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1988

This thesis reports the development of a reliable method for the prediction of the
vibration of large electric machines resulting from electromagnetic forces. The
machines of primary interest are DC ship-propulsion motors but much of the
work reported has broader significance. The investigation has involved work in
five principal areas.

(1) The development and use of dynamic substructuring methods.

(2) The development of special elements to represent individual
machine components

(3) Laboratory scale investigations to establish empirical values for
properties which affect machine vibration levels.

(4) Experiments on machines on the factory test-bed to provide
data for correlation with prediction.

(5) Reasoning with regard to the effect of various design features.

The Ilimiting factor in producing good models for machines in vibration is the
computation time required for an analysis to take place. Dynamic substructuring
methods were adopted early in the project to maximise the efficiency of the
analysis. A review of existing substructure representation and composite-
structure assembly methods includes comments on which are most suitable for
this application. In three appendices to the main volume methods are presented
which were developed by the author to accelerate analyses. Despite significant
advances in this respect, the limiting factor in machine analyses is still
computation time.

The representation of individual machine components was addressed as another
means by which the time required for an analysis could be reduced. This has
resulted in the development of special elements which are more efficient than
their finite-element counterparts.

The laboratory scale experiments reported were undertaken to establish empirical
values for the properties of three distinct features - lamination stacks, bolted-
flange joints in rings and cylinders and the shimmed pole-yoke joint. These are
central to the preparation of an accurate machine model.

The theoretical methods are tested numerically and correlated with tests on two
machines (running and static),

A system has been devised using which the general electromagnetic forcing may
be split into its most fundamental components. These components are considered
individually in order to draw some conclusions about the probable effects of
various machine design features.

Key-Words: Vibration; Response; DC Machines;
Component-Modes;  Finite-Element.
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Chapter 1.

INTRODUCTION

§1.1 Background.

This research project began in October 1984 as the mechanical half of a
coordinated electromagnetic and mechanical investigation into the
prediction and potential supression of vibration in large electrical
machines. The project was instigated by Mr. M. Wright, the Managing
Director of GEC Large Machines Ltd., Rugby at the time, and was handled
as an autonomous contract for MOD(N). The machines of specific interest
were propulsion motors - an area in which GEC Large Machines has

considerable experience and expertise.

Two graduates - the author and Mr. A N Wignall were recruited by GEC

to undertake the work. The project was managed by Mr. A. J. Gilbert.
§1.2 Objectives.

The project brief initially covered many possible areas of study and was
condensed in the early stages of the investigation according to timescale

and importance.

The electromagnetic part of the project was directed at establishing a

means by which a reliable prediction of the electromagnetic forces

s 20 =



acting on the stators of machines could be made. This objective has been

fulfilled in the electromagnetic study Wignall (A.1987).
The mechanical objectives were specified as:

(1) To establish a method by which the response to forcing of a large

electrical machine stator could be predicted and investigated.

(2) To examine the effects of various controllable features on the

response and thereby produce criteria for design decisions in

order to minimise vibration.

The original intention was that both DC and synchronous AC machines
would be examined if the timescale allowed. The priority was with DC
machines. Where possible, work has been concentrated on aspects
which are common to both machines. It has only been possible to

include experimentation and verification for DC machines.
§1.3 Scope of the Work.

In the course of this work a number of different areas have been
encountered. Initially, to acquire some experience with the dynamic
modelling of machines and structures in general, a number of
finite-element models were prepared and solved. The use of finite
element models to represent the entire machine was abandoned for
reasons outlined in chapter 3. Attention was turned to the combined use

of dynamic substructuring techniques and single-element component
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models. Even with the use of dynamié substructuring, the times for
analyses of realistic three-dimensional models were prohibitive and the
author has spent some effort in optimising the substructuring processes
used. This optimisation accounts for a worthwhile fraction of the
outcome of the research and the topic of dynamic substructuring is
given proportionate attention in chapter 3. The use of single-element
component models has proved one of the more powerful aspects to
finding a suitable prediction method. The mass and stiffness matrices
were derived using assumptions appropriate to the relative dimensions
of the beam/cylinder/disc etc. The derivations are from first principles
and the matrices will inevitably resemble matrices created by previous
authors on the topic of finite-element derivations. The emphasis in this
case has been on finding reliable elements suitable to the application
rather than doing an exhaustive study. Thus, in chapter 4, which
presents the derivations, a full review of related literature is not
attempted. Instead, one or more verification examples are included for

each element which prove the element.

The experimental work has included both laboratory-scale
investigations and tests on machines on the factory testbed. The
laboratory work was directed at finding useable values for some of the
hitherto undetermined properties which clearly influence machine
response. Three separate investigations of this sort have been carried
out. The work on the properties of laminated components was
conducted entirely by the author. The experiments relating to the
properties of the bolted-flange joint in cylinders and pole-root

flexibility were designed and partly done by the author. The greater
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part of the actual experimental work was done by Masters degree
students as four-month research projects. The author (and A. N.
Wignall) contributed to the design and execution of the tests on

machines on the factory testbed.
§1.4 Two distinct forms of stator.

Rotating electrical machines in general fall into two categories, AC and
DC. The stators of each are vastly different in some respects, similar in
others. This investigation is concentrated on the DC machine but many
of the concepts and techniques developed apply equally well to both DC
and AC machines. The common factors and differences in these
machines are explained briefly here to clarify which aspects of the work

reported in the body of the thesis are applicable to which machines.

The construction of both types of stator is described briefly in the
relevant sections to follow. It is appropriate to itemise the principal
features which they have in common and the principal differences here
to clarify which analysis techniques are applicable to both and which

are useful in one case but not the other.

Both the AC and DC stators may be approximately represented as
cylinders with additional components affixed to the inner and outer
surfaces. The cylinders may be split or complete. In both cases, the
dominating mass and stiffness for small oscillations derives from the
flux-carrying circuit. Levels of stator vibration are primarily

determined by the radial thickness of this circuit compared with the
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magnitude of the forcing. Both stators generally include some laminated
portions and a number of types of joint which features can dramatically

influence the vibrational behaviour of the machine.

The contrasting details of the stators include the following. The AC
stator 1is relatively uniform in the circumferential and axial planes
whereas the DC stator is not - having a relatively small number of
discrete poles which behave as concentrated masses at the low end of
the frequency spectrum. The AC stator core is invariably built into a
frame which provides support and becomes an integral part of the
transmission path between the airgap - where electromagnetic forces
act - and the external support structure, unlike most DC machines. The
magnetic circuit of the AC machine must be laminated to reduce
eddy-current losses whilst the yoke of the DC machine which provides
the magnetic path and the strength of the machine, is more usually solid
and theoretically sees no alternating flux. The windings of the AC stator
may be considered to be intimately fixed to the stator for all
frequencies over the range for which one might reasonably expect to
model the machines. The coils of the DC machine have been found in the

course of this work to oscillate relatively independently of the yoke.

Both the AC and DC stators can be modelled to arbitrary degrees of
accuracy given sufficient computing resources and reliable values for
the properties of those features which cannot be modelled directly
(bolted joints and interlaminar properties for stacks of laminations are
examples). Some idea of the required computing power can be obtained

from the early sections of chapter 3.
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§1.5  Calculation of Response or Resonance.

Ultimately, the engineer concerned with the vibration of a machine is
only interested in knowing the levels of motion which will occur. The
response of any structure to a sinusoidal force can be considered to be
the sum of the responses of the individual modes of the structure to
that forcing. If the forcing is known, then for many structures, it is
necessary to study only a limited subset of the modes of the system

with regard to estimating the response.

This concept is the kingpin of all of the papers on the mechanical
response of machine frames except some of those which report the use
of the finite-element method. The way in which it is applied differs
slightly from case to case. One possibility is to compute the natural
frequencies of presumed shapes of deformation for which it is known
that there will be some forcing. Then if the frequency of the forcing
does not lie near any of the natural frequencies, the machine will at
least be free from catastrophic vibrations. The response of the frame
cannot be known unless the amplitude of the forcing is known but the
design can be optimised to some extent by maximising the detuning.
One problem here is that the accurate calculation of natural frequencies
- other than those of the most fundamental modes - is notoriously
difficult for any structure other than the most simple one. The scatter of
values for some parameters in machines contributes to the difficulty. In
some circumstances, the most fundamental modes are worthy of

consideration. In the case of the DC machine in particular, the
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first-order excitation of these modes can be designed out so that the
modes of real interest have associated resonances lying well up the
frequency spectrum. As machine size increases, more and more
resonances will be found to occur in a given range. The avoidance of all
resonances in a machine whose running-speed is constant is a difficult
design task. It is impossible to avoid all resonances of a machine for

which the running speed is a variable.

The alternative and more satisfactory approach is to calculate both the
frequency and a mass-normalised shape of deformation for all of the
modes which may be excited and to have values for the magnitudes of
the applied forces. This data may be combined to yield figures for the
vibration at every point on the machine at any frequency including the
resonant frequencies. Two factors will govern the actual resonant

response.

(1) The value of the damping for that mode.

(2) The range of linearity of the various deforming portions of the
structure.

Structures with virtually zero damping often have finite response at
resonance governed by the limited range of linearity of the
force-displacement relations. We shall see that this is not a useful fact
in the vibration of large machines under normal circumstances, since
the vibration levels aimed at fall well below those which would be

likely to cause significant nonlinearity in the joints and components.
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Compared with the technique of simply attempting to ensure that
resonances are avoided as much as possible, the alternative of designing
to ensure that the vibration levels themselves are kept within a band

has a number of obvious advantages.

(1) Some modes can be allowed to be excited to resonance if their
peak amplitude is sufficiently small where the specification 1is

concerned.

(2) The engineer has a much better idea of the comparitive value of

two designs as regards vibration merit.
§1.6 Damping in machine stators.

It is to be expected that the success of studying the response of a
machine stator over a broad band of frequencies is quite dependent on
having available reliable values for the damping present in the frame.
One technique common in the literature for AC machines is to estimate a
single damping coefficieflt for all modes based (one presumes) on past
experience. This is less than satisfactory. The materials from which
machine stators are built have - for the most part - characteristic
damping levels considerably lower than the damping figures which are
actually used in some calculations. There is sufficient evidence to
demonstrate that much of the damping apparent in machine stators is
not accountable by considering internal material damping alone. Some
damping is inevitably contributed by those joints of the machine which

have sufficient flexibility to store and dissipate energy. The pole-yoke
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joint and the joint occuring between two halves of a yoke have been
studied -experimentally for damping properties and damping figures are
found which are considerably higher than the coefficients for the
materials involved. It is possible to further increase these damping
coefficients by selecting.special shim materials in the case of the
pole-yoke joint and applying a viscous - 'lubricant’ to the faces of the

flanges in the bolted-flange joint.

Damping can be modelled in a number of ways. In the context of
machine vibration, the 'hysteretic' or 'structural' damping model is most
appropriate in virtually all cases. The other principal option is the
'viscous' model. 'Hysteretic' damping dissipates the same energy per
cycle regardless of frequency whilst the energy dissipated per cycle by
'viscous' damping is proportional to the square of the frequency. The
mechanisms of energy dissipation most prevalent in large electrical
machines are material damping, slip-with-friction and plastic
deformation. For all of these mechanisms, a hysteretic damping model is

known to be more appropriate than a viscous model.
§1.7 Forces Common to All Rotating Electrical Machines.

The force patterns experienced by DC machines in operation differ
substantially from those experienced by AC machines. All rotating
machines are subject to the following categories of forcing and some
procedures for controlling the resulting vibration levels are well

established.
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(1)

(i)

(iii)

Imbalance forces due to the revolution of the armature.
Virtually all rotors of electrical or other machines are balanced
to reduce the presence of these forces. However, some degree of
imbalance must always exist and this will cause a
once-per-revolution force to occur at the bearings of the

machine.

Bearing forces. Rolling-element bearings have characteristic
frequencies related to the rotational speed of the shaft which
they support. Rolling element bearings have finite life and a
lower load-bearing capacity than journal bearings and the latter
are generally preferred despite being significantly more
expensive. Journal bearings produce a wide spectrum of
relatively random forcing frequencies in .which no one frequency
is predominant under normal conditions. Rotor instability such
as oil-whip or oil-whirl can generate large components of forcing
at frequencies around one-half of rotational speed. If the rotor
and bearings have been designed correctly, this will not occur
within the rated speed-range. More elaborate hydrodynamic
bearings such as tilting-pad bearings are available for duties

where high stiffness and stability is required.

Fan-generated forces. When machines have independently
driven fans mounted on the frame, forces due to either
imbalance of the fan, instability of the fan rotor, vortex-shedding
at some position in the airpath or pulsation due to the passing of

individual fan-blades in front of fan inlets or outlets can all
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cause forces on the machine frame. It is common for some fans
to be shaft-mounted. These too, can cause air-forces to exist on

the machine stator.

(iv) Electromagnetic forces. These are quite different for the DC
machine and the two forms of rotating AC machines and are

discussed separately in the relevant. sections to follow.

Nevelsteen (B.1978) discusses the various ways in which different
machine forcings may be identified using simple tests. The proportion in
which these forcings occur varies from case to case depending on the
machine design and the particular running conditions. Electromagnetic
forces are of most interest where vibration of the frame itself is

concerned.
§1.8 Construction of the AC machine.

Rotating AC electrical machines can be subdivided into two categories -
synchronous and induction. The stators of these machines are very
similar if not identical. Windings set into the core produce a rotating
electrical field with which the flux of the rotor interacts. The difference
between induction and synchronous machines arises from the method
by which rotor currents are caused to flow. The general AC machine

comprises:

(i) The Stator-Core. This is the stationary flux-carrying member.

Because of the sinusoidally-varying field " the core is always
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(i)

produced as a stack of laminations. The punchings may form the
complete circuit if the core outside-diameter is not too large, or
they may only be segments of the circle assembled in a
staggered fashion. Endplates are normally fitted to either end of
the core to spread the load of clamping bolts/rivets. Fig.1.1a
shows a typical views of a stator-core before winding. Pressure
is retained on some cores by means of a line of weld run down
the back of the core which may or may not fix on a set of
straight key bars. These bars then form the interface between
core and frame. Slots are punched to accomodate the winding.
These may vary in profile depending on the individual machine
design but are usually simple parallel-sided gaps. The core
laminations are each coated with some thin insulating substance.
The stator cores of most large machines are composed of packets
of laminations interspersed regularly with ducts for cooling air

to pass through (Fig 1.1.b).

Stator-Winding. The stator may be wound using individual wire
filaments but more commonly for large machines, bars
containing thick copper conductors are formed and then inserted
radially into the slots. They are retained by slot wedges. The
winding projects beyond the end of the core where some
supporting arrangement holds it in place (Fig. 1.1b). When the
conductors are in place in the slots and the wedges driven-in,
the core-plus-winding 1is usually consolidated with varnish or

resin.
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(iii)

(iv)

Frame. The frames of the AC machine varies considerably from
case to case. In the most simple cases, the frame is a solid
cylinder shrunk onto the core. This may be flush with the
back-of-core but more commonly, a set of ribs integral with the
frame are present introducing a gap between back-of-core and
frame. The number of ribs can have a profound effect on
determining whether certain modes of vibration of the core have
significant effect in deflecting the frame. The frames of these
machines are normally finned on the outside surface to
maximise the heat transfer. More common for large machines is
the construction where the core is supported directly by the
endplates. In these machines the "frame" can be considered to be
a baseplate plus a set of covers. It is usual that both baseplate

and covers are fabricated from flat sheet steel.

Rotor. The rotor of the induction machine is either wire-wound
or has a cage of aluminium or copper. The synchronous machine
rotor may be of the 'salient-pole’ type or 'cylindrical' type. A
cross section of a typical salient-pole machine (from a
finite-element analysis) is pictured in Fig. 1.2a and Fig. 1.2b
shows a complete salient-pole rotor with onboard fans. The
cylindrical synchronous machine rotor has windings in slots
similar to the stator windings deployed regularly about its
periphery. The details of these rotors is not relevant here except
to note that when the rotor is slotted, care is taken at the design
stage to ensure that the combination of rotor and stator slots is

such that undesireable force-waves do not occur on the stator
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when the machine is in operation.

§1.9 Electromagnetic Forces Acting on AC Machines.

The evaluation of forces on the stator cores of AC machines is an
established science of its own. Binns (B.1964), Jordan & Rothert
(B.1953), Yang (B.1981) and others use the concept of permeance
harmonics (with respect to both space and time) to predict what
frequencies of forcing may exist for given numbers of pole-pairs,
rotor-slots and stator slots in the case of induction machines and
synchronous machines of the 'cylindrical' rotor construction. The forces

predicted are of the form ...

f(q,t) = F.sin(wt+f). [a.sin(ng) + b. cos(nq)] (1.1)

Here, q denotes the physical angle of any position on the stator core
relative to some arbitrary datum, w 1is the angular frequency of - the
individual force component, t refers to time, n is the order of the

space-harmonic of the force and f is a constant phase angle.

The amplitude F of the individual components is difficult to calculate
using the space-harmonics since they are dramatically affected by
saturation and hence, the magnitude of each one depends to some

extent on the presence of the otner components.

In large AC machines (induction and synchronous cylindrical-rotor) the
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rotor may be skewed by one slot-pitch over the length of the core. That
is to say, there is a twist set in the rotor slots and the circumferential
position of one slot at one of the rotor is identical to the circumferential
position of its neighbour at the other end. An exaggerated illustration of
skewing is presented in Fig. 1.3b. The reasons for skewing .can be
twofold. Usually the prime motivation behind this measure is to prevent
"cogging" torques.- Another benefit is that the total force on any axial
line on the inner bore of the stator core in both the radial or
circumferential directions is, in theory, zero. Clearly, this significantly

affects the vibration levels anticipated for a machine.

§1.10 Construction of the DC machine.

The large DC machine comprises the following elements:

(i) The yoke. This is a magnetically-continuous loop which carries
the main field flux between main-poles. It is most often made as
a rolled steel cylinder. In this case, it may be made of two halves
bolted together (usually at a horizontal plane) or as a single
cylinder rolled from flat plate and welded along the seam.
Fig. 1.4a shows one half of a DC magnet frame. Rolled-steel
yokes (Fig. 1.5a) provide strength as well as a magnetic path and
no other framework is necessary. The yoke may also be built-up
as a stack of laminations. In the case of large DC stators, it is
rarely possible to use complete-loop punchings due to liinitations
in the size of punch presses and in the widths of sheet-steel

available from suppliers. Laminated yokes of large machines are
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(i1)

therefore invariﬁbly built-up from segments (Fig. 1.5Db).
Clamping of these yokes is provided by a separate frame to
which feet, cover-plates and cooling-apparatus etc. are attached.
On some occasions it is possible to form a DC yoke-with-poles
from specially shaped laminations (Fig. 1.5¢) but this is rare in

large machines.

Main-poles and coils. Poles are prismatic lumps of steel which
direct the main field flux onto the armature of the machine. The
"body"” of the mainpole has sides parallel to the radial central
plane and the main field coil is wound around this (Fig. 1.6a).
The coil is normally restricted from moving radially inward by
the pole-face which is wider than the pole-body, and it is
restricted from moving radially-outward either by some small
plates or bars which are fixed directly to the pole-body or by the
yoke. For cooling reasons, the main coil is never designed to have
intimate contact with the yoke over large areas, so it is normally
reasonable to assume that motion of the main coil is independent
of that of the yoke. The mainpoles of larger machines (other than
permanent-magnet machines) are usually laminated. DC
machines may have compensating windings present to maintain
a more constant flux-density under the face of the mainpole.
Slots are punched in the pole-laminations of compensated poles
to accomodate the conducting bars. Figs. 1.6b and 1.6¢ illustrate
the difference in profile between compensated and
uncompensated pole laminations. Mainpoles are normally bolted

to the yoke over a number of shims which are inserted or
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removed to allow accurate control of the airgap.

(iii) Compoles and coils. These are similar to the mainpoles. Their
shape is usually less complex than that of the mainpoles. They
may be laminated or solid. Compoles are located between
mainpoles and serve to reduce voltage-differences between
successive commutator slots to near zero at the point of
commutation. Compoles have coils and like the mainpoles, these
may be assumed to be supported totally on the compole. Fig.1.7
shows a typical compole with its coil and one method of coil

retension.

(iv) Armature. The armature is the rotating part of the machine. The
main machine current is fed onto the armature via brushes
pressing against the commutator. A typical large DC armature is
shown in Fig. 1.4b. The armature normally has a number of
equally-spaced slots in which the current-carrying copper bars
are held. (There are slotless-armature machines in which the
conductors are simply glued to the surface of a smooth

cylindrical rotor).

In order to support the machine, feet must be attached to the
frame/yoke capable of carrying the machine weight and opposing the
torque generated. Every electrical machine must have some facility for
cooling. It is normal for DC machines to use coolers fixed to the frame.
Independent motor-driven fans are also mounted on the frame to

circulate air through the machine and coolers. Endbrackets on the DC
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machine provide a cover for the commutator, brushgear and
connections. Some machines have pedestals for the bearings which have
no direct connection to the machine frame, but it is more common that
the bearings are supported on the endbrackets. All of the above
"additional features" have the effect of considerably complicating the

process of estimating the machine response.

§1.11 Electromagnetic Forces Acting on the DC stator.

The DC frame experiences a number of electromagnetic forces

enumerated below.

(i)  Electromagnetic forces on the mainpoles and compoles at
bar-passing frequency. As the armature rotates, the mainpoles
and compoles experience a pulsating force at bar-passing
frequency as bundles of flux enter and leave each pole
(Fig. 1.8a). The number of slots on the armature is always
designed to be an integer multiple of the number of pole-pairs
of the machine. If the number is an odd integer, then the forces
experienced by adjacent mainpoles (and compoles) are

in-antiphase. Otherwise, these forces are in phase.

(ii) Electromagnetic forces on the mainpoles and compoles at
harmonics of bar-passing. The force-against-time pattern
produced by the flux bundles is not sinusoidal. Therefore,
harmonics of the bar-passing frequency also exist.

Wignall (A.1987) has shown that harmonics up to the fourth
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are significant in relation to the fundamental. The method of
calculation for the pole fluxes used meshes in two planes (Fig.
1.8) to approximate the full three-dimensional field. Wignall
computes the forces on the poles by integrating the Maxwell

stresses over the entire surface of the pole-face.

(i11) Electromagnetic forces due to eccentricity of the armature with
respect to the shaft-centers at bearings. Ideally, the shaft of
the machine is perfectly straight and the laminated core of the
armature is exactly concentric with the shaft-center all along
its length. In practice, this can only be assured by machining
the core while the entire armature is turning on its journals.
The effect of this eccéntricity is a once-per-revolution forcing
on each of the poles. Most machines have ‘'equalising windings'

whiéh act to reduce the level of this forcing.

(iv) Electromagnetic forces due to segmentation of the armature
core. When a core is segmented, a small clearance must be
provided between adjacent segments to facilitate construction.
If there are n segments in a full circle, there will be 2n
locations around the periphery of the core at which the
reluctance of the magnetic path is increased. This results in a

pulsation of frequency 2n times rotational-speed.
In large DC machines for which the supression of vibration is important,

the armature is invariably skewed i.e. the armature slots have a twist. The

twist may be one or two slot-pitches or in some cases, it may be
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herringbone. As with the AC machines whose rotors are skewed, the total
force on any axial line of the DC machine in the circumferential and radial

directions is, in theory, zero.
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Flg. 1.6a Mainpole with coil.
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Fig. 1.6b  Cross-section of uncompensated pole.

Fig. 1.6¢ (Half) Cross-section of Compensated Pole.

Fig. 1.6 The DC machine mainpole.
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Flg. 1.7a Compole with coil.

Fig. 1.7b  Typical coil-retaining arrangement.

Fig. 1.7 The DC machine compole.
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Chapter 2.

PREDICTING THE VIBRATION LEVELS OF
ELECTRICAL MACHINES

There is a marked difference between the number of published pdpers
which deal with vibration in DC machines and the number which deal
with AC machines. The difficulty of dealing with small numbers of poles
which are relatively massive compared with the rest of the machine has
clearly posed prohibitive difficulty to authors who attempt to find
closed-form expressions for the resonant frequencies and mode shapes
of DC magnet frames. If a closed form expression is not required (i.e. if
one is prepared to solve the eigenproblem arising from matrices of
non-trivial dimensions or apply Gaussian elimination to such matrices to
evaluate response) then the analyses of AC and DC machine stators have

much in common.

It is not immediately obvious how the various published methods of
machine analysis ought be classified. The categorisation used here is
neither chronological nor according to the degree of sophistication or
accuracy of the analyses. Instead, it is according to the geometrical
generality incorporated. The following divisions are discussed

individually:

(1) Circumferentially Uniform In-Plane Models.- (Ring Theories).
(2) Other In-Plane Models.
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(3) Limited three-dimensional analyses.

(4) Finite-element analyses.

§2.1 Circumferentially Uniform In-Plane Models
(Ring Theories).

The simplest and earliest of mechanical analyses of machine stators are
those which represent the stator as a single uniform ring freely
suspended. The effects of many features such as teeth, windings,
wedges, frame assemblies etc. are incorporated by modifying the
constants which would apply to the normal steel ring. It was observed
earlier that the bulk of the potential and kinetic energies of vibrating
machines is usually attributed to the stator-core/magnet-frame for the
AC and DC machines respectively. Thus, by representing only the
stator-core/magnet-frame, it is to. be expected that a meaningful
prediction of the lower natural frequencies and low frequency response
is possible. Modes are classified into groups each one distinguished by

an integer n. Displacements for a mode within the group characterised

by n vary with the poéition angle 6 according to sin(n®).

Alger (B.1954) proposes one of the simplest of these models for the AC
stator in which the teeth and windings are considered to be simple
added mass. The rotational inertia of the teeth and windings is ignored.
The ring is assumed to be inextensional, shear is ignored and rotational
inertia of the ring itself is also ignored. The result is a simple if

inaccurate formula for the resonant frequency for a given n.
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Jordan & Uner (B.1964) improve upon this by incorporating the effects
of the tooth and winding inertia and finds improved results (Finch
(B.1976)). Pavlovsky (B.1971) allows that the windings may move
slightly differently to the teeth and that the ring fibres which were
originally radial need not necessarily remain straight since tangential
and radial deflections are functions of the radius. Similarly, teeth in the
Pavlovsky model are allowed to flex. Holzman (B.1972) uses a less
sophisticted model but also allows for tooth flexure and demonstrates
that a break in natural resonance frequencies occurs at the tooth
resonant frequency. In the Holzman model each n (except n=0) has two
associated modes. In the first of these modes, the teeth rock in phase
with the core and in the second, the teeth rock in antiphase. Finch
(B.1976) proposes a ring model which allows for non coincidence of the
ring neutral layer and its radius of gravity, and incorporates the

possibility of tooth flexure by using frequency-dependent inertia terms.

A general ring model incorporating the features of all of the above

analyses would involve five degrees of freedom provided that:

(n tr) < 1 (2.1)

max

Here, n___ is the maximum value of n which will be used, t is the radial

thickness of the ring and r is the mean radius. These five features are

summarised as:
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(1) Radial translation at the ring neutral layer.

(2) Circumferential translation at the ring neutral layer.
(3) Shear angle within the ring.

(4) Swing of the teeth relative to the core.

(5) Motion of the winding relative to the teeth.

If the ring is thick with respect to its mean radius and reliable answers
are required for high values of n, then the radial and circumferential
translations must be allowed to vary with the radius as Pavlovsky

proposes.

Ring type models of the AC machine are still in use for the prediction of
vibration levels..Even in machines which have skewed rotors, these
models can be used to good effect because the high shear-flexibility of
the packets of laminations allows individual packets to deform
relatively independently of their neighbours. Thus, while the total force
on an axial line of the stator core is zero, the assumption that packets
can move independently allows a value for the response of the
stator-core to rotor slot-passing forces to be computed to reasonable

accuracy.

The AC machine is more suited to this form of analysis than the DC
machine, since AC stator-core teeth are invariably deployed much more
evenly than DC mainpoles. Also, the nature of the attachment between
stator-core and frame in the AC machine is such that any inertia or
stiffness added to the core, is distributed relatively uniformly. The

authors cited above ignore the frame. The presence of feet on the DC



magnet-frame tends to destroy the similarity between the machine and
a simple ring. Nonetheless, an approximate formula for resonance
frequencies and mode shapes of the DC machine for each n can be
evolved. Mikina (A.1934) and Rothert (A.1957) discuss the excitation of
those modes which would be associated with this simplified DC model
but go no way towards quantifying the stiffness of inertia associated
with these modes. The model presented here was- - developed by the
author and includes some features of a GEC Standard Design Calculation
procedure (A.1970) and some features from the analysis by Delves
(A.1964). The depth of the mainpoles is considered equal to that of the
yoke in this analysis. Generally the yoke is marginally longer than the
poles so the mass-per-metre of the poles should be adjusted by a

suitable factor.

Basic Notation.

0,r Position coordinates.
u(0), v(e) Translation coordinates of cylinder
(Defined at cylinder inner radius).
o(0), B(6) Angular deflection coordinate.
(Shear of cylinder and rock of poles respectively)
U,V,AB Scalar coefficients which multiply either sin or
cos functions to determine u(6),v(6),a(0),B(0) resp.
E.G.p Material constants for the cylinder steel.

(Youngs modulus, the shear modulus and the density).
Inner and outer radii of the cylinder respectively.

n Number of circumferential displacement waves.

m Number of poles (must be greater than 2).

MIS Mainpole mass polar inertia and root stiffness per m.

d Distance between pole c.o.g. and cylinder inner surface.

Fig. 2.3c clarifies some of the above terms.
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X, to X, are integrals through the radial depth of the ring.

Ro rRo ] ‘ Ro -1
X0=f 1.dr X1 = r dr X2 = (I"Ri).r ar
R;
R

R. J Ri

R° 2 .1 rRo o
Xa= (r-Ri).r Jdr X4 = (r—Ri.dr X5=f rdr

: R

R

R JRi i
° 2 R° 2 R° 3
Xf.:f r.(r—Ri) Ar X;:f T .(r—Ri).dr Xs:f ¥ Jdr
R; R; R;

Y,, Y, are the integrals of cosz(ne) and sin?(n®) with respect to 6 over
the interval [-n, x]. If n = 0, Y1 = 2n, otherwise Y1 =% En=0, Y2 s

otherwise Y2 = 1.

Ly Z2 are constants which determine the significance of the pole. Z,,Z,
depend on the relation between n and m. If ne {0, m/2, m, 3m/2, ...},
then Z1 =1, otherwise Z, =1/2. If n € {0, m/2, m, 3m/2, ...}, then 22 =0,

otherwise 22 = 12,

6 = 0 at the center line of pole 1 and for each value of n, two distinct
groups of modes will be found - either symmetrical or antisymmetrical
with respect to the cylinder diameter 8 = 0, 6 = 180. Normally each

group of modes contains four distinct modes.
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2.1.1 Case 1. Modes Symmetrical about the Center-line of Mainpole 1.

u(®) = U.cos(®) v(8) = V.sin(®) a(®) = A.sin(8) b(8) = B.sin()

Vector {W} is expressed below.

(W=

w > < C

The potential energy of the frame per meter of axial length is given by

S.E = 0.5*{W}t:[K].[W] where [K] is equal to the matrix below.

x Bk o



E.X,.Y; -

2 -1
- 2n4 R; : E.X,Y, 3n.E.)1(0.Y1 3“-E_->1<2-Yl 1R mZ,.S
+n R‘_ .E.X3.Y1 +n R: .E.X4.Yl +n -Ri EX3Y1
+ nz.Ri_ z.mZZ.S
EXp Y .
3“ - 0-11 n?'.E.X5.Y1 nz.]-z,)((,rj{1 Ril.mZQ.S
+n 'Ri .E.X4.Y1
n.R] LEX,.Y n’EX,Y
S e n’EX,Y, o 0
+n .E.XB.Y]_ +RiG.X1.Y2
n.R] .mZ,.S R mZ,.S 0 mZ,.S

Matrix [K] for modes symmetrical about the center-line of mainpole 1.
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The kinetic energy of the frame per metre length is given by K.E. =

0.5*{W}L[M].{W) where [M] is the matrix below.

p‘XS'Yl
= =1 =1
+n2.p.Ri Z.XG.YI np.R; . X7.Y, npR; XY, 0
+mZ,.M
n.p.R; .X,.Y X2.Y mZ,.Md
P-Rj "? 1 + I’DZZ.M P-A7.X2 2
—1
n.p.Ri 'XG'YI p.X-;.Yz p‘Xﬁ‘Y?. 0
0 mZ,.Md 0 mz,(1+Md?)

Matrix [M] for modes symmetrical about the center-line of mainpole 1.
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2.2.2 Case 2. Modes Anti-Symmetrical About Center-line of Mainpolel.

u(6) = U.sin(8) v(0) = V.cos(8) a(b) = A.cos(8) b(8) = B.cos(6)

Vector {W} is expressed below.

LW =

U
A%
A
B
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The potential energy of the frame per meter of axial length is given by

S.E. = 0.5%{W}L[K].{W} where [K] is equal to the matrix below.

E.X;Y;
2ol P
+2n".R; .E.X,Y -n.E. Xy Y -n.E.X,Y =
42 v g e . [T b -n.R{.mZ,.S
+n 'Rl EX3.Y2 —n Rl .E.X4.Y2 =11 ‘Ri .E.X3.Y2 -;;=
_ 5
~n.EX,Y . :
3. -1 B2 nz.E.Xj.Yz HZ.E.X4.Y2 Ri l.mZI.S &
— 1 'Ri .E.X4.Y2 ;_
2
-n.E.X,.Y n .E.X,Y
. n’E.X,Y, NG 0
—n 'Ri EX3.Y2 " + Rl .G.X4.Y1
—n.Rfl.mZ;.S Ri_l.mzl.S 0 mZ,.S

Matrix [K] for modes anti-symmetrical about center-line of mainpole 1.

-58 -



The kinetic energy of the frame per metre length is given by K.E. =

0—5*{W]t-[M].{W] where [M] is the matrix below.

p-Xs.Y,
_ - = =1
+n’p R} 2XeY, —npR] X2.Y; —npR] XgY, 0
+ mZ,M
=] p.X S'Yl
-n.p.R; . X5.Y X43.Y mZ,.Md
Pk P21 + mZI.M pP-A7.X, 1
=
= n.p.Ri 'XG‘YI p.X 7.Y1 p.X 6‘Y1 0
0 mZ,.Md 0 miz, (3+Md?)

Matrix [M]_ for modes anti-symmetrical about the center-line of

mainpole 1.
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Using the normal eigenvalue/eigenvector solution routines (see Chapter
4) modes and frequencies can be found for this ring-type DC frame
model. There are a few special cases for which the above cases are most
useful when considering the fundamental and harmonics of slot-passing

frequencies. They are: n = 0, n = m/2, n = m.

This model is quite adequate for DC machines having no skew and
enables the response of the frame in such cases to be calculated with
satisfactory accuracy. The occurrance of unskewed armatures is,
however, rare if the machine is required to have low vibration levels in
operation. In the light of the balanced nature of the electromagnetic
forces which can be caused to exist on the DC stator, the ring-type
model needs to be replaced by a much more comprehensive one. The
measures used to control the forcing on the DC stator are discussed

separately in §2.5.

The methods of those authors who have used the simple ring model to
represent the AC stator-core and ring-type methods which might be
used to represent the DC magnet frame can be classified according to
which features from table 2.1 are included. The DC model presented

above includes effects 1,2,7,8,9 from the table over.
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AC

DC

la

2a

3a

Teeth considered simple
masses.

Root flexibility of teeth
acknowledged.

Flexure of teeth allowed.

Wedge-stiffening effect included.

Windings included as simple
mass.

Windings flexibly connected.

Ring stiffening effect of teeth
included.

Shear allowed within ring.
Extension of the ring included.

Rotatory inertia of ring included.

Mainpoles considered simple
masses.

Compoles included as simple
masses.

Root flexibility of poles
acknowledged.

Shear root-flexibility
acknowledged.

In-plane deformation of poles
allowed.

Windings included as simple
mass.

Windings flexibly connected.

Ring stiffening by mainpole
included.

Shear allowed within ring.
Extension of the ring included.

Rotatory inertia of ring included.

Table 2.1 Features of In-Plane Models of AC and DC strtors.
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§2.2  Other In-Plane Models of Machines.

Erdelyi (B.1955) discusses the case of an induction motor having core
and frame. Fig 2.2a. The core is positioned relative to the frame by
means of ribs which may bend and extend/compress. The frame is not
circumferentially uniform and the modes are not divided into
convenient groups according to n as was previously the case. Erdelyi
uses ring models to represent both the core (plus teeth and windings)
and the frame. Simple beam elements are used to represent the ribs
and supports. The feet of the machine are considered to be free. The
deflections of the stator are expressed using finite series and the
number of coordinates used depends on the exact nature of the stator
and the number of reliable modes required. Openings in the frame for
ventilation and connection are ignored, and the endshields are also
ignored. The connection of components is achieved by assigning
coordinates to botﬁ the core and the frame and expressing the

deflections of the other members directly in terms of these coordinates.

Erdelyi does point out that the modes of the core plus frame are
significantly different from those of the core alone and that inclusion of
the frame is especially important in computing the noise radiated by

the machine.

Ellison and Yang (B.1974), deél with a similar arrangement of machine
(Fig. 2.2b), but use a more powerful model (still a ring) for the frame in
which the shear, extensional and rotatory inertia effects are included.

Teeth and windings are once again considered to be strongly fixed to
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the core.

Models in this category appropriate to the analysis of DC machines
include those presented by Den Hartog (A.1928) and Fertman (B.1952).
Both deal with evaluating natural frequencies for rings with prescribed
boundary conditions. Den Hartog produces formulae for the first
resonance of a ring arch with feet which may be either pinned or rigidly
constrained against both translation and rotation (Fig. 2.2a). Fertman
uses a differential equation approach to produce an indirect frequency
equation which is more useful for evaluating whether a particular
frequency is close to a resonance than it is for evaluating the frequency
associated with the resonance itself. Fertman's three boundary
conditions for the ring are illustrated in Fig. 2.2b. Den Hartog uses a
mass correction factor to compute the reduction in natural frequency of
a cylinder arch with mainpoles fixed compared with that of the cylinder

arch having no mainpoles fixed.

These DC motor representations are only useful if the feet have a
profound effect on the vibration. Normally, propulsion motors are
mounted upon rubber pads to further attentuate the vibrations
produced. In this case, the effect of the feet is as an added inertia rather
than as an added stiffness and is relatively minor except that the feet
modify some mode-shapes in such a way that the excitation

experienced by them is no longer zero.
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§2.3 Models Incorporating Variation of Displacements Along

the Axis.

Verma and Girgis (B.1973) present a model for a induction machine
stator of encased construction (Fig. 2.2c). Teeth and windings are -
assumed to move with the stator core which is modelled using the
cylinder theory of Flugge. The materials of the core and case are
assumed to elastic and isotropic though the core is laminated. Other
authors (Watenabe, Kenjo et al (B.1983), White (D.1955)), Delves
(A.1964), Walker et al (D.1964)) have discovered that laminated cores
are cannot be considered isotropic and this author has performed a set
of tests to establish equivalent elastic properties for various cases of
lamination stacks. Extension, shear and rotational inertia are implicitly
included in the calculations since displacements within the back-of-core
are allowed to vary with radial position. A double power series is used
to represent each of the displacements (radial, circumferential and axial
translations in the core and case) for each value of n - the number of
waves about the circumference. A simplified frequency searching
routine is employed to find the natural frequencies and modes. Verma
and Girgis use the term 'mode’ where mode-group is more appropriate
in that they state that for each mode (meaning for each value of n),
three frequencies are found. In the methods developed during this
investigation, those applicable to the prediction of vibration in AC
stators are most akin to the Verma and Girgis analysis. Verma and
Girgis explicitly represent the teeth and fins whereas in DMS, ‘cylinders'
having specially adjusted material properties have been used to

collectively represent all teeth or fins.
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The closest analysis of this type for DC machines is that due to Delves
(A.1964). Delves' analysis considers that the variation of deflections
may have a sinusoidal component superimposed on a linear component
(Fig 2.3a). The frame is implicitly assumed to be rotationally-periodic

and the only mode of interest is that described below.

(1) All deflections are symmetrical about the axial center of the

machine.

(2) Axial nodal lines occur on the yoke behind the mainpoles so that

mainpoles can swing but not translate.

(3) Poles may deflect relative to the yoke in the r-6 plane.

The analysis yields the 'exact' axial profile and the frequency for the
mode. The machines to which this analysis is applied have laminated
yokes with stiff endplates. This analysis has very limited value now
except in pointing to the effects which must be catered-for in a good DC
frame model. In particular, Delves states that the pole-root flexibility is
of fundamental importance. He also allows for a more general variation
of 'in-plane' deflections with respect to the axial position coordinate
albeit for only one class of mode. The importance of the flexibility of

laminations in both shear and normal strain is emphasised.

Delves' single mode shape is symmetrical with respect to the axial

position coordinate. Mikina (A.1934) presents a discussion on the use of
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pole spacing and armature skewing so as to reduce the excitation on
what he refers to as the "four principal modes" of DC machines. Three of
the modes he decribes are axially-uniform. In Mikina's "third principal
mode" (mode (c) in Fig 2.3b) displacements vary linearly with the axial
position coordinate but they are antisymmetrical. Mikina shows that a
single slot-pitch skew provides a significant excitation of this mode.
Ellison and Moore (B.1968) state for induction machines that if the axial
length of a machine is greater than about the square root of the product
of the radial thickness and the mean radius, it is necessary to consider
the axially non-uniform modes. A similar criterion is appropriate to DC

machines.

The Delves, Fertman, Den Hartog and Mikina analyses are all deficient
because of their simplicity. However, together they indicate the
ingredients which should be combined to generate a valuable analysis
method for the prediction of vibration in DC machines in particular.
These have been incorporated without exception into the method

presented in this thesis (which is the method programmed into DMS.)

§2.4 Measures for Controlling the Excitation of Important

Modes in DC Machines.
A number of methods have evolved in the context of DC machine design

for the reduction of electromagnetically produced machine vibration.

These include:
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(a) Choosing the number of slots to be an even or odd integer

multiple of the number of pole pairs.

(b) Choosing the width of the pole face to approximately "cover" an

integer number of armature slots.
(¢) Dcsigning the armature to have an optimum skew.

Item (a) above is invariably done. The choice of whether to use an even
or odd integer multiplier has previously been made on the basis of past
experience alone. A rational criterion for choosing one or the other has
been developed by the author and is given in chapter 9. If the DC
machine is considered to be rotationally periodic, then only a limited
subset of its modes will experience any excitation due to the

slot-passing flux ripple.

It is impossible to achieve ‘either (b) or (c) for all load and field
conditions of the machine. Theoretically, if (b) above could be achieved,
the distribution of force (both radial and circumferential) on the
mainpole face would be an integer number of sinusoids and the
summation of this forcing would then be zero. Lee Boon Chong (A.1976)
discusses the effectiveness of controlling the mainpole width and
concludes that it is limited. The fact that on quiet machines the airgap is
frequently "graded" further complicates matters in this respect. Wignall
(A.1987) has investigate1 the effectiveness of (b)&(c) and finds that
armature reaction has a significant effect on (b). It is evident from the

flux plot in Figl.7a that the flux lines leaving the armature are not
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radial and straight. It is nonetheless possible to choose an optimum
pole-face width given the allowable profile based on finite-element

analysis and the most typical load condition.

Wignall (A.1987) finds that magnetic saturation together with fringing
about the ducts plays a strong role in reducing the effectiveness of
skewing and proposes that real skew values of other than unity are
optimal. Skewing does significantly reduce the axially-uniform
component of forcing and this reduction is such that in some cases, the
response of the machine to the sinusoidally varying pattern exceeds the

response to the diminished axially uniform pattern.
§2.5 Finite Element Models of Machines.

For generality, the best models of both the AC and DC machines are
finite-element models. (The method proposed in this thesis may be
regarded as a finite element method in which some of the elements are
specialised). All assumptions regarding rotational perodicity, axial
uniformity and specific mode shapes can be relaxed. However many of
the features of machines cannot be modelled directly without empirical
determination of properties. In particular, special spring-damper
elements must be used for joints such as that between back-of-core and

keybars, the shimmed joint between pole and yoke etc.
Results from a small number of F.E. (mechanical) analyses have been

published. Fig. 1.8 shows some recent models. (Electromagnetic F.E.

models of machines are commonplace now. These are generally simpler
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than the mechanical models since rotational periodicity is invariably
present and frequently, the field of interest is axially uniform so that the
problem reduces to a two-dimensional analysis.) Some modellers
consider only the in-plane vibration of machines (Chen & Zhu (B.1986) )
and others use full three dimensional models (Belmans (B.1986)). At
present, the accuracy of these models is limited by the power of the
methods being used and the capacity of the computing hardware being

used to implement them.

A number of cautions ought be heeded with regard to use of FE models.

Firstly, the mesh used must be sufficient but not over-detailed. Elements
should not be allowed to be badly distorted except when they are
present only to add mass. Tips of stator teeth are not critical elements

and distortion of these will not cause serious errors.

The elements should have suitable properties. Verma & Girgis (B.1978)
and Belmans (B.1986) have assumed that the core of their stator models
was composed of uniform isotropic steel. Watenabe, Kenjo et al. (B.1986),
Delves (A.1962) and the present author have found that the laminations
cause significant flexibilities to be introduced particularly for normal and

shear strains out of the plane of lamination.

Elements having offsets must be used in some circumstances. A difficulty
which arose early in the course of this work was connected with the fact
that nodes can only be located on the central (neutral) plane of some

elements - particularly plate and shell elements. When a support
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structure is attached to a cylinder along a continuous weld, the
circumferential stretching and compression of the support when the
cylinder attempts to flex accounts for significant quantities of stored
energy. If the support is attached to the neutral plane of the cylinder in
the theoretical model, the support plates need not compress or extend

when the cylinder flexes.

The use of automatic selection of master degrees of freedom must be
treated with care. Most commercial packages choose some or all of the
master degrees of freedom in one sweep. The only failsafe method of
choosing master degrees of freedom is to eliminate slave freedoms one
by one carrying out the reduction process as the condensation proceeds.
The master degrees of freedom are those which are left over when the
desired number of slaves have been identified and reduced out.
Structures which have many nodes with identical stiffness and inertia
properties (for example the nodes defining the solid yoke of a DC stator)
are prone to poor results owing to the fact that the routines selecting the
'next’ master degree of freedom may not allow for the fact that the 'last’
master degree of freedom may have been physically very close. The
provision of steering data or explicit identification of suitable master

degrees of freedom is a possible solution.

Special elements can be derived to complement the existing library
within most commercial packages. Chen and Zhu (B.1984) mention the
notion of a generalised tooth/slot. It is not clear what is meant by this
but it suggest that the stator core could be divided into as many

elements as there are teeth. This idea is particularly applicable to AC
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machines but a similar notion can be applied to DC.

In-plane models of machines should take account of the Poisson coupling
between normal strains. This effect is dramatically reduced for
laminated components. Appendix 6 includes a derivation of some factors
which should be applied to plane models to correct for the Poisson

coupling.

- 71 -



Aston University

lustration remaoved for copyright restrictions

Aston University

lustration remaved for copyright restrictions

Aston University

lustration rem aved for copyright restrictions




Aston University

lustration removed for copyright restrictions




Aston University

lustration rem oved for copyright restrictions




Aston University

lustration rem oved for copyright restrictions

Aston University

lustration removed for copyright restrictions




Chapter 3.

STRUCTURE-SYNTHESIS USING
COMPONENT MODES.

In the previous chapter, the usefulness of employing purely analytical
methods to the prediction of vibration in large machines was examined.
It has been shown that current design practices eliminate virtually all
of the vibration forms which might be predicted with these methods. To
progress from the current state-of-the-art it is necessary to employ
numerical solutions of some description in order that the assumptions of
perfect symmetry can be relaxed and the less simple mode-shapes

considered.

Two quite different approaches have been examined. One possibility
would be to create a single large finite-element model to represent the
entire machine. The alternative is to use the natural subdivisions
occurring in the machine and the closeness-to-symmetry to advantage
using substructuring techniques. The choice of which of these was more
appropriate was based on an assessment of the relative speed and ease

of use bearing in mind the following considerations.
(i) The analysis must consider a broad range of frequencies.

(it) The emphasis is to be on the evaluation of system response

rather than on the location of natural frequencies and solution

- 76 =



for mode-shapes.
(iii) Damping is to be included as accurately as possible.

(iv) It is desireable that the effects of various changes can be

assessed with a minimum of human and computational effort.

(v) Non-linearity can occur at some joints but the individual
subsystems may be considered to have linear force-deflection

relations.

The substructuring approach was found to be the more appropriate. A
suite of programs has been written to implement this approach. It
comprises a set of programs pertaining to the assembly of subsystems
to form a composite-system, programs to automatically generate the
data for some elementary forms of subsysteni, a basic display facility
and programs which deal with the generation of models of DC machines
(composite- and sub- systems thereof). It is referred to as DMS in the
remainder of the thesis which initials stand for "a Dynamic Modelling

System".

§3.1 Comparison of methods :- Full F.E. versus Substructuring.
The following example illustrates the relative merits of the two possible
approaches. The test structure comprises a cylinder having a horizontal

axis and to which seven other substructures are attached (Fig. 3.la). It

is supported upon two short pillars whose bases are rigidly affixed to
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the ground. The cylinder has a circular disc fitted to one end and
contains four identical lumps attached rigidly to the middle surface. The
auto-response of this structure to a point forcing (as shown in Fig. 3.1a)
is required and the non symmetrical (and non antisymmetrical) nature

of the forcing makes the problem fully general.

Fig. 3.1b presents the finite-element model of this structure. This
structure contains most of the features of the typical DC machine
analysis. The response was evaluated for 250 frequencies varying
logarithmically between 5 Hz and 500 Hz. Fig. 3.2 compares the
response traces predicted by the two methods and gives total-time
figures as required by the. two methods. Both programs were run on a
DOMAIN 550 workstation rated at 1.8 mips. The number of coordinates
used in preparing each of the individual subsystems of the
substructured models and the number of degrees of freedom in the F.E.
model are summarised in Fig. 3.3a and the computation times taken for
various parts of the job for are quoted in Fig. 3.3b for both the DMS and
PAFEC analyses.

Considering this job alone, a factor of 12 is realised in time saving if it is
required that the effects of a number of structural modifications be
investigated. Most of the computational time involved in the DMS
analysis is tied up with the preparation of modal data for the
substructures. Once prepared, this data can be retained for use of the

substructure as part of any composite system.

Based on this experience, the notion of creating whole F.E
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representations of DC motors for response calculations was abandoned

in favour of the substructuring approach.

§3.2 Two Aspects to Substructuring.

It is useful here to distinguish between two separable features of this

type of analysis.

(i) The means by which each individual substructure is
represented.

(i1) The procedures used to effect the synthesis.

In dynamic-substructuring literature at present it 1is possible to
differentiate between a number of methods due to various authors. In
this chapter, it is not proposed to enumerate the individual details of
each one. Generally, the differences occur either in the modified
coordinate-set used to model the allowable displacement patterns in the
individual substructures for a given frequency span, or in the way in
‘which the connections/constraints are imposed to form the
composite-system from the complete unconnected system. In some
instances the actual order-of-computation or computational-technique
employed for some of the fundamental operations is the chief
discriminating factor. This can have some impact on making some
methods more efficient or accurate than others though they be
mathematically identical. It is the authors’ impression that there are
significantly more "different methods" than there are "differences
between each method and every-other-method". It is sensible therefore,

to present the general principles first and discuss the variations rather
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than attempt to deal with individual methods.

The details of order and technique of computational are given least
emphasis in this discussion. They tend to be specific to the exact
combination of component representation and synthesis methods.
Instead, attention is concentrated mainly on the representation of
components where the principle variations published to date are
reviewed for suitability to the particular application of the analysis of
machine vibration. The various methods of synthesis are discussed
towards the end of this chapter and a single general method is extracted
which is both suitable for use with any component representation and

necessary for the particular representation favoured in this investigation.
§3.3 Representing Subsystems Generally.

The general subsystem in dynamics has n displacement coordinates
assigned to it at the creation of a model. They may correspond to point
displacements in the case of a lumped-mass model, displacements
distributed over a finite span of the subsystem in the case of a
finite-element model or distributed displacements spanning the entire
subsystem in the case of the models used for beams, rings, cylinders,
discs etc. in chapter 4. It is implicitly assumed that the subsystem can
only deflect in shapes which are linear combinations of the above
displacement shapes. The vector of coefficients for this linear

combination is {q(t)}. Since the primary interest is in the steady-state

response of the composite-structure, {q(t)}={q}.sin(wt). Forces acting on

the subsystem are symbolised as {Q(t)}={Q}.sin(wt) with respect to the "q"
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coordinate-system. The equation-of-motion governing the behaviour of

the undamped subsystem in steady-state conditions is

[[k]- @*[m]] {q} = {Q) (3.1)

There is some set of m point displacements which are of special interest
for a given substructure. The coordinate-vector associated with these is
denoted {r(t)} and has associated vector {R(t)}. In finite-element models,
these displacements are simply a subset of the complete set of point
displacements for the structure. In order to retain compatibility with the
use of single-element representation of components as developed in
chapter 4, we state that in general there 1is some coordinate
transformation matrix [E] such that {r(t)} is related to {q(t)} by (3.2). For

F.E. models E is a sparse matrix containing only ones and zeros.
{r(H} = [E] {q(V)}
{r} =[E] {q} (3.2)

It is straightforward to show by virtual work arguments that if (3.2)

holds, the force vectors {Q(t)} and {R(t)} are related by (3.3).
{Q®)} = [EI' {R()}
(Q} =[El' {R} (3.3)

The coordinates {r(t)} are described as terminal freedoms throughout this
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work using jargon from electrical network analysis in which the concept
of substructuring has its roots. Other terms have been used by various
authors including boundary, attachment, junction and interface freedoms.
This author prefers the term terminal freedoms to the alternatives since
it does not preclude those point displacements at which response data
might be required or forces applied but which are not directly used for
the attachment of other substructures and do not occur on an obvious

composite-structure interface or boundary.

The representation which is sought for each individual subsystem may be

expressed in the most general form as (3.4) below.

{r} =[f{R} (3.4a)

{R} = [d]{r} (sometimes) (3.4b)

Matrix [f] is the dynamic flexibility matrix. This matrix is dependent on
frequency and the way in which it is built-up is discussed for the each of
the substructure representation methods discussed. Garvey et al.
(C.1988.1) demonstrate for one method of substructuring that it is the
formation of these matrices which consumes virtually all of the required
computation time. Matrix [d] of (3.4b) above is the subsystem dynamic
stiffness matrix if it exists. This proviso must be stated since it is possible
that some subsystems can have more terminal freedoms than they had
generalised coordinates. The effect is that certain combinations of the
terminal freedoms will always sum to zero and so the elements of {r} are

not independent. Thus [f] of (3.4a) will be singular in such cases and [d]
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- the inverse of [f] - does not exist.

Generally, matrix [f] is built-up (at least in part) from component modes.

This has the following advantages;

(a)

(b)

The effects of the internal displacements of the subsystems are
accounted for though data specifically relating to them is not

retained.

The total number of coordinates can be reduced by discarding
generalised coordinates (modes) whose natural frequency is
very much higher than the highest frequency in the range of
interest. The process‘ of truncating the modal series requires
considerable care and is discussed further in the context of the

various substructure representations.

For the purposes of using software to automatically connect substructures

and to create images of the substructures, it is also necessary to store the

physical positions of the nodes of the substructures but compared with

the modal data, the storage required for this information is very small.

The volume of node-position data is proportional to n (n being the

number of degrees of freedom in the substructure) while the volume of

modal data is roughly proportional to n?. In DMS, a set of five datafiles is

used to completely represent each of the substructures stored. A full

description of these files is given in the DMS manual - Garvey (C.1987)
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§3.4  Structure Representation Using

Free-Free Component Modes.

This is the simplest of the methods which will be discussed. Only one
class of mode is required - considering rigid-body modes to be
zero-frequency natural modes of vibration. The proponents of this
method include Goldman (C.1969), Hou (C.1970) and Simpson (C.1984). It
is intuitively evident that the behaviour of a subsystem is completely
known if the modeller has details of the frequency, mode-shape and
associated modal-mass of all free-modes of the structure. Dealing with
substructures in the free-free state has strong advantages when data is to
be experimentally derived and when details of the remainder of the
composite-system are not available to the numericallmodeller. Goldman
points out that one of thé disadvantages is that simple truncation of the
modal series can result in significant error and that reliable
upper-bounds for this error cannot be formulated. Convergence of the
subsystem internal forces/stresses at forced or restrained terminal

freedoms with increasing numbers of retained modes is predictably poor.

Equation (3.1) is the equation of motion of a single undamped subsystem
originally having n independent displacmement coordinates. The
eigen-problem corresponding to the search for free-free modes is
concisely stated in (3.5). Solving this yields the n natural frequencies
and associated modes {u} of the free-free substructure. We assume for

the present that all of the natural frequencies and modes are explicitly

evaluated.
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[[k] — @?*[m]] {u} = {0} (3.5)

It is convenient to scale the modes so that they are mass-normalised

according to (3.6).
(u};'Im]{u}; = 1.0 (3.6)

Now, we can use the coordinate-transformation matrix [E] defined in (3.2)

to find the modal displacements at the terminal freedoms [v]i using (3.7).

{v};=[E] {u} (3.7)

Forces

(U}, = [E]' (V}, | (3.8)

e —

The various {v}, (ordered according to increasing frequency) are the
columns of the coordinate-transformation matrix [V]. The eigenvalues A

are placed along the diagonal of an n x n matrix of zeros to form [A].

The transient response of any of the substructure terminal freedoms to
forcing applied at terminal freedoms can be computed by (3.9). The
steady state response is computed using (3.10) as shown by

Garvey, Penny & Gilbert (C.1988).
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{r®)} = f t[V][[A] +D; [Iﬂ_ V] {R®}.dr.dt (3.9)

y-v[a]-at]] ViR (3.102)

If [V] is invertible, we can also write {R} directly in terms of {r} as

(3.10b).
{&y=[v] {[A]-o )V (3.100)

The advantage of using the component modes as coordinates is evident
here. It is possible to express (3.10a) without using component modes as

(3.11a) below.
(e 3=[El]-oTm]] EXR> (3.11a)

Clearly, (3.10a) involves inverting a diagonal matrix which involves only
n floating-point divisions in the case where no truncation of the modal
series has taken place. Fewer operations are required if some of the
higher modes are discarded. On the other hand, the number of

floating-point operations required to solve (3.11a) is approximately n2/2.
If [E] is invertible, then {R} may be written directly in terms of (r} as

(3.11b) and the free-free component mode representation of the

substructure can be used in the direct method of substructure assembly
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discussed in §3.10.

(&> =[] [[k)-o Tm | ] G.110)

§3.5 Structure Representation Using

"Fixed-Constraint" Component Modes.

An alternative to using free-free component modes is to consider that all
terminal freedoms which will occur at subsystem interfaces within the

composite system are fully restrained. The terminal coordinates {r} are

partitioned into internal and boundary coordinates {r;} and {r}.

{r)= {{rb} - (3.12)

A subsystem which initially had n coordinates to define its displacement
is reduced to having n-l1 coordinates if 1 is the number of boundary
terminal coordinates. There are then n-1 natural modes of vibration of the
component referred to as the fixed-constraint, or fixed-terminal modes.
The 1 suppressed freedoms must be explicitly reintroduced into the
subsystem by including another catégory of coordinates which
Hurty (C.1965), Benfield & Hruda (C.1971) and MacNeal (C.1971) refer to
as attachment modes or constraint modes. Now, the attachment modes
are not natural modes of vibration in so far as they are generally not
uncoupled from one another (either inertially or elasticilly). Neither are

these modes inertially uncoupled from the natural fixed-constraint

modes though they are shown here to be elastically uncoupled. The use of
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attachment modes is frequently referred to as generalised inertial

coupling because of the off-diagonal tei‘ms [mib'] and [mbi‘] which will be

seen to occur in equations (3.20) to (3.26).

The inertial coupling of the so-called artachmenr-mod;es has a significant
impact on the time required to form [f] of (3.4a) because of the necessity
to invert (or perhaps apply Gaussian elimination to) a non-diagonal
dynamic-stiffness matrix for the composite-system generalised
coordinates. However, if the modal series is to be truncated for an
individual subsystem, significantly more of the normal modes may be
discarded here than in the case of the free-free component mode series
when substantial forces are required to exist at the component
boundaries. The advantage in computation time is reviewed after the

equations are developed.

The development of the fixed-terminal representation is most

straightforward when the vector of boundary terminal freedoms [rb] is

simply a subset of the complete set of substructure coordinates {q} in
which case, some coordinate transformation matrices can be avoided by

simply using partitioning.

@ -{) 5.1

The matrices [k] and [m] are partitioned to correspond.
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[k] [kﬁ] [k i’] [m] _ [m ﬁ] [m b]

, = X (3.14)
[my] [my,

Now, the eigenproblem corresponding to the search for fixed-terminal

modes is written as (3.15) below.
[(k;] - o2 [m]] {u;} = (0) (3.15)

The n-1 eigenvectors are mass-normalised for convenience and arranged

in columns of the matrix [V.] so that (3.16a) holds. Equation (3.16b) then
follows. (Matrix [A] is ‘the (n-1) x (n-1) diagonal matrix with the individual

w_2 placed in order).
(U1 (m,] [U]=11] (3.16a)

[U]" k] [U] = [A] (3.16b)

Now, the attachment-modes are defined as the static deformed shapes of
the structure which occur when one of the terminal freedoms is displaced

by one unit while the other terminal freedoms are constrained to be zero.

No forces are applied to the internal coordinates, thus when w=0:
k. (q) + [kl (1) = (Q) = {0) (3.17)

If j be the index for the terminal freedoms, then the attachment modes
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{uy} can be derived from (3.17) by setting the j' entry of {r_} equal to
1.0, setting all other entries equal to 0.0, and solving the equation to find

{q;} (= {u,})). The vectors {u,}} are arranged as columns of the matrix [U,].

There is no benefit in normalising this matrix with respect to either [k,]

or [mbb].

A coordinate-transformation is now set up. The new coordinates (s}
express the subsystem displacement in terms of the fixed-constraint

normal-modes and the attachment modes according to (3.18).
i U;U S
{q}={q }=[ "]{ }=[U1{s} (3.18)
Iy 0 I Sp

The stiffness and mass matrices with respect to {s} are [k'] and [m'] as

defined below.

[U-t.k--.U-] UrksUs
e | ot | +Uit'kb-
A 0
[k']= ; -1 - 2 [,1 (3.19)
Upks U, 0 kg

U:'J'ki‘Ui +kbUb

+kﬁ.Ui +U;,kh-
+Ky

r
L
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t
[Ultm U1j| ln:u b .-
+U;m ;.

o (1] [

_ - = . (3.20)

U;-mii-Ub [me' |:rn bb:l

t
|:Ub.m nUljl +m ib'Ub
+ U, :
™ oe U + Upm y;

+mbb

Using standard coordinate-transformation techniques, we can now write a

direct relation between forces and displacements as (3.21)

]

) Al 0 '2 I [m;b} L 0 ;
{} [UU H[ku,]““’ [SJ (i) E;x.{gb}(&m

Now the ‘internal’ terminal coordinates {r;} are related to {q,} by (3.22) -
a substatement of (3.2) - and thus (3.21) can be transformed to have the

same form as (3.4a) - equation (3.23).

[ri] = [Eii] {ql] ' (322)
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Matrices [V.] and [V,] are given as (3.24) and (3.25).
[VI] = [Eu] [Ul] (324)
[V,] = [E;] [Uy] (3.25)

Now, if [U,] is invertible, it is possible to write {R} directly in terms of {r}

as (3.26). This is a prerequisite for the use of the direct method of

structure assembly discussed later.

{r}:@}{:::f] [2] [k(:,b} o [Eb]] Enmlb: [V Vb] { } (3.26)

The portion of (3.23) which must be inverted has the form shown below
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00x00 X X 1
000x0 XX
0000x_ X X

Form of the portion of (3.23) which must be inverted.

Let 1 be the number of fixed-terminal normal modes retained in the
fixed-terminal component mode representation, let m be the number of
terminal coordinates and let n be the number of free-terminal normal
modes retained in the free-free component mode representation. Then, if
the program being used to invert this matrix can utilise the fact the top
left portion is already diagonalised, the number of operations required

for the inversion is approximately m? + 2.(1 x m). A further m?

operations
is needed to evaluate {r}. Comparing this with the n operations necessary
to invert the generalised dynamic stiffness matrix of (3.11) and
2.(n x m) operations to evaluate {r} indicates the extra number of
component modes which must be removed by modal truncation from the
fixed-terminal representation compared with the number removed from

a free terminal representation in order that the two representations

should be equally effective.
Some of the components used in this investigation are modelled as single

elements (chapter 4) and the basic set of coordinates used for these

components does not relate to the point displacements so conveniently as
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the coordinates of a finite-element model would. (Considering the
example presented earlier in §3.1, the F.E. cylinder model of a had 432
degrees of freedom each of which was associated either with unit
translation or rotation at one of the nodes. The DMS model, by
comparison, used 20 smooth shape-functions for each of the
mode-groups.) Some of these involved translation in one direction and
rotation about two axes at each of the nodes of the component.) Thus,

instead of (3.12) which stated that the vector of boundary terminal

coordinates {r } was a sub-vector of {q}, the terminal freedoms are

related to the subsystem generalised coordinates, {q}, by (3.27) - an

expanded version of equation (3.2).

{€3)- Eﬂ]{“} o2

Previously, we assumed that {q} could be partitioned into {q;,} and [rb] SO

that the matrix [E,] of (3.27) would have been partitioned as [[E;],[0]].
If vector {q} has n entries and {r,} has | entries, then [E ] is | x n. A

prerequisite to the use of the fixed-constraint mode representation of any

substructure is that a matrix [D] (n-1) x n exists such that ..
(E,] [D]* = [0] (3.28)

..and ..
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[D] [D]* = [I] | (3.29)

These conditions can be restated as n < 1 and row-rank ([Eb]) = 1. If they

are satisfied, then we can set up a coordinate-transformation according to
(3.30).

@r{h- o] @ 6.30)

Now, by the simple expedient of replacing the original coordinate set {q}
with the modified set {q'}, we have the situation stated by equation
(3.13). The subsystem stiffness and mass matrices [k] and [m] would be

modified to [k'] and [m'] according to (3.31).

13- 2 |6loE] . - | mo's] 6.31)

E,

It has often been the case in the course of this investigation that the
number of boundary terminal coordinates 1 has exceeded the number of
generalised coordinates being used to model the subsystem for a
particular case of symmetry, especially where the substructure has
properties of rotationally-periodicity and one particular mode-group is

being examined.
The fixed-terminal mode representation of substructures has not

therefore been used at all. (The desirablity of programming this case was

mitigated against by the fact that it could not be applied generally to all
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substructures prepared).

§3.6 Hybrid Substructure Representation.

MacNeal (C.1971) formally presents a method in which the natural
component modes used for the representation have some free interface
freedoms and some constrained. Attachment modes need only be added
for each of the terminals which was fixed during the computation of the
natural component modes. Theoretically, the method is only a minor
extrapolation from the pure fixed-constraint component mode
representation. In fact, because of the general approach taken with
terminal coordinates (i.e. that they need not necessarily be boundary

coordinates) the extension is quite trivial. Instead of considering the

vector [rb] to include literally all of the boundary terminals, the hybrid

method allows that some of the boundary terminals can be included in

the vector ({r;} instead. If this substitution is made mentally, the

mathematics for the substructure representation is then unchanged from

that presented above.

The choice between whether to allow a given terminal coordinate to be
free or constrained when computing the component modes is a powerful
expedient in controlling the number of coordinates which must ultimately
be retained to approximate the behaviour of a subsystem. If a large stiff
component has a small flexible component attached to it at a particular
terminal, then that coordinate is best dealt-with in the free condition in
the context of the large subsystem and as a fixed terminal in the context

of the smaller subsystem.
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In the previous section, it was stated that the fixed-terminal
representation of substructure was rejected for use in this investigation
because it was not generally applicable to the special substructures
analytically developed by the methods of chapter 4. It is always possible
to fix some of the terminal freedoms of any substructure without causing
problems of over-constraint, and so it would be possible in general to use
the hybrid method of substructure representation for all substructures
encountered in this investigation. This has not been done, however,
because techniques have been developed which overcome the problems

of the free-free representation in a more convenient way.

§3.7 Free-Free Component Mode Representation with

Interface Loading.

Gladwell (C.1964) does not treat the individual subsystems
independently of the other subsystems within the composite system. This
removes one of the principle advantages of substructuring as enumerated
by Hurty et al. (C.1971) and makes it more difficult to separate the
processes of substructure representation and composite structure
assembly. Instead of dividing the composite system into distinct
subsystems, Gladwell forms "branches”. In each branch one of the
subsystems is free to move and distort while the others are constrained
so that they can either move as rigid bodies or not at all (the decision
being left to the discretion of the modeller). Thus the component modes
take some account of the adjoining subsystems and so the more closely

resemble the modes of the composite system. Gladwells' method caters
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only for statically determinate interfaces. Benfield & Hruda (C.1971),
propoée a similar but more generalised method by which the effects of
adjoining subsystems are included to some extent in the formation of the
'‘component modes' for a given subsystem. As with the Gladwell method,
the representation for one subsystem requires knowledge of the others.
The effects of the adjoining subsystems are included by “interface

loading” - both inertial and elastic.

Let [m], [k] be the mass and stiffness matrices for the subsystem of
interest. Vector {q} is the vector of generalised coordinates for the
subsystem. Matrices [m], [k] are the mass and stiffness matrices for the
remainder of the system and {g} is the vector of generalised coordinates.
The vectors of terminal coordinates for the subsytem and
remainder-of-the-composite-system are {r} and ({r} respectively and
these relate to {s}, {s} by coordinate transformation matrices [E] and [E] as
in equation (3.2). Now, the connection between the subsystem and the
remainder-of—the-comﬁosite-system is expressed by (3.32) below. It is

convenient for purposes of explanation to define a set of tie coordinates

(t}.

[CI{r} = {t} = [CH{r} (3.32)
[Dl{q} = {t} =[Dl{g} (3.33)
sy WHETB s

D1 =[C] [E] (3.34a)
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[D] = [C] [E] (3.34b)

Benfield & Hruda apply standard static reduction techniques in order to
find approximate mass and stiffness matrices for the remainder of the
composite system. In their paper, the generalised cordinates are the same
as the terminal coordinates. Here, we require to maintain as general a
view as possible. Thus, we suppose that some matrix [F] is found as

defined below.

(E] = [D] [k]! [D]* (3.35)

Matrix [F] relates the vector of deflections of the remainder of the
composite system {g} to forces at connections for a forcing frequency of

zero. Thus we arrive at mass and stiffness "interface-loading" matrices

[m], [kK].
[m'] = [E]" [m] [E] (3.36a)
(k'] = [E]* [k] (E] (3.36b)

If the subsystem of interest is oscillating at angular frequency o with a
given set of deflections {q}, we can establish values for the vector of tie

coordinates {t} from (3.33). The contribution to kinetic energy, K.E., from
the remainder of the composite system is then 0.5 ©? {t}' [m'] {t} and the
contribution to strain energy, S.E., from the remainder of the composite

system is 0.5 {t}' [K] ({t}, if the frequency, w, is significantly less than
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the first resonance of the remainder of the composite system. The
interface loading matrices [m'], [k'] above apply to the tie coordinates {t}.
The equivalent interface loading matrices [m"], [k"] which apply to the

subsystem generalised coordinates {q} are defined as ...

[m"] = [C]' [m] [C] = [C]' [F]' [m] [F] [C] (3.37a)

(k"] = [C]' k] [C] =[C]' [F]' [K] [F] [C] (3.37b)

These matrices have the same dimension as [m], [k]. Benfield and Hruda
simply add [m"], [k"] to [m],[k] before solving the subsystem eigenvalue
problem. The 'component modes' which result are generally more similar
to the component deflections within composite-system modes than either
the free-free modes of the subsystem or the fixed-attachment modes.
Consequently, it is generally possible to eliminate more coordinates from

the individual subsystems.

The selection of a coordinate-transformation for each subsystem requires
the solution of a statics problem of the entire remainder of the composite
structure. Furthermore, the 'component modes' obtained are neither
mutually inertially uncoupled nor mutually elastically uncoupled with
respect to the subystem mass and stiffness matrices [m],[k]. Consequently
the amount of data which must be retained for the individual subsystem
is frequently increased relative to a more straightforward substructure

representation though the numbe. of coordinate actually used in the

representation is less.
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The free-free component mode representation of substructures with
interface loading is mot a suitable technique for use with the indirect
method of substructure assembly. Because this has been the preferred

assembly method, interface loading has not been used.

§3.8 Hybrid Component Mode Representations with
Redundancy

Bamford (C.1966) presents a method in which the complete set of
free-free subsystem modes is augmented by a set of fixed-constraint
normal modes. The result, initially, is a coordinate transformation from
a set of n original generalised coordinates to a set of more than n
'component modes'. Truncation of the modal series must be applied
before to reduce the number of 'component modes' back to n before the
substructure can be incorporated into a composite system. A number of
variants of this method are conceivable. Once again, the need to solve
for fixed-constraint normal modes for the subsystems has dictated that
these methods are not suitable for use with the motor component

elements of Chapter 4.
§3.9 Composite Structure Assembly.

Two distinct methods for composite-structure assembly exist within the
literature. We shall refer to these are the "direct” and "indirect"
methods. Both are suitable for the calculation of response to forcing
over a range of frequencies and for the solution of modes and natural

frequencies. It is not necessary for either approach that component
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mode representations of the subsystems exist though there can be a
serious impact on the computation time required if the original
generalised coordinates of the subsystems are used. For generality, we

shall call the vector of generalised coordinates being used for

subsystem 1 {q"}i. The associated vector of forces is [Q"]i and the mass
and stiffness matrices are [m"]i and [k"].. The vector of terminal
coordinates for subsystem iis termed {r}; and the vector of terminal
forces is {R}.. These vectors have the same meaning as before. The

transformation between [q"]i and {r}, is expressed by (3.38).

{r}; =[V"] {q"} -(3.38a)

{Q"};=[V"] {R}, (3.38b)
The coordinate transformations for free-free, fixed-constraint and

hybrid component mode representations have been developed in

previous sections and the substitutions necessary are summarised here.

For Free-Free Component mode representation.

[(m"] = [1] .. equations (3.5) and (3.6)
k"] = [A] .. equations (3.5) and (3.6)
V"] = [¥] .. equations (3.7) and (3.8).
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For Fixed-Constraint Component Mode Representation.
[m"] = [m'] .. equation (3.20).

k"] = [k'] .. equation (3.19).

v,V
[v"]=[ 0‘ I"} . equations.(3.15)and (3.17)

For Hybrid Component Mode Representation.

The partitioning of the terminal coordinates is different to that used for

the Fixed-Constraint modes but otherwise the substitutions are

identical.
[m"] = [m'] .. equation (3.20). ~
k"] = [K] .. equation (3.19).

0 I

[v"]=[vivb} . equations.(3.15) and (3.17)
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For Direct use of the Original Subsystem Generalised Coordinates.

[m"] = [m]
k"] = [k]
[V"] = [E] .. equation (3.2).

In the "direct" method, the set of constraints representing the
connections between subsystems is used to form another new set of
coordinates. If the total number of coordinates in the unconnected
composite system is n and the total number of connection coordinates is
I, then the_ new set contains n-l coordinates. The stiffness and mass

matrices are then formed directly and used in the usual way.

This contrasts with the "indirect” method in which allt of the subsystem

t Footnote: Approximations used in conjunction with either the "direct"
or "indirect" methods of composite structure assembly can result in a
reduction in the number of coordinates for the composite system. In
strict terms, it is correct to consider that such approximations are
actually made in the process of creating the ‘ndividual substructure

representations. Then, the statement made above is generally true.
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coordinates are retained and the joining of subsystems is enforced by
applying connection forces to the unconnected composite system which

are exactly sufficient to prevent the joints from separating.

Both methods have merits and shortcomings and these are listed with
the respective discussions below. The preclusion of flexibility of
connections in the case of the direct method is not as severe a drawback
as might first be imagined. It is possible to model connection flexibility
by including it in one of the substructures using notional masses as
illustrated below. However, in machines, the flexibility of some of the
joints has been shown to be controllable and in modelling a number of
different cases of flexibility, it is not practicable to regenerate the data

for those subsystems with which the flexibility was associated.

| m—
- fay

H' . ps u\’
,~" Modified :
Subsystem

Flexible s l
Connection ] \.\ Notlonal
*  Mass

------ K\\\\\\\ i
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Incorporating Connection Flexibility into a Substructure.
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§3.10 The "Direct" Method of Structure Assembly.

In the direct method of structure assembly, we require to form stiffness

matrix [K] and mass matrix [M] for each subsystem i such that the

vector of terminal forces {R}, is related to the vector of terminal

displacements {r}, by (3.39).

(R}, = [[K]; - o [M]] {r}; (3.39)

In general, this is only possible if the transformation matrix [V"] is
square and well conditioned since [I(]i and [M]i are related to [k"] and

[m"] by (3.40a) and (3.40b) below.

[K] = [V"T* [k"][V"]! "~ (3.40a)
M] = [V"T* [m"][V"]"! | (3.40b)
Equation (3.39) extends to (3.41) for the unconnected composite system.
(R} = [[K] - 0*M]] {r} (3.41)

Vector {r} is the complete set of terminal coordinates for the

unconnccted composite system comprising vectors [rl], [rz}, [r3] etc. -

the vectors of terminal coordinates for each of the subsystems.

Similarly, vector {R} is the complete set of terminal forces for the
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unconnected composite system comprising vectors {R;}, {R,}, {R;} etc. -
the vectors of terminal forces for each of the subsystems. Matrices [K]
and [M] are formed by placing the individual [K]. and [M]; along

diagonals.

Now, when the subsystems are rigidly connected, the displacements at
the various interfaces must always match. In general, there is some
constraint matrix [C] for every composite structure which expresses the

conditions at the subsystem interfaces as (3.42).

[C] {r}={0} (3.42)

Normally, the connection matrix [C] is a sparse matrix each row of which
contains a single "1" and a single "-1". It is trivial in this case to produce
a reduced set of coordinates {r} for the connected composite system
which automatically satisfies the connection equation matrix by simply
eliminating some coordinates. A workable algorithm 1is to proceed
-thr;ugh the matrix [C] removing the coordinate which corresponds to
each column which has either a single "1" or "-1". In more complex
cases of [C], individual coordinates are successively written in terms of
the remaining coordinates and then struck from the list. Let n be the
total number of coordinates in the unconnected composite-system and |
the number of constraints. Matrix [C] is then 1 x n. Whichever technique

applies, it is possible in general to find some matrix [G] (n x (n-l)) such

that (3.43) and (3.44) are true.

[C] [G] = [0] (3.43)
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[GI'[G] =] | (3.44)

The number of rows of [G] equals the total number of unconnected
composite-system coordinates. The number of columns is less than the
number of rows by the number of independent connections which have
been applied to the collection of subsystems. If [G] has been found, a
coordinate transformation can immediately be effected to produce ({r}

using (3.45) which inherently satisfies the constraint equations [C].
{r} =[G] (r} (3.45)

The mass and stiffness matrices for the connected composite system [M]
and [K.] are derived using standard coordinate-transformation

techniques - equations (3.46) and (3.47).
[M] = [G]' [M] [G] (3.46)
(K] =[G [K] [G] | (3.47)

Thus, the procedure of substructure assembly is - in the end - reduced
to a single coordinate transformation. Now eigenvalues and eigenvalue
and response calculations can be performed directly for the composite
structure using well established methods. This is the first option for
structure assembly and is proposed by most of the papers in the
literature including Goldman (C.1969), Gladwell (C.1964), Benfield &
Hruda (C.1972), Craig & Bampton (C.1968) and MacNeal (C.1971). Its
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limitations as far as the investigation into machines is concerned are

threefold.

(1) The matrix [V"] must be square and well-conditioned. This is
particularly difficult to ensure with non finite-element
subsystems such as the RING, BEAM and CYLINDER elements

developed in chapter 4.

(2) The procedure relies on the use of only rigid constraints. We
shall see that the particular problem associated with the DC

frame must incorporate joint flexibility.

(3) The matrices [M] and [K] being dealt-with are very large though
they are only partly populated.

§3.11 The "Indirect" method of Structure assembly.

The alternative approach to structure assembly is that originally
adopted by Kron (C.1963) for use with electrical networks and
developed towards mechanics applications by Simpson (C.1984).
Simpson does not include the facility for flexible connections though
other authors applying the same method (Turner et al. (C.1985)) do

include mention of flexibility at interfaces.

In this case, we do not require to produce [M] and [K]. Instead, the

subsystems are represented in the dynamic-flexibility form of (3.4a).

The relation between {r};, and {R}, for subsystem i is (3.48).
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(r}, = [V"] [ [K"] - @* [m"] I} [V"] (R}, = [f], (R} (3.48)

Once again, a set of connection equations exists in the form of [C]. In the
indirect assembly method, an auxiliary set of coordinates (t} is defined
for the composite system (equation (3.49)) which represents the

separation of the joints (the separation may be non-zero if the joints are

flexible).
{t} =[C] {r} (3.49)

A set of connection forces {T} exist which are proportional to ({t}

according to (3.50). The matrix constant [k.] is the stiffness of the

connections and 1is wusually diagonal in form. Infinite entries are

allowable for those connections which are completely rigid.
{T}=-[k] {t} (3.50)

The minus sign comes about because we define {T} as the vector of
forces exerted by the connections on the subsystems rather than

vice-versa. Now, using the principle of virtual work, it is simple to show

that {R - the vector of forces acting on the terminals of the

COHI‘I}

unconnected composite-system - is related to {T} by (3.51).

(R =[C]'{T} (3.51)

conn)
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The total force acting on the individual subsystems of the composite

system is the sum of two components {R__} and {R_} (3.52).

(R} ={R +{R (3.52)

conn } ext}

Combining (3.48) with (3.50) thru' (3.52) enables us to write {T} in
terms of [Rext] as (3.53).

00+ [ IS Ky = - (e IR (3.5

The total composite-system response {r} is evaluated using the same

equations and can be written as (3.54) or (3.55).

(r} = [f] [[CI{T) + {R,}] - (3.54)

<r>=m[m-[c]‘[[ﬂaf[kt][cjtf][cj‘]_ [m][c_][ﬂ]{nex& 6.9

In practice, (3.53) and (3.54) are used in preference to the single closed
form (3.55). It is sometimes impossible to find the inverse included in
(3.55) but it is always possible to find some {T} (not unique when there
are redundant connections) by Gaussian elimination which satisfies

(3453

Resonances of the subsystem are located by searching for frequencies at

which the determinant of [[I] + [k]J[C][f][C]"] is zero. Simspon (C.1984) has
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extended the Sturm sequence observations of Wittrick and Williams
(C.1971) to enable the modeller to count the "~number of
composite-system resonances whose frequencies are below the trial
frequency and developed a searching algorithm based on the Gaussian

reduction of the matrix which does not involve the explicit calculation

of the determinant.

The "indirect" method does not suffer the limitations enumerated above
for the "direct”" method. Its principle shortcoming is the relative high
amount of computation time necessary to solve for the vector of
connection forces (T} for each trial frequency. The time compares
favourably with the direct method when the number of composite
system coordinates is very large with respect to the number of

connections.

(1) The matrix [E] can have any form and any condition without

loss of accuracy to the computed displacements.

(2) Flexibility of connections can be included without penalty.

(3) The amount of core storage is minimal.

§3.12 An Optimised "Direct" Approach to the Solution of the

Constrained Eigenvalue Problem.

The author has developed a method by which the eigenvalues and

eigenvectors of a rigidly connected composite structure can be found by
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directly forming banded stiffness and mass matrices for a set of
coordinates which inherently satisfy the constraints of connection. The
method is many times more efficient than the "indirect” method
described above (and by previous authors) for typical problem
dimensions and does not suffer from the two major (as far as the
investigation of the vibration of motors is concerned) shortcomings of

the "direct" method:
(1) The matrix [E] of (3.2) can have any form and any condition.

(2) The full (n-1) x (n-1) mass and stiffness matrices are never
formed (where (n-l1) is the total number of composite system
degrees of freedom after connection). Instead, the mass and

stiffness matrices are banded.

The procedure is designed around the use of free-free component mode
representations but can be extended for any subsystem representations
including the fixed-constraint and hybrid varieties. The method is

developed and explained in appendix 3.
§3.13 Approximations To Accelerate Analysis.

In all branches of numerical analysis it is possible to trade exactness for
increased speed of computation. In the context of dynamic
substructuring and dynamic modelling in general, the most powerful
method of achieving increased speed is to reduce the numbers of

coordinates (degrees of freedom) involved in various stages of the
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computation. In some cases, the coordinates are discarded completely.
More usually, assumptions are made regarding the way in which some
coordinates may vary with frequency. The approximation techniques are

categorised as follows:

(1) Approximations made at the substructure representation stage.
(2) Approximations during composite-structure assembly.
(a) Those applicable in the "direct” method of assembly.

(b) Those applicable in the "indirect" method of assembly.

We deal first with the approximations made at the substructure
representation stage. Every substructure model is approximate. In
applying the Rayleigh-Ritz method, the first step taken by the modeller
is to assume that the general deflection pattern of the substructure
must be some linear combination of a finite number of shape-functions.
Generally, if more shape-functions are used, the quality of the
approximation is improved. Also, if the individual shape-functions can
be made to be more similar to the system eigenstates, the quality of
approximation for a given number of shape-functions improves. (Each
shape-function is associated with one coordinate). The latter point is one
of the two main reasons for using component-mode representations. By
finding subsystem modes and associated resonant frequencies, a
coordinate transformation is effected and the new coordinates are
elastically and inertially uncoupled. The associated freauencies can be
used to discern to some extent whether various coordinates need to be

retained. If the frequency is very high compared with the highest
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frequency in the range of interest, it is likely that the coordinate can be

discarded.

Goldman (C.1969) discusses the use of free-free component mode
representation and points out that serious errors can arise if high
frequency component modes are discarded from the mode series. This
can be justified intuitively. In a low-frequency free-free mode, the
locations of maximum stress/internal-force are towards the center of
the structure and stress/internal-force decreases steadily with
proximity to the boundary. Thus, if a low frequency subset of the
free-free modes is retained and all other modes discarded, the modeller
has implicitly assumed that stresses/internal-forces must be small near
the boundaries. However, connection forces are applied at boundaries
when the subsystem is a part of a composite system. Hence, some finite

error is expected.

The substructure representation proposed by Hurty (C.1965) uses
fixed-constraint natural modes and a set of attachment modes. The
number of attachment modes is equivalent to the number of degrees of
freedom at the subsystem boundaries and it is not possible to reduce
this number before the substructure is incorporated into a composite
system. The fixed-constraint natural modes are shown (above as well as
by other authors) to be elastically uncoupled from the attachment
modes but there is some inertial coupling. The series of fixed-constraint
natural modes can be truncated based on frequency comparisons
without the risk of serious error so long as no forces are required to be

applied to the subsystem except at its boundaries and no responses are
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required except at the boundaries.

The components used in this investigation have had relatively large
numbers of terminals at which forces might be applied or responses
computed. Frequently, the number of terminal coordinates has equalled
or exceeded the number of generalised coordinates which were used to
model the component. The fixed-constraint representation of
subsystems was rejected because it was not generally possible to ensure
that the boundary terminals would be independent. Had it been
possible to do so, the principle advantage of the method (i.e. the
straightforward reduction in the numbers of subsystem coordinates)
would still have been of little value because of the relative magnitudes
of the number of subsystem generalised coordinates and the number of

subsystem terminal coordinates.

Truncation of the modal series in the case of the free-free component
mode representation with interface loading ought lead to fewer
coordinates being used for the individual subsystems than in the case of
either the free-free of fixed-constraint representations for the same
quality of approximation since the 'component modes' (more correctly
called 'branch modes' in this case) ought generally be more similar to
the composite system modes than the component modes in either of the
other two cases. If there are a number of resonances of the remainder
of the composite system below the highest frequency of the range of
interest, then it becomes questionable whether a free-free component
mode representation is superior to a fixed-constraint component mode

representation.
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An alternative to discarding coordinates from a substructure
representation is to replace many of them with matrix terms which
collectively account for the "residual" mass, energy dissipation (if
damping is being used), and stiffness of the coordinates or component
modes removed. A static analysis can be used to determine the
contribution from high-frequency component modes by neglecting the
inertia terms. MacNeal (C.1971) suggests that the correction matrices be
derived from the difference between the true subsystem receptance
matrix at very low frequencies and the approximate subsystem
receptance matrix derived from the truncated set of component modes.
MacNeal takes no account of the inertia effects of the removed modes.
(His 'residual mass' matrix corrects for inertia terms associated with
the retained component modes which are originally omitted in his
formulation. The fixed-constraint component mode representation by
Hurty includes these effects). Rubin (C.1975) proceeds one step further
in correcting for the discarded modes. As with MacNeal, Rubin derives a
flexibility correction matrix based on a static analysis at frequencies
which are low compared with the lowest frequency of the discarded
modes. Then, based on the receptance correction matrix, inertia terms
are derived. Rubin demonstrates that this formulation is an order of
approximation better than the MacNeal approximation which is in turn
one order of approximation better than the traditional method of simply
discarding component modes on the basis of frequency. The three levels

of approximation are summarised here. Matrix [f] of (3.4a) is the true
flexibility matrix for the substructure at angular frequency . Matrix

[f ] is the contribution to [f] of the retained subsystem modes. Matrix
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[f4] is the contribution to [f] of the discarded modes. [U,] is the modal

matrix expressing the discarded modes in terms of the subsytem

generalised coordinates.

The zeroth order approximation (simply discarding modes) reads ...

f=[f,] (3.56)
The first order approximation (MacNeal) reads ...

[f] = [f_] + [f,] (3.57)
The second order approximation (Rubin) reads ...

[f] = [f_] + [f;] - w?[h,] (3.58)

The matrices [f;] and [h;] are derived according to (3.59) and (3.60).

[f,] = [U,)* (k1" [U) (3.59)

[h,] = [[U )" (k]"] [m] [[k]" [U,]] (3.60)

Rubin observes that higher order approximations can be devised but

suggests that the law of diminishing returns quickly comes into play.

Kuhar & Stahle (C.1974) propose that a Guyan type dynamic reduction

in the number of subsystem coordinates be effected before the
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eigenvalue problem is solved for the subsystem. "Slave" freedoms can
be chosen by comparing the frequency obtained from dividing the
associated diagonal stiffness and mass terms with the highest frequency
of the range of interest. Then when the component modes are being
evaluated, all resulting modes are retained as the new subsystem
coordinates. Turner, Milsted and Hanks (C.1985) note that in such a
“process, none of the terminal freedoms themselves should be allowed to
be "slave" freedoms. This approximation method is highly effective
insofar as it ensures that the subsystem deflection patterns which are
suppressed by the removal of coordinates elastically uncoupled from
deflections of the terminal freedoms just as the fixed-constraint modes
were elastically (but not inertially) uncoupled from the terminal

freedoms in the fixed-constraint representation.

The method of Kuhar & Stahle has been employed directly when
finite-element models of components have been prepared. The DMS
system automatically labels the selected terminal freedoms of the

substructure as master degrees of freedom.

For machine components which are modelled semi-analytically as single
elements, the Kuhar & Stahle method poses difficulties. Since the matrix
[E] of (3.2) relating the terminal freedoms {r} to the subsystem
generalised coordinates is not generally square it is difficult to ensure
that by removing any one generalised coordinate, a constraint has not

been placed on {r}.

A different method has been used for these components. Because it is
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possible in most cases to divide the modes of these components into
separate groups it is usually convenient to solve for all the modes. Thus,
one might typically find 700 modes of a cylinder having solved many
eigenvalue problems of degree 20. Then modes are discarded one by
one if their frequency is sufficiently far removed from the range of
interest. (Garvey, Penny and Gilbert (C.1988) include the case in which
the bottom of the frequency range of interest may be above some of the
subsystem modes.) A frequency-independent receptance correction
matrix is built up representing the entire set of discarded modes. The
result is the same as the Kuhar & Stahle appoach but avoids the danger
of inadvertently constraining the subsystem implicitly. The receptance
correction matrix being independent of frequency is a first order
approximation. By using higher orders of approximations it would be
possible to remove more modes while retaining the same quality of
approximation. The relative magnitudes of the various problem
dimensions encountered within this investigation are -such that it is not
effective to use any order higher than the first. Some substructures
have had such large numbers of terminal coordinates compared with
the numbers of modes which might be discarded -that it has not even
been effective to use the first order approximation and in these cases,

all of the computed modes have been retained.

Having removed all of those subsystem coordinate which can be
discarded on the basis of high characteristic frequencies, (or replaced
them using first, second or third order receptance matrix quantities etc.)
any further approximation/increase-in-computational speed must come

about by some economisation in the number of connections used or the
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manner in which these connections are handled in programs.

For the "direct" method of éoniposite-structure assembly (ie. a
coordinate transformation which produces a set of coordinates implicitly
satisfying the constraints), Crﬁig & Chang suggest that a reduction be
applied to the interface coordinates. Three different forms of reduction
are proposed. They propose that the Rayleigh quotient be examine.d for
each of the interface coordinates and if the corresponding characteristic
frequency is significantly higher than the highest frequency of the
range of interest, the coordinate should be reduced out either by simply
striking it from the list of coordinates of using a Guyan-type reduction
process to remove the coordinate and modify the mass and stiffness

matrices acordingly.

The equivalent operation in the 'indirect' (Kron) method of assembly is
more difficult. In this case, the connections have no wunique
corresponding stiffness and mass since both are functions of frequency.
Garvey, Penny & Gilbert (C.1988) suggest a method by which this
process can be effected by assigning an approximate receptance for the
connections based on the minimum modal receptance figures for each of
the subsystem modes of the composite system. The ‘responsiveness' of
the composite-system to connection forces is compared with the
flexibility of the connections themselves. If the responsiveness of the
composite-system to a given connection force is significantly less than
the flexibility of the connection, the connection may be discarded. For
example, if the composite system is a single degree of freedom mass of

100 kg, and the only connection joins this mass to ground with a

-121-



stiffness of 1N/m, the connection may be ignored for angular
frequencies greater than (let us say) 1 rad/sec because above
1 rad/sec, the receptance of the composite system never exceeds
0.01 m/N which is much less than the connection flexibility (1 m/N).
Normally, the modeller would not include such a connection in any case.
However, it possible is in realistic cases to solve a "mini" eigenvalue
problem to find a new set of connection coordinates some of which have
high associated flexibility compared with the 'responsiveness’ of the
composite system over the frequency range of interest. This has
frequently been the case in the connection sets joining DC machine
mainpoles to the yoke. A number of connections are used to represent a
smooth join and then by "reblending" these, a large proportion of the
connections can be removed. The procedure is explained in more detail

in appendix 1.

An entirely different approach has also been used which relates to the
formation of the matrix product [C][f][C]' known as Kron's matrix. No
connections are discarded. Instead, the contributions made to this
matrix by some of the subsystem modes (whose frequencies are well

removed from the frequency range of interest) are represented by a

matrix power series in ®?2

. This process was developed by the author
and is explained in detail in appendix 1. It has been found to be the

single most useful approximate method for accelerating analyses.
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§3.14 A Special Case of Composite-Structure:-

Rotational Periodicity.

In the previous chapter, the term rotational periodicity occurred
frequently in conjunction with simplifications made by authors in order
to produce close-form analytical expressions for natural frequency.
Thomas (C.1979) shows that if a structure possesses the property of
rotational periodicity, the modes fall into distinct groups each of wﬁich
is characterised by n - the number of "waves" of displacement about the
circumference of the structure. If there are m subsections in the R.P.

structure, then n can have values between 0 and m/2.

In the analysis of DC frames in this study, the general method of
modelling is to deal with the yoke using pure cylinder theory and use
substructuring concepts later to attach the poles individually along with
all other subsystenis involved in the model. Simpson (C.1984) points out
that the solution of a very large composite system is best done by
pyramiding solutions (ie. forming the ultimate composite-system from a
number of sub-composite-systems and forming each of these from
sub-sub-composite systems etc.). The final solution process is much

faster if the number of connections involved is small.

A powerful alternative to the general modelling method - if the yoke is
not split - is to find all modes and frequencies of the sub-composite
system comprising just the yoke, mainpoles and compoles using the

techniques associated with rotational periodicity.
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One way of performing this analysis is to divide the frame into 1
identical subsystems, (1 being the number of mainpoles on the frame)
each one of which contains a fraction of the cylinder, one mainpole, and
one compole (Fig. 3.4b) and use the properties of R.P. structures to
economically solve for the modes and frequencies of the
yoke-with-poles. The time taken to obtain a 'complete’ set of free modes
for the whole frame is significantly less using this method compared
with the general method described above since the usual processes of
structure assembly (formation of the matrix [f] of (3.4a) etc.) need not
be used. Instead, 1 separate eigenvalue problems each of dimension 2p
are solved (where p is the number of degrees of freedom used to model
the individual sections). The larger commercial finite-element analysis
packages include facilities to perform analyses of R.P. structures from a

model of the repeated substructure.

A more subtle method again has been used in practice (Fig. 3.4c).
Instead of considering the mainpoles to be 1 separate subsystems, they
are considered to a single subsystem which - being R.P. - has modes
divided into -groups characterised by the integer n. Since there is no
connection whatsoever between these subsystems, the solution for the
modes of this structure for each n involves only p coordinates (p being
the usual number of coordinates which would be used to represent the

pole) instead of the usual 2p .
Conventional substructuring methods (emploving only free-free

component modes) are then used to find the modes of the composite

structure for each n. Only a subset of cylinder modes needs to be
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considered for each n. Thus, for n =2, cylinder modes having {0,2,4,6 ... }

waves about the periphery are considered. The case n=0 is special.

Cylinder modes {0, 1, 21, 31, 41 ... } are used.

The power of this method lies in the fact that only one of the poles need
be connected to the cylinder and the presence of only a limited subset
of the modes of both the cylinder and the set-of-mainpoles ensures that
the connections are maintained for all of the other poles. Thus, when an
unsplit-yoke with mainpoles is being prepared as a substructure in a
larger analysis, only two substructures and one set of connections are
considered for each mode-group n. If compoles are included also, this

becomes three substructures and two sets of connections for each n.

It is somewhat unfortunate in the light of the economy afforded by this
method that the occurance of unsplit yokes in very large machines is
virtually nil because of the practicalities of rolling the steel and
assembling/dissembling the machine. In small and medium-size

machines (< 1 MW) most solid yokes are made as a single piece.

§3.15 A Special Case of Composite-Structure:-

"Periodic Structures".

The author uses the term ‘"periodic" structure to mean a
composite-structure comprising a number of identical substructures
identically connected. This regularity-of-form is not quite so useful as
the property of rotational-periodicity in terms of the amount of

computation time which may be saved. It is, however, a more general
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occurrance. (A structure having rotational periodicity may be regarded

as a special case of a periodic structure).

There are instances of such structures within electrical machines.
Examples include AC stator-cores, DC machine half-yokes with poles and
compoles, and finned casings. The author has developed a procedure
whereby full use is made of the fact that a "periodic" structure has that
particular form. The reader is referred to Garvey & Penny (C.1988). The
method is particularly powerful when the number of connection
coordinates between successive subsystems is small with respect to the
number of generalised coordinates use to describe the behaviour of the
subsystem itself and the number of subsytems in the composite system

is significantly greater than three.

The method has been tried in the context of analysing a DC machine
half-yoke as a periodic structure rather than as a composite-structure
comprising half-cylinder and pole-models. It is not an effective
alternative in this instance for reasonable numbers of poles. The
number of connection coordinates is too great compared with the
number of generalised coordinates. It has been estimated that stator
cores can also be modelled more effectively using the RING or CYLINDER

elements (derived in chapter 4) with special material properties.
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'DMS model

Fig. 3.1a

PAFEC model.

« Fig.3.1b

DMS and PAFEC models of Test Structure.

Fig. 3.1
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Fig.3.2b  PAFEC response plot.

Fig.3.2  DMS and PAFEC results for Test Structure.
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PHYSICAL STRUCTURE DIMENSIONS.

Cylinder :- Inside Radius =0.95m - Plates - Axial Length = 1.6m
Outside Radius = 1.05m Radial Depth = 0.2m
Axial Length = 2.0m. Thickness = 0.05m.

Columns :- Height =0.3m Disc ;- Thickness = 0.05m
Section = 0.05m x 0.05m. Outside Radius = 1.05m

Inside Radius = 0.2m.

DMS PROBLEM DIMENSIONS.

Cylinder :- 72 Nodes, 700 Free Modes. (370 Min.s to Prepare)
Columns :- 3 Nodes, 14 Free Modes. (Each) (11 Min.s to Prepare)
Disc - 84 Nodes, 478 Free Modes. (409 Min.s to Prepare)
Plates - 15 Nodes, 88 Free Modes. (Each) (49 Min.s to Prepare)
TOTAL - 222 Nodes. ( Each one has 6 degrees of freedom.).
1332 Original Terminal Freedoms.
1558 Component Modes.
148 Connections.
1184 Constrained Freedoms.
839 Mins CPU time to Prepare Component Mode Sets.
51 Mins CPU time to "test" 250 Frequencies.
FE PROBLEM DIMENSIONS.
Cylinder :- 72 Nodes
Columns :- 2 Nodes
Disc - 36 Nodes (New)
Plates - 20 Nodes (New)
TOTAL :- 130 Nodes.
780 Original Degrees of Freedom.
60 Condensed Degrees of Freedom.
650 Mins Required for Complete Solution for 250 Frequencies.
(Including Computation of Element Matrices, Assembly
and reduction of Structure Matrices).
Fig. 3.3 Structure and Problem Dimensions for Test Structure.
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Fig.3.4a  Complete Magnet-Frame.

Fig.3.4b  One method.
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Fig. 3.4c A better method.

Fig. 3.4 Use of Rotational Periodicity in Unsplit Frame.
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Chapter 4.

MODELLING INDIVIDUAL
MACHINE ELEMENTS

In chapter 3, the process of component mode synthesis was presented
as an ideal means by which the stator of any electrical machine could be
modelled. In order that- the ultimate composite-system model is
sufficient in detail to model the reality to good accuracy, the subsystems

themselves must be represented accurately.

In reality, every -(sub)system has an infinity of modes. If a finite
number of degrees of freedom is used in a model, it will only be
possible to find the same number of normal modes and associated
frequencies. Using the Rayleigh-Ritz technique, the normal coordinate
having the lowest corresponding frequency (i.e. lowest Rayleigh
Quotient) is usually a very good approximation to the first natural free
mode of the real (sub)system. The normal coordinate having the next
lowest associated frequency tends to be a slightly less good
approximation to the second natural free mode of the real (sub)system
and so on. In a (sub)system model having - let us say - 10 degrees of
freedom, the 10" normal coordinate generally bears little resemblence
to the 10'® free mode of the real (sub)system. It is shown in chapter 3

that when modelling a subsystem, we are not directly concerned with
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how well the free modes can be approximated. Instead, we require to
find- a set of coordinates which can accurately approximate the
deflection patterns which would be experienced by the real subsystem
connected into the composite-system and vibrating at any frequency

within the range of interest.

§4.1 Distributed Versus Discrete Coordinates And Choosing
How Many to Use for a Given (Sub)System.

In general, it may be stated that using more coordinates in a given
(sub)system model results in a better representation. Clearly, there
comes a point when the increase in accuracy is not sufficient to justify
the increase in computation time which is associated with having one
extra coordinate. In fact, the number of coordinates necessary to model
a given (sub)system to a certain degree of accuracy is a function of the
frequency rdnge over which response calculations are to be performed
(or natural-frequencies found). This point is illustrated with the simple
example of a beam system of cross-section d x d and length 1 for which
1» d which is to be rigidly attached at one end to a much stiffer

member as shown in Fig 4.1a. Coordinates for the beam are chosen from
the set of Legendre polynomials. @, =1, ®,= 2z/1, @, = 3/2(z/1)? - 172,

and so on. (illustrated in Fig. 4.1b. A minimum of three coordinates is
necessary since two degrees of freedom are constrained at the point of
attachment. The question is, how many more coordinates are necessary
to model the beam over a given frequency range ?. A frequency can be

associated with each coordinate of the beam by computing its Rayleigh

quotient and dividing the square-root of this by 2x. For a given
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frequency range [fl,fz], it is possible to assess whether the fourth
coordinate is necessary by comparing the f, with the frequency

associated with @ 4

If it is known from the outset that the beam is to be rigidly constrained
at one end, we can simply choose a different set of coordinates, ¥, all of
which satisfy the constraints, and it follows that over frequency ranges

(f,.f,] where f, is significantly less than the characteristic frequency of

the second coordinate k PO the behaviour of the beam could be

well-modelled using one coordinate only. Fig 4.1c illustrates a suitable

set of constrained coordinates.

If it is the case that the beam is to have substantial structures rigidly
attached to each end, a minimum of four coordinates is necessary (there

are two angular freedoms and two translational freedoms).

In general, the remarks made with regard to the fixed-constraini
representation of subsystems in chapter 3 apply here and can be used
to specify the number of generalised coordinates which would ideally

be used for a given object as follows:

For a given object, there should be sufficient generalised coordinates
that one independent "attachment mode” can be found for each freedom
at which force may be applied - the other such freedoms being
constrained against motion. Further coordinates are necessary to

introdicce the first normal mode of the constrained object (none of the
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freedoms which may be forced is allowed to move) if its frequency Is
not high above the highest frequency of interest and similarly for the

second, third such normal modes etc..

This criterion can only be applied approximately. Where connections are
to be flexible (ie between pole and yoke) it is not necessary to ensure
that each freedom which may be forced has one associated independent

'attachment mode'.

§4.2 Assumptions Relating to the Variation of Displacements

Within a Continuous (Sub)System.

Displacements internal to a continuum can vary continuously in all
three directions. Where it has been appropriate to generate models of
continuous (sub)systems in the context of this work, the displacement
pattern has been described by sets of functions of the position
coordinates. In setting-up coordinates for a given continuous subsystem
it is advantageous to recognise that when one physical dimension is
small, the variation of point traﬁslations with respect to the relevant
position coordinate may be assumed to be zeroth, first or second order
etc. depending on the actual proportions of the object. For example, in
modelling a membrane or film it would be justifiable to assume that a
point on one side of the film would move in exactly the same way as the
point on the exact opposite side i.e. the variation of displacements with
respect to depth in the film is zeroth order. For thin plates and shells,
one may asume that while points on opposite surfaces (but on the same

normal) may translate by differing amounts (tangential to the plane of
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the plate/shell) at any one instant, the variation of translations (in all

three directions) between these two points is linear.

There are identifiable limits to the use of these assumptions. In the
section before this, approximate c;,_riteria by which the number of
displacement coordinates necessary were developed. Choosing a finite
set of coordinates is entirely analogous to imposing the assumptions in
question here and similar techniques can be employed to evaluate
validity. If the thickness of a given isotropic shell is d and it has a shear
modulus G, we can state that the assumption of linear variation of

displacement between its surfaces will be quite valid at all frequencies

significantly less than f;, where f, is the characteristic frequency at

which the middle layer might oscillate in antiphase with both the outer

surfaces. Similarly, the assumption that normal strain out of the plane

of the paper is zero can be tested by computing a natural frequency f,,

at which the plate would have a comprexxion/extension resonance out

of the plane. Formulae for f,, f, are presented and illustrated in Fig. 4.2.

The assumption of linear variation of point translations with respect to
position through the depth has been used for all of the elements which
will be discussed.

§4.3 Damping matrices for the subsystems.

Damping values for metals and most other materials used in large

machines - where they exist - tend to be given as hysteretic damping

- 135 -



factors. That is, unlike the viscous damping mechanism, the energy
dissipated in a given cycle of strain is independent of the time-span in

which the cycle occurred.

Hysteretic damping can- be represented explicitly as a matrix of real
numbers having the same units as the stiffness matrix. It is common
practice in finite-element packages to combine the (real) stiffness
matrix with the hysteretic damping matrix to form a complex stiffness
matrix. The imaginary part of this complex matrix is the hysteretic

damping matrix.

The hystcretic damping matrix is derived in exactly the same way as
the pure stiffness matrix except that instead of using elastic modulii E
and G, (representing the material Young's and Shear modulii
respectively) quantities representing the energy dissipated per unit
volume f(;r unit strain are substituted. In compiling the complex
stiffness matrices, therefore, one may simply use complex values of E
and G to include damping effects. This has been done throughout this
investigation. Where material constants are used they are considered to
have both real and imaginary components. Damping matrices do not

then have to be derived separately.

Damping is significant in the context of the vibration of machines, but
generally, the greatest contributions to damping derive from various
mechanisms at the joints between components. Since damping is so
small within the components themselves, it has been ignored for the

purposes of performing the coordinate transformations necessary to
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model the components as substructures. Then having chosen a set of
generalised coordinates, a damping ratio is computed for each one. This
method would be completely free from error if the condition of
"proportional” damping obtained. A more complete treatment of the
damping within components is not worthwhile since it would effectively
double the storage requirements for the substrutures. The errors
introduced by this approximation are completely dwarfed by

uncertainties in other areas.
§4.4 Derivation of the General Mass and Stiffness Expressions.

In the case of all of the elements used in this investigation, the outline
procedure for establishing these quantities has been the same. The
number of coordinates actually used for each object depends of the
dimensions of the object and the number of nodes assigned to it.
Instead of dealing with specific coordinates as the general
finite-element derivations do, we adopt the more general approach that
the coordinates are each particular distributions of the relevant
"coordinate types". (Two coordinate types for a beam are lateral-

translation-of-the-section and shear-angle-of-the-section.)
The general derivation follows the format outlined below:
(1) Choose the set of coordinate types which are to be used to

represent the deflection state of the element based on

assumptions relating to the proportions of the element.
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(2) Create expressions (zeroth- or first- order differential equations)
relating the translation (local frame) of each particle of the

element to the coordinate types.

(3) Create expressions (zeroth-, first- or second- order differential
equations) which relate strains at each point (in terms of the local

coordinates) in the element to the coordinate types.

(4) Formulate expressions relating translations and strains in the

local frame to those in the global frame.

(5) The stiffness and damping matrices are derived by integrating
the product of strain-squared and the appropriate modulus of
elasticity (or modulus of energy dissipation) over the entire
volume of the element. Mass matrices are found by integrating

the product of translation-squared and density over the volume.
The procedure is illustrated below for a limited beam model.
§4.5 Stiffness and Mass Terms - Simple Beam in Flexure.

In the context of modelling DC machines, the beam element is especially
useful in representing - mainpoles and compoles of the machine and
various stiffening elements. In this section, we consider only the case of a
rectangular-section beam in flexure to illustrate the procedures used in

the more complex cases to follow. The beam occupies the volume

x € [-b/2,b/2], ye [-b/2,b/2], ze [-1/2,]/2]. A much more general

- 138 -



beam model is discussed in §4.6 allows for a general cross-section beam.

The derivation is outlined in the following section.

For simplicity, the effects of shear are neglected. Then, only one type of
coordinate is necessary to fully describe the translations of all particles of
the beam. This is defined as the translation in the y direction (other

definitions could be used to equal effect) and is symbolised as V(z). The

y" translation, v(x,y,z), for all particles on a given beam cross-section is

identical. Thus:

v(x,y,z) = V(z) (4.1)

The translation of individual particles of one section in the z direction is
dependent on the y (position) coordinate of the respective particles as

expressed in (4.2).

W(x,y,2) = =y.D,(V(2)) (4.2)

Individual particles of a section will translate in the x direction by some

small amount when there is a finite strain ¢, present, as a result of the
Poisson coupling between normal stresses/strains. The strain e is
accounted-for implicitly insofar as the constant, E, relating ¢,, and 6, is

lower than it would be if strains e _ and e, Wwere constrained to be zero.

The x -translation of individual particles is then set to zero though this is

not strictly true.
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u(x,y,z) = 0 (4.3)

Equations (4.1) to (4.3) are more concisely expressed by table 4.1 whose
dimensions are trivial in this case but for the elements to come, the

corresponding tables will be seen to be much larger.

COORDINATE TRANSLATION
TYPE u | v W
\"4 0.0 | 1.0 —y.Dz

Table 4.1 Mapping between coordinate types
and point translations (BEAM)

The only strain to contribute to the stored-energy of this beam in

flexure is €,,. given by (4.4) and stress G ,. is related to ¢_,. by (4.5).

e,, = D,(W) = -y.D,2(V(2)) (4.4)

z
c..=E.¢_. (4.5)
Equation (4.4) is best expressed in tabular form for the more complex

cases discussed later but for this beam, the tabular form of (4.4) is

trivial.
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COORDINATE STRAIN

- TYPE [3

2z

\' -y.D 2

Table 4.2 Mapping for strains (BEAM).

Now, in order to obtain a numerical model of finite dimension, V(z) is

assumed to be a linear combination of n functions vi(z), 1 <1 £z as

(4.6).

V(z) = Zv,(2). a, (4.6)

The choice 6f these functions and the number of them which should be

-

used is discussed later. What we require here is to formulate

expressions for the general (complex) stiffness term kij and the inertia
term  m,; corresponding to v, and Vi The general stiffness term is

defined by Przemienecke (D.1968) in energy terms by (4.7).

- 252)]

. where a, and a, are coefficients. This extrapolates exactly to the case

where damping is included in the stiffness term as the imaginary part.

The general inertia term takes on a similar form shown in (4.8).
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. = |L&E) (4.8)

da 5.daj

Now, the stored energy S.E. in simple continuous elements can in
general be expressed as the convolution of stress and strain over the

volume of the element. The formulation is simple for the beam in

flexure.
SE. ——fffczzeudVol
g bd” > 2, 1
N L D, (V)| .dz 4.9
~e2 | b)) (4.9)

U3
z

E above is a complex constant whose real part is the elastic modulus of

the material and whose imaginary part is the damping constant for the

element. Combining (4.6), (4.7) and (4.9) gives a formula for kij.

The kinetic energy is expressed using (4.10).

=;_fff p.(\}zwbz).dvm

_ %p.bd (V) dz +;—p [D(v)] . dz (4.10)

Section-Translation Section-Rotation

. where p is the material density for the beam. Combining (4.6), (4.8)
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and (4.10) gives a formula for m;;.

The functions v, might typically be Legendre polynomials. It is useful

for this beam to observe the condition of symmetry and solve for

symmetrical and antisymmetrical modes separately.

§4.6 Stiffness and Inertia Terms - BEAM element.

In the beam element used throughout this investigation, flexure in two
planes is catered-for together with twist of the beam, shear deflection
(in two planes) and section warp. Seven distinct coordinate types are
used, each one being a function of z only. Table 4.3 below relates the

symbols to their definitions.

Translation of the section in the x direction.
Translation of the section in the y direction.
Translation of the section in the z direction.
Shear angle of the section... +x- axis — +z- axis
Shear angle of the section... +y- axis — +z- axis
Twist angle of section (positive rotn. about z- axis)

Section warp.

¥R ™R g<C

Table 4.3. Definitions of coordinate-types for the beam element.

Now the translations u, v and w (representing translations in the x, y
and z directions of the global frame) of the individual particles of the
beam are linearly related to the generalised motions by the mapping

given in table 4.4 below.
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COORDINATE TRANSLATION

TYPE u v W
U 1.0 0.0 -x.D,
\% 0.0 1.0 -y.D,
w 0.0 0.0 1.0
o 0.0 0.0 X
B 0.0 0.0 y
X -y X 0.0
o 0.0 0.0 Xy

Table 4.4 Mapping for point translations (BEAM

The stiffness and damping matrices are derived on the basis of energy

stored/dissipated due to the strains. Assuming that our beam is narrow,

it is justifiable to assert that the stresses ¢__, o __, and O,y are all zero. In

xx” T yy

this case, contributions to the stored energy can only be made by the

strains e , e , ande,,. A mapping of these strains may be written

yz

directly relating them to the coordinate types. The term -x.Dz2 (beneath

e,, and horizontally across from U indicates that the normal strain €_,

acting in the z direction depends on the second derivative of U - the

lateral translation of the beam cross-sections in the x direction.
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COORDINATE STRAIN

IYPE €, €, €
U 0.0 0.0 -x.D 2
\'% 0.0 1.0 -y.D 2
w 0.0 0.0 D,
o 1.0 0.0 xD,
B 0.0 1.0 yD,
X -yD, xD, 0.0
) y X xy.D,

Table 4 Mapping for strains (BEAM).

The elemental stored energy, dS.E., in the elemental length of the BEAM
between z and z+dz is given as the integration of the energy per unit
volume over the beam cross-sectional area. Equation (4.11) expresses

this formally.

e

2.4dSE. = (U,V,W,a.,1,8) | | [Ty] dx.dy (U,V,W,a,B,%,8) dz (4.11)

where [Tg] is the matrix of operators shown in Fig 4.3. (Matrix [Tg] of

Fig. 4.3 is loosely called the “stiffness” matrix for convenience but
would be more accurately described as the half-strain-energy-density
matrix since it requires to be integrated over the entire volume of the
beam before it resembles a proper stiffness matrix. Note that the double

integration over the cross-sectional area is a constant for a given

cross-section. Each part of each of the terms in [TB] has the form

(Operator_l).Scalar.(Operator_Z). The first of these operators applies to

o



the pre-multiplying coordinate and the second to the post-multiplying

coordinate. Thus, term Ty (1,4) written in full would read

E.xz.Dzz(U).Dz(a). (U, a are the first and fourth coordinates respectively

as defined in tables 4.3 and 4.4 above).

The mass matrix is ultimately determined from the kinetic energy of
the BEAM. The elemental kinetic energy, dK.E., in the elemental length
of the BEAM between z and z+dz is given in terms of the

time-derivatives of the coordinate-types ( U' V' etc. ) by (4.12) below.

2. dK.E.=(U', V', W', 8.x,8). | [ [S51dx.dy. ULV, W,o' B8 dz (4.12)

where [Sg] is the matrix of operators shown in Fig. 4.4. ( [Sg] is called the

BEAM "mass" matrix for convenience but would be more" properly

termed the half-kinetic-energy-density matrix.)

The actual stiffness and mass matrices are determined by the set of

functions which the coordinates (U V W o By d8) are allowed to follow.
Generally, if there are n functions used for the beam, there are 7n
generalised coordinates. Nodes are allowed to occur anywhere on the
outside surface of the beam or on the central fibre and there is no
restriction on the axial distance between sections at which nodes are
defined. Indeed, two or more nodes may be located on the same axial

section.

This particular formulation of a beam element has been derived
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especially for use in the context of modelling machines. Apart from the
generality of this model (allowing it to have any number of nodes
deployed randomly), it is distinguished from the usual formulation in
FE. packages by the inclusion of the section warp coordinate type, 3 -
particularly useful in the modelling of beams in torsion having sections
which are significantly narrower in one dimension than in the other. At
each node, three translations are defined and two rotations. (Rotation at
any node about an axis parallel to the beam axis has no associated
stiffness and no associated mass. This freedom must not therefore be

used to connect the beam.

The verification example chosen for the beam is a cantilevered "T" piece
comprising two identical rectangular-section beam pieces (Fig. 4.5). The
substructuring programs of DMS are used to connect the two pieces but
all approximations are suppressed. A PAFEC FE model is used for

comparison purposes.

The "T" piece is subjected to a harmonic point force acting obliquely at
the corner shown in Fig 4.5 and the response of the same freedom was
computed for 250 frequency intervals geometrically spaced between
5Hz and 1000 Hz. The responses computed by PAFEC and DMS are
compared in Fig. 4.6.

§4.7 Stiffness and Inertia terms - RING element.

The ring element serves to represent a number of machine components

including simplistic models of the complete stator frame, ring stiffeners,
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flanges and brushgear-support rings. The treatment presented below
_allows' for flexure in and out of the plane, extension of the ring, shear in
two ﬁlanes, section twisting and, as with the beam, section warp. The
ring cross-section may assume any shape (but the same provisos apply

as are applicable to the beam element).

The RING element as it has been used most often occurs as a full 360° of
material but this is not necessarily the case in the formulation given
here. All section deflections are computed at the radius R which may be

anywhere between the inside and outside radii of the ring.

The coordinate-types for the ring U,V,W,a,B,x,d are defined in table 4.6

similar to table 4.3 for the beam.

Radial translation of the section.

Circumferential translation of the section.

Axial translation of the section.

Shear angle of the section... rotn. in direction +8.
Shear angle of the section... postv. rotn. about radius
Twist angle of the section... postv. rotn. about +6 axis.

Section warp.

»R ™R g<Cq

Table 4.6. Coordinate-types for the RING gigment.

A mathematical definition of each of these coordinate-types is given in
table 4.7 in the form of the diaplacement map. Note that the local point
deflections u,v and w are now related to the cylindrical polar frame r,0,z
rather than the local cartesian set. (Deflection "u" is radially outward,

"v" is circumferential in the direction of +8, and w is the usual deflection
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in the z direction). R is the radius at which deflections are defined.

COORDINATE TRANSLATION
TYPE u v W

U 1 -(1-R)D, 0.0
\Y% 0.0 r 0.0
W -z -2.D, T
o 0.0 (r-R) 0.0
B 0.0 z 00
X 0.0 -(r-R)
) 0.0 z.(r-R) 0.0

Table 4.7 Mapping for point translations (RING).

A mapping of the strains may be written directly using the relations
between deflections in polar coordinates and strains in polar
coordinates derived in appendix 5. The relevant equations are

summarised here.

g9 = (u+(dv/de))/r (4.13a)
gy, = (r.(dv/dr)-v+(du/de))/r (4.13b)
e, = ((dv/dz) + (dw/de)r) (4.13¢)
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COORD

STRAIN

mx@95<c‘

€o0
(1 -(-R)D )
De
-z.(1+ D)/
(r-R)De /r
zDelr
z/r

2(r-R)Dy/r

€or
0.0
0.0
0.0
R/r
-z/t

zDJr
zZR/r

0z
0.0

0.0
0.0
0.0
1.0
—(r-R)De/r
(r-R)

The elemental strain-energy, dS.E., contained in the elemental arc of the

Table 4.8 Mapping for strains (RING).

ring between 6 and 6+d6, is defined as by (4.14) below.

2.dS.E = (U,V,W,a.,8,x,8).] [ [Ty] drdz.(U,V,W,a,B,x,5) do

.. where [T.] is the matrix of operators shown in Fig 4.7. The convention

used is the same as before.

The mass matrix is determined from the kinetic energy expression. The

elemental kinetic energy, dK.E., is given in terms of the time-derivatives

of the coordinate-types ( U' V' etc. ) by (4.15) below.

2.dK.E. =(U',V,W,a',B,x,8)] [[Sp] drdz.( UV, Wo,p,8)0d6  (4.15)

where [S;] is the matrix of operators shown in Fig. 4.8.
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The actual stiffness and mass matrices are determined by the set of
functions which the coordinates (U,V,W,a,B,x,8) are allowed to follow.
Generally, if there are n functions used for the ring, there are 7n
generalised coordinates. Nodes are allowed to occur anywhere on the
outside surface of the beam or on the central fibre and there is no

restriction on the circumferential distance between sections at which

nodes are defined.

Like the beam element of §4.6, the DMS element RING is distinguished
from normal FE models in that any number of nodes can be randomly
deployed and section warp (coordinate type- &) is specifically included.
At each node, three translations are defined and two rotations. (Rotation
at any node about an axis parallel to the tangent lines has no associated
stiffness and no associated mass and must not be used to connect the

ring.

The verification exampie chosen for the beam is a quarter ring having
rectangular cross section. (Fig. 4.9). The DMS substructuring programs
are used to rigidly fix one end, and none of the approximations
available are used. A PAFEC FE model is again used for comparison

purposes.

The ring piece is subjected to a harmonic point force acting obliquely at
the end shown in Fig 4.9 and the response of the same freedom was
computed for 250 frequency intervals geometrically spaced between

5 Hz and 500 Hz. Fig. 4.10 shows the responses computed by PAFEC
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and DMS.

§4.8 Stiffness and Inertia terms - PLATE element.

The flat-plate is the most common sort of component modelled in the
dynamic representation of machines having covers. Instances include
the base-plates of machines (fabrications of a number of distinct plates)
covers for machines, terminal-boxes, machine-feet, cooler-sides and
baffles. In the context of the vibration of machines, the bending
behaviour of plate members needs to be considered as well as the

membrane behaviour.

The plates discussed here are of uniform-thickness and it is assumed
that properties do not vary through the thickness of the plate. It can be
shown by simple symmetry arguments that the membrane (in-plane)
behaviour of such plates is entirely uncoupled from the bending
(out-of-plane) behaviour. This uncoupling is clear in the inertia and
stiffness matrix definitions. For conciseness, the in-plane behaviour is
examined simultaneously with the out-of-plane behaviour of the
uniform plate. The plate is considered to lie in the x-y plane so that the

z axis is normal to it.

The representation presented implicitly assumes that material fibres
originally normal to the plane of the plate remain straight and that the
plate is free to strain normal to the plane. Shear and rotatory inertia
effects are included. Five coordinate-types are used, three translations

and two rotations. Each one corresponds to the motion of the individual
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fibres of material normal to the plane of the plate. The coordinate-type

symbols used are defined below in table 4.9.

Translation of the fibre in the x direction.
Translation of the fibre in the y direction.
Translation of the fibre in the z direction.
Shear angle of the fibre ... rotn. +z -axis — +x- axis

Shear angle of the fibre ... rotn. +z -axis — +y- axis

R g<C

Table 4.9. Coordinate-types for the PLATE element.

The relation between point translations within the PLATE and the

coordinate types is given as table 4.10 below.

COORDINATE TRANSLATION
TYPE u v W
U 1.0 0.0 0.0
\"4 0.0 1.0 0.0
W —z.Dx -z.Dy 1.0
o 0.0 0.0
B 0.0 z 0.0

Table 4.10 Mapping for point translations (PLATE).

The strains are defined in the usual way and related to the

coordinate-types by table 4.11.
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U \" W o B
€, D, 0 2D} 2D, 0
€yy D, D, -2z.D,D, z.D, z.D,
s 0 D, 2D} 0 2D,
e, 0 0 0 1 0
£y, 0 0 0 0 1

Table 4.11. Strains related to coordinates (PLATE).

The elemental stored energy dS.E. of the PLATE in the elemental area

[(x,x+dx), (y,y+dy)] is written in matrix form as (4.16) below.

2.dS.E = (U,V,W,a,B) J[TP] dz (U,V,W,a,B)! dx.dy (4.16)
where [TP] is the matrix given in Fig. 4.11.

The elastic modulii E_, Exy and Eyy, relate normal stresses o, and O to

the normal strains € and €oy by (4.17). Derivations for these can be

found in standard stress & strain textbooks.

c.=E & _+E .¢& (4.17a)

XX XX XX xy' Tyy

6 = Exy.la)nc + Eyy. €0 (4.17b)

The elemental kinetic energy, dK.E., in the elemental area
[(x,x+dx), (y,y+dy)] is derived from the translation map of table 4.10

and is expressed as (4.18).
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2.dKE. = (U,V,W,a’,b) [[S,] dz (U,V,W',a,b) dx.dy (4.18)
where [S;] is given for the plate element in Fig. 4.12.

The plate element presented here is identical to that normally used in
conventional FE packages except that any number of nodes may be used
and they may be randomly deployed on the top, bottom or middle
surfaces of the plate. (Normal F.E. plate elements only allow nodes to be
located on the central - or "neutral” - plane). Three translations and two
rotations are defined - rotation about a normal to the plane of the plate

has no associated mass or stiffness.

The example used to verify the plate element is an "L" shape as shown
in Figs. 4.13a and 4.13b. Once again, the PAFEC FE and DMS results are

compared.

A harmonic force acts on one corner of the "L" shape and response is
measured at the same point and in the same direction. The DMS
substructuring programs are used to appropriately constrain the two
DMS plate elements and no approximations are allowed. Frequencies
between SHz and 500Hz have been scanned using 250 frequency
intervals geometrically spaced and the resulting response from both

. PAFEC and DMS is compared in Fig. 4.14.
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§4.9  Stiffness and Inertia terms for the DISC element.

In §4.8 above, the stiffness and inertia matrix terms corresponding to
deflection coordinates of a uniform plate were derived with respect to
Cartesian position coordinates. Depending on the nature of the
plate-boundaries or the directionality of non-isotropy in the plate
material, it is sometimes more convenient to use polar coordinates
throughout. One such circumstance is the end-plate of machines which
often comprises either a single complete disc or a pair of half-discs
joined together at a bolted-flange joint. The DISC element as described

here may occur as a full 360° span or any partial span.

As with the "plate" element, five coordinate-types are used - three
translations and two rotations. Each one corresponds to the motion of an
the individual fibres of material normal to the plane of the disc. It is
implicitly assumed that these fibres remain straight and that the disc is
free {o strain normal to the plane to minimise stresses within the plane.
Rotation of any node about the normal-to-the-disc has no associated
stiffness or mass. The coordinate-type symbols used are defined below

in table 4.12.

Radial translation of the fibre.
Circumferential translation of the fibre.
Axial translation of the fibre.

Shear angle of the fibre... rotn. +z -axis — +r- axis
Shear angle of the fibre... rotn. +z -axis — + 6 axis

™R g<C

Table 4.12 Definitions of the coordinate-types for the DISC element.
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The coordinate-types are mathematically defined by the translations map

given as table 4.13 for the DISC.

COORDINATE TRANSLATION
TYPE u v w
U 1.0 0.0 0.0
A% 0.0 1.0 0.0
W -z.Dr —zDB/r 1.0
o z 0.0 0.0
B 0.0 z 0.0

Table 4.13 Mapping for point translations (DISC).

A mapping of the strains may be written directly using the relations
between deflections in polar coordinates and strains in polar
coordinates presented in appendix 5. The relevant equations are

summarised here.

Egp = (ut+(dv/de))/r g, = (du/dr) (4.19a)
I (r.(dv/dr)-v+(du/d®))/r e, = ((du/dz)+(dw/dr)) (4.19b)
gy, = ((dv/dz) + (dw/de)/r) (4.19¢)

5 187



Table 4.14 Mapping for strains (DISC).

The elemental stored energy, dS.E., in the elemental area [(r,r+dr),

(6,6+d6)] of the DISC is written in matrix form as (4.20)

2dS.E = (U,V,W,a,B) [ [[Ty] dz (U,V,W,a,B)"dr.de (4.20)

... where [Tj] is the matrix defined in Fig. 4.15. The convention used is

that established in §4.6.

The elemental kinetic energy, dK.E., in the elemental area [(r,r+dr),

(6,6+d06)] of the DISC is written in terms of the velocities (U',V' etc) as

(4.21)

2.dK.E. = (U,V,W,a',B) [ [[Spldz ( ULV, W',a',B")! dr.de (4.21)

.. where [Sp] is defined in Fig. 4.16 Again, the convention used is that
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established in §4.6.

The DMS element DISC is distinct from FE plate elements in that the
boundaries, material constants and nodal positions are expressed in
polar coordinates and as usual, any number of nodes can be assigned to

the object randomly placed on either the top, bottom or middle surfaces.

The verification example presented here analyses one half of a 'disc
whose geometry is depicted in Fig. 4.17 and whose inner radius is
built-in. PAFEC and DMS models of the constrained disc are compared.
DMS substructuring programs are used to constrain the disc
appropriately and no approximations are used. An oblique harmonic
force is applied to a single point (Fig 4.17) and response is calculated at
the same freedom for 100 frequency intervals geometrically spaced
between 5 Hz and 500 Hz. Fig. 4.18 presents the results from both the
PAFEC FE analysis and the DMS analysis.

§4.10 Stiffness and Inertia terms - CYLINDER element.

The cylinder is the single most powerful element in the context of this
work. Modelling a cylinder (or portion thereof) as a single element having
many nodes can save a considerable amount of computation time
compared with a conventional F.E representation. The cylinder is used
primarily in representing the yoke of DC machines but can be used to
approximately represent stator cores of A’ machines by adjusting the

material modulii.
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Five coordinate-types are used for the cylinder - three translations and
two rotations. Each one corresponds to the motion of the individual fibres
of material normal to the central membrane of the cylinder. It is
implicitly assumed that these fibres remain straight and that the cylinder
is free to strain normal to the central membrane i.e in the radial direction.

The coordinate-type symbols used are defined below in table 4.15.

Radial translation of the fibre.
Circumferential translation of the fibre.
Axial translation of the fibre.

Shear angle of section... rotation +z -axis — + r- axis
Shear angle of section... rotation +z -axis — + 0- axis

= R g <C

Table 4.15. Definitions of coordinate-types for CYLINDER element.

The coordinate-types are mathematically defined by the translations
map given as table 4.16. The symbols u,v and w represent translations
of individual particles of the cylinder in the three polar directions r,0,z.

The coordinates are assumed to be evaluated at some membrane of the

cylihder whose radius is R.
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COORDINATE TRANSLATION
TYPE u v W
U 1.0 - (-R)D, /R —-(-R)D,
v 0.0 r 0.0
W 0.0 0.0 1.0
.o 0.0 (r-R) 0.0
B 0.0 0.0 . (r-R)

Table 4.16 Mapping for point translations (CYLINDER).

The polar strains { € 3 €, } are now related directly to the

00’ eez’ zz’ eer’
coordinates U,V,W,a,B by substitution of the entries of table 4.16 above

into the equations for polar stresses & strains.

Egg = (u+(dv/de))/r g, = (r.(dv/dr)-v+(du/de ))/r (4.22a)
€, = ((dv/dz) + (dw/d6 )1) e, = ((du/dz) +(dw/dr)) '. (4.22b)
e = (dw/dz) (4.22c¢)

ZZ

The resulting mapping for cylinder strains is presented as table 4.17

below.
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\ U SV W A B

1 -R) ~2 -R
€. (?XI—ET).DBJ D, o (o, o

€q, —(r—R(%-r%}DeDz rD, G—).De (-R).D, (%{-)DB

€,| -G-R)D; 0 D,. 0 (-R).D,

e.| © 0o 0 (%) 0

€g, 0 0 0 0 1.0
Table 4.17 Mapping for strains (CYLINDER).

The stiffness matrix is found using (4.7) from the strain energy. The
elemental strain energy, dS.E., contained in the elemental area of

CYLINDER [(6,6+d8), (z,z+dz)] is given as (4.23) below.

2.dS.E. = (U,V,W,a,B).J[TC] dr (U,V,W,0,B)' d6.dz (4.23)

Matrix [T,] is defined in Fig. 4.19 using the same conventions as

explained in §4.6.

The mass matrix is found from the expression for kinetic energy. The
elemental kinetic energy, dK.E., contained in the elemental area of
CYLINDER [(6,6+d6), (z,z+dz)] is expressed in terms of the velocities
(U',V'etc.) as (4.24) below.
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2.dK.E. = (U,V,W'.o',). [[So] dr. (U,V',W',0',B)" d.dz (4.24)

Matrix [S.] appears in Fig. 4.20 using the established conventions. The

CYLINDER - like the DISC and PLATE elements - can have an arbitrary
number of nodes arbitrarily located on any of three layers

inside-radius, middle-radius or outside-radius.

One verification example for the CYLINDER has been to compare results
for the computed response-to-forcing of a constrained half-cylinder in a
fashion similar to the verification examples presented for the other

elements.

Fig. 4.21 shows the physical model chosen and Fig. 4.22 gives the
frequency response traces computed by DMS and PAFEC respectively.

A further piece of corroborative evidence for this cylinder element is
the comparison of predicted and measured frequency response traces
for one of the cylinders used in the study on bolted-joints in cylinders.

These curves are presented as Figs. 7.7 and 7.8.

§4.11 Generating Functions for the Elements.

In the preceding sections, the mass and stiffness matrices were not
given directly for the elements derived since the coordinates used for
each of these elements is chosen to best model the particular case.

Instead, the strain energy and the kinetic energy were expressed for
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each element using a matrix of differential operators.

The coordinates for each one of these elements are created by
combining a set of generating functions with the coordinate types. For

example, with the BEAM element, seven coordinate types are defined
(U, V, W, «, B, x, 8}. all of which are allowed to vary with respect to the

position coordinate of the beam section - z. A set of coordinates for a

particular case of the BEAM element might be defined as:

U@z) = uld)l(z) - uz(Dz(z) - u3<I)3(z) - u4(I)4(z) |
Vi(z) = vl(Dl(z) + vz(Dz(z) + v3®3(z) + v4<I)4(z) I
W(z) = wlfbl(z) - w2<I)2(z) - w3(D3(z) - w4€D4(z) I

a(z) =0 |- (4.25)
B(z) =0 |
x(z) =0 |
8dz) =0 I

Functions (Dl(z), <I)2(z), (D3(z), <b4(z) are the generating functions for the

beam and they are used to define a total of twelve generalised

coordinates { Uy, Uy, Ug, Uy, Vy, Vg, Vg, Vy, wl.wz,ws,w4].

For the "surface" elements CYLINDER, DISC and PLATE, the generating
functions are functions of two variables. In this investigation, functions
of two variables have always been constructed as products of two
functions of one variable. The principal reason for this is that the
boundaries of the PLATE element have generally been lines of constant

x and lines of constant y. Similarly, the CYLINDER is usually bounded by

lines of constant © and circles/circular-arcs of constant z, and the DISC
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boundaries are generally arcs of constant r and lines of constant 6. It is

then possible to use the result of equation (4.26) below to simplify

integrations necessary for forming the mass and stiffness matrices.

fﬂf‘:zl:(x)-dx-c()’)-dx-dy = L:ZF(X).d x.ff({y).dy (4.26)

For the "surface" elements, therefore, two distinct sets of functions are

chosen whilst only one set of functions is chosen for the "line" elements

BEAM and RING.

Now, the sets of functions used for any element must satisfy four

principal requirements.

(1)

(2)

(3)

The set must contain a sufficient number of functions that some
linear combination of the functions can be found to produce a
good approximation to any of the possible deflection shapes of

the object being modelled within the frequency range of interest.

It should be possible to convolute each one of the functions in
the set and its first and second derivatives with each of the
other functions of the set and its first and second derivatives. A
numerical integration procedure is incorporated in the DMS

package but it requires inordinate amounts of computer time.

The functions ought be divisible into groups in cases where this
is useful. Two cases in particular are important for some of the

elements. If symmetry is present with respect to the position
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(4)

coordinate, then the functions should be divided into
symmetrical and antisymmetrical sets. If axi-symmetry obtains,
then the set should contain only trigonometric terms with

integer numbers of waves about the periphery.

The function set should be as independent as possible. For
example, over the span z € [-1,1], one might choose symmetrical
functifms c0s(0.01z), co0s(0.02z), cos(0.03z). These functions are
independent insofar as one cannot find a linear combination of
the three functions which will be zero for all z. However, in order
to find a linear combination which resembles cos(mwz), large
coefficients would be required and the classic computing

syndrome of "small differences of large numbers” becomes a

problem.

Two distinct sets of functions have been employed for the elements.

These are referred to as the Line/Trigonometric/Hyperbolic set and the

Legendre polynomial set. These are discussed separately.

§4.12 The Line/Trigonometric/Hyperbolic function set.

This family of functions was originally the only set in the software
developed. A correct choice of the coefficients results in a set fulfilling all
of the requirements of §4.11. The independent variable (i.e. the position
coordinate) is x for the purposes of this discussica and the interval over
which the functions are to be defined is x € [-1,1] by applying suitable

constants. (This interval is exact if the boundaries are "regular" as defined
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above. If not, the interval is set to be approximately x € [-1,1])

It is well known that the functions cos(0x), cos(nx), cos(2mnx), cos(nmx) etc.
form a uniformly convergent approximation to any symmetrical function
defined over the interval x e [-1,1] if the function and its derivatives are
continuous over the interval and if the derivative of the function at x=1 is
'zero. (If the function is symmetrical, the derivative at x=-1 must also be
zero.) Clearly, any function (be it symmetrical, antisymmetrical or neither)
which describes the variation of displacements within a continuous body
must be continuous. The same applies to all the derivatives of such a
function. However, the slope at the interval ends is generally not zero.
(Consider the first flexural mode of a beam defined over the interval.) In
order that a finite first-derivative of displacement be allowed at the ends
of the various elements, a single hyperbolic function is added to the set.
The set of cosine functions defined above are independent when
convoluted with a weighting fachr of 1 over the interval x € [-1,1], but
they are not independent of the hyperbolic-cosine function cosh(nx).
However, by choosing a relatively large coefficient m for the hyperbolic
cosine, the dependence is kept to a minimum. Too large a coefficient leads
to precision and overflow errors in the programs and a rule-of-thumb has
been developed in which the coefficient, m, chosen for the cosh function is
twice the largest coefficient in the trigonometric cosines n. This has
proved a satisfactory solution and it has been shown that small changes in -
the value of the coefficient of the hyperbolic-cosine have little effect on
the results produced for any of the elements which use the line/trig./hyp.

function set.
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The number of functions used for a given element on any occasion is
arbitrary but it is a simple matter to determine the maximum "waviness"
of the element for which the assumptions of the element still hold good.
For the BEAM element in flexure in one plane, the minimum wavelength
should not be less than three times the maximum depth of the beam in
that plane as a rough guideline. The minimum wavelength is considered
to be determined by the cosine function having the highest coefficient.
Strictly, a shorter "wave" could occur in the beam because of the-
hyperbolic-cosine but it generally holds that since stiffness terms tend to
be dominated by the first and second derivatives of displacement, greater
"waviness" corresponds to higher stiffness. Deflection patterns which have
high "waviness" have correspondingly high stiffnesses and consequently,

contribute little to the behaviour of the element.

The function f(x)=1 can either be regarded as a "line" function or a
trigonometric function, f(x)=cos(0x). It is convenient for programming to
pair symmetrical and antisymmetrical functions where the element has
some symmetry with respect to a position coordinate. There is no
antisymmetrical equivalent to cos(0x) except the trivial case sin(0x)=0.
Thus, the function f(x)=1 is invariably considered as the line function

whose antisymmetrical partner is f(x)=x.

A typical set of symmetrical functions from the line/trig./hyp. family is

shown in Fig. 4.23a.

The antisymmetrical functions of the line/trig./hyp. family comprise

trigonometric and hyperbolic sin functions and the antisymmetrical line
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function y = x. We observed above that a single hyperbolic function was

useful for the symmetrical function to provide for a non-zero derivative at
the boundaries x=1, x=-1. The trigonometric sinusoids sin(rx), sin(2mx),

sin(3nx) etc have zero values but finite first-derivatives at x =1, x=-1.
The inclusion of the line function y = x provides for a non-zero value at
~the boundaries. Thus, there is often no need to include a hyperbolic sin
function in the set. The need sometimes arises when the second derivative
of the displacement coordinate is also important. For example, in a beam
in flexure (neglecting shear effects), the moment at any section is
dependent on the second derivative of the transverse translation with
respect to the axial position coordinate. If we are modelling the
antisymmetrical set of modes for a beam and do not include a hyperbolic
sin function with the line function and the trigonometric sin functions,
then we are implicitly imposing the constraint that the moment at the
beam ends will always be zero. This is useful if we are only interested in
the free modes of the beam but when the beam is to be used as a
substructure, significant errors can be caused. Thus, if the diagonal
stiffness entry for a given coordinate-type involves second derivates of
the coordinate-type, then the hyperbolic sin is used. In order to keep
dependence of the functions to a minimum without causing numerical
problems, the rule-of-thumb stated above for the coefficient of the
hyperbolic cosine related to the highest coefficient of the trigonometric

cosines is applied to the antisymmetrical functions also.

A typical set of symmetrical funcions from the line/trig./hyp. set is

presented in Fig. 4.23b.
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Sometimes, it has been appropriate to include trigonometric sin and cosine
functions not having an integer number of wavelengths within the span of
the object. Consider the case of a RING element spanning 6 e [-n/2,n/2].
Suppose that we are interested in the symmetrical modes of the ring
vibrating in its own plane. We might begin by assigning the four functions
y=1, y=cos(20), y=cos(46), y=cosh(86/n) to the radial displacement
coordinate U. When the RING element moves in a symmetrical rigid-body

mode, the radial displacement actually varies as cos(6). Now, no linear

combination of the four functions above is an exact match for cos(6). Thus,
when the free modes of the RING portion are evaluated, a non-zero
frequency will be evaluated for the "rigid-body" mode. This is not a
serious drawback if the ring portion is fixed to more substantial members
in a composite structure, but it is generally desireable that the rigid body
modes should have associated natural frequencies of zero. The situation
can be rectified by introducing the function y=cos(6) to the set. Then, the
rigid body mode can be modelled exactly. This can cause some difficulty
since the dependency within the function set then becomes large. A
method of circumventing the problems caused by dependency within the

sets of functions has been developed and is presented in §4.14.

The convolutions of the various functions from this set symmetrical and
antisymmetrical over a symmetrical interval are presented in appendix 4.
The DMS programs forming the stiffness and mass matrices for the various
elements call a common routine to perform the integrations. If the

boundaries are "regular", the integrations take place extremely quickly.
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§4.13 The Legendre Polynomial set of functions.

The Legendre polynomials were introduced especially to model the radial
variation of displacements within the element DISC. It can be seen from
Figs. 4.15 and 4.16 that both the mass and stiffness matrices for an
elemental volume of the DISC contain powers of r - the radius. The
convolution integrals (with respect to r) required to form complete mass
and stiffness matrices for the DISC involve three functions whereas all
other convolutions for other elements and for the circumferential direction
of the DISC involve only two functions. It is entirely inappropriate to use
the line/trig./hyp. family to represent the radial variation of
displacements within the DISC element since the convolutions are so
difficult to evaluate analytically. The convolution of three polynomials
requires no more than the multiplication of the three polynomials and the

integration of the single polynomial product.

Legendre polynomials are chosen in preference to other forms since the

polynomials themselves and their derivatives are relatively independent

for monotonic weighting functions over the interval x € [0,1].

Problems arise due to the size of the coefficients in the convolutions. The
coefficients of the first six Legendre polynomials over the interval
x € [0,1] which have a value of +1 at x = 0, and a value of 1 at x =1 are
presented in table 4.19 below. The curves corresponding to these
functions are displayed in Fig. 4.24. Since the precision of modern
computing machines in single-precision variables is limited to about 1 part

in 107, it is not generally possible to perform the convolutions to
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acceptable precision for more than 6 Legendre polynomials without

resorting to the use of double-precision.

Polynomial COEFFICIENTS

X0 X! X2 X3 xt X3
1 1 0 0 0 0 0
2 1 -2 0 0 0 0
3 1 -6 6 0 0 0
4 1 -12 30 -20 0 0
= 1 -20 90 -140 70 0
6 1 -30 210 -560 630 -252

Table 4.18 Coefficients of the Legendre polynomials - x € [0,1]

The problem with precision is the central reason for choosing the
line/trig./hyp. family of functions in preference to the Legendre

polynomials in all cases possible.
§4.14 Symmetry with Respect to a Position Coordinate.

Consider the BEAM element whose axis is coincident with the z axis and
whose center is at the origin. Coordinate type U(z) describes the

transverse deflection of the sections in the direction of the x axis.
Coordinate type o(z) describes the shear angle in the x-z plane. In

symmetrical modes, U(z) is a symmetrical function and «(z) is an

antisymmetrical function. (Consider the first flexure mode. The
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transverse displacement at z=0 is finite while the shear angle at z=0 is

Zero).

Coordinates fall into groups if the element possesses some symmetry
with respect to a position coordinate. Some are symmetrical with
respect to the position coordinate in symmetrical modes (and
antisymmetrical in antisymmetrical modes) and the others are
antisymmetrical with respect to the position coordinate in symmetrical
modes (and symmetrical in antisymmetrical modes). For example, if the
boundaries of the PLATE element are symmetrical with respect to both
the x and y axes (x-y being the plane of the PLATE), the symmetry case
of each of the five coordinate types is shown in table 4.18 below for

modes symmetrical with respect to both x and y.

COORD.  Defn. Symmetrical Symmetrical
wrt X. wrt Y.
U X - Translation NO YES
Vv Y - Translation YES NO
\W% Z - Translation YES YES
o Rotation NO YES
Z—X
B Rotation YES NO
zZ— y

Table 4.19 Symmetry properties of the coordinates - PLATE.

Thus, when dividing the modes of a symmetrical element into groups,
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symmetrical or antisymmetrical sets of function are used to represent

the various coordinates as appropriate.
§4.15 Dealing with Dependency in Coordinates.

It was observed earlier in §4.12 that functions are sometimes included
in sets to model special cases of deflection which cause a relatively high
dcgre;c of dependency in the coordinates. A method has been developed
by which this dependency can be identified and dealt-with in the

solution of the eigenvalue problem.

The identification is based on an automated inspection of the stiffness
matrix [k] for the element. Each coordinate i is examined in turn as
follows. Firstly, a quantity R(i) - related to the minimum stored energy

contribution "for a unit value of the coordinate - is computed as (4.27).

R@) = k(i,i) - Z k(i,j)% k(G,j) (4.27)

Then, R(i) (this has the dimensions of a stiffness) is compared with k(i,1).
If R(i)/k(i,i) is less than the precision being used in the computer, then
the set has one totally redundant coordinate. The coordinate q(i) is
removed from the set by expressing it as a linear combination of the
other coordinates using the Guyan reduction method. Generally,
coordinates are specifically included to cater for the rigid-body modes.
For these coordinates R(i) is zero but k(i,i) is zero also and they are not

considered redundant.
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The same check is performed on the mass matrix. In general, because
the mass matrix involves zeroth and first derivatives and the stiffness
matrix involves zeroth, first and second derivatives, it is possible to find
redundancy with respect to either the mass or stiffness matrix and not

the other.

If the mass matrix exhibits a coordinate redundancy, the Cholesky
factorisation of the mass matrix is likely to fail because it may detect
that the matrix is not positive definite. If the factorisation does not fail,
the inversion of the Cholesky factor (see §4.15) will produce very large
numbers and the presence of these numbers destroys precision when

this inverse is multiplied by the Cholesky factor of the stiffness matrix.

If the stiffness matrix has a redundancy not shared by the mass matrix
and it is allowed to remain during the solution of the eigenproblem, the

solver will find more rigid-body modes than it ought.

If both matrices share a redundancy, then there are more eigenvalues
than independent eigenvectors in the problem. This can cause totally
erroneous results to be generated by the eigenproblem solver, because
of the attempts the program makes to ensure that eigenvectors are
mutually orthogonal with respect to both the mass and stiffness

matrices (§4.15).
§4.15 Solving the eigenvalue problem for the substructures.

In order to find the set of normal coordinates for each individual
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substructure, an n x n eigenvalue problem must be solved where n is
the number of displacement coordinates used to represent the general
deflected shape of the substructure. If the substructure were being
represented as an assembly of individual finite-elements, the "original”
coordinates would be nodal displacements and the mass and stiffness
matrices for the system would be sparse. Suitable "front-ordering"
would reduce these to banded form and the resulting computation time
is considerably diminished. When the original coordinates are smooth
displacement functions, the number of original coordinates required for
a given quality of representation is fewer but the mass and stiffness
matrices resulting are normally fully-populated. It should be noted that
a Guyan reduction performed on a normal finite-element model of say a
plate will result in mass and stiffness matrices very similar ‘to those
produced in DMS. The methods used to solve the eigenvalue problem for

the substructures are briefly summarised here.
The first step in solving the problem is to factorise the mass and

stiffness matrices using the Cholesky decomposition technique for

symmetrical matrices. Since, [m] and (k] are both positive-definite, the

Cholesky factors [1_] and [l ] should contain only real entries.

[m] = [1).0,]" (28
k] = [1,).0, )" (4,29}

It is worth noting at this point that matrix [m] has no zero-eigenvalues

but matrix [k] normally has six zero-eigenvalues corresponding to the
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six rigid-body-modes of every free object. In ideal circumstances, one

single coordinate corresponds to each of these modes. To avoid the

possibility of complex values occurring in [lk], it is common practice to

shift the eigenvalues by some minimum prescribed amount d. Thus, [k']
is formed using (4.27) below before the Cholesky decomposition and the
eigenvalues finally computed are shifted back to their correct values by

subtracting d from each one again when they have been computed.
(k'] = [k]+ d.[m] (4.30)

For convenience, the distinction_ between [k'] and [k] is ignored for the
rest of of this section. It can be shown Gourlay & Watson (D.1984) that
the eigenvalues, of the matrix [r] are the same as those of the

matrix-pair [k], [m] where [r] is given by (4.31).
[r] = (0170000 - [0, 080,07 = [00,).01,]% (4.31)

Matrix [r] is formed from its factor [lr] which in turn is formed from (1,

[I,] by a direct Gaussian operation rather than by explicit matrix
inversion and matrix multiplication. The eigenvectors {w} of [r] are

related to the eigenvectors {u} of [k],[m] by [Im]'t in equations (4.32)

and it is useful to observe that if {w}'.{w}=1, then {u}'.[m].{u}=1 also.

That is to say, the mode shapes have been mass-normalised.

(w} =[_]"{u)} (4.32a)

Y
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{u} =0_]%{w) (4.32b)

Having formed [r], a real symmetric tridiagonal matrix [t] having the
same eigenvalues as [r] can be formed by a series of pre- and post-
multiplications by Householder matrices. The eigenvalues themselves
are then found using a version of the QR (or QL) algorithm, with
temporary shifts, specifically for the solution of eigenvalues of

symmetric tridiagonal matrices.

The eigenvectors of [r] can be found for the individual eigenvalues using
the highly convergent inverse-iteration algorithm. Once found, each
vector {w} is normalised. The convergence rate for a given eivenvector
depends on the difference between the corresponding eigenvalue and
the next closest eigenvalue. Convergence is accelerated by shifting
individual eigenvalues, A, to be marginally negative once the associated
eigenvebtor, {w}, has been found — if the next-largest eigenvalue is too

close. This is achieved by forming [r'] from [r] using (4.31).
[r')=[r]-{w}.{w}" A (4.31)

All of the transformations used are very stable and the combination has

proved to be an effective one in solving problems up to 200 x 200 on

the Appollo 550 workstation. Above this size, in-core storage of the

matrices becomes a problem.
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Transverse Defleckion

Transverse DeFleckion

Fig 4.1a Cantilever Beam.

(4

t ~
vl

Fig 4.1b Coordinate Set for Free Beam.

Fig4.1c Coordinate Set for Constrained Beam.

Fig 4.1 Cantilever Beam for Illustration of Derivations.
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o7
Fig. 4.2a Undeformed Portion of Plate.
. < = < -

f1 - (G/pd2)05

Fig. 4.2b. Internal Shear Mode of Plate.

f, = (E/pd?)°%/2

Fig. 4.2c. Internal Compression/Extension Mode.

U(omrr_]

= E.(1-v)/((1-2v).(1+V))

= Young's Modulus for the Material.
= Shear Modulus for the Material.

= Poisson's Ratio for the Material.

= Material Density.

Fig. 4.2 Use of Frequency Criteria for Testing Assumptions
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Fig 4.12
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Chapter 5.

LAMINATED COMPONENTS IN MACHINES

The laminated-steel - construction is commonplace in the environment of
electrical machinery. The laminations vary in thickness from one
application to the ﬁext as they do in the finish and treatment of the
surfaces. Intuitively, one would be expect that a stack of laminations
might differ substantially in behaviour from a solid steel piece of the
same dimensions. This is borne out by a set of experiments devised to
investigate this behaviour. This chapter reports the set of experiments

and the findings.

§5.1 Treating a stack as a continuum :-

Normal Stress Relations.

It is convenient to treat a pack of laminations as a continuum for the
purpose of extrapolating the characteristics of a laminated body from
the bulk properties of the pack itself. We establish a set of stress-strain
relations for the general stack. Using these, it is possible to draw
conclusions about the general bulk properties of the stack from

observations about the behaviour of particular objects.
It is possible make some simp'e statements about ‘'laminated’

stresss-strain  relations before any experimentation. Firstly, we note

that there are three principal directions in every laminated body. One is
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necessarily the normal to the plane of lamination and will be referred to
as the 'z' direction. The other two ('x' and 'y') can be any convenient
orthogonal directions in the plane of lamination. Consider the cube in
Fig. 5.1. It is usual for the density of packing of the steel to be of the of
the order of 0.96-0.99 in the current context. The interposing material
may be air, varnish, resin or any combination of these. Asperities (or a
coating as the case may be) on the surface of each lamination prevent a
completely flush fit. We would expect that the interposing layers would
contribute some extra flexibility to compression in the axial direction
and that shear strains in the x-z and y-z planes would have significantly
lower energy per unit volume associated with them than if the same

strains were to occur in solid steel.

The behaviour of the laminated continuum can be split into two areas -
behaviour with respect to normal stresses and behaviour with respect

to shear stresses.

For normal stresses within the stack a relation of the form of 5.1 will

hold between the normal stresses o ., C and c,, in the x, y, and z

y¥'
directions.
XX 1 u}. u2 XX
oy, F,=E| K 1 K, Eyy (5.1)
Oz Hy Ky @ €2

The constant E in (5.1) is derived directly from the properties of the

lamination steel. If we use Esm31 for the usual Young's modulus of the
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lamination steel, p.,, for the lamination steel Poisson's ratio and SF for

the stacking factor, then E from (5.1) above may clearly be expressed as

(5.2) below.

E=SF.E_, /(Q-p..°) (5.2)

The constant o will be much less than 1, thereby dictating that the

stiffness of the stack in compression/extension in the 'z' direction is low.

The constant p, can be shown to be related to p, ., as (5.3).

stee

(1 - usteel) (5.3)

"o (1 - 2l"’stoz:elXI * I'l'steo:ﬁl)

It is difficult to deduce the exact value of constant p,, using (5.1)

directly. However, it is simple to show from (5.1) using the argument

that the matrix must be positive-definite (i.e. that no state of strain can
have a negative associated stored-energy per unit volume) that must p,

is bounded as expressed in (5.4).
2.4,2¢ @ (5.4)

We can proceed further by finding the inverse relation to (5.1). It is

convenient to define the following constants.
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. 1 =5 H2 .
ey e o

A=a- p,z(1+8+i))) (5.6)

We can form the inverse relation to (5.1) by performing a

Gauss-Doolittle inversion on the matrix. The result is given as (5.7).

2 2
X+5— - X-H +8— —é
A ekt A
€ x 2 2 O
1 b S b
€ =—R —%H+— +— - o 5.7
EZ i GE
_3 _8 1
A A A

Now, we can come to a conclusion about the cross-coupling terms (8/A)
by reasoning that the strains in € _ and €y would be the same in a solid
steel continuum as they would be in a laminated stack for a given state

of stress o, Cyy» Ozpr Equation (5.8) gives the relation (8/A).

(SM') = Hsteel . (5.8)

Thus, for normal stress/strain relations within a laminated stack, we

find that there is only one true degree of freedom. The most simple
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variable to measure is the quantity (1/EA) which is the 'longitudinal’

flexibility of the stack given zero stress values for o _, Oy
§5.2 Treating a stack as a continuum :-

Shear Stress Relations.

The shear stress relations are significantly simpler than those for
developed for the normal stresses above. We begin as before by

expressing the stresses explicitly in terms of the strains as (5.9)

Oy, Gy, 0 0 €xz
oy, p=| 0 Gy, 0 €y, (5.9
Oy 0 0 Gy Exy

Now, for shear stress/strain within the x-y plane, the behaviour of the
stack must be very similar to that of the equivalent solid steel body. If

we use G to represent the shear modulus of the solid steel and SF as

steel
before to represent the lamination stacking factor, then we can write
(5.10) by inspection.

G_=SF.G (5.10)

Xy * Tsteel

- Gyz must be identical unless the lamination

The other properties G

surfaces have a strong directionality which is not usually the case. Thus,
as we found with the normal stress relations, there is only one
parameter to be empirically determined for the shear stress/strain

relations.
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§5.3 Effect of the "Laminated" Properties on the

Behaviour of machines.

It is to be expected that the properties discussed above will not
significantly influence the axially-uniform modes of stators, hence it has
been possible for previous authors to produce good solutions for the
vibration modes and frequencies for these modes. With these modes,
virtually no interlaminar shear takes place so the shear modulii are of
no significance. The normal stress-strain relations do have an impact
which some authors have failed to recognise. Laminated cylinders of
finite length vibrating in "axially-uniform" shapes have resonances
which are relatively insensitive to the cylinder length. Correction factors
are developed in appendix 6 which are applied to the modulii of
cylinder materials (based on the length of the cylinders) which
accomodate in an approximate way the effects of the Poisson coupling
between circumferential and axial normal strains. Laminated cylinders
will not experience the same stiffening effects due to the Poisson
coupling except a much greater cylinder lengths. Hence a plane-stress
model can be justified in the case of these cylinders for the

axially-uniform modes.

Another consequence of the properties is that the mode having (say)
two wavelengths about the circumference (n= 2) and zero 'wavelengths'
in the axial direction (m= 0) will be lower in frequency than the mode
(n=2 , m=1) by some amount which would be much greater if the
cylinder were solid. In other words axial waviness will not contribute

greatly to the stiffness of modes of laminated cylinders. This is an
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important observation. More than one author (Verma & Girgis (B.1986)
and Watenabe er al. (B.1983)) has reported difficulty in identifying
some modes of the machine stators which they examined. The effect
mentioned here regarding the small increment in energy for increased

axial waviness makes the clear identification of modes difficult.

§5.4 Design of Models to Investigate the Behaviour.
The reasoning behind the dimensions, geometry and nature of the
models used in this work is outlined here in order to clarify for the
reader, the material to follow.

Terms of reference:

a) Produce a model whose behaviour depends on the relevant

properties of the laminated construction.

b) The model should have a set of identifiable well separated

resonances.

c) The model should be amenable to analysis either numerical or

analytic.

d) The model should be scaled so that results obtained from it apply

to the components of interest.

e) It should have a system of clamping which can:-
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(i) Produce a range of pertinent clamping pressures to
acceptable accuracy.

(ii) Spread the load so that the outer laminations experience a
reasonably uniform pressure.

(iii) Not interfere with a b or ¢ above.

The range of clamping pressures investigated is 0-2ZMPa. The laminated
cores of small AC machines are sometimes compressed higher than this
but generally, this represents the whole spectrum of pressure. In such
cases, extrapolation of the results presented here will have to be relied
upon. Surface finishes vary dramatically with application from
prqprietrary mineral treatments for withstanding high temperatures to
none whatsoever in the case of DC mainpoles. (The primary reason for
laminating these is for ease of manufacture). Only a small subset of
these has been addressed because of time restrictions. The following

surface conditions have been examined . . .

(1) Clean plain steel surfaces.

(2) Varnished surfaces.

(3) Clean steel surfaces having been vacuum-pressure-impregnated.
(4) Varnished surfaces having been vacuum-pressure-impregnated.

The results show a considerable scatter in the properties derived

though the trends in each case are steady.
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§5.5 The Dependence of Beam Resonances on

the Material Properties

The models chosen were rectangular-section beams in all cases. It is

appropriate to note the following about the modes of these beams.

(1)

(2)

(3)

(4)

The modes occur in four distinct groups; torsion about the
beam-axis, extension along the beam-axis and flexure in two

orthogonal planes.

The resonances of extension modes are determined solely by the
modulus of compression of the material in the direction of the

beam-axis..

The resonances of the torsional modes are determined primarily
by the shear modulii of the beam material in the two planes
which contain the z-axis. If the beam is square in section and
relatively narrow, an accurate determination of the relation
between the torsional resonances and the shear modulii in the

two planes may. be made.

The frequencies of the flexure modes in either of the two
orthogonal planes are determined by both the modulus of
compression of the beam material in the direction of the beam
axis and the shear modulus of the material in that plane. For a
thick beam with a small shear-modulus in one plane, the

resonant frequencies of flexure of the beam in that plane will be
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(3)

§5.6

governed primarily by the shear modulus. The mode-shapes in
this case will look like sinusoids. Fig. 5.2a shows one such mode.
For a narrow beam in which the shear modulus is not small
relative to the modulus of compression in the direction of the
beam-axis, the frequencies are determined primarily by the
modulus of compression and virtually no shear strain occurs
within the beam. A mode of this type is shown in Fig. 5.2b.
When designing a model to investigate one of the modulii
mentioned above, the proportions can be chosen so the
frequencies of the flexure modes will have a strong dependence

on that modulus.

The damping contributions from shear and compression strains
are uncoupled. The damping inherent in one mode can be
considered to be the sum of the components from shear and
compression. If the stiffness of one mode is determined mostly
by one modulus, then the damping coefficient of that mode will
be approximately equal to the damping coefficient associated

with that type of strain.

Outline of Experimental Procedure.

All of the tests preformed involved examining the response-to-forcing

of the models over a suitable frequency range which included one or

more of the first resonant conditions of the model. All information

extracted is based upon the shape of the frequency-response curves

and in particular, the position and "width" of the resonance peaks. For
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speed, the excitation was 'white-noise' after preliminary investigations
revealed a satisfactory degree of linearity of the relation between
stiffness and deflection. Records of the forcing amplitude were kept in
order that the amplitude of motion at every frequency sould be

obtained directly from the frequency response plots.

The models were all flexibly supported to approximate the "free"
condition. The "first models were suspended from a light steel cable
which allowed completely free flexure of the beam though motion in the

direction of the beam axis would have been constrained.

The 'white-noise'’ was generated by the spectrum analyser and
consequently had frequency components only within the range of
frequencies being measured. The force signal was amplified before
being passed to an exciter where the force input was measured.

Damping figures are estimated on the basis of the resonance
- bandwidths. In all cases, the damping is sufficiently large in comparison
withn the coefficients for solid steel that the energy-dissipation may be
considered to be due entirely to the relative motion of lamination
surfaces. The careful design of the models resulted in a set of
well-separated resonances. Because of the relative coarseness of the
traces which had to be accepted in order to allow find more than one
resonance in the frequency range, not all of the peaks will have been
well represented. (ie. the frequency band which includes the true
resonant frequency is a finite fraction of the 3dB bandwidth). Therefore,

use of the 3dB bandwidth method to estimate damping did not seem the
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optimm means of estimating damping. Instead, a method was devised

which involves comparing the response levels measured at two

different prescribed bandwidths (for example f /10 and f /20). The

bandwidths can be chosen arbitrarily to best suit the individual
response traces being examined. The consistency of results obtained

using this method indicated that it was satisfactory.

Where the pressure of clamping was being adjusted for models 5.1, 5.2
and 5.5, (these relied on the measurement of compression in springs to
set the pressure) each increment was divided in two and the bolts were
tightened to half tension starting from one end and proceeding upward
and then the tensioning was finished working the other way. The
resulting pressure distribution should have been quite even as a result.
The rate of compression of the laminations themselves at lower

pressures was sufficient to make this tightening procedure necessary.

On models 5.3 and 5.4, the bolt tension could be measured absolutely at

"any time.

§5.7 Model 5.1 and Tests 5.1.1-5.1.2

The first model tested was a beam of dimensions 1.5m x 0.2m x 0.2m
(Figs. 5.3 and 5.4). The similarity of the dimensions in the x and y
directions was intentional in order that the flexure modes in these two
planes could be compared and contrasted. It was expectzd that the

resonant frequencies of modes of flexure in the y-z plane would be
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slightly lower than those of the modes-of-flexure in the x-z plane (these
modes should be totally unaffected by the fact that the beam is
laminated since both the stiffness-in-flexure and the linear density of

the stack are proportional to SF - the stacking factor).

Tests 5.1.1 involved suspending model 5.1 from a light steel cable so
that it was free to vibrate in flexure in the x-z plane (Fig. 5.3a). A
shaker was attached at the low end and the response measured at the
high end. Various amplitudes of forcing were supplied so that the
motion at the ends of the beam was varied between 0.0m and 1.0e-7m.
No dependence on the amplitude was observed over this range either in
the value of the resonant frequency or the hysteretic damping

coefficient calculated (5.1e-3).

A model of this beam was prepared using DMS. The properties of solid
steel (scaled by the stacking-factor (0.94 at low clamping pressures)
were used in this model and the response of transverse motion at one
end of the beam to forcing at the other was computed over the range
0-3kHz. The mass of the clamping gear (plates, springs, bolts etc. ) was
'smeared’ over the length of the beam for simplicity. Fig 5.5 compares
the calculated response for the beam with the measured. The slight
discrepancy in the natural frequency of the second and third modes can
be accounted for by the "smearing" of the inertias of the clamping bolts
and plates. The conclusion is that for laminations vibrating within their
own plane (configured so that they cannot buckle), the material
constants which should be used are simply those of solid steel scaled

down by the stacking factor for the laminations. There is no detectable
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variation in the parameters of the principal modes of flexure in this

plane as the clamping pressure is increased.

Tests 5.1.2 on this model consisted of exciting the beam to vibrate in
flexure in the y-z plane. The resonant frequencies encountered here
differed substantially. from those measured and calculated for tests
5.1.1. Fig.s 5.6 and 5.7 are sample response curves from tests 5.1.2 for
clarhping pressures of 250kPa and 750kPa resp. See table 5.1 for the
first resonant frequencies and the damping coefficients measured.
These values are for the low amplitude oscillations of the beam ends.
The values for the shear modulus are found by comparing the
resonances calculated using a special beam fléxure model for high shear
(allowing linear and quadratic variation of the axial point translation
across the section) in which a number of values for shear modulus were
tried. In the report on the behaviour of laminated components in
vibration, (Garvey (A.1986)) the r.m.s. shear strain in the beam is
related to the translation at the beam ends and the effective shear

modulus for the first three modes.

It should be noted that the first natural frequency of flexure out of the
plane of lamination of this beam transpired to be satisfactorily sensitive
to the effective shear modulus of the stack for confidence in the results.
This was somewhat fortunate. There was no way of knowing in advance
what shear modulii could be expected and values closer to the figure for
solid mild steel (81.3 GPa) would have meant that the first resonance

was almost totally insensitive to the shear modulus.
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Pressure  First Resonance Resolved 3dB Shear Damping
(kPa) (Hz) Bandwidth (Hz)  Modulus(GPa) Factor
250 148. 6.20 0.42 4.2e-2
313 164. 575 0.61 3.5¢-2
378 180. 5.60 0.76 3.1e-2
437 192. 5.00 0.93 2.6e-2
500 202. 5.05 1.04 2.5e-2
563 212, 5.10 1:11 2.4e-2
625 218. 4.80 1.20 2.2e-2
687 222. 4.35 131 2.0e-2
750 228. 4.35 | 1.33 1.9e-2

Table 5.1 Results from test 5.1.2. (Low amplitude).

Amplitudes of vibration at the ends were varied continuously up to
approximately 3e-6m. The trend was that damping values increased
dramatically with increased amplitude above some (slightly indefinite)
threshold. The stiffness of the mode, on the other hand, decreases in a
second-order relation with increased amplitude. Both these trends are
illustrated for one clamping pressure in Fig. 5.8. The range-of-linearity
of the stack for a given clamping pressure is obviously .slightly

arbitrary, but order-of-magnitude figures are presented in table 5.2.

Since the variation of stiffness with amplitude is smooth and quite
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gradual up to 5 times the strains mentioned below, a linear model for
the behaviour of a laminated component will probably be - quite
adequate up to at least 5 times these values if suitable corrections are

made.

Pressure (kPa) Range of Linearity .

(Shear Strain)

250 - 460 20x 1077
460 - 580 2.5 x 1077
580 - 690 3.0 x 107/

Table 5.2 Range of Linearity for the Laminations of Model 5.1.

§5.8 Model 5.2 and Tests 5.2.1

Model 5.2 (Fig. 5.9) was similar to model 5.1, the only difference being
that fewer laminations were used. The depth of the stack in this case
was approximately half that used previously. This beam was to serve as
a check on the results obtained from the previous beam. In particular, it

should immediately show up any error in the theoretical model.
Experiments 5.2.1 took the same form as tests 5.1.2 in which the beam

was suspended vertically on a light steel cable. Excitation was applied at

the low end and response measured at the high end for flexure modes
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out of the plane of lamination. The amplitudes of vibration were kept

below the ranges of linearity outlined in table 5.2.

The results were not completely consistent with those of tests 5.1.2. The
deduced values of the shear modulus were lower for model 5.2 than
those found for model 5.1 by a factor of about 0.75 and at the same
time, the damping factors were increased by a factor of almost 2. The
results are presented in table 5.3 below. There are a number of reasons
why this may have been the case. The theoretical model was
re-examined and found to be correct - agreeing very closely with a
"plane sections remain plane" model both at very high and very low
values of shear modulus where the simple "p.s.r.p" model should give

good answers.

The principle reason for the discrepancy is most likely to be the
increased insensitivity 'of the beam resonances to the shear modulus
(due to the beam being thin). Other influences are discussed in the
dedicated report (Garvey (A.1986)). The results at least show the same
trend as. those from tests 5.1.2 both in damping and effective shear

modulus.
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Pressure First Resonance Resolved 3dB Shear Damping
(kPa) (Hz) Bandwidth (Hz) Modulus (GPa) Factor
250 101. 8.68 0.33 8.6e-2
313 109. 7.95 0.41 7.3e-2
375 117. 7.95 0.50 6.8e-2
437 127. 7.62 0.62 6.0e-2
500 131. 7.20 0.68 5.5e-2
563 136. 6.93 0.76 5.1e-2
625 142. 6.81 0.88 4.8e-2
687 146. 6.57 0.94 4.5e-2
750 150. 6.15 0.97 4.1e-2

Table 5.3 Results from test 5.2.1. (Low amplitude).

§5.9 Model 5.3 and Tests 5.3.1-5.3.3

Model 5.3 was a relatively thick beam laminated along the axis
(Fig 5.10) The geometry of this model is at least similar to that of some
DC machine mainpoles whereas models 5.1 and 5.2 bore no obvious
relation to any machine component. The sections of model 5.3 are
square as this enables us to make good sense of the results from a

torsion test.
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Clamping is achieved by four pieces of MI12 threaded-rod running
through the laminations and holding two square 12mm mild-steel
endplates together. The measurement of the pressure was achieved by
measuring the extension of each of the bolts using a large Vernier scale.

Pressures as high as 2.4 MPa could be achieved.

All four of the "types" of beam mode discussed in §5.5 are strongly
dependent upon some properties of the lamination for this particular
beam. Since the sections are square, the modes-of-flexure should be
identical in both flexure planes. Flexure tests have been performed in

one plane only.

The:- beam was rested on two foam supports lying approximately under
the locations where "nodes" of vibration would occur for the flexure
modes. The extension and torsion modes would not be significantly

stiffened by this support.

Tests 5.3.1 comprised exciting model 5.3 to vibrate in axial
compression/extension. These tests give a direct impression of the
effective Youngs modulus of the stack. The first such resonance has a
very simple associated mode-shape. A number of preliminary tests
indicated that for clamping pressures above 300kPa, sufficient force
could not be supplied by the power-amplifier + shaker arrangement
being used to drive the system into detectable non-linearity. Thus, the

stack was assumed to be linear for all tests performed.

For each stage of tightness, a response-curve was recorded from which
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was extracted the first resonant frequency and the resolved 3dB
bandwidth (using suitable bandwidths). The Youngs modulus deduced
from the stack depends on the first resonant frequency as well as the
stack-length and stacking factor. (Both of these quantities vary slightly

with increased pressure.)

Delves (A.1962) quotes a single figure of 0.26e6 Ib/in2 for the Youngs
modulus measured on a stack forming the flux-carrying yoke of a DC
machine. This converts to 1.8 GPa. Delves' laminations may have had a
different thickness and the clamping pressure used is unspecified but
the value is nonetheless similar to the values being found by the

experiments here.

Tests 5.3.2 were a set of torsion tests on model 5.3. The beam was
excited transversely at a point near one edge at one end. Response was
measured at the same position on the other end. This excitation caused
the torsional resonances of the beam to be forced as well as the flexural
vibrations. The first resonant frequency of torsional oscillation
consistently fell'below the first resonance of the flexural vibrations so
at least one resonance was obtained for each bolt-tightness which could
be identified as torsional. The torsional stiffness of a square section is
not simply the product of the shear modulus for the material and the
second moment of area of the section about the torsional axis. However,
this approximation suffices for our purposes. The error introduced here
depends largely on the ratio between compression and shear modulii. A
large ratio minimises the error. The comparing results from these tests

(table 5.5 below) with the results of the pure compression test (table
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5.4) shows that the shear modulus for the stack is consistently less that
15% of the Youngs modulus at the same clamping pressure. The

approximation is thus justified.

Pressure First Resolved 3dB Youngs Damping

(kPa) Resonance (Hz) Bandwidth Hz  Modulus (Gpa)  Factor

300 490. 21.3 351 4.3e-2
600 357. 17.7 4.54 3.2e-2
950 582. 12.5 4.96 2.1e-2
1300 600. 8.5 5217 1.4e-2
1700 616 6.9 5.64 l.1e-2
2000 630. 6.3 5.80 1.0e-2

Table 5.4 Results from test 5.3.1.
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Pressure First Torsjon. Resolved 3dB Shear Damping

(kPa) Resonance (Hz) Bandwidth (Hz) Modulus (GPa) Factor

300 178. 16.4 0.46 9.2¢-2
600 188. 10.9 0.52 5.8¢-2
950 220. 9.24 0.71 4.2¢-2

1300 226. 8.61 0.74 3.8¢-2

1700 230. 8.06 0.77 3.5¢-2

2000 333, 8.12 0.79 3.5¢-2

Table 5.5 Results from tests 5.3.2. (Torsio_n)

Tests 5.3.3 were then conducted in which model 5.3 was again shaken
transversely but in this case, the line of action of the forcing passed
through the axis of the beam so that no torsional modes would be
excited. The resulting resonances are all transverse flexure in which
both the compression and shear modulii of the laminations influence the
behaviour. Figures have already been found for these modulii under the
various conditions of clamping pressure from the direct
compression/extension tests and torsion tests respectively. These
flexure tests serve as a test that the resonant frequencies measured for
the beam coincide with the frequencies which would be calculated for
the beam given the properties of shear and compression. The theoretical

model for flexure is thus validated. The comparison of measured and
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calculated first resonant frequency is presented in table 5.6.

The agreement found is indicative that both the shear and compression
modulus have been correctly assessed since the resonant frequency of
the first mode of 'flexure' of the model has a strong dependence on both

modulii

Pressure (kPa) Measured Calculated
Resonance (Hz) Resonance (Hz)
300 170 174
600 200 207
950 240 244
1300 255 258
1650 260 263
2000 265 268

Table 5.6 First Flexural Resonances Of Model 5.3.

§5.10 Model 5.4 and Tests 5.4.1-5.4.2

Model 5.3 was dissembled and the individual laminations varnished to
standard coat specifications, then reassembled to produce model 5.4
(Fig. 5.11). The same number of laminations was used and the same

system of clamping and monitoring the pressure. The direct contrast
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with model 5.3 produces immediate information on the effect of the

"varnish.

Tests 5.4.1 were performed exactly as tests 5.3.1. The beam was excited
into compression/extension vibration along its own axis by a shaker
fixed to one end face. Response was measured at the other end face. The

range of pressures covered was 0 - 2.0Mpa.

The results from these tests are presented below in table 5.7.

Pressure First Compression Resolved 3dB Youngs Damping.
(KPa) Resonance (Hz) Bandwith (Hz) Modulus (GPa) Factor
300 314 -35.6 1.45 11.3e-2
600 346 30.9 1.77 8.9e-2
950 - 376 27.6 2.06 7.4e-2
1300 390 25.6 2.23 6.5e-2
1650 399 23.1 2.34 5.8e-2
2000 407 22.5 2.42 S5.5e-2
2400 415 22.0 2.52 5.3e-2

Table 5.7 Results from tests 5.4.1

Continuing the comparison with the unvarnished laminations, tests 5.4.2

were carried out. These tests were identical to tests 5.3.2. Torsional
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modes were excited by shaking the beam transversely at one end.
Response was measured at the other. Flexure modes were found again
as expected but as before, the lowest resonance was the first torsional
resonance. The shear modulus is calculated directly from the torsional
frequency by assuming that the torsional stiffness equals the shear

modulus times the second moment of area about the beam axis.

Pressure First Torsion  Resolved 3dB Shear Damping
(kPa) Resonance (Hz) Bandwith (Hz) Modulus (MPa) Factor
300 - : - - E
600 73 8.1 77.4 11.0e-2
950 91 2.9 120.2 6.0e-2
1300 107 5.6 166.2 5.2e-2
1700 122 6.6 216.1 5.3e-2
2000 136 6.5 268.5 4.8e-2
2400 150 6.5 326.7 4.3e-2

Table 5.8. Results from tests 5.4.2. (Torsion)
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§5.11 Model 5.5 and Tests 5.5

Model 5.5 is similar to model 5.2 in all dimensions, (Fig. 5.12) but the
length of the the beam is built up from segments of laminations rather
than whole laminations. There are 6 x 2mm gaps in half of the layers of
this beam and 7x2mm gaps in the other half. The laminations are
staggered in the usual fashion. The pressure control system for model
5.5 is the same as that used for models 5.1 and 5.2. It seems likely to be
acceptable to deduce "bulk" properties for the segmented stack from the
first mode when the gaps are spread quite evenly over the deformed

shape.

Tests 5.5 comprised exciting the model at one end so that the beam
vibrated out of the plane of lamination and measuring response at the
other. It was expected that the resonant frequencies measured for
" model 5.5 would be very slightly less than those found for model 5.2. In
actual fact they were slightly higher, but given the uncertainty
associated with the surface conditions they are sufficiently close to be
considered as supportive evidence. The surfaces of the laminations used
in building model 5.5 had not been exposed to air and moisture while
those of model 5.2 had been for short periods. The damping figures
obtained were not discernably different from those obtained in test 5.2.
The comparison of frequencies between test 5.2.1 and 5.5 is presented

below.
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‘ Pfess;,ure First Resonance First Resonance
(kPa) (Segmented) (Hz) (Whole) (Hz)
250 102. 101,
313 1 109.
375 120. 117.
437 131 127
500 136. 131.
563 144. 136.
625 152, 142.
687 155. 146.
750 167. 150

Table 5.9._ Resonant frequencies for Model 5.5.

§5.12 Tests on the Impregnated Beams.

Model 5.4 was tightened to a clamping pressure of 5.0MPa. Model 5.5
was torqued up to the maximum giving a pressure of approx. 800kPa.
Both beams were vacuum pressure impregnated to investigate the
effects of this treatment on the properties. The bolts were left at their

maximum tension and the following three discrete tests were done.
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(1)  Flexure Vibration of the impregnated Model 5.5.
(2) Compression/Extensional Vibration of Impregnated model 5.4.

(3) Torsional Vibration of Impregnated model 5.4.

The results are summarised in the table below.

Model Test Previous First New First Damping
Resonance (Hz) Resonance (Hz) Factor
54  Compression 415. 576. 1.2e-2
.54 Torsion 150. 288. 2.3e-2
55 Flexure ‘ 167. 242, 1.6e-2

Table 5.10. Effects of Impregnation.

§5.13 Discussion of Results.

A number of different combinations of surface condition and clamping
pressures have been investigated in the set of tests reported here. For
lamination thickness of 0.65mm, it has been found that the effective
shear modulus varies between zero and 1.5 (_}N/mz. The maximum
shear modulus was present when clean untreated laminations were
clamped-up to 750 kP~. The maximum Youngs modulus for the
laminations was also found for the case when clean plain surfaces were

clamped up and was found to be 5.4 GPa.
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There is quite a high degree of uncertainty  associated with the
prooerties of any one stack. Generally the stacks themselves exhibit
very consistent behaviour but reassembling the stack or beginning tests
again from a zero pressure value tends to produce a different set of
results to the one found previously. The difficulty of realising the same

tightness twice contributes to this.

In all cases investigated, the shear and comﬁrcssion modulii vary
continuously with respect to the clamping pressure. The full extent of
this smooth relation could not be found, but it certainly lies well above
the range of pressures utilised in this study. As pressure increases, so

the modulii increase also, but they rise in ever-decreasing amounts.

An approximate range of linearity has been established for the shear
behaviour. It seems reasonable to assume that the beam behaviour in
compression/extension will be linear with respect to the amplitude of

strain until such time as the laminations begin to separate.

Damping for laminated components in deformations (other than those in
the plane of lamination itself) is generally much higher than it would be
for a solid steel component. For shear strains, the minimum associated
damping found was 3.5% while for normal strains, the minimum

damping found was 1.0%.

Varnish on the surfaces reduces the effective shear modulus

considerably. There is a reduction in the compression modulus also but
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it is not so marked. The damping values increase when the laminations

are varnished.

Impregnation has a significant stiffening effect. Together with this, the
effective damping is reduced. The stiffening is most prevalent on the

shear modulus where the value is increased by a factor of more than 2.

Segmentation can be accounted for using suitable theory and reliable
values for the modulii. Multiplying constants for the extensional and
flexural stiffneses of a segmented core/yoke are derived and presented
in appendix 7. The formulae indicate that for most normal situations,
the ratio between the half-area of contact between successive segments
is so large compared with the cross-sectional area of the segments
themselves that the core/yoke behaviour is virtually unaffected by the

segmentation.
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Fig. 5.1 Principle Directions and Stresses
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Fig. 5.3a Suspension arrangement and clamping method.

Fig. 5.3 Model 5.1. Suspension and Measurement Methods.
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Chapter 6.
THE SHIMMED POLE -TO - YOKE JOINT

In D.C. machines having a rolled-steel yoke, it is the practice to bolt on
the main poles and compoles over a number of shims to allow control of
the airgap for commutation purposes. The shim material used varies
from case to case. Sometimes it is non-magnetic and there is no reason
for it to be electrically conductive though in most machines, metal shims

are used.

It has been determined that this joint is sufficiently flexible to make a
considerable difference to the values of vibration computed for the
machine. Delves (A.1962) made some account of this effect in his
analysis. The figures used for his pole-root flexibility were
retrospectively chosen to fit the results to the measurements. Later in
this text, it is shown that some degree of control of the vibrational
behaviour of the machine can be achieved by adjustment of the
pole-root flexibility. It is therefore important that the values be
established for this flexibility and the dependence on various factors be

examined.

A set of experiments were devised and conducted to investigate this
flexibility. Much of the background to the experiments and some of the
results are reported by Cocotelis (A.1986) whose contribution is

gratefully acknowledged.
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Delves catered-for the existence of only one form of pole-root flexiility
where in fact, there are three. The pole may move relative to the yoke

in the following ways .

(1) The pole may rock relative to the yoke (about a line down the

center of the pole-back).

(2) The pole may translate circumferentially relative to the yoke. In

this case, the shims experience a shearing action.

(3) The pole may translate radially relative to the yoke in which

case the shims experience compression/extension.

The experiments described here were aimed primarily at establishing
the rocking flexibility which is undoubtedly the most significant. The
stiffness of the joint was such that the other two flexibilities could not
be quantified directly, since the modes to which they corresponded lay
in a frequency range well populated with other resonances. However, it
is shown later in §6.9 that a reasonable order-of-magnitude estimate of

these quantities can be made based on the rocking flexibility.

§6.1 The Models Used.

A system incorporating the shimmed joint was devised to have the

following attributes.
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(1) The system is extremely simple as far as dynamic analysis is

concerned over the anticipated range of frequencies of interest.

(2) The system has one or more principal modes which are

primarily dependent on the behaviour of the joint.

(3) The number of shims, shim-material and pre-load at the joint

are all variable.'

The system designed is shown in Fig. 6.1. It comprises two mild-steel
blocks one of which is to represent the yoke and the other represents
the pole. The blocks are dimensioned so that the lowest non-rigid-body
resonances are well above the anticipated range of frequencies of
interest. 0-2kHz. (The first resonance at the 'yoke'-block lies at
2.52 kHz). Two separate pieces were prepared for the "pole" block - one
twice as thick as the other. The thickness of the narrower "pole" piece
(hereafter referred to as pole-1) is the same order of magnitude as that
of a large DC compole. The broader pole (pole-2) is less wide than
typical large DC mainpoles. However, it enables us to establish the

scaling relationships. These are not as obvious as they might seem.

The tension on the bolts was monitored using the strain-gauges on the
surface of a bridge-beam between two fulcrums. This arrangement may

seem unnecessarily elaborate but the following two facts combine to

justify it:
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(1) The sensitivity of the joint to bolt tightness was not known in
advance and so a relatively accurate measurment facility was

desired.

(2) Two different thicknesses of 'pole' were to be examined - one
twice as thick as the other. The same degree of accuracy could be
achieved in each case by simply adjusting the distance between

the fulcrums.

Four shim materials were tested. These are presented in table 6.1

below.

Material Thickness
Electrical Steel 0.5mm
Stainless Steel 0.16mm

Half-Hard Brass 0.85mm
Copper 0.5mm

Table 6.1 Shim Materials Used.

§6.2 Two 'Contact' types.
It is common practice in the design of large DC mnchines to specify a

larger radius-of-curvature on the backs of main poles than the internal

radius of the yoke. This causes a small angle of relief to exist at the
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edges of the pole back. Pressure on the shims is then concentrated more

at the edges and the joint stiffness is increased.

Pole-1 and pole-2 each had two machined faces which could be bolted
over the shims. In each case, one of these faces was flat and the other
was machined into a "vee" shape with angle 2.5° (Fig. 6.2). The surface
of the yoke-piece which faced the shims was skimmed on a milling -
machine to be quite flat and smooth. By using the "vee" side of the
poles, the effect of concentrating the preload at the edges of the pole

was simulated.

Clearly, there is no fine line which determines whether a pole-yoke
joint is effectively "vee" or flat. If the angle of relief is extremely small,
it will be completely masked by the compression of the shims and no
appreciable concentration of the preload force will occur. The angle of
relief actually found in machines is somewhat lower than the 2.5% used.
The steel mill motor studied in this investigation has a 0.7° angle and
the propulsion motor has 0.1°. Tests on the steel mill motor frame
(motor B of chapter 8) have revealed that main pole rocking freque-ncy
(with 4 electrical-steel shims similar to those used in the tests in
chapter 8 and no coils attached) lies in the region of 550 Hz with the
poles in a tight condition. This is actually consistent with a flat contact
type according to the measurements made. (See the example calculation
presented later in this chapter). By examining the cases of 0° and 2.5°

relief, the two extremes of joint contact are catered-for.
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§6.3 Values for the Joint Preload.

The model was designed to be able to represent a realistic range of
tightness values for both Pole-1 and Pole-2. The values considered to be
tealistic' were obtained as follows. For a number of different machine
designs, the ratio of the area of the back of the pole to the total area of
bolts used to fix the poles to the yoke was calculated. The avéragc of
these ratios was 0.024. With pole-2 fitted, the ratio of bolt area to the

area of the pole-back is 0.03.

Pole-bolts are generally torqued-up to some large fraction of their yield
strength. This depends to some extent on the threaded part into which
the bolt is screwed. For the poles of some machines, the laminations are
drilled and tapped directly. For such cases, the diameter of the bolt
would need to be suitably large to spread the load over some minimum
number of laminations. For larger machine poles, the pole-laminations
have a rectangular or circular hole punched in each so that a bar may
be passed lengthwise through the poles. The pole bolts are then screwed
into this bar. (Some of the laminations in this case have more material
punched from them to allow access to the bar from the pole-back). In
the case of solid mainpoles and compoles, the bolt holes are simply
drilled and tapped straight into the pole-back. Whichever configuration
obtains, the material from which the bolts are made together with the

bolt dimensions will determine the maximum bolt torque. and load.

Bolt-tightness has been varied over a range O - 12 kN, for 'pole’ 1 and

0- 20 kN on each of the two bolts for pole-2. This does not nearly
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exploit the full capability of the bolts but practical limitations prevailed
(in particular - the difficulty of holding the model down when large
torques were applied). The smooth variation of joint stiffness with
tightness actually measured on these models indicates that some
extrapolation to higher values may be carried out if necessary without

introducing significant errors.

A fact to note is that there is a significant force of magnetic attraction
between the mainpoles and the yoke of a machine operating at full
field. It can been shown that this force would be sufficient to overcome
the gravitational forces on the mainpoles of one machine. The amount of
armature flux will also have some effect in that there will be a static
force of considerable magnitude acting to push the pole to one side.
Thus, to some extent, the mechanical properties of the DC machine

frame are dependent on the operating conditions of the machine.

§6.4 Form of the Tests

The tests all took the form of measuring response-to-forcing by
analysing the outputs from one force transducer and one accelerometer
at the same position on the edge of the 'yoke' piece (Labelled "P" in
Fig. 6.1). Translation at this position is the freedom most responsive in

the first rocking mode.
Impulse tests were attempted at first. The yoke-piece was struck at

point "P" and response measured there. A number of averages were

taken. It soon became apparent by the variation in the amplitude of the
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frequency response being measured and the shifting of the resonance,
that the joint was being excited into non-linearity. The remainder of the
tests were carried out under conditions where the amplitude of the

vibration was controllable at all times during the measurements.

The first successful set of tests (on "pole-1") were done using a
frequency-sweep technique enabling a relatively high injection of force
to be realised at one frequency. The amplitude-dependence of the
resonance demonstrated in Fig. 6.3 by using different input force levels
is a clear indication of the non-linear behaviour. Amplitudes of forcing

were maintained in the linear range from then on.

The tests on the broader 'pole' used the spectrum analyser to inject
'white' forcing to the system. The force input at each of the discrete
bands was considerably less than the forces which had caused the joint
to behave nonlinearly in the previous tests in the region of the first
resonance. These tests were concentrated on establishing the new joint
stiffnesses (natural frequencies) of the system and verifying the

damping figures obtained earlier.

The significant figures for each test were simply the first resonant
frequency and the damping - expressed as before as a hysteretic
damping factor. Damping was estimated using a bandwidth method. In
the series of tests on pole-1 (the narrower pole) two frequency sweeps
were performed. The first sweep simply located the resonant frequenc:
to a good approximation and recorded the proximity of the next. The

second sweep was a zoom-up on the first resonance which enabled a

- 252-



good estimation of the 3dB bandwidth to be made. In the series of tests
on pole-2, only one "sweep" per test was made. This produced adequate
values for the resonant frequencies but damping estimates were

necessarily poor quality.

§6.5 Derivation of Stiffness Values from the

First Resonance of the Jig.

The dimensions of the jig are such that under the excitation supplied,
neither of the two pieces would have components of vibration other
than in the plane of Fig. 6.4. Each of the two pieces then has three
degrees of freedom (two translations and a rotation) in the horizontal
plane so that the system as-a whole has six. Three of the six system
degrees-of-freedom can be discounted as rigid-body modes. The other
three are illustrates in Fig. 6.4. Now, mode 3 from Fig. 6.4 involves
compression/extension of the shims. Because this is symmetrical with
respect to the central plane of the pole while the other two modes are
anti-symetrical with respect to the same plane, mode 3 is uncoupled
from the other two modes and need not be considered in calculations
relating to the calculation of the two anti-symetrical mode-shapes and

frequencies.

Measurements on the system indicate one clear unobscured resonance
below the range of frequencies where the elements start to behave
dynamically. Fig. 6.5 is a typical response curve obtained. Investigation
of the associated mode-shape (by moving the accelerometer) showed

this to be a rocking mode. Clearly, there will be some degree of
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"shearing" taking place within the shims for this mode. However, the
fact that the other anti-symetrical mode has a much higher resonant
frequency indicates that the degree to which this shearing occurs is
extremely small. For the purposes of the calculations to follow, the
relative motion occurring at the joint is assumed to be pure rocking

with no component of shearing.

The rocking natural frequency (assuming no significant shear at the
joint) can be derived by considering the angular momentum of the

system about the line running along the center of the contact between

pole and yoke. Let I be the second moment of inertia of the "yoke"

piece and I, the second moment of inertia of the "pole" piece. The

respective moments of inertia of the two pieces about the line described

above are J and J, given by (6.1) and (6.2).
_ 2 '
J, =1L +M,d, (6.1)
I, = L, + M, db2 (6.2)
Conservation of angular momentum (or if one prefers, the "inertial

orthogonality" of the modes ) dictates that a,6 and a, are related by (6.3)

below.

Ja,+J,a,=0 (6.3)
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From this ...
ay=-2a, LA, - (6.4)

The restoring moment on the "yoke" piece is MOM,  and is proportional

s

to (a,- a,) as (6.5).
MOM, =T (a, - a,) (6.5)
=T1+17,)a, (6.6)

Then, by simple reasoning, the natural frequency is expressed in terms

of the ratio of restoring-force to acceleration as (6.7)

W 2=T(1+I40)0, | (6.7)

T=J w?2/Q+J14d) | (6.8)
For Pole-1 ...... w? = 949 T (6.9)
For Pole-2 ...... ? = 706 T (6.10)

Having derived these factors, the results for the tests are now presented
in terms of natural frequencies (Hz) and hysteretic dampiuag coefficients

(dimensionless).
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BOLT - NUMBER OF SHIMS

TENSION (kN) 2 4 6 8
0 150 132 102 84
2 581 560 413 376
4 882 861 631 635 § o
6 951 938 768 759 &5
8 999 996 930 gs5 ©©
10 1002 1029 952 903
12 1069 1051 972 932
0 101 85 100 93
2 600 393 337 291
4 812 623 532 476 o g
6 872 784 - 680 600 £ =
8 931 851 769 688
10 966 902 845 757
12 996 930 878 803
0 80 81 80 80
2 575 449 338 385w
4 783 680 546 516 T2
6 921 786 683 624 EL
8 972 865 779 714 g g
10 1025 912 826 774
12 1033 923 868 812
0 115 60 77 80
2 854 807 759 678 2
4 973 954 914 912 i
6 1033 1021 997 9%84 =g
8 1077 1061 1052 1023 & &
10 1105 1085 1077 1057
12 1125 1104 1100 - 1082

Table 6.2 Natural frequencies of the 'rocking' mode. VEE contact. Pole 1.
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BOLT NUMBER OF SHIMS

TENSION (kN) 2 4 6 8
0 109 116 108 108
2 382 284 233 210
4 512 416 338 296
6 638 533 443 351 & &
8 711 648 539 .43 SE
10 777 726 633 491
12 790 759 691 542
0 103 102 97 95
9 206 183 178 152
4 273 268 236 191 .
6 313 309 275 237 4 E
8 359 348 316 280 @ &
10 409 400 364 329
12 498 453 418 381
0 123 108 110 104
2 248 223 200 160 &
4 329 316 283 216, 3 =
6 401 394 355 283 gg
8 460 437 414 350 =&
10 525 504- - 456 423
12 582 554 518 488
0 112 110 108 94 "
2 353 306 261 249 ,,,.g
4 474 439 345 344 8 »
6 614 561 429 428 33
8 707 683 528 525 © &
10 798 786 631 615
12 873 884 708 676

Table 6.3 Natural Frequencies at the Rocking Mode. FLAT CONTACT.
Pole 1.
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BOLT NUMBER OF SHIMS

TENSION (kN) 2 4 6 8
0 14.10 17.05 12.74 18.09
2 8.51 9.84 .6.65 11.35
4 4.10 4.46 4.23 777 5
6 2.51 2.64 3.08 . 5.79 %,g
8 1.20 1.10 2.91 341 O &
10 1.05 0.71 1.81 2.54
12 0.81 0.63 1.70 172
0 16.86 2093  18.90 20.43
2 4.61 6.66 5.81 6.90
4 1.52 3.74 4.15 449
6 1.39 172 293 417 § £
8 0.52 1.59 2.61 382 A ®
10 0.53 1.13 2.14 2.98
12 0.30 0.92 1.66 2.11
0 26.91 24.87 : -
2 3.13 3.56 427 418
4 1.30 2.26 3.07 38 o E
6 0.52 1.13 2.16 275 2 7
8 0.81 0.69 1.43 208 38
10 0.29 0.35 1.04 1.61 @ &
12 0.51 0.40 0.86 1.26
0 - : : 31.20
2 2.67 2.85 5.88 7.55 2
4 1.56 1.99 2.10 115 g2
6 1.18 1.25 1.90 1.88 &
8 089 116 238 238 3 8
10 0.69 0.87 1.11 1.28
12 0.50 0.61 0.73 0.91

Table 6.4 Damping Coefficients (%) for the Rocking Mode. VEE CONTACT -
'‘Pole’ 1.
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BOLT NUMBER OF SHIMS
TENSION (kN) 2 4 6 8

0 1192 1051 1111 12.03

2 4.84 8.27 5.92 7.42

4 439 7.21 5.91 709§,
6 407 637 5.41 455 & &
8 6.34 5.86 4.49 478 O @
10 431 5.64 3.22 3.62

12 4.25 524 243 2.78

0 1427 2666 2185  21.79

2 6.94 7.54 7.02 9.73

4 4.65 4.55 5.17 712 g g
6 4.15 3.85 4.36 548 & =
8 4.12 3.73 4.17 4.64

10 437 3.95 3.90 4.10

12 3.80 2.78 3.82 3.36

0 1090 1590 1900  12.50

2 532 4.88 6.10 687
4 3.43 3.36 3.53 537 o E
6 284 286 304 353 £ &
8 2.35 1.91 2.76 314 83
10 222 2.03 2.45 307 @&
12 2.05 1.71 212 - 276

0 19.64  19.73 - 21.50

2 6.46 7.10 6.32 600 o
4 475 572 562 546 o £
6 4.23 4.28 5.50 500 @
8 3.30 4.24 4.75 434 3 8
10 2.19 3.13 3.79 332 9@
12 1.35 1.30 2.97 2.49

Table 6.5 Damping Coefficients (%) for the Rocking Mode FLAT

CONTACT. 'pole' 1.
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BOLT TENSION NUMBER OF SHIMS

(kN) 2 5 8

5 1660 1500 1360

10 2080 1980 1780 2 o
15 2120 2020 1860 £
20 2160 2060 1980 ©.
5 1300 1220 1100

10 1780 1640 1560 2 &
15 1920 1800 1740 L E
20 2020 1960 1800

5 880 820 740 _ E
10 1400 1340 1280 3
15 1760 1540 1400 3§ B
20 1960 1800 1680 @ &
5 1680 1440 1300 E
10 1960 1860 1740 Z 5
15 2040 1980 1920 E g
20 2100 2060 2000 & &

Table 6.6 Resonant Frequencies (Hz) for Pole-2 VEE contact.
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BOLT TENSION NUMBER OF SHIMS

(kN) 2 5 8
5 480 420 350
10 940 800 600 & g
15 1180 1080 920 S =
20 | 1540 1320 1200
5 350 300 280 .
10 700 700 620 2 E
15 1220 1000 920 m &
20 1540 1340 1260
5 320 300 300 - E
10 720 680 550 g &
15 1240 1120 1000 8 8
20 1600 1440 1320 KW@
5 720 640 440 B
10 1000 860 700 25
15 1480 1220 1140 £ g
n A

20 1700 1520 1450

Table 6.7 Resonant Frequencies (Hz) for Pole-2, FLAT contact.
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§6.6 Summary of Findings
A set of stiffness and damping values has been evaluated for four
different shim materials over a full range of preload and contact-type

conditions.

6.6.1 Effects on the Joints

As one might expect, it is not possible to completely isolate the effects
of the various independent variables on the resultant joint

characteristics. However, the following comments apply;

(1) The principle determinant of joint stiffness and damping for the

vee" contact is the preload. The indications are that at high

n "

values of preload on the "vee" contact, and with few shims,
virtually all of the rocking flexibility might be derived from local
internal deformation of the pole and the yoke at the points
(lines) of contact since there is not much variation of the
stiffness with respect to the shim material. It is not possible to
model this accurately using ordinary finite-element methods or
others since the area of contact is theoretically zero. However a
simple hand-calculation below (6.7.1) indicates that the local
internal deformations are not of sufficient order to account for
the flexibility. Another possible explanation is that the two lines

of contact become virtually rigid and all rocking flexibility is due

to one side of the 'poles' lifting off the yoke each half-cycle. This
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(2)

(3)

(4)

possibility is dismissed by arguments presented in 6.7.2. The
only conclusion satisfactory to this author at this time is that the

deformation does occur at the shim surfaces.

Increasing the preload invariably increases the joint stiffness
and decreases the damping coefficient. For the flat contact, the
relation between stiffness and preload rises with a linear
dependence (after the initial portion where the relation appears
quadratic) over the range of preloads tested. The "vee" contact
on the other hand, begins linearly and displays a definite

levelling-off at higher preloads.

Increasing the number of shims invariably decreases the joint

stiffness and usually increases the damping coefficient.

Damping coefficients have been found to be between 0.5% and
2.5% in the realistic range of conditions. Brass displays the best
damping coefficients allowing for the inevitable scatter which

occurred in the readings.

The dependence (of the stiffness particularly) on the shim
material is not as marked as one might have expected. The
dependence is quite visible for the "flat" contact type. In this
instance, it appears that the.sur,face finish probably has more
effect on the properties than the bulk properties of the shim

material itself. For the "vee" contact, the maximum difference in

stiffness due to the material is about 10%.
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6.6.2 Comparison of Joints

The behaviour at a "Vee" contact joint differs markedly from that of a

flat contact in the following ways:

(1)

(2)

(3)

(4)

The stiffness of the flat contact joint may be quite dependent on
the shim surfaces. The measurements from pole-1 suggest that
this is the case (Brass and electrical-steel shims with coarse
surfaces yield lower joint-stiffness than copper shims with a

smooth finish) while those from pole-2 suggest that it is not.

The dependence of the stiffness and damping figures on the

preload differs considerably. See point (1) from §6.6.1 above.

The stiffness of the flat joint is very much less than that of the

Vee contact joint, over the range tested.

The damping coefficients of the flat contact joint are generally
much higher than that of the Vee-contact joint. Typically, the
ratio of 3 applies. Moreover the energy dissipation per radian
of joint motion is the same or higher for the flat joint. This is an
unexpected result. (Energy dissipation is proportional to the

product of stiffness and the damping coefficient).
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6.6.3 Comparison of Results from Different Poles- Scaling.

For the "flat" contact type, the pressure in the joint for pole-1 at a
bolt-tension of 10 kN would be the same as the pressure in the joint for
pole-2 at a bolt-tension of 20 kN. If the shims were acting as a uniform
matress, one would expect that the 'rocking' stiffness of the joint would
be eight times as great for pole-2. (The area is twice as large and the
second moment of area is four times greater). At a bolt-tension of 10 kN
acting on 8 stainless-steel shims under pole-1, the measured resonance

was 615 Hz. The corresponding torsional stiffness is . . .
T=(615%6.283)2/9.49 = 1.57e6 Nm/rad (6.11)

Eight times this torsional stiffness at the joint between pole-2 and the

yoke-piece would cause the resonant frequency to be

F = ( 1.57¢6 x 8 x 7.05 )* / 6.283 = 1498 Hz. (6.12)

In fact, the measured frequency was 1450 Hz (table 6.7). Allowing for
the scatter in the readings which is evident throughout the set, this is
corroborative. Similar calculations for all of the other combinations of
materials and numbers-of-shims shows that the scaling of stiffness
according to the cube of the pole-width is generally true. One anomaly
which appeared was that for flat contact with pole-1, the resonant
frequency was substantially lower with brass anc electrical steel shims

than with the other materials. This was not the case for "pole-2".
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With regard to the vee configuration, we would expect that the same
conditions would prevail under the edges of pole-2 at any given
bolt-tension as would have prevailed under the edges of pole-1 at the
same bolt-tension. Therefore, when examining how the torsional
stiffness scales up, we compare the results at 10kN per bolt from the
measurements on both poles. There is a simple increase in resonant
frequency by a factor of approximately 2 for all materials when pole-1
is exchanged for pole-2 in the jig. This corresponds to an increase in
torsional stiffness by a factor of 4 x (9.49/7.05) = 5.4. We would have
expected that this factor come out as exactly 4. Again, there seems to be

no obvious explanation.

The results for both poles are combined to smooth-out some of the
scatter, and graphically presented for a pole-back width of 0.1 m as
stiffness per meter of length. It is recommended that the theoretical
factors be applied to scale these results up to real pole dimensions and
this process is illuétrated by an example in §6.8. Fig. 6.7 shows the
envelope of likely pole root torsional stiffnesses (per meter of axial
length) for a "flat" contact configuration. There is not sufficient
difference between the figures produced by the various materials
tested to warrent producing individual bands for each one. Fig. 6.8
shows the same results for a "vee" contact. Again, there is no
differentiation between the materials. Fig. 6.9 shows the dependence of

‘damping coefficients on the pressure for the flat joint and Fig. 6.10

shows the same dependence for the "vee" joint.
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§6.7 Two Possible Sources of Flexibility In the Model Other

Than at the Shim Surfaces - Dismissed

6.7.1 Local Internal Deformation _in the Pole and Yoke- Pieces.

This is a very approximate calculation. What is done here is to
demonstrate that the minimum stiffness of the edges of the pole- piece
(under the conditions which would obtain with a 15kN preload of the
bolts in the model) precludes the possibility that this sort of
deformation could be responsible for more than a tiny part of the
rocking flexibility of the joint. The stiffness of the lines on the 'yoke'

piece would obviously be greater than that of the pole-edges.

We suppose, to begin, that the pole edges deform in yield until there
there is a sufficiently wide band of material at each of the pole-edges to
sustain a force of 15 kN distributed over the 250 mm of contact
between "pole" and "yoke". We call this width d and calculate it as

(6.13).

d=15e3 / (500e6 x 250e-3)=1.2e-4 m (6.13)
The edges are assumed to have been sharp. Then the situation below
prev~ils. We assume that all of the tip flexibility derives from the

triangular portion which is 1.3mm deep. When a force of 1IN is applied

downward at the flattened tip, it is causes a downward deflection of "A".
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The assumption for calculating A is that each horizontal slice
experiences a uniform compression and does not deviate from being

flat. "A" is then given by the integral below. (Note that Tan2.5° =

1/22.9.
-
S

A=20'909 300 dx = 1.15e-12m (6.14)

It is worth noting that however crude this calculation, it is not very
sensitive to the magnitude of d. If we multiply d by 10, then
A=6.71e-13m and if we divide d by 10, then A=1.63e-12m.

The stiffness of the pole edges is thus in the region of 8.7ell N/m per

meter of edge.
For our pole, this is 2.18¢11 N/m. The resulting torsional stiffness is

7.8e8 Nm/rad. for pole-1. Comparing this figure with the true torsional

stiffness as measured (=5.0e6) shows that allowing plenty of scope for
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error in the approximation, we can be assured that the flexibility of the
"vee" joints is not influenced profoundly by internal deformation at the

pole-edges.

6.7.2 Torsional flexibility due to the bolts themselves.

It might be suggested that the pole-edges in the model were not moving
at all with respect to the "yoke" for one half of each cycle and rising

clear of the shims and "yoke" for the other half. The stiffness would
then be derived from the pulling action of the pole-bolts at the center of
the pole. This notion is easily dismissed. The maximum tension in the
bolts for pole-1 at any 'time was 12kN. The tension would not be
noticeably changed by movement of less than S5e-5m at the pole end
with respect to the "yoke". The restoring moment would then be
independent of the amplitude and clearly an amplitude-dependent

resonance would result. This was not found to be the case at low

amplitudes of vibration.

It is worth bearing in mind that for larger amplitudes of oscillation, the
torsional stiffness of the joint is ultimately limited by the stiffness of
the bolts.

§6.8 Using the Values.

Fig.s 6.7 to 6.10 present the torsional stiffness (per metre) of a

cross-section of the joint conditions tested. The figures have been

converted to apply to a pole-back of width 0.Im. In order to use these
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figures, one must first establish whether the contact is closer to "Vee”
than to the "Flat" as defined earlier in this chapter. To get bounds for
the possible pole-stiffness not knowing which contact type is closest,
treat both cases. (In the extreme - assuming that local joint stiffness is
proportional to pressure- the "Vee" joint is three time more stiff in
torsion than the "Flat" joint). Next, evaluate the mean pressure at the
pole-back and the force-per-metre at the edges of the pole-back. Look
up the stiffness from the appropriate graph from Fig.s 6.7 - 6.10 for the
nearest combination of shims. (The number of shims is much more
important than the depth). Finally, scale the results to apply to the true

width of pole-back in question.

Example: A steel mill macﬁine pole has pole-back dimensions 406mm
x 140mm. It is held by three M24 bolts. In the set of impulse tests
done on this frame, the pole-bolts were torqued-up tight by hand with
a spanner of length 0.3m. The tension in the bolts would then be

approximately 25kN. The poles were seated upon four electrical shims.

For the "vee" contact, this is equivalent to a force of 92 MN/m. Fig. 6.10a
shows that the expected torsional stiffness-per-metre for a pole-back
width of 0.1m would be roughly 55MNm/rad. The true width of the
pole-backs for the MDX machine was 0.14. We scale the torsional
stiffness figure by 1.42 to get 180 MNm/rad . Given the inertia of the
pole per metre, the resulting rocking frequency (assuming a rigid yoke)

would be 1870Hz. The expected damping coefficient is 2%. (Table 6.5)

For the "flat" contact type, 25 kN results in a pressure of 1.3 MPa.
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Fig. 6.8a shows the expected torsional stiffness-per-metre for a
pole-back width of 0.Im to be some 23 MNm/rad. To scale this
appropriately, we must multiply by 1.43. The resulting torsional
stiffness is 75 MNm/rad . This would have resulted in a rocking
resonance (again assuming that the yoke were rigid) of 1210Hz.

Damping for this joint can be estimated from table 3.4 as about 0.7%.

It is seen in chapter 8 on the correlations performed that the
characteristic pole-rocking resonance was estimated at 1300 Hz. The

angle of relief on these poles was 0.7°.

Delves (A.1962) presents a series of curves relating pole-root flexibility
to the pole dimensions only. The curves are simply of the form T=k.a%b,
where "k" is some constant of proportionality, "a" is the width of the
pole-back and "b" is the length of the pole. For a=0.1m, b=1m, the
curves presented by Delves suggest a torsional stiffness of 185e6
lb.in/rad. This figure converts to 21.0e6 Nm/rad. The curves presented
in Fig.s 3.7 to 3.10 show possible values between 15.0e6 and
70.0e6 Nm/rad. That the two analyses agree to this extent is
encouraging. Delves extrapolated these curves from a small number of
indirect measurements based on matching resonant pole-rocking

frequencies.

§6.9 Estimation of Compression and Shear Flexibilities from

the Rocking Ylexibility.

For the "flat" contact, the shims behave as a uniform matress. If "a" is
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the width of the pole-back, then the ratio between the stiffness of the
joint in compression (we shall call this stiffness C) and that of the joint

in rocking ( this is called T as before) is given by . .
TIC. = a%/3 (6.15)

For a "vee" contact, the stiffness of the rocking is concentrated at the

pole edges. Hence,

T/C = a? (6.16)

Intuitively, one would expect that the "shearing" stiffness of the joint
(denoted by S) would be smaller than the stiffness in compression. The
normal ratio between the shear modulus and Youngs modulus for the

shim material would seem to be a sensible scaling factor. Thus . . .

SIT = 1.0/ (2(1+W)) (6.17)

No tests have been done which can give a direct indication of S. An
error in the value will result in a small shift of peaks in a
frequency-response curve in the region of the characteristic frequency
of circumferential pole-translation. This is normally sufficiently high in

the spectrum of frequencies to be of little concern.
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Torsional Stiffness per Meter Length (MN m/rad)

Torsional Stiffness per Meter Length (MNm/rad)

NG //.I s N v
Width of Pole-Back =0.1m e 1.
| "Vee" Contact. o — e =
—" -
/ —T .
,-f"'f I _ 7
+ 60 / / i T
A L
/ T~~__ ] 2 Copper Shims
““~.| 5 Copper Shims
140 / : 8 Copper Shims
1~30 :
Force per Meter at the Pole Edges (kIN)
=2 40 60 80 100 120
o ! ol s
Width of Pole-Back = 0.1m T
“Vee" Contact. o o el
oy . av o W
// ol
{50 e =
/ sl
™~ L_/'—-
A \‘/
-40 7 =
- / \2 Brass Shims
/ \__[5 Brass Shims
' 8 Brass Shims
-30 / 7
0/
20 / —
Force per Meter at the Pole Edges (kIN) _ J
L i ) 18
20 40 60 80 100 120
Fig. 6.7 Joint Rocking Stiffness (" Vee")

.279. Copper and Brass Shims.



.

|

per Meter Length (MNm/rad)

I_

|

150

Width of Pole-Back =0.1m _
"Vee" Contact.

/ "'““ 8 Electrical Steel Shims

2 Electrical Steel Shims
5 Electrical Steel Shims

J—

20

Torsional Stiffness

| / Force per Meter at the Pole Edges (kIN)

-10

20

40

f I
-70— Width of Pole-Back =0.Im —

60

80

100

L

"Vee" Contact.

g

gL

& i e /

|

gn ""‘-- 2 Stainless Steel Shims |

Qi 50 / / 5 Stainless Steel Shims

5} 18 Stainless Steel Shims

o v _

P

8.“- 40_

a1 30 /

-ﬂ' 1 [

8 s

=,50 Force per Meter at the Pole Edges (kN)

¢ I 20 40 60 80, 100
Fig. 6.8 Joint Rocking Stiffness (" Vee")

-280-

Electrical and Stainless Steel Shims



Torsional Stiffness per Meter Length (MNm/rad)

L=

per Meter Length (MNm/rad)

5

- 30

- 20

; I 4 ’
\Lsﬁ—'*W'—_J/ l L /- ' -
T idth of Pole-Back =0.1m L - i
n " / /
Flat" Contact. <
s Ve 7/
y 7 o
7 =
\ 4 4
2 Copper Shims (Smooth)

5 Copper Shims (Smooth)
———— 8 Copper Shims (Smooth)

Torsional Stiffness

- 281~

= Pressure on Shims (MPa)
1.0 | ' 2.0
150 Width of Pole-Back = 0.1m | s
"Flat" Contact. B
| o
> 20N ”
- 40 ‘ 2SR ’
47 5
PR
| > ‘A -
30 2 Brass Shims (Rough) > £
5 Brass Shims (Rough) S A
8 Brass Shlms (Rough) \\ / / s ', g1
-20 /
10 /r‘; Pl —
== Pressure on Shims (MPa)
1.0 2.0
Fig. 6.9 Joint Rocking Stiffness ("Flat")

Copper and Brass Shims.



-

4
?

Vs

A‘LSG Width of Pole-Back = 0.1m Voo
= "Flat" Contact. / ©
£ % il
S 8 A
= i / A i
b g
P 2
::f‘ / 7 b §
2130 s
5] L Gy
L -
s // ol . .
5120 —— 2 Electrical Steel Shims (Rough) -
o 7 -5 Electrical Steel Shims (Rough)
8 / “«—— 8 Electrical Steel Shims (Rough)
& 10 / :
: -// ’
=
2 z
E = ~ Pressure on Shims (MPa)
: r 1.0 ' 2.0
™ 50— Width of Pole-Back = 0.Im FAGUgH, iy X
'§ ' "Flat" Contact. P /
g o
é 40 / —
=11]
» / e
2 / LS Y Stamlcss Steel Shims (Smooth)
% L / 5 Stainless Steel Shims (Smooth) -
8 =20 A ’ —= 8 Stainless Steel Shims (Smooth)
g
&
Zan
=1 10
=
2
;_5 Pressure on Shims (MPa)
r 1.0 2.0
Fig. 6.10 Joint Rocking Stiffness (" Flat")
289 - Electrical and Stainless Steel Shims.




Chapter 7.

THE BOLTED - FLANGE JOINT
IN THE SOLID ROLLED YOKE

Many aspects of construction are made simpler by preparing the yokes
of large D.C. machines in two separate parts. The joints normally occur
in the same horizontal plane as the armature C.L. and it is normal for a
compole to be fixed to the yoke at each split. The mainpole flux then
traverses the split and (fortuitously) has significant effect on the
tightness at the joint. Current practise is to weld dowels into the flange
on the bottom half of the yoke to locate the top half correctly in both

the x and z directions. Fig 7.1 illustrates the joint.

There has been no study directly investigating the significance of these
splits on the vibration of DC machines though there is no shortage of
literature on some effects of bolted joints in machine-tool vibration.
Clearly, it is to be expected that the joints will have some effect on the
behaviour of the frame. This chapter reports a set of experiments
performed to quantify the flexibility which is introduced by the
bolted-flange joint. It should be observed that since we are once again
dealing with a set of properties which are determined almost entirely
by surface conditions (rather than measurable proportions and physical
constants), the results from this chapter must be considered to be quite
approximate. As with the properties of laminated components
(chapter 5) and the properties of the shimmed pole-yoke joint

(chapter 6) one could get accurate values for the mean properties by
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doing large numbers of tests but the variance would probably be such

that this accuracy would not be of any practical value.

Damping in these joints has been investigated to a limited extent.
Damping figures obtained for various modes of the models tested have
been of the same order of magnitude as the material damping of steel
itself in low-amplitude vibration. Thus, we are content to assume that
the damping is low. Obtaining accurate figures for it is impossible
because of the difficulty of separating the energy dissipation at the split

from that internal to the steel.

It has been the case in the course of the work reported in this chapter,
that all of the modes examined on the various models have been very
similar to modes of true uniform rings and cylinders. That is to say, the
flexibility of the joints has not been such that mode-shapes have
become dramatically altered. There is a convention for the description
of the modes of pure rings and cylinder. The central notion to this
convention is the use of an integer n which specifies the number of
wavelengths of the displacement pattern about the é:ircumference. In
discussing the experiments done and the interpretation of the results, it
is useful to retain this short notation for the mode-shapes though it is

no longer strictly correct.
§7.1 Dynamic Properties of the Joint

Fig. 7.1 shows a cross-section of the joint. If it were rigid, then the

rotations a; and a;, would be identical as would the translations u, u,
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and v,, v,. In reality, there will be a restoring moment "M" and

restoring forces P and Q, given by . . .

M=T (a, -a,) (7.1)
P=C(, -u) ‘ (7.2)
Q =S (v, -v) (7.3)

We have considered only the displacements in the r-6 plane. The length
of the joint is usually large in comparison with its width so that bending
moments about radial and tangential axes are taken care of in the
numerical models by the translational stiffnesses of the joint. The joint
faces are normally finished with an end-mill. Therefore, they do not
have a directionality and it is to be expected that the shear properties
of the joint in the longitudinal sense are identical to those in the radial

s€énse.

A good quality surface from the end-milling operation will have a r.m.s.
height of asperity of some 6e-6 m. The vibrations with which we are
concerned are generally lower than this in amplitude. Therefore, the

whole vibration amplitude can normally be taken up at these joints. It

will not be surprising therefore, that finite values can be measured for

the quantities T,C and S above.

The following factors will obviously play a part in determining the joint
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parameters.

(1)‘ The material of the flanges.

(2) The surface-finish ot the machined faces.
(3) The flatness -of the machined faces.

(4) The tightness of the joint.

(5) The surface area of the joint.

The material is always steel. The area of the joint is normally
determined by the need to fit bolt-holes between the cylinder and the
outside of the flange. Joint tightness is controllable to some extent
though gravity and magnetic attraction play a strong role in providing a

base value of pressure.
§7.2 Design of the Experimental Models

In choosing a model to investigate the behaviour, similar principles
were applied to those outlined in §6.1. The original system comprised
two flat rectangular plates which formed a 1m .square when bolted
together at the flange-joint (Fig. 7.2). This would allow the three
stiffnesses C,S and M to be investigated in completely separate tests.
The tests which were envisaged are shown in Fig. 7.2 also. The
dimensions of this model had been obtained by proportionally
scaling-down from a real machine joint. It transpired that the flange
itself was too flexible in comparison with the joint interface for any

very useful results to be obtained.
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Two problems seemed to be present. Firstly, the weld itself appeared to
be contributing to the flexibility figures being recorded. It was also
noticed (as a result of a simple purely theoretical calculation) that the
pressure at the joint interface caused by the bolts was not being spread
very uniformly by the flanges as tends to happen in the real machine
joints. Further thought reveals that it would have been more correct to
have scaled the flange thickness according to the square-root and scale
all other dimensions linearly. The investigation on this model was
carried out by P. Swales (A.1985) and his contribution is gratefully

acknowledged.

With the above experience in mind, a new system was adbpted. This
would dirqctly address the problem of the behaviour of the joint in the
cylinder. The scaling of these models was somewhat more realistic. In
all, six distinct models were prepared. Fig.s 7.3 and 7.4 illustrate three
rectangular-section ring models. Fig.s 7.5 - 7.8 illustrate three uniform

cylinder models made in one, two and four pieces respectively.

The progression in behaviour observed in models 7.1-7.3 and 7.4-7.6
can be interpreted to produce figures for the three stiffnesses required.
Benhafsi (A.1986) was responsible for carrying out the tests and has

been very thorough in this task.

Both the rings and the cylinders have a number of well separated
resonances at the low-frequency end of the spectrum (beginning near
250Hz for the first non-rigid-body mode). The cylinder dimensions

chosen are such that every mode whose resonant frequency lies below
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1000Hz has displacements which vary almost exactly linearly with
respect to axial position. This is the case by design and only these
modes are of interest for ihe study of the joint behaviour. If the flanges
were required to twist or bend significantly in any one mode, it would

be more difficult to accurately represent their effect.

§7.3 The Behaviour of Rings and Cylinders Having
Symmetrically Deployed ~ Joints

Before we proceed to describe the experiments carried out, it is
appropriate to explain how the measurement of the torsional stiffness T
could be isolated from the effects of the shear stiffness S and

vice-versa.

Every uniform ring possesses an infinity of planes of symmetry each
one containing the axis of the ring. (The z-axis). One of these planes is
nominated as the y-z plane and the x axis is normal-to that plane. The

orthogonal plane which contains the z-axis is the x-z plane.
Now applying some knowledge about the modes of objects having one

plane of symmetry, it is clear that the modes of the ring/cylinder can be

divided in to four groups as...
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(1) Modes Sym. wrt. x and Sym. w.rt. y.

(2) Modes Sym. wrt. x and  Asym. w.rt. y.
(3) Modes Asym. w.art. x and Sym. w.rt. y.
(4) Modes Asym. w.r.t. x and Asym. w.rt. y.

Modes which are symmetrical with respect to the y-z plane are

characterised by the following facts:

(1) Particles lying on the plane can freely translate within the plane

but they cannot depart from the plane.
(2) The shear stresses Oy and o, are zero at the plane of symmetry.

Modes which are anti-symmetrical with respect to the y-z plane are

characterised by the following facts:

(1) Particles lying on the plane can freely translate normal to the
plane but they can have no component of motion parallel to the

plane.
(2) The normal stress ¢ is zero at the plane of symmetry.

Now, -if a pair of joints is positioned on the plane-of-symmetry y-z , the
modes symmetrical about that plane will cause a bending moment to
exist at the joints but no shear, and the anti-symmetrical modes will
cause a shear force to exist at the joints with no bending moment. This

reasoning applies as directly to cylinders as it does to rings. By
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selectively exciting modes which are symmetrical or anti-symmetrical
with respect to the plane(s) at which joins occur in the ring/cylinder,
the behaviour of the joints in shear can be investigated separately from

their behaviour in bending.

Compression/extension of the joints cannot be separated from bending
in these models except for the breathing mode (n=0) . The stiffness of
the joints in compression/extension motion is such that simple opening
of the joint makes little impression on the natural frequencies of the
ring compared with the bending motion. In fact, it was not possible to
detect any added flexibility due to compression/extension of the joints
at the low-frequency end of the spectrum. However, we can apply the
same logic as used in §6.9 to deduce the stiffness of the joint in
compression/extension from the bending stiffness. In the meantime,
we assume that C is very large (ie. that no compression/extension

occurs in the joint.)

§7.4 Tests on the Ring Models

All of the information required from this experimental study could have
been obtained by considering the ring models alone. A complete set of

tests was done on the rings to achieve the following:

(1) Verify a theoretical model for the rings so that results could be

interpreted using this model.

(2) Check the effect of the welds independently of the splits in order

-290-



to establish whether the welds themselves contribute significant

flexibility.

(3) Assess the influence of the split by examining the shift in

resonances caused by it.

The plain ring was mounted in a free state and excited to vibrate in its
own plane. The optimum mounting technique was chosen by comparing
the first three measured resonances. The setup which returned the
lowest frequencies was deduced to be the least stiff. The suspension
methods tried include hanging by a rope, three-point support on
softwood blocks and three-point support on rubber pads. The resulting

suspension arrangement was to lay the ring on the rubber.

Natural frequencies were recorded for the flexural modes (n=2,3,4,5)
and the extensional mode n=0 for the free ring. These correlated well
with the ring model of DMS and verified that it is satisfactory to use this

theoretical model in these circumstances. Results are presented in

Table 7.1.
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n Measured Predicted

Resonance (Hz) Resonance (Hz)

2 246.4 246.7
3 684.2 684.9
4 1289.0 1291.2
5 2043.2 2046.9
0 2574.5 2576.3

Table 7.1. Measured and Predicted Resonances

for Model 7.1

In order to assess the effects of the welds independently of the splits, it
was decided that the models which were to become the
ring-with-two-joints and the ring-with-four-joints would each be
prepared first as single pieces and tested. These tests were carried out
to excite both modes symmetrical and anti-symmetrical with respect to
the y-z plane. The natural frequencies resulting were lower than those
measured on the free ring as would have been expected because these
models had two and four lumps of steel effectively added. Use of the
DMS ring model with two and four added masses revealed that there
had been no measurable decrease in the flexural stiffness of the ring
due to the presence of the fillet-welds. Table 7.2 below gives measured
and predicted frequencies for the tests on model 7.2 (two added lumps

of steel) Table 7.3 gives measured and predicted frequencies for the

-292-



tests on model 7.3.(four added lumps of steel)

n Measured Predicted

Resonance (Hz) Resonance (Hz)

2 225.0 225.5
3 633.5 634.5
4 1202.1 1205.3
3 2042.1 2048.5

Table 7.2. Measured and Predicted Resonances

for Model 7.2 nsplit

n Measured Predicted

Resonance (Hz) Resonance (Hz)

2 214.3 214.9

3 628.2 630.0

4 1125.0 1128.6

5 1767.0 1776.8
Table 7.3. Measured and Predicted Resonances

for Model 3 (Unsplit)
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Then the splits were introduced by cutting through the two models
mentioned above. A relatively small amount of material was lost in this
process and the surfaces were purposely left rough (by the saw).
Models 7.2 and 7.3 were then used to investigate the properties of the
split in bending and shear. The pre-tension at the splits was provided
by one 0.5" bolt at each split. The yield strength of these bolts is
approximately 24.5 kN aﬁd this tension is achieved by a torque of some
46 1b ft (62.4 Nm). At full tension, the mean pressure at the joint

interface is 6.2 MPa.

Model 7.2 was suspended on the rubber feet and shaken so that the
modes n=2 and n=3 (symmetrical w.r.t. the plane of the split) were
excited. Comparison of the natural frequency for the n=2 mode here
with the n=2 from the unsplit version of model 7.2 shows that the extra
bending flexibility of the split has had a measurable influence on the
ring behaviour. On the other hand, the flexibility of the joint in shear
had a negligible influence on the resonant frequencies. Table 7.5 below
presents the resonances for two values of joint tightness where the

surface condition of the joint was rough.
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Joint-Pressure Resonance (Hz) Resonance (Hz)

(MPa) (Mode n=2) - (Mode n=3)
1 | 209.5 633.2
6.2 216.5 633.2

Table 7.5. Measured Resonant Frequencies of Model 7.2

(Rough joint surface).

By comparing the frequency shift with the shift predicted by DMS for
this model - given various values of torsional stiffness - an estimate of
the torsional stiffness can be obtained. Table 7.6 below )shows the
results of this comparison. The depth of the joint in the axial direction
was 40mm and the width 100mm. The figures for torsional stiffness can

be scaled to apply to other joint proportions.
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Joint-Pressure Torsional Stiffness

(MPa) (MNm/rad)
. | 1.2
6.2 2.0

Table 7.6. _Deduced Torsional Stiffness For Model 7.2
(Rough joint surface).

Model 7.3 was then split in two planes and re-assembled with bolts at
each split as was done for model 7.2. Tests similar to those described
above were carried out. In this case, the n=2 mode (symmetrical w.r.t.
both planes of split) involves pure bending at all the joints as before,
but n=3 incorporates bending at two of the joints and shear at the other
two joints. By using a different point of excitation, the n=2 mode
(anti-symmetrical w.r.t. both planes of split) was excited. This mode
causes a shear force to exist at the joints but no - bending. The

resonances are presented below in table 7.7.
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Joint-Pressure ~ Resonance (Hz) - Resonance (Hz)

(MPa) (Mode n=2) (Mode n=3)
3.1 2016 610.0
6.2 206.0 612.2

Table 7.7. Measured Resonant Frequencies of Model 7.3
(Rough joint surface).

Using the same technique of comparison between theoretical model and
the measurements, equivalent torsional stiffness values for the joints
are obtained. Again the frequency shift due to the shear flexibility was
negligible. The implied average torsional stiffnesses of the joint were of
the same order as those found previously for both cases of joint
tightness. Table 7.8 gives the joint bending stiffness as calculated from

the ring with four splits.
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Joint-Pressure Torsional Stiffness

(MPa) (MNm/rad)
3.1 1.1
6.2 18

Table 7.8. Deduced Torsional Stiffness For Model 7.3
(Rough joint surface).

The faces of the joints in both models 7.2 and 7.3 were then milled to
represent a more typical condition for the DC machine. The tests and
procedures described above were reapplied to assess the torsional
stiffness of the joints again. It was found to be reduced instead of
increased as was expected.. Tables 7.9 below is a record of the
resonances found for the milled joints in model 7.2. The loss of material
as a result of the machining operation was accounted-for in the DMS
model and the corresponding torsional stiffnesses were then derived as

before. (Table 7.10)
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Joint-Pressure Resonance (Hz) Resonance (Hz)
(MPa) (Mode n=2) (Mode n=3)
3.1 205.2 671.8
6.2 206.6 673.0

Table 7.9. Measured Resonant Frequencies of Model 7.2
(Milled Joint surface).

Joint-Pressure

Torsional Stiffness

(MPa) (MNm/rad)
3.1 0.8
6.2 1.1

Table 7.10. Deduced Torsional Stiffness For Model 7.2
(Milled joint surface).

In summary, the tests on the rings reveal:

(1) That the welds at the flanges do not contribute significant

flexibility to the joint.
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(2)

(3)

(4)

would be

That the damping occurring at the joint is negligible in
comparison with the damping in machines from other

sources.

That the flexibility of the joint in shear is immeasureably

small (on the present model)

That the bending flexibility of the joints is sufficient to cause
a significant change in some of the resonant frequencies of
the ring.The rough surface surprisingly yielded higher
resonant frequencies than the milled one. Possibly, this effect
could have been due to flatness errors in the sawed joint
causing intimate contact between the two sides of the joint
flattening down asperities etc. in one or very few areas. The
sawed faces did have very poor quality where flatness was

concerned.

§7.5 Tests on the Cylinder Models (7.4 - 7.6)

The cylinder models were created with two purposes in mind. Firstly,

the values for the joint stiffness values found from the ring model

supported and generalised. The other function was to

demonstrate that the split cylinder could be modelled well with the

DMS software. For the present, we concentrate on the former.

As commented earlier, the dimensions of the cylinders are such that in
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the low-frequency modes displacements vary quite linearly with
respect to the axial length. Now, each of the cylinders has a plane of
symmetry normal to the axis of the cylinder as well as two planes of
symmetry containing the axis. Modes symmetrical w.r.t. z - the
coordinate of axial position - are very similar to the in-plane modes of
the rings. Modes anti-symmetrical w.r.t. z have zero radial and
circumferential displacements at the plane of symmetry. Therefore,
when the cylinder models are excited radially at the axial center, none
of the anti-symmetrical modes are forced. In the tables to follow, n=2,S
denotes the mode shape which has two full wavelengths about the
circumference of the cylinder and which is symmetrical w.r.t. z.
Similarly, n=3,A denotes the mode shape which has three full
wavelengths about the circumference of the cylinder and which is

anti-symmetrical w.r.t. z and so forth.

The first test on the cylinders was to suspend the plain uniform
cylinder on flexible rubber mats and excite the modes symmetrical wrt
z by applying the forcing at a point axially half-way along the cylinder.
The response was measured at the center of the cylinder also. The
frequency response-trace measured compared very favourably with the
trace generated by the DMS cylinder representation. (Fig. 7.8). Exciting
the cylinder at one end causes the antisymmetrical (w.rt. z) modes to be
excited with the symmetrical ones. Again, the measurement compares
favourably with the prediction (Fig. 7.9). The theoretical model is

conside-ed to be validated.

Each of the joints in models 7.5 and 7.6 were held together by six 0.75"
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bolts. Three values for the bolt torque have been used, namely 25 Ibft,
50 Ibft and 100 Ibft. These result in mean joint pressures of 0.9 MPa,
1.8MPa and 3.6MPa respectively.

Model 7.5 was flexibly mounted and shaken so that at first, only the
symmetrical (w.rt. z) modes are excited. Then all modes were excited by
applying the forcing at the end of the cylinder. In each case, the force
was applied in a plane perpendicular to the plane of the splits. Thus, the
modes n=2,S and n=2,A will involve a bending moment at the'joints
while modes n=3,S and n=3,A involve a shear force at the joints. Natural
frequencies were recorded for the three conditions of joint pressure 0.9
MPa, 1.8 MPa and 3.6 MPa. Table 7.12 below gives the resonances for
each of the cylinder modes of model 7.2 having a resonant frequency

less than 1 kHz:
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Joint-Pressure Mode Resonance (Hz)

(MPa)

0.9 n=2S 190.0
0.9 n=2A 2844
0.9 n=3S 705.0
0.9 n=3,A 880.5
1.8 n=2S 194.0
1.8 : n=2,A 289.0
1.8 n=3,S 706.4
1.8 n=3,A 883.3
3.6 n=2S 220.0
3.6 n=2A 302.8
3.6 n=3,S 708.6
3.6 n=3A 894.0

Table 7.12. Measured Resonant Frequencies of Model 7.5

as a Function of Joint Pressure

Model 7.6 was flexibly mounted and excited similarly to model 7.5 to
extract the resonant frequencies of the low-frequency modes. The
natural frequencies were recorded for the same three conditions of joint
pressure 0.9 MPa, 1.8 MPa and 3.6 MPa. Table 7.13 below gives the

resonances for each of the cylinder modes of model 7.6.
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Joint-Pressure Mode ° Resonance (Hz)

(MPa)

0.9 n=2,5 147.2
0.9 n=2,A 25991
0.9 n=3S 548.7
0.9 n=3,A 776.7
1.8 n=2,S 166.8
1.8 n=2,A 267.2
1.8 n=3,S 578.8
1.8 n=3,A 797.4
3.6 n=2,S 189.0
3.6 n=2,A 2715
3.6 n=3,5 626.4
3.6 n=3,A 816.3

Table 7.13. Measured Resonant Freguencies of Model 7.6

as a Function of Joint Pressure

Fig. 7.10 shows the representation of model 7.5 created within DMS.
The second "half" of model 7.5 is simulated by imposing suitable
symmetry conditions at the flanges. Depending on the stiffness of the
joint in bending, the true lowest-frequency mode of the model will be

between the two extremes illustrated in Fig. 7.10.
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Fig. 7.11 shows the theoretical representation of model 7.6. The
simulation of the whole model is built up from a one-quarter portion by
imposing suitable symmetry conditions as before. Again, the two
extremes of the mode-shape of the lowest-frequency mode are

illustrated.

A number of joint stiffness values have been used in these theoretical
models to establish how the first resonant frequency of models 7.5 and
7.6 depend on this stiffness. The results are presented graphically in

Fig. 7.12.

Comparison of the measurements with the curves of Fig. 7.12 yields a

set of joint torsional stiffnesses. The values are presented in table 7.13.
§7.6 Discussion of Results

The outcome of this invcstigatiori is summarised here.
Compression/extension, and shear flexibilities of the joints in the
models prepared has been too small to obtain reliable values. (Estimates
of these quantities can be made). The flexibility of the joints in bending
is sufficient to significantly influence the resonant frequencies of those
modes which cause a bending moment to occur at the joints. Figures
have been obtained for this flexibility. The damping estimates indicate
that no very significant energy dissipation is occurring at the joints. The
figures for the bending s*iffness of the joints have been evaluated from
two different test set-ups and found to agree within the bounds of

error. These figures must be regarded as approximate. The scatter in
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the figures is such that the true stiffness at any time may well be

anywhere between 0.5 and 2 times the predicted figure.

The bending stiffness of the joints has been shown to depend on the
joint preload and the surface condition. A better surface will increase
the stiffness. Flatness errors, however, in combination with high joint
pressure, leads to very intimate contact of the two sides of the joint at a
small number of points and result in a stiff joint. The literature suggests
that lubrication of the joints with high viscosity oil can considerably
increase the stiffness and introduce a mechanism for finite energy
dissipation to occur. Benhafsi (A.1986) includes an ample literature

survey.

The results for bending (torsional) stiffness of the joints have been
scaled to apply to a joint width of 0.Im and joint length of 1m. Fig. 7.13
shows the relation between the joint pressure and the anticipated joint
stiffness in bending for these joint proportions. For other joint widths,
scale the values according to the square. For other joint lengths, scale

the values proportionally.
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Fig. 7.7 Model 7.6. Cylinuer in 4 parts.
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Chapter 8

CORRELATION WITH TWO MACHINES

The aﬁalysis software DMS developed as part of this investigation has
been applied to two machines in particular from which experimental
data was obtained. It is demonstrated that - within the range of
uncertainty - the package produces good—quality predictions of
vibration levels, given a reliable set of electromagnetic force values. The

two machines will be referred to as A and B.

A is a prototype steel mill motor which was placed completely at the
disposal of the requirements of this work and the complementary
electromagnetic work. Low vibration was not a critical design factor for
this machine. Consequently, the armature slots are not skewed and the
airgap is not graded to any significant extent. Axially, the poles are not
central on the yoke. The distance between the magnetic center of the
machine and the geometric center of the yoke is 30 mm, the
commutator-end of the yoke being further from the magnetic center

than the other.
The principal dimensions of the machine (as far as a dynamic analysis is

concerned) are presented below in table 8.1. Because DMS treats the

poles as rectangular-section prisms, it is most convenient to present
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only the equivalent prism dimensions for the mainpoles and compoles.

Length of Yoke - 642 mm
Inside Radius of Yoke - 319 mm
Outside Radius of Yoke - 375 mm
Yoke Cylinder. - Complete.
Number of Poles - 4

Mass of each Mainpole - 62.5 kg
Axial Length of Mainpole - 406 mm
Radius of Mainpole c.0.g. - 251 mm
Radial Prism Dimension - 136 mm
Cemftl. Prism Dimension - 170 mm
Mass of each Compole - 15.2 kg
Axial Length of Compole - 406 mm
Radius of Compole c.o.g. - 259 mm
Radial Prism Dimension - 120 mm
Ccmftl. Prism Dimension - 409 mm
Table 8.1 Principal Dimensions of Machine A.

B is a propulsion motor on which an extensive set of tests were carried
out as part of another contract. It is a double-armature machine. Only

one "half" of the machine was instrumented in detail and only one half
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of the stator frame is modelled since the joining section between the
two yokes is relatively flexible. The airgap under the mainpoles is
graded and the armature is herringbone-skewed. The machines
mainpoles are laminated and the compoles are solid. The magnetic
center armature coincides axially with the center of the yoke and the
poles. A compole is located at the top dead center of the frame and
compoles are bolted on at the splits in the yoke which occur in the same

horizontal plane as the machine axis.

The principal dimensions of machine B are given in table 8.2 below.
Again, in giving the pole dimensions, only the equivalent prism

dimensions are necessary.

In the case of both machines, both static and running tests have been
done. The static tests are undoubtedly the better test of the software
since the forcing is such that a good many modes are excited to some
measureable extent and the value of the forcing is known to very good
accuracy. In the case of the running tests, it must be borne in mind that
the input to the mechanical analysis is computed not measured. Some
degree of error is inevitable here. Wignall (A.1987) discusses the errors
in his predictions of flux ripple on the machine poles. The proportion of
errors in the resulting electromagnetic forces computed will be at least
twice the proportion of errors in the magnetic flux ripple since force is
derived from flux density by a square-law. In particular, the forcing on
the compoles has considerable uncertainty associated with it. The

compole forces have not been used directly though their effect is

demonstrated.
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There are also mechanical sources of uncertainty. The stiffness and
damping of the joints between the pole and yoke can be estimated for

the machines from the experimental work done on the subject (reported

Length of Yoke - 788 mm
Inside Radius of Yoke - 1390 mm
Outside Radius of Yoke - 1525 mm
Yoke Cylinder. - Split in the Horizontal Plane

Containing the Machine Axis.

Number of Poles - 1.2

Mass of each Mainpole - 332 kg

Axial Length of Mainpole- 630 mm
Radius of Mainpole c.o.g. - 1404 mm
Radial Prism Dimension - 243 mm
Ccmftl. Prism Dimension - 284 mm
Mass of each Compole - 115 kg

Axial Length of Compole - 630 mm
Radius of Compole c.o.g. - 1276 mm
Radial Prism Dimension - 228 mm
Ccmftl. Prism Dimension - 64 mm

Table 8.2 Principal Dimensions of Machine B.
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in chapter 6) and a knowledge of the shim numbers and materials.
However, there is a considerable uncertainty and scatter associated with
these values as mentioned in chapter 6. This scatter is very apparent in

the irregularity of the operating-shapes measured on machine B.

The properties of the laminated poles as determined by experiment
(chapter 5) are quite reliable as demonstrated later in this chapter. The
properties of the split in machine B are subject to some uncertainty
also. The effect of this uncertainty is difficult to assess. It will certainly
cause small shifts in the various resonant frequencies but the response
of the stator over broad bands of frequency will not be seriously
affected. One very important determinant of the vibration levels has
been found to be the field coils and the stiffness+damping of the
connection between each coils and its respective pole. Some of the tests
done on machine A reflect approximate values for the connection
between the main field coils and the mainpoles for this particular
machine. The operating stiffnesses and damping values of the field coils
of machine B are estimated for the purposes of the calculations. Apart
from the measurements on machine A, there is no background to these
estimates and the values used will inevitably have a noticeable effect

on the vibration levels computed.
§8.1 Static Tests on Machine A.
Machine A was dismantled and tested in various stages of assembly to.

provide a thorough understanding and verification of the relevant

quantities. The static tests done showed up a number of modes of
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varying complexity in the relatively low-frequency band of 0-1 kHz.
There s fretjuent reference in this section to the "principal" modes of
the frhmé. ’I"hese are modes in which a high proportion of the kinetic
and potential energy resides in the yoke (+poles) rather than in the

end-brackets.

8.1.1 Tests on the Stripped Frame of Machine A.

Initially, the armature of this machine was removed and all poles
removed to leave only the all-welded assembly of the frame. The frame
was stood upright on one of the end-brackets, on a softwood base to
emulate approximately the free boundary condition Fig. 8.1a. There was
no likely source of non-linearity and so it was appropriate to excite the
structure using a hammer with calibrated force-transducer. Response
was measured at a number of points using an accelerometer mounted
on a magnetic base over a thin layer plasticine to accomodate the
curvature of the barrel. A number of resonances were apparent and
there was a clear distinction between the modes symmetrical w.r.t. the
plane of symmetry of the machine and those anti-symmetrical w.r.t.
this plane. Mode shapes were investigated for each of the resonances
below 1000 Hz. The results of these tests were "input to a small
dedicated program which was used to process them and produce the
visual impressions of the modes. Two of these views are presented later

for comparison with the computed mode shapes.

The frame itself is not a geometrically simple structure. The rolled steel

cylinder makes up some 86% of the mass. Yet the low frequency modes
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are dominated by deflections at the end brackets. Originally, it was
envisaged that the outcome of these tests could .be used directly as a
practical evaluation of the correctness of the cylinder model prepared
as part of the software. The frame of machine A was clearly not suited
to this purpose. Instead, the structure-synthesis techniques used in the
software for aséembling a motor model from its components have been

employed to generate a representation of the bare frame of machine A.

The end-brackets are modelled using simple rectangular-section rings
coupled to the yoke via thin-walled cylinders. The frame is not so
simple in reality but use of some engineering intuition in establishing
equivalent dimensions (for the thin-walled cylinders in particular) has
produced relatively good results. The feet of the machine are modelled
quite exactly using the triangular uniform-plate - finite-element facility
within DMS. The image generated for this model is shown in Fig. 8.1b. It
is important to remember that this wire-frame is not the product of a
finite-element analysis package and so the true boundaries of the solids

are not necessarily delineated.

The DMS model was used to predict the response of four point
displacements (P1-P4 on Fig. 8.1b). This forcing causes only those
modes which are symmetrical w.r.t the machines' plane of symmetry to
become excited. The measured frequency-res_ponse are transcribed onto
similar scales for comparison purposes. Fig.s 8.2 and 8.3 show both the
measured and predicted responses for the frame. There is a small
discrepancy between measured and predicted responses in the

resonance frequencies which can be accounted-for by the
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approximation used for the end-brackets. Otherwise, the agreement is

good.

Correlation of the mode-shapes is equally good. Fig.s 8.4 and 8.5

compare two measured mode-shapes with those computed.

The evidence suggests that the modelling of the components used for

the frame and the structure-synthesis software is correct.

8.1.2 Tests on The Frame with two Mainpoles Attached.

Following the tests on the bare frame, two mainpoles were attached to
the frame without their field-coils. The structure remained on end on
top of a softwood base. The frame was again excited by striking it with
a hammer. In this case, only the resonance peaks of the principal modes
were of interest and sufficient details of each were manually recorded
to make a good estimate of the damping of the modes using the method

mentioned in chapter 6.

Again, a DMS model was prepared. This time, the feet and end-brackets
were not included as attention was confined to two modes which are not
significantly affected by them. An end-on view of this model is shown
in Fig. 8.6 with three mode shapes. Shape 1 involves the poles rocking
in the same sense as the yoke does behind them. If the pole-yoke joints
were completely rigid, there would obviously be no relative motion
between the poles and the yoke. The presence of some flexibility in

these joints allows each pole to rock more than the yoke behind it does
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in the low-frequency modes. This flexibility also introduces a mode at
higher frequency similar to shape 2 of Fig. 8.6. In this mode, the pole
rocks in the opposite sense to the yoke behind it. Shape 2 shows the
yoke deforming in a classical n=2 fashion. This will only be the case if
the joint rocking flexibility is relatively large. Shape 3 would be the
second non-rigid-body mode of the assembly if the joints were rigid. In
fact, shape 1 is very similar to the first of the two modes in which we

are interested and shape 3 is like the second.

The two resonances of interest of the assembly were found by striking
the yoke centrally between the poles and measuring at the same
position. (Half-way down the axial length). The mode shapes were
checked using the convenient technique of striking different points on
the structure and measuring response (acceleration) at the one point all

the time. The modal data for these is given below in table 8.3

Mode Frequency (Hz)- Damping Factor (Hysteretic)

1 264 6.1e-3
2 18 9.3e-3

Table 8.3 Frequency and Damping for Two Modes
' of the Frame with 2 Mainpoles.

By using different joint stiffness values in the theoretical model of this

assembly, the relation between the joint-stiffness and the natural

-
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frequencies of the two modes can be established. This has been done
and the relations are graphically presented in Fig.s 8.7a and 8.7b.
Comparing the measured frequencies with these relations leads to a
value for the effective torsional stiffness of the pole-yoke joints of
77 MNm/rad. It was shown in chapter 6 that this agrees with the

values given for the joint stiffness.

8:.1.3 Frame with two Mainpoles+Field Coils.

The field coils were then replaced on the mainpoles with the original
packing and the mainpoles were re-attached in the same position. The
resonant frequency of mode 1 was shifted down by 16 Hz from 264 to
248 Hz. The DMS model of a pole and field coil was used to represent
this assembly. If the coils were rigidly mounted on the poles, the drop
in the resonance would have been some 22.5 Hz. Inserting a number of
different stiffness values into the theoréetical model leads to an
approximate figure of 1.9e8 N/m for the stiffness of the side-to-side
motion of this coil on its pole. (More than one value of stiffness can be
chosen for this joint which would result in a resonance at 248 Hz but
knowledge of the approximate mode shape enables us to discriminate
the 'correct' one). The associated characteristic resonance is 345 Hz.
Thus, at frequencies above 345 Hz, the main field-coils will behave as
added stiffness to the system whilst at frequencies below this threshold,
they behave as added mass. It must be reiterated that the value of
1.9¢8 is approximate since other changes may have occurred in the
structure when the pole was removed and replaced which would

account for some frequency shift.
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8.1.4 Frame with two Compoles and Coils.

The next arrangement tested was the frame with two compoles attached
as shown in Fig. 8.8. Again, three possible mode—shapes.of the assembly
are shown. Shape 1 is the lowest frequency mode if the joint between
the compoles and the yoke is very flexible. Shape 2 is a low-frequency
mode which is independent of the rocking flexibility of the pole-yoke
joint. Shape 3 is a higher frequency mode in which the compoles rock in

the opposite sense to the yoke behind them.

The coils could not easily be removed from the compoles of this
particular machine as they were resin-bonded on. In the event, it was
not possible to isolate the effects of the two different connections
present (pole-yoke and coil-pole). Assuming that there is an intimate
contact between the coil and the compole here allows a crude hand
calculation to be performed to quantify the stiffness of the connection
between the pole and coil based on the compressibility of the insulation
layer. The resulting value is 1.9e10 N/m for the side-to-side motion.
The characteristic resonance of the coil on a fixed pole would then be
4.4 kHz. For our purposes, this connection may sometimes be considered
rigid. Two principle resonances of the frame with two compoles below
1 kHz occurred at 272 Hz and 706 Hz. The resonance at 272 Hz involves
the compoles simply translating inwards and outwards and so tells us
nothing of the torsional flexibility of the pole-yoke joint. Using the
software to analyse the second principle resonance leads to a value of

11.0 MNm/rad for the torsional stiffness of the joint. This is in good
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agreement with the work of chapter 6.

8.1.5 Tests on an Individual Mainpole.

A test was done on one of the mainpoles in which the pole was
suspended on a rope (through an eye-bolt in the back) and struck on
the end to excite both torsional and compression/extension modes. (The
mainpoles are laminated and each individual lamination is nominally
1.6mm deep.) The resonances measured were 1002 Hz for the first
torsional mode and 2515 Hz for the first axial compression/extension
mode. Treating this pole in the same way as the beams of chapter were
analysed yields values for the effective shear and Young's modulii of
0.55 GPa and 1.25 GPa respectively. These values are in good agreement
with what we would have predicted based on the tests reported in

chapter 5.

8.1.6 Static_Tests on_Complete Stator _of Machine A,

All poles and field coils were replaced in the frame (Fig. 8.9) and
impulse tests done to compare predicted (based on experimentally
derived properties) and measured natural frequencies. The results of
this comparison are presented below in table 8.4. (There were other

minor resonances in the case of both models which were not matched).
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Mode ' Predicted Measured Damping.
Number Resonance (Hz) Resonance (Hz) Factor
1 216.5 214.0 ' 8.0e-3
2 412.1 416.0 4.5e-3
3 641.2 608.0 7.0e-3
4 814.0 795.0 1.0e-2
o] 915.0 902.0 9.5e-3

Table 8.4 Measured and Predicted Resonances for

Complete Unthreaded Stator of Machine A.

§8.2 Running Tests on Machine A.

Machine A was reassembled completely, located on a base-plate capable
of withstanding the full-load torque produced by it and connected
"back-to-back" with a similar motor of slightly smaller size. The
machine was instrumented with accelerometers at the ten positions
shown in Fig. 8.10. Measurements were taken for a number of running
conditions and stored on tape. These measurements were later analysed
to extract the frequency components at the fundamental slot-passing
frequency and the second harmonic of this frequency. Accelerometer

"R2N" measures radial acceleration on mainpole 2 at the non

commutator end. Accelerometer "A1C" measures axial acceleration on

mainpole 1 at the_commutator end. Accelerometer "RO1" is one of the
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accelerometers measuring the radial vibration on the outside of the

yoke.

8.2.1 Five Running Conditions for Machine A.

For five running conditions, a correlation has been done between the
predicted vibration. levels and those measured. The prediction of the
forces was produced by Wignall using electromagnetic finite-element
software. As part of a verification exercise for the electromagnetic part
of the investigation, slots had been machined in the mainpoles
(centrally on the faces). The forcing on the mainpoles is significantly
greater than that on the compoles because of the very sudden change in
airgap length caused by the slot. The mean airgap under the compole is
larger in any case. Only the mainpole forces have been applied in the
mechanical analysis for correlation, though the effect of the compole

forces is demonstrated.

In the case of all five of the conditions presented here, the fundamental

slot-passing frequency occurs between 460 Hz and 475 Hz.
Two analyses have been done.

(1) Coils are disregarded and the poles are assumed to be rigidly
affixed to the yoke. No account is taken of constraints'prescnt
at the machine feet. This analysis preceded the close
examination of the results from the pole-yoke joint study and

is useful in demonstrating the extra error incurred by
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simplifying the problem in this way.

(2)  The effects of the coils and that of pole-root flexibility is
incorporated and constraints are introduced at the feet to
simulate the conditions there. Fig.s 8.11a and 8.11b illustrate
two of the operating shapes calculated for machine A using

this analysis.

For each of the tests 8.2.1-8.2.5, the running conditions are summarised
with the computed forces acting on the pole in a single table and the
vibration levels predicted (using both the simplified analysis and the
mdrc general one) are tabulated together with the actual measured

values.
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Test % 8:2.1,

Slot-passing Frequency - 460 Hz
Field Current - 4.0 A
Armature Current - 130 A
Armature Voltage - 180 V
Harmonic 1 w?= 8.35 e6 572

Computed Total Radial Force on Mainpoles 351 N @ O0°
Computed Total Ccmftl Force on Mainpoles 190 N @ 0°
Computed Total Moment Force on Mainpoles 3.13 Nm @ -66°
Harmonic 2 w?= 33.4e6 52
Computed Total Radial Force on Mainpoles 452 N @ -4°
Computed Total Ccmftl Force on Mainpoles 497 N @ +2°
Computed Total Moment Force on Mainpoles 1.55 Nm @ -75°

Table 8.5 Machine Conditions and Computed Forces

on Mainpoles for T el
The comparison between predicted and measured vibration levels at

the fundamental slot-passing frequency on the machine from test 8.2.1

is presented in table 8.6 below.
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Acclmtr. Measured Prediction 1  Error(dB) Prediction 2 Error(dB)
(m) (m) (m)
C2N 1.31e-7 6.30e-7 13.6 1.92e-7 3.3
A2C 1.86e-8 1.24e-9 -23.5 1.10e-9 -24.6
C2C 3.71e-7 7.23e-7 5.8 4.25e-7 1.2
RIN 5.21e-7 2.8%e-7 =l 3.31e-7 -3.9
R1C 2.08e-7 2.37e-7 1.1 2.10e-7 0.1
Al1C 1.86e-7 6.4%¢-9 -29.1 2.20e-9 -38.5
RO1 2.09e-7 4.61e-7 6.9 2.3%e-7 1.2
RO2 1.47e-7 1.45e-7 -0.1 1.13e-7 52
RO3 1.65e-7 3.41e-7 6.3 2.52e-7 3.7
R0O4 1.47e-7 3.62e-7 7.8 1.54e-7 0.4

Table 8.6 Measured and Predicted Vibration Levels

Fundamental Slot-Passing Frequency. (Test 8.2.1).

The comparison for the second harmonic of slot-passing frequency is

presented in table 8.7 below.
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Acclmtr.

Measured Prediction 1

Error(dB) Prediction 2 * Error(dB)

(m) (m) (m)
C2N 3.30e-7 1.06e-7 -9.9 2.07e-7 -4.1
A2C 9.31e-8 2.45e-9 -31.6 1.82e-9 -34.2
C2C 1.66e-7 9.16e-8 -5.2 1.98e-7 1.5
RI1IN 2.61e-7 5.25e-9 -33.2 1.82e-7 =31
RIC 4.66e-7 1.51e-8 -29.8 2.24e-7 -6.4
AlC 3.30e-7 2.33e-9 -43.0 1.67e-9 -45.9
RO1 3.29¢-8 5.39e-8 4.3 4.00e-8 -0.5
R0O2 6.57e-8 7.55e-8 1.2 5.16e-8 -2.1
RO3 3.29e-8 6.51e-8 5.9 4.08¢-8 1.9
R0O4 5.22¢-8 3.00e-8 -4.8 3.82¢-8 -2.7
Table 8.7 Measured and Predicted Vibration Levels

2%4 Harmonic of Slot-Passing Frequency. (Test 8.2.1).
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Condition - _ 8.2.2.

Slot-passing Frequency - 465 Hz
Field Current - 40 A
Armature Current - 250 A
Armature Voltage - 180 V
Harmonic 1 02= 8.54 ¢6 572

Computed Total Radial Force on Mainpoles 359 N @ 0°
Computed Total Ccmftl Force on Mainpoles 191 N @ 0°
Computed Total Moment Force on Mainpoles 3.05 Nm @ -69°
Harmonic 2 ' w?= 34.1e6 s?
Computed Total Radial Force on Mainpoles 443 N @ -4°
Computed Total Ccmftl Force on Mainpoles 495N @+2°
Computed Total Moment Force on Mainpoles 1.58 Nm @ -73°

Table 8.8 Machine Conditions and Computed Forces

on_Mainpoles for Tést 8.2.2

The comparison between predicted and measured vibration levels at
the fundamental slot-passing frequency on the machine from test 8.2.2

is presented in table 8.9 below.
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Acclmtr.

Measured Prediction 1

Error(dB) Prediction 2 Error(dB)

(m) (m) (m)
C2n  1.27e-7  6.51e-7 14.2 1.89e-7 3.5
A2C  1.0le-7  1.60e-9  -36.1 1.35¢-9  -37.5
C2C  3.19e-7  7.63e-7 7.6 4.21e-7 2.4
RIN 4.0le-7  3.37e-7 ‘1.5 3.00e-7  -2.5
RIC  1.60e-7  2.79e-7 4.8 2.02e-7 2.0
AIC  2.0le-7  6.32¢-9  -30.0 1.21e-9  -45.1
RO1  2.54e-7  4.02e-9 4.0 2.40e-7  -6.9
S RO2  2.85¢-7  1.40e-7 6.2 1.89e-7  -3.6
RO3  1.60e-7  3.62e-7 7.1 2.40e-7 3.5
RO4  1.43e-7  3.46e-7 7.9 1.62e-T 1.1

Table 8.9 Measured and Predicted Vibration Levels

Fundamental Slot-Passing Frequency. (Test 8.2.2).

The comparison for the second harmonic of slot-passing frequency is

presented in table 8.10 below.
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Acclmtr.

Measulred Prediction 1

Error(dB) Prediction 2 Error(dB)

(m) (m) (m)
C2N  2.85e-7  1.07e-7 8.5 1.98¢-7  -3.2
A2C  8.03¢-8  2.51e-9  -30.1 2.03¢-9  -31.9
COC  1.43¢-7 -1.17e-T 1.7 1.82¢-7 2.1
RIN  2.52e-7  5.42¢-9  -33.3 17367 <33
RIC  5.04e-7  1.11e-8  -33.7 2.20e-7  -7.2
AIC  4.0le-7  2.62e-9  -43.7 2.61e-9 -45.7
ROl  1.60e-8  5.96e-8 11.4 3.04¢-8 5.6
RO2  4.52¢-8  8.22e-8 5.2 6.61e-8 1.0
RO3  2.53¢-8  7.21e-8 9.1 4.51e-8 3.9
RO4  6.37¢-8  3.44e-8 5.4 4.92¢-8  -4.2

Table 8.10 Measured

2nd

nd Pr

icted Vibration Levels

Harmonic of Slot-Passing Frequency. (Test 8.2.2).
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Condition - 3.
Slot-passing Frequency - 465 Hz
Field Current - 40 A
Armature Current 380 A
Armature Voltage - 176 V
Harmonic 1 w2= 8.54e6 572
Computed Total Radial Force on Mainpoles 360 N @ 0°
Computed Total Ccmftl Force on Mainpoles 193 N @ 0°

Computed Total Moment Force on Mainpoles

Harmonic 2
Computed Total Radial Force on Mainpoles
Computed Total Ccmftl Force on Mainpoles

Computed Total Moment Force on Mainpoles

267 Nm @ -57°

w?= 34.1 e6 572
42N @ -4°
492N @+2°
1.62 Nm @ -73°

Table 8.11 Machine Conditions and Computed Forces

on Mainpoles for Test 8.2.3

The comparison between predicted and measured vibration levels at
the fundamental slot-passing frequency on the machine from test 8.2.3

is- presented in table 8.12 below.
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Acclmtr.

Measured Prediction 1

Error(dB) Prediction 2 Error(dB)

(m) (m) (m)
C2N 1.02e-7 6.52e-7 16.1 1.6%e-9 4.4
A2C 9.70e-8 1.64e-9 -35.4 1.32¢-9 -37.3
CC 1.61e-7 7.48e-7 13.3 3.01e-7 5.4
RIN 3.5%e-7 3.38e-7 -0.5 2.57e-7 -1.7
R1C 1.43e-7 2.79e-7 5.8 1.99e-7 2.9
Al1C 1.61e-7 6.33e-9 -28.9 5.42e-9 -29.5
RO1 2.03e-7 4.83e-7 7.5 2.45e-7 1.6
RO2 2.87e-7 1.40e-7 -6.2 1.93e-7 -3.4
RO3 1.61e-7 3.64e-7 7.1 2.52e-7 3.9
R0O4 1.61e-7 3.48e-7 6.1 . 1.72e+7 0.6

Table 8.12 Measured and Predicted Vibration Levels

Fundamental Slot-Passin

Frequency. (Tes 2

The comparison for the second harmonic of slot-passing frequency is

presented in table 8.13 below.
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Acclmtr. Measured Prediction 1 Errqr(dB) ‘Prediction 2 Error(dB)
(m) (m) )
C2N  2.03e-7  9.41e-8 -6.7 1.54e7 2.4
A2C  1.02e-7  2.45e-9 -32.4 2.01e-9 -32.4
C2C  2.28¢-7  1.08e-7 -6.5 1.75e<7 =2.3
RIN  2.02e-7 5.19¢-9 -31.8 1.51e-7  -2.5
RIC  5.08e-7  1.14e-8 -33.0 2:678-7 -3.6
A1C  4.03e-7  2.41e-9 -44.5 2.55e-9 -44.0
RO1  7.20e-9  5.54e-8 17.7 2.11e-8 9.3
RO2 8.08e-9  7.71e-8 19.6 4.12¢-8  14.1
RO3  2.03e-8  6.69e-8 10.4 3.21e-8 4.0
RO4  5.41e-8  3.11e-8 -4.8 4.36e-8  -1.9

Table 8.13 Measured and Predicted Vibration Levels
2"9_Harmonic of Slot-Passing Frequency. (Test 8.2.3).
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Condition - 4,
Slot-passing Frequency - 472.5 Hz
Field Current - 1.6 A
Armature Current - 255 A
Armature Voltage “ 8 V

Harmonic 1
Computed Total Radial Force on Mainpoles
Computed Total Ccmftl Force on Mainpoles

Computed Total Moment Force on Mainpoles

w?= 8.81 e6 s2
714 N @ 0°
29.6 N @ 0°
3.10 Nm @ -74°

Harmonic 2 = 35.3 €6 s°2
Computed Total Radial Force on Mainpoles 173N @ -10°
Computed Total Ccmftl Force on Mainpoles 128 N @ +6.1°

Computed Total Moment Force on Mainpoles

1.71 Nm @ -85.3°

Table 8.14 Machine Conditions and Computed Forces

on_Mainpoles for Test 8.2.4
The comparison between predicted and measured vibration levels at

the fundamental slot-passing frequency on the machine from test 8.2.4

is presented in table 8.15 below.
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Acclmtr.

Measured Prediction 1

Error(dB) Prediction 2 Error(dB)'

(m) (m) (m)
C2N 1.51e-8 1.50e-7 0.0 3.52¢-8 7.8
A2C 8.51e-9 4.13e-10 -26.3 5.14e-8 -24.4
CC 3.79e-8 1.32e-7 9.2 7.25e-8 5.6
RIN 9.55¢-8 8.21e-8 -1.3 8.73e-8 -0.8
RI1C 3.79e-8 6.23e-8 4.3 5.13e-8 2.6
AIC  2.40e-8 1.17e-9 -26.2 9.35e-10 -8.2
RO1 3.01e-8 1.01e-7 10.5 3.13e-8 7.5
RO2  1.90e-8  2.20e-8 1.3 2.61e-8 2.8
RO3  3.01e-8  5.39e-8 5.1 4.89¢-8 4.2
R04 2.13e-8 4.68¢e-8 6.8 3.35e-8 3.9

Table 8.15 Measured and Predicted Vibration Levels

Fundamental Slot-Passing Frequency. (Test 8.2.3).

The comparison for the second harmonic of slot-passing frequency is

presented in table 8.16 below.

- 345.-



Acclmtr. Measured Prediction 1  Error(dB) Prediction 2 Error(dB)
(m) (m) (m)
C2N 9.53e-8 5.33e-8 -5.0 7.72e-8 -1.8
A2C  3.39e-8 1.18e-9 -9.2 3.21e-9 -20.5
cC 6.0le-8 4.61le-8 2.3 4.36e-8 =~ -2.8
RIN  1.70e-7 3.18e-8 -14.5 6.97e-8 -7.7
R1C 1.70e-7 6.68e-8 -8.1 8.65e-8 -5.9
Al1C 1.20e-7 =~ 1.11e-9 -40.7 8.21e-8 -23.3
RO1 71.55¢-9 2.70e-8 11.1 1.93e-8 8.2
RO2 1.07e-8 3.61le-8 10.6 2.52e-8 7.4
RO3 8.47e-9 3.18e-8 11.5 1.53e-8 Dl
R0O4 2.68e-8  1.74e-8 16.2 2.97e.8 0.9

Table 8.16 Measured and Predicted Vibration Levels

2"d_Harmonic_of Slot-Passing Frequency. (Test 8.2.3).
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Condition - 5.
Slot-passing Frequency + 471.0 Hz
Field Current - 1.6 A
Armature Current - 255 A
Armature Voltage - 8V
Harmonic 1 w’=8.76 6 52
Computed Total Radial Force on Mainpoles 89.9N @ 0°
Computed Total Ccmftl Force on Mainpoles 435N @ 0°

Computed Total Moment Force on Mainpoles

045Nm @ +48.1°

Harmonic 2 w’=35.0 6572
Computed Total Radial Force on Mainpoles 171N @ +10.5°
Computed Total Cemftl Force on Mainpoles 141N @ +5.1°

Computed Total Moment Force on Mainpoles

283 Nm @ +90°

Table 8.17 Machine Conditions and Computed Forces

on Mainpoles for Test 8.2.4

The comparison between predicted and measured vibration levels at
the fundamental slot-passing frequency on the machine from test 8.2.4

is presented in table 8.18 below.
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Acclmtr. Measured Prediction 1  Error(dB) Prediction 2 Error(dB)

(m) (m) (m)
C2N 6.98¢e-9 1.91e-7 28.9 1.81e-8 8.3
A2C 6.99¢-9 6.75e-10 -20.3 2.25e-10 -9.8
cC 3.48¢-8 1.66e-7 13.6 6.02¢-8 6.0
RIN 9.88¢-8 9.83e-8 0.0 1.05e-7 0.5
RIC 7.00e-8 8.22¢-8 1.4 8.24e-8 1.4
Al1C 3.51e-8 1.45e-9 «21.7 5.32e-10 -36.4
RO1 4.39e-8 1.26e-7 9.2 8.21e-8 5.4
RO2 2.77e-8 3.11e-8 1.0 2.51e-8 -1.9
RO3 2.47e-8 8.32e-8 10.5 5.13e-8 6.3
R0O4 2.77e-8 7.12¢-8 8.2 3.75¢e-8 -5.6

Table 8.18 Measured and Predicted Vibration Levels

Fundamental Slot-Passing Frequency. (Test 8.2.3).

The comparison for the second harmonic of slot-passing frequency is

presented in table 8.19 below.
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Acclmtr. Measured Prediction 1 Error(dB) Prediction 2 Error(dB)
(m) (m) (m)
C2N 1.24e-7 4.22e-8 -9.0 9.53e-8 -2.3
A2C  3.51e-8 1.11e-9 -29.4 3.03e-9 -21.3
CC 6.98e-8 4.73e-8 -3.4 5.21e-8 -2.5
RIN 1.57e-7 3.13e-8 -14.0 7.33e-8 -6.6
R1C 1.75e-7 8.41e-8 -8.7 9.14e-8 -5.6
Al1C 1.57e-7 9.25e-10 -44.6 7.35e¢-9 -26.6
RO1 3.11e-9 2.41e-8 17.8 1.82e-8 15.3
R0O2  9.83e-9 3.26e-8 10.4 2.63e-8 9.5
RO3 6.20e-9 2.2%e-8 113 1.62e-8 8.3
R0O4 2.77e-8 1.49e-8 -5.4 3.08e-8 0.9

Table 8.19 Measured and Predicted Vibration Levels

24 Harmonic_of Slot-Passing Frequency. (Test 8.2.3).

8.2.2 Discussion of Errors. :- Running tests on Machine A,

It is clear from the tables above that the response calculations produce
figures of the correct order of magnitude but there is quite a large
scatter. In fact, some of the numbers cause the analysis to look
deceptively inaccurate for this machine. A closer consideration of some

of the operating conditions shows that the total vibration energy
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indicated by the measurements differs only by a small amount from
the total energy calculated. There are a number of contributors to the

discrepancies between the calculated responses and those measured.

The worst errors by far occur at the axial accelerometers A1C and A2C.
In the calculations the only mechanism by which the ends of the
mainpoles can be caused to vibrate in the axial direction is a "bowing"
of the mainpole so that the center of the pole translates radially
outward more than the ends do. Then, because the length of the pole
at the back tends to be held constant by the yoke, the length of the
pole at the airgap decreases slightly. The mainpoles are laminated so
that their stiffness in axial compression is much lower than one would
expect for similar lumps of solid steel. Machine A has an unskewed
armature and so there is no forcing which would directly incline the

mainpole to deform in the manner suggested here.

In reality, the armature slots produce a ripple force on the end of the
poles exciting them in the axial direction. This force is not catered for
in the electromagnetic analysis and so cannot be modelled here. In the
case of machine A, therefore, it is to be expected that the
measurements of axial vibrations at the mainpoles will greatly exceed

the predictions.

The circumferential measurements (C2C and C2N) and the radial
measurements (R1C and RIN) on the mainpole rank next in order of
errors. It is clear that the mainpole is moving significantly relative to

the yoke. The exact values of the pole root flexibility are essential to

-350-



an accurate prediction of the vibrations at the ends of the mainpoles.
The circumferential vibrations are dependent on the stiffness of the
fixture of the coil on the mainpole. When the armature current is zero,
it is to be expected that the compole forces are zero. The vibrations
associated with low armature-current conditions can be computed
quite well by considering only the forces acting on the mainpoles. The
increase in error with " armature current is evident from the tables.
Radial forces acting on the compoles primarily influence the

circumferential vibrations of the mainpole and vice-versa.

The best agreements between the measured and predicted vibration
levels are the radial vibration figures on the outside of the yoke which
are also the most important. The chief determinant of the ratios (both
in magnitude and phase) between each of these radial motions is the
stiffness of the yoke itself compared with the stiffness of the fixing
between the feet and the base-plate. The yoke is modelled very
accurately but the characteristics of the fixing of the feet are
somewhat uncertain. It has been assumed in the more detailed
analysis that the feet are.totally free to move except that translation
vertically upward is totally prohibited. There 1is not sufficient
information in the tests done to test the validity of that assumption,
but it appears to improve the estimates made compared with

assuming that the feet are totally unconstrained.
The predictions made for the fundamental slot-passing frequency are

substantially better than those prepared for the second harmonic. The

forcing on successive poles of the machine due to the second harmonic
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is in-phase, while the fundamental slot-passing forcing on successive
poles is 180° out of phase. The resulting shape of deformation of the
yoke is simpler for the fundamental slot-passing force and is less stiff
than the deformation shape for the second harmonic. Consequently, a
greater proportion of the total motion of the poles at the slot-passing
frequency is taken up by deformation of the yoke itself. Under the
action of the second harmonic forces, most of the motion of the poles is
taken up by the less well defined relative motion between the poles

and the yoke.

The correlations presented here demonstrate the effects of some of the
degrees of uncertainty present in the analysis of DC machine stators.
Given a reliable set of values for the parameters determining the
behaviour of the pole-yoke and coil-pole connections, reasonable
accuracy can be anticipated. The action of compole forces is normally
sufficient to seriously detract from the quality of an analysis unless
they are accurately represented. In this comparison, the presence of
an axial slot in the mainpole face had the effect of generating large
force components on the mainpole relative to those acting on the
compole so that the exclusion of the compole forces does not seem to

have adversely affected the analysis to any significant extent.
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§8.3 Static Tests on Machine B.

(and Deducing Certain Parameters).

A number of static tests were done on this machine using both the
impulse hammer and a shaker as sources of excitation and a large
number of graphs were generated depicting the response at various
points to forcing at others. The principal objective was to identify
natural modes of the structure which would act to magnify forcing
(electromagneti.c or other). In all cases, a large number of resonances
were found in the range of frequencies tested. Only a few of the
corresponding mode-shapes were identified. It is already well known
that many of the modes of machine stators which would be apparent at
the low-frequency end of the spectrum from a single-point forcing
static test obtain virtually zero net excitation from the electromagnetic
force pattern when the machine is running. There are many significant
degrees of uncertainty in a dynamic model of the stator of machine B as
is shown later, and it is unlikely that the resonant frequencies found in
an impulse test will be matched by any analysis. Attention is confined
therefore in this brief section to the approximate matching of measured

and predicted levels of vibration over broad bands of the spectrum.

Machine B was instrumented with accelerometers about the periphery
(on a plane axially halfway along the "fwd" machine) and along the
bottom. The arrangement and nomenclature of these is given in

Fig.s 8.12a and 8.12b.
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8.3.1 Comparison of Measred and Predicted Responses to Impulse

Excitation of Machine B.

We consider two of the results from the impulse tests in which the
machine was excited at the back of the compole. These are particularly
convenient to analyse since the machine will respond symmetrically to
this forcing (about the vertical plane containing the machine axis).
Because of the number of "connections" which must be made to create a
good quality representation of this machine, the DMS model prepared
uses symmetry arguments so that only half of the machine is
represented at a time. The response to forcing which is either
symmetrical or anti-symmetrical can be computed directly. Forcing
which is neither symmetrical nor anti-symmetrical must be broken into
symmetrical and anti-symmetrical components, the response to each
component found and these responses added. Fig. 8.13 is the DMS
representation of one half of the "fwd" machine having all mainpoles,
compoles, coils and feet attached. For the symmetrical modes, the nodes
on the plane of symmetry are constrained so that they may not
translate out of the plane or rotate about an axis in the plane. For the
antisymmetrical modes, these nodes are constrained so that they may
not translate in the plane or rotate about the axis normal to the plane.
The effects of the split were not incorporated into this model as the full
set of data on the properties of the splits had not been analysed at the

time the model was prepared.

A force of 2N was applied to the top of the DMS model of the half

machine. The response of the half-machine to a force of 2N would be

v
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the same as the response of the whole machine to 4N. Thus, we expect
that the response trace computed will be consistently 12dB above the

measured trace (the measured trace is the response to 1IN).

Fig. 8.14 compares the predicted and measured responses for vertical
translation at the foot. Fig. 8.15 compares the measured and predicted

responses for upward translation of accelerometer position 11x.

8.3.2 Discussion of the Quality of the Predictions.

Over the broad range of frequencies, the agreement is good in terms of
the levels. At lower frequencies the quality of the estimates of the four
coil stiffnesses and damping values has a strong influence on the levels
which are predicted. The trend for the response to become more smooth
at higher frequencies is clear from both the measured and predicted

response traces.

Clearly, the response traces are too complex to attempt to use any one
resonance from them to glean data about -the root stiffness of the
mainpoles and compoles. The values used to produce the DMS model for
the impulse tests were extrapolated from the data presented in

chapter 6.

8.3.3 Derivation of Approximate Values for the Root Stiffness of the

Mainpoles and Compoles for Machine B.

One part of the test programme for machine B was directed at
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identifying the dependence of vibration levels on the operating
conditions of the machine. In these tests the machine was set to run at
armature currents of 0.0, '0.5. p.ﬁ and 1.0 p.u at various combinations of
speed and field-current. One of the principal assumptions made in the
analysis of the electrom'agnetic forces is that. the eddy-current effects
on the various iron surfaces within the machine have little effect on the
flux-ripple occurring. If this is the case, we can assert that the forces
acting on the poles in some of the conditions remain unchanged in
magnitude though the frequency of the forces has changed. Thus, when
the rotating speed is doubled and the armature voltage is also doubled,
the only reason for a change in the amplitudes of vibration of the poles
of the machine is the mechanical frequency-dependence. It is clear from
results presented later in this chapter that the mainpoles and compoles
of this machine move relative to the yoke to such an extent (compared
with the motion of the yoke itself) that to assume that the yoke was
entirely rigid allows one to assess the motion of the poles in a simple
yet relatively accurate manner at the lower end of the frequency

spectrum.

We shall not attempt a correlation between measured and predicted
levels for these tests. Instead, they are used to provide us with mode -

accurate estimates of the root stiffness of both the main and compoles.

Table 8.20 below relates the measured amplitudes of vibration of the
compole accelerometers to the rotating speed while the armature
current is held at 1.0 p.u. and the field is held at aproximately 0.5 p.u so

that the armature voltage is directly proportional to the running speed.
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Fig. 8.12 gives details of the positions of the accelerometers. All

vibration levels are given in dBs of acceleration.

Slot-Passing IR 1C 2R 2C
(Hz) ‘
133 63 72 64 67
265 73 91 71 ~
530 82 86 76 8 4

Table 8.20  Vibration at the Ends of the Compole at Three
Speeds. [Armature Current = 1.0 p.u]

(0 dBs = 105 m/s?)

Now, we expect from the data prepared in chapter 6 that the
compression/extension stiffness of the joint between the yoke and the
compole is such that the mode of radial translation of the compole on
the yoke lies well above 1000 Hz. Thus, at frequencies of 265 Hz and
below, the acceleration of the compole ought be almost directly
proportional to the frequency-squared. The mean rise in the radial

vibration figures as the speed is changed from 133 to 265 Hz is 8.5 dBs.
The expected rise was 12 dB. (20.10g10(4)). We can be reasonably
confident from this that the compole forcing has dropped by some
amount in the region of 3.5 dB. If the compole rocking resonance were
also very high in relation to 133 Hz and 265 Hz, the vibration measured

by 1C would be expected to rise by 8.5 dB. Instead, it rises 19 dB!. The
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clear indication is that there is a compole rocking resonance very close
to 265 Hz. Without knowing the phase of the response of 1C at the two
speeds it is impossible to judge whether the resonance occurs just below
265 Hz or just above it. However, based on the increase in the
amplitude of the response, the compole rocking resonance can be

computed to be either 232 Hz or 335 Hz.

At a much lower value of field current, the same running speéds result
in lower armature voltages. Table 8.21 below gives the cbmpole

vibration figures for these conditions.

Slot-Passing IR 1C 2R 2C
(Hz)

265 75 93 76 95

530 81 89 ~ 86

Table 8.21 _Vibration (dBs) at the Ends of the Compole

at Two Speeds. Armature current=1.0 p.u

(0 dBs = 1075 _m/s?). Field current e [0.06, 0.112] p.u.

The same reasoning as before implies that the compole forces are
reduced by some 6 dBs between the frequencies of 265 and 530 Hz. The
larger vibration value for both accelerometers 1C and 2C  at the
frequency 265 Hz is clear evidence that compole rock is occurring just

below 265 Hz. We conclude that the compole rocking resonance occurs
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at approximately 230 Hz. At a frequency as low as this, it is probable

that the coil moves side-to-side with the compole. The rocking stiffness

of the joint can be deduced accordingly.

The rocking stiffness of the mainpole can be approached in a similar

way. Table 8.22 below relates mainpole vibration to the slot-passing

frequency for the operating condition in which the armature current is

1,0 p.u. and the field current is such that the armature voltage is

proportional to the rotating speed of the machine.

Slot-Passing 3C 4C
(Hz) (dB) (dB)
133 59 54
265 69 69
530 73 717
663 77 80

Table 8.22 The Vibration at the Ends of the Mainpole

at Two speeds. Armature current = 1.0 p.u.

(0 dBs = 10 m/s?) Field current e [0.46.0.66] p.u

The figures here are less emphatic than those recorded on the compole.

The vibration acceleration would have been expected to rise 12 dB each

=.389=
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time the frequency was doubled. Clearly, this has not been the case.
However, by considering the three pairs of successive intervals,
different estimates of the natural frequency of pole rocking are
produced (202 Hz, 389 Hz and 596 Hz). In the case of each of these
figures small deviations in the measured accelerations would lead to
large deviations in the computed resonance. The reason for the
indefiniteness of the figures may be that the main\ field coil is not stiff
on the mainpole at what would be the resonance of the bare mainpole.
This could have the effect of spreading the resonance considerably

depending on the linearity of the coil-pole connection.

In this case, it is best to rely solely on the extrapolation from the data in
chapter 6. The rocking stiffness of the joint between mainpole and yoke

is extrapolated as 215 MNm/rad.

§8.4 Running Tests on Machine "B".

One set of tests from the programme originally devised for machine B
was aimed at establishing the operating shapes of the machine under
running conditions. Armature current was set to 0.5 p.u. and the field
set to approximately 0.26 p.u. The armature voltage was adjusted to
give the following running speeds.

55 rpm. , 62 rpm. , 83 rpm. ,92 rpm. ,133 rpm.

The armature of machine B has 234 slots. Slot-passing frequencies are

computed from the running speeds. At each of these speeds, six sets of
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thirteen accelerometer readings were recorded. One of these sets
concerns axial measurements at the end plate of the machine. For the
present purposes, these are disregarded since the model does not
include consideration of the end assemblies. Three of these sets deal
primarily with the vibration about the periphery of the machine on the
central plane. Another set contains data for the vibration at the
mainpoles and compoles. The final set holds the readings from the

accelerometers along the line at the bottom of the machine.

8.4.1 The Measured Operating Shapes of Machine B.

The situation is considerably more complex than one might have
expected. The fact that the armature is herringbone-skewed means that
the first-order components of forcing must deform the mainpoles and
compoles before thay can be transmitted to the yoke. Given the scatter
in the measured properties of the laminated solids, it is inevitable that
some of the mainpoles will be stiffer than others in both shear and
compression/extension either due to differences in the pressure with
which they are clamped-up or differences at the surfaces of the
laminations. Once the poles have deformed, the force transmitted to the
yoke is directly dependent on the root stiffness of the poles. We shall
see here, that the root stiffness contributes relatively little to the
stiffness of the poles themselves for this machine. There is also a
considerable scatter in the figures for root flexibility of the poles. Given
the strong dependence on properties which are indefinite, one might
expect that the measured operating shapes would not be as regular as

the operating shapes computed for the machine.
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Fig. 8.16 shows the deformation at the central plane of the "fwd"
machine at the running speed of 55 rpm for both the fundamental and
second harmonic of slot-passing. For simplicity, the phase of each
measurement has been adjusted to be some multiple of 90°. The
translations portrayed with a broken line are approximately 90° ahead
of those shown with a solid line. Fig. 8.17 shows the deformation at the
central plane for the fundamental and .second harmonic at the speed of
83 rpm and Fig. 8.18 shows the measured deformation of the machines'

central plane at 133 rpm.

Fig. 8.19a shows how the radial displacement of the compole ends
varies with the running speed and Fig. 8.19b shows how the
circumferential displacement of the compole ends varies with the speed.
Fig. 8.20 shows the relation between the mainpole radial vibrations and
the running speed while Fig. 8.21 shows the relation between mainpole
circumferential vibrations and running speed. Fig. 8.22 shows the
vibration at the bottom line of the machine for each of the five

conditions.

There are two points worth noting before we proceed. Firstly Fig. 8.19b
bears out the assertion that the compole rocks at a natural frequency of
235 Hz. Secondly, Fig. 8.22 showing the vibration of the line at the
bottom of the machine demonstrates quite clearly the components of
forcing which are not axially uniform do contribute significantly to the

vibration of the machine.
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8.4.2 The Electromagnetic Forces Acting on the Poles of Machine B.

The computation of the electromagnetic forces for this running condition
yields the results for the mainpole given in table 8.23 below. The
electromagnetic computations take no account of the speed with which
the -armature rotates so these forces apply to all of the running speeds

examined.

Force Fundametal 2" Harmonic
Radial 111 N/m 6.4 N/m
Ccmftl. 68 N/m 6.4 N/m
Moment 16.2 Nm/m 0.29 Nm/m

Table 8.23  Electromagnetic Forces Calculated for
the Mainpoles.

The mainpole forces are computed to good accuracy. The mainpole has
no sharp corners, it is laminated (which will tend to reduce the
eddy-current effects which might exist) and the current in the armature
conductors beneath it does not change as the armature rotates. The
forcing on the compole is not known with any confidence. The
distribution of the fundamental slot-passing forces is such that a
residual axially uniform component does exist on the poles. The figures

supplied for these axially-uniform force components are as follows . .
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Force Fundamental 204 Harmonic

Radial 56 N /m 0.68 N/m
Ccemftl. 40 N /m 0.029 N/m
Moment 0.95 Nm /m 0.008 Nm /m

Table 8.24 Residual ially-Uniform Force Densiti
on_the Mainpole.

The distribution of forces over the poles is obviously not uniform
whether they be radial, circumferential or moment forces. Wignall has
developed a means by which the distribution can be accurately
assessed. The DMS model prepared for this machine has 4 nodes on the
face of each pole at which the forces may be applied. This is sufficient to |
model the "AO" component of the forces and the "A2" component (see
§9.1). It is demonstrated in Appendix 8 that the forces due to a
herringbone .or straightline skew of the armature slots can be separated

into components and these components are quantified.

The axially-uniform components (henceforth referred to as "AO0" - see
§9.1) of both the fundamental and second harmonic are residual forces
caused by the deviation-from-the-ideal of the skewed flux distribution.
In order to estimate the "AO" component of forces on the poles, the
profile of the machine in the axial direction must be modelled using F.E

methods.- Wignall does this in his computations. The "A2" component of
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both frequencies of forcing is first-order and can be calculated to good
accluracy using techniques similar to those of appendix 8. We assume for
the purposes of the calculations here that the magnetic center of the
armature is perfectly coincident with the magnetic center of the stator.
Because the machine is herringbone skewed, there is no component of

the "A1" force distributions (see §9.1 for the meaning of "Al")

8.4.3 The Computed ratin hapes of Machine B Responding to the

Individual Force Components.

A procedure has been developed during the course of this work for
dividing the total forcing on the machine into the most basic
components. This is described in detail in §9.1. By combining the
computed response data from the respective force components in the
correct proportions, the response of the machine to the total forcing is
computed. It is appropriate here to present this intermediate stage for

reasons which become apparent later.

The set of force components applicable to the computation of the
machine response is listed below in table 8.25. The force-density used
for each one was 6.35 N/m in the case of the radial and circumferential
forces and 6.35 Nm /m in the case of the moment forces. (For the
axially-uniform distribution, "AO", this corresponds to a force of 1N
applied to each of the four nodes on each of the relevant poles). Each
force component was applied to the theoretical model in turn and the

operating shape calculated for the appropriate frequency.
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Force Component Force Component Fig. # Frequency
Number Name
1 "RAD_CP_CI1_A0" 8.23a 2" Harmnonic
2 "RAD_CP_C1_A0" 8.23b 28 Harmnonic
3 "RAD_CP_C2_A0" 8.24a Fundamental
4 "RAD_CP_C2_A0" 8.24b Fundamental
5 "CCF_CP_C1_A0"  8.25a 2™ Harmnonic
6 "CCF_CP_C1_A0"  8.25b 2™ Harmnonic
7 "CCF_CP_C2_A0" 8.26a Fundamental
8 "CCF_CP_C2_A0"  8.26b Fundamental
9 "MOM_CP_C1_A0" 8.27a 2™ Harmnonic
10 "MOM_CP_C1_A0" 8.27b 274 Harmnonic
11 "MOM_CP_C2_A0" 8.28a Fundamental
12 "MOM_CP_C2_A0" 8.28b Fundamental
13 "RAD_CP_C1_A2" 8.29a © 2% Harmnonic
14 "RAD_CP_C1_A2" 8.29b 2™ Harmnonic
15 "RAD_CP_C2_A2" 8.30a Fundamental
16 "RAD_CP_C2_A2" 8.30b Fundamental
17 "CCF_CP_CI1_A2" 8.31a 2"¢ Harmnonic
18 "CCF_CP_C1_A2" 8.31b 27 Harmnonic
19 "CCF_CP_C2_A2" 8.32a Fundamental
20 "CCECP C2 A2' 8.32b Fundamental
21 "MOM_CP_C1_A2" 8.33a 274 Harmnonic
) "MOM_CP_C1_A2" 8.33b 2" Harmnonic
23 "MOM_CP_C2_A2" 8.34a Fundamental
24 "MOM_CP_C2_A2" 8.34b Fundamental

Table 8.25. Key for Figures 8.23 - 8.34

The regularity of these shapes is in striking contrast to the irregularity

of the measured shapes in Fig.s 8.16 - 8.22. The facility for combining
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the operating shapes in proportion to the coefficients of each of the
component forces does exist within the DMS software packagc. However,
it is already clear that there will not be a strong resemblence. This
avenue is not pursued. Instead, for the running speeds 55 rpm, 83 rpm,
and 133 rpm, rms values of vibration are extracted from the measured

and theoretical cases and compared for the following categories of

deflection.

1 Radial Vibrations on the Yoke.

2 Radial Vibrations on the Mainpole

3 Circumferential Vibrations on the Mainpole

These computations are based on the mainpole forces only.

8.4.4 Radial Vibrations on the Yoke.

Table 8.26 below is a concise summary of the result of combining the
data from table 8.23 and that on the appropriate Fig. (¢ [8.33,8.44]) for

the running speed of 55 rpm.
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Force-Pattern Computed Force  Resultant Peak
Density Yoke Vibration
"RAD_MP_C2_A0" 5.6 N/m 1.24e-9 m
"CCF_MP_C2_A0" 40 N/m 1.20e-9 m
"MOM_MP_C2_A0" 0.95 Nm /m 8.21e-10 m
"RAD_MP_C2_A2" 94.1 N/m 2.46e-10 m
"CCF_MP_C2_A2" 57.7 N/m 4.68e-11 m
"MOM_MP_C2_A2" 13.7 Nm /m 4.62e-11 m

Table 8.26 Prediction of the Radial Yoke Vibration

of Machine B. (Fundamental Slot-Passing)
Running Speed = 55 rpm.

The radial forces on the mainpoles act to create an operating shape
which has peak radial vibration approximately behind the mainpoles.
The circumferential forces ecause a peak radial vibration to occur
approximately behind each of the compoles. The moment forces have
the same effect. The circumferential forces are generally phase-shifted
from the moment forces by an angle close to 90°. Therefore, there is no
significant cancellation. Hence, the r.m.s. value of yoke vibration which

would be expected from the mainpole forces alone can be calculated as

shown below.
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The computed r.m.s. radial vibration of the yoke :

= 0.5 * (1.242 +1.20% + 0.822 + 02462 + 00472 + 0.0462)0-5 * 1.0e-9
= 9.6 e-10 m.

The measured r.m.s. value of radial vibration on the yoke = 2.1e-9.

Table 8.27 below is the equivalent of table 8.26 for the 2°¢ harmonic of

the slot-passing frequency.

Force-Pattern Computed Force  Resultant Peak
Density Yoke Vibration

"RAD_MP_CI1_A0" 0.68 N/m 1.48¢-9 m

"RAD_MP_C1_A2" 2.18 N/m 3.60e-12 m

Table 8.27 Prediction of the Radial Yoke Vibration of Machine B.
(Harmonic 2). Running Speed = 55 rpm.

The computed r.m.s. radial vibration of the yoke = 1.05-e-9 m.

The measured r.m.s. value of radial vibration on the yoke = 1.6 e-9.

The same procedure is applied for the the other two running speeds of

the machine. The results for all three running speeds are tabulated in

table 8.28 below.
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FUNDAMENTAL 2nd HARMONIC
RPM Predicted Measured Predicted Measured
55 0.96 e-9 2.1 e-9 1.05 e-9 1.6 e-9
83 6.06 -9 1.7 e9 1.04 e-9 0.95 e-9
133 1.08 e-9 0.85 e-9 0.07 e-9 0.25 e-9

Table 8.28 Comparison of Predicted and Measured r.m.s.

Yoke radial Vibration.

That the predicted lévels occur both below and above the measured
values ought not be a source of undue concern. The response of the
yoke._of the machine is very strongly dependent on the closeness of the
forcing frequency to an excitable resonance. The impulse response
curves demonatrate that the structure has a number of clear modes of
vibration about the frequencies at which forcing has been applied.
(215 Hz - 1037 Hz). A small inaccuracy in the value of one of the
properties can obviously lead to a large difference in the response at
one frequency. Statistical methods can probably be employed to
demonstrate that the mean response over a broad band of frequencies
is not sensitive to these inaccuracies. To demonstrate this in practice
would necessitate the examination of an impractically large population

of running speeds.
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Obtaining correct values for the forces acting on the compoles should
tend to improve the quality of the prediction. It is certain, however,
that the improvement would not be such as to significantly affect the

error ratios being obtained.

8.4.5 Radial Vibrations on the Mainpole.

Once again, the response to each of the corﬁponent force patterns is
summed in the correct proportion to yield the reéponse of the mainpole
to the complete force set. It can be seen from the operating shapes
calculated that the mainpole can move significantly relative to the yoke
in all senses. Because the mainpole radial accelerometers were mounted
on the corners of the pole, they will produce a reading when the pole
rocks on the yoke though the net relative radial motion between pole
and yoke be zero. The "joint attributes” chosen for the mainpole-yoke
joints in the theoretical model were such that the mainpole (without
field coil) has a natural frequency of translation relative to the yoke of
some 1.55 kHz while the natural pole rocking frequency is 370 Hz.
Wignall's force predictions suggest that the circumferential force is the
same order of magnitude as the radial one. Clearly, the largest
contribution to radial motion at the corners of the pole may be provided
by the rocking mode at forcing frequencies below 1kHz. The vector sum
of the two readings at one end of the mainpole gives us the radial
motion at the central plane of the mainpole at that end (assuming that

the pole does not deform).

Table 8.29 lists the vibration levels at the two ends of the mainpole for
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the fundamental slot-passing and the 2"¢ harmonic for the three

running speeds 55, 83 and 133 rpm.

RPM FUNDAMENTAL 274 HARMONIC
End 1 End 2 End 1 End 2
55 3.7e-9 1.6e-9 1.1e-9 2.6e-9
83 3.0e-9 2.1e-9 5.6e-10 4.3e-10
133 1.5e-9 5.4e-10 1.63e-9 2.9e-9

Table 8.29 Measured Radial Motion at Ends of Mainpole.

There is no immediately obvious reason for the discrepancy between
the ends. The particular mainpole instrumented was well removed from
those locations on the yoke where the existence of other steelwork
would tend to affect the way in .which the yoke behaved in the region.
It may well be that one end was more stiffly joined to the yoke than the

other due to unevenness in the bolt torques.
The predicted levels of radial vibration of the pole are obviously the

same for both ends. Predicted levels are compared with the measured

in table 8.30 below.

. 872.



RPM Mean Radial Motion  Predicted Radial Motion

at Mainpole Ends. at Mainpole Ends.
Fundamental
55 3.7¢-9 2.78e-9
83 2.5e-9 3.22e-9
133 1.0e-9 1.95e-9
2nd Harmonic
55 1.9¢-9 1.2e-9
83 4.5e-10 9.2e-10
133 2.27e-9 1.7e-9

Table 8.30 Comparison of Predicted and Measured Radial
Motion at ends of Mainpole.

The agreement between the measured and predicted values is
significantly better for the mainpoles than it was for the radial
vibrations of the yoke. The reasons are twofold. Firstly, the number of
resonances which significantly affect the vibration on the mainpoles: is
much less than the number of resonances affecting the vibration of the
yoke beacuse the pole root flexibility effectively isolates the mainpole
from the yoke for many of the "yoke" resonances. Secondly, the
vibrations on the mainpole are not sensitive to the forcing on the

compole which is not known with confidence.
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It is worth noting that the contribution of the "A2" forces to the motion
of the ends of the poles is the same order of magnitude as the
contribution from the "AO" forces. This was not the case for the
vibrations of the yoke. Again, the pole root flexibility is the cause of this

difference.

8.4.6 Circumferential Vibrations on the Mainpole.

Accelerometers 3C and 4C on the mainpole recorded the circumferential
motion of the poles at each of the running speeds examined. It is
evident from the computed operating shapes (Fig.s 8.23 - 8.34) that the
pole is much more inclined to rock on the yoke than it is to translate in
the circumferential sense. Most of the circumferential motion of the
mainpoles is therefore contributed by the rocking model of the pole on
the yoke. The accelerometers were located on blocks close to the face of
the pole face. The measured values from accelerometers 3C and 4C
differ considerably for each running speed as did the radial
measurements. The predictions from the theoretical model will give the
circumferential vibration figures for both ends of the mainpole. Thus, as
before, the mean measured vibration at he ends is compared with the

the prediction. These results are presented in table 8.31 below.
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RPM Mean Ccftl. Motion Predicted Ccftl. Motion
at Mainpole Ends. at Mainpole Ends.
Fundamental
55 7.6e-9 4.72e-9
83 | 3.4e-9 1.95e-8
133 2.7e-9 3.85¢-9
2nd Harmonic
35 5.2e-10 8.2e-10
83 5.1e-10 9.5¢-10
133 2.6e-9 1.7e-9

Table 8.31 Comparison of Predicted and Measured .
Circumferential Motion at Ends of Mainpole.

.Again, the agreement between the measured and predicted values here
is better than it was for the radial vibrations of the yoke. The same
reasons as were given in 8.4.4 apply. The pole rocking resonance of 370
Hz is directly responsible for the high value of predicted vibration at

the running speed of 83 rpm when slot-passing frequency is 324 Hz.
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8.4.8 Discussion of the Accuracy of the Predictions
in_the Running Tests of Machine B.

As was pointed out earlier, it is to be expected that comparing a small
number of discrete-frequency measurements with the corresponding
predicted levels is prone to large discrepancies owing to the difference
between the true and theoretical values for the frame resonance
frequencies. The damping ratios of the various modes of the frame
determine the extent of the discrepancy which is expected between
measured and predicted vibration levels. A brief examination of the
impulse responses presented earlier shows that a small change in
forcing frequency can easily lead to a change in response of the order of
10 dB at the lower frequencies of forcing. The comparison of predicted
with measured levels of rms radial vibration of the yoke displays a

worst discrepancy of approximately 12dB.

Compole forces have not been included in the computations here as the
uncertainty associated with them renders it unlikely that they would

improve the calculations significantly.

In the light of the fact that the measurements indicate such non-ideal
behaviour of the frame, (opposite ends of the mainpoles and compoles
display marked differences in the vibration levels and there is not the
expected pattern of displacements about the periphery of the machine)
the correlation between measured and predicted values of vibration

must be regarded as being as good as possible in the circumstances.
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Fig. 8.10 Measurements Made during Running Tests on Machine "A".
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Fig. 8.12a  Positions of accelerometers on the yoke.

Fig. 8.12b  Measurements on the Poles of Machine "B".

Fig.8.12  Measurements on the Yoke of Machine "B".
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Scale: 1 cm = 3e-Ym
Max. Radial Vibration: 5.7¢-9
RMS Radial Vibration: 2.1¢-9
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* o /Scalc: lem=3e-9m
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RMS Radial Vibration: 1.6e-9

. ‘I 4
Fig.8.16b  Second Harmonic.

Fig. 8.16 Measured Operating Shape of Machine B
Running at 55 rpm.
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Scale: | cm = 2e-9m

Max. Radial Vibration: 3.0e-9
RMS Radial Vibration: 1.6e-9
L

Fig.8.17a  Fundamental.

/S/cale: 1 cm = 2¢-9m

Max. Radial Vibration: 1.9¢-9

( “' . : RMS Radial Vibration: 9.5¢-10
/T

Fig.8.17b  Second Harmonic.

Fig.8.17  Measured Operating Shape of Machine B
Running at 83 rpm.

R\ -393 -



Scale: 1cm = Ié-9m
Max, Radial Vibration: 1.9¢-9
RMS Radial Vibration: 8.5¢-10

" Fig.8.18a  Fundamental.
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/\* Scale: 1 cm = Se-10m
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RMS Radial Vibration: 2.5¢-10

Fig. 8.18b  Second Harmonic. )

Fig.8.18  Measured Operating Shape of Machine B
. Running at 83 rpm.
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Fig. 8.19 Displacements at Compole Ends
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& 1.0e-8 4C
&
5
E
8
]
= 3C
-‘3 5.0e-9
= Frequency (Hz).
200 300 400 500
Fig. 8.21a  Fundamental Slot-passing frequency.
J Fig. 8.21b 2" Harmonic of Slot-passing frequency.
|
E 108
=
g .
s
3!
=
&
A 5.0e-9
" Frequency (Hz).
400 600 800 1000
Fig. 8.21 Circumferential Displacements at Mainpole Ends

-397-



= .- = Fuﬁdo_r"\e,ﬂ EC&L -

— o — an Harmonic .

Axial Position coordinate —.

Lt
-~ .
e S
e S ey BSOS A . RUN-1
o o el .
e \“l:;- .
= T
\\
A
A
N\

_ 4.0E-9
=7 Ny = L 2.0e-9

£ N =100
5 / \
A L -2.0e-9
/ \
L. -4.0e-9
el :‘::*
e =L
--"-"--.__'
_____ - ——
— .-. '5———-——*--“—-.: ______ = RUN 4

Axial Position coordinate —=.

Fig.8.22  Deflections Measured at the Bottom of the Machine.

-398 -



Scale of Displacements :- | 1.0e8
Displacement at Yoke (Rad) 6.77e-10

Displacement at Mainpole (Rad) 1.15¢-9
\L Displacement at Commpole (Rad) 6.78e-10
-

Fig.8.23a  Forcing :- RAD_CP_C1_A0

Scale of Displacements :- - 1.0e8
' Displacement at Yoke (Rad) 5.8¢-10
Displacement at Mainpole (Rad) 7.1e-10
LT — Displacement at Commpole (Rad) 5.8¢-10

Forcing :- RAD_MP_C1_A0

Fig. 8.23 Computed Operating Shapes for Machine B
Rumnning at 55 rpm - Group_(RAD_Cl_AO).
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Fig.8.24a  Forcing :- RAD_CP_C2_AO
Scale of Displacements :-

Displacement at Yoke (Rad)
- ——_ Displacement at Mainpolc (Ccf)
I— \# \/ Displacement at Commpole (Rad)

Fig.8.24b  Forcing :- RAD_MP_C2_A0

Scale of Displacements :-

Displacement at Yoke (Rad)
Displacement at Mainpole (Rad)
Displacement at Commpole (Cef)

Fig. 8.24 Computed Operating Shapes for Machine B
Running at 55 rpm - Group (RAD_C2_A0).
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Fig. 8.25a  Forcing :- CCF_MP_CI1_A0

Scale of Displacements :- 1.0e7
Displacement at Yoke (Ccfh) 2.47e-9
Displacement at Mainpole (Ccf) 1.51e-9

/L ~~_Displacement at Commpole (Ccf) 3.82¢-8
;g_

N

7

Fig. 8.25b  Forcing :- CCF_MP_C1_A0

Scale of Displacements :- 5.0e7

Displacement at Yoke (Ccf) 2.48e-9

Displacement at Mainpole (Cch) 2.02e-9
! / Displacement at Commpole (Ccf) 2.05¢-8

Fig. 8.25 Computed Operating Shapes for Machine B
Running at 55 rpm - Group (CCF_C1_A0).
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) T Fig,826a  Forcing :- CCF_CP_C2_A0

Scale of Displacements :-

Displacement at Yoke (Rad)
Displacement at Mainpole (Rad)
Nisplacement at Commpole (Ccf)

Fig. 8.26b  Forcing :- CCF_MP_C2_A0
_ Scale of Displacements :-

Displacement at Yoke (Rad)
Displacement at Mainpole (Ccf)
_L\Displ acement at Commpole (Rad)

Fig. 8.26 Computed Operating Shapes for Machine B
Running at 55 rpm - Group (CCF_C2_A0).
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p y
. Fig.8.27a  Forcing :- MOM_CP_CI1_AO
Scale of Displacements :-

Displacement at Yoke
Displacement at Mainpole

_\ \]l\ Displacement at Commpole

Fig. 8.27b Forcing :- MOM_MP_C1_AO
Scale of Displacements :-
Displacement at Yoke
Displacement at Mainpole
Displacement at Commpole

Fig. 8.27 Computed Operating Shapes for Machine B
Running at 55 rpm - Group (MOM_C1_A0).
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Fig.828a  Forcing :- MOM_CP_C2_AO

Scale of Displacements :-

Displacement at Yoke (Rad)
S —— Displacement at Mainpole . (Rad)

Displacement at Commpole (Ccf)

H\X

Fig. 8.28b  Forcing :- MOM_MP_C2_A0

Scale of Displacements :-

Displacement at Yoke (Rad)
Displacement at Mainpole (Ccf)
Displacement at Commpole (Rad)

i

Fig. 8.28 Computed Operating Shapes for Machine B
Running at 55 rpm - Group (MOM_C2_A0).
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Forcing :- RAD_CP_C1_A2 Frequency :- 430 Hz.

Displacement at Yoke (Rad) 4.15e-12 1.50e-11
Displacement at Mainpole (Rad) ~ ~
Displacement at Commpole (Rad) 9.34e-11 9.62e-11

Fig. 8.29

Fig. 8.29b

Forcing :- RAD_MP_C1_A2. Frequency :- 430 Hz.

—Center
Displacement at Yoke (Rad) 1.95e-11 3.81le-11

Displacement at Mainpole (Rad) 7.18e-11 6.02¢-11
Displacement at Commpole (Rad) ~ ~

Computed Operating Shapes for Machine B
Running at 55 rpm - Group (RAD_C1_A2).
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Fig. 8.30a  Forcing :- RAD_CP_C2_A2 Frequency :- 430 Hz.

Displacement at Yoke (Rad) 1.44e-12 1.7%e-12
Displacement at Mainpole (Rad) ~ ~
Displacement at Commpole (Rad) 9.30e-11 9.50e-11

/
Fig. 8.30b  Forcing :- RAD_MP_C2_A2 Frequency :- 430 Hz.

_ - —Center  _Edge

Displacement at Yoke (Rad) 1.49¢-11 2.90e-11
Displacement at Mainpole (Rad) 6.57e-11 5.92¢-11
Displacement at Commpole (Rad) ~ ~

Fig. 8.30 Computed Operating Shapes for Machine B
Running at 55 rpm - Group (RAD_C2_A2).

-406 -



Fig. 831a  Forcing :- CCF_CP_C1_A2 Frequency :- 430 Hz.
' Center Edge

Displacement at Yoke (Ccf) 1.78e-11 1.44e-11
Displacement at Mainpole (Cch) 3.05e-11 3.17e-11
Displacement at Commpole (Cef) 1.17e-9 1.76e-9
S
e
e
i i&
J h—..

iy
Fig. 8.31b  Forcing :- CCF_MP_C1_A2  Frequency :- 430 Hz.
—Center _Edge

Displacement at Yoke (Ccf) 3.75e-12 3.79¢-12
Displacement at Mainpole (Ccf) 2.35e-10 2.56e-10
Displacement at Commpole (Ccf) 4.34e-11 4.38e-11

- Fig. 8.31 Computed Operating Shapes for Machine B
Running at 55 rpm - Group (CCF_C1_A2).
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Fig 8.32a  Forcing :- CCF_CP_C2_A2 Frequency :- 215 Hz.
—Center _Edge

Displacement at Yoke (Rad) 3.28e-11 3.84e-11
Displacement at Mainpole (Rad) 4.77e-11 4.97e-11
Displacement at Commpole (Ccf) 9.76e-10 1.71e-9

s :
Fig. 8.32b  Forcing :- CCF-MP_C2_A2 Frequency :- 215 Hz.
—Center —Edge
Displacement at Yoke (Rad) 3.64e-12 7.36e-12
Displacement at Mainpole (Ccf) 2.17e-10 2.21e-10
Displacement at Commpole (Rad) 2.15e-12 2.58e-12

Fig. 8.32 Computed Operating Shapes for Machine B
Running at 55 rpm - Group (CCF_C2_A2).
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Fig.8.33a  Forcing :- MOM_CP_C1_A2  Frequency :- 430 Hz.
—Center _Edge
Displacement at Yoke (Ccf) 2.01e-11 2.84e-11
Displacement at Mainpole (Cef) 421e-11 4.17e-11
Displacement at Commpole (Ccf) 3.13E-9 4.15e-9

Fig. 8.33b  Forcing :- MOM_MP_C1_A2 Frequency :- 430 Hz.

—Center _Edge
Displacement at Yoke (Ccf) 6.97e-12

i ‘ 1.26e-11
Dfsplaccmcnt at Mainpole (Ccf) 8.42e-10 9.39%¢-10
Displacement at Commpole (Ccf) 1.35e-11 1.65¢e-11

Fig. 8.33 Computed Operating Shapes for Machine B
Running at 55 rpm - Group (MOM_C1_A2).
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Fig.8.34a  Forcing :- MOM_CP_C2_A2 Frequency :- 215 Hz.
: —Center _Edge
Displacement at Yoke (Rad) 5.02e-11 4.86e-11
Displacement at Mainpole (Rad) 7.15e-11 6.54¢-11
Displacement at Commpole (Ccf) 2.81e-9 4.06e-9

_ e //
Fig.8.34b  Forcing :- MOM_MP_C2_A2 Frequency :- 215 Hz.
—Center _Edge

Displacement at Yoke (Rad) 1.53e-11 433E-11
Displacement at Mainpole (Ccf) 7.92E-10 8.24e-10
Displacement at Commpole (Rad) 8.73E-12 1.28e-12

Fig. 8.34 Computed Operating Shapes for Machine B
Running at 55 rpm - Group (MOM_C2_A2).
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Chapter 9.

GENERAL EFFECTS IN
DC MACHINE VIBRATION

In the existing literature, the vibration of these machines has been
greatly oversimplified in order that some analysis could take place. The
greater the simplification, the greater will be the uncertainty associated
with the answers produced by that analysis. In this chapter, some of the
mechanical determinants of the vibration levels in machines are
discussed in the context of how the vibration might be reduced. The
effect of any one parameter in a machine is governed by the other
parameters of the machine and the excitation (both type and
frequency). It is inevitable that an improvement in the behaviour at
one frequency will be accompanied by a disimprovement at others.
Furthermore, the sensitivity of the dynamic behaviour of the machine
stator to changes in various parameters can be accurately estimated
only if the changes are small. The effects of substantial changes can only

be judged by performing a complete analysis "before” and "after".

§9.1 Components of Forcing on the Poles.

The mainpoles and compoles experience a complex pattern of
electro-magnetic forcing from the armature. The original approach used

for the analysis of the response of machines to these forces was to

discretise the forces into a finite number of point forces and moments.
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These discrete forces were then applied all together to the poles of the
theoretical model. A more organised method is to examine the response
of the machine to a "unit" of each of the contributing force components.
Then the response of the machine to the working force pattern can be
assessed using the principle of superposition to combine the response of

the machine to each of the components in suitable proportion.

The total forcing on the poles of a machine can be subdivided according

to the following criteria:

(1) Radial, Circumferential or Moment force. "RAD"/"CCF"/"MOM"

(2) Action on Mainpoles or Compoles. MPPCP"
(3) Circumferential Distribution . “C1Y"E2 M C3”
(4) Axial Distribution is "AQ"/"A1"/"A2".

Items (1) and (2) above are self-explanatory.

The circumferential distribution is allowed to be one of three cases. The
number of slots on the armature is- always an integer multiple of the
number of pole-pairs in the machine. If it were not, there would be a
rotating UMP (unbalanced magnetic pull) acting on the magnet frame at
slot-passing frequency. If the integer multiple is even, the forces on all
mainpoles are in phase and similarly, the forces on all compoles are in
phase. The substring "Cl1" references this type of circumferential
distribution. If the integer multiple is odd, - as tends to be the case -
then the forces on adjacent poles are 180° out of phase (regardless of
the type of force). The substring "C2" is used to reference the

circumferential distribution in which forces on adjacent mainpoles and
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compoles are 180° out of phase. An error in the pole-spacing can be
represented as an extra force acting with the normal forces. Fig. 9.1
shows how this error force can be computed vectorially. In a multipolar
machine, there are a number of independent spacing errors possible.
However, by quantifying the response to the worst error force acting on
a single pole, one can normally estimate the effect of the worst
combination of pole-spacing enorg. The characters "C3" in the name of a
force pattern indicate that the forces apply to one pole only. Depending
on the extent to which the symmetry of the machine is disturbed, the
response of the machine to forcing on an single pole can vary

considerably according to which pole is forced.

The axial distribution of force on a pole is determined principally by the
skew of the armature. An unskewed armature produces force patterns
which are (for all practical purposes) axially uniform. In the
nomenclature adopted for the force components, "A0" is used to identify
the axially uniform force component. On machines designed for quiet
operation, the armature is normally Skewed. in "straight-line” skew the
angular location of the center of one slot of the armature varies linearly
along the axis so that at one end it is angularly displaced from the other
(normally by one slot-pitch). Ideally, the distribution of the
fundamental slot-passing flux-ripple along the poles should then vary
sinusoidally in the axial direction. The inclusion of ducts and the

existence of fringing cause the distribution to deviate from sinusoidal.

The straightline skew (with a skew factor of 1.0) causes a fundamental
slot-passing frequency force to be axially distributed like one

wavelength of a cosine at one instant in time. (Of course, that 'instant'
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will not be the same for the radial force as it is for the circumferential
force etc.) When the armature is rotated from this position by one-half
of a slot-pitch, the axial distribution of the force is like one wavelenth of

a sine waveform. This is explained in more detail in Appendix 8.

The 'sin' force distribution is obviously antisymmetrical w.r.t. a plane
dividing the machine axially in half. At low frequencies (relative to the
spectrum of resonances of the magnet frame) the 'sin' distribution tends
to significantly excite modes of the machine which are antisymmetrical
about the afore-mentioned plane while the 'cos' force tends to excite the
symmetrical modes though rarely to the same extent. The reason for the
difference is that the modes which can be excited by the 'cos' force
involve flexure of the yoke in the axial direction while the modes
excited by the 'sin' force do not involve this flexure. In order to remove
the antisymmetrical component of the force distributions, some
armatures are herringbone skewed. Appendix 8 gives a concise
quantitative description of the components of force distributions from

the straightline and herringbone skew.

Clearly, it is possible to Fourier-analyse the distribution of force on a
pole into trigonometric components. Given the complexity of the-
distribution, we would require a relatively large number of terms to do
this accurately although it is clear from experience that very few terms
(properly chosen) can be used in the theoretical model without loss of
accuracy. On relatively short machines, the yoke is very reluctant to
bend in radial planes. Longer machines are more flexible where bending
in radial planes is concerned. Experience shows that for the usual yoke

dimensions, only three separate components of the axial force
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distribution need be considered. Other components are suppressed by
the stiffness of the yoke and the poles against bending in a radial plane.

These components are illustrated in Fig 9.2a, 9.2b and 9.2c.

The cosine shape of "A2" (Fig. 9.2c) is not ideal. A better shape would be
the quadratic form shown in Fig. 9.2d, because this is closer to the shape
in which the pole and yoke naturally deform. However, the cosine shape

lends itself much more easily to analysis.

The following examples illustrate the naming convention adopted in this

work for the force components.

RAD_MP_CI1_A0O A radial force acting on the mainpoles. Forces on
all mainpoles are in__phase and the axial
distribution of the forces is uniform.

CCF_CP_C2_A2 A circumferential force acting on the compoles.

Forces on adjacent compoles are 180° out of
phase. The axial distribution of the force is a

cosine _waveform (see above).

MOM_CP_C3_Al A moment force acting on a single compole . The
axial distribution of the force is a straight line

passing through zero at the center of the pole.

By applying each of these force components in turn to the theoretical

model, a full description of the behaviour of the stator is prepared. In
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the case of a machine which is straightline skewed and in which the
number of armature slots is an odd integer multiple of the number of
pole-pairs, 54 independent force patterns exist and must be
investigated. Each of these force patterns can be automatically
generated within the DMS software. Occasionally some subsets of these
cases can be dismissed if a simple hand calculation indicates that they
will not be contributing significantly to the total vibration levels of the
machine. Section 9.2 is a brief discussion of the relative importance of

each of these force patterns.

Note that when the number of slots on the armature is an odd integer
multiple of the number of pole-pairs, the circumferential distribution of
forces for the fundamental slot-passing forces is "C2" (assuming that

there are no pole-spacing errors) but the circumferential distribution of

the second. harmonic (and all gven harmonics of the slot-passing force)

is "C1".

If the number of slots on the armature of the machine is an even
inte'ger multiple of the number of pole-pairs the circumferential
distribution "C1" does not occur for any force. If the machine is
herringbone skewed, the axial distribution "Al" does not occur unless

there is an error in the alignment of the poles.

So far we have explained only the "proportions” of each of the force
components. In order to put these to practical use, each one must be
quantified in a meaningful way. The convention which appears most
satisfactory is to use unit force-per-metre. Thus, the force component

"RAD_CP_C2_A0" corresponds to a total radial force of "I" N acting on
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each of the compoles where "l" 'is the axial length of the compoles.
Similarly, "RAD_MP_C1_A1" corresponds to a radial force on each of the
mainpoles which is a dependent on z (z is the coordinate of axial
position, z=0 for the axial center of the mainpoles and compoles)

according to :-
F,=22z/1 N/m (9.1)

The total radial force on the mainpoles is zero for "RAD_MP_C1_A1" .

The units appropriate to the force components are "N/m" for the "RAD"

and "CCF" components and "Nm /m" for the "MOM" components.

If simplifying assumptions are made, it is sometimes possible to
examine the force components in groups. In such cases, one or more of
the elements of the force component identifiers is discarded. For
example, at no-load operation of a machine which has an unskewed
armature, all forces on the compole are theoretically zero (by symmetry
considerations) and the axially-uniform distribution of force "AO" is
only significant one. The subset of relevant force components is then

collectively termed "MP_AO".

§9.2 The Relative Importance of the Various

Component Force Patterns.

For the purposes of this discussion, it is assumed, to begin, that the

frequency of the forcing is low relative to the various natural
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frequencies of those modes of the stator which can be excited
significantly by the various component force-patterns. This assumption
is relaxed later for some cases, but it must be understood that any one
of the 54 force patterns is capable of creating dominant vibrations on
the yoke if the frequency of forcing is sufficiently close to a suitable

mode of the frame.

In assessing the "importance" of any one force component, we must
have a clear criterion by which the responses to different modes can be
compared. The obvious basis for such a criterion is the total r.m.s
vibration of the yoke (ie. the total vibration energy present). If we

interested in the noise generated by the machine, a more suitable

criterion would be based on the r.m.s radial vibration of the yoke. It
should be understood that the conclusions drawn in this case would be

quite different.

9.2.1 Forces Applied to the Yoke Only.

Tt is instructive to firstly examine how the yoke of the machine would
respond to each of the force components in turn if they were
transferred without modification via the poles to the yoke. Radial,
circumferential and moment forces are considered to be applied directly
to the yoke behind the poles. The yoke is considered to be a complete

cylinder with no other steelwork attached. The number of poles on the

machine is denoted n,.
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The "RAD_CI1_A0" force components

It is straightforward to show using symmetry arguments that the force
component "RAD_MP_C1_AO0" will produce the same rms vibration of
the yoke as "RAD_CP_C1_AO0" so the differentiation is dropped for the
present and these force components are collectively termed
"RAD_C1.A0". These force components act to excite two classes of modes

of the yoke :-

(a) Yoke "flexure" modes which have n, wavelengths about the

circumference.

(b) Yoke "extension" modes which have zero wavelengths about the

circumference.

In the case of both (a) and (b) here, the axial profile of the modes is
symmetrical about the center plane of the yoke (dividing the yoke
axially in two). The mode from each class which has the lowest stiffness

is the mode for which the axial profile is a "horizontal" line.

The chief "extensional” mode of the machine is more stiff than the chief

"flexural” mode if n  is small, and vice-versa if n_ is relatively large.

p
That is, the force components "RAD_MP_CI_A0" and "RAD_MP_C1_AQ0"

would be expected to produce greater radial displacement contributions

from the "flexure" mode than they would from the "extensional" mode.

Denoting the stiffness of the chief "extensional” mode as K, we define it

as . .
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K. = (Radial Displacement of the Yoke due to "RAD_CI1_A0")! (9.2)
. and using elementary ring theory, K, is quantified as

K,= E.d/r_ (9.3)

For the present, "d" is the radial thickness of the yoke, " r_" is the mean

radius and "E" is Young's modulus for steel following the usual

convention.

The stiffness of the chief "flexural" mode is denoted Kf1 and we define

Was v

K¢, = (Peak Radial Displacement of the Yoke due to "RAD_C1_A0Q")!

(9:3)

. and using elementary ring theory again, K., is quantified as

K = (En d (np2—1)2)1(12 .3 ) (9.6)

Now, the "flexural" mode produces a r.m.s yoke vibration of
approximately one half of the peak radial vibration on the yoke, so it is
concluded that the flexure mode is more significant than the extensional

one when the following condition obtains :-
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n d? (n2-1? /(121,2)< 2 (9.7)

In the case where d=0.125, r_= 1.5 and n=12, the expression above is

evaluated to be 26.2 and so the extension mode will contribute virtually

all of the vibration of the yoke.

The rms. vibration of the bare-yoke subjected to these force

components can be readily assessed using the equations above.
The "RAD_C2_A0" force components.

These force components excite only one class of modes of the yoke
(circumferential flexure) in which there are n/2 full wavelengths of
vibration about the periphery of the yoke. The lowest-stiffness mode of

these is again the mode in which the axial profile is a "horizontal" line.

We denote the stiffness of this mode as K, and define it by (9.8) below

similar to (9.5).

K,=(Peak Radial Displacement of the Yoke due to "RAD_CZ_AO")'1
NOAQAQ A = (9.8)

. . and again using elementary ring theory, K., is quantified as

K., = (En d®(( np/2)2-1)2) J(12¢.3) (9.9)

Again, the rms vibration of the yoke is approximately one half of the

peak radial vibration of the yoke. Thus the importance of these forces
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can be immeditately assessed.

Now when the r.m.s. yoke vibration due to the force components
"RAD_MP_C1_AO0" or "RAD_CP_CI1_A0" is compared with the rms yoke
vibration due to the force components "RAD_MP_C2_AO0" or
"RAD_CP_C2_AO0", there are two possible conclusions depending on the

geometry of the yoke.

(1) If the "extensional" modes dominate the vibration caused by the

"RAD_CI1_A0" forces (as will tend to be the case for multipolar

machines), the comparison of the stiffness, Ke, of the yoke with

regard to the "RAD_CI1_AO0" forces and the stiffness, K of the

£2°
yoke with regard to the "RAD_C2_AO0" shows that the
"RAD_C1_AO0" forces are more significant when the condition

expressed by (9.10) below obtains.
nod? (n/2)>-1)2/(121,2)< 2 (9.10)

(2) If the "flexural" modes dominate the vibration caused by the
“"RAD_C1_A0" forces (or if they are similar-in-importance to the
"extensional" modes) then it may be be stated without further
ado that the "RAD_C1_A0" force components are less significant
at the low frequency end of the spectrum than the "RAD_C2_A0"

forces by a factor of approximately . . .

"C2/C1_Stiffness_Ratio" = (( np/2)2-1)2/(np2-1)2 (9.11)
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Thu§ the "RAD_C1_A0" force components are easily compared with the
"RAD_C2_A0" components using the reasoning above, Now, the
"RAD_C2_A0" force components are contributed by the fundamental and
odd harmonics of slot-passing if the number of armature slots is an odd
integer multiple of the number of pole-pairs. "RAD_CI1_A0" components

are contributed by the even harmonics of such an armature.
The "CCF_A0" force components

Acting on the poles of a machine, these components are often equal in
importance to the "RAD_AQ" force components. They cause the poles to
rock relative to the yoke to some extent and it is the resulting moment
on the yoke which is primarily responsible for the contribution from
these forces to the rms yoke vibration. "CCF_AQ" forces acting on the
yoke itself have virtually no effect at low frequencies except in one
instance. The exception is the response of the yoke to "CCF_C1_AO0". This
force pattern tends to rotate the yoke about its own axis relative to the
armature. Since the yoke is not required to deform at all, the only
stiffness resisting this motion is that introduced by the feet. At all
practical speeds of motor operation, the dynamic mass of the yoke for
this mode is equal to the true mass of the yoke and it is the inertia

rather than stiffness which determines the level of the motion.

For the yoke dimensions used before, the rms vibration of the yoke

resulting from "CCF_CI1_AO0" at a frequency of 200Hz would be
(6.9e-11.np) m.



The "MOM _AOQ" force components

When these forces act on the poles of the machine, the poles tend to
rock relative to the yoke and the moment is transferred to the yoke at
the pole-yoke joint. The pole-yoke joint also resists relative motion
between the back of the pole and the yoke in the circumferential
direction and so the "MOM_AQ" forces also cause a circumferential force
to exist on the yoke. We have stated above that the circumferential

forces on the yoke are not generally of much consequence.

The "MOM_C1_AO0" forces can excite two classes of modes.

(a) Yoke "flexure" modes which have n, wavelengths about the

circumference.

(b) Torsional modes of the yoke in which the circular sections rotate

about the cylinder axis

Group (a) above was discussed in the paragraph about "RAD_CI1_A0"

forces. The principal mode of group (a) is that whose axial profile is a

"horizontal" line. We defined a stiffness Kfl for this mode based on the

peak radial displacements caused by the "RAD_CI1_AO0" force. We define

a new stiffness quantity K. , for this mode here based on the radial

vibration resulting from moment forces.

K

fm

, = (Peak Radial Displacement of the Yoke due to “MOM_CI")'1

KOAQYAY N, =5 (9.12)
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Kimi = (Exd®(n 21)%)/(121,2) =Kp/ (5, 0,) (9.13)

Equation (9.12) gives an immediate comparison between the importance
of the "RAD_C1_A0" forces and the "MOM_C1_AOQ0" forces as applied to
the yoke. Remember that the "MOM_C1_A0" forcés acting on the yoke
are contributed partly by the "CCF_C1_AO0" forces on the poles.

The principal mode of group (b). above is the "rigid-body-mode"
described in the paragraph on "CCF_AOQ" forces. Again it is the inertia of
the yoke that determines the vibration levels achieved by this mode.
Using the same yoke dimensions again, the rms vibration of the yoke
resulting from "MOM_C1_AOQ0" at a ffequency of 200Hz would be
(3.1e-11. np) m.

With the "RAD_C2_A0" forces, the only modes of the yoke being excited

were the flexural modes having np/Z wavelengths about the

circumference. The same applies to the "MOM_C2_AO0" forces. We

defined a stiffness qhantity Kf2 for this mode using (9.4) to relate peak

radial displacement to the applied "RAD_C2_A0". We now define K ,

for this mode.

K. , = (Peak Radial Displacement of the Yoke due to "RAD_C2_A0" )'1

AQAOAY A = (9.14)

Ki,= (En & (n/2)>1)%) / (6r n) =2K/(r, n) (9.15)
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The rms yoke vibration caused by the "MOM_C2_AO0" can be assessed
using (9.15) .

We have now considered how each of the "AO" forces being applied to
the yoke influences its vibration at low frequencies. For motors running
at low speed relative to the spectrum of resonances of the frame, the
above arguments can be applied directly in assessing which force

components will be dominant.

We now briefly consider the "Al" force components. These arise if the
armature is straightline skewed or if there is an axial misalignment of
the armature in the case of a herringbone skewed armature. The effect
of these forces is to excite the two ends of the machine frame in
opposite senses. The modes excited by the "Al" force components are
the axially antisymmetric versions of the modes excited by the "AQ"
components. Fig. 9.3 contrasts the modes which can respond to "AOQ"
components (called j=0) with those (j=1) which respond to "Al" and

those (j=2) which respond to the "A2" components. For this picture,

np2:4 and the circumferential distribution of the forces is "C2".

The expressions for the stiffness quantities are more complex for these
forces than the expressions above relating to the axially uniform modes
since the shear strains of the yoke must also be taken into account. In
general however, it may be stated that the stiffness of the first
axially-antisymmetric flexure mode is substantially higher than the
stiffness of the first axially-symmetric flexure mode. As the length of

the machine increases, the ratio between the stiffnesses of the first
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axially antisymmetric mode and the first axially symmetric mode
decreases. Also, as i (the number of wavelengths about the periphery of

the yoke) increases, the ratio in question decreases. Table 9.1 below
presents the value of this ratio for the yoke geometry r_=1.5, d=0.125
in the cases of three yoke lengths. The trends are clear from these

numbers. Similar figures for different geometries are easily generated

using the software.

Mode 1=0.5 1=1.0 1=1.5
i=0 ..extensional 0.872 0.970 0.997
i=2 ..flexural 18.41 17.94 1093
i=4 . .flexural 24.75 8.78 3.84
i=6 ..flexural 14.32 3.83 2.08
i=8 ..flexural 713 2.36 1.54
i = 10 ...flexural 4.72 1.78 1.32
i = 12 ...flexural 3.28 1.50 1.21

Table 9.1 Ratio Between Stiffness of i =1 and j =0 mode-s.

Now a comparison between the "AO" and the "A2" forces is much more
complex again. The stiffnesses of the j=0 and j=2 modes are again
compared numerically for a particular cross-section geometry. Table 9.2
below shows the variation of the ratio between the mode stiffnesses for

j=0 and j=2 with yoke length for the cross-section geometry in which

42T =



r =15, d=0.125

Mode 1=0.5 1=1.0 1=1.5

1i=0 ..extensional 460 6.79 " 1.77
i=2 ..flexural 170766 3.56e5 1.27e4
1i=4 . .flexural 1.44e5 7.86e2 124.2

1=6 ..flexural 1.40e3 61.9 13.0
i =8 ..flexural 217 16.0 4.96
i = 10 ...flexural 80.6 I3 2.96
i =12 ...flexural 33.3 4.43 2.18
Table 9.5 Ratio_between_stiffness of j=2 and j=0 modes.

Figures such as those presented in tables 9.1 and 9.2 are useful in
considering the effectiveness of skewing (both herringbone and
straightline) in reducing the vibration levels of a machine. This is

considered in more detail in section 9.3.

9.2.2 Forces Applied to the Yoke With Poles

In practice, the response of the bare yoke is not necessarily indicative
of the response of the whole machine. Forces acting on the poles of a
machine are not directly transmitted to the yoke. The inertia of the
poles, their stiffness and the properties of the joint between the poles

and the yoke combine to generate a frequency-dependent relation
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between the forces acting on the poles and those reaching the yoke. For
a full appraisal of the vibration of any machine, the coils must be
considered with the poles and yoke. The effect of the coils is dealt with

separately in §9.4.

The relative "importance" of the force components in any machine will

be a function of ...

(1) The frequency of the forcing.
(2) The geometry of the yoke and the poles

(3) The stiffness of the joint between the poles and the yoke.
"RAD_AO0" force components

RAD_AO forces on the mainpoles and compoles act to force the poles
radially against the yoke. The joint between-the poles and the yoke has
flexibility and consequently, the force transmitted to the yoke is not
equal to the force applied at the face of the pole. There is a
characteristic frequency of pole radial translation relative to the yoke.
We define this as the natural frequency at which the pole would vibrate

if the yoke were perfectly rigid and static. Denoting the pole-yoke joint

stiffness in the radial sense as S_, and the pole mass as Mp the

characteristic frequency of the pole radial translation is given by .
f = (1/2n).(Sr/Mp)0'5 (9.16)
The force being transmitted to the yoke is dependent on the frequency
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f. If f is similar to f, then there will be a considerable degree of pole

vibration relative to the yoke. If the yoke is considered rigid, the

transmitted force could be related to the force acting on the pole as .
(Transmitted Force) / (Acting Force) = (1.0- (fr/f)z)'1 (9.17)

The situation is not always so simple. The stator may have modes for

which the yoke vibrates significantly occurring at frequencies near f.. A

general expression for the transmitted force is not possible. However,
from the simple expression above (9.16), it is apparent that there will

be some set of frequencies (probably close to the f. frequency given by

(9.16) at which there is a magnification of the "RAD_AOQ" forces.

The "CCF_A0" and "MOM _A0" force components.

CCF_A0 and MOM_AO forces act to rock the poles and move them
circumferentially. The connection between the pole and the yoke
creates a coupling of these modes. Again, there is a marked difference
between the forces transmitted to the yoke and those applied at the
poles. The natural frequency of pole rocking on a rigid yoke is
invariably much lower than the natural frequency of pole
circumferential translation on a rigid yoke, and the natural frequency of
circumferential translation is in turn less than that of radial translation.
In the tests on machine B (chapter 8) it was found that the compoles
had a natural rocking frequency of 235 Hz. The rocking frequency of the

compoles is normally less than that of the mainpoles. The. two
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translational characteristic natural frequencies (radial and

circumferential) will be similar for the compoles and mainpoles.

In 9.2.1 above, we considered two separate flexure modes of the yoke
i:np and i=np/2 which are excited by "MOM_C1_A0" and "MOM_C2_AQ"

force components acing on the yoke. If the characteristic frequency of
pole rocking is much less than the resonance of each of these, then the
contribution of both "CCF" and "MOM" forces to the machine vibration

will be small.

The other force distributions acting on the poles are cause by skewing

of the armature and these are discussed in 9.3 below.
§9.3 The Effectiveness of Skewing in Reducing Vibration.

In the previous section, we considered the factors which influence how
much vibration is caused by the "AO" force components acting on the
poles. We continue the train of thought here by now considering the’
relative effect of the "Al1" and "A2" force components which are caused

by armature skew.

The concept behind skewing the armature is to reduce the total force on
each of the poles to zero at all times. There are two principal reasons
why skewing the armature does not result in a zero value of

electromagnetically induced vibratiun.

(a) The effects of air ducts in the armature and fringing at the ends
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of the poles mean that the total radial circumferential and
moment forces on the poles are not zero. Wignall (A.1987)
calculates that up to 7% of the "unskewed" force on the poles

remains after skewing in some instances.

(b) The poles can respond to the armature forcing even when the

total force on each individual pole is zero.

Item (b) above is of interest to us here.

Appendix 8 reviews the forcing caused to exist on poles due to
straightline and herringbone skew and quantifies the components "Al"
and "A2" of the fundamental slot-passing force and its harmonics. Table

9.3 below summarises the findings.

Skew-Type FUNDAMENTAL 2nd HARMONIC
IIAOII "Al" "A2" "AOII "AI " "A2ll

Straightline 0.0 0.66 1.0 0.0 0.27 0.0

Herringbone 0.0 0.0 0.85 0.0 0.0 0.34
Table 9.3 Coefficients of the Force Components
HA] " and IIA2“
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9.3.1 The "Al" force components

Straightline skew of the armature produces force components in both
"A1" and "A2" axial distributions. We noted in 9.2 that the stiffness of
cylinder modes for which j=2 was considerably greater than the
stiffness of the corresponding j=1 modes. Thus, in considering the
vibration resulting from the electromagnetic excitation of a straightline
skewed armature, it is only necessary to consider the "Al" components

of the forcing.

Clearly, the "RAD_A1" component forces can be transmitted to the yoke
without deforming the poles. The "MOM_A1" components by their
nature attempt to twist the ends of the poles in opposite senses. The
"CCF_A1" force components attempt to translate the ends of the poles
circumferentially in opposite directions. However, because the pole is
fixed to the yoke it cannot translate circumferentially without rotating
about the center of the pole back at the same time. The torsional
stiffness of the poles themselves in comparison with the stiffness of the
pole-yoke joint ultimately determines the extent to which "CCF_A1l" and
"MOM_A1" are successful in vibrating the yoke. For the "RAD_A1" force
components, precisely the same conditions govern the levels of
transmitted force to the yoke as applied for the "RAD_AO" forces. Thus,
we can state that a perfect straightline skew results in significantly less
vibration from the "CCF" and "MOM" force components but only a

modest reduction for the "RAD" force components.
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9.3.2 The "A2" force components

When a herringbone skew is used, there are only "A2" components in
the force (plus residual "AO" forces due to the ducts, fringing effects
etc.). The "A2" forces can be dominant in determining vibration levels
even in the case of machines having a relatively short yoke. This
statement is borne out by the axial profiles of the operating shapes
measured for machine B in chapter 8. Each of the "A2" forces must
deform the pole if forces are to be transmitted to the yoke. Depending
on the pole geometry, its material constants and the type of the force,
the deformation may be primarily shear or extensional. "MOM_A2"
forces attempt to twist the pole while "RAD_A2" forces deform the pole

in the radial plane in a mixture of shear and bending.

Mainpoles of machines are invariably laminated and we can state with
some confidence as a result of the investigation into the behaviour of
laminated bodies that these poles are much more flexible as a result of
being laminated. The shear modulus is reduced by a greater factor than
the Youngs modulus. Torsion of the mainpoles can therefore be
sufficient to allow a significant forcing to occur on the yoke as a result

of "CCF" and "MOM" components.

The determinant of how much force is experienced by the yoke because

of any of the "A2" forces is the ratio between the internal stiffness of

the pole and the stiffness of the pole-yoke joint.

The internal stiffness of the pole for resisting the "RAD" components can
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be judged from the first non-rigid-body resonance of the pole in that
plane. By comparing the natural frequency of this mode with the
characteristic frequency of pole radial translation (both illustrated in
Fig. 9.3) the proportion of the radial force which will be transmitted to
the yoke can be estimated. Where the "CCF" and "MOM" components are
concerned, the 'internal stiffness' of the pole should not be interpreted
to mean the stiffness of the associated mode. As stated before,
circumferential stiffness of the pole-yoke joint is quite high relative to
the torsional stiffness. (Strictly speaking, it is not valid to compare two
quantities which do not have the same dimensions but a comparison of
the characteristic frequency of pole rocking and pole circumferential
translation is valid). The pole-backs tend not to move relative to the
yoke, to the same extent as the poles will twist. Consequently, the
'internal stiffness’ which should be considered for both "CCF" and "MOM"

forces is the stiffness of the constrained torsional mode.

The reader is referred back to fig.s 8.29-8.34 for visual corroboration of

the above statements.

Once the electromagnetic forces ("A0" and "A2") are known for a
particular machine and operating condition, it is possible to assess
relatively quickly which components of forcing will dominate the
vibration produced. If it transpires that the "AOQ" forces are dominant,
there is a case for distributing the ducts on the armature more carefully
so that the "AOQ0" components can be reduced. If, on the other hand, the
"A2" forces dominate, thought may be given to stiffening the poles or

stiffening the yoke against these deflections.
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For a given yoke geometry, and given the approximate ratio of
"AO"/"A2" for the forces, the ratio between the contribution from each

can- be assessed by the following procedure.

(1) Evaluate the expected "RAD_A2" and "MOM_A2" foi'ces which
will be transmitted to the yoke by considering the internal
stiffness of the poles and the approximate stiffness of the

pole-yoke joints.

(2) Evaluate the relation between rms yoke response to the four
components, "RAD_AQ", "MOM_AOQ", "RAD_A2", "MOM_A2".
This relation would be taken from tables similar to table 9.2 and

the equations preceding it.

(3) Combine (1) and(2) to produce expected levels -of yoke vibration
due to "RAD_A2" and "MOM_A2". Compare these levels with the
results for "RAD_AOQ0" and "MOM_AQ0"

When the mechanical symmetry of the machine is seriously disrupted

by structural detail welded on the yoke, proper consideration of the

skew can only be given by using the software.

§9.4 The Effect of Coils.

As a rule, the field coils of a machine have sufficient mass to
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substantially affect the vibration of the machine. In order for this to
happen, the connection between coils and poles must be sufficiently

stiff for that inertia to be used to good effect.

The properties of the connection between the coil and the pole are
important in determining the vibration especially that due to CCF_AO
and MOM_AO force components. The connection would be expected to
be relatively flexible in radial translation and in rotation about an axial
line because each of these derives its stiffness from the shearing
stresses set up between the pole and the insulation of the coil. The
stiffness of the coil-pole connection in circumferential translation is
expected to be higher. This stiffness is derived from normal strains in
the coil insulation. When the pole rocks on the yoke, the back of the
pole moves very little iI} the circumferential direction compared with
the face. Thus, pole rocking translates the center of the pole in the
circumferential direction and this generally involves a circumferential

translation of the coil also.

It has not been possible to study the parameters of the coil-pole joint in
a general way. Approximate values were obtained for machine A of
chapter 8 by comparing the response of the machine with and without
coils. Extrapolation of these values is not possible because the coil

mounting on the pole varies from machine to machine.
If the operating shapes of the machine in the frequency range of most

interest are dominated by exciation due to "CCF_AO0" and/or "MOM_AQ",

the coils can play an important role in reducing the vibration.
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If the slot-passing frequency of most interest to us is f, an optimum set
of parameters can be computed for the coil-pole stiffness. If these
parameters can be achieved in practice (heavily impregnating the
pole+coil or the use of adhesives might make this possible), the coils will

have been put to good use as vibration absorbers.

The computation of the optimum parameters is explained here. Fig. 9.4

illustrates the theoretical model using the usual symbols from the

vibration literature. The system comprises two masses M, and M,. K, is

a pure spring and D, is a pure damping connection. (It seems likely

that most of the vibration energy going into the coil-pole connection is

dissipated.) The responses of the system - r and r, are determined
by ...
-0?M, 1, = (1K1, -i D, (r,1) - (9.18)
2 I
-0°M, T, =1 Da1b (rb—ra) (9.19)

Solving these yields ...
r, = 1/(K,-0? M, +1D,, (1+i.D,/(iD,-0* M,))) (9.20)

Substituting numbers gives an expression for easy differentiation to

find the optimum D ;..
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§9.5 The Number of Armature Slots.

The number of armature slots is invariably an integer multiple of the
number of pole-pairs of the machine. That integer may be even or odd.
Current preference appears to lie with the odd. In this section we
present a criterion by which a rational choice between the two may be

made.

If the integer multiplier is even, the forces on adjacent mainpoles and
compoles are in phase for the fundamental slot-passing force and all its

harmonics. In this case, the modes of the magnet frame which are

significantly excited are the i=0 modes and the i:np modes using the

notation for the modes of cylinders. Of course, the magnet frame is not a
pure cylinder and other modes can also be excited. In particular, the
presence of a split in the yoke which is flexible will mean that the i=0
extensional mode of the yoke is modified to a mode in which the two
halves move together and apart almost like independent rigid bodies.
There will also be some excitation of the i=2 mode due to the presence
of the feet. Both the rotor and the stator will experience a torque
pulsation at slot-passing frequency and the motion on each due to this
force is governed primarily by the inertia of the rotor and stator. We
can quantify the extent of vibrations of the above modes and compare
them with the vibrations due to an armature having an even integer
multiplier for the number of slots. Axial force distributions "AQ" are
considered in detail here. One must also consider the "A2" forces for a

herringbone skewed machine but it is not feasible to do this

analytically.
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9.5.1 Excitation of the i=0_modes.

In the case of a machine whose yoke is unsplit, it is straightforward to

compute the deflections due to the i=0 extensional mode responding to
the "RAD_AQ" forces. As usual, r_ is the mean radius of the yoke and d

the radial thickness. The total mass of the yoke is My=21td1‘ o Let M be

the mass per unit length of the mainpoles and M_ is the mass per unit

length of the compoles. At slot-passing frequency, the stiffness of the

pole-yoke joints is such that all poles move in unison with the frame.

Then, the stiffness of this extensional mode is Ke: E.d/rm and the inertia
of the mode is Me=n'(My+(Mm+Mc))' For machine B of chapter 8 (without

a split), K, has a value of 1.53el0 N/m? and M, equals 1.25¢3 kg/m.

The resonant frequency of the extension mode is 176 Hz.

For the i=0 torsional mode, the stiffness is zero and the inertia is M=M_

as defined above.

The rms vibration of the yoke responding to one unit of "RAD_CI1_A0"

force at frequencies well below the extensional resonant frequency is

1/K,. At frequency "f" much higher than extensional resonance, the

response is 1/(39.5 M, f2). When f is greater than 1.41 times the

extensional resonance (176 Hz for machine B), the dynamic stiffness of

the mode is dominated by the inertia term and is greater than the static
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stiffness.

The response of the torsional mode to one unit of "CCF_CI_AOQ0" at

frequency f, is given by 1/(39.5 M, £%).

9.5.2 Excitation of the i:nu modes.

A yoke having no split has stiffness K., for the flexural mode i=r1p given

by (9.21) below.
K, =E=n d (np2-1)2 / (12 1_3) (9.21)

Assuming that the mainpoles and compoles are rigid on the yoke, the

inertia of this flexural mode "M, " is given approximately by (9.22).
Mg, = My/2 + np.(Mp + Mc) . (9.22)
For machine B, Kfl = 8.17ell, Mfl =8.65¢3 and the flexural resonance of

this mode occurs at a frequency of 1545 Hz. The rated slot-passing

frequency of this machine is 530.4 Hz.

9.5.3 Excitation of the i = ,np{2 modes.

Armatures having an odd integer multiplier for the number of slots
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principally excite only the modes of one group, namely the i = np/2
modes. The simplest (and lowest frequency) of these modes is the j=0

mode. We have already developed the formula for the stiffness K., of

this mode in §9.2.

Kp, =En & ((0,/2)%-1)*/ (12 1, 3) (9.23)

Now there are two 'versions" of this mode possible. In one, the
mainpoles translate radially with the yoke and the compoles rock. In
the other, compoles translate radially and the mainpoles rock. (Fig. 9.5).
The inertia of the mainpoles has most effect in the latter case. However,
the natural frequency of this mode is greater than the characteristic
frequency of mainpole rocking. Thus, not all of the mainpole inertia is
actually effective in this mode. We therefore consider only the version
where mainpoles translate. The other must be considered using the

software package. The inertia of this mode is given approximately by

Mg, = M,/2 + nM, (9.23)

For machine B, K, is calculated as 4.89¢10 (much less than Kf1)° The

modal mass M is also less for this mode than previously and is
calculated as 7.78e3. The natural frequency of this mode for machine B

is then approximately 398.9 Hz.

The indication is that an even integer multiplier for the number of slots
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of the armature of machine B will lead to lower vibration levels near
the rated speed. These calculations have taken no account of the split.
which undoubtedly has a strong bearing on the modal stiffness of all
modes. A full analysis would involve including this effect into a

numerical model in DMS.

A full consideration of which integer multiplier to use for the number of
slots must include an examination of the effects of the "A2" forces as-
well as the "AQO" forces. If the machine is very short, it may be assumed
that the "AQ" forces will dominate the vibration and the choice of the
suitable integer multiplier may be made on the basis of these forces

alone.

In general, the modal mass of the i=0 modes and i=np modes is

substantially greater than the modal mass of at least one version of the
i= n lJ/2 modes. This suggests that in general, the default choice for the
number of slots ought be the even integer multiple. The principle
argument against using an even multiplier must be that at very low
rotational speeds, the yoke displacement response to circumferential

pole forces is inversely proportional to the frequency squared.

One final point worth noting is that circumferential forces have a much
smaller effect on the yoke flexural vibration in the case of an even

number of slots per pole-pair at normal running speeds because the

i:nplz mode is considerbly more flexible than the i=np mode.
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§9.6 Disruption of Symmetry.

Practical machine construction dictates that feet and other appendages
associated with the cooling of the machine must be welded on to the
yoke. These and the split in the yoke remove the rotational and axial

symmetry which otherwise exists in the machine.

Measures such as skewing the armature and using an integer number of
armature slots per pole-pair rely heavily on symmetry for their
effectiveness. Assymetries introduced to the machine invariably have
the effect of introducing what Mikina (A.1934) terms "auxiliary" modes

to the machine vibration.

It is not possible to include a comprehensive study on the effects of
assymetry on machine vibrations. Each case of assymetry is different
and has significantly different influences at various bands of the

frequency range.

For the present we shall be content to note that assymetry does
introduce extra modes to the set of modes which are excitable by
electromagnetic forces. This is illustrated for three very simple cases. In
the case of a real machine, a full DMS analysis will inform of the

expected effects.

9.6.1 Assymetry Case 1 :- Constraints at Feet.

This case illustrates the excitation of ring modes due to rotationally
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symmetrical forcing where the ring is supported at two points at its
middle-layer. It examines the effect of adding stiffness to a ring. The
stiffness of the supports is varied to identify the effect. Fig. 9.6 shows
the ring used and the three force sets applied. The model was prepared
in DMS and has 24 equally spaced nodes at which forces can be applied.
Response of the ring (radially at the uppermost node) is evaluated for
each of the three force sets between 0 and S5kHz for the three joint
stiffness values k=1.0el10, k=1.0e9, k=2.0e8. Figs. 9.7-9.9 shows the

response to force-sets F6, F8 and F12.

The principal point worth noting here is that even when the pin joint
support stiffness is not sufficient to significantly raise the first natural
frequency of the ring, it is ample to excite some other important

resonances which would not otherwise have been excited.

9.6.2 Assymetry Case 2 :- Yoke with Split.

The yoke of machine B, was modelled in two distinct ways (fig 9.10).
One of these included the split while the other did not. Typical joint
attributes (as derived from experiment in §6) were used for the split in
one analysis and for checking purposes, the joints were set to be
virtually rigid in another so that the results could be compared with
those from the single-piece yoke. The response of the yoke to the force
component "RAD_CP_C2_AQ" was computed in each case. The actual
response freedom examined was radial translation at the top ot the
machine and this was computed over the frequency range 0-5 kHz.

Fig. 9.11 contrasts the frequency response curves for the three cases.
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It is not possible to generalise about the effect of this joint in machines
except to observe from fig. 9.11 that the joint is sufficiently flexible to
make a strong impression on the behaviour of the yoke in the vicinity
of the split and that the tests reported in chapter 6 are therefore

justified.

9.6.3 Assymetry Case 3 :- Yoke with Feet (Inertia Effect).

The same yoke (in one part) is used again to illustrate the effect of the
feet in modifying the modes of the frame so that modes other than the
"principal” one can be excited. The force component ("RAD_CP_C2_A0")
was applied to this structure (as was applied to the split yoke above)
and response computed at the same point. Fig. 9.12 shows the yoke with

feet and the computed response curve.

§9.7 The Effect of Pole Root Flexibility on the Overall

Dynamic Behaviour of the DC Magnet Frame.

In much of the previous literature, the poles of DC machines were
considered to be rigidly affixed to the yoke of the machine. It has been
shown that this is not the case where very small deflections are
concerned and this investigation has provided a set of data for the

approximate values of the flexibilities of the pole-yoke joint.

The root flexibility has two general effects.
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(1)

(2)

Forces acting on the poles are not transmitted directly to the
yoke. There will be some attenuation of the force if the
frequency of forcing is well removed from the appropriate
characteristic pole-on-a-stiff-yoke resonance. On the other hand,
there may also be some magnification of the transmitted force if
the frequency of forcing happens to lie close to the appropriate

resonance.

The dynamic behaviour of the frame as a whole structure is
modified. At freqencies well below, the lowest characteristic
pole-on-a-rigid-yoke resonance, the frame will behave as though
the poles were rigidly mounted. At frequencies well above the
highest characteristic pole-on-a-stiff-yoke resonance, the frame
will be able to vibrate significantly with only very small
oscillations occurring o.n the poles. In this case, the stiffness of

the pole-yoke joints acts to increase the stiffness of the yoke.

In the earlier sections of §6, we have seen that the force transmitted to

the yoke is dependent on the pole-yoke joint stiffness especially for the

"A2" force components. We do not pursue this further here.

The dynamic behaviour of the frame at frequencies between the two

extremes mentioned above in item (2) is affected in some complex way

by the pole stiffness. We demonstrate this fact but it is not possible to

make general remarks on the effects of the pole root flexibility on the

dynamic behaviour of the frame. Suffice it to say that the pole root

flexibility is one of the principal determinants of the set of resonant
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frequencies of a frame. If it is not known to reasonable accuracy, then
important resonances will not be calculated correctly and the resulting
errors in the estimation of response at individual frequencies can be
very large.

The DMS model of the stator of machine B is used here to illustrate the
effect of pole root flexibility on the behaviour. Six mainpoles are
attached to the model of one half of the yoke and the assembly is
excited by a point force acting at the top. Fig. 9.13 shows the

arrangement. The joint stiffnesses are set to three different values . . .

Zero stiffness (poles are not attached at all)
Rigid Joints (poles not free to move at all wrt to the yoke)

Estimated True Value.

The comparison of the frequency response in each of the three cases is

presented in Fig. 9.14.

§9.8 Acceptable Pole Spacing Tolerances.

Errors in pole spacing result in error forces coming to exist on the poles
of the machine. A procedure has been established whereby the

vibration resulting from such errors can be quantified. It comprises the

following steps.

(1) Estimate the coefficients of the error force components acting on

one of the poles as a result of the positional error. For
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circumferential errors this 1is straightforward. For axial
misalignment of the armature or an angular error in the position
of the pole, an armature which is herringbone skewed will
produce a component of "Al". See appendix 8 for the evaluation

of this quantity.

(2) Apply the error force components to the theoretical model of the
machine and compute the response over a range of frequencies

of interest.

(3) Compare the computed error response with the computed

normal response at a number of frequencies.

There is no general expression for the acceptable pole-spacing error but
the above procedure provides a rational quantitative estimate of what
levels of pole-spacing error can be  tolerated without significantly
increasing the overall machine vibration levels. The procedure was
carried out for vipration of machine B (chapter 8) at fundamental
slot-passing frequency and the allowable pole-spacing discrépancy
corresponded to a slot-ripple phase-error of 13° ... equivalent to 1.5 mm
at the bore of the yoke. Normal factory practice would generally ensure
that this tolerance was met whether specified or not. For harmonics of

slot-passing, the tolerance becomes proportionally finer.
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Low Frequency Version.

Higher Frequlency Version.

Fig. 9.5 Two Versions of the mode (i=n/2).
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Fig. 9.6 The Constrained Ring and Three Force Sets.
F6 F8 Fl12
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Fig. 9.10 Yoke Modelled Whole and as Two Halves.
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Chapter 10

CONCLUSIONS

The low-vibration electrical machine (in particular the DC machine)

poses two distinct problems to the would-be modeller.

The first problem concerns the size (degrees of freedom) required for a
model and consequently, the computational time consumed. It is shown
in chapters 1 & 2 that conventional in-plane models of machines are
useless when the machine incorporates such pole-spacing and skewing
as would reduce many of the force-components to zero or near-zero.
Thus, a full three-dimensional analysis is necessary to treat these
-machines. Finite element models are feasible and have been examined
as a likcly method for vibration prediction in these machines. However,
computation times for a single analysis are prohibitivly high even for
modest problem dimensions. The use of dynamic substructuring
techniques is favoured as an analysis tool (sometimes in conjunction
with finite-element models of the components) since this can take full
advantage of the particular structure of the machine and the symmetry
which exists/almost-exists within it. A suitable dynamic-substructuring
technique has been developed (Chapter 3) and advances made in the
field (appendices 1,2 and 3) in order that the efficiency of analysis is at
a maximum. A comprehensive suite of software has been written to

implement the methods proposed and this is thoroughly validated.
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The other obstacle posed by the modelling of machines is that
empirically-determined quantities must be wused to realistically
represent the pole-yoke joint, the bolted-flange joint, the properties of
the laminated components and various other features of the machines.
Chapters 5, 6 and 7 report the findings of investigations to determine
three of the principal empirical properties required for the analsysis of

the DC machine.

Chapter 5 contains a discussion on how a complete picture of the
behaviour of a laminated stack may be obtained by measuring only two
variables directly. The effects of laminated components in machine are
explored and tables presented which relate the two necessary unknown
properties of the stack to various conditions including clamping

pressure and surface treatment.

In chapter 6, values are presented for a limited set of conditions of the
pole-to-yoke joint together with extrapolation guidelines which enable
the modeller to find good estimates of the torsional, shear and
compression/extension stiffnesses of the joint for rﬁost practical

pole-to-yoke joints.
In chapter 7, the effects of a split on the behaviour of a ring/cylinder

are investigated and an approximate graph is presented at the end

giving joint torsional siffness as a function of the joint preload.
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Test procedures, model designs and interpretation methods are included
in the respective chapters in order that further work in these areas can
take place easily when necessary. The findings of these three
sub-investigations are consistent with a number of single instances
quoted in the literature and enable realistic values to be inserted by the

modeller.

A system of dividing the electromagnetic force patterns into
components has been formalised and used to make some elementary
speculation on the likely effects of various design features on the
machine's vibratory performance. These form the basis of a
low-vibration machine design strategy. Generally, the effects of various
features and modifications can only be accurately quantified by

employing a full three-dimensional model.

The combination of substructuring-methods, software and empirical
“values has been tested on two machines and the findings are broadly as

follows.

(i) The rms vibration levels of vibration of machines
responding to "balanced" electromagnetic forcing can be
consistently computed to very good accuracy. (6 dBs must
be regarded as excellent in comparison with what might be

expected from the previous in-plane models).

(ii) Impulse responses in which the primary modes of the

machine are excited are also predicted with very good
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(iii)

accuracy.

The vibration levels of individual points cannot be reliably
predicted. It is well known that there is a high degree of
variance within the properties of joints. The machines have
a large number of resonances within the range of
frequencies over which one might require to compute
response and consequently small variations in the
properties can make dramatic changes to the machine
response level. It has been demonstrated that other
steelwork affixed to the outside of a machine yoke, and
assymetries in general, can have a profound effect on the
machine vibration at particular running speeds. The
operating shapes measured and presented in chapter 8
(Figs. 8.16 - 8.18) for machine B, are highly irregular and
give some indication of the true complexity of the problem

being tackled.
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Appendix 1

THE REDUCTION OF COMPUTATIONAL EFFORT IN
KRONS METHODS FOR EIGENVALUE/RESPONSE
ANALYSES OF LARGE STRUCTURES

This paper was accepted for publication by the Journal
Computers and Structures in May 1989).
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Appendix 2

THE COMPUTATION OF THE EIGENSTATES OF SYSTEMS
COMPRISING A NUMBER OF IDENTICAL SUBSTRUCTURES
IDENTICALLY CONNECTED.

This paper was resubmitted for publication to the
International Journal for Numerical Methods in Engineering
in June 1989 in a revised form bearing the modified title:
The Computation of the Eigenstates of Periodic Systems.
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Appendix 3

AN OPTIMAL METHOD FOR THE SOLUTION OF THE
CONSTRAINED EIGENVALUE/RESPONSE PROBLEM FOR
LARGE STRUCTURES COMPRISING A NUMBER OF
RIGIDLY-CONNECTED SUBSTRUCTURES.

This paper was submitted for approval in a revised form to the
International Journal for Numerical Methods in Engineering
in April 1989 bearing the modified title:

An Optimal Method for the Solution of the Constrained
Eigenvalue/Response Problem for Large Structures Using
Rigidly-Connected Substructures.
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Appendix 4 -

CONVOLUTION INTEGRALS FOR THE GENERATING
FUNCTIONS FROM THE LINE/TRIG./HYP. SET

The functions from this set have the advantage that the convolution
integrals necessary for the mass, stiffness and damping matrices can be
expressed in a closed form. A subset of the relevant convolution
integrals is presented here which covers all cases in which the object
has symmetry (i.e. that the interval [p,q] is symmetrical). (All of the
components used in examples in chapter 4 have regular symmetrical
boundaries). Because of the symmetry of the intervals, the convolution
of an antisymmetrical function with a symmetrical one must always be
zero. The integrals are derived using integration- by-parts.

q
f l.1.dx=q-p
P

f CIx.x.dx = %(qs- ps)

P

j; B .cos(ax).dx = |:sin(ax):|;l
f qx.sin(ax).dx =%|:%a§_)- —x.cos(ax)}:

P

f ql.cosh(ax).dx = %{:sinh(ax)]?J
P
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f x.sinh(ax).dx =1;[x.cosh(ax) - #—xl]
P P

1 sm((a b) x) . sinffa+b).x) i
J; cos(ax).cos(bx).dx = + (a+b) L (a#b)
f qcos ( ax) dx < 11 4 sinf2a. x)l

5 P

sm((a b).x) _sin{a+b). x]]
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f Setinasy sinibryes] (azb)
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q
J' sin (ax).d5 = sm{2a x]]

P
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cos(ax).cosh(bx).dx = ﬁa [(sin(ax).cosh(bx)) + b.(cos(ax). sinh(bx))]:
P a +b
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P

q
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Appendix §

EQUATIONS FOR STRAIN IN POLAR COORDINATES

In the derivation of expressions for stiffness and inertia in discs,
cylinders and rings - and portions of thése elements - it is necessary to
use cylindrical-polar strain terms and to relate these to polar deflection
coordinates. The equations below give the relations.

tgg = (1/1) . (u + (dv/dB)) (1)
¢,, = (du/dr) (2)
¢, = (dw/dz) (3)
tg, = (1/1).((dv/dr) - v + (du/dB) ) (4)
¢, = (du/dz) + (dw/dr) (5)
¢,g = ((dv/dz) + (dw/dB)/r) (6)

Displacement coordinates u,v,w correspond to unit deflections in the
radial, circumferential and axial directions respectively. Polar position
coordinates 1,8,z have their usual meaning for a cylindrical polar
coordinate set.
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Appendix 6

THE STIFFNESS OF CYLINDERS OF FINITE LENGTH
IN AXTALLY UNIFORM SHAPES OF DEFORMATION

Plane models of cylinders in vibration are restricted to the examintaion
of deformation shapes for which the radial and circumferential
displacements are dependent only on the angular position coordinate 6.
When the cylinder is axially short, it is justifiable to assume that the
normal stress o _, is zero throughout the cylinder at all times. The
cylinder dimensions appropriate to the modelling of electrical motors do

not generally satisfy the shortness criterion. Hence estimates of the
stiffness of the deformations are lower than the real stiffness.

The extent of the error is evaluated here and a simple correction factor
is presented which is dependent upon the material constants as well as
the physical dimensions of the cylinder.

Consider a uniform cylinder with inside radius I, outside radius r,, and

length 21. Two translations, U,V, and one rotation, W, are evaluated at
the neutral layer (r=r ). U(z,8) is defined as the radial translation of the

particle on the neutral layer at z,06. V(z,0) is defined as the
circumferential translation of the particle on the neutral layer at z,0.
W(z,0) is the rotation of the radial fibre at z,06. W is positive when the
outside end of the fibre moves in the direction of +z at 6=0. For
simplicity, it is assumed that no extension occurs at the neutral layer of
the cylinder and no shear deformation occurs in the r,6 or 1,z planes.
These assumtions themselves tend to break down as the radial
thickness (r,-r;) and the n - the number of wave-lengths about the
circumference - increases. If these assumptions are no .onger valid then
one might as well use a full cylinder model as attempt to incorporate
the necessary extra generality to the ring model.

-525 -



There are three position coordinates r, 6 and z having the usual
definitions for the cylindrical-polar coordinate system. The three point
displacement coordinates u,v and w are translations of the material
particle at r,0,z in the radial, circumferential and axial directions
respectively. We consider the simple case where . .

u = U cos(nd) | | (1)
v =(V + (rr).U/r ). sin(nb) (2)
w = W.(z/l).((r-rn )'/(ro-ri )). cos(nB) (3).

The assumption of inextension at the neutral layer (in the
circumferential direction) leads to an expression for V in terms of U and
n,

V =-Un (4)
The normal stresses €y, and € , are simply . . .

€go = U.n.((r-r)) /r 2) cos(nd) (5)
g,, = W. ((rr )/ 1.(r,-r;)) cos (n6) (6)

A

The shear-stress € depends on W, z as . ..
e, =W.z /[ L{r,1;) - (7

Now, the stress-strain relations are defined as . . .

Opo=Egg Eag + Eg o€, (_8)
0,=E,.e,+E._.e. (9)
6. =G ¢ (10)

The constants Eeev Ee and Eu. are the material elastic constants for

z
normal stresses and strains. For isotropic materials, they are derived
directly from the Young's modulus and Poisson's ratio. For laminated
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stacks, a derivation is presented in chapter 5 relating the normal
stress/strain constants to those of the solid material and a single
property of the laminated stack. There are only two degrees of freedoms
determining the cylinder deformed shape - U and W . The stiffness of
the shape - K - can be simply derived using energy arguments by
integrating the energy-per-unit-volume over the complete volume of the
cylinder. The integral of cos?(n®) over the interval 6=0,2n is simply n
and it is convenient to define the integral I as . . .

[ =] r(rr)?dr ...between limits r, and r, . (11)

For the plane-stress (or "ring") model, there is an inbuilt assumption that

G,, ¢quals zero. In this case, the estimated strain energy S.E., of the

deformation of the cylinder is given by

S.E., = 12L%.[Eg (1-E_,Y(Egg E,,)) ((8-1)/r,2)?] U2 (12)

For the more general "'plane“ model of the cylinder, the equation below
gives the expression for the strain energy.

S.E., = L2Lx. [E,,.((n-1)/r 2)? U?
+ 2.E,,.((n-1).(r-r).r 2).U.W
+E_,.(1N.(r,-1))* W2
+ (L2 -12) n [ 3.(y1;)). G- W2 (13)

This expression is useful in comparing the stiffness which would be
estimated using a plane-stress model with that caluclated using a more
general and correct model.

Utilising this expression in conjunction with the experimentally derived
values for effective shear and compressive modulii of laminated stacks
shows that in typical cases of laminated stator-cores for AC machines, a
plane-stress model will be quite accurate for the axially-uniform modes
of vibration where it would not be if the mechanical material properties
of the core were similar to those of solid steel.

EXAMPLE: Consider a cylinder with dimensions and material constants
(mild-steel) below.

<527~



r, =0.55 m Eq = 2.275e11 N/m?
r, = 0.50 m E,, = 6.483¢10 N/m?
r. = 0.5254 m E_ = 2.275e11 N/m? .
1 =025 m G, = 8.127e10 N/m?

For the axially-uniform displacement pattern u=cos(28), the strain
energy of this shape would be calculated as S.E.;=94.2 MJ if the

plane-stress assumption were used.
Now, relaxing the plane-stress assumption we get . . .

S.E., = 102.5¢6 + 322.6e6 W + 1.1481e9 W2 + 2.362¢12 W2

(Terms from normal-stress & strain) (Term from shear stress & strain)
Differentiating to find the value of W which makes K a minimum gives. . .
W = -6.83e-6 m, w(z,0) = -6.83e-6 (z/1) cos(20) m

Hence S.E.2 =100.3e6 MJ.

The original estimate was too low by 6.1%. Had a plane-strain model
been used instead of the plane-stress model, the computed stiffness
would have been 102.5¢6 N/m which would be too high by 2.2%.
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Appendix 7
THE FLEXIBILITY ADDED BY SEGMENTATION

It is shown in chapter 5 that successive laminations in electrical
machines can move with respect to each other (in a way that does not
require them to 'slip’) to such an extent that the properties of a stack of
laminations differs vastly from those of solid steel. Ring theory applies
directly to laminated stator-cores when each of the laminations is a
complete ring. The optimum use of material (and physical limitations on
the sizes of punch available to manufacturers) often dictate that the
core be segmented as discussed in chapter 1. Each layer of segments
overlaps the gaps left in the layer before and after it. In the light of the
test results from chapter 5, one might expect that the flexibility of the
laminated stack in shear would contribute to the flexural and
extensional flexibility of the segmented laminated ring.. This appendix
presents a simple approximate expression for the flexibility added by
the segmentation. The evaluation of this expression for a typical set of
values shows that in that particular case, segmentation makes very
little difference. However, it is also clear that using shorter segment arcs
and thicker laminations can lead to cases where the. flexibility of a
laminated ring in flexure is dominated by the segmentation effects.

Flexibility Added To Th ircumferential Flexur

Fig. 1 shows two overlapping segments A and B. We shall look at the
two extreme cases of how these segments can deflect to yield an angle a
at the 'free' ends of A and B

CASE 1 : The 'pure-flexure' shape involves segments A and B bending
in the plane. There is no relative motion between A and B in this case.

CASE 2 : The 'pure-shear’ shape involves segments A and B rotating in
the plane about the center-of-area of the common-area. There is no -
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deformation of either A and B in this case.
The following terms are used.

Youngs' modulus for the lamination steel. (N/m2)

The constant relating shear stress at the interlaminar layer to
the relative shear deflection. (N/m>)

The moment at the segment ends :- case 1.

Qm

The moment at the segment ends :- case 2.

The thickness (m) of the laminations (the smallest dimension).
The radial depth (m) of the segments.

The mean radius (m) of the segments.

The mean circumferential length of the overlap.

The angle of overlap of the segments.

e e

l=r. 6 (1)

s

In deriving M,, we consider the net stress at each point on the interface

which acts in a direction normal to the line between the center of the
overlap area and the point itself using straightforward second moment
of area reasoning, the total restoring moment M, is computed as . .

M,;=2 Cld ((d*+1%)/1?) 2.a (2)
In deriving M,, we assume that the angle of deflection varies linearly
between points 1 and 2. (ie. the moment in the section is constant). The

rate of change of angle with respect to position on the middle line of the
ring is 2.a/1 and the moment M, is given by . .

M, =2 E.t (d°/12) 2.a/l (3)

Now the ratio M,/M, for any angle o, is a useful indication for the

Li]

effect of segmentation. We call this ratio "Sg "

Spe, = (ECID).(d(d% 1) (4)

The stiffness of the ring as computed ignoring the segmentation effect is
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divided by (1+ S ) to find the true stiffness. Small S, = means that the
segmentation has little effect.

Inserting the following real values, gives a sample of the value of S

which can be expected.

E= 209¢9 N/m? X = 1.5¢12 N/m> t= 6.5e-4 m
d= 0.1 m r= 0.4 m 1= 0.42 m S. = 2.75e-5

flex™

Flexibility Added To The Circumferential Extension,

Now, the flexibility of a segmented laminated ring in extension is also
affected. Again we examine two extreme cases. In one case the motion
"d" (see Fig. 1) at either side of the overlap is taken up by pure shear. In
the other case, "3" is taken up by pure extension of the segments. As
before, case 1 involves no deformation of the segments. Case 2 involves
deformation but no interlaminar shear. N, is the force which would exist

in the segments if case 1 were to occur. N, would be the force if case 2
were to occur.

N1 and N2 can be derived in terms of the translation at the ends and the
ratio N2/ N1 is called Sm.

N, =2X dl 2. (5)

N,=2Etd 235/l (6)
- 2

S, =Et/X1 (7)

For the above set of parameters, S__ is evaluated to be 5.13e-4

As before, the extensional stiffness of the ring must be scaled down by
(l+Sen) to account for the segmentation. Clearly the effects of

segmentation on the flexibility of laminated cores in both extensional
and flexural deformations is negligible.
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Fig. 1

-

Adjacent Pair of Segments.
(Showing Flexure and Extension Flexibility)
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Appendix 8

RESOLVING THE AXIAL DISTRIBUTION OF
POLE FORCES INTO COMPONENTS

In this appendix, we break down the forcing on a mainpole or compole
as caused by a skewed armature. In keeping with the assumptions
made to model the poles (i.e. that cross-sections do not themselves
deform) , the resultant for each infinitesimal axial section is examined.

We are interested in three component axial distributions "AO0", "Al" and
"A2" (see §9.1). In the (unattainable) case where the skewing is perfect,
herringbone skewed armatures produce a force pattern on poles which
is composed of two pure sinusoid forms while straightline skewed
armatures produce a force pattern which comprises a single sinusoidal
form. In each of these cases, the component of "AQO" is zero. Thus "AQ" is
forthwith dropped from consideration in this appendix.

Let the pole length be 1. The force-per-metre (be it a radial force,
circumferential force or moment) is F,. The phase of the force

distribution itself is 6, and z is the axial position of the cross-section
being considered. The integer m indicates which harmonic of the
slot-passing is being considered. The angle 6 is determined by which
harmonic of slotpassing is being examined and the angular position of
the armature relative to the pole under consideration.

The "A1" Component in Straightline Skew Force Distributions.

Only the straightline skew is capable of producing the component "Al"
to a 'first-order' extent. An unskewed or herringbone-skewed armature
can produce small components of "Al" if the pole alignment is not
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perfectly axial but this is not considered here. Fig. 1 shows the force
distribution over a pole due to the straightline skew for four instances
of armature angle. At the instant in time when the forcing of "Al" is a
maximum, the force at any section z, is given by (1) below.

F(z)= F, sin@m nz/1) | | (1)

Integer m is the number of slot-pitches by which the armature is
skewed (or in other words, m is the number of waves of the force
distribution along the length of the pole).

The coefficient of "Al1" in this distribution is given by (2).

Coefficient-of-"A1" = [ (z/1).sin@m n z/1) dz / 0%/3) (2)

The integral is evaluated using integration by parts and the general
result is obtained for an integer value of m

Coefficient-of-"A1" = (3/(x.m)) (3)

The sign is "+" for odd values of m and "-" for gven values of m.
The table below gives the results for various values of m.

m Coefficient-of-"Al
1 0.955
2 0.477
3 0.318
4 0.239

Coefficients of the axial distribution "Al"
from straightline skew (m slot-pitches).
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Fig. 2 shows the force patterns caused by a herringbone skewed
armature at two instants in time. Only the second of these has a
component of the "A2" distribution. The force acting on any section z at

this instant, is given by (4) below.

F(z)= Fysin(-4mnz/1) ...ifz >0
= Fysin(+4mmnz/1) ...ifz <0 (4)

The coefficient of "A2" is defined by (5).
Coefficient-of-"A2" = I cos(a) sin(Zma) .da / (n/2) (5)

Evaluating this for various values of m gives the table below.

m Coefficient-of-"A2"

1 0.849
2 0.440
3 0.218
4 0.162

Coefficients of "A2" from thr
Herringbone Force Distribution.
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Fig. 1 Phase Angle of Forcing and Actual Value
of the Force at 4 Equally-Spaced Instants
STRAIGHTLINE SKEW.
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Fig. 2 Phase Angle of Forcing and Actual Value
of the Force at 4 Equally-Spaced Instants
HERRINGBONE SKEW.
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