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Summary

Much of the geometrical data relating to engineering
components and assemblies is stored in the form of
orthographic views, either on paper or computer files. For
various engineering applications, however, it is necessary
to describe objects in formal geometric modelling terms.
The work reported in this thesis is concerned with the
development and implementation of concepts and algorithms
for the automatic interpretation of orthographic views as
solid models.

The various rules and conventions associated with
engineering drawings are reviewed and several geometric
modelling representations are briefly examined.

A review of existing techniques for the automatic, and
semi-automatic, interpretation of engineering drawings as
solid models is given. A new theoretical approach is then
presented and discussed. The author shows how the
implementation of such an approach for uniform thickness
objects may be extended to more general objects by
introducing the concept of 'approximation models'. Means
by which the quality of the transformations is monitored,
are also described.

Detailed descriptions of the interpretation algorithms
and the software package that were developed for this
project are given. The process is then illustrated by a
number of practical examples.

Finally, the thesis concludes that, wusing the
techniques developed, a substantial percentage of drawings
of engineering components could be converted into
geometric models with a specific degree of accuracy. This
degree is indicative of the suitability of the model for a
particular application. Further work on important details
is required before a commercially acceptable package is
produced. .

2D-3D Reconstruction
Engineering Drawing
Geometric Modelling
Computer-aided Design
Computer Graphics
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1.1) INTRODUCTION :

It was over twenty years ago that the application
of computers to problems in Mechanical Design and
Manufacture, also known as CAD/CAM (Computer-Aided Design

and Ccnputer-Aided Manufacture), was first recognized

[1]. Since that time, much work has been done on the
development of computer based systems for the input of
product definitions into a computer database, and for the
use of mechanical design information in design analysis

and manufacture processes.

In the field of database entry, a substantial
amount of two-dimensional geometric product-data has been

transferred into computer stored files by

- manual digitization, and sophisticated techniques
such as video scanning, of existing engineering drawings,

- computer draughting that ailows the designer to
interact with the a display via a tablet, or other device,
to directly produce and store new drawings of objects, in
the classic two-dimensional projections of the edges of a

three-dimensional object.

Computer based systems have also been extensively
used in the field of design analysis, manufacture and
assembly of objects. For example, Finite-element methods

may be used for the analysis of heat flow [2]; parts can
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be checked for interference [3,4]; numerically controlled
machine tool tapes can be generated to allow the
- manufacture of a part ([5]; the constraints between objects
and mechanisms can be simplated [6]; robot motions to
assemble parts may be generated [7,8] and many more
engineering applicationz such as Volume and Mass property
computations, Process-planning, and High-realism Displays
can be achieved. The software for these applications is
extensive and commercially available to the Engineering

Industry.

In the early stages of development of such
software there was a tendency for each application *o
require the description of a part in a form that was
suitable for that application only. Fortunately, it soon
became clear that a solid geometric model was the uniquely
versatile form of description which could be exploited for

all the above applications.

Clearly, there is need for a bridge between
database entry and engineering applications. The gap that
needs to be bridged is illustrated in Figure 1.1; on the
one hand, much product definition was already stored as
two-dimensional 1information in the form of paper
engineering drawings or computer stored files, and on the
other hand, there is a wealth of valuable application
software that requires three-dimensional volumetric

information about the object to be stored as a solid

18
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Fig. 1.1: The gap between the developments
in 2D and 3D CAD systems
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geometric model. In attempts to bridge this gap, new
geometric modelling tools have been created to enable the
designer to generate interactively three-dimensional
models. However, these tools can only be used to generate
solid models for new products. Furthermore, they are far
from easy to use by creative designers who still prefer to
develop sketches into engineering drawings, but geometric
modelling systems which allow them to do that are not yet

commercially available.

It became obvious that in order to bridge this gap
and reap the benefits of engineering applications
software, it was necessary to develop means by which to
interpret the considerable wealth of existing
two-dimensional information as three-dimensional geometric
models. There are, of course, various ways in which this
may be done, but such activity is considered difficult,
expensive and unacceptably labour-intensive. For example,
in the case of numerically confrolled machine tools, the
path of the cutter has to be entered interactively over a
drawing at a graphics terminal. Hence, there is a need for
interpretive software which can process orthographic views
of a product and automatically genérate a geometric solid

model.

Several research workers have recognized such need
and have attempted to develop algorithms to "reconstruct"

a 3D object from its orthographic projections. A number of

20



techniques have been developed but none has yet been
implemented commercially. By adopting a completely novel
approach, the author has sought to develop a number of
algorithms which automatically interpret a set of

orthographic projections as a solid model.

1.2) QRJECTIVES AND SCOPE OF THE PROJECT:

The aim of this work was to develop a number of
algorithms and, subsequently, a computer program to
interpret an engineering drawing as a solid object, in
formal geometric modelling terms. Technically, what is
requiréd are algorithms to read a data file that
represents the orthographic projections of a mechanical
part, process the information, and output a file which
defines that object as a formal solid model, as shown in

Figure 1.2 .

In essence, the following activities were

involved:

- Study and selection of solid geometric
representation for the project.

- Review of existing interpretation techniques of
engineering drawings as solid objects.

- Development of algorithms and corresponding

software for the interpretation process, and

21
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implementation on the computer workstation.

- Monitoring of the quality of these transformations
by comparison of the input orthographic views with the
orthographic views generated directly from a solid
modeller, with the emphasis on the complete automation of

the process and generation of the complete solid model.

The input data files in which the two-dimensional
information is stored, were assumed to exist within a
computer system and to represent an assemblage of straight

lines and circular arcs.

1.3) IQOLS FOR THE PROJECT :

In the early stages of the project, the
environmental hardware consisted of an ICL Perq 2 graphic
workstation, illustrated in plate 1 . The computer has one
megabyte (Mb) of random access memory (RAM) with built in
8-inch Winchester-type hard disk with a formatted storage
capacity of up to 34 Mb and a 1/2 Mb single density
(8-inch) floppy disc. The display is a high resolution
(768 x 1024 pixels) monochrome portrait monitor. Two RS232
interfaces are aiso available for serial input and output:
one of these ports was used as a link to a VAX 11/750
mainframe in which the solid modeller BOXER (PAFEC Ltd.)
was stored; the other port is used to link up a DPX 2000

plotter (Roland DG Ltd.) and an Epson EX-1000 printer

23



Plate 1: The ICL Perqg 2 Minicomputer

Plate 2: The Apollo DN3000 Minicomputer
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for hard copy generation. The PNX Operating System - a

32-bit implementation of UNIX - had been installed.

The software has subsequently been transferred and
developed further on an Apollo DN3000 workstation,
illustrated in plate 2. The Apollo computer has 2 Mb of
RAM and a built in 72 Mb Winchester disc (formatted
capacity) together with a 1.2 Mb (5.25-inch) floppy disc.
The display is a 15-inch bit-mapped, high resolution (1024
x 800 pixels) monitor. Links to the peripherals, such as
the DPX2000 plotter and the EX-1000 Epson printer, are
provided via an 8-serial port expansion unit. The AEGIS
Operating system is used and the complete software of a
subroutine version of the solid modeller (BOXER), provided
by PAFEC Ltd, has also been installed in the Apollo

workstation.

1.4) IHESIS PLAN :

The ultimate aim of the work was the automatic
interpretation of a set of three orthographic projections
of an object stored in the form of two-dimensional

information, as a complete and unambiguous solid model.

The initial input to the procedures of the
interpretation process is data corresponding to this set

of orthographic views. Hence, the subject of chapter Two
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is Orthographic Projections, where special reference is
made to the orthographic views of Prismatic objects, i.e.
those whose cross-section does not vary with respect to an
"axial" direction. The data structure which has been
developed for fast storage and retrieval of the data for
the input views is also described, with the emphasis on
the problem area of interpreting this data into a complete
solid model. The latter is the output to the
interpretation process and hence, Geometric Modelling is
the subject of the next chapter. In chapter Three, the
main techniques of geometric modelling are discussed, with
special reference Solid Modelling, and in particular to
the technique known as Constructive Solid Geometry which
was chosen as the most appropriate for the purpose of the

project.

Chapter Four presents a literature survey on the
different approaches and techniques that have been

developed to interpret orthographic views as solid models.

The author's approach to the problem is discussed
in chapter Five which first presents the theoretical
foundations of the automatic interpretation process that
was developea. An overview of the process, followed by a
detailed description of the different stages, is also

given.

Several algorithms have been designed and
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developed to process the input data of the orthographic
projections of an object, and automatically output a file
which describes the object as a solid model. The
transformation process for prismatic and so-called
orthoprismatic objects, with the extension to the concept
of approximation models for <cererzl three-dimensional
solids, is also described in this chapter. Some of these
algorithms have been designed to be used in conjunction
with a commercial solid modeller. The details of all the

algorithms are given in chapter Six.

Chapter Seven presents the details of C.I.E.D.S.M,
(Computer Interpretation of Engineering Drawings as Solid
Models) =~ the software developed for the interpretation
process. Its portability and interface with commercial
solid modellers are described. The process is intended to
be fully automatic, hence the user interaction with the
software has been limited to the input of the system and

a brief user guide is given for this purpose.

Examples illustrating the inteﬁpretation of
prismatic, orthoprismatic, and arbitrary objects, and
corresponding results from C.I.E.D.S.M., are given in
chapter Eight. In chapter Nine, the project is discussed
and some conclusions are d?awn; the areas where work
remains to be done are identified, and some potential

benefits are listed
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ORTHOGRAPHIC PROJECTIONS
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2.1) INTRODUCTION:

Data corresponding to an engineering drawing is
the primary input to the interpretation algorithms that
are discussed ih later chapters. The various rules and
conventions associated with engineering drawings are first
briefly reviewed to provide a convenient reference for the

work which follows.

An engineering drawing conveys a considerable
amount of information about the design and manufacture of

engineering components. This information may comprise:

i) geometric and topological data in the form of a
number of orthographic and auxiliary views of the solid
object. These may comprise a number of points or.nodes,
straight lines, circles, circular arcs and higher order
curves.

ii)text in the form of symbols and alphanumerics which
indicates dimensioning, tolerances, material, surface

finish and other data.

It was clear from the start of the project that
some consideration had to be given on whether, or not, to
use all the above data as input co the interpretation
algorithms. Textual information may have indeed been
useful, however, it has been rejected as being beyond the

scope of the work fofr two main reasons:
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+ 1) The textual data are not of equal significance but
there is no readily available means to distinguish wvital
information from mere comment.

2) Character recognition algorithms would have been
needed in order to extract and make use of such
information. Such software was not &availakle for the
project and an attempt to develop such algorithms was
rejected because it would have been difficult and time

.consuming.

The input data thus comprise geometric and
topological information only. Furthermore, orthographic
projections are the only views of the solid object that
are considered. These may comprise straight lines and
circular arcs, and are assumed to be stored in the
computer memory. A simple and efficient data structure,
discussed in section 2.3, has been developed to provide
fast storage and retrieval for the input orthographic

views.

A preliminary analysis of a number of data
structures corresponding to several sets of orthographic
views, has led to the classification of all objects into
two main classes: prismatic and non-prismatic objects.

These are discussed in section 2.4.

The nature of the problem in the interpretation of

orthographic views as solid objects is discussed in the
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last section of this chapter.

2.2) RROJECTION CONVENTIONS:

A number of orthographic views are usually used to
represent a solid object on an engineering drawing, and
the identity between the solid body and the views can be
established only if certain rules are observed. The
following section describes some of the rules used to

generate these views.

In practice, orthographic projections of a solid
object are generated using systems of parallel projectors
from its boundaries onto a number of planes. The
projectors are normal to these planes. Often, only two
planes are required and they are known as the principal
planes of projection. Onelis horizontal and the other
vertical. Four quadrants or angles are produced by the
intersection of these planes, as shown in Figure 2.1. The
object to be drawn is placed in one of these
angles and the orthographic views of it are projected
onto the planes. The orthographic projections that are
widely used are produced using the First and Third Angles,
illustrated in Figures 2.2(a) and 2.3(a), respectively. In
both systems, the view on the vertical plane is called the
elevation and the view on the horizontal plane is called

the plan. To obtain these views as they appear in an
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engineering drawing, as shown in Figures 2.2(b) and
2.3(b), the horizontal plane is rabatted about the
intersection of the planes or ground line. It can be seen
that the projectors cross the ground line, at right

angles.

An elevation and plan of an object are not always
sufficient to describe it completely. In such a case a
third view, called an end or side elevation, is drawn on
another vertical plane which is perpendicular to both
principal planes, as shown in Figure 2.4(a). The
equivalent views which would appear on an engineering
draﬁing are obtained by rabatting this vertical plane with
the horizontal plane, as shown in Figure 2.4(b). The plan,
elevation and end views are also commonly known as the
top, front and side views, respectively. It can be seen
that there are a number of relationships between a point
and its projections in the adjacent views. For instance,
the vertex v in the top view, and its projection v' in
the front view are located on a projector line normal
to the X-axis; the vertex v' in the front view, and its
projection v" in the side view are located on a horizontal
projector 1line perpendicular to the 2Z-axis. These

relations are independent of the system chosen.

Two or three views are usually adequate to
represent a simple object. For more complicated objects,

such as those which have complex inclined faces,
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additional views may be necessary. These are drawn on
auxiliary planes inclined to the principal planes and are
called auxiliary views. The same principle of parallel
projectors, normal to the plane, are used. Cross-sectional
views are also commonly used to define the interior of an

object when required.

Apart from the projection system and number of
views, there are other conventions that are important to

this work. These are:

i) the drawing of additional lines referred to
thereafter as 'tangency edges'. These artificial 1lines
which are not normally drawn in engineering drawings, are
used to represent the edge where a curved surface is

tangent to a plane surface.

ii)the type of lines, or line-styles, used to draw the
views of the object. Some of the line-styles that have
been recommended by the British Standards Institution in

B.S. 308: Part 1: 1984, are as follow:

- continuous thick lines should be drawn for the
visible outlines of the object

- continuous thin lines must be used for projection
or extension lines, hatching or sectioning.

- hidden detail lines must be made up of short thin

dashes
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- centre lines must be thin long chain lines

- thick long chain lines should be used for cutting
planes or section planes

- irregqular boundaries and short break lines should

be drawn using thick continuous wavy lines.

As far as the work developed in this project is

concerned, the following conventions have been adopted:

- the first angle projection system

- three orthographic views are required

- the attribute which defines an edge as 'visible'
or 'hidden', is not required, hence, the type of lines
does not have tn be specified. This has the advantage of
minimizing the amount of input data to the interpretation

algorithms.

2.3) RaAIA STRUCTURE:

At the lowest level, a single view of an
engineering drawing may be regarded as an assemblage of
unordered segments, or edges. For orthographic views
accepted as input for this project, these segments may
consist of straight lines or circular arcs. In the data
structure developed, each segment is stored and

represented by :

- 1its type, which determines whether the edge is a
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straight line or circular arc,

- a pair of points or nodes representing the start
and end points of line (except for complete circles for
which the start and end nodes are the same point). Each
node, as well as each centre of arc or circle, is

specified by a pair of coordinate -‘ralues

Figure 2.5(a) shows the front, or XY view of a solid
object and Figure 2.5(b) shows a structure for the data
items defining that view. These data are referred to below
as the 'initial data'. Table A in Figure 2.5(b) contains
the number, the type and the start and end nodes of all
the edges. The type is set to zero for a straighﬁ line, or
to an integer signed according to the sense of rotation of
an arc: clockwise is positive; the integer value is used
as a pointer to specify in table C, the storage location
of the coordinates of the centre of the corresponding arc.
Table B contains the coordinates of all the nodes in that
view. For'instance, edge number 1 is a clockwise arc which
starts at node number 2 and finishes at node number 4, and
the x and y coordinate values of its centre are 6.00 and
4.00, respectively; nodes 2 and ‘4 are located at (6.00,

3.00) and (5.00, 4.00), respectively.

The initial data are the on.iy required input to
the interpretation algorithms. Furthermore, the user does
not need to specify nor enter edges in any prescribed

order.
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Fig. 2.5: a) Object XY view
b) Data structure
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At a higher level, a single view of an engineering
drawing may be regarded as a graph and is best described
using the terminology of Graph Theory. Some of the basic
concepts of Graph Theory are given in appendix A. A graph
is represented by the connections between its elements,
and in the case of a view of an engineering drawing, these

connections exist between edges and nodes.

Formally, a graph may consist of closed paths or
circuits, Multiple Edges, and/or Loops. In an engineering
drawing, the projections of three-dimensional surfaces are
closed contours which can be described as circuits,
Multiple Edges or Loops. A complete circle is the only way
that a loop which consists of a single edge, can occur in
an engineering drawing,’since the start and end points

are the same node.

On this basis, the user's initial input is
converted into a number of circuits (or closed paths,
loops or contours). These contours are the basic elements
that are processed by the aléorithms described below. In
order to guarantee that only closed paths will be
processed, it is necessary to check that the user did not
input nodes which bélong to one edge only, except for
Loops. The casé ma& also arise if taugency edges have not
been included in the input orthographic views. The check .
is simplé and is carried out by counting the number of

times each node appears in the data structure. In Figure
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2.6 where all the contours are identified as closed, each
node appears more than once in the data structure while in
Figure 2.7, each of node numbers 4 and 5, appears only
once indicating that there will be an open path which does
not béund an area in the corresponding view. In that case
tha user is immediately informed that tl.e orthographic
view can not be accepted as input, and is prompted to
enter the correct data. The initial data are also checked
for self-intersecting loops to ensure that all the nodes
are included in the input data. This is achieved by
examining all the intersections between edges in the view.
If a valid point of intersection is found but not entered
as a node then a node is generated automatically at that
point and the data updated by dividing the intersecting
segments into pairs of segments. Figure 2.8(a), shows a
view where a self-intersection exists between two loops.
The points of intersection are computed, numbered and
stored in the updated data structure, as shown in Figure
2.8(b), where edge numbered as 3 has been divided into

three new edges: 3, 9 and 10.

 When examining a view of an engineering drawing,
it is possible to distinguish different types of
contours. Some may be isolated (or disjoint) from all the
other contours, and some may be connected to others. An
algorithm developed in this project and described in later
chapters, has been designed to determine which contour is

isolated and which is connected. Moreover, the same
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algorithm is used to determine the boundary or perimeter
contour in any view. Figure 2.9(a), shows a view that
comprises both connected and disjoint closed contours,
where the positive sense of each edge is indicated by an
arrow pointing from the start node towards the end node;
an edge which is traversed in the opposite serse is
indicated by a negative integer. The type of each loop is
represented by an integer value which is set to zero to
indicate a 'disjoint' attribute, or to 1 to indicate a
'connected' attribute. The number and type of contours in
the xy view shown in Figure 2.9(a) are shown in Figure
2.9(b), where loop L3 and L4 représent in effect the same
loop which is traversed in both directions. These contours
are represented and stored by specifying the number and
types of edges which define it. Direct access files are
used to store such data. The structure of these files is

described in chapter 7.

2.4)QRTHOGRARPHIC VIEWS OF PRISMATIC AND ARBITRARY
QBJECTS :

In a preliminary analysis of the inpuf data, %t
has been found that, among the vast range of mechanical
components manufactured in the engineering industry, there
exists a class of simple objects which can readily be
identified from their orthographic views. These solid

objects, known as prismatic objects, are those having a
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fixed cross-section in at least one direction. Any other
object which does not belong to this class of objects is
hereafter referred to as an arbitrary or non-prismatic

object.

The class of prismatic objects may be divided
further into two distinct subclasses: simple and complex.
A complex prismatic has one or more holes drilled through

it, while a simple prismatic object has none.

The class of any object, as defined above, is
determined by the number of loops, as well as the type and

shape of each loop, contained in each view of the object.

Prismatic objects play an important role in the
interpretation process developed in this project. This
role is discussed in later chapters. Therefore, the
ability readily to identify a prismatic object from its
orthographic views is considered here as one of the

important milestones in this work.

2.4.1) ORTHOGRAPHIC VIEWS OF PRISMATIC OBJECTS:

A simple prismatic object is shown in Figure‘
2.10(a) . It can be seen from the orthographic projections,
Figure 2.10(b), of such object that there will always be

at least one view consisting of a single closed loop only.
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This loop represents the boundary or perimeter loop in
that wview. Such a view is defined here as the base view.
Furthermore, the remaining views may consist of one or
‘more connected rectangular loops whose nodes also belong

to the perimeter loop.

The simple prismatic object shown in Figure
2.10(a), may be transformed into a complex one (having a
multiply-connected cross-section) by drilling holes
through it, as shown in Figure 2.11(a). In this case, the
base view consists of two or more closed disjoint loops.
Again, the two views adjacent to the base view comprise a
number of connected rectangular loops whose nodes also

belong to the perimeter loop, as shown in Figure 2.11(b).

2.4.2) QORTHOGRAPHIC VIEWS OF ARBITRARY OBJECTS:

In the case of arbitrary or non-prismatic objects,
the orthographic projections may comprise any number, type
and shape of loops. Those features which identify a
prismatic object are not found in the views. Figure
2.12(a), shows' an arbitrary solid object. In the three
orthographic projections of this rather simple object
there is at least dne view, in this case the xy view, that
has a single closed loop, as shown in Figure 2.12(b). This
may be regarded as a 'base' view; this is one feature

found in the views of prismatic objects. However, the
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object will not be defined as a prismatic object because
the views adjacent to the 'base' comprise loops that are

not rectangular.

Another example is illustrated in Figure 2.13(a).
in this case, a viz2w consisting of two closed disjoint
loops exists amongst the set of orthographic views in
Figure 2.13(b), and may be considered as the 'base' view
of a prismatic object; however, because the 1loops
contained in the remaining views do not share their nodes
with the perimeter loops in the corresponding views, the

object is identified as non-prismatic.

2.5) INTERPRETING PROJECTIONS AS SOLID OBJECTS:

The process of generating orthographic views 1is
rather straightforward (see section 2.2), and has been
implemented on computers for a relatively long time.
However, the generation of solid models from orthographic
views by machines has not yet been achieved because of the
complex nature of the process involved. To appreciate the
complexity of such a problem it is necessary to understand
the process by which a human interprets three views as a
solid object.

The engineering drawing has been a successful form

of communication only because of the intelligent
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interpretation which is applied to it. The drawing can
only communicate a precise description of a component when
both the draughtsman and the user are well-versed with the
implicit information it conveys, such as the conventions
and mechanisms by which the two-dimensional structural
elements have been generated. The draughtsman knows that
the inferences he makes will only be correctly understood
by a user who has a knowledge of this dinplicit

information.

Furthermore, apart from using his knowledge and
experience, a human also has the ability to process a
large number of two-dimensional entities from the
two-dimensional views, such as faces, edges and vertices,
simultaneously and qualitatively. Partial solids are
generated from the corresporiding parts of three views, and
if they agree with his experience and knowledge, they are
composed to form a complete solid object; b
inconsistencies are discovered, then there is a return to
the three views and a generation a different solid.
Therefore, the process has certain characteristics which

can be described as follows:

a) More empirical than logical, since it is based on
past experience rather than deduction,

b) entities are grasped qualitatively,

c) the processes proceed in parallel,

d) the feed back is continuous.
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In contrast, available mini-computers and,
probably, those on which any commercial software would be
mounted, operate sequentially. Therefore, it is not
feasible to construct a system which generates a solid
model from three views by emulating human thought-process.
Sucli a system would therefore require the processing of
automatic three-dimensional interpretation not only to be
formulated in a logical (serial) manner, but also to
involve some degree of expertise to represent the

knowledge that both draughtsman and user have gained.

Technically, the problems of automatically
interpreting orthographic views as a solid object are
translated as a loss of semantics occurring when the
object is represented with a two-dimensional description.
For instance, one line in any view can represent more than
one edge; moreover, some lines do not represent true edges
such as silouhette lines which are used to represent
curved surfaces. For this reason, the straightforward
approach of matching each line to the lines of the other
views to construct a set of edges and faces, may lead to
the generation of nonexistent or ghost.faces, and hence
impossible objects. Orthographic views Qre described using
a 'wireframe' representation, and for this reason it may
be possible for a set of three orthographic views éo héve
several solutions, i.e. to represent the two-dimensional

description of several objects.
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In order to avoid these problems, it is necessary
to select a three-dimensional output data structure that
guarantees the representation of a valid and unambiguous
object model. Furthermore, it is desired that this data
structure must explicitly describe the 6utput model in
terms of a solid volumetric represertation =2s required for
design analysis and manufacture processes. The main
three-dimensional representation techniques are described
in the following chapter, with special reference to the

one selected for the project.
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GEOMETRIC MODELLING
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3.1) INTRODUCTION :

A central activity in the Computer-Aided Design
(CAD) process is the evolution of a comprehensive
representation, or geometric model (also called product
model) of a desizned object. The designer gives concrete
form to his ideas by building a model in dialogue with a
computer. The model is then developed and optimized by
design analysis: a set of calculations and simulations to
predict the properties and behaviour of the object. The
model may also be used for the preparation of
manufacturing processes. Therefore, the role of modelling

in CAD can be summarized as a foundation of the design

cycle of synthesis, representation, analysis and
optimization.
By definition, geometric modelling is the

computer-aided input, representation, interrogation and
display of the shape of three-dimensional (3D) objects. It
is a collection of methods used to create data structures
and algorithms for representation and calculation of data
on the shape of 3D objects. Formally, the representations
are mainly defined in terms of Geometry (point
coordinates, curve and surface equations,...), and

Topology (connections between points, edges ana faces).

R the field of geometric modelling

representations, several authors distinguish two main
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subareas: surface modelling and solid modelling. However,
it is recognized here that wireframe modelling also
deserves to be mentioned, since it is widely used by
several geometric modelling systems, and it also has a
very important historical wvalue. For this reason, it is
presented first in tae following sections, a5 an
introduction to the subject of geometric modelling
representations. Excellent surveys and reviews on the
fundamentals of geometric modelling representations and

their potential can be found in the literature [9,10].

3.2) HWIREFRAME MODELLING :

Wireframe modelling was first used in the early
two-dimensional (2D) drafting systems to represent simple
2D designs such as for circuit diagrams and printed
circuit board (PCB) layouts. The wireframe model consisted

of lists of points and lines in 2D space.

In recent mechanical engineering drafting systems,
objects may be displayed in one or more orthogonal views.
These views, as 2D wireframe models, are independent of
 each other, and thus can be incompatible, in which case

there is no true representation of a 3D object.

Compatibility of views has been guaranteed with

the introduction of 3D wireframe models which allow
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several views to be derived from a single representation.
A 3D wireframe model still has the same data structure but
in 3D space; it consists of a set of vertices and a set of
edges which indicate the interconnection between vertices.
Each vertex is specified by its position in space in terms
of (x, y, z) coordinates, and each edge is deofired in
terms of its two end vertices. This data structure is very
simple and can be represented by two arrays: a 3-column
geometry array of real numbers to store the coordinates of
all the vertices, and a 2-column topology array of
integers for edge definitions. Figure 3.1 shows a 3D

wireframe model and the associated data structure.

This modelling technique owes its well-established
use in several commercial CAD systems to the simplicity
and efficiency of data storage. The main advantages can be

illustrated as follows:

- geometric entities (vertices and edges) can be
retrieved and updated quickly

- model creation and disﬁlay are fast

- computer requirements, such as storage capacity,

are low.

However, the representation has severe limitations
which are mainly due to the lack of geometric completeness
and loss of surface and volume information. These are as

follows:
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Segment No. Start node End rode

1 1 2
2 4 5
3 9 10
4 7 12
5 1 7
6 2 12
7 5 9
8 4 10
9 6 8
10 3 11
11 1 5
12 2 4
13 7 g
14 10 12

Fig. 3.1: A simple wireframe model
and its data structure
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- there can be ambiguity and loss of definition as
illustrated in Figure 3.2, which shows a wireframe model
and three possible interpretations

- input of a large amount of low-level data is
required to define even simple objects

- +he visualization of a complex wireframe model may
be impaired and may lead to confusion

- impossible (invalid) objects, as illustrated in
Figure 3.3, may be generated

- mass and volume property computations cannot be
carried out

- sectioning and hidden line removal cannot be
generated automatically

- in the case of objects with curved surfaces,
silouhette lines (profile edges) cannot be adequately

represented, as illustrated in Figure 3.4.

3.3) SURFACE MODELLING :

Surface modelling overcomes some of the above
problems of wireframe modelling since it provides more
information describing the surface of an object. It is
concerned with mathematical methods for description of all
kind of surfaces. These may be simp.e¢ flat plane models
created between pairs of parallel straight lines or may be
much more complex surfaces, often referred to as free-form

or sculptured surfaces. It also deals with operations on
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Fig. 2.2: a) A wirefra—< model and
b) three possible interpretations

59



Fig. 3.3: Validity of a model
(the devil's fork)

Fig. 3.4: Profile edges in a wireframe
model with curved surfuces
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these surfaces, such as intersections and modifications.

Surface modelling was first introduced to replace
lofting techniques used in design of bodies such as ship's
hulls, turbine blades, aircraft and car panéls. This
modell.iny technique has since been developed to the extent
that the theoretical background has become a new field of
study known as computational geometry [1l1l], that uses
methods from matrix and vector algebra, differential

geometry and approximation theory.

One of the earliest techniques of surface
modelling was developed by Fergusson [12], and was known
as the Fergusson Patch. Mathematical definitions of curves
‘and surfaces were made possible by using parametric rather
than Cartesian co-ordinates, and transformations could

easily be carried out using matrix algebra.

Basically, three-dimensional surfaces may be
formulated by interpolation or approximation of two or
more parametric space curves; a parametric representation
of a curve is given by:

r = R(u)

where r is the position vector ( x y z ) of a point on a

curve described by the vector function:
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R(u) = [ X(u) ¥(u) Z(u) 1]

A segment on the curve is then described on some
closed interval a € u £ b, and is usually defined in terms
of data at a number of points; Figure 3.5 shows a

parametric curve segment described on the interval:

tq <u s ty

For surfaces, two parameters are required:

r = R(u,v)

R(u,v) = [ X(u,v) Y (u,v) Z(‘I..I,V) 1

where parameters u and v, may take on values in a
specified range, usually 0 to 1. Figure 3.6 illustrates

the parametric description of a three-dimensional surface.

Several schemes of interpolation or approximation
have been used in the design of complex surfaces, most of
which were based on cubic and rational polynomial segments

[13,14,15], and others involve higher degree polynomials.

The major advantage of surface modelling is the
ease with wlhich complex surfaces may be generated. This
technique also allows fast local, and global,
modifications to be carried out and needs only a small
amount of data storage. There are however, some

disadvantages:
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- the generation of unambiguous models is not
ensured because of possible lack of connectivity between
surfaces

-~ calculation of intersections between sculptured
surfaces is complex

- mass property calculations are limited to single
surfaces

- interference between surfaces is not guaranteed

and relies on user detection.

3.4) SOLID MODELLING :

Solid modelling deals with data structures for
informationally complete and unambiguous description of
solid objects, and algorithms operating on these data
structures. This modelling technique has been developed to
overcome the limitations mentioned above. Solid modelling
has geometric completeness, thus it allows the automation
of several engineering applications. The technique was
pioneered in Britain, by Braid [16,17,18]. Extensive
developments followed and several solid geometry modelling
representations havé been developed. In this section, the
four main techniques are discussed: Cellular
Decomposition, Sweeping, Boundary representation and

Constructive Solid Geometry [19,20].
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3.4.1) CELLULAR DECOMPOSITION :

In this scheme objects are represented by a
collection of disjoint cells. There are several variants
of cellular decomposition. The simplest variant is known
as Spatial Enumeracivua, illustrated in Figure 3.7 . In
this, space 1is divided into a 1large number of
equally-sized cubes, or voxels, that are positioned in a
fixed and regular three-dimensional grid. The object is
represented by the voxels in which it resides. Each cube
is marked or 'enumerated' as 'inside' or (1) if it lies
inside the object, and as 'outside' or (2) if it is
outside the object. For voxels that &are partly inside and
partly outside the object, a decision is made on the basis

of whether the centre of the cube is inside the object.

The data structure of spatial enumeration is very
simple. It consist of a three-dimensional Boolean array,
where each voxel is represented by one element which

indicates whether it is inside or outside the object.

It is clear that this scheme is well adapted to
applications such as the computation of mass and volume
properties of the object it represents. The other
advantage of spatial enumeration lies in its simplacity.
However, most objects, notably those with curved surfaces,
can only be approximated at the boundaries, resulting in

an inaccurate and jagged representation. To provide any
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Fig. 3.7: Spatial Enumeration

66



/5

reasonable geometric resolution and close approximation,

it is necessary to use very small voxels which requires an
excessive amount of memory; for instance, a grid of 103 by
103 by 103 voxels would require more than 100 Megabytes of

memory!

A more recent development amongst spatial
enumeration schemes [21] attempts to reduce the amount of
memory required by only using small cubes where fine
resolution is needed, such as the boundary. A coarse grid
of cubes is used everywhere else. In this method, known as
octtree, the model space is first divided into large
cubes, and these may be marked as completely inside the
object (full), or completely outside the object (empty),
or partially inside and partially outside the object
(partially occupied). Partially occupied cubes are then
subdivided into eight smaller cubes of equal size and
these again are marked, which can lead to further
subdivisions. This process of subdivision continues
recursively for partially occupied cubes until either the
object is represented exactiy, or until a predefined
minimum size of the cubes is reached. This technique is
similar to the quadtree representation in two-dimensional

space which is illustrated in Figure 3.8 .

The data structure of an octtree representation is

a tree where each node is a record of the state (inside,

~Qutside or partially inside and partially outside) of the

vy
o
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cube residing at that node. That record also holds
pointers to the eight cubes into which the cube is
subdivided. This structure is illustrated in Figure 3.9,
where the cube, enumerated as 0, has been subdivided into
eight more cubes and the cube 4 is marked as outside of
the object. Figure 3.10 shows anr zlternative data
structure, known as linear octtree [22]. In this method,
only the information about the cubes that are inside the
object is stored. An octal code is used for all these
cubes - the octal code is a sequence of numbers between 0
and 7 - and the length of the code depends on the size of
the cube: for every further subdivision, an extra number
is taken. The number depends on the cube concerned. The
complete linear octtree data structure is also condensed

to save memory space.

Although the data structure of the octtree
representation is somewhat more complicated, the
advantages are similar to those of spatial enumeration.
The disadvantages are also the same except that the
octtree takes less memory than the tree data structure of

spatial enumeration.
Other variants of cellular decomposition with

cells of different shapes are also used, in particular for

application such as finite-element analysis.
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Li ling :
{01, 10, 11, 12 , 13, 14, 15, 16, 17, 35, 51}

After condensation: {01, 1X, 35, 51}

Fig. 3.10: Linear octtree encoding
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3.4.2) SHWEERING :

In sweeping, an object 1is defined by a
two-dimensional contour curve that is moved along a
three-dimensional trajectory curve. The cross-section of
the object is defined by the coantour and the spine of the
object is defined by the trajectory. Four different types
of sweep objects can be distinguished, depending on the
contour and trajectory definitions :

- translational sweep: the contour is arbitrary but
the trajectory is a straight line [23]. Prismatic objects
are easily defined by translational sweep, as shown in
Figure 3.11

- rotational sweep: the arbitrary contour is rotated
about an axis, i.e. the trajectory is a circle, as shown
in figure 3.12. All axisymmetric objects may be defined
using rotational sweep

- circle or sphere sweep: the contour is a circle
(or a sphere [24]) and the trajectory is arbitrary, as
shown in Figure 3.13.

- general sweep: both the contour and the trajectory

are arbitrary [25], as shown in figure 3.14 .

Simple curves (straight lines, arcs of circles,
and other quadrics) as well as general curves, such as
parametric curves (Bezier and B-splines) may be used in a
continuous sequence to define arbitrary contours and

trajectories.
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Fig. 3.13: Circle or sphere sweep

Fig. 3.14: General sweep
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A recent development in sweeping allows tapered
and twisted sweep objects to be produced [26]. This is
achieved by allowing the size and the orientation of
contour to vary as it is moved along the trajectory. The
datalstructure stores scaling and rotation factors at a

number of points along the trajectory.

One of the advantages of sweeping is that the
representation is compact and does not require large
amounts of storage. It is also suitable for input of
models since it is relatively simple to specify a contour
and a trajectory. The main disadvantage of sweeping is the
restriction of the shape domair it may represent; only
certain classes of object can be modelled with sweeping.
For example, only objects with rotational symmetry can be

modelled with rotational sweeping.

3.4.3) BOUNDARY REPRESENTATION :

In this representation, a solid object is defined
in terms of its boundary elements, and these are specified
in terms of a finite number of bounded faces. Several
kinds of regular surfaces can be used as the basic face
elements for describing the object. Theée include planar
surfaces (polygons) and parametrically described surfaces,

such as cylindrical, conical and spherical surfaces.
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One B-rep data structure comprises a set of
surfaces where each surface is represented by a set of
directed edges that bound it, and each edge is represented
by two vertices. These are held in a graph structure,
known as the face-edge-vertex graph, which indicates the
way in which they arc connected. The topology information,
i.e. the relationship between faces, edges and vertices,
is specified by means of pointers which are in fact
addresses of records in the data structure. For instance,
in Figure 3.15, face F1 is bounded by edges El, E2, and
E3, and in the record of F2 there are therefore pointers
to records El, B2, and E3. Each entity in the
face-edge-vertex graph has pointers back to the entities
that own it, and to other related entities within the

structure,

The face-edge-vertex graph is manipulated using

the so-called Euler-Poincarre rule:

V~E+FP~--H=2 * (M~-G)

where:

V = Number of vertices

E = 2 " edges

F = L " faces

H = " " hole loops

M = " " separate pieces of solid
G = Genus of object .
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Fig. 3.15: Boundary representation
of a tetrahedron
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The hole loops are the internal boundaries at
which several faces are joined together as well as to the
perimeter boundary. The genus of an object is the number
of holes it has; For example, a block has a genus of zero,

and a torus has a genus of one.

Geometric information is also specified using
pointers to appropriate geometric elements which serve to
fix the object in space and define its geometry, as

follows :

Face -==> Surface (coefficient of equation)
Edge ===> Curve (coefficient of equation)

Vertex =---> Point (coordinate triple x,y,z )

The geometry is therefore defined in terms of
surface and curve equations to define faces and edges, and
in terms of coordinate triples to define vertices, in
space. For instance, the information about the equation of

a planar surface:

ax + by +cz +d=20
are the coefficients a, b, ¢ and d. Quadric analytical
surfaces can also be represented by the coefficients of

their equations.

Most objects can be represented exactly with
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boundary representations using planar and quadric
surfaces. However, in many boundary representation
systems, curved surfaces are usually approximated by a
mesh of polygons, in order to simplify the data structure
and to make operations on the representation much faster.
The disadvantage of using pclygon3 or planar surfaces
only, is that it may not provide adequate approximation of
the object and uses a large amount of memory. In the
boundary representation where only planar surfaces are
allowed, the geometric information may be restricted to
the coordinates of vertices, and the face and edge
equations are derived from this information whenever it is
necessary. The amount of topological information that is
stored differs from one variant of boundary representation
to another. For instance, it is not possible to determine
the two faces which intersect at a particular edge; for
this, in some boundary modelling systems, pointers from
every edge to the faces intersecting at that edge are also

stored.

In the winged-edge data structure [27] >
illustrated in Figure 3.16, every edge is assigned a

direction, and from each edge there are pointers to:

- the two faces intersecting at that edge; these are
called Fleft and Fright, as seen from the outside of the
object

- the next edge in the sequence of edges bounding
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Fig. 3.16: Winged-edge representation
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Fleft in clockwise order

- the next edge in the sequence of edges bounding
Fleft in counterclockwise order

- the next edge in the sequence of edges bounding
Fright in clockwise order

- the next edge in the sequence of edges bounding
Fright in counterclockwise order

- the two vertices bounding the edge.

The boundary representation may be extended to
coGer a much larger domain, such as objects bounded by

free—-form surfaces [28].
The advantages of boundary representation are:

- the information about faces, edges and vertices,
is explicitly present in the data structure, which allows
applications such as fast display of the model to be
achieved. It 1is well adapted for straightforﬁard
interrogating programs

- models can be generated step by step and local

shape modifications are relatively easy to perform.
The disadvantages are:

- the data structure takes up a large amount of
storage because of the amount of explicit information it

contains. Most of this data is redundant
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- the data structure is also complex, which may lead
to the generation of invalid models of objects

- input to create models is difficult and tedious.
This can be eliminated only by a sophisticated and
well-designed user interface.

- inside/outside tests are more time-consuming

3.4.4) CONSTRUCTIVE SOLID GEOMETRY:

With constructive solid geometry, commonly
abbreviated to CSG, a complex object may be synthetized
from a finite number of much simpler shapes or primitives,
like cubes and cylinders. These can be positioned in
three-dimensional space by means of transformations, and
then be combined to produce more complex objects using the
Set (Boolean) operations of union, intersection and

difference.

The primitives can be defined in a manner similar
to that used in boundary representation (discussed in
section 3.4.3) or can be specified in terms of low level
entities called half-spaces. A half-space is generated by
an infinite surface that divides the three-dimensional
space into two parts, and may be defined, for example, by

an inequality such as: x 20

Simple objects can be represented as the
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intersection of a number of half-spaces. For instance, a
unit cube may thus be represented as the intersection of

the following half-spaces:

x 2=, xS l, va2=1, vS$1, 22 -1and z S 1
and the half-space:

%t # y + 2291
is itself the unit sphere.

The user does not have to specify the half-spaces,
but has at his disposal a number of simple primitive
objects predefined with half spaces. This guarantees that
no unbounded model can inadvertently be built. The
primitives such as cubes and cylinders are common to most
CSG modellers; the pyramid, cone, wedge, torus and sphere
are useful for mechanical engineering components and are
also available. Each primitive has.a number of parameters
that have to be specified. For example, for a block the
parameters are the length, width and the height, and for a

sphere, the radius.

The data structure for a constructive solid
geometry representation of a solid model, consists of a
binary tree, also called the CSG tree. At a leaf node of

the tree there is information about a primitive: its
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type, the wvalues of its parameters, and the
transformations applied to it. At an internal node, there
is the type of the Boolean operator (union, intersection
or difference) to be applied to the objects defined Dby

the left and right branches of that node, and pointers to

these branches. Figure 3.17 shows a CSG tree, where (U¥*)

stands for union, and (-*) stands for difference. The

union of two objects A and B, (A U* B), is the object

which consists of the points that lie within either A or

B. The intersection of A and B, (A Nx B), is the object
which consists of the points that lie within both A and B.
The difference of A and B, (A -* B), is the object which
consists of all the points that belong to A and not to B.
It is important to note that the 'difference' Boolean
operator is not commutative; thus the object obtained by
the Boolean operation B -* A is not the same as the object

obtained by the difference A -* B.

In Figure 3.17, the operators are starred to
indicate the difference between these operators and those
used in <classical Set Theory. The straightforward
application of set theoric Boolean operators to the set of
points defined by a three-dimensional solid may lead to
anomalous results, such as 'dangling-edges', as shown in
Figure 3.18(a). In order to avoid such problems, Boolean
operators are refined in such a way that they operate on
and produce "regular sets" [29], as shown in Figure

3.18(b) .
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Fig. 3.18: a) Non-regularised Boolean operation
b) Regularised Boolean operation
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A number of transformations are available to move
a primitive to the correct position and orientation in

space:

- translation to move it in the X, Y or Z direction

- rotation to rotate it through an angle about the
Xy Y Or Z axis

- scaling to change its size with a factor in the X,
Y or Z direction

- skewing or shearing to change the angles between

the X, Y and Z axis.

Constructive solid geometry representation is used
in several commercial solid modelling systems, because it
is compact, uses relatively little storage in comparison
to cell decomposition or boundary representation, and all
the objects that can be modelled are guaranteed to be
valid. Another important advantage is the ease with which
models can be built; very complex objects, in particular
the majority of common mechanical parts, can readily be
modelled, by using a restricted number of primitives, as
illustrated in Figure 3.19. Moreover, conceptually, the
CSG method has several similarities to engineering
practice for designing and maﬁufacturing mechanical
components. For example, the 'difference' operation
resembles cutting and the 'union' operation resembles

bonding.
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The disadvantage is that there no explicit
information about the edges and vertices of the object in

the data structure, as in boundary representation.

35) SE

Several geometric modelling schemes have now been

examined, all of which have their specific advantages and
disadvantages. For instance, with constructive solid
ageometry, model input of mechanical parts is easy, but it
is not the most suitable representation for making line
drawings. On the other hénd, a boundary representation is
very suitable for making such drawings, but it in turn
requires a large amount of memory. In general, the
selection of a geometric modelling scheme depénds on the

applications: domain, input, applications and storage.

The work developed in the project is mainly
concerned with the domain of mechanical engineering parts.
This class of objects requires the provision for a
complete volumetric inférmation, to enable_engineering
apﬁlications, such as those described in section 1.1, to
be performed. Clearly, these objects are best described
using solid, rathef than wireframe or surface modelling

representation schemes.
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The selection was initially narrowed down to
choosing one of the solid modelling representations. The
primary criteria used in the selection of one of the solid
representations schemes was model input. The
interpretation process developed in the project, requires
the use of a sclid mcdeller, (section 5.3.4). The input to
the modeller is generated by a number of subroutines which
have been developed in this work. Therefore, the amount of
input data must be small to allow fast transfer to the
solid modeller. Cellular decomposition was rejected on
this criterion, since it requires that all the cells in
the three-dimensional grid to be indicated and stored. The
same applies to variants like octtrees. Moreover, these
representations can only give an approximate description
of the object. Boundary representation is also not
suitable for model input since the validity of the input
model is not guaranteed which may result in generating
nonsense objects. This representation also requires a
iarge amount of storage. Sweeping, especially translation
and rotation sweeping, is very suitable for model input,
since it requires only a small amount of data to specify
an object. However, it has a limited domain of

application, even in its generalized form.

Constructive solid geometry was adopted for this
project because it is suitable for describing most
mechanical engineering parts, and for model input. The

PADL-1 development team at Rochester University [30],
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found that about forty percent of mechanical engineering
components could be represented in terms of Jjust two
primitives: rectangular blocks and circular cylinders -
subject to the restriction that block edges and cylinder
axes were aligned with the coordinate axes. The addition
of further primitive types (cones, spheres and tori),
together with the removal of any restriction on the
orientation of the primitives, allows modelling of more
than ninety percent of mechanical parts. Model input in
constructive solid geometry, prevents the generation'of
invalid objects and only a small amount of data 1is
required to specify complex objects. Constructive solid
representation has however, one drawback; it is not
suitable for making line drawings. This problem has been
solved by converting one modelling representation into
another (appendix B), and many commercially available
modellers provide such conversions. Input and storage may
be effected by a constructive solid geometry
representation, and if line drawings are required, the
representation is then converted into a boundary

representation.
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REVIEW OF EXISTING TECHNIQUES
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4.1) INTRODUCTION:

Attempts to tackle the problem of reconstructing a
solid object from its orthographic projections is not
completely new, and some useful wofk in this area has been
reported in the 1literature. A nurmker cf different
approaches have been adopted with some early methods
utilizing both hardware and software techniques. Such an
approach was adopted by Sutherland in his work on
three-dimensional input [31] which was focused on hardware
and software for diéitizing. He introduced a tablet with
multiple pens so that a 3D vertex could be generated by
digitizing vertices in two views. He also discussed how to
treat digitized data from perspective views. Thornton's
work [32] was also based on the same approach, and was
concerned with interactive techniques for three
dimensional input from two-dimensional views. However,
neither Sutherland nor Thornton investigated algorithms

for constructing solid models from projections.

The first algorithmic effort to construct solid
models from their orthographic projections was initiated
by Idesawa [33,34]. His method which focused on the domain
of polyhedral objects, was largely based on labelling
corresponding information in different views. The
algorithms employed edge "tracing"™ techniques which mainly
consist of tracing around labelled edges (lines) of

engineering drawings and extracting thé projected surfaces
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(which were closed. loops of edge 1lines) in order to
determine possible planes for those features. These
algorithms also required the elimination of false elements
such as "ghost" faces generated during the process of

assembling projected faces.

Idesawa's method, briefly reviewed in section 4.2,
was regarded as the basic method. His approach has been
adopted by several other researchers in this field, mainly
to improve the method and to extend the domain to
non-polyhedral objects. For instance, Lafue [35], in his
work on the recognition of three dimensional objects from
orthographié views, added a procedure for removing false
elements and finding true elements. His method had two
drawbacks. First, it cannot remove all the possible false
elements and can remove some true elements in multiple
solution cases. Second, it constrained the user to a
predetermined format when describing features such as
faces; for example, two-dimensional lines are required to
be input in such a way that a sequence of lines bounds a
face. Preiss [36] attempted to free the user from as many
constraints as possible. However, the relaxation of
constraints has led to the possibility of multiple
solutions, including "impossible" objects, to a given
problem. The recent introduction of a heuristic approach
to find the probable solution [37] has been applied to

plane-faced bodies.
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A completely different approach was adopted by
Aldefeld [38], where mechanical parts were regarded as
assemblages of separate prismatic objects, each object was
required to have a base parallel to one of the coordinate
planes. This method which utilized model recognition
Lcchnigues, is reviewed in section 4.3 because of the new

concept it introduced.

The work described in references [33-38] was not
based on formal geometrical and topological definitions,
and led in all cases to wireframe representations of the
objects. This mode of representation has a serious
limitation in that it does not provide the volumetric
information required for manufacture, assembly and design

analysis purposes.

Wesley and Markowsky used algebraic topology
concepts and rigorous definitions of geometric entities to
allow a volumetric description to be obtained in terms of
solid material, empty space and topology of surfaces and
edges for objects described in terms of their wireframe
[39]. They used the same approach to obtain obijects
described in terms of their projections ([40]. However, the
algorithms were still restricted to objects having
straight line edges and planar surfaces. This concept was
developed further by Sakurai and Gossard [41] to extend
the interpretation process to include objects with

rotational symmetry such as cylinders, cones, tori and
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spheres for which the axes are parallel to one of the
coordinate axes. This reconstruction algorithm developed
by Wesley and Markowsky was also improved by Kaining [42],
who made use of the idea of pattern recognition expressed
in the Aldefeld algorithm, to include cylindrical objects
for which the axes are parallel o one coordinate plane
rather than to one coordinate axis. This improvement
allows the input views to comprise elliptic arcs,
hyperbolas and regular higher order curves with their
symmetry axes parallel to one coordinate axis. Kaining's
method is reviewed in depth in section 4.4. This is
because it illustrates the basic approach adopted by
Wesley and Markowsky, and to describes the improvemants it
makes on their algorithm. Moreover, much of Kaining's work
has direct relevance to this project and requires detailed

exposition.

In all the above techniques, boundary
representation has been used to describe the output object
model. As previousl} disgussed, in section 3.4.3, this
mode of representation does not guarantee the validity of
the object. It is for this reason that most of the above
methods required algorithms to deal with pathological
cases. Constructive Solid Geometry, a more adequate
representation, has been adopted in an interesting work
reported in [43,44] for the interpretation of orthographic
views as solid models. However, in this case, the

interpretation process is not fully automatic and requires
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a 'man in the loop', i.e. the user, to carry out most of
the interpretation tasks, such as the identification of
three-dimensional primitives, the input of their
corresponding data and the comparison of input and output
orthographic views. A method based on such an interactive,
or 'semi-automatic', approach is described in section 4.5,
to illustrate the extent to which human intervention is

required by such techniques.

Constructive Solid Geometry principles, together
with the 'man in the loop' concept, have also provided the
basis for the process of interpreting engineering drawings
as solid models, deveioped in the present work. However,
the extent to which the process relies on the user is far
less than the one used in the interactive method described
in section 4.4. This chapter is concluded by a discussion
which highlights the reasons for adopting these concepts
and the differences between the tasks carried out in the
process developed in this work, as compared to those

required by the so-called semi-automatic methods.

4.2) IDESAWA'S METHOD:

Idesawa describes his approach as the inverse
transformation of the operation which is used to produce
orthographic pfojections of a given object. His algorithm

is divided into five main steps:
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(a) generate 3D vertices from 2D vertices
(b) generate 3D edges from 3D vertices
(c) elimination of ghost elements

(d) generate 3D faces from 3D edges

(e) assemble true faces into an object.

Each of the above steps can be briefly described

as follows:

(a) GENERATION OF 3D VERTICES FROM 2D VERTICES:

In any given orthographic view, a two-dimensioﬁal
vertex is defined in terms of a pair of coordinates; For
instance, any vertex in the XY view has an x-coordinate
value and y-coordinate value, and an unknown z-coordinate

value in the direction of sight.

The purpose of this step is to determine the
missing coordinate value for each two-dimensional vertex
in order to generate the corresponding three-dimensional

vertex. This is achieved by the following matching rule:

Consider, three points: P(x,y) in the XY view,
P'(x,z) in the XZ view and P"(z,y) in the 2Y view, as
shown in Figure 4.1(a). A 3D vertex V(x,y,2z) is defined

by the views, if:
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X (P) = x(P")
y(P) = y(P")
Z(BY) = 2(P")

The corresponding three-dimensional point created,

V(xX,y,z) is shown in Figure 4.1 (b).

(b) GENERATION OF 3D EDGES FROM 3D VERTICES:

In a three-dimensional object each edge is defined
by a pair of three-dimensional vertices. The purpose of
this step is to obtain each pair of vertices that define
three-dimensional edges. Idesawa devised a function which
takes as its main input all the combinations of generated
three-dimensional vertices in pairs and outputs some value
signifying whether or not a given pair of vertices are
connected. The function is specified by the Boolean
operations required for each set of entities. The

interested reader may find more details in [33].

(c) ELIMINATION OF GHOST ELEMENTS:

The three-dimensional elements (vertices and
edges) generated in the previous steps may not all be true
elements. Idesawa refers to those elements which are not
true one as ghost figures. These are partially eliminated

according to a set of twelve rules.
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b) corresponding 3D vertex
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(d) GENERATION OF 3D FACES FROM 3D EDGES:

In this step, a search for three-dimensional edges
that are likely to bound a face is carried out together
with a further elimination of ghost figures. Faces are

defined only if the following conditions are met:

i) There are n faces which contain a vertex as a given

intersection of n edge lines.

ii)An edge line constitutes the boundary of two faces,
and runs in opposite direction to each other in the row of

boundaries.
iii)A boundary of a face is enclosed.

An edge line which can not be in any boundary of
faces is eliminated as a ghost line. Finally, the object

is described in terms of a number of planar faces.

The main disadvantage of Idesawa's method is its
domain of application which is limited to polyhedral
objects, as curved surfaces can not be treated.
Furthermore, false elements can not reallf be
distinguished from true elements, and thus true elements

can easily be deleted.
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4.3) ALDEFELD'S METHOD:

The underlying philosophy of Aldefeld's method is
to view a complex part as being composed of elementary
objects belonging to a set of predefined classes, and
these <lemcentary objects may be recognized by making us:
of the knowledge about class-dependent patterns of their
two-dimensional representations. Each elementary object
will have, in each view, a two-dimensional pattern which
will identify the object. Each two-dimensional pattern
comprises a number of 2D primitives, such as lines, arcs
and ciréles. Primitives may be concatenated to form line
segments. Line segments and arcs may be grouped to form
closed loobs, and finally, an object view comprises line
segments and loops. A number of different attributes are
used in the data structure to define the relationship
between these entities; for instance, the attribute
CONTACT (p,q) » 5etween primitives, means that primitives p
and g have at least one common node, and the attribute
CONSISTS _OF relates 1line segments to 1loops. These
attributes are used in the recognition of the 2D pattern
they form in the views of the elementary object. Figure
4.2 -illustrates thé typesl of entities and their

relationships in the data structure.

To avoid the whole complexity of possible
geometries, the method is confined to a subset of

structures and the following restrictions are placed on
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defining the data structure
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the structure to be interpreted:

1) All elementary objects must be of uniform thickness,
i.e. prismatic objects.
2) The base of each elementary object must be parallel

to one of the coordinate nlanes.

Figure 4.3 shows an object which complies with the
above restrictions and its 3-view orthographic

projections. For an object restricted in such a manner,

one of the views, V,;, will consist of a single loop, also

referred to as the 'silouhette', of an arbitrary shape and
the other views will comprise a rectangle subdivided by
line segments, with the sides of the rectangle and the

line segments being parallel to a coordinate axis.

The model-guided recognition algorithm used to

recognize a uniform thickness object for which a loop, L,

in a given view V,, represents the base silouhette, may be

described as follows:

1) Search in an arbitrary view, where the chosen view

is not V,, to find all the rectangles that 'match' the

silouhette loop, L, in the given view V;. - A match

between two loops 1, and 1, from different views is

defined if the minimum coordinate of 1, is equal to the
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minimum coordinate of 1, and the maximum coordinate of 1,

is equal to the maximum of 1l,, in the common coordinate

direction.
2) Search the remaining view for all the loops that

watch the loops generated from step (1) and the loop L in
the view V;. A list of 'matching' loops is generated.

3) Loop L is scanned for features that signify the
presence of line segments in one or both of the remaining
views. For instance, features such as corners formed by
primitives of loop L.

4) For each pair of matching léops listed in step (2),
attempt to find the complete set of line segments required
by the features. If this is successful, a complete object
pattern given by the union of these matching loops and

generated line segments has been found.

The model=-guided algorithm will only work if true
patterns of elementary objects are offered to it.
Unfortunately, it is not always easy to extract true
patterns from the views due to the overlapping of faces
and edges when an object 1is represented as a set of
orthographic views. In a bid to overcome this problem,
Aldefeld uses heuristic techniques so that subpatterns can
be extracted on the basis of hypotheses. The strategy
which Aldefeld calls the "Best First Search" is based on
an evaluating function that assigns scores (number of

points) to patterns on the merit of their characteristics.
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The patterns are then chosen in the order dictated by
their accumulated score for the input to the recognition
process. Two main scoring methods are used; ﬁach pattern
is first assigned a score according to the number of
primitives it comprises and which have not yet been
recognized as a part of an object irepicsentaticn. Each
pattern is then assigned another set of points depending
on the attributes it may have in relation to other
patterns. For instance, a pattern that is not adjacent to
any other pattern, i.e. isolated, is given a higher score
than a pattern which has the attribute 'adjacent' assigned
to it. This hypothesis is true since an isolated pattern
must necessarily represent the silouhette of at leact one

partial solid.

Finally, Aldefeld's reconstruction algorithm can

be briefly described as follows:

1) Find all the reiationships between primitives.

2) Find all closed 1loops and assign them their
various attributes, i.e. 'circular', irregular, etc..

3) Assign a score to each loop using the evaluating
function, and select the loop which has the highest score.

4) The loop selected from step (3) is assumed to be
the base silouhette of one or more partial solids. This
assumption is verified or rejected using the model-guided
recognition algorithm. A three-dimensional structure is

generated if the assumption is held as true.
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5) The loop is 'expanded' to include itself and an
adjacent loop. The expanded loop is checked if it already
exist; if not, add it to the set of data, find its
attributes and relationships with other loops as before.
Mark the new loop as 'open' and the original loop as
'‘closed’.

6) Verify whether the generated object complies with
the input data; if so exit the algorithm, else continue

from step (3).

The main disadvantage of Aldefeld's method is that
it only works on a local basis since it deals with one
partial solid at a time, and ignores the global context.
For this reason, the reconstruction algorithm can not
distinguish between solid bodies and cavities, and may
also generate false partial solids due to silouhette
interference. Furthermore, the generalization of the
method to true three—dimensiona; non-uniform objects would
require not only more sophisticated heuristics, but also
the extension of the domain of partial objects to include
those which, for instance, have rotational symmetry
objects, and the relaxation of the restriction on their

spatial orientation.

4.4) EAINING'S METHOD:

Kaining's method is based on the algorithm
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developed by Wesley and Markowsky. Their algorithm
resembles the one presented by Idesawa, briefly discussed
above (section 4.3), in the sense that it 'fleshes out'
projections hierarchically from lower levels to higher
ones, but by making use of rigorous mathematical and
topologizzl definitions, Wesley-Markowsky's algorithm
gives better results on handling pathological cases and
multisolution problems. Basically, the algorithm can be

described as follows:

1) Generate 3D vertices from 2D vertices.

2) Generate 3D edges from 3D vertices.

3) Generate 3D subfaces from 3D edges.

4) Assemble 3D subfaces to fofm 3D subobijects.

5) Assemble 3D subobjects to form objects matching the

input 2D projective representations.

However, as in Idesawa's algorithm, the domain of
objects that may be interpreted is limited to those having

planaf faces only.

Kaining's algorithm extends the interpretation
process to include objects having cylindrical faces.
Furthermore, the axis of any cylinder is restricted to be
parallel to one coordinate plane. The different steps of
the algorithm are illustrated in Figure 4.4, the details

of which are described as follows:
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Start

¥

Input the three views

v

Check input data

y

Generate 3D vertices/edges from 2D ones

y

Generate face equations:

- cylinders and their cutting planes
from 2D data
- general planes from 3D edges

v

Introduce cutting vertices/edges

v

Generate face-loop-base on each face

b

Generate object-loop-base from
face-loop-bases

:

Assemble object-loop-bases to find
all solutions

v

Remove hidden lines and generate images

v

End

Fig. 4.4: Flow chart of KAINING's algorithm
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1) GENERATE 3D VERTICES/EDGES FROM 2D ONES:

The following principles are applied to derive 3D

vertices and 3D edges:

a) Matching principle:
If E;, E, and E; are projected edges (or vertices)

on the front, top and side views respectively, then they
may be referred to as a group of matching edges if their

surrounding rectangles defined by their maximum and

minimum coordinates, i.e. (Xgpins Zemin’ Xfmax’ e

(Xemin’ Yemin’ X*tmax’ Yemax) 2P9 (Ygmins Zsmin’ Ysmax’ Zsmax)

respectively meet the following conditions:

Xfmin = *tmin Yetmin = Ysmin Zsmin ~ Zfmin

Xfmax xtmax ’ Yimax = Ysmax ’ zsmax = zfmam':

b) Line mode:

A 3D straight line can be derived from a group of

matching edges E., E, and E, if and only if:

i) E¢, E, and E, are 2D straight lines (at most. one

of which can be a 2D vertex);
ii) there is a group of endpoints of them satisfying

the matching principle.
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c) Ellipse mode:

A 3D elliptical edge can be derived from a group

of matching edges E¢, E, and E; if and only if:

i) Eg, E, and E; are 2D ellipses with their axes

parallel to the coordinate axes, or 2D straight lines, and
there is at least one ellipse and one straight line among

them;

11) If there are two ellipses amongst E,, E, and Eg,

then their centres have the same coordinate wvalue in the
shared coordinate;

iii) Each group of endpoints of elliptical arcs and
another group of points on the elliptical arcs, satisfy

the matching principle.
The elliptical mode is illustrated in Figure 4.5.

d) Higher order curve mode:

Higher order curves can be derived from a group of

matching edges Eg, E. and Eg, when two of them are circular

arcs and the other is either hyperbolic or a regular
higher order curve. Higher order cufves arise from the
intersection of two cyl'aders, with differen. radii or
non—-intersecting axes, whose axes are parallel to

coordinate axes, as shown in Figure 4.6.
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Fig. 4.5: Ellipse mode

Fig. 4.6: Higher order curve mode
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2) GENERATE FACE EQUATIONS:

A face equation may be generated from pairs of
non-colinear 3D straight 1line edges sharing a common
endpoint. The equation of a cylindrical face can be

defined by three geometric parameters:

- a point on the axis of the cylinder, referred to as
the location point,
- a radius

- the orientation of the axis of the cylinder.

The location point is obtained by using the
matching principle to recover the centre of the 3D
ellipse, while the radius and the orientation of the axis

can be derived as follows:

i) Derivation of the radius:
Let G be the generating cylinder of a 3D ellipse
E, as shown in Figure 4.7. If the axis I of’such a
cylinder is parallel to the OXY plane, then the generatihg
plane P of E will be perpendicular to the OXY plane. If,
in addition, P is not perpendicular to the O0OXZ plane,

then:

a) the orthographic projection of E on OXZ is an
ellipse S with its axes parallel to either the X or 2

axis;
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Fig. 4.7: Derivation of the radius
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b) the radius of the generating cylinder G is equal to

half the length of the axis of S parallel to the Z axis.

In the above derivation of the radius, it is
assumed that the axis I of the generating cylinder G is
parallel to Lhe OXZ plane. It is possible to determine the
coordinate plane to which the axis I of the cylinder G is
parallel. Two examples are given here in order to
illustrate how to deal with this problem; In Figure
4.8(a), only one straight line exists in the group of
matching edges. In this case, the axis I must be parallel

to the plane in which this line lies. In Figure 4.8 (b),

only one ellipse E; exists in the group of matching edges.

In this case, the length of the minor axis of Ege is equal

to the diameter of the cylinder G.

ii) Derivation of the orjentation of the cylinder axis:
Figure 4.9 represents the orthographic views of an

object composed of two intersecting cylinders at an

oblique angle. The point C(x,,2z,) on the 1line Eg
corresponds to the centre point (xo,yo) of the ellipse E,,
and the point (x;,y,) on E, is the endpoint of the major
axis of the ellipse E,.. This point (x,,y,) also corresponds

to the point P(x,,z;) on the line E,. An auxiliary circle

with C as centre and with radius equal to the radius of
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Fig. 4.8: Two cases in deriving the radius
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Fig. 4.9: Derivation of cylinder axis
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the generating cylinder, may be constructed to have the

line PT, as tangent at the point T,. The orientation

(dx,dz) of line PT, is that of the projection of the

cylinder's axis. The orientation (dy,dz') of the
cylinder's axis on the side view car be derived in similar

fashion, and by scaling one orientation vector so that:
dz = dz'

the orientation in 3D-space (dx,dy,dz) can be obtained.

There are two types of pathological cases which
may arise with the 3D edges and faces generated above. One
is when two edges intersect at one of their interior
points rather than endpoints. Such an intersection can
appear as an endpoint in a set of orthographic projections
as those shown in Figure 4.10 where pathological point P
exists between edges AC and BD. The other pathological
case may arise when two different faces intersect at their
interior lines rather tﬂan boundary edges. The faces AEGC
and BFHD intersect at such interior line PQ. These two
tyres of pathological cases should not appear in well

defined geometric objects.

The pathological intersecting point P, referred to
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as a cutting vertex is introduced to separate its two
generating edges, AC and BD, into four edges, AP, BP, DP
and PC, so that the pathological case is removed.
Similarly, the pathological intersecting line PQ, referred
as cutting edge, is introduced to separate its two
generating faces, AEGC and BFHD, into four separate faces,

AEQP, PQGC, BFQP and PQHD.

4) GENERATE FACE-LOOP-BASES:

In order to define a face-loop base the following

definition are first introduced:

- A face-loop on a face F is defined by Kaining as a

"simply interconnected" area bounded by a subset of edges
on F. For example, in Figure 4.11, £,,...., £5 are

face-loops on face F.

- A boundary edge set E(f; + £, +...+ f of the

=,

union of the face-loops £,, f,, ..., L, 48 defined as

follows:

m m-1 m
E(fl + £2 +...+fm) = U E(£i) - (J U E(fi) M E(£3))
i=1 i=1 g=i+1

where the sign '+' denotes the union of some different
face-loops on one face and (fi) denotes the boundary edge

set of the face-loop fi.
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Fig. 4.10: Cutting vertex/edge
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Fig. 4.11: Face-loops
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From the above definitions, the face-loops f4,...,

f7 in Figure 4.11 can be generated by the union of set

fl'ttl’f3’ ile.:

A set of face-loops on face F, B¢ = . £,,....,£f,, is

defined as a face-loop-base if any face-loop on F can be
generated from one or more faces in Bf and each face-loop

in Bf can not be generated from other face-loops in Bf.
For example, in Figure 4.11, the set B, = f,,f,,f3; is the

face-loop-base on face F.

Kaining devised the following algorithm to

determine the face-loop-base of each face:

a) For each vertex v; on F, sort its incident edges on F
in a counter clockwise order such as e; e, ... e, the e,
is the left-adjacent-edge of e, at vy,..., and e, is the
left-adjacent-edge at e;.

b) Pick an ordered edge ei(vi,vj) at Vyr followed by
picking its left-adjacent-edge ej(vj,vk) at vy, then pick
the left-adjacent-edge of ey at vy,..., the face-loop L

will be formed when edge e, (v,,v;) jointing the first edge

121



e; is picked. The left side of each ordered edge is

defined as the interior of L.

c) Since there are only two ways to traverse each edge,

either from v; to vy or from vy to vy, all the face-loops

will be obtained when each edge is picked twice in
different directions.
d) The face-loop-base is made from all of the bounded

face-loops except unbounded ones.

The philosophy of object-loop base and the union
of object-loops can be derived by extending the concept
face-loop-base and the union of face-loops. In the example
shown in Figure 4.12, if the ordered face -fl is first
picked, then in order to ensure that there is no face-loop
in the interior of the object loop, it is necessary to
pick the ordered face -f3. But if the face +fl1 is picked
at first, then face =-f2 should be picked next. An
object-loop B will be formed if the ordered face-loop are
picked as shown above repeatedly until each edge in B has

been contained by two face-loops in B.

All or ob,2ct-loops are found when each face-loop
is traversed twice in two direction. The object-loop-base
is composed of all the bounded object-loops except

unbounded ones.
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6) ASSEMBLE OBJECT-LOOPS TO GENERATE SOLUTIONS:

Object-loops in the base may either be disjoint,
or have some vertices, edges or face-loops in common.
Therefore, the rules to assemble object-loops are simple

and may be described as follows:

a) Delete face~loops shared by only two object-loops,
since it is not allowed for a face to be in the interior
of an obiject.

b) Delete edges shared by only two face-loops which are
on the same face, because an edge is the intersection of

two different faces in an object.

Finally, the orthographic views of the object
generated above are compared with the input three views to
establish whether it is a solution or not. All the
solutions matching the input two-dimensional views can be

found by checking all the assemblies of the object-loops.

The main disadvantage of Kaining's method is that
the range of object that may be treated is limited to
those having plarar and cylindrical surfaces only.

4.5) HO BIN'S METHOD:

The basic approach adopted in this method is that

124



parts can be thought of as an assemblage of elementary
volumes or 'solid primitives', which also forms the
Constructive Solid Geometry representation of those
objects, (see section 3.4.4). Ho Bin's approach is based
on interactively inputting these representations directly
from the two-dimensional orthographic views. The
interpretation process may be described as a
semi-automatic rather than automatic process since most of
the tasks of recognizing each primitive from the input
views are carried out by the user rather than by means of
algorithms such as the ones employed in the methods
described above. The amount of input required from the
user is rather large and for each primitive the basic

input cycle consists of four steps:

STEP 1: Input the type of- primitive. Five types of
primitives can be input: cuboid, tetra pyramid, cylinder,
cone and sphere. All of these are defined so as to have
their axes (or heights) perpendicular to one of the
projection planes, or oblique to two of the projection

planes.

STEP 2: Input the sign of the primitive. If the primitive
represents a solid, part of space, its sign must be '+
(positive) . If the primitive represents a hole or cavity,
i.e. a "virtual® primitive, then its sign is *'-?

(negative) .
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STEP 3: Input three points for the base of the primitive.

STEP 4: Input two points for the height of the primitive.
The first input point of the height is regarded as the
projection of the points located on the primitive base

contour.

Steps 1, 2 and 3 are carried out using a menu of
commands, shown in Figure 4.13, on a digitizer. The five
points of base and height (steps 3 and 4), are input in a

prescribed order from the given engineering drawing.

At the end of each input cycle, a
three-dimensional model of the corresponding primitive is
constructed and the two-dimensional representations,
comprising three orthographic views and a hidden-line
isometric view of the primitive) are displayed‘on the
output device. This feed back eﬁables the user to check
whether his input of that primitive is correct before
beginning the next input cycle. This interactive process
is continued in this fashion until the complete Boolean

tree of the object model is obtained.
The algorithm concentrates mainly on :

1) using the type and sign of all the primitives
- sequentially to build simple Constructive Solid Geometry

expressions of the kind A-B+C-D+E, where A, B, C, D and E
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Command Type Sign
Continue Cuboid
SOLID
Delete Pyramid (+)
Hard copy Cy‘inder
- Cone
STOP VIRTUAL
Sphere (<)

Fig. 4.13: Menu of commands
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represent the primitives, and the signs '+' and '-'
represent the Boolean operators Union and Difference
respectively. The special Boolean tree along a single
direction with only two operators (+ and -) may be

obtained, as shown in Figure 4.14.

ii) using the coordinates of the input five points

(steps 3 and 4) to derive the following data:

a) the number of the view on which each primitive
base and height are projected,

b) the three coordinates of the base centre,

c) the radius of the base circle, if the primitive is
a cylinder , a cone or a sphere,

d) the length, the width and the angle (between the
length direction and the horizontal line) of the Dbase
rectangle, if the primitive is a cuboid or a pyramid,

e) the value of the angle between the axis (height)
and the XY projection plane, or between the axis (height)
and the XZ projection plane if the axis is parallel to XY
plane,

f) the value of the primitive height. For the sphere,
which is a primitive that has no 'height', the two input
points are used to define the third coordinate of thel

centre of the sphere.

The algorithm may be described as follows:
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Fig. 4.14: Two operators CSG tree along
a single direction
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i) If the axis of the input primitive is perpendicular
to one of the projection planes, the real shape of its
base contour and the true length of its height are shown
in the principal views. From the three input points of the
base, for instance points 1, 2, and 3 in Figure 4.15, the
parameters of the Dbase are obtained easily. These

parameters are :

- for the rectangular contour: the length, width, the

angle P between the length direction and the horizontal
line, and the coordinates of the centre,
- for a circular contour (eg. Figure 4.16): the radius

and the coordinates of its centre.

From the two input points of the height, the value
of the height is obtained by subtracting the coordinates

along the coordinate axis parallel to the primitive axis.

ii) If the axis of an input primitive is oblique to the
projection plane, the real shape of its base no longer
appears in the principal views. For instance, the
projection of a circle or a rectangle becomes an ellipse
or a parallelogram, respectively. In this case it is
necessary to reconstruct the real shape in order to obtain
the input primitive dimensions, construct its geometric
model and draw its three orthographic views and isometric
view. A cone, and its orthographic views, shown in Figure

4.16 is chosen here as an example to illustrate this
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Fig. 4.15: Views of an input PYRAMID primitive
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A primitive cone and its
three principal views

4.16:

Fig.
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transformation algorithm.

The axis SO, is parallel to the XY projection

plane and has an angle [ with the XZ projection plane.
An arbitrary point A located on its circular base contour

is projected on the three projection planes as points a,

a' and a". OpX, and O, Z, are the reference coordinate axes
of the circular base contour of the cone. The X,
coordinate of point A, AZ_,, on the reference coordinate

axis OpX,, is equal to ao in the top view. The X and Z

coordinates of projection point a' relative to the cone

centre o' in the front view, are a'Za. and a'Xa. . The Y

and Z coordinates of the projection point a" relative to

o" in the side view are a"Zz,» and a"Y¥,». . The X and Y

coordinates of the projection of point a to the projection

o in the top view are bo and ab

Since:
a'z,. = bo,
a"Z,. = ab,
then:
AZ, = a'Z,, / sin B

or:
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AZ, = a"Z,« / cos P A
and:

AX, = a'xa, = a"Yau

It is therefore possible, by using the above

transformation algorithm, to calculate the coordinates Xb
and Zb of an arbitrary point A from the coordinates of its
projection points. However, this is only possible if the
coordinates of the centre point of the ellipse projection
are known. After transforming the coordinates of the three
input points of the ellipse projection, a circle base

contour of that cone is determined.

4.6) DISCUSSION:

The first fundamental point that emerges from the
above review is that some of the methods adopted an
approach based on the Boundary representation scheme while
others used Constructive Solid Geometry representation.
The former methods require thorough checks on the wvalidity
of the reconstructed object to be carried throughout the
interpretation process. These checks hold an important
place in the algorithm and they serve to identify and
eliminate pathological cases which may lead to the
generation of impossible objects. Those methods which

adopted Constructive Solid Geometry do not require such
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checks since the validity of the reconstructed object is
guaranteed, whether it is a solution or not. However, one
can argue that such methods do not attempt 'automatically'
to interpret orthographic views as a solid object; instead
they rely heavily on the user to carry out the most
difficult task in the interpretacioun process, i.e. the
identification of the three-dimensional primitives. The
other main disadvantage of adopting this approach is the
speed at which the interaction between the user and
machine is carried out. However, there is now a tendency
to adopt such user-guided interpretation techniques, may
be because of the increasing processing power in terms of
speed present machines can offer, or maybe because
researchers have come to the conclusion that human
parallel processing power can never be matched by any
algorithm in solving such problem; Such attitude has been
reflected by Aldefeld and Richter in their work on
semi-automatic three-dimensional interpretation of 1line

drawings [43].

The other point common to all the methods
developed so far, 1is that whatever the approach or
modelling representation adopted in each method, they all
- fall short of what is .really needed in engineering
practice. This is either because there is a significant
number of failing cases, or because the scope of the
technique is insufficient for mechanical engineering;

there is still a wide range of mechanical parts that can
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not be reconstructed - because of their complexity.

A novel approach, based on Constructive Solid
Geometry concepts, has been adopted in the work reported
in this thesis for the automatic interpretation of
enginecring Jdrawings as solid models. The method developed
in this project also uses the 'man in the loop' concept
but not to the same extent as the so-called

"semi-automatic" techniques described above.
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INTERPRETATION OF ENGINEERING DRAWINGS AS

SOLIDS: A NEW APPROACH
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5.1) INTRODUCTION:

A new approach has been adopted by the author to
solve the problem of automatic interpretation of
orthographic projections as solid objects. The basic
concepts underlying this approach are discucsed in section
5.2. The manner in which these concepts are applied to the
present work is novel. A process of converting
orthographic views into a solid model has been developed
by initially implementing these concepts to uniform
thickness, or prismatic, objects. Experience gained from
the work on prismatic objects has yielded a technique for
implementing those same concepts to more general 3D

objects.

An overview of the process is presented in section
5.3, and its implementations to both prismatic and general

3D objects are described in section 5.4.

5.2) THEORETICAL FUNDATIONS FOR THE PROCESS:

The approach being used exploits the concepts of
Constructive Solid Gecmetry in which a complex object is
considered to be an assemblage of three-dimensional
primitive elements, or building blocks, synthesized by
means of Boolean operations to represent .the complete

object. Further, each primitive may be represented by the
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two-dimensional elementary patterns, referred to as
primitive loops, contained in its set of three
orthographic views. This set of patterns constitutes a
unique 'signature' which identifies the primitive within a
tree structure used to describe the total object. For
instance, a set of three rectangles (one rectangle in each
view of the primitive) will identify a primitive block, or
a set of three circles (one circle in each view of the
primitive) will identify a sphere, as shown, along with

other signatures, in Figure 5.1.

The manner in which these concepts are applied to
the present work is novel. The starting point is to assume
that an objecﬁ can be 'cut out' from a single 'raw block'
rather than being built up of several building blocks. The
raw block is itself a three-dimensional primitive (a unit
block) which is transformed (scaled) and to which a sign
(positive) is alloeated to represent a volume ‘of material
from which the object is cut out. The task of
reconstructing the object from its orthographic views is
then to find and identify the volumes of material (the
three-dimensional primitives) to be removed from the raw
block to yield the true oﬁject. Figure 5.2‘illustrates the
reconstruction of anlL-shaped model starting from the raw
block ap the bottom, using the above concept. It will be
observed that only subtractions of primitives are required

in the total process.
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3D PRIMITIVE ORTHOGRAPHIC VIEWS
(Signature)
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Fig. 5.1: 3D primitives and their othographic
projections (signatures)
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5.2: Object 'cut out' from
a 'Raw Block'
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5.3) QVERVIEW OF THE PROCESS:

The process of transforming the orthographic views
of an object into a formal three-dimensional
representation has been designed to comprise five elements
(stages or subprocesses), requiring a minimum of user
interaction, and to provide feed back of data
corresponding to discrepancies between input and output
orthographic views, when the need arises. These

subprocesses are:

a) Raw Data Interpretation
b) Data Analysis

c) Solid Modelling

d) Output Verification

e) Feed back

The flow diagram of Figure 5.3 shows the
relationship between these elements in the forward path of
a closed loop where feed back is provided. The human
operator interaction with the process resides after the
last subprocess in the forwérd path of the cycle, i.e.,
before feed back. A description of each subprocess is
given in the following sections while the details of the
technique employed in each of these subprocesses and

associated algorithms are described in chapter 6.
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Fig. 5.3: Process main components
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5.3.1) IERMINOLOGX:

The following terms are used throughout the
description of the interpretation process, and are

illustrated in Figure 5.4:

a) The Surrounding Cuboid is the three-dimensional
block from which the object is to be cut, i.e. the raw
block (see section 5.2). Therefore, it is a cuboid whose
dimensions equal those of the maximum wvalues for the

solid object in the X, Y and Z directions.

b) The Surrounding Rectangle is the closed loop
representing an orthographic projection of the Surrounding‘

Cuboid.

c) The Object Loop is the closed loop defined in an

orthographic projection of the solid object.

d) The Perimeter Loop is the object loop that defines
the outline of the object when viewed in the direction of

projection.

e) A Subobject Loop is a closed loop formed between the
surrounding rectangle and the object loop. It may also be
defined as an orthographic projection of a subobject
formed by difference between the surrounding cuboid and

the solid object.
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Fig. 5.4: Terminology
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f) A Basic Loop is a closed 1loop which can be
identified as an elementary two-dimensional shape, such as

a rectangle, a quadrant, a circle, a triangle ...

g) A Primitive Loop is a basic loop that is an
crthojraphic projection of a three-idimenslional primitive.

It may also be a subobject loop.

h) An Arbitrary Pattern is a closed loop which cannot
be identified as an elementary two-dimensional shape and
which requires further processing in order to generate

Basic Patterns.

i) A Parent Loop is a closed loop which has been
identified as an arbitrary pattern and then, directly
decomposed further into a number of subobject loops or
children loops, i.e. a parent loop can be directly
reconstructed by using its children loops. An object, or a
subobject, loop may be either a basic or an arbitrary

loop.

5.3.2) RAW DATA INTERPRETATION:

The purpose of the raw data interpreter is to
check for incomplete, inconsistent or false information,
such as, for instance, edges of order less than 2 (known

as dangling edges, discussed in section 3.4.4), or for

146



self-intersecting loops, in the input orthographic views.
The data of the orthographic views are assumed to have
already been stored in the computer in the form of three
separate data files .(one file per view). The raw data
interpreter is also used to transform the raw data into a

structured format required hy the next step.

5.3.3) DRAIA ANALXSIS:

In the analysis stage, the data are examined in

order to:

i) identify the class of the object, i.e. to
determine whether the input views represent a primitive
object (the trivial case), a prismatic object or an
arbitrary and more general object. The output of this step
predetermines the next steps of the process since, for
efficiency in processing, the implementation of the
interpretation process differs from one class of objects
to another although the process itself is the same in all
cases.

ii) to extract the object and subobject loops in order
to locate and identify all the basic two-dimensional
patterns from each orthographic view and the 'signatur.s'
they may form as a set to establish the identity of the
three-dimensional primitives. The transformations and

associated Boolean operations, necessary for the
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reconstruction of the shape of these loops, are also
defined at this stage. The underlying technique uses the
knowledge about a number of predefined elementary or
'basic' patterns. Those loops that can not be readily
idenfified as basic patterns are classified as arbitrary
patterns, our parant loops, which are then decomp<sed
further until all the 1loops are identified as basic
patterns. The details of this recursive technique,
including the algorithms associated with it, are presented

in chapter 6.

The application of this technique to the
interpretation of prismatic .and ortho-prismatic objects
provides the fundamental basis from which generalization
to more general three-dimensional objects can be
developed. Details of the implementations of the process
to each class of objects, including the trivial case where
the object is itself represented by a single primitive,

are discussed later in section 5.4.1.

The output from this stage is a text file which
contains the identified primitives and the required
manipulations to provide all the necessary data for the
reconstruction of the object in the solid modelling stage.
These files must be written in a format appropriate to the

solid modeller in use.
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5.3.4) IHREE-DIMENSIONAL MODELLING:

A true solid modeller is at the core of this

process. It is incorporated, at this stage, to:

1) reconstruct the solid model by performing tle various
transformations and Boolean operations on the identified

three-dimensional primitives.

2) generate a parametric ASCII data file which describes
the two-dimensional orthographic views of the object
model. These are used later for comparing the views of the
generated model with the original orthographic views in
order to assess the quality of the model and, if

necessary, to refine it.

The solid modeller used in this project is the
PAFEC 'BOXER' solid modeller. Like most contemporary
modelling systems, it offers a finite set of concise,
compact primitives whose size, shape, position and
orientation are determined by a small set of
user-specified parameters. The type and parameters of each
primitive are specified, using the PAFEC 'BOXER' syntax,
either interactively, or stored in a text file and then

transferred to the solid modeller.

A particular primitive, such as the block

illustrated in Figure 5.5(a) may be specified using the
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following text statements:
BLOCK (Xlen,Ylen,Zlen ) AT (Xpos,Ypos,Zpos)

where: -
Xlen = block leugih in the X direction
Ylen = block length in the Y direction
Zlen = block length in the Z direction
Xpos = block centroid X coordinate
Ypos = block centroid Y coordinate

Zpos = block centroid Z coordinate

A primitive cylinder, illustrated in Figure

5.5(b), must be defined using the following text format
CYL (Cylen, Radius) AT (Xo, Yo, Zo)

where:

Cylen = length of the cylinder.

Radius = radius of the cylinder base

Xo = X coordinate of the centre of the base
Yo = Y coordinate of the centre of the base

Zo = Z coordinate of the centre of the base

There are other formats which can be used to
define a block, and a cylinder, but the above have been
found to be most convenient, and are used here. Other

common primitives such as wedge, fillet, cylindrical
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Xlen i Centroid
(xpos, ypos, zpos)

(a)

(b)

Fig. 5.5: a) Primitive CUBE definition
b) primitive CYLINDER definition
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segment, sphere, tetrahedron, cone and torus, are also
available. The format corresponding to each of these

primitives may be found in [45].

The solid modeller generates solid models by
combining different primitives using a number of specified
Boolean operators, such as UNION, DIFFERENCE and
INTERSECTION, (see section 3.4.4). As an example, for the
object illustrated in Figure 5.6, the following modelling
statements are required:

LENGTH 6.0

WIDTH 0.5
HEIGHT = 3.0
OBJ1l <- BLOCK (LENGTH, HEIGHT, WIDTH)

OBJ2 <- BLOCK (LENGTH/3, HEIGHT, WIDTH) AT (MOVEX =$

-LENGTH/3,MOVEY = 1/2)
RES1 <~ OBJ1 + OBJ2
DRAW RES1
HOLE <- CYL (1/2, 1) AT (1, 0, -1/2, ROTX = 90)
RES2 <- RES1 - HOLE

DRAW RES2 °
OBJ1l is a primitive block of length 6, ueight 1/2

and width 3, whose centroid is at: x =0, v =0 and z =

0, i.e. at the origin of the coordinate reference system.
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b) RES1 definition
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¢) RES2 definition

Fig. 5.6: PAFEC "BOXER" Output
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OBJ2 is also a primitive block; length 2, height
1/2 and the width 3. This block 1is positioned by
translating its centroid, from the origin, in the negative
X direction over a distance equal to 2/3, and in the
positive Y direction over a distance equal to 1/2. The " $

" sign is used to indicate a continuation of statement.

RES1 is the object resulting from the Boolean
union, represented by the " + " sign, of OBJl and OBJ2.

This object is then drawn, as shown in figure 5.6(a).

HOLE is a cylinder primitive whose length is equal
to 1/2 and base radius equal to 1. The cylinder is
positioned by defining the coordinates of the centre of
its base, x =1, y = 0 and z = 1/2, and rotating it by a 90

degrees angle about the X axis, as shown in Figure 5.6(b).

Finally, RES2 is the object resulting from the
Boolean difference, represented by the " - " sign, of RES1

and HOLE. RES2 is then drawn, as shown in Figure 5.6(c).

The input to this subprocess comprises the data
files obtained from the analysis step. The size, shape,.
position and orientation parameters of primitives whose
type has been definea, ére here specified by extracting
the necessary data from these files. The solid modeller
input file is then generated by converting the data

associated with each primitive and corresponding Boolean
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operators, into the appropriate syntax. The process of
generating the solid modeller input file is discussed

later in section 6.3.

The output from the solid modelling subprocess is:
a) a set of data files which comprise the topological and
geometrical data to describe and display the object
model.
b) an ASCII file which describes the orthographic views of

the object model.

5.3.5) QUIRUT VERIFICATION:

The output verification is the final stage in the
forward path of the process. This .subprocess has two

inputs:

1) the orthographic projections data obtained from the raw
data interpreter,

2) the text file, generated by the solid modeller, from
which the déta corresponding to the orthographic

projections of the output model are extracted.

These two sets of data are compared to establish
any discrepancy between the three-dimensional model
generated by the process and the actual object model. If

the two sets of data agree the interpretation process is
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automatically terminated on the basis that the exact
object has been reconstructed. However, in the case where
there are some discrepancies, a decision has to be made
on whether to terminate the process, since the
discrepahcies may be deemed negligible, or to allow it to
continue feor further iterations. Two options are open

here:

a) The discrepancies are indicated to the user, who is
then prompted to make a decision on whether to terminate
the process or to allow it to continue. The user may
terminate the process if he decides that the model
generated (approximation model) is similar to the actual
model to within the required tolerances, or he may require
the process to continue until the exact model is
reconstructed or until the tolerance conditions between
the approximation model and the true object are met.

b) Use an objective function whose criterion for
terminating the process consists of detecting when there
only minor differences between two successive
approximation models. The acceptable level of accuracy
would then be dictated by the application for which the
output model is required. For instance, in the case where
the level of accuracy is not required to be high, such as
for preliminary design, a simple value, such as volume, or
mass, whose decrement has reached a certain level between
successive approximation models may provide a practical

test of model acceptability. These points are discussed
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further in chapter 9.

When the process is allowed to continue, the. two
sets of data (original and approximation model
orthographic views data) are passed onto the feed back

process.

5.3.6) EEED BACK:

In the feed back stage, the two set of data are
examined to extract the two-dimensional geometrical and
topological information which comprises the sets of three
orthographic views representing one or mofe subobjects.
The orthographic views data of these subobjects are then
fed back as input to the data analysis subprocess in order
to reconstruct the corresponding subobjects. Once
reconstructed, a subobject is then subtracted from the
previous appfoximation model to either the exact object,
or to generate a further, but more accurate, approximation
model. This process may be continued to provide 'nth'
order approximation models which may converge to the exact

input model.

5.4) IMPLEMENTATION OF THE PROCESS:

The process briefly described above was first
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developed for the case of prismatic objects (section

5.4.2) and extended to ortho-prismatic objects. The

interpretation process for more general three-dimensional

objects has been achieved by recursively employing exactly
.

the same technique used in interpreting prismatic and

ortho-prismatic objects within an iterative prccess.

Real mechanical engineering components cannot
usually be represented by a single three-dimensional
primitive. However, parts within any object, such as holes
or pockets, may be represented by single primitives. Thus,
it is necessary that the process should also be able to
deal with the trivial case where the object, or subobject,
is itself a primitive. The implementation of the process
to this special case is the first to be discussed in the

following sections.

5.4.1) IHE TRIVIAL CASE: THE OBJECT IS A PRIMITIVE

The interpretation of orthographic views which
represent an object comprising a single three-dimensional
primitive, is simplest in the case where the primitive
principal axis is parallel to one of the coordinate axes.
Then, the two-dimensional pattern in each view of the
primitive will consist of only one single closed loop
readily identified as one of a number of predefined

patterns, such as those shown in Figure 5.1. These
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patterns must also form a valid predefined 'signature' in
order to be acknowledged by the computer. If the
primitive, i.e. the object, has an arbitrary orientation,
then the case may arise where at least one view may
comprise more than one loop, or one pattern may not be
readily be identifie2d as a predefined 'known' pattern, as
shown in Figure 5.1. In that case, the object is

classified as either a prismatic or arbitrary object.

5.4.2) IMPLEMENTATION TO PRISMATIC OBJECTS:

Any object that has at least one 'base' view which
may consist of one, or more, closed disjoint loops, and
two views which consist of only rectangular interconnected
loops, is classified as simple or complex prismatic

object, respectively (section 2.4.1).

The implementation of the interpretation process
to both simple and 'complex' prismatic objects is
basically the same, except that in the case of simple
prismatic object only the perimeter loop in the base view
needs to be analysed, while in the case of complex
prismatic object all the 1loops including those
corresponding to axial holes in the base v.ew are

analysed.

In both cases, only the base view is processed
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(since the other views are known to comprise only
rectangles), and the analysis of each object loop consists
of extracting the subobject loops formed between the
surrounding rectangle and the loop itself in that view.
The shape formed by each subobject loop is identified as

either a basic pattern or as an arbitrary pattern.

Arbitrary patterns are then decomposed further
until only basic patterns are identified. Figure 5.7(a),
shows the perimeter loop in the XY view of a prismatic
object, and the basic patterns generated during the
decomposition process of each arbitrary pattern. The
object loop is situated at the root of the Boolean tree,
the arbitrary loops at its nodes, and the basic patterns

at its leaves.

Each basic pattern is then associated with a
rectangle in each of the remaining views to form sets of
basic patterns which comprise the 'signatures', (see
section 5.2), of a number of three-dimensional primitives.
Thus a three-dimensional primitive is determined for each
basic pattern identified in the base view. In Figure
5.7(b), the basic pattern Pl which is, in effect, the
surrounding rectangle to the perimeter loop, PO, of the
object, is interpreted as the loop obtained in the XY view
of a primitive block. Similarly, the loop P4 is also
'interpreted as the loop obtained in the XY view of a

primitive block, while a primitive fillet is associated
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Fig. 5.7: Processing of an object loop
to generate a solid model
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with the loop P5, and a primitive cylindrical segment, or
sector, is associated with loop P3. These 3D primitives
.are then used by the solid modeller to produce the
complete solid object model, as illustrated in Figure

5.7(c) .

In the case of complex prismatic objects, there
are hole and perimeter loops to be considered. Figure 5.8
shows the Boolean tree obtained by the decomposition of
all the loops in the base view. Loop P2 which is a through
hole loop, is identified as a circular basic pattern,
while loops Pl, the perimeter loop, and loop P3, another
through hole loop, are identified as arbitrary patterns
which are then decomposed further until all the loops are
identified as basic patterns, i.e. loops P4, P6, P7, P8,

P9 and P10.

The primitives identification and 3D modelling
steps are similar to those described above. For instance,
loop P2 will be identified as the orthographic projection
in the XY view of a cylinder and P8 as the loop obtained

in the XY view of a primitive block.

I~. the case of both, simple and complex, prismatic
‘objects, discrepancies will not be found when comparing
the input orthographic views with those of the generated
model. The output of thé process will be a Constructive

Solid Geometry model which is the exact interpretation of
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the input orthographic views, and thus, feed back will not

be required.

5.4.3) IMPLEMENTATION TO NON-PRISMATIC OBJECTS:

The interpretation of non-prismatic objects, i.e.
more general three-dimensional ones, requires a formal
consideration of all views. Initially only one loop, the
perimeter loop, shown in bold in Figure 5.9, is analysed
in each view. Thus, each view is treated in a similar
fashion to the base view of a simple prismatic object, and
the inside loops are ignored. A prismatic object is
obtained from each view . Such uniform thickness object is
hereafter referred to as the X-profile, Y-profile, or
Z-profile, depending on wether the view being analysed is
the yz, xz or xy view, respectively. A First approximation
model is defined as the intersection of these prismatic

objects.

Figure 5.10(a), (b) and (c) show the three
prismatic objects obtained from the analysis and
three-dimensional modelling processes performed on the
perimeter loop in.each of the three views of the object
shown in Figuré 5.9. A prismatic object whose length in
the Z. direction equals Zmax, the maximum length of object
also the 1length of the surrounding cuboid, in that

direction, is produced by analysing the perimeter loop of
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its XY view, (the Z-profile), as shown in Figure 5.10(a).
Another prismatic object whose length in the X direction
equal Xmax, is produced by analysing the perimeter of its
YZ view, (the X-profile), as shown in Figure 5.10(b).
Similarly, a third prismatic object whose length in the Y
direction equals Ymax, 1is produced by analysing the
perimeter of its XZ view, (the Y-profile), as shown in

Figure 5.10(c) .

Figure 5.11 illustrates a solid model, referred to
as the 2ZX model, obtained by the intersection of the

Z-profile and the X-profile:
ZX-model = Z-profile N X-profile

Figure 5.11 also illustrates the output solid
model produced by the intersection of the ZX-profile and

the Y-profile.

For an ortho-prismatic object, which is the case
of Figure 5.9, the intersection shown is a complete
description of the object .represented by Fhe input
orthographic views. Similarly to the case of piismatic
objects, the interpretation process to the case of
ortho-prismatic objects results in the generation of the
exact solid model, and thus the feed back step is not

required.
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For all other objects (the great majority of
mechanical engineering components), such intersections
lead to a First-approximation model which is not exactly
the object represented by the input orthographic views,
but an approximate model only. For example, the
intersectioun shown at the bottom of Figure 5.11, can be
regarded as the First-approximation model of the

three-dimensional object shown in Figure 5.12.

It is clear from the orthographic views of this
intersection, i.e. the output views shown in Figure
5.13(a), that various details are either missing from it,
and in some cases, added to it, when compared with the

original input orthographic views, Figure 5.13(b).

In order either to génerate a complete, or an
'adequate', object model, the differences between input
and output views will have to be either completely
eliminated, or reduced to within some agreed tolerance,
respectively, by subjecting them to a minimization
procedure. Such a procedure is initiated by the detection
of these differences and a search is then carried out, at
the feed back step, to extract from these differences sets
of loops which may represent orthographic projections of
one or more subobjects. These loops are then fed back to
the analysis process where they are treated in similar
fashion to the input orthographic views, i.e. to

reconstruct the corresponding subobjects. Since the
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Fig. 5.12: a) A general 3D object and,
b) its orthographic projections
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First-approximation model represents, in effect, an
envelop of maximum dimension, such subobjects, should be
subtracted from it to generate an improved model. Figure
5.13(b) contains such sets of loops whose absence from the
orthographic views of Figure 5.13(a), ﬁay be readily
detected and identified as the signature of a cylinderxr
primitive. This primitive is then subtracted from the
First-approximation model and the orthographic views of
the output model (the second approximation model) will be
as shown in Figure 5.14(a); comparison with the input
orthographic views, Figure 5.14(b), shows that a number of
details are still missing from it. These details can be
identified as the signature of a cuboid which should be
subtracted from the already improved model. The
orthographic views would then be as shown in Figure
5.15(a), which match the input orthographic views, Figure
5.15(b), thus confirming that a complete object model has

been generated.

A summary of the implementation process to
prismatic and non-prismatic objects is provided in the

form of a flow chart as shown in Figure 5.16.

' The basic approach and concepts adopted in the
. this project to develop a process which automatically

reconstructs a solid model from a set of ‘orthographic
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views have been described. The application of such process
to prismatic objects, and its generalization to
non-prismétic ones have been presented. It has also been
shown that the interpretation process' consists of five
distinct subprocesses. The corresponding formal algorithms
develzped, except for Raw Data Interpretation, are
described in chapter 6. It was clear from the start of the
project that time and effort must be concentrated on the
development of algorithms related to the interpretation
process, rather then its input. For this reason, the
initial input orthographic projections, are assumed to be
correct, complete and unambiguous. This point is picked up

in chapter 9.

175



ALGORITHMIC INTERPRETATION OF THE PROCESS
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6.1) DATA ANALXSIS ALGORITEHMS:

The technique wused in the analysis process
consists of extracting the object loop from each of the
orthographic views and identifying the two-dimensional
patterns and associated Boolean operations necessary for
the reconstruction of the shape of this 1loop. These
patterns are then interpreted as three-dimensional
primitives which are combined to yield a uniform thickness
(prismatic) object for each object loop that has been
identified. The class of the object deﬁermines the view,
or views, and loop, or loops, that are to be processed.
Thus, the first task in the analysis stage, is to examine
the data in each view in order to determine the class of
the object which may either be a three-dimensional
primitive, a prismatic object, or a general and arbitrary
(non-prismatic) object. The class of any object is
determined by the number, type and shape of loops in each

view.

In general, an orthographic view of any object
consists of interstitial spaces, each bounded by a closed
loop, and each loop consists of ‘a finite number of nodes
and edges. An edge-following algorithm, based on the
.'First-Right' rule, has been developed to examine these
interstitial spaces in order to determine the number of
loops in each view. The algorithm has been developed

further to determine the type of each loop, i.e. whether
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it is a perimeter or an inside (connected or disjoint)
loop. This algorithm is referred as the 'Loop Detector'
and is described below. An algorithm has also been
developed to identify the shape of each loop, i.e. whether
the loop is a simple geometric shape (a basic loop), or an
arbitrary shape (an arbitrary 1loop). This algorithm,
referred to as the 'Loop Identifier', is designed to
recognize geometrical characteristics. For example, a loop
will be classified as a right-angled triangle if it has
three straight edges and the angle between any two of them
is equal to 90 degrees. The information generated by the
'Loop Detector' and the 'Loop Identifier' algorithms is
used by another algorithm, the 'Object Classifier', to

determine the class of the object.

6.1.1) IHE "LOOP DETECTOR' ALGORITHM:

Orthographic projections consist of a number of
interconnected nodes and edges which may be regarded as
the elements of a directed graph, or digraph (appendix A).
Each edge within the graph is defined as a di-edge by a
pair of ordered nodes: a start node and an end node. For
instance, in Figure 6.1 which shows such a gtaph in the
view of an object, node P and node C are the start and end
nodes of edge number 8. Furthermore, each node has a
degree which is equal or highér than two, i.e. each node

belongs to two or more adjacent edges.
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TOPOLOGY CIRCUITS LOOP
Edge | Start | End (LOOPS) DGR HUMBERS TYPE
Al M L1 = 15,10,18,:2,-17.+8,:0,48,-7. 1 P
1 J A
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3 B H L2 -4, 14, 6, 9, -18 c
4 L B
- A | L3 4, 3, 2, -16, -19, -13 Cc
6 = D
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11 K G L6 18; =12, 11, 10 "
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13 L I L7 -18, -10, 11, 12
14 L E P = perimeter loop C = connected loop
15 N F D = disjoint loop
16 M 0 . ! .
17 c H Note: a negative edge number indicates that
18 B P the <dge is traversed from end to start nodes .

(b)
Fig. 6.1: a) An arbitrary object view and
object loops
b) its corresponding topological data
¢) number and type of loops in the view
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Edges and nodes may be sequentially grouped to
form closed circuits, and in orthographic projections
these circuits represent closed loops. All sequences of
edges and nodes of all the closed circuits within the
graph, may be determined using the 'First-Right' rule. The
rule consists of selecting the next edge in the sequence
amongst three or more adjacent edges. For instance,
assuming that edge 5, in Figure 6.1, has been selected as
the first edge in the sequence. The next edge will either
be edge 13 or edge 19. According to the 'First-Right'
rule, edge 19 will be selected as the next edge in the
sequence since its anticlockwise angle from edge 5, at
node I, is smaller than that of edge 13; thus edge 19 is

the nearest, from the right, to the edge 5.

The perimeter loop may also be determined by
starting the sequence from a node that is known to be at
an extreme position, and adopting the 'First Right' choice
consistently at each node. For example, node I is at an
extreme position (on the boundary or perimeter loop) since
it has the minimum Y coordinate for the entire graph.
There are three adjacent edges at node I: edges 13, 5, and
19. Edge 19 is chosen as the next in the sequence since it
has the smallest angle to the positive X-axis. At node M
the only possible edge to follow is edge 16, but at node
H, edge 17 is selected since its anticlockwise angle from
edge 16 is smaller than that of edge 3. The process is

continued until the path has returned to the starting node
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I. The other loops, referred to as 'inside' loops, as
detailed in Figure 6.1, may be discovered by traversing
each edge twice, the second time in the opposite sense
from the first. One result of this is that loop number L6
and L7, through nodes F, K, G and N, are identical in
every way except sense, 2nd it is axiomatic that any such
loop is disjoint. Any other loop is referred to as a

'connected' loop.

The algorithm is as follows:

STEP 1: Label all edges in the graph as 0

STEP 2: Find a node that has the minimum Y coordinate

STEP 3: Find an edge that has an end point at the above
node, and makes the smallest angle with the positive
X-axis

STEP 4: Mark this edge as +1 if the above node is the
start node, or as -1 if it is the end node

STEP 5: Starting at the other node of the above edge ,
make a right turn to select the next edge

STEP 6: Mark each traversed edge as +1 if it has a flag 0
and traversed in the positive sense, or as -1 if it has a
flag 0 and traversed in the negative sense

STEP 7: Once the start node (node chosen in step 2), is
reached again, search for an edge that has been marked as
0 #l o =L

STEP 8: Reverse the sense of the edge found in step 7 and

make first right turn
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STEP 9: Mark each edge as +2 if traversed in both opposite
senses

STEP 10: Repeat steps (5), (6), (7), (8) and (9 until all
the edges have been marked as +2, i.e. traversed in both
positive and negative senses

STEP 11: Label the first circuit (loop) as PERIMETER, and
the remaining ones as INSIDE

STEP 12: Compare each pair of circuits, and if a circuit
repeats itself in the opposite sense then label it as

DISJOINT (Type =0), else label it as CONNECTED (Type =1).

The results of applying the above algorithm to the
arbitrary view in Figure 6.1(a) are displayed in Figure
6.1(c). The first loop, circuit L1, is identified as the
perimeter loop while the remaining circuits as inside
loops. Circuits L6 and L7 represent the same loop
traversed in both opposite senses and is therefore
identified as a disjoint loop. The others are recognized

as being connected loops.

6.1.2) IHE "LOOP IDENTIFIER' ALGORITHM:

This algorithm exploits the geométric and
topological characteristics of simple. twé—dimensional
shapes in order to identify the pattern of each closed
loop in the orthographic views. The actual technique used

is similar to the production rules approach employed in
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the design of expert systems, in the sense that the
knowledge about the characteristics of each geometric
shape is used. For example, a loop is classified as a
rectangle if it has four straight edges and three inside
angles each equal to ninety degrees. The characteristics
associated with a number of geometric cshares can also be
recognized. Figure 6.2, shows the five simple 2D shapes
that may readily be identified by the algorithm. These may

be defined as follows:

a) a rectangle, or a square, as a loop that has :
- four straight edges,
- all the inside angles are ninety degrees angles,

- opposite edges are parallel and equal.

b) a right-angled triangle as a closed loop that has : .

- three straight edges,

- at least one of the inside angles is ninety degrees.

c) a circle as a closed loop that has :

- one circular arc edge

- the start and end nodes of ﬁhe arc edge are the same
point

or

- two or more circular arc edges,

- all the arcs have the same radius and centre

coordinates,

- the start node of the first edge is the same point
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Rectangle (or Square)

Right - Angle Triangle

Simple 2D Fillet

Sector of Circle
(any angle)

Complete Circle

OL/V i

Fig. 6.2: The five 2D geometric shapes
identified as 'Basic Patierns'
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as the end node of the last edge.

d) a quadrant as a closed loop that has :

- three edges two of which are straight and the other
is an arc,

- the inside angle formed by the straight edges is
equal to ninety degrees,

- the coordinates of the centre of the arc are equal
to the coordinates of the intersection point of the

straight edges.

e) a fillet as a closed loop that has :

- three edges two of which are straight and the other
is an arc,

- the inside angle formed by the straight edges is
equal to ninety degrees,

- the coordinates of the centre of the arc are equal
to the coordinates of the mirror image of the intersection
point of the straight edges abéut the chord joining the

nodes of the arc.

Each shape has several characteristics, however
the algorithm only uses those which are necessary and
sufficient to identify it. For example, in order to
identify a rectangle, the algorithm only looks for the

following two characteristics:

- four straight edges,
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- at least three inside angles must be equal to ninety

degrees.

A loop that has been identified as one of the
above shapes, is stored as a basic pattern, and is
allocatea a flag, LPF, accoraing to the shape it has been

identified with:

‘= LPF = 1 : for a rectangle or a square loop,
- LPF = 2 : for a right-angled triangle loop,
- LPF = 3 : for a fillet loop,

- LPF = 4 : for a quadrant loop,

- LPF =5 : for a full circle loop.

It is obviously possible to include a much larger
number of simple shapes in the algorithm, such as
parallelograms, semicircles and so on ..; however it has
been found that the shapes described above are sufficient
for the interpretation process, since they are the only
ones found in the orthographic views of the
three-dimensional primitives considered in this work.
Furthermore, each loop which can not be identified as one
of the above shapes, is stored as an arbitrary pattern

with a flag set to zero (LPF = 0).

Assuming that the loop that is being processed has

N edges, then the algorithm for each loop is as follows:
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STEP 1: Are all the edges straight edges ?
1.1: if YES then go to step(2)
1.2: if NO then go to step(5)

STEP 2: if N < 3 then exit with error message.

N M =l |

3 then go to step (3)
2 if N = 4 then go to step (4)

2.3: if N > 4 then go to step (14)
STEP 3 Is the inside angle between two adjacent edges
equal to ninety degrees ?

3.1: if YES then the loop is a right-angled triangle,
LPF = 2. EXIT.

3.2: if NOT then go to step (14)
STEP 4: Are there at least three inside angles equal to
ninety degrees ?

4.1: if YES then the loop is a rectangle or square, LPF
= 1. EXIT,

4.2: if NOT then go to step (14)
STEP 5: Are all the edges circular arcs ?

5.1: if YES then go to (%)

5.2: if NOT then go to (9)
STEP 6: All edges are circular arcs;

6.1: if N = 1 go to step (7)

6.2: if N > 1 go to step (8)
STEP 7: Are the coordinates of the étart node equal to the
coordinates of the end node ?

7.1: if YES then the loop is a full circle, LPF = 5,
EXIT.

7.2: if NOT then go to step (15).
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STEP 8: Are the coordinates of the centres of all the arcs
equal ?

8.1: if YES then the loop is a full circle, LPF = 5,
EXIT.

8.2: if NOT then go to step (14)
STEP 9: Some of the edges are straight edges and others
are circular arcs.

9.1: if N = 3 then go to (10)

9.2: if N < 3 then go to step (15)

9.3: if N > 3 then go to step (14)
STEP 10: Is there only one arc among the edges ?

10.1: 1f YES then go to step (11)

10 .2 1F NOT‘then go to step (14)
STEP 11: Are the two straight edges perpendicular ?

11.1: if YES then go to step (12)

11.2: if NOT then go to step (14)
STEP 12: Are the coordinates of the centre of the arc equal
those of the point of intersection of the two straight
edges ?

12.1: if YES then the loop is a quadrant, LPF = 4. EXIT.

12.2: if NOT then go to step (13)
STEP 13: Are the coordinates of the centre of the arc equal
to those of a point which is the mirror image of the point
of intersection of the two straight edges about the line
joining the two noaes of the arc ? |

13:1 if YES then the loop is a fillet, LPF = 3. EXIT.

13:2 if NOT then go to (14)

STEP 14: The loop is an arbitrary loop, LPF = 0. EXIT.
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STEP 15: Error message and EXIT.

6.1.3) IHE "CLASS IDENTIFIER' ALGORITHM:

The clacs of the object depends on the number,
type and shape of all the loops in all the views, as shown
in sections 2.4.1 and 2.4.2. This algorithm uses the
information about the number and type of loops gathered
from the 'loop detector' algorithm, and the shape
information obtained from the 'loop identifier' algorithm,

to determine the class of the object.

By assuming that:

a) the orthographic views are labelled as 1 for the
XY view, 2 for the XZ view and 3 for the YZ view, and the
number of loops in each view is stored in the array NL (i),

£ =1y 25 3y

b) the type of each loop is assumed to be stored in
the array TYPE(n), n =1, 2, 3, ... NL(i), and equal to

either 0 for disjoint loop, or to 1 for a connected loop,
c) the information concerning the shape of the loop

is assumed to have been stored in the array SHAPE(n) and

is equal to LPF (the flag set by the loop identifier).
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The algorithm is as follows:

STEP 1: i = 0; KOUNT = 0;
STEP 28 F8 1> 3 2
2.1: if YES then go to step (14)
2.2: if NOT then i = i + 1 and go to step (3)
STEP 3: Does view NL(i) consists of one loop only ?
3.1: if YES then KOUNT = 0

3.2: if NOT then KOUNT KOUNT + 1

3.3: Go to step (2)
STEP 4: All the loop have been examined,

4.1: if XOUNT

0 then go to step (5)

4.2: if KOUNT

1 then go to step (7)

4.3: if KOUNT

I

2 then go to step (8)
4,4: if KOUNT = 3 then go to step (9)
STEP 5: Each view consists of one closed loop. Are all the
loops identified as basic patterns, 1 <SHAPE(1)S 5 ?
5.1: 4if YES then go to step (6)
5L2Z: 4f NOT then EXTIT.
STEP 6: Do these set of patterns form a 'signature' ?

6.1: if YES then the object is itself a primitive.

6.2: if NOT then EXIT.
STEP 7: The object has only one loop in at least one view.
The object may be a simple prismatic or an arbitrary
object. Go to step (11).
STEP 8: The object has at least two views each of which

comprises only one loop. This is not consistent. EXIT.
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STEP 9: Each view has more than one loop. The object may
either be a complex prismatic or an arbitrary object.
Check if the loops are disjoint or not. Is there at least
one view which comprises only disjoint loops (TYPE (n) =0)

9.1: if YES then go to step (10)

9.2: if NOT then go to step (14)
STEP 10: Is there more than one view which comprises only
disjoint loops ?

10.1: if YES then EXIT.

10.2: if NOT then go to step (11)
STEP 11: Do all the nodes in the views other than the one
which consists of either one, or more, closed disjoint
loops, belong to the perimeter loop.

11.1: if YES then go to step (12)

11.2: if NOT then EXIT.
STEP 12: Are all the loops in the views other than the one
which consists of either one, or more, closed disjoint
loops, identified as rectangular shapes ?

12.1: if YES then go to step (13)

12.2: if NOT then EXIT.
STEP 13: If I (I =1, 2, or 3) is the base view, i.e. the
view which comprises either one, or more, disjoint loops,
then :

13,19 4% Ni(I) = 1 then the object is a simple prismatic
object. EXIT.

13.2: if NL(I) > 1 then the object is a complex
prismatic object. EXIT.

STEP 14: The object is an arbitrary object. EXIT.
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6.1.4) IHE 'LOOP PROCESSOR' ALGORITHM:

The class of the object, once identified,
determines the object loop, (or loops) that is (are) to be
processed in order to identify the three-dimensional
primiiLives together with the transformations and Boolean
operations associated with them. For instance, in the
case of prismatic objects, the object loops that are found
in the base view, are the only loops to be processed since
the other views comprise only rectangles (section 5.4.2).
In the case of non-prismatic objects, only the object loop
identified as the boundary, or perimeter, loop in each

view, is analysed (section 5.4.3).

The first task in processing an object loop is to
define the node coordinates of its surrounding rectangle.
This is achieved by computing the extreme node coordinates
of the object loop. The next task is to locate ﬁhe loops
formed by the intersection of the surrounding rectangle
and the object loop. This is achieved by generating a‘
list, referred to as the 'control list', which contains
the information about the position of the nodes of the
ob-iect iaop in relation to the nodes and sides of the
surronnding rectangle. Each located loop is then examined
in order to classify it as either a specific basic pattern
or as an arbitrary pattern. This task is in effect carried
out by the 'Loop Identifier' algorithm described above. A

flag which identifies the shape of the pattern is then
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attached to each loop. Any loop that has been identified
as an arbitrary pattern is then decomposed into either a
number basic patterns or into further arbitrary patterns

that require further processing.

Finally, using these basic patterns, all the
three-dimensional primitives are identified, and the
transformations together with the Boolean operations
associated with them, are defined. These are then stored
in a Boolean tree according to the order in which the
primitives are generated. The data stored in the Boolean
tree is then converted into a specific format which
depends on the solid modeller that is used in the
interpretation process, and which, in the present work, 1is
the PAFEC "BOXER" text definition structure described
section 5.3.4. The converted data is in effect the output
of the analysis step, and the file in which it is stored,

is used as input file by the solid modeller.

The specifications of the 'Loop Processor'

algorithm are as follows:

STEP 1: Read and extract the coordinates of the nodes of
the loop from the input file, and compute the maximum and
minimum values to define the coordinates of the
surrounding rectangle. .

STEP 2: Generate a 'control list' by performing a series

of tests to check the position of all the object loop
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nodes in relation with the nodes and sides of the
surrounding rectangle.

STEP 3: Use the control list generated in step (2) to
locate the primitive loops formed by the intersection of
the surrounding rectangle and the object loop;

CTEP 4: Examine the characteristics of the shape of each
primitive loop and identify the pattern associated with
it. Store the data of the loop together with the flag,
which identifies its shape, in a file.

STEP 5: Scan the above file for a flag which identifies a
loop as an arbitrary pattern. If such flag exists, then
extract the data of that particular loop from that file
and store them in the input file, and repeat steps (1) to
(5) . Otherwise go to step (6).

STEP 6: Identify the three-dimensional primitive related
to each basic pattern. Generate and store the
transformations and Boolean operations associated with
each primitive.

STEP 7: Convert the data obtained from step (6) into
BOXER format and store it into a file.

STEP 8: EXIT.
The tasks associated with the steps of the above

algorithm, are in effect carried out by the algorithms

described in the following sections.
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6.1.5) ZIHE 'EXTREME COORDINATES SEARCH' ALCORITHM:

This is a straightforward search routine which
performs the first step of the 'Loop Processor' algorithm.
Its function is to scan the coordinates of the nodes of a
particular loop and finds the maximum and minimum values.
It is possible that an extreme value lies on a circular
arc where no node exists, then it 1is necessary to split
the arc into smaller arcs and generate a node at this
extremity. Figure 6.3(a) shows an orthographic view where
such a case may arise; initially, the view comprises 11
nodes; node 12 is then added to it by splitting edge
{11,9} into edge {11,12} and (12,9}, in Figure 6.3 (b)

which also shows the updated topology.

These extreme values are used to define nodes
coordinates for the surrounding rectangle which is, as
defined previously in section 5.3.1, the orthographic
projection of the surrounding cuboid. The specifications

of this algorithm may be briefly described as follows:
Assuming that there are N edges in the view, then:

STEP 1: I = 0, and set Pmax and Qmax to infinitely small
values, and Pmin and Qm;n.to infinitely large values.
STEP 2: I =1 + 1. Is I greater than N ?

2.1: If YES then go to step (9)

2.2: If NOT then go to step (3)
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TOPOLOGY

Edge no.| Start node IEnd Node
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(a) 13

NEW TOPOLOGY
Edge no.| Start node |End Node
1 10 S
2 5 8
3 1 10
4 2 3
5 1 8
6 4 2
7 s 3
8 2 5
9 7 9
10 9 11
11 6 8
12 6 11
13 11 12
(b) 14 12 9

Fig. 6.3: Search for extreme coordinate values
and topology update
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STEP 3: Read the coordinate values of the nodes of the Ith
edge in the loop and compute the maximum and minimum

coordinate values, Xmax, ¥Ymax, Xmin and ¥Ymin.

]

3.1: If Xmax greater than Pmax, then Pmax Xmax

3.2: If Xmin smaller than Pmin, then Pmin = Xmin

3.3: If ¥Ymax greater than QOmax, then Qmax = ¥Ymax

3.4: If Ymin smaller than Qmin, then Qmin = ¥Ymin
STEP 4: Is the Ith edge a circular arc ?

4.1: If YES then go to step (5)

4.2: If NOT then go to step (2)
STEP 5: Does the arc intersect a horizontal straight edge
passing through its centre ?

5.1: If YES then go to step (6)

5.2 If NOT then 'go to step (7)
STEP 6: If XA and YA are the coordinates of such
intersection point, then

6.1: If XA greater than Pmax, then Pmax = XA

6.2: If XA smaller than Pmin, then Pmin = XA

6.3: If YA greater than Qmax, then Qmax = YA

6.4: If YA smaller than Qmin, then Qmin = YA
STEP 7: Does the arc intersect a vertical straight edge
passing through its centre ?

7.1: If YES then go to step (8)

7.2: If NOT then go to step (2)
STEP 8: If XB and YB are the coordinates. of such
intersection point, then

8.1: If XB greater than Pmax, then Pmax = XB

8.2: If XB smaller than Pmin, then Pmin = XB
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8.3: If YB greater than Qmax, then QOmax = YB
8.4: If YB smaller than Qmin, then Qmin = ¥YB
8.5: go to atep (2).

STEP 9: EXIT.

The coordinates, XR and YR, of the nodes of the
surrounding rectangle may then defined according to the
sense of the object loop it surrounds. Figure 6.4 (a) shows
an anticlockwise loop surrounded by a rectangle defined by

the following nodes :

XR(1l) = Pmin YR(1) = Qmin
XR(2) = Pmax YR(2) = Qmin
XR(3) = Pmax YR(3) = Qmax
XR(4) = Pmin YR (4) = Qmax

and Figure 6.4 (b) shows a clockwise loop surrounded by a

rectangle defined by the following nodes:

XR(1l) = Pmin YR(1l) = Qmin
XR(2) = Pmin YR(2) = Qmax
XR(3) = Pmax YR(3) = Qmax
XR(4) = Pmax YR (4) =

QOmin

6.1.6) IHE 'CONTROL LIST GENERATOR' ALGORITHM:
This algorithm performs step (2) of the 'Loop
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Fig. 6.4: a) An anticlockwise lot > and
its surrounding rectangle
b) A clockwise loop and its
surrounding rectangle
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Processor' algorithm. Its function is to produce a list
that is needed for the detection of primitive loops formed
by the intersection of the object loop and the surrounding
rectangle. It performs a series of tests, using
homogeneous coordinates, (see appendix C), to check the
position of all the nodes of the object loop, in relation

with sides and nodes of the surrounding rectangle.

An object loop and its surrounding rectangle are
shown in Figure 6.5(a). The 'control 1list' consists of
three arrays, (A), (B) and (C), shown in Figure 6.5(b) as
columns A, B and C, respectively. Array (A) stores the
node number of any node which belorgs to the object 1loop
and which lies on a side of the surrounding rectangle.
Array (B) stores the number of the side of the surrounding
rectangle which contains that node, and array (C) stores
the digit 1, to indicate that the node lies on one of the
sides of the surrounding rectangle, or the digit 0 to
indicate that the node coincides with one of the nodes of
the surrounding rectangle. For example, in Figure 6.5(b),
the first row of the control list indicates that node 5 of
the object loop, shown in Figure 6.5(a), lies on the
surrounding rectangle side number 1, and does not coincide
with any node of the surrounding rectangle, while the
fifth row indicates that node 7 of the object loop, lies
on side 4 of the surrounding rectangle and coincides with
one of the surrounding rectangles nodes, shown in Figure

6.5(a) as node N4.
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(a)

A B C
5 1 1
1 1 1
13 2 1
9 3 1
7 4 0
11 4 1
12 4 1
6 4 1
(b)

Fig. 6.5: a) An object loop and its
- surrounding rectangle
b) the corresponding 'control list'
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The specifications of the 'Control List Generator'

algorithm are as follows:

Assuming that the object loop consists of N edges,

and that the surrounding rectangle nodes and sides are

labelled as NR: and SR:

i i, respectively, where j =1, 2, 3,

and 4, then

STEP 1: I = 0 and KOUNT = 0

SR 2 ST

I +1; J=0. If I > N, then go to step (6)
STEP 3: I = J + 1. If J > 4 then go to step (2).

STEP 4: Does the Ith node of the object loop lie on side
SRj of the surrounding rectangle ?

4.1: If YES then KOUNT = KOUNT + 1
and A (KOUNT) = I‘and BﬁKOUNT) = j.

4.2: If NOT then go to step (5)
STEP 5: Does the Ith node of the object loop coincide with
a node of the surrounding rectangle 2.

5.1: If YES then C(KOUNT) = 1

5.2: If NOT then C(KOUNT) = 0

5.3:" Go to atep {(3) .

STEP 6: EXIT

6.1.7) IHE 'PRIMITIVE ZLOOP LOCATOR' ALGORITHM:

This algorithm processes the 'control 1list'
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generated by the previous algorithm in order to:

1) locate the primitive, or subobject, loops formed by
the intersection of the surrounding rectangle and the
object 1loop, thus performing step 3 of the 'Loop

Processor' algorithm,

2) compute the number of segments, and the coordinates

of each node, of each primitive loop it locates.

This algorithm also detects a number of
characteristics which identify a primitive loop, referred
hereafter as an 'unstable' loop, as one which will later
require more processing in the decomposition stage of
arbitrary loops into basic patterns. These loops and their

special treatment are discussed in the following section.

The specifications of the algorithm are as

follows:

It is considered that M nodes of the object loop,
have been found to lie on the surrounding rectangle. The
numbers of such nodes are listed in the array (A) of the
control list. The nodes of the object loop are labelled
sequentially according to whether the 1loop has an

anticlockwise or a clockwise sense.

STEP 1: I

[
f
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STEP 2: I =1 + 1. If I is greater than M then go to step
(9) .
STEP 3: Compute:

D1 = B(I+1l) - B(I)

D2 A(I+l) - A(I).

3.1: If C(I) =0 gr C(I+l) = 0 then go to step (4)

3.2% IT C4T) 0 and C(I+1l) = 0 then go to step (7)

3.3: If D2 <0 then go to step (8)

STEP 4: D1 = D1 - 1

4.1: If D1 = 0 then go to step (5)

4.2: If D1 = 1 then go to step (6)

4.3: If D1 > 1 then go to step (8)

STEP 5: Check if there is any primitive loop between node
numbers stored in (A): -

5.1: If D2 = 0 then the node number in A(I+1l) is the
same as the node number stored in A(I), thus there is an
error. Go to step (7).

5.2: If D2 = 1 then there is only one edge that can be
definéd between the node stored in A(I+l) and A(I). If
that edge is an arc, then there is a primitive loop which
has two edges, but if the edge is a straight edge then
there is not any primitive at that position.

5.3: If D2 = 2 then there is a primitive 1oop-which has
three edges.

5.4: If D2 = 3 then there ig a primitive loop which has
four edges.

5.5: If D2 = 3 + n then there is a primitive loop which

has 4 + n edges.
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5.6 (Co o step (2)

STEP 6: Check if there is any primitive loop between node
numbers stored in (A):

6.1: If D2 = 0 then the node number in A(I+1l) is the
same as the node number stored in A(I), thus there is an
error. Go to step (7).

6.2: If D2 = 1 then there is a primitive loop which has
three edges.

6.3: If D2 = 2 then there is a primitive loop which has
four edges.

6.4: If D2 = 2 + n then there is a primitive loop which
has 4 + n edges

6.5: GO to step (2)

STEP 7: Check if there is any primitive loop between node
numbers stored in (A):

7.1: If D2 = 1 then there is a primitive loop which has
three edges.

2 I € D2 > 1 then there is a primitive loop which is
identified as an 'unstable' loop.

7.3: Go to step (2).

STEP 8: Error.

STEP 9: Exit.

The output of the above algorithm comprises the
geometric and topological data of each primitive loop that
has been located. These data are then used by the 'Loop
Identifier' algorithm, in step 4 of the 'Loop Processor'

algorithm, to determine the shape of each primitive loop
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which is then stored in a file, referred to thereafter as
file MAINDATA, together with the appropriate flag, LPF, to
indicate whether the shape is a basic pattern, LPF = 1, 2,

3, 4, or 5, or an arbitrary pattern, LPF = 0.

6.1.8)IHE "ARBITRARY PATTERN ANALYSER' ALGORITHM:

The function of this algorithm is to decompose any
arbitrary loops into further primitive loops. The output
file, MAINDATA, generated from the 'Loop Identifier'
routine, is scanned in order to search for any flags, LPF,
equal to 0, which indicate that the corresponding loop has
an arbitrary pattern. If such a flag is found then the
geometric and topological data of the corresponding loop
is retrieved and stored in another file, referred to as
ADATA, in order to be used as input to the whole process
again. The processing of the file ADATA may result in a
number of primitive loops that are either basic or
arbitrary patterns, or both. This decomposition process is
illustratéd in Figure 6.6(a), where the object loop PO,
which has an arbitrary pattern, is decomposed into the

following loops:

loop P1l: a positive.rectangle (LPF = 1)

loop P2: a negative arbitrary loop (LPF = 0)
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PO
Object
perimeter
loop

P1 P2
surrounding arbitrary
rectangle of loo
object loop .

(a) &F.M

surrounding P3 fillet
rectangle of
arbitrary loop

object perimeter loop

+ Decomposition of object loop

NN

"MAINDATA" file

(b)

Merging in "MAINDATA" file

output MAINDATA file
(holds only basic patterns)

Data -of a basic patiern

N\ Data of an arbitrary pattern

Fig. 6.6: a) Decomposition of an object loop
b) Transfer and merging of data files
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The results of processing the file ADATA are then
stored in a new file, called ARBDATA, instead of being
stored in MAINDATA. For example, in Figure 6.6(a), loop P2
is decomposed further into two loops, P3 and P4, which are
identified as basic patterns and whose data is stored in
ARBDATA. All iLhe above files are direct access files,
designed to have the same structure, a description of

which is given in section 7.5.

The algorithm consists mainly of a fast merging
routine that merges two direct access files together into
one. In this case, it merges files MAINDATA and ARBDATA
into the original file MAINDATA from which the file ADATA
has originated, as shown in Figure 6.6(b). The process of
scanning the file MAINDATA, generating and processing
ADATA and merging ARBDATA to MAINDATA is repeated again
until all the flags (LPF) in MAINDATA are found to be not
equal to 0, which would indicate that the data stored in
the file, correspond to loops which have been identified

as basic patterns only.

There are, however, some particular 1loops,
referred to earlier, in section 6.1.7, as ‘'unstable'
loops, which can not be directly decomposed into further
patterns. The direct application of the decomposition
process to such a loop always leads to the generation of a
'child' loop that is identical to its ancester. These type

of loops are readily detected by the 'primitive loop
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locator' algorithm described above. In this case, each
'unstable' loop is dealt with by simply dividing it into
three loops for which the data are then stored back in the
file MAINDATA. Figure 6.7 shows such a loop, PO, and those
generated from its decomposition, one of which, P4, is

identical to it.

The specifications for such an algorithm are as

follows:

It is considered that the input file has been
already processed to the stage where the file MAINDATA has
been generated, and that it comprises the data of a
number, NL, of loops, some of which have basic patterns
and others arbitrary ones. Thus, the file may comprise

flags that are equal to either 0, 1, 2, 3, 4, or 5.

STEP 1: I = 0,
STER 2: I = T + 1. Is' I greater than NL 2
2.1: If YES then go to step (1l1)
2.2: If NOT then go to step (3)
STEP 3: Scan the file MAINDATA and read the flag (LPF) of
the Ith loop. '
3.1: If LPF = 0 then ¢> to step (4)
3.2: If IPFP =1, 2, 3, 4 or 5 then go to step (2)
.STEP 4: Check if the loop is 'unstable'.
4.1: If YES then go to step (5)

4.2: If NOT go to step (6)
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P1

P3

(a)

(b)

Fig. 6.7: a) An 'unstable' loop which can
not be decomposed directly
b) The decomposition of an
'unstable' loop
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STEP 5: Split the 'unstable' loop into three loops and
store their corresponding data in file 'MAINDATA' with a
flag LPF = 0. Go to step (1).

STEP 6: Store the data of the Ith loop (arbitrary pattern)
in the file 'ADATA'.

STEP 7: Use the file 'ADATA' as the input of the analysis
process, i.e. locate and identify the primitive loops
formed by the intersection of the arbitrary loop and its
surrounding rectangle.

STEP 8: Store all the loops generated from step (5) in the
file 'ARBDATA' with their corresponding flags (the file
ARBDATA has the same structure as the file MAINDATA, and
may contain both loops which are basic patterns and loops

which are arbitrary patterns).

STEP 9: Merge the file 'ARBDATA' into the file 'MAINDATA',
STEP 10: Repeat steps (1), (2), (3), (4), (S5), «(6), (7).,
(8), and (9), until all the 1loops stored in file
'MAINDATA' are identified as basic patterns, i.e., all the
flags, LPF, are not equal to zero.

STEP 11: EXIT.

The output of the above algorithm is a file which
contains the geometric and topological data of all the
two-dimensional basic patterns generated from the analysis
of one object loop in a given view. However, it has been
found that such data is not enough for the reconstruction
of the corresponding object 1loop. This reconstruction

process also requires the storage of the information, in
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the form of pointe;s, corresponding to the relationship
between 'parent' and 'children' loops, and the order in
which these are generated. This information is stored in
the form of a tree, as shown in Figure 6.8 (a). The object
loop is always at the root of the tree where each node
rcpresants an arbitrary primitive loop, and each leaf, c=r
terminal node, represents a primitive loop which has been
identified as a basic pattern, i.e. one which does not
require any further decomposition. This tree is, in
effect, stored in two one-dimensional arrays. The first
array stores the number of the basic pattern in the order
in which they have been generated, as shown in Figure
6.8(b). The second array, Figure 6.8(c), holds a series of
pointers, which are separated in a number of groups, by a
null parameter. Each group determines a parent loop and
its corresponding children loops. For example, the
arbitrary loop numbered as 7, in the general tree, has
been decomposed further into two primitive loops, 9 and

10, identified both as basic patterns.

The order in which the primitive loops are
generated, stored and retrieved is very important since it
determines the resulting object loop; this is because the
Boolean difference operator is not commutative, and the
order in which the primitives are subtracted from each
other may yield different results. This problem is
illustrated ih Figure 6.9{a) which shows the decomposition

of an object loop, PO, into a number of primitive loops;
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c) pointers/groups storage

Fig. 6.8: Arbitrary loop decomposition
and data storage
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these are labelled according to the order in which they
have been generated, and only loops identified as basic
patterns are stored, i.e., primitive loops P1l, P3, P4, PS5
and P6. In order to reconstruct the object loop PO, the
Boolean operations performed on these basic patterns have
to be carried out in the rignt orader, as shown in Figjura

6.9(b), as follows:

P2 = P4 + P5 + P6

and PO = P1 + P2 + P3

However, a completely different object loop would
have been obtained if the Boolean operatior. have been
performed in a different order, as shown in Figure 6.9(c).
The reconstruction process, in this case, may produce not
only the incorrect object loop, but also self intersecting

and impossible loops.

The file which stores the geometric and
topological data of all these basic patterns is, in
effect, used to define the associated 3D primitives, their
corresponding transformations and Boolean operations.
Where=s, the two arrays determine which primitives are to

be combined by these Boolean operations to generate, for
.each object loop, a prismatic object, also referred to

here as a profile.
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self-intersecting loop

(c)

D = positive loop = negative loop

Fig. 6.9: a) Decomposition of an object loop,
b) its correct reconstruction,
c) its incorrect reconstruction

215



6.1.9) IHE '3D PRIMITIVES IDENTIFIER' ALGORITHM:

This algorithm performs step 6 of the 'Loop
Processor' algorithm. Its function is to identify the
three-dimensional primitives by associating with the three
vicws the primitive loops identified by the previous
algorithm. Since the strategy is to always generate a
prismatic object, or profile, for each object loop, and
since a prismatic object has always two views which
comprise only rectangular loops, two of the basic patterns
which constitute a primitive signature are, therefore,
always rectangles. Thus a complete signature may be
obtained by associating two rectangles with each
identified and stored basic pattern. For example, if two
rectangles are associated with a primitive loop which has
been identified as a circle, the prismatic shape is known
to be a cylinder, whereas if two rectangles are associated
with a primitive loop which has been identified as a
right-angled triangle, then the three-dimensional

primitive is a wedge.

The input to this algorithm is the file 'MAINDATA'
generated by the 'Arbitrary Pattern Analyser' algorithm,
according to which, only the data associated with basic
patterns is stored. The flag, Li: (see pages 184 and 186),
which identifies the geometric shape of each pattern is

also stored in this file.
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Assuming that N basic patterns have been generated
during the process of a given object 1loop, the

specifications of the algorithm are as follows:

STEP 1: I =0
STEP 2: I =1I + 1
STEP 3: Is I greater then N ?
3.1 If YES then go to step (11)
3.2: If NOT then go to step (4)
STEP 4: Read the value of the flag LPF.
4.1: If 1PF 5 0 or IPF > 5 the go to (10)
4.2: If LPF = 1 then go to step (5)
4.2: If LPF = 2 then go to step (6)

4.3: If LPF = 3 then go to step (7)

W

4.4: If LPF = 4 then go to step (8)

4.5;: If LPF = 5 then go to step (9)
STEP 5: The basic pattern is a rectangle and the signature
of a three-dimensional primitive BLOCK is obtained. G&6 to
step (2). .
STEP 6: The basic pattern is a right-angle triangle and
the signature of a three-dimensional primitive WEDGE is
obtained. Go to step (2).
STEP 7: The basic pattern is a fiilet and_phe signature of
a three-dimensioral primitive FILLET is obtained. Go to
step (2).
STEP 8: The basic pattern is a quadrant and the signature
of a three-dimensional primitive CYLINDRICAL SEGMENT i§

obtained. Go to step (2).
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STEP 9: The basic pattern is a circle and the signature of
a three-dimensional primitive CYLINDER is obtained. Go to
step (2).

STEP 10: Error. Exit

STEP 11: The type of all the three-dimensional primitive

has now been defined. Exit.

6.2) SOLID MODELLING INPUT FILE GENERATION:

It has been shown in chapter 5, that, in order to
generate the solid modelling input file it is necessary

to:

1) extract the size, shape, position and orientation
parameters of each identified three-dimensional primitive,
from the MAINDATA file obtained from the analysis step.
The type of each primitive is defined by the '3D

Primitives Identifier', described above.

2) generate and store the text structure definition of
each primitive, together with the Boolean operations which

represent the output model.

The MAINDATA file comprises the data associated
with all the two-dimensional basic patterns, and hence,
with all the three-dimensional primitives, generated from

the processing of one object loop. The file is a direct
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access one which 1is composed of a number of sections
equal to the number of primitives. Thus, the first
section of the file contains the data of the first
primitive, the second section to the next primitive, and
so on. Each section of the file has the same structure as
the file u3ea to store the input data of each view, except
for an additional record which is appended at the end of
each section to store the identification flag, LPF, of the
corresponding primitive. The structure of the files that
store the topological and geometrical data of the input

views is describer later in section 7.4.

The maximum and minimum X and Y coordinate values
for any one of the adjacent views, are also required for
the specification of some of the parameters, such as size
and position, of some primitives. For instance, if a
primitive block has been identified by processing an
object loop in the XY view, then these values are used to
specify the 1length of a primitive block in the 2
direction. These extreme values are computed in the

analysis step.

The data stored in the file MAINDATA, described
above, together with the extreme coordinates values of one
of the adjacent views, provide enough iﬁforﬁation to
specify all the necessary parameters. of the identified
primitives. The shape, size, and position parameters of

each primitive, are computed using the node coordinate
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values of the corresponding loop and the maximum and
minimum coordinate values obtained from the adjacent view.
Whereas, the orientation parameter depends on the view
from_which the pattern is extracted. A primitive is
rotated by an angle equal to 90 dégrees about either the
X, or Y axis, only if the <corresponding pattern is
contained in the XZ, or YZ view, respectively. The solid
modelling input file is finally completed Dby specifying
the Boolean operations, required to combine the primitives
according to the Boolean tree generated by the 'Arbitrary

Pattern Analyser' algorithm (section 6.1.8).

A simple prismatic object whose XY view has been
identified as a base-view, is illustrated in Figure
6.10(a), where oxyz defines the coordinate system used by
the author, and OXYZ represents the solid modeller
coordinate system. Figure 6.10(b) shows the solid modeller
input file which contains, in 'BOXER' text structure, all
the primitive definitions and Boolean operations necessary

for the reconstruction of the object.

The first primitive that has been identified is a
primitive block, represents, in effect, the surrounding
cuboid, or raw block, from which the object is to be
'cuﬁ—out'. The corresponding "BOXER' syntax may be written

as follows:

OBJNAME <- BLOCK(xlen, ylen, zlen) AT (xcen, ycen, zcen)
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XYO1 <- BLOCK (8.0, 5.0, 3.0)

XYO2 <- CYL (3.0, 2.0) AT (2.5, 4.0, -1.5)

XYO3 <- BLOCK (3.0, 2.5, 3.0) AT (2.5, -1.5, 0.0)
XY04 <- WEDGE (2.0, 2.0, 3.0) AT (-4.0, 2.5, -1.5)

FAMOD <- XYO1 - XY02 - XYO3 - XY04

(b)

Fig. 6.10: a) Computation of 3D primitive
parameters from geometry of 2D
patterns

b) corresponding solid modelling
input file
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OBJNAME represents the name of the primitive, or
object. The size and shape of a primitive block are
defined by its length, xlen, width, ylen, and depth, zlen,
which, in this case, may be specified by using the minimum
and maximum coordinate values of the base view and one of

the adjacent views, in the folluwing equations:

xlen = ABS ( XMIN - XMAX ) (1)
ylen = ABS ( YMIN - YMAX ) (2)
zlen = ABS ( ZMIN - ZMAX ) (3)
where:

XMIN = mirimum X coordinate value in the XY view
XMAX = maximum X coordinate value in the XY view
YMIN = minimum Y coordinate value in the XY view
YMAX = maximum Y coordinate value in the XY view
ZMIN = minimum Z coordinate value in the XZ or YZ view

ZMAX = maximum Z coordinate wvalue in the XZ or YZ view

In this example, the name of the primitive block,
OBJNAME is automatically set to X¥01l, and its length,
xlenl, is equal to 8.00, height, ylenl, is equal to 5.00

and width, zlenl, to 3.00.

The position parameters of the 3D primitive are
defined by specifying the coordinates of its centroid,
xcen, ycen and zcen, with reference to the solid modeller

coordinate system, OXYZ. Since positioning parameters have
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not been specified, in this case, the centroid of the
primitive block is automatically positioned at the origin
of the solid modeller coordinate system. Thus, xcen, ycen
and zcen are all equal to 0 in OXYZ, but in oxyz they are

as follows:

X0 (xmin + xmax) / 2.0
yo = (ymin + ymax) / 2.0

zo = (zmin + zmax) / 2.0

where =xmin, xmax, ymin, ymax, zmin and 2zmax are the
coordinate values of the object surrounding block or 'Raw

Block'.

The next primitive, XY02, is a cylinder segment
whose length, cylen, is equal to 3.00 and radius equal to
2.00. The 'BOXER' syntax for a primitive cylinder may be

written as follows:
OBJNAME <- CYL(cylen, radius) AT ( xcyl, ycyl, zcyl)

The cylinder is positioned by defining the
coordinates xcyl, ycyl and zcyl, of the centre of itg
base. 1In this example, xcyl is equal to 2.5, ycyl to 4.0
and zcyl to -1.5. The cylinder length, radius, position
and orientation parameters are computed with reference to
the solid modeller coordinate system, OXYZ, which origin

is at the centroid of the previous primitive block. The
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following equations are used:

cylen = ABS(zmin - zmax)

radius = V{(xc - xn)?2 + (yc - yn)?)}
xcyl = xc + xo

ycyl = yc + yo

zcyl - ¢cylen / 2.0

where:

Xn = x coordinate, in oxyz, of the start node (node 1) of
the circular arc in the base view.

XCc = x coordinate, in oxyz, of the centre of the circular
arc in the base view.

yn = y coordinate, in oxyz, of the start node (node 1) of
the circular arc in the base view.

yc = y coordinate, in oxyz, of the centre of the circular
arc in the base view.

X0 = X coordinate, in oxyz, of origin of OXYZ coordinate
system, as before.

yo = y coordinate, in oxyz, of origin of OXYZ coordinate

system, as before.

The third primitive, XY03 is a block whose length,
xlen2 equal to 3.0, height, ylen2, equal to 2.5 and width,
zlen2, equal to 3.0, are computed using equations (1),
(2), and (3) respectively. The primitive is positioned in
the solid modeller coordinate system by defining the

coordinate values of its centroid which are computed using
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the following equations:

xcen X0 + ((xrmin + xrmax) / 2.0)
ycen = yo + ((yrmin + yrmax) / 2.0)

zcen = - zlen / 2.0

where xrmin, xrmax, yrmin, yrmax are the minimum and
maximum coordinate values of the primitive 1loop
(rectangle). The coordinate values xo and yo are as

previously defined.

The next primitive is a wedge whose name is set to
XY04. The 'BOXER' syntax for a wedge may be written as

follows:
OBJNAME <- WEDGE (xlen, ylen, zlen) AT (xcor, ycor, zcor )

The length, height and width of the primitive

wedge are computed using the following equations:

xlen = ABS (xwmin - xwmax)
ylen = ABS(ywmin - ywmax)

zlen = ABS(zmin - zmax)

where xwmin, xwmax, ywmin, ywmax are the minimum and
maximum coordinate values of the primitive 1loop
(triangle). The maximum and minimum values, zmin and zmax,

are the extreme coordinate values in the z direction, of
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the surrounding rectangle of the object. The primitive
wedge is positioned by specifying the coordinate wvalues
xcor, ycor and zcor, of its far corner, which is a node
that joins the two perpendicular edges. Theses values are

computed using the following equations:

XCOr = X0 + Xr
ycor = yo + yr

zcor = - zlen / 2.0

where:

xr = the x coordinate value of the node at which the 90
degrees angle of the right-angle triangle is sustended.

yr = the y coordinate value of the node at which the 90
degrees angle of the right-angle triangle is sustended.

X0, yo = as previously defined.

Finally, the primitives are combined by the
Boolean operation specified, in this case, by the last
statement shown in figure 6.10(b). The object, whose name
is set to FAMOD, may be reconstructed by‘subtracting the
primitives XY02, XY03 and XY04 from the surrounding block

defined as XYOl.

6.3) QUTPUT VERIFICATION ALGORITHMS:

There are two sets of data inputs to the output
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verification ‘process (section 5.3.5): one corresponds to
the input orthographic views, and the other, having an
ASCII format, is a PAFEC 'BOXER' file which represents the
orthographic views of the output model. The principal

functions of the output verification algorithms are:

a) to extract the data associated with the orthographic
views of the output solid model from the parametric file
generated by the solid modeller,

b) to compare the input and output views data in order to
detect differences (if any).between the input and output

orthographic views.

In the case of prismatic objects, the output
verification is carried out to confirm that the output
orthographic views are the same as the input orthographic
views. Thus, the model generated is verified to be the
exact object and the interpretation process is

successfully terminated.

In the case of more general three-dimensional
objects, the comparison between input and output views may
have the same result as above, or may lead to the
detection of a number of discrepancies between the input
and output views. The presence of such discrepancies
indicates that the output model is not the exact object
but an approximation model. Thus, there exist a number of

subobjects which need to be removed from the output model

227



to generate another output model, which may again be the

exact object, or yet another approximation model.

6.3.1) EXTRACTION OF OQUTPUT VIEWS DATA:

The first task in the output verification
subprocess is the extraction of the data corresponding to
the orthographic views of the output model from the
parametric text file generated by the solid modeller. A
small section of such a file, shown in Figure 6.11,

contains:

- Three lines of 'REM' statements, where each line is used
to indicate that the following block of data corresponds
to one view.

- A number of lines that comprise the character string
'LT' followed by an integer whose value is set to 1 to
indicate that the following edges are drawn in a dotted
line style (hidden edges), or to 2 to indicate that the
edges are solid lines (visible edges).

- Several lines that comprise the character string 'LN'
followed by an integer whose value is set to either 2 to
indicate that the edge is a straight edge, or to 5 to
indicate that the edge is a circular arc.

- Several groups of 1lines comprising the character
strings 'X =' and 'Y =' followed by real numbers. In the

case where the edge is a straight edge, each pair of lines
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START / 3,1

FA 12
PROMPT INDICATE BOTTOM

ST / C XBL, YBL

REM NEW VIEW X AND Y PAPER SIZE

LT
LN
X=
K=
K=
X=
X=
X=
X=
X=
X=
K=
X=
X=
X=
X=
X=
X=
LT
LN
X=
X=

1
2

3.000000 + XBL,
-6,000000, Y=
-3.000000 + XBL,

6.000000, Y=

3.000000 + XBL,

0.000000, Y=
-3.000000 + XBL,
0.000000, Y=
-1.000000 + XBL,

0.000000, Y=

0.000000 + XBL,

0.000000, Y=

2.000000 + XBL,

0.000000, Y=

2.000000 + XBL,

0.000000, Y=

-1.000000 + XBL,
0.000000, Y=

REM NEW VIEW X AND Y PAPER

L1
LN
X=
X=
X=
x- .
X=
X=
X=
X=
LN
X=
X=
A=
LN
X=
X=
X=
X=
X=
X=
X=
X=
I
I

END

1
2

-3.000000 + XBL,
2.000000, Y=
2.000000 + XBL,
-5.000000, Y=
3.000000 + XBL,
0.000000, Y=
-3.000000 + XBL,
0.000000, Y=

3.000000 + XBL,
0.000000, Y=
90.000000

-3.000000 + XBL,
-3.000000, Y=
-1.000000 + XBL,
0.000000, Y=
-1.000000 + XBL,
0.000000, Y=
0.000000 + XBL,
0.000000, Y=

Y=

Y=

Y=

Y=

SIZE

Y=

Y=

Y=

Y=

Y=

Y=

Y=

Y=

Y=

LEFT POINT

-1.500000
0.000000
1.500000
0.000000
1.500000
-3.000000
-1.500000
3.000000
-1.500000
3.000000
1.500000
-3,000000
-1.500000
3.000000
=1.500000
3.000000

-1.500000
3.000000

3.000000
0.000000
-3,000000
0.000000
-1.000000
-1,000000
-3.000000
6,000000

-3.000000
1.000000

-1.000000
0.000000
0.000000
1.000000
2.000000
1.000000
2.000000
-1.000000

9.9422

+ YBL

+ YBL

+ YBL

+ YBL

+ YBL

+ YBL

+ YBL

+ YBL

+ YBL

9.9422

+ YBL

+ YBL

+ YBL

+ YBL

+ YBL

+ YBL

+ YBL

+ YBL

+ YBL

9.942

9.942

Solid modeller output

parametric file
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represents an edge. The first 1line contains the X
coordinate and Y coordinate wvalues of the start node of
the edge, whereas the following 1line contains the X
coordinate and Y coordinate values of the end node
relative to the start node of the edge. If, however, the
edge is an arc, thei: the first 1line contains the X
coordinate and the Y coordinate values of the start node
and the following line contains the X coordinate and Y
coordinate values of the centre of the arc relative to the
start node of the edge. An additional line containing the
character string 'A =' followed by a real number gives the
angular position of the end node with respect to the start

node.

It is therefore possible to extract'from such a
file, the complete geometric and topological data of the
orthographic projections 6f the output model. The
algorithm which carries out such a ‘task is a simple

routine which manipulates strings of characters.

It was found that the extracted data required a
minor adjustment because the coordinate system used by the
PAFEC 'BOXER' modeiler is different to the one used by the
author. A shift in the X and Y directions is computed for
each view, by comparing the minimum X and Y coordinate
values of the extracted data with the minimum X and Y
coordinate values of the corresponding inpﬁt orthographic

views. All the X and Y coordinate values in the output

230



views are then adjusted by deducting the corresponding
shift. The output of this routine is therefore the data
which represents the orthographic views of the output
model in the coordinate system adopted by the author. The
data structure is similar to the one which holds the input

orthographic views data.

6.3.2) IHE 'COMPARISON' ALGORITHM:

The purpose of this algorithm is to detect the
differences that may exist between the input and output
orthographic views. The most obvious and simplest test is
to compare the number of nodes and edges in the input
views with the number of nodes and edges in the
corresponding output views. However, it is possible for
two views to comprise the same number of nodes and edges
and yet may not be similar. For this reason, in addition
to this simple test, the algorithm has been developed to

include the following steps:

a) Search for a 'matching node' in the output view for
each node in the corresponding _input view. A node is
defined as having a 'matching' node only if the coordinate
values differ by not more than a preset tolerance. The
matching of two nodes is independent of the node numbers,
since the nodes in the input views are numbered in a

different sequence from the nodes in the output views.
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b) Search for a 'matching edge' in the output view for
each edge in the input view. An edge is defined as having
a 'matching edge' only if both edges have matching start
and end nodes, and they are both of the same type, i.e.
either both straight edges, or both circular arcs in which

case they must also have the same centre.

The search for matching edges is initiated only if
all the nodes in three input views have a matching nodes
in the corresponding output views. The specifications of

the algorithm may be as follows:

STEP 1: Compare the number of nodes in the input XY view
with the number of nodes in the output XY view. If these
numbers are equal then go to step (2), otherwise go to
step (13).

STEP 2: Compare the number of edges in the input XY view
with the number of edges in the output XY view. If these
numbers are equal then go to step (3), otherwise go to
step (13).

STEP 3: Compare the number of nodes in the input YZ view
with the number of nodes in the output ¥YZ view. If these
numbers are equal then go to step (4), otherwise go to
step (13). |

STEP 4: Compare the number of edées in the input YZ view
with the number of edges in the output ¥YZ wview. If these
numbers are equal then go to step (5), otherwise go to

step (13).
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STEP 5: Compare the number of nodes in the input XZ view
with the number of nodes in the output XZ view. If these
numbers are equal then go to step (6), otherwise go to
step (13).

STEP 6: Compare the number of edges in the input XZ view
with the numbe: of edges in the output XZ view. If these
numbers are equal then go to step (7), otherwise go to
step (13).

STEP 7: For each node in the input XY view, find a
'matching node' in the output XY wview. If such a matching
node does not exist then go to step (13).

STEP 8: For each edge in the input XY view, find a
'matching edge' in the output XY view. If such a matching
edge does not exist then go to step (13).

STEP 9: For each node in the input XZ view, find a
'matching node' in the output YZ wview. If such a matching
node does not exist then go to step (13).

STEP 10: For each edge in the input XZ view, find a
'matching edge' in the output XZ view. If such a matching
edge does not exist then go to step (13).

STEP 1l1l: For each node in the input YZ view, find a
'matching node' in thé output YZ view. If such a matching
node does not exist then go to step (13).

STEP 12: Fnr each edge in the input YZ view, find a
'matching edge' in the output YZ view. Ir such a matching
edge does not exist then go to step (13), otherwise go to
step (15).

STEP 13: If the object has been classified as a prismatic
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object then go to step (14), otherwise go to step (15).
STEP 14: The input and output views should have been
similar. Inform the user that there has been an error.
Exit.

STEP 15: All tﬁe input and corresponding output
orthographic views are similar. Inform th2 user that the
generated model is the exact object. Exit.

STEP 16: The input and output orthographic views. Produce
a list of differences (nodes and edges numbers). Inform
the user that the generated model is an approximation
model, and that further processing is required in order to
reconstruct the exact object, or to obtain a more refined

model. Exit.

The last step of the above algorithm represents,
in effect, the only instance where interaction with the
user may be required. A choice is here given to the user
on whether to terminate, or to allow the interpretation
process to continue in order to generate another model
which may then either be the exact object, or another but

more refined approximation model.

6.4) EEED BACK ALGORITHMS:

Discrepancies between the input and output
orthographic views indicate that the output model requires

further processing in order to generate either the exact
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object, or a more refined model. This process, which
consists of identifying and subtracting one or more
subobjects from the output model, is initiated by the feed
back subprocess algorithms whose main function is to
examine the original input views and the orthographic
views ~f the output model, in order to generate the
orthographic views of such subobjects. The geometric and
topological data related to the orthographic projections
.0f these subobjects are then fed back as input to the
analysis process, and interpreted as solid models in a

similar fashion to the original input views.

The first step in the feed back subprocess
consists of generating the views of a wireframe which is
defined by combining the wireframe of the input object
with the wireframe of the output model. It can be clearly
observed from Figure 6.12, that the purpose of such a
wireframe is to define the wireframes of the subobjec£s
that are to be reméved from the output model. Such a
wireframe, referred to here as the 'pseudo-wireframe', may
not be directly generated since the input object is yet to
be reconstructed; however, the orthographic projections of
the pseudo-wireframe, shown in Figure 6.13, and referred
to hereafter as the pseudo-views, can be obtained directly
from the input views and the orthoyraphic projections of
the output model. Furthermore, the orthographic views of
subobjects defined by the pseudo-wireframe, are clearly

visible in the pseudo-views, shown in Figure 6.13 as
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Fig. 6.12: a) Input object
b) 1st approximation model
c) 'Pseudo-wireframe'
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Fig. 6.13: a) A pseudo-wireframe, and
b) its orthographic projections
(pseudo-views)
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hatched areas. The pseudo-views are generated by the
'Pseudo-views Generator' algorithm described below in

section 6.4.1.

The next step in the feed back subprocess is to
extract from the pceudc-views the orthographic projectinns
corresponding to each subobject that is to be removed from
the output model. This task is performed by the 'Feed Back
Data Generator' algorithm described below in section

.42

5-4;1) IHE _"PSEUDO-VIEWS CENERATOR' ALGORITHM:

Pseudo-views are generated by 'assembling' all the
nodes and edges of the original input views with those
which describe the orthographic views of the output model.
The first step in the process of 'assembling' these
entities is to identify the nodes which are not common to
both set of projections. Such nodes are referred to
hereafter as either input, or output, 'Active' nodes.
Input active nodes, such as nodes 1, 4,7 and 10 in the YZ
in Figure 6.14(a), are nodes which exist in one of the
original input views but which do not have matching nodes
in the corresponding view of the output model. The
definition of a match is similar to the one used in the

'‘Comparison' algorithm, described in section 6.3.2.

238



10 g = gl
- -
4 T

2 11

(a)

Fig.

o

=

e Active node

(b)
2.
"’} r£10 o
! i
2
O : i
y E .
A
£
o

A.14: a) Criginal input views,
b) orthographic views of first

approximation model,

and

c) corresponding pseudo-views

239



The next step is to 'fit' any input,. or output,
active node to the output, or input, views, respectively.
A 'fit' consists of adding an active node to a view by
splitting the edge on which it lies, in that wview, into
two new edges. For example, the input active nodes 7 and
9, in the YZ view of the output model, shown in Figure
6.14(b), are fitted into the input Y¥YZ view, in Figure
6.14(a), by splitting input edge {3,11}, into three new
edges, which are shown as edges {A,B}, {B,C} and {C,D} in
Figure 6.14(c). A pseudo-view is then generated by adding
to the input view those edges which are not common to both

input and corresponding output views.

The specifications of the algorithm may be

described as follows:

STEP 1 I = 0

STEP 2: I =1 +1; If I > 3 then go to step (8)

STEP 3: Search in the Ith input view for nodes that do not
have a matching node in the corresponding Ith output view.
Store these nodes, if any, as input active nodes.

STEP 4: Search in the Ith output view for nodes that do
nqt have a matching node in the corresponding Ith input
view. Store these nodes, if any, as output active nodes.
STEP 5: Search in the Ith output view for edyes which may
be colinear .with the input active nodes of the
corresponding Ith input wview. Split such edges, and update

the geometry and topology of the Ith output view,
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accordingly.

STEP 6: Search in the Ith input view for edges which may
be colinear with the output active nodes of the
corresponding Ith output view. Split such edges, and
update the geometry and topology of the Ith input view,
accordingly.

STEP 7: Generate the Ith pseudo-view by adding to the Ith
input view, all the edges which are in the Ith output view
only. Go to step (2)

STEP 8: Exit.

6.4.2) THE 'FEED BACK DATA GENERATOR' ALGORITHM:

This algorithm has been developed to perform the
task of extracting from the pseudo-views, the data
corresponding to sets of orthographic projections of any
subobject that is to be removed from the output model. The
first step of the algorithm consists of identifying all
the loops in the pseudo-views. This is achieved by
applying the 'Loop Detector' algorithm described in

section 6.1.1. The loops are then labelled as follows:

0 for a loop which does not exist in either input or
corresponding output views.

1 for a loop which exists in the input views only.

2 for a loop which exists in the output views only.

3 for a 1loop which exists in both input and
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corresponding output views.

A loop in a view is said to exist in another view,
only if there is a loop, in the that view, which meets the

following conditions:

a) Both loops have exactly the same number of nodes and
edges, where each node in one loop has a matching node in
the other loop.

b) Each edge in one loop has a similar edge in the other
loop. Similar edges are defined as edges which are of the
same type, i.e straight edges or circular arcs, and the
start and end nodes of one edge are the matching nodes of
the other edge. Furthermore, in the case where the edges
are circular arcs, the centres of both arcs must have the

same coordinate wvalues.

For example, in Figure 6.14(c), the loop defined
by nodes b, ¢, 1 and p, in the YZ pseudo-view, has been
labelled as '0' because it does not exist in either the YZ
input view, or in the corresponding YZ output view.
Whereas, loop (k, 1, p, n) in the YZ pseudo-view, has been
labelled as 'l' because it exists in the YZ input view,

but not in the YZ output view.

The purpose of such a labelling process is to
enable loops, which represent projections of subobjects,

to be readily identified from the pseudo-views. It has
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been found that such loops may always be identified as

follows:

- any 'connected' loops labelled as '0',

- any disjoint loop labelled as 'l'.

It has been found, as expected, that some loops in
the pseudo-views can only have specific labels, because of
the manner in which the interpretation process is
implemented for non-prismatic objects, and the manner in

which pseudo-views are generated. For instance:

a) perimeter, or boundary, loops in the pseudo-views, will
always be labelled as '3', since the initial step in
interpreting non-prismatic objects consists of processing
the perimeter loop of each input wview only (section
5.4.3), and resulting in an output model whose perimeter
loops are the same as the perimiter 1loops in the
corresponding output views.

b) disjoint loops in the pseudo-views can only be labelled
as 'l' or '3'. A disjoint loop in the input views may, or
may not, exist in the corresponding output views, in which
cases, it is labelled as '3', or 'l', respectively, in the
pseudo-views. A disjoint loop in the output views also,
may or may not, exist in the corresponding input views. If
it exists in both views then, as before , it is labelled
as '3'; But, because the process of generating

pseudo-views generally consists of splitting edges in both
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input and output views, and adding edges to the input
view, any disjoint loop in the output projections which
does not exist in the input views, is always divided into
a number of connected loops. Thus, a disjoint loop in the
pseudo-views may never be labelled as '2', nor as '0'.
These interesting results may be used te crooss ‘check the
data associated with the orthographic projections of the
output model and those corresponding to the pseudo-views.
For example, if a perimeter loop in a pseudo-views has
been labelled as '0', 'l' or '2', then it can be said that
the output model generated is not the correct model. Also,
if a disjoint loop in the pseudo-views has been labelled
as '0',.or '2', then it would indicate that the output

model is again not the correct model, or that an error has

occurred in generating the pseudo-views.

The next step in the algorithm consists of
searching in the pseudo-views, for matching subobject
loops. A subobject loop in a XY pseudo-view is defined as
having matching subobject loops in adjacent YZ and X2
pseudo-views, only when their surrounding rectangles

defined, respectively, by:

( xxymin' Y;ymin' yxymax' nymax)’ ( zyzmin' szmin'

Zyzmax’ Yyzmax )r @04 ( Xyomins Zxzmins Xxzmax’ Zxzmax )

meet the following conditions:
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xxymin xzmin xxymax Xzmax
Yeymin = Yyzmin Yxymax = Yyzmax
Zxzmin = Zyzmin Zxzmax = Zyzmax
where:
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specifications of the algorithm are as follows:

STEP 1: I = 0;

STEP 2: I =TI 4+ 1; g = 0

If I > 3 then go to step (6)
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STEP 3: J=J + 1; If J > NLP(I) then go to step (2)

STEP 4: Search in the Ith output view, for a loop which is
similar to the Jth loop in the Ith pseudo-view. If such a
loop exists, then 1label the Jth 1loop in the 1Ith
pseudo-view, as '2', otherwise as '0'.

STezP 5: Search in the Ith input view, for a locp which is
similar to the Jth loop in the Ith pseudo-view. If such a
loop exists, then 1label the Jth 1loop in the 1Ith
pseudo-view, as '3' if it is already labelled as '2', or
as 'l' if it is already labelled as '0', otherwise label
it as '0'.

STEP 6: Check if the perimiter loop in the Ith pseudo-view
is labelled as '3'; If not then go to step (10).

STEP 7: Check if a disjoint loop (if any) in the 1Ith
pseudo-view is labelled as '0O' or '2'. If yes then go to
step (10), otherwise go to step (3).

STEP 8: For each 'connected' loop labelled as '0O' in a
pseudo-view, search in adjacent pseudo-views for matching
loops. If a match exists, store the data of the tﬁree
matching loops, as they represent the orthographic views
of a subobject.

STEP 9: For each disjoint loop labelled as 'l' in a
pseudo-view, search in adjacent pseudo-views for matching
loops. If a match exists, store the data of the three
matching loops, as they represent the orthographic views
of a subobject. Go to step (11)

STEP 10: Error.

STEP 11: Exit.
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The output of the algorithm is a set of data files
which comprise the data corresponding to the orthographic
projections of a. number of subobjects. These subobjects
are then identified as solid models which are then
subtracted from the output model to yield, as mentioned
above, either the exact model rcpresented by the original
input orthographic views, or another, but more accurate,
approximation model. In the latter case, the complete
process represents one complete iteration. An example
illustrating such iteration, is presented later in section

8.5.2,

All the algorithms described above, have been
implemented, and the corresponding source code, has been
written in FORTRAN 77, on the Apollo DN3000 workstation.
Such software, referred to as C.I.E.D.S.M. (Computer
Interpretation of Engineering Drawings as Solid Models),
has been designed with speed as a major criterion, because
of the iterative aspect of the process. The overall design

of C.I.E.D.S.M. software is described in the next chapter.
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THE C.IE.D.S.M. SOFTWARE
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7.1) INTRODUCTION:

The aim of this chapter is briefly to describe the
software developed in this project, with special emphasis
on its implementation on the Apollo DN3000 workstation.
For convenience, the suite of programs has been duhbed
C.I.E.D.S.M. (Computer Interpretation of Engineering

Drawing as Solid Models).

Many of the routines were originally developed on
an ICL Perqg 2 workstation, but subsequently transferred to
the Apollo DN3000 workstation. Diregt down-loading from
the ICL Perqg 2 to the Apollo DN3000 was not possible
because of hardware incompatibilities and 1lack of
communication software. The transfer has been made
possible by first transferring it from the Perqg 2
coﬁputer to a VAX 11/780 mainframe, and then down-loading
it to the "'Apollo Domain workstation. Very few
modifications to the software were necessary. Such a
transfer was required because a compatible subroutine
version of the solid modeller 'BOXER' was not supported on
the ICL Perqg2 computef, whereas such software was readily

available on the Apollo Domain workstation.

The software objectives are outlined in section
7.2 and a brief description of a number of subroutines is
given in section 7.3. Some of the routines have been

written to integrate the PAFEC 'BOXER' solid modeller into
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the software. These are highlighted to indicate the
possible modifications that must be made, should any other

CSG solid modeller be contemplated.

Considerations about software design, such as
portability, have been made from the start of the project,
as it is highly possible that the software developed in
this work may be implemented on a different system. Thus
the subject of section 7.4 is software portability. Some
aspects concerning data storage and execution speed are
also discussed in section 7.5. A set of operating
instructions for the package are given in section 7.6.
These instructions are mainly associated with data
acquisition at the input stage, since the program has been

designed to require a minimum of user interaction.

7.2) SOFTWARE OBJECTIVES:

The principal objectives of the software are:

1) the implementation of all the algorithms developed in
this project, (described in chapters 6 and 7), on a
computer workstation.

2) Design and development of an interface with a solid
modeller

3) Design and development of graphic facilities capable of

displaying the input views and the orthographic
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projections of the generated model
4) Design and development of facilities capable of
plotting the input views and the orthographic projection

~of the generated model, on a Roland DG DPX 2000 plotter.

7.3) IHE _C.I.E.D.S.M. PROGRAM:

The C.I.E.D.S.M. program has been designed to take
full advantage of the structured nature of the FORTRAN
language. It comprises 54 overlaid subroutineé which are
called from the main program 'MAIN'. The subroutines may

be conveniently divided into two categories:

a) 'Utility' routines

b) 'Process' routines

Utility subroutines, have been developed to
perform simple geometric computations. For example, the
routine 'PERPD' computes the coordinates of a point P at
which a perpendicular from another point D intersects a
line; the perpendicular distance PD is also computed; the
subrrutine 'POLAR' converts Cartesian  coordinates into
polar crordinates; etc. Other utility routines have been
deéignéd and developed to perform simple tasks such as
files and data handling, and plotting. For example, the
routine called 'TRANSF', reads a direct access file and

transfers the data to a number of integer and real arrays,
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and the routine PLOTTER provides a plotting facility on
the DPX 2000 plotter. Space does not permit the inclusion
of details of these subroutines in this thesis. Suffice it
to say that considerable use was made of the techniques of
'Homogeneous Coordinates', some of which are briefly

described in appendix C.

The 'Process' subroutines, briefly described
below, are the direct conversion of the interpretation
process algorithms into FORTRAN 77 source code. Some of
these routines are marked by asterisks (*) to indicate
that they are dependent on the solid modeller in use; they
form the necessary 'interface' between the solid modeller
and the algorithms developed in this project. The term
‘interface' refers to the generation of the solid
modelling input file as described in section 6.2, and the
extraction of the 2D data from the solid modeller output
file described in section 6.3.1. The 'process' subroutines
are:

INPIUT: prompts the user to present input orthographic
views data which are then stored in three separate random

access files - one file per view.

CYCLES: scans the input data in order to determine the
number of loops in each view. The perimeter loop is always

the first to be determined.

EXTREM: scans the input data to compute the extreme
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.coordinate values in each view.
TOPUP: updates the topology and geometry data.

LINK: finds all the nodes joined (adjacent) to a given

noae.

MARKER: labels edges according to the 'Loop Detector'

algorithm which was presented in section 6.1.1.

RELATE: determines relationships between all the loops in
a given view. It also labels each loop as 'DISJOINT' or

'CONNECTED' .
TEST3: checks if a given loop is a rectangle,

BROCILP: selects object loops for processing in order to

generate a 'profile', as defined in section 5.4.3.

BPLOOPS: Processes the object loops selected by the

subroutine PROCLP.

PATTI1: scans the topological and geometrical data of a

given object loop to determine its 2D geometric pattern.

PATT2: scans the topological and geometrical data of a
given primitive loop to determine its 2D geometric

pattern.
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SETREC: sets the coordinate values of the nodes of the

rectangle surrounding a given loop.

RNUMR : renumbers the nodes of the surrounding rectangle

according to the sense of the loop it is surrounding.

CFLAGS: allocates a flag to each node of a given loop,
according to its position with reference to the nodes and
sides of the surrounding rectangle. This routine
generates, in effect, the 'control list', as described in

section 6.1.6.

LOCAT: scans the control list generated by the routine
CFLAGS, in order to locaté all the primitive loops formed
by the intersection of a given loop and its surrounding

rectangle.
MERGEP: merges direct access files into the MAINDATA file.'

TESTAR: scans the MAINDATA file in order to search for
loops identified and stored as arbitrary patterns. If such
a loop is found, then its corresponding geometric and
topological data is stored in thelrandom access file

called ADATA.

UNTEST: scans the data stored in the ADATA file to test
the arbitrary loop for 'instability' conditions, mentioned

in section 6.1.7. If such conditions are found, then the
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loop is divided into two loops and their data stored back

into the MAINDATA file.

QUTLIN: reads the final MAINDATA file to extract the data
corresponding to all the basic patterns, and performs 2D
Boolean operations to reconstruct the corresponding object
loop. This routine is used as a means of cross-checking

the reconstruction process.

BTREEl: stores the pointers which relate parent loops to
their children loops. It generates and stores a Boolean

tree.

PRIMID: scans the final MAINDATA file to read the flag LPF
of all the basic patterns, in order to identify the 3D

primitives.

QOBNAME*: sets the object name according to text format

required by the solid modeller 'BOXER'.

BLOCK*: computes the parameters of a 3D primitive block,

as required by the solid modeller 'BOXER'.

WEDGE*: computes the parameters of a 3D primitive wedge,

as required by the solid modeller 'BOXER'.

EILLET*: computes the parameters of a 3D primitive fillet,

as required by the solid modeller 'BOXER'.
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CYXL12: computes the parameters of a 3D primitive

cylindér, as required by the solid modeller 'BOXER'.

CYL2*: computes the parameters of a 3D primitive
cylinderical segment, as required by the solid modeller

'BOXER'.

BTREE2*: generates and stores character strings which
represent the syntax of the solid modeller input file. It
uses the pointers generated by the routine BTREE1l, the
object names generated by OBNAME, and the parameters from

BLOCK, WEDGE, FILLET, CYLl1l or CYL2.

HWIREE*: writes the character strings generated by BTREE2
onto a file called 'BOXER.DAT', which is used as input to

solid modeller 'BOXER'.

EXTRACT*: scans the solid modeller output file, DOGSDAT,
in order to extract the 2D data which represents the
orthographic projections of the generated model. This
routine also rectifies the extracted data by adding or
subtracting the amount of shift which exists between the
data which represent the input views and the extracted

data.

CVIEWS: scans and compares the input views data and the
data which represent the orthographic views of the output

model. If discrepancies exist between the two sets of
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views, then a flag, NCHECK, is set to 1, otherwise it

remains equal to zero.

ACTIVN: detects 'active' nodes (if any) in both input and

output views.

UVIEWS: generates the data which represents the

'Pseudo-views', as defined in section 6.4.1.

LABELV: labels each loop obtained in the pseudo-views by
comparing the data associated with each loop found in the

input and the views of the output model.

MATCH: determines the matching set of loops, in the
pseudo-views, which represent the orthographic projections .
of a subobject that must be removed from the output model.
The topological and geometric data associated with a set
of matching loops, are stored in random access files whose

structure is similar to the original input files.

DRAW: draws and displays the input views, the orthographic
projections of the output model and the corresponding

pseudo-views.

All the routines, including the main program, are
grouped and stored in different files, which are compiled
separately to generate the corresponding binary files. The

binary files are then bound together using a link file.
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The link file must also comprise the binary file of the

subroutine version of the solid modeller.

7.4) SOFTWARE PORTABILITY:

The C.I.E.D.S.M. software has been developed with
portability as one of the major requirements. It is
desirable for any software readily to be able to be
converted to suit a new operating environment, since all
prospective users are unlikely to have the same computer
system. Of course, it is not yet possible to produce any
software which 'is universally portable, however it is
possible to design the software, so that a minimum effort
is required in modifying it for transfer from one system

to another.

It is highly probable that the software developed
in this project may be implemented on a different system
in the near future. For such reasons, the C.I.E.D.S.M.
suite of routines have all been written in FORTRAN 77, a
high level language which is highly portable and which is
one of the most popular scientific languages used in
software practice. Such portability was demonstrated when
the software was transferred from the ICL Perg2 computer

to the Apollo Domain workstation.

Portability considerations have been expanded
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further by keeping the number of routines associated with
the solid modeller to a minimum, as it is also unlikely
that all prospective users will use the same solid
modeller. These routines, highlighted above, have been
developed to provide the necessary syntax as required by
the PAFEC BOXER solid modeller, and extract data from
files generated by it. If, in the future, a different
solid modeller is used with the software developed in this
work, then it 1is necessary to modify these routines

accordingly.

Considerations have also been given to graphic
languages. Initially, when the scftware was being
developed on the ICL Perqg2, graphics routines were written
using GKS (Graphic Kernel System) libraries [46,47]. This
choice is justified as GKS is considered as a standard,
although it is still to be improved. Unfortunately, GKS
was not available on the Apollo DN3000 workstation at the
University of Aston. New graphics rbutines have been
developed and implemented on the Apollo DN3000
workstation, initially using the Domain 2D Graphic
Primitives Resources (GPR) [48], and later, the Domain 2D
Graphic Metafiles Resources (GMR) [49] packages. GMR, an
extension of GPR, provides extended facilities for

developing and storing graphics data.
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7.5) EXECUTION SPEED AND DATA STORACKE:

One of the major requirements in designing software
for iterative problem solving techniques, 1is execution
speed, because of the potentially slow and repetitive
nature of . he process involved in reaching a soluticn.
Generally, the execution speed of such programs can be

improved but at the cost of memory and storage space.

The interpretation process developed in this
project is iterative, and thus, execution speed was one of
the major requirements that had been taken into
consideration in designing and developing the C.I.E.D.S.M.
software. Speed has been optimized by making considerable
use of the speed optimizing and data storage saving
capabilities of FORTRAN 77. For example, using unformatted
random access files rather than sequential ones, and

making use of common blocks.

Furthermore, the construction of a solid model by
the solid modeller is a time consuming operation. Thus, in
order to improve the execution speed of the whole process,
excessive and unnecessary use of the solid modeller during
iterations, has been avoided; the construction of any
solid model is performed only once, and never repeated. A
considerable improvement in the execution speed was also
observed when the software was transferred from the ICL

Perq2 computer to the Apollo DN3000 workstation.
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Little computer storage is necessary to implement
the routines developed in this work. The source code and
compiled binary files, occupy at least 590 Kb on the hard
disk. However, the solid modeller 'BOXER' requires at
least 6 Mb of storage capacity. Thus, the acquired system
should provide at least 6.6 Mb of storage capacity. The
Apollo DN3000 workstation has an ample amount of virtual

memory (2 Mb) and data storage capacity (72 Mb).

With the exception of the solid modeller input and
output files, all the files used to store the total set of
data used by the C.I.E.D.S.M. software are random access
ones. These files may be grouped into two types. The first
store the topological and geometric data which represent

orthographic projections. These are:

- files that store the xy, xz and yz input view data,
conveniently called 'xyi', 'xzi' and '‘yzi'

- files that store the xy, xz and yz orthographic
projections data of the output model, called 'xyo', 'xzo'
and 'yzo', respectively -

- files that store the xy, xz and yz pseudo-views

data, called 'xyp', 'xzp' and 'yzp', respectively.
All the above tiles, including others, such as

EXDAT, ADATA and ARBDATA files, have the same structure,

illustrated in Figure 7.1.
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The first two records are two 4-byte integers, NG
and NN, which represents the number of edges and nodes,
respectively, in each view. The third record is also a

4 byte integer, LDIR, which is set to:

i; G to indicate that a loop has a clockwise sense

ii) 1 to indicate that a loop has an anticlockwise sense.

The subsequent records are grouped in three sets.
The first set of records is divided into a number of
groups of four 4-byte integers. Each group corresponds to
the definition of an edge. Thus, the number of such
groups, in this first set of records, .is equal to the
number of edges. The first integer, in each group, is the
edge number, ISN. The second integer, IT, is set to either
0, to indicate that the edge is a straight edge, or to a
positive (or negative) number to indicate that the edge is
an anticlockwise (or clockwise) arc whose centre
coordinates values may be found at the address specified
by the absolute value of IT. The last two integers in each
group, are the start and end nodes, NS and NE, defining

each edge.

The next set, comprises groups of pairs of
records. _Each pair of records stores the X and Y
coordinate real wvalues, XN and ¥YN, of each node. The last
set is also divided into groups of pairs of records which

store the X and Y coordinate real values, XCA and YCA, of
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the centre of each circular arc (if any). The last record
in the each section is the 4-byte integer, LPF, which, as
defined previously, identifies the 2D geometric shape, or

pattern, of the loop.

The other type of files store the data associated

with the loops in each view, and these are as follows:

- 'XYLI', '"XZLI' and 'YZLI' which store the data of all
the loops in the xy, xz and yz input views

- 'XYLO', 'XZLO' and 'YZLO' which store the data of all
the loops in the xy, xz and yz views of the output model

- 'XYLP', 'XZLP' and 'YZLP' which store the data of all

the loops in the xy, xz and yz pseudo-views.

The structure of one of these files is illustrated
in Figure 7.2. The first record is a 4-byte integer which
represents the number, NLP, of 'circuits', or loops, in a
given view. The subsequent records are grouped into sets,
where each set of records comprises the data associated
with each loop. Thus, the number of sets is equal to the
number of loops in the view. The first set of records
always stores the data of the perimeter loop. The first
record in each set, is also a 4-byte integer which

indicates the number, LN, of nodes contained in the loop.

The next records store the numbers, N,, N,, N; .. Ny y, of

all the nodes in the loop. The last record in the set,

store the 4-byte integer, LT, which identifies the loop as
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'connected' if set to 1, or 'disjoint' if set to 0.

7.6) QRPERATING INSTRUCTIONS FOR C.I.E.D.S.M.:

The C.I.E.D.S.M software has been designed and
developed for automatically converting the 2D data which
represent orthographic projections of an object, into a
solid model. Interaction with the user is restricted to
data acquisition, except where iteration is required, in
which case user intervention is also requested. Prior to
running the program, the user must have prepared the input
data which comprises the topological and geometric data of
three orthographic views described in the first-angle
projection system. Such data comprise edge numbers, and
types, nodé numbers and coordinate wvalues, as well as arc

centres (if any).

The executable file of the program is already
stored on the hard disk of the Apollo workstation. To run
the program, the user must type CIEDSM, and hit the RETURN
key. He is then warned about certain file names that he
must not enter, as they are used by the system. The CIEDSM
dialogue has been designed so that the user responds to a
qgquestion that has a Yes/No answer by simply hitting the
RETURN key for 'Yes'. Hitting any other key indicates a
'No' answer. User information is then structured as

follows:
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Is data for XY, XZ or YZ view ?

Please, enter 'XY', 'XZ or 'YZ'.

Type either XY, XZ or YZ, which indicates the view
to which the data correspond. There are no restrictions on
the order in which the view data are entered. For
instance, if you wish to enter the XZ view first, then you

may do so. The next prompt is:

Is it a new file ( RETURN ="'YES') ?

If you have used the program before, then you may
have a number of files already stored on the hard disk,
which you would like to use. In this case, you might type
'x', and the program would respond by the following

question:

Old file. File name ?

File names may have up to 10 characters: you
should type a name and hit RETURN. Since you. have
indicated that the file name is for a file which is
already stored on the hard disk, CIEDSM searches for such
a name. If the name is_not found, the follc *‘ng message is

displayed:

Error. Such a file does not exist.
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Do you wish to continue (RETURN = Yes) ?

If you wish to continue, you must hit RETURN, and

the above steps are repeated.

New input data may be entered by hitting RETURN at

the following prompt:

Is it a new file (RETURN = 'YES') ?

The program then responds with the following

question:

New file. File name ?

Type a name and hit RETURN. The program sets the
interactive input mode for entering the topological and
geometric data ,of the input view. The first prompt is as

follows:

XY view:

Enter number of edges.

to which you must type an integer value which indicates
the total number of edges in the given view. This is then

followed by:
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XY view:

Enter number of nodes.

Type another integer value which indicates the
total number of nodes in the view. The program allows you
to check the input data by displaying the number of edges
and nodes entered. You may then either hit RETURN to
indicate that the data entered is correct, or hit any
other key to indicate that the data is to be modified. In
the latter case, the program displays the last two prompts
inviting you to re-enter the number ﬁf edges and nodes.
These last two steps are repeated until the input is
acknowledged to be correct. The program then carries on
requesting data associated with each edge, by displaying

the following prompt:

Edge 1:
Enter: 0 if edge is a straight line
1 if the edge is a clockwise arc

-1 if the edge is an anticlockwise arc

Type either one of the integer values displayed
depending on the type of edge npﬁber 1. The next prompt
invites you to input the start and end node numbers of the
edge, which in this case is edge number 1. The prompt is

as follows:
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Edge 1:

Enter start and end node numbers.

You should respond by typing two integer values;
the first one indicates the start node number, and the
second the end node number. The last two prompts are then
displayed again, in sequence, for edge number 2, and then
edge number 3, and so on. Thus, allowing the data
corresponding to the type, start and end node numbers of
all the edges of that view, to be entered. The program
then provides an instant check by displaying all the

previous input data folilowed by this prompt:
Is data correct (RETURN ="'YES') ?

Again you may either acknowledge that the data is
correct by hitting RETURN, or you may wish to modify a
specific wvalue, by hitting any other key, in which case

the following prompt is displayed:

Enter edge number to modify

Type an integer value indicating the edge he
wishes to modify. You are the. invited to reentie¢r the
correct type, start and end nodes of that specific edge.
The check is repeated until the data is acknowledged to be

correct, thus completing the topology input data. The next
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steps are concerned with the input of the geometrical
data, which comprises the coordinate values of all the
nodes and centre of arcs (if any). The program displays

the following prompt:

Node 1;

Enter X and Y coordinate values.

Type two real values; the first one is the X
coordinate value, and the second is the Y coordinate value
of node number 1. This step is repeated until all the
coordinate values of all the nodes in the view are
entered. The program then scans the type of all the edges
in order to check for circular arcs; If the view comprises
such an edge, then the edge number is displayed, and you
are informed that this particular edge is a circular arc,
and then prompted to input the coordinate wvalues of the
centre of that arc. Assuming that you have previously
specified that edge number 11 is of type 1, which
indicated that edge number 11 is a clockwise circular arc,

thus the prompt would be as follows:

Edge 1115 a circular ar¢

Please, enter X and Y coordinate values of its centre.

You must then input two real values which

represent the X and Y cpordinate values of the centre of
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that '‘particular circular arc edge, in this case edge
number 11. If the view comprises several circular arcs,
then this step is repeated a number of times equal to the
number of such edges. Again, the coordinate values of all
the nodes, followed by the coordinate wvalues of centre of
arcs (if any), are displayed to enable you to check your
input data. These values may be modified at this stage, if
you wish to do so. The modifications are carried out as

previously indicated.

All the input steps must then be repeated for the
two remaining views. After completing the input of the
data of all thLe views, you are then immediately informed
that the process of converting the 2D data into a 3D soiid

model has started, by the following message:

e e e vl e e o o ol o ol e o o ol e o o o o ol o ol o e e e

*** ANALYSIS STEP ***

e ol ol e ol e o o e o o e o e o o o o o e e e o e b e e

which is shortly followed by another message informing you
that the data has been analysed, and the input data
represent the orthographic views of either a prismatic, or
non-prismatic, object. If the objeciL has been identified

as prismatic then the message will appear as:
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e e e e e e o o ol o e e e e ol ol e e e e e e e o o e e e e ok

*** PRISMATIC OBJECT ***

o e ol e e e o o e o o e o e e o o e e e e e ok e e e e

otherwise, the message will be as follows:

e e e e e e e e o o e e ok e ol e o o ol e o o o o o ol e o o o o o e e e e e

*** NON-PRISMATIC OBJECT ***

dhhhh kbbb bbb bbb bbb ddbh bbb ddd

Either message 1is then followed by another
indicating that the analysis step has been completed, and
that the solid modelling step has started. A prompt
requesting you to enter the type of terminal you are
using, is displayed. A list of the different terminal
supported by the solid modeller software, can be obtained
by typing the on-line help cpmmand 'H'. For instance,
typing 3000 would indicate that the workstation is an
Apollo DN3000 with colour monitor, and that the whole
screen would be used for graphics display; whereas, typing
3001, would indicate that the same workstation is used,
but only the present window, and not the whole screen,

would be used for graphics display.

The whole screen (or window) is then cleared to
display the orthographic projections of the generated

model. This is then followed by a message informing you
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that the solid modelling stage has now been completed, and
that the next step, which consists of extracting the
orthographic views data of the output model, has started.
The screen is cleared again to display either two or three
sets of orthographic projections. If no differences have
been found to exist beiween the input views and the
projections of the output model, such as in the case of
prismatic and ortho-prismatic objects, then only the input
views and the orthographic projections of the output model
are displayed. In this case, the program displays the

following message:

LR A2 2L E A2ttt ARttt st Eldsd)

wassart SUCCESSFUL CONVERSION  *******
*** EXACT OBJECT IS RECONSTRUCTED ***

ol e o ol e o e ol e ol e o ol e ol ol o o ol e ol e o e ol e e o o o o o e o e ol e e o ol o e e e e e o e e e

However, if discrepancies have been found to exist
between these two sets of views, then the pseudo-views are
also displayed, highlighting those differences. You are
thus provided with a facility for checking and examining
the differences between the input wviews and the
corresponding projections of the output model. The program

ruen displays the following prompt:

The output model is NOT an exact solution.

Do you wish to continue (RETURN = 'YES') ?
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Hit RETURN if you decide that the generated model
requires more refinement. You may, on the other hand,
decide that the output model is accurate enough for the
application you have in mind, in which case you should hit
any other key to exit from the CIEDSM program, hence

terminating che interpretation process.

In the former case, the program displays the

following message:

o e o e o e e ol ol ol o o ol ol o ol o o ol e ol o ol o e e e o o e e e e ok

*** ITERATION REQUESTED ***

dhddd ko d AR dr bk el e e

**** FEED BACK STARTED ****

el dede de oo e e o o e ok e ol e e o e ok e e o e e o e o e e o

which indicates that the orthographic projections of one
or more subobjects are being retrieved from the
pseudo-views. The analysis process is then repeated and
the orthographic views of a new output model are
displayed. The process continues in this fashion until the
output model is identified to be the exact object, or

until you decide to terminate the process.

The C.I.E.D.S.M. software has now been described,

and a set of operating instructions have been given. These
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are simple and easy to follow as they are
self-explanatory. The software has been tested using a
number of practical examples; These examples have been
chosen to illustrate the implementation of the
interpretation process for prismatic and non-prismatic

objects, and are described in the next chapter.
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PRACTICAL APPLICATIONS OF THE DEVELOPED

PROCESS
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8.1) INTRODUCTION:

A number of practical examples have been selected
to illustrate the interpretation process algorithms
developed in this project, and their implementation to the
different clasc2s of objects. Thecze have been chosen to
illustrate the range of objects that may successfully be
processed, thereby enabling the reader to complement his
understanding of the scope and nature of the process.
Furthermore, the differences between prismatic (simple and
complex), ortho-prismatic and more general 3D objects, are
highlighted by selecting objects which slightly differ
from one example to another. For instance, the object
chosen to represent simple prismatic objects, is
transformed into a complex one by drilling holes through

it.

The first example illustrates the reconstruction
process of an object which is itself composed of a single
primitive. Although trivial, the example not only serves
its purpose as an introduction, but it also demonstrates
that the implementation has been so designed that such
simple objects may be identified, and reconstructed
withoﬁt the need for the full process to be followed in a

formal manner.

' The second and third examples illustrate to simple

and complex prismatic objects, respectively. Whilst
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example 4 treats what has previously been described as an
ortho-prismatic object: it shows that in such cases, the
reconstruction 1is exact and did not require any
iterations. Example 5 corresponds to cases where the
notion of 'approximation models' and iteration to an

'‘adequate' model arise.

8.2) EXAMPLE 1: A PRIMITIVE ORJECT:

Figure 8.1(a) shows a set of three views which
represent the first angle projections of an object, and
Figure 8.1(b) the corresponding topology. The process of
converting these views into a solid model is initiated by
the 'Loop Detector' algorithm (section 6.2.1) whose
function is to determine the number and type of loops in
each view. Each loop is then processed by the 'Pattern
Identifier' algorithm which determineé its geometric
shape. The results of applying both algorithms to all the
views are summarized in Figure 8.1(c), which iﬁdicates

that:

a) each view is composed of a single loop,

b) the 2D pattern of the loop in the xy view has been
identified as a right-angle triangle,

c) the 2D pattern of the loops in the xz and yz views have

been identified as rectangles.
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According to the 'Class Identifier' algorithm,
this set of patterns forms the signature of a 3D primitive
(section 6.2.3). The primitive is identified as a wedge. A
solid model 1is then immediately reconstructed by
generating the solid modelling input file which, in this

trivial case, consists ~i tle fcllowing statements:

XY01l <- WEDGE (4.0, 3.0, 5.0)

PRIM <- XYO1

where XY01l and PRIM are names that are automatically given
to the 3D primitive, and the final object, by the

software, respectively.

The computation of the wedge length, WL, height,
WH, and width, WW, is illustrated in Figure 8.2. In this
example, WL is equal to 4.0, WH to 3.0 and WW to 5.0. The
centroid of the object is automatically positioned at the
origin of the solid modeller coordinate system, shown in

Figure 8.2 as the set of OXYZ axes.

The solid modeller reconstructs the 3D model PRIM
and generates a parametric ASCII file from which the
orthographic views of the model are extracted. These data
are then compared with the input data by the 'Compa..ison'
algorithm. Because the algorithm is independent of the
labelling of nodes, or edges, the two sets of views are

found to be the same, as shown in Figure 8.3, although the
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nodes and edge numbers in the input views do not
correspond to the node and edge numbers of the
corresponding view of the output model. The complete match
between the input and output views confirms that the

generated model is the exact object.

8.3) EXAMPLE 2: A SIMPLE PRISMATIC OBJECT:

Figure 8.4 (a) shows the three orthographic views
of an object, and Figure 8.4(b) the corresponding
topological data. The results of the search for the number
and type of loops in each view, Figure 8.4 (c), shows that
each edge is traversed twice, in opposite senses, thus
clearly illustrating the execution of the 'Loops Detector'

algorithm; these results indicate that:

a) there is a view, in this case the XY view, which may be
identified as a base-view since it comprises only one loop
b) all the loops in the remaining views (XZ and YZ views)

are rectangles,

In this case, the object is identified as a simple
prismatic object, since, in addition to the above
conditions (a) and (b), all the nodes in each of the

remaining views belong to the perimeter loop,.

The interpretation of such an object consists of

284



> <
=<

X > Z

3 2

2 4
2 1
7
5 6 5
4 7 8
8 3 1
6 5
7z 8

4 1
\ J
7 (a)
XY view XZ view YZ view
EN TY SN NE EN TY SN NE EN TY SN NE
I ¢ il S [V R 109 '8 B
20 »85 4 P TR N L N TR
gl 2 < e R )l e an 2%
4 0 & 2 * IS ¢ e R 4 0506 .7
B M ANNT 5. 0. ‘85 59T 14 3
B 00N iTamel] ga0 2 S g 0 4 85
7 8 4 i < S S - oo, to-ig
8.0 3WTh 840 7 4 BaQ B 7
80, ' 8 g" 0 1 8
10 0 1 2 10.0...3 7

EN = Edge Number TY = Edge Type SN & NE = Start & End Nodes

(b)
View Loop No Edge Nos. Pattern shape | Type
o | u SRR wimy |
L1 -2, -7, 4,-8,1,-9, 10, 6 rectangle P, C
XZ L2 -1, -3, 2, -5 rectangle Cc
L3 7,3, 8, -4 rectangle (o
L4 5, -6, -10, 9 rectangle C
L1 -5,9,1, -6, -3, 7, 4, -10 rectangle P, C
Yz L2 -1, 8, -4, -2 rectangle Cc
L3 2, -7,3,6 rectangle Cc
L4 5, 10, -8, -9 rectaiigle C

P = Perimeter loop =~ C = Connected loop
(c)
Fig. 8.4: a) Orthographic views of a simple
prismatic object

b) topological data
c) Number and type of loops

285



processing the single loop contained in the base-view,
i.e., the perimeter loop in the xy view. The first step of
such a process consists of computing the extreme
coordinate values of the object loop in order to define
its surrounding rectangle. These values are determined by
the 'Extreme Coordinate Search' algorithm (section 6.1.5).
A point with such an extreme value is found to lie on the
circular arc (1,2}, Figure 8.5(a). This point is added to
the xy view, as node 9, by splitting the arc (1,2} into
two smaller arcs (1,9}, and {9,2}. The coordinates of the

surrounding rectangle are then as follows:

xr (1) = xmax yr(l) = ymin
Xxr (2) = xmax yr(2) = ymax
xr(3) = xmin yr(3) = ymax
xr (4) = xmin yr(4) = ymin

The next step consists of generating the 'control
list' (section 6;2.6). The control list for such an object
loop, shown in Figure 8.5(b), is then used by the
'Primitive Loop Locator' algorithm the function of which
is to locate the loops obtained by the intersection of the
object 1loop and its surrounding rectangle. These
'primitive' loops are shown in Figure 8.5(a), as loops
P<, P3, and P4, located between the vwject loop PO and its

surrounding rectangle (loop P1l).

The data for each primitive loop are then examined

286



A
YMaX e— .._--------_-_.;RZ
]
1
1
— P1
1 Sufrounding
P3 | rectangle
1
ymin —| R4 ¢
6
xmin (a) xmax
A B C
8 1 1
4 2 1
5 2 1
9 3 1
2 4 1
6 4 0

(b)

Fig. 8.5: a) Obiject loop and surrounding rectangle
b) the corresponding control list'

287



by the 'Loop Identifier' algorithm to identify the
geometric shape of its pattern, and label each pattern
with a flag, LPF, according to its shape. The flags and
patterns of all the primitive loops have been found to be

as follows:

Loop Pl = basic pattern => LPF 1 or 'rectangle'

Loop P2 = basic pattern => LPF = 4 or 'quadrant'

Loop P3 arbitrary pattern => LPF = 0

Loop P4 basic pattern => LPF = 3 or 'fillet'

The data for all the loops, and their
corresponding flags are stored in the MAINDATA file. After
scanning by the 'Arbitrary Pattern Analyser' algorithm,
the MAINDATA file is found to comprise a loop, P3, that
has an arbitrary pattern which is decomposed further into

loops PS5 (its surrounding rectangle) and P6.

Again, loop P6 is identified as an arbitrary
pattern. Furthermore, it 1is found to possess the
characteristics of an ‘'unstable' loop (section 6.1.7).
Such characteristics prevent loop P6 from being directly
decomposed into further patterns, and hence, is divided
into three further loops (section 6.1.8), shown in Figure
8.6 as loops P7, P8 aﬁd P9. The data of these loops a.e
then stored back into the MAINDATA file, and all the loops
are identified as basic patterns, shown in Figure 8.6 as

loops P1, P2, P4, P5, P7, P8 and P9.
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Each of the basic patterns identified above
represents the xy view of a 3D primitive. The remaining
views of each primitive are composed of rectangles. Each
set of three patterns represents the signature of a 3D
primitive, as shown in Figure 8.7(a). For example, loop P1l
has been identified as a rectangle which, together with a
rectangle in each of the remaining views, form the

signature of a primitive block.

The solid modeller input file is then generated

and consists of the following statements:

XY0l <- BLOCK (5.0, 5.0, 4.0)

XY02 <= C¥L. (4.0, 2.0) AT (2.5, =2.5, =2.0 )

X¥04 <=~ FILIET (1.0, 1.0, 4.0) AT (=2.5, 2.5, =2.0)
X¥05 <~ BLOCK (4.0, 3.0, 4.0) AT (0.5, 1.5, 0.0)
YO <= C¥L (1.0, 1.0, 9.0) AT (=1.9; ~1.5; =2.0)
X¥08 <- BLOCK (1.5, 3.0, 4.0) AT (-0.75, 1.0, 0.0)
X¥09 <= FILLET (0.5, 0.5, 9.0) AT (0.5, 1.5, ~2:0)
XY06 <- XYO7 - XY08 - XYO09

XY03 <= XYO05 - XYO06

FAMOD <- XY01l - XY02 - XYO03

Each primitive ‘is automatically given a name. The
object XY06 is obtained by subtracting primitives XY08 and
XY09 from primitive XYO7; object XY03 is obtained by
removing object XY06 from primitive XY05 and, finally, the

output model, called FAMOD, is then produced by
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subtracting object XY03 and primitive XY02 from the
surrounding block represented by the primitive XYOl.
Clearly, the generation of output models consists of a
gradual removal, not addition, of objects from the raw

block.

The solid modeller combines the objects and
primitives defined in the solid modeller input file to
generate the output model, Figure 8.7(b). A text file,
which comprises the parametric description of the
orthographic views of the output model, is also generated.
This file is then scanned and the data representing the
orthographic views of the output model are retrievecd. The
minimum node coordinate values of the output model views
are computed and then subtracted from the minimum node
coordinate values of the corresponding input views, in
order to calculate the amount of shift required to adjust

the node coordinates in all the views of the output model.

The original input views are finally compared to
the corresponding orthographic projections of the output
model, FAMOD, by the 'Comparison' algorithm, and are found
to be exactly the same, as shown in Figure 8.8; the
generated model thus corresponds exactly to the object
whose views comprised the input to the interpretation

process.
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8.4) EXAMPLE 3: A COMPLEX PRISMATIC OBJECT:

The object in the previous example is transformed
into a complex prismatic one by drilling a hole through
it, so that the modified orthﬁgraphic views are those in
Figu~ze 8.2(a2). The topological data is shown in Figure
8.9(b). Those views are immediately identified, by the
'Class Identifier' algorithm (section 6.1.3), to be the
orthographic projections of a complex prismatic object

since, as shown in Figure 8.9(c) :

a) there is a view, in this case the xy view, which
consists of two disjoint loops.

b) Each of the two remaining views comprises a number of
connected rectangular loops only. Furthermore, all the

nodes in these views belong to the perimiter loop.

The interpretation of process, now consists of not
just treating a perimeter loop in a base-view, but all the
loops in that view. In this example, loops POl and P02, in
the xy view are processed. Loop P01l is decomposed into the
primitive loops P1l, P2, P4, PS5, P7, P8 and P9, as
described in the previous example. Loop P02 is identified
as a circle (basic pattern), which does not require any
further decomposition. The resuiting tree is shown in

Figure 8.10. :

The 3D primitives, associated with each basic
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Fig. 8.9: a) Orthographic views of a
complex prismatic object
b) topology
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View Loop No Edge Nos. Pattern shape | Type
1,7, -2, -8, 5, 6, 3, -4 :
L1 1.4 3 .6 582 7 arbitrary P,D
i 9 ircle
L2 - circ D
L1 |2 12, -7, 4, -11, -8, 1| rectangle P.C
-9, 10, 6
XZ 2 -1,-3,2, -5 rectangle C
L3 3, 8,13, 12 rectangle o
L4 -4, 7,-13, 11 rectangle c
ES 5, -6, -10, 9 rectangle C
L1 -5, 9,1, -6, -3, 7, 4, -10 rectangle P, G
vz L2 -1, 8, -4, -2 rectangle Cc
L3 2,-7,3,6 rectangle C
L4 5,10, -8, -9 rectangle C

P = Perimeter loop =~ C = Connected loop

D = Disjoint loop

Fig. 8.9(c¢c): Number and type of loops
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Po1

P1 P3

Fig. 8.10: Decomposition tree of object
loops in the xy view
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pattern, are then identified, Figure 8.11, and the syntax
defining all the primitives and the output model, are

specified in the solid modeller input file, as follows:

XY01l <- BLOCK (5.0, 5.0, 4.0)

XY02 <= CYL (4.0, 2.0) AT (2.%, =2.5. =2.0 )

XY¥04 <=~ FILLET (1.0, 1.0, 4.0) AT (=2.5; 2.5, =2.0)
XY05 <- BLOCK (4.0, 3.0, 4.0) AT (0.5, 1.5, 0.0)
XY07 <= C¥L (1.9, 1.0, 4.0) AT (=1.5, =1.85, =2.0)
XY08 <- BLOCK (1.5, 3.0, 4.0) AT (-0.75, 1.0, 0.0)

X¥09 <= FILLET (0.5, 0.9; 4.0) AT (=0.5, 1.5; -2.0)
XY06 <- X¥0J = X¥08 - XYO09

XYHOl1 <~ CYL (4.0, 0.25) AT (-0.75, -0.75, =2.0)
XY06 <- XYO7 - XY08 - XYO09

XY03 <- XY05 - XYO06

FAMOD <- XY01l - XY02 - XY03 - XYHO1l

The file specifies that the output model, FAMOD, is

obtained by:

1) generating a number of prismatic objects, XY03 and
XY06, which are the result of processing the perimeter
loop Pl in the xy view

2) generating a cylindrical object, XYHOl, which is the
result of processing loop P02

3) generating the output model by subtracting these
objects from the surrounding cuboid, specified, in the

file, as object XYO1l.
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Fig. 8.12: a) Input orthographic views

b) Output orthographic views
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The orthographic views data of the output model
are then retrieved from the parametric file generated by
the solid modeller 'BOXER', and adjusted in'order to be
compared with the original input views data, as shown in
Figure 8.12. The input views are found to correspond
exactly to the orthographic projections of the output
model, thus confirming that the exact object has been

reconstructed.

The two previous examples have shown that exact
solutions are obtained for prismatic objects without
iteration. In section 5.4.3, a class of objects called
ortho-prismatic were introduced. An example illustrating
the reconstruction process for such an object is now given
and it will be seen that an exact solution will be
obtained without iteration. A more general example

requiring an iterative solution follows.

8.5.1) EXAMPLE 4: AN ORTHO-PRISMATIC OBJECT:

Figure 8.13(a) shows a set of three views which
represent the first angle projections of an object, and
the corresponding topological and geometrical data is

shown in Figure 8.13(b). These input views are not
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Fig. 8.13: a) Orthographic views of an
ortho-prismatic object
b) topology
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View Loop No Edge Nos. Pattern shape | Type
L1 1, 7, =2, =8 =B . :5; 6, 10, iy e
(PXY) 11, -4 )
XY L2 -1, 4, -3, -6, -5, 8, -12 arbitrary C
L3 2, -7,12, 9 rectangle C
L4 3, -11, -10 arbitrary C
L1 -8, -1, -9, 10, -17, 5, 11, :
(PX2) |-6, -12, -7, 4, 3 arbitrary P,C
L2 1, -13, -16, 15 rectangle c
XZ L3 2,13, 8,-3 rectangle Cc
L4 2, -4, 7, -14, 16 rectangle C
-5, 17, -10, 9, -15, 14, :
LS 12, 6,-11 arbitrary C
30, 185 -8, =15, 17, -6, ;
(PL\:Z) 13, 14, 3, -4, -2 arbitrary P,C
L2 1,15, 5, 9 rectangle c
L3 -1, 8, 7, 4, -3, 12, -17 recxangle "o
Y& L4 2, 7. 11, <10 rectangle C
' LS 6, -12, -14, -13 rectangle C
L6 -8, -9, -186, -11 rectangle C

P = Perimeter loop,

Fig. 8.13(c): Number and type of loops
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immediately identified as those of an ortho-prismatic
object. Instead, all the views are observed to comprise
one, or more, connected loops as shown in Figure 8.i3tc);

a feature which shows that the object is not prismatic.

The process of constructing a solid model from
orthographic views now consists of processing the
perimeter loop in each view; in Figure 8.13(a) these are
shown in bold lines, and labelled as PXY, PXZ and PYZ, in

the xy, xz and yz views, respectively.

The perimeter 1loop in the xy view, PXY, is
decomposed into basic patterns, shown as loops PXYl, PXY3,
PXY4, PXY6, PXY7 and PXY8, in Figure 8.14(a). Similarly,
the perimeter loop in the xz view, PXZ, is decomposed into
loops PXZ and PXZ2, Figure 8.14(b), and for the yz view,

PYZ yields loops PYZl and PYZ2, Figure 8.14(c).

Each basic pattern, generated from the
decomposition of loop PXY, is then used to identify the
corresponding 3D primitive, and a prismatic object,
previously referred to as the Z-profile (section 5.4.3)
may then be generated, Ias shown in Figure 8.15(a).
Similarly, all the 3D primitives associated with all the
basic patterns obtained from the decomposition of loops
PXZ and PYZ, are identified, and this time, the Y-profile
and the X-profile may be generated, as illustréted in

Figure 8.15(b), and 8.15(c), respectively.
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Fig. 8.14: a) Decomposition tree of PXY loop
b) Decomposition tree of PXZ loop
c) Decomposition tree of PYZ loop
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8.15: 3D primitives identification and

generation of: (a) Z-profile,
(b) Y-profile, and (c¢) X-profile
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The solid modeller input file consists of the

following statements:

XY01l <- BLOCK(8.0, 6.0, 5.0)

XY03 <~ WEDGE (1.5, 1.5, 5.0) AT (-4.0, 3.0, =2.5)
xY¥04 <- BLOCK(6.5, 4.0, 5.0) AT (0.75, 1.0, 0.0)
XY06 <- WEDGE(1.5, 1.5, 5.0) AT (1.5, -2.5, =2.5)
XX07 <= BLOCK(l1.5; 2.5, 5.0) AT (=1.75, 0.5; 0.0)
XY08 <- FILLET(1.0, 1.0, 5.0) AT (-1.0, -1.0, =2.5)
XY02 <- XY04 - XY06 - XY07 - XY08

ZPROF <- XY01 - XY02 - XYO03

Xz01 <- BLOCK(8.0, 5.0, 6.0)

XzZ02 <- BLOCK(2.0, 2.0, 6.0) AT (3.0, 0.0, 0.0)
XZ00 <- XZ01l - Xz02

YPROF <- (XZ00) AT (ROTX = 90.0)

¥Z01l <- BLOCK(5.0, 6.0, 8.0)

Y202 <- BLOCK(2.0, 2.0, 8.0) AT (-1.5, 3.0, 0.0)
YZ00 <- Yz01l - Yz02

XPROF <- (YZ00) AT (ROTY = 90.0)

FAMOD <- ZPROF * YPROF * XPROF

The above statements indicate that:

a) the Z-profile is specified by the object named ZPROF,
which is defined by subptracting the wedge primitive XYO03
and object XY02 from the surrounding block XY0l. Object
XY02 is defined by subtracting primitives XY06, XY07 and

XY08 from the primitive block XYO04.
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b) the Y-profile is specified by .the object called YPROF
which is defined by removing cuboid primitive XZ02 from
the corresponding surrounding block XZ01l, and by rotating

it through a 90 degrees angle about the X axis.

c) the X-profile is speéified by the object XPROF, defined
as the result of suiiLracting the cuboid primitive YZ02
from the cuboid primitive YZ0l, and rotating it through a
90 degrees angle about the Y axis

d) the output model is finally defined as the result of
the intersection (*) of the three profiles ZPROF, YPROF

and XPROF.

The above file is then used ky the solid modeller
to construct the solid model, Figure 8.16, according to
the specifications described above, and to generate a text
file in which the orthographic views of the solid model
are parametrically described. The topological and
geometrical data corresponding to the output model views
are extracted from this parametric file and then compared
to the original input data, as shown in Figure 8.17.
Again, similarly to the case of prismatic objects, the two
sets are found to be exactly identical, thus confirming
that the intersection shown in Figure 8.16, i.e., the
output model is a complete description of the original

object.
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Fig. 8.16: Generation of a solid model from
the intersection of the three
mutually perpendicular 'profiles'
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