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This work is undertaken in the attempt to understand the
processes at work at the cutting edge of the twist drill.
Extengsive drill life testing performed by the University has
reinforced a survey of previously published information.
This work demonstrated that there are two specific aspects
of drilling which have not previously been explained
compréehensively.

The first concerns the interrelating of process data between
differing drilling situations. There is no method currently
available which allows the cutting gecometry of drilling to

be defined numerically so that such compariscns, where made,
are purely subjective. Section one examines this problem by
taking as an example & 4.5mm drill suitable for use with
aluminium. This drill is examined using a prototype solid
modelling program to explore how the required numerical
information may be generated.

The =econd aspect is the analysis of drill stiffness. What
aspects of drill stiffness praovide the very great difference
in performance between short flute length, medium flute
length and long flute length drills? These differences exist
between drills of identical point geometry and the practical
superiority of short drills has been known to shop floor
drilling operatives since drilling was first introduced.
This problem has been dismissed repeatedly as over
complicated but section two provides a first approximation
and shows that at least for smaller drills of 4.5 mm the
effects are highly significant.

Once the cutting action of the twist drill is defined
geometrically there is a huge body of machinability data
that becomes applicable to the drilling process. VWork
remains to interpret the very high inclination angles of the
drill cutting process in terms of cutting forces and tool
wear but aspects of drill design may already be looked at in
new ways with the prospect of a more analytical approach
rather than the present mix of experience and trial and
errar.

Other problems are specific to the twist drill, such as the
behaviour of the chips in the flute. It is now possible to
predict the initial direction of chip flow leaving the drill
cutting edge. For the future the parameters of further chip
behaviour may also be explored within this geometric model.

TWIST DRILLING ~ METAL CUTTING ./ THREE DIMENSIONAL CUTTING
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1. THE TWIST DRILL

two chapters provide an introducticn\‘ﬁd the

subject of twist drilling.
ﬂ@é;the cutting
action of the drilling pré/éS  \t the end hapter 2 this
lack of data is chrystallis§§~zf:/1 ﬁﬁ" jectives which

the main body of the thesis proposes novel solutions.
A BRIEF HISTORY OF DRILLS

Drilling ‘is one of the most of production
processes. There are thousand / |

more lathes and milling ma

for drilling. Millions

consumption’ of drills.

The twist drill is among the oldeéti¢fftQDi . and one of the
first which necessitated a complex shape to perform  a
specialist function. Flat drills were made and use

probably sabout 1860.

The original drills were sin 1y 1 ccl which,

in® the blacksmith's gchop, - Sof nd angularly

thém,being- llip!

eri¥iftlagt dxi1]l, figure 1. The flat drill was a  very




unsatisfactory. tool, because 1f the hole were of any depth,
the drill had to be frequently withdrawn to clear away ‘the
chips. The: ..holes ..easily . became .clogged -and : this also
prevented the .coolant: from gefting to » the - point.:. These
drills required constant redressing and grinding to get them
to run-at all true in use. Drills of this old type would not
stand  the strain of a- heavy feed and the amount of cutting
done- per revolution was therefore small. The spear point had
to  be wholly re-made after a few sharpenings. The general
development of manufacturing efficiency led to a demand for
speedier: results. One must not forget; however; that @ for

some materials flat drills are still used today.

Figure 1 - Lip or Flat Drill

Flat drills failed to meet the more modéfn requirements of
the industrial age for several reasons. It was necessary to
repeatedly stop the work to clear the chips out of the hole,
also, the drills quickly lost their sharp cutting edge so

causing frequent breakage. These problems hindered
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production . and lost time, The major cause of the loss of
cutting edge was heat, bluntness produced excessive heat,
heat drew the .temper of the steel, and loss of temper caused
the cutting edge to Dbreak down. Heat generation became
excessive . as . -soon .as the poiggalgst_its ;iirst sharpness,
generated heat was then kept iﬁ;gmyf@};pgrsing by .the
accumulation . of chips. High-speed steel had not yet been
invented so some way of reducing the build up of chips, and

s0 improving the tool, .was required.

An  .intermediate .stage . was the . .invention, by . .person. oOr
persons unknown, of a twisted,@r;klj This was made Dby
twisting .a .flat bar of:steel WQll§fPQE%2nt}l its shape .  was
that . of . a . worm-screw feede;kj iiggre 2; /For a time these
drills figured side by side with the flat drills .in

engineering shops, but, as with many intermediate

inventions, they did not provide the answer. This

Figure 2 - Twisted Flat Drill
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configuration still occurs in the twisted bits wused in
wood-working shops and some rock drills used in mining; The
reason for their failure was that they did not clear away
their cuttings, as the mode:p’fgistadr;}}e do, in laong
chips. The drill broke the ch#p;iup‘intéfliét;e pleces and
was subsequently not very effi;ié;ta;n/rémo§%ng them: The

hole still became clogged.

The next stage of development was to put spiral grooves in
the drill body to provide at least a partial remedy for the
swarf problem. The corkscrew action of the spiral flutes
conveyed the cuttings away from the‘Bq}nﬁﬁ and also removed

with the cuttings was the heat which they engendered. =This

was the first recognisable twist drill.

Edge very sharp, wedge ore ‘moderate sharpness,
angle very small. ’ much stronger edge.

Figure\SA — Vhitworth Twist Drill 3B - Morse Twist Drill
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In the year 18680 or thereabouts, during work to improve the
gun barrel, twist drills of & design approximating closely
to modern designs were made by Sir Joseph Whitworth, figure
3A. The new tool overcame many of the difficulties
axparienced with the o0ld type of drill. The majar
breakthrough was the way the combination aof the flute and
point gecmetry is utilised in order to produce the cutting
edge. In America their manufacture was begun by the
Manhattan Firearms Company. The first drills had a small
wedge angle in order to provide generous rake and clearance.
This resulted in a weak cutting edge with poor performance
and tool 1life. Morse reduced the cutting angles and
manufactured more robust twist drills capable of far better
work than flat drills, figure 3B. Morse went on to devise
several early specialised drills purporting to increased

performance.

Twist drille were first made by hand in a crude way from
ordinary carbon steel. Though much more efficient than the
old flat drills, many people in engineering rejected them on
grounds of cost. However their capabilities were gradually
realised, especially as the manufacture of semi-automatic
machines and the introduction of mass production made the

adoption of an improved drill a necessity.

Even the crude, imperfect tools first produced had great
advantages over the flat drill. The grooves of a twist drill

are an important part of the cutting edge. Their uniform




shape along the whole of the fluted portion makes it
possible to re—-grind and re-use the the tool time after time
without greatly reducing the length or diameter or lowering
the efficiency. This prolonged the life of the tool and lent
~conomic argument for their use. The face of the drill,
being placed at an acute angle, gives decreased resistance
to the cut, and a wedge—like action helps to feed the tool.
Less power 1s needed to bore a hole with a twist drill than
to bore the same hole with a flat drill, i.e. the same hole

could be drilled faster with less effort.

Though twist drills have greater penetrative power than flat
drills, there is a limit to the speed at which they can be
run. Initially this was the point at which their temper was
last by overheating. When a drill lost temper, it had either
to be re—hardened, or to have all the material that had
become soft ground away. (Another effective cutting edge
could only be aobtained in the still hardened material well
back from the softened point>. The new carbon steel twist
drill, although a great improvement on its predecessor,
still left much to be desired. It had to be run at speeds

only moderate in comparison with present day standards.

Once the problem of successful manufacture had been solved
subsequent development of twist drills was dependent on
economic incentive for a tool that many wusers considered
expensive already. One aspect that did receive a lot of

attention was the metallurgy of the alloy steels used in
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their production. The introduction of alloy stesls, which

retained their temper even when red hot, increased the
potential output to such an extent that a whole new
generation of drilling machines had to be designed to permit
the full realisation of the new tool’'s cutting ability. The
first applications of high speed steel, HSS, were successful
for 1lathe +tools and <oon a high speed steel specially
suitable for twist drills became available. It combined
toughness with great keenness of temper. With this steel the
drill could be run almost at red heat without loss of edge
so allowing higher cutting speeds and much greater output.
Drilling machines underwent rapid development culminating in
automatic machines and high speed multi spindle drilling

machines.

The +twist drill was thus able to combat the first prejudice

against it. Its greater accuracy and length of service were
the major points 1in 1its favour. The higher cost of
manufacture was redeemed by greater efficiency, and

eventually the discovery of high speed steel established the
twist drill permanently in favour. Now Carbon Steel drills
are a rarity, they are almost entirly superceded by H.S.S.
There are some applications where carbon steel tools are
still preferred but the required raw material, in wire form,

is also scarce.

Modern H.S.S. drills come in two forms, bright finish and

steam tempered, they may also be a H.S.S. substrate with a

page 18







ceramic coating of Titanium Nitride, figure 4. Experiment
with TilN coated drills indicates an ability to be run at 10%
higher feed per drill revolution, feed per rev, and 3 times
spindle speed, 1.e. 330% increase in drilling rate, as
repaorted by Upton and Thornley [11, requiring the
introduction of yet a new range of higher performance
drilling machines. Salid Carbide Drills have also  become
available and are run with low feed but at even higher
spindle speeds so similarly reguiring drilling machines of

great rigidity and high spindle speed capability.

THE MANUFACTURE OF TVIST DRILLS

Historically the manufacture of the twist drill was
restricted to those few who mastered the kinematics/kinetics
of +the manufacturing process. For example with flute
grinding, the helical grinding operation required knowledge
of how to modify a standard machine tool to perform the
required operation. Drill manufacturing equipment was so
'out of the ordinary’ that normal machine tools had to be
extensively altered Dbefore they could be for drill
manufacture. Different companies used different
modifications which were all kept secret. The solution to

the problem of how to manufacture drills was the valuable

experience o0f the drill companies. Nowadays it is possible

to purchase 'off the peg’ special machines, purpose designed

for the manufacture of twist drills.




Any country can now buy these machines and set up a drill

manufacturing factory. The new machines are set fairly
arbitrarily, because no direct relationship between the
machine settings and the drills produced has been
available. Once running they 'mass produce’

purpose drill form. As with so many other industries th

ability to understand the performance of the drill form, to
design the correct drill form for the job and then to
produce quality drills of precisely the designed form 1is
the only asset left to enable the old established drill
manufacturers to compete with the new Third World

factories.

Drills are manufactured in as large a batch size as i

possible. General purpose designs are used which minimise
variation on the manually set up machines. The automated
machinery for a flexible drill manufacturing facility which
allows the so called "mass production of a batch size of
one” is only just beginning to appear in the market place.
The manufacturing process for small general purpose drills
is as close to mass production as possible, working against
very strong competition. For the specials and larger drills
the market is much smaller and the industry must now respond

to the need for purpose designed tools in this area.

small  general purpose drills are produced from a single
piece of tool steel bar. A common raw material is molybdenum

alloy bar, M2. This is cropped to size and roughly shaped




SMALL DRILLS LARGE DRILLS
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Figure 5 -~ Flow Chart of Drill Manufacture




with a point at one end and bevelled at the other. Heat
treatment in a salt bath without immersing the shank end
ensures &a degree of shank softness by not fully heat
treating the shank end. The other advantages of a salt bath
are speed and chemical inertness both of which help to
prevent surface decarburising of the drill material so
ensuring full hardening of the fluted portion of the drill.
The drill ©blank then passes through a series of grinding
machines, see flow chart figure 5, these are flute grinder,
centreless grinder which also produces back taper 1in the
fluted portion with parallel shank, backing off grinder and
point grinder. The completed drills are then steam tempered

for a better finish, stamped with their identification and

packed faor dispatch.

The larger drills generally have a taper shank rather than a
straight shank, +the shape being produced on a lathe rather
than by centreless grinding. The drill is bigger so that the
raw material cost is more important. The drills are
generally made of one piece of HSS which is butt welded or
friction welded to a piece of cheaper ordinary steel which
piece forms the shank end. The weld is -sited immediately

above the top of the flute where the full cross section of

the drill shaft is available for maximum weld strength. The
drill blanks are shaped between centres on a lathe, the
tapered shank requiring a much more intricate shape. The

drill flutes are milled soft and the drills are then heat

treated. This time there is no requirement to avoid heating
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the shank end. The grinding processes often including point

thinning, the drills are then finished as described abave.

One method of improving the H.S8. 8. +twist drill is by
applying a low surface friction ceramic coating. This alters
the cutting characteristice of the cutting faces of the
drill and produces a drill with enhanced performance and

tool life.

Ceramic TiN coating is performed by specialist companies on
a sub-contract basis rather than in house by a drill
manufacturer. The drills used currently are the same as the
uncoated drills but they are produced without finishing
operations. These blanks are then supplied for TiN coating
on a batch basis. Plasma Vapour Deposition is a process used
to put a thin coating of ceramic material onto a metallic
substrate. The coating chamber is evacuated of air and an
electric potential is established between an electrode and
the target tool. At a controlled pressure a plasma of gas is
created electrically around the target. Titanium is then
vapourised 1into the plasma by striking an electric arc onto
a titanium surface. The tool, being the cathode, attracts
the metallic and nitrogen ions from the gas plasma. P. V. D.
coating is used in preference to Chemical Vapour Deposition,
a high temperature process used for coating ceramic tool
inserts, because the temperature reached by the tool whilst
inside the coating chamber is lower, low enough not to

degrade the heat treatment of the tool steel substrate.
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1.3, TESTING OF DRILL PERFORMANCE

The monitoring and testing of the drilling process i

0]

complicated by two factors. First, although drilling may b

M

performed by turning the workpiece, in genéral the tool is
turning. Second the process is taking place at the bottom of
the hole ©being generated by the drilling operation. To
overcome the first factor the monitoring sensors must  be
mounted either on the drilling machine spindle or in the
base of the drilling fixture or mounting. This places the
sensors further away from the tool work interface than is

generally the case for more accessible metal cutting

I
it}

process The 1inaccessibility caused by the second factor
means that several forms of sensor suitable for other

methods of metal cutting may not be used in drilling.

The following two aspects of drill performance may be

monitored during the drilling operation:-—

i, The Drilling Torque.

The drilling torque is the summation of three components.
The first is the torque required by the drill cutting edges
in performing their metal removal operation. The second is
the friction force between the drill shaft and the hole
sides. The last is the friction force between the swarf
material contained within +the drill flute and the hole

sides,
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ii, The Drilling Thrust:

The drilling thrust is the summation of two components. Thé\\
is the “‘thrust ‘reguired by hg cutting edges in

performing their metal removal opérét@éﬁi*iThe~Second is the

thrust gﬁnerated by the driiiipbiﬁ@ or |

their lack of a poeitive/éﬁ££iﬁg//¢1ééta‘

centre of the-drill point.

Off line from the drilling prooesé ‘ /is,pﬁssible to assess

the drill wear. This usually requires removing the drill and

examining\iit\opti&ally. The drill wear is usually aeséééed_

by measuring the drill flank wear, During 1life testing,
after an dinitial rapid build up, 11 we progressively

increases  until the end of the test. tent drill wear

patterns have been observed for the same drill/workpiece
combinations = but these wear patterns vary:/fgr/ different

drill/workpiece combinations. To date no research has been

able to offer an analysis of these relationships.

Hole surface finish and hole diameter may be sampled from
the finished holes., The measured ;Sfat~stios show some
of ceramic

hole

dependent on both the accurac

drilling machine kinematics.




Drilling Torque

TORQUE (Nm)

Drilling Thrust

THRUST (N)

HOLE NO

Figure 6 - Example Force Data
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Drilling swarf or c¢hips are another indicator of the

& of the drilling process. Drilling swarf is the
waste material which consists of the workpiece material that
has been removed by the drill. Its metallurgical properties
may, however, have been altered by the strain and heat of
chip formation. DPrill swarf may consist of continuous or
discontinuous chips or with some materials it may be simply
a fine dust. The character of the swarf changes as the

depth of the hole increases and also as drill wear

progresses.

At Aston University the current method of monitoring
drilling 1is the use of a four axis dynamometer load cell.
The workpiece is held in a vice mounted on the dynamometer.
This allows the torque and thrust force of the process to be
measured and recorded throughout the drilling operation. The
longer term performance of a twist drill is evaluated by
conducting a life test. Aston is involved in extensive drill
life testing. Such testing has been a valuable contribution

of practical drilling experience to this investigation.

During the course of a drill life test both drilling torgue
and thrust display a progressive increase, often to several
times the initial values. As the point of drill failure is
approached these forces become less stable and may show a
marked increase as can been seen in an example of force data

produced here at Aston, figure 6.
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Figure 7 - Geometric Reference Values of Drill Form
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1.4. DRILL GEOMETRY — CURRENT LIMITATIONS

Since its inception the twist drill has been described by a

set of geometric references, figure 7. A full set uniquely

N

describes a specific drill form by & method recognised

0

throughout the industry. The geometric references on the
drill occur as a result of complex interactions between the
various asgpects of the drill manufacturing process. Over the
years the individual drill manufacturers have built up their
own sets of data by trial and error. These sets of data are
kept secret and detail the machine settings and tool form
requirements for the generation of the companies® drills to
specific geometric reference values. These drill forms have
then been tested and selected, again by trial and error.
Particular drills have either proved themselves sSuitable or
unsuitable for the performance of specific drilling

operations.

In this way, in a number of different forms, the twist drill
works 1in a generally satisfactory manner. It is certainly
not necessary for the user to be aware of the very complex,
three dimensional, nature of the cutting action of the twist
drill,. Such knowledge is, however, increasingly being

required in order to make best use of the drilling process.

The drill testing that has been performed has generally been

after careful tool selection. A range of drills is assembled

where the forms are generally similar but where one value,
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for example +the point angle, varies across the range.
Practical testing then indicates the influence of that
geometric property. It is however impossible to isolate one
value as all the geometric properties are H4nter-related.
These examinations are therefore subjective and provide only

empirical estimations of influences.

Almost all of the published information on drilling is thus
specific to particular drill/workpiece combinations. To
understand these results it has been found necessary to have

practical understanding of the drilling process, and the

Py

sms of drill wear and drill failure, ot herwise it is

=
[

mechan
impossible to assess the, sometimes, limited walue of these
published works. As technology advances, with the
accompanying requirement to carefully explain how processes
work in the simple terms that are required before that
process may be programed into a computer, there is a

requirement for a more educated and accurate assessment of

the drill cuftting process to be made.

The major advance that currently requires fundamental

.

reassessment is in the application of plasma ceramic
coatings to drilling , i.e. Titanium HNitride. The large
increases 1in spindle speed, RPH, reguired to achieve the
higher cutting speeds possible with such ceramic coatings
have in general made current drilling machines out of date.

The less obvious consequence is a need to redefine the best

cutting geometry. This change is required by the large

page 31




reduction in the friction of the coated tool s=urface. Such
change is now coming faster than the historical, trial and
experience method of development can cope with. Currently

the same tool geometries are being used for both coated and

uncoated drills,

1.5. DRILL DYNAMICS - LIMITED APPRECIATION

Drilling is the greatest used of all the machining processes
but is in some ways the least understood as a metal cutting
process. Most of the research effort involving drilling has
concentrated on specific situations where measurements are
made and empirical relationships devised +that fit the

uch an

1)

measurements. Two commercial publications typical of
approach are ”Short versus Long” and “Torsional Rigidity",
in 'Metal Cutting’ and by the 'National Twist Drill and Tool
Company’ . Such results are then put forward as the

mathematical solutions to the general drilling problem.

Papers like these have long described the dynamic nature of
twist drilling but always in subjective terms. There is some
general agreement, for example, a short drill performs

better +than a long drill and a thick webbed drill better

than a less stiff, thin webbed drill. Nowhere, however, is
there a simple and logical explaination of the dynamic
process, This aspect of drilling remains to be explored

theoretically and it appears to be unique within metal

cutting.
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INTRODUCTION TO THE ANALYSIS OF DRILLING

In February 1657 Galloway [2] put forward a comprehensive
and definitive view of the factors involved in drilling.
This 1is reproduced in figure 8. All the aspects are still
applicable today but, in terms of this diagram, the recent
advances of machine tools require an amendment. One branch,
'Drilling Conditions’' consists only of 'Speed’ and ' Feed’
and needs to be extended. Two new branches also need to be
included, these are 'Machine Control System’' and ’'Drilling
Condition Monitoring’. This set of proposed additions is
required purely by the introduction of Computer Numerically
Controlled machine tools, CNC, they are given at figure O.
The two diagrams graphically illustrate how little

knowledge of and approach to the problems of drilling has
been advanced over the intervening vyears while alsao
indicating the need for more knowledge to fully utilise

modern capabilities of machining systems.

Modern automated wmachinery is expected ta work without
operator supervision. Drilling operations are for reasons of
tool protection performed deliberately slowly with resulting
poor productivity. It is worth mentioning that all these
aspects would, in 1957, have been governed by the machine

operatar. His actions should be replaced by the computer and

his gight, smell, hearing and touch should be replaced by

the sensors of the monitoring system.




In many ways the CNC machine tool héé failed to utilise the
power currently available in cmal ler and
microproéeééér\éystems‘ Such power may not only be used to
ensure the geometric accuracy = th péth‘but alsa to
monitor and oontrdl ite progr /

and control. becomes the

i/ﬁaﬁﬂem&tically

the

mathematical relationships are currently based purely op‘

a et of simplistic empirical equations that are unébié“ t

cope with the large variations present in the real world.
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LITERATURE SURVEY.

LITERATURE COVERING DRILL GEOMETRY

extensive body of literature covering the drilling
only a few develop limited mathematical approaches
to the geometry of the twist drill. None developed any form
0of comprehensive system to examine drill geometry. These

papers now are examined in turn.

Galloway points out that drilling i used very
extensively 1in the Engineering Industry and is therefore a

sic process to the Engineering Industry as a whole. His

paper describes variocus drill tests where Torque and Thrust

were measured with a Dynamometer.

dynamometer Galloway used in 1957 was made 'in house'’
sensing elements in the form of steel diaphragms. These
greater compliance than more modern load cells. This

of rigidity prompted one critic to query whether drill
performance had been evaluated without the dynamometer as he
had noticed a 40% reduction in drill life using a similar

dynamonmeter compared with a rigid base.

Extensive hole and drill geometry measurement was also made.
He examined relief and feed angles along the drill cutting
lips, the difference giving the effective clearance. Both
these values vary across the drill lips and chisel. Optimum

penetration rate is described as that which gives an even




distribution of wear along the cutting edge. Too high a
penetration rate was seen to cause accelerated wear aof the
cCOorners. Too 1low a penetration rate reached a point of
sudden rise 1imn both torgque and thrust due to wear. Roth
changes led to a reduction in the number of inches depth of

material drilled over an ’'optimum’ penetration rate.

Cptimum point grinding geometry was investigated for a range
of workpiece materials, point angle and point thinning
especially. Vibration behaviour, effect of drill geometry

and effect of a bush are also investigated.

Galloway provides the first account found describing the
point using solid geometry. He gives a geometric description
of the conical method of point grinding defining the
parameters of the grinding cone. The cutting edge is assumed
straight, The z axis is assumed collinear with the drill
axis. The x and y axes are parallel and perpendicular to the
projection of the cutting edge onto a Xy prlane
perpendicular to the drill axis. An analysis is presented,
developing various trigonometric formulae to calculate the
related cutting geometry. As with all such efforts to obtain
formulae, the mathematics 1is highly complicated and

difficult to apply.

Galloway's work is a comprehensive account of drilling holes

and  has become an important reference for researchers in

this area. [t is limited only by the extremely primitive
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equipment and restricted analytical paower available at that
time, for example, as seen from the discussion quoted above,
the compliance of a contemporary mechanical dynamometer was
sufficient to greatly influence the results. A1l +the new

areas indicated by figure 9 technically post date this

The next reference found which uses a similar approach is
Tsai and Wu [3]. They make use of a computer and process
bagically similar geometry. They wished to evaluate

mathematically the performance of a Twist Drill with what

~

sail and Wu describe as conical, ellipsoidal and

hyperboloidal drill point shapes.

Galloway L2} developed a fairly complex mathematical
expression for the drill point based on his interpretation
of the co-ordinate axes. This is used as the starting point
of several subsequent analyses including that of Tsai and
Wu. It is reproduced below: -

1

~—[ (x cos @ + 2z sin @) + az — § — gz —
aZ

0
N

)
r
NN
e
\9]

1 1
y = 82 + — (z cos 0 - x sin @ + 4)2 = 1
az of

—

+

Thie describes the flank face as a quadratic surface in the
three dimensional space represented by the cartesian co-
ordinates (x, v, z) . a, C

v 4, ©@ and S are the grinding

parameters, a and ¢ determine the shape of the quadratic
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surface and & determines the direction of the drill axis
with respect to the axis of the quadratic surface. & equals
+1 for the ellipsoidal drill and -1 for the conical drill
and the hyperboloidal drill. d and S determine the location

of the drill point on the grinding surface.

The drill flank contour so described is a set of elliptical
curves obtained as the intersection of cutting planes
orthogonal to the drill axis and the drill flank. This
equation simplifies to the following: -

Ax?2 + ByZz + Cx + Dy + E = 0
in the orthogonal (x, y> plane

As the elevation becomes smaller the contour ellipse becomes
larger, the centre of the ellipse shifts towards the +x
direction. With the conical flank the ellipses are equally
spaced, with the hyperboloidal flank the ellipses are spaced
with increasing separation from the chisel to the outer
corner and with +the ellipsoidal flank the ellipses are
spaced with decreasing separation from the chisel +to the

outer corner

The drill point is mapped in the X,y plane at
intervals of z. An 'end on' diagram of the drill point
is produced. This evaluation of the conical drill point

has not been improved by any subsequent researchers.

This drill end representation 1s an efficient way of

generating an accurate end view in a simple system. The




a set of equally = : - ses of progressivly

increasing size overlaid with a series of representations of

the drill flute cross section with angles of rotation

corresponding to their particular z level. No attempt is

made to create a model of the drill and its cutting action,
no use 1s made of the simple representation of the drill

cutting edge to examine the cutting process.

The next paper, by Billau and McGoldrick [4), looks at drill
clearance around the drill circumference. Their work
examines what are described as conical and cylindrical point
drills. The drill point is again described by Galloway's
mathematics. A system of ellipses is generated as before,
but for the so0 called cylindrical point, the ellipses are
equally spaced and all of the same size. In the paper they
derive several complicated mathematical equations which are
used purely to calculate the clearance angle around the
periphery. They make no attempt to calculate the cutting
clearance across the flank face and make no allowance for
drill feed. Ignoring feed reduces the value of the analysis
because, of the two major forces in drilling, namely torque
and thrust, the thrust may be attributed to the absence of

cutting <clearance not at the periphery but towards the

centre of the drill flank face.

The conical drill point is again approached as a system of
ellipses where the cutting lip is assumed to be a cone

generator, 1l.e. any straight line on the surface of the cone

e T T
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must DASES & apex of ne cone. The analysi

at drill point angle with reference to a diagram reproduced

as figure 10 herein, along with a reproduction of the cones
from [2]1 for comparison. Analysis of the drill point by
overcomplicated mathematics leads to misinterpretations such
as the one highlighted in this figure. It indicates the
cutting 1lip cone generator. Figure 10 shows the extent of
the drill flank and of the grinding cone at this point. The
flank area, part of the cone surface, is not ftota
enclosed by the cone area and cannot therefore exist.
impossible for the flank to be a portion of the indicated
cone surface. This particular problem casts doubt on this
solution and formula for point angle, such situations are

not unique in the literature.

The above three papers are the only papers found that
attempt parts of the analysis drill geometry. Lacking a
geometry base there have been no papers found which analyse

the drill cutting geometry.

Radhakrishanan et al [5] also examine the drill geometry and
examine the problems of generating a specific flute shape.
They start by ssuming the basic requirement +that the
cutting edge of a twist drill is straight. They utilise
Galloway's mathematics and mathematical models for the
orthogonal flute shape corresponding to a straight cutting

edge. They propose the calculation of the obligque flute

profile from which the wheel profile may be obtained. They




Aston University

| Hlustration has been removed for copyright
restrictions

Figure 10 - Extract from Billau and McGoldrick [4]
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state that the obligue flute form bears more direct
comparison with the wheel profile required to create it but
they do not explain how the problem of interferance, common
to all helical grinding/milling operations, is to  T©be

avaoided.

The 'secondary’' flute shape is dependent on factors such as
land width, web thickness, maximum chip-removing capacity
and the grinding wheel thickness. This is the half of the
flute <corresponding to the non-cutting edge. This paper is
the earliest in which these aspects are included or at least
mentioned in the analysis. As with previous studies simple

mathematical curves are assumed for the shape of the

secondary flute.

Radhakrishanan uses Galloway's mathematical model of the
primary flute orthogonal profile. It is described by the
following egquation using cylindrical co-ordinates with a r—8
polar reference system 1in the x-y orthogonal plane.

Correction for the helix is built into the formula:-—

r = t cosec Y
t

v = Y + — (tan o, )<{cot Y)<{cot B
R(ij)

t = half web thickness

R = is the radius af the drill

s helix angle at drill periphery
B

Y

I

semi point angle
= angle between OP’ and OX
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By solving this equation the orthogonal profile of the flute

in the x-y plane may be determined. A co-ordinate
transformation is then used to produce from these values the

required oblique profile using an iterative technique.

Radhakrishanan describes the secondary half
a formula determining its end points. The
is assumed: -

fix,y> = 0
a function involving two or more unknown constant:

By assuming an elliptical or irc only two
unknowns are present. He S : with two
initial conditions, ie the positions of the two end points.
More advanced curves are not attempted. This leads to a lack
of continuity between the cutting and non-cutting halves of

the flute.

LITERATURE DESCRIBING FLEXIRILITY AND VIBRATION

There is limited literature that looks at the dynamic nature
of the drilling process. The fluted structure of the twist
drill enhances drill flexibility. This aspect has been noted

by only a few researchers.

Kirilenko [6] looks at a stiffness and strength calculation
procedure for twist drills which make an allowance for the

helical arrangement of the swarf flutes. Although the cross
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section of & twist drill may be described mathematically by

9]
e
h‘

cles and parabolas, the resulting partial differential
equation 1is not one that may be solved by any of +the
standard stress theory solutions. Prior +to the easy

uch

®

availability of computers the method of solution of
aquations was limited fo time consuming numerical iteration
techniques. Kirilenko dismisses the numerical approach and
proposes a series of factors or constants. These he

calculates for a particular cross section by integration

and graphical methods. He claims good correlation between
theoretical and experimental results. The equations and the
calculations of the constants are, however, neither easy to

understand nor easy to apply.

Schaterin [71 examines tool flexibility for a 20mm twist
drill. This report 1is a +translation into German of
Scharetin’s original paper publicshed in Russia. He measures
flexibility in <terms of constants and proportionality
factors. The longitudinal effects due to twisting
deformation of the drill and the twisting effects due to
longitudinal deformation of the drill are measured with an
experimental rig. The problem concerns the drilling of
plates of difficult to machine material. The deformation
effects are reduced by comparing standard drills with
special drills having increased web thickness, *“erh8hter
Stefigkeit” in the title translates as enhanced stiffness. A
set of arbitary proportionality factors of stiffness are

tabulated for the range o0f web thicknesses studied.
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Schaterin attributes chatter vibration in drilling to this

effect.

A second paper also by Schaterin [8] is also translated from
the Russian original and continues the investigation of the
first. In 1t he measures the dynamic effect of the drill
deformation while drilling 20mm plates of manganese steel.
The upper portion of the drill flute is fitted with a thin
walled torque tube clamped to the drill at each end of the
tube. The tube deforms by association with the drill and
this deformation 1s detected by wire strain gauges,
figure 11. In this way measurement of the drill vibration,
or rather dynamic deformation, while drilling, is possible.
The torque tube only increased the drill's rigidity by a
small percentage. A sinusoidal vibration at a frequency of

the drill’'s natural frequency of twisting deformation is

Surface mounted
electric strain

gauge

AN
e e P T

Torque tube

Figure 11. - Schaterin's Torque Tube




reported. This iz modulated, at increased cutting speed,
feed or wear, by a lower frequency saw tooth vibration of

much greater amplitude which is very detrimental +to tool

life.
K. Narasimha et Al [9] investigated what they describe as
the P"torque-thrust coupling effect in twist drills”. Once

again the paper states that the complexities of shape of the
twist drill make an analytical static deformation model
elusive and takes an experimental approach. The range of
drill diameter, helix angle and web thickness used is
greater than that used by Schaterin [7]. They emphasise that
the deformation effects are linear over the range of
measurements made. The conclusion states that the stiffest
construction of drill is a drill with a helix of 28°. This
does coincide with the industry standard helix for a general

purpose drill as developed over the last 100 years.

Kirilenko [6] has made the only attempt found at analysis of
the deformation of the drill form and his paper is aoffered

only as an '

interesting’' mathematical exercise.

Chandrupatlia and Webster [10] present a highly simplistic
attempt to 1look at the deformation present in the twist
drill by the use of Finite Element Analysis. The whole of
the end of the twist drill is modelled by two symetrical 3-D
FEA building blocks joined along the centreline of the drill

web. The drill shape logically divides here into two
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sections. The drilling torque is distributed among the three
nodes making up each cutting edge, the drilling thrust is

of the deformation, specifically of the

U]

ignored. Detail

outer corners, is aobtained.

The FEA mesh has used a complex building block, a 20 node
curved side brick element, that requires substantial
computer processing, this is offset by the simplicity of the
approach in wusing only one block. The analysis should be
very informative of the deformation of a twist drill but the
very nature of the FEA process leads one +to doubt the
accuracy of the mnodal deformations, which are markedly
nonlinear. In any FEA analysis the sophistication of the
displacement model 1limits the accuracy of the resulting
nodal deformations and +this is a one element model. The
nodal deformations are calculated within the computer during
the finite element analysis but these deformations are

accurate at a set of points within each element at positions

between a node and the element centre. The deformations are
least accurate at +the extremities, ie. at +the nodes
themselves, which is the location for where they are
reported.

2.3. CONCLUSIONS

2.3.1. CURRENT STUDIES IN GEOQMETRY

The deficiency of all the work found that examined drill

geometry is that none of the information is transferable
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between different shapes of drills and to other forms of

cutting. This deficiency is the one addressed in Part One of

this thesis but one must first define what is +to Tbe

measured.

Cutting angles are defined within Stabler’'s paper [11] which

proposes the requirement that metal cutting theory be based
on 'Fundamental’ angles. This is restated by Stabler in the
discussion of a later paper, Galloway [12). Three angles are
put forward as the fundamental angles of cutting theory,

figure 12. In order of importance they are:-

1. The Rake Angle or 'Primary Rake Angle' measured mnormal

to the rake face and normal to th

]

cutting edge. The
rake angle is stated as being directly proportional to
the efficiency of cutiting.

2. The Obliquity or Inclination Angle of the edge with
raspect to the relative direction of workpiece motion.
The inclination controls the direction of chip flow by
Stabler’s law ”Inclination angle of approach, B, =
inclination angle of leaving, ¥ ." Stabler tested this
law up to 60° inclination and 40° primary rake.

3. Clearance Angle is stated as necessary to the cutting
process but so0 long as it is present it’s magnitude is
immaterial. This angle should, according to Stabler, be
measured in the plane containing the direction of

relative motion of the workpiece.



Aston Universit

lHiustration has been removed for copyright
restrictions |

Stabler: —. 1951

Figure 12 - Fundamental Cutting Geometry




The vast majority of the research effort involving drilling

situations where measurements

has concentrated on specific
are made and empirical relationships devised. Descriptions

are given in terms of the drill geometric references so

do attempt to deal with the geometry of the twist drill.

Plane trigonometry 1is wused to develop fairly complex
equations which describe the various surfaces of the drill
form. None of the results include any means of correcting
for drill feed, they are not given in terms of the above
fundamental angles, nor are they in a form allowing the
subsequent calculation of fundamental angles. Such an
approach does not offer the universal numerical solution

required for mathematical predictability.

The four references [2..5] construct a framework within
which it 1s possible to measure rake, inclination, and
clearance angles but, assuming the drill axis vertical,
these calculations are restricted to the horizontal and
vertical planes only. It would be possible only after the
calculation of the necessary intermediate planes to use such
a plane trigonometry approach to calculate the 'Fundamental'’
angles. The ocalculation of the plane orthogonal to the
cutting edge is required as the 'Fundamental’ angles are all
situated 1in or measured from this plane. Drill feed has to
be ignored as it would move the approaching velocity vector
of the workpiece out of the horizontal plane by a variable

angle related +to the feed rate and radius, so greatly



increasing the complexity of the problem.

This research, [2..5], has attempted a mathematical solution

that 1s continuous across the drill cutting edge. This leads

to an overcomplicated set of mathematical equations. The
modern approach 1is a plecewise examination of the tool
surface using the power of the computer to generate and
regenerate a set of discrete co-ordinate points about which
the required geometry may be calculated. Such a system uses
only simple mathematics and is able to define the surface
mesh  of  the point and shank of the drill. The data is

generated in terms that are unambiguous to a computer.

In reviewing current research on drill geometry and the
complexities of the methods that have been proposed it is
considered that the use of spherical trigonometry would lead
to a clear and viable solution to the problem of defining
the cutting geometry of the drill and particularly defining
the fundamental cutting angles. Spherical +trigonometry is
used for the solution of problems with spherically curved
surfaces, sSuch as navigation. It allows direct calculations
within a problem of directions in three dimensions. The
result of adding spherical trigonometry to a geometric model
of the drill will be to allow direct calculation of the
three 'Fundamental’' metal cutting angles as applicable to
the twist drill, making full allowance for drill feed. The

derived angles may then be used for further calculations as

required.



four previous works derive complex equations which seek
avufew specific aspects of the drill cutting
action. Avplecewise system = adequate accuracy and

simplifies the mathematics, Couple / i ; he%use of a madern

personal computer it is much more aj ¢ab1é:§é,the problem.

The mesh of data may be regeneratec ,;;/':: variation of
the drill form parameters, in seconds Wit ut this complete

knowledge ™ as a basis; further work | ing & e chip

production process at the drill cutting edge is impossible.
2.3.2v FLEXIBILITY

Historically tool flemibil

insignificant «and over complicaie?

published 1imn  Russia which measure flexibility. éNo other
papers. offering a contribution to fundamental knowledge - of
drill flexibility have been found. - The general approach is
to assume . the drill as a rigid body where the rotation of
the drilling 'spindle and the speed of penetration of the
drill into the hole are the only two factors to caontrol tﬁe

cutting process: - i.e . to assume the drill point moves in

unison with the machine spindle.

On the workshop floor the practical effects of £ exibility
have been recognised since drilli i £ came nto use,
has ~been a recurring theme 1in th / ature that in

attempting to drill haoles in difficult situations, normal

length -drills continually fail +to perform, while the




substitution of shorter flute length drills has provided a
total solution. Machine operators have been known to cut
brand new i in half before use or have kept an old stub

in a back

From +the it ig

important, - but what are

structure? What aspects of drill ostiffness provide the

n performance between a short and a long drill?

The rigidity of a drill is related to it’'s cross sectional

area. Torsional’ theory states that the torsional stiffness

is proportional to the cross sebﬁidﬁal?é?eafand inversly to
the secondrmoment of area. ihe,areé*is iabgély/dépendent on
the drill size but the shape, and therefore the 2nd moment
of area, ‘may be varied. Theory states that the stiffest
cross -sgaection s a circle but the unfortunate fact is that
part of the circular 'drill cross section has to be cut away
to make® the drill flutes.  Without the flutes there is no
path" for the waste material of the cutting process to
escape. The flutes allow extensive warping deformation to
take place so turning the rigid drill intc}a structure more

closely resembling a coil spring, -

The introduction of three dimens f /' 1 lexibility
converts the static situation to aUvé/ mic one, nowhere

has the twist drill been described in these terms.




STATEMENT OF RESEARCH OBJECTIVES

The literature survey ' reveals a /ngplete lack of any
capability of-describing the {fﬁpda gn£’/ ,geametry of the
twist drill. The praoticaijgﬁfe¢£; £ th /,"/~ prevent
accurate interpolation or é%tféédléﬁ: b :i \ sets of test
data. Each and every new drilliﬁglfrz,ua/iéé %herefore
requires the performance ﬁf é‘ﬂéﬁl  eﬁf;hg/:ppdgram, with

subjective results produced by tria

There is little or no attempt at a fundamental evaluation of
the dynamic flexibility of the ﬁwistfdf}ll shape. Some work

- non  drill
deformation exists, but 3/:2“,:’  wr‘:_‘:fiz : . dynamic
stability  of ~the drilliné fprdcéeé yegaﬁiﬁedj’4§here are
several dynamic and vibrational properties of the drilling
process that have been shown to be valid indicators for use
in condition monitoring. These effeéts have not been
explained and even a limited understanding of the dynamic
processes  will aild the progress towards economic drilling

automation:.

The objectives of the prdpcsed;tre:‘/ : __therefore

twaofold;=

The provision of a computer Eé;e 1 able to create

a geometric model of the drill form and calculate the

’fundamental*\\cutfing geometry of that form. This




system must be driven by the minimum number of

parameters.

To examine drill flexibility and the stability of the

drilling process. To identify Eééiczﬁarafeters within
the %

flexibility phenomena.

The direct. application of this prctotypejﬁéfkiis to: allow
the power of computer aided design, CAD, to be used to
improvethe deéigﬁldf\£hé”t§ist drill. This facilit& is ﬁQ£
currently .available even though it hasf een recognised by
drill manufacturers as desirab;eki/?:éicbntribution of shape
to both -the metal outting;z::/’r - . the dynamic
instability during that pr&geésfﬁay,Bézééééséea./wfhis new
design aid will allow drillé to/be looked‘at in new ways, 1t
will enhance the ‘'experience!’ of the drill. -manufacturing
industry.  and .will remove the need foridééigﬁ_by trial -and

error.

The thesis is divided into two parts corresponding to the
two objectives. Where computéf/ﬁrogfamézﬁaﬁé‘ﬁgen used *to
explore aspects of the mathematics then the comp - output

has  been !'screen dumped’ YA nter ion in




PART ONE

The true cutting geometry of th@ /."%‘/,’75 of the twist
drill must exist, there ds a flank face and a rake face with
a flow of workplece material across them, It must therefore
be passible to describe this cutting geem@try in numerical
terms. The motivation for purs ulng the geometric nature of
the drilling process is based on the shortcomings of current
practical testing as described in @hapterreno _especially in
the attempts to analyse the data.

Chapter 3 totally reworks the mathematics from a similar
foundation to that laid down by the literature. This
approach to the basic shape of the twist drill is shown to
be valid. The modifications are d@51rab1@ to simplify the
piecewise application on a oamput@r‘ /

Chapter 4 takes the basic drill Iormrand explores the
fundamental cutting geometry of the twist drill. There is an
accepted interpretation of cutting geometry and it is in
these terms that the drill must be expressed.

Chapter 5 describes the prototype computer systems. These
are designed to explore an example twist drill through the
above calculations and look at the cutting geometry and chip
flow information that is generated for that example.

Chapter & summarises the output of this form of analysis and
discusses future work required to provide valid cutting

force and wear information. It is proposed that this method
is equally applicable to other three dimensional situations.

This thesis proposes a new solution to the oomplex geometry
of the twist drill offering equivalent mathematical
information about any drill form. This solution therefare
offers matheématical predlutab111ty of the lling process.

The output of prototype computer pragrams haszbeen !sereen
dumped’ to a printer for inclusion in the thesis.
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GEOMETRIC WQORK.

2.1, GEOMETRIC MODEL BASED ON GALLOWAY'S GRINDING CONES.

thesis propaoses .a solution fo the geometry  of the

The starting point/is”théfeame salid geometry

described 1n Galloway’'s paper,'~t21.‘ The alternative

approach proposed here, hoWgygr,»iS;éxéélﬁtiﬂﬁ;bééad on the
calculation of asequence ofidiegrgt‘ point //Tﬁese polnts
form a mesh which, when ooméietef :desorlbés the »entire

the drill. For Coﬁvéﬁiéﬁoe a different
orientation of the axes. is used. A large number of numerical
values are generated but they are held and processed within
a personal computer and may becst be’reported to the operator
by graphical. .display: " This //f,rri’wgcz much greater
flexibility in .the variation of the ‘;f'orm of the modelled
drill combined with ease bf determining the associated

cutting geometry.

The analysis must be based on the most suitable co-ordinate
system. The system used is shown at figure 13 and is
described. The z axis is positioned collinear with
longitudinal axis of the drill. The x and .y axes

orthogonal, and they are parallel and perpendibular to

projection of the axis of the

has been« identified as more Suitable;Lfbr this geometric

modelling method.




G,
T &h

cone-inclination a

cone semi-angle B

Flute Helix Angle H

Figure 13 - Grinding Cones and Drill Parameters




Using ‘thisrcartesian co-ordinate syeﬁem it is possible fa
determine” the « point shape and flute contour with simple
plane trigomometry. The drill point shape may be described
with the wuse of a few basic solids /but their ‘relative
orientation -and: the helica; natﬁréfé/ the shaft are tao

complex for-a: standard CAD geométriC’moéelling package. This

may not be true of a more expensive package as used for

example in the aeraspace industry:

The starting point for this.analysis
points: -

The tip of the tool, <0, 0, O

ho

The apex of the grinding cones, (g, t,

gy t & h are the grinding cone parameters [2]

The locus of the drill eircumference has . the parametric

form: -

2z r is a constant and @ is a parameter
2 (this locus is valid for all z)

(r cos @, r sin @, =)

The locus of a conic section of the grinding cone, in the X-

Y plane, has the parametric form:-—

P
9

The «conic section ds an ellipse
minor‘axis = B,

pi+ificas 8, q + B sin 8,




)

The followingiis‘a list of the minimum:ﬁﬁﬁgér of parameters,
as set out dnetheobjective, required to determine the drill
point —geometry; the fluted shaft geometry and the cutting
geometry: =

The apex co-ordinates

n. =

¢h

t, ST e
dependent?

The cone

The cone

The Drill:=Radius

The Web Thickness

The Flute Helix Angle
The Feed Rate per rev

éDlﬁt éeometry

 fluted shaft
cutting geometry

Do e R 0

Given the list of parameters one must now start to calculate
the three dimensighAI surfaces that make up the drill form:\
Each flank face of the drill point-is part of the surface of
its respective grinding cgne; The cones are placed
symmetrically about the driliaéxiérséii£;is ;uf%icient td

calculate only one side.

The drill point or flank surface is/inQéétigated as a series
of conic sections taken in the x-y piane and at successive
values of z. If the cone surface is projected onto an x—y
plane ortﬁégonal to the drill axis: then-the locus of +the
intersection of the cone with an x-y plane is an ellipse.
The loci of successive z 1evelé feiati&é td fhé drill are
successive geometrically gimilaf:eiliéseé;?/%igﬁf; 14. The
ellipses are centred on thegéfégéeéion pf thé,é ﬁ; axisy in
the x-y plane which has been défiﬁe@lééi’"rﬁiigl to the x

The ellipses originate at théf;égﬁé';épex, and are
distributed along the projection of the caone axis. The size

of the ellipse is dependent on the z level, distance from
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the apex along the z axis, which is proportional to the x
ordinate, distance from the apex along the x axis, of " the

centre from the cone apex. The cones are
geometrically imilar so the ratio of the Major and Minor
axes 1s constant, figure 45. The ratios of the Major and
Minor axes to the distance f; mifﬁeagpge apex, axially, in

the z directdion or in the x direction ar Iso constant. The

obvious starting point is, therefore, to describe the values

of the Major and Minor axis of the conic section for-a value

of 1 = 1 unit in the x direction. This allows the Major and
Minor axis to be described as multiples of 1, i.e., A = A1

and B = B*'1.

As an example let us examine the situation for the ¢tip of
the drills figure 16. The parameters-ofdtheégrinding cones
are the position of the apex, (g, t, h)>, the inclination and
semi-angle, (a, B). The solution of figufe i6 is a standard
trigonometrical exercise. Let us assume g and t are known:-
A Cos(u> = A1 Cos(w
ellipse parametric form
B Sind{u) = B'1 Sin(w
This point indicates the tip of the drill but the equation
is equally valid for any other pair of co-ordinates on the

drill flank face. The mathematical solufian,is,as fDllow5.—

Cos(w
Sdn

A" Cos (W)
B' Sinqw
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Figure 14 - Family of Ellipses
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Ordinate Routine for Tool Tip



g f

At Cosipud-+ 1 B!'Sin ()
Bt g-Sindu) Alt Cosdu) + t
BtgeSind{u) — A 't Cas () =

R Sin{yu - @) = t : where| Tan(@) = (A't/B’'g)
= A't Sin(@) = B'g Cos(@

drill tip«¢0, 0, 0> has a value of
dependentivalue, h, +the third grinding cone parameter;

to be determined as the z distance from cone apex.

This system:is: programmed into a computer and may be solved
for any point in the x-y plane to determine the value of =z
at that point:  The Inputs are:thetxkéﬁdzyioﬂdinates and the
output is the z ordinate. The calculated: value of z is the
value which places that point on- the surface of the grinding
cone. Given the x, y co-ordinates of the chisel corner  or

outer corner it is easy to'determine the - third; z,

ordinaterand so fix these positions on the cutting lip:

The tip-of the drill is initially the only point known  that
is common to both cone surfaces. locus . .of “the
intersection of the two cone surfaces is the chisel edge of

the drills This:lecus-of intersection a three dimensional

curve but over such a short distance : th hi _length it

is reasonable to assume th ~r{15 ri”aiéhf in the x-y
plane: “+The' ‘chisel’ at the drill tip is therefore ascumed

parallel, wor tangential, to the curve of either ellipse at




that paint, figure 17. The solution of the derivative of
the equation of the ellipse at the position x = 0, vy = 0
gives the gradient of the curve at this point. - This is the

angle of the chisel edge to the x axis in the x-y plane.

It is now necessary . ta loqk/atzthe fluted 1length of the
drill. The two operations, drill flute grinding and drill
point grinding, are performed separately qnf/ different
machines. These operations produce the flutekrake surface
and the .point/flank surface of the drill form which
intersect +to produce the éutting lip.  The necessary match
between the drill flute orientation and the drill point
orientation is produced praotioaf}y byiprobes or stops which

hold +the drill

machined. This match must be reproduced mathematically. One

methad makes use of the reqd{réﬁénﬁ thgt;the cutting lip be
straight. “Since the only etraigﬂﬁ‘linefoﬁ/éfcpne is.a .cone.
generator passing through the cone aﬁéx then, as stated by
2}, the cutting lip must be a cone generator, figure 18.

Having fixed the locus of intersection of the two surfaces

their relative orientation is also fiwed.

To achieve this effect in the model, the chisel-corner is
positioned, in the x-y plane, by drawing & cone genérator as

a straight line passing through the‘coneaépex. @Thie,line is

drawn tangential +to the circle of the rsem[;ﬁeb thickness

parameter 'W/2'. The intersection of this line with the line

of the chisel edge is the position of the chisel corner in x

boge 200
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Figure 18 ~ Cutting Edge as a Cone Generator



and vy. The solution of the equation in 1, figure 19, for

this position will give the corresponding z ordinate. If the
cutting edge is straight then the continuation of this line,
(2, vy, z), isoothe loacus of the ao%Qai:bﬁﬁting lip. So by
agsuming a straight cutting lip ﬁhen'tﬂerintersection of the
above cone generator  with ,thefféiréier of  the +drild
circumference«is the position;of;%hezéﬁten;éopner*indx and ¥y
the =z ordinate is caleulated as befare. If the cutting lip
is mnot straight ‘butiis of & knOwn~ContQﬁffin the x-y plane
then the: “wintersection of this curve and the drill

circumference is the position of the outer corner,

3.2, RELATING THE S@LID GEOME?RY«TO;A;REAL DRILL.

In order to classify a twist drill in terms;gffits; geometry
it is: possible to measure a number of geometric references,
section 1.4., figure 7.  Using a universal measuring machine
the drill’ vis o held in a particular orientation, specific
measurements of distance and angle may then be made. If the
orientation tof the drill model corresponds to the plane’ of
measurement <insthe real drill: then the corresponding  angle
and distance measurements may be made: both on:the:real drill

and on a geometric simulation-of the same-drill:

The major geometric references are as faollows: When viewed

from the side of the drill, normal to

e;@ﬁtting lip and
the drill axis, the semi point anglé/as<ﬁéasured on the

universal ‘measuring machine, figure 18, is the angle”bétween




the 1line of the cutting lip and the z axis.
simply that of the line joining the chisel corner  to
cone apex, s0 it i1s strongly related to the parameters of

the grinding cone geometry.

The +tool <learance, figure 204 in- the circumferential
direction, the direction from which the work approaches, may

be determined at any radius but as a measured drill property

it is @generally assaciated with the outer corner. It is

found by determining the z displacement, iusing the equation
in 1, figufé“&@i for a'bbint on the cutting lip and for a
second point a small increment behind it at the same radius.
Calculated from the tangent, the angle determined for the
drill radius 1is equal to the dfilljf//ﬂ the
outer —corner, again equivalent to  that =z /“é the
universal  measuring machine. The flank rance .angle

be determined by this method for any po%néidﬁ:the flank face
at any radius on or behind the cutting édge.

The tool fake, figure 21, in the circumferential direction
may also be determined at any radius. In the circumferential
direction the rake angle is equal to the helix angle. The
drill flute has a constant lead which means that the helix
angle varies with radius, the value of the lead of the helix
being independent of the radius. ’The lead may be calculated
from the nominal flute helix angle and ngﬁinal radius by the
equation: -

Lead = 2.m. (nominal r).Tanthelix angle)




Outer
corner

A

Drill flute

Chisel
corner

Drill semi-
~point angle

Figure 19 - Side Elevation Normal to Cutting Edge




Drill
Drill margin

N\

Helix angle

Pigure 20 - Side Elevation of Outer Corner
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Figure 21 - Tool Rake (not True Rake)
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The local value of the helix angle at any radius equals the

tool rake-angle.  The above formula is rearranged to give:

Tan<¢helixvangle) = Lead / (2, m, (radius))

This angle increases with radiﬁSszqm;é”fhéﬂ#etigaifvalue of

0° at zero radius, to the‘&C?ﬁal,miﬁimumévajﬁé»atﬁthe chicsel

corner and up to the value of tﬁeihdminilfhelik angle at the

outer «corner, which should be at the nominal radius. This

value is the Tool Rake as previously deseribed by Stabler

(11} and Merchant [131 but, without kndwiﬁg the inclination

angle [11}, 4t is insufficient for any further calculation

of the cutting geometry.

3.3, THE DRILL FLUTE.

The drill flute provides tWofaSpéQtS*Qf;ﬁﬁggfggéticn¢of the

twist -drilli..The first is its contribution to the cutting

geometry -of the cutting edge: Tﬁejeﬁﬁiing;aedge iz the

intersection of the flute/rake and point/flank surfaces. The

flute shape must therefore match the designed point shape

and will not match an alternativeqéﬁ«défecﬁivé;point shape.

The . second is to provide a path of

feségpa;ifé@>thé;icutting

adge faor: the swarf or chip;m@téﬁzﬁifgénezatéd;atithekcutting

edge by the metal cutting, hole 'ggﬁgéétiég’ prpééséw The

larger the volume or cross seétig@éi7§réafidf the flute

=

space, the better the drill is able to provide adequate chip

transport oapability,




Reproduced from Webb and Maiden [14],
of the residue deposits of this chip transport process in

the flute as it takes place at and immediately after the

cutting edge. The computer is able to simulate this process

and indicate by vectors the inifiaifdireotiahs:Qf‘ohip flow
that are present. There is good correlation between these

two representatieons.

The position of +he cutting lip bas been determined by

analysis. This -position a valid 1line both won “the

point/flank  surfac 1 0O = flute/rake surface. The

co—ordinates . points

the

flute helix.
indicate the cross section of the drill flute. By specifying
that the cutting edge be Stfaight'and?a?porii/: a:cone
generator then . this is the only fluﬁérgéometrf “that Wil

produce the required cutting edge. In this way the form of

the leading or cutting half of the flute is determined.

The trailing or second half of the flute shape is remote
from the cutting edge and may thefeﬁdre’bé @f'arbiiary shape
without affecting the cutting edge. The trailing side of the

drill flute may be defined usihg’tﬁechitefia:

i, As far as is possible, the dleafanCQ,aerqss the flank

face of the drill must be positi&e to avoid unnecessary

thrust force. The shape of the drill point face is




SKETCH COMPUTER

Figure 22 - Sketch vs Simple Computer

Representation of Chip Flow [14)
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determined by the form of its intersection with the

flute. This' face is one that is subject towards thg

centre, to a high level of pressure due to lack of

cutting clearance. This is tthsdgréé of the majority

of the thrust on the driliashaftfwﬁi1e;arilling, The

heel «corner 1is a second area where such lack of

clearance may be found.o‘The /d?iﬂi/iééntre is - often

modified by the grinding of 'é@n@aﬁyi relieved

surface, point thinning, baekvfraﬁ thé‘égfking edge. In

the same way the heel corner is often relieved,

espeoiallyoiﬁgth{ck'webﬁed drills, by having a rounded

the optimum stiffpess

should ‘“be .sufficient

drill flute for

best chip clearance. El-Wahib explores the optinmum

ratio  of drill.stiffness ; chip transport capacity.

Drill stiffness is explored in section two of this work

but obvicusly as . more maferi@l’is rémbvéd from the

drill cross section so it becomes a weaker structure:

El-Wahib proposes the :reQui:émeﬁtfﬁhati/the.,minimum

material should be removed ffrcm *tﬁé&;drill cross

.

section. He provides a geometric

analysis which “ig

applied to the coross section, it ignores the obliquity

of the flute. This is an example of an analysis that




Figure 23 - Optinisation of Drill Stiffness

by Optimisation of Angle B8 [15]




allows the drill flexibility wi amining any of

the effects of such deformation,

It is required to calculate th p@é; he second half
of the flute. The locus of the trailing half of the flute is

arbitary and may be /détermiﬁédféé:aﬁ7eqﬁaﬁidn.; The two

curves of the flute may then be merged to  continuous

éDfathe/drill

ide

ﬁgiséiuiiéh»of either a
parabolic opieubic Bezier Qurve//rééﬁiéeéé ooﬁditions of
position andor slope\ét pointé on thg{qurve. The parabolic
profile 1is common for eimplefflptéiéﬁépéézbut the  rolled

heel flute form requirea?ﬁigﬂﬁ  curve. By the use of the

Bezier procedure continuity

achieved, ‘there is mno discontinuity with

Radhakrishanan; Kawlra and Wu [Bl,  where a circular or an

elliptical curve is used. Examples are given at figure 24,

3.4. CONCLUSIONS.

The kinematics of the drill,ménﬁiacﬁufingfpfééésgee‘may be

mathematically described more easily than attempting to
interpret +the actual form disfl@yéd;bj;a, fiﬁisﬂedffdrill‘
Once described in termstbfkﬁhég@éﬁﬁf?éfu:ihg:ﬁfoceééés@ the

twist drill may be reprodubé@g;gééﬁetrigally; ét‘will{ ‘

Six parameters are required to deseribé;fhé,point grinding

operation. This also defines the cutting edge and the
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xed as a Bezier curv information
and one further parameter now describes the flute grinding

operation. The drili feed rate,

/ﬁm&fev, is the finald
parameter required ta de%ef@iﬁgitﬁe @uftingfaction of .a

twist drill.

The modification of the drill f,o‘rfm ,fb‘j’r’paint/ thinning or by
the grinding of secondary»oleéragpérfacééidqes not alter
this basic shape. The swept ‘V§£§é§5a¥df72these secondary
finishing operations neg@\ only béj‘suﬁtfaéted from- the
standard form. |

The first part of objectivé?j Qéiéi,@inimum
nunmber o©f parameters Q;ﬁ%;égiquely
describe the <shape of the bASio*dr,llform—as’a” éecmetric

model. This aspect has nawwbeegfaéﬁiQVQd}




Curvature of cutting lip fixed,
curvature of trailing side governed by:-

Lack of continuity
at chisel corner

Circular curve - f(A,B)

Good continuity
between two
halves of flute

Parabolic curve - f(A,RBR,C)

Heel corner may
be rounded - as
required

ys

Cubic curve - fCAB,C,D)

Figure 24 - Examples of Flute X-Section
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4, THE FUNDAMENTAL ANGLES OF uUTTINC

4.1, CALCULATION OF THE TRUE ANGLES.

[t is necessary to determine’ihaf;tjﬁeﬂféﬁtiing‘ geometry

across the drill cutting edge. A:éyéféﬁgéﬁ aﬁlé:of examining

the true, fundamental, g@cmetry of su wCgmﬁpléx ithrce

dimensional cutting Dol ba

requirement is therefore for the,éreéﬁiéﬁ,’ 7Syétém for

analysis of the cutting action.

There are two inputs to suoh avaluatlon. One, the relative

velocity of the drill and workpiece,

Whigh*is/the sum of its

rotation and feed, and twa,x}ﬁhe/ f the cutting

surfaces, which has now been determined as the surface mesh

of a geometric model.

The cutting action of the twist drlll

gézaziﬁféefdiménéional
problem variable across the whole w1dth:§f tﬂe cuttlﬁg edges
and also across the chisel. It is‘é~§yétém‘where working
with a twé dimensional method Sf trigonometrical an&leig

imposes many - practical constrainté on the ability to

accurately express the true ahg}ée‘éfréﬁttiﬁg 'The/sclution

must 1include both the drlll gecmetry and the full frelative

motion of the drill. In th@ past feed rate has been largely

to

drilling thrust, ,':’Q;/:,: have also not been

represented faithfully to the trUé/Sitﬁéﬁiéﬁ.’i .
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Before starting the analysis>it is ore ne sary to

reassess the coaordinatecmSystém ;§ﬁdfithe? method f

trigonometrical analysis.

The homogeneous co- ordlnate Sy temfié:ﬁéWffhé beétftbaif to

progress from the geometficébas, /Wiﬁhftﬁé?hdﬁbgéﬁééugaléo*

ordinate system

performed: The -use

accuracy by ordering the datafsuppiié&?ﬁa ,/Cémﬁutert By

one  such calculationsit\is\pogsible/fé?&eterﬁine\the _plane

containing three\dn more'inﬁte.,giheﬁiqr@ﬁlawproduoesq\the

homogeneous corordinates of th@fg/h@bn,pléﬁé*

Given n points define th (my +me+me+m,)

n = _
my = X <y:s.“y;j 24z :i._*;zi! >

+ 1, except

pas
My = Y, Kz 8 E > {x 5 +XJ bl

(X;L_X;j ) (:y";;, +‘Yd b}
sl \

mg dsidetermined from v

Homogeneous ca—ordinates’odnéiaﬁ Qirféﬁr;§alﬁes, _these co-

final ordinate = 1
and: they  then are eqgual to tﬁ@;digé@

vectoriwnormal: to the plane, 1 /7;ihdioape;wthe

intersections of the p&ahewwifhwfhe xg}“yﬁand«z axis. = The




normal to the plane, in three diménéiéi@lf@p&ée) is easily
determined from these values, So given three sets of co-

ordinates the direction of the normal to their common plane

is calculated:

supplied

i:‘tr}:;e”1'*&11{@

the +true orientation of the various surfaces as a series of

numerical wvalues fully understogd:by,theiegﬁpgter.‘

It 1is. now necessary to examin he method of comparison of

pairs of these three dimeﬁéfonal direotiqné}' The_éomparison

required /is “the Smallesffaigle bétyeeniﬁhe;two “directions.

In  plane, orn _two dimensiqnal,' tr{ganmétryfit is first

necessary to know the common plane. Sphe ical Trigonometry,

more usually associated with navigation, works directly in

three dimensions. The method oaléulates the shortést

distance across an assumed spherical surface between any two

3. This

points on that assumed surface, [16] part,lrehaptéf

distance is determined in degrees and minutes of arc.

In order to apply spherical trigonometry to the normal
directions, at present expreésed inﬁtefﬁS éfOﬁ%, YV, Z) co=
ordinates, . they are converted to‘axéphefical’ co-ordinate

system of latitude and longitude where the polar ‘axig

page/&g/t;i




Chisel
caorner

Rake face

Outer
corner

Figure 25 - Figure of Face Normals
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coincides with the drill axis and longitude = 0 coincides

with th

0]

x axis,. Assuming an imaginary sphere the various
directions and planes can be represented over the surface of

that spher as points and circles. Using spherical

o

trigonometry +the various triangles formed on the surface of
the sphere may be solved, for example, comparison of the
flank face and the rake face normals gives the numerical
value of the tool wedge angle. The smallest angle between
the plane of the rake face and the plane of the flank face
is the Tool Vedge Angle, figure 26, as defined by Stabler
£111. The angle calculated 1is that angle between the
direction of +the normal to the plane of the rake face and
the direction of the normal to the plane of the flank face.

The Tool VWedge is this angle taken from 180 degrees.

The orientation of the cutting lip can easily be determined
in terms of this co-ordinate system. As a vector it is the
displacement from one point on the cutting lip to the next.

For a straight cutting lip the orientation is constant and

its latitude is simply equal to (90° - the semi point angle).

The inclination angle is measured as the angle between a

point, the velocity vector of the approaching workpiece
material, and a plane, that is orthogonal to the cutting
adge. On a spherical surface a plane through the centre
divides the sphere into two hemispheres. In spherical

coordinates the apex of either hemisphere is 90° from the
plane, it is straight forward to determine the angle between

any point and this apex. The apex is numerically identical
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to the displacement vector along the cutting edge. The
workpiece velocity vector must be compared with the
direction of the cutting edge and the inclination angle 1is
the complement of the result. Obviously the direction of the
velocity vector, figure 27, iz dependent on spindle speed,
radius and feed rate, but whatever its actual direction, one
simple calculation determines the inclination angle, figure
28. There is, specifically, no advantage of simplification

of the calculations by ignoring the feed.

With the velocity vector as input one may now determine the
remaining cutting geometry. The angles between the velocity
vector and the normal to the rake face and between the
velocity vector and the normal to the flank face give
intermediate values which must be corrected for inclination
angle to produce true rake and c¢learance. Stabler [11]
provides trigonometric functions to make these corrections
but these are derived from plane trigonometry. A simpler
correction 1is the use of right angled spherical triangles
which may be simplified by the application of Napiers method

of solution, as below, [16] part 1 chapter 4:-

The angle between the velocity vector and the normal to the
flank face 1is related to the clearance angle by the
formula: -

Arcsin(Cos(calculated angle) / Cos(Inclination Angle))
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The angle between the velocity vector and the normal to the
rake face is related to the clearance angle by the formula:-

Arccos(Cos(calculated angle) / Cosd{Inclination Angle))

There 1is a complication with the rake angle in that it may
be positive or negative. The spherical triangle wused to
calculate this angle is an ambiguous case where the sign is
not revealed. Separate calculations of the directions of the
cutting lip from the velocity vector and the normal to the
rake face from the velocity vector resolve the ambiguity.
They reveal that the rake angle starts positive at the outer

corner but is negative at the chisel corner.

Stabler {111 proposes a formula equating the inclination
angle of the approaching chip, (B>, with the inclination
angle of the <chip 1leaving the cutting edge (¥ ). This

formula may be used to determine the direction of motion of

the chip as it leaves the cutting edge. The motion must be
across the rake face, locally a plane that has already been
determined. The «calculation that remains is to determine

which direction in +this plane is the direction with an
inclination angle of departure egqual to the inclination
angle of the arriving chip. Once again it is easier to
measure this angle from the value of the normal direction.
The +triangle so produced is right angled and Napiers Rules
mzy be applied to determine the solution. The initial
directions and speeds of motion of the departing chip vary

and interfere across the width of the cutting edge. The
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deformation resulting from this action is restricted by the
presence o0f the rake face and results in bending away from
the rake surface. The «curled chip seen in drilling

operations is consistent with such deformation.

4.2, THE STEREOGRAPHIC PROJECTION.

It is possible to produce diagrams, like those used in the
preceding text to represent the three dimensional situation.
If +they are based on the Stercographic Projection, figure
29, they provide an accurate two dimensional representation
of +this complex three dimensional situation, [161 part 2
chapter 13. Such a representation, once understood, is
extremely informative. The method of stereographic
projection may be applied to any spherical triangle and may,
therefore, be applied to the problem of representing the
true cutting geometry of the cutting edge of the twist
drill. As already stated the true cutting geometry is
measured between the relative motion of the workpiece

material and the orientation of the cutting faces. The

]

variations of these values across the cutting adge ar

displayed as arcs on the stereographic projection.

The stereographic projection is one of many methods of

translating a three dimensional surface anto a two
dimensiocnal surface. [t may be visualised as a sphere
divided into two hemispheres by a plane. VWhen viewed from

above the plane the three dimensional surface is the surface
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of the sphere. The two dimensional representation is the
plane surface. The circle drawn on the plane represents the
locus of intersection of the spherical surface and the
plane, the so called horizon circle. One hemisphere is the
area within the circle, with the circle centre being the
zenith from which the sphere is observed, and the other is
the area outside the circle, (theoretically out to infinity
but practically to a limited distance ‘'over the horizon’).
Any position defined in terms of Latitude and Longitude may
be plotted onto the diagram with the use of protractor,
ruler and compass. Once a system is plotted, by the use of
the reverse procedure, positional and directional

information may be lifted off the diagram.

The +typical navigational exercise is the P,Z,X triangle. P
for pale, Z for the observers zenith and X for the
geographical position of a celestial object. The

Stereographic Projection of such a triangle is shown at
figure 30. The equivalent spherical trigonometric
calculation has been programmed into a computer wusing the
spherical cosine rule. Again this 1is applicable to any
spherical triangle no matter what the relative orientation

of Z and X.

Given a drill point with a straight cutting lip then a
spherical projection may be drawn as viewed from the
direction normal to the cutting lip in the x-y plane. Given

the co-ordinates of the various directions in terms of
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spherical co-ordinates 1t is possible to map the various
directions onto the projection, figure 31. On the diagram

all the following geometry may be represented:-

1. The displacement vector along the cutting edge and the

semi point angle.

The tool wedge angle.

The velocity vector, elevation due to feed and horizontal
inclination due fto the off centre position of the
cutting edge.

4. The inclination angle B of the <chip approaching the
cutting lip,

The normal to the flank face and normal clearance angle.

The normal to the rake face and primary rake angle.

The normal +to the rake face and the angle ¥ which
indicates <tThe direction of the chip flow leaving the
cutting lip.

WM

~N O O

All the 1lines on the projection are circles or straight
lines and are equivalent to great or small circles on the
surface of the sphere. The stralight lines passing through
the 'zenith’ point, +the point of view of the diagram, are
special in that the length or, in spherical terms, the angle

between any two points on that line may be read off the

diagram directly. This is the case with the tool wedge,
normal clearance and primary rake angles. The three
"fundamental' cutting angles may be evaluated on this

diagram for the conditions at any point on the cutting edge.
The diagram offers a quick evaluation of any twist drill
geometry, and of changes by comparison or by extrapolation

of the diagram.
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4.3, THE FLUTE SHAPE.

It has already been stated that the drill flute, although it
reduces the drill rigidity, is & necessary element within
the structure of the twist drill. First, the cutting edge is
the intersection of the flute and flank surfaces. Second,
the flute provides the escape path for the chip material
produced by metal removal at the drill point. The flute
shape must match the design point shape. This was
demonstrated by Galloway, {21, by grinding a range of point
angles on drills with the same flute shape, figure 32. As
one can see only the ’'correct’ point angle of 118° gives a

straight cutting edge.

In order to provide a shape for the arbitary trailing side
of the flute shape with sufficient flexibility to maintain
good continuity with the cutting half this research uses a
Bezier curve, both parabolic and cubic. The minimum
requirement for continuity is that the two curves of the
flute be merged to form a continuous line with continuity of

both position and slope throughout.

How is the Bezier curve to be applied to the trailing half
of the flute? The standard cubic Bezier curve requires the
position and slope of the start and end points. The position
of +the two end points is sufficient data to calculate the
linear equation of +the straight line between them. If a

third parameter 1s included, it is possible to calculate the

page 103







equation of the parabolic curve joining them. This third
condition 1is the slope of the flute profile at the chisel
carner and is sufficient to describe a simple drill flute.
The wuse of a parabolic profile is made in [15]1 to describe

the drill flute form.

The Bezier curve is calculated from the two end points and
the slope, given as the co-ordinates of an imaginary point a
short distance from the chisel corner, along the same slope
as the cutting half of the flute profile. The calculated
curve will not pass through the position of this third point
but it will originate from +the <chisel <corner in the
direction of this point so ensuring continuity. This form of
curve definition is often described in lay-man’'s terms as an
attraction away from the straight line towards the position
of the intermediate point or points. Varying the distance of
the third point from the start point varies its influence

and, therefore, the shape of the parabola produced.

The calculated equation of the line joining the two points
is parametric. Two equations are produced, one for x and one
for y as quadratic equations of the parameter t, where t
varies from O at the start point to 1 at the end point.

These equations are found and solved using matrix notation.
Looking mnow at the rolled heel drill flute form a fourth

condition must be introduced. It 1is then possible to

calculate the equation of the cubic curve between the two
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end points. The fourth condition is the slope of the flute
profile at the intersection with the drill radius. This may
or may not be tangential to the radius. The tralling corner
is the end point, as before. The ’'fourth point' governs the
slope of the curve as it reaches this end point. Two cubic

parametric equations are producead.

The solution of these equations for successive values of the
parameter t ©provides co-ordinates in the x-y plane of the

profile of the trailing edge of the drill flute.

The position of the cutting lip has determined the form of
the cutting half of the flute. The second or trailing half
of +the flute 1is remote from the cutting edge and may,
thereforse, be of arbitary shape. A Bezier curve has been
proposed to describe this half of the flute. The shape of
the drill point face 1is determined by the form of the
intersection between the point face of the drill and both
halves of the flute. The point face is the one that is
subject *to a high level of pressure due to lack of cutting
clearance, this face being the source of the majority of the

thrust on the drill shaft present in a drilling operation.

For this reason 1t 1is often modified, in &a generally
arbitary way, by the grinding of a secondary relieved
surface or by a point thinning operation, or by the
provision o©f & rounded trailing corner, or heel, by the

performance of an additional grinding operation. The Bezier

curve format of the trailing half of the flute allows

page 106




flexibility in the shape of the trailing half of the flute
and allows the effect of change of shape to be explored.
These secondary operations are currently developed by trial
and experience rather than a true understanding of the

material velocities present across the point face.

In the construction of the geometric model the drill cutting
edge was originally placed to achieve a web thickness equal
to the value of the parameter *'W'. This was determined
before the flute profile was defined. It is now necessary to
calculate an accurate value for the webthickness as the
point of closest approach of the flute profile to the drill
centre. This is less than the value of the webthickness

parameter 'W', figure 33.

The point of closest approach may be described, taking the
more complex example of the cubic Bezier curve, as the point
where the local radius, r, is a minimum. As r¢ = x2 + y2 and
r?2 is a minimum when r is a minimum, then the derivative of
xZ2 + y2 must be equated to zero in order to mathematically
determine the location of this minimum. For the cubic curve
the derivative is a polynomial in t to the power 5 and may
be solved by a Newton-Raphson iteration. The angle at which
this occurs 1s the deepest point of the drill flute and is
important when exanining the flute grinding operation as it

must <coincide with the most extreme point of <the grinding

wheeal,
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4.4, FLUTE GRINDING.

The flute is ground with a grinding wheel dressed with a 'v’
shaped profile. The 'v’' 1is generally formed by two arcs
which meet at a point. The parameters of these arcs have
been callected 1into secret reference books by the various
drill manufacturers. This intersection is the most extreme
part of the grinding wheel profile. The web thickness is
contralled by the penetration depth of this point. The
grinding machine 1is set up so that this extreme point is
directly over the drill centreline. The flute helix is

controlled by the lead set on the helical grinding machine.

In any helical milling or grinding operation there is an
interference effect. This causes significant modification
between the profile of the tool being used for cutting and
the profile of +the generated flute shape. In the drill
manufacturing industry, in order to minimise this effect,
the tool 1is set at a helix angle approximatly 4 degrees
greater than the nominal helix, figure 34. The flute is
still ground using the lead which matches the nominal helix.
This offset of the wheel partly counteracts the effects of
interference but the flute shape produced from a particular
wheel profile is still modified and the actual shape

produced is known by experience rather than evaluation.
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4.5, CONCLUSIONS.

The requirement is for a system able to determine the true
or fundamental cutting geometry across the drill cutting
edge. Chapter 3 provides the drill as a geometric model or
shapeae. The interaction between that shape and the relative
velacity of fthe workpiece material approaching that shape
has mnow been examined. Spherical trigonometry provides a

consistent and unambiguous answer to this interaction.

It is also necessary to introduce the manufacturing process
required to generate the drill flute. This is again a
process currently known to the drill manufacturer by dint of
experience 1in +the form of a book of tables 1listing the
position and radii of the two arcs required to generate a

particular flute form.
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COMFUTER APPLICATION.

The mathematical process to be followed has been outlined by
the two previous chapters. It is now necessary to examine
the implementation of that mathematics within a computer.
The research policy is to avoid the expense of high powered
hardware and sophisticated software. The work is intended to
look at what 1is possible using standard software and a
standard IBM compatible personal computer. Where appropriate
material has been screen dumped from the prototype computer

programs to illustrate the text.

By making calculations about the geometry of the twist drill
with the use of a discrete mecsh of individual co-ordinates,
rather than attempting to obtain continuous equations, it is
possible to simplify the mathematical calculations comnpared
with researchers [2..5]. The basic reasoning here 1s that
overcomplex mathematics based on continuous equations that
only provide limited information, such as [2..5], will find
no practical application and will be of esoteric interest
only. Whereas a simplified piecewise system, even where it
is +tied to the use of a personal computer, may be accessed

by anyone.

Two separate prototype applications of the method have been
programmed, each with separate strengths, and they are
described in turn. During the following explanation aof the
method, example data is generated for a 4,.5mm Quick Spiral
drill, as would be recommended for use with aluminium. This

drill is wused as an example but similar data would be
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parameters of that drill

SUPERCAL 4 ~ COMPUTER SPREADSHEET SOLUTION,

ai
—

SuperCalc 4 is a Ycomputerised spreadsheet”. It is used for
the entry, storage, processing and display of numerical
data. It may be used passively, where cells are filled with
numerical values and where further cells are programmed with
formulae. These formulae act on the initial cell data to
produce answers. Answers, such as column and row totals, are
displayed, as the results of formulae cells, wherever

required.

A full range of mathematical functions, including
conditional, '1if', statements, is available. SuperCalc 4 may
also be used activly, in conjunction with a command file in
it's own programming language. Such a command file may
access the data on several different spreadsheets, process
it through further spreadsheets and collect the data, as
required, to yet further spreadsheets. Alternately separate
parts of the same sheet may be used. This second mode is
primarily dJdesigned to overcome the size limitation of a

single spreadsheet.
A "computerised spreadsheet” 1is, therefore, a powerful

system capable of processing and displaying large volumes of

data with ease.
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The equations of the geometric drill solution have been used
to construct a SuperCalc 4 spreadsheet. This is an excellent
medium for trial and error or, more scientifically,
iteration calculations. A short form of the spreadsheet is
used to determine the grinding parameters corresponding to a
particular drill geometry, Zfigure 35. Being a relatively
small spreadsheet 1t performs very quick re-calculations.
The grinding parameters are input as cell values and the
effect of varying any parameter is quickly displayed after

each change.

For more detailed evaluation these grinding parameter values
are transferred to a larger spreadsheet. The eight grinding

parameters providing the umnique blueprint of an individual

drill. A command file is executed to assemble a set  of
information. This set examines the geometry over a range of
radii. At each radius, after performing a re-calculation,

the drill geometry variables are transferred to another
section of the spreadsheet. The clearance angle is measured
by finding +the =z ordinate of two points close together
displaced by a known small angle: -

The clearance angle = Arctan{( §Z/ré8 )

This set may then be input to SuperCalc 4 graphs. Billau and
McGoldrick (41 idinvestigated the presence or otherwise of
positive <clearance around the periphery of the drill flank
face. Figure 36 displays such a distribution produced by the

SuperCal program and, as can be seen, at an angular distance
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of 5%° behind the outer corner the periphery clearance angle
reduces to zero and becomes negative beyond this point. This
drill would therefore require a rolled heel flute so
removing +that portion of the drill flank face. Alternately
the distribution along the cutting edge may be investigated
as at figure 37 for a series of intermediate radii. These

xtent of the area with no

0}

graphs are able to indicate the
positive clearance, an area which is marked by an easily
visible spiral built up of material around both sides of
the drill chisel. A variable amount of feed may be included
in these calculations and this capability demonstrates how
important feed 1is. For each feed rate the spiral build up
coincides with the area where the clearance angle reduces to
zero and becomes negative as one moves back from the cutting

edge or in towards the center of the drill point.

Other data, such as the clearance and tool rake angles, are
measured 1in planes parallel to the drill axis, 1.e. as on
the universal co-ordinate measuring machine. These simple

values are easily produced but it must be remembered that
these are not the correct 'fundamental’ values [11] as they
are not measured in the plane perpendicular to the cutting
edge. The variation of this data over the width of the drill
cutting edge may easily be displayed on SuperCal 4 graphs,
for example helix or tool rake as in figure 38. Currently
such information 1is the only geometric data that is

avallable to the drill designer.
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The graph drawing facility of SuperCalc 4 1is used
specifically +to examine the point/flank face of the drill,

figure 29. When examining the parameters that determine the

0]
N

ize of the flute space there are two factors in direct
competition. The +trailing half of the flute has not been
defined by the fundamental requirement for the cutting 1lip
to be straight. The shape and position of this side of the
flank face must be determined from two other requirements:—

i. The point/flank face area and contour.

ii. The drill stiffness.

The firset requirement may easily be investigated by using
the power of Turbo Pascal graphics. The value of clearance
angle 1s determined over the flank face as one moves back
from the cutting lip. This value decreases and has a
particular contour of zero clearance corresponding to a
particular value of drill feed rate. The contour expands as
the feed rate is increased. This contour indicates how much
of the flank face has effective clearance at a particular
feed rate. The indicated parts of the point/flank face are
those that should be removed, either by being part of the
drill flute or by a point thinning or secondary {face
grinding operation. These requirements help guide the

position of the boundary of the trailing side of the flute.

Point thinning is an important aspect of drill design as it

controls the drill thrust force, especially for thick webbed

drills which have high stiffness but would require excessive
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thrust for penetration particularly with work hardening

materials. The flank clearance angle may be determined at
every point on the flank face, on or behind the cutting
aedge. A Jdiagram of fthe distribution of clearance on the p

flank face may be produced.

Figure 30 is such a diagram produced by SuperCal graphics,
it is, however, difficult to interpret. An alternative
display may use the data created in SuperCal but present it
by using Turbo Pascal graphics. Figures 40, 41 & 42 are the
displays for zero feed rate, 0.2 and 0.4mm/Rev Feed. This
zhows the influence of drill feed which is an important
aspect of this analysis. Feed has not been incorporated imn
such an analysis by any of the previous works. SuperCal
produces the set of flank face clearance angle data for zero
feed and this is corrected by the Turbo Pascal presentation
for any level of feed rate. The effect of feed is emphasised
by the contours of figure 43. This information on the point
shape must, however, be reconciled with the requirements of
drill stiffness and chip transport capacity before the true
optimum geometry for the trailing edge of the drill flute is

approached.

3]

TURBO PASCAL — SOLUTICN WITH GRAPHIC DISPLAY.

&)
)

Turbo Pascal 1is an enhanced Pascal language available for

the IBM PC. This is a much more flexible medium in the range

of forms of data display available.
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It has not been possible to reproduce the drill's helical
form with a simple CAD/analysis package although more

advanced packages may have this ability. It has proved

ier +to examine and picture the geometry of the drill on

)
w
0

the computer screen by the use of Turbo Pascal. This system
may be made more user friendly than SuperCal 4. The range of
available mathematical aoperators is the same as for SuperCal
4 and therefore identical values, with a small allowance for
different rounding errors, may be produced with both
systems. A  program is produced in this language by writing
suitable source code in standard Pascal with the ability to
include a large number of language enhancements. These are
mostly Zfor IBM screen handling and graphics. The source
code is compiled in a single stage to an executable program.
With +this medium the processing of the data has been taken
much further than with SuperCal 4, as is warranted by the

greater flexibility of data display.

The program 1is a prototype for the geometric calculations

that would be required for a more powerful graphics or CAD

workstation, which will ©be capable of more extensive
analysis of the data produced. The program consists of a
series of screens of data. The same parameters from the
SuperCal 4 system are used again, as applicable to the

example 4.5mm Quick Spiral Drill. The start point 1is the
sams data, displayed as input data on the first screen. On
this screen any value may be altered as required, figure 44,

The second screen redisplays some of the parameters together
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with the calculated geometry of the drill point as would be
measured by the universal measuring machine, figure 495. The
thirad screen displays the drill flute cross—-section
with the 'cone generator’ cutting side and the 'parabolic’
or 'cubic’ curve trailing side shown in figures 46 & 47
respectively. The program may now return to the data input

screen in order to modify any of the parameters as required.

If the program is allowed to continue the fourth screen is a
representation of the end view of the drill, figure 48,
consisting of +the cutting lip, the chisel and a set of

curves which depict the form of the trailing side of the

drill point face. This set of information is displayed the
same as that described in [31. This is the most economical
way to generate the end view of the drill point. The drill

flank contour is a set of elliptical curves obtained from
the intersection of a series of planes orthogonal to the
drill axis and the conical surface of the drill flank
represented by the mathematical model. The flute profile is
also mapped at similar levels. The drill point/flank is
therefore bounded by these curves in the x,y plane at equal
intervals af z. The 'end on’ view of the drill point shape
is produced by joining up the points of intersection and may
then be compared with a real drill. The three dimensional
nature of the drill point is difficult to picture optically
with a camera or measuring telescope, as sufficient depth of

field is required to view in focus both the outer corner and

the point.
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The flute shape has been fully described as a
discrete points. An important industrial requirement is for
this shape to be translated to describe the form of the

milling cutter or grinding wheel required to generate it.

The grinding wheel must touch the flute surface in order to
remove material. At some time during the passage of the
wheel +the wheel surface touches all the points along the
flute profile. For each point there is an instant of final

contact between the drill and the wheel. The locus of all

ot

hese points therefore mark the extreme penetration of

)

(
G

uccessive pointe of the wheel profile into the drill

0

material. All that is necessary is to describe this locus of
points on a single diagram so "freezing” the grinding
operation at a particular instant. The shape of the wheel is
described by the use of only two co-ordinates, namely radius
and displacement of the profile. All the discrete points in

the drill flute are translated into this 2-Dimensional

relationship. The co-ordinates, (x,r), over the range of
levels 1in the flute are then represented as a series of
superimposed curves, one for each level at which grinding

is taking place. The wheel profile is the smallest profile
contained within these curves. This is the profile required
by the grinding wheel in order to just touch the discrete
flute points at their individual deepest points of
penetration into the drill material. The generated wheel
profile confirms that the maximum depth point of the drill

flute, corresponding to the drill webthickness, must be
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created by the central and most extreme point of the
grinding wheel. This point on the drill flute has been
calculated as the radius and angle relative to the drill
point where the local flute radius is a minimum. In the
manufacturing process the drill flutes are ground before the

point. This fluted blank is then held by stops in the flutes

0]

o creating the point and therefore the cutting lip at the

correct angle relative to the flute form.

This ecalculation is achieved in the drill program by the
generation of a set of flute profile points calculated over
a range of z values, figure 42 . This array of points 1is

transformed by a matrix multiplication to produce the same

j

at of points but reported in terms of a different

U

co—ordinate axis system, figure 50. This new axis system 1s
that of a suitably placed grinding wheel and is initially in
terms of x, v and z. A grinding wheel only requires two
co—-ordinates to describe 1it, i.e., disk radius and position
of +this radius along the wheel axis. The position ordinate

is equivalent to the x value, the radius ordinate is found

from pythagoras, {(y2+z2). Reducing X, ¥ & z to x & r and

plotting these two co-ordinates on the computer screen, for
the range of flute levels, gives a series of curves, each

corresponding to a different z level on the drill. These

enclose the profile of the grinding wheel required to

generate the required flute profile, figure 51. The usual

problem with helical milling of interference ic side stepped

so long as the diagran is a progressive overlapping set of
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Contours of drill
flute at constant
level on Z axis

Figure 49 - Set of Drill Flute Data
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Set of flute
geometry data.

(No change of
position, only
change of origin
of measurement)

Figure 50 - Flute Data Change of Origin
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curves. 1If hovever there is random overlapping of the curve:

i
Ui

then it may be inferred that the profile is not valid. In
this case an offset greater than 4° may improve the

situation.

As  the program continues the following screens each give a
histogram representation of some of the tool geometry for
the 4.5mm example drill reported over the width of the
cutting edge or lip of the drill. The latitude and longitude
of the normal to the flank face plane are constant across
the cutting edge and reported numerically. The latitude and
longitude of the normal to the rake face are not constant
and are reported graphically. Similarly Inclination Angle,
sensitive to feed rate and as measured from the velocity
vector, is displayed, figure 52Z. The +tool wedge angle
measured between the two face normals, figure 53. The rake
angle and flank clearance angle in the plane normal to the
cutting lip, figures 54 & 55. All drill geometry varies

across the width of the cutting lip.

A second set of data is also generated referring to the

chisel edge where the Dbasic cutting geometry varies

~

considerably, the velocity vector rapidly approaches the z

s

axis as the radius approaches zero. Once again this huge

o

0]

fluctuation demonstrates +the need to include feed 1in h

r

w
9]

analysis. On the chisel edge the rake and flank faces
both portions of the +twa conical drill point surfaces,

situated immediatly on either side of the chisel edge. The
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Figure 52
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tool  is cutting with negative rake angle and the rance

iz also highly negative, figures 56-59.

The penultimate screen 1is a different display of the
calculated inclination angle. According to Stabler's Law,
[111, <the inclination angle of the approaching workpiece
material is equal to the inclination angle of +the «chip
material as it moves away from the cutting edge. This allows

n ascescsment to be made of the initial direction of flow of

[Ni]

the chip material as it leaves the cutting edge, figure 6O0.
The velocity of this movement is related to the velocity of
approach, i.e., the magnitude of the velocity vector, and on
the chip thickness ratio. The actual chip thickness ratio is
unknown and will vary with the cutting conditions and across
the cutting edge. The chip flow away from the cutting edge
iz plotted by vectors. The vectors originate from a line
representing the cutting edge. The vectors are oriented by
the individual inclination angles and are of a magnitude
proportional to the wvelocity vectors. This flow is

convergent but shows the initial direction and rate of

travel of the chips in the flute. The subsequent flow
induces curl due, first, to the curvature of the flute and,
second, to the convergence of the flow and varying velocity

profile across the width of the chip.

The <chip flow data is also tabulated on the final screen.

The direction of motion is three dimensional, the previous

screen being an approximate two dimensional representation,
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the

and is given in terms of/éégéfiégi*}é@*bfﬂiﬁates of
directions \Df \initial éhip mater{aizfiDWzas it Léa%&@\fﬁhé&
discrete \poiﬁts oﬁ the out%i#gﬁfe@get/ The sphéf!&élr
co—-ordinates may ﬂ vector

values in cartecian oo~ord1nate9

j&]]
53]

CONCLUSIONS.

Looked  at

aspects of the manufagturihg proce ’ at have had sno"

previous numerical explanatio have been
developed by trial and er

the drill. The fundamental c

determined from any /dff¢théfthégpie$;*6ﬁ*Eer@.{pfactical
examination by time consuming deetruqt}vé tp ting of

individual drills, in anything oﬁﬁer/ﬁhaﬁ,rudimentary form.

The  computer programs developed ipfthis0thptér offer  bQ£hx \Qu

understanding of the manufacturingiﬁfécégsiby translating

the generating parameters into eQﬁi&&ieﬁﬁf&riii/fbrmS

understanding  aof







6, VALIDATION OF THE METHOD.

The sort of drill geometry information contained in papers

[2..51, although capable of describing limited spects of
drill geometry, involves complex mathematics. There are no
simplified versions of these calculations, none have been

attempted by any publications found while researching this

thesis. The problem is exaggerated because so little true
drill geometry information, either from measuring drills or
produced by mathematical methods, has actually been

published, nothing is presented by [2..5). The drill details
that have been published are almost invariably measurement
of the drill geometric references, figure 7, which are
orientated on the drill axis, as may be measured by the
universal co-ordinate measuring machine. Past researchers

hawv

)

examined individual aspects of the drill and have
compared their relative effects by attempting to alter only
one individual aspect of this geometry. The general drill
is, however, a complex permutation of half a dozen such

geometric characteristics so making fundamental analysis by

this method impossible.

The 1lack of published data and the lack of attempts to
interpret the fundamental geometry is assumed to stem from
the fact that +the true geometry of the drill is hard to
visualise and equally hard to determine with accuracy either

mathematically or by measurement from real drills.
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The geometric references

forward to

asseaess,

cutting edge by the nee éf,qpé 
cast ‘scross the flank faéé;:
the «clearance angle of th
device, f@gure 6&@“Tﬁiéran le ﬁay;be reproduoed by the drillr

s

program but it was not Qqﬁéideredfof value to  included

example data here,

Such skilled techniques are not pqééiggeirﬁéwéQGr, when used
to assess the rake angle as,the/réke face s enclésed within
the flute space. Oxford £l7];pfoduces a graph of drill rake
angle but the method of obtaining  this data is not

explained. Here at Aston University the rake of one example

drill was assessed by a destructivé tegt, in the wofk \by”

Upton .. [ 281« A drill was - csuccessive plane

surfaces normal . to thg/ cutting edge fhe/f@ke angle was

measured optically fbf each égriacg3szﬁiSiﬁ,"sﬁ’ifg of one

however the 'tool rake', mea
to the cutting edge, rather than

from ~the velocity vector., Th
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descriptions of the drill rékei’ ‘daﬁed at flgure 69 \

together  with equlvalent values as produued by thef\Turbogr

Pascal program.

The
been extensivly Studied,‘ESLg
shape and  wheel shapgf i§‘ 

computer = based systemfgi_ . assist  in  the

Selectlon of the correct grihd‘ ﬁ%eélfffgfile by providing
a solution to this relationbhip, fﬁééé ;ystems have not, as
vet, pr@ved themselves reliab1§7¢and accurate enough to
replace fhe historical methqdlaf;tfiél and error/experience,

(with “the data from thaé,eXpéfiénQeéavailable in tabulated

form?.

The Turbo Pascal program has also been used to investigate

the flute grinding problem. The general shape output by the

Program may be 51mp11f1ed on inépectioni to the arcs of two

circles; the parampt@r”\of Wthh may easily  be evaluated

from the drill program’s representation of wheel shape.\ A
similar shape is suggested by Radhakrishnan et al, [5l, and

this is also the wheel profile definition as wused in

1

practice by drill manufaoturers;;rfﬁz,h@xthlxpféfile is

expected as the interfereg@engféb,/
flute praduced duriﬁgéftﬁéiu
Radhakrishnan  does not {éip} i
interference and how it is to be all

at translatlng the orqse segtlon/orthogona
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profile across the line of thé:

suggested by Radhakrieﬁnan\ are generally;widef §hilé the

profiles used in drill manufacturing industry are more

similar +to . those praducéd

‘urboPascal program,

figure 63,

of the chip flow

the workpiece

simplified 2-D tion produced by the drlll
programnm, ref. chapter 5, page l4q ,Sueh abservatians of the

chip path do Support the dr&ll program predlotlone With

discontinuous chips therlength and Curl of the chlps is also
supported by the the above observations. A single Chlp plece
fitting mneatly into the drill flute when allig@ed at the
cutting edge with the predicted directiomns. The  length 1isg
then correct ?g‘just touch the hole Qall on the opposite

side of the drill flute around which it must curl. Touching

the far hole wall® is assumed ta be ‘the chip breaking

mechanism. Continuous ohipe display“a/rnéfioai curve that

matches the drill flute perfeotly, this .curl ié; obviocusly,

no longer the 1n1+1a1 nurl'

6.2

It is of v,a,l\’ue\ to summarise “t.he" ou p n .,ogrma,tri,on wg\'r}e;:atjed\

by the computer pPngéﬁb¢ 

wheel profiles




1 — 2 Vi —
X i x

These wheels only produce the predicted flute
shape over the cutting edge./T;éQprbﬁile of the
secondary or trailing half is uncontrolled.

Radhakrishanan [5]1
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1.+ This work has described mathematically

defining the(basicféhaﬁéwa a twist drilrsf
a computer can understand. ;SQriptiqn is in terms
of a solid model frqui/ ~o~ordinate data

cCan be

tool surface.

Secondary finishé; /gﬁﬁérimposed

onsthis basic chape.

20 From +the surface mesh ééﬁ;;ff'é ‘é&?b&aihe?model, it is
possible to determine the plane orientation of facets or
elements \of tﬁe tooi surface., The relationshipybetwéen

this orientation and the incoming velocity vector of

the workpiece determines  Qﬁ£ting-géometry. This

relationship is explored, _the first time, using a

direct three dimensidnélgdppngaohi?

3. In the geometric model the grinding parameters of the
point grinding process are directly translated into the

geometricw'referencee of“the tool point by which drills ;O

‘are described. “The helical flute grinding probleﬁhxié*ﬂxx
explored, ‘starting fromethé~5urféCeVmesh;;data of the
dritl. flute: and produoingfthegrequitedishape_ of the

grinding wheel, by a method thaf }ér&tﬁélproblem

of interference,

It is the author’s belief that none
bean' satisfactorily explained or pro

published works,




The logical next stage of the investigation would be two
fold, looking first at the drilling forces and second at the
drill wear. Further work is required looking at the metal
cutting process in terms of the very high inclination and
negative rake angles, as determined by the drill programns.
Once these relationships are satisfactorily defined they may
be slotted into the cutting geometry of the geometric model
in order to provide calculations of cutting forces and tool
wear rates. This is the means by which the machining data
from geometrically more simple metal cutting operations may

be utilised.

Geometric modelling or solid modelling is an established
technique of three dimensional CAD. After the basic salids
are defined within the CAD package the composite shape data

may be further analysed by numerical analysis, such as FEA.

One basic CAD package was found unable to provide the cone
orientation and helical sweeping required for the drill
shape but the prototype programs have proved that the basic
mathematics result in a wusable drill model. This proof
justifies the future use of a more advanced geometric
modelling package. The complex shape of the drill could
easily be created from it’'s solid geometry by a CAD system

with sufficient capability.

Various forms of numerical analysis are tied to CAD systems

and are available to the designer/user, Alternately
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numerical analysis may be a separate program but use the
same solid model source data or the same set of surface mesh
data as produced by the CAD package. The application of

numerical analysis to examine the stresses in the drill

0
o
0
0
0
0)
O
0

tion is the subject of part two of this thesis.

G, 3. EXTENSION OF THE METHOD TO

OTHER 3-D CUTTING TOOLS.

May any tool be examined in terms of the manufacturing
processes used to make it? The approach is applicable for
any tool generated by manufacturing processes of known

kinematics. Surface orientation data in the form of normal

o)
'-—l.

rections 1is then used to directly calculate the cutting

)]

action by the application of spherical trigonometry.

The drill 1is only one example of a situation where the
planes of measurement of the various aspects of cutting
geometry are constantly varying. Often with plane
trigonometry the determination of the common plane is the
most complex step. Each point across the cutting edge has
it's individual plane of measurement. The common plane

depends on the individual situation and has in the past

required simplifications, such as the ignoring of drill
feed to maintain an artificially constant plane of
measurement acraoss the drill cutting edge. These

limitations do not apply to a true 3-D method.
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There would appear to be no limitation to the application of
spherical trigonometry for the general evaluation of such
complex three dimensional situations. The advantages of
spherical trigonometry are many. Centred on any point it

provides & direct method for the calculation of direction.
The

h calculus does not address the aspect of material
movement, the equations deal only with direction, however
this is not a problem when looking at general material flow

at a point as the flow speed and direction at that point are

the important factors.

A1l the faces forming the cutting edges of a milling tool
will be created by sweeping grinding motions in the same way
as the formation of the drill point. All that is required is
to identify the shapes involved. In general this is true of
any tool produced by grinding operations. Tool grinding
machines are becomming CNC controlled so that the geometry

produced on the tool must be known and programmed prior to

manufacture. Such geometric information is often 'thrown
away' or ‘'commercially sensitive' and not passed on to the
tool user. Once the surface mesh is established it does not

matter how many different relative motion components are
involved, spherical trigonometry allows direct and accurate
calculation of the full cutting geometry with no compromise
on planes of measurement.

The calculations predict the initial directions of chip

-

flow. This motion should be designed to avoid interfering
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with'the cutting process. Dr and other such

fluted tools are provided with flutes in Qrdér ff§f\a1ihw H\

space < for ‘the accumulation of /ﬁaterial, Most other

*?@i?ﬁ;egﬁgrnal cutting
/fﬁaﬁéénéae o
generally carried away;ﬁiéﬁ§%ﬁ éﬁi;Bféééhing is
also an example wheré/iiké:d/ “éiuﬁéé:of chip
material removed by thé?%éé’ /grédszr by the
tflute space’ of the tool de

accurate kn0w¥e@56w©£vthe»Qutting:gégmétfy/ia a valuable aid
to good tdolﬁ&ééigh\éng fdothe aoourate‘prediction of tool
cutting properties. 1t 1o Verif(@égéééapy Lﬁo predict the
cutting conditions /f%ﬁeh[l,iﬁ?léﬁgﬁﬁiﬁg - modern CNC

installations which /aré/aglgégpecﬁed to work without the

guiding 'sensor’ of a human operator.

The special reguirement for the analysis of the chip flow
away from the cutting edge and down the flute is, however,

limited to drilling.

For best application into a general computer numerical

ocedures. The

advantages of \Spherica; trigbﬁbmétry for the ~direcﬁf

calculation of butﬁingﬂgééﬁétry in three-diﬁEnszEaLF ﬁddl$ \




are too great for this methé& t

6.4, ' CONCLUSIONS.

The firet the form of a

syst mfiéfa/flexible

computer program based on a geometri

standard twist drill forn




This section looks at theustat’O”
drill as a flexible structure a
modified by the special shape,

faxd

Chapter 7 eXPlDP@S\thP fcundatlans of the stress analysis
required for this examination. A Finite Element Analysis

computer system is found wanting in the flexibility with

which it can be applied. An alternatlve system of finite

difference equations prov1dea/thp answer.

Chapter 8 explores the data Preated by thls SyStemﬁ/It has
been suggested in the llt@rature that such analysis was
intractable. This chapter shows this not to be the odce and
affers a first attempt at solution.

Chapter 9 looks at the prototype computer systems for the
static analysis and describes the total system. This
represents a first attempt at a coherent system, 1noluding
both cross sectional effects and longitudinal effects.

Chapter 10 looks at the dynamic analysis. A simplistic
solution from the theory of vibration of elastic bodies is
proposed. The information generated is supported by physical
testing of drills

The output of prototype computer prcgramg has,been fééreen
dumped’ to a printer for 1nolublan 1ﬂ the t as .
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7. DRILL RIGIDITY.

It has been usual in prev1ous work neider the drill as

The static response is governed by t /itoféionéi/ stiffness

which is dependent on the cross e@otlon of the fluted shaft

of the drlll A rod of almllar size to a twist drill and

nmade out of he'aame tool ﬁteel ha9 very llttle tor sional

flexibility. The fluted shape of the tw1st drlll, however,

allows substantial deformailonf of;r drlllz Shape for

ithe

~elatively  low f,ifiol j Dnoe the Statlc data is

static response is only the mean response of —a dynamio
system. Dynamic distortion of the twist dr111 during the
drllllng prOueee is dependpnt on the stiffness and aleo ﬁhejn

angular inertia of th@ drill. This researoh further propo. as

that the dynamio behaviour of the tw1st drlll is aof an

unstable nature, which is unlque w1th1n metal ouﬁtlng

ik DRILL STIEENESS.

The assumption of a rlgid dr11// ing edges

of the drlll must exaotly the drilling

spindleJ The 1ntrodu©tion ofgthree dlmension




converts the cutting process of the drill to one where the
motion of the cutting edges is of cyclic variation, of
continuous slowing down and speeding up of the cutting edge
as the drill distorts. The practical effects of this drill
flexibility have become common knowledge in manufacturing
but mno analytical answer has been put forward. The problem
iz to determine what are the important aspects of drill

behaviour that are governed by drill stiffness.

Past research on stiffness has all been based on the
behaviour of real drills as determined by various means of
measurement, £L7,8,91. Statements have been made such as
'drill chatter is caused by drill flexibility effects’. It
ics well known that the stability of the cutting forces is
improved with a shorter flute length drill. It is therefore
important to understand this mechanism before one may attain

equivalent stability from drills of longer flute length.

The drill structure has been described as 'flexible’, but
where the effects of the three dimensional distortions
produced have mnot been examined. Rather the property is

assumed related to flute length and is purely to be reduced

Ul

as much as possible. With larger diameter drills the
deformations involved are very small and it is easler to
justify not considering the resulting distortion. However it
will be demonstrated that with smaller diameter drills,

e.g., 4.%mm, the three dimensional distortions present are

of the same order as the chip thickness of the metal cutting
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process. The three dimensiona

of fundamental importance to its performanoe;; ﬁ\Vm§

between

thick web - and _been partlally

investigated by, aﬁd«gﬁ1~Wahib

[151. In 7,81 the dh;?irq, incr@a sed 50
increasing the tool stiffness lnf£1.3 the effects of tool

flex1b111ty are lmply absumed to beoomp more prevalént with

reduued Cross sectlonal area. In both cases the length of

solutions are

the +toel is not oonaidered wElempntary

provided — which 'euggesffaepa i ular balanue Sbetween tool

flexibility and flut@ eapaoe,~, ] philasophy belng to

maximise -the twist drlll stlffnesa by prov1d1ng maximum

cross sectional areas
7.2 THE ANALYSIS OF TORSION.

The twist drill is a shaft loaded in torsion. The external
torque applied may be measurpd as: Torque M(Nm) = Force F (D

i

x Distance 1{(m). The torque is ba1anced by the internal

property =, the Shearlng strese on the transvarse plane.

Y

Total torgue is equal to the,iﬁtergrﬁflahzr

En of Ehie drill de




7201 CIRCULAR SECTIONS.

The history of the analysis Qf/toféiéﬁ/ggeg Lok o COUlomb;\"

1787, [191., He developed*théfxﬁﬁeqry‘,fdf”rgircular cross

section shafts which 1eadé”£b the/néwréémmcﬁ7e§ﬁétion:—‘

T (shear stress) ; - GB

radius - length "7?§laf;2ﬁd/ﬁéﬁéﬁt:bf Area

Tool seteel is unlikly to fail by shear, as would a ductile
materialy, on a transverse plane. A brittle material \will
fail in tension. Complex 5tre$s_énaly§is in 2 dimeﬁsidnéw3

states that the plane Df;maximu&}haimaiiéépésé;ie orientated

where

The =early @halysie

circular cross section is a sp




fo
]
o
;_Jr-
0

of seymmetry longitudinal d ent due to warping

is not present and is therefore not presentﬁaﬁyéheéé ihf&ﬁhe\

circular ‘cross section. This necessary assumption is more

usually  guoted anglee ta the

shaft:B raxis remain Qf*,torque"
Er@ﬁe@usly, to

shafts 14 deduced that the

maximum shearing stress occ _most remote
from the centroid of the cross section,

St. Venant [19]1 realised that the above assumption of plane

sections remaining plane was false for the non-circular

s

case, This ean be deméhstfétedxby'visuél/inspeotion of a

a i’;"gf id iSfﬁ

square rubber ehaftr’ilﬁi ;djéﬁﬁzﬂqn;;tﬁe shaftt
surfaces ~and then ﬁhé?pﬁbbérgshaft is twisted, the grid
becomes distorted or warped out of the orthogonal plane. St

Venant, in 1855, assuﬁéd/that the distortion of -a shaft due

to torsion was divided between two mechanisms: —

1. Rotations of cross sections of the shaft as in the*é&se\
for: a circularoshaft.
2, Varping of the cross sections, the shape of which 1is

the same for all cross sections.

roftation

namely 8 aor (x,y? in the pié/

axis ~and a displacement corresponding to the

(z> in the direction parallel to the shaft ax




displacement

— cyoclically in the areas be

Mathematically j =  //// ‘ stress

distribution over some .

exanmples being an

conclusions for solid
For® a given cross sectional are ;ti“ i f;éular shaft
givesAthe\largést torsional figidiﬁy‘ For non~circqlar
Cross wseétionsf&ééf tHe polar 2nd “maméﬂt of Naréé_\
increagses ’the toreiogaljenigiaiﬁy;f/deoreaees‘ The

following approxim@tef::iormgiéirié/}basgd on the

elliptical Crcseg‘seétiéﬁf,bﬁt,hasrbeén 1foqn&/,to be

generally applioéﬁle;fa :Simplgfshapeé

G larea)

C (torsional rigidity)

The maximum stress in a solid cross section is found on
‘the boundary, ~at the pointds) nearest to the centroid

afithe craoss 'section.

functiaon! ta torsion.

deserdibes the distribution of

use .of the stress funotiﬂ

application$tOfﬁpre\oqmplex.shépes




Navier's conclusion,

stress occurs at the points most remote frqﬁfﬁﬁéfcgntfgid\off

the cross section. St Venan@wcgﬁrééﬁédgthia error and was.

supported by Filon in 1200,

shaft with @&  semi-circu 1t is

possible +to. salve

1+

The maximum shearing stress for the circular shaft is ~given

by: -

¥ peeie = G or n’ o

For point A at the base of the groove the maximum shearing

stress is given by:i~

Fuiie = Gg . (2a - b

The above indioates,that there is a distribution'@f stress

across the cross section of a drills shaft énd;& firstly,

there will be warping oi,ﬁhe cross section, secondly, the

point of highest stress will be in thgrﬁase !f;§hé groove or

flute, the point on the bﬁhpdary/éiaéegt'toathe/égntre of

two grooves  or

numer tcal methods.




Simple Circular Cross Section

Filon's Cross Section with C{rcu




7.3 THE LONGITUDINAL ERFEC

Superimposed  on the influence of 0ss sectional 9hﬁ?9

of the drill shaft is one fu

rectangular section bars were /te§fed, the helical

orientation of the longitudinal 'fibres’ of the twisted bar

gives rise to an increase in torsiomnal rigidity. He provides

a mathematical formula té; he efﬁeétgfihis inerease
is equally applicab1e ta‘%hééflﬁtéd;fwiét%afiii;;iput it i
of  small magnitude. ;ThiSKTQSeéroh was aimeaiiﬁ‘1957<at the
aerospace industry where the behavioufaof'tufbine-blédee and
aeroplane wings have to be examined. These situations -« have
the ability to deflect both laterally and in torsion, which
effect is able to disrupt the steady state air flow.

Further research, < Schaterin [71, ’demonstrajgs that 1if a
fluted “drill is -subject to either ~longitudinal strain,

G}n), _the é{'f fect on

(thrust), or to ftorsionalistrain, {tgrs

the drill will not be“réetri@té@
that applied force. Asfth;/p
the strusture of the drill the
Longitudinal strain will also giVé,/

torsional strain will also give rise to change o




et

t is easy to'measure this

th against angle of
twist which in turn may be measured against static torque.

These relationships are linea 66 & 67 for 4, 5mm

drills, as measured by the ~,6ﬁk9?[63 reparts a

mathematical attempt

%t;;aﬂgijaiéfﬁbf:;fhiszz

complicated fa

hose of Schaterin

L7,81. In the first of the two‘pépere Schaterin describes

the measuremgnt. of flexibility in a 20mm diameter twist

L

drill and attributes Chatter:vibratiéi in drilling to .this

aeffect. The second paper mEésuféS the dynamic strain
deformation of a drill at a variety of cutting speeds, feeds

and states of wear. =~ Schaterin's results dindicate a

relationship between‘éfﬁﬁQ;ffééﬁeﬁéy;éﬁd5émp1itude of the

vibration and tool 1life.

7 4. . THE DYNAMIC DRILLING MODEL.

All the work in the area of griii fl@xibility4ha5 looked at

specific drills and dﬁfliin 3si%ﬁé;;ﬁﬁ§f# The eaffects of

variation of the drill shape

investigated by practical experimént{:

whic can ~be reduced ta
diagram, figure 68, consists of a rep

the drill  structur




Extension (um)

Torque (Nm)

Drill Torque Test 4.5mm Long Series

Tixex QS

Giuh GT100
Guh GT 50
Dor.New DHD
Dor DHD TiN

L

10 20 30

Angle of Twist (deg)

Drill Twisting 4.5mm Long/Serieg

200 -

100

Tixex QS
Tixex QS TiN
'Dor DHD TiN-
Gioh GT100
GUh GT 50
Dor New DHD

AR R

v 1 ¥ 1 b

10 ces2eionia - 39

Angle of Twist (deg)

Figure 66 Graphs of Drill Torque Test and Drill Twisting
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Extension (um)

200

100

Drill Extension per Torque 4.5mm Long Series

Tixex QS
Tixex QS TiN
Gih GT 50
Dor:New.DHD
Dor DHD TiN
Gih GT100

RN RS

1.0 2.0 3.0

Torque (Nm) 7

Figure 67 Graph of Drill Extension per Torque
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euperimposing asco-8 =) dl"lil with par.dj_,u’:g

between that of the drill outer corner and that erfhe\drill

0

hisel carner, The  cpiral is the

intersection. between

the surface of t
drill material.
surface of

helical strips of cardboard that mak

from +the

centre

This drilling model is the model of an unstable system. A

dynamic situation uni a§ usually a
cutting tool is defle d awa fro b =% épplied~ The

drilling model is unstable Béoausé»any%devia— n  from the

steady state forces is. ed by the distortion induced.

+

If +the cutting force - is increased then the drill is

deflected and this defleotion~inereaepe the depth of cut,
Increase in\ythe\depth of cut increases the  cutting  force
creating a vicious ecircle which may result in the

destruction of the drill,

The 4.5wm drill is able to withstand a statlo torque loading

of 6 Nm before failure. The general 1evel af torqu@ thaﬁ has

been measured 1n standard dfiilf/

At this level of torque,tféfﬁw

torque, of 10-20% or O, 1Nm, will result in deformations of

equivalent magnitude to he'chlp thlckness, Jr@&é@tﬁf&f@Qut.




* Relative Movement of
Workpiece Material

000

Instabil Chlp Thickness
Before cut

hip Thickneds
After cut

CUTTING FORCES

Compliance of Drill
Structure in Torsion

Helix Angle

AN

Base

Figure 68 - Dynamic drilling Model
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These variations mav not, tharef

In this way drill +torsion testin

8

and drilling toargue

measurement has shown that 4.5mm drills are 6 times stronger
; e

31 S F —, P v -} - ¥ ~ ~ - s H s

than the average drilling torque. Dynamic variation, or

rather dynamic amplification due to the instability, is able

o
3

explain the

@]

ccasional random catastrophic failure of the

twist drill. A -

9]
ot

atic model cannot provide sufficient reason

to Justify a failure that requires a six fold increase in

b

the Torgue.

7.5, FINITE ELEMENT ANALYSIS.

The modern approach to stress analysis 1s to make use of
computer numerical analysis. This involves representing a
real system with a mathematical model. The component parts

of the model have discrete properties and behave according

to known mathematical relationships. The process is
successful because it takes an infinite problem, which 1is
inherently insoluble, and divides it into parts each of
which are soluble. The model therefore consists of a number

of building Blocks often called elements.

Generally the mathematical analysis is based on matrix
manipulation. For example, Finite Element Analysis of a
structure can provide numerical data on the distribution of

stress within that structure. The behaviour of individual
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elements are modelled by equations. These eguations are

inserted a= the rows of a matrix. The matrix then models the
behaviour of the whole structure. An approximate solution is
available for each individual block, as influenced by the
input forces and by interaction with its neighbours.

Matching co-ordinates of adjoining blocks are constrained to

move in  unison and in this way the stress distribution of

any o©ross section may be built up. The sum of the elements
models the whole. The matrix manipulations are performed by

a computer, using numerical methods.

The use of an established system for numerical analysis such
as PAFEC was the first choice for looking at the drill.
Although =ome facilities are available for looking at
prismatic shafts in section, a twisted oross section may not
be examined in the same way. PAFEC was discounted for two

major reasons: -

i, The most complex 3-D element 1s required to model a
twisted shaft. Three dimensional elements reqguire

substantial processing and this processing would be
time consuming on any CAD ~ Numerical Analysis
workstation and may even require the power of a

. o ias
mainframe computer systen to provide an answer within a

. . s s At e 4
reasonable time. It is necessary to weigh this time and

cost against any possible benefit. Also the

AR T T ~ 1
co-ordinates of each node of the elements would require

individual evaluation. Even with computer assistance
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ii, It would be difficult to load the combined system.
There are two distributed loads, thrust plus limited
torque over the chisel edge, and torque plus limited
thrust over the cutting edges. These loads are three

dimensional, applying force from a variety of different
directions. The directions must also be made to rotate
with the drill point as any twisting distortion is

introduced.

These problems may not be as difficult to solve when using &
more expensive package, for example one able to look at the

flexure and twisting of aeroplane wings.

Chandrupatlia and Webster [10] provide a simplistic attempt
to get round these two problems. Their paper examines the

deformation present in a twist drill by the use of FEA.

)]

They solve the first problem of the substantial processing

U]

time by the simplicity of the three dimensional model. Th
time is dependent on two factors, one, the complexity of the
element blocks used which must be 3 dimensional 20 node

bricks, two, the number of elements required. In its

simplest form the whole of the end of the twist drill may be

modelled by a pair of suitably shaped blocks, only one of

which needs to be calculated. They describe how a standard

i fi i & == e—calculated and
seat of Simpllfled co-ordinate values are pre calcula 1 a1
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rocrammed into the F ANa iz as Se i
prog EA analysis as a set of numerical data.

The ease 0Of varyling this set of co-ordinates is restricted.

The second problem is that of loading the system in a manner
that 1is faithful +*to the real situation. There are two
loadings in drilling, one on the chisel and one on the
cutting edge. In this paper the chisel loading is ignored
totally. The cutting edge loading is assumed to be purely

torgue and is divided into three couples applied as forces
to the three nodes of the edge of the brick that models the
drill cutting edge, this 1load would be Dbalanced by an

equivalent load on the cutting edge of the other brick.

The FEBA output is a series of graphs. These deformation 7
force diagrams all display a strong curvature. The available
literature indicates linear relationships. This discrepency
in the reported data stems from a simple acceptance of the
data as produced by the model. The accuracy of any FEA
program may not be assumed and the nodal values are known to
be the points within a FEA structure where the calculated
stress function is least accurate. For each element within
the FEA, the stress function is a simplified approximation
which is assumed to hold across the whole of that element.
The simplification gives rise to discrepancies especially at

the ewtremities or nodes of the element.

{
pos
oo
~J

pag.



CONCLUSIONS.

[@)]

Dynamic evaluation of th

o

shape of the twist drill has
received virtually no attention in the literature. The drill

iz a highly flexible object and if looked at as such, it is

1]

asi

T

=

r to understand many of the confusing aspects of its

behaviour.

The proposed dynamic drilling model describes drilling as a
unique process among the various formes of metal cutting. It

is normal for a tool to be deflected away from the workpiece

with increased cutting load. Drilling is the only form of
basic metal cutting where the tool deforms into the
workpiece as the cutting load 1is increased. No such

basic description of the drill has been found anywhere 1in
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STRESS ANALYSIS BY NUMERICAL AFPROXIMATION.

h<d
Ul
0
ot
m

ted in the last chapter finite element analysis would

be a convenient and direct, three dimensional method of
. i .
analysis It is important to allow for +three dimensions

CaEur

Us
il

b

T

, in obtaining the solution, ev

T

ry cross section of

g}

the drill must be allowed to warp, i.e. sections must not be
constrained to a single plane. Any two dimensional model
must therefore encompass the three dimensional nature of the

problem.

&.1. FINITE DIFFERENCE ANALYSIS OF TORSION.

Looking first at the development of stress analysis in

general, before the evolution of numerical techniques, the

evaluation of non circular sections was restricted to

special mathematical sections such as the ellipse. In order
to progress, various models of the stress function

distribution were devised which could be used for more

complex cross sectional shapes. These models led to
applications which could take advantage of numerical
methods. One sucessful model was the ' Membrane Analogy’

which was introduced by Griffith and Taylor in 1817 [19].

Here +the Prandtl stress function surface is modelled by a

soap film stretched across an opening ~ut to match the shape

of the shaft in cross section. This is a physical technigue

oF

which was applied +o the drill cross section by Neubauer and

- = ey 1 +
Poston [221. Torsion is simulated by the application oi &



)]

esmall pressure difference across the membrane where: -

1. Torgue applied

il
I\

volume displaced by the membrane

O

A

2. Shearing str

M
il
g}
—
0
o]
{a

of the menmbrane

1% is possible to mathematically model the deflection of

)

such a soap film. One numerical solution, which predates the
computer, iz tThe application of finite difference equations

to the =olution of the film deflection. It is an iteration

)]

o

vstem, performed by hand, and may be applied to
non-mathematical cross sections. The method is described in
Timoshenko and Goodier's reference book [19].

In the finite difference method the egquations are applied

(1]

1

n a similar way to modern FEA. This research

e

across a mesh

[k

has applied the method within the medium of a SuperCal 4
spreadsheet. The spreadsheet allows rapid performance of
iteration ocalculations and gives a quick and accurate

numerical evaluation of the stress function distribution.

The torsion 'stress theory’' equation is as below:-

DI QLG
N =  -2G6
9 x? dy?

Where @ is the stress function, 8 is the angle of twist per

U]

unit length of the bar and G is the modulus of shear. For a

square mesh the finite difference equation 1= the

alternative solution and is:-
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3
o)
1 0 2
4
Square Mesh
i
— < Q'l + ®::§E' + Q):ZE:: + ®<L - 4.@(1) > = —-2G8
&2
Finite Difference Equation
This iz a sSimple numerical evaluation of the second
differential about one central point, Peo, in the directions
of the two co-ordinate (nodal) axes, x & y. Any torsional

problem is reduced to finding the set of numerical values
which satisfy this finite difference equation at every nodal
point within the mesh and become & constant value at the

boundary.

To apply this finite difference equation to the SuperCal 4
spreadsheet, first the value of 2GB8§2 is assumed at 1000,
The finite difference equation then becomes:-—

(1000 + B, + Do + Du + O

A suitable area of cells within a SuperCal 4 spread sheet 13

programmed with the above finite difference equation in each

cell. The equation i= a function of the four cells

surrounding each member, By of the group. The boundary
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value is fixzed at =zero, i.e. all the boundary celle are set
to zero. Where the boundary does not coincide with the
nodes, the above equation is modified to allow for the
boundary variation: -
1 1 1 1
(1000 + - @1 + - Q::;*_ + - @::55: + - @4[,)
. m n r =
@(:') =
1 1 1 1
( — 4+ — 4+ — + —
m n r S
m, n, ¥ & & are the fractions of § between the nodal point

and the boundary. Usually only one or two of these fractions

are other than 1.

m node boundary = 0

n

A= this alteration is only valid at the boundary and for the
examination of torsion the boundary value is fixed at zero,
this 1is a simple adjustment to the spreadsheet equation,
i.e., it only reqguires adjustment to the wvalue of the
denominator. This is normally = 4 and will be increased by

the change.

The spread sheet is then allowed tO "Recalculate’. As the

numerical values are functions of other cell values, the

software cannot produce a stationary result. [t therefore

performs a series of iterations either in batches of 100



recaloulations or continuously until the variation betwean
N - = =2 1L
recalculations is minimal. After making 100-300 iterations

the variation in th

T

value of -2GB for the set of finite
difference equations across the whole mesh is reduced +to
less than 1%. The level of deviation may be determined by

finding at one sample node the value of:-

(t@-g + f:ﬁ;;:;: + @;55: + @t(_ — 4.60)

This must be equal to -1000 when the mesh is smooth
corresponding to the original assumption of 2GB862 = 1000.

.

The mesh used is reproduced at figures 70 & 71.
The first element of the membrane analogy was:-
1. The total torque, M., is equivalent to the volume of

displacement of the membrane.

In mathematical terms: -

2"

Moo= 2. | ¢ dx dy
J—a J-b
(numerical values of @
Qr M_t = 2.8

1000 / ( 2G8BS82 D

The mes=h is one guarter of the whole =0 that the centre

along +the axes occur twice and

0]

value occurs once, the value

the rest four times. This sum gives the relationship between

torque applied M. and angle of twist per unit length 8 for a
specific diameter of drill shaft:-

M. = K.G8B [ radius of drill = 20.9 ]
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Figure 70 - Cross Section showing the Drill Mesh used

for the evaluation of Finite Difference Equations
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Twisting model

/

Boundary values
set to zero

/

/

Total numerical displacement
= Torsion constant

20

Compression <:>

T

Boundary values

Bending model

calculated from
formula

Tension

—

Radius of
neutral axis

o

Figure 71 -

page 186

Cross Section of the Two Drill Models



M

P . B SR
The second element of the membrane analogy was: -
<o ST

2. Shearing stress = slope of the membrane
g Y%
T = and Ty = =
?y dx

The shearing stress at a node and in a particular direction
is eguivalent to the variation, or slope, of the stress

function at rightangles to that direction. The solution

m

along the axes of the mesh is equivalent to the slope of the
smooth curve between the nodes along those axes. From the
mesh distribution it is possible to make a numerical
approximation of the slope as the difference between the
numerical values at adjacent nodes. This gives a numeric

value to the two shear stress components at any point within

the structure.

A special point within any cross section is the point which
has the highest stress. This may then be assumed to be the
weakest point within the structure. The external load
required to make the stress at this weak point reach the
level of failure is the maximum loading that the structure

may withstand. These points may be located by looking at the

distribution of +the resultant shearing stress of the two

components, Toww ADA T Figure 72 is a representation of

the distribution of the numerical values of Shearing Stress.
Figure 73 shows the shape of the deflected membrane. Figure

74 is the distribution of Shearing Stress along the surface

of the flute.
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Figure 72 - Turbo Pascal Display of Torsional

Shear Stress Distribution
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Figure 7 3 - Contour Lines of Membrane

under the Influence of Torsion
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Shear stress 1

n terms of the slope of the
numerical distribution of s

tress function

Figure 74 - SC4 Display of Torsional

Shear Stress in Flute
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Figure 75 - Points of Interest
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1}

Within the cross

(

ection of the drill three points are of

special interest, namely 1, th

)

extreme radius, 2, the

bottom of the flute and 3, the central point, figure 75. In

order To improve the estimation of the slope at points 1 and
2, one may use Newton’s interpolation formula to find the
equation of the line of the membrane deflection and
differentiate it for its origin, i.e. at the boundary. At

[

points 1 and 2 there is only one shear stress component

present, that aligned with the boundary of the section.
Point 3 is a 'saddle', there is no slope and therefore no
shearing stress at this point. The two 'highest’ points of
the stress function distribution, also points of no slope,

are located towards the centre of each of the two lobes of
the drill structure. This form of distribution agrees with

that of Neubauer and Boston [22].

&. 2. ANALYSIS OF LONGITUDINAL STRAIN BY

FINITE DIFFERENCE EQUATIONS.

The major basic error in the proposition of Neubauer and

Poston’s paper [221, and repeated by the above, iz that this
form of analyeis assumes a prismatic bar, i.e. there is no
allowance for the drill helix. This aspect will now e

examined.

In +this research the calculation of the longitudinal or end

F 4 e 3 —~ 4+ ~alo . = a
strain is eimplified to the requirement TO calculate

radius of neutral axis where the longitudinal strain 1%
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0
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C Aiaie . . Ca . ‘
radius and longitudinal compression outside.

‘he differential equation for the solution of the direct
" h " - L e N
stress function is given below: -

a 3 Qﬁ a “3. @ a B8 @

a ¢ Dxd ) N 2 2 v 4.

This equation resolves the distribution of longitudinal
direct stress in the cross section of a shaft or beam. The
soap film only solves a differential equation to the power =
=0 the above equation to the power 4 may not be solved by a

soap film method.

In 1017 Griffith and Taylor [13] proposed a different method

anme =z0ap

i

for +the solution of bending problems where the

0]

film method may be applied. A stress function is again used
to describe the distribution of the shear stresses in  the
cross section of a cantilever. These stresses are due to a
bending force applied to the end of the cantilever.
Longitudinal direct stress is also present in such a

section bhut is not included in this form of analysis. The

differential equation is given below: —

\= A7 221
+ = 0
dx2 9y2
whare: —
rY% Pxi v Py- 2%
. . I and  Taw = 7 —
Ay 21 21+ 1 9x

‘pE{ :%‘e 2 O 3



In this research and by using the C
- < < - <

the drill

o

ction iz modelled as a bea

CcTOsS =

m which is exposed to a

bending moment. The megnitude of the bending moment is made
equivalent to the longitudinal strain imposed by the
twisting action. In & loaded cantilever individual fibres

are loaded longitudinally with respect to +their distance

from the neutral axi

]

across the width of the beanm section.
In the same way individual longitudinal fibres of a twisted

drill are loaded with respect to the change in length effect

®

which wvaries with radius from the drill centre to The

evtreme radius of the drill.

way as for the torsional problem. It is necessery to make
one simplification. The longitudinal stress effect is
proportional to the radius, zero at the centre and maximum
at the drill radius. In order to use this model it is
necessary to assume that the longitudinal stress effect will
be proportional to the perpendicular distance from an axis

through the drill web.

The mesh used is the same shape as for torsion but this time

there is an initial boundary displacement. The individual

values of this may be calculated from the equation:-

2

pXZ v Py“ ‘l dy

CRY%;
—_— = - |
P = Load or Force

I.= 2nd Mom of Area
v = Poisson Ratio
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Starting from one point on the boundary the change in value
5 he change g =

. S - . 3 _—_— P R -

moving along the boundary, d¢/ds, to the next point may be

calculated, Th

I
18]

=
=

—~11 7 1 — .
calculations may be continuad all round

the edge producing a continuous curve. As the shear

are found from the slope of the soap film the =tsa

and initial numeric value may be chosen at random.

As stated above the shear stress values are calculated from
the following:—
°Y P v Py2
T = - -+
Ay 21 201+ I
" R%]
Ty = -
9x

The =lopes may be found from the mesh in the same way as for

the torsion mesh. To determine the 7. value the rest of the
above equation is calculated and added to the slope value.
The longitudinal stress is related to  the radius. The

average radius of the shear stresses is  then calculated.

his is +taken as the wvalue of +the mneutral axis with

reference to the Dynamic Drill Model. The helix angle of the

o

T

T

mode]l is calculated for this radius and is used to determine

the ceutent of the change in length by assuming zZero

longitudinal stress, i.e. the overall length of the helical

fibres of the drill that compose the drill at this radius



aintain the sSame leng : .
maintal h same length while those inside are eloneated
o] i

and those outside are shortened I
) sd.  The same displays of the
shear stress di

stribution as provided for pure torsion are

at figures 63 and 64,
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CONCLUSIONS.

deformation effects pressnt 1in the twist drill to
generated quickly and accurately by the use of finite

difference equations.

The +three dimensional nature of the problem is divided into
two parts. The first part is calculation of +the torsion

constant for the drill cross section. The second part 1S

calculation of the longitudinal affects of drill deformation

}

{

for the same croes section. The two components described in
this chapter are & good representation of this three

dimensional problem.
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Figure 76 - Turbo Pascal Display of Longitudinal

Shear Stress Distribution
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of the slope of the
jon of stress function

Shear stress in terms
numerical distribut

Figure 77 - SC4 Display of Longitudinal

Shear Stress in Flute
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CONCLUSIONS

)
%]
<
1

230




veen identified. One is the resistance of

twisting which is approximated by the Torsion Constant

is

Drill Dynamic Model, figure 68.

There are two parameters to the dynamic model:-—
The compliance of the drill structure. - This is provided
by the twisting model. The angular twisting 1in the
circumferential direction is unwound to the linear

b2

The

ii,

In

TOTAL DRILL DEFORMATION

=S _.:t::; t oL + ) ¢ . . -
aspes o the total deformation of the twist drill have

the structure to

Two

the longitudinal change of length as modelled by The

direction =o indicating the side displacement of the

dynamic model.

The helix angle of the model. - This item ic taken to be
the 1local helix angle at the radius of zero longitudinal
strain as indicated by the bending model. This radius is

tress

il

=

1]}

the mean radius of the bending model shear

. inside and outside the radius.

which puts equal stresse:

U

9. 1. THE TOTAL SOLUTION.
two component solutions are:-~
Cross sectional shear stress due to pure torsion.

shear stress due to the longitudinal

order to investigate the probable distribution of stress
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across the drill in secti these <
On these components may now be

~ombined by superposition,

3

his superposition is best explained by working through the
figures for a sample drill. In the prototype analysis a

drill with parabolic flutes is used with a diameter

webthickness ratio of © 1. This drill has been evaluated

. by the above two finite difference equation methods. It is

®

asy to apply the methods to find the two seperate

|

distributions of shear stress, figures 72, 74, 76 & 77

4

Comparison may then be made but before any conclusions may

be drawn the following question must be addressed: What 1

1]

the relationship Dbetween the torsion model in terms of
torque T and thes longitudinal, (bending>, model in terms of

force P7?

@. 2, Torsion and Bending Models
In +the torsion model, the SuperCalc solution provides a
value for @.. & is the numerical value of the sStress

function. This is the predicted stress distribution which 1is
then corrected as below:—
GBs2

@B = — . (@,, the numerical value from.spreadeheet)
1000

D

- Modulus of Elasticity in Shear
Angle of Twist per Unit Length
§ = the size of the mesh

@ @
il

H

r/20, s82 r2./400. WVhere © =

o5}
)

or as in the prototype

dArill radius: -
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¢ i then the true distribution of the str

0]

eszs function. The

total torque 1load of the cross section is carried by the

numerical value of twice +the volume of +the membrane
displa@ed. L (The numerical values of @) is calculated as

K,.G8r?. This gives the equation for total torque:

T = K,.GBr¢ r = 2.25

For this drill K,

i

Il

=2 Torgue 157.77 . GB  (Nmm

This 1is the torque to achieve 1 turn in unit length of lmm.
When calculated out for a twist of 140° in 100mm length,

assuming G = 6000, it gives: -

« H000 x  140° = 1mm = 5681 Nmm

360° 100 mm

Or 3.68 Nm +o +twist a 4.5mm drill having a 100mm flute
length Dby 140°. This compares with a measured value of ONm

which was the failure load and twist for a similar drilil.

The eguation relates torgue to angle of +twist per unit

length, 6. So the torque applied is directly related to the

angle of twist. The value of angle of twist S0 found also

L A4 w1 dus ‘he s s sces created
governs +the values of the individual shear stresses

acrnss the oomponent:

[\S)

s
[Nt

o9
©
<8
._—




_ 20
T o - e and T oes = -
Qy dx
Theze have numeric values of 9, Yo, and @.. - P of the f
o - g <y i L = orm
K,.GBr2,
The failure shear stress is known. The point of maximum
value of K, is read from the shear stress distributions.

The maximum value of angle of twist, 8, and also the maximum
torgue that may be applied before failure, M., will be
calculated by applying this limiting shear stress at the

indicated weak point.

The point of maximum K, is in the base of the flute, paint 2

in figure 795, and the accuracy of the value may be enhanced
by determining its value using Newton's Interpolation
Formula. For this drill, where r = 2.2D, the value of K, at

chear stress = 0.140 . G (N/mm? ) .

In the bending model the bending membrane analogy is based
on the deformation of a cantilever by the application of &
for-ce P at the free end. The result of the deformation is o

cause the cantilever to distort from & straight line

curve with maximum curvature at the fixed end.

Once ag tion provides a value for @

v
o )

ain the SuperCalc solu

This iz the predicted =hear 3sStress distribution created
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Figure 78 - Bending Model Strain Distribution &

Cross Section of Drill under the Influence of Torsion
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20055 e Ccom ST ~ o e . ;
across th ponent by the longitudinal distorsion

Relating P to Torgque is performed in two stage
j&}

()]

=R The first

iz to relate the radius of curvature of the bending

mede 1
cantilever to the helix angle of the real drill. These are
in each case The parametfter which controls the distribution
of the longitudinal stresses. The second stage is to relate

the force P to the radius of curvature of the bending model

using bending theory.

The cantilever curvature may be described by its radius.
This deformation produces longitudinal stress, figure 7T8A,
tencion on the opposite side to the centre of curvature and
compression on the same side, 50 corresponding to the real
system. For this bending model the cstrain is determined by

the local value of radius:-

Strain = es1 = ( (Rxt)>.8 - R.B »/R.8
=3 t /R
6 = angular length of beam segment
R = the Radius of curvature of the

neutral axis.

+ is measurad from the neutral
axis, positive away and negative
towards the centre of curvature.
or radius ~— radius of neutral axis

—

[
Radius of Curvature

For +the real drill the 1ongitudina1 strain varies with

: i = ans the
radius out from the centre of the drill. This mean 1

. c ities C h
drill centre will be in tension while the cxtremities of the
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1 System

Figure 80 - Bending Model / Rea
Longitudinal Strain
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drill will be in comprezsion, figure 7 T
o) L, Ilgure 73E, the strain is

determined from the local value of helix angle (dependent
) ~ A2 DenaAenT

on the local radius), figure 79.

From the twist drill model:-

Strain = es/1
. = B.r/Radius
8 = angle of shear strain
1 = Cos (¢ Lacal wvalue of Helix Angle
and e + 1 = Cos{ Local value of Helix Angle - o >
a Cos((N.H.A.>).r”Rad — « > — Cosd(((N.H.A.) . r/Rad >
1 Cos{((N.H.A.> . r/Rad >
Cos( Neutral Axis H.A. - a) - Cos{ Neutral Axis H. A, O
Cos (¢ Neutral Axis H.A. D
=> Cos(a) + Tan((N.H.A.» . r Rad Y8€indla) — 1 -
Cos(a) + Tan{ Neutral Axis H.A. ySindla) — 1
For emall 8, o = 6 . r/Radius:

=> NCL—-al) + Tan ((N.H.A.> . r/Radius >.a - 1 - 8 . Ku«
=% f . r/Radius.Tan((N.H.A.> . r/Radius > - 8 . Ku

K. = (r of neutral axis»)/Radius

Tan(<N.H.A.> . (r of neutral axis)/Radius >

‘ i i st ing when:
The bending model is an accurate modasl of twisting w
.

(r -~ r of neut axis)>/R =86

. (Nom.H.A.D )

~’Radiu5.Tan[ —_—
e Nom Radius -

- K:‘-< )

T
S}

K
[S9]
o
93]




Figure 81 - Bending Model Radius of

Curvature
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Figure 82 - Bending Model Curvature : Drill Twist

page 220




rr. (Nom. H. A.)

or r/{Rad of Curv) = 6 (r/Radius. Tan|

Nom Radius

This relationship may be used to equate Radius of Curvature

to Nominal Helix Angle.

The term ©r QCCUurs once On the left hand side and <twice,
( r.Tanlr> 3 on the right hand side. The two distributions
are mnot therefore equivalent but as can be seen from figure
80 the model strain is sufficiently similar to the strain of
the real drill. If the two sides are programmed into a
SuperCalc spreadsheet then they may be evaluated over the

range o0f radius allowing a best fit Radius of Curvature to

be found at each specific drill angle of twist. If a range
of angles are investigated, the best fit being found each
time, then a graph of radius of curvature against angle of

twist is generated, figure 81. The graph of Angle of Twist

against (1/Radius of Curvature) oOr ' Curvature’ is linear

A}

passing through the origin, figure 82.

Radius of curvature in advanced bending theory is equal to

the following:~

. - ~ali o ture of a
This equation also represents the centreline curva

- . , o . emall value, of
cantilever beam. K, in general, 1€ a very =

. arafore not
the order (thickness)zf(length>2. It is therelo

d
)
)
r
—

ry
AL
0a




roasonable TO use T T - S
unreasona 5¢ the simplified formula from elementary

anding theor i r e
bending theory in order to examine +the curvature of
il (=1 A

cantilever at its fixed end. (This is th

uj

roint of maximum

curvature, the curvature reduces ta zero at the free end
= end,

==
does the bending moment.):-
1 M Pl
T =31 El
E = Youngs modulus
I = Second moment of area
M = Bending moment
or P = Bending load
1 = Length of cantilever

This relates 1/(Radius of Curvature) to the bending moment
and therefore to the deflecting force F, the length of

cantilever assumed to be unity.

The spreadsheet was programmed with a Helix angle of 30 degs
and a radius of neutral axis of 1.2 for the example drill.
From the SuperCal spreadsheet the curvature for a twist of 1
is 1/4.1 units or a curvature of O.244 per unit twist. The

value of E is that for tool =teel and the value of 1, for

the 4.5 unit diameter 5..1 webthickness ratio 1s 10.063

unites, The bending moment and the numeric value of F 18
therefore 0.244 . E.8.1.. P /1. 1= the factor used in the
. . - . 2 E.B.
bending model equations which is equal to 0.244.E.9
ps/1, = (0.244>.E.8
6 = E oo 2.0+ v ® EY 2.0

(0. 5344).G. 9

—
"l
—

it
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Figure 83 - Turbo Pascal Display of Combined

Shear Stress Distribution

- Quick Spiral Helix
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f the slope of the
n of stress function

Shear stress in terms O
numerical distributio

Figure 84 - SC4 Display of Combined

Shear Stress in Flute
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value

@y
pending model, i

linear relationship and

function 4

governed by the value of

in the

o -
PoI.. There

1s &

zimple & standard value of 1000 for
p/l., ie agail used in the epreadsheet. The true value of th
ruz Lhle o L DNE
spreadsheet value and =o the valuss of the shear stresse
I = B Sy SLregses

are found by multiplying by P/1000.1,.

The perimeter values of the distribution are found fram the
equation:*
(2% PPl v Py dy 10002 v. 1000y 4 dy
= - } - m[ _ | =
3s Loz Se1tvd 1 ds 2 2(1+v) as
The shear Stresses are found fram:-—
X% Px \4 Py!?
T = JR— - + —
dy 21 2¢1l+vy 1
Num Val 1000x? v.1000y?
=» 7 = Ka. < - T . G.6
v 2 2(1+v
CR%)
T o = - J—
d x
Wum Val
= T = = Ka. < >.G.8
- f chear stress
Where K. - (0.5344)/1000. These values for ©he shear
= ained from
due  to bending are then equivalent to those o0btalne
the torsion model.

AR
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Figure 85 - Turbo Pascal Display of Combined

Shear Stress Distribution- Slow Helix Drill
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The torsion  model has been displayed

o
i3

72 & 74,
Here the rezultant directions of the

¥ and y ordinate valu

pave been determined along with their msgnitude. Th

D

hear

i

stress

directions are then displayed with equivalent arrows

p similar display for the bending model is seen at figures

76 & 77, Having determined the equivalence between the two
models it is a simple matter fo superimpose the two systenms
as at figure 83 & &4, This form of display shows how the
torsional systemn, first demonstrated by Neubauer & Boston,
(211 for & prismatic drill shaft, must be modified to allow
for +the helix angle. These are examples of drills with a
high or quick helix angle. The figures show a torsional

distribution that has been totally swamped by the
longitudinal effect. For a drill with a standard helix angle
or lesser helix augle this is not the case as can be seen at
figure &5 for a drill with a olow helix. The forsion

distribution is ¢

u)

+i11 visible but mndified by skewing 1its

centres from the drill body axis.

The value of shear stress at the drill centre is still zero,

the flute is still (0.140).G.8 but

O
h

the wvalus at the base
this is not now the maximum. The maximum value
set  a short distance around the flute. The shear stress is
still  (0.137>.G.6 at the extrems ~adius of the drill bady

. - - == 1S gmall.
where the longitudinal shear stress 1S

pay?
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Q. 3. WARPING FUNCTION OF THE TORSION MODEL
I LU } S

The warping present in the cros

= o
= =

section is described by St

W | r2 Ty ] of I 1 y T4 e .
yenant’ & warping function which is related to the ‘torsion

mode L straess function: -

w = warping {(displacement in the z direction’

8 = Angle of Twist per unit length
Zlx,v) = Warping Function as a

function of x and y

This= distribution i3 purely related to the torsion model and
may be ectimated by numerical integration from the numeric
values of the shear stresses. In order to include the
longitudinal warping effect a further spreadsheet must be

programmed with the egquations: -

33 R
Tow = GB  — — Yy ) and Tyw = GB ( — + X
9z 9y

Spreadsheet equations are worked out to provide & simplified

ero

IS

. . — : . F b
summation in the two primary directions starting from

warping. The two values are then added:-

- R%] . -
The x effect, —_— Seale Factor — y + previous value
oy
3% e @
The y effect, . Gcale Factor + ¥ + previous value
9
The total effect = x effect T ¥ effect

Using the numarical values from

R . X s : as
distribution this gives a distribution

w

YD
page e




the lonwitudinal ATDing
for hie & WArpling. The

maximum  value of
umgitudinal warping: —
23.45
::) e — < .
- - X GB mm.
200000
pgain this 1s Tor a twisting of 1 turn per unit leneth for
engt :

the drill twisted 140° in 100mm flute length it is:-

oL AS x €060 x 140° x 1mm = 0.0027383mm
200000 3600 100mm
=» 2.738 pm at the outer corner
O 4. CONCLUSIONS,

The =static analysis of the drill is not simply a problem of

ster describes how the two component system

torsion. This cha

[—

described in the last chapter may be unified to give the

i

total system. The problem of +the torsion constant 1is

basically easy to solve. The important aspect is the

incorporation of the second component, in a simple form and

section and mesh as the torsion

1}

f

based on the SE M

U]

O 0sH

problem.

i i arameter
ilure is an important param ¥

2

The maximum torque before i

. _r i ffness data
i} . . o - drill stifiness

of & drilling control system. The dr =]

R the dynamic

Produced i available to drive an oxamination of ©TI ¥

-, . i on of the
RO . W arefors an examinatio
behaviour of the drill and, thereior=.
random drill

torque amplitication eftects

failure,
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10, DRILL DYNAMIC RESPONZE.

One may now look at the drill in terms of its dynamic
response to a transient loading. It is difficult tc imagine

tool steel as a flexible material, it is even more difficult

to imagine it as 'springy’'. In a solid structure such as rod
or bar it is very rigid, however, the fluted shape hasz the
effect of +turning the twist drill into a structure more
closely resembling a coil spring. A 4. 5mm dia x» 100mm flute

length drill is able to twist 140° before failure and at the
same time extend by over 1.0mm. This degree of flexibility
has mnot been studied or even described in any of the

literature found.

10.1. NATURAL FREQUENCY AND

THE VALUE OF VIBRATION ANALYSIS.

Drill natural frequency has been measured for the case of
20mm dia standard length twist drills as 14C0Hz [31. It is
obvious that a large and relatively short drill will have a
high matural frequency but that as the drill diameter become
smaller and the drill becomes much longer relative to the
diameter the natural frequency will reduce. This effect is
compounded because when drilling with large drills generally
low spindle speeds are used, for example 600 R.P.M., 10H=z,
but with smaller diameter drills higher spindle speeds are
used with a trend towards very high spindle speeds of up to

10,000 R.P. M., 167Hz, for modern ceramic coated drills.

-

5
i
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Modern vibration thecry is based on Computer Aided Dynamic
Analysis, This assumes that any real system may be modelled
by & discrete System with discrete properties. The number of
nodal properties that are unconstrained governs the degree
of freedom. A real system, in comparison, has its properties
distributed throughout and has inumerable degrees of

freedomn,

The properties that are modelled are selected from the

following: -~

MASSES to represent INERTIA
SFRINGS +to represent FLEXIBILITY
DAMPERS to represent ENERGY DISSIPATION

Governed by a set of ordinary differential equations.

A continuous system leads to a single partial differential
equation that is generally insoluble. A model of the sane
system leads to a set of ordinary differential equations and
this set may be solved. There are three basic requirements

for a suitable mathematical model of a real system: -

— the model must be adegquate but not unnecessarily detailead.
— the results depend on the accuracy of the parameters
mass, stiffness, damping,
boundary conditions, input forces.
~ the time and effort expended must reflect the
requirements.

The twist drill does not lead to an obvious model. The shaft
of a +twist drill in torsion is a real system with two
properties, A stiffness distributed throughout the fluted

section and a mass distributed throughout the drill. It i

i)}



le:

@
i3

: €asy to model distributed properties as point masses
and springs which have direct effect only at their

individual points.

The +theory of vibration of elastic bodies provides an
aquation for the motion of a rod in torsional vibration. The
equation is dependent on the torsional stiffness and on the
angular inertia. In & rod of circular section, stiffness i=s
given by the product Folar Moment of Inertia I, times Shear
Modulus of Blasticity G and the mass moment of inertia is
given by I, times Density of the rod £ divided by 3. The
resulting differential equation is a version of the wave

equation for which a mathematical solution is possible:-

228 328
-l dt — = 1. G dx
g 9t2 dx?
or:-—
248 G.g 228
3t { ~ } 32
The solution for the natural frequencies, W, of this rod

fixed at one end and free to rotate at the other is: -

COS(:WJ(—Q—)l}: 0
G. g
1 = length of rod

A~
wAN( — 2 1 = — — o n O EOW
G.g 2 2 2

w = (n + ¥ — N ——
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Applying the first eguation to the drillinsg sSitua
the 1eft hand =side, the polar moment of inertia is known

from the previous geometric analysis, Chapter 5. The density
of tool steel is known. For the right hand =ide a numeric

value for the torsional stiffrneszs has been calculated in the

static analysis,. For +the sample drill the aquation
T = K,.G8r? gives Stiffness = 157.77G. The differential

equation of +the free vibration of the 4.5mm drill is

therefore given below: -

/0 28 208
— 20.9 d= = 157,776 -—— dx
o) 9tz? D x2
or, by the equation above for the fundamental freguency of
the sample drill:-
i 157.77Gg
w= Y% — J )
0.150 20.8 P
G = 6000
g = 9.81
AR =170

= w = 2638 Rad./Sec
=» 419 dHz)

No method for the measurement of drill natural freguency
has Dbeen reported in the literature and no method has been

=

developed here at Aston to bs available for comparisan.

Wu's paper of 1977 titled "Dynamic Data System - A New
Modelling Approach’”, 2371, describes some of the many

advantages of a method for the monitoring of the dynamic

variation of the cutting forces. It i3 a method that has
rade 235






tested for the monitoring of the drilling proce

o
T
M
=

aric

a =trong correlation has been identifed between the dynamic
signal and the drill wear at the frequency of twice the

spindle speed. This correlatiocn remains unexplained but such

[N
0

vibration effects offer many prospects for the future
control of machining if only the dynamic properties can be

understood.

m

Stick-=slip vibration effects have also been measured,
schaterin [381, related to the spindle speed but also related

to the drill natural frequency in torsion.

Understanding the dynamic behaviour of the drill is becoming

in
u}

increasingly important. The modern machining centres in us

D

today are equipped for adaptive control either by torgu
monitoring, J{(static load or dynamic low frequency response),
or by acoustic monitoring, (high frequency response). Torque
monitoring often senses the load on the spindle motor and in
this form is inappropriate for drilling with small diameter
drills as the drilling torque is relatively insignificant
for such a large and powerful motor. However other forms of
torque monitoring are available, for example strain sensors.
Acoustic monitoring equipment could be utilised for drill
wear monitoring provided the necessary details of what
frequencies and frequency variations to monitor are first

established.

g2,
X1

0
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10.Z2. SUPPORTING OBSERVATIONS FROM DRILL TESTING.

The ©behaviour of twist drill as described by the dyvnamic
drilling model, figure 68, is important because it 1s a
logical explanation of the mechanism of catastrophic drill
failure where previously no logical explaination WaS
available. A drill, that failed «catastrophically during
routine testing for no obvious reason, is shown in the
photograph at figure 87, The point of the drill is intact

and still has good cutting edges. The dynamic nature of

0

drilling is indicated by the fact that the drill tip 1
firmly wedged into the workpiece material but is not located
at the bottom of the hole. The separation is a distance of
1.0 mm back from the chip it was cutting at the time of
failure. The photograph was obtained from the workpiece in
which the drill point became firmly wedged. Material from
one side o0f the drilled hole has been cut away from the
workpiece so exposing the drill. The drill remains firmly
wedged in the hole due to chips compacted in the flutes.
This gap at the bottom of the hole was common with drills

that suffered such random failure. The following paragraph

iz a description of the suggested mechanism: -

When the drill 1is wound up by a period of increased
resistance to the cutting action the length of the drill is
extended <so exaggerating the situation by increasing the
chip thickness. This action slows down the cutting edge also

exaggerating the situation. This combination of effects
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Figure 88 - Drill Torque Testing Machine
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Figure 90 - Drill Modification Design
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Figure 91 - Drill Mounting Design
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it

gives riss to transient amplification of the cutting torgue
to many ftimes the mean value, sufficient to provide the =ix
times increase before failure described previously.

Alternately, if the drill does not fail due to this
increased loaqd, then, when it starts cutting more freely,
the ftwist unwinds and the length reduces so reducing the
chip thickness and allowing the cutting speed to increase.
This sudden unloading of the drill may also lead to drill

failure.

Torque suplification <can be a problem on tool entry and
re-entry into the work at which point the cutting edges
start cutting. When the torque is taken up the drill extends
suddenly into the work. Torque amplification is also present

at the time of breakthrough in through holes. As the drill

Ul

chisel emerges the majority of the drilling thrust i:
removed s0 causing a sudden initial extension of the drill.
The increased torque load is then amplified causing further
extension, This is also a common instant when drill failure

ocCcurs.

Two experiments were set up to practically examine the
flexible behaviour of 4.%5mm Quick Spiral twist drills. The

first experiment looked at the twisting torgque required fo

i

specific angles of twist., It measured the torque load at omne
end of the drill while the other end is twisted through a
range of angular deformations, figure 88. The second

experiment mounted the drill on a base and then twisted the
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end through fhe same range of angular deformations while
measuring the longitudinal extension with a digital

measuring probe, figure 89. The two sets of data may then be
put together to obtain the torque : longitudinal extenzion

behaviour. The results are given at figures 66 & 57.

QO
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Given that the adverse longitudinal effects exist

described by the dynamic drilling model, it would clearly be
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beneficial to reduce this effect by some =t

N

This was attempted by two designe for drill mountings with a

=imilar arrangement of structures linking torsion and length

but arranged in the opposite direction to counteract the
drill action. It would therefore reduce in length when

increased forgue 1is  applied and increase in length when

torque 1is reduced, figure 90 & 21. These designs have yet to

H

be proven.

10.3. CONCLUSIONS.

Why when using modern, unmanned CNC machine ftools is it

necessary to drill holes excessively slowly in order =

0

provide a high level of tool protection? The only reason i

i

that drilling is not fundamentally understood.

The dynamic behaviour of all metal cutting is becoming more
important as our ability to monitor vibration in real time
improves. The mathematice are time consuming but the

computers doing the calculations are becoming ever faster.



the availlable information and
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Thiz chapter assembles some o
makes logical sense of this information by using tThe dynamio

model of drilling proposed in chapter 7.
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This thesis is produced as the result of a research contract
to investigate industrially relevent improvements in drilil
tooling and drilling technique. The geometric research

reported in this thesis has been taken wup by & major
international drill manufacturing company for use in drill
design and research. Drilling technique research has been
reported in the thesis of I. Kavaratsis [24]1 who was also
working at Aston University during this period. Some of the
improvements described have been used successfully in  the
engineering industry.
The motivation for pursuing the geometric nature of the
drilling process in this way was based on the shortcomings
of +the practical taesting as described 1in c¢hapter oOne,
especially in the attempts to analyse drilling data.
This thesis proposes a new solution to the complex geometry

of the twist drill which offers equivalent numerical

information about any drill form and therefore offers

mathematical predictability. The dynamic
drill

instability of the
cutting process is then superimposed aon
drill geometry.

thizs basic
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11.1. DEFINITION OF THE GECMETRIC PROBLEM.

The Twist Drill is a well established tool with a history
going back to the 1860s. In modern times research and
development in +the industry has been restricted by a
reluctance on the part of the drill users to pay any more

for a tool thought of as tried and tested and also by &

prolonged period of savage internaticnal competition. The
current explosion of materials to be cut by drills, to
make drills from and to coat drills with, does however

require a whole new generation of twist drills and the
current trend towards unmanned computer controlled machine

tools requires a complete rethink of drilling technique.

Practical testing of drills identified the need to enumerate
in detail the individual cutting geometry of a particular
twist drill. Part one explains a new, sSimple method which,
with the use of a personal computer, is able to put accurate

figures to the problem of drill geometry.

11.2 ENUMERATE TOOL GEOMETRY.
The basic guestion is: What is the shape of the tcol? This

question must be answered simply and in terms that the

computer may understand.

0

The system selected for this work is the generation of the

three dimensional so0lid model described in part one. By
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examination of the drill menufacturing Prosess the
description of the shape may be considerably simplified
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Galloway’s grinding cones [21 provide oY

[

model, Galil

N

8]

way's original axis orientation has bsen changed
and the mathematics totally reworked and extended far beyond
any previous work. This solid model is described by only 3
parameters and is able to comprehemnsively describe the shape

of any drill form. This work uses the power of the computer

to calculate a complete numerical solution.

11,3, IDENTIFY THE CUTTING ANGLES.

4 scheme of measurement is required to apply to the drill
model. This is provided by the definitions of Merchant and
Stabler. Defining the drill geometry in these terms has been
tried befare but only as a theoretical mathematical

exercise, & comprehensive method that is simple and accurate

i

was not previously available.

Determining the fundamental cutting angles of the twist
drill is a 3-dimensional problem for which in the past a
2~-dimensional solution has been applied. Because of the use
of plane trigonometry previous work has not been able <to

address the esffect of drill feed. The presence of fead

I

complicates the mathematics by taking the relative velocity
vector out o0f +the plane orthogonal to the drill axis.
Spherical Trigonometry is a point centered analysis which

allows the direct, 3-dimensional calculation of the angle
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any two random directions emenating out from that

central point. The use of Spherical Trigonometry is proposed

and it has three major advantages: -

1. It allows direct calculation with a single, simple
formula. Cumulative errors of a multi-staged operation

are therefore avoided.

. The formula is invariable making its application to a

[\

i
£

computer a simple exer

0]

. A standarad computer

Q

sub-routine may perform this function without the user
knowing that spherical formulii have been used.

3, Additional effects such as the £ d rate of the drill

T
T

may be included in the analysis of the cutting =ituation

with no effect on the degree of calculation required.

The drill form is generated as a mesh of data. The facets of
surface between these points are assumed to be part of a
plane and the normal direction to this plane is calculated.
This is the form in which the surface data is compared with
the relative velocity vector of the workpiece motion. The
comparison is made using spherical trigonometry and provides

the cutting angle data.

In a 3-dimensional tool such as the drill there is a range
of tool shape and of velocity vector across the width of the
cutting edge. The TurboPascal program described in part

one allows rapid gquantification of the range of tool cutting



of twist drill. This allows vAarious

angles for any shape
aspects of tThe drill to be examined, including the cutting

adge, the chisel edge, the flute and the shape of the flute
heel, By a similar method the evaluation of any

geometrically complex cutting tool is possible.

This improvement in c¢utting information will allow
interpolation to be made between existing data rather than
require the running of new experiments for each and every
new osituation. Chip flow may also be examined and good
agreement is seen between computer chip flow predictions and

evidence of the actual chip flow across the cutting edge.

P
[

YN MODIFICATION FOR TOOL FLEXIBILITY.

Applying the geometric work to the cutting action of the

twigt drill without modification assumes the stability and

general rigidity of the structure of the drill. It is easy
to make this assumption but it is erroneous. Much evidence
of drill flexibility is provided, for the author the most

convincing example is that of tool failure while drilling.

When & drill fails while drilling the broken portion often
remains firmly wedged in the hole. If the surrounding

material is milled away the drill is revealed and it 1is
never at the very bottom of the hole, figure 87 page 232Z. In
order to explain this phenomena it i3 necessary to examine

the twist drill for its dynamic properties and to facilitate

this a new dynamic drilling model is introduced, figure 68
page 251



The Twisting Model

010 320
+ = -2G
Ix? dy?2
At the boundary : @ = Constant (Zero)
P
T:".IZ = —
Ay
30
Ty = = - —
Ix
The Bending Model
320 3?0
+ = 0
dx2 dy?
p-Y% Px2 v Py?2 dy
At the boundary : — = [ -~ ] _
ds 21 2¢1+v> 1 ds
LY Px? v Py?
Ticx = - - +
dy 21 21+v) I
Y%
Ty x = -
dx

Figure 92 - Boundary Value Partial Differential Equations
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Part two examines two aspects of the static stress analysis

of the drill in cross section. The first is  the CroSs
section torsional rigidity or Torsion Constant, which is
called tThe twisting model. The s=econd is to account for the

helical orientation of the drill and is called the bending

model.

The +twisting model is a straight forward application of
elasticity, however the bending model requires a little
explaination. It is a first attempt at a mathematical

solution to the longitudinal effect where the drill cross
section is divided into two across the drill web. Each half
may then be modelled as a cantilever bent by the application
of a load at the free end. The distribution of longitudinal
strain in the case of the cantilever is reasonably similar
to the distribution of longitudinal strain in the real drill

when twisted.

The equations for the torsion model and for the bending
model are similar and are applied to the same cross section
so allowing the two results to be compared. The two
'boundary value partial differential equations’ are shown

in figure 92.

Both systems are solved in terms of their components of

shear stress in the cross section, 7.. and T..., and combined



to produce the distribution of total shasar

-

Torsion Constant, Maximum Shear Stress Concentration and the

Warping Distribution are also produced.

The dynamic drilling model reguires two parameters to

describe the drill deformation. First the effective helix
angle and second the Torsion Constant. The resulting
action of the tool tip is a motion towards the workpiece
when the torque 1loading increases, so exaggerating or
amplifying the <change, and a wmotion away from the
workpiece when the torque loading 1is reduced, again
amplifying the change. Drilling is therefore an unstable

process and no pravious research has described the twist

drill in this way.

The dynamic behaviour of the drill may be examined by using
the equation from the theory of vibration of elastic bodies

for torsional vibration in rods. It 1 calculate

0

U

possible t
the fundamental natural frequency of torsional vibraticn of
the fluted 1length of the drill shaft from the torsional
stiffness and the mass per unit length. Dynamic measurement
of the drilling process has indicated the importance of this

fregquency.

Drilling, when described in this way as a dynamic process,
is an uniquely unstable metal cutting process when compared

with the full range of other metal cutting processes,



11.5. SUMMARY OF CONCLUSIONS.

The Geometric Analysis defines (for the first timel:-

1. The Drill Geometry.
This thesis provides an analytical link between the
current definition of a drill in terms of geometiric
references and the numerical data required to define
that drill form *to a CAD design computer or to a CNC
machine tool prior to manufacture.

Z2. The Cutting Angles.
Current drill testing only provides information
applicable to the particular drill workpiece combination
examined. The ability to define the fundamental cutting
geometry of a twist drill is provided by this thesis and
thiz ability allows drilling data to be compared on
equivalent terms between two different drills and with

other forms of metal cutting.

The Dynamic Analysis provides: -

3., An insight into the dynamic behaviour of fthe twist drill.
The firet half of this thesis works towards the
calculation of cutting angles but this geometry is only
applicable to steady state conditions. Before the
information 1is of use for the adaptive control of twist

drilling it must be modified for the dynamic distortion



0f the twist drill.

11.6. FUTURE WORK.

The reported work explores some of tThe basic geometric
concepts of three dimensional cutting processes through a

detailed examination of the geometry of the twist drill. The

research indicates two basic directions for future work.

The firet direction for future work is in drill design. The
only method currently available for looking at the
performance of the cutting geometry of the drill is a system
of trial and error backed up by human intuition. Some
analytical aids are available, for example, a computerised
system to predict the drill flute form from a particular
grinding wheel form, but there is no overall drill design
package and there is no analytical method for looking at

drill performance.

n

(

What 1s +the true cutting geometry of the cutting edges of
the twist drill? There is a flank face and a rake face with
a flow of workpiece material across them. This thesis shows
that 1t 1is possible to describe this cutting geometry in
nunmerical terms. The immediate advantage 13 an accurate
analytical assessment of the influence of changes in the
drill form. It is no longer necessary to isolate the various
aspects of drill geometry as any two drills are described in

equivalent numerical terms.
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cts of the geometric calculations of this

thesis will form the nucleus of a complete drill design and

analysis system. This system must include the abllity to

[0}

=

H

allow for the maeterial properties of the workpiece and =0
make possible +the calculation from +the known ocutting

geometry of the cutting forces and chip behaviour.

The second direction for future work is in the utilisation

of drills or what has been termed drilling techniqgue. Th

T

flexibility work has taken a system that was described by
J. R. Masuha [251 a3 mathematically impossible 1in the
introduction to his rework of Schaterin’'s investigations
7,81, The analysis has produced strength, stiffness and

st drill

[

frequency data for the dynamic distortion of the tw

in very simple terms.

There 1z no doubt that drill stiffness has strong influence
over the two most important aspects when drilling deep
holes. These are to maintain the stability of the drilliag
process so avoiding random failure and to control the runout

of deep holes which are often oilways carefully sited to

T

avoid other machining and requiring accurate linking to oil

galleries in the workpiece.
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