

Abderrezak KARGAS

Doctor of Philosophy

University of Aston in Birmingham

June 1988

This copy of the thesis has been supplied on condition
that anyone who consults it is understood to recognise
that its copyright rests with its author and that no
quotations from the thesis and no information derived from
it may be published without the author's prior, written
consent.

The University of Aston in Birmingham

Computer Interpretation of Engineering Drawings as
Solid Models

by Abderrezak KARGAS Doctor of Philosophy June 1988

Summary

Much of the geometrical data relating to engineering
components and assemblies is stored in the form of
orthographic views, either on paper or computer files. For
various engineering applications, however, it is necessary
to describe objects in formal geometric modelling terms.
The work reported in this thesis is concerned with the
development and implementation of concepts and algorithms
for the automatic interpretation of orthographic views as
solid models.

The various rules and conventions associated with
engineering drawings are reviewed and several geometric
modelling representations are briefly examined.

A review of existing techniques for the automatic, and
semi-automatic, interpretation of engineering drawings as
solid models is given. A new theoretical approach is then
presented and discussed. The author shows how the
implementation of such an approach for uniform thickness
objects may be extended to more general objects by
introducing the concept of ‘approximation models'. Means
by which the quality of the transformations is monitored,
are also described.

Detailed descriptions of the interpretation algorithms
and the software package that were developed for this
project are given. The process is then illustrated by a
number of practical examples.

Finally, the thesis concludes that, using the
techniques developed, a substantial percentage of drawings
of engineering components could be converted into
geometric models with a specific degree of accuracy. This
degree is indicative of the suitability of the model-for a
particular application. Further work on important details
is required before a commercially acceptable package is
produced. :

2D-3D Reconstruction
Engineering Drawing
Geometric Modelling
Computer-aided Design
Computer Graphics

I-would like to express my thanks to Dr. T.H. Richards and

Dr. P. Cooley, for their unflagging supervision and

guidance throughout this project.

I am most grateful to the SERC for funding this project,

especially to Dr M.A. Sabin and Dr. E. Warman for their

constructive and helpful comments and suggestions.

Thanks are due to Pafec Ltd., especially to Dr. Y. T. Lee,

for their technical contribution to the project

I would like also to thank my loving wife Zahia Kathryn

and my parents for their support.

Title Page

Summary

Acknowledgements

List of Contents

List of Illustrations

INTRODUCTION

Introduction

Research Objectives and Scope of the project

Tools for the Project

Thesis Plan

ORTHOGRAPHIC PROJECTIONS

Introduction

Projection Conventions

Data Structure

Orthographic Views of Prismatic and Arbitrary
Objects

2.4.1 Orthographic Views of Prismatic Objects

2.4.2 Orthographic Views of Arbitrary Objects

Interpreting Projections as Solid Objects

GEOMETRIC MODELLING

Introduction

Wireframe Modelling

Surface Modelling

16

Ly.

2u

23

25

28

29

22

on

43

45

46

48

33

54

SS

58

324 Solid Modelling

3.4.1 Cellular Decomposition

3.4.2 Sweeping

3.453 Boundary Representation

3.4.4 Constructive Solid Geometry

Selection of Modelling Representation for
the Project

4. REVIEW OF EXISTING TECHNIQUES

4.1

4.2

423

4.4

4.5

4.6

Introduction

Idesawa's method

Aldefeld's method

Kaining's method

Ho Bin's method

Discussion

INTERPRETATION OF ENGINEERING DRAWINGS AS
SOLIDS: NEW APPROACH

Introduction

Theoretical Fundations for the Process

Overview of the Process

5.3.1 Terminology

5.3.2 Raw Data Interpretation

5.3.3 Data Analysis

5.3.4 Three-dimensional Modelling

5.3.5 Output verification

5.3.6 Feed Back

Implementation of the process

5.4.1 The trivial case: the object is a primitive

5.4.2 Implementation to Prismatic Objects

5

64

65

72

75

82

89

92

93

o7

102

108

124

134

L3 i,

138

138°

142

144

146

147

149

155

TS?

157

158

159

&.

6.2

5.4.3 Implementation to Non-prismatic Objects

ALGORITHMIC INTERPRETATION OF THE PROCESS

Data Analysis Algorithms

6.1.1 The 'Loop Detector' Algorithm

6.1.2 The 'Loop Identifier' Algorithm

6.1.3) The "Class Identifier' Algorithm

6.1.4 The ‘Loop Processor' Algorithm

6.1.5 The 'Extreme Coordinate Search' Algorithm

6.1.6 The 'Control List Generator' Algorithm

6.1.7 The 'Pimitive Loops Locator' Algorithm

6.1.8 The ‘Arbitrary Patterns Analyser' Algorithm

6.1.9 The '3D primitives identifier' Algorithm

Solid Modelling Input File Generation

Output Verification Algorithms

6.3.1 Extraction of output views data

6.3.2 The 'Comparison' Algorithm

Feed Back Algorithms

6.4.1 The 'Pseudo-views Generator' Algorithm

6.4.2 The 'Feed Back Data Generator' Algorithm

The C.I.E.D.S.M. SOFTWARE

Introduction

Software Objectives

The C.I.E.D.S.M. program

Software Portability

Execution Speed and Data Storage

Operating Instruction for C.I.E.D.S.M

164

176

177,

178

182

189

192

195

198

202

206

216

218

226

228

231

234

238

241

248

249

250

251

258

260

266

W
w
 DN

2.

9.1

922

3-3

PRACTICAL APPLICATIONS OF THE DEVELOPED
PROCESS

Introduction

Example 1: A primitive object

Example 2: A simple prismatic Object

Example 3: A complex prismatic object

Examples for non-prismatic Object

8.5.1 Example 4: An Ortho-prismatic Object

8.5.2 Example 5: A more general 3D Object

DISCUSSION AND SUGGESTIONS FOR FUTURE WORK

Discussion

Suggestions for Future Work

9.2.1 Technical Deficiencies

9.2.2: Requirements for Commercial Software

Potential Benefits

‘APPENDICES

A. ELEMENTS OF GRAPH THEORY

A.1 Introduction

A.2 Definitions

B. CONVERSIONS BETWEEN GEOMETRIC MODELLING
REPRESENTATIONS

B.1 Introduction

Baz Boolean Evaluation

B.3 Some Conversion Algorithms

277

278

279

284

294

301

301

3tr

325

326

328

329

333

336

338

339

341

346

347

348

353

&. HOMOGENEOUS COORDINATES

c.1 Introduction

C.2 Two-dimensional Points and Lines

C.3 Three-dimensional Points, Lines and Planes

REFERENCES

355

356

307

359

363

Number

Fig. 161

Fig. 152

Plate 1

Plate 2

Pigs 2.51

Fig. 2.2

Fig. 223

Fig. 2.4

Fig... 2.5

Figs 2.6

ELge 2e7

Eigee2 29

Fig. 2.9

Figs 2.10

Figs, 201d

‘Fig. 2.12

Big. 2.23

List of illust ;

Page

19)

22

24

24

32

34

34

35

39

42

42

42

44

47

47

49

49

Title

The gap between the development in
2D and 3D CAD systems

Overall process

The ICL Perq 2 Minicomputer

The Apollo DN3000 Minicomputer

Principal planes of projection

First angle orthographic
projection system

Third angle orthographic
projection system

Three orthographic views
projection system

a) Object XY view
b) Data structure

Object view and topology

Checking for closed loops

a) A self-intersecting loop
b) Updating the topology

a) XY view of an object
b) Number and type of loop in

in the above XY view

a) A simple prismatic object
b) its orthographic views

a) A complex Prismatic Object
b) its orthographic views

a) A general 3D c*ject
b) its orthographic

projections

A case where the XY view of an
arbitrary object is similar to the
base view of a complex prismatic
object

Fig.

Fig.

Fig.

Fig.

Fig.

3.7

ane

Se)

3.10

Seid

Soke

Sits

3.14

3.15

3.16

3.17

3:15

Jet9

57

20

60

60

63

63

66

68

710

ee

1

73

74

74

TH

80

85

86

88

100

103

105

A simple wireframe model and its
data structure

a) A wireframe model and
b) three possible interpretations

Validity of a model
(the devil's fork)

Profile edges in a wireframe model
with curved surfaces

Parametric description of a curve

Parametric description of a
surface

Spatial Enumeration

The quadtree representation

Octtree representation

Linear octree encoding

Translation Sweep

Rotational Sweep

Circle or sphere sweep

General Sweep

Boundary representation of a
tetrahedron

Winged-edge representation

Constructive Solid Geometry
representation

a) Non-regularized Boolean
operation

b) Regularized Boolean operation

Constructive Solid Geometry
representation of a complex object

a) Matching 2D points and
b) corresponding 3D vertex

Types of entities and
relationships defining the data
structure

A uniform-thickness object

10

Fig. 4.4

Fig. 4.5

Fig. 4.6

Fig. 4.7

Fig. 4.8

Fig. 4.9

Fig. 4.20

Fig. 4.11

Fig. 4.12

Fig. 4.13

Fig. 4.14

Fig. 4.15

Fig. 4.16

Fig..5.2

Figs 5.2

Pig. 5.3.

Fig. 5.4

Big. 5.5

Figen 56

Pig. (5.7)

Fig. 5.8

Fig. 5.9

Fig. 5.10

110

1s

113

115

ab Le

stale

120

120

123

127

129

131

132

140

141

143

145

151

153

161

163

165

165

Flow chart of KAINING's algorithm

Ellipse mode

Higher order curve mode

Derivation of the radius

Two cases in deriving the radius

Derivation of cylinder axis

Cutting vertex/edge

Face loops

Incident faces

Menu of commands

Two operators CSG tree along a
single direction

Views of an input pyramid
primitive

A primitive cone and its three
principal views

3D primitives and their
orthographic projections

(signatures)

Object ‘cut out' from a 'Raw
Block'

Process main components

Terminology

a) Primitive cube definition
b) Primitive cylinder definition

PAFEC "BOXER" Output

Processing of an object loop to
generate a solid model

Boolean tree of a complex
prismatic object view

An ortho-prismatic object and its
orthographic projections

(a) Z-profile, (b) X-profile and
(c) Y-profile

ta

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

5.14

SekS)

5.16

One

6.7

167

169

170

172

7s

174

179

184

196

a99

201

207

‘210

213

Generation of a solid model

a) A general 3D object and,
b) its orthographic projections

a) Orthographic projections of lst
approximation model

b) Original input orthographic
projections

a) Orthographic projections of 2nd
approximation model

b) Original input orthographic
projections

a) Orthographic projections of
final output model

b) Original input orthographic
projections

Interpretation process flow chart
(a summary)

a) An arbitrary object view and
object loops

b) its corresponding topological
data

c) number and types of loops in
the view

The five 2D geometric shapes
identified as 'Basic Patterns'

Search for extreme coordinate
vaiues and topology update

a) An anticlockwise loop and its
surrounding rectangle

b) A clockwise loop and its
surrounding rectangle

a) An object loop and its
surrounding rectangle

b) the corresponding ‘control
list’

a) Decomposition of an object loop
b) Transfer and merging of data

files

a) An 'unstable' loop which can be
decomposed directly

b) The decomposition of an
‘unstable loop'

Arbitrary loop decomposition and
data storage

12

Fig. 6.9

Fig. 6.10

Fig. 6:11

Pig. 6.12

Fig.) 6.13

Fig. 6.14

Pigott

Fig. 7.2

Figs 8.4

Fig. 8.2

Fig.) 8.3

Fig. 8.4

Fig. 8.5

Fig. 8.6

Pig. (8.7

2S

221

229

236

237

2o0)

262

265

280

282

283

285

287

289

291

a) Decomposition of an object loop
b) its correct reconstruction
c) its incorrect reconstruction

a) Computation of 3D primitive
parameters from geometry of 2D
patterns

b) corresponding solid modelling
input file

Solid modeller output parametric
file

a) Input object
b) lst approximation model
c) 'Pseudo-wireframe'

a) A pseudo-wireframe, and
b) its orthographic projections

(pseudo-views)

a) Original input views,
b) orthographic views of first

approximation model, and
c) corresponding pseudo-views

Structure of "ADATA" file

Structure of “XYLP" file

a) Orthographic views of a
primitive object

b) topology
c) Number and type of loops

Computation of WEDGE primitive
parameters

a) Original input views
b) Orthographic views of output

model

a) Orthographic views of a simple
prismatic object

b) topological data
c) Number and type of loops

a) Object loop and surrounding
rectangle

b) the corresponding control list

Decomposition tree of an object
loop into basic patterns

3D primitives identification an
generation of a solid model

13

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

8.12

Sono

815

8.16

8.17

8.18

8.19

8.20

Seed

293)

295

296

297

299

300

302

303

305

306

309

310

312

313

SEO

316

318

a) Input orthographic views
b) Output orthographic views

a) Orthographic views of a complex
prismatic object

b) topology
c) Number and type of loops

Decomposition tree of object loops
in the xy view

3D primitives identification and
generation of solid model

a) Input orthographic views
b) Output orthographic views

a) Orthographic views of an
ortho-prismatic object

b) topology
c) Number and type of loops

a) Decomposition tree of PXY loop
b) Decomposition tree of PXZ loop
c) Decomposition tree of PYZ loop

3D primitives identification and
generation of: (a) Z-profile,
(b) Y-profile, and (c) X-profile

Generation of a solid model from
the intersection of the three
mutually perpendicular 'profiles'

a) Original input views
b) Orthographic views of output

model

a) Orthographic views of a
non-prismatic object

b) topology
c) Number and type of loops

a) Decomposition tree of PXY loop
b) Decomposition tree of PXZ loop
c) Decomposition tree of PYZ loop

3D primitives identification and
veneration of: (a) Z-profile,
(b) Y-profile, and (c) X-profile

a) Original input views and object
b) 1st approximation model and

corresponding orthographic
views

c) pseudo-views

14

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

8.22

8.23

8.24

A.3

A.4

A.5S

B.1

B.2

320

321

322

323

340

340

340

342

342

344

349

352

Subtracting an identified
cylindrical subobject from the lst
approximation model to generate
the 2nd approximation model

a) Original input views an object
b) 2nd approximation model and

corresponding orthographic
views

c) pseudo-views

Subtracting two identified
cuboidal subobjects from the 2nd
approximation model to generate
the exact object

a) Input orthographoc views
b) Output orthographic projections

An electrical network

Sectional view from an engineering
drawing

Graph equivalent to Figures A.1
and A.2

View of an engineering drawing

Occurrence of a single edge loop
on an engineering drawing

Definitions of Digraphs, Paths and
Circuits

Possible conversions between
representations after Requicha
and Voelcker (1983)

Boolean evaluation

15

INTRODUCTION

16

1.1) INTRODUCTION :

It was over twenty years ago that the application

of computers to problems in Mechanical Design and

Manufacture, also known as CAD/CAM (Computer-Aided Design

and Computer-Aided Manufacture), was first recognized

[1]. Since that time, much work has been done on the

development of computer based systems for the input of

product definitions into a computer database, and for the

use of mechanical design information in design analysis

and manufacture processes.

In the field of database entry, a substantial

amount of two-dimensional geometric product-data has been

transferred into computer stored files by

- manual digitization, and sophisticated techniques

such as video scanning, of existing engineering drawings,

- computer draughting that allows the designer to

interact with the a display via a tablet, or other device,

to directly produce and store new drawings of objects, in

the classic two-dimensional projections of the edges of a

three-dimensional object.

Computer based systems have also been extensively

used in the field of design analysis, manufacture and

assembly of objects. For example, Finite-element methods

may be used for the analysis of heat flow [2]; parts can

nize

be checked for interference [3,4]; numerically controlled

machine tool tapes can be generated to allow the

manufacture of a part [5]; the constraints between objects

and mechanisms can be simulated [6]; robot motions to

assemble parts may be generated [7,8] and many more

engineering applications such as Volume and Mass property

computations, Process-planning, and High-realism Displays

can be achieved. The software for these applications is

extensive and commercially available to the Engineering

Industry.

In the early stages of development of such

software there was a tendency for each application to

require the description of a part in a form that was

suitable for that application only. Fortunately, it soon

became clear that a solid geometric model was the uniquely

versatile form of description which could be exploited for

all the above applications.

Clearly, there is need for a bridge between

database entry and engineering applications. The gap that

needs to be bridged is illustrated in Figure 1.1; on the

one hand, much product definition was already stored as

two-dimensional information in the form of paper

engineering drawings or computer stored files, and on the

other hand, there is a wealth of valuable application

software that requires three-dimensional volumetric

information about the object to be stored as a solid

18

Paper Engineering
Drawings

 and video scanning draughting systems

' '

1 '

1 '

1 1

1 '
4 '
1 1

1 t

' t

1

: Manual digitization Two-dimensional |
1 '

' '

1 '

' 1

1 '

' ig

'

'
' t

(Three-dimensional geometric database)

:

 Application software:

- N. C. tape generation
+ Volume and Mass property

computations
- Hidden line removal and

high realism displays
- Process planning

Motion analysis

Three-dimensional
geometric modelling
systems

'

1
1
t

1

1

1

'
1

1

i

'
- Finite-element analysis 1

1

1

'
t

t

'
t

'

1
1

'

'

'

Fig. 1.1: The gap between the developments

in 2D and 3D CAD systems

19

geometric model. In attempts to bridge this gap, new

geometric modelling tools have been created to enable the

designer to generate interactively three-dimensional

models. However, these tools can only be used to generate

solid models for new products. Furthermore, they are far

from easy to use by creative designers who still prefer to

develop sketches into engineering drawings, but geometric

modelling systems which allow them to do that are not yet

commercially available.

It became obvious that in order to bridge this gap

and reap the benefits of engineering applications

software, it was necessary to develop means by which to

interpret the considerable wealth of existing

two-dimensional information as three-dimensional geometric

models. There are, of course, various ways in which this

may be done, but such activity is considered difficult,

expensive and unacceptably labour-intensive. For example,

in the case of numerically controlled machine tools, the

path of the cutter has to be entered interactively over a

drawing at a graphics terminal. Hence, there is a need for

interpretive software which can process orthographic views

of a product and automatically Generate a geometric solid

model.

Several research workers have recognized such need

and have attempted to develop algorithms to "reconstruct"

a 3D object from its orthographic projections. A number of

20

techniques have been developed but none has yet been

implemented commercially. By adopting a completely novel

approach, the author has sought to develop a number of

algorithms which automatically interpret a set of

orthographic projections as a solid model.

1.2) OBJECTIVES AND SCOPE OF THE PROJECT:

The aim of this work was to develop a number of

algorithms and, subsequently, a computer program to

interpret an engineering drawing as a solid object, in

formal geometric modelling terms. Technically, what is

required are algorithms to read a data file that

represents the orthographic projections of a mechanical

part, process the information, and output a file which

defines that object as a formal solid model, as shown in

Figure 1.2 .

In essence, the following activities were

involved:

- Study and selection of solid geometric

representation for the project.

- Review of existing interpretation techniques of

engineering drawings as solid objects.

- Development of algorithms and corresponding

software for the interpretation process, and

21

INPUT OUTPUT

Orthographic
views INTERPRETATION

PROCESS
ALGORITHMS

Object Model

2D 3D

Fig. 1.2: Overall process

22

implementation on the computer workstation.

- Monitoring of the quality of these transformations

by comparison of the input orthographic views with the

orthographic views generated directly from a solid

modeller, with the emphasis on the complete automation of

the process and generation of the complete solid model.

The input data files in which the two-dimensional

information is stored, were assumed to exist within a

computer system and to represent an assemblage of straight

lines and circular arcs.

1.3) TOOLS FOR THE PROJECT :

In the early stages of the project, the

environmental hardware consisted of an ICL Perq 2 graphic

workstation, illustrated in plate 1 . The computer has one

megabyte (Mb) of random access memory (RAM) with built in

8-inch Winchester-type hard disk with a formatted storage

capacity of up to 34 Mb and a 1/2 Mb single density

(8-inch) floppy disc. The display is a high resolution

(768 x 1024 pixels) monochrome portrait monitor. Two RS232

interfaces are alee available for serial input and output:

one of these ports was used as a link to a VAX 11/750

mainframe in which the solid modeller BOXER (PAFEC Ltd.)

was stored; the other port is used to link up a DPX 2000

plotter (Roland DG Ltd.) and an Epson EX-1000 printer

23

Plate 1: The ICL Perg 2 Minicomputer

Plate 2: The Apollo DN3000 Minicomputer

24

for hard copy generation. The PNX Operating System - a

32-bit implementation of UNIX - had been installed.

The software has subsequently been transferred and

developed further on an Apollo DN3000 workstation,

illustrated in plate 2. The Apollo computer has 2 Mb of

RAM and a built in 72 Mb Winchester disc (formatted

capacity) together with a 1.2 Mb (5.25-inch) floppy disc.

The display is a 15-inch bit-mapped, high resolution (1024

x 800 pixels) monitor. Links to the peripherals, such as

the DPX2000 plotter and the EX-1000 Epson printer, are

provided via an 8-serial port expansion unit. The AEGIS

Operating system is used and the complete software of a

subroutine version of the solid modeller (BOXER), provided

by PAFEC Ltd, has also been installed in the Apollo

workstation.

1.4) THESIS PLAN :

The ultimate aim of the work was the automatic

interpretation of a set of three orthographic projections

of an object stored in the form of two-dimensional

information, as a complete and unambiguous solid model.

The initial input to the procedures of the

interpretation process is data corresponding to this set

of orthographic views. Hence, the subject of chapter Two

25

is Orthographic Projections, where special reference is

made to the orthographic views of Prismatic objects, i.e.

those whose cross-section does not vary. with respect to an

"axial" direction. The data structure which has been

developed for fast storage and retrieval of the data for

the input views is also described, with the emphasis on

the problem area of interpreting this data into a complete

solid model. The latter is the output to the

interpretation process and hence, Geometric Modelling is

the subject of the next chapter. In chapter Three, the

main techniques of geometric modelling are discussed, with

special reference Solid Modelling, and in particular to

the technique known as Constructive Solid Geometry which

was chosen as the most appropriate for the purpose of the

project.

Chapter Four presents a literature survey on the

different approaches and techniques that have been

developed to interpret orthographic views as solid models.

The author's approach to the problem is discussed

in chapter Five which first presents the theoretical

foundations of the automatic interpretation process that

was develdped: An overview of the process, followed by a

detailed description of the different stages, is also

given.

Several algorithms have been designed and

26

developed to process the input data of the orthographic

projections of an object, and automatically output a file

which describes the object as a solid model. The

transformation process for prismatic and so-called

orthoprismatic objects, with the extension to the concept

of approximation models for sererel] three-dimensional

solids, is also described in this chapter. Some of these

algorithms have been designed to be used in conjunction

with a commercial solid modeller. The details of all the

algorithms are given in chapter Six.

Chapter Seven presents the details of C.I.E.D.S.M.

(Computer Interpretation of Engineering Drawings as Solid

Models) - the software developed for the interpretation

process. Its portability and interface with commercial

solid modellers are described. The process is intended to

be fully automatic, hence the user interaction with the

software has been limited to the input of the system and

a brief user guide is given for this purpose.

Examples illustrating the interpretation of

prismatic, orthoprismatic, and arbitrary objects, and

corresponding results from C.I.E.D.S.M., are given in

chapter Eight. In chapter Nine, the project is discussed

and some conclusions are dcawnt the areas where work

remains to be done are identified, and some potential

benefits are listed

27

ORTHOGRAPHIC PROJECTIONS

28

2.1) INTRODUCTION:

Data corresponding to an engineering drawing is

the primary input to the interpretation algorithms that

are discussed in later chapters. The various rules and

conventions associated with engineering drawings are first

briefly reviewed to provide a convenient reference for the

work which follows.

An engineering drawing conveys a considerable

amount of information about the design and manufacture of

engineering components. This information may comprise:

i) geometric and topological data in the form of a

number of orthographic and auxiliary views of the solid

object. These may comprise a number of points or nodes,

straight lines, circles, circular arcs and higher order

curves.

ii)text in the form of symbols and alphanumerics which

indicates dimensioning, tolerances, material, surface

finish and other data.

It was clear from the start of the project that

some consideration had to be given on whether, or not, to

use all the above data as input co the interpretation

algorithms. Textual information may have indeed been

useful, however, it has been rejected as being beyond the

scope of the work fot two main reasons:

29

- 1) The textual data are not of equal significance but

there is no readily available means to distinguish vital

information from mere comment.

2) Character recognition algorithms would have been

needed in order to extract and make use of such

information. Such software was not availakle for the

project and an attempt to develop such algorithms was

rejected because it would have been difficult and time

consuming.

The input data thus comprise geometric and

topological information only. Furthermore, orthographic

projections are the only views of the solid object that

are considered. These may comprise straight lines and

circular arcs, and are assumed to be stored in the

computer memory. A simple and efficient data structure,

discussed in section 2.3, has been developed to provide

fast storage and retrieval for the input erthodraonie

views.

A preliminary analysis of a number of data

structures corresponding to several sets of orthographic

views, has led to the classification of all objects into

two main classes: prismatic and non-prismatic objects.

These are discussed in section 2.4.

The nature of the problem in the interpretation of

orthographic views as solid objects is discussed in the

30

last section of this chapter.

2.2) PROJECTION CONVENTIONS:

A number of orthographic views are usually used to

represent a solid object on an engineering drawing, and

the identity between the solid body and the views can be

established only if certain rules are observed. The

following section describes some of the rules used to

generate these views.

In practice, orthographic projections of a solid

object are generated using systems of parallel projectors

from its boundaries onto a number of planes. The

projectors are normal to these planes. Often, only two

planes are required and they are known as the principal

planes of projection. One is horizontal and the other

vertical. Four quadrants or angles are produced by the

intersection of these planes, as shown in Figure 2.1. The

object to be drawn is placed in one of these

angles and the orthographic views of it are projected

onto the planes. The orthographic projections that are

widely used are produced using the First and Third Angles,

illustrated in Figures 2.2(a) and 2.3(a), respectively. In

both systems, the view on the vertical plane is called the

elevation and the view on the horizontal plane is called

the plan. To obtain these views as they appear in an

31

vertical plane

horizontal plane

first
K Zo angle

Fig. 2.1: Principal planes of projection

32

engineering drawing, as shown in Figures 2.2(b) and

2.3(b), the horizontal plane is rabatted about the

intersection of the planes or ground line. It can be seen

that the projectors cross the ground line, at right

angles.

An elevation and plan of an object are not always

sufficient to describe it completely. In such a case a

third view, called an end or side elevation, is drawn on

another vertical plane which is perpendicular to both

principal planes, as shown in Figure 2.4(a). The

equivalent views which would appear on an engineering

araviag are obtained by rabatting this vertical plane with

the horizontal plane, as shown in Figure 2.4(b). The plan,

elevation and end views are also commonly known as the

top, front and side views, respectively. It can be seen

that there are a number of relationships between a point

and its projections in the adjacent views. For instance,

the vertex v in the top view, and its projection v' in

the front view are located on a projector line normal

to the X-axis; the vertex v' in the front view, and its

projection v" in the side view are located on a horizontal

projector line perpendicular to the Z-axis. These

relations are independent of the system chosen.

Two or three views are usually adequate to

represent a simple object. For more complicated objects,

such as those which have complex inclined faces,

33

elevation

vertical plane

object in space

7
ground line

(a)

(b)

elevation) projector first
—y quadrant plan

horizontal plane

ground line
Tan

Fig. 2.2: First angle orthographic
projection system

(b) object in space

plan projector

 oe elevation

vertical plane

 I ground line
elevation

Fig. 2.3: Third angle orthographic
projection system

34

front end view

elevation

vertical
plane Be

(a)

ground line

A
horizontal plane 7

auxiliary

vertical
plan

front elevation ; end view

 \
ground line

(b)

Fig. 2.4: Three orthographic views
projection system

35

additional views may be necessary. These are drawn on

auxiliary planes inclined to the principal planes and are

called auxiliary views. The same principle of parallel

projectors, normal to the plane, are used. Cross-sectional

views are also commonly used to define the interior of an

object when required.

Apart from the projection system and number of

views, there are other conventions that are important to

this work. These are:

i) the drawing of additional lines referred to

thereafter as 'tangency edges'. These artificial lines

which are not normally drawn in engineering drawings, are

used to represent the edge where a curved surface is

tangent to a plane surface.

ii)the type of lines, or line-styles, used to draw the

views of the object. Some of the line-styles that have

been recommended by the British Standards Institution in

B.S. 308: Part 1: 1984, are as follow:

- continuous thick lines should be drawn for the

visible outlines of the object

- continuous thin lines must be used for projection

or extension lines, hatching or sectioning.

- hidden detail lines must be made up of short thin

dashes

36

- centre lines must be thin long chain lines

- thick long chain lines should be used for cutting

planes or section planes

- irregular boundaries and short break lines should

be drawn using thick continuous wavy lines.

As far as the work developed in this project is

concerned, the following conventions have been adopted:

- the first angle projection system

- three orthographic views are required

- the attribute which defines an edge as ‘'visible'

or 'hidden', is not required, hence, the type of lines

does not have to be specified. This has the advantage of

minimizing the amount of input data to the interpretation

algorithms.

2.3) DATA STRUCTURE:

At the lowest level, a single view of an

engineering drawing may be regarded as an assemblage of

unordered segments, or edges. For orthographic views

accepted as input for this project, these segments may

consist of straight lines or circular arcs. In the data

structure developed, each segment is stored and

represented by :

- its type, which determines whether the edge is a

37

straight line or circular arc,

- a pair of points or nodes representing the start

and end points of line (except for complete circles for

which the start and end nodes are the same point). Each

node, as well as each centre of arc or circle, is

specified by a pair of coordinate ‘ralues

Figure 2.5(a) shows the front, or XY view of a solid

object and Figure 2.5(b) shows a structure for the data

items defining that view. These data are referred to below

as the ‘initial data'. Table A in Figure 2.5(b) contains

the number, the type and the start and end nodes of all

the edges. The type is set to zero for a ptraiant line, or

to an integer signed according to the sense of rotation of

an arc: clockwise is positive; the integer value is used

as a pointer to specify in table C, the storage location

of the coordinates of the centre of the corresponding arc.

Table B contains the coordinates of all the nodes in that

view. For instance, edge number 1 is a clockwise arc which

starts at node number 2 and finishes at node number 4, and

the x and y coordinate values of its centre are 6.00 and

4.00, respectively; nodes 2 and ‘4 are located at (6.00,

3.00) and (5.00, 4.00), respectively.

The initial data are the oniy required input to

the interpretation algorithms. Furthermore, the user does

not need to specify nor enter edges in any prescribed

order.

38

(a) y ec =

2

e

3 5 C2

x

Table A: ‘Topology Table B: Nodal Coordinates

Edge Start End Type] Node X ¥.
Number Node Node

1 2 4 1 1 (9:0 2:0

2 7 1 0 2 GeO On aG:

3 3 8 0 Sr 1.0n0

‘ ak ee ey 480 40

Arc centre
5 4 6 0 5 8.0 1.0 | Coordinates

6 5 3 0 6.5.0) 9:0 Centre xX Y

60301.
a Sh 6 we 0 he Cle 6084.0

8 7 ome alceeO82-O8Co. Se olomerto

ee ea

Tables B & C _; Geometry (b)

Fig. 2.5: a) Object XY view
b) Data structure

39

At a higher level, a single view of an engineering

drawing may be regarded as a graph and is best described

using the terminology of Graph Theory. Some of the basic

concepts of Graph Theory are given in appendix A. A graph

is represented by the connections between its elements,

and in the case of a view of an engineering drawing, these

connections exist between edges and nodes.

Formally, a graph may consist of closed paths or

circuits, Multiple Edges, and/or Loops. In an engineering

drawing, the projections of three-dimensional surfaces are

closed contours which can be described as circuits,

Multiple Edges or Loops. A complete circle is the only way

that a loop which consists of a single edge, can occur in

an engineering drawing, since the start and end points

are the same node.

On this basis, the user's initial input is

converted into a number of circuits (or closed paths,

loops or contours). These contours are the basic elements

that are processed by the algorithms described below. In

order to guarantee that only closed paths will be

processed, it is necessary to check that the user did not

input nodes which belong to one edge only, except for

Loops. The case may also arise if taugency edges have not

been included in the input orthographic views. The check.

is simple and is carried out by counting the number of

times each node appears in the data structure. In Figure

40

2.6 where all the contours are identified as closed, each

node appears more than once in the data structure while in

Figure 2.7, each of node numbers 4 and 5, appears only

once indicating that there will be an open path which does

not bound an area in the corresponding view. In that case

the user is immediately informed that the orthographic

view can not be accepted as input, and is prompted to

enter the correct data. The initial data are also checked

for self-intersecting loops to ensure that all the nodes

are included in the input data. This is achieved by

examining all the intersections between edges in the view.

If a valid point of intersection is found but not entered

as a node then a node is generated automatically at that

point and the data updated by dividing the intersecting

segments into pairs of segments. Figure 2.8(a), shows a

view where a self-intersection exists between two loops.

The points of intersection are computed, numbered and

stored in the updated data structure, as shown in Figure

2.8(b), where edge numbered as 3 has been divided into

three new edges: 3, 9 and 10.

When examining a view of an engineering drawing,

it is possible to distinguish different types of

contours. Some may be isolated (or disjoint) from all the

other contours, and some may be connected to others. An

algorithm developed in this project and described in later

chapters, has been designed to determine which contour is

isolated and which is connected. Moreover, the same

41

1 2

Edge| Start Finish

Fig. 2.6: Object view and
topology

Edge | Start Finish

O
N
O
a

k
w
o
n

A
n
n
N
w
W
O
M
O
o
O
n
—

N
o
a
o
w
n
i

o
a
n

Fig. 2.7: Checking for
closed loops

2
3

4 7 1
5 3 4
6 2 3
7 4 5

oedoeo ee oe
19 9 10%
110-610 28s

(b)
Fig. 2.8: a) A self-intersecting loop

b) Updating the topology
42

algorithm is used to determine the boundary or perimeter

contour in any view. Figure 2.9(a), shows a view that

comprises both connected and disjoint closed contours,

where the positive sense of each edge is indicated by an

arrow pointing from the start node towards the end node;

an edge which is traversed in the opposite serse is

indicated by a negative integer. The type of each loop is

represented by an integer value which is set to zero to

indicate a ‘disjoint' attribute, or to 1 to indicate a

"connected' attribute. The number and type of contours in

the xy view shown in Figure 2.9(a) are shown in Figure

2.9(b), where loop L3 and L4 represent in effect the same

loop which is traversed in both directions. These contours

are represented and stored by specifying the number and

types of edges which define it. Direct access files are

used to store such data. The structure of these files is

described in chapter 7.

2.4) ORTHOGRAPHIC VIEWS OF PRISMATIC AND ARBITRARY

In a preliminary analysis of the input data, it

has been found that, among the vast range of mechanical

components manufactured in the engineering industry, there

exists a class of simple objects which can readily be

identified from their orthographic views. These solid

objects, known as prismatic objects, are those having a

43

13

@

ee
(a)

View Loop No Edge Nos : Type or ‘label’

Ll 6, -12, 1, 13, 3, -11, 8, 10,2 | connected or '1'

L2 | -2,-10, -5, -13, -1, 12, -6 connected or ‘l'

a L3 | -4,-7, 14, -9 disjoint or '0'

LA | 4,9,-14,7 disjoint or '0'

LS | 5,-8, 11, -3 connected or ‘1’

(b)

Fig. 2.9: a) XY view of an object
b) Number and type of loops

in the above XY view

44

fixed cross-section in at least one direction. Any other

object which does not belong to this class of objects is

hereafter referred to as an arbitrary or non-prismatic

object.

The class of prismatic objects may be divided

further into two distinct subclasses: simple and complex.

A complex prismatic has one or more holes drilled through

it, while a simple prismatic object has none.

The class of any object, as defined above, is

determined by the number of loops, as well as the type and

shape of each loop, contained in each view of the object.

Prismatic objects play an important role in the

interpretation process developed in this project. This

role is discussed in later chapters. Therefore, the

ability readily to identify a prismatic object from its

orthographic views is considered here as one of the

important milestones in this work.

2.4.1) QRTHOGRAPHIC VIEWS OF PRISMATIC OBJECTS:

A simple prismatic object is shown in Figure

2.10(a). It can be seen from the orthographic projections,

Figure 2.10(b), of such object that there will always be

at least one view consisting of a single closed loop only.

45

This loop represents the boundary or perimeter loop in

that view. Such a view is defined here as the base view.

Furthermore, the remaining views may consist of one or

more connected rectangular loops whose nodes also belong

to the perimeter loop.

The simple prismatic object shown in Figure

2.10(a), may be transformed into a complex one (having a

multiply-connected cross-section) by drilling holes

through it, as shown in Figure 2.11(a). In this case, the

base view consists of two or more closed disjoint loops.

Again, the two views adjacent to the base view comprise a

number of connected rectangular loops whose nodes also

belong to the perimeter loop, as shown in Figure 2.11(b).

2.4.2) ORTHOGRAPHIC VIEWS OF ARBITRARY OBJECTS:

In the case of arbitrary or non-prismatic objects,

the orthographic projections may comprise any number, type

and shape of loops. Those features which identify a

prismatic object are not found in the views. Figure

2.12(a), shows’ an arbitrary solid object. In the three

orthographic projections of this rather simple object

there is at least one view, in this case the xy view, that

has a single closed loop, as shown in Figure 2.12(b). This

may be regarded as a 'base' view; this is one feature

found in the views of prismatic objects. However, the

46

(a)

Fig. 2.10:

 (t
a) A simple prismatic object

b) its orthographic views

y y
A L

ay: te

—> xX 2

v {
Zz t (b)

t

 (a)

Fig. 2.

11: a)
b)

(b)

A complex prismatic object
its orthographic views

47

object will not be defined as a prismatic object because

the views adjacent to the 'base' comprise loops that are

not rectangular.

Another example is illustrated in Figure 2.13(a).

in this case, a view consisting of two closed disjoint

loops exists amongst the set of orthographic views in

Figure 2.13(b), and may be considered as the 'base' view

of a prismatic object; however, because the loops

contained in the remaining views do not share their nodes

with the perimeter loops in the corresponding views, the

object is identified as non-prismatic.

2.5) INTERPRETING PROJECTIONS AS SOLID OBJECTS:

The process of generating orthographic views is

rather straightforward (see section 2.2), and has been

implemented on computers for a relatively long time.

However, the generation of solid models from orthographic

views by machines has not yet been achieved because of the

complex nature of the process involved. To appreciate the

complexity of such a problem it is necessary to understand

the process by which a human interprets three views as a

solid object.

The engineering drawing has been a successful form

of communication only because of the intelligent

48

(a)

Fig. 2212: (a)

 Fi et8

(b)

A general 3D object
(b) its orthographic projections

tase

: DX iacl
A tle
Le Xx Zz

—e X

v 7

Zz it
it

Fig. 2.13: The XY view of this arbitrary
object is similar to the base
view of a complex prismatic
object.

49

interpretation which is applied to it. The drawing can

only communicate a precise description of a component when

both the draughtsman and the user are well-versed with the

implicit information it conveys, such as the conventions

and mechanisms by which the two-dimensional structural

elements have been generated. The draughtsman knows that

the inferences he makes will only be correctly understood

by a user who has a knowledge of this implicit

information.

Furthermore, apart from using his knowledge and

experience, a human also has the ability to process a

large number of two-dimensional entities from the

two-dimensional views, such as faces, edges and vertices,

simultaneously and qualitatively. Partial solids are

generated from the corresporiding parts of three views, and

if they agree with his experience and knowledge, they are

composed to form a complete solid object; a

inconsistencies are discovered, then there is a return to

the three views and a generation a different solid.

Therefore, the process has certain characteristics which

can be described as follows:

a) More empirical than logical, since it is based on

past experience rather than deduction,

b) entities are grasped qualitatively,

c) the processes proceed in parallel,

d) the feed back is continuous.

50

In contrast, available mini-computers and,

probably, those on which any commercial software would be

mounted, operate sequentially. Therefore, it is not

feasible to construct a system which generates a solid

model from three views by emulating human thought-process.

Suci a system would therefore require the processing of

automatic three-dimensional interpretation not only to be

formulated in a logical (serial) manner, but also to

involve some degree of expertise to represent the

knowledge that both draughtsman and user have gained.

Technically, the problems of automatically

interpreting orthographic views as a solid object are

translated as a loss of semantics occurring when the

object is represented with a two-dimensional description.

For instance, one line in any view can represent more than

one edge; moreover, some lines do not represent true edges

such as silouhette lines which are used to represent

curved surfaces. For this reason, the straightforward

approach of matching each line to the lines of the other

views to construct a set of edges and faces, may lead to

the generation of nonexistent or ghost faces, and hence

impossible objects. Orthographic views are described using

a ‘wireframe' representation, and for this reason it may

be possible for a set of three orthographic views ce have

several solutions, i.e. to represent the two-dimensional

description of several objects.

51

In order to avoid these problems, it is necessary

to select a three-dimensional output data structure that

guarantees the representation of a valid and unambiguous

object model. Furthermore, it is desired that this data

structure must explicitly describe the output model in

terms of a solid volumetric represertation 2s required for

design analysis and manufacture processes. The main

three-dimensional representation techniques are described

in the following chapter, with special reference to the

one selected for the project.

52

GEOMETRIC MODELLING

53

3.1) INTRODUCTION :

A central activity in the Computer-Aided Design

(CAD) process is the evolution of a comprehensive

representation, or geometric model (also called product

model) of a designed object. The designer gives concrete

form to his ideas by building a model in dialogue with a

computer. The model is then developed and optimized by

design analysis: a set of calculations and simulations to

predict the properties and behaviour of the object. The

model may also be used for the preparation of

manufacturing processes. Therefore, the role of modelling

in CAD can be summarized as a foundation of the design

cycle of synthesis, representation, analysis and

optimization.

By definition, geometric modelling is the

computer-aided input, representation, interrogation and

display of the shape of three-dimensional (3D) objects. It

is a collection of methods used to create data structures

and algorithms for representation and calculation of data

on the shape of 3D objects. Formally, the representations

are mainly defined in terms of Geometry (point

coordinates, curve and surface equations,...), and

Topology (connections between points, edges ana faces).

In the field of geometric modelling

representations, several authors distinguish two main

54

subareas: surface modelling and solid modelling. However,

it is recognized here that wireframe modelling also

deserves to be mentioned, since it is widely used by

several geometric modelling systems, and it also has a

very important historical value. For this reason, it is

presented first in the following sections, as an

introduction to the subject of geometric modelling

representations. Excellent surveys and reviews on the

fundamentals of geometric modelling representations and

their potential can be found in the literature [9,10].

3.2) WIREFRAME MODELLING :

Wireframe modelling was first used in the early

two-dimensional (2D) drafting systems to represent simple

2D designs such as for circuit diagrams and printed

circuit board (PCB) layouts. The wireframe model consisted

of lists of points and lines in 2D space.

In recent mechanical engineering drafting systems,

objects may be displayed in one or more orthogonal views.

These views, as 2D wireframe models, are independent of

‘each other, and thus can be incompatible, in which case

there is no true representation of a 3D object.

Compatibility of views has been guaranteed with

the introduction of 3D wireframe models which allow

55

several views to be derived from a single representation.

A 3D wireframe model still has the same data structure but

in 3D space; it consists of a set of vertices and a set of

edges which indicate the interconnection between vertices.

Each vertex is specified by its position in space in terms

of (x, y, z) coordinates, and each edge is defired in

terms of its two end vertices. This data structure is very

simple and can be represented by two arrays: a 3-column

geometry array of real numbers to store the coordinates of

all the vertices, and a 2-column topology array of

integers for edge definitions. Figure 3.1 shows a 3D

wireframe model and the associated data structure.

This modelling technique owes its well-established

use in several commercial CAD systems to the simplicity

and efficiency of data storage. The main advantages can be

illustrated as follows:

- geometric entities (vertices and edges) can be

retrieved and updated quickly

- model creation and display are fast

- computer requirements, such as storage capacity,

are low.

However, the representation has severe limitations

which are mainly due to the lack of geometric completeness

and loss of surface and volume information. These are as

follows:

56

Segment No. Start node End rode

1 1 2
2 4 5
3 9 10
4 i 12
5 1 7
6 c 12
v 5 9
8 4 10
9 6 8
10 3 at
1 1 5
12 2 4
13 ue 9
14 10 12

Fig. 3.1: A simple wireframe model

and its data structure

57

- there can be ambiguity and loss of definition as

illustrated in Figure 3.2, which shows a wireframe model

and three possible interpretations

- input of a large amount of low-level data is

required to define even simple objects

- the visualization of a complex wireframe model may

be impaired and may lead to confusion

- impossible (invalid) objects, as illustrated in

Figure 3.3, may be generated

- mass and volume property computations cannot be

carried out

- sectioning and hidden line removal cannot be

generated automatically

- in the case of objects with curved surfaces,

silouhette lines (profile edges) cannot be adequately

represented, as illustrated in Figure 3.4.

3.3) SURFACE MODELLING :

Surface modelling overcomes some of the above

problems of wireframe modelling since it provides more

information describing the surface of an object. It is

concerned with mathematical methods for description of all

kind of surfaces. These may be simpse flat plane models

created between pairs of parallel straight lines or may be

much more complex surfaces, often referred to as free-form

or sculptured surfaces. It also deals with operations on

58

Fig. 3.2: a) A wirefra~]? model and
b) three possible interpretations

59

Fig. 3.3: Validity of a model

(the devil's fork)

Fig. 3.4: Profile edges in a wireframe

model with curved surfuces

60

these surfaces, such as intersections and modifications.

Surface modelling was first introduced to replace

lofting techniques used in design of bodies such as ship's

hulls, turbine blades, aircraft and car panelee This

modeliiny technique has since been developed to the extent

that the theoretical background has become a new field of

study known as computational geometry [11], that uses

methods from matrix and vector algebra, differential

geometry and approximation theory.

One of the earliest techniques of surface

modelling was developed by Fergusson [12], and was known

as the Fergusson Patch. Mathematical definitions of curves

and surfaces were made possible by using parametric rather

than Cartesian co-ordinates, and transformations could

easily be carried out using matrix algebra.

Basically, three-dimensional surfaces may be

formulated by interpolation or approximation of two or

More parametric space curves; a parametric representation

of a curve is given by:

© = R(u)

where xr is the position vector (x y z) of a point on a

curve described by the vector function:

61

R(u) = [X(u) ¥(u) 2(u)]

A segment on the curve is then described on some

closed interval a < u <b, and is usually defined in terms

of data at a number of points; Figure 3.5 shows a

parametric curve segment described on the interval:

t,; S ust,

For surfaces, two parameters are required:

xr = R(u,v)

R(u,v) = [X(u,v) YX(u,v) z(u,v)]

where parameters u and v, may take on values ina

specified range, usually 0 to 1. Figure 3.6 illustrates

the parametric description of a three-dimensional surface.

Several schemes of interpolation or approximation

have been used in the design of complex surfaces, most of

which were based on cubic and rational polynomial segments

[13,14,15], and others involve higher degree polynomials.

The major advantage of surface modelling is the

ease with wiich complex surfaces may be generated. This

technique also allows fast local, and global,

modifications to be carried out and needs only a small

amount of data storage. There are however, some

disadvantages:

62

Zz

Fig. 3.5: Parametric description of
a curve

Fig. 3.6: Parametric description of
a surface

63

- the generation of unambiguous models is not

ensured because of possible lack of connectivity between

surfaces

- calculation of intersections between sculptured

surfaces is complex

- mass property calculations are limited to single

surfaces

- interference between surfaces is not guaranteed

and relies on user detection.

3.4) SOLID MODELLING :

Solid modelling deals with data structures for

informationally complete and unambiguous description of

solid objects, and algorithms operating on these data

structures. This modelling technique has been developed to

overcome the limitations mentioned above. Solid modelling

has geometric completeness, thus it allows the automation

of several engineering applications. The technique was

pioneered in Britain, by Braid [16,17,18]. Extensive

developments followed and several solid geometry modelling

representations have been developed. In this section, the

four main techniques are discussed: Cellular

Decomposition, Sweeping, Boundary representation and

Constructive Solid Geometry [19,20].

64

3.4.1) CELLULAR DECOMPOSITION :

In this scheme objects are represented by a

collection of disjoint cells. There are several variants

of cellular decomposition. The simplest variant is known

as Spatial Enumeraciva, illustrated in Figure 3.7 . In

this, space is divided into a large number of

equally-sized cubes, or voxels, that are positioned in a

fixed and regular three-dimensional grid. The object is

represented by the voxels in which it resides. Each cube

is marked or ‘enumerated' as ‘inside' or (1) if it lies

inside the object, and as ‘outside’ or (2) if it is

outside the object. For voxels that are partly inside and

partly outside the object, a decision is made on the basis

of whether the centre of the cube is inside the object.

The data structure of spatial enumeration is very

simple. It consist of a three-dimensional Boolean array,

where each voxel is represented by one element which

indicates whether it is inside or outside the object.

It is clear that this scheme is well adapted to

applications such as the computation of mass and volume

properties of the object it represents. The other

advantage of spatial enumeration lies in its simplicity.

However, most objects, notably those with curved surfaces,

can only be approximated at the boundaries, resulting in

an inaccurate and jagged representation. To provide any

65

 3.7: Spatial Enumeration Fig.

66

reasonable geometric resolution and close approximation,

it is necessary to use very small voxels which requires an

excessive amount of memory; for instance, a grid of 103 by

103 by 103 voxels would require more than 100 Megabytes of

memory!

A more recent development amongst spatial

enumeration schemes [21] attempts to reduce the amount of

memory required by only using small cubes where fine

resolution is needed, such as the boundary. A coarse grid

of cubes is used everywhere else. In this method, known as

octtree, the model space is first divided into large

cubes, and these may be marked as completely inside the

object (full), or completely outside the object (empty),

or partially inside and partially outside the object

(partially occupied). Partially occupied cubes are then

subdivided into eight smaller cubes of equal size and

these again are marked, which can lead to further

subdivisions. This process of subdivision continues

recursively for partially occupied cubes until either the

object is represented exactly, or until a predefined

minimum size of the cubes is reached. This technique is

similar to the quadtree representation in two-dimensional

space which is illustrated in Figure 3.8 .

The data structure of an octtree representation is

a tree where each node is a record of the state (inside,

spqutside or partially inside and partially outside) of the

‘

- 67

= Ete) oO Oc

] oe | 5

KAA AR

= 14

mBeodo omoaogsgaogeogmgewmoeodmaanea

BoA) TAS tz 24 25 26 27 15 16 17 18 19 20 21 22 28 29 30 31

Fig. 3.8: The quadtree representation

68

cube residing at that node. That record also holds

pointers to the eight cubes into which the cube is

subdivided. This structure is illustrated in Figure 3.9,

where the cube, enumerated as 0, has been subdivided into

eight more cubes and the cube 4 is marked as outside of

the object. Figure 3.10 shows an alternative data

structure, known as linear octtree [22]. In this method,

only the information about the cubes that are inside the

object is stored. An octal code is used for all these

cubes - the octal code is a sequence of numbers between 0

and 7 - and the length of the code depends on the size of

the cube: for every further subdivision, an extra number

is taken. The number depends on the cube concerned. The

complete linear octtree data structure is also condensed

to save memory space.

Although the data structure of the octtree

representation is somewhat more complicated, the

advantages are similar to those of spatial enumeration.

The disadvantages are also the same except that the

octtree takes less memory than the tree data structure of

spatial enumeration.

Other variants of cellular decomposition with

cells of different shapes are also used, in particular for

application such as finite-element analysis.

69

SO> Si
OQcMl 1 MicMi:C):MsMicm”

Oo) M2 M@is:C1+C5 Ms m7

Fig. 3.9: Octtree representation

70

51

14 15

01 10 j il 17

12 | 13 35

v
Li ding :

{01, 10, 11, 12 , 13, 14, 15, 16, 17, 35, 51}

After condensation: {01, 1X, 35, 51}

Fig. 3.10: Linear octtree encoding

71

3.4.2) SWEEPING :

In sweeping, an object is defined by a

two-dimensional contour curve that is moved along a

three-dimensional trajectory curve. The cross-section of

the object is defined by the contour and the spine of the

object is defined by the trajectory. Four different types

of sweep objects can be distinguished, depending on the

contour and trajectory definitions :

- translational sweep: the contour is arbitrary but

the trajectory is a straight line [23]. Prismatic objects

are easily defined by translational sweep, as shown in

Figure 3.11

- rotational sweep: the arbitrary contour is rotated

about an axis, i.e. the trajectory is a circle, as shown

in figure 3.12. All axisymmetric objects may be defined

using rotational sweep

- circle or sphere sweep: the contour is a circle

(or a sphere [24]) and the trajectory is arbitrary, as

shown in Figure 3.13.

- general sweep: both the contour and the trajectory

are arbitrary [25], as shown in figure 3.14 .

Simple curves (straight lines, arcs of circles,

and other quadrics) as well as general curves, such as

parametric curves (Bezier and B-splines) may be used in a

continuous sequence to define arbitrary contours and

trajectories.

v2

 *
cd 4 vy ©

WN

73

Fig. 3.13: Circle or sphere sweep

Fig. 3.14: General sweep

74

A recent development in sweeping allows tapered

and twisted sweep objects to be produced [26]. This is

achieved by allowing the size and the orientation of

contour to vary as it is moved along the trajectory. The

data structure stores scaling and rotation factors at a

number of points along the trajectory.

One of the advantages of sweeping is that the

representation is compact and does not require large

amounts of storage. It is also suitable for input of

models since it is relatively simple to specify a contour

and a trajectory. The main disadvantage of sweeping is the

restriction of the shape domain it may represent; only

certain classes of object can be modelled with sweeping.

For example, only objects with rotational symmetry can be

modelled with rotational sweeping.

3.4.3) BOUNDARY REPRESENTATION :

In this representation, a solid object is defined

in terms of its boundary elements, and these are specified

in terms of a finite number of bounded faces. Several

kinds of regular surfaces can be used as the basic face

elements for describing the object. These include planar

surfaces (polygons) and parametrically described surfaces,

such as cylindrical, conical and spherical surfaces.

75

One B-rep data structure comprises a set of

surfaces where each surface is represented by a set of

directed edges that bound it, and each edge is represented

by two vertices. These are held in a graph structure,

known as the face-edge-vertex graph, which indicates the

way in which they are connected. The topology information,

i.e. the relationship between faces, edges and vertices

is specified by means of pointers which are ih fact

addresses of records in the data structure. For instance,

in Figure 3.15, face Fl is bounded by edges El, E2, and

E3, and in the record of F2 there are therefore pointers

to records El, E2, and E3. Each entity in the

face-edge-vertex graph has pointers back to the entities

that own it, and to other related entities within the

structure.

The face-edge-vertex graph is manipulated using

the so-called Euler-Poincarre rule:

V-E + Fi-H=2 * (M=—'G.)

where:

V = Number of vertices

E= i. "edges

= iy! S) faces

H= x "hole loops

M= ‘ "separate pieces of solid

G = Genus of object

76

V4
F4

F2
E5

E6 F3

V3

V1

E1 E3

FA v2

Tetrahedron

Fi F2 F3 F4

E1 E2 E3 E4 ES E6

Vi v2 V3 V4

Fig. 3.15: Boundary representation
of a tetrahedron

tl

The hole loops are the internal boundaries at

which several faces are joined together as well as to the

perimeter boundary. The genus of an object is the number

of holes it has; For example, a block has a genus of zero,

and a torus has a genus of one.

Geometric information is also specified using

pointers to appropriate geometric elements which serve to

fix the object in space and define its geometry, as

follows :

Face ---> Surface (coefficient of equation)

Edge ---> Curve (coefficient of equation)

Vertex ---> Point (coordinate triple x,y,z)

The geometry is therefore defined in terms of

surface and curve equations to define faces and edges, and

in terms of coordinate triples to define vertices, in

space. For instance, the information about the equation of

a planar surface:

ax + by +/cz + d= 0

are the coefficients a, b, c and d. Quadric analytical

surfaces can also be represented by the coefficients of

their equations.

Most objects can be represented exactly with

78

boundary representations using planar and quadric

surfaces. However, in many boundary representation

systems, curved surfaces are usually approximated by a

mesh of polygons, in order to simplify the data structure

and to make operations on the representation much faster.

The disadvantage of using polygons or planar surfaces

only, is that it may not provide adequate approximation of

the object and uses a large amount of memory. In the

boundary representation where only planar surfaces are

allowed, the geometric information may be restricted to

the coordinates of vertices, and the face and edge

equations are derived from this information whenever it is

necessary. The amount of topological information that is

stored differs from one variant of boundary representation

to another. For instance, it is not possible to determine

the two faces which intersect at a particular edge; for

this, in some boundary modelling systems, pointers from

every edge to the faces intersecting at that edge are also

stored.

In the winged-edge data structure (271;

illustrated in Figure 3.16, every edge is assigned a

direction, and from each edge there are pointers to:

- the two faces intersecting at that edge; these are

called Fleft and Fright, as seen from the outside of the

object

- the next edge in the sequence of edges bounding

79

E
left, next right, next

Fon tight

1
1
!
1
1
1
t
!
'
1
1
!
!
t
1
t
1
1
1
'
1
1
1
1
'
1
!
1 E

Eight, prev left, prev

Fig. 3.16: Winged-edge representation

80

Fleft in clockwise order

- the next edge in the sequence of edges bounding

Fleft in counterclockwise order

- the next edge in the sequence of edges bounding

Fright in clockwise order

- the next edge in the sequence of edges bounding

Fright in counterclockwise order

- the two vertices bounding the edge.

The boundary representation may be extended to

cover a much larger domain, such as objects bounded by

free-form surfaces [28].

The advantages of boundary representation are:

- the information about faces, edges and vertices,

is explicitly present in the data structure, which allows

applications such as fast display of the model to be

achieved. It is well adapted for straight forward

interrogating programs

- models can be generated step by step and local

shape modifications are relatively easy to perform.

The disadvantages are:

- the data structure takes up a large amount of

storage because of the amount of explicit information it

contains. Most of this data is redundant

81

- the data structure is also complex, which may lead

to the generation of invalid models of objects

- input to create models is difficult and tedious.

This can be eliminated only by a sophisticated and

well-designed user interface.

- inside/outsice tests are more time-consuming

3.4.4) CONSTRUCTIVE SOLID GEOMETRY:

With constructive solid geometry, commonly

abbreviated to CSG, a complex object may be synthetized

from a finite number of much simpler shapes or primitives,

like cubes and cylinders. These can be positioned in

three-dimensional space by means of transformations, and

then be combined to produce more complex objects using the

Set (Boolean) operations of union, intersection and

difference.

The primitives can be defined in a manner similar

to that used in boundary representation (discussed in

section 3.4.3) or can be specified in terms of low level

entities called half-spaces. A half-space is generated by

an infinite surface that divides the three-dimensional

space into two parts, and may be defined, for example, by

an inequality such as: x20

Simple objects can be represented as the

82

intersection of a number of half-spaces. For instance, a

unit cube may thus be represented as the intersection of

the following half-spaces:

x21, mS 1, ye-1, y Ss 17, z2 2-1 and z s72

and the half-space:

ey + cfd

is itself the unit sphere.

The user does not have to specify the half-spaces,

but has at his disposal a number of simple primitive

objects predefined with half spaces. This guarantees that

no unbounded model can inadvertently be built. The

primitives such as cubes and cylinders are common to most

CSG modellers; the pyramid, cone, wedge, torus and sphere

are useful for mechanical engineering components and are

also available. Each primitive faces number of parameters

that have to be specified. For example, for a block the

parameters are the length, width and the height, and for a

sphere, the radius.

The data structure for a constructive solid

geometry representation of a solid model, consists of a

binary tree, also called the CSG tree. At a leaf node of

the tree there is information about a primitive: its

83

type, the values of its parameters, and the

transformations applied to it. At an internal node, there

is the type of the Boolean operator (union, intersection

or difference) to be applied to the objects defined by

the left and right branches of that node, and pointers to

these branches. Figure 3.17 shows a CSG tree, where (U*)

stands for union, and (-*) stands for difference. The

union of two objects A and B, (A U* B), is the object

which consists of the points that lie within either A or

B. The intersection of A and B, (A M* B), is the object

which consists of the points that lie within both A and B.

The difference of A and B, (A -* B), is the object which

consists of all the points that belong to A and not to B.

It is important to note that the ‘difference' Boolean

operator is not commutative; thus the object obtained by

the Boolean operation B -* A is not the same as the object

obtained by the difference A -* B.

In Figure 3.17, the operators are starred to

indicate the difference between these operators and those

used in classical Set Theory. The straightforward

application of set theoric Boolean operators to the set of

points defined by a three-dimensional solid may lead to

anomalous results, such as 'dangling-edges', as shown in

Figure 3.18(a). In order to avoid such problems, Boolean

operators are refined in such a way that they operate on

and produce "regular sets" [29], as shown in Figure

3.18 (b).

84

a
x

(a
Fig. 3.17: Constructive Solig Geometry

representativuu

85

Dangling edge

SS

©
aoe

(a)

(b)

Fig. 3.18: a) Non-regularised Boolean operation
b) Regularised Boolean operation

86

A number of transformations are available to move

a primitive to the correct position and orientation in

space:

- translation to move it in the xX, Y or Z direction

- rotation to rotate it through an angle about the

xX, XY Or 2 axis

- scaling to change its size with a factor in the xX,

Y or Z direction

- skewing or shearing to change the angles between

the X, Y and Z axis.

Constructive solid geometry representation is used

in several commercial solid modelling systems, because it

is compact, uses relatively little storage in comparison

to cell decomposition or boundary representation, and all

the objects that can be modelled are guaranteed to be

valid. Another important advantage is the ease with which

models can be built; very complex objects, in particular

the majority of common mechanical parts, can readily be

modelled, by using a restricted number of primitives, as

illustrated in Figure 3.19. Moreover, conceptually, the

CSG method has several similarities to engineering

practice for designing and manufacturing mechanical

components. For example, the ‘'difference' operation

resembles cutting and the ‘union' operation resembles

bonding.

87

difference =F]

"

& se tae

Ss] J [eS
cylinder block cylinder block

Fig. 3.19: Constructive Solid Geometry representation

of a complex object

88

The disadvantage is that there no explicit

information about the edges and vertices of the object in

the data structure, as in boundary representation.

35) SELECTION OF GEOMETRIC MODELLING REPRESENTATION

EQR THE PROJECT:

Several geometric modelling schemes have now been

examined, all of which have their specific advantages and

disadvantages. For instance, with constructive solid

geometry, model input of mechanical parts is easy, but it

is not the most suitable representation for making line

drawings. On the other hand, a boundary representation is

very suitable for making such drawings, but it in turn

requires a large amount of memory. In general, the

selection of a geometric modelling scheme depends on the

applications: domain, input, applications and storage.

The work developed in the project is mainly

concerned with the domain of mechanical engineering parts.

This class of objects requires the provision for a

complete volumetric information, to enable engineering

applications, such as those described in section 1.1, to

be performed. Clearly, these objects are best described

using solid, earner than wireframe or surface modelling

representation schemes.

89

The selection was initially narrowed down to

choosing one of the solid modelling representations. The

primary criteria used in the selection of one of the solid

representations schemes was model input. The

interpretation process developed in the project, requires

the use of a sclidc mcdeller, (section 5.3.4). The input to

the modeller is generated by a number of subroutines which

have been developed in this work. Therefore, the amount of

input data must be small to allow fast transfer to the

solid modeller. Cellular decomposition was rejected on

this criterion, since it requires that all the cells in

the three-dimensional grid to be indicated and stored. The

same applies to variants like octtrees. Moreover, these

representations can only give an approximate description

of the object. Boundary representation is also not

suitable for model input since the validity of the input

model is not guaranteed which may result in generating

nonsense objects. This representation also requires a

large amount of storage. Sweeping, especially translation

and rotation sweeping, is very suitable for model input,

since it requires only a small amount of data to specify

an object. However, it has a limited domain of

application, even in its generalized form.

Constructive solid geometry was adupted for this

project because it is suitable for describing most

mechanical engineering parts, and for model input. The

PADL-1 development team at Rochester University [30],

90

found that about forty percent of mechanical engineering

components could be represented in terms of just two

primitives: rectangular blocks and circular cylinders -

subject to the restriction that block edges and cylinder

axes were aligned with the coordinate axes. The addition

of further primitive types (cones, spheres and tori),

together with the removal of any restriction on the

orientation of the primitives, allows modelling of more

than ninety percent of mechanical parts. Model input in

constructive solid geometry, prevents the generation of

invalid objects and only a small amount of data is

required to specify complex objects. Constructive solid

representation has however, one drawback; it is not

Suitable for making line drawings. This problem has been

solved by converting one modelling representation into

another (appendix B), and many commercially available

modellers provide such conversions. Input and storage may

be effected by a constructive solid geometry

representation, and if line drawings are required, the

representation is then converted into a boundary

representation.

91

REVIEW OF EXISTING TECHNIQUES

92

4.1) INTRODUCTION:

Attempts to tackle the problem of reconstructing a

solid object from its orthographic projections is not

completely new, and some useful work in this area has been

reported in the literature. A numbez cf different

approaches have been adopted with some early methods

utilizing both hardware and software techniques. Such an

approach was adopted by Sutherland in his work on

three-dimensional input [31] which was focused on hardware

and software for digitizing. He introduced a tablet with

multiple pens so that a 3D vertex could be generated by

digitizing vertices in two views. He also discussed how to

treat digitized data from perspective views. Thornton's

work [32] was also based on the same approach, and was

concerned with interactive techniques for three

dimensional input from two-dimensional views. However,

neither Sutherland nor Thornton investigated algorithms

for constructing solid models from projections.

The first algorithmic effort to construct solid

models from their orthographic projections was initiated

by Idesawa [33,34]. His method which focused on the domain

of polyhedral objects, was largely based on labelling

corresponding information in different views. The

algorithms employed edge "tracing" techniques which mainly

consist of tracing around labelled edges (lines) of

engineering drawings and extracting thé projected surfaces

93

(which were closed. loops of edge lines) in order to

determine possible planes for those features. These

algorithms also required the elimination of false elements

such as "ghost" faces generated during the process of

assembling projected faces.

Idesawa's method, briefly reviewed in section 4.2,

was regarded as the basic method. His approach has been

adopted by several other researchers in this field, mainly

to improve the method and to extend the domain to

non-polyhedral objects. For instance, Lafue [35], in his

work on the recognition of three dimensional objects from

orthographic views, added a procedure for removing false

elements and finding true elements. His method had two

drawbacks. First, it cannot remove all the possible false

elements and can remove some true elements in multiple

solution cases. Second, it constrained the user to a

predetermined format when describing features such as

faces; for example, two-dimensional lines are required to

be input in such a way that a sequence of lines bounds a

face. Preiss [36] attempted to free the user from as many

constraints as possible. However, the relaxation of

constraints has led to the possibility of multiple

solutions, including "impossible" objects, to a given

problem. The recent introduction of a heuristic approach

to find the probable solution [37] has been applied to

plane-faced bodies.

94

A completely different approach was adopted by

Aldefeld [38], where mechanical parts were regarded as

assemblages of separate prismatic objects, each object was

required to have a base parallel to one of the coordinate

planes. This method which utilized model recognition

tcchnigues, is reviewed in section 4.3 because of the new

concept it introduced.

The work described in references [33-38] was not

based on formal geometrical and topological definitions,

and led in all cases to wireframe representations of the

objects. This mode of representation has a serious

limitation in that it does not provide the volumetric

information required for manufacture, assembly and design

analysis purposes.

Wesley and Markowsky used algebraic topology

concepts and rigorous definitions of geometric entities to

allow a volumetric description to be obtained in terms of

solid material, empty space and topology of surfaces and

edges for objects described in terms of their wireframe

[39]. They used the same approach to obtain objects

described in terms of their projections [40]. However, the

algorithms were still restricted to objects having

straight line edges and planar surfaces. This concept was

developed further by Sakurai and Gossard [41] to extend

the interpretation process to include objects with

rotational symmetry such as cylinders, cones, tori and

95

spheres for which the axes are parallel to one of the

coordinate axes. This reconstruction algorithm developed

by Wesley and Markowsky was also improved by Kaining [42],

who made use of the idea of pattern recognition expressed

in the Aldefeld algorithm, to include cylindrical objects

for which the axes are pataliel to one coordinate plane

rather than to one coordinate axis. This improvement

allows the input views to comprise elliptic arcs,

hyperbolas and regular higher order curves with their

symmetry axes parallel to one coordinate axis. Kaining's

method is reviewed in depth in section 4.4. This is

because it illustrates the basic approach adopted by

Wesley and Markowsky, and to describes the improvements it

makes on their algorithm. Moreover, much of Kaining's work

has direct relevance to this project and requires detailed

exposition.

In all the above techniques, boundary

representation has been used to describe the output object

model. As previously discussed, in section 3.4.3, this

mode of representation does not guarantee the validity of

the object. It is for this reason that most of the above

methods required algorithms to deal with pathological

cases. Constructive Solid Geometry, a more adequate

representation, has been adopted in an interesting work

reported in [43,44] for the interpretation of orthographic

views as solid models. However, in this case, the

interpretation process is not fully automatic and requires

96

a 'man in the loop', i.e. the user, to carry out most of

the interpretation tasks, such as the identification of

three-dimensional primitives, the input of their

corresponding data and the comparison of input and output

orthographic views. A method based on such an interactive,

or 'semi-automatic', approach is described in section 4.5,

to illustrate the extent to which human intervention is

required by such techniques.

Constructive Solid Geometry principles, together

with the 'man in the loop' concept, have also provided the

basis for the process of interpreting engineering drawings

as solid models, ieuaioped in the present work. However,

the extent to which the process relies on the user is far

less than the one used in the interactive method described

in section 4.4. This chapter is concluded by a discussion

which highlights the reasons for adopting these concepts

and the differences between the tasks carried out in the

process developed in this work, as compared to those

required by the so-called semi-automatic methods.

4.2) IDESAWA'S METHOD:

Idesawa describes his approach as the inverse

transformation of the operation which is used to produce

orthographic projections of a given object. His algorithm

is divided into five main steps:

97

(a) generate 3D vertices from 2D vertices

(b) generate 3D edges from 3D vertices

(ey elimination of ghost elements

(d) generate 3D faces from 3D edges

(e) assemble true faces into an object.

Each of the above steps can be briefly described

as follows:

(a) GENERATION OF 3D VERTICES FROM 2D VERTICES:

In any given orthographic view, a two-dimensional

vertex is defined in terms of a pair of coordinates; For

instance, any vertex in the XY view has an x-coordinate

value and y-coordinate value, and an unknown z-coordinate

value in the direction of sight.

The purpose of this step is to determine the

missing coordinate value for each two-dimensional vertex

in order to generate the corresponding three-dimensional

vertex. This is achieved by the following matching rule:

Consider, three points: P(x,y) in the XY view,

P'(x,z) in the XZ view and P"(z,y) in the ZY view, as

shown in Figure 4.1(a). A 3D vertex V(x,y,z) is defined

by the views, if:

98

SCP) ae (P™)

VCRs V2)

Z(")) = 2(e")

The corresponding three-dimensional point created,

V(x,y,z) is shown in Figure 4.1(b).

(b) GENERATION OF 3D EDGES FROM 3D VERTICES:

In a three-dimensional object each edge is defined

by a pair of three-dimensional vertices. The purpose of

this step is to obtain each pair of vertices that define

three-dimensional edges. Idesawa devised a function which

takes as its main input all the combinations of generated

three-dimensional vertices in pairs and outputs some value

signifying whether or not a given pair of vertices are

connected. The function is specified by the Boolean

operations required for each set of entities. The

interested reader may find more details in [33].

(c) ELIMINATION OF GHOST ELEMENTS :

The three-dimensional elements (vertices and

edges) generated in the previous steps may not all be true

elements. Idesawa refers to those elements which are not

true one as ghost figures. These are partially eliminated

according to a set of twelve rules.

99

Y y be
A

> X z
-—> Xx Y

v
Zz

(a)
ro-4
! !
1 1
saree

|

Fig. 4.1: a) Matching 2D points and
b) corresponding 3D vertex

100

(d) GENERATION OF 3D FACES FROM 3D EDGES:

In this step, a search for three-dimensional edges

that are likely to bound a face is carried out together

with a further elimination of ghost figures. Faces are

defined only if the following conditions are met:

i) There are n faces which contain a vertex as a given

intersection of n edge lines.

ii)An edge line constitutes the boundary of two faces,

and runs in opposite direction to each other in the row of

boundaries.

iii)A boundary of a face is enclosed.

An edge line which can not be in any boundary of

faces is eliminated as a ghost line. Finally, the object

is described in terms of a number of planar faces.

The main disadvantage of Idesawa's method is its

domain of application which is limited to polyhedral

objects, as curved surfaces can not be treated.

Furthermore, false elements can not really be

distinguished from true elements, and thus true elements

can easily be deleted.

101

4.3) ALDEFELD'’S METHOD:

The underlying philosophy of Aldefeld's method is

to view a complex part as being composed of elementary

objects belonging to a set of predefined classes, and

these elementary objects may be recognized by making use

of the knowledge about class-dependent patterns of their

two-dimensional representations. Each elementary object

will have, in each view, a two-dimensional pattern which

will identify the object. Each two-dimensional pattern

comprises a number of 2D primitives, such as lines, arcs

and circles. Primitives may be concatenated to form line

segments. Line segments and arcs may be grouped to form

closed loops, and finally, an object view comprises line

segments and loops. A number of different attributes are

used in the data structure to define the relationship

between these entities; for ‘instance, the attribute

CONTACT (p,q), pacneen primitives, means that primitives p

and q have at least one common node, and the attribute

CONSISTS_OF relates line segments to loops. These

attributes are used in the recognition of the 2D pattern

they form in the views of the elementary object. Figure

4.2 “4llustrates the types. of entities and their

relationships in the data structure.

To avoid the whole complexity of possible

geometries, the method is confined to a subset of

structures and the following restrictions are placed on

102

Object representation

— HAS-VIEW

[Object views

COMPOSED-OF COMPOSED-OF

Line segments

WITHIN
ADJACENT

Primitives

CONTACT

Fig. 4.2: Types of entities and relationships
defining the data structure

103

the structure to be interpreted:

1) All elementary objects must be of uniform thickness,

i.e. prismatic objects.

2) The base of each elementary object must be parallel

to one of the coordinate nlanes.

Figure 4.3 shows an object which complies with the

above restrictions and its 3-view orthographic

projections. For an object restricted in such a manner,

one of the views, V,, will consist of a single loop, also

referred to as the 'silouhette', of an arbitrary shape and

the other views will comprise a rectangle subdivided by

line segments, with the sides of the rectangle and the

line segments being parallel to a coordinate axis.

The model-guided recognition algorithm used to

recognize a uniform thickness object for which a loop, L,

in a given view V,, represents the base silouhette, may be

described as follows:

1) Search in an arbitrary view, where the chosen view

is not V,, to find all the rectangles that 'match' the

silouhette loop, L, in the given view V,. - A match

between two loops 1, and lj from different views is

defined if the minimum coordinate of 1, is equal to the

104

an

an

_——> X 7

—P xX

T

v '
z 1

! Y
1

;
:

he

Fig. 4.3: A uniform-thickness object

105

minimum coordinate of 1, and the maximum coordinate of 1,

is equal to the maximum of lj, in the common coordinate

direction.

2) Search the remaining view for all the loops that

watch the loops generated from step (1) and the loop L in

the view V,. A list of 'matching' loops is generated.

3) Loop L is scanned for features that signify the

presence of line segments in one or both of the remaining

views. For instance, features such as corners formed by

primitives of loop L.

4) For each pair of matching qeace listed in step (2),

attempt to find the complete set of line segments required

by the features. If this is successful, a complete object

pattern given by the union of these matching loops and

generated line segments has been found.

The model-guided algorithm will only work if true

patterns of elementary objects are offered to it.

Unfortunately, it is not always easy to extract true

patterns from the views due to the overlapping of faces

and edges when an object is represented as a set of

orthographic views. In a bid to overcome this problem,

Aldefeld uses heuristic techniques so that subpatterns can

be extracted on the basis of hypotheses. The strategy

which Aldefeld calls the "Best First Search" is based on

an evaluating function that assigns scores (number of

points) to patterns on the merit of their characteristics.

106

The patterns are then chosen in the order dictated by

their accumulated score for the input to the recognition

process. Two main scoring methods are used; Each pattern

is first assigned a score according to the number of

primitives it comprises and which have not yet been

recognized as a part of an object vepresentation. Each

pattern is then assigned another set of points depending

on the attributes it may have in relation to other

patterns. For instance, a pattern that is not adjacent to

any other pattern, i.e. isolated, is given a higher score

than a pattern which has the attribute ‘adjacent' assigned

to it. This hypothesis is true since an isolated pattern

must necessarily represent the silouhette of at least one

partial solid.

Finally, Aldefeld's reconstruction algorithm can

be briefly described as follows:

1) Find all the relationships between primitives.

2) Find all closed loops and assign them their

various attributes, i.e. 'circular', irregular, etc..

3) Assign a score to each loop using the evaluating

function, and select the loop which has the highest score.

4) The loop selected from step (3) is assumed to be

the base silouhette of one or more partial solids. This

assumption is verified or rejected using the model-guided

recognition algorithm. A three-dimensional structure is

generated if the assumption is held as true.

107

5) The loop is ‘expanded' to include itself and an

adjacent loop. The expanded loop is checked if it already

exist; if not, add it to the set of data, find its

attributes and relationships with other loops as before.

Mark the new loop as '‘open' and the original loop as

"closed".

6) Verify whether the generated object complies with

the input data; if so exit the algorithm, else continue

from step (3).

The main disadvantage of Aldefeld's method is that

it only works on a local basis since it deals with one

partial solid at a time, and ignores the global context.

For this reason, the reconstruction algorithm can not

distinguish between solid bodies and cavities, and may

also generate false partial solids due to silouhette

interference. Furthermore, the generalization of the

method to true three-dimensional non-uniform objects would

require not only more sophisticated heuristics, but also

the extension of the domain of partial objects to include

those which, for instance, have rotational symmetry

objects, and the relaxation of the restriction on their

spatial orientation.

4.4) KAINING'S METHOD:

Kaining's method is based on the algorithm

108

developed by Wesley and Markowsky. Their algorithm

resembles the one presented by Idesawa, briefly discussed

above (section 4.3), in the sense that it 'fleshes out'

projections hierarchically from lower levels to higher

ones, but by making use of rigorous mathematical and

topologissl definitions, Wesley-Markowsky's algorithm

gives better results on handling pathological cases and

multisolution problems. Basically, the algorithm can be

described as follows:

1) Generate 3D vertices from 2D vertices.

2) Generate 3D edges from 3D vertices.

3) Generate 3D subfaces from 3D edges.

4) Assemble 3D subfaces to form 3D subobjects.

5) Assemble 3D subobjects to form objects matching the

input 2D projective representations.

However, as in Idesawa's algorithm, the domain of

objects that may be interpreted is limited to those having

planar faces only.

Kaining's algorithm extends the interpretation

process to include objects having cylindrical faces.

Furthermore, the axis of any cylinder is restricted to be

parallel to one coordinate plane. The different steps of

the algorithm are illustrated in Figure 4.4, the details

of which are described as follows:

109

(Start

Input the three views

¥
Check input data

t
Generate 3D vertices/edges from 2D ones

Generate face equations:

- cylinders and their cutting planes
from 2D data

- general planes from 3D edges

v
Introduce cutting vertices/edges

¥
Generate face-loop-base on each face

Y
Generate object-loop-base from

face-loop-bases

y
Assemble object-loop-bases to find

all solutions

v
Remove hidden lines and generate images

Y
End

Fig. 4.4: Flow chart of KAINING's algorithm

110

1) GENERATE 3D VERTICES/EDGES FROM 2D ONES:

The following principles are applied to derive 3D

vertices and 3D edges:

a) Matching principle:

If Eg, E, and E, are projected edges (or vertices)

on the front, top and side views respectively, then they

May be referred to as a group of matching edges if their

surrounding rectangles defined by their maximum and

minimum coordinates, i.e. (Xgnins Zemin’ Xemaxt) 2fmnx)7

(Semin Yemin’ *tmax! Yemax) and (Ysmin’ Zsmin’ Ysmax’ 7smax)

respectively meet the following conditions:

*tmin ~ *tmin * Yemin ~ Ysmin Zsmin ~ 7£min

*tmax ~ *tmax / Ytmax ~ Ysmax ’ smax ~ 7fmax

b) Line mode:

A 3D straight line can be derived from a group of

matching edges Es, E, and E, if and only if:

i) Eg, E, and E, are 2D straight lines (at most. one

of which can be a 2D vertex);

ii) there is a group of endpoints of them satisfying

the matching principle.

111

c) Ellipse mode:

A 3D elliptical edge can be derived from a group

of matching edges Eg, E, and E, if and only if:

i) Eg, E, and E, are 2D ellipses with their axes

parallel to the coordinate axes, or 2D straight lines, and

there is at least one ellipse and one straight line among

them;

ii) If there are two ellipses amongst Eg, E, and E,,

then their centres have the same coordinate value in the

shared coordinate;

iii) Each group of endpoints of elliptical arcs and

another group of points on the elliptical arcs, satisfy

the matching principle.

The elliptical mode is illustrated in Figure 4.5.

d) Higher order curve mode:

Higher order curves can be derived from a group of

matching edges Eg, E, and E,, when two of them are circular

arcs and the other is either hyperbolic or a regular

higher order curve. Higher order cuxves arise from the

intersection of two cyl'‘nders, with differen. radii or

non-intersecting axes, whose axes are parallel to

coordinate axes, as shown in Figure 4.6.

112

X <¢

Fig. 4.5: Ellipse mode

Fig. 4.6: Higher order curve mode

113

2) GENERATE FACE EQUATIONS :

A face equation may be generated from pairs of

non-colinear 3D straight line edges sharing a common

endpoint. The equation of a cylindrical face can be

defined by three geometric parameters:

- a point on the axis of the cylinder, referred to as

the location point,

- a radius

- the orientation of the axis of the cylinder.

The location point is obtained by using the

matching principle to recover the centre of the 3D

ellipse, while the radius and the orientation of the axis

can be derived as follows:

i) Derivation of the radius:

Let G be the generating cylinder of a 3D ellipse

E, as shown in Figure 4.7. If the axis I of such a

cylinder is parallel to the OXY plane, then the generating

plane P of E will be perpendicular to the OXY plane. If,

in addition, P is not perpendicular to the OXZ plane,

then:

a) the orthographic projection of E on OxZ is an

ellipse S with its axes parallel to either the X or Z

axis;

114

Fig. 4.7: Derivation of the radius

115

b) the radius of the generating cylinder G is equal to

half the length of the axis of S parallel to the Z axis.

In the above derivation of the radius, it is

assumed that the axis I of the generating cylinder G is

parallel to che OXY plane. It is possible to determine the

coordinate plane to which the axis I of the cylinder G is

parallel. Two examples are given here in order to

illustrate how to deal with this problem; In Figure

4.8(a), only one straight line exists in the group of

matching edges. In this case, the axis I must be parallel

to the plane in which this line lies. In Figure 4.8(b),

only one ellipse E, exists in the group of matching edges.

In this case, the length of the minor axis of Ee is equal

to the diameter of the cylinder G.

ii) Derivation of the orientation of the cylinder axis:

Figure 4.9 represents the orthographic views of an

object composed of two intersecting cylinders at an

oblique angle. The point C(x,,z,) on the line E,

corresponds to the centre point (xo,yo) of the ellipse E,,

and the point (x,,y,) on E, is the endpoint of the major

axis of the ellipse E,. This point (x,,y,) also corresponds

to the point P(x,,z,) on the line Eg. An auxiliary circle

with C as centre and with radius equal to the radius of

116

x
OS
Fig. 4.8: Two cases in deriving the radius

E,

(a) (b)

ie *. ‘ E, + C(Xo,Zo) P(x4,21) E

q

Fig. 4.9: Derivation of cylinder axis

TN,

the generating cylinder, may be constructed to have the

line PT, as tangent at the point T,. The orientation

(dx,dz) of line PT, is that of the projection of the

cylinder's axis. The orientation (dy,dz') of the

cylinder's axis on the side view car be derived in similar

fashion, and by scaling one orientation vector so that:

dz = dz'

the orientation in 3D-space (dx,dy,dz) can be obtained.

There are two types of pathological cases which

may arise with the 3D edges and faces generated above. One

is when two edges intersect at one of their interior

points rather than endpoints. Such an intersection can

appear as an endpoint in a set of orthographic projections

as those shown in Figure 4.10 where pathological point P

exists between edges AC and BD. The other pathological

case may arise when two different faces intersect at their

interior lines rather onan boundary edges. The faces AEGC

and BFHD intersect at such interior line PQ. These two

tyyes of pathological cases should not appear in well

defined geometric objects.

The pathological intersecting point P, referred to

118

as a cutting vertex is introduced to separate its two

generating edges, AC and BD, into four edges, AP, BP, DP

and PC, so that the pathological case is removed.

Similarly, the pathological intersecting line PQ, referred

as cutting edge, is introduced to separate its two

generating faces, AEGC and BFHD, into four separate faces,

AEQP, PQGC, BFQP and PQHD.

4) GENERATE FACE-LOOP-BASES:

In order to define a face-loop base the following

definition are first introduced:

- A face-loop on a face F is defined by Kaining as a

“simply interconnected" area bounded by a subset of edges

on F. For example, in Figure 4.11, £,,...., f7 are

face-loops on face F.

- A boundary edge set E(f, + fp +...+ f,,)| of the

union of the face-loops £1, fj, ---, fm is defined as

follows:

m’ m-1 m

E(fl + £2 +...+fm) = U g(fi) - (U U B(fi) M E(£3))
i=l isl j=itl

where the sign '+' denotes the union of some different

face-loops on one face and (fi) denotes the boundary edge

set of the face-loop fi.

119

Fig. 4.10: Cutting vertex/edge

KY D A
KV AX

Fig. 4.11: Face-loops

120

From the above definitions, the face-loops f4,...,

f7 in Figure 4.11 can be generated by the union of set

fy,---rf3, d.e.s

f, =f, tf. + £3 £5 = ff, + £5

fp mato tats ty = fut fy

A set of face-loops on face F, Bye = f1,....,f,, is

defined as a face-loop-base if any face-loop on F can be

generated from one or more faces in Bf and each face-loop

in Bf can not be generated from other face-loops in Bf.

For example, in Figure 4.11, the set By, = f,,f2,f3; is the

face-loop-base on face F.

Kaining devised the following algorithm to

determine the face-loop-base of each face:

a) For each vertex v, on F, sort its incident edges on F

in a counter clockwise order such as e, ep ... e,, the e

is the left-adjacent-edge of e€, at vy,..., and e, is the

left-adjacent-edge at e,.

b) Pick an ordered edge ei (Vir vy) at Vyr followed by

picking its left-adjacent-edge 25 (V57 Vy) at v,, then pick

the left-adjacent-edge of ey at vy,..., the face-loop L

will be formed when edge e, (v,,v;) jointing the first edge

121

e, is picked. The left side of each ordered edge is

defined as the interior of L.

c) Since there are only two ways to traverse each edge,

either from v; to v5 or from vy to vy, all the face-loops

will be obtained when each edge is picked twice in

different directions.

d) The face-loop-base is made from all of the bounded

face-loops except unbounded ones.

The philosophy of object-loop base and the union

of object-loops can be derived by extending the concept

face-loop-base and the union of face-loops. In the example

shown in Figure 4.12, if the ordered face -fl is first

picked, then in order to ensure that there is no face-loop

in the interior of the object loop, it is necessary to

pick the ordered face -f3. But if the face +f1 is picked

at first, then face -f2 should be picked next. An

object-loop B will be formed if the ordered face-loop are

picked as shown above repeatedly until each edge in B has

been contained by two face-loops in B.

All of ob,2ct-loops are found when each face-loop

is traversed twice in two direction. The object-loop-base

is composed of all the bounded object-loops except

unbounded ones.

122

Fig. 4.12: Incident faces

123

6) ASSEMBLE OBJECT-LOOPS TO GENERATE SOLUTIONS:

Object-loops in the base may either be disjoint,

or have some vertices, edges or face-loops in common.

Therefore, the rules to assemble object-loops are simple

and may be described as follows:

a) Delete face-loops shared by only two object-loops,

since it is not allowed for a face to be in the interior

of an object.

b) Delete edges shared by only two face-loops which are

on the same face, because an edge is the intersection of

two different faces in an object.

Finally, the orthographic views of the object

generated above are compared with the input three views to

establish whether it is a solution or not. All the

solutions matching the input two-dimensional views can be

found by checking all the assemblies of the object-loops.

The main disadvantage of Kaining's method is that

the range of object that may be treated is limited to

those having planar and cylindrical surfaces only.

4.5) HO BIN'S METHOD:

The basic approach adopted in this method is that

124

parts can be thought of as an assemblage of elementary

volumes or ‘solid primitives', which also forms the

Constructive Solid Geometry representation of those

objects, (see section 3.4.4). Ho Bin's approach is based

on interactively inputting these representations directly

from the two-dimensional orthographic views. The

interpretation process may be described as a

semi-automatic rather than automatic process since most of

the tasks of recognizing each primitive from the input

views are carried out by the user rather than by means of

algorithms such as the ones employed in the methods

described above. The amount of input required from the

user is rather large and for each primitive the basic

input cycle consists of four steps:

STEP 1: Input the type of primitive. Five types of

primitives can be input: cuboid, tetra pyramid, cylinder,

cone and sphere. All of these are defined so as to have

their axes (or heights) perpendicular to one of the

projection planes, or oblique to two of the projection

planes.

STEP 2: Input the sign of the primitive. If the primitive

represents a solid, part of space, its sign must be '+'

(positive). If the primitive represents a hole or cavity,

i.e. a “virtual” primitive, then its sign is ‘-'

(negative).

125

STEP 3: Input three points for the base of the primitive.

STEP 4: Input two points for the height of the primitive.

The first input point of the height is regarded as the

projection of the points located on the primitive base

contour.

Steps 1, 2 and 3 are carried out using a menu of

commands, shown in Figure 4.13, on a digitizer. The five

points of base and height (steps 3 and 4), are input ina

prescribed order from the given engineering drawing.

At the end of each input cycle, a

three-dimensional model of the corresponding primitive is

constructed and the two-dimensional representations,

comprising three orthographic views and a hidden-line

isometric view of the primitive) are displayed on the

output device. This feed back ccaties the user to check

whether his input of that primitive is correct before

beginning the next input cycle. This interactive process

is continued in this fashion until the complete Boolean

tree of the object model is obtained.

The algorithm concentrates mainly on :

a) using the type and sign of all the primitives

sequentially to build simple Constructive Solid Geometry

expressions of the kind A-B+C-D+E, where A, B, C, D and E

126

Command Type Sign

Continue Cuboid

SOLID
Delete Pyramid (+)

Hard copy Cylinder

- Cone
STOP VIRTUAL

Sphere (-)

Fig. 4.13: Menu of commands

127

represent the primitives, and the signs '+' and '-'

represent the Boolean operators Union and Difference

respectively. The special Boolean tree along a single

direction with only two operators (+ and -) may be

obtained, as shown in Figure 4.14.

at) using the coordinates of the input five points

(steps 3 and 4) to derive the following data:

a) the number of the view on which each primitive

base and height are projected,

b) the three coordinates of the base centre,

c) the radius of the base circle, if the primitive is

a cylinder , a cone or a sphere,

d) the length, the width and the angle (between the

length direction and the horizontal line) of the base

rectangle, if the primitive is a cuboid or a pyramid,

e) the value of the angle between the axis (height)

and the XY projection plane, or between the axis (height)

and the XZ projection plane if the axis is parallel to xy

plane,

£) the value of the primitive height. For the sphere,

which is a primitive that has no ‘height', the two input

points are used to define the third coordinate of the

centre of the sphere.

The algorithm may be described as follows:

128

JX

Ta
Fig. 4.14: Two operators CSG tree along

a single direction

129

i) If the axis of the input primitive is perpendicular

to one of the projection planes, the real shape of its

base contour and the true length of its height are shown

in the principal views. From the three input points of the

base, for instance points 1, 2, and 3 in Figure 4.15, the

parameters of the base are obtained easily. These

parameters are :

- for the rectangular contour: the length, width, the

angle B between the length direction and the horizontal

line, and the coordinates of the centre,

- for a circular contour (eg. Figure 4.16): the radius

and the coordinates of its centre.

From the two input points of the height, the value

of the height is obtained by subtracting the coordinates

along the coordinate axis parallel to the primitive axis.

ii) If the axis of an input primitive is oblique to the

projection plane, the real shape of its base no longer

appears in the principal views. For instance, the

projection of a circle or a rectangle becomes an ellipse

or a parallelogram, respectively. In this case it is

necessary to reconstruct the real shape in order to obtain

the input primitive dimensions, construct its geometric

model and draw its three orthographic views and isometric

view. A cone, and its orthographic views, shown in Figure

4.16 is chosen here as an example to illustrate this

130

Height

Length 3
—,

\ , Width

5
2

B
1 4

Fig. 4.15: Views of an input PYRAMID primitive

131

A primitive cone and its
three principal views

4.16: Fig.

132

transformation algorithm.

The axis SQ, is parallel to the XY projection

plane and has an angle fB with the XZ projection plane.

An arbitrary point A located on its circular base contour

is projected on the three projection planes as points a,

a' and a". O,X, and 0,2, are the reference coordinate axes

of the circular base contour of the cone. The Xp

coordinate of point A, AZ,, on the reference coordinate

axis O,X,, is equal to ao in the top view. The xX and Z

coordinates of projection point a' relative to the cone

centre o' in the front view, are a'Z,, and a'X,, . The Y

and Z coordinates of the projection point a" relative to

o" in the side view are a"Z,., and a"Y,, . The X and Y

coordinates of the projection of point a to the projection

o in the top view are bo and ab

Since:

a'Z,. = bo,

a"Zan = ab,

then:

AZ, = a'Z,. / sin B

or:

133

AZ, = a"Z,n / cos B 4

and:

BXS mat Xa, = atten

It is therefore possible, by using the above

transformation algorithm, to calculate the coordinates Xb

and Zb of an arbitrary point A from the coordinates of its

projection points. However, this is only possible if the

coordinates of the centre point of the ellipse projection

are known. After transforming the coordinates of the three

input points of the ellipse projection, a circle base

contour of that cone is determined.

4.6) DISCUSSION:

The first fundamental point that emerges from the

above review is that some of the methods adopted an

approach based on the Boundary representation scheme while

others used Constructive Solid Geometry representation.

The former methods require thorough checks on the validity

of the reconstructed object to be carried throughout the

interpretation process. These checks hold an important

Place in the algorithm and they serve to identify and

eliminate pathological cases which may lead to the

generation of impossible objects. Those methods which

adopted Constructive Solid Geometry do not require such

134

checks since the validity of the reconstructed object is

guaranteed, whether it is a solution or not. However, one

can argue that such methods do not attempt ‘automatically'

to interpret orthographic views as a solid object; instead

they rely heavily on the user to carry out the most

difficult task in the interpretacion process, i.e. the

identification of the three-dimensional primitives. The

other main disadvantage of adopting this approach is the

speed at which the interaction between the user and

machine is carried out. However, there is now a tendency

to adopt such user-guided interpretation techniques, may

be because of the increasing processing power in terms of

speed present machines can offer, or maybe because

researchers have come to the conclusion that human

parallel processing power can never be matched by any

algorithm in solving such problem; Such attitude has been

reflected by Aldefeld and Richter in their work on

semi-automatic three-dimensional interpretation of line

drawings [43].

The other point common to all the methods

developed so far, is that whatever the approach or

modelling representation adopted in each method, they all

fall short of what is really needed in engineering

practice. This is either because there is a significant

number of failing cases, or because the scope of the

technique is insufficient for mechanical engineering;

there is still a wide range of mechanical parts that can

135

not be reconstructed: because of their complexity.

A novel approach, based on Constructive Solid

Geometry concepts, has been adopted in the work reported

in this thesis for the automatic interpretation of

enginecring drawings as solid models. The method developed

in this project also uses the 'man in the loop' concept

but not to the same extent as the so-called

"semi-automatic" techniques described above.

136

INTERPRETATION OF ENGINEERING DRAWINGS AS

SOLIDS: A NEW APPROACH

137

5.1) INTRODUCTION:

A new approach has been adopted by the author to

solve the problem of automatic interpretation of

orthographic projections as solid objects. The basic

concepts underlying this approach are discussed in section

5.2. The manner in which these concepts are applied to the

present work is novel. A process of converting

orthographic views into a solid model has been developed

by initially implementing these concepts to uniform

thickness, or prismatic, objects. Experience gained from

the work on prismatic objects has yielded a technique for

implementing those same concepts to more general 3D

objects.

An overview of the process is presented in section

5.3, and its implementations to both prismatic and general

3D objects are described in section 5.4.

5.2) MHEORETICAL FUNDATIONS FOR THE PROCESS:

The approach being used exploits the concepts of

Constructive Solid Geometry in which a complex object is

considered to be an assemblage of three-dimensional

primitive elements, or building blocks, synthesized by

means of Boolean operations to represent the complete

object. Further, each primitive may be represented by the

138

two-dimensional elementary patterns, referred to as

primitive loops, contained in its set of three

orthographic views. This set of patterns constitutes a

unique 'signature' which identifies the primitive within a

tree structure used to describe the total object. For

instance, a set of three rectangles (one rectangle in each

view of the primitive) will identify a primitive block, or

a set of three circles (one circle in each view of the

primitive) will identify a sphere, as shown, along with

other signatures, in Figure 5.1.

The manner in which these concepts are applied to

the present vork is novel. The starting point is to assume

that an object can be ‘cut out' from a single 'raw block'

rather than being built up of several building blocks. The

raw block is itself a three-dimensional primitive (a unit

block) which is transformed (scaled) and to which a sign

(positive) is allecated to represent a volume ‘of material

from which the object is cut out. The task of

reconstructing the object from its orthographic views is

then to find and identify the volumes of material (the

three-dimensional primitives) to be removed from the raw

block to yield the true object. Figure ace cetrates the

reconstruction of an L-shaped model starting from the raw

block at the bottom, using the above concept. It will be

observed that only subtractions of primitives are required

in the total process.

139

3D PRIMITIVE ORTHOGRAPHIC VIEWS

(Signature)

——.

Cuboid

———

Cylinder

—_—>

Sphere

Pt
OC
© co
SSN

ae EN
Roe ae

Fig. 5.1: 3D primitives and their othographic
projections (signatures)

140

;

©)
x

=|]
ed

Fig. 5.2: Object ‘cut out' from

a 'Raw Block'

141

5.3) OVERVIEW OF THE PROCESS:

The process of transforming the orthographic views

of an object into a formal three-dimensional

representation has been designed to comprise five elements

(stages or subprocesses), requiring a minimum of user

interaction, and to provide feed back of data

corresponding to discrepancies between input and output

orthographic views, when the need arises. These

subprocesses are:

a) Raw Data Interpretation

b) Data Analysis

c) Solid Modelling

d) Output Verification

e) Feed back

The flow diagram of Figure 5.3 shows the

relationship between these elements in the forward path of

a closed loop where feed back is provided. The human

operator interaction with the process resides after the

last subprocess in the forward path of the cycle, i.e.,

before feed back. A description of each subprocess is

given in the following sections while the details of the

technique employed in each of these subprocesses and

associated algorithms are described in chapter 6.

142

Output

 new
(object model)

data

input} Rew date 2D 3D 3D Solid :

— > interpreter PP) analyser PR} Modeller Or

Fig. 5.3: Process main components

143

5.3.1) ZDERMINOLOGY:

The following terms are used throughout the

description of the interpretation process, and are

illustrated in Figure 5.4:

a) The Surrounding Cuboid is the three-dimensional

block from which the object is to be cut, i.e. the raw

block (see section 5.2). Therefore, it is a cuboid whose

dimensions equal those of the maximum values for the

solid object in the X, Y and Z directions.

b) The Surrounding Rectangle is the closed loop

representing an orthographic projection of the Surrounding ©

Cuboid.

c) The Object Loop is the closed loop defined in an

orthographic projection of the solid object.

d) The Perimeter Loop is the object loop that defines

the outline of the object when viewed in the direction of

projection.

e) A Subobject Loop is a closed loop formed between the

surrounding rectangle and the object loop. It may also be

defined as an orthographic projection of a subobject

formed by difference between the surrounding cuboid and

the solid object.

144

Surrounding Cuboid
(RAW BLOCK)

Arbitrary Pattern

Object loop |

A < i D

B 4 c
3D Primitive Basic Pattern

(1/4 of Cylinder) (Quadrant)

Simple Prismatic Object

ABCD = Surrounding Rectangle

Fig. 5.4: Terminology

145

f) A Basic Loop is a closed loop which can be

identified as an elementary two-dimensional shape, such as

a rectangle, a quadrant, a circle, a triangle ...

g) A Primitive Loop is a basic loop that is an

crthographic projection of a three-cimensional primitive.

It may also be a subobject loop.

h) An Arbitrary Pattern is a closed loop which cannot

be identified as an elementary two-dimensional shape and

which requires further processing in order to generate

Basic Patterns.

i) A Parent Loop is a closed loop which has been

identified as an arbitrary pattern and then, directly

decomposed further into a number of subobject loops or

children loops, i.e. a parent loop can be directly

reconstructed by using its children loops. An object, or a

subobject, loop may be either a basic or an arbitrary

loop.

5.3.2) BAW DATA INTERPRETATION:

The purpose of the raw data interpreter is to

check for incomplete, inconsistent or false information,

such as, for instance, edges of order less than 2 (known

as dangling edges, discussed in section 3.4.4), or for

146

self-intersecting loops, in the input orthographic views.

The data of the orthographic views are assumed to have

already been stored in the computer in the form of three

separate data files (one file per view). The raw data

interpreter is also used to transform the raw data into a

structured format required hy the next step.

5.3.3) DATA ANALYSIS:

In the analysis stage, the data are examined in

order to:

i) identify the class of the object, i.e. to

determine whether the input views represent a primitive

object (the trivial case), a prismatic object or an

arbitrary and more general object. The output of this step

predetermines the next steps of the process since, for

efficiency in processing, the implementation of the

interpretation process differs from one class of objects

to another although the process itself is the same in all

cases.

ii) to extract the object and subobject loops in order

to locate and identify all the basic two-dimensional

patterns from each orthographic view and the ‘signatur.3'

they may form as a set to establish the identity of the

three-dimensional primitives. The transformations and

associated Boolean operations, necessary for the

147

reconstruction of the shape of these loops, are also

defined at this stage. The underlying technique uses the

knowledge about a number of predefined elementary or

"basic' patterns. Those loops that can not be readily

identified as basic patterns are classified as arbitrary

patterns, our parent loops, which are then decompcsed

further until all the loops are identified as basic

patterns. The details of this recursive technique,

including the algorithms associated with it, are presented

in chapter 6.

The application of this technique to the

interpretation of prismatic and ortho-prismatic objects

provides the fundamental basis from which generalization

to more general three-dimensional objects can be

developed. Details of the implementations of the process

to each class of objects, including the trivial case where

the object is itself represented by a single primitive,

are discussed later in section 5.4.1.

The output from this stage is a text file which

contains the identified primitives and the required

manipulations to provide all the necessary data for the

reconstruction of the object in the solid modelling stage.

These files must be written in a format appropriate to the

solid modeller in use.

148

5.3.4) ZDHREE-DIMENSIONAL MODELLING:

A true solid modeller is at the core of this

process. It is incorporated, at this stage, to:

1) reconstruct the solid model by performing tiie various

transformations and Boolean operations on the identified

three-dimensional primitives.

2) generate a parametric ASCII data file which describes

the two-dimensional orthographic views of the object

model. These are used later for comparing the views of the

generated model with the original orthographic views in

order to assess the quality of the model and, if

necessary, to refine it.

The solid modeller used in this project is the

PAFEC 'BOXER' solid modeller. Like most contemporary

modelling systems, it offers a finite set of concise,

compact primitives whose size, shape, position and

orientation are determined by a small set of

user-specified parameters. The type and parameters of each

primitive are. specified, using the PAFEC 'BOXER' syntax,

either interactively, or stored in a text file and then

transferred to the solid modeller.

A particular primitive, such as the block

illustrated in Figure 5.5(a) may be specified using the

149

following text statements:

BLOCK (Xlen,Ylen,Zlen) AT (Xpos, Ypos, Zpos)

where: .

Xlen = block leugith in the X direction

Ylen = block length in the Y direction

Zlen = block length in the Z direction

Xpos = block centroid X coordinate

Ypos = block centroid Y coordinate

Zpos = block centroid Z coordinate

A primitive cylinder, illustrated in Figure

5.5(b), must be defined using the following text format

CYL (Cylen, Radius) AT (Xo, Yo,Zo)

where:

Cylen = length of the cylinder.

Radius = radius of the cylinder base

Xo = X coordinate of the centre of the base

Yo = Y coordinate of the centre of the base

Zo = Z coordinate of the centre of the base

There are other formats which can be used to

define a block, and a cylinder, but the above have been

found to be most convenient, and are used here. Other

common primitives such as wedge, fillet, cylindrical

150

Ylen

Centroid

(xpos, ypos, zpos)

(a)

(b)

Fig. 5.5: a) Primitive CUBE definition
b) primitive CYLINDER definition

151

segment, sphere, tetrahedron, cone and torus, are also

available. The format corresponding to each of these

primitives may be found in [45].

The solid modeller generates solid models by

combining different primitives using a number of specified

Boolean operators, such as UNION, DIFFERENCE and

INTERSECTION, (see section 3.4.4). As an example, for the

object illustrated in Figure 5.6, the following modelling

statements are required:

LENGTH = 6.0

WIDTH = 0.5

HEIGHT = 3.0

OBJ1 <- BLOCK (LENGTH, HEIGHT, WIDTH)

OBJ2 <- BLOCK (LENGTH/3, HEIGHT, WIDTH) AT (MOVEX =$

-LENGTH/3,MOVEY = 1/2)

RES1 <- OBJ1 + OBJ2

DRAW RES1

HOLE <- CYL (1/2, 1) AT (1, 0, -1/2, ROTX = 90)

RES2 <- RES1 - HOLE

DRAW RES2

OBJ1 is a primitive block of length 6, ueight 1/2

and width 3, whose centroid is at: x= 0, y =0 and z=

0, i.e. at the origin of the coordinate reference system.

152

b) RES1 definition

c) RES2 definition

Fig. 5.6: PAFEC "BOXER" Output

153

OBJ2 is also a primitive block; length 2, height

1/2 and the width 3. This block is positioned by

translating its centroid, from the origin, in the negative

X direction over a distance equal to 2/3, and in the

positive Y direction over a distance equal to 1/2. The " $

" sign is used to indicate a continuation of statement.

RES1 is the object resulting from the Boolean

union, represented by the " + " sign, of OBJ1 and OBJ2.

This object is then drawn, as shown in figure 5.6(a).

HOLE is a cylinder primitive whose length is equal

to 1/2 and base radius equal to 1. The cylinder is

positioned by defining the coordinates of the centre of

its base, x =1, y = 0 and z = 1/2, and rotating it by a 90

degrees angle about the X axis, as shown in Figure 5.6(b).

Finally, RES2 is the object resulting from the

Boolean difference, represented by the " - " sign, of RES1

and HOLE. RES2 is then drawn, as shown in Figure 5.6(c).

The input to this subprocess comprises the data

files obtained from the analysis step. The size, shape,.

position and orientation parameters of primitives whose

type has been defined, are here specified by extracting

the necessary data from these files. The solid modeller

input file is then generated by converting the data

associated with each primitive and corresponding Boolean

154

operators, into the appropriate syntax. The process of

generating the solid modeller input file is discussed

later in section 6.3.

The output from the solid modelling subprocess is:

a) a set of data files which comprise the topological and

geometrical data to describe and display the object

model.

b) an ASCII file which describes the orthographic views of

the object model.

5.3.5) QUTPUT VERIFICATION:

The output verification is the final stage in the

forward path of the process. This .subprocess has two

inputs:

1) the orthographic projections data obtained from the raw

data interpreter,

2) the text file, generated by the solid modeller, from

which the data corresponding to the orthographic

projections of the output model are extracted.

These two sets of data are compared to establish

any discrepancy between the three-dimensional model

generated by the process and the actual object model. If

the two sets of data agree the interpretation process is

155

automatically terminated on the basis that the exact

object has been reconstructed. However, in the case where

there are some discrepancies, a decision has to be made

on whether to terminate the process, since the

discrepancies may be deemed negligible, or to allow it to

continue for further iterations. Two options are open

here:

a) The discrepancies are indicated to the user, who is

then prompted to make a decision on whether to terminate

the process or to allow it to continue. The user may

terminate the process if he decides that the model

generated (approximation model) is similar to the actual

model to within the required tolerances, or he may require

the process to continue until the exact model is

reconstructed or until the tolerance conditions between

the approximation model and the true object are met.

b) Use an objective function whose criterion for

terminating the process consists of detecting when there

only minor differences between two successive

approximation models. The acceptable level of accuracy

would then be dictated by the application for which the

output model is required. For instance, in the case where

the level of accuracy is not required to be high, such as

for preliminary design, a simple value, such as volume, or

mass, whose decrement has reached a certain level between

successive approximation models may provide a practical

test of modél acceptability. These points are discussed

156

further in chapter 9.

When the process is allowed to continue, the.two

sets of data (original and approximation model

orthographic views data) are passed onto the feed back

process.

5.3.6) EEED BACK:

In the feed back stage, the two set of data are

examined to extract the two-dimensional geometrical and

topological information which comprises the sets of three

orthographic views representing one or more subobjects.

The orthographic views data of these subobjects are then

fed back as input to the data analysis subprocess in order

to reconstruct the corresponding subobjects. Once

reconstructed, a subobject is then subtracted from the

previous approximation model to either the exact object,

or to generate a further, but more accurate, approximation

model. This process may be continued to provide 'nth'

order approximation models which may converge to the exact

input model.

5.4) IMPLEMENTATION OF THE PROCESS:

The process briefly described above was first

157

developed for the case of prismatic objects (section

5.4.2) and extended to ortho-prismatic objects. The

interpretation process for more general three-dimensional

objects has been achieved by recursively employing exactly
.

the same technique used in interpreting prismatic and

ortho-prismatic objects within an iterative precess.

Real mechanical engineering components cannot

usually be represented by a single three-dimensional

primitive. However, parts within any object, such as holes

or pockets, may be represented by single primitives. Thus,

it is necessary that the process should also be able to

deal with the trivial case where the object, or subobject,

is itself a primitive. The implementation of the process

to this special case is the first to be discussed in the

following sections.

5.4.1) THE TRIVIAL CASE; THE OBJECT IS A PRIMITIVE

The interpretation of orthographic views which

represent an object comprising a single three-dimensional

primitive, is simplest in the case where the primitive

principal axis is parallel to one of the coordinate axes.

Then, the two-dimensional pattern in each view of the

primitive will consist of only one single closed loop

readily identified as one of a number of predefined

patterns, such as those shown in Figure 5.1. These

158

patterns must also form a valid predefined 'signature' in

order to be acknowledged by the computer. If the

primitive, i.e. the object, has an arbitrary orientation,

then the case may arise where at least one view may

comprise more than one loop, or one pattern may not be

readily be identified as a predefined 'known' pattern, as

shown in Figure 5.1. In that case, the object is

classified as either a prismatic or arbitrary object.

5.4.2) IMPLEMENTATION TO PRISMATIC OBJECTS:

Any object that has at least one 'base' view which

may consist of one, or more, closed disjoint loops, and

two views which consist of only rectangular interconnected

loops, is classified as simple or complex prismatic

object, respectively (section 2.4.1).

The implementation of the interpretation process

to both simple and 'complex' prismatic objects is

basically the same, except that in the case of simple

prismatic object only the perimeter loop in the base view

needs to be analysed, while in the case of complex

prismatic object all the loops including those

corresponding to axial holes in the base view are

analysed.

In both cases, only the base view is processed

159

(since the other views are known to comprise only

rectangles), and the analysis of each object loop consists

of extracting the subobject loops formed between the

surrounding rectangle and the loop itself in that view.

The shape formed by each subobject loop is identified as

either a basic pattern or as an arbitrary pattern.

Arbitrary patterns are then decomposed further

until only basic patterns are identified. Figure 5.7(a),

shows the perimeter loop in the XY view of a prismatic

object, and the basic patterns generated during the

decomposition process of each arbitrary pattern. The

object loop is situated at the root of the Boolean tree,

the arbitrary loops at its nodes, and the basic patterns

at its leaves.

Each basic pattern is then associated with a

rectangle in each of the remaining views to form sets of

basic patterns which comprise the ‘'signatures', (see

section 5.2), of a number of three-dimensional primitives.

Thus a three-dimensional primitive is determined for each

basic pattern identified in the base view. In Figure

5.7(b), the basic pattern Pl which is, in effect, the

surrounding rectangle to the perimeter loop, PO, of the

object, is interpreted as the loop obtained in the XY view

of a primitive block. Similarly, the loop P4 is also

interpreted as the loop obtained in the XY view of a

primitive block, while a primitive fillet is associated

160

— Object loop

Po

P3

1 Pi P2

KP Ss

a) Decomposition of an object loop

noo Oo.

K O O ESAT Output model

b) Identification ¢) 3D Modelling

of 3D primitives

Fig. 5.7: Processing of an object loop
to generate a solid model

161

with the loop P5, and a primitive cylindrical segment, or

sector, is associated with loop P3. These 3D primitives

are then used by the solid modeller to produce the

complete solid object model, as illustrated in Figure

5.7(c).

In the case of complex prismatic objects, there

are hole and perimeter loops to be considered. Figure 5.8

shows the Boolean tree obtained by the decomposition of

all the loops in the base view. Loop P2 which is a through

hole loop, is identified as a circular basic pattern,

while loops Pl, the perimeter loop, and loop P3, another

through hole loop, are identified as arbitrary patterns

which are then decomposed further until all the loops are

identified as basic patterns, i.e. loops P4, P6, P7, P8,

P9 and P10.

The primitives identification and 3D modelling

steps are similar to those described above. For instance,

loop P2 will be identified as the orthographic projection

in the XY view of a cylinder and P8 as the loop obtained

in the XY view of a primitive block.

In the case of both, simple and complex, prismatic

‘objects, discrepancies will not be found when comparing

the input orthographic views with those of the generated

model. The output of ene process will be a Constructive

Solid Geometry model which is the exact interpretation of

162

Complex prismatic
object

Object
perimeter

O

O
ea

oO
(hole 1) (hole 2)

Cee
Ps

P9 P10

x
K

P6 P7

Fig. 5.8: Boolean tree*of a complex
prismatic object view

163

the input orthographic views, and thus, feed back will not

be required.

5.4.3) IMPLEMENTATION TO NON-PRISMATIC OBJECTS :

The interpretation of non-prismatic objects, i.e.

more general three-dimensional ones, requires a formal

consideration of all views. Initially only one loop, the

perimeter loop, shown in bold in Figure 5.9, is analysed

in each view. Thus, each view is treated in a similar

fashion to the base view of a simple prismatic object, and

the inside loops are ignored. A prismatic object is

obtained from each view . Such uniform thickness object is

hereafter referred to as the X-profile, Y-profile, or

Z-profile, depending on wether the view being analysed is

the yz, xz or xy view, respectively. A First approximation

model is defined as the intersection of these prismatic

objects.

Figure 5.10(a), (b) and (c) show the three

prismatic objects obtained from the analysis and

three-dimensional modelling processes performed on the

perimeter loop in each of the three views of the object

shown in Figure 5.9. A prismatic object whose length in

the Z.direction equals Zmax, the maximum length of object

also the length of the surrounding cuboid, in that

direction, is produced by analysing the perimeter loop of

164

ant did id
z

Zmax

|
Fig. 5.9: An ortho-prismatic object and

its orthographic projections

(a) (b) (c)

Fig. 5.10: a) Z-profile, (b) X-profile,

and (c) Y-profile

165

its XY view, (the Z-profile), as shown in Figure 5.10(a)

Another prismatic object whose length in the X direction

equal Xmax, is produced by analysing the perimeter of its

YZ view, (the X-profile), as shown in Figure 5.10(b).

Similarly, a third prismatic object whose length in the Y

direction equals Ymax, is produced by analysing the

perimeter of its XZ view, (the Y-profile), as shown in

Figure 5.10(c).

Figure 5.11 illustrates a solid model, referred to

as the ZX model, obtained by the intersection of the

Z-profile and the X-profile:

ZX-model = Z-profile M X-profile

Figure 5.11 also illustrates the output solid

model produced by the intersection of the ZX-profile and

the Y-profile.

For an ortho-prismatic object, which is the case

of Figure 5.9, the intersection shown is a complete

description of the object _represented by the input

orthographic views. Similarly to the case of prismatic

objects, the interpretation process to the case of

ortho-prismatic objects results in the generation of the

exact solid model, and thus the feed back step is not

required.

166

Z-profile X-profile

mo ver

ZX-profile Y-profile

ee

oh
Output solid model’

Fig. 5.11: Generation of a solid model

167

For all other objects (the great majority of

mechanical engineering components), such intersections

lead to a First-approximation model which is not exactly

the object represented by the input orthographic views,

but an approximate model only. For example, the

intezssectiou shown at the bottom of Figure 5.11, can be

regarded as the First-approximation model of the

three-dimensional object shown in Figure 5.12.

It is clear from the orthographic views of this

intersection, i.e. the output views shown in Figure

5.13(a), that various details are either missing from it,

and in some cases, added to it, when compared with the

original input orthographic views, Figure 5.13(b).

In order either to generate a complete, or an

‘adequate', object model, the differences between input

and output views will have to be either completely

eliminated, or reduced to within some agreed tolerance,

respectively, by subjecting them to a minimization

procedure. Such a procedure is initiated by the detection

of these differences and a search is then carried out, at

the feed back step, to extract from these differences sets

of loops which may represent orthographic projections of

one or more subobjects. These loops are then fed back to

the analysis process where they are treated in similar

fashion to the input orthographic views, i.e. to

reconstruct the corresponding subobjects. Since the

168

O er

Y Y

(Zee ae rs
> x Zz

—

v
Z

(b)

Fig. 5.12: a) A general 3D object and,
b) its orthographic projections

169

 N Y i

(a)

O ee

(b)

H

Fig: 5.13: a) Orthographic projections vf
lst approximation model

b) Original input orthographic
projections

170

First-approximation model represents, in effect, an

envelop of maximum dimension, such subobjects, should be

subtracted from it to generate an improved model. Figure

5.13(b) contains such sets of loops whose absence from the

orthographic views of Figure 5.13(a), may be readily

detected and identified as the signature of a cylinder

primitive. This primitive is then subtracted from the

First-approximation model and the orthographic views of

the output model (the second approximation model) will be

as shown in Figure 5.14(a); comparison with the input

orthographic views, Figure 5.14(b), shows that a number of

details are still missing from it. These details can be

identified as the signature of a cuboid which should be

subtracted from the already improved model. The

orthographic views would then be as shown in Figure

5.15(a), which match the input orthographic views, Figure

5.15(b), thus confirming that a complete object model has

been generated.

A summary of the implementation process to

prismatic and non-prismatic objects is provided in the

form of a flow chart as shown in Figure 5.16.

“The basic approach and concepts adopted in the

this project to develop a process which automatically

reconstructs a solid model from a set of ‘orthographic

74

(a)

Y

A | a | T T
ae =

> Zz x ce

v
Zz

im
Pat (b)
ro"

Fig. 5.14: a) Orthographic projectio 3 of
2nd approximation model

b) Original input orthographic
projections

172

(a)

H

2 aa es

x

 1

(b)

 H

Fig. 5.15: a) urthographic projections of

final output model
b) Original input orthographic

projections

173

(sc ee

Determine class of object

N

Process the boundary
loop in each view

Process all the loops
in Base-view

v y

Generate a prismatic
model for each view Generate prismatic

model
v

Extract orthographic
views of subobjects

Generate an
‘ortho-prismatic’

model

A
Eigse S526:

v

Compare the input
and output views

Differences

(A summary)

174

Interpretation process flow chart

views have been described. The application of such process

to prismatic objects, and its generalization to

non~prismatic ones have been presented. It has also been

shown that the interpretation process’ consists of five

distinct subprocesses. The corresponding formal algorithms

developed, except for Raw Data Interpretation, are

described in chapter 6. It was clear from the start of the

project that time and effort must be concentrated on the

development of algorithms related to the interpretation

process, rather then its input. For this reason, the

initial input orthographic projections, are assumed to be

correct, complete and unambiguous. This point is picked up

in chapter 9.

175

ALGORITHMIC INTERPRETATION OF THE PROCESS

176

6.1) DATA ANALYSIS ALGORITHMS:

The technique used in the analysis process

consists of extracting the object loop from each of the

orthographic views and identifying the two-dimensional

patterns and associated Boolean operations necessary for

the reconstruction of the shape of this loop. These

patterns are then interpreted as three-dimensional

primitives which are combined to yield a uniform thickness

(prismatic) object for each object loop that has been

identified. The class of the object determines the view,

or views, and loop, or loops, that are to be processed.

Thus, the first task in the analysis stage, is to examine

the data in each view in order to determine the class of

the object which may either be a three-dimensional

primitive, a prismatic object, or a general and arbitrary

(non-prismatic) object. The class of any object is

determined by the number, type and shape of loops in each

view.

In general, an orthographic view of any object

consists of interstitial spaces, each bounded by a closed

loop, and each loop consists of a finite number of nodes

and edges. An edge-following algorithm, based on the

‘First-Right' rule, has been developed to examine these

interstitial spaces in order to determine the number of

loops in each view. The algorithm has been developed

further to determine the type of each loop, i.e. whether

it,

it is a perimeter or an inside (connected or disjoint)

loop. This algorithm is referred as the 'Loop Detector'

and is described below. An algorithm has also been

developed to identify the shape of each loop, i.e. whether

the loop is a simple geometric shape (a basic loop), or an

arbitrary shape (an arbitrary loop). This algorithm,

referred to as the ‘Loop Identifier', is designed to

recognize geometrical characteristics. For example, a loop

will be classified as a right-angled triangle if it has

three straight edges and the angle between any two of them

is equal to 90 degrees. The information generated by the

‘Loop Detector' and the ‘Loop Identifier' algorithms is

used by another algorithm, the ‘Object Classifier', to

determine the class of the object.

6.1.1) THE "LOOP DETECTOR’ ALGORITHM:

Orthographic projections consist of a number of

interconnected nodes and edges which may be regarded as

the elements of a directed graph, or digraph (appendix A).

Each edge within the graph is defined as a di-edge by a

pair of ordered nodes: a start node and an end node. For

instance, in Figure 6.1 which shows such a graph in the

view of an object, node P and node C are the start and end

nodes of edge number 8. Furthermore, each node has a

degree which is equal or higher than two, i.e. each node

belongs to two or more adjacent edges.

178

(a)

TOPOLOGY CIRCUITS LOOP.

Edge | Start | End (LOOPS) Bee TYPE

ee Li » |'5,19\16,-2,-17)-8)-9,-6,-7,1 P
1 J A

2 H °
3 B H L2 -4, 14, 6, 9, -18 c

4 B
5 A | L3 4, 3, 2, -16, -19, -13 c

6 G D
7 i E L4 135-5) st 7) O14 c

8 P c
9 D Pp Ls +3, 18, 68, 17 Cc

10 G N
Pr K G Lé 15, -12, 11,, 10 5

12 K fF)
13 L 1 br 215; «10, =11,) 12

14 L E P = perimeter loop C = connected loop
15 N F D = disjoint loop
16 mM1o : i /
ay Cc H Note: ‘a negative edge number indicates that
18 B Pp the udge is traversed from end to start nodes .

19 M 1 (c)

(b)

Fig. 6.1: a) An arbitrary object view and
object loops

b) its corresponding topological data
c) number and type of loops in the view

179

Edges and nodes may be sequentially grouped to

form closed circuits, and in orthographic projections

these circuits represent closed loops. All sequences of

edges and nodes of all the closed circuits within the

graph, may be determined using the 'First-Right' rule. The

rule consists of selecting the next edge in the sequence

amongst three or more adjacent edges. For instance,

assuming that edge 5, in Figure 6.1, has been selected as

the first edge in the sequence. The next edge will either

be edge 13 or edge 19. According to the 'First-Right'

rule, edge 19 will be selected as the next edge in the

sequence since its anticlockwise angle from edge 5, at

node I, is smaller than that of edge 13; thus edge 19 is

the nearest, from the right, to the edge 5.

The perimeter loop may also be determined by

starting the sequence from a node that is known to be at

an extreme position, and adopting the 'First Right' choice

consistently at each node. For example, node I is at an

extreme position (on the boundary or perimeter loop) since

it has the minimum Y coordinate for the entire graph.

There are three adjacent edges at node I: edges 13, 5, and

19. Edge 19 is chosen as the next in the sequence since it

has the smallest angle to the positive X-axis. At node M

the only possible edge to follow is edge 16, but at node

H, edge 17 is selected since its anticlockwise angle from

edge 16 is smaller than that of edge 3. The process is

continued until the path has returned to the starting node

180

I. The other loops, referred to as ‘inside' loops, as

detailed in Figure 6.1, may be discovered by traversing

each edge twice, the second time in the opposite sense

from the first. One result of this is that loop number L6

and L7, through nodes F, K, G and N, are identical in

every way except sense, and it is axiomatic that any such

loop is disjoint. Any other loop is referred to as a

‘connected' loop.

The algorithm is as follows:

STEP 1: Label all edges in the graph as 0

STEP 2: Find a node that has the minimum Y coordinate

STEP 3: Find an edge that has an end point at the above

node, and makes the smallest angle with the positive

X-axis

STEP 4: Mark this edge as +1 if the above node is the

start node, or as -1 if it is the end node

STEP 5: Starting at the other node of the above edge ,

make a right turn to select the next edge

STEP 6: Mark each traversed edge as +1 if it has a flag 0

and traversed in the positive sense, or as -1 if it has a

flag 0 and traversed in the negative sense

STEP 7: Once the start node (node chosen in step 2), is

reached again, search for an edge that has been marked as

Os; rlnon —1..

STEP 8: Reverse the sense of the edge found in step 7 and

make first right turn

181

STEP 9: Mark each edge as +2 if traversed in both opposite

senses

STEP 10: Repeat steps (5), (6), (7), (8) and (9 until all

the edges have been marked as +2, i.e. traversed in both

positive and negative senses

STEP 11: Label the first circuit (loop) as PERIMETER, and

the remaining ones as INSIDE

STEP 12: Compare each pair of circuits, and if a circuit

repeats itself in the opposite sense then label it as

DISJOINT (Type =0), else label it as CONNECTED (Type =1).

The results of applying the above algorithm to the

arbitrary view in Figure 6.1(a) are displayed in Figure

6.1(c). The first loop, circuit Ll, is identified as the

perimeter loop while the remaining circuits as inside

loops. Circuits L6 and L7 represent the same loop

traversed in both opposite senses and is therefore

identified as a disjoint loop. The others are recognized

as being connected loops.

6.1.2) THE LOOP IDENTIFIER’ ALGORITHM:

This algorithm exploits the geometric and

topological characteristics of Simple two-dimensional

shapes in order to identify the pattern of each closed

loop in the orthographic views. The actual technique used

is similar to the production rules approach employed in

182

the design of expert systems, in the sense that the

knowledge about the characteristics of each geometric

shape is used. For example, a loop is classified as a

rectangle if it has four straight edges and three inside

angles each equal to ninety degrees. The characteristics

associated with a number of geometric shapes can also be

recognized. Figure 6.2, shows the five simple 2D shapes

that may readily be identified by the algorithm. These may

be defined as follows:

a) a rectangle, or a square, as a loop that has :

- four straight edges,

- all the inside angles are ninety degrees angles,

- opposite edges are parallel and equal.

b) a right-angled triangle as a closed loop that has :

- three straight edges,

- at least one of the inside angles is ninety degrees.

c) a circle as a closed loop that has ;

- one circular arc edge

- the start and end nodes of the arc edge are the same

point

or

- two or more circular arc edges,

- all the arcs have the same radius and centre

coordinates,

- the start node of the first edge is the same point

183

Rectangle (or Square)

Right - Angle Triangle

Simple 2D Fillet

Sector of Circle

(any angle)
Complete Circle OL

V
1

Fig. 6.2: The five 2D geometric shapes
identified as ‘Basic Patierns'

184

as the end node of the last edge.

d) a quadrant as a closed loop that has :

- three edges two of which are straight and the other

is an arc,

- the inside angle formed by the straight edges is

equal to ninety degrees,

- the coordinates of the centre of the arc are equal

to the coordinates of the intersection point of the

straight edges.

e) a fillet as a closed loop that has :

- three edges two of which are straight and the other

is an arc,

- the inside angle formed by the straight edges is

equal to ninety degrees,

- the coordinates of the centre of the arc are equal

to the coordinates of the mirror image of the intersection

point of the straight edges abou the chord joining the

nodes of the arc.

Each shape has several characteristics, however

the algorithm only uses those which are necessary and

sufficient to identify it. For example, in order to

identify a rectangle, the algorithm only looks for the

following two characteristics:

- four straight edges,

185

- at least three inside angles must be equal to ninety

degrees.

A loop that has been identified as one of the

above shapes, is stored as a basic pattern, and is

allocated a flag, LPF, according to the shape it has been

identified with:

- LPF = 1: for a rectangle or a square loop,

- LPF = 2: for a right-angled triangle loop,

- LPF = 3: for a fillet loop,

- LPF = 4: for a quadrant loop,

= LPF = 5 : fora full cizele loop.

It is obviously possible to include a much larger

number of simple shapes in the algorithm, such as

parallelograms, semicircles and so on ..; however it has

been found that the shapes described above are sufficient

for the interpretation process, since they are the only

ones found in the orthographic views of the

three-dimensional primitives considered in this work.

Furthermore, each loop which can not be identified as one

of the above shapes, is stored as an arbitrary pattern

with a flag set to zero (LPF = 0).

Assuming that the loop that is being processed has

N edges, then the algorithm for each loop is as follows:

186

STEP 1: Are all the edges straight edges ?

1.1: if YES then go to step(2)

1.2: if NO then go to step(5)

STEP 2: if N < 3 then exit with error message.

Ay teeet iN 3 then go to step (3)

2523, LEON, 4 then go to step (4)

2.3: if N > 4 then go to step (14)

STEP 3: Is the inside angle between two adjacent edges

equal to ninety degrees ?

3.1: if YES then the loop is a right-angled triangle,

LPF = 2. EXIT.

3.2: if NOT then go to step (14)

STEP 4: Are there at least three inside angles equal to

ninety degrees ?

4.1: if YES then the loop is a rectangle or square, LPF

= 1. EXIT.

4.2: if NOT then go to step (14)

STEP 5: Are all the edges circular arcs ?

5.1: if YES then go to (6)

5.2: if NOT then go to (9)

STEP 6: All edges are circular arcs;

6.1: if N= igo tovstep (7)

6.2: if N > 1 go to step (8)

STEP 7: Are the coordinates of the Beare node equal to the

coordinates of the end node ?

7.1: if YES then the loop is a full circle, LPF = 5.

Exo

7.2: if NOT then go to step (15).

187

STEP 8: Are the coordinates of the centres of all the arcs

equal ?

8.1: if YES then the loop is a full circle, LPF = 5.

EXIT.

8.2: if NOT then go to step (14)

STEP 9: Some of the edges are straight edges and others

are circular arcs.

9.1: if N = 3 then go to (10)

9.2: if N < 3 then go to step (15)

9.3: if N > 3 then go to step (14)

STEP 10: Is there only one arc among the edges ?

10.1: if YES then go to step (11)

10. 2ceie. NoT then go to step (14)

STEP 11: Are the two straight edges perpendicular ?

11.1: if YES then go to step (12)

11.2: if NOT then go to step (14)

STEP 12: Are the coordinates of the centre of the arc equal

those of the point of intersection of the two straight

edges ?

12.1: if YES then the loop is a quadrant, LPF = 4. EXIT.

12.2: if NOT then go to step (13)

STEP 13: Are the coordinates of the centre of the arc equal

to those of a point which is the mirror image of the point

of intersection of the two straight edges about the line

joining the two noaes of the arc ?

13:1 if YES then the loop is a fillet, LPF = 3. EXIT.

13:2 if NOT then go to (14)

STEP 14: The loop is an arbitrary loop, LPF = 0. EXIT.

188

STEP 15: Error message and EXIT.

6.1.3) THE CLASS IDENTIFIER’ ALGORITHM:

The class of the object depends on the number,

type and shape of all the loops in all the views, as shown

in sections 2.4.1 and 2.4.2. This algorithm uses the

information about the number and type of loops gathered

from the ‘loop detector' algorithm, and the shape

information obtained from the ‘loop identifier' algorithm,

to determine the class of the object.

By assuming that:

a) the orthographic views are labelled as 1 for the

XY view, 2 for the XZ view and 3 for the YZ view, and the

number of loops in each view is stored in the array NL(i),

del, 2) Sr

b) the type of each loop is assumed to be stored in

the array TYPE(n), n = 1, 2, 3, ... NL(i), and equal to

either 0 for disjoint loop, or to 1 for a connected loop,

c) the information concerning the shape of the loop

is assumed to have been stored in the array SHAPE(n) and

is equal to LPF (the flag set by the loop identifier).

189

The algorithm is as follows:

STEP 1: i = 0; KOUNT = 0;

STEP 2: Is i> 3 7?

2.1: if YES then go to step (14)

2.2: if NOT then i = i + 1 and go to step (3)

STEP 3: Does view NL(i) consists of one loop only ?

3.1: if YES then KOUNT = 0

3.2: if NOT then KOUNT = KOUNT + 1

3.3: Go to step (2)

STEP 4: All the loop have been examined,

4.1: if KOUNT 0 then go to step (5)

4.2: if KOUNT 1 then go to step (7)

4.3: if KOUNT M1 2 then go to step (8)

4.4: if KOUNT 3 then go to step (9)

STEP 5: Each view consists of one closed loop. Are all the

loops identified as basic patterns, 1 SSHAPE(1)< 5 ?

5.1: if YES then go to step (6)

5.2: if NOT then EXIT.

STEP 6: Do these set of patterns form a 'signature' ?

6.1: if YES then the object is itself a primitive.

6.2: if NOT then EXIT.

STEP 7: The object has only one loop in at least one view.

The object may be a simple prismatic or an arbitrary

object. Go to step (11).

STEP 8: The object has at least two views each of which

comprises only one loop. This is not consistent. EXIT.

190

STEP 9: Each view has more than one loop. The object may

either be a complex prismatic or an arbitrary object.

Check if the loops are disjoint or not. Is there at least

one view which comprises only disjoint loops (TYPE(n) =0)

9.1: if YES then go to step (10)

9.2: if NOT then go to step (14)

STEP 10: Is there more than one view which comprises only

disjoint loops ?

10.1: if YES then EXIT.

10.2: if NOT then go to step (11)

STEP 11: Do all the nodes in the views other than the one

which consists of either one, or more, closed disjoint

loops, belong to the perimeter loop.

11.1: if YES then go to step (12)

11.2: if NOT then EXIT.

STEP 12: Are all the loops in the views other than the one

which consists of either one, or more, closed disjoint

loops, identified as rectangular shapes ?

12.1: if YES then go to step (13)

12.2: if NOT then EXIT.

STEP 13: If I (I = 1, 2, or 3) is the base view, i.e. the

view which comprises either one, or more, disjoint loops,

then :

aoa t NL (I) = 1 then the object is a simple prismatic

object. EXIT.

13.2: if NL(I) > 1 then the object is a complex

prismatic object. EXIT.

STEP 14: The object is an arbitrary object. EXIT.

191

6.1.4) THE ‘LOOP PROCESSOR" ALGORITHM:

The class of the object, once identified,

determines the object loop, (or loops) that is (are) to be

processed in order to identify the three-dimensional

primitives together with the transformations and Boolean

operations associated with them. For instance, in the

case of prismatic objects, the object loops that are found

in the base view, are the only loops to be processed since

the other views comprise only rectangles (section 5.4.2).

In the case of non-prismatic objects, only the object loop

identified as the boundary, or perimeter, loop in each

view, is analysed (section 5.4.3).

The first task in processing an object loop is to

define the node coordinates of its surrounding rectangle.

This is achieved by computing the extreme node coordinates

of the object loop. The next task is to locate the loops

formed by the intersection of the surrounding rectangle

and the object loop. This is achieved by generating a

list, referred to as the ‘control list', which contains

the information about the position of the nodes of the

obiect loop in relation to the nodes and sides of the

surrounding rectangle. Each located loop is then examined

in order to classify it as either a specific basic pattern

or as an arbitrary pattern. This task is in effect carried

out by the ‘Loop Identifier' algorithm described above. A

flag which identifies the shape of the pattern is then

192

attached to each loop. Any loop that has been identified

as an arbitrary pattern is then decomposed into either a

number basic patterns or into further arbitrary patterns

that require further processing.

Finally, using these basic patterns, all the

three-dimensional primitives are identified, and the

transformations together with the Boolean operations

associated with them, are defined. These are then stored

in a Boolean tree according to the order in which the

primitives are generated. The data stored in the Boolean

tree is then converted into a specific format which

depends on the solid modeller that is used in the

interpretation process, and which, in the present work, is

the PAFEC "BOXER" text definition structure described

section 5.3.4. The converted data is in effect the output

of the analysis step, and the file in which it is stored,

is used as input file by the solid modeller.

The specifications of the ‘Loop Processor'

algorithm are as follows:

STEP 1: Read and extract the coordinates of the nodes of

the loop from the input file, and compute the maximum and

minimum values to define the coordinates of the

surrounding rectangle.

STEP 2: Generate a ‘control list' by performing a series

of tests to check the position of all the object loop

193

nodes in relation with the nodes and sides of the

surrounding rectangle.

STEP 3: Use the control list generated in step (2) to

locate the primitive loops formed by the intersection of

the surrounding rectangle and the object loop.

STEP 4: Examine the characteristics of the shape of each

primitive loop and identify the pattern associated with

it. Store the data of the loop together with the flag,

which identifies its shape, in a file.

STEP 5: Scan the above file for a flag which identifies a

loop as an arbitrary pattern. If such flag exists, then

extract the data of that particular loop from that file

and store them in the input file, and repeat steps (1) to

(5). Otherwise go to step (6).

STEP 6: Identify the three-dimensional primitive related

to each basic pattern. Generate and store the

transformations and Boolean operations associated with

each primitive.

STEP 7: Convert the data obtained from step (6) into

BOXER format and store it into a file.

STEP 8: EXIT.

The tasks associated with the steps of the above

algorithm, are in effect carried out by the algorithms

described in the following sections.

194

6.1.5) DHE EXTREME COORDINATES SEARCH’ ALGORITHM:

This is a straightforward search routine which

performs the first step of the 'Loop Processor' algorithm.

Its function is to scan the coordinates of the nodes of a

particular loop and finds the maximum and minimum values.

It is possible that an extreme value lies on a circular

arc where no node exists, then it is necessary to split

the arc into smaller arcs and generate a node at this

extremity. Figure 6.3(a) shows an orthographic view where

such a case may arise; initially, the view comprises 11

nodes; node 12 is then added to it by splitting edge

{11,9} into edge {11,12} and {12,9}, in Figure 6.3(b)

which also shows the updated topology.

These extreme values are used to define nodes

coordinates for the surrounding rectangle which is, as

defined previously in section 5.3.1, the orthographic

projection of the surrounding cuboid. The specifications

of this algorithm may be briefly described as follows:

Assuming that there are N edges in the view, then:

STEP 1: I = 0, and set Pmax and Qmax to infinitely small

values, and Pmin and Qnan to infinitely large values.

STEP 2: I =I +1. Is I greater than N ?

2.1: If YES then go to step (9)

2.2: If NOT then go to step (3)

195

TOPOLOGY

Edge no.}| Start node |End Node

1 10 4

2 5 8

3 1 1
4 2 3
5 1 8

6 4 2
fi v 3
8 ie 5

9 7 9

10 9 1

as 6 8

12 6 1

(a) 13 4 9

NEW TOPOLOGY

Edge no.| Start node {End Node

1 10 4

4 5 8
3 nq 10

4 2 3

5 1 8

6 4 2

tg 7 3

8 2 5

9 7 9

10 9 11

11 6 8

12 6 11

13 1 _ 12
(b) 14 12 9

Fig. 6.3: Search for extreme coordinate values
and topology update

196

STEP 3: Read the coordinate values of the nodes of the Ith

edge in the loop and compute the maximum and minimum

coordinate values, Xmax, Ymax, Xmin and Ymin.

3.1: If Xmax greater than Pmax, then Pmax = Xmax

3.2: If Xmin smaller than Pmin, then Pmin = Xmin

3.3: If Ymax greater than Qmax, then Qmax = Ymax

3.4: If Ymin smaller than Qmin, then Qmin = Ymin

STEP 4: Is the Ith edge a circular arc ?

4.1: If YES then go to step (5)

4.2: If NOT then go to step (2)

STEP 5: Does the arc intersect a horizontal straight edge

passing through its centre ?

5.1: If YES then go to step (6)

5.2: If NOT then go to step (7)

STEP 6: If XA and YA are the coordinates of such

intersection point, then

6.1: If XA greater than Pmax, then Pmax = XA

6.2: If XA smaller than Pmin, then Pmin XA

6.3: If YA greater than Qmax, then Qmax = YA

6.4: If YA smaller than Qmin, then Qmin = YA

STEP 7: Does the arc intersect a vertical straight edge

passing through its centre ?

7.1: If YES then go to step (8)

7.2: If NOT then go to step (2)

STEP 8: If XB and YB are the coordinates. of such

intersection point, then

8.1: If XB greater than Pmax, then Pmax = XB

8.2: If XB smaller than Pmin, then Pmin = XB

197

8.3: If YB greater than Qmax, then Qmax = YB

8.4: If YB smaller than Qmin, then Qmin = YB

8.5: go to step (2).

STEP 9: EXIT.

The coordinates, XR and YR, of the nodes of the

surrounding rectangle may then defined according to the

sense of the object loop it surrounds. Figure 6.4(a) shows

an anticlockwise loop surrounded by a rectangle defined by

the following nodes :

XR(1) = Pmin YR(1) = Qmin

XR(2) = Pmax YR(2) = Qmin

XR(3) = Pmax YR(3) = Qmax

XR(4) = Pmin YR(4) = Qmax

and Figure 6.4(b) shows a clockwise loop surrounded by a

rectangle defined by the following nodes:

XR(1) = Pmin YR(1) = Qmin

XR(2) = Pmin YR(2) = Qmax

XR(3) = Pmax YR(3) = Qmax

XR(4) = Pmax YR(4) = Qmin

6.1.6) THE "CONTROL LIST GENERATOR’ ALGORITHM:

This algorithm performs step (2) of the 'Loop

198

N2

N1

Fig. 6.4: a) An anticlockwise loa >» and
its surrounding rectangle

b) A clockwise loop and its
surrounding rectangle

199

Processor' algorithm. Its function is to produce a list

that is needed for the detection of primitive loops formed

by the intersection of the object loop and the surrounding

rectangle. It performs a series of tests, using

homogeneous coordinates, (see appendix C), to check the

position of all the nodes of the object loop, in relation

with sides and nodes of the surrounding rectangle.

An object loop and its surrounding rectangle are

shown in Figure 6.5(a). The ‘control list" consists of

three arrays, (A), (B) and (C), shown in Figure 6.5(b) as

columns A, B and C, respectively. Array (A) stores the

node number of any node which belorgs to the object loop

and which lies on a side of the surrounding rectangle.

Array (B) stores the number of the side of the surrounding

rectangle which contains that node, and array (C) stores

the digit 1, to indicate that the node lies on one of the

sides of the surrounding rectangle, or the digit 0 to

indicate that the node coincides with one of the nodes of

the surrounding rectangle. For example, in Figure 6.5(b),

the first row of the control list indicates that node 5 of

the object loop, shown in Figure 6.5(a), lies on the

surrounding rectangle side number 1, and does not coincide

with any node of the surrounding rectangle, while the

fifth row indicates that node 7 of the object loop, lies

on side 4 of the surrounding rectangle and coincides with

one of the surrounding rectangles nodes, shown in Figure

6.5(a) as node N4.

200

(a)

A B c

5 1 1
i 1 1

13 2 1
9 3 |

iu 4 0

11 4 1

12 4 1
6 4 1

(b)

Fig. 6.5: a) An object loop and its
surrounding rectangle

b) the corresponding 'control list'

201

The specifications of the ‘Control List Generator'

algorithm are as follows:

Assuming that the object loop consists of N edges,

and that the surrounding rectangle nodes and sides are

labelled as NR; and SR; j 4, respectively, where j = 1, 2, 3,

and 4, then

STEP i: 2 0 and KOUNT = 0

Steere. a I+1; J=0, If I >WN, then go to step (6)

STEP 3: J =J+1. If J > 4 then go to step (2).

STEP 4: Does the Ith node of the object loop lie on side

SRy of the surrounding rectangle ?

4.1: If YES then KOUNT = KOUNT + 1

and A(KOUNT) = T and B(KOUNT) = j.

4.2: If NOT then go to step (5)

STEP 5: Does the Ith node of the object loop coincide with

a node of the surrounding rectangle ?.

5.1: If YES then C(KOUNT) = 1

5.2: If NOT then C(KOUNT) = 0

5.3:° Go to step (3) .

STEP 6: EXIT

6.1.7) THE ' PRIMITIVE LOOP LOCATOR’ ALGORITHM:

This algorithm processes the ‘control list'

202

generated by the previous algorithm in order to:

1) locate the primitive, or subobject, loops formed by

the intersection of the surrounding rectangle and the

object loop, thus performing step 3 of the ‘Loop

Processor' algorithm.

2) compute the number of segments, and the coordinates

of each node, of each primitive loop it locates.

This algorithm also detects a number of

characteristics which identify a primitive loop, referred

hereafter as an ‘'unstable' loop, as one which will later

require more processing in the decomposition stage of

arbitrary loops into basic patterns. These loops and their

special treatment are discussed in the following section.

The specifications of the algorithm are as

follows:

It is considered that M nodes of the object loop,

have been found to lie on the surrounding rectangle. The

numbers of such nodes are listed in the array (A) of the

control list. The nodes of the object loop are labelled

sequentially according to whether the loop has an

anticlockwise or a clockwise sense.

STEP T: I=1

203

STEP 2: I =I +1. If I is greater than M then go to step

(9).

STEP 3: Compute:

D1 B(l+L)) = BL)

D2 A(Iti) = A(T).

3.1: If C(I) = 0 or C(I+1) = 0 then go to step (4)

3.2: TE C(T) 0 and C(I+1) = 0 then go to step (7)

3.3: If D2 < 0 then go to step (8)

STEP 42 (Dl = Dl -= 2

4.1: If Dl = 0 then go to step (5)

4.2: If Dl = 1 then go to step (6)

4.3: If D1 > 1 then go to step (8)

STEP 5: Check if there is any primitive loop between node

numbers stored in (A):

5.1: If D2 = 0 then the node number in A(I+1) is the

same as the node number stored in A(I), thus there is an

error. Go to step (7).

5.2: If D2 = 1 then there is only one edge that can be

defined between the node stored in A(I+1) and A(I). If

that edge is an arc, then there is a primitive loop which

has two edges, but if the edge is a straight edge then

there is not any primitive at that position.

5.3: If D2 = 2 then there is a primitive loop which has

three edges.

5.4: If D2 = 3 then there is a primitive loop which has

four edges.

5.5: If D2 = 3 + n then there is a primitive loop which

has 4 + n edges.

204

5.6: ‘Go: to step (2).

STEP 6: Check if there is any primitive loop between node

numbers stored in (A):

6.1: If D2 = 0 then the node number in A(I+1) is the

same as the node number stored in A(I), thus there is an

error. Go to step (7).

6.2: If D2 = 1 then there is a primitive loop which has

three edges.

6.3: If D2 = 2 then there is a primitive loop which has

four edges.

6.4: If D2 = 2 + n then there is a primitive loop which

has 4 + n edges

6.5: Go to step (2)

STEP 7: Check if there is any primitive loop between node

numbers stored in (A):

7.1: If D2 = 1 then there is a primitive loop which has

three edges.

7.2: If D2 > 1 then there is a primitive loop which is

identified as an 'unstable' loop.

T2333 Go to step (2).

STEP 8: Error.

STEP 9: Exit.

The output of the above algorithm comprises the

geometric and topological data of each primitive loop that

has been located. These data are then used by the 'Loop

Identifier’ algorithm, in step 4 of the ‘Loop Processor'

algorithm, to determine the shape of each primitive loop

205

which is then stored in a file, referred to thereafter as

file MAINDATA, together with the appropriate flag, LPF, to

indicate whether the shape is a basic pattern, LPF = 1, 2,

3, 4, ox 5, or an arbitrary pattern, LPF = 0.

6.1.8) THE "ARBITRARY PATTERN ANALYSER’ ALGORITHM:

The function of this algorithm is to decompose any

arbitrary loops into further primitive loops. The output

file, MAINDATA, generated from the 'Loop Identifier'

routine, is scanned in order to search for any flags, UPF,

equal to 0, which indicate that the corresponding loop has

an arbitrary pattern. If such a flag is found then the

geometric and topological data of the corresponding loop

is retrieved and stored in another file, referred to as

ADATA, in order to be used as input to the whole process

again. The processing of the file ADATA may result in a

number of primitive loops that are either basic or

arbitrary patterns, or both. This decomposition process is

illustratéd in Figure 6.6(a), where the object loop PO,

which has an arbitrary pattern, is decomposed into the

following loops:

loop Pl: a positive.rectangle (LPF = 1)

loop P2: a negative arbitrary loop (LPF = 0)

206

Po
Object
perimeter
loop

a Pe

surrounding
:

rectangle of
aa

object loop
P

(a) KS

surrounding P3 fillet

rectangle of
arbitrary loop

object perimeter loop
Decomposition of object loop

"MAINDATA" file

(b) 'ADATA" file

¥ Arbitrary loop decomposition

3 | 4 "ARBDATA" file

Merging in "MAINDATA" file

output MAINDATA file

(holds only basic patterns)

ol Data -of a basic petiern

[Xf Data of an arbitrary pattern

Fig. 6.6: a) Decomposition of an object loop

b) Transfer and merging of data files

207

The results of processing the file ADATA are then

stored in a new file, called ARBDATA, instead of being

stored in MAINDATA. For example, in Figure 6.6(a), loop P2

is decomposed further into two loops, P3 and P4, which are

identified as basic patterns and whose data is stored in

ARBDATA. Ali the above files are direct access files,

designed to have the same structure, a description of

which is given in section 7.5.

The algorithm consists mainly of a fast merging

routine that merges two direct access files together into

one. In this case, it merges files MAINDATA and ARBDATA

into the original file MAINDATA from which the file ADATA

has originated, as shown in Figure 6.6(b). The process of

scanning the file MAINDATA, generating and processing

ADATA and merging ARBDATA to MAINDATA is repeated again

until all the flags (LPF) in MAINDATA are found to be not

equal to 0, which would indicate that the data stored in

the file, correspond to loops which have been identified

as basic patterns only.

There are, however, some particular loops,

referred to earlier, in section 6.1.7, as ‘unstable'

loops, which can not be directly decomposed into further

patterns. The direct application of the decomposition

process to such a loop always leads to the generation of a

‘child' loop that is identical to its ancester. These type

of loops are readily detected by the ‘primitive loop

208

locator' algorithm described above. In this case, each

‘unstable' loop is dealt with by simply dividing it into

three loops for which the data are then stored back in the

file MAINDATA. Figure 6.7 shows such a loop, PO, and those

generated from its decomposition, one of which, P4, is

identical tu it.

The specifications for such an algorithm are as

follows:

It is considered that the input file has been

already processed to the stage where the file MAINDATA has

been generated, and that it comprises the data of a

number, NL, of loops, some of which have basic patterns

and others arbitrary ones. Thus, the file may comprise

flags that are equal to either 0, 1, 2, 3, 4, or 5.

STEP 1: I = 0.

STEP 22 T= (I + 1..Is)i greater than Ni ?

2.1: If YES then go to step (11)

2.2: If NOT then go to step (3)

STEP 3: Scan the file MAINDATA and read the flag (LPF) of

the Ith loop.

3.1: If LPF = 0 then cd to step (4)

3.2: If LPF = 1, 2, 3, 4 or 5 then go to step (2)

-STEP 4: Check if the loop is 'unstable'.

4.1: I£ YES then go to step (5)

4.2: If NOT go to step (6)

209

Pi

P3

(a)

(b)

Fig. 6.7: a) An ‘unstable' loop which can
not be decomposed directly

b) The decomposition of an
"unstable' loop

210

STEP 5: Split the ‘unstable' loop into three loops and

store their corresponding data in file 'MAINDATA' with a

flag LPF = 0. Go to step (1).

STEP 6: Store the data of the Ith loop (arbitrary pattern)

in the file 'ADATA'.

STEP 7: Use the file 'ADATA' as the input of the analysis

process, i.e. locate and identify the primitive loops

formed by the intersection of the arbitrary loop and its

surrounding rectangle.

STEP 8: Store all the loops generated from step (5) in the

file 'ARBDATA' with their corresponding flags (the file

ARBDATA has the same structure as the file MAINDATA, and

may contain both loops which are basic patterns and loops

which are arbitrary patterns).

STEP 9: Merge the file 'ARBDATA' into the file 'MAINDATA'.

STEP 10: Repeat steps (1), (2), (3), (4), (5), (6), (7),

(8), and (9), until all the loops stored in file

"MAINDATA' are identified as basic patterns, i.e., all the

flags, LPF, are not equal to zero.

STEP 11: EXIT.

The output of the above algorithm is a file which

contains the geometric and topological data of all the

two-dimensional basic patterns generated from the analysis

of one object loop in a given view. However, it has been

found that such data is not enough for the reconstruction

of the corresponding object loop. This reconstruction

process also requires the storage of the information, in

211

the form of pointers, corresponding to the relationship

between 'parent' and ‘'children' loops, and the order in

which these are generated. This information is stored in

the form of a tree, as shown in Figure 6.8(a). The object

loop is always at the root of the tree where each node

rcpresents an arbitrary primitive loop, and each leaf, cr

terminal node, represents a primitive loop which has been

identified as a basic pattern, i.e. one which does not

require any further decomposition. This tree is, in

effect, stored in two one-dimensional arrays. The first

array stores the number of the basic pattern in the order

in which they have been generated, as shown in Figure

6.8(b). The second array, Figure 6.8(c), holds a series of

pointers, which are separated in a number of groups, by a

null parameter. Each group determines a parent loop and

its corresponding children loops. For example, the

arbitrary loop numbered as 7, in the general tree, has

been decomposed further into two primitive loops, 9 and

10, identified both as basic patterns.

The order in which the primitive loops are

generated, stored and retrieved is very important since it

determines the resulting object loop; this is because the

Boolean difference operator is not commutative, and the

order in which the primitives are subtracted from each

other may yield different results. This problem is

illustrated in Figure 6.9(a) which shows the decomposition

of an object loop, PO, into a number of primitive loops;

212

—— Object loop (root)

(a) General tree generated by decomposition
of an object loop

O}1)2/5)6| 9 }10)11)13)14/15)16]17

b) storage of basic null separator
pattern labels parent loop

0

7
9 child loop

0 1 child loop

oe 1 cha 2 ore 3 ae 4 oe 5 group 6
!

 T T T i T 3)

ok abl fatale sf 2fof2ha 14}15]0)4/16)17|

c) pointers/groups storage

Fig. 6.8: Arbitrary loop decomposition
and data storage

213

these are labelled according to the order in which they

have been generated, and only loops identified as basic

patterns are stored, i.e., primitive loops Pl, P3, P4, PS

and P6. In order to reconstruct the object loop PO, the

Boolean operations performed on these basic patterns have

to be carried out in the rignt order, as shown in Figure

6.9(b), as follows:

P2 = P4 + PS + P6

and, ~-P0= Pi + °P2 + P3

However, a completely different object loop would

have been obtained if the Boolean operation have been

performed in a different order, as shown in Figure 6.9(c).

The reconstruction process, in this case, may produce not

only the incorrect object loop, but also self intersecting

and impossible loops.

The file which stores the geometric and

topological data of all these basic patterns is, in

effect, used to define the associated 3D primitives, their

corresponding transformations and Boolean operations.

Where>s, the two arrays determine which primitives are to

be combined by these Boolean operations to generate, for

eden object loop, a prismatic object, also referred to

here as a profile.

214

Pi NWS A

2

Pp

P4 Co pe

PS

(a)

is = &
Pia 4 (P5" 4 = P6 wi“ P3

Al
PI + P2) se ors = Po

(b)

Po

Pt + Ns ae

overlaping

7 = RK

split loops

Ye oan a

PS P6 bo

self-intersecting loop

(c)

fe = positive loop W- negative loop

Fig. 6.9: a) Decomposition of an object loop,
b) its correct reconstruction,
c) its incorrect reconstruction

215

6.1.9) THE '3D PRIMITIVES IDENTIFIER’ ALGORITHM:

This algorithm performs step 6 of the 'Loop

Processor' algorithm. Its function is to identify the

three-dimensional primitives by associating with the three

ews the primitive loops identified by the previous

algorithm. Since the strategy is to always generate a

prismatic object, or profile, for each object loop, and

since a prismatic object has always two views which

comprise only rectangular loops, two of the basic patterns

which constitute a primitive signature are, therefore,

always rectangles. Thus a complete signature may be

obtained by associating two rectangles with each

identified and stored basic pattern. For example, if two

rectangles are associated with a primitive loop which has

been identified as a circle, the prismatic shape is known

to be a cylinder, whereas if two rectangles are associated

with a primitive loop which has been identified as a

right-angled triangle, then the three-dimensional

primitive is a wedge.

The input to this algorithm is the file 'MAINDATA'

generated by the ‘Arbitrary Pattern Analyser’ algorithm,

according to which, only the data associated with basic

patterns is stored. The flag, Lr:' (see pages 184 and 186),

which identifies the geometric shape of each pattern is

also stored in this file.

216

Assuming that N basic patterns have been generated

during the process of a given object loop, the

specifications of the algorithm are as follows:

STEP 1: I= 0

STEP 2: T=I+1

STEP 3: Is I greater then N ?

3.1: If YES then go to step (11

3.2: If NOT then go to step (4)

STEP 4: Read the value of the flag LPF.

4.1: Tf LEF S 0 or LPF > 5 the go to (10)

4.2: If LPF = 1 then go to step (5)

4.2: If LPF = 2 then go to step (6)

4.3: If LPF = 3 then go to step (7)

4.4: If LPF = 4 then go to step (8)

4.5: If LPF = 5 then go to step (9)

STEP 5: The basic pattern is a rectangle and the signature

of a three-dimensional primitive BLOCK is obtained. Go to

step (2).

STEP 6: The basic pattern is a right-angle triangle and

the signature of a three-dimensional primitive WEDGE is

obtained. Go to step (2).

STEP 7: The basic pattern is a fillet and the signature of

a three-dimensioral primitive FILLET is obtained. Go to

step (2).

STEP 8: The basic pattern is a quadrant and the signature

of a three-dimensional primitive CYLINDRICAL SEGMENT 2s

obtained. Go to step (2).

217

STEP 9: The basic pattern is a circle and the signature of

a three-dimensional primitive CYLINDER is obtained. Go to

step (2).

STEP 10: Error. Exit

STEP 11: The type of all the three-dimensional primitive

has now been defined. Exit.

6.2) SOLID MODELLING INPUT FILE GENERATION:

It has been shown in chapter 5, that, in order to

generate the solid modelling input file it is necessary

to:

1) extract the size, shape, position and orientation

parameters of each identified three-dimensional primitive,

from the MAINDATA file obtained from the analysis step.

The type of each primitive is defined by the '3D

Primitives Identifier', described above.

2) generate and store the text structure definition of

each primitive, together with the Boolean operations which

represent the output model.

The MAINDATA file comprises the data associated

with all the two-dimensional basic patterns, and hence,

with all the three-dimensional primitives, generated from

the processing of one object loop. The file is a direct

218

access one which is composed of a number of sections

equal to the number of primitives. Thus, the first

section of the file contains the data of the first

primitive, the second section to the next primitive, and

so on. Each section of the file has the same structure as

the File asea to store the input data of each view, except

for an additional record which is appended at the end of

each section to store the identification flag, LPF, of the

corresponding primitive. The structure of the files that

store the topological and geometrical data of the input

views is describer later in section 7.4.

The maximum and minimum X and Y coordinate values

for any one of the adjacent views, are also required for

the specification of some of the parameters, such as size

and position, of some primitives. For instance, if a

primitive block has been identified by processing an

object loop in the XY view, then these values are used to

specify the length of a primitive block in the 2Z

direction. These extreme values are computed in the

analysis step.

The data stored in the file MAINDATA, described

above, together with the extreme coordinates values of one

of the adjacent views, provide enough intornation to

specify all the necessary parameters. of the identified

primitives. The shape, size, and position parameters of

each primitive, are computed using the node coordinate

219

values of the corresponding loop and the maximum and

minimum coordinate values obtained from the adjacent view.

Whereas, the orientation parameter depends on the view

from which the pattern is extracted. A primitive is

rotated by an angle equal to 90 degrees about either the

X, or Y¥ axis, only if the corresponding pattern is

contained in the XZ, or YZ view, respectively. The solid

modelling input file is finally completed by specifying

the Boolean operations, required to combine the primitives

according to the Boolean tree generated by the "Arbitrary

Pattern Analyser' algorithm (section 6.1.8).

A simple prismatic object whose XY view has been

identified as a base-view, is illustrated in Figure

6.10(a), where oxyz defines the coordinate system used by

the author, and OXYZ represents the solid modeller

coordinate system. Figure 6.10(b) shows the solid modeller

input file which contains, in 'BOXER' text structure, all

the primitive definitions and Boolean operations necessary

for the reconstruction of the object.

The first primitive that has been identified is a

‘primitive block, represents, in effect, the surrounding

cuboid, or raw block, from which the object is to be

‘cut-out '. The corresponding "BOXER' syntax may be written

as follows:

OBJNAME <- BLOCK(xlen, ylen, zlen) AT (xcen, ycen, zcen)

220

M Y
4 A 6 Z N2 he

iP o

oli .
+ g 1

a 8 = XB = — Sa.
x2 ome
= 3-4 '
> el Ly i 3

1 e ees he
i a

2 7 ae
} N4 << xlen2 —»| Ni

t + + +t + + + + + x
/ e 1 ad 5 wee 3 9

YMIN || ten ———_—__>
XMIN 4 oa XMAX >

(a)

 xYO1

xYo2

XYO3

XY04

<- BLOCK (8.0, 5.0, 3.0)

< CYL (3.0, 2.0) AT (2.5, 4.0, -1.5)

< BLOCK (3.0, 2.5, 3.0) AT (2.5, -1.5, 0.0)

<- WEDGE (2.0, 2.0, 3.0) AT (-4.0, 2.5, -1.5)

FAMOD <- XYO1 - XY02 - XYO3 - XY04

Fig.

(b)

6.10: a) Computation of 3D primitive
parameters from geometry of 2D
patterns

b) corresponding solid modelling
input file

221

OBJNAME represents the name of the primitive, or

object. The size and shape of a primitive block are

defined by its length, xlen, width, ylen, and depth, zlen,

which, in this case, may be specified by using the minimum

and maximum coordinate values of the base view and one of

the adjacent views, in the foliuwing equations:

xlen = ABS (XMIN - XMAX) (1)

ylen = ABS (YMIN - YMAX) (2)

zlen = ABS (ZMIN - ZMAX) (3)

where:

XMIN = minimum X coordinate value in the XY view

XMAX = maximum X coordinate value in the XY view

YMIN = minimum Y coordinate value in the XY view

YMAX = maximum Y coordinate value in the XY view

ZMIN = minimum Z coordinate value in the XZ or YZ view

ZMAX = maximum Z coordinate value in the XZ or YZ view

In this example, the name of the primitive block,

OBJNAME is automatically set to XY01, and its length,

xlenl, is equal to 8.00, height, ylenl, is equal to 5.00

and width, zlenl, to 3.00.

The position parameters of the 3D primitive are

defined by specifying the coordinates of its centroid,

xcen, ycen and zcen, with reference to the solid modeller

coordinate system, OXYZ. Since positioning parameters have

222

not been specified, in this case, the centroid of the

primitive block is automatically positioned at the origin

of the solid modeller coordinate system. Thus, xcen, ycen

and zcen are all equal to 0 in OxyYZ, but in oxyz they are

as follows:

xo (xmin + xmax) / 2.0

yo = (ymin + ymax) / 2.0

zo = (zmin + zmax) / 2.0

where xmin, xmax, ymin, ymax, zmin and zmax are the

coordinate values of the object surrounding block or 'Raw

Block'.

The next primitive, xXY02, is a cylinder segment

whose length, cylen, is equal to 3.00 and radius equal to

2.00. The 'BOXER' syntax for a primitive cylinder may be

written as follows:

OBJNAME <- CYL(cylen, radius) AT (xcyl, ycyl, zcyl)

The cylinder is positioned by defining the

coordinates xcyl, ycyl and zcyl, of the centre of ies

base. In this example, xcyl is equal to 2.5, ycyl to 4.0

and zcyl to -1.5. The cylinder length, radius, position

and orientation parameters are computed with reference to

the solid modeller coordinate system, OXYZ, which origin

is at the centroid of the previous primitive block. The

223

following equations are used:

cylen = ABS(zmin - zmax)

radius = V{(xc - xn)? + (yc - yn)2)}

xcyl = xc + xo

yeyl = yc + yo

zeyl - cylen / 2.0

where:

xn = x coordinate, in oxyz, of the start node (node 1) of

the circular arc in the base view.

xc = x coordinate, in oxyz, of the centre of the circular

arc in the base view.

yn = y coordinate, in oxyz, of the start node (node 1) of

the circular arc in the base view.

ye = y coordinate, in oxyz, of the centre of the circular

arc in the base view.

xO = x coordinate, in oxyz, of origin of OXY¥Z coordinate

system, as before.

yo = y coordinate, in oxyz, of origin of OXYZ coordinate

system, as before.

The third primitive, XY03 is a block whose length,

xlen2 equal to 3.0, height, ylen2, equal to 2.5 and width,

zlen2, equal to 3.0, are computed using equations (1),

(2), and (3) respectively. The primitive is positioned in

the solid modeller coordinate system by defining the

coordinate values of its centroid which are computed using

224

the following equations:

xcen = xo + ((xrmin + xrmax) / 2.0)

yeen = yo + ((yrmin + yrmax) / 2.0)

zcen = - zlen / 2.0

where xrmin, xrmax, yrmin, yrmax are the minimum and

maximum coordinate values of the primitive loop

(rectangle). The coordinate values xo and yo are as

previously defined.

The next primitive is a wedge whose name is set to

XY¥04. The 'BOXER' syntax for a wedge may be written as

follows:

OBJNAME <- WEDGE(xlen, ylen, zlen) AT (xcor, ycor, zcor)

The length, height and width of the primitive

wedge are computed using the following equations:

xlen = ABS(xwmin - xwmax)

ylen = ABS(ywmin - ywmax)

zlen = ABS(zmin - zmax)

where xwmin, xwmax, ywmin, ywmax are the minimum and

maximum coordinate values of the primitive loop

(triangle). The maximum and minimum values, zmin and zmax,

are the extreme coordinate values in the z direction, of

225

the surrounding rectangle of the object. The primitive

wedge is positioned by specifying the coordinate values

xcor, ycor and zcor, of its far corner, which is a node

that joins the two perpendicular edges. Theses values are

computed using the following equations:

xcor = xo + xr

ycor = yo + yr

zcor = - zlen / 2.0

where:

xx = the x coordinate value of the node at which the 90

degrees angle of the right-angle triangle is sustended.

yr = the y coordinate value of the node at which the 90

degrees angle of the right-angle triangle is sustended.

xO, yO = as previously defined.

Finally, the primitives are combined by the

Boolean operation specified, in this case, by the last

statement shown in figure 6.10(b). The object, whose name

is set to FAMOD, may be reconstructed by subtracting the

primitives XY02, XY03 and xXY04 from the surrounding block

defined as xyY01.

6.3) QUTPUT VERIFICATION ALGORITHMS :

There are two sets of data inputs to the output

226

verification process (section 5.3.5): one corresponds to

the input orthographic views, and the other, having an

ASCII format, is a PAFEC 'BOXER' file which represents the

orthographic views of the output model. The principal

functions of the output verification algorithms are:

a) to extract the data associated with the orthographic

views of the output solid model from the parametric file

generated by the solid modeller,

b) to compare the input and output views data in order to

detect differences (if any) between the input and output

orthographic views.

In the case of prismatic objects, the output

verification is carried out to confirm that the output

orthographic views are the same as the input orthographic

views. Thus, the model generated is verified to be the

exact object and the interpretation process is

successfully terminated.

In the case of more general three-dimensional

objects, the comparison between input and output views may

have the same result as above, or may lead _to the

detection of a number of discrepancies between the input

and output views. The presence of such discrepancies

indicates that the output model is not the exact object

but an approximation model. Thus, there exist a number of

subobjects which need to be removed from the output model

227

to generate another output model, which may again be the

exact object, or yet another approximation model.

6.3.1) EXTRACTION OF OUTPUT VIEWS DATA:

The first task in the output verification

subprocess is the extraction of the data corresponding to

the orthographic views of the output model from the

parametric text file generated by the solid modeller. A

small section of such a file, shown in Figure 6.11,

contains:

- Three lines of 'REM' statements, where each line is used

to indicate that the following block of data corresponds

to one view.

- A number of lines that comprise the character string

'LT' followed by an integer whose value is set to 1 to

indicate that the following edges are drawn in a dotted

line style (hidden edges), or to 2 to indicate that the

edges are solid lines (visible edges).

- Several lines that comprise the character string 'LN'

followed by an integer whose value is set to either 2 to

indicate that the edge is a straight edge, or to 5 to

indicate that the edge is a circular arc.

- Several groups of lines comprising the character

strings 'X =' and ‘'Y =! followed by real numbers. In the

case where the edge is a straight edge, each pair of lines

228

START / 3.1

FA 12

PROMPT INDICATE BOTTOM LEFT POINT

st / C XBL, YBL

REM NEW VIEW X AND Y PAPER SIZE :

Lt *

LN 2

x= 3.000000 + XBL, Y= -1,500000
X= -6.000000, Y= 0.000000

X= -3.000000 + XBL, Y= 1.500000

X= 6.000000, Y= 9.000000

x= 3.000000 + XBL, Y= 1.500000

X= 0.000000, Y= -3.000000

X= -3.000000 + XBL, Y= -1.500000

x= 0.000000, Y= 3.000000

Xe -1.000000 + XBL, Y= -1.500000

X= 0.000000, Y= 3.000000

x= 0.000000 + XBL, Y= 1.500000

x= 0.000000, Y= -3.000000

x= 2.000000 + XBL, Y= -1.500000

X= 0.000000, Y= 3.000000

X= 2.000000 + XBL, Y= -1.500000

X= 0.000000, Y= 3.000000

LT 2

IN 2
x= -1.000000 + XBL, Y= -1.500000

x= 0.090000, Y= 3.000000

REM NEW VIEW X AND Y PAPER SIZE :
Li 1

LN 2

X= -3.000000 + XBL, Y= 3.000000

x= 2.000000, Y= 0.000000

X= 2.000000 + XBL, Y= -3.000000

X= -5.000000, Y= 0.000000

x= 3.000000 + XBL, Y= -1.000000
X= 0.000000, Y= -1.000000
X= -3.000000 + XBL, Y= -3.000000

X= 0.000000, Y= 6.000000

LN 5
X= 3.000000 + XBL, Y= -3.000000

X= 0.000000, Y= 1.000000

A= 90,.000000

LN 2

X= 3.000000 + XBL, Y= -1.000000

X= -3.000000, Y= 0.000000

x= 1.000000 + XBL, Y= 0.000000

x= 0.000000, Y= 1.000000

Bd -1.000000 2.000000

x= 0.000000, Y= 1.000000

i 0.000000 + XBL, Y= 2.000000

X= 0.000000, Y= -1.000000

1 !
1 1

1
END

9.

+

+

+

+

+

+

‘”

+

9.

+

+

+

+

+

+

+

9422

YBL

YBL

YBL

YBL

YBL

YBL

YBL

YBL

YBL

9422

YBL

YBL

YBL

YBL

YBL

YBL

YBL

YBL

YBL

9.942

9.942

Fig.
parametric file

229

6.11: Solid modeller output

represents an edge. The first line contains the xX

coordinate and Y coordinate values of the start node of

the edge, whereas the following line contains the X

coordinate and Y coordinate values of the end node

relative to the start node of the edge. If, however, the

edge is an arc, thei: the first line contains the X

coordinate and the Y coordinate values of the start node

and the following line contains the X coordinate and Y

coordinate values of the centre of the arc relative to the

Start node of the edge. An additional line containing the

character string 'A =' followed by a real number gives the

angular position of the end node with respect to the start

node.

It is therefore possible to extract from such a

file, the complete geometric and topological data of the

orthographic projections of the output model. The

algorithm which carries out such a ‘task is a simple

routine which manipulates strings of characters.

It was found that the extracted data required a

minor adjustment because the coordinate system used by the

PAFEC 'BOXER' modeller is different to the one used by the

author. A shift in the X and Y directions is computed for

each view, by comparing the minimum X and Y coordinate

values of the extracted data with the minimum X and Y

coordinate values of the corresponding input orthographic

views. All the X and Y coordinate values in the output

230

views are then adjusted by deducting the corresponding

shift. The output of this routine is therefore the data

which represents the orthographic views of the output

model in the coordinate system adopted by the author. The

data structure is similar to the one which holds the input

orthographic views data.

6.3.2) THE 'COMPARISON’ ALGORITHM:

The purpose of this algorithm is to detect the

differences that may exist between the input and output

orthographic views. The most obvious and simplest test is

to compare the number of nodes and edges in the input

views with the number of nodes and edges in the

corresponding output views. However, it is possible for

two views to comprise the same number of nodes and edges

and yet may not be similar. For this reason, in addition

to this simple test, the algorithm has been developed to

include the following steps:

a) Search for a ‘matching node' in the output view for

each node in the corresponding input view. A node is

defined as having a 'matching' node only if the coordinate

values differ by not more than a preset tolerance. The

matching of two nodes is independent of the node numbers,

since the nodes in the input views are numbered in a

different sequence from the nodes in the output views.

231

b) Search for a ‘matching edge' in the output view for

each edge in the input view. An edge is defined as having

a 'matching edge' only if both edges have matching start

and end nodes, and they are both of the same type, i.e.

either both straight edges, or both circular arcs in which

case they must also have the same centre.

The search for matching edges is initiated only if

all the nodes in three input views have a matching nodes

in the corresponding output views. The specifications of

the algorithm may be as follows:

STEP 1: Compare the number of nodes in the input XY view

with the number of nodes in the output XY view. If these

numbers are equal then go to step (2), otherwise go to

step (13).

STEP 2: Compare the number of edges in the input XY view

with the number of edges in the output XY view. If these

numbers are equal then go to step (3), otherwise go to

step (13).

STEP 3: Compare the number of nodes in the input YZ view

with the number of nodes in the output YZ view. If these

numbers are equal then go to step (4), otherwise go to

step (13).

STEP 4: Compare the number of edges in the input YZ view

with the number of edges in the output YZ view. If these

numbers are equal then go to step (5), otherwise go to

step, (13).

232

STEP 5: Compare the number of nodes in the input XZ view

with the number of nodes in the output XZ view. If these

numbers: are equal then go to step (6), otherwise go to

step (13).

STEP 6: Compare the number of edges in the input XZ view

with the numbez of edges in the output XZ view. If these

numbers are equal then go to step (7), otherwise go to

Brep -(13)r.

STEP 7: For each node in the input XY view, find a

‘matching node' in the output XY view. If such a matching

node does not exist then go to step (13).

STEP 8: For each edge in the input XY view, find a

‘matching edge' in the output XY view. If such a matching

edge does not exist then go to step (13).

STEP 9: For each node in the input XZ view, find a

"matching node' in the output YZ view. If such a matching

node does not exist then go to step (13).

STEP 10: For each edge in the input XZ view, find a

‘matching edge' in the output XZ view. If such a matching

edge does not exist then go to step (13).

STEP 11: For each node in the input YZ view, find a

‘matching node' in the output YZ view. If such a matching

node does not exist then go to step (13).

STEP 12: For each edge in the input YZ view, find a

‘matching edge' in the output YZ view. Ir such a matching

edge does not exist then go to step (13), otherwise go to

step (15).

STEP 13: If the object has been classified as a prismatic

233

object then go to step (14), otherwise go to step (15).

STEP 14: The input and output views should have been

similar. Inform the user that there has been an error.

Exit.

STEP 15: All the input and corresponding output

orthographic views are similar. Inform th2 user that the

generated model is the exact object. Exit.

STEP 16: The input and output orthographic views. Produce

a list of differences (nodes and edges numbers). Inform

the user that the generated model is an approximation

model, and that further processing is required in order to

reconstruct the exact object, or to obtain a more refined

model. Exit.

The last step of the above algorithm represents,

in effect, the only instance where interaction with the

user may be required. A choice is here given to the user

on whether to terminate, or to allow the interpretation

process to continue in order to generate another model

which may then either be the exact object, or another but

more refined approximation model.

6.4) EEED BACK ALGORITHMS:

Discrepancies between the input and output

orthographic views indicate that the output model requires

further processing in order to generate either the exact

234

object, or a more refined model. This process, which

consists of identifying and subtracting one or more

subobjects from the output model, is initiated by the feed

back subprocess algorithms whose main function is to

examine the original input views and the orthographic

views of the output model, in order to generate the

orthographic views of such subobjects. The geometric and

topological data related to the orthographic projections

.of these subobjects are then fed back as input to the

analysis process, and interpreted as solid models in a

similar fashion to the original input views.

The first step in the feed back subprocess

consists of generating the views of a wireframe which is

defined by combining the wireframe of the input object

with the wireframe of the output model. It can be clearly

observed from Figure 6.12, that the purpose of such a

wireframe is to define the wireframes of the subobjects

that are to be removed from the output model. Such a

wireframe, referred to here as the 'pseudo-wireframe', may

not be directly generated since the input object is yet to

be reconstructed; however, the orthographic projections of

the pseudo-wireframe, shown in Figure 6.13, and referred

to hereafter as the pseudo-views, can be obtained directly

from the input views and the orthoyraphic projections of

the output model. Furthermore, the orthographic views of

subobjects defined by the pseudo-wireframe, are clearly

visible in the pseudo-views, shown in Figure 6.13 as

235

aS

(a)
(b)

Fig. 6.12:

(c)

a) Input object
b) 1st approximation model
c) 'Pseudo-wireframe'

236

(a)

. < ec
>

v
Zz

(b)

Fig. 6.13: a) A pseudo-wireframe, and
b) its orthographic projections

(pseudo-views)

237

hatched areas. The pseudo-views are generated by the

"Pseudo-views Generator' algorithm described below in

section 6.4.1.

The next step in the feed back subprocess is to

extract from the pseude-views the orthographic projecticns

corresponding to each subobject that is to be removed from

the output model. This task is performed by the 'Feed Back

Data Generator' algorithm described below in section

6.4.2.

6.4.1) THE__"PSEUDO-VIEWS GENERATOR" ALGORITHM:

Pseudo-views are generated by ‘assembling' all the

nodes and edges of the original input views with those

which describe the orthographic views of the output model.

The first step in the process of '‘assembling' these

entities is to identify the nodes which are not common to

both set of projections. Such nodes are referred to

hereafter as either input, or output, ‘Active' nodes.

Input active nodes, such as nodes 1, 4,7 and 10 in the YZ

in Figure 6.14(a), are nodes'which exist in one of the

original input views but which do not have matching nodes

in the corresponding view of the output model. The

definition of a match is similar to the one used in the

‘Comparison' algorithm, described in section 6.3.2.

238

10e

ary! 8 |
4 10

€

o-
4

(a)

(b)

e Active node

Fig. 6.14: a)
b)

c)

Cviginal input views,
orthographic views of first
approximation model, and
corresponding pseudo-views

239

The next step is to 'fit' any input,. or output,

active node to the output, or input, views, respectively.

A 'fit' consists of adding an active node to a view by

splitting the edge on which it lies, in that view, into

two new edges. For example, the input active nodes 7 and

9, in the YZ view of the output model, shown in Figure

6.14(b), are fitted into the input YZ view, in Figure

6.14(a), by splitting input edge {3,11}, into three new

edges, which are shown as edges {A,B}, {B,C} and {C,D} in

Figure 6.14(c). A pseudo-view is then generated by adding

to the input view those edges which are not common to both

input and corresponding output views.

The specifications of the algorithm may be

described as follows:

STEP 12>" I= 0

STEP 2: I =I +1; If I > 3 then go to step (8)

STEP 3: Search in the Ith input view for nodes that do not

have a matching node in the corresponding Ith output view.

Store these nodes, if any, as input active nodes.

STEP 4: Search in the Ith output: view for nodes that do

not have a matching node in the corresponding Ith input

view. Store these nodes, if any, as output active nodes.

STEP 5: Search in the Ith output view for edyes which may

be colinear .with the input active nodes of the

corresponding Ith input view. Split such edges, and update

the geometry and topology of the Ith output view,

240

accordingly.

STEP 6: Search in the Ith input view for edges which may

be colinear with the output active nodes of the

corresponding Ith output view. Split such edges, and

update the geometry and topology of the Ith input view,

accordingly.

STEP 7: Generate the Ith pseudo-view by adding to the Ith

input view, all the edges which are in the Ith output view

only. Go to step (2)

STEP 8: Exit.

6.4.2) THE 'FEED BACK DATA GENERATOR’ ALGORITHM:

This algorithm has been developed to perform the

task of extracting from the pseudo-views, the data

corresponding to sets of orthographic projections of any

subobject that is to be removed from the output model. The

first step of the algorithm consists of identifying all

the loops in the pseudo-views. This is achieved by

applying the 'Loop Detector' algorithm described in

section 6.1.1. The loops are then labelled as follows:

0 for a loop which does not exist in either input or

corresponding output views.

1 for a loop which exists in the input views only.

2 for a loop which exists in the output views only.

3 for a loop which exists in both input and

241

corresponding output views.

A loop in a view is said to exist in another view,

only if there is a loop, in the that view, which meets the

following conditions:

a) Both loops have exactly the same number of nodes and

edges, where each node in one loop has a matching node in

the other loop.

b) Each edge in one loop has a similar edge in the other

loop. Similar edges are defined as edges which are of the

same type, i.e straight edges or circular arcs, and the

start and end nodes of one edge are the matching nodes of

the other edge. Furthermore, in the case where the edges

are circular arcs, the centres of both arcs must have the

same coordinate values.

For example, in Figure 6.14(c), the loop defined

by nodes b, c, 1 and p, in the YZ pseudo-view, has been

labelled as '0' because it does not exist in either the YZ

input view, or in the corresponding YZ output view.

Whereas, loop (k, 1, p, n) in the YZ pseudo-view, has been

labelled as 'l' because it exists in the YZ input view,

but not in the YZ output view.

The purpose of such a labelling process is to

enable loops, which represent projections of subobjects,

to be readily identified from the pseudo-views. It has

242

been found that such loops may always be identified as

follows:

- any 'connected' loops labelled as '0',

- any disjoint loop labelled as '1'.

It has been found, as expected, that some loops in

the pseudo-views can only have specific labels, because of

the manner in which the interpretation process is

implemented for non-prismatic objects, and the manner in

which pseudo-views are generated. For instance:

a) perimeter, or boundary, loops in the pseudo-views, will

always be labelled as '3', since the initial step in

interpreting non-prismatic objects consists of processing

the perimeter loop of each input view only (section

5.4.3), and resulting in an output model whose perimeter

loops are the same as the perimiter loops in the

corresponding output views.

b) disjoint loops in the pseudo-views can only be labelled

as '1l' or '3'. A disjoint loop in the input views may, or

may not, exist in the corresponding output views, in which

cases, it is labelled as '3', or '1', respectively, in the

pseudo-views. A disjoint loop in the output views also,

may Or may not, exist in the corresponding input views. If

it exists in both views then, as before , it is labelled

as "3'; But, because the process of generating

pseudo-views generally consists of splitting edges in both

243

input and output views, and adding edges to the input

view, any disjoint loop in the output projections which

does not exist in the input views, is always divided into

a number of connected loops. Thus, a disjoint loop in the

pseudo-views may never be labelled as '2', nor as '0'.

These interesting results may be used ts cross -check the

data associated with the orthographic projections of the

output model and those corresponding to the pseudo-views.

For example, if a perimeter loop in a pseudo-views has

been labelled as '0', '1' or '2', then it can be said that

the output model generated is not the correct model. Also,

if a disjoint loop in the pseudo-views has been labelled

as Le De or '2', then it would indicate that the output

model is again not the correct model, or that an error has

occurred in generating the pseudo-views.

The next step in the algorithm consists of

searching in the pseudo-views, for matching subobject

loops. A subobject loop in a XY pseudo-view is defined as

having matching subobject loops in adjacent YZ and XZ

pseudo-views, only when their surrounding rectangles

defined, respectively, by:

(Xxymin’ Yoymin‘ ¥xymax’ Yxymax)+ (Zyzmin’ Yyzmins

Zyzmax’ Yyzmax)r 294 (Xygminr 2xzminr Xxzmax 2xzmax)

meet the following conditions:

244

Xxymin = Xxzmin Xxymax = Xxzmax

Yxymin = Yyzmin Yxymax = Yyzmax

Z. Z. xzmin = 2yzmin

where:

Xxyminr Xxymax = minimum

values of the loop in the

x xX = minimum xzmin’ “xzmax

values of the loop in the

Yxymin’ Yxymax = minimum

values of the loop in the

x, Yyzmax = minimum yzmin’

values of the loop in the

Z Zz = minimum xzmin’ “xzmax

values of the loop in the

Z Z = minimum yzmin’ “yzmax

values of the loop in the

It is assumed

pseudo-views have been determined,

xzmax ~ 4yzmax

and maximum

XY view.

and maximum

XZ view.

and maximum

XY view.

and maximum

YZ view.

and maximum

XZ view.

and maximum

YZ view.

that all

of

of

of

of

of

of

the

the X-coordinate

the X-coordinate

the Y-coordinate

the Y-coordinate

the Z-coordinate

the Z-coordinate

loops in the

and that <he number of

loops in each pseudo-view is stored the array NLP. The

specifications of the algorithm are as follows:

STEP 1: I = 0;

STEP 27 I= i+ 1; d= 70? If I > 3 then go to step (6)

245

STEP 3: J= J+ 1; If J > NLP(I) then go to step (2)

STEP 4: Search in the Ith output view, for a loop which is

similar to the Jth loop in the Ith pseudo-view. If such a

loop exists, then label the Jth loop in the Ith

pseudo-view, as '2', otherwise as '0'.

StTzP 5: Search in the Ith input view, for a locp which is

similar to the Jth loop in the Ith pseudo-view. If such a

loop exists, then label the Jth loop in the Ith

pseudo-view, as '3' if it is already labelled as '2', or

as '1l' if it is already labelled as '0', otherwise label

it as '0'.

STEP 6: Check if the perimiter loop in the Ith pseudo-view

is labelled as '3'; If not then go to step (10).

STEP 7: Check if a disjoint loop (if any) in the Ith

pseudo-view is labelled as '0' or '2'. If yes then go to

step (10), otherwise go to step (3).

STEP 8: For each ‘'connected' loop labelled as '0' in a

pseudo-view, search in adjacent pseudo-views for matching

loops. If a match exists, store the data of the eras

matching loops, as they represent the orthographic views

of a subobject.

STEP 9: For each disjoint loop labelled as '1' in a

pseudo-view, search in adjacent pseudo-views for matching

loops. If a match exists, store the data of the three

matching loops, as they represent the orthographic views

of a subobject. Go to step (11)

STEP 10: Error.

STEP 11: Exit.

246

The output of the algorithm is a set of data files

which comprise the data corresponding to the orthographic

projections of a. number of subobjects. These subobjects

are then identified as solid models which are then

subtracted from the output model to yield, as mentioned

above, either the exact model represented by the original

input orthographic views, or another, but more accurate,

approximation model. In the latter case, the complete

process represents one complete iteration. An example

illustrating such iteration, is presented later in section

8.5.2.

All the algorithms described above, have been

implemented, and the corresponding source code, has been

written in FORTRAN 77, on the Apollo DN3000 workstation.

Such software, referred to as C.I.E.D.S.M. (Computer

Interpretation of Engineering Drawings as Solid Models),

has been designed with speed as a major criterion, because

of the iterative aspect of the process. The overall design

of C.I.E.D.S.M. software is described in the next chapter.

247

THE C.LE.D.S.M. SOFTWARE

248

7.1) INTRODUCTION:

The aim of this chapter is briefly to describe the

software developed in this project, with special emphasis

on its implementation on the Apollo DN3000 workstation.

For convenience, the suite of programs has been dubbed

C.I.E.D.S.M. (Computer Interpretation of Engineering

Drawing as Solid Models).

Many of the routines were originally developed on

an ICL Perg 2 workstation, but subsequently transferred to

the Apollo DN3000 workstation. Direct down-loading from

the ICL Perq 2 to the Apollo DN3000 was not possible

because of hardware incompatibilities and lack of

communication software. The transfer has been made

possible by first transferring it from the Perg 2

computer to a VAX 11/780 mainframe, and then down-loading

it to the “Apollo Domain workstation. Very few

modifications to the software were necessary. Such a

transfer was required because a compatible subroutine

version of the solid modeller 'BOXER' was not supported on

the ICL Perq2 computer, whereas such software was readily

available on the Apollo Domain workstation.

The software objectives are outlined in section

7.2 and a brief description of a number of subroutines is

given in section 7.3. Some of the routines have been

written to integrate the PAFEC 'BOXER' solid modeller into

249

the software. These are highlighted to indicate the

possible modifications that must be made, should any other

CSG solid modeller be contemplated.

Considerations about software design, such as

portability, have been made from the start of the project,

as it is highly possible that the software developed in

this work may be implemented on a different system. Thus

the subject of section 7.4 is software portability. Some

aspects concerning data storage and execution speed are

also discussed in section 7.5. A set of operating

instructions for the package are given in section 7.6.

These instructions are mainly associated with data

acquisition at the input stage, since the program has been

designed to require a minimum of user interaction.

7.2) SOFTWARE OBJECTIVES:

The principal objectives of the software are:

1) the implementation of all the algorithms developed in

this project, (described in chapters 6 and 7), on a

computer workstation.

2) Design and development of an interface with a solid

modeller

3) Design and development of graphic facilities capable of

displaying the input views and the orthographic

250

projections of the generated model

4) Design and development of facilities capable of

plotting the input views and the orthographic projection

of the generated model, on a Roland DG DPX 2000 plotter.

7.3) THE C.1.E.D.S5.M. PROGRAM:

The C.I.E.D.S.M. program has been designed to take

full advantage of the structured nature of the FORTRAN

language. It comprises 54 overlaid subroutines which are

called from the main program 'MAIN'. The subroutines may

be conveniently divided into two categories:

a) ‘Utility' routines

b) 'Process' routines

Utility subroutines, have been developed to

perform simple geometric computations. For example, the

routine 'PERPD' computes the coordinates of a point P at

which a perpendicular from another point D intersects a

line; the perpendicular distance PD is also computed; the

subroutine 'POLAR' converts Cartesian: coordinates into

polar ceordinates; etc. Other utility routines have been

descend and developed to perform simple tasks such as

files and data handling, and plotting. For example, the

routine called 'TRANSF', reads a direct access file and

transfers the data to a number of integer and real arrays,

251

and the routine PLOTTER provides a plotting facility on

the DPX 2000 plotter. Space does not permit the inclusion

of details of these subroutines in this thesis. Suffice it

to say that considerable use was made of the techniques of

"Homogeneous Coordinates', some of which are briefly

described in appendix C.

The 'Process' subroutines, briefly described

below, are the direct conversion of the interpretation

process algorithms into FORTRAN 77 source code. Some of

these routines are marked by asterisks (*) to indicate

that they are dependent on the solid modeller in use; they

form the necessary 'interface' between the solid modeller

and the algorithms developed in this project. The term

‘interface' refers to the generation of the solid

modelling input file as described in section 6.2, and the

extraction of the 2D data from the solid modeller output

file described in section 6.3.1. The 'process' subroutines

are:

INPUT: prompts the user to present input orthographic

views data which are then stored in three separate random

access files - one file per view.

CYCLES: scans the input data in order to determine the

number of loops in each view. The perimeter loop is always

the first to be determined.

EXTREM: scans the input data to compute the extreme

252

coordinate values in each view.

TOPUP: updates the topology and geometry data.

LINK: finds all the nodes joined (adjacent) to a given

node.

MARKER: labels edges according to the ‘Loop Detector'

algorithm which was presented in section 6.1.1.

RELATE: determines relationships between all the loops in

a given view. It also labels each loop as 'DISJOINT' or

"CONNECTED'.

TEST3: checks if a given loop is a rectangle.

PROCLP: selects object loops for processing in order to

generate a 'profile', as defined in section 5.4.3.

PLOOPS: Processes the object loops selected by the

subroutine PROCLP.

PATIL: scans the topological and geometrical data of a

given object loop to determine its 2D geometric pattern.

PATI2: scans the topological and geometrical data of a

given primitive loop to determine its 2D geometric

pattern.

253

SETREC: sets the coordinate values of the nodes of the

rectangle surrounding a given loop.

RNUMR: renumbers the nodes of the surrounding rectangle

according to the sense of the loop it is surrounding.

CFLAGS: allocates a flag to each node of a given loop,

according to its position with reference to the nodes and

sides of the surrounding rectangle. This routine

generates, in effect, the ‘control list', as described in

section 6.1.6.

LOCAT: scans the control list generated by the routine

CFLAGS, in order to locate all the primitive loops formed

by the intersection of a given loop and its surrounding

rectangle.

MERGEP: merges direct access files into the MAINDATA file.

TESTAR: scans the MAINDATA file in order to search for

loops identified and stored as arbitrary patterns. If such

a loop is found, then its corresponding geometric and

topological data is stored in ehoncendon access file

called ADATA.

UNTEST: scans the data stored in the ADATA file to test

the arbitrary loop for 'instability' conditions, mentioned

in section 6.1.7. If such conditions are found, then the

254

loop is divided into two loops and their data stored back

into the MAINDATA file.

QUTLIN: reads the final MAINDATA file to extract the data

corresponding to all the basic patterns, and performs 2D

Boolean operations to reconstruct the corresponding object

loop. This routine is used as a means of cross-checking

the reconstruction process.

BIREE1: stores the pointers which relate parent loops to

their children loops. It generates and stores a Boolean

tree.

PRIMID: scans the final MAINDATA file to read the flag LPF

of all the basic patterns, in order to identify the 3D

primitives.

QOBNAME*: sets the object name according to text format

required by the solid modeller 'BOXER'.

BLOCK*: computes the parameters of a 3D primitive block,

as required by the solid modeller 'BOXER'.

WEDGE*: computes the parameters of a 3D primitive wedge,

as required by the solid modeller 'BOXER'.

ELLLET*: computes the parameters of a 3D primitive fillet,

as required by the solid modeller 'BOXER'.

255

cyul*: computes the parameters of a 3D primitive

cylinder, as required by the solid modeller 'BOXER'.

CYL2*: computes the parameters of a 3D primitive

cylinderical segment, as required by the solid modeller

"BOXER'.

BIREE2*: generates and stores character strings which

represent the syntax of the solid modeller input file. It

uses the pointers generated by the routine BTREE1, the

object names generated by OBNAME, and the parameters from

BLOCK, WEDGE, FILLET, CYL1 or CYL2.

WIREE*: writes the character strings generated by BTREE2

onto a file called 'BOXER.DAT', which is used as input to

solid modeller 'BOXER'.

EXTRACT*: scans the solid modeller output file, DOGSDAT,

in order to extract the 2D data which represents the

orthographic projections of the generated model. This

routine also rectifies the extracted data by adding or

subtracting the amount of shift which exists between the

data which represent the input views and the extracted

data.

CVIEWS: scans and compares the input views data and the

data which represent the orthographic views of the output

model. If discrepancies exist between the two sets of

256

views, then a flag, NCHECK, is set to 1, otherwise it

remains equal to zero.

ACTIVN: detects '‘active' nodes (if any) in both input and

output views.

UVIEWS: generates the data which represents the

"Pseudo-views', as defined in section 6.4.1.

LABELV: labels each loop obtained in the pseudo-views by

comparing the data associated with each loop found in the

input and the views of the output model.

MATCH: determines the matching set of loops, in the

pseudo-views, which represent the orthographic projections

of a subobject that must be removed from the output model.

The topological and geometric data associated with a set

of matching loops, are stored in random access files whose

structure is similar to the original input files.

DRAW: draws and displays the input views, the orthographic

projections of the output model and the corresponding

pseudo-views.

All the routines, including the main program, are

grouped and stored in different files, which are compiled

separately to generate the corresponding binary files. The

binary files are then bound together using a link file.

257

The link file must also comprise the binary file of the

subroutine version of the solid modeller.

7.4) SOFTWARE PORTABILITY:

The C.I.E.D.S.M. software has been developed with

portability as one of the major requirements. It is

desirable for any software readily to be able to be

converted to suit a new operating environment, since all

prospective users are unlikely to have the same computer

system. Of course, it is not yet possible to produce any

software which is universally portable, however it is

possible to design the software, so that a minimum effort

is required in modifying it for transfer from one system

to another.

It is highly probable that the software developed

in this project may be implemented on a different system

in the near future. For such reasons, the C.I.E.D.S.M.

suite of routines have all been written in FORTRAN Likg

high level language which is highly portable and which is

one of the most popular scientific languages used in

software practice. Such portability was demonstrated when

the software was transferred from the ICL Perq2 computer

to the Apollo Domain workstation.

Portability considerations have been expanded

258

further by keeping the number of routines associated with

the solid modeller to a minimum, as it is also unlikely

that all prospective users will use the same solid

modeller. These routines, highlighted above, have been

developed to provide the necessary syntax as required by

the PAFEC BOXER solid modeller, and extract data from

files generated by it. If, in the future, a different

solid modeller is used with the software developed in this

work, then. it is necessary to modify these routines

accordingly.

Considerations have also been given to graphic

languages. Initially, when the scftware was being

developed on the ICL Perq2, graphics routines were written

using GKS (Graphic Kernel System) libraries [46,47]. This

choice is justified as GKS is considered as a standard,

although it is still to be improved. Unfortunately, GKS

was not available on the Apollo DN3000 workstation at the

University of Aston. New graphics routines have been

developed and implemented on the Apollo DN3000

workstation, initially using the Domain 2D Graphic

Primitives Resources (GPR) [48], and later, the Domain 2D

Graphic Metafiles Resources (GMR) [49] packages. GMR, an

extension of GPR, provides extended facilities for

developing and storing graphics data.

259

7.5) EXECUTION SPEED AND DATA STORAGE:

One of the major requirements in designing software

for iterative problem solving techniques, is execution

speed, because of the potentially slow and repetitive

nature of che process involved in reaching a soluticn.

Generally, the execution speed of such programs can be

improved but at the cost of memory and storage space.

The interpretation process developed in this

project is iterative, and thus, execution speed was one of

the major requirements that had been taken into

consideration in designing and developing the C.I.E.D.S.M.

software. Speed has been optimized by making considerable

use of the speed optimizing and data storage saving

capabilities of FORTRAN 77. For example, using unformatted

random access files rather than sequential ones, and

making use of common blocks.

Furthermore, the construction of a solid model by

the solid modeller is a time consuming operation. Thus, in

order to improve the execution speed of the whole process,

excessive and unnecessary use of the solid modeller during

iterations, has been avoided; the construction of any

solid model is performed only once, and never repeated. A

considerable improvement in the execution speed was also

observed when the software was transferred from the ICL

Perq2 computer to the Apollo DN3000 workstation.

260

Little computer storage is necessary to implement

the routines developed in this work. The source code and

compiled binary files, occupy at least 590 Kb on the hard

disk. However, the solid modeller 'BOXER' requires at

least 6 Mb of storage capacity. Thus, the acquired system

should provide at least 6.6 Mb of storage capacity. The

Apollo DN3000 workstation has an ample amount of virtual

memory (2 Mb) and data storage capacity (72 Mb).

With the exception of the solid modeller input and

output files, all the files used to store the total set of

data used by the C.I.E.D.S.M. software are random access

ones. These files may be grouped into two types. The first

store the topological and geometric data which represent

orthographic projections. These are:

- files that store the xy, xz and yz input view data,

conveniently called 'xyi', 'xzi' and 'yzi'

- files that store the xy, xz and yz orthographic

projections data of the output model, called ‘xyo', 'xzo'

and 'yzo', respectively

- files that store the xy, xz and yz pseudo-views

data, called 'xyp', 'xzp' and 'yzp', respectively.

All the above tiles, including others, such as

EXDAT, ADATA and ARBDATA files, have the same structure,

illustrated in Figure 7.1.

261

S
T
T
F

w
a
W
V
L
V
d
W
.

JO
S
A
N
}
O
N
A
A
S

:
T
°
L

“
T
A

sepou

senjea
senjea

epou
Jequinn

jo

eyeulplooo
sejueo

Jy
eyeUIPJ009

~epoN
u
e
s

ebpy
sequnn

eipe
doo}

seBpe
edAy

jo
jo

jo

w
e
e
d

epoupuy
|

edky
esues

Jequinn

lI
r

B
e

dd1
V
O
A
T
V
O
X

|

VOAT
VOX

NA
TNX

|
NA

N
X
]

NS
|

LIENS!
|

SN

PSN f

Ll
[NS

fuIGT
|

NN
|

SN

t
ae

uomuyep
uonjuyep

t
piooes

jse]
eBpe

puoseg
eBpe

Isil4
pilose

ysil4

262 .

The first two records are two 4-byte integers, NG

and NN, which represents the number of edges and nodes,

respectively, in each view. The third record is also a

4 byte integer, LDIR, which is set to:

ij) © to indicate that a loop has a clockwise sense

ii) 1 to indicate that a loop has an anticlockwise sense.

The subsequent records are grouped in three sets.

The first set of records is divided into a number of

groups of four 4-byte integers. Each group corresponds to

the definition of an edge. Thus, the number of such

groups, in this first set of records, .is equal to the

number of edges. The first integer, in each group, is the

edge number, ISN. The second integer, IT, is set to either

0, to indicate that the edge is a straight edge, or to a

positive (or negative) number to indicate that the edge is

an anticlockwise (or clockwise) arc whose centre

coordinates values may be found at the address specified

by the absolute value of IT. The last two integers in each

group, are the start and end nodes, NS and NE, defining

each edge.

The next set, comprises groups of pairs of

records. Each pair of records stores the X and Y

coordinate real values, XN and YN, of each node. The last

set is also divided into groups of pairs of records which

store the X and Y coordinate real values, XCA and YCA, of

263

the centre of each circular arc (if any). The last record

in the each section is the 4-byte integer, LPF, which, as

defined previously, identifies the 2D geometric shape, or

pattern, of the loop.

The other type of files store the data associated

with the loops in each view, and these are as follows:

- ‘'XYLI', 'XZLI' and 'YZLI' which store the data of all

the loops in the xy, xz and yz input views

- 'XYLO', 'XZLO' and 'YZLO' which store the data of all

the loops in the xy, xz and yz views of the output model

- 'XYLP', 'XZLP' and 'YZLP' which store the data of all

the loops in the xy, xz and yz pseudo-views.

The structure of one of these files is illustrated

in Figure 7.2. The first record is a 4-byte integer which

represents the number, NLP, of ‘circuits', or loops, ina

given view. The subsequent records are grouped into sets,

where each set of records comprises the data associated

with each loop. Thus, the number of sets is equal to the

number of loops in the view. The first set of records

always stores the data of the perimeter loop. The first

record in each set, is also a 4-byte integer which

indicates the number, LN, of nodes contained in the loop.

The next records store the numbers, N,, Nj, N; .. Nyy, Of

all the nodes in the loop. The last record in the set,

store the 4-byte integer, LT, which identifies the loop as

264

STTF
u
d
T
A
X
u

go
eanjonazys

:Z°L
“
6
T
a

sequin
sepou

edAy
jo

d
o
o
}

p
u
o
s
e
s

4equnn

Jequinu
Jequnu

|
Jequinu

M3IA
But

puooe:
jse7

epou
epou

epou
ul

sdooj

|
\se]

p
y

7

p
T
o

e
fz.

|i
€

\
N

;
\

i

NJ
N

N
N
T
P

N
en

N
E
N
W

M
N

i
N

N
|

NIT
JdIN

Eee
as
E
f

i
rf

piooed
jsi}4

suon|uyep
yep

doo}
“18

‘up
‘pig

doo}
puoseg

doo}
\su14

265

"connected' if set to 1, or 'disjoint' if set to 0.

7.6) OPERATING INSTRUCTIONS FOR C.T.E.D.S.M.:

The C.I.E.D.S.M software has been designed and

developed for automatically converting the 2D data which

represent orthographic projections of an object, into a

solid model. Interaction with the user is restricted to

data acquisition, except where iteration is required, in

which case user intervention is also requested. Prior to

running the program, the user must have prepared the input

data which comprises the topological and geometric data of

three orthographic views described in the first-angle

projection system. Such data comprise edge numbers, and

types, node numbers and coordinate values, as well as arc

centres (if any).

The executable file of the program is already

stored on the hard disk of the Apollo workstation. To run

the program, the user must type CIEDSM, and hit the RETURN

key. He is then warned about certain file names that he

must not enter, as they are used by the system. The CIEDSM

dialogue has been designed so that the user responds to a

question that has a Yes/No answer by simply hitting the

RETURN key for 'Yes'. Hitting any other key indicates a

'No' answer. User information is then structured as

follows:

266

Is data for XY, XZ or YZ view ?

Please, enter 'XY', 'XZ' or "YZ.

Type either XY, XZ or YZ, which indicates the view

to which the data correspond. There are no restrictions on

the order in which the view data are entered. For

instance, if you wish to enter the XZ view first, then you

may do so. The next prompt is:

Is it a new file (RETURN = 'YES’) ?

If you have used the program before, then you may

have a number of files already stored on the hard disk,

which you would like to use. In this case, you might type

‘x', and the program would respond by the following

question:

Old file. File name ?

File names may have up to 10 characters: you

should type a name and hit RETURN. Since you. have

indicated that the file name is for a file which is

already stored on the hard disk, CIEDSM searches for such

a name. If the name is not found, the follc ‘ng message is

displayed:

Error. Such a file does not exist.

267

Do you wish to continue (RETURN = Yes) ?

If you wish to continue, you must hit RETURN, and

the above steps are repeated.

New input data may be entered by hitting RETURN at

the following prompt:

Is it a new file (RETURN = 'YES’) ?

The program then responds with the following

question:

New file. File name ?

Type a name and hit RETURN. The program sets the

interactive input mode for entering the topological and

geometric data,of the input view. The first prompt is as

follows:

XY view:

Enter number of edges.

to which you must type an integer value which indicates

the total number of edges in the given view. This is then

followed by:

268

XY view:

Enter number of nodes.

Type another integer value which indicates the

total number of nodes in the view. The program allows you

to check the input data by displaying the number of edges

and nodes entered. You may then either hit RETURN to

indicate that the data entered is correct, or hit any

other key to indicate that the data is to be modified. In

the latter case, the program displays the last two prompts

inviting you to re-enter the number of edges and nodes.

These last two steps are repeated until the input is

acknowledged to be correct. The program then carries on

requesting data associated with each edge, by displaying

the following prompt:

Edge 1;

Enter: 0 if edge is a straight line

1 if the edge is a clockwise arc

-1 if the edge is an anticlockwise arc

Type either one of the integer values displayed

depending on the type of edge number 1. The next prompt

invites you to input the start and end node numbers of the

edge, which in this case is edge number 1. The prompt is

as follows:

269

Edge 1:

Enter start and end node numbers.

You should respond by typing two integer values;

the first one indicates the start node number, and the

second the end node number. The last two prompts are then

displayed again, in sequence, for edge number 2, and then

edge number 3, and so on. Thus, allowing the data

corresponding to the type, start and end node numbers of

all the edges of that view, to be entered. The program

then provides an instant check by displaying all the

previous input data foilowed by this prompt:

Is data correct (RETURN = 'YES') ?

Again you may either acknowledge that the data is

correct by hitting RETURN, or you may wish to modify a

specific value, by hitting any other key, in which case

the following prompt is displayed:

Enter edge number to modify

Type an integer value indicating the edge he

wishes to modify. You are the. invited to reenier the

correct type, start and end nodes of that specific edge.

The check is repeated until the data is acknowledged to be

correct, thus completing the topology input data. The next

270

steps are concerned with the input of the geometrical

data, which comprises the coordinate values of all the

nodes and centre of arcs (if any). The program displays

the following prompt:

Node 1;

Enter X and Y coordinate values.

Type two real values; the first one is the xX

coordinate value, and the second is the Y coordinate value

of node number 1. This step is repeated until all the

coordinate values of all the nodes in the view are

entered. The program then scans the type of all the edges

in order to check for circular arcs; If the view comprises

such an edge, then the edge number is displayed, and you

are informed that this particular edge is a circular arc,

and then prompted to input the coordinate values of the

centre of that arc. Assuming that you have previously

specified that edge number 11 is of type 1, which

indicated that edge number 11 is a clockwise circular arc,

thus the prompt would be as follows:

Edge 11 1s a circular arc

Please, enier X and Y coordinate values of its entre.

You must then input two real values which

represent the X and Y coordinate values of the centre of

271

that -particular circular arc edge, in this case edge

number 11. If the view comprises several circular arcs,

then this step is repeated a number of times equal to the

number of such edges. Again, the coordinate values of all

the nodes, followed by the coordinate values of centre of

arcs (if any), are displayed to enable you to check your

input data. These values may be modified at this stage, if

you wish to do so. The modifications are carried out as

previously indicated.

All the input steps must then be repeated for the

two remaining views. After completing the input of the

data of all the views, you are then immediately informed

that the process of converting the 2D data into a 3D solid

model has started, by the following message:

Seed E RRR ERE

*** ANALYSIS STEP ***

SHH rie

which is shortly followed by another message informing you

that the data has been analysed, and the input data

represent the orthographic views of either a prismatic, or

non-prismatic, object. If the object has been identified

as prismatic then the message will appear as:

272

FESS II SISOS IO IIe

*** PRISMATIC OBJECT ***

FEISS ISIS III IIe

otherwise, the message will be as follows:

ESE ISOS III IOI III IE

*** NON-PRISMATIC OBJECT ***

TESS SSSI INS SnESS In neni

Either message is then followed by another

indicating that the analysis step has been completed, and

that the solid modelling step has started. A prompt

requesting you to enter the type of terminal you are

using, is displayed. A list of the different terminal

supported by the solid modeller software, can be obtained

by typing the on-line help command 'H'. For instance,

typing 3000 would indicate that the workstation is an

Apollo DN3000 with colour monitor, and that the whole

screen would be used for graphics display; whereas, typing

3001, would indicate that the same workstation is used,

but only the present window, and not the whole screen,

would be used for graphics display.

The whole screen (or window) is then cleared to

display the orthographic projections of the generated

model. This is then followed by a message informing you

273

that the solid modelling stage has now been completed, and

that the next step, which consists of extracting the

orthographic views data of the output model, has started.

The screen is cleared again to display either two or three

sets of orthographic projections. If no differences have

been found to exist between the input views and the

projections of the output model, such as in the case of

prismatic and ortho-prismatic objects, then only the input

views and the orthographic projections of the output model

are displayed. In this case, the program displays the

following message:

FEES IIIS ISIS III III IIIT II

seeeee* SUCCESSFUL CONVERSION *******

*** EXACT OBJECT IS RECONSTRUCTED ***

SEES SSISIS ISIS SISSISO ISIS IIT I i ie

However, if discrepancies have been found to exist

between these two sets of views, then the pseudo-views are

also displayed, highlighting those differences. You are

thus provided with a facility for checking and examining

the differences between the input views and the

corresponding projections of the output model. The program

wtuen displays the following prompt:

The output model is NOT an exact solution.

Do you wish to continue (RETURN = 'YES') ?

274

Hit RETURN if you decide that the generated model

requires more refinement. You may, on the other hand,

decide that the output model is accurate enough for the

application you have in mind, in which case you should hit

any other key to exit from the CIEDSM program, hence

terminating che interpretation process.

In the former case, the program displays the

following message:

ISHS Eirini

*** ITERATION REQUESTED ***

SESH titre iit

**** FEED BACK STARTED ****

INES SSS rn niin iii:

which indicates that the orthographic projections of one

or more subobjects are being retrieved from the

pseudo-views. The analysis process is then repeated and

the orthographic views of a new output model are

displayed. The process continues in this fashion until the

output model is identified to be the exact object, or

until you decide to terminate the process.

The C.I.E.D.S.M. software has now been described,

and a set of operating instructions have been given. These

275

are simple and easy to follow as they are

self-explanatory. The software has been tested using a

number of practical examples; These examples have been

chosen to illustrate the implementation of the

interpretation process for prismatic and non-prismatic

objects, and are described in the next chapter.

276

PRACTICAL APPLICATIONS OF THE DEVELOPED

PROCESS

277

8.1) INTRODUCTION:

A number of practical examples have been selected

to illustrate the interpretation process algorithms

developed in this project, and their implementation to the

different classes of objects. These have been chosen to

illustrate the range of objects that may successfully be

processed, thereby enabling the reader to complement his

understanding of the scope and nature of the process.

Furthermore, the differences between prismatic (simple and

complex), ortho-prismatic and more general 3D objects, are

highlighted by selecting objects which slightly differ

from one example to another. For instance, the object

chosen to represent simple prismatic objects, is

transformed into a complex one by drilling holes through

dts

The first example illustrates the reconstruction

process of an object which is itself composed of a single

primitive. Although trivial, the example not only serves

its purpose as an introduction, but it also demonstrates

that the implementation has been so designed that such

simple objects may be identified, and reconstructed

without the need for the full process to be followed in a

formal manner.

The second and third examples illustrate to simple

and complex prismatic objects, respectively. Whilst

278

example 4 treats what has previously been described as an

ortho-prismatic object: it shows that in such cases, the

reconstruction is exact and did not require any

iterations. Example 5 corresponds to cases where the

notion of ‘approximation models' and iteration to an

‘adequate' model arise.

8.2) EXAMPLE 1: A PRIMITIVE OBJECT:

Figure 8.1(a) shows a set of three views which

represent the first angle projections of an object, and

Figure 8.1(b) the corresponding topology. The process of

converting these views into a solid model is initiated by

the 'Loop Detector' algorithm (section 6.2.1) whose

function is to determine the number and type of loops in

each view. Each loop is then processed by the ‘Pattern

Identifier' algorithm which determines its geometric

shape. The results of applying both algorithms to all the

views are summarized in Figure 8.1(c), which indicates

that:

a) each view is composed of a single loop,

b) the 2D pattern of the loop in the xy view has been

identified as a right-angle triangle,

c) the 2D pattern of the loops in the xz and yz views have

been identified as rectangles.

279

TOPOLOGY

XY view _XZ view YZ view,

EN TY SN _NE EN TY SN NE | EN TY SN NE

170 3 3S Ve OCn ed, 10 2 4
2.0) eres: 2°50) 1346 2 GSS. 52

3 OP tr: S10* “tee $ 0.1 4
4 0 4 3 4° 0 31

EN = Edge Number TY = Edge Type SN & NE = Start & End Nodes

(b)

‘|View |Loop No| Edge Nos.

2, -1 D
XY Lxy1 1, -2,-3

1, -4, -2,3
XZ LXxzZ1 D

-1, -3, 2, 4

3, -1, -2
YZ LYZ1 D

1, -3, -4, 2

D = Disjoint loop

Fig. 6.1:

(c)

a primitive object
b) topology
c) number and type of loops

280

a) Orthographic views of

According to the 'Class Identifier' algorithm,

this set of patterns forms the signature of a 3D primitive

(section 6.2.3). The primitive is identified as a wedge. A

solid model is then immediately reconstructed by

generating the solid modelling input file which, in this

trivial case, consists of tie following statements:

XYO1 <- WEDGE (4.0, 3.0, 5.0)

PRIM <- xy01

where XY01 and PRIM are names that are automatically given

to the 3D primitive, and the final object, by the

software, respectively.

The computation of the wedge length, WL, height,

WH, and width, WW, is illustrated in Figure 8.2. In this

example, WL is equal to 4.0, WH to 3.0 and WW to 5.0. The

centroid of the object is automatically positioned at the

origin of the solid modeller coordinate system, shown in

Figure 8.2 as the set of OXYZ axes.

The solid modeller reconstructs the 3D model PRIM

and generates a parametric ASCII file from which the

orthographic views of the model are extracted. These data

are then compared with the input data by the 'Compa.ison'

algorithm. Because the algorithm is independent of the

labelling of nodes, or edges, the two sets of views are

found to be the same, as shown in Figure 8.3, although the

281

 ie mx xy view

ymin

xmin xmax

zmin

Pees aon fees X xz view

 zmax

n
<
d
-
-
2
.

OXYZ = Solid modeller coordinate axes

Fig. 8.2: Computatiou of WEDGE primitive parameters

282

y

3 1

Zz

(a)

yt 2

1 2

z

(b)

Fig. 8.3: a) Original input views
b) Orthog-aphic views of output model

283

nodes and edge numbers in the input views do not

correspond to the node and edge numbers of the

corresponding view of the output model. The complete match

between the input and output views confirms that the

generated model is the exact object.

8.3) EXAMPLE 2: A SIMPLE PRISMATIC OBJECT:

Figure 8.4(a) shows the three orthographic views

of an object, and Figure 8.4(b) the corresponding

topological data. The results of the search for the number

and type of loops in each view, Figure 8.4(c), shows that

each edge is traversed twice, in opposite senses, thus

clearly illustrating the execution of the 'Loops Detector'

algorithm; these results indicate that:

a) there is a view, in this case the XY view, which may be

identified as a base-view since it comprises only one loop

b) all the loops in the remaining views (XZ and YZ views)

are rectangles.

In this case, the object is identified as a simple

prismatic object, since, in addition to the above

conditions (a) and (b), all the nodes in each of the

remaining views belong to the perimeter loop,

The interpretation of such an object consists of

284

2 4

y

6 5

7 8

3

z

(a)

XY view XZ view YZ view

EN TY SN NE EN TY SN _NE EN TY SN NE

V0" Gps A Oh eS. ta 05 3 5)

2 Gs 4 rise VE) 2 0 5 6

ose 1) 2 3°40 67 3°40 2 4

4.0 6 2 40 3 4 4 OFN6 of:

St S47 50). Sees) a) Vi, ss

G10" oZetet 6.0 2 5 6 0 4 5

TOV 8 oe 7 0) 3 6 7-0), ce" 6

8.0. 3° 5 8 0 7 4 850 857

$0. +. 6 9 0 1 8

10 0 ers 10) Oud 07.

EN = Edge Number TY = Edge Type SN & NE = Start & End Nodes

(b)

View __|Loop No Edge Nos. Pattern shape | Type

1 eran weer eee
u1 -2, -7, 4, -8, 1, -9, 10, 6 rectangle P,Cc

XZ L2 +1, -3, 2, -5 rectangle Cc

L3 7, 3, 8, -4 rectangle c

L4 5, -6, -10, 9 rectangle Cc

ui -5, 9, 1, -6, -3, 7, 4, -10 rectangle P,C

yz L2 -1, 8, -4, -2 rectangle Cc

bs 2-7, 3, 6 rectangle c
L4 5, 10, -8, -9 rectangle Cc

P = Perimeter loop

Fig. 8.4:

(c)

C = Connected loop

a) Orthographic views of a simple
prismatic object

b) topological data
c) Number and type of loops

285

processing the single loop contained in the base-view,

i.e., the perimeter loop in the xy view. The first step of

such a process consists of computing the extreme

coordinate values of the object loop in order to define

its surrounding rectangle. These values are determined by

the 'Extreme Coordinate Search' algorithm (section 6.1.5).

A point with such an extreme value is found to lie on the

circular arc {1,2}, Figure 8.5(a). This point is added to

the xy view, as node 9, by splitting the arc {1,2} into

two smaller arcs {1,9}, and {9,2}. The coordinates of the

surrounding rectangle are then as follows:

xr(1) = xmax yr(1) = ymin

xr(2) = xmax yr(2) = ymax

xr(3) = xmin yr(3) = ymax

xr(4) = xmin yr(4) = ymin

The next step consists of generating the ‘control

list' (section 6.2.6). The control list for such an object

loop, shown in Figure 8.5(b), is then used by the

'primitive Loop Locator' algorithm the function of which

is to locate the loops obtained by the intersection of the

object loop and its surrounding rectangle. These

'primitive' loops are shown in Figure 8.5(a), as loops

Pz, P3, and P4, located between the cvject loop PO and its

surrounding rectangle (loop Pl).

The data for each primitive loop are then examined

286

— P1
4 Surrounding

P3 | rectangle

ymin ——

xmin (a) xmax

> wo
 oO

O
n
o
u
n
h
 o

w

P
R
W
O
N
N
D
—

CD

tk

ah
,
w
h

ek
,
e
h

Fig. 8.5: a) Object loop and surrounding rectangle
b) the corresponding control list'

287

by the ‘Loop Identifier' algorithm to identify the

geometric shape of its pattern, and label each pattern

with a flag, LPF, according to its shape. The flags and

patterns of all the primitive loops have been found to be

as follows:

Loop Pl = basic pattern => LPF = 1 or 'rectangle'

Loop P2 = basic pattern => LPF = 4 or ‘quadrant'

Loop P3 arbitrary pattern => LPF = 0

Loop P4 basic pattern => LPF = 3 or 'fillet'

The data for all the loops, and their

corresponding flags are stored in the MAINDATA file. After

scanning by the ‘Arbitrary Pattern Analyser' algorithm,

the MAINDATA file is found to comprise a loop, P3, that

has an arbitrary pattern which is decomposed further into

loops P5 (its surrounding rectangle) and P6.

Again, loop P6 is identified as an arbitrary

pattern. Furthermore, it is found to possess the

characteristics of an ‘unstable' loop (section 6.1.7)

Such characteristics prevent loop P6 from being directly

decomposed into further patterns, and hence, is divided

into three further loops (section 6.1.8), shown in Figure

8.6 as loops P7, P8 end P9. The data of these loops a.e

then stored back into the MAINDATA file, and all the loops

are identified as basic patterns, shown in Figure 8.6 as

loops Pl, P2, P4, P5, P7, P8 and P9.

288

PI P3

PS P6

P8
Fig. 8.6: Decomposition tree of an object

loop into basic patterns

289

Each of the basic patterns identified above

represents the xy view of a 3D primitive. The remaining

views of each primitive are composed of rectangles. Each

set of three patterns represents the signature of a 3D

primitive, as shown in Figure 8.7(a). For example, loop Pl

has been identified as a rectangle which, together with a

rectangle in each of the remaining views, form the

signature of a primitive block.

The solid modeller input file is then generated

and consists of the following statements:

XY01 <- BLOCK (5.0, 5.0, 4.0)

XY¥O2 <- CYL (4.0, 2.0) AT (2.5, -2.5, -2.0)

XY04 <= FILLET (1.0, 1.0, 4.0) AT (-2.5, 2.5, -—2.0)

XY05 <- BLOCK (4.0, 3.0, 4.0) AT (0.5, 1.5, 0.0)

RYO" Sar CVE O70 1 Oy 4.0) Abe Nm deo 72-07) 20)

XY08 <- BLOCK (1.5, 3.0, 4.0) AT (-0.75, 1.0, 0.0)

XY09 <- FILLET (0.5, 0.5, 4.0) AT (-0.5, 1.5, ~2.0)

XY¥06 <- XYO7 - xXY08 - xY09

XY03 <- xY¥05 - xyY06

FAMOD <- XY01 - xY¥02 - xyY03

Each primitive is automatically given a name. The

object XY06 is obtained by subtracting primitives xXY08 and

XY09 from primitive XYO7; object xXY03 is obtained by

removing object XY06 from primitive XY05 and, finally, the

output model, called FAMOD, is then produced by

290

T
e
p
o
u

p
T
T
o
s

Fo
u
o
T
j
e
r
o
u
e
h

p
u
e

uot
I
e
o
T
s
T
q
u
e
p
t

s
e
a
t
y
t
u
t
a
d

dE
:1°8

‘
i
t
a

Burjjepow
pijos

uoljeoyuep!
seAniwid

QE

t
1

t
1

ae
6d

Jepow
pijos

jndjno
V
o

8d
<

JepuyjAo

jo
juewBes

—
_
—
—
—

Pioqno
Sd

<
4

1911)
GE

td

<
—
_
_

J.
|

JepuyAo

jo
juewBes

Y

z
a
)

Id

2x
2X

RX

291

subtracting object XY03 and primitive XY02 from the

surrounding block represented by the primitive XYO1.

Clearly, the generation of output models consists of a

gradual removal, not addition, of objects from the raw

block.

The solid modeller combines the objects and

primitives defined in the solid modeller input file to

generate the output model, Figure 8.7(b). A text file,

which comprises the parametric description of the

orthographic views of the output model, is also generated.

This file is then scanned and the data representing the

orthographic views of the output model are retrieved. The

minimum node coordinate values of the output model views

are computed and then subtracted from the minimum node

coordinate values of the corresponding input views, in

order to calculate the amount of shift required to adjust

the node coordinates in all the views of the output model.

The original input views are finally compared to

the corresponding orthographic projections of the output

model, FAMOD, by the 'Comparison' algorithm, and are found

to be exactly the same, as shown in Figure 8.8; the

generated model thus corresponds exactly to the object

whose views comprised the input to the interpretation

process.

292

Oe
=
=
=
=
4

oF

(a)

p
p
e
n
-
-
-
4
n

(b)

Fig. 8.8: a) Input orthographic views
b) Output orthographic views

293

8.4) EXAMPLE 3: A COMPLEX PRISMATIC OBJECT:

The object in the previous example is transformed

into a complex prismatic one by drilling a hole through

it, so that the modified othoscoia views are those in

Figure 8.°(a). The topological data is shown in Figure

8.9(b). Those views are immediately identified, by the

‘Class Identifier' algorithm (section 6.1.3), to be the

orthographic projections of a complex prismatic object

since, as shown in Figure 8.9(c) :

a) there is a view, in this case the xy view, which

consists of two disjoint loops.

b) Each of the two remaining views comprises a number of

connected rectangular loops only. Furthermore, all the

nodes in these views belong to the perimiter loop.

The interpretation of process, now consists of not

just treating a perimeter loop in a base-view, but all the

loops in that view. In this example, loops P01 and P02, in

the xy view are processed. Loop P01 is decomposed into the

primitive loops Pl, P2, P4, P5, P7, P8 and P9, as

described in the previous example. Loop P02 is identified

as a circle (basic pattern), which does not require any

further decomposition. The resuiting tree is shown in

Figure 8.10. .

The 3D primitives, associated with each basic

294

N

a
e

©

a
o
o

a

a
a

nN

o
w

s

Nn
—
—
™
_
_
_

«

10

6 3 1

> xX eZ

{J 4 1
10 97, 8

(a)

XY_ view XZ view YZ view

EN TY SN NE EN TY SN NE EN TY SN NE

1 OM 36- 8: dao en eS: 16 18). 5

2 0° °5 4 2) 0) 6S: 2720) S56:

Ss ele oe 370 6. y; Se 0.12) 4

40 62 40 3 4 ASO). 7

St eee S10) VS 5 Sh Ol ih Ss

Spouses 4 810) 2.55 6 0 4 5

t Vin 8- 4 POW S49, jee Ose a an:

8 0 3 5 CO ta sino 80 ..8 7

Vet 9. 9 S210) Wes: SO ins:

10,05 51) 12 1050s: Sic 7:

11:0 10 4

1250 9.6

EN =Edge Number TY =Edge Type SN & NE = Start & End Nodes

(b)

Fig. 8.9: a) Orthographic views of a
complex prismatic object

b) topology

295

View Loop No Edge Nos. Pattern shape | Type

1, 7, -2, -8, 5, 6, 3, -4 7

ee ee ey tog
x 9

circle D
= 9

ee ae a eee Pc
1 [o 10, 6 :

xZ 2 -1, -3, 2, -5 rectangle Cc
L3 3, 8, 13, 12 rectangle Cc

L4 -4, 7, -13, 11 rectangle Cc

LS 5, -6, -10, 9 rectangle Cc

Li -5, 9, 1, -6, -3, 7, 4, -10 rectangle P,Cc

yz L2 -1, 8, -4, -2 rectangle Cc

L3 2,:-7,.3, 6 rectangle Cc

L4 5, 10, -8, -9 rectangle c

P = Perimeter loop C = Connected loop D = Disjoint loop

Fig. 8.9(c): Number and type of loops

296

Pi

PS

Fig. 8.10: Decomposition tree of object

loops in the xy view

eo7

pattern, are then identified, Figure 8.11, and the syntax

defining all the primitives and the output model, are

specified in the solid modeller input file, as follows:

XY¥01 <- BLOCK (5.0, 5.0, 4.0)

xXY¥02 <- CYL (4.0, 2.0) AT (2.5, -2.5- -2.0)

xY04 <- BILLET (1.0, 1:0, 42.0) AT (-2.5, 2-5, —2.0)

XYO5 <- BLOCK (4.0, 3.0, 4.0) AT (0.5, 1.5, 0.0)

KYOV, <= CVE (1207 1.0, 4.0) AT (=1.5, <125, =25.0)

XY¥08 <- BLOCK (1.5, 3.0, 4.0) AT (-0.75, 1.0, 0.0)

XYO9 <- FILLET (0.5, 0.5, 4.0) AT (-0.5, 1.5, -2.0)

SYO6 <=" X¥O70 =" X¥08 = <XYO9

KYHO1 <= CYL (4.0, 0.25) AT (=0:75, -0.75, =2.0)

XY06 <- XYO7 - xXY¥08 - xY09

XY¥03 <- xy05 - xY06

FAMOD <- XY¥01 - XY02 - XY03 - XYHO1

The file specifies that the output model, FAMOD, is

obtained by:

1) generating a number of prismatic objects, XY03 and

XY¥06, which are the result of processing the perimeter

loop P1 in the xy view

2) generating a cylindrical object, XYHO1, which is the

result of processing loop P02

3) generating the output model by subtracting these

objects from the surrounding cuboid, specified, in the

file, as object XY01.

298

yTepou
p
T
T
O
S

JO
u
o
T
z
e
r
9
u
e
h

p
u
e

vot
e
o
T
s
T

u
e
p
T

s
e
a
t
y
t
w
t
a
d

dE
:
1
1
'
s

*bta

Jepow
pijos

yndjno

Buljjepow
pijos

1
c

sepuyjAg

ye
GE

\

W
o
.

<

sepuljAo
jo

juewBes
<
<
—
_
_

piogno

+
 yeuly

Ge

+

 uoneoynuep!

sennuid
Ge

6. AD

ed

dd Al |

Sd

id

ed MES

Id

zk
zx

299

10

Fig.

2 4

yao 1 y

i
= <6 5

Os - 4 8

6 8 3 1

> xX Zz

9 6 5 t—; — 2
! !
! 1
! 1

1 i I l 1
mmole 8 (a)

Zz

7 5 4

uv 8 6 Y,

5

©, 1
ee sae 9 1 8 1

> X >Z

10 8 7

Noluacanle
1 '
1 '
1 '

\ i} s 2

aya 4 i)
z

8.12: a) Input orthographic views
b) Output orthographic views

300

The orthographic views data of the output model

are then retrieved from the parametric file generated by

the solid modeller 'BOXER', and adjusted in order to be

compared with the original input views data, as shown in

Figure 8.12. The input views are found to correspond

exactly to the orthographic projections of the output

model, thus confirming that the exact object has been

reconstructed.

8.5) EXAMPLES FOR NON-PRISMATIC OBJECTS:

The two previous examples have shown that exact

solutions are obtained for prismatic objects without

iteration. In section 5.4.3, a class of objects called

ortho-prismatic were introduced. An example illustrating

the reconstruction process for such an object is now given

and it will be seen that an exact solution will be

obtained without iteration. A more general example

requiring an iterative solution follows.

8.5.1) EXAMPLE 4: AN _ ORTHO-PRISMATIC OBJECT:

Figure 8.13(a) shows a set of three views which

represent the first angle projections of an object, and

the corresponding topological and geometrical data is

shown in Figure 8.13(b). These input views are not

301

XY_ view XZ view YZ view

EN TY SN NE EN TY SN NE | EN TY SN NE

del 2G). 'S) 1 0 2 16 1 Ore 85
26:0." 5° 4 2 0 6 13 2.0.38 6)

2 Oe ee Sps0) X64 SOROM2 ett
AP Oe Sue. 40 3 6 4 0 6 11

et 5” 10°38) 5 & 0 a0
oo 0 ar 4 60. rete G10, 4512
1.0" (8.4: ft Ooo Omar. Fo:
8 0 3 10 6.0 10° 4 SO 85 7
9-0 10 5 950% lat 7 9.30; 10°48
10 0 tao) 10 0 voi 10°0 “3779

41.0, 0. 8-2 7 Ob 12: 0 7-8
12:0: “8 10 12:0, ‘S72: 1250 2 12

13 0 13 10 130 4 13

140 14 9 140 13 2

150 14 7 18;.0 25h A
160 14 13 160 698 10
170 8 11 1% 0 Seo 2

EN = Edge Number, TY = Edge Type, SN & NE = Start & End Nodes

(b)

Fig. 8.13: a) Orthographic views of an
ortho-prismatic object

b) topology

302

View Loop No Edge Nos. Pattern shape | Type

4 1, 7, -2, -9, -8 , 5, 6, 10, Bote oe

(PXY) _ 11, -4 ,

XY 12 +1, 4, -3, -6, -5, 8, -12 arbitrary Cc

L3 2, -7, 12,9 rectangle c

L4 3, -11, -10 arbitrary Cc

li “8, -1, -9, 10, -17, 5, 11, :

(PXZ) |-6, -12, -7, 4,3 arbitrary P,c

L2 1, -13, -16, 15 rectangle Cc

XZ L3 2, 13, 8, -3 rectangle Cc

L4 -2, -4, 7, -14, 16 rectangle Cc
-5, 17, -10, 9, -15, 14, :

us 12, 6-11 arbitrary Cc

10, 16, -5, -15, 17, -6, :
en 13, 14, 3, -4, -2 arbitrary P,Cc

L2 1, 15, 5,9 rectangle c

L3 -1, 8, 7, 4, -3, 12, -17 rectangle [o}

YZ L4 2, 11, -10 rectangle c
US 6, -12, -14, -13 rectangle C

Lé -8, -9, -16, -11 rectangle Cc

P = Perimeter loop,

Fig. 8.13(c): Number and type of loops

303

Cc = Connected loop

immediately identified as those of an ortho-prismatic

object. Instead, all the views are observed to comprise

one, or more, connected loops as shown in Figure 8.13(c);

a feature which shows that the object is not prismatic.

The process of constructing a solid model from

orthographic views now consists of processing the

perimeter loop in each view; in Figure 8.13(a) these are

shown in bold lines, and labelled as PXY, PXZ and PYZ, in

the xy, xz and yz views, respectively.

The perimeter loop in the xy view, PXY, is

decomposed into basic patterns, shown as loops PXY1, PXY3,

PXY4, PXY6, PXY7 and PXY8, in Figure 8.14(a). Similarly,

the perimeter loop in the xz view, PXZ, is decomposed into

loops PXZ and PXZ2, Figure 8.14(b), and for the yz view,

PYZ yields loops PYZ1 and PYZ2, Figure 8.14(c).

Each basic pattern, generated from the

decomposition of loop PXY, is then used to identify the

corresponding 3D primitive, and a prismatic object,

previously referred to as the Z-profile (section 5.4.3

may then be generated, ‘as shown in Figure 8.15(a).

Similarly, all the 3D primitives associated with all the

basic patterns obtained from the decomposition of loops

PXZ and PYZ, are identified, and this time, the Y-profile

and the X-profile may be generated, as Piiustrated in

Figure 8.15(b), and 8.15(c), respectively.

304

PXY4 PXY5

Ak
(a) PXY6 PXxY8

PXY7

r
y Xx x

te:
Zz

PXZ PYZ

PXZ1 PXZ2 PYZ1 PYZ2

(b) (c)

Fig. 8.14: a) Decomposition tree of PXY loop
b) Decomposition tree of PXZ loop
c) Decomposition tree of PYZ loop

305

PXY1 Ng

PXY3
ad

PXY4 a

ewe IX INS
PXY7 _——>

Pxy h \ La Z-profile

(a)

XY XZ YZ

PXZ1 —>

PXZ2 —.

(b)

Y-profile

XY XZ YZ

PYZ1 —

Pyz2 —

(c)

X-profile

Fig. 8.15: 3D primitives identification and
generation of: (a) Z-profile,

(b) Y-profile, and (c) X-profile

306

The solid modeller input file consists of the

following statements:

XYO1 <- BLOCK(8.0, 6.0, 5.0)

X¥03) <— WEDGE(1.5, 1.5, 5.0) AT (-4.0, 3.0, =2.5)

xYO4 <- BLOCK(6.5, 4.0, 5.0) AT (0.75, 1.0, 0.0)

XY¥06 <- WEDGE(1.5, 1.5, 5.0) AT (1.5, -2.5, -2.5)

KYO7 <- BLOCK(1.5, 2.5%, 9.0) AT (-1275,, 0.57700)

X¥08 <= FILLET(1-.0, 1.0, 5.0) AT (=1.0, -1.0, =2.5)

XYO2 <- x¥04 - xY¥06 - XY07 - xY08

ZPROF <- XY01 - xX¥02 - xyY03

XZ01 <- BLOCK(8.0, 5.0, 6.0)

XZ02 <- BLOCK(2.0, 2.0, 6.0) AT (3.0, 0.0, 0.0)

XZ00 <- XZ01 - xXz02

YPROF <- (XZ00) AT (ROTX = 90.0)

Y¥Z01 <- BLOCK(5.0, 6.0, 8.0)

YZ02 <- BLOCK(2.0, 2.0, 8.0) AT (-1.5, 3.0, 0.0)

Y¥Z00 <- Y¥Z01 - ¥Z02

XPROF <- (¥Z00) AT (ROTY = 90.0)

FAMOD <- ZPROF * YPROF * XPROF

The above statements indicate that:

a) the Z-profile is specified by the object named ZPROF,

which is defined by suptracting the wedge primitive xyY03

and object XY02 from the surrounding block XY01. Object

XY02 is defined by subtracting primitives xY06, XY0O7 and

XY08 from the primitive block xyY04.

307

b) the Y-profile is specified by.the object called YPROF

which is defined by removing cuboid primitive XZ02 from

the corresponding surrounding block XZ01, and by rotating

it through a 90 degrees angle about the X axis.

c) the X-profile is specified by the object XPROF, defined

as the result of suxcracting the cuboid primitive YZ02

from the cuboid primitive YZ01, and rotating it through a

90 degrees angle about the Y axis

d) the output model is finally defined as the result of

the intersection (*) of the three profiles ZPROF, YPROF

and XPROF.

The above file is then used ky the solid modeller

to construct the solid model, Figure 8.16, according to

the specifications described above, and to generate a text

file in which the orthographic views of the solid model

are parametrically described. The topological and

geometrical data corresponding to the output model views

are extracted from this parametric file and then compared

to the original input data, as shown in Figure 8.17.

Again, similarly to the case of prismatic objects, the two

sets are found to be exactly identical, thus confirming

that the intersection shown in Figure 8.16, i.e., the

output model is a complete description of the original

object.

308

Z-profile X-profile

) a

2X-profile Y-profile

er
Le

Output solid model

Fig. 8.16: Generation of a solid model from
the intersection of the three
mutually perpendicular 'profiles'

309

ab tate
! I
1 I

oe 9 10
> Z

(a)

5
4

Y Zi 3

13 12
8b-r-T=-|2

I !
I !
I ! 1

970 44
PZ

(b)

Fig. 8.17: a) Original input views
b) Orthographic views of output model

310

8.5.2) EXAMPLE 5: A GENERAL 3D OBJECT:

The iterative aspect of the interpretation process

developed in this project, is clearly demonstrated by this

example. The orthographic views and associated topology,

shown in Figure 8.18(a) and 8.18(b), respectively, are

identified as those of a non-prismatic object, for the

same reasons as the ones described in the previous

example. The results of the search for the number and type

of loops in all the views are presented in Figure 8.18(c).

Again, only the perimeter loop in each view is

processed initially. The process consists of decomposing

loops PXY, PXZ and PYZ, shown in Figure 8.18(a) in bold.

The results of such decomposition is illustrated in Figure

8.19. The 3D primitives are identified and the

corresponding profile in each view is reconstructed as

shown in Figure 8.20. The output model is then generated

from the intersection of the three profiles, Z-profile,

Y-profile and X-profile, as specified by the solid

modeller input file which is as follows:

XY¥O1 <- BLOCK(8.0, 10.0, 6.0)

X¥03 <- BLOCK(5.0, 7.0, 6.0) AT (1.5, .15, 0.0)

XY¥04 <- BLOCK(2.0, 2.0, 6.0) AT (0.0, ~.0, 0.0)

XY¥O5 <- FILLET(1.0, 1.0, 6.0) AT (-2.0, -1.0, -3.0)

XY¥02 <- x¥03 - x¥04 - xY05

ZPROF <- XY01 - xy02

311

(a)

XY view XZ view YZ view

EN TY SN NE EN TY SN NE | EN TY SN NE

1) ea ta OM a AS eon 5
2 0 5 4 24.0. -8 “9 2550) SS) 91
Se Ot 2 3) 0). 6 cs. 30) 10 ee ea Gi
4: Oo 6.12 40 3 4 40.76" 9
Cree See 5 0 8 4 Soe Oli 4
Ci Om 910) Bi 0 2 14 C210 a2
Z, -OF 2A 32) eC! +5 9) TOF 7) 1
Sis At 10 8 0 10 2 S50; 8) Z
9 oO 10 12 90 oh °F $F 10 -12 18)
101 Sane 10-1 1 § 10 1 9 10
a0 9) 11 WOe te: Tey 5) S10
120 9 12 12 0 12 10 12:0). 12°91
130 3 5 130 6 8 130 4 5

140 11 9 1407 392
1550, 8) 7

EN = Edge Number, TY = Edge Type, SN & NE = Start & End Nodes

(b)

Fig. 8.18: a) Orthographic views of
a non-prismatic object

b) topology

312

0 to
w

Fig. 8.18(c): Number and type of loops

Disjoint loop

313

View Loop No Edge Nos. Pattern shape | Type

u 1, -2, -13, 5, 6, -8, -11, :
(pxy) | 12,-7, 3, -4 arbitrary P,c

xy L2 -1,4,-3, 7, 9,-6, -5, 13, 2 arbitrary Cc

L3 8, 9, -12, 11 rectangle Cc

10 .
l L4 0 circle D

[1 |s, 15, -2, 10, 7, -2, 3, 4 i P.c (PXZ) Pee Le eens arbitrary ,

L2 1, 12, 8, 6, 14, -7, -10 arbitrary Cc

XZ L3 -1, -15, -8, 2, -14, 11 rectangle Cc

L4 -3, 13, 5, -4 rectangle Cc

L5 -6, -8, -12, -11 rectangle C

eA 2,5,13,11,-10, -4, -3,-14 arbitrary P,C

L2 1, -13, 6, 3 rectangle [o}

YZ L3 -1, 4, 10, 11 arbitrary Cc
L4 -2, 14, -6, -5 rectangle Cc

7, -12, 9,8 Ls 712, 9,
"7,8, 9, 12 rectangle D

2 Perimeter loop, C = Connected loop

XZO1 <- BLOCK(8.0, 6.0, 10.0)

XZ02 <- FILLET(3.0, 3.0, 10.0) AT (4.0, -3.0, -5.0)

X2Z01 <- FILLET(3.0, 3.0, 10.0) AT (4.0, 3.0, -5.0)

XZ00 <- XZ01 - XZ02 - XZ03

YPROF <- (XZ00) AT (ROTX 90)

sZ01 <- BLOCK(6.0, 10.0, 8.0)

YZ02 <= FILLET(3.0, 3.0, 8.0) AT (=3.0, 5.0, =—4.0)

Y¥Z01 <- FILLET (3.0, 3.0, 8.0) “AT (3.0, 5.0, —47:0)

¥Z00 <- ¥ZO1 - YZ02 - YZ03

XPROF <- (¥Z00) AT (ROTY = 90)

FAMOD <- ZPROF * YPROF * XPROF

which indicate that:

a) the Z-profile is specified by the object named ZPROF,

which is defined by removing the object XY02 from the

surrounding block xXY01. Object xXY02 is defined by

subtracting primitives xXY04 and xY05 from the primitive

block xyY03.

b) the Y-profile is specified by the object called YPROF

which is defined by removing two fillet primitives, Xz02

and XZ03, from the corresponding surrounding block XZ01,

and by rotating it through a 90 degrees angle about the X

axis.

c) the X-profile is specified by the object XPROF, also

defined as the result of subtracting two fillet

primitives, Y2Z02 and Y¥Z03 from the cuboid primitive Yz01,

and rotating it through a 90 degrees angle about the Y

314

PXY1

 PxY2

(a)

PXZ2 PXZ2

(b)

Fig. 8.1984)
b)

KR
PXY5

PXy4 PXY3

> i
I

iY,

te: PYZ

PYZ2 PpyYz3

PYZ1

 (c)

Decomposition tree of PXY loop
Decomposition tree of PXZ loop

c) Decomposition tree of PYZ loop

315

Fig.

XY XZ NZ

—
PXY1

—
PXY3

>

PXY4

A ee
BXYS Z-profile

(a)

XY XZ YZ

—
PYZ1

A Ei
PYZ2

is PYZ3 Y-profile

(b)

xY XZ YZ

—
PYZ1

PYZ2

Pyz3 X-profile

(c)

8.20: 3D primitives. identification and
generation of: (a) Z-profile,
(b) Y-profile, and (c) X-profile

316

axis

d) the output model is finally defined as the result of

the intersection (*) of the three profiles ZPROF, YPROF

and XPROF.

The data that represent the orthographic

projections of the output model, FAMOD, are then retrieved

from the parametric file generated by the solid modeller.

In this case, it is clear that a number of differences can

be clearly identified to exist between the orthographic

views of this intersection, Figure 8.21(a), and the

original input orthographic views, Figure 8.21(b). These

discrepancies indicate that the output 3D model is not ce

exact object, but an approximation model, which, in this

case is the First-approximation model.

In order to generate either a complete, or a more

Eeriacdh object model, the differences between the input

and output views will have to be subjected to a

minimization procedure. Such a procedure consists of

identifying a number of subobjects which are to be removed

from the output solid model. The procedure is initiated by

the generation of the so-called pseudo-views from which

the orthographic views of such subobjects may be

retrieved.. The pseudo-views are generated by the

"Pseudo-views Generator' algorithm, as shown in Figure

8.21(c). Loops are then labelled accordingly in order to

identify those which represent orthographic projections of

317

(a) (b)

y |@ Y Li

bes ome

2 9

(c)

Fig. 8.21: a) Original input views and object
b) 1st approximation model and

corresponding orthographic views
c) pseudo-views

318

subobjects. According to the 'Feed Back Data Generator'

algorithm (section 6.4.2), the loops shown in Figure

8.21(c) as hatched areas, form a set of 'matching' loops

which represent the orthographic projections of a

subobject. The data for these loops are then fed back into

the analysis process which identifiec therm as the

signature of a cylindrical 3D primitive. The cylindrical

subobject is then subtracted from the First-approximation

model to yield a second approximation model, Figure 8.22,

having views which are still different from the original

input views, as shown in Figure 8.23.

The process of generating pseudo-views and

identifying orthographic views of subobjects is again

repeated; this results in the identification of another

set of matching loops, shown in figure 8.23, again as

hatched areas. The data associated with these loops is

then used as input to the analysis step to be interpreted

as two cuboids. Next, the cuboids are removed from the

second-approximation model, Figure 8.24, to yield a new

solid model which, this time, is identified as the exact

object. This is confirmed by comparing the orthographic

views of such model with the original input views, as

shown in Figure 8.25. For demonstration purposes, the

exact object is shown in this example, to be reconstructed

from its orthographic views after two iterations, but it

is actually reconstructed only after one iteration, since

the identification of all the subobjects, together with

319

XY XZ YZ

cylindrical lst approximatio:
subobject model

Soe

O
2nd approximation model

Fig. 8.22: Subtracting an identified cylindrical
subobject from the lst approximation
model to generate the 2nd approximation
model

320

(a) (b)

 v

(c)

Fig. 8.23: a) Original input views and object
b) 2na apprucimation model and

corresponding orthographic views
c) pseudo-views

321

XY XZ YZ

A
cuboidal

subobjects

Ny we 2nd approximatio:
e) model

v

n

Output solid model

 itr

Output orthographic views

Fig. 8.24: Subtracting two identified cuboidal
subobjects from the 2nd approximation
model to generate the exact object

322

 oe

(b)

Fig. 8.25: a) Original input views
b) Orthographic views of generate:

solid model

323

their removal from the first approximation model, is

actually carried out in one step.

The above examples clearly illustrate the

interpretation process developed in this project. They

also demonstrate that the process of generating output

models consists always of a removal, and not addition, of

primitive objects from the initial surrounding cuboid or

‘Raw Block'.

324

DISCUSSION AND SUGGESTIONS FOR FUTURE WORK

325

9.1) DISCUSSION:

The problem of converting engineering drawings

into solid models is still regarded as a very complex one,

mainly because of the vastness of the domain of mechanical

engineering components. This project has beer undertaken

to contribute to the solution of the problem. To this end,

a number of algorithms have been developed and implemented

on an Apollo DN3000 workstation. An interpretation process

which converts orthographic projections into solid models

has been developed by adopting a novel approach based on

the concepts of Constructive Solid Geometry.

The problem of interpreting engineering drawings

as solid objects has been a topic of research for many

years and various techniques have been developed in

attempts to solve it. However, none of these techniques is

yet known, to the author, to have been implemented for the

whole domain of mechanical engineering objects. Drawing

from this experience, the author has adopted, from the

start of the project, the basic philosophy of minimizing

the formidable complexity of the problem by using the

"Divide and Conquer' approach. The domain of objects was

initially divided into two different classes: prismatic

and non-prismatic objects, and work was concentrated on

the development of an interpretation process which

converts orthographic projections of prismatic objects,

326

the simplest of the two classes, into solid models.

Experience gained from the work on prismatic objects has

yielded a technique which extends the interpretation

process to a wide range of objects which may be

represented by the techniques of Constructive Solid

Geometry.

The algorithms described above accept data which

must represent three views of a solid, and each view may

consist of straight lines and circular arcs only, but this

is not a severe limitation to many of the mechanical

engineering applications. Because of the 'Divide and

Conquer' approach, the addition of facilities to accept

more complex geometry is seen as an evolutionary process

rather than one requiring major changes to the philosophy

upon which the software is based. For instance, one such

facility is the addition of further primitives such as

spheres, cones and toroids, together with the removal of

any restriction on the orientation of primitives.

The main problem is that the true shape of a

primitive, whose axes are not aligned with the coordinate

axes, may not be readily identified from the "global"

orthographic views of the ‘solid object. Such a problem,

however, does not arise during the generation of the

"first-approximation" model since it only requires the

analysis of the boundary loop in each view. Furthermore,

as mentioned at the beginning of this thesis, it has been

327

reported that the PADL-1 development team at Rochester

University [30], found that 40 percent of parts designed

by a range of Mechanical Engineering companies could be

represented in terms of just two primitives: rectangular

blocks and circular cylinders - subject to the restriction

that biock edge and cylinder axes were aligned with the

coordinate axes. According to this encouraging report, the

domain of objects that may be interpreted by the process

that has been developed in this project, can be regarded

as fairly large. The report also mentions that the

addition of further primitives such as those mentioned

above, together with the removal of any restriction on the

orientation of primitives allows the modelling of more

than 90 percent of the parts from the same companies.

9.2) SUGGESTIONS FOR FUTURE WORK:

To quote an appropriate comment by Cooley [50]:

"It is an unfortunate but inescapable fact of software

development that, when the fundamental problems have been

largely solved, one has merely reached the end of the

beginning". Further enhancements are required to extend

the interpretation process developed in this project to a

wider, if not the whole, domain ot objects which may be

modelled by the Constructive Solid Geometry

representation. A number of areas of work also remains to

be done, such as technical deficiencies and enhancements

328

of the software for commercial acceptability and

exploitation. Suggestions for future work are described in

the following two sections, the first of which lists the

technical problems and deficiencies which are yet to be

solved, and the second discusses enhancements that may be

required for commercial exploitations. The following

suggestions are concerned solely with the generation of a

solid model from already stored orthographic projections.

9.2.1) TECHNICAL DEFICIENCIES:

1. The algorithms described above can only accept input

data which describes complete and unambiguous orthographic

projections of objects. In practice, however, most

drawings are either over or under defined. Aspects of this

problem have been addressed in this research (chapter 2),

and some suggestions for checking the input data were

presented as a series of tests. These tests (which are to

be performed by the 'Raw Data Interpreter' subprocess

described chapter 5) have not yet been implemented. The

problem of detecting redundant, incomplete, or conflicting

information in an engineering drawing is a complex one,

and the above tests merely address certain aspects of the

problem, such as dangling edges and self-intersecting

loops.

2. An important objective of this research was to automate

329

the interpretation process of orthographic projections as

solid models. Whilst this has been achieved for a limited

(although important) class of objects, the basic strategy

has been shown to be valid in the context of an iterative

process for which the concept of approximation models was

introduced. In this connection, the following issues

arise:

a) Will such an iterative process fail to converge to an

adequate solution in accordance with some criterion ?

b) Will the generation of an exact object require an

unacceptable number of iterations or, indeed, be

impossible? On which criterion should the process be

terminated in order to generate an ‘acceptable' model ?

What is defined as an 'acceptable' model ?

Question ‘(a) addresses the problem of instability

which is an aspect found in any iterative process. This

undesirable condition may be detected either by the 'man

in the loop', i.e. the user, or alternatively, by

computing well-defined "properties with engineering

significance, such as the masses, or volumes, of two

consecutive output models; the mass of one approximation

model must always be smaller than the previous

approximation model, since an iteration consists of

subtracting one, or mover smaller volumes, i.e. masses,

from the previous approximation model. Divergent

330

conditions may then be detectable when the mass of an nth

approximation model is greater than the mass of the

(n-1)th approximation model.

The next questions address the problem of model

acceptability. The feed back step, i.e. the iteration

process, is not always required, such as in the case for

the interpretation of orthographic views of prismatic and

ortho-prismatic objects since discrepancies will not be

found when comparing the input views data and the

orthographic views data of output geometric model. If

discrepancies are detected, the geometric model may

nevertheless be acceptable for some applications such as

volume and mass calculations in preliminary design, or

even for Finite Elements Analysis purposes. The same

geometric model, however, may be unacceptable for other

applications such as those where fine detail is important,

as in NC machining operations, or in the design and

manufacture of high precision engineering components. For

example, in the design of hydraulic components, a very

marrow but vital fluid conduit would represent a very

small volume which cannot be ignored. A criterion for

model acceptability is therefore required. It is suggested

that the level of accuracy which may be acceptable for

some applications is that at which there are minor

differences in some significant quantity between

successive iterations. For example, if the application for

the geometric model is the computation of heat transfer

331

from the surface, then a minute change in surface area per

iteration is indicative of an acceptable model.

Alternatively, a simple value, again such as volume, whose

decrement has reached a certain level between successive

approximations may provide a practical test of model

acceptability. At present, the decision to allow the

process to continue or to terminate the iterations, is

carried out by the user.

3- The interpretation process developed in this work is

not only iterative but recursive too, as mentioned in

chapter 5. Arbitrary loops are recursively decomposed into

basic patterns. This recursive aspect of the process also

arises when enhancement of the first approximation

geometric model is required. Subobjects which are to be

identified from the pseudo-views, and subtracted from the

first approximation model, may be arbitrary objects which

may not be readily identified as primitives. These

subobjects must be interpreted as solid models before

subtracting them from the approximation model. The case

may then arise where, in order to reconstruct these

subobjects, it is again necessary to identify further’

subobjects which are to be removed from the approximation

model of ene previous subobjects. At present, the

Rneeroreration process caters only for general 3D opjects

which can be enhanced by subtracting subobjects which are

readily identified as 3D primitives. This technical

problem, however, can be solved in exactly the same manner

332

as for the decomposition of arbitrary loops into basic

patterns; thus by using pointers which store the

information concerning the relationship between parent and

children subobjects.

4- One of the objectives of this research was tc develcp

algorithms which require minimum user input. For this

reason, hidden edges, represented as dashed lines in

engineering drawings, do not have to be specified as such

in the input data. Such depth information, however, is

available in the description of the orthographic views of

the first approximation model, and stored in the

parametric file generated by the solid modeller, as

described in section 6.3.1. This information may prove

useful in the feed back subprocess to identify subobjects

from the pseudo-views.

9.2.2) REQUIREMENTS FOR COMMERCIAL SOFTWARE:

The C.1.E.D,.S.M. software is; in itself, an

example of a useable research system which is not yet ina

commercially acceptable form. This is mainly because it

has been developed on the basis of a sania of assumptions

which impose restrictions on the user input which may be

commercially unacceptable. Input flexibility is regarded

as one of the major requirements for commercial software

because users generally prefer systems which provide

333

various options from which they can make their choice.

C.I.E.D.S.M. software has been developed to accept a

minimum of three orthographic projections which must also

be defined in the first angle projection system. In

practice, objects may be represented by only two

orthographic views, and very often may require the use of

auxiliary and cross sectional views, especially where

complex mechanical engineering components are concerned.

Furthermore, in engineering drawing practice, the first

and third angle projection system are used by different

companies. To cater for third angle would required rather

straightforward changes to the conventions adopted when

raw data are interpreted. Options for auxiliary and cross

sectional views are a somewhat larger issue, but must be

provided if the software is to be commercially exploited.

One desirable feature, commonly found in popular

commercial software, is a user-friendly interface. In the

above software, dialogue between user and machine could be

made more attractive by

a) designing and implementing a front end which consists

of a series of menus, to display a number of options, such

as those described above, from which the user is able to

select those that suit him most.

b) providing a link to commercial 2D draughting packages,

such as Autocad® [51], MacDraft™ [52], or PAFEC Ltd.

"DOGS"[53], in order to generate and transfer input data

334

describing orthographic projections.

c) generating intermediate files which would be used to

store, perhaps in the form of a journal, the dialogue

between user and machine, such as error status and user

input commands. The above software already provides two

text riles (che solid modeller input and output files)

which could be used for such a purpose.

d) improving the graphics to enable the user to view the

progress that has been made with the generation of models,

perhaps by displaying two or more consecutive

approximation models, or by dynamically showing the

changes of a solid model, provided that the display proved

neither detrimental to the progress of the main

computation nor irritating to watch.

The other major requirement for commercial

software is processing speed. This is a function of both

the algorithms and the See cinoma ovate” A great deal

of effort has been concentrated during this research on

the improvement of execution speed of the algorithms, as

discussed in chapter 7. The most apparent delay occurs

when running the PAFEC "BOXER" solid modelling software on

the Apollo DN3000 workstation. This is almost certainly

caused by the complexity of the Boolean operation

algorithms; a factor which is unlikely to be improved in

the foreseeable future.

335

9.3) POTENTIAL BENEFITS:

Discussions with major companies such as PAFEC

Ltd., Deltacam Systems Ltd., Radan Computational and

Superdraft Systems, have revealed great interest in the

work undertaken in this project. Such interest tends to

the conclusion that the commercial benefits of a

successful application of this work are already apparent

to such companies.

One such application would mean that solid models

could be produced from existing engineering drawings at a

modest cost. The difficult, time-consuming and

labour-intensive task of generating solid models using 3D

modellers, would be completely eliminated. As a result of

this, much faster links to applications such as

Finite-element analysis, CNC machine tool tape generation,

mechanism simulation and other engineering applications

requiring a solid object description, would be achieved.

Furthermore, engineering designers would be able to

develop and improve their products much more rapidly since

they would only need to modify design sketches and

drawings. Hence, the working environment of the

engineering designer would be significantly improved and

valuable 2D data need not be discarded.

Engineering education is also one area which would

benefit from this work. The automatic generation of solid

336

objects from engineering drawings would be a helpful tool

in the training of engineering draughtsmen, as they would

be able to observe their progress and to obtain immediate

feed back during a draughting exercise. It would also help

in preserving and enhancing draughting skills. As far as

PAFEC Ltd. is concerned, the above software would also

obviate the need to train users to use the 'BOXER' solid

modeller.

Lastly, the algorithms developed in this work can

potentially contribute to the field of conversions between

geometric modelling representations; it has been reported

that the exact, or even the approximate, conversion of

Simple Sweep modelling representation into Constructive

Solid Modelling representation have yet to be achieved

(appendix B). The work reported, in this thesis, on the

generation of uniform-thickness (prismatic) models is

fundamentally a process of converting a contour into a

Constructive Solid Geometry representation. Since in

Translational Sweep representation (section 3.4.2) objects

are defined in terms of contours and trajectories, it is

therefore possible, to implement the above algorithms to

achieve the exact conversion of such a geometric modelling

scheme into a Constructive Solid Geometry representation.

337

ELEMENTS OF GRAPH THEORY

338

A.1) INTRODUCTION:

Figures A.1 and A.2 depict, respectively, an

electrical network and a sectional view from an

engineering drawing. It is clear that both of them can be

represented diagrammaticaliy by sweans of points and lines

as in Figure A.3. The points A, B, C, D, E, F, G, H, I, J,

H, K, L, M, N, O, P AND Q are referred to as 'Nodes', and

the lines connecting them are called 'Edges'. The whole

diagram is a 'Graph'.

The 'Degree' of a node is the number of edges

which have that node as an endpoint. A node of degree n is

referred to as a n-node and a 2-node is one of degree 2.

Nodes B, C, E, H, I, L and M are 2-nodes, whereas Nodes A,

D, F, G, d, K, N; ©, P and Q are S3=nodes. It is’ not

possible for l-nodes to exist in a graph which accurately

represents an orthographic view of a solid object, but

nodes of all higher degrees are possible.

The graph shown in Figure A.3 is a 'Simple' graph,

which by definition, is a graph where there is never more

than one edge joining a given pair of nodes. If there is

more than one edge joining e pair of vertices then they

are called ‘Multiple Edges'. One instance where multiple

edges occur in orthographic views is shown in Figure A.4;

there are two nodes, A and B, which are joined by a

semi-circular edge and by a straight edge. Another example

339

Fig. A.1: An electrical network

K ek:

Fig. A.2: Sectional view from an
engineering drawing

L z

Fig. A.3: Graph equivalent to
Figures A.1 and A.2

340

where multiple edges can arise is when two lines of equal

projected length are superposed on a view.

A 'Loop' is an edge which has both endpoints at

the same node. This may occur on engineering drawings

whenever there is a cciplete circle. A circle may be

adequately modelled by storing the coordinates of its

centre and the coordinates of an arbitrary point on its

circumference. Figure A.5 shows that a circle which is a

loop having both endpoints at the shown arbitrary node. In

this thesis, the term ‘loop' is also used to refer to a

closed 'path' or ‘'circuit' as defined in the following

section.

A.2) DEFINITIONS:

Formally, a 'Graph' G is defined to be a pair

(N(G),E(G)], where N(G) is a non-empty finite set of

elements called 'Nodes' (or Vertices, or Points), and E(G)

is a finite 'family' of unordered pairs of elements of

N(G) called 'Edges'. The word '‘'family' is used to

represent a collection of elements, some of which may

“occur several times; for example, {a,b,c} is a set, but

(a,a,b,c,c,c) is a family. Note that the use of the word

'family' permits the existence of multiple edges. Thus,. in

Figure A.3, N(G) is the set { A, B, C, D, E, F, G, H, I,

J, K, L, M, N, O ,P , Q} and E(G) is the family consisting

341

A B

H are

!

Gpeseor S D

F E

Fig. A.4: View of an engineering drawing

Arbitrary Start and

Finish point on

the circle

Fig. A.5: Occurence of a single edge loop
on an engineering drawing

342

of the Edges {A,B}, {B,P}, {P,C}, {C,D}, {D,E}, {E,F},

{F,G}, {G,H}, {H,I}, {I,J}, {J,K}, {K,L}, {L,M}, {M/A},

{A,O}, {P,Q}, {N,D}, {F,K}, {G,d}, {0,N}, {N,Q} and {Q,0}.

A ‘'Digraph' D, is defined to be a pair

[N(D),E(D)], where N(D) is a non-empty finite set of

elements called Nodes and E(D) is a finite family of

ordered pairs of elements of N(D) called 'Di-edges'. A

di-edge whose first element is v and whose second element

is w is called a di-edge from v to w and is written {v,w},

or simply vw, as shown in Figure A.6. The di-edge vw is

different from the di-edge wv.

An 'Edge-sequence' of a given graph G, is defined

as a finite sequence of edges of the form

Noy, ANZ, «+<2es- eee ¢ Oni) 2m

(also denoted by n, -> ny -> no -> «=> Ny-1 -> Ap) -

It is clear that an edge-sequence has the property that

any two consecutive edges are either adjacent or

identical. The node no is called the initial node and the

node nm is, called the final node of the edge-sequence

which may then be referred to as an edge-sequence from no

to nm. The number of nodes in an edge-sequence is called

its 'Length'. Thus, the le .gth of the edge-sequence in

Figure A.3 is 21. An edge-sequence in which all the edges

are distinct is called a 'Trail'. If, in addition, the

nodes no,n1,.., ON, are distinct (except possibly n, =n,), Oe ™m ° ™m

343

di-edge vw di-edge wv

Edge sequence is a path since initial and
final nodes are distinct.

No (initial node)

n
m

Final nod
Edge sequence of Length 5 ee coe?

 Circuit, or Loop, of Length 7

Fig. A.6: Definitions of Digraphs, Paths and Circuits

344

then the trail is called a 'Path'. A path, or trail, is

defined as ‘closed' if nyo = ny, and a 'Circuit' is a

closed path containing at least one edge. For convenience,

a circuit is also referred to, in this work, as a loop.

The above definitions are all illustrated in

Figure A.6, and are to be found in the book by Wilson

[54].

345

CONVERSIONS BETWEEN GEOMETRIC MODELLING

REPRESENTATIONS

346

B.1) INTRODUCTION:

The geometric modelling representation schemes

discussed in chapter 3 all have their specific advantages

and disadvantages. For instance, a boundary representation

is very suitable for making line drawings, but it requires

a large mount of memory space. On the other hand, with

constructive solid geometry input of models of mechanical

parts is easily achieved, but it in turn is less suitable

for making such drawings.

Baer, Eastman and Henrion [9], distinguish four

categories of model: the ‘Definition Language' or input,

the 'Data Representation' or data storage of the model,

"Conceptual Model, and '‘'Applications'. Each of these

categories impose different requirement on the

representation schemes. For this reason, many modellers

provide multiple object representations. For instance,

input may be done by a constructive solid geometry

representation, since such representation has the merit of

being adequate for input and for representing only true

solids. In this form, the input may then be stored in a

database. ie line drawings are required, the

representation is converted into a boundary

representation. This specific conversion, from

constructive solid geometry representation to a boundary

representation, is known as the 'Boolean Evaluation',

whose algorithm is roughly described in section B.2. Some

347

of other examples of conversion algorithms are briefly

discussed in section B.3. Requicha and Voelcker [55]

outlined all the possible conversions between

representations. These are given in Figure B.1, where an

"exact' conversion is defined as one which produces a

representation of exactly the same object, and an

‘approximate' conversion is a conversion which produces an

approximate representation of the original object, for

instance by using only planar faces or cubical cells. It

can be observed from Figure B.1, that not all conversions

between any two representation schemes are possible. One

reason is that a conversion is impossible in principle,

for example from constructive solid geometry to sweeping,

and from an approximate to an exact representation.

Another reason is that a conversion is possible in

principle but the algorithm has not yet been developed.

B.2) BOOLEAN EVALUATION:

The conversion from constructive solid geometry

into a boundary representation is very important, because

a combination of these ‘two representations in many

modellers. Algorithms for boundary evaluation that allows

primitives with curved surfaces are very difficult to

implement, mainly because the intersection curves between

any combination of curved surfaces is very difficult to be

determined, especially for complex surfaces. For this

348

EXACT. APPROXIMATE

TO cD BR csG ss SE BR
FROM

KNOWN

K
SE

IMPOSSIBLE

BR K

K = Known, E = Experimental, I = Impossible

Cellular Decomposition cD =
BR = Boundary Representation
CSG = Constructive Solid Geometry
SS = Simple Sweep
SE = Spatial Enumeration

Fig. B.1: Possible conversions between
representations after Requicha
and Voelcker (1983)

349

reason, most algorithms that have been implemented only

work on primitives with planar faces, so that primitives

with curved surfaces have to be approximated.

In 1983, Mantyla [56] proposed an algorithm for

Boolean evaluation of two primitives bounded by planaz

surfaces. The evaluation is achieved stepwise by first

combining two primitives, and then combining the result

with the third primitive, etc. The input to the algorithm

consists of a number of primitives described by a boundary

representation and a CSG tree indicating how these

primitives have to be combined. A boundary representation

of the object is obtained.

The algorithm can be divided into two steps:

1) determine the intersection lines of the input

primitives

2) determine the resulting object by combining the

relevant parts of the input primitives.

The first step of the algorithm can be achieved as

follows:

a) determine the intersection points of all edges from one

primitive with all faces from the Senos ae the other way

around

b) determine for each face of the primitives, starting

from the intersection points, chains of intersection

350

lines, as shown in Figure B.2.

The second step of the algorithm can be divided

further into two steps:

2.1) subdivide the primitives into two parts. The faces of

the primitives are subdivided at the chain, or chains, of

the intersection lines. The resulting parts of the faces

from one primitive (A) are classified as inside or outside

the other primitive (B), as shown in Figure B.2, where A

is subdivided into AinB, which consists of the parts of A

inside B, and AoutB, which consists of the parts of A

outside B. Likewise, B is subdivided into BinA and BoutA,

also shown in Figure B.2.

2.2) select the relevant parts, depending on the Boolean

operator, and combine these parts. To determine. the

resulting object, the relevant parts of A and B have to

selected, which depends on the Boolean operator:

A UB: AoutB and BoutA

A MB: AinB and BinA

A - B: AoutB and BinA

B - A: BoutA and AinB.

The two selected parts are then combined to

produce the boundary representation of the resulting

object. It can be seen from Figure B.2 that in all case

such Boolean evaluation results in the correct object.

351

 Ho?
BinA AinB

Fig. B.2: Boolean evaluation

352

B.3) SOME. CONVERSION ALGORITHMS :

There are a number of algorithms which have been

developed to convert one representation scheme into

another. Some of these are briefly discussed here.

1) From translational sweep to boundary representation:

a) make faces perpendicular to the trajectory bounded

by the contour in both endpoints of the trajectory

b) make faces parallel to the trajectory bounded by

parts of the contour and edges parallel to the trajectory.

2. From constructive solid geometry to spatial

enumeration:

a) determine for every voxel in the grid whether it is

inside the object

b) for a composite object in the CSG tree this can be

done (recursively) by applying its operator ti its left

and right branches. For instance, if a node in the CSG

tree with the union operator the voxel inside the left or

the right branch, the voxel is inside the combined objects

represented at that node.

©) for a primitive object in the CSG tree this can be

achieved by substituting the coordinates of the centre of

the voxel in the equations of the half spaces defining the

object.

3) From boundary representation or constructive solid

353

geometry to arbitrary cellular decomposition:

These algorithms are particularly important because of

their potential use for automatic generation of meshes of

cells for finite element analysis. Unfortunately, they

exist only in an experimental form.

354

HOMOGENEOUS COORDINATES

355

c.1) INTRODUCTION:

As early as 1965, L. G. Roberts [57] suggested

that homogeneous coordinates could be used to describe the

most commonly required transformations and projections.

Since then, the technique has become commonplace and is

taught as part of the standard graphics curriculum

(58,59].

Homogeneous coordinate representations of points

and planes are particularly useful for describing and

transforming geometric models. The term 'homogeneous' is

applied to the representations because each class of

object is modelled by an equation which has no explicit

parameter. The familiar explicit equation which describes

a two-dimensional line is y = ax + b. The homogeneous

(implicit) equation for the same line is ax - y + b= 0

The homogeneous representation of a

two-dimensional point (x,y) is written as [wx,wy,w], where

w is any non-zero scalar which is sometimes referred to as

the 'Scale Factor'. the symbols '‘wx' and '‘'wy' are

diphthongs; they are single numbers, not multiplications.

The mapping from a homogeneous point [wx wy w] back to its

two-dimensional image is simply (wx/w, wy/w) .

Three-dimensional objects are treated in an

analogous fashion. The implicit form of the equation of a

356

plane is a,x + apy + a3z + a4 = 0 . The homogeneous

representation of the three-dimensional point (x,y,z) is

written as [wx wy wz w] for any non-zero value of w.

Again, the mapping from this homogeneous point back to its

three-dimensional image is (wx/w, wy/w, wz/w).

C.2) TWO-DIMENSIONAL POINTS AND LINES:

Creed A two -dimensional point (x,y) is represented by

the homogeneous row vector p = [wx wy w], as described

above. Any non-zero scalar multiple of this representation

represents the same two-dimensional point. The homogeneous

point p is converted back to its ordinary coordinates

(wx/w, wy/w).

G2 <2 A line in 2D-space is represented by a column

vector:

5 2

b

c

C.2-3 The condition that a point p is on the line yis:

p.y=0

This is an inner product which is equivalent to the

357

scalar.equation:

a(wx) + b(wy) + c(w) = 0

If the scalar product is not zero then p does not

lie on the line. The product is however, pzoportional to

the distance of the point to the line, where:

distance = alwxl+biwy) + c(w)

w V(a2 + b2)

C.2.4 The line y between a point p = [pl p2 p3] anda

point q = [ql q2 q3] is given by the vector product:

Y= a2, - 9,8,

ogee

Tee Oe

This is the result of solving the following

implicit equations simultaneously:

apl + bp2 + cp3 = 0

aql + bq2 + cq3 = 0

It can be easily verified that the points p and q

358

are on the line y, i.e., p. ¥Y = 0 andq.y =0

C.225 The point at the intersection of two lines given

by:

y= ay and A= ay

a eo

ey i)

is given by:

P= [(bic - boc) (cyaq - ©7284) (ayby - agby) |

C.3) THREE-DIMENSIONAL POINTS, LINES AND PLANES:

Cesek A three-dimensional point (x,y,z) is represented

by the row vector p = [wx wy wz w]. Any non-zero scalar

multiple of this representation represents the same

three-dimensional point.

C.3.2 A line is represented as a function of some

parameter t which ranges from zero at one endpoint of this

to unity at the other endpoint. fhis parametric

formulation is:

359

where L is a 2x4 matrix which may be found by requiring

that

the row vector at one endpoint of line = [0 1] L

the row vector at cther endpoint of line = [1 1] L

GaSe A plane is represented by a column vector:

r= 3

b

c

d

Cis The condition that a point p = [wx wy wz w] is

on a plane is p. y =0. This is equivalent to the scalar

equation

a(wx) + b(wy) + c(wz) + d(w) = 0

If the scalar product is zero then the point p lies on the

plane. The product is proportional to the perpendicular

distance of the point to the plane, where:

distance = = - a

w V (a? + b? + c?)

360

C35 Three non-colinear homogeneous points:

P = (wp,

q = [wq,

r= [wry

determine a

determined

equations:

a (wp) + b (wq,) + ¢ (wry) + dw

a (wp2) +b (wa) Hic! (wro) + dw

a (wp3) + b (wq3) +6) (wr3) + dw

WP. Wp3 Ww)

wq2 wq3 w)

wrg Wr3 w)

plane. The equation of the plane can be

by solving the following simultaneous

M1 °

1 °

i °

The plane equation from a set of more than three

points may be obtained by using the following equations:

a= (yy - v3) (24 + 25)

bea (2p 5 25) (xy x3)

- x4) (yy + ¥3)

361

where:

j = i (mod n) + 1

and:

n = number of points.

The value of d is found by requiring any one of

the n points to lie on the plane.

362

363

List of references:

shy Sutherland, I.E., "SKETCHPAD: A Man-Machine Graphical

Communication System", Proc. SJCC 23, 329 (1963).

2 Brown, B.E.,"Modelling of Solids for Three-Dimensional

Finite Element Analysis", Ph.D. Dissertation, Department

of Computer Sciences, Univ. of Utah, Salt Lake City, JT

June 1977.

3 Boyse, J., “Interference Detection among Solids and

Surfaces", Commun. ACM 22, 3-9 (January 1979).

4 Wesley, M.A., Lozano-Perez, T., Lieberman, L.I.,

Lavin, M.A. & Grossman, D.D., "A Geometric Modelling

System for Automated Mechanical Assembly", IBM J. Res.

Develop. 24, 64-74 (January 1980).

5 Woo, T.C.H., “Computer Understanding of Design", Ph.D.

Thesis, University of Illinois at Urbana-Champaign, 1975.

6 Taylor, R.H., "A Synthesis of Manipulation Control

Programs from Task Level Specifications", Report No.

STANCS-76-560, Stanford Artificial Intelligence

Laboratory, Computer Sciences Department, Stanford

Univ., Palo Alto, CA, July 1976.

7 Udupa, S., "Collision Detection and Avoidance in

Computer Controlled Manipulators", Ph.D. Thesis,

California Institute of Technology, Pasadena, CA, 1977.

8 Lozano-Perez, T. & Wesley, M.A., "An A gorithm for

Planning Collision-Free Paths among Polyhedral Objects",

Commun. ACM 22, 560-570 (October 1979).

9 Baer, A., Eastman, C. & Hervion, M., "Geometric

Modelling: A survey", Computer-Aided Design J.,vol.11

no 5, pp. 253-271, September 1979.

364

10

11

2:

13:

14

15

16

a7

18

19

BCS Conference Documentation Displays Group,

"Fundamentals of Geometric Modelling - Review and

potential", London, U. K., 26th February 1986.

Faux, I.D. & Pratt, M.J., "Computational Geometry

for Design and Manufacture", Ellis Horwood Ltd.,

Chichester.

Fergusson, J.C., "Multivariate Curve Interpolation ",

Journal ACM, vol. 11, no. 2 (1964).

Bezier, P., “Numerical Control: Mathematics and

Applications", John Wiley & Sons Ltd., (1972).

Bezier, P., "Mathematical and Practical Possibilities

of UNISURF", in R.E. Barnhill & R. F. Riesenfeld (eds),

Computer Aided Geometric Design, Academic Press,

New York, (1974)

Gordon, W.J. & Riesenfeld, R.F., " B-spline Curves

and Surfaces", in Computer Aided Geometric Design,

Academic Press, pp. 95-123, New York (1974).

Braid, I.C., "Designing with Volumes", Ph.D. Thesis,

Cambridge University, U. K., (1972).

Braid, I.C. & Lang, C.A., "Computer-Aided Design of

Mechanical Components with Building Blocks", Proceedings

of the Second IFIP/IFAC Int. Conf. on Programming

Languages for Machine Tools, PROLAMAT'73, Budapest,

April 10-13, pp 109-118 and pp. 173-184.

Braid, I.C., -lew Directions in Geometric Modelling",

CAD group Document No.98, Computer Laboratory, Univ. of

Cambridge, U. K., March 1978.

Requicha, A.A.G., "Representation for Rigid Solids:

Theory, Method and Systems", ACM Computing Surveys,

365

20

21

22

23

24

25

26

27

28

vol.12, No.4, pp. 437-464, (1980).

Requicha, A.A.G. & Voelcker, H.B., "Solid

Modelling: A Historical Summary and Comtemporary

Assessement", IEEE Comp. Gtaphics & Applications, vol.2

No.4, pp. 9-24, (1982).

Meagher, D., “Geometric Modelling using Octtree

Encoding", Comp. Graphics & Image Processing, vol.19,

No.2, pp. 129-147, (1982).

Gargantini, I., "Linear Octtrees for Fast Processing

of Three-Dimensional Objects", Comp. Graphics & Image

Processing, vol.20, No.4, pp. 365-375, (1982).

Wijk, J.J. Van, "Ray Tracing Objects Defined by

Sweeping Planar Cubic Splines", ACM Trans. on Graphics,

vol.3, No.3, pp. 223-237, (1984).

Wijk, J.J. Van, "Ray Tracing Objects Defining by

Sweeping a Sphere", in K. Bo & H. A. Tucker (eds), Proc.

Eurographics'84, Elsevier Science Publishers BV

(North-Holland), Amsterdam, p.73, (1984).

Bronsvoort, W.F. & Klok, F., “Ray Tracing

Generalized Cylinders", ACM Trans. on Graphics, vol.4,

No.4, pp. 291-303, (1985).

Post, F.H. & Klok, F., "Deformation of Sweep Objects

in Solid Modelling", in: A. A. G. Requicha (ed), Proc.

Eurographics'86. Elsevier Science Publishers BV

(North-Holland), Amsterdam, p.103, (1986).

Baumgart, B.G., "A Polyhedron Representation for

ComputerVision", in: AFIPS Proc. Nat. Comp. Conf.44,

p.589, (1975) -

Varady, T. & Pratt, M.J., "Design Techniques for the

366

29

30

31

32

33

34

35

36

Definition of Solid Object with Free-form Geometry",

Computer-Aided Geometric Design Vol.1, pp.207-225, 1984.

Requicha, A.A.G. & Voelcker, H.B.,"Constructive

Solid Geometry", Document TM-25, Production Automation

Project at the University of Rochester, New York,

November 1977.

Requicha, A.A.G. & Voelcker, H.B.,"Geometric

Modeling of Mechanical Parts and Processes", Computer,

7006 Vol.10, No.12, pp. 48-57, Dec. 1977.

SUTHERLAND, I. "Three Dimensional Data Input by

Tablet", Proc. IEEE 62, April 1974.

THORNTON, R.W." Interactive Modelling in Three

Dimensions through Two Dimensional Windows " 3rd Int.

Conf. on Computers in Engineering and Building Design,

(1378).

IDESAWA, M." A System to Generate a Solid Figure from

Three Views ", Bull. JSME, vol.16, Feb 1973, pp.216-225.

IDESAWA, M., SOMA,T., GOTO, E. & SHIBATA, S.,

“Automatic Input of Line Drawing and Generation of a

Solid Figure from Three-View Data ", Proceedings of the

Int. Joint Computer Symposium, 1975, pp. 304-311.

LAFUE, G. " Recognition of Three Dimensional Objects

from Orthographic Views ", Proceedings 3rd Annual

Conf. on Computer Graphics, Interactive Techniques and

Image Processing, ACM/SIGGRAPH, July 1976, pp. 103-108.

PREISS, K. " Algorithms for Automatic Conversion of a

3-View Drawing of a Plane-Faced Part to the 3D

Representation ", Computers in Industry, vol. 12, 1981,

pp. 133-139.

367

37

38

39

40

41

42

43

44

45

PREISS, K. & KAPLANSKY, E. " Solving CAD / CAM

Problems by Heuristic Programming ", Computers in

Mechanical Engineering, Sept. 1983, pp. 56-60

ALDEFELD, B. " On Automatic Recognition of 3D

Structures from 2D Representations ", Computer-aided

Design, vol. 15, no. 2, March 1983.

MARKOWSKY, G. & WESLEY, M.A., "Fleshing Out Wire

Frames", IBM J. Res. Develop., vol. 24, no.5, sept.1980

pp. 582-597

WESLEY, M.A. & MARKOWSKY, G. "Fleshing Out

Projections", IBM J. Res. Develop., vol. 25, no. 6,

Nov. 1981; pp. 934-953

SAKURAI, H. & GOSSARD, D.C., "Solid Model Input

through Orthographic Views ", Computer Graphics J.,

vol. 17, no. 3, July 1983, pp. 243-252

KAINING, G., ZESHENG, T. & JIAGUANG, S.,

Reconstruction of 3D Objects from Orthographic

Projections", Computer Graphics Forum, Vol. 5, No. 4,

December 1986

ALDEFELD, B. and RICHTER, H. "Semiautomatic

Three-dimensional Interpretation of Line Drawings"

Computers and Graphics (GB) J., vol. 8, no. 4, 1984,

pp. 371-380

HO BIN, "Inputting Constructive Solid Geometry

Directly from 2D orthographic Engineering Drawings"

Computer-Aided Design J., vol. 18, no.3, April 1986,

pp. 147-185

"Geometric Modelling Project : Geometric Modelling

User Manual 1", Department of Mechanical Engineering,

University of Leeds, August 1981.

368

46

47

48

49

50

51

52

53

54

$5

56

"Pergq GKS User Guide: Software Version 1.0",

International Computers Ltd., London, U.K., First

Edition, 1984.

"GKS Reference: Software Version 1.0", International

Computers Ltd., London, U.K., First Edition, 1984.

"Programming with Domain Graphics Primitives: Software

Version 9.0", Apollo Computers Inc., USA, First Edition,

1985.

"Programming with 2D Graphics Metafiles Resources:

Software Version 9.5", Apollo Computers Inc., USA, First

Edition, 5th December 1986.

COOLEY, P., "Decision-Making Algorithms in Geometric

Modelling", Ph.D. Thesis, Aston University, Birmingham,

U.K., 1984.

"aAutocaD® Drafting Package: Reference Manual", Autodesk

Inc., U.S.A, 1986

KING J.P., ADAMS P.J., & SHEARMAN J.R., "MacDraft

User's Manual", Innovative Data Design Inc., U.S.A,

LISS.

"DOGS: User's Manual Level 3.2", Pafec Ltd., Nottingham,

U.K., 1984

WILSON, R.J.,"Introduction to Graph Theory", Longman,

U.K., 2nd Edition, 1979.

Requicha, A.A.G. & Voelcker, H.B., "Solid Modelling:

Current Status and Research Directions", IEEE Comp.

Gtaphics & Applications, vol.3, No.7, pp.25-37, (1983).

MANTYLA, M., "Set Operation of GWB", Comp. Graphics

Forum, Vol. 2 (2/3), pp. 122-134, (1983).

369

57

58

59

ROBERTS, L.G., “Homogeneous Matrix Representation and

Manipulation of N-Dimensional Constructs", MS-1405,

Lincoln Laboratory, MIT, May 1965.

FORREST, A.R., "Coordinates, Transformations, and

Visualization Techniques", Computer Aided Design Group

Doc. No. 23, University of Cambridge, June 1969.

NEWMAN, W.M. & SPROULL, R.F., "Principles of

Interactive Computre Graphics", McGraw-Hill, New York,

2nd Edition, 1979.

370

