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SYNOPSIS

Product reliability and its environmental performance have
become critical elements within a product’s specification
and design. To obtain a high level of confidence in the
reliability of the design it is customary to test the
design under realistic conditions in a laboratory. The
objective of the work is to examine the feasibility of
designing mechanical test rigs which exhibit prescribed
dynamical characteristics. The design is then attached to
the rig and excitation is applied to the rig, which then
transmits representative vibration levels into the product.

The philosophical considerations made at the outset of the
project are discussed as they form the basis for the
resulting design methodologies. It is attempted to
directly identify the parameters of a test rig from the
spatial model derived during the system identification
process. It is shown to be impossible to identify a
feasible test rig design using this technique. A finite
dimensional optimal design methodology is developed which
identifies the parameters of a discrete spring/mass system
which is dynamically similar to a point coordinate on a
continuous structure. This design methodology is
incorporated within another procedure which derives a
structure comprising a continuous element and a discrete
system. This methodology is used to obtain point
coordinate similarity for two planes of motion, which is
validated by experimental tests. A limitation of this
approach is that it is impossible to achieve
multi-coordinate similarity due to an interaction of the
discrete system and the continuous element at points away
from the coordinate of interest. During the work the
importance of the continuous element is highlighted and a
design methodology is developed for continuous structures.
The design methodology is based upon distributed parameter
optimal design techniques and allows an initial poor design
estimate to be moved in a feasible direction towards an
acceptable design solution. Cumulative damage theory is
used to provide a quantitative method of assessing the
quality of dynamic similarity. It is shown that the
combination of modal analysis techniques and cumulative
damage theory provide a feasible design synthesis
methodology for representative test rigs.

Key Words : system identification; environmental tests;
optimal designs; dynamic similarity; design methodologies.
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NOMENCLATURE

&
Ee

Problem input space

Problem ouput space

System transformation

Mass matrix

Mass element, numberj

Stiffness matrix

Stiffness element, numberj
Normalised modal matrix

Normalised characteristic vector of the r "th mode
Unity matrix

Eigenvalue matrix

Complex eigenvalue for the r 'th mode
Resonant frequency for the r th mode
Young ‘s modulus

Second moment of area

Material density

Sectional area

Length of beam or element

End constraint function

Coordinate position

Sweeping frequency

Point mobility for coordinate ¢
Transfer mobility between coordinates t and j
Degrees of freedom

Residual stiffness element

State varible vector (n-elements)
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{63
Y (r,b)

h(z,b)

(L9
£¢l

L Berrerd

n

vesign space of real numbers

Design ‘'variable vector (k-elements)

Cost function

State equations or constraints

Zero

Sensitivity vector for the i “th variable
Sensitivity matrix

Input force vector

Response vector

Point receptance for coordinate ¢

Transfer receptance between coordinates iandJ
Equivalent total mass for discrete system at
coordinate J

Scalar

Optimum solution vector

Design error

Residual flexibility

Term for a variable contained within a set

The following terminoclogy has been adopted within the

report for the design of environmentally representative

test rigs.

Original structure The original structure is an

or Carrier Body existing structure from which

physical measurements can be
taken. The measurements obtained
can represent the complete

structure or a localized area of a

-15-



Coordinates of interest

Continuous element

Discrete system

Substitute structure

or Test Rig

Dynamic similarity

very large structure.

The direct dispacements at points
on the original structure (where
the measurements are taken)
correspond to the coordinates of
interest.

A continuous element connecting
the coordinates is one for which
the distributed nature of the
mechanical properties are
explicitly taken into account.

A discrete system is one for which
the mechanical properties are
"lumped".

The test rig comprising the
continuous element and a discrete
system is called a substitute
structure.

If two structures exhibit the same
dynamical characteristics over a
prescribed frequency range then
the two structures are said to be

dynamically similar.

-16-



1. INTRODUCTION

1.1 TERMS OF REFERENCE

Product reliability and its environmental performance have
become critical elements within a product specification,
such that they are at least as important as the cost,
weight and aesthetic attributes. This is particularly true
for modern electro-mechanical designs that experience harsh
vibrational environments, either during transportation or

as part of their everyday functioning.

Modern numerical analysis techniques, although very
sophisticated and accurate, are of little use when
analysing such systems. Modelling techniques, where the
behavioural characteristics are represented by well
established laws of physics, are heavily reliant upon the
modeller s skill and extensive knowledge of the
characteristics of the equipment. If inadequate
information is known then lumped parameters and linearised
characteristics are assumed, with the associated reduction

in the realism of the model.

Since analytical techniques are incapable of providing a
high level of confidence in the reliability of the
equipment it is customary to test the design under
realistic conditions in the laboratory. Various strategies
have been proposed for realistic testing procedures, such

as the presently used 3 axis testing sequence.

_17_



This technique and other testing procedures have been
examined and it was considered that an alternative approach
to realistic environmental testing of transported equipment
or equipment exposed to vibrational loading was required.

A study was performed, external to the present work, where
the frequency range of typical transported equipment was
identified and partitioned into three ranges. It was
considered that the low frequency range (0 to 100 Hz) could
be recreated by the use of a mechanical test rig having
prescribed dynamical characteristics. These
characteristics can be measured from the original carrier

body in the form of frequency response curves.

If a mechanical test rig which exhibits the prescribed
dynamical characteristics can be built then it can be used
to test a range of transported equipment. @ This is because
the dynamical characteristics of the test rig will change
in the same fashion as the carrier body when the same

equipment is attached to each structure.

This project, commissioned by the Ministry of Defence, is a
collaborative effort between Cape Engineering; Warwick
(Environmental Test Engineers) and Aston University;
Birmingham. It has two distinct areas of interest;
i) A feasibility study performed by Cape Engineering to
examine the operational parameters and functional
constraints on such an approach.

15 ) A feasibility study performed by Aston University to

_18_




examine the analytical implications of such test

rigs and to establish a design methodology.

This work addresses the problems of designing mechanical

test rigs which are capable of reproducing defined

dynamical characteristics.

1:2

OBJECTIVES

The primary objective of the work is to examine the

feasibility of designing a mechanical test rig that has

prescribed dynamical characteristics. The test rig must be

capable of supporting complete pieces of equipment.

It is possible to define intermediate objectives for the

work;

1)

2)

3)

4)

5)

Examine the possibility of using an approach based
upon system identification techniques to derive the
design parameters of a test rig. This approach uses
the frequency response data from the original carrier
body.

Examine the implications of using truncated,
incomplete frequency response data.

Derive a design methodology to identify a system that
is dynamically similar to a point coordinate on
another system.

Examine the implications of two point coordinate
similarity.

Derive a design methodology for a distributed

-19-



parameter system which has prescribed dynamical

characteristics.
143 PROJECT STRUCTURE

The project has been structured into five main areas of
work as shown in Figure 1. Effoft has been directed to
make a contribution in all five areas rather than pursue an
exhaustive examination of all aspects within any one. A
section on the philosophical considerations, made at the
outset of the project, has been included to give a
background on the reasoning applied throughout the work.
It outlines what information was available and what
expectations were assumed to be gained from applying the
selected approach. To reflect the structure of the
project, the relevant literature is reviewed in each area,

rather than having a single literature review.

The first area relates to Chapter 3 and examines the
implications of using system identification algorithms
within a design synthesis process. Whilst considering
system identification techniques it is important to allow
for truncation effects of the frequency response data. The
final aim of the system identification process is to derive
mass, stiffness and damping matrices which represent a
spatial model of the original structure. The truncation
effects cause these matrices to be fully populated. It is
not possible to derive a methodology which directly

identifies the parameters of a suitable test rig by using
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populated matrices. However, the ground rules for
obtaining dynamic similarity between two structures are
established. The effects of handling incomplete frequency

response data is also examined.

At the outset of the project it was considered that a
solution capable of achieving prescribed dynamical
characteristics for a structure would be obtained from a
test rig comprising an assembly of continuous and discrete
elements in a system. The term “substitute structure’ was
adopted to describe this system within the thesis. The
discrete system was used to “tune’ the rig to the desired
dynamical characteristics. Before it was possible to
ggamine substitute structures it was considered necessary
to examine simple systems to establish the fundamental

concepts when designing dynamically similar structures.

A design methodology is derived (Chapter 4) which
identifies the parameters of a discrete system which is
dynamically similar to a point coordinate on another
system. It is important to note that this similarity is
only for one plane of motion. During the identification
érocess a finite dimensional optimal design algorithm is

developed.

A proposed design methodology for the substitute structure
is discussed in Chapter 5. The methodology is used to
identify a similar structure to a simple tapered

cantilever. Experimental validation of the analytical

-21-



study (Chapter 6) shows that good point coordinate

similarity is obtained between the two structures.

The next phase of the work was to apply the design
methodology to two coordinates of interest on a single
plane structure. The methodology was also applied to a two
dimensional structure to examine out of plane similarity
(Chapter 7). The coupling of the discrete system to the
continuous element proviées an acceptable level of dynamic
similarity at the coupling coordinate. However, at
coordinates away from the discrete system intermediate
frequencies are noticable, resulting from the stationary
characteristics of the discrete system. These intermediate
frequencies have significant mode shapes and render the

proposed design methodology untenable.

This highlights that only continuous elements can be used
to design the mechanical test rig. An approach to
designing a structure that exhibits prescribed dynamical
characteristics is discussed in Chapters 8 and 9. A
distributed parameter optimal design algorithm is proposed
that can (under the right conditions) systematically direct
an initial design estimate to one which has the defined
dynamical characteristics. If the initial design estimate
is incapable of moving in a feasible direction then the
designer is informed and a new design estimate has to be
instigated. Methods of quantatively assessing the quality

of dynamic similarity are discussed.
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PROJECT STRUCTURE

(__START )

Analytical 1
Methods Available

END

Identify the parameters of a |2
‘ | Discrete System dynamically
to o point coordinate.

Derive a Design Methodology | 3

using a continuous element
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Examine QOut of Plane 4

Similarity using proposed
design methodology.

Derive a Design Methodology |5

for Distributed Parameter
design problems.

Figure 1
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2 DESIGN PHILOSOPHY CONSIDERATIONS

2.1 PROBLEM DEFINITION

As the complexity and sensitivity of modern engineering
designs increase, so does the expectations of the design’s
performance, reliability and availability. Coupled with
these expectations are market forces which requires that
the equipment is ¢f minimum cost, made from the minimum of
components, minimum material, light as possible etc. The
first group of conditions represent the performance or
behaviour of the equipment to external or environmental
forces. They are generally classed as the state variables
of the equipment. The other group of conditions,
specifying the physical properties, such as size, weight,
material etc. are classed as the design variables, since
they specify the design of the equipment and are at the
discretion of the designer. The design variables and stats
variables are related by well established laws of physics.
The state variables cannot be measured directly and are
usually established by either analytical modelling
techniques or controlled experimental measurements cf the

physical system.

A typical complex modern design of a piece of equipment 1is
likely to contain a mixture of electrical and mechanical
sub-systems. It is the functioning of these sub-systems

which affect the reliability of the whole of the equipment.
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A general cause of failure within these sud-systems is due
to the environment within which the equipment functions, or

is transported through, imposing cyclic loading conditions

onto the equipment.

If the development and evaluation of the performance of the
equipment is achieved by a series of field tests, the cost
and time scale would be prohibitive. The normal
engineering approach to designing and evaluating equipment
is to firstly model the equipment using numerical analysis
techniques. If the equipment is a mixture of electrical
and mechanical sub-sysems, then analytical techniques such
as finite element analysis are of limited use. Also some
of the sub-systems might be highly non-linear or
discontinuous which makes realistic analog/digital
simulation techniques difficult to apply. It is,
therefore, always a desirable step to manufacture prototype
equipment and test it under strict laboratory conditions.
One testing procedure currently in use is to test a piece
of equipment in three axes. The equipment is constrained
in two axes to minimise sub-system movement in these axes
and then excited in the third axis. After a specified
period, the axis of excitation is moved to one of the
previously constrained axes (the other two are then
constrained) and the test is repeated. This test has the
disadvantages of not being realistic, taking a long time to
perform and has the possibility of over testing the
equipment, thus incurring extra design penalties. This

philosophy of testing is quite typical within experimental
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testing procedures and often leads to testing for
conditions that don’t actually exist. This then results in
a feedback to the designer who might incorporate the
incorrect or over tested data within the design
formulation. Hence the design can be over conservative,
costly, heavy and still possibly fail in service due to
inadequate or incorrect consideration being given to the
actual operational environment of the equipment. For
experimental tests to be meaningful it is necessary that
the laboratory conditions are representative of the actual
environments the equipment will experience during its

working life.

The objective of this work is to enable the designer of the
equipment to be able to specify the parameters of
environmentally representative test rigs. Before this
problem is addressed, it is worthwhile to examine the

philosophy of the selected design approach.
2.2 SYSTEM ENGINEERING DEFINITION OF PROBLEM

The basic philosophy that has béen adopted, within the
work, is to consider the problem within the concepts of
system theory. This approach has many advantages, which
will be discussed later, the main one is it provides a
mechanism for the systematic reduction of the problem into
sub-systems with well defined input and output
specifications. Since the problem is handled by a top-down

analysis approach the reltionships of the sub-systems are

b



also well defined.

At this stage, system theory is briefly reviewed so that a
set of working definitions can be established. A system
can be defined as a set of resources, or elements, such as
computer hardware, computer software, files, mannuals,
machinery and personnel assembled with the aim of solving a
class of problem. To design such a system*it is necessary
to define its boundary, its behaviour and its operational

constraints.

Early research work establishing system theory considered
the ultimate system to be the universe. Checkland (1)
attempted to draw a systems map of the universe. Every
system exists within the universe and it is a systems
engineer s first task to establish the hierarchy of the
system under examination, within this overall universal
structure. In other words, the first task of the systems
engineer is to establish the boundary of the system. This
must be achieved in context with the original problem to
ensure that sufficient knowledge is available so that a
solution may be obtained. The first task is, therefore,
possibly the most difficult to achieve. For example, Ashby
[2] maintains that "every material object contains no less
than an infinity of variables." He illustrates his point
by the following example: "The real pendulum has not only
length and position, it has also mass, temperature,
electric conductivity, crystalline structure, chemical

impurities, some radio-activity, velocity, reflecting
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power, tensile strength, a surface film of moisture,
bacterial contamination, an optical absorption, elasticity,
shape, specific gravity and so on. Any suggestion that we

should study "all" of the facts is unrealistic and actually

the attempt is never made".

The inference from this statement is that an abstract
incomplete model of the system and system environment must
be established, which contains sufficient attributes such
that adequate solutions can be found for the class of

problem under consideration.

It is possible to represent this by the following abstract

system (Figure 2).

Problem representation

E.;. s E_a
%— -————"—0
Figure 2
where é& represents the incomplete input space to the

system within the system environment

£, represents the output space and will contain
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solutions to problems set within the incomplete

input space.

fb represents the system which is capable of
transforming problems within the input space (g;)
into solutions contained within the output

space (é;).

Once the boundary of the system has been established, the
system is partitioned into modules so that the steps within
the transition of the problem into a solution are
identified. This partitioning process is repeated until

all of the modules are fully defined.

Before it is possible to establish the boundary of the
system it is necessary to examine further the class of the
problem. In particular, the behaviour and operational
const;aints of the problem must be specified as they effect
the choice of the modelling medium. Establishing the
boundary is, therefore, an iterative design process where
the total problem must be viewed in the context of possible

solution processes.

2.3 MODELLING MEDIA

The basic objective of the design study is to be able to
systhesise a model (the test rig) which has the same

characteristics as the real system (the carrier body)
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This type of model is called a homomorphic model where
behavioural characteristics from the original system are
used by many-to-one transformations to identify a
simplified model. The number of design variables are less
than the original system but the model is capable of

reproducing similar behaviour for a restricted performance

range.

This introduces a new concept, called the level of
resolution, of the model. 1In effect this denotes the
accuracy of the model and its ability to recreate similar
behavioural characteristics as the original structure. The
operational constraint that is imposed is that the more
accurate the model, the higher the level of resolution that
is required. This means that the greater the amount of
data describing the original structure, both quantative and

qualitative data, are required.

There are two possible modelling media that can be used to
generate the simplified model

(a) Analogue representation

(b) Iconic representation
The discussion to date concerning a systems approach to
solving the problem has been very generalised. It is
worthwhile to consider some of the characteristics of this
particular problem as they reduce the number of variables
within the selectioh of a suitable modelling medium. The
problem is concerned with recreating a dynamical

environment which is similar to the original system. The
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original system is a structure used to carry or support
complex pieces of equipment. This equipment can fail due

to prolonged exposure of cyclic vibratory forces.

A study made prior to this work identified that the
dynamical range of these forces are limited from 5 to 100
Hz. The equipment can range from a few kilograms to
several thousand kilograms. The size of equipment can
range from a feﬁ centimetres to several metres in all axis.
The equipment can be attached to the carrier body at one

or more points.

A model (the test rig) is therefore required which can
handle equipment having a large envelope of size and
weight, have several attachment points and be capable of

being used to perform fatigue studies.
(a) Analogue Representation

If the model is to be generated as an analogue
representatioﬁ then it is first necessary to specify the
state variable equations of the carrier body.

The carrier structures used at present are very complex
themselves and, therefore, it is proposed to collect data
from the actual carrier body. This data will be in the
form of frequency response plots. A technique would be
required to identify the state variable equations from the
frequency response plots. These equations are then used to

generate an analogue model, where electric voltages
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represent corresponding properties of the original
structure. A typical analogue model configuration can be

seen in Figure 3.

Analog model configuration

STOCHASTIC ANALOGUE EQUIP-
INPUT MODEL ACTUATORS SENSORS MENT
SPACE
FEEDBACK OUTPUT
CONTROL SPACE.
LOOP
Figure 3.

In the analogue model a feedback from the interface of the
actuators and the test equipment would be required to allow
changes in the frequency response data due to the coupling
effects of the specimen under test. The analogue model
would require to have multiple outlets so that the

actuators, one per attachment point, could apply realistic

vibration levels to the equipment under test.
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(b) Iconic Representation

When an iconic mcdel is generated, the model incorporates
properties of the original system. For example, lengths or
masses of elements within the original system are
represented as scaled parameters within the model. These
models are, therefore, physical or mechanical in nature.
An obvious property that has to be retained is the
distances between the attachment points. A continuous
element connecting the points of interest is, therefore,
required. This means that the geneation or design of the
model is a design synthesis exercise where the distributed
nature of the mechanical propeties of the connecting

structure are explicitly taken into account.

A concept within the application of a system approach to

problem solving is the principle of minimum commitment.

During any design process the designer is faced with a wide
range of possible routes to a solution and the initial
reaction is one of reducing the number of options as soon
as is possible. This often leads to missing design
solutions or artificially constraining the number of
feasible solutions. These decisions to reject certain
lines of possible solution are often made under a high

level of uncertainty due to a lack of adequate information

or reasoning.
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The class of design problem and the system obiective has
been established and it is now necessary to establish the
boundary. To finalise the boundary it is necessary to
select a modelling medium, since the time scale and
manpower resources within the project does not permit the
examination of both modelling techniques. It is perhaps
appropriate at this point to list the advantages and

disadvantages of each modelling medium.
Analogue The analogue model is an elegant solution

Given the state variable equation it is

relatively easy to model

It is difficult to derive the state variable

equations

It is difficult to control the phase between

the attachment points

If digital simulation techniques used then

there will be a real time modelling problem

If an analogue computer is used the
repeatability of the tests are not certain.
It would also be difficult to establish the
level of dynamic similarity if the model

changes with time.
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Iconic

When structures are coupled the frequency
response characteristics at the attachment
points change. A feedback loop is required
between the equipment and the model so that
the model represents changes with respect to

the attached equipment.

When coupling equipment to the rig the
dynamic characteristics will change in the
same manner as the original structure and
the equipment. There is no requirement for

any external modification system.

The model, once established, will be

dynamically stationary with respect to time.

The model is easy to validate using well

tested experimental measuring techniques.

If acceptable dynamic similarity has been
achieved then a single point input forcing
function will generate correct frequency

response levels and phase at each attachment

point.

The test rig will possibly have fatigue

problems.
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It is difficult to establish the parameters
of the continuocus element connecting the

points of interest.

After considering the available knowledge about the two
modelling media and the author s background experience, it
was decided to examine the possibility of using an iconic

modelling representation.

2.4 MECHANICAL TEST RIG

A design methodology is required that will systematically
derive the design variables for a mechanical test rig that
exhibits prescribed dynamical characteristics. If this
methodology is to be systematic, then a design synthesis
sequence must be employed, rather than an intuitive
reasoning process. If the design is to be achieved by
synthesis then an orderly and formalised progression of a
system model by transformation through three modelling
domains must be achieved. These domains can be categorised

by the following definitions;

Operational Domain

The operational domain or behavioural model is concerned
with the abstract mechanism of performance of the system

without regard to a particular realisation of its

structure.
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Structural Domain

The structural domain or "glass-box" model embeds
operational models of the system elements and specifies the
interconnections or relationships between the system
elements. It is possible to deduce a program of system

behaviour from the structural model.
Physical Domain

The physical domain entertains representations of the

mechanical construction of the system. The physical model
is the ultimate outcome of a synthesis excercise prior, of
course, to fabrication. If this process is reversed, such
that the designer moves through the physical and structural
model to the operation model, then the process is known as

analysis.

An important feature within the structural domain is the
effect of coupling structures. When mechanical structures
are coupled the frequency résponse characteristics of the
coupled structure are different to the individual
components. If the test rig is dynamically equivalent to
the "clean" carrier body, then the change in the dynamical
characteristics of the test rig will be the same as the
carrier body when the equipment is attached. It is this
feature that is the major reason for selecting an iconic

modelling representation.
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Another advantage of the mechanical test rig is the usage
of the actual fixing mechanisms or linkages. These
linkages are highly non-linear and have discontinuities.
The linkages are usually very stiff in certain planes but
allow large movements in others. By exciting the test rig
and not the equipment directly, it will be possible to
regenerate these conditions accurately. This emphasises
the importance of the structural domain by establishing
that the relationships between coordinates of interest (the

transfer frequency response plots) are correct.

Within the physical domain it is envisaged that the test
rig will comprise two distinct components, a continuous
element and a discrete system. The continuous element is
to connect the points or coordinates of interest. The
distributed nature of the mechanical properties of the
continuous element are explicitly taken into account. The
difference between these properties and the dynamical
characteristics of the carrier body are used to identify a
discrete system. This discrete system is coupled to the
continuous element so that the resultant structure, called
the substitute structure is dynamically similar to the

original carrier body.

The major disadvantage of a mechanical test rig is fatigue
of the continuous element. If the test rig is to be used
for a range of equipment then it will be necesary after the
dynamical propeties have been established correctly, to

examine the rig for possible fatigue failures.
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2.5 CHOSEN APPROACH

Having selected the modelling medium that is to be used
throughout the work the next step is to establish
intermediate objectives. This is essentially the
partitioning of the global system S |, Figure 2, into
sub-systems. Each sub-system should address a specific
problem and each act as a step towards providing the
ability of transforming problem specifications in the input

space (‘E-:l) into solutions within the output space (E_a).

One of the most significant steps within modern modal
analysis techniques is possibly the development of system
identification procedures. Its origins lie in the design
of aerospace structures, but the technique is sufficiently
general to be applied to any engineering structure where
the dynamical characteristics are to be examined. Real
data, in the form of frequency response plots, are recorded
from physical structures. These data are then analysed to
identify the resonance frequencies of the structure and the
mode shapes of vibration. From this modal data it is then
possible to derive mass and stiffness matrices representing
a spatial model of the original body. This spatial model
is within the class of homomorphic models and is in the
operational domain. It is possible, therefore, to specify
the first sub-system that should be examined. Given that
the system identification process yields a homomorphic

model in the operational domain it is necessary to examine
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techniques which can synthesise a realisable structure

within the physical domain.

Although the general design case is for multi-attachment
point equipment it was considered that it would be
worthwhile to examine the requirements for single point
dynamic similarity. This is a special case of the
multi-attachment point condition and will allow the
examinaiion of continuous structures as well as discrete

systems.

One of the problems with the design of the test rig is
already apparent since the specification for its
operational domain has set a frequency range of interest.
Now, the original carrier body and the equipment are
continuous systems and therefore have an infinite set of
modal characteristics. By specifying a frequency range the
data that will be available to the designer will be
truncated and incomplete. The implications of using this
data and how it effects the iconic model will have to be

examined.

The final two sub-systems that can be identified are;

a) the derivation of a systematic design methodology
for a distributed parameter system which has
prescribed dynamical characteristics (the continuous
element within the substitute structure).

b) examining the iconic model during the structural

domain phase when the discrete systems are coupled
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to the continuous element. It is important to
establish that the change in the frequency response
characteristics of the substitute structure when the
discrete system is coupled is deterministic and
therefore suitable for inclussion within the design

synthesis algorithm.

This means that the system > » Figure 2, has been
partitioned into five major sub-systems or modules. It was
proposed at the outset of the project to direct effort to
all five areas rather than pursue an exhaustive examination
of aspects within any one. The connecting link between all
the areas of work is the primary objective of deriving a
design methodology for environmentally representative test
rigs. This is analgous to attempting to locate a river’s
source when starting from its estuary. As the traveller
moves up the river confluences will be encountered and each
route will be examined to establish which is likely to be
the tributary. Short trips up the tributaries will be made
but the main effort is always directed to taking the most
likely route which will result in the river ‘s source. Each
confluence is essentailly a point within the project where
a decision based upon the principle of minimum committment

has to be exercised.

2.6 ASSESSMENT OF THE DESIGN METHODOLOGY

The design methodology will be ultimately assessed by its

ability to derive acceptable, functional designs. These
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designs will have to be realisable so that they can be
built and validated before being used for environmental
testing. It is not envisaged that a unique solution will
be achieved for a given set of design conditions. 1In fact,
it may well be that no solution can be achieved by the
design methodology, in which case the designer must either
accept the “best case” or reformulate the problem. If the
methodology does result in a solution it will be achieved
by design optimisation techniques. Current design
optimisation techniques for distributed parameter design
problems utilize the theory of feasible directions to
derive a solution. This means that the resultant solution
will provide the required characteristics but it does not
necessarily mean that the actual design represents the best
or ultimate solution. Within any design optimisation
technique the basis for selecting a feasible direction is
made by deriving the set of conditions that give a minimum
value to the cost equations. The quality of the final
design is therefore a function of the completeness of the

cost equations as well as the ability to optimise them.

THe traditional and obvious design basis used when
optimising structures to have prescribed dynamical
characteristics is to use modal or frequency response data.
The problem is formulated as the eigenvalue problem and the
sensitivity of its constituent elements is then examined to
select a feasible direction. It was considered at the
outset of the project that the likelyhood of achieving

identical dynamical characteristics between the carrier
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body and the test rig was slight. However, it was
considered possible to design dynamically similar
structures, the question was; what degree of similarity was
acceptable ? This introduces a new state varible which
describes the degree of similarity in the form of an error
in the cumulative fatigue damage to the equipment. This
error can be quantified and, therefore, can be incorporated
within a design synthesis technique and used to terminate

the optimisation procedure.

An alternative design basis would be to examine the design
of a test rig where the aim would be to optimise on the
cumulative damage criteria rather than frequency response

data.

The philosophy of the design approach is to be able to
derive a test rig which is dynamically representative of a
carrier body for a specified frequency range. During the
process of designing the test rig the fundamental elements
that control specific dynamical characteristics will have
been identified. It should then be possible to alter these
characteristics, by simple element changes, to derive the
dynamical characteristics of another carrier body. In this
way the rig will act as a generalised carrier body platform
upon which a whole range of different equipment may be

examined.
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3 BASIC CONCEPTS

3wl INTRODUCTION

When an operational or prototype carrier body exists it is
possible to obtain a set of frequency response plots of the
body at defined co-ordinates of interest. These frequency
response plots can be analysed by a computational technique
to identify the resonant frequencies and mass normalised
mode shape values at the co-ordinates where the response
plots were obtained. Once the resonant frequencies and
mass normalised mode shapes have been established it is
then a simple procedure to create a spatial model of the
original carrier body. This model comprises a set of
matrices which represent the mass, stiffness and damping
distribution of the carrier body for the co-ordinates of
interest. The first objective of the work is to examine
the possibility of using these experimentally derived
matrices to identify the parameters of a mechanical test
rig.

It is also necessary to establish the basic concepts of
dynamic similarity. This is so that a library of design
rules and guidelines can be established to assist the
designer when attempting to achieve dynamic similarity

between different physical structures.
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2.2 LITERATURE REVIEW
3.2.1 SYSTEM IDENTIFICATION

The process of reducing a physical system to a mathemetical
representation is a prevalent task amongst design and test
engineers. This reduction procedure is typically a blend
of skill, insight, experience and good judgment. Any
mathemetical representation ( or analogue model ) of a
proposed design is therefore, heavily dependent upon the
skill of the modeller. When a design actually exists it is
possible to perform controlled tests on it and subsequently
derive a model from the experimentally derived data. This
procedure of establishing a spatial model of the design
from experimentally derived data is commonly known as

system identification.

The derived spatial model can be classed as a homomorphic
model with it ’s status within the operational domain. This
means that the model is capable of reproducing the physical
system’s performance attributes but the model itself does
not have any physical meaning. It is worthwhile to examine
the development of the system identification technique from
its origins within the design of aerospace structures to
its present day usage. In particular it is necessary to
establish whether researchers within this field have been

capable of synthesising a physical representation from the
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experimentally derived spatial model.

One of the first authoritive papers on the subject was by
Young and On [3]. They reviewed in 1969 the state of the
art of modelling from experimental data and concluded that
no one methodology was the analysist’s panacea for model
generation. They identified three broad classes of
situations for each of which certain techniques are more

appropriate.

These situations are

(1) Damping is present but the modes are only lightly

coupled.
(ii) Damping is heavy and modes are strongly coupled.
(iii) Damping is so light that accurate measurement of

response near resonance is not practicable.

In 1972 Flannelly and Berman [3] again reviewed the field
of system identification and concluded that analysis

techniques can be grouped into two broad classes.

(i) Modal techniques.

(ii) Non-modal techniques.
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(a) Modal Techniques

A set of modal analysis tvechniques has been developed which
uses frequency response measurements, such as mobility
curves and concentrates on analysing the data on or near
system resonance points. Then by the use of either direct
or curve fitting analytical methods the mass, stiffness and
damping matrices are identified. Of the direct methods the
work by Raney [5], Potter and Richardson [6] and Thoren [7]
serve as adequate examples. For instance, Thoren develops
an approach where the orthonormal modal vectors are
obtained by sweeping each significant resonance of the
system. This approach assumes that the resonances are well
spaced, well defined, lightly damped and uncoupled. Having
derived the mode vectors it is then possible to obtain the
mass, stiffness and damping matrices. Thoren uses the
technique to model complex subsystems within a much larger
structure. The derived matrices are then incorporated
within a model of the larger structure which has been
derived by conventional analytical modelling techniques.
Thoren’s approach provides an alternative to modelling
complex subsystems as either lumped parameters or highly
defined models which carry an associated cost penalty in

computational time and model stability.

An alternative direct method has been developed by Ewins
and Gleeson [8] for lightly damped structures where the

accurate measurement of resonant amplitudes is not
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practicable. The values of the frequency at the points of
anti-resonance are used to compute the mode vectors and

hence derive the mass and stiffness matrices.

The advantages of the direct method are that it is

computationally efficient and very reliable.

In the curve fitting approach, numerical and graphical
means have been developed to yield response curves which
provide a best fit to the experimentally obtained data.

The graphical method involves fitting a circle to near
resonance data, dominated by damping effects, usually
plotted on the Argand diagram. Klosterman [9] has
suggested four procedures for deterining the modal vectors,
but they are not in common use due to the techniques not

being suitable for implementation on a computer.

It is possible to use numerical curve fitting procedures
such as linearised least square and implement a graphical

analysis technique on a computer.

The method developed by Gaukroger et al [10] is widely
applicable since it may be used for curve fitting a large
number of close resonances. A disadvantage of the method
is that all unknowns are determined simultaneously and if
the procedure fails at one stage, it is not possible to
determine which mode is at fault. Goyder [ll] proposes a
technique, again based on a linearised least squares curve

fitting process, where the parameters of each mode are
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obtained sequentially. The basic assumpticn made is that
over a small frequency band near each resonant frequency,
the contributions to the total response from all modes
except the local one is very nearly constant. Subsequent
experimental work has shown this assumption to be quite

valid for the typical well defined frequency response plot.

(b) Non-modal Techniques

Here the abstract parameters of mass and stiffness matrices
are identified directly without recourse to the modal
properties. Collins et al [l12] presents a statistically
based iteration procedure and Chan and Garga [13] and
Grossman [14] introduce perturbation methods to improve the
efficiency of the iteration. These methods are best suited
to models of a relatively small number of degrees of
freedom. Dale and Cohen [15] describe a method which is
based on the conversion of a boundary value problem to an
initial value problem. This method is suitable for
identification of continuous structures such as beams and
plates. The process is not reversible and therefore is not
suitable for the identication of a test rig if the mass and

stiffness matrices are known.
i 4 e, INCOMPLETE MODELS

Parallel with the development of system identification

techniques, researchers were examining the use of
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incomplete models to predict the dynamical behaviour of
specified structures. This was an attempt to utilise the
derived mass and stiffness matrices effectively by
improving the analytical model. the first incomplete model,
proposed by Berman and Flannelly [16], was based on
measured normal modes fewer in number than spatial
co-ordinates. The mass matrix was derived by intuitive
means and improved by conditioning with the measured normal
modes. Considerable care has to be exercised when applying
this technique as the derived matrices are singular.
Nevertheless, it is possible to compute the first N degrees
of freedom of a measured P degree of freedom structure

(N<P).

Ross [17] proposes three possible ways of handling the
problem of incomplete models. The first, and easiest, is
to reduce the number of spatial co-ordinates to the number
of eigenvalues required. The second technique is to make
the modal matrix non-singular by adding (P-N) arbitary
linearly independent vectors and setting their associated
eigenvectors sufficiently large to be outside the range of
interest. The final -approach is to synthesise the
‘flexibility matrix which will only be of rank N, this
results in the highest eigenvectors (P-N) being infinite.
The measured modal matrix will be of order P and rank N and
therefore cannot be inverted. The mass matrix is derived

from a finite element model of the structure.
Berman and Wei [18] formalised the usage of incomplete
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models to provide a technique known as analytical model
improvement. A model of the structure is constructed,
usually by finite element analysis and the incomplete modal
data from the tested structure is used to improve the
model “s accuracy. The Guyan reduction relationship [19] or
Kidder approximation routine [20] is used to generate the
unknown elements of the incomplete modal data. The trend
in incomplete modelling has gone from intuitively deriving
the mass matrix and then computing the incomplete stiffness
matrix to deriving the mass and stiffness matrix by finite
element analysis and then computing the incomplete measured
normal modes. These modes and the experimentally obtained
mass and stiffness matrices are then used to improve the

analytically derived model.

3.2.3 IMPROVED MASS AND STIFFNESS MATRICES

Generally, the mass and stiffness matrices obtained from a
system identification procedure are fully populated and the
mass matrix has negative elements when only translational
responses are recorded. This means that the matrices do
not have an obvious physical meaning. Depending upon the
intented use of the derived matrices these attributes may
be unimportant (if generation of other points of interest
on the same structure are required) or critical (if

predictions based on changes in mass or stiffness are

made) .
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In 1978 Baruch and Bar-Itzhack [21] examined the problem of
orthogonality of measured modes. They proposed a
technique, based upon the minimisation of an Euclidean
norm, where the errors between measured modes and required
orthogonal modes were minimised. The corrected mode shapes
were then used to compute a corrected stiffness matrix.

The techique was limited since it assumed knowledge of an
accurate mass matrix. Baruch [22] published another paper
later in the year, showing an insufficient constraint had
been applied in the original paper. A new improved
procedure was offered, based on the original mathemetics
but incorporating the correct constraint, i.e. the
stiffness matrix should be symmetric. Wei [23] proposes a
further modification to the procedure where the assumptions
made to obtain the Lagrange multiplier can be by-passed.
The technique provides an elegant methodology to derive an
improved stiffness matrix. Ibrahim (24] presents a
technique to identify a set of normal orthogonal modes from
measured complex modes. This technique is useful when
dealing with complex structures possessing, not necessarily
high levels of damping, but a high degree of
non-proportionality in damping distribution. Again the
conditioned mode shapes and identified mass, stiffness and
damping matrices are used to improve an analytically
derived mathematical model of the structure. Goyder [11]
attempted to use the orthogonality relationships to improve
the stiffness matrix but the technique failed to provide

meaningful results due to the sensitivity of the algorithm

to truncation effects.
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In 1981 Baruch [25] presented a general discussion of
system identification procedures based on three reference
basis. These were mass, mode shape or stiffness; the
choice being made by what the analysist considered to be

most important or most accurately recorded.

The assumption that the mass matrix is correct especially
for a dynamic model which is often an approximate reduced
version of a much larger model was questioned by Berman
[26]. A mass matrix improvement algorithm was proposed
where the analytical mass matrix was corrected to make it
consistent with the measured modes. The recent trend in
model improvement, typified by Berman and Nagy [27], is to
develop an analytical model (usually by finite element
analysis) and a model from experimental data. Then, by
using a combination of the mathemetical concepts of [22],
[23], and [26] new improved mass and stiffness matrices are
generated. Within this methodology the matrices obtained
from the system identification process are manipulated to
have the same degrees of freedom as the analytical model.
They are then used to provide small improvements to the
analytical model, particularly to the damping distribution

and to providing flexural stiffness at rigid joints.
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33 DIRECT TEST RIG IDENTIFICATION

The review of existing system identification algorithms
highlighted that the goal of each technique is to identify
the modal parameters of the structure under test. These
modal parameters are then used to derive a spatial model of
the structure. The Goyder algorithm [l11] was considered
suitable for this work as the structures under
consideration usually have well defined lightly coupled
modes with a low level of damping (generally less than 5%)
for the frequency range of interest. A limitation of the
Goyder algorithm is the number of degrees of freedom must
be equal to the co-ordinates of interest. This is to avoid
matrix singularity problems during the analysis. This
limitation introduces two sources of error into the

analysis.
(i) The finite spatial representation of the body
(ii) The finite number of resonant frequencies.

Error correcting terms are introduced into the analysis to

allow for the effects of resonance frequencies above and

below the range of interest.

Once the finite modal parameters have been established the

pasic orthogonality relationships can be used to derive the
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spatial model.

C21°(mM] [E) = [1Q

CM] < (217 (3]”
(21 (ell2] - [~

[kl = (217(\] =3 (32)

n

(31)

where LNﬂ.and [K] are the mass and complex stiffness
matrices respectively and the columns of [5] are the

complex mode shapes.

A simple cantilever (Figure 4) was examined to obtain a set
of mass, stiffness and clamping matrices. 1In its simplist
form the structure can be considered as a two dimensional
problem in one plane of motion. At the two coordinate
points selected, the translational and rotational frequency

response plots were generated.

Test structure

1 3

SRR

Figure 4

The forcing function was applied to each position
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(translational and rotational) in sequence and a set of 4x4
mobility plots were obtained and hence a set of 4 mass,
stiffness and damping matrices were derived (Table 1). An
examination of this set of matrices shows that

(1) They are all different

(1i) They are all fully populated.

If‘the eigenvalue problem is solved for each set then the
first four resonant frequencies and mode shape vectors for
the simple beam are obtained. This demonstrates that
depending upon the choice of the reference coordinate
(generally the coordinate where the forcing function is
applied) it is possible to obtain as many different sets of
mass, stiffness and damping matrices as coordinates of
interest. Since we are considering continuous systems,
there is an infinite set of possible reference coordinates
and response coordinates. This.is a design class called
homomorphic models where there are many to one
transformations to the model. This feature is invaluable
for design analysis procedures but unfortunately the

transformations are not reversible.

There is, therefore, no unique set of mass, stiffness and

damping matrices for any given continuous system.

A practical continuous structure also has an infinite
number of resonance frequencies. The terms of reference of
the project is to examine the possibility of deriving a

test rig which is dynamically similar to a carrier body for
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up to the first four modes of vibration. Since a
restricted range of frequency is to be examined (which is
always the case with continuous systems) then truncation
effects will be experienced. These manifest as fully

populated matrices within the spatial model.

As a result of the two observed conditions, it is not
possible to identify the parameters of a continuous
structure directly from the spatial model. However, an
implication of (31) is that structures that exhibit the
same mode shape vectors at the same coordinates of interest
will have the same mass distribution. If the resonant
frequencies of the structures are the same then the
stiffness distribution will be the same. Therefore, it is
theoretically possible for different physical structures to
have identical dynamic characteristics at selected

coordinates over a limited frequency range.

3.4 DYNAMIC SIMILARITY

A study was made to examine which parameters were critical
if dynamic similarity was to be achieved between two

structures. Simple continuous beam structures were used as
it was possible to define the dynamical characteristics by

simple mathematical expressions [28].

In the first instance, the work examined the conditions

that had to be achieved if identical dynamical
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characteristics were to be obtained. These conditions will
represent the ideal case and it is then a matter of
establishing a variance to these conditions which still

yields an acceptable level of similarity.

The generalised expression for the resonance frequencies of
a simple beam element is

< s Bl (33)
“=(B.) [ Sxe

T : - .
where gsr) is a function of the end constraints.

An immediate observation can be made; if two structures
are to be dynamically equivalent then the end constraints

must be the same for each structure.

The ratio E4° is approximately constant for a wide range
of materials from steel to aluminium or even woods such as
spruce. It is, therefore, only possible to manipulate the

geometry to obtain a physically different structure.

Consider a simple cantilever, shown in Figure 4. If this
cantilever was assumed to be the original structure, then
two conditions for different beams were examined.

Case 1 Changing the depth and length.

Case 2 Changing the breadth and depth.
For each case, the change in one dimension was reflected in
a change to the other dimension such that no resultant

change should occur in the resonant frequencies
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(Appendix 1). Once the parameters of each equivalent
cantilever was established they were analysed using finite

element analysis.

The resonant frequencies for both conditons were the same
as the original structure. However, when the breadth was
retained and the length altered, Case 1, the eigenvectors
differed. The elements representing translational movement
are the same but the values representing rotation are
greater. This is a result of altering the rotational
inertia of the beam by reducing the length. This
characteristic is highlighted in Figure 5 where the tip of
each beam has the same amplitude in translation, but

different rotational values.

At this stage point coordinate similarity in one plane of
motion (vertical translation) has been achieved between the
two structures (Figure 5a and 5b) at their tips (position
X). The amplitude of the mode shape is 0.78 1Aﬂ% for all
three conditions. The slope of the mode shape (the value
in brackets below the mode shape amplitude) varies
according to the length of the beam. If the equipment that
is to be tested have two or more attachment points, then a
minimum requirement for the rig is dynamic similarity at
the corresponding number of points. The whole equipment
and fixing mechanism is to be used within the test and,
therefore, a fixed dimension between the attachment points
provides a design constraint. If this fixed dimension is

overlayed on Figures (6a) and (6b) then it is obvious that
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the equipment does not receive the same dynamical input

characteristics.

Two point attachment

d

|

Fixed

-

Dimension

AR N

ﬁﬁ*ﬁhﬁﬁﬁhﬁﬁﬁhﬁhﬁﬁ“ﬁaﬁ

}_

/ d IxXe

/ 1 Dimins?on i

] % . X

11

7

/ 0.78

(5.34)

Figure 6.

ORIGINAL

CASE 1.

(b)

The amplitude of the translational mode shape value at

position (d) in Figure 6a is greater than the amplitude at

(d) in Figure 6b. This results in a discrepancy in the

dymamical input characteristics.

Complete correlation of dynamic characteristics are

obtained for Case 2 where the length is retained and the

sectional area altered.
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From these observations it is possible to deduce ctwo

further design rules for dynamic similarity

(1) The mass and stiffness distributed of the two

structures must be the same

(ii) The distances between coordinate points of interest

should be the same.

The final test performed on these single beam elements was
to examine the effect of applying a simple spring/mass

system to the tip of each beam (Figure 7)

Appending equipment

Figure 7

N

The spring/mass system represents a piece of equipment
being attached to the carrier body. This simple test is to
demonstrate the premise that when the same equipment is
attached to dynamically similar structures the changes in
the modal characteristics is the same for each struéture.
This was found to be correct for both cases. Case 1
exhibited the same characteristics as before, correct
resonance frequencies and correct translational mode shape
vector values. Case 2 exhibited the identical changes that

the original structures showed.
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3.5 TRUNCATED DATA

A limitation of the system identification technique used is
that the number of coordinates of interest must equal the
number of degrees of freedom. This means that a finite
number of resonance frequencies is used within the
analysis. It has already been shown that this causes the
matrices within the spatial model to be fully populated.
Another aspect that has to be examined is whether the
number of degrees of freedom or the number of planes of
motion considered have any effect upon the accuracy of the
identified modal parameters. An alternative way of
considering this is as whether the completeness of the
experimental data affects the accuracy of the mcdal

parameters.

Two studies were made using truncated incomplete mobility
plots.
(a) A simple continuous system

(b) A multiple degree of freedom discrete system.
It is possible to express the dynamic characteristics of
the two types of system with well defined mathematical
equations and hence obtain the resonant frequencies and

eigenvectors (mode shapes).

(a) Continuous System
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A uniform section cantilever 0.3m long was used to

represent a simple continuous system (Figure 4).

When generating the mobility plots, for the beam, the
loading was retained at the tip (translation only) and the
response station positions and planes were varied. The
nomenclature for the mobility is
\/ I 4 5
i where  =forcing station
J =response station

the mobility can be expressed as

\/';j = _{LZ (w‘pcr$) (34)

r=zi

where J{L is the excitation frequency and has values
within the swept frequency range.
r& is the mass normalised mode shape for the

r& mode

The first analysis was for a point load at the tip and
responses taken at the.tip for translation and rotation,
thus providing the first two resonances for analysié. The
contributions from the first eight modes were accounted for
when generating the mobility plots. A system
identification of the mobility plots yielded the correct
natural frequencies for the first two modes. The elements
of the eigenvectors represent the vertical motion and slope

of the mode shape at the tip. It is important to note that
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these eigenvectors are mass normalised and it is,
therefore, tenable to compare eigenvector values providing
the structure and loading conditon are retained constant.
The value of the mode shape in the vertical plane of the
tip is 7.1754 ' / i

pis 7. (the units are 1ﬁ'h3 ) for the first mode and

7.193 for the second (Figure 8).

Mode shapes; tip response

/|

/|

/ Mode 1

I

/ 7.718

/ (32.93)

/]

7 Mode 2

/]

7 7.193
Figure 8. (1 14‘9)

Having just the values of the tip for vertical motion and

rotation is insufficient data to plot the mode shape.

The next stage considered translational responses at a
point .181 metres from the beam root and at the tip. A
system identification of the mobility plots produced
correct values for the first two modes. This time the
eigenvectors contained values defining the mode shape in
the vertical plane at .18lm and the tip. The values for

the first mode are shown in Figure 9.

-64-



Mode shapes; vertical response

0.181 m 0.3 m

3.34

NN

7715

and the second mode

—4.18

N

NN

Figure 9. 7.193

The value at the tip in the vertical plane corresponds to
the values obtained from the first analysis. This time
though the mode shape is more completely defined since two

coordinates on the beam have been used.

Using the same position on the beam (.18lm and tip) four
mobility plots were generated which accounted for
translational and rotational effects. Considering the

first two modes from the system identification (Figure 10).
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Mode shapes; four degrees of freedom

NN

3.34
(15.29) 7.715
Mode 1 (3287)
—-4.18
(—66.58)
/] Mode 2
/ 7.193
Figure 10. (114.28)

The values for the mode shape in the vertical plane are the
same as those obtained from the two degree of freedom
analysis. The rotational values, where available, also

correspond to the two degrees of freedom analysis.

Translational responses only were examined for four

positions along the beam (0.085, 0.081, 0.239 and

0.3 metres). Contributions from the first eight modes were
taken into account when generating the four mobility plots.
The system identification yielded the correct values for

the first four resonances and the following mode shapes

(Figure 11).
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Mode shapes; four degrees of freedom

0.085m 0.181m 0.239m 0.3m

3.

NN

Fivels

<
(o]
Q.
(1]

—4.18

RO

Figure 11 7.193

=
[}
Q
®
N

Having four values for translational displacement along the
beam allows better definition of the actual mode shape.

The values of mode shape at .181 m and the tip are the same
as the values obtained from the two degree of freedom

analysis.

Although this simple prcedure has only been performed for
two and four degrees of freedom it demonstrates that
eigenvector values are a function of the structure

geometry. The absolute values of the eigenvector elements
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fully define the beam motion irrespective of the degree of
freedom considered (i.e. the same absolute value of tip
motion in the vertical plane for a two degree of freedom

model as a multidegree of freedom model).

As an alternative to the classical equations for the
dynamic behaviour of beams it is possible to analyse their
behaviour by the use of finite element analysis. This
technique discretises the beam into a finite set of

elements.

Typically, the mass matrix, which is symmetrical, for one

element of length ¢ and end sectional areasAl,& comprises

/O{ (%ﬂ -f'sﬂ) (%-yﬂ,f, + ‘—ane) (!q (A, Q ) (&n,d -_._"Bﬂtl)
<r&'n'£t +2?l§on7'£1) (Zl'o Al r7"::‘,""{) ("1“220 (.q,.;ﬂ‘))
(30.+2A.)  (EAL-ZAL)
(z?hﬂ',' +!L-BA‘£‘)

— -

where suffix 1 is left end of e}ement

2 is right end of element
a similar expression is obtained for the stiffness matrix,
where the translational and rotational effects are
distributed throughout the matrix.

The same geometric values for the cantilever were used (as
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the previous analysis) and a two element representation was

made of the beam.

The results from the finite element analysis shows the
limitations that can occur when discretising a continuous
system. The use of only two elements to represent a beam

is very coarse and not likely to provide high accuracy for

the third and fourth natural frequencies.

The first frequency was computed very accurately at 589.35

rad/s (an error of .005%),Figure 12

0.181 m 0.3 m

SO RN

3.34
Mode 1 (30.22) 7.715
(32.87)

The second frequency had an error of 2.56% and a mode shape

—-4.18

NN

7.193

ibde shopess Flilte: slemort. model;  S120-7)

Mode 2
Figure 12.

The mode shape values for vertical displacement correlate

very well with the results from the classical equations.
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A six element (12 degree of freedom) finite element model
was generated for the same cantilever dimensions as before
and the first four modes were computed. The natural
frequencies were very accurate and full correlation of mode
shapes (including absolute values) were obtained with the

classically derived mode shapes.

This emphasises that the same absolute values for mass
normalised eigenvectors are obtained irrespective of the

number of degrees of freedom examined for a continuous

system.

This is for either classical analysis using single
expressions defining the dynamic characteristics or
discrete models representing the continuous structure.

(b) Discrete System

If the eigenvalue problem is examined for a discrete system

then it is possible to write

(Ce1- o2 IM]) {48 = 4 | (35)

or

MITRY {98 - o {9} (36)
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Discrete system

1 '/\AV"' 2 'JKJ\/- 9 4 FAAA 5 ANAA

v d

Figure 13.

1f [K] is taken as representing linear discrete springs
then it is possible to observe that the natural frequencies

and mode shapes are independent of system geometry.

A five degree of freedom system (Figure 13) was used to
generate a set of five mobility plots. The forcing
function was taken to be applied at mass mg and the
responses measured at masses 1 to 5. When a system
identification was performed using this complete set of
mobility data it was possible to identify all the natural
frequencies and the complete mass normalised mode shapes.
Hence it was possible to regenerate the mass and stiffness

matrices very accurately.

The set of mobility plots were truncated by removing the
last plot ﬁﬁs . A system identification was performed on
this incomplete set, considering only the first four modes.

The natural frequencies of the first four modes were

identified accurately.
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The first and second mode shapes compares reasonably well

with the first four values of the complete system mode

shape (Table 2).

As the higher modes are examined the correlation between
the modes deteriorates until mode four bears no resemblence
to the first four elements of the fourth mode of the

complete system.

If the four response stations are retained and the total
degree of freedom of the complete system are examined, then
interesting results are obtained.

The first four values of each mode shape are identified
correctly for all five degrees of freedom of the system.
These values correlate exactly with the corresponding
values in each mode shape. However, they are not complete
as the fifth element is missing. It is not possible,
therefore, to generate the mass and stiffness matrices
using the orthogonality relationship of equation (31) since

the {gﬁ} vectors are incomplete.

The full mode shape matrix would be

IE 2 A

[ 2

| lpz ‘Z(PZI 3 f92 a
'240'5 lp'& &
2&4 1p4 &+ 5p4
?

? 7 2
A .
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and the handling of such a matrix would produce singularity

problems.

A system identification analysis was performed for three
response stations and the first three modes of vibration.
Exactly the same trend as for the four response stations
was obtained i.e. the mode shape correlation for the first
three elements of the complete mode shape is initially
reasonable but deteriorates to no correlation for the last

mode examined.

Although system identification analysis was performed for
two response stations and a single response station the

resultant mode shape values had little meaning in reality.

This analysis has shown that for discrete spring/mass
systems it is necessary to have a one to one mapping for
the complete system, of the degrees of freedoms and the
response stations. Otherwise, technigues must be devised
to complete the truncated mode shapes prior to them being

useful for subsequent analysis.

3.6 SUMMARY OF BASIC CONCEPTS

It is possible to summarise the findings relating to the
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basic concepts of dynamic similarity as:

It is impossible to identify the parameters of a
dynamically similar test rig directly from the mass,
stiffness and damping matrices. This is due to
truncation effects of the frequency response data
from the original structure and that an infinite set
of mass, stiffness and damping matrices exist,
depending upon the coordinates of interest, for each

continuous system.

If two structures exist that have the same
eigenvector values at specified coordinates, and the
same resonant frequencies within a defined frequency
range, then they are dynamically similar for that

frequency range.

If two structures are to exhibit an identical set of
modal characteristics, they must have the following
features: -

(i) the same end constraints

(1i) the same mass and striffness distribution
(iii) the same dimensions between the coordinates of

interest.

When truncated incomplete data is used, measured from
physical structures, the values of the mode shape
vectors do not depend upon the number of degrees of

freedom measured. It is also possible to model the
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characteristics of the complete body by considering

the eigenvector values for only one plane of motion.
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Equivalent beams

)
// X
// ORIGINAL
Z, (0)
/ 0.78
(3.21)
i
e
7 X
? CASE 1.
Vi 0.78 (b)
(5.34)
&
7
1 X
? CASE 2.
4
/ 0.78  (c)
(3.21)

Figure 5
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TABLE 1

A set of mobility curves were obtained from the stucture
shown in Figure 4 for two coordinates and two planes of
motion (vertical translation and rotation). Using the
resultant 4x4 mobility matrix it was possible to obtain the
following sets of mass, stiffness and damping matrices.
These matrices represent spatial models of the structure

viewed from different forcing coordinates.

Forcing station 1

Mass matrix

[ 2.6779E-2 -1.5123E-5 3.6838E-3 1.3000E-4
-1.5123E-5 4.7839E-5 1.7134E-4 -8.8280E-6
3.6838E-3 1.7134E-4 6.5947E-3 3.0090E-5
1.3000E-4 -8.8280E-6 3.0090E-5 5.4770E-6

Stiffness matrix

r-4.2730E5 2.0723E3 -9.2486E4 -1.1991E4
2.0723E3 3.9948E3 -1.7816E4 1 29L1EL
-9.2486E4 -1.7816E4 1.3005E5 -9.2650E2
L:1.1991E4 1.1911E1 -9.2650E2 7.1647E2

2



Forcing station 2

Mass matrix

[ 2.8939E-2  7.2460E-4  -5.4640E-5 4.3826E-4]
7.2460E-4  1.0202E-4 3.2803E-4 5.0364E-5
-5.4640E-5  3.2803E-4 7.1314E-3 1.7807E-4
4.3826E-4  5.0364E-5 1.7807E-4 3.3681E-5

Stiffness matrix

r-...2.1229E6 -8.3933E4 -1.2654E6 2.9544E3_-
-8.3933E4 4.8773E3 4.4933E4 -8.3414E2
-1.2654E6 4.4933E4 8.0622E5 -1.4466E3

2.9544E3 -8.3414E2 -114466E3 6.8034E:2__|

Forcing station 3

Mass matrix

—

r-2.{)]1.60E-l —-9.,6074E=3 -6.6394E-2 2.9045E-3
-9.6074E-3 5.1641E-4 3.5491E~3 -1.5074E-4
-6.6394E-2 3.5491E~-3 4.4184E-2 ~1.7536E-3
2.9045E-3 -1.5074E-4 =V 7536 E~3 ?.8'."95E:--§_|

Stiffness matrix

r—8.5986E6 -5.9400E5 -3.3562E6 1.3746E5_-
-5.9400E5 4.6992E4 1.9976ES5 =5.2023E3
-3.3562E6 1.9976E5 1.5205E6 -8.2908E4
1.3746E5 -542023E3 -8.2908E4 6.5198E3

L ]
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Forcing Station 4

Mass matrix

[ 2.2680E-1 -2.0575E-3 -2.3290E-1 9.8992E-3)
-2.0575E-3 2.1036E-4 ~4.9530E-4 9.1474E-5
-2.3290E-1 -4.9530E-4 2.9445E-1 ~1.3348E-2

9.8992E-3 9.1474E-5  -1.3348E-2 6.3783E—i1J

Stiffness matrix

_-4.1124E7 ~5.9986E5 -4.4056E7 1.9147E6__
-5.9986E5 1.3336E4 6.1867E5 -2.6996E4
-4.4056E7 6.1867E5 4.7360E7 -2.0623E6

1.9147E6 -2.6996E4 -2.0623E6 9.0569E4
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TABLE 2

Mode 1
Complete System

.10185
.40208
.72619
.0218
w2121

HHHOOO

Mode 2
Complete System

.25745
35915
.43240
.18334
0375

HOOoOOO

Mode 3
Complete System

.09479
w3293
+3575
.9034
.5661

O o000

Mode 4
Complete System

0.16834
0.1864
3.0219
0.3255
0.0424

Truncated System

0.10506
0.3906
0.708
02918

Truncated System

0.2716
0.9127
0.4181
0. L7257

Truncated System

0.209
0.14246
0.14589
0.415

Truncated System

0.8421
0.0827
0.59949
0.06365

-80-



4. POINT COORDINATE SIMILARITY

4.1 INTRODUCTION

It is possible, sometimes, to examine the performance of a
structure by exciting it at a single point. This type of
environmental test is usually representative of a piece of
equipment being attached at a single point to a much larger
carrier structure. There are two ways that this test can

be performed:-

(a) Directly A force is applied directly to the
structure and the frequency response

functions are measured.

(b) Indirectly a mechanical test rig is designed
having identical dyanamical
characteriscs to the large structure at
a point coordinate and then exciting

the rig with a simple swept frequency.

If the second approach is considered then it is necessary
to obtain point coordinate dynamic similarity of the
carrier structure by using either a distributed parameter

test rig or a finite dimensional test b &2

It is usual when specifying a test procedure to state the

frequency range of interest. If this is the case and the

o



Structure under examination exhibits well defined
resonances, which are lightly coupled, then it is possible
to identify a finite number of resonances. Since the
problem is for a single coordinate and a defined frequency
range with a finite number of resonances a system with a
restricted set of characteristics is suitable for such an

application.

Discrete systems exhibit these characteristics where the
motion of a selected mass may be taken as the single
coordinate position and the degrees of freedom of the
discrete system being equal to the finite number of

resonances of interest.

A design methodology is required which is capable of
identifying the parameters of a discrete spring/mass system
which is capable of reproducing an acceptable level of
dynamic similarity to a point coordinate on a carrier

structure.

Work performed by Salter [29] showed that it was possible
to use a highly tuned continuous system to reproduce the
characteristics of a discrete system over a restricted
frequency range. No attempt was made to match the tuned
system to the characteristics of a particular body, but an
adoption of half-octave spacing for the resonant
frequencies was made. An arbitrary value of the weight of

the system (called by Salter a foster-parent) was employed
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SO that an upper limit could be placed upon the dead weight
of the test specimen. A configuration for a discrete
sping/mass system was proposed and a practical
implementation of such a system was developed and tested.

The configuration can be seen in Figure 14.

M 1 N‘z NI3 M4

Figure 14. Point coordinate
discrete system.

LELELET LA
Having established the objective of the work it is now
necessary to derive the design methodology. This should be
capable of performing the translation of the dynamic
characteristics of a point coordinate on the carrier
structure into a discrete spring/mass system. The class of

problem can be categorised as a finite dimensional optimal

design problem.

In most problems of engineering design of mechanical
structures the structure being designed is required to

behave according to some law of physics. This behaviour is
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described analytically by a set of variables cailed state
variables. There is a second set of variables that
describe the structure, rather than its behaviour. These
variables are called design variables since they are to be
chosen by the designer. The equations that determine the
state variables of mechanical or structural systems
generally depend upon the design variables, so that the two
sets of variables are related. The concept of the state
and design variable vectors is central to the derivation of

the finite dimensional optimal design algorithm.

The finite dimensional optimal design problem is first
developed in a generalised form and then a solution
applicable to identifying the parameters of the discrete
system is developed. Finally, an algorithm is proposed and
a computer implementation of the design methodology is

discussed.
4.2 OPTIMAL DESIGN PROBLEM

The fundamental mathematical concepts used within the

design optimisation procedure are outlined in Appendix 2.

Let the state variable {Z} be a n- element vector such that

n
it is within the design space R,

= & R"° (401)

The design variable {b} is a k- element vector such that
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(b} & Rk (402)

It is possible to define the finite dimensional optimal

. k,
design problem as a problem of determining {b}.z to

minimise o (z,b) (403)
subject to constraints

h(z,b) =¢& (404)
Yz, b) ¢ (405)

where

h(z,b) = (h(zb) Y@,b - [¥(31)

ha(2, b) 9 (2 b)

all of the functions of the problem are required to have

first-order derivatives.

Further it is required that the (n+k) dimensional composite

vectors B L‘VL ) LH'. L

5;_ ’ é_b (406)
are linearly independent for all ¢ with lf’;_ (2}£)=¢ and
that the n * n matrix [Bh/b.z] is non-singular. The
assumption that the matrix[?h/gzjis non-singular guarantees
that there is a basis solution of equation (404) for ({2}
as a function of {b}. This will become apparent later when
the sensitivity coefficients are manipulated to yield an
optimum solution. The final assumption is that the state

variable {2} 1is differentiable with respect to {b}.
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The equation (404) is non-linear and, therefore, zannot be
solved in closed form. Thus one cannot practically reduce
the optimal design problem to an explicit non-linear
programming problem in terms of only the design variable
vector. However, the natural form of the equations of
structural and rigid body mechanics can be used to develop

practical numerical methods for design analysis.

42 DESIGN SENSITIVITY ANALYSIS

The problem is specifically a structural dynamics problem
and so it is worthwhile to examine the finite dimensional
optimal design technique when applied to the solution of

the eigenvalue problem [30]

Given that

(b}

n

{qﬂ}

& e
b & R

R
O e et

the task is to minimise

Y (z,) b)

subject to the state equations

(407)

h(z,b) - & (408)
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L] idf = NImm] {4 (409)

and constraints
Y(g, )\ L)< & (410)

where

¥1(Eﬁ L) h,(%,*ﬁ

ha(z,b)

L) - (L ],
()] = [my E83]
Y, W) = Y (=, )\ b)

Yulz, ), 1)

The symmetric matrices [M(Ln and CKC'L)] represent mass and

stiffness values within the system. The scalar k is the

eigenvalues.

A full treatment of the analysis is discussed in Appendix 3
where the derivation of the sensitivity coefficients of
with respect to the corresponding design variables is
developed. Once the sensivity coefficients have been
established it is possible to then manipulate the design
parameters to provide the characteristics that are required.

If equation (A317) is considered then

= — — Smr——

: r
$4°3 it il; g giﬁx (411)
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The vec*ors {ﬁi} yvield the explicit derivatives of the cost
and constraint functions with respect to the design
variables. During the optimisation process it is usual to
select the derivatives with the greatest magnitude since
they have the most significant effect on the design. This
approach is called the steepest descent where the vectors
which direct the design to an optimum at the fastest rate

are selected.
4.2.2 DISCRETE SYSTEM IDENTIFICATION

It is not possible to employ steepest descent selection
criterion for this particular problem due to two functional

constraints on the cost equation.

Consider two systems (A) and (B)

If a force Qéb)is applied at coordinate k on system (A)
then it is possible to measure a response Q{Q)at coordinate
L resulting from the input force. If the damping is
considered to be negligible.then the frequency response of

the system can be expressed as a receptance.

X,, (w) = Jul) =é 9. - d (412)

Qy (w) = (0t -w?)

for point receptance the response coordinates ¢ and the
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forcing coordinate k are the same and the receptance

expression is

K, (W) = é d)“

It is possible to specify the point coordinate receptance

(413)

for each system

System System (B)

(A)
(L-)) ‘P'-'- = : ,.49‘_,':
f_ "o Z (wer-w")

Consider the condition whenw tends to zero ie w — ¢5

X (9) = 5_;&?% 0<5__(¢) : é '—4-)“;[— (414)
Fe) a, JJ = &,

Now, the mode shape values are mass normalised such that

E§1T[M] [¢)-(w] (31)

The objective of comparing the two systems (A) and (B) is
to obtain the same dynamical characteristics at the
respective coordinates ( and J on each system. In
otherwords the resonance frequencies and mode shape values
are equal. Equation (31) implies that if the mode shape
vectors are the same then the mass distribution of each
system must be the same. However, we are only considering
point coordinate excitation and response measurements. It
is, therefore, necessary to obtain a single mass term for
each point coordinate, which represents the effective
"dynamical" mass of the system at that coordinate. This
means that the mass distribution in equation (31) is now

represented by a diagonal mass matrix [fﬁ:].
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[2), A (E)-[) (2], tm) (][

or for coordinate . or for coordinate
- %
{aJ1a{a g EXJRNITREY
n 2 0
é_ mﬁ;; rcpis'. -1 é M*;; f‘ﬁ: -4 (415)

for the two systems to have the same dynamical

characteristics at coordinates ( and J the mass terms ﬂk“
L18

and My;; Must be the same. The term M., has been used to

represent this value.

If equation (415} is substituted into (414) then

0
Sk % = SR L (416)
" 2 £ 5 o & o

It is possible to use this observation within the design
process when if8entifying the parameters of a discrete
system which is dynamically similar to a point coordinate

on a continuous structure.

Since equation (416) states that the total mass of the

discrete system is a fixed quantity it implies
A+l

E &nm = f (417)

This is a functional constraint on the cost equation as it

is implicit that one or more of the terms (gmi) must be

negative.

The second functional constraint is that the
anti-resonances of the discrete system are fixed at the

outset to be the same as the frequency response curve from

the carrier structure.
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By definition anti-resonances occur where

X, (@) -_-éﬂ__‘&:__ - & (418)

(Wr-uwt)

Throughout the optimisation analysis these values are to
remain stationary. Therefore, any changes (gh;) to the
mass matrix [M] must be reflected to the corresponding
elements of the stiffness matrix [K] before the sensitivity

equation (A312) is computed.

This means that the derivative of the state equation (318)
will always be zero and therefore the second term of

equation (411)

can be eliminated.

Finally, since the discrete system does not have physical
. dimensions it is not possible to establish a relationship
between the parameters of the discrete system and cost

equations. The first term of equation (411)
T
2 Y,
2b
can be eliminated.

Note that the mass and stiffness matrices LM] and [KJ are
related to the cost equation via the eigenvalue sensitivity

analysis of the third term of equation (411).

Equation (411) therefore reduces to

g 2Y ,A
e} - ¢

The problem that is now posed is how to optimise the mass

(419)
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and stiffness matrices of the discrete system so that they
reproduce a similar frequency response to the point

co-ordinate on the carrier body.

The sensitivity matrix [é] has a greater number of
independent variables Ck) than the number of degrees of
freedom of interest (n). One particular numerical method
used to analyse this type of problem is called Linear

Programing [31].

The problem can be expressed in a generalised form as
L) {Sm} = {8u8 (420)
where
£e] is the sensitivity matrix (ax k) Lk >n
{gmz is the vector of mass changes (k x1)

ZSul is a vector of freq difference (na 1)
The equation of constraint is (417)

The usual Linear Programing technique is to select linear
independent columns from () to form a square matrix

(called the basis matrix).

;é:,‘ {163 = [B]"{_bi xs-ixb',xh,...x%ni (421)
The solution of equation (421) will produce a feasible
solution for the n-component vector &ng' It is implicit
within this statement that the (k-n) variables not
associated with the columns of [(,] appearing in (&) are

Zero.
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If the configuration of the discrete spring/mass system of
Figure 14 is examined it will be noted that there are fn*i)
design variables. Since it is not possible for one of the
masses to equal zero it means that an unbounded solution

will exist for the linear programming problem.

If a column {fi} not used within the formulation of [B] is
scaled by an arbitrary scalar § and the effects of the
product removed from the f_SwZ vector, then a new
unbounded feasible solution for GH1) variables can be

formulated.

Zn_ {:‘a‘i = Lﬁ]_1{b-9£;i (422)

There are two possible ways to improve the feasible

solution

(a) Check the remaining columns of [ﬁ] to see if an
improvement to the cost equation can be achieved.
This approach is only applicable when (kyn+l)

(b) Change the sign of one or more columns within the
basis matrix [B] to see if an improvement to the
cost equation is achieved. An observation made of
the mechanics of matrix inversion (Appendix 4)
allows this procedure to be performed without

re-computing the matrix inversion for (e].

The second approach is used within the design optimisation

algorithm to select the most suitable design changes. The
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equation (422) is solved for each column (j) within the

matrix [&].

This yields a set of linear independent column vectors each
representing a feasible solution to the unbounded problem.
Taking advantage of the mechanics of matrix inversion a
sorting algorithm is used to find the optimum combination

of each scilution vector {_'13.
n+ .
!
é—. &
iz

The cost equation (417) states that Se = ¢ is the only

solution that is acceptable.

The error ge. for the optimum solution vector {;t;} is,
therefore, back substituted into the corresponding vector
so that the sum of the elements is zero. The vector is
then multiplied by an arbitrary scalar so that the final
weighted vector indicates a feasible direction in which a

solution may be sought.
4.3 DESIGN ALGORITHM

The methodology will be outlined first to show the overall
strategy used and the relationships of the individual
elements. A detailed discussion of each element and its
implementation will then be presented.
i) Obtain data from a point coordinate receptance curve
for the N degrees of freedom of interest. The data

required 1is,
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ii)

1ii)

iv)

v)

vi)

vii)

viii)

1)

X)

a) Resonant frequencies.
b) Anti-resonant frequencies.

c) The Receptance when ah=ﬁ

Establish total mass of system and derive a tentative

mass and stiffness distribution {b}.
Solve the eigenvalue problem, equation (409).

Compare the solution against the required parameters.
If it is acceptable print the mass and stiffness

!
matrices (final design vector Zb,i} and then

terminate the program.

Perform a sensitivity analysis by solving equation

(A312) to obtain matrix of sensitivity coefficients

Perform optimisation analysis using equation (422)

and cost equation (417).

Weight optimum design change vector (423) so that a

feasible direction is obtained
Calculate a new stiffness matrix
Solve the eigenvalue problem.

Compare the resultant anti-resonance values against

the specified anti-resonance values to ensure
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equation (418) is fulfilled.

xi) 1If the comparison is acceptable then the procedure is
repeated from step (iv).
Otherwise an iterative technique is performed to
calculate a new stiffness matrix and the procedure is

repeated from step (viii).

i) Obtain Data

The methodology can be used only for lightly damped one
dimensional problems. It is, therefore, necessary to use
point coordinate frequency response curves as the basic
data medium. These curves typically have alternate
resonant and anti-resonant frequencies. Once the number of
degrees of freedom have been decided then the corresponding

resonsnt and anti-resonant frequencies should be reorded.

The data will normally be captured by the use of
accelerometers attached to the carrier body (Inertance).
The design algorithm requires the value of the recptance
plot as the forcing frequency tends to zero, therfore, the

effects of has to be removed from the inertance plot.

i3 Initail Mass and Stiffness Matrices

The equation (416) is used to establish the total mass of
the discrete system. Since the total mass is a function of

the values of the mode shapes at the coordinate of interest
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the value will vary depending upon the geometry of the
“carrier body and the coordinate selected for point

similarity.

The generation of the initial mass matrix is performed by

distributing the total mass M,, evenly between the discrete
-

elements. The stiffness values are determined by the

following procedures;

1) The earthing stiffness Kg, Figure 14 is set by
the reciprical of the receptance when the
frequency is zero

e Ko ow e (424)
X, (#)
2) The stiffness values Klto K‘, Figure 14 are

established by

a-1
X
2K| = A' m-
g5 1 (425)
where A. is the anti-resonance frequency

J

for mode j
m; is the discrete mass element

number j
Various weighting functions were examined when-
establisinging the initial mass matrix. It was found that
no improvement in the identification reliability or
convergence rate was achieved by using sophisticated
weighting functions. The simple mass distribution of

allocating the total mass between the elements was used in

the final software.
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iii) Solve Eigenvalue Problem

The mass and stiffness matrices are used to solve the
eigenvalue problem. The algorithm used has to be efficient

as it is repeatedly called within the methodology.

iv) Check for acceptable Spatial Model

This activity is included to ensure that the design
methodology has only one exit. The decision as to whether
an acceptable level of similarity has been achieved can be
made by the designer (running the software interactively).
An alternative method of terminating the algorithm is by
specifying an acceptable level of error of the resonant

frequencies and iterating until this condition is achieved.
v) Sensitivity Analysis

If the solution of the eigenvalue problem does not yield
the correct frequencies then it will be necessary to change
the mass and stiffness matrices. In order to know the
level of change required it is necessary to perform a
sensitivity analysis of the mass matrix with respect to
frequency (finite dimensional optimal design problem) to

obtain the sensitivity matrix (Equation 419).

Consider the eigenvalue problem for a discrete system

(K1 (4] - [XN1LM]C 4] (426)
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Now Uhd = OAL) + [s)) (427)

Substituting equation (426) into (427)

(L +L8e)(LB+ (531Y = ([ X » LSXNIXIMT+
CamI)([2]+C53]) k28]

for the rth mode
(LY« TSED)(L A3 {S.80) = (M. SAN(MI - L5 MD)
({43 + {s.) (429)

solving the expression for S)y and ignoring second order

derivatives yields
8.+ (&[5l - )\ LRTsMLR) w300

The expression is then solved for small changes in the mass
matrix (and the corresponding change in the stiffness

matrix, equation 425) to obtain the sensitivity matrix [d].

For this particular application the number of independent
variables is always gfeater than the number of degrees of
freedom. It is, therefore, a problem that does not have a
unique solution, but can be classified as a linear
programming problem with an unbounded solution [31],

equation (421).

Before the manipulation of the sensitivity matrix 1is

examined it is worthwhile to consider the effects of
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truncated data upon the discrete system. The
identification of a discrete system is based upon a
knowledge of the receptance as w—=—¢@ and will always
encompass the first N modes. There will be no resonant
frequencies lower than the range of interest. However,
higher resonant frequencies exist, which have to be

accounted for by means of a residual term within the

conceptual model.

For the higher modes

o
.-Cp.i.i
E’Jj = 2 o.® (431)
rz=0rl

let

~

which is known as the residual flexibility.

The receptance can now be written as

9 s o

B e @i .

:ﬁ(w)_é L\J,—l—-&.}t ’ * 1a32)
r=|

The treatment of high frequency residuals by Ewins and
Gleeson [8] show that for a point receptance the term R/Qﬁ

can be expressed as a single spring {KQES). This spring
will act on mass m, and the excitation to the system

should be applied through the spring (Figure 15).
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Discrete system with residual stiffness

hd1 | N12 N43 M 4

res

Figure 15.

The value of Kres is established after the first iteration.
The difference between the first resonant frequency of the
original data and the first resonant frequency derived from

the eigenvalue solution is used to calculate the value of

K = (e, - w,sol)-/g)ls (433)

or q

where S>H5 is the change in the eigenvalue for the first

mode when the stiffness matrix [8K] is used.

vi) Perform optimisation analysis

The sensitivity matrix has a greater number of independent
variables (masses) then the number of degrees of freedom of

interest. The equation (422) and Appendix 4 are used to
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solve the sensitivity matrix.

vii) Weight optimum design change vector

The unbounded feasible solutions (422) are examined to find
the vector nearest to satisfying the cost equation (417).
This vector is then scaled to satisfy equation (417). This
step ensures that the total mass of the discrete system

remains constant.
viii) New Stiffness Matrix

Once the mass matrix has been established then the
stiffness matrix can be formed using equation (425). This
is to ensure that the anti-resonance values remain

stationary whenever changes to the mass matrix are made.
ix) Solve Eigenvalve Problem

The mass and stiffness matrices are used to solve the

eigenvalue problem.
X) Compare Anti-resonant values

Throughout the analysis it is important to retain the

anti-resonant frequency values for the the discrete system
stationary. If the mass distribution is determined by the
sensitivity analysis and linear programming technique then

the stiffness matrix has to be manipulated to yield the
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correct resonant and anti-resonant frequencies.
Point coordinate receptance can be written as
n (f)z
.. (w) = é-_g—-
JJ( ) (m,‘-—u‘) (434)
Fa
this can be represented graphically by Figure 16.

The anti-resonant frequencies are the points when the

curves sum to zero.

1

n ép"
or g— ( F'L Jan = é
r=) Wy = {\"' )

(434)
Anti—resonances
W, We W,
A, A,
o5 /1 /'
;--"""-...'-— w =t
— E—
/ /—
L L

Figure 16.
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The solution of the eigenvalue problem, step (ix) yields a
- “—.
set of eigenvectors [ﬁé] which can be used to compute the

anti-resonance error.

N \él
& [Ty = £ £t I=1ton  (436)
eror L (Wrt _ Q:(I)) o
iy

vnZ
where rd%j is the computed new value.
Xi) Check for acceptable errors

If the vectorzswmiis unacceptable then the error can be
used to modify the stiffness matrix. The corrections to
the mass and stiffness matrices are based on linearity
assumptions, which are not totally correct. Therefore,
changes to the matrices are scaled so that during any one
iteration a direction is established that will result in a

convergent solution.
4.4 EXAMPLE OF POINT COORDINATE SIMILARITY

Consider a simple pinned-pinned beam, Figure l7a. This
structure can be thought of as the carrier body which is
capable of having different equipment attached at position

(1). If the frequency range is defined it is possible to
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count the number of resonant frequencies of interest, or
alternatively, the first "n" resonant frequencies can be
specified. It is always good practice to record to at
least twice the highest frequency so that the effects of
the high frequency values can be accounted for by a

residual term in the subsequent system identification

analysis.

Figure 17 shows in pictorial form the three main phases of

the point coordinate similarity identification.

(a) Phase 1 Specify the carrier structure and the

dynamic range of interest.

(b) Phase 2 Obtain the point coordinate receptance
curve. There must be one pair of resonance
and anti-resonace values for each degree of

freedom of interest.

(c) Phase 3 Identify the parameters of the finite

dimensional test rig.

A point receptance curve, Figure 18, was generated for the
coordinate (1) in Figure 17a. The first eight modes of
vibration were considered, although the number of degrees

of freedom of interest was four.

The values for the first four resonances and

anti-resonances were recorded, as was the value of the
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receptance when t.J--;ﬁ. These values were then used within
the computer program to identify the parameters of a
dynamically similar discrete system. The modal values of
the original beam structure and the identical discrete

system are shown in Table 3.

The identification procedure was terminated after the
fourth iteration as the greatest error was 2.4% for the

second resonance.

A comparison of the receptance of the original
pinned-pinned beam and the identified discrete system is
shown in Figure 19. The two plots are sufficiently close
as to consider 'that the two structures are dynamically

similar over the frequency range of interest.
4.5 THE EFFECTS OF APPENDING EQUIPMENT

The pinned-pinned beam had a concentrated mass applied at
the position (1) as shown in Figure 20. This mass

represents a piece of equipment.

Concentrated mas: continuous - system

Concentrated Mass

AN AN

2.4 m

Figure 20.
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If the equivalent mass is to be applied to the discrete

system then it must be appended to the mass Mg , Figure 21.

Concentrated mass; discrete system
M, M, M. Mg

M O

Concentrated

K Mass
res

Figure 21.

Now, the addition of the concentrated mass to each system

should cause them to have the same change in dynamical

characteristics.

The eigenvalue problem was solved for the discrete system,
Figure 21. But, the solution of the pinned-pinned beam is
not so straightforward. The structure is one dimensional

but has two planes of motion. Therefore, the concentrated

mass will have a rotary inertia value. Two finite element
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analysis runs were performed; one modelling the system
correctly and the other setting the rotary inertia to zero.
The results of all three runs (discrete system and
pinned-pinned beam) are shown in Table 4. When the rotary
inertia is set to zero the change in the dynamical
characteristics of the discrete system and the
pinned-pinned beam are identical. This demonstrates that
dynamic similarity has been achieved for one plane of
motion. However, since the concentrated mass has rotary
inertia the dynamic similarity is actually lost when the
physical condition is considered. This is particularly
evident at the higher frequencies. This emphasises that
great care must be used so that the structures are compared

under a consistant set of conditions.

4.6 SUMMARY OF POINT COORDINATE SIMILARITY

i It is possible to obtain point coordinate
similarity of a continuous structure in one plane

of motion by a discrete system.

2 A system identification algorithm for finite
dimensional structures has been implemented. It 1is
very easy to use as it only requires the receptance
value as w—@ and a set of resonant and

anti-resonant values equal to the number of degrees

of freedom.



A residual spring term has been incorporated within
the finite dimensional model to allow for high

frequency terms.

The optimisation algorithm uses a modified linear
programming technique which provides an unbounded

set of basic solutions.

The quality of the similarity over the frequency
range of interest is very good. It is possible to
obtain resonant frequencies within 3% error using
only four iterations of the identification

technique.

The similarity is only for one plane of motion and
therefore, is lost when the same equipment
(concentrated mass) is applied to both the original

structure and the finite dimensional model.

This condition would not be important for one
dimensional vibration problems such as torsional

transmission systems.

The finite dimensional model is very difficult to
realise as a physical structure. This problem is

addressed in Chapter 6.
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POINT SIMILARITY

40 m
| @
| 25
2.4 m
(a)
A W A W 2 w A
1 1 2 2 3 3 4 4
Frequency (b)
M 2 M 3 M4
K 4 K = K 4
M s
(c)
K

Figure 17
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TABLE 3

Point Coordinate Dynamic Similarity

Original Structure Discrete System
Resonance Freq Mode Shape Resonance Freq Mode Shape
69.13 0.1015 68.97 0.103
276'<95 0.0629 270.31 0.0553
625.03 0.0637 617.39 0.0574
1131.01 0.1070 1104.72 0.095

The above values are for the Position 1 on the
pinned-pinned beam and the dynamically similar discrete

system.
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TABLE 4

Point Coordinate Dynamic Similarity

The effects of appending a piece of egipment at the
position 1 on the pinned-pinned beam and mass (Figure 21)

of the discrete system are shown below.

Resonance Frequencies

Original Structure Discrete System
With Inertia Without Inertia
65.77 65.81 66.08
268.09 272,05 211.33
593.28 614.28 622.79
1015.65 1059.89 ' 1079.85

It is particularly noticable that the original structure
with rotary inertia losses dynamical similarity at the

higher modes.
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D' PROPOSED DESIGN METHODOLOGY

5.1 INTRODUCTION

At the outset of the project it was considered that a
solution capable of achieving prescribed dynamical
characteristics for a given structure would be obtained
from a mechanical test rig comprising an assembly of
continuous and discrete elements in a system. This system

has been called the substitute structure.

The function of the continuous elements is to connect the
coordinates of interest and to provide a framework onto
which fhe test specimen can be attached. The coordinates
of interest are the points on the original structure where
the frequency response data are collected. Since the
continuous elements wili have physical dimensions they will
provide a set of dynamical characteristics. If this set is
not the prescribed characteristics then the discrete

elements are used to “tune’ the substitute structure.
This design philosophy introduces three main problems;
a) How to identify the parameters of the continuous

elements and a suitable connection matrix (the

structure’s topology).
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b) How to identify the parameters of the discrete

elements.

c) The coupling effects when the discrete elements

are attached to the continuous elements.

Although it was impossible to use the spatial model derived
by system identification techniques directly to identify a
test rig it was possible to use the spatial model within
the proposed design methodology. The system identification
procedure used experimentally recorded data and derived a
spatial model which was representative of the original
structure for the coordinates where the data were recorded.
This spatial model was a homomorphic model and was
representative of the original structure for a limited

range of degrees of freedom.

If a continuous element is derived (Chapter 8) which has
the same coordinates of interest as the original structure
then a spatial model for the continuous element can be
derived which is consistant with the original structure’s
spatial model. This attribute is the basis of the proposed
methodology. Since each spatial model is consistant then
the difference between them represents the dynamical
characteristics that have to be applied to the continuous
element to achieve dynamic similarity. The difference
between the two spatial models is in the form of residual
mass, stiffness and damping matrices which have to be used

to identify the parameters of the discrete elements.
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MODEL SYNTHESIS

The first design methodology was formulated using modal

synthesis techniques-in an attempt to achieve a physically

realisable test rig. The methodology can be partitioned

into the following activities.

(a)

(b)

(c)

(d)

Perform a system identification on a set of
truncated experimental frequency response data for
‘'n” coordinates and ‘n” degrees of freedom, recorded
from the original carrier body. The system
identification process yields mass, stiffness and
damping matrices that are fully populated.

Derive a structure which connects the coordinates of
interest (from the original body) qnd comprises
continuous elements.

Generate a finite element model of the continuous
elements. Each coordinate (or node of the finite
element model) will have at least two, degrees of
freedom. This will probably not be consistant with
the experimental data which is usually only measured

for translational responses at each coordinate. The

work on handling truncated frequency response data

has shown that it is valid to use selected
eigenvector values to represent the mode shapes of a
structure. It is, then, possible to identify the
eigenvector values which correspond to the
translational motion of the coordinate of the
carrier body.

Use the identified mode shape values and the

-117-



resonant frequencies from the finite element model
to generate a set of frequency response plots which
are consistant with the experimental frequency
response data. A system identification of these
frequency response plots produces a set of mass,
stiffness and damping matrices for the continuous
elements.

(e) Take the two spatial models; one representing the
carrier body and the other the continuous elements.
Remove the spatial model of the continuous elements
from the spatial model of the carrier body, leaving
a set of residual mass, stiffness and damping
matrices. These residual matrices represent the
degree of "dis-similarity" between the two
structures.

(£) TIdentify a suitable discrete system capable of

“tuning’ the continuous element.

This proposed design methodology was examined by attempting
to achieve dynamic similarity, for the first four modes,
between a tapered cantilever and a uniform section
cantilever and a discrete spring/mass system. Initially, a
finite element model of the tapered cantilever, Figure 22a,
was generated and the first four modes of vibration were
recorded. Four coordinates of interest were specified and
the translational mode shape values for these coordinates
were extracted. These values, plus the resonant
frequencies, were used to generate a set of four mobility

plots which were taken to represent the experimentally
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obtained mobility data. It was assumed that the forcing
function to the beam was applied at the free end in the
vertical plane. These mobility plots were then analysed by
a system identification algorithm to obtain the mass and
stiffness matrices. (Note: when the mobility plots were
generated a small level of hyteretic damping, 3%, was
introduced for stability but was not considered within the

subsequent analysis).

An uniform section cantilever of arbitary section, Figure
22b, but the same length as the tapered cantilever was
chosen as the continuous element. It was possible within
the system identification package to generate the mobility
plots of simple beam elements. This feature was used to
generate a set of mobility plots where the forcing function
was applied to the free tip of the uniform section
cantilever. A system identification analysis of these

plots yielded the second spatial model.

Step (e) within the design methodology algorithm was
performed to obtain the residual mass and stiffness
matrices. The final step within the design algorithm was
to identify the characteristics of the discrete system,
used to dynamically ‘tune’ the continuous element. Two
conditions were considered for the treatment of the
discrete elements.

(1) The discrete elements were distributed about the

continuous element.

(2) The discrete elements act a single point coordinate.
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I DISTRIBUTED DISCRETE ELEMENTS

An examination of the residual mass matrix showed that the
off diagonal terms included negative values. All of the
off diagonal terms represent transfer mass elements that
have to be either added or removed between the coordinates
of interest. Although it is relatively easy to model this
condition it is very difficult to achieve a physical
representation of it. Therefore, for the initial study,
all of the off diagonal terms were set to zero.
Essentially this means that four concentrated masses, equal
to the diagonal terms, were located at the relevant

coordinates of the uniform section cantilever, Figure 23.

/ Beam with concentraoted masses

m, -
? T\ o R M4
D C
e
/
/ Figure 23.

The residual stiffness matrix when normalised with respect

to one value is shown if Figure 24.

= =

58.6 -28.0 7.4 =),

-28.0 24.3 o W 2.0

7.4 =112 8.4 +2 .4

-0.8 2.0 =2 .4 1.0

—_ —
Figure 24.
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An immediate observation that can be made of Figure 24 is
that the sums of the modulus of the off diagonal terms for
rows 2 and 4 are greater then the diagonal element. This
infers that an active system would be required which is
capable of generating this condition. The design or
consideration of active systems was outside of the
specification for this particular work, therefore, the
effects of various passive spring configurations were

examined.

The simplest distributed discrete spring/mass configuration
is shown in Figure 25 where the values of the diagonal

terms of the residual stiffness matrix are used.

Beam with concentrated mass and springs

M1 M2 M:5 M4

N~
) () O O

K K K
2 3

NOUOUNNNNN

Figure 25.

The resultant resonant frequencies and mode shapes for the
first four modes bore little resemblance to the tapered
cantilever. A sensitivity analysis, examining effects on
resonant frequencies due to changes in mass and stiffness
values was performed. The results of this study indicated

that it would not be possible to achieve an acceptable
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degree of dynamic similarity using this configuration.
Nine other configurations of discrete spring/mass systems
attached to the uniform section cantilever were examined.
It was impossible to identify any configuration that gave
an acceptable level of dynamic similarity. 1In each of the
configurations examined the level of resolution of the
model (the discrete system) was very low, actually
utilizing only a few elements within the residual matrices.

It was this primary reason why it was impossible to
achieve dynamic similarity and an alternative method where
a much higher level of resolution, of the model, was

required.

5.4 DYNAMICAL DIFFERENCE TECHNIQUES

5.4.1 BACKGROUND THEORY

The point coordinate discrete system identification
algorithm discussed in Chapter 4 utilised values taken from
a point receptance curve. These values, the resonance and
anti-resonance frequencies, were used to directly identify

the parameters of a discrete system.

It is possible to generate a point receptance curve by
using the residual mass and stiffness matrices obtained at
step (e) within the proposed design methodology. Once a
point receptance curve has been generated then it is
possible to identify a discrete system (Chapter 4). If
this approach is adopted to identify the discrete system

from the residual matrices via a point receptance curve

~122-



then the resultant discrete system has a very high level of
resolution since all the elements within the residual mass
and stiffness matrices are used to generate the receptance
curve. This approach, therefore, appears to provide a
methodology where the resultant discrete system will

provide the required dynamical characteristics.

If the residual matrices are used to identify a
multi-degree of freedom discrete system which acts at a
point coordinate then it is necessary to firstly examine
the implications of impedance coupling. This work has been
extensively discussed by Ewins and Gleeson [8], Ewins and
Sainsbury [32] and Klostermgn [33]. The procedure is to
obtain frequency responses for two structure at the points
at which the connections are to be made and then to
calculate the responses of the combined structure using
impedance coupling techniques (Appendix 5). It is
proposed to examine the inverse of this process where the
dynamical differences between the two structures are
obtained when they are separated into their component

forms.

Dynamic data are usually analysed or manipulated using one
or more of three possible states (Figure 26). It is
possible to compute any one state from another since the

relationships between the various states are well defined.
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STATE DESCRIPTION

[Z] Frequency response plots

[ ] [EE] Resonant frequencies and

mode shapes.

M] (K] [€] Mass, stiffness and damping
matrices.
Figure 26.
Given that three possible states exist for dynamic data the
implications of using each state to derive a residual point
receptance plot was examined. The three possible

approaches can be catagorised as

i) Direct use of frequency response curves.
ii) Eigenvector difference.
1531 System identification difference.

Throughout the study of the different approaches the same
beam elements were used for the original structure

(Figure 22a) and the continuous element (Figure 22b).

5.4.2 DIRECT APPROACH

Under normal experimental measuring conditions inertance or
mobility plots are obtained from the original structure.
These plots are normally for translational movements only,
as the measurements of rotational movements and the

application of couples to structures is very difficult.

The continuous element (prismatic beam) was modelled using
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finite element analysis and a set of frequency response
curves were generated which were consistant with the
coordinates of interest on the original structure. It was
then possible to use directly the frequency response data

to derive the residual point receptance curve.

Both the original structure and the continuous element
within the substitute structure were cantilevers. At any
coordinate there were six planes of motion, but generally
only two were considered; vertical translation and rotation

normal to the horizontal in the vertical plane.

If the process of coupling two structures is examined
[Appendix 5] then equation (A504) defines the receptance
for the point of connection. This receptance has the form
of equation (501) ie. two planes of motion.

c‘** CKV9
X, = (501)

L3
KXo Kpg

Previous work (Chapter 3) has examined the effects of
achieving dynamic similarity between two beam structures.
It was found that when the distances between the coordinate
points of interest, the mass and stiffness distribution and
the end constraints were the same, for each structure, then
by achieving point similarity in one plane of motion it
automatically gave the correct similarity for the other
plane of motion. Based on this observation only the
dynamic stiffness plots (inverse receptance plots) for

vertical translation were used during the study.
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Consider two systems A and 8

If it is assumed that system & is a sub-system of A such

that

AD B (502)

then a system C can represent the changes that have to be

made to B such that
A = (& +¢) (503)

System,A can therefore be considered as the resultant of

coupling systems B and C

using (A504)

[ex,1

(Lot Tw (KT

or rearranging

Il

[X.] = ([x] - [o(ia"_l-i)-l (504)

[

this expression can be used to obtain the dynamic
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difference between two structures.

Dynamic stiffness plots were generated for the original
structure [Figure 27] and the continuous element within the
substitute structure [Figure 28]. When the two plots are
compared directly [Figure 29] the differences in resonance
and anti-resonance values between the two structures is
readily Observed. For the purposes of clarity,
particularly at the anti-resonance positions, the

difference between the two structures is shown in Figure

30.

The following observations can be made from Figures 29 &

30;

1) Within the general region of each anti-resonance two

peaks exist.

2) These peaks correspond to the anti-resonances of the

individual structures.

3) Prior to each anti-resonance region a resonant

frequency occurs.

4) The plots presented are modulus values of dynamic
stiffness and these resonant frequencies correspond
to cross over points of the two plots.

5) The de-coupled system has the general level of the
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continuous element when going from a resonance to an
anti-resonance value and the general level of the
original structure when going from an anti-resonance

to a resonant value.

6) The resultant residual difference curve is not
readily synthesised into an identifiable structure.
5.4.3 EIGENVECTOR DIFFERENCE APPROACH
The second approach utilizes the resonance frequencies and

the mass normalised mode shapes (Eigenvectors).

Consider a set of mass normalised mode shapes for the

original structure

i

(%, ) (M08 - (4] (505)

s |

and the continuous element

Il

_ T ——
(2] (M. 2(2.0- 1 (506)
The work on dynamic similarity between continuous elements
(Chapter 3) showed that to achieve dynamic similarity it
was necessary to have the same mass and stiffness
distribution for each element. If a difference exists
between the original structure and the continuous element

then an adjustment will have to be made to the continuous

element.

- [Maaj_} - (M -+ ( Mrcs:] (507)
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where Lfﬂﬂg is difference in mass distribution.

or (M,) = Y_HO,;&] - [Mma (508)

providing the same spatial ,coordinates are retained and

using (505) & (506)

(H) =C2 02,1 - (2173 oo

It would be computational efficient to use

U"imsjI= [B. ]E‘b [‘E }]{é '-\T (510)

bi'lj

i -
and then invert [J4m3‘

If the stiffness matrices are considered then for the

original structure

[giﬁTT}:";I[EiWQ = [;LO;Q (511)
and the continuous element
(e e )@ ) (w)

applying the same philosophy as above yeilds the residual

stiffness matrix

[Km—]“”' [2..) [w;;l [@oﬁj- = ) Ewi} [@MT( 512)
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-1
and then invert [ng‘

The total structure or system is always considered and the
identified residual mass and stiffness matrices represent

the changes that have to be made to the continuous element

to achieve dynamic similarity.

The original structure and the continuous element were used
to generate residual mass and stiffness matrices which were
used to generate the point dynamic stiffness curve for the
coordinate representing the tip of the beams (Figure 31).
This was then coupled with the point dynamic stiffness
curve for the tip of the continuous element. A comparison
of the original structure against the coupled system is

shown in Figure 32.

The following observations can be made from Figures 31 &

32

1) Where the original structure has an anti-resonance
the coupled system has two anti-resonances and one

resonant value.

2) The anti-resonances are approximately symmetrical

about the original structure’s anti-resonances.

3) The first anti-resonance of each pair is a function

of the continuous .element ‘s characteristics.
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4) The eigenvalue problem was solved for the residual
mass and stiffness matrices [Table 5]. The resonant
frequencies are higher than the original structure’s
values so that when the continuous element and the
residual system are coupled the resultant resonant

frequencies are correct.

5) The dynamic stiffness curve for a point coordinate
of the residual system has the correct form and is
therefore capable of being synthesised to identify a

discrete system.

5.4.4 SYSTEM IDENTIFICATION DIFFERENCE APPROACH

The third approach was based upon a System Identification
process. The objective was to reduce a set of mobility
curves, obtained from the original structure, to a set of
mass, stiffness and damping matrices. A restriction of
this approach was that the matrices had to be square,
analysed from ‘n’ degrees of freedom and 'n” coordinates of
interest. A corresponding set of mobility curves were
obtained from an analysis of the continuous element and
processed using the same System Identification algorithm.
This provided two sets of consistant mass, stiffness and
damping matrices. The differences between the matrices
were the residual matrices which were used to regenerate

the frequency response curves (Figures 33 & 34).

=131




The following observations can be made from Figures 33 &

34;

1)

2)

3)

4)

5)

6)

7)

Where the original structure has an anti-resonance
the coupled system has two anti-resonances and one

resonant value.

The anti-resonances are not symmetrical about the

original structure’s anti-resonances.

The first anti-resonance of each pair is a function

of the continuous element s characteristics.

The second anti-resonance of each pair coincides
with the original structure for the first two
anti-resonances. The difference in the third
anti-resonace can be attributed to truncation

effects.

The resonant frequencies of the coupled system

correlate exactly with the original structure.

The general level of the dynamic stiffness curve for

the coupled system overlays the original stucture.

The dynamic stiffness curve for a point coordinate
of the residual system has the correct form and is
therefore capable of being synthesised to identify a

discrete system.
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5.4.5

APPRAISAL OF DYNAMICAL DIFFERENCE APPROACHES

Throughout all the different approaches to achieve a point

coordinate receptance curve from the different modal data

states the following features were consistant;

1)

2)

3)

4)

The anti-resonances of individual structures or
systems were dominate during the coupling or dynamic

difference procedure.

The positions of the anti-resonances were invariant
during the coupling or dynamic difference process.
In other words the anti-resonances of the individual
structures or systems always appeared in the

resultant system.

The position of the resonance frequencies varied
according to the individual levels of each dynamic

stiffness curve.

Point dynamic stiffness curves were used as the
investigation was restricted to one dimensional, one

plane of motion problems.

The objective of the investigation was to identify a

suitable dynamic difference approach which resulted in a
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realisable point receptance curve. Once this curve was
established a technique ,discussed in Chapter 4, was
capable of identifying the parameters of a discrete system

which had the same dynamic characteristics as the

receptance curve.

The first approach, the direct use of frequency response
curves, resulted in a dynamic stiffness curve that was not
suitable for subsequent analysis as it was not of a

recognisable form.

The second approach, eigenvector difference, used a set of
mode shapes from each structure to derive directly the
residual mass and stiffness matrices. By using these
matrices it was possible to generate the required point
dynamic stiffness curve. The approach was very simple with

the minimum of computational effort.

The third approach, System Identication difference, used
frequency response plots to identify mass and stiffness
matices for each structure. The difference between these
matrices was the residual mass and stiffness matrices which
were used to generate the required point dynamic stiffness
curve. The technique requireed a high level of computional

technique.

The second and third approach fulfilled the cobjective of
identifying a suitable point receptance curve from a set of

modal data. The choice of which technique to use will be
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based upor whether the synthesis technique is using

experimentally obtained data or finite element models.

The selection of the continuous element can not be arbitary
as it’s anti-resonance values must correspond with the

original carrier structure.
5.5 SUMMARY

1) It has been proposed that a structure capable of
achieving prescribed dynamical characteristics would
be obtained from a mechanical test rig comprising an
assembly of continuous and discrete elements in a
system. .

2) This system is called the substitute structure.

3) A design methodology based upon dynamical difference
techniques has been proposed. The basic philosophy
is to obtain a residual spatial model which
represents the dynamical difference between the
original structure and the continuous elements.

4) The derived residual spatial model can be
represented by mass and stiffness matices which are
fully populaied.

5) It is impossible to directly identify a distributed
discrete system, which is physical meaningful and
can be attached to the continuous elements.

6) It is possible to identify a multi-degree of freedom
discrete system which acts at a point coordinate by

using the residual spatial model. This technique is
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7)

8)

dependant upon the derivation of a point coordinate
receptance plot.

It is impossible to derive a meaningful point
coordinate receptance plot by directly manipulating
the receptance plots of the original structure and
the continuous elements.

It is possible to derive a point coordinate
receptance plot for the residual spatial model by
using eigenvector difference or system |

identification difference techniques.
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DESIGN METHODOLOGY

PROPOSED STRUCTURES

NN NN

(a) Tapered Cantilever
(Original Structure)

NN

(b) Uniform section Cantilever
(Continuous Element)

Figure 22.
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EIGENVALUE ANALYSIS

[M]ARRAY: =
05159

2E-2
=)..2F=2
9E-3

[K]ARRAY:=
8037261
-5056942
1844882
-286079

2E-2
0.181
1.4E-2
-1.7E-2

-5056942
6682276
-4566320
1224279

EIGENVALUE RESULTS

EIGENVALUE NO.(1l)=

EIGENVECTOR NO. (1)

0.233

0'

EIGENVALUE NO.(2)=

EIGENVECTOR NO. (2)

0.952

1

EIGENVALUE NO.(3)=

EIGENVECTOR NO. (3)

L2109

=1 wh B2
1.4E-2

0.216
4.1E-2

1844882
-4566320
5117760
-1940753

611.6449

747
2300.08033

.583

5862.85526

9.4E-2

EIGENVALUE NO. (4)=

EIGENVECTOR NO. (4)

=1.651

1.

11304.2732

664

Table 5.
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9E~3
~1..TEB=2
4.1E-2
BE-2

-286079
1224279
-1940753
948420

1.344

-1.264

o N

1:935

~15918

1.879

1.888



6 DESIGN METHODOLOGY ASSESSMENT

Bl INTRODUCTION

The proposed design methodology is based upon identifying
the parameters of a mechanical test rig which is made up
from an assembly of continuous and discrete elements in a
system. It was shown in the previous chaéter that it was
possible to manipulate the dynamical difference between the
original structure and the continuous element to obtain a
point coordinate receptance curve. The work in Chapter 4
established a design methodology which identified, from a
point coordinate receptance curve, the parameters and
configuration of a discrete system. This discrete system
was capable of reproducing the dynamical features of the
original point coordinate receptance curve for the number
of degrees of freedom of interest. The final section of
work within Chapter 5 examined the implications of
impedance coupling and dynamical difference techniques.
This was to establish the ground rules for the proposed

design methodology.

It was decided that an assessment of the proposed design
methodology should be performed by using relatively simple
one dimensional structures. This was so that the planes of
freedom of the structure under examination were restricted.
This ensured that the problem was totally perceivable and
not overly complex so that the effectiveness of the design
methodology was easily observed and not embedded within a

complex design synthesis problem. A tapered cantilever
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(Figure 22a) was selected as the original structure as it
appeared to offer a reasonably complex structure which was

easy to visualise, easy to model and ultimately

manufacture.

The selection of the continuous element within the
substitute structure was achieved by a blend of intuitive
reasoning and an application of the design guide-lines
established in Chapters 3 and 5. The prismatic beam
element (Figure 22b) was selected as the continuous element

within the substitute structure.

In Chapter 3 it was established that for identical dynamic
similarity the following conditions had to be achieved;
1) The end constraints should be the same.
2) The distances between points of interest should be
the same.
3) The mass and stiffness distribution should be the
same.
The prismatic beam element was the same length as the
tapered cantilever. Therefore, the first two conditions
were fulfilled, but the third condition, the same mass and
stiffness distribution was not achieved. Hence the
requirement for a discrete system which was capable of
dynamically tuning the continuous element to yield an
acceptable level of dynamic similarity. It was noted that
a disadvantage of selecting a prismatic beam as the
continuous element was that it was physically similar to

the tapered cantilever. Nevertheless, the resonant
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frequencies of the two structures were significantly

different so that the effects of the discrete system could

be observed.

6.2 SINGLE POINT SIMILARITY : THEORETICAL STUDY

The first task, of the theoretical study, was to identify
the discrete system parameters. The proposed design
methodology was followed using the system identification
difference technique to obtain the dynamical difference
between the original carrier structure (the tapered
cantilever) and the continuous element (the prismatic
beam). This approach was selected as it is the most likely
technique to be used by the designer when physical
structures were available for measurement. The resultant
residual mass and stiffness matrices were used to generate
a point coordinate dynamic stiffness curve (Figure 35).
This curve represents the dynamical difference between the
two structures at the tips of each beam and was, therefore,
the position where the discrete system had to be
positioned. The resonance frequencies, anti-resonance
frequencies and the value of the receptance curve when
Lo--¢ were used within the discrete system identification
methodology (Chapter 4). The identified discrete system

was configured as Figure 15.

The discrete system was positioned at the tip of the

prismatic beam and was assumed to be connected to the beam

by a point connection at the mass m, (Figure 36). A
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dynamic stiffness plot was generated for this coupled
system (Figure 37) and plotted against the original

structure for a direct comparison (Figure 38).

The resonant frequencies of the substitute structure
correspond exactly with the original structure. However,
an anomaly occurs at each anti-resonance position of the
substitute structure. 1Instead of the substitute structure-
having only one anti-resonance between each resonant
frequency of the original structure it has two
anti-resonances, close together, separated by a resonant
frequency. A careful examination of Figure 38 shows that
the first anti-resonance of each pair results from the
coﬂtinuous element and the second from the discrete system.

The small amplitude resonant frequency between the two
anti-resonances is created when the two systems are
coupled. A table showing the values of the resonance and
anti-resonace values for the original structure and the
substitute structure is shown in Table 6. The values for
the continuous element are also shown so that the

contribution of the discrete system is highlighted.

To avoid this double anti-resonance feature of the
substitute structure it is necessary for the continuous
element to have the same anti-resonant values as the
original structure. This is highlighted in the previous
chapter where the effects of coupling dynamically different
structures are examined. It emphasises that the continuous

element within the substitute structure cannot be derived
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by intuitive reasoning and that a systematic design

methodology is required.

Mode Orig structure Cont element Subs structure
(Hz) (Hz) (Hz)
Res 1 67 47 66
Anti-res 1 230 220 220 & 233
Res 2 346 310 341
Anti-res 2 725 715 718 & 726
Res 3 917 873 914
Anti-res 3 1542 1531 1510 & 1554
Table 6.

Although small discrepancies occurred at the anti-resonance
positions of the substitute structure, it was decided that
the overall dynamic similarity of the two structures were
sufficiently close to warrant experimental validation.
Before this was pursued however, a small study was
undertaken to ensure that when the continuous element had
the same anti-resonances as the original structure the twin

anti-resonance feature did not exist.

A test was performed using two prismatic beams of different
sectional area but the same resonance and anti-resonance
valués. The two beams did not have the same total mass so
the receptance curves for the tips of each beam were the
same shape execpt for the general level of the smaller
section beam which was lower (Figure 39). The proposed
design methodology was applied to this problem and a

discrete system was identified which gave dynamic
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similarity at the tips of each beam. The discrete system
was coupled to the beam with the smaller sectional area.
The resultant receptance curve for the substitute structure
exactly overlays the receptance curve for the larger
section beam (Figure 40). The continuous element within
the substitute structure does not have to have the same
resonance frequencies as the original structure since the
coupling of the discrete system alters the resonance
frequencies. It does though have to have the same
anti-resonace values as these were dominate during the
connection of different systems. This small example
highlights the importance of the anti-resonances of the
continuous element and that when they are correct exact
dynamic similarity is achieved at the coordinate point of

interest.

6:3 SINGLE POINT SIMILARITY : EXPERIMENTAL STUDY

T O DISCRETE ELEMENT DESIGN

Concurrent with this work on dynamic similarity, Cape
Engineering Warwick Ltd, were studying the implications of
designing structures that had the characteristics of a

single spring/mass system.

The normal schematic representation of a discrete element
is a simple helical spring with a mass attached to one end.
This representation is not feasible as a physical
structure for use in conjunction with the continuous

element for the following reasons;
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a) The mass has to be constrained to move within fixed

guides.

b) The high levels of hysteretic damping within the
spring.

c) The difficulty of fixing a mass to the spring and

the spring to the continuous element.
It was therefore, necessary to design a continuous
structure that exhibited the characteristics of a discrete
element, whilst being capable of effective attachment to
the continuous element. The definition of a discrete
element was taken as a structure that had a factor of at

least 20 between the fundamental and the second frequency.

A structure that exhibits this characteristic is shown in
Figure 4la. Since the discrete system has to be attached
to the continuous element the structure in Figure 4la can
be treated as one quater of the physical discrete element

(Figure 41b).

Discrete Spring/Mass element

: (b)
,/,/’

Figure 41
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The stiffness and mass of each discrete element is known,
from the discrete system identification methodology, and so
it is a simple calculation to establish the length and
breath of each element. The length is found by
¢ - [ERd
L. (601)

where K“ is one quarter of te discrete element stiffness.

The mass and stiffness values ( m, and k, ) of the first
discrete spring/mass element were used to derive the
dimensions of a discrete element (Figure 41b). A finite
element model was then generated for the element and the
factor of difference between the first and second frequency
was 22.6. This fulfilled the requirement for a minimum
factor of 20 between the two frequencies. The Engineers
at Cape Warwick performed a finite dimensional optimal
design study on the elements dimensions. They established
the optimum ratio between the length, breadth and depth of
the element to maximise the factor between the first two

modes.
6:3.2 EXPERIMENTAL TECHNIQUE

The results from the identification of the discrete system
were restricted to the first three modes of the original
structure. The well spaced resonances of the original
structure meant that the first discrete element within the
discrete system had it’s second resonance before the fourth

resonance of the original structure. After the third mode
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~he experimental results for the substitute structure were
not meaningful as they were coloured by the higher modes of
the discrete elements. The three discrete elements were
designed to the form of Figure 41b and attached to the

continuous element in the order shown in Figure 42.

The third element was 20mm from the tip of the beam. The
earthing spring, k;ﬁ(Figure 36) within the discrete system
configuration, was achieved by using a leaf spring between
the tip of the beam and an earthing strap. The mass m, was
achieved by fixing an appropriate accelerometer, of the

correct mass, to the underneath of the beam at the tip.

The beams were clamped within rigid towers that were fixed
to a steel base plate. The base plate (2 metres * 1 metre
* 0.2 metres deep) was supported at its edges by a hard
wood frame. This particular support system was well
established and the fundamental frequency was well above

the range of interest.

The substitute structure was excited by striking the tip of
the beam with a calibrated force hammer. An average of 8
excitions were taken to préduce each frequency response
plot. The data capture and analysis equipment was a GENRAD
2502 system. When the tapered cantilever was excited with

the force hammer it was found that the first anti-resonance

was poorly defined and so a small electo-magnetic shaker

was used.
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6.4 COMPARISON OF THEORETICAL AND EXPERIMENTAL RESULTS

The first task of the study was to compare the results from
the physical tapered cantilever (original structure) with
the results from the finite element model of the original
structure. The primary objective of this was to ensure
that the clamping (ie the end restraints) of the tapered
cantilever were correct. A comparison of the first four
modes of the physical structure and the finite element.

model are shown below in Table 7.

Mode Orig structure F.E. Orig structure
Res Anti-res Res Anti-res
1 64 216 67 230
2 324 670 346 725
3 890 1320 917 1542
4 1673 = 1776 =
Table 7.

A plot of the measurements made from the physical beam is
shown in Figure 43. The values are mass corrected to allow
for the effect of the accelerometer at the beam’s tip. The
values of the physical beam are consistantly lowér, by
approximately 5%, than the predicted values from the finite
element model. This can be attributed to three main
reasons;

a) The end restraints of the physical tapered
cantilever are permitting very small rotational
movements.

b) The finite element model does not include damping

effects. It is typical for this type of structure
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to have a hysteretic damping level between 2 and 4%.
c) The resolution of the data within the GENRAD system.
The technique which was used to identify the values
on the screen, by the use of ‘cross hairs’, had a
step of 2 Hz for the frequency range under
consideration.
The experimental data obtained from the substitute
structure had the same form as the theoretical substitute
structure. Where the original structure had just one
anti-resonance between each resonant frequency the
substitute structure had two anti-resonances and an
associated resonant frequency (Figure 44). The first and
second resonance frequency and the first anti-resonant
frequency for the experimental original structure and
substitute structure are within 5% (Figure 45 and Table 8).
As the frequency increases the difference between the two
structures increase. This is due to the difference in the

rotary inertia between the two structures.

Modé No. Orig. structure Subs. structure
(Hz) (Hz)
Res 1 64 67
Anti-res 1 216 190 & 219
Res 2 324 322
Anti-res 2 670 607 & 690
Res 3 890 855
Anti-res 3 1320 =
Table 8.

When the physical substitute structure is compared with the
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theoretical substitute structure the physical values are

consistantly lower, as is the comparison for the original

structures.

following new ones;

a)

b)

The discrete elements
point on the physical

row at the tip of the

continuous element.

The same reasons as before apply plus the

do not act at a concentrated

structure but are placed in a

The third

element is 20 mm from the tip.

Small variations in the length of the beams used for

the discrete elements or the central positioning of

the discrete elements and their method of attachment

can cause frequency variations.

Figure 44 there is a small

For example in

resonance at 420 Hz which

must be created by a discrete element rotating about

the axis of the continuous element.

Table 9 shows a comparison of the physical substitute

structure against the theoretical

Mode No. Subs. structure
Physical

(Hz)
Res 1 67
Anti-res 1 190 & 219
Res 2 322
Anti-res 2 607 & 690
Res 3 855
Anti-res 3 -

Table 9.

substitute structure.
Subs. structure
Theoretical
(Hz)
66
220 & 233
341
718 & 728
914

1510 & 1554

Although small discrepancies do occur between the

experimental data for the substitute structure and the
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Ooriginal structure the receptance levels, the general shape
of the receptance curves and the values of the resonance
frequencies are sufficiently close to consider that the two

structures are dynamically similar.

The general level and shape of the receptance curves for
the experimental work correlated well with the theoretical
study such that it can be considered that the proposed
design methodology has been validated for point coordinate

similarity problems.

6.5 EFFECTS OF MEASURING RESPONSES AT A NODE

When data are being recorded from physical structures it
is always a possibility that a selected response station is
a node for one vibration mode within the frequency range of
interest. If an analytical study has been performed prior
to the measurements being taken then guidance can be given
to the test engineers as to the optimum positions for the
response stations. This is an ideal case and unfortunately
is not always possible in practice. It is, therefore,
necessary to examine the implications of using frequency
response data which includes data captured from a response
station at which a node occurs. It is important to
establish that it is still possible to identify a discrete
system which provides dynamic similarity when the discrete

system is positioned at a node.
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The tapered cantilever and the prismatic beam (Figures 22a
& 22b) were used as the original structure and the

continuous element respectively. Two case were considered,
where a finite element analysis showed that nodes occurred

for the second and third modes. Each beam considered had a

length of 500mm.

Case 1 Responses were generated for the coordinate
375 mm from the root of the cantilever which is

the node position for the second mode.

Case 2 Responses were generated for the coordinate
250 mm from the root of the cantilever which is

the node for the third mode.

Case 1 : 375 Co-ordinate

The design methodology was applied to the two structures
where four coordinates were considered, one of which was at
375 mm from the root of the cantilever. Care was taken to
ensure that the other coordinates were not at a node for
the frequency range of interest. The dynamical difference
technique was applied so that the residual mass and
stiffness matrices were obtained. The residual point
coordinate receptance curve was generated for the 375 mm
coordinate and a discrete system representing the first and

third modes of the continuous element was identified.

The coupling of this discrete system to the continuous
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element is shown in Figure 46. The resonance frequencies
of the substitute structure correspond accurately to the
original structure. There is a small resonance and
anti-resonance at approximately 2000 Rad/s which is caused
by the small positional difference of the node point

between the original structure and the continuous element.

Since the discrete system is positioned at the node of the
second mode it is impossible for the system to contribute
anything to the dynamic similarity at this frequency. This
is highlighted in Figures 47, 48 and 49, which show the
first three modes of interest of the original structure and
the substitute strpcture. An observation that can be made
of this analysis is the creation of intermediate resonances
between the original frequencies of interest. This feature
is dealt with in detail in the next section as its major
effects are exhibited when transfer similarity is
considered. In Figure 47, the first mode, the original
structure and the substitute structure have similar
frequencies and the mass normalised mode shapes overlay
each other. The mode shape for the continuous element is
also plotted. This is of higher amplitude than the
substitute structure because the element has less mass and
is of greater flexibility than the substitute structure.
The effect of the discrete system is easily observed as it
reduces the amplitude of the mode shape for the whole of
the continuous element. The third mode of the substitute
structure and the second mode of the original structure,

Figure 48, shows that the mode shape for the substitute
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structure is the same as the continuous element. The
resonant frequency is also similar to the continuous

element.

When the fifth mode of the substitute structure and the
third mode of the original structure is examined, Figure
49, the substitute structure has reverted back to being
dynamically similar to the original structure. It is
interesting to note that the mode shape amplitude of the
substitute structure is the same as the original structure
upto the coordinate where the discrete system is
positioned. After this position the amplitude of the
substitute structure is greater than the original structure

and less than the continuous element.

Case 2 : 250 Co-ordinate

When the coordinate of interest is 250 mm from the root of
the cantilever the third mode was not effective within the
identification of the discrete system. The design
methodology was applied to this case and the parameters of
the discrete system were identified. As before, these
parameters were directly inserted into the mass and
stiffness matrices of a finite element model of the
continuous element to obtain a spatial model of the
substitute structure. The eigenvalue problem was solved

for the spatial model and the mode shapes compared with the

original structure.
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The full implications of this analysis are discussed in the
next section when two point coordinate simialarity is
considered. The Fiqures 50, 51 and 52 show the first three
modes of interest for this condition. 1In Figure 50 the
amplitude of the mode shape for the first mode of the
substitute structure and the original structure are very
close. The resonant frequency for the original structufe
is 419 rad/s, compared to 430 rad/s for the substitute
structure and 323 rad/s for the continuous element. This
figure amply demonstrates the effect of the discrete system
on the continuous element. The resonant frequency is
increased by 107 rad/s, the amplitude of the mode shape
reduced to similar levels of the original structure and the
whole of the substitute structure is dynamically similar to
the original structure. The second mode, Figure 51, shows
that the mode shape of the substitute structure and the
original structure overlay upto the 250 mm coordinate.
After this position the two curves diverge with the
substitute structure’s mode shape amplitude lying between

the original structure and the continuous element.

The node is within the third mode and therefore no
contribution to dynamic similarity is made from the
discrete system at this frequency. This is clearly shown
in Figure 52 where the amplitude of the substitute

structure overlays the continuous element.

Although point coordinate similarity has been achieved at a

node position it is impossible to obtain overall similarity
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for the substitute structure using a discrete system
derived from data recorded at a node on the original
structure. 1If a theoretical study of the original
structure has not been made to provide guidance to the test
engineer then it is important that sufficient response
stations are recorded to ensure that an adequate amount of
data exists for the system identification and subsequent

analysis so that node points , if at all possible, can be

avoided.

6.6 TWO POINT SIMILARITY : THEORETICAL STUDY

The basic objective of the work is to derive a design
methodology for mechanical test rigs such that the
dynamical characteristics of the test rig are
representative of any specified structure. This structure,
the original structure, can be a complete structure in it’s
own right or part of a very large structure. Once the test
rig (substitute structure) has been designed and
manufactured it can be used to test a range of equipment in
realistic environmental conditions. Up to the present
stage, only single point attachment has been considered and
it is, therefore, nécessary to examine the implications of

obtaining dynamic similarity for at least the same number

of coordinates as attachment points.
Although multi-point attachment was to be considered, the
initial study was restricted to one dimensional problems

that have two planes of motion. 1In this way the basic
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design rules were established without having to also
resolve a difficult multi-dimensional problem. The tapered

cantilever and prismatic beam used within the previous

section were again employed.

If any point on a structure is considered it will have up
to six planes of motion. It is sometimes possible due to
structural constraints or symmetry to be able to reduce the
number of freedoms of interest without reducing the level
of resolution of the problem. For example, when dealing
with simple beam elements it is normal to only consider two
planes of motion; vertical translation and vertical
rotation. The restricted receptance expression for any

coordinate x on the beam can be defined as;

Xyv AK,s
X, = (602)
% O(Ov 0<83
where v is the vertical translation.

e is the vertical rotation.
Consider a simple cantilever (Figure 53) with two

coordinate points (a) and (b)

Simple cantilever beam

(a)

(b)

1/ 2

Figure 53 3/ 4
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the receptance can be written as

r | _
CK“ CK“ CK& C‘«
Cxil szz (><n. (x4z

A b = (603)
O"an 0(‘13 o(u O<+3
ok, % OKs K,

Work on truncated and incomplete mode shapes (Chapter 3)
showed that it was possible to isolate the receptance
curves for one plane of motion without losing the integrity
of the data and hence the spatial model. This observation
allowed the complete receptance matrix to be reduced even
futher so that only the vertical translational responses

were considered, equation 604,

O<a.la = . (604)

This matrix is a partial description of the structure for
vertical translation. Nevertheles, providing a consistant
set of coordinates are retained throughout the reduction
process, it is a full description of the motion at the
coordinates (a) and (b) for the frequency range of

interest.

In the previous chapter an expression was derived which
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Obtained the dynamic difference between two structures,

equation (504)

(et ] < ([O<.=._]—I = EC’(BT')-l (504)

where X, 1s the receptance for the original
structure
Xy, 1is the receptance for the continuous

element
The vertical receptance matrix (604) can be substituted,
for each structure, into equation (504) when calculating
the dynamic difference between two structures, providing a
coqsistant set of coordinates is used. This process is in
fact used during the identification procedure within the
single point coordinate similarity design problem. The
residual matrix [Cxaj is for the difference between the
whole of the original structure and the continuous element
at the coordinates of interest. The complete residual
receptance matrix is used within the identification of the
single multi-degree of freedom discrete system. It is,
therefore, implicit within this process that only one
multi-degree of freedom discrete system is required to

obtain dynamic similarity for the whole of the substitute

structure.

To examine this hypothesis two design cases were

considered;

Case 1 The discrete system identified in section 6.2
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which was used to examine the single point
coordinate similarity between the tapered
cantilever and the substitute structure was
used. The coordinate of interest was at the tip

of the tapered cantilever which was 500 mm from

the beam’s root.

Case 2 The coordinate of interest was moved to 300 mm

from the root of the tapered cantilever.

Case 1 : 500 mm Co-ordinate

When the effects of placing the discrete system at a
frequency node were examined (Section 6.5) intermediate
frequencies to those of interest were obtained. If these
frequencies have significant mode shape values then they
will effect the quality of dynamic similarity for the whole
structure. To examine this effect and to establish that
only one discrete system was required to “tune’ the whole
of the structure the parameters of the discrete system
identified in section 6.2 were included into the mass and
stiffness matrices for the continuous element, which were
obtained from the finite element model. The resultant
matrices represent a spatial model for the substitute
structure at the coordinates of interest. The eigenvalue
problem was solved for these matrices and the mode shapes
for the first five modes were compared with the original

tapered cantilever.

For the first mode, Figure 54, the mode shape for the
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substitute structure overlays the original structure. The
mode shape for the continuous element is also shown so that
the effects of coupling the discrete system to the
continuous element are visable. Since the mode shapes for
the substitute structure and the original structure overlay
each other it emphasises that a single multi-degree of
freedom discrete system is capable of ‘tuning’ the whole of
the substitute structure. The discrete system has
increased the first resonance frequency of the continuous
element from 313 rad/s to 429 rad/s. The effects of the
discrete system upon the continuous element are, therefore,

quite substantial.

However, an undesirable effect manifests in the second mode
of the substitute structure. This mode has a resonant
frequency of 1407 rad/s which is not comparible to the

original structure.

If the individual spring/mass elements of the discrete
system are examined, then the first spring/mass element (m,
and k.) has a resonant frequency of 1475 rad/s. This is
reflected in the mode shape vector by the correspondiné
value for mass m, being much higher than the other mode
shape elements. The value of the mode shape at the
coordinate where the discrete system is attached is very
low and, therefore, the resonance does not appear when the

point receptance plot for the substitute structure is

examined (Figure 38).

=169=



If the mode shape for the second resonance of the
substitute structure is plotted (Figure 55) then the
resonance of the first element of the discrete system has
significant effects. Obviously, these effects will be
detrimental to the quality of dynamic similarity when
multi-point attachment for the transported equipment is

considered.

The plot for the third mode of the substitute structure
corresponds to the second mode of the original structure
(Figure 56). The mode shape curve for the substitute
structure overlays the mode shape curve for the original
structure. The mode shape for the continuous element is
plotted so that the effects of the discrete system are

easily observed.

The fourth mode of the substitute structure does not
correspond fo the original structure. An examination of
the mode shape vector reveals that the second spring/mass
element of the discrete system (kﬁ_and m,) is resonating.
The mode shape value at the coordinate where the discrete
system is coupled is very small and hence the resonance
does not appear in the point receptance plot. The fifth
mode of the substitute structure correlates to the third

mode of the original system.

If it is assumed that the two attachment coordinates for an
item of equipment are at the 300 mm and 500 mm positions

then the following observations can be made:
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(a) The dynamic similarity at the 500 mm coordinate of
the substitute structure and the original structure
are acceptable. This means that the correct level
and amplitude of vibrational response is transmitted

to the equipment via this coordinate.

(b) At the 300 mm coordinate there is an intermediate
frequency between each of the original frequencies
of interest. The mode shape values of these

frequencies are significant.

(c) Due to these extra frequencies, the level of dynamic
similarity at the 300 mm coordinate is not

acceptable.

If the transfer receptance between the 500 mm coordinate
and the 300 mm coordinate is examined, Figure 57, then the
significance of the intermediate frequencies are very
clear. If the transfer receptance for the substitute
structure is plotted against the transfer receptance for
the original structure, then the intermediate frequencies

resulting from the discrete system apparent, Figure 58.
Case 2 : 300 mm Co-ordinate

The design methodology was applied to the tapered
cantilever and the continuous element where the coordinate

of interest was at 300 mm from the root of the beams. The

-1 7Y~



300 mm cocrdinate was selected as no node points occur at
this coordinate for the frequency range of interest. The
total mass of the identified discrete system was greater
than when the discrete system was placed at the tip of the
continuous element beam. The total mass of the discrete
system was a function of the coordinate position selected
and was found by the simple expression established in

Chapter 4, equations (414) and (416).

i [ =
o 2 = 2 A (414)
tok -

r=| r=1i
| n
m = _ 2 o (416)
4 O(.Li (p) & Ly

The eigenvector value #Qifor the first mode was the major

contributor to the total mass of the discrete system. As
the coordinate selected nears a constrained coordinate on
the structure the mode shape amplitude reduced, thus
increasing the total mass of the discrete system. For
example, the total mass of the discrete system for the

300 mm coordinate was 1.196 Kg compared to 0.228 Kg at the

500 mm coordinate.

When the identified discrete system was coupled to the
continuous element at the 300 mm coordinate the point
coordinate frequency response plot for the resultant
substitute structure was dynamical similar to the original

structure (Figure 59).

=172=



The first mode (Figure 60) of the substitute structure
overlays the original structure which indicates a high
level of similarity. The mode shape for the continuous
element is plotted so that the contribution of the discrete

system to dynamic similarity can be observed.

The second mode of the substitute structure does not
correspond to a resonance of the original structure. The
same characteristics that were exhibited when the discrete
system was at the 500 mm coordinate were obtained for the
discrete system at 300 mm. The first spring/mass element
(k, and m, ) was resonating but the mode shape value at the
coupling coordinate was insignificant. This explains why
the point recepténce plot for the substitute structure at
the 300 mm coordinate was dynamically similar to the
original structure, since it was a node point when the
individual spring/mass elements of the discrete system

resonated.

A plot of the second mode of the substitute structure
(Figure 61) showed a very large amplitude at the tip of the
beam. If the equipment was attached at the 300 mm and 500
mm coordinéte thén by positioning the discrete system at
300 mm the level of dynamic similarity was worse than using

the continuous element on its own.

A plot of the third mode (Figure 62) showed that the mode
shape of the substitute structure followed closely the

original structure upto the connection point of the
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discrete system. Between the 300 mm and 500 mm coordinates
the mode shape for the substitute structure fell
progressively away from the original structure. This
showed that the discrete system was effecting dynamic
similarity from the position of maximum constraint upto the

coupling point but then over restrained the continuous

element s motion.

The effects of distributing the discrete system between the
two coordinates of interest was examined. The general
level of each of the respective residual receptance curves
were halved to proportion half of the dynamic similarity
contibution to each position. This had the effect of
halving the total mass of each discrete system. The
discrete systems were identified separately and then
coupled to the spatial model of the continuous element. An
eigenvalue analysis of the resultant mass and stiffness

matrices was performed and can be seen in Table 10.

When two discrete systems are coupled to the continous
element, then two intermediate résonaht frequencies are
obtained. These resonant frequencies, again correspond to
the individual spring/mass elements of the discrete
systems. A point receptance curve for the 500 mm
coordinate is shown in Figure 63. It shows that
distributed discrete systems are incapable of achieving an

acceptable level of dynamic similarity, even at the

coordinate of coupling of one of the systems.
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6.7 TWO POINT SIMILARITY; EXPERIMENTAL STUDY

The experimental validation of the theoretical study of two
point coordinate similarity was performed by considering
the transfer frequency response function between the 500 mm
and 300 mm coordinates. An accelerometer was attached at
the 300 mm coordinate and the input function was applied at
the 500 mm coordinate of each structure.

The transfer inertance plot for the original structure
(Figure 64) shows well defined resonances and just one
anti-resonance between the third and fourth mode. This
plot corresponds to the theoretical study, as shown in

Table 11.

The results follow the same trend as discussed in Section
6.4 with the experimental values slightly lower than the

theoretical values.

When the transfer inertance plot for the substitute
structure is examined ﬁFigure 65) then the intermediate
resonaces, predicted in the theoretical study, are
exhibited. A comparison of the theoretical study and the

experimental test is shown in Table 12.
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6.8

SUMMARY OF DESIGN METHODOLOGY ASSESSMENT

The design methodology is viable for single point

coordinate similarity.

If the anti-resonance frequencies of the continuous
element are different to the original structure then
spurious frequencies are created. The experimental
work, used to validate the theoretical study,

confirmed this phenomenon.

If the discrete system is positioned at a frequency
node point then it is ineffective for that frequency
and hence an acceptable degree of dynamic similarity

is not achieved.

The most effective position to couple the discrete
system is at the least constrained coordinate of the
continuous element. This also has the advantage of
the total mass of the discrete system is at a
minimum and, therefore, the least constrained

position represents a design optimum.

If the whole structure is considered then a single
discrete system will dynamically “tune” the whole of
the structure. Unfortunately, intermediate
frequencies are generated which can be directly

attributed to the individual spring/mass elements.
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The-e intermediate frequencies have significant

effect upon the quality of the dynamic similarity.

When two point coordinate similarity is considered,
then it is impossible to achieve an acceptable level
of dynamic similarity due to the transfer frequency

response function of the intermediate frequencies.

From these observations it is possible to deduce
that the mass and stiffness distribution of the
continuous element must be as close as possible to
that of the original structure. A discrete system
should then be used to provide a small “tuning’
effect placed at the position of least constraint on
the continuous element. If the total mass of the
discrete system is very small then the intermediate
resonances caused by the individual spring/mass

elements should be minimal.
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SUBSTITUTE STRUCTURE

Continuous Element

Figure 36
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Physical substitute structure

Continuous element

Discrete element
No. 3

Discrete element
No. 2

Discrete element
No. 1

Figure 42
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Discrete System at 375 mm
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Discrete System at 250 mm
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Discrete System at 500 mm
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Discrete System at 500 mm
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Discrete System at 300 mm
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Discrete System at 300 mm
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TABLE 10

Distributed discrete system.

Mode No. Original Structure Substitute structure
Res Freq Mode Shape Res Freq Mode Shape
1 67.63 0.1654 7 0.122
z = 1.36% -1.05
= - 315. 1.396
2 346.1 1.81 348. 0.853
- = 695, -0.201
- = 839. -0.964
3 914.0 1:879 259, ky2i

=201~




TABLE 11

Transfer frequency response - Original structures.

Mode No. Orig Structure F.E, Orig structure
Res Freq Res Freq
d 61.1 67.0
2 317.0 346.0
3 833.7 917.0
4 1607.0 1776.0
TABLE 12

Transfer frequency response - Substitute structures.

Mode No. Orig Structure F.E. Orig structure
Res Freqg Res Freq
1 59.02 71.6
2 - 136.9
3 180.2 315.4
4 299.2 348.8
5 520.0 695.0
6 814.8 839.7
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7 OUT OF PLANE SIMILARITY

71 INTRODUCTION

In the previous chapters two main problem areas have been
addressed;

a) developing an identification technique for discrete
systems which are dynamically similar to any point
coordinate on a continuous structure.

b) examining a proposed design methodology which
utilizes a continuous element and a discrete system
to achieve dynamically representative structures.
The comparisons have so far been for original
structures that are one dimensional, such as simple

beam elements.

In the majority of real world problems the original
structure will be a two or three dimensional body. This
introduces the problem of out of plane similarity and
whether a single multi-degree of freedom discrete system
acting at a single point is capable of achieving complete
dynamic similarity for the whole of the substitute

structure.

During the philosophical considerations which were made at
the outset of the project (Chapter 2), it was considered
that a possible solution might exist where the physical
appearance of the substitute structure was different to

that of the original structure. The work in Chapter 3
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esblished three conditions for dynamical equivalence

between structures;

5 The same mass and stiffness distribution.
i1i) The same dimensions between coordinates of
interest.
iii) The same end constraints.

Whilst the design methodology was being established and
verified using one dimensional problems it was expedient to
use a continuous element which was physically simialar to
the original carrier body. By adopting this approach the
conditions (ii) and (iii) were easily satisified for
dynamical equivalence, leaving only condition (i) to be
examined. this approach was again used for the initial
work on out of plane similarity so that the number of

design variables were kept to a minimum.

A simple portal frame was used as the original carrier
body, Figure 66. One of the cantilevered beams was of a
greater section than the others so that the motion at the
free end of the structure was a combination of vertical
translation, vertical rotation and an out of plane twisting
motion. The coordinates of interest were taken as 2, 3, 5
and 7 (Figure 66d). In particular the nodes 3 and 7 were
observed as it was assumed, arbitarily, that these were the

attachment points for any supported or carried equipment.
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Vel SELECTION OF THE CONTINUOUS ELEMENT

3251 LIGHT CONTINUOUS ELZMENT

The portal frame, Figure 66a, was modelled using the finite
element analysis package (Pafec 75) to obtain the first
four modes of vibration. The first stage of the eigenvalue
difference technique (Chapter 5) was used to obtain a
spatial model of the portal frame for the coordinates of

interest.

When the design methodology is applied to physical carrier
. bodies it is unlikely that the designer will know all of
the sectional areas and topology of the carrier body. He
has therefore, to apply a generalised design synthesis
algorithm to obtain an acceptable continuous element
(discussed in Chapter 8). However, at this stage, since
the dimensions of the original structure are known, it is
sensible to use this knowledge in the derivation of the

continuous element.

In the previous work using one dimensional structures the
continuous element always had mass and stiffness values
which were less than the original structure’s. This
ensured that it was possible to identify a positive
definite residual mass matrix, from which the parameters of
the discrete system were identified. It therefore followed

that the initial choice for the continuous element, for the
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portal frame exercise, should be another portal frame with
reduced sectional areas for the elements. The ’continuous
element " portal frame had the same end restraints and

spatial coordinates as the original structure.

The reduced sections assumed for the continuous element

were 30 mm
Section of beam 1 T—
rio mm
Section of beam 2 and 3 10 mm
4
{ 10 mm

A finite element analysis of this structure was performed
and the modal data for the first four modes were recorded.
An examination of the receptance plot for node 7, Figure
67, (which was initially chosen for the coupling coordinate
of the discrete system) showed that it would not be
possible to gain an acceptable level of similarity. The
position of the first anti-resonance of the continuous
element, at node 7, was less than the first resonance
frequency of the original structure. Now, the work on
coupling structures has shown that during the coupling
process the positions of the individual structure’s
anti-resonances do not alter. If it was attempted to
identify a discrete system using this very light continuous
element there would always be a resonance and
anti-resonance of the substitute structure before the first

resonance of the original structure. The dynamic
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similarity would therefore not be acceptable.

T22:2 RESIDUAL MASS MATRIX

The sectional areas of beams 1, 2 and 3 were increased so
that an acceptable distribution of resonances and
anti-resonances of the continuous element were obtained
when compared to the original structure. It was then
possible to apply the design methodology to the two sets of
resonance frequencies and mode shapes. The dynamic
difference technique using eigenvalues and eigenvectors
(Chapter 5) was used to obtain the residual mass and
stiffness matrices. The resultant mass and stiffness
matrices for this analysis can be seen in Table 13. If the
eigenvalue problem is solved for these matrices the
algorithm will fail since the mass matrix is not positive

definite.

To determine the reason for this failure the mode shape
values of each structure must be examined. The continuous
element was selected to be lighter than the original
structure so that the mass distribution would be less than
the original structure’s. Since the mode shape values are
mass normalised they should be greater in amplitude than
the corresponding values for the original structure. The
design methodology incorporates this feature implicitly
within the algorithm used to derive the residual mass and

stiffness matrices.
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The mode cshape values for the first and third mode conform
to this explanation. However, in the second and fourth
modes the values for node 5 of the continuous element were
less than the corresponding values for the original

structure. This results into one of two conditions;

a) A negative value on the leading diagonal of the mass
matrix.
b) A very small value on the leading diagonal of the

mass matrix.

In an attempt to avoid this undesirable feature the
coordinates of interest were changed. - The modal values for
node 6 were substituted for node 5, but the same feature
was observed for the fourth mode at node 6. The approach
of intuitively deriving the continuous element was not
totally robust and it was concluded that design evaluations
and assessments must be performed by the design engineer
when deriving the continuous element. It must be borne in
mind that it had been possible to satisfy the second and
third conditions for dynamic similarity by using the same
spatial coordinates and end restraints for the continuous
element as the original structure. Even when the problem
was restricted to just the one design variable (ie the same
mass and stiffness distribution), it proved to be very
difficult to obtain a satisfactory continuous element.

This emphasised the importance of a systematic design

synthesis algorithm for the design of the continuous
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element when the designer was faced with all three design

variables to be established.

Resulting from this work it is possible to define another
design rule to assist with the derivation of the continuous
element. When the continuous element is being designed it
is necessary to compare the mode shape values for the
coordinates of interest against the original structure.

The mass normalised mode shape values should always be
greater than the original structure’s so that the residual
mass matrix is positive definite. This will normally be
achieved by reducing the sectional areas of the individual
beam elements, however, care should be exercised to ensure

that the resonant frequency distribution is correct.

1ads3 SUITABLE CONTINUOUS ELEMENT

The sectional areas of the beam elements 1,2 and 3 were
increased until it was possible to derive a residual mass
matrix which was positive definite. The work in the
previous chapter had shown that it was important to ensure
that the coordinates of interest selected do not correspond
to a node point within the frequency range of interest. A
check was made for this condition and it was established

that all the coordinates selected were acceptable.
One of the design rules that was established in Chapter 6
was the optimum position for the discrete system. It was

found that the optimum position for the discrete system
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upon the continuous element was at the least constrained
coordinate. This had the advantage of the discrete system
being of minimum mass for any given continuous element

configuration.

Within the finite element model, Figure 66d, node 7 was
the least constrained coordinate on the continuous element.
The design methodology was used to identify the parameters
of the discrete system which was to be coupled at node 7.
A comparison plot for the substitute structure and the
original structure at node 7 (Figure 68) had the
characteristic double anti-resonance feature caused by the
difference in anti-resonances between the continuous
element and the original structure. The figure does not,
however, show the dynamical effects away from the point of
connection. To examine the quality of similarity of the
whole of the substitute structure with the original
structure it was necessary to model the whole substitute

structure using a finite element modelling technique.

. . DISCRETE SYSTEM POSITION

A finite element model was generated for the substitute
structure. The same characteristics that were obtained for
the one dimensional structures used in Chapter 6 were
obtained . A new intermediate resonant frequency was
obtained between each of the original resonance
frequencies. The frequency was caused by one of the

discrete spring/mass elements resonating. The resonance
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caused mode shape values that had a significant effect on
the quality of the dynamic similarity of the substitute
structure, as was the case for the single plane structure.
Where the original structure had three resonance
frequencies within the first 650 rad/s the substitute
structure had five resonances. The mode shape values for
the intermediate frequencies within the range of interest
were negligible at node 7. A comparison plot of the
substitute structure and the original structure, using the
modal data from the finite element analysis (Figure 69) was
the same as the plot obtained from the coupling analysis
(Figure 68). If this plot was taken in isolation then it
could be mistakenly assumed that the two structures were

dynamically similar.

If the coordinate, node 3, of the finite element model is
examined, then the intérmediate frequencies are easily
observed. A casual examination of Figure 70 would suggest
that the two structures are significantly different and
that little similarity exists between them. However, 1if
the intermediate frequencies are removed from the plot
(Figure 71) then the level of similarity is greatly
improved with only a discrepancy at the second resonance
and the first anti-resonance. This gquite dramatic change
in the level of dynamic similarity demonstrates that when
out of plane similarity is considered it is impossible to
achieve an acceptable level of similarity using only one

discrete system.
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The reason for this can be attributed to a fundamental
difference between continuous structures and discrete
systems. Within the design methodology the parameters of
the discrete system are identified by using the values of
the anti-resonances of the original structure at the
coordinate where the discrete system is positioned. The
resonance frequency of each spring/mass element is matched
to each anti-resonance frequency, equatiuon (425). This
explains why the intermediate resonance frequencies are not
apparent at the attachment coordinate when a frequency
response curve is generated for the coordinate. On a
continuous structure the same resonant frequency is
experienced over the whole of the structure. The
anti-resonances though are a function of the mode shape
amplitudes and, therfore, varies over the whole of the
structure. A discrete system has stationary resonance and
anti-resonance frequencies which means that when a discrete
system is coupled to a continuous system at one point then
coordinates away from the connection will interact with the
discrete system. It is this interaction which results in
the resonances and anti-resonances that are observed in

Figure 70.

In an attempt to minimise the undesirable interaction
between the discrete system and the continuous element, the
coordinate of interest was altered to node 5. This node
was at the free end of the frame and between the two nodes
(3 & 7) which were assumed to be the attachment points for

the transported equipment.

=218~



The corresponding discrete system for node 5 was identified
and coupled to the continuous element, Figure 72. The
characteristics double anti-resonance was obtained. The
intermediate frequencies at this coordinate had negligible
mode shape values and, therefore, did not appear on the
curve for the substitute structure. The plot for node 3
with the discrete system at node 5 showed an unacceptable
level of similarity (Figure 73). Likewise, the plot for
node 7 (Figure 74) showed an unacceptable level of
similarity. Even when the discrete system was in close
proximity to the attachment coordinates it was impossible
to obtain an acceptable level of dynamic similarity- for two

dimensional strucutres using a single discrete system.

7.4. DISTRIBUTED DISCRETE SYSTEMS

The effects of using distributed discrete systems was
examined by identifying two discrete systems, one at node 2
and the other at node 3. The total mass of each discrete
system was half that of a single discrete system acting at
the corresponding coordinate. The substitute structure was
modelled with the two discrete systems attached. The
resultant analysis showed two intermediate frequencies were
generated between each original frequency of the original
structure. A point coordinate receptance plot for node 3
showed poor dynamic similarity when compared to the
original structure (Figure 75). Although the intermediate

frequencies associated with the discrete system at node 3
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had negligible mode shape values, the intermediate
frequencies caused by the discrete system at node 2 had

considerable effects.

A comparison plot between the substitute structure and the
original structure (Figure 76) at node 7, shows very little
dynamic similarity. The substitute structure clearly
displays the multiple resonances and anti-resonances caused
by the interactions of the stationary characteristics of

the discrete systems with the continuous element.

The very poor level of dynamic similarity exhibited by

distributed discrete systems show that this approach is not
tenable.

T'eh ASSESSMENT OF THE QUALITY OF DYNAMIC SIMILARITY

An assessment of the quality of dynamic similarity between

two structures should examine the following features;

a) The resonance frequencies.
b) The anti-resonance frequencies.
&) The general level of the frequency response plots.

In the introduction to the chapter a review of previous
work highlighted the ideal conditions for dynamic
similarity. By careful design and selection of the same
end constraints the work_was restricted to examining a
procedure to obtain the same mass and stiffness
distribution. It was found to be possible to achieve

acceptable point dynamic similarity using the proposed
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design methodology. This similarity was at the coordinate
where the discrete system was attached to the continuous
element. However, at other coordinates on the substitute
structure the dynamic similarity was lost. It would
therefore not be possible to representatively test
multi-point attachment equipment on such a substitute
structure. The substitute structure at coordinates away
from the discrete system exhibit the resonance frequencies
of the original struc£ure as well as intermediate
frequencies caused by the stationary dynamical

characteristics of the discrete system.

If anti-resonances are considered then they are a function
of mode shape values and resonances. Now, a resonant
frequency is the same at any point on the structure, but
the mode shape vector varies. Therefore, the
anti-resonance value will vary from point to point on the
structure. The discrete system only acts at one point and
has fixed anti-resonance values. The combination of these
fixed discrete system characteristics and the varying
anti-resonances of the continuous element create the
generation the the new intermediate resonance and
anti-resonance frequencies. These resonance frequencies
destroy the dynamic similarity between the substitute
structure and the original carrier body. This feature is
also present in one dimensional structures. Since the
discrete system acts at one point the mass and stiffness
distribution for the substitute structure cannot be the

same as the original structure.
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The discrete system was capable of altering the general

level of the whole of the continuous element.

7.6

SUMMARY OF ADDITIONAL DESIGN CONSTRAINTS

These additional design constraints can be employed during

the application of the proposed design methodology;

The first anti-resonance of the continuous element
should be equal to the first anti-resonance of the
original structure or at least greater than the
first resonant frequency of the original structure.
This ensures that it is possible to identify the
first resonance of the substitute structure

correctly.

There should be only one resonant frequency of the
continuous element between adjacent frequencies of

the original structure.

The mode shape values for the coordinate of interest
of the continuous element should be greater than the

corresponding coordinates on the original structure.

The use of distributed discrete systems is not

tenable.

The stationary dynamical characteristics and point
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application of a discrete system means that it

- cannot be used to effectively alter the overall mass

and stiffness distribution.

The dynamical characteristics of the continuous
element should be sufficiently similar to the
original structure so that a single discrete system

can be used to provide a small “tuning’ effect.
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TABLE 13

[M]ARRAY:=

—

5.482
b 1)
0. 533
0.617

[K]ARRAY:=

31138339
-10749477
-65436
393365

RESIDUAL MATRICES

~&w 127
0.896
-0.184
~0+216

-10749477
3916103
25227
-146957

0.533
-0.184
4E-3
3E-3

-65436
25227
1382
-16
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8 DESIGN OF THE CONTINUOUS ELEMENT

8.1 INTRODUCTION

For a long time it has been common engineering practice to
test sophisticated equipment under controlled laboratory
conditions. The alternative is to develop and evaluate the
performance of the equipment by a series of field tests,
but often the costs and time scale are prohibitive. The
normal engineering approach to designing and evaluating
equipment is to first model the equipment using numerical
analysis techniques. Once an acceptable design has been
achieved prototype systems are manufactured and evaluated
by testing under strict laboratory conditions. If the
results of the laboratory testing are acceptable
experimental validation is then sought under operational

conditions.

It is possible by the use of modern numerical analytical
techniques to develop a design to fruition without actually
manufacturing prototypes. Héwever, it is not desirable to
instigate full production of the design without first
manufacturing at least one prototype for experimental
validation. If this validation is to be useful it is
necessary that the prototype is tested under realistic

operational conditions.

If the test rig is to be representative of a carrier body
or a localised region of the carrier body, it is necessary

to know the dynamical characteristics of that body or
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Structure. This will usually be a set of frequency
response curves measured at the coordinates where tae
equipment is fixed and its immediate surrounding area. The
data which are available to the designer of the test rig

will be

(a) A set of frequency response curves for the frequency

range of interest.

(b) The spatial dimensions of the coordinates where the

frequency response curves were recorded.

The designer of the test rig has to derive a design which
is capable of reproducing these dynamical characteristics.
This is potentially possible by two techniques.

(i) Using electro-magnetic shakers to reproduce the

dynamical characteristics of the attachment points.

(ii) Using a mechanical test rig where the distributed
nature of the mechanical properties are capable of
generating the defined frequency response

characteristics.

A proposed design methodology for the mechanical test rig
has been examined in the previous chapters. The properties
of the continuous element were always derived by intuitive
reasoning so that effort was directed to the identification

of the discrete system and the effects of coupling
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structures. It was found that the addition of the discrete
system, used to dynamically tune the continuous element,
caused undesirable effects at the out of plane coordinates
for the two dimensional models. It was concluded that the
use of a discrete system to effect large scale dynamical
changes to the characteristics of the continuous element
was not feasible. This emphasises that it is important
that the continuous element should be capable of generating
the defined dynamical characteristics as closely as
possible. The proposed design methodology cannot rely upon
intuitively derived continuous elements as they are highly
unlikely to exhibit the desired dynamical characteristics.
The previous work has highlighted the importance of the
continuous element and it is, therefore, essential that a
systematic design synthesis technique is used to derive the

parameters of the continuous element.

If two distinct systems are to be coupled to obtain dynamic
similarity then the anti-resonances of each system must be
the same as those of the original structure (the carrier
body). The work reported in Chapter 5 shows that during
the coupling of systems the anti-resonances are dominate
and always appear in the resultant system. If a
dissimilarity exists between the anti-resonances a spurious
resonance is generated. The resonant frequencies of the

individual systems will move when the two systems are

coupled.

The class of problem of designing the continuous element
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can be categorised as a Distributed Parameter Optimum
design problem. A design methodology is required that is
capable of taking a poor estimate of dynamic similarity and
systematically examining possible design improvements such

that an acceptable design is achieved.

A generalised gradient projection method for distributed
parameter optimal design is examined to establish a basis
from which a suitable design methodology for the present

problem can be developed.
8.2 THE DISTRIBUTED PARAMETER OPTIMAL DESIGN PROBLEM

Researchers in the field of vibrations have examined the
problem of establishing a systematic approach to selecting
the optimum structural elements to modify when a structure
does not reproduce specified vibration levels. The models
considered were lumped parameter models where physical
structures were reduced to linear spring/mass systems.
Vincent [34] examined the effects of single structral
baraméter changes on the response of a structure. He
achieved this by plotting the locus of a response at a
point when a simple mass or stiffness was changed as a

circle or an arc of a circle in the complex plane.

Done and Huges [35] extended this work to consider the
effects upon the structural response of the system when
changing multiple system parameters. They demonstrated

that when two parameters were altered simultaneously the
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response was found to lie in a prescribed "feasible
response" region outside of which the response could never

be altered with that particular choice of parameters.

In 1976, Done et al [36] developed this work further in an
attempt to use the technique to identify changes or
extensions to a model so that it could achieve prescribed
dynamical characteristics. The technique was used to
enhance a simplified finite element model of a structure so
that it was capable of reproducing the measured frequency
response characteristics of a physical body. Having
obtained a simple, yet realistic model it was then possible
to perform a design study to optimise the performance of
the physical body. This work was not extenaed to examining
the effects of changing distributed parameter elements

within the physical structure or the finite element model.

This technique is only suitable for design cases where the
physical structure is reduced into a simplified or
discretised model and single linear springs or concentrated
masses are used to achieve prescribed dynamical
characteristics. A different approach is necessary so that
the dynamic effects of distributed parameter systems can be
manipulated to synthesise structures which have prescribed

dynamical characteristcis.
A finite dimensional optimal design methodology was used,
in Chaper 4, to establish the parameters of the discrete

system which was dynamically similar to a point coordinate
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on a continuous structure. It was possible to use this
technique because the resultant design (the discrete
system) had only a finite number of degrees of freedom.
However, the same design methodology cannot be used to
identify the characteristics of the continuous element
although the objective is extensively the same. This is
because the dynamical characteristics of the continuous
element are derived from the topology and mass distribution
of the continuous element. This means that the designer
must work in an infinite dimensional design space of
functions, rather than in the finite dimensional space of

design parameter vectors.

A particular case of distributed parameter optimal design
is used in the calculus of variations. (Appendix 6). This
class of problem is for when the design function is
dependent only on the spatial distribution of material to
optimise sectional areas, route trajetory, weight etc. The
theory developed is suitable for design problems that
reduce to closed form solutions of nonlinear differential
equations which can be explicitly solved. However, the
theory does introduce useful concepts such as functional
analysis techniques, boundary conditions and‘the use of
small pertubations to obtain optimal designs. The handling

of discontinuities is also discussed.
The problem of designing the continuous element involves
both design and state variables as was the case for the

finite dimensional optimal design problem. Since the
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continuous element must exhibit specific characteristics or
functions, these impose constraints on the state and design
functions. 1In Appendix 7, a problem associated with such
conditions is examined, it is normally referred to as the
problem of Bolza [37]. The Bolza problem is of almost the
generality required for the distributed optimal design
problem. It’s principal shortcoming is the lack of
generality in the constraints on equations (A703) and
(A704). This is resolved by making the equations
inequalities and then solving, as linear programming
problems, by introducing slack variables. As a general
rule distributed parameter optimal design problems are not
linear. It is, therefore, impossible to solve the complete
genaralised problem by linear programming techniques. One
approach to solving such problems is to expand functions
involved in the design problem through the use of Taylor’s
formula. Providing that the design changes are small the
first order term of the expansion will allow the selection
of an optimum direction. Normally the largest values are
taken and a new optimum design is specified which is then
suitable for reanalysis. This technique is known as the
gradient projection method for optimal design and a more
complete discussion of the technique can be found in

References 38 - 45.

Consider a mechanical structure capable of being described

by a linear set of differential equations; statically

(K(B)] (&) = (Q () & (D] (801)
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where the operator K depends upon the design variable (b),
the vector function {®} is the applied load. The set [D]
is a linear subspace of functions satisfying
differentiability properties and homogeneous boundary

conditions.

dynamically

(k(b)] (3] =tN LM LP] (1 & [D  (802)

which is the general eigenvalue problem.
The performance requirements or constraints can be

expressed in the form of "pointwise constraints"
Bs (b)<A p=1,........ 9, (803)

and "functional constraints".
=@,x=1..r'

L}’“ (b,2,%) = g (N +flfd(x,z,l>)dx (804)

(@,ﬂ:r'q—l_..r'

The conditions of equation (803) express exﬁlicit.bounds on
the design variables, which must be satisfied at all points
over the domain [l of the distribution of the independent
variable. The functional constraints of equation (804) are
used to replace any pointwise constraints over the domain

0 that are of the form
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Q_(b,z) <dg ~ & (L

by the equivalent functional constraint

o =f <nrdx = ¢ (805)

The final element of the optimal design problem is the cost

functional that is to be“minimised

Y (bz)) = ﬂo()\)i-fF;(x, x, B dse (806)
Sl
The cost functional can represent weight, displacement,
natural frequency and other pertinent costs associated with

the design problem.

The gradient projection method that is fully developed in
Appendix 8 is based upon the same ideas as used in the
finite dimensional gradient projection method described in
Chapter 4 and Appendix 3. It requires that first order
approximates are made to various functions involved in the
optimisation problem and an optimum design improvement

computed.

The expression (A813) is well suited to modern numerical
analysis methods such as finite element analysis where a
discretised spatial model of the structure under
examination is generated. This means that the mass and
stiffness matrices [M] and LK) are normally available. If

the shape functions used to generate the mass and stiffness
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matrices are known then it is possible to determine changes
g““, SK due to sectional changes &b. The design changes
that violate the constraint equations (803) and (804) are
then retained to generate a matrix of sensitivity
coefficients. Unfortunately this design procedure can be
used only for a limiting design case of optimising the
dimensions of a known structure. It does not give any
suggestion as to a method for altering or extending the

structures topology.
8iu3 PROPOSED DESIGN METHODOLGY
8.3.1 SELECTED APPROACH

If it is accepted that the only data available to the
design engineer is a set of frequency response functions
and the coordinates where the measurements are taken, it 1is
unlikely that the initial tentative design will generate
the correct state space functions. The designer will be
left with three possible approaches for design alterations
(a) Extend or modify the topology of the structure. Care
has to be exercised to ensure that the original
coordinates of interest are retained
(b) Alter the end restraints of the structure.
(c) Alter the sectional areas of the individual
structure elements (conventional ;ensitivity

analysis).
The design methodology for sensitivity analysis is suitable

-245-



for option (c). However, the other two options cannot be
handled in the same way as they are fundamentally different
in their design formulation. The options (a) and (b) imply
a procedure of "looking out" or extrapolating from the
present design state to another state such that the changes
to the present state z° move the design in a feasible

. 3 - . ° ’
direction towards the required design state =Z .

A design synthesis methodology is required so that the
designer or an automated design procedure can select
additions or modifications to the structures topology which
will reduce the difference between the specified state

space 2" and the actual design state space Z°.

The original data obtained from the carrier body are
normally supplied as frequency response curves. These can
be analysed using system identification techniques to
identify the natural resonant frequencies, mass normalised
mode shapes and the damping within the structure. It is
then only a simple step to obtain mass and stiffness
matrices which represent spatial models of the structure at

the coordinates of interest.

These mass and stiffness matrices will be fully populated
due to truncation effects of the out of range frequencies.
However, they are very useful as they provide the mass and
stiffness distribution that the tentative design must
achieve. It is important to note that although the mapping

from the mode vectors to the mass matrix is unique it 1is
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not possible to uniquely perform the inverse of the process
(ie the mapping is non-injective,non-surjective). The mass
and stiffness matrices, therefore, have no unique physical
meaning. The initial tentative design is derived by
intuitive reasoning of the design engineer based on
descriptions of the original carrier body and the
coordinates of interest. If a finite element analysis
model is generated for this design it can be analysed to

obtain the resonant frequencies and mode shapes.

(37 MIl2]
(27 kK1[&]

[~ I] {3%)

[‘)\'--.] (32)

Using equations (31 & 32) it is possible to determine the

mass and stiffness matrices for the tentative design.

The difference between the matrices for the original

carrier body and the tentative design represent the changes

that have to be effected upon the tentative design to

achieve dynamic similarity.

ie [M,,-.al [Mt“‘] + {MA'H'] (807)
[K,,.;al = [k )+ [Kype ]

To achieve the difference matrices [h4£ﬁ] and [Z“M¥] it

Il

might entail large scale changes to the intial design
estimate. It is, therefore, not realistic to attempt
arbitrary or multiple design changes during each design

iteration.
It is proposed to adopt the following design synthesis
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algorithm when selecting the additions or modifications to
the initial design estimate.
1. Examine the distribution of [bﬁﬁm ] to establish an
area where the most significant values exist.
2. Relate this area to the corresponding coordinates on
the tentative design estimate.
3. Add to or modify the local topology.
4. Analyse resultant design estimate to obtain new mass
and stiffness matrices.
5. Remove the initial design estimate matrices from the
new matrices.
6. Check that the residual matrices do in fact produce

the desired effect.

The residual mass and stiffness matrices show globally the

effect of making a localised change to the design topology.

It is then possible to examine sectional changes to the
new element within the design. The sensitivity analysis
(equation A813) is performed in relation to the difference
matrices [MJ;PF ] and [ KJ:FF ] so that the optimal

contribution of the additional element can be established.

Once an optimum condition has been achieved for a single
element addition then changes to the end restraints are

examined.

The following algorithm is used to obtain optimum end

restraints.
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1. Restrain the free end of the addition element in one
of the six degrees of freedom of motion.
2. Analyse the resultant design estimate to obtain new
mass and stiffness matrices.
3. Remove the initial design estimate matrices from the
new matrices.
4. Repeat this procedure for all six degrees of freedom
of motion.
Using the results from the six iterations and the
unrestrained element it is possible to establish the

optimum end restraints for the additional element.

Rather than optimising this design_change and then
incorporating the change within the design estimate it is
proposed to repeat the algorithm to build a library of
single element and end restraint changes to the initial
design element. This is because the effect of a single
change on the [ Hd:PF ] and [ CJ#I matrices might be a
mixture of benifical and detremental additions to the
individual matrix elements. Once a sufficiently large
library of the effects of selected changes has been made
the final stage of the optimisation process can then be

performed.

A sorting algorithm (based on a linear programming
approach) is used to sweep the library data base to find
the optimum changes to the topology. These changes are
then made to the tentative design and the analysis is

repeated until an acceptable level of similarity is
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achieved.

This methodology is a blend of intuitive reasoning and
numerical analysis techniques. It is particularly suited
to an expert system (or artificial intelligence)
application. As the number of design changes increase the
expert system would be generating a data base from which it
could establish a set of selection rules. This technique
is known as the induction method. Based upon these rules
it should then be possible for the system to extrapolate
new design changes that would be dynamically effective. It
is not proposed to employ expert systems, or artificial
intelligence, within the present design study study but the

observation is made for future possible work.

The characteristics that are required of a suitable expert
system are;
i) The induction method is used as the basis for
decision making.
ii) It is capable of being integrated with numerical
analysis software such as finite element analysis,

modal analysis and optimisation software packages.
An expert system builder such as TIMM [46] has these

characteristics and may be suitable for future

consideration.
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1)

2)

3)

4)

5)

6)

DESIGN METHODOLOGY ALGORITHM

Obtain data from original structure and using the

same number of coordinates of interest as degrees of

freedom of interest generate the spatial models [Mﬂ'ij]
' [K";:i] and [

By connecting the coordinates of interest with a

ol";j l.

continuous element derive the tentative design
estimate {k }.
Analyse the design by finite element analysis to
obtain resonant frequencies and mass normalised mode
shapes. From these values derive the matrices
[(Me.y) and [H, ]
Remove the matrices [M&-J.] and [{M.] from the
corresponding matrices [M“;j] and [Kan'ﬁl to obtain
[544$F] and [t:44$ 15
Compare the performance of the tentative design
against the original structure. If the similarity
is within acceptable limits then end.
At this point the design engineer can select one of
three possible design optimisation routines. This
step is repeated until sufficient data has been
generated that a design improvement can be made to
the tentative design.
6a) Element addition

A selection process is used based on choosing

the most likely element addition by examination

of the [ M‘I"FF ] and [ KJ;FF ] matrices.
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6b) End restraints
The effects of varying the end restraints of
the tentative design are examined to find the
optimum end conditions.
6c) Sectional area change
A perturbation analysis of the tentative design
(with the additional elements) is performed to
find optimum design change.
r ) Perform a sorting algorithm to ascertain the optimum
design changes.
8) Specify topology of new tentative design which
incorporates the optimum design changes. Repeat

from step (3).

8.4 THEORETICAL STUDY

8.4.1 ORIGINAL STRUCTURE

A two dimensional space frame was selected as the original
structure (Figure 77a). The left end of the structure was
fully constrained and the beam number 1 was of a greater
section than the others. The structure was inclined and
taperéd so that a strong twisting moment would be
generated. A finite element model *as created (Figure 77b)
and the coordinates of interest correspond to the nodes 4,
10, 12, and 13. It was assumed that the equipment was
attached to nodes 10 and 11. The reason why node 11 was
not included within the coordinates of interest was so that
a point not directly manipulated within the design

procedure could be used as a control within the evaluation
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of the dynamic similarity. It was also assumed that the
experimental test engineer would have also recorded
response data at nodes 7, 9, and 15 in case of encountering
a frequency node and to also ensure that sufficient

response data were available.

Normally, this data would be in the form of frequency
response curves which could be processed using a system
identification algorithm to obtain the resonance
frequencies and mode shapes. A system identification for
the four coordinates of interest and the first four modes
of vibration of the structure yielded a spatial model for
the original structure. This spatial model [Vhdﬁl and [tﬂﬁg
was then used throughout the subsequent analysis as the

design state .

8.4.2 INITIAL TENTATIVE DESIGN

The data available to the designer was assumed to be the
spatial coordinates where the dynamic data were recorded
and the frequency response data. After the data have been
processed, by a system identification algorithm, it was
possible for the designer to plot the modes of vibration.
The first mode, Figure 78 showed that the structure
exhibited three major degrees of motion, ie vertical
translation, vertical rotation and a twisting motion. The
motion at nodes 4, 7, 10 and 13 was less than the other
mode shape values. This suggested that this beam was
stiffer or more constrained than the other elements. The

amplitute at 4 was much lower then at 13 which suggested
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that the major restraint was in a line projected back
through node 4. From these observations it is possible to
derive the first tentative design (Figure 79). The design
was intentially simple so that it bore little resemblence

to the original structure.

Linear srings were applied at the nodes 4 and 6 of the
tentative design so that the structure could be supported.
The rate of the linear springs was established by examining
the receptance plot for the nodes 12 and 13 of the the
original structure. The work in Chapter 4, equation (424)
was used to calculate the spring rates. A pinned joint at

node 1 of the tentative design was selected.

A finite element model of the tentative design was
generated and analysed. The eigenvalue difference
technique, Chapter 5, was used to generate a spatial model
of [Mk.d_] and [Kt-d.] for the tentative design. The spatial
models for the original structure and the tentative design
were consistaﬁt and therefore the difference of the two
models represents the error that must be reduced by the

design methodology.

The differences were;

[26.197  -23.156 1.073 4.65
23.008 -1.195 6091
0.519 0.598

| 3.953_

Mass difference
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-—722088 -729460 9562 227440
764758 -9394 247216

2395 1231

84202
L o

Stiffness difference

The matrices are symmetrical

The resonant frequencies were:

Original structure Tentative design
15.68 126
85.45 D55
26.63 1352
197,67 216.0

The differences between the two structures were too great

to consider that an acceptable level of dynamic similarity
had been achieved. It was, therefore, necessary to apply

step (6) within the design methodology to move the

tentative design towards a feasible solution.

8.4.3 DESIGN CHANGES

The finite element software used throughout the analysis
was a commercially available package and it was impossible
to obtain sufficient details (in the time available) to be
able to perform a direct sensitivity analysis as described
by equation A813 . However, a series of runs were

performed where unit changes to the sectional area of each
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element were made. It was then possible to generate a
sensitivity matrix for dimensional changes to the tentative
design. An examination of this matrix showed that it was
impossible to achieve dynamic similarity by altering the
sectional areas of the tentative design. Changes or
additions to the topology of the tentative design were

therefore required.

Although the tentative design was totally different to the
original structure the resonance frequencies were within 10
- 35% of the required values and the distribution of the
frequencies was approximately correct. However, an
examination of the mass difference matrix showed that the
mode shape amplitutes for the tentative design were
unacceptable. The greatest difference was in the region of
nodes 2, 3 and 6. It was impossible to just add
concentrated springs and masses at these nodes (an approach
similar to Ref [36]) because the off diagonal terms were
significant. It was, therefore, necessary to identify what
the effects of adding elements or restraints to the
tentative design had on the mass and stiffness difference
matrices. Whenever changes were made to the tentative
design the subsequent analysis was always for the whole of
the tentative design and the coordinates of interest were
retained constant. Once the spatial model [hﬂhd]’and
[KtJJ’had been derived for the new structure then the
contribution of the change could be established. Since the
whole structures and spatial models were handled the degree

of resolution of the modelling procedure was very high.
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The difference between the extended tentative design and
the initial tentative design showed the contribution of the
change and since it was a quantitative value it was
suitable for inclussion within a design synthesis

technique.

Over forty design changes were examined for the tentative
design. The effects of each design change and the actual
parameters changed were recorded within a computer data
retrieval system to assist with the final sorting and

selecting procdure.

During the first iteration of the design methodology effort
was directed towards identifying what changes were
necessary to reduce the mass difference matrix at the nodes

1 and 2.

The design analysis was performed using a combination of
different computers and software and was therefore highly
dependent upon human interaction and decision making.
(Ultimately it is envisaged that the whole process will
performed with an integrated suite of software running on
one computer). Since the process was not automated the
number of design changes that could be carried out in a
reasonable time scale was restricted. Figure 80 shows
eight principal design changes to the topology of the
initial tentative design. Each topology design change
incurrs subsequent analysis to examine the end restraints,

sectional changes and element length changes. Even this
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limited set of design changes produced a large amount of
data from which the optimum change had to be selected. A
sorting algorithm was used, based on the error in
anti-resonace frequencies, resonance frequencies and the
mass and stiffness distribution, to select the best three

cases. These were;

1) Configuration number 3 with a linear spring at the

tip of the new element (Figure 81).

2) Configuration number 4 with the new element

pinned-jointed (Figure 82).

3) Configuration number 5 with a linear spring at the

tip of the new element (Figure 83).

An examination of the mass difference matrix suggusts that
extra mass should be applied at nodes 2 and 3. When
configurations were examined where the mass was directly
applied at node 2 (configurations 1 and 2) small
improvements were obtained. These improvements were not
significant, even when the tip of the additional beam was
fully constrained. The most significant effects were
obtained when elements were added to the tentative design
that were not in the close proximity of nodes 2 and 3.
Nevertheless, due to the distributed nature of the
structure the dynamic effects of the new elements generated

apparent mass at nodes 2 and 3.
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Case 1 ; Figure 81

The new element (Number 6), Figure 8la, was examined for
different end restraints at node 7. The length and the
sectional area were altered to provide a quick analysis of
the sensitivity of the new element to geometry changes.

The optimum condition was found when a linear spring was
applied at node 7 and the node was in the same plane as
node 2. The first and third resonant frequencies of the
tentative design are very accurate (within 2%). The second
resonant frequency of the tentative design shows only a
small improvement with a reduction of error from 35% to
28%. The mass difference matrix shows an improvement to
the mass distribution, particularly at nodes 3 and 6. This
improvement in the mass difference matrix is reflected by a
small reduction in the first anti-resonance value at, node
3, from 59 rad/s to 55 rad/s. This highlights that a
comparison of resonance frequencies only is insufficient to
assess dynamic similarity. The intention of the design
methodology is not to achieve dynamic similarity in one
step but to identify a change in the tentative design such
that a feasible direction to an acceptable solution 1is

achieved. This design change fulfills this criterion.

Case 2 ; Figure 82

A variation on the third configuration is to add a new
element which is parallel to elements 1 and 2. The optimum

design change for this case was found when the new element
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was projected back to the same plane as node 1 and was
pinned-jointed. The error in the resonance frequencies
were 11%, 28%, 20% and 23%. Although these errors were
greater than the first design case the first anti-resonance
for node 3 was at 34 rad/s, an improvement of 25 rad/s.
This is a significant improvement when compared to the
first design case showing that an improvement to the mass

distribution had been achieved.

Case 3 ; Figure 83

An interesting design case is one when the additional
element fitted to the tentative design appears to be well
removed from the area of interest. In configuration number
5 the element is fixed at node 6 and extends towards the
least constrained area of the tentative design. The error
in the resonance frequencies were 10%, 40%, 0.8% and 33%.
The first anti-resonance at node 3 is at 51 rad/s.

Although the change does not represent an optimium when
compared to either of the other two cases it does fulfill

the design selection criterion.

These three cases highlight that the mass and stiffness
difference matrices can be used as first order derivatives
within the design optimisation procedure. They cannot
though be used directly to assess where additional elements
or changes to the end restraints can be applied. There is
an unbounded set of possible design changes that can be

made to the tentative design and it is therefore important
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to quickly isolate areas within the structure which are

fundamental or critical areas within the dynamic similarity
process. For example, additional elements at node 2 do not
have significant effects, whereas elements appended at node

6 do have significant dynamical effects.

The subject of quantitatively qualifying the dynamic
similarity between two structures is examined in the next
chapter. It is used within the design synthesis procedure
to terminate the iterative process when an acceptable
degree of similarity has been achieved. 1In the early
iterative loops of the design synthesis procedure the
dominate selection criterion must be based upon
anti-resonaces. It is important to select a design change
which maximises® the changes in the anti-resonances (ie
steepest gradient approach). By adopting this selection
basis the general mass and stiffness distribution will be
achieved as the design moves towards the correct
anti-resonance values. Once the correct general mass and
stiffness distribution has been achieved the selection
process should change to ensure that the correct resonance
frequencies are achieved. Based upon these observations

the design case (2) would be selected as the optimum design

change for the first iteration of the design methodology.

Once this design change has been incorporated within the
tentative design, the new tentative design is then assumed
to be the initial tentative in the iterative procedure and

the whole design process is repeated from step 3.
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8.5

SUMMARY

Reasearchers in the field of vibrations have only
examined the use of single linear springs or
concentrated masses to systematically alter the

dynamical characteristics of a structure. The effects

of distributed parameter changes have not been

examined.

The design of the continuous element can be classified

as a distributed parameter optimal design problem.

The present distributed parameter optimal design
procedures only utilise techniques where a specified
structure is optimised to a given set of cost

functions.

A design methodology is proposed where a poor initial
design estimate is extented so as to satisfy a given

set of cost functions.

The process is based upon a systematic extension of
the initial tentative design estimate by identifying a
single optimum design change which directs the

tentative design towards an acceptable solution.

Design changes can be effected by one of three

conditions;
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a) Additions or modifications to the design

topology.

b) Additions or modifications to the end
restraints

c) Geometric changes to the sectional areas of

the elements within the design.

The proposed design methodology is particularly suited

to an inductive expert system application.

The first design loop within the proposed design
methodology has been examined, with reference to a
small design problem, to show that the proposed design
methodology is feasible and suitable for inclussion
within a design synthesis procedure. After the
initial design estimate has been intuitively derived
it is possible to automate the optimisation of the

design.
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First Tentative design
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Main design changes
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Design change No. 3

7 6
5 4
2 3
1
2.64 —5.429 1.634 1.749
11.156 -3.358 -3.599
1.011 1.086
1.181
Mass difference matrix
37170 —77534 24480 21063
162034 -51203 —43991
16202 13844
12087
Stiffness difference matrix
15.63
60.82
94.68
176.4
Resonance frequencies
Figure 81
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Design change No. 4

6
7 5 4
2 3
1
15.27 -30.644 10.053 8.128
61.48 ~20.17 —16.31
6.618 5.535"
4.57
Mass difference matrix
121300 —245216 82248 56983
496049 —166427 -115307
55869 38652
26887
Stiffness difference matrix
13.9
61.02
76.78
150.8
Resonance frequencies
Figure 82
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Design change No. 5

6 7
S 4
2 3
1

2.69 -5.581 1.956 1.728
12.309 —4.,286 -3.779

1.54 1.339

1.252

Mass difference matrix

22771 —46745 15298 11643
98518 -32078 —25492

10605 8086

7180

Stiffness difference matrix
13.98
51.2
95.88

130.8

Resonance frequencies

Figure 83
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9. CUMULATIVE DAMAGE

3 INTRODUCTION

When the philosophical considerations of the project were
examined (Chapter 2) the overall objectives of the project
and possible design methodologies were identified. The
central objective of the work was to examine the
feasibility of designing an environmentally representative
test rig upon which transported equipment could be tested.
The equipment was to be tested under realistic conditions
in controlled laboratory tests until functional failure of
the equipment had occurred. These tests would provide a
high level of understanding of the equipment as well as

confidence of the functional reliability of the equipment.

When equipment failure is observed it is due to an
accummulation of cyclic stresses, normally of different
levels, that ultimately cause failure of a structure or
component. Now, modern transported equipment comprises
mechanical, electro-mechanical and electronic systems. The
electro-mechanical and electronic system will be encased
within the equipment and are normally treated as lumped
parameters. They are complex systems in their own right
and a failure within these systems constitutes a failure of
the whole of the equipment. If vibration tests are
performed on the equipment the resultant modal data
measured at the case of the equipment will be dominated by
the large, high mass components within the equipment. It
is, therefore, probable that the resonances and effects of

the small intricate sub-systems will not be apparent within
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the modal data recorded at the case of the equipment. This
introduces a new design constraint to the designer of the
test rig as he will require not only the modal
characteristics at the attachment points but also knowledge
of critical frequencies which are related to the small
sub-systems within the equipment. This knowledge of the
critical frequencies will be used within the assessment of
the quality of dynamic similarity. This constraint
reflects upon one of the original design premises, that the
same test rig can be used for a range of transported
equipment. It is, therefore, imperative that the
assessment of the dynamical similarity accounts for not
only the accuracy of the resonance frequencies but also the
anti-resonance frequencies. If acceptable values are
obtained for resonances and anti-resonances the correct
mass and stiffness distribution will have been achieved.
The correct mass and stiffness distribution will ensure
that the correct level of vibration for the frequency range
of interest, will be transferred from the rig to the
equipment and hence excite the small sub-sysems
realistically. Once the test rig exhibits realistic levels
of vibration £he final variable within the test cycle is
the forcing function to the rig. It is impbrtant to ensure
that this is realistic as incorrect excitation of the rig
will produce errors in the performance of the equipment and

completely nullify the efforts of obtaining a dynamically

similar test rig structure.
It is possible to provide techniques for qualitative
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assessment of dynamic similarity by overiaying frequency
response plots and by comparing resonance and

anti-resonance frequency values.

In addition a quantitative assessment of the dynamic
similarity can be achieved by examining the error in the
cumulative damage to the equipment at the attachment

points. -

In the previous chapter it was proposed to use cummulative
damage assessment within the design methodology for two

functions:

(a) to assist with the selection of the optimum design

change to the tentative design.

(b) to provide a quantitative assessment of the quality of
the design similarity so that the design loop may be

terminated.

In the philosophical consideration (Chapter 2) it was
thought that an alternative basis to using modal
characteristics for the design methodology was the use of
cummulative damage theory and therefore this was borne in

mind when cumulative damage was examined.

It is towards these proposals of incorporating cummulative
damage assessment within the design methodology that two

problem cases are examined.
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(i) one degree of freedom system

(1i) multi-degree of Ereedom system

9.2 CUMULATIVE DAMAGE THEORY

The basic principle of fatigue damage prediction centres
around the notion that repeated cycles of stress in a
structure or system will ultimately cause a crack to form
and then propogate producing a failure. The curve which
describes the number of stress cycles required to cause
this failure is the well established S-N curve. The
simplest rule for the accumulation of fatigue damage is
that atributed to Miner. Miner s hypothesis states that

the damage D caused to a system is equal to

o o= — (901)
2 N,
where
N; is the number of cycles at the at the stress level o

required to break the component.
n; is the number of half cycles of amplitude Z;.

If it is assumed that the stress is proportional to the
amplitude then

(k s censbanl) e

The Wohler curve (S-N curve) can be represented as
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NL ;" =¢ (903)
where b and ¢ are constants and a function of the material.

If (902) and (903) are substituted into (901) we obtain an

expression for the cumulative damage as

b
D == & R
9w - (904)

This expression highlights that the damage is a function of
the dynamical properties of the system (Z;) and the

material properties (b).

It is normal to lump the constants together so that

i:i B éfi_"aiﬁib

is calculated.

Under realistic operational conditions the system will be
exposed to a range of exciting frequencies. If the
cumulative damage is plotted against a specified frequency
range of the input forcing function, then a plot called
the “fatigue damage spectrum’ is obtained. This plot can
be used as the basis for quantitatively assessing the

damage difference between two structures.

The two systems that are to be compared for dynamic
similarity share the same transported equipment. The work

on coupling structures has shown that the dynamical
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characteristics of the coupled structure is different to
the individual component systems and, therefore, if
quantitative assessment between the test rig and the
original structure is to be made the transported equipment
must be coupled to each structure prior to comparison.
This imposes a restriction on one of the original design
premises of using the ‘clean’ test rig for a range of

transported equipment.

Since the same equipment is used between the two structures
the material properties (b) will be constant. This leaves
only the dynamical properties of each system to be compared

by the use of fatigue damage spectrum plots.

A convenient dynamical property to compare dynamical
difference is receptance since it is easy to derive
analytically or experimentally. If the receptance f“ﬁr) at
each of the attachment points is used, for each coupled
system, then the difference between the corresponding
receptance curves will provide a measure of the error in
the cumulative damage to the equipment. It is assumed that
the same input function is applied to each system so that
consistant receptance plots are compared. If this error is
then multiplied by the number of cycles at each frequency
interval a quantitative assessment in the form of a fatigue

damage spectrum plot is obtained.

By using receptance curves for the attachment points it is

possible to examine the error in:
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(a) point cumulative damage

(b) transfer cumulative damage

Since we are considering multi-point attachment equipment
the overall motion of the equipment in heave, pitch and
roll is important, not the individual motions at each
attachment point. This motion is best examined by
considering the receptance matrix for the complete
structure at the attachment points and hence deriving the

fatigue damage spectrum matrix for the same points.

9.3 ONE DEGREE OF FREEDOM SYSTEM

If a one degree of freedom system is considered then there

are three possible error conditions.

a) An error in the natural frequency.
b) An error in the damping.

c) An error in the general level of vibration.
a) Natural frequency
A simple one degree of freedom system (Figure 84) was
modelled and the conditions of 5, 10, 20, 50 and 100% error

in the natural frequency was computed. The nominal correct

frequency is 100 Hz.
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One degree of freedom system

1)(
S e

XA AT A 4){

M

Figure 84

If it is assumed that the the input ( ) is sinusoidal and
constant for all the runs then Figure 85 can be obtained
which is a plot of the error in displacement ( ) against
frequency. A material constant of b=5 has been assumed.
The error has been normalised with respect to the 100 %
error condition.

The plot has two interesting features ;

i) The negative displacement error is a measure of the
damage not being achieved. For each of the error
conditions the maximum displacement error is

stationary at the frequency of the original system.
ii) The positive displacement error is a measure of the
incorrect damage being applied to the system. The

peak of each displacement error is a function of the

error of the system and is therefore not stationary.

It is possible to plot an envelope of the maximum
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displacement errors (Figure 86) which shows that within an
error range of ¥ 30% there is a change of 80% in the
displacement. The change in the resonant frequency could
cause undesirable vibrations of the individual components
within the equipment. The rapid increase in damage (damage
normalised displacement) for a small error in resonant

frequency emphasises the need for accurate frequencies

within the design structure.

b) Damping

The same model (Figure 84) was used, and for this case the
damping was changed by the same percentage levels of error
(Figure 87). When the envelope of these diéplacement
errors are plotted (Figure 88) it shows that small errors

in damping are not critical.

c) General level

Consider the receptance of a single mass with an applied

load,

Equation of motion F=m=x

=
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or F=z-wmsx

the receptance is 0(,“ = x = _ !
3 -Ww'm
or \oa(ldm‘) = = \ocj (m) - L Icc.,((.q.))

which is a straight line with a slope of -2 on a plot of

lOﬁ(IO‘(m‘) Vs Ioa (w)

This line will move in the
vert. plane depending upon the

absolute value of m.

Consider the receptance of a simple spring,

the equation of motion is F = kx

K, =

the receptance
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or 'ocJ(IO(kI)= - |03(k)

If these characteristics are combined to represent the system
in Figure 84, then they can be presented on a logarithmic

receptance plot (Figure 89).
One degree of freedom system response

Lines of constant

S

EURS

Lines of constant

Figure 89

The amplitude of the peak is a function of the damping of the

system.

Now, if the value of the stiffness is changed and the
corresponding change is made to the mass the resonant
frequency of the system will not alter. However, the curve
will be displaced in the vertical plane to reflect the

changes in the individual elements.
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The work in sections (a) and (b) on errors in resonant
frequency and damping has shown that the effective
contribution to damage is only achieved around the resonant

frequency.

Now the generalised expression for receptance is

g ,CP; F(P_i
% " 2 wr (O=(G)  i2g G)

where t 1is response co-ordinate

j is the forcing co-ordinate

If it is assumed that the contribution is constant from other
modes at the one selected and that the resonant frequency and
damping level are the same between the structures under

comparison then

"

O(ij proportional ,.CP;, rgpi
Now if the mode shape vectors are mass normalised then

(.. proportional e

r J’J m‘-

where m. is the modal mass for the r™ mode.

Therefore, errors in the general level of frequency response

curves have the same form as Figure 88.
Under normal design conditions it is likely that errors will
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occur in all three areas. If each error is multiplied by the
number of cycles at each frequency interval then the
individual damage curves can be added to give the total error

to the cumulative damage spectrum.

9.4 MULTI DEGREE OF FREEDOM SYSTEM

The objective of designing a test rig whigh has defined
dynamical characteristics (which are the same as a carrier
body) is that when equipment is attached to the rig the
dynamical characteristics of the test rig will change in the
same fashion as the original carrier body. It is then
possible to apply loads to the test rig rather than directly

to the equipment.

If a damage assessment is to be made between the test rig and
the original structure it must be made with both structures
carrying the same equipment. In this way the dynamical
changes that occur when two structures are coupled will be

included.

Since it is proposed to excite the rig, the equipment will
experience heave, roll and pitch in the same order and level
as when attached to the original structure, providing dynamic
similarity has been achieved. This means that the receptance
matrix at the attachment points of the original carrier body
and the test rig are the same. It is this feature which will

allow a shift away from the present 3-axis testing methods.
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To examine point and transfer cumulative damage error two

types of multi-degree of freedom systems were examined.

i)

i1i)

Multi-degree of freedom discrete systems.

Continuous and discrete systems.

In both cases the following algorithm was used to identify

the cumulative damage error.

a)

b)

c)

d)

e)

f)

g)

Specify

Specify

body.

Specify

system.

Connect

Connect

Using t

take (e

Plot th
the dyn

damage

The multi-degree

to examine point

effects on small

equipment.

The e

the characteristics of the equipment.

the characteristics of the original carrier

the characteristics of the tentative design

(a) and (b) at a defined coordinate.
(a) and (c) at a defined coordinate.

he receptance curves of the coupled systems

) away from (d).

e resultant error curve ( for b=5) for
amical difference within the cumulative

equation (904).

of fredom discrete system was primarily used
coordinate cumulative damage error and the
sub-systems within the transported

quipment was represented as a four degree of
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freedom discrete system (Figure 90)

e™ 4 Transported Equipment
ek4
m. =
- . ™, 3.0
m, = 1.0
<2 s . = 0.1
em, = 0.
ek , = 440
LI £z = 150
K 5 = 10
k = 1
Ek1 < 4 6
Figure 90

The mass,m,_ and the stiffnessak* were selected so that
their individual resonance frequency was the same as one of
the frequencies generated when the equipment was connected
to the carrier body. The characteristics of the tentative
design were selected so that an error would occur at this
frequency. This was performed so that it was possible to
assess the damage error to a small sub-system (M_) within

the transported equipment.

The original carrier body and the tentative design were

represented by a simple discrete system (Figure 91).
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cm Carrier body
K Orig Structure Tent Design
c 1
m 9.0 8.0
: m 2 c 1
cMa 6.0 5.4
LKy Sé cM3 15.0 15.0
L 380 150
m 3
< k 1750 1000
c 2
Kk % ks 1200 1000
P Figure 91

The equipment was coupled to the carrier body by connecting
mass M, (Egipment) to mass .M, (Carrier body), Figure 92.
The effects of coupling the systems are shown in Figures 93
- and 94. The resonance frequency of the small sub-system
&Nh'andzk‘) within the equipment was set to 13 rad/s which

corresponds to the fourth resonance of the coupled system.

@

z
: 2
O,

Figure 92

PR PPRPPTLRTELATLE
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The error in the cumulative damage was initially examined
for position 1, Figure 92. The algorithm for obtaining the
displacement error was applied to the two coupled
structures and a cumulative damage error plot was obtained,
Figure 95. The error was conditioned by the material
constant, assumed to be 5. The equation (904), states that
the cumulative damage is proportional to the amplitude of
vibration raised to the power of (b). This results in the
narrow, “spikey  damage error. Values that are negative in
Figure 95, represent damage that is not being applied to
the equipment and the positive values represent
unrepresentative damage. It is interesting to note that
for the particular configuration selected, the maximum
damage error occurs at 8 rad/s when the two coupled
structures are out of phase. The damage error has been
plotted against a normalised linear scale to emphasise the
two conditions of, (a), additional and, (b), missing
cumulative damage. The modulus of the displacement error
is shown in Figure 96, where a logarithmic scale is used
for the displacement error. Although the two carrier
bodies have quite different dynamical characteristics the
cumulative damage error at the point of connection is

small.

However, if the cumulative damage error is examined for the
position 2, Figure 92, which represents the small
sub-system within the equipment, the error is large. The
modulus of the displacement error (Figure 97) is shown on

the same axis scale as the error for position 1. The
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general level of error for the small sub-system is at least
an order of four greater than the error for position 1. A
linear normalised displacement error plot, Figure 98, shows
that the significant errors occur at the resonance
frequency of the sub-system and at approximately 3 rad/s.

A comparison of the eigenvalue analysis of the coupled
systems showed that at 2.9 rad/s the two systems are out of

phase at position 2.

When the tentative design is coupled to the equipment it
does not have the same set of resonance frequencies as the
original body. Therefore, the transmissability between
positions 1 and 2 are different for each coupled structure.
This is highlighted in Figure 981 where the negative peak
at 13 rad/s emphasises that the correct level of vibration
is not being transferred to the small sub-system at
position 2. This observation emphasises the importance of
obtaining the correct mass and stiffness distribution for
the tentative design to ensure an acceptable level of
dynamic similarity. It also emphasises that information
relating to any critical sub-system within the equipment
must be available to the designer of the test rig so that
the quality of the similariéy at eritical frequencies can

be quantified.

Transfer cumulative damage error was examined by using the
continuous structures used in Chapter 6, Figures 22a and
22b. When these structures were originally examined it was

possible to achieve a visually acceptable level of point
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coordinate similarity at the tips of each beam. This was
achieved by making a qualitative assessment of the two
point coordinate receptance curves. A quantitative
assessment of the quality of similarity was obtained by
using the error in the cumulative damage between the two
structures, Figure 99. The greatest error occurred at the
first resonance where there was a 2.4% error in the
resonance frequency value between the original structure
and the substitute structure. This emphasised the
importance of correct resonance frequencies as even a small
error resulted in a large error in the cumulative damage

spectrum.

If the plot of the displacement error for the transfer
receptance between the tip and the 300 mm coordinate
(Figure 100) is compared with the error in the point
_.coordinate at the tip then only one extra significant
change is observable. An extra error occurs at the first
of the intermediate frequencies (1407 rad/s). The
amplitude of this error is an order of four lower than the
error at the first resonance. If this plot was used in
isolation to assess the quality of dynamic similarity it
would be easy to mistakenly interept that the transfer
dynamic similarity was acceptable. The previous section,
examining the effects of dynamical errors on small
sub-systems within the equipment, has shown that if one of
the intermediate frequencies corresponds with the
individual frequency of the sub-system then the cumulative

damage is not representative.
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When examining the quality of dynamic similarity using the

cumualtive damage approach the importance of the

anti-resonances within the carrier body and equipment are

not apparent. It is, therefore, very difficult to

visualise a feasible design methodology using only

cumulative damage criteria as a design basis.

9.5

SUMMARY

It is possible to obtain a quantitative assessment
of the quality of dynamic similarity by using
cumulative damage theory.
A small error in the resonant frequency has a
significant effect on the displacement. Since
damage is proportional to the displacement raised to
a power greater than one it is important to obtain
accurate resonant frequency values within the
tentative design.
A small error in the damping is not critical.
A small error in the general level of the frequency
response curve is not critical.
An error in the resonant frequency has two major
effects;

a) Damage that is not achieved

b) Damage that is incurred at a different

frequency.

To obtain a gquantitative assessment of the quality

of similarity it is necessary to consider the whole
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coupled structure (equipment and carrier body).
When the equipment is coupled to the carrier body
new resonance frequencies are generated. There is
also a shift in the values of the resonaces of the
individual systems. These new resonaces mean that
the designer of the test rig must be aware of any
critical sub-systems within the equipment.
Cumulative damage theory cannot be used in isolation
as a design basis for representative test rigs,
since the importance of anti-resonance values are
not apparent.

It is desirable to use a combination of modal
characteristics and cumulative damage to derive a
feasible design methodology that assesses the

quality of dynamic similarity.
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Frequency error
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Damping error
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10

CONCLUSION

It is impossible to identify the parameters of a
test rig directly from the mass and stiffness
matrices derived from the system identification

process.

The matrices derived by the system identification
process are fully populated whén the data are
recorded from continuous systems. When the data are
recorded for translational motion the truncation
effects cause negative values for the off-diagonal

terms.

It has been demonstrated that it is possible to
identify a discrete system which is dynamically
similar to a point coordinate on a continuous
structure, for a translational plane of motion. If
equipment is attached to both the continuous
structure and the discrete system then a progressive
error in dynamic similarity is obtained. This is
due to the absense of rotary inertia within the

discrete system and the error is particularly

. evident at the higher modes of vibration. The

design methodology is suitable for one plane of

motion problems.
The design methodology for discrete systems was

incorporated within a general design methodology,

where a combination of a continuous element and a
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discrete system was used to obtain dynamic
similarity with another continuous structure. The
design methodology was capable of obtaining an
acceptable level of dynamic similarity at a point
coordinate for both translational and rotational

motion.

A single discrete system was capable of achieving
the correct frequency response level for the whole
of the substitute structure. However, at
coordinates away from the point of interest (the
coordinate where the discrete system was connected)
intermediate frequencies were apparent. These
frequencies were generated by the interaction of the
stationary characteristics of the discrete system
and the varying anti-resonance frequencies of the
continuous element. It was impossible to achieve an
acceptable level of dynamic similarity when two

coordinates were considered.

The same characteristics were obtained when dynamic
similarity was sought between two dimensional
structures. Point coordinate similarity was
obtained at the coordinate where the discrete system
was positioned, but at other coordinates

intermediate frequencies were present.

When distributed discrete systems were examined 1t

was found to be impossible to obtain even point
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10.

11,

18

13.

coordinate similarity.

The design methodology is orly feasible when the
continuous element is sufficiently dynamically
similar to the original body that a single discrete

system is used to provide a small “tuning” effect.

The design of the continuous element cannot be

achieved by intuitive reasoning.

A design methodology using distributed parameter
optimal design techiques has been developed for the

systematic synthesis of the continuous element.

The distributed parameter design methodology
proposes a new technique where a poor initial design
estimate is sysmatically refined to move the design
in a feasible direction towards an acceptable

solution.

Cumulative damage assessment provides a basis for
quantitatively assessing the quality of dynamic

similarity.

It is impossible to use cumulative damage techniques
in isolation as a design basis for dynamically
representative test rigs since the importance of

anti-resonances are not evident within cumulative

damage theory.
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l4. A combination of cumulative damage theory and modal
analysis techniques provide the basis of a feasible

design methodology for dynamically representative

test rigs.
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RECOMMENDATIONS

The use of inductive expert systems should be
examined as a means of integrating the distributed
parameter optimal design methodology into one

computer based solution.

The finite dimensional optimal design methodology
for identifing the parameters of a discrete system

should be applied to torsional vibration problems.

Analogue modelling techniques to produce
representative locading conditions upon the equipment

should be examined.

Test rigs comprising a continuous element and an
active control system which is capable of producing
the characteristics of the residual matrices should

be examined.
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APPENDIX 1
DYNAMICALLY EQUIVALENT BEAMS

The generalised expresion for the resonance frequencies of

a simple beam element is

“ E1
w = (/Sr) ;32—.. (A101)
where {ﬁS:) is a function of the end constraints.

If it is assumed that the beams can be of different
material then it is possible to allow for the small

. E
fluctations that occur between materials in the ratio —

/O

Eu Eb
/ E. = Z, 20 (A102)

where &, is a constant of adjustment.

The equation (Al0l) reduces to

¥ 9 I,
= %, < (A103)
A le J AL L

where the suffix a is for the first beam

and the suffix b is for the second beam

If a rectangular bar section is assumed then

d.’ A
s = 2 — = (A104)
YN 1 L

If the frequency response curves of the two beams are to be

the same then the mass of each beam must be the same.
e Al - o AL, (A105)

from equation Al04

P -
/* N (A106)
(%)

Now, if it assumed that the ratio of the material densities
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is‘Et and that the breadth of the beams are kept constant

(Case 1), then

from equation (Al105)

/oadnbadn. - /Ob db bbéb
or
d, = d.2.
LA (A107)

substituting equation (Al107) into (Al06) yields

de _E, do €.
-~ z, £

or

o

(A108)
substituting equation (Al108) into (Al07) yields
dy, = _da
3 i:'i, (A109)

After equation (Al06) the assumption was made to keep the
breadth constant. This was quite arbitrary, an alternative
is to keep the length of the beams the same (Case 2)

Since Zﬂ,= Zb then it follows from equation (Al06) that

d, = d. (A110)

=

¥

and using equations (Al05) and (Al1l0)

b, = Z, b, (A111)
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APPENDIX 2

MATHEMATICAL DEFINITIONS WITHIN DESIGN OPTIMISATION
PROCEDURES

Design variables are grouped into a vector such that

=,

= = = {‘x.”,,,,,xn}T (AZOI}

x\"l
A vector of the form of equation (A201) may be interpreted

3 . . . n
as a point in an n-dimensional real space , R

The space R" is simply the collection of all n-vectors of

real numbers

A collection of points D in R" will be called a set, or

a subset of R" .
A point =2¢ in R" that is in O wil be denoted %<& D

In Kn there is a well defined idea of length of a vector,

denoted

n
= = [ & (:ac.-‘)"]lh (A202)

i.-l,

and called a norm on R" .

n -
The scalar product of two vectors z.and!j of B is

(e,y)Ex’y = £ >y (A203)

Te
They are orthogonal if their scalar product is zero.

. _ 4 _
The convergence of a sequence {x'} of vectors in R with
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o= | Y ——— e o d

the norm of equation (A202) is much like convergence of
real numbers. That is

¢

lim, _ o < =x 1if for any &> 4

there is an N)g such that ||x‘-=ll<€ for all (SN

An important property of sets in optimisation theory is

closeness.

A subset D of Rn is called closed if every sequence in
D that converges has a limit in O. A set is called open
if its complement (all points in R" except those in the

set) is closed.

A vector function can be defined in the same manner

g(:c-)= Eglf:r_)) AR I sm(x)]T

where gq(x) is within = & R"

Such a function is called continuous at 2« if for any E>P
there is a %@ such that

Ng(=) - qG)ll <& if loe-2N,<8
The subscripts m and n on the norms denote the dimensions

of the space on which the norm is defined.

It is often desirable to deal with a set of functions which

satisfy inequalities such that

3;(1).$¢’ E a5 5 5 & v m (A204)

or just as 3(1)4 0

A useful concept used within optimisation theory is the
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idea of the derivative of a vector function with respect to

its vector variable

This notation is

}3(1) = 33&:0
bx ‘ij

m,n

where ¢ is a row index and‘j is a column index.

. . n . . .
F(-.:.) is a real valued function of xéﬂ this notation 1is

(::r.) [ E(x) —BE(?—) (A205)

’bx bzﬂ
The derivative of a real valued function is often called
the gradient of that function and is denoted by

Vi) = 2 (°" (A206)
An important theorem in the analysis of functions appearing

in optimal design problems is Taylor’s theorem

Let the real valued function ?(x) have two continuous
. . . n n : i
derivatives in R . Then for x€R there is a point

§ =Xx+ (l-o():l with 0< <<l such that

PFly) = B) « 5_‘%1’ g ) 5

(A207)

In many instances within optimal design problems Taylor ’s
theorem is used to obtain an approximate expression for a
function. The most common approximation is the one

obtained by deleting secord order terms.

For example, if ":L-Bu is small

~314-
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FQy) - F ) = %F_M (y-=) (A208)

where by equation (A207) the error in equation (A208) is at
most a constant times "ﬂ-:ﬂl if f(x) has bounded secord

order derivatives.

The left side of equation (A208) is generally denoted by

8}(x) and (j-:x.) is denoted by x.

In this notation equation (A208) becomes

%‘:(z) = %E S (A209)

Equation (A209) may be thought of as a total differential.
Even for vector functions gﬁx), equation (A209) holds for

each component.

defining 83(1.) = [ Sca‘(ﬁc), e Sﬂﬂ(x)].r
yeilds
3g(x=) = 996 5. (A210)
D

In optimal design problems s(aﬂ is often a function of

> ER" and aéﬁ' . In this case equation (A210) is

Salca) = 24(=0) S , Vqle,) (A211)
g) = 9= _%;_Sa- A2l

where r~ =
3&(‘.&'1) = Ba‘ (x'; ?:)
DX i dx; | o
and b (‘x?. = Bal (::,1-)
311.-. ’BQJ J
= mp
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APPENDIX 3

DESIGN SENSITIVITY ANALYSIS

The finite dimensional optimal design technique can be

applied to the solution of the eigenvalue problem.

Given that

b} € R"
{z} € R"
(¢ € R"
(\ € R

the task is to minimise

Y 2\ b (A301)
subject to the state equations
h(z, b) = & (A302)
(KN @ = ALM(B) QP (A303)
and constraints 3
Y (z,)b)< & G
where h(i, b) _ h.(z,b)
ha(z, b)
k() = Ok, {8])
(M) = Cmyjib3l,0

Y(z,)b) ¥ (2, b)
Y (2, ), b)
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The symmetric matrices [M(b)] and [K(b)] represent mass and
stiffness values within the system. The scalar X\ is the

eigenvalues.

The effect of small changes to the design vector {b} are
required so that sensitivity coefficients can be obtained
to minimise the expression in Equation (A301). The results
of a sensitivity analysis provide design derivatives that
are required for virtually all iterative methods of design
optimisation. In this development the effect of design
changes are obtained by first approximating the non-linear
functions in the problem by linear expressions in the

variables involved.
B . -]
An initial estimate of the design vector 1is made,{b 3

The state equations (A302) and (A303) are solved for the

L] a
corresponding state z',& and .

Consider a small change to the design vector such that

b'= b°+Sb (A305)
If the new design variable b’ were substituted into (A302)
and (A303) new state variables 2',&' and )\’ would be

obtained.
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Now the Implicit Function Theorem [30] states

ie 4t b=h thers 1S & solution = ( ie. h(3,b) =¢@) and if
the N *n matrix oh/da (i,L)is nonsingular, then there 1is
a continuously differentiable solution 2= 9(5) in a
neighbourhood of \:—3 That is, there is S?ﬂs such that

h(a(b),b) =@, for all b such that | b—l;ll<5.

Since the Jacobean matrix 3‘:-.)#./31(;: b’) is nonsingular,
the Implicit Function Theorem guarantees that if Idbll is

small, then ='-2° will be small.

This change in 2 is donated Sz so that

2'= =" + 92
Similarly the change Sb in b will cause small changes Sﬁ
and S\ in the solution of the eigenvalue problem of

equation (A303).

If the changes in the nonlinear functions are approximated
by considering small changes €b  in the design then

equation (A304) becomes

o \o o ¥
§4.02% M 6T = 2202 N p18e « 2efan 0050

(A306)
+2% (a0 ) b7l s
for the initail state and
¥, Y,
gl‘P ?° .b. =:a-.—‘ . N0y @ . J o\° | o
AN = (2 X\ b7)Sz T [2°)° 5"]s) e

3% C=0 ), vk

for a new pointj

Since h(i"', b') =@ and z_°+Sz is used to satisfy the

equation
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h (1-04- Sz{B:SB) = @

the linearised version of this condition is

JSa2 2—: b = 7] (A308)

Equation (A308) may be viewed as determining 8z as the
function of §b and can be solved for %z since the matrix

J is nonsingular. Similarly, first order changes in @ and

A may be analysed.

Premultiplying equation (A303) by [(p]Tyields,
(@ 7 (e (4] =IXN11g T Imb)] (4] (a309)

Approximating both sides to first order in the variables‘p,)
and b,

SO LK (b)) 43+%(<PT[K(L)]<P)SB =ASPTILML)IP+ x%,(cp*tucbﬂc?m
+ QT (b)] 59 +PTM(L)SP+ SN (a310)

Since L[K(b)) and [M(b)) are symmetric matrices, the first
and third terms on both sides of this equation may be

transposed to obtain the identity.

L5¢7(LE(W14- MM (4] e [ 4TLEM] D) -
Me(PTIMBLIMN)SE = $) (a311)

Using equation (A303) the expression reduces to

SN = (SE(PTLEMIP) - A IMBN4N)Th
éfSI:, (A312)

This is an explicit relationship that determines the change
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in the eigenvalue §X\ in terms of the change §b in the

design variables [30].

If numerical methods are to be used so that the design

optimisation methodology is automatic, it is necessary to
express the change in the design variables (8b) in terms
of the cost equation (A304) and the state equations (A302)
and (A303). One method of achieving this is to remove the

dependence on £z within the equations (A306) and (A307).

S ! . 2%\ ¢
The objective therefore is to find (“bﬁ. z

and (%-qi) S; . in terms of S‘:
2

Define the column vectors S" i ﬁSLgm as solutions of the

adjoint equations.

=
o Y :
J .t - T ) gLem (A313)
5 S =
where 3 = %—E(z‘; L') and the right side of equation (A313)

is evaluated at = \°, b’

take the transpose of (A313) and multiply by o=

SLTTE.& = %—I Sa (A314)
using equation (A308)
_sTdh sy = 2% Sa (A315)
3 Vb PES

Note that the right side of equation (A315) is the term

that has to be eliminated from equations (A306) and (A307).

Substituting from equation (A312) and (A315) into equation

(A306) and (A307) yields
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Y

1
™S
o
(Vg
o

1]
™\
cA
U

SY

(A316)

o ¢
where the vector {7 } and the column {Z'} of the matrix

[£ ] are evaluated at 25 Xi b° from

%
e
._l
/
>
-4
<

A
2 é‘ (A317)

(S
1l
1
n
|

A

The components of {da} are called sensitivity coefficients
of Lﬂ with respect to the corresponding design variables.
These vectors yield the explicit derivatives of the cost
and constraint functions with respect to the design
variables. During the optimisation process it is usual to
select the derivatives with the greatest magnitude since
they have the most significant effect on the design. This
approach is called the steepest descent where the vectors
which direct the design to an optimum at the fastest rate

are selected.
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APPENDIX 4

MATRIX INVERSION

Consider the process of calculating the inverse of a matrix

L&).

If [E{] is a square matrix then its adjoint [adj E;_] is
defined as the transpose of the matrix of its cofactors

[47].

If the product L[81[adjB] 1is considered this reduces to
1&1(1)

where I8l is the determinant of

(Il is the unit matrix.

It follows that the matrix [B)] can be defined by

LE;_\" _ [a.clJ &)

- (A401)
| 8l

The elements of the [a{lﬁl matrix are found by
i+k
&, = (- = (A402)
where L 1is the row

k is the column

/5'1; is the minor of element E;H__
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If a column or row is multiplied by -l then the columns or
rows of the Cadj 8) matrix will change sign, except the
original column or row. The determinate will also change
sign, although the modulus remains constant. It therefore
follows that when the inverse matrix is found (A401) the
change in signs are cancelled except for the original row
or column (which has been transposed). During this process

the modulus of the matrix elements do not change.

Once a matric has been inverted it is possible to examine
the changes in sign to any row or column of the original
matrix by changing the sign of the corresponding transposed

row or column of the inverted matrix.
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APPENDIX 5
IMPEDANCE COUPLING

Consider the connection or coupling of two systems (A and
B) to obtain a system C having prescribed characteristics.

At the point of connection the displacements will be the

same.

ie. (%} = (%} = {x,) (A501)

considering equilibrium at point of conection

Fad + (F,} = (R} (A502)

where F_ is the externally applied force.
The receptance for a system can be expressed as
[X] {F} = {ac} (A503)

Combining equations (A501) and (A502) leads to an
expression for the receptance of the combined structure at
the point of connection
-1 | 0
[X] = ([X] + [Xg]) (A504)
Expression (A504) shows that when structures are coupled

the inverse receptance (dynamic stiffness) is required.
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If truncated receptance plots are considered and damping is
ignored, then the receptance can be expressed as ;
[a)
= o EE f!
°<.i|= = kE = JE 4 "(ph (A505)

F'j ) (m: - wt)

where r is the mode number
J 1s the coordinate at which force is applied.

k is the coordinate at which response is measured.
A point coordinate dynamic stiffness plot has the typical

form shown in Figure 101

Anti—resonances

SN

PR ——— e

£
e

£

[

Figure 101

It is indeterminate at positions A,,Ay .....An which are

known as the anti-resonance values.

At resonant frequencies the value of t%;gk is zero.
If two structures are coupled (ie dynamic stiffness values
added) then it is obvious that the points Au.'Atnf sreiae s ¥ 5 AR

and A,‘, A‘s"""A‘s of each structure will be dominate

within the coupled structure HXC].
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APPENDIX 6

CALCULUS OF VARIATIONS

When considering the design of simple continuous structures
it is often the case that the structure has to be an
optimum shape of thickness to fulfil specific design
functions. These design functions are often functions of

another function and are called functionals.
The design problem can, therefore, be stated as:

Find the function =z (x), x’C{ =<2’ in a class of
functions with square integrable derivatives and
satisfying end conditions that minimise the

functional Y,(2).

In connection with function spaces, it is often necessary
to reqgire that a function be small of near zero function so

that optimisation theory can be applied [48].

If the norm of a functional is defined as I|l2)] then the

most commonly used norm is
1
72

Izl = f 2% (x)d= (A601)

x.

for square integrable functions

Relative minima of functionals can now be used. The
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functional 'f",,(;) has a relative minimum at 2 if there is a

§>¢ such that
Y(2)< ¥ (2) (A602)

for all admissible & with

l2-2ll<s

Let the variable 2(x) be a vector valued function of the real

variable >, that is
N
(2. (=)

L 2, () |

where E.L(x) are real valued functions of =<.

The fundamental problem of the calculus of variations can
be defined as;
Find a function (=) that has two continuous

derivatives in =>x°¢x<x and satisfies the boundary

conditions
E;.(‘x') = g.;‘ for some indices {1géign
Z; (') =Z; for some indices 1$J‘<n (A603)

and that minimises

]
L

Y (2)- Fx,2,2)dx (A604)

R
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where F is a twice continuous differentiable real valued

function of all its arguments and

,_fda 0 da)T

= = )
da dae

The method of obtaining necessary conditions on the
solution E(xﬁ of the fundamental problem is to allow small
changes in Z(x) and examine the behaviour of Qﬁ(i) . An
admissible, small perturbation is shown gra?hically in

Figure 102. The equation for this curve is i(x)-bg_?'(x) '

where £ 1s a small real number.
Qfx) is a twice continuously differential function
that satisfies the conditions

n:(x")=g for each ¢ with z;(x") =z,

QJ(:{_')=¢ for eachJ' with 2-'(1'):2; (A605)

Perturbation from optimum

Figure 102
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To examine the effect of this perturbation of “iJ (2)

substitute 34-&(1 into equation (A604)

LP,(%*-EJL) = f‘ F(':C.,%-rgrbgli-e_rl')dx

Now Z(x) is a local minimum of Y¥,(2) subject to equation

(A605). This is any small change in z(x=) increases LP,(E-).

For a given function Q(x) which satisfies equation (A605),
‘%(x)+&2é£) satisfies equation (A603) for all & .
Therefore, Q(x), "}1(24.211) is a real valued function of the
real variable . Most importantly, for E-=*¢,q£(a*ﬁq) has
a relative minimum. It is assumed that F(sc,2,2') is twice
continuously differentiable in 2 and = so 9L(i+e1) is a

twice continuously differentiable function of & .

It is required that

oY,

IH

9
S LP(?_%-E_!Z)IE‘ & (A606)

The objective now is to transform the condition of equation
(A606) into conditions of Z(x). Performing the

differentiation indicated in equation (A606)

Lf)(z EQ)lag f(%-rl zp ')d£=¢ (A607)

where the arguments in the partial derivatives of F in

=329=




equation (A607) are Z()and 2'(J.

Integrating the second term in the integrand of equation

(A607) by parts

[ E— - i(g_;)} e ff—["'ﬁ‘fl i'fx'ﬂ 76)

SE T em v o %, :
"-“Q["‘-'*(x)ﬂ(x‘)]fz(x) =¢# (A608)
Since one may take szf) = Qjad) ==¢ » [30], equation

(A608) reduces to

“12F d /%F
L M da (_a:'ﬂ?.a)z=¢ (A609)

In any subinterval of x°¢=<gx' where Q(uﬂ is continuously

differentiable, the quantity

2F 4 (3_*:
2)% c|=c. bi‘

is continuous, therefore;

oF 4(é£)=¢

z d= bz' (A610)
However, if i(x) has a discontinuity at some point % then
equation (A609) need not be continuous at % . Since
equation (A610) must hold in the subintervals on both sides
of % then this equation may be integrated from -:'E-S‘,(S>,e$)

to =¢ to obtain
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>C

Elff = Eit J:g oy
Oz’ da (A611)
x-§

The vector ©oF/3z is piecewise continuous so that the right
side of equation (A6ll) is continuous. Therefore, oF/3da’' is

; ~
continuous even at = .

Finally, these results may be stated as

%’_:[x*a(")f%'(“)] - i{g—::[x,i(x),‘é’(x)] }: g (A612)

at points of continuity of %(x}

This equation is normally referred to as the

Euler-Langrange equation.

.DF- P N 2D ' ) oF 0N, ey D .
— [x,26), 2] &) - 52 e ie)] g )= 8 (a613)

for all .7_(-;’) and rl(x') satisfying equation (A605)

This equation is normally referred to as transversality

condition.

2 8i@- 0 E)] < e si@wiE ] nas
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at each point & of discontinuity of 2 (x).

This equation is normally referred to as the

Weirstrass—-Erdmann corner condition.
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APPENDIX 7

PROBLEM OF BOLZA

The problem of Bolza is a problem of finding b(x) and =(x),

> °< 3 gx) that minimises

-
1]

I‘PO = 3,(2‘0-;- fxo F. [x)a(x)fb(x)]c’x

(A701)
where Z; denotes 2 ), Jj=#8 or1l subject to the
differential equation
¢J% ( h - '
=8 =JC x, 2 b) << g (3702)
de /
boundary conditions and functional constraints
j = |
LPo( = 9« (2)"'[ E; ["; =2 (), {bﬁz)]a’x:d (A703)
xﬂ
KL = L....r
here J:rg_f or 1 and pointwise constraints
Dylxzb) =g RB=1,..... g, =€=<=’ (A704)
where
Z, () (i () /]t b )
2 (%) = : b(-.r.)=< : {:(x,a;l:) = i : $
2, (%) bs (=) ('Fh(x, %,b)
. J
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For the problem considered here it is required that the
conditions of Equation (A704) shall not determine any
component of =(>) explicity. This is equivalent to
requiring that the rank of the matrix

24 (x<,z, b)
o

K 4t

shall be 9 for all admissible values of the arguments.

The vector variables z(x) and béx) are called to state
variables and design variable respectively. Equations
(A703) are presumed to contain boundary conditions on the

state variable at the end points of the interval, x<°and Co

The independant variable x may be a space-type variable or
time, depending on the problem being considered. The
functions g,, R, f, 94, Fx and cpﬁ are assumed to be

continuously differentiable.

A full treatment of the problem can be seen in Refs 30, 38

& 45.
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APPENDIX 8

DISTRIBUTED PARAMETER OPTIMAL DESIGN
Consider a mechanical structure capable of being described

by a linear set of differential equations; statically

[K(h)]{z} = [Q} 2ED (A801)

where the operator K depends upon the design variable (E),
the vector function & is the applied load. The set D is
linear subspace of functions satisfying differentiablity

properties and homogeneous boundary conditions.

dynamically

[KBI[2] =IANIIM)][B] BED (aso02)

which is the general eigenvalue problem.

The performance requirements or constraints can be

expressed in the form of "pointwise constraints"

%&(E)égﬁ /3,:1’....%’ =& (L (A803)

and "functional constraints”.

’

=¢/ o(:f,...r-

%(b,a))—: 3“()\)1-1‘(15(::_,;)1:)4::. (A804)

\gﬁiﬁ(=r'¢1)_.,r—
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The conditions of equation (A803) express explicit bounds

on the design variables, which must be satisfied at all

points over the domain of the distribution of the

independent variable. The functional constraints of

equation (A804) are used to replace any pointwise

constraints over the domain {L that are of the form
Q_(‘b,l) S & > & (L

by the equivalent functional constraint
= [_‘_["‘] de = & (A805)

The final element of the optimal design problem is the cost

functional that is to be minimised
LP,(b,z,)s)= go (X) + fr-; (=,2,b) dx (A806)
£

The cost functional can represent weight, displacement,
natural frequency and other pertinent costs associated with

the design problem.

The gradient projection method that follows is based upon
the same ideas as used in the finite dimensional gradient
projection method described in Appendix 3. It requires
that first order approximates are made to various functions
involved in the optimisation problem and an optimum design

improvement computed.

The method is initiated by making an estimate E%x)for the
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optimum design variable and the state equations (A801) and
(A802) are solved for z°(=e), 3°(=)and A\° . The inequality
constraints of equations (A803) and (A804) are used to
isolate the constraints that are violated, (that is,@LﬂQ}&
aquz-s). These are then accounted for in the subsequent
design improvement analysis. This technique will converge
(if it is at all possible) onto an optimum solution with

the minimum of computational effort.

Apply Taylor’s formula to the functions and constraints of

equations (A803) and (A804)

) ~
SCP"'_' \’{Aq), = & (L (A807)

and

~ (A808)
sPo | [ 25 Shde o [2Esidss
where the vectors @band Y denote reduced constraint
vectors that contain only those constraints that are

violated or critical. The terms ﬂ@ and &LP are constraint

error corrections.

The gradient projection technique is based upon the idea of
seeking a design improvement 8b to achieve the constraint
error corrections of equations (A807) and (A808) to satisfy
a linearised form of equations (A801) and (A802) and to

decrease the linearised cost function Sf,as much as

possible.

The first step is to elimate explicit dependence of the
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functional in equation (A808) on £2 and &\ . The following

equations are solved for an adjoint variable 3“

corresponding to each functional ﬁ.in Y and tolﬂ(d =g)

FT
ol “l ol ol
KS = d & D (A809)

Taking the scalar product of both sides of equation (A801)

with 5“

f& Iig“'_K Sz + g B(i‘)gl{'dx @  (a810)

using the symmetry of the operator K and employing equation

(A809)

-‘[ E.E‘.g&c]x+fg‘?})£é.)5l>t,x=¢ (A811)
a 22 b
et

The first term on the left of egation (A8l11) is precisely

the term in equation (A808) involving oz .

A perturbation calculation will determine dependence of S\
on gl:. Taking the scalar product of both sides of

equation (A802) with a vector g and linearising

[g, K521+ [, 258 5061 < SA [ M81 + ) [, M35+ SIPECy

substituting §=§ and rearranging

Eé} (B (k&)

{e XMHESB] SN2 M8)+[2AMS3]1-[3 K 53]

=Sk [8§,(,\H§-K§)] (A812)
= S\
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the scalar on the right can be removed by appying equation
(A802) and the notation that the eigenvectors are mass

normalised such that
[EIIM(DILE] = [1]

substitute from eqaution (A811) and (A812) into (A808)

yields
SV, - [aa R [g 'a(tz')gbj 33“&(;(?) p(Mm)éL]
ol =AL}1, °<=0,....r’
=LA sb) {
<A ) R2ral A LP“);-L (A813)

where

« _ DR 3 (Ka) %, Do [(KB) | 3(Ma].
A= b o " ;,3;[ b = zs}i’ LAB1d)

This expression is analogous to equation (A317) in Appendix
3 where the sensitivity of the gradient for the finite

dimensional design problem is computerised.

=339~



13

REFERENCES

CHECKLAND. ‘System Behaviour’, Edited by J. Beishon

and G. Peters, The Open University Press, 1972.

ASHBY. ‘Introduction to Cybernetics” Chapman and
Hall, 1956.
YOUNG and ON. ‘Mathematical modelling via direct

use of vibration data’, SAE paper 690615, October
19269.

FLANNELLY and BERMAN. ‘The state of the art of
system identification of Aerospace Structures. ’,
ASME, Coll. WAM 1972.

RANEY, J P. "Identification of complex structures
using near resonance testing. , Shock and Vibration
Bulletin No. 38 pt 2, August 1968 pp 23-32

POTTER, R and RICHARDSON, M. ’“Mass Stiffness and
Damping matrices from Measured Modal Parameters’,
IIAC. New York, October 1974.

THOREN, A R. ‘Derivation of mass and stiffness
matrices from dynamic test data’, AIAA/ASME/SAE 13th
Structural Dynamics and Materials Conf., San Antonio,
Texas, April 1972.

EWINS, D J. and GLEESON, P T. ’A Method for modal
identification of lightly damped structures”, JSV
1982, pp 57-79.

KLOSTERMAN, A L. ’“On the experimental determination

and use of modal representation of dynamic

-340-



105

11.

12.

135

14.

15.

l6.

17,

18.

characteristics’, PhD Thesis, University of

Cincinnati, 1971.

GAUKROGER, SKINGLE and HERON. ‘Numerical analysis
of vector response loci”, JSV 1973, pp 341,353.
GOYDER, H. ‘Methods and application of structural

modelling from measured structural frequency response
data”, JSV 1980, pp 209-230.

COLLINS, HART, HASSELMAN and KENNEDY. ‘Statistical
Identification of Structures”®, AIAA Journal, Vol.
12, February 1974, pp 185-190.

CHEN, J C and GARBA, J A. ’‘Analytical Model
improvement using modal test results’, AIAA Journal,
Vol. 18, June 1980, p684.

GROSSMAN, D T. “An automated Technique for Improving
Modal test/analysis correlation’, AIAA Paper,
82-0640, New Orleans, La., May 1982.

DALE, O B and COHEN, R. ’'Multi-parameter
identification in linear continuous vibrating
systems’, Trans. ASME Journal of Dynamics, Systems,

Measurement and Control. March 1971.

" BERMAN, A and FLANNELLY, W. ‘Theory of incomplete

models of dynamic structures , AIAA Journal, Vql. 9

No. 8, 1971.
ROSS, R G. ‘Synthesis of stiffness and mass

matrices from experimental vibration modes”, SAE

Paper, 710787.

BERMAN, A and WEI, F S. "Automated Dynamic
Analytical Model Improvement , NASA CR-3452, July
1981.

-34l=



19,

20.

2L

22

23,

24,

25,

26.

27.

28.

GUYAN, R J. ’'Reduction of Stiffness and Mass
Matrices”, AIAA Journal Vol. 3, February 1965, p380.
KIDDER, R L. ‘Reduction of Structural Frequency
Equations”, AIAA Journal Vol. 11, June 1973, p 892.
BARUCH, M and BAR-ITZHACK. ‘Optimal Weighted
Orthogonalisation of Measured Modes’, AIAA Journal,
Vol. 16, No. 4, April 1978, pp 346-357.

BARUCH, M. ‘Optimisation Procedure to correct
Stiffness and Flexibility matrices using Vibration
Tests”, AIAA Journal, Vol 16, No. 11, November 1978,
pp 1208-1210.

WEI, F S. ‘Stiffness Matrix correction from
Incomplete Data’, AIAA Journal Vol. 18, No. 10,
October 1980, pp 1274,1275.

IBRAHIM, S R. ‘Dynamic Modelling of structures from
Measured Complex Modes”, AIAA Journal, Vol. 21, No.
6, June 1983, pp 898-901.

BARUCH, M. ‘Methods of reference basis for
identification of Linear Dynamic Structures’, Dept.
of Aeronautical Eng. Technion - Israel Institute of
Technology TAE, No. 458, September 198l.

BERMAN, A. "Mass Matrix Correction Using and
Incomplete set of measured Models ®, AIAA Journal,
Vol. 17, October 1979, pp 1147-1148.

BERMAN, A and NAGY, E J. “Improvement of Large
Analytical Model using Test Data’, AIAA Journal Vol.
21, No. 8, August 1983, pp 1168-1173.

BISHOP and JOHNSTON. ’'The Mechanics of Vibration~,

Cambridge Univeristy Press, 1960.

=342=



29

30.

31

32

33

34.

35

36.

37

38.

-

SALTER, J P and ROSKILLY, I G. The
resonance-envelope Random Vibration Test’, RARDE
Memorandum 18/72, 1972.

HAUG, E and ARORA, J S. ’‘Applied Optimal Design’,
Wiley, 1979.

HADLEY. ’Linear Programming’,

EWINS, D J and SAINSBURY, M G. ‘Mobility
measurements for the Vibration Analysis of connected
Structures’, Sound and Vibration (USA) No. 42, Part
1, January 1972.

KLOSTERMAN, A L and LEMON, J R. ‘Dynamic design
analysis via the building block approach’, Shock and
Vibration Bulletin No. 42, pp 97-104, 1972.
VINCENT, A H. ’A note on the properties of the
variation of structural response with respect to a
single structural parameter when plotted in the
complex plane’, Westland Helicopters Ltd. Report
GEN/DYN/RES/010R, 1973.

DONE, G T and HUGES, A D. ‘The response of a
vibrating structuré as a function of structural
parameters’, Journal of Sound and Vibration No. 38,
pp 255-266, 1975.

DONE, G T, HUGHS, A D and WEBBY, J. “The response
of a vibrating structure as a function of structural
parameters - Application and Experiment *, Journal of
Sound and Vibration, No. 49, pp 149-159, 1976.
BRYSON, A and HO, Y. ’‘Applied Optimal Control’,
Wiley, 1975.

FOX, R L. ‘Optimisation methods for engineering

-343-



33.

40,

41.

42.

43.

44.

45,

46.

47.

48.

design’, Addision-Wesley, 1971.

FRIND, E. and WRIGHT, P. ’‘Gradient methods in
optimum structural design’, Journal of the
Structural Division Proceedings of ASCE, 1975.
ZOUTENDIJK, G. 'Methods of Feasible directions’,
American Elsevier, 1960.

FOX, R and KAPOOR, M. ’Structural Optimisation in
the Dynamics Response regime’, AIAA October 1970, pp
1798-1804.

CASSIS, J and SCHMIT , L. ‘Optimum structural Design
with dynamic constraints’, Journal ofthe Structural
Division, Proceedings of ASce, pp 2053-2071 October
1976.

VANDERPLAATS, G. 'An efficient Feasible Directions
Algorithm for Design Synthesis , AIAA Journal
November 1984.

ARORA ,J and GOVIL, K. ‘Design sensitivity analysis
with substructuring’, Journal of Mechanical Division,
Proceedings of ASCE, August 1977.

VANDERPLAATS, G. 'Numerical Optimization Techniques
for Engineering Design: with appications’,
McGrew-Hill,1984.

UNKNOWN ‘TIMM Expert System Builder (User
manual)’, General Research Corporation, McLean,
Virginia.

STEPHENSON, G. ‘Mathematical Methods for Science
Students ~, Longmans, 1969.

AKHIEZER, N. 'The Calculus of Variations’,

Blaisdell, 1962.

-344-



