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ABSTRACT

This work is concerned with the investigation of the attenuation
and energy degradation of fast neutrons passing through materials widely
used in reactor shielding. Measurements and calculations have been
performed for shields of iron and for homogeneous and heterogeneous media
of iron-graphite and iron-polypropylene in the form of a cylinder having
a monoenergetic point neutron source of energy 1l4.1 MeV produced by
D(T,n)He reaction at its centre. All measurements were made with a proton
recoil scintillation spectrometer using NE-213 liquid organic scintillator,
and gamma ray background was discriminated by pulse shape discrimination
using the zero crossing technique. Calibratic:. of the spectrometer energy
scale was made with monoenergetic neutrons of energies 2.48 MeV and 14.1 MeV
from the D(d,n)He and D(T,n)He reactions respectively. These fixed points
were gsed to scale the energy pulse height distribution determined by other
workers for use in the conversion of integral pulse height distribution
into neutron energy spectrum. This conversion was achieved by a method
based on numerical differentiation.

Calculations have also been carried out with the multigroup
diffusion and removal diffusion equations in one dimension by approximating
the experimental assembly to a spherical geometry. These calculations
provided a test for cross section data sets compiled by Abagyan and Yiftah
and Sieger.

Measured and calculated spectra show reasonable agreement and shields
containing hydrogen show stronger  neutron attenuation than those containing
graphite. Removal cross sections at 14 MeV have been experimentally
determined for iron, carbon and hydrogen from the variation in transmitted
neutron intensities with thickness for iron (steel) and double layers of
iron and graphite or polypropylene. These have been compared with

theoretical predictions by other workers and good agreement has been found.
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CHAPTER 1

INTRODUCTION

The studies of the spatial energy distribution of fast neutrons
after passing through various thicknesses of different materials which
are of interest in nuclear te;hnology are certainly of major importance,
not only from the point of view of the theory of neutron penetration
through matter, but also from the point of view of designing of nuclear
reactors and their associated equipments. A compilation of experimental

work(3'6]

has been carried out in developing analytical methods and
techniques to handle shielding problems and in obtaining experimental
data suitable to design procedures and against which to test the
theoretical calculations, but there are still a lot of discrepancies
between the experimental results and the data given by calculations.

It is obvious that a nuclear power station will be useless
if it cannot operate for a long time without component failures. The
life period of any power reactor is mainly decided by the radiation
damage in the pressure vessel and the other constructional materials by
the high energy component of fast neutrons. Such a problem is still
an underdeveloped science, since the damage calculation is uncertain
due to poor detailed cross section data. In a typical thermal power
reactor it is estimated that about 60% of the damage to its pressure
vessel is due to neutrons above 0.5 Mevtg). Very little however is
known about the deterioration of.- the structural materials in the long
run in steel, due to accumulation of hydrogen and helium which will
result from the interaction of fast neutrons with the emission of a
charged particle.

Further, the knowledge of the spatial energy distributions

of fast neutrons behind a shielding material is of primary importance,



.

since in most cases the flux of slowing down neutrons and secondary
gamma radiations behind the shield are determined by the spatial
distribution of fast neutron fluxes.

The attenuation of fast neutrons is affected by degrading the
energy of the neutrons by inelastic and elastic scattering processes until
they are absorbed. Unfortunately, the detailed cross sections for these
intereactions are less well known. The variation with energy is in some
instances very rapid, and for those eﬂergy regions at which the cross
sections are lowest and the penetration is highest, the data are the least
well known.

Therefore, a study of the behaviour of fast neutrons for
shielding materials should be of great interest in the field of nuclear
technology. The degradation in energy of fast neutrons mainly takes
place by inelastic scattering processes. The uncertainties in inelastic
scattering cross sections still remain a problem for an accurate
calculation of neutron space energy distribution in thick shields.
Inaccuracy of a few per cent in the average group cross section can lead
to an unacceptable error in the neutron spectrum behind the shielding.
When a biological shield is followed by a hydrogeneous medium, a 10%
change in the inelastic scattering cross section for an iron shield has
a marked effect on the relaxation length of the neutron emerging into a
subsequent water shield, amounting to 50% change after 40 cmtlo).

Although neutrons having energies of 14 MeV, are not directly
important for shields and blankets of fission reactors, since they are
above the extreme top end of the fission spectrum, generally regarded
as having an upper limit of 10 MeV, the deep penetration in reactor
shielding has some similarities to a monodirectional beam of such
neutrons. Since,after crossing sufficient distances into the shield,
only the forward peaking high energy end of the fission spectrum survives

and in most shields they behave as monodirectional neutrons of about
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8 Mev( ), therefore a study of the attenuation and penetration of the

latter can be given from those of the 14 MeV neutrons, which are in any
case degraded in energy by the shield. Such studies can be easily
carried out by using a monoenergetic beam of neutrons from accelerators
produced from 3T(d,n)4He reaction.

In addition, a study of 14 Mef neutron attenuation is of prime
importance to future fusion reactors, since a high proportion of the
energy released escapes from the reactér through high energy neutrons.

The study of the neutron energy distribution and the variation
of cross sections with energy for a hydrogenouvs medium, shows that the
most penetrating neutrons are those which start with energies of about
8 MeV. Lower energy neutrons are attenuated more easily because of the
higher cross sectiéns, and higher energy neutrons are too few in number
to be the major contributors to the dose outside a reactor shield.

Thus, if an amount of hydrogen sufficient to ensure rapid moderation
(about 20 collisions on average) to thermal energies following inelastic
scattering is present in the shield, then the attenuation of neutrons by
the other components of the shield can be described quite well by the
neutron cross section in the vicinity of 8 MeV.

Neutron attenuation in non-hydrogenous. media which relies
mainly on inelastic scattering for high energy neutrons poses a much
more difficult calculational problem because of the larger build up
factors and the greater uncertainty in the cross sections. However,
due to the large energy losses possible in single inelastic scatters,
heavy materials are a valuable éhielding component and for neutrons
above 1 MeV, the mechanism is much more effective than elastic scattering
by hydrogen.

The removal diffusion and multigroup diffusion methods are used
to calculate the spatial energy distribution of fast neutrons. The

multigroup calculations in various approximation also make it possible



to determine the spatial distribution of slowing down neutrons. To
average the multigroup constants in the energy region of fast neutrons,
the spatial energy distributions in the shielding materials and its
distortion, when the shield thickness is increased or other materials
are substituted, should be known. Such data ha been obtained for
several media, but only by a calculation method.

It is therefore of great interest to obtain experimental data
on the spectra of fast neutrons after passage through different materials.
In recent years a compilation of measurements have been carried out for
some materials which are used in reactor technology(T'B),

In the present work, new measurements are carried out for a
similar investigation. 14 MeV neutrons from 3T(d,n)4ﬂe reaction have
been used to study the behaviour of fast neutron energy spectrum passing
through homogeneous and heterogeneous media of iron-graphite and iron
polypropylene assemblies. The multigroup diffusion theory and removal
diffusion theory are used for calculating the spatial energy distribution
of fast neutrons after passing through different thicknesses of such
assemblies. The cross section data used for these calculations are

the 20-group cross section set due to Yift:h and Sieger(84)

(85)

Russian 25-group cross section set .

, and the



CHAPTER 2

NEUTRON INTERACTION WITH MATTER

231 Introduction

In passing through matter, a neutroﬁ may interact with nuclei
in a variety of ways, it may change direction, lose energy, or be
absorbed by collisions with nuclei. As the neutron carries no electrical
charge, there is no coulomb repulsion to prevent its interaction with
nuclei, and it is thus able to cross the nuclear boundary even when
moving at less than thermal velocity. If in a collision with a nucleus
the total kinetic energy of the system is conserved, the process is
called elastic scattering and may be written as X(n,n)X where X denotes
the target nucleus. On the other hand if the nucleus after re-emission
of a neutron is left in an excited state, the process is called inelastic
scattering and is written as X(n,n")X¥ 1In referring to these processes
it is common to say that the incident neutron has been elastically or
inelastically scattered, since a neutron reappears after the interaction.
However, this term is somewhat incorrect since the emerging neutron may
not be the same neutron that originally struck the nucleus.

If instead of being scattered, the neutron is absorbed by
the nucleus, it induces a nuclear reaction which leads to a different
residual nucleus and a new end product. The most important of these
reactions is the absorption of a neutron with the emission of a gamma
photon (n,Vy). This process is known as radiative capture, and the
reaction is written as X(n,Yy )Y, where the symbol Y denotes the new
nucleus. Neutron capture may also lead to the emission of charged
particles in the (n,p) and (n,Q ) reactions. For neutrons of higher
energies two or more neutrons may be emitted following neutron capture.

This is also a form of inelastic scattering.



A classification of the interaction of neutrons with nuclei is
illustrated in figure 2.1. A detailed description of this process is
given below.

AL Elastic Scattering X(n,n)X

The slowing down of fast neutrons is due below 0-5 MeV to
elastic scattering collisions between the neu£rons and the nuclei of
the moderator(lz). Such collision can be treated by the methods of
classical mechanics, assuming the neutrons and scattering nuclei to
behave as perfect elastic spheres. By applying the principles of
conservation of momentum and energy it is possible to derive a relationship
between the scattering angle ( and the energy of the neutron before and
after collision with a nucleus of mass number A.

Assuming that E. is the energy of the neutron before collision,

1

hence the neutron energy after collision E2 is given by:

Az + 2Acosf + 1

E = F. .
(a + 1)2

2 i

where 0 is the scattering angle in C system.

The mechanism of elastic scattering of neutrons can be

conveniently regarded as being composed of two coherent contributions.
(a) Resonance Scattering, which is attributable to the formation
of one of several decaying states of the compound nucleus (X + n) whose
energies lie within about a level width from the energy of the initial
n,X system, followed by decay of the compound nucleus and the emission
of a neutron having the same enérgy as that of the original incident
neutron.
(b) Potential Scattering, in which the neutron does not appreciably
penetrate the nucleus to form a compound nucleus, but without sharing its
energy with nucleons of the target is scattered much as it would be by a
potential well. This part may also be considered as due to the large

number of states of the compound nucleus which are far removed from the
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incident energy.

For lower energy neutrons (less than about 1 MeV), the elastic
scattering is nearly isotropic in the centre of mass system(l). As the
energy increases the anisotropy increases. For the resonance scattering
the angular distribution is characteristic of the spins and parities of the
levels of the compound nucleus involved and is more or less isotropic(z).
The potential scattering gives the distribution a forward peak (due to
diffraction around the nucleus) which becomes more pronounced with
increasing energy.

From the viewpoint of neutron attenuation, elastic scattering
serves to alter the direction of the neutron and degrade its energy.
Since the total kinetic energies of the incident neutrons and target
nucleus are conserved in the elastic process. The relation between the
energy transferred and the cosine of the scattering angle is given by a
simple form in the centre of mass system.

cos w = l + ACOS 6 - - L - L 2 - 2

J A2 + 2Acosf + 1

where { is the scattering angle observed in the Laboratory system,
and A is the atomic mass of the target nucleus.

*
2.3 Inelastic Scattering X(n,n')X

When a fast neutron is captured by a target nucleus to form a
compound nucleus, the later may in some cases decay to an excited state
with the emission of neutron of lower energy than that of the primary
one. This process is not energetically possible until the incident
neutron has enough energy to raise the target nucleus to its first
excited state, plus the energy which is given to centre of mass motion by
the collision. This threshold energy is generally high in both light
and magic nuclei, where the level spacing are large. If E represents

(ex)

the energy of an excited state of the target nucleus, then the minimum
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or threshold energy E in the laboratory system required of the

(th)
penetrating of neutron for production of inelastic scattering to this

state is:

where M and m are the masses of the target nucleus and neutron
respectively.

In general, if a monoenergetic beam of neutrons is incident
on a target nucleus, a spectrum of neutron energies are emitted, since
a number of levels of the target nuclei are accessible. The spectrum
of these emitted neutrons consist of a series of groups corresponding
to transitions to different levels. The relative intensities of these
groups are determined by the partial widths for the different modes of
decay of the compound nucleus. Some of the groups may appear as a
continuous spectrum in the region where the levels of the target nuclei
are very closely spaced.

The process of degrading the neutron energy by inelastic
scattering is useful for the following reasons: -

(a) owing to the fact that neutrons are uncharged particles,
neutrons are therefore very often easier to use in the general studies

of nuclear reactions and their interpretation in terms of various
theoretical models.

(b) It is a means of studying the nature of individual nuclear
levels which may not easily be reached by other means.

(c) Inelastic scattering is very important in problems of reactor
design and shielding estimation. In the first case it is the main
process by which fast neutrons are degraded in energy below the inelastic
scattering threshold. Furthermore it produces gamma radiation, which

has to be considered in all shielding problems.



2.4 Radiative Capture X(n,y )Y

This process is energetically possible at all neutron energies,
but is most probable at low energies (less than 1 KeV). However, at low
energies some particle reaction with very light nuclei and fission with
very heavy nuclei can take place.

When the neutron is captured by the nucleus AZ, the resultant
compound nucleus A+lZ is forméd in a highly excited state because the
captured neutron brings into the system both its original kinetic energy
and its binding energy, typically 7 - 8 MeV. Since the compound. nucleus
lies above its ground state, it can decay either by the re-emission of a
neutron as in the scattering process or by emitting one or more gamma
photons. However, the excitation energy of the coﬁpound nucleus is
divided between its nucleons, and the emission of one of these nucleons
is not possible until the nucleon obtains an energy in collisions with
other nucleons greater than its binding energy in the nucleus. Therefore,
one can expect that when the excitation energy is shared among a large
number of nucleons, the average time that elapses before a nucleon can be
emitted is much more than the average time required for gamma ray
emission, and the compound nucleus may decay by emitting a gamma ray(l).
Since it is clear that a given excitation energy is shared among many
more nucleons in a heavy nucleus than in a light nucleus, it follows
that radiative capture is comparatively unimportant in lightest nuclei,
with the exception of IH, but becomes more probable in the heavier
elements.

As mentioned above, the compound nucleus has an excitation
energy approximately equai to the sum of the kinetic energy and the
binding energy of the incident neutron. The system (compound nucleus)
may release this excitation energy with the emissién of a single gamma
ray and go to its ground state. However, if the nucleus has some energy

levels, intermediate between the excitation level and the ground state,
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it may instead emit several gamma ray photons of lower energy on going to
the stable state.

The existence of capture gamma rays greatly complicates the
shielding problem, since it is no longer sufficient merely to slow down
and capture the neutrons. Therefore, it becomes more significant to
use a material as a neutron absorber which does not give gamma rays on
capturing the neutron. Same isotopes such as 10B or 6Li on neutron
capture emit charged particles which are easily stopped. In addition,
both of these isotopes have very large capture cross sections at thermal
energies.

20 Particle Reactions X(n,p)¥, X(n,a)Z, (n,2n) and (n,3n)

Neutrons may also disappear as a result of charged particle
reactions, where the neutron is assimilated in the nucleus which may
decay by the emission of other particles such as an ¢ particle, a proton,
or two neutrons. The nucleus resulting from these interactions may be
unstable and decay by further gamma ray or particle emission.

Particle reactions are most prevalent for neutron energies
above about 1 MeV. Below that energy the reaction is generally inhibited
either by the energetics of the process or by the coulomb barrier which
must be penetrated by the reaction products. However, in the case of
light elements they may occur at intermediate or thermal energies.

Some of these reactions are loB(n,cx}7Li, 6Li(n,cx} T and l4N(n,p)14c.
These reactions are quite useful for depressing the thermal neutron
flux without giving rise to energetic gamma rays.

For incident neutron of sufficiently high energy, i.e., greater
than the binding energy of the last neutron in the nucleus, the emission
of two or three neutrons becomes possible. This reaction could be
regarded as a type of inelastic scattering in which the first neutron
comes out with an energy less than the difference between the energy of

the primary incident neutron and the threshold energy. In that case
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the residual nucleus is in a virtual state having enough excitation energy
to be able to emit a second neutron. In this energy region most of the
neutrons emitted in the inelastic scattering process tend to have small
energies, since the density of available states in the residual nucleus
increases with the degree of excitation. This means that, if the
incident neutron has an energy above the threshold of (n,2n) reaction it is
likely that a second neutron'will appear. Hence the (n,2n) reaction
rapidly becomes more probable than the (n,n') reaction. Therefore, the
bulk of the inelastic scattering is now included as part of the (n,2n)
reaction.

The Q value of the (n,2n) reaction is equal to the binding
energy of the most weakly bound neutron in the target nucleus. As in
other reactions, the threshold energy in laboratory system is given by:

Eth=_(5—-§—3-“-’.g s e vl
where A is the mass number of the target nucleus.

This threshold energy is low for nuclei having weakly bound
neutrons,. i.e., the threshold energy is about 1.8 MeV for (n,2n) reaction
of 9Be. However, with most nuclei the threshold energy for the (n,2n)
reaction is in the range from about 7 to 10 MeV.

In the case of (n,3n) reaction the relation between (n,3n)
and (n,2n) reactions is similar to that between (n,2n) and (n,n') reaction.
For the (n,3n) reaction the third neutron can be emitted if the target
nucleus still has sufficient excitation energy after the emission of the
second neutron in the (n,2n) reaction. Therefore the (n,3n) cross
section rises from the (n,3n) threshold at the expense of the (n,2n)
cross section, as indicated in figure 2.2. The threshold enerqgy of the
(n,3n) reaction is so high (ranges from 11 MeV to 30 MeV). Therefore,

the (n,3n) reaction has no significance in fission reactor calculations,
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CHAPTER 3

FAST NEUTRON DETECTORS AND TECHNIQUES

3.l Introduction

Generally, the detection of a nuclear radiation is used not
only to indicate the presence of nuclear particles, but also to give
information about the amount (intensity) and energy and their related
properties. A detection system usually consists of two parts, a
detector for the presence and usually the energy of the incident particle
and a measuring system to measure the output signals from the detector.

A great variety of techniques are available for measuring
nuclear radiations. However, the detection of neutrons is in general more
complicated than decay products of radiocactive emitters because of their
lack of charge and their very wide range of energies. Neutrons must
therefore take part in a nuclear reaction which results in the emission
of charged particles, which in turn interact with the detector and produce
ionization and excitation of the molecules. In such cases the primary
energy of the neutrons is dissipated through the emission of secondary
charged particles and the detection takes place by the loss of energy of
these secondary charged particles on their passage through matter.
Therefore, it becomes clear that two media may be involved, one of which
is a radiator, or often a scattering material, where the neutrons may
interact to produce charged particles and another one which is a detection
medium, in which the charged particles may dissipate their energies.

These two components of a detector may be physically distinct, as in the
case when protons are ejected from a hydrogeneous foil by fast neutrons
to spend their energy in ionizing gas in a space above the foil. In
this case the energy dissipated in the scattering medium by the charged

particles is wasted. On the other hand the two components may occupy
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the same space as when the gas in the detector of the above example is
itself hydrogeneous. In that case, the energy abstracted from the
charged particle, from the moment of its production, is employed in the
detection process. Therefore, there is considerable advantage to be
gained in designing a system with combined reaction and detection media
for the detection of neutrons.

A detailed discussion of the various neutron detectors is
given in section 3.4.

3.2 The Main Parameters for Selecting a Neutron Detector

Usually, on chosing a neutron detector suitable for certain

measurements, the following factors must be kept in consideration.

a) The aim of the experiment and the experimental configuration.
b) The energy range of neutrons to be measured.

c) Flux magnitude and its variation.

d) Detector sensitivity and energy resolution.

e) Physical size of the detector and its perturbation of the

neutron flux.
£) Detector sensitivity to other nuclear radiation.

In the above list, the first two parameters are defined by
experimental configuration, i.e., where the measurements will be carried
o;t, inside or outside the medium under investigation and whatever the
measurements, aim to give infprmation about neutron energy or flux, and
in what energy range will be performed. The flux magnitude and its
variation is a critical parameter for cheosing a suitable detector of
known efficiency and cross section, i.e., measuring a low neutron flux
requires a detector of high sensitivity or high cross section which is
known as a function of neutron energy. Also a known sensitivity gives
the absolute intensity of neutron spectrum.

In some measurements, the physical size of the detector is

considered as a limiting factor, i.e., when the measurements have to
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be carried.out inside the medium (e.g. in some shielding investigations
and reactor core parameter measurements) a large size will perturb the
flux and if a re-entrant hole is made in the medium, it may distort the
flux.

The last parameter which is concerned with detector efficiency
to other nuclear particles is considered as a.main important factor when
chosing a neutron detector, since neutrons are usually measured in a
background of other nuclear radiations (i.e. gamma rays). Therefore the
detector should either be insensitive to gamma rays (threshold detectors)
or give output pulses having different amplitudes or different shapes, so
it becomes possible to eliminate the undesired pulses either by applying
bias or pulse shape discrimination.

3.3 Reactions used in Neutron Detection

Owing to the fact that the neutron is an uncharged particle,
the interaction of a neutron with the atomic structure of matter is
effectively zero. However, a neutron may produce a charged particle
either by collision or by initiation of a nuclear reaction. Therefore
most of the neutron detectors are based upon one of the following
processes.

3851 (n-p) Scattering

Most of the methods used to measure the fast neutron spectrum,
involve a device which detects and measures proton recoil produced by
the neutrons in some hydrogeneous medium. The detection efficiency
depends on the (n,p) scattering cross section of hydrogen. The
dependence of cross section is a smooth function of energy and decreases
from 13 garns to 1 barn in the neutron energy range (0.1 to 10 MeV)tls).
The (n,p) scattering is isotropic in the centre of mass system, so that
the distribution in energy of the recoil protons produced by monoenergetic

neutrons is constant from zero up to a maximum value, equal to the

incident neutron energy. The energy of the recoil proton EP is given by:
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where iy is the angle which the recoil praton makes with the direction
of the incident neutron of energy En

If the incident neutrons are not monoenergetic and have an
energy. spectrum ¢O{En}, recoil protons of energy E will be generated
by neutrons of different energy, starting from En = E. In this case

the number of recoil protons N(E) in a unit energy interval is given by:

“p (B ) (l—ezd}dE
N(E) / n PR S A
E

where 3 is the macroscopic scattering cross section of hydrogen and
d is the detector thickness. Therefore it becomes possible to obtain
the neutron energy spectrum ¢CJEn) by differentiating the recoil proton

spectrum given by the above equation and is given by:

¢'(E)=“-——§P‘E'a“ .dN(E) Sl e SRS e
(1L -e ) dE

Some of the proton recoil detectors to be discussed hereafter include

proportional counters, counter telescopes,and organic crystal scintillators.

330t Neutron Induced Reactions

The very low interaction of neutrons with the field of
charged particles makes it easy for neutrons to penetrate atomic nuclei.
The new compound nucleus formed by the absorption of a neutron has an
excess of energy due to the binding and kinetic energy of the neutron.
This energy may be released by the ejection of energetic charged particles
or by the emission of a gamma quantum. The new nucleus may be stable
or unstable, and in the latter case it shows radioactive decay with a

definite half-life. Such reactions may be initiated by slow neutrons
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(excergic reaction) or where extra kinetic energy is necessary by neutrons
of energy above a given threshold value (endoergic reaction).
A detailed discussion of both reactions is given below.

3o 2. Exoergic Reactions

Exoergic reaction is a process in which energy is released after
the interaction of a nuclear particle with some specific nuclei. There
are a few exoergic reactions which are of interest in neutron detection.
These include:

(a) 3He +n-—>T+P + 765 KeV.

This reaction is more important for the detection of neutrons
due to the following factors.

(a.l) The cross section is very high for slow neutrons (5,400 barns)
and varies smoothly to 1.7 barns at 100 KeV down to 0.75 barns at 1 MeV
and does not show strong resonances.

(a.2) The product nucleus has no excited states so that to each
neutron energy there is a single reaction energy, i.e., a monoenergetic
neutron source will be represented by a line spectrum, in the output
from the spectrometer.

(a.3) The reaction is of moderately low energy. For thermal
neutrons, the energy release is 0.765 MeV. Therefore the total energy
from the capture of 1 MeV neutron is 1.76 MeV which is not so high that
the outcoming particle (proton) becomes a serious problem, while at the
same time the energy expended by electrons from gammas in a moderately
sized 3He filled chamber is considerably less than 0.765 MeV so that
their pulses will not distort the spectrum. However, there are some
disadvantages of this reaction which are given for incident neutrons of
energy above about 1 MeV, the recoiling 3He will have energy greater than
0.765 MeV. Therefore 3He recoils will appear above this peak due to
the capture of thermal neutrons which are usually to some extent present.

L 3 : : ;
In addition, He is relatively rare and expensive.
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(b) 6Lj_ +n—> o +T + 4.78 MeV.

This reaction has a cross section about 945 barns for neutrons
of velocity 2200 msil in case of a pure isotope. The cross section varies
as %- in the thermal region and has a peak of 2.75 barns at 265 KeV;
drops down to 0.28 barns at 1.2 MeV and to 0.05 barns at 8 Mev(l?'laj.
The main advantage of this rgaction is the high Q value so that pulses
from electrons induced by high_energy gammas will give energy in the
counter much less than 4.78 MeV.

Lithium is used in scintillation counters as 6LiI crystals
as well as in photographic plates for the thermal,slow and fast neutron

spectrum measurements in health physics monitoring.

(c) Thermal Fission

As this chapter deals with fast neutron detectors, only brief
attention will be paid to thermal fission detectors which are used for
measuring thermal neutron fluxes.

Thermally fissile materials such as 2330, 235U and 239Pu are
widely used for measuring thermal neutron fluxes for many purposes.
They have considerable advantages over other neutron detectors where
there is high gamma ray background, since the energy released per
fission is relatively high giving fission fragments with about 80 MeV
of energy each as compared with the energy from electrons due to gamma
rays. The cross sections at thermal energies is about 500 to 750 barns
which varies rapidly with resonances in the eV region. At neutron
energy of about 100 KeV the cross section flattens off and becomes
constant (+ 10%) up to about 5 MeV.

% g Threshold Detectors

For endoergic reactions, the kinetic energy of the reaction
products is less than the kinetic energy of the initial particles by
an amount equal to the reaction energy, i.e., energy is absorbed rather

than liberated. However, this is obviously not true for fast neutron
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fission e.g. for 238U fission takes place if the incoming neutron is a
few MeV, while the total energy of the fission fragments is some 160 MeV.
Nevertheless, fission in these cases is possible only with fast neutrons
because there is a fission barrier, such that, if the compound nucleus
has excitation energy less than this barrier it cannot undergo fission.
This means that there is a threshold energy below which the reaction
cross section is very small, or even zero.

Actually, a direct detection of an endoergic reaction is
difficult, and one normally measures the activity of the radioactive
products. Therefore, the radiocactive product must have a suitable
half-life so that the activity after irradiation can be followed for at
least two half-lives. This is important, because other sources of
activity may be present in the sample as a result of irradiation. In
particular, it is essential that the effect of radiative capture (with
slow neutrons) is minimized, either by a small radiative capture cross
section or a widely differing half-life of the radiative products.

The main specific reactions which are of interest in neutron
detection using threshold detectors are:

(a) (n,p) and (n,q ) Reactions

These reactions usually take place with light elements, since
for heavy elements, the high coulomb barrier prevents particle emission.
The cross section can be several hundred millibarns in the energy range
of 1 to 4 MeV and varies rapidly over the range, because of resonance in
the compound nucleus. The cross section becomes appreciable at a neutron
energy which depends on the effect of resonances. The main threshold
detectors of this reaction are 31P(n,p)3lsi and 328(n,pJ32P with half-
lives of 2.7 hours and 14 days respectively.

(b) (n,2n) Reactions

In this reaction a second neutron is ejected from the nucleus,

so that the threshold energy is the binding energy multiplied by small
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21
factors, allowing for centre of mass motion{ ). Above the threshold

energy, the cross section generally rises to a fairly flat peak around
3 to 5 MeV above threshold, and then declines, due to competition. A

Y 63 . !
typical detector is Cu {n,2n)62Cu with half-life of 10 minutes.

(c) Fast Fission Reactions
For fissionable elements such as 232Th, 231Pa, 234U, 236U,
2 ;
238U, 37NP and 240Pu, the fission process takes place above a certain

threshold energy. These nuclides are used usually for measuring fast

neutron spectra, since the cross section above the threshold energies is

relatively flat, and the threshold energies cover a range of considerable
(19 )

interest in fast reactor spectra -

3.4 Different Detection Systems

Based on the above principles, several detectors become
available for measuring neutron fluxes and energiés for experiments
having different environments. A brief discussion of the general
characteristic for some systems used in fast neutron detection is given
below.

3.4.1. Counter Telescopes

The counter telescope is usually used for measuring the fast
neutron spectrum at high energy range from about 1 MeV to 20 MeV(lg).

The telescope consists essentially of a hydrogeneous radiator (usually
polyethylene CnHZHJ,two or more proportional counters in line with'
scintillation detectors (Nal or CsI) whose outputs are sorted by a pulse
height analyser.

The incident fast neutrons eject recoil protons from the
radiator. The angle between the recoil protons and the detection of the
incident neutrons is connected by a simple relation, (equation 3.1).

Only recoils which pass through an aperture of known dimension

are counted by the scintillation counter which gives a differential

spectrum instead of being a ?lateau. Since there are many sources of
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pulses of low energy, spurious counts are suppressed by the aligned
proportional counters. Coincidence between the three systems then
effectively reject all particles except those which start from the
radiator and end in the scintillator. The light output of the
scintillator is thus a measure of the proton recoil energy which, along
with a determination of ¥ , allows the calculation of the neutron energy.
By suitable selection of the counters and radiator thickness the energy
loss in components of the system other than the scintillation phosphor
can be kept small.

The important advantage of the counter telescope is the extremely
low background counting rate, and its drawback is its low efficiency
(about 10_6 to 10“4 count per neutron.cm_z).

3.4.2, Proton Recoil Propor“ional Counters

Generally, a proportional counter is an ionization chamber with
a fine wire anode to give a high electric field so that electrons can be
multiplied by collision. The chamber incorporates a material from which
charged particles will be released as a result of a nuclear reaction which

the neutron causes(20'21).

For neutrons of high energy, elastic
scattering (n,p) by hydrogen is often used for fast neutron detection, in
which case hydrogen recoils are observed. The most frequently encountered
countinggas incorporating hydrogen is methane {CH4) and ethylene (C2H4).

The range'of a recoiling proton of energylo.l MeV is about 2 mm in
air at STP and 8 cm at 2 MeV, while at 10 MeV the range is about 100 cm,
therefore at 10 MeV a gas field counter would require inordinately high
pressures. |

When the biasing on a proportional counter is such that only

those pulses produced by protons having an energy greater than Ep are

accepted, the measured count rate for neutrons of energy En is then

proportional to:

c(En.Ep) = ¢(En)NPO“(En) (B - EPJ/En
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where Np is the hydrogen atom content of the sensitive volume (atoms.cm_3)
and U‘(En) is the microscopic cross section. Practically Ep is about
0.1 to 0.2 MeV, since below this energy proton recoil pulses become
difficult to distinguish from background electron pulses. However, for
protons of energy above this limit the ability of the proportional counter
to discriminate between particle types is very good, since it produces
output pulses of different sizes depending on the particle types. This
is particularly useful in neutron detection, where the neutrons often
appear along with a high background of gamma radiation. Another
important advantage of the proportional counter as a neutron detector is
that the variation of the (n,p) scattering cross section is well known, .
making interpretation of experiments relatively easy. The sensitivity
of a methane proportional counter falls typically in the range of 1 to
10 %.

3.4.3 Organic Scintillators

In recent years, the utilization of organic scintillators f;r
measuring the energy spectrum of different radiation particles has enjoyed
a wide application in various fields of science and technologytzz). They
are available either as a pure crystal (stilbene) or in various combinations
as liquid or solid solution e.g., NE_213 and NE.1lO2. The main important
advantages of organic scintillators are their high speed re3ponsé
(a-lo-g sec), high efficiency of detection of fast neutrons (10 - 30%),
and besides providing exact information on the number, time of arrival
and energy of nuclear particles, they can give information on the type of
detected particles from differences in the decay of the scintillation.
This becomes particularly important if measurements are to be carried out
in mixed fields of radiation, i.e., when measuring the characteristic of
a neutron field in the presence of the background of accompanying gamma

radiation from a nuclear reaction or that emitted in nuclear reaction

processes.
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A detailed discussion of organic scintillators and their uses
as fast neutron detectors is given in chapter 4.

3.5 Detectors Based on Exoergic Reactions

3.5.1.  °pir(Eu) scintillators

The use of a scintillator of lithium 6 iodide activated with
europium as a fast neutron spectrometer has been studied by various
worker5(23'27}. The 6Li (n,x )T reaction provides a suitable mechanism
for both slow and fast neutron detection. This reaction is exoergic
with a Q value of 4.78 MeV. Analysis of the scintillation pulses permits
a measurement of the energy distribution of the incoming neutrons, since
the total energy released in the reaction products is the sum of Q + En.
Irradiation of a 6LiI(Eu} crystal with monoenergetic fast neutrons results
in a pulse height spectrum containing a rather broad fast neutron peak
whose width can be considerably reduced by cooling the crystal with liquid
nitrogen.

The main advantages of a 6LiI(Eu) scintillator as a neutron

detector are:

(a) Simple design and electronics,
(b) good sensitivity, and
(c) large Q value of reaction (4.78 MeV) permits discrimination

against electron pulses produced by the ambient background. However,

to measure fast neutrons, the detector must be cooled with liguid nitrogen
to reduce the difference in the light output as a function of energy for
& and tritons. However, cooling does not completely overcome the

non linear light output of the crystal which complicates the subtraction
of the pulses produced by competing reaction 6Li(n,n'd)a which has a
light output versus energy different from the 6Li{n,a )T reaction and

its cross section is greater.

3.5.2. The Long Counter

This device was originally designed by Hanson and McKibben(za)
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to meet the requirements of measuring neutron flux for intermediate and
high energy neutrons. It is a BF3 counter embedded in a cylinder of
paraffin wax. High energy neutrons are moderated by the paraffin before

. 10, :
entering the BF. gas and being captured by the =~ B(n,q )7Li reaction.

3
Thermal neutrons are partially captured by the moderator and partially
captured by 10B. By a suitable selection of -the moderator configurations
it becomes possible to achieve reaction rates which are substantially
independent of neutron energy from 10 KeV to 10 MeV. Thus, the long
counter furnishes a measure of neutron flux over a wide range of energy
of interest in shielding. |

The output response of a good quality long counter is a flat
response in the energy range of 0.5 to 2 MeV, drops by about 10% at
225 KeV and by about 20% at thermal energy from its value at 0.5 MeV.
In the high energy region the response is generally down by about 15%
at 14 MeV. Above about 14 MeV the variation in response is affected
by the resonance in the total cross section of carbon.

The detection efficiency of a BF, long counter of 2" in

3

diameter and 8" long filled with unenriched BF, to a pressure of

2 atm is about 0.2 to 0.3%.

S e The Helium 3 Counter

The 3He spectrometer is still a useful detector for measuring

££34 00 . . Itds

the neutron spectrum in the energy range 0.1l to 1 MeV
based on exothermic neutron induced reaction, where all the reaction
products expend their energy in the counter system and therefore a
monoenergetic neutron flux would produce a line spectrum. The reaction
cross section is fairly large (5400 barns) for slow neutrons and varies
slowly with energy. Another advantage of the 3He counter is that there
are no resonances and no competing reactions, and the peak at 765 MeV

due to thermal neutrons makes a convenient calibration check both for

pulse height and resolution. The counter efficiency is typically
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0.01 per cent depending on the 3He concentration.
A detailed description of the characteristic and performance

of a proportional counter containing 3He plus krypton is given by

(29)

Batchelor et al 1955.
3.6 Detectors Based on Fission and Threshold Reactions
3ibal Fission Counters

The main idea behind using fissile materials in fission counters
is that the fission fragments are energetic charged particles and can
produce ionization in gases. These fission fragments behave rather like
o particles in their interaction with matter. However, there are a
few quantitative differences which ordinarily result in optimum values of
such parameters as gas pressure and the plate spacing in a fission chamber
which are somewhat different from those for an alpha chamber. The range
of fission fragments is roughly half that of typical ¢¢ particles from
radioactive decay. Alpha particles ionize most heavily near the end
of their ranges while fission fragments ionize most heavily at the
beginning. This can be turned to advantage, since all fissionable
materials are alpha active, hence detection of the fission fragments
takes place against a background of o pulses which must be prevented
from being recorded in some way. Therefore, if the detector is
designed so that only the first half of the fission fragment range occurs
in the active volume of the detector, most of the alpha particles will
produce only a lightly ionized track in this volume compared to the very
heavy track of the fission fragments. This permits an amplifier bias
setting high enough to eliminatg all single & pulses and even pulses
resulting from pile up of several alphas which may occur during the
resolving time of the instrument.

In terms of technique, the fissionable materials can be
incorporated into the sensitive volume of a gas ionization chamber or

proportional counters. The fission rate is proportional to the neutron



26,

flux. The fission fragments produce large ionization pulses which after
amplification can be counted by the usual way.

362 Fissionable Foils

Fissionable materials such as 232Th, 231Pa, 2340, 2360, 238U

237 o I . .
and NP are used as fissionable foils for measuring the fast neutron
spectrum. These foils,after neutron exposure,can be measured in a

suitable counting arrangement for their induced fission activity.

3.6.3. Threshold Foils

In threshold detectors, the reaction does not proceed with
neutrons of energy below a certain value. At neutron.enerqies greater
than 1 MeV the (n,p) and (n,q ) reactions are more prominent than the
(n, ) for many materials. The sulphur and phosphorus (n,p) reaction
are probably the most widely used. They have effective threshold
energies of about 3 MeV and 2.5 MeV respectively.

The (n,2n) and (n,n') reactions are also threshold radioactivant
possibilities. Generally, the (n,2n) reactions occur at neutron energy
much higher than needed in reactor studies (~ 11 MeV). The Cu (n,2n)
reaction is widely employed as a threshold detector for measuring the
spectrum of light energy neutrons from T(d,n)4He reactions.

The main advantages of the threshold detectors are:

(a) They are sensitive over a wide range of energy and flux by
choosing materials with different cross sections.

(b) The possibility of obtaining these radiocactivants in different
shapes and sizes makes it possible to introduce them in the medium in
which the measurements are to be made without the introduction of voids.
(c) It is also possible to select within limits, materials appropriate
for wvarious neutron energy ranges.

< Semiconductor Detectors

Semiconductor detectors provide a suitable technique for

neutron detection for a wide range of energy {3l'32}. These detectors
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are solid state ionisation chambers and detect charged particles. The
neutrons to be measured have first to impart their energies to some type

of charged particle. The basic mechanism then depends upon the production
of electron positive hole pairs by the charged recoil particle in a p-n
junction in the semiconductor. In the electric field existing at the
junction such pairs are separated and can produce a large voltage pulse

of the order of 1 mV for a 2 MeV energy absorption( 32). These pulses
can be amplified and counted by appropriate electronics.

The energy transferred from the neutron to the charged particle
may occur either in an external medium placed in front of the detector
(i.e. coating the n-p junction with paraffin which serves as a source of
recoil protons), or alternatively in a material of which the detector is
constructed (i.e. such silicon), which emits either alpha particles or
protons from the reaction 283i{n,a }25Mg or 2851(n,p}27Al.

The first method gives a wide range of possibilities and has
the disadvantages that in order to get a good energy resolution one is
very limited in the choice of thickness and geometry of the medium, in
addition to a poor neutron detection efficiency. In the second method
the energy transfer takes place in the detector itself, therefore when
the range of produced charged particles is short compared with the
dimension of the active region, one expects to get as good resclution
as that obtainable for the charged particle and a good detection
efficiency. However, one is then limited to reactions which may take
place in the material of the detector, namely (n,p) and (n,a ) reaction
occurring in various isotopes of silicon.

The main advantages of semiconductor detectors, are their
excellent energy resolution and good discrimination against gamma
radiation, since the pulse heights are essentially proportional to the
electron positive hole density in the n-p junction. However, the

detector sensitivity is limited and restricts the use of these devices
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; 4 -2 =
to fluxes in excess of 10 neutrons.cm .sec l. The typical counting
A ; Vo ; -4 -7
efficiencies for existing devices range from 1O to 10 = counts per
=2
neutron.cm . This, in addition to the fact that the semiconductors
are subject to radiation damage, which limits their useful life.

a8 Time of Flight Technique

In time of flight technique, the neutron energy is determined
from a measurement of velocity, which can be obtained from the determination
of a zero time related to the time at which the particle begins on its
flight path, and measure of the time elapsed from zero time until the
particle is detected at the end of its flight path.

The zero time can be determined by the detection of an event
which occurs simultaneously with the emission of the particle (i.e.
associated particle technique) or by the detection of a secondary event
initiated by the particle in flight e.g. the scattering of neutrons through
a known angle or by using a pulsed source of neutrons giving nanosecond
pulses. However, such a method can be applied to a limited class of
reaction.

The most recent and more genergl technique for measuring a zero
time is that of the pulsed beam which can in particular be applied to all
types of reactions and gives a zero time independent of the reaction
mechanism(lgj.

For all time of flight techniques, the neutron energy is
given by:
E = b.23 x 103 . Ei - MeV

t2

where t is the flight time in nanoseconds and D is the flight path in
metres. This relation can be used to evaluate the neutron energy in
the range of 0.1 to 15 MeV where the flight path is of several metres.

In the light of the foregoing discussion it becomes clear that
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the time of flight technique is the easiest method to interpret the
neutron spectrum, but it requires a nanosecond pulsing of the neutron
source. This is not possible with the available facilities attached
with the SAMES accelerator. Thus this method is rejected in favour of
the proton recoil scintillator using PSD to reject Y events. This
latter method has the advantage of high detection efficiency compared
with the other methods since organic scintillators have much greater

mass of material than that of gas or thin film detectors.
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CHAPTER 4

NEUTRON SPECTROMETER

4.1 Introduction

Neutron spectrometers with organic scintillators have been used
for many years for measuring the number, time of arrival and energy of
nuclear radiations(19'33'34'35'36}. Among these different types of
scintillators are the stilbene crystals and liquid organic scintillators
(e.g. type NE-213) which have found a widespread use in nuclear e
spectroscopy because they possess desirable physical characteristics.

They exhibit good detection efficiency{BS), large size, high speed and

particle discrimination capability(37'38'39'40'41}. Their disadvantages
include unon linear light output for heavy particles, the difficulty of
relating the pulse spectrum to the neutron energy spectrum and smeared
step like responses to monoenergetic neutrons. All of these difficulties
have been largely overcome, and the use of these scintillators as an
active element for measuring fast neutron spectra has become a widely

applied technique.

4.2 Scintillator

A small 1" by 1.5" diameter cylinder of NE-213 scintillator
was chosen for the present work because it offers a good compromise
between efficiency and resclution. The scintillator is glass encapsulated
and was purged with pure hydrogen to remove the undesirable oxygen which
selectively quenches the slow component of light emission(l3). It ie
made with xylene, activators and POPOP as a wave length shifter.
Nqﬁ&halene is added to enhance the slow component of light emission.*

The NE-213 scintillator has the following desirable

characteristics:

* Manufactured by Nuclear Enterprises, Ltd., Edinburgh, Scotland.
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(a) It has an enhanced emission of delayed light which gives it

good pulse shape discrimination between various pulses over a wide range

of energy.

(b) It has a slightly greater hydrogen content than stilbene(43'46).

(c) Since NE-213 is non crystalline, its response to neutrons is

isotropic for suitable cell geometries.

(a) Its response to alpha-particles and carbon recoils from 14 MeV

neutrons is only about half the pulse height that is produced with stilbene
(45)

scintillators .

4.3 Discrimination against gamma rays

The discrimination between recoil electron and recoil proton
pulses during this measurement was performed using the method of zero

crossing technique which was first proposed by Alexander and Goulding(47)

and used by many other workers(48'49’5o'52'53}. Like all other various
methods of pulse shape discrimination the zero crossing technique makes
use of information contained in the time dependence of the current pulse
of the photomultiplier. The current pulse is formed of two components,
one of short decay time and the other with a longer decay time. The
energy contained in the longer term decay component is quite different
for the electron and proton, assuming equal recoil energies. When the
pulses are integrated and differentiated by two differentiating networks
(double delay line clipping), the cross over point is different for the
neutron and gamma rays as shown in figure 4.1. The timing of the
cross over with respect to the start of the pulse is sensitive to decay
components in the scintillation but insensitive to pulse amplitudes.
By measuring the zero crossing time the pulse shapes and hence the
particle types can be determined.

The main advantages of the method of zero crossing technique
are that it is suitable for use over a large dynamic range of pulse
amplitude, it is capable of operating at a high counting rate and it

can use only dynode signals, thus allcwing independent use of anode
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signals for fast timing. This, in.addition to the fact that it only
requires relatively simple electronic circuitry.

The method adopted by McBeth et al(49)

is used for
differentiating between the electron and proton pulses which seems to be
a very convenient and simple technique. This method is based on
measuring the time difference between the fasf anode current pulse and
the zero crossing of a doubly differentiated voltage pulse obtained
from a suitable dynode.

A detailed description of the zero crossing system based on
the above mentioned method is given hereafter in a description of the

spectrometer.

4.4 Measuring and P.S.D. Systems

The NE-213 scintillator was coupled to a 14 stage
photomultiplier tube type 56 AVP (see figure 4.2). This type of
photomultiplier was chosen because it has a high degree of time
definition and a high time resolution which are required for fast
measurements (coincidence). The aynode chain appropriate to P.S.D. is
shown in figure 4.3. with a block diagram of the spectrometer. The
cathode is operated at approximately -1900 V and the anode near earth
potential. A high voltage supply capable of supplying ~ 2mA to the
dynode chain is necessary.

With this high gain photomultiplier the amplitude of the
current pulse at the anode is not proportional to the amplitude of the
scintillation pulse. Due to the lack of information contained in this
pulse, it is only used as a timé reference signal and as such it can be
used simultaneously to generate a signal for use in coincidence circuitrf
and as a time marker signal for use in P.S.D.

Linear signals are taken from dynode number 10. The current
pulses are directly integrated with the decoupling capacitor and resistor
network at this dynode. This gives a current pulse with a voltage step

of rise time determined by the scintillation decay times and the time



% &
. - IEE LR RETTTY
>3 \ \* 7 S PR W

EEEEER] TR AN AT A AT ATIAAANNAINNNINNINNNANA Y

L]
::Lt:uuuuutt:t.:...::.:.:t..._tti..i::
a \\-
'
S I

22,

Detector - i}\terior view.

&
» A RREEE N F 2
i _:.‘4:..1.;..........a;;..JJJJJ;.;.....:.-».:LL.: »»»s&.:..

Fig.(4-2)




-moasks *@*s-d oyz Jo weaberdq Foo(d pue urwud spoulg

*¢rp 2anbTa

g7y o310 |

VOT) 2930
: I02BIDUDD
Avton

act

20330
JOITET

o
H

hmwwa

A
O
2]

[y 099

D.. r,U_c_.\mD. (@
A

I

¥y ly 20130

oqeo R
7 AvaUTT _ SoUDPTo
{ " _ “UTOD2THUY
Oz 92130
20320390
Burssoxn
0XDY
ULz 99330 S8¥ 292310
IO ITTUNY FoTITTdUY
AeTag

£IT 29370

m=alohn_

e

adozg

o=
5
!

e
Dém FLQONN
i g
O___._, kum_momm
Dsm memoﬂ
_ | P, L.,
‘lﬂnlu; 96 =—adozz
17770°0 k)
““HHH“HL
H9G
mé
Qmﬂu
NOST
ki

A COGT-




33

constant of the resistor and capacitor network at the dynode.

In this system of P.S.D. the preamplifier is non shaping and
the amplification and double differentiation are accomplished in the
main amplifier by means of resistor capacitor networks. This amplifier
gives an output of bipolar voltage pulses which pass through the base
line at different timegzgg;end on the shape of the input pulses (particle
type) but independently of their amplitude (particle energy). Measurement
of the width of these pulses is difficult to perform in practice owing
to the necessity of triggering the measuring instrument. However this
problem can be overcome by using the anode current pulse as a zero time
reference and to measure the time difference between this signal and the
zero crossing of the dynode voltage pulses. The zero crossing
discriminator is used to measure the zero crossing times of these doubly
differentiated pulses. This discriminator is capable of measuring this
time difference to an accuracy of + 1 ns. i

Small time differences (<1 s) are commonly measured by time
to pulse amplitude converters which produce output signals of amplitude
proportional to the time difference between the input signals. In this
system the time to amplitude converter is substituted by a coincidence
system. In that case the P.S.D. is set up by measuring the count rate
at the output of the anticoincidence as a function of the delay in the
delay and gate generator. The delay and gate generator is adjusted to
produce an anticoincidence pulse with a falling edge occuring before the
leading edge of the electron zero crossing signal. Therefore, any zero
crossing signals that are overlapped by the delayed anode pulse are then
blocked by the anticoincidence unit.

Figure 4.4 illustrates the time relation between the various
pulse forms for simultaneous excitation of the NE-213 liquid scintillator

by neutrons and gamma rays from an Am-((~-Be source.

The main advantages of this anticoincidence method are its
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simplicity, (less cost) and the delay of the P.S.D. signal relative to
the output pulse at the linear amplifier is reduced by approximately

4 [Lsec. This can be extremely useful in subsequent gating operation.
Moreover, this system is equally efficient in rejecting either particle
type.

After filtering the recoil proton pulses from the recoil
electron pulses in the anticoincidence unit, the output pulses are applied
to the linear gate which controls the passage of the linear delayed pulses
comming from the main amplifier through the delay amplifier. The sorted
proton pulses from the linear gate are then supplied to the input of a
400 channel (RIDL) pulse amplitude analyser.

Figure 4.5 presents a photograph of the measuring system with
the control panel of the SAMES Accelerator.

4.5 Calibration of the Spectrometer

The value of pulse height of light yield P(E) and the efficiency
are known as a characteristic of the scintillator but not of the
spectrometer as a whole. However a spectrometric measurement is
concerned with the analysis of pulse amplitude distributions V(E). The
amplitude of these pulses is proportional to the number of photons in
a light pulse arriving at the photocathode of the photomultiplier and is
in turn related to the amount of energy absorbed in a scintillator. In

this case:

V(E) = constant. P(E) gl eI e B P 1

where the constant is the energy relation between pulse height and light output
However, the above relation for certain models of spectrometer

is sometimes distorted due to the characteristic of electronic devices

used in such a spectrometer. Such distortion can be expressed through

a complementary factor D(E) which depends on energy, i.e.,

V(E) = constant. P(E). D(E) RGO pae o N



<




Therefore, for each practical case, especially when adjusting a new
spectrometer a certain run of measurements should be performed to test
the spectrometer (spectrometer calibration), if the calibration results
in D(E) = 1, this means the absence of non linear distortions, otherwise
the necessary corrections have to be introduced, most conveniently these
corrections are introduced into the value of P(E) and consequently dp/dE.
Thus, to adjust, calibrate and measure the constants for a new
spectrometer, a set of measurers and tests have to be performed. Such
measurements which were carried out for the spectrometer are described
as follows.

4.5.1. Spectrometer Linearity

The spectrometer linearity was tested by means of gamma ray

2 6
sources l3?Cs, zNa, 0Co and also with gamma rays of 4.43 MeV

accompanying the formation of neutrons in 241Amr(x—Be source. The pulse
amplitude (channel number) is plotted against the maximum energy of the
Compton electron (Emax} generated as a result of the Compton scattering

process with the scintillator. For gamma quanta of energy EO}/, the

value of E can be calculated as:
max

where E and E_7Y are measured in MeV.
max o
The value of the maximum energy (Emax] is taken according to
the prescription of Flynn et al(27) is approximately 13% above the
€ompton edge half-height for our system.
Figure 4.6 shows the relation between the pulse amplitude
and Emax over a wide range of amplification of the main amplifier.

It is clear that the spectrometer remained linear over this wide range

of energy and magnification.
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e S i Relation between Recoil Proton and Electron Pulses

This was determined at two specific neutron energies by using
a monoenergetic beam of neutrons of energies 14.13 MeV from T(d,n)4He and
2.48 MeV from D(d,rﬂ3He reactions and with gamma ray sources to determine
the relationship between electron and proton energies which give the same
pulse height, The measured values of pulse height for these two specific
neutron energies are compared with those given by other workers(45'58’61'68),
after normalising their data to tﬁe present experimental value at 14 MeV.
The relations between pulse height and particle energy are presented in
figure 4.7. A good agreement between the measured values and that of
the others can be seen from this figure. Thus the relation between the
pulse height and energy of the proton recoil can be calculated from these

(68)

two formulae derived from those given by Maier et al 1968. These

are given as:

2/3
Qp = 3.48 E, for EE <1.85 Mev B e A e !
%p = 1.78 (Ee + 1.1) for E% 5> 1.85 MeV e e et s » 4.5

Based on these two equations the pulse height spectrum in the analyser
can be converted to an energy distribution of recoil protons.

4.5.3. Gain Standardization and Energy Scale

Gain standardization is one of the most troublesome problems
in reproducing the experiment measurements. This was ensured during
these measurements by measuring the 22Na pulse height spectrum before
and after each neutron measurement.

The energy scale or channel width of the analyser was also
found by measuring the pulse height of the Compton electrons. A check
was also made on the assumed calibration by measuring the spectrum of

neutrons from a standard source. This was carried out in our case by
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241 ;
using a Am- 0t-Be source and is discussed hereafter.

4.5.4. Discrimination Capability

The spectrometer sensitivity to rejection of gamma background
was tested by using gamma rays from 60C0 and neutron and gamma rays from
Am-Be source. The 6OCo source has a strength of about %ﬂACi and a
dose rate of about 0.6 m rad h-l at a distance of 5 cm which is the
distance between the source and detector. The neutron source has a
neutron yield of about 2.5 x 106 ns_l and a gamma dose at the distance
from the detector (50 cm) of about 10 m rad hhl.

Measurements were carried out for Am-Be and 6000 and another
for Am-Be only, in both cases the measurements were performed with and
without PSD. When the PSD was used to discriminate against gamma rays
the pulse height distribution due to gamma rays from GOCO was entirely
eliminated from the measured spectrum as shown in figure 4.8. The
remaining pulse height spectrum is identical with that from the Am-Be
source when PSD was used to eliminate the 4.43 gamma rays from the
de-excitation of lzc.

4.6 Corrections for losses in electronics

Another important calibration consisted of measuring the
correction factors for losses due to the electronics used to separate
proton pulses from gamma pulses. This was performed for the present
spectrometer by measuring the pulse height distributions from the
T(d,n)4He reaction both with and without the use of the neutron gamma
ray discriminator. The two differ only by the losses due to the pulse
shape discriminator since essentially no gamma ray pulses occurred in
this reaction. The ratio between the two was used to eliminate the
distortion due to pulse shape discrimination. Figure 4.9 presents
the two pulse height distributions of the 14 MeV neutron measured with

and without PSD.
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4.7 Detector Efficiency

In organic scintillators neutrons are detected by the charge

deposited by protons recoiling from collisions with neutrons. The

efficiency for this process, in accordance with Swartz and Wen(lg) is:

-alL 4
en = nHO"n,H(l - e ) /a A S e

t
Il

where the detector length in cm and

= . O +n .0
8 nH n,H c N.C

The NE-213 scintillator used in this work has the parameters:

Chemical formula - (CHl.zl]n

Density = 0.867 gm. cm—3

number of hydrogen nuclei,

NH = 0.04826 x 1024 atoms.cm-B

and a number of carbon nuclei

Nc = 0,039862 x 10"24 atoms.cm_3

The values of Gn were calculated using the above formula for

neutron energies between 0.1 - 15 MeV. The data of scattering cross

(81)

section for hydrogen were obtained from the relation of Wasson 1968

as:

o = 5.603 (1 + 7.417E + 0.1105 E2)
n,H

+ 0.8652 /(1 + 0.2427E + 0.0028E2) barns/atom

and the total neutron cross sections for carbon O were taken as in

r
referenceteo). The calculated values of €, against neutron energy En

are plotted in figure 4.10.
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4.8 Corrections for Scintillator Size

Most of the analytical methods used to transform the pulse
amplitude distribution into neutron energy distribution contain a
correction factor B which depends on the scintillator size and is a
function of neutron energy. This factor contains the effect of second
scattering from hydrogen and wall effects (protons which lose only part
of their energy in the scintillator). These two effects are treated
together since they both depend upon scintillator size. As scintillator

size increases second scattering becomes more important while wall effects

(82)

become less important. In accordance with Brock and Anderson this
factor is:
1 78 B 9 n_ o 7. O 4
= -~ - 3 - L " - - -
B o E$' 0.0 nH n,H 0.0 7nH ﬂ’HJ:' 7
where Rm = the range of a proton in mg.cm- ’
This is calculated using the relation given by Schutter(43),1966
R = 17382 (E+ GLaEoisiE SRR R J e B
r = the scintillator radivs in ecm.
L' = the scintillator thickness in mg.cm .
L = the scintillator thickness in cm.
n, = the number of hydrogen atoms.cm-3 and
or'n 1 the value of the microscopic cross section of hydrogen
[

(U}IH) at 0.068E.

In the above equation the second term is the correction for
wall effect and the last two terms are the corrections for second
scattering.

This correction factor was calculated over a range of proton
energies (0 - 15 MeV) for the NE-213 scintillator which was used in this

spectrometer and was applied to the unfolded neutron spectrum to eliminate
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the distortion effects due to the scintillator size. The variation of
this correction factor with neutron energy for the NE-213 scintillator
used in this work is given in figure 4.11l.

4.9 Unfolding Methods

Usually, the experimental data given by any spectrometric
measurements do not produce directly the desired information on the energy
distribution of the recorded particles. Most often, to obtain such
information, the raw data must be interpreted and unscrambled before an
evaluation of the quantities which the experiment was designed to measure,
can be obtained. This is the situation in the measurement of the energy
spectrum of neutrons whenever the detection system is based on the proton
recoil technique. The experimental pulse amplitude distribution
collected in this type of neutron energy spectrometry are directly
related to the energy spectrum of the recoil protons. An appropriate
analysis or unfolding method must therefore be performed on the measured
pulse amplitude distribution to evaluate the neutron energy spectrum.

In this work the method of differentiation is used. This is considered
as the simplest and most accurate method{sgj.

Assume that a scintillator of thickness d, receives in unit
time a number of neutrons ¢c:°f energy Eno' The number of recoil
protons in unit time due to a single scattering event is given by:

N = ¢ [1-exp(->}.d)] S RN

o
where 3 is the macroscopic total scattering cross section of neutrons
by hydrogen nuclei in a scintillator.

With the assumption that neutron scattering in the centre of
mass system is spherically symmetrical as is the real case up to En

~ 15 Mev(lgl, the number of recoil protons with energy E in the unit

(o]

energy interval is:

N(E) = ¢ .(1- e"Ed,/Emax e e e
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Since the maximum value of energy which the recoil proton can
gain from the scattering of neutrons by hydrogen nuclei is equal to the
neutron energy Eno' therefore:

-2
N(E) = ¢ (1-e d}/E « ow s & 4=l
o no

If the scintillator receives neutrons of a complicated energy
spectrum (ﬁoiEn), recoil protons of energy E will be generated by
neutrons of different energy starting from En = E. In this case the

" number of recoil protons in a unit energy interval is:

£ -2d
j' ¢0(En} (1 -e ) ax._

En

N(E) = R i W

E

Differentiating this equation:

-2
s Lm0 q,
g
En
or
¢ () = WE) “n 4.13
o n - dE - —(_—]:——__e.:yd')_ - - - - - a

This means that the neutron spectrum can be obtained from the energy
distribution of the recoil protons by differentiation.

Experimentally, the measured data are the pulse amplitude
distribution N(V) but not the recoil proton energy distribution N(E).
However, these values are unambiguously inter-related. Assume that
protons of energy E produce pulses of amplitude V. Therefore the
number of such protons in the interval dE should be equal to the number

of pulses with amplitude V within the interval dv, i.e.

N(E) .dE = N(V).dv
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or

dav :
o o) *« & = o - 4‘:14
N(E) N(V) an

The derivative over E from this equation is:

dN(E) _ 4 av

= = e [N(V}dE]

M N e A

= [N(VJGE ]dE ¢ o s e wd b

substituting this value into equation 4.13 therefore:

_ [y ] .av n
¢°(En) = 'CW[N(V)dE].dE .m o ey e el

By differentiating equation 4.1 with respect to energy and substituting

the value of %%-into equation 4.16, then this equation becomes

b (&) = " T [N{V}%J% L Z 417
A(lL - exp (-24))
where K = the constant in equation (4.1) and is the relation between

pulse height and light output.

A the scintillator area in cm2 and

B the correction factor for scintillator size

In fact, such transformation is made for an idealized form of
recoil proton energy distributions. However, many experiments have
shown this approach to be reasonably accurate for measuring real neutron
spectra(59'67).

Naturally, the real pulse amplitude distribution even for
monoenergetic neutrons is impossible to describe analytically. For

this reason, numerical methods have to be used for the determination of

the derivative. This circumstance is a source of pronounced errors,
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especially with a small step of differentiation and insufficient
statistics. To minimize such errors, Kazanisky et altsg) suggested
the least squares method for the determination of the derivative. In

this method the spectrum is expressed over five adjacent pointé with a

pitch AV in the form of a second order parabola, then

- S RS
X 2BV, _ ) ® BV, ) - BV, o o) - _wai 53 e n 418
10.4AV

Thus the analysis of the result was reduced to a multiplication of the
measured pulse height N(V) by g%-for each channel, then differentiating
with respect to pulse height followed by multiplication by the correction
factor for the efficiency.

The dependeﬁce of the photomultiplier pulse height upon the
energy of proton recoils was calculated using these two relations given
before in (4.5.2).

" This method has been used in the present work for a computer
program NEUTRSPECT given in Appendix 3, to restore the neutron energy

spectra from the measured pulse amplitude distributions.

4.10 Smoothing of Data

The measured pulse amplitude data contain fluctuations which are
produced in the detection system and associated experimental equipment.
These fluctuations, if ignored, may give fluctuations in the spectrum
which have a larger amplitude than the structure of the actual neutron
spectrum. Therefore, the measured apparatus spectrum has to be smoothed
before using the unfolding method. This was performed in the present
work by the following method, assuming a Gaussian distribution over 3,

5 or 7 channels and taking a weighted average, as overleaf.
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This method reduces the effect of statistical uncertainties

in any one point at the expense of broadening the energy resolution.

Since pulse height is not linearly related to proton energy the effect

on energy resolution varies throughout the energy range.

The standard

deviation of the averaging functions used is:

3 points
5 points

7 points

Over 2 channels

A channel width

+ 1.5 channel width

it 2 channel width

n-l n ntl

= 0.5 C +:0,2
= n Qo= (Cnrl * Cn+1)
I ~
/ \
/ \
/ N
/ \
Over 5 channels / \
L/
7 N
/ \
4 N
/ N
7
I/ \\
e \\
n-2 n-1 n n+l.n+2
T = 0.312 xC_ + 0.229 + ; ]
s f (e, +ic ) vONLE ;4 o)
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ol M

Over 7 channels & \

n-3 n-2 n-1 n n+l n+2 n+3

ol
I

0.2 + O, + -

o 36 x Cn 0.198 (Cn—l Cn+l) + 0.117 (Cn_2 + Cn+2)
+0.067 (C__; +C_ )

4.11 Effect of Statistical Uncertainties in Counts

The uncertainty in the measured pulse height distribution due
to the statistical processes in the interaction of neutréns with the
scintillator has been checked using the standard deviation method. This
was performed by re-analysing the pulse amplitude distribution for one
measurement after alternating the number of counts (n) per channel to
n + Jﬁ_l The given data show that for high counts there is no significant
difference between the analysed neutron spectra. The maximum variation
observed was < 4% between extreme results (typically <1%) at about
1000 counts per channel - typical of the high energy end of the pulse
height distribution. The smoothing of the raw data was carried out over
each 5 channels and the given analysed spectrum was averaged over 3
adjacent channels.

4.12 Test with 241Am—cx—Be Source

A useful check of the validity of the measuring and unfolding
techniques is to measure the continuous spectrum of neutrons from a
standard neutron source. By analysing the position of maxima and minima
in the neutron energy distribution and comparing these with known peaks
in the distribution a check on the calibration can be made.

To calibrate the spectrometer which was used in the present

work, a neutron spectrum of 1 Ci Am- ¢-Be source has been measured with
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threshold energy rénge ~ 0.5 MeV. The source is supplied by Radio-
Chemical Centre, Amersham, U.K., and has a yield of 2.5 x losn/sec.
The source was covered by a 3 mm lead sheet to cut off the 60 KeV gamma
rays from QélAm. Since it was not possible to perform the measurement
with the scattering objects at distances more than 1 m away from the
detector and the source, the method of shadow bar was used to eliminate
the undesired scattered neutrons from the source spectrum. In that
method the neutron spectrum is measured once with the source at 50 cm
distance from the detector, then followed with another measurement with
a bar of paraffin and boric acid placed along the axis betweén the source
and the detector. This paraffin bar has a length of 25 cm and a
diameter which is slightly greater than the source diameter. In both
cases the measurements were carried out under the same conditions. The
data given with the latter measurement is then subtracted from the
previous one and, thereby eliminated the back scattered neutrons from
the original source spectrum.

Figure 4.12 presents the present Am-Be spectrum after analysing
the measured recoil proton spectrum with another measured one using a

(63)

stilbene scintillator and another calculated one using the most

recent data of neutron angular distributions(64). From this figure

it can be seen that our measured spectrum agrees well with the others.
The slight differences in the intensities at the observed peaks can be
attributed to the different compositions of the sources in the given
cases. As seen also from this figure the coincidence in the position
of maxima and minima shows the absence of non linear distortions in the

electronics of the present spectrometer for the neutron energy range of

interest.
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CHAPTER 5

SHIELDING ASSEMBLIES AND NEUTRON SOURCE

5.1 Introduction

The spectra of fast neutrons which have passed through layers
of iron and homogeneous and heterogeneous mixtures of iron-graphite and
iron-polypropylene media have been measured for roughly cylindrical
assemblies containing a point source of 14 MeV neutrons from the
T(d,n}4He reaction. Measurements were performed at the surface of the
cylinder along a radius from the source. All measurements have been
made with the NE-213 scintillation spectrometer described before in
Chapter 4. Measurements have been performed for different thicknesses
of these materials in the range 5 up to 40 cm. The intensity of the
neutron source was measured by detecting the alpha particle associated
with the neutron in the reaction using a plastic scintillator placed at
73 cm in the alpha flight tube.

5.2 - Shielding Assemblies

The shielding assemblies were supported horizontally at the
edges of a concrete chamber. This chamber is built of concrete bricks.
The inner dimensions of the cell were such that the assemblies were
securely supported and the walls sufficiently far away to reduce the
back scattered neutrons. The wéll thickness is quite sufficient to
shield against fast neutrons. Figure 5.1 shows the SAMES Accelerator
and the experiment assembly.

D2yl Iron Assembly

For iron shielding assembly, a mild steel plate of 122 cm x
40 cm and 1.27 cm thick was wused to build up the required thickness.
The. upper and lower parts of the cylinder were mostly made of the

larger plates while the sides were made of 5 cm, 10 cm and 15 cm



Fig.(5-1) SAMES Accelerator
and Experimental Assembly.
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pieces arranged to give a roughly circular profile of ~ 28 cm diameter.
A hole was made on the left side of the cylinder for the alpha flight
tube, figures 5.2 and 5.3. The target was placed centrally at ~ 14 cm
below the bottom plate. Measurements were carried out for thicknesses
5, 10, 15 ....30 cms with the detector placed adjacent to the surface of
the top plate.

D 2ude "Homogeneous" Media Assemblies

The layout and construction of "homogeneous" media of iron
graphite and iron polypropylene shield was similar to those of iron
assemblies. In the case of polypropylene assemblies the required
thickness was built up by putting an iron plate followed by a polypropylene
plate which has the same dimension. This was repeated.

In the case of "homogeneous" media of iron graphite
assemblies, the pattern is slightly different from the counterpart of
iron polypropylene assemblies. This is due to the fact that graphite
was available in the form of 2.54 cm thick plates of 76.2 cm x 5.08 cm wide.
In that case the required thickness was obtained by putting two plates of
iron followed by one layer of graphite plates.

s Heterogeneous Shields Assemblies

The neutron spectra behind a heterogeneous shield can be
studied by means of the two layer configurations. Theoretical
calculations were performed on heterogeneous media having the two layer
and effectively homogeneous configurations of non-graphite and iron
polypropylene materials. The calculated data show that for the two
layer form, if the first layer is the heavy material, it is more
effective on neutron attenuation than the multilayer form of having the
same thickness and materials. Thus, in the present work, the measurements
were carried out on the two layer configurations as well as effectively
homogeneous systems.

In both iron graphite and iron polypropylene shields, the
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required thickness was obtained by constructing an iron layer followed
by a layer of polypropylene or graphite which has the same thickness.
For different configurations the thickness of both layers was measured
by the same ratio. This allows a two-layer configuration having a
1:1 ratio by volume of both elements.

el Neutron Production

Neutrons at an energy of 14.13 MeV, were obtained from the
T(d,n)He reaction by the bombardment of a tritium-titanium target with
a deuteron beam of energy = 120 KeV using a SAMES type-J accelerator
Neutrons produced at 90° to the direction of the deuteron beam have
energy of about 14 MeV and an energy spread less than 100 KeV.

R 5 Neutrons from T(d,n)He Reaction

Neutrons of high energy can be supplied by the T(d,n)He
reaction:

3Hl + 2Hl 5 4Hez +n + Q

This is an exoergic reaction with a Q value of +17.578 MeV.
Because of the high Q value, the variation of neutron energy with
deuteron energy is very small. At a deuteron energy of about 120 KeV
the neutron energy varies around 14.0 MeV at 90° by only about + 0.5%.
The alpha particle produced in the reaction associated with the 14 MeV
neutron has an energy of about 3.5 MeV. The kinematics of this type
of reaction, tables of energies of the reaction products as well as the
conversion factor from the laboratory system to the centre of mass
system are available in several works(73'74'75'76}.
The variation of neutron energy with the emission angle at

(768) 1959, ‘&

different deuteron energies is given by Saker et al
similar calculation was performed to compute the relation between the

energy of the emitted neutrons and alpha particles and the angle which

(72

)
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they make with the direction of the incident deuteron for different
deuteron energies. Table 5.1 presents the variation of angular energy
of neutrons and alpha particles for deuteron energy of 120 KeV. The
variation of angular energy of the emitted neutron at different deuteron
energies is presented in figure 5.4, The study of this figure indicates
that the emitted neutrons are meneenergetic around 90° to 100° to the
direction of the incident deuteron and the energy spread increases in
either direction away from this region being maximum in the forward
direction (Oo). Also the spread increases with increasing deuteron
energy.

5082, Target

The targets used are of the type TRT-51, supplied by the
Amersham Radio Chemical Centre of the UKAEA. The target has a copper
backing disc of 2.82 cm diameter and 0.25 mm thickness. A very thin
layer of titanium of 2.5 cm diamter and 6.7 mg/square inch is deposited
by vacuum evaporation and tritium is absorbed on tﬁis. Titanium absorbs
tritium by exothermic occlusion’involving the formation of a solid
solution and interstitial compounds. The composition of the compound
varies from tritium:titanium as from 1:1 to 2:1 in these layers.  They
can withstand up to 200°C in vacuo{?7}, beyond which tritium begins to
come out. The typical target total activity is about 5 Ci. |

There is some uncertainty about the tritium distribution in
these targets, but in fact this depends upon the manufacturing technique
and conditions. However, the possible distribution of tritium and the
average energy and yield are available from the published

7 9 .
L 8x s o and is relatively unimportant at low bombarding

literature
energies from its effect on the emitted neutron spectrum.

5.4 Measurement of Neutron Yield by Associated Particle

In measuring the neutron yield by the detection of the

associated particles, the knowledge of the angular distribution of the
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alpha particles is necessary in order to transform the number of counts
to the total yield. For deuteron beams of energy below 200 KeV, the
angular distribution of both neutron and alpha particles are isotropic

in the centre of mass system, so that the angular distribution in the
laboratory system and the degree of anisotropy can be accurately computed,
(Table 5:1.). The alpha anisotropy considerations can be by-passed if
they are detected at an angle of 90° to the incident deuteron beam, since
at 90O the angular distribution in the laboratory system is almost the same
as in the centre of mass system. Therefore, at the bombarding energies
used in the present work, the alpha detector is placed at 90° to the
direction of the deuteron beam. A similar effect is found for neutrons
emitted at 90°.

The associated alpha particle emitted in the T(d,n)4He reaction
has an average energy of about 3.5 MeV which is high enough for accurate
counting by a suitable detector placed facing the target.

In the present work an early attempt was made to count the
alpha particles with a silicon surface barrier detector placed inside
the beam tube at a distance of 68 cm from the target in the backward
direction near the deuteron beam at an angle of 178° to it. Unfortunately
it seemed that the detector was affected by either the presence of fast
neutrons or more likely secondary electrons produced in the beam tube.

It proved impossible to use the SSB for yield measurement during this
work due to inconsistent behaviour, particularly loss of gain with time.

After a complete study of the available alpha detectors which
are suitable for this geometry it was found that a thin disc of plastic
scintillator can be used for such Gork. The main advantages of the
plastic scintillator are its insensitivity to radiation damage, and the
possibility of using a very thin piece makes it possible to discriminate
against any scattered neutron or electrons. Its disadvantages are that
it needs a bulky photomultiplier tube and electronic components in

contact with the scintillator. However, this was overcome by using a
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Table 5.1

Variations of Angular Energy for Neutrons and Alpha Particles,

Deuteron Energy = 120 KeV

Anisotropy Alpha Energy AngleO Neutron Energy Anisotropy
Factor (o) MeV MeV Factor (n)
32198 4. 3096 0.000 14.8870 1.0528
1.2157 4.2960 10.000 14.8722 1.0520
1.2049 4.2557 20.000 14.8373 1.0495
1.1873 4.1908 30.000 14.7804 1.0456
1.1638 4.1042 40.000 14.7036 1.0402
1.1353 3.9998 50.000 14.6095 1.0336
1.1029 3.8821 60.000 14.5011 1.0260
1.0678 3.7558 70.000 14.3822 100176
1.0312 3.6256 80.000 14.2565 1.0087
0.9946 3.4960 90.000 14.1280 0.9997
0.9588 J.3711 100.000 14.0007 0.9906
0.9252 3.2542 110.000 13.8783 0.9820
0.8944 3.1783 120.000 13.7675 0.9739
0.8673 3.0556 130.000 13.6624 0.9666
0.8444 2.9719 140.000 13.5749 0.9603
0.8263 2.9164 150.000 13.5044 0.9553
0.8131 2.8719 160.000 13.4526 0.9516
0.8051 2.8450 170.000 13.4210 0.9493

0.8024 2.8360 180.000 13.4104 0.9483
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flight tube at 90° to accommodate the scintillation counter. The target
was inclined at 45° to the direction of both the incident deuteron beam
and the axis of the flight tube. This can be seen in figure 5.5.

Bedol. Scintillator and Measuring System

An 8mm dia x 0.5 mm thick disc of NE-102A plastic scintillator
coupled to a 6097B photomultiplier tube was placed inside the flight
tube at a distance of 73.2 + 0.1 cm from the target. A very thin film
of aluminium coated polycarbonate was used to exclude light and prevent
the passage of the scattered deuterons to the scintillator. A small
brass aperture of accurately measured diameter was placed in front of
the detector to define the solid angle of the alpha particles witﬁ the
detector. The output pulses from the photomultiplier anode are applied
to a cathode follower which is connected directly to the housing of the
photomultiplier. The output signals from the cathode follower were
supplied through <~ 15 m cable to the input of an amplifier,type 1430 A.
After amplification, the alpha pulses were counted by a scaler, type
1009 E, which was biased to discriminate against any undesired noise
pulses. A block diagram of the electronics used for detecting and
counting the alpha particles is shown in figure 5.6.

5.4:2, Geometry Factor

In order to determine the real number of alpha particles and
in turn the absolute number of neutrons during certain measurement, the
number of alpha counts by the detector have to bereducedby a factor which
is called the geometry factor. This factor depends on the solid angle
which the detector made with the source, i.e., the detector area and the
distance of the detector from the source.

Assuming that SO is the source strength of an isotropic
o —source in the laboratory system, Co is the alpha particle counts by
the detector at R cm away from the source and having a circular aperture

of diameter D held normally to the line joining it with the source.
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Thin Aluminium Film
‘4 Scintillator

e=——— Photomultiplier

el Cathode Follower
(L430 &)

i /.

H.V. Power Supply
(1617a) s,

Amplifier (1430 A)

lec— Discriminator
(1008E)

Scaler (1O09E)

Figure 5.6. Block Diagram of the Electronics for Detecting and
Counting the Alpha Particles
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 Therefore, *he source.strength can be given by:

vhere A (]l is the solid angle which is given by:

2 2
A = 3[51%;% = e i o STl 1

49T R MRﬂ

Assuming that R is large and the target area is small enough
so that it is effectively a point source as viewed by the detector

therefore:

16'R2 c .G
0

o a 52

where G is termed the geometry facto; which is the inverse of the solid
angle as defined by equation 5.3.

As seen from the above equations that the squared values of
R and D are used, thus R and D have t6 be accurately obtained. The
value of D is measured with accuracy of + 0.001 cm using a Universal
measuring machine "Genevoise". Several measurements were taken and
the mean gave an average diameter of 4.9314 + 0.013 mm. The distance
from the target was measured as 73.2 + 0.2 cm. This gave the geometry
factor a value of 3.508 x 105 (+ 2%).

The value of G was used in the computer program written for
the analysis of data to normalize all the measurements to the same
source strength, thus allowing an absolute measurement of the neutron

spectra in all experiments.
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CHAPTER 6

METHODS AND COMPUTATIONAL TECHNIQUES USED

FOR CALCULATIONS OF NEUTRON PENETRATION

6.1l Introduction

The passage of neutrons through matter is similar in some
aspects to gaseous diffusion or the diffusion of heat. Because of
the extremely small density of neutrons in nuclear reactors, collisions
between neutrons are rare(lz). Neutron migration involves a large
number of random collisions which are mainly between neutrons and the
nuclei of the medium. The rigorous treatment of these collisions was
described by the transport method formulated by Maxwell and Boltzmann
in the last century. This method can be used to predict the neutron
flux distribution throughout the medium.

Some of the problems arising in the design of nuclear reactors
and in shielding calculations can be attributed to the complicated nature
of the necessary mathematics or to the lack of information and the
uncertainties in cross section data. Although slowing down by inelastic
scattering is of great importance, especially in the design of fast

\AES,3 20) inelastic processes are

reactors, in the standard textbooks
completely neglected.

_The transport method which has been widely used for several
years, for the study of neutron attenuation is monoenergetic , therefore
the study of a wide energy range must be represented by a group structure.
Inaccuracy of a few percent in the average group cross section can lead
to an unacceptable error in the estimation of the neutron flux behind
the shielding. Even if the effective group cross sections are known

with a good accuracy, the value of the effective group cross sections

of an interaction can be changed with the shield thickness if the groups
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are too wide in energy, due to changing neutron spectrum.

In the past the application of the Boltzmann transport theory
to practical design calculations was farely made and the majority of
shield arrangements have been determined by empirical methods such as
the kernel approach(BS} or removal diffusion theory. These methods
were mainly based on the results of experimental studies of neutron
attenuation in certain materials. The application of the neutron
transport equation to the study of neutron slowing down problems started

(89) and Fermi(go).

in 1937 with Ornstein-Ohlenbek
Since 1950, the technical development of high speed computers
with large storage capacities has led to a wider application of numerical
methods for solving the transport equation. This resulted in several
hundred different reactor codes which were written for over 20 types
of digital computertgl). Unfortunately, the computational techniques
of these codes are rarely discussed in the published papers, usually the
name of the code is mentioned. Therefore, the choice of a method which
is suitable for a certain application is uncertain.
In the following section, the approach of the Boltzmann
transport theory and the different methods which are commonly used in

shielding calculations are described in outline.

6.2 The Boltzmann Transport Equation

The approach is to consider a small volume element dV located
at a certain point in the system and to derive an expression for the
various ways in which neutrons having a given energy,and moving in a
specified direction, enter and leave this volume element.

The neutron density N in the volume element dV at a point r
can change, due to one of these three effects.

(1) Neutron leakage from the system without collision.
(2) Neutron collisions which can lead to change in neutron energy

and direction.
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(3) The presence of neutron sources in the system.

2

If () is a unit vector in the direction of the velocity of a
neutron with lethargy U (U = £n EO/E, where EO is the initial neutron
energy), then N (r,f{l,U,t) dr dfl AU is the number of neutrons whose
velocities lie in the solid angle dfl about {1l and whose lethargies are
between U and U + dU all measured at time t.

In the case of neutron balance, that is neutron losses are
equal to neutron gains or d¢ /dt = O, then N(r, ,U,t) can be derived
simply fr;am the different effects.

The change of the distribution function of neutron leakage

from the system in the direction of fl is

V.VN(x, i,U) i L 62
where V is the gradient operator.

Since any collision changes the direction and/or the lethargy

of the neutron, the removal rate is:

5, (x,0 . WN(x, 2,0) Rl
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where E}t is the macroscopic total cross section and is given by:
.0 = 3 (0 + 3, (x,0) + 3 _(r,0)

in which Ee' 2 i and Ea are the macroscopic elastic, inelastic and
absorption cross sections respectively.
The rate of elastic collisions at the point r experienced by

neutrons of V' and lethargy U'is given by:
Ee(r,u'). V'N(Q ,U") S & e e B3

if 9 (ﬂ‘,U';ﬂ,U} is the relative probability of a neutron being left
with velocity parameter ({1 ,U) as a result of an elastic collision before
which its velocity parameter were (f{)',U'), then the number of neutrons

scattered into the beam per second is:

)
f du f S QIS Ay e(r,U')N(r,ﬂ',U').

Sate g (0,0 2,¢) e R

where U - ee represents the lowest lethargy from which neutrons may be
elastically scattered into U; it is assumed that the function

ge( n',0': 0 ,U) is normalized to unity; i.e.,
fanf aug (Q,0:0,0 = 1

Similarly the number of neutrons scattered into the beam at point xr
experienced by neutrons of velocity V' is:
u
f du!’ [ dﬁ.! v! Ei(r;U'} N(x, Q',u").

=G g,(Q',u': 0,0 O



The production of neutrons at point r with velocity parameters (Q,0) is
o0
so{r,ﬂ,u} -+ gf(U)[ du'[ an' vip(u") .

2 34 (r,u") ML, 15,0 o o s 5 646

where So is an external source and includes sources of delayed neutrons,

v is the number of prompt neutrons produced per fission,

b g = the macroscopic fission cross section.

gf{U)is the relative probability that the fission neutron
is born with lethargy U. The probability gf is also normalized to
unity; deie.;

[dn f du gf{U) = 41Tf du gf(U} = 1
Setting

¢ (x, 2,00 = N(r, 1,0)

from the forgoing relations, the equation of continuity can be derived

as:
Q.9¢ (£,0,2) + 2, (x,0) . ¢ (x, 1,0

u
= dU'[ dnze(r,u)qﬁtr,n',u') o G (2%u':0,0)

U-€
e
U
+ f d_t_l' [ an's,x,u") ¢ (r, 0',0"). g;(q',0": Q,0
U—E.
e (o] .
+ gf{U)f dU'f aQ'wv(u') 2 (xr,U"). ¢ (, Q',U")
o
+ S (r,u,1) i 'y N RE X
o

and is called the Boltzmann transport equation, which is the fundamental
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relation of neutron kinetics.
The quantity ¢ (r,U,l) is defined as the angular flux, since
it is a function of the direction {1

6.3 Methods used for Solution of the Transport Equation

Solutions of the Boltzmann transport equation are inherently
complex due to the integro-differential form of the equation. An
exact solution of the equation is limited to a few highly specialised
problems, and the most practical techniques are approximate methods.
The most general ones are the spherical harmonics expansion, the discrete
ordinate technique and the moment method. A family of methods stemming
from the spherical harmonics expansion; spherical harmonics method, the

Legendre expansion, the P, approximation or diffusion theory with and

il
without energy dependence, the Pn approximation etc. There are also
some other methods which are composit in nature, such as the removal
diffusion method and Monte Carlo method which is dependent on the

statistical simulation of the physical processes.

Baitnle The Spherical Harmonics Method

The spherical harmonics method is an approximatioﬁ to the
Boltzmann transport equation consisting of a series of differential
equations which are independent of the angular direction (] . This is
done by expanding the functions ¢, 9er 9y and Ie in the transpsort
equation in terms of spherical harmonics. First it is assumed that
these functions can be written as an infinite power series in the

variable [ with coefficients that depend on z.
L = cos @ T ST G
where (0 is the angle between the z axis and J, and df] = dpt dYr where

Y is the azimuthal angle.

Assume that the medium is isotropic and homogeneous so that
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the cross sections are independent of z and the scattering processes are

azimuthally symmetric about the initial direction of motion of the neutron.

Then:
ge( LL',U':‘U,,U) S ge{U':Urﬂ.o}
2 £+ 1
= 2 .g (U:0) B, (& ) vessbi9
Similarly,
g, (p'y0':p,0) = g, (U,T,p )
o0
24 + 1
. by % '
ol e L2 (u',0) P& {uo) .56 210

where 94 is the Legendre polynomial of degree ¢ and

;.&o = N.0' = cosﬁo

The angular neutron flux is expressed as:

S 22 %1
QS (Z:ﬂ-:U} = ’62 T . ¢6(Z,U) .P‘& (p’,) R R e B
=0
and _
o0
SO(Z'”’U) = Z .2_'£'+_l - SO (Z'U) P€ (P‘.) e 6.12
=0 47T £

Substituting the above relation into the transport equation and using

the recurrence relation for legendre polynomials,

il
[1P6(”)Pn(”}d‘u =[W i e = {

[ (0] if n

the spherical harmonic form of the Boltzmann transport equation can be

sls 603

H
o

obtained.
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The application of the spherical harmonics technique to the
transport equation is inherently difficult and becomes formidable for

multigroup energy cases. However, the method has been described for

(95,96)

slab, spherical and cylindrical geometries and a somewhat simplified

b2
approach has been reported for more complex geometries( 7). The method

has been extended also to cover anisotropic scattering and the approaches

9
have been applied in the P3 and Pg approximation( 8'99).
6432, The Discrete Ordinates Method
o ., (103) ;
The method was originally proposed by Wick and is developed
by the astrophysicist Chandrasekhar(104). In 1953 Carlson(loo] improved

the method and used it to solve the transport equation. It was originally
developed for the case of isotropic scattering and has been extended to
take account of anisotropic scattering by using the transport cross

section as given by:

oy = O'S[l- [u £.(p) du] A T

where fe(;L) is the angular distribution of scattered neutrons.

In this method the integral in the transport equation is
approximated by a discrete ordinate gquadrature. The solid angle is
divided into N segments and discrete directions and weights. For a
plane and spherical geometry the range of y from -1 to +1 is divided
into equal intervals and ¢ (i) is taken to vary linearly with [ in
each interval. The range of integration over p is then divided into
equal sub-intervals, N. Let the points which define these sub—intervais

be:
ﬁin( n e Oy L i eressN) ;B0 that

”o = =1 and gN = 1
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The number of intervals N defines the order of approximation. The

angular flux for a certain energy group (i) can be given by:

K= KB 4
¢)i(r;#) = ————*-——-—”n _#n-l . ¢Ji{rl )u'n}
Feing ol Ry I
#11 ;Ln—l

This approximation is then used to reduce the one velocity
transport equation to a set of N equations in N+l variables, ¢(r,lin).
An addition equation-is obtained by setting M = -1 directly in the
one velocity Boltzmann transport equation. The resulting set is then
solved numerically for the fluxes.

The method is now one of the most important analytical tools
in reactor criticality and shielding calculations. It has the
advantage of being more suited to large digital computers since it is
basically a difference technique. An account of the method and the
machine programmes which are available to solve the resulting set of
(105)

equations has been given by Ackroyd and Pendlebury

Be3:3. The Moments Method

The moments or polynomial method is a semi-numerical technique
which has been used with good effect to generate quite accurate solutions
to the Boltzmann transport equation. The method was proposed by
Spencexr and Fano (1951)(106) and was used by Goldstein and Wilkins {1954§107J
for extensive computer calculations to obtain build up factors and
differential energy spectra for infinite homogeneous media as a function
of penetration.

The initial steps involved are similar to those in the well
known spherical-harmonic method in neutron slowing down theory, in

which the angular flux is expanded in a series of Legendre polynomials.

By this means it reduces the original equation of three variables( (] ,x,U)
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to a sequence of coupled integro-differential equations of two variables
(;U) . As a further simplification these equations are multiplied by
Pé (w) and integrated over all solid angles; in this way one obtains

a double sequence of linear integral equations for the spatial moments

of the Legendre coefficients.

The method is considered as an accurate way for solving the
Boltzmann transport equation for both gamma rays and neutrons in an
infinite homogeneous media with simple sources. However, the matter is
more complicated for neutrons than in the gamma case, because of the
rapid changes in neutron cross sections with energy and because neutrons
undergo many collisions before absorption.

The main achievement of the moment method has been the
determination of fast neutron space energy distribution by a method which
correctly takes account of the anisotropy of elastic scattering. However,
the method is not directly applicable to reactor design calculations since

infinite and heterogeneous media are involved.

6.3.4. The Diffusion Theory

The diffusion theory is a simplified method for solving the
Boltzmann transport equation by assuming that all neutrons have the same
lethargy (U) and under the conditions that, the scattering processes with
nuclei do not involve any change in the neutron energy. - The basic
assumption of the elementary diffusion theory is the validity of

(13), which states that the net current of neutrons in the

Fick's Law
direction away from the region of greater neutron density is proportional

to the negative gradient of the neutron flux ¢ (r')

J(r) = -D.grad ¢(r) RSt e e

where D is the diffusion coefficient, having the dimension of length.

The above relation is valid only for the diffusion of neutrons
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in regions which are not closer to boundaries than two or three mean free
paths, the absorption cross section is very small and the neutrons are
scattered without loss in energy.

dn

For a system in the steady state [E{: = 0 ] the neutron flux

satisfies the simple second order differential equation
2
DV¢—Ea¢+s=o st BT

where V2 is the Laplacian operator and Ea is the absorption cross
section. Ea can be determined from the scattering and absorption
properties of the medium, i.e., the macroscopic scattering and capture
cross sections and the average cosine of the scattering angle ;],0. For
neutrons of energy less than a few hundred KeV diffusing in a medium

consists of a single element of atomic weight A, /I is given by

In the case of a medium which is a mixture of elements in which

the i th element has an atomic scattering cross section equal to 07,

[ ose(3))
L e s Y o ity BAB

o ?[Nio‘.

15

where Ni is the number density of the i th type of atoms in the mixture.
At a plane boundary between a diffusion medium and a vacuum,

the neutron flux varies in such a way that linear extrapolation would

require the flux to vanish at a definite (extrapolated) distance 'd'

beyond the boundary:

da = O.677\t Sl e e 1D
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where %E is the transport mean free path of the medium and is given by:

1
t S (1 - )

For treatment of a continuous energy spectrum, the energy
range is divided into discrete groups and each group is treated separately
with its appropriate parameters.

6.3.5 Fermi Age Theory

Among the methods which are used to solve the Boltzmann
transport equation is the Fermi-Age or slowing down theory. Comprehensive
descriptions of this method are readily available in the published
literature(loa' 109’110). The theory treats the succession of discrete
energy losses in individual collisions by which neutrons are actually
slowed down as equivalent to a continuous slowing down process which
results in the same average rate of energy loss. It provides an
approximate value of the flux of neutrons as a function of space and
energy due to a given source of fast neutrons in an elastically
scattering and non absorbing medium. The flow in and out of a certain
element may be expréssed in terms of the slowing down density q(r,U) which
is defined as the number of neutrons crossing a lethargy level U per cubic

centimeter per second. The number entering dU is g(r,U) and the number

leaving dU is q(U+du,r). Thus,

s(u)au = gq(r,U) - glr,U + 4U) e o G2l
or
_ _ 9q(u,r)
s(u)au = —*aﬁr—-du a iy e s DR

Combining equations 6.21, 6.22 and cancelling a common 4du:

D) V2 §(x,u) = %{—I‘jﬁ) e
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omitting the designation of functional dependence

DV2¢= g% e e GudA

The relation between flux and slowing down density is given by:

¢ = S L

therefore

o dq
PV¥ig =gt S S s s o (620

A new variable 7 (U) is now introduced, defined by:

1u
'rw)=f D . ay Saesid g o
(a]

£ 24
therefore equation 6.26 becomes

s = 99
Vq—d,r

oiisl v s s 628
equation 6.28 is known as the Fermi-age equation, the quantity 7 (U)
is called the Fermi age of the neutrons.

From the foregoing discussion, the Age theory applies to a
medium in which there is no absorption of neutrons but it can be shown
that with a slight modification, the age equation can be used for a
weakly absorbing medium. It is found that if g(U) is the solution of
the equation for the case of no absorption, then the corresponding
slowing down density q*(U} for the case of weak absorption is given to

a sufficient approximation by:

g (W = PpU).q(v)
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where p(U) is the resonance escape probability for neutrons of energy (U).
Therefore, at any energy, the slowing down density with absorption that
satisfies the Fermi Age equation may be taken as equal to the slowing
down density solution of the Fermi équation without absorption at the
same energy, multiplied by the resonance escape probability for that
energy.

The methodsusefulness for shielding calculations is limited
by the fact that its accuracy decreases with distance from the source
and that it breaks down completely at distances which are much smaller
than those usually encountered in reactor shields.

6.4 Monte Carlo Method

The Monte Carlo method is a stochastic process which is
applicable to problems involving a series of random events such as the
behaviour of neutrons with matter. In these problems, the histories
of a large number of neutrons or photons are followed from collision
to collision. In going from one collision to another, the problem is
to determine the distance travelled before the next collision takes place,
the type of collision which takes plaée and the energy and direction of
the neutron after the collision. The distance which the particle
travels from one collision to the next depends on its mean free path A ,
which is a function of the neutron energy and the material in which it
is moving.

The main advantage of the Monte Carlo method comes from its
applicability to general geometric configurations and relative freedom
from idealizing assumptions without unduly adding to the machine time.
Its obvious disadvantage is the large computing time that can be
regquired in design problems. However, with the availability of large
high speed computers the method has become a powerful tool for detailed
study of shielding and reactor design. A survey for the application

of the method for shielding and reactor calculations is given by
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11
Goertzel and Kalos (1958)( 0}. Its application to transport and reactor

problems has also been surveyed briefly by Kalos and Wile (195?){111].

6.5 The Removal Diffusion Method

The removal diffusion method is a process in which the slowing
down of fast neutrons on deep penetration in a shield may be regarded as
a two step process. The high energy of the neutron is degraded |
significantly by the 'reméval' collision, then followed by a diffusion
process which is unlikely to result in very much net travel. The
penetration of the forward directed neutrons is therefore described by
a removal process which consists of an, exponential and a geometrical
attenuation factor and diffusion theory then predicts their migration
following such collision.

The uncollided neutron flux can be obtained from the knowledge

of the removal cross section Elr which is available from the experimental

em
data, and in cases where this is not available it is equated to the
transport cross section §}t. When the transport cross section is used,
: ; (112) :

the calculation is called the Spinney Method . In this method the
energy range of the neutrons is divided into a number of energy intervals
and assuming that the monoenergetic diffusion theory is applicable to
the neutrons within each interval.

The Spinney Method was applied with the age theory to predict
the subsequent slowing down after a 'removal' collision, but later

(113) ’ : L ’

Avery et al (1960) have used the removal calculation in conjunction
with multigroup diffusion theory to describe the penetration of the
forward directed neutrons and the diffusion theory to predict their
migration following such collision when their angular distribution is
nearly isotropic.

A detailed description of the method is given in conjunction

with the multigroup diffusion calculation.
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6.6 Comparison of the Calculational Methods
When comparing the different methods which are used for reactor
shielding calculations one is led to consider the Monte Carlo method, the
Sn - P{i expansion method and the direct numerical integration of the
‘Boltzmann transport equation which, if applied with sufficient diligence
and finesse of calculational details are the most accurate methods.
These represent an exact solution to the Boltzmann equation which describes
all the processes of interaction and transport of neutrons through matters.
From the standpoint of available and working machine ccdes, the
Monte Carlo method is considered as the most developed for practical
design calculations. The method can incorporate in principle any
arbitrary geometry, source anisotropy and scattering properties and still
gives the more accurate solution. However, the Monte Carlo method has
some limitations due to the time needed to build up accuracy and the
large amount of computer store needed which makes the method less
attractive for common use; but in complex and possibly three dimensional
geometries, the method is more suited, since the random sampling technique
is least restricted to particular source geometries.
The Monte Carle code (O5R) which has been developed at the
Oak Ridge National Laboratory unfortunately proved unsuitable for
running on computers available to the author, due to its large amount
of storage space and length of calculation as well as incompatibility
of certain sub-routines with the available computers . Of the
different methods for calculation, the Sn - Pg method which produces

good neutron penetrating results in simple geometries with less

computer time than the other accurate methods since a P. expansion of

3
the cross section is then generally adequate. The method is more
widely used for fast reactor analysis. The geometry of the problem to

be solved was not sufficiently simple, neither was a suitable computer

available for existing codes, so this method too had to be rejected.
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The use of the spherical harmonics method, i.e., Pn
approximations and the polynomial expansion method are most widely used
for multilayered shields. Due to their increasing complexities, the
higher order approximations for multigroup calculations are limited to
slab geometry only and they become impracticable for application to other
geometries. General application of the P approximation seems to offer
no particular advantages over the S, method. A consistent Py e,

Pn = Pg would in theory produce results as good as the Sn - Rgcalculations.
However, the Sn method, though less elegant than the Py approximation,
possesses the advantage of being more suited to modern high speed
computers, since it is basically a difference technique.

The removal diffusion calculation has proved itself as a good
tool for calculating the penetration of the 14 MeV neutrons through
shielding materials (A3 RS ¢ ll?’. The primary 14 MeV neutron flux
could be represented by an exponential and geometrical fall off, while
the down-scattered secondary neutrons are treated by the diffusion
calculation since the scattered neutrons can be expected to be adequately
isotropic. |

(10,120,121) 5N,

According to the discussion in published work
can find that the removal diffusion calculation is probably a good tool
for reactor shielding design. The different machine codes were studied
and was found that in the RASH code(lls) the transfer of neutrons is
allowed only to the adjacent groups, which does not represent the
inelastic scattering of neutrons that can traverse almost any number of
groups in one collision. However, the different aspects of the RASH
code were found useful and have been taken into consideration during
writing the programme for the present calculations. The programme was
made to suit the limitations of the available computer and is suitable
for teé?ing the value of multigroup cross section sets designed for

fast reactor and shielding calculations. In order to do this it is an

advantage to be able to neglect angular dependence of cross sections
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 this is a further uncertainty in evaluating the worth of data.

ry thin layers since angular

&e@ pendence oi’f flux is then more influenced by the differential cross
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CHAPTER 7

SPECTRA CALCULA% ONS BY MULTIGROUP DIFFUSION

AND REMOVAL DIFFUSION METHODS

ol ok Introduction

The spectra of fast neutrons which have passed through homogeneous
and heterogeneous media of iron, graphite and polypropylene media of
different thicknesses have been calculated by using the combination of
multigroup diffusion and removal diffusion equations. The diffusion
coefficient calculated with higher order corrections for anisotropic
scattering was used instead of the commonly used transport mean free
path divided by three.

The source of data, i.e., cross sections and inelastic
scattering probabilities for the multigroup calculation was the 20 group
cross section set due to Yiftah and Sieger(84). The set covers a range
of neutron energy from 500 eV up to 14 MeV with ten groups above 0.3 MeV
and has a wide application to fast reactor experiments.

Calculations have also been carried out using the Russian

ABBN set(BS)

, with a highest energy limit of 10.5 MeV. Two other groups
with energy boundaries at 12 and 14 MeV have been supplemented from the
Yiftah-Sieger set. The inelastically scattered neutrons from the

14 - 12 MeV and 12 - 10.5 MeV groups can move to any of the lower groups
of ABBN; the down scattering probabilities for these two groups given
in the Yiftah-Sieger set have been modified to match the group boundaries

of the ABBN set.

T2 Multigroup Methods of Calculation

In multigroup methods of calculation, the energy range is
divided into a number of interwvals. The number of groups depends upon

the accuracy desired and the machine capabilities available, (the larger
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the number of groups, the higher the accuracy, provided that the data
are accurately known. Within the g th group, which extends from

lethargy U

] to Ug’ neutrons are assumed to diffuse according to the

one velocity diffusion equation as they leak out of the system or move
to other lower energy groups by elastic or inelastic collisions.
The flux (ﬁg(r} of neutrons in the g th group can be defined

then by the integral,

U
¢g{r) - f 9 ¢ (r,v).du i o G0,

Ug-l

where Ug and U . are the upper and lower lethargies of the group

g-1
respectively and ¢ (r,U) is the lethargy dependent flux at the point r.

Te3 Group Constants

The diffusion coefficient and interaction cross sections are
described in terms of suitably averaged diffusion coefficients and
cross sections and are known as group constants.

In order to obtain averaged values of these constants for a
process in a particular group, it is necessary to know the neutron
spectrum within the group. The spectrum may be known in certain
problems, e.g., in the thermal system, it is given as %—, and ¢(U)
can be taken as constant and the thermal group is given by a Maxwellian.
In fast systems there is no such well defined spectrum and several
groups are needed for correct representation.

A sufficient number of groups must be taken so that cross
sections vary smoothly across a group. Reasonably accurate average
cross sections can then be calculated by assuming a constant flux
across a group. The accuracy of these averages could possibly then be
improved by recalculating them using an average flux gradient per group
as given by the initial calculations. This is, however, not feasible
with the available cross section sets due to lack of detailed fundamental

data.
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Z.3.%, Diffusion Coefficient

The diffusion of neutrons within the g th group can be

described by an average diffusion coefficient given as:

u

g 2
D(V) v ¢(x,Uu) au
Vi
D = = Vol i e

i fg 2
V*® ¢(x,u0) au
U
g-1

where 72 is the Laplace operator.

The value of Dg is usually a function of r unless ¢{r,U) can

be written as a separable function of r and 0(132

¢ (x,0) = £(x). ¢(U)

where ¢(U) is the lethargy dependent part of ¢ (xr,U). This is never
strictly true, but it must be assumed in order to carry out the group

calculation. Therefore equation 7.2 becomes:

U
p = L [9 D(U) . ¢(U).4u PSS
g'U

g=1

In the case of isotropic scattering in the laboratory system,

which is true only at low energies, the value of D can be calculated

from the methods of transport theory (D = —%E- Ys But for anistropic

scattering and for greater accuracy Dg should be determined from the

(13)

transcendental equation .

(22)*] 1+ 3,5
2‘.5 D ] - Et+ - _l+3D M
Za i

= L1 -
2 S 1 +30& 0
zt_(n) ¢

where E}t, E}S and Ela are the macroscopic total, scattering and
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absorption cross sections respectively, and ﬁ is the average value of the
cosine of the scattering angle in the laboratory co-ordinate system.

TaSaie Group Cross Sections

Neutrons may disappear from the g th group either in an
absorption interaction or as a result of an elastic or inelastic scatter.
If the value of the cross sections of the various events are known for
the energy region of interest then they will be averaged within groups

with respect to flux, therefore:

U
f g
g Ex(u) . $(x,v).4U

g=1.
L - - - - - 7.5
Exrg Ug
f ¢ (r,0). AU
Ug_1
where 2  may be }_‘.a, 2, or 3.

*,9

If it is assumed again that the flux can be represented by a

separable function, equation 7.5 becomes:

U

g
f 2,0 . ¢(u) au e v s o 1.6

Ug- 1

% o
X,9 qﬁg
This equation has to be numerically integrated since the flux does not
have a simple numerical form.
‘I‘he. transfer of neutrons from the g th group to the (g + i) th
group (where 1=1,2,3....., N,) can be described by the group transfer

cross sections 2 . These are defined so that 3

(g—gti) (g—g+i) * qﬁg(r}

is equal to the number of neutrons which are transferred from the g th
to the (g + i) group per cma/sec at the point r.

The transfer cross section 2 .. is given by:
(g »gti)

E(g-ég+i) =8 lgaghl) *F. G e RSO
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where ES and Ein are the transfer elastic and inelastic cross section
for the given system.

Consider first the evaluation of the elastic transfer cross
section Es(g =g + i). The value of this constant depends on both the
nuclear properties of the material in the system and the number of energy
groups used in calculation. In particular, if the maximum increase in
lethargy of neutrons undergoing elastic collision is less than the energy
width of energy group, neutrons from one group can be elastically scattered
only into the adjacent group; i.e. they cannot skip groups. In that
case i = 1, Es(gh+g + 1), and the groups are said to be directly coupled
at ieast as far as elastic scattering is concerned. The minimum neutron

energy after an elastic collision is 1/0 times its initial energy:

where o = ( Bres ) and is a property of scattering medium.
A ]

Therefore the condition for direct coupling by elastic scattering is

given by:
en(l/a) < AU s al ety e JeB
g

for all groups.
where Ul 0= UL =t
Aq g g-1
The constants E}S (g—»g + 1) can be computed for the directly

coupled situation in the following way.

]

Y , the total number
Xx,9 5,9

of scattering collisions per <:n:.3.sec-l in the g th group is 535 o $(g) .
r

From equation 7.6 assuming 2

152 éfg is the average lethargy increase in an elastic collision in the

g th group, it follows that neutrons require A Ug/§ collisions on

average in order to traverse that group. If there are 2 8q” ¢’g
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collisions per c.c, per second in the g th group, therefore, the

number of neutrons scattered out of the g th group per c.c. per second

must be % 2t
3 s5g ¢g g

Since these neutrons necessarily must enter the {g + 1) th

group in the directly coupled case, the cross section is thus:
Es(g_)g-}l):-—-— R -

In the case of anisotropic scattering in the centre of mass
system, the transport correction may be introduced, thus equation 7.9

becomes:

£ 3_ (1-p)
S _(gog+1) = ——=9 R i T O

Au
g

In the case of hydrogenous media, the situation is more
complicated, since with a hydrogen nucleus the neutron may lose all its
energy in a single collision, so that neutrons can be scattered from any
group to all other groups of lower energy. If it is assumed that
neutrons can be scattered into the lethargy interval in the (g + 1) th
group as a result of collision in the lethargy of the g th group, the
number arriving per cm3-sec_1 in du'from the gro'.: is given by:

U
g
number scattered into du' = .[ EZS(U). $(U) .P(U—~U")AU ees 7.10
U

g=i
where P(U—U') is the probability distribution function for elastically
scéttered neutrons.
The total number of neutrons transferred from the g th group

to the (g + 1) th group is therefore:

U U
g+l g
number transferred = _[ ]. ZIS{U} ¢ () < P{(U =0UY) au 49!

U=u U=u S s e
g-1
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If it is assumed that the flux ¢(U) and Els(U) are reasonably
constant in the lethargy interval defined by the g th group then

equation 711 can be written as:

5 U

s g+l g

Es(g-»g + 1) = 5 P(U—U') du. 4du'
g

U‘=Ug U=Ug_1 ¢ & abens 122

The group transfer cross sections for inelastic scattering
can be computed in much the same manner as for the elastic scattering,
if the inelastic scattering probability distribution function P(U-U') 4u'
is known. For low energy incident neutrons where the energy levels can
be resolved the excitation functions for the individual levels are used;
the values are experimental results supplemented by the optical model
calculations. Above the energy where the levels overlap (above 5 MeV
for iron), the evaporation model of Weisskopf is used. The expression
in this model is characterised by nuclear temperature which is slowly
(13) :

varied from group to group as it varies with incident neutron energy

q33 Fission

In the case of presence of fissile materials in the system, it
becomes necessary to define the average fission cross section for each

group. For the g th group §}fg is given by:

U
1 g
Efq —_U_/ Ef(U) du e TS
¥ u
g-1

In addition, the fraction of fission neutrons emitted into the g th
group Xg, and the mean number of neutrons emitted when fission caused
by a neutron of the g th group 1’g have to be defined as well.

Specifically, these are given by:

g
oo g-1

where .[ X(uyau = 1

g
x=f X(U) du A T R i T 1
U

(o]
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and U
1 g
'Ug - T f 'I){U). dU - = = = = 7.15
s Yy
g-1
7.4 Multigroup Equations

Assume that there are N groups, namely; g = 1,2,3....,N.,
where g = 1 is the group of highest energy and N represents lowest
enerqgy. Therefore, using the various constants mentioned before, it
becomes possible to write diffusion equations describing the behaviour
of the neutrons within each group.

The equation for the first group with a fission source is

given as:

N

2 .
D,.V* ¢, (r) "Ea,l $.(x) - 1232 2 _(1-i) ¢, ()
N
L pX vi‘élfi\;éi(r) = 0 PR 5

where ¢ is merely a function of ¥ within the group.

The first term gives the loss of neutrons due to leakage from
the system, the second is the loss due .to absorption, the third is the
loss due to scattering collisions (elastic and inelastic) from the first
group to all other groups, and the last term is equal to the total number
of fission neutrons appearing in the first group as a result of fission
occuring in all other groups.

The equation for any other group indicated by i (provided

i # l, e.g., the group of highest energy is excluded) is then given by:

N -1
2 [ . —‘ g ;
Dg.v ¢g(r} - Ea'gqbg(r) - i;g B (g—i) | qfsg(r) + _2 S(i-g) ¢, (x)
L i=1
N

+ xgiz_}l vy Efi qbi(r) = 0 e I e
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Here again, the second term represents the true absorption in the g th
group. The third term gives the number of neutrons scattered from the
g th group to all lower energy groups, the fourth term is equal to the
number of neutrons scattered into the g th group from all higher energy
groups and the last term gives the number of fission neutrons produced in
the g th group from fission in all other groups. In the case of no
fissile materials, this last term does not appear.

7.5 Solution of the Equations

Since the assembly used for measurement of the neutron spectra
during this work is a cylinder with a point source at the centre, the
group equations are solved for spherical symmetry which is a reasonably
close representation along a radius of the cylinder starting from the

source. The one dimensional Laplacian operator is given by:
2
vz = _'a-"' + g '_"Q" - & = = = 7.18
r or

was written in finite difference form. It is assumed that the region
under consideration is composed of concentric spherical shells, in
each of which,

(a) The diffusion coefficient and the macroscopic absorption
cross section are constants,

(b) The flux depends only on r, the distance from the centre of
symmetry to point r.

(c) The neutron current will have a radial component only, the
net current is zero at the inner boundary i.e., at the inner radius of
the innermost spherical shell except for energy groups having a source
located at the centre of the sphere.

(d) The flux is zero at the extrapolated distance, i.e., at a
further distance of 'C:'t.?l'}\tr from the outer radius.

The programme FASTNFLUX used by a previous investigator(lzz)
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has been modified to suit the flux calculation for a multilayexr
configuration and is presented with a numerical scheme for solving the
group equation in appendix 1.

7.6 Removal Diffusion Calculations

(123)

In 1950, Albert and Welton introduced the concept of
removal cross section to describe the attenuation of neutron in
hydrogenous media. Their removal theory accounted only for the first
part of the two step process described before in chapter 6. The theory
was particularly useful when small changes of thickness or materials
were made. The main use for it was to perturb measured or rigorously
calculated values, while its main difficulty encountered was in the
application of the theory in cases in which there was insufficient
hydrogen in the medium to apply the theory. Without sufficient hydrogen
a neutron might not be removed by a collision with a heavy nucleus even
through degraded in energy. However, at high neutron energy inelastic
collisions with heavy nuclei are necessary to make this valid.

The removal cross sections for the various elements must be
determined by experiment, although it has bee.. shown that they have
roughly 2/3 of the total cross section evaluated at 8 Mev(124) | This
was attributed to the fact that the flux defined by the kernel includes
those neutrons which have made glancing collisions. It suggests that
the removal cross section is effectively the same as the transport

cross section Etfi‘e‘

Er=2tr=2t—,u,25 AR R R

where il is the mean cosine of the scattering angle in the laboratory
system.
(113) ; :
Avery 1960 derived values of E]r for the eighteen energy

groups, each of width 1 MeV, covering fission spectrum from O to 18 MeV

neutrons, using the result of Feshbach and Weisskopf who had predicted
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the ratio of transport to total cross section as a function of atomic

weight and energy on the basis of the theoretical model of the nucleus.
It was found from the experimental results that the spatial

distribution of monoenergetic neutrons above certain threshold for most

reactor materials, may conveniently be described by the following

(20
expression :
-2 _a
pE) = 2= e 7 Sl b 790
4T x
where Q = the strength of the source
d = the shield thickness
r = the distance between the source and detector
22 = the macroscopic removal cross section at the initial
enerqgy.

For penetration through several materials, the exponent in
the above eguation is replaced by the sum of the products of the removal
cross section and the thickness of each material along the line of sight
path from the source to the point in the shield; it can be obtained by
the simple volume average
v I E;Ei(r)vi N Ty

i Vi

where Vi is the volume ratio occupied by the i th element.

In calculating the flux distribution by the removal diffusion
equations during this work the first group flux was described by removal
equation 7.20 instead of equation 7.16. The removal cross section data
for the material under investigation were taken the same as those derived

by Avery et al, for neutrons at 13.5 MeV energy.
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CHAPTER 8

EXPERIMENTAL AND CALCULATED LEAKAGE SPECTRA AND THEIR ANALYSIS

8.1 Introduction

The measured and calculated spectra of fast neutrons which have
passed through layers of iron,homogeneous and heterogeneous media of
iron-graphite and iron-polypropylene are presented in this chapter.

All measurements have been made with a scintillation spectrometer with
NE-213 scintillator in which gamma background is discriminated by a

zero crossing technique. The multigroup method was used to calculate
the energy distribution of fast neutrons behind such media. The multi-
group cross section sets used for iron and carbon were that due to Yiftah

(84)

and Sieger (1964) with uppermost boundary at 14 MeV and the Russian

ABBN data (Abagyan) (1962)(85)

with uppermost boundary at 10.5 MeV -
the top two groups up to 14 MeV have been supﬁlemented from the Yiftah-
Sieger set. The group cross data for hydrogen were taken from the cross
section data of Hughes (1957)(16). In order to correctly predict the
down scattering by hydrogen to any energy group below,the data were
introduced into the calculations as pseudo-inelastic cross sections and
probabilities. The values of the microscopic removal cross sections
which have been used with the multigroup calculations were taken from
the tabulated values of microscopic cross sections calculﬁted by
Avery et al(113).

All the measured and calculated results are normalized to a
source strength of 1.5 x 109 neutrons per second.

Removal cross sections for 14 MeV neutrons for iron, carbon
and hydrogen have been experimentally determined from the measured

neutron fluxes behind iron and homogeneous and heterogeneous shields

of iron-graphite and iron-polypropylene. These values agree well with
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the theoretical predictions by Avery et al(ll3).

B2 Deformation of Fast Neutron Spectra behind Iron Shields

The measured spectra for neutrons of energies between 0.5 and
14 MeV passing through iron layers of thicknesses 10, 20 and 30 cm
which correspond to 2, 4 and 6 mfp for 14 MeV neutrons are presented in
figures 8.1, 8.2 and 8.3. The spectra are plotted as neutrons per sec
per cm2 per MeV versus neutron energy in MeV .

The figures show that for neutrons of energy En;=3 MeV the form
of the spectrum and its slope do not change as the layer thickness
increases, but remain approximately the same. However, at the same
time, in the low energy region below En = 3 MeV a c?nsiderable increase
in the number of neutrons of lower energies with increasing iron layer
thickness is observed, i.e., there is a relative accumulation of number
of neutrons with lower energies. This can be attributed to the fact
that in heavy materials such as iron, the inelastic scattering causes
neutron slowing down and in each interaction the neutron ene?gy is
considerably decreased. The inelastic scattering cross section is not
strongly dependent on the energy in the range above about 3 MeV, while
at En.<3 MeV it decreases sharply with decreasing energytls).

These figures also present the calculated spectra by multigroup
diffusion and removal diffusion calculations. It is quite evident from
the figures that the measured spectra behind all thicknesses agree within
the limits of experimental error with that calculated by the removal
diffusion method in the energy range 0.5 - 12 MeV, while for thicknesses
.ZOIand 30 cms the spectra calculated by the diffusion method are lower
than the others.

For neutrons of the first energy group (12 - 14 MeV) a remarkable
difference between the measured and calculated spectra are observed.

This discrepancy may partly be explained by the difference in experimental

and theoretical geometries, the uncertainties in group constants used
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in calculation and the depression in pulse height due to the leakage of
some recoil protons at this high energy from the scintillator before
releasing their energies.

8.3 Deformation of Fast Neutron Spectra behind a Homogeneous and

Heterogeneous Shields of Iron-Graphite

The spectra of fast neutrons behind a homogeneous and heterogeneous
media of iron graphite materials (l:1 by volume) have been measured and
are presented in figures 8.4 to 8.11. The homogeneous shield was built
up from successive layers, 2.5 cm thick, of iron and graphite. In the
case of the heterogeneous shield, the graphite layer has been placed
behind the iron and nearest to the spectrometer detecting element.

From these figures it can be seen that for homogeneous shields
the leakage spectra have nearly the same shape for all thicknesses for
neutrons of energies between 3 to 14 MeV. However, for neutrons of
En‘;3 MeV the slope of the spectrum increases with the increase of shield
thickness. For heterogeneoﬁs media the slope and shape of the spectra
do not change as layer thicknesses increase and remain approximately the
same for all thicknesses throughout the whole neutron energy range
(0.5 - 14 MeV).

These figures also present the calculated leakage spectra for
those media given by the diffusion and removal diffusion calculations.

It is seen that a good agreement between the measured and calculated
spectra given by the removal diffusion calculation can be observed which
improves with the decreasing of neutron energy and thickness of material.
However, it Can be seen that there is a slight difference between the
spectra given by the diffusion calculation and the other ones. This
difference increases with increasing neutron energy and material
thickness. It can also be seen that this difference is more evident
for a heterogeneous shield especially at higher energy groups and changes

rapidly with the increasing of layer thickness. For neutrons in the
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first energy group (12 - 14 MeV), there is a remarkable difference
between the average neutron fluxes given by calculation and that measured.
This can also be attributed to the same reasons mentioned before for iron
shield.

From these figures it can also be seen that in the measured
spectra maxima and minima are found in the neutron energy range
~ 3 to 10 MeV which can be explained by the irregularities in the energy
dependence of the total cross section for interaction of neutrons with
carbon nuclei. As the graphite layer thickness increases, the
irregularities in the spectra become more evident.

8.4 Deformation of Fast Neutron Spectra behind Homogeneous and

Heterogeneous Shields of Iron-Polypropylene

The measured and calculated spectra of fast neutrons passing
through homogeneous and heterogeneous media of iron-polypropylene shields
(1:1 by volume) are given in figures 8.12 to 8.19. The homogeneous
shields were built up from successive plates of iron and polypropylene
each of thickness 1.25 cm. The heterogeneous media were formed from
two layers with the polypropylene layei placed behind the iron layer
and near to the detector.

From these figures it can be seen that for homogeneous media
the spectra shapes and their slopes do not change and remain approximately
the same for the energy range 0.5 to 12 MeV and do not change with the
increase of material thickness. However, for a heterogeneous shield,
the spectrum shape becomes more flat and its slope decreases as the
material thickness increases.

The figures also show that for homogeneous shields the measured
spectra satisfactorily agree with those calculated using the removal
diffusion and diffusion methods for media of thicknesses 10 and 20 cm
and at lower neutron energies. However, for heterogeneous shields,

the measured spectra show higher values than those calculated by both
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methods. This difference increases with the increase in material
thickness and neutron energies. For both the homogeneous and heterogeneous
media, the spectra calculated by the group diffusion calculation are lower
than that given by the removal-diffusion calculation. For homogeneous
media this difference increases smoothly with the increase in material
thickness and neutron energy, while it increases rapidly with the
increasing of material thicknesses and neutron energies for a heterogeneous
shield.

For neutrons in the first energy group (12 - 14 MeV), the average
measured fluxes are lower than the calculated ones. This also can be
attributed to the same reasons mentioned before for iron and iron-graphite
shields.

8.5 Comparisons between the ILeakage Spectra through Different Media

of the Same Thickness

The measured neutron fluxes behind various thicknesses of iron
and homogeneous and heterogeneous shields of iron graphite and iron-
polypropylene are shown in figures 8.20 to 8.27, for eight energy groups
separately from 14 MeV to 0.8 MeV. To obtain these curves the measured
fluxes were integrated over the group boundaries used for the extended
Abagyan data set. The relations are plotted as neutron fluxes per cm2
per sec versus shield thickness D.

The figures show that iron is the most effective shield for fast
neutron attenuation of the first, second and third group, i.e. neutrons
in the energy range from 14 MeV to 6.5 MeV. They also show within this
energy range shields of homogeneous iron polypropylene are more effectivye
than the other measured mixtures of heterogeneous iron-polypropylene or
of homogeneous and heterogeneous iron-graphite. It is evident that the
heterogeneous iron-graphite shields are the poorest attenuators for
neutrons of energies from 14 MeV to 2.5 MeV.

In the fourth group (6.5 - 4 MeV) iron and homogeneous iron-
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polypropylene shields compete for the best neutron attenuator. For
neutrons of the fifth up to the eighth group, homogeneous iron-
polypropylene followed by the heterogeneous shields of these elements
are the best for neutron attenuation, while iron and homogeneous shields
of iron-graphite show the least neutron attenuation. This can be
attributed to the fact that within these energy ranges, where the elastic
scattering with hydrogen is predominant and the cross section increases
with the decreasing of neutron energy, shields of the two layer form
with iron layer preceding the polypropylene one are more effective for
low energy neutron attenuation. However, for iron shields, the flux
attenuation is least at lower neutron energies since the values of the
inelastic scattering cross section which is the main removal mechanism
in iron decreases with decreasing neutron energy.

8.6 Determination of the Removal Cross Sections

In the removal diffusion calculations, the removal cross sections
are used to determine the number of neutrons which are removed from the
first energy group by removal collisions and which are treated as sourées
for a multigroup diffusion calculation. It is obvious from equation 7.20

that the value of the removal cross section can be determined if the flux

values at two different radial positions are known. Erem can be given by:
2 2
1 . - <
{log ¢Rl By log, ¢ R, %
Erem = s - - - - - Btl
b BRI

where ¢I§ and ¢Il are the neutron leakage fluxes from outer boundaries

il 2

at radial positions Ry and R, respectively.

From equation 8.1, it is clear that the determination of Exem
does not need the knowledge of the absolute source strength, also the
uncertainty in the absolute efficiency of the detector and that in source

strength determination by the neutron monitor do not enter during the
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evaluation of Elrem' However, the most likely uncertainty can be due
to the measuring of Rn' since Rn is squared and multiplied by the neutron
flux g’)Rn.

In this work the.average value of Rn was determined from the
knowledge of R0 which is the distance from the neutron source and inner
boundary of the shield. The average value of Ro was determined from
several measurements and is given as Ro = 14 + 0.25 cm. This was
added to the material thickness which is determined from the knowledge of
plate thicknesses.

The values of the measured neutron fluxes behind iron and
homogeneous and heterogeneous shields of iron-graphite and iron-polypropylene
are multiplied by R2 and plotted against R for the first energy group (14 -
12 MeV), and are presented in figures 8.28 to 8.32. The figures also show
the calculated group one fluxes by the removal and diffusion calculation

methods after multiplication by Rz.

B bl a-rem for iron

The graphs shown in figure 8.28 are the measured and calculated
values of the leakage neutron fluxes for the iron assembly. From the
measured relation the average value of the macroscopic removal cross
section Elrem has been determined by the least squares fit to be

-1
b = 0.1278 + 0.0047 cm
rem =
Compared with 0.1255 cmﬂl used in the calculations.
This value of the macroscopic removal cross section gives a

microscopic removal cross section for 14 MeV neutrons of

o = 1,506 + 0.055 barns
rem -
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using these values for the iron
: 3
density p = 7.83 g/cm and
nunber density ND{Fe) = 0.0845 atoms/cm3

This measured value of oﬂrem for iron agrees quite well with the

(113). The latter is based on the results

value calculated by Avery et al
of Feshbach and Weisskopf who had predicted the ratio of transport to total
cross section as a function of atomic weight and energy on the basis of the
theoretical model of the nucleus. From these tabulated wvalues, the value
of O‘rem at 13.5 MeV is 1.48 barns and at 14.5 MeV is 1.39 barns.

It should be noted that the energy of the source neutrons is
14.1 MeV but that the removal cross section was determined from the
investigated leakage flux between 12 and 14 MeV. Due to degradation
mainly by elastic collisions, the average energy of neutrons in this group

will be less than 14.1 MeV for any finite thickness of shield.

8.6.2. o for carbon
rem

The value of the microscopic removal cross section O for
carbon has been derived from the given values of 3 SIER determined from
the relations of ¢IFR? against R for a homogeneous and heterogeneous
shields of iron graphite which are presented in figures 8.29 and 8.30
for the first energy group (14 - 12 MeV). These relations give the

following values of macroscopic cross section
0.099 + 0.001 cm-l for the homogeneous shield and

0.100 + 0.088 cm_l for the heterogeneous shield.

Compared with 0.0993 cm;l used in the calculations.
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Using the measured value of zzrem for iron and the following

characteristic parameters for carbon

Density p = 1.718 gm.cm~3 and

Number density ND(C) = 0.08613 r:1tc>m.'=..crn-.3

The average value of the microscopic removal cross section O-rem is given

as

o = 0.83 + 0. 13 barns.
rem =
This value of Odrem for carbon agrees within experimental error
with Avery's value at 13.5 MeV which is 0.85 barns.

8.6.3 oﬁrem for hydrogen

Figures 8.31 and 8.32 show the relations between ¢quni versus
Rn for 14 - 12 MeV neutron for both homogeneous and heterogeneous shields
of iron-polypropylene. From these relations the values of macroscopic

removal cross section are found to be
0.11 + 0.035 cm-l for the homogeneous shield and

0.107 + 0.059 cmhl for the heterogeneous shield.

Compared with 0.109 cm-_l used in the calculations.
The investigated polypropylene has the following characteristic

parameters

Chemical formula CnH

2n
Density p = 0.95 gm.cm_3
Number density of carbon ND(C) = 0.0409 atoms.cm_3 and

Number density of hydrogen ND(H) = (0.0818 aton‘zs.(_:m_3
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Using these parameters and the previous measured values of the Ezrem
for iron and carbon, the value of the microscopic removal cross section
g for hydrogen can be derived from these two measured values of

= for iron-polypropylene shields, these are:

rem

0.75 + 0.12 Dbarns from the homogeneous shield

0.64 + 0.17 barns from the heterogeneous shield.

These two values give this average value of the microscopic

cross section for hydrogen

O o P 0.69 + 0.10 barns

It is evident that the value of(rrem derived from the homogeneous
shields agrees quite well with Avery's value at 13.5 MeV which is 0.75 barns.
However, for the heterogeneous shields a lower value for 0 e is obtained
but there is still agreement within the experimental error with Avery's
value. This points out the need for very high accuracy in the
measurements when determining the removal cross section of one component

of a mixture by subtraction.
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CHAPTER 9

General Conclusions

The observed and calculated neutron enerxgy spectra resulting
from transmission of 14 MeV neutrons through shields of iron (steel) and
homogeneous and heterogeneous shields of iron graphite and iron polypropylene
of different thicknesses have been discussed in chapter 8. The following
conclusions may be drawn from these results.
(1) Shields of iron and mixtures of iron polypropylene seem to be the
best for attenuation of the 14 MeV neutrons over the range of thicknesses
measured, whilst shields of a mixture of iron-graphite are the least good
for the attenuation of neutrons of this group. For iron shields, the
proportion of 14 MeV and degraded neutrons in the spectrum, remain
remarkably constant over the range of thicknesses measured.
(ii) The overall spectral shapes show, for the materials investigated,
that the lowest intensity occursin the range 10 - 6 MeV with increasing
intensities below this energy range. For the thickest arrangement of
iron followed by polypropylene however, the neutron intensity in the
degraded region only varies by about a factor of two, much less than in
all the other shields studied.
(1ii) Neutrons degraded to the third energy group (10 - 6 MeV) have
least intensity in iron shields for all the measured thicknesses and
have éhe highest values for heterogeneous media of iron-graphite.
(iwv) Neutrons degraded to 4 - 0.5 MeV have the highest intensity
behind shields of iron and iron-graphite of different configurations.
This cquld be due to the fact that neutrons in this energy region are
produced by inelastic scattering, but at this energy range further
degradation by inelastic scattering in iron is not very likely.

Therefore iron is not good below this energy. Also, graphite as being
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a relatively heavy moderator, is not very effective in degrading neutron
energies by large amounts over a short distance. However, for two layers
(heterogeneous) shields of iron polypropylene the degraded neutrons in
this energy range have the least intensity over all the measured
thicknesses. This could be due to the large energy losses possible in
single elastic neutron scatters from hydrogen, and also to the increasing
hydrogen elastic cross section with decreasing neutron energy.

(v) From the above comments, it appears that no single shield is
ideal. Iron is very effective for energy ranges where inelastic
scattering process is predominant, while one can find that shields
containing hydrogen are best for a low energy range. Therefore, shields
composed of thick layers of a heavy element followed by another one

or H.O and Fe + FeCH,. or FeH,_ O and

containing hydrogen nuclei (Fe + CH, 5 2 2

possibly Fe + metallic hydrates) could be the best compromise for fast
neutron attenuation. However, these may not be ideal for shielding
against gamma rays which are generated inside the shield by inelastic
collisions and neutron capture. Therefore, shields composed of a layer
of a heavy element, followed by a hydrogenous layer followed by another

layer of heavy element (for example, Fe + FeCH, + Fe), may be the best

2

for nuclear radiation attenuation. Carbon does not seem to be much use

for fast neutron attenuatiog\pver short distances.

1

(vi) The removal cross secﬁions at 14 MeV have been determined for
iron,graphite and hydrogen.  There is agreement between these measure&-
| (113)

and the values calculated by Avery et al within experimental error,
Avery et al computed the removal cross sections for most of the reactor
materials from 0.5 to 17.5 MeV, but these values cannot be considered
certain until they are experimentally verified. Since the same basis
of calculation has been used over the whole energy range it gives hope

that the other values of these authors are also reliable.

(vii) At 14 MeV, the absolute value of the measured flux is low
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compared with the calculated value. This could be due to fall off of
detector efficiency in this range which might be due to uncertainties
in hydrogen and carbon total cross sections used for the scintillator
shape correction factor discussed in chapter 4. It is also possible
that the model used for this correction factor is not adequate at 14 MeV.
(viii) The data also show that the cross section sets of the ABBN

and YOM-20 both give reasonable agreement between calculation and
experimental spectra provided that an exponential removal model is used
for the uncollided primary neutron flux. The YOM-20 carbon data
appears however to give slightly better fit than ABBN in the region

4 to 1.4 MeV.

From the tabulated cross sections it is possible to deduce an
average elastic scattering cross section by multiplying the elastic
removal cross section by the lethargy width of the group divided by the
logarithmic energy decrement. This gives for carbon in YOM-20 groups
5, 6 and 7 scattering cross sections of 1.8, 1.2 and 1.5 barns respectively
whereas for the ABBN groups 5 (corresponding to YOM-20 groups 5 and 6)
and 6, the values are 2.0 and 1.8 barns respectively. Little difference
is found in the other values. It is therefore suggested that the YOM-20
data are to be preferred for carbon.

(ix) For the homogeneous Fe/CH2 shields the agreement between theory
and experimental values of neutron flux is reasonable but for the

heterogeneous assemblies (CH, following Fe) the calculated flux is lower

2
than the measured flux over the whole energy range, the effect increases
with thickness. The general shape of the spectrum is, however, well
predicted. This effect could be explained by the very anisotropic
scattering of neutrons by hydrogen (predominant in CH2) which would
tend to increase the number of forward scattered neutrons above that

predicted by diffusion theory which implicitly assumes isotropic scattering.

In the homogeneous case however the hydrogen is diluted by the iron which
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would tend to produce randomly directed neutrons at all points in the
shield.

The removal diffusion model would therefore appear to be adequate
for the homogeneousmixtures but produces a severe under estimate of the
degraded flux for the heterogeneous shield contai ‘ng hydrogen.

For the non-hydrogeneous shields the removal diffusion model
also appears to be perfectly adequate.

(x) The degraded neutrons born inside the medium can be calculated
with reasonable agreement with the measured values, provided that the
diffusion coefficient D is evaluated by the Lamarsh equationtlB). However,
the concept of diffusion coefficient has little meaning for the highly
directional source neutrons and so the exponential removal model gives

a better fit for these energies.

(xi) The agreement between the measured and calculated data show that
the utilization of scintillation method with NE-213 scintillator is an
effective technique for measuring neutron spectra over a wide range of
energies in the presence of gamma ray background. They also show that
the differential method used for converting the measured pulse amplitude
distribution into a neutron spectrum is justified despite its simplicity
compared with the potentially more exact method of matrix inversion.

(xii) Finally, these methods could be applied to further studies on
different geometries especially those widely used in reactor technology
(such as spherical shells) of different configuration and widely used
reactor shielding materials such as barytes concrete (density = 3.5 g/cm3),
iron concrete (density = 4.5 g/cm3J and ordinary concrete (density =

2.3 g/cmB).

Further investigations could be made for multilayer shields,
for example, for spherical shells and for plane assemblies having large
dimensions normal to the thickness. Different calculation models for
example transport theory, should also be tried.

It may also be useful to study materials which can be used in
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future for shielding of mobile reactors such as metal hydrates. A
hese shields would be to compare
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For any group the general diffusion equations can be

abbreviated as:

Dv2¢—A¢+b=o e o o o » Al.l

where A = the sum of the neutron sinks.
=1 R % + 2 »
a er in
b = the sum of the neutron sources
= P
S + er¢ +% (2 9)
2
V2=d2+§-.% o s e Aeg
dr
¢ = 0O for slab )
)
= 1 for cylinder ) ¢ & e BEe3
)
= 2 for sphere )

The diffusion equation is then given by:

drz . . & w

2
d (o] d .
D(_S.*L +;,_ﬁ> o AR s 0

equation Al.4 can best be solved by expressing the diffusion equations
by a finite difference equation.

The method is first illustrated by assuming a homogeneous
medium which is divided into a mesh structure of equidistant mesh spacing
Ar. The distance of the n-th mesh point rn from the centre of the
source is X o= De VXS If ¢n is the flux at this point, therefore for

one dimensional cases, the following approximation can be made.
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rrr)n--.'l.
~
a
\¢ n+l
. \
Ar Ax

!

n-1 n n+l

dé = ¢n+1 - ¢n-l

dr 2Ax

and
6295 I ¢n+l : 2¢n + g"")n—-ZI.
o (An)°

- Al.s

- A1I6

In both these equations the error in the approximation is of the order

of Arz and can be quite small provided Ar is small.

equations Al.5 and Al.6 into equation Al.l.

ql(Jr1+1 . 2¢n # qﬁn—l

2

(Ar)2

This can be re-arranged to give:

n+l Mn qf)n PR ¢

n-1

Substitute
¢ - ¢
Pl s n+l n-1 ] _A¢ +b
& 2Ar R
- - - - - Al.?
- R e e AlLB
n
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2 + A(A r)z/D

where Mn = i s s = ALLSA
1+ CAx/2r
N = 2x - CAX LS e
2r + CArx
2
R = b ___iéLEL___ ¥ e e e e BETE
n D

1 +cCcAzx/2r

From a computational point of view it is more convenient to write

equation Al.8 in the form

g =hla b ik B o o aiie e ALAO

where o and ﬁn are constants given as

=1
an = (Mn Lo Nnan—l) - = = - = AJ..]-J-
= + - - - - - .
B a (N Bhy * Ry Al.12
Al.l Boundary Conditions

Sufficient numbers of boundary conditions must be used to
provide a unique solution of neutron distribution problems by means of
the diffusion equations, these are given by:

(a) The neutron flux must be finite and non-negative in the region
where the diffusion equation applies.

(b) At the boundary between a diffusion medium and free space, the
neutron flux varies in such a manner that linear extrapolation would

require the flux to vanish a definite (extrapolation) distance beyond



lo2

the boundary.
(c) The flux and the net neutron current densities at a plane
interface between two diffusion media must be equal and continuous.

Al.1.1 Innter Boundary (at n = M)

The inner boundary condition is obtained from known neutron

current which can be derived from the source specification.

(i) Current density J incident on inner surface
slabJd = 0 SO e ey e e R
i = ‘—'—Q— = —.—Q—.—
cylinder J o= T e et w81 .33b
Q
sphere J = Qf4Tx Al e——— O U S S BT
4T (M.A x)

where Q is the source strength (neutrons:sechl)

\(‘?M

¢M+l

p - ¢ = L S e
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Flux extrapolates to zero at a distance A inside the inner

(ii)
boundary.
¢M+l
?5“/'/
I
I
i
I
I
|
[
1
I
A Ar |
QU =N L AN & A A
¢ ¢ -
..- =" T — 0
M M-+1 % PR
(iii) Flat flux at inner boundary

N = oo

o 5T Py =D e e LIRS

Al.l.2 Outer Boundary (n = N)

Flux becomes zero at a distance d called the linear

extrapolation distance given by:

« Al.17

d = O.?l?\tr -

where }\tr = mean transport free path.
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N-1
I
I ¢N
I
|
[
|
I
[
I
l&r d
¢ N-1
IWE
(d + A x)
b - :
. - —_—\) = 0 Tleibe s s BB

comparing equations Al.13 and Al.20 we get:

ﬁN
¢N= Tk e hete LS
d N N
Al.l.3. Boundary at the surface between two adjacent materials

For calculating the neutron flux distribution in a heterogeneous
shield consisting of two layers of materials with different nuclear
properties, the interface or boundary conditions are customarily specified

by taking the flux ¢ and the normal current D V¢ as continuous at the
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interface.
Therefore:
= l - - - - tAl.zo
qé(r) ¢ (x)
and
028 o mEe

= D - - - - - .21
dr dr Lo

in which the primed and unprimed values indicate the sides of the

interface at r

If the boundary is denoted by a subscript B we have that

= '
$ 5 $'s SRANC By Y
B-1 B B+l
| 3
D ; | D'
| I
i 1
]
|
]
i |
i 1
i l
I
Acjar
) = B ¢ = ot
ke Bel Vs pet B o SR T
2A T 2Ax"
and from Al.8
By = Aol e~ B o o e,me BL,24

I

' 1 i) t ' = 1
¢ B4l M B ¢ B N B ¢ B-1 R B s el e Lty
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By using Al.24 and Al.25 in Al.23 () 'B—l and ¢B+l can now

be eliminated.

From Al.Z23

*‘3[ Mo Pp ~ My Pp g ~ Ry - gES13—.1}

' ' L ' 3
{¢B+l+(§bB+l M'BQ‘5B+R'B] —N;J o - w wRl 06
where
DA
L= ST S S e £
DYAx

From equation Al.26

M‘_B NIB+1
('[MBJ'ﬂ}ﬁf’B 2 &(NB+1)¢B-—1+( N' )¢'B+1

B

L + 1
vERBN B R B

'
3 B

+

where we have used the fact that ¢B = ¢ 9

But @ 1 = Wp g Pt B 5., from equation Al.26

- T
o Bipg By Tl SO

Therefore

NI +M|
[«6MBN1? B} P " ey + Doy o @'
. B

Nl R_N'_ + R!
B £ B B B
+ e
€Wy ) By ( N

e R
‘B> B+1 3t

B
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M N'_ + M
£'B B B
- o '
{ N a1 g D NN 0
B
L 1 + L +|
_NB+1 7 g N 1 {ﬂl‘{BNB RB
e e 0
Gl B+l NB NB+1

N+ 1
]
* B tN'p (N'B+ 1) ]

=]

TS N. +1
ey LM N' + M s Lo i
¢'p N'D +1 B-1 B\N'p+1
1 + L
¢ +["5MBNB Bihg ooy
B+l
. o, 8 |
B
=1

B

o] )"1 1
= o ¥ bigy

2+ By W (x- ocB_l.y)"l

.&MBN'B S M'B

2 A i
B

N+ L
1 i —
H'. 1 2 ﬁB—lf’NB(N‘B+l>}

Al.29

Al.30a

Al.30b

Al.30c
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If equation Al.29 is compared with equation Al.lO it is seen

that boundary crossing conditions for «o and B must be

=1
ol = - Ve ® e e e .
B (x g y) Al.31
BB = ocB(z/ﬁB_l.y} ST L SO e G I,
al;2 Calculation Scheme
(a) Arrays of Dn,E}n and bn are needed at every point
(b) Calculate oy and ﬁ?M depending on inner boundary conditions:
LY B
Point source -1 T\ X
DM
o 1
¢ =0at r =MAr - A - f— 0
1.+ é_r
A
$ = flat Bt -
(c) For n ranging from M+l to N-1 calculate an and 13n from
equations Al.11, Al.12, Al.31 and Al.32
(a) Calculate ¢>N from equation Al.19
(e) For n ranging from N-1 to M calculate the fluxes using

equation Al.lO

For multigroup calculations start with the highest energy
group where for shielding calculations:

The neutron current J will be finite and in general Sn will
be zero unless there is inelastic scattering from group 1 — group 1.

Work down the energy groups in turn using:

g-1 g-1
R 2 ¢+ B B @
i=1l in % i=1 S L

i-g i—»g



Unless hydrogen is present the second part of the expression is just

B2 e provided that the lethargy width of any group is greater
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CALOCULATIONS BOR FEST

I IFFFERENCE

v

CINTROERY ColalsdsXallsNs NN NVATFNNSTIES SCN, 1 }.'-JL\!:L-.?".}I.)

*REALY KD 0,005 CCRBRsAsYs b

SELECT (JUTEUT €023

Ri=PEAT; 'COMMENT® NUMBER OF ENERGY GROUPS:
IHte=RFADS 'COMMENT MESH INTERUALS

"REGIN®

'REAL' “ARRAY' SFIS,SCAPsSTRsSEL,SINTSNUsXL18EI>MUsF IS, NUF, CAP> THs FL»

REV CCoNMECDL12G>1221,PL 120G 12G1FRI1:G+11D,
I6E I EG=1226 1 22335
'FM:=REFAD; *COVMMENT® 1=FISSION,O0=NO FISSIONS
NETOP:=RFAD; 'COMMENT® NN OF ITERATIONS, IF
'FORY 1:=1'STEP® | *UNTIL® G+1 *'RO° )
FRLIJ:=PFAD;
YFOR® T:=l *STFBE')1 *UNTIL* G DO
X[ 11:=RFADT;
' RAR? Li=l.2 "1

'REGIN® :
VEDR® Tehur YETPReg PUNTHLARGE 1O
"REGIN

Sot sl le=03

VMECLI»1.3:=03
FIST Il de=05
NUFLI,1,:=03

CAPLI»1.]: —-D:

TREL s L2358

MaETaE 13

REMEES L
YRR 3

=147 3

s

VEORY  Tesl VSTERS 1 UNTIRY G=1 SDEE
VEORT  Jes1wll NSTERE Y VHNT T G hie
IMNLTsdsl,]ls=03
NieaTy=READRS "OOMMENT* NUMRBER OF MATERIALSS
YRER dere= RETEFEY 1 O SENTTEY O NMAT D
"BEGIN

KDr=READ: 'CUMMFNTY NUMBPR DENSITYS

b 0 D - IS o 2 B G G A 0 i

MULILL] :=PREAD; *COMMENT' MFAN SCATTRING CNSINE:

FN=0,NETIP=1;

MUET 1e=RFADY 'COMMENT" NFEUTRUINS PER FISSIONS

SEISE T le=RIAD;: "COMMENT®' MICROSCHPIGC F LSS
STR{I1:=REANS *CIMMENT® MICROSCNOPRIC TRANSFR

SELLA] ‘—1’} F1 SR ]'i""' MICROSCURIC 1"T‘!*_E"j"[f'3
SCAPLT ) e=RFAL; “COMMENT® HMICROSCORIC CAPTUI
SINTLT 1e=REANS 'COMMENT' MICROSCUEFIC TNFLP

s
Ti

."11[,

THOTALS



B

YRR 'T“‘I bSEREe S CENCRTE, G - BTt
PLI,JY:sRESDS *COMMENT® INELASTIC PROBARILITIESS

bl G TR

YR t= bSR3 = R o) Wl S € i
‘REGIN

CAPLI,L1s=CRaPLI,L 1+SCAPLTI=NN;
Apr=(STRLII=SINTLI I-SCAPLII=-SFISCTI 1D *ND;
BER:=AA/CI=-MULCTI,»1.0)3

TREILLIs=TRLI-LI1+040;5

SCLILL1s=SCE Il I+

MECLTIL1.3:=MSCLI,L]+BR=MULT 113
ARL=SFTSLEIxNDS

FISCILLI:=FISCI-LI+AAS

NUFLTLLIe=NUFLT,LI+AAXNIUTT D3

FLLI.11esELCTI»LY+SFELLT I5MN10;

REME T3 REM DT LD+ 5UNTE TN R0 L= PO T4 )1
CENERS

*FORY Tis1 "STEE" 1 *ONTILY &-1 'DO°
'FOR® Ji=T+) "STER' | YUNTIL' G “Bi°
TNETaJoLdt=INCT» JoLI+SINTLL IRND*EL T 5033
" ‘."T-T}'-l .
*FIORY. T ¢= EIRSTRES 4 FUNR IS 6 R
HEEGTNY
PIVEI LA e=d N LI, LI+ FLOT,LI+CAPL T, L )+FISCI,LTS
ML TR e=MECCILL /8GN0

RPNl I B £SO EELT 1S
'»338-09 H
DaY=1l+05

'FOR' G3=l+0:05 '"VHILE' AA 'LE* 1 'DO°

SORTOYAUAS
EEENPCRHZ% (1 +350MUCT LI ) /C1+3%0UsMUL T LI I+Y))IRCL+Y-2)/C1+Y+2Z) 3
t=l-Ne (I3

'TEURY b t=b+0ell SCHILEY B8 YLET -1 ="n0e
".'~<“f".--"'('1‘/-‘);
BA=FYPC22Z5 (1 +33bMULT LI ZC 1+ 30 i UL I, LI C14+Y)I IR C 1+ Y-ZI/ZCL+Y+7) 3

Bie=1"= e 113
L] ‘ 1 l;

L iz

Bhs= (153



112
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ALM=122=13
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L% O 0B el A o L B 3 s 6 R RS 171
VBEGLIN®
SCEICLJIt=FLELI=1213*F[T1-1,J1;
CRAR B0 = LS TR T Y UICT TRV = 1 R
SCEILJ):=SCEILJI+IN[F,1,11%F[K,J13
: VIR INs AR TIN e S PHENS
SRR f= PGS TR SO DL LY G S
SCEI0J1:=5CEICJI+¥ L1 1=NUFLK, 1 1%F[K, J1;
YERDY S

PEORY SIestIV S TREY 1 YUNTIE® T2 TS D
UGN :
SCFelJls=FLLI-1,21%F[(1~1,J];3 :

SR s TSR < o R R o B (e s ) T U
SCE2LJ):=SCE2LJI+INIK,I,21%F[K,JI;

VERT CEN=1 O YANTR GEEN > T THEN
SCE2LJ):=SCF2(JI+XLII%xNUFLK,21%F[KyJ13
i D Bl >
i T

CRER Y s SUSTRRY L NG TR LGN - 1N .
VBEGTD
ALJIs=(2%J+C) /(2% J%(2+RFML I, 11xDR*DR/DLI511)~(2%xJ-C)*ALJ-11)3
BLJIt=A0JY#C(2*J=CI*BLJ=-11+2% % SCE1[J)*DE=IE/DIIs11)/7(2%J+C)

VRIS

ACN11e=(2%xN1+CY)/CDL1,11/C2%DE1,21)%(2+RENLI, 1I*DR*DR/DLI>13)%C2%01-C)+
1 /2% (2+REMLTS23=DR«DR/DLI, 2T (%N 1+C)-(2%xN1-CI*DLI,11/DC1,21=AIN1-11);
PLM1d:=A0N1I*CCSCFIMNLII/Z(2%xDII,21)*xDR*DR&(P2xMN1-CI+SCERIN1I/(2=T (1,21 )%
C2xN1+CI=DR*xIHN+RINLI-11=DEI5 11/D0T21%(2%N1-C))/(2%xN1+C);

SPORS Jde=R1+1 *STEPY 1 AUNTINTY N2 "DO°

VR TN

HELJI3=(B%J+C) /(2% % (2+BFML I, 2% DRExDR/D1,231) - (8% J-C)=ALJ=-11)3
BELJI:=ATJY%((2%J=CI=NB{J=~11+28%xJ*SCF2LJI*DE*xIB/TI1,21)/(2%xJ+C) 3

LA V3 B R



FEI,N°33 BEW?EK(L+AEN?3*(DR/(Q»laﬁﬁfrxal) 1335 QU i,  $;9

10eiT 05«

TIMED OUT 104705






116

'BEGIN®
'COMMENT ' :SPP0709,NEUTSPEC,MEGAHID R., TRANSFORMATION OF PULSE
AMPLITUDE DISTRIBUTION INTO NEUTRON ENERGY DISTIBUTION,
DIFFERENTIAL METHOD:
*INTEGER"® 1,J.KslLoM,JJsLL3
'INTEGER"' MIN,MAX;
'REAL' G»SS,Q,F,CMsAR;3
'INTEGER* LOG;
"INTEGER' Jl,J2;
'INTEGER' IROW:
'REAL* °*ARRAY' NEUC1:4);
*REAL® '"ARBAY' NETZ1335
‘REAL' FLOTS: |
'REAL' EMAX,DV, DL, DLL;
'REAL. ' 'ARRAY®' EPS(0:1501,SCFC0:301;
'PROCEDURE®' [OPENPLOT:
'EXTERNAL";

' PROCEDURE' CLOSEPLOTS
* EXTERNAL '3

*PROCEDURE' HGPLOT(X,Y>A,B);
*REAL' X,Y;

'INTEGER' A,B;

'EXTERNAL "' ;

' PROCEDURE *HGPSCALE(X,N» S» XMIN,» DX5>K) 3
'VALUE'N, S, XMIN, DX, K3

' ARRAY ' X5

'REAL " S5, XMIN, DX3

'INTEGER'N, K3

'EXTERNAL" 5

' PROCEDURE *HGPAXISV(XsY>»BCDsN» Ss THETA, XMIN» DX» GAP, NH) 5
'VALUE'X5>Y5N»> S5, THETA, XMIN, DX> GAP, NH;

'INTEGER'NsNH;3

' ARRAY 'RCD;

'RFAL'X,Y, S, THETA, XMIN, DX> GAP;

' EXTERNAL" 5

'PROCEDURE* STRARR(A,N, S);
*ARRAY 'AS

'INTEGER'N;

'STRING'S;

' EXTERNAL" 5

' PROCEDURE 'HGPLOGAXIS(X,Y>BCD,NC» S>» THETA,MIN,MAX) ;
'REAL ' X5Y,S,THETA}

'INTEGER'NC,MIN,MAX;

'ARRAY 'BCD;

'EXTERNAL'® 3
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* PROCEDURE' HGPSYVMBL(X,Y,HT,BCD, THsN)
*VALUE® X,Y>HT,TH,N;

*ARRAY 'BCD;

'REAL ' X»Y,HT,TH;

*INTEGER"N;

'EXTERNAL"® 3

* PROCEDURE' HGPNUMBER(C(X,Y,HT,FLOT> THETA»I»Js1) 3
"UALUE'"X,Y,HTLFLOT, THETA, 1, J>Kj

'Rral' XsY,HT,FLOT, THETAS

PINTEGER" IsJdsK3

*EXTERNAL';

*PROCEDURE' PLOTCEDSS(X,Y,SIZE):
*REAL' X,Y,5IZE;
*BEGIN®

'REAL'SS

HGPLOT(X5Y»350)5

> HGPLOTC(X+SaYs2,0)3
HGPLOT(X-S5Y»150)3
HGPLOT(X>Y>15005
HGPLOT(X>Y+S5150)3
HGPLOT(X>Y-55150)3
HGPLDT(X:Y,I:U)E

'END*

IROV:=0;

Jl:=203

J21=4;

LOG:=LNC10)3

OPENPLOT

HGPLOT(=-50510050,4)5

STRARR (NEU,Jl,'('NEUTRONZENEEGYZ(MEV) ') ")}
STRARR(N, J2, "('NC(E) ") ')

EMAX :=READ; ‘COMMENT' MAXIMIUM ELECTRON ENERGY FOR CALIBRATIONS
I:=READ; °'COMMENT' INITIAL CHANNEL NUMBER OF INTEREST;
J:=READ; 'COMMENT' FINAL CHANNEL NUMBER OF INTEREST:
G:=READ; 'COMMENT' GEOMETRY FACTORS
Q:=READ; 'COMMENT' SOURCE STRENGTH;
AR:=READ; 'COMMENT' AREA OF THE DETECTOR:
*POR* Ls=0 “STEP" 1 °*UNTIL® 150 'Du
EPSCLI:=READ; 'COMMENT' NEUTRON DETECTION EFFECIENCY;
VEIIR SR sl SSTEPY L YUNTIL T 30, "D
SCFLLLIJ1:=READ; ‘*COMMENT' SHAPE CORRECTION FACTER:;
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NEXT:

FLOT :=READ; 'COMMENT' NUMBER 0OF EXPERIMENT:

*1F* FLOT <0 'THEN' 'GOTO' FINALS

K:=READ; 'COMMENT' CHANNEL NUMBER AT HALF PEAK 0OF EMAX;
CM:=READ; *‘COMMENT' ALFHA PARTICLE COUNTS BY THE MONITERS

*BEGIN'

'"REAL' 'ARRAY'COUNT,C,EE, EP, DPDE»A, EFF, DDVA,NF,NFC,NFA,CA>NFAZ,
CB> EFFN>B, CMULTLI :tJl5

DV :=EMAX /K

SS:=0GxCMs

F:=Q/SS;5

*FOR® ¢=1. »STEP" ! *UNTIL" J *BO*
*‘BEGIN®
EELM] :=M*DV;

*IF* EEIMI *LEY 1:85 *"THEN®
EPI[M]:=3.48%(EE[M]It10.667)

S ELSE?
EPL(M]:=1.78%(EE[MI+11)3

‘IF* EPLM] *LEY 5.25 °THEN®
DPDELM]:=0.245%EP(M]110.5;

*IF' EPCM] *GE* 5.25 'THEN'

DPDELM]:=0.5645

YENDY 3

'‘FOR" Me=1 YSTEPY 1 “UNTIL™ J 'BO"
'BEGIN"

L:=ENTIERCEP[MI1*10);
LERY 10 et SEao N THEN =
Le=149;

DL:=EP[MI*10-L;

EFFIM) :=EPSCLI*(1-DL)+EPSCL+11*DL;

*END*3

YRR M:=1 “STEP' 1 “UNTIL* J 'DO?
'BEGIN'

LL:=ENTIERCEPIMI*2)3

CIEs LI, CGET 29 "THEN®

LL:=29;

DLL:=EPI[MI*2-LL}
BLMJ:=SCFILLI%*(1-DLL)+SCFLLL+11%DLL3
'END"';

'BEGIN'
*FOR* M:=1 'DPO°*
EFFNIM]) :=EFFIM];
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YEORY Me=sil DU

EFFNIM] t=05*%EFF[M1+0.25%(EFFLM-1)+EFF(M+11);
YFOR' Mi=1+2 '"STEP® 1 "UNTIL®* J-2 "BO*
EFFNCM]:=0.312%EFF(M]1+0.229% (EFF(M~1]1+EFFLM+11)
+0.115*%(EFFLM=-2]+EFF[M+21)3

YFOR® Mas=J=-1 "B
EFFNI[M] :=0+5%EFFIM)+0.25%(EFFIM-11+EFFIM+1]);
‘FOR* M:=J 'DO"
EFFNCM]:=EFFI[M];
'END"S

*FORY Ms=1 *STEP' I "UNTIL® J *DU°*
'‘BEGIN®
CMULTCM]:=READ; ‘'COMMENT' NUMBER OF COUNTS AT CERTAIN
CHANNEL NUMBERS ;
'END" 5 :

‘BEGIN®

*FOR*Mt=1 °*STEP' 1 °*UNTIL' 320 °DO’
COUNTILM] :=CMULTI[MI*31.8%M1(-0.5915)3
*FOR*M:=320 °*STEP' 1 'UNTIL' J 'DO’
COUNTLWM) :=CMULTCMI 5

'END"';

'BEGIN"
*FOR* Me=1 °'DO°
CCMI:=COUNTLCMI 3
YEOROOM ST T ESTRRAIE VAR TE L= D
CCMI:=0.5*%COUNTIMI+0.25%CCOUNTLM-11+COUNTIM+11)3
'‘FOR* M:=dJ *'DO*
CLM1:=COUNTLMI;
YEND'3

'BEGIN®

*FOR* M:=1 'DO°

CACMI:=C[MI;

*FOR® M:=I+1 'DO’

CALM] 2=0e5%CIMI+0+25%CCIM=-11+CIM+11);
'*FOR* M:=I+2 "STEP®' 1 ‘'UNTIL®' J-2 *'DO°
CALCM] :=0.312%CI[MI+0.229%CCLM-11+CIM+11)

+0.115%CCLM-21+CL[M+21)3

'‘FOR' M:=J-1 'DO°*
CALM] :=0+5%CCMI+0.25%CCLM-11+CIM+11)3
'FOR' M:=J ‘DO

CALMI) :=CIMI;

‘END';

'BEGIN®
tFORY Mz=1 *DO*
CRLM1:=CALMI;
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'FOR® M:=1+151I+2 *DO* -
CBIM] :=0.5%CALMI+0.255%(CALM-1]+CALM+1]);
ROR® Mr=T+3 NSTEPY 1 “UNTIL®' Jr=38 *DO*
CBLM]:=0.236%CALMI+0.198*%x(CA[M=-1]+CALM+11)
+0+117*%CCALM=21+CALM+2])+0.067%(CALM-31+CALM+3]);
'‘FOR* M:=J-2,J-1 *'DO°
CBLM]:=0+5%CALMI+0.25%x(CALM-1]+CALM+1]);
'FOR'M:=J'DO"
CB(MI] :=CALMI;
*END' 5

CFOR® Ms=F *STEP? I ‘UNTIL® J "DO°
‘BEGIN"
ALM] :=CBI[MI*DPDECMI;
*END* 3

'FOR* t=1,I+1 *DO*
DDVALM]:=(-11*ALMI+3*ACM+11+T*xAIM+2]1+AIM+31)/7(20%DV);

YRR Me=Ts2 YSTERE 1 YUNTIL® J-2 *'DOY
DDVALM] :=(2%A[M-2]1+A[M-1]-A[M+11-2%xA[M+2])/C10%DV);

'FOR'Me:=Jd-1,J'DO"
DDVALM]:=(-21%A[MI+13%xAIM=-11+17T*ALM-2]~-9%xA[M=31)/C20%DV);

CHEURC Ms=E VSRR KR SMINTTE Y sl D
'BEGIN"
NFLM] :=CCEPCMI/ZEFFNLMI)*DDUAIMI*xDPDEIM]) 5
NFCIMI :=NFI[MI*Fx(1/AR)*(1/BIM]1);
'END';

NEVLINEC4);

SPACE (20);

WRITETEXT ('(' EXPERIMENTZZNUMBERZ="')"');
PRINT(FLOT»>3,0)3

NEWLINE (2);

SPACE (20);

WRITETEXT (' ('KEZI=")"')3

PRINT (K.,3,0); '

NEVLINE (2);

SPACE (20);

VRITETEXTC®* ('EMAXZ%Z%Z=")"');
PRINT(EMAX»253);
WRITETEXTCYC MEU™ ) )5

NEWVLINE (2);

SPACE (2035 '
WVRITETEXTC" ( 'CHANNELZWIDTHZ%Z=")");
PRINT(DV,1,3);

VRITETEXT(' ('"MEV%PZCHANNEL"') ') ;
NEVLINE (2);

SPACE (20);

VRITETEXT ('('Q%%="')"');

PRINT (Q,0,3);
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NEVLINE (2);

SPACE (20);

VURITETEXT ('('GEOMETRYZZFACTORZ="')"');
PRINT (Gs0,4)5

NEVLINE (2);

SPACE (20);

WRITETEXT (' ('ALPHAZPARTICLEZCOUNTSZBY MONITORZ="')"')3
PRINT (CM,0,4);

NEVLINE (2)3

SPACE (20);

WRITETEXT ('('CORRECTIONZFACTOR%Z="')"')s
PRINT (F,2,4);

NEVLINEC4);

SPACEC(2);

WRITETERTC Y)Y ) 3
SPACE(S);
WRITETEXTC'('COR"') ")
SPACE(S5);
VRITETEXTC*C"CLMI*) ')
SPACE(3):;
VRITETEXT(C'C'CALMI"*) ")
SPACE(3);
WRITETEXTC'C'CBLMI')"*)s
SPACEC3);

URITETEXTC' (*EECM1') ")
SPACE(2);

WRITETEXT ¢'C'DPBEEMI1*)Y)S
SPACE(3);

WRITETEXT (C('C'AIMI*) ')
SPACE(3);

WRITETEXT ('(C('DDUALMI')"');
SPACE(2)3

WRITETEXT (*(C'EFFCMI*) ")
SPACE(2);

VRITETEXT (' ('EFFNCM1')')5
SPACE(2);

VRITETEXT ('(C'ENCMI*)');
SPACE(2);

VRITETEXT ("C'NFCM]I*)');
SPACE(23;

WRITETEXT (' ('NFCCMI*)"*");
SPACE(2);

VRITETEXT ('('NFACM1')');
NEWLINEC(2)3

JJ:=03

*FOR* M:=I+1 *STEP*' 3 “UNTIL' J-1 *'DO
'BEGIN'

NFACM] :=(NFC[M~-11+NFCLMI+NFCIM+11)/3;
*‘IF' NFACM] 'GT* 0.0 'THEN'

'BEGIN

Jdi=JJd+ 13

NFA2LJJ] :=NFACMI;

YEND*S

'END*;
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HGPLOGSCALE(NFA2,,JJs G DMIN.MAK, 1) 3
HGPLOGAXIS (0050.05N5J2560590e0,MIN,MAX) S
HGPAXISV (0+050+05NEU»=J159¢050¢0500051050e652)5
HGPNUMBER(2+¢55=1+0, DOQJ’FLDT.’ 005053505
JJ:=03;

SRy Mi=l4]l CSTERY 30 "UNTILY J—1 DO
*BEGIN®

NEVLINE(C1);

PRINT(M,3,0)3

PRINTC(COUNTCMI»S5,0)3
PRINTC(CLM1»550)3

PRINT (CALMI»5,0);

PRINT (CBLM],5,0);
PRINTCEEI[MI,»1,2)3
PRINTC(DPDEL[M]>1,3);

PRINT (ACM1,451);
PRINT(DDVALM]»5,1);
PRINTCEFFI(Ml1,1,4);
PRINT(EFFNLM],1,4);
PRINT(EPIL[M]1,2,2)3

PRINT(NFI[M]1,550);

PRINT (NFCLM1>5,0);

PRINT (NFALMJ»5,0);

*IF*' NFALCM] *GT'0 'THEN®

‘BEGIN®

Jdi=Jd+13;
PLOTCROSSCEPIMI*0+«6,NFA2LJJ]>0e1)3
*END';

*END"3

*END*;

HGPLOT(0+050.05350)3

*IF* IROW=0 *THEN®

'BEGIN®

IROW:=1;

HGPLOTC(0«0512+050,4);

*END® 4 R ST

'BEGIN’

IROW:=03;

HGPLOT(-15+05-12.0505,4);

*END';

*GOTO* NEXT:

FINAL:

CLOSEPLOT
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