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SUMMARY

Methods of dynamic modelling and analysis of structures, for example the
finite element method, are well developed. However, it is generally agreed that
accurate modelling of complex structures is difficult and for critical
applications it is necessary to validate or update the theoretical models using
data measured from actual structures. The techniques of identifying the
parameters of linear dynamic models using Vibration test data have attracted
considerable interest recently. However, no method has received a general
acceptance due to a number of difficulties. These difficulties are mainly due to
(i) Incomplete number of Vibration modes that can be excited and measured,
(ii) Incomplete number of coordinates that can be measured, (iii) Inaccuracy
in the experimental data (iv) Inaccuracy in the model structure.

This thesis reports on a new approach to update the parameters of a finite
element model as well as a lumped parameter model with a diagonal mass
matrix. The structure and its theoretical model are equally perturbed by
adding mass or stiffness and the incomplete number of eigen-data is measured.
The parameters are then identified by an iterative updating of the initial
estimates, by sensitivity analysis, using eigenvalues or both eigenvalues and
eigenvectors of the structure before and after perturbation. It is shown that
with a suitable choice of the perturbing coordinates exact parameters can be
identified if the data and the model structure are exact. The theoretical basis of
the technique is presented. To cope with measurement errors and possible
inaccuracies in the model structure, a well known Bayesian approach is used to
minimize the least squares difference between the updated and the initial
parameters. The eigen-data of the structure with added mass or stiffness is also
determined using the frequency response data of the unmodified structure by a
structural modification technique. Thus, mass or stiffness do not have to be
added physically. The mass-stiffness addition technique is demonstrated by
simulation examples and Laboratory experiments on beams and an H-frame.

KEY WORDS: System identification - parameter estimation - model updating
Vibration - structures.
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NOMENCLATURE

Matrices are denoted by bold symbols, vectors by plain symbols and scalars by

italics.

M,K,D Mass, stiffness and dynamic stiffness matrices.

H Hysteretic damping matrix.

C Viscous damping matrix.

M, K Modal mass and modal stiffness matrices.

A,B Mass and Stiffness matrices of a first order
differential equation based on state variables.

R.S. T.L Arbitrary matrices.

AM, AK Mass and stiffness addition matrices.

M Submatrix of the mass addition matrix spanning
over those coordinates which are perturbed one
in turn.

0K Submatrix of the stiffness addition matrix
spanning over those coordinates which are
perturbed one in turn.

v Modal matrix

U Mass normalized modal matrix

I Identity matrix.

¥ Eigenvector matrix of a first order differential
equation based on state variables.

@ Eigenvector matrix normalized w.r.t mass matrix
of a first order equation based on state variables.

C] ' Matrix of complex mode shapes normalized w.r.t
mass matrix of the first order state equation.

A Eigenvalue matrix.

a Diagonal matrix.
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c <

As

Receptance matrix.

Transfer function matrix.

Coefficient matrix.

Matrix of Lagrangian multipliers.

Error matrix.

Jacobian matrix.

Weighting matrix.

Matrix from singular value decomposition.
Projector matrix.

identity matrix

Arbitrary diagonal matrix

Displacement vector.

Forcing vector.

State vector.

Forcing vector corresponding to the first order
state space differential equation of motion.

Mode shape vector.

Mass normalized mode shape vector.

Eigenvector of a first order differential equation
based on state variables.

Eigenvector normalized w.r.t mass matrix of a
first order differential equation based on state
variables.

Mode shape vector normalized w.r.t mass matrix
of a first order differential equation based on
state variables.

Vector of unknown model parameters.
Observation vector.

Vector of Difference between unknown model
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parameters and parameters of the analytical
model.

Vector of difference between measured modes
and modes determined by the analytical model.
Vector of difference between measured

eigenvalues and eigenvalues of the analytical

¥ Th o e b ofyx™ 3N Z o3 § e Tm
% B

3

model.

Vector of principal coordinates.
Error vector.

Unit vector in the imaginary axis.
Frequency in Rad/s.

Eigenvalue.

Modal mass and modal stiffness.
Hysteretic damping factor.
Viscous damping factor.

Number of degrees-of-freedom.
Number of unknown parameters.
Mass.

Stiffness.

Flexural rigidity.

Constants.

Constraint equation.

Function.

Frequency in Hz.

Variables.

An error variable.

Time.

First derivative with respect to time.

Second derivative with respect to time.
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>

Refer to the unmeasured modes.
Length.

—

Receptance.

Influence coefficient of the stiffness matrix.

< =~

Influence coefficient of the mass matrix.

~

Diagonal influence coefficient of the submatrix of
R.

T Influence coefficient of T.

R Influence coefficient of R.

P Kronecker delta.

omn Added mass

o, Damping proportionality constant.
m Scalar coefficient

d

Number of distinct eigenvalues.

Subscripts

4]

Refer to the analytical model.
Refer to the stiffness matrix.
Refer to the mass matrix.

Refer to the T matrix.

0 H 2 9=

Corrected matrix.

mm Matrix/Vector corresponding to measured DOF.

00 Matrix/Vector corresponding to unmeasured
DOF.

mo, om Matrix coupling measured and unmeasured
coordinates.

X Refer to an arbitrary model.

e Refer to the number of perturbed coordinates.
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mc

Ca

Refer to the number of measurement coordinates.
Refer to the mass and stiffness parameters.

Refer to the maximum number of non-zero rows
in mass and stiffness submatrices coupling the
perturbed and unperturbed coordinates.

Refer to the maximum number of non-zero
coefficients above the main diagonals of the
mass and stiffness submatrices corresponding to
the perturbed coordinates.

Refer to a reduced order model.

Measured modes.

Effective modes.

Reference to the G matrix.

An instrumental variable matrix.

Lagrangian.

Objective

Experimental.

Data based on eigenvalues.

Data based on mass normalized eigenvectors.
Data based on eigenvalues and eigenvectors.
Reference to the jth quantity.

Reference to the ith quantity.

tth quantity.

Reference to a matrix element (or submatrix) in
the ith row and the jth column.

Per unit length.

Refer to a matrix of order 2N

Refer to the analytical model at current iteration.
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Superscript

* Complex conjugate.

p Refer to the perturbed structure
I Pseudo-inverse.

T Matrix transpose.

: Submatrix of a model reduced to the unperturbed

coordinates.
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CHAPTER 1
INTRODUCTION

1.1 Research background

The design of a mechanical system usually involves structures which are
crucial for the overall performance of the system. For a dynamically loaded
system, design criteria will involve factors which are important for the
structural integrity, as well as factors necessary for an optimum dynamic
behaviour. These design criteria will require, for example, optimization of the
fatigue strength, minimization of vibration levels to within specified limits,
avoidance of structural resonances or the reduction of structural borne noise.
The optimization of the vibrational behaviour of a spindle and bearing system,
for example, is an important criterion in machine tool design for the
attainment of a high quality of machining, whereas automotive and aeroplane
structures are required to withstand premature fatigue failures as well as to

transmit very little vibrations to the passengers.

With increased competition, there is an increased demand for the optimization
of the structural dynamics of systems operating under dynamic loading. Such
an optimization requires a detailed dynamical analysis at the design stage. The
dynamical analysis is performed by constructing mathematical models which
are based on the materials properties data and the design drawings. With a
mathematical model factors such as dynamic stresses, elastic deformations or
natural frequencies, as well as the effects of structural design changes on the

dynamic behaviour, can be predicted long before the system is manufactured.

Methods of dynamic modelling and analysis of structures are well developed.

If a system can be adequately described by a very simplified conceptual model,
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exact analytical techniques for dynamical analysis are available and well
established. The majority of practical systems, however, are so complex that
solution based on exact analysis is extremely difficult or impossible. The use of
approximate methods in the dynamical analysis of practical structures has
therefore been dominant. Among the approximate methods, the finite element
method is currently the most advanced and widely used. Despite the
sophistication of the finite element method, it is still difficult to produce
accurate dynamic models of complex structures and for critical applications it
is necessary to update the finite element model using test data measured on real
structures. This procedure has the disadvantage in the sense that a prototype or
an actual system needs to be constructed. However, it constitutes an important

stage in the product design and development process.

The techniques of using experimental data in the dynamic modelling of
structures were originally initiated by the demands in the aerospace industry,
dating back to the 1960/1970's. Since then other branches of engineering,
notably automotive industry, have become interested in the process, partly as a
result of recent developments in digital electronics and signal processing
capabilities and partly due to the availability of powerful microcomputers at
competitive prices. Currently model updating and identification techniques

constitute an active field of research in the general area of structural dynamics.

In spite of the tremendous strides made within the last decade or so, with
numerous publications on the methods of dynamic modelling of structures
using vibration test data, there is still no generally acceptable method of
updating an analytical model of a practical structure. This is due to a number
of difficulties that are mainly associated with the nature of the experimental

data. The important ones are:
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(1) Incomplete information about the dynamic behaviour of the
structure from vibration test. This problem is caused by the fact
that the number of vibration modes that can be excited or
measured in the response spectra is usually much smaller than
the number of degrees-of-freedom (DOF) of the corresponding
analytical model, giving rise to an infinite number of solutions.
This problem is commonly known as the problem of incomplete

modes. .

(i1))  Mismatch between the number of DOF of the analytical model
and the number of coordinates measured in a vibration test. This
problem stems from the fact that a significant number of
coordinates cannot be measured, for example coordinates
corresponding to the rotational DOF cannot be measured
because rotational transducers are not yet developed and some
coordinates corresponding to the translational DOF cannot be
measured because of inaccessibility. Furthermore, some
otherwise accessible coordinates are not measured because it is a

time consuming and expensive task to measure them all.
(i) ~ Measured data contains inevitable experimental errors.
The work reported in this thesis is concerned with the development of a

technique to update dynamic models, with particular reference to the finite

element models, by using vibration test data.
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1.2 Problem identification

Practical structures have a continuous distribution of mass and elasticity and
therefore an infinite number of degrees-of-freedom. Such structures can
therefore only be exactly modelled by partial differential equations. The
procedure is to write down the partial differential equations of motion by
considering dynamical equilibrium of an infinitesimal element and solve the
resulting equations using known boundary conditions of the problem. With
complex geometry, typical of practical structures, exact solution to the partial
differential equations is extremely difficult and in most cases not possible.
Even for structures of simple forms boundary conditions and stiffness
properties of joints cannot be determined accurately by theoretical analysis.
Dynamical analysis of practical structures have, therefore, been carried out by

approximate methods.

The approximate methods of dynamical analysis of practical structures are
essentially methods of discretization in which a system with an infinite number
of DOF is expressed by a finite number of DOF. Whilst the dynamic responses
due to an arbitrary loading can be obtained directly from the differential
equations of the discretized model using numerical methods, the solution of
free vibration problem is of major importance in the dynamical analysis. The
free vibration problem enables one to derive the modal model. The modal
model contains necessary and sufficient information to uniquely characterize
the dynamic behaviour of the system. Response due to any arbitrary loading
can easily be computed by a linear combination of the vibration modes.
Furthermore, the optimization of the dynamic behaviour can be performed
more efficiently as the effects of changes in mass and stiffness on the dynamic
characteristics can be predicted more efficiently using the modal model rather

than by repeated numerical solution to the equations of motion.
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Most efforts in the dynamic modelling of structures are therefore directed
towards reducing a physical system to a mathematical model with a finite
number of DOF and from which vibration modes, natural frequencies and
damping coefficients can be determined. The finite element technique is
currently the most advanced and most widely used method for dynamical
modelling and analysis of practical structures. This technique uses a more
rational discretization procedure and is extensively treated in the literature, see

for example Burnett (1987), Rao (1989) and Zienkiewicz (1989).

Despite the advances made in finite element techniques the dynamic behaviour
prediction by the finite element method is in general not in agreement with
measurements made on real structures. Although measurements cannot be
error-free, it is generally agreed that accurate modelling of complex
structures is difficult. The discrepancy between analytical model predictions
and measurements obtained from actual structures is mostly associated with
inaccuracies in the analytical model. This discrepancy increases with the
complexity of the structure. It is also not surprising to find discrepancy in the
dynamic behaviour prediction between finite element packages prepared by
different experts. Wang et al (1986) for example, reports deviations in natural
frequency predictions, for a simple T-plate, of up to 20 percent between

different FE packages.

There are two main sources of errors which gives rise to the discrepancy
between experimental and FE analytical predictions of dynamic behaviour.
The first is associated with the fundamental errors introduced by the 'expert’
in the derivation of the FE basic equations due to some inevitable
approximations. These approximations are not immediately apparent to the
user of the FE package. The second is associated with assumptions and

necessary approximations introduced by the user of the FE package in the
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modelling, especially of complex structures. The two sources are explained as

follow :

()

(i1)

(iii)

(iv)

The deformation shapes of structures are frequency
dependent, are not known, are difficult to find and in general
impractical to find them except for very simple structures such
as a uniform beam. The finite element method, for simplicity,
assumes static deflection shape functions within the ele-
ments which are a valid assumption at zero frequency only, and
even these are also not very easy to find accurately. A closer
approximation to static shape functions is achieved by assuming
some trigonometrical or polynomial functions. The
approximation to dynamic shape functions is better at low

frequencies and does generally get better by increasing the

number of elements.

Uncertainty in deciding the appropriate element type to use in
modelling structures of complicated shapes. Often one has to

make an intuitive judgement.

Stiffness properties of joints (Bolted joints, welded joints,
composite construction) is difficult or impossible to evaluate

accurately from the design drawings.

Damping in structures is complex involving a combination of
different damping mechanisms (Internal material hysteresis,
coulomb friction in joints and viscous damping from the air
resistance and viscoelastic materials). It is not always possible to

predetermine the dominant damping mechanism and even if this
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is possible or an equivalent damping model assumed, it is
difficult to find the damping coefficients accurately. The
commonly established practice is to ignore damping in lightly
damped structures. For most structures the discrepancy
introduced by ignoring damping is not significant except for

response levels around the resonance frequencies.

(v)  Uncertainty in materials properties data affects mass and

stiffness matrices.

Finally, it should be noted that analytical models of practical structures,
following the discretization, will contain a finite number of degrees-
of-freedom, N, whereas the actual structure has an infinite number of
degrees-of-freedom. If anN degrees-of-freedom model is to reproduce
exactly the first N modes of the structure, it will not be capable of reproducing
the responses at higher frequencies since the contribution of the (N +1)th and
higher modes which is present in the structure responses will be missing in the
analytical model responses. In other words, it is not possible for a discretized
N degrees-of-freedom analytical model to reproduce the responses of the
structure up to the Nt mode frequency. Thus, a discretized analytical model
can never be exact. For practical purposes, however, the concern is to attain
agreement between analytical model predictions and actual structure
behaviour over a relatively much larger frequency range of interest. When
this is not the case the analytical model cannot be reliably used in the dynamical
analysis. This is often the case with complex structures and important factors

contributing to the disagreement have been identified.
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1.3 Problem definition and the scope of the present work

The process of establishing a dynamic mathematical model of a system or
structure falls under the general heading of system identification. This process

essentially involves two main tasks.

(i) Estimation of system structure, that is the form of the
differential equations or transfer functions that describes the

systems input-output relationship is established.

(i)  Estimation of system parameters, that is the parameters in the

established differential equations are established.

As far as the dynamic modelling of structures is concerned the differential
equations are the differential equations of motion whose coefficients
represents the mass, stiffness and damping distribution. When discretized to a
finite number N of degrees-of-freedom, the differential equations becomes a
matrix differential equation of motion. The estimation of the system structure
will involve for example establishing the presence and type of damping
mechanism, establishing the presence location and the type of non-linearities,
establishing any coupling between the different coordinates within the inertial,
damping and stiffness matrices, establishing any relation between the different
submatrices within each of the matrices etc. A model based on the lumped mass
matrix, for example, has a different structure from the model based on the
finite element consistent mass matrix and therefore a system identification
procedure should establish the appropriate structure of the mass matrix before
parameters of the mass matrix are correctly estimated. The dynamic model in
terms of the mass, stiffness and possibly damping matrices constitutes the

spatial model. For a linear system the differential equation is a second order
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linear differential equation with constant coefficient matrices.

The system transfer functions are the expressions for receptance, mobility or
inertance. Its parameters are the natural frequencies, mode shape vectors and
modal damping factors. These are the modal parameters. The last two modal
parameters are usually associated with linear systems only. The dynamic

model in terms of its modal parameters constitute a modal model.

The structure of the spatial model matrices in terms of the relationship, if any,
between the different submatrices and the presence of coupling between the
coordinates within the spatial matrices is usually established by the analytical
technique used in the derivation of the equations of motion. A finite element
linear model incorporating effects of shear deformation and rotatory inertia
will have a different model structure from the model ignoring these effects.
Likewise a linear model with proportional hysteretic damping will have a
different model structure from a model employing a non-proportional viscous
damping. When a system identification procedure is concerned with model
updating, it is necessary that an appropriate model structure is established
during the formulation of the initial analytical model. Thus, a system
identification problem in the case of model updating becomes a problem of

parameter estimation.

The work reported in this thesis is concerned with system identification of
linear vibrating structures in which an initial analytical model is to be updated.

Thus, the following main assumption are made:

(i) The physical system is adequately represented by a dynamic
model with a finite number of DOF over a frequency range of

interest, by a second order linear differential equation of
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motion with constant coefficient matrices.

(ii))  The structure of the spatial matrices in the analytical model is

adequate to represent the physical distribution of the spatial

par. ameters.

A general model updating procedure is aimed at but emphasis is on the
updating of the finite element model. As damping is the least accurate to
measure experimentally and difficult to estimate analytically, it has been
ignored in the analytical modelling for majority of lightly damped structures.
The priority in this work is therefore on the updating of undamped models
although a generalized procedure for the treatment of damped systems when
an appropriate initial damping model is available will be derived. The system
identification problem in the context of this work is therefore a problem of

parameter estimation.

A technique has been developed to update the structural parameters of a finite
element model using modal data. It is based on sensitivity analysis of the
eigen-data with respect to changes in the structural parameters and the
generation of a sufficient number of linearized independent equations so that a
meaningful solution can be obtained from an incomplete number of modes
measured at an incomplete number of DOF. This is achieved by successive
perturbation of both the actual structure and its analytical model, in order to
change their eigen-data, by identical additions of lumped mass or grounded
stiffness at a number of coordinates and using measured eigenvalues and
eigenvectors or eigenvalues alone. Due to the presence of the experimental
errors in the measured eigen-data, large changes in some parameters from
their initial estimates is possible when the sensitivity of the eigen-data to the

parameters in question is relatively low. To limit the changes in the parameters
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due to the influence of the experimental errors, a minimum variance estimator
based on the Bayesian approach is used. The technique is further improved by
adopting a structural modification approach to find the eigen-data of the
perturbed structure from measured frequency response data without physical
mass or stiffness additions. Thus, large stiffness or mass addition is possible.
The feasibility of the technique is verified by numerical examples and

laboratory experiments.
1.4 Organization of the thesis

The thesis is organized into seven main chapters with the first chapter as an
introduction. In Chapter 2, the literature of parameter estimation techniques
relevant to structural dynamic modelling is reviewed. The review concludes
by pointing out that most of the difficulties in model identification and
adjustment methods and the limitations in the existing techniques originates
from problems associated with an incomplete number of measured modes,

inaccessibility of rotational and some translational DOF for measurement and

inaccuracies in the experimental data.

These problems are tackled by a technique developed in this thesis. The
technique is based on sensitivity analysis of the eigen-data before and after the
structure and its analytical model are equally perturbed by adding mass or
stiffness. It is shown that if the structure is perturbed by adding stiffness or
mass in order to change its modal data, the incomplete modal data of the
perturbed and the unperturbed structures may be sufficient to identify the
correct parameters of the unperturbed structure. This is possible using
eigenvalues and eigenvectors or using eigenvalues alone. Conditions for using
eigenvalues and eigenvectors and for using eigenvalues alone are derived. The

basic theoretical development and verification by numerical examples are
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given in Chapter 3.

Chapter 4 discusses some practical aspects, in particular the effects of
experimental errors in the measured data, the effects of fitting an undamped
model using data from a lightly damped structure and the effects of fitting a

model with a finite number of DOF using data from a continuous system.

Chapter 5 presents the results of the verification of the mass addition technique

by laboratory experiments on a free beam and a cantilever beam.

The technique is further refined and improved in Chapter 6 by using measured
frequency domain receptance data of the unperturbed structure to estimate
analytically the unbiased modal data of the perturbed structure. Consequently
mass or stiffness do not have to be physically added to the structure. Large
structures for which physical mass addition is not practical can easily be
updated in this manner. The feasibility of analytical stiffness addition is
verified by numerical and laboratory experiments on lightly damped beams

and an H-frame using undamped and proportionally damped models.

Finally, general discussion and conclusions are given in Chapter 7.
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CHAPTER 2
LITERATURE REVIEW

2.1 General considerations

The process of linear dynamic modelling of structures, for example using the
finite element technique, leads to a matrix differential equation of motion
which may or may not involve a damping matrix. If a structure is adequately
represented by a finite element model with hysteretic damping, the time

domain differential equation of motion is given by (2.1).
Mq() +[ K + jH 1q() = Q() @.1)

For a harmonic forcing vector at a single frequency, w, the response is also
harmonic with the same frequency and its time dependence in the differential
equation of motion is separable from its spatial dependence. Thus, using

complex variables to account for the phase differences, (2.1) can be written as:
2 .
[-o M+K+jH]q=Q (2.2)

Where q and Q are frequency dependent complex displacement and forcing

vectors.

The vibration mode shapes and natural frequencies are found from the
homogeneous solution of (2.2), which can be seen as an eigenvalue-eigenvector
problem with a real mass matrix and a complex stiffness matrix. It can be
shown that the mode shape vectors in the case of a hysteretic damped system
are the same as the eigenvectors, which are generally complex and are

orthogonal with respect to both the mass and the complex stiffness matrices.
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The orthogonality relationships are of the form of (2.3) and (2.4) where §; is
a kronecker delta and m; and k; are complex constants referred to as the

modal mass and modal stiffness.
T
T .
V!-[K+_]H]Vj=65kj (2.4)
For N modes, (2.3) and (2.4) can also be written as:
T
VMV=M (2.5)
T .
V [K+jH]V =K (2.6)
M and K are diagonal matrices of modal mass and modal stiffness respectively.
The mode shape vectors contains arbitrary scaling. Often V; is scaled so that

the biggest term in each mode vector is unity. Alternatively the mode shape

vectors can be conveniently scaled according to (2.7).

U; = hs, (2.7)

12
T
‘Vf MVJ')

Mode shapes scaled using (2.7) are said to be mass normalized and satisfies the
orthogonality relationships with respect to the mass and the complex stiffness

matrices as given by (2.8) and (2.9):
i
U MU =1 (2.8)

U'[K+jH]U = A (2.9)
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Where I is an identity matrix and A is a diagonal matrix of complex

eigenvalues.

It can also be shown that the eigenvalues are related to the natural frequencies

and to the damping factors by (2.10):
2 .
A= o (1 +Jnj) (2.10)

If the damping matrix is proportional to the mass and/or the stiffness matrix,
the eigenvectors becomes real and the natural frequencies, o, becomes the
undamped natural frequencies.

The response-forcing relationship (2.2) can also be written as :

where

[o@] =[-02M+K+jH]1= U[ -02I+A ] UT

[a(w)] defines the receptance matrix, where «;, is the frequency domain
displacement at coordinate i due to a unity forcing amplitude at coordinate k

with the rest of the forces set to zero. From (2.11):
N N

U.U. U
ay = E e E 16 (2.12)
A.j—(o

-0 +jn; o
j=1 j=1 J 3

In the case of a general viscous damping model the equation of motion is given
by :
Mq(») + Cq(1) + Kq(1) = Q) (2.13)
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As in (2.1), the harmonic time dependence of the response is separable from its
spatial dependence, and using complex variables, the time domain equation of

motion is transformed into a frequency domain equation given by (2.14).
2
[-o M+joC+K]q=Q (2.14)

The mode shape vectors are found from the homogeneous solution of (2.14).
However, as (2.14) is not amenable to standard eigensolution techniques due to
the presence of the @ term in addition to the @2 term multiplied to the mass
matrix, it is customary to convert it into a suitable form for eigenanalysis by

the following transformations :

Thus, (2.13) and (2.14) becomes:

A y(t) + By(®) =F(@® (2.15)

joAy+By=F (2.16)

There are 2N eigenvectors '¥; and 2N eigenvalues 4 ; which are solutions of
(2.16) when F is zero. The eigenvalues and eigenvectors for underdamped
systems, which is usually the case for the majority of practical structures,
occurs in complex conjugate pairs and are related to the mode shape vectors

V,, natural frequencies »; and viscous damping factors ¢ ; by (2.17) and
(2.18).
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Ama (4 +(1-¢) ) 2.17)

¥ = {AJ\JG} (2.18)

It can be shown that the eigenvectors of a general viscously damped model are

orthogonal to the matrices A and B by (2.19) and (2.20),
T
¥ A¥Y =a (2.19)
T
Y BY =-aAy (2.20)

where a is a diagonal matrix and ¥ is a 2N x 2N eigenvector matrix with N

pairs of complex conjugate vectors. The eigenvector matrix is given by:

S Y 2.21)
VA VA

The submatrix V contains the mode shape vectors. The eigenvectors (‘Pj) and

consequently the mode shape vectors (V) can be scaled according to:

¥,
b = J (2.22)

vk
‘PjA‘Fj

0, = M: (2.23)

('*';T A ‘P.f)m

The orthogonality relations, (2.19) and (2.20), thus becomes:
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OAD =1 (2.24)
5 25
®B® = -Ayy, (2.25)
where
o=|© ? ) (2.26)
®GA 0 A

The forcing-response relationship, (2.16), can also be written as :

y=BF = [joA+B] F 2.27)
where

B=[jwA+B]! = ¥ [jwa -aA@N)]-l ¥T= @ [jol- A(ZN)]-I“DT

It can also be shown that the receptance «;, measured at coordinate i due to a

force input at coordinate k, for a general viscously damped system, is given by:

2N

If the viscous damping matrix is proportional to the mass and/or the stiffness

matrix, (2.13) can be uncoupled by the real modal matrix of the undamped

system. Real modes are known as normal-modes.

The process of dynamic modelling using vibration test data is the inverse
mathematical process of finding parameters of the mass, stiffness and possibly
damping matrices from measured vibration data. Such a process may involve

updating the initial parameters when an initial model, which does not
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accurately predict measured dynamic behaviour, is available from theoretical
analysis. The initial model may have been developed by the finite element
technique. Alternatively, the dynamic model may be identified directly from
the experimental data without the use of a prior model. The vibration data can
be the time domain forcing and response data, frequency domain forcing and

response data or modal data.

Modelling by a time domain approach can be accomplished through the use of
(2.1) for a hysteretic damped system or through the use of (2.13) or (2.15) for
a viscously damped system. Frequency domain approach involves (2.2) or
(2.16) as a basis for parameter estimation. Likewise, if modal data is used, one
could start from the orthogonality relationships or from the frequency domain
homogeneous equation of motion with frequency and displacement vector
replaced by their measured modal data. The modal approach requires the use
of mass normalized modes or modes normalized by the A matrix, in the case of
a non-proportional viscously damped model, since the eigenvectors are
otherwise arbitrarily scaled. The mass normalized modes are usually obtained
by experimental modal analysis using either time domain or frequency domain
curve fitting algorithms (Ewins 1985). It is also possible to find the mode
shapes without curve fitting algorithms, by a sine-dwell test method. The
modes obtained in this case, however, are arbitrarily scaled and therefore the
determination of the modal mass becomes necessary. Thus, it may be seen that
the basic equations relating model matrices to the experimental data, as given
in the preceding paragraphs, could provide the base for solving for the model
parameters once the experimental data is available. In all these equations the
unknown model parameters appear linearly. Thus, the equations can easily be
written as a set of simultaneous equations linear in the unknown parameters

and can be put in the form of (2.29) where 's' is a vector of the unknown

parameters.
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Gs=b (2.29)

The number of such simultaneous equations must be as large as, or may be

larger than, the number of unknown parameters, for example by increasing

the number of measured forcing and response samples in the time domain and

frequency domain methods. In practice finding a solution using the equations

in the preceding paragraphs as a base is not a straight forward problem due to

the following reasons:

¢y

(ii)

(iii)

The experimental data is often contaminated by measurement
errors. Statistical techniques therefore need to be applied.
However the coefficient matrix, G, is built up using this conta-
minated data. This introduces bias in the estimated parameters,
which is often difficult to remove even with statistical tech-

niques.

It is not possible in practice to have measurements at all
coordinates of the structure corresponding to the degrees of
freedom of the finite element model. In this case, the equations
cannot be set up and solved without an estimate to be made of the
responses of the unmeasured DOF. Such estimates are additional
sources of errors. Alternatively the finite element model may be
condensed to the measurement DOF but the condensation
procedures which are commonly applied in the solutions of

eigenvalue problems, results in non-linear equations which

cannot be formulated as (2.29).

If modal data is used the above mentioned difficulties still

exist and in addition there is a possibility of rank deficiency in
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the coefficient matrix since the number of linearly independent
equations is determined by the number of measured coordinates
and the number of modes used in the formulation of the

equations.

Thus, although the basic equations relating vibration data and spatial model
parameters are simple, the inverse problem of finding parameters of the
spatial model is an involved one. The following sections looks at the evolution
of the spatial parameter estimation techniques and gives an overview of the

current state of the art.
2.2 Parameter estimation based on the measured modal data

Although the need for the adjustment of dynamic models using measurements
obtained from actual structures has been recognized for some time, most
research on this subject has been done within the last two decades. A survey
paper by Young and On (1969), noted only a few published references in
structural parameter estimation prior to 1969. The earlier investigators
recognized the fact that measured normal-modes failed to satisfy the
orthogonality conditions with respect to the theoretical mass and stiffness
matrices. The modes were measured by the sine-dwell test method as this was
the only practical method of modal testing before the development of the more
advanced curve fitting algorithms. Since such modes are arbitrarily scaled, it
was necessary to find the modal mass matrix for the normalization of the
modes. These earlier investigators had assumed the measured natural
frequencies and the theoretical mass matrix to be accurately determined. The
stiffness matrix, being more difficult to evaluate, was assumed to be less
accurate. Thus, the loss of orthogonality was blamed on the experimental

errors in the measured mode shape vectors and errors in the analytical stiffness
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matrix.

Parameter estimation problem was therefore reduced to the problem of
orthogonalizing the measured modes with respect to the theoretical mass
matrix, and then using the corrected modes to identify the stiffness matrix.
These early methods did not make effective use of statistics to account for
errors in the measured modal data. The methods were mainly of the
non-iterative type based of the orthogonality relationship. In later methods,
assumptions of an error-free mass matrix and error-free natural frequencies
are usually not made and statistical techniques are often utilized. The statistical
techniques are useful when equations relating the unknown to the known
quantities can be put in the form of (2.29). However, they are most effective
when measurement errors are due to the quantities contained in the right hand
side vector b rather than in the coefficient matrix G. As such equations are
easily formulated by sensitivity analysis, truncated to first crder, most of the
more recent methods are iterative. Modal based methods for spatial parameter
estimation can therefore be broadly categorized into non-iterative and iterative

methods, with the later involving some sort of sensitivity analysis.

2.2.1 Non-iterative methods

It has been mentioned that earlier methods of spatial model parameter
estimation assumed an exact mass matrix and error-free natural frequencies,
and were mainly concerned with the orthogonalization of the normal-modes.
The modes, measured by the sine-dwell method, were orthogonalized with
respect to the mass matrix and corrected for the measurement errors. The
corrected orthonormal modes were then used to determine the stiffness
matrix. In these methods the stiffness matrix is found without the use of a prior

analytical matrix. Gravitz (1958) was among the first to use this approach on
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an undamped model. However, there is a practical limitation that the number
of modes which can be excited and measured is much smaller than the number
of degrees-of-freedom of the required analytical model. Real structures have
an infinite number of DOF, and the analytical model needs to have a large
number of DOF, if a complex structure is to be adequately modelled. The
consequence of this limitation is that modal matrix is rectangular and matrix

pseudo-inversion cannot be meaningfully used to solve for the stiffness matrix
from (2.9).

For this reason, it is the flexibility matrix K-! which has been evaluated, from:
Kl=VKIVI =VIAMJ'1VT= V[VIM,V]1A-1VT (2.30)

Gravitz used measured normal-modes obtained by sine-dwell test and the
analytical mass matrix to estimate the modal mass matrix. The modal mass
matrix is then used with the measured modes and natural frequencies to
compute the flexibility matrix. The modal mass matrix is supposed to be
diagonal but it isn't due to measurement errors in the measured modal matrix.
As a result, the flexibility matrix becomes non-symmetrical. Matching pairs of
off-diagonal elements in the flexibility matrix are then averaged to obtain a
symmetrical matrix. Finally, this flexibility matrix is substituted back in the

free vibration equation to give a new set of 'corrected’ orthonormal modes.

Rodden (1967), and later McGrew (1968), pointed out that the errors in the
measured modes, which were obtained by sine-dwell testing, were due to the
influence of low frequency modes, including rigid body modes in the case of
free-free testing. Their proposal was to correct the modal matrix by use of a
modal correction matrix, which takes into consideration rigid body and low

frequency modes. The corrected modal matrix, after orthogonalization with
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respect to the assumed error-free mass matrix, was then used to evaluate the

flexibility matrix using inverse orthogonality equation.

A much better approach, but still based on the same assumption of error-free
mass matrix and error-free measured natural frequencies, is given by Baruch
and Bar-Itzhack (1978). The approach involves first finding a new set of
corrected modes which are orthogonal with respect to the analytical mass
matrix and are closest to the measured modes in a least squares sense. This was
achieved by using the method of Lagrangian multipliers. The orthogonal
modes are then used to find the stiffness matrix which is closest to the

analytical stiffness matrix.

The method of Lagrangian multipliers is useful in the minimization or
maximization of a function subject to several constraint equations. It is based
on the theorem, the proof of which is given by Edwards (1973), that if f and g
are differentiable functions in a given space, and if a set of points x satisfies

the 'g' constraint equations :

810 =0, gx)=0...g40)=0

and the gradients
%g

%1
S B

%2
" ox
are linearly independent, then if the function f attains its minimum or

maximum at x = g, there exist real numbers I vidisg o o Ey 5 5l g called

Lagrangian multipliers such that:

of B.Sca) 3g a;(a) ag ai(a) 1% a;(a) 3 rgagaxg( a) 2.31)
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Baruch and Bar-Itzhack uses the weighted Euclidean norm of the difference
between the unknown orthonormal modes (corrected modes) and the measured
modes (mass normalized with respect to the analytical mass matrix) as the
function, f, to be minimized. The Orthogonality of the mode vectors with
respect to the analytical mass matrix is taken as the 'g' constraint equations
(g:N,z). The mode shape vectors are then corrected so as to have a minimum
norm subject to the constraint condition. This is done by minimization of the

following Lagrangian function,

1/2 o T =
fi=IIM,; [UUIl + IT[U .M, U_-1]1I (2.32)

where I' is a matrix of Lagrangian multipliers and

N, N,
NT[UMU,-1]1l = 3 ZI‘,}( ii (UeyManUesi- ;) )

i=1j=1 t=1k =1
The minimization of (2.32) is achieved by partial differentiation with respect

to each of the unknown corrected modes and the result set to zero. This finally

lead to a set of simultaneous equations, each of the form of (2.31), where
12 i)
f=lIM, [Uc-Ulll, g=UMUc-6; and I=T;
and yields a solution for the corrected modes in terms of the Lagrangian
multipliers. The later are eliminated by substitution in the mass orthogonality

constraint equation to yield the corrected modal matrix U, in terms of the

measured modes and the analytical mass matrix as:
-1/2
U,=U[UM,U] (2.33)
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This expression was also obtained by Targoff (1976).

Having obtained the minimum norm corrected modes, Baruch and Bar-Itzhack
proceed to the correction of the stiffness matrix by minimization of the
weighted Euclidean norm of the difference between the analytical and the
corrected stiffness matrices, using the equation of motion and symmetry of the

stiffness matrix as constraint equations in the Lagrangian function.

Unlike the previous mentioned investigators, Baruch et al have utilized the
prior knowledge of the analytical stiffness matrix to find a full rank stiffness
matrix. However one of its major limitations, as with previous approaches, is
the requirement of an error-free mass matrix. There has been a tendency to
associate the accuracy of the mass matrix, which was obtained by lumping,
with the accuracy obtained in the determination of the mass of the structural
elements themselves by direct measurements. As it has been pointed out by

Berman (1979), the assumption of an error-free mass matrix is for most

applications unrealistic.

The work done from the early 1970s onwards shows a more rational change by
dropping the assumption of an error-free analytical mass matrix and tuning

both the analytical mass and stiffness matrices to match measured modes and

natural frequencies.

Berman and Flannelly (1971), discuss the problem of identifying mass and
stiffness matrices with due attention to the problem of incomplete modes. It has
been shown in their theory of incomplete models that a stiffness matrix can be

expressed as an algebraic sum of the terms representing contribution from

each mode.
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N
K=UAU=MUAUM = E Aimv,vim (2.34)
m -
J

J=1

If the number of measured modes is smaller than the number of DOF, a
situation which has been referred to as that of incomplete modes, the
summation is carried over only the few measured modes. The resulting stiff-
ness matrix, being of a rank less than its order, is defined as incomplete and is
singular. This can be shown to be equally true in the case of mass matrix
identification. The problem is worsened in the stiffness matrix identification,
as compared to the mass matrix identification, due to the omission of the high
frequency unmeasured modes which are supposed to be dominating the
stiffness matrix since the frequency is entered as square in the summation.
According to the theory of incomplete models, it is not possible therefore to

find a physically meaningful model from vibration tests alone.

The procedure used by Berman and Flannelly is to first find a mass matrix
which has parameters which are closest to the initial analytical estimates in a
weighted least squares sense. This is achieved by using orthogonality equation
of the mode shape vectors with respect to the unknown mass matrix.
Additional equations are also generated using known features about the mass,
for example the total mass obtained by direct measurement is equated to the
sum of the diagonal elements of the lumped mass matrix. The equations, which
are usually fewer than the number of unknown parameters, are then
reassembled in the form of (2.29) and solved for the mass parameters using the
pseudo-inverse technique. The resulting mass matrix is then used to find the

incomplete stiffness matrix.

With a finite element model, it is possible, in some cases, to solve for the
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unknown parameters without the problems of an incomplete number of
measured modes. The use of submatrices for the element mass and stiffness
matrices with a known linear relationship between the influence coefficients of
an element submatrix means that only multipliers to the element submatrices
are to be updated. This considerably reduces the total number of parameters in
relation to the size of the model and an overdetermined equation in the form of
(2.29) could be formulated.

Tlusty and Ismail (1980) proposes to use this approach, assuming prior
knowledge about the structure of the mass and stiffness matrices, to reduce the
number of unknown mass and stiffness parameters. An overdetermined matrix
equation is then assembled from an incomplete number of measured modes,
using the homogeneous equation of motion, mass orthogonality and stiffness
orthogonality equations. The mass and stiffness parameters are then found by
the pseudo-inverse technique. However, such an approach is liable to bias
problems which cannot be easily dealt with by statistical techniques, as the
coefficient matrix is formulated using measured mode shape and natural
frequency data which is contaminated by experimental errors. In addition, the
formulation of the equations requires mode shape displacement data for each
coordinate. This is hardly possible as the number of coordinates is large and
there are many coordinates which are not accessible for measurement. In
practice the method therefore necessitate an estimation of the modal

displacements of the missing DOF in the mode shape vectors.

Berman and Nagy (1983) extended the method of Lagrangian multipliers and
updates both the mass and stiffness matrices. The mass matrix is updated by
minimization of the weighted Euclidean norm of the difference between the
updated and the analytical mass matrix, while satisfying the constraint of the

orthogonality of the measured modes with respect to the updated mass matrix.
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The stiffness matrix is then updated by minimization of the weighted Euclidean
norm of the difference between the updated and the analytical stiffness matrix,
subject to the constraint of the equation of motion, a technique similar to that
used by Baruch et al (1978). The problem of unmeasured coordinates has been
dealt with using an interpolation method given by Kidder (1973), to estimate
modal displacements of the unmeasured coordinates. The interpolation
involves partitioning the free vibration matrix equation of motion into
submatrices corresponding to the measured and to unmeasured coordinates.
The unmeasured part of the mode shape vector is expressed in terms of the
mass and stiffness matrices and the measured subvector. As interpolation
involves the knowledge of the mass and stiffness matrices, which are not
known, the analytical mass and stiffness matrices are used instead. The
estimated modal displacements contains, therefore, error contribution from

the analytical model and from the experimental data.

Attempts to identify full rank mass and stiffness matrices directly from
measured modal data without the use of an initial analytical model, have been
reported by Ross (1971), Thoren (1972), and Richardson and Porter (1974).
The practical usefulness of these direct methods is rather limited to small
order problems, since they are based on the matrix inversion of the
orthogonality equations with a complete modal matrix.

M=UU" (2.35)

K =U"AU" (2.36)

Real structures however have an infinity number of DOF. Adequate modelling
of complex structures for the frequency range of interest, covering the few

lower modes, will usually require a model with a much higher number of DOF
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than the measured modes.

Richardson and Porter have also suggested applying the inverse orthogonality
equations to identify a large order model using an incomplete number of
measured modes. The modal matrix and the eigenvalue matrix are completed
by using arbitrary vectors and arbitrary frequencies which are much higher
than the measured frequency range. Such a procedure, however, will lead to
mass and stiffness matrices whose elements have no physical significance since
there is an infinite number of arbitrary vectors that can be used to complete the

modal model, each one giving different mass and stiffness matrices.

Most of the previous mentioned methods have not consider the identification
or updating of the damping matrix, even though Vibration amplitude is very
much dependent on damping levels. For many structures, however, damping
levels are low and measured modes are of low complexity. The difficulties in
accurate measurements of the damping factors and the difficulties in having a
reasonable estimate of the damping matrix in the analytical model, did not
seem to justify extra effort in the updating of the damping matrix using
theoretical prior knowledge and experimental data. Measured real modes were
therefore taken to be given by the moduli of the measured complex modes

which had low complexity. There is also a significant number of structures for

which mode complexity cannot be ignored.

Ibrahim (1983a), using simulated viscously damped model, show that highly
complex modes are possible even at very low levels of non-proportional
damping. The process of approximating measured complex modes to be

normal-modes may introduce significant errors in the orthogonality equation.

Ibrahim used the approach of completing the modal model using high
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frequency vectors in the identification of a viscously damped model from an
incomplete number of measured complex modes. Rather than using arbitrary
modes, as suggested by Richardson and Porter (1974), the high frequency
modes of the analytical model are used to complete the measured modal model.
As damping is difficult to estimate by theoretical analysis, it was assumed that
the high frequency modes have damping factors which are the average of the
damping factors of the measured modes. The approach involves identification
of the mass modified stiffness matrix (M-1K) and the mass modified damping

matrix (M-1C) from the homogeneous equation of motion.

[ 2

-/le + jAJC + K]Vj =0 (2.37)

[ g - ; 2

MK M 'C]{_VJ } =1V, (2.38)
Vi

With a completed modal model (j= 1:N), each of the above equations
represents N2 complex equations or 2N2 real equations, from which the mass
modified stiffness and damping matrices can be identified. The identified mass
modified stiffness matrix, M-1K, is used to compute the normal-modes. The
computed normal-modes are mass normalized and used to identify the mass
matrix using inverse 6rthogonality equation. However, as the modal masses
are not known the modal masses of the analytical model are used in the

normalization process. The stiffness and damping matrices are then found
from the knowledge of M, M-1K and M-1C.

The method has been demonstrated, Ibrahim (1983b), using simulated data for
a 10 DOF model with 4 measured modes. There is a convergence in natural
frequency to the measured value for the 4 measured modes, whereas the high

frequency unmeasured modes converges to the analytical modes. The
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frequency response function shows good agreement with the correct model
within the measured frequency range. Ibrahim, however, assumed that each

coordinate is measured. The problem of unmeasured coordinates was not
addressed.

More recently, Joeng et al (1989) proposed a method of identifying the mass,
stiffness and damping matrices of a viscously damped system directly from
measured complex mode shapes and frequencies without the use of an initial
analytical model. The method is based on matrix inversion of complex
orthogonality equations, (2.24) and (2.25), to identify the inverses of the

transformed A and B matrices in terms of measured complex mode shapes

and frequencies.

-1 T
A = o (2.39)
= <1 =

The inverses are also related to the spatial matrices by:

3
Al=l O . 1}’1 ) (2.41)
M -MCM
-1 - K'l
B = 0_1 (2.42)
i () -M

The mass, stiffness and damping matrices are then obtained by relating the
submatrices in the inverse matrices in (2.41) and (2.42) to the corresponding
submatrices in (2.39) and (2.40). The normalized complex mode shapes and

frequencies in (2.39) and (2.40) are obtained by curve fitting a theoretical
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expression to the measured frequency response function data. The method
requires measurements at as many coordinates as the desired number of DOF
in the corresponding analytical model, and in order to obtain complete
matrices, measurement of as many modes as the number of DOF of the desired
analy_tical model is also necessary. Since the number of measured modes in an
actual structure is usually small, the model that could practically be identified
by such a method is usually of a very low order. Furthermore, due to the
unavoidable inaccuracies in the experimental data and also because modal data
of a structure with a large number of DOF is forced to fit to a relatively low
order model, the zero submatrices in (2.41) and (2.42) are not obtainable in
the corresponding submatrices in (2.39) and (2.40). This introduces
difficulties in relating the submatrices in (2.41) and (2.42) to the submatrices
in (2.39) and (2.40). Joeng et al avoids this problem by introducing a
constraint, Real[@0T] = 0, which has to be satisfied during the identification of
the modal data. However, as with other inverse orthogonality methods, for
example those based on undamped and hysteretic damped models, the spatial
matrices are fully populated. It is difficult to find a meaningful physical
interpretation of the elements in the spatial matrices. Rotational DOF
information, which may be important in a structural modification exercise, is
lacking from the identified model and in general, it is difficult to relate the

identified model to a finite element model.

2.2.2 Iterative methods

Iterative modal based methods are derived from non-linear relationships
which express the eigen-data as a function of the spatial model parameters.
They seek to find, iteratively, the adjustments to the parameters of the
analytical model rather than finding whole matrices. They are based on

sensitivities of the eigen-data to derive linearized relationships. The final
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equations are in the form of (2.29) where the coefficient matrix is the Jacobian
matrix of eigen-data sensitivities. The vectors s and b are replaced by a vector
of parameter adjustments to the current analytical model and the vector of the
difference between measured eigen-data and eigen-data of the current

analytical model. Thus:

[ﬂ{As} - {2173} (2.43)

Since the sensitivity relation is only exact for an infinitesimal parameter
changes, the linear equations derived for finite parameter changes, based on
first order approximations, are only approximate ones. Thus, an iterative
process is involved. One feature of these methods, in general, is the
requirement of an initial analytical model which is reasonably close to the true
model, otherwise convergence problems are likely to occur. This requirement
however is not of a major significance as in many cases a reasonable model can
be found from theoretical considerations. As the sensitivity analysis is
performed on the analytical model, the coefficient matrix is easily formulated
without including experimental data that contains experimental errors.
Statistical methods can therefore be utilized to advantage to deal with
inaccuracies in the experimental data. However, in the case of a large complex
structure with a large number of parameters to update, there is likely a

difficulty in attaining a sufficient number of equations to facilitate a solution of
(2.43).

Collins et al (1972) used sensitivities of the eigenvalues and eigenvectors and
consider the case where the number of unknown parameters is larger than the
number of equations. The underdetermined set of equations, in this case, is

combined with an identity (2.44), to generate an overdetermined set of
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equations which is solved by the pseudo-inverse technique.
[I]{As}={0} (2.44)

The implication is that the updated parameters are determined which are close
to the analytical model parameters and also reproduce measured eigen-data in
a least squares sense. The analytical model parameters are treated as random
quantities. Since the measured eigen-data and the analytical model parameters
are of varying uncertainty, their variance estimates are taken as weighting
factors in diagonal weighting matrices W, {; and W, respectively. Thus, the

pseudo-inverse solution is given by:

-1
T T
_ Ja Ja Ja AL
As = [[Ju] Wivu Ju] + W,%I [JJ Wi, AU} (2.45)

However, (2.45) is a Bayesian estimate or minimum cost estimate for which

the following cost function is minimum:

T

(5~ Sca) Wef5-5c0) + {Se t]} W’LL{SZ 7lLJ}

Expression (2.45) has been shown (Collins et at 1972) to be identical to (2.46).

oty oo

Expression (2.46) was derived by Collins et al (1974) using a statistical

approach, as a minimum variance estimate. If a set of parameter estimates of
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the analytical model together with the measured eigen-data constitute a vector
of random linearly independent entries, the Bayesian estimate becomes the
minimum variance estimate. While this may be the case during the first
iteration, subsequent parameter estimates are correlated with one another and
also with measured eigen-data. Collins et al (1972) uses the diagonal of the
computed covariance matrix of currently updated parameters, to update the
weighting matrix, W_,, for the next iteration step. The off-diagonal terms in
the computed covariance matrix are ignored. Collins et al (1974) uses the
diagonal weighting matrix of the initial parameter estimate during the first

iteration as a weighting matrix unchanged in subsequent iteration steps.

Iterative methods based on the Bayesian approach involving a constraint of
minimum changes in the parameters of the analytical model have also been
reported by Chen and Garba (1980), Natke and Cottin (1985), Heylen (1986),
Thomas et al (1986), Zhang and Lallement (1989) and Friswell (1989a). In the
case of a damped model, the real and imaginary parts on the left-hand-side of
(2.43) can be equated to their corresponding real and imaginary parts on the
right-hand-side of the equation, to obtain two sets of equations which are
solved simultaneously. With non-proportional viscous damping, the eigen-
vectors © are used instead of the mass normalized vectors U and the

eigenvector sensitivity matrix becomes the sensitivity matrix with respect to ©,

Je)-

Heylen suggested a combination of the linearized sensitivity equations with the
linear equations, obtained by using the equations of motion and the
orthogonality conditions. Zhang and Lallement particularly consider the
difficulties of resolving modes with repeated frequencies. A selective
structural modification technique is used to perturb the analytical model and

the experimental data so as to achieve a frequency separation of modes with
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repeated eigenvalues. Friswell discusses the correlation of the measurement
vector to the updated parameters and derives a minimum variance estimator,
which takes into account the correlation between the parameters and between
the parameters and the measurement vector in each iteration step. It has been
demonstrated that parameter convergence rate is slow if the correlation is

ignored.

In all these methods a solution cannot be found with unconstrained optimiza-
tion, even with very accurate data, if the number of measured modes is small
such that the sensitivity equation is underdetermined, since there will be an
infinite number of parameters that could exactly reproduce the measured data.
The solution obtained with constrained optimization will therefore be strongly

dependent on the parameters of the analytical model.

2.2.3 Localizing dominant modelling errors and expansion

of the mode shape vectors.

Several investigators have addressed the question of localizing dominant
modelling errors in the analytical model prior to the model updating process.
It is expected that once zones of dominant modelling errors are identified, the
number of parameters to be updated will be reduced. Furthermore, the
effectiveness of the updating algorithm could be improved by concentrating on
zones which requires adjustments and avoiding unnecessary adjustments to

otherwise correctly modelled areas.

The error matrix method (Dobson 1984, Ewins and Sidhu 1984,1985) has
been proposed for localizing dominant modelling errors in the stiffness
matrix. The technique involves finding a matrix (an error matrix) which is a

measure of the difference between the analytical stiffness matrix and the
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stiffness distribution of the structure. The error matrix 1is then presented as a
three dimensional plot with a base of grids defining nodes of the structure
which are also coordinates of the analytical model. Zones which are sources of
discrepancy between the analytical model and the experimental data are then
revealed by bigger magnitudes of the error quantity at relevant nodal positions

on the error matrix plot.

Since it is difficult to get a stiffness matrix which is a correct representative of
the stiffness distribution of the structure from incomplete modes, Dobson uses
the pseudo-flexibility matrix obtained from the stiffness orthogonality

equation. This has two implications:

(1) An incomplete number of measured modes could yield a flexi-
bility error matrix which resembles the flexibility error matrix

obtained by using a complete number of modes.

(i1) The difference in the flexibility matrices is considered to

reveal the difference in the stiffness matrices.

Since some coordinates cannot be measured, the modal matrix is partitioned
into submatrices corresponding to the measured and unmeasured coordinates
(subscripts mm and oo respectively) and submatrices corresponding to the
measured and unmeasured modes. The eigenvalue matrix is also appropriately

partitioned. The complete flexibility matrix is then given by:

-1 T -1 T o =T 1T
k' un T [V Ut UnAollso  Unm ApnUmt Vol )
~ -1 T G Ad T P AT .
UnnA pUnn +UooA U UaoA oo
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The pseudo-flexibility matrix used by Dobson includes measured modal
matrix at measurement DOF only, which is given by the first term in the top
left hand corner of the complete flexibility matrix in (2.47). The contribution
of the second term is ignored. With the flexibility matrix approach, it is
difficult, however, to relate the error in the flexibility matrix to the error in
the stiffness matrix. This is so because the elements of the inverted matrix
usually involves a number of terms of the non-inverted matrix coupled
together by the matrix inversion process. This is further complicated by the
fact that a significant number of coordinates are not measured and the error in
the pseudo-flexibility matrix defined through the use of a smaller number of

coordinates has to be related to the overall structure.

Ewins and Sidhu (1984) attempts to derive an expression for the stiffness error
matrix and thus avoiding the difficulties of correlating the flexibility error
matrix to the actual zones of discrepancy in the stiffness matrix. The technique
involves rewriting the stiffness matrix and hence the flexibility matrix in terms
of the analytical stiffness matrix and the stiffness error matrix. After
simplification using a truncated binomial expansion, an expression for the

stiffness error matrix is obtained, which is approximately given by:
1 _ -1
E.=K,[K, -K ]K, (2.48)

The Flexibility matrix, K-1, in (2.48) is obtained from the experimental data.
However, because of practical limitations, an incomplete matrix generated
using an incomplete number of modes measured at an incomplete number of
coordinates is used together with a corresponding incomplete flexibility
matrix of the analytical model. This is a significant improvement to the
Dobson's method in the sense that a stiffness error matrix rather than the

flexibility matrix is available. However, it is defined only at measurement
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coordinates.

The main objections to the error matrix method in general, are the dependence
of the error matrices on the modes used and the difficulties in extrapolating the
error matrices defined at a small number of measurement coordinates to the
full order stiffness matrix. The dependence of the pseudo-error matrices on
the modes used has been demonstrated in a critical study by Gysin (1986) using
simulated data. Gysin's study concluded by raising doubts on the general

reliability of the technique in a practical situation of incomplete modes.

Ibrahim and Fissette (1988) use the equation of motion to define an error
vector. The error vector is given by the residual force necessary to balance the
equation of motion of the analytical model when frequency and displacement
vector are substituted by their measured modal counterpart (force balance
approach). With an error-free analytical model the equation should reproduce
a zero forcing vector. However, with errors in the analytical model there is a

residual force which, in the case of an undamped system, is given by:
Ej=[K;-1,M,]U; (2.49)

It can be shown that the residual force in (2.49) is proportional to both the
stiffness and the mass error matrices. This residual force is taken as an error
vector which is an indicator of the coordinates associated with zones of
dominant modelling errors. The absolute values of the error vectors are
averaged over a number of measured modes and plotted against the coordinate
number. Zones of significant modelling errors are identified by bigger
magnitudes in the error plot at corresponding coordinate numbers. Numerical
examples, given by Ibrahim et al, have shown the method to be capable in

localizing modelling errors in the case of simulated error-free data. Unlike
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the error matrix method, its capability is not affected by the number of modes

used.

The use of the force balance method, however, requires "full length" mode
shapes measured at each coordinate corresponding to the DOF of the analytical
model. Since in practice some coordinates cannot be measured, the missing
DOF have to be estimated by a suitable expansion process. Mode shape

expansion can be achieved by :

@) Geometrical interpolation by curve fitting a theoretical expre-

ssion to the mode shape data, for example using spline functions.

(i1) Transformation of coordinates using modal matrix of the
analytical model.
(iii) Dynamic expansion using a partitioned equation of motion.

The successful use of geometrical interpolation is limited to structures of
simple forms and is difficult to apply to a three dimensional structure with

complex changes in shape.

Mode shape expansion by the method of transformation of coordinates
(O'Callahan et al 1984) is based on the expression of the structure's
displacement vector as a linear combination of the eigenvectors of the

analytical model. Thus:

U mm - U mm g
{ },,- = [UmLP(’) (2.50)
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The subscripts mm and oo refers to the subvectors/submatrices corresponding
to the N, measured DOF and N - N, . unmeasured DOF respectively. The
process of mode shape expansion requires finding a vector P(j) of the
coefficients of linear combination, for each measured mode j, and substitute it
into (2.50). To find P(j), the measured part of the mode shape vector is equated

to its corresponding partitioned part on the right-hand-side of the equation.
{Unm}; = [Umm],PO) (2.51)

If a complete number of analytical modes is used, (2.51) is underdetermined
and there is an infinite number of solutions for P(j). However, if the structure's
modal matrix was used as a transformation matrix, then it is fairly accurate to
consider only N lower modes (N ;< N) which make an effective contribution
to the response within the frequency range of interest. An assumption is
therefore made that the analytical modal matrix can also be truncated to Neg
lower modes. This process obviously introduces an error which depends on
how close is the analytical model to the correct model. Usually N < Ny, <N.
Thus a least squares solution for P(j) is found by pseudo-inverse. The expanded

mode shape is then given by:
I
U= [U " [U o] {Urnen} (2.52)
UUO a

This process involves modification of the already measured part of the mode
shape vector since, in general, a rectangular matrix with more rows than
columns, when post-multiplied by its pseudo-inverse, does not result in an
identity matrix. It is possible, however, to retain the unsmoothed measured
part of the modes in the expanded mode shapes. A similar formulation can be

derived for a general viscously damped system, where the modes in (2.52) are
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replaced by the system eigenvectors associated with the transformed first
order differential equation of motion based on state variables. In either case,
the missing DOF in the measured modes are estimated in terms of the
measured DOF and eigenvectors of the analytical model. The accuracy of the
expanded mode shapes is determined by the accuracy of the measured DOF and

the validity of the analytical model.

Kidder's dynamic expansion method (1973), is based on the relationship of the
unmeasured part of the mode shape vector with the measured part in terms of
the spatial model submatrices. The relationship is obtained by partitioning the
homogeneous equation of motion into submatrices and subvectors
corresponding to the measured and unmeasured coordinates. This process
retains the original measured part of the mode shape vector. As the correct
model matrices are not known, analytical model matrices are used instead. The

expanded mode shape is given by:

I

-1
-D,,D

i, =

j {Unn}, (2.53)

Alternative ways of partitioning the equation of motion are possible. They
result in slightly different expressions to that given by Kidder but, in all cases,
the validity of the analytical model dictates the accuracy of the expanded mode

shape and hence the reliability of the modelling error localization process.

Gysin (1990) has made some numerical studies on the capability to localize
modelling errors using a force balance approach with expanded mode shape
vectors. The modes were expanded by the method of transformation of
coordinates and by dynamic expansion using a partitioned equation of motion.

The main problem is that accurate expansion requires system matrices which
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are not known and the analytical model matrices are used instead. Using a 9
DOF spring-mass chain model with different cases of modelling error,
number of modes, and simulated measurement coordinates combination, Gysin
found that localization capability is very sensitive to errors in the mode shape
vectors and that no expansion method was satisfactory for all the cases that he

investigated.

An alternative method based on the sensitivity analysis of the eigenvalues and
measured part of the eigenvector is given by Zhang et al (1987). In this method
the structure is further idealized into macro-elements or substructures and the
analytical model is also divided into submatrices corresponding to the
macro-elements. The unknown model matrices are assumed to be given by a
linear combination of the submatrices of the analytical model and the
coefficients of the linear combination of the submatrices are taken as the
parameters to be found. The first step in the localization process is to find an
initial vector, As, for the required parameter changes from their initial
estimates in the analytical model. This is achieved by an unconstrained
optimization using linearized equations which are developed by first order
sensitivity analysis of the eigen-data and assembled in the form of (2.43).
Relatively large absolute values in As implies that either there are large errors
in the initial estimates or the eigen-data is simply insensitive to variations in the
parameters of the corresponding macro-elements. To distinguish between the
two cases each column in the coefficient matrix (Jacobian matrix) is multiplied
by its corresponding value in the As vector to obtain a new vector 'E'. The
vector E is supposed to indicate the contribution of a particular macro-element
on the difference between measured and the analytical eigen-data. Then for

each macro-element, i, a scalar indicator e(;) is defined as:
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e ||
e(i) = ————— (2.54)

! {jjj} ||

According to Lallement ef al, Macro-elements with dominant modelling errors
are identified by large values in As and in e(i). Only those macro-elements
identified as having dominant modelling errors are retained in the updating
process. The sensitivity approach to localize modelling errors can be utilized
without the need for the estimation of the missing DOF in the mode shape
vectors. Its success, however, relies on the ability to divide the structure into a
smaller number of macro-elements so that the resulting sensitivity equations

are not underdetermined.
2.3 Methods based on the frequency domain data

Parameter estimation methods based on the frequency domain data are derived
from the frequency domain equation of motion (2.2), (2.14) or (2.16). These
methods employ measured frequency domain forcing and response data
directly without the need for an identification of the modal model. They can be
divided into two main groups, the equation error and the output error

methods.

Equation error methods utilize the linear relationship between the unknown
model parameters and measured forcing data as depicted in the equation of
motion. Parameters are then determined which best fits the frequency domain
equation of motion, with measured response data, by reproducing a forcing
vector which has a minimum deviation from the measured forcing vector in a
least squares sense. Since the equation of motion is linear in the unknown

parameters, it can easily be reformulated in the form of (2.29). The coefficient
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matrix, G, is derived from m.easured response data and the right-hand-side
vector b becomes a vector of measured excitation forces. Thus, by sweeping
through the frequency range of interest at discrete frequency intervals, an
overdetermined equation is obtained and is solved by a pseudo-inverse
technique. A prior knowledge of the parameter values can also be utilized in a
Bayesian framework. It is usual to employ the equation of motion with a single
forcing coordinate and to normalize so that displacements are converted to

receptances and the force to a unity.

Equation error methods based on the above mentioned principles have been
reported by Natke et al (1985, 1986, 1988), Fritzen (1986), Mottershead and
Stanway (1986), Mottershead (1988) and Friswell and Penny (1990). The

equation error approach however presents two main difficulties.

The first difficulty is biased estimates, since the coefficient matrix is formu-
lated using experimental data which is contaminated by measurement errors.
With error-free data the least squares solution is a true solution and is given
by:

SRR . .
s=[GG] GD (2.55)
With errors in the response data, the coefficient matrix can be written as
G+E, where Eg is an error matrix. The least squares solution, in this case, is
given by:

s=[(G+EQ (G+EQ G+EQ b

—[G'G+G Eg+E(G+EgEg] { G b+Egb) (2.56)
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From (2.56), it is apparent that the expected value of the sum of terms inside
the first bracket is different from that in (2.55) due to the presence of a

quadratic error term which do no vanish and contributes to biased estimates.

Fritzen has addressed the bias problem by adopting an instrumental variable
(IV) method. The IV method has been used in control engineering (Wong and
Polak 1967, Young 1970) to identify parameters of a time discrete difference
equation. The basis of the IV method, as presented by Fritzen, is to pre-
multiply (2.29) by Gy instead of GT. Thus, with errors in the response

data, the unknown parameter vector is given by:

5= [GnsG + GineEgl | Gvgb) (2.57)

Gy i8 an instrumental variable matrix. Its elements are selected such that the
term inside the first bracket is invertible and the expected value of the error
terms in (2.57) vanish. This implies the instrumental variable matrix is to be
uncorrelated with measurement noise. The best formulation of the IV matrix is
to use error-free response data since this is poorly correlated with
measurement noise. However, since it is not possible to know the error-free
responses, Fritzen formulates an auxiliary model using parameter estimates of
the analytical model and subject it to the same excitation as the structure and
compute is response data. The response data of the auxiliary model is then used
to formulate an IV matrix. This process involves iteration, each time
formulating an auxiliary model and hence an IV matrix using current
parameter estimates. At the start of the iteration a non-IV least squares method

is used to get starting parameters for the initial auxiliary model.

Numerical example as presented by Fritzen have shown the method to be

effective in reducing bias to a small level, which was not achieved by a non-IV
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least squares technique. The method however requires a large data sample, is
time consuming and the computational efficiency of the equation error

approach is lost.

The second difficulty with the equation error method is the requirement to
have measurements at all coordinates corresponding to the DOF of the
required model, since the equations cannot be formulated if response data of
some coordinates is missing. This is particularly evident when a model
compatible with a finite element model is required, since it usually involves
some unmeasured translational and rotational coordinates. Fritzen assumed all
coordinates are measured. Classical model reduction methods, which have
been proposed for the economization of the eigenvalue problems (Guyan
1965, Irons 1965, Kidder 1973, Miller 1980, Paz 1984) are not suitable to
solve this problem. They are based on the transformation of the 'full length'
displacement vector to a reduced displacement vector. The transformation
matrix is expressed in terms of the unknown model parameters using a
partitioned equation of motion. The reduced order matrices obtained by the
reduction process are non-linear in the parameters of the full order model. A
possible solution to this problem is to construct the transformation matrix
using parameters of the analytical model and iterate using the identified
parameters. However, the reduction methods are only approximate with
simplifying assumptions regarding the contributions of the inertial effects. The
validity of the assumptions depends on the selection of the coordinates to be
retained in the reduced equation of motion. While this may not pose a major
limitation in the eigensolution of the analytical model, vibration testing has its
limitation on the coordinates which can practically be measured. It has been
demonstrated (O'Callahan et al 1989a) that incorrect selection of the
coordinates to be retained in the reduced equation of motion, results in

significant errors in the eigenvalues of the reduced order model.
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Model reduction methods particularly suited for parameter identification have
been reported by Natke (1988), O'Callahan et al (1989b), Friswell (1989b)
Friswell and Penny (1990). They are based on the transformation of coordi-
nates using an incomplete modal matrix of the analytical model, following
similar principles to the mode shape expansion method which has been
discussed in section 2.2.3. Thus, if U, is an N x Ny, analytical modal matrix the

displacement vector is assumed to be given by :
q(@) = U,P() (2.58)

The higher order displacement vector in the differential equation of motion is
written in terms of the analytical modes and a lower order vector using (2.58).
The differential equation of motion is then pre-multiplied by the transposed
incomplete analytical modal matrix to obtain a reduced equation of motion

which, in the case of a hysteretic damped system, is given by:
2 T T ) i
[-w UMU,+U,[K+jH]U,]P(0) = U,Q (2:59)

The reduced equation retains the linear relation of the unknown model
parameters of the full order model. The process of finding model parameters,
therefore, requires the computation of the reduced vector P(w) and its
corresponding forcing vector. The reduced equation can then be rewritten in
the form of (2.29). By using data from a sufficient number of discrete
frequencies in the measurement frequency range, an overdetermined equation
is obtained and solved by least squares method, usually following a Bayesian

framework.

To obtain P(w), (2.58) is partitioned into subvectors and submatrices

corresponding to the measured and unmeasured DOF and equating the
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measured part of the displacement vector to its corresponding partitioned part
on the other side of the equation. To reduce modal truncation errors, the order
Ny of the reduced equation is selected to be not less than the number N, of

excited modes in the measurement frequency range. Usually N, >N >N,

thus :

1
P@ = ([Unelu[Unaly ) [Uniza(@) (2.60)

Natke (1988) and Friswell and Penny (1990) have applied this approach to a
viscously damped model. In this case, a transformed first order differential
equation (2.16) is used and the displacement vector is replaced by the state
vector. Since the analytical modes are used in (2.50) instead of the true modes
of the structure, the reduction process is liable to errors. Friswell and Penny
used an iterative approach where the updated parameters are used to compute a
new set of improved analytical modes which are used in the next iteration step.
The process, however, does not eliminate bias due to measurement errors in
the frequency response data. Furthermore, with measurement errors there is
no guarantee of the best convergence of the frequency response data to the
measured one since the approach minimize the equation error rather than the

difference between measured and model's frequency response data.

The output error method (Natke and Cottin 1985, Natke 1988, Fritzen and Zhu
1989) seeks to minimize, in a least squares sense, the objective function which
is a weighted difference between measured displacement vector and model

displacement vector. i.e minimize f, by setting:

of
o= ]
>, (2.61)

G=1...p)
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where

2 -1 § 2 . -1
fa={ ['G'J M+K+JH] Qe'qel W{['CU M+K+JH] Qe'Qe}

The displacement and forcing vectors (for a given excitation coordinate) are
usually normalized so that the displacement vector can be substituted by a
receptance vector and the forcing vector replaced with a unit amplitude at the
excitation coordinate. Since the relation between the unknown model
parameters and measured displacement vector is non-linear, the objective
function is also non-linear in the unknown parameters. For each excitation
frequency, (2.61) consists of N simultaneous equations non-linear in the
unknown parameters. The output error method, therefore, involves a
non-linear optimization which require an initial estimate of the parameters so
as to linearize and reduce (2.61) into a linear form. This is achieved by a first
order Taylor's expansion of the objective function about the current parameter
estimates and then employing (2.61). By data sampling at discrete frequency
intervals in the measured frequency range, an overdetermined equation is

obtained which can be solved by pseudo-inverse technique.

Natke and Cottin (1985) have applied an output error method on a numerical
example by assuming a single excitation coordinate and response measurement
at all coordinates. Fritzen and Zhu (1989) have applied a Bayesian output error
method using a second order Taylor's expansion of f to a practical plane
frame. A single coordinate was measured and an excitation was applied in one
of the translational coordinates at each node of the finite elements connectivity

points.
2.4 Methods based on time domain data

Although proposals to use time domain data in the identification of the spatial
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matrices of a dynamic system have been reported as far back as 1969 (Young
and On 1969), there is relatively fewer references on time domain methods as
compared to those based on the modal data. Time domain methods are mainly
derived from the matrix equation of motion rewritten with the coefficients as
signal matrices which are constructed from measured data. The data is sampled
at discrete time intervals and model matrices are the unknown quantities. Time
domain methods have been proposed for the identification of the spatial
matrices directly from the experimental data and they normally perform well
with numerical simulation of error-free data (Young and On 1969, Ronald and
Xu 1986). In a practical situation a number of coordinates cannot be measured
and measurement noise give rise to an equation error which is correlated with
the unknown parameters. Time domain methods therefore suffer the problems
of missing DOF in the experimental data and biased estimates as with
frequency domain equation error methods. The applicability of time domain

methods is currently limited to low order models condensed to the

measurement DOF.

Young and On discuss a response time history product and averaging technique
which was intended for the identification of the mass, stiffness and damping
matrices without the use of an initial analytical model. The technique requires
simultaneous measurement of the excitation force and responses at all
coordinates of the desired mathematical model. From (2.1), each of the N
equations involves a maximum of 3N unknown model parameters and 3N
known variables which are measured displacements, velocities and
accelerations. Each of the N equations is then multiplied by each of the 3N
variables to generate a set of 3N equations in 3V unknowns. By data sampling
at discrete time intervals, each set of the equations is averaged out and solved
for the unknown parameters. This procedure, as presented by Young and On,

assumes that all influence coefficients in the model matrices are to be identified
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as independent unknowns. This however is not necessary. With a finite element
model the matrices are usually symmetrical and some influence coefficients in
the matrices are known to be zero. The total number of parameters to be
identified could therefore be reduced by imposing a condition of symmetry
and forcing some parameters to be zero. However, since it is usually practical
to measure only some translational DOF the identified model is a condensed
one, usually fully populated, and the elements of its matrices cannot be easily

related to the parameters of the full order finite element model.

Xu and Ronald have suggested a technique which uses free vibration data to
identify the mass modified stiffness matrix (M-1K) and mass modified
damping matrix (M-1C) directly from the equation of motion which is written

as:

M_lCc'l(t) + M_]Kq(r) = -q(f) (2.62)

By successive data sampling, the measurement vectors in the above equation
are transformed into matrices and by transposing the equation the mass

modified matrices are obtained from (2.63):

[[q(r)] [40] ][[M d | - [a0] (2.63)

Since the responses can be written as a linear combination of the mode shape
vectors, the rank of the coefficient matrix in (2.63) is limited by the effective
number of excited modes. This number is usually small since some modes are
not excited or only weakly excited. For a large number of measurement
coordinates, it should theoretically be difficult to solve for the spacial matrices

as the coefficient matrix in (2.63) becomes rank deficient. However, due to the
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measurement errors, the coefficient matrix is usually full rank and invertible.
The effects of errors, therefore, is to introduce some false modes in the
response data. The identified matrices will contain true modes which
correspond to the effectively excited modes and some false modes which are
due to the measurement errors. The identified model is therefore not reliable

in the prediction of, for example, the natural frequencies of the system.

Badenhauser (1986) suggest a technique of removing the false modes from the
measured data. It involves first establishing the number of effective modes in
the measured data by singular value decomposition of the transposed matrices
of measured acceleration, velocity and displacement. The rank detection
number is computed by arranging the singular values of each data matrix in a
descending order and starting from the first singular value (i = 1), the value of
i for which the ratio of the i +1t1 to the ith singular value deviates sharply

from the previous ratios is determined by inspection, say i,,. The number of
effective modes is then taken as Ng=i, The false modes are then removed by
post-multiplying the transpose of the measured displacement, velocity and
acceleration matrices by a square projector matrix, N, of rank N¢ and order
N. In this way substitute data matrices of rank equal to the number of effective
modes are obtained. The projector matrix is given by:

N=127Z" (2.64)

Zis an N x N matrix formed by assembling vectors of length N and which
correspond to the iy highest singular values obtained from the singular value

decomposition of the transposed acceleration data matrix.

Using forced vibration, Badenhauser rewrites the equation of motion with data

matrices simply replaced by substitute data matrices of rank N, as:
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T I S S . T o g T I 4
[a0] ZZ '+ [q0)] ZZ [M C] +[q®)] ZZ [M K] = [FO] M (265)

By post-multiplying (2.65) by Z, a reduced equation is obtained from which
Badenhauser defines the reduced mass modified stiffness and damping

matrices as:
[MK],=Z[MK]Zz, [MCly=zMC]z

In this approach, the reduced order model has as many DOF as the number of
effective modes. Attempt to expand the reduced order model is only possible
up to the measurement DOF only. Correlation with a finite element model is
difficult. Badenhauser's approach could be effective in removing noise related
modes in the measured time domain data and therefore avoid predicting
incorrect natural frequencies. However, the prediction of the frequency
response functions will be degraded by the fact that high frequency residues
are not accounted for. To get better results more modes have to be effectively
excited and this naturally involves extra precautions and consideration on the
method to be used to excite the structure. In general, the process is

cumbersome with no major advantages.
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2.5 Summary

2.5.1 Modal based methods

Modal based methods can be divided into the iterative and the non-iterative
groups. The non-iterative methods can further be divided into three subgroups

as follows:

@) Methods which attempts to find model matrices without using
prior knowledge of the system matrices. In these methods,
whole matrices rather than individual parameters are identified,
usually using inverse orthogonality equations. Examples include
Ross (1971),Thoren (1972) and Joeng et al (1989).

(ii) Methods which assumes prior knowledge about the system in the
form of analytical model matrices and attempts to derive
formula for the updated model matrices which are closer to the
analytical model matrices subject to some constraint conditions.
Examples: Baruch et al (1978), Berman and Nagy (1983).

(iii) Methods which assumes only the structure of the model matrices
rather than individual parameters. The unknown parameters are
obtained from a set of algebraic equations derived from the
homogeneous equation of motion and/or the orthogonality

equations. Example: Tlusty and Ismail (1980).

The first subgroup represent the simplest of the modal based methods. Its
capability depends on the availability of a complete modal model with as many

measured modes and measurement coordinates as the number of DOF. This is
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not practical. When these methods are applied, the number of measurement
coordinates has to be restricted to the number of identified modes. The
identified model is then fully populated, of a very low order and cannot be

related to a finite element model.

In the second subgroup, equations for the full order model matrices are
derived. Among an infinite number of models that can reproduce the
incomplete number of measured modal data or a set of corrected modes, only
that model whose matrices have a minimum norm difference from the
analytical model is selected as an optimum solution. The use of the method
requires "full length" mode shapes. Since the method attempts to identify
whole matrices rather than the individual parameters, the structure of the
matrices is liable to be distorted, bearing in mind the incompleteness of the

data and experimental errors in the measured modal data.

The third subgroup retains both the order of the analytical model and also the
structure of the matrices since the individual parameters rather than whole
matrices are determined. The identification of the parameters is performed
from the algebraic equations derived from the homogeneous equation of
motion and/or the orthogonality equations and written in the form of (2.29).
This requires "full length" mode shapes. While the missing DOF in the
measured mode shapes can be estimated, the process introduces additional

errors due to the approximate mode shape expansion process.

The iterative methods are based on eigen-data sensitivity to derive a set of
linearized equations from which parameter changes to the current analytical
model are found iteratively. Prior knowledge of both the structure of the
model matrices and its parameters is used. Thus, the updated model retains the

order and the structure of the matrices of the analytical model and therefore it
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could be compatible with a finite element model. The updated model may be
unique only if the number of linearly independent equations is not less than the
number of unknown parameters. With a large number of parameters to update
and a smaller number of measured coordinates and measured modes, a
situation of an infinite number of solution for the parameters can arise.
Usually the experimental data is dominated by the mode shape data rather than
the natural frequency data, and the measurement of the mode shapes is

generally less accurate than the natural frequencies.
2.5.2 Frequency domain methods

The advantage of parémeter estimation directly from frequency domain data
as opposed to the modal data is the avoidance of the modal identification
routine and therefore uncertainties associated with modal identification are
avoided. Frequency domain methods are mainly based on the equation error
and the output error approaches. The advantage of the equation error
approach over the output error approach is the linear appearance of the

parameters in the equation of motion.

The equation error approach has its limitations. First the response of the
unmeasured coordinates have to be estimated or the equations have to be
reduced to the measurement DOF. Both processes only can be performed
approximately by relying on the approximation of the analytical mode shapes
as the correct mode shapes of the structure. While this limitation could be
minimized by an iterative process, iteration is time consuming and an
important advantage of the equation error approach is lost. Secondly the
estimated parameters are biased because measured response data, which is
contaminated with measurement noise, is used in the formulation of the

coefficient matrix. This results in an equation error which is correlated with
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the unknown parameters. Thirdly the method does not guarantee best conver-
gence of the frequency response function to the measured one since it minimize

the difference between the forcing vectors rather than the response vectors.

The above limitations of the equation error approach seems to have been
overcome by the output error method which minimize the difference in the
response vectors between the structure and the updated model. The output
error method does not require response data for each coordinate as the
formulation of the equation allows for a selective approach by using only those
rows corresponding to the measurement coordinates. This is achieved at an
extra computational cost using a non-linear optimization. While, in principle,
the output error method has all the best qualities of unbiased estimates and no
need for model reduction, its main limitations is the complication of the

equations and considerable computational effort.

2.5.6 Time domain methods

Time domain methods have attracted least interest. They are mainly based on
the equation error approach using a time domain equation of motion, usually
with or without an assumption of the structure of the model matrices.
Consequently, time domain methods encounters most of the difficulties
experienced by the frequency domain equation error methods. Problem
specific to the use of time domain data is the effect of the contribution of the
measurement errors. Measurement errors has an effect of additional modes
(false modes) which shows up when an eigensolution of the identified model is
performed. Noise related modes can only be removed by restricting the
number of DOF of the model to the number of effective modes in the

measurement data. The resulting model is then not compatible with the finite

element model.
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2.6 Conclusion

Whilst the relationship between vibration data and model matrices can be
formulated using modal data, frequency response data and time domain data,
the most promising methods of updating a finite element model are based on
modal data and frequency response data. The modal based methods are either
non-iterative ones using the homogeneous equation of motion and/or the
orthogonality equations to derive an algebraic set of equations and the iterative
ones using sensitivity analysis of the eigen-data. Methods using frequency
response data are based on the equation of motion either to derive an algebraic
set of equations and find an updated model which minimize the equation error
or to minimize the differences between measured and model's frequency
response functions by a non-linear optimization technique. These methods
have their limitations and as such there is no method which has received a
general acceptance. From the literature review the following can be

concluded:

(1) The identification of a model which is compatible with a finite
element model directly from vibration test data alone is not
possible due to the incomplete number of measured coordinates

and measured modes.

(ii) The use of an incomplete number of modes to update whole
matrices, rather than individual parameters, without utilizing
prior knowledge of the structure of the model matrices results
in model matrices whose structure is not compatible with the

analytical model.

(iii) Parameters updated using the homogeneous equation of motion
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(iv)

)

(vi)

(vii)

and orthogonality equations are liable to bias problems due to

the inaccuracies in the measured modal data.

In some cases, it is not necessary to have response data from
every coordinate if an iterative method based on linearized
eigen-data sensitivity equations or frequency domain output

error is used.

It is possible to find a unique solution for the model parameters
using an iterative method based on the eigen-data sensitivities.
However, appropriate conditions cannot be guaranteed due to
the limit on the number of linearly independent equations that
can be generated as a result of the limitations on the number of

measured modes and measured coordinates.

Difficulties in using experimental data to update a dynamic
model are mainly due to, inability to excite or measure the high
frequency modes with natural frequencies outside the measure-
ment frequency range, inability to measure some coordinates

and inaccuracies in the measured data.

No parametric updating method can rectify a fundamental

conceptual error in the finite element model.

From the findings of this literature review, it is considered that a model

updating method which is based on the minimization of the output quantities

(eigenvalues, eigenvectors or response data) is the most attractive for further

research. Such a method avoids the difficulties of biased estimates associated

with a correlated error vector as is the case with methods based on the equation
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error approach. In addition, the output quantities are usually the ones which
are taken as a basis of agreement or disagreement between the analytical model
and the actual mass and stiffness distribution. Thus, direct minimization of the
output quantities is more attractive than minimization of an equation error

which may not necessarily lead to the agreement in the dynamic behaviour.

Most attempts in this direction have been on the use of the eigenvalues and
eigenvectors by sensitivity approach. Since the eigenvalues are usually
measured with more certainty than the eigenvectors, the present research will
attempt to find a method of using eigenvalues alone as well as using both
eigenvalues and eigenvectors. With previous methods, the use of eigenvalues
alone certainly results in infinity solutions. The use of both eigenvalues and
eigenvectors may result in a unique solution if a sufficient number of
coordinates have been measured such that the sensitivity equation is not
underdetermined. Since the case of an infinite number of solutions for a given
set of measured eigen-data will develop, if the number of parameters is larger
than the number of independent equations, an attempt will be made to generate
extra eigen-data by perturbing the structure. Perturbation will be performed
by adding mass or stiffness to a structure so as to change its eigen-data, and use
the eigen-data of the structure before and after perturbation in parameter
estimation. However, the problem is not simply of the number of measurement
coordinates. The structure of the mass and stiffness matrices as well as the
choice of the measurement coordinates all could have an influence. This
problem seems not to have been fully analysed. In the present research the
question of the uniqueness of the parameters, in both cases, will be looked at.
Investigation will be performed on the suitable choice of the perturbing
coordinates so that a given set of measured eigenvalues alone could be used in a

more rational updating algorithm.
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CHAPTER 3
MODEL UPDATING BY ADDING MASS OR
STIFFNESS TO THE SYSTEM

3.1 Introduction

It is apparent that one of the main difficulties experienced by model parameter
updating or identification methods is the incomplete modal information from
vibration tests. This difficulty is manifest by an insufficient number of linearly
independent equations to solve for the desired parameters. Previous
investigators have dealt with this difficulty by various approaches. The most

popular ones are:

(i) Using overdetermined eigen-data sensitivity equations based on

first order approximation.

(ii) Using reduced order equation of motion and orthogonality

equations linearized by coordinate transformation method.

In both cases a number of parameters with physical interpretations are
updated, rather than treating all matrix influence coefficients as independent
parameters. The identification of a unique solution, however, depends very
much on the availability of mode shape data measured at a sufficiently large
number of coordinates. This is so because the number of measured modes is
usually small and mode shape measurement at many coordinates is necessary to
increase the data sample. It is also generally agreed that the mode shapes are
usually measured with more uncertainty than the natural frequencies. The

more accurate natural frequencies, however, cannot be used alone to estimate
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the parameters as there will be an infinity of solutions.

In this Chapter a technique which makes possible to use the eigenvalue data
alone is proposed. It is based on generating at least as many eigenvalues as the
number of parameters to update by perturbing the structure by adding mass or
stiffness. The parameters are then determined iteratively by updating the
parameters of the initial analytical model using the well known sensitivity
analysis method. Thus if J, is the Jacobian matrix of eigenvalue sensitivities
with respect to the parameters of the current analytical model, parameter

update As are determined by a least squares solution of:
[Ja) As ={An) (3.1)

It is assumed that the FE parameters to update are the structural parameters
which are coefficients of the element matrices, whereas the lumped parameter
model has a diagonal mass matrix and the parameters to update are the lumped
masses and stiffnesses. By perturbing the structure and its analytical model by
identical perturbations, the eigen-data sensitivity analysis is performed only
with respect to the parameters of the unperturbed system. This simplifies the
updating algorithm. The updating algorithm is given in fig B1.1 in appendix B.
It will be shown that with mass or stiffness addition method, a unique solution
for the model parameters may be identified. The conditions for the
identification of the exact mass and stiffness parameters based on error-free
data and exact structure of the model matrices will be investigated. A statistical
approach, which considers the fact that measured data is not exact and the
model structure may possibly be inexact, will then be introduced in Chapter 4.
The mass or stiffness addition technique can alternatively be used with both

eigenvalues and eigenvectors.
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3.2 Updating an undamped model using eigenvalues alone

The eigenvalues are solutions of the determinant equation:
|K-2M|=0 (3.2)

Let R and S be arbitrary but non-singular matrices of the same order as the
mass and stiffness matrices. Then (3.2) can be pre and post-multiplied by the

determinants of the arbitrary matrices and results in (3.3).

RKS-ARMS | =0 3.3)

It follows therefore, there are arbitrary matrices K, and M, given by (3.4)

which have the same eigenvalues as the true system matrices K and M.

K,=RKS, M, =RMS (3.4)

The implication of (3.4) is that there are infinite mass and stiffness matrices
which can reproduce the measured eigenvalues. The principle behind mass or
stiffness addition is to impose constraints on R and S so that the number of
solutions for K, and M, is finite. A unique solution is preferred but, generally,
with a finite number of solutions it is usually the case that if a reasonable
estimate of the initial parameters is made, the updated parameters converge to
the correct mass and stiffness parameters. The other solutions, if any, are
usually not feasible solutions and are not identified by the iterative updating
process. By adding a known mass to the system at a known coordinate the

eigenvalues of the perturbed system are solutions of:
|R[K-2 M+aM)]S|=0 (3.5)
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Since M, and K, are the mass and stiffness matrices that reproduce the

eigenvalues of the system, R and S must satisfy the following constraint:

RAMS = AM (3.6)

It is possible to explore the form of R and S with different mass addition

coordinates.

3.2.1 Updating by adding mass or stiffness at each coordinate

From the form of (3.5) and (3.6), adding a grounded stiffness at a given
coordinate has the same constraining effects on R and S as adding a mass to the
same coordinate. Thus, to consider the effect of stiffness addition on the
existence of a unique or a finite number of solutions, it is sufficient to consider
only the effect of mass addition. While different combinations of added mass
and stiffness are possible, only simple cases of adding lumped masses or
lumped grounded stiffeners are considered due to their simplicity. The masses
or stiffeners are added one in turn at a coordinate and determine the
eigen-data. Then repeat at as many coordinates as necessary. The aim is to
generate extra eigen-data so that at least as many data as the number of
parameters to update are generated. For practical reasons adding mass or
stiffness at each coordinate is difficult. This chapter investigates the necessary
requirements, with respect to the choice of the perturbed coordinates, so that
the Jacobian matrix of eigen-data sensitivities in (3.1) is not rank deficient.
However, before the more realistic cases of adding mass or stiffness at an
incomplete number of coordinates is considered, the case of mass addition at

each coordinate is first analysed to establish some important concepts.
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Consider the perturbation of the mass matrix by a mass om; at coordinate i .

Then R and S can be partitioned as follow:

R;; R Ry3 S11 812853 0O 0 O
R= R21 Rii R23 3 S= SZI Sll 823 ’ AM= 0 6m‘ 0 (3.7)
R3; R3; Ry S31 832 833 0 0 0

R;; and S; are 1x1 coefficients corresponding to the mass added coordinate.
Since R and S satisfies (3.6), then some terms in R and S are not arbitrary. By
using (3.7) in (3.6) it can be shown (Appendix Al) that:

Si=Ry!, Rp=Ry5 =0, 8§, =85,;=0.

Therefore, if mass is added at a single coordinate i , R and S are given by:

Rll 0 R13 Sll Sl2 Sl3
R= R21 Rii R23 ’ S= 0 R;ll 0 (3.8)
R3; 0 Ry; S31 83, S33

It follows, therefore, if mass is to be added in turn at each coordinate, all the
columns of R and all the rows of S should have zero terms except the ones
corresponding to the main diagonals. That is R and S are diagonal matrices and
they are related as follow:

S =R-! = diagonal matrix.

Therefore, the expressions for K, and M, becomes:
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R R R
Ky KIZ‘RA K13R—11 ............ Kpi—dil
2 33 R
R R R
K:ﬂﬁ K% K23I_\,—n ...sz—Rzz
sz 11 ' 33 NN (3.9)
R Ry Rux
Kyi— Kyo—— Kyz—....... Ky
Rll R22 R33
R R R
Mll Mlzi P’ll:’iJ ............ MlN i
Ry "Ry R
R R R
Mzrkg My MBR—ZZ ........... MZNE2
M= i » i (3.10)
MN IFs MN 2 5 MN K S BRI MNN
Rll R22 R33

Thus, all the diagonal influence coefficients in the mass and stiffness matrices
are uniquely defined. The mass and stiffness matrices are usually symmetrical
and this is a useful prior knowledge. Imposing a constraint of symmetry on K,
and M, by equating the corresponding off-diagonal terms in (3.9) and in
(3.10) the following is obtained:

.l g Ry
ij' J 2
w,Re i
Rif ii
(il =1,V )
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But K and M are also symmetrical. Therefore:

Ri _ Rj

Ruz s Rjjz

Ky #+()1 (3.11)
Rj

Thus, the off-diagonal mass and stiffness influence coefficients have values of
+ or - their correct values. Since there is a finite number (>1) of solutions for
the off-diagonal influence coefficients, the uniqueness of the non-diagonal
stiffness or mass matﬁx depends on the relationship of the off-diagonal and the

diagonal influence coefficients.

In the case of a finite element model, the parameters to be determined are the
coefficients of the element matrices. The relationship between the off-
diagonal and the diagonal influence coefficients of the finite element mass and
stiffness matrices is in many cases adequate to determine, uniquely, the

parameters if mass or stiffness is added at each coordinate.

With a lumped parameter model the relationship between the diagonal and the
off-diagonal influence coefficients may not yield unique lumped parameters
when the diagonal influence coefficients are known. Depending on the
complexity and form of the mass-stiffness network, it is possible to have cases
with more than one solutions for the lumped parameters even if mass is added
at each coordinate. However, the correct parameters are usually identified if

reasonable initial estimates are made.
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EXAMPLE 3.1

Consider a 3 DOF lumped parameter model of a spring mass chain with both

ends fixed. The true mass and stiffness matrices are given as:

M =diagonal [m ; m, ms]

k1+k2 -k2 0
K= -k2 k2+k3 -k3
0 k3 katky

From (3.9) and (3.11), the off-diagonal coefficients in K, are given by +(-)

their corresponding terms in K. That is:

Ky x = +(ky
Ky x = +()k;

The possible values of Kj,, and K,; , are therefore +(-)k, and +(-)k,
respectively. With these values there are four possibilities for the value of

Ky, x - These are:

‘kz‘k/j‘, “k2+k3, kz-k3 and k2+k3.

However K, , is a diagonal coefficient and is uniquely defined as K, of the
true model. Therefore only one of the possible values of Ky, and Kp; , is

identified and this corresponds to:

K12,x =k,
K23,x = ky
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The stiffness matrix is therefore completely identified. The mass matrix is also
identified since it is diagonal and from (3.10), the diagonal influence
coefficients are identified if mass is added at least to each coordinate.

EXAMPLE 3.2

Consider a 5 DOF spring mass system of fig 3.1.

k7
k6
m1 m2/\/\ |m3 m4 m5
e VAVANV AV AN

k8

Fig 3.1 Spring-mass system (5 DOF).

The stiffness matrix is given by:

ki+ky+keg+kq k 5 'k6 -k 7 0
-k, ko+tks+kg k3 0 kg
K = "k6 —k3 k3+k4+k6 -k4 0
-k 7 0 ks  kgtks+ks -k 5
0 -kg 0 -k5 k5+k3

If mass is added at each coordinate, all the masses and the diagonal stiffness
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influence coefficients are uniquely defined. Thus:

Ky1x =kix + ko + kgy + kg = Ky
Koo x = kox + kax + kgy = Koy
K33,x = k3x + k4x + k6x = K33
K44,x = k4x + k5x + k’7x = K44
KSS,x = ka * ka = KSS
The off-diagonal coefficients are +(-) their correct values: Therefore,
which implies four possible values for K5 x which are:
ks + ks, kS - kg, —ks -+ ks, 'ks "kg .
But K, is unique by virtue of being a diagonal influence coefficient and mass

is added at each coordinate. Thus of the four possible values only one is

actually valid and this corresponds to:

ka = kS and ka = k8'
The stiffeners ks and kg are therefore uniquely defined. Similarly the
off-diagonal terms k,, and k;, which are contained in K4, are given by +(-)

their correct values. But K44« is unique and is given by:

Kygx = kax + Ksx + kyy =Koy = kg + ks + &
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Since ks, is uniquely defined, the sum £, + k;, is also unique. But k,, and k;,
can take values of +(-) their correct values. Therefore, since the sum ky, + k7,
is unique, of the possible values of k,, and k,,, the valid ones must correspond

to:

kyx=ky and kg = k;.

Thus k, and k; are unique. If k, is uniquely defined then by the same arguments
ks and k¢ which are off-diagonal coefficients and are also contained in K33 , are
also uniquely identified. If k; and kg are uniquely defined then %, is also
identified from the identification of the diagonal coefficient Ky, . If k, kg and
k, are identified then £, is also identified following the identification of the

diagonal coefficient K.
Thus all the stiffness parameters , . . kg and all masses are uniquely defined.
EXAMPLE 3.3
This example considers a numerical simulation of the 5 DOF system of exa-
mple 3.2. Let the system have the following mass (kg) and stiffness (N/m) data.
ki=ky=ks=k;=kg=1000, k3=ks=kqs=500
Consider an initial analytical model with the following mass and stiffness data:
k ,=1200  k,,=1100  k3,=400 k 4,=450 k 5,=900
k 6,=600 k,,=1100  kg,=1200

m la=11 m 2a=12 m 3a=8 m 4a=9 m 58=9
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The system and the initial model were both perturbed by adding masses of 0.25
kg and 0.5 kg in turn at each coordinate. The eigenvalues of the system and the
initial model before and after mass addition were determined, where only the
first two modes were considered to have been measured. The eigenvalues of
the system and the initial model are given in table 3.1. With this data an
iterative least squares solution of (3.1) was performed. All the parameters

converged to their correct values. Table 3.2 shows the results at each iteration

step:

Added| Coordinate | System eigenvalues |Eigenvalues of the initial

mass model

K Mode 1 | Mode 2 Mode 1| Mode 2
(kg) A i A 1

0 14.375 153.182 16.895 178.968

0.25 14.339 152.729 16.855 178.281
14.306 152.604 16.809 177.924
14.300 152.564 16.800 178.757
14.293 153.070 16.791 178.423
14.280 191135 16.779 176.954
0.5 14.303 152.268 16.816 177.578

14.238 152.016 16.725 176.876
14.226 151.942 16.706 178.535
14.211 152.955 16.688 177.869
14.186 149.153 16.663 174.967

n B L= B W=t

TABLE 3.1 Eigenvalues (Radzlsz) of the simulated 5 DOF

lumped spring-mass system and its initial model.
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Iteration steps
0 1 2 3 4
k. | 1200 1002.0 999.9 | 10000 | 1000.0
k, | 1100 11268 | 1061.4 993.0 | 1000.0
ks | 400 331.5 475.1 504.1 500.0
k, | 450 498.9 475.6 501.2 500.0
ke | 900 11340 | 10445 992.6 | 1000.0
ke | 600 548.8 536.0 496.4 500.0
k, | 1100 798.1 937.5 | 10034 | 1000.0
kg | 1200 932.8 969.8 | 1005.6 | 1000.0
m | 1 10.3 9.9 10.0 10.0
m,| 12 12.0 10.7 9.9 10.0
my| 8 7.6 9.8 10.1 10.0
o 9.9 9.5 10.0 10.0
m| 9 100 10.1 10.0 10.0

TABLE 3.2 Convergence of the lumped mass (kg) and stiffness (N/m)

parameters of the 5 DOF spring-mass system.
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EXAMPLE 3.4

Consider a 4 DOF system shown in fig 3.2.

k1

k6
_AANANAN
k9
m1 m2 m3
k2 k3 k4
k7
k8

m4

k5

Fig 3.2 Spring-mass system with fixed ends (4 DOF).

The stiffness matrix is given by:

kitkotks 42 0 ke
g o | *2 kot kst ky+ke k3 ko
0 -k3 k3+k4+k3 -k4
ke ko kg kevkstketk

With mass addition at each coordinate, all mass parameters are unique and the

diagonal influence coefficients of the stiffness matrix are also unique. Thus:

Kll,x = klx + k2x + k6x= Kll
Ky x =Koy + kay + ko + kg, = Ky

K33 = kax + kyx + kg, = K33
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K44,x = k4x+ ka * kﬁx o k9x = K44

While each of the lumped stiffness corresponding to the off-diagonal stiffness
influence coefficients (kyy , K3y > kax » kg » ko, ) can attain a value of +(-) its

correct value, each of the preceding four equations contain an arbitrary
grounded stiffness ( &y, , k7, » kg » ks, ). The four equations cannot be solved
for a unique solution. Each of the possible combinations for the signs of the
off-diagonal stiffness influence coefficients will result in a different solution
for the stiffness parameters. The number of possible solutions, however, is not
infinite. Thus, starting with reasonable initial estimates the parameters of the
system of fig 3.2 can be identified using eigenvalues if mass or stiffness is

added at each coordinate.

Lets consider a numerical simulation with the following system and initial

model parameters:

System: ki = ky = ky = k4 = ks = 1000 N/m
kg = k; = kg = kg = 500 N/m

my=m,=my=my=10kg

Initial model k,, = k,, = k3, = ks, = 1100 N/m
ks, = 9500 N/m, kg, = 550 N/m, k;, = 450 N/m
kg, = 550 N/m, kg, =450 N/m

mla= mza = M3a= m4a = 9.5 kg.

Masses of 0.25 kg and 0.5 kg were added in turn at each coordinate of the
simulated system and the initial model. The eigenvalues of the first two modes

of the system before and after each mass addition were taken to simulate
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measured data. The simulated and the initial model eigenvalues are shown in
table 3.3. The parameters were then updated using this eigenvalue data. It was

possible to achieve convergence to the correct mass and stiffness parameters as

shown in table 3.4.

It should be noted that there is a finite number of solutions for the parameters
of the system of fig 3.2 that will reproduce the eigenvalues of the simulated
system before and after mass additions. The number of such solutions depends
on the number of possible combinations for the signs of the off-diagonal
stiffness influence coefficients. Only the correct parameters are identified

because the other solutions are not in the neighbourhood of the initial

estimates.

Added |Coordinate | System eigenvalues  JEigenvalues of the initial

model
Mode 1 Mode 2
A A

Mode 1 | Mode 2
A A

W= W)

TABLE 3.3 Eigenvalues (Radzlsz) of the simulated 4 DOF lumped

spring-mass system and its initial model.
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Iteration steps

2

TABLE 3.4 Convergence of the lumped mass (kg) and stiffness (N/m)

parameters of the 4 DOF spring-mass system.
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3.2.2 Mass or stiffness addition at a smaller number of coordinates

3.2.2.1 General considerations

Let R and S be partitioned into submatrices corresponding to the perturbed
and unperturbed coordinates. Let the matrices be rearranged such that the

perturbed coordinates are the first N, (N,<N ) coordinates along the main
diagonal. Thus,

AM =[lng g]

where [OM] is a N, XN, submatrix with zero elements except the ith diagonal

element which is given by ém; and corresponds to the current mass addition at

coordinate i.

From (3.8), R and S are also partitioned and takes the form of (3.12).

0 R22 ’

R;; R
r=|Ru Rp
[ ] Sa1 Sp»

-1
s=[R“ 0] (3.12)

The mass and stiffness matrices are then given by:

o2
Ry; Ry Ry, O
= M 3.13
R, R R, 0
— 11 12 K 11 314
Kx [0 R22:|[ ] S21 822_ ( )
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But R, is a diagonal matrix which can be written as:

[ 7,000...0
0!’2 00...0
R11= 00 rs 0..0

tttttttt

It is possible to factor out one term from R,; and a corresponding term from
the S matrix. Since S;; = R, the factored terms cancel. Let r; and 1/r, be

factored out from R,, and S,; respectively. The mass and stiffness matrices

can be written as: ] )
<
T T T 0
M, =|_1 "2 U1 (3.15)
[0 Ty [ ]_L21 Lo
e Tl T2 o
K, =| 1 _2/] " (3.16)
[0 Tn] ’ _L21 L22_

where T is a diagonal submatrix with at least one of its diagonal elements as

unity and
1
Tp= LRlzs Ty = —Ryp,
ry ri
Ly =riSyu, Ly =r1Sy.

It can be shown (Appendix A2) that:

Li=T, T2 =1 3.17)
where
Ty T
T=|"1 "12 3.18
’0 Tn] (3.18)
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Therefore, to show the existence of unique mass and stiffness matrices, it is

sufficient to show that

K, = TKT and M, = TMT " (3.19)

are unique. If K, and M, have a finite number (>1) of solutions and if initial
estimates of the mass and stiffness parameters are made close to one of the
solutions, the Jacobian matrix of eigen-data sensitivities will generally become
non-singular and the updated parameters converge to a solution in the

neighbourhood of the initial estimates.

3.2.2.2 Identifying the parameters in the mass

and stiffness matrices

Let the mass and stiffness matrices be partitioned into submatrices
corresponding to the perturbed (subscript 11) and unperturbed coordinates
(subscript 22). Thus,

K K M M,

Kx= 11,x 12,x M. = 11,x 12,x (3'20)
[K2l,x K22,x] " [le x  Max
K, K M; M,

K= 11 12 M= 11 12 (321)
[Kzl Kzz] [le My,

The submatrices in K, and M, can be written in terms of the submatrices in K,

M and T using (3.19) as:

T T T T
Ki1x=T KT+ T Ko T+ T KT 1o+ T KTy, (3.22)
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T T
Ki2x= T1iK 12T 0+ T12K2T 2 (3.23)
T
Kyx= T2K2T2 (3.24)

T b T T
My =T M T 1+ T1MoT 13+ T M T 15+ T1pMppT 1 (3.25)

T T

M .= T ML 0+ T1oMppT 2 (3.26)
T

Mgy x= TM2T 2 (3.27)

With a diagonal mass matrix, M;, x = M, = 0. Since T,, and M,, are non zero
(3.26) results in T, = 0. The same result is obtained if the stiffness matrix is

diagonal. Thus, with a diagonal mass matrix (3.22), (3.23) and (3.25) simpli-

fies to:
K= Ty KTy, T (3.28)
Kipx =T KTyt (3.29)
M, =T M;T; T (3.30)

Let N, be the number of perturbed coordinates. Then Kj,,, My, and T, are
matrices of order N - N,.. Since T}, is a diagonal submatrix with at least one of
the diagonal elements as unity, there is a maximum of N,.-1 elements in T,
which are either +1 or -1. The number of possible combinations for the signs
of these elements indicates the minimum number of possible solutions. T,, and
T, have (W -Np,c)2 and N x(N - N,) unknowns respectively. Equations

(3.22) to (3.27) consists of a maximum of number of unknowns given by,
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No of unknowns = (V - Nyo)% + Nyx@ - Npo) + iy, (3.31)

where n, is the total number of unknown mass and stiffness parameters. With
a diagonal mass or stiffness matrix, T, is zero. The total number of unknowns

1s reduced to

No of unknowns = (V - Nyo)2 + ny, (3.32)
(Diagonal M or K)

Let N, be the total number of non-zero rows in K5, and Mj, , The maximum

number of equations in (3.22) to (3.27) is:
No of equations = (N - NPC)2 (N =Ny + N XN = No) + Npc2 + Ny (3.33)

The first two terms in (3.33) represents the number of equations in (3.24) and
(3.27). The last two terms represents the number of equations in (3.22) and
(3.25). The intermediate term is the number of equations in (3.23) and (3.26).
With the diagonal mass or stiffness matrix, My; , and K;; , are given by (3.28)
and (3.30). Since T, is diagonal, the number of equations associated with
K, x and My, , is simply equal to the total number of non-zero influence
coefficients above the main diagonals of K, , and My 4 plus the number of
diagonal influence coefficients in K;; , and M, ,. Thus, let N4 be the total
number of non-zero influence coefficients above the main diagonals of Ky, ,
and M 4. The last two terms in (3.33) are modified for a diagonal mass or

stiffness matrix and the number of equations in (3.22) to (3.27) becomes

No of equations = (N - Np)2 + (V - Nyo) + NX(N - Np) + 2xNj, + Ny (3.34)
(Diagonal M or K)
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The existence of a unique set of mass and stiffness parameters which reproduce
exactly the eigenvalues of the system before and after adding mass (or
stiffness) is possible if the total number of equations in (3.22) to (3.27) is equal

to or greater than the number of unknowns.

The above represents the minimum requirement with respect to the choice of
the perturbing coordinates. The existence of a unique solution following the
satisfaction of this requirement is not so obvious because the equations are
non-linear, involving products of the parameters of T. For a system with a
small number of DOF it is feasible to expand (3.22) to (3.27) and assess the
existence of a unique solution. With an increase in the model order this
becomes impractical. However, it can be shown that if the number of equations
is not less than the number of unknowns, the equations have a finite number of
solutions. It follows, therefore, starting with a reasonable estimate of the
initial parameters, the Jacobian matrix of eigenvalue sensitivities will
generally become non-singular. Consider the following argument. Equations
(3.22) to (3.27) can be linearized by a first order Taylor's expansion and

expressed as follow,
[GK'T ; GK] SR (3.39)

where Gy 1 and GM,f are coefficient matrices of the linearized part of the
equations with respect to the stiffness and mass matrices respectively, and Gy,
Gy are coefficient matrices corresponding to the unknown mass and stiffness
parameters. Equation (3.35) can be solved if the following matrix is

non-singular.
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- .-
Gkt Gmr
T GK,T 0 GK
0 Gu|[Gur Gum 0
Gg 0
T T T T
Gx1Gxr+Gm1GMmT GumiGum Gk1Gk
=| G\Gur Gl o| @36
T T
Gilxr 0 GG

If TKTT = K and TMTT = M equation (3.35) is reduced to (3.37)

[GK-T] (AT} ={b,) (3.37)

and (3.37) can be solved if the following matrix is non-singular:

T T
Gg1Gg 1+ GM1G M,T]

But the equations TKTT = K and TMTT = M where T is of the form of (3.18)
have a unique solution for the parameters of T, given by T =I (Appendix A3).

Hence

T T
Gx1Gxr+GM1GMmT

is non-singular.

Similarly, GTy;G,, and GTy G are usually non-singular because the equations
K, =K and M, = M, usually, have a unique solution for the parameters. Thus
(3.36) is non-singular. Therefore with reasonable initial estimates, J, will

generally become non-singular if the preceding requirement have been
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satisfied and the updated parameters will converge to a solution closest to the
initial estimates. The equations, however, may have more than one solution
because they are non-linear, but it is not feasible to determine the exact
number of solutions. Simulation tests shows that when the preceding
requirement is satisfied, then starting with a reasonable estimate of the initial
parameters, the updated parameters usually converge to the correct mass and
stiffness parameters. Other solutions, if there are any, are usually not feasible
solutions in the neighbourhood of reasonable initial estimates and are not
identified. The satisfaction of the preceding requirement, therefore, can serve
as a useful test for the adequacy of the perturbing coordinates for parameter

updating using eigenvalues. Some examples are now considered.

EXAMPLE 3.5

Fig 3.3 show a 2 DOF spring mass chain with fixed ends. Let coordinate 1 be
perturbed by mass addition. T becomes a 2x2 diagonal matrix and T,; =T, =

1 and Ty, = T,, are scalars.

Fig 3.3 Spring-mass chain (2 DOF) with fixed ends.

Therefore from (3.22) to (3.27),

Kix= TuKyTyT =k +ky =k + o
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Klz,x = T11K12T22T =-kyTpp = Koy
Kypx= Ty Ko TopT = (ky + k3)T222 = kyy + Ky

_ o
Mu,x—TuMuTu =my=myy

My, = TyoMy, Tyt = szzzz = Mox-

Thus (3.22) to (3.27) as applied to this example results in 5 equations in 6
unknowns (Ky,, ko, » K3y M1y, My, and T),). The total number of unknowns is

greater than the number of equations. Alternatively we can use the formula:

No of equations = (N - Npc)2 + (N - Npo) + NX(N - Npo) + 2XN . + Ny
(Diagonal M or K)
=212+ @21)+ 1x(2-1) +2x1 +0 =5

No of unknowns = (N - Ny)2 + myy = (2-1)2 + 5= 6.
(Diagonal M or K)

The mass and stiffness parameters of the system in this example cannot,
therefore, be identified using eigenvalues by adding mass or stiffness at a

single coordinate.
EXAMPLE 3.6

A two elements 2 DOF FE model of a beam in flexure with both ends fixed is

shown in fig 3.4. The stiffness matrix is of the following form,

_|AuEl1+BEl, A El+BpE,
ApEl 1+ BoEl 5 ApEl\+ByH
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where A;; and B;; are known constants. The mass matrix is of the same format

with mass parameters m,; and m,, instead.

2
= e g
Fig 3.4 A 2 DOF fixed-fixed beam in flexure.

Let coordinate 1 only be perturbed by adding mass, T, = T}, =1. Using
formula, the total numbers of equations and unknowns in (3.22) to (3.27) are

given by (3.33) and (3.31) respectively

No of equations = (N - Ny)2 + (N - Np) + N,x(N - Npo) + N2 + Ny
=2-1D2+@Q-1)+2x2-1)+12+1=6

No of unknowns = (N - Npo)2 + Npx(N - Nyo) + my
=(2-1)2 +1x(2-1)+4=6

The mass and stiffness parameters of the 2 elements beam of fig 3.4 can
therefore be identified using eigenvalues by mass or stiffness addition at

coordinate 1. Consider a numerical simulation with the following data:

System: EI, = EI, = 5000 Nm?
my; =my =3.5kg/m
,=04m, L,=06m.
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Initial model: EI, , = 5100 Nm2, EI, , = 4800 Nm?2

Myya =My, = 3.3 kg/m.

The system and its initial model were perturbed by adding a single mass of
0.25 kg at coordinate 1. The natural frequencies for the two modes before and
after mass addition are shown in table 3.5. A total of 4 simulated eigenvalues
were generated. The simulated eigenvalues were used to update the 4
parameters by sensitivity analysis using (3.1). It was possible to achieve
convergence in the mass and stiffness parameters to their correct values. Table

3.6 show the updated parameters at each iteration step.

AddedSimulated natural § Natural frequencies of
frequencies (Hz) | the initial model (Hz)

Mode 1 | Mode 2 Mode 1 | Mode 2

TABLE 3.5 Natural frequencies of the simulated and the initial model of the
2 DOF fixed-fixed beam with and without added mass.
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Iteration steps

1 2

TABLE 3.6 Convergence of the mass and stiffness parameters of the
fixed-fixed beam.

EXAMPLE 3.7

Fig 3.5 show a 4 DOF spring-mass chain with fixed ends. Let coordinates 1

and 3 be perturbed. Then T, and T,, are 2x2 submatrices given by:

_[1 0 To=|12 T2
Tus); T [m m]

Fig 3.5 A 4 DOF spring-mass chain with fixed ends
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The stiffness and mass matrices are given by:

ki+k, 4, O O] ‘m;, 0 0 O]
K= =) k2+k3 -k 3 0 , M = 0 my 0 O
0 %3 k3+k4 -k4 0 0 mi 0
LO 0 ky ka+ks 0 0 0 my

The stiffness and mass matrices are also partitioned into submatrices

corresponding to the perturbed and unperturbed coordinates resulting in

ki+ky O ky O ko+ k 0
K, =|“1Fk2 O Kao=| 2 . Ko 2755
= [0 k3+k4] 12 [-k3 -k4] 2710 kot ks

and

Applying (3.22) to (3.27) to the above submatrices (T,, = 0) results in a total
of 13 unknowns which are ky,, ky,, k3» Ky ksyr M4, Moy, M3, My Ton, Ty,

T,,, and T,,. This number of unknowns can also be arrived at by computation
using (3.32). The number of equations is 14 and can be arrived at by
computation using (3.34). As the number of unknowns is less than the number

of equations, the mass and stiffness parameters may be identified by
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perturbing coordinatés 1 and 3 and using eigenvalues alone. Consider a

numerical simulation with the following parameters:

System: k, = 10000 N/m, k, = 12000 N/m
k3 = 16000 N/m, k, = 8000 N/m
ks = 10000 N/m

my=my=my=my=2Kkg

Initial model: ky, = k,, = 11000 N/m, k;, = 18000 N/m
kyy= ks, =9000 N/m

mla= m23= m33= m4a= 1.8 kg

The system and its initial model were perturbed by adding a grounded stiffness
of 5000 N/m in turn at coordinates 1 and 3. The first three eigenvalues of the
system before and after stiffness addition at the two coordinates were used in
the updating process. A total of 9 eigenvalues were used to update the 9
parameters. The natural frequencies are shown in table 3.7. Table 3.8 shows
the updated parameters which converged to the exact parameters in 3

iterations.

Added Stiffness
stiffness | added
coordinate

Simulated natural
frequencies (Hz)

Natural frequencies of
the initial model (Hz)

(N/m) Mode 11 Mode 2 [ Mode 3 §Mode 1 T Mode 2 | Mode 3

0 : 6.929 |14.188 | 18.078 | 7.324 | 15.155 | 19.235
00 ] 3 | §501 | 1275 |isisa0 | 503 | 13200 [19'516
3 8.301 | 14.275 | 18.540 'ﬂl 15.200

TABLE 3.7 Natural frequencies of the fixed-fixed 4 DOF spring-mass model.
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Iteration steps

TABLE 3.8 Convergence of the mass (kg) and stiffness (N/m) parameters.

EXAMPLE 3.8

Fig 3.6 show a free beam modelled by a 5 elements 12 DOF model. The beam

was simulated using the following parameters,
Simulated:  EI = 5000 Nm2, m, = 3.5 kg/m (all elements)
which resulted in the following natural frequencies for the first three elastic

modes.
f1=86.18Hz,f, = 238.19 Hz, f; = 469.96 Hz.
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The beam was then modelled using the following initial parameters.

Initial model EI, = 5200 Nm2, m,, = 3.3 kg/m (all elements)
fia=90.51 Hz, f,, = 250.16 Hz, f3, = 493.57 Hz.

>

4 0.25m

> 0

4

‘_0.25 m

>

. ‘_0.25 m

_’_ﬁ_]

8

bl 0.25m

- 0.25m

Fig 3.6 Free beam, 12 DOF model.

Let the initial model be updated by perturbing coordinates 3 and 7. The

number of equations and unknowns in (3.22) to (3.27) are:

Number of equations = (N - pC)Z + (N -Npc) + N x(N -Npc) + Npc2 + N
=(12-2)2 + (12-2) + 4x(12-2) + 22 + 2 = 156

Number of unknowns = (N 'Npc)2 + Npcx(N SN ) gy
= (12-2)2 + 2x(12-2) + 10 = 130

The number of equations is greater than the number of unknowns and

therefore the parameters may be identified using eigenvalues and perturbing

coordinates 3 and 7. The initial parameters were updated by adding masses of

0.35 kg and 0.45 kg in turn at coordinates 3 and 7. Eigenvalues of the first
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three elastic modes before and after each mass addition were used in the
updating process. Table 3.9 shows the simulated and the analytical natural
frequencies. The parameters converged to the exact mass and stiffness

parameters (table 3.10).

TABLE 3.10 Convergence of the mass (kg/m) and stiffness (Nm?2) parameters

of the 12 DOF free beam (element numbers start from the left of
the beam in fig 3.9)
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EXAMPLE 3.9

Fig 3.7 show a 10 DOF plane frame modelled by 2 dimensional beam
elements. Only degrees of freedom in the plane of the frame were considered

in the modelling and the longitudinal flexibility of the elements ignored.

ll 12
|‘ o« .|

Fig 3.7 A 10 DOF plane frame
The simulated frame and the initial model had the following set of parameters:
Simulated:  EI, = El, = EI, = EI, = El = 5000 Nm?
Myy = Myp = My3 = myy = mys = 3.5 kg/m

f,=1431 Hz,f, = 56.09 Hz, f, = 183.69 Hz

Initial model EI,, = 5200 Nm?, EI,, = 5100 Nm?
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Els, = El, = El5,= 4800 Nm?

My1 = Mypa = My3a= Mysa = Mysa = 3.3 kg/m
I3, 1y, 15, 1, and I5 same as the simulated system.

f1a=14.48 Hz, f,, = 57.17 Hz, f3,=187.98 Hz

Let coordinates 4 and 9 be perturbed by mass addition and the parameters
updated using eigenvalues. There is a total of 10 parameters to update. The

submatrices Ko, x and M,, x are of order 8. The number of equations in (3.22)
to (3.27) is given by (3.33) as

No of equations = (N - Ny)2 + (N - Npo) + NX(N - Nyo) + N2 + Ny,
= (10-2)2 + (10-2) + 4x(10-2) + 22 + 2 = 110

The number of unknowns is given by (3.31) as

No of unknowns = (N - Npﬂ)2 + Npcx(N = Nog) # My
= (10-2)2 +2x(10-2) + 10 =90

The number of equations is greater than the number of unknowns and
therefore the mass and stiffness parameters may be identified using

eigenvalues by perturbing coordinate 4 and 9.

The parameters were updated by adding in turn masses of 0.35 kg and 0.45 kg
at coordinates 4 and 9. It was not possible to achieve any parameter conver-
gence using the first three modes of the frame before and after each mass
addition. The first two modes are dominated by the local modes of the vertical
beam which has lower natural frequencies. The motion of the horizontal beam

is close to that of a rigid body with the flexure of the beam playing an
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insignificant role. This problem was overcome by using the higher elastic
modes. Thus, by omitting the first two modes and use modes 3 to 5, the
parameters converged to their correct values. The simulated and the analytical
natural frequencies for modes 3 to 5 are shown in table 3.11. The updated

parameters converged to their correct values and are shown in table 3.12.

Added} Mass added] Simulated natural frequencies] Analytical natural frequencies
| coordinate

TABLE 3.12 Convergence of the stiffness (Nn’iz) and mass (kg/m) parameters
of the 10 DOF plane frame.
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EXAMPLE 3.10

This example analyses the systems simulated in examples 3.2 and 3.3 (figs 3.1
and 3.2 respectively) using the formula for the numbers of equations and
unknowns in (3.22) to (3.27) when the systems are perturbed at each

coordinate. The numbers of equations and unknowns are given as:

No of equations = (N - Ny)2 + (N - Np)) + NxX(N - Nyo) + 2xNp + Ny
(Diagonal M or K)

No of unknowns = (N - Npc)2 M
(Diagonal M or K)

N,4 (the total number of non-zero influence coefficients above the main
diagonals of the mass and stiffness matrices) for the systems of figs 3.1 and 3.2
are obtained from the structure of the stiffness and mass matrices in examples
3.2 and 3.3. They are 7 and 5 respectively. In each case N, = N. Thus the

formula for the numbers of unknowns and equations are simplified to:

For fig 3.1:  No of equations = 2xNc + N4 =2x5+7 =17
No of unknowns =n, =13

For fig 3.2: No of equations = 2xN . + N,4=2x4 +5=15
No of unknowns = n, , =13

Thus, the parameters of the system of figs 3.1 and 3.2 can be identified using
eigenvalues by perturbing each coordinate. This is consistent with the findings

in examples 3.2 and 3.3.
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3.3 Updating using eigenvalues and eigenvectors

The eigenvalues and the mass-normalized eigenvectors are solutions of the

homogeneous equation of motion and orthogonality equations.

[K-AM]U;=0 (3.38)
UTKU,= 4, (3.39)
UT™MU;, =1 (3.40)

For any jth mode, (3.38) to (3.40) represents a system of simultaneous
equations linear in the mass and stiffness parameters. It can be noted that
(3.39) is automatically derived from (3.38) and (3.40). Similarly (3.40) can be
derived from (3.38) and (3.39). Thus, the coefficient matrix of the
simultaneous equations derived from (3.38) to (3.40) is of rank N+1, where N
is the order of the mass and stiffness matrices. It follows therefore, the
Jacobian matrix of eigenvalue and eigenvector sensitivities is of rank N+1. The
process of parameter identification involves formulating the eigenvalue and
eigenvector sensitivity matrix for all measured modes. The analytical model

parameters are then updated by solving (3.41) iteratively.

Il ae _ [ AN
[JU]AS _{AU} (3.41)

If the number of measured modes is such that (3.41) is not underdetermined,
then in principle the updated parameters should converge to the correct model
parameters. Thus, among other factors, the identification of the mass and

stiffness parameters depends on the availability of a sufficient number of mode
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shape data so that JTJ , is not rank deficient.

In practice mode shape measurement at each coordinate is not possible. The
eigenvectors in (3.38) to (3.40) are therefore incomplete. This section analyses
the conditions for the identification of the correct mass and stiffness
parameters of a model with the same measured mode shapes and eigenvalues
as a given system before and after perturbation by mass or stiffness. It is
assumed that the structure of the mass and stiffness matrices is exact and the
modal data is error-free. The mode shapes are incomplete in number and are

measured at an incomplete number of coordinates.

The incompleteness of the mode shapes creates difficulties in the formulation
of (3.38) to (3.40) since some mode shape data is missing. Arbitrary
replacement of the missing data may result in arbitrary parameters. However
it can be noted that the formulation of (3.41) for the coordinates which have
been measured, do not depend on the availability of the mode shape data at the
unmeasured coordinates. So can we simply ignore the unmeasured coordinates

and solve (3.41) using the measured coordinates ? The answer is not obvious.

Let N, be the number of measured coordinates. The mass and stiffness
matrices can be partitioned into submatrices corresponding to the measured
and unmeasured coordinates. Let Ky and My be the mass and stiffness
matrices of a reduced order model defined at the measured coordinates. For

any given eigenvalue 4; of the system:
UjTKRUJf =4 (3.43)
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U MRU;=1 (3.44)

If a suitable choice of parameters to update can be made so that they are linear
in the reduced order model, then (3.42) to (3.44) represents a system of
simultaneous equations linear in the parameters. The coefficient matrix is of
rank N +1. In this case we can formulate the Jacobian matrix of eigenvalue
and eigenvector sensitivities of rank Ny, +1. For a total of n, parameters at
least r modes, ( (N .+1)r >n, ), are needed in order to identify the

parameters.

Our choice of parameters however, is such that they are linear in the full order
model but non-linear in the reduced order model. Thus (ch+1)r>np, does not
necessarily means that the sensitivity matrix is non-singular. A unique reduced
order model may be identified if a suitable choice of parameters is made.
Thus, it is reasonable to suppose that the conditions which ensure the existence
of a unique set of parameters of a full order model for a unique reduced order
model will ensure the identification of the full order mass and stiffness

matrices.

It has been shown in section 3.2 that there exist an arbitrary model of mass and
stiffness matrices M, and K, given by RMS and RKS respectively that has the
same eigenvalues as the given system of mass and stiffness matrices M and K.
Let K, M and the dynamic stiffness matrix D, be partitioned into submatrices
corresponding to the measured and unmeasured coordinates (subscript mm and

oo respectively). Thus:

K, = R[K‘““‘ Kmﬂ]s (3.45)
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M. M|

M,=R| ‘mm “mo|g (3.46)
D.. D]

D _=R| mm “mo 3.47

The reduced dynamic stiffness matrix of the system and of the arbitrary

model with the same eigenvalues as the system are given by:

-1
DR =D mm-DmoD oD om (3.48)
1

DR x=Dnmx-DmosD ooxD o (3.49)

It has been shown that with mass or stiffness addition S =RT=TT. If Dy , =

Dy, is unique then by inspection of (3.48) and (3.49), Dy x » Do x @nd Dy
should be of the following forms:
Dy = Do (3.50)
Dy x = Do Ty T 3.51)
D= LD T T (3.52)
T is consequently given by,
T =[ +('2)I Tom] (3.53)
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where T, is an arbitrary submatrix corresponding to the unmeasured DOF.
Parameters of the full order model will be identified using (3.41) only if K,
and M, given by

K, =TKTT and M, =TMTT

do not have an infinite number of solutions. Infinity solutions for K, and M,
means infinity set of parameters of the full order model that can reconstruct

unique reduced order mass and stiffness matrices.

Equations (3.50) to (3.52) have been derived by inspection. The form of T is
in (3.53) is very similar to its form when eigenvalues alone were used with
mass/stiffness addition. The difference is the replacement of the submatrix
corresponding to the perturbed coordinates, by an identity submatrix
corresponding to the measurement coordinates. Similar procedures are
therefore used to establish the adequacy of the measurement coordinates for
the identification of the correct mass and stiffness parameters. The T matrix,
however, has to be modified to account for the constraining due to the
perturbing coordinates as well as the measurement coordinates. The number
of equations in (3.22) to (3.27) is then compared to the number of unknowns.
A solution is possible only if the number of equations is equal or larger than
the number of unknowns. In this case, the eigen-data sensitivity matrix will

become non-singular. Some examples will now be considered.

133



EXAMPLE 3.11

A cantilever beam is simulated by an 8 DOF FE model (fig 3.8).

ir
S S S Jl
*2 *4 *6 8
H , E E , H
m i myw m3 m 4

Fig 3.8 An 8 DOF cantilever beam.

Let the beam be perturbed by stiffness addition at coordinate 5 and the mode
shape displacements measured at coordinate 1 only. We analyse the adequacy
of the measurement and the perturbing coordinates in order to identify the
correct parameters using eigenvalues and eigenvectors. In this case the
measurement and the perturbing coordinates are different. T is an 8x8 matrix

of the following form,

Taa Tas Tac
T=|Tga Te Tac

Tca Tes Tec

where Ty, =+(-)1, Tyg = Tyc =Tgp = Tca =0 and accounts for the

constraining due to measurement at coordinate 1.

Typ = 1, T = 0 and accounts for the constraining due stiffness

addition at coordinate 5.

134



The unknowns in T are therefore due to Ty (a 1x6 submatrix) and Te (a 6x6
submatrix) giving 42 unknowns. The total number of unknowns in (3.22) to
(3.27) is therefore 42 + 8 mass and stiffness parameters = 50.

The number of equations is N2 + N = 72 which is greater than the number of
unknowns. The measurement and perturbing coordinates are therefore
adequate to identify the parameters. Consider a numerical simulation with the

following data.

System:  EI, = El, = EI = EI, = 5000 Nm?

mg;= mu2 = mu3 = mu4 = 3.5 kg/m

Initial model: EI, , = El, , = 5100 Nm2 El, , = EI, , = 4800 Nm?2

mul‘a= muz’a= mu3,a= mu4'a= 3.3 kg/m

The system and the initial model were perturbed by adding, in turn, stiffness
of 1.0x106 N/m and 2.0x10% N/m at coordinate 5. The first two eigenvalues
and mode shapes of the simulated beam before and after stiffness addition were
taken as the measured data. The mode shape data used is for coordinate 1 only.
Table 3.13 shows the eigen-data of the simulated beam and the initial model (in
brackets), before and after perturbation. This data was used to update the 8
mass and stiffness parameters of the beam elements. The parameters

converged to their correct values as shown in table 3.14.

135



Added
stiffness

(N/m)

Mass-normalized mode
shape data at coord. 1

Natural frequencies

(Hz)

Mode 1

-0.1040
(-0.1068)

Mode 2

-0.4471
(-0.4532)

Mode 1

21.15
(21.96)

Mode 2

132.70
(136.16)

-0.0004
(-0.0032)

-0.4828
(-0.4912)

105.02
(107.66)

137.29
(141.33)

-0.2588
(-0.2574)

-0.4374
(-0.4499)

123.89
(126.60)

155.14
(160.02)

TABLE 3.13 Eigen-data of the 8 DOF cantilever beam (Data in brackets is

for the initial model)

Ieration steps

1

2

TABLE 3.14 Convergence of the mass (kg/m) and stiffness (NmZ2)

parameters of the cantilever beam.
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EXAMPLE 3.12

The 2 DOF SPring-rhass system of example 3.5 (fig 3.3) is perturbed at
coordinate 1 and the mode shape measured at coordinate 1 only. Lets analyse
the adequacy of perturbing and measuring coordinate 1 only in order to
identify the parameters. Since coordinate 1 only is measured the effect of
measuring this coordinate on T is to constrain it so that it becomes diagonal
with one diagonal element, corresponding to the measured coordinate, as +(-)1
and the other diagonal element as arbitrary. The effect of perturbing this
coordinate is to constrain T so that it becomes diagonal with the element
corresponding to coordinate 1 becoming unique and equal to 1. Thus, the
combined effect is T having the same form as when coordinate 1 was

perturbed and eigenvalues alone used

1 0
T=

where Tpp becomes an arbitrary scalar. The number of unknowns in (3.22) to
(3.27) is 5 mass and stiffness parameters plus 1 due to Ty = 6. The number of
equations is 3 for the stiffness matrix + 2 for the diagonal mass matrix = 5. The
number of equations is less than the number of unknowns and therefore the
parameters cannot be identified by measuring and perturbing coordinate 1

only.

If coordinate 2 is measured instead of coordinate 1 but mass is still added at
coordinate 1 only, then Ty becomes a scalar given by +(-)1. Thus, the number
of unknowns is reduced by 1. The system parameters can now be identified by
perturbing coordinate 1 and measure the mode shape at coordinate 2. It can

be noted that there are two solutions for the parameters each corresponding to
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a different sign of Tgg (Tgy = scalar = +(-)1).
Consider a numerical simulation with the following data

System: ky = ky = ks = 1.0x10% N/m
m;=10kg, my=5kg.

Initial model: &y, = 1.05x100 N/m, ky, = k3, = 0.96x10% N/m
m1a= 11 kg, m2a =35 kg.

Coordinate 1 was perturbed by mass of 0.5 kg and 0.75 kg. The eigenvalues
and mode shape data for the two modes before and after mass addition were
used in the updating process. The mode shape data used was for coordinate 2
only. Table 3.15 shows the simulated and the analytical natural frequencies and
mode shape data. The updated parameters converged to their correct values

and are shown in table 3.16.

It can be noted that this system has two sets of solutions which have the same
natural frequency and mode shape data as the one simulated in table 3.15. One
solution is the correct solution corresponds to Tyg = 1. The other solution

corresponds to Ty = -1 with the following parameters:

ky = 3x106 N/m, k, = -106 N/m, k; = 3x100 N/m,
m; =10Kg,m, =5 kg.

This second solution is not identified, however, because the initial estimates

are not close to it.
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Added mass
(kg)

at coord. 1 at coordinate 2.

Simulated natural frequencies
and mass-normalized modes

(Mode shape data is
given in brackets)

Analytical natural frequencies
and mass-normalized modes
at coordinate 2.

(Mode shape data is
given in brackets)

Mode 1

56.67 Hz
(0.2056)

Mode 2

109.48 Hz
(0.3975)

Mode 1

54.46 Hz
(0.2003)

Mode 2

102.50 Hz
(0.3765)

55.58 Hz
(0.1988)

108.94 Hz
(0.4006)

53.51 Hz
(0.1941)

102.01 Hz
(0.3796)

55.06 Hz
(0.1957)

108.69 Hz
(0.4021)

53.06 Hz
(0.1913)

101.79 Hz
(0.3811)

TABLE 3.15 Natural frequencies and mode shape data of the simulated

and analytical 2 DOF spring-mass system.

Iteration steps

1.05x10°

1

1.01x10°

2

0.99x10°

1.00x10°

0.96x10°

0.98x10°

1.00x10°

1.00x10°

0.96x10°

0.97x10°

1.00x10°

1.00x10°

9.96

10.00

10.00

4.67

4.99

5.00

TABLE 3.16 Convergence of the stiffness (N/m) and mass (kg) parameters

of the 2 DOF spring-mass system using eigenvalues and eigenvectors.
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EXAMPLE 3.13

A 4 DOF lumped parameter branched system is shown in fig 3.9. Let

coordinates 1 and 2 be measured and perturbed.

Fig 3.9 A branched 4 DOF spring=mass system.

The stiffness submatrices are:

K = k lx+k 2x -k 2x
R N kg Kotk s
_|0 0 _|katkax O
o [-k x kK Sx] o [ 0 ksctk 6x]

A submatrix of T which corresponds to the measured coordinates (which are
also perturbed) is a 2x2 diagonal of the same form as the matrix T in the
previous example. The number of unknowns in T are due to the 2x2 submatrix
which corresponds to the unmeasured (which are also unperturbed)
coordinates. Thus, the total number of unknowns in (3.22) to (3.27) is 4 (due
to T) plus 10 mass and stiffness parameters = 14, The number of equations is 3

(due to K ) plus 2 (due to K, ) plus 3 (due to K ) plus 3 (due to M

mm,X OU.X)
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plus 2 (due to My, ) = 13. The number of equations is less than the number of
unknowns. The parameters of this system cannot, therefore, be identified

using eigenvalues and eigenvectors by perturbing and measuring coordinates 1
and 2.

Consider a numerical simulation with the following mass and stiffness data:

System: ky = ky = ks = ky = ks = 1.0x100 N/m
ks = 0.5x10% N/m
my;=my=10kg, m3=m, =5kg
Natural frequencies(Hz): 42.86, 76.33, 94.29, 117.66

Initial model: k;, = ky, = 1.02x10% N/m
ks, = kg, = ks, = 0.98x100 N/m
kg, = 0.51x10° N/m,
my, = 10.25kg, my,=9.8 kg
My, = my, = 5.1kg
Natural frequencies(Hz): 42.93, 76.09, 92.84, 116.73

Coordinates 1 and 2 were perturbed by stiffness of 1.0x100 N/m. All four
eigenvalues and all four mode shapes at coordinates 1 and 2 before and after
stiffness addition were taken to have been measured. The eigen-data is given in
tables 3.17 to 3.19. The Jacobian matrix contained 10 columns for the 10
parameters and a total of 36 rows for the eigenvector and eigenvalue data. It
was not possible to solve for any meaningful parameters. The Jacobian matrix

was rank deficient. The buildup of the rank of the Jacobian matrix is shown in
table 3.20:
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Stiffness

Simulated natural frequencies

Analytical natural frequencies

added
coordinate (Hz) (Hz)
Mode 1| Mode 2 | Mode 3| Mode 4| Mode 1| Mode 2 | Mode 3 | Mode 4
- 4286 (7633 9429 | 117.66) 4293 | 76.09 |92.84 | 116.73
1 48.11 |87.17 |95.12 | 118.18 | 48.24 | 86.44 |93.74 | 117.32
2 53.15 | 7740 195.04 |122.80 | 53.11 | 77.09 |[93.53 | 122.28

TABLE 3.17 Simulated and analytical natural frequencies of the 4 DOF

branched spring-mass system with and without added stiffness.

Stiffness | Measurement Mass-normalized mode shape data
added coordinate of the simulated system
coordinate
Mode1 | Mode2 | Mode3 | Mode 4
- 1 0.1677 |-0.2565 0.0501 | -0.0596
2 0.2130 0.0770 | -0.0757 0.2065
1 1 0.1100 [-0.2582 | 0.1204 | -0.0821
2 0.2295 0.0000 [ -0.0689 0.2064
2 1 0.2036 |-0.2297 0.0473 | -0.0593
2 0.1802 0.0839 | -0.0740 0.2346

TABLE 3.18 Mode shape data of the simulated 4 DOF branched spring-mass
system with and without added stiffness.
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Stiffness | Measurement Mass-normalized mode shape data
added coordinate of the initial analytical model
coordinate
Model | Mode2 | Mode3 | Mode 4
- 1 0.1680 |-0.2506 | 0.0507 | -0.0629
2 0.2131 0.0745 1-0.0719 0.2145
1 1 0.1112 [-0.2489 | 0.1257 | -0.0862
2 0.2287 0.0040 _1-0.0636 0.2137
2 1 0.2029 |-0.2244 | 0.0475 | -0.0616
2 0.1788 0.0803 [ -0.0698 0.2420

TABLE 3.19 Mode shape data of the initial model of the 4 DOF branched

spring-mass system with and without added stiffness.

Total number 9
of modes 1

Rankof J5y |3 [ 68 9fo o] |99 °| ¢

10] 11| 12

TABLE 3.20 Rank of the eigenvalue and eigenvector sensitivity matrix as

a function of the number of modes

If coordinates 1, 2 and 3 are measured, the stiffness submatrices becomes,

k 15tk ox & 2x 0 0
Knmx=| k2 Kotk stk sy -kax |» Kinox =]k s
0 * 3x k3x+k 4x 0

Koox= [k sxtk Gx]

the number of unknowns in T is reduced from 4 to 1 since T, becomes a 3x3

diagonal matrix with the diagonal elements as 1 or -1. The unknowns in T are
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only due to T, which is now a 1x1 arbitrary scalar. Consequently, the total
number of unknowns in (3.22) to (3.27) is reduced to 11. The number of
equations is also reduced to 11 (7 from the stiffness matrix and 4 from the
mass matrix). Thus, measuring coordinates 1 to 3 and perturbing coordinates

1 to 2 is adequate to identify the parameters of this system.

It can be noted that measuring coordinates 1,2 and 3 constrains the matrix T to
the extent that the contribution of the constraining due to the perturbation at
coordinates 1 and 2 is not needed in order for the number of unknowns to be
equal to or less than the number of equations. Thus, in this case it is possible to
identify the parameters even without mass or stiffness addition provided the
number of modes is such that (3.41) is not underdetermined. As an example
consider a numerical simulation of the same system but with different initial

parameters which are not as close to the true system parameters as before.
Thus let:

kg = oy = 1.05x100 N/m, &y, = ky, = ks, = 0.95x10% N/m
ke, = 0.55x10% N/m,
my, = m,, =10.5kg, My, = My, = 4.8kg.

The first three modes (measured at 1 , 2 and 3) and their eigenvalues were used
in the updating process without mass or stiffness addition. The natural
frequencies and mass-normalized modes are given in table 3.21. The Jacobian
matrix had 12 rows and 10 columns with 10 parameters to update. It was

possible to achieve parameter convergence to their correct values (Table
3.22),
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Measurement| Simulated natural frequencies and | Analytical natural frequencies anc
coordinate mass-normalized mode shapes mass-normalized mode shapes
Mode 1 | Mode2 | Mode3 Mode 1 Mode 2 | Mode 3
hWz) | f,(0) |f,Hs)  |f,, () | fr,HD) | f5,(H2)
=42.86 | =76.33 | =94.29 =42.86 =77.02 | =94.67
1 0.1677 | -0.2565 | 0.0501 0.1671 | -0.2489 | 0.0427
2 0.2130 0.0770 | -0.0757 0.2131 | 0.0850 | -0.0657
3 -0.1306 0.0905 | -0.3086 -0.1304 | 0.1041 |-0.3093

TABLE 3.21 Simulated and analytical modal data for the second case.

Iteration steps
0 1 2
k| 1.05x106 | 0998x10° | 1.000x1°
k, | 105x10° | 0.999x10° | 1.000x10°
ky | 095x10° | 0.999x10% | 1.000x10°
k, | 095x10° | 1.007x10° | 1.000x105
k| 095x10° | 0.997x10% | 1.000x10°
ke | 055x10° | 0.502x10° | 0.500x10°
m, | 105 9.99 10.00
m,| 105 10.04 10.00
my| 48 4.99 5.00
m,| 48 5.02 5.00

TABLE 3.22 Convergence of the stiffness (N/m) and mass (kg) parameters

of the 4 DOF branched spring-mass system.
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3.4 Summary

A technique of updating the parameters of a finite element model and a lumped
parameter model with a diagonal mass or stiffness matrix has been presented.
It is based on perturbation of the system by adding mass or stiffness so as to
increase the amount and content of useful information about the dynamic
characteristics of the system. This extra information comes from the
eigenvalues or both eigenvalues and eigenvectors of an incomplete number of
modes of the perturbed system. Parameters are then determined using the well
known sensitivity analysis approach, where the analytical model is iteratively
updated so as to reproduce the eigen-data of the system. If eigenvectors are

also used then the mode shape does not have to be measured at each coordinate.

It has been established that the choice of the perturbing coordinates as well as
the choice of the mode shape measurement coordinates is important. A simple
test has been proposed to assess the adequacy of the perturbing and the
measurement coordinates with respect to meaningful identification of the
parameters. In general, this test involves comparison of the number of
unknowns and the number of equations in a system of simultaneous non-linear
equations derived from K, = TKTT and M, = TMTT, where T is an arbitrary

matrix which has been constrained by the perturbation process. It has also been
shown that if the number of such equations is less than the number of
unknowns there is an infinity of solutions for the parameters that can
reproduce the eigen-data of the structure. The eigen-data sensitivity matrix
becomes singular. In order to identify the parameters the number of unknowns
must be less or equal to the number of equations. In this case it is possible to
have more than one solution. With a reasonable estimate of the initial

parameters, close to the correct mass and stiffness parameters, a correct
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solution is usually identified as the other solutions, if any, are usually not

feasible.

The work in this chapter has considered the addition of a lumped mass or
lumped stiffness, one at a time. This is considered to be the relatively simplest
form of perturbation to perform practically. In theory, any type of mass and
stiffness combinations is possible. However, these may have a different
constraining effect on the R and S matrices in (3.6), and may result in a
slightly different conclusions on the choice of the perturbing coordinates.

These are outside the scope of this work as their practical implementation is
doubtful.

The verification of the theoretical developments in this chapter have been
based of error-free data and a correct conceptual model. In a practical
situation the experimental data is corrupted by measurement inaccuracies and
the analytical model may be corrupted by conceptual modelling inaccuracies.
These factors will have an effect on the quality of the results. The method of
parameter identification as presented in this chapter cannot correct
fundamental modelling errors in the analytical model. This problem is further
addressed in Chapter 4. The technique presented overcomes the difficulties of

identifying the parameters using incomplete eigen-data.

The practicality of adding the simulated masses or stiffnesses has not been
considered. This problem is treated in Chapter 6 where a method of numerical

simulation using the measured FRF to predict the eigen-data of the perturbed
structure is presented.
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CHAPTER 4
NUMERICAL SIMULATION OF SOME
PRACTICAL UPDATING PROBLEMS

4.1 Introduction

The theory of the mass or stiffness addition technique for updating model
parameters using eigenvalues or both eigenvalues and eigenvectors has been
developed in Chapter 3. From this theory, it is evident that the choice of the
mass addition and measurement coordinates, in the case of a lumped parameter
model, needs careful consideration. With a finite element model, where the
parameters to update are the coefficients of the element mass and stiffness
matrices, the number of parameters in comparison to the number of DOF is
small. The choice of the mass addition and measurement coordinates is
therefore not so crucial, although adding mass to a single coordinate has to be
avoided as it tends to result in poor conditioning of the sensitivity matrix. So
far, it has been assumed that the structure of the mathematical model is exact.
The numerical simulations presented have assumed error-free measured data.
The technique developed in Chapter 3 overcomes the problems of parameter
estimation due to the incompleteness of the measured data, with respect to the
number of measured or excited modes and with respect to the number of
measurement coordinates. In a practical situation, there are other factors
which may affect the estimation of reasonable model parameters and could

result in parameters losing their physical meaning. These factors are:

(i) Incompatibility in the number of DOF between the idealized

model and the system.

(i)  Imaccuracy in the structure of the model matrices.
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(iii) Incompatibility between the undamped FE model and data from

a system with some degree of non-proportional damping.

(iv) Experimental errors in the measured data

In this Chapter, numerical simulation studies will be performed to investigate
the effects of these factors on the accuracy of the updated parameters. The use
of statistics in parameter estimation of "real structures” will be explored. The
studies will first be performed by parameter estimation using an unconstrained
least squares and weighted least squares optimization. It will be shown that the
identification of parameters which retain their physical meaning, using an
unconstrained optimization, is practically difficult due to the presence of the
preceding factors. A minimum cost Bayesian approach, which includes a
constraint of minimum changes of the parameters from their initial estimates,
will then be introduced so as to maintain the physical interpretation of the
parameters. The minimum cost Bayesian approach treats parameters of the
initial analytical model and measured eigen-data as independent and having
random errors with an expected mean of zero. With a low degree of
incompatibility between the idealized model structure and the system, the
minimum cost estimator gives acceptable results, with parameter changes
from their initial estimates comparable to the uncertainty specified on these
estimates. As the mismatch between the structure of the model matrices and
measured data becomes larger, the minimum cost estimator cannot prevent
large parameter changes from their initial estimates although the eigen-data

used in the updating could be reasonably reproduced.
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4.2 Incompatibility in the number of DOF.

Real structures have an infinite number of DOF whereas analytical models, FE
models for example, are usually discretized to a finite number of DOF. Even if
exact mass and stiffness parameters are known, the analytical model's natural
frequencies will deviate from the natural frequencies of a system with an
infinite number of DOF. This discrepancy, which is caused by the
discretization error, increases with frequency. The frequency range over
which this discrepancy is not significant can be increased by increasing the
degree of discretization. That is, the higher the number of elements, the larger
the frequency range over which the discrepancy becomes negligible. In
parameter estimation literature, the larger the measurement frequency range
the better, since more modes are measured. However, measuring over a larger
frequency range may be a source of problems if the degree of discretization of
the FE model is not compatible with the data from the higher end of the
measured frequency spectrum. With the mass or stiffness addition technique,
the measurement frequency range can be limited because extra modes are

generated by perturbation. Some examples will now be considered:
EXAMPLE 4.1

A uniform beam of length 1.0 m and structural parameters £/ = 5000 Nm?2
and m,= 3.5 kg/m was modelled by a 16 elements FE model, ignoring axial
flexibility. The beam was free and the FE model had 34 DOF. The first two
elastic modes had natural frequencies of f; = 134.587 Hz and f, = 371.007 Hz.
Whilst the beam could be modelled "exactly" from the Euler-Bernoulli
equation we will imagine this to be a more complex structure and have chosen
to model using the FE method. Thus, the eigen-data of the 16 elements beam

was taken to simulate measured data.
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The beam was then modelled by a 4 elements FE model with 10 DOF. Each
element was 0.25 m long. This model was taken to represent the analytical
model whose parameters were inaccurate and were to be updated. To simulate
a system with many parameters, parameters of the 4 elements were treated as
independent unknowns. Thus, there were 8 parameters to update. Parameter

estimates and natural frequencies are:

EI,, = 4600 Nm?2 EL,, = 4600 Nm?2
EI, = 5300 Nm?2 El,, = 4800 Nm?
My1a= Mypp = 3.3 kg/m My3a= My s = 3.7 kg/m
f1a=133.568 Hz f2a=368.141 Hz

The analytical model was to be updated by mass addition using eigenvalues of
the first two elastic modes of the system with and without additional masses.
Masses of 0.25 kg and 0.35 kg were added in turn at each of coordinates 9 and
17 of the simulated system (16 elements model, fig 4.1). A total of 10 natural

frequencies, which simulated measured natural frequencies, were generated.

The masses were also added at corresponding coordinates of the analytical

model, coordinates 3 and 5 in fig 4.2.

S

10 18

Fig 4.1 34 DOF free beam (Simulated system)
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im

4 6
Fig 4.2 10 DOF free beam (Analytical model)

Table 4.1 shows the natural frequencies of the simulated system and the

analytical model before and after mass addition.

Natural frequency (Hz) | Natural frequency (Hz)
Added mass] Coord § of the Simulated system J of the analytical model

(kg) Fig 4.1)} Mode 1 Mode Mode 1 Mode 2
134.587 371.007 133.568 | 368.141

134.416 | 355.363 133.413 | 351.418

128.379 | 371.007 127.403 | 368.114

134.357 350.274 133.359 | 346.061

126.313 371.007 125.352 | 368.105

TABLE 4.1 Simulated and analytical natural frequencies of the free beam.

Parameters of the analytical model were then updated iteratively using the
method of sensitivity of the eigenvalues with respect to parameter changes.
The 10 eigenvalues of the simulated system, before and after mass addition,
generated 10 sensitivity equations in 8 unknown parameters. The equations
were solved by an ordinary least squares method without any constraints on

the parameters. Table 4.2 show the convergence of the mass and stiffness
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parameters in 5 iteration steps. Table 4.3 gives natural frequency predictions

of the updated model before and after mass addition.

Iteration steps
2 3

371.007

134.587

355.363

134.416

128.379 | 371.007

350.274

134.357

371.007

126.313

TABLE 4.3 Frequency prediction of the updated model of the free beam.
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Examination of tables 4.3 and 4.1 shows that the updated model reproduces
accurately the simulated natural frequencies of the system with and without
additional masses (accurate to 3 decimal places). However, the updated
parameters, table 4.2, are not very close to the correct parameters and natural
frequency prediction of modes not used in the updating process is not good.

For example, natural frequencies of modes 3 and 4 are predicted as:

Updated model: f,=7225Hz f,;=1326.5Hz.
Simulated system: [3=7214Hz [, =1202.7 Hz.
Initial FE model: fa=7188Hz f;,=1317.8 Hz.

While the beam is uniform, there is a substantial difference in parameters of
the updated model. In this example, discretization by a 4 elements 10 DOF
model is not sufficiently accurate to fit the parameters using data from a 34
DOF system. It is also apparent that the existence of a deficiency in the
structure of the model matrices cannot necessarily be detected by the failure of
the eigen-data of the updated model to converge to the measured eigen-data.
This example suggest that such a deficiency may be revealed by unexpectedly
large deviation of the parameters from their initial estimates, rather than by
comparing eigen-data prediction of the updated model to the measured ones. If
the number of DOF is increased, a more reasonable result can be expected. It
should also be noted that the parameters were obtained by solving an
overdetermined set of equations using an ordinary least squares method
without any constraints on the parameters. The parameters will converge to
the same values irrespective of the values of the initial estimates, provided the
initial parameters are not so unreasonable as to cause the solution process to

diverge.
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EXAMPLE 4.2

The 10 DOF analytical model of example 4.1 was improved to an 18 DOF
model by dividing each of the four elements into two elements. Parameters of
any such two elements were constrained, in the updating process, to be
identical. Thus, there were 8 finite elements but 4 sets of independent mass and
stiffness parameters to update. These are the mass and stiffness parameters
corresponding to the four elements of the 10 DOF model of fig 4.2. Parameter
estimation was performed using the same mass additions, simulated measured
eigenvalues and initial parameters as in example 4.1. The only difference was

in the degree of discretization of the finite element model. Thus:

EI, = El,, = 4600 Nm?2 Ely, = El, = 4600 Nm?2
El,, = El, = 5300 Nm? El,= Elg, = 4800 Nm?2
My1 2= My, = 3.3 kg/m M3 = Mysa = 3.3 kg/m
Mys = Myga = 3.7 kg/m My 2= myg, = 3.7 kg/m.

Table 4.4 shows the convergence of the mass and stiffness parameters in three

iterations.

Clearly, with the same data and the same parameters to update, increasing the
number of elements had improved the updated parameters. In this case, an 8
elements model is sufficiently discretized such that the effect of the
discretization on natural frequency prediction is not significant for the first
two modes. Attempts to increase the frequency range of interest will result in
the degradation of the updated parameters if there is no accompanying

refinement in discretization.
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Initial Iteration steps
estimate 1 5 3

El, =EL | 4600 5127 5041 5015

EI=EI, | 4600 | 4932 | 5037 | 5037

EI,=El, | 5300 5025 | 4966 4967

EL=EI3 | 4800 4870 | 4924 | 4950

m=m 3.30 3.49 3.52 3.51
ul u2

m=m, | 330 3.44 3.49 3.50

m =My 3.70 3.56 3.51 3.50

m=mg | 370 | 348 | 349 | 349

TABLE 4.4 Parameter convergence of an 8 elements model.

For example, if the first five modes are now used with mass addition of 0.35
kg at the same points (coordinates corresponding to 9 and 17 of the 16
elements model), more eigenvalues are generated. However, after 5 iterations,

parameters converged to:

EI, = EI, = 4414 Nm? EI, = EI,= 5661 Nm?
Els= Elg = 4210 Nm? EL, = El = 4524 Nm?2
my =my =3.32kg/m mg=my, =3.70kg/m
m,s = m = 3.65kg/m m;=myg=2.75kg/m

The parameters, when 5 modes are used, are less accurate than when 2 modes
were used. This illustrates how the updated parameters can be degraded by an
attempt to use more modes by measuring a larger frequency range, while the

degree of discretization is such that the model is not compatible with the eigen-
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data measured on the higher end of the spectrum.
4.3 Inaccuracy in the structure of the model matrices.

While incompatibility between the number of model DOF and measured data
can be viewed as a form of inaccuracy in the structure of the model matrices,
this section deals with difficulties in idealization of some parts of the system.
An example is the idealization of a clamped-clamped beam as a simply
supported beam. In practical situations, difficulties are often encountered in
the correct idealization of the boundary conditions and joints. A cantilever
beam may be modelled as rigidly clamped, while in actual fact there may be
some degree of flexibility at the clamped end. A bolted joint may be modelled
as a rigid, point joint while there may exist some flexibility and the joint
occupies a space. Incorrect choice of element type for some parts of the system
could also have an undesirable effect on the updated parameters. The effects of
incorrect model structure on parameter updating by mass or stiffness addition

is investigated by the following numerical examples of an H-frame.
EXAMPLE 4.3

An H frame is made by bolting together three beam members. It is assumed
that the joints are not infinitely rigid and they can be idealized by lumped
rotational and translational stiffness. Also the axial flexibility of the beam
members, denoted as B1, B2 and B3, will be ignored. The frame with a total of
8 FE beams and 23 DOF is shown in fig 4.3, where only motion in the plane of

the frame is considered.
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Fig 4.3 H-Frame : Simulated system.

The 23 DOF frame model with non-rigid joints is used to simulate a system

with the following parameters:

FE parameters:

El, = 5000 Nm? EI, = 4000 Nm2
El; = 6000 Nm? m,p; = 3.5 kg/m
mu’Bz = 3.0 kg/m mu,B3 = 4.0 kg/m
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Translational stiffness between:

Coordinate 3 and 15 kr 345 =107 N/m
Coordinate 15 and 18 kr 15-18 = 107 N/m

Rotational stiffness between:

Coordinate 4 and 10 kr4.10= 109 Nm/rad
Coordinate 14 and 19 kr 14.10 = 109 Nm/rad.

Natural frequencies computed from the 23 DOF frame model (first three

elastic modes) are:
fi=4171Hz f,=89.74 Hz f3=193.46 Hz.

The frame is now idealized by an analytical model with perfectly rigid joints.

Two updating cases are considered.
CASE 1:

In the first case, the elements subdivision is similar to that of the simulated
system. Each beam member is treated as uniform. Parameters for the elements
of the same beam member are constrained to be identical. Thus, the analytical
model has 19 DOF wiﬁl 6 independent parameters to update, fig 4.4. Consider

the following analytical model parameters.

Elyg; 5 = 5400 Nm? Ely, , = 4200 Nm?
Elg3 5 = 5800 Nm? My p1,=3.3kg/m
mu,B2‘a - 3.1 kg/m mu’BS,a = 4.2 kg/m
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Natural frequencies (Hz):  f;. =43.09 22 =92.84 f3,= 208.19.

| 0.25 m ‘ 0.25m \

Fig 4.4 Analytical model of the H-frame (Case 1).

The analytical model parameters are now updated using eigenvalues, by
adding mass of 0.25 kg and 0.35 kg, in turn, at coordinates 5 and 22 of the
simulated system and the corresponding coordinates of the analytical model
(Coordinates 5 and 17 of fig 4.4). Natural frequencies of the first three elastic
modes before mass addition and their new natural frequencies after mass

addition are used in the updating process. The natural frequencies are shown in

table 4.5.
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Added | Mass addition| Simulated natural frequencies | Analytical natural frequencies

mass [coordinate (Hz) (Hz)

(kg) |(fig 4.3) Mode 1| Mode 2 | Mode 3 Mode 1| Mode 2 | Mode 3
0 - 41.71 | 89.74 1193.46 43.09 | 92.84 208.19
0251 5 40.82 | 89.45 |193.46 42.12 | 92.45 208.16

22 38.56 ] 8592 | 18985 9.83 | 89.14 201.06
0351 5 40.49 | 89.34 |193.46 41.77 | 92.32 208.14
22 37.57 | 84.93 |188.84 38.88 | 88.17 199.15

TABLE 4.5 Natural frequencies of the simulated H-frame
and the initial analytical model (Case 1).

The parameters are updated by an ordinary least squares solution method,

using the error-free data of the simulated system. Table 4.6 shows the

convergence of the parameters in 5 iteration steps.

Iteration steps
0 1 2 3 4 S
Elg, 15400 | 7413 | 8522 | 8640 | 11118 | 8939
H 4200 | 5290 | 6622 | 6678 | 7220 | 7395
H, 5800 | 7052 | 6048 | 5607 | 6717 | 2341
m sd 330 | 492 | 6.68| 6.94 828 | 7.29
m, g 3.10 | 827 | 2.17| 0.15 5.98 |-14.18
m o 420 | 492 | 556 | 5.45 564 | 5.62

TABLE 4.6 Convergence of the parameters of the H-frame

with rigid joints (Case 1, fig 4.4).

It can be seen that there are large changes in the parameters from their initial
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estimates. The changes in the parameters are so great that the fifth iteration
result in a negative mass for the cross-beam member (m, ;). At the end of the
4th iteration, the natural frequencies of the updated model had converged
towards the measured (simulated) natural frequencies. For example, the first
three modes of the updated model, after 4 iterations, had natural frequencies
which compare favourably with the simulated system. The parameters,
however, are very far from reflecting the actual mass and stiffness distribution

of the frame.

System: fi=4171Hz, f,=89.74Hz, f,=193.46Hz.
Updated: fi=412Hz, f,=869Hz, f;=193.7Hz
Initial model: f,,=43.09Hz f,,=92.84 Hz f;,=208.19 Hz.

After the fifth iteration, further iteration is not possible because the mass
matrix with negative diagonal terms is meaningless and it results in negative
eigenvalues. This case illustrate the difficulties that may be experienced when

the structure of the model matrices is not correct.
CASE 2:

The second analytical model use a different element subdivision, fig 4.5,
resulting in 29 DOF. For each beam member, elements next to the joint(s) are
treated as having identical parameters which are different from the elements
away from the joints. Thus each beam has two mass and two stiffness

parameters to update. These are defined as follow:

El,,, m Stiffness and mass of elements away from the joint for beam B1.

ula:

El,,, my,: Stiffness and mass of elements next to the joint for beam B1.

El,,, my,: Stiffness and mass of elements next to the joints for beam B2.
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El,,, my,: Stiffness and mass of element away from the joints for beam B2.
Els,, m,:  Stiffness and mass of elements away from the joint for beam B3.

Elg,, my,: Stiffness and mass of elements next to the joint for beam B3.

Fig 4.5 Analytical model of the H-frame (Case 2).

The analytical model has the same mass and flexural rigidity for the three
beam members as in Case 1. Model parameters were updated using error-free
simulated data of the system of fig 4.3, with the same mass additions as in Case
1 (mass addition at coordinates 9 and 27 of the analytical model, fig 4.5). The
simulated and analytical natural frequencies are shown in table 4.7. The

analytical natural frequencies are slightly different from the previous case due
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to the difference in the number of DOF and the elements division. Dividing
the beams into elements according to fig 4.5 is considered to be much closer to
what one will naturally attempt to do in order to model the joints than it is in
the first case (fig 4.4).

Added | Mass addition| Simulated natural frequencies | Analytical natural frequencies
mass | coordinate (Hz) (Hz)

(kg) |(fig 4.3) Mode 1| Mode 2 | Mode 3 Mode 1| Mode2 | Mode 3
0 - 41.71 ] 89.74 1193.46 43.09 |92.83 207.88
0.25 5 40.82 | 89.45 |193.46 42,12 | 92.44 207.84

22 38.56 | 85.92 |189.85 39.88 | 89.13 200.76
0.35 5 4049 | 89.34 |193.46 41.77 | 92.31 207.89
22 3757 | 84.93 |188.84 38.88 | 88.17 198.86

TABLE 4.7 Simulated and analytical natural frequencies
of the H-frame (Case2).

The updated parameters after one iteration were:

EI, = 6191 Nm?2 EI, = 3083 Nm?
EL, = 4631 Nm? EI, = 3809 Nm?
El = 6406 Nm?2 EI, = 4069 Nm?
m,; = 3.54 kg/m my, = 3.52 kg/m
my; = 2.81 kg/m my, = -0.025 kg/m
mys =4.11 kg/m me = 5.38 kg/m.

The mass parameter of the central element in the cross-beam (m ) is negative.
Further iteration was useless as more parameters and eigenvalues became
negative. Incorrect structure of the model matrices results in difficulties in

obtaining parameters without losing their physical meaning.
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4.4 Damping.

The use of experimental data to update a finite element model may encounter
some difficulties if damping is ignored. Real structures always contain some
degree of damping. It is difficult to include damping in analytically derived
models since the determination of reasonable damping coefficients, by
theoretical considera}:ions alone, is difficult. In many cases, damping is
ignored in analytical modelling. This may be justified for lightly damped
structures. The updating of an undamped model, however, requires data for
the undamped system. As real structures are always damped, the determination
of an undamped modal model from data which involves damping is becoming
an area of increasing importance in system identification. However, there is no
reliable method which will accurately extract an undamped modal model
directly from eigen-data measured on a system with non-proportional
damping. A simple approach is to assume damping in structures is essentially

proportional. If expressions of measured eigenvalues and eigenvectors are

given by:
A'J'.Measured = ij.(l * jnj) (4.1)
or
2 . 2
Y= 05 (+1V 1-5 ) (4.2)
and

Uj,McaSured = UjReal = jUj,Imag (43)

The eigenvalues and eigenvectors of the undamped system are approximated

by (4.4), where the elements in Ujare taken to be of the same signs as the

elements in UJ Real’
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2 2 2
l.i = ¢ U.i = 1/Uj,Real i Uj,lmag 4.4)

Approximation (4.4) becomes exact if damping is "proportional”. If damping
is highly non-proportional, a significant error may result using the above
approximation. In that case a damped model has to be identified. The
discussion of damped models is covered in Chapter 6. This section investigates
by numerical examples, the validity of approximation (4.4) in parameter
estimation using the mass addition method. The investigation is based on a

beam model with hysteretic damping.
EXAMPLE 4.4

A 10 DOF free beam of fig 4.2 was used to simulate a system with non-
proportional damping. The system and its analytical model had the same
number of DOF and therefore, only the effect of damping is investigated.
Element damping proportional to the element stiffness matrix was assumed.
The damping non-proportionality was simulated by using different proportio-
nality constants for different elements. Thus, the following system parameters

were assumed:

EI, = 5000(1 + j0.001) Nm2  EI, = 5000(1 + j0.01) Nm2
EI = 5000(1 +j0.001) Nm2  EI, = 5000(1 + j0.01) Nm?

my =my,=myz=m,=3.5kg/m.

The eigenvalues and eigenvectors (translational coordinates only) for the first

two elastic modes are:

2, =134.732(1 +j0.0055) 4, =373.312(1 + j0.0055)
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U, U,

-1.0714 + j0.0006 -1.0811 - ;0.0025
0.1063 - j0.0004 0.6345 + 0.0006
0.6512 - j0.0000 0.0000 + j0.0003
0.1053 + j0.0004 -0.6345 + j0.0006

-1.0714 - j0.0006 1.0811 - j0.0025

An undamped analytical model was assumed with parameters similar to the

analytical model in example 4.1. That is:

El,, = El,,=4600 Nm2,  EI,, = 5300 Nm2, EI,,= 4800 Nm?,
Myy o =My, =3.3kg/m, My3a = Myg o = 3.7 kg/m.,
fia=133.57 Hz, f2a=368.14 Hz.

The analytical model parameters were updated using the simulated data for the
damped system. Two updating studies were performed, using eigenvalues

alone and using both eigenvalues and eigenvectors.
UPDATING USING EIGENVALUES.

In this study, masses of 0.25 kg and 0.35 kg were added in turn at coordinates 3
and 5. The eigenvalues of the first two elastic modes with each mass addition,
together with the first two eigenvalues of the unperturbed beam, were used to
simulate measured data. The damping factors of the perturbed beam varied
between 0.0053 and 0.0055. The real parts of the simulated eigenvalues were
taken to represent the estimated undamped eigenvalues. Table 4.8 shows the
simulated natural frequencies and damping factors and the natural frequencies

of the initial analytical model.
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Added] Mass addition} Simulated natural Analytical natural
coordinate frequencies (Hz) and frequencies (Hz)
(fig 4.2) damping factors (in brackets)

Mode 1 Mode 2

134.734 373.305 133.568 | 368.141
(0.0055) (0.0055)
134.562 357.170 133.413 | 351.418
(0.0055) (0.0053)
128.496 373.305 127.403 | 368.114
(0.0055) (0.0055)
134.502 351.954 133.359 | 346.061
(0.0055) (0.0053)
126.421 373.305
(0.0055) (0.0055)

TABLE 4.8 Simulated natural frequencies and damping factors

and the analytical natural frequencies.

The updated parameters, determined in 4 iterations using an unconstrained

least squares optimization, are very close to the correct parameters as can be

seen below:

Updated parameters:
EI, = 5014 Nm? EL, = 4999 Nm? EI, = 5001 Nm?
EI, = 4986 Nm? m,, = 3.50 kg/m mp, = 3.49 kg/m

m;z=3.51 kg/m my4 = 3.50 kg/m.

UPDATING USING EIGENVALUES AND EIGENVECTORS

A single mass of 0.35 kg was added at coordinates 3 and 5 in turn. Eigenvalues
and eigenvectors of the first two elastic modes of the perturbed and

unperturbed system were used in the updating process. The eigenvectors were
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simulated to have been measured at coordinates 3 and 5 only. The real modes
of the undamped system were estimated to be equal to the amplitudes of the
complex eigenvectors of the simulated system. Table 4.9 shows the phase
angles of the complex eigenvectors, the estimated mass-normalized real modes
and mass-normalized modes of the undamped initial analytical model. The
undamped eigenvalues of the simulated system were estimated by the real parts
of the complex eigenvalues. The estimated undamped natural frequencies are

therefore a subset of the natural frequencies given in table 4.8.

Parameter estimation was performed by an unconstrained least squares
solution method without any weighting. It was found that parameters diverge
to unacceptable values with some becoming negative after the first iteration. In
this case, the problem was traced to the poor conditioning of the sensitivity
matrix. The order of magnitude of the elements in the eigenvector sensitivity
matrix is considerably smaller than that of eigenvalue sensitivity. As a result a

square matrix [JTJ], which has to be inverted in a least squares solution and

Mass addition | Measurement | Mass normalized eigenvector Mass normalized
coordinate | coordinate  |of the simulated system eigenvector of the
(added mass - analytical model
035 ke) Amplitude Phase (degrees)
Mode 1 | Mode 2| Mode 1| Mode 2} Mode 1 Mode?1
- 3 0.1063 | 0.6345| -0.23 0.06] 0.1016 |0.6525
5 0.6512 | 0.0003| 0.00 | 89.70} 0.6501 |0.02
3 3 0.0925 [-0.5289| -0.23 |[-179.95] 0.0879 |-0.5400
5 0.6402 | 0.0984| 0.00 | -0.17) 0.6394 |0.0793
5 3 0.0405 | 0.6345 | -0.56 0.05{ 0.0339 |0.6480
5 0.5590 | 0.0002| 0.00 | 89.68] 0.5581 |0.0210

TABLE 4.9 Mass normalized eigenvectors of the simulated system

and the analytical model.
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which is given by the sum of [J;TJ;] and [JTJy], is dominated by the
eigenvalue sensitivity data. As the total number of eigenvalues is smaller than
the number of unknowns, the sensitivity matrix becomes poorly conditioned.
Small errors in the measured data, for example those due to the estimation of
the undamped modal model from a damped modal model, results in large

unreasonable parameter changes.

This problem can be solved by scaling the sensitivity equations. Any form of
scaling which result in the order of magnitude of the matrices [JlTJl] and
[JUTJU] not to differ considerably should work. In this example, the sensitivity
equations were scaled in a form consistent with the weighted least squares
method, by assuming diagonal weighting matrices whose inverses consists of
the variances of the eigenvalues and eigenvectors. This is equivalent to scaling
each equation by the standard deviation of the eigen-data concerned. It was
assumed that the estimated real modes and the undamped natural frequencies
were accurate with confidence expressed by standard deviations of 0.01 and 1
Hz respectively. The values of the standard deviations were chosen to be as
close as possible to some realistic orders of magnitude. Parameters updated

using the scaled equations are very accurate. The result after 4 iterations is:

EI, = 5009 Nm2  EI, = 4966 Nm?2 EI, = 5037 Nm?
El, = 4991 Nm? my, = 3.49 kg/m m, = 3.49 kg/m
m=3.51kg/m m, = 3.51 kg/m
fl = 134.73 HZ f2 = 373.3]. HZ.

EXAMPLE 4.5

The same beam of example 4.4 was analysed with an increased damping level.

Thus, the following were used to simulate the complex stiffness (Nmz) and
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mass (kg/m) parameters with increased non-proportional damping,

EI, = 5000(1 + j0.005) ET, = 5000(1 + j0.2)
EI; = 5000(1 + j0.005) EI, = 5000(1 + jO.1)
Myy = Myy = My3 = My, = 3.5

u

and result in (first two elastic modes):

A, = 135.362(1 + j0.096) A, = 374.092(1 + j0.085)
U, (translational DOF) U, (translational DOF)
-1.0699+j0.0156 -1.0842-j0.0469
0.1051-j0.0105 0.6340+j0.0062
0.6512-j0.0013 0.0033+j0.0173
0.1081+j0.0131 -0.6352+j0.0033
-1.0746-j0.0206 1.0791-j0.0334

Two updating studies were performed. Using eigenvalues alone, and using
both eigenvalues and eigenvectors. The added mass, initial parameters and the
measurement and perturbing coordinates in both cases were the same as in
example 4.4. Table 4.10 shows the natural frequencies and damping factors of
the simulated system. The natural frequencies were taken to represent the
undamped natural frequencies of the system and were used to update the
undamped analytical model. The analytical model's natural frequencies are the

same as the ones given in table 4.8.
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Added § Mass addition] Natural frequencies (Hz) and damping
coordinate factors of the simulated system

Natural frequency | Damping factor n

Mode 1 Mode 2| Mode 1

TABLE 4.10 Natural frequencies and damping factors of the system

simulated with a higher damping level.

The updated parameters, using eigenvalues alone, after 4 iterations, are:

El,=5203Nm?  EI, = 5045 Nm?2 EI, = 5067 Nm?
EI, = 4697 Nm?2 m,; = 3.50 kg/m m, = 3.40 kg/m
m,3 = 3.59 kg/m m, =3.51kg/m

fi=13534Hz f,=373.94 Hz.

When both eigenvalues and eigenvectors were used in the updating process,
one mass of 0.35 kg was added at coordinates 3 and 5. The eigenvalues, in this
case, are a subset of the eigenvalues shown in table 4.10. The mass-normalized
eigenvectors of the simulated system are given in table 4.11. The corres-
ponding eigenvectors of the undamped initial analytical model are the same as

in example 4.4 and are given in table 4.9.

172



Mass addition] Measurement Mass-normalized eigenvectors
coordinate coordinate of the simulated system

(added mass

Phase (degrees)

0.35 kg) Amplitude
Mode 1 | Mode 2

Mode 1

Mode 2

TABLE 4.11 Mass-normalized eigenvectors (amplitude and phase)

of the system simulated with a higher level of damping.

The updated parameters using eigenvalues and eigenvectors are less accurate

as can be seen from tables 4.12 and 4.13.

teration st
1 2
0 48354

e L)

eps
3 4 5

TABLE 4.12 Convergence of the stiffness parameters.
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TABLE 4.13 Convergence of the mass parameters.

The poor results in this case are due to the errors in the estimation of the real
modes. From table 4.11 it can be seen that the mode shape displacement for the
second mode at coordinate 5 is highly complex, with a phase angle of up to 79°.
While the modal displacement of this coordinate was also complex in example
4.4 (table 4.9) with a phase angle of up to 899, the amplitude in the former
example was negligible. As coordinate 5 is close to the node of the second
elastic mode of the undamped system, the error in the approximation of the
real mode to be giveﬂ by the amplitude of the complex mode (which is very
small in example 4.4) is also negligible. In example 4.5 coordinate 5 has an
amplitude which is not negligible, as a result the approximation of the real
mode by the amplitude of the complex mode shape displacement introduces
errors. Table 4.14 shows the errors in the estimation of the undamped natural
frequencies for example 4.5. The errors in the estimation of the real modes are
given in table 4.15. It can be seen that the errors in the real modes are very

small except coordinate 5 which has relatively large errors.
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Added] Mass addition | Estimated undamped || Error in the estimated
coordinate natural frequency natural frequency

(Hz) fest'f exact(HZ)
Mode 2

Mode 1 Mode 2 Mode 1

TABLE 4.14 Errors in the estimated undamped natural frequencies

of the simulated beam

Error in the estimated
real modes

Ue st 3 I‘LKSCI
Mode 1

Estimated real modes

Mass added] Measurement
(0.35 kg) jcoordinate
coordinate

(Mass-normalized)

TABLE 4.15 Errors in the estimated real modes of the simulated beam.

4.5 Experimental errors in the measured data.

Measured data is inevitably contaminated by measurement errors. In order to
reliably estimate parameters of a mathematical model using measured data, it

is logical that experimental errors should be accounted for, using a statistically

based parameter estimation algorithm. The simplest method of dealing with
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errors is the use of a weighted least squares solution method. If an estimate of
the variance of errors in the experimental data is made, a weighting matrix W
can be defined as an inverse of a diagonal variance matrix. The weighted least
squares solution for the parameter changes on the current analytical model is

given by:
-1

As= [J;LTW ;LJA] LW ) 4.5)
-1

T T
I Il [Ja | A
. [JU] WX'L[JU] [JU] WI'L{AU} o

The choice of (4.5) or (4.6) depends on whether eigenvalues alone or both

or

eigenvalues and eigenvectors are used in the updating process.

If errors in the measured eigen-data are random quantities with an expected
mean of zero, the weighted least squares solution yields statistically unbiased
parameter estimates. In practice, systematic biased errors may be present in
addition to the random errors, for example due to changes in the sensitivity of
the accelerometer. It is rather difficult both to estimate the contribution of the
systematic errors in the measured eigen-data and to remove its effect in the
parameter estimation process. Most published literature uses statistical
methods on the assumption that the error in each measured data is a random

quantity with a mean of zero. This assumption will be used in this work.

It should be noted that the weighted least squares solution is statistically
unbiased. This implies, the result obtained approaches the correct solution as
the data sample approaches infinity. In practice, measured data is finite and the
estimated solution will therefore deviate from the correct solution by an

amount which depends on the data sample used. Inspection of (4.5) and (4.6)
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suggests that the deviation of the estimated parameters from the correct
solution is also influenced by the conditioning of one of the following matri-
ces, depending on whether eigenvalues alone or both eigenvalues and eigen-

vectors are used:

sl s [Hwf2]

Thus, while the above matrices may not be rank deficient and a correct
solution could be identified using error-free data, large deviation in the
parameters is possible if contaminated data is used. Such a case is most likely to
occur if the eigen-data used is relatively insensitive to changes in some
parameters as compared to others. This fact is illustrated by the following

examples:
EXAMPLE 4.6

A FE model of an 8 elements cantilever beam with 16 DOF, fig 4.6, was
updated using eigenvalues and eigenvectors contaminated with measurement
errors. The beam is 1m long and the elements are 0.125 m each. The following
parameters were used to simulate the system, where element number one is at

the fixed end.

i = Elg = 6666 Nm2
Myy=.eon. =m,g="7.85 kg/m.
f,=16.31Hz f,=102.20 Hz fy=28632 Hz.
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10 12 14

Fig 4.6 Cantilever beam

The initial analytical model was assumed with the following parameters:

El=..... = Elg, = 7300 Nm?2
My a=-...=mg,=7.0kg/m
fia=18.07Hz fra=113.26 Hz f32=317.29 Hz.

The analytical model was updated by adding a single mass of 0.5 kg at three
coordinates and using both eigenvalues and eigenvectors of the first three
modes in the updating process. The eigenvectors were simulated to have been

measured at 6 translational coordinates. These are:

Measurement coordinates: 1,3.58,7,9,1L

Mass addition coordinates: 3. 7,11,

The natural frequencies of the simulated beam and the analytical model, before
and after mass addition, are shown in table 4.16. The eigenvectors are not
shown for brevity. To simulate the contaminated measured data, random
errors with expected means of zero and standard deviations of 0.25 Hz and
0.01 were generated and added to the natural frequencies and the mass-

normalized eigenvectors respectively.
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Added fMass additionfError-free natural frequencies Analytical natural
of the beam (Hz) frequencies (Hz)

TABLE 4.16 Simulated and analytical natural frequencies of the 8 elements

beam with and without mass addition.

The parameters were updated using the weighted least squares solution
method. Standard deviations of 0.25 Hz and 0.01 were also used for the natural
frequencies and eigenvectors respectively, in the computation of the variances
and the eigen-data weighting matrix, W, ;. With error-free data, the updated
parameters converged to correct values. However, using the contaminated
data, the first iteration result in a negative mass and stiffness parameters for
elements 1 and 8 respectively, table 4.17. Further iteration with negative mass

1s meaningless as the eigenvalues becomes negative.

Element number (Number 1 at fixed end)

2 3 e 5 6 7

TABLE 4.17 Mass (kg/m) and Stiffness (Nm?2) parameters of the

8 elements cantilever beam after the first iteration.
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The same analytical model is now updated by stiffness addition. With stiffness
addition large natural frequency changes are possible, and this has an effect of
improving the conditioning of the sensitivity matrix. There is no guarantee,
however, that the improvements will be adequate to facilitate a reasonable
solution using the weighted least squares method. Consider a stiffness of 106
N/m added at the same coordinates as with mass addition. The error-free
natural frequencies of the simulated beam and the analytical model are shown
in table 4.18.

Consider the updating using eigenvectors and eigenvalues, where the eigen-
vectors are measured at the same coordinates as in the mass addition case.
Random errors with expected means of zero and standard deviations of 0.25
Hz and 0.01 are added to the natural frequencies and eigenvectors respectively,
to simulate the measured data. The same standard deviations are used to
formulate the weighting matrices. With error-free data, the weighted least
squares solution converged to correct parameters. With the contaminated data,

the first iteration result in parameters with a negative mass, table 4.19.

Stiffness  §Error-free natural frequencies Analytical natural

addition  Jof the simulated beam (Hz) frequencies (Hz)
coordinate

Mode 1] Mode 2| Mode 3 Mode 1} Mode 2

TABLE 4.18 Simulated and analytical natural frequencies of the

8 elements beam with and without added stiffness.
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Element number (Number 1 at fixed end)

3 |4 |s s

7214 | 5917

TABLE 4.19 Mass (kg/m) and Stiffness (Nm?2) parameters of the cantilever

beam after the first iteration (updated by stiffness addition).

This example has demonstrated the difficulties in using the weighted least
squares solution method, with data contaminated with measurement errors. In
this example the beam element at the free end undergoes, relatively, little
flexure and the element at the fixed end undergoes little displacements for the
modes used in the updating. The eigen-data is less sensitive to the stiffness
changes of elements undergoing little flexure and to the mass parameter of
elements with little displacements. With measurement errors, such parameters
are liable to unexpectedly large deviations from their initial estimates although
error-free data could result in correct parameters. The use of large stiffness
additions results in large perturbations in the eigen-data as can be seen by
comparing table 4.16 with table 4.18. This is useful in improving the conditio-
ning of the sensitivity matrix but does not guarantee a meaningful parameter

convergence.

If the beam is to be tested in a free-free configuration, better results should be
expected as most elements undergoes flexure and displacements comparable to
other elements. The stiffness parameter of elements at the free ends, however,
have less flexure and are expected to be identified less accurately than other

parameters. This is illustrated by the following example.
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EXAMPLE 4.7

The beam of example 4.6 (fig 4.6) is now to be simulated in a free-free
configuration and updated by mass addition. The parameters of the simulated
beam and its initial analytical model are the same as in example 4.6 and result

in the following natural frequencies (Hz) for the first three elastic modes:

Correct system: fi=103.77  f,=28620  f;=561.92
Initial model: fia=11500  f,,=317.16  f;,= 62271

The perturbing mass, perturbing points and measurement points are the same
as in example 4.6. Using the same standard deviations for the simulated errors
in the natural frequencies and eigenvectors as in example 4.6 (0.25 Hz and 0.01
respectively) and the same weighting matrices, the parameters converged to
physically meaningful values (table 4.20). However, stiffness parameters of
the elements at the free ends are the least accurate. The updated model has
reproduced, with an acceptable accuracy, the following natural frequencies

(Hz) of the first three elastic modes:

Updated model: f1=103.94  f,=28636  f;=561.91

Element number (Number 1 at the LHS)
1 2 3 4 5 6 7 8

EI 4842 6962 | 6114 | 6811 | 6585 | 7456 | 6759 | 3494

763 | 802 751 811| 7.21 | 8.41| 6.30 8.45

TABLE 4.20 The updated mass (kg/m) and stiffness (Nmz) parameters of

the free beam after 6 iterations.
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4.6 The need for updating by optimization with constraints

on the parameters

While an exact solution for the mass and stiffness parameters can easily be
identified, using error-free eigen-data, if the structure of the model matrices is
exact, practical parameter updating faces a number of difficulties. These

difficulties arise from one or a combination of the following factors.

(1) Incompatibility in the number of DOF between the idealized

model and the system.
(ii)  Inaccuracy in the structure of the mathematical model.

(iii) Incompatibility between the undamped FE model and data from

a system with some degree of non-proportional damping.
(iv) Experimental errors in the measured data.

This Chapter has demonstrated the vulnerability of the ordinary least squares
and the weighted least squares to estimate parameters in practical conditions,

where the preceding factors are usually present.

Generally, the difficulties due to the incompatibility in the number of DOF
between the model and a real system, with an infinite number of DOF, can
practically be avoided by increasing the degree of discretization of the FE

model with respect to the highest frequency used in the updating process.

The problem of updating an undamped FE model using data from a system

with some degree of non-proportional damping is usually not so important if
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damping has a relatively low level of non-proportionality. With phase angles
of within 10° of 0° or 180°, the undamped natural frequencies and real modes
can be approximated using (4.4) because the errors involved in the

approximation are small and can be ignored.

If the structure of the model matrices is not correct, unexpectedly large
changes in the parameters are likely to occur. This is also the case when the
data is contaminated with measurement noise. The deviation of a parameter
from its correct value is influenced by the sensitivity of the data to changes in
such a parameter. As a result, stiffness parameters of elements undergoing
relatively little flexure and mass parameters of elements with relatively little
displacements tend to have poor convergence. In some simple cases, it is
possible to select a test configuration where there is no parameter of which the
eigen-data is relatively insensitive to. In many cases this may not be possible
and unrealistic parameters are likely to result if an unconstrained least squares
solution method is used. Generally, the weighted least squares method is not a
suitable solution method as there is no control on the changes in the
parameters. For realistic parameter estimates, it is important to introduce a
constraint which inhibits unrealistic parameter estimates. Since in many cases,
parameters of an initial analytical model are reasonably good initial estimates,
a minimum cost Bayesian approach will be used, incorporating confidence on

the initial estimates in a diagonal weighting matrix.

4.7 Parameter updating using a minimum cost Bayesian approach.

4.7.1 Theoretical derivation.

Consider a matrix equation Gx = b, where b is an observation vector contami-

nated by random errors and a solution for the vector x is sought. We can use
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the weighted least squares solution method to find an estimate x, such that
when x., is substituted for x, the sum of squares of the weighted difference
between the elements in the resulting vector and the corresponding elements in

vector b is the least. That is, find x such that (4.7) is minimized.

(Gx - b) 'W{Gx - b) 4.7

Minimization of (4.7) is achieved by differentiation with respect to the

unknown, x, and set the result to zero.
a‘:”—x ({Gx -b) 'W|Gx - b}) =0 (4.8)
This results in X, as a solution of (4.8) and is given by:

xesl=[GTWG]-1GTWb 4.9)

In our case of parameter estimation by eigenvalue and eigenvector sensitivity

analysis, x, b, W and G are given by:

L= A, W=W,,

Parameter updates on the current analytical model is therefore given by:
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j I T
_|{ I Jall [T AN
As—[[JU] WM_[JU]] [JU] W) AU} (4.10)

Equation (4.10) is an expression for the weighted least squares solution of
parameter changes on the current parameter vector, s,. We now introduce a
constraint that the updated parameter estimates, s, should be close to the
analytical estimates, s,, of the initial analytical model in a weighted least
squares sense. The initial parameter estimates are treated as independent

quantities with random errors with zero mean. That is:
Expected value of {s -s,} =0 4.11)

As a result of (4.11), equation (4.12) is introduced and simultaneously solved

with the equation Gx =b.
[I]{s-s,}={0} (4.12)

But Xx=s-8,=As. Therefore {s-s,} ={s,, +As-5s,}

Equation (4.12) can therefore be written as:

[I]{s., +As-s,} ={0}
[I]1{As} = {s, - Sc,} (4.13)

The combined matrix equation which is to be solved by a least squares method

becomes:

T Sa~ Sca
{as}=] mn (4.14)
AU

e
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If W, and W, are the weighting matrices on the initial parameter estimates,
s,, and measured eigen-data respectively, the weighted least squares solution of

(4.14) is given by:

If W, and W, y; are diagonal matrices and the errors on the right-hand-side
vector of (4.14), which consist of the errors in s,, A and U, are not correlated,
(4.15) is an unbiased estimator. Equation (4.15) is also an expression of the
minimum cost estimator of which the cost function (4.16) is minimum for all
possible s:

T
s ¢ A-A A-A
{s- sa} Wa{s— sa}+ {U:- U} WK‘U{UZ- U} (4.16)

The derivation of (4.15) is similar to that used by Collins et al (1972) to derive
a minimum cost Bayesian estimator which includes a constraint of minimum
changes on the parameters of the current analytical model. The main
difference is, in this work a constraint of minimum changes on the parameters
of the initial analytical model is used rather than on the parameters of the
current analytical model. This has been preferred so as to ensure an unbiased
estimator since the errors in the parameters after the first iteration are
correlated with the errors in the measured A and U. Hence the final equation,
(4.15), is slightly different from that given by Collins ef al. The algorithm for

parameter updating has been implemented in a computer program, written in

187



MATLAB language, and its listing is given in appendix B.
4.7.2 Numerical examples

EXAMPLE 4.8

The 8 elements cantilever beam of example 4.6 (fig 4.6) was to be updated in
the presence of experimental errors using the minimum cost estimator.
Updating was performed by stiffness addition and using both eigenvalues and
eigenvectors where the first three modes were taken to have been measured.
Simulated parameters, initial model parameters, added stiffness measurement

and stiffness addition coordinates were the same as in example 4.6.

To simulate the expérimental errors, random errors with zero mean and
standard deviations of 0.25 Hz and 0.01 were added to the natural frequencies
and the mode shape data respectively. These standard deviations were also used
in the computation of a diagonal weighting matrix, W, y;, and are the same as

in example 4.6.

The initial parameters were treated as independent quantities with random
errors and their confidence was expressed by estimates of their standard

deviations. The parameters and their standard deviations, for all elements, are:

EI ,=7300 Nm2, STD = 800 Nm?
m,,=7.0kg/m, STD=1 kg/m.

Table 4.21 shows the updated parameters after 4 iterations. The convergence
of the parameters as percentage changes from their initial estimates is shown in

figs 4.7 to 4.10. This example is essentially similar to example 4.6 with the
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exception that the Bayesian approach is now used. The minimum cost Bayesian
estimator has resulted in physically more meaningful parameters. The first

three natural frequencies have been accurately reproduced:

Simulated (error-free): fi=1631Hz f,=102.20 Hz f;=286.32Hz
Analytical model: f1,=18.07Hz f,,=113.26 Hz f3,=317.29 Hz
Updated model: fi=1631Hz f,=10225Hz f;=286.52 Hz

Element number (Number 1 at fixed end)

1 2 3 4 5 6 9 8

EI 6646 | 6480 | 7254 | 6587 | 6618 | 7031 | 6782 | 7228

m 701 799 828 7.39| 7.81 | 854 7.11 8.17

TABLE 4.21 Mass (kg/m) and stiffness (Nmz) parameters of the 8 elements

cantilever beam using the minimum cost estimator after 4 iterations.
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Fig 4.7 Convergence of the stiffness parameters of

elements 1 to 4 of the cantilever beam.
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%5 Change in stiffness parameters

95 Change in mass parameters
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Fig 4.8 Convergence of the stiffness parameters of

elements 5 to 8 of the cantilever beam.
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Fig 4.9 Convergence of the mass parameters of

elements 1 to 4 of the cantilever beam.
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9 Change in mass parameters

Iteration step

Fig 4.10 Convergence of the mass parameters of

elements 5 to 8 of the cantilever beam.

EXAMPLE 4.9

A plane frame, fig 4.11, is made of 6 beam members denoted by B1 . . B6. The
frame was modelled by a 22 DOF FE model in a free-free configuration as
shown. Only motion in the plane of the frame was considered. The frame was

simulated using the following data:

Beam member
Parameter

B1 B2 B3 B4 B5 B6

El (Nm2) | 21333 | 9000 |21333 |5208 |[5208 | 14292

EA (N) 16x10° | 1.2x16| 1.6x16° | 1.0x16 | 1.0x10°| 1.4x10

my (kg/m) 6.28 4.71 6.28 | 3.93 3.93 35

TABLE 4.22 Parameters of the simulated frame.
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Fig 4.11 Plane frame example: Free-free configuration.

The simulated frame (22 DOF) had the following natural frequencies for the

first three elastic modes:

Systemf(Hz): f,=3498  f,=6224  f,=83.56.

The initial analytical model had the same number of DOF as the simulated
frame and was constructed using the parameters shown in table 4.23 which

result in the following natural frequencies:

Analytical £, (Hz):f,, = 3636 f,,=66.16  f;,= 88.26

The flexural rigidity and mass per unit length of all beam members of the
analytical model were set to be different from their correct values whereas

axial flexibility, which has very little influence on the dynamic characteristics
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of the first three modes, was unchanged and not updated.

Beam member
Parameter
B1 B2 B3 B4 B5 B6
EI a(Nmz) 25000 10000 | 19000 | 4800 4900 18000
8
EA , (N) 1.61(108 1.2x108 1.6x108 1.0x1(§ I.Oxl()8 1.4x10
my a(kg/m) 6.0 4.0 5.5 4.5 4.5 6.0

TABLE 4.23 Parameters of the initial analytical model (FE model).

The analytical model of the frame was updated by mass addition using
eigenvalues alone and using both eigenvalues and eigenvectors. The updating
was performed using the minimum cost estimator. In both cases the following

standard deviations for the weighting matrix W, of the initial estimates were

assumed.
Beam member
Bl B2 B3 B4 B5 B6
STDEI,(Nm?) | 5000 | 2500 | 5000 | 500 | 500 | 2500
STDm, 4(kg/m) | 0.5 05 05 | 05 0.5 0.5

TABLE 4.24 Assumed standard deviations of the initial parameter estimates.
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UPDATING THE PLANE FRAME MODEL USING EIGENVALUES.

Masses of 0.35 kg and 0.5 kg were simulated to be added at coordinates 4, 13,
19 and 22 of the free-free frame, fig 4.11. Each mass addition involved adding
a single mass to a single coordinate, compute the eigenvalues and remove the
mass. In each case, only the first three elastic modes were taken to have been
measured. The perturbations were also performed on the analytical model and
result in a total of 27 eigenvalue sensitivity equations with 12 parameters to
update. Table 4.25 shows the natural frequencies of the simulated frame and

the analytical model.

Added | Mass addition] Natural frequencies (Hz) Natural frequencies (Hz)
mass | coordinate of the simulated frame of the analytical model
(kg)
Mode 1| Mode 2| Mode 3 | Mode 1| Mode 2] Mode 3
0 - 3498 | 62.24 | 83.56 36.36 | 66.16 | 88.26
0.35 4 3492 | 61.32 | 82.34 36.31 | 65.27 | 86.75
13 3492 | 61.32 | 82.34 36.29 | 64.85 | 86.90
19 3483 | 62.17 | 83.37 36.22 | 66.06 | 88.09
22 34.83 | 62.17 | 83.37 36.22 | 66.10 | 88.03
0.5 4 34.89 | 60.92 [ 81.88 36.28 | 64.89 | 86.18
13 | 34.89 | 60.92 | 81.88 36.26 | 64.30 | 86.41
19 3477 | 62.14 | 83.28 36.16 | 66.02 | 88.03
22 3477 16214 1 8328 3616 1 6607 | 8794

TABLE 4.25 Simulated and analytical natural frequencies of the plane frame.

To simulate the contaminated measured data, random errors with zero mean
and standard deviation of 0.5 Hz were added to the natural frequencies. The
same standard deviation was used in the computation of the weighting matrix
W, . The parameters were updated using the minimum cost Bayesian estimator

using the contaminated eigenvalues. The result, after 4 iterations, is given in
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table 4.26. The convergence of the stiffness and mass parameters is shown in
figs 4.12 and 4.13 respectively. The updated model has natural frequencies,

which are close to the natural frequencies of the simulated system.

Systemf(Hz): f;=3498  f,=6224  f,=83.56.
Analytical f,(Hz2)f;, = 36.36  f,,=66.16  f;,= 88.26
Updated f (Hz):f; =34.89  f,=62.62  f,=8337

Beam member

Updated
Parameter B1 B2 B3 B4 B5 B6

El (Nm2) | 22127 | 9463 | 18242| 4270 | 4777 | 16641

m, (kg/m)| 630 | 413 | 584 454 | 4.49 6.03

TABLE 4.26 The updated parameters of the Plane frame using eigenvalues.

95 Change in stiffness parameters

Iteration step

Fig 4.12 Convergence of the stiffness parameters of the plane frame.
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Fig 4.13 Convergence of the mass parameters of the plane frame.
UPDATING USING BOTH EIGENVALUES AND EIGENVECTORS.

Masses of 0.35 kg and 0.5 kg were simulated to be added in turn at each of
coordinates 4 and 13 of the free frame. The first three elastic mode shapes and
natural frequencies of the frame with and without added mass were taken to
have been measured. The same masses were also added to the analytical model.
A total of 15 mode shapes, measured at 4 coordinates, and 15 natural
frequencies were obtained. For brevity, only the mode shape data of the
unperturbed frame is shown, table 4.27. The natural frequencies are a subset
of the natural frequencies shown in table 4.25. To simulate the contaminated
measured data, random errors with zero mean and standard deviations of 0.5
Hz and 0.02 were added to the natural frequencies and the mode shape data
respectively. The same standard deviations were used in the formulation of the
weighting matrix W, ;. The parameters were updated using the minimum cost
Bayesian estimator, using both eigenvalues and eigenvectors. The updated
parameters, in 3 iterations, are shown in table 4.28. Figs 4.14 and 4.15 shows

the convergence of the parameters in the 3 iterations.
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Mass-normalized modes of Mass-normalized modes of
the simulated frame the analytical model
Coordinate | Mode 1 | Mode 2 | Mode 3 Mode 1 | Mode 2 | Mode 3
4 0.0962| 0.2914] 0.3041 0.0939( 0.2738 | 0.3251
13 -0.0962 | 0.2914|-0.3041 -0.1069| 0.3367 | -0.3148
19 -0.1550|-0.0837( 0.1177 -0.1504 | -0.0929| 0.1033
22 0.1550]-0.0837|-0.1177 0.1519] -0.0724| -0.1221

TABLE 4.27 Mass-normalized mode shapes of the simulated frame and the

analytical model at the measurement coordinates.

f; = 83.56.
= 88.26
f,=83.25

System f (Hz): f; =34.98 f=62.24
Analytical f, (Hz):f;,=36.36  f,, =66.16
Updated f (Hz): f; = 34.86 f, =62.52

Beam member

Updated
Parameter

Bl

B2

B3

B4

B5

B6

El (Nm?)

19586

10721

19613

4712

5060

14974

m,, (kg/m)

6.22

3.67

6.05

4.03

4.50

6.16

TABLE 4.28 The updated parameters using eigenvalues and eigenvectors.
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95 Change in stiffness parameters

Iteration step

Fig 4.14 Convergence of the stiffness parameters of the plane frame

9% Change in mess parameters

in the 3 iterations, using eigenvalues and eigenvectors.
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Fig 4.15 Convergence of the mass parameters of the plane plane frame

in the 3 iterations, using eigenvalues and eigenvectors.
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COMPARING RECEPTANCE PREDICTION.

The updated models using eigenvalues and using both eigenvalues and eigen-
vectors are each tested for the prediction of the FRF of the unmeasured
coordinates in an untested configuration. The test is performed by comparing
receptance prediction of a fixed-fixed frame between the simulated system,
initial model and updated model. The fixed-fixed configuration is shown in fig
4.16.

Coordinate 13 of the fixed-fixed frame is assumed to be excited. Rotational
and translational receptances at coordinates 5 and 4 are compared in figs 4.17
and 4.18 respectively for the updating case using eigenvalues alone. Figs 4.19
and 4.20 compares the receptances for the updating case using both
eigenvalues and eigenvectors. The receptances are given in deciBels where 0
dB represents 1 m/N (reference receptance 1 m/N). The results shows the
capability of the updated models to predict the dynamic behaviour in the
untested configuration and unmeasured coordinates over a larger frequency
range than the one used in the updating process, if the structure of the model

matrices is correct.
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Fig 4.16 Plane frame example: Fixed-fixed configuration.
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Fig 4.17 Receptance prediction at coordinate 5 of the fixed frame.
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Fig 4.18 Receptance prediction at coordinate 4 of the fixed frame.
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Fig 4.19 Receptance prediction at coordinate 5 of the fixed frame.
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Fig 4.20 Receptance prediction at coordinate 4 of the fixed frame.

In the plane frame example, unrealistic large changes in the parameters from
their initial estimates due to the presence of measurement errors, have been
avoided by the use of the minimum cost Bayesian estimator. The updated
parameters retain their physical significance although there are variations
from the correct mass and stiffness parameters. Some parameters are more
accurate than their initial estimates whereas some are less accurate, with
variations comparable to the level of the uncertainty expressed in the initial
parameters. The dynamic behaviour of the updated model, however, is more
accurate than the initial model. The updated model could reasonably
reproduce the FRFs of the unmeasured coordinates in a configuration differ-
ent from the test (simulated) configuration. The frequency range of agreement
between the updated model and the simulated system is much larger than the

frequency range used in the updating process.
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The plane frame example has dealt with the case where the structure of the
model matrices is correct. In practice the structure of the model matrices may
not be exact due to, for example, difficulties in the modelling of joints or
errors involved in discretizing a system with an infinite number of DOF.
While small discrepancies in the model structure could be tolerated, large
discrepancies will introduce unexpectedly large changes in the updated
parameters from their initial estimates. The minimum cost Bayesian estimator,
which has proved useful in minimizing parameter changes due to measurement
errors, may also be helpful in minimizing parameter changes due to possible
inaccuracies in the model structure. The following examples explores this

possibility using a simulated damped beam and the H-frame of example 4.3.

EXAMPLE 4.10

The 16 elements, 34 DOF free beam of example 4.1 (fig 4.1), was then
simulated with damping. The undamped mass and stiffness matrices had
identical data to the one simulated in example 4.1. Damping was simulated by a
hysteretic damping matrix which formed the imaginary part of the complex
stiffness matrix. The complex stiffness matrix was simulated by assuming the
stiffness parameters of elements 5, 6, 9,10, 15 and 16, where element numbers

starts from the left-hand-side of the beam, to be complex and given by:
EI = 5000(1 + j0.1) Nm2

The rest of the element parameters were real. With these simulated
parameters, the eigenvalues for the first and second elastic modes are as

follow:

A, = 1347521 + j0.045) A, = 371.442(1 + j0.034)
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The phase angles of the translational coordinates are given in table 4.29. It can
be seen that the phase angles are very close to the in-phase or out-of-phase
condition with the exception of the second mode at coordinate 17. This
coordinate is at the node of the undamped system and its mode shape
amplitude, for the second mode, is very small. From the phase angle
information, the complex mode shapes are very close to real modes. Thus, the
natural frequencies of the simulated system can be treated as the undamped

natural frequencies and can be used to update an undamped model.

The undamped analytical model of the beam was formulated using 8 FE with a
total of 18 DOF. It was assumed that the beam was made of 4 sections which
may be of different structural characteristics. Each section was 0.25 m long

and consists of 2 elements of identical mass and stiffness parameters, fig 4.21.

Coordinate | Phase angle (degrees)
Mode 1 Mode 2
1 -0.06 0.09
3 -0.09 -0.04
5 -0.13 -1.54
7 -0.11 179.93
) 179.15 179.34
11 179.49 179.14
13 179.84 179.80
15 -179.97 -178.63
17 179.89 -93.79
19 179.79 -2.34
21 -179.95 -0.59
23 -179.39 0.41
25 -177.77 0.98
27 -1.00 1.58
29 -0.02 176.09
31 0.20 -179.68
23 0.28 -179.59
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TABLE 4.29 Phase angles of the simulated 16 elements beam of fig 4.1.
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Fig 4.21 An 8 elements analytical model.

The following parameters were assumed for the initial analytical model. The

analytical natural frequencies of the first two elastic modes are also given.

EI,, = 4800 Nm? EL,, = 4800 Nm?
EI, = 5200 Nm?2 EI,, = 5100 Nm2
My1a=Mypa=My3a =Myga = 3.4 kg/m.
f1a=136.38 Hz foa =375.92 Hz.

The confidence in the analytical model parameters was expressed by the

following estimates of their standard deviations:
STD EI, =150 Nm2, STD m,, = 0.15 kg/m for all elements.

The analytical model was updated using eigenvalues of the first two elastic
modes, by adding masses of 0.25 kg and 0.35 kg to the system, fig 4.1, in turn
at coordinates 9 and 17. The analytical model was also perturbed at the
corresponding coordinates (coordinates 5 and 9, fig 4.21). A total of 10

eigenvalue sensitivity equations were generated. Table 4.30 shows the
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damping factors and error-free natural frequencies of the simulated and the

analytical models with added mass.

Simulated system Analytical model
Added mass| Coordinate]  Natural frequency| Damping factor | Natural frequency
w | cean | £ Wn | A0, | g @
0.25 9 134,58 | 355.79 | 4.55 | 3.58 | 136.18 | 359.30
0.25 17 128.54 | 371.45 ;1.57 3.40 | 129.94 | 375.90
0.35 9 | 13452 | 350.69  4.55 | 3.63| 136.11 | 353.94
0.35 17 12647 | 371.45] 4.58 | 3.40 | 127.80 | 375.90

TABLE 4.30 Natural frequencies and damping factors of the simulated beam
and the analytical model (undamped) with added mass.

To simulate measured natural frequencies with measurement errors, random
errors each with an expected mean of zero and standard deviation of 0.5 Hz
were added to the natural frequencies of the simulated beam with and without
added mass. The contaminated natural frequencies of the damped 16 elements
simulated beam were treated as measured natural frequencies and were used to
update the 8 elements undamped analytical model. The updating was
performed using the minimum cost Bayesian estimator which, after 4

iterations, resulted in the following parameter:

EI, = 4730 Nm2 EI, = 4761 Nm2
El; = 5154 Nm2 El, = 5061 Nm2
m,, = 3.46 kg/m my, = 3.40 kg/m
m3=3.47 kg/m my, = 3.44 kg/m
fi=1349Hz f,=371.8 Hz.
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Figs 4.22 and 4.23 shows the convergence of the stiffness and mass parameters

as percentage changes from their initial estimates.

g 0
M
N
o 0.8 AN
a N
& Y N i s SR D s
L= 4 it iniinin s
8 |\ Termieimiee- g
g -1
g 1
® -1.'50 : 2 = 4
Iteration step

Fig 4.22 Convergence of the stiffness parameters.
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Fig 4.23 Convergence of the mass parameters.

The updated model could reproduce accurately the FRF of the undamped
system, but may not be able to reproduce the FRF of the damped system since
the damping matrix has not been identified, and the level of damping is not so

low to be neglected. The updated model could only reproduce the FRF of the
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damped system if damping was of low magnitude. For example, lets compare
the point receptance between the updated model (18 DOF) and the simulated
damped system (34 DOF) at coordinate 5 of the updated model. The

comparison is shown in fig 4.24.

Damped system (34DOF) __, Initial model(18DOF) - - -, Updated model (18DOF) __. __.
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Fig 4.24 Comparing the FRF of the updated undamped 18 DOF
model to that of the damped 34 DOF system.

Now compare the FRF of the updated model with that of a system with light
damping (of the order of n = 0.01). The lightly damped model, in this case, is
obtained by reducing the simulated damping matrix by a factor of 3 and result

in the following damping factors.
n,=0.0152 1n,=00114 n;=0.008 n,=0.0097.

Figs 4.25 show the point receptance at coordinate 5 of the updated model, as

208



compared to the lightly damped 16 elements system (34 DOF).
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Fig 4.25 Comparing the FRF of the updated undamped 18 DOF model
to that of a lightly damped 34 DOF system.

Example 4.10 has demonstrated the application of the minimum cost Bayesian
estimator in parameter estimation of an undamped model using data from a
damped system. The simulated data was contaminated by measurement errors
and the model structure was not exact. The minimum cost Bayesian estimator
has prevented large unrealistic parameter changes from their initial estimates.
The simulated natural frequencies of the beam have been reproduced with
good accuracy. However, the FRF of the simulated system was not accurately
reproduced because the damping level was high and the damping model was
not identified. The updated model only reproduced accurately the FRF of a
lightly damped system. In this example, although the model structure was not

exact, the degree of discretization for the frequency range of interest was
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sufficiently high. Thus, the slight incompatibility between the analytical model
structure and the simulated system was tolerable and the changes in the
parameters from their initial estimates were comparable to the order of

uncertainty specified in the initial estimates.
EXAMPLE 4.11

The H-frame simulated with non-perfectly rigid joints in example 4.3 (fig
4.3), is idealized by a FE model with rigid joints and whose elements division
is shown in fig 4.5. The flexibility of the joints is due to the simulated
translational and rotational lumped stiffness shown. The frame parameters and
natural frequencies are the same as in example 4.3. The initial analytical model
is identical to the one used in Case 2 of example 4.3. The analytical model is
now updated using the minimum cost estimator, using eigenvalues alone, by
adding masses of 0.25 kg and 0.35 kg in turn at coordinates 5 and 22 of the
simulated frame (fig 4.3). The analytical model is also perturbed at its
corresponding coordinates (coordinates 9 and 27 in fig 4.5). Only error-free
eigenvalues of the first three elastic modes are considered to have been
measured in each perturbation. Parameter updating in this example is similar
to Case 2 of example 4.3, with the exception that the minimum cost estimator is
now used. The natural frequencies of the simulated frame and the analytical
model are the same as in example 4.3 and are shown in table 4.7. The
confidence in the initial parameter estimates is given by the following assumed

standard deviations.

STD EI, = STD EI,, = 300 Nm2
STD El, = STD El,, = 200 Nm?2

STD El, = STD El, = 150 Nm?
STDm  =STDm _ =0.2kg/m
ul,a u2.a
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STDm . =STDm _ =0.05 kg/m
ud,a u,da
STDm  =STDm =0.15kg/m.

Measurement errors are not simulated and therefore the eigenvalues are
accurate. However, they are treated as measured data which may be
contaminated by measurement errors. Their confidence is expressed by a
standard deviation of 0.5 Hz in the natural frequencies. The parameters

updated in 5 iterations are:

EI, = 5123 Nm? EIL, = 4413 Nm?
EI = 4629 Nm? EI, = 4422 Nm?2
EI = 5827 Nm? EI = 5826 Nm2
my,; = 3.920 kg/m m,, = 3.344 kg/m
my3 = 3.097 kg/m my, = 3.106 kg/m
mys= 4.264 kg/m myg = 4.180 kg/m

Natural frequencies of the first three elastic modes are shown below:

System f (Hz): fi=4171  f,=8974  f;=193.46
Initial modelf,(Hz): fa=43.09  £,=9284  f,,=208.19
Updated model f (Hz): fi=4151  f£,=89.61  f,=194.00

Figs 4.26 and 4.27 shows the convergence of the stiffness and mass parameters
as percentage changes from their initial estimates at each iteration step. It can
be seen that the large changes in the parameters in example 4.3 have now been
prevented by the minimum cost estimator. However, the relative magnitudes
of the parameters of different elements is different from their actual mass and
stiffness distribution. Furthermore, unlike in example 4.10, the changes in

some parameters are much larger than the specified uncertainty of the initial
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estimates. This is due to the large mismatch between the structure of the

idealized model and the simulated system.

n 20
a8
E 3
10 e
="
P Lot
E 0 N —— 8 o _&*;_ M
m
g N &
N
g -10} N -
N\
ié -‘---"""'-—--———2 _______________
-20
1 2 3 4 5
Iteration step

Fig 4.26 Convergence of the stiffness parameters of the H-frame

updated using the minimum cost estimator.

% Change in mass parameters
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Fig 4.27 Convergence of the mass parameters of the H-frame

updated using the minimum cost estimator.

The FRF predictions of the updated model as compared to the simulated
system and the initial model are shown in figs 4.28 and 4.29. The first graph

shows the point receptance at coordinate 5 of the system (corresponds to
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coordinate 9 of the idealized model, fig 4.5). This is one of the coordinates
where masses were added. The second graph shows the receptance at
coordinate 20 of the system (corresponds to coordinate 25 of the idealized
model, fig 4.5) for an excitation at coordinate 5. There is a good agreement
with the correct FRF at the perturbed coordinate. Coordinates which were not
perturbed show a gross departure, with an abrupt transition, from the correct
FRF from the third mode frequency. Certainly the good match in the natural

frequency prediction for the first three elastic modes does not reveal the

disagreements seen in fig 4.29.
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Fig 4.28 Point receptance prediction for the free H-frame at coord. 5 of fig 4.3
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Fig 4.29 Receptance prediction for the free H-frame at coord. 20 of fig 4.3.

When random errors with zero mean and standard deviation of 0.5 Hz were

added to the natural frequencies, the parameters converged to the following

values:

EI, = 5063 Nm? EI, = 4318 Nm2

EI, = 4623 Nm? EI, = 4288 Nm?

EI = 5814 Nm2 Elg = 5723 Nm?2

my = 3.953 kg/m my, = 3.354 kg/m

m3 = 3.098 kg/m m,, = 3.107 kg/m

m,s=4.169 kg/m m,s = 4.186 kg/m
System f (Hz): fi=41.71 f,=89.74 f3=193.46
Initial modelf,(Hz): f,=43.09  f,,=92.84  f;,=208.19
Updated model f (Hz): fi=4171 f, =89.61 f3=193.66
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The accuracy of the updated parameters has changed very little when measure-
ment errors were simulated. The effective errors due to the model structure
are more dominant and, in this case, had strong influence on the accuracy of

the parameters.

The same frame model is now updated by stiffness addition at the same
perturbing coordinates. With stiffness addition, large changes in the
eigenvalues are possible and consequently the eigenvalue sensitivity matrix
becomes relatively better conditioned than with mass addition. The added
stiffness are 2x100 N/m and 4x10® N/m. The simulated and the analytical
natural frequencies are shown in table 4.31. The parameters are updated using
the Bayesian approach with the same confidence in the initial parameters as in
the previous case. Measurement errors are not added to the data but, as in the
previous case, the natural frequencies are considered to have been measured

with confidence expressed by a standard deviation of 0.5 Hz.

Added | Stiffness [ Simulated natural frequencies | Analytical natural frequencies

stiffness zddigf’:: . (Hz) (Hz)
Tal
(Nfm) | (fig43) | Model] Mode2[Mode3 | Mode 1| Mode2 | Mode3
0 - 4171 | 8974 119346 | 43.09 | 92.83 | 207.88
sl 5 8478 | 13037 |193.47 | 86.65 | 136.63 | 208.08
2x10 2 75.94 | 170.68 122325 | 79.00 | 171.56 | 246.01
d 3 85.80 | 159.91 |193.47 | 87.87 | 169.42 | 208.40
4x10 2 7637 | 17539 | 231.08 | 79.50 | 177.66 | 252.07

TABLE 4.31 Simulated and analytical natural frequencies of the H-frame
with and without added stiffness.
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EI, = 5484 Nm?2
El; = 4555 Nm?2
El; = 6098 Nm?2
My = 3.666 Kg/m
My3 = 3,099 Kg/m
Mys = 4.029 Kg/m

The parameters, in this case, converged to the following:

El> = 3809 Nm?2
Els = 4175 Nm?
Els = 5351 Nm?
my = 3.479 Kg/m
mga = 3.108 Kg/m
myes = 4.135 Kg/m

fi=4219Hz f,=89.74Hz f;=193.15Hz.

The convergence of the parameters is shown in figs 4.30 and 4.31. Although
the data is error-free, there is some changes in the parameters from the case of
mass addition. Changes are inevitable because the model structure is not exact
and the frequencies used are different. Therefore, the effective errors as a
result of an incorrect model structure in the two cases are obviously different.
The parameters, however, shows a similar trend of changes from their initial
estimates as in the mass addition case. The masses can be considered to have
been updated satisfactorily as their accuracy is of the same order as the
specified uncertainty (standard deviation) in the initial estimates. The fact that
the mismatch between the simulated system and the structure of the analytical
model is mainly in the stiffness matrix and that large perturbations in the
eigenvalues (by stiffness addition) were made, accounts for the good result in

the mass parameters.

The prediction of the FRF at coordinates 5 (point receptance) and 20 for an
excitation at coordinate 5 are shown in figs 4.32 and 4.33. The departure from
the correct FRF at the unmeasured coordinate (fig 4.33) is as severe as in the

previous case (fig 4.29).
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Fig 4.30 Convergence of the stiffness parameters of the H-frame updated

by stiffness addition using the minimum cost estimator.
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Fig 4.31 Convergence of the mass parameters of the H-frame updated

by stiffness addition using the minimum cost estimator
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Fig 4.32 Point receptance prediction at coordinate 5 of the H-frame (fig 4.3)
(updated by stiffness addition).
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Fig 4.33 Receptance prediction at coordinate 20 of the H-frame (fig 4.3) for an

excitation at coordinate 5 (updated by stiffness addition).
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4.8 Summary

The identification of exact mass and stiffness parameters of a FE model which
reproduce exactly a given incomplete number of eigenvalues before and after
the system is perturbed requires error-free data and exact structure of the
mass and stiffness matrices. In a practical situation a number of problems are
encountered. Measured data is not error-free and the structure of the model
matrices may not be exact. This chapter has looked, by numerical examples, at
practical problems in parameter estimation using the mass addition technique
developed in Chapter 3. In particular, the following problems have been
looked at:

(i)  Incompatibility in the number of DOF between the idealized

model and the system.
(ii)  Imaccuracy in the structure of the model matrices.

(iii) Incompatibility between the undamped FE model and data from

a system with some degree of non-proportional damping.
(iv)  Experimental errors in the measured data

It has been found that, with an unconstrained least squares solution method, all
these factors affect the accuracy of the updated mass and stiffness parameters
to the extent that parameters easily lose their physical interpretation. The
degradation in the accuracy of the parameters, due to the incompatibility in the
number of DOF between the model and the system can be practically reduced
by increasing the degree of discretization. The degradation in accuracy due to

the errors in the estimation of real modes and undamped natural frequencies is
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negligible if the complex modes are very close to real modes. For many
structures, damping levels are low and measured modes are close to real
modes. Since it is practically feasible to discretize the system such that the
effects of discretization error on the few eigen-data in the frequency range of
interest is negligible, the first and the third factors are, for many structures,
not so crucial. Measurement errors and inaccuracies in the model structure
cannot be easily avoided. Practical parameter updating, therefore, certainly
requires optimization with constraints on the parameters. The minimum cost
estimator has proved useful in avoiding large parameter changes to unrealistic
values. With the Bayesian estimator the changes in the parameters from their
initial estimates have been found to be comparable to the uncertainty specified
on the initial estimates. However, with a large mismatch between the structure
of the model matrices and the system, the minimum cost estimator does not
prevent parameter changes orders of magnitude larger than the uncertainty on
the initial estimates. This may also happen if the initial estimates or the
weighting matrices are not realistic. In many cases, the initial parameters are a
good approximation and the eigenvalues are measured with a good estimate of
their uncertainty. The gross mismatch in the model structure does not
necessarily lead to a failure of the natural frequencies of the updated model to
converge to the measured natural frequencies. However, Large unrealistic
parameter changes from their initial estimates can serve as a useful warning of

the existence of a gross mismatch in the model structure.
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CHAPTER 5
EXPERIMENTAL VERIFICATION OF THE
MASS ADDITION TECHNIQUE

5.1 Introduction

The technique of updating parameters of structural dynamic models by adding
mass or stiffness to the system has been developed in Chapter 3. It is based on
perturbation of the system by adding lumped mass or grounded stiffness at a
number of coordinates and measurement of the eigen-data of the unperturbed
and the perturbed structure. The perturbations involve adding a single mass or
stiffness at a single coordinate, measure the eigen-data, remove the mass (or
stiffness), and continue with another perturbations at the same or different
coordinates. The mass and stiffness parameters are then found by iterative
updating of the initial parameters by eigen-data sensitivity analysis, using the

eigen-data of the structure before and after perturbation.

It has been shown, in Chapter 3, that with a suitable choice of the perturbing
coordinates, and if the eigen-data is error-free and the model structure exact,
exact parameters of a FE model or a lumped parameter model with a diagonal
mass matrix could be identified. It is essential to perturb both the structure and
its analytical model by identical perturbations so that sensitivity analysis is
performed with respect to the parameters of the unperturbed structure. The
technique, as presented in Chapter 3, overcomes parameter estimation
difficulties associated with the incompleteness of the measured data, in terms
of the number of measured or excited modes and the number of measurement

coordinates.

The feasibility of the mass or stiffness addition technique in a practical
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situation of non-error-free measurements and some degree of inaccuracy in
the structure of the mass and stiffness matrices has been investigated in
Chapter 4. The study in Chapter 4 has found the technique to be feasible. This
Chapter is devoted to the experimental verification of the mass addition
technique as applied to a FE model of a simple but real structure. The test
structure was an aluminium beam of size 25x50x800mm long, in free-free and

clamped-free configurations.

5.2 Experimental set up.

5.2.1 Clamped-free configuration.

The beam was firmly clamped horizontally at one of its ends, leaving a free
overhang length of 710mm. The wider side of the beam cross-section was set
horizontal. The clamping was done at a steel support block, which was itself
clamped on a massive cast iron bed. The clamping was intended to
approximate, as far as practical, the ideal case of a fixed boundary condition.
An electro-dynamic shaker (Derritron type VP 4B) was used to excite the
beam in the vertical direction normal to the undeformed neutral plane. The
shaker was connected to the beam by a force transducer and an extension push
rod, which passed through a hole drilled in the beam, 400mm from the
clamped end. The push rod was fixed to the beam by two locking nuts, one on
the top side and one on the under side of the beam. The diameter of the push
rod was 6mm. The static mass of the force transducer, push rod and the lock

nuts was 93g. The clamped-free configuration is shown in fig 5.1.
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Fig 5.1 Clamped-free test configuration (dimension in mm).

5.2.2 Free-free configuration.

The beam was supported horizontally by two sets of relatively light suspension
springs to simulate a free-free boundary condition. The supports were situated
at 90mm and 112mm from the ends of the beam. The beam was set with the
wider side of the cross-section horizontal. An electro-dynamic shaker, which
was used in the clamped-free configuration (section 5.2.1), was used to excite
the beam 490mm from one end. The force transducer, push rod, lock nuts and
the form of the beam-shaker connection was essentially similar to that used in
the clamped-free configuration. The configuration for the free-free test is

shown in fig 5.2.
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Fig 5.2 Free-free test configuration

5.2.3 Instrumentation.

A signal analyser (Bruel & Kjaer, type 2034) was used to generate a random
excitation signal. The excitation signal was amplified by a separate power
amplifier and then connected to the shaker. An accelerometer and a force
transducer were used to measure vibrations of the beam and the excitation
force. Signals from these transducers were passed through signal conditioning
amplifiers and then to the analyser for processing to generate spectral data.
The spectral data was then transmitted to an IBM-AT computer for further
processing, using a commercial signal processing and modal analysis package,
SPIDERS, produced by PAFEC Ltd. The instrumentation used in the free-free
and in the clamped-free test configurations was the same. Fig 5.3 shows the

instrumentation layout.
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Fig 5.3 Instrumentation layout
5.2.4 Signal analysis.

Signal analysis involved the computation of the frequency response function
for each measured coordinate, and extraction of the modal data. The
frequency response function is given as a complex ratio of the sinusoidal
displacement (response) to the sinusoidal excitation (a single forcing
coordinate) for each discrete frequency in the measured spectrum. As the
forcing and response data captured is time domain random, computation of the
frequency response functions involves resolution into auto and cross spectral

densities. The frequency response function (receptance o) is then given by
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(Ewins 1985),

where S;,(w) and Sij(w) are the auto spectra of the response and forcing signals,

and Sji(cn) is the cross spectrum.

Modal data was extracted from the frequency response data using Dobson's
modal analysis algorithm (Dobson 1987), which is implemented in SPIDERS.

5.3 Updating a FE model of the clamped-free beam.

The cantilever beam of Section 5.2.1 was modelled by a 7 elements undamped
FE model with 14 DOF, assuming a perfectly rigid clamping. The first six
elements from the clamped end have length of 100mm each. The seventh
element has a length of 110mm. A Youngs modulus of 70 KN/mm?2 was used
for aluminium. With this data and from the dimensions and mass of the beam,
the structural parameters used in the FE model and their confidence, expressed

by their standard deviations are:
EI, = 4557 Nm?2 STD = 150 Nm? all elements.
m, , = 3.4 kg/m STD =0.1 kg/m all elements.

Natural frequencies and mode shapes for the first three modes were
determined from measured receptance data. The measurement frequency
range was from O to 800 Hz with a resolution of 1 Hz. The mode shape
displacements were measured at all translational coordinates (nodes 1 to 7 in
fig 5.4).
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Measured and analytical natural frequencies and mass-normalized mode shape

data of the first three modes are given below:

Analyt. f, (Hz): = 40.6 fra=2547  fo,=7139
Measured f (Hz): f1=387 fo=238.0 f3=670.7
Measured n N, =0.0028 n, =0.008 N3 = 0.0042
Measured mode shape data
(values in bracket are phase Analytical mode shape data
angles in degrees)
Measurement| Mode 1| Mode 2 | Mode 3 Mode1 | Mode2 | Mode 3
point
(See fig 5.4)
1 0.0904 | 0.2495 0.5136 0.0420 0.2184 | 0.5012
(0.06) | (-0.01) (0.89)
5 0.2165 | 0.6045 0.7810 0.1564 0.6281 0.9750
(0.03) | (0.01) (0.79)
0.3184 | 0.8170 0.3949 0.3261 0.9050 0.5514
3 (-0.09) | (0.01) | (-0.31)
0.4712 | 0.7156 | -0.3630 | 0.5348 0.8410 | -0.4067
4 (-0.03) | (-0.01) | (177.99)
0.7482 | 0.3085 -0.6713 0.7678 0.3897 | -0.8454
5 (-0.06) | (-0.01) | (178.72)
0.9508 | -0.3633 | -0.1205 1.0131 | -0.3467 | -0.1891
6 (-0.03) | (-3.14) | (-178.72)
1.2047 | -1.1435 0.9249 [ 1.2873 | -1.2877 | 1.2902
7 (-0.02) | (3.13) | (-0.18)

TABLE 5.1 Measured mass-normalized modes (Amplitude and phase)

and analytical mass-normalized modes.
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Fig 5.4 Measurement points

Measurements of the mode shape displacements in all the translational
coordinates involved repeated measurements of the natural frequencies. The

natural frequencies and damping factors given are the average values. Their

actual variations are:

Jfimax = 39.19 Hz fi.min = 38.59 Hz
Jomax=2382 Hz fa.min = 2374 Hz
f3max = 671.2 Hz f3.min = 669.2 Hz
MN1,max = 0.0042 Ny min = 0.0022
M2,max = 0.0089 TNy.min = 0.0075
M3,max = 0.0047 M3 min = 0.0039

From measured and analytical data it is apparent that the analytical model
prediction is not in agreement with measured dynamic characteristics,
implying that the model required updating. It is also evident that an undamped
model can be assumed due to the low damping factors and almost real
measured mode shapes. Thus, measured natural frequencies were taken as the
undamped natural frequencies and moduli of the mode shape displacements
were taken as real modes. However further examination of the frequency data
suggest that the beam is not behaving as a rigidly clamped cantilever. For a

rigidly clamped Euler-Bemoulli cantilever beam the frequency ratio for
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modes 2 to 1 and 3 to 1 should, in theory, be:

f2a1a=6.267  and faaif1a = 17.548

The frequency ratios using measured data are:

fz:f]_ =6.149, and f3;fl = 17.33

It was felt that this behaviour may be due to the flexibility of the clamped
boundary condition as it is difficult to ensure the rigidity of the clamped end,
as well as the mass loading of the shaker interface. It was therefore decided to
improve the structure of the mathematical model by including flexibility at the
clamped end and extra mass for the loading caused by the shaker. The
flexibility of the clamped end was idealized by a lumped translational stiffness
(kp) and a lumped rotational stiffness (kg). Mass loading of the shaker was
idealized by a lumped mass (m; ) at the excitation coordinate. Thus, the model
had 16 DOF and 3 additional parameters to update. The beam is uniform, so
there will only be 2 mass and stiffness parameters giving rise to a total of 5
parameters to update. However, to simulate a large system with many
parameters to update, parameters for each element have also been treated as

independent.

The following values are the initial estimates for the lumped translational and
rotational stiffness at the clamped end and mass loading of the shaker, with

their confidence expressed by standard deviations in bracket.

kr = 8.0x107 N/m (STD = 2.0x107 N/m)
kg = 4.0x10° Nm/Rad (STD = 1.0x10° Nm/Rad)
m; =0kg (STD = 0.1 kg)
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With these parameters, the analytical model has natural frequencies given by:
f1a=394Hz f,,=2456Hz f3,=680.6 Hz

The initial estimates for k; and kz were determined by guessing some values
and then adjusting by trial and error so that the analytical natural frequencies
are improved. The analytical model incorporating mass loading of the shaker
and flexibility of the clamped end, fig 5.5, was taken as an initial analytical
model, which has to be updated by mass addition. Two mass addition studies
have been performed using eigenvalues alone (Cases 1 to 3) and using eigen-

values and eigenvectors (Cases 4 and 5).

1 9 11 13 15

R
:Etwr\r\-\ L\l\'

z.w.»“w.
4 6 8

Excitation

Fig 5.5 FE model including support flexibility and mass loading of shaker.

5.3.1 Updating a FE model of the cantilever beam

using eigenvalues.

CASE 1

The FE model of the uniform cantilever beam, fig 5.5, was updated by mass
addition, using eigenvalues alone. Masses of 0.199 kg and 0.355 kg were added

one in turn and removed to each of coordinates 5, 7, 11 and 13 of the beam and
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its analytical model. Natural frequencies of the first two modes, for each mass
addition, were measured. These, together with the first two natural
frequencies of the unperturbed beam, generate 18 eigenvalue sensitivity equa-
tions with 5 parameters to update. The natural frequencies are given in table
5.2. From the experimental data, standard deviations in natural frequencies

for modes 1 and 2 were estimated as 0.1 Hz and 0.2 Hz respectively.

Added mass| Mass addition| Measured natural | Analytical natural
coordinate frequencies (Hz) | frequencies (Hz)
(kg) (See fig 5.5)
Mode1l Mode2 | Mode1l Mode?2
- - 38.7 238.0 39.4 245.6
0.199 5 38.6 227.1 39.3 235.4
7 38.2 219.1 38.9 227.9
11 36.3 234.6 372 242.7
13 34.9 234.0 35.9 243.0
0.355 5 38.5 219.5 39.2 228.0
7 37.9 210.4 38.6 216.8
11 35.0 2325 35.8 240.8
13 33.0 231.2 33.7 241.6

TABLE 5.2 Measured and analytical (Case 1) natural frequencies.

Parameters were updated using the minimum cost Bayesian estimator. The

result after 5 iterations is:

EI = 4272 Nm? m, = 3.16 kg/m
kr = 5.23x107N/m kg = 2.86x105 Nm/Rad
my =0.09 kg.

£,=386Hz f,=2368Hz f,=666.7Hz.

Fig 5.6 show the convergence of the mass (m,) and stiffness (EI) parameters of

the uniform beam. Figs 5.7-5.9 compares receptance prediction between the
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updated model, initial model and experimental data at coordinates 3, 9 and 15.
The receptances are given in deciBels where 0 dB represent 1 m/N. It can be
seen that there is a considerable improvement in receptance prediction after
updating the model, except for the low frequency (<30Hz) prediction at
coordinate 3. The experimental data show a large receptance amplitude, which
resemble a rigid body mode, at coordinate 3. Since the beam is clamped, there
are no rigid body modes. The large discrepancy between the experimental data
and the analytical model in the low frequency range (<30Hz) at coordinate 3, is
likely due to the measurement noise. Coordinate 3 is near the clamped end
where the acceleration level is low and the noise to signal ratio relatively high.
The acceleration meas.ured at coordinate 3 (inertance plot is shown in fig 5.10)
is also likely to be most influenced by the vibration of the clamping system due
to its proximity, than is the case with other measured coordinates. The extreme
case can be imagined as the measurement of coordinate 1. Both the effects of
the vibration of the clamping system and the low acceleration level towards the
clamped end of the beam are possible contributors to the discrepancy in the
FRF at coordinate 3. The discrepancy was also apparent in the low frequency
range at coordinate 5 (see Case 2), but became negligible as the measurement

point was moved towards the end of the beam.
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Fig 5.6 Convergence of the parameters of the uniform cantilever beam.
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Fig 5.7 Receptance prediction at coordinate 3 of the beam for Case 1.
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Fig 5.8 Receptance prediction at coordinate 9 of the beam for Case 1.
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Experimental data ____, Initial model - - -, Updated model (Using eigenvalues alone) ***
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Fig 5.9 Receptance prediction at coordinate 15 of the beam for Casel
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Fig 5.10 Inertance prediction at coordinate 3 of the beam for Case 1
(0 dB represent 1 m/Ns2),
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CASE 2

This case simulates a large system with many parameters to update, by treating
the parameters for each element as independent. Thus, there are 17 parameters
to update in Case 2. Parameter updating was performed by mass addition with
the same masses and the same mass addition coordinates as in Case 1. Eigen-
values of the first two modes of the perturbed and unperturbed beam, for each

added mass (table 5.2), were used in the updating process.

The updated parameters, after 4 iterations are (element numbers start from the

clamped end):
EI = 4550 Nm2 EI, = 4561 Nm?2
Ely= 4524 Nm?2 El, = 4384 Nm2
Els = 4292 Nm?2 El¢ = 4473 Nm?2
El;= 4561 Nm?2
My; =3.398 kg/m My = 3.385 kg/m
mMy3=3.379 kg/m My = 3.395 kg/m
Mys = 3.394 kg/m My = 3.333 kg/m
my; =3.202 kgjm
kr=8.02x107 N/m kr = 2.06x10° Nm/Rad

my =0.028 kg

fi=386Hz [f,=2367THz f;=663.2Hz

Figs 5.11 and 5.12 shows the convergence of the mass and stiffness parameters

of the first 4 elements of the beam. The convergence rate is shown as a
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percentage of parameter changes from the initial estimates. Figs 5.13-5.16
compare receptance prediction between the initial model, updated model and

experimental data measured at coordinates 3, 5, 9 and 15 of the unperturbed

beam.
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Fig 5.11 Convergence of the stiffness parameters
of the cantilever beam for Case 2.
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Fig 5.12 Convergence of the mass parameters

of the cantilever beam for Case 2.
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Experimental data ___, Initial model - - -, Updated model (Using eigenvalues alone) ***
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Fig 5.13 Receptance prediction at coordinate 3 of the beam for Case 2.
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Fig 5.14 Receptance prediction at coordinate 5 of the beam for Case 2.
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Experimental data ___, Initial model - - -, Updated model (Using eigenvalues alone) ***

-100 |t

-120

-140

-160

Receptance o.q ¢ (mag) dB

-180

-200

0 100 200 300 400 500 600 700 800
Frequency Hz

Fig 5.15 Receptance prediction at coordinate 9 of the beam for Case 2.
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Fig 5.16 Receptance prediction at coordinate 15 of the beam for Case 2.
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CASE 3

In Cases 1 and 2, parameters of the initial FE model of the beam were derived
based on material and geometry data. As the beam geometry is simple, the
uncertainty and hence error in the FE model is low. Case 3 simulates the case
of relatively high uncertainty in the FE model parameters, by deliberately
using different stiffness parameters in the FE model with high uncertainty.
The element parameters were also treated as independent. The objective was to
make the updating process slightly difficult and assess the reliability of the
technique by comparing the updated model in the two cases. Thus, the

following parameters were used for the initial FE model:

EI, = 4900 Nm? STD =300 Nm2, all elements

m,, = 3.4 kg/m STD = 0.1 kg/m, all elements (as in Case 1)
kr=4.0x107 N/m  STD =2.0x107 N/m

kg = 2.0x10° Nm/Rad STD = 1.0x10° Nm/Rad (as in Case 1)

my =0 STD =0.1 kg (as in Case 1)

giving rise to:
f1a=394 Hz o = 245.6 Hz f3=6742Hz

Parameter updating was performed by mass addition with the same masses and
the same mass addition coordinates as in Cases 1 and 2, using eigenvalues of the
first two modes of the perturbed and unperturbed beam (table 5.2). The
analytical natural frequencies of the beam with added mass are shown in table

5.3.
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Added mass| Mass addition| Analytical natural
coordinate frequencies (Hz)
See fig 5.5

(ke) BERRE | Ko 1. Wiodsd
- - 394 245.6
0.199 5 39.3 234.6
7 39.0 228.1
11 37.3 243.2
13 36.0 242.9
0.355 5 392 226.8
7 38.6 217.0
11 35.8 241.6
13 33.8 241.4

TABLE 5.3 Analytical natural frequencies of the cantilever
beam (Case 3) with added mass.

The updated parameters, after 5 iterations are:

EI, = 4359 Nm?
EI, = 4839 Nm?2
El = 4028 Nm?
EI, = 4923 Nm?2

m,, = 3.396 kg/m
my3 = 3.350 kg/m
mys = 3.415 kg/m
my; = 3.186 kg/m

kr = 5.46x107 N/m
my = 0.015 kg

EI, = 4666 Nm?
EI, = 4415 Nm?2
EI, = 4705 Nm?2

m, = 3.370 kg/m
m,, = 3.378 kg/m
mys = 3.376 kg/m

kg = 2.03x10° Nm/Rad

fi=386Hz f,=2368Hz f,=661.0Hz
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Figs 5.17-5.20 compares receptance prediction between the initial model,
updated model and experimental data at coordinates 3, 5, 9 and 15 of the

unperturbed beam.
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Fig 5.17 Receptance prediction at coordinate 3 of the beam for Case 3.
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Experimental data ___, Initial model - - -, Updated model (Using eigenvalues alone) ***
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Fig 5.18 Receptance prediction at coordinate 5 of the beam for Case 3.
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Fig 5.19 Receptance prediction at coordinate 9 of the beam for Case 3.
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Fig 5.20 Receptance prediction at coordinate 15 of the beam for Case 3.
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5.3.2 Updating the 'FE model of the cantilever beam

using both eigenvalues and eigenvectors.

The FE model of the cantilever beam was also updated by mass addition using
eigenvalues and eigenvectors. Mass of 0.199 kg was added to coordinates 5 and
11 in turn. In each perturbation, eigenvalues and mode shape data of the first
two modes were measured and retained for model updating, together with the
modal data of the first two modes of the unperturbed beam. The eigenvalues
are a subset of the ones given in table 5.2. The mode shape data used in model
adjustment was measured at four translational coordinates. These are
coordinates 5, 7, 9 and 11 only. Table 5.4 gives the magnitudes and phase
angles of the measured mass-normalized modes. The modes of the unpertur-
bed beam are a subset of the modes given in table 5.1. The modes are of low
complexity and were treated as real. The confidence on the mode shape data is
expressed by a standard deviation of 0.05 for all measured coordinates. Two
updating cases are presented, Case 4 and Case 5. Case 4 consider the fact that
the beam is of a uniform geometry, and so the elements are constrained to be
identical. Case 5 treats the element parameters as independent unknowns. In

each case, the confidence on the initial parameter estimates is the same as in

Section 5.2.5.1.
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Added mass| Mass addition| Measurement| Measured modes | Analytical modes
(kg) coordinate | coordinate
Mode 1| Mode2 | Mode1 | Mode 2
0 - 5 0.2165 | 0.6045 | 0.1671 | 0.6598
(0.03) | (0.01)
7 0.3184 | 0.8170 | 0.3361 | 0.9050
(-0.09) | (0.01)
9 0.4712 | 0.7156 | 0.5415 | 0.8171
(-0.03) | (-0.06)
11 0.7482 | 0.3085 | 0.7697 | 0.3624
(-0.06) | (-0.01)
0.199 5 8 0.1599 | 0.5662 | 0.1671 | 0.6463
: (-0.03) | (-0.06)
7 0.3157 | 0.7405 | 0.3357 | 0.8647
(-0.02) | (-0.07)
9 0.4944 | 0.6574 | 0.5404 | 0.7607
(-0.02) | (-0.03)
11 0.6969 | 0.2356 | 0.7677 | 0.3176
(-0.02) | (-0.08)
0.199 11 5 0.1902 | 0.5896 | 0.1586 | 0.6366
(0.03) | (0.08)
1 0.3193 | 0.7825 | 0.3187 | 0.8723
(0.01) | (0.11)
9 0.4490 | 0.7523 | 0.5132 | 0.7820
(-0.04) | (0.13)
11 0.6523 | 0.3404 | 0.7287 | 0.3262
(-0.04) | (0.08)

TABLE 5.4 Measured and analytical mass-normalized modes with and without

added mass (Values in brackets are phase angles in degrees).

CASE 4

When the elements are treated as having non-independent parameters due to
the uniformity of the beam, the number of unknowns to update is 5. The two
eigenvalues and mode shape vectors measured at four coordinates does, in
theory, contain sufficient dynamic characteristic information to update the 5

unknown parameters. The use of mass addition in this case simply increases the
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data sample by increasing the total number of data points. The updated

parameters, in this case, converged after 5 iterations to:

EI = 4180 Nm? m, = 3.28 kg/m
ky =7.79x107 kg = 3.23x105 Nm/Rad
m; =0.019kg

fi=381Hz f,=2373Hz f;=661.4H:z.

Fig 5.21 show the convergence of the mass and stiffness parameters of the

beam.
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Fig 5.21 Convergence of the mass and stiffness parameters

of the uniform cantilever beam for Case 4.
The frequency response functions (receptances) predicted by the updated and

the initial models are compared with the experimental data at coordinates 9

and 15 in figs 5.22 and 5.23.
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Experimental data __, Initial model - - - , Updated model (eigenvalues & eigenvectors) ***
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Fig 5.22 Receptance prediction at coordinate 9 of the beam for Case 4.
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Fig 5.23 Receptance prediction at coordinate 15 of the beam for Case 4.
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CASE>5

When the elements were treated as having independent unknown parameters,

the updated parameters, after 5 iterations, converged to.

EI, = 4463 Nm?2
EI,= 4537 Nm?
EI, = 4375 Nm?2
EI, = 4550 Nm?

my; = 3.40 kg/m
m3=3.42 kg/m
m,s = 3.36 kg/m
m; =3.43 kg/m

EI, = 4485 Nm?
El, = 4512 Nm?
EI, = 4446 Nm2

mp= 341 kg/m
m,= 3.42 kg/m
mu6 = 3.31 kg/m

kp = 8.05x107 N/m kg = 2.13x10° Nm/Rad
my =0.005 kg
fi=381Hz f,=2373Hz f;=661.6Hz

Figs 5.24 and 5.25 shows the convergence of the mass and stiffness parameters
for the first 4 elements starting from the clamped end. Figs 5.26-5.28
compares receptance of the updated model, initial model and experimental

data at coordinates 3, 9, and 15.
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Fig 5.24 Convergence of the stiffness parameters of elements 1-4

of the cantilever beam for Case 5.
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Fig 5.25 Convergence of the mass parameters of elements 1-4

of the cantilever beam for Case 5.
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Experimental data ___, Initial model - - - , Updated model (eigenvalues & eigenvectors) ***
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Fig 5.26 Receptance prediction at coordinate 3 of the beam for Case 5.
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Fig 5.27 Recei)tance prediction at coordinate 9 of the beam for Case 5.
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Experimental data __, Initial model - - - , Updated model (eigenvalues & eigenvectors) ***

'50 T T T T T T T
m
L=
~ -100
s
Y
3
:
o -150
b
m
-200 : ; ; : : : :
0 100 200 300 400 S00 600 700 800
Frequency Hz

Fig 5.28 Receptance prediction at coordinate 15 of the beam for Case 5.
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5.4 Updating a FE model of the free beam using eigenvalues.

The beam of Section 5.2.5 was tested in a free-free configuration and was
modelled by an 8 elements, 18 DOF FE model based on a simple beam theory
which ignore the effects of rotary inertia and shear deformation. The FE
model is shown in fig 5.29, where coordinate 11 is excited. Natural
frequencies and damping factors were determined from receptances measured

at each translational coordinate.

. 3 3 % o 11 13 15 17
A 4 4 S G S SR A
mi,
=N Y A R A =X 1
v oV v v fvy v v
2 |4 |s s |10 [12 |14 [16 |18

1 110
90"100 100 ’<100 4100 100 ‘00

Dimension in mm Excitation

Fig 5.29 Free-free beam

The measurement frequency range was from 0 to 1600 Hz with a resolution of

2 Hz. Measured natural frequencies for the first three elastic modes are:
£1=200.1Hz f,=5484Hz f,=1075Hz

Their confidence is expressed by the following estimates of standard

deviations.

STDf;=0.5Hz STD f, =STD f; = 1 Hz.
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There was a considerable variation of the damping factors evaluated from
measurements at different coordinates, but they were all very small the
maximum being less than 0.002. The natural frequencies were therefore

treated as the undamped natural frequencies and the damping factors ignored.

The analytical model had the same initial parameters as the cantilever beam

model. Thus (element numbers start from the left-hand-side of fig 5.29):

El,, =...=Elg,=4557TNm2, STD EI ;=150 Nm2.
Mya=:..=myg,=34kg/m, STDm,=0.1kg/m
mL =0 kg, STD mp= 0.1 kg.

Resulting in  f;,=203.7Hz f,,=561.8 Hz f3,=1103.0 Hz.

The analytical model was updated by mass addition using eigenvalues of the
first two elastic modes only. The 8 elements were treated as having
independently unknown parameters. Thus, 16 mass and stiffness parameters of
the beam and 1 parameter for the mass loading of the shaker-beam interface

were updated.

The added mass was 0.199 kg at each of the translational coordinates giving a
total of 20 eigenvalues for the first two elastic modes. Table 5.5 shows
measured and analytical natural frequencies of the mass added beam. Standard
deviations of 0.5 Hz and 1 Hz for the first and second modes respectively, were

also assumed for the natural frequencies of the mass added beam.
The updated parameters, after 4 iterations, are:

EI, = 4520 Nm? EI, = 4337 Nm?2
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EI, = 4384 Nm? EI, = 4517 Nm?2

EI = 4450 Nm?2 El = 4426 Nm?2
EI, = 4459 Nm?2 EIg = 4529 Nm?2
my, = 3.22 kg/m m, = 3.50 kg/m
m=3.52kg/m my, = 3.42 kg/m
m,s = 3.41 kg/m ms = 3.41 kg/m
m;; = 3.43 kg/m m,g = 3.37 kg/m
my =0076kg

£i=1999Hz f,=5456Hz f;=1083.4Hz

Mass addition Measured natural Analytical natural

coordinate frequencies (Hz) frequencies (Hz)
Mode 1 Mode 2 Mode 1 Mode 2

1 179.3 493.6 183.3 514.1
3 194.1 541.2 198.2 560.6
9 200.1 525.2 203.6 540.4
7 195.2 521.2 198.4 537.6
9 190.8 548.5 194.2 561.5
11 193.9 528.6 197.1 542.8
13 199.7 522.5 203.1 535.3
15 196.2 5449 200.4 561.7
17 179.1 500.9 183.3 514.0

TABLE 5.5 Measured and analytical natural frequencies of the

beam with added mass.

Figs 5.30 and 5.31 shows the convergence of the stiffness and mass parameters
of the last four elements as percentage changes from their initial estimates.

Figs 5.32 to 5.34 compare receptance prediction between the updated model,
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initial model and experimental data at coordinates 1, 9, and 15, when coordi-
nate 11 is excited. The updated model shows a reasonable agreement with the

experimental data.
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Fig 5.30 Convergence of the stiffness parameters of 4 elements

of the free beam.
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Fig 5.31 Convergence of the mass parameters of 4 elements

of the free beam.
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Experimental data ____, Initial model - - -, Updated model (Using eigenvalues alone) * * *
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Fig 5.32 Receptance prediction at coordinate 1 of the free beam.
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Fig 5.33 Receptance prediction at coordinate 9 of the free beam.
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Experimental data ___, Initial model - - -, Updated model (Using eigenvalues alone) * * *
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Fig 5.34 Receptance prediction at coordinate 15 of the free beam.
5.5 Discussion.

This chapter is devoted to the application of the mass addition technique in
updating a FE model of a laboratory structure. The structure considered is a
uniform beam tested in free-free and clamped-free conditions. It was found
that, the FE model of the clamped-free beam with an assumption of a rigid
boundary condition was not adequate to describe the measured dynamic
characteristics. The FE model was improved by considering the flexibility at
the clamped end. Since the beam is relatively light, mass loading of the shaker
could also affect its eigen-characteristics. The FE model was updated by
updating mass and stiffness parameters of the beam, stiffness parameters at the

clamped end and mass loading of the shaker-beam interface.

While the beam is uniform, two modelling approaches have been studied. In

one case the elements were treated as having independent parameters and in the
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other case the uniformity of the beam was maintained by constraining its
parameters to be identical. Both approaches resulted in models with improved
dynamic characteristics than the initial analytical model. When the beam
element parameters were treated as completely independent, the result was a
non-uniform beam, in the sense that the elements of the updated model were of
different mass and different stiffness parameters. This is to be expected since
the measured data is not exact. The updated parameters, therefore, contain
errors of varying magnitudes. With an unconstrained parameter estimation
algorithm, large unrealistic changes in the parameters could result from very
small errors in the measured data. The use here of the minimum cost Bayesian
estimator, limits the variation of the parameters to orders of magnitude
comparable to the uncertainty specified on the initial estimates. This is

consistent with the findings from the numerical simulation in Chapter 4.

In all cases, only the first two elastic modes were used in the updating process.
The improvement in the receptance prediction can be observed over a larger
frequency range, up to the third mode. This together with the fact that the
changes in element parameters are comparable with the uncertainty in the
initial parameters suggest that the structure of the model matrices is acceptable
for dynamic modelling over the measured frequency range. However, it is
reasonable to make use of prior knowledge of the uniformity of the beam and
to use this in a practical modelling problem. The models dealt with in this
Chapter can be further improved by updating using all three modes in the

measured frequency range.

The flexibility at the clamped end of the beam in a clamped-free test was
modelled by lumped translational and rotational stiffeners. Since it is difficult
to estimate the magnitudes of the lumped stiffeners in the analytical model,

some rough values were obtained by trial and error. This is only one possible
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modelling approach and its difficulty is in obtaining reasonable values of the
stiffeners in the initial model. An alternative is to assume the stiffness
parameter of the element next to the clamped end as independent from other
elements of otherwise uniform beam. It is not intended to go into the details of
analytical modelling techniques, but it is evident that the later approach creates
some discomfort on how to visualize the physical interpretation of the

parameters.

259



CHAPTER 6
UPDATING BY SIMULATION OF
ADDITIONAL STIFFNESS OR MASS

6.1 Introduction

The technique of model parameter updating by mass or stiffness addition
involves perturbing the system and its analytical model, by adding mass or
stiffness in order to change the eigen-characteristics. The eigen-data of the
perturbed and the unperturbed systems are then used in a model updating
algorithm based on sensitivity analysis. The success of the technique depends,
among other factors, on the generation of eigen-data which, in general, are
different from one perturbation to another. If the added mass or stiffness is
relatively small, the eigen-data generated from one mass or stiffness addition
to another will be virtually unchanged and the eigen-data sensitivity matrix
close to singular. In general, the bigger the changes in the eigen-data, the
better. So far, it has been assumed that the simulated systems could be
physically perturbed using the assumed additional masses and stiffeners. For
small structures, mass addition is practically feasible as demonstrated by
laboratory experiments on beams in Chapter 5. For large structures, the size
of the additional mass to achieve even small measurable natural frequency
changes may be impractical. Furthermore, adding stiffness may not be easy,
especially when the unperturbed structure is in a free-free test configuration.
In this Chapter, the feasibility of adding stiffness or mass by numerical
simulation and determining the eigen-data of the perturbed structure using the
FRF of the unperturbed structure is investigated. The simulation of the
addition mass or stiffness is based on a structural modification approach to

find a new set of eigen-data of a modified system.
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6.2 Theoretical derivation

Consider a primary structure, P in fig 6.1, on to which is coupled a secondary
structure, S. The secondary structure is the perturbing mass rigidly attached to
the primary structure or the perturbing grounded stiffener and the

perturbation is at a single degree of freedom, /.

Fig 6.1 Primary structure, P, with mass or stiffness modification at DOF /.
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Consider the excitation of the perturbed structure at a single coordinate, i. The

response, ¢, at any coordinate j, can be written as,
qP = 0;0; + a0 (6.1)

where the response superscript, p, denotes the perturbed system. Q" is the
force exerted by the primary structure on the secondary structure and Q" is
the reaction force exerted by the perturbing mass or stiffness on the primary
structure at /. The forces exerted on the perturbing mass or stiffness are given
by:

Force on the perturbing mass 0", = -a:zmq,l’

Force on the perturbing stiffness Q”; = kg, P
Therefore

for mass addition Q' = w?mqp (6.2)

for stiffness addition Q')=-kqpP (6.3)

In the case of stiffness addition, (6.1) becomes:

0Q; - Oykqp (6.4)
Divide (6.4) by O, and noting ¢*/Q; = o,;? and gP/Q; = o,P, (6.4) simplifies to:
Equation (6.5) is not in a convenient form to estimate the FRF, and hence
eigen-data, of the perturbed structure as it contains two receptances of the

perturbed structure, which are not known. It can be simplified by letting the

perturbed coordinate to be the excitation coordinate (Let / = i). Therefore:
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Equation (6.6) still contains two receptances of the perturbed structure.
However, o, can be eliminated by expressing it in terms of the receptances of

the primary structure, by letting j =i, in (6.6).

0, = o - kou;0uP (6.7)
Therefore:
p )
o= — 6.8)
1+ ko,

Substitute (6.8) into (6.6), an expression for P is obtained as:

o=, (1- i ) (6.9)

1+ ko

Equations (6.8) and (6.9) could then be used to construct the FRF of the
perturbed structure using FRF data of the unperturbed structure. The modal
data of the perturbed structure can then be determined from the constructed
FRF using any of the established modal analysis algorithms. With error-free
data, exact FRF of the perturbed structure will be obtained. Since measured
data is always contaminated by measurement errors, the FRF estimated using
(6.8) and (6.9) will also contain errors. Since (6.8) and (6.9) are non-linear
functions of the FRF of the unperturbed structure, the magnitude of the errors
in the constructed FRF varies in a way which is completely different from the
errors in o; and ay;. At frequencies in the vicinity of the natural frequencies of
the perturbed structure, small errors in oy, results in large errors in oP. This

can be seen by deriving expressions for the changes in o;? and o, due to the
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changes in o,; and o;.

P do,
Aoy = —LAa, = —1 a0, (6.10)
oL ..
* (1+koy)
p
P aa Jo
Aa; = Aa} + ———LAa
Bon do.;
(1- )Aa + —2iAq, 6.11)
(1 +k(xa) 2

(1+k0'. )

Thus, it may be necessary to consider weighting the data of the constructed

FRF in a modal extraction algorithm.
6.3 Simplification for lightly damped structures

There are many types of structures which are so lightly damped that an
undamped or a proportionally damped FE model with properly updated
parameters could be adequate to describe its dynamic behaviour. A
simplification for such systems is possible. This avoids the necessity of
constructing FRFs of the perturbed structure and extracting the modal data
from the constructed FRFs. The simplified approach cannot extract damping
factors of the perturbed structure. Therefore, with proportional damping, the
undamped model will first be updated by sensitivity analysis and then updating
the damping proportionality constants using the orthogonality equation of the

damping matrix with respect to the updated model's real modes.

Recall the expression for point receptance, o.;, of a system with hysteretic
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damping:
N

0. = E ; U";U"f (6.12)
(an - +_|1]‘,co;)

=1

If the system is undamped, n i = 0, receptance amplitude is infinity at the
natural frequencies of the system (o = wj). Likewise, receptance of the
perturbed undamped system will become infinity at frequencies corresponding

to the natural frequencies of the perturbed system. Therefore, from (6.8):
I+ko; =0 at o= op. (6.13)

Thus, it is possible to determine the natural frequencies, wP, of the perturbed
structure, using (6.13), by simply determining the frequencies at which o; of
the unperturbed structure is equal to -1/k. If mode shape of the perturbed
structure is also required, it is simply given by the deflection shape at op. The
deflection shape can be determined from the receptances, which at P

determines the mode shape.
V;= {a(ap)} (6.14)

Mode shapes determined in this way are only arbitrary scaled, whereas mode
shapes required in parameter estimation are mass normalized. As the modal
masses are not known, modal masses of the current analytical model will be
used in the normalization. The analytical modal masses will be updated after
each iteration until convergence in the mass and stiffness parameters is
reached. At that point, the mass normalized modes of the updated system will,
hopefully, also converge towards the true mass normalized modes of the real

system. However, this requires the non-mass normalized modes determined by
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(6.14) to be scaled in the same way as the non-mass normalized modes of the
analytical model, before mass normalization is effected. A simple way is to
scale each vector such that the biggest term for the mode shape displacement of
the perturbed structure (defined at the measurement coordinates) is unity. The
analytical modes are then scaled such that coordinates corresponding to unity

in the structure's modes are also scaled to unity.

Thus, lets redefine V,,, ;to be the jth mode shape of the perturbed structure
(at the measurement coordinates) determined from (6.14) and scaled such that
the biggest term is unity. Let V, ; be the jth mode shape of the perturbed
analytical model. The mass normalized mode shape of the analytical model,
UaJ, and an estimate of the mass normalized mode of the perturbed structure,
will be given by dividing V, ; and V. ; by the

at the current iteration, U mm,j

mm,j?
square root of V, J-TMaVa j~ This approach inevitably results in the errors in the
analytical model being transmitted to the estimated mass normalized modes of
the perturbed structure and contributes to non-random errors in Up,, ..

Non-random errors result in biased estimates, but the degree of bias is reduced

by the iteration process which updates U The convergence rate, however,

mm,j*

will be relatively slower than in the case where eigenvalues alone are used.

It should be noted that the frequency is measured at discrete intervals, and
therefore it is difficult to solve (6.13) exactly for a given k and a given FRF
(o (w)), even if data for o,(w) is exact. Thus small errors in the data, due to
frequency resolution, are inevitable. This type of error, however, is not very
important as it can be minimized to negligible levels by zooming and
increasing the resolution around the estimated resonance zone. An alternative
idea is to curve fit the FRF over the zone expected to contain the natural
frequency of interest using a low order polynomial. Curve fitting using a first

order polynomial (linear interpolation) is discussed in section 6.3.1.
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6.3.1 Simulation examples: Undamped system.

EXAMPLE 6.1

Consider the beam of example 4.1. The beam is 1 m long and is made of
uniform geometry and material with the following structural parameters, EI =
5000 Nm2 and m, = 3.5 kg/m.

Consider the idealization of the beam into a free-free configuration and let its
dynamic characteristics be, for simplicity, adequately modelled by a 4
elements 10 DOF finite element model with elements of equal length, fig 6.2.

The first three natural frequencies are:

f1=134.73 Hz f,=373.30Hz f3=733.05 Hz.
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Fig 6.2 Simulated undamped free beam
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The 4 element model will be used to simulate the error-free FRF of the
physical structure. Let the analytical model have the following parameters,
where it is considered that elements may not have identical parameters and

therefore a total of 8 parameters are to be updated (element numbers starts
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from the left end of the beam).

El,,=5300Nm2  EL,=4800Nm?  EI,,=5200 Nm?
El,,=4900Nm2  m,,=3.3kg/m My .= 3.3 kg/m
my3 , = 3.3 kg/m My, = 3.3 kg/m.

fia= 13876Hz  f,,=385.53Hz f1a=758.45 Hz

The analytical model will now be updated by numerical simulation of the
additional stiffness. The eigen-data of the perturbed beam will be determined
from the FRF of the unperturbed beam. In this case the beam is undamped and
the FRF will not be contaminated by errors, hence accurate parameters should
be identified using an unconstrained least square solution of the sensitivity
equations. Two studies are performed, using eigenvalues alone and using both

eigenvalues and eigenvectors.
UPDATING USING EIGENVALUES

There are 8 parameters to update. Let coordinates 3 and 5 be perturbed
analytically by stiffness addition and use the first three eigenvalues of the
perturbed and unperturbed system in the updating process. The stiffeners are
2.0x109 N/m and 1.0x107 N/m. There will therefore be a total of 15 equations
in 8 unknowns. Since coordinates 3 and 5 are perturbed, these coordinates
must also be excited. The eigenvalues of the perturbed beam will be
determined from the point receptances simulated to have been measured at
coordinates 3 and 5, using (6.13). Figs 6.3 and 6.4 shows the point receptances

as well as the point receptances of the analytical model, at a resolution of 2 Hz.

The natural frequencies of the perturbed beam are given by locating the
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frequencies at which the point receptances are given by -1/k. Since 0 dB
represent a receptance magnitude of 1 m/N (reference 1 m/N), stiffness
addition of 2x106 N/m and 1.0x107 N/m, corresponds to receptances, in dB,
of 2010g10(0.5x10'6) = -126.0206 dB and 2010g10(10'7) = -140 dB respec-
tively of the unperturbed beam. These are points where the two horizontal
lines in figs 6.3 and 6.4, drawn at -126.0206 dB and -140 dB, intercept the
receptance curve on the right-hand-side of each resonance peak. The actual

points are close to the points indicated by al. . . d3.

It can be seen that the second elastic mode does not appear in fig 6.4. This
suggests that the excitation coordinate 5 is at the node of the second elastic
mode of the unperturbed beam, and therefore this mode is not excited. As a
result, adding a stiffness to coordinate 5 does not affect the eigenvalue of the
second mode. The frequency located at d1 in fig 6.4 corresponds to the new
natural frequency of the originally first mode, when coordinate 5 is perturbed
by a stiffness of 1.0x107 N/m.

To improve the accuracy of the estimated eigenvalues, the FRF was zoomed
around each of points al to d3, at a resolution of 0.1 Hz. Tables 6.1 and 6.2
shows some values of the receptances and their corresponding frequencies of
the zoomed FRF, around each of points al to d3. The natural frequencies were
then determined by inspection, by locating the frequencies at which the
receptance data is closest to -126.0206 dB and -140 dB respectively. This
exercise results in the establishment of the natural frequencies of the stiffness

added beam with an uncertainty of 0.1 Hz, table 6.3.
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Fig 6.3 Point receptance of the undamped beam: Excitation at coordinate 3.
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Fig 6.4 Point receptance of the undamped beam: Excitation at coordinate 5.
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k= 2.0x106 N/m k =1.0x10” N/m

Frequency | Receptance | Frequency | Receptance
(Hz) (dB) (Hz) (dB)

Mode 1] 151.3 -126.0014 231.0 -139.9634
151.4 -126.0212 231.1 -139.9879
151.5 -126.0409 231.2 -140.0124
151.6 -126.0405 231.3 -140.0369
Mode 2| 402.2 -125.9871 500.8 -139.9878
402.3 -126.0161 500.9 -139.9980
402.4 -126.0451 501.0 -140.0081
402.5 -126.0739 501.1 -140.0183
Mode 3| 750.0 -125.9433 842.3 -139.9900
750.1 -125.9907 842.4 -139.9966
750.2 -126.0378 842.5 -140.0031
750.3 -126.0846 842.6 -140.0162

TABLE 6.1 Receptance-frequency data (error-free): Excitation at coord. 3.

k= 2.0x10° N/m k =1.0x107 N/m

Frequency | Receptance | Frequency | Receptance
(Hz) (dB) (Hz) (dB)

Mode 1| 215.5 -126.0086 371.1 -139.9876
215.6 -126.0212 371.2 -139.9955
2157 -126.0338 371.3 -140.0035
215.8 -126.0464 371.4 -140.0114
Mode 3| 755.2 -125.9626 857.7 -139.9891
553 -126.0002 857.8 -139.9955
755.4 -126.0376 857.9 -140.0019
135.5 -126.0748 858.0 -140.0084

TABLE 6.2 Receptance-frequency data (error-free): Excitation at coord. 5.
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Added stiffness | Stiffness added | Natural frequency in Hz
(N/m) [ coordinate o T Mode 2| Mode 3
2.0x10° 3 1514 | 4023 | 7502

5 2156 | 3733 | 7554
1.0x10” 3 231.1 | 5009 | 8425
5 3713 | 3733 | 857.9

TABLE 6.3 Estimated natural frequencies of the stiffness added beam.

The estimated natural frequencies of the perturbed beam together with the
correct natural frequencies of the unperturbed beam were then used in an

unconstrained weighted least squares updating algorithm.
The updated parameters, after 6 iterations are:

EI,=5012Nm2  EI,=4992 Nm?2 EI, = 5004 Nm?2
EI, = 4989 Nm? my,=3503kg/m  my,=3.497 kg/m
m,3 =3.503 kg/m m, = 3.495 kg/m.

f1=13472Hz 5=373.29Hz f,=733.07 Hz

Figs 6.5 and 6.6 shows the convergence of the stiffness and mass parameters.
The updated parameters are reasonably accurate. This has to be expected since
the estimated natural frequencies, table 6.3, are reasonably accurate. As no
measurement error was simulated in the receptance data, the accuracy of the
estimated natural frequencies is of the order of the resolution in the frequency

axis (0.1 Hz).
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Fig 6.6 Convergence of the mass parameters.

(using eigenvalues alone; modes 1-3)

UPDATING USING EIGENVALUES AND EIGENVECTORS

The beam is now updated using eigenvalues and eigenvectors of the first two

elastic modes. The eigenvectors are simulated to have been measured at two
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translational coordinates, whereas stiffness additions of 2x10® N/m and
1.0x107 N/m are made at a single coordinate, 3. Measurement coordinates are
3 and 7. Thus, the required FRFs are, point receptance at coordinate 3 (fig 6.3)

and transfer receptance at coordinate 7 with an excitation at 3 (fig 6.7).

Receptance of the correct model ___, Receptance of the initial model - - -

-100

-120

Receptance o 73 dB

-140

_1 60 1 | L 1 1 1 L L 1
0 100 200 300 400 500 600 700 800 900 1000

Frequency Hz

Fig 6.7 Receptance at coordinate 7 with an excitation at 3.

The eigenvalues of the beam with added stiffness, in this case, are determined
from the natural frequencies shown in table 6.3, since the same stiffness
additions were also made in the first case when eigenvalues only were used.
The eigenvectors are given by the receptance vectors evaluated at the
measurement coordinates for each established natural frequency of the
perturbed beam. Table 6.4 shows the frequencies and their corresponding
receptances and hence eigenvectors normalized to the highest displacement of
unity in each eigenvector. The eigenvectors of the unperturbed beam were

determined by solving the eigenvalue problem.
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Simulated additional] Measurement| Frequency| Receptance |Estimated
stiffness (N/m) coordinate (Hz) (x10‘7m/N) eigenvectors

2.0x10° 3 151.4 49997 | 1.0000

5 2.0528 0.4106

3 402.3 5.0030 1.0000

5 -4.6984 -0.9391

3 231.1 1.0010 0.7256

1.0x10’ 5 13796 | 1.0000

3 500.9 1.0000 -0.8190

5 -1.2210 1.0000

TABLE 6.4 Estimated eigenvectors of the perturbed beam.

Parameters of the analytical model were updated by an unconstrained
weighted least squares algorithm. The eigenvalue weighting matrix was based
on a standard deviation of 0.1 Hz in the natural frequencies. The eigenvector
weighting matrix was based on a standard deviation of 0.01 for the non-mass
normalized eigenvector data of table 6.4. This value is an approximation
decided by inspection of the variation of the eigenvector data between the
upper and lower frequency bounds. The upper and lower frequency bounds
are determined by the uncertainty in the estimated natural frequencies of the
perturbed beam, which is +(-) 0.1 Hz. The standard deviation of the mass
normalized eigenvectors, which is the one to be used in the eigenvector
weighting matrix, is then computed by dividing the standard deviation of the
non-mass normalized vectors (0.01), by the analytical modal mass for the

mode in question.

Figs 6.8 and 6.9 shows the convergence of the stiffness and mass parameters.
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Fig 6.9 Convergence of the mass parameters

(using eigenvalues and eigenvectors; modes 1 and 2)
The updated parameters after 21 iterations are:

EI,=4912Nm?  EI,= 4963 Nm? EI, = 5075 Nm?2
EI, = 5107 Nm?2 m,, = 3.495 kg/m My, = 3.543 kg/m
m,3 = 3.465 kg/m my, = 3.542 kg/m
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fi=13473Hz £:=373.30Hz

It can be seen that although the updated parameters are of acceptable accuracy,
they are less accurate than when eigenvalues alone were used and the
convergence rate is considerably slower. The FRF prediction of the updated
model is acceptable, fig 6.10. It should also be noted that only the first two
elastic mode shapes and eigenvalues of the beam before and after stiffness

addition were used as opposed to the first three eigenvalues in the previous

case.

Correct model y Updated model *** (eigenvalues and eigenvectors)
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-140

o 0 1 . | M | P | 1 L g i 1
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Frequency Hz

Fig 6.10 Comparing receptance prediction
The previous example considered updating a model by numerical simulation
of the additional stiffness using the FRF data of the unperturbed structure. The

updating was performed using an unconstrained optimization and no errors

were simulated in the FRF data. The only errors involved are associated with
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frequency resolution as the FRF data is simulated at discrete frequency
intervals, and the errors associated with the use of analytical modal masses
(iterated) in the normalization of the mode shape vectors. These errors are
shown in tables 6.5 - 6.7. Table 6.8 shows the computed standard deviation

estimates of the mass-normalized eigenvectors.

Added stiffness | Natural frequency estimate| Natural frequency error
at coordinate 3 (Hz) (Hz)
(N/m) Mode 1 Mode 2 Mode 1 Mode 2
2x1006 1514 402.3 -0.003 0.015
1x107 231.1 500.9 0.049 0.020

TABLE 6.5 Errors in the estimated natural frequencies of
the beam with added stiffness.

Added stiffness|] Measurement| Eigenvector estimate Error in eigenvector

at coordinate 3 | coordinate U = Vi estimate
o (\GTMaV;)UZ Uexact' Unm

(N/m) Mode 1 Mode 2 Mode 1 Mode 2

0 3 0.1130 -0.6584 -0.0067 0.0239

5 0.1130 0.6584 1 -0.0067 -0.0239

2x100 3 0.5308 0.70401 -0.0178 -0.0138

S 0.2179 -0.6611 1 -0.0073 0.0129

1x10/ 3 0.2632 -0.5986 | -0.0088 0.0172

5 0.3627 0.7309 -0.0117 -0.0213

TABLE 6.6 Errors in the estimated mass-normalized eigenvectors

at the begining of the first iteration.
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Added stiffness] Measurement] Eigenvector estimate Error in eigenvector
at coordinate 3 | coordinate U = Vi estimate

(N/m) Mode 1 Mode 2 Mode 1 Mode 2

0 3 0.1072 -0.6340 -0.0009 -0.0005

5 0.1072 0.6340 1 -0.0009 0.0005

2x100 3 0.5120 0.6899 0.0010 0.0003

5 0.2102 -0.6479 0.0004 0.0003

1x10/ 3 0.2550 -0.5802 | -0.0006 | -0.0012

5 0.3514 0.7084 | -0.0004 0.0012

TABLE 6.7 Errors in the estimated mass-normalized eigenvectors

at the begining of the final iteration (21st iteration).

1
Computed STD of U= Estimated STD of V;, divide by (Va MY2) 2
k=0 k=2x100 N/m k=1x107 N/m
Mode 1{ Mode 2 Mode 1 Mode?2 | Mode1 | Mode 2
Start of first) 0 0011 | 0.0066 0.0053 | 00070 | 0.0036 | 0.0073
1teration
i;?;n?jnh“ﬁ" 0.0011 | 0.0073 0.0051 | 0.0069 | 0.0035 | 0.0071

TABLE 6.8 Computed STD of mass-normalized eigenvectors

at the start of the first and the final iterations.

The following example consider the effects of measurement errors in the FRF

and updating will be performed using the minimum cost Bayesian estimator.
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EXAMPLE 6.2

The beam receptances of example 6.1 are now simulated at 0.25 Hz resolution,
with additional errors. The errors are simulated as random with zero mean
and standard deviation of 5% of the respective FRF data at each frequency.
The FRF data will then be used in the estimation of the natural frequencies and
eigenvectors of the perturbed beam, using a different set of stiffness added at
coordinates 3 and 5. Parameters will then be updated using eigenvalues alone
and using both eigenvalues and eigenvectors. In both cases, the minimum cost
Bayesian estimator will be used, with the following estimates of the standard

deviations of the initial parameters:
STD EI =200 Nm?, STD m,=02kg/m (all parameters).
UPDATING USING EIGENVALUES

Figs 6.11 and 6.12 shows the point receptances at coordinates 3 and 5
respectively, with additional random errors with standard deviation of 5% of
the FRF data. From these two FRFs, an estimate is made of the natural
frequencies of the beam if stiffness of 2.5x10% N/m and 8.0x100 N/m are
grounded in turn, at each of coordinates 3 and 5. The natural frequencies are
given by the points defined by o = -1/k, which in this case corresponds to
-127.9588 dB and -138.0618 dB on the right-hand-side of each resonance peak
in figs 6.11 and 6.12.

Because of errors in the FRF data, the location of the appropriate point is not

obvious. By inspecting the FRF data, one should be able to determine the zone
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Fig 6.11 Point receptance at coordinate 3, with errors (5% STD).
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Fig 6.12 Point receptance at coordinate 5, with errors (5% STD).
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which most likely contain the appropriate point. From this zone, the upper and
lower frequency bounds can be determined as well as the best guess of the
natural frequency of the perturbed structure. The upper and lower frequency
bounds could then be used to estimate the natural frequency uncertainty and

compute the eigenvalue weighting factor.

Tables 6.9 to 6.12 shows the frequency and receptance data determined from
the FRFs contaminated with random errors (figs 6.11 and 6.12). The tables
shows the way the receptance data changes through the zones which most likely
contains the natural frequencies of the perturbed beam.

Tables 6.9 and 6.10 are for the point receptances at coordinate 3. They will be
used to estimate the natural frequencies of the beam, when coordinate 3 is
perturbed by a grounded stiffness of 2.5x10% N/m (o = -127.9588 dB) and
8.0x106 N/m (o = -138.0618 dB) respectively. The first, second and third
frequency-receptance columns contain data to estimate the new natural
frequencies of the initially first, second and third elastic modes of the

unperturbed beam.

Tables 6.11 and 6.12 are for the point receptances at coordinate 5. They will
be used to estimate the natural frequencies of the beam when coordinate 5 is
perturbed by a grounded stiffness of 2.5x10% N/m and 8.0x106 N/m
respectively. The first and second frequency-receptance columns contains data
to estimate the new natural frequencies of the initially first and third elastic
modes of the unperturbed beam. The second elastic mode of the unperturbed
beam is unchanged by stiffness addition at coordinate 5, since this coordinate is

at the node and excitation of coordinate 5 does not excite this mode.
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Frequency| Receptance | Frequency| Receptance| Frequency| Receptance
(Hz) (dB) (Hz) (dB) (Hz) (dB)
156 -127.2879 | 405 -126.8381 | 750 -126.5936
137 -126.9985 | 406 -126.4369 | 751 -125.8006
158 -127.4498 | 407 -128.2685 | 752 -127.0408
159 -127.8606 | 408 -127.6271 | 753 -126.9857
160 -127.4510 | 409 -127.0961 | 754 -127.3033
161 -127.7230 | 410 -128.2835 | 755 -128.3544
162 -128.4316 | 411 -129.4890 | 756 -128.0611
163 -127.8416 | 412 -129.6331 | 757 -129.6888
164 -128.4315 | 413 -129.1859 | 758 -129.4080
165 -127.7756 | 414 -129.0285 | 759 -129.6689

TABLE 6.9 Receptance-frequency data: Excitation and measurement at 3.

(used to estimate the natural frequencies for k = 2.5x100 N/m at 3)

Frequency| Receptance | Frequency| Receptance| Frequency| Receptance
(Hz) (dB) (Hz) (dB) (Hz) (dB)
220 -137.1220 | 476 -137.3232 | 813 -137.5945
221 -137.7533 | 477 -138.3337 | 814 -137.6231
222 -139.1250 | 478 -137.0606 | 815 -137.7708
223 -137.7693 | 479 -137.6513 | 816 -137.3065
224 -137.9020 | 480 -138.0254 | 817 -138.2195
225 -137.8957 | 481 -137.5899 | 818 -138.5557
226 -138.7479 | 482 -138.1333 | 819 -138.8515
227 -139.6161 | 483 -137.9780 | 820 -138.4141
228 -139.4183 | 484 -139.1104 | 821 -138.8901
229 -139.2276 | 485 -138.1499 | 822 -138.6642

TABLE 6.10 Receptance-frequency data: Excitation and measurement at 3.
(used to estimate the natural frequencies for k = 8.0x100 N/m at 3)
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Frequency| Receptance | Frequency| Receptance
(Hz) (dB) (Hz) (dB)
228 -127.8455 | 756 -126.0470
229 -127.3450 | 757 -126.7895
230 -127.4389 | 758 -127.0789
231 -127.4656 | 759 -127.6993
232 -127.5609 | 760 -127.8497
233 -128.4708 | 761 -128.3980
234 -128.2305 | 762 -128.0497
235 -127.7833 | 763 -128.5686
236 -128.8645 | 764 -129.3462
237 -128.6633 | 765 -128.9297

TABLE 6.11 Receptance-frequency data: Excitation and measurement at 5.
(used to estimate the natural frequencies for k = 2.5x106 N/m at 5)

Frequency| Receptance | Frequency| Receptance
(Hz) (dB) (Hz) (dB)
341 -137.4715 | 824 -137.0517
342 -137.8329 | 825 -138.8693
343 -137.5394 | 826 -138.2031
344 -137.3313 | 827 -137.8143
345 -139.3196 | 828 -138.3880
346 -138.0933 | 829 -137.8733
347 -138.0164 | 830 -137.3525
348 -137.7034 | 831 -137.6860
349 -134.9004 | 832 -138.0508
350 -137.5768 | 833 -138.2185
351 -138.5325 | 834 -138.0948
352 -138.7568 | 835 -138.1620
353 -138.4149 | 836 -138.8460
354 -137.9511 | 837 -138.4890

TABLE 6.12 Receptance-frequency data: Excitation and measurement at 5.

(used to estimate the natural frequencies for k = 8.0x106 N/m at 5)
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From tables 6.9 to 6.12, natural frequencies of the beam with added stiffness
have been estimated by inspection, with uncertainties represented by standard

deviation of 2 Hz for all the frequencies. The estimated natural frequencies are
shown in table 6.13.

Added stiffness| Stiffness addition| Estimated natural frequencies (Hz)
(N/m) coordinate
Mode 1 Mode 2 Mode 3
2.5x10° 3 161 408 754
5 232 373 760
8.0x10° 3 224 480 817
5 349 373 832

TABLE 6.13 Estimated natural frequencies of the beam with added stiffness.

The estimated natural frequencies of the beam with added stiffness, and the
natural frequencies of the unperturbed beam (obtained by solving the
eigenvalue problem) were used to update the mass and stiffness parameters,
using the minimum cost Bayesian estimator. A standard deviation of 0.25 Hz
was assumed for the natural frequencies of the unperturbed beam whereas a
standard deviation of 2 Hz was used for all the frequencies of the perturbed
beam (estimated with the aid of tables 6.9 to 6.12). The standard deviations in

the natural frequencies were used to compute the eigenvalues weighting

matrix.
The updated parameters, after 4 iterations, are:

EI,=5222Nm?  EIp=4825 Nm? EI,=5101 Nm?
El, = 4740 Nm? m, =3.504kgm  my,=3.512kg/m
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m,=3444kgm  my, =3.440 kg/m.

Figs 6.13 and 6.14 shows the convergence of the stiffness and mass parameters

as percentage changes from their initial estimates.
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Fig 6.13 Convergence of the stiffness parameters.
(using eigenvalues; modes 1-3)
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Fig 6.14 Convergence of the mass parameters.

(using eigenvalues; modes 1-3)
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Fig 6.15 compares receptance prediction between the simulated system, initial
model and the updated model at coordinate 3. Fig 6.16 compares prediction of
the rotational receptance at coordinate 8 with an excitation at coordinate 3.
The receptance data for coordinate 8 was not used in the updating process. The
updated model is accurate enough to predict the FRF of the unmeasured

coordinate.

Simulated data (with errors) , Initial model - - - -, Updated model * * *

-100

Receptance o33 dB
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-2000 160 200 300 400 SO0 600 700 BOO 900 1000

Frequency Hz

Fig 6.15 Receptance comparison at the excitation coordinate 3.
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Fig 6.16 Rotational receptance prediction at coordinate 8.

UPDATING USING EIGENVALUES AND EIGENVECTORS

The analytical model is now to be updated using eigenvalues and eigenvectors
with stiffness additions of 2.5x100 N/m and 8.0x10 N/m at coordinate 3 only.
Only the first two elastic modes of the unperturbed beam and their
corresponding modes of the perturbed beam will be used in the updating
process. The mode shape data is measured at coordinates 3 and 7 only. The
eigen-data of the perturbed beam is to be determined from the FRF data of the
unperturbed beam, contaminated with random errors with zero mean and
standard deviation of 5%. The FRF data are the point receptance at coordinate
3 (fig 6.11) and the transfer receptance at coordinate 7 for an excitation at

coordinate 3 (fig 6.17). To determine the mode shape data, the natural

frequencies are to be established first from the point receptance data.
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Fig 6.17 Receptance at coordinate 7(with random errors), excitation at 3.

The natural frequencies are a subset of the natural frequency data determined
in the previous case, when eigenvalues alone were used in the updating
process, and are given in table 6.13. Using this natural frequency data, the
mode shapes of the perturbed beam, arbitrarily scaled, are determined from
the FRFs at coordinates 3 and 7. The mode shapes are given by the receptance
vectors at frequencies corresponding the estimated natural frequencies of the
perturbed beam. Table 6.14 shows the mode shape data (receptance data of the
unperturbed beam) and estimates of the upper and lower bounds. The upper
and lower bounds of the mode shape data are determined by the upper and
lower bounds of the estimated natural frequencies (2 Hz from the nominal
values). The differences between the upper and the nominal values and
between the nominal and the lower values of the mode shape data are averaged
out and treated as standard deviations, which will be used in the formulation of
the eigenvector weighting matrix. As the modal masses are not known, the

analytical model's modal masses (updated after each iteration) will be used in
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Stiffness at | Estimated Mode shape data at Mode shape data at
coordinate 3| natural coordinate 3 coordinate 7

frequency (receptance data) x10 = (receptance data) x107
(x106 N/m) | (uz) | Nominalllower fupper | Nominall lower |upper
value |limit | limit value limit |limit
2.3 161 4121 |3.890 | 4.365 1.778 1.698 | 1.862

408 4.169 |3.715 | 4.677 | -4.169 | -4.518 |[-3.846

8.0 224 1274|1202 | 1.349 | 1.380 1303 | 1.460

430 1.259 |1.189 | 1.334 | -1.334 | -1.445 |-1.230

TABLE 6.14 Mode shape data estimated using receptance data.

the normalization of the mode shape vectors. The standard deviations are
normalized too. Before this is effected, the estimated mode shape vectors
(receptance data) are to be scaled such that the highest term in each vector is
unity. The analytical modal masses will then be determined using analytical
eigenvectors scaled such that the coordinates corresponding to unity
displacements in the estimated modes of the perturbed system, are also unity in
the analytical vectors. This ensures some compatibility between the estimated

eigenvectors and the normalizing modal masses.

Table 6.15 shows the estimated mode shape vectors of the perturbed and
unperturbed beam normalized to maximum displacements of unity, as well as
their corresponding standard deviations. In a practical situation, the eigen-data
of the unperturbed structure will be determined by conventional modal
analysis methods. In this numerical example, the eigenvectors and natural

frequencies used for the unperturbed beam are the true values determined by
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solving the eigenvalue problem, but they are assumed to have uncertainty
expressed by assumed standard deviations of 0.01 in the eigenvector data and

0.25 Hz in the natural frequencies.

k=2.5x10° k=8.0x10°
(N/m) (N/m)
Frequency (Hz) 161 408 224 480
Mode shape | Coordinate 3 1 i 0.923 |-0.9437
data (0.06) | (0.12) | (0.05) | (0.06)
Coordinate 7| 0.4315 | -1 1 1
(0.02) | (0.08) | (0.06) | (0.07)

TABLE 6.15 Mode shapes of the beam with added stiffness (normalized to

highest displacements of unity): values in brackets are STD estimates.

The following parameters were obtained by updating the initial analytical

model, using the minimum cost Bayesian estimator, in 10 iteration steps.

El, = 5154 Nm?
El, = 4761 Nm?2

EI, = 4850 Nm? EI, = 5079 Nm?2

m,; = 3.494 kg/m
m,3 = 3.400 kg/m

my, = 3.478 kg/m
My, =3.513 kg/m
f,=1347Hz f,=3733Hz

Figs 6.18 and 6.19 shows the convergence of the stiffness and mass parameters

as percentage changes from their initial estimates.
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Fig 6.18 Convergence of the stiffness parameters .

(using eigenvalues and eigenvectors; modes 1 and 2)

9% Change in mass parameters
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Fig 6.19 Convergence of the mass parameters.

(using eigenvalues and eigenvectors; modes 1 and 2)

It can be seen that, the accuracy of the updated parameters is not very much

different from the previous case when eigenvalues only were used. Parameter

convergence rate, however, is much slowe

improvement from example 6.1, where an unconstrained optimization was

used.
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The dynamic behaviour prediction of the updated model will now be tested in
two simulated cases. First, coordinate 7 is excited and coordinate 3 is
measured. Secondly, the beam is configured as an 8 DOF cantilever with its
left end fixed, fig 6.20. Coordinate 1 of the cantilever beam is then excited and
rotational coordinate 4 is measured. The receptance predictions are compared
between the model based on correct parameters, initial parameters and the
updated parameters. Figs 6.21 and 6.22 shows the comparison for the first and
second cases respectively and both shows good agreement with the simulated
FRF.

15 A STy a
VR A A
2 4 6 8
Excitation
Fig 6.20 Cantilever beam
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Fig 6.21 Receptance prediction at coordinate 3 of the free beam.
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Fig 6.22 Receptance prediction at coordinate 4 of the cantilever beam.
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In example 6.2, the natural frequencies of the perturbed beam were
determined by inspecting the point receptance data of the unperturbed beam,
and establish the value of f for which o = -1/k. Problems of accuracy may arise
if the randomness of the data is such that it is difficult to confine the zone
containing the required natural frequency over a narrow frequency range.
Improvements could be possible by employing a curve fitting technique over
the zoomed frequency range of interest for the natural frequency of interest. It
is fairly reasonable to assume that the FRF over this range can be adequately
expressed by a low order polynomial. The adequacy of fitting a first order
polynomial by a least squares method will be investigated. Thus once the zone
containing the natural frequency of interest is identified, by inspection of the
receptance data, a curve fitting process is performed over this zone. The
natural frequency is then computed by substituting -1/k for o in the curve
fitted expression. This approach enables the automation of the process for

obtaining the natural frequencies of the perturbed structure.

Consider the frequency-receptance data of tables 6.9 to 6.12, which corres-
ponds to the point receptances at coordinates 3 and 5 of the free beam and
stiffness additions of 2.5x100 N/m and 8.0x10 N/m at these coordinates. By
least squares fitting of the data, using a first order polynomial, the natural
frequencies of the beam with added stiffness were determined. Table 6.16
show the natural frequencies determined by curve fitting, as compared to the
natural frequencies determined by inspection and exact natural frequencies
determined by solving the perturbed eigenvalue problem. The designations
first mode, second mode and third mode, in the table, refers to the natural
frequencies of the modes which were the first, second and third elastic modes
of the unperturbed beam. Figs 6.23 to 6.28 show the curve fitted plots, where
the dashed lines represents the regenerated FRF data. For brevity, only the

plots for coordinate 3 are shown.
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Added stiffness| Stiffness addition Natural frequencies (Hz)
(x10 SN/m ) | coordinate Estimated by | Estimatedby | Exact
inspection curve fitting

o 2.5 3 161.0 162.60 162.35
“’3‘ 5 232.0 232.44 232.09
Hiode 8.0 3 224.0 222.68 222.56
5 349.0 348 12 346.59
2:5 3 408.0 408.78 409.82

Second 5 : S -
mode 8.0 3 480.0 481.63 481.94

5 - . "
. 2.5 3 754.0 754.66 754.86

Eﬁ‘gf 5 760.0 760.76 761.2

8.0 3 817.0 816.71 816.56
5 832.0 832.09 831.03

TABLE 6.16 Estimated and exact natural frequencies
of the beam with added stiffness.
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Fig 6.23 Curve fitting the FRF data at coordinate 3.

k= 2.5x100 N/m, frequency range: 156 Hz to 165 Hz).
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Fig 6.24 Curve fitting the FRF data at coordinate 3.
(k =2.5x106 N/m, frequency range: 405 Hz to 414 Hz).
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Fig 6.25 Curve fitting the FRF data at coordinate 3.
(k= 2.5x100 N/m, frequency range: 750 Hz to 759 Hz)
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Fig 6.26 Curve fitting the FRF data at coordinate 3.
(k= 8.0x100 N/m, frequency range: 220 Hz to 229 Hz)
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Fig 6.27 Curve fitting the FRF data at coordinate 3.

(k= 8.0x100 N/m, frequency range: 476 Hz to 485 Hz)
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Fig 6.28 Curve fitting the FRF data at coordinate 3.
(k= 8.0x100 N/m, frequency range: 813 Hz to 822 Hz)

EXAMPLE 6.3

A plane frame, modelled by a 39 DOF FE model, is shown in fig 6.29 where
only motion in the plane of the frame is considered. The frame is unrestrained
and is made of 5 beam members, denoted by B1, . . BS. Table 6.17 show the
mass and stiffness data of the beam members, used to simulate a physical
system. The mass and stiffness data corresponds to a frame made of steel and
with cross-sectional dimensions given in the last column in the table. Using this

data, the natural frequencies of the first five elastic modes are:

f1=56.07 Hz f,=58.95Hz f3=70.50 Hz
f1=9821Hz f5=109.75 Hz.

The initial analytical model is formulated using the parameters shown in table

6.18 and results in the following natural frequencies:

f1a=54.60 Hz fr.=61.34 Hz fra="74.04 Hz
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Jaa =96.37Hz J5,=110.55 Hz.

< 05m < 05m >|< 0.5m 0.5m4
[+ e =t

4 7 10

BIE3+GL¢’¢—»|15T
Yoy LA v

2

Fig 6.29 Plane frame model.

EI Nm?2 ) | m, (kg/m) EA (x108N)| Cross-section
(mm x mm)
B1 | 21333 6.28 1.6 20x40
B2 5208 3.925 1.0 20x25
B3 | 14292 5.495 1.4 20x35
B4 | 9000 4.71 1.2 20x30
BS | 9000 4.71 12 20x30

TABLE 6.17 Parameters of the simulated frame.
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H Nm2 |m, kgm | EA x108N

B1 | 25000 (5000)| 6.0(0.5) 1.6

B2 | 6000 (500) | 3.5(0.5) 1.0

B3 | 10000 (3000)| 5.0(0.5) 1.4

B4 | 11000 (2000)| 5.5(0.5) 12

B5 | 11000 (2000)| 5.5(0.5) 1.2

TABLE 6.18 Initial parameters and their standard deviation in brackets.

In this example, correct values of the axial stiffness parameters in the
analytical model have been assumed and are not updated. It should be noted
that in this example and in many other practical cases, axial flexibility of the
beam elements usually have very little influence on the dynamic characteristics

in the frequency range of interest and are therefore not updated.

Figs 6.30 and 6.31 show the point receptances of the simulated system and the
initial analytical model, at coordinates 24 and 31. To simulate measurement
errors, the receptances of the simulated system have been contaminated by

random errors with zero mean and standard deviation of 10%.

The analytical model is to be updated using the simulated point receptances at
coordinates 24 and 31 by numerical simulation of additional stiffeners at these
coordinates (figs 6.30 and 6.31). With error-free data, the parameters should
converge to the exact values, if coordinates 24 and 31 are perturbed physi-
cally, see Friswell, Nalitolela and Penny (1990) for a very similar example.

301



Receptance o424 4B

Receptance o3y 31 dB

Simulated system (with 10% random errors) , Initial model - - - -

-
X}
o
1

—
I
o
T

-160

-180

55 60 65 70 75 80
Frequency Hz

-200
50
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Fig 6.31 Simulated and initial model point receptances at coordinate 31.
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In this example, numerical simulation of the additional stiffness is to be
performed using the receptance data contaminated by random errors. Four
different stiffness additions will be simulated at each of coordinates 24 and 31.
Eigenvalues of two modes of the unperturbed structure and two modes of the
perturbed structure, for each added stiffness, will be used in the updating
process. These are the eigenvalues of the second and third elastic modes of the
unperturbed structure and their corresponding new eigenvalues when the
structure is perturbed. The perturbing stiffness are 4.0x10° N/m, 1.0x100
N/m, 2.5x100 N/m and 8.0x10% N/m. The natural frequencies of the frame
with added stiffness are given by the frequencies at which the point receptances
are equal to -1/k. The exact location of the natural frequencies are between the
resonance peak and its next antiresonance, for the second and third elastic
modes (figs 6.30 and 6.31) and are given by the following receptance

magnitudes:

k=4.0x105N/m o =2.5x100m/N
k=10x100N/m  o;=1.0x100m/N
k=25x100N/m  a;=4.0x10"7 m/N
k=80x100N/m oy =1.25x10"7 m/N

Tables 6.19 to 6.22 show the frequency-receptance (magnitude) data at 0.1 Hz
resolution zoomed across the zones which, by inspection, the natural frequen-

cies of the frame with added stiffness are most likely to be.

From the tables, the natural frequencies of the frame with added stiffness and
their standard deviations were estimated and are shown in table 6.23. The
standard deviations, which are used to compute the eigenvalue variances
(weighting factors), have been simply approximated by taking the difference

between the estimated nominal frequencies and their upper/lower bounds.
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1/k Frequency | Receptance | 1/k Frequency| Receptance
(x10°6 magnitude (x106 magnitude
mN) | (Hz) x100 Ny | mN) | Hz  |(x10°6m/N)

2.5 60.6 3.5575 0.4 64.8 0.6278

60.7 3.3987 64.9 0.5148
60.8 2.9055 65.0 0.4457
60.9 2.9489 65.1 0.3711
61.0 2.6076 65.2 0.4484
61.1 2.6424 65.3 0.5105
61.2 2.1166 65.4 0.4152
61.3 2.0959 65.5 0.4112
61.4 2.4562 65.6 0.3513
61.5 1.9266 65.7 0.3718
1.0 62.9 1.2504 0.125 66.2 0.2402
63.0 1.1524 66.3 0.2498
63.1 0.9299 66.4 0.1963
63.2 1.0557 66.5 0.1914
63.3 1.0225 66.6 0.1357
63.4 0.9088 66.7 0.1520
63.5 0.9382 66.8 0.1370
63.6 1.1023 66.9 0.0902
63.7 0.8054 67.0 0.0678
63.8 0.6811 67.1 0.0496

TABLE 6.19 Receptance data of the frame at excitation coordinate 24.
This data is for the estimation of the new natural frequencies of

the originally second elastic mode of the unperturbed free

frame, when stiffness additions are simulated at coordinate 24.
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1/k Frequency| Receptance | 1/k Frequency| Receptance
(x10°® magnitude (x10°6 magnitude

m/N) | H)  [(x100mN)| mN) | H) [ (x100mm)

25 70.7 6.0719 0.4 7123 0.5341

70.8 3.3062 72.4 0.4506

70.9 2.3233 72.5 0.4130

71.0 1.9681 72.6 0.3581

71.1 1.8267 727 0.3737

1.2 1.6085 72.8 0.3967

1.0 713 . 1.3466 72.9 0.3827

71.4 1.1369 73.0 0.3954

71.5 1.2348 ) | 0.3424

71.6 0.8850 732 0.2424

71.7 0.8708 0.125 74.3 0.1615

71.8 0.7323 74.4 0.1536

74.5 0.1144

74.6 0.1102

74.7 0.0888

74.8 0.0888

TABLE 6.20 Receptance data of the frame at the excitation coordinate 24.
This data is for the estimation of the new natural frequencies of

the originally third elastic mode of the unperturbed free frame,

when stiffness additions are simulated at coordinate 24.
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1/k Frequency| Receptance | 1/k Frequency| Receptance
(x10-6 magnitude (x10°6 magnitude
m/N) (Hz) (x10“6m/N) m/N) (Hz) (x10-6 m/N)

25 60.4 3.1965 0.4 65.7 0.5613
60.5 2.7300 65.8 0.4929
60.6 2.7281 65.9 0.4629
60.7 2.1998 66.0 0.4091
60.8 2.1895 66.1 0.4418
60.9 2.2284 66.2 0.3593
61.0 2.2946 66.3 0.3942
61.1 1.9017 66.4 0.3662

1.0 63.1 1.1388 0.125 66.8 0.2664
63.2 1.0529 66.9 0.2198
63.3 1.0439 67.0 0.2043
63.4 0.8578 67.1 0.1623
63.5 1.0735 67.2 0.1410
63.6 1.0643 67.3 0.1439
63.7 0.8903 67.4 0.1006
63.8 0.9647 67.5 0.1072
63.9 0.989%4 67.6 0.0537
64.0 0.9501 67.7 0.0307

TABLE 6.21 Receptance data of the frame at excitation coordinate 31.
This data is for the estimation of the new natural frequencies of

the originally second elastic mode of the unperturbed free

frame, when stiffness additions are simulated at coordinate 31.
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1/k Frequency| Receptance | 1/k Frequency| Receptance
6 magnitude JFs magnitude
(x10 (x10
m/N) (Hz) - | (x106m/N)| m/N) | (Hz) |(x10-6 m/N)

2.5 70.8 5.3455 0.4 3.5 0.5195
70.9 33175 73.6 0.3963
71.0 2.8195 T 0.4325
71.1 2.4282 73.8 0.4930
71.2 2.0963 13.9 0.4211
71.3 1.8056 74.0 0.4256
71.4 1.5898 74.1 0.4256
71.5 1.7024 74.2 0.3190

1.0 71.6 1.2105 74.3 0.3140
71.7 1.1410 0.125 76.0 0.1738
71.8 1.1668 76.1 0.1433
71.9 1.0132 76.2 0.1476
72.0 1.0891 76.3 0.1108
72.1 1.0680 76.4 0.1070
72.2 0.9147 76.5 0.1022
72.3 0.8957 76.6 0.0901
72.4 0.7251 76.7 0.0875

TABLE 6.22 Receptance data of the frame at excitation coordinate 31.
This data is for the estimation of the new natural frequencies of

the originally third elastic mode of the unperturbed free frame,

when stiffness additions are simulated at coordinate 31.
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Added stiffness| Stiffness addition] Estimated natural frequency (Hz)
coordinate and standard deviation.
(x10® N/m) fa | STDL | f3 STDf,
4.0 24 61.1 0.2 70.9 0.1
31 60.7 0.2 T1.1 0.1
1.0 24 63.3 0.2 71.5 0.1
) 31 635 0.3 72.0 0.2
2.5 24 65.2 0.3 T2 0.3
31 66.1 0.2 73.9 0.2
24 66.7 0.2 74.5 0.2
8.0 31 674 |01 |763 | 02

TABLE 6.23 Natural frequency and standard deviation estimates of the

frame with added stiffness.

The correct natural frequencies of the unperturbed frame (second and third
elastic modes only) were taken to represent measured natural frequencies,
obtained by modal analysis, but with an uncertainty represented by a standard

deviation of 0.1 Hz.

Using the natural frequencies of the frame with added stiffness, table 6.23, and
of the unperturbed frame, mass and stiffness parameters were determined by
the minimum cost Bayesian approach. The following updated parameters were
obtained in 5 iteration steps. The natural frequencies of the first three elastic
modes of the updated model are also given (second and third modes were used

in the updating process).

El3;=19690 Nm?2
Elp, = 9380 Nm2
my81=6.11 kg/m
MyB4=5.07 kg/m

Elgy= 5932 Nm?2
Elgs < 9349 Nm2
myB2 =3.31 kg/n‘l

My Bs = 4.88 kg/m.
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f1=5222Hz f,=58.94 Hz f3=70.52 Hz.

Figs 6.32 and 6.33 show the convergence of the mass and stiffness parameters
as percentage changes from their initial estimates. Fig 6.34 to 6.36 compare
receptance prediction of the analytical model, the updated model and the
simulated system at coordinates different from the ones used in the updating
process. These are the translational receptance at coordinate 4, and rotational
receptances at coordinates 5 and 11. In each case, 31 is the excitation
coordinate. It can be seen that the updated model's receptance prediction is
good. Note that, the frequency range used in the updating process is between
58 Hz and 77 Hz approximately.

95 Change in mass parameters

Iteration step

Fig 6.32 Convergence of the mass parameters of the frame.
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Fig 6.33 Convergence of the stiffness parameters of the frame.
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Fig 6.34 Translational receptance prediction at coordinate 4.
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-120

-140

-160

-180

880 20 40 60 80 100 120

Frequency Hz

Fig 6.36 Rotational receptance prediction at coordinate 11.
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6.3.2 Simulation example: Lightly damped structure.

So far, the numerical examples have assumed that the system under investiga-
tion is undamped and therefore the natural frequencies of the system when
perturbed by real stiffness are simply obtained from a solution of (6.13).
Equation (6.13) is based on the fact that at resonant frequency, the receptance
of an undamped system becomes infinity. Practical structures are always
damped and (6.13) is therefore not applicable since 1 is not zero. Indeed, it can
be seen that, the receptances of practical structures are complex and (6.13)
cannot be solved for a real k. However, an approximation is feasible by
considering the fact that, for lightly damped structures, at frequencies away
from resonance and antiresonance, its receptance amplitude is usually very
close to the receptance of the undamped system and o.; is almost real. Thus, as
the phase angle in o; approaches zero (or 180°), o; approaches the receptance
of the undamped system. In this case, (6.13) can be used to estimate the natural
frequencies of the undamped system with added stiffness. Once the natural
frequencies of the undamped system are determined, an undamped model can
be established. If the system can be adequately represented by a proportionally
damped model, the updated undamped model can be used to determine the
damping matrix by using orthogonality equations. If damping levels are high
such that the undamped approximation is not practical, then a more
generalized approach to determine the eigen-data of the perturbed system has
to be used. This involves computation of the FRF of the perturbed system
using the FRF of the unperturbed system, and finding the eigen-data using a
modal analysis algorithm.

It is difficult to give rigid rules on the choice of the limiting phase angles in o;
before which the undamped approximation should not be used, as it also

depends on the degree of demanded accuracy. It is reasonable, however, to use
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a figure of +(-)100 of the in-phase or out-of-phase condition, as is commonly

used in deciding whether measured modes could be treated as real modes.

EXAMPLE 6.4

The 4 elements, 10 DOF free beam of example 6.1 is now simulated with a
damping matrix proportional to the stiffness matrix. The damping
proportionality factor, which in this case is the same as the damping loss
factor, is 0.02. The error-free point receptances (magnitude and phase plots)
at coordinates 3 and 5 are shown in figs 6.37 to 6.40. It is required to update
the initial model, given in example 6.1, by stiffness addition where the natural
frequencies of the beam with added stiffness are to be estimated from the
receptance data of the unperturbed beam. Let the added stiffness and the
stiffness addition coordinates be the same as in example 6.1 (2}{106 N/m and

1.0x107 N/m at coordinates 3 and 5).
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Fig 6.37 Point receptance (magnitude) at coordinate 3.
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Fig 6.38 Phase angles for the point receptance at coordinate 3.
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Fig 6.39 Point receptance (magnitude) at coordinate 5.
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Fig 6.40 Phase angles for the point receptance at coordinate 5.

By inspection of the receptance data, at 0.25 Hz resolution, the natural
frequencies of the beam with added stiffness are estimated as shown in table
6.24. Both the natural frequency estimates and phase angles in the
corresponding receptance data are tabulated. It can be seen that the phase
angles in the receptance data for the estimation of the new natural frequencies
of the originally third elastic mode, with stiffness addition of 2x106 N/m, are
more than the 10° limit of the out-of-phase or in-phase condition.
Consequently the estimated natural frequencies of this mode are likely to
contain the biggest errors. This is confirmed by comparing table 6.24 with
table 6.25 (columns 2,4,5 and 7), where the later table gives the correct natural
frequencies of the beam with added stiffness as determined by solving the
eigenvalue problem. Note that, in these tables, there is no entry for the natural
frequencies of mode 2 when stiffness is added at coordinate 5. This coordinate
is a node for the mode in question and there is no change in natural frequency

from the unperturbed case.
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Excitation and measurement Excitation and measurement
at coordinate 3 at coordinate 5

k=2x100 | &k =1x107 k =2x100 k = 1x107

(N/m) (N/m) (N/m) (N/m)

¥ Phase f Phase] f Phase| f Phase

(Hz) | (deg) | (Hz) |(deg.)| (Hz) (deg)| (Hz) | (deg.)

Mode 1 | 151.5] -179.2 | 231.25| 2.6 215501 -179.4 | 371.25]1 0.8
Mode 2 | 402.0| -173.4 | 501.00 | 2.2 - - - -
Mode 3 | 748.5| -157.0 | 842.25 | 2.5 754251 -162.2 | 857.75| 2.5

TABLE 6.24 Natural frequency estimates of the beam with added stiffness.
(light proportional damping, k = 2x10% N/m and 1x107 N/m)

Stiffness addition Stiffness addition
at coordinate 3 at coordinate 5
k=24109 k=8x108| & =1x107 | k =2x106 | k=8x106 | k =1x107

(N/m) (N/m) (N/m) (N/m) (N/m)

f f i f I J

(Hz) (Hz) (Hz) (Hz) (Hz) (Hz)
Mode1 | 151.39 | 222.57 | 231.16 215.59 | 346.61 37127
Mode 2 | 402.31 | 481.95 | 500.93 - - -
Mode 3 | 750.17 | 816.55 | 842.44 755.35 | 831.03 857.86

TABLE 6.25 Correct natural frequencies of the beam with added stiffness.

To minimize errors, the selection of the additional stiffness should ensure that

the frequencies which become the new natural frequencies of the perturbed

structure, correspond to point receptance data which is very close to the in-
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phase or out-of-phase condition. For example, if we select stiffness addition of
8x100 N/m instead of 2.0x10% N/m, the estimated natural frequencies and the
receptance phase angles at coordinates 3 and 5 are now shown in table 6.26. It
can be seen that the phase angles are much smaller and the errors in the
estimated natural frequencies are much reduced. Even without comparing
with the correct natural frequencies in table 6.25, it can now be reasonably
assumed that the natural frequencies in table 6.26 are a good approximation of

the natural frequencies of the undamped beam with added stiffness.

Excitation and measurement Excitation and measurement
at coordinate 3 at coordinate 5

k=8x100 | k =1x107 k =8x100 k = 1x107

(N/m) (N/m) (N/m) (N/m)

f Phase | f Phase| f Phase| f Phase

(Hz) |(deg) | (Hz) ([(deg)| (Hz) [ (deg)| (Hz) | (deg.)
Model | 222.25] 1.9 231251 2.6 346.5 | 0.6 371251 0.8

Mode2 | 482.00] 2.1 | 501.00| 2.2 - - § :
Mode 3 | 816.25| 3.5 | 84225) 25 | 830.75( 3.3 857.75| 2.5

TABLE 6.26 Natural frequency estimates of the beam with added stiffness.
(light proportional damping, k = 8x106 N/m and 1x107 N/m)

Although the FRF data is simulated error-free, the natural frequencies
obviously contains errors of a magnitude which is at least of the order of
magnitude as the resolution of the frequency axis (0.25 Hz in this case).
Assume in this case, the standard deviation in the natural frequency data is
given by 0.25 Hz. Using an unconstrained weighted least squares solution

method, the following updated parameters (of an undamped model) were
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obtained in five iteration steps.

El, =4840 Nm?  EI,= 5147 Nm? EI, = 4776 Nm?
El,=5068 Nm2  m,=3452kg/m  m,=23.548 kg/m
m3=347Tkgm  my,=3.414 kg/m.

fi=13477Hz f,=373.02Hz f,="732.96 Hz.

As damping is "proportional”, the undamped model's eigenvectors are the
same as the eigenvectors of the damped model. Using the damping factors
measured on the unperturbed structure, and the updated undamped model
matrices and eigen-data, a least squares solution for the damping proportiona-
lity constants with respect to the mass and stiffness matrices can be determined
from (6.17). Note that (6.17) is derived from (6.15), and U, wjz are the
eigen-data of the undamped updated model, whereas 7; are the damping

factors measured on the unperturbed structure.

T 2
2
UK +x MJU=n0, (6.16)
2 2
X+ Xm =10, 6.17)

The number of measured modes is usually greater than one, and (6.17) can
therefore be assembled in a matrix equation for all measured modes of the
unperturbed structure, and solved for the proportionality constants ., and ;.
In this example, three modes of the unperturbed beam were simulated to have
been measured, withm; (j = 1, 2, 3) of 0.02. Using the computed eigenvalues of

the first three elastic modes of the updated, undamped model, the following
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damping proportionality constants are obtained:
% = 0.0200 Y = -1.27x10°11,

Ym 1S practically zero. Thus an updated model is obtained with a damping

matrix proportional to the stiffness matrix, by a factor of 0.02.

Figs 6.41 and 6.42 compare receptance prediction (magnitude) between the
initial model, the updated model and the simulated system at coordinates 3 and
9, with an excitation at coordinate 3. They both show good agreement in the
FRFs between the simulated and the updated models.

System (damped) ____, Initial model (undamped) - - - - , Updated model (damped) * * *

-80 p
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Fig 6.41 Comparing receptance prediction at coordinate 3.
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Fig 6.42 Comparing receptance prediction at coordinate 9.
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6.4 Generalization for system with damping.

6.4.1 Extraction of the eigen-data of the perturbed structure.

A simplified procedure of extracting the eigen-data of the perturbed structure
using FRF data of the unperturbed structure has been presented in Section 6.3.
The procedure, which is based on solving (6.13) or a similar expression for
mass addition, by inspection of the point receptance data is most suitable for
systems with very light damping. Its main difficulty is that o; is generally
complex, and for a real additional stiffness or mass, a solution of (6.13) is
generally not possible. The simplified procedure assumes that if the phase
angle in o; is close to zero or 1809, its magnitude is very close to that of an
undamped structure. The natural frequencies of the perturbed undamped
structure may therefore be determined by replacing the complex o; by its
magnitude and solve the real equation for . The application of this simplified
procedure is feasible for lightly damped structures only since for relatively
high damping levels, it is usually the case that the zone over which the
receptance magnitude of the damped and undamped systems are in agreement,

is rather limited.

A generalized procedure of extracting eigen-data of the perturbed system
using FRF data of the unperturbed system, irrespective of the damping levels
and non-proportionality is now investigated. It is based on the reconstruction
of the FRF of the perturbed structure from the FRF data of the unperturbed
structure using (6.8) or (6.9). The eigen-data is then extracted from the
reconstructed FRF using a modal analysis algorithm. Any of the well
established modal analysis algorithms may be used, but attention has to be paid
to the fact that random errors in the reconstructed FRF may not have the same

distribution as random errors in the FRF data of the unperturbed structure. In
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this case, (6.10) and (6.11) may be used to estimate the weighting factors of the
reconstructed FRF data.

6.4.2 Parameter estimation.

The generalized method will extract natural frequencies and damping factors
and, if needed, mode shape vectors of the perturbed structure. If a model with
a damping matrix is desired, the sensitivity matrix, which now includes the
sensitivity of the eigen-data with respect to the damping parameters, will
generally become complex. Consider the matrix equation (6.18), where G is
the eigenvalue (or both eigenvalue and eigenvector) sensitivity matrix, and b is
the vector of difference between the eigenvalues (or both eigenvalues and

eigenvectors) of the system and the analytical model (before as well as after
mass or stiffness addition).

G{As}=b (6.18)

Both G and b are generally complex. Equation (6.18) can be written as a set of
two real matrix equations by equating, separately, the real parts on both sides

of the equation and the imaginary parts. The two sets of the equations can be

combined into a single overdetermined equation, (6.19).
Real(G) Agh= Real(b)
[Imag(G)]{ o {hnag(b)} 2

Parameter update on the current analytical model, can be determined using the

minimum cost Bayesian estimator, derived in Chapter 4, by making the

following substitution in (4.15).
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Real(G)

[:I]l] is replaced by [Imag G)

U

AL Real(b)
{AU} is replaced by {Imag (b)}

W, y is replaced by a diagonal weighting matrix, whose terms in the first half
of its main diagonal are reciprocals of the variances of the real parts of the
eigen-data of the structure, and the terms in the second half of its main

diagonal are reciprocals of the variances of the imaginary parts.

Partitioning the matrix equation into real and imaginary parts and
reassembling into a single overdetermined equation, in the form of (6.18), is
not a new approach. In this work, this approach is adopted in the context of a
new concept of how to use the experimental data to update an analytically
derived model. Since parameter estimation is based on iterative adjustments of
the initial analytical model, it is necessary that initial damping parameters are
available. The determination of a reasonable initial damping matrix by
theoretical considerations alone is difficult. The finite element model is
typically undamped. As many structural systems may be adequately
represented by a system with proportional damping, some possibilities do exist

to get around this difficulty.

One possibility is to assume initial damping proportionality constants of zero.

The updating process is then performed to improve on the initial estimates.
A second possibility is to use the analytical model and measured damping

factors to find some estimates of the damping proportionality constants by

solving, in a least squares sense, the orthogonality equation of the damping
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matrix with respect to the analytical eigenvectors. This is effectively using
(6.17), or a similar expression in case of proportional viscous damping, where
w; are derived from the initial analytical model and 7; are measured. X, and

Am becomes the initial estimates.

A third possibility is to estimate the undamped eigen-data of the structure from
measured eigen-data of the perturbed and unperturbed structure. For
structures which are very close to being proportionally damped, the errors
involved in the estimation are usually very small. The estimated eigen-data of
the undamped structure is then used to update the undamped analytical model.
The updated analytical model and measured damping factors are then used to
find a least squares solution of the damping proportionality constants using
orthogonality equation (6.15) which results in (6.17). This method is similar
to that used in example (6.4). The advantage of this method is, the damping
parameters are not determined by an iterative updating. The equation used to
determine the damping parameters, (6.17), involves only two unknowns and
tends to be numerically more stable. Unconstrained least squares solution
method can be used and therefore the weighting factors for the initial damping

parameters need not be assumed.

For systems which have to be modelled by a model with non-proportional
damping, progress is difficult since determining initial analytical damping
parameters of practical structures is difficult and there is no reliable method.
The work reported in this thesis does not involve the details of analytical
modelling of the damping matrix, as that is a rather special problem. However,
a simulation study will be performed, by assuming initial damping

model/parameters are available.
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6.4.3 Simulation example
EXAMPLE 6.5

The 4 elements, 10 DOF free beam of example 6.1 (fig 6.2), is simulated with
non-proportional hysteretic damping. Each element damping matrix is
assumed to be proportional to element stiffness matrix. Damping matrix
non-proportionality is achieved by using different proportionality constants
for different elements. Thus, the system is simulated by replacing the real

stiffness parameters by complex stiffness parameters, which are given as:

EI, = 5000(1+j0.002) Nm? EI, = 5000(1+j0.05) Nm?
EI = 5000(1+j0.002) Nm?2 EI, = 5000(1+j0.05) NmZ.

The FE model, to be updated by stiffness addition, is the same as in example
6.1. The additional stiffness are 2x10® N/m and 107 N/m at coordinates 3 as
well as 5. These are the same stiffness as in example 6.1 with the same stiffness
addition coordinates. In this case, the FRF for the beam with added stiffness at
the excitation coordinate (coordinate 3 and then 5) will be derived from the
FRF of the beam without additional stiffness. The excitation coordinates are
the coordinates to be perturbed. The eigen-data of the beam before and after
adding stiffness will be determined by modal analysis, using Dobson's method
(Dobson 1986, 1987). To test the idea, no error is added to the FRF data. Any
errors that may arise in the eigen-data should be due to the modal analysis
algorithm and are expected to be very small. Therefore an unconstrained least
squares solution method, in this case, should result is accurate parameters. Figs
6.43 and 6.44 shows the point receptances at coordinates 3 and 5. Figs
6.45-6.46 and figs 6.47-6.48 shows the reconstructed receptances with
stiffness addition of 2x10% N/m and 107 N/m respectively.
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Fig 6.43 Point receptances of the beam (non-proportional damping)

and the initial model at coordinate 3.
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Fig 6.44 Point receptances of the beam (non-proportional damping)

and the initial model at coordinate 5.
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Fig 6.45 Reconstructed beam receptance at coordinate3.

(non-proportional damping, k = 2x106 N/m)
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Fig 6.46 Reconstructed beam receptance at coordinate 5.

(non-proportional damping, k = 2x100 N/m)
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Fig 6.47 Reconstructed beam receptance at coordinate 3.

(non-proportional damping, k = 107 N/m).
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Fig 6.48 Reconstructed beam receptance at coordinate 5.

(non-proportional damping, k£ = 107 N/m).
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Table 6.27 shows the identified natural frequencies and damping loss factors
of the system before and after stiffness addition. The identified natural
frequencies and damping factors were used to update the initial model mass
and complex stiffness parameters of the four beam elements. As the initial
model is undamped, the initial stiffness parameters are all real. The updated

parameters, after 5 iterations, are:

EI, = 4997(1+j0.0020) Nm? EI, = 5005(1+j0.0493) Nm?
EI, = 4994(1+j0.0023) Nm? EI, = 5002(1+j0.0502) Nm?2

m, =349kgm  m,=3501kgm  my=23.500kg/m
m,, = 3.500 kg/m

It can be seen that the updated parameters, which were obtained using an
ordinary least squares solution without weighting, are reasonably accurate.
The result confirm that the eigen-data of the perturbed structure could be
determined without physical addition of the stiffness or mass to the structure.
In a practical situation with measurement noise, the identification of
sufficiently accurate eigen-data simply depends on the capability of the modal
analysis algorithm in coping with measurement noise. Usually this is feasible,

as it will be shown in the experimental example.
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Additional| Stiffness Natural frequency (Hz) and
Stiffness addition damping factor (in bracket)
(N/m) coordinate I A I
0 - 134.77 373.39 733.26
(0.0259) (0.0259) (0.0259)
2x10° 3 151.39 402.40 750.35
(0.0071) (0.0236) (0.0242)
5 215.62 373.39 755.55
(0.0093) (0.0259) (0.0243)
=107 3 231.20 501.04 842.59
(0.0139) (0.0218) (0.0162)
5 371.34 373.39 858.01
(0.0105) (0.0259) (0.0178)

TABLE 6.27 Natural frequencies and damping factors identified from FRFs.

(non-proportionally damped beam)

6.5 Experiment on an H frame.

6.5.1 Initial FE model

An H-frame was made by bolting together three Aluminium beam members,
using two Brass screws of size 5/16BSW and length 50mm on each joint. The
beams are of uniform cross-section of 50x25mm. The frame was modelled
with a free boundary condition, using 17 elements, with 37 DOF by
considering only motion in the plane of the frame. The FE model assumed the
frame joints to be perfectly rigid and for the purpose of dynamic analysis in
the frequency range of interest (0 - 600 Hz), axial flexibility of the beam
elements has been ignored. The FE model with frame dimensions is shown in
fig 6.49, where the shorter sides of the cross-sections of the vertical legs and
the cross-beam are parallel to the plane of the frame. The mass per unit length

and flexural rigidities of the beam elements, determined from material and
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geometry data, are:
EI, = 4557 Nm?2 m, ,=3.4kg/m (for all elements).

The FE model result in the following natural frequencies of the first 5 elastic

modes:
fla=54Hz f,=1193 Hz fa=133.8 Hz

fia=187.1Hz £, =500.9 Hz
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< <
3 24

1 22
4
3 2ald ¥23 Iuo
4 25
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110
3 24
8 29
3 |dVo +19 421 24 v
,.ig_n_ >0 T,
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3N$13 24 90 360
14 34
3 15 24 Ino
16 36 A4
17

Fig 6.49 H-frame model (dimension in mm).
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6.5.2 Vibration testing

The frame was suspended in a free configuration and excited at coordinate 14,
using an electrodynamic shaker. The excitation was performed using random
noise generated by a B&K dual channel signal analyser type 2034. A force
transducer and an accelerometer were used to pickup the excitation and
response signals. The response and forcing signals were then processed by the
signal analyser to generate spectral data and this was fed to the computer for
further processing, using SPIDERS signal processing and modal analysis
package. The instrumentation layout and signal processing involved is similar
to that used with beam experiments in Chapter 5 (fig 5.3). The H-frame test
configuration is shown in fig 6.50. Fig 6.51 shows the magnitude of the
receptance measured at the excitation coordinate as compared to the
receptance of the FE model. A plot of the phase angle of the measured

receptance is shown in fig 6.52.

The FRF show 5 modes in the frequency range 50-500 Hz with the following

measured natural frequencies and damping factors.

f,=52.6 Hz f,=106.9 Hz f,=136.7THz
fi=192.1 Hz fs=489.8 Hz

M, =0.0142 M, = 0.0237 M3 = 0.0038
N, =0.0085 15 = 0.0051.

These modes correspond to the first five elastic modes of the FE model. In
addition, there is another mode at about 23 Hz which is far away from any
natural frequency of the FE model. The appearance of this additional mode
may be due to a gross mismatch between the FE model and the actual frame

under test, or imperfect boundary conditions. Gross-mismatch between the
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system and the model is unlikely to be the explanation in this particular case
because the geometry of the structure is simple. Further examination of the
setup suggest that the frame is not perfectly unrestrained in the vertical
direction. The excitation of the frame in the horizontal direction induces
vibration in the vertical direction which is transmitted as transverse vibration
of the pushrod which connects the frame to the shaker. As the shaker is fixed,
rather than suspended, and the pushrod is not perfectly free to undergo
transverse oscillations, there is some restraint. The appearance of a low
frequency mode could therefore be explained by the finite flexibility of the

pushrod in its transverse direction.

965
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H-frame 1/ 11?"
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Push rod} 800
X i _i v
Shaker 170 | - I
A [ == 1

T I Heavy Cast iron bed I I l | I

Fig 6.50 H-frame test configuration (unspecified dimension in mm).

333



Receptance ®14.14 (meg) dB

Phase angle ( ®14.14) degrees

Measured Frame receptance , Receptance of the initial FE model - - - -

-120

-140

-160

-180

-200 i i i h
0 100 200 300 400 S00

Frequency Hz

Fig 6.51 Measured and initial model's point receptances at coord. 14.
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Fig 6.52 Phase angle of measured point receptance (degrees).
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It will be assumed that the effect of such low stiffness restraint is considerably
reduced at higher frequency and therefore the other five measured modes are
a reasonably correct representation of the modes of the frame. Figs 6.53-6.57

shows the Nyquist plots around each of the five resonance zones, at 1 Hz

resolution.
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Fig 6.53 Nyquist plot of the H-frame around f; = 52.6 Hz.
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Fig 6.54 Nyquist plot of the H-frame around f, = 106.9 Hz.
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Fig 6.55 Nyquist plot of the H-frame around f; = 136.7 Hz.
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Fig 6.56 Nyquist plot of the H-frame around f, = 192.1 Hz.
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Fig 6.57 Nyquist plot of the H-frame around f5 = 489.8 Hz.

6.5.3 Updating the FE model by simulation of additional stiffness.
6.5.3.1 Introduction

The FE model will now be updated without modification for the effects of
boundary conditions. A damping matrix proportional to the mass and stiffness
matrices will be assumed, and therefore real parts of measured eigenvalues
will be treated as the eigenvalues of the undamped system. Model updating will
be performed by stiffness addition using eigenvalues alone. The stiffness will
be simulated to have been added at two coordinates. These are the excitation
coordinate, 14, and coordinate 36. Thus, coordinate 36 must be excited also,
and the eigenvalues of the frame with added stiffness will be determined from
the point receptance data at coordinates 14 and 36. The point receptance and
phase angle at coordinate 36 are shown in figs 6.58 and 6.59. It can be seen that
in addition to the mode at 23 Hz, there is another mode at 67 Hz which did not
show up properly in the FRF at coordinate 14. Since the mass or stiffness

addition technique could make use of a few measured modes, there is no need
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to use all the modes in the measured frequency range. Extra modes which are
generated as a result of imperfect boundary condition, as well as modes which
are degraded by noise should preferably be omitted. An alternative is to
improve the experimental setup so as to achieve the desired boundary
conditions. This is not always easy and in some cases, is time consuming,
expensive and may not be necessary. Thus it was decided to use only those
modes in the frequency range between 100-560 Hz. These are the four modes
whose natural frequencies are referred to, in Section 6.5.2, as f, , f3, f4 and fs,

and relate to f,, f3,, f4a» and f5, of the initial FE model.

The updating process involves:

(i) The construction of the FRF of the frame with added stiffness at
the excitation coordinates (coordinate 14 and then 36) using

measured receptance data.

(i)  Identification of the eigenvalues of the frame with added stiff-

ness.

(iii) Updating an undamped model using the minimum cost Bayesian

estimator.
(iv)  Finding the stiffness and mass proportionality constants for the

proportional damping matrix using orthogonality equations and

the updated model's mode shape vectors (real modes).
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Fig 6.58 Measured receptance at the excitation coordinate 36.
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Fig 6.59 Phase angle of measured receptance at coord. 36 (degrees).
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6.5.3.2 Construction of the FRFs of the frame with added stiffness.

Four stiffeners were simulated to have been added in turn at coordinates 14

and 36. They are given by:

Stiffness addition at coordinate 14:  5x109 N/m  2x100 N/m
1x107 N/m  5x10® N/m

Stiffness addition at coordinate 36:  5x109N/m  1x100 N/m
1x10’N/m  5x107 N/m.

The FRF of the frame with added stiffness at coordinate 14 and at coordinate
36 were constructed from point receptances using (6.8). Figs 6.60-6.63 shows
the constructed FRF (point receptance) at coordinate 14. Figs 6.64-6.67 shows

the constructed point receptances at coordinate 36. For brevity only the

magnitudes are shown.
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Fig 6.60 Point receptance at coordinate 14 (k = 5x10° N/m)
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Fig 6.61 Point receptance at coordinate 14 (k = 2x106 N/m)
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Fig 6.62 Point receptance at coordinate 14 (k = 107 N/m).
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Fig 6.63 Point receptance at coordinate 14 (k= 5x107 N/m)
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Fig 6.64 Point receptance at coordinate 36 (k = 5x105 N/m)
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Fig 6.65 Point receptance at coordinate 36 (k = 106 N/m)
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Fig 6.66 Point receptance at coordinate 36 (k = 107 N/m)
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Fig 6.67 Point receptance at coordinate 36 (k = 5x107 N/m)

6.5.3.3 Identification of modal data of the frame
with added stiffness.

Eigenvalues were identified from the point receptances at coordinates 14 and
36 of the frame with added stiffness (fig 6.59-6.67) using Dobson's modal
analysis algorithm. It was found that the Nyquist plots around resonances of
the frame with added stiffness were close to circular arcs or circles. The
degree of randomness, due to measurement errors for example, was very
small indeed to the extent that weighting the data was not necessary. In fact, the
Nyquist plots were of the same order of accuracy as the Nyquist plots of the
unperturbed frame. Generally, better plots were obtained from those modes
which were strongly excited. Figs 6.68-6.71 shows the Nyquist plots, of one
case of the frame with added stiffness at coordinate 36, around the four

resonances corresponding to f;, f;, f, and f; The added stiffness is 5x107 N/m,
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and the magnitude-frequency plot is shown in fig 6.67. It should be noted that
this is a representative of the difficult cases, as the lower modes are only
weakly excited. Table 6.28 show the natural frequencies of the frame with
added stiffness, identified from the constructed FRF.
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Fig 6.68 Nyquist plot at coordinate 36 around f, = 112.4 Hz
(H-frame with simulated additional stiffness, k = 5x107 N/m)
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Fig 6.69 Nyquist plot at coordinate 36 around f; = 169.7 Hz
(H-frame with simulated additional stiffness, kK = 5x107 N/m)
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Fig 6.70 Nyquist plot at coordinate 36 around f, =454.8 Hz
(H-frame with simulated additional stiffness, k = 5x107 N/m)
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Fig 6.71 Nyquist plot at coordinate 36 around f5 = 553.4 Hz.
(H-frame with simulated additional stiffness, k = 5x107 N/m)
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Added | Stiffness Identified Natural frequency
stiffness | addition (Hz)
x106 coordinate
(N/m) 3 T fe 1
0.5 14 109.8 147.8 193.4 490.0
36 110.2 161.9 236.2 484.0
2.0 14 114.7 1759 209.6 490.9
1.0 36 111.0 166.1 288.3 488.0
10.0 14 117.9 188.4 334.2 494.6
36 112.4 169.5 445.2 543.5
50.0 14 118.6 188.7 428.9 505.2
36 112.4 1698 | 4548 | 5535 |

TABLE 6.28 Natural frequencies of the H-frame with added stiffness.

6.5.3.4 Parameter updating.

Parameter updating was performed using the minimum cost Bayesian
estimator. Updating was performed by dividing the element parameters into a

group of parameters defined as follow:

El,,m,: Stiffness and mass parameter of elements of the

legs and cross beam, away from the joints.

El,,m, : Stiffness and mass parameter of the elements of

the vertical legs next to the joints.

El;,mg : Stiffness and mass parameter of elements of the

cross beam, next to the joints.

For the purpose of computing the weighting matrices W, and W, the

following standard deviations were assumed.
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vibration amplitudes are expected. It will be assumed that, the natural
frequency and damping factors measured at coordinate 14, are a fair
representation of the natural frequencies and damping factors of the

unperturbed frame and boundary condition effects will be ignored.

Using the minimum cost Bayesian estimator, the following parameters of an

undamped model were obtained in 4 iteration steps,

EIL=4370Nm?  EI, = 4912 Nm? El; =2841 Nm?
my=3295kg/m  m,=3.139kg/m  My=4.421 kg/m

and result in the following natural frequencies:

fl =48.4 Hz f2 =105.8 Hz f3 =137.9 Hz
f1=187.6 Hz fs =490 Hz.

Figs 6.72 and 6.73 shows the convergence of the H-frame parameters.

f (Hz) | f2 (Hz) | fsHz) | fs (Hz)
Excitation Measurement | 106.8 136.6 191.9 489.8
coordinate 14| coordinate 19 | (N=0.028) | (n=0.005) | (n=0.008) [ (n=0.005)

Measurement | 106.7 136.6 192.0 490.0
coordinate 25 | (n=0.027) | (n=0.004) | (n=0.009) | (n=0.005)

Excitation Measurement | 106.0 136.1 186 481.5
coordinate 36| coordinate 36 | ( N=0.019)| (n=0.002) | (n=0.004){ (n =0.006)

TABLE 6.29 H-frame natural frequencies and damping factors (in bracket)

identified from different measurement and excitation coordinates.
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Fig 6.72 Convergence of the stiffness parameters of the H-frame.
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Fig 6.73 Convergence of the mass parameters of the H-frame.

To find the damping matrix proportionality constants, measured damping
factors of the unperturbed frame, 1, - 14, and eigenvalues of the updated,

undamped model were used in a least squares solution of (6.17). The following
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damping proportionality constants (with respect to the stiffness and mass
matrices) and damping loss factors of the first five elastic modes of the

updated, proportionally damped model were obtained:

%, = 0.0046 Y = 4.4x103
1, =0.052 1, = 0.0146 N5 = 0.0105
14 =0.0078 N5 = 0.005

Figs 6.74-6.78 shows the comparison of the FRFs (magnitude), with excitation
at coordinate 14, between the experimental data, the initial FE model and the

damped (proportional) updated model, at coordinates 1, 14, 19, 21 and 29.
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Fig 6.74 Comparing receptance prediction at coordinate 1.
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Fig 6.75 Comparing receptance prediction at coordinate 14.
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Fig 6.76 Comparing receptance prediction at coordinate 19.
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Fig 6.77 Comparing receptance prediction at coordinate 21.
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Fig 6.78 Comparing receptance prediction at coordinate 29.
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6.6 Discussion

This Chapter has considered the use of a simple structural modification
approach to predict the eigen-data of a modified structure, and uses the
eigen-data of the modified structure in a model updating exercise. The
modifications are performed on one coordinate at a time and are based on the
FRF of the unmodified structure. The eigen-data to be used may be the
eigenvalues or both eigenvalues and eigenvectors. In either case, the minimum
requirement is the measurement of the point receptance at each modification

coordinate. Two alternative approaches have been presented.

(1) The natural frequencies of the structure with added stiffness (or
mass) are determined from the point receptance data at the
modification coordinates, by solving (6.13) or a similar expre-

ssion for mass addition.

(ii)  The natural frequencies (and possibly damping factors) are
determined from the simulated FRF of the stiffness (or mass)
added structure, where the simulated FRF is computed from the
FRF of the unmodified structure.

The first approach requires solving an equation, the solution of which is
generally feasible for real receptances, at the modification coordinates. Since
measured receptances of real systems are generally complex, its validity
depends on the approximation which uses receptance magnitudes, and bear the
signs of the real part of the complex receptance. Thus, while this approach
could, theoretically, be an exact approach for determining the eigenvalues of
an undamped system with additional mass or stiffness, it is an approximate

method for real systems which involves damping. It has been shown, however,
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for systems with very light damping, which can be adequately modelled by an
undamped or proportionally damped model, the errors introduced are in
practice small. This approach, therefore, has a practical value when eigen-

values alone are to be used.

When both eigenvalues and eigenvectors are to be used, the mode shape
vectors of the structure with added stiffness (or mass) are given by the
deflection shape of the unmodified structure, at frequencies corresponding to
the natural frequencies of the modified structure. The deflection shape is
therefore easily determined from the receptance data at the measurement
coordinates. The main difficulty, however, is that the mode shapes determined
in this way are not mass normalized. Parameter updating requires mass
normalized mode shapes. The use of analytical modal masses, updated after
each iteration, to normalize the mode shapes of the structure have been
investigated. It has been found that the convergence rate is much slower,
although there is no significant reduction in the overall accuracy of the

updated parameters when the minimum cost Bayesian approach was used.

The second approach is a more generalized technique of finding the eigen-data
of the structure with added stiffness (or mass) . Both damping and natural
frequency data of the modified structure can be identified using well
established modal analysis algorithms. While the technique could also be
applicable to systems with highly non-proportional damping, parameter
updating is the main problem due to the difficulty in formulating an initial
damping model. A simulation example with non-proportional hysteretic
damping and error-free FRF data was used to verify the technique. Accurate
convergence to the correct mass, stiffness and damping parameters was

obtained.

355



For structures which have to be modelled with non-proportional damping,
practical application of the parameter updating technique is likely to be
feasible if reasonable estimates of the damping parameters in the analytical

model are available.

For structures which could be adequately described by a model with
proportional damping, reasonable initial estimates of the initial damping
parameters may not be a necessity. The unknown parameters of the damping
matrix, in this case, are the proportionality constants with respect to the
stiffness and mass matrices, () and %,,). It has been shown, by simulation
example 6.4 and experimental H-frame example, that the damping parameters
of such structures could be identified from orthogonality of the damping
matrix with respect to the eigenvectors of the updated model. Since the
updated model is to have proportional damping, its eigenvectors are the same
as the eigenvectors of its undamped model. The updating process will
therefore involve updating an undamped model, and use the undamped
model's eigenvectors in the orthogonality equation (6.15)-(6.17), so as to solve

for the unknown damping parameters.

To update an undamped model requires eigenvalues of the undamped system
before and after stiffness (or mass) addition. The eigenvalues of the
unmodified and undamped system are simply the real parts of measured
eigenvalues, since damping is proportional. With a stiffness or mass addition,
the damping matrix will not strictly remain proportional, since the
relationship between the damping matrix and the mass/stiffness matrices is
disturbed by the additional stiffness or mass. However, as the mass or stiffness
matrix is modified one coordinate at a time, it can be assumed that the
non-proportionality introduced by the additional lumped stiffness or mass is

very small such that the system after mass or stiffness addition is still treated as
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proportional. Thus, the real parts of measured eigenvalues of the structure
with added stiffness (or mass) will be treated as the eigenvalues of the
undamped modified structure, provided a proportional damping model is
adequate to describe the dynamic behaviour of the unmodified structure. This

approach was used in example 6.4 and the H-frame experiment with satis-

factory results.

As an additional example consider the 10 DOF, 4 element model of example
6.4. A hysteretic damping matrix proportional to the stiffness matrix is

simulated with a much larger damping loss factor, 1 = 0.1. Thus let,

EI = 5000(1+j0.1) Nm?2 for all elements.

Fig 6.79 shows the point receptance at coordinate 3 as compared to that of an

undamped model.
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Fig 6.79 Receptance of the beam with proportional damping (n = 0.1)
as compared to the undamped beam.
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Let stiffnesses (N/m) of 2x106, 107 and 108 be added at coordinate 3. Table
6.30 shows the correct and the estimated natural frequencies of the undamped
beam with added stiffness. The estimated natural frequencies were obtained by
assuming the real parts of the eigenvalues of the beam with added stiffness as
the eigenvalues of the undamped beam with added stiffness. It can be seen that
the difference between the two is very small.

Estimated natural frequencies | Correct natural frequencies
(Hz) (Hz)
fi f i Ji f f3
bk =2x1c®| 1513 | 4023 7501 | 1514 | 4023 | 7502
k =1x107 | 2314 | 5013 8422 231.1 | 5009 | 8425
k =1x10° | 2654 | 6052 1292.5 2654 | 6051 | 1292.0

TABLE 6.30 Correct and estimated natural frequencies of the modified beam.
(heavy proportional damping)

The H-frame experiment verifies the feasibility of using the FRF of a practical
structure to simulate the FRF of the modified structure for model updating
purposes. The smoothness of the simulated FRF of the frame with added
stiffness and the reasonable Nyquist plots suggest that the degree of
randomness in the measured data is not a crucial problem. No remarkable
degradation of the Nyquist plot due to the simulation process was found.
However, with large stiffness additions, lower modes tend to be less excited.
As is usually the case with classical experimental modal analysis, modal
identification of the weakly excited modes becomes relatively difficult. This is

indicated, for example, by relatively less pronounced circles in figs 6.68 and
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6.69 as compared to figs 6.70 and 6.71. An alternative option is to ignore the
weakly excited modes as the additional stiffness becomes large or those modes
which are obviously contaminated by noise. In the H-frame example, all four

modes in the range 100-560 Hz were used with satisfactory results.

Whilst the technique of simulating the FRF of the structure with added
stiffness (or mass) can be extended to transfer receptances, using (6.9), if both
eigenvalues and eigenvectors are to be used, it is believed that eigenvalues are
usually identified more accurately than eigenvectors. Hence, emphasis in this

work has been on the use of point receptances and updating using eigenvalues.

A possible area of difficulty is the effect of shaker (push rod) loading on the
structural dynamic characteristics of the structure under test. Since the point
receptance at each modification coordinate has to be measured, the difficulty
may be apparent as inconsistency in the global properties of the structure (in
particular natural frequencies). Thus, large structures, which are least affected
by small mass loading, are most suited to this technique if correction for mass
loading has to be avoided. On the other hand, this difficulty is a useful warning

that something has been overlooked.
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CHAPTER 7
DISCUSSION AND CONCLUSION

7.1 Comparison with other methods

A technique of parametric adjustment of a FE model, based on eigenvalue or
eigenvalue and eigenvector sensitivity analysis, has been developed. The
technique, which utilizes the eigen-data of the system before and after the
system is perturbed by adding lumped masses or grounded stiffnesses, can also
be extended to a system modelled by lumped stiffness and a diagonal lumped
mass matrix. Practical application of the technique requires the confidence on
the parameters of the initial model, given as a diagonal variance matrix, to be
available. The updated parameters are then determined by the minimum cost
Bayesian approach which takes into consideration the confidence on the initial

parameters as well as the measurements.

One of the difficulties experienced in previous parameter estimation methods,
based on eigenvalues, is the incomplete dynamic characteristic information of
the structure from eigenvalues alone. There is generally an infinite number of
models that will reproduce a given set of measured eigenvalues. This problem
is evident from the rank deficiency of the Jacobian matrix based on eigenvalue
sensitivity. The Bayesian and similar approaches, which impose constraints on
the changes of the parameters of the analytical model, have often been used to
facilitate a solution for the parameter updates (see for example Collins et al

1974, Chen and Garba 1980). The Bayesian approach will always yield a

solution even if only one eigenvalue is measured.

The idea behind the mass and stiffness addition technique is to develop a

method that will result, theoretically, in convergence to the exact parameters,
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provided the model structure is correct and the experimental data is
error-free. Since neither the experimental data nor the model structure is
likely to be error-free in practice, use is made of the Bayesian approach to
limit excessive changes in the parameters. A technique which will result in the
convergence of the parameters to their correct values, using an ordinary least
squares solution method, if the experimental data were error-free, is
considered to be more credible than the one with an infinity of solutions. Such
a technique is also possible by using both eigenvalues and eigenvectors of an

unperturbed system or the FRF data.

Most of the published methods are based on using both eigenvalues and
eigenvectors or FRF data. If both eigenvalues and eigenvectors are used, a
significant number of coordinates have to be measured, so that the number of
sensitivity equations is at least as large as the number of parameters to update.
Even in this case, the choice of the parameters to update and the choice of
measurement coordinates could have an influence on the identification of the
correct parameters with error-free data. Quite often, it has been assumed that
a unique solution exists provided the number of eigenvalue and eigenvector
sensitivity equations is at least as large as the number of parameters to update.
The work reported in this thesis has attempted to find a method of assessing the
adequacy of a given set of measurement coordinates. It is apparent, from
Chapter 3, that if the parameters to be updated are the coefficients of the
element mass and/or stiffness matrices, the choice of the measurement
coordinates is generally not so crucial. If the lumped mass and stiffness of a
lumped parameter model are to be updated, it is not enough for the number of
eigenvalue and eigenvector sensitivity equations to be equal to or greater than
the number of parameters. The choice of the measurement coordinates, in this

case, is usually important.
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Since natural frequencies are generally measured with higher accuracy than
mode shape displacements, the mass and stiffness addition technique developed
in this thesis can take advantage of this fact, as parameter updating is possible
using eigenvalues alone. In addition, this new technique is attractive because it
is possible to generate a much larger data base of eigenvalues of the mass or
stiffness added structure, than the data base which can practically be measured

using eigenvalues and eigenvectors without mass or stiffness addition.

Methods based on the FRF falls into two main groups. The equation error
methods (Natke et al 1984,1985,1986,1988, Fritzen 1986, Mottershead 1988,
Friswell 1989, 1990) and the output error methods (Cottin ef al 1984, Natke
1988, Fritzen et al 1988). The equation error methods utilize directly the
frequency domain equation of motion and attempts to find the parameters
which, with the given response vector, the forcing vector is reproduced in a
least squares sense. The equation error method has attracted more interest than
the output error method due to the linear appearance of the parameters in the
equations. A major draw back is that the equation error formulation requires
response data at each DOF to be measured. Since this is not possible, a practical
alternative has been to estimate the responses of the unmeasured DOF in terms
of the analytical mode shape vectors or model reduction to the measurement
DOF. Model reduction is based on transformation of coordinates where the
response vector is expressed as a linear combination of the mode shape
vectors. The eigenvectors of the analytical model are used in the
transformation and it effectively involves expressing the unmeasured response
vector in terms of the analytical model. This obviously is not exact and
introduce errors which, in addition to the experimental errors in the measured
data, contribute to biased estimates because the coefficients in the equations are
computed using the contaminated data. The degree of errors introduced

depends on how close are the analytical eigenvectors to the correct system
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eigenvectors. An improved approach (Friswell 1989, 1990) has been to
iterate, where after each parameter estimation, the new analytical model is
used to find improved estimates of the responses of the unmeasured DOF.
However, methods based on the equation error do not directly minimize the
prediction, between the updated model and the system, in the dynamic chara-

cteristics for the parameters of interest.

The advantage of the present technique is that the optimization is performed
with respect to the minimization of an error quantity of a dynamic
characteristic which is of primary interest. Since the FRF data can be
converted into modal data for the structure with added mass or stiffness, by the
method of Chapter 6, the updating process attempts to fit the model to the
modal data and also to the FRF data of the structure. Better convergence in the
FRF is most likely to be ensured than with the frequency domain equation
error approach, where parameters are optimized by minimizing the error

between the computed and the experimental forcing vectors.

It can be argued that the mass or stiffness addition technique offers an
alternative approach to fitting the FRF, where a well known eigen-data
sensitivity algorithm is used. In fact, with this technique, both negative and
positive stiffness addition is possible, so as to cover a large proportion of the

FRF, although this is usually not necessary.

A well known technique of fitting directly to the FRF is the frequency domain
output error approach. This technique is based on expressing the response
vector in terms of the forcing vector, usually normalized to unity, and the
unknown parameters. The resulting equation is non-linear in the parameters
and a non-linear optimization algorithm is used. This is usually achieved by

using a first order Taylor's expansion, based on parameter estimates of the
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analytical model, and iteratively updating. The frequency domain output error
algorithm, however, is potentially numerically unstable and is susceptible to

divergence problems.

7.2 Some limitations and suggestions for further investigation

The mass or stiffness addition method is a modal based technique and therefore
it shares some inherent limitations with other modal based updating
techniques. One of the limitations is that the eigenvalue problem of the current
analytical model has to be solved after each iteration and this consumes time.
This limitation, however, is apparent in other non-modal but iterative

methods.

Another limitation is the necessity to match the eigenvalues of the analytical
model to those of the structure. As in other modal based methods, the eigen-
value of each structure mode which is to be used in the updating process has to
be matched to the eigenvalue of the corresponding analytical mode. There are
many systems where it is not difficult to match the two simply by inspection. In
the numerical and experimental examples given in this thesis, it was not
difficult (for those modes of interest) to decide which structure mode relates to
which analytical mode. There are also many systems, for example with closely
coupled modes, where matching by inspection alone may not be easy. The
modal assurance criterion (MAC) is a reliable tool which can be used to match
the analytical and the experimental modes (MAC is discussed by Ewins 1985).
The use of the MAC, however, requires the eigenvectors of the structure. It
means therefore, even if updating is to be based on eigenvalues alone, more
coordinates will have to be measured so as to extract eigenvectors to be used in
the MAC. For example, in the H-frame experiment, the measurement of the

two excitation coordinates would be sufficient to extract eigenvalues of the
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perturbed and unperturbed structure but would not be sufficient if MAC has to
be used. The advantage of the possibility of measuring the structure at a
smaller number of coordinates when eigenvalues alone are used is therefore
diluted by the fact that more coordinates have to be measured so that MAC can

be used to match the analytical and the experimental eigenvalues.

The technique developed in this thesis is modal based and has been developed
from sensitivity analysis using well known equations of sensitivities of the
eigenvalue and eigenvectors with respect to structural parameter changes. The
eigenvectors in the sensitivity equations are mass-normalized. Almost all
modal based methods uses mass-normalized modes. A possible area of
improvement which is worth further investigation is the use of the sensitivity
of the non-mass normalized modes. If the sensitivities of the arbitrarily
normalized modes are derived then it should be possible, some how, to use the
mass/stiffness addition technique based on these sensitivities. Since the mode
shapes of the perturbed structure can be derived from the FRF of the
unperturbed structure if the natural frequencies of the perturbed structure are
known (Chapter 6) then the sensitivities of the FRF may be derived by treating
the FRF as arbitrarily scaled mode shapes of the perturbed structure. If this is
possible then it may be possible to formulate an algorithm which involves the
FRF vectors rather than the mass-normalized eigenvectors. Such an algorithm
may not require an eigensolution with each added mass/stiffness because the
modes are replaced by the FRF vectors and some computational time may be
saved. This is effectively using the stiffness addition technique to derive a
frequency domain algorithm by, some how, getting rid of the normalizing

modal masses from the mode shapes.

The method developed in this thesis is parametric in the sense that it estimates

parameters of a model of a given structure. The structure of the model
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matrices is determined by the analytical idealization of the physical system.
When the idealization is not exact, the parameters will start to lose their
physical meaning. Consequently the confidence expressed in, for example,
flexural rigidity values, also lose their meaning. A difficulty will occur if the
confidence in the initial parameters have been assigned based on the expected
uncertainty in computing the true physical flexural rigidity of the beam
element, while the model structure ignores flexibility of a joint in the
structure. Fortunately the difficulty will become apparent by the unexpectedly
large or unacceptable changes in the parameters from their initial estimates.
Such unacceptable parameter changes may not necessarilly be localized to
areas of modelling difficulties, but may be distributed in a way which is
difficult to relate to the areas of errors in the model structure. When
inaccuracy in the model structure is expected due to joint flexibility, those
elements next to the joints have to be allowed to be more flexible than their
actual physical flexibility suggest. Large parameter changes will therefore be
localized to such elements. This seem to be a logical approach with any
parametric updating method. The difficulty however, is how much flexibility
should be allowed. For example, in the H-frame experiment, the elements of
the cross-beam next to the joints were allowed to be more flexible than others
by assigning an assumed standard deviation of twice as large as others. This
was assigned by feeling as there is no proper method. As the prospects of
updating the parameters using unconstrained algorithms are not very good,
methods based on a form of Bayesian approach will continue to dominate.
Investigation on systematic methods of assigning initial parameters weighting

factors is therefore important.
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7.3 Conclusion

A technique to update the parameters of a dynamic model has been developed.
It is based on sensitivity analysis of the eigenvalues or both eigenvalues and
eigenvectors before and after the system and its analytical model are perturbed
by adding lumped mass or grounded stiffness. It has been shown that the
eigen-data of the structure with added mass or stiffness can be successfully
determined from its simulated FRF. The FRF of the structure with added mass
or stiffness is simulated using the FRF measured from the structure without
added mass or stiffness. Thus, mass or stiffness do not have to be added
physically. The derivation of the method has been based on updating the
coefficients of the element mass and stiffness matrices of a FE model or
lumped mass and stiffness of a lumped parameter model with a diagonal mass
(or stiffness) matrix. Due to the experimental errors in the modal data and
possible inaccuracy in the model structure, parameter updating of a practical
structure has to be performed by incorporating a constraint of minimum
changes of the parameters from the initial estimates. It has been shown that
with error-free data and a correct model structure, parameter convergence to
the exact solution is possible, even by using eigenvalues alone or eigenvalues
and incomplete mode shapes. Hence, the method forms a more rational basis of
applying the constraint of minimum parameter changes from the initial
estimates, than with methods which have infinite number of solutions with
error-free data. The minimum conditions with respect to the choice of mass or
stiffness addition coordinates as well as the choice of mode shape measurement
coordinates have been derived. These conditions are not crucial for a FE
model, due to the smaller number of parameters to update in comparison to the

order of the model.

Since the technique is based on eigen-data sensitivities, to derive a set of
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equations linear in the parameters, the coefficients are calculated using data
from the analytical model only. Thus, biased errors associated with
correlation of the equation errors are not encountered. It has also been shown
that gross inaccuracy in the model structure results in unexpected large
parameter changes from the initial estimates. This effect can also be brought
about by poor assignment of the relative weighting of the eigen-data and the
initial parameters. However, in many cases, reasonable assignment of the
relative weighting is usually possible, and therefore large unexpected changes
in the parameters is usually a warning of a gross inaccuracy in the model
structure. If this is the case, the analytical model structure has to be
re-examined. A major shortcoming of the technique is that an eigenvalue
problem has to be solved, not only after each iteration, but also with each
added mass or stiffness. A suggestion for further improvement has been put

forward.
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APPENDIX A
MATHEMATICAL PROOFS

Appendix Al
Let R and S be Nth order arbitrary but non-singular matrices such that:
RAMS = AM (Al.1)

Let R, S and AM be partitioned as follow:

Ry Ry Rys S11812813 0 0 0
R= Rz] Rii R23 s S= Sz]_ SI.I 823 . AM= 0 5m‘- 0 (A1.2)
Rj; R3; Ry S31 83 833 0 0 O

where R,, S and 6m; are 1x1 submatrices.

Then: S.=R.-1 R12 = R32 =0, 821 = 823 =),

i un’

PROOF:
Substitute for R, S and AM into (A1.1).

[ Rys Ris Ryg] | S11 812 S43 0 0 0
R Ry Ry Sx Si Sy |0m;, = 1 0)om  (AL3)
R3; R3p Ryg S31 S35 S33 0 0 0

(0 Ry O] [SiSiSs| Jo
0 Rii 0 821 Sn 823 =10 1 O (A14)
|0 Ry O0f [ 8385 85] |0

RSy RpS; RSy o 0 0
RﬁSﬂ RiiSﬁ R iiSQ.3 =10 1 0 (AIS)
R5Sy RypS; RypSx| [0

From (AL.5):
R,S; —1 RS, =0

i~ il

RnSZS RIZS21 -
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0
0
0

ii
21
3

1295
32

R, S
R.,S
R3S,

But Rii and Sii cannot be zero. Therefore:

R;, =0,
S);=0

127

R
Sy

1l

R"-

11

S;
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Appendix A2

Let T and L be Nth order arbitrary but non-singular matrices given by

-1
Ty T T 0
T=|*U1 12 , L="U
[0 Ty Ly Ly
and such that T, is an NpCXNpc diagonal submatrix with at least one of its
elements as unity. Let T and L satisfy the determinant expression (A2.1),
Det(T[K-A(M+AM)]L)=0 (A2.1)

where K, M and AM (AM = 0 represent the case with no added mass to the
system) are symmetrical matrices and

K=TKL , M,+AM=T[M+AM]L
are also symmetrical matrices. Then

L=TT and T;2=1I (A2.2)
PROOF
Consider the following equation of motion,

[K -A(M, + AM)IVF, =0 (A2.3)

where V¥, is an eigenvector of a system with mass matrix [M_+ AM] and
stiffness matrix K . But (A2.3) can be written as:

TK-A(M+AM)]LV?, =0 (A2.4)
Pre-multiply (A2.4) by T-! to obtain:

[K-2(M +AM)] LVF, =0 (A2.5)
From symmetry

K =LTKTT, M _=LT™™MT®
Therefore (A2.3) can also be written as:
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LT[K-A2(M+AM)] TTVE, =0 (A2.6)
Pre-multiply (A2.6) by LT to obtain:
[K-A1(M +AM)] TTVP =0 (A2.7)

From (A2.5) and (A2.7), LVE, and TTV?, are eigenvectors of identical
systems with stiffness matrix K and mass matrix (M + AM]. Assuming d
distinct eigenvalues (d < or = N), the eigenvectors LVF, and TTVF, which
corresponds to the distinct eigenvalues are therefore related by scaler

multipliers p.. Thus, for any jth of these eigenvectors,
L{VF};=pTT{VP <}

{VE,} jcan be partitioned into subvectors corresponding to the partitioning of
T and L. Therefore

1 p T p
Tu O/ Vixl _ |Tu O/ Vix
L., L p (Ml T 1 P (A2.8)
21 H2J | Vox; Ty, Tyl Vax/;
From (A2.8):
T (Vi = Ti{Via); (A29)

But T, is a diagonal submatrix with one of its elements as unity. Therefore,
from (A2.9), fori=1to Npc:

J”JTu = ,u]T = = ujTﬁz e soon s == 1 (A2.10)

T..=1/T.

1 n

(A2.11)

Therefore, from (A2.11) T,; 2=1.

For the dvectors which corresponds to the distinct eigenvalues:

[ T” (A2.12)
sz T12 T22 sz
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Similarly, consider (A2.7) for AM = 0 and let V_ be an eigenvector of the
system with stiffness and mass matrices K, and M__ respectively (AM = 0). By
the same arguments

5
ITll 0 [le = Tll ’VIx (A2.13)
Ly Ly sz Ty, Tyl|lY2x

where the eigenvector matrix is associated with the distinct eigenvalues.
Equations (A2.12) and (A2.13) can be combined as

L[V_VE]=TT[V V] (A2.14)

Assuming the total number of distinct eigenvalues of [M + AM] 'K and M"'K
is greater or equal to N, then (A2.14) results in

L=T* (A2.15)
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Appendix A3

Let K and M be Nth order symmetrical stiffness and mass matrices and T an
Nth order non-singular matrix in the form of (A3.1),

T
T=[011 :le (A3.1)

where T, and T,, are arbitrary and T, is diagonal with at least one element
as unity but otherwise arbitrary.

Let K, = TKTT (A3.2)
M_=TMTT (A3.3)

Ifo=Kande=M then
T=1 (A3.4)
PROOF

Let V and A_be eigenvector and eigenvalue matrices of M_-1K where the
eigenvectors are orthogonal with respect to the mass (M, ) and stiffness (K,)
matrices. M_-1K _ can be written in terms of its eigenvalue and eigenvector
matrices as:

MK = VAV (A3.5)
Using (A3.2) and (A3.3) in (A3.5) results in
MK =T ™M'KIT=V A V1 (A3.6)

From (A3.6)
MK =TTV A (TTV )1 (A3.7)

Equation (A3.7) is an eigenvalue problem with TTVK as an eigenvector matrix
of M- K.

(TTV)™(TTV,) = V,TTMT"V, = V ™M, V, = diagonal (A3.8)
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(TTV)TK(T'V ) = V. TTKTTV_=V TK V_= diagonal (A3.9)
X X X X X X X

Thus, the eigenvectors in TTVx are also orthogonal with respect to M and K. If
K, =K and M_ =M then TTV_and V, are both eigenvectors of the same
system and from (A3.8) and (A3.9) they are related by

TV, =V p (A3.10)

where | = square root of I. But T has at least one element as +1 in its diagonal
submatrix T,. Thus,

p=I=T (A3.11)
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APPENDIX B
COMPUTER PROGRAM

This appendix describes the computer program written during the course of
the research. The program has been used in the simulation and experimental
model updating examples. It has been written in MATLAB language based on
the flow diagrams shown in figs B1.1 and B1.2. For the sake of clarity, the
flow diagrams shows unconstrained optimization using eigenvalues alone.
However, both unconstrained and constrained optimization using eigenvalues
and using both eigenvalues and eigenvectors have been implemented in the
program. The flow diagrams shows two options for sensitivity analysis. One
option is sensitivity analysis based on the full order model. The other option
for sensitivity analysis is based on the reduced order model.

The first option is based on the derivatives of the eigenvalues (and both
eigenvalues and eigenvectors) as presented by Fox and Kapoor (1968). The
second option is based on exact expression for the reduced equation of motion,
which results in frequency dependent reduced mass and stiffness matrices and
is described by Nalitolela et al (1990). The second option was first used in an
attempt to avoid the problem of mismatch in the number of DOF between the
FE model and the experimental modal model, but was later realised that the
sensitivity data for the two options is the same and results in the same updated
model. The first option was therefore introduced due to computational
advantage. However, due to the limitations of MATLAB within the 640 Kbytes
RAM, memory problems were experienced when updating large models (> 20
DOF). Memory restrictions were not experienced with model reduction. The
reduction option was therefore restored due to its better utilization of memory
in the MATLAB environment within the 640 Kbytes RAM. It is not intended,
however, that the reduction option should be prefered in the general sense.

The program is made up of the following modules.

(i) ngdisc.m Main module. The FE model employs 2 dimen-
sional beam elements. The lumped parameter
model is of a spring-mass system with diagonal
mass matrix and the masses possess translational

motion only.

(ii) ngdiscl.m Module for assembling the mass and stiffness
matrices.

(ii1) ngdisc2.m Module to perform differentiation of the matri-

ces with respect to the parameters.

(iv) ngdisc3.m Module to assemble the sensitivity matrix, J.
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Fig B1.1 Flow diagram for updating by physical mass or stiffness addition.
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Fig B1.2 Flow diagram for updating by simulation of added stiffness or mass.
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DATA INPUT

To run the program, MATLAB is invoked, then the name of the main
program without the extension (ngdisc) is typed on the MATLAB work space
followed by RETURN. Data is then input by responding to the questions as
they are displayed on the screen, one after another. It is usually more
convenient to prepare, in advance, some of the data as variables on the
MATLAB work space before the program is run. Data input will therefore
require typing in the variables corresponding to the required data.

Data associated with the eigenvalues should be saved as variables in a
MATLAB file ngnvall00.mat. The variables are: (i) lbe; eigenvalue data (ii)
swl; estimates of the STD of the errors in the natural frequencies. There is
also an option of loading these variables in the MATLAB work space instead
of saving them in a matlab file.

Data associated with the eigenvectors should be saved as variables in a file
ngvecl00.mat. The variables are: (i) ue; mass normalized eigenvectors (ii)
sul; estimates of the STD of the errors in the mass normalized eigenvectors.
These data may, instead, also be loaded in advance in the Matlab work space.

In case of analytical mass or stiffness addition using the simplified approach
(see Chapter 6, section 6.3 equation 6.14), the non-mass normalized modes can
be measured by simply reading the receptance data of the unperturbed
structure, at frequencies corresponding to the estimated natural frequencies of
the perturbed structure. In this case, the variables are (i) vee; non-mass
normalized modes (ii) sv1; estimates of the STD of the errors in vee (iii) cee;
vector defining coordinates with highest measured displacement for each
vector in vee. The variables vee, cee and svl must be save in a data file
ngvec100.mat. The updated parameters, at the end of iterations, will be
recovered from the following variables

eee  Stiffness parameters, EI, of the FE model for all iteration steps.
mmm Mass parameters, m , of the FE model for all iteration steps.

bbb Lumped mass and stiffness parameters for all iteration steps.

The following section list the questions displayed by the program, required
data, prefered variable names for some of the data, the structure of the data
and describe the best way of data input. The questions are shown in italics and
the responses in plain text. The questions shown with an asterik, *, require the
data to be prepared in advance on the MATLAB work space and assigned a
variable name which is to be typed in when responding to the questions. The
prefered variable names are shown. The structure of the data in the variables is
given in the section on data structure.
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Discrete of continuous system ?
enter 0 (discrete) or 1 (continuous)

Number of DOF ?
Number of measured modes ?
Number of rigid body modes ?

Number of finite elements ?

*Enter elements code matrix ?

*Enter global coordinate code matrix

Element type ? 0-beam 1-plate

Number of measurement coordinates ?

Model reduction yes (1) or no (0) ?

*Enter vector of measured coordinates

Total number of discrete elements
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Enter 0 for lumped spring-mass
system or 1 for a FE model

Enter the number of DOF.
Enter the appropriate number.
Enter the appropriate number.

Enter the appropriate number.
This question will only appear
if you have responded to the
first question by entering 1

Enter nc (prefered variable
'nc', this question will only
appear if you have responded to

the first question by entering 1).

Enter ng (prefered variable
'ng', this question will only
appear if you have responded to
the first question by entering 1).

Enter 0. (This question will
only appear if your response to
the first question isl).

Enter the appropriate number

Enter 0 if model reduction is
not required or 1 if model
reduction is to be performed.
(Model reduction, if specified,
will only be performed to the
measurement coordinates).

Enter nvm. (Prefered variable
'nvm'. This question will be
asked if model reduction has not
been specified in the previous
question).

Enter the appropriate number



*Enter elements data matrix

*Enter discrete parameter matrix

Number of discrete stiffness if any ?

*Enter matrix of parameter definition

*Enter vector of measured coordinates

*Enter vector of unmeasured coordinates

Number of masslstiffness addition coord.?
Number of mass/stiffness addition per coord?

Eigenvalues (0) or
eigenvalues + eigenvectors (1) ?

Analytical (1) or physical (0)
mass or stiffness addition ?
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Enter nd. (prefered variable nd.
This question will only be asked
if you have answered 1 to the
first question)

Enter bcm. (prefered variable
'bem'. This question is asked
if you have entered the total
number of discrete elements
greater than zero)

Enter the appropriate number

Enter pd (prefered variable
'‘pd'. This question will only
appear if you have answered 1
to the first question).

Enter nm (prefered variable is
'nmm'. This question will only
appear if model reduction is to
be performed).

Enter ns (prefered variable is
'ns'. This question will only
appear if model reduction is to
be performed).

Enter the appropriate number

Enter the appropriate number

Enter 0 if eigenvalues alone are
used or 1 if both eigenvalues
and eigenvectors are used.

Enter 1 if mode shapes are
determined by a simplified
approach of reading the

receptances corresponding to
the natural frequencies of the
structure with added mass or
stiffness (see equation 6.14 in



Want to use initial par in
optimization ? Yes (1) No (0)

*Enter mass/stiff addition matrix

Enter 0 or 1 for mass or stiffener
additions

Want to use existing file of eigendata ?

Yes (1) No (0)

Enter simulation error in natural freq.

*Enter eigenvalue matrix
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Chapter 6, section 6.3).
Otherwise enter O (this question
is only asked if both eigenvalues
and eigenvectors are used).

Enter 1 if the minimum cost
Bayesian approach is to be used.
Enter 0 if an unconstrained
weighted least squares solution
method is to be used.

Enter my (Prefered variable is
tmyl).

Enter O if mass addition. Enter
1 if stiffness addition.

Enter 1 if eigenvalue data is
already saved in a MATLAB
file called ngnvall00.mat and
eigenvector data (if mode
shapes are also used) in a file
called ngvec100.mat Enter O if
the eigendata variables are not
saved in files but loaded in the
MATLAB work space.

Enter the simulated STD error,
in Hz, of the natural frequencies
if the eigenvalue data is not
already contaminated by measu-
rement errors. If already conta-
minated, enter a very small
number, close to zero, but not
zero. You may enter O if the
eigenvalue data is error-free
and no error is to be simulated.

Enter lbe (Prefered variable is
'Ibe’. This question is asked
if the eigenvalue data is not save
as a variable in a MATLAB file
ngnval100.mat).



*Enter matrix of STD for natural freq.

*Enter eigenvector matrix

*Enter vector of STD for the eigenvectors

Enter simulation eigenvector error

Enter total no of unknown parameters

*Enter vector of initial estimates for
optimization

*Enter STD of initial estimates
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Enter swl (Prefered variable is
'swl'. This question is asked
if the eigenvalue data, including
natural freq STD, is not saved
as variables in a MATLAB
file ngnvall100.mat).

Enter ue.(Prefered variable is
'ue’. This question is asked if
eigenvectors are also used and
the data is not saved as variables
in a file ngvec100.mat.

NOT applicable for qql=1.)

Enter sul (Prefered variable is
'sul'. This question is asked if
eigenvectors are also used and
the eigenvector data, including
its STD data to be used in the
weighting matrix, is not saved
in a file ngvecl100.mat. NOT
applicable for qql=1.)

Enter the simulated error for
the mass normalized
eigenvectors if the eigenvectors
are not already contaminated
by measurement errors. If the
eigenvectors are already
contaminated, enter a number
close to 0, but not 0. You may
enter O if the data is error free
and no error is to be simulated.

Enter the appropriate number

Enter nduo (Prefered variable
is 'nduo’. This question is only
asked if the minimum cost
Bayesian approach is to be
used)

Enter c2 (Prefered variable c2).



ADDITIONAL VARIABLES

The program can be terminated at any time by pressing Cntrl Break, and
recover the variables containing the updated parameters (nd, bcm) from the
Matlab work space. In addition to the variables 'eee' and 'mmm’, new
variables will be generated. The ones of interest are:

b Matrix of eigenvalues of the current analytical model.

ua  Matrix of mass-normalized eigenvectors of the current analy-
tical model.

bbb  Matrix of lumped mass and stiffness (where appropriate) from
the begining of the first iteration.

ue Matrix of estimated mass-normalized modes (a new varible if
the simplified approach, with non-mass normalized experim-
ental modes, is used)

sul  Row vector of STD estimates of the errors in 'ue' above.

DATA STRUCTURE

Element code matrix (nc):

This matrix specifies the orientation of the element coordinates with respect to
the local coordinate axes. The refence local coordinate axes are shown in fig
B3

1 3

/' |
5 6

v I

) 4

Fig B1.3 Local coordinate system (node 1 is on the left and node 2 on the right)

The element code matrix (nc) must consist of as many rows as the number of
elements. Each row must have six entries which relate to the 6 coordinates
shown in fig B1.3 and in the same order. Coordinates which are fixed must
have an entry of 0. Coordinates which are not fixed but are in opposite
directions to the local reference axes must have an entry of -1. A coordinate in
the same direction as its corresponding local reference axis must have an entry
of 1. For coordinates which are at an angle to the local reference axes, the
global reference axes at that node have to be rotated so that the global
coordinates are parallel to the local coordinate system shown in fig B1.3,
before assigning an entry of -1 or 1. The direction of rotation determines the
sign of the angle of rotation and will be required as input data for the element
data matrix 'nd'. The sign convention is +ve if rotated anticlockwise.
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Global coordinate code matrix (ng):

This matrix must have 6 columns and as many rows as the number of elements.
Each row defines all the global coordinates associated with one element. The
order at which the elements are defined is not important but must be the same
as in the definition of 'nc'. The order at which the global coordinates (for each
element) are defined must be similar to the order at which their corresponding
local coordinates are defined (fig B1.3). Enter O if a coordinate is fixed.

Element data matrix (nd):

This matrix must have 6 columns and as many rows as the number of elements.
The order at which the elements are defined (the order at which the rows
appear) is not important but must be the same as in the definition of 'nc' and
'ng'. The six columns are defined as follow:

Ist column: Stiffness parameters, EI, of all elements starting with
element 1.
2nd column: Axial stiffness EA

3rd column: Mass parameters, m, (mass per unit length of the beam elements)

4th column: Element lengths.

S5th column: Angle in degrees for which the global reference axes at node 1
have to be rotated so as to be parallel to the local reference axes.
Sign convention is +ve in the anticlockwise direction.

6th column: Angle in degrees for which the global reference axes at node 2
have to be rotated so as to be parallel to the local reference axes.

Discrete parameter matrix (bcm):

This matrix defines the lumped masses and stiffnesses and must have 4 columns
and as many rows as the number of lumped mass and stiffnesses. The
stiffenesses are defined first and then the masses. The stiffnesses are defined as
follow:

1st column;: The DOF in consideration.

2nd column: Value of the stiffness (N/m).

3rd column: Must be 0.

4th column: The DOF at which the defined stiffness is connected to. Enter O
if grounded.

The masses are defined as follow:
1st column: The DOF in consideration
2nd column: Must be zero.

3rd column: Value of the mass in Kg
4th column: Must be 0.
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Matrix of parameter definition (pd):

This is a matrix with 2 rows and as many columns as the number of elements.
The first row consist of numbers starting with 1 and ending with the number
of elements. The second row defines which elements are to be treated as having
independent parameters and which elements are to be treated as having
identical parameters. Thus,

12345678
q=
. L222134J

means the system has 8 finite elements. Elements 1, 5, and 8 are to be treated as
having identical parameters denoted by EI|, m ,. Elements 2, 3 and 4 have

identical parameters denoted by EI,, m ,. Elements 6 and 7 have independent
parameters denoted by El,,m , and EI,, m , respectively.

Vector of measured coordinates (nm or nvm):

This is a row matrix containing the measurement DOF. The variable name
'nm' must be used if model reduction option is used. Otherwise use the
variable name 'nvm'.

Vector of unmeasured coordinates (ns):
A row matrix containing the unmeasured DOF.
Masslstiffness addition matrix (my):

This matrix specifies which coordinates are perturbed and the value of the
perturbing mass (kg) or stiffness (N/m). It consist of as many columns as the
number of perturbed coordinates. The first row lists the perturbing
coordinates. The second row lists the perturbing mass or stiffness for each
specified perturbing coordinates in the first perturbation. The next rows lists
the perturbing masses or stiffnesses for the next rounds of mass or stiffness
additions. Thus,

3 5 11
my =10.25 0.25 0.25
0.35 0.35 0.05

means coordinates 3, 5 and 11 are perturbed. The perturbing masses are 0.25
kg at each of the three coordinates, 0.35 kg at coordinates 3 and 5 only and 0.5
kg at coordinate 11.
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Eigenvalues matrix (lbe):

This is a matrix made of diagonal submatrices of measured eigenvalues and is
of the following format:

Ibe=[A; A, Ay Ay As...|

The first submatrix consist of eigenvalues of the unperturbed structure. The
other submatrices consists of eigenvalues of the perturbed structure arranged
in an order similar to the order of the perturbing masses/stiffnesses in 'my".

Matrix of STD for the natural frequencies (sw1):

This is a matrix of the same format as 'lbe' but the diagonal submatrices of
measured eigenvalues are replaced by diagonal submatrices of the estimated
standard deviations of the natural frequencies in Hz.

Eigenvector matrix (ue):

This matrix has a similar format to 'lbe' but the diagonal submatrices of
measured eigenvalues are replaced by submatrices of measured eigenvactors
(mass-normalized).

Vector of STD for the eigenvectors (sul):

This is a row vector of the estimated standard deviations for the measured
eigenvectors. It is assumed, for simplicity, that the mode shape displacements
for a given mode at all measured coordinates are of the same standard
deviation. Thus, each entry in 'sul’ is a STD for the mode shape displacements
of the mode in the corresponding position in 'ue'.

Vector of initial estimates for optimization (nduo):

This is a column vector of the parameters of the initial analytical model. The
FE parameters are entered first, and then lumped stiffness parameters, if any,
and finally lumped masses. The format for 'nduo' is illustrated by the
following example for a system with 3 independent sets of element parameters,
3 lumped stiffness and 2 lumped masses.
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nduo=§ m 3

STD of initial estimates (c2):

This is a column vector of the same format as 'nduo’ but the parameters are
replaced by their respective standard deviation estimates.
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PROGRAM LISTING
MAIN MODULE: ngdisc.m

%ngdisc.m

cle

diSp(l************t**t*t*l’**it**t***************ttt*** t)
disp(" NGDISC / NGDISC1 / NGDISC2 / NGDISC3 ")

disp('  mmmmmmmmm e H
disp('UPDATING CONTINUOUS PLANE FRAME STRUCTURES WITH 2D FE
BEAM ELEMENTS))

disp(" AND DISCRETE SYSTEMS ( Lumped Spring-Mass systems ) ')

disp(l*****t*****t***********t*t*******i***t********** l)
disp(" )

disp(' Discrete or Continuous system ? ')

ds=input('Enter 0 ( Discrete ) or 1 ( Continuous ) ');

ty=2;

if ds==

ne=0;

end

dof=input('Number of DOF ? );

r=input('Number of measured modes ? ');

rg=input('Number of rigid body modes (unperturbed structure) ? ');
disp(" ')

if ds==

ne=input('Number of finite elements ? ');

nc=input('Enter elements code matrix. ');

ng=input('Enter global coordinate code matrix (0 for fixed nodes) ');
disp(' ')

ty=input('Element type ? 0-beam 1-plate ');

end

nr=input('Number of measurement coordinates ? ');

drf=input('Model reduction(to the measurement coord) yes (1) or no (0)
[

if drf==

nm=[1:dof];

ns=[[;

nnr=nr;

nr=dof;

nvm=input('Enter vector of measured coodinates ? ');

end

bet=input('Total number of discrete elements if any ? ');

bcn=bct;

if ty==
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nd=input('Enter elements data matrix [ei ea mu la Anglel Angle2] )
end

if ben>0

bem=input('Enter discrete parameter matrix [coord stiff mass coord]
);

end

beck=input('Number of discrete stiffness if any ');

if ds~=0

pd=input('Enter matrix of param definition (pd) [elem nos;ident nos] ');
end

if drf==1

nm=input('"Enter vector of measured coordinates (global) ');
ns=input('Enter vector of unmeasured coordinates (global) ');

end

p=input('Number of mass/stiffener addition coordinates ? ');
g=input('Number of stiffener/mass additions per coordinate ? ');
p3=input('Eigenvalues (0) or eigenvalues+vectors (1) ? ');

if p3==

qqi=input('Analytical (1) or Physical (0) mass/stiffness addition ? °');
if gqi1==1

clc

disp((REMEMBER THAT EIGENVECTORS vee SHOULD BE NON MASS
NORMALIZED")

disp(' ')

disp('press any key to continue ')

pause

end

end

ppl1=input('Want to use initial par in optimization ? yes(1) no(0) ');
my=input('Enter mass/stiff addition matrix [coords;sttiffener/mass]
)i

ms=input('Enter 0 or 1 for mass or stiffener additions ');
ili=input('Want to use existing file of eigendata ? YES(1) NO(0) ");
sw=input('Enter simulation error in natural freq (STD Hz) ? ');

if dii==

load ngnval100

[

if p3==

load ngvec100
end

end

if lii==0

Ibe=input('Enter eigenvalue matrix [lbe] ');
swi=input('Enter matrix of STD for natural freq (Hz) ');
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if p3==
ue=input('Enter eigenvector matrix [ue] ');

sul=input('Enter row vector of STD for eigenvectors '),
end

end

if p3==

su=input('Enter simulation eigenvector error (mass normalized) ');
end

iii=input('"Enter total no of unknown structural parameters ');
if ppl==

nduo=input('Enter vector of initial estimate for optimization
c2=input('Enter STD of initial estimates ');
c2=inv(diag(c2,0));

end

yy=1;

22=1;

z1=100;

while abs((z1-z2)/z1)>0.01

if ty~=1

ngdisc1 % ***** element matrices & assembling process
end

if yy>1

22=21;

end

[v,l]=eig(k,m); % ********* eigen sol of unperturbed structure
[kv,kl]=sort(diag(l));

I=real(diag(kv,0));

v=real(v(:,kl));

if qq1==1 % &&&&&&&& renormalization of eigenvectors
s=1;

for i=rg+1:rg+r

v(:,i)=v(:,i)/v(cee(s),i);

S=S+1;

end

end % &&&&&K&&&&

for i=1:dof

u(1:dof,i)=v(:,i)/sqrt(v(:,i)*m*v(:,i));

end

u=real(u);

uax=u(:,rg+1:rg+t);

Ib=I(rg+1:rg+r,rg+1:rg+r);

if qg1==1 % &&&&& modal mass calc
maa=v(:,rg+1:rg+r)"*m*v(:,rg+1:rg+r);
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maa=diag(maa);

end % &&&Z&&KEIAEKE&K&&&

save ngdata k m | v % ****xereee end of eigen sol

y=r;

for ii=2:9+1 % *********to calculate eigendata of added structure
for i=1:p

if ms==

end

if ms==1

k(my (1,i),my(1,i))=k(my(1,i),my(1,i))+my(ii,i);

end

[v.l]=eig(k,m);

[kv,kl]=sort(diag(l));

v=real(v(:,kl));

I=real(diag(kv,0));

if gqq1==1 % &&&&8&&&&&&&& renormalization of the eigenvectors
for jj=rg+1:rg+r

v(5ij)=v(:.ji)/v(cee(s),ij);

S=S+1;

end

end % &&&&&XEE&K&K&E&&

for t=1:dof
u(1:dof,t)=v(:,t)/sqrt(v(:,t)"*m*v(:,t));
end

u=real(u);

uax(1:dof,j+1:j+r)=u(:,rg+1:rg+r);
Ib(1:r,j+1:j+r)=l(rg+1:rg+r,rg+1:rg+r);

if gq1==1 % &&&&&&&&&&&&&&& modal mass calc
maa2=v(:,rg+1:rg+r)"*m*v(:,rg+1:rg+r);
maa2=diag(maa2);

maas=[maa;maa2];

end % &&&&KZK&K&KZXE&&X&&&

if ms==
m(my(1,i),my(1,i))=m(my(1,i),my(1,i))-my(ii,i);
end

if ms==
k(my(1,i),my(1,i))=k(my(1,i),my(1,i))-my(ii,i);

end

j=j+r;

end 0/0 e e o ok o e e o o o ok ok ok ok ok end of next i

end of next ii

if gq1==1 % &&&&8&&8&&S& computing mass normalized modes

drdk ko drok ok koo ok ok ok ok ok
end %
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for i=1:r+p*q*r
ue(:,i)=vee(:,i)/sqgrt(maa(i));
sul(i)=svi(i)/sqrt(maa(i));

end

end % &&&&&&&&

if nr<dof

for i=1:nr
ua(i,1:j)=uax(nm(i),:);
end

end

if nr==dof
ua(1:dof,1:j)=uax(1:dof,:);
end

if p3==1

for i=1:r+p*q*r

if drf==

for ii=1:nnr

d2(ii,1)=ue(ii,i)-ua(nvm(ii),i);
d3(ii,1)=ue(ii,i)+ua(nvm(ii),i);

end

end

if drf==1

d2=ue(:,i)-ua(:,i);

d3=ue(:,i)+ua(:,i);

end

if max(abs(d2))>max(abs(d3))

ua(:,i)=-ua(:,i);

end

end

end

clear uax u v | 9% ***x*xxv ond of eigen data calc
°/o e e e e ok o ok o o e e e ok ok ke Ca|CU|ating reduced matl’lces

if nr<dof
for i=1:nr
for ii=1:nr

k11(i,ii)=k(nm(i),nm(ii)):
m11(i,ii)=m(nm(i),nm(ii));

end

end

for i=1:nr

for ii=1:dof-nr

k12(i,ii)=k(nm(i),ns(ii));
m12(i,ii)=m(nm(i),ns(ii));
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end

end

k21=k12";

m21=m12';

for i=1:dof-nr

for ii=1:dof-nr
k22(i,ii)=k(ns(i),ns(ii));
m22(i,ii)=m(ns(i),ns(ii));
end

end

end 0/0 AR A EEEE R R ENEEE S ENEEE RS R AEAE RS R AR SRS A R R AR N E R R RS R ]
if nr==dof

k11=k;
ki12=zeros(nr,nr);
k21=k12;

k22=k12;

mii=m;
m1i2=zeros(nr,nr);
m21=m1i2;

m22=m12;

end

nne=(iii-bct)/2;

clear k m

cle

disp('BUSY BUSY BUSY BUSY BUSY BUSY sensitivity analysis')
jx=1;

for so=1:1+p3

SS=1; 2Z=2;

for s=1:1+p*q % ******** mass/stiff add & Jacobian matrices
s

Yy

xx=zeros(dof,dof);

if s>1
xx(my(1,ss),my(1,ss))=my(zz,ss);
SS=ss+1;

end

if ss>p

ss=1;

2z=22+1;

end

if nr<dof

for i=1:nr

for ii=1:nr
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mx(i,ii)=xx(nm(i),nm(ii));
end

end

end

if nr==dof

MX=XX;

end

clear xx

if ms==

m11=m11+mx;

end

if ms==

k11=k11+mx;

end

for j=1:r

a=(s-1)"r+j;
ad4=-Ib(j,a)*mi12+k12;

if nr<dof

a5=inv(-1b(j,a)* m22+k22);
end

if nr==dof
a5=diag(ones(nr,1),0);
end
a6=-Ib(j,a)*m21+k21:
kr=k11-a4*a5*k21-k12*a5*a6+a4*a5*k22*a5%a6;
mr=m1i1-a4*a5*m21-m12*a5*a6+a4*a5*m22*a5*a6;
[v,Ix]=eig(kr,mr);
[kv,kl]=sort(diag(Ix));
Ix=real(diag(kv,0));
v=real(v(:,kl));

for i=1:nr
ux(1:nr,i)=v(:,i)/sqrt(v(:,i)*mrrv(:,i));
end "=0II OA) 2222222 ]

if j>nr

Ix=[Ix zeros(nr,j-nr);zeros(j-nr,j)];
ux=[ux zeros(nr,j-nr)];
end

for i=1:nr

if abs(Ib(j,a)-Ix(i,i))<1
1z=1x(j,]);

uz=ux(:,j);

Ix(j,j)=1x(i,i);

Ix(i,i)=lz;
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ux(:,j)=ux(:,i);
ux(:,i)=uz;

clear uz Iz

li=ii+1;

end

end

nnk=0;

nnm=0;

if yy==1 % *™*****™***** rand error generator
if s==1 & j==

if so==1
rand('normal’)
rni=rand(r+p*q*r,1);

end

if so==2
rn2=rand(nr*p*q*r+r*nr,1);
end

end

[=) e ok o e e ok e o o e ok e ok e ok e e e
end %

end of rand error generat
if so==1
dd(a,1)=Ibe(j,a)-Ib(j,a)+4*pi*sqrt(lbe(j,a))*sw*rn1(a);
wi(a,1)=1/(4"pi*sqrt(lbe(j,a))*sw1i(j,a));

if sw==0

wi(a,1)=1;

end

end

for ”=1 :nne+bct O/D d bk ek ok o % e o ke d J o o & o o o 3 o e o e
dk=zeros(dof,dof);

dm=zeros(dof,dof);

if jjenne+1
if ty~=1
b=2%(jj-1);
end

end

if jj==nne+1
if ty==0
b=b+2+1;
end

if ty==2
b=1;

end

end

if jj>nne+1
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b=b+1;

end

if ty~=1

ngdisc2 % **** formulating dk,dm,dk11. . . . dm22 matrices
end

d2=ua(:,a)-ux(:j);

d3=ua(:,a)+ux(:j);

if max(abs(d2))>max(abs(d3))

uX=-UuUx;

end

clear d2 d3

if ty~=1

ngdisc3 % ******** actual calc of jacobian matrices
end

end cyo kdkkkdk W kkkkkdhdk  hkkkkkhAkd  wk end Of next ”
if so==2 % ********** if eigenvectors are also used
uz=ua(:,a)-su*rn2((s-1)*nr*r+(j-1)*nr+1:(s-1)*nr*r+j*nr,1);
if drf==

ddd=ue(:,a)-uz;

w3=ones(nr,1)/sul(a);

d=diag(w3,0)*d;

ddd=diag(w3,0)*ddd,;

end

if drf==0

du=zeros(nnr,iii);

dddu=zeros(nnr,1);

for ji=1:nnr

du(ji,:)=d(nvm(ji),:);
dddu(ji,1)=ue(ji,a)-uz(nvm(ji),1);

end

w3=ones(nnr,1)/sui(a);

d=diag(w3,0)*du;

ddd=diag(w3,0)*dddu;

end

d2=0;

if s==1 & j==1

d1=d""d;

ddd1=d"™ddd;

d2=1;

end

if d2==0

d1=d1+d""d;

ddd1=ddd1+d"™ddd;
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clear d ddd

end
cz=diag(w1(1:jx),0)*c(1:jx,:);
rk=rank(d1+cz(1:jx,:)""cz(1:jx,:));
rkd=rank(d1);

if jx==1

rnk=[jx;rkd;rk];

end

if jx>1

rnk=[rnk [jx;rkd;rk]];

end

rnk

jX=jx+1;

end % **YU**** end of if so==2
J

[+) khkhkhkhhkhhkhhdhdbhhhbhbhh bbbk dhddd
end %

end of next
if ms==

m11=m11-mx;
end

if ms==
k11=k11-mx;
end

[s) e dr % de e e e o o e e o e e b e e o e e e ok
end %

end of next s
end of next so

O, dhk ko hk kb k bk hdkdd
end %

z1=max(abs(dd));

if pp1==0

c=diag(w1,0)*c;

dd=diag(w1,0)*dd;

end

if ppl==

c=[diag(w1,0) zeros(r+p*q*r,iii);zeros(iii,r+p*g*r) c2]*c;
dd=[diag(w1,0) zeros(r+p*q"r,iii);zeros(iii,r+p*q*r) c2]*dd;
end

cd=c'*c;

cdd=c'*dd;

clear dd

if p3==

cd=cd+d1;

cdd=cdd+ddd1;

end

x=inv(cd)*cdd;

for i=1:10

ii=cdd-cd”x;
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x=Xx+inv(cd)*ii;

end

for i=1:iii

x(i)=x(i)/ao(i);

end

if yy==

if ds==

eee=nd(:,1);

mmm=nd(:,3);

end

if th>0 QA s e e o e e ke ok o
bbb=bcm(:,2:3);

end % dededdeddkkkokkkodkdkohk ok
end

if=1;

ii=1;

If ty==0 o/o khkkhhkhkhkhhkhhkhkrkhdhhor ki
for i=1:ne
nd(i,1)=nd(i,1)+x(2*pd(2,i)-1);
nd(i,3)=nd(i,3)+x(2*pd(2,i));

end

for i=1:bcn

if bem(i,2)~=0
bem(i,2)=bem(i,2)+x(2*pd(2,ne)+ii);
ii=ii+1;

end

if bem(i,3)~=
bem(i,3)=bem(i,3)+x(2*pd(2,ne)+bck+jj);
ji=ij+1;

end

end

end %% **r¥rrrxariar ond of tY=0
lf ty__ o/o e de ok ke ok e ke R ok

for i=1:bcn

if bem(i,2)~=0
bem(i,2)=bcm(i,2)+x(ii);
li=ii+1;

end

if bem(i,3)~=0
bem(i,3)=bcm(i,3)+x(bck+jj);
ji=ii+1;

end

end
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end tyo o e e e o e o o e o o o end of ty=2
if ds==

eee=[eee nd(:1)];
mmm=[mmm nd(:,3)];
end

if bct>0

bbb=[bbb bcm(:,2:3)];
end

if ds==1

nd(:,1)

nd(:,3)

end

if ds==0
bem(1:bck,2)
bem(bck+1:bct,3)
end

yy=yy+1;

clear dk dkk dk11 dk12 dk21 dk22 dm dmm dmi1 dmi2 dm21 dm22
clear k11 k12 k21 k22 m11 m12 m21 m22 kv kl ux

clear ndu % &&&&&&&&&&&
end

clc

disp(l FINISH 23222222222 RS R LR FINISH !)
yy=yy-1,

break
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MODULE ngdiscl.m

% ngdisc1.m

¢lc

disp('BUSY BUSY BUSY BUSY BUSY assembly full matrices’)
k=zeros(dof,dof);

m=zeros(dof,dof);

if ds==1

for j=1:ne

ei=nd(j,1); % *rrrrvEereemeett formulating element matrices
ea=nd(j,2);

mu=nd(j,3);

la=nd(j,4);

t1=nd(j,5)*pi/180;

t2=nd(j,6)*pi/180;

keb=(ei/(1a*3))*[12 6*la -12 6*la;6*la 4*la*2 -6*la 2*la*2;-12 -6*la
12 -6*la; 6*la 2*la*2 -6*la 4*la*2];

meb=(mu*la/420)*[156 22*la 54 -13*la;22*la 4*la*2 13*la -3*la"2;
54 13%la 156 -22*la;-13*|a -3*la*2 -22*la 4*la*2];

kea=(ea/la)*[1 -1;-1 1];

mea=(mu*la/6)*[2 1;1 2];

ke=[keb zeros(4,2);zeros(2,4) kea];

me=[meb zeros(4,2);zeros(2,4) meal;

dc=diag(ones(6,1),0);

for i=1:6

if I"IC(j,i)==-1

dc(i,i)=-1;

end

end

ke=dc'*ke*dc;

me=dc'*me*dc;

dc=diag(ones(6,1),0);

dc(1,1)=cos(t1);

dc(1,5)=-cos(pi/2-t1);

dc(3,3)=cos(t2);

dc(3,6)=-cos(pi/2-t2);

dc(5,1)=cos(pi/2-t1);

dc(5,5)=cos(t1);

dc(6,3)=cos(pi/2-t2);

dc(6,6)=cos(t2);

ke=dc'*ke*dc;

me=dc'*me*dc;

for i—1 .6 o/o hhkkhkdkkdkkhkhkkhhhkhkdhn

assembly
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for ii=1:6
if ng(j,i)~=0 & ng(j,ii)~=0
k(ng(},i),ng(j,ii))=ke(i,ii)+k(ng(j,i),ng(j,ii);

m(ng(j,i),ng(j,ii))=me(i,ii)+m(ng(j,i),ng(j,ii));
end

end

end

end %**t****************
end % ***** end of ds==
if bcn>0 % ********** adding boundary stiffeners/masses ****
for i=1:bcn

if bem(i,4)==
k(bem(i,1),bcm(i,1))=k(becm(i,1),bem(i,1))+bcm(i,2);
m(bcm(i,1),bcm(i,1))=m(bcm(i,1),b cm(l 1))+bem(i,3);

end

if bem(i,4)>0
k(becm(i,1),becm(i,1))=k(bcm(i,1),becm(i,1))+bcm(i,2);
k(bcm(i,4),bcm(i,4))=k(bcm(i,4),bcm(i,4))+bcm(i,2);
k(bem(i,1),becm(i,4))=k(bcm(i,1),becm(i,4))-bcm(i,2);
k(bcm(i,4),bcm(i,1))=k(bcm(i,4),bcm(i,1))-bcm(i,2);

end

end

end O/o o o e o e de o o de ok o o g o ok ke ok end of boundary add % % ko
disp('return to main program')

return % ******* return to ngdisc.m

end of next j

407



MODULE ngdisc2.m

% ngdisc2.m

% Performing diff of matrices. dk,dm,dk11 . . . dm22, beam elements
if jj<nne+1

OA dr ook g de dr o dr ok kg e ok e ok otk e ok ok e ol b e e ok ok o ok ko ko ke ok e e o ok ok o e e e
for o=1:ne

if pd(2,0)=<jj

dkk=zeros(dof,dof);
dmm=zeros(dof,dof);

ea=nd(0,2);

mu=nd(o,3);

la=nd(0,4);

t1=nd(0,5)*pi/180;
t2=nd(0,6)*pi/180;
dkb=(1/(la*3))*[12 6*la -12 6*la;6*la 4*la*2 -6*la 2*la*2; -12 -6*la
12 -6*la;6*la 2*la*2 -6*la 4*la*2];
dmb=(la/420)*[156 22*la 54 -13*la;22*la 4*la*2 13*la -3*la*2; 54
13%la 156 -22*la;-13*la -3*1a*2 -22*la 4*la*2];
dka=zeros(2,2);

dma=(la/6)*[2 1;1 2];

dkb=[dkb zeros(4,2);zeros(2,4) dka];
dmb=[dmb zeros(4,2);zeros(2,4) dma];
dc=diag(ones(6,1),0);

for i=1.6

if nc(o,i)==-1

dc(i,i)=-1;

end

end

dkb=dc'"dkb*dc;

dmb=dc'*"dmb*dc;
dc=diag(ones(6,1),0):
dc(1,1)=cos(t1);
dc(1,5)=-cos(pi/2-t1);
dc(3,3)=cos(t2);
dc(3,6)=-cos(pi/2-t2);
dc(5,1)=cos(pi/2-t1);
dc(5,5)=cos(t1);
dc(6,3)=cos(pi/2-t2);
dc(6,6)=cos(t2);

dkb=dc'*dkb*dc;

dmb=dc'*dmb*dc;

for i=1:6
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for ii=1:6
if ng(0,i)~=0 & ng(o,ii)~=
dkk(ng(o,i),ng(0,ii))=dkb(i,ii);

dmm(ng(o,i),ng(0,ii))=dmb(i,ii);
end

end

end

dk=dk+dkk;

dm=dm+dmm;

end % *** end of pd(2,0)=jj

end % *** end of o=ne

end % dhkdhk kb kb hh bbbk d bbbk rhhhhk
if jj>nne

o/o W e e o o % o khkkhhk % d ok

if jj-nne<bck+1

if bem(jj-nne,2)~=0

if bcm(jj-nne,4)==
dk(bcm(jj-nne,1),bcm(jj-nne,1))=1;
end

if bem(jj-nne,4)>0
dk(bem(jj-nne,1),bem(jj-nne,1))
dk(bcm(ji-nne,4),bcm(ji-nne,4))
dk(bcm(jj-nne,1),bcm(jj-nne,4))=
dk(bcm(jj-nne,4),bem(jj-nne,1))=
end

nnk=nnk+1;

end

if jj-nne>bck

nnk==0;

end

end

if bcm(jj-nne,3)~=0
dm(bcm(jj-nne,1),bcm(jj-nne,1))=1;
nnmM=nNNM+1:

end

end 0/6 LET R T 'L e % W R e ok o e ok o ok
if nr<dof

for i=1:nr

for ii=1:nr
dk11(i,ii)=dk(nm(i),nm(ii));
dm11(i,ii)=dm(nm(i),nm(ii));

end

end

end of

1;
1'

-1,
-4
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for i=1:nr

for ii=1:dof-nr
dk12(i,ii)=dk(nm(i),ns(ii));
dm12(i,it)=dm(nm(i),ns(ii));
end

end

dk21=dk12";
dm21=dmi2’;

for i=1:dof-nr

for ii=1:dof-nr
dk22(i,ii)=dk(ns(i),ns(ii));
dm22(i,ii)=dm(ns(i),ns(ii));
end

end

end

if nr==dof

dk11=dk;
dk12=zeros(nr,nr);
dk21=dk12;

dk22=dk12;

dmi1i=dm;
dm1i2=zeros(nr,nr);
dm21=dm1i2;
dm22=dmi2;

end

return
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MODULE ngdisc3.m

% ngdisc3.m

% jacobian matrices
mre=-dk12*a5*m21+a4*a5*dk22*a5*m21+m12*a5*dk22*a5*a6-m1
2*a5*dk21+dk12*a5*m22*a5*a6-a4*a5*dk22*a5*m22*a5*a6-a4*a
5*m22*a5*dk22*a5*ab+a4*a5*m22*a5*dk21;
mru=dm11+Ib(j,a)*(dmi12*a5*m21-a4*a5*dm22*a5*m21-m12*a5*d
m22*a5*a6+mi2*a5*dm21-dmi2*a5*m22*a5*a6+ad4*a5*dm22*a5*
m22*a5*a6+a4*a5*m22*a5*dm22*a5*a6-a4*a5*m22*a5*dm21)-a4
*a5*dm21-dmi12*a5*a6+ad4*a5*dm22*a5*a6;
mri=m12*a5*m21-a4*a5*m22*a5*m21-mi12*a5*m22*a5*a6+mi2*a
5*m21-m12*a5*m22*a5*a6+a4*ab*m22*a5*m22*a5*ab6+a4*a5"m2
2*a5*m22*a5*ab-a4*a5*m22*a5*m21;
ca=dk11-dk12*a5*a6-a4*a5*dk21+a4*a5*dk22*a5"a6;
cc=-Ib(j,a)*(dm11-dmi12*a5*a6-a4*a5*dm21+a4*a5*dm22*a5*a6);
kdl=-(m11-m12*a5*a6-a4*a5*m21+a4*a5* m22*a5*ab6);

if jj<nne+1

lf SO== cyo ddedk ko ok ok pert of eigvalues v d % % % de e % v g o e e ok e o ok ok o ok ok
cy(a,b+1)=ua(:,a)'*ca*ua(:,a);

cy(a,b+2)=ua(:,a)*cc*ua(:,a);

end

H (2222222222232 RX2 2 )
if so== %

pert of eigvectors
for v=1:nr

11=Ib(j,a);

if j==1 & v==1

js=2;

end

if v==

dy(:,b+1)=zeros(nr,1);

dy(:,b+2)=zeros(nr,1);

end

if v~=] & v~=js

aa=v;

12=1x(v,v);
dy(:,b+1)=dy(:,b+1)+ux(:,aa)*ux(:,aa)*ca*ua(:,a)/(I1-12)-ux(:,aa)*ux(:,aa
)'*kdl*ua(:,a)*ua(:,a)"ca*ua(:,a)/(ua(:,a)"kdl*ua(:,a)*(11-12));
dy(:,b+2)=dy(:,b+2)+ux(:,aa)*ux(:,aa)"*cc*ua(:,a)/(l1-12)-ux(:,aa)*ux(:,aa
)'*kdl*ua(:,a)*ua(:,a)cc*ua(:,a)/(ua(:,a)"kdl*ua(:,a)* (11-12));

end

if vea=j
dy(:,b+2)=dy(:,b+2)-0.5%ua(:,a)*ua(:,a)"*mru*ua(:,a)-0.5*ua(:,a)*ua(:,a)’
*mrl*ua(:,a)*ua(:,a)'*cc*ua(:,a);
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dy(:,b+1)=dy(:,b+1)-0.5*ua(:,a)*ua(:,a)"mre*ua(:,a)-0.5*ua(:,a)*ua(:,a)’
*mri*ua(:,a)*ua(:,a)ca*ua(:,a);

end

js=nr+1;

end % **errerer* end of next v

end O/O dhkhhkhhkkhkhhhhdhdhd end 0.I: SO==

end % ok kb kb hddkad end Of jj<nne+1

if jj>nne O/O W % &k Wk ok %k ¥ ¥ ik k * W Wk * ok W %k * ok *
if 50== % o b e 9 g gk o % % ok ek

if nnk>jj-nne-1

cy(a,b)=ua(:,a)™ca*ua(:,a);

end

if nnk<jj-nne & nnm>0

cy(a,b)=ua(:,a)*cc*ua(:,a);

end

end 04/0 w ok ok ok ok ok o ok ok ok ok a o de % b ok ok

if SO==2 0/0 o de e de de ok de e o o ok o e ok
for v=1:nr
11=Ib(j,a);

if j==1 & v==1
js=2;

end

if v==1
dy(:,b)=zeros(nr,1);
end

if vv=] & v~=js
aa=v,

12=Ix(v,v);

if nnk>jj-nne-1

dy(:,b)=dy(:,b)+ux(:,aa)*ux(:,aa) ca*uva(:,a)/(I11-12)-ux(:,aa)*ux(:,aa)""kd
I*u:(:,a)*ua(:,a)'*ca*ua(:,a)/(ua(:,a)'*kdl*ua(:,a)*(ﬁ-I 2));

en

if nnk<jj-nne & nnm>0
dy(:,b)=dy(:,b)+ux(:,aa)*ux(:,aa)*cc*ua(:,a)/(11-12)-ux(:,aa)*ux(:,aa)" kd

|*U§l(3,a)*ua(:.a)'*cc*ua(:,a)/(ua(:,a)'*kdl*ua(:,a)*(l1-I 2));
en

end

if ve==

if nnk>jj-nne-1
dy(:,b)=dy(:,b)-0.5*ua(:,a)*ua(:,a)"*mre*ua(:,a)-0.5*ua(:,a)*ua(:,a)*mrl
*ua(:,a)*ua(:,a)™ca*ua(:,a);

end

if nnk<jj-nne & nnm>0
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dy(:,b)=dy(:,b)-0.5*ua(:,a)*ua(:,a)*mru*ua(:,a)-0.5*ua(:,a)*ua(:,a)"*mrl
*ya(:,a)*ua(;,a)*cc*ua(:,a);

end

end

js=nr+1;

end OA, e e de ok ok ek e ok e e ok ke ok end of next v
end Ofg Hhkkkkdkkhhhhdkhn end Of s0=2

end o/o dedekk  kdkdkdk  kdkkdk  kkkdw end 01; jj>nne
if s==1+p"q & j==

if ji==nne+bct

If SO0== o/o hkkdkokkkkkdkhk  kk  kk  kk  kk kK
c=CY,

clear cy

If pp1== o/o dkdkkkkkhkhkhhkkhkhhkd  kk  kk kK
c=[c;diag(ones(iii,1),0)];

if ds==

for i=1:ne

ndy(2*i-1,1)=nd(i,1);

ndy(2*i,1)=nd(i,3);

end

end

if bcn>0
ii=1;

for i=1:bcn

if bcm(i,2)>0
ndy(2*ne+ii,1)=bcm(i,2);

ii=ii+1;

end

end

ii=1;

for i=1:bcn
if bem(i,3)>0
ndy(2*ne+bck+ii,1)=bcm(i,3);
i=ii+1;

end

end

end

if ds==

for ii=1:ne
for i=1:ne

if pd(2,i)==ii

ndu(2*pd(2,i)-1,1)=ndy(2%i-1,1);
ndu(2*pd(2,i),1)=ndy(2%i,1);

413



end

end

end

ndu=[ndu;ndy(2*ne+1:2*ne+bct,1)];

end

if ds==0

ndu=ndy;

end

dd=[dd;nduo-ndu];

end % drdk deded dodeo ko dk ok ok * % % % W ki £33 * %
ao=max(abs(c));

for i=1:iii

c(:,i)=c(:,i)/ao(i);

end

end 0/0 o e if SO==1 hk dkk kk ok ko

end % ***** end of jj=nne+bct ** ** **

end % dkdkkhhkhkhdkhkkhkhhhhhhhdkrhhdhh If S=1+pq
if so==

if jj==nne+bct

d=dy;

for i=1:iii

d(:,i)=d(:,i)/ao(i);

end

end % ***** jj=nne+bct

end QA) dddekhh ke okdkh ke h ok k ok ok ok ok ok ko ok ko SO=2
feturn
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