; 

this can be increased by boring the back plate of the lens ina 

conical shape with an angle chosen to suit the required viewing 

arrangements. Such a design is described in Chapter 5. 

4.4.2 Optimum design of the final projector lens 

The optimum design of the final projector lens depends on the 

parameters mentioned in section 4.4.1. To sum up, a good projector 

lens should have the following characteristics: 

1. Low Q value 

2. Large field of view 

3. Adequate magnification 

The first two requirements are not influenced by lens size or working 

flux density. From the investigation of the important parameters in 

designing the final projector stage of the electron microscope, one 

can readily conclude that a single-pole piece lens, with its axial 

field distribution as close as possible to the exponential field 

distribution, and used in the preferred direction, is probably the 

best arrangement for the final projector lens of the electron 

microscope. The employment of miniature lenses enables us to use 

more intermediate lenses, in order to obtain a given total 

magnification for the microscope. It is not therefore necessary to
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concentrate the magnification into a few steps involving the use of 

lenses of very short focal length. In fact, the employment of an 

intermediate single-pole lens in such an arrangement as suggested in 

Chapter 6 of this thesis should minimise both the rotational 

distortion and the length of the viewing chamber without any 

sacrifice of total magnification.
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5. APPLICATION TO PRACTICAL LENS DESIGN 

Single-pole magnetic lenses have different axial field 

distributions from those of double-polepiece lenses. For this reason, 

their electron-optical properties are different and cannot be predicted 

from the data of conventional lenses (Marai and Mulvey, 1974). The 

axial field distribution of single-polepiece lenses is approximately 

exponential in nature, being closely related to those partially iron- 

shrouded helical coils described by Mulvey and Wallington (1973). To 

see how far the electron-optical properties of the exponential field 

distribution could be useful in predicting single-polepiece lens 

properties, two practical Sinbieipote lenses were investigated in 

detail and their electron-optical properties were calculated or 

measured making use of calculated or measured axial field distributions. 

5.1 A simple single-pole 100 ¥V objective lens 
  

A twice full size model of the 100 KV objective lens described by 

Marai and Mulvey (1974) was constructed (Figure 5.1), in which a flat 

helical winding of mean diameter 75 mm is placed inside a short hollow 

iron cylinder closed off at one end by an iron plate provided with an 

axial hole of 10 mm diameter and a 2 mm snout of 40mm diameter. The 

axial field distribution was measured by means of Hall-effect probe. 

The axial field distribution was also calculated from the Biot-Savart 

law. Figure 5.1 shows a schematic diagram of the lens. Using the 

computer program described in Chapter 3, the focal properties, 

chromatic and spherical aberration coefficients and the radial and 

Spiral distortion coefficients of the lens were calculated. The 

results, which are similar to those of the exponential field model, 

are given below.
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Figure 5.1 Schematic dia of the 100 KV objective lens x gram
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5.1.1. Axial field distribution and focal properties 
  

Figure 5.2 shows four curves for the axial field distribution. 

Curve 1 represents the axial field distribution calculated using the 

Biot-Savart law. The magnetic effect of the iron back-plate of the 

lens may be calculated by 'the method of images’. A back plate of 

infinite radius would act as a 'mirror' producing an equi-distant 

‘image' of the lens coil; the combination of the field from the 

original coil and its image will then produce the same field 

distribution as the coil and the back-plate. The finite radius of 

the back-plate was ignored in this calculation as it was considered 

that the error involved would be small. The field distribution 

represented by curve 1 in figure 5.2, then, is the resultant of the 

field produced by the two coils described above. Curve 2 in figure 

5.2 represents the axial flux density of the lens measured by the 

Hall-effect probe. The peak of this curve is pushed forward into 

the lens compared with that calculated. This is caused by the effect 

of the iron 'snout' or single-polepiece of the lens (40 mm in 

diameter and 2 mm depth into the lens). 

To study the effect of the hole on the axial flux density 

distribution, a cylindrical piece of iron of outside diameter 10 mm 

was placed in the hole of the lens with its front face at the same 

plane of the snout face. The resultant measured flux density in this 

case was identical with that of curve 2 of figure 4.2 apart from the 

snout and up to a point at about 10 mm from the snout, and then the 

flux density went higher as the distance from the snout was reduced; 

the maximum value of the flux density was about twice the value of 

the flux density when measured in the case of a hole of 10 mm 

diameter in the lens at the plane of the snout face. This case of 

the flux density distribution is represented by curve 3 in figure
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5.2. Furthermore, to see the effect of extending the snout length 

on the axial flux density distribution of the lens, the piece of iron 

used in case 3 was pushed forward into the lens so its front face was 

located at 5 mm from the old snout position. In this case, we formed 

a new snout or a single-polepiece of 10 mm diameter and 7 mm penetration 

into the lens and without a bore. The resultant axial flux density 

distribution of this case is represented by curve 4 of figure Pree 

The maximum field position is moved forward in the lens by a 5 mm 

distance from that of case 3, and the maximum field is about twice 

the peak value of curve 2 when the snout was only 2 mm in extent with 

a 10 mm hole. 

Figure 5.3 shows the measured axial flux density of the lens in 

comparison with the exponential field distribution as a function of 

Z, the distance from the snout. Figure 5.4 shows the same thing but 

on log-linear scale. Both figures show that the agreement between 

the measured axial field distribution and the exponential field is 

identical in the area between the peak of the measured field and Z = 

infinity. The maximum value of the exponential field is a bit more 

than twice the value of the measured axial field distribution at the 

plane of the snout face. At the peak position of the axial flux 

density, the flux density was measured for a lens current up to 

20 amps. The I-B relation curve is shown in figure 5.5. The 

relation is perfectly linear up to this value of exciting current of 

the lens which covers the range of operating the lens. 

The focal properties of the lens were calculated for both the 

calculated axial field distribution from the two-coil model, and the 

measured axial flux density distribution using the Hall-effect probe 

method. The results were approximately the same. Figure 5.6 

represents the focal quantities Fy a and Z, as a function of 
bj bj 

the excitation parameter nrv,?. The circles represent results
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oh 

from the calculated field distribution while the crosses represent 

results calculated from the measured field. From the figure we find 

that F ud is equal to 20 mm and occurs at an excitation parameter 

NIWv,? = 13, exactly as the case of the exponential field distribution. 

Fovj and F_ are the same up to the minimum projector focal length 

3 position and then - remains constant for excitations NI/V,, higher 
bj 

than 13, again the same property as in the case of the exponential 

field distribution. Furthermore, the object distance oe varies in 

a similar way as that of the exponential field distribution and 

crosses the snout plane at an excitation NIV? = 13 corresponding 

to the minimum focal length of the lens. A direct comparison between 

the focal properties of the lens and the focal properties of the 

exponential field distribution in the first zone of operation is 

shown in figure 5.7, in which all the quantities Fy Fy and 2554 
bj j 

are given in terms of the half-width of the field distribution. 

521.2 Chromatic and spherical aberrations 

The chromatic and spherical aberration coefficients of the lens 

were calculated, using the computer program 'D ABBERATICN' described 

in Chapter 3, for both the calculated and the measured axial field 

distributions. The results are in very good agreement with those of 

the exponential field distribution. At the excitation for minimum 

focal length, the ratios CSF oy 5 = 0.325 and CS apg = 0.625 compared 

with the CSP oj = 0.315 and CSF oj = 0.632 for the exponential 

field distribution. Both Cc. and Me are constant for excitation 

parameters NIV? greater than 13. The results of the aberration 

coefficients C, and Co together with the projector focal length ‘.? 

objective focal length t Obj and the object distance Zo are given 
bj 

in figures 5.8 and 5.9 as a function of the excitation parameter 

NIWV,?, for both the calculated and measured field distribution of
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Figure 5.6 Focal properties of the 100 KV single 

pole objective lens
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Figure 5.8 Chromatic and spherical aberration coefficients of the 100 KV 
objective lens calculated from the calculated field distribution 

(two coil model)



the lens. 

The results for the spherical aberration coefficient is very 

important since it depends on the derivative _ of the axial 

magnetic field distribution. The agreement between the results for 

the spherical aberration coefficients of the single-pole lens 

described above and that of the exponential field distribution 

strongly supports the idea explained in Chapter 3, that ignoring the 

infinite slope of the steeply rising part of the field distribution of 

the exponential field model leads to results in very good agreement to 

that obtained for field distributions of practical single-pole lenses. 

51.3 Radial and spiral distortion coefficients of the objective 

single-pole lens 

The radial and spiral distortion coefficients of the single-pole 

lens described above were calculated using the computer program 

‘D DISTORTION' for the two directions of beam entry to the lens field. 

Figure 5.10 shows the variation of the calculated coefficients 

Ca = RD, and Cen = RD. as a function of the excitation parameter 

NIWV?, where Ris the radius of the lens bore. The figure shows the 

considerable difference between the values of the radial and spiral 

distortion coefficients in the two ways of operation. The preferred 

direction of operating the lens, in order to get smaller distortion, 

is that for which the incoming electron beam enters the field of the 

lens from the gently eae part to the field distribution, i.e. on 

the 'open' side of the lens. The radial distortion coefficient is 

zero for NI/v,? = 15. For the opposite direction i = 14, 

which is again in very good agreement with the case of the exponential 

field distribution, (figure 2.17). The curves of figure 5.10 for the 

spiral distortion coefficients show, as in the exponential field 

distribution, a reduction of the coefficient by a factor 3 near the
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excitation for minimum. focal length when operating the lens in the 

preferred direction compared with that of the opposite direction. 

The distortion quality factor Q= D 2 me was also calculated 

for the lens in the two modes cle doerataut as a function of the 

relative excitation parameter NI/NI,. The results are shown in figure 

Bie dile 

The results of the radial and spiral distortion coefficients and 

the distortion quality factors Qn 9O8 esp confirm again that the 

approximation made with the exponential field distribution, in order 

to avoid the mathematical difficulty of an infinite slope of the field 

BY’ (Z) at Z = 0, was reasonable in the light of its application to 

practical cases. 

5.2 A miniature single-volepiece projector lens for the high 
  

voltage electron microscope 
  

Another practical single-polepiece lens successfully tested in the 

high voltage electron microscope ig the miniature single-polepiece lens 

described by Mulvey and Newman (1973). Figure 5.12 shows the cross 

section of Hitachi HU 1000 KV volt electron microscope installed at 

the C.E.G.B. Research Laboratories at Berkeley, Gloucestershire, where 

the miniature single-pole lens was inserted in a Faraday cage port 

above the normal final projector lens of the microscope. The lens 

power available at the time was not enough to operate the lens down to 

its minimum focal length, but sufficient to produce good micrographs 

comparable in quality with those of the normal projector. Figure 5.13 

shows a micrograph of a diffraction grating replica taken at one 

million volts in the HU 1000 using the miniature lens as the final 

projector lens. The lens excitation was about 12500 A-t, producing 

a focal length about 16 mm. The micrograph shows a radial distortion 

of about &. We now know that the reason for this is that the lens
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Figure 5,12 
  

Cross-section of Hitachi HU 1000 million volt 
electron microscope showing intermediate and © final projector lens. Miniature projector lens inserted in Faraday cage port above the final projector lens.
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Figure 5.13 A micrograph of a diffraction grating replica taken 

in the Hu 1000 electron microscope with the single-pole 

lens operating as final projector



AOS 

was used with its snout facing the screen, i.e. opposite to the 

preferred direction of using single-pole lenses mentioned above. The 

calculation of the focal properties and aberrations of the lens was 

in fact carried out by the author after this experiment, in order to 

determine ‘the optimum arrangement of using the miniature high 

voltage lens. 

Figure 5.14 represents a full-scale cross-section of the 

miniature high voltage single-pole lens. The exciting coils, 

consisting of wire windings, comprised four coils with 126, 126, 158 

and 187 turns respectively, a total of 597 turns. Figure 5.15 shows 

a front view of the same lens with the water and electric connections. 

5+2.1 Calculated focal properties of the miniature high voltage 

single-pole lens 

The electron-optical properties of the high voltage single-pole 

lens were calculated, making use of both the calculated and the 

measured axial magnetic flux density distributions of the lens. These 

calculations included the use of the lens both as an objective and as 

a projector in a high voltage electron microscope. 

a) The calculated field properties 

The axial magnetic flux density distribution of this lens was kindly 

calculated by the Rutherford laboratory making use of the computer 

program of W. Trowbridge et al (1972). This method divides the iron 

circuit of the lens and the exciting coil into small elements, the 

number and shape of which are chosen according to the accuracy required. 

The magnetic field from the coil is calculated by the Biot-Savart Law. 

The magnetic flux in each element is calculated by an integral method 

taking into account the magnetic field of the coil and the magnetising 

effect of the other iron elements. The total field at any point is 

the sum of the field produced by the coil and that produced by the
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Figure 5.15 Front view of the high voltage single-pole lens 

showing the water and electrical connections
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iron circuit. In particular the axial flux density distribution can be 

plotted directly by the graph-plotter output facilities of the computer. 

Figure 5.16 shows the computed axial flux density at a lens excitation 

of 12086 A-t. The circles on the graph represent points measured by 

means of °a Hall effect probe Gaussmeter. The peak value of the 

measured flux density is about 20% greater than that calculated. This 

is partly due to the approximation made in calculating the field 

distribution. For simplicity the snout surface was represented not by 

a smooth cone but by a stepped structure. Furthermore actual internal 

steps in the bore itself were omitted from the computer calculation for 

simplicity. It should also be mentioned that the measured field 

distributions shown here were made after a minor re-machining of the 

lens bore and face, which tended to produce a slight increase in 

flux density at the poleface. Taking everything into consideration, 

the 20% discrepancy between calculated and measured field distribution 

can readily be accounted for, and did not warrant a subsequent re- 

calculation. 

The computer program 'DATA - BZ' and 'D ABERRATION', described in 

Chapter 3, were used to calculate the focal properties and the 

chromatic and spherical aberration coefficients from the calculated 

axial flux density distribution of the high voltage single-pole lens. 

Figure 5.17 shows the variation of projector and objective focal 

lengths, the object points 2603 and the position of the principal 

plane, all as a function of the excitation parameter NI/v,? for an 

electron beam entering the lens field from the iron-plate side of the 

lens. The figure shows a minimum projector focal length of = 10.7 mm 

at an excitation parameter NI/V,# = 15.5. 

The objective focal length is approximately equal to the 

projector focal length up to an excitation parameter NI? = ke) 

but then decreases more rapidly as the excitation parameter increases.
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Figure 5.16 Axial flux density distribution of the high 

voltage Ssingle-pole lens computed by laboratory 

computer aids. NI = 12086 A-t
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The objective distance 2503 falls in the same manner as the objective 

focal length. The principal plane Z4 is at a far distance away from 

the snout at very low excitation but quickly reaches an approximately 

Beeeee value of 2.5 mm from the snout for excitations NIV? more 

than 25. 

Figure 5.18 shows the variation of projector focal length with 

relativistically corrected accelerating voltage Ve for a fixed 

excitation NI = 12086 A-t. The value of ‘. required for the minimum 

projector focal length as shown in the figure is about 650 KV. The 

increase of the projector focal length for accelerating voltages 

higher than this value is approximately linear. 

Figure 5.19 represents the chromatic aberration coefficient. C, 

and the spherical aberration coefficient C. of the lens, when the 

direction of the trajectory is as shown in the figure, together with 

the projector and objective focal lengths, for comparison purposes, 

as a function of the excitation parameter NI/V,?. The figure shows 

that the chromatic aberration coefficient is about three quarters of 

the objective focal length for excitations otcty than corresponding 

to the minimum projector focal length and about the same as fob” for 

low excitations, as for conventional lenses. The third-order 

spherical aberration coefficient Cy is high compared with CS values 

for an electron beam entering the lens from the opposite direction. 

The reason for this is the effect of the shape of the field. 

Figure 5.20 shows the variation of Cos Cos fobd and ae values 

as a function of the excitation parameter NI/v,? in the case where 

the electron beam trajectory is parallel to the axis at a long 

distance from the snout. The minimum projector focal length of 10.7 

mm occurs as expected at a value of Nr/v,? equal to 15.5 in agreement 

with previous calculations. It is to be expected that the objective 

focal length, chromatic and spherical aberration coefficients would
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be different. The minimum £. = 10.4 mm, occurring at nIyv,? = 15.6; 
bj 

C = 6 mm at NI/V 3 = 17 end C = 2.4 mm at NI/V z = 17. 
r r c min Ss min 

b) ‘The electron-optical properties and aberrations of the 

high-voltage single-pole lens calculated from the measured 

field distributions 

The axial magnetic flux density distribution for the high voltage 

Single-pole lens was measured using a Hall-effect probe gaussmeter.' 

The flux density distribution, for a lens excitation NI = 2985 A-t is 

shown in figure 5.21. Because the bore diameter was too small to allow 

the probe to go through, the part of the flux density distribution on 

the negative Z side of figure 5.21 was estimated. This field 

distribution was used to calculate the focal properties and aberration 

coefficients of the lens by means of the computer program described 

in Chapter 3. Figure 5.22 shows the variation of the focal quantities 

e426 is Z, ’ ; and the chromatic C_ and spherical C_ aberration 
Ds .eObg c s bj 

coefficients of the high voltage single-pole lens as a function of 

the excitation parameter NIV? for the case where the parallel 

trajectory enters at the iron side of the lens. The figure shows a 

similar behaviour to that calculated from the calculated flux density 

distribution, except that the minimum projector focal length is 9.4 mm 

compared with 10.7 mm in the calculated field case. This is caused by 

the peak values of the measured field being about 20% higher than 

those calculated, for the reasons explained above. Figure 5.23 shows 

the variation of fo fop3! Zo 5? Co and Ce as a function of NI/v,* 

calculated from the measured axial flux density distribution in the 

case where the parallel electron trajectory enters the 'open' side 

of the lens. The minimum projector focal length t oa is 9.4 mm 

and occurs at NI/v,? = 15.5. The objective and projector focal 
4 

lengths are equal at an excitation NI/W_© = 15.5 and smaller values,



@ 115 =. 

  

NI=2985A.T. 

  

        

  

Figure 5.21 . The axial flux dqnsity distribution, of the hjgh voltage 

single-pole lens measured by a Hall-effect probe
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distribution



= Te 

but for excitations greater than that for minimum focal length, f 

3 reaches a minimum of 9.3 mm at NI/V,, 

obj 

= 16 and then increases 

steadily and slowly with increasing NI/V,?. The same behaviour occurs 

for both Cy and Coe The minimum value for oe = 5.5 lm, Occurs ab 

4 1 
(NI/V* = 17) and Ce = 2 mm at NIV * = 29 

min 

5.2.2 Radial and spiral distortion coefficients of the high 
  

voltage single-pole lens 
  

As the high voltage single-pole lens was originally intended to 

work as a projector lens in the high voltage electron microscope, the 

investigation of its image distortions, mainly radial tha ele) 

distortions, could lead to the determination of the optimum operational 

arrangement. The radial and spiral distortion coefficients of the lens 

were therefore calculated from the data of the measured field 

distribution by the computer program 'D DISTORTION’ described in 
D 

Chapter 3. The values of radial distortion coefficient C5 = = and 
R 

t. 
the spiral distortion coefficient Can a = were, therefore, 

R 

calculated for a lens with a bore radius R = 1 mm. The variation of 

+ 
C, and Con with the excitation parameter NI/V_° is shown in figure 

d 

5.24. The solid lines represent the case which was used in the 

Hitachi H U 1000 microscope where the parallel incoming electron beam 

entered the lens field at the iron backplate of the lens, i.e. the 

lens snout faced the screen. Consequently, the bore of the lens sets 

an upper limit on the height of the incoming rays. The curves for Cs 

and Con in this. case have the same general shape as those of 

conventional double-pole lenses. The dashed lines in figure 5.24 

represent the case when the incoming electron beam enters the lens 

field from the opposite side of the lens, i.e. when the snout faces 

the incoming beam. In this case the field of view or the initial 

height of the incident beam is not limited by the size of the hole
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in the snout, but is limited by the exit angle of the conical part of 

the lens. However, the radial and sviral distortion coefficients in 

this case behave in a different way from those when the incoming beam 

enters from the opposite direction. The radial distortion coefficient 

Cy starts from the same value Cae and decreases continuously as the 

excitation parameter increases and reaches zero at NI/V,? = 16.6, 

i.e. nearer to the minimum focal length position than that for a eat 

entering from the unfavourable direction. In the range of excitation 

NIv,2 between 10 and 16, Ca for the favourable direction is less than 

50 per cent of its value for a beam coming from the opposite direction. 

The spiral distortion coefficient oe also shows a big difference in 

this favourable case. Indeed, at minimum focal length, Con in this 

case is only one third of the value for the unfavourable direction. 

The variation of Coy is very slow for excitations NI/v,? greater than 

16. These results therefore suggest that one can obtain a better 

image performance and micrographs in an instrument such as the Hitachi 

HU 1000 electron microscope of Berkley, if the mini-projector is 

turned through an angle of 180° so as to make the snout face the 

incoming beam. This would enable the projection distance to be 

reduced substantially. 

As a check on the order of magnitude of the values of Ca of the 

high voltage single-pole lens, we made useof the approximation 

Cy = = Re (see Appendix 7) valid when the lens excitation is low. 
i : 

- a 
The values of 5 R for the two modes of operating the lens are 

a 

represented by the crosses in figure 5.24. The approximation is very 

good at low excitations and gives a good indication of the general 

shape to be expected for Ca for each mode of operating the lens at 

low excitation. These results tend to confirm the validity of the 

more rigorous calculations. It should be borne in mind, however, that
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by itself, the magnitude of the quantity Cy or Ce is not a sufficient 

indication of the lens quality. As was shown in Chapter 4, the 

distortion produced by the lens in the image is determined by the 

3 distortion factor 9 = D f where D is the distortion coefficient 

(D = C/R*). Hence, it is useful to determine the values of 9 (for 
‘rad 

radial distortion) and a (for spiral distortion) as a function of 

lens excitation. Figure 5.25 shows the variation of Qrad and Wp oF 

the high voltage single-pole lens for the preferred direction of 

operation as calculated from the measured field distribution, as a 

function of the relative excitation parameter NI/NI, where NI, 

corresponds to the minimum focal length. In addition, the magnification 

parameter M = Pos the lens is given for the purpose of indicating 

at what aaah iGakion the lens gives its best performance. From the 

figure we see that the minimum value of a is 0.8 at NI/NI, = 0.86. 

esp hardly varies over the range 0.7 CNIMNI, LZ 1. This behaviour is 

very similar even down to numerical values, to that predicted from the 

exponential field distribution. Also, from figure 5.25 we see that 

Was = 0 at NI/NI, = 1.07 corresponding to a relative magnification 

M = 0.98, and the values of Oak O.74 ao in the region 

0.96 <NIANT, € 1615 corresponding to a relative magnification 

starting at 0.98, passing through the maximum value 1.00 and then 

down again to 0.925. In this range of magnification the radial 

distortion will not exceed 50% of the value of spiral distortion. 

If, for example, the lens is operated at its maximum magnification and 

it is required to produce an image with spiral distortion less than 2% 

and radial distortion less than 1%, on a screen of radius P = 50 mm, 

the projector distance L is given by 

  

P 50 
a hs = 0.82 x o-an7e = 289 mm
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= 405% 

Comparing this distance with the projector distance of a typical 

high voltage electron microscope which is about 500mm, we can see the 

advantage of using the single-pole lens, in its preferred direction 

of operation, as a final projector lens in the high voltage electron 

microscope. 

We can therefore conclude from the results of the electron- 

optical properties of the two single-pole lenses described in 

sections 5.1 and 5.2 that the exponential field distribution is 

adequate for predicting to a first approximation the focal properties 

of a single-pole magnetic lens once the axial field distribution of 

such a lens is known. It is also encouraging to note that the 

approximation made in calculating the aberration and distortion 

coefficients of the exponential field distribution, namely neglecting 

the infinite slope of the field distribution at Z = 0, does not 

appear to introduce an appreciable error into the calculations of 

lens aberrations. 

5.2.3 Experimental measurement of the focal properties and 
  

aberrations of the high voltage miniature single-pole lens 
  

a) The projector focal length, radial and spiral distortion 
  

In order to check the theoretical calculations of the properties 

of the miniature high voltage single-pole lens, the lens properties 

were determined experimentally on an Intercol Electron Optical bench 

at an accelerating voltage of 10 KV. A series of micrographs was 

taken of the shadow image of an electron microscope grid, formed by 

the miniature high voltage lens in the two modes of operating the 

lens corresponding to different excitation parameters NIV,?. The 

experimental arrangement is shown in figure 5.26, in which the grid 

was at a distance of 34 mm from the source and the distance between 

the grid and the lens was 43 mm. A fluorescent screen was placed
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the focal properties and distortions of the high voltage 
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Figure 5.27 Projector focal’ properties of the high voltage single-pole 

lens. Solid line, calculated from the calculated field 

distribution, I, experimental points measured by Newman at 

30 KV.X, experimental points measured by the present author 

at 10 KV
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above the lens but separated from it by a short brass cylinder. The 

primary aim of the experiment was to measure the distortion of the 

image for the two possible directions of the incident beam, since the 

projector focal length had been previously measured by Newman (1976). 

Newman had already found good agreement between his measured results 

and the projector focal lengths calculated by the present author. 

Figure 5.27 shows the projector focal length re-measured by the 

present author (crosses) and those obtained by Newman, compared with 

the calculated values using the calculated axial field distribution. 

The figure shows good agreement between the three results especially 

near the minimum focal length position. Figures 5.28 and 5.29 show 

a selection of micrographs for the grid image formed by the lens 

(a) with the lens snout facing the screen and (b) with the snout of 

the lens facing the incoming incident electron beam (the preferred 

direction of operating the lens). From the micrographs a considerable 

difference in the image distortions may be seen in the two cases. 

with the lens in the preferred direction of operation, the spiral 

distortion issmall, hardly measurable even with a high lens 

excitation, whereas the distortion is very noticeable with the lens 

in the unfavourable direction. Figure 5.30 shows the measured radial 

and spiral distortion coefficients Cy and Con respectively, measured 

from the micrographs, compared with the calculated values from the 

measured axial field distribution. The curves refer to the first 

zone of operating the lens for the two possible ways of the incident 

electron beam. The measured values of spiral and radial distortion 

are in good agreement with those calculated. In addition to the 

reduction in distortion when using the single-pole lens with its 

snout facing the incoming electron beam, the micrographs in figures 

5.28 and 5.29 show that the favourable direction of the lens permits
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Fig.(5.28) Micrographs formed by the HV single-pole lens : a) snout 

facing the screen, b) snout facing the incoming beam.
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Fig.(5.29) Micrographs formed by the HV single-pole lens : a) snout 
facing the screen, b) snout facing the incoming beam.
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a larger field of view as suggested above. This is shown both by the 

larger number of grid meshes visible and the larger image diameter. 

b) The effect on the focal properties of an iron plate facing 
  

the snout of a single-pole lens 
  

1) The axial field distribution 

Measurement of the focal length of the high voltage single-pole 

lens carried out in the EM6 electron microscope by Juma, (1974) showed 

that the measured focal lengths were shorter than expected both from 

calculations and experiments carried out on the Intercol electron- 

optical bench. For example, the minimum focal length was found to be 

8 mm compared with the calculated value of 10 mm. In trying to 

discover the cause of this discrepancy, it was noticed that in tests 

carried out in the EM6 electron microscope, the lens had been mounted 

directly on top of the iron flange of the viewing chamber of the 

electron microscope with its snout facing the screen. This suggested 

that the iron flange was possibly modifying the lens properties. It 

therefore seemed useful to perform an experiment to investigate the 

effect of an iron plate on the axial field distribution of a single- 

pole lens, and hence on its focal properties. A circular iron plate, 

1 cm thick and 10 cm in diameter, i.e. equal to the outer diameter of 

the high voltage single-pole lens, and provided with a central hole 

of 10 mm diameter, was placed coaxially in front of the high voltage 

miniature single-pole lens, first at a distance of 11.3 mm from the 

snout, and then at 7.8 mm from the snout of the lens. The axial 

flux density distribution corresponding to an excitation NI = 2985 A-t 

was measured for the two cases, by means of a Hall-effect probe 

gaussmeter. The resultant field distributions together with the 

original distribution with no iron plate in place are shown in 

figure 5.31. Curve 1 shows the original distribution in the absence
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distortion coefficients of the high voltage single-pole 

lens as a function of the excitation parameter 
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Figure 5.31 Measured field distribution of the high voltage single-pole 

lens, (1) in the absence of an iron plate, (2) the iron plate 

facing the lens at 11.3 m from the snout, (3) the iron plate 

facing the lens at 7.5 mm from the snout
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of the plate, and curve 2 gives the axial field distribution of the 

single-pole lens with the iron plate at 11.3 mm from the snout. 

Figure 5.31 shows the effect of the iron plate is to cut off the 

axial field distribution at a distance of about 20 mm from the snout 

and to push up the peak field from 3440 Gauss in the original 

distribution to 4770 Gauss, an increase of about 38%. The "half- 

width" of the field distribution however remains approximately the 

same. The prescence of such a plate tends to change the axial field 

distribution, so that it begins to resemble more closely that of a 

conventional double-pole lens. 

Curve 3 in figure 5.31 shows the axial field distribution for 

the iron plate at 7.8 mm from the snout. The shape of the field 

distribution in this case becomes quite similar to that of a double- 

pole lens. The peak value was pushed up to 5340 Gauss, an increase 

of 55% from the original peak value without the iron plate. Here 

the "half-width" of the field is about 15% less than that of the 

distributions 1 and 2. The peak positions of all the three field 

distributions occur at the same axial distance from the snout, namely 

25, mme 

2) The focal properties and aberration coefficients 

The change in the axial flux density distribution by the iron 

plate is accompanied,as one might expect, by a change in the electron- 

optical properties of the lens. Figure 5.32 shows the calculated 

focal properties and chromatic and spherical aberration coefficients 

of the field distribution 2 of figure 5.31, corresponding to a 

separation of 11.3 mm between iron plate and snout, for the preferred 

direction of the incoming electron beam. The minimum focal length 

is 6.4 mm, about 30% less than that in the absence of the iron plate. 

The decrease in focal length is thus mainly caused by the increase
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Figure 5.32 Focal properties and chromatic and spherical aberration 

coefficients of the miniature HV single-pole lens as a 

function of NI/V 3 when an iron plate of diameter 100 m 

and a central hole 10 mm faces the lens at 11.3 mm from 

the snout
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in the value of the peak flux axial density. The objective focal 

length ty j has the same value as the projector focal length _ for 
b 

excitations up to that of minimum focal length nav? = 14). For 

higher excitations the objective focal length decreases slowly and 

steadily as NIV, increases further. The same behaviour occurs for 

the C. values which decrease to about 3.75 mm at the minimum focal 

length position, taking on the value of 0.66 fob; for high excitations. 

The spherical aberration coefficient C. starts with very high values 

at low excitations but decreases rapidly as NIV, increases. The 

change in the value of C. slows down as nv? reaches 10. At the 

minimum focal length position, C_ = 2.7 mm and then it becomes 

a0
 

approximately constant for NIV,” values greater than 15. The ratio 

ci/t is approximately equal to one half. 
obj 

3) Radial and spiral distortion 
  

Radial and spiral distcrtion coefficients were calculated for 

the field distribution of figure 5.31 (curve 2) with the iron plate 

facing the lens at a distance 11.3 mm from the snout. The resultant 

Cc, and Cap values are shown in figure 5.33 as a function of excitation 
a 4 

parameter NI/VoF for the two modes of operating the lens. The value 

of the radial distortion coefficient C, at very low excitation is 
do 

0.0346 compared with 0.0216 for the case when the iron plate is absent, 

i.e. an increase of about 60%. The coefficient Cas for the two 

possible ways of entry of the beam has the same form as that 

described previously for single-pole lenses. For the spiral 

distortion coefficient Con the divergence of the two curves, 

corresponding to the two possible ways of beam entering the lens 

field, decreased as a result of changing the field distribution to a 

shape nearer to that of a conventional double-pole lens, although it 

still showed some asymmetry. we see from the figure the numerical
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value of Con when the iron plate is in place is about three times its 

value in the absence of the iron plate. The distortion factor sp 

of the lens which, as was discussed in Chapter 4, is an important 

parameter in the design of projector lenses, is about 0.91 at 

NI/NI, = 1, for the preferred aieoniien of operating the lens. This 

means that the situation has become worse, from the point of view of 

spiral distortion and projection distance, if we employ such a 

design making use of the effect of an iron plate, even though it 

offers shorter focal length (by about 30%). But for an objective lens, 

we can make use of such a device, since we will get shorter focal 

length; the spherical aberration coefficient will remain about the 

same, but the chromatic aberration coefficient will be reduced in 

proportion to the reduction in objective focal length. 

5-3 Optimum arrangement of the high voltage single-pole 

projector lens 7 

From the results we have discussed in section 5.2, and those in 

Chapter 4 about the important parameters in designing projector 

lenses, we can achieve an optimum arrangement for using the high 

voltage single-pole lens in high energy electron microscope. 

Uc In order to get lower distortion in the final image, the 

lens should be used with its snout facing the incoming 

electron beam, since in that position we get a lower Q 

value and hence lower oF, the factor that determines directly 

the distortion in the final image. Lower 9 values also mean 

shorter projection distances L, which lead to a reduction in 

the length of the viewing chamber. 

26 The field of view is another important parameter in finding 

the optimum arrangement of the high voltage single-pole 

projector lens. Compared with the 2 mm field of view



1) = 

allowed by the bore of the snout when the lens is used with 

its snout facing the viewing screen, the field of view 

increases to 3.5 mm when turning the lens upside down, 

i.e. the snout facing the incoming beam. This value of 

the field of view is limited only by the back bore of the 

lens. 

An improvement of the lens to get bigger image size at shorter 

projection distance, and to increase the field of view at the same 

time, was made by re-boring the lens in a conical shape with semi- 

angle an°, The tip of the conical bore is located at the focal point 

of the lens. For a lens excitation corresponding to the minimum focal 

length, that is 0.5 mm inside the bore of the snout. The diameter of 

the back bore of the lens, in this case, becomes 23 mm. This means 

at maximum magnification of the lens, for a beam filling the cone of 

the lens, the field of view at the principal plane of the lens 

increases to 8.1 mm. At the same time the size of the image 105 mm 

and is located at a distance 100 mm from the back face of the lens. 

The radial distortion of this image will be 3.2%, and the spiral 

distortion 12.8%, which are remarkably low values of distortion 

considering the projection distance and the image size. However, we 

can remove the radial distortion by operating the lens at an excitation 

NI? Slightly higher than the maximum magnification value. The spiral 

distortion in this case (about 12%) can be eliminated by using an 

intermediate lens of the same type (single-pole lens as a 

correcting lens for the spiral distortion, in an arrangement such 

as described in Chapter 6. Figure 5.34 shows an enlarged cross- 

section of the original inside bore of the lens. Line 1 on the 

diagram shows the maximum field of view obtainable with the original 

bore of the lens. Line 2 shows the new field of view after re- 

boring the back of the lens through an angle of Zo.
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6. CORRECTION OF ANISOTROPIC (SPIRAL) DISTORTION 

IN THE ELECTRCN MICROSCOPE 

6.1 The use of an intermediate lens in a system for correcting 

distortion 

An intermediate lens placed before the final projector lens in 

the electron microscope has the advantage of increasing the total 

magnification and the number of modes of aarti ou of the instrument. 

Such an intermediate lens contributes an amount of spiral distortion 

to the final image that is inversely proportional to the square of 

the image magnification provided by the intermediate lens. This 

distortion can either add to or subtract from the distortion caused 

by the final projector lens, depending on the direction of the current 

in the two projector lenses. At first sight, the possibility of 

correcting the spiral distortion of the final projector lens seems 

straightforward; one simply reverses the current in the preceding 

intermediate lens. However, with conventional lenses the magnification 

of the intermediate lenses would have to be very close to unity in 

order to get an effective correction. The two projector lenses must 

therefore be set very close to each other, if not impossible to 

arrange, which is very difficult in practice, especially with 

conventional lenses (see Appendix 6). 

However, the investigation of the properties of the single-pole 

lens has made it clear that this kind of lens has two modes of 

eperation (Appendix 2). when the incident beam enters the lens in 

the direction in which the magnetic field is rising slowly, the 

spiral distortion is much lower than for a beam entering in the 

opposite direction. This suggests the possibility of correcting 

spiral distortion by using two single-pole lenses with their snouts
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facing each other, as a projector system for the electron microscope. 

However, for the purpose of understanding the behaviour of a two-lens 

correcting system, it is more convenient to consider the case of two 

square-topped field distributions, which cen be treated analytically. 

6.2 The square-topped field distribution and the correction 

of spiral distortion 

    

Fluorescent 

screen 

1 | 

Incoming beam on 
: x 

Lens axis \ { 

| oo : C 

— | 
| 

| | 
| 

-——--- Na 

(1) (2) * 

Figure (6.1). Two Square-top fields arranged for the correction of 

spiral distortion. 

Consider two rectangular field distributions 1 and 2, each of 

axial extent S separated from each other by a distance 1, as shown 

in figure 6.1. The directions of the two magnetic field distributions 

are opposite to each other. It is also preferred to operate the 

second lens at an excitation parameter nv? in the region of 

minimum focal length and hence at maximum magnification. Thus the 

second lens has an excitation parameter NI/v,? = 8.43 corresponding 

to (KS), = g (the first focal zone). For simplicity of analysis, 

the excitation of the correcting lens will be taken as
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(KS), = n ry where n= le Se 5's De ee ee 

Applying equation 2.31 to the first field distribution gives 

  Ba) eo 
i 4 é 16 §* eeensee 6.1 

BM8 tg since Ky = 35 es'snew Ose 

The magnification of the first lens:at the second lens is given by 

M = ee eoeoenen 6.3 

where fo ia c is the projector focal length of the first lens. 
A 

Hence M, = Fi — coe 

The contribution to the spiral distortion coefficient of the second 

lens is given by applying equation 2.36 where U = 1. 

= De ee 3 
Thus D (2) = Qe ee a, Ts e@eveen 6. SP, oe eA eee 5 

Now, to correct the spiral distortion in the image the spiral 

distortion produced by each lens at the image must cancel exactly 

dee. D(VAG = By, (2) ni Bb 

coccee 6.8 

or k(n - 1) es — 2 (2) = 0
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Equation 6.8 is a general expression giving the separation 1 between 

two square-top field lenses in terms of the width of the lens, when 

  

using the second lens at constant excitation K, = 3g - This is a 

quadratic equation, the solution of which is; 

S _ 2-V4i 6 4) 6.9 
ac &(n oy 41) ee@eeed ° 

From 6.9, we get two values for S one of which, when using the 

negative sign, is imaginary. So, the true solution will be 

  

2 a/b + 16 (2 1) 7° 
8(n = 1) 
  

hI
tm
 

1 44 ote (a eo te 6.10 
- k(n ae 4) eeenee se 
  

Examples for the use of equation 6.10 

1. To take a simple example, if the lenses have the same 

excitation, n = 1 and S/l is infinite, i.e. 1 = 0. Thus to 

correct spiral distortion, the two lenses must be placed in 

contact, so that the total magnification of the system is 1. 

This is clearly of no practical use in electron microscopy 

although it is a useful check on Equation 6.10. 

as MoS > 

Tw 8n* 
Lae oe 

or 1 = 0.8045 § 

The projector focal length of the system in this case is 

a = 0.169 S
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De nbe n=5,7T= 1G 

i= 4.176.8 
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Thus, the separation 1 between the two lenses 1 and 2 fora 

distortion-free image under these circumstances is comparatively 

small, even when a very high excitation is employed for the 

correcting lens. This indicates again the practical difficulty of 

using a spiral distortion correcting system with conventional 

double-pole lenses. Figure 6.2 shows the variation of the 

: : ab : c 
separation distance + as a function of the correcting lens 

Ss 

excitation parameter KAS, when the corrected lens 2 is kept at 

constant excitation K5S = z 

6.3 Design and construction of a correcting system for spiral 

distortion using two single-pole projector lenses 
  

The approach to a distortion-free projector system requires the 

use of an intermediate lens with a high spiral distortion coefficient 

compared with that of the final projector lens. This case is very 

difficult to achieve using the conventional double-pole lenses, since 

all have approximately the same value of Q = Dea f (Appendix 6). 

The use of single-polepiece magnetic electron lenses shows that in 

one mode of operating the lens we can reduce the spiral distortion 

coefficient by a factor of 3 compared with that using the lens the 

other way round, in the vicinity of the minimum focal length 

position (Marai and Mulvey, 1975). The corresponding values of 

a 
Qs Den fo differ approximately by a factor of 2 (Appendix 6). This 

suggests that the use of two single-pole magnetic electron lenses
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Figure 6.2 The separation distance 1 as a function of the correcting 
lens excitation parameter iS for a square-top field spiral 

distortion correction arrangement
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facing each other with suitable separation between them would be the 

most likely system for correcting the spiral distortion. 

"The investigation of the characteristics of miniature high 

voltage single-pole projector lenses (Chapter 5) shows that the lens 

is very close to the optimum design when using it with the snout 

facing the incident electron beam. This suggests the use of this 

type of lens as the final projector lens in the spiral distortion 

correcting system. The correcting intermediate lens on the other- 

hand is required to have a large bore to allow a larger field of 

view. This also allows an axial tube to contain the vacuum, so it is 

possible to adjust the position of the intermediate lens and its 

mm B ; 
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Figure (6.3). Cross-section of the miniature 100 kV double snorkel 

lens. Scale: full-size. 

separation from the final projector lens. We found that a lens such 

as the 8 mm bore single-role projector lens, designed by Juma, 1975, 

for the 1CO KV EM6 electron microscope rotation free projector 

system, and shown in figure 6.3, could be used for this purpose.
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Figure 6.4. Radial and spiral distortion coefficients of the 

&@ mm bore single-pole lens as a function of excitation 

parameter NI/V,?, for the two modes of operation.
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Figure 6.4 shows the radial and spiral distortion coefficients of 

this lens. 

An experimental arrangement for the correcting system was 

designed for use on the 30 KV 'Intercol' electron optical bench, as 

shown in figure 6.5. A brass disc of radius 5 cm fits onto the 

existing specimen stage and the electron beam is allowed to go through 

a central brass tube, one end of which is secured to the centre of 

the brass disc. The inside diameter of the tube is 5 mm, and the 

outside one is a sliding fit in the correcting lens. A second brass 

disc,1.2 cm thickness, is placed on the upper part of the tube, resting 

on three pillars fixed symmetrically around the centre of the lower 

brass disc at a diameter that allowed the correcting lens to move 

freely along the vertical axis of the system. The distance between 

the lower and the upper discs is 11 cm and the width of the 

correcting lens is 3.8 cm. This allows a maximum separation of 7.2 

cm between the correcting lens and the upper disc. On the top of the 

upper disc a brass ring, thickness 1.2 cm and a 2.5 cm inner diameter, 

was placed to maximise the field of view to the upper projector lens. 

The projector lens, whose spiral distortion is to be corrected, was 

placed on top of the brass ring with its snout facing the correcting | 

lens. A further brass ring of inner diameter 6 cm and width 2.5 cm 

was placed on top of the iron base of the projector lens. The 

separation between the fluorescent screen and the face of the snout 

of the projector lens was 5.6 cm. Four adjusting screws were 

provided for the alignment of the projector lens. The correcting 

lens could be positioned at a known distance from the projector 

lens.
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Figure 6.5 Correcting system for spiral distortion mounted on the 

30 KV Intercol electron-optical bench
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6.4 Experimental test of the correcting system using the 

30 KV Intercol electron-optical bench 

The spiral distortion correcting system described in section 6.4 

was tested using the 30 KV Intercol electron-optical bench. Although 

the experimental arrangement was not ideal, for reasons to be mentioned 

later, it was sufficient to show that the correction of the spiral 

distortion of a projector is possible. Figure 6.6 shows a general 

view of the system under working conditions. The procedure was as 

follows: 

1. The excitation of the projector lens was excited for minimum 

focal length W/V," = 15.5) in order to minimise the radial 

distortion of the lens. The accelerating voltage was set at 

10 KV for all experiments. The spiral distortion of the 

lens in this case is expected to be 12% at the edge of the 

field of view, which is limited by the back bore of the 

lens (see Chapter 5). 

2. With the current in the correcting lens opposite to that in 

the projector lens, the correcting lens was gradually 

excited starting from a very low current up to an 

excitation parameter NI? = 36. A series of photographs 

was taken of the image on the screen. The results will be 

discussed in the next section. 

De The current in the projector lens was then reversed and the 

same value of NI/v_? as before. The correcting lens was 

once more excited from a low value and up to nv? = 50s 

This case will give the distortion on the screen due to the 

sum of the distortion produced by each lens. A series of 

photographs was taken for comparison with the results obtained 

with the current in opposition.



  
Fig. (6.6) The Intercol electron-optical bench with the spiral 

distortion correcting projector system.
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4, A further experiment was made in which the current in the 

correcting lens was fixed and was opposite to that in the 

projector lens, but the separation of the lenses was varied, 

in order to find the best value for the separation. 

All the experiments were made with a G 150 grid (bar thickness 60 pm, 

and pitch 100 ym). 

The grid was located at a distance of 34 mm from the source, which 

was about 50 pm in diameter. 

The difficulty in the experiment was: the source size (50 pm 

set a limit of 50 ym) to the sharpness of the image and it made it 

impossible to benefit from the use of grids of finer mesh. 

6.5 Results and discussions of the spiral distortion 

correction experiment 

In order to choose the best separation between correcting lens 

and projector lens for the correction of distortion, some preliminary 

calculations were carried out. The results suggest the optimum 

separation to be of the order of twice the minimum focal length of 

the correcting lens, since the ratio between the two coefficients, 

Den(c)/Psp(p) when we use the lens in the way described in section 

6.4, is 3.26. Since the minimum focal length of the correcting lens 

is 7 mm, the required distance should be 12.6 mm; this is not easy 

to realise in practice, since the fields of the two magnetic lenses 

will cancel each other. Inspection of the two field distributions 

in question (figures 5.9 and 6.7) indicates that the minimum distance 

between the peak fields in the two lenses is 60 mm to avoid 

appreciable interaction. In order to make use of this separation, 

we must use the correcting lens at an excitation higher than that 

for minimum focal length, in order to make the distortion coefficient
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distribution
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of the correcting lens sufficiently high. The correcting lens must, 

in fact, be used in the second zone of operation in a region where the 

focal length is longer than the minimum value. This will make the 

correcting ratio factor p/ve larger and hence improve the possibility 

for caprenkion 

Figures 6.8, 6.9 and 6.10 show a series of images for: 

(a) the current in the correcting lens opposite to that in the 

projector lens and (b) the current in both lenses in the same 

direction. The magnification between the prints and the screen is 1. 

All the results were obtained with the projector lens excitation 

fixed at NIV? = 15.5. In figure 6.8 the excitation parameter of the 

correcting lens was O, 12 and 14 respectively. ‘when the current is 

zero in the correcting lens, we get an image formed by the projector 

lens only at its maximum magnification. The spiral distortion 

measured in this case is 7.2%. This is because at the principal 

plane of the lens, the maximum height of the electron beam is only 

3 mm, due to the limitation of the inside diameter (5 mm) of the vacuum 

tube. This explains why the size of the image on the screen in this 

case is only 41 mm in diameter, while the maximum diameter, as limited 

by the conical back bore of the lens, is 52.2 mm. This is clear from 

the second photograph in figure 6.8 in which the correcting lens was 

excited at nv? = 12, enlarging the field of view of the projector 

lens, so we see the maximum size of the image mentioned above. ¢ 

Figures 6.8a and 6.8b show no great difference in spiral distortion, 

since the correcting lens is operating in the first zone, so it makes 

only a small contribution to the final image distortion. 

As the excitation of the correcting lens moves from the first 

zone into the second zone, one can observe without too much difficulty 

the effect of the correcting lens itself on the spiral distortion 

coefficient of the projector lens. Figure 6.9 shows three exposures
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Fig. (6.8) Micrographs of a grid image formed by the correcting system 

of spiral distortion, a) the currents in the two lenses are 

in opposition, b) the currents are in the same direction.



     
* Correcting lens excitation NI/V* = 18 
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Fig. (6.9) Micrographs of a grid image formed by the correcting system 

of spiral distortion, a) the currents in the two lenses are 

in opposition, b) the currents are in the same direction.
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corresponding to excitation parameters NIV? = 18, 20 and 22 

respectively, (a) when the current in the correcting lens is opposite 

to that in the projector lens, and (b) when the current in the two 

lenses is in the same direction. In group (a) of the photographs, it 

is clear that the spiral distortion is largely corrected, while in 

group (b), where distortion of the two lenses is additive, seaeeabas 

Spiral distortion is appreciable. It can be seen that the meni fication 

in the two sets of pies 6.9a and 6.9b are different, even though 

they correspond to the same excitation parameter KI/V,2. The reason 

for this lies in the fact that the principal plane of the correcting 

lens is located at different positions in the two cases, although the 

focal length is the same. 7 

Figure 6.10 shows similar behaviour to that in figure 6.9. The 

exposures in this figure correspond to excitation parameters 

NIv,2 = 24, 26 and 30 respectively. From figures 6.9 and 6.10, it is 

clear that the correction oP the spiral distortion takes place over a 

wide range of excitation of the correcting tang and hence a wide 

range of magnification of the system. That means we can achieve both 

higher magnification and lower distortion with this system. It is 

noticeable also from the figures that the radial distortion in the 

region of low spiral distortion is also very low, because of the 

choice of projector lens excitation which minimises radial distortion. 

Figures 6.11.1 and 6.11.2 i another two cases of correction for 

spiral distortion when the currents in the two lenses oppose each 

other. The two cases correspond to excitation parameters of the 

correcting lens NIV? = 32 and 34 respectively. It is true that some 

radial distortion is visible, but spiral distortion is clearly 

corrected. For an excitation NI? of the correcting lens greater 

than 34, the spiral distortion appears to be reversed in sign, but
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Fig.(6.10) Micrographs of a grid image formed by the correcting system 
of spiral distortion, a) the currents in the two lenses are 
in opposition, b) the currents are.in the same direction.



  

34 ni/v: = 32 Commeosing lens excitation Nr/ve 

Big. (6, 11) Micrographs of a grid image formed by the correcting system 
of spiral distortion, currents are in opposition.
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unfortunately we could not take a satisfactory photograph, because the 

image was very small and the barrel distortion was very large. 

The above results, although of a preliminary character, are 

sufficient to indicate the feasibility of correcting spiral distortion 

in the electron microscope by using a similar projector system to that 

described. The study of the different lenses available indicates that 

the use of two single-pole lenses is the most favourable choice for 

the correction process. A full-scale trial on an electron microscope 

is now required to daentetha tes best arrangement. 

However, the arrangement we used in this experiment, namely the 

placing of the correcting lens before the lens to be corrected, seems 

to be much better than that suggested by Hillier (1945) for the 

correction of radial distortion, in which the correcting lens is placed 

at the focal point of the lens to be corrected, which is excited by the 

same number of ampere-turns. As well as the loss of refracting power 

in this method, the spiral distortion cannot be reduced by more than 5% 

as we can see by applying this method to the rectangular field 

distribution. 

Another important thing in this experiment is the short projector 

distance used with this system. By a similar arrangement in the TEM 

we should be able to obtain an image size 12 cm in diameter at a 

projection distance about15 cm from the snout of the projector lens or 

12 cm from the back face of the lens near to the screen. This is of 

great importance, especially for the high voltage electron microscope 

in which this distance is at present about 50 cm. This would mean a 

five-fold reduction in the length of the viewing chamber.
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7. CONCLUSION 

The calculations contained in this thesis for conventional double- 

pole lenses show that there is no optimum design for projector lenses. 

Moreover, the analysis made for the square-top field distribution explains 

why it is difficult to use such lenses, in a system for correcting the 

spiral distortion of the final image in electron microscope. 

For iron-free coils which are related to superconducting lenses, 

similar calculations show that there is no optimum shape of the coil when 

used as a projector even though an optimum design exists for such lenses 

as objectives. On the other hand, the calculations and experiments 

indicate that single-polepiece lenses have unique advantages as projector 

lenses, The present investigation has shown that it is possible to provide 

a theoretical basis for understanding such lenses. Both calculations and 

experiments show that single-pole lenses can be used with advantage either 

as projectors or objectives. They can even be used as condenser-objective 

lenses as described by Riecke and Ruska in 1966. 

The calculations indicate that the properties of single-pole lenses 

can be predicted to a first approximation, making use of the properties of 

the mathematical exponential field distribution studied extensively in 

this thesis. 

As a result, the correction of spiral distortion in the electron 

microscope now appears feasible with an arrangement of the final projector 

stage in which two single-pole lenses face each other. The experiments 

carried out on the Intercol electron optical bench, showed clearly the 

feasibility of correcting spiral distortion of the final projector lens, 

but has not answered all the relevant questions, since the results were 

limited by the time and facilities available. A full-scale experiment in 

the electron microscope itself is, therefore, needed for the determination 

of the optimum arrangement for correcting spiral distortion. 
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SLECTRON OPTICAL CHARACTERISTICS OF SINGLS-POLS MAGNETIC LENS&S 

F.Z. Marai and T. Mulvey 

Department of Physics, The University of Aston 
in Birmingham B4 75ST (UK) 

Singlespole magnetic.lenses may be employed advantageously both as 
objectives~or projectorsdin the electron microscope. The advantages of 
such lenses arise from their essentially different axial flux density 
distribution from those of normal twin-polepiece lenses. For this rea- 
son their electron-optical properties cannot be predicted from the data 
of conventional lenses, the focal properties of single-pole lenses being 
more closely related to those of partially shrouded helical coils» As 
an illustration, consider the simple l00kV objective lens of this type 
shown in Figure l(a), in which a flat, helical winding of mean diameter 
37.5mm is placed inside a short iron cylinder closed off at one end by 
an iron plate, in which an axial hole of 5mm diameter allows passage of 
the illuminating beam and manipulatign of the specimen placed in close 
proximity to the surface of the iron. Under these conditions a lens 
excitation of 4,300A-t is required at 100kV to form an image of the spe- 
cimen at high magnification. The corresponding axial flux density dis- 
tribution is shown in Figure 1(b). The full line shows the axial flux 
density distribution as measured by a Hall-effect probe on a twice-full 
size model of the lens. The chain-dotted line shows the flux density 
distribution calculated from the Biot-Savart Law, assuming that the iron 
screen consists of a plane sheet of infinite permeability. The validity 
of this assumption has been established by experiments which show that 
the presence of the iron cylinder has a negligible effect on the axial 
flux density distribution. A close inspection of the measured and cal- 
culated field distribution shows that the measured flux density in the 
region of the specimen is higher than that calculated,in spite of the 
effect of the hole; moreover the peak has been pushed forward into the 
lens. These effects can be ascribed entirely to the effect of the iron 
‘snout' or single polepiece, 20mm in diameter, which protrudes lmm into 
the lens. If the polepiece were of a smaller diameter the peak axial 
flux density would increase appreciably. A similar result would occur 
if the hole were made smaller. In Figure 1(b) the crosses indicate a 
flux density distribution that falls off exponentially with axial dis- 
tance z according to the Law B(z) = exn(-az) where a is a constant, 
This suggests that the little-known exponential field model night be 
useful in calculating the properties of single-pole lenses. The focal 
properties of the lens in Figure 1(a) were therefore calculated using 
both the measured and the calculated field distributions. The results, 
which were approximately the same for either distribution are shown in 
Figure 2. The focal properties differ from those of conventional lenses, 
For example, the minimum objective and projector focal lengths are the 
same, namely 10mm and occur at z=0, corresponding to an excitation para- 
meter NI/V% of 13, where NI is the ampere-turns and V,athe relativis- 
tically corrected accelerating voltage. For greater excitations the ob- 
jective focal length is constant. This also applies to the chromatic 
aberration coefficient C,=6mm and the spherical aberration coefficient 
C,=%mm, remarkably low values considering that the peak flux density is 
only 0.16 Tesla (1,600 gauss). Glaser in his brief treatmentVof the ex- 
ponential field calculated the minimum objective focal length and chro- 
matic aberration but did not derive the general focal properties or the 
spherical aberration coefficient. This can be done most conveniently by 

numerical methods using a digital computer. The resulting focal proper- 
ties are shown in Figure 3. It is convenient to express the axial field 
distribution as B(z)=Bmax @xp -[(In2)/d] z where d is the axial distance from 
the position of the maximum Bnhay to where the field has fallen to half 
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this value, Figure 3 shows the objective focal length fop,, the projec- 
tor focal length fp;and the objective focal distance Z.,.ab a function of 
the excitation parameter NI/V2, The curves show a rematkable similarity 
to those of Figure 2, In particular, in the first zone, the minimum 
projector focal length equals 1.156d and occurs at an excitation para~ 
meter NI/V4=13. As a check on the accuracy of the computer program, the 
value of C.ywas calculated numerically. The result, C.=0.722d is in good 
agreement with the analytical solution, ©, =0.721d. Thus C./f = 0.632, 
Numerical calculation of Csby Scherzer's formula gave C,=0.363d, i.e. 
G/f =0.315, an acceptably low value. Improved lens performance can be 
obtained in practice by replacing the short flat polepiece by a short 
cone of large anex angle. If the peak axial flux density and half-width 
can be measured experimentally, the exponential-field model can be used 
to provide a useful first approximation to the focal properties. 
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ELECTRON-OPTICAL CHARACTERISTICS OF SINGLE-POLE AND RELATED MAGNETIC ELECTRON LENSES 

F.2. Marai and T.Mulvey 

Department of Physics, The University of Aston in Birmingham, B47ET, England. 

In a single-pole magnetic lens the axial magnetic field is strongly concentrated by 
a single polepiece, rather than by two closely spaced polepieces. Such lenses, 
especially when used in conjunction with miniaturized coil windings,can be used to 
advantage in electron microscopes (Juma and Mulvey,1975). These lenses can produce 
high axial field strengths and small “half-widths" of the field distribution result- 
ing in lower aberrations than those of conventional lenses. In order to make a 
general appraisal of the electron-optical properties of such lenses,it has been found 
convenient to make use of the exponential field model (Glaser,1952). A brief treat- 
ment of the paraxial properties of this model has already been given (Marai and Mulvey 
1974). Were the treatment is extended to include chromatic and spherical aberration 
and to point out the advantages that may be gained in electron microscopy by 
exploiting the asymmetry of the field distribution. Figure _1 shows the exponential 
axial field distribution which is of the form BB, exp -(in 2/a) z where d is the 

"half-width" of the field distribution and B_ is“the maximum value of the axial field. 
Two electron trajectories are shown. Trajectory 1 is for an excitation parameter 
NI/V =13 which is just sufficient to cause the electron to cross the axis within the 
field. Figure 2 shows the focal properties, chromatic aberration coefficient Wa and 
spherical aberration coefficient C_ in terms of the half width d as a function Of the 
excitation parameter NI/V,3, for rays entering the field in i way shown in Figure l, 
namely trom the side of positive z values. For values ni/v_4t > 13, the focal 
properties, with the exception of the focal distance Z Oo not vary with obj‘ 
CXC CUE Lea «5 

Projector Lenses. because Of the asymmetry of the field distribution, the focal 
properties and aberrations differ 1f the electron beam enters from the side of 
negative 4 Values, igure 3 shows the radial (D_) and the spiral (D_) distortion 

coctficients, as defined for example in Hawkes (1972), for the two di¥éctions of 

entry of a parallel electron beam into the lens. These coefficients are closely 

related to the corresponding coefficients for conventional polepiece lenses. The 
Curves of Figure 3 show that the most favourable arrangement for low distortion is 
for the electron beam to enter the field as shown in Figure 1. These principles are 

relevant to the design of single-pole projector lenses which can have appreciably — 

lower distortion coefficients than those of the best double-polepiece lenses. 

Single-pole condenser-objective. Figure 4 shows the telescopic ray path through an 

exponential field. This occurs when NI/v, 4 = 20.6. By placing a specimen at a 

distance Z = O.7d along the axis a strong pre-field is created followed by an imaging 

field of low aberrations in a similar manner to that achieved by the condenser- 

objective of Riecke and Ruska. There are two possible directions for the illuminat- 

ing beam, the preferred direction being determined by the operational requirements of 

a particular microscope. Tests are now proceeding to evaluate the application of 

single-polepiece lenses in both STEM and TEM. 
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SCHERZER'S FORMULA AND THE CORRECTION OF SPIRAL DISTORTION IN THE 
ELECTRON MICROSCOPE 

by F. Z. Marai and T. Mulvey 

Department of Physics, The University of Aston in Birmingham, B4 7ET, U.K. 

INTRODUCTION 

There are few people working away at the improvement of the 

electron microscope who have not benefited greatly from the insight 

into electron optics provided by the writings and the spoken 

contributions at conferences of OTTO SCHERZER, starting with the 

"Geometrische Elektronenoptik" of Brilche & Scherzer and continued 

over the years with remarkable schemes and suggestions for correcting 

spherical and chromatic aberrations, schemes which are only now 

becoming fully technologically feasible. 

For those who are working to perfect and improve the conventional 

electron microscope, Scherzer's "formulae" have always been of great 

value. In spite of the great technical progress that has been made 

in electron-optical instrumentation, these formulae always appear to 

be up-to-date, even those that were written forty years ago. This 

probably comes about because the author always worked from first 

principles and seemed to go to a lot of trouble to eliminate 

superfluous mathematical terms that were not really essential to the 

description of the physics of the process. Thus in the calculation 

of the spherical aberration coefficient Cas he was able to eliminate 

the second differential coefficient of the variation of the magnetic 

field along the axis, thereby avoiding a great deal of difficulty in 

measuring or otherwise determining this awkward quantity. Furthermore, 

in proving conclusively that the spherical aberration coefficient of 

round lenses could unfortunately nevery be made to vanish he was 

characteristically not content to remain in a state of disappointment
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but immediately set about suggesting ways round the problem. 

As a lighthearted but nevertheless very sincere tribute to Otto 

Scherzer in this "Festschrift", we would like to describe a recent 

application in our laboratory of one of his possibly less well-known 

calculations to a current problem, namely, that of correcting the 

anisotropic (spiral) distortion in the electron microscope. The 

relevant calculation of the coefficient D, of anisotropic distortion 

in electric and magnetic lenses was carried out and published by 

Scherzer forty years ago (Scherzer 1937) but until recently has not 

received a great deal of attention by electron microscope designers. 

For combined magnetic and electric fields the coefficient may be 

written in standard notation as follows: 

2 3/2 ee 

D (2) BYV oar LY a 
ep 16\ mo a te, wv = 
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2 tt 

where K = = Be + 9 = + a » e/m is the ratio of charge to 

mass, V is the accelerating potential along the z axis, B is the 

flux density distribution along the z axis, and Y is a paraxial ray 

of height Y = 1 and slope y' = 0, at 2=--. Dashes indicate 

differentiation with respect to z. 

The importance of this calculation arises from the fact that 

spiral distortion is present to some extent in all electron 

micrographs taken so far in instruments with magnetic lenses, the 

well-known shape of this distortion being shown in Figure 1. If p 

is the radius of a point in the image, the distortionAp/p is given by
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where r is the height of the incident electron in the projector lens. 

In the absence of a seeten for correcting the spiral distortion, r 

must be reduced until the spiral distortion falls to an acceptably 

low level. The chief source of this distortion is usually the final 

projector lens where the height of the ray r is large. Figure 2 shows 

schematically the arrangement of the final projection stage of an 

electron microscope. The projector lens shown in the figure is a low- 

distortion 'single-polepiece' projector lens (marai and Mulvey 1975) 

but otherwise the arrangement is conventional. The radial height r 

(Figure 3) is given by 

oS pt /t eovecvece (3) 

where r is the projector focal length and L is the "projection 

distance" between projector lens and viewing screen of photographic 

plate. In practice, with conventional lenses L may have to be as 

large as 50 centimetres simply to minimise spiral distortion. At 

first sight, it might seem easy to correct this distortion by 

reversing the lens current in the preceding intermediate projector 

lens. This is usually ineffective with conventional lenses as the 

ray height r in the preceding lens is usually much less than that in 

the final projector. 

The advent of miniature lenses (Newman and Mulvey 1972) has 

changed this situation since it is now feasible to place lenses 

quite close to each other so that the height of the electrons in 

each lens is comparable in magnitude. Moreover "single-polepiece" 

projector lenses (Marai and Mulvey 1974) as shown schematically in 

Figure 2 have made it possible to make significant reductions in
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the value of the spiral distortion coefficient. 

It would therefore seem feasible to consider the possibility of 

correcting spiral distortion by a judicious arrangement of the last 

two projector lenses. Such a development could lead to a significant 

reduction in the height and therefore cost of an electron microscope 

column, especially that of a high voltage electron microscope. A 

shorter electron optical column would also be much less sensitive to 

the effects of external mechanical vibrations and AC magnetic fields. 

The correction of spiral distortion 
  

An extensive literature is available on the correction of radial 

distortion which has now been virtually eliminated from electron 

microscopes. In particular, radial distortion in the final projector 

lens can be eliminated by the judicious choice of lens excitation 

(Liebmann 1952). 

Very little has been published about the correction of spiral 

distortion from either a theoretical or experimental point of view. 

As Scherzer has often pointed out, without a theoretical model to 

act as a guide, a purely experimental approach to the correction of 

aberrations can often be time-consuming and frustrating. It would, 

therefore, be very useful if a model field distribution of a lens 

could be used to simulate the situation of two projector lenses each 

suffering focn spiral distortion, but of opposite sign, brought about 

by lens excitations of opposite sign. It would, of course, be 

possible to make use of the Staner bell-shaped field for this purpose, 

but problems arise since this field distribution extends to anftinity, 

so that as the two field distributions of the opposite sign approach 

each other, severe cancellation of the field takes place. The 

magnetic field distributions from real lenses are much narrower so 

that it would be difficult to correlate experimental and theoretical
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results. In the rectangular-field model, the axial magnetic field is 

constant over an axial region of length S and zero everywhere else 

along the axis. 

The paraxial properties of this model have been studied 

extensively by Durandeau and Fert (1957) and would appear to be very 

convenient for the investigation of spiral distortion. However, this 

model is often considered unsuitable for the calculation of 

aberrations, since the field derivative = takes on infinite values 

at the beginning and the end of the field. Fortunately, an 

inspection of Scherzer's equation 1, shows that in a projector lens, 

where the integration extends from z = - oto z= + , no such 

difficulties should, in fact, arise in the calculation of the spiral 

distortion coefficient. Applying equation 1 therefore to the square- 

topped magnetic field distribution in which 8. = B = Constant for 

SoZ © and zero for all other values of Z, one obtains in the absence 

of electric fields: 

2 \a/2 wig ee oo, fae 2 1 / aB 42 
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where ue is the relativistically corrected accelerating voltage. 

In the rectangular field model the paraxial ray Y, for which Xo =a 

Y 
and Y = 0 at z= - «, has the simple form 

/ep= \2 
Y= cos er) Z eee 

Be eBe ; and aoe Gav, 5) sin (2 ony # Z @ cleisiaicie oe Ge) 

Inserting Equation (5) in Equation (4) one obtains for the 

coefficient of spiral distortion:
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Since BS = H,NI, where NI is the lens excitation and 

A, = 4 mx 10° henry-m™", equation 6 may be written: 

ae/? \ x 2 24 
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Remembering that the angle or rotation 9 of the image for this model 

field is given by: 

24 
=) NI ) (3 ) 

= J = 0.1863 eeseneves (8) fe) (Hh) 280) 
Equation (7) can be written in the simpler form: 

ag of 
i =3- +p sin 29 e@eeveee (9) 

In order to use equation (9) as the basis of a universal curve, let 

Den denote the value of Dep at an angle of rotation ca corresponding 
° 

to the minimum focal length of the lens. 

D 9 
Then s+ — 1.1086 (5) e 0.1365 (-) sin 4.06 é) eoeeece (10) 

sp ° \ 70 
° 

10.9 for this field model (cf.Mulvey and Wallington 1973) 
NI 

Since = 

v, 

3 D 
on NI NI Do = 1.1086 (x) + 0.1365 (Est 4.06 / = | xeokee’s (10N 

Equations (9) and (10) indicate that the spiral distortion is closely 

related to the cube of the image rotation angle 9, and therefore to 

the cube of the excitation. However, there is an additional 

oscillatory term of smaller, but not negligible magnitude.
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D 
Nevertheless the approximation sr -) which neglects this term, 

sp ° 
° 

is remarkably accurate for conventional polepiece lenses, as shown 

in Figure 4. The points in this figure, calculated from Equation 

(10a), indicate that the error involved in this approximation is 

about 10% for an excitation NI/NI, = 0.77, falling to 2% at 

NI/NI, = 1.25. Included in the graph are representative values 

taken from calculations by Liebmann (1952) for a range of lenses 

with S/D values between 0.2 and 2. These points also lie close to 

the corresponding values calculated from Equation (10a). In order 

to calculate the actual value of Dep or the related constant 

Cs DR (Liebmann 1942) where R is the radius of the lens bore, 
sp 

Table 1 gives the values of C =D al and NI /V 3 obtained in 
SP, SP, Onr 

recent calculations by the authors. These extend the data previously 

published by Liebmann (1952). The agreement with the brand of 

Liebmann's data is good but our calculations are, in general, some 

4% lower than those obtained by Liebmann. 

  

  

  

TABLE 1 

8/D 0.1 0.2 0.6 1 2 4 8 

2 
sp, = be 9.957 F 1.07 7 1.51 £0.76 | 0.25°% 0.067 2014 

NI/V,2 NA te ATS. 1860. 11315: 1.92.5 2E48s0 11.0                     

Experimental measurements (unpublished) with projector lenses have 

shown that this oscillatory character of the spiral distortion 

coefficient shown in Equation (10a) is indeed present in actual 

lenses, although it is often smoothed out in published calculations
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(cf. Liebman 1952). The above results therefore give some confidence 

in the application of the Scherzer formula to the rectangular-field 

model. 

Distortion in the electron microscope 
  

Table 1 above shows that the spiral distortion coefficients of 

magnetic lenses vary by two orders of magnitude, yet it is known that 

all these lenses produce a similar amount of distortion for a given 

image size and projector length L. It is not always realized that 

the spiral distortion in the final image of the electron microscope 

is not directly related to the distortion coefficient Dan Consider 

the arrangement shown in Figure 3. An incoming ray of height r is 

magnified by an amount i/f,, giving an image radius p on the final 

screen. Here x is the projector focal length and L the “projection 

distance, The distortion4p /Pp produced by the lens is given by 

Ap /p= DepF* Thus if the distortion is not to exceed a given amount 

Ap , the projection distance L must satisfy the inequality 

4 

a > ID, 10 (ey. eeeeeeee (11) 

\P 

ae 

= Q “ty eeoereeoee (12) 

\e 

where Q = Dif is the essential parameter of lens quality that 

determines the minimum length L. A low Q value therefore indicates 

a projector lens of good quality. 9 is close to unity for twin- 

polepiece lenses. Taking p = 50mm and spiral distortion less than 

at (Ap/ p= .02), L must be greater than 354mm. A further condition 

must also be satisfied in a practical situation. Ina real 

projector lens there will be a limiting aperture of radius R as 

shown in Figure 3. In a conventional lens this will usually be the 

lens bore. In order that this aperture should not limit the size
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of the image 

Let p/R cise 2 

Thus, if the bore radius is too small, the minimum value of L may 

have to be made much longer than that set purely by lens distortion. 

The projector focal length t. of the rectangular field is given 

by (cf. Mulvey and Wallington 1973) 

f S 
p Osino sino 

eereaeeesve (14) 

. 
From equation (8) IP, = (4 4 2 O sin 2 )#/s 

Hence Q — ‘ = (20 + 0.5 sin 20) 2/2 sin © %,.« €15) 

The corresponding equation in terms of the lens excitation parameter 

NI/NT, may be readily derived in the way described above. The 

variation of @ as a function of lens excitation parameter os is 

° 

shown in Figure 5 for the rectangular field (S/D =a), calculated 

from equation (15) and for S/D = 0.2 calculated for S/D = 0.2 by 

inserting the axial field distribution into Scherzer's equation (1). 

These two curves confirm that the lens geometry has a negligible 

effect on the spiral distortion in the image. In the useful region 

of excitation, around NI/NI, = 1, of maximum magnification and low 

radial distortion, the value of ¢ is close to unity for this wide 

range of lens geometry. These curves also show that one cannot 

find a lens geometry that will produce a relatively large amount of 

distortion in an intermediate lens for the purposes of correction of 

distortion in the final image. 

The lowest curve in Figure 5 shows the © value for the 

exponential field distribution (cf. Marai and Mulvey 1975) for the 

favourable direction in which electrons enter the 'tail' of the
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field, and proceed towards the maximum value. In the region of 

maximum magnification the 9 value is appreciably lower (about 20%) 

than that of conventional lenses; furthermore, it remains at this 

low level over an appreciable range of magnification, making the 

adjustment of a correcting lens less critical. The exponential 

field distribution is closely realized in single-polepiece 

projection lenses. The exponential-field model thus suggests that 

an improved performance is possible in projector lenses by the use 

of single-polepiece lenses. A further advantage of these lenses 

is that the absence of a second polepiece bore largely removes the 

restriction on the radius of the incident beam that occurs with 

conventional lenses. 

The correction of spiral distortion 

If the electrons are incident in the opposite (unfavourable) 

direction, the spiral distortion coefficient of a single-polepiece 

lens can increase by a factor of nearly two, for the same focal 

length. This is a valuable property for an intermediate correcting 

lens, since here one wishes to have as large a distortion coefficient 

as possible. The reason for this is that the spiral distortion 

coefficient of this lens is reduced by a factor ve when referred to 

the final image plane, where M is the magnification of the 

intermediate lens. Thus with the above data the appropriate value 

of M would be of the order {2 for the correction of spiral 

distortion at maximum magnification. Figure 6 shows the proposed 

arrangement. The lens excitations are, of course, arranged in 

opposition so that the spiral distortions will cancel. 

In practice such a small magnification is likely to cause 

difficulties, since the lens fields may tend to reduce each other. 

For this reason it is preferable to operate the correcting lens in
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the 'second-zone' focal region i.e. at an increased excitation. 

Since the spiral distortion of the intermediate lens will increase 

as the cube of the excitation this will enable a higher intermediate 

magnification to be employed. 

Such a corrected system should allow a substantial reduction 

in the projection distance L, and therefore of the total instrument 

height, to be achieved. Reduction of L will, of course, entail a 

corresponding reduction of total magnification, but this will be 

compensated by the additional magnification of the correcting lens. 

Experiments are now in progress to realize these possibilities. 

Conclusion 

It is clear that electron microscopists are greatly indebted to 

Otto Scherzer for laying such lasting theoretical foundations for 

the future development of the electron microscope. This fund of | 

knowledge has not only enabled us to understand the ultimate limits 

of electron microscopy but has also provided a constant source of 

practical inspiration for the detailed improvement of the instrument. 
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Fig.1 Spiral distortion (Ap/p in the electron microscope image.
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electron microscope with single-polepiece projector lens. 
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Fig.3 Geometrical relations in the final projector stage of the 

electron microscope. I-projection distance, r - height 

of incoming ray, R - radius of lens aperture, ~ - radius 

of image.
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Fig.6 Schematic arrangement for correcting spiral distortion by 

two rotationally-opposed single-polepiece lenses.
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Appendix 7 

image plane 
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Considering the above figure, we have: 

tne diameter of the disc of confusion is given by 

a. = Cac, where is the angle subtended by the ray at the axis, 

and oF is the spherical aberration coefficient. 

If the magnification of the image plane is M, then 

poe 2 caeee 

where L is the projection distance, and f is the projector focal 

length, which is the same as the objective focal length, for weak 

lens condition. The deviation@f from the Gaussian image at the 

image screen, is given by 

it = Qu
 AP 

Rao @ 3 
#50 (1) 

Bute< = r/f, where r is the initial height of the electron beam. 

Hence, 

aFP = 

Si
lk
 

H
h
 

Q 

end P=M =er (3)
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The radial distortion of the image is given by 

2 
AP z ; : : : 

Z = c=) » where Ca is the radial distortion 

coefficient, and R is the radius of the bore of the lens. Hence 

2 

= wet oh woh G, (4) 
re 

or 

C 

CG, = 3k (5)


