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Summary 

Much of the geometrical data relating to engineering 
components and assemblies is stored in the form of 
orthographic views, either on paper or computer files. For 
various engineering applications, however, it is necessary 
to describe objects in formal geometric modelling terms. 
The work reported in this thesis is concerned with the 
development and implementation of concepts and algorithms 
for the automatic interpretation of orthographic views as 
solid models. 

The various rules and conventions associated with 
engineering drawings are reviewed and several geometric 
modelling representations are briefly examined. 

A review of existing techniques for the automatic, and 
semi-automatic, interpretation of engineering drawings as 
solid models is given. A new theoretical approach is then 
presented and discussed. The author shows how the 
implementation of such an approach for uniform thickness 
objects may be extended to more general objects by 
introducing the concept of ‘approximation models'. Means 
by which the quality of the transformations is monitored, 
are also described. 

Detailed descriptions of the interpretation algorithms 
and the software package that were developed for this 
project are given. The process is then illustrated by a 
number of practical examples. 

Finally, the thesis concludes that, using the 
techniques developed, a substantial percentage of drawings 
of engineering components could be converted into 
geometric models with a specific degree of accuracy. This 
degree is indicative of the suitability of the model-for a 
particular application. Further work on important details 
is required before a commercially acceptable package is 
produced. : 

2D-3D Reconstruction 
Engineering Drawing 
Geometric Modelling 
Computer-aided Design 
Computer Graphics
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1.1) INTRODUCTION : 

It was over twenty years ago that the application 

of computers to problems in Mechanical Design and 

Manufacture, also known as CAD/CAM (Computer-Aided Design 

and Computer-Aided Manufacture), was first recognized 

[1]. Since that time, much work has been done on the 

development of computer based systems for the input of 

product definitions into a computer database, and for the 

use of mechanical design information in design analysis 

and manufacture processes. 

In the field of database entry, a substantial 

amount of two-dimensional geometric product-data has been 

transferred into computer stored files by 

- manual digitization, and sophisticated techniques 

such as video scanning, of existing engineering drawings, 

- computer draughting that allows the designer to 

interact with the a display via a tablet, or other device, 

to directly produce and store new drawings of objects, in 

the classic two-dimensional projections of the edges of a 

three-dimensional object. 

Computer based systems have also been extensively 

used in the field of design analysis, manufacture and 

assembly of objects. For example, Finite-element methods 

may be used for the analysis of heat flow [2]; parts can 
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be checked for interference [3,4]; numerically controlled 

machine tool tapes can be generated to allow the 

manufacture of a part [5]; the constraints between objects 

and mechanisms can be simulated [6]; robot motions to 

assemble parts may be generated [7,8] and many more 

engineering applications such as Volume and Mass property 

computations, Process-planning, and High-realism Displays 

can be achieved. The software for these applications is 

extensive and commercially available to the Engineering 

Industry. 

In the early stages of development of such 

software there was a tendency for each application to 

require the description of a part in a form that was 

suitable for that application only. Fortunately, it soon 

became clear that a solid geometric model was the uniquely 

versatile form of description which could be exploited for 

all the above applications. 

Clearly, there is need for a bridge between 

database entry and engineering applications. The gap that 

needs to be bridged is illustrated in Figure 1.1; on the 

one hand, much product definition was already stored as 

two-dimensional information in the form of paper 

engineering drawings or computer stored files, and on the 

other hand, there is a wealth of valuable application 

software that requires three-dimensional volumetric 

information about the object to be stored as a solid 

18
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geometric model. In attempts to bridge this gap, new 

geometric modelling tools have been created to enable the 

designer to generate interactively three-dimensional 

models. However, these tools can only be used to generate 

solid models for new products. Furthermore, they are far 

from easy to use by creative designers who still prefer to 

develop sketches into engineering drawings, but geometric 

modelling systems which allow them to do that are not yet 

commercially available. 

It became obvious that in order to bridge this gap 

and reap the benefits of engineering applications 

software, it was necessary to develop means by which to 

interpret the considerable wealth of existing 

two-dimensional information as three-dimensional geometric 

models. There are, of course, various ways in which this 

may be done, but such activity is considered difficult, 

expensive and unacceptably labour-intensive. For example, 

in the case of numerically controlled machine tools, the 

path of the cutter has to be entered interactively over a 

drawing at a graphics terminal. Hence, there is a need for 

interpretive software which can process orthographic views 

of a product and automatically Generate a geometric solid 

model. 

Several research workers have recognized such need 

and have attempted to develop algorithms to "reconstruct" 

a 3D object from its orthographic projections. A number of 

20



techniques have been developed but none has yet been 

implemented commercially. By adopting a completely novel 

approach, the author has sought to develop a number of 

algorithms which automatically interpret a set of 

orthographic projections as a solid model. 

1.2) OBJECTIVES AND SCOPE OF THE PROJECT: 

The aim of this work was to develop a number of 

algorithms and, subsequently, a computer program to 

interpret an engineering drawing as a solid object, in 

formal geometric modelling terms. Technically, what is 

required are algorithms to read a data file that 

represents the orthographic projections of a mechanical 

part, process the information, and output a file which 

defines that object as a formal solid model, as shown in 

Figure 1.2 . 

In essence, the following activities were 

involved: 

- Study and selection of solid geometric 

representation for the project. 

- Review of existing interpretation techniques of 

engineering drawings as solid objects. 

- Development of algorithms and corresponding 

software for the interpretation process, and 

21
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implementation on the computer workstation. 

- Monitoring of the quality of these transformations 

by comparison of the input orthographic views with the 

orthographic views generated directly from a solid 

modeller, with the emphasis on the complete automation of 

the process and generation of the complete solid model. 

The input data files in which the two-dimensional 

information is stored, were assumed to exist within a 

computer system and to represent an assemblage of straight 

lines and circular arcs. 

1.3) TOOLS FOR THE PROJECT : 

In the early stages of the project, the 

environmental hardware consisted of an ICL Perq 2 graphic 

workstation, illustrated in plate 1 . The computer has one 

megabyte (Mb) of random access memory (RAM) with built in 

8-inch Winchester-type hard disk with a formatted storage 

capacity of up to 34 Mb and a 1/2 Mb single density 

(8-inch) floppy disc. The display is a high resolution 

(768 x 1024 pixels) monochrome portrait monitor. Two RS232 

interfaces are alee available for serial input and output: 

one of these ports was used as a link to a VAX 11/750 

mainframe in which the solid modeller BOXER (PAFEC Ltd.) 

was stored; the other port is used to link up a DPX 2000 

plotter (Roland DG Ltd.) and an Epson EX-1000 printer 
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Plate 1: The ICL Perg 2 Minicomputer 

  

Plate 2: The Apollo DN3000 Minicomputer 
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for hard copy generation. The PNX Operating System - a 

32-bit implementation of UNIX - had been installed. 

The software has subsequently been transferred and 

developed further on an Apollo DN3000 workstation, 

illustrated in plate 2. The Apollo computer has 2 Mb of 

RAM and a built in 72 Mb Winchester disc (formatted 

capacity) together with a 1.2 Mb (5.25-inch) floppy disc. 

The display is a 15-inch bit-mapped, high resolution (1024 

x 800 pixels) monitor. Links to the peripherals, such as 

the DPX2000 plotter and the EX-1000 Epson printer, are 

provided via an 8-serial port expansion unit. The AEGIS 

Operating system is used and the complete software of a 

subroutine version of the solid modeller (BOXER), provided 

by PAFEC Ltd, has also been installed in the Apollo 

workstation. 

1.4) THESIS PLAN : 

The ultimate aim of the work was the automatic 

interpretation of a set of three orthographic projections 

of an object stored in the form of two-dimensional 

information, as a complete and unambiguous solid model. 

The initial input to the procedures of the 

interpretation process is data corresponding to this set 

of orthographic views. Hence, the subject of chapter Two 
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is Orthographic Projections, where special reference is 

made to the orthographic views of Prismatic objects, i.e. 

those whose cross-section does not vary. with respect to an 

"axial" direction. The data structure which has been 

developed for fast storage and retrieval of the data for 

the input views is also described, with the emphasis on 

the problem area of interpreting this data into a complete 

solid model. The latter is the output to the 

interpretation process and hence, Geometric Modelling is 

the subject of the next chapter. In chapter Three, the 

main techniques of geometric modelling are discussed, with 

special reference Solid Modelling, and in particular to 

the technique known as Constructive Solid Geometry which 

was chosen as the most appropriate for the purpose of the 

project. 

Chapter Four presents a literature survey on the 

different approaches and techniques that have been 

developed to interpret orthographic views as solid models. 

The author's approach to the problem is discussed 

in chapter Five which first presents the theoretical 

foundations of the automatic interpretation process that 

was develdped: An overview of the process, followed by a 

detailed description of the different stages, is also 

given. 

Several algorithms have been designed and 
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developed to process the input data of the orthographic 

projections of an object, and automatically output a file 

which describes the object as a solid model. The 

transformation process for prismatic and so-called 

orthoprismatic objects, with the extension to the concept 

of approximation models for sererel] three-dimensional 

solids, is also described in this chapter. Some of these 

algorithms have been designed to be used in conjunction 

with a commercial solid modeller. The details of all the 

algorithms are given in chapter Six. 

Chapter Seven presents the details of C.I.E.D.S.M. 

(Computer Interpretation of Engineering Drawings as Solid 

Models) - the software developed for the interpretation 

process. Its portability and interface with commercial 

solid modellers are described. The process is intended to 

be fully automatic, hence the user interaction with the 

software has been limited to the input of the system and 

a brief user guide is given for this purpose. 

Examples illustrating the interpretation of 

prismatic, orthoprismatic, and arbitrary objects, and 

corresponding results from C.I.E.D.S.M., are given in 

chapter Eight. In chapter Nine, the project is discussed 

and some conclusions are dcawnt the areas where work 

remains to be done are identified, and some potential 

benefits are listed 
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2.1) INTRODUCTION: 

Data corresponding to an engineering drawing is 

the primary input to the interpretation algorithms that 

are discussed in later chapters. The various rules and 

conventions associated with engineering drawings are first 

briefly reviewed to provide a convenient reference for the 

work which follows. 

An engineering drawing conveys a considerable 

amount of information about the design and manufacture of 

engineering components. This information may comprise: 

i) geometric and topological data in the form of a 

number of orthographic and auxiliary views of the solid 

object. These may comprise a number of points or nodes, 

straight lines, circles, circular arcs and higher order 

curves. 

ii)text in the form of symbols and alphanumerics which 

indicates dimensioning, tolerances, material, surface 

finish and other data. 

It was clear from the start of the project that 

some consideration had to be given on whether, or not, to 

use all the above data as input co the interpretation 

algorithms. Textual information may have indeed been 

useful, however, it has been rejected as being beyond the 

scope of the work fot two main reasons: 
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- 1) The textual data are not of equal significance but 

there is no readily available means to distinguish vital 

information from mere comment. 

2) Character recognition algorithms would have been 

needed in order to extract and make use of such 

information. Such software was not availakle for the 

project and an attempt to develop such algorithms was 

rejected because it would have been difficult and time 

consuming. 

The input data thus comprise geometric and 

topological information only. Furthermore, orthographic 

projections are the only views of the solid object that 

are considered. These may comprise straight lines and 

circular arcs, and are assumed to be stored in the 

computer memory. A simple and efficient data structure, 

discussed in section 2.3, has been developed to provide 

fast storage and retrieval for the input erthodraonie 

views. 

A preliminary analysis of a number of data 

structures corresponding to several sets of orthographic 

views, has led to the classification of all objects into 

two main classes: prismatic and non-prismatic objects. 

These are discussed in section 2.4. 

The nature of the problem in the interpretation of 

orthographic views as solid objects is discussed in the 
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last section of this chapter. 

2.2) PROJECTION CONVENTIONS: 

A number of orthographic views are usually used to 

represent a solid object on an engineering drawing, and 

the identity between the solid body and the views can be 

established only if certain rules are observed. The 

following section describes some of the rules used to 

generate these views. 

In practice, orthographic projections of a solid 

object are generated using systems of parallel projectors 

from its boundaries onto a number of planes. The 

projectors are normal to these planes. Often, only two 

planes are required and they are known as the principal 

planes of projection. One is horizontal and the other 

vertical. Four quadrants or angles are produced by the 

intersection of these planes, as shown in Figure 2.1. The 

object to be drawn is placed in one of these 

angles and the orthographic views of it are projected 

onto the planes. The orthographic projections that are 

widely used are produced using the First and Third Angles, 

illustrated in Figures 2.2(a) and 2.3(a), respectively. In 

both systems, the view on the vertical plane is called the 

elevation and the view on the horizontal plane is called 

the plan. To obtain these views as they appear in an 
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engineering drawing, as shown in Figures 2.2(b) and 

2.3(b), the horizontal plane is rabatted about the 

intersection of the planes or ground line. It can be seen 

that the projectors cross the ground line, at right 

angles. 

An elevation and plan of an object are not always 

sufficient to describe it completely. In such a case a 

third view, called an end or side elevation, is drawn on 

another vertical plane which is perpendicular to both 

principal planes, as shown in Figure 2.4(a). The 

equivalent views which would appear on an engineering 

araviag are obtained by rabatting this vertical plane with 

the horizontal plane, as shown in Figure 2.4(b). The plan, 

elevation and end views are also commonly known as the 

top, front and side views, respectively. It can be seen 

that there are a number of relationships between a point 

and its projections in the adjacent views. For instance, 

the vertex v in the top view, and its projection v' in 

the front view are located on a projector line normal 

to the X-axis; the vertex v' in the front view, and its 

projection v" in the side view are located on a horizontal 

projector line perpendicular to the Z-axis. These 

relations are independent of the system chosen. 

Two or three views are usually adequate to 

represent a simple object. For more complicated objects, 

such as those which have complex inclined faces, 
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additional views may be necessary. These are drawn on 

auxiliary planes inclined to the principal planes and are 

called auxiliary views. The same principle of parallel 

projectors, normal to the plane, are used. Cross-sectional 

views are also commonly used to define the interior of an 

object when required. 

Apart from the projection system and number of 

views, there are other conventions that are important to 

this work. These are: 

i) the drawing of additional lines referred to 

thereafter as 'tangency edges'. These artificial lines 

which are not normally drawn in engineering drawings, are 

used to represent the edge where a curved surface is 

tangent to a plane surface. 

ii)the type of lines, or line-styles, used to draw the 

views of the object. Some of the line-styles that have 

been recommended by the British Standards Institution in 

B.S. 308: Part 1: 1984, are as follow: 

- continuous thick lines should be drawn for the 

visible outlines of the object 

- continuous thin lines must be used for projection 

or extension lines, hatching or sectioning. 

- hidden detail lines must be made up of short thin 

dashes 
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- centre lines must be thin long chain lines 

- thick long chain lines should be used for cutting 

planes or section planes 

- irregular boundaries and short break lines should 

be drawn using thick continuous wavy lines. 

As far as the work developed in this project is 

concerned, the following conventions have been adopted: 

- the first angle projection system 

- three orthographic views are required 

- the attribute which defines an edge as ‘'visible' 

or 'hidden', is not required, hence, the type of lines 

does not have to be specified. This has the advantage of 

minimizing the amount of input data to the interpretation 

algorithms. 

2.3) DATA STRUCTURE: 

At the lowest level, a single view of an 

engineering drawing may be regarded as an assemblage of 

unordered segments, or edges. For orthographic views 

accepted as input for this project, these segments may 

consist of straight lines or circular arcs. In the data 

structure developed, each segment is stored and 

represented by : 

- its type, which determines whether the edge is a 
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straight line or circular arc, 

- a pair of points or nodes representing the start 

and end points of line (except for complete circles for 

which the start and end nodes are the same point). Each 

node, as well as each centre of arc or circle, is 

specified by a pair of coordinate ‘ralues 

Figure 2.5(a) shows the front, or XY view of a solid 

object and Figure 2.5(b) shows a structure for the data 

items defining that view. These data are referred to below 

as the ‘initial data'. Table A in Figure 2.5(b) contains 

the number, the type and the start and end nodes of all 

the edges. The type is set to zero for a ptraiant line, or 

to an integer signed according to the sense of rotation of 

an arc: clockwise is positive; the integer value is used 

as a pointer to specify in table C, the storage location 

of the coordinates of the centre of the corresponding arc. 

Table B contains the coordinates of all the nodes in that 

view. For instance, edge number 1 is a clockwise arc which 

starts at node number 2 and finishes at node number 4, and 

the x and y coordinate values of its centre are 6.00 and 

4.00, respectively; nodes 2 and ‘4 are located at (6.00, 

3.00) and (5.00, 4.00), respectively. 

The initial data are the oniy required input to 

the interpretation algorithms. Furthermore, the user does 

not need to specify nor enter edges in any prescribed 

order. 
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At a higher level, a single view of an engineering 

drawing may be regarded as a graph and is best described 

using the terminology of Graph Theory. Some of the basic 

concepts of Graph Theory are given in appendix A. A graph 

is represented by the connections between its elements, 

and in the case of a view of an engineering drawing, these 

connections exist between edges and nodes. 

Formally, a graph may consist of closed paths or 

circuits, Multiple Edges, and/or Loops. In an engineering 

drawing, the projections of three-dimensional surfaces are 

closed contours which can be described as circuits, 

Multiple Edges or Loops. A complete circle is the only way 

that a loop which consists of a single edge, can occur in 

an engineering drawing, since the start and end points 

are the same node. 

On this basis, the user's initial input is 

converted into a number of circuits (or closed paths, 

loops or contours). These contours are the basic elements 

that are processed by the algorithms described below. In 

order to guarantee that only closed paths will be 

processed, it is necessary to check that the user did not 

input nodes which belong to one edge only, except for 

Loops. The case may also arise if taugency edges have not 

been included in the input orthographic views. The check. 

is simple and is carried out by counting the number of 

times each node appears in the data structure. In Figure 
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2.6 where all the contours are identified as closed, each 

node appears more than once in the data structure while in 

Figure 2.7, each of node numbers 4 and 5, appears only 

once indicating that there will be an open path which does 

not bound an area in the corresponding view. In that case 

the user is immediately informed that the orthographic 

view can not be accepted as input, and is prompted to 

enter the correct data. The initial data are also checked 

for self-intersecting loops to ensure that all the nodes 

are included in the input data. This is achieved by 

examining all the intersections between edges in the view. 

If a valid point of intersection is found but not entered 

as a node then a node is generated automatically at that 

point and the data updated by dividing the intersecting 

segments into pairs of segments. Figure 2.8(a), shows a 

view where a self-intersection exists between two loops. 

The points of intersection are computed, numbered and 

stored in the updated data structure, as shown in Figure 

2.8(b), where edge numbered as 3 has been divided into 

three new edges: 3, 9 and 10. 

When examining a view of an engineering drawing, 

it is possible to distinguish different types of 

contours. Some may be isolated (or disjoint) from all the 

other contours, and some may be connected to others. An 

algorithm developed in this project and described in later 

chapters, has been designed to determine which contour is 

isolated and which is connected. Moreover, the same 
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algorithm is used to determine the boundary or perimeter 

contour in any view. Figure 2.9(a), shows a view that 

comprises both connected and disjoint closed contours, 

where the positive sense of each edge is indicated by an 

arrow pointing from the start node towards the end node; 

an edge which is traversed in the opposite serse is 

indicated by a negative integer. The type of each loop is 

represented by an integer value which is set to zero to 

indicate a ‘disjoint' attribute, or to 1 to indicate a 

"connected' attribute. The number and type of contours in 

the xy view shown in Figure 2.9(a) are shown in Figure 

2.9(b), where loop L3 and L4 represent in effect the same 

loop which is traversed in both directions. These contours 

are represented and stored by specifying the number and 

types of edges which define it. Direct access files are 

used to store such data. The structure of these files is 

described in chapter 7. 

2.4) ORTHOGRAPHIC VIEWS OF PRISMATIC AND ARBITRARY 

In a preliminary analysis of the input data, it 

has been found that, among the vast range of mechanical 

components manufactured in the engineering industry, there 

exists a class of simple objects which can readily be 

identified from their orthographic views. These solid 

objects, known as prismatic objects, are those having a 
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fixed cross-section in at least one direction. Any other 

object which does not belong to this class of objects is 

hereafter referred to as an arbitrary or non-prismatic 

object. 

The class of prismatic objects may be divided 

further into two distinct subclasses: simple and complex. 

A complex prismatic has one or more holes drilled through 

it, while a simple prismatic object has none. 

The class of any object, as defined above, is 

determined by the number of loops, as well as the type and 

shape of each loop, contained in each view of the object. 

Prismatic objects play an important role in the 

interpretation process developed in this project. This 

role is discussed in later chapters. Therefore, the 

ability readily to identify a prismatic object from its 

orthographic views is considered here as one of the 

important milestones in this work. 

2.4.1) QRTHOGRAPHIC VIEWS OF PRISMATIC OBJECTS: 

A simple prismatic object is shown in Figure 

2.10(a). It can be seen from the orthographic projections, 

Figure 2.10(b), of such object that there will always be 

at least one view consisting of a single closed loop only. 
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This loop represents the boundary or perimeter loop in 

that view. Such a view is defined here as the base view. 

Furthermore, the remaining views may consist of one or 

more connected rectangular loops whose nodes also belong 

to the perimeter loop. 

The simple prismatic object shown in Figure 

2.10(a), may be transformed into a complex one (having a 

multiply-connected cross-section) by drilling holes 

through it, as shown in Figure 2.11(a). In this case, the 

base view consists of two or more closed disjoint loops. 

Again, the two views adjacent to the base view comprise a 

number of connected rectangular loops whose nodes also 

belong to the perimeter loop, as shown in Figure 2.11(b). 

2.4.2) ORTHOGRAPHIC VIEWS OF ARBITRARY OBJECTS: 

In the case of arbitrary or non-prismatic objects, 

the orthographic projections may comprise any number, type 

and shape of loops. Those features which identify a 

prismatic object are not found in the views. Figure 

2.12(a), shows’ an arbitrary solid object. In the three 

orthographic projections of this rather simple object 

there is at least one view, in this case the xy view, that 

has a single closed loop, as shown in Figure 2.12(b). This 

may be regarded as a 'base' view; this is one feature 

found in the views of prismatic objects. However, the 
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object will not be defined as a prismatic object because 

the views adjacent to the 'base' comprise loops that are 

not rectangular. 

Another example is illustrated in Figure 2.13(a). 

in this case, a view consisting of two closed disjoint 

loops exists amongst the set of orthographic views in 

Figure 2.13(b), and may be considered as the 'base' view 

of a prismatic object; however, because the loops 

contained in the remaining views do not share their nodes 

with the perimeter loops in the corresponding views, the 

object is identified as non-prismatic. 

2.5) INTERPRETING PROJECTIONS AS SOLID OBJECTS: 

The process of generating orthographic views is 

rather straightforward (see section 2.2), and has been 

implemented on computers for a relatively long time. 

However, the generation of solid models from orthographic 

views by machines has not yet been achieved because of the 

complex nature of the process involved. To appreciate the 

complexity of such a problem it is necessary to understand 

the process by which a human interprets three views as a 

solid object. 

The engineering drawing has been a successful form 

of communication only because of the intelligent 
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interpretation which is applied to it. The drawing can 

only communicate a precise description of a component when 

both the draughtsman and the user are well-versed with the 

implicit information it conveys, such as the conventions 

and mechanisms by which the two-dimensional structural 

elements have been generated. The draughtsman knows that 

the inferences he makes will only be correctly understood 

by a user who has a knowledge of this implicit 

information. 

Furthermore, apart from using his knowledge and 

experience, a human also has the ability to process a 

large number of two-dimensional entities from the 

two-dimensional views, such as faces, edges and vertices, 

simultaneously and qualitatively. Partial solids are 

generated from the corresporiding parts of three views, and 

if they agree with his experience and knowledge, they are 

composed to form a complete solid object; a 

inconsistencies are discovered, then there is a return to 

the three views and a generation a different solid. 

Therefore, the process has certain characteristics which 

can be described as follows: 

a) More empirical than logical, since it is based on 

past experience rather than deduction, 

b) entities are grasped qualitatively, 

c) the processes proceed in parallel, 

d) the feed back is continuous. 
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In contrast, available mini-computers and, 

probably, those on which any commercial software would be 

mounted, operate sequentially. Therefore, it is not 

feasible to construct a system which generates a solid 

model from three views by emulating human thought-process. 

Suci a system would therefore require the processing of 

automatic three-dimensional interpretation not only to be 

formulated in a logical (serial) manner, but also to 

involve some degree of expertise to represent the 

knowledge that both draughtsman and user have gained. 

Technically, the problems of automatically 

interpreting orthographic views as a solid object are 

translated as a loss of semantics occurring when the 

object is represented with a two-dimensional description. 

For instance, one line in any view can represent more than 

one edge; moreover, some lines do not represent true edges 

such as silouhette lines which are used to represent 

curved surfaces. For this reason, the straightforward 

approach of matching each line to the lines of the other 

views to construct a set of edges and faces, may lead to 

the generation of nonexistent or ghost faces, and hence 

impossible objects. Orthographic views are described using 

a ‘wireframe' representation, and for this reason it may 

be possible for a set of three orthographic views ce have 

several solutions, i.e. to represent the two-dimensional 

description of several objects. 
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In order to avoid these problems, it is necessary 

to select a three-dimensional output data structure that 

guarantees the representation of a valid and unambiguous 

object model. Furthermore, it is desired that this data 

structure must explicitly describe the output model in 

terms of a solid volumetric represertation 2s required for 

design analysis and manufacture processes. The main 

three-dimensional representation techniques are described 

in the following chapter, with special reference to the 

one selected for the project. 
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GEOMETRIC MODELLING 
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3.1) INTRODUCTION : 

A central activity in the Computer-Aided Design 

(CAD) process is the evolution of a comprehensive 

representation, or geometric model (also called product 

model) of a designed object. The designer gives concrete 

form to his ideas by building a model in dialogue with a 

computer. The model is then developed and optimized by 

design analysis: a set of calculations and simulations to 

predict the properties and behaviour of the object. The 

model may also be used for the preparation of 

manufacturing processes. Therefore, the role of modelling 

in CAD can be summarized as a foundation of the design 

cycle of synthesis, representation, analysis and 

optimization. 

By definition, geometric modelling is the 

computer-aided input, representation, interrogation and 

display of the shape of three-dimensional (3D) objects. It 

is a collection of methods used to create data structures 

and algorithms for representation and calculation of data 

on the shape of 3D objects. Formally, the representations 

are mainly defined in terms of Geometry (point 

coordinates, curve and surface equations,...), and 

Topology (connections between points, edges ana faces). 

In the field of geometric modelling 

representations, several authors distinguish two main 
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subareas: surface modelling and solid modelling. However, 

it is recognized here that wireframe modelling also 

deserves to be mentioned, since it is widely used by 

several geometric modelling systems, and it also has a 

very important historical value. For this reason, it is 

presented first in the following sections, as an 

introduction to the subject of geometric modelling 

representations. Excellent surveys and reviews on the 

fundamentals of geometric modelling representations and 

their potential can be found in the literature [9,10]. 

3.2) WIREFRAME MODELLING : 

Wireframe modelling was first used in the early 

two-dimensional (2D) drafting systems to represent simple 

2D designs such as for circuit diagrams and printed 

circuit board (PCB) layouts. The wireframe model consisted 

of lists of points and lines in 2D space. 

In recent mechanical engineering drafting systems, 

objects may be displayed in one or more orthogonal views. 

These views, as 2D wireframe models, are independent of 

‘each other, and thus can be incompatible, in which case 

there is no true representation of a 3D object. 

Compatibility of views has been guaranteed with 

the introduction of 3D wireframe models which allow 
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several views to be derived from a single representation. 

A 3D wireframe model still has the same data structure but 

in 3D space; it consists of a set of vertices and a set of 

edges which indicate the interconnection between vertices. 

Each vertex is specified by its position in space in terms 

of (x, y, z) coordinates, and each edge is defired in 

terms of its two end vertices. This data structure is very 

simple and can be represented by two arrays: a 3-column 

geometry array of real numbers to store the coordinates of 

all the vertices, and a 2-column topology array of 

integers for edge definitions. Figure 3.1 shows a 3D 

wireframe model and the associated data structure. 

This modelling technique owes its well-established 

use in several commercial CAD systems to the simplicity 

and efficiency of data storage. The main advantages can be 

illustrated as follows: 

- geometric entities (vertices and edges) can be 

retrieved and updated quickly 

- model creation and display are fast 

- computer requirements, such as storage capacity, 

are low. 

However, the representation has severe limitations 

which are mainly due to the lack of geometric completeness 

and loss of surface and volume information. These are as 

follows: 
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- there can be ambiguity and loss of definition as 

illustrated in Figure 3.2, which shows a wireframe model 

and three possible interpretations 

- input of a large amount of low-level data is 

required to define even simple objects 

- the visualization of a complex wireframe model may 

be impaired and may lead to confusion 

- impossible (invalid) objects, as illustrated in 

Figure 3.3, may be generated 

- mass and volume property computations cannot be 

carried out 

- sectioning and hidden line removal cannot be 

generated automatically 

- in the case of objects with curved surfaces, 

silouhette lines (profile edges) cannot be adequately 

represented, as illustrated in Figure 3.4. 

3.3) SURFACE MODELLING : 

Surface modelling overcomes some of the above 

problems of wireframe modelling since it provides more 

information describing the surface of an object. It is 

concerned with mathematical methods for description of all 

kind of surfaces. These may be simpse flat plane models 

created between pairs of parallel straight lines or may be 

much more complex surfaces, often referred to as free-form 

or sculptured surfaces. It also deals with operations on 
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these surfaces, such as intersections and modifications. 

Surface modelling was first introduced to replace 

lofting techniques used in design of bodies such as ship's 

hulls, turbine blades, aircraft and car panelee This 

modeliiny technique has since been developed to the extent 

that the theoretical background has become a new field of 

study known as computational geometry [11], that uses 

methods from matrix and vector algebra, differential 

geometry and approximation theory. 

One of the earliest techniques of surface 

modelling was developed by Fergusson [12], and was known 

as the Fergusson Patch. Mathematical definitions of curves 

and surfaces were made possible by using parametric rather 

than Cartesian co-ordinates, and transformations could 

easily be carried out using matrix algebra. 

Basically, three-dimensional surfaces may be 

formulated by interpolation or approximation of two or 

More parametric space curves; a parametric representation 

of a curve is given by: 

© = R(u) 

where xr is the position vector ( x y z ) of a point on a 

curve described by the vector function: 
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R(u) = [ X(u) ¥(u) 2(u) ] 

A segment on the curve is then described on some 

closed interval a < u <b, and is usually defined in terms 

of data at a number of points; Figure 3.5 shows a 

parametric curve segment described on the interval: 

t,; S ust, 

For surfaces, two parameters are required: 

xr = R(u,v) 

R(u,v) = [ X(u,v) YX(u,v) z(u,v) ] 

where parameters u and v, may take on values ina 

specified range, usually 0 to 1. Figure 3.6 illustrates 

the parametric description of a three-dimensional surface. 

Several schemes of interpolation or approximation 

have been used in the design of complex surfaces, most of 

which were based on cubic and rational polynomial segments 

[13,14,15], and others involve higher degree polynomials. 

The major advantage of surface modelling is the 

ease with wiich complex surfaces may be generated. This 

technique also allows fast local, and global, 

modifications to be carried out and needs only a small 

amount of data storage. There are however, some 

disadvantages: 

62



  

Zz 

Fig. 3.5: Parametric description of 
a curve 

  

Fig. 3.6: Parametric description of 
a surface 

63



- the generation of unambiguous models is not 

ensured because of possible lack of connectivity between 

surfaces 

- calculation of intersections between sculptured 

surfaces is complex 

- mass property calculations are limited to single 

surfaces 

- interference between surfaces is not guaranteed 

and relies on user detection. 

3.4) SOLID MODELLING : 

Solid modelling deals with data structures for 

informationally complete and unambiguous description of 

solid objects, and algorithms operating on these data 

structures. This modelling technique has been developed to 

overcome the limitations mentioned above. Solid modelling 

has geometric completeness, thus it allows the automation 

of several engineering applications. The technique was 

pioneered in Britain, by Braid [16,17,18]. Extensive 

developments followed and several solid geometry modelling 

representations have been developed. In this section, the 

four main techniques are discussed: Cellular 

Decomposition, Sweeping, Boundary representation and 

Constructive Solid Geometry [19,20]. 
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3.4.1) CELLULAR DECOMPOSITION : 

In this scheme objects are represented by a 

collection of disjoint cells. There are several variants 

of cellular decomposition. The simplest variant is known 

as Spatial Enumeraciva, illustrated in Figure 3.7 . In 

this, space is divided into a large number of 

equally-sized cubes, or voxels, that are positioned in a 

fixed and regular three-dimensional grid. The object is 

represented by the voxels in which it resides. Each cube 

is marked or ‘enumerated' as ‘inside' or (1) if it lies 

inside the object, and as ‘outside’ or (2) if it is 

outside the object. For voxels that are partly inside and 

partly outside the object, a decision is made on the basis 

of whether the centre of the cube is inside the object. 

The data structure of spatial enumeration is very 

simple. It consist of a three-dimensional Boolean array, 

where each voxel is represented by one element which 

indicates whether it is inside or outside the object. 

It is clear that this scheme is well adapted to 

applications such as the computation of mass and volume 

properties of the object it represents. The other 

advantage of spatial enumeration lies in its simplicity. 

However, most objects, notably those with curved surfaces, 

can only be approximated at the boundaries, resulting in 

an inaccurate and jagged representation. To provide any 
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 3.7: Spatial Enumeration Fig. 
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reasonable geometric resolution and close approximation, 

it is necessary to use very small voxels which requires an 

excessive amount of memory; for instance, a grid of 103 by 

103 by 103 voxels would require more than 100 Megabytes of 

memory! 

A more recent development amongst spatial 

enumeration schemes [21] attempts to reduce the amount of 

memory required by only using small cubes where fine 

resolution is needed, such as the boundary. A coarse grid 

of cubes is used everywhere else. In this method, known as 

octtree, the model space is first divided into large 

cubes, and these may be marked as completely inside the 

object (full), or completely outside the object (empty), 

or partially inside and partially outside the object 

(partially occupied). Partially occupied cubes are then 

subdivided into eight smaller cubes of equal size and 

these again are marked, which can lead to further 

subdivisions. This process of subdivision continues 

recursively for partially occupied cubes until either the 

object is represented exactly, or until a predefined 

minimum size of the cubes is reached. This technique is 

similar to the quadtree representation in two-dimensional 

space which is illustrated in Figure 3.8 . 

The data structure of an octtree representation is 

a tree where each node is a record of the state (inside, 

spqutside or partially inside and partially outside) of the 

    

‘ 

- 67



  

  

  
  

      
  

  

  

                
  

= Ete) oO Oc 

] oe | 5 

KAA AR 

= 14 

mBeodo omoaogsgaogeogmgewmoeodmaanea 

BoA) TAS tz 24 25 26 27 15 16 17 18 19 20 21 22 28 29 30 31 

  

Fig. 3.8: The quadtree representation 
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cube residing at that node. That record also holds 

pointers to the eight cubes into which the cube is 

subdivided. This structure is illustrated in Figure 3.9, 

where the cube, enumerated as 0, has been subdivided into 

eight more cubes and the cube 4 is marked as outside of 

the object. Figure 3.10 shows an alternative data 

structure, known as linear octtree [22]. In this method, 

only the information about the cubes that are inside the 

object is stored. An octal code is used for all these 

cubes - the octal code is a sequence of numbers between 0 

and 7 - and the length of the code depends on the size of 

the cube: for every further subdivision, an extra number 

is taken. The number depends on the cube concerned. The 

complete linear octtree data structure is also condensed 

to save memory space. 

Although the data structure of the octtree 

representation is somewhat more complicated, the 

advantages are similar to those of spatial enumeration. 

The disadvantages are also the same except that the 

octtree takes less memory than the tree data structure of 

spatial enumeration. 

Other variants of cellular decomposition with 

cells of different shapes are also used, in particular for 

application such as finite-element analysis. 
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3.4.2) SWEEPING : 

In sweeping, an object is defined by a 

two-dimensional contour curve that is moved along a 

three-dimensional trajectory curve. The cross-section of 

the object is defined by the contour and the spine of the 

object is defined by the trajectory. Four different types 

of sweep objects can be distinguished, depending on the 

contour and trajectory definitions : 

- translational sweep: the contour is arbitrary but 

the trajectory is a straight line [23]. Prismatic objects 

are easily defined by translational sweep, as shown in 

Figure 3.11 

- rotational sweep: the arbitrary contour is rotated 

about an axis, i.e. the trajectory is a circle, as shown 

in figure 3.12. All axisymmetric objects may be defined 

using rotational sweep 

- circle or sphere sweep: the contour is a circle 

(or a sphere [24]) and the trajectory is arbitrary, as 

shown in Figure 3.13. 

- general sweep: both the contour and the trajectory 

are arbitrary [25], as shown in figure 3.14 . 

Simple curves (straight lines, arcs of circles, 

and other quadrics) as well as general curves, such as 

parametric curves (Bezier and B-splines) may be used in a 

continuous sequence to define arbitrary contours and 

trajectories. 
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Fig. 3.13: Circle or sphere sweep 

  
Fig. 3.14: General sweep 
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A recent development in sweeping allows tapered 

and twisted sweep objects to be produced [26]. This is 

achieved by allowing the size and the orientation of 

contour to vary as it is moved along the trajectory. The 

data structure stores scaling and rotation factors at a 

number of points along the trajectory. 

One of the advantages of sweeping is that the 

representation is compact and does not require large 

amounts of storage. It is also suitable for input of 

models since it is relatively simple to specify a contour 

and a trajectory. The main disadvantage of sweeping is the 

restriction of the shape domain it may represent; only 

certain classes of object can be modelled with sweeping. 

For example, only objects with rotational symmetry can be 

modelled with rotational sweeping. 

3.4.3) BOUNDARY REPRESENTATION : 

In this representation, a solid object is defined 

in terms of its boundary elements, and these are specified 

in terms of a finite number of bounded faces. Several 

kinds of regular surfaces can be used as the basic face 

elements for describing the object. These include planar 

surfaces (polygons) and parametrically described surfaces, 

such as cylindrical, conical and spherical surfaces. 
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One B-rep data structure comprises a set of 

surfaces where each surface is represented by a set of 

directed edges that bound it, and each edge is represented 

by two vertices. These are held in a graph structure, 

known as the face-edge-vertex graph, which indicates the 

way in which they are connected. The topology information, 

i.e. the relationship between faces, edges and vertices 

is specified by means of pointers which are ih fact 

addresses of records in the data structure. For instance, 

in Figure 3.15, face Fl is bounded by edges El, E2, and 

E3, and in the record of F2 there are therefore pointers 

to records El, E2, and E3. Each entity in the 

face-edge-vertex graph has pointers back to the entities 

that own it, and to other related entities within the 

structure. 

The face-edge-vertex graph is manipulated using 

the so-called Euler-Poincarre rule: 

V-E + Fi-H=2 * (M=—'G.) 

where: 

V = Number of vertices 

E= i. "edges 

= iy! S) faces 

H= x "hole loops 

M= ‘ "separate pieces of solid 

G = Genus of object 
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The hole loops are the internal boundaries at 

which several faces are joined together as well as to the 

perimeter boundary. The genus of an object is the number 

of holes it has; For example, a block has a genus of zero, 

and a torus has a genus of one. 

Geometric information is also specified using 

pointers to appropriate geometric elements which serve to 

fix the object in space and define its geometry, as 

follows : 

Face ---> Surface (coefficient of equation) 

Edge ---> Curve (coefficient of equation) 

Vertex ---> Point (coordinate triple x,y,z ) 

The geometry is therefore defined in terms of 

surface and curve equations to define faces and edges, and 

in terms of coordinate triples to define vertices, in 

space. For instance, the information about the equation of 

a planar surface: 

ax + by +/cz + d= 0 

are the coefficients a, b, c and d. Quadric analytical 

surfaces can also be represented by the coefficients of 

their equations. 

Most objects can be represented exactly with 
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boundary representations using planar and quadric 

surfaces. However, in many boundary representation 

systems, curved surfaces are usually approximated by a 

mesh of polygons, in order to simplify the data structure 

and to make operations on the representation much faster. 

The disadvantage of using polygons or planar surfaces 

only, is that it may not provide adequate approximation of 

the object and uses a large amount of memory. In the 

boundary representation where only planar surfaces are 

allowed, the geometric information may be restricted to 

the coordinates of vertices, and the face and edge 

equations are derived from this information whenever it is 

necessary. The amount of topological information that is 

stored differs from one variant of boundary representation 

to another. For instance, it is not possible to determine 

the two faces which intersect at a particular edge; for 

this, in some boundary modelling systems, pointers from 

every edge to the faces intersecting at that edge are also 

stored. 

In the winged-edge data structure (271; 

illustrated in Figure 3.16, every edge is assigned a 

direction, and from each edge there are pointers to: 

- the two faces intersecting at that edge; these are 

called Fleft and Fright, as seen from the outside of the 

object 

- the next edge in the sequence of edges bounding 
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Fleft in clockwise order 

- the next edge in the sequence of edges bounding 

Fleft in counterclockwise order 

- the next edge in the sequence of edges bounding 

Fright in clockwise order 

- the next edge in the sequence of edges bounding 

Fright in counterclockwise order 

- the two vertices bounding the edge. 

The boundary representation may be extended to 

cover a much larger domain, such as objects bounded by 

free-form surfaces [28]. 

The advantages of boundary representation are: 

- the information about faces, edges and vertices, 

is explicitly present in the data structure, which allows 

applications such as fast display of the model to be 

achieved. It is well adapted for straight forward 

interrogating programs 

- models can be generated step by step and local 

shape modifications are relatively easy to perform. 

The disadvantages are: 

- the data structure takes up a large amount of 

storage because of the amount of explicit information it 

contains. Most of this data is redundant 
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- the data structure is also complex, which may lead 

to the generation of invalid models of objects 

- input to create models is difficult and tedious. 

This can be eliminated only by a sophisticated and 

well-designed user interface. 

- inside/outsice tests are more time-consuming 

3.4.4) CONSTRUCTIVE SOLID GEOMETRY: 

With constructive solid geometry, commonly 

abbreviated to CSG, a complex object may be synthetized 

from a finite number of much simpler shapes or primitives, 

like cubes and cylinders. These can be positioned in 

three-dimensional space by means of transformations, and 

then be combined to produce more complex objects using the 

Set (Boolean) operations of union, intersection and 

difference. 

The primitives can be defined in a manner similar 

to that used in boundary representation (discussed in 

section 3.4.3) or can be specified in terms of low level 

entities called half-spaces. A half-space is generated by 

an infinite surface that divides the three-dimensional 

space into two parts, and may be defined, for example, by 

an inequality such as: x20 

Simple objects can be represented as the 
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intersection of a number of half-spaces. For instance, a 

unit cube may thus be represented as the intersection of 

the following half-spaces: 

x21, mS 1, ye-1, y Ss 17, z2 2-1 and z s72 

and the half-space: 

ey + cfd 

is itself the unit sphere. 

The user does not have to specify the half-spaces, 

but has at his disposal a number of simple primitive 

objects predefined with half spaces. This guarantees that 

no unbounded model can inadvertently be built. The 

primitives such as cubes and cylinders are common to most 

CSG modellers; the pyramid, cone, wedge, torus and sphere 

are useful for mechanical engineering components and are 

also available. Each primitive faces number of parameters 

that have to be specified. For example, for a block the 

parameters are the length, width and the height, and for a 

sphere, the radius. 

The data structure for a constructive solid 

geometry representation of a solid model, consists of a 

binary tree, also called the CSG tree. At a leaf node of 

the tree there is information about a primitive: its 
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type, the values of its parameters, and the 

transformations applied to it. At an internal node, there 

is the type of the Boolean operator (union, intersection 

or difference) to be applied to the objects defined by 

the left and right branches of that node, and pointers to 

these branches. Figure 3.17 shows a CSG tree, where (U*) 

stands for union, and (-*) stands for difference. The 

union of two objects A and B, (A U* B), is the object 

which consists of the points that lie within either A or 

B. The intersection of A and B, (A M* B), is the object 

which consists of the points that lie within both A and B. 

The difference of A and B, (A -* B), is the object which 

consists of all the points that belong to A and not to B. 

It is important to note that the ‘difference' Boolean 

operator is not commutative; thus the object obtained by 

the Boolean operation B -* A is not the same as the object 

obtained by the difference A -* B. 

In Figure 3.17, the operators are starred to 

indicate the difference between these operators and those 

used in classical Set Theory. The straightforward 

application of set theoric Boolean operators to the set of 

points defined by a three-dimensional solid may lead to 

anomalous results, such as 'dangling-edges', as shown in 

Figure 3.18(a). In order to avoid such problems, Boolean 

operators are refined in such a way that they operate on 

and produce "regular sets" [29], as shown in Figure 

3.18 (b). 
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A number of transformations are available to move 

a primitive to the correct position and orientation in 

space: 

- translation to move it in the xX, Y or Z direction 

- rotation to rotate it through an angle about the 

xX, XY Or 2 axis 

- scaling to change its size with a factor in the xX, 

Y or Z direction 

- skewing or shearing to change the angles between 

the X, Y and Z axis. 

Constructive solid geometry representation is used 

in several commercial solid modelling systems, because it 

is compact, uses relatively little storage in comparison 

to cell decomposition or boundary representation, and all 

the objects that can be modelled are guaranteed to be 

valid. Another important advantage is the ease with which 

models can be built; very complex objects, in particular 

the majority of common mechanical parts, can readily be 

modelled, by using a restricted number of primitives, as 

illustrated in Figure 3.19. Moreover, conceptually, the 

CSG method has several similarities to engineering 

practice for designing and manufacturing mechanical 

components. For example, the ‘'difference' operation 

resembles cutting and the ‘union' operation resembles 

bonding. 
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The disadvantage is that there no explicit 

information about the edges and vertices of the object in 

the data structure, as in boundary representation. 

35) SELECTION OF GEOMETRIC MODELLING REPRESENTATION 

EQR THE PROJECT: 

Several geometric modelling schemes have now been 

examined, all of which have their specific advantages and 

disadvantages. For instance, with constructive solid 

geometry, model input of mechanical parts is easy, but it 

is not the most suitable representation for making line 

drawings. On the other hand, a boundary representation is 

very suitable for making such drawings, but it in turn 

requires a large amount of memory. In general, the 

selection of a geometric modelling scheme depends on the 

applications: domain, input, applications and storage. 

The work developed in the project is mainly 

concerned with the domain of mechanical engineering parts. 

This class of objects requires the provision for a 

complete volumetric information, to enable engineering 

applications, such as those described in section 1.1, to 

be performed. Clearly, these objects are best described 

using solid, earner than wireframe or surface modelling 

representation schemes. 
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The selection was initially narrowed down to 

choosing one of the solid modelling representations. The 

primary criteria used in the selection of one of the solid 

representations schemes was model input. The 

interpretation process developed in the project, requires 

the use of a sclidc mcdeller, (section 5.3.4). The input to 

the modeller is generated by a number of subroutines which 

have been developed in this work. Therefore, the amount of 

input data must be small to allow fast transfer to the 

solid modeller. Cellular decomposition was rejected on 

this criterion, since it requires that all the cells in 

the three-dimensional grid to be indicated and stored. The 

same applies to variants like octtrees. Moreover, these 

representations can only give an approximate description 

of the object. Boundary representation is also not 

suitable for model input since the validity of the input 

model is not guaranteed which may result in generating 

nonsense objects. This representation also requires a 

large amount of storage. Sweeping, especially translation 

and rotation sweeping, is very suitable for model input, 

since it requires only a small amount of data to specify 

an object. However, it has a limited domain of 

application, even in its generalized form. 

Constructive solid geometry was adupted for this 

project because it is suitable for describing most 

mechanical engineering parts, and for model input. The 

PADL-1 development team at Rochester University [30], 
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found that about forty percent of mechanical engineering 

components could be represented in terms of just two 

primitives: rectangular blocks and circular cylinders - 

subject to the restriction that block edges and cylinder 

axes were aligned with the coordinate axes. The addition 

of further primitive types (cones, spheres and tori), 

together with the removal of any restriction on the 

orientation of the primitives, allows modelling of more 

than ninety percent of mechanical parts. Model input in 

constructive solid geometry, prevents the generation of 

invalid objects and only a small amount of data is 

required to specify complex objects. Constructive solid 

representation has however, one drawback; it is not 

Suitable for making line drawings. This problem has been 

solved by converting one modelling representation into 

another (appendix B), and many commercially available 

modellers provide such conversions. Input and storage may 

be effected by a constructive solid geometry 

representation, and if line drawings are required, the 

representation is then converted into a boundary 

representation. 
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4.1) INTRODUCTION: 

Attempts to tackle the problem of reconstructing a 

solid object from its orthographic projections is not 

completely new, and some useful work in this area has been 

reported in the literature. A numbez cf different 

approaches have been adopted with some early methods 

utilizing both hardware and software techniques. Such an 

approach was adopted by Sutherland in his work on 

three-dimensional input [31] which was focused on hardware 

and software for digitizing. He introduced a tablet with 

multiple pens so that a 3D vertex could be generated by 

digitizing vertices in two views. He also discussed how to 

treat digitized data from perspective views. Thornton's 

work [32] was also based on the same approach, and was 

concerned with interactive techniques for three 

dimensional input from two-dimensional views. However, 

neither Sutherland nor Thornton investigated algorithms 

for constructing solid models from projections. 

The first algorithmic effort to construct solid 

models from their orthographic projections was initiated 

by Idesawa [33,34]. His method which focused on the domain 

of polyhedral objects, was largely based on labelling 

corresponding information in different views. The 

algorithms employed edge "tracing" techniques which mainly 

consist of tracing around labelled edges (lines) of 

engineering drawings and extracting thé projected surfaces 
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(which were closed. loops of edge lines) in order to 

determine possible planes for those features. These 

algorithms also required the elimination of false elements 

such as "ghost" faces generated during the process of 

assembling projected faces. 

Idesawa's method, briefly reviewed in section 4.2, 

was regarded as the basic method. His approach has been 

adopted by several other researchers in this field, mainly 

to improve the method and to extend the domain to 

non-polyhedral objects. For instance, Lafue [35], in his 

work on the recognition of three dimensional objects from 

orthographic views, added a procedure for removing false 

elements and finding true elements. His method had two 

drawbacks. First, it cannot remove all the possible false 

elements and can remove some true elements in multiple 

solution cases. Second, it constrained the user to a 

predetermined format when describing features such as 

faces; for example, two-dimensional lines are required to 

be input in such a way that a sequence of lines bounds a 

face. Preiss [36] attempted to free the user from as many 

constraints as possible. However, the relaxation of 

constraints has led to the possibility of multiple 

solutions, including "impossible" objects, to a given 

problem. The recent introduction of a heuristic approach 

to find the probable solution [37] has been applied to 

plane-faced bodies. 
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A completely different approach was adopted by 

Aldefeld [38], where mechanical parts were regarded as 

assemblages of separate prismatic objects, each object was 

required to have a base parallel to one of the coordinate 

planes. This method which utilized model recognition 

tcchnigues, is reviewed in section 4.3 because of the new 

concept it introduced. 

The work described in references [33-38] was not 

based on formal geometrical and topological definitions, 

and led in all cases to wireframe representations of the 

objects. This mode of representation has a serious 

limitation in that it does not provide the volumetric 

information required for manufacture, assembly and design 

analysis purposes. 

Wesley and Markowsky used algebraic topology 

concepts and rigorous definitions of geometric entities to 

allow a volumetric description to be obtained in terms of 

solid material, empty space and topology of surfaces and 

edges for objects described in terms of their wireframe 

[39]. They used the same approach to obtain objects 

described in terms of their projections [40]. However, the 

algorithms were still restricted to objects having 

straight line edges and planar surfaces. This concept was 

developed further by Sakurai and Gossard [41] to extend 

the interpretation process to include objects with 

rotational symmetry such as cylinders, cones, tori and 
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spheres for which the axes are parallel to one of the 

coordinate axes. This reconstruction algorithm developed 

by Wesley and Markowsky was also improved by Kaining [42], 

who made use of the idea of pattern recognition expressed 

in the Aldefeld algorithm, to include cylindrical objects 

for which the axes are pataliel to one coordinate plane 

rather than to one coordinate axis. This improvement 

allows the input views to comprise elliptic arcs, 

hyperbolas and regular higher order curves with their 

symmetry axes parallel to one coordinate axis. Kaining's 

method is reviewed in depth in section 4.4. This is 

because it illustrates the basic approach adopted by 

Wesley and Markowsky, and to describes the improvements it 

makes on their algorithm. Moreover, much of Kaining's work 

has direct relevance to this project and requires detailed 

exposition. 

In all the above techniques, boundary 

representation has been used to describe the output object 

model. As previously discussed, in section 3.4.3, this 

mode of representation does not guarantee the validity of 

the object. It is for this reason that most of the above 

methods required algorithms to deal with pathological 

cases. Constructive Solid Geometry, a more adequate 

representation, has been adopted in an interesting work 

reported in [43,44] for the interpretation of orthographic 

views as solid models. However, in this case, the 

interpretation process is not fully automatic and requires 
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a 'man in the loop', i.e. the user, to carry out most of 

the interpretation tasks, such as the identification of 

three-dimensional primitives, the input of their 

corresponding data and the comparison of input and output 

orthographic views. A method based on such an interactive, 

or 'semi-automatic', approach is described in section 4.5, 

to illustrate the extent to which human intervention is 

required by such techniques. 

Constructive Solid Geometry principles, together 

with the 'man in the loop' concept, have also provided the 

basis for the process of interpreting engineering drawings 

as solid models, ieuaioped in the present work. However, 

the extent to which the process relies on the user is far 

less than the one used in the interactive method described 

in section 4.4. This chapter is concluded by a discussion 

which highlights the reasons for adopting these concepts 

and the differences between the tasks carried out in the 

process developed in this work, as compared to those 

required by the so-called semi-automatic methods. 

4.2) IDESAWA'S METHOD: 

Idesawa describes his approach as the inverse 

transformation of the operation which is used to produce 

orthographic projections of a given object. His algorithm 

is divided into five main steps: 
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(a) generate 3D vertices from 2D vertices 

(b) generate 3D edges from 3D vertices 

(ey elimination of ghost elements 

(d) generate 3D faces from 3D edges 

(e) assemble true faces into an object. 

Each of the above steps can be briefly described 

as follows: 

(a) GENERATION OF 3D VERTICES FROM 2D VERTICES: 

In any given orthographic view, a two-dimensional 

vertex is defined in terms of a pair of coordinates; For 

instance, any vertex in the XY view has an x-coordinate 

value and y-coordinate value, and an unknown z-coordinate 

value in the direction of sight. 

The purpose of this step is to determine the 

missing coordinate value for each two-dimensional vertex 

in order to generate the corresponding three-dimensional 

vertex. This is achieved by the following matching rule: 

Consider, three points: P(x,y) in the XY view, 

P'(x,z) in the XZ view and P"(z,y) in the ZY view, as 

shown in Figure 4.1(a). A 3D vertex V(x,y,z) is defined 

by the views, if: 
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The corresponding three-dimensional point created, 

V(x,y,z) is shown in Figure 4.1(b). 

(b) GENERATION OF 3D EDGES FROM 3D VERTICES: 

In a three-dimensional object each edge is defined 

by a pair of three-dimensional vertices. The purpose of 

this step is to obtain each pair of vertices that define 

three-dimensional edges. Idesawa devised a function which 

takes as its main input all the combinations of generated 

three-dimensional vertices in pairs and outputs some value 

signifying whether or not a given pair of vertices are 

connected. The function is specified by the Boolean 

operations required for each set of entities. The 

interested reader may find more details in [33]. 

(c) ELIMINATION OF GHOST ELEMENTS : 

The three-dimensional elements (vertices and 

edges) generated in the previous steps may not all be true 

elements. Idesawa refers to those elements which are not 

true one as ghost figures. These are partially eliminated 

according to a set of twelve rules. 

99



  

  

  

  

      

      

    

  

Y y be 
A 

> X z 
-—> Xx Y 

v 
Zz 

(a) 
ro-4 
! ! 
1 1 
saree           

| 

  

Fig. 4.1: a) Matching 2D points and 
b) corresponding 3D vertex 

100



(d) GENERATION OF 3D FACES FROM 3D EDGES: 

In this step, a search for three-dimensional edges 

that are likely to bound a face is carried out together 

with a further elimination of ghost figures. Faces are 

defined only if the following conditions are met: 

i) There are n faces which contain a vertex as a given 

intersection of n edge lines. 

ii)An edge line constitutes the boundary of two faces, 

and runs in opposite direction to each other in the row of 

boundaries. 

iii)A boundary of a face is enclosed. 

An edge line which can not be in any boundary of 

faces is eliminated as a ghost line. Finally, the object 

is described in terms of a number of planar faces. 

The main disadvantage of Idesawa's method is its 

domain of application which is limited to polyhedral 

objects, as curved surfaces can not be treated. 

Furthermore, false elements can not really be 

distinguished from true elements, and thus true elements 

can easily be deleted. 
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4.3) ALDEFELD'’S METHOD: 

The underlying philosophy of Aldefeld's method is 

to view a complex part as being composed of elementary 

objects belonging to a set of predefined classes, and 

these elementary objects may be recognized by making use 

of the knowledge about class-dependent patterns of their 

two-dimensional representations. Each elementary object 

will have, in each view, a two-dimensional pattern which 

will identify the object. Each two-dimensional pattern 

comprises a number of 2D primitives, such as lines, arcs 

and circles. Primitives may be concatenated to form line 

segments. Line segments and arcs may be grouped to form 

closed loops, and finally, an object view comprises line 

segments and loops. A number of different attributes are 

used in the data structure to define the relationship 

between these entities; for ‘instance, the attribute 

CONTACT (p,q), pacneen primitives, means that primitives p 

and q have at least one common node, and the attribute 

CONSISTS_OF relates line segments to loops. These 

attributes are used in the recognition of the 2D pattern 

they form in the views of the elementary object. Figure 

4.2 “4llustrates the types. of entities and their 

relationships in the data structure. 

To avoid the whole complexity of possible 

geometries, the method is confined to a subset of 

structures and the following restrictions are placed on 

102



  

Object representation 
      

— HAS-VIEW 

  

  
[ Object views 
  

COMPOSED-OF COMPOSED-OF       

    

  

   

Line segments 
  

    

WITHIN 
ADJACENT 

Primitives 
  

CONTACT 

Fig. 4.2: Types of entities and relationships 
defining the data structure 

103



the structure to be interpreted: 

1) All elementary objects must be of uniform thickness, 

i.e. prismatic objects. 

2) The base of each elementary object must be parallel 

to one of the coordinate nlanes. 

Figure 4.3 shows an object which complies with the 

above restrictions and its 3-view orthographic 

projections. For an object restricted in such a manner, 

one of the views, V,, will consist of a single loop, also 

referred to as the 'silouhette', of an arbitrary shape and 

the other views will comprise a rectangle subdivided by 

line segments, with the sides of the rectangle and the 

line segments being parallel to a coordinate axis. 

The model-guided recognition algorithm used to 

recognize a uniform thickness object for which a loop, L, 

in a given view V,, represents the base silouhette, may be 

described as follows: 

1) Search in an arbitrary view, where the chosen view 

is not V,, to find all the rectangles that 'match' the 

silouhette loop, L, in the given view V,. - A match 

between two loops 1, and lj from different views is 

defined if the minimum coordinate of 1, is equal to the 
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minimum coordinate of 1, and the maximum coordinate of 1, 

is equal to the maximum of lj, in the common coordinate 

direction. 

2) Search the remaining view for all the loops that 

watch the loops generated from step (1) and the loop L in 

the view V,. A list of 'matching' loops is generated. 

3) Loop L is scanned for features that signify the 

presence of line segments in one or both of the remaining 

views. For instance, features such as corners formed by 

primitives of loop L. 

4) For each pair of matching qeace listed in step (2), 

attempt to find the complete set of line segments required 

by the features. If this is successful, a complete object 

pattern given by the union of these matching loops and 

generated line segments has been found. 

The model-guided algorithm will only work if true 

patterns of elementary objects are offered to it. 

Unfortunately, it is not always easy to extract true 

patterns from the views due to the overlapping of faces 

and edges when an object is represented as a set of 

orthographic views. In a bid to overcome this problem, 

Aldefeld uses heuristic techniques so that subpatterns can 

be extracted on the basis of hypotheses. The strategy 

which Aldefeld calls the "Best First Search" is based on 

an evaluating function that assigns scores (number of 

points) to patterns on the merit of their characteristics. 
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The patterns are then chosen in the order dictated by 

their accumulated score for the input to the recognition 

process. Two main scoring methods are used; Each pattern 

is first assigned a score according to the number of 

primitives it comprises and which have not yet been 

recognized as a part of an object vepresentation. Each 

pattern is then assigned another set of points depending 

on the attributes it may have in relation to other 

patterns. For instance, a pattern that is not adjacent to 

any other pattern, i.e. isolated, is given a higher score 

than a pattern which has the attribute ‘adjacent' assigned 

to it. This hypothesis is true since an isolated pattern 

must necessarily represent the silouhette of at least one 

partial solid. 

Finally, Aldefeld's reconstruction algorithm can 

be briefly described as follows: 

1) Find all the relationships between primitives. 

2) Find all closed loops and assign them their 

various attributes, i.e. 'circular', irregular, etc.. 

3) Assign a score to each loop using the evaluating 

function, and select the loop which has the highest score. 

4) The loop selected from step (3) is assumed to be 

the base silouhette of one or more partial solids. This 

assumption is verified or rejected using the model-guided 

recognition algorithm. A three-dimensional structure is 

generated if the assumption is held as true. 
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5) The loop is ‘expanded' to include itself and an 

adjacent loop. The expanded loop is checked if it already 

exist; if not, add it to the set of data, find its 

attributes and relationships with other loops as before. 

Mark the new loop as '‘open' and the original loop as 

"closed". 

6) Verify whether the generated object complies with 

the input data; if so exit the algorithm, else continue 

from step (3). 

The main disadvantage of Aldefeld's method is that 

it only works on a local basis since it deals with one 

partial solid at a time, and ignores the global context. 

For this reason, the reconstruction algorithm can not 

distinguish between solid bodies and cavities, and may 

also generate false partial solids due to silouhette 

interference. Furthermore, the generalization of the 

method to true three-dimensional non-uniform objects would 

require not only more sophisticated heuristics, but also 

the extension of the domain of partial objects to include 

those which, for instance, have rotational symmetry 

objects, and the relaxation of the restriction on their 

spatial orientation. 

4.4) KAINING'S METHOD: 

Kaining's method is based on the algorithm 
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developed by Wesley and Markowsky. Their algorithm 

resembles the one presented by Idesawa, briefly discussed 

above (section 4.3), in the sense that it 'fleshes out' 

projections hierarchically from lower levels to higher 

ones, but by making use of rigorous mathematical and 

topologissl definitions, Wesley-Markowsky's algorithm 

gives better results on handling pathological cases and 

multisolution problems. Basically, the algorithm can be 

described as follows: 

1) Generate 3D vertices from 2D vertices. 

2) Generate 3D edges from 3D vertices. 

3) Generate 3D subfaces from 3D edges. 

4) Assemble 3D subfaces to form 3D subobjects. 

5) Assemble 3D subobjects to form objects matching the 

input 2D projective representations. 

However, as in Idesawa's algorithm, the domain of 

objects that may be interpreted is limited to those having 

planar faces only. 

Kaining's algorithm extends the interpretation 

process to include objects having cylindrical faces. 

Furthermore, the axis of any cylinder is restricted to be 

parallel to one coordinate plane. The different steps of 

the algorithm are illustrated in Figure 4.4, the details 

of which are described as follows: 
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1) GENERATE 3D VERTICES/EDGES FROM 2D ONES: 

The following principles are applied to derive 3D 

vertices and 3D edges: 

a) Matching principle: 

If Eg, E, and E, are projected edges (or vertices) 

on the front, top and side views respectively, then they 

May be referred to as a group of matching edges if their 

surrounding rectangles defined by their maximum and 

minimum coordinates, i.e. (Xgnins Zemin’ Xemaxt) 2fmnx)7 

(Semin Yemin’ *tmax! Yemax) and (Ysmin’ Zsmin’ Ysmax’ 7smax) 

respectively meet the following conditions: 

*tmin ~ *tmin * Yemin ~ Ysmin Zsmin ~ 7£min 

*tmax ~ *tmax / Ytmax ~ Ysmax ’ smax ~ 7fmax 

b) Line mode: 

A 3D straight line can be derived from a group of 

matching edges Es, E, and E, if and only if: 

i) Eg, E, and E, are 2D straight lines (at most. one 

of which can be a 2D vertex); 

ii) there is a group of endpoints of them satisfying 

the matching principle. 
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c) Ellipse mode: 

A 3D elliptical edge can be derived from a group 

of matching edges Eg, E, and E, if and only if: 

i) Eg, E, and E, are 2D ellipses with their axes 

parallel to the coordinate axes, or 2D straight lines, and 

there is at least one ellipse and one straight line among 

them; 

ii) If there are two ellipses amongst Eg, E, and E,, 

then their centres have the same coordinate value in the 

shared coordinate; 

iii) Each group of endpoints of elliptical arcs and 

another group of points on the elliptical arcs, satisfy 

the matching principle. 

The elliptical mode is illustrated in Figure 4.5. 

d) Higher order curve mode: 

Higher order curves can be derived from a group of 

matching edges Eg, E, and E,, when two of them are circular 

arcs and the other is either hyperbolic or a regular 

higher order curve. Higher order cuxves arise from the 

intersection of two cyl'‘nders, with differen. radii or 

non-intersecting axes, whose axes are parallel to 

coordinate axes, as shown in Figure 4.6. 
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2) GENERATE FACE EQUATIONS : 

A face equation may be generated from pairs of 

non-colinear 3D straight line edges sharing a common 

endpoint. The equation of a cylindrical face can be 

defined by three geometric parameters: 

- a point on the axis of the cylinder, referred to as 

the location point, 

- a radius 

- the orientation of the axis of the cylinder. 

The location point is obtained by using the 

matching principle to recover the centre of the 3D 

ellipse, while the radius and the orientation of the axis 

can be derived as follows: 

i) Derivation of the radius: 

Let G be the generating cylinder of a 3D ellipse 

E, as shown in Figure 4.7. If the axis I of such a 

cylinder is parallel to the OXY plane, then the generating 

plane P of E will be perpendicular to the OXY plane. If, 

in addition, P is not perpendicular to the OXZ plane, 

then: 

a) the orthographic projection of E on OxZ is an 

ellipse S with its axes parallel to either the X or Z 

axis; 
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Fig. 4.7: Derivation of the radius 
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b) the radius of the generating cylinder G is equal to 

half the length of the axis of S parallel to the Z axis. 

In the above derivation of the radius, it is 

assumed that the axis I of the generating cylinder G is 

parallel to che OXY plane. It is possible to determine the 

coordinate plane to which the axis I of the cylinder G is 

parallel. Two examples are given here in order to 

illustrate how to deal with this problem; In Figure 

4.8(a), only one straight line exists in the group of 

matching edges. In this case, the axis I must be parallel 

to the plane in which this line lies. In Figure 4.8(b), 

only one ellipse E, exists in the group of matching edges. 

In this case, the length of the minor axis of Ee is equal 

to the diameter of the cylinder G. 

ii) Derivation of the orientation of the cylinder axis: 

Figure 4.9 represents the orthographic views of an 

object composed of two intersecting cylinders at an 

oblique angle. The point C(x,,z,) on the line E, 

corresponds to the centre point (xo,yo) of the ellipse E,, 

and the point (x,,y,) on E, is the endpoint of the major 

axis of the ellipse E,. This point (x,,y,) also corresponds 

to the point P(x,,z,) on the line Eg. An auxiliary circle 

with C as centre and with radius equal to the radius of 
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the generating cylinder, may be constructed to have the 

line PT, as tangent at the point T,. The orientation 

(dx,dz) of line PT, is that of the projection of the 

cylinder's axis. The orientation (dy,dz') of the 

cylinder's axis on the side view car be derived in similar 

fashion, and by scaling one orientation vector so that: 

dz = dz' 

the orientation in 3D-space (dx,dy,dz) can be obtained. 

There are two types of pathological cases which 

may arise with the 3D edges and faces generated above. One 

is when two edges intersect at one of their interior 

points rather than endpoints. Such an intersection can 

appear as an endpoint in a set of orthographic projections 

as those shown in Figure 4.10 where pathological point P 

exists between edges AC and BD. The other pathological 

case may arise when two different faces intersect at their 

interior lines rather onan boundary edges. The faces AEGC 

and BFHD intersect at such interior line PQ. These two 

tyyes of pathological cases should not appear in well 

defined geometric objects. 

The pathological intersecting point P, referred to 
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as a cutting vertex is introduced to separate its two 

generating edges, AC and BD, into four edges, AP, BP, DP 

and PC, so that the pathological case is removed. 

Similarly, the pathological intersecting line PQ, referred 

as cutting edge, is introduced to separate its two 

generating faces, AEGC and BFHD, into four separate faces, 

AEQP, PQGC, BFQP and PQHD. 

4) GENERATE FACE-LOOP-BASES: 

In order to define a face-loop base the following 

definition are first introduced: 

- A face-loop on a face F is defined by Kaining as a 

“simply interconnected" area bounded by a subset of edges 

on F. For example, in Figure 4.11, £,,...., f7 are 

face-loops on face F. 

- A boundary edge set E(f, + fp +...+ f,,)| of the 

union of the face-loops £1, fj, ---, fm is defined as 

follows: 

m’ m-1 m 

E(fl + £2 +...+fm) = U g(fi) - (U U B(fi) M E(£3)) 
i=l isl j=itl 

where the sign '+' denotes the union of some different 

face-loops on one face and (fi) denotes the boundary edge 

set of the face-loop fi. 

119



  

  

  

        

  

Fig. 4.10: Cutting vertex/edge 

KY D A 
KV AX 

Fig. 4.11: Face-loops 

  

120



From the above definitions, the face-loops f4,..., 

f7 in Figure 4.11 can be generated by the union of set 

fy,---rf3, d.e.s 

f, =f, tf. + £3 £5 = ff, + £5 

fp mato tats ty = fut fy 

A set of face-loops on face F, Bye = f1,....,f,, is 

defined as a face-loop-base if any face-loop on F can be 

generated from one or more faces in Bf and each face-loop 

in Bf can not be generated from other face-loops in Bf. 

For example, in Figure 4.11, the set By, = f,,f2,f3; is the 

face-loop-base on face F. 

Kaining devised the following algorithm to 

determine the face-loop-base of each face: 

a) For each vertex v, on F, sort its incident edges on F 

in a counter clockwise order such as e, ep ... e,, the e 

is the left-adjacent-edge of e€, at vy,..., and e, is the 

left-adjacent-edge at e,. 

b) Pick an ordered edge ei (Vir vy) at Vyr followed by 

picking its left-adjacent-edge 25 (V57 Vy) at v,, then pick 

the left-adjacent-edge of ey at vy,..., the face-loop L 

will be formed when edge e, (v,,v;) jointing the first edge 
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e, is picked. The left side of each ordered edge is 

defined as the interior of L. 

c) Since there are only two ways to traverse each edge, 

either from v; to v5 or from vy to vy, all the face-loops 

will be obtained when each edge is picked twice in 

different directions. 

d) The face-loop-base is made from all of the bounded 

face-loops except unbounded ones. 

The philosophy of object-loop base and the union 

of object-loops can be derived by extending the concept 

face-loop-base and the union of face-loops. In the example 

shown in Figure 4.12, if the ordered face -fl is first 

picked, then in order to ensure that there is no face-loop 

in the interior of the object loop, it is necessary to 

pick the ordered face -f3. But if the face +f1 is picked 

at first, then face -f2 should be picked next. An 

object-loop B will be formed if the ordered face-loop are 

picked as shown above repeatedly until each edge in B has 

been contained by two face-loops in B. 

All of ob,2ct-loops are found when each face-loop 

is traversed twice in two direction. The object-loop-base 

is composed of all the bounded object-loops except 

unbounded ones. 
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Fig. 4.12: Incident faces 
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6) ASSEMBLE OBJECT-LOOPS TO GENERATE SOLUTIONS: 

Object-loops in the base may either be disjoint, 

or have some vertices, edges or face-loops in common. 

Therefore, the rules to assemble object-loops are simple 

and may be described as follows: 

a) Delete face-loops shared by only two object-loops, 

since it is not allowed for a face to be in the interior 

of an object. 

b) Delete edges shared by only two face-loops which are 

on the same face, because an edge is the intersection of 

two different faces in an object. 

Finally, the orthographic views of the object 

generated above are compared with the input three views to 

establish whether it is a solution or not. All the 

solutions matching the input two-dimensional views can be 

found by checking all the assemblies of the object-loops. 

The main disadvantage of Kaining's method is that 

the range of object that may be treated is limited to 

those having planar and cylindrical surfaces only. 

4.5) HO BIN'S METHOD: 

The basic approach adopted in this method is that 
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parts can be thought of as an assemblage of elementary 

volumes or ‘solid primitives', which also forms the 

Constructive Solid Geometry representation of those 

objects, (see section 3.4.4). Ho Bin's approach is based 

on interactively inputting these representations directly 

from the two-dimensional orthographic views. The 

interpretation process may be described as a 

semi-automatic rather than automatic process since most of 

the tasks of recognizing each primitive from the input 

views are carried out by the user rather than by means of 

algorithms such as the ones employed in the methods 

described above. The amount of input required from the 

user is rather large and for each primitive the basic 

input cycle consists of four steps: 

STEP 1: Input the type of primitive. Five types of 

primitives can be input: cuboid, tetra pyramid, cylinder, 

cone and sphere. All of these are defined so as to have 

their axes (or heights) perpendicular to one of the 

projection planes, or oblique to two of the projection 

planes. 

STEP 2: Input the sign of the primitive. If the primitive 

represents a solid, part of space, its sign must be '+' 

(positive). If the primitive represents a hole or cavity, 

i.e. a “virtual” primitive, then its sign is ‘-' 

(negative). 
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STEP 3: Input three points for the base of the primitive. 

STEP 4: Input two points for the height of the primitive. 

The first input point of the height is regarded as the 

projection of the points located on the primitive base 

contour. 

Steps 1, 2 and 3 are carried out using a menu of 

commands, shown in Figure 4.13, on a digitizer. The five 

points of base and height (steps 3 and 4), are input ina 

prescribed order from the given engineering drawing. 

At the end of each input cycle, a 

three-dimensional model of the corresponding primitive is 

constructed and the two-dimensional representations, 

comprising three orthographic views and a hidden-line 

isometric view of the primitive) are displayed on the 

output device. This feed back ccaties the user to check 

whether his input of that primitive is correct before 

beginning the next input cycle. This interactive process 

is continued in this fashion until the complete Boolean 

tree of the object model is obtained. 

The algorithm concentrates mainly on : 

a) using the type and sign of all the primitives 

sequentially to build simple Constructive Solid Geometry 

expressions of the kind A-B+C-D+E, where A, B, C, D and E 
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represent the primitives, and the signs '+' and '-' 

represent the Boolean operators Union and Difference 

respectively. The special Boolean tree along a single 

direction with only two operators (+ and -) may be 

obtained, as shown in Figure 4.14. 

at) using the coordinates of the input five points 

(steps 3 and 4) to derive the following data: 

a) the number of the view on which each primitive 

base and height are projected, 

b) the three coordinates of the base centre, 

c) the radius of the base circle, if the primitive is 

a cylinder , a cone or a sphere, 

d) the length, the width and the angle (between the 

length direction and the horizontal line) of the base 

rectangle, if the primitive is a cuboid or a pyramid, 

e) the value of the angle between the axis (height) 

and the XY projection plane, or between the axis (height) 

and the XZ projection plane if the axis is parallel to xy 

plane, 

£) the value of the primitive height. For the sphere, 

which is a primitive that has no ‘height', the two input 

points are used to define the third coordinate of the 

centre of the sphere. 

The algorithm may be described as follows: 
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i) If the axis of the input primitive is perpendicular 

to one of the projection planes, the real shape of its 

base contour and the true length of its height are shown 

in the principal views. From the three input points of the 

base, for instance points 1, 2, and 3 in Figure 4.15, the 

parameters of the base are obtained easily. These 

parameters are : 

- for the rectangular contour: the length, width, the 

angle B between the length direction and the horizontal 

line, and the coordinates of the centre, 

- for a circular contour (eg. Figure 4.16): the radius 

and the coordinates of its centre. 

From the two input points of the height, the value 

of the height is obtained by subtracting the coordinates 

along the coordinate axis parallel to the primitive axis. 

ii) If the axis of an input primitive is oblique to the 

projection plane, the real shape of its base no longer 

appears in the principal views. For instance, the 

projection of a circle or a rectangle becomes an ellipse 

or a parallelogram, respectively. In this case it is 

necessary to reconstruct the real shape in order to obtain 

the input primitive dimensions, construct its geometric 

model and draw its three orthographic views and isometric 

view. A cone, and its orthographic views, shown in Figure 

4.16 is chosen here as an example to illustrate this 
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transformation algorithm. 

The axis SQ, is parallel to the XY projection 

plane and has an angle fB with the XZ projection plane. 

An arbitrary point A located on its circular base contour 

is projected on the three projection planes as points a, 

a' and a". O,X, and 0,2, are the reference coordinate axes 

of the circular base contour of the cone. The Xp 

coordinate of point A, AZ,, on the reference coordinate 

axis O,X,, is equal to ao in the top view. The xX and Z 

coordinates of projection point a' relative to the cone 

centre o' in the front view, are a'Z,, and a'X,, . The Y 

and Z coordinates of the projection point a" relative to 

o" in the side view are a"Z,., and a"Y,, . The X and Y 

coordinates of the projection of point a to the projection 

o in the top view are bo and ab 

Since: 

a'Z,. = bo, 

a"Zan = ab, 

then: 

AZ, = a'Z,. / sin B 

or: 
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AZ, = a"Z,n / cos B 4 

and: 

BXS mat Xa, = atten 

It is therefore possible, by using the above 

transformation algorithm, to calculate the coordinates Xb 

and Zb of an arbitrary point A from the coordinates of its 

projection points. However, this is only possible if the 

coordinates of the centre point of the ellipse projection 

are known. After transforming the coordinates of the three 

input points of the ellipse projection, a circle base 

contour of that cone is determined. 

4.6) DISCUSSION: 

The first fundamental point that emerges from the 

above review is that some of the methods adopted an 

approach based on the Boundary representation scheme while 

others used Constructive Solid Geometry representation. 

The former methods require thorough checks on the validity 

of the reconstructed object to be carried throughout the 

interpretation process. These checks hold an important 

Place in the algorithm and they serve to identify and 

eliminate pathological cases which may lead to the 

generation of impossible objects. Those methods which 

adopted Constructive Solid Geometry do not require such 
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checks since the validity of the reconstructed object is 

guaranteed, whether it is a solution or not. However, one 

can argue that such methods do not attempt ‘automatically' 

to interpret orthographic views as a solid object; instead 

they rely heavily on the user to carry out the most 

difficult task in the interpretacion process, i.e. the 

identification of the three-dimensional primitives. The 

other main disadvantage of adopting this approach is the 

speed at which the interaction between the user and 

machine is carried out. However, there is now a tendency 

to adopt such user-guided interpretation techniques, may 

be because of the increasing processing power in terms of 

speed present machines can offer, or maybe because 

researchers have come to the conclusion that human 

parallel processing power can never be matched by any 

algorithm in solving such problem; Such attitude has been 

reflected by Aldefeld and Richter in their work on 

semi-automatic three-dimensional interpretation of line 

drawings [43]. 

The other point common to all the methods 

developed so far, is that whatever the approach or 

modelling representation adopted in each method, they all 

fall short of what is really needed in engineering 

practice. This is either because there is a significant 

number of failing cases, or because the scope of the 

technique is insufficient for mechanical engineering; 

there is still a wide range of mechanical parts that can 
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not be reconstructed: because of their complexity. 

A novel approach, based on Constructive Solid 

Geometry concepts, has been adopted in the work reported 

in this thesis for the automatic interpretation of 

enginecring drawings as solid models. The method developed 

in this project also uses the 'man in the loop' concept 

but not to the same extent as the so-called 

"semi-automatic" techniques described above. 
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INTERPRETATION OF ENGINEERING DRAWINGS AS 

SOLIDS: A NEW APPROACH 
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5.1) INTRODUCTION: 

A new approach has been adopted by the author to 

solve the problem of automatic interpretation of 

orthographic projections as solid objects. The basic 

concepts underlying this approach are discussed in section 

5.2. The manner in which these concepts are applied to the 

present work is novel. A process of converting 

orthographic views into a solid model has been developed 

by initially implementing these concepts to uniform 

thickness, or prismatic, objects. Experience gained from 

the work on prismatic objects has yielded a technique for 

implementing those same concepts to more general 3D 

objects. 

An overview of the process is presented in section 

5.3, and its implementations to both prismatic and general 

3D objects are described in section 5.4. 

5.2) MHEORETICAL FUNDATIONS FOR THE PROCESS: 

The approach being used exploits the concepts of 

Constructive Solid Geometry in which a complex object is 

considered to be an assemblage of three-dimensional 

primitive elements, or building blocks, synthesized by 

means of Boolean operations to represent the complete 

object. Further, each primitive may be represented by the 
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two-dimensional elementary patterns, referred to as 

primitive loops, contained in its set of three 

orthographic views. This set of patterns constitutes a 

unique 'signature' which identifies the primitive within a 

tree structure used to describe the total object. For 

instance, a set of three rectangles (one rectangle in each 

view of the primitive) will identify a primitive block, or 

a set of three circles (one circle in each view of the 

primitive) will identify a sphere, as shown, along with 

other signatures, in Figure 5.1. 

The manner in which these concepts are applied to 

the present vork is novel. The starting point is to assume 

that an object can be ‘cut out' from a single 'raw block' 

rather than being built up of several building blocks. The 

raw block is itself a three-dimensional primitive (a unit 

block) which is transformed (scaled) and to which a sign 

(positive) is allecated to represent a volume ‘of material 

from which the object is cut out. The task of 

reconstructing the object from its orthographic views is 

then to find and identify the volumes of material (the 

three-dimensional primitives) to be removed from the raw 

block to yield the true object. Figure ace cetrates the 

reconstruction of an L-shaped model starting from the raw 

block at the bottom, using the above concept. It will be 

observed that only subtractions of primitives are required 

in the total process. 
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3D PRIMITIVE ORTHOGRAPHIC VIEWS 
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5.3) OVERVIEW OF THE PROCESS: 

The process of transforming the orthographic views 

of an object into a formal three-dimensional 

representation has been designed to comprise five elements 

(stages or subprocesses), requiring a minimum of user 

interaction, and to provide feed back of data 

corresponding to discrepancies between input and output 

orthographic views, when the need arises. These 

subprocesses are: 

a) Raw Data Interpretation 

b) Data Analysis 

c) Solid Modelling 

d) Output Verification 

e) Feed back 

The flow diagram of Figure 5.3 shows the 

relationship between these elements in the forward path of 

a closed loop where feed back is provided. The human 

operator interaction with the process resides after the 

last subprocess in the forward path of the cycle, i.e., 

before feed back. A description of each subprocess is 

given in the following sections while the details of the 

technique employed in each of these subprocesses and 

associated algorithms are described in chapter 6. 
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5.3.1) ZDERMINOLOGY: 

The following terms are used throughout the 

description of the interpretation process, and are 

illustrated in Figure 5.4: 

a) The Surrounding Cuboid is the three-dimensional 

block from which the object is to be cut, i.e. the raw 

block (see section 5.2). Therefore, it is a cuboid whose 

dimensions equal those of the maximum values for the 

solid object in the X, Y and Z directions. 

b) The Surrounding Rectangle is the closed loop 

representing an orthographic projection of the Surrounding © 

Cuboid. 

c) The Object Loop is the closed loop defined in an 

orthographic projection of the solid object. 

d) The Perimeter Loop is the object loop that defines 

the outline of the object when viewed in the direction of 

projection. 

e) A Subobject Loop is a closed loop formed between the 

surrounding rectangle and the object loop. It may also be 

defined as an orthographic projection of a subobject 

formed by difference between the surrounding cuboid and 

the solid object. 
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f) A Basic Loop is a closed loop which can be 

identified as an elementary two-dimensional shape, such as 

a rectangle, a quadrant, a circle, a triangle ... 

g) A Primitive Loop is a basic loop that is an 

crthographic projection of a three-cimensional primitive. 

It may also be a subobject loop. 

h) An Arbitrary Pattern is a closed loop which cannot 

be identified as an elementary two-dimensional shape and 

which requires further processing in order to generate 

Basic Patterns. 

i) A Parent Loop is a closed loop which has been 

identified as an arbitrary pattern and then, directly 

decomposed further into a number of subobject loops or 

children loops, i.e. a parent loop can be directly 

reconstructed by using its children loops. An object, or a 

subobject, loop may be either a basic or an arbitrary 

loop. 

5.3.2) BAW DATA INTERPRETATION: 

The purpose of the raw data interpreter is to 

check for incomplete, inconsistent or false information, 

such as, for instance, edges of order less than 2 (known 

as dangling edges, discussed in section 3.4.4), or for 
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self-intersecting loops, in the input orthographic views. 

The data of the orthographic views are assumed to have 

already been stored in the computer in the form of three 

separate data files (one file per view). The raw data 

interpreter is also used to transform the raw data into a 

structured format required hy the next step. 

5.3.3) DATA ANALYSIS: 

In the analysis stage, the data are examined in 

order to: 

i) identify the class of the object, i.e. to 

determine whether the input views represent a primitive 

object (the trivial case), a prismatic object or an 

arbitrary and more general object. The output of this step 

predetermines the next steps of the process since, for 

efficiency in processing, the implementation of the 

interpretation process differs from one class of objects 

to another although the process itself is the same in all 

cases. 

ii) to extract the object and subobject loops in order 

to locate and identify all the basic two-dimensional 

patterns from each orthographic view and the ‘signatur.3' 

they may form as a set to establish the identity of the 

three-dimensional primitives. The transformations and 

associated Boolean operations, necessary for the 
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reconstruction of the shape of these loops, are also 

defined at this stage. The underlying technique uses the 

knowledge about a number of predefined elementary or 

"basic' patterns. Those loops that can not be readily 

identified as basic patterns are classified as arbitrary 

patterns, our parent loops, which are then decompcsed 

further until all the loops are identified as basic 

patterns. The details of this recursive technique, 

including the algorithms associated with it, are presented 

in chapter 6. 

The application of this technique to the 

interpretation of prismatic and ortho-prismatic objects 

provides the fundamental basis from which generalization 

to more general three-dimensional objects can be 

developed. Details of the implementations of the process 

to each class of objects, including the trivial case where 

the object is itself represented by a single primitive, 

are discussed later in section 5.4.1. 

The output from this stage is a text file which 

contains the identified primitives and the required 

manipulations to provide all the necessary data for the 

reconstruction of the object in the solid modelling stage. 

These files must be written in a format appropriate to the 

solid modeller in use. 
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5.3.4) ZDHREE-DIMENSIONAL MODELLING: 

A true solid modeller is at the core of this 

process. It is incorporated, at this stage, to: 

1) reconstruct the solid model by performing tiie various 

transformations and Boolean operations on the identified 

three-dimensional primitives. 

2) generate a parametric ASCII data file which describes 

the two-dimensional orthographic views of the object 

model. These are used later for comparing the views of the 

generated model with the original orthographic views in 

order to assess the quality of the model and, if 

necessary, to refine it. 

The solid modeller used in this project is the 

PAFEC 'BOXER' solid modeller. Like most contemporary 

modelling systems, it offers a finite set of concise, 

compact primitives whose size, shape, position and 

orientation are determined by a small set of 

user-specified parameters. The type and parameters of each 

primitive are. specified, using the PAFEC 'BOXER' syntax, 

either interactively, or stored in a text file and then 

transferred to the solid modeller. 

A particular primitive, such as the block 

illustrated in Figure 5.5(a) may be specified using the 
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following text statements: 

BLOCK (Xlen,Ylen,Zlen ) AT (Xpos, Ypos, Zpos) 

where: . 

Xlen = block leugith in the X direction 

Ylen = block length in the Y direction 

Zlen = block length in the Z direction 

Xpos = block centroid X coordinate 

Ypos = block centroid Y coordinate 

Zpos = block centroid Z coordinate 

A primitive cylinder, illustrated in Figure 

5.5(b), must be defined using the following text format 

CYL (Cylen, Radius) AT (Xo, Yo,Zo) 

where: 

Cylen = length of the cylinder. 

Radius = radius of the cylinder base 

Xo = X coordinate of the centre of the base 

Yo = Y coordinate of the centre of the base 

Zo = Z coordinate of the centre of the base 

There are other formats which can be used to 

define a block, and a cylinder, but the above have been 

found to be most convenient, and are used here. Other 

common primitives such as wedge, fillet, cylindrical 
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segment, sphere, tetrahedron, cone and torus, are also 

available. The format corresponding to each of these 

primitives may be found in [45]. 

The solid modeller generates solid models by 

combining different primitives using a number of specified 

Boolean operators, such as UNION, DIFFERENCE and 

INTERSECTION, (see section 3.4.4). As an example, for the 

object illustrated in Figure 5.6, the following modelling 

statements are required: 

LENGTH = 6.0 

WIDTH = 0.5 

HEIGHT = 3.0 

OBJ1 <- BLOCK (LENGTH, HEIGHT, WIDTH) 

OBJ2 <- BLOCK (LENGTH/3, HEIGHT, WIDTH) AT (MOVEX =$ 

-LENGTH/3,MOVEY = 1/2) 

RES1 <- OBJ1 + OBJ2 

DRAW RES1 

HOLE <- CYL (1/2, 1) AT (1, 0, -1/2, ROTX = 90) 

RES2 <- RES1 - HOLE 

DRAW RES2 

OBJ1 is a primitive block of length 6, ueight 1/2 

and width 3, whose centroid is at: x= 0, y =0 and z= 

0, i.e. at the origin of the coordinate reference system. 
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Fig. 5.6: PAFEC "BOXER" Output 
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OBJ2 is also a primitive block; length 2, height 

1/2 and the width 3. This block is positioned by 

translating its centroid, from the origin, in the negative 

X direction over a distance equal to 2/3, and in the 

positive Y direction over a distance equal to 1/2. The " $ 

" sign is used to indicate a continuation of statement. 

RES1 is the object resulting from the Boolean 

union, represented by the " + " sign, of OBJ1 and OBJ2. 

This object is then drawn, as shown in figure 5.6(a). 

HOLE is a cylinder primitive whose length is equal 

to 1/2 and base radius equal to 1. The cylinder is 

positioned by defining the coordinates of the centre of 

its base, x =1, y = 0 and z = 1/2, and rotating it by a 90 

degrees angle about the X axis, as shown in Figure 5.6(b). 

Finally, RES2 is the object resulting from the 

Boolean difference, represented by the " - " sign, of RES1 

and HOLE. RES2 is then drawn, as shown in Figure 5.6(c). 

The input to this subprocess comprises the data 

files obtained from the analysis step. The size, shape,. 

position and orientation parameters of primitives whose 

type has been defined, are here specified by extracting 

the necessary data from these files. The solid modeller 

input file is then generated by converting the data 

associated with each primitive and corresponding Boolean 
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operators, into the appropriate syntax. The process of 

generating the solid modeller input file is discussed 

later in section 6.3. 

The output from the solid modelling subprocess is: 

a) a set of data files which comprise the topological and 

geometrical data to describe and display the object 

model. 

b) an ASCII file which describes the orthographic views of 

the object model. 

5.3.5) QUTPUT VERIFICATION: 

The output verification is the final stage in the 

forward path of the process. This .subprocess has two 

inputs: 

1) the orthographic projections data obtained from the raw 

data interpreter, 

2) the text file, generated by the solid modeller, from 

which the data corresponding to the orthographic 

projections of the output model are extracted. 

These two sets of data are compared to establish 

any discrepancy between the three-dimensional model 

generated by the process and the actual object model. If 

the two sets of data agree the interpretation process is 
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automatically terminated on the basis that the exact 

object has been reconstructed. However, in the case where 

there are some discrepancies, a decision has to be made 

on whether to terminate the process, since the 

discrepancies may be deemed negligible, or to allow it to 

continue for further iterations. Two options are open 

here: 

a) The discrepancies are indicated to the user, who is 

then prompted to make a decision on whether to terminate 

the process or to allow it to continue. The user may 

terminate the process if he decides that the model 

generated (approximation model) is similar to the actual 

model to within the required tolerances, or he may require 

the process to continue until the exact model is 

reconstructed or until the tolerance conditions between 

the approximation model and the true object are met. 

b) Use an objective function whose criterion for 

terminating the process consists of detecting when there 

only minor differences between two successive 

approximation models. The acceptable level of accuracy 

would then be dictated by the application for which the 

output model is required. For instance, in the case where 

the level of accuracy is not required to be high, such as 

for preliminary design, a simple value, such as volume, or 

mass, whose decrement has reached a certain level between 

successive approximation models may provide a practical 

test of modél acceptability. These points are discussed 
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further in chapter 9. 

When the process is allowed to continue, the.two 

sets of data (original and approximation model 

orthographic views data) are passed onto the feed back 

process. 

5.3.6) EEED BACK: 

In the feed back stage, the two set of data are 

examined to extract the two-dimensional geometrical and 

topological information which comprises the sets of three 

orthographic views representing one or more subobjects. 

The orthographic views data of these subobjects are then 

fed back as input to the data analysis subprocess in order 

to reconstruct the corresponding subobjects. Once 

reconstructed, a subobject is then subtracted from the 

previous approximation model to either the exact object, 

or to generate a further, but more accurate, approximation 

model. This process may be continued to provide 'nth' 

order approximation models which may converge to the exact 

input model. 

5.4) IMPLEMENTATION OF THE PROCESS: 

The process briefly described above was first 
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developed for the case of prismatic objects (section 

5.4.2) and extended to ortho-prismatic objects. The 

interpretation process for more general three-dimensional 

objects has been achieved by recursively employing exactly 
. 

the same technique used in interpreting prismatic and 

ortho-prismatic objects within an iterative precess. 

Real mechanical engineering components cannot 

usually be represented by a single three-dimensional 

primitive. However, parts within any object, such as holes 

or pockets, may be represented by single primitives. Thus, 

it is necessary that the process should also be able to 

deal with the trivial case where the object, or subobject, 

is itself a primitive. The implementation of the process 

to this special case is the first to be discussed in the 

following sections. 

5.4.1) THE TRIVIAL CASE; THE OBJECT IS A PRIMITIVE 

The interpretation of orthographic views which 

represent an object comprising a single three-dimensional 

primitive, is simplest in the case where the primitive 

principal axis is parallel to one of the coordinate axes. 

Then, the two-dimensional pattern in each view of the 

primitive will consist of only one single closed loop 

readily identified as one of a number of predefined 

patterns, such as those shown in Figure 5.1. These 
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patterns must also form a valid predefined 'signature' in 

order to be acknowledged by the computer. If the 

primitive, i.e. the object, has an arbitrary orientation, 

then the case may arise where at least one view may 

comprise more than one loop, or one pattern may not be 

readily be identified as a predefined 'known' pattern, as 

shown in Figure 5.1. In that case, the object is 

classified as either a prismatic or arbitrary object. 

5.4.2) IMPLEMENTATION TO PRISMATIC OBJECTS: 

Any object that has at least one 'base' view which 

may consist of one, or more, closed disjoint loops, and 

two views which consist of only rectangular interconnected 

loops, is classified as simple or complex prismatic 

object, respectively (section 2.4.1). 

The implementation of the interpretation process 

to both simple and 'complex' prismatic objects is 

basically the same, except that in the case of simple 

prismatic object only the perimeter loop in the base view 

needs to be analysed, while in the case of complex 

prismatic object all the loops including those 

corresponding to axial holes in the base view are 

analysed. 

In both cases, only the base view is processed 
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(since the other views are known to comprise only 

rectangles), and the analysis of each object loop consists 

of extracting the subobject loops formed between the 

surrounding rectangle and the loop itself in that view. 

The shape formed by each subobject loop is identified as 

either a basic pattern or as an arbitrary pattern. 

Arbitrary patterns are then decomposed further 

until only basic patterns are identified. Figure 5.7(a), 

shows the perimeter loop in the XY view of a prismatic 

object, and the basic patterns generated during the 

decomposition process of each arbitrary pattern. The 

object loop is situated at the root of the Boolean tree, 

the arbitrary loops at its nodes, and the basic patterns 

at its leaves. 

Each basic pattern is then associated with a 

rectangle in each of the remaining views to form sets of 

basic patterns which comprise the ‘'signatures', (see 

section 5.2), of a number of three-dimensional primitives. 

Thus a three-dimensional primitive is determined for each 

basic pattern identified in the base view. In Figure 

5.7(b), the basic pattern Pl which is, in effect, the 

surrounding rectangle to the perimeter loop, PO, of the 

object, is interpreted as the loop obtained in the XY view 

of a primitive block. Similarly, the loop P4 is also 

interpreted as the loop obtained in the XY view of a 

primitive block, while a primitive fillet is associated 
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with the loop P5, and a primitive cylindrical segment, or 

sector, is associated with loop P3. These 3D primitives 

are then used by the solid modeller to produce the 

complete solid object model, as illustrated in Figure 

5.7(c). 

In the case of complex prismatic objects, there 

are hole and perimeter loops to be considered. Figure 5.8 

shows the Boolean tree obtained by the decomposition of 

all the loops in the base view. Loop P2 which is a through 

hole loop, is identified as a circular basic pattern, 

while loops Pl, the perimeter loop, and loop P3, another 

through hole loop, are identified as arbitrary patterns 

which are then decomposed further until all the loops are 

identified as basic patterns, i.e. loops P4, P6, P7, P8, 

P9 and P10. 

The primitives identification and 3D modelling 

steps are similar to those described above. For instance, 

loop P2 will be identified as the orthographic projection 

in the XY view of a cylinder and P8 as the loop obtained 

in the XY view of a primitive block. 

In the case of both, simple and complex, prismatic 

‘objects, discrepancies will not be found when comparing 

the input orthographic views with those of the generated 

model. The output of ene process will be a Constructive 

Solid Geometry model which is the exact interpretation of 
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the input orthographic views, and thus, feed back will not 

be required. 

5.4.3) IMPLEMENTATION TO NON-PRISMATIC OBJECTS : 

The interpretation of non-prismatic objects, i.e. 

more general three-dimensional ones, requires a formal 

consideration of all views. Initially only one loop, the 

perimeter loop, shown in bold in Figure 5.9, is analysed 

in each view. Thus, each view is treated in a similar 

fashion to the base view of a simple prismatic object, and 

the inside loops are ignored. A prismatic object is 

obtained from each view . Such uniform thickness object is 

hereafter referred to as the X-profile, Y-profile, or 

Z-profile, depending on wether the view being analysed is 

the yz, xz or xy view, respectively. A First approximation 

model is defined as the intersection of these prismatic 

objects. 

Figure 5.10(a), (b) and (c) show the three 

prismatic objects obtained from the analysis and 

three-dimensional modelling processes performed on the 

perimeter loop in each of the three views of the object 

shown in Figure 5.9. A prismatic object whose length in 

the Z.direction equals Zmax, the maximum length of object 

also the length of the surrounding cuboid, in that 

direction, is produced by analysing the perimeter loop of 
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its XY view, (the Z-profile), as shown in Figure 5.10(a) 

Another prismatic object whose length in the X direction 

equal Xmax, is produced by analysing the perimeter of its 

YZ view, (the X-profile), as shown in Figure 5.10(b). 

Similarly, a third prismatic object whose length in the Y 

direction equals Ymax, is produced by analysing the 

perimeter of its XZ view, (the Y-profile), as shown in 

Figure 5.10(c). 

Figure 5.11 illustrates a solid model, referred to 

as the ZX model, obtained by the intersection of the 

Z-profile and the X-profile: 

ZX-model = Z-profile M X-profile 

Figure 5.11 also illustrates the output solid 

model produced by the intersection of the ZX-profile and 

the Y-profile. 

For an ortho-prismatic object, which is the case 

of Figure 5.9, the intersection shown is a complete 

description of the object _represented by the input 

orthographic views. Similarly to the case of prismatic 

objects, the interpretation process to the case of 

ortho-prismatic objects results in the generation of the 

exact solid model, and thus the feed back step is not 

required. 
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For all other objects (the great majority of 

mechanical engineering components), such intersections 

lead to a First-approximation model which is not exactly 

the object represented by the input orthographic views, 

but an approximate model only. For example, the 

intezssectiou shown at the bottom of Figure 5.11, can be 

regarded as the First-approximation model of the 

three-dimensional object shown in Figure 5.12. 

It is clear from the orthographic views of this 

intersection, i.e. the output views shown in Figure 

5.13(a), that various details are either missing from it, 

and in some cases, added to it, when compared with the 

original input orthographic views, Figure 5.13(b). 

In order either to generate a complete, or an 

‘adequate', object model, the differences between input 

and output views will have to be either completely 

eliminated, or reduced to within some agreed tolerance, 

respectively, by subjecting them to a minimization 

procedure. Such a procedure is initiated by the detection 

of these differences and a search is then carried out, at 

the feed back step, to extract from these differences sets 

of loops which may represent orthographic projections of 

one or more subobjects. These loops are then fed back to 

the analysis process where they are treated in similar 

fashion to the input orthographic views, i.e. to 

reconstruct the corresponding subobjects. Since the 
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First-approximation model represents, in effect, an 

envelop of maximum dimension, such subobjects, should be 

subtracted from it to generate an improved model. Figure 

5.13(b) contains such sets of loops whose absence from the 

orthographic views of Figure 5.13(a), may be readily 

detected and identified as the signature of a cylinder 

primitive. This primitive is then subtracted from the 

First-approximation model and the orthographic views of 

the output model (the second approximation model) will be 

as shown in Figure 5.14(a); comparison with the input 

orthographic views, Figure 5.14(b), shows that a number of 

details are still missing from it. These details can be 

identified as the signature of a cuboid which should be 

subtracted from the already improved model. The 

orthographic views would then be as shown in Figure 

5.15(a), which match the input orthographic views, Figure 

5.15(b), thus confirming that a complete object model has 

been generated. 

A summary of the implementation process to 

prismatic and non-prismatic objects is provided in the 

form of a flow chart as shown in Figure 5.16. 

“The basic approach and concepts adopted in the 

this project to develop a process which automatically 

reconstructs a solid model from a set of ‘orthographic 
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views have been described. The application of such process 

to prismatic objects, and its generalization to 

non~prismatic ones have been presented. It has also been 

shown that the interpretation process’ consists of five 

distinct subprocesses. The corresponding formal algorithms 

developed, except for Raw Data Interpretation, are 

described in chapter 6. It was clear from the start of the 

project that time and effort must be concentrated on the 

development of algorithms related to the interpretation 

process, rather then its input. For this reason, the 

initial input orthographic projections, are assumed to be 

correct, complete and unambiguous. This point is picked up 

in chapter 9. 
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ALGORITHMIC INTERPRETATION OF THE PROCESS 

176



6.1) DATA ANALYSIS ALGORITHMS: 

The technique used in the analysis process 

consists of extracting the object loop from each of the 

orthographic views and identifying the two-dimensional 

patterns and associated Boolean operations necessary for 

the reconstruction of the shape of this loop. These 

patterns are then interpreted as three-dimensional 

primitives which are combined to yield a uniform thickness 

(prismatic) object for each object loop that has been 

identified. The class of the object determines the view, 

or views, and loop, or loops, that are to be processed. 

Thus, the first task in the analysis stage, is to examine 

the data in each view in order to determine the class of 

the object which may either be a three-dimensional 

primitive, a prismatic object, or a general and arbitrary 

(non-prismatic) object. The class of any object is 

determined by the number, type and shape of loops in each 

view. 

In general, an orthographic view of any object 

consists of interstitial spaces, each bounded by a closed 

loop, and each loop consists of a finite number of nodes 

and edges. An edge-following algorithm, based on the 

‘First-Right' rule, has been developed to examine these 

interstitial spaces in order to determine the number of 

loops in each view. The algorithm has been developed 

further to determine the type of each loop, i.e. whether 

it,



it is a perimeter or an inside (connected or disjoint) 

loop. This algorithm is referred as the 'Loop Detector' 

and is described below. An algorithm has also been 

developed to identify the shape of each loop, i.e. whether 

the loop is a simple geometric shape (a basic loop), or an 

arbitrary shape (an arbitrary loop). This algorithm, 

referred to as the ‘Loop Identifier', is designed to 

recognize geometrical characteristics. For example, a loop 

will be classified as a right-angled triangle if it has 

three straight edges and the angle between any two of them 

is equal to 90 degrees. The information generated by the 

‘Loop Detector' and the ‘Loop Identifier' algorithms is 

used by another algorithm, the ‘Object Classifier', to 

determine the class of the object. 

6.1.1) THE "LOOP DETECTOR’ ALGORITHM: 

Orthographic projections consist of a number of 

interconnected nodes and edges which may be regarded as 

the elements of a directed graph, or digraph (appendix A). 

Each edge within the graph is defined as a di-edge by a 

pair of ordered nodes: a start node and an end node. For 

instance, in Figure 6.1 which shows such a graph in the 

view of an object, node P and node C are the start and end 

nodes of edge number 8. Furthermore, each node has a 

degree which is equal or higher than two, i.e. each node 

belongs to two or more adjacent edges. 
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Fig. 6.1: a) An arbitrary object view and 
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c) number and type of loops in the view 
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Edges and nodes may be sequentially grouped to 

form closed circuits, and in orthographic projections 

these circuits represent closed loops. All sequences of 

edges and nodes of all the closed circuits within the 

graph, may be determined using the 'First-Right' rule. The 

rule consists of selecting the next edge in the sequence 

amongst three or more adjacent edges. For instance, 

assuming that edge 5, in Figure 6.1, has been selected as 

the first edge in the sequence. The next edge will either 

be edge 13 or edge 19. According to the 'First-Right' 

rule, edge 19 will be selected as the next edge in the 

sequence since its anticlockwise angle from edge 5, at 

node I, is smaller than that of edge 13; thus edge 19 is 

the nearest, from the right, to the edge 5. 

The perimeter loop may also be determined by 

starting the sequence from a node that is known to be at 

an extreme position, and adopting the 'First Right' choice 

consistently at each node. For example, node I is at an 

extreme position (on the boundary or perimeter loop) since 

it has the minimum Y coordinate for the entire graph. 

There are three adjacent edges at node I: edges 13, 5, and 

19. Edge 19 is chosen as the next in the sequence since it 

has the smallest angle to the positive X-axis. At node M 

the only possible edge to follow is edge 16, but at node 

H, edge 17 is selected since its anticlockwise angle from 

edge 16 is smaller than that of edge 3. The process is 

continued until the path has returned to the starting node 
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I. The other loops, referred to as ‘inside' loops, as 

detailed in Figure 6.1, may be discovered by traversing 

each edge twice, the second time in the opposite sense 

from the first. One result of this is that loop number L6 

and L7, through nodes F, K, G and N, are identical in 

every way except sense, and it is axiomatic that any such 

loop is disjoint. Any other loop is referred to as a 

‘connected' loop. 

The algorithm is as follows: 

STEP 1: Label all edges in the graph as 0 

STEP 2: Find a node that has the minimum Y coordinate 

STEP 3: Find an edge that has an end point at the above 

node, and makes the smallest angle with the positive 

X-axis 

STEP 4: Mark this edge as +1 if the above node is the 

start node, or as -1 if it is the end node 

STEP 5: Starting at the other node of the above edge , 

make a right turn to select the next edge 

STEP 6: Mark each traversed edge as +1 if it has a flag 0 

and traversed in the positive sense, or as -1 if it has a 

flag 0 and traversed in the negative sense 

STEP 7: Once the start node (node chosen in step 2), is 

reached again, search for an edge that has been marked as 

Os; rlnon —1.. 

STEP 8: Reverse the sense of the edge found in step 7 and 

make first right turn 
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STEP 9: Mark each edge as +2 if traversed in both opposite 

senses 

STEP 10: Repeat steps (5), (6), (7), (8) and (9 until all 

the edges have been marked as +2, i.e. traversed in both 

positive and negative senses 

STEP 11: Label the first circuit (loop) as PERIMETER, and 

the remaining ones as INSIDE 

STEP 12: Compare each pair of circuits, and if a circuit 

repeats itself in the opposite sense then label it as 

DISJOINT (Type =0), else label it as CONNECTED (Type =1). 

The results of applying the above algorithm to the 

arbitrary view in Figure 6.1(a) are displayed in Figure 

6.1(c). The first loop, circuit Ll, is identified as the 

perimeter loop while the remaining circuits as inside 

loops. Circuits L6 and L7 represent the same loop 

traversed in both opposite senses and is therefore 

identified as a disjoint loop. The others are recognized 

as being connected loops. 

6.1.2) THE LOOP IDENTIFIER’ ALGORITHM: 

This algorithm exploits the geometric and 

topological characteristics of Simple two-dimensional 

shapes in order to identify the pattern of each closed 

loop in the orthographic views. The actual technique used 

is similar to the production rules approach employed in 
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the design of expert systems, in the sense that the 

knowledge about the characteristics of each geometric 

shape is used. For example, a loop is classified as a 

rectangle if it has four straight edges and three inside 

angles each equal to ninety degrees. The characteristics 

associated with a number of geometric shapes can also be 

recognized. Figure 6.2, shows the five simple 2D shapes 

that may readily be identified by the algorithm. These may 

be defined as follows: 

a) a rectangle, or a square, as a loop that has : 

- four straight edges, 

- all the inside angles are ninety degrees angles, 

- opposite edges are parallel and equal. 

b) a right-angled triangle as a closed loop that has : 

- three straight edges, 

- at least one of the inside angles is ninety degrees. 

c) a circle as a closed loop that has ; 

- one circular arc edge 

- the start and end nodes of the arc edge are the same 

point 

or 

- two or more circular arc edges, 

- all the arcs have the same radius and centre 

coordinates, 

- the start node of the first edge is the same point 
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as the end node of the last edge. 

d) a quadrant as a closed loop that has : 

- three edges two of which are straight and the other 

is an arc, 

- the inside angle formed by the straight edges is 

equal to ninety degrees, 

- the coordinates of the centre of the arc are equal 

to the coordinates of the intersection point of the 

straight edges. 

e) a fillet as a closed loop that has : 

- three edges two of which are straight and the other 

is an arc, 

- the inside angle formed by the straight edges is 

equal to ninety degrees, 

- the coordinates of the centre of the arc are equal 

to the coordinates of the mirror image of the intersection 

point of the straight edges abou the chord joining the 

nodes of the arc. 

Each shape has several characteristics, however 

the algorithm only uses those which are necessary and 

sufficient to identify it. For example, in order to 

identify a rectangle, the algorithm only looks for the 

following two characteristics: 

- four straight edges, 
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- at least three inside angles must be equal to ninety 

degrees. 

A loop that has been identified as one of the 

above shapes, is stored as a basic pattern, and is 

allocated a flag, LPF, according to the shape it has been 

identified with: 

- LPF = 1: for a rectangle or a square loop, 

- LPF = 2: for a right-angled triangle loop, 

- LPF = 3: for a fillet loop, 

- LPF = 4: for a quadrant loop, 

= LPF = 5 : fora full cizele loop. 

It is obviously possible to include a much larger 

number of simple shapes in the algorithm, such as 

parallelograms, semicircles and so on ..; however it has 

been found that the shapes described above are sufficient 

for the interpretation process, since they are the only 

ones found in the orthographic views of the 

three-dimensional primitives considered in this work. 

Furthermore, each loop which can not be identified as one 

of the above shapes, is stored as an arbitrary pattern 

with a flag set to zero (LPF = 0). 

Assuming that the loop that is being processed has 

N edges, then the algorithm for each loop is as follows: 
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STEP 1: Are all the edges straight edges ? 

1.1: if YES then go to step(2) 

1.2: if NO then go to step(5) 

STEP 2: if N < 3 then exit with error message. 

Ay teeet iN 3 then go to step (3) 

2523, LEON, 4 then go to step (4) 

2.3: if N > 4 then go to step (14) 

STEP 3: Is the inside angle between two adjacent edges 

equal to ninety degrees ? 

3.1: if YES then the loop is a right-angled triangle, 

LPF = 2. EXIT. 

3.2: if NOT then go to step (14) 

STEP 4: Are there at least three inside angles equal to 

ninety degrees ? 

4.1: if YES then the loop is a rectangle or square, LPF 

= 1. EXIT. 

4.2: if NOT then go to step (14) 

STEP 5: Are all the edges circular arcs ? 

5.1: if YES then go to (6) 

5.2: if NOT then go to (9) 

STEP 6: All edges are circular arcs; 

6.1: if N= igo tovstep (7) 

6.2: if N > 1 go to step (8) 

STEP 7: Are the coordinates of the Beare node equal to the 

coordinates of the end node ? 

7.1: if YES then the loop is a full circle, LPF = 5. 

Exo 

7.2: if NOT then go to step (15). 
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STEP 8: Are the coordinates of the centres of all the arcs 

equal ? 

8.1: if YES then the loop is a full circle, LPF = 5. 

EXIT. 

8.2: if NOT then go to step (14) 

STEP 9: Some of the edges are straight edges and others 

are circular arcs. 

9.1: if N = 3 then go to (10) 

9.2: if N < 3 then go to step (15) 

9.3: if N > 3 then go to step (14) 

STEP 10: Is there only one arc among the edges ? 

10.1: if YES then go to step (11) 

10. 2ceie. NoT then go to step (14) 

STEP 11: Are the two straight edges perpendicular ? 

11.1: if YES then go to step (12) 

11.2: if NOT then go to step (14) 

STEP 12: Are the coordinates of the centre of the arc equal 

those of the point of intersection of the two straight 

edges ? 

12.1: if YES then the loop is a quadrant, LPF = 4. EXIT. 

12.2: if NOT then go to step (13) 

STEP 13: Are the coordinates of the centre of the arc equal 

to those of a point which is the mirror image of the point 

of intersection of the two straight edges about the line 

joining the two noaes of the arc ? 

13:1 if YES then the loop is a fillet, LPF = 3. EXIT. 

13:2 if NOT then go to (14) 

STEP 14: The loop is an arbitrary loop, LPF = 0. EXIT. 
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STEP 15: Error message and EXIT. 

6.1.3) THE CLASS IDENTIFIER’ ALGORITHM: 

The class of the object depends on the number, 

type and shape of all the loops in all the views, as shown 

in sections 2.4.1 and 2.4.2. This algorithm uses the 

information about the number and type of loops gathered 

from the ‘loop detector' algorithm, and the shape 

information obtained from the ‘loop identifier' algorithm, 

to determine the class of the object. 

By assuming that: 

a) the orthographic views are labelled as 1 for the 

XY view, 2 for the XZ view and 3 for the YZ view, and the 

number of loops in each view is stored in the array NL(i), 

del, 2) Sr 

b) the type of each loop is assumed to be stored in 

the array TYPE(n), n = 1, 2, 3, ... NL(i), and equal to 

either 0 for disjoint loop, or to 1 for a connected loop, 

c) the information concerning the shape of the loop 

is assumed to have been stored in the array SHAPE(n) and 

is equal to LPF (the flag set by the loop identifier). 
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The algorithm is as follows: 

STEP 1: i = 0; KOUNT = 0; 

STEP 2: Is i> 3 7? 

2.1: if YES then go to step (14) 

2.2: if NOT then i = i + 1 and go to step (3) 

STEP 3: Does view NL(i) consists of one loop only ? 

3.1: if YES then KOUNT = 0 

3.2: if NOT then KOUNT = KOUNT + 1 

3.3: Go to step (2) 

STEP 4: All the loop have been examined, 

4.1: if KOUNT 0 then go to step (5) 

4.2: if KOUNT 1 then go to step (7) 

4.3: if KOUNT M1 2 then go to step (8) 

4.4: if KOUNT 3 then go to step (9) 

STEP 5: Each view consists of one closed loop. Are all the 

loops identified as basic patterns, 1 SSHAPE(1)< 5 ? 

5.1: if YES then go to step (6) 

5.2: if NOT then EXIT. 

STEP 6: Do these set of patterns form a 'signature' ? 

6.1: if YES then the object is itself a primitive. 

6.2: if NOT then EXIT. 

STEP 7: The object has only one loop in at least one view. 

The object may be a simple prismatic or an arbitrary 

object. Go to step (11). 

STEP 8: The object has at least two views each of which 

comprises only one loop. This is not consistent. EXIT. 
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STEP 9: Each view has more than one loop. The object may 

either be a complex prismatic or an arbitrary object. 

Check if the loops are disjoint or not. Is there at least 

one view which comprises only disjoint loops (TYPE(n) =0) 

9.1: if YES then go to step (10) 

9.2: if NOT then go to step (14) 

STEP 10: Is there more than one view which comprises only 

disjoint loops ? 

10.1: if YES then EXIT. 

10.2: if NOT then go to step (11) 

STEP 11: Do all the nodes in the views other than the one 

which consists of either one, or more, closed disjoint 

loops, belong to the perimeter loop. 

11.1: if YES then go to step (12) 

11.2: if NOT then EXIT. 

STEP 12: Are all the loops in the views other than the one 

which consists of either one, or more, closed disjoint 

loops, identified as rectangular shapes ? 

12.1: if YES then go to step (13) 

12.2: if NOT then EXIT. 

STEP 13: If I ( I = 1, 2, or 3) is the base view, i.e. the 

view which comprises either one, or more, disjoint loops, 

then : 

aoa t NL (I) = 1 then the object is a simple prismatic 

object. EXIT. 

13.2: if NL(I) > 1 then the object is a complex 

prismatic object. EXIT. 

STEP 14: The object is an arbitrary object. EXIT. 
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6.1.4) THE ‘LOOP PROCESSOR" ALGORITHM: 

The class of the object, once identified, 

determines the object loop, (or loops) that is (are) to be 

processed in order to identify the three-dimensional 

primitives together with the transformations and Boolean 

operations associated with them. For instance, in the 

case of prismatic objects, the object loops that are found 

in the base view, are the only loops to be processed since 

the other views comprise only rectangles (section 5.4.2). 

In the case of non-prismatic objects, only the object loop 

identified as the boundary, or perimeter, loop in each 

view, is analysed (section 5.4.3). 

The first task in processing an object loop is to 

define the node coordinates of its surrounding rectangle. 

This is achieved by computing the extreme node coordinates 

of the object loop. The next task is to locate the loops 

formed by the intersection of the surrounding rectangle 

and the object loop. This is achieved by generating a 

list, referred to as the ‘control list', which contains 

the information about the position of the nodes of the 

obiect loop in relation to the nodes and sides of the 

surrounding rectangle. Each located loop is then examined 

in order to classify it as either a specific basic pattern 

or as an arbitrary pattern. This task is in effect carried 

out by the ‘Loop Identifier' algorithm described above. A 

flag which identifies the shape of the pattern is then 
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attached to each loop. Any loop that has been identified 

as an arbitrary pattern is then decomposed into either a 

number basic patterns or into further arbitrary patterns 

that require further processing. 

Finally, using these basic patterns, all the 

three-dimensional primitives are identified, and the 

transformations together with the Boolean operations 

associated with them, are defined. These are then stored 

in a Boolean tree according to the order in which the 

primitives are generated. The data stored in the Boolean 

tree is then converted into a specific format which 

depends on the solid modeller that is used in the 

interpretation process, and which, in the present work, is 

the PAFEC "BOXER" text definition structure described 

section 5.3.4. The converted data is in effect the output 

of the analysis step, and the file in which it is stored, 

is used as input file by the solid modeller. 

The specifications of the ‘Loop Processor' 

algorithm are as follows: 

STEP 1: Read and extract the coordinates of the nodes of 

the loop from the input file, and compute the maximum and 

minimum values to define the coordinates of the 

surrounding rectangle. 

STEP 2: Generate a ‘control list' by performing a series 

of tests to check the position of all the object loop 
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nodes in relation with the nodes and sides of the 

surrounding rectangle. 

STEP 3: Use the control list generated in step (2) to 

locate the primitive loops formed by the intersection of 

the surrounding rectangle and the object loop. 

STEP 4: Examine the characteristics of the shape of each 

primitive loop and identify the pattern associated with 

it. Store the data of the loop together with the flag, 

which identifies its shape, in a file. 

STEP 5: Scan the above file for a flag which identifies a 

loop as an arbitrary pattern. If such flag exists, then 

extract the data of that particular loop from that file 

and store them in the input file, and repeat steps (1) to 

(5). Otherwise go to step (6). 

STEP 6: Identify the three-dimensional primitive related 

to each basic pattern. Generate and store the 

transformations and Boolean operations associated with 

each primitive. 

STEP 7: Convert the data obtained from step (6) into 

BOXER format and store it into a file. 

STEP 8: EXIT. 

The tasks associated with the steps of the above 

algorithm, are in effect carried out by the algorithms 

described in the following sections. 
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6.1.5) DHE EXTREME COORDINATES SEARCH’ ALGORITHM: 

This is a straightforward search routine which 

performs the first step of the 'Loop Processor' algorithm. 

Its function is to scan the coordinates of the nodes of a 

particular loop and finds the maximum and minimum values. 

It is possible that an extreme value lies on a circular 

arc where no node exists, then it is necessary to split 

the arc into smaller arcs and generate a node at this 

extremity. Figure 6.3(a) shows an orthographic view where 

such a case may arise; initially, the view comprises 11 

nodes; node 12 is then added to it by splitting edge 

{11,9} into edge {11,12} and {12,9}, in Figure 6.3(b) 

which also shows the updated topology. 

These extreme values are used to define nodes 

coordinates for the surrounding rectangle which is, as 

defined previously in section 5.3.1, the orthographic 

projection of the surrounding cuboid. The specifications 

of this algorithm may be briefly described as follows: 

Assuming that there are N edges in the view, then: 

STEP 1: I = 0, and set Pmax and Qmax to infinitely small 

values, and Pmin and Qnan to infinitely large values. 

STEP 2: I =I +1. Is I greater than N ? 

2.1: If YES then go to step (9) 

2.2: If NOT then go to step (3) 
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Fig. 6.3: Search for extreme coordinate values 
and topology update 
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STEP 3: Read the coordinate values of the nodes of the Ith 

edge in the loop and compute the maximum and minimum 

coordinate values, Xmax, Ymax, Xmin and Ymin. 

3.1: If Xmax greater than Pmax, then Pmax = Xmax 

3.2: If Xmin smaller than Pmin, then Pmin = Xmin 

3.3: If Ymax greater than Qmax, then Qmax = Ymax 

3.4: If Ymin smaller than Qmin, then Qmin = Ymin 

STEP 4: Is the Ith edge a circular arc ? 

4.1: If YES then go to step (5) 

4.2: If NOT then go to step (2) 

STEP 5: Does the arc intersect a horizontal straight edge 

passing through its centre ? 

5.1: If YES then go to step (6) 

5.2: If NOT then go to step (7) 

STEP 6: If XA and YA are the coordinates of such 

intersection point, then 

6.1: If XA greater than Pmax, then Pmax = XA 

6.2: If XA smaller than Pmin, then Pmin XA 

6.3: If YA greater than Qmax, then Qmax = YA 

6.4: If YA smaller than Qmin, then Qmin = YA 

STEP 7: Does the arc intersect a vertical straight edge 

passing through its centre ? 

7.1: If YES then go to step (8) 

7.2: If NOT then go to step (2) 

STEP 8: If XB and YB are the coordinates. of such 

intersection point, then 

8.1: If XB greater than Pmax, then Pmax = XB 

8.2: If XB smaller than Pmin, then Pmin = XB 
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8.3: If YB greater than Qmax, then Qmax = YB 

8.4: If YB smaller than Qmin, then Qmin = YB 

8.5: go to step (2). 

STEP 9: EXIT. 

The coordinates, XR and YR, of the nodes of the 

surrounding rectangle may then defined according to the 

sense of the object loop it surrounds. Figure 6.4(a) shows 

an anticlockwise loop surrounded by a rectangle defined by 

the following nodes : 

XR(1) = Pmin YR(1) = Qmin 

XR(2) = Pmax YR(2) = Qmin 

XR(3) = Pmax YR(3) = Qmax 

XR(4) = Pmin YR(4) = Qmax 

and Figure 6.4(b) shows a clockwise loop surrounded by a 

rectangle defined by the following nodes: 

XR(1) = Pmin YR(1) = Qmin 

XR(2) = Pmin YR(2) = Qmax 

XR(3) = Pmax YR(3) = Qmax 

XR(4) = Pmax YR(4) = Qmin 

6.1.6) THE "CONTROL LIST GENERATOR’ ALGORITHM: 

This algorithm performs step (2) of the 'Loop 
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Processor' algorithm. Its function is to produce a list 

that is needed for the detection of primitive loops formed 

by the intersection of the object loop and the surrounding 

rectangle. It performs a series of tests, using 

homogeneous coordinates, (see appendix C), to check the 

position of all the nodes of the object loop, in relation 

with sides and nodes of the surrounding rectangle. 

An object loop and its surrounding rectangle are 

shown in Figure 6.5(a). The ‘control list" consists of 

three arrays, (A), (B) and (C), shown in Figure 6.5(b) as 

columns A, B and C, respectively. Array (A) stores the 

node number of any node which belorgs to the object loop 

and which lies on a side of the surrounding rectangle. 

Array (B) stores the number of the side of the surrounding 

rectangle which contains that node, and array (C) stores 

the digit 1, to indicate that the node lies on one of the 

sides of the surrounding rectangle, or the digit 0 to 

indicate that the node coincides with one of the nodes of 

the surrounding rectangle. For example, in Figure 6.5(b), 

the first row of the control list indicates that node 5 of 

the object loop, shown in Figure 6.5(a), lies on the 

surrounding rectangle side number 1, and does not coincide 

with any node of the surrounding rectangle, while the 

fifth row indicates that node 7 of the object loop, lies 

on side 4 of the surrounding rectangle and coincides with 

one of the surrounding rectangles nodes, shown in Figure 

6.5(a) as node N4. 
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surrounding rectangle 
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The specifications of the ‘Control List Generator' 

algorithm are as follows: 

Assuming that the object loop consists of N edges, 

and that the surrounding rectangle nodes and sides are 

labelled as NR; and SR; j 4, respectively, where j = 1, 2, 3, 

and 4, then 

STEP i: 2 0 and KOUNT = 0 

Steere. a I+1; J=0, If I >WN, then go to step (6) 

STEP 3: J =J+1. If J > 4 then go to step (2). 

STEP 4: Does the Ith node of the object loop lie on side 

SRy of the surrounding rectangle ? 

4.1: If YES then KOUNT = KOUNT + 1 

and A(KOUNT) = T and B(KOUNT) = j. 

4.2: If NOT then go to step (5) 

STEP 5: Does the Ith node of the object loop coincide with 

a node of the surrounding rectangle ?. 

5.1: If YES then C(KOUNT) = 1 

5.2: If NOT then C(KOUNT) = 0 

5.3:° Go to step (3) . 

STEP 6: EXIT 

6.1.7) THE ' PRIMITIVE LOOP LOCATOR’ ALGORITHM: 

This algorithm processes the ‘control list' 
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generated by the previous algorithm in order to: 

1) locate the primitive, or subobject, loops formed by 

the intersection of the surrounding rectangle and the 

object loop, thus performing step 3 of the ‘Loop 

Processor' algorithm. 

2) compute the number of segments, and the coordinates 

of each node, of each primitive loop it locates. 

This algorithm also detects a number of 

characteristics which identify a primitive loop, referred 

hereafter as an ‘'unstable' loop, as one which will later 

require more processing in the decomposition stage of 

arbitrary loops into basic patterns. These loops and their 

special treatment are discussed in the following section. 

The specifications of the algorithm are as 

follows: 

It is considered that M nodes of the object loop, 

have been found to lie on the surrounding rectangle. The 

numbers of such nodes are listed in the array (A) of the 

control list. The nodes of the object loop are labelled 

sequentially according to whether the loop has an 

anticlockwise or a clockwise sense. 

STEP T: I=1 
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STEP 2: I =I +1. If I is greater than M then go to step 

(9). 

STEP 3: Compute: 

D1 B(l+L)) = BL) 

D2 A(Iti) = A(T). 

3.1: If C(I) = 0 or C(I+1) = 0 then go to step (4) 

3.2: TE C(T) 0 and C(I+1) = 0 then go to step (7) 

3.3: If D2 < 0 then go to step (8) 

STEP 42 (Dl = Dl -= 2 

4.1: If Dl = 0 then go to step (5) 

4.2: If Dl = 1 then go to step (6) 

4.3: If D1 > 1 then go to step (8) 

STEP 5: Check if there is any primitive loop between node 

numbers stored in (A): 

5.1: If D2 = 0 then the node number in A(I+1) is the 

same as the node number stored in A(I), thus there is an 

error. Go to step (7). 

5.2: If D2 = 1 then there is only one edge that can be 

defined between the node stored in A(I+1) and A(I). If 

that edge is an arc, then there is a primitive loop which 

has two edges, but if the edge is a straight edge then 

there is not any primitive at that position. 

5.3: If D2 = 2 then there is a primitive loop which has 

three edges. 

5.4: If D2 = 3 then there is a primitive loop which has 

four edges. 

5.5: If D2 = 3 + n then there is a primitive loop which 

has 4 + n edges. 
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5.6: ‘Go: to step (2). 

STEP 6: Check if there is any primitive loop between node 

numbers stored in (A): 

6.1: If D2 = 0 then the node number in A(I+1) is the 

same as the node number stored in A(I), thus there is an 

error. Go to step (7). 

6.2: If D2 = 1 then there is a primitive loop which has 

three edges. 

6.3: If D2 = 2 then there is a primitive loop which has 

four edges. 

6.4: If D2 = 2 + n then there is a primitive loop which 

has 4 + n edges 

6.5: Go to step (2) 

STEP 7: Check if there is any primitive loop between node 

numbers stored in (A): 

7.1: If D2 = 1 then there is a primitive loop which has 

three edges. 

7.2: If D2 > 1 then there is a primitive loop which is 

identified as an 'unstable' loop. 

T2333 Go to step (2). 

STEP 8: Error. 

STEP 9: Exit. 

The output of the above algorithm comprises the 

geometric and topological data of each primitive loop that 

has been located. These data are then used by the 'Loop 

Identifier’ algorithm, in step 4 of the ‘Loop Processor' 

algorithm, to determine the shape of each primitive loop 
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which is then stored in a file, referred to thereafter as 

file MAINDATA, together with the appropriate flag, LPF, to 

indicate whether the shape is a basic pattern, LPF = 1, 2, 

3, 4, ox 5, or an arbitrary pattern, LPF = 0. 

6.1.8) THE "ARBITRARY PATTERN ANALYSER’ ALGORITHM: 

The function of this algorithm is to decompose any 

arbitrary loops into further primitive loops. The output 

file, MAINDATA, generated from the 'Loop Identifier' 

routine, is scanned in order to search for any flags, UPF, 

equal to 0, which indicate that the corresponding loop has 

an arbitrary pattern. If such a flag is found then the 

geometric and topological data of the corresponding loop 

is retrieved and stored in another file, referred to as 

ADATA, in order to be used as input to the whole process 

again. The processing of the file ADATA may result in a 

number of primitive loops that are either basic or 

arbitrary patterns, or both. This decomposition process is 

illustratéd in Figure 6.6(a), where the object loop PO, 

which has an arbitrary pattern, is decomposed into the 

following loops: 

loop Pl: a positive.rectangle (LPF = 1) 

loop P2: a negative arbitrary loop (LPF = 0) 
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The results of processing the file ADATA are then 

stored in a new file, called ARBDATA, instead of being 

stored in MAINDATA. For example, in Figure 6.6(a), loop P2 

is decomposed further into two loops, P3 and P4, which are 

identified as basic patterns and whose data is stored in 

ARBDATA. Ali the above files are direct access files, 

designed to have the same structure, a description of 

which is given in section 7.5. 

The algorithm consists mainly of a fast merging 

routine that merges two direct access files together into 

one. In this case, it merges files MAINDATA and ARBDATA 

into the original file MAINDATA from which the file ADATA 

has originated, as shown in Figure 6.6(b). The process of 

scanning the file MAINDATA, generating and processing 

ADATA and merging ARBDATA to MAINDATA is repeated again 

until all the flags (LPF) in MAINDATA are found to be not 

equal to 0, which would indicate that the data stored in 

the file, correspond to loops which have been identified 

as basic patterns only. 

There are, however, some particular loops, 

referred to earlier, in section 6.1.7, as ‘unstable' 

loops, which can not be directly decomposed into further 

patterns. The direct application of the decomposition 

process to such a loop always leads to the generation of a 

‘child' loop that is identical to its ancester. These type 

of loops are readily detected by the ‘primitive loop 
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locator' algorithm described above. In this case, each 

‘unstable' loop is dealt with by simply dividing it into 

three loops for which the data are then stored back in the 

file MAINDATA. Figure 6.7 shows such a loop, PO, and those 

generated from its decomposition, one of which, P4, is 

identical tu it. 

The specifications for such an algorithm are as 

follows: 

It is considered that the input file has been 

already processed to the stage where the file MAINDATA has 

been generated, and that it comprises the data of a 

number, NL, of loops, some of which have basic patterns 

and others arbitrary ones. Thus, the file may comprise 

flags that are equal to either 0, 1, 2, 3, 4, or 5. 

STEP 1: I = 0. 

STEP 22 T= (I + 1..Is)i greater than Ni ? 

2.1: If YES then go to step (11) 

2.2: If NOT then go to step (3) 

STEP 3: Scan the file MAINDATA and read the flag (LPF) of 

the Ith loop. 

3.1: If LPF = 0 then cd to step (4) 

3.2: If LPF = 1, 2, 3, 4 or 5 then go to step (2) 

-STEP 4: Check if the loop is 'unstable'. 

4.1: I£ YES then go to step (5) 

4.2: If NOT go to step (6) 
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STEP 5: Split the ‘unstable' loop into three loops and 

store their corresponding data in file 'MAINDATA' with a 

flag LPF = 0. Go to step (1). 

STEP 6: Store the data of the Ith loop (arbitrary pattern) 

in the file 'ADATA'. 

STEP 7: Use the file 'ADATA' as the input of the analysis 

process, i.e. locate and identify the primitive loops 

formed by the intersection of the arbitrary loop and its 

surrounding rectangle. 

STEP 8: Store all the loops generated from step (5) in the 

file 'ARBDATA' with their corresponding flags (the file 

ARBDATA has the same structure as the file MAINDATA, and 

may contain both loops which are basic patterns and loops 

which are arbitrary patterns). 

STEP 9: Merge the file 'ARBDATA' into the file 'MAINDATA'. 

STEP 10: Repeat steps (1), (2), (3), (4), (5), (6), (7), 

(8), and (9), until all the loops stored in file 

"MAINDATA' are identified as basic patterns, i.e., all the 

flags, LPF, are not equal to zero. 

STEP 11: EXIT. 

The output of the above algorithm is a file which 

contains the geometric and topological data of all the 

two-dimensional basic patterns generated from the analysis 

of one object loop in a given view. However, it has been 

found that such data is not enough for the reconstruction 

of the corresponding object loop. This reconstruction 

process also requires the storage of the information, in 
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the form of pointers, corresponding to the relationship 

between 'parent' and ‘'children' loops, and the order in 

which these are generated. This information is stored in 

the form of a tree, as shown in Figure 6.8(a). The object 

loop is always at the root of the tree where each node 

rcpresents an arbitrary primitive loop, and each leaf, cr 

terminal node, represents a primitive loop which has been 

identified as a basic pattern, i.e. one which does not 

require any further decomposition. This tree is, in 

effect, stored in two one-dimensional arrays. The first 

array stores the number of the basic pattern in the order 

in which they have been generated, as shown in Figure 

6.8(b). The second array, Figure 6.8(c), holds a series of 

pointers, which are separated in a number of groups, by a 

null parameter. Each group determines a parent loop and 

its corresponding children loops. For example, the 

arbitrary loop numbered as 7, in the general tree, has 

been decomposed further into two primitive loops, 9 and 

10, identified both as basic patterns. 

The order in which the primitive loops are 

generated, stored and retrieved is very important since it 

determines the resulting object loop; this is because the 

Boolean difference operator is not commutative, and the 

order in which the primitives are subtracted from each 

other may yield different results. This problem is 

illustrated in Figure 6.9(a) which shows the decomposition 

of an object loop, PO, into a number of primitive loops; 
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these are labelled according to the order in which they 

have been generated, and only loops identified as basic 

patterns are stored, i.e., primitive loops Pl, P3, P4, PS 

and P6. In order to reconstruct the object loop PO, the 

Boolean operations performed on these basic patterns have 

to be carried out in the rignt order, as shown in Figure 

6.9(b), as follows: 

P2 = P4 + PS + P6 

and, ~-P0= Pi + °P2 + P3 

However, a completely different object loop would 

have been obtained if the Boolean operation have been 

performed in a different order, as shown in Figure 6.9(c). 

The reconstruction process, in this case, may produce not 

only the incorrect object loop, but also self intersecting 

and impossible loops. 

The file which stores the geometric and 

topological data of all these basic patterns is, in 

effect, used to define the associated 3D primitives, their 

corresponding transformations and Boolean operations. 

Where>s, the two arrays determine which primitives are to 

be combined by these Boolean operations to generate, for 

eden object loop, a prismatic object, also referred to 

here as a profile. 
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6.1.9) THE '3D PRIMITIVES IDENTIFIER’ ALGORITHM: 

This algorithm performs step 6 of the 'Loop 

Processor' algorithm. Its function is to identify the 

three-dimensional primitives by associating with the three 

  

ews the primitive loops identified by the previous 

algorithm. Since the strategy is to always generate a 

prismatic object, or profile, for each object loop, and 

since a prismatic object has always two views which 

comprise only rectangular loops, two of the basic patterns 

which constitute a primitive signature are, therefore, 

always rectangles. Thus a complete signature may be 

obtained by associating two rectangles with each 

identified and stored basic pattern. For example, if two 

rectangles are associated with a primitive loop which has 

been identified as a circle, the prismatic shape is known 

to be a cylinder, whereas if two rectangles are associated 

with a primitive loop which has been identified as a 

right-angled triangle, then the three-dimensional 

primitive is a wedge. 

The input to this algorithm is the file 'MAINDATA' 

generated by the ‘Arbitrary Pattern Analyser’ algorithm, 

according to which, only the data associated with basic 

patterns is stored. The flag, Lr:' (see pages 184 and 186), 

which identifies the geometric shape of each pattern is 

also stored in this file. 
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Assuming that N basic patterns have been generated 

during the process of a given object loop, the 

specifications of the algorithm are as follows: 

STEP 1: I= 0 

STEP 2: T=I+1 

STEP 3: Is I greater then N ? 

3.1: If YES then go to step (11 

3.2: If NOT then go to step (4) 

STEP 4: Read the value of the flag LPF. 

4.1: Tf LEF S 0 or LPF > 5 the go to (10) 

4.2: If LPF = 1 then go to step (5) 

4.2: If LPF = 2 then go to step (6) 

4.3: If LPF = 3 then go to step (7) 

4.4: If LPF = 4 then go to step (8) 

4.5: If LPF = 5 then go to step (9) 

STEP 5: The basic pattern is a rectangle and the signature 

of a three-dimensional primitive BLOCK is obtained. Go to 

step (2). 

STEP 6: The basic pattern is a right-angle triangle and 

the signature of a three-dimensional primitive WEDGE is 

obtained. Go to step (2). 

STEP 7: The basic pattern is a fillet and the signature of 

a three-dimensioral primitive FILLET is obtained. Go to 

step (2). 

STEP 8: The basic pattern is a quadrant and the signature 

of a three-dimensional primitive CYLINDRICAL SEGMENT 2s 

obtained. Go to step (2). 
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STEP 9: The basic pattern is a circle and the signature of 

a three-dimensional primitive CYLINDER is obtained. Go to 

step (2). 

STEP 10: Error. Exit 

STEP 11: The type of all the three-dimensional primitive 

has now been defined. Exit. 

6.2) SOLID MODELLING INPUT FILE GENERATION: 

It has been shown in chapter 5, that, in order to 

generate the solid modelling input file it is necessary 

to: 

1) extract the size, shape, position and orientation 

parameters of each identified three-dimensional primitive, 

from the MAINDATA file obtained from the analysis step. 

The type of each primitive is defined by the '3D 

Primitives Identifier', described above. 

2) generate and store the text structure definition of 

each primitive, together with the Boolean operations which 

represent the output model. 

The MAINDATA file comprises the data associated 

with all the two-dimensional basic patterns, and hence, 

with all the three-dimensional primitives, generated from 

the processing of one object loop. The file is a direct 
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access one which is composed of a number of sections 

equal to the number of primitives. Thus, the first 

section of the file contains the data of the first 

primitive, the second section to the next primitive, and 

so on. Each section of the file has the same structure as 

the File asea to store the input data of each view, except 

for an additional record which is appended at the end of 

each section to store the identification flag, LPF, of the 

corresponding primitive. The structure of the files that 

store the topological and geometrical data of the input 

views is describer later in section 7.4. 

The maximum and minimum X and Y coordinate values 

for any one of the adjacent views, are also required for 

the specification of some of the parameters, such as size 

and position, of some primitives. For instance, if a 

primitive block has been identified by processing an 

object loop in the XY view, then these values are used to 

specify the length of a primitive block in the 2Z 

direction. These extreme values are computed in the 

analysis step. 

The data stored in the file MAINDATA, described 

above, together with the extreme coordinates values of one 

of the adjacent views, provide enough intornation to 

specify all the necessary parameters. of the identified 

primitives. The shape, size, and position parameters of 

each primitive, are computed using the node coordinate 
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values of the corresponding loop and the maximum and 

minimum coordinate values obtained from the adjacent view. 

Whereas, the orientation parameter depends on the view 

from which the pattern is extracted. A primitive is 

rotated by an angle equal to 90 degrees about either the 

X, or Y¥ axis, only if the corresponding pattern is 

contained in the XZ, or YZ view, respectively. The solid 

modelling input file is finally completed by specifying 

the Boolean operations, required to combine the primitives 

according to the Boolean tree generated by the "Arbitrary 

Pattern Analyser' algorithm (section 6.1.8). 

A simple prismatic object whose XY view has been 

identified as a base-view, is illustrated in Figure 

6.10(a), where oxyz defines the coordinate system used by 

the author, and OXYZ represents the solid modeller 

coordinate system. Figure 6.10(b) shows the solid modeller 

input file which contains, in 'BOXER' text structure, all 

the primitive definitions and Boolean operations necessary 

for the reconstruction of the object. 

The first primitive that has been identified is a 

‘primitive block, represents, in effect, the surrounding 

cuboid, or raw block, from which the object is to be 

‘cut-out '. The corresponding "BOXER' syntax may be written 

as follows: 

OBJNAME <- BLOCK(xlen, ylen, zlen) AT (xcen, ycen, zcen) 
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OBJNAME represents the name of the primitive, or 

object. The size and shape of a primitive block are 

defined by its length, xlen, width, ylen, and depth, zlen, 

which, in this case, may be specified by using the minimum 

and maximum coordinate values of the base view and one of 

the adjacent views, in the foliuwing equations: 

xlen = ABS ( XMIN - XMAX ) (1) 

ylen = ABS ( YMIN - YMAX ) (2) 

zlen = ABS ( ZMIN - ZMAX ) (3) 

where: 

XMIN = minimum X coordinate value in the XY view 

XMAX = maximum X coordinate value in the XY view 

YMIN = minimum Y coordinate value in the XY view 

YMAX = maximum Y coordinate value in the XY view 

ZMIN = minimum Z coordinate value in the XZ or YZ view 

ZMAX = maximum Z coordinate value in the XZ or YZ view 

In this example, the name of the primitive block, 

OBJNAME is automatically set to XY01, and its length, 

xlenl, is equal to 8.00, height, ylenl, is equal to 5.00 

and width, zlenl, to 3.00. 

The position parameters of the 3D primitive are 

defined by specifying the coordinates of its centroid, 

xcen, ycen and zcen, with reference to the solid modeller 

coordinate system, OXYZ. Since positioning parameters have 
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not been specified, in this case, the centroid of the 

primitive block is automatically positioned at the origin 

of the solid modeller coordinate system. Thus, xcen, ycen 

and zcen are all equal to 0 in OxyYZ, but in oxyz they are 

as follows: 

xo (xmin + xmax) / 2.0 

yo = (ymin + ymax) / 2.0 

zo = (zmin + zmax) / 2.0 

where xmin, xmax, ymin, ymax, zmin and zmax are the 

coordinate values of the object surrounding block or 'Raw 

Block'. 

The next primitive, xXY02, is a cylinder segment 

whose length, cylen, is equal to 3.00 and radius equal to 

2.00. The 'BOXER' syntax for a primitive cylinder may be 

written as follows: 

OBJNAME <- CYL(cylen, radius) AT ( xcyl, ycyl, zcyl) 

The cylinder is positioned by defining the 

coordinates xcyl, ycyl and zcyl, of the centre of ies 

base. In this example, xcyl is equal to 2.5, ycyl to 4.0 

and zcyl to -1.5. The cylinder length, radius, position 

and orientation parameters are computed with reference to 

the solid modeller coordinate system, OXYZ, which origin 

is at the centroid of the previous primitive block. The 
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following equations are used: 

cylen = ABS(zmin - zmax) 

radius = V{(xc - xn)? + (yc - yn)2)} 

xcyl = xc + xo 

yeyl = yc + yo 

zeyl - cylen / 2.0 

where: 

xn = x coordinate, in oxyz, of the start node (node 1) of 

the circular arc in the base view. 

xc = x coordinate, in oxyz, of the centre of the circular 

arc in the base view. 

yn = y coordinate, in oxyz, of the start node (node 1) of 

the circular arc in the base view. 

ye = y coordinate, in oxyz, of the centre of the circular 

arc in the base view. 

xO = x coordinate, in oxyz, of origin of OXY¥Z coordinate 

system, as before. 

yo = y coordinate, in oxyz, of origin of OXYZ coordinate 

system, as before. 

The third primitive, XY03 is a block whose length, 

xlen2 equal to 3.0, height, ylen2, equal to 2.5 and width, 

zlen2, equal to 3.0, are computed using equations (1), 

(2), and (3) respectively. The primitive is positioned in 

the solid modeller coordinate system by defining the 

coordinate values of its centroid which are computed using 
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the following equations: 

xcen = xo + ((xrmin + xrmax) / 2.0) 

yeen = yo + ((yrmin + yrmax) / 2.0) 

zcen = - zlen / 2.0 

where xrmin, xrmax, yrmin, yrmax are the minimum and 

maximum coordinate values of the primitive loop 

(rectangle). The coordinate values xo and yo are as 

previously defined. 

The next primitive is a wedge whose name is set to 

XY¥04. The 'BOXER' syntax for a wedge may be written as 

follows: 

OBJNAME <- WEDGE(xlen, ylen, zlen) AT (xcor, ycor, zcor ) 

The length, height and width of the primitive 

wedge are computed using the following equations: 

xlen = ABS(xwmin - xwmax) 

ylen = ABS(ywmin - ywmax) 

zlen = ABS(zmin - zmax) 

where xwmin, xwmax, ywmin, ywmax are the minimum and 

maximum coordinate values of the primitive loop 

(triangle). The maximum and minimum values, zmin and zmax, 

are the extreme coordinate values in the z direction, of 
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the surrounding rectangle of the object. The primitive 

wedge is positioned by specifying the coordinate values 

xcor, ycor and zcor, of its far corner, which is a node 

that joins the two perpendicular edges. Theses values are 

computed using the following equations: 

xcor = xo + xr 

ycor = yo + yr 

zcor = - zlen / 2.0 

where: 

xx = the x coordinate value of the node at which the 90 

degrees angle of the right-angle triangle is sustended. 

yr = the y coordinate value of the node at which the 90 

degrees angle of the right-angle triangle is sustended. 

xO, yO = as previously defined. 

Finally, the primitives are combined by the 

Boolean operation specified, in this case, by the last 

statement shown in figure 6.10(b). The object, whose name 

is set to FAMOD, may be reconstructed by subtracting the 

primitives XY02, XY03 and xXY04 from the surrounding block 

defined as xyY01. 

6.3) QUTPUT VERIFICATION ALGORITHMS : 

There are two sets of data inputs to the output 
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verification process (section 5.3.5): one corresponds to 

the input orthographic views, and the other, having an 

ASCII format, is a PAFEC 'BOXER' file which represents the 

orthographic views of the output model. The principal 

functions of the output verification algorithms are: 

a) to extract the data associated with the orthographic 

views of the output solid model from the parametric file 

generated by the solid modeller, 

b) to compare the input and output views data in order to 

detect differences (if any) between the input and output 

orthographic views. 

In the case of prismatic objects, the output 

verification is carried out to confirm that the output 

orthographic views are the same as the input orthographic 

views. Thus, the model generated is verified to be the 

exact object and the interpretation process is 

successfully terminated. 

In the case of more general three-dimensional 

objects, the comparison between input and output views may 

have the same result as above, or may lead _to the 

detection of a number of discrepancies between the input 

and output views. The presence of such discrepancies 

indicates that the output model is not the exact object 

but an approximation model. Thus, there exist a number of 

subobjects which need to be removed from the output model 
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to generate another output model, which may again be the 

exact object, or yet another approximation model. 

6.3.1) EXTRACTION OF OUTPUT VIEWS DATA: 

The first task in the output verification 

subprocess is the extraction of the data corresponding to 

the orthographic views of the output model from the 

parametric text file generated by the solid modeller. A 

small section of such a file, shown in Figure 6.11, 

contains: 

- Three lines of 'REM' statements, where each line is used 

to indicate that the following block of data corresponds 

to one view. 

- A number of lines that comprise the character string 

'LT' followed by an integer whose value is set to 1 to 

indicate that the following edges are drawn in a dotted 

line style (hidden edges), or to 2 to indicate that the 

edges are solid lines (visible edges). 

- Several lines that comprise the character string 'LN' 

followed by an integer whose value is set to either 2 to 

indicate that the edge is a straight edge, or to 5 to 

indicate that the edge is a circular arc. 

- Several groups of lines comprising the character 

strings 'X =' and ‘'Y =! followed by real numbers. In the 

case where the edge is a straight edge, each pair of lines 
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START / 3.1 

FA 12 

PROMPT INDICATE BOTTOM LEFT POINT 

st / C XBL, YBL 

REM NEW VIEW X AND Y PAPER SIZE : 

  
    

Lt * 

LN 2 

x= 3.000000 + XBL, Y= -1,500000 
X= -6.000000, Y= 0.000000 

X= -3.000000 + XBL, Y= 1.500000 

X= 6.000000, Y= 9.000000 

x= 3.000000 + XBL, Y= 1.500000 

X= 0.000000, Y= -3.000000 

X= -3.000000 + XBL, Y= -1.500000 

x= 0.000000, Y= 3.000000 

Xe -1.000000 + XBL, Y= -1.500000 

X= 0.000000, Y= 3.000000 

x= 0.000000 + XBL, Y= 1.500000 

x= 0.000000, Y= -3.000000 

x= 2.000000 + XBL, Y= -1.500000 

X= 0.000000, Y= 3.000000 

X= 2.000000 + XBL, Y= -1.500000 

X= 0.000000, Y= 3.000000 

LT 2 

IN 2 
x= -1.000000 + XBL, Y= -1.500000 

x= 0.090000, Y= 3.000000 

REM NEW VIEW X AND Y PAPER SIZE : 
Li 1 

LN 2 

X= -3.000000 + XBL, Y= 3.000000 

x= 2.000000, Y= 0.000000 

X= 2.000000 + XBL, Y= -3.000000 

X= -5.000000, Y= 0.000000 

x= 3.000000 + XBL, Y= -1.000000 
X= 0.000000, Y= -1.000000 
X= -3.000000 + XBL, Y= -3.000000 

X= 0.000000, Y= 6.000000 

LN 5 
X= 3.000000 + XBL, Y= -3.000000 

X= 0.000000, Y= 1.000000 

A= 90,.000000 

LN 2 

X= 3.000000 + XBL, Y= -1.000000 

X= -3.000000, Y= 0.000000 

x= 1.000000 + XBL, Y= 0.000000 

x= 0.000000, Y= 1.000000 

Bd -1.000000 2.000000 

x= 0.000000, Y= 1.000000 

i 0.000000 + XBL, Y= 2.000000 

X= 0.000000, Y= -1.000000 

1 ! 
1 1 

1 
END 

9. 

+ 

+ 

+ 

+ 

+ 

+ 

‘” 

+ 

9. 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

9422 

YBL 

YBL 

YBL 

YBL 

YBL 

YBL 

YBL 

YBL 

YBL 

9422 

YBL 

YBL 

YBL 

YBL 

YBL 

YBL 

YBL 

YBL 

YBL 

9.942 

9.942 

  

Fig. 
parametric file 
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represents an edge. The first line contains the xX 

coordinate and Y coordinate values of the start node of 

the edge, whereas the following line contains the X 

coordinate and Y coordinate values of the end node 

relative to the start node of the edge. If, however, the 

edge is an arc, thei: the first line contains the X 

coordinate and the Y coordinate values of the start node 

and the following line contains the X coordinate and Y 

coordinate values of the centre of the arc relative to the 

Start node of the edge. An additional line containing the 

character string 'A =' followed by a real number gives the 

angular position of the end node with respect to the start 

node. 

It is therefore possible to extract from such a 

file, the complete geometric and topological data of the 

orthographic projections of the output model. The 

algorithm which carries out such a ‘task is a simple 

routine which manipulates strings of characters. 

It was found that the extracted data required a 

minor adjustment because the coordinate system used by the 

PAFEC 'BOXER' modeller is different to the one used by the 

author. A shift in the X and Y directions is computed for 

each view, by comparing the minimum X and Y coordinate 

values of the extracted data with the minimum X and Y 

coordinate values of the corresponding input orthographic 

views. All the X and Y coordinate values in the output 
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views are then adjusted by deducting the corresponding 

shift. The output of this routine is therefore the data 

which represents the orthographic views of the output 

model in the coordinate system adopted by the author. The 

data structure is similar to the one which holds the input 

orthographic views data. 

6.3.2) THE 'COMPARISON’ ALGORITHM: 

The purpose of this algorithm is to detect the 

differences that may exist between the input and output 

orthographic views. The most obvious and simplest test is 

to compare the number of nodes and edges in the input 

views with the number of nodes and edges in the 

corresponding output views. However, it is possible for 

two views to comprise the same number of nodes and edges 

and yet may not be similar. For this reason, in addition 

to this simple test, the algorithm has been developed to 

include the following steps: 

a) Search for a ‘matching node' in the output view for 

each node in the corresponding input view. A node is 

defined as having a 'matching' node only if the coordinate 

values differ by not more than a preset tolerance. The 

matching of two nodes is independent of the node numbers, 

since the nodes in the input views are numbered in a 

different sequence from the nodes in the output views. 
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b) Search for a ‘matching edge' in the output view for 

each edge in the input view. An edge is defined as having 

a 'matching edge' only if both edges have matching start 

and end nodes, and they are both of the same type, i.e. 

either both straight edges, or both circular arcs in which 

case they must also have the same centre. 

The search for matching edges is initiated only if 

all the nodes in three input views have a matching nodes 

in the corresponding output views. The specifications of 

the algorithm may be as follows: 

STEP 1: Compare the number of nodes in the input XY view 

with the number of nodes in the output XY view. If these 

numbers are equal then go to step (2), otherwise go to 

step (13). 

STEP 2: Compare the number of edges in the input XY view 

with the number of edges in the output XY view. If these 

numbers are equal then go to step (3), otherwise go to 

step (13). 

STEP 3: Compare the number of nodes in the input YZ view 

with the number of nodes in the output YZ view. If these 

numbers are equal then go to step (4), otherwise go to 

step (13). 

STEP 4: Compare the number of edges in the input YZ view 

with the number of edges in the output YZ view. If these 

numbers are equal then go to step (5), otherwise go to 

step, (13). 
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STEP 5: Compare the number of nodes in the input XZ view 

with the number of nodes in the output XZ view. If these 

numbers: are equal then go to step (6), otherwise go to 

step (13). 

STEP 6: Compare the number of edges in the input XZ view 

with the numbez of edges in the output XZ view. If these 

numbers are equal then go to step (7), otherwise go to 

Brep -(13)r. 

STEP 7: For each node in the input XY view, find a 

‘matching node' in the output XY view. If such a matching 

node does not exist then go to step (13). 

STEP 8: For each edge in the input XY view, find a 

‘matching edge' in the output XY view. If such a matching 

edge does not exist then go to step (13). 

STEP 9: For each node in the input XZ view, find a 

"matching node' in the output YZ view. If such a matching 

node does not exist then go to step (13). 

STEP 10: For each edge in the input XZ view, find a 

‘matching edge' in the output XZ view. If such a matching 

edge does not exist then go to step (13). 

STEP 11: For each node in the input YZ view, find a 

‘matching node' in the output YZ view. If such a matching 

node does not exist then go to step (13). 

STEP 12: For each edge in the input YZ view, find a 

‘matching edge' in the output YZ view. Ir such a matching 

edge does not exist then go to step (13), otherwise go to 

step (15). 

STEP 13: If the object has been classified as a prismatic 
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object then go to step (14), otherwise go to step (15). 

STEP 14: The input and output views should have been 

similar. Inform the user that there has been an error. 

Exit. 

STEP 15: All the input and corresponding output 

orthographic views are similar. Inform th2 user that the 

generated model is the exact object. Exit. 

STEP 16: The input and output orthographic views. Produce 

a list of differences (nodes and edges numbers). Inform 

the user that the generated model is an approximation 

model, and that further processing is required in order to 

reconstruct the exact object, or to obtain a more refined 

model. Exit. 

The last step of the above algorithm represents, 

in effect, the only instance where interaction with the 

user may be required. A choice is here given to the user 

on whether to terminate, or to allow the interpretation 

process to continue in order to generate another model 

which may then either be the exact object, or another but 

more refined approximation model. 

6.4) EEED BACK ALGORITHMS: 

Discrepancies between the input and output 

orthographic views indicate that the output model requires 

further processing in order to generate either the exact 
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object, or a more refined model. This process, which 

consists of identifying and subtracting one or more 

subobjects from the output model, is initiated by the feed 

back subprocess algorithms whose main function is to 

examine the original input views and the orthographic 

views of the output model, in order to generate the 

orthographic views of such subobjects. The geometric and 

topological data related to the orthographic projections 

.of these subobjects are then fed back as input to the 

analysis process, and interpreted as solid models in a 

similar fashion to the original input views. 

The first step in the feed back subprocess 

consists of generating the views of a wireframe which is 

defined by combining the wireframe of the input object 

with the wireframe of the output model. It can be clearly 

observed from Figure 6.12, that the purpose of such a 

wireframe is to define the wireframes of the subobjects 

that are to be removed from the output model. Such a 

wireframe, referred to here as the 'pseudo-wireframe', may 

not be directly generated since the input object is yet to 

be reconstructed; however, the orthographic projections of 

the pseudo-wireframe, shown in Figure 6.13, and referred 

to hereafter as the pseudo-views, can be obtained directly 

from the input views and the orthoyraphic projections of 

the output model. Furthermore, the orthographic views of 

subobjects defined by the pseudo-wireframe, are clearly 

visible in the pseudo-views, shown in Figure 6.13 as 
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(a) 
(b) 

  

Fig. 6.12: 

(c) 

a) Input object 
b) 1st approximation model 
c) 'Pseudo-wireframe' 
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Fig. 6.13: a) A pseudo-wireframe, and 
b) its orthographic projections 

(pseudo-views) 
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hatched areas. The pseudo-views are generated by the 

"Pseudo-views Generator' algorithm described below in 

section 6.4.1. 

The next step in the feed back subprocess is to 

extract from the pseude-views the orthographic projecticns 

corresponding to each subobject that is to be removed from 

the output model. This task is performed by the 'Feed Back 

Data Generator' algorithm described below in section 

6.4.2. 

6.4.1) THE__"PSEUDO-VIEWS GENERATOR" ALGORITHM: 

Pseudo-views are generated by ‘assembling' all the 

nodes and edges of the original input views with those 

which describe the orthographic views of the output model. 

The first step in the process of '‘assembling' these 

entities is to identify the nodes which are not common to 

both set of projections. Such nodes are referred to 

hereafter as either input, or output, ‘Active' nodes. 

Input active nodes, such as nodes 1, 4,7 and 10 in the YZ 

in Figure 6.14(a), are nodes'which exist in one of the 

original input views but which do not have matching nodes 

in the corresponding view of the output model. The 

definition of a match is similar to the one used in the 

‘Comparison' algorithm, described in section 6.3.2. 
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The next step is to 'fit' any input,. or output, 

active node to the output, or input, views, respectively. 

A 'fit' consists of adding an active node to a view by 

splitting the edge on which it lies, in that view, into 

two new edges. For example, the input active nodes 7 and 

9, in the YZ view of the output model, shown in Figure 

6.14(b), are fitted into the input YZ view, in Figure 

6.14(a), by splitting input edge {3,11}, into three new 

edges, which are shown as edges {A,B}, {B,C} and {C,D} in 

Figure 6.14(c). A pseudo-view is then generated by adding 

to the input view those edges which are not common to both 

input and corresponding output views. 

The specifications of the algorithm may be 

described as follows: 

STEP 12>" I= 0 

STEP 2: I =I +1; If I > 3 then go to step (8) 

STEP 3: Search in the Ith input view for nodes that do not 

have a matching node in the corresponding Ith output view. 

Store these nodes, if any, as input active nodes. 

STEP 4: Search in the Ith output: view for nodes that do 

not have a matching node in the corresponding Ith input 

view. Store these nodes, if any, as output active nodes. 

STEP 5: Search in the Ith output view for edyes which may 

be colinear .with the input active nodes of the 

corresponding Ith input view. Split such edges, and update 

the geometry and topology of the Ith output view, 
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accordingly. 

STEP 6: Search in the Ith input view for edges which may 

be colinear with the output active nodes of the 

corresponding Ith output view. Split such edges, and 

update the geometry and topology of the Ith input view, 

accordingly. 

STEP 7: Generate the Ith pseudo-view by adding to the Ith 

input view, all the edges which are in the Ith output view 

only. Go to step (2) 

STEP 8: Exit. 

6.4.2) THE 'FEED BACK DATA GENERATOR’ ALGORITHM: 

This algorithm has been developed to perform the 

task of extracting from the pseudo-views, the data 

corresponding to sets of orthographic projections of any 

subobject that is to be removed from the output model. The 

first step of the algorithm consists of identifying all 

the loops in the pseudo-views. This is achieved by 

applying the 'Loop Detector' algorithm described in 

section 6.1.1. The loops are then labelled as follows: 

0 for a loop which does not exist in either input or 

corresponding output views. 

1 for a loop which exists in the input views only. 

2 for a loop which exists in the output views only. 

3 for a loop which exists in both input and 

241



corresponding output views. 

A loop in a view is said to exist in another view, 

only if there is a loop, in the that view, which meets the 

following conditions: 

a) Both loops have exactly the same number of nodes and 

edges, where each node in one loop has a matching node in 

the other loop. 

b) Each edge in one loop has a similar edge in the other 

loop. Similar edges are defined as edges which are of the 

same type, i.e straight edges or circular arcs, and the 

start and end nodes of one edge are the matching nodes of 

the other edge. Furthermore, in the case where the edges 

are circular arcs, the centres of both arcs must have the 

same coordinate values. 

For example, in Figure 6.14(c), the loop defined 

by nodes b, c, 1 and p, in the YZ pseudo-view, has been 

labelled as '0' because it does not exist in either the YZ 

input view, or in the corresponding YZ output view. 

Whereas, loop (k, 1, p, n) in the YZ pseudo-view, has been 

labelled as 'l' because it exists in the YZ input view, 

but not in the YZ output view. 

The purpose of such a labelling process is to 

enable loops, which represent projections of subobjects, 

to be readily identified from the pseudo-views. It has 
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been found that such loops may always be identified as 

follows: 

- any 'connected' loops labelled as '0', 

- any disjoint loop labelled as '1'. 

It has been found, as expected, that some loops in 

the pseudo-views can only have specific labels, because of 

the manner in which the interpretation process is 

implemented for non-prismatic objects, and the manner in 

which pseudo-views are generated. For instance: 

a) perimeter, or boundary, loops in the pseudo-views, will 

always be labelled as '3', since the initial step in 

interpreting non-prismatic objects consists of processing 

the perimeter loop of each input view only (section 

5.4.3), and resulting in an output model whose perimeter 

loops are the same as the perimiter loops in the 

corresponding output views. 

b) disjoint loops in the pseudo-views can only be labelled 

as '1l' or '3'. A disjoint loop in the input views may, or 

may not, exist in the corresponding output views, in which 

cases, it is labelled as '3', or '1', respectively, in the 

pseudo-views. A disjoint loop in the output views also, 

may Or may not, exist in the corresponding input views. If 

it exists in both views then, as before , it is labelled 

as "3'; But, because the process of generating 

pseudo-views generally consists of splitting edges in both 
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input and output views, and adding edges to the input 

view, any disjoint loop in the output projections which 

does not exist in the input views, is always divided into 

a number of connected loops. Thus, a disjoint loop in the 

pseudo-views may never be labelled as '2', nor as '0'. 

These interesting results may be used ts cross -check the 

data associated with the orthographic projections of the 

output model and those corresponding to the pseudo-views. 

For example, if a perimeter loop in a pseudo-views has 

been labelled as '0', '1' or '2', then it can be said that 

the output model generated is not the correct model. Also, 

if a disjoint loop in the pseudo-views has been labelled 

as Le De or '2', then it would indicate that the output 

model is again not the correct model, or that an error has 

occurred in generating the pseudo-views. 

The next step in the algorithm consists of 

searching in the pseudo-views, for matching subobject 

loops. A subobject loop in a XY pseudo-view is defined as 

having matching subobject loops in adjacent YZ and XZ 

pseudo-views, only when their surrounding rectangles 

defined, respectively, by: 

( Xxymin’ Yoymin‘ ¥xymax’ Yxymax)+ ( Zyzmin’ Yyzmins 

Zyzmax’ Yyzmax )r 294 ( Xygminr 2xzminr Xxzmax 2xzmax ) 

meet the following conditions: 
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Xxymin = Xxzmin Xxymax = Xxzmax 

Yxymin = Yyzmin Yxymax = Yyzmax 

Z. Z. xzmin = 2yzmin 

where: 

Xxyminr Xxymax = minimum 

values of the loop in the 

x xX = minimum xzmin’ “xzmax 

values of the loop in the 

Yxymin’ Yxymax = minimum 

values of the loop in the 

x, Yyzmax = minimum yzmin’ 

values of the loop in the 

Z Zz = minimum xzmin’ “xzmax 

values of the loop in the 

Z Z = minimum yzmin’ “yzmax 

values of the loop in the 

It is assumed 

pseudo-views have been determined, 

xzmax ~ 4yzmax 

and maximum 

XY view. 

and maximum 

XZ view. 

and maximum 

XY view. 

and maximum 

YZ view. 

and maximum 

XZ view. 

and maximum 

YZ view. 

that all 

of 

of 

of 

of 

of 

of 

the 

the X-coordinate 

the X-coordinate 

the Y-coordinate 

the Y-coordinate 

the Z-coordinate 

the Z-coordinate 

loops in the 

and that <he number of 

loops in each pseudo-view is stored the array NLP. The 

specifications of the algorithm are as follows: 

STEP 1: I = 0; 

STEP 27 I= i+ 1; d= 70? If I > 3 then go to step (6) 
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STEP 3: J= J+ 1; If J > NLP(I) then go to step (2) 

STEP 4: Search in the Ith output view, for a loop which is 

similar to the Jth loop in the Ith pseudo-view. If such a 

loop exists, then label the Jth loop in the Ith 

pseudo-view, as '2', otherwise as '0'. 

StTzP 5: Search in the Ith input view, for a locp which is 

similar to the Jth loop in the Ith pseudo-view. If such a 

loop exists, then label the Jth loop in the Ith 

pseudo-view, as '3' if it is already labelled as '2', or 

as '1l' if it is already labelled as '0', otherwise label 

it as '0'. 

STEP 6: Check if the perimiter loop in the Ith pseudo-view 

is labelled as '3'; If not then go to step (10). 

STEP 7: Check if a disjoint loop (if any) in the Ith 

pseudo-view is labelled as '0' or '2'. If yes then go to 

step (10), otherwise go to step (3). 

STEP 8: For each ‘'connected' loop labelled as '0' in a 

pseudo-view, search in adjacent pseudo-views for matching 

loops. If a match exists, store the data of the eras 

matching loops, as they represent the orthographic views 

of a subobject. 

STEP 9: For each disjoint loop labelled as '1' in a 

pseudo-view, search in adjacent pseudo-views for matching 

loops. If a match exists, store the data of the three 

matching loops, as they represent the orthographic views 

of a subobject. Go to step (11) 

STEP 10: Error. 

STEP 11: Exit. 
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The output of the algorithm is a set of data files 

which comprise the data corresponding to the orthographic 

projections of a. number of subobjects. These subobjects 

are then identified as solid models which are then 

subtracted from the output model to yield, as mentioned 

above, either the exact model represented by the original 

input orthographic views, or another, but more accurate, 

approximation model. In the latter case, the complete 

process represents one complete iteration. An example 

illustrating such iteration, is presented later in section 

8.5.2. 

All the algorithms described above, have been 

implemented, and the corresponding source code, has been 

written in FORTRAN 77, on the Apollo DN3000 workstation. 

Such software, referred to as C.I.E.D.S.M. (Computer 

Interpretation of Engineering Drawings as Solid Models), 

has been designed with speed as a major criterion, because 

of the iterative aspect of the process. The overall design 

of C.I.E.D.S.M. software is described in the next chapter. 
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THE C.LE.D.S.M. SOFTWARE 
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7.1) INTRODUCTION: 

The aim of this chapter is briefly to describe the 

software developed in this project, with special emphasis 

on its implementation on the Apollo DN3000 workstation. 

For convenience, the suite of programs has been dubbed 

C.I.E.D.S.M. (Computer Interpretation of Engineering 

Drawing as Solid Models). 

Many of the routines were originally developed on 

an ICL Perg 2 workstation, but subsequently transferred to 

the Apollo DN3000 workstation. Direct down-loading from 

the ICL Perq 2 to the Apollo DN3000 was not possible 

because of hardware incompatibilities and lack of 

communication software. The transfer has been made 

possible by first transferring it from the Perg 2 

computer to a VAX 11/780 mainframe, and then down-loading 

it to the “Apollo Domain workstation. Very few 

modifications to the software were necessary. Such a 

transfer was required because a compatible subroutine 

version of the solid modeller 'BOXER' was not supported on 

the ICL Perq2 computer, whereas such software was readily 

available on the Apollo Domain workstation. 

The software objectives are outlined in section 

7.2 and a brief description of a number of subroutines is 

given in section 7.3. Some of the routines have been 

written to integrate the PAFEC 'BOXER' solid modeller into 
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the software. These are highlighted to indicate the 

possible modifications that must be made, should any other 

CSG solid modeller be contemplated. 

Considerations about software design, such as 

portability, have been made from the start of the project, 

as it is highly possible that the software developed in 

this work may be implemented on a different system. Thus 

the subject of section 7.4 is software portability. Some 

aspects concerning data storage and execution speed are 

also discussed in section 7.5. A set of operating 

instructions for the package are given in section 7.6. 

These instructions are mainly associated with data 

acquisition at the input stage, since the program has been 

designed to require a minimum of user interaction. 

7.2) SOFTWARE OBJECTIVES: 

The principal objectives of the software are: 

1) the implementation of all the algorithms developed in 

this project, (described in chapters 6 and 7), on a 

computer workstation. 

2) Design and development of an interface with a solid 

modeller 

3) Design and development of graphic facilities capable of 

displaying the input views and the orthographic 
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projections of the generated model 

4) Design and development of facilities capable of 

plotting the input views and the orthographic projection 

of the generated model, on a Roland DG DPX 2000 plotter. 

7.3) THE C.1.E.D.S5.M. PROGRAM: 

The C.I.E.D.S.M. program has been designed to take 

full advantage of the structured nature of the FORTRAN 

language. It comprises 54 overlaid subroutines which are 

called from the main program 'MAIN'. The subroutines may 

be conveniently divided into two categories: 

a) ‘Utility' routines 

b) 'Process' routines 

Utility subroutines, have been developed to 

perform simple geometric computations. For example, the 

routine 'PERPD' computes the coordinates of a point P at 

which a perpendicular from another point D intersects a 

line; the perpendicular distance PD is also computed; the 

subroutine 'POLAR' converts Cartesian: coordinates into 

polar ceordinates; etc. Other utility routines have been 

descend and developed to perform simple tasks such as 

files and data handling, and plotting. For example, the 

routine called 'TRANSF', reads a direct access file and 

transfers the data to a number of integer and real arrays, 
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and the routine PLOTTER provides a plotting facility on 

the DPX 2000 plotter. Space does not permit the inclusion 

of details of these subroutines in this thesis. Suffice it 

to say that considerable use was made of the techniques of 

"Homogeneous Coordinates', some of which are briefly 

described in appendix C. 

The 'Process' subroutines, briefly described 

below, are the direct conversion of the interpretation 

process algorithms into FORTRAN 77 source code. Some of 

these routines are marked by asterisks (*) to indicate 

that they are dependent on the solid modeller in use; they 

form the necessary 'interface' between the solid modeller 

and the algorithms developed in this project. The term 

‘interface' refers to the generation of the solid 

modelling input file as described in section 6.2, and the 

extraction of the 2D data from the solid modeller output 

file described in section 6.3.1. The 'process' subroutines 

are: 

INPUT: prompts the user to present input orthographic 

views data which are then stored in three separate random 

access files - one file per view. 

CYCLES: scans the input data in order to determine the 

number of loops in each view. The perimeter loop is always 

the first to be determined. 

EXTREM: scans the input data to compute the extreme 
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coordinate values in each view. 

TOPUP: updates the topology and geometry data. 

LINK: finds all the nodes joined (adjacent) to a given 

node. 

MARKER: labels edges according to the ‘Loop Detector' 

algorithm which was presented in section 6.1.1. 

RELATE: determines relationships between all the loops in 

a given view. It also labels each loop as 'DISJOINT' or 

"CONNECTED'. 

TEST3: checks if a given loop is a rectangle. 

PROCLP: selects object loops for processing in order to 

generate a 'profile', as defined in section 5.4.3. 

PLOOPS: Processes the object loops selected by the 

subroutine PROCLP. 

PATIL: scans the topological and geometrical data of a 

given object loop to determine its 2D geometric pattern. 

PATI2: scans the topological and geometrical data of a 

given primitive loop to determine its 2D geometric 

pattern. 
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SETREC: sets the coordinate values of the nodes of the 

rectangle surrounding a given loop. 

RNUMR: renumbers the nodes of the surrounding rectangle 

according to the sense of the loop it is surrounding. 

CFLAGS: allocates a flag to each node of a given loop, 

according to its position with reference to the nodes and 

sides of the surrounding rectangle. This routine 

generates, in effect, the ‘control list', as described in 

section 6.1.6. 

LOCAT: scans the control list generated by the routine 

CFLAGS, in order to locate all the primitive loops formed 

by the intersection of a given loop and its surrounding 

rectangle. 

MERGEP: merges direct access files into the MAINDATA file. 

TESTAR: scans the MAINDATA file in order to search for 

loops identified and stored as arbitrary patterns. If such 

a loop is found, then its corresponding geometric and 

topological data is stored in ehoncendon access file 

called ADATA. 

UNTEST: scans the data stored in the ADATA file to test 

the arbitrary loop for 'instability' conditions, mentioned 

in section 6.1.7. If such conditions are found, then the 
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loop is divided into two loops and their data stored back 

into the MAINDATA file. 

QUTLIN: reads the final MAINDATA file to extract the data 

corresponding to all the basic patterns, and performs 2D 

Boolean operations to reconstruct the corresponding object 

loop. This routine is used as a means of cross-checking 

the reconstruction process. 

BIREE1: stores the pointers which relate parent loops to 

their children loops. It generates and stores a Boolean 

tree. 

PRIMID: scans the final MAINDATA file to read the flag LPF 

of all the basic patterns, in order to identify the 3D 

primitives. 

QOBNAME*: sets the object name according to text format 

required by the solid modeller 'BOXER'. 

BLOCK*: computes the parameters of a 3D primitive block, 

as required by the solid modeller 'BOXER'. 

WEDGE*: computes the parameters of a 3D primitive wedge, 

as required by the solid modeller 'BOXER'. 

ELLLET*: computes the parameters of a 3D primitive fillet, 

as required by the solid modeller 'BOXER'. 
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cyul*: computes the parameters of a 3D primitive 

cylinder, as required by the solid modeller 'BOXER'. 

CYL2*: computes the parameters of a 3D primitive 

cylinderical segment, as required by the solid modeller 

"BOXER'. 

BIREE2*: generates and stores character strings which 

represent the syntax of the solid modeller input file. It 

uses the pointers generated by the routine BTREE1, the 

object names generated by OBNAME, and the parameters from 

BLOCK, WEDGE, FILLET, CYL1 or CYL2. 

WIREE*: writes the character strings generated by BTREE2 

onto a file called 'BOXER.DAT', which is used as input to 

solid modeller 'BOXER'. 

EXTRACT*: scans the solid modeller output file, DOGSDAT, 

in order to extract the 2D data which represents the 

orthographic projections of the generated model. This 

routine also rectifies the extracted data by adding or 

subtracting the amount of shift which exists between the 

data which represent the input views and the extracted 

data. 

CVIEWS: scans and compares the input views data and the 

data which represent the orthographic views of the output 

model. If discrepancies exist between the two sets of 
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views, then a flag, NCHECK, is set to 1, otherwise it 

remains equal to zero. 

ACTIVN: detects '‘active' nodes (if any) in both input and 

output views. 

UVIEWS: generates the data which represents the 

"Pseudo-views', as defined in section 6.4.1. 

LABELV: labels each loop obtained in the pseudo-views by 

comparing the data associated with each loop found in the 

input and the views of the output model. 

MATCH: determines the matching set of loops, in the 

pseudo-views, which represent the orthographic projections 

of a subobject that must be removed from the output model. 

The topological and geometric data associated with a set 

of matching loops, are stored in random access files whose 

structure is similar to the original input files. 

DRAW: draws and displays the input views, the orthographic 

projections of the output model and the corresponding 

pseudo-views. 

All the routines, including the main program, are 

grouped and stored in different files, which are compiled 

separately to generate the corresponding binary files. The 

binary files are then bound together using a link file. 
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The link file must also comprise the binary file of the 

subroutine version of the solid modeller. 

7.4) SOFTWARE PORTABILITY: 

The C.I.E.D.S.M. software has been developed with 

portability as one of the major requirements. It is 

desirable for any software readily to be able to be 

converted to suit a new operating environment, since all 

prospective users are unlikely to have the same computer 

system. Of course, it is not yet possible to produce any 

software which is universally portable, however it is 

possible to design the software, so that a minimum effort 

is required in modifying it for transfer from one system 

to another. 

It is highly probable that the software developed 

in this project may be implemented on a different system 

in the near future. For such reasons, the C.I.E.D.S.M. 

suite of routines have all been written in FORTRAN Likg 

high level language which is highly portable and which is 

one of the most popular scientific languages used in 

software practice. Such portability was demonstrated when 

the software was transferred from the ICL Perq2 computer 

to the Apollo Domain workstation. 

Portability considerations have been expanded 
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further by keeping the number of routines associated with 

the solid modeller to a minimum, as it is also unlikely 

that all prospective users will use the same solid 

modeller. These routines, highlighted above, have been 

developed to provide the necessary syntax as required by 

the PAFEC BOXER solid modeller, and extract data from 

files generated by it. If, in the future, a different 

solid modeller is used with the software developed in this 

work, then. it is necessary to modify these routines 

accordingly. 

Considerations have also been given to graphic 

languages. Initially, when the scftware was being 

developed on the ICL Perq2, graphics routines were written 

using GKS (Graphic Kernel System) libraries [46,47]. This 

choice is justified as GKS is considered as a standard, 

although it is still to be improved. Unfortunately, GKS 

was not available on the Apollo DN3000 workstation at the 

University of Aston. New graphics routines have been 

developed and implemented on the Apollo DN3000 

workstation, initially using the Domain 2D Graphic 

Primitives Resources (GPR) [48], and later, the Domain 2D 

Graphic Metafiles Resources (GMR) [49] packages. GMR, an 

extension of GPR, provides extended facilities for 

developing and storing graphics data. 
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7.5) EXECUTION SPEED AND DATA STORAGE: 

One of the major requirements in designing software 

for iterative problem solving techniques, is execution 

speed, because of the potentially slow and repetitive 

nature of che process involved in reaching a soluticn. 

Generally, the execution speed of such programs can be 

improved but at the cost of memory and storage space. 

The interpretation process developed in this 

project is iterative, and thus, execution speed was one of 

the major requirements that had been taken into 

consideration in designing and developing the C.I.E.D.S.M. 

software. Speed has been optimized by making considerable 

use of the speed optimizing and data storage saving 

capabilities of FORTRAN 77. For example, using unformatted 

random access files rather than sequential ones, and 

making use of common blocks. 

Furthermore, the construction of a solid model by 

the solid modeller is a time consuming operation. Thus, in 

order to improve the execution speed of the whole process, 

excessive and unnecessary use of the solid modeller during 

iterations, has been avoided; the construction of any 

solid model is performed only once, and never repeated. A 

considerable improvement in the execution speed was also 

observed when the software was transferred from the ICL 

Perq2 computer to the Apollo DN3000 workstation. 

260



Little computer storage is necessary to implement 

the routines developed in this work. The source code and 

compiled binary files, occupy at least 590 Kb on the hard 

disk. However, the solid modeller 'BOXER' requires at 

least 6 Mb of storage capacity. Thus, the acquired system 

should provide at least 6.6 Mb of storage capacity. The 

Apollo DN3000 workstation has an ample amount of virtual 

memory (2 Mb) and data storage capacity (72 Mb). 

With the exception of the solid modeller input and 

output files, all the files used to store the total set of 

data used by the C.I.E.D.S.M. software are random access 

ones. These files may be grouped into two types. The first 

store the topological and geometric data which represent 

orthographic projections. These are: 

- files that store the xy, xz and yz input view data, 

conveniently called 'xyi', 'xzi' and 'yzi' 

- files that store the xy, xz and yz orthographic 

projections data of the output model, called ‘xyo', 'xzo' 

and 'yzo', respectively 

- files that store the xy, xz and yz pseudo-views 

data, called 'xyp', 'xzp' and 'yzp', respectively. 

All the above tiles, including others, such as 

EXDAT, ADATA and ARBDATA files, have the same structure, 

illustrated in Figure 7.1. 
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The first two records are two 4-byte integers, NG 

and NN, which represents the number of edges and nodes, 

respectively, in each view. The third record is also a 

4 byte integer, LDIR, which is set to: 

ij) © to indicate that a loop has a clockwise sense 

ii) 1 to indicate that a loop has an anticlockwise sense. 

The subsequent records are grouped in three sets. 

The first set of records is divided into a number of 

groups of four 4-byte integers. Each group corresponds to 

the definition of an edge. Thus, the number of such 

groups, in this first set of records, .is equal to the 

number of edges. The first integer, in each group, is the 

edge number, ISN. The second integer, IT, is set to either 

0, to indicate that the edge is a straight edge, or to a 

positive (or negative) number to indicate that the edge is 

an anticlockwise (or clockwise) arc whose centre 

coordinates values may be found at the address specified 

by the absolute value of IT. The last two integers in each 

group, are the start and end nodes, NS and NE, defining 

each edge. 

The next set, comprises groups of pairs of 

records. Each pair of records stores the X and Y 

coordinate real values, XN and YN, of each node. The last 

set is also divided into groups of pairs of records which 

store the X and Y coordinate real values, XCA and YCA, of 
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the centre of each circular arc (if any). The last record 

in the each section is the 4-byte integer, LPF, which, as 

defined previously, identifies the 2D geometric shape, or 

pattern, of the loop. 

The other type of files store the data associated 

with the loops in each view, and these are as follows: 

- ‘'XYLI', 'XZLI' and 'YZLI' which store the data of all 

the loops in the xy, xz and yz input views 

- 'XYLO', 'XZLO' and 'YZLO' which store the data of all 

the loops in the xy, xz and yz views of the output model 

- 'XYLP', 'XZLP' and 'YZLP' which store the data of all 

the loops in the xy, xz and yz pseudo-views. 

The structure of one of these files is illustrated 

in Figure 7.2. The first record is a 4-byte integer which 

represents the number, NLP, of ‘circuits', or loops, ina 

given view. The subsequent records are grouped into sets, 

where each set of records comprises the data associated 

with each loop. Thus, the number of sets is equal to the 

number of loops in the view. The first set of records 

always stores the data of the perimeter loop. The first 

record in each set, is also a 4-byte integer which 

indicates the number, LN, of nodes contained in the loop. 

The next records store the numbers, N,, Nj, N; .. Nyy, Of 

all the nodes in the loop. The last record in the set, 

store the 4-byte integer, LT, which identifies the loop as 
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"connected' if set to 1, or 'disjoint' if set to 0. 

7.6) OPERATING INSTRUCTIONS FOR C.T.E.D.S.M.: 

The C.I.E.D.S.M software has been designed and 

developed for automatically converting the 2D data which 

represent orthographic projections of an object, into a 

solid model. Interaction with the user is restricted to 

data acquisition, except where iteration is required, in 

which case user intervention is also requested. Prior to 

running the program, the user must have prepared the input 

data which comprises the topological and geometric data of 

three orthographic views described in the first-angle 

projection system. Such data comprise edge numbers, and 

types, node numbers and coordinate values, as well as arc 

centres (if any). 

The executable file of the program is already 

stored on the hard disk of the Apollo workstation. To run 

the program, the user must type CIEDSM, and hit the RETURN 

key. He is then warned about certain file names that he 

must not enter, as they are used by the system. The CIEDSM 

dialogue has been designed so that the user responds to a 

question that has a Yes/No answer by simply hitting the 

RETURN key for 'Yes'. Hitting any other key indicates a 

'No' answer. User information is then structured as 

follows: 
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Is data for XY, XZ or YZ view ? 

Please, enter 'XY', 'XZ' or "YZ. 

Type either XY, XZ or YZ, which indicates the view 

to which the data correspond. There are no restrictions on 

the order in which the view data are entered. For 

instance, if you wish to enter the XZ view first, then you 

may do so. The next prompt is: 

Is it a new file ( RETURN = 'YES’) ? 

If you have used the program before, then you may 

have a number of files already stored on the hard disk, 

which you would like to use. In this case, you might type 

‘x', and the program would respond by the following 

question: 

Old file. File name ? 

File names may have up to 10 characters: you 

should type a name and hit RETURN. Since you. have 

indicated that the file name is for a file which is 

already stored on the hard disk, CIEDSM searches for such 

a name. If the name is not found, the follc ‘ng message is 

displayed: 

Error. Such a file does not exist. 
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Do you wish to continue (RETURN = Yes) ? 

If you wish to continue, you must hit RETURN, and 

the above steps are repeated. 

New input data may be entered by hitting RETURN at 

the following prompt: 

Is it a new file (RETURN = 'YES’) ? 

The program then responds with the following 

question: 

New file. File name ? 

Type a name and hit RETURN. The program sets the 

interactive input mode for entering the topological and 

geometric data,of the input view. The first prompt is as 

follows: 

XY view: 

Enter number of edges. 

to which you must type an integer value which indicates 

the total number of edges in the given view. This is then 

followed by: 
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XY view: 

Enter number of nodes. 

Type another integer value which indicates the 

total number of nodes in the view. The program allows you 

to check the input data by displaying the number of edges 

and nodes entered. You may then either hit RETURN to 

indicate that the data entered is correct, or hit any 

other key to indicate that the data is to be modified. In 

the latter case, the program displays the last two prompts 

inviting you to re-enter the number of edges and nodes. 

These last two steps are repeated until the input is 

acknowledged to be correct. The program then carries on 

requesting data associated with each edge, by displaying 

the following prompt: 

Edge 1; 

Enter: 0 if edge is a straight line 

1 if the edge is a clockwise arc 

-1 if the edge is an anticlockwise arc 

Type either one of the integer values displayed 

depending on the type of edge number 1. The next prompt 

invites you to input the start and end node numbers of the 

edge, which in this case is edge number 1. The prompt is 

as follows: 
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Edge 1: 

Enter start and end node numbers. 

You should respond by typing two integer values; 

the first one indicates the start node number, and the 

second the end node number. The last two prompts are then 

displayed again, in sequence, for edge number 2, and then 

edge number 3, and so on. Thus, allowing the data 

corresponding to the type, start and end node numbers of 

all the edges of that view, to be entered. The program 

then provides an instant check by displaying all the 

previous input data foilowed by this prompt: 

Is data correct (RETURN = 'YES') ? 

Again you may either acknowledge that the data is 

correct by hitting RETURN, or you may wish to modify a 

specific value, by hitting any other key, in which case 

the following prompt is displayed: 

Enter edge number to modify 

Type an integer value indicating the edge he 

wishes to modify. You are the. invited to reenier the 

correct type, start and end nodes of that specific edge. 

The check is repeated until the data is acknowledged to be 

correct, thus completing the topology input data. The next 
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steps are concerned with the input of the geometrical 

data, which comprises the coordinate values of all the 

nodes and centre of arcs (if any). The program displays 

the following prompt: 

Node 1; 

Enter X and Y coordinate values. 

Type two real values; the first one is the xX 

coordinate value, and the second is the Y coordinate value 

of node number 1. This step is repeated until all the 

coordinate values of all the nodes in the view are 

entered. The program then scans the type of all the edges 

in order to check for circular arcs; If the view comprises 

such an edge, then the edge number is displayed, and you 

are informed that this particular edge is a circular arc, 

and then prompted to input the coordinate values of the 

centre of that arc. Assuming that you have previously 

specified that edge number 11 is of type 1, which 

indicated that edge number 11 is a clockwise circular arc, 

thus the prompt would be as follows: 

Edge 11 1s a circular arc 

Please, enier X and Y coordinate values of its entre. 

You must then input two real values which 

represent the X and Y coordinate values of the centre of 

271



that -particular circular arc edge, in this case edge 

number 11. If the view comprises several circular arcs, 

then this step is repeated a number of times equal to the 

number of such edges. Again, the coordinate values of all 

the nodes, followed by the coordinate values of centre of 

arcs (if any), are displayed to enable you to check your 

input data. These values may be modified at this stage, if 

you wish to do so. The modifications are carried out as 

previously indicated. 

All the input steps must then be repeated for the 

two remaining views. After completing the input of the 

data of all the views, you are then immediately informed 

that the process of converting the 2D data into a 3D solid 

model has started, by the following message: 

Seed E RRR ERE 

*** ANALYSIS STEP *** 

SHH rie 

which is shortly followed by another message informing you 

that the data has been analysed, and the input data 

represent the orthographic views of either a prismatic, or 

non-prismatic, object. If the object has been identified 

as prismatic then the message will appear as: 
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FESS II SISOS IO IIe 

*** PRISMATIC OBJECT *** 

FEISS ISIS III IIe 

otherwise, the message will be as follows: 

ESE ISOS III IOI III IE 

*** NON-PRISMATIC OBJECT *** 

TESS SSSI INS SnESS In neni 

Either message is then followed by another 

indicating that the analysis step has been completed, and 

that the solid modelling step has started. A prompt 

requesting you to enter the type of terminal you are 

using, is displayed. A list of the different terminal 

supported by the solid modeller software, can be obtained 

by typing the on-line help command 'H'. For instance, 

typing 3000 would indicate that the workstation is an 

Apollo DN3000 with colour monitor, and that the whole 

screen would be used for graphics display; whereas, typing 

3001, would indicate that the same workstation is used, 

but only the present window, and not the whole screen, 

would be used for graphics display. 

The whole screen (or window) is then cleared to 

display the orthographic projections of the generated 

model. This is then followed by a message informing you 
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that the solid modelling stage has now been completed, and 

that the next step, which consists of extracting the 

orthographic views data of the output model, has started. 

The screen is cleared again to display either two or three 

sets of orthographic projections. If no differences have 

been found to exist between the input views and the 

projections of the output model, such as in the case of 

prismatic and ortho-prismatic objects, then only the input 

views and the orthographic projections of the output model 

are displayed. In this case, the program displays the 

following message: 

FEES IIIS ISIS III III IIIT II 

seeeee* SUCCESSFUL CONVERSION ******* 

*** EXACT OBJECT IS RECONSTRUCTED *** 

SEES SSISIS ISIS SISSISO ISIS IIT I i ie 

However, if discrepancies have been found to exist 

between these two sets of views, then the pseudo-views are 

also displayed, highlighting those differences. You are 

thus provided with a facility for checking and examining 

the differences between the input views and the 

corresponding projections of the output model. The program 

wtuen displays the following prompt: 

The output model is NOT an exact solution. 

Do you wish to continue (RETURN = 'YES') ? 
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Hit RETURN if you decide that the generated model 

requires more refinement. You may, on the other hand, 

decide that the output model is accurate enough for the 

application you have in mind, in which case you should hit 

any other key to exit from the CIEDSM program, hence 

terminating che interpretation process. 

In the former case, the program displays the 

following message: 

ISHS Eirini 

*** ITERATION REQUESTED *** 

SESH titre iit 

**** FEED BACK STARTED **** 

INES SSS rn niin iii: 

which indicates that the orthographic projections of one 

or more subobjects are being retrieved from the 

pseudo-views. The analysis process is then repeated and 

the orthographic views of a new output model are 

displayed. The process continues in this fashion until the 

output model is identified to be the exact object, or 

until you decide to terminate the process. 

The C.I.E.D.S.M. software has now been described, 

and a set of operating instructions have been given. These 
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are simple and easy to follow as they are 

self-explanatory. The software has been tested using a 

number of practical examples; These examples have been 

chosen to illustrate the implementation of the 

interpretation process for prismatic and non-prismatic 

objects, and are described in the next chapter. 
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PRACTICAL APPLICATIONS OF THE DEVELOPED 

PROCESS 
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8.1) INTRODUCTION: 

A number of practical examples have been selected 

to illustrate the interpretation process algorithms 

developed in this project, and their implementation to the 

different classes of objects. These have been chosen to 

illustrate the range of objects that may successfully be 

processed, thereby enabling the reader to complement his 

understanding of the scope and nature of the process. 

Furthermore, the differences between prismatic (simple and 

complex), ortho-prismatic and more general 3D objects, are 

highlighted by selecting objects which slightly differ 

from one example to another. For instance, the object 

chosen to represent simple prismatic objects, is 

transformed into a complex one by drilling holes through 

dts 

The first example illustrates the reconstruction 

process of an object which is itself composed of a single 

primitive. Although trivial, the example not only serves 

its purpose as an introduction, but it also demonstrates 

that the implementation has been so designed that such 

simple objects may be identified, and reconstructed 

without the need for the full process to be followed in a 

formal manner. 

The second and third examples illustrate to simple 

and complex prismatic objects, respectively. Whilst 
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example 4 treats what has previously been described as an 

ortho-prismatic object: it shows that in such cases, the 

reconstruction is exact and did not require any 

iterations. Example 5 corresponds to cases where the 

notion of ‘approximation models' and iteration to an 

‘adequate' model arise. 

8.2) EXAMPLE 1: A PRIMITIVE OBJECT: 

Figure 8.1(a) shows a set of three views which 

represent the first angle projections of an object, and 

Figure 8.1(b) the corresponding topology. The process of 

converting these views into a solid model is initiated by 

the 'Loop Detector' algorithm (section 6.2.1) whose 

function is to determine the number and type of loops in 

each view. Each loop is then processed by the ‘Pattern 

Identifier' algorithm which determines its geometric 

shape. The results of applying both algorithms to all the 

views are summarized in Figure 8.1(c), which indicates 

that: 

a) each view is composed of a single loop, 

b) the 2D pattern of the loop in the xy view has been 

identified as a right-angle triangle, 

c) the 2D pattern of the loops in the xz and yz views have 

been identified as rectangles. 
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(b) 

‘|View |Loop No| Edge Nos. 

2, -1 D 
XY Lxy1 1, -2,-3 

1, -4, -2,3 
XZ LXxzZ1 D 

-1, -3, 2, 4 

3, -1, -2 
YZ LYZ1 D 

1, -3, -4, 2       

D = Disjoint loop 

Fig. 6.1: 

(c) 

a primitive object 
b) topology 
c) number and type of loops 
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According to the 'Class Identifier' algorithm, 

this set of patterns forms the signature of a 3D primitive 

(section 6.2.3). The primitive is identified as a wedge. A 

solid model is then immediately reconstructed by 

generating the solid modelling input file which, in this 

trivial case, consists of tie following statements: 

XYO1 <- WEDGE (4.0, 3.0, 5.0) 

PRIM <- xy01 

where XY01 and PRIM are names that are automatically given 

to the 3D primitive, and the final object, by the 

software, respectively. 

The computation of the wedge length, WL, height, 

WH, and width, WW, is illustrated in Figure 8.2. In this 

example, WL is equal to 4.0, WH to 3.0 and WW to 5.0. The 

centroid of the object is automatically positioned at the 

origin of the solid modeller coordinate system, shown in 

Figure 8.2 as the set of OXYZ axes. 

The solid modeller reconstructs the 3D model PRIM 

and generates a parametric ASCII file from which the 

orthographic views of the model are extracted. These data 

are then compared with the input data by the 'Compa.ison' 

algorithm. Because the algorithm is independent of the 

labelling of nodes, or edges, the two sets of views are 

found to be the same, as shown in Figure 8.3, although the 
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nodes and edge numbers in the input views do not 

correspond to the node and edge numbers of the 

corresponding view of the output model. The complete match 

between the input and output views confirms that the 

generated model is the exact object. 

8.3) EXAMPLE 2: A SIMPLE PRISMATIC OBJECT: 

Figure 8.4(a) shows the three orthographic views 

of an object, and Figure 8.4(b) the corresponding 

topological data. The results of the search for the number 

and type of loops in each view, Figure 8.4(c), shows that 

each edge is traversed twice, in opposite senses, thus 

clearly illustrating the execution of the 'Loops Detector' 

algorithm; these results indicate that: 

a) there is a view, in this case the XY view, which may be 

identified as a base-view since it comprises only one loop 

b) all the loops in the remaining views (XZ and YZ views) 

are rectangles. 

In this case, the object is identified as a simple 

prismatic object, since, in addition to the above 

conditions (a) and (b), all the nodes in each of the 

remaining views belong to the perimeter loop, 

The interpretation of such an object consists of 
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L3 7, 3, 8, -4 rectangle c 

L4 5, -6, -10, 9 rectangle Cc 
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yz L2 -1, 8, -4, -2 rectangle Cc 

bs 2-7, 3, 6 rectangle c 
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P = Perimeter loop 

Fig. 8.4: 
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C = Connected loop 

a) Orthographic views of a simple 
prismatic object 

b) topological data 
c) Number and type of loops 
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processing the single loop contained in the base-view, 

i.e., the perimeter loop in the xy view. The first step of 

such a process consists of computing the extreme 

coordinate values of the object loop in order to define 

its surrounding rectangle. These values are determined by 

the 'Extreme Coordinate Search' algorithm (section 6.1.5). 

A point with such an extreme value is found to lie on the 

circular arc {1,2}, Figure 8.5(a). This point is added to 

the xy view, as node 9, by splitting the arc {1,2} into 

two smaller arcs {1,9}, and {9,2}. The coordinates of the 

surrounding rectangle are then as follows: 

xr(1) = xmax yr(1) = ymin 

xr(2) = xmax yr(2) = ymax 

xr(3) = xmin yr(3) = ymax 

xr(4) = xmin yr(4) = ymin 

The next step consists of generating the ‘control 

list' (section 6.2.6). The control list for such an object 

loop, shown in Figure 8.5(b), is then used by the 

'primitive Loop Locator' algorithm the function of which 

is to locate the loops obtained by the intersection of the 

object loop and its surrounding rectangle. These 

'primitive' loops are shown in Figure 8.5(a), as loops 

Pz, P3, and P4, located between the cvject loop PO and its 

surrounding rectangle (loop Pl). 

The data for each primitive loop are then examined 
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by the ‘Loop Identifier' algorithm to identify the 

geometric shape of its pattern, and label each pattern 

with a flag, LPF, according to its shape. The flags and 

patterns of all the primitive loops have been found to be 

as follows: 

Loop Pl = basic pattern => LPF = 1 or 'rectangle' 

Loop P2 = basic pattern => LPF = 4 or ‘quadrant' 

Loop P3 arbitrary pattern => LPF = 0 

Loop P4 basic pattern => LPF = 3 or 'fillet' 

The data for all the loops, and their 

corresponding flags are stored in the MAINDATA file. After 

scanning by the ‘Arbitrary Pattern Analyser' algorithm, 

the MAINDATA file is found to comprise a loop, P3, that 

has an arbitrary pattern which is decomposed further into 

loops P5 (its surrounding rectangle) and P6. 

Again, loop P6 is identified as an arbitrary 

pattern. Furthermore, it is found to possess the 

characteristics of an ‘unstable' loop (section 6.1.7) 

Such characteristics prevent loop P6 from being directly 

decomposed into further patterns, and hence, is divided 

into three further loops (section 6.1.8), shown in Figure 

8.6 as loops P7, P8 end P9. The data of these loops a.e 

then stored back into the MAINDATA file, and all the loops 

are identified as basic patterns, shown in Figure 8.6 as 

loops Pl, P2, P4, P5, P7, P8 and P9. 
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Each of the basic patterns identified above 

represents the xy view of a 3D primitive. The remaining 

views of each primitive are composed of rectangles. Each 

set of three patterns represents the signature of a 3D 

primitive, as shown in Figure 8.7(a). For example, loop Pl 

has been identified as a rectangle which, together with a 

rectangle in each of the remaining views, form the 

signature of a primitive block. 

The solid modeller input file is then generated 

and consists of the following statements: 

XY01 <- BLOCK (5.0, 5.0, 4.0) 

XY¥O2 <- CYL (4.0, 2.0) AT (2.5, -2.5, -2.0 ) 

XY04 <= FILLET (1.0, 1.0, 4.0) AT (-2.5, 2.5, -—2.0) 

XY05 <- BLOCK (4.0, 3.0, 4.0) AT (0.5, 1.5, 0.0) 

RYO" Sar CVE O70 1 Oy 4.0) Abe Nm deo 72-07) 20) 

XY08 <- BLOCK (1.5, 3.0, 4.0) AT (-0.75, 1.0, 0.0) 

XY09 <- FILLET (0.5, 0.5, 4.0) AT (-0.5, 1.5, ~2.0) 

XY¥06 <- XYO7 - xXY08 - xY09 

XY03 <- xY¥05 - xyY06 

FAMOD <- XY01 - xY¥02 - xyY03 

Each primitive is automatically given a name. The 

object XY06 is obtained by subtracting primitives xXY08 and 

XY09 from primitive XYO7; object xXY03 is obtained by 

removing object XY06 from primitive XY05 and, finally, the 

output model, called FAMOD, is then produced by 
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subtracting object XY03 and primitive XY02 from the 

surrounding block represented by the primitive XYO1. 

Clearly, the generation of output models consists of a 

gradual removal, not addition, of objects from the raw 

block. 

The solid modeller combines the objects and 

primitives defined in the solid modeller input file to 

generate the output model, Figure 8.7(b). A text file, 

which comprises the parametric description of the 

orthographic views of the output model, is also generated. 

This file is then scanned and the data representing the 

orthographic views of the output model are retrieved. The 

minimum node coordinate values of the output model views 

are computed and then subtracted from the minimum node 

coordinate values of the corresponding input views, in 

order to calculate the amount of shift required to adjust 

the node coordinates in all the views of the output model. 

The original input views are finally compared to 

the corresponding orthographic projections of the output 

model, FAMOD, by the 'Comparison' algorithm, and are found 

to be exactly the same, as shown in Figure 8.8; the 

generated model thus corresponds exactly to the object 

whose views comprised the input to the interpretation 

process. 
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8.4) EXAMPLE 3: A COMPLEX PRISMATIC OBJECT: 

The object in the previous example is transformed 

into a complex prismatic one by drilling a hole through 

it, so that the modified othoscoia views are those in 

Figure 8.°(a). The topological data is shown in Figure 

8.9(b). Those views are immediately identified, by the 

‘Class Identifier' algorithm (section 6.1.3), to be the 

orthographic projections of a complex prismatic object 

since, as shown in Figure 8.9(c) : 

a) there is a view, in this case the xy view, which 

consists of two disjoint loops. 

b) Each of the two remaining views comprises a number of 

connected rectangular loops only. Furthermore, all the 

nodes in these views belong to the perimiter loop. 

The interpretation of process, now consists of not 

just treating a perimeter loop in a base-view, but all the 

loops in that view. In this example, loops P01 and P02, in 

the xy view are processed. Loop P01 is decomposed into the 

primitive loops Pl, P2, P4, P5, P7, P8 and P9, as 

described in the previous example. Loop P02 is identified 

as a circle (basic pattern), which does not require any 

further decomposition. The resuiting tree is shown in 

Figure 8.10. . 

The 3D primitives, associated with each basic 
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View Loop No Edge Nos. Pattern shape | Type 

1, 7, -2, -8, 5, 6, 3, -4 7 

ee ee ey tog 
x 9 

circle D 
= 9 

ee ae a eee Pc 
1 [o 10, 6 : 

xZ 2 -1, -3, 2, -5 rectangle Cc 
L3 3, 8, 13, 12 rectangle Cc 

L4 -4, 7, -13, 11 rectangle Cc 

LS 5, -6, -10, 9 rectangle Cc 

Li -5, 9, 1, -6, -3, 7, 4, -10 rectangle P,Cc 

yz L2 -1, 8, -4, -2 rectangle Cc 

L3 2,:-7,.3, 6 rectangle Cc 

L4 5, 10, -8, -9 rectangle c           

P = Perimeter loop C = Connected loop D = Disjoint loop 

Fig. 8.9(c): Number and type of loops 
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pattern, are then identified, Figure 8.11, and the syntax 

defining all the primitives and the output model, are 

specified in the solid modeller input file, as follows: 

XY¥01 <- BLOCK (5.0, 5.0, 4.0) 

xXY¥02 <- CYL (4.0, 2.0) AT (2.5, -2.5- -2.0 ) 

xY04 <- BILLET (1.0, 1:0, 42.0) AT (-2.5, 2-5, —2.0) 

XYO5 <- BLOCK (4.0, 3.0, 4.0) AT (0.5, 1.5, 0.0) 

KYOV, <= CVE (1207 1.0, 4.0) AT (=1.5, <125, =25.0) 

XY¥08 <- BLOCK (1.5, 3.0, 4.0) AT (-0.75, 1.0, 0.0) 

XYO9 <- FILLET (0.5, 0.5, 4.0) AT (-0.5, 1.5, -2.0) 

SYO6 <=" X¥O70 =" X¥08 = <XYO9 

KYHO1 <= CYL (4.0, 0.25) AT (=0:75, -0.75, =2.0) 

XY06 <- XYO7 - xXY¥08 - xY09 

XY¥03 <- xy05 - xY06 

FAMOD <- XY¥01 - XY02 - XY03 - XYHO1 

The file specifies that the output model, FAMOD, is 

obtained by: 

1) generating a number of prismatic objects, XY03 and 

XY¥06, which are the result of processing the perimeter 

loop P1 in the xy view 

2) generating a cylindrical object, XYHO1, which is the 

result of processing loop P02 

3) generating the output model by subtracting these 

objects from the surrounding cuboid, specified, in the 

file, as object XY01. 
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The orthographic views data of the output model 

are then retrieved from the parametric file generated by 

the solid modeller 'BOXER', and adjusted in order to be 

compared with the original input views data, as shown in 

Figure 8.12. The input views are found to correspond 

exactly to the orthographic projections of the output 

model, thus confirming that the exact object has been 

reconstructed. 

8.5) EXAMPLES FOR NON-PRISMATIC OBJECTS: 

The two previous examples have shown that exact 

solutions are obtained for prismatic objects without 

iteration. In section 5.4.3, a class of objects called 

ortho-prismatic were introduced. An example illustrating 

the reconstruction process for such an object is now given 

and it will be seen that an exact solution will be 

obtained without iteration. A more general example 

requiring an iterative solution follows. 

8.5.1) EXAMPLE 4: AN _ ORTHO-PRISMATIC OBJECT: 

Figure 8.13(a) shows a set of three views which 

represent the first angle projections of an object, and 

the corresponding topological and geometrical data is 

shown in Figure 8.13(b). These input views are not 
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Fig. 8.13: a) Orthographic views of an 
ortho-prismatic object 
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View Loop No Edge Nos. Pattern shape | Type 

4 1, 7, -2, -9, -8 , 5, 6, 10, Bote oe 

(PXY) _ 11, -4 , 

XY 12 +1, 4, -3, -6, -5, 8, -12 arbitrary Cc 

L3 2, -7, 12,9 rectangle c 

L4 3, -11, -10 arbitrary Cc 

li “8, -1, -9, 10, -17, 5, 11, : 

(PXZ) |-6, -12, -7, 4,3 arbitrary P,c 

L2 1, -13, -16, 15 rectangle Cc 

XZ L3 2, 13, 8, -3 rectangle Cc 

L4 -2, -4, 7, -14, 16 rectangle Cc 
-5, 17, -10, 9, -15, 14, : 

us 12, 6-11 arbitrary Cc 

10, 16, -5, -15, 17, -6, : 
en 13, 14, 3, -4, -2 arbitrary P,Cc 

L2 1, 15, 5,9 rectangle c 

L3 -1, 8, 7, 4, -3, 12, -17 rectangle [o} 

YZ L4 2, 11, -10 rectangle c 
US 6, -12, -14, -13 rectangle C 

Lé -8, -9, -16, -11 rectangle Cc         
  

P = Perimeter loop, 

Fig. 8.13(c): Number and type of loops 
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immediately identified as those of an ortho-prismatic 

object. Instead, all the views are observed to comprise 

one, or more, connected loops as shown in Figure 8.13(c); 

a feature which shows that the object is not prismatic. 

The process of constructing a solid model from 

orthographic views now consists of processing the 

perimeter loop in each view; in Figure 8.13(a) these are 

shown in bold lines, and labelled as PXY, PXZ and PYZ, in 

the xy, xz and yz views, respectively. 

The perimeter loop in the xy view, PXY, is 

decomposed into basic patterns, shown as loops PXY1, PXY3, 

PXY4, PXY6, PXY7 and PXY8, in Figure 8.14(a). Similarly, 

the perimeter loop in the xz view, PXZ, is decomposed into 

loops PXZ and PXZ2, Figure 8.14(b), and for the yz view, 

PYZ yields loops PYZ1 and PYZ2, Figure 8.14(c). 

Each basic pattern, generated from the 

decomposition of loop PXY, is then used to identify the 

corresponding 3D primitive, and a prismatic object, 

previously referred to as the Z-profile (section 5.4.3 

may then be generated, ‘as shown in Figure 8.15(a). 

Similarly, all the 3D primitives associated with all the 

basic patterns obtained from the decomposition of loops 

PXZ and PYZ, are identified, and this time, the Y-profile 

and the X-profile may be generated, as Piiustrated in 

Figure 8.15(b), and 8.15(c), respectively. 
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The solid modeller input file consists of the 

following statements: 

XYO1 <- BLOCK(8.0, 6.0, 5.0) 

X¥03) <— WEDGE(1.5, 1.5, 5.0) AT (-4.0, 3.0, =2.5) 

xYO4 <- BLOCK(6.5, 4.0, 5.0) AT (0.75, 1.0, 0.0) 

XY¥06 <- WEDGE(1.5, 1.5, 5.0) AT (1.5, -2.5, -2.5) 

KYO7 <- BLOCK(1.5, 2.5%, 9.0) AT (-1275,, 0.57700) 

X¥08 <= FILLET(1-.0, 1.0, 5.0) AT (=1.0, -1.0, =2.5) 

XYO2 <- x¥04 - xY¥06 - XY07 - xY08 

ZPROF <- XY01 - xX¥02 - xyY03 

XZ01 <- BLOCK(8.0, 5.0, 6.0) 

XZ02 <- BLOCK(2.0, 2.0, 6.0) AT (3.0, 0.0, 0.0) 

XZ00 <- XZ01 - xXz02 

YPROF <- (XZ00) AT (ROTX = 90.0) 

Y¥Z01 <- BLOCK(5.0, 6.0, 8.0) 

YZ02 <- BLOCK(2.0, 2.0, 8.0) AT (-1.5, 3.0, 0.0) 

Y¥Z00 <- Y¥Z01 - ¥Z02 

XPROF <- (¥Z00) AT (ROTY = 90.0) 

FAMOD <- ZPROF * YPROF * XPROF 

The above statements indicate that: 

a) the Z-profile is specified by the object named ZPROF, 

which is defined by suptracting the wedge primitive xyY03 

and object XY02 from the surrounding block XY01. Object 

XY02 is defined by subtracting primitives xY06, XY0O7 and 

XY08 from the primitive block xyY04. 
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b) the Y-profile is specified by.the object called YPROF 

which is defined by removing cuboid primitive XZ02 from 

the corresponding surrounding block XZ01, and by rotating 

it through a 90 degrees angle about the X axis. 

c) the X-profile is specified by the object XPROF, defined 

as the result of suxcracting the cuboid primitive YZ02 

from the cuboid primitive YZ01, and rotating it through a 

90 degrees angle about the Y axis 

d) the output model is finally defined as the result of 

the intersection (*) of the three profiles ZPROF, YPROF 

and XPROF. 

The above file is then used ky the solid modeller 

to construct the solid model, Figure 8.16, according to 

the specifications described above, and to generate a text 

file in which the orthographic views of the solid model 

are parametrically described. The topological and 

geometrical data corresponding to the output model views 

are extracted from this parametric file and then compared 

to the original input data, as shown in Figure 8.17. 

Again, similarly to the case of prismatic objects, the two 

sets are found to be exactly identical, thus confirming 

that the intersection shown in Figure 8.16, i.e., the 

output model is a complete description of the original 

object. 
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8.5.2) EXAMPLE 5: A GENERAL 3D OBJECT: 

The iterative aspect of the interpretation process 

developed in this project, is clearly demonstrated by this 

example. The orthographic views and associated topology, 

shown in Figure 8.18(a) and 8.18(b), respectively, are 

identified as those of a non-prismatic object, for the 

same reasons as the ones described in the previous 

example. The results of the search for the number and type 

of loops in all the views are presented in Figure 8.18(c). 

Again, only the perimeter loop in each view is 

processed initially. The process consists of decomposing 

loops PXY, PXZ and PYZ, shown in Figure 8.18(a) in bold. 

The results of such decomposition is illustrated in Figure 

8.19. The 3D primitives are identified and the 

corresponding profile in each view is reconstructed as 

shown in Figure 8.20. The output model is then generated 

from the intersection of the three profiles, Z-profile, 

Y-profile and X-profile, as specified by the solid 

modeller input file which is as follows: 

XY¥O1 <- BLOCK(8.0, 10.0, 6.0) 

X¥03 <- BLOCK(5.0, 7.0, 6.0) AT (1.5, .15, 0.0) 

XY¥04 <- BLOCK(2.0, 2.0, 6.0) AT (0.0, ~.0, 0.0) 

XY¥O5 <- FILLET(1.0, 1.0, 6.0) AT (-2.0, -1.0, -3.0) 

XY¥02 <- x¥03 - x¥04 - xY05 

ZPROF <- XY01 - xy02 
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View Loop No Edge Nos. Pattern shape | Type 

u 1, -2, -13, 5, 6, -8, -11, : 
(pxy) | 12,-7, 3, -4 arbitrary P,c 

xy L2 -1,4,-3, 7, 9,-6, -5, 13, 2 arbitrary Cc 

L3 8, 9, -12, 11 rectangle Cc 

10 . 
l L4 0 circle D 

[1 |s, 15, -2, 10, 7, -2, 3, 4 i P.c (PXZ) Pee Le eens arbitrary , 

L2 1, 12, 8, 6, 14, -7, -10 arbitrary Cc 

XZ L3 -1, -15, -8, 2, -14, 11 rectangle Cc 

L4 -3, 13, 5, -4 rectangle Cc 

L5 -6, -8, -12, -11 rectangle C 

eA 2,5,13,11,-10, -4, -3,-14 arbitrary P,C 

L2 1, -13, 6, 3 rectangle [o} 

YZ L3 -1, 4, 10, 11 arbitrary Cc 
L4 -2, 14, -6, -5 rectangle Cc 

7, -12, 9,8 Ls 712, 9, 
"7,8, 9, 12 rectangle D 

2 Perimeter loop, C = Connected loop 

 



XZO1 <- BLOCK(8.0, 6.0, 10.0) 

XZ02 <- FILLET(3.0, 3.0, 10.0) AT (4.0, -3.0, -5.0) 

X2Z01 <- FILLET(3.0, 3.0, 10.0) AT (4.0, 3.0, -5.0) 

XZ00 <- XZ01 - XZ02 - XZ03 

YPROF <- (XZ00) AT (ROTX 90) 

sZ01 <- BLOCK(6.0, 10.0, 8.0) 

YZ02 <= FILLET(3.0, 3.0, 8.0) AT (=3.0, 5.0, =—4.0) 

Y¥Z01 <- FILLET (3.0, 3.0, 8.0) “AT (3.0, 5.0, —47:0) 

¥Z00 <- ¥ZO1 - YZ02 - YZ03 

XPROF <- (¥Z00) AT (ROTY = 90) 

FAMOD <- ZPROF * YPROF * XPROF 

which indicate that: 

a) the Z-profile is specified by the object named ZPROF, 

which is defined by removing the object XY02 from the 

surrounding block xXY01. Object xXY02 is defined by 

subtracting primitives xXY04 and xY05 from the primitive 

block xyY03. 

b) the Y-profile is specified by the object called YPROF 

which is defined by removing two fillet primitives, Xz02 

and XZ03, from the corresponding surrounding block XZ01, 

and by rotating it through a 90 degrees angle about the X 

axis. 

c) the X-profile is specified by the object XPROF, also 

defined as the result of subtracting two fillet 

primitives, Y2Z02 and Y¥Z03 from the cuboid primitive Yz01, 

and rotating it through a 90 degrees angle about the Y 
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axis 

d) the output model is finally defined as the result of 

the intersection (*) of the three profiles ZPROF, YPROF 

and XPROF. 

The data that represent the orthographic 

projections of the output model, FAMOD, are then retrieved 

from the parametric file generated by the solid modeller. 

In this case, it is clear that a number of differences can 

be clearly identified to exist between the orthographic 

views of this intersection, Figure 8.21(a), and the 

original input orthographic views, Figure 8.21(b). These 

discrepancies indicate that the output 3D model is not ce 

exact object, but an approximation model, which, in this 

case is the First-approximation model. 

In order to generate either a complete, or a more 

Eeriacdh object model, the differences between the input 

and output views will have to be subjected to a 

minimization procedure. Such a procedure consists of 

identifying a number of subobjects which are to be removed 

from the output solid model. The procedure is initiated by 

the generation of the so-called pseudo-views from which 

the orthographic views of such subobjects may be 

retrieved.. The pseudo-views are generated by the 

"Pseudo-views Generator' algorithm, as shown in Figure 

8.21(c). Loops are then labelled accordingly in order to 

identify those which represent orthographic projections of 
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subobjects. According to the 'Feed Back Data Generator' 

algorithm (section 6.4.2), the loops shown in Figure 

8.21(c) as hatched areas, form a set of 'matching' loops 

which represent the orthographic projections of a 

subobject. The data for these loops are then fed back into 

the analysis process which identifiec therm as the 

signature of a cylindrical 3D primitive. The cylindrical 

subobject is then subtracted from the First-approximation 

model to yield a second approximation model, Figure 8.22, 

having views which are still different from the original 

input views, as shown in Figure 8.23. 

The process of generating pseudo-views and 

identifying orthographic views of subobjects is again 

repeated; this results in the identification of another 

set of matching loops, shown in figure 8.23, again as 

hatched areas. The data associated with these loops is 

then used as input to the analysis step to be interpreted 

as two cuboids. Next, the cuboids are removed from the 

second-approximation model, Figure 8.24, to yield a new 

solid model which, this time, is identified as the exact 

object. This is confirmed by comparing the orthographic 

views of such model with the original input views, as 

shown in Figure 8.25. For demonstration purposes, the 

exact object is shown in this example, to be reconstructed 

from its orthographic views after two iterations, but it 

is actually reconstructed only after one iteration, since 

the identification of all the subobjects, together with 
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their removal from the first approximation model, is 

actually carried out in one step. 

The above examples clearly illustrate the 

interpretation process developed in this project. They 

also demonstrate that the process of generating output 

models consists always of a removal, and not addition, of 

primitive objects from the initial surrounding cuboid or 

‘Raw Block'. 

324



DISCUSSION AND SUGGESTIONS FOR FUTURE WORK 
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9.1) DISCUSSION: 

The problem of converting engineering drawings 

into solid models is still regarded as a very complex one, 

mainly because of the vastness of the domain of mechanical 

engineering components. This project has beer undertaken 

to contribute to the solution of the problem. To this end, 

a number of algorithms have been developed and implemented 

on an Apollo DN3000 workstation. An interpretation process 

which converts orthographic projections into solid models 

has been developed by adopting a novel approach based on 

the concepts of Constructive Solid Geometry. 

The problem of interpreting engineering drawings 

as solid objects has been a topic of research for many 

years and various techniques have been developed in 

attempts to solve it. However, none of these techniques is 

yet known, to the author, to have been implemented for the 

whole domain of mechanical engineering objects. Drawing 

from this experience, the author has adopted, from the 

start of the project, the basic philosophy of minimizing 

the formidable complexity of the problem by using the 

"Divide and Conquer' approach. The domain of objects was 

initially divided into two different classes: prismatic 

and non-prismatic objects, and work was concentrated on 

the development of an interpretation process which 

converts orthographic projections of prismatic objects, 
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the simplest of the two classes, into solid models. 

Experience gained from the work on prismatic objects has 

yielded a technique which extends the interpretation 

process to a wide range of objects which may be 

represented by the techniques of Constructive Solid 

Geometry. 

The algorithms described above accept data which 

must represent three views of a solid, and each view may 

consist of straight lines and circular arcs only, but this 

is not a severe limitation to many of the mechanical 

engineering applications. Because of the 'Divide and 

Conquer' approach, the addition of facilities to accept 

more complex geometry is seen as an evolutionary process 

rather than one requiring major changes to the philosophy 

upon which the software is based. For instance, one such 

facility is the addition of further primitives such as 

spheres, cones and toroids, together with the removal of 

any restriction on the orientation of primitives. 

The main problem is that the true shape of a 

primitive, whose axes are not aligned with the coordinate 

axes, may not be readily identified from the "global" 

orthographic views of the ‘solid object. Such a problem, 

however, does not arise during the generation of the 

"first-approximation" model since it only requires the 

analysis of the boundary loop in each view. Furthermore, 

as mentioned at the beginning of this thesis, it has been 
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reported that the PADL-1 development team at Rochester 

University [30], found that 40 percent of parts designed 

by a range of Mechanical Engineering companies could be 

represented in terms of just two primitives: rectangular 

blocks and circular cylinders - subject to the restriction 

that biock edge and cylinder axes were aligned with the 

coordinate axes. According to this encouraging report, the 

domain of objects that may be interpreted by the process 

that has been developed in this project, can be regarded 

as fairly large. The report also mentions that the 

addition of further primitives such as those mentioned 

above, together with the removal of any restriction on the 

orientation of primitives allows the modelling of more 

than 90 percent of the parts from the same companies. 

9.2) SUGGESTIONS FOR FUTURE WORK: 

To quote an appropriate comment by Cooley [50]: 

"It is an unfortunate but inescapable fact of software 

development that, when the fundamental problems have been 

largely solved, one has merely reached the end of the 

beginning". Further enhancements are required to extend 

the interpretation process developed in this project to a 

wider, if not the whole, domain ot objects which may be 

modelled by the Constructive Solid Geometry 

representation. A number of areas of work also remains to 

be done, such as technical deficiencies and enhancements 
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of the software for commercial acceptability and 

exploitation. Suggestions for future work are described in 

the following two sections, the first of which lists the 

technical problems and deficiencies which are yet to be 

solved, and the second discusses enhancements that may be 

required for commercial exploitations. The following 

suggestions are concerned solely with the generation of a 

solid model from already stored orthographic projections. 

9.2.1) TECHNICAL DEFICIENCIES: 

1. The algorithms described above can only accept input 

data which describes complete and unambiguous orthographic 

projections of objects. In practice, however, most 

drawings are either over or under defined. Aspects of this 

problem have been addressed in this research (chapter 2), 

and some suggestions for checking the input data were 

presented as a series of tests. These tests (which are to 

be performed by the 'Raw Data Interpreter' subprocess 

described chapter 5) have not yet been implemented. The 

problem of detecting redundant, incomplete, or conflicting 

information in an engineering drawing is a complex one, 

and the above tests merely address certain aspects of the 

problem, such as dangling edges and self-intersecting 

loops. 

2. An important objective of this research was to automate 
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the interpretation process of orthographic projections as 

solid models. Whilst this has been achieved for a limited 

(although important) class of objects, the basic strategy 

has been shown to be valid in the context of an iterative 

process for which the concept of approximation models was 

introduced. In this connection, the following issues 

arise: 

a) Will such an iterative process fail to converge to an 

adequate solution in accordance with some criterion ? 

b) Will the generation of an exact object require an 

unacceptable number of iterations or, indeed, be 

impossible? On which criterion should the process be 

terminated in order to generate an ‘acceptable' model ? 

What is defined as an 'acceptable' model ? 

Question ‘(a) addresses the problem of instability 

which is an aspect found in any iterative process. This 

undesirable condition may be detected either by the 'man 

in the loop', i.e. the user, or alternatively, by 

computing well-defined "properties with engineering 

significance, such as the masses, or volumes, of two 

consecutive output models; the mass of one approximation 

model must always be smaller than the previous 

approximation model, since an iteration consists of 

subtracting one, or mover smaller volumes, i.e. masses, 

from the previous approximation model. Divergent 
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conditions may then be detectable when the mass of an nth 

approximation model is greater than the mass of the 

(n-1)th approximation model. 

The next questions address the problem of model 

acceptability. The feed back step, i.e. the iteration 

process, is not always required, such as in the case for 

the interpretation of orthographic views of prismatic and 

ortho-prismatic objects since discrepancies will not be 

found when comparing the input views data and the 

orthographic views data of output geometric model. If 

discrepancies are detected, the geometric model may 

nevertheless be acceptable for some applications such as 

volume and mass calculations in preliminary design, or 

even for Finite Elements Analysis purposes. The same 

geometric model, however, may be unacceptable for other 

applications such as those where fine detail is important, 

as in NC machining operations, or in the design and 

manufacture of high precision engineering components. For 

example, in the design of hydraulic components, a very 

marrow but vital fluid conduit would represent a very 

small volume which cannot be ignored. A criterion for 

model acceptability is therefore required. It is suggested 

that the level of accuracy which may be acceptable for 

some applications is that at which there are minor 

differences in some significant quantity between 

successive iterations. For example, if the application for 

the geometric model is the computation of heat transfer 
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from the surface, then a minute change in surface area per 

iteration is indicative of an acceptable model. 

Alternatively, a simple value, again such as volume, whose 

decrement has reached a certain level between successive 

approximations may provide a practical test of model 

acceptability. At present, the decision to allow the 

process to continue or to terminate the iterations, is 

carried out by the user. 

3- The interpretation process developed in this work is 

not only iterative but recursive too, as mentioned in 

chapter 5. Arbitrary loops are recursively decomposed into 

basic patterns. This recursive aspect of the process also 

arises when enhancement of the first approximation 

geometric model is required. Subobjects which are to be 

identified from the pseudo-views, and subtracted from the 

first approximation model, may be arbitrary objects which 

may not be readily identified as primitives. These 

subobjects must be interpreted as solid models before 

subtracting them from the approximation model. The case 

may then arise where, in order to reconstruct these 

subobjects, it is again necessary to identify further’ 

subobjects which are to be removed from the approximation 

model of ene previous subobjects. At present, the 

Rneeroreration process caters only for general 3D opjects 

which can be enhanced by subtracting subobjects which are 

readily identified as 3D primitives. This technical 

problem, however, can be solved in exactly the same manner 
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as for the decomposition of arbitrary loops into basic 

patterns; thus by using pointers which store the 

information concerning the relationship between parent and 

children subobjects. 

4- One of the objectives of this research was tc develcp 

algorithms which require minimum user input. For this 

reason, hidden edges, represented as dashed lines in 

engineering drawings, do not have to be specified as such 

in the input data. Such depth information, however, is 

available in the description of the orthographic views of 

the first approximation model, and stored in the 

parametric file generated by the solid modeller, as 

described in section 6.3.1. This information may prove 

useful in the feed back subprocess to identify subobjects 

from the pseudo-views. 

9.2.2) REQUIREMENTS FOR COMMERCIAL SOFTWARE: 

The C.1.E.D,.S.M. software is; in itself, an 

example of a useable research system which is not yet ina 

commercially acceptable form. This is mainly because it 

has been developed on the basis of a sania of assumptions 

which impose restrictions on the user input which may be 

commercially unacceptable. Input flexibility is regarded 

as one of the major requirements for commercial software 

because users generally prefer systems which provide 
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various options from which they can make their choice. 

C.I.E.D.S.M. software has been developed to accept a 

minimum of three orthographic projections which must also 

be defined in the first angle projection system. In 

practice, objects may be represented by only two 

orthographic views, and very often may require the use of 

auxiliary and cross sectional views, especially where 

complex mechanical engineering components are concerned. 

Furthermore, in engineering drawing practice, the first 

and third angle projection system are used by different 

companies. To cater for third angle would required rather 

straightforward changes to the conventions adopted when 

raw data are interpreted. Options for auxiliary and cross 

sectional views are a somewhat larger issue, but must be 

provided if the software is to be commercially exploited. 

One desirable feature, commonly found in popular 

commercial software, is a user-friendly interface. In the 

above software, dialogue between user and machine could be 

made more attractive by 

a) designing and implementing a front end which consists 

of a series of menus, to display a number of options, such 

as those described above, from which the user is able to 

select those that suit him most. 

b) providing a link to commercial 2D draughting packages, 

such as Autocad® [51], MacDraft™ [52], or PAFEC Ltd. 

"DOGS"[53], in order to generate and transfer input data 

334



describing orthographic projections. 

c) generating intermediate files which would be used to 

store, perhaps in the form of a journal, the dialogue 

between user and machine, such as error status and user 

input commands. The above software already provides two 

text riles (che solid modeller input and output files) 

which could be used for such a purpose. 

d) improving the graphics to enable the user to view the 

progress that has been made with the generation of models, 

perhaps by displaying two or more consecutive 

approximation models, or by dynamically showing the 

changes of a solid model, provided that the display proved 

neither detrimental to the progress of the main 

computation nor irritating to watch. 

The other major requirement for commercial 

software is processing speed. This is a function of both 

the algorithms and the See cinoma ovate” A great deal 

of effort has been concentrated during this research on 

the improvement of execution speed of the algorithms, as 

discussed in chapter 7. The most apparent delay occurs 

when running the PAFEC "BOXER" solid modelling software on 

the Apollo DN3000 workstation. This is almost certainly 

caused by the complexity of the Boolean operation 

algorithms; a factor which is unlikely to be improved in 

the foreseeable future. 
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9.3) POTENTIAL BENEFITS: 

Discussions with major companies such as PAFEC 

Ltd., Deltacam Systems Ltd., Radan Computational and 

Superdraft Systems, have revealed great interest in the 

work undertaken in this project. Such interest tends to 

the conclusion that the commercial benefits of a 

successful application of this work are already apparent 

to such companies. 

One such application would mean that solid models 

could be produced from existing engineering drawings at a 

modest cost. The difficult, time-consuming and 

labour-intensive task of generating solid models using 3D 

modellers, would be completely eliminated. As a result of 

this, much faster links to applications such as 

Finite-element analysis, CNC machine tool tape generation, 

mechanism simulation and other engineering applications 

requiring a solid object description, would be achieved. 

Furthermore, engineering designers would be able to 

develop and improve their products much more rapidly since 

they would only need to modify design sketches and 

drawings. Hence, the working environment of the 

engineering designer would be significantly improved and 

valuable 2D data need not be discarded. 

Engineering education is also one area which would 

benefit from this work. The automatic generation of solid 
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objects from engineering drawings would be a helpful tool 

in the training of engineering draughtsmen, as they would 

be able to observe their progress and to obtain immediate 

feed back during a draughting exercise. It would also help 

in preserving and enhancing draughting skills. As far as 

PAFEC Ltd. is concerned, the above software would also 

obviate the need to train users to use the 'BOXER' solid 

modeller. 

Lastly, the algorithms developed in this work can 

potentially contribute to the field of conversions between 

geometric modelling representations; it has been reported 

that the exact, or even the approximate, conversion of 

Simple Sweep modelling representation into Constructive 

Solid Modelling representation have yet to be achieved 

(appendix B). The work reported, in this thesis, on the 

generation of uniform-thickness (prismatic) models is 

fundamentally a process of converting a contour into a 

Constructive Solid Geometry representation. Since in 

Translational Sweep representation (section 3.4.2) objects 

are defined in terms of contours and trajectories, it is 

therefore possible, to implement the above algorithms to 

achieve the exact conversion of such a geometric modelling 

scheme into a Constructive Solid Geometry representation. 
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ELEMENTS OF GRAPH THEORY 
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A.1) INTRODUCTION: 

Figures A.1 and A.2 depict, respectively, an 

electrical network and a sectional view from an 

engineering drawing. It is clear that both of them can be 

represented diagrammaticaliy by sweans of points and lines 

as in Figure A.3. The points A, B, C, D, E, F, G, H, I, J, 

H, K, L, M, N, O, P AND Q are referred to as 'Nodes', and 

the lines connecting them are called 'Edges'. The whole 

diagram is a 'Graph'. 

The 'Degree' of a node is the number of edges 

which have that node as an endpoint. A node of degree n is 

referred to as a n-node and a 2-node is one of degree 2. 

Nodes B, C, E, H, I, L and M are 2-nodes, whereas Nodes A, 

D, F, G, d, K, N; ©, P and Q are S3=nodes. It is’ not 

possible for l-nodes to exist in a graph which accurately 

represents an orthographic view of a solid object, but 

nodes of all higher degrees are possible. 

The graph shown in Figure A.3 is a 'Simple' graph, 

which by definition, is a graph where there is never more 

than one edge joining a given pair of nodes. If there is 

more than one edge joining e pair of vertices then they 

are called ‘Multiple Edges'. One instance where multiple 

edges occur in orthographic views is shown in Figure A.4; 

there are two nodes, A and B, which are joined by a 

semi-circular edge and by a straight edge. Another example 
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Fig. A.1: An electrical network 

    

        

  

K ek: 

Fig. A.2: Sectional view from an 
engineering drawing 

    
L z 

Fig. A.3: Graph equivalent to 
Figures A.1 and A.2 
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where multiple edges can arise is when two lines of equal 

projected length are superposed on a view. 

A 'Loop' is an edge which has both endpoints at 

the same node. This may occur on engineering drawings 

whenever there is a cciplete circle. A circle may be 

adequately modelled by storing the coordinates of its 

centre and the coordinates of an arbitrary point on its 

circumference. Figure A.5 shows that a circle which is a 

loop having both endpoints at the shown arbitrary node. In 

this thesis, the term ‘loop' is also used to refer to a 

closed 'path' or ‘'circuit' as defined in the following 

section. 

A.2) DEFINITIONS: 

Formally, a 'Graph' G is defined to be a pair 

(N(G),E(G)], where N(G) is a non-empty finite set of 

elements called 'Nodes' (or Vertices, or Points), and E(G) 

is a finite 'family' of unordered pairs of elements of 

N(G) called 'Edges'. The word '‘'family' is used to 

represent a collection of elements, some of which may 

“occur several times; for example, {a,b,c} is a set, but 

(a,a,b,c,c,c) is a family. Note that the use of the word 

'family' permits the existence of multiple edges. Thus,. in 

Figure A.3, N(G) is the set { A, B, C, D, E, F, G, H, I, 

J, K, L, M, N, O ,P , Q} and E(G) is the family consisting 
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Fig. A.4: View of an engineering drawing 

Arbitrary Start and 

Finish point on 

the circle 

Fig. A.5: Occurence of a single edge loop 
on an engineering drawing 
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of the Edges {A,B}, {B,P}, {P,C}, {C,D}, {D,E}, {E,F}, 

{F,G}, {G,H}, {H,I}, {I,J}, {J,K}, {K,L}, {L,M}, {M/A}, 

{A,O}, {P,Q}, {N,D}, {F,K}, {G,d}, {0,N}, {N,Q} and {Q,0}. 

A ‘'Digraph' D, is defined to be a pair 

[N(D),E(D)], where N(D) is a non-empty finite set of 

elements called Nodes and E(D) is a finite family of 

ordered pairs of elements of N(D) called 'Di-edges'. A 

di-edge whose first element is v and whose second element 

is w is called a di-edge from v to w and is written {v,w}, 

or simply vw, as shown in Figure A.6. The di-edge vw is 

different from the di-edge wv. 

An 'Edge-sequence' of a given graph G, is defined 

as a finite sequence of edges of the form 

Noy, ANZ, «+<2es- eee ¢ Oni) 2m 

(also denoted by n, -> ny -> no -> ...... «=> Ny-1 -> Ap) - 

It is clear that an edge-sequence has the property that 

any two consecutive edges are either adjacent or 

identical. The node no is called the initial node and the 

node nm is, called the final node of the edge-sequence 

which may then be referred to as an edge-sequence from no 

to nm. The number of nodes in an edge-sequence is called 

its 'Length'. Thus, the le .gth of the edge-sequence in 

Figure A.3 is 21. An edge-sequence in which all the edges 

are distinct is called a 'Trail'. If, in addition, the 

nodes no,n1,.., ON, are distinct (except possibly n, =n,), Oe ™m ° ™m 
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di-edge vw di-edge wv 

  

  

Edge sequence is a path since initial and 
final nodes are distinct. 

No (initial node) 

n 
m 

Final nod 
Edge sequence of Length 5 ee coe? 

  

  

         Circuit,      or Loop, of Length 7       

Fig. A.6: Definitions of Digraphs, Paths and Circuits 
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then the trail is called a 'Path'. A path, or trail, is 

defined as ‘closed' if nyo = ny, and a 'Circuit' is a 

closed path containing at least one edge. For convenience, 

a circuit is also referred to, in this work, as a loop. 

The above definitions are all illustrated in 

Figure A.6, and are to be found in the book by Wilson 

[54]. 
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CONVERSIONS BETWEEN GEOMETRIC MODELLING 

REPRESENTATIONS 
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B.1) INTRODUCTION: 

The geometric modelling representation schemes 

discussed in chapter 3 all have their specific advantages 

and disadvantages. For instance, a boundary representation 

is very suitable for making line drawings, but it requires 

a large mount of memory space. On the other hand, with 

constructive solid geometry input of models of mechanical 

parts is easily achieved, but it in turn is less suitable 

for making such drawings. 

Baer, Eastman and Henrion [9], distinguish four 

categories of model: the ‘Definition Language' or input, 

the 'Data Representation' or data storage of the model, 

"Conceptual Model, and '‘'Applications'. Each of these 

categories impose different requirement on the 

representation schemes. For this reason, many modellers 

provide multiple object representations. For instance, 

input may be done by a constructive solid geometry 

representation, since such representation has the merit of 

being adequate for input and for representing only true 

solids. In this form, the input may then be stored in a 

database. ie line drawings are required, the 

representation is converted into a boundary 

representation. This specific conversion, from 

constructive solid geometry representation to a boundary 

representation, is known as the 'Boolean Evaluation', 

whose algorithm is roughly described in section B.2. Some 
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of other examples of conversion algorithms are briefly 

discussed in section B.3. Requicha and Voelcker [55] 

outlined all the possible conversions between 

representations. These are given in Figure B.1, where an 

"exact' conversion is defined as one which produces a 

representation of exactly the same object, and an 

‘approximate' conversion is a conversion which produces an 

approximate representation of the original object, for 

instance by using only planar faces or cubical cells. It 

can be observed from Figure B.1, that not all conversions 

between any two representation schemes are possible. One 

reason is that a conversion is impossible in principle, 

for example from constructive solid geometry to sweeping, 

and from an approximate to an exact representation. 

Another reason is that a conversion is possible in 

principle but the algorithm has not yet been developed. 

B.2) BOOLEAN EVALUATION: 

The conversion from constructive solid geometry 

into a boundary representation is very important, because 

a combination of these ‘two representations in many 

modellers. Algorithms for boundary evaluation that allows 

primitives with curved surfaces are very difficult to 

implement, mainly because the intersection curves between 

any combination of curved surfaces is very difficult to be 

determined, especially for complex surfaces. For this 
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EXACT. APPROXIMATE 

TO cD BR csG ss SE BR 
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KNOWN 

K 
SE 

IMPOSSIBLE 

BR K         
  

K = Known, E = Experimental, I = Impossible 

Cellular Decomposition cD = 
BR = Boundary Representation 
CSG = Constructive Solid Geometry 
SS = Simple Sweep 
SE = Spatial Enumeration 

Fig. B.1: Possible conversions between 
representations after Requicha 
and Voelcker (1983) 
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reason, most algorithms that have been implemented only 

work on primitives with planar faces, so that primitives 

with curved surfaces have to be approximated. 

In 1983, Mantyla [56] proposed an algorithm for 

Boolean evaluation of two primitives bounded by planaz 

surfaces. The evaluation is achieved stepwise by first 

combining two primitives, and then combining the result 

with the third primitive, etc. The input to the algorithm 

consists of a number of primitives described by a boundary 

representation and a CSG tree indicating how these 

primitives have to be combined. A boundary representation 

of the object is obtained. 

The algorithm can be divided into two steps: 

1) determine the intersection lines of the input 

primitives 

2) determine the resulting object by combining the 

relevant parts of the input primitives. 

The first step of the algorithm can be achieved as 

follows: 

a) determine the intersection points of all edges from one 

primitive with all faces from the Senos ae the other way 

around 

b) determine for each face of the primitives, starting 

from the intersection points, chains of intersection 
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lines, as shown in Figure B.2. 

The second step of the algorithm can be divided 

further into two steps: 

2.1) subdivide the primitives into two parts. The faces of 

the primitives are subdivided at the chain, or chains, of 

the intersection lines. The resulting parts of the faces 

from one primitive (A) are classified as inside or outside 

the other primitive (B), as shown in Figure B.2, where A 

is subdivided into AinB, which consists of the parts of A 

inside B, and AoutB, which consists of the parts of A 

outside B. Likewise, B is subdivided into BinA and BoutA, 

also shown in Figure B.2. 

2.2) select the relevant parts, depending on the Boolean 

operator, and combine these parts. To determine. the 

resulting object, the relevant parts of A and B have to 

selected, which depends on the Boolean operator: 

A UB: AoutB and BoutA 

A MB: AinB and BinA 

A - B: AoutB and BinA 

B - A: BoutA and AinB. 

The two selected parts are then combined to 

produce the boundary representation of the resulting 

object. It can be seen from Figure B.2 that in all case 

such Boolean evaluation results in the correct object. 
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Fig. B.2: Boolean evaluation 
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B.3) SOME. CONVERSION ALGORITHMS : 

There are a number of algorithms which have been 

developed to convert one representation scheme into 

another. Some of these are briefly discussed here. 

1) From translational sweep to boundary representation: 

a) make faces perpendicular to the trajectory bounded 

by the contour in both endpoints of the trajectory 

b) make faces parallel to the trajectory bounded by 

parts of the contour and edges parallel to the trajectory. 

2. From constructive solid geometry to spatial 

enumeration: 

a) determine for every voxel in the grid whether it is 

inside the object 

b) for a composite object in the CSG tree this can be 

done (recursively) by applying its operator ti its left 

and right branches. For instance, if a node in the CSG 

tree with the union operator the voxel inside the left or 

the right branch, the voxel is inside the combined objects 

represented at that node. 

©) for a primitive object in the CSG tree this can be 

achieved by substituting the coordinates of the centre of 

the voxel in the equations of the half spaces defining the 

object. 

3) From boundary representation or constructive solid 

353



geometry to arbitrary cellular decomposition: 

These algorithms are particularly important because of 

their potential use for automatic generation of meshes of 

cells for finite element analysis. Unfortunately, they 

exist only in an experimental form. 
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HOMOGENEOUS COORDINATES 
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c.1) INTRODUCTION: 

As early as 1965, L. G. Roberts [57] suggested 

that homogeneous coordinates could be used to describe the 

most commonly required transformations and projections. 

Since then, the technique has become commonplace and is 

taught as part of the standard graphics curriculum 

(58,59]. 

Homogeneous coordinate representations of points 

and planes are particularly useful for describing and 

transforming geometric models. The term 'homogeneous' is 

applied to the representations because each class of 

object is modelled by an equation which has no explicit 

parameter. The familiar explicit equation which describes 

a two-dimensional line is y = ax + b. The homogeneous 

(implicit) equation for the same line is ax - y + b= 0 

The homogeneous representation of a 

two-dimensional point (x,y) is written as [wx,wy,w], where 

w is any non-zero scalar which is sometimes referred to as 

the 'Scale Factor'. the symbols '‘wx' and '‘'wy' are 

diphthongs; they are single numbers, not multiplications. 

The mapping from a homogeneous point [wx wy w] back to its 

two-dimensional image is simply (wx/w, wy/w) . 

Three-dimensional objects are treated in an 

analogous fashion. The implicit form of the equation of a 
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plane is a,x + apy + a3z + a4 = 0 . The homogeneous 

representation of the three-dimensional point (x,y,z) is 

written as [wx wy wz w] for any non-zero value of w. 

Again, the mapping from this homogeneous point back to its 

three-dimensional image is (wx/w, wy/w, wz/w). 

C.2) TWO-DIMENSIONAL POINTS AND LINES: 

Creed A two -dimensional point (x,y) is represented by 

the homogeneous row vector p = [wx wy w], as described 

above. Any non-zero scalar multiple of this representation 

represents the same two-dimensional point. The homogeneous 

point p is converted back to its ordinary coordinates 

(wx/w, wy/w). 

G2 <2 A line in 2D-space is represented by a column 

vector: 

5 2 

b 

c 

C.2-3 The condition that a point p is on the line yis: 

p.y=0 

This is an inner product which is equivalent to the 
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scalar.equation: 

a(wx) + b(wy) + c(w) = 0 

If the scalar product is not zero then p does not 

lie on the line. The product is however, pzoportional to 

the distance of the point to the line, where: 

distance = alwxl+biwy) + c(w) 

w V(a2 + b2) 

C.2.4 The line y between a point p = [pl p2 p3 ] anda 

point q = [ql q2 q3] is given by the vector product: 

Y= a2, - 9,8, 

ogee 

Tee Oe 

This is the result of solving the following 

implicit equations simultaneously: 

apl + bp2 + cp3 = 0 

aql + bq2 + cq3 = 0 

It can be easily verified that the points p and q 
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are on the line y, i.e., p. ¥Y = 0 andq.y =0 

C.225 The point at the intersection of two lines given 

by: 

y= ay and A= ay 

a eo 

ey i) 

is given by: 

P= [ (bic - boc) (cyaq - ©7284) (ayby - agby) | 

C.3) THREE-DIMENSIONAL POINTS, LINES AND PLANES: 

Cesek A three-dimensional point (x,y,z) is represented 

by the row vector p = [wx wy wz w]. Any non-zero scalar 

multiple of this representation represents the same 

three-dimensional point. 

C.3.2 A line is represented as a function of some 

parameter t which ranges from zero at one endpoint of this 

to unity at the other endpoint. fhis parametric 

formulation is: 
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where L is a 2x4 matrix which may be found by requiring 

that 

the row vector at one endpoint of line = [0 1] L 

the row vector at cther endpoint of line = [1 1] L 

GaSe A plane is represented by a column vector: 

r= 3 

b 

c 

d 

Cis The condition that a point p = [ wx wy wz w] is 

on a plane is p. y =0. This is equivalent to the scalar 

equation 

a(wx) + b(wy) + c(wz) + d(w) = 0 

If the scalar product is zero then the point p lies on the 

plane. The product is proportional to the perpendicular 

distance of the point to the plane, where: 

distance = = - a 

w V (a? + b? + c?) 
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C35 Three non-colinear homogeneous points: 

P = (wp, 

q = [wq, 

r= [wry 

determine a 

determined 

equations: 

a (wp) + b (wq,) + ¢ (wry) + dw 

a (wp2) +b (wa) Hic! (wro) + dw 

a (wp3) + b (wq3) +6) (wr3) + dw 

WP. Wp3 Ww) 

wq2 wq3 w) 

wrg Wr3 w) 

plane. The equation of the plane can be 

by solving the following simultaneous 

M1 ° 

1 ° 

i ° 

The plane equation from a set of more than three 

points may be obtained by using the following equations: 

a= (yy - v3) (24 + 25) 

bea (2p 5 25) (xy x3) 

- x4) (yy + ¥3) 
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where: 

j = i (mod n) + 1 

and: 

n = number of points. 

The value of d is found by requiring any one of 

the n points to lie on the plane. 
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