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Summary

The high capital cost of robots prohibit their economic application. One method of
making their application more economic is to increase their operating speed. This
can be done in a number of ways e.g. redesign of robot geometry, improving
actuators and improving control system design. In this thesis the control system
design is considered.

It is identified in the literature review that two aspects in relation to robot control
system design have not been addressed in any great detail by previous researchers.
These are : how significant are the coupling terms in the dynamic equations of the
robot and what is the effect of the coupling terms on the performance of a number
of typical independent axis control schemes?. The work in this thesis addresses
these two questions in detail. -

A program was designed to automatically calculate the path and trajectory and to
calculate the significance of the coupling terms in an example application of a robot
manipulator tracking a part on a moving conveyor. The inertial and velocity
coupling terms have been shown to be of significance when the manipulator was
considered to be directly driven. A simulation of the robot manipulator following
the planned trajectory has been established in order to assess the performance of
the independent axis control strategies. The inertial coupling was shown to
reinforce the control torque at the corner points of the trajectory, where there was
an abrupt demand in acceleration in each axis but of opposite sign. This reduced
the tracking error however, this effect was not controllable. A second effect was
due to the velocity coupling terms. At high trajectory speeds it was shown, by
means of a root locus analysis, that the velocity coupling terms caused the system
to become unstable.

Key Words: Robot Manipulator, Control, Simulation, Manufacturing,
Path and Trajectory Planning.
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Chapter 1-Introduction

In the age of automation very many tasks that were previously performed by
human workers are now performed by automated machinery. One of the most
flexible of these is the robot manipulator. It has a wide variety of applications in
processing, assembly, inspection and can operate in very hazardous environments
otherwise unsuitable for the human worker. The robot manipulator manages to
replace the human worker by emulating some of the characteristics of the human
worker. For instance the manipulator resembles the human arm having shoulder,
elbow, wrist and hand. It has six degrees of freedom that enables the manipulator
to place its hand in any desired position and orientation within its reach capacity.
Its highly sophisticated computer control system allows it to perform complicated
tasks and motions and it can be readily reprogrammed to perform new tasks. With
the introduction of sensory abilities including touch(i.e force feedback), vision and
artificial intelligence it can be employed in even more difficult tasks. The origins of
the robot manipulator however, lie in two pieces of different equipment. These are
the teleoperator and the numerically controlled machine tool. It is interesting to
consider how the technology of these machines resulted in the current robot

technology.

The teleoperator was developed from the need to handle radio active waste that
would be harmful for the human to handle. It was a device which was a substitute
for the operator's hand and consisted of a pair of ton gs(referred to as the slave) on
the inside of the work area and two handles(referred to as the master) that
operated the tongs from the outside of the work area. The tongs and handles were
connected together by a six degree of freedom mechanism to provide the master
and slave with freedom of position and orientation. The mechanism replicated in
the slave the movements made by the master. The first servo powered teleoperator

was developed in 1947.

The other development was the numerically operated machine tool. This was
developed from the need to machine aircraft parts designed to be machined from
solid rather than riveted together from separate parts. A research program initiated
in 1949 by MIT lead to the development of a numerically controlled milling
machine. This combined the sophisticated servo system technology and the newly
developed digital computer technology. The part to be machined could be stored in
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digital form on a punched tape. This was then fed to the machine and converted

into machining operations by the the computer control system.

The independent development of these two different technologies led to the idea of
combining them to produce the first industrial robot. This was demonstrated by
George Devol in the 1960's. Early robots could perform very simple tasks, for
instance they would have to be taught a sequence of movements by taking them
through a sequence of task positions. These task positions were stored in digital
memory, and then they could be played back as many times as was required. The
early robot has evolved a great deal since then and has become a very sophisticated
piece of automated machinery. It now appears in a variety of configurations
including, Cartesian, polar, cylindrical, jointed(the one most resembling the
human arm) and SCARA. It can be programmed to emulate the intricate
movements of a skilled paint sprayer or follow complex trajectories specified by
the user that are automatically computed by the inbuilt trajectory programmer. It
can operate at high speeds and with a high degree of accuracy and repeatibility
compared to the early robots.

The underlying characteristic of tasks that robots now perform instead of human
workers is that of repetitive motions. This means that human workers can be
redeployed in more interesting tasks that requires their intelligence and their
abilities. Typical repetitive tasks where robots can be employed are parts assembly
and parts transfer etc. The benefits of employing robots inctude reduced
production costs and increased productivity. A robot can operate 98% of its time
without rest and with only the minimum of maintenance while human workers
require rest periods and they can suffer from fatigue. Robots can produce a higher
percentage of good assemblies than human workers. This is because they repeat
the same procedure exactly the same and do not make mistakes due fatigue. They
can perform tasks at a higher speed than humans. For instance a robot arc welder
can maintain an average rate of 750 mm/min along a straight line. A skilled welder
doing the same job at best would average 250mmy/sec. Another example of
increased productivity is in the paint spraying of automobiles. Two paint spraying
robots in an automobile assembly line take 90 seconds to paint a complete car
body inside and out with two coats of paint using the wet on wet principle. A
skilled paint sprayer cannot achieve this rate or quality of work and would take
between 15-30 mins to complete the same job. Thus it can be seen the robot can be
beneficially be employed in a range of jobs that were previously performed by
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human workers and can achieve better results.

This is not the case when the economics of replacing dedicated automated
machinery with robots is considered. For instance robots are used in the handling
of parts in press working operations. In this application the robot loads flat blanks
of material onto the press for a stamping operation. One of the limiting factors in
using industrial robots for press loading is the cycle time of the press. Cycle times
of less than a second are not uncommon in press working. These cycle times are
far too fast for currently available commercial robots. There is a direct relationship
between part size and the press cycle time required to make the part. Normally
larger presses are required to stamp larger parts and so they are a lot slower.

Robots can only really be deployed on the slower machines.

Another instance where the limitations of the robot speed limit its economical
application is in assembly line work. In an assembly line e.g in the automobile
industry, robots may be placed along side the moving production line. In a
continuously moving production line the parts move relative to the robot along a
conveyor at a constant speed. The robot must be able to maintain correct
programmed postion, orientation of the end effector and motion velocity in relation
to the moving part in order that a successful assembly operation is carried out on
the part. The cycle time for the assembly operation must be set to within the
robot's capability hence this determines the production line speed. Existing robots
cannot operate at very high speeds with sufficient accuracy to make this

application an economic one.

The application of industrial robots to parts transfer and assembly operations is
limited by their high cost. A rating scale used by the manufacturing industry to
assess economic viability of robots is the ratio of the number of operations they
can perform per unit time to their cost. The more cycles the robot can perform per
unit time the more rapidly it will payback the capital investment. There is a
threshhold for the rating value when the application of the robots to a wide range
of new tasks would become economically viable. The increase in variety of
applications would mean that robots could be mass produced in large quantities
and that would result in a considerable drop in their unit cost. In order to increase

the rating scale the cycle time must be dropped. This means increasing the speed

of operation of the robot manipulator.
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The robot manipulator can be represented by a set of second order or higher, non
linear, coupled equations. Designing a suitable control system for the robot is not
easy since the well developed control design methods were designed for linear
systems. Various control strategies have been postulated by researchers, one of
these is independent axis design. In this design method each joint of the robot is
modelled as an effective inertia and coupling between joints is ignored. The
classical design methods are then applied to the simplified model of the
manipulator. Current industrial robots using this design method, such as the
Puma robot described by Fu’, cannot operate at high speeds without exibiting
significance degradation in their performance. Various other approaches include
the Computed torque method by Paul® and Bejczy?, the near minimum time
controller by Kahn'2, the variable structure approach by Young'? and the model

reference adaptive method applied by Dubowsky?3, just to mention a few.

It is identified in the literature survey that two aspects in relation to robot control
system design have not been addressed in any great detail by previous researchers.
These are : How significant are the coupling terms in the dynamic equations of the
robot manipulator, and what is the effect of the coupling terms on the performance
of a number of typical independent axis control schemes?. The work in this thesis
thus addresses these two questions in detail in order to obtain a greater

understanding of the control system design problem for robot manipulators.
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Chapter 2:Kinematics
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Chapter 2-Robot Kinematics

An understanding of robot manipulator kinematics is essential in order to plan a
suitable trajectory for the manipulator to follow. The trajectory information is an
integral part of the control system, and provides the reference joint angles,
velocities, accelerations and possibly rate of change of acceleration, as demand
signals for each joint axis actuator to follow. In this chapter the kinematics of a
general six degree of freedom manipulator is considered. The kinematics of the
manipulator may be divided into two distinct sections, the Forward kinematics and
the Inverse kinematics. The inverse kinematic problem is the more difficult to
obtain for a manipulator and a number of possible approaches are discussed. The
particular solution for the RTX manipulator(ref.4) is obtained including the
Jacobian, the derivative of the Jacobian and their corresponding inverses. The
limitations of the solution is considered in terms of workspace and singularities in
order for implementaion into the trajectory planning program of Chapter 5.

Forward Kinematics

The Forward kinematic problem is obtaining the position of the end effector in

Cartesian coordinates given the respective joint angles i.e.

(X,Y7Z’¢xv¢yv¢z)=fun(:tion(e 1 929 63’ 949 959 96)

where 0........... 0 are the joint angles(for a prismatic joint this is a linear
position variable)
X,Y,Z are the Cartesian coordinates
d)x,(by,d)z are the orientation angles

Inverse Kinematics

The inverse kinematic problem is; given a desired position and orientation of the

end effector, what are the manipulator joint angles ?.

(0)errmnenes 8 )=function( X,Y,Z,04,0,,0,)
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2.1 Forward Kinematics

For simple manipulators the Forward kinematic relationship can be obtained quite
simply. However, for manipulators having many degrees of freedom and
complicated geometry the kinematic equations are not so easily deduced by
inspection. A methodology for obtaining the kinematic equations, using
homogeneous transformations was developed by Denavit! to describe linkages.
This was later employed to describe manipulators by Pieper? and Paul3, the
method will be described.

It is necessary to first consider the homogeneous matrix, this can be used to
describe the position and orientation of an object in space. The basic structure of
the homogeneous matrix is:

N.B. The notation for this transform is defined in appendix 1.

nxsxaxpx
NySyadyPy
nZSZaZpZ
0001

The 3 by 3 left hand row column sub-matrix represents the orientation and the 3
by 1 right hand column matrix represents the position. The 1 by 4 row matrix at
the base can be used for perspective drawing but is not needed for our purposes.
The homogeneous matrix or transform can be interpreted as describing the
position of a second coordinate frame, where the first three columns describe the
direction of the X,Y,Z unit vectors of the second coordinate frame respectively

and the end fourth column describes the position of the origin of the second

coordinate frame.

'With this interpretation of the homogeneous matrix in mind, as describing a

second coordinate frame, in the methodology for obtaining the forward kinematic
equations a coordinate frame is assigned to the end of each link of the manipulator.
For an n degree of freedom manipulator there will be n links and n joints. The
joints and links are numbered outwardly from the base, the base of the
manipulator is link zero and is not considered as one of the links. Link 1 is
connected to the base link by joint 1. There is no joint at the end of the final link.

The relationship between successive frames is established according to the
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following scheme of rotations and translations between frame n-1, n:
1.Rotation about Z_ ; an angle 8,  ---this is the variable for a revolute joint.

2.Translation along the Z,,_; a distance d,
3.Translate along the rotated X ; a distance a,, ---this typically link length L,

4. Rotation about the X, ; the twist angle &,

The relationship between successive frames may be expressed as the product of
four homogeneous transformations relating the coordinate frame of link n-1 to the
coordinate frame of link n. This produces what is referred to as the A matrix:

N.B. The noation for these transforms is defined in appendix 1.
n-1A =Rot(Z,0) Trans(0,0,d) Trans(a,0,0) Rot(X,a)

Co -S6Ca S6Sa aCé

S8 CoCo -CoSa aS6

n 0 Sa Cuo d
0 0 0 1

In a prismatic joint the distance d,, is the joint variable. The direction of the joint
axis is the direction in which the joint moves. In the case of a prismatic joint the
length a, has no meaning and is set to zero. The Z axis of the prismatic link is

aligned with the axis of joint n+1. The A matrix for the prismatic joint is shown

below:
Co -S6Ca S6Sa O
nIA = S8 (COCu -CéSa O
n- 0 Sa Ca d
0 0 0 1

Having assigned coordinate frames to each joint a parameter table may be drawn
up that tabulates the complete kinematic characteristics of the manipulator. The
various parameters for each link may then be substituted into the generalised A
matrix and the relationship between the position of the end effector in base

coordinates may be found from the following:
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The parameter table will typically consist of the following:

Link Variable Q a d
1 0 oy a dy
n 8, Qo a, d,

As example a six degree of freedom robot manipulator will be considered that has

the common jointed configuration.

2.1.1 Example

Joint 2
Joint 3

A
Ly End effector fits
on the end here.
Base Joint | X3

Figure 2.1. Drawing of a jointed manipulator showing the assignment of

coordinate frames.

As shown in Fig.2.1 the first four coordinate frames are shown assigned to the
respective joints, which provide the manipulator with the ability to move the end
effector to the desired location in space. The end effector is not shown in this
figure, normally the end effector will provide three degrees of freedom that will
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allow it to be orientated in any arbitrary orientation. There is a desirability in terms
of the inverse kinematic solution for the design engineer to ensure that the last
three joint axes of the manipulator to intersect at a point. A general closed loop
inverse kinematic solution for manipulators of this type may be found. The

parameter table for the first three links is shown below:

Link Variable 04 a d
1 0, +90 0 L,
2 04 0 L, 0
3 05 0 L, 0
n % Q, a, d,

The values of the first three A matrices may be found and are as follows:

"o, 0 S0, O |
Ao| S0 0 co 0
0 1 0 L
o 0 0 |1
L -
(o, -S8, O L,CO,
A $6, C8, 0 L,S6,
21 o o0 1 0
o o 0 1
_ _
" o, -S8, 0 LiCO, |
A S8, CO, 0 L3S0,
1 o o 1 0
o 0 0 1
5 -

The overall transform is found by multiplying the three A matrices together:

OT,= 0T3=A1 Ay Ay where subscript w refers to the wrist .
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The overall transform after simplification can shown to be the following:

C1C23 -C1Sn Si L3C C23+L2CiCo
0T~ S1C23 -5;Cx -Cy L3S C23+L251Co
Sy3 Cys 0 L3S 93+l So+ Ly

0 0 0 1

The wrist position is found by post multiplying the transform by a zero column
vector, which defines the origin of the wrist coordinate frame with respect to this

frame. The wrist position in terms of joint angles is as follows:

X, =Cos8 1(L;Cos(8,+8 3)+L,Cos6,)
YW= Sin6 1(L3COS(8 2+9 3)+L2C0592)

2.1.2 The end effector ition v I
If it is assumed that the last three joint axes have been designed to intersect at a

point a line diagram of the jointed manipulator can now be drawn depicting this

geometry as shown in Fig.2.2:

&)
5 Wrist

0 . .
2 W B "‘..' Ze
L1 e
I'.' ’o"'.
Zg A '." -~ Where W is the wrist vector
’ E is the end effector vector

Figure 2.2. Schematic diagram of manipulator showing the joint axes.
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As shown in Fig.2.2 the end effector has three degrees of freedom provided by
three revolute joints that intersect at the wrist. The final coordinate frame by
convention is positioned at the centre of the end effector jaws, with the Z axis unit

vector pointing in the direction of approach. The distance from the wrist to this
final coordinate frame is L6' The desired orientation of the end effector would

normally be known. The components of X,Y and Z that the end effector makes in
base coordinates can be calculated. For instance, if the orientation of the end
effector is defined using the Eulerian as follows:

N.B The notation for the Eulerian is defined in appendix 1.
R, o, y=Rot (Z,0) Rot (X,0) Rot (Z',¥)

The transform for this is as follows:

CoCy-Sp Co Sy -Cod Sy-S¢ C6 Cy S$So
Rooy=| SOCY-CHCO Sy -SoSy+CoC8 Cy - -CoSO
SOSy SOCy Co

The component of the end effector in base coordinates is found by multiplying this
transform by a column vector [0,0,L¢], since the end effector position is defined

in the direction of the Z axis of the final coordinate frame. The components of the

wrist in base coordinates are as follows:

X1 6=Lgsind sin®

YL6=-L6cosd)sin0

ZL6=L6COS0

The final position of the end effector, defined by the vector E is thus calculated by

adding the wrist vector W _(as defined previously) to the three components of the

end effector:
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Ypase=Ywt Y16

Zpase™Lyt Zig

2.1.3 The Jacobian

In trajectory planning it is necessary to know the relationship between the end

effector velocities and the Cartesian velocities. If the position vector is defined as
P as shown below:

g’
I
N =< X

o O O
“ ™

~N

The joint positions are also defined similarly as a vector of joint angles P, as

follows:

o
@
Il

P = function Py defines the relationship between the variables in Cartesian

space and joint space.

However, if differential displacements of the hand are considered, a vector of

differential displacements can be defined as D as shown below:
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d
gy
o
6 X
By
8,
where dx,dy and d, are differential displacements along the X,Y and

Z base axes.

6x,6y and &, are differential rotations about the X,Y and Z

base axes.

Similarly, a six element vector of differential rotations of the six joint angles can

be defined as Dy as shown below:

o
@
i

The relationship between the two differential vectors is as follows:
D =JD, where J defines the 6 by 6 Jacobian matrix.

If these differential motions occur over a finite time interval then the instantaneous

velocities can be defined:

X=(—)D

1
At

Where X is the velocity vector expressed in Cartesian coordinates:
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The relationship between Cartesian velocities and joint velocities can be written as

follows:
B ] 0
X J11112313 14T 15T 16 él
Y T21722723 2432526 72
Z L] T31732d33 T3aT35T36 93
dx V41342343 Ja4T 45T 46 04
dy Ts13s52753 Is5ad557 56 65
o LJ61J62J63 Jeal 65T 66 6,
Z —
ox ay
=——,J) =57/ el
where for example  Jq; 30, 21 39,

For the special case of three axes intersecting at a point, the velocity of the wrist in
terms of the first three joint velocities can be found from the equations defining the

wrist position. These equations are partially differentiated with respect to the three

joint angles as shown below:
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X, .

§G——=—sm91(L3cos(92+93)+L200592)
1

oX )

— =058, (-Lsin(@,+63)-L,sinf,)

a0,

90Xy ,

——=c0s0; (-L3sin(6,+83) )

06 4

Y

gé—=cosel(L3cos(62+ 845)+L,cos0,)
1

oY, . : :
-a—e—=s1n61(-L3sm(92+ 83)-L,sin8,)
2

Y, . )
— ¥ =5in@, (-L3sin(@,+63) )
39,

9z,
00,

9z,

_— = L2C0502+ L3COS(02+63)
39,

3z,
a—e';=L3COS(92+ 93)

Hence, a Jacobian relating wrist velocities to the first three joint velocities can be

defined, where the elements of the Jacobian are as shown above.

Xo=J,813 Wherel,is the Jacobian for the wrist

The elements of the Jacobian are configuration dependent as seen in the equation

above.

The velocity contribution by the last three joints can be found by differentiating the

components due to the end effector as shown below:
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X16=Lg ( cosd sinfd + cosd sind 6 )
Yi6=-Lg ( -sind sin8¢ + cosd cosd 6 )

Z16=-Lg(sin8 6 )

The overall end effector velocities are found by adding the components due to the
end effector to the wrist velocities.

The Jacobian can be found by using the homogeneous matrices as used by Paul3
however, this method will not be considered.

2.1.4 Derivative of Jacobian

The derivative of the Jacobian relates the Cartesian accelerations to the joint
accelerations. The Cartesian accelerations become a function of the joint

displacements, velocities and accelerations.
X = function(9.8.9.)

e.g. term Jyy 6 L which contributes to the X velocity when differentiated becomes:

d(11w81)

G =-sind; (Lycos(8,+ 83)+L,cos0,)0,

- cos8 (L3cos(82+63)+L200592)é%
+5in8, (Lasin(8,+03) +L,sing;) 682

+5in@, (Lysin(8,+63))603

The derivative of the Jacobian becomes a very complicated expression, as seen

above for a single term.
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2.2 Inverse Kinematics

The problem of finding the inverse kinematic equations is far harder than finding
the forward kinematics equations. This is because the forward kinematic equations
are non-linear and there is no general algorithm which may be used to solve the

equations. The methods that exist can be broadly classified into two categories:

1) Closed form solutions
2) Numerical solutions

Numerical solutions are much slower than closed form solutions because of their
iterative nature and they do not lend themselves readily to robot control systems.
Closed form solutions can be divided into two different types:

1) Algebraic
2) Geometric

The distinction between the two methods is somewhat hazy due to the fact that the
geometric methods are applied by algebraic expressions, the real difference lies in

the approach.

It is difficult to find closed form solutions for general geometry manipulators and
normally a solution is found that will be valid for that manipulator only. However,
closed form solutions exist for manipulators of special geometry. As mentioned
previously, manufacturers have realized this fact and design the manipulators with
this type of geometry i.e. one type is a six degree of freedom manipulator with the
end three joint axes intersecting at a point. With this type of geometry the problem
of solving for the inverse kinematics can be divided into two sub-problems. The
position of the wrist can be found given the required orientation and this wrist
positon can be solved in terms of the first three joint angles. The remaining joint

angles may then be solved given the required orientation and the solution of the

first three joint angles.
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2.2.1 Algebraic Approach

The algebraic approach by Paul3 involves the use of the A matrices, this will be

described. For a six degree of freedom manipulator the orientation and desired
position of the manipulator would be known and can be specified as Tg. This is

equal to the product of the six A matrices:
T=A(0,) Ay(8,) Ay(65) Ay 0,) Ay(B5) Ac(By)

The dependency of each A matrix on the joint variable is shown by the bracketed
joint angle. Six matrix equations can be obtained by successively premultiplying
the above equations by the A matrix inverses:

A8 °T="T;

A0, A6, OT =T,

A8 A0, A (8))! 0T=T,
A0, A5 A8, A8 PT="T,

Ag05) A40,)" A4(83)" A0t A 6! 0T="T,

This technique of multiplying each side of the transform by an inverse is a way of
separating out the variables into a solvable equation. The matrix elements on the
right hand side of the equations are either zero, constants or functions of n to 6
joint variables( "Tg). On the left hand side of the equations are the elements of
desired orientation and position specification transform together with functions of
the ascending joint variables 1 to n. The object is to equate elements of each side

of the matrix equations and solve for the joint variables in ascending order.

If the solution for the jointed manipulator is considered, a transform for the wrist

position was obtained and can be equated to the position and orientation matrix :

NyOxayxPx

O'I' _ nyoyaypy
w=

n,0,a;P;

0001

33



This can be equated to the transform previously obtained. However, the
orientation values cannot be equated since the position of the wrist is only being
considered. The position elements (1,4),(2,4) and (3,4) can be equated:

N.B The notation for the following equations is defined in appendix 1.

P = Ci(L;Cxu+L,C)) (2.1)
P,= S, (LyCyy+L,Cy) 2.2)
P = L38,3+L,5,+L, (2.3)

Dividing equation (2.2) by (2.1) angle 6, may be found:
0,=tan" EY) (2.4)
Px

The next step is to obtain A1 OTW=A2A3 , first A"l is obtained :

C, S, 0 0
1o o 1L
where Ay = $,-C; 0 0
0O 0 0 0
Cos =Sy 0 L3C23+L2C27
So3 Cy3 0 L3S,3+L,5S,
and AyA 4= 0 0 1 0
0 0 0 1
i _

The terms in the position vectors are only considered, the right hand side gives:

Cipxt Slpy element 1,4
p,- L1 element 2,4
S1pPx-Cy Py element 3,4

Equating these elements with the right hand side (i.e. A,A;) gives the following

equations:
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Cyp,+S1py= L;Cp3+L,Cy (2.5)
p, L, =L;S,;+L,S, (2.6)

The next step is to find A, "L A 10T _=A,

This gives the following elements involving the position vectors:

C2(C1px+Slpy)+Sz(pz-L1)—L2 element 1,4
-Sz(Clpx+Slpy)+C2(pZ-L1) elemcnt2,4
S1px-Cipy element3,4

Equating to A, gives the two useful equations:

CL(Cp#Spy) + Sy, Ly) - L= 1sCy 27)

‘Sz(C1Px+51Py) + C,(p, L)) =L3S; (2.8)
From (2.5) and (2.6) let

R = L,Cy3tL,Cy (2.9)

P3,= L;S,3+L,S, (2.10)

Substituting for R_and Ry in equations (2.7) and (2.8):

C,R,+S,R;-L,=L3Cs (2.11)
-S,R,+C,R =L;S; (2.12)
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Dividing (2.11) into (2.12) gives angle 6, however, angle 6, needs to be

determined before this can be evaluated.

-S R +C2

O3=tan (C2R TS,R, ;)

(2.12a)

To find 8, using equations (2.9) and (2.10) and writing them as follows:

R,-L,C,=L,Cp, 2.13)
R,-L,8,=1,S,, (2.14)

Squaring both sides of these equations and adding yields:
RZ+R2+L3-L3=2L,(R,Cy+R,Sy)

RZ+RS+15-L3

letting K=
etting 2L,

K=R, C+R,S, (2.15)

Equation (2.15) is of the form shown in Paul® and may be solved by letting:

R =r cos( and Ry=r sind
wherer="V Ri +R§ and ¢ =tan (——) (2.16)

Substituting for R, and Ry in (2.15) gives:
K=rcos¢ C, +r sing S, =r cos(¢-6,) (2.16b)
Using the identity sin?0 + cos20 =1 to find sin(¢-9,):

r -K

sin(¢-02) =————

(2.17)
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Dividing (2.16b) into (2.17) gives the following:

\(rz-K2

tan( ¢-0,) = <

(2.18)

Hence, using (2.16) and (2.18) 6, may be found:

2 2
1 R g, Vr'-K
e =ta —y - e —
2= tan (g*) - tan (—p—) (2.19)

Hence, all three angles may be determined if equations (2.4),(2.19) and (2.12a)

are used in that sequence.

2.2.2 Geometric Approach

The problem with the algebraic approach is that it does not give any indication of
how to choose from the many possible solutions that are obtained. With a
geometric approach it is possble to gain a better understanding of the solutions
obtained. This approach will be considered when solving for the RTX*

manipulator later on in the chapter.

2.2.3 Inverse Jacobian

The forward kinematic equations relating Cartesian velocities to joint velocities

was defined previously as:
X=78

The inverse relationship requires the inverse J1 to be obtained:

6=1"X

There are a number of methods that could be used to obtain the inverse Jacobian

these include:

1. Symbolic inversion of matrix.
7. Numerical inverse at an instant in time(e.g. Gaussian elimination).
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The symbolic inversion can be extremely complicated for a six degree of freedom
manipulator. It will be seen that this method is used to obtain the inverse Jacobian
for the RTX manipulator. Using numerical inversion at each step point, the new
values of the Jacobian are obtained and the numerical Jacobian is then inverted.
Using, say Gaussian elimination, the next point can be calculated at this point. The

procedure is repeated step by step to obtain the desired joint angle rates.

2.2.4 Inverse Derivative Jacobian

The forward kinematic equation was defined previously as:

X = function(9,8.9 )
The inverse is defined as follows:

g = function( 8,8,X )

The inverse becomes extremely complex for a six degree of freedom system, the

inverse is obtained for two degrees of freedom of the RTX manipulator.
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2.3 Particular kinematic solution for RTX manipulator,

2.3.1 Forward Kinematics

The kinematic representation of the RTX shown with coordinated frames assigned

is shown in Fig.2.3 below:

Figure 2.3. Drawing showing the kinematic representation of the RTX

manipulator's two arm links.

The parameter table for this manipulator is shown below:

Link Variable Q a
1 0, 0 L, 0
2 0, 0 L, 0

Table 2.1. Parameter table for two links of the RTX manipulator.
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The A matrices for this manipulator are as follows:

Cl -Sl 0 L1C1 C2 -S2 0 L2C2
S C 0 L;S S C 0 L,S
A= 1 1 191 _ 2 2 299
! 0O 0 1 0 As 0O o 1 0
0 0 0 1 0 0 0 1
Ci2 -S12 0 L1Cl+L2C12T
S C 0 L,S,+L,S
0A,= A A, = 012 (;2 : 1 10 2912
0 0 0 1
i _

The forward kinematic equations are as follows:

[X]_ L1C0561+L2COS(61+62) (2 20)
Y L,Sin®, + L,sin(®,+6,) ‘

The relationship between joint velocities can be found by differentiating (2.20):
x| | (L,Sin0,-L,Sin(6, +8,)) L, Sin(®;+8,) 01 221
Y| | (L;Cos6;+L,Cos(6; +6,)) (L, Cos(0 1+ 6,)) 9, '

The acceleration equations are most conveniently expressed in terms of the joint

accelerations and the joint velocities.

%1 [ -Lysing, -Lsin(®;+8,) 01
Y| L, cost L,cos(®@;+6) || 82

12

Ll COSOI chos(el+el) 61

i} ) ) . | 222)
L;sin@;  Losin(@1+81) {1 @,4+6,)
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2.3.2 Inverse Kinematics

The inverse kinematic solution , using a geometric approach(see Fig.2.4), begins

with the application of the cosine rule to find the joint angle 9,,.

Yo

\
-
I'd
\ .

Lacos8,

.
x Xo

Figure 2.4. Diagram showing the geometric solution for the RTX manipulator.
R2=L,2+L,2-2L, L, cos(180-0,) where cos(180-6,) =-c0s(8,)

and R=VX2+Y?

Therefore joint angle 2 can be found to be equal to the following:

4 RELEL

0,=cos ( L, ) -(23)

The angle B is found from the coordinates of the end point:

B=tan" ( ;— ) (2.24)
Angle a is found to be equal to the following:
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o= tan-l ( L2 Sinez

Therefore joint angle 1 is found by subtracting (2.25) from (2.24):

1Y - L, sinB
6, =tan (i)-tanl( 22772 (2.26)

L;+L,cosB,

2.3.3 Work Space

» X

Inner work radius 5 L1- L2

Outer work radips= L1+ L2

Figure 2.5. Diagram showing the work space for the RTX manipulator.

The boundaries of the workspace of the manipulator lie within an outer circle of
radius Ry=L,+L, and an inner circle of radius R.=L,-L,. Whether it can achieve

all of the positions within the workspace will depend upon the constraints of the
joints angles. Program TRAJ PLAN (Trajectory planning program described in
Chapter 5) contains a inverse kinematics procedure INVERSE for solving for the
two joint angles, for a given set of input X and Y coordinates for the RTX
manipulator. To check whether a set of X,Y coordinates are within the workspace,
the equation for the workspace is the equation of a circle of radius R, if the

manipulator only moves in a horizontal plane:
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R2=X?+Y? (2.27)
or R=Vx*+Y?
i.e. L,-L, <R < L;+L, (2.28)
Equation (28) must be satisfied in order that the inverse kinematics algorithm can
solve for the given set of X and Y coordinates.If this not satisfied, the input
coordinates are rejected by the Trajectory planning program, since they are outside

of the work space of the manipulator.

2.3.4 Number of possible solutions or configurations,

There are two solutions to each of the joint angles, this corresponds to two

possible configurations of the manipulator as shown in Fig.2.6 below:

Y
f Left Hand
0.  Configuration

(X,Y) Desired Position

Right Hand
Configuration

Where 9 r =Right Hand Solution to Joint 1
0,1, =Left Hand Solution to Joint 1

0 2R =Right Hand Solution to Joint 1

0, =Left Hand Solution to Joint 1

Figure 2.6. Diagram showing the possible configurations of the manupulator.

The two possible configurations are referred to as Right Hand and Left Hand

configurations. In equation (23) the argument of cos’! can be either positive or
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negative, i.e. in quadrants land 4 or 2 and 3 respectively as shown in Fig.2.7
below:

Y A

Where

0< 84, <180
180 < 6 51, <360

Figure 2.7. Diagram showing the left hand and right hand solutions possible.

In solving for Right Hand Arm 0<8,<90 forcos(+)
90<9,<180 for cos’1(-)
In solving for Left Hand Arm 180 <6,<270 for cos’l(-)
270 <0,<360 for cos’1(+)

The procedure INVERSE solves for the Left Hand Arm configuration.

When the R2=L12+L22 the numerator of the argument of equation (23) becomes

zero. This corresponds to an ambiguity if it is not treated specially. The

cos(zero) occurs at 900 of 270° however, since the procedure INVERSE solves

for the Left Hand Arm configuration where 180 < 6, < 360 , then when this

condition occurs 6, is set equal to 270°.

The ambiguity of solving for & in equation (2.25) and P in equation (2.24) is
overcome by using an implementation of an arc tangent function, atan2(y,x). This
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is defined as:

0°<0 <90° for +x and +y

90° < 6 < 180° for -x and +y
-180° <0 <-90° for -x and -y
90° <0 <0° for +x and -y

0= atan2(y,x) =

When the manipulator is required to track along one of the principle axes the angle
B cannot be found from equation (2.24) using the atan2(y,x). There are four

possible solutions for angle B depending on the values of X and Y:

If X=0 and Y>0 then p=90"

If X=0 and Y<O then B=270"
" IfY=0 and X>0 then p=0"

If Y=0 and X<0 then p=180"

2.3.5 Inverse Jacobian

For this manipulator the inverse Jacobian is found symbolically. The inverse is

defined as:
J 1o a?]J(IJ) where adj(J)= Transpose of the matrix of the cofactors

| J | = Determinant of the matrix J

Hence, after some manipulation the inverse Jacobian matrix equation can be

shown to be :

61 1 L,cos(6; +0,) L,sin(® ,+6,) X

éz —Ll L2 Si1192 -LICOSOI '—L2COS(9 1 +92) _Ll sin® 1 —L2 Sm(e 1t 92) Y
(2.29)

This matrix equation is implemented as procedure INVERSE J ACOBIAN in the

trajectory planning program.
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2.3.6 Inverse Kinematic solution for Acceleration

The forward kinematic equation for accelerations of equation (2.22) is of the form:

. e * 2

[X]—M[ . }M o1 (2.30)
sn - 1 .o R = 2 . . 2 .
Y 01+6, ©1+62)

Multiplying the equation throughout by M;-! and taking terms in joint

accelerations to the left:

. . -2
04 al X 1 S
.. .. =M1 . |t Ml M2 . ) (2.31)
01+62 Y 61+62)

The full equations are thus shown below:
61 | 1 L, cos(0 +8,) Lysin(@ +6 || X
-e. 1 + 62 - L1L2 Sine 2 "Ll COSO 1 'Ll Sine 1 Y

2 A2

1 L,L,cos6, L, 0]
+— 2 . 2| (2.32)
LiL,sin8, -L3 -LiLycos, |} (6,+69)

This matrix equation as procedure INVERSE DERIV JACOBIAN in the

Trajectory planning program.
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Chapter 3:Dynamics
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Chapter 3 - Robot Dynamics

In order to study the dynamic behaviour of robot manipulators it is necessary to
formulate the dynamic equations that govern their motion. In chapter 2 it was seen
that there are forward and inverse kinematics, in a similar manner there is the
forward dynamics where the dynamic equations are formulated for the purpose of
calculating the motion of the manipulator as a result of the input torque to each
axis. This formulation is particularly suitable for the simulation of the robot
manipulator. The inverse dynamic approach is to use the dynamic equations in
conjunction with the trajectory data to calculate the required nominal torques to
achieve the given trajectory, this approach is particularly useful in the control
system design in order to compensate for the non-linear dynamics of the
manipulator(as seen in Aada® and Craig®). In this chapter two methods of
formulating the dynamic equations are considered, namely the Newton-Euler and
the Lagrangian. The application of the Lagrangian to the general six degree of
freedom manipulator of Fig.2.2 in chapter 2 is considered. The dynamic equations
for the RTX robot are formulated using the two methods considered and the

meaning of the terms discussed.

3.1 Newton -Euler Formulation

The Newton-Euler formulation involves the application of Newton's second law
of motion i.e. The rate of change of momentum is proportional to the applied
force'. The equations that are obtained include the forces and moments on the
links of the manipulator. However, the equations are required in a form relating
the joint torques to the joint motions. To obtain the equations in this form requires

a great deal of algebraic manipulation in order to eliminate the forces.

Consider the general planar link manipulator with n number of links as shown in

Fig.3.1. As seen in Fig.3.1 link n is driven by actuator n which is fixed to the end
of link n-1. The angular position of link n is defined relative to link n-1 as 6_. At

the end of link n is the actuator driving link n+1, the position of link n+1 defined

relative to link n as Gn e
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Link n+1

Joint n+1

Yn-l ‘
Actuator n+1
Link n-1 Jointn
\ A

Actuator n
L X 0

Figure 3.1. Diagram showing a general planar link robot manipulator.

If the link n is dislocated from between the two adjacent links and a free body
diagram of the link n is draw showing the forces and moments acting on link n

due to the adjacent links of n-1 and n+1 as seen in Fig.3.2:

Link n+1

n,n+l

Centre of gravity of
"1 Jink n

Fig.3.2. Showing the forces and torques acting between adjacent links. -

N.B The notation for this is defined in appendix 1.

49



The linear force vector F 1nactsonlink n and is exerted by link n-1. The linear

force vector F, ., represents the force applied to link n+1 by link n. The other

force acting on link n is that due to gravity acting in the negative Y direction at the
link's centroid. The forces can then be equated to the inertial force, acting at the

centroid, given by m_a_where a_is the vectorial acceleration of the link n. The

equation if motion is:

l:;n,n+1 - l:n-l,n -Mpg-Mmpa, = 0 @3.1)

The next step is to consider the balance of moments about the centroid of link n.
The moments acting about the centroid can now be equated to the rate of change of

angular momentum for link n :

Tn—l,n_ Tn.n+1 “Thin * I:n—l,n +rn.n+1 * Fn,n+1 - In(';*)n - (‘)n* ( In . Wy ) =0 (32)

where * indicates the cross product

I, iSthe vector distance of force F_, , from the centroid

Tonet 18 the vector distance of force an +1from the centroid

Equations (3.1) and (3.2) are obtained for all links 1 to n. The equations obtained
explicitly in the appropriate form in terms of input torques and output position
variables are referred to as closed form dynamic equations. The closed form

equations for an n degree of freedom manipulator are of the form:

n

hidjde+ Gy i=leen  (33)

M=

n
j:l j 1 k=1

where Hij,hijk and G; are functions of joint displacements q;,.......q,
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3.2 Lagrangian

The Lagrangian L is defined as the difference between the total kinetic and the total
potential energy of the system.

L=K-P (3.4)

where K= total kinetic energy
P= total potential energy

The kinetic and potential energy of the system may be expressed in any convenient
coordinate system. The dynamic equations, in terms of the coordinates used to

express the kinetic and potential energy, are obtained from the following:

doL oL
p,= 2% o
dt aql aql

(3.5)

where

q; the coordinate in which the kinetic and potential energy is expressed
q; is the corresponding velocity
F. is the corresponding force or torque

As an example consider the jointed manipulator in chapter 2 Fig.2.2. The first
three links will be considered i.e. the torques at the first three joints due to the
motion of the first three links. The representation of this jointed manipulator is
shown in Fig.3.3. In order to simplify the sytem links 2 and 3 are considered to
be represented by concentrated masses at the end. The position of the centre of
gravity of these links thus corresponds to the position of the assigned coordinate

frames. This makes the mathematics some what easier to handle for this example.
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Figure 3.3. Diagram showing a jointed three degree of freedom robot.

As seen in Fig.3.3 link 1 is represented as a cylindrical bar of uniform cross
section with a polar inertia about axis Z of J,. Links 1 and 2 are represented by

concentrated masses at the end of their respective links.

The kinetic energy of link 1 is that due to its rotation motion about the Z, axis and

is equal to:
1 L2
KeI:'Z—JIOI (36)

The kinetic energy of link 2 is found from the equation :

Ke, = % m,V," (37

where V, is the resultant vector of velocity of m,

The position of mass m, can be found from the A matrices of Fig.2.2 in chapter 2.
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The position of the end of link 2 P,, is thus :
P,=A, A, [0,00,1]7 (3.8)
Evaluating the above gives the following:

X,= L, cosG1 00592
Y=L, sinf, cos0, (3.9

Z2= L1 + L2 sine2

Differentiating equations (3.9) with respect to time gives the component velocities

of m,:
X, =L, (-sin;cosB, 6 -cosdsinB,0,)
Y, =L, (cosd;cos8,6,-sind;sinf,8,)  (3.10)

Zz =L2COSG2é2

Hence the resultant velocity V, is :

N I S
V2=X2+Y2+Zz

The position of the end link mass was determined in chapter 2 and the velocity

components were also obtained for the Jacobian such that V2 is :
V32=(11191+11292+113é3) 24 (1510, +18,+2383) 7
+ ( J31 é1+J32é2+J33é3) 2

The potential energy Pg of the manipulator are determined from the Z component

of the position of the centre of mass. Hence, for links 2 and 3 these are:
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Pe;=m,g (L, +L, sinf, + L, sin(0, + 65)

Having obtained the total kinetic and potential energy of the system the Lagrangian
is obtained by subtracting the potential energy from the kinetic energy.
Determining the Lagrangian of the system is probably the most complex operation
which then leaves the application of equation (3.5) to determine the torque applied
at each joint. The advantage of the Lagrangian technique is that the constraint

forces acting at the joints involved in the system are automatically eliminated.

3.3 Particular solution for the RTX 'SCARA' type robot manipulator

The SCARA (Selectively Compliant Arm for Robot Assembly) robot is a jointed
manipulator with the arm mounted horizontally so that the arm's links do not have
to move against gravity. The weight of the arm is taken by the vertical pedestal. A

diagram of the manipulator under consideration is shown in Fig.3.4.

> joint 1
! Link 1

-
] Joint 2

I Vertical
Movement
| !
Link 2

Pedestal

Figure 3.4. Diagram of a SCARA type manipulator.

In the SCARA type robot manipulators the two links of the horizontal arm must be
driven by actuators at the revolute joints. The motors driving the links are
normally positioned in the preceeding link ie link n is driven by actuator n that is

fixed in link n-1. The position of the motors in the RTX arm follow this

configuration and are shown in Fig.3.5 .
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L—ﬁrﬂﬁ] ! | |1 Actuator 1 fixed to pedestal
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' v Link 1 driven via pulley
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A . ' : Link 1
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' 1 1
' '

N ]
Actuator 2 driving link 2 {
fixed to link 1. .
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]

' L, End effector fixed
< » o end of link 2
i L, :
:4* P

Figure 3.5. Cut away diagram of the RTX robot showing the position of the
motors and pulleys driving the links.

The parameters for the RTX* are as follows:

L,=02535m  L,= 0.2535 m
Drive Ratio 1 (0,,/® 1) = 0.00114072
Drive Ratio 2 (0g,/® ) =0.00228145
where suffix ; refers to output side and suffix _ motor side
The inertial parameters of the links including masses m,,m,, inertia about the

certre of gravity 1,1, and the position of the centre of gravity from the rotation

axis AI,A2 are as follows:

m,=2.64 Kg my= 331 Kg (13.31 Kg fora 10 Kg load)

I,=0.02392 Kgm? 1,= 0.033874 Kgm?( and 0.0490233 Kgm? for 10 Kg load)
A= 0.117841 m A,= 0.17545 m (and 0.234 m for 10 Kg load)

The actuator inertia's are 9.0 E-6 Kgm2 (not referred)
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The postion of the actuators for SCARA type manipulators are not always
positioned as the in the RTX manipulator. For instance in the Adept® manipulator
the motor driving link 2 is positioned at the pedestal along with the motor driving
link 1 so that the reaction torque of motor 2 is not transmitted to link 1. The
dynamic equations for this manipulator are thus different to that of the RTX type
configuration manipulators. The dynamic equations will be derived for both type
of manipulators using the Newton-Euler and Lagrangian techniques. The RTX

manipulator type will be considered initially using Newtons second Law of
motion.

In order to obtain a better understanding of the manipulator two corresponding
free body diagrams have been draw in Fig.3.6, the first representing the Mass
accelerations on the body and the second showing the forces causing the
accelerations. The forces that occur at joint 2 are resolved in the tangential and

radial directions.
From Fig.3.6 the moment balance for link 1 is as follows:
Ty -To+ TyLi=1, 8, +mA 8, (1D

For link 2 the moment balance is :

2
T2=12(61+92)+m2A2 (91+92)+m2L1A251n0201

+myL,Aycos8,6, (3.12)
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) 2 '
mZA2(81+92) 12(01+é'2)

mZAz(el +é‘2)

Mass Accelerations

Figure 3.6. Diagram showing the mass accelerations and forces causing the mass

accelerations for the two link RTX robot manipulator.

Resolving the forces in link 2 in the direction of Ty;:
—Tp=m2L1 01+ m2A2COSB2(61+62) —m2A251n62(6 1t 62) (313)

Collecting terms in T,

.o 2 .o
Ty= (I, +my Ay") B + (myLy Agcosz +mz Az +1,) 8,
. 2
+ my Ll A2 Sinezel (3.14)

Rearranging (3.11) in terms of T, and substituting for T, and Tp gives the
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following:
- 2 2 ..
Tl_(11+m1A1 +12+m2A2 +m2L12+2m2L1A200862)91

2 .. .o
+( 12+m2A2 +m2L1A200862)62—2m2L1A23in626162

.2
-m, Ll A2 Sin6292 (3.15)

Equations (3.14) and (3.15) will now be written in standard notation:

. 2 .2 .

.. . .2 .2 .
Ty=Dpp0,+ D181+ Dyy18; +Dpp0y +Dy120,85+Dy 3.17)

where

D;; is known as the effective inertia at joint i, with an acceleration at joint i,

causing a torque at joint i equal to D;; él .

D;; is known as the coupling inertia between joints i and j, with an acceleration

at joint i or j, causing a torque. at joint iorj, D;;0;.

2

.0 i is the centripetal force acting at joint i, due to the velocity at joint j.

Dij;

Dijk 0 j ék is known as the Coriolis force acting at joint i, due to velocities j and k.

D, represents the gravity forces at joint i.

Comparing coefficients in equations (3.15),(3.14) to equations (3.16),(3.17):

2 2
D11=(Il+m1A12+I2+ m2A2 +m2L1 +2m2L1 A2C0592)

Dy,=( I+ m2A22 +m, L A,cosfy)

D111=0
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Dy =-m,L; A,sing,
D,;; =m,L, A, sinf,

Djjp=-2m,L, A;sing,

The two arm links of the RTX robot manipulator operate in the horizontal plane.
However, it is likely that a SCARA type robot could be mounted in its work place
in a vertical plane. In this situation the links of the arm will be under the force of
gravity. In order to take this situation in to account the torques acting at the joints
must be added to the dynamic equations. As shown in Fig.3.7 the gravity field is
assumed to act in the Y direction. The force due to gravity acts at the centre of

mass.

Figure 3.7. Diagram showing the gravity forces acting on the robot manipulator.

From Fig.3.7 the torque at joint 1 duetolink 1 and 2is :
D1=m1gAlsin81+m2g(L1sin61+Azsin(el+92)) (3.18)

D,=myg Agsin(87+085) (.19
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The dynamic equations can now be expressed in matrix form:

T = M(8) 6 + V (8,0) + G(0) (3.20)
where
M(0) is an n*n inertia matrix

V(6 ,é) is an n*1 vector of centripetal and Coriolis terms
G(8) is ann*1 vector of gravity terms

L2 o
1| PPz 9, D12,02 +D1120,1 0, D,
-0 s o + (3.21)
21D22 |1 6, Dy, 6, D,

In order to obtain the dynamic equations in the forward dynamic format i.e. so that
the motion of the manipulator can be observed for a given control input. The

matrix equations of (3.23) are rearranged in terms of the joint accelerations:

5=M"'@)[T-V@©,) -G®)] (3.22)
-1 1 Dy, -Dip
h M 0=
where ©) Dy Dyy- D2 Dy ['D21 Dy,

3.3.1 Lagrangian applied to the RTX

The Lagrangian is now applied to the manipulator of Fig.3.6. For link 1 the total
kinetic energy is the rotational energy that it has about the Z; axis( at the origin of
the X and Y axes out of the page). The inertia about axis 0 form the parallel axis is

theorem is :

I =L+m A 2 where I, is the inertia about the centre of gravity

Iy is the inertia about the axis of rotation 0.

The kinetic energy of link 1 is thus:
1 26, (3.23)
Kgi=5 (I3 +mpAr) 0 :

2
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Link 2 has rotational Kgp, and translational K, energy. The rotational energy
about the centre of gravity is :

1. . . 2
Kere=51,(0,+8,) (3.24)

The translational energy is found be first differentiating the position vector to the
centre of gravity of link 2 as follows:

X,=L;sin@;+A;sin(8,+6,)

Y2=L1C0591+A2COS(91+92)
X,=L,cos8, 6, +Acos(0,+6,)(8;+6,)
Y2=-L1$inelél-Azsin(el+92)(é1+é2)

Squaring the velocity terms and summing gives:

22 .2 g2 2 L2
X2 +Y2 =L1 91 +A2 (91 +02 +20192)+2L1A2C0592(81 + 9192)

Hence the total kinematic energy of link 2 is:
1 L. 2
KE2=§IZ(91 +92)

1 9.2 7 .2 .2 . .2 ..
+7m2(L1 01 +A2 (01 +02 +26192)+2L1A2C0892(01 + 0192))

Hence the Lagrangian is the total energy of the two links minus the potential

energy. The potential energy is zero on the horizontal plane.

1 ) .2 1 .2 .2 . .
L =7(11+m1A1 )01 +712(91 +9, +26,03)
1 2 2 2 . 2 .2 .. .2 ..
+_2_m2(L1 81 +A2 (91 +92 +28192)+2L1A2C0592(91 + 9192))

(3.25)

The torque for each axis can now be found directly by application of

equation (3.7):
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oL 2. . . .
=L +mya;")0,+1,(8,+6,)
09 ,
2 2 . . .
+m2(L1 61+A2 (e1+62)+2L1A2C0892(81+%—62)

doL _ 2 .. . .. 2. 92 .- ..
—=(I;+m;a;7 )0, +1,(0,+6,)+my(L; 8, +A,7(0,+0,)
dtde
-1 . .. 1. 2
+2L1A2c0392(91+—2~92)-2L1A23m92(9192+792 )
oL _
90 |

2 .
T1=(Il+m1A1 +12+m2A22+m2L12+2m2L1A200592)91
+ ( 12+ m2A22+m2L1 Azcosez).0.2-2m2L1A2Sin928.1é2

.2
"m2L1 A2Sin9292

The same result as found previously in as shown in equation (3.15).

Similarly T, can be found by application of equation (3.5):

—a—¥i=12(8.1+€.)2)+m2(A22(él+92)+L1A2C0592)
2,
" =12(81+82)+m2(A2 (9]+92)—L]A28m929192+L1 AzCOSOzel)
dtadf,
oL . SN 6
59——=—m2 L1A281n92(91 +91 2)
2

Hence, T, is as follows:

.o 2 .
T2=(12+m2A22)92 +(myLy AgcosBy+my Ay +15) 8

.2
+m2L1 Azsin9291

i e the same result previously as in equation (3.14)
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The case where the joint actuators for the SCARA type manipulator are positioned
both at the pedestal will now be solved using the Lagrangian technique. The
generalised coordinate for link 2 is now chosen to be the absolute angle that link 2

makes with the Y axis rather than the relative angle to link 1 as shown in Fig.3.8.

Centre of gravity
m, of link 2

Centre of gravity
of link 1

>
X

Figure 3.8. Diagram showing the generalised coordinates for the remotely driven

SCARA type robot manipulator.

1 2,4 2
KE1=_2_(Il+m1A1 )91

2 s, 2 5.2 o
K=y Tpb +pma(Li"8; +A2" 0 + 2L Aycos(0-6,)010)

1 2 . 2 1 .2
L=§~(Il+m1A1 )01 +§I2¢ +

! 2 2 A 26 +2L, Aycos(®-8,)6,0)
fm2(L181+A2¢+ 1 Apcos(0-9)0,

oL (11+m1A12)é1+m2(L1261+ L, Aycos(d-8,) )

6,

—@ITJ‘Z(II+m1A12).e'1+
dt 09,

my (L, 28 - Ly Aysin(@-9,) (68, 6+ Ay cos(@-6, )0 )

_a_I_‘_=m2Ll Azsin((b-el)éld’
00
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Hence T, is found to be :

_ 2 2 .o .o '2
(3.26)

Since 8,+ 0,=¢ then substituting in (3.26) gives:

2 ..
T1=(Il+m1A1 +m2L12+m2L1A2C0592)91

. . .2
+myLyA;cos0,0,-m,L; A,sin,(0,+6,) (3.27)

For link 2 :

oL . 2 :

-a—(,b-=12(b+m2A2 (1)+m2L1 A2COS(¢—01)91

d_é—5=12¢+m2A2 ®+myL; Aycos(@-0,) 0, -myL; Aysin(@-0 )(9-6) 6
t

L . . .

%6=-m2L1A251n(cb—91)91<b

. .. _ 2
Ty= (Tp+myAy°) & +myLiAycos@-8 ) 8+ myLy Agsin(0-0,)8, (3.28)

Using the substitution 0;+ 0,=0 in equation (3.28) the result is the same as
found previously in (3.14). When link 2 is driven from the pedestal the same

torque is required to drive it as would be expected. However, the reaction torque

is no longer reacted in link 1 so that if T, is not included in equation (3.13), in the
Newton method, the torque equation for T, becomes the same as the Lagrangian

result in equation (3.27).

So far two possible configurations of the motor attachment to the links have been
considered. However, another possibility is if the motor driving link 2 is attached

to the base but drives link 2 via a drive ratio(gear box or pulley mechanism) fixed

to link 1. But since the intermediate drive is attached to link 2 according to

Newtons law, 'for every action there is an equal and opposite reaction’, hence the
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torque T, driving link 2 will still be reacted in link 1 irrespective of the torque at

the motor side of the drive.

3.3.2 Meaning of the terms in the dynamic equations

1) Effective inertia terms D,,andD,,

The effective inertia about joint 1, D, = Inertia link 1 + Inertia link 2(about joint 1)

Inertia of link 1 about joint 1=I,+m, A 2

Inertia of link 2 about joint 1= I, +m, R? where R is the distance of the

centroid if link 2 to the joint 1 axis as seen in Fig.3.9 :

Applying the cosine rule to find distance R to Fig.3.9:

RZ=L,>+A,” - 2L, A,cos(180-9,)

but cos(180-6,) =-cos(8,) therefore

RZ=L,>+ A2+ 2L, Aycos(®,)

Dyy =1 (1, +my A2) + (Tp+my Ly 4my Ay +2m, Ly Ay cos(@8,)) ]

Link 1 Inertia Link 2 Inertia
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Centre of gravity
of link 2

R the perpendicular distance from the
C.G of link 2 to joint 1 axis.
Angle=180-6,

Centre of gravity
of link 1

>
X

Figure 3.9. Diagram showing how varying inertia depends upon the arm
configuration.

Inertia of link 2 about joint 2 using parallel axis is:
Dpy= I+ m, A
2. Coupling terms D,

If the case is considered when 6 1= é2= 61 =0 thenT; =D, 0,

For the RTX the motor driving link 2 is positioned in link 1 so that the torque T,
is reacted in link 1 as seen in equation (3.11). As seen in this case the terms in

equation (3.12) due to T, are :
2 .o
(I +myA; )0,

The other term in the coupling coefficient is due to the coupling force at the joint

T. as seen in equation (3.13). The tangential acceleration of link 2 resolved in the
p

direction of T, causing a torque :

m, L, Azcosezéz

Similarly, when the case is considered 8 ; = 0,= 0,=0 then T;=D;,0,

from equation (3.14).
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3. Centrifugal terms

If the case is considered when 6 ,= 6, = 2=0

The motion of link 1 causes link 2 to be swung out in the direction of Rp as shown

in Fig. 3.6 Mass Accelerations. The torque on link 2 due to this centrifugal force
is thus :

.2
TCem= m, Ll A2 sin@ 2 0 1

Similarly, if the case is considered when 6 ; = 6 , =6 , =0

The centrifugal force of link 2 causes a force in link 1 as seen in the equation

(3.13) for T,. This torque is thus equal to:

2
Teent=-mp Ly Aysing, 0,

4, Coriolis terms D1,

When a mass m moves at a velocity V_relative to a moving coordinate frame

rotating at an angular velocity ®, the mass is acted on by a Coriolis force given by:

2m(w*V.) (3.29) where * refers to the cross product

If the case when the two joints rotate at velocities 0 1 and 8 , at the same time is

considered as shown in Fig.3.10:
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L1 sing, >
Figure 3.10. Diagram showing the Coriolis effect in the robot manipulator.

If a coordinate frame X -Y_is attached to the tip of link 1,as shown in Fig.3.10, it

moves with the angular velocity of link 1 and at that instant is parallel to the base
coordinate frame. The relative velocity components of link 2 to the relative

coordinate frame are :

V., =A,6,c050,+0,) Viy=-A,0,sin(®;+6,)

w= 0,+0,-0,,

Using equation (3.29) to determine the force components :
F,=+2myA;sin (91+92)él(§2
Fy=-2m2Azcos(61+62)élé7_

The resultant force thus acts parallel with link 2 and causes a torque of T, on link

1 of magnitude:

Tcor=2m7_L1 Azsinezéléz

This is the value shown in equation (3.15) for T,.

The equations (3.26),(3.28) for the SCARA type manipulator with the second link

driven by a motor mounted on the pedestal will now be discussed.
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The T, equation remains the same except the relative angular displacements and

the derivatives are converted in terms of the 8, and ¢. The effective inertia of link

2 remains the same while the coupling inertia is reduced to:

D12 =m, Ll A2 COS((D—'G 1 )
The effective inertia of link 1 is now reduced to :

2 2
Dll =Il+m1 A] +m2L1

where since the torque T, is not reacted in link 1, joint 1 only sees the inertia of
link 1 about joint 1 , plus the mass of link 2 acting at the link 1 which is

transmitted by the joint coupling forces(T )"

There is no Coriolis force because now the choice of reference frame for link 2 is

not rotating with respect to the fixed plane.

The centrifugal terms remain the same since these terms are still transmitted at joint

2 by the coupling forces.

To conclude this chapter in comparing the equations for the two types of SCARA
motor configuration it is seen that for the remotely driven link 2 the non-linear
terms have been reduced. The effective inertia in link 1 is not variable as in the

RTX and there is no longer any Coriolis term in the torque equation for link 1.
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Chapter 4:Control Strategies
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Chapter 4 - Control Strategies

4.1 Introduction

The control of robot manipulators has attracted a great deal of interest in recent
years and hence there has been an abundance of literature published on the subject.
The design of control systems for robot manipulators requires an understanding of
the dynamics of the manipulator in order to appreciate the challenge that it
presents. As seen in chapter 3 the dynamics of the manipulator are represented by
second order, highly coupled non-linear equations. This makes designing a
control system for the manipulator extremely difficult since well established
classical design methods were developed for linear systems. In this chapter the
various approaches to robot manipulator control system design are reviewed and
the limitations of the current knowledge highlighted.

The methods of approach to robot manipulator control system design can be

broadly classified into three categories:
1. Joint Motion Control (JMC)

2. Resolved Motion Control (RMC)

3. Adaptive Control (AC)

4.1.1 Joint Motion Control

In JMC the error signal to the controller is obtained from the difference between
the desired joint position and the actual joint position . The desired joint position is
obtained from the conversion of the cartesian set points into joint set points using

an inverse kinematics algorithm.

4.1.2 Resolved Motion Control

In RMC the error signal to the controller is obtained from the difference between
the Cartesian set point and the actual cartesian position. The Cartesian position is
obtained by converting the actual joint positions using the forward kinematics. The
error signal in Cartesian space is then converted, using an inverse kinematics

algorithm , into equivalent joint error space.
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4.1.3 Adaptive Control (AC)

Adaptive control systems differ from the two previous categories in that they can
adapt to changes in the dynamics of the system. They usually do not require the

parameters of the system to be accurately known.

The three broad classes of control schemes can be subdivided into more specific
categories. First the JMC schemes are considered:

4.2 Joint Motion Control schemes

a) Independent axis control

b) Computed torque

¢) Minimum time control

d) Variable structure control

e) Non linear control

f) Cerebellar model articulation control
g) Fuzzy logic

The notation that will be used to represent the manipulator is that used previously
in chapter 3 equation (3.22) representing the dynamics of the manipulator::

T =M(®)6 +V (6,0) +G(®) @4.1)
where

M(0) is an n*n inertia matrix
\AC ,0) is an n*1 vector of centripetal and Coriolis terms
G(9) is an n*1 vector of gravity terms

. 2 ..
o_[Dupn][81] | Prz2l2 # P00 +[D1] (4.2)
Dy;1Dy |10, D, 0; D2

Independent axis and computed torque control will be considered together.
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4.2.1 Independent axis and Computed torque

The basic control structure of these two methods can be represented by the

following multivariable block diagram, Fig.4.1.

Computed inertia

gain
84 T ’ + T 0,
—»{ Servo a |- Manipulator
A u
0o

Feedforward B

element /
3

Figure 4.1. Showing the structure of the computed torque controller.

As seen in Fig.4.1 the structure of the control system involves a servo portion
multiplied by a inertial gain term and a feedforward element. The ouput joint
angles and their first derivatives are fed back to the servo and used in the

calculation of the feedforward element.

In traditional control system design for robot manipulators each axis of the
manipulator is considered as an effective inertia and all coupling terms between
axes are ignored. This type of control system design method is referred to as
independent axis design. This type of design is evident in many current industrial
. robots e.g. the Puma 560 series of robot arms as described in Fu’. The Puma 560
series use a PID closed control around each axis, the controller coefficients of are

fixed gain.

In the notation used for two axes of the manipulator the control system is of the

form: . )
Let E=04-6, and E=04-0,

T, =K, By + Ky E+ Ky [Edt

T, =K, By + Ky E+ Ky, fEdt
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=1
where I is a 2 by 2 identity matrix
B=0

and I%i is the proportional gain controller coefficient
K, is the derivative gain controller coefficient

K, is the integral gain controller coefficient.

The justification for using this type of control system is that the coupling terms are
neglible compared to the inertia torque. This is sometimes the case when the
gearing between actuator and link axis is high. However, if the coupling terms are
significant then they can substantially affect the performance of the manipulator,
particularly at high speeds. In fact there is no literature to my knowledge on
independent axis control systems that shows how the coupling terms affect the
manipulator dynamic performance. This is a particular line of research that will be

pursued by the author in this thesis.

The computed torque method is a model based control system design it is
sometimes referred to feedforward control. It requires the parameters of the
manipulator to be accurately determined. The method was first used by Paul® on
the Stanford robot and also by Bejczy®. The design of such a controller is
presented in the form of a tutorial by Luh'®.

The principle of the method is to make the non-linear manipulator appear to act as
a unit inertia by feeding forward the computed values of the coupling terms. The
servo portion of the controller is then added to the computed torque in order to

steer the system in the presence of disturbances that cause errors.

The controller is of the form:
T=aT+f (4.3)
Jet 1(8) = Diagonal inertia matrix
1 (8) = Off diagonal inertial coupling matrix
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and subscript ¢ refers to the computed values of the parameters

a=1(0)
B=1I,(q)+V.(0,8)+Gq)

The servo portion of the controller can be a number of types, for instance consider
a PD system with acceleration feedforward as follows:

T=84+K,(84-60)+K,(04-6,)
where

I% is the proportional gain controller coefficient

K, is the derivative gain controller coefficient

Hence, the computed torque to the manipulator's actuator is:

T=100)(84+K,(84-69)+K,(0,4-0,))+
I (0)+V(0)+G(©®)  (4.4)

This can then be equated to equation (4.1) for the actual system:

10) 6 + V (8,8) + G(B) +I,(8) 8 =140) (84 +K,(64-69)+K,(84-6,))
+1,,0)84+V.(0,0) +G.(0) (4.5

Providing V. (6,8) = V(68,8) ,G0) =G(8) and 1(6) =1(6)

Then the actual nonlinear parameters of the left hand side cancel with the
corresponding computed values on the right hand side.

The transfer function for the system is as follows:

_(SP+K,S+K,)1L0) 8,

0= (4.6)
10) S+ 1,0) K, S + I(O)K,,

Let 1.(8)/ [(0)=C then equation(4.6) can be written as:
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=(SZ+KVS+KP)9d
$?/C+K, S +K,

o

4.7

For this particular controller, providing 1(8) =I(8) then the numerator cancels

with the denominator and there should be perfect dynamic tracking. This can
written alternatively as follows:

(B4-0)+K,(04-0,)+K,(04-6,)=0  (4.8)

Substituting for the difference between the desired and actual joint angle equation
(4.8) becomes:

E+K,E+K,E=0 (4.9)
where E=0 -0

This is the system equation in error space and has the form:
2 2
S +2tw,S+w, YE=0

Hence, the controller coefficients can be chosen to give the desired natural

frequency and damping ratio.

There are many possible combinations of servo control possible for
implementation with the feedforward controller. It is not evident in the literature
which of the combinations perform the best in dynamic tracking particularly when
the feedforward component is not present. The servo controller must deal with the
full force of the coupling terms in these circumstances. This is a particular area of

investigation that the author feels is worth pursuing.

The literature to date on the computed torque has shown mainly simulation results
however, An!! in 1986 show experimental results for the MIT serial link direct
drive arm. He tested a PD control system on each axis of the manipulator and then
added to this an off-line computed torque method and an on-line computed torque
method. A fifth order polynomial in joint space was used to generate the
trajectory. The tracking ability of the PD system alone was significantly improved
upon with the introduction of the off-line feedforward dynamics for the first two
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axes. The third axis tracking ability was not improved upon due to the dominance
of unmodelled dynamics in the motor and the small inertia of this axis. The on-line
computed torque method did not show any significant performance over the
off-line computed torque method.

4.2.2 Minimum time control

The objective of minimum time control is to minimize the time taken for a
manipulator to move from an initial position to a final position. This is a time
optimal problem that Kahn!? investigated. The performance index that this to be
minimized is thus defined is the task cycle time. Due to the fact that the equations
of the manipulator are nonlinear only a numerical solution to the equations can be
found to the time optimal problem that does not take into account the system
disturbances. Additionally the solution would have to be computed for each
manipulator motion which for real time tracking would be unsuitable. To over
come these problems Kahn proposed an approximation to the time optimal
problem by representing the nonlinear equations by their linearised versions. This

method of approximation was referred to as near-minimum time control.

The method was shown to give reasonably close results to the time optimal
solutions. The method is extremely complex for manipulators having more than
four degrees of freedom. The effects of unknown disturbance loads is not taken

into account in the solution.

4.2.3 Variable Structure Control

The strategy of variable structure controller design is totally different to
conventional control system designs. Normally control systems have a fixed
structure, in variable structure systems the structure of the controller changes as a
function of the states, to achieve certain desired objectives. It is often referred to as
sliding mode control and was a theory for designing switching feedback
regulators. It was developed primarily in the Soviet Union as an outgrowth of
earlier work on open loop minimum time 'bang bang' control. The control method

can be explained by considering a second order system with position feedback in

equation (4.10):
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X+ax+(b+tK)x=0 (4.10)

The structure of the system in the phase plane depends upon the value of K and
the trajectories of the system can be a number of types. For example if a=0 and K
takes the following values:

K=a-b , K=-a-b for a>1

The corresponding trajectories that the system follows are either elliptical or
saddles as shown in fig.4.2 below:

)‘(‘ \X—/’;(-\/Otx=0
RPN
N/BNPAN

a) b)

Figure 4.2. Showing the trajectory types of elliptical or saddle.

If the phase plane is divided into four regions Fig.4.3 a) and switching occurs at
the boundaries of each region and the switching control is chosen to be:

R

N Y-

LN \\{\
b)

a)

Figure 4.3. Showing the resultant trajectories when switching occurs.
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U(t)=(a-b)x inregions1and?3
U(t)=(-a-b)x inregions 2 and 4

The resultant closed loop trajectory then takes the form shown in Fig.4.3 b). The
resulting system is globally asymptotically stable even though the two feedback

sytems from which it was formed were stable and unstable respectively.

The trajectories of the closed loop switching system were obtained from parts of
the non-switching feedback systems hence, the trajectories resemble a
non-switching trajectory at finite intervals. Trajectories can be obtained that do not
resemble the non-switching trajectory. For instance instead of switching on the

line shown in Fig.4.3 a) it is possible to switch on the line defined by say:

x+cx=0 where 0 <c< Yo

If the sytem with elliptical trajectories is made to switch on line L,;=C, the and

the saddle system is made to switch on the line L, with C=C, (C,> C,) and the

initial conditions are:
x(0)>0 andx(0)>0

Then the trajectory is an elipse until it hits L;, at which point it switches to the
saddle trajectory moving towards L, . When switching occurs again on L, the
trajectory is elliptical again until it reaches L,. The resulting trajectory remains in

the shaded area R and zigzags to the origin as seen in Fig.4.4. If C, and C, tend

to C then the trajectory switches with infinite frequency on the line :
x+cx=0

resulting in a zigzag line. This rapid switching would not occur in a physical
system since there are always delays. However, it is possible to idealise the
situation and say that the trajectory is forced to remain on the switching line. The
trajectory moves slowly down the switching line to the origin and is said to be in
the sliding mode. The motion is no longer composed of the subtrajectories but is a
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new motion altogether,

Ly

Figure 4.4, Showing the trajectory when switching occurs between two lines.

The motion along the switching line is defined by the equation :
x+cx=0

it is independent of the original system parameter b, providing the sliding mode

continues to exist. This is in essence the approach to variable structure systems

design.

In Young!3 a variable structure controller was designed for a two degree of
freedom manipulator and tested in simulation for a step input demand in each axis.
The control system was shown to perform well in idealised conditions. Others
who have applied variable structure design approach to robot manipulators include
Staszulonek!4, he inertially decoupled the axes of the manipulator and then applied
the design method. The manipulator was found to perform 40% better than a PID
control system in simulation. Also Harishima!> applied the principle of variable
structure systems to a manipulator control system design. However, a non-linear
compensation term was also used in the design. The system was tested in
simulation tracking a trajectory and was found to perform reasonably well. To my

knowledge the variable structure system has not been tested experimentally.

The advantages of variable structure design is that it requires less prior knowledge
of the parameters of the system. Providing a sliding mode is obtained the system
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remains insensitive to parameter variations and disturbances and hence, nonlinear
interactions between joints can be eliminated. However, the variable structure
control produces a discontinuous feedback control signal which changes sign

rapidly which could excite structural resonant frequencies of the system.

4.2 .4 Nonlinear control

In nonlinear control the objective is to determine control laws that decouple the
nonlinear equations of the system and allow the poles of the system to be
arbitrarily assigned. Freund!® applied a nonlinear decoupled control to robot
manipulators. The result was a nonlinear statefeedback controller that required full
state feedback of all joint angles and velocities. The controller is very similar to
Luh's!7 resolved acceleration control system(this is considered later in the
chapter). The method was tested in simulation and was shown to perform far

better than an equivalent linearised control system.

4.2.5 Cerebellar Model Articulation Controller(CMAC)

The CMAC is claimed to be an adaptive controller however, it appears to be better
classified as a learning controller since it does not adapt in real time but changes
controller gains according to previous knowledge of other paths. The CMAC was
devised by Albus!819 and is based upon neurophysiological theory. The method
does not require modelling of the dynamics of the manipulator. It requires the
manipulator to be taught a motion, while it observes and records the joint variables
during the motion. The internal parameters of the system are then adjusted in
direction that is calculated to improve upon the tracking ability. A large number of
discrete paths must be stored from which interpolated paths can be generated. The
method requires the necessity to control a large amount of computer memory. The
accuracy of the interpolated path may not be within the tracking requirements. This
method has not been tested experimentally by Albus and has not been researched

by any other authors.

4.2.6 Fuzzy Logic Controller

Fuzzy logic controllers were initially developed over the last two decades for the
control of cement kilns in Spain and a number of industrial applications in

Denmark. The derivation of transfer functions for the control design of cement
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kilns was found to be extremely difficult if not impossible. So the control of the
kilns was characterised by a set of Fuzzy logic rules. These were then used as
means of establishing a control strategy. The Fuzzy logic rules do not change
during the course of execution of the controller. The idea of Fuzzy logic has
recently been applied to the control of robot manipulators by Scharf?0:21,
However, Scharf developed what is termed a Self Organizing Controller(SOC)
which acts as a learning controller.

In Scharf's controller is a fixed fuzzy rule based controller which defines the
control strategy and an additional SOC capability which enables it to create and
modify the rules in the rule base. The controller receives the joint error and change
in joint error signals. The manipulator used was of a jointed type and was tested in
tracking a vertical square trajectory. The fuzzy logic controller was shown to
exhibit less deviation from the required path than a fixed term PID controller that
was also tested on the same trajectory. The speed that is was required to track at
was not mentioned and thus it should be questioned how stable the system is at
high tracking speeds and also whether the SOC could cause instability in certain

circumstances.

4.3. Resolved Motion Control schemes

These can be divided into two sub-classes:

a) Resolved motion control
b) Resolved motion acceleration control

4.3.1 Resolved motion control

The idea of resolved motion control came about by the need to control human
prostheses in coordinated motion.In this type of application the desired motion
rates are specified in world coordinates rather than at joint level. In order to
coordinate a jointed arm in world coordinates Whitney?” made use of the Jacobian
that relates differential motions in cartesian space to differential motion in joint

space, as discussed in chapter 2. Hence the basic relationship between joint

velocities and cartesian velocities is :

82



X=J8 (4.11)

where J is the Jacobian

In order to specify the cartesian velocities the inverse Jacobian is found and thus
we have :

C 1y .
9=J X where J ! is the inverse Jacobian

The multivariable control system block daigram is of the form shown in Fig.4.5:

-1 Joint
T(e) Controller Arm

J(8)

Figure 4.5. Showing the multivariable block diagram for resolved motion control.

As seen in Fig.4.5 the inverse Jacobian is used to convert the Cartesian velocitiy
error into equivalent joint velocity error.The joint velocites which are fed back are
converted into Cartesian velocities using the Jacobian. There can be a number of
types e.g PD, PID etc. This is basically independent axis control since the
dynamic coupling between joint axes is not taken into account.

4.3.2 Resolved Motion Acceleration Control

This is an extension of the concept of resolved motion rate control by Luh!7 to
include acceleration control. Again the desired position and orientation of the hand
are assumed to be known in advance including the accelerations. If equation

(4.11) is differentiated with respect to time to find the acceleration relationship:

X=J8+18 (4.12)

where J is the derivative of the Jacobian.
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The controller in Cartesian space is of the form :

.

Xat+ Ky (Xg-X)+ K, (Xg-X) =X (4.13)

Where the actual cartesian positions are found by using the forward kinematic and

Jacobian algorithms. The required joint acceleration is found by substituting
equation (4.13) into (4.12):

.. . -1 .s . . s A
0=-K,0-1J [Xg+ K, (Xg-X)+K, (Xy-X)-16] (4.15)

The control torques to the manipulator can then be calculated, (with the knowledge
of the required joint accelerations of equation (4.15) together with the joint

velocities and positions fedback from joint transducers), from equation (4.1).

A simulation of this method was tested by Luh!? on the Stanford six degree of
freedom manipulator when following a required trajectory. The method was

shown to work reasonably well in this simulated test.

The resolved motion acceleration control method requires extensive computation
associated with calculating the Jacobian in real time and there are problems if the
manipulator passes through a singularity. The method has not been implemented

practically to my knowlege.
4,4 Adaptiv ntrol

Many of the control methods considered so far rely on the parameters of the
manipulator to be accurately known. However, when the parameters cannot be
determined accurately this will result in tracking errors occuring. Also the
manipulator may be required to pick up a pay load of unknown mass which could
drastically affect the performance of the control system. In order to make the
control system more robust i.e. insensitive to parameter variations or unmodelled
dynamics, considerable research has been carried out in developing adaptive

control algorithms. The adaptive algorithms can be divided into three

sub-categories :

a) Model Reference Adaptive Control (MRAC)
b) Self Tuning Control (STC)
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¢) Adaptive Perturbation Control (APC)

4.4.1 Model Reference Adaptive Control

In MRAC the manipulator is modelled by a set of differential equations. The
controller gains of the feedback control system are adjusted by an adaptation
algorithm that is driven by the error between the actual manipulator response and
the response of the model. The basic block diagram for this type of control system
is shown in Fig.4.6 below:

Oaq Controller Robot 0
_ Variable {——— Arm
Gains

T Feedback

Variable
Gains
Adaptation
Algorithm

Modelled

Robot

Armm

Figure 4.6. Block diagram showing the structure of Model Reference Adaptive
Control(MRAC).

One of notable researchers to have applied the method of MRAC to robot
manipulators was Dubowsky?3. He applied the method to a six degree of freedom
jointed manipulator in which the payload was combined with the third link since
the hand was considered to be neglible distance from the wrist axis. The first three
axes of the manipulator were modelled by second order time invarient differential
equations. The coupling between the three axes was not considered in the

analysis. The structure of the controller was proportional with velocity feedback.
The adaptation algorithm was based upon the steepest desent method that

minimises a quadratic function of error between modelled response and actual
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response. The MRAC was tested in simulation in which the manipulator was

required to perform a number of pick and place type operations. It was seen to
perform far better that the fixed gain equivalent controller.

The advantages of MRAC are that does not require complex modelling of the
manipulator dynamics. However, stability considerations are critical and
Dubowsky used a linearised model for this purpose. They tested the control
system at relatively slow speeds in which the dynamic coupling between joints
may be justifiably small but at high speed the control system may not perform so

well or could go unstable. There is still a lot of work to be done on this type of
controller.

4.4.2 Self Tuning Control (STQC)

The characteristics of STC are a identification algorithm, a control sysnthesis
algorithm and the controller implementation. A block diagram of the STC structure
is shown in Fig.4.7 below:

04 8
> Robot

Feedback

l&—— control ————
system

1

Control
Synthesis
Algorithm

T

Identification
@¢——|Algorithm  [@&——

Figure 4.7. Showing the basic structure of a Self Tuning Control system.

This method of control was applied by Koivo?* to the control of a manipulator.
The control algorithm was designed assuming interaction between joints was
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neglible. An autoregressive model was used to identify the parameters of the
manipulator and an optimal controller synthesis algorithm. Simulation results were
presented which showed resonable tracking ability. The advantage of this type of
method is that the parameters of the manipulator do not have to be accurately
determined. However, it is questionable with this controller design whether it
could identify system parameters at a fast enough speed to benefit the controller
implementation and whether it would be stable at high speeds.

4.4.3 Adaptive Perturbation Control (APC)

This method was used by Lee?d, it differs from the other adaptive control
methods considered so far in that the coupling between joint axes is taken into
account. This is done by computing the nominal torques required to achieve the
desired trajectory. The adaptive part of the method is based on the linearised
perturbation equations in the vacinity of the trajectory. The manipulator equations
are linearised about the planned trajectory to obtain the linearised perturbation
equations. The feedback controller computes the perturbation torques which will
reduce the position and the velocity errors along the nominal trajectory to zero.
The perturbation linearised equation coefficients are identified using a recursive
least squares identification algorithm. The perturbation torques are obtained from
an optimal control system. This type of adaptive controller reduces the nonlinear
control problem to controlling the linear system about a nominal trajectory. The
block diagram for this control strategy is shown in Fig.4.8 as follows:

T

n

04 Computed | + Robot 0

Nominal Arm
Torque
T +

P

Optimal
Controller

'\

Recursive
Least Square
Identification

Figure 4.8. Showing the structure of Adaptive Perturbation Control.

The method was tested in simulation and compared to an equivalent PD controller
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and was found to exhibit better tracking ability under various degrees of modelled
inertia uncertainty.

4.5 Concluding remarks

The control of a manipulator has seen to be particularly difficult due to its
nonlinear dynamics. The solutions that have been postulated by previous
researchers try to achieve suitable control of the manipulator by compensating for
the nonlinear dynamics of the manipulator. It is apparent from the literature that
many of the control methods have not been tested at high speeds of tracking and it
is questionable whether they would retain stability at high speeds. The question of
how the nonlinear dynamic coupling terms affect the dynamic tracking ability has
not been satisfactorily proven to the author's knowledge. The question of how
relevant the dynamic coupling terms are particularly those due to the Coriolis effect
and Centrifugal effects has not been satisfactorily established. In order to clearly

answer these questions the author proposes in this research the following:

1.To set up realistic trajectory tracking situation such as a manipulator required to
track a part on a conveyor.

2.As an example, a Scara type manipulator will be used in the tracking problem,
this exhibits the characteristic dynamic coupling effects in its two horizontal
jointed links.

3.To establish the significance of the coupling terms by computing the torques
required for the manipulator to follow the trajectory.

4.To establish the relevance the coupling terms when a number of typical
independent axis control schemes are applied to the manipulator, which are the

basis for the computed torque technique.
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Chapter 5:Off-line Path and Trajectory
Trajectory Planning
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Chapter 5 : Off-line Path and Trajectory Planning

5.1 Introduction

In this chapter, as an example, a study is made of a two degree of freedom robot
manipulator that is required to carry out an operation on a part on a moving
conveyor(as described in Groover?®). The path is planned as a straight line
between points. In planning the trajectory a linear function with parabolic blends
via points is used. The trajectory is planned in Cartesian coordinates, these points
are then converted into joint angles using an inverse kinematics algorithm. The
Cartesian velocities and accelerations are converted into joint space equivalents

using the inverse Jacobian and its derivative.

The dynamic equations of the manipulator are used together with the planned
trajectory to calculate the expected load torques. The load torques are then referred
back to the motor in order to calculate the expected motor torques. The motor
characteristics are then used to assess whether the motor can achieve this particular

path.

The significance of the terms in the load torque dynamic equations are examined.
Each load torque term is expressed as a percentage of the total torque and the
maximum percentage that each term takes is used as a measure of its significance

for a particular path and trajectory.

5.2 Path and Trajectory Planning

In planning the path and trajectory the user is usually required to specify the start
and finishing positions in Cartesian coordinates. The robot manipulator may need
to pass through a number of via points in order to avoid collisions, these will be
specified as well. The time duration between points will also be specified. From
this information the path and trajectory planning algorithm will work out the

complicated details of the trajectory.

The path and trajectory can be planned in either Cartesian or joint space. In
planning the path in joint space, each path point(or corner point) is specified in
Cartesian coordinates. Each corner point is then converted into a set of desired
joint angles using the inverse kinematics algorithm. A smooth function is then
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chosen which will pass through these desired joint positions. The time between
points is the same for each joint so that each joint reaches the desired joint position
at the same time so the correct Cartesian position is obtained at each corner point.
The shape of the spatial path taken by the end effector is not a straight line through

space but a complicated shape depending on the kinematics of the manipulator.

In planning the path in Cartesian space the spatial shape of the path that the end
effector takes is chosen. The most common path specification is a straight line
path. This type of path specification is called Cartesian straight line motion.
Having planned the path and trajectory in Cartesian coordinates it is necessary to
convert these points into equivalent joint angles, velocities and accelerations using
the inverse kinematics algorithm. However, with Cartesian planning there are a
number of problems relating to workspace and singularities. It is possible to
specify a start and end position which is well within the manipulator's workspace,
but the intermediate positions may not all lie within the workspace. Also there are
locations in the manipulator's workspace where it is impossible to choose finite
joint rates that do not yield the desired velocity of the end effector. This occurs at
the boundary of the robot manipulator's work space. The planned path and

trajectory must thus lie within the manipulator’s work space.

The choice of the method of planning depends upon the application. There are a
number of problems associated with Cartesian schemes so it is beneficial to use
joint space schemes as a default. A typical application where a joint space scheme
would be used is in a pick and place operation. Here the path is specified as a
number of corner points which the end effector is required to pass through. The
spatial path of the end effector between points is unimportant, provided it avoids
collisions, and is not usually specified. However, in the example that will be
considered later in the chapter , of a manipulator required to track a part on a
conveyor, it is necessary for the manipulator's end effector to travel along a

particular spatial path. Tt is evident that a Cartesian scheme is required in this

particular application.

To achieve smooth motion between points it is necessary to choose a smoothing
function that gives, as a bare minimum, continuous position and velocity. It may
also be necessary to have continuous acceleration and possibly derivative of
acceleration or Jerk'. This can be achieved in a number of ways either in joint
space or Cartesian space. The smoothing function chosen is applicable to both
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joint and Cartesian schemes. One method is to fit a polynomial that will satisfy the
end constraints of each pair of corner points.

5.2.1 Polynomials

The order of the polynomial will depend upon the number of end constraints that

are specified. For example with a cubic polynomial four constraints may be
specified:

Initial position, xq
Final position, x¢
Initial velocity, X
Final velocity, x;

Where the cubic polynomial is of the form:

x(t)=ag+a  t+a, o +as 0 (5.1)
X()=a, +2ayt+ 3250 (5.2)
K()=2a,t+6ast (5.3)

The coefficients of the polynomial may be solved in terms of the end constraints:

290=X0
a;=Xg
3 2. 1.
=—(Xf-Xg)-TXp-7X
tg
2 1, . -
a3=—3-(xf'xo)+—;(xf+x0)

tf te
Hence, with a cubic polynomial it is possible to specify the initial and final
position and velocities together with the total time of the motion t;. The plots for a

cubic polynomial where the velocity end constraints are zero are shown in

Fig.5.1.
Higher order polynomials are sometimes used when it is necessary to specify a

greater number of end constraints. For example, a quintic polynomial is required
in order to be able to specify position, velocity and acceleration. If the quintic
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polynomial is represented by the following equation:

_ 2 3
x()=ag+a t+ayt+ast +a,t +ast -(5.4)

Position *

Time(sec)

Velocity

Time(sec)
Acceleration *

SN
~,

Time(sec)

Figure 5.1. Diagram showing the position, velocity and acceleration plots for the

planned trajectory using a 3rd order polynomial with four end constraints.

The polynomial coefficients as a function of the end constraints are then found to

be:

a0 = Xo
a1 = 7.(0

Xg
a2=7

. . )
20 Xf-20 XO'(8 Xf+ 12X0)tf"(3 Xo- Xf) tf

a3 = 3
2If
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. . . . 2
34:, 30X0'30Xr+(14Xf+ 16X0)tf'(3x0-2xf) tf

4
2t

. . .. . 2
ag= 12xp- 12 X9+ (6 xp+ 6 Xg) te- ( Xg- Xg) tf

5
2t

The order of the required polynomial is related to the number of end constraints
that are to be specified:

Order of Polynomial =Number of end constraints -1

The polynomial can be used to compute a smooth trajectory through points for
both joint space and Cartesian schemes. However, it may be necessary to specify
the spatial path between points. For instance, in the example that is to be
considered the manipulator's end effector is required to follow the path of the part
on the conveyor in a straight line. Thus, it is necessary to not only compute a
smooth trajectory between points but to compute this trajectory so the spatial path
is along a straight. The method that will be adopted for this purpose is referred to
as Cartesian Straight-line motion. The particular application that will serve as an

example throughout this text will now be considered.
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5.2.2 Example Application

> Y
S
1 Start
N
\
\ Manipulator arm Er,ld Ss
\ ’
g ;7 Table
2 . /
. ¢ e
2 ~ . 4 , 7 e
S 7
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Fig.5.2. Diagram showing the example application of a manipulator required to

track a part on a conveyor.

In the example application shown in Fig.5.2 the robot manipulator is required to

carry out an operation on a parton a moving conveyor. The conveyor belt moves
with a velocity of V_mmy/s . The spatial path of the manipulator needs to be along

the length of the conveyor in a straight line at the same velocity as the part it is
tracking which travels at the same speed as the conveyor. In order to achieve this

motion the path must be planned in Cartesian space. A method to achieve this path

will now be considered.

5.2.3 Cartesian Straight line Motion

In Cartesian straight line motion the spatial path is a straight line between points.
To create a smooth trajectory with continuous position and velocity a parabolic
blend period is computed in the region of each corner point. During the blend

region a constant acceleration is applied to change the velocity smoothly. The

linear portion of the path is computed using straight line interpolation and this is at

constant velocity.

The solution for a multi-segment linear path with blends will now be considered.
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The multi-segment path is shown in Fig.5.3. Here the corner points j,k and I are

neighbouring path points. The time period of the segment jk is tdjk. The linear
portion of segment jk occupies a time of Gy The velocity of the linear section of

segment jk is Xjk' . The acceleration of the blend at j is X j". The time duration for

this blend region is e

|
RS
|
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X .
1 ik

7

Y-

Xi

tdis
« >l

-
(=N
=
| AN

Figure 5.3. Diagram showing a multi-segment path with blend regions at the

corner points.

For this particular application the problem is restricted to a single plane i.e. the
X-Y plane. The X and Y coordinates are then converted into corresponding joint
angles. For a multi-degree of freedom system the blend times for each degree of
freedom must be the same. This ensures that the resultant motion of all the degrees
of freedom will be a straight line in space during the linear region. The blend
regions for each degree of freedom are the same, however,the acceleration used
during the blend for each degree of freedom will be different.

For interior path points the equations for the velocities and times are as follows:

. Xy - X
Xjxk= }t(d' :
jk

where k and j are the specified corner points

td, the specified time for the duration of the segment
J
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X, = kI~ A jk
t
where t,_is the specified blend time at corner point k

_ 1
The first and last segments are handled slightly differently since an entire blend
region at one end of the segment is included in the total segment's time duration.

For the first segment the equations are as follows:

X,-X
Xip=—7—

tdiz-5t

X12

X, =212
1 tl

1
tip=tdip-ti-5t

Similarly, for the last segment connecting corner points n-1 and n the equations

arc:
. X, - Xy
X(n-l)n= —"_n'—nT_
td(n-l) n- o th
X
-- (n-1)
X, =- __;_‘_2

n

1
t(n—l) n= td(n.l) n- tn - f tn-l

For the specific robot manipulator that will be used a path has been planned that is
well within the work space of the manipulator. The path corner points and
durations are listed below.The initial blend times used are also listed in this table

5.1.
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Blend ;
Somer | P (mmy | Py om) | Time | oo
t: (Sec) td ji (sec)
S1 80 -480 0.2
0.8
S2 280 -400 0.15
1.0
S3 400 200 0.1
1.5
S4 400 160 0.15
0.7
85 280 400 0.2

Table 5.1. Showing planned path corner point positions and path times.

In the main program TRAJPLAN, the procedure INPUTPATH allows the path
‘information listed in table 5.1 to be input into the program. In the robot system
there are a number of constraints which include the maximum Cartesian velocity in
each degree of freedom and the maximum acceleration in each degree of freedom.

First the setting of the maximum velocity will be considered.

5.2.4 Maximum Velocity

As shown previously, for interior points the velocity is determined from the

following equation:

X - X
X= lt(d. :
jk

The velocity can be adjusted by changing the duration for the segment. For

example, in the conveyor tracking problem the velocity of the conveyor is V_. The
positions S, and S are known. In order for the manipulator to track the conveyor

at a velocity V_ the time duration for segment 3 must be specified as (§4-S3)/V..
Infact all time durations could be calculated in this way based upon the required

resultant Cartesian velocity(see later).
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5.2.5 Maximum Acceleration

The acceleration for interior points is determined from the equation:

The acceleration can be adjusted by changing the blend times. However, since the
blend time must be the same for each degree of freedom it will give a different
acceleration for each one. The blend time can be chosen so that the maximum

acceleration in either X or Y is not exceeded.

The procedure INPUTPATH calculates the path velocities and accelerations based
upon the specified corner points and time durations. These times can be iteratively
adjusted to fulfill a required upper bound for the velocity and acceleration. The
results for the initial unput times of Table 5.1 are shown in Table 5.2.

Corner| v, (1) | XA®) YVik(i) | YAQ) TXYjk ()| TXY()
Point )

S. |(mm/sec) (mm/secz) (mm/sec) (mm/sec2) (secs) | (secs)

1

g1 | 2857 | 14285 | 1143 | 5714 0525 | 020

S2 120.0 |-1104.7 200.0 571.4 |0.875 0.15

S3 0.0 |-1200.0 | 240.0 400.0 |1.375 0.10

s4 | 2000 |-1333.3 | 400.0 1066.7 10.425 0.15

S5 1000.0 -2000.0 0.20

Table 5.2. Showing the planned path segment velocities and accelerations.

Note. For table 5.2 and subsequent tables the followihg notation is used for the

velocities,accelerations and path times in reference to Fig.5.3:
XV J-k(i) =X jk(in Fig.5.3) the velocity in the X axis between corner points j and k

YVi() = Xjk(in Fig.5.3) the velocity in the Y axis between corner points j and k
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XAQ) = X’i(in Fig.5.3) the acceleration in the X axis at corner points i

YAQ) = X(in Fig.5.3) the acceleration in the Y axis at corner points i
TXY jj ()=t the time of the path at constant velocity between points j and k

TXY(i)=t; the time of the blend period at corner point i.

For the path values of Table 5.1, the maximum acceleration is seen to be:
1 YA(5) | =2000 mm/sec? in the Y axis.

If an artificial constraint of say IYAl=1500 mm/sec? is required then the blend time
for segment 4 must be increased. In the results of table 5.3 the value of the blend
time TXY(5) has been increased to 0.3 sec. This results in an acceleration for
IY A(5)I=1454 mm/sec? which is within the required constraint of 1500 mm/sec?.
However, changing the blend time does not only affect the value of XA(5) and
YA(5) but also the value of Cartesian velocities in that segment and the
accelerations XA(4) and YA(4). The equation for computing the velocity of the
final segment is:

. X, - X,
X(n-l)n=-—n——nl—‘
td(n—l) n- '2_ th

If the value of t_ is increased it can be seen that the velocity will correspondingly
increase. The equation for computing the acceleration at the final corner point is as

follows:

_ X (n-1)n

n— t

%

n

It can be deduced from the above equation that if the value of the final segment
velocity is increased then the value of the end corner point acceleration will

increase. The results for the change of blend period of TXY(5) from 0.2 to 0.3 sec
is show in Table 5.3 below:
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Gomer| XV () | XAGD  [YVi@) [ YA [ TXYu®[TXY0)

S; |[(mmysec) (mm/se02) (mmy/sec (mm,/sccz) (secs) | (secs)

S1 | 2857 1428.5 | 1143 571.4 |0.525 0.20

S2 | 1200 |[-1104.7 | 2000 571.4 10.875 0.15

S3 0.0 |-1200.0 | 240.0 400.0 |1.375 0.10

S4 | -218.2 |-1454.6 | 436.4 1309.1 ]0.325 0.15

S5 727.2 -1454.6 0.30

Table.5.3. Showing the new velocities and accelerations for a change in the blend
period of TXY(5) from 0.2 to 0.3 secs.

It has been seen how the blend times may be adjusted in order that the
accelerations are within an upper limit (later in the chapter it will be seen how this
is done automatically by computer). In a like manner the segment durations may
be adjusted so that all segment velocities are within an upper velocity limit. For
instance, if the required velocity over segment 3 is 300mm/sec then the time

duration for that segment must be changed:

S4-S3=160—(—200)

v 300 = 1.2 sec

C

Obviously, the velocity change will affect the acceleration at points either end of
the segment namely Xij (3)+(4) and Yij (3) + (4) since these are calculated

from the following equation:

The blend times t, can be adjusted to compensate if the recalculated accelerations
exceed the the upper limit. The results for the new time period td;,=1.2 sec are

shown in Table 5.4 below:

101



ggir:ter XVik O | XA | YVik@) | YAD | TXYjk@) [TXY(D)

S, |(mm/sec) (mm/secz) (mmy/sec (mm/secz) (secs) | (secs)

Ss1 | 2857 | 14285 | 1143 571.4 0525 | 0.20

S2 | 120.0 |[-1104.7 | 2000 5714 |0.875 0.15

S3 0.0 |-1200.0 | 300.0 1000.0 [ 1.075 0.10
S4 | -218.2 |-1454.6 | 4364 909.1 10.325 0.15
S5 727.2 -1454.6 0.30

Table 5.4. Showing the new velocities and accelerations for a change in the time

period td;,=1.2 secs.

As shown in Table 5.4, the accelerations remain within the upper limit of 1500
mm,sec2. It is not necessary to adjust the blend times. It has been seen how
individual segment times and blend times can be adjusted to fulfill the velocity and
acceleration limits for a particular segment. An alternative approach is to calculate
the segment times and blend times for the complete path based upon a default
maximum achievable resultant velocity and acceleration. This approach will now

be considered.

5726 Calculation of Path times based upon default resultant velocity and
acceleration

To calculate the segment blend and segment times a default resultant Cartesian
velocity and acceleration is specified. The equations previously used are
recompiled in terms of the resultant:

For corner points 1 and 2

1 (X X2+ (Yy-Yp) 2
tdlz-*z—tl-'—" VR

Where Vg = Resultant Velocity
The velocity in the first segment is calculated for the X and Y directions:

102



. X,-X . Y,-
dip-51 tdip- 5ty

The time period for the first blend period is calculated from the resultant

acceleration AR:

)
X2 +Ypy

ty= Ag where Ap is the resultant Acceleration

The acceleration in the first segment is calculated for the X and Y directions:

. X T
X1=——lz and Y1=—12
t t
1 1

For the final segment, between corner points n-1 and n:

1 (Xp-Xp1) 24 (Y- Yy ) 2
td(n-l)n 'itnz VR

The velocity in the X and Y directions is calculated as follows:

Xn'Xn—l Yn' Yn—l

1
td(n—l)n"ftn td(n-l)n'i'tn

X(n—l)l’l= and Y(n-l)n=

The time period for the final blend period is calculated from the resultant

acceleration :

[ 2 . 2
Xan ¥ Yot
th= AR

The acceleration in the final segment is calculated in the X and Y direction:

X . Ynim
P (n-1)n -
x n = - T and Yn tn

For the interior points jand k :
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(X=X 24 (Y- Y)) 2
Vi

tdjkz

The velocity in the X and Y direction are calculated:

. Xk - X, . Y.-Y.
X.. = X -1l and Y., =- k J

The time period for the blend at corner point j is calculated:

t'="/(Xjk'Xij)2+(ij"Yij)z
J AR

The acceleration in the X and Y direction is calculated as follows:

X;="2 and ¥;=—&
t; LY

As an example of using this technique the conveyor tracking problem will be
considered again. The conveyor velocity between points S5 and S, is 300 mm/sec

so the manipulator is required to move at this velocity. Since the conveyor is
parallel to the Y axis there is no component of velocity in the X direction. The
resultant velocity specified is hence the velocity in the Y direction. Previously a
limit of 2000 mmy/sec? was imposed on the acceleration. This will be used in this
example and will be specified as the resultant acceleration to ensure that all
Cartesian accelerations throughout the path are below this value. The results for
this example are shown in Table 5.5. As can be seen in this table all of the
velocities are below the specified resultant velocity and during the segment 3 the

required conveyor velocity of 300 mm/sec is obtained.
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Comer | XVic® | XAG) | YVat) | YA® | TXYp@) | TXY®)

Point S1 | (mmysec) (mmjsec )| (mm/sec) |(mmisec?)|  (secs) (secs)
S1 278.5 1856.9 111.4 742.8 0.5951 0.1500
S2 154.4 -1296.7 257.3 1522.7 0.6895 | 0.0958
S3 0.0 -1927.4 300.0 533.9 1.1255 1 0.0801
S4 -134.2 -1946.5 268.3 -459.5 0.7850 | 0.0689
S5 894.4 -1788.9 0.1500

Table 5.5. Showing the velocities, accelerations and path times based upon the
specified resultant values.

2 ling of path

When the joint velocities and accelerations are exceeded in a path it is possible to
scale down the path Cartesian velocities and accelerations to meet the joint
capabilities. Alternatively the planned trajectory may not be making full use of the
motor capabilties, in that case it is necessary to scale up the path velocities and
accelerations. For instance in the previous path a velocity to acceleration ratio of
300/2000 was specified. If this path is to be scaled up by 5 and retaining the same
ratio gives 1500/10000. These values are thus specified as the default resultant
Cartesian values. The results for this specification is shown in Table 5.6.
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ggir:ter XV ) | XAG@D) [ YVi(G) | YAD [ TXYjkG) [ TXY (@)

S, |(mm/sec) (mm/secz) (mm/sec) (mm/secz) (secs) | (secs)

S1 1392.7 | 9284.8 557.1 3713.4 10.0207 {0.1500

S2 771.7 |-6483.7 1286.2 7613.3 10.0676 |[0.0958

S3 0.0 |-9637.3 | 1500.0 2669.3 10.1655 ]0.0801

S4 | -670.8 |-9732.5 | 1341.6 | -2297.5 ]10.0694 [0.0689

S5 4472.1 -8944.3 0.1500

Table 5.6. Showing the velocities, accelerations and path times for a specification
of 1500 mm/sec resultant velocity and 10000 mm/sec? resultant acceleration.

As seen in Table 5.6 the Cartesian velocities and accelerations are all multiplied by

the scaling factor of 5. However, the time period for which the path is linear is
decreased considerably as shown by the column TXYjk values. This means that

the spatial path of the manipulator will not be following a straight line for large
portion of the segment. In fact the majority of the segment is taken by the blend
period. It is important that the proportion of the path that is linear is the same, this

will now be considered.

5.2.8 Scaling of path to retain the same linear proportion

The ratio of TXij/T djk expresses the proportion of each segment that the path is
linear. This is calculated for path of table 5.5(refered to as p300/2000) and the
path of table 5.6(p1500/10000) for each segment and expressed as a percentage in
table 5.7.
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i TXYjk %(i) i TXYjk %(i)
1 75.1 1 9.5
2 88.7 2 43.5
3 93.8 3 68.9
4 80.9 4 27.3

Table 5.7. Showing the percentages for each segment that the path is at a constant
velocity for paths p300/2000 and p1500/10000.

In order to obtain the same ratio it is necessary to go back to the equations and find

out what the relationship is beween the scaling factor and the linear ratio.
For interior points:

The corner point positions are fixed so expressions involving these terms are
fixed:

Let (X, -X;)2+(Y-Y;)2 =K  aconstant
Hence expressions for the segment times are:
K,

K, _
tdjk"—: V}; and tdij = -V—;

The blend time at corner point j is:

SR K (Y (Y0
_ tdjk tdij tdjk tdij
tj— AR

Therefore substituting for td,, and td;; in the above equation:
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YR \Y
L Ag K3 similarly t, = Ag K,

The time period for the linear section of the segment is as follows:

1

1
= i 5t 5

The ratio tjk/tdjk 1s hence obtained:

K; VrK3 VgpKy
tdjk E
VR

This simplifies to the following expression:

2
tik V& : .
= =1-——K5 where Ksis a function the the other constants
td;k Ag

This means that if the velocity is scaled by a factor of say N, in order to retain the
same ratio the acceleration must be multiplyed by a factor of M=NZ2. This
expression can also be shown to be true for the initial and end segments. As an
example the path P300/2000 will have the velocity scaled by 5, the acceleration
must be scaled by 5% in order to retain the same linear ratio. The path specification
becomes P1500/50000. The results for this path are shown in Table 5.8.

Corner X Vi (1) | XAQ@) YVik (i) YAQ) TXYjk (1) TXY()
Point

S. |(mm/sec) (mm/secz) (mm/sec) (mm/scc2) (secs) | (secs)

1

S1 1392.7 | 46423.8 | 557.1 | 18569.5 |0.1190 {0.0300

S2 7717 |-32418.5| 1286.2 | 38066.3 [0.1379 |0.0192

S3 0.0 |-48185.7] 1500.0 | 13346.7 {0.2251 |0.0160

s4 | -670.8 |-48662.4 [ 1341.6 |-11487.7 10.1570 0.0138

S5 22360.7 -44721.4 0.0300

Table 5.8. Showing the calculated results for path p1500/50000.
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3.3 Calculation of the Trajectory

The next step in the trajectory planning is to calculate the trajectory points for the
X and Y axes at a chosen interval of time e.g Tsamp(the sample period). In the
program TRAJPLAN the procedure CALTRAJECTORY calculates the the

trajectory points from the path times(This program is implemented in Light Speed
Pascal?’ on the Macintosh Computer28).

Each segment of the path is referred to by the segment variable, segnum e.g for
segment 1, segnum=1. The position total at each end of the linear region is

referred to by the variables X (1) and X,(2) respectively. This is shown in

Fig.5.4 for a path that has five corner points, hence four segments.

A
X(mm) Xtl3)  X©2(3)
| |
X2 11 "\ xu@)
Xt1(2)
Xt2(4)
Xt2(1)
—
Xt1(1)
1 2 3 4| s
time(sec)

Figure 5.4. Diagram showing how the computer calculates the trajectory.
In the linear section the equation for the displacement is as follows:
= Xt (segnum) + X (segnum)(segnums+1 y*( Time - Tdtotal(segnum) )

X Linear Region

where Time=the current cumulative time from zero

Tdtotal=is the time at Xt1(segnum)

When the program detects that it is in a blend region i.e when

Time > Tdtotal(segnum)+Txyjk(segnum)
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then the equation for displacement becomes as follows:

Xblend Regio,;Xt2(segnum)+)'((s egnum)(segnum+1) (Time—Tdtotal(segnum}Txyjk(segnum) )

+ % Xa(segnum+1) * ( Time - Tdtotal(segnum) - Txyjk (segnum) )2

The velocity in the linear region is constant and equal to the calculated value of

ijk(segnum). The velocity in a blend region is calculated as follows:
X blend = ijk(segnum) +ijk(segnum) (Time - Tdtotal(segnum) - Txyjk(segnum) )

The acceleration during the linear section is zero and the acceleration during the
blend period is equal to Xa(segnum+1).

The complete path for the planned path P300/2000 is shown in fig.5.5.

Y-AXIS(mm)

399.99

0.0  _|

-480.00 . . : : . X-AXIS (mm)
80.00 400.00

Figure 5.5. Plot of the X axis displacement versus the Y axis displacement for the
complete path (p300/2000).
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The X axis path plotted against time is shown in Fig.5.6 below:

X-AXIS{mm)
400.00 -

80.00 T . . . , TIME(secs)

0.00 3.74

Figure 5.6. Plot of the X axis displacement versus time.

The X axis velocity is shown plotted against time in Fig.5.7 below:

X-VELOCITY (mm/sec)
278.54

0.0

-134.16 : . TIME(secs)
0.00 3.74

Figure 5.7. Plot of the X axis velocity versus time.
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The acceleration in the X axis is shown plotted against time in Fig.5.8. The

acceleration is seen to be discontinuous in that there is a step period of acceleration
at each corner point.

X-ACCELERATION (mm/sec 2)
1856.95 1

0.0

-1946.50 : TIME (secs)
0.00 3.74

Figure 5.8. Plot of the X axis acceleration versus time.

The next step is to convert the cartesian X-Y trajectory values into equivalent joint

space values,this is considered next.

5.3.1 Cartesian Space to Joint Space

The trajectory values signify the time related positions of the motion of the arm in
Cartesian coordinates. The positions are then converted into joint space
coordinates using the procedure INVERSE. The inverse kinematics procedure

solves the kinematics of the arm for a left hand configuration. If the path has been

planned correctly the range of values of 6, and 8, should be within the

manipulator's work space. The plot of 8, and 6, against time are shown in

Fig.5.9 and Fig.5.10 respectively.
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TH1-AXIS (Degrees)

72.0 A

-72.0 . TIME(Secs3)
0.00 3.74

Figure 5.9. Plot of joint angle 1 displacement versus time.

TH2-AXIS(degrees)
328.75

1

284.17 . : TIME (3ecs)
0.00 3.74

Figure 5.10. Plot of joint angle 2 displacement versus time.
The next step in the trajectory generation is to convert the Cartesian velocities into
equivalent joint velocities. This is achieved using the procedure

INVERSEJACOBIAN. The angular joint velocities are shown plotted against time
in Fig.5.11 and Fig.5.12 respectively.
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TH1V-AXIS(degreesisec)
7470

0.0

[y

-13.84 : TIME (secs)
0.00 3.74

Figure 5.11. Plot of joint 1 angular velocity versus time.

TH2V-AXIS (degreesisec)
87.90 -

0.0 —

-83.57 : TIME (3ecs)
0.00 3.74

Figure 5.12. Plot of joint 2 angular velocity versus time

As seen in the joint velocity plots, there is an abrupt change of velocity in the

region that the corner points occur.
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The next step in the trajectory generation is the conversion of the Cartesian
accelerations into equivalent joint accelerations. This is carried out by the
procedure INVERSEDERIVJACOBIAN. The joint accelerations are shown
plotted against time for joint 1 and joint 2 in Fig.5.15 and Fig.5.16 respectively.

TH1A-AXIS(degreesisec 2)
701.93 q

0.0 ]

-163.07 . ; : ; : TIME(3ecs)

0.00 3.74

Figure 5.13. Plot of joint 1 angular acceleration versus time.

TH2A-AXIS (degreesisec 2)

290.56
NN

0.0

—
-

-1451.30 U 1 TIME (3ecs)
0.00 3.74

Figure 5.14. Plot of joint 2 angular acceleration versus time

As shown above in the acceleration plots above there is rapid joint acceleration
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change that occurs at the corner points.

5.3.2 Calculation of Load and Motor Torques

The trajectory information can now be used to calculate the expected torque on
load and motor sides. The trajectory data constitutes the joint angles, velocities and

accelerations at each instant of time along the path. This is used to first calculate
the non-linear coefficients of the dynamic equations e.g. D,,.D,, etc. These can
be graphically plotted in order to observe the degree of variation. For example the

coefficient D, is equal to the following:
D,,=(I;+m,a, 2+I,+m,a,2+m,l,2+2m,l,a,cos6, )
This is shown plotted in Fig.5.15 for the planned path (p300/2000) below:

2
D11-COEF
066 - (Kgim )

1

Time(secs)

048

T T 1
0.00 3.72

Figure 5.15. Plot of the dynamic coefficient D, versus time for path p300/2000.

The dynamic terms of the load torque equations are then calculated for each joint.
The load torque TL; and TL, are shown plotted in Fig.5.16 and Fig.5.17

respectively.
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TL1-LOAD TORQUE (Nm)
3.05 ”\

0.0

-2.02 Time(secs)

T T T T 1
0.00 3.72

Figure 5.16. Plot of the load torque term TL, versus time.

TL2-LOAD TORQUE (Nm)
1.01

0.0

-1.07 s TIME(SecCs)
0.00 3.72

Figure 5.17. Plot of the load torque term TL, versus time.

Finally, the motor torque is calculated, i.e. the load torque reflected back to the

motor. Each term in the motor torque equation may be plotted separately. The

motor torques Tm, and Tm, are shown plotted in Fig.5.18 and Fig.5.19

respectively.
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TM1(Nm)
0.10 = A

_1
0.0 -
w—’—\
r"‘\ /‘
-0.02 TIME(3ec3)
1 R 1 | 1
0.00 3.72

Figure 5.18. Plot of the motor torque term Tm, versus time.

TH2(Nm)
w
0.0 .
] J
-0.10 \ TIME(secs)
1 T 1 T 1
0.00 3.72

Figure 5.19. Plot of the motor torque term Tm,, versus time.

So far, a path and trajectory have been planned in Cartesian space, this has then
been converted into joint space using the inverse kinematics of the manipulator.
From the dynamic equations of the manipulator and the trajectory data the load and
motor torques have been calculated. The question arises, how does the expected
torque requirements over the planned trajectory relate to the motor characteristics
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?. The motor characteristics will now be considered.

5.4 Motor Characteristics

The characteristics of the motor are now considered in order to determine the
upper bounds on the joint movements.

5.4.1 Motor Speed

The maximum speed of an armature controlled D.C Motor is a function of the back
emf constant, the terminal voltage and the armature resistance. This relationship is

shown in the following equation:

Terminal Voltage - no load current * armature resistance

No Load terminal speed= back emf constant

This limits the maximum joint velocities that can be attained. The path must be
planned so that the joint velocities do not exceed the speed attainable by the motor.
For the RTX robot, taking into account the drive ratios this limits the joint

velocities as follows:

0 =43 degrees/sec 0,,ax=86 degrees/sec

1max

As can be seen in the plots for the trajectory p300/2000 of joint velocities vs time
(Fig.5.11 and Fig.5.12) these joint velocities exceed those bounded by the motor
characteristics. Hence, it would be necessary to scale this path down to fulfill the

motor speed capabilities.

The speed of the motor varies with load torque. The torque that the motor can

supply at a given speed is a function of the power of the motor, this charcteristic

will be considered next.
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5.4.2 Power of Motor

The power of the motor can be represented by the following equation:

Po=P ot Pioss where P, =Power Input to motor= V*I

V=Terminal Voltage
I= Motor Current

P, _=Power Losses in Motor=I’R

loss

R=armature resistance

Poszechanical Power out

-~ %
Pout—Trn (om

T,,=Motor Torque

®_=Motor rotational Velocity

For the RTX robot manipulator the motors used in the horizontal arm are rated as
3watts power however, this represents the continuous rating or RMS value. It is
highly likely that under high accceleration demands this is exceeded. For instance,
at the maximum error signal the motor sees the maximum terminal voltage, for the
RTX this voltage is 24 volts. The maximum current is limited by the controller to
0.75 amps. It is possible to calculate the power loss as I’R=(0.75)*2.07=11.64.
Therefore,the instantaneous power is 18-11.64=6.36 watts as an absolute
maximum. It will probably be less than this in order to protect the power

amplifier.

From the planned trajectory and torque calculations it is possible to calculate the
power required at each point along the trajectory and check that it does not exceed
the instantaneous power of the motor. The RMS power can be calculated over the
complete cycle to check that it falls within the rated value of 3 watts for the motor.
The torque values are calculated by the program TORQUE and the torque program
supplies the torque values to the program POWER which calculates the power
required by the planned trajectory. The power requirements for the planned

trajectory are as follows:
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Motor Power 1 maximum=93.29 watts
Motor Power 2 maximum=51.81 watts
RMS Power 1= 7.72 watts
RMS Power 2= 3.51 watts

It is seen that the trajectory power requirements far exceed the motor capabilities.

5.4.3 Peak Motor Torque

The Peak Motor Torque is a function of the maximum supply current and the
motor constant as follows:

Peak Motor Torque=Maximum Supply current * Motor constant

The maximum supply current is usually dictated by the controller, for the RTX the

current is limited to a maximum of 0.75 amps. The motor constant is numerically
equal to the back emf constant, for the RTX motors this is K, =0.034Nm/amp.

This gives a peak torque capacity of 0.026 Nm. The maximum torque required by
the planned trajectory, calculated by the torque program is as follows:

Maximum Torque 1= 0.098 Nm
Maximum Torque 2= 0.022 Nm

The peak torque requirement for axis 1 is clearly exceeded. This means that the
manipulator will not achieve the required acceleration at joint 1 for the total

trajectory.

5.4.4 Peak Motor Acceleration

The peak acceleration can be calculated from the following equation:

Where T = Peak torque
J =Effective Inertia
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a=Angular acceleration

If the maximum effective inertia is used this gives a conservative estimate of the
motor's acceleration capabilities. This has been calculated for each axis and is

shown below:

Axis 1 maximum acceleration=171 degrees/sec?

Axis 2 maximum acceleration=356 degrees/sec?

As seen in the planned trajectory plots of joint accelerations(Fig.5.13 and
Fig.5.14) the acceleration requirements exceed the motor capabilities. However,
this is based upon no load conditions, so the acceleration will be considerable less
for load conditions. Also, not all of the acceleration torque is available for
accelerating the inertia, the dynamic terms such as coupling torque, caused by the
Corriolis and centripetal accelerations, will take a proportion of the torque hence,

reducing the acceleration capability of the motor.

To summarise, a planned trajectory should be within the following motor
limitations:

1) Speed of Motor

2) Power of Motor

3) Peak Torque

4) Peak acceleration

If any of these motor characteristics are exceeded it is likely that the manipulator
will not follow the planned trajectory.

The joint velocity and acceleration bounds are as follows:
Joint velocity axis 1 = 0.74 rads/sec or Motor velocity axis 1 = 654.5 rads/sec
Joint velocity axis 2 = 1.49 rads/sec or Motor velocity axis 2 = 654.5 rads/sec

Joint acceleration axis 1=2.98 rad/sec? or Motor acceleration axis 1=2615 rad/sec?

Joint acceleration axis 2=6.21 rad/sec? or Motor acceleration axis 2=2723 rad/sec?

Power and Torque bounds are as follows:
Power of Motor=3 watts(Continuous rating)
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Peak Motor torque = 0.026 Nm

2.5 Bounds upon the dynamic coefficients based on the motor characteristics.

Having considered the motor limitations it is now possible to establish bounds on
the dynamic coefficients, load and motor torque terms based upon the the motor

limitations. First the dynamic coefficients are considered and their variation is
tabulated in table 5.9.

2g:$§nt Maximum Minimum
Dy 0.70 0.11
P 0.28 -0.01
P12 0.15 -0.15
D112 0.29 10.29
D2 0.14 0.14
P 0.15 -0.15

Table 5.9. Showing the maximum and minimum values of the dynamic

coefficients based upon the motor characteristics.

The variation of the dynamic coefficients is dependent upon the configuration of
link 2 i.e. a function of sinB, and cos8, which can take a range of values between

+1 and -1. The range of the dynamic coefficients have been calculated for the RTX
manipulator and using the bounds set by its actuators as shown in Table 5.9.

5,5.1 Variation in Load torque dynamic terms

‘Each term in the load torque dynamic equations is calculated based upon the
previously tabulated values of table 5.9 and the upper bounds for the motor
velocity and acceleration bounds. Each term is expressed as a percentage of the
total torque. These values are tabulated in Table 5.10.
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Load Torque Maximum % of Total Minimum
Dynamic Term (Nm) (Nm)
D11 g1 2.10 46.5 0.08
DI2 2 1.76 39.0 0.07
D122 ¢,2 0.33 7.3 -0.32
D112 g1 g2 033 7.3 -0.29
Total= 4.51
D22 ¢, 0.84 476 0.84
D12 g 0.84 476 -0.03
D211 g,2 0.08 46 -0.08
Total= 1.77

Table 5.10. Showing the maximum and minimum that the load torque terms are as

a percentage of the total torque.

As can be seen in table 5.10 above, the inertia torque(D“G)l") is a significant

percentage of the total torque for axis 1(46%). The coupling torque is also a
significant proportion of the torque (39%). The centripetal and Coriolis terms are a
small percentage(7.3%) compared to the other terms. In table 5.10 the maximum
torque totals for each axis were estimated to occur when each term in the dynamic
equations(of eq. 3.15,3.14 of chapt.3) are at a maximum. It must be pointed out
that it is assumed that the maximum for each dynamic term occur at the same time
in order to calculate the percentage values. In practice this will not be the case and
the individual dynamic terms could take larger percentages of the total torque.
However, looking at the terms for say axis 1, the inertia and inertial coupling

terms are a function of cos@, and must be a maximum at 62=0,180,3600.
However, the other coupling terms are negative and are a function of sin8, and
would be zero when 6,=0,180,360%, hence, T, would not be at a maximum.

Realistically, a maximum T, could be envisaged when sinf, is negative and cosf,
is positive e.g when 0, is 315% i.e c0s8,=0.7 and sin8,=-0.7. This would

probably give a more reasonable estimate of the maximum torque T,.
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3.5.2 Variation in Inertia

The effective inertia as seen by the motor is calculated for no load conditions. The
inertia of link 1 referred back to the motor through the gear box is found to be only
9% of the total inertia at the motor. The inertia as seen at motor 1 varies with the
configuration of link 2 .The inertia of link 2 does not vary with configuration for
this simplified manipulator and is 2% of the inertia as seen at motor 2. These
results are listed below:

Inertia at motor 1 Maximum=9.9 E-6 Kgm? Minimum=9.15 E-6 Kgm?
Inertia at motor 2 9.7 E-6 Kgm?

iation in Motor Tor namic term

The torque taken up by the effective inertia of axis 1 is 90% of the total drive
torque. The coupling inertia is still significant at 7%,while the Coriolis and
centrifugal terms are insignificant at 1.5 %. These percentages are similar for axis

2. The computed values are shown in Table 5.11 below:

norie T | Maimum | of total | Minimum
Jeffl g mi 0.026 90.0 0.024
a1 DI2 0 0.002 7.0 8.1 E-5
nDI2g2 | 37E4 15 37E-4
nl D112 9'1 9'2 3.7E-4 15 37 E-4
Jeff2 9'm2 0.026 92.0 0.026
nl1 D12 9”1 0.0019 6.7 7.8 E-5
nl1 D211 9'12 3.4 E-4 1.3 -34 E-4

Table 5.11. Showing the maximum and minimum that the motor torque terms are

as a percentage of the total torque.
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5.5.4 Power

The power requirements are based upon assuming that all maximum torque terms

occur at the same time. These are calculated for each motor based the values in
Table 5.11:

Motor Power 1=18.8 Watts
Motor Power 2=18.8 Watts

The RTX motors are only rated at 3 watts , however, this is a continuous
rating. The instantaneous power rating was calculated previously to be 6.36 Watts.
This means that the motor power is somewhat under rated for the extreme bounds
of the torque equations. This could be over come by having a larger current
amplifier.

5.6 Selection of Motor speed and acceleration characteristics based on Kinematics

It has been seen how the joint positions, velocities and accelerations can be
computed for a planned trajectory in Cartesian space using the kinematics of the
manipulator. With the characteristics of the drive motor given, it is possible to
assess whether the motor can achieve these planned joint demands. If the planned
joint demands are above those achievable by the motor the planned trajectory can
be scaled down accordingly. However, from a design point of view the motor
speed and acceleration characteristics would not be known and have to be chosen.
What would be known is the required Cartesian velocity and the reach or working
volume of the manipulator. The problem then is to determine what are the required

motor speed and acceleration specifications. This problem will now be considered.

As seen in the chapter on robot kinematics, the relationship between Cartesian
velocities and joint angles(i.e the inverse Jacobian) is not a simple one and
depends upon the joint positions as well as the specified Cartesian velocities for

each axis. However, at a singularity the determinant of the J acobian becomes zero,

where the determinant is:

Determinant=L,L,sin8,=0 ata singularity.
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This occurs for 0,=0 0r 6,=180 degrees

Near a singularity the angular velocity of the joints become very large. A
singularity occurs at the boundary of the work space of the manipulator, for this
manipulator this is near the perimeter of the circle and the centre of the circle that
the links make with respect to joint 1. From the inverse Jacobian equation in the

chapter on kinematics it is seen that the denominator of this equation is a function

of sinB,:
O 1 L, cos(8; +65) L,sin(0; +6,) X
92 L1L2Sin92 'LICOSGI—L2COS(9]+02) 'LISinel —L2 Sin((‘)l +92) Y

At a singularity the value of the denominator approaches zero and hence the value

of the joint angle velocities becomes large. However, if the value of 6, is

restricted the values of the maximum joint velocities are restricted. The value of 0,

can be restricted by reducing the working volume that the manipulator can work in

i.e. decreasing the outer and inner working radius. The working radius is a

function of the link lengths and joint angle 8,. From the inverse kinematic

equations for position joint angle 8, is solved from the following equation:

2 2 2
6, =cos” (X1t
- 2L,L,

Where R is the radius of the end point to the center of joint 1.

If R is chosen as an inner and outer radius, this then restricts the value of 6, and
hence the maximum that the joint angles can take near the singularity at the chosen
inner and outer radius. The minimum value of sin 8, for the two solutions from
the two chosen radii then used in determining the maximum joint velocities.
Differentiating joint velocitiy 1 with respect to 8, and equating this resultant

expression equal to zero to find a maximum:

28, —Lzsin(e1+92)X+L2cos(91+92)Y=0
892 B Ll Lz Sinez
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Assumuing L, and L, are the same and that the maximum values that the Cartesian

velocities take is when they equal the specified resultant velocity, the above
expression simplifies to the following:

Sin(8,+8,)=cos( 6,+0,)

hence, solving for 6,46, the solution is obtained from Tan"'(1)= 91+92=450 or
2250,

5.6.1 Example

Consider the RTX manipulator with equal link lengths of 0.2535 m, if the inner
radius is restricted to a tenth of the combined link measurement and the outer
radius equal to the combined link measurement minus a tenth of the combined link
‘measurement, what is the expected maximum joint 1 velocity for a specified

Cartesian resultant velocity of 0.3 m/sec?.

R_. =0.0507 m and R_, =0.4563 m

This gives cos8,=-0.98 or cos0,=0.62 respectively.

This means that 8, is restricted between 51.67 to 168.54 degrees
and between 191.46 to 308.32 degrees.

Sin 92 is a minimum for 62=168.54 or 191.46 degrees, this will be used to

calculate the maximum joint 1 velocity. Hence, using the inverse Jacobian
expression the maximum joint 1 velocity can be found. This is calculated to be

482 degrees/sec.

In order test out this method a path will be considered that just cuts the inner circle

at a tangent as shown in the following diagram(Fig.5.20).
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Figure 5.20. Diagram showing the example path.

The path that corresponds to the following corner points shown in Table 5.12.

Comer | ) | Py
S1 400 0
S2 71.7 0
S3 0 71.7
S4 0 400

Table 5.12 Showing the path points for the example path.

The joint velocities calculated for this path are found to be:
Joint 1 velocity maximum=339 degrees/sec
Joint 2 velocity maximum=101 degrees/sec

These are well within our estimated value for joint 1 velocity of 482 degrees/sec.
However, if instead of inputting the resultant velocity as 0.3m/sec as the required
Cartesian velocity but input the resultant of an X and Y Cartesian velocity
0.3m/sec i.e a value of 0.424 m/sec. The maximum value of joint 1 velocity
becomes the value predicted previously of 482 degrees/sec as would be expected.
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In terms of the angular accelerations, the inverse derivative of the Jacobian is used

and joint acceleration 1 is partially differentiated with respect to 0,.This gives the

same result as previously i.e a max occurs at 8,+6,=45 degree. Computing the

maximum joint acceleration using the previous example values and assuming that
the sum of the maximum joint velocities is not more than the single joint velocity,
the estimated joint 1 acceleration is equal to 4546 degrees/sec2. This compares
with the maximum for the test path of Fig.5.12, for a specified Cartesian

acceleration of 2 m/sec?, 10,"l= 3041 degrees/sec?.

The method that has been outlined gives an esimate of joint 1 maximum velocity
and acceleration. This estimate could be used for joint 2 maximum velocity and
acceleration.With these estimates a suitable motor could be chosen that fulfills
these joint requirements by consulting the motor characteristics from the relevant
catalogues.

5.6 Selection of Motor Power,Torque and drive ratio based upon the Dynamic

Equations

Having selected the speed and acceleration requirements of the motor purely based
upon the kinematics, the next step is to consider the torque and power

characteristics based upon the dynamic equations.

The configuration dependent dynamic coefficients boundaries have already been
established. The maximum value of these is used together with the joint velocities
and accelerations which were established at a singularity. The load torque expected

maximum is thus calculated assumung all terms occur as a maximum at the same

time as shown below:

. 2 . .
Tleax = Dllmax 6 1max + DlZmax 6 2max T D122max e2max + D1 12max 0 Imax 0 2max

2

TLZmax = D22max 0 2max + D12max 0 Imax * D21 1 6 Imax

These equations give the maximum possible torque on the load side that the motor

would be required to d
characteristic. At this point none of the motor characteristics have been used in the

eliver. This would have to be matched to the peak torque
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calculation of the expected maximum torque. Obviously when calculating the
torque referred to the motor side the effective inertia term includes the motor
inertia. Also the dynamic terms referred back to the motor will include the gearbox
ratio. Its at this point that it would be necessary to choose a suitable motor that

fulfills the speed and acceleration requirements and the torque requirements.

The power of the motor is an important characteristic that will have to be
considered in the selection of the motor. This can be calculated as follows:

P 1max = Tleax 0 1max and P2max = TL2max 9 2max

A direct drive motor could be considered if it can fulfill the joint velocity and
acceleration requirements together with the torque and power requirements.
However, if these cannnot be obtained by a direct drive motor a gearbox would
have to be included. The ratio of the gear box will be a compromise between the
kinematic requirements(maximum cartesian speeds required) and the torque

requirements ( load handling capacity).

For a mainly inertial system such as the manipulator an optimum gear ratio can be

found. Consider the following system(Fig.5.21):

: d Inerd
Motor side Inertia  Gearbox Load Inertia

\ /

Motor Jq N )

T T,

m

Figure 5.21 Diagram showing drive chain for the Joad inertia.

The forque at load J,, side is as follows:

: : ©;
Ty+nTy=J, @+ ] @ where——=n
Wy

This can now be written as follows:
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T2+nTl=(J2+n2]1)d)2

An optimum gear ratio that maximizes load shaft acceleration for a given input
: . 2 . .

torque exists(Doebelin 9). Since the torque effect on acceleration increases with n,

where as the inertial effect decreases acceleration as n%, an optimum n should

exist. Rearranging the above expression in terms of the acceleration and
differentiating the acceleration with respect to n:

' 2
0w, (Jp+n"J)T-Q2nJ)nT,
on ) 2
(.12+n Jl)

=( for a max or min

This gives an optimum ratio :

T,
Nop= j‘;

This optimum ratio reflects back the load inertia as equal to the drive inertia. For

the RTX the ratio's for each axis are very large:
Axis 1 =877 and Axis 2=438

This results in the actuator inertia being far larger than the refected link inertia.

For example :

Link 1 Inertia=0.66 kg m? Actuator 1 Inertia=9.0 E-6 kg m?

Refected Link 1 Inertia=8.6 E-7 kg m?

The RTX uses fairly small motors of power 3 Watts and speed of 2800 RPM. The
peak torque is 0.026 Nm. They have used a very high ratio in order to fulfill the

. torque requirements, however they have had to compromise the Cartesian speed

capabilities in doing so.

Having selected all of the motor characteristics based upon the extremes that

would be demanded of the motor at any time in the path, it would be expected that
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the motor should be capable of delivering the demands of the controller. How well

the manipulator follows the path will depend upon the control systen design. This
aspect will be considered in the next chapter.

J.7 Significance of the terms in the dynamic equations for a specific planned
trajectory

The significance of the Load Torque terms in the dynamic equations will depend
upon the path and the velocity to acceleration ratio chosen for that path. In order to
assess the significance of each of the terms, the absolute total torque is calculated
for each axis. The absolute value of each term is then expressed as a percentage of
the total absolute torque. The maximum percentage of the total each term takes in
the path, is then used as a measure of the significance of that term. The
significance of the terms have been evaluated for path p/300/2000. These are
shown tabulated in table 5.13. Also the results are shown for the same path but
doubling the velocity(P/600/2000) and doubling the acceleration(P/300/4000).
Also doubling the velocity and acceleration(P/600/4000) and retaining the same
linear proportion(P/600/8000).

TLL | T [ TLl [Ter [Ton | T2 | T2 | Te2 | Te2
path Al | A3 | A4 | AS | max | AL | A3 | A4 | max

(%) | (%) | (%) | (%) |(Nm)| (%) | (%) | (%) |(Nm)

P/300/2000/ | 86.6 |84.3 [ 9.8 | 22.4 | 3.05( 94.8 | 82.7 29.4 1-1.08

P/600/2000/ |92.2 | 90.4| 10.6[ 22.1]3.05]99.5 | 99.4 | 29.4 |-L.11

P/300/4000/ | 79.4 | 81.5| 9.9 [22.4 [6.09 | 89.9 | 74.5 [29.4 [-2.10

P/600/8000/ | 86.6 184.3 | 9.8 |22.4 |12.19|94.8 | 82.7 {29.4 -4.31

Table 5.13. Showing the significance of the load torque terms for a number of

example trajectories.

‘As seen in table 5.13 the coupling inertia term for axis 1 is significant at 84.3%.
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The Coriolis term is the next most significant as 22.4%. The least significant term
is the centripetal term as 9.8%. For axis 2 the again the coupling inertia is of the
same order as 82.7%. The centripetal term is more significant for axis 2 that axis 1
as 29.4%. There are no great changes in the significance of the terms for changes
in the velocity and acceleration. The significance of the terms remains the same for
the same linear ratio for path p/600/8000/. This is a very interesting result since
not only has path scaling occurred but also dynamic scaling. The dynamic scaling
can be deduced intuitively if the dynamic equations of the manipulator are
observed. For instance consider the dynamic equation for axis 1.

For axis 1 the dynamic equation is

Ty=D11081+D30,+D;;,0,6,+Dy5,0,

If the velocity is scaled by 2 and the acceleration by 4 then the equation above

becomes:

.o X : A A 2
Tys=D;140,;+D340,+D1326,26,+D;5,40,

The value of 4 can be taken out as a common factor hence the above equation

becomes:

Tys=4(Dyy 8;+Dyp 8,4+ D15 8,20,+Dypp 85 )=4T,

i 3 A . D112é 1 éz
If we consider say the percentage that D20 1 8 5 takes this is — 5
1
4D;120,6,
The scaled percentage becomes — AT
1

Hence, the ratio obtained for the scaled version is the same as the previous non
scaled version provided that it is scaled according to the established relationship.

The figures calculated in table 5.13 show the order of the significance of each of
the terms for a particular path and a particular velocity to acceleration ratio.

However, if the path is near a singularity it would be expected that the significance

of the velocity related terms would be greater. The path shown in fig.5.12 goes
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near a singularity and the significance of the terms has been evaluated for the path

for the same velocity to acceleration ratio as before. The results are shown in table
5.14.

TL1 [ TLE | TLT | TR {TLI [ T2 | T2 | T2 | T2

Path Al A3 | A4 | AS |ax | Al A3 | A4 | max
(%) | (%) | (%) | (%) |(Nm)| (%) | (®) | (%) |(Nm)
1;4300/2000/
ear a 97.9 | 41. -
singularity 6| 472|472 | -6.4| 86.1 | 38.7| 51.9 |1.02

Table 5.14. Showing the significance of the dynamic terms when the path goes
near a singularity.

N.B The dynamic terms T ;A,(%) etc. are defined in appendix 1.

As seen in table 5.14 the Coriolis and centripetal terms become a far higher
percentage of the total torque near a singularity, of the order of 50%.

Each of the dynamic terms do not necessarily reach their maximum value of
significance at the same point in the trajectory. At a point along the trajectory when
the total torque demand is high the percentage of the total that a particular dynamic
term takes is more significant at that point(as the demand on the motor is high and
may be exceeded) than when the torque demand is low. In order to take into
account this significance the total absolute torque is expressed as a
fraction(weighting value) of the maximum torque that it takes along the path. For a
dynamic term a weighted percentage of the total absolute torque is calculated at
each point along the trajectory by multiplying the percentage of the total absolute
that the term takes by the weighting value at that point. The maximum value that
the term takes is then a measure of the significance of that term. This has been
calculated for the two paths of P/300/2000/ including the path that is close to a

singularity as shown in Table 5.15.
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Weighted load torque terms as a percentage of the total absolute torque.

TLL | TL1| TL1 | TL1 {TL1 | Te2 | Te2 | L2 | 12
Path Al A3 1 A4 | AS [max | Al A3 | A4 | max
P/300/2000/ | (%) | (%) | (%) | (%) [(Nm)| (%) | (%) | (%) |(Nm)
Standard
55.0 1449 | 1511223 | 14.6| 51.7 | 47.8| 2.4 |6.6
Near a
singularity | 96-4132.4(6.76 |68 | 6.8 | 61.2| 38.7| 36.3| 2.8

Table 5.15. Showing the weighted significance of the dynamic torque terms.

N.B The dynamic terms T; ;A,(%) etc. are defined in appendix 1.

As seen in table 5.15 the weighted values are far lower than those in the previous

table however, they are still shown to be of significance.

5.9 Generalisation of the dynamic equations

Consider a two link manipulator of uniform cross-sectional area(Fig.5.22). In the

design of the manipulator the reach of the manipulator would be known (this sets

the total of the sum of the link lengths) and the working volume(this sets the ratio

of the two link lengths). The link ratio and the reach capacity in terms of the link

lengths are defined as:

Ratio=L,/L,

and Reach=L,+L,
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Joint 1
G,

=

Fig.5.22. Diagram showing the generalisation of link parameters.

From the two equations above, expressions for the link lengths in terms of the

Ratio and Reach can be found:

_Reach*Ratio _ Reach
1 ™ (Ratio+1) 27 (Ratio+])

The dynamic equation coefficients can be related to the link lengths.The inertia of
the links about the centre of gravity is:

2 2
mlL

1
IG1= 12 and IGZ= 12

The centre of gravity for each link is assumed to be situated at mid point along the

link length.
L L,
a;= —21— and a; = -

If it assumed that the two links will be designed to have the same cross-sectional

area then A,=A,. The mass of the links can be related to the density of the

material they are made from(p), the cross-sectional area(A) and the link lengths:

m=p AL, and my=p AL

Hence, the dynamic equation coefficients can be written in terms of the link
b

lengths and divided through by the density and area as shown below:
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D Li I, 2
Zu_zry 2
pA ( 373 +L2L1+L1L2+L1L§cosez)

3 2
Dy, L3 L;L5cos8
—=( +_¥ )

pA " 3 2

Dpy, Ly L% sinf ,
PA 2

D12

2,
pA _(-LlesmBz)

D211__ LIL% Sin92

pA 2
3
Dy Ly
pA 3

The maximum value that the coefficients take for a given reach can be calculated, a

reach of 0.507m is used in the tabulated values shown in table 5.16.

D D D D D D
Ratio L L2 1 12 12| Pin 211 | P22

(mm) | (mm)
0.15 66.1 | 4409| 434 350 | 64 128 64 286

0.25 101.4 | 405.6] 434 306 | 83 167 83 222
0.4285 | 152.1 | 354.9| 434 245 | 96 192 96 149
0.66 202.9 | 304.2f 434 188 | 94 188 94 94

1.0 253.5| 253.5] 434 136 | 81 163 81 54
1.5 304.2 | 202.8( 434 90 | 63 125 63 28

2.33 354.7 | 152.3| 434 53| 41 82 41 12
4.0 405.6 | 101.4] 434 24 | 21 42 21 3
7.0 443.6 | 63.4| 434 10 9 18 9 0.8

Table 5.16. Showing the maximum values of the dynamic coefficients for a given
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reach of 0.507m for a range of link ratios,
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Fig.5.23. Plot of the results of table 5.16.

The tabulated values of table 5.16 are shown plotted in fig.5.23 against link length

L,. Coefficient D;, has not been plotted as this is constant as shown in the

previous table. Equally the dynamic coefficients could be plotted against L,

The maximum values that the coefficients take for a given ratio are plotted in
fig.5.23. In order to calculate the maximum expected torques, it is necessary to
evaluate the maximum expected joint velocities and accelerations for a particular
path and link ratio. Obviously the joint angles, velocities and accelerations vary

dependent upon the link Ratio and Reach capacity.
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Figure 5.24. Plot of the link velocities and accelerations versus link length L,.

The maximum joint velocities can be used in conjunction with the maximum

coefficient values to calculate the expected torque values for axis 1 and axis 2.

4
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8 34
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[,—q
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1..‘
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Figure 5.25. Plot of the expected maximum torque values versus link length L,.
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The expected maximum torques per unit area and density are shown in Fig.5.25
for a range of ratios.

In the next chapter the ability of the robot manipulator to follow the trajectories
planned in this chapter are assessed.
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Chapter 6:Simulation of Control Stategies
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Chapter 6 - Simulation of Control Strategies

6.1 Introduction

In this chapter the main types of control strategies are considered including:
Proportional plus Derivative(PD), Proportional+Derivative+Integral(PID) and
Proportional with derivative feedback. Initially the design of suitable controller
gains for these strategies is considered for the single axis case where the robot
manipulator is modelled as a simple inertia. The actuator can be of a number of
types, two types are considered that of a Direct Current(D.C) Motor a)Field
controlled b)Armature controlled. The transfer function of the D.C. motor may be
simplified under certain conditions, these conditions are considered. The control
strategies are tested by using a full non-linear simulation of the two axis robot
manipulator that is required to track along a preplanned path which was
established in Chapter 5. The results of the simulation for the different controllers

are compared later in this chapter.

In order to fully understand the performance of the various control strategies the
non-linear equations of the manipulator are linearised about a particular operating
point. These equations are then used to obtain a state space model of the
manipulator together with the control systen under consideration. The linearised
model is then verified against the full non-linear response. With the state space
model, the response of the system is investigated in more detail by computing the

eigenvalues and formulating the transfer function equations in symbolic form.
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6.2 Independent Axis Design

6.2.1 Modelling of the manipulator

Assumptions in modelling the robot manipulator in simulation are as follows:

1. Each link of the robot is modelled as a rigid body.

2. Although each link is modelled as a rigid body, in order to set the gain of the
controller the structural resonant frequency of each joint was experimentally
determined with no load and a 10 Kg load. The controller gains are set to give a
natural frequency of half the structural frequency.

3. The drive between the motor and the link of the manipulator is modelled as a
drive ratio n. It is assumed that there is no compliance or backlash in the drive and
it transmits the power with 100% efficiency. It is also assumed that there is no
static or viscous friction in the drive system.

4. The dynamic model of the two link manipulator is defined by the derived
equations 3.15 and 3.14 of chapter 3.

5. The torque is referred to the motor shaft and the motor is modelled as a simple

inertia.

The equations of the manipulator on the load side, in the standard D notation ,as

discussed in chapter 3, are as follows:

Ty=Dy1 81 +D, 04+ Dmé§+Dmél 6,+D,

Ty = Dy 62 +Dy,01+Dyyy é% +Dy

Where suffix L refers to the torque at the load side of the gearbox.

Referring the torque to the motor side of the gearbox gives the following torque

equations:
TM1=(JA1+JM1)éMl+anL1
Typz= (Jazt Im2) Om2+ 2T

Where J, and Jyy refer to the actuator and motor fittings respectively.
and “lzle/le <1 and similarly N,=0) ,/Opy < 1
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The equations can be written in terms of the effective inertia for each axis as
follows:

TM1=JeffleM1+n1(D1262+ D12265+D112()1(§2+ D,)

TM2=JCff26M2+ nz(Dlzél +D2116% +D2)
Where Jeff,=(J 5, + Iy + n,2Dyp)  and Jeffy= (J 5y + Iy + 192 Do)

and “12 D, is the reflected inertia of link1 at actuator 1 through gearbox 1

n,? D,, is the refected inertia of link2 at actuator 2 through gearbox 2.

If the coupling terms are ignored (this can often be justified if the coupling terms
are small compared to the actuator torque), and the manipulator works in the
horizontal plane ( i.e. gravity terms are not present), the dynamic equations
become:

TMl = Jeffl éM]
TM2 = JCffz 6M2

The block diagram representation of the single axis system is shown in Fig.6.1.

8o

T+ Controller e.g.

Actuator

PID,PD .

2
Jeff S

Figure 6.1. Block diagram representation of the independent axis control system

for a single axis of the robot manipulator.
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6.2.2 Modelling of actuator

A schematic diagram of a typical D.C. motor is shown in Fig.6.2 as follows:

I¢ I,
,——v— R¢ R, L, | f
\Z Lt Motor Armature Va

Figure 6.2. Schematic diagram of a typical Direct Current(D.C) motor.

6.2.3 Field Controlled D.C. Motor

The torque produced by the motor is proportional to the product of the armature
current I_ and the air gap flux y,which is proportional to the field current
ie

v=K 6.1)

where Kf is a constant.

The torque T produced by the motor can be written as follows:
T=K; K, I, (6.2)

-where K, is a constant.

In the Field-Controlled D.C. Motor the armature voltage V, is held constant, hence

i . Wi tant armature voltage the
the armature current I, is kept constant. With a consta tu g

developed torque can be taken to be proportional to the field current:

T=K, Iy (63)
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where K| = motor torque constant

The equation for the field current is as follows:
M
I¢= LS+R (6.4)

The motor can be considered as a inertia J with a viscous damping of B. The

torque produced by the motor is thus:

T=(0S2+BS)0 (6.5)

Substituting (6.4) into (6.3) and equating to (6.5) the overall transfer function may
be obtained:

K,

‘ @

(6.6)

<

f (LS+Rp)(JS*+BS)

Dividing numerator and denominator of (6.6) by R, and B the following transfer
function is obtained:

0 K,/R¢B

VS (1+T5S) (1+ T(S) D

where Tm=J / B = motor time constant

Tf =L /Re= field time constant

The representation of the motor transfer function can be simplified. For instance,

consider the case when Tg << T,, , also if the system has very little damping then

the damping factor B is set to zero. The transfer function for the motor can thus be

modelled as a gain term, for the purpose O

will be taken as unity.

f the simulation model this gain term
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6.2.4 Armature Controlled D.C. Motor

In the Armature-controlled D.C. motor the field current is held constant. For a
constant field current the flux becomes constant and so the torque produced by the
motor is directly proportional to the armature current:

T=K1, (6.8)

When the armature is rotating a voltage is induced in the armature that is

proportional to the product of the flux and the angular velocity. For a constant

flux, the induced voltage V, is directly proportional to the angular velocity ©:

V=K, ® (6.9)

where Kb is the back emf constant.

The voltage applied to the armature V, equals the sum of the voltages across the

armature inductance and resistance plus the induced voltage V:

V=R, I, +L,,S+V, (6.10)

Representing the transfer function of the armature controlled D.C. Motor in block

diagram form as shown in Fig.6.3:

I T
Va + : a m 1 ®

(LS+R JS+B

Kp

Figure 6.3. Block diagram representation of an armature controlled D.C. Motor.

The transfer function for the armature controlled D.C. Motor from fig.6.3 is as

follows:
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® _ 1/ Ky,
V., JL .2 (BL+RJ) R 6.11)
Se 4ozt B
K. Ky KK, S+(K[Kb+1)

Factorising the denominator in the from of (T_ S +v ) (T, S+ 1)+ 1:
T, T,S2+ (T, +T,)S+(y+]) (6.12)

Equating the denominator of (6.11) to (6.12) gives the following coefficients:

y=R B /K K, = Damping factor
T.,=R JIK K, = motor time constant
T, =L /R = armature time constant

In order to simplify the transfer function the case will be considered when the
viscous damping coefficient B is zero and T, << T, .The transfer function

simplifies to the following:

=__1£(L__ (6.13)

@
Kths+1

The simplified transfer function for the field controlled D.C. Motor will be used in
considering the various independent axis control strategies. The general block

diagram for this case is a modified version of Fig.6.1 and is redrawn in Fig.6.4

below:

8o

T+ Controller e.g. )
PID,PD .

2
Jeff S

Fig.6.4 General block diagram representation of the independent axis control

system for a single axis of the robot manipulator.
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6.3 Independent Axis Control Strategies

The control strategies that are considered are listed below:

i) PD control

ii) Proportional + derivative feedback
ii1) PID control

iv) PI + derivative feedback

v) PD + acceleration feedforward

vi) PID with acceleration feedforward

The characteristics of the first four control systems are summarised in the table
below in terms of a) Characteristic equation order and numerator order

b) Type number c)Error to a test input d) Error to a disturbance input:

Test Error to
Type of  |Order of [Order of | Type | Test irsrtor to Distur- :f'St
COntl'Ol Num. Den. No. Input input bance b;sr:(l;é-

Br BrJ | T4 Tq

) =
PD 1 2 S3 KpN S Kp
Pdei- | ) 1 6r |8rKqg] Ta | _Td
vative 2 S Kp
feedback S Kp
, . Or 6rJ | _Td T4
PID 2 ¢ kv | 82 | K
[ . Or Or Kd Td Td
PI + deri- 1 3 2 3| 5 K
vative S K S
feedback

Table 6.1. Showing the characterisation of the control stategies considered.

The latter two control system strategies are not included in table 6.1 as they are

slightly different from the other four strategies, they will now be considered:

vi) PD + acceleration feedforward
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| The block diagram for this type of controller is shown in Fig.6.5:

2
Jeff S

Figure. 6.5. Block diagram representation of the PD + acceleration feedforward

independent axis control system for a single axis of the robot manipulator.
The transfer function for this system can be shown to be as follows:

6 =(KaSZ+KVS+Kp)Jcn9r-Td

o]

(6.14)

1s2+J.nK, S+ nK,

If the transfer function is divided by J the actual inertia and letting C=J /J then the

transfer function becomes :

2
_(K,S +K,S+K,)Cn8, -T4n/J 6.15)

(o)

s?+CnK,S+CnK,

It is seen that if the value of J equals the Computed value J_ and K =1/n, the

numerator cancels the denominator and there is no error to what ever type of input
except that due to disturbance loads. However, this is not likely to occur since
there will be inaccuracies in the estimate of the inertia. The inertia of the
manipulator will vary and is configuration dependent also, it will change if the
manipulator picks up an object. Thus, unless the computed inertia is continually
computed, based on these changes, the numerator and denominator of the transfer

function will not cancel exactly.

vi) PID with acceleration feedforward
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The block diagram for this control system is very much the same as v) except there

is the addition of the integral control term. The transfer function can be shown to
be as follows:

3 2
0 _ (K S +K,S"+K ;S +K{)CnB, -TynS/J

(6.16)

o)

3
S +CnK, S*+CnK,S +CnK,

Again the ratio of the Computed inertia to actual inertia is represented by C. Full
cancellation of the numerator with the denominator only occurs when this ratio is
equal to 1. A summary of the characteristics of the two control system types of v)
and vi) is shown in the table 6.2.

Type

Error to
Typeof  [Orderof [Orderof| NO | Test [Emorto | IESt eg
Control Num. |Den. glthl Input [test baljiclg- distur-

#1. input bance

PD with 0r |0r(1-0O T Ty
acceleration 2 2 2 3 lenk —4 KJ
feedforward S Kp S piC
PIDlwith_ 3 3 3 8r PBr(1-0O T4 T4
acceleration 4 K: N 2 K]
feedforward st ¢ S e

Table 6.2. Showing a summary of the characteristics of the two controller systems

with acceleration feedforward.

6.3.1 Choice of Controller Coefficients

The object in choosing the controller coefficients is to obtain a suitable damping

ratio and undamped natural frequency of response from the system. It is of benefit
to increase the control system gain and hence the undamped natural frequency,

since this minimizes the errors due to disturbance loads and tracking errors.

However, the undamped natural frequency cannot be arbitrarily chosen since if it
is set too high it may excite the structural resonant frequencies of the joints. The

limitation on the setting of the undamped natural frequency will now be

considered.
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6.3.2 Structural frequency

The joint of a manipulator may be represented as an effective inertia J o Mounted

on a torsional shaft of stiffness K as shown in Fig.6.6. The equation for this

system is as follows:
- K 0= T 0 (6.17)

The solution to this equation gives the frequency of oscillation which is :

Kett
(O Vo (6.18)
.
Kc[(
g
"-_~_ T __,_/“’

. -
Se—— —

Figure 6.6. Diagram showing the stuctural representation of a joint of the robot

manipulator.

It was shown by Book3? that for conservative design a safety factor of 200%
should be used. The undamped natural frequency of the closed loop control
system must be set at no more than half the structural resonant frequency o, for

conservative design. It is obvious from equation (6.18) that with high inertial

loads the natural resonant frequency goes down, which means that control gains

must consequently be decreased to maintain the same performance.

6.3.3 Controller Gains

For control systems i) and i) the characteristic equation is the standard second
o
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order, of the form:
2. 2
$"+2L oS +o, =0 (6.19)

For instance if the choice of controller gains for the PD system is considered then
then the characteristic equation of this system is :

S™+ S+—£ =0 (6.20)

Comparing coefficients of equations (6.19) and (6.20) the undamped natural
frequency can be equated to the structural frequency as:

~

eff
n K W, J
2

(DII: J =

(6.21)

[\

Rearranging in terms of the controller gain K gives the following expression:

K,= (6.21b)

An expression for the damping ratio can be found and can be shown to be:

= Ky (6.22)

Kmeax
n

As shown in equation (6.22) the maximum inertia is used since this ensures that

the damping ratio does not go below the set amount and increases if the inertia

goes below the set amount. Rearranging (6.22) an expression for K, is obtained:

K,J
p Y max
K,=2¢ - (6.23)
For control system V) this has the same order characteristic equation as i) and ii)

but the value of the computed inertia J must be included in the calulation of the

controller gain:
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Kp=%7n (6.24)

where J _is the computed inertia gain term.

An expression for the damping ratio can similarly be obtained:

¢ . Ky [ Jeminn
mm"'z ] K

max > p

(6.24b)

In order to ensure that the damping ratio does not become lower than the required

for a fixed setting of K, and J_ it is necessary to calculate K, for when (6.24b) is
a minimum. This occurs when J_ is a minimum and J is a maximum, hence for

fixed value gains J =J . and K is:

20 .
K, =——C-’“—"‘-— (6.25)
Jc min 1!

Jmax Kp
For systems iii) and vi) the characteristic equation is third order, and system iii) is
type 3. Since each term of the characteristic equation has a an adjustable controller
coefficient in it (except the highest order term), it is possible to position the poles
to an 'optimum’ position. In Graham?®! they thoroughly investigated various
criteria for optimum transient response. The clear winner was the Integral of Time
by Absolute Error (ITAE) index. The application of this criterion results in the
selction of standard forms for the characteristic equation coefficients. For a third
order type 3 system the standard form is as follows, in terms of the numerator the

minimum number of terms to satisfy the requirements of the type number are

included in transfer function of (6.26):

2 2 3
0, __ 29708 +49405 1% (6.26)

e 2 3
0 §34297 0,5 +4.94 0,8 + 0,

For system iii) the transfer function can be written in the same form (6.26) :
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nKV 2 nK nK

ST+ -2 I

J j S + j
3, nK, 2 nK, nK;

S™+ i S+——J S+——J

0,
9, (6.27)

The coefficients of the two transfer functions can now be equated and rearranged

in terms of the controller coefficients to give the following set of equations :

297 wgJ
Ky=—v—o (6.28)
n
4.94 wy2]
Kp=—"" (6.29)
0)03 J
Ky=— (6.30)

However, the question arises how is the value of ®, selected ?. The criterion for

choosing the natural frequency of the system is the same as for the second order

system i.e.:
Keff
w J
i (6.31)

The relationship between ®_ and ®, can be found by writing the ITAE index

coefficients in the normalised form by letting

This give the following normalised form of the ITAE index:
2242970744941 +1=0 (6.32)

The roots for this equation are thus:



r; =-1.3688 + j 1.5589
ry=-1.3688 - j 1.5589
ry=-0.2328

This give a damping ratio of {= 0.66 and a natural frequency ®__=2.075
rad/sec(subscript _ refers to the normalised natural frequency). Since this is the

natural frequency scaled by a factor of w, then the requred natural frequency is:

® =05
n requred = 5~ = ©o Onn (6.33)

Rearranging in terms of o, the required expression is obtained:

Ker

J
®,= -~ max (6.34)
2w,

The value of ®, may now be substituted into equations (6.28) to (6.30) to obtain

the required controller coefficients.

For system vi) the characteristic equation is of the form:
($*+CnK,8?+CnK,S+CnK;)8,=0 (6.35)
Equating this to the ITAE standard form to find the controller coefficients:

_ 2.97 o,

K,= or (6.36)
2
4.94 0,
-7 6.37
K, o (6.37)
® 3
=2 6.38
Ki=&, (6.38)
Where C=J c
design

If equations (6.36) to (6.38) are resubstituted into (6.35) the following equation is
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obtained:

3 T, 297w, 5, J. 494@’] I, @)
47 () 87 T (TR 54 0 (00 (639)

act c act J c act J c

The J 's cancel throughout and the w_may be removed by letting A=S/w,. A root

locus for the variation of E=J/J__, for a range of values from 0.5 to 1.5 is shown

act’

in Fig.6.7.
. 2
Increasing E=J / J ¢
m@@Bog
o] g a 9
E=1.5  E=1.0 =0.5 | E
E
&
Q
Increasing E=J /J ¢ é
Real Root
a— 0
-3 -2 -1 0

REAL AXIS

Fig.6.7. The root locus for the variation of E=J/J_.

As seen in Fig.6.7 as the ratio E increases the poles go further away from the
imaginary axis, therefore to ensure stability E must be chosen to be greater than or

equal to one. If the design value of J is chosen to be J ., this condition is
satisfied and E is always greater than 1. Also J.=J . to ensure the largest gain

which makes C=]_/J =1 at the design condition.

The structural resonances for the RTX manipulator joints were determined

experimentally. For the path considered these correspond to the following:

Load(Kg) Axis I(rad/s) Axis 2(rads/s)
0 9.48 11.65
10 8.26 10.00
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The controller gains were determined based upon the different regimes outlined
previously in the chapter.The table of controller gains for the six control strategies
considered are shown in table 6.3 :

Control K K
Load(kg) pl p2 | Kvi Ky2 Kn Kn Ve | 3 2
. 0 | 0.194 ) 0.144 | 0.057 | 0.035
' 10] 0.194 | 0.144 | 0.066 | 0.040
5 0| 0.194 | 0.144 § 0.057 | 0.035
10| 0.194 ] 0.144 | 0.066 | 0.040
\ 0 10.233 0.166] 0.059 | 0.035{ 0.103 | 0.094
' 10 | 0.233 | 0.166 | 0.067 | 0.041 | 0.080 | 0.081
0 10230 | 0.171 ] 0.043 | 0.026 | 0.202 | 0.185
4.
1010230 | 0.171{ 0.050 { 0.031 0.176] 0.159
0 120152 | 15071 | 5955 3598 9.63E-619.71E-6
5.
10 { 16570 { 11063 } 5614 3083 11.71E-6{13.05E-¢|
o | 22574 | 17064 | 5945 3655 |10433 |9697 ]9.86E-6 }|9.71E-6
6.
10 1 17172 } 12693 }5185 3152 6922 | 6221 |12.96E-6{13.05E-4

Note. Control Types in column 1 refer to the following:
1. PD controller
2. P + derivative feedback
3. PID controller
4. PI + derivative feedback
5. PD + acceleration feedforward
6. PID + acceleration feedforward

Table 6.3. Showing the controller gains for the six independent axis control

strategies.
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6.3.4 Simulation results

The results of the simulation are shown in table 6.4(these were simulated using the
simulation language ACSL32). The absolute angular error is tabulated in radians.
Two design conditions are considered, designing for a zero load and designing for
a 10 Kg load. The results for no load and 10Kg load are tabulated for each of
these design conditions.

Controller Design Applied Absolute Error(Rads)
Load(Kg)} Load(Kg) | Axis 1 Axis 2

0 [ 0.07886 0.1040

1. PD Control 0 10 0.0869 0.1102

10 10 0.0805 0.0986

10 0 0.0725 0.0943

o 0 0 0.2877 0.2901

2. "Pd" Control. 5 T 09901 573507

10 10 0.3229 0.3066

10 0 0.3244 0.3066

0 0.0742 0.1104

3. PID Control 10 0.0819 0.1261

10 10 0.0769 0.1090

10 0 0.0694 0.0972

4. PI + derivative 0 0 0.1738 02046

feedback. 0 10 0.1810 0.2233

10 10 0.1866 0.2260

70 0 0.1793 0.2196

' 0 0 0.0028 00038

5.PD +f:§f§})err;2?; 0 10 0.0173 0.0301

10 10 0.0141 0.0416

10 0 0.0156 0.0398

. 0 0 0.0041 0.0086

6. PID + ?gggflgi‘é;‘ig 0 10 0.0150 0.0293

' 10 10 0.0197 0.0414

10 0 0.0241 0.0402

Note. "Pd" is Proportional control with derivative feedback
Table 6.4. Showing the simulation results for the six independent axis control

schemes.
The absolute error in radians is defined as the difference between the planned

trajectory in joint space and the actual trajectory followed by the simulated robot
manipulator system in joint space. The absolute error as tabulated in table 6.4 for
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joints 1 and 2 show the maximum absolute error that occurs along the complete
trajectory. This generally occurs following one of the corner points when the

manipulator is required to accelerate rapidly to reach the next segment velocity.

In reference to table 6.4 of the simulation results it is seen that controller no. 2
( Pd control) performs extremely badly. This is expected since it is a type 1 system
hence, it has an error to a velocity and acceleration input and an error to a

disturbance input.

Controller 1. PD and 3. PID have comparable performance, this is considerably

improved by the introduction of acceleration feedforward.

Generally when the fixed controller is designed about the higher load and that load
is applied its performance is worse than when it is designed about zero load and a
zero load is applied. This is because the controller gains are constrained by the
reduction in the structural resonant frequency caused by the increase in inertial
load.

The coupling terms in the dynamic equations are small when referred to the motor
for the RTX since the gear ratios are so high. In order to compare controller types
when the coupling terms are of more significance consider the system when it has
optimum and direct drive ratios. However, it will be assumed that the structural
resonant frequencies for each axis are the same for the RTX under a 10 Kg load.
Of course this is not truly realistic since for a direct drive robot the structural
stiffness is increased considerably. However, it is the effect of the significance of
the coupling terms that are to be studied so all other factors are kept constant. In
order to subtract initially the effect of the coupling terms the robot is modelled as
an effective inertia only for each arm. For axis 1 the inertia will vary according to
the position of axis 2 while the inertia of axis 2 is constant. The results of the

simulation are shown for the reduced model of the robot and for the full model in
table 6.5.
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Model . . .
Controller Simpi ) Optimum Ratio Direct Drive

————| Absolute Error(Rads) [ Absolute Error(Rads)
Fall (F) | Axis 1 Axis 2 Axis 1 Axis 2

1.PD Control S 0.0896 | 0.1091 0.0895 0.1091

F 0.0570 | 0.0812 0.0562 0.0828

2.PD+ s | 00245 |00 0.0275 0.0
Acceleration
Feedf d.
cediorwar F 0.0523. | 0.138 0.0732 0.1880
3.PID S 0.0861 | 0.1109 | 0.0860 0.1109.
Control

F 0.0540 | 0.0768 0.0532 0.0776

4.PID + S 0.0099 0.0 0.0119 0.0
Acceleration

Feedforward

F 0.0718 0.1470 0.0954 0.2018

Table 6.5. Showing the results for the four independent axis control stategies

when the robot manipulator is directely driven.

As seen in table 6.5 comparing the results for the different controllers for the direct
drive condition it is seen that the feedforward acceleration controllers perform a
good deal worse than their corresponding counterparts which was contrary to the
previous result for the RTX. The reason for this can be seen by comparing the
results with those obtained for the simple model of an effective inertia. For the
simple inertia case where the robot is modelled without the coupling terms the
results predict that the feedforward acceleration controllers should perform better.
This leads to the conclusion that when the non-linear terms in the dynamic model
of the manipulator are significant i.e. the gear ratio is small, the feedforward
acceleration controllers are severely affected by the coupling terms i.e.havin g low
disturbance rejection properties. In fact it is seen that the straight PID control
system performs marginally better than the PD control system. This can probably
be accredited to the fact that the PID controller has greater disturbance rejection

properties.

An unexpected observation from table 6.5 is that PD and PID control systems
perform better for the coupled system than they they do for the simplified model
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where there is no coupling present. This will be considered in detail why this
occurs later in the chapter.

6.4 Linearisation of manipulator equations,

In order to understand in more detail the various control strategies the non-linear
equations of the manipulator are linearised about a particular operating point. The

dynamic equations written in state space format are as follows:

T =M(@®) 0 + V(0,0) + G(8) (6.40)

where M(0) is the n*n inertia matrix

V(G,G) is the n*1 vector of
centrifugal and Coriolis terms
G(0) is an*1 vector of gravity terms

By writing the V(0,9) in a different form the equations can be written in

configuration space form:
T =M(@®) 8 + B(8) [66] + C(8) [62] + G(6) (6.41)
Where B(0) is a matrix of dimensions n*n(n-1)/2 of Coriolis coefficients.
[60] is an n[n-1]/2 *1 vector of joint velocity products given by :
[éé]=[é192,é1é3, “““““““““““ ,én_lé"]T

C(0) is a matrix of centrifugal coefficients and [62] is a n*1 vector given by

In the configuration space format all of the coefficient matrices are a function of
the manipulator position. This is a suitable form in which to linearise the equations
since they will be linearised at a given position. For the manipulator under

consideration the equations in configuration form are :

163



T=

Jeffl/nl n1D12
n2 D12 Jeff2/n2

0,
e
0,

0 ny;Djypy
n,Dyyy O

n; 13“2][()102]

6,2
52| 642

2

+

At a particular configuration the non-linear terms are the Centrifugal and Coriolis

terms, these are linearised as follows:

9D;;,0,0, . .
——ia%l‘lmzi const. = D112082;D (6.43)
1

dD;1,6,0,
26,
2
dD;5,0,
36,

16 1; const. =D11201;D (6.44)

li const. =2 D122 9 2% D (6.45)

2
oD, 0 )
=g liconst. =2Dp1101;D (6.46)

]
Letting
K, = D11292i
Ky = D1129}i
K3 =2D12292i
K4 =2Dj10y;

Writing the linearised equations in configuration space as follows:

Tml _ Jeffl/nl n1D12 -9'1 +
Tmz| | n2Diz Jeffy/ny] |6,

[ n K, nl(K2+K3)]

él}
. 6.47)

n2K4 0 92
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Where T, and T_, are the torques for joint 1 and 2 respectively referred to the
motor side. The effective inertia at motor side for links 1 and 2 respectively are

Jeff, and Jeff, and are equal to the following:

Jeff.=(Ja,+Jm, +n2D, ) where Ja, + Jm, is the inertia of motor and
fittings.

ni2 D.. is the referred link inertia.

Consider PD control where the multivariable block diagram is of the form:

0, + T, 89

KP+KVS Arm

Figure 6.8. Block diagram for the PD control system.
The transfer function equations for PD control for both axes can be shown to be:
2

+0,(n Dy S”+n(Ky+K3)S) (6.48)

0,2(K o+ K,y 8) =0, (Jeff,/ny 8" + Ky S +Kpp)

+61([12D12$2+H2K4S) (6.49)
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Similarly the transfer function equations can be found for PID control and are
shown to be :

0,1 (K, SZ+K  S+K ) =0, (Jeff /nyS° +(n Ky +K,p) S*+Kpy S+Kyy)
+8,(n; DS +n, (Ky+Kj) S (6.50)
0,2 (K,,S2+K S +Kp) =8, (Jeffy /1,87 + K 38"+ K p S + Kpp)
3 2
+0;(n,D;p S +n; K4y S7) (6.51)

The initial objective is to verify the linearised model of the robot manipulator. The
model of the manipulator with PD controller will be considered. The model of this
system is represented in state-space format in the control design package

CTRL 'C33. Initially the analogue block diagram for the linked PD system is

drawn up as follows:
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Figure 6.9. Analogue block diagram representing the dynamically coupled robot

manipulator with PD control.

For axis 1 the coefficients are:

Numerator coefficients
NAl= K

vl

NAO= K

Denominator coefficients
DA2= Jeff,/ n,

DAl= n K, + K,
DAO= K,

DAB2= n, Dy,

DABl=n, (K, +K;)

For axis 2 the coefficients are:

Numerator coefficients
NBl= K,

NBO= K,

Denominator coefficients
DB2= Jeff,/ n,
DB1= K,
DBO= sz
DBA2= n, D,
DABl=n, K,

Xy X, X3, Xy X5, Xg are arbitrary states as shown in the block diagram.
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The A,B,C and D state space matrices are found to be :

D=

Where DCOF= Jeff,/n *Jeff,/n, -n;n, D122

6.4.

r 0 _DAO DB2
DCOF
| DAB1 DBA2 - DA1 DB2
DCOF
0 DBO DBA2
DCOF
0 DBI DBA2 - DBAI DB2
DCOF
NAO 0
NAl 0
0 NBO
| 0 NBI

DB2 , _DAB2

DCOF DCOF
_DBA2 ,  DA2
| DCOF DCOF

55

1 Verification of Linearised Model

DAD DAB2
DCOF
DA1 DAB2 - DAB1 DA2

DCOF
_DBO DA2
DCOF
DBAI DAB2 - DBI DA2

DCOF

The model of the robot system under PD control is represented in state space form

using CTRL'C'. The model is configuration dependent and the desired

configuration can be chosen i.e. the postion of link two 6,. The non-linear terms

were linearised about the velocities of joint 1 and joint 2 these are chosen to suit

the required conditions considered. A full non-linear model of the manipulator

with PD control is represented in ACSL and used to compare with the linearised

model.

Initially a step input to axis 1, of magnitude 0.5 was considered with zero input

into axis 2. The actual velocities of axis 1 and 2 are plotted from the results for the

full non-linear simulation as shown in Fig.6.10.
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Figure 6.10. Plot of Joint velocities versus time for the PD control system.

A step demand in axis 1 means an instantaneous velocity change in axis 1.
However, the final velocity is zero, so the linearisation velocity is chosen as zero
for axis 1. The sudden torque demand in 1 causes link 2 to accelerate in the
opposite direction due to the coupling effect. The equation of motion for axis 2,

ignoring other terms, is as follows:

Ty-D,0,=-D,0,=Dy,0,
where T, is initially zero

Hence, the torque accelerating axis 2 is that due to the motion of axis 1 and is
negative which causes link 1 to accelerate in the opposite direction to axis 1. The

final velocity of axis 2 is zero so the linearisation point is chosen as zero. The
configuration operating point is zero being the final settling point of 6,. The

linearised response plotted with the full non-linear response is shown in fig.6.11.
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Figure 6.11. Plot of the linearised response with the full nonlinear response to a

step input of 0.5 in axis 1.

As seen in Fig.6.11 the linearised response is shown to have an initial response
that is greater than the non-linear response. The general differences between the
two plots are small throughout the period of the simulation. The reason the
differences occur is due to the choice of the operating points for the configuration
and the velocities. In the graph for axis 2 the non-linear system appears to be more
damped than the linearised system. At the initial position the instantaneous

equation for axis 2 is:
. L2 .
Tpe-D12014D5118; =Dy,0,

The initial torque available for acceleration of link 2 is caused by the coupling
torque.This is reduced by the centrifugal torque produced by the motion of link 1

but acting in link 2 which is positive initially because:

sin (-0,) = -sin (9,).

This is not taken into account in the linearised model since it was linearised about
zero velocity for both axes. Similar discrepancies occur in axis 1 due to the choice
of the operating points for the velocities. For axis 2 the instantaneous equation is

of the form:
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Tic-Dy282-D12,8,+Dyy28,8, =Dy, 64

A similar analysis could be carried out for step input to axis 2 and zero input to
axis 2. This can be shown to yield very similar close results in the comparison

between the linearised model and the non linear model as shown in fig.6.12.

//’"
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0.41

TH2 (Rads)

Q. 30

~
s
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//"'_ S
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\ |

fd.on a. 4D d.en 1.2D0 1.0 3_bo
Axis 1 T (secs)

0,65 0,0D

TH1 (Reds)
m—

-0,105

Figure 6.12. Plot of the linearised response with the full nonlinear response to a

step input of 0.5 in axis 2.

Next a ramp input in axis 1 is considered with zero input in axis 2. First the
non-linear velocity response for both axes is plotted as a guide for deciding the
operating points for the linearised coefficients.The two joint velocities are shown

plotted in fig.6.13:
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Figure 6.13. Plot of Joint velocities versus time for the full nonlinear system.

The choice of the velocity dependent linearisation coefficients is straight forward
for axis 1. The magnitude of the ramp input for axis 1 is 0.5 rads/sec, so this is
the chosen operating point. For axis 2 the response shown in Fig.6.13 is seen to

to settle at zero, the chosen operating point is therefore zero. The configuration
dependent operating point 8, is also chosen as zero. The position response for the

linearised system, plotted for comparison with the non-linear system, showed no
identifiable difference and is hence not plotted, however the response is shown
plotted against the reference input in fig.6.14:
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Figure 6.14. Plot of the full nonlinear response to a ramp input of 0.5 in axis 1.

Similar close matching of models for the case of a ramp input to axis 2 were

obtained.

6.4.2 Transfer function and characteristic equation

The system transfer function defined in terms of the state-space matrices is :
f(s) =C'[SI-AT1B UES) (6.52)

In order to determine the transfer function symbolically the equations of the
system were reformed for input into the Aston package which will determine the
transfer function of the system symbolically. The Aston package is a computer
aided control system design package (as described by Firoozian3%). It allows the
study of the stability, transient response, frequency response and steady state

behaviour of the system to be obtained.

The initial design of the controller coefficients was based upon the assumption that
the non-linear coupling terms of the dynamic equations of the manipulator could
be ignored, so that each axis if the manipulator is represented by an effective
inertia, with no interaction between the two axes. The characteristic equation for
each axis is thus a second order equation for which the coefficients can be suitably

chosen. In reality the characteristic equation is of fourth order and represents the
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coupled system as shown in equation (6.53).

(Jeff, Jeff,/n; n, - n n, D ,2) s4

+ (K Jeff /n +Jeff /ny( n K+ K,; )-n; ny DK, - nyny( K,#Kp)D,,)S?
+ (K Jeff/ny+K ) (m K+ K, )+ Kpleffy/n;- ny ny( Ky+KyK,) 82

+ (K, Koy + Ky (nK+K( ) S

+(K; K;,)8? =0 (6.53)

The numerator coefficients can be expressed as an input-output matrix of the form:
91 - Gll C‘12 erl (6.54)
0, Gy Go || On2

Where the numerator coefficients are defined as :

Gy, =l ( K,, Jeff,/ny) S + (K, K, + Jeffy/n, K ) S?
+ (KK, + KVIKp2)Sl +(K,; K5) $%]

Gyp=- [ (DK, 8% + (DKt 0 (Kot Ky) K, ) §2
+(n(Ky+Ky) K ) 8]

Gy=- [ (mDK,)) 8% + (K, n, Ky + Ky ny D) s*
+ (K 1Ky) S']

Gyy= [ ( K, Jeffy/n)) S + (K (K + K,p) + KpJeffy/n; ) s?
+ (KK + Kpp(n Ky + Kyp)) S'+ (K, Kpp) 8]
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6.4.3 The effect of coupling on the dynamic response

The effect of inertial coupling and the other nonlinear coupling terms on the two
axes of the manipulator can be seen by evaluating the Eigen values of the [S T- A]
matrix. In fig.6.16 are plotted the roots of each axis in their design position where
all coupling terms are ignored. However, if inertial coupling is taken into account
with the terms arising from the centrifugal and Coriolis set to zero the actual

position of the roots are quite far from this point as seen in fig.6.16. The roots

consist of a pair of complex roots at -1.6 + j 2.8 and -1.6 -j 2.8 with a w =3.22

rads/sec and a {=0.495 and two real roots at -3.37 and -111.45.

The effect of the other non-linear terms will now be considered.

1. Variation of K,
Consider the case when joint velocity 1 is zero,thus K,,K, and K, are equal to

zero,and K, is :
K3 =2Djy;0y;

The D,,, coefficient which is configuration dependent will be calculated at the
design condition which corresponds to the maximum inertia condition.This occurs
at 0,=5.7 rads. A reasonable range of velocities for joint 2 that will be considered

are + or - 25 rads/sec.

The root locus for the variation of K5 can be drawn unscaled as shown in
fig.6.14a. The roots consist of a pair of high frequency roots and low frequency

roots as shown in fig.6.14a. The high frequency roots are real at K;=-20 and
become complex at K;=+11. The high frequency roots move into the right hand
side of the Argand diagram at K;=+20 and are equal to +0.45 + or —j27.61. The
correctly scaled root locus is shown in Fig.6.15. There also exists a set of low

frequency roots as shown in Fig.6.14a and to scale in Fig.6.16. At K;=-20 the

low frequency roots are near the imaginary axis and are equal to -0.57 + or
—j2.79. They would dominate the response since they are the nearest to the
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imaginary axis. This corresponds to a large negative joint 2 velocity. However, as
K, becomes large and positive the low frequency roots move towards the real axis

and the high frequency roots now dominate as they are closer to the imaginary axis

than the low frequency roots.
K, =+20

Imaginary Axis

High frequency roots

Low frequency roots
K3 =420

-4
> Real roots / Real Axis
~ Ky =-20
Fig.6.14a. Showing unscaled root locus for the variation of K; for the range

K3=—20 to +20.

/A: 30
Complex roots K 5 = +20 af

— 20

Realroos K 5 =-20 Magnified

in Fig.6.16

T
o)
\ Imaginary Axis

-300 100

Figure 6.15. The root locus for the variation of K, for the range K,=-20 to +20.
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Fig.6.16. The root locus for the variation of K, for the range K3=—20 to +20,

showing the low frequency roots.

2. Variation of K,
Consider the situation when joint 2 velocity is equal to zero, the coefficients K,

K, and K, will equal zero. The value of K, is equal to the following:
Kg4=2D118y;

However, referring to the C.E of (6.53) it is seen that the only terms involving
K, are in the third order term of the C.E , when the other K's are set to zero, as

follows:
( KVzJeffl/N1+Jeff2/N2( N,K,+ K, )-N; N, D;,K, - N, N,( K,+K3)Dy, )S3

The specific term involving K in the third order coefficientis -N, N, D ,K, and
the specific term involving Ky is -N; N, D,,K;. They are both multiplied by the
same terms however, the values of K, and K, are of different magnitude and are

functions of 8,, and 0,; respectively.

K3=2Dj2; 05
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For this robot manipulator D, ,=-D,,, , so if the range of 8, that we look at the
root locus for the variation of K, is chosen to be the same range of 0, that we look

at the root locus for the variation of K, they will be the same. The only difference

occurs due to the sign of the dynamic coefficients being opposite. This can be seen
in table 6.6, later in the chapter. Therefore the root locus for this situation need not

be drawn.

3. Variation of K,

K, arises from the linearisation of the Coriolis term in the dynamic equation for
axis 1, as seen previously in equation (6.43). The value of K, is dependent upon
the angular velocity of link 2 and the contribution to the torque T, ; depends in
turn upon the angular velocity of link 1, as seen in equation equations (6.47). It is

zero if either of the joint velocities are zero. The root locus for the variation of K,

is seen in Fig.6.17 with the other K's set to zero, although this isn't a realistic

situation that could occur.

RealRootZ
1=-20 = +20
: Realmotl : -
nnnnnuuounnnnnunnnunu —0
-173 49 6 S

Real Axxs

Figure 6.17. The root locus for the variation K, for a range of K;=-20 to +20.

As seen in fig.6.17, the complex roots tend towards the right hand side of the

argand diagram for K< -20 and the system would become unstable. The real roots

move towards each other to -5.83 and -49.86 for Kl=—20.
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The root locus for the system is more complex than the simplified cases
considered so far, since the linearsed coefficients will all have finite values at a
given instance of time in the trajectory, that are functions of the two joint velocities
and the configuration of joint 2. If the configuration at the design point is

considered (08,=5.7) i.e. sinB, is negative then the sign of the linearised

coefficients are as shown in table 6.6 for the different permutations of the joint

velocities.

0 1 éz K, K, K4 K,
+ + + + + -
+ - - + - -

- + + - + +
- - - - - +
+ 0 0 + 0 +
- 0 0 - 0 -
0 + + 0 + 0
0 - - 0 - 0

Table 6.6. Showing the sign of the linearised coefficients for the different

permutations of the joint velocities.

The range of magnitude of the joint velocities take will depend upon the point
considered on a particular trajectory. The root locus is now plotted for a range of
joint velocities as seen in fig.6.18. Lines of constant axis 2 velocity are drawn in
the vertical direction and curves of constant axis 1 velocity are drawn
approximately horizontal. This root locus shows the high frequency roots which
occur at fairly high magnitudes of joint velocities. For instance, with a joint 1
velocity of 20 rads/sec and a joint 2 velocity of 55 rads/sec the roots are in the
right hand quadrant of the Argand diagram indicating that the system is unstable at
these joint velocities. In fact this probably applies to at any axis 1 velocity.
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Figure 6.18. Root locus for the variation of the two joint velocities showing the

high frequency roots.

It is also possible to draw the root locus for the variation of the joint velocities
showing the lower frequency roots as seen in fig.6.19. Again, lines of constant
axis velocity are drawn on the root locus plot. For instance, with a joint 1 velocity
of 10 rads/sec and a joint 2 velocity of -15 rads/sec the roots are in the right hand
quadrant of the Argand diagram indicating instability at these joint velocities. The
question should be asked, are these velocities likely to occur in a trajectory ?. In
the trajectory considered with the joint velocities shown plotted in fig.5.11 and
fig.5.12 of chapter 5, for a maximum Cartesian velocity of 300 mm/sec and
acceleration of 2000 mmy/sec? the maximum joint velocities are 1.28 rads/sec and
1.55 rads/sec for joints 1 and 2 respectively. However, a more realistic Cartesian
velocity of commercial robots is 6000mmy/sec. In order to retain the scaling of the
path the Cartesian acceleration must be increased to 800000 mm/sec?. This is a
twenty times increase in the Cartesian velocity and a four hundred times increase
in the Cartesian acceleration. This causes approximately, a twenty times increase
in the joint velocities to 26 rads/sec and 30 rads/sec for joints 1 and 2 respectively.
So obviously the possibility of reaching a point on the argand diagram in or near

the right hand quadrant is highly likely at those Cartesian velocities.
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Figure 6.19. Root locus for the variation of the two joint velocities showing the

low frequency roots.

The root locus diagrams are drawn for the case where the joints are driven
directly. However, if the joints are driven through a gear box the effect of higher
joint velocities is reduced. This is seen by examining the characteristic equation of
the system ( equation 6.53 ) where the linearised coefficients are all multiplied by a
combination of the gear box ratio. Having considered the PD control system, the

effect of introducing acceleration feedforward to the system will be considered.
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PD + Acceleration feedforward

Initially the characteristic equation of the control system is obtained in symbolic

form as shown below:

( Jeff,Jeff,/nn, - nyn, D ,2) S*
+ (J K Jeff /n, + Jeffy/ny(n K+ K| )

- nn,D,K, - nny(K,+K5)D,,) §?

+( JclelJeffz/n2 +J Ko (n K+ K )

+J oK Jeffy/n - nyny(Ky+KK,) 82

+ (J Ko T Ky + JoKp, (0 K+ 0K p)) s!
+( T Ky T0K ) 8° (6.55)

As seen in equation (6.55) above, this characteristic equation is very similar to the

simple PD system of equation (6.53) except that terms involving the controller
coefficients K. and K ; are multiplied by the computed inertia terms J ) and J ,

for axis 1 and 2 respectively. How accurately the computed inertia terms reflect the
actual inertia values will influence the stability of the system. This can be seen by

superimposing the variation in the computed inertia on the root locus for the

variation in K; root locus, fig.6.20.
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Figure 6.20. Root locus for the variation in computed inertia superimposed on the

variation in K for the PD + acceleration feedforward control system.

As seen in fig.6.20 the roots are plotted for J_, plus and minus 50% of the actual

inertia at K;=0. When the computed inertia is less than actual inertia the roots are

seen to move towards the right hand quadrant of the Argand diagram. This
situation is equivalent to a large load being picked up by the manipulator that is far

larger than expected. The roots are plotted for the cumulative effect of bothJ, and

] ., e.g.point 3 in fig.6.20 is when J,; and J, are 50% smaller than the actual

c2’
inertia's. The toots are seen to move towards the right hand quadrant of the

Argand diagram in this situation.

The numerator coefficients of the PD + acceleration feedforward control system,

as defined previously by equation(6.54), are found to be as follows:

G, = [ Kyl Jeffy/ny) S* + (J oK, Jeffp/ny+T K oK T ) s?

+ (T 4K, T oKt Teffy/ng Jo Ko+ Jo KK Jep) §?
+( J(:2Kv2Jc1Kp1+ JclKVIJCZKPZ) st + ( Jcll(leCZKpZ)SO ]
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Gp= -1 KpJ,nDyy) S+ (0D oK 40 (Ky+K 9K 5T ) §?
+ (DI Ky (K +K T K ) S
+ (n(Ky+K T 5K ) S!

Gyy= - (1,D K, 3 p) 8%+ (0D ] K, 1 +K T Ky S

+ (J KK+ Ko Do) %+ (nyJ 1 K1 Ky) st

Gay= [ (K JJeff,/n)) §% + (J K, Jeff /n +K T, K, +n K ) S3
+ (J oK ( T Ky #m Ky + T K Jeff /g + Kol oI Koy s?
+ (oK J o Kyt ToK (g Ko Ky) s!
+ (I K I oK) S%] -(6.56)

Where Ka1=1/"1 and K ,=1/n, i.e. the acceleration gains.

As seen in equation(6.56) the numerator coefficients of the transfer function are
the same order as the denominator characteristic equation however, there is no
cancellation of the numerator with the denominator due to the presence of the

coupling terms.

PID Control

For the PID closed loop system the characteristic equation in symbolic form is as

follows:

(Jeff Jeff,/n,n, - n,n,D,,?) S8

+ (szJeffl/n1+Jeff2/n2(n1K1+Kv1) -nn,D K, - n,n,(K,+K3)Dy,) S3
+ (Kleeff2/n2+KV2( n1K1+KV1)+Kp2Jeff1/n1- n;n, (K,+K)K, ) s4

+ (KoK +K (0 K +K ) 4Ky Jeffy/ny+ K Teffy/ny) S3

+ (K Kp KoKy +Kpp( i Ky +Kp) s?

+ (KKK K ST+ (K Kpp) 87 (6.57)
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If the characteristic equation is compared with that of the PD system of
equation(6.53) it is seen that terms S®, S° and S* are the same as coefficients S?,

S3 and S? of the PD system. The other terms of the characteristic equation are

those arising from the integral coefficient gains K|, and K,.

If a similar root locus analysis is carried out for the PID control system as for the

PD system, first the case when joint velocity 1 is zero is considered, hence K| ,K,

and K, are zero. The root locus is drawn for the variation of K, as shown in
Fig.6.21.
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Figure 6.21. Root locus for the variation of K, in the range K;=-20 to +20,

showing the low frequency roots.

If Fig.6.21 is compared to Fig.6.15 for the PD system, this is very similar in
shape for the range of K,=-20 to + 20. The plot for the high frequency roots is

also drawn as seen in Fig.6.22:
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Figure 6.22. Root locus for the variation of K, in the range of K;=-20 to +20,

showing the high frequency roots.

Again if this plot is compared to the corresponding one for PD control it is very

similar in shape.

The variation of K, is plotted below in Fig.6.23 (the real roots are not shown),

this is seen to be similar in shape to the PD plot of fig.6.17:

4.0
K1=-20 i
- 3.8
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a - 3.4
]
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a - 3.0
1] - -
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Figure 6.23. Root locus for the variation of K, in the range K,=-20 to 20.
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The root locus is now drawn for a range of joint velocities as seen in Fig.6.24.
This shows the position of the high frequency roots and indicates that the roots go
into the right hand half of the argand diagram at a combination of high joint

velocities. The diagram has a similar form to the previous one for PD control of

Fig.6.18.
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Figure 6.24. Root locus for the variation of the joint velocities showing the high

frequency roots.

The low frequency roots are also plotted in Fig.6.25. This is a similar plot to that
of the PD system showing at a particular combination of joint velocities the low
frequency roots move to the right hand quadrant of the Argand diagram indicating

instability.
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Figure 6.25. Root locus for the variation of the joint velocities showing the low

frequency roots.

PID + Acceleration feedforward

The introduction of acceleration feedforward in the PID control system is
analogous to the introduction of acceleration feedforward to the PD system. The
numerator order is increased to the same order of the denominator i.e sixth order,
although there in no cancellation due to the coupling terms. If the computed inertia

for each axis is less than the actual inertia this causes the roots to move towards

the right hand quadrant of the Argand diagram.

6.4.4 Degree of Inertial coupling

It was seen in chapter 3 on the dynamics of the manipulator how an acceleration in

one axis causes a torque and hence acceleration in the opposite direction, due to
the coupling inertia Dy, in the other axis. This is of some significance if the
trajectory that the manipulator is required to follow is considered. As seen in
chapter 5, dealing with off-line path and trajectory planning, in order for the
manipulator to follow a path at a constant velocity between points, at each corner

point it is required for the manipulator to accelerate at the corner points to meet the
next required sector velocity in Cartesian space. This trajectory planned in
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Cartesian space corresponds to rapid joint accelerations at the corner points in joint
space as seen in fig.5.15 and fig.5.16 of chapter 5. The joint accelerations are
analogous to a short step acceleration input but in opposite directions. In order to
study how the inertial coupling terms affect the response of the system, the
response of the PD system to a step acceleration input will be considered.

The inertial coupling torque either reinforces or opposes the control torque
depending upon the direction of acceleration of the other axis. For instance, the

equation for axis 1(excluding velocity coupling terms) is as follows:

Tey=Dy;0,+Dy,0,

If the acceleration demand in axis 2 is in the opposite direction to axis 1 then the
control torque is increased:

Te+ Dy20,=Dy; 6,

This can be interpreted in another way, the acceleration torque available for link 1
is increased by the coupling torque due to the acceleration of axis 2. If the
acceleration of axis 2 is in the same direction as axis 1 the coupling torque will
now oppose the control torque to axis 1. The torque available to accelerate link 1 is

now reduced:
Te1-D1202=Dy1 04

During the initial period of time when a step acceleration input is applied to the
system the acceleration and inertial coupling torque are the predominant portion of
the total torque. This can be seen if the absolute value of the individual torque
terms are expressed as a percentage of the total absolute torque and plotted against

time, as seen in Fig.6.26:
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Figure 6.26 Showing the percentage of the total torque that the dynamic terms are
for axis 1.

Fig.6.26 shows the percentage that each torque term takes for axis 1 for a step
input of acceleration to axis 1 and a negative step acceleration input to axis 2. The
velocity coupling terms are seen to be initially insignificant in the response until
the velocity builds up. In axis 2 the inertia and coupling torque can be shown to
dominate the response in a like manner to axis 1.

The acceleration response for axis 1 is now plotted for the following combinations

of step input to the two axes:

Decoupled system response
Coupled system with +ve step to axis 1 and 2

Coupled system with +ve step to axis 1 and -ve step to axis 2.

oS aw>

Required step input

These are shown plotted in Fig.6.27.
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Figure 6.27. The acceleration response for axis 1.

DA

As seen in Fig.6.27 the coupled response(C) reaches nearly 80% of the required

step in a very small amout of time compared to the non-coupled response(A) and

the response (B).

The acceleration response for axis 2 is now plotted for the following combinations

of step input to the two axes:

oCaw>

Required step input

Decoupled system response

Coupled system with +ve step to axis 1 and 2
Coupled system with -ve step to axis 1 and +ve step to axis 2.

The responses are shown plotted in Fig.6.28, axis 2 overshoots the required step

when the step inputs are of opposite sign in a very fast time(C). When the step

inputs are of the same sign the response, due to the coupling, is seen to go

negative initially(B) and is much slower than the decoupled response(A.).
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Figure 6.28. The acceleration response for axis 2.

The inertial coupling affects the ability of the system to track the planned trajectory
as seen in Fig's.6.27 and 6.28. The coupling torque either reinforces or opposes
the control torque and in our particular trajectory the acceleration demands at
comer points are of opposite signs which means the control torque for each axis is
reinforced. Previously in Table 6.5 the absolute positional error was obtained for
each axis over the complete trajectory for the different control systems considered.
The manipulator full dynamics were modelled and this was compared against the
result for when the manipulator was modelled as a simple inertia. As seen in Table
6.5, for the PD control system with direct drive the error for the simple system is
in fact larger than when the full dynamics of the manipulator are modelled. For
instance in axis 1 the maximum error for the simple system is 0.0895 Rads while
for the full system the error is less at 0.0562 Rads. This result is due to the effect
of the inertial coupling between the two axes. The positional error is now plotted

for the two systems for axis 1 and axis 2 as shown in Fig.6.29 and Fig.6.30.
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Figure 6.29. Showing the tracking error over the complete trajectory for axis 1.
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Figure 6.30. Showing the tracking error over the complete trajectory for axis 2.

As seen for both axes, the positional error peaks at the corner points for the

non-coupled system. However, for the coupled system although there are small

visible undulations at the corner points these are far less significant than in the

non-coupled system. Certainly it appears that the positional error is decreased at
the corner points due to the coupling torque reinforcing the control torque. The
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largest positional error occurs at the second corner point in axis 2 for the
non-coupled system this corresponds to the largest acceleration demand in the
trajectory in axis 2 as seen in Fig.5.19 of chapter 5. However, this positional
error has diminished considerably in the response for the coupled system as seen
in Fig.6.30.

As seen in Fig.6.29 and Fig.6.30, the absolute error is large after a corner point,
this occurs because the system cannot follow the rapid demand in acceleration at
the corner point in each axis. In practical terms it is worth referring back to the
example application of chapter 5 section 5.22 Fig.5.2. Although it is important for
the manipulator to follow the planned trajectory for the whole of the path, the most
crucial part is the segment during which it tracks the part on the conveyor and
carries out an operation on the part. If the absolute error is large during this
segment, the operation it carries out on the part may not be completed
successfully. At the corner points of this segment the absolute error may not be
important providing it follows the correct programmed position and velocity
during the major portion of the segment. The other segments of the trajectory are

not so critical providing the manipulator avoids any obstacles.

At high speed, when the velocity coupling terms are significant, it was shown , by
a root locus analysis, that the roots of the system move into the right hand side of
the Argand diagram indicating instability. The effect in practical terms when the
manipulator is tracking at high speed is possibly for the arm to surge forward
overshooting its path, then possibly reverse direction and surge back in the
opposite direction. There could be significant high frequency oscillation of a much
smaller magnitude due to the effect of the high frequency roots moving towards
the right hand side of the Argand diagram.

In order to quantify the degree of inertial coupling the relative gain method(as
descibed by Doebelin??), is used to specify the degree of interaction. The relative
gain method requires the equations of the open loop system to be obtained at an

equilibrium operating point where small changes in the the inputs Am;, Am, cause

small changes in the outputs Ac, Ac,. For the two axis system the equations are

obtained:

AC1=K11Am1 +K12Am2 (658)

194



A02 =K21 Aml +K22Am2 (659)

dc oc
1 1
where K, ==—1| K ,==—I
11 m, constant »> 12 m, constant
om; ™2 om, ™
K aC2 | 802
21 —aml m, constant K2, =am2 | m, constant

The equations for the manipulator include the velocity terms associated with the
Coriolis and centrifugal terms with the corresponding linearised coefficients.
However, it has been seen that during a step acceleration the initial response of the
system is governed primarily by the inertial coupling of the system so a
quasi-equilibrium state is defined during this period where small changes in the
input torque cause small changes in the ouput acceleration. With this assumption
the equations for the two axis manipulator are obtained as follows:

. Jeff T -N, Dy, T
b, - eff /Ny Ty - N1 D12 T (6.60)

Jeff, Jeft, /NN -N N, D122

. Jeff /N; Tpa-NoDyp T
6,= Ny IM2- N2 V12 TM1 (6.61)

Jeff Jeff, /NN -N N, D122

If a feedback controller is applied to one of the outputs of the system the open loop

gains for the uncontrolled variable change. For instance if the controller on axis 2
is in perfect steady state thus Ac,=0. A new steady state gain is defined as :

aCl

an = ‘a-n—{l“ ' c,constant

A relative gain A, is defined as:

d

Cq |
am i m, constant

aCI

‘aE]"— I c,constant
1

(6.62)

7\11:

The relative gains can be related to the K's and are obtained as follows:
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Ki1Kp Ay K2Kyg

K11 Ko2-Ky2 Ky T KpKyp-K 1 Ky
Ayy = Ki1Ky e = Ki12K9
K1 Kp-KpKy P73 7KKy -Kp Ky,

It is now possible to display the relative gains in terms of the input and output

variable as seen in table 6.7:

Outputs

Ca| Ay Ao

Table 6.7. Showing the relative gain terms.

When the relative gain terms are of similar magnitude this indicates strong
interaction. It is now useful to calculate the relative gains for the two axis

manipulator for the different gear ratio's considered. For the RTX manipulator
where the gear ratio's are N;=0.00114 and N,=0.002281( e.g N;=o /0,
where L, is the load side of the gearbox, this number is small the gear ratio is

referred to as being high) the relative gains are shown in table 6.8 below:

Inputs

Twm T m2

01| 1.107 { -0.107

Outputs

-0.107 | 1.107

Table 6.8. Showing the relative gains for the RTX robot manipulator.
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As seen in table 6.8 the interaction is relatively small between the two axes.

For the optimum ratio the gear ratio's are N;=0.0.0037 and N,=0.008 the relative

gain terms are calculated as shown in table 6.9:

Inputs

Twm T m2

0:] 3.164 | -2.164

Qutputs

9, |-2.164 | 3.164

Table.6.9 Showing the relative gains for the optimum ratio.

The degree of interaction between the two axes is seen to be of significance for the
optimum gear ratio system. Finally the relative gains are calculated for the direct

drive system as shown in table 6.10.

Inputs

T wmi T m2

01| 28.75 | -27.75

Outputs

0, | -27.75 | 28.75

Table.6.10. Showing the relative gains for the direct drive system.

For the direct drive sytem the interaction is very strong as seen by the fact that the

relative gains are all of similar magnitude.

To conclude this chapter, in comparing the different control strategies it was seen
that the presence of the dynamic coupling affected their performance. The coupling
affects are reduced if there is a high gear ratio between the actuators of the
manipulator and the link joints as in the RTX. Under these circumstances the
controllers with acceleration feedforward perform far better than simple controllers
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of PD and PID. However, when the gear ratio is low or the manipulator is
directly driven the simple PD and PID perform far better than the acceleration
feedforward controllers. The reason for this was seen by examining the
symbolically derived transfer function equations for the coupled system where the
numerator and denominator coefficients for the acceleration controllers no longer

cancel.

The velocity coupling terms were seen to affect the stability of the system at high
velocities and can cause the roots of the system to move to the right hand side of
the Argand diagram which means the system is unstable. The inertial coupling
terms affect the initial response of the control system and were seen to either
reinforce or subtract from the control torque, depending on the sign of the

demand acceleration signal for each axis.
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Chapter 7:Discussion, Conclusions and

Recommendations
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Chapter 7- Discussion, Conclusions and Recommendations for future research

7.1 Discussion

Current manufacturing techniques place high demands upon manufacturing
equipment. For a robot manipulator to replace existing equipment it must perform
with a high degree of accuracy, at high speed and without significant vibration or
becoming unstable, when following a desired trajectory. The design of control
systems for robot manipulators is not an easy task since they are represented by
second order, or higher, non-linear, coupled equations. It was identified in the
literature survey that two particular aspects relating to robot manipulator control
system design have not been addressed in any great detail by previous researchers,
namely, how significant are the coupling terms in the dynamic equations, and
what is the effect of the coupling terms on the performance of a number of typical
independent axis control schemes?. These aspects are discussed in this chapter and
conclusions are drawn from the results of the research, also suggestions for

possible directions for future research are made.

In order to carry out this research it was necessary to choose a suitable example
application. As outlined in the introductory chapter, the application of robot
manipulators to parts transfer and assembly operations is becoming increasingly a
more realistic and economic proposition. The reason for this is that robot
manipulators are extremely flexible machines and can be easily reprogrammed to
perform new tasks. However, the widespread application of robot manipulators is
still thwarted by their high capital cost. This is due to the fact that their operating
speed cannot compare or improve upon existing manufacturing equipment. By
increasing operating speeds they will gain widespread application and hence
manufacturers will be able to produce them in sufficient numbers to warrant a
reduction in their price. The example chosen application thus reflects this strive for
greater speeds. It is a typical task where the robot manipulator is required to track

a part on a conveyor and carry out an operation on that part.

The dynamic model for a six degree of freedom manipulator is represented by a set
of second order, or higher , non-linear coupled equations. The first three degrees
of freedom of the manipulator provide the motion to place the hand in the vacinity
of the target destination. This is often referred to as the gross motions of the
manipulator. The three degrees of freedom of the wrist provide the motion to
orientate the end effector in order to clasp the object correctly. This is often
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referred as the fine motions of the manipulator. It can be argued that the wrist
parameter variations( such as the inertia and postion of centre of gravity) , are
small compared with the main body of the manipulator. The important parameters
variations are in those providing the gross motion. To further reduce the
complexity of the dynamic equations a two degree of freedom model of the robot
manipulator is used. This retained the important characteristics of the six degree of
freedom system namely the inertia coupling, Coriolis, and centrifugal velocity

coupling terms in the dynamic equations for each axis.

The selection of a particular example application predetermined the desired
trajectory for the manipulator to follow. The manipulator must track the part on the
conveyor at a constant speed in a straight line. However, the manipulator is very
often required to avoid obstacles in its path en route, so the manipulator must go

via points to reach its destination as was shown in Fig. 5.2 of chapter 5.

The conveyor speed is usually dictated by how fast the manipulator can track the
part accurately. Hence, in Fig. 5.2 the velocity V_ represents the maximum
tracking speed that the manipulator can follow accurately. It must track the
conveyor, which lies parallel to the Y axis at a velocity of V_in the direction of the

Y axis and have zero velocity in the direction of the X axis. However, the
remaining path segments(where segment is the portion of the path between two
corner or path points as seen in fig.5.3, chapter 5), are not necessarily parallel

with any of the axes , so what is important is the resultant velocity at which the
manipulator moves. In this application the resultant velocity would be set as V. in

order to minimise the cycle time. The manipulator must accelerate at each corner
point to reach the next segment velocity. To do this smoothly a parabolic blend
period was chosen for this purpose, this is a period of constant acceleration. It
was shown in chapter 5 how the complete segment times and blend times can be
calculated, based upon a chosen resultant velocity and acceleration for the

complete path.

The next question that had to be resolved was what resultant velocity and
acceleration to choose for the complete cycle. This was answered by looking at the
specification of the example application. The manipulator can only track the part
and carry out an operation on that part while the part remains in the tracking
window of the robot manipulator(where the "tracking window" is defined in
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Groover?® as the intersection of the robot's work volume with the line of travel of
the workpart along the conveyor). It must therefore achieve the correct motion

velocities as quickly as possible as soon as the part enters the tracking window.

This determines the ratio Txyjk / dek where Txyjk is the period of time that the

segment is at constant velocity and dek is the total segment time. This lead to a

very important derivation, of the ratio between the resultant velocity for the path to

the resultant acceleration for the path. It was shown that to retain the same ratio of

Txyjk /Td ik for each segment:

If the velocity is increased by n then the acceleration must be incresed by n?.

Hence, with these important relationships established for the example application
trajectory, this allowed us to adjust the trajectory to the required level but retaining

the correct scaling.

The picture was not complete at this stage since the first question to be answered
was, what is the significance of the coupling terms in the dynamic equations?. To
establish this, typical trajectory speeds could be calculated based upon the chosen
path and as mentioned in the previous paragraph could be scaled to what ever
desired speed was required at the conveyor. However, the path chosen , referred
to as p300/2000 ( where 300 is the resultant path velocity in mm/sec and 2000 the
resultant path acceleration in mm/sec? ) was arbitrarily chosen and there were
many other possible routes that the manipulator could take. Drawing upon the
knowledge in the kinematics of chapter 2, near the boundary of the manipulator's
work space, which for a two d.o.f. manipulator is the perimeter of a circle of
radius equal to the link lengths, the manipulator reaches a singularity. At a
singularity the denominator of the Jacobian approaches zero hence, the magnitude
of the joint angles become excessively large. It was shown( as seen in fig. 5.20,
section 5.6.1 of chapter 5), that restricting how close the manipulator goes near
the boundary of the work space and by making the work space in to an outer and
inner circle, and then arranging for one of the segments of the path to pass at a
tangent to this circle, this yields the maximum joint velocities for the reduced
work space. This established a path that is a means for gauging the significance of

the coupling terms.
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One essential criterion remains: What is the definition of the significance or
relevance of the coupling terms?. In the computed torque controller of Paul® and
Bejczy® the non-linear coupling terms are calculated seperately. They are fed
forward as individual coupling terms. However, the torques can be positive or
negative and if they were expressed as a percentage of the total they would
possibly be greater than 100 % , since positive and negative terms in the total
would cancel each other out. It thus makes sense express the absolute value of a

coupling term as a percentage of the absolute total.

A realistic path, trajectory and the means of calculating the relevance the coupling
terms was established. This uses however, the specific parameters for the dynamic
equations of the manipulator considered namely the RTX. The relative magnitude
of these parmeters should be typical for any manipulator considered. The
computer program TORQUE calculates the relative maximum percentage that each
term in the dynamic equations takes over the complete trajectory. For path
p300/2000 it was seen that the inertial coupling terms are a high percentage at
86.6% and 84.3% for axis 1 respectively as seen in table 5.13. For axis 2 the
inertial coupling terms are 94.8% and 82.7%. The Coriolis and centrfugal terms
for axis 1 were seen to be 9.8% and 29.4% and for axis 2 the centrifugal term
was 29.4%. Thus the velocity coupling terms are quite significant in relative
terms. Near a singularity the velocity coupling terms are more significant as seen
in table 5.14. The Coriolis term and centrifugal term have a relative significance of
47.2 % in axis 1 and the centrifugal term has a relative significance of 51.9% in

axis 2.

The important fact in table 5.13 is seen to be that if the path is time scaled by
increasing the velocity to 600 mm/sec and hence the acceleration to 8000 mm/sec?
then the significance of the terms remains exactly the same. Hence, not only has
time scaling occurred but also dynamic scaling. This dynamic scaling can be
deduced intuitively if the dynamic equations of the manipulator are observed as
seen in chapter 5. However, the absolute magnitudes of the joint velocities and
accelerations do not remain the same. Their effect upon the stability of the control

system will be discussed later in this chapter.
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The independent axis control schemes that were tested over the planned trajectory
were chosen to reflect typical industrial robot control schemes. These control
schemes are also representative of the linear portion of the computed torque
controller( as seen in section 4.2.1 of chapter 4). However, in the computed
torque implementation the controller gains are normally computed on-line at each

position along the trajectory rather than having fixed coefficients.

The choice of controller gains for the independent axis control schemes is quite
straight forward when the the robot manipulator is represented by a non-coupled
effective inertia at each axis. For the Proportion with derivative feedback
controller(Pd) ,Propotional plus derivative controller(PD) and PD plus acceleration
feedforward controller, the closed loop characteristic equations are of second
order(as seen in table 6.1 of chapter 6 and the transfer function for the PD plus
acceleration feedforward controller is shown in equation 6.14 of chapter 6). Each
term of the characteristic equation is chooseable except the highest order term and
the characteristic equation can be equated to the standard second order equation
form(equation 6.19 of chapter 6). The undamped natural frequency and damping
ratio may be chosen accordingly. For the Proportion and Integral controller(PT)
with derivative feedback, Proportional, Derivative and Integral controller(PID) and
PID with acceleration feedforward controller, the characteristic equation is of third
order (as seen in table 6.2 of chapter 6 and the transfer function for the PID plus
acceleration feedforward controller is shown in equation 6.16 of chapter 6), and
all terms may be chosen except the highest order term. The characteristic equation
may be equated to the standard form for the ITAE index(equations 6.28 to 6.30 of
chapter 6) and a suitable value of undamped natural frequency chosen.

It is desirable to set the controller gains as high as possible in order to obtain a fast
response, maximum disturbance rejection and minimum tracking error. However,
the undamped natural frequency cannot be chosen arbitrarily and for conservative
design must be set at half the structural frequency. For the RTX* manipulator the
stiffness of the joints is low and it thus has a low structural frequency, the

controller gains may not be set very high in this case.

The results for simulation, as seen in table 6.4 of chapter 6, are specific for the
RTX robot manipulator. These results show that the acceleration feedforward
controllers perform far better than their corresponding basic versions. There is no
real significant difference between the PD with acceleration feedforward and the
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PID with acceleration feedforward. Similarly there is no significant difference
between the PD and PID control performance( as seen in table 6.4 of chapter 6).
This is because the integral term in the PID control system does not play a part in
the dynamic tracking ability since its action is slow. It only really affects the final
steady state position error. Thus, the PID acts in very much the same way as the
PD system. This was verified by comparing a plot of the tracking error of both
schemes and these were seen to be very much the same, although these plots are
not included in the thesis. The Pd controller shows very poor performance
however, this is not entirely unexpected since the Pd system is a type 1. This
means that for velocity and acceleration reference inputs there will be tracking
errors. The PI with derivative feedback controller performs badly, as seen in table
6.4 of chapter 6. The closed loop characteristic equation for this system is the
same as the PID controller but the numerator of the transfer function has one less
term(as indicated in table 6.2 of chapter 6). This means that it is only a type 2
system rather than a type 3 for the PID system. The derivative feedback term
causes an error to an acceleration input hence the poor performance in tracking the
planned trajectory. The results for this simulation are specific for the RTX robot
manipulator. The RTX manipulator has very high gearbox ratios for each axis.
This means that when the coupling terms are reflected back, from load side to
motor side through the gearbox, they are very small in comparison with the
motor torque. Hence, for this particular system the manipulator modelled as a

non-coupled inertia at each axis is an appropriate one.

In order to establish the effect that the coupling terms have upon the independent
control schemes the gearbox ratio was modelled as:
a) an optimum ratio for the system.

b) a directly driven system i.e. the gearbox ratio was unity.

For the simulation, the chosen controller gains were based upon the maximum
load configuration and the undamped natural frequency based upon the structural
frequency at this configuration. The simulation results were also obtained for the
situation when the manipulator is modelled as a non-coupled effective inertia, for
comparison with the coupled system results. These results are shown in table 6.5
and show their comparitive performance has changed to that obtained for the RTX
manipulator. The PD and PID with acceleration feedforward controllers no longer
perform better than the PD and PID controllers. This is not surprising when the
transfer function for the coupled system is considered. For instance for the PD
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with acceleration feedforward the characteristic equation is of fourth order
compared to the second order characteristic equation from which the controller
gains were designed( equation 6.55,6.56). The numerator of the transfer function
does not cancel with the denominator as is expected in the design theory for this
independent scheme. The results for when the manipulator's gearbox ratios are
optimum and unity show quite clearly that the coupling terms, that were formerly
ignored in the design procedures for the independent axis control schemes, have
an adverse effect upon the tracking performance. This is further substantiated if
for instance the design position for the roots of the PD control system are
compared to those of the coupled system. These were shown plotted previously in

Fig.6.16 of chapter 6 and this plot is reproduced below:

4
a—Axis 1 Non-coupled roots |
Axis 2 Non-coupled roots
- 3
K =0 Dot 3
G 5
8 Complex roots | g
a .
BEK K 4=-20 | 5 g
Complex roos K , = +20 1
M 1 v T T T Y 1
-4 -3 -2 -1 0
Real Axis

Figure 6.16. The root locus for the variation of K for the range K;=-20 to +20,

showing the low frequncy roots.

For the non-coupled system the roots were placed at —3.52 —j3.58 , —3.52 +j3.58
and -2.89 —j2.95, —2.89 +j2.95 for axis 1 and 2 respectively with a damping
ratio of 0.7 as shown in fig. 6.16 above. However, in reality the characteristic
equation of the coupled system is that shown in equation (6.53) i.e. fourth order.
The inertial coupled sytem roots are then at —1.6 —j2.8, —1.6 +j2.8 (not taking
into account the velocity coupling i.e K;=0 in fig.6.16) and two real roots of
~3.37 and -111.5( not shown in fig.6.16) and the damping ratio for the complex
roots is 0.15. One question that can be asked is can the roots be chosen based
upon the fourth order characteristic equation rather the second order characteristic
equation of the non-coupled system. Referring to the characteristic equation for the
coupled system( equation 6.53), the first two terms can be chosen since they are
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made up of the controller gains for the two axes. However, higher order terms are
not easily adjustable. Setting the first two terms according to the ideal forms of the
ITAE index for a fourth order system would not give suitable positioning of the
roots. It is clear that for the coupled system, when the coupling terms are
significant, choosing suitable controller gains to obtain a suitable performance is
not as straight forward as the procedures established for the independent schemes.

Another effect of the coupling terms is shown in the results of table 6.5. The
tracking errors of the PD and PID control schemes, for when the manipulator is
modelled as an effective inertia at each axis with no coupling, are in fact larger
than when the full non-linear dynamics of the manipulator are modelled. This
occurs as a result of the inertial coupling and the type of trajectory the manipulator
is required to follow. At the corner points there is a period of constant acceleration
in Cartesian space that the manipulator must achieve in order for it to reach the
next segment Cartesian velocity. In joint space this corresponds to an abrupt
acceleration demand in each axis of opposite direction for a short period of time
(fig.5.15,5.16 of chapter 5). It was shown that when the manipulator must follow
a step demand of acceleration the percentage of the total torque that the motor and
inertial coupling terms take is initially equal to 100%. The other coupling terms
are insignificant for a short period of time as seen in fig.6.26 . Hence, during the
short period of time that the acceleration demand occurs the response is dominated
by the inertial torque and inertial coupling torque. For this particular trajectory, at
the corner points the inertial coupling between the two axes reinforces the control
torque. This means that the system reaches the acceleration demand signal in each
axis far faster and hence the positional error is reduced at the corner points, this is
seen in fig.6.27 and 6.28 for axis 1 and 2 respectively. The largest error for the
non coupled system is seen to occur at the corner points as seen in fig.6.29 and
fig.6.30. The reinforcement of the control torque would not occur if the
acceleration demands in each axis were in the same direction, in fact they would
cause the system to be far more sluggish than the non coupled system as seen in
Fig.'s 6.27 and 6.28. In between the corner points of the trajectory the velocity
coupling terms become more prominant and they will reinforce or oppose the
control torque depending upon their sign. In order to anticipate the degree of
inertial coupling the relative gain?? was calculated for the three gearbox ratio's
considered. These are seen to reflect this inertial coupling, for instance the RTX
has only a cross coupling value of -0.107 compared to 1.107 between the same
axes as seen in table 6.8. However, the cross coupling for the direct drive system
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is -27.75 compared to 28.75 between same axes as seen in table 6.10. Although
the inertial coupling in this particular instance is beneficial in terms of the reduced

tracking error the result is rather fortuitous and is not really controllable.

In order to look at how the velocity coupling terms affect the stability of the
independent control schemes the non-linear equations of the manipulator were

linearised about a particular configuration. The resulting linearised coefficients are

velocity dependent and were referred to as K, K,, K5 and K,(equations
6.43-6.46). The coefficients K,and K, are a result of linearising the Coriolis term
in the axis 1 equations. The K, coefficient is a result of linearising the centrifugal

term in axis 1 and K, is the result of linearising the centrifugal term in axis 2. The

linearised equations were shown to be a good representation of the non-linear

system equations.

It was mentioned previously that although the relevant significance of the dynamic
terms remains the same if the trajectory is scaled according to the established
relationship, the absolute magnitude of the joint velocities and accelerations do not
remain the same. The characteristic equation of the coupled system for PD control
as seen in equation(6.53) involves the linearised coefficients K, to K. It can be
anticipated that the position of the roots of the characteristic equation will be
affected by the magnitude of these linearised coefficients. A root locus for the
variation of K; shows that the roots move towards the right hand side of the
Argand diagram as seen in fig.6.15, 6.16. Similarly if a root locus for the
variation of K, is drawn the roots move to right hand side of the Argand diagram
as seen in fig.6.17. However, this only occurs at very high magnitudes of joint 1
and joint 2 velocities in the order of + or — 25 rad/sec. For the test
trajectory(referred to as p300/2000), the maximum joint velocities are 1.28
rads/sec for joint 1 and 1.5 rads/sec for joint 2 and these do not necessarily occur
at the configuration chosen for linearisation. Hence, the roots will remain very
close to the position for zero velocity of fig.6.16. However, if the trajectory is
scaled up to a more realistic speed that would be expected by industrial
applications to say 6 m/s i.e p6000/800000, the maximun joint velocities become

26 rads/sec and 30 rads/sec for joints 1 and 2 respectively. This is more in the

range that was considered for the variation of K, and K.
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The linearised coefficients are dependent upon both the joint velocities and thus the
effect upon the roots of the characteristic equation will depend upon maginitude of
these joint velocities. This lead to the idea of plotting the root locus for ranges of
joint velocities rather that linearised coefficients. The resulting plots are shown in
fig.s 6.18, 6.19. The root locus of fig.6.18 represents the high frequency
roots(N.B. the high frequency roots represent a complex pair of roots of high
frequency, there are also a pair of low frequency complex roots not shown in
fig.6.18 ), and shows that at certain combinations of joint velocities the high
frequency complex roots move towards the right hand side of the Argand diagram.
For instance with a joint 2 velocity of 55rads/sec and a joint 1 velocity of
20rads/sec the high frequency roots are in the right hand side of the Argand
diagram(the high frequency roots are at +6 —j77, +6 +j77 and the accompanying
low frequency roots are at 0.5 —j0.6, -0.5 +j0.6). In fact for any joint 1 velocity
the high frequency roots will probably be in the right hand side of the Argand
diagram for that particular value of joint 2 velocity.

The low frequency root locus is a plot of the low frequency roots and does not
show the other accompanying roots. The low frequency roots locus shows also,
that for certain combinations of joint 1 and joint 2 velocity the low frequency roots
will be in the right hand side of the Argand diagram. For instance at a joint 1
velocity of 20 rads/sec and a joint 2 velocity of -20 rads/sec the low frequency
complex roots are at +0.19 —j2.9, +0.19 +j2.9 and the other two roots are real at
-158 and -2.95. The position of the low frequency roots for this example are
shown in fig.6.19, chapter 6, this is reproduced below:
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Low frequency complex root for: 8, =20 rads/sec
and 6, =-20 rads/sec
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Figure 6.19. Root locus for the variation of the two joint velocities showing the

low frequency roots.

The instability of the PD independent axis control scheme has thus been
established at high speeds. A similar analysis for the PID control system showed
the instability of the system at high speeds(see fig.6.24,6.25). The position of the
roots will not be affected so much by the velocity coupling terms when each axis
has a high gearbox ratio. It is very likely that if the RTX robot manipulator could
operate at more typical industrial speeds that its stability would only be slightly
affected by the velocity coupling terms.

It can be concluded that the question of how the coupling terms affect the
performance of a number of typical independent axis control schemes is very
much related to the initial question of how significant are the coupling terms. It has
been shown that when the coupling terms are insignificant, as for example in the
case of the RTX robot manipulator having a high gearbox ratio, the effect of the
coupling terms on the independent axis control system performance is small. The
coupling terms were shown to be significant when the manipulator is directly
driven. The effect upon the independent axis control system performance in this
instance is two fold. The inertial coupling was shown to reinforce the control

torque at the corner points of the trajectory, where there is an abrupt demand in
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acceleration in each axis of opposite sign. This subsequently reduces the tracking
error at the corner points along the trajectory where normally the non coupled
system was shown to exhibit maximum tracking error. However, this effect is not
controllable and is therefore not desirable in a control system. The second effect is
that due to the velocity coupling terms. Although it was shown that their relevant
significance remains the same for a scaled trajectory their absolute magnitude does
not remain the same. At high trajectory speeds the velocity coupling terms were
shown, by the root locus analysis(as discussed in the preceding paragraph), to

cause the independent control system schemes to become unstable.

The analysis carried out in this thesis was applied to a two degree of freedom
manipulator. This analysis could be extended to consider the case of a six degree
of freedom manipulator . However, it would be anticipated that similar results

would be observed for this manipulator.

In the general approach to control system design for robot manipulators, it has
been shown that the independent axis control designs will not work for robot
manipulators that have significant coupling between links. The coupling effects
become particularly pronounced at high speed and are not controllable. The
question arises what alternatives are available to the designer of robot manipulators
in order that the manipulator may operate at high speeds. These alternatives will

now be discussed.

To some extent the application of many joint motion control schemes that were
reviewed in chapter 4 is hindered by the characteristics of the design of many
current robot manipulators. A similar problem was encountered in the design of
suitable trajectory planning algorithms for manipulators. Many robot designers
initially did not take in to consideration how important the geometry of the
manipulator was to the solution of the inverse kinematics for the trajectory
planning algorithm. In some earlier designs of robots the geometry was so
complicated that the inverse kinematics solution was extremely difficult if not
impossible to obtain. This lead to the idea of designing manipulators that had
readily solvable inverse kinematics solutions. In particular for manipulators with
six degrees of freedom with six revolute joints, with the last three joint axes
intersecting at a point, a solution could be readily found. The design or
implementation of suitable control systems is similarly hindered by the design of

robot manipulators.
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The application of the computed torque control system of Paul® and Bejczy?
would be a possible contender for implementation if the designs of robot
manipulators were changed. This would require the manipulator design
characteristics to include high structural stiffness, little or no friction at the joints
and no gearbox compliance. Also since the computed torque method is a model
based controller the parameters of the manipulator would have to be accurately
known. However, robot manipulators are very frequently characterised by high
indeterminant friction at the joints, compliance in the gearbox and the parameters
of the manipulator are not usually accurately determined by the manufacturer. The
computed torque controller is fairly sensitive to parameter variations. This was
seen for the acceleration feedforward controllers where inaccuracies in the
computed inertia and uncompensated high coupling between joints cause the
controller's perform to degrade considerably. Hence, the application of the
computed torque method to a manipulator that cannot be accurately modelled

would not give satisfactory results.

The design of robot manipulators could change in order to make possible the
implementation of the computed torque controller. For instance with the advent of
more efficient electric motors. with high power to weight ratio the links of the
manipulator could be driven directly. This would effectively eliminate the friction
at the joints and there would be no problems associated with compliance in the
drive chain. Another benefit of direct drive is that the structural stiffness is
considerably increased since there is very little compliance between the link and
motor. This means that the controller gains could be set at higher values which
would correspondingly increase the tracking performance. However, obtaining
motors with suitable performance to be used with direct drive may be a problem.
In order to make use of existing motors the links of the manipulator could be
redesigned to reduce their inertia values. For instance the use of light weight , high
strength alloys or carbon fibre materials as used in the aircraft industry. In a
directly driven robot manipulator the coupling terms are significant and can not be
ignored. If the computed torque method of Paul® and Bejczy? was used these
terms may be accurately compensated for providing that the parameters of the
manipulator are known. The design method of the manipulator should take in to
account that the manipulator parameters need to be known. For certain types of
manipulator such as the SCARA type(where the parameters of the arm links only
operate in the horizontal plane), the inertia about a single axis only needs to be
determined, hence in this particular type the parameters can be easily be

212




determined. An advantage of computed torque controller is that the controller gains
can be easily chosen when the modelled parameters equal the actual parameters.
Each axis is then represented by a second order differential equation in error space
as was shown in equation(4.9) chapter 4.

The alternative control system designs available to robot manipulator
manufacturers are to some extent the re-application of control laws established for
linear systems. In order to apply them to robot manipulators the equations
representing the manipulator are linearised in a suitable form for application . For
instance in the application of the minimum-time control method of Kahn'2, a
direct solution to the time optimal problem can only be found using numerical
techniques. The solution must be computed for each trajectory. This means that it
does not lend itself very well to practical implementation. In order to over come
this problem the manipulator equations are linearised and a solution can then be
found that approximates the time optimal problem and is referred to as near
minimum control. The solution is only an approximation to the time optimal
problem and its performance depends upon how accurate the linearised equations(
used in the solution) are representitive of the system. To over come this problem it
would be necessary to go back to using the full non-linear equations to obtain a
numerical solution. If the computing power was available then the solution could
be precomputed for each tyrajectory. This method would not lend itself to the real

time tracking application situation.

Other alternative joint motion control schemes are the Cerebellar model articulation
controller of Albus!® and the Fuzzy logic controller of Scharf?. These I consider,
can really be classified as learning controllers. In order to achieve accurate tracking
the task cycle must be repeated a number of times in order for the system to
choose and optimize upon the controller gains. The control structures are normally
independent axis schemes, and it has been shown that it is not easy to choose the
controller gains when there is strong coupling between axes. So these schemes are
restrained by the controller structure and can only choose a compromised set of
gains rather placing the poles. It is questionable whether at high speeds the
controller gains can be chosen at all to give stability. The Fuzzy logic controller
has only been tested at low speed by Scharf?0. Their suitability to all robot
manipulator applications is restricted by their need to learn from repetitive
motions. For instance in the real time tracking situation it is likely the vision
sensor would identify the postion of a randomly positioned part approaching the
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tracking window of the robot. The coordinates would then be relayed to the robot
that would immediately need to move meet the part. This would not allow the

learning type controller to operate successfully as the same exact motion would not
be repeated.

Another set of alternative control designs are broardly classed as adaptive control
techniques. These were established from the need to obtain good control
performance in the presence of uncertain modelled parameters. The application of
adaptive techniques to current robot manipulators is a logical one since very often
the parameters of the manipulator are not known with sufficient accuracy for
model based controllers to be applied. The adaptive control system is employed to
identify the configuration dependent effective inertia of the manipulator. When the
manipulator picks up an object of unknown mass the adaptive system must
identify the effective inertia change and adjust controller gains to sustain a suitable
performance. The situation could arise in the example application when the parts
approaching the tracking window of the manipulator are of unknown mass.

Therefore the adaptive controller would have to adjust to this parameter variation.

There are a number of adaptive methods that have been postulated by previous
researchers. For instance Self Tuning Control(STC) of Koivo??, this method is
designed to identify changes in the parameters and then adjust controller gains to
retain system performance. The structure of this controller is thus an identification
algorithm, a control synthesis algorithm and a control implementation algorithm. A
linear model non-coupled model of each axis is established and the parameters of
this model are obtained by the identification algorithm. The configuration
dependent effective inertia and changes in the inertia due to unknown loads that are
picked up are identified. At each stage the identified parameters are fed to the
control synthesis algorithm that computes the new controller gains. In the
identified model the coupling between axes is ignored, therefore when the system
converges on the parameters of the system it is really converging on an
independent axis control scheme. It is questionable how well this control system
can perform in the presence of high coupling effects and whether it can remain
stable. If the manipulator is operating at very high speeds the parameters of the
system are changing extremely quickly. This leaves only a very short period of
time to identify the change in parameters. If it can not identify the new parameters

fast enough then the performance of the system will operate as a fixed term control

system and may become unstable.
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It is my opinion that it does not make sense to be identifying the configuration
dependent effective inertia parameter changes. If the parameters were determined
accurately prior to assembly, the effective inertia changes due to configuration
could then be calculated from the dynamic equations of the manipulator. A
modelled based scheme such as the computed torque technique could then be used
when the manipulator operates in no load conditions. This would operate far faster
than a STC system that must identify the configuration dependent inertia
parameters. However, as mentioned earlier, the computed torque system
performance will degrade considerably in the presence of uncertainty in the
modelled parameters. This would occur in the case when the manipulator is made
to pick up an object of unknown load. It is during this period of the task cycle that
the adaptive scheme would operate with far better efficiency than the computed
torque control system. This leads to the idea that if the manipulator is required to
operate in a situation where it is required to pick up unknown loads why not
combine the two methods in a sequential form. For instance, if the parameters of
the manipulators are accurately known then whilst the manipulator moves
unloaded a computed torque scheme would be employed. However, when the
manipulator picks up an unknown load and the performance is measured to
degrade below an acceptable norm, the STC could be switched in and the
computed torque controller switched off. The STC then takes over the control of
the manipulator until such time that the manipulator unclasps the unknown load. In
order to obtain a smooth transition between the switching of the two control
systems the identification algorithm and controller synthesis algorithm of the STC
are made to operate during the operation of the computed torque controller as well.
This type of controller design would thus encapsulate both of the desireable
characteristics of the computed torque controller and the STC.

Other adaptive control strategies include Model Reference Adaptive Control
(MRAC) of Dubowsky?23. This method does not identify the modelled parameters
of the manipulator in order to adapt. Instead, each axis of the manipulator is
modelled by a second order time invarient differential equation. The control
system ( e.g. PD, PID), feeds signals to the model and the actual system. The
error between the model and the actual system is used by an algorithm that adjusts
the controller gains for each independent axis based upon a stability criteria. The
validity of using a linear time invarient model for each axis is questionable since
for some manipulators the configuration dependent parameters vary quite

considerably. This method ignores the coupling terms between axes that can cause
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instability at high speeds when they are significant. The MRAC is sometimes
referred to as a model following method so can the non-linear manipulator be
expected to follow a linear model of the system. This suggests the idea of
employing a non-linear model of the system for it to follow.

Another adaptive control scheme is the Adaptive Perturbation Controller(APC) of
Lee?. This goes some way to being a hybrid controller since in consist of two
parts, an algorithm to compute the nominal torques based upon known modelled
parameters, and an adaptive controller. This is not quite the same as the idea of the
hybrid controller since the two parts of the controller operate simultaneously and
the algorithm calculating the nominal torques does not include a linear controller.
Parameter variations are dealt with by the adaptive part of the controller. The
adaptive part of the controller uses a model of the manipulator that is linearised
about the trajectory. It thus identifies changes in the model about the trajectory. An
optimal control strategy is used for the control synthesis algorithm. The APC is
probably the most promising of the adaptive strategies. However, it was shown to
perform better than a model-based controller only when there was uncertainty in
the modelled parameters. It is also questionable how quickly it would be able to
react to changes in the modelled parameters at high speeds and whether the
nominal torques would cause instability if the parameter changes were not

identified fast enough.

It has been seen that if a control system for a robot manipulator is to be successful
it must be able to compensate for the non linear dynamics of the manipulator. The
model-based control system designs available to the robot manipulator
manufacturer rely on the parameters of the robot to be accurately known and to
have certain desirable characteristics €.g. high stiffness, low friction at joints etc. ,
in order that their performance will be acceptable. These characteristics must be
aimed for by the robot designer if the model-based control system design are to be
implemented. In order to over come the problem of uncertain modelled parameters
in robot manipulators adaptive techniques have been proposed. It is evident that

these schemes must be shown to perform at high speeds if they are to be

implemented successfully.
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7.2 Conclusions
The conclusions are made in the light of the initial objectives which were:

1. How significant are the coupling terms in the dynamic equations of a robot
manipulator.

2. What is the effect of the coupling terms on the performance of a number of
typical independent axis schemes.

1.

i) The significance of the coupling terms have been determined for two degrees of
freedom of the RTX robot manipulator and are based upon the parameters for that
specific manipulator.

ii) The significance of a coupling term is the absolute torque for that term
expressed as a percentage of the total sum of all the absolute torque terms for a

single axis.

iii) The significance of the coupling terms has been calculated over a realistic path
and trajectory and the maximun significance that each term attains in that path and
trajectory(p300/2000) was found to be as follows:

Axis 1

P%?L' % 100% = 87%  Inertia term
1

ID;I?G'U * 100% = 84% Inertia coupling term
1
.2
E?F_Z?Z_[ * 100% = 29%  Centrifugal term
1
P_“_IZT_O_I_IG_Z' ¥ 100% = 10%  Coriolis term
1
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Axis 2

D5, 0,5l _ )
= 100% =95% Inertia term
2
D;,8
Ty * 100% = 83% Inertia coupling term
Dy, 6,
—?l—l—ll— * 100% = 29%  Centrifugal term
2

iii) When the path was planned near a singularity the significance of the velocity

coupling terms in axis 1 were found to increase to 47% and in axis 2 to 52%.

iv) The significance of the coupling terms is reduced when they are reflected back

to the motor if the gear box ratio ( expressed as ®; /0y where o, is loadside of

gearbox and w,, is motor side of gearbox.) is less than 1.

v) The significance of the coupling terms remain the same if the path and trajectory

is scaled by increasing the resultant velocity by n and the resultant acceleration by
n2. This retains the same ratio of TxyjkfI‘ djk for each segment of the path(where
Txy is the period of time that the segment is at constant velocity and Td;, is the

total segment time).

vi) The absolute joint velocities and accelerations do not remain the same when the
path and trajectory is scaled. For p300/2000 the maximum joint velocities are:

1.25 rad/sec and 1.5 rads/sec for joints 1 and 2 respectively.If scaled by n=20 the
coresponding joint velocities are 26 rads/sec and 30 rads/sec for joints 1 and 2

respectively.
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2.

i) A number of independent axis control schemes have been tested over the
planned path and trajectory( p300/2000) and these include Pd,PD,PID,PI with
derivative feedback, PD with acceleration feedforward and PID with acceleration
feedforward. These control schemes were tested in simulation using a model of
RTX robot manipulator. The effect of the coupling terms upon these independent

axis control schemes was assessed for manipulator when the drive ratio was :

1) High ratio
2) optimum ratio
3) directly driven.

ii) With a high drive ratio the follow results were observed:

a. The significance of the coupling terms was small.

b. The PD with acceleration feedforward and PID with acceleration feedforward
control systems had comparable performance. They performed far better than the
simple PD and PID controllers.

c. The PD and PID controllers had comparable performance.

d. Pd and PI with derivative feedback controllers performed less well than any of
the other control schemes.

e. There were very little coupling effects evident in the independent axis control

schemes response for the high drive ratio.

iii) When an optimum and direct drive ratio was used in the manipulator model the

following coupling effects were observed:

a. The PD with acceleration feedforward and PID with accleration feedforward
control systems were shown to perform less well than the PD and PID control

systems.
b. PD and PID control systems performed the best in the presence of high

significant coupling.
c. The inertial coupling between axes was shown to reinforce the control torque at

the corner points of the trajectory, where there is an abrupt acceleration demand in

each axis but of opposite direction.

d. The inertial coupling effect subsequently reduces the tracking error at the corner

points along the trajectory where normally a non coupled system would exhibit the
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maximum tracking errors. This effect is not a controllable one.
e. The velocity coupling terms were shown, by means of a root locus analysis, to
cause the roots of the independent axis control schemes to move to the right hand

side of the Argand diagram. This effect occurs at high tracking speeds where the
magnitude of the joint velocities is high.

7.3 Recommendation for future research

The concept of a model-based robot manipulator control system is a good one.
However, in order that this type of control can be implemented suuccessfully
requires the design characteristics of robot manipulators to be changed. The
model-based controller requires the manipulator to have a number of desirable
chracteristics these include little or no: backlash, compliance and friction in the
drive chain and accurately determined manipulator parameters. These
characteristics should be aimed at with research in to the design of direct drive

robots by making use of state of the art technology in electric motor and materials.

The other possible direction for research is the idea of combining model-based
controllers with adaptive controllers. The idea is for the manipulator to operate
under the control of a model based controller when it is unloaded or handling a
part of known load( this assumes the parameters of the manipulator are accurately
known). When the manipulator is required to pick up parts of unknown load and
the model based controller performance significantly degrades then the adaptive
control system will be switched in. The adaptive control system will operate until
the manipulator unclasps the object of unknown load. Research in to this idea
would bring together the desirable chracteristics of both of the control systems.
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Appendix 1: Notation

Chapter 2

6, manipulator joint n, angle

X X position coordinate of the manipulator wrist or end effector with respect to
the base or reference XYZ Cartesian frame

Y Y position coordinate of the manipulator wrist or end effector with respect to
the base or reference XYZ Cartesian frame

7  Z position coordinate of the manipulator wrist or end effector with respect to
the base or reference XYZ Cartesian frame

¢y rotational angle about the X axis Cartesian frame

¢y rotational angle about the Y axis Cartesian frame

¢, rotational angle about the Z axis Cartesian frame

nT A 4 by 4 homogeneous transform relating the coordinate frame n to the base

coordinate frame o.

nXSXaXpX
nySyayPy
nZSZaZpZ
0001

where T, =

[n n,n, 1T a vector describing the orientation of the X axis of a second
Xy

coordinate frame with respect to the reference coordinate frame

[s,s,$ 1T a vector describing the orientation of the Y axis of a second
x Yy “z

T e
[ a, ay a, ] a vector d

[ px Py P;

coordinate frame with respect to the reference coordinate frame

scribing the orientation of the Z axis of a second

coordinate frame with respect to the reference coordinate frame
17 a vector describing the origin of a second

coordinate frame with respect t0 the reference coordinate frame
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Rot(X,0) A transform corresponding to a rotation about the X axis an angle 0

O 0 O
cosO -sin@ 0
sin® cos® 0
0 O 1

ROt(X,O) =

oo -

Rot(Y,0) A transform corresponding to a rotation about the Y axis an angle ©

cos® 0 sin®@ O
0 1 0 O
Rot(Y,0) =
oMY 0=l Gro 0 cosd 0
o 0 O 1

Rot(Z,8) A transform corresponding to a rotation about the Z axis an angle 6

cosO -sin® O 0
Rot(Z,8) = 5‘89 C‘:)Se (1) g
o 0 0 1

Trans(an,O,dn) A translation transform corresponding to a translation a_ along the

X axis and d_ along the Z axis

—100aﬂ
0100
001d,
LOOO]

Trans(a,,0,dy) =

n1A_ defines the general homogeneous transformation that relates joint n-1 to
n

joint n and is defined as:
n1A = Rot(Z,0) Trans(0,0,d) Trans(a,0,0) Rot(X,0)
n

L, length of link n

SO an abreviation of sin®
CO an abreviation of cosO

S12 an abreviation of sin(8,+ 9,)
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Cl12 an abreviation of cos(,+ 0,)

S0Ca an abreviation of sinBcoso etc.

R¢, oy Euler angles defining all possible orientations in terms of a rotation ¢

4;0

I

JDU

<

]

1l

about the Z axis, then a rotation 8 about the new Y axis y' and finally a

rotation y about the new Z axis Z".
R¢, oy= Rot(Z,9) Rot(Y,0) Rot(Z,¥)

is the position vector [X,Y,Z,q),(,q)y,q)zlT defining the coordinates of the
manipulator end effector p in terms of the position X,Y,Z and orientation

¢X,¢y,¢z with respect to the base coordinate frame

the joint position vector [0, 8,,8,,8,,85 841" of joint angles of the
manipulator
]T

a vector of differential displacements [ d, dy, d,, 5,0 v Oz

where d_, dy, d, are differential displacements along the X,Y,Z axes and

3, Sy, 9, are differential rotations about the X,Y,Z axes.

is a vector of differential joint displacements [dg;» dgps -~ ,den]T of the six
joint angles

defines the 6 by 6 Jacobian matrix, relating the differential displacements in

Cartesian space to the differential dispalcements in joint space €.g.

D=1P,

Y
where J“—aa;( JZl—aae etc.

is a velocity vector [X,Y,2.0,0,,0]7
where X = (——) D and XY, 7 are the Cartesian velocities in the X, Y,Z directions

and ¢, ,q))n ¢, are the rotational velocities about the X, Y, Z axes
« . I A A A 1T
is a vector of joint velocities 04, 09 , 06l

is the determinant of matrix J

adj(J) is the adjoint matrix of J

J-l

is the inverse of matrix J
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Chapter

F, ., the linear force vector acting at a point O; ; that is the origin of the
coordinate frame O, ;,X, .Y, ;,Z;

F,n. the linear force vector applied to link i+1 by link i

m.g the gravity force acting at the centroid of link n, where m; is the mass of
link i and g the vector representing the gravitational acceleration
m a_ isthe inertial force vector and a_ is the acceleration of link n

Toin is the torque applied to link n at joint n-1

Tonsi is the torque applied to link n+1 at joint n

T

1n s the vector distance of force F_, , from the centroid

T is the vector distance of force F_ from the centroid

n,n+1

o, isthe angular velocity vector of link n

I is the centroidal inertia tensor of link i

is the rate of change of angular velocity vector of link n
H.. Inertia matrix

h,, coupling term matrix

G, gravity term matrix

q; joint displacement(generalised)

q; joint velocity (generalised)
q; joint acceleration (generalised)
I. Lagrangian,ie. the difference between the total kinematic energy of a system

and the total potential energy of a system
K total kinematic energy of a system
P total potential energy of a system

F gencralised force or torque of the system with respect to coordinate

displacement
L lengthof linkn

@ angular displacement of link n
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mass of link n
torque applied to link n at joint n-1
kinematic energy of link n

resultant linear velocity of link n

M,

Tn

Ken

Vn

®,, angular velocity of link n
o . angular velocity of link n referred to the motor shaft
A the position of the centre of gravity of link n

Tp tangential force of link at joint 1

R, perpendicular force of link at joint 1

Dy

is the effective inertia at joint i, with an acceleration at joint i,
causing a torque at joint i equal to Dj; 0,
D;; is the coupling inertia between joints i and j, with an acceleration at joint ior]
causing a torque at joint i or j equal to D;; 9 i

.2
D;;; 9; is the centripetal force acting at joint i, due to the velocity at joint j

Dijk 6 j 6, is the Coriolis force acting at joint i, due to velocities jand k
D, is the torque representing the gravity forces at joint i

M(6) is an n by n inertia matrix
V(0,0) isannby 1 vector of centripetal and Coriolis terms

G(6) is ann by 1 vector of gravity terms

Chapter 4

the computed inertia gain vector

the vector of the computed non linear terms that are fedforward
ween desired angular position and actual angular position

=

E  absolute error bet

i.e. E=ed—eo
E  is the absolute velocity error ie E=04-9,

K, isthe integral gain of joint n motion controller

n

Kp, isthe position gain of joint n motion controller
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Ky, is the velocity gain of joint n motion controller
T  is the torque generated by the servo portion of the computed torque controller
1(8) diagonal inertia matrix

1,(8) off diagonal inertial coupling matrix

1.(9) computed diagonal inertia matrix

Jo

o(0) computed off diagonal inertial coupling matrix
Laplace transform operator

ratio between I (8)/1(6)

natural frequency of oscillation

- S o W%

damping ratio
Chapter 5

tdjk the time period of segment jk

tix the linear portion of segment jk i.e. that at a constant velocity

t.  the time duration for the blend region at corner point j

X; X Cartesian position at corner point j (also P,)

Y; Y Cartesian position at corner point j (also Py)
X jk the velocity along the X axis between corner points j and k

Y ik the velocity along the Y axis between corner points jand k
X; the acceleration along the X axis at corner point j

Y; the acceleration along the Y axis at corner point j

S, reference to corner point i

XV jk(i) X ik the velocity in the X axis between corner points j and k
YV (i) ij the velocity in the Y axis between corner points j and k
XA®) X; the acceleration in the X axis at corner point i

YAG) Y, the acceleration in the Y axis at corner point i

TXY jk(i) ti the time of the path at constant velocity between corner points j and

k

TXY(@) t the time of the blend period at corner point i
2 . 2
Vg the resultant velocity i.e. ¥ Xjk + Yix
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L2 L2
Ag the resultant acceleration i.e. A Xj + Yj

TH1 the angular displacement of joint 1, link 1
TH2 the angular displacement of joint 2, link 2
TH1V the angular velocity of joint 1, link 1
TH2V the angular velocity of joint 2, link 2
TH1A the angular acceleration of joint 1, link 1
TH2A the angular acceleration of joint 2, link 2

TL, the torque at load side of the gearbox for link 1
TL, the torque at load side of the gearbox for link 2
Tm, the torque at motor side of the gearbox for link 1

Tm, the torque at motor side of the gearbox for link 2
T Ay Dy 0, inertial torque axis 1

T Az Dig 0, inertial coupling torque axis 1
.2
T As D202 centripetal coupling torque axis 1

T As Dina 0 1() , Coriolis coupling torque axis 1
Ti2A1 Do 6, inertial torque axis 2
TisA3 D2 0, inertial coupling torque axis 2

. 2 ,
Ti,As D219y centripetal coupling torque axis 2

abs(TLA;)
TLA(%) = — T s 100 %

Y abs(TpiAn)
1

Chapter 6

Yo the effective inertia of axis 1 referred to the motor side of the gearbox
e

- 2
e.g Jor=UartImit™ Dy
where J and J,, are the actuator and motor fittings

and n2Dy, is the reflected inertia of link 1 at actuator 1 through gearbox 1
V; voltage applied to the direct current motor at the field windings
current through field windings of direct current motor

R; resistance of foeld windings of direct current motor

L; inductance of field windings of direct current motor
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V, voltage applied to armature of direct current motor

I,  curent through armature of direct current motor

R, resistance of armature windings of direct current motor
L, magnetic flux constant = K,

B  viscous damping coefficient

T

n motor time constant for a field controlled d.c. motor i.e T =1/B

(or RJ/K K, for an armature controlled d.c. motor)

T, field time constant for a field controlled d.c. motor i.e. T=L¢/R¢
K, motor constant for an armature controlled d.c. motor

K, back emf constant for an armature controlled d.c. motor

V, back emf voltage for an armature controlled d.c. motor

T, armature time constant for an armature controlled d.c motor

vy  damping factor for an armature controlled d.c. motor

T, testdisturbance load torque

0 reference or desired angular position input

K, the effective stiffness of joint of the manipulator

Jo the effective inertia of joint of the manipulator

®_ natural frequency of ITAE index standard forms

. normalised natural frequency

®, structural resonant frequency

o, natural frequency or desired

B(0) a matrix of Coriolis coefficients of dimensions n*n(n-1)/2

C(0) a matrix of centipetal coefficients
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