FLUID BORNE NOISE IN VANE TYPE HYDRAULIC TRANSMISSION SYSTEMS

TO MUM, DAD, SIS AND GRANDMA FOR ENCOURAGEMENT AND SUPPORT TO PURSUE THE WORK I ENJOYED

FLUID BORNE NOISE IN VANE TYPE HYDRAULIC TRANSMISSION SYSTEMS

by

GERALD GIM LEE SEET, B.Sc, M.Sc, AMIMechE.

A thesis submitted for the degree of Doctor of Philosophy

Department of Mechanical & Production Engineering The University of Aston in Birmingham

NOVEMBER 1984

THE UNIVERSITY OF ASTON IN BIRMINGHAM

FLUID BORNE NOISE IN VANE TYPE HYDRAULIC TRANSMISSION SYSTEMS

GERALD GIM LEE SEET

A thesis submitted for the degree of Doctor of Philosophy, 1984.

SUMMARY

A computer model was developed for a radial vane pump, possessing a new configuration with twin abutments and retractable vanes. The model computes the flow and pressure histories of the segment and port, based on compressibility, leakage and geometry effects. The equation describing the general flow processes is a non-linear first order differential equation, and under specific conditions can be simplified or approximated to a form amenable to a quick solution. The program incorporates a separate algorithm enabling the utilisation of this time saving feature. The combined effects of compressibility, and of segment and port compression mis-match results in high levels of fluid flow ripple. Resistive flow paths (relief grooves), enable correct segment compression by providing adequate leakage from the ports. The program was used to assess the levels of flow ripple and the effectiveness of relief grooves.

Direct measurement of flow ripple is hindered by requirements of high dynamic response, and existing techniques are expensive and complicated. However, dynamic pressure measurements may be used to determine the flow ripple levels. The relationship between the dynamic levels of flow and pressure is dependant on standing wave and other system effects. A technique, utilising transmission line theory, has been developed which enables the deconvolution of individual flow ripples from standing wave and superposition effects.

The pump model has been found to correlate well with actual measurements. Using the model, silencing grooves have been found to be effective in reducing the amplitude of the flow ripple over a wide range of operating conditions. In the pump tested, a 5.4 dB reduction was achieved. Greater reductions are expected under more typical conditions. In tests, the technique of wave deconvolution was effective in recovering the required data with a typical error of 5 percent.

KEYWORDS

FLUID BORNE NOISE, FLOW RIPPLE, VANE PUMP MODEL HYDRAULIC TRANSMISSION, IMPEDANCE MODEL

ACKNOWLEDGEMENT

The author wishes to make note of, and extend his most sincere thanks to all who have provided assistance and support during the duration of the project. Due to the nature of the work, many were involved. There are, however, a few who warrant special mention due to their particular involvement during the final stages of this work.

Professor K. Foster and Dr. J. Penny are particularly acknowledged for their technical and moral support which they have so readily provided, especially so in the light of increasing workload.

Technical assistance is indispensable to any research project. It is essential in order to complement the efforts of the researcher, and to enable the work to progress at a faster rate. To these roles, the efforts of Barry, Brian, Malcolm and many others, are acknowledged.

The staff and fellow research students, in particular Andy, are formally acknowledged for their friendship and advice.

The author is indebted to the University of Aston in Birmingham and the Ministry of Defence (Foxhill) for the financial assistance they provided in the form of a research studentship award.

- ii -

	Page
SYNOPSIS	i
ACKNOWLEDGEMENTS	ii
LIST OF CONTENTS	iii
LIST OF FIGURES	x
LIST OF TABLES	xiv
NOMENCLATURE	xv

CHAPTER	1	-	INTRODUCTION	

1.1	Outline of Overall Research Programme	2
1.2	Noise Generation in Pumps	4
1.3	Relief Grooves	5
1.4	Modelling for Noise	6
1.5	Fundamental Noise Measurements	8
1.6	Structure of the Thesis	9

CHAPTER 2 - A SURVEY OF RELEVANT LITERATURE

2.1	The Noise Problem in Hydraulics	12
2.1.1	Noise Source and its Propagation	12
2.2	Predicting Fluid Borne Noise	15
	in Pumps	
2.2.1	Relevance to Current Work	19
2.3	Hydraulic Transmission Lines	21

25

2.3.1 Relevance to Current Work

CHAPTER 3 - THE PUMP MODEL

3.1 Introduction		28
3.2	Description of Pump Model	28

3.2.1	Basic Definitions	30
3.2.2	Description of Segment History	31
3.2.3	Line Flow Ripple	33
3.2.4	Line Pressure Ripple	34
3.2.5	Effects of Silencing Grooves	34
3.3	Fundamental Flow Equations	35
3.3.1	Laminar Flow Between Parallel Plates	35
3.3.2	Laminar Flow Between Moving	35
	Parallel Plates	
3.3.3	Laminar Flow Through an Orifice	36
3.4	Flow and Pressure Equations	36
3.4.1	General Compressible Flow and	37
	Pressure Equations	
3.4.2	General Segment Flow and	38
	Pressure Equation	
3.5	Analytical Solution	40
3.6	Solution of Flow-Pressure equation	42
3.6.1	Flow-Pressure Equation With Zero	43
	Port Area	
3.6.2	Linearised Flow-Pressure Equation	44
	Without Flow Reversal	
3.6.3	Linearised Flow-Pressure Equation	46
	With Flow Reversal	
3.7	System Modelling Scheme	48
CHAPTI	ER 4 - TRANSMISSION LINE MODEL	
4.1	Introduction	51
4.2	The Fourier Transform	53
4.3	Wave Propagation Theory	55

- iv -

4.4	Transmission Line Model	58
4.5	Lossless Anechoic Line	61
4.6	Pump-Motor Transmission Model	63
4.7	Solving the Standing Wave Equation	66
4.7.1	Removing Standing Wave Effects	66
4.7.2	Uncoupling Wave Superposition Effects	72

CHAPTER 5 - COMPUTER IMPLEMENTATION

5.1	Introduction	76
5.2	Computer System Configuration	78
5.3	Suite of Programs	80
5.4	Datafile Structure	82
5.4.1	Parameter Datafile	84
5.4.2	Process Datafile	88
5.5	Program VFLGEN	91
5.6	Program VMODEL	92
5.7	Program VPLOT	112

CHAPTER 6 - STANDARD PUMP SIMULATIONS

6.1	Introduction	115
6.2	Line Pressure Efects	117
6.2.1	Pressure Effects on Segment History	117
6.2.2	Pressure Effects on Flow Ripple	119
6.3	Speed Effects	121
6.3.1	Speed Effects on Segment History	121
6.3.2	Speed Effects on Flow Ripple	123
6.4	Vane Tip Clearance Effects	125
6.4.1	Vane Tip Effects on Segment History	125
6.4.2	Vane Tip Effects on Flow Ripple	127

v -

6.5	Fluid Viscosity Effects	127
6.5.1	Viscosity Effects on Segment History	130
6.5.2	Viscosity Effects on Flow Ripple	130
6.6	Fluid Bulk Modulus Effects	133
6.6.1	Modulus Effects on Segment History	133
6.6.2	Modulus Effects on Flow Ripple	133
6.7	End-Plate Clearance Effects	135
6.7.1	End-Plate Effects on Segment History	135
6.7.2	End-Plate Effects on Flow Ripple	137
6.8	General Conclusions	137

CHAPTER 7 - RELIEF GROOVES

7.1	Introduction	140
7.2	Groove Profiles	140
7.3	Groove Profile Effects	143
7.3.1	Profile Effects on Segment History	145
7.3.2	Profile Effects on Flow Ripple	147
7.4	Groove Length Effects	150
7.4.1	Length Effects on Segment History	150
7.4.2	Length Effects on Flow Ripple	150
7.5	Inlet Groove Effects	152
7.5.1	Inlet Effects on Segment History	152
7.5.2	Inlet Effects on Flow Ripple	154
7.6	Speed Effects	154
7.6.1	Speed Effects on Segment History	157
7.6.2	Speed Effects on Flow Ripple	157
7.7	Line Pressure Effects	157
7.7.1	Pressure Effects on Segment History	160
7.7.2	Pressure Effects on Flow Ripple	160

7.8	End-Plate Effects	163
7.8.1	End-Plate Effects on Segment History	163
7.8.2	End-Plate Effects on Flow Ripple	163
7.9	Optimum Groove Criteria	164

CHAPTER 8 - EXPERIMENTAL WORK

8.1	Introduction	171
8.1.1	Data Acquisition and Analysis System	171
8.1.2	Pump System Schematic	175
8.1.3	Transmission Line System Schematic	175
8.2	Pump Model Correlation	176
8.2.1	Harmonic Analysis of Pump Data	179
8.2.2	Time Average Analysis of Pump Data	180
8.3	Correlation of Pump Performance Data	180
8.3.1	Performance of Standard Pump	185
8.3.2	Performance of Silenced Pump	191
8.4	Conclusion on Pump Model	192
8.5	Acquiring Transmission Line Data	196
8.5.1	Standing Wave Data	199
8.6	Conclusion on Transmission Line Model	203
8.7	Procedure for the Deconvolution of	204
	Pressure Ripples	

CHAPTER 9 - CONCLUSION

9.1	Conclusion	208
9.1.1	Conclusion on Pump Model	208
9.1.2	Conclusion on Transmission Model	210
9.2	Recommendation for Further Work	212

APPENDICES

Appendix A - Geometrical Relationships for Pump Model		
A.1	Cam Actuation Profile	216
A.2	Silencing Groove Geometry	218
A.3	Port Geometry	221
A.4	Segment Geometry	223
Append	lix B - Algorithm for Analytical Solution	
B.1	Introduction	231
в.2	Algorithm 1	232
в.3	Algorithm 2	233
B.3.1	Starting Point for	235
	Equation (3.6.13) at Branch (A.2.1)	
B.3.2	Starting Point for	236
	Equation (3.6.19) at Branch (A.2.3)	
B.4	Algorithm 3	237
B.5	Algorithm 4	238
B.5.1	Starting Point for	239
	Equation (3.6.13) at Branch (A.4.1)	
B.5.2	Starting Point for	240
	Equation (3.6.13) at Branch (A.4.3)	
B.6.1	Algorithm for Solving for Root of	242
	non-linear equation	
B.6.2	Modified Regula-Falsi Method	244
B.6.3	Newton-Raphson Method	246
B.6.4	Algorithm for the solution of the root	246
	of the equation	

Append	ix C - Listing of Pump Model Programs		
C.1	Program VFLGEN	251	
C.2	Program VMODEL	258	
C.3	Program VPLOT	294	
Append	Appendix D - Simulation Run		
D.1	Introduction	304	
D.2	Datafile Preparation	305	
D.3	Process Simulation	307	
D.4	Graphical Output	308	
REFERENCES			

List	of	Abbreviations	314
List	of	References	315

LIST OF FIGURES

Figure	Title	Page
3.2.1	Vane Pump Schematic	7
3.2.2	Basic Definitions	29
3.7.1	System Modelling Scheme	48
4.2.1	Forms of the Fourier Transform	52
4.2.2	Fourier Transform of Pressure Pulse	54
4.4.1	Simple Hydraulic Circuit	57
4.4.2	Equivalent Impedance Circuit	57
4.6.1	Pump-Motor Transmission System	64
5.2.1	Computer System Configuration	77
5.3.1	Program Interconnection	79
5.4.1	Parameter Datafile Structure	83
5.4.2	Process Datafile Structure	87
5.5.1	Flow Chart of Program Vflgen : Sheet 1	89
5.5.2	Flow Chart of Program Vflgen : Sheet 2	90
5.6.1	Flow Chart of Program Vmodel : Sheet 1	93
5.6.2	Flow Chart of Program Vmodel : Sheet 2	95
5.6.3	Flow Chart of Program Vmodel : Sheet 3	96
5.6.4	Flow Chart of Program Vmodel : Sheet 4	97
5.6.5	Flow Chart of Program Vmodel : Sheet 5	98
5.6.6	Flow Chart of Program Vmodel : Sheet 6	99
5.6.7	Flow Chart of Program Vmodel : Sheet 7	102
5.6.8	Flow Chart of Program Vmodel : Sheet 8	104
5.6.9	Flow Chart of Program Vmodel : Sheet 9	107
5.6.10	Flow Chart of Program Vmodel : Sheet 10	108
5.7.1	Flow Chart of Program Vplot : Sheet 1	110

- x -

5.7.2	Flow Chart of Program Vplot : Sheet 2	111
6.2.1	Mean Line Pressure Effects on Segment History	116
6.2.2	Mean Line Pressure Effects on Flow Ripple	118
6.3.1	Shaft Speed Effects on Segment History	120
6.3.2	Shaft Speed Effects on Flow Ripple	122
6.4.1	Vane Clearance Effects on Segment History	124
6.4.2	Vane Clearance Effects on Flow Ripple	126
6.5.1	Fluid Viscosity Effects on Segment History	128
6.5.2	Fluid Viscosity Effects on Flow Ripple	129
6.6.1	Fluid Bulk Modulus Effects on Segment History	131
6.6.2	Fluid Bulk Modulus Effects on Flow Ripple	132
6.7.1	End-Plate Clearance Effects on Segment History	134
6.7.2	End-Plate Clearance Effects on Flow Ripple	136
7.2.1	Groove Flow Area Vs Groove Position	141
7.2.2	Change in Groove Flow Area Vs Groove Position	142
7.3.1	Outlet Groove Profile Effects on Segment History	144
7.3.2	Outlet Groove Profile Effects on Flow Ripple	146
7.4.1	Outlet Groove Length Effects on Segment History	148
7.4.2	Outlet Groove Length Effects on Flow Ripple	149
7.5.1	Inlet Groove Effects on Segment History	151
7.5.2	Outlet Groove Effects on Flow Ripple	153
7.6.1	Speed Effects on Segment History of Silenced Pump	155
7.6.2	Speed Effects on Flow Ripple of Silenced Pump	156
7.7.1	Mean Line Pressure Effects on Segment History of	158
	Silenced Pump	
7.7.2	Mean Line Pressure Effects on Flow Ripple of	159
	Silenced Pump	
7.8.1	End-Plate Clearance Effects on Segment History of	161
	Silenced Pump	

7.8.2	End-Plate Clearance Effects on Flow Ripple of	162
	Silenced Pump	
7.9.1	Segment History of the Silenced Pump	165
7.9.2	Flow Ripple of the Silenced Pump	166
8.1.1	Data Acquisition and Analysis System	170
8.1.2	Pump System Schematic	173
8.1.3	Transmission Line Schematic	174
8.2.1	Outlet Spectrum of Unsilenced Pump	177
8.2.2	Outlet Spectrum of Silenced Pump	178
8.3.1	Performance Correlation of Standard Pump at 700 rpm	181
8.3.2	Performance Correlation of Standard Pump at 1050 rpm	182
8.3.3	Performance Correlation of Standard Pump at 1400 rpm	183
8.3.4	Performance Correlation of Silenced Pump at 700 rpm	187
8.3.5	Performance Correlation of Silenced Pump at 1050 rpm	188
8.3.6	Performance Correlation of Silenced Pump at 1400 rpm	189
8.4.1	End-Plate Clearance Effects on Outlet Spectrum	193
8.4.2	Outlet Spectrum of Standard and Silenced Pump	194
8.5.1	Anechoic Data	197
8.5.2	Spectral Map of Reverberant Chamber	198
8.5.3	Standing Wave in Reverberant Chamber	200
A.1.1	Cam Profile Geometry	215
A.2.1	Groove Geometry	217
A.3.1	Port Geometry	220
A.4.1	Segment Geometry	222
B.1.1	Algorithm 1	228
B.1.2	Algorithm 2	229
B.1.3	Algorithm 3	229
B.1.4	Algorithm 4	230
B.3.1	Starting Values for Branch (A.2.1)	234

B.3.2	Starting Values for Branch (A.2.3)	236
B.5.1	Starting Values for Branch (A.4.1)	239
B.5.1	Starting Values for Branch (A.4.3)	241
B.6.1	Modified Regula-Falsi Method	243
B.6.2	Newton-Raphson Method	245
B.6.3	Algorithm for Solving Roots of Equation - Sheet 1	247
B.6.4	Algorithm for Solving Roots of Equation - Sheet 2	248
D.2.1	Parameter Datafile Contents	305
D.4.1	Graphical Output of Pump Process - Sheet 1	310
D.4.2	Graphical Output of Pump Process - Sheet 2	311

LIST OF TABLES

Table	Title	Page
8.3.1	Quantitative Correlation Between Simulated	184
	and Measured Flow Ripple - Standard	
8.3.2	Quantitative Correlation Between Simulated	190
	and Measured Flow Ripple - Silenced	
8.5.1	Quantitative Correlation Between Anechoic	201
	and Derived Pressure Amplitudes	

NOMENCLATURE

The following list summarises the notations used throughout the main thesis. Where it was necessary to use the same variables to represent different parameters, the list provides the alternative definitions and the context in which the variables appear (in brackets). Local constants and variables do not appear in this list. They are defined locally in the text where they appear.

A	Cross-sectional area
Ad	Amplitude component of reflection constant at datum
As	Amplitude component of reflection constant at source
At	Amplitude component of reflection constant at termination
Ax	Amplitude component of reflection constant at x
b	Plate width
Cd	Coefficient of discharge

d Mean pipe diameter

D Orifice diameter

D; Inlet orifice diameter

Do Outlet orifice diameter

Dir Pressure gradient sign

Dird Pressure gradient sign at dominant port

Dir; Pressure gradient sign at inlet

Diro Pressure gradient sign at outlet

e Naperian constant

h Plate separation (pump)

h Pipe wall thickness (transmission line)

H₁ Leading vane clearance

H₂ Trailing vane clearance

H₃ End-plate clearance

- xv -

L	Pipeline length (transmission line)
L	Vane, rotor width (pump)
L ₃	End-plate land length
ln	Natural logarithm
m	mass
P	Pressure
Pd	Pressure at dominant port (pump)
Pd	Pressure at datum position (transmission line)
PE	Pressure at start of line
Pi	Inlet port pressure
P _{mx}	Pressure at x due to motor
Po	Outlet port pressure
Ppx	Pressure at x due to pump
Pt	Pressure at termination
Px	Pressure at position x
P1	Pressure at position 1
P2	Pressure at position 2
Pío	Pressure at outlet with characteristic line
Q	Flow
Qe	Entrained flow
Q _{in}	Flow into volume
Q1	Leakage flow
Qo	Orifice flow
Qout	Flow from volume
Qs	Flow at source (transmission line)
Qs	End-plate leakage (pump)
Q _{sm}	Flow at source due to motor
Qsp	Flow at source due to pump
Qt	Flow at termination

Qv	Viscous flow					
Q _x	Flow at position x					
Qío	Flow at outlet with characteristic line					
R	Line resistance					
t	Time					
U	Relative surface velocity					
V	Volume					
W	Vane width					
W3	End-plate land width					
x	Position from start of line					
Z	Impedance					
Zo	Characteristic impedance of pipeline					
Zr	Variable at point of flow reversal					
Zs	Source impedance					
Z _{sm}	Source impedance due to motor					
Zsp	Source impedance due to pump					
Zt	Termination impedance					
β	Bulk modulus					
ß	Effective bulk modulus					
γ	Wave propagation constant					
μ	Coefficient of absolute viscosity					
ω	Angular velocity					
ρ	Fluid density					
$\rho_{\rm S}$	Source reflection constant					
$\rho_{\rm SM}$	Source reflection constant due to motor					
Psp	Source reflection constant due to pump					
ρ _t	Termination reflection constant					
Ptm	Termination reflection constant due to motor					
Ptp	Termination reflection constant due to pump					

- θ_1 Angle at position 1
- θ_2 Angle at position 2
- θ_d Phase component of reflection constant at datum
- θ_r Angle at point of flow reversal
- $\theta_{\rm S}$ Phase component of reflection constant at source
- θ_t Phase component of reflection constant at termination
- $\theta_{\rm X}$ Phase component of reflection constant at x

CHAPTER 1 : INTRODUCTION

1.1	Outline	ot	Overall	Research	Programme

- 1.2 Noise Generation in Pumps
- 1.3 Relief Grooves
- 1.4 Modelling for Noise
- 1.5 Fundamental Noise Measurements
- 1.6 Structure of the Thesis

1.1 Outline of Overall Research Programme

The work described in this thesis forms but part of an extensive Ministry of Defence research and development programme, on high power marine hydraulic propulsion systems. The programme of work, which was commissioned in 1973, was conceived to study the feasibility of employing hydrostatic transmission systems in medium to large sized Naval vessels. These hydraulic transmission systems were required to replace the conventional propeller shaft and mechanical gearbox systems currently employed in these vessels. With these systems numerous advantages were anticipated for the intended Naval applications.

With the absence of the constraint imposed by a heavy rigid drive shaft, hydraulic transmission can provide a system of high flexibility and improved ship manoeverability. In conventional systems, it is essential to locate the prime-mover and propeller in close proximity. The equipment layout is also heavily dictated by the shaft and gearbox configuration. With hydraulic transmission, it is physically possible to locate the prime-mover and drive at opposite ends of the vessel and coupled flexibly by high pressure hydraulic hoses.

There are further advantages to be derived from a system which is flexibly coupled. The problem of structurally transmitted noise from the prime-mover, is practically removed and greater design flexibility of the system is afforded. The propeller and drive may be contained in a pod and designed as an integral unit. This could be mounted so as to enable the vessel greater manoeverability and stability. A propeller pod capable of 180 degree rotation enables reversed thrust without the need for a reversible pitch propeller screw. Entangled or damaged propellers can be dealt with simply by a quick decoupling and replacing the entire drive units, a distinct advantage recognised

- 2 -

during servicing and repair.

Through a system of values and cross-links, additional prime-movers can be switched into and removed from the network. Damaged sections can be removed and serviced without affecting the operation of the entire system. By this method a highly efficient system can be made to operate.

The above are but some of the advantages that can be derived from a hydraulic transmission system. The direct shaft transmission has one significant advantage, its mechanical efficiency approaches 100 percent. With commercially available hydraulic systems, of small power, the efficiency is, at best, of the order 80-85 percent under optimum running condition. The capacity for the generation of severe fluid and structurally borne noise is another problem to be considered. At one end of the transmission line, fluid at greater volume and lower pressure is compressed, and at the other end the fluid is expanded to a lower pressure. These operations, if not performed precisely, are potential noise sources. Provided the levels of losses in mechanical efficiency and noise are kept low, these disadvantages would be offset by the advantages cited earlier.

The research programme involved four establishments, the Universities of Aston and Birmingham, Normalair Garrett Ltd. (Yeovil) and the Ministry of Defence (Foxhill), in a project co-ordination capacity. In physical terms, the project involved the design, development and testing of a 1 MW. motor and a 100 KW. pump.

As the motor was intended to be incorporated into a propeller boss and provide direct drive to the screw, the external diameter and size was critical. Due to this constraint on size and that of requiring high

- 3 -

efficiency, a new motor configuration was required. This motor designed by Jones (1), can be described as being a derivation of two radial vane pumps whose rotors are turned inside out and fixed together through a central plate.

The pump is of the radial vane configuration, with twin abutments and retractable vanes. This gives the pump the qualities of a large swept volume, for a given pump dimension, and also a radially balanced rotor shaft. The pump operation and physical geometry are described later in the thesis (chapter 3 and appendix A). The initial design work is attributed to Burgess (2) and Wuerzer (3).

Normalair Garrett was essentially assigned the task of constructing, developing and testing of the motor and its associated test rig. To them was also entrusted the preliminary design of a 1 MW. radial vane pump. The University of Birmingham was principally assigned the task of further design, development and testing of the 100 KW. radial vane pump and its test rig. The University of Aston was responsible for all noise work at the various research establishments. Primarily the work consisted of modelling the radial vane pump to identify its noise potential, and in the designing of silencing grooves to minimise the noise levels. Included in this brief, was the responsibility of designing all the data acquisition and noise analysis systems relating to the overall project. Attempts to fulfil the second task, resulted in the study of waveforms under the influence of standing waves.

1.2 Noise Generation in Pumps

In a hydraulic system, the positive displacement pump has the potential of being the main noise source. Noise is an unwanted by-product of

- 4 -

the energy conversion process, Stecki (4) and BISHOPP (5). The pumping action is basically one of taking finite quantities of fluid at low pressure and injecting into a high pressure outlet. This repeated action produces a continuous flow of fluid with a superimposed flow fluctuation. As a consequence of the system impedance, there results a pressure fluctuation in the system. This pressure fluctuation in turn results in transmission of both structural and fluid borne noise.

In a pump there is a further mechanism of noise generation. Under ideal conditions, the pockets of fluid are raised to the outlet pressure before they are permitted to communicate with the system pressure. This results in a smooth transition of fluid pressure from the low inlet to the high outlet. The process of compressing the fluid and taking it to the level of the outlet is known as 'pre-compression'. Ideally, fluid is discharged smoothly into the system. In cases of mis-matched segment and port pressures very vigorous back-flow of fluid can occur at the instant segment and port communicate. This results in the generation of fluid borne noise. Cavitation of the fluid, and also erosion of the pump walls and elements can occur, in extreme cases. Similar effects are observable at the inlet, and are appropriate to the case of motors. The key to quiet pump operation is therefore to seek a smooth transfer of low pressure fluid to a high pressure outlet.

1.3 Relief Grooves

The importance of adequate pre-compression for quiet pump operation has been explained (section 1.2). By appropriately timing the instant at which the port begins to communicate with the segment volume, adequate pre-compression levels can be achieved for a very narrow range of operating conditions. Unfortunately, the pre-compression requirements

- 5 -

are dependant on a number of parameters. These are system pressure, fluid bulk modulus, viscosity, operating speed and temperature. The effects of temperature are a consequence of its effects on fluid modulus and viscosity. As it is unacceptable to design pumps with a narrow quiet operating range, a more tolerant means of ensuring adequate pre-compression is desired.

Relief or silencing grooves is a means of coping with the problem and provides for quiet operation under wide operating conditions. Relief grooves are resistive pathways which provide controlled communication between the port and segment before direct port communication occurs. To a lesser extent, relief groove operations are also dependant on the fluid and operating parameters for optimum pre-compression. Although these grooves provide adequate silencing over a wide range of conditions, it is still desirable to optimise their parameters for the mean required operating conditions. The groove parameters and their effects are studied in chapter 7 and appendix A.

1.4 Modelling for Noise

The main objective of mathematical modelling is to minimise the trial and error stage of product development. It can be used to evaluate alternative designs and the performance of a degraded system, Iyengar (6).

In recent years the cost of digital computers has fallen considerably and the concept of personal computers have become a reality. The fall in computing costs have been offset by a corresponding increase in the general cost of research, and product development.

Product performance has also taken on new dimensions. A product is

- 6 -

appraised not just on its immediate tasks but in its ability to satisfy numerous legislation as regards safety, user comfort, noise and other undesirable effects. The developed product must, in addition, be cost competitive and economic to run. In view of such severe demands on product performance, increasing use is made of mathematical modelling and other design aids. These are being accepted as necessary tools in design, Foster (7) and Hooke et al.(8). In recent years, both manager and designer have become aware of the cost savings to be derived from the use of computer analysis and design aids.

Recently noise has been given ever increasing attention. Manufacturers have been placed under considerable pressure to develop quieter fluid power systems. The significance of noise is even greater due to the move towards higher operating pressures and speeds.

In this thesis, a radial vane pump model has been developed which enables the prediction of both flow and pressure histories. This model was used to study the effects of various parameters on the potential for noise generation. Various groove profiles were simulated to obtain the optimum groove parameters for the required operating conditions.

In the modelling of such hydraulic devices, one major problem is obtaining the solution of the system equations. The fundamental equations are generally non-linear first order differential equations with no analytical solution. A numerical solution method is therefore required. As the equations are generally 'stiff', implying an equation where parameters change at widely different rates, very long computation times are required. This program applies a sophisticated semi-analytical solution technique. The significance of parameters are checked by the computer program, and where appropriate, solves the linearised forms of the equations. This technique results in a

- 7 -

considerable saving of computation time.

1.5 Fundamental Noise Measurements

In hydraulic pumps, one of the most important parameter defining the potential for noise output is the flow fluctuation. This parameter is difficult to measure directly as the majority of flow measuring transducers are unable to meet the high dynamic response required. Where equipment or techniques are available, these tend to be very expensive, difficult to operate or both. The problem can be overcome by measuring the pressure fluctuations and correlating the measurement to flow using the transmission line theory. With this 'solution' comes a different type of problem. O'Neal et al.(9).

The fundamental relationships relating flow and pressure are complex and the parameters difficult to determine. The complexity of the relationships are due to standing wave effects in the presence of reverberant conditions. Where the standing wave effects are removed, the relationships are greatly simplified.

In the measurement of pump fluid borne noise potential it has become acceptable to quote pressure ripple levels under anechoic conditions. It is, however, possible to calculate the flow ripple levels from a knowledge of the line characteristic impedance, source impedence and the pressure ripple levels. Anechoic termination conditions are obtained by connecting long hydraulic lines to the ports, so as to remove the effects of reflection at the line termination. As pressure ripple levels are a function of the line and termination conditions, it is also necessary to specify the line diameter and other termination conditions. It is, however, accepted that the quieter pump under anechoic condition is also quieter under any other operating condition.

Where it is not possible to analyse a pump or system under anechoic conditions, it is not sufficient to attempt a measurement of the fluid borne noise by simply measuring the pressure at a particular point in the line, and analysing the waveform. Under reverberant conditions, the waveform is a function of position. Since the anechoic condition pressure data is the parameter of interest and is needed to correlate to flow measurements, the fundamental pressure data must be unravelled from the effects of standing waves. Once this fundamental pressure fluctuation is determined, the flow fluctuation can be determined from a knowlege of the line and source impedances. In most instances, however, the pump potential is commonly presented in terms of the pressure ripple.

In this thesis, standing waves in transmission systems are studied (chapter 4), for the purpose of unravelling reverberant noise data. This enables the identification of the noise potential of individual pumps and motors in a reverberant system.

1.6 Structure of the Thesis

The thesis is divided into nine chapters and four appendices. The present chapter serves to introduce the theme and subjects relating to the thesis. Various topics are briefly discussed qualitatively, while details are omitted, to be elaborated on in later chapters. In chapter two, a survey is presented of relevant literature by other researchers. Their work is summarised and the relevance to this work is highlighted. In chapters three and four, the theory relating to the vane pump and transmission line models are developed respectively. In chapter three,

the general flow equations are first derived and further developed to the linearised form. This provides greater computational efficiency. In addition to developing the general transmission line model, the latter chapter also presents the equations and techniques appropriate to its implementation, for unravelling standing wave effects. The pump model computer program is detailed in chapter five. The main structure is presented and discussed, with the aid of flow charts. The chapters six and seven, presents the simulations performed by the developed vane pump computer model. The former chapter deals with simulations relating to the standard pump, and the latter those incorporating silencing grooves. Various effects are studied with the emphasis on flow fluctuations and the minimising of the noise potential. Chapter eight describes the data acquisition and analysis system developed, together with experimental results. Experimental results are presented for correlating with the pump model predictions, and the transmission line model is verified experimentally. The final chapter, summarises the overall work, and presents its conclusion.

In the appendices, listings are provided of the computer programs developed together with other details, which though necessary, are felt likely to provide a distraction from the main flow of the thesis.

CHAPTER 2 : A SURVEY OF RELEVANT LITERATURE

- 2.1 The Noise Problem in Hydraulics
- 2.1.1 Noise Source and its Propagation
- 2.2 Predicting Fluid Borne Noise in Pumps
- 2.2.1 Relevance to Current Work
- 2.3 Hydraulic Transmission Lines
- 2.3.1 Relevance to Current Work

2.1 The Noise Problem in Hydraulics

In recent years, the problem of noise has been receiving increasing attention. Noise levels which were previously considered 'acceptable' are now considered as socially unacceptable or even hazardous. Under the current 'Health and Safety at Work Act', excessive noise at work can constitute an offence. It is currently also recognised that noise reducers the operator's performance and productivity levels. The reduction in general noise levels is therefore both necessary and desirable.

Although it has long been recognised that the reduction of noise is desirable, manufacturers of hydraulic components and plants have often overlooked this aspect of design, in their quest for higher power to weight ratios. The unacceptable neglect of noise aspects in hydraulic design has been recognised, and efforts made to overcome this trend. This has taken the form of a concerted research and development effort by both industry and research establishments. In view of the current concern regarding noise levels, the noise specification is becoming of increasing importance to the selection of equipment. The manufacturer of quieter equipment would have an edge over his competitor, and in the present competitive climate, could provide the necessary difference between success and failure of a product.

2.1.1 Noise Source and its Propagation

In a hydraulic circuit, the pump and valves are potentially the major sources of noise. Although the noise levels from valves can be much higher than in pumps, more effort has been directed towards reducing the noise levels from pumps. The noise spectrum from valves are broad

- 12 -

band, Crook et al.(10). In contrast, the spectrum of pump noise is narrow band with components occuring at harmonics of the fundamental frequency. Broad band noise is potentially less of a problem as the energy is spread out over a wider spectrum. In general, it is less annoying in terms of human comfort and less likely to induce severe vibrations in adjacent structures.

Noise emanating from hydraulic equipment can generally be recognised as consisting of three components; air-borne noise (ABN), fluid borne noise (FBN) or structurally borne noise (SBN). Air-borne noise is radiated directly from the casing, structural borne noise is transmitted via the mountings, and fluid borne noise is transmitted via the fluid along the inlet and outlet lines. As both fluid and structurally borne noise components have the potential of being converted to air-borne noise, efforts to silence a hydraulic system must be directed at all three components. The method of reducing noise which is most applicable to the general industrial user would be that of noise isolation. The long term and probably the most effective method must be that of reducing noise at its source. This method, however, is more appropriate to manufacturers.

Much work has been undertaken in the study of noise isolation and its reduction at source. The transmission of structural borne noise through pump and valve mountings have been studied by Heron et al.(11). This work demonstrated the advantages to be obtained, in terms of reducing air-borne noise levels, by the implementation of vibration isolation techniques. The two main pathways for structurally borne noise was shown to be the walls of fluid lines and mountings. Fluid borne noise has been studied analytically by Longmore (12). He derived equations which enabled the pressure and flow fluctuations, as well as wall vibrations in hoses to be predicted. The analysis was reported to be consistent with experimental measurements. Crook et al.(13) has studied the transmission of air-borne noise in hydraulic lines due to fluid flow fluctuation. The effects of tube bore and material rigidity on the level of air-borne noise were investigated. It was shown that, in the absence of structural vibrations, lower air-borne noise emission levels can result from the use of rigid or nylon hose in preference to rubber hydraulic hose. The use of smaller bore rigid or hydraulic hoses also results in lower noise levels. In the case of non-straight pipe configurations, fluid borne flow fluctuation can induce high levels of structural vibration. This effect has been studied and reported by Hughes (14). He discusses the mechanisms involved and attributes it to the oscillatory forces generated in the line due to dynamic pressure differences.

No less effort has gone into the study of noise generation at source, in both valves and pumps. The design of a quiet valve has been reported by Donaldson (15). In a valve, fluid is made to change its pressure and flow velocity. If the process is not performed gradually, cavitation can occur and noise will be generated. The valve reported by Donaldson controls this process by lengthening the flow path. This provides for a controlled dissipation of the pressure energy and thus produces a more ideal condition for the process. Much has also been done in the study of noise in pumps. One of the earlier works was by Helgestad et al.(16) who studied the axial piston pumps extensively both theoretically and experimentally. Martin et al.(17) studied the problem of optimum port plate timing for axial piston pumps. For a pump operating under a very narrow operating envelope, smooth operation can be obtained by appropriate timing of the port plate. This is, however, not a practical solution as most pumps operate under a wide range of operating conditions. Correctly designed relief grooves were shown to be effective in providing smooth operations under a wider envelope. In addition to operating conditions, the fluid being pumped has an affect on the optimum condition. This has been studied by Kelsey et al.(18). Using a computer program, the output flow ripple from a piston pump has been simulated for a variety of fluids. Kelsey demonstrated that a pump designed for quiet operation using mineral oil would result in high noise levels when using fire resistant fluids. This is due to the significant differences in the fluid properties of the two mediums.

2.2 Predicting Fluid Borne Noise in Pumps

Interest in the modelling of hydraulic pumps dates to the mid-1920s with the publication in 1926, by Brown (19), relating to gear pump design. A simple equation was provided which enabled the delivery to be estimated. The work by Meldahl (20) can however be considered, Fielding et al.(21), as being the foundation to much of the future work. Meldahl derived, an equation describing ideal delivery flow and considered the problem of trapped fluid. He suggested that pathways in the pump case could be used to relieve the trapped volume in the meshing teeth. Besides Meldahl, there has been many other names which have become associated with gear pump analysis. Some of which are Mukherjee et al.(22), Merritt (23) and Hadekel (24).

Later in 1953, Bloch (25) investigated the flow, forces and pressure fluctuations in axial piston fluid transmission. In this work many assumptions were made in order that the equations could be solved. Two other early researchers were Zaichenko et al.(26) and Yamaguchi(27). In the work by Zaichenko an approximate method was formulated, whereby
the dimensions of shaped restrictors could be estimated for the use of reducing the flow ripple.

In the earlier analysis, true simulations were not possible due to the absence of automated computing facilities. Researchers from necessity tended to include numerous simplifications in their models. Accurate simulations have only been possible with the widespread availability of cheap computing power. Helgestad et al.(28) in 1974, originated a computer model based on the theory for pressure transients in axial piston pumps. This model enabled the cylinder pressures and port flows to be predicted analytically. The theory was devised for the case of a volume of fluid in the cylinder being displaced by the piston via a portplate. The pump was modelled as being connected to two oil volumes, one at the inlet and outlet respectively. The resulting mathematical model was a non-linear differential equation. This was solved using a variable step Runge-Kutta method. Due to the 'stiffness' of the equation, the solution required an excessively long time, and faced the possibility of numerical instability, resulting in a wasted simulation run. This model was later developed by Kakoullis (29). He modified the theory and computer program to include the simulation of the swash plate moments and torque transients. Attempts to correlate the theoretical and experimental results were rewarded with limited success.

The work by Halgestad and Kakoullis, on the axial piston pump, was subsequently developed by Hannan (30). He re-wrote the computer program while modifying both the fundamental model and the solution technique. The modified program was cited by Foster et al.(31), in which a good theoretical model of an axial piston pump was described. The program was shown to predict flow, force and pressure fluctuation, with good correlation to practice. A forty fold savings in program execution cost was also reported.

In this adaptation of the axial piston pump program, the inlet and outlet port conditions of the model was changed, together with the technique applied to the solution of the differential equation. The inlet model was simplified and a constant port pressure was assumed. The outlet was modelled as being an anechoic termination, using transmission line theory. This technique of considering pressure fluctuations in terms of impedance and transmission line theory was applied by Willekens (32). In this work, he showed that the effects of viscosity could be neglected in this context. Modelling an anechoic termination has the advantage that, a practically anechoic termination is fairly easily realised.

In the early model the Runge-Kutta method, which was used to solve the non-linear differential equation, was found to be very time consuming. Hannan in an effort to minimise the computation time utilised a semi-analytical method to solve the equation. The method in effect reduces the problem to one involving the solution of a transcendental equation. The is achieved by employing a step-wise solution where leakage is considered to be constant over the step length. This method undoubtedly introduces an element of error. Providing that the step length is sufficiently small, this error is not significant. This assumption is particularly appropriate to an axial pump, as leakage is typically only a small component of the total flow for a major part of the pump history. Where leakage is significant, there is no port flow. Under this condition the equation can be solved analytically. The semi-analytical method, therefore, consists of an inspection of the parameters and identifying the conditions, to which the appropriate equations and solutions are applied.

Recently, another attempt has been made to quantify the pump flow ripple from an axial piston pump, Kogima et al.(33). In this analysis, however, a simple semi-empirical method was used. The back-flow was modelled as a triangular function with the fluid compressibility effects occuring totally at the instant of port communication. A good correlation was reported between the experimental and theoretical observations. This demonstrates the domimant effects of fluid compressibility on the pump flow ripple.

Three years after Helgestad reported of his axial pump computer program, Fielding et al. (34), reports another computer program capable of predicting the flow fluctuations from an external gear pump. This enabled the study of parameters which affect the fluid flow ripple, and thus the potential for fluid borne noise generation. In this program, the flow due to the meshing of the gear teeth were calculated for each gear increment. At each rotor position, the port flow and pressure in the tooth spaces were calculated, whilst considering the summed effects of variations in trapped volume, tooth tip leakage, entrained and port flows. In addition the effects of trapped volume during double tooth meshing and gear eccentricity were considered. Ideal inlet and outlet conditions were assumed, together with a constant inlet pressure and an anechoic outlet termination. The effects of cavitation, end-plate leakage and fluid compressibility were ignored. Provided the pump inlet pressure is sufficiently boosted, cavitation effects can be neglected. Significant end-plate leakage and compressibility effects can however alter the results significantly. The program was reported to provide good qualitative correlation to experimental data. Discrepancies were attributed to experimental error, the assumption of ideal inlet and

outlet conditions, and wave effects.

The gear pump program has since been further developed and reported by Bidhendi et al.(35). In this paper, a refined model is presented and the program re-structured to make the execution more amenable for design and verification analysis. Although ideal port conditions and the anechoic outlet termination are maintained, the theoretical model has been further refined and modified to include the necessary effects of end-plate leakage, cavitation and fluid compressibility, within the adjacent tooth space. A constant end-plate clearance is assumed, which Fielding et al.(36) has shown this to be a valid assumption in an experimental investigation. Compressibility within the meshing volume was not considered. In addition the hydraulic moments and shaft forces are also computed. Although a limited correlation to practical data was made, the program has been demonstrated, especially with its graphical data presentation techniques, to be ideal for providing the starting point in design applications.

2.2.1 Relevance to Current Work

Radial vane pumps have traditionally been considered as potentially quiet machines. This has resulted in the relative neglect of noise studies relating to vane machines. Recently, a theoretical model for a balanced vane pump has been published by Kogima et al.(37). In this work an attempt was made to model the flow ripple whilst considering the effects of fluid compressibility, variations in trapped volume, vane tip leakage and port flows. The effects of entrained flow and end-plate leakage were not considered. A further simplification, was made in the derivation of the port flow equation. The line pressures were assumed constant. This would result in an underestimation of the flow ripple. In the solution of the flow equations, the Runge-Kutta method was used. The disadvantages of this method of solution has been described in the previous sections.

The vane pump described in this thesis employs a new and novel configuration. The model developed considers the additional effects of vane tip entrained flow and end-plate leakage. In addition, the model overcomes the need for assuming constant line pressures by reiterating the port and line calculations. For the solution of the flow equations, a semi-analytical solution was used, giving a significant savings in computational time.

The goal set for the development of this radial vane pump computer model was to determine its potential for quiet operation, and to study the effects of relief groove configuration on the flow ripple from this pump.

The mathematical equation defining the pump processes are fundamentally the same in all the three types of pumps. The differences lies in the dominance of the various parameters and consequently in the method to which the equations can be solved. In the piston pump, long solution time was shown to be a problem in the formulation of an engineering application program. This problem led to the implementation of the semi-analytical solution technique, which significantly reduces the computation time. As mentioned earlier, this technique is only valid when leakage flow is only a small percentage of the combined flow parameters. In the vane pump, the leakage is not necessarily a minor component. The significance of the various parameters changes, and depends on both the relative leakage parameters and its history during the pump cycle. In the vane pump program, it is not valid to approximate the solution to one where leakage is constantly a small factor during the entire pumping cycle. This program incorporates a sophisticated algorithm which identifies the condition prevailing, selects and monitors the subsequent solution. This algorithm, therefore, permits for an accurate solution, with the best possible speed advantage.

2.3 Hydraulic Transmission Lines

The application of transmission line theory in hydraulics, is not new. Constantinesco (38), in 1922, was first to suggest its application in the context of fluid power. In general, however, the significance of the transmission line theory to hydraulics, is not widely appreciated, Bowns et al.(39). Due to the increasing interest in measuring fluid borne pump noise, recent years have seen the transmission line theory used to model simple hydraulic circuits. The general equation (2.3.1) defining the pressure wave amplitude P_x in a pipeline is complex and contains a number of difficult to derive parameters.

$$P_{x} = \frac{Q_{s}Z_{o}Z_{s}}{Z_{s} + Z_{o}} \left(\frac{e^{\gamma x} + \rho_{t}e^{-\gamma(2L - x)}}{1 - \rho_{s}\rho_{t} e^{-2\gamma L}} \right)$$
(2.3.1)

Where Q_s is the flow at source (x = 0), Z_o the line impedance and Z_s the source impedance. ρ_s and ρ_t are the source and termination reflection coefficients respectively. L is the line length and γ the wave propagation constant.

Under special conditions, the equation is simplified and is of the form commonly applied in the testing of hydraulic pumps, some of these were by Bowns et al.(40), Edge (41) and Iyengar et al.(42). Applications of

- 21 -

the complicated general form of the equation are significantly few.

In a pipeline, the pressure at any point, is a sum of the pressure waves travelling up and down the line. A wave initiated at source travels along the line until it is reflected at the termination. This wave then travels up back to the source, where a further reflection occurs. The process is repeated until all the energy is dissipated. The effect of the multiple reflection is to generate a standing wave with nodes and antinodes at half wavelength separations along the length of the line.

Conesco (43) in their work on fluid accoustic filters, applied the transmission line theory, in an attempt to unravel the effects of standing waves. In the derivation of their model, a simplification was applied, whereby only a single incident and reflected wave was assumed. Multiple reflections were ignored. With this simple model, solution for the incident and reflected wave amplitudes, proceeds with the obtaining of the maximum and minimum (node and antinode) amplitude of the standing wave. Two methods were used. The first consisted of trailing a hydrophone along the line and noting its amplitude. The second used an analytical method whereby the required amplitudes were computed from a set of three fixed transducer readings.

While still maintaining the theme of evaluating fluid borne noise attenuators, O'Neal et al.(44) improved on the solution techniques for obtaining the parameter estimates. He formulated an analysis which enabled a more accurate estimate, using a set of six fixed transducer readings at known position. In addition to increasing accuracy, the fixed transducer method enables higher pressure measurements, which were not possible using the moving hydrophone method. This work was detailed in another publication, O'Neal et al.(45). In a later work by Henderson (46), also on the subject of fluid borne attenuators, the solution technique was further improved. He applied a numerical technique which minimised on the error between the observed and computed values based on the parameter estimates. This technique enabled the identification of faulty transducer and apply low weighting to these readings. In this work 20 fixed pressure transducers were used enabling accurate monitoring of the pressure levels in the line.

In the publications cited, arguments were not forwarded to substantiate the assumptions, which were required in formulating the reduced standing wave equation used in the analysis. Such approximations would result in erroneous results, if strong multiple reflections were present in the line. In the work by Henderson, a substantial line length was used. This was indicated to be over 30 metres. Under this condition it is reasonable to assume only a single reflection occuring at the termination. With the Conesco and O'Neal work, however, there appear conditions whereby a system of multiple reflection would be more representative of the conditions prevailing.

In the work by McCandlish et al.(47) and later by Tilley (48), the full general standing wave equation was solved in an effort to determine the fluid borne noise characteristics of simple hydraulic systems. The work described methods which enabled the unknown parameters to be determined, either by relatively simple experiments or calculations. The general standing wave equation for multiple reflections condition, contains five unknown parameters, the source and line impedances, the source and termination constants, and the wave propagation constant. The source impedance can, however, be obtained from a knowledge of the line impedance and source reflection coefficient. Although all the parameters are fundamentally complex (containing both amplitude and

- 23 -

phase components) and basically frequency dependant, the line impedance and the wave propagation can be easily calculated with sufficient accuracy, Bowns et al.(39). The remaining two unknown parameters must, however, be determined experimentally from a set of simultaneous equations to derive the flow fluctuations at any point in the line.

In the work by McCandlish, the primary intention was to design a series of experiments to determine the unknown prameters. With these the fluid flow fluctuations could be derived. This was achieved in two stages. If the pressure at any two points in the same line are divided, the equation reduces to that containing only the termination and the wave propagation constants, equation (2.3.2).

$$\frac{P_1}{P_2} = \frac{e^{-\gamma x_1} + \rho_t e^{-\gamma(2L - x_1)}}{e^{-\gamma x_2} + \rho_t e^{-\gamma(2L - x_2)}}$$
(2.3.2)

Where P_1 and P_2 are pressure levels at position X_1 and X_2 respectively.

As the wave propagation constant can be estimated with sufficient accuracy, the termination constant is determined. To improve the statistical accuracy, McCandlish applied the mean value from a set of experiments with different line lengths. With the solution of the termination constant, the source reflection constant can be obtained by solving the equation (2.3.1) with data from tests at two different line length, but under similar operating conditions. Again statistical accuracy was improved by applying the mean value from a number of solutions.

- 24 -

Numerous methods have been suggested to enable the assessment of pump pressure ripple. Fielding et al.(21) and Bowns et al.(62) provides a summary. All these methods exploit the special conditions which simplify the standing wave equation (2.3.1), by avoiding the standing wave condition. These techniques can be classed either 'accoustically reflectionless' or 'high impedance' delivery lines.

The 'accoustically reflectionless' or 'anechoic' delivery line can be achieved by one of three methods. The most practical being the use of a long pipe line. The use of a quarter wavelength line or matching termination impedances, are other ways of achieving reflectionless termination conditions. These methods are, however, less practical as pump outputs are seldom, if ever, of a single frequency and therefore requiring a different line configuration for each frequency component.

The 'anechoic' transmission line equation at (x = 0) reduces to:

$$P_{0} = \frac{Q_{s}Z_{0}Z_{s}}{Z_{s} + Z_{0}}$$
(2.3.3)

The high impedance delivery line technique attempts to further simplify the transmission line equation of (2.3.3). By using small bore delivery lines (increasing the line impedance) reflections at the termination can be made negligible in comparison to the pressure fluctuations at the pump outlet. This condition leads to the pipe impedance being much greater than that of the source impedance.

Simplification of equation (2.3.3) results in:

$$P_{O} = Q_{S}Z_{S} \tag{2.3.4}$$

On the basis of simplicity, the high impedance method appears to be more favourable as it does not require knowledge of the line impedance,

- 24a -

 Z_0 . The 'anechoic line' technique also requires handling of long hose lengths, in the region of 30 metres. This can prove to be a hindrance in conditions of limited space. The impedance of low friction lines can, however, be estimated with sufficient accuracy, Bowns et al.(39).

The high impedance delivery line technique has, however, an underlying disadvantage. Under conditions of high flowrates, low outlet pressures or high source impedance, it is difficult to ensure that Z_0 is much greater than Z_s . The high delivery impedance requirements can require pump testing under non typical operating conditions, and thus non typical results. There are also differences to be found in both the amplitude and character of the frequency spectrum of the pump output. The pressure ripple measured at the pump outlet is greater for the case of the 'high impedance' than for the 'anechoic' line. In cases of a noisy enviroment, this can be an advantage. The accentuation of the low frequency harmonics is, however, a distinct disadvantage.

2.3.1 Relevance to Current Work

The standing wave equation, derived from the transmission theory, for the condition of multiple reflection is used to determine the fluid borne noise potential of two hydraulic machines, connected by a steel transmission line. In this application a situation existed which made it not feasible to connect the hydraulic machines to long anechoic terminations for the testing of its noise potential. As this data was required, a method had to be devised which could provide this by some other means. An additional problem encountered was that the two machines had the same physical configuration and operated at the same speed. For machines operating at different speeds, the problem is greatly simplified. Components due to each machine can then be easily identified, when operating at frequencies whose harmonic components do not coincide.

In this work, it was envisaged that by the use of a combination of the techniques applied in the work by Henderson and McCandlish above, a procedure could be formulated to derive the required data. In the procedure developed, a system of eight pressure transducers were positioned along the line. From these transducer readings, the standing wave effects were removed by solving the standing wave equations. The resultant waveform at this stage is a combination of the fluctuation due to the two connected machines. This can be uncoupled by performing three tests under similar operating conditions, but with different phasing between the two machines, and solving a set of simultaneous equations. The effects of mixing two pump outputs on the pressure ripple has been earlier studied by the author, Taylor et al.(49).

- 25 -

CHAPTER 3 : THE PUMP MODEL

- 3.1 Introduction Description of Pump Model 3.2 3.2.1 Basic Definitions 3.2.2 Description of Segment History 3.2.3 Line Flow Ripple 3.2.4 Line Pressure Ripple 3.2.5 Effects of Silencing Grooves 3.3 Fundamental Flow Equations 3.3.1 Laminar Flow Between Parallel Plates 3.3.2 Laminar Flow Between Moving Parallel Plates 3.3.3 Laminar Flow Through an Orifice 3.4 Flow and Pressure Equations 3.4.1 General Compressible Flow and Pressure Equations 3.4.2 General Segment Flow and Pressure Equation 3.5 Analytical solution 3.6 Solution of Flow-Pressure equation 3.6.1 Flow-Pressure Equation With Zero Port Flow 3.6.2 Linearised Flow-Pressure Equation Without Flow Reversal 3.6.3 Linearised Flow-Pressure Equation With Flow Reversal
 - 3.7 System Modelling Scheme

- 26 -

FIG.3.2.1 VANE PUMP SCHEMATIC

3.1 Introduction

This chapter deals with the theory and analysis techniques necessary for the implementation of the mathematical pump model on a computer. The theory relating to the termination is dealt with separately in chapter 4, which deals with the topic of transmission line. In the section that follows, the events relating to a pump cycle are briefly described whilst omitting the details. The detailed theory is dealt with in the subsequent sections. In these, the fundamental classical fluid mechanics equations are presented, and followed by a derivation of the 'Flow-Pressure' equations relating to the pump. The final section describes the scheme of the pump model.

3.2 Description of Pump Model

The model is best described in terms of the segment history as the rotor turns through one revolution. A segment is defined as the fluid volume bounded between one vane edge and its adjacent, vane or abutment edge. The pumping cycle occurs over five segment pitches (for an 8 vane machine) and due to the symmetry of the pump it is sufficient to consider only one complete cycle, instead of a full 360 degree rotor rotation. This can be appreciated when referred to the pump schematic of figure (3.2.1). In general the number of segment pitches per cycle is half the number of vanes plus one. This model is developed for a general machine having an even number of vanes, two abutments and symmetric about the abutment centreline.

3.2.1 Basic Definitions

Before we proceed with the detailed model description the following terms must be be defined. These are presented pictorially in figure (3.2.2).

Segment Position: This is referenced by the angular position of the trailing vane centreline with respect to the centreline of the inlet abutment at the pump centre.

Segment Pitch: This is defined as the angle subtended at the centre of the pump by the centrelines of two adjacent vanes.

Segment Volume: In the angular position 0 degrees to minus one segment pitch, the segment volume is defined as the volume bounded by the trailing edge of the leading vane and the forward edge of the associated abutment. This definition is valid until the segment volume reduces to zero, then the segment becomes undefined. In the region zero degrees, to the position when the trailing vane just sweeps below the outlet abutment, the segment volume is defined as the volume bounded by the trailing edge of the leading vane and the leading edge of the trailing vane. From this position till when the leading edge of the trailing vane meets the outlet abutment, the segment volume is defined as the volume bounded by the outlet abutment and the leading edge of the trailing vane. The segment is not defined after this position. Pre-Sector: This is the angular region bounded by minus one vane pitch and zero degree.

First Sector: This is the angular region bounded by zero degree and one vane pitch.

Second Sector: This is the angular region bounded by one and two vane pitches.

Third Sector: This is the angular region bounded by the upper limit

- 30 -

of the second sector and PI-(one vane pitch).

Fourth Sector: This is the angular position bounded by the upper limit of the third sector and PI.

3.2.2 Description of Segment History

The cycle starts with the pre-sector. The model is undefined until the trailing edge of the leading vane has completely swept past the inlet abutment. The vane is currently in the fully retracted position. As the rotor proceeds, the leading vane is advanced outwards until the operating vane clearance is reached. This motion is controlled by the cam actuation profile. Until the segment volume is exposed to the inlet port, the only flow into and out from the segment volume is via the leakage and entrainment paths, across the forward vane tip, end-plate and inlet abutment. There is another leakage path, the intervane leakage path. This is not included as it is considered unnecessary for the purpose for which this model is required.

As the rotor turns there is an increase in the segment volume which results in a temporary fall in the segment pressure. The consequence of this is to increase the pressure difference across the segment boundary, and thus the leakage flow into the segment volume. This added leakage soon brings the segment pressure to a new dynamic equilibrium. Once the vane has swept across the inlet port, the segment begins to communicate with the inlet port introducing another flow path. During this part of the cycle, fluid is directly being drawn into the segment. Due to the resistance to flow at the inlet port orifice, the segment pressure is lower than the inlet port pressure. If at any instant the flow area is too small for the level of flow, cavitation will occur and introduce air bubbles into the system. By the time the rotor has completed this sector, the vane would have been fully extended to its working clearance.

In the first few degrees of the first sector history, the leading boundary is the leading vane and the trailing boundary is at the inlet abutment. The mechanism of flow is, as in the pre-sector, due to pressure and entrainment effects. Fluid is being drawn into the segment volume. Similarly as before, if the flow area is too small cavitation will occur. After the trailing vane has cleared the inlet abutment, there is a change in condition at the trailing boundary. The new trailing boundary is the trailing vane of the segment. In the early stages of the segment history, the trailing vane is fully retracted. The vane is gradually extended until it achieves working clearance. This occurs just before the inlet flow area reduces to zero. Following this, the process of fluid compression can begin. Before the fluid pressure can rise, however, any air bubbles in the fluid caused by earlier cavitation, must be collapsed.

In the second sector, as in the later stages of the previous sector history, fluid compression is taking place. At this stage, the segment does not communicate with the ports. The only flow occuring are via the leakage paths. As the rotor progresses, there is a net flow into the segment due to the effects of compressibility, and the pressure slowly rises. If there is no silencing groove, this segment behavior continues for a few degrees into the third sector.

In the early part of the third sector history, the segment pressure continues to rise gradually. At the moment the segment begins to communicate with the outlet port, there is a sudden surge of fluid into the segment, causing a corresponding increase in segment pressure.

- 32 -

Further rotor movement forces fluid from this contracting segment volume through the outlet port. Besides port flow, there is also the leakage accross the vane and the end-plate boundaries. At this stage the leading vane begins to retract into the rotor, and permits the vane to pass below the outlet abutment. Until the time the leading vane tip meets the outlet abutment, the leading boundary is the leading vane of the segment. After this point the leading boundary is the outlet abutment. The trailing boundary is at the segment trailing vane.

At the start of the fourth sector, the trailing vane is fully extended. The vane tip is, however, retracting as it rotates forward. The fluid flow is initially dominated by port flow effect. As the vane tip retracts, the leakage to the trailing segment increases and the outlet flow decreases. At the end of the sector history, the segment flow is entirely leakage. The leading boundary is the outlet abutment and the trailing boundary is the trailing vane. The segment history is undefined when the trailing segment begins to pass under the outlet abutment.

3.2.3 Line Flow Ripple

The instantaneous port flow is a summation of the flows into the segments in communication with the port. At the inlet port, fluid is drawn in by segments in the pre and first sectors. The outlet flow is derived from segments in the third and fourth sectors. If silencing grooves are incorporated, there would also be a flow component from the segment in the second sector. The flow rate from each segment is dependent on the pressure difference accross the port orifice, the available flow area and the fluid density.

3.2.4 Line Pressure Ripple

The pressure variations measured in the line can be described using the transmission line theory. The equations relating pressure variation and flow is complex. It is, however, significantly simplified when applied to a lossless 'Anechoic Line', whose characteristic impedance is much greater than that of the source. Under this condition the pressure variation at the pump outlet becomes only a product of the flow and the characteristic line impedance. The characteristic line impedance is a function of the fluid bulk modulus, fluid density and the line cross-sectional area.

3.2.5 Effects of Silencing Grooves

Consider the case of the eight segment pump. If the forward and trailing vanes have the same clearances, then by the time the segment has swept through the second quadrant, the segment pressure would only have attained a pressure of less than half that of the mean port pressures. At the instant the segment communicates with the outlet port there is a large flow surge into the segment. This is to compensate for the volume lost due to the compressibility of the fluid. This abrupt change of state is a source of fluid flow ripple, and thus fluid borne noise. If the pressure in the segment can be gradually raised to that of the outlet port, the initial surge can be suppressed resulting in a flow ripple of lower magnitude and potentially result in a much quieter pump. The segment pressure can be profiled by permitting a controlled leakage path between the segment and port. By changing the form and dimensions of the grooves, an 'optimum' groove can be defined.

3.3 Fundamental Flow Equations

This section presents the fundamental dynamic equations used in the derivation of the 'flow-pressure' equations. These equations and the conditions of validity are commonly known. A formal presentation is thus considered to be unnecessary. References to these equations can be found in most books dealing with the fundamentals of fluid mechanics. A suitable reference is Massey (50).

3.3.1 Laminar Flow Between Parallel Plates

The laminar flow of a viscous fluid, Q_V between two parallel plates, in the absence of end effects, is given by:

$$Q_{\rm V} = \frac{bh^3(P_1 - P_2)}{12\mu L}$$

Where b and L are the width and length of the plates respectively, h is the plate separation, μ the coefficient of absolute viscosity, and P₁, P₂ are the up, and down stream hydrostatic pressures.

3.3.2 Laminar Flow Between Moving Parallel Plates

Entrained flow also known as 'Couette Flow' is caused by the relative movement of a boundary under viscous effects. In the absence of edge effects, the entrained flow Q_e is given by:

$$Q_e = \frac{bhU}{2}$$

(3.3.2)

(3.3.1)

Where b is the plate width, h is the plate clearance and U the relative -35 -

plate velocity.

3.3.3 Laminar Flow Through an Orifice

The flow through an orifice is derived from Bernoulli's equation for an inviscid fluid. The orifice flow Q_0 is given by:

$$Q_{0} = \frac{\text{Dir.C}_{d} \pi D^{2}}{4} \sqrt{\frac{2|P_{1} - P_{2}|}{\rho}}$$
(3.3.3)

and Dir = Sgn(
$$P_1 - P_2$$
)

Sgn is defined as: Sgn(x) = 1 ; x > 0Sgn(x) = 0 ; x = 0Sgn(x) =-1 ; x < 0

Where C_d is the coefficient of discharge, D the orifice diameter, ρ the fluid density and P_1 , P_2 the up and down stream hydrostatic pressure respectively.

3.4 Flow and Pressure Equations

In this section the general flow and pressure equation for a viscous compressible fluid is developed. The first of two sub-sections develops the equation for a general control volume. The second applies the equation to the modelling of the pump segment pressure.

3.4.1 General Compressible Flow and Pressure Equation

Consider a quantity of fluid having absolute density ρ and volume V.

The mass m is given by:

$$\mathbf{m} = \rho \mathbf{V} \tag{3.4.1}$$

Differentiating the equation (3.4.1) with respect to time t gives:

$$\frac{dm}{dt} = \rho \frac{dV}{dt} + V \frac{d\rho}{dt}$$

$$\frac{dt}{dt} = \frac{dt}{dt} \quad dt$$
(3.4.2)

The isentropic bulk modulus β is defined:

$$\beta = \rho \frac{\mathrm{dP}}{\mathrm{d}\rho}$$
(3.4.3)

The mass flow rate into a control volume is related to the flow across its boundary by:

$$\frac{dm}{dt} = \rho(Q_{in} - Q_{out})$$

$$dt \qquad (3.4.4)$$

Where Q_{in} and Q_{out} are the flow in and out of the control volume. Equating equations (3.4.2) to (3.4.4) and re-arranging gives:

$$Q = \frac{dV \quad V \, d\rho}{dt}$$

$$dt \quad \rho \, dt$$

$$(3.4.5)$$

Where $Q = Q_{in} - Q_{out}$

Substituting equation (3.4.3) and (3.4.5) and re-arranging gives:

$$\frac{dP}{dt} = -\frac{\beta}{V} \left(Q - \frac{dV}{dt} \right)$$

$$= -37 - (3.4.6)$$

The angular velocity ω is given by:

$$\omega = \frac{\mathrm{d}\theta}{\mathrm{d}t} \tag{3.4.7}$$

Where θ is the angular position.

By using the above relationship, we obtain the flow-pressure equation with respect to angular position:

$$\frac{\mathrm{dP}}{\mathrm{d}\theta} = \frac{\beta}{\omega V} \left(\begin{array}{c} 0 & -\frac{\mathrm{d}V}{\mathrm{d}\theta} \end{array} \right)$$
(3.4.8)

3.4.2 General Segment Flow and Pressure Equation

In the application of equation (3.4.8) to the modelling of the segment

pressure of the pump, the variable Q , has two components.

$$Q = Q_1 + Q_0$$

Where Q_1 is the total leakage and Q_0 the total port flow from the segment volume.

The component Q_1 consists of three sub-components:

$$Q_1 = Q_e + Q_v + Q_s$$

Where Q_e and Q_v are the entrained and viscous leakage accross the vane tips, and Q_s is the end-plate leakage.

The equation (3.4.8) then takes the form:

$$\frac{dP}{d\theta} = \frac{\beta}{\omega V} \left(Q_{e} + Q_{v} + Q_{s} + Q_{o} - \omega \frac{dV}{d\theta} \right)$$
(3.4.9)

- 38 -

From equation (3.3.1), (3.3.2) and (3.3.3) we obtain the equation relating to Q_e , Q_v , Q_s and Q_o .

$$Q_{e} = \frac{UL}{2}(H_{2} - H_{1})$$

$$Q_{V} = \frac{L}{12\mu} \left(\frac{(H_{1})^{3}}{W} (P_{1} - P) + \frac{(H_{2})^{3}}{W} (P_{2} - P) \right) + 2 \frac{L_{3}}{12\mu} \left(\frac{(H_{3})^{3}}{W_{3}} (P_{3} - P) \right)$$
$$Q_{0} = -\frac{C_{d}\pi}{4} \sqrt{\frac{2}{\rho}} \left(\text{Dir}_{0} \cdot (D_{0})^{2} \sqrt{|P - P_{0}|} + \text{Dir}_{1} \cdot (D_{1})^{2} \sqrt{|P - P_{1}|} \right)$$

Where $Dir_{O} = Sgn(P - P_{O})$ $Dir_{i} = Sgn(P - P_{i})$

The subscripts 1,2 relates to the leading and trailing boundaries and subscript 3 relates to the end-plate boundary. U, L are the vane tip linear velocity and vane length. L₃ is the end-plate land length. W is the vane tip width and W₃ is the end-plate land width. H₁, H₂, H₃ are the surface clearances. P is the vane main segment pressure and P₁, P₂ are the pressures at the adjacent segments. P₃ is the case pressure. P₀, P₁ are the outlet and inlet pressures respectively.

With the substitution of Q_e , Q_v , Q_s and Q_o the equation (3.4.9) can be written as:

$$\frac{dP}{d\theta} = K_5 + K_6(P_1 - P) + K_7(P_2 - P) + K_8(P_3 - P) - Dir_0 \cdot K_9 \sqrt{|P - P_0|} - Dir_1 \cdot K_{10} \sqrt{|P - P_1|} (3.4.10)$$

Where:

$$K_1 = \frac{\beta}{\omega V}$$
 - 39 - $K_2 = \frac{L(H_1)^3}{12\mu W}$

$$\kappa_5 = \kappa_1 \begin{pmatrix} UL & dV \\ -(H_2 - H_1) - \omega - d\theta \\ 2 & d\theta \end{pmatrix} \qquad \kappa_6 = \kappa_1 \kappa_2$$

$$K_7 = K_1 K_3$$

 $K_8 = 2K_1K_4$

$$K_{9} = K_{1} \frac{C_{d}\pi}{4} \sqrt{\frac{2}{\rho}} (D_{0})^{2}$$
$$K_{10} = K_{1} \frac{C_{d}\pi}{4} \sqrt{\frac{2}{\rho}} (D_{1})^{2}$$

3.5 Analytical Solution

The equation (3.4.9) is a non-linear first order differential equation and in its current form cannot be solved analytically. A numerical technique must be employed to solve for the segment pressure. Another problem arises as a consequence of the stiffess of the equation. The term 'stiffness' implies an equation where parameters change at widely different rates. When a numerical solution is applied to a stiff equation, very small iterative steps must be taken or instability will occur. Small step computation incur the penalty of extremely long computation time. A method due to Gear (51) is available which gives a significant improvement in the time required for the solution of stiff differential equations. This method incorporates an automatic starting procedure and a sophisticated iterative solution of the predictor equation. Even with this technique, the required computation time could

- 40 -

prove excessive for the average engineering application. One way round this problem is to linearise the flow-pressure equation.

If the flow through the dominant port is much larger than that due to the secondary port and leakage, these latter components can be held constant over a small step change in θ . Provided sufficiently small steps are taken, there will not be any significant loss in accuracy. The step-wise form of the equation (3.4.10) is given as:

$$\frac{dP}{d\theta} = K_{11} - \text{Dir}_d \cdot K_{12} \sqrt{|P - P_d|}$$

(3.5.1)

Where d denotes the dominant port, K_{11} is the cumulative constant representing the leakage, K_{12} is the secondary flow at the start of the step and;

$$K_{12} = K_9$$
; $|P - P_0| > |P - P_i|$
 $K_{12} = K_{10}$; $|P - P_0| < |P - P_i|$

In the work by Hannan (30), a similar technique, was implemented for an axial piston pump. This was found to have a considerable saving in time when compared with a similar model using the standard 'Runge-Kutta' method of solving differential equations. A time saving factor of 50 was quoted in a comparison made by Foster (52).

With the vane pump model, there can be identified three different conditions of operation, in respect of the importance of the various variables. The first is one of having dominant port flow, and negligible secondary port and leakage flow. The second condition is one with zero port area. The third is one of significant port and leakage flow. For the first condition, the step-wise method described earlier can be used to solve for the segment pressures. The particular flow-pressure equation with zero flow area can be solved directly analytically. The third condition however cannot be accurately modelled using the approximate flow-pressure equation. The equation must be solved using a numerical solution for a first order non-linear differential equation.

In the computer implementation of the pump model, an algorithm is developed which tests for the significance of the various variables. This algorithm, which is described in detail in chapter 5, then identifies the condition which best describes the conditions operating and the corresponding solution technique required. It is worth mentioning that for the eight vane machine, the segment can communicate simultaneously with both ports only if long silencing grooves are incorporated for both the inlet and outlet ports.

3.6 Solution of Flow-Pressure Equation

This section deals with the solution of the various forms of the flowpressure equations. The first sub-section, deals with the case of zero port area. This reduces the equation to a form which is amenable to a direct analytical solution. The latter sub-sections deal with the solution of the linearised flow-pressure equations. In solving this equation two conditions must be considered. The first is for the case of no flow reversal within the step, and the second for that with flow reversal.

3.6.1 Flow-Pressure Equation With zero Port Flow

When the port area is zero, the equation (3.4.10) is reduced to:

 $\frac{dP}{d\theta} = K_5 + K_6(P_1 - P) + K_7(P_2 - P) + K_8(P_3 - P)$ $\frac{d\theta}{d\theta}$

$$= -(K_6 + K_7 + K_8)P + K_5 + K_6P_1 + K_7P_2 + K_8P_3$$

This is a linear first order differential equation of the form:

```
\frac{dP}{d\theta} = -BP + A
```

```
(3.6.1)
```

Where

 $A = K_5 + K_6 P_1 + K_7 P_2 + K_8 P_3$ $B = K_6 + K_7 + K_8$

Re-arranging equation (3.6.1) gives:

$$\frac{dP}{dP} = d\theta$$

(3.6.2)

Using the substitution:

$$Z = A - BP$$
 (3.6.3)

Differentiating both sides gives:

$$dZ = -B.dP \tag{3.6.4}$$

Substituting equation (3.6.3) and (3.6.4) into (3.6.2) gives:

 $\frac{dZ}{dz} = - d\theta$

Integrating both sides between the limits Z_1 , θ_1 and Z_2 , θ_2 gives:

$$\begin{bmatrix} \ln z \end{bmatrix}_{z_1}^{z_2} = -B \begin{bmatrix} \theta \\ \theta \end{bmatrix}_{\theta_1}^{\theta_2}$$
(3.6.5)

Re-arranging and using the relation:

$$e^{\ln x} = x \tag{3.6.5}$$

gives:

 $Z_2 = Z_1 e^{-B(\theta_2 - \theta_1)}$ (3.6.7)

From equation (3.6.3):

$$P_2 = \frac{(A - Z_2)}{B}$$
(3.6.8)

3.6.2 Linearised Flow-Pressure equation Without Flow Reversal

The linearised step-wise form of the flow-pressure equation (3.5.1) was given as:

$$\frac{dP}{d\theta} = K_{11} - \text{Dir} \cdot K_{12} \sqrt{|P - P_d|}$$
(3.6.9)

Let

$$(Dir.U)^2 = Dir(P - P_d)$$
 (3.6.10)

Differentiating equation (3.6.10) on both sides gives:

$$Dir.2U.du = dP$$
 (3.6.11)

Substituting equation (3.6.10) and (3.6.11) into (3.6.9) gives:

- 44 -

$$\frac{\text{Dir.2U.dU}}{\text{K}_{11} - \text{Dir.K}_{12}\text{U}} = d\theta$$

Re-arranging and factorising gives:

$$\left(-\frac{2}{\text{Dir.}K_{12}}+\frac{2K_{11}}{\text{Dir.}K_{12}(K_{11}-\text{Dir.}K_{12}U)}\right)dU = \text{Dir.}d\theta$$

Integrating between the limits U_1 , θ_1 and U_2 , θ_2 gives:

$$\frac{2(U_2 - U_1)}{\text{Dir}.K_{12}} - \frac{2K_{11}}{(\text{Dir}.K_{12})^2} \ln \left(\frac{K_{11} - \text{Dir}.K_{12}U_2}{K_{11} - \text{Dir}.K_{12}U_1} \right) = \text{Dir}(\theta_2 - \theta_1)$$

Let

$$Z_{1} = K_{11} - \text{Dir}.K_{12}U_{1}$$

$$Z_{2} = K_{11} - \text{Dir}.K_{12}U_{2}$$
(3.6.12)

Substituting equation (3.6.12) gives:

$$\frac{\text{Dir.}2(z_2 - z_1)}{(K_{12})^2} - \frac{\text{Dir.}2K_{11}}{K_{12}} \ln\left(\frac{z_2}{z_1}\right) - (\theta_2 - \theta_1) = 0$$
(3.6.13)

From equation (3.6.10):

$$P_2 = P_d + Dir.(U_2)^2$$

Substitute equation (3.6.12) gives:

$$P_{2} = P_{d} + Dir \left(\frac{K_{11} - Z_{2}}{Dir.K_{12}}\right)^{2}$$
(3.6.14)

At the beginning of the step, Z_1 of the equation (3.6.13) is known. Z_2 can be solved using a numerical solution method (eg.Newton-Raphson). Knowing Z_2 the segment pressure P_2 , at the end of the step is found by substitution into equation (3.6.14)

3.6.3 Linearised Flow-Pressure equation With Flow Reversal

In equation (3.5.1) Dir represents the direction of flow through the dominant port at the start of the step. If Dir and K_{11} are not of the same sign, there is a possibility of flow reversal, within the step. At the point of reversal, the segment pressure, P is equal to the port pressure P_d .

The conditions at the point of flow reversal are:

$$Sgn(Dir.K_{11}) = -1$$

 $P = P_d$

Substitute equation (3.6.15) into (3.6.14) gives:

$$Z_{r} = K_{11}$$

Where subscript r refers to the point of reversal.

Substituting the value of Z_r into the equation (3.6.13) gives the angular value, θ_r at the point of reversal:

(3.6.15)

$$\theta_{r} = \theta_{1} + \frac{\text{Dir.2}}{(K_{12})^{2}} (K_{11} - Z_{1}) - \frac{\text{Dir.2}K_{11}}{(K_{12})^{2}} \ln\left(\frac{K_{11}}{Z_{1}}\right)$$
(3.6.16)

The condition for flow reversal within a step is given by:

$$\theta_{r} < \theta_{1} + \Delta \theta \tag{3.6.17}$$

Where $\Delta \theta$ is the angular step interval.

If $\theta_r > \theta_1 + \Delta \theta$, flow reversal occurs after the end of the step. The

segment pressure P_2 at the end of the step can be found using the equation (3.6.13) and (3.6.14) for the condition of no flow reversal within the step. If $\theta_r = \theta_1 + \Delta \theta$, the flow reversal occurs at the end of the step and the segment pressure, P_2 is the port pressure, P_d at the start of the step.

For the condition of flow reversal, it is necessary to solve the equation (3.6.13) for the limits θ_1 to θ_r and θ_r to θ_2 . The equation (3.6.13) for the first condition, gave equation (3.6.16). The equation for the second set of limits gives:

$$-\frac{\text{Dir.2}}{(\kappa_{12})^2} (z_2 - \kappa_{11}) + \frac{\text{Dir.2}\kappa_{11}}{(\kappa_{12})^2} \ln\left(\frac{z_2}{\kappa_{11}}\right) - (\theta_2 - \theta_r) = 0$$
(3.6.18)

Substituting equation (3.6.16) into (3.6.18) eliminates θ_r and gives:

$$-\frac{\text{Dir.2}}{(\kappa_{12})^2} \left[z_1 + z_2 - 2\kappa_{11} + \kappa_{11} \ln\left(\frac{(\kappa_{11})^2}{z_1 z_2}\right) \right] - (\theta_2 - \theta_1) = 0$$
(3.6.19)

By replacing Dir with -Dir in equation (3.6.14) we obtain the corresponding equation for P₂ for the condition of flow reversal. The equation is:

$$P_{2} = P_{d} - Dir \left(\frac{Z_{2} - K_{11}}{Dir.K_{12}}\right)^{2}$$
(3.6.20)

The solution of the equations for the condition with flow reversal is the same as that for without flow reversal. Equation (3.6.19) is solved for Z_2 using a numerical technique. With Z_2 the segment pressure, P_2 at the end of the step is given by equation (3.6.20).

- 47 -

Equillibrium between basic pump and line models achieved

FIG.3.7.1 SYSTEM MODELLING SCHEME

3.7 System Modelling Scheme

The outputs of a pump are dependant on the inlet and outlet line conditions and line conditions are dependant on the pump flow conditions. This therefore necessitates the reiteration of both the basic pump and line model till convergence is achieved between the two models. In this simulation program, the anechoic line is modelled as the termination condition. This is done both from a point of ease of modelling and from the accepted practice of testing pump noise using anechoic line terminations. The resulting system model is referred in subsequent references as the 'pump model'.

The scheme of the pump model is shown in figure (3.7.1) and starts with an estimate of the line conditions. Using this estimate condition, the pump conditions of segment pressure and port flows are determined for the full pump cycle. With a knowledge of the port flows, the line conditions are corrected and another pass is made at simulating the pump conditons, under this new line condition. This is repeated till convergence is achieved between consecutive port conditions.
CHAPTER 4 : THE TRANSMISSION LINE

- 4.1 Introduction
- 4.2 The Fourier Transform
- 4.3 Wave Propagation Theory
- 4.4 Transmission Line Model
- 4.5 Lossless Anechoic Line
- 4.6 Pump-Motor Transmission Model
- 4.7 Solving the Standing Wave Equation
- 4.7.1 Removing Standing Wave Effects

4.7.2 Uncoupling Wave Superposition Effects

- 50 -

4.1 Introduction

In the investigation of fluid borne noise in hydraulic systems, it is necessary to determine the dynamic flow fluctuations of the system. In a typical eight vane machine operating at 3000 rpm., the significant frequency components typically extends up to the tenth harmonic. This requires a flow monitoring system with a dynamic response in excess of 4000 Hz. Flow transducers in general have poor dynamic response. Sophisticated flow measuring techniques - for example, hot film anemometers or laser anemometers - can provide the required dynamic response but they are difficult and expensive to implement. In contrast measurement of dynamic pressure fluctuations is relatively simple and cheap. There is available comercially a wide range of suitable transducers with very high specifications. By the use of transmission line theory, a mathematical relationship can be derived which relates pressure to flow fluctuation. The application of transmission line theory in hydraulics is not new. In 1922, Constantinesco (38) suggested such applications in the field of fluid power. Latterday applications include Foster et al.(53), Oldenburger et al.(54) and Iyengar(55). In his paper on 'Pressure Ripple Propagation', Bowns et al. (39) outlines the application, and compares the various forms of the basic equations.

In this chapter the transmission line theory will be applied to three different systems, a lossless anechoic line, a simple transmission system and a pump-motor transmission network. The anechoic line condition is used in the modelling of the pump model termination. The two other conditions are required for the experimental work on the measurement of fluid borne noise in the hydraulic transmission systems.

A brief introduction to the Fourier transform is included in this chapter as an appreciation of the basic concepts is essential to the

- 51 -

a) Fourier Integral

$$X(f) = \int_{-\infty}^{\infty} x(t) e^{-j2\pi ft} t dt$$

$$x(t) = \int_{-\infty}^{\infty} x(f) e^{j2\pi ft} dt$$
Infinite and continuous in time and frequency domain
b) Fourier Series

$$x(f_{k}) = \frac{1}{T} \int_{-T/2}^{T/2} x(t) e^{-j2\pi fk} t dt$$

$$x(t) = \sum_{k=-\infty}^{\infty} x(f_{k}) e^{j2\pi fk} t$$
Periodic in time and discrete in frequency domain
c) Sampled Functions

$$x(f_{k}) = \frac{1}{T} \int_{-f_{k}/2}^{f_{k}/2} x(f) e^{j2\pi ft} t$$

$$x(t_{n}) = \frac{1}{f_{k}} \int_{-f_{k}/2}^{f_{k}/2} x(f) e^{j2\pi ft} t$$

$$x(t_{n}) = \frac{1}{N} \sum_{n=0}^{f_{k}/2} x(f) e^{j2\pi ft} t$$

$$x(t_{n}) = \frac{1}{N} \sum_{n=0}^{N-1} x(t_{n}) e^{-j2}$$

$$x(t_{n}) = \frac{1}{N} \sum_{n=0}^{N-1} x(f_{k}) e^{j2}$$
Where $z = \frac{2\pi nk}{N}$
Discrete and periodic in time and frequency domain

Fig.4.2.1 FORMS OF THE FOURIER TRANSFORMS

understanding of the analytical and experimental analysis that follow. Numerous books are available on the subject. 'Applied Time Series' by Otnes et al.(56) is a suitable reference on the practical aspects.

4.2 The Fourier Transform

In brief the Fourier transform is the conversion of time domain data to the frequency domain. The conversion from the frequency to the time domain is the inverse Fourier transform. There are, however, a number of different forms of the Fourier transform depending on the type of signal analysed. This is summarised in figure (4.2.1).

The most general of all is the Integral transform. This transform can be applied to any realistic signal. Periodic and non-periodic signals can be suitably transformed. This transform necessitates a knowledge of the series to be defined between infinite limits and thus reduces its application to short duration transient signals. The domain for both frequency and time are continuous for this version of the transform.

When dealing with periodic signals, the signal can be defined by one period of the time signal. The Fourier transform for periodic signals take the form of the Fourier series. In this form the time domain is continuous and periodic, and the frequency domain discrete and infinite.

For discrete and non-periodic time data the sampled function transform is used. The time domain of this transform is discrete and infinite, and the frequency domain continuous and periodic. Due to the symmetry and periodicity in the frequency spectrum, a component of the

- 53 -

Fig.4.2.2 FOURIER TRANSFORM OF PRESSURE PULSE

frequency in the continuous time signal will appear at frequencies of multiple intervals of the sampling frequency.

As a means of avoiding the possible ambiguities of the frequency content of the signal, the time domain signal is band limited before transforming by passing through a low pass filter. This filter is usually referred to as an antialiasing filter with a cut off point set at a value slightly less than half that of the sampling frequency.

The final and possibly the most useful form, for use in digital signal analysis is the discrete Fourier transform. This transform is applied to discrete and periodic signals in both the frequency and time domain. N points in the time domain are transformed to N points in the frequency domain. Due to the symmetry of the frequency domain, only half of these frequency points are independent. The number of valid frequency points is however further reduced due to the effects of the antialiasing filters.

The figure (4.2.2) demonstrates the forward discrete Fourier tranform of an actual pressure pulse from a piston pump. Figure (4.2.2a) shows the time signal after passing through the low pass antialiasing filter and figure (4.2.2b), the amplitude and phase spectrum of the transformed signal.

4.3 Wave Propagation Theory

The one dimensional plane wave propagation theory can be used to study the transmission of flow and pressure in fluid lines. The validity of the analysis depends on the conditions of linearity and compactness being satisfied. By these conditions, is implied that the disturbances

- 55 -

are sufficiently small for their squares to be negligible, and that the source region is small when compared to the size of the wavelength. The wave equation is derived from continuity and force equillibrium equations.

From continuity :

$$-\frac{\partial Q}{\partial x} = -\frac{\partial P}{\beta \partial t}$$

(4.3.1)

Where Q is the volume flow rate, A is the cross-sectional area, β the bulk modulus and P pressure. x and t relates to position and time respectively.

From equilibrium of forces:

	9b				ρ	90
-	-	=	QR	+	-	-
	9x				А	ðt

(4.3.2)

From equations (4.3.1) and (4.3.2), the wave equations are obtained:

$$\frac{\partial^2 Q}{\partial x^2} = \gamma^2 Q$$

and

$$\frac{\partial^2 P}{\partial x^2} = \gamma^2 P$$

(4.3.3)

Where the propagation constant γ is given by:

$$\gamma = \sqrt{\begin{matrix} A \\ -j\omega \\ \beta \end{matrix}} \begin{pmatrix} \rho \\ R + -j\omega \\ A \end{matrix} \end{pmatrix}$$
(4.3.4)

Where R is the line resistance and ω the wave frequency in angular units.

The general solution to the wave equation is :

$$P_{X} = Fe^{-\gamma X} + He^{\gamma X}$$

$$(4.3.5)$$

$$Q_{X} = \frac{1}{Z_{0}} \left(Fe^{-\gamma X} - He^{\gamma X} \right)$$

$$(4.3.6)$$

Where F and H are constants, and Z_0 is the general characteristic line impedance, defined by :

$$Z_{O} = \sqrt{\begin{pmatrix} R + -j\omega \\ A \end{pmatrix} \begin{pmatrix} A \\ -j\omega \\ \beta \end{pmatrix}^{-1}}$$
(4.3.7)

Also

(4.3.8)

(4.3.6)

Where Z is the general impedance.

Transmission Line Model 4.4

The figure (4.4.1) shows a simple hydraulic circuit consisting of a pump connected to a length of pipe and terminating at a pressure relief valve. Consider a pressue wave emanating from the pump and travelling towards the line termination at the speed of sound. As any waveform can be transformed to a series of sine waves by the Fourier series it is sufficient to visualise a simple sine wave in place of the complex pump wavelet. As the wave travels along the pipe it is attenuated, the degree of which depends on the line friction. At the termination the wave is reflected back towards the pump. The wave will continue to be reflected up and down the line until its energy is completely - 58 -

dissipated. The result of this complex interaction of incident and reflected waves is to produce a standing wave. If a pressure transducer is moved along the length of the pipe, it will detect a pressure wave of varying amplitude. At points corresponding to nodes, a minimum signal will be detected, while at points midway between two consecutive nodes, a maximum signal will be detected. These are the antinode points. For a perfect line with zero attenuation and complete reflection at the ends, the signal would be zero at the nodes and tending to infinity at the antinodes.

The impedance circuit of figure (4.4.2) is the equivalent of the simple hydraulic circuit of figure (4.4.1). The wave propagation theory enables the derivation of a mathematical equation defining the flow and pressure fluctuation, as a function of the pump and termination characteristic, and the line dependant parameters. The pump and termination characteristics are the source and termination impedance, and the reflection coefficients. The line parameters are the wave propagation constant and the line impedance.

At the beginning of the line x = 0. Substitution of this condition reduces equation (4.3.5) to:

$$P_E = F + H$$

(4.4.1)

Where P_E is the pressure at the start of the line (or the pump outlet). At the end of the line, the termination impedance, Z_t is given by:

$$Z_{t} = \frac{P_{t}}{Q_{t}}$$

$$(4.4.2)$$

Where Pt and Qt are pressure and flow fluctuations at the termination.

- 59 -

Substitution of the condition x = L into equation (4.3.5) gives:

$$P_{t} = Fe^{-\gamma L} + He^{\gamma L}$$

$$(4.4.3)$$

$$Q_{t} = \frac{1}{Z_{0}} \left(Fe^{-\gamma L} - He^{+\gamma L} \right)$$

$$(4.4.4)$$

(4.4.4)

Further substitution of P_t and Q_t into equation (4.4.2) gives:

$$Z_{t} = Z_{o} \left(\frac{Fe^{-\gamma L} + He^{\gamma L}}{Fe^{-\gamma L} - He^{+\gamma L}} \right)$$
(4.4.5)

If the termination constant, ρ_t is defined as:

$$\rho_{t} = \frac{Z_{t} - Z_{0}}{Z_{t} + Z_{0}}$$
(4.4.6)

and the equation (4.4.1), (4.4.5), (4.4.6) are solved, the constants F and H can be determined.

$$F = \frac{P_E e^{2\gamma L}}{\rho_t + e^{2\gamma L}}$$

$$H = \frac{P_E \rho_t}{\rho_t + e^{2\gamma L}}$$

$$(4.4.7)$$

$$(4.4.8)$$

Substitution of equations (4.4.7) and (4.4.8) into (4.3.5) and (4.3.6) gives:

$$P_{x} = P_{E} \left(\frac{e^{-\gamma x} + \rho_{t} e^{-\gamma(2L - x)}}{1 + \rho_{t} e^{-2\gamma L}} \right)$$
(4.4.9)

$$Q_{\rm X} = \frac{P_{\rm E}}{Z_{\rm O}} \left(\frac{e^{-\gamma_{\rm X}} - \rho_{\rm t} e^{-\gamma(2L - {\rm X})}}{1 + \rho_{\rm t} e^{-2\gamma_{\rm L}}} \right)$$
(4.4.10)
- 60 -

but

$$Q_{s} = \frac{P_{E}}{Z_{s}}$$
(4.4.11)

The source reflection coeffient ρ_s can similarly be defined as:

$$\rho_{\rm S} = \frac{Z_{\rm S} - Z_{\rm O}}{Z_{\rm S} + Z_{\rm O}}$$
(4.4.12)

Using the substitutions equations (4.4.11) and (4.4.12) transforms the equations (4.4.9) and (4.4.10) into:

$$P_{X} = \frac{Q_{s}Z_{o}Z_{s}}{Z_{s} + Z_{o}} \left(\frac{e^{-\gamma x} + \rho_{t}e^{-\gamma(2L - x)}}{1 - \rho_{s}\rho_{t}e^{-2\gamma L}} \right)$$
(4.4.13)
$$Q_{X} = \frac{Q_{s}Z_{s}}{Z_{s} + Z_{o}} \left(\frac{e^{-\gamma x} - \rho_{t}e^{-\gamma(2L - x)}}{1 - \rho_{s}\rho_{t}e^{-2\gamma L}} \right)$$
(4.4.14)

The above equations defines the pressure and flow fluctuation at any point in the transmission line in terms of the source flow , pump and termination characteristics and the line parameters. The relationships are appropriate to variables at individual frequency components. With the exception of length, all the other variables are frequency dependant.

4.5 Lossless Anechoic Line

In a typical hydraulic line, the internal wall of the pipe is usually smooth. This results in low pipe friction. For a system with negligible pipe friction, substitution of R = 0 into equation (4.3.7) gives:

- 61 -

$$Z_{O} = \sqrt{\frac{\rho\beta}{A^2}}$$

Where Z_0 is the characteristic line impedance for a lossless line. This is independent of frequency.

The wave propagation constant for a pipe of negligible friction is obtained by substituting R = 0 into equation (4.3.4):

$$\gamma = j\omega \sqrt{\frac{\rho}{\beta}}$$

(4.5.2)

For an anechoic condition, the termination reflection coefficient is effectively zero. Substitution of $\rho_{t} = 0$ into equations (4.4.13) and (4.4.14) gives:

$$P_{X} = \frac{Q_{S}Z_{O}Z_{S}}{Z_{S} + Z_{O}} e^{-\gamma X}$$

$$Q_{X} = \frac{Q_{S}Z_{S}}{Z_{S} + Z_{O}} e^{-\gamma X}$$
(4.5.3)
(4.5.4)

Where P_x and Q_x are the pressure and flow fluctuations at position x in a lossless and anechoic line.

At the pump outlet, x = 0. Substitution of this condition into equation (4.5.3) and (4.5.4) gives:

$$P_{0} = \frac{Q_{s}Z_{0}Z_{s}}{Z_{s} + Z_{0}}$$
(4.5.5)

(4.5.1)

$$Q_{0} = \frac{Q_{S}Z_{S}}{Z_{S} + Z_{0}}$$
(4.5.6)

Where Qo, Po are the flow and pressure fluctuations at the pump outlet.

The characteristic line impedance Z_0 , is generally found in practice to be small in magnitude when compared with the source impedance Z_s . This reduces the equation (4.5.5) and (4.5.6) to:

$$P'_{0} = Q_{s}Z_{0}$$
 (4.5.7)

$$Q_0 = Q_s \tag{4.5.8}$$

Where Q'_{0} and P'_{s} are the flow and pressure fluctuations at the pump outlet.

For a flexible pipe, the bulk modulus of the fluid is effectively reduced, and is given by:

$$\frac{1}{\beta} = \frac{1}{\beta} + \frac{1}{\beta}$$

$$\beta = \frac{1}{\beta}$$

$$\beta = \frac{1}{\beta}$$

$$\beta = \frac{1}{\beta}$$

$$(4.5.9)$$

Where β' is the effective bulk modulus, d the mean pipe diameter, E the elastic modulus of the pipe material and h the pipe wall thickness.

4.6 Pump-Motor Transmission Model

In a pump-motor transmission line, there are two sources of flow ripples. A model for the transmission line can be derived using the principle of superposition. The pressure measured at any point in the line can be considered as being the sum of pressure fluctuations due

- 63 -

to the individual flow ripple generators. The figure (4.6.1) shows a simple hydraulic pump-motor system and its equivalent sub-systems.

The total pressure fluctuation P_x , at point x in the line is given by:

$$P_{\rm X} = P_{\rm pX} + P_{\rm mX} \tag{4.6.1}$$

Where P_{px} is the pressure ripple component due to the pump and P_{mx} is the component due to the motor.

Substitution of the local variables in the equations (4.4.13) and (4.4.14) gives P_{px} and P_{mx} , in terms of its source and line characteristics.

$$P_{px} = \frac{Q_{sp} Z_{o} Z_{sp}}{Z_{sp} + Z_{o}} \left(\frac{e^{-\gamma x} + \rho_{tm} e^{-\gamma(2L - x)}}{1 - \rho_{sp} \rho_{tm} e^{-2\gamma L}} \right)$$
(4.6.2)

$$P_{mx} = \frac{Q_{sm} Z_{o} Z_{sm}}{Z_{sm} + Z_{o}} \left(\frac{e^{-\gamma (L - x)} + \rho_{tp} e^{-\gamma (L + x)}}{1 - \rho_{sm} \rho_{tp} e^{-2\gamma L}} \right)_{(4.6.3)}$$

Where Q_{sp} and Q_{sm} are source flows, Z_{sp} and Z_{sm} are source impedances, and sp and sm are the line termination constants. The subscripts p, m denote pump and motor quantities respectively.

Provided that the pump and motor components are sufficiently separated, in the frequency domain, the equations (4.6.2) and (4.6.3) enables the deconvolution of the pump and motor components from the standing wave effects. If the pump and motor are operating under conditions where the frequency components overlap, the required components cannot be obtained directly. It can, however, still be determined from measurements made from at least three different and independant phase conditions. This is described in the following section.

- 65 -

4.7 Solving the Standing Wave Equation

This section describes a technique for separating the effects of individual pump and motor, operating under conditions where there is overlap of the frequency components and under reverberant conditions. The technique involves a solution in two parts. The first sub-section deals with the removal of the standing wave effects to obtain the equivalent data to that from an anechoic condition. The second enables the deconvolution of the individual effects of the pump and motor.

4.7.1 Removing Standing Wave Effects

The general standing wave equation given by equation (4.4.13) can be written as:

$$P_{x} = P_{o} \left(\frac{e^{-\gamma_{x}} + \rho_{t} e^{-\gamma(2L - x)}}{1 - \rho_{s} \rho_{t} e^{-2\gamma_{L}}} \right)$$
(4.7.1)

Where

$$P_{0} = \frac{Q_{s}Z_{s}Z_{0}}{Z_{s} + Z_{0}}$$
(4.7.2)

 P_{O} is the pressure fluctuation measured at the pump outlet when connected to an anechoic line of characteristic impedance Z_{O} .

The equation (4.7.1) can be solved from a set of four complex simultaneous equations. The technique is, however, not to be recommended as an accurate solution is dependant on exact values being available. Errors in measurement would result in significant errors in the solution. A solution based on the estimation of parameters by the method of Least-squares is more appropriate, due to its tolerence

- 66 -

against measurement errors. A suitable method employed in this solution is the 'Least-Squares Linear-Taylor Differential-correction' technique. Although a detailed references is provided by McCalla (57), the technique is reproduced in summary.

Assume the function:

$$y = f(x, C_0, C_1, \dots, C_m)$$
 (4.7.3)

Where x, y are relating variables and C_0, C_1, \ldots, C_m are non-linear independent parameters.

Assume also a set of data x_i , y_i , (i = 0, n), with y possesing an element of measurement error.

If the true values of the parameters were known, the residual error r_i , can be determined at each value of x_i . The true residuals are given by:

 $r_i = f(x, C_0, C_1, \dots, C_m) - y_i$ (i = 0, n) (4.7.4)

For a set of estimates of the unknown parameters, C'_k , the 'computed' residuals, R_i are given by:

$$R_{i} = f(x, C_{0}, C_{1}, \dots, C_{m}) - y_{i} \quad (i = 0, n)$$

The problem is to obtain improved estimates values of C_k , for the data x_i , y_i , the initial estimate C'_k and the computed residuals R_i . Provided that the initial estimates are sufficiently close, this can be accomplished by a differential correction technique based on Least-squares.

By expanding the function about $(C'_0, C'_1, \dots, C'_m)$ using the linear Taylor-Series expansion, the following is obtained:

$$f(x, C_0, C_1, \dots, C_m) = f(x, C'_0, C'_1, \dots, C'_m) + \frac{\partial f}{\partial C_0} (C_0 - C'_0)$$

$$+ \frac{\partial f}{\partial c_1} (c_1 - c_1) + \dots + \frac{\partial f}{\partial c_m} (c_m - c_m)$$

By using the relationships:

$$\frac{\partial f_{i}}{\partial c_{k}} = \frac{\partial f}{\partial c_{k}'} \begin{vmatrix} x = x_{i}, c_{k} = c_{k}' \end{vmatrix}$$

$$(4.7.7)$$

From the equations (4.7.3) to (4.7.7), and by minimising the square of the residual error r_i , the following relationship is derived.

$$c_{0}\sum_{i}\frac{\partial f_{i}}{\partial c_{k}}\frac{\partial f_{i}}{\partial c_{0}} + \dots + c_{m}\sum_{i}\frac{\partial f_{i}}{\partial c_{k}}\frac{\partial f_{i}}{\partial c_{m}} = -\sum_{i}\frac{\partial f_{i}}{\partial c_{k}}R_{i} \quad (k = 0, m)$$

$$(4.7.8)$$

The solution of equation (4.7.8), provides (C_0, C_1, \ldots, C_m), and is the amount of change required of (C'_0, C'_1, \ldots, C'_m) to obtain the 'true' parameter solution, (C_0, C_1, \ldots, C_m). If the required change for any parameter is larger than the accepted error term, the procedure is repeated using the new estimate.

The solution of equation (4.7.1), contains 5 complex variables. For a lossless line, the wave propagation constant is effectively dependant only on the frequency and speed of sound, in the fluid. The number of unknowns are thus reduced to 4. For a first estimate the speed of sound can be calculated from the effective bulk modulus. Although it is theoretically possible to obtain a solution to this equation, experience has shown that the technique is very prone to instability, when applied to an equation with a large number of unknowns. Better solution stability is obtained by re-arranging the equations to reduce the number of unknowns.

By expressing the pressure fluctuation P_x with respect to that at a chosen reference, P_d (x = x_d), the equation (4.7.1) is reduced to one containing only two complex unknowns:

$$\frac{P_{x}}{P_{d}} = \frac{e^{-\gamma x} + \rho_{t}e^{-\gamma(2L - x)}}{e^{-\gamma x_{d}} + \rho_{t}e^{-\gamma(2L - x_{d})}}$$
(4.7.9)

The complex parameters can be expressed in terms of its amplitude and phase components, where:

$$\rho_{s} = A_{s}e^{j\theta_{s}} \qquad \rho_{t} = A_{t}e^{j\theta_{t}}$$
$$P_{t} = A_{t}e^{j\theta_{t}} \qquad P_{d} = A_{d}e^{j\theta_{d}}$$

Using the above substitution, equation (4.7.9) can be expressed in terms of its amplitude relationships:

$$\frac{A_{x}}{A_{d}} = \sqrt{\frac{1 + (A_{t})^{2} + 2A_{t} \cos[2(\omega/c)(L - x) - \theta_{t}]}{1 + (A_{t})^{2} + 2A_{t} \cos[2(\omega/c)(L - x_{d}) - \theta_{t}]}}$$
(4.7.10)

The above equation can be written as:

$$f(A_t, \theta_t) = \frac{A_x}{A_d} = \sqrt{\frac{U}{V}}$$

Where:

$$U = 1 + (A_{t})^{2} + 2A_{t} \cos[2(\omega/c)(L - x) - \theta_{t}]$$
$$V = 1 + (A_{t})^{2} + 2A_{t} \cos[2(\omega/c)(L - x_{d}) - \theta_{t}]$$

The partial derivatives are:

$$\frac{\partial f}{\partial A_{t}} = \frac{1}{2(V)^{2}} \sqrt{\frac{V}{U}} \left(V \frac{\partial U}{\partial A_{t}} - U \frac{\partial f}{\partial A_{t}} \right)$$
(4.7.11)

Where:

$$\frac{\partial U}{\partial A_{t}} = 2A_{t} + 2Cos[2(\omega/c)(L - x) - \theta_{t}]$$

$$\frac{\partial V}{\partial A_{t}} = 2A_{t} + 2Cos[2(\omega/c)(L - x_{d}) - \theta_{t}]$$

$$\frac{\partial f}{\partial \theta_{t}} = \frac{1}{2(V)^{2}} \sqrt{\frac{V}{U}} \left(V \frac{\partial U}{\partial \theta_{t}} - U \frac{\partial f}{\partial \theta_{t}} \right)$$

$$(4.7.12)$$

Where:

$$\frac{\partial U}{\partial \theta_{t}} = 2A_{t} \sin[2(\omega/c)(L - x) - \theta_{t}]$$
$$\frac{\partial V}{\partial \theta_{t}} = 2A_{t} \sin[2(\omega/c)(L - x_{d}) - \theta_{t}]$$
$$\frac{\partial V}{\partial \theta_{t}} = 2A_{t} \sin[2(\omega/c)(L - x_{d}) - \theta_{t}]$$

Substitution of the equations (4.7.11) and (4.7.12) into (4.7.8), and employing the Least-square technique enables the solution of the line termination parameters A_t , and θ_t . The solution then proceeds to solve for the remaining unknowns.

The full standing wave equation (4.7.1) can similarly be written in terms of its amplitude and phase components:

$$\frac{A_{x}}{A_{0}} = \sqrt{\frac{1 + (A_{t})^{2} + 2A_{t}Cos[2(\omega/c)(L - x) - \theta_{t}]}{1 + (A_{t}A_{s})^{2} + 2A_{t}A_{s}Cos[-2(\omega/c)L + \theta_{t} + \theta_{s}]}} (4.7.13)$$

$$\frac{\theta_{x}}{\theta_{0}} = \tan^{-1} \left(\frac{\sin(-\omega x/c) + A_{t}Sin[(-\omega/c)(2L - x) + \theta_{t}]}{\cos(-\omega x/c) + A_{t}Cos[(-\omega/c)(2L - x) + \theta_{t}]} \right)$$

$$+ \tan^{-1} \left(\frac{A_{t}A_{s}Sin[(-2L)(\omega/c) + \theta_{t} + \theta_{s}]}{A_{t}A_{s}Cos[(-2L)(\omega/c) + \theta_{t} + \theta_{s}] - 1} \right) (4.7.14)$$

Where A_x , A_0 are the amplitude and θ_x , θ_0 the phase components of P_x , P_0 respectively. The above equation can similarly be written as:

$$f(A_s, \theta_s) = A_x = A_0 \sqrt{\frac{U}{V}}$$

Where:

$$U = 1 + (A_{t})^{2} + 2A_{t} \cos[2(\omega/c)(L - x) - \theta_{t}]$$
$$V = 1 + (A_{t}A_{s})^{2} + 2A_{t}A_{s} \cos[-2(\omega/c)L + \theta_{t} + \theta_{s}]$$

The partial derivatives are:

$$\frac{\partial f}{\partial A_0} = \sqrt{\frac{U}{V}}$$
(4.7.15)

$$\frac{\partial f}{\partial A_{s}} = -A_{0} \frac{\partial U}{2V^{2}} \sqrt{\frac{V}{U}} \frac{\partial V}{\partial A_{s}} \qquad (4.7.16)$$

$$\frac{\partial V}{\partial A_{s}} = 2A_{s}(A_{t})^{2} - 2A_{t}Cos[-2(\omega/c)L + \theta_{t} + \theta_{s}]$$

$$\frac{\partial f}{\partial \theta_{s}} = -A_{0} \frac{U}{2V^{2}} \sqrt{\frac{V}{U}} \frac{\partial V}{\partial \theta_{s}} \qquad (4.7.17)$$

$$\frac{\partial V}{\partial \theta_{s}} = 2A_{s}A_{t}Sin[-2(\omega/c)L + \theta_{t} + \theta_{s}]$$

Similar to the solution for the first two unknowns, substitution of the equations (4.7.15) to (4.7.17) into (4.7.8) and employing the Least-square technique, enables the solution of the remaining unknowns.

At this stage, the full amplitude spectrum has been recovered from the effects of the standing wave. Substitution of the unknown parameters into equation (4.7.14), gives the phase relationships. The next stage is that of unravelling the effects of wave superposition. This is handled in the next sub-section.

4.7.2 Uncoupling Wave Superposition Effects

Assume two periodic signals Y_1 and Y_2 , defined as follows:

$$Y_1 = A_1 Sin(\omega t)$$

$$Y_2 = A_2 Sin(\omega t + \sigma)$$

Superpositioning of the two sine waves results in Y, where:

- 72 -

$$Y = Y_1 + Y_2$$

= ASin($\omega t + \delta$)

Assume the superposition of the two waveforms of amplitudes A_1 and A_2 , at three different phase lag conditions. Let the resultant amplitude A, be A'_1 , A'_2 , A'_3 at the corresponding phase, δ of α , $\alpha + \varphi_2$, $\alpha + \varphi_3$. These conditions provide the equations:

$$(A'1)^{2} = (A_{1})^{2} + (A_{2})^{2} + 2A_{1}A_{2}Cos\alpha \qquad (4.7.18)$$

$$(A'2)^{2} = (A_{1})^{2} + (A_{2})^{2} + 2A_{1}A_{2}Cos(\alpha + \varphi_{2}) \qquad (4.7.19)$$

$$(A'3)^{2} = (A_{1})^{2} + (A_{2})^{2} + 2A_{1}A_{2}Cos(\alpha + \varphi_{3}) \qquad (4.7.20)^{2}$$

By using vector geometry, equations (4.7.18) to (4.7.20) gives:

$$\alpha = \tan^{-1} \left(\frac{\cos\varphi_2 - M(\cos\varphi_3 - \cos\varphi_2) - 1}{\sin\varphi_2 - M(\sin\varphi_3 - \sin\varphi_2)} \right)$$
(4.7.21)

$$A_2 = \frac{K}{A_1}$$
 (4.7.22)

$$(A_1)^4 + \left[2KCos(\alpha + \varphi_3) - (A'_3)^2 \right] (A_1)^2 + (K)^2 = 0$$
 (4.7.23)

Where:

$$K = \frac{(A'_{2})^{2} - (A'_{1})^{2}}{2\left[\cos(\alpha + \varphi_{2}) - \cos\alpha\right]}$$

$$M = \frac{(A'_{2})^{2} - (A'_{1})^{2}}{(A'_{3})^{2} - (A'_{2})^{2}}$$

$$(4.7.25)$$

Equation (4.7.23) is a quadratic equation in $(A_1)^2$, the solution of which provides two independant values. Further attempts to solve for A_2 would result in two dependant values. The two independant values are thus the individual amplitudes of the superimposed waveforms.

In the previous section, a Least-square technique was employed for the solution of the standing wave parameters. This was claimed to be more tolerant of measurement errors. The Least-square method, however, had the disadvantage that it would require data from a greater number of different phase conditions. Due to the complexity of the rig for which this technique was being developed, the additional work required would make this technique impractical. Furthermore, the equation describing wave superposition is much simpler than that for the standing wave equation containing only three unknowns.

CHAPTER 5 : COMPUTER IMPLEMENTATION

- 5.1 Introduction
- 5.2 Computer System Configuration
- 5.3 Suite of Programs
- 5.4 Datafile Structure
- 5.4.1 Parameter Datafile
- 5.4.2 Process Datafile
- 5.5 Program VFLGEN
- 5.6 Program VMODEL
- 5.7 Program VPLOT

5.1 Introduction

In chapters 3 & 4, and appendices A & B, the mathematical model for the vane pump was established, together with the techniques for solving the mathematical equations. The fundamental equation describing the various pump processes was shown (chapter 3) to be a non-linear first order differential equation. The solution of such an equation requires the use of time consuming numerical techniques (eg. Runge-Kutta method). It was also shown that under certain conditions, the equation could be approximated to a linear form, while in others a reduced form of the equation could be obtained to which a direct analytical solution was available. The solution of such equations are relatively quick, leading to significant savings in computational time. In order to exploit the time saving advantage, a separate algorithm is required in order to identify the conditions to which the specific equations are applicable, and to select the appropriate solution.

There are two conditions when the application of the time saving solutions are appropriate. The first condition is identified when the port flow effects are dominant over that of leakage, and the second condition for when there is no port flow. Identification of the first condition enables the application of the linearised flow-pressure equation, and the second condition identifies that to which a direct analytical solution exists. In this program, the function of testing for the appropriate conditions and the selecting of the appropriate solution types are implemented by the algorithm Selsol. In addition, the algorithm monitors the validity of the approximation, and the progress of the solution. The details of the various functions of the algorithm are detailed later in the chapter.

In addition to implementing the mentioned solution technique, the

- 76 -

FIG.5.2.1 COMPUTER SYSTEM CONFIGURATION

program incorporates a modular structure which enables the program to be easily modified. The data relating to the physical configuration are defined by a set of arrays. The arrays are generated by appropriate modules which can be easily modified, to take into account changes in pump configuration, whilst maintaining the general solution scheme. This feature is most beneficial in a design application as significant changes are required during the cause of development.

This chapter describes the implementation of the model in the form of a structured computer program. The 'top down' approach is applied, both in the documentation and structure of the programs. By this it is implied that the problem will be studied from a global to a particular point of view. In the second section, the computer system around which the programs are structured is described. This is followed by a description of the interconnection of the suite of programs comprising the complete computer implementation. The third to the seventh section provides the details of the individual programs and their algorithms, with the view of emphasising the program structure and not individual routines. These are documented locally in the program listings. To complete the documentation, program listings are provided in appendix C, and a typical simulation run and the associated outputs are presented in appendix D.

5.2. Computer System Configuration

The computer system is the Hewlett-Packard 9845B desk top computer option 204. This incorporates 120k byte of system ROM and 187k byte of available read/write momory for program and data, and an enhanced language processor, which permits execution speeds of three times that

FIG.5.3.1 PROGRAM INTERCONNECTION

of the standard model. The complete system schematic is shown in figure (5.2.1). Integral to the basic system is a graphics display with a 560 x 455 dot resolution, two cartridge mass-storage units of 0.2m byte each, a thermal printer and a QWERTY keyboard. The external peripherals supported were an HP9872A flat-bed plotter, a BENSON drum plotter and a HP9885M flexible disk drive of 0.5m byte storage capacity. The language available on these computers was an enhanced version of interpretive HP BASIC.

5.3 Suite of Programs

In this section, the general global structure of the suite of modelling programs for the vane pump is presented. The aim of which is to provide an appreciation of the program interconnections in relation to their processes, and the input and output requirements. In order not to distract the reader from the primary goal of this section, the details are covered separately in the sections that follow. The general structure of the program interaction is presented pictorially in figure (5.3.1).

Three programs constitute the main suite of modelling programs for the vane pump. In addition to these, there is a group of minor programs which deals with further processing of the fundamental simulation data. These are classed under the general heading of auxiliary programs. The programs are divided into three groups, data preparation, simulation and simulation output, these are provided by the programs VFLGEN, VMODEL and VPLOT respectively. Data transfer between programs are via datafiles stored on the mass-storage units and data generated by one program is accessed by another further down the execution tree. At the head of the flow diagram is the program VFLGEN, this is a highly interactive program which generates and edits the parameter datafile to a format required by the program VMODEL, further down the execution tree. The data is handled by this program in four separate groups, namely pump geometry, operating envelope, inlet groove data and outlet groove data. This enables an efficient data input and editing facility. At exit, the program generates or rewrites a datafile depending on whether the named datafile existed at the start of the program execution.

Further along the execution tree is the main modelling program VMODEL, this programs operates in two modes, 'Auto' and 'Manual'. The auto mode permits multiple batch simulations and automatic plotting of the simulated data (via VPLOT), without operator interaction. The manual mode permits only single simulation runs and no automatic plotting facility. Execution stops at the end of the simulation, and if graphical output is required, VPLOT must be manually loaded and run. All the data required for simulation is input via the parameter datafile. This is generally generated by VFLGEN, but can be generated by other means, provided the datafile meets the format requirements. The only required operator interaction is in setting up the auto or manual sequence modes. At the end of the execution, the program outputs the process datafile which contains the results of the simulation.

The final program in the basic series of programs is VPLOT. This program outputs the process data graphically onto one of three plotting devices, a visual display unit (VDU), drum plotter or a flat-bed plotter. As with the previous program VMODEL, this program operates in both auto and manual modes. Auto mode can be entered either manually, by the operator, or automatically as a continuation of the auto sequence initiated by the program VMODEL. If auto mode is initiated by VMODEL, the plotting device is set to the drum plotter, operator preference is permitted only in the manual mode, and when auto mode is initiated manually.

5.4 Datafile Structure

On the HP9845B system enhanced BASIC there are available two file types and four data types. The available file types are sequential and random. The data types are full precision, short precision, integer precision and string.

A sequential file type is one where data is stored or acquired from the mass-storage device, one data item at a time. In contrast, the random file has the advantage that data items need not be read sequentially from the start of the file. Data can be written to, or read from file in a random sequence of a pre-defined group of data items, called a record. The choice between one file type or another is dependant on application. If quick access to particular data items is required at random, the random file type is required, but this file structure is inefficient in the use of storage medium. As data is stored in records and its size fixed for a particular file, its size must be such as to enable storage of the largest group of data constituting a record. If the other records contain less data, empty spaces are left. Other storage inefficiencies relate to ill correlation between logical and physical record sizes.

The data type relates to the type and required precision of the data to be stored. For numerical data, it can be stored in full, short or integer precision. Full precision provides a twelve significant digit

- 82 -

File Type : Sequential Data Type : Full Precision

FIG.5.4.1 PARAMETER DATAFILE STRUCTURE

accuracy and an exponent range of -99 through 99. Short precision permits only an accuracy to six significant digits and an exponent range of -63 through 63. With integer precision only integer values in the range -32768 to 32767 are permitted. Besides numeric variables there are string variable. This is for storage of ASCII characters.

Storage requirements are different for the various types of data. For full precision 8 bytes of storage are required due to the higher degree of accuracy required. Short and integer precision requires, 4 bytes of storage per variable. A string character requires 1 byte per character. Where large arrays are involved, it is especially important that a lower precision data type should be defined if the higher precision is not required. This saves both mass-storage space and read/write memory.

5.4.1 Parameter Datafile

The general details of the datafile are presented in figure (5.4.1). The data in this datafile are contained in a single array, Data(*), of dimension 4 x 20. The symbol '*' denotes an array variable. The file type is sequential and the data type is full precision. Data is divided into four groups defining, pump geometry, operating envelope, inlet groove and outlet groove. Each data group is assigned one row of the data array.

The list below defines the allocation of the elements of the Data array and the variable represented.

Pump Geometry Parameters: Data(1,1) : Sdiam - Stator diameter (mm).

Data(1,2)	:	Rdiam	- Rotor diameter (mm).
Data(1,3)	:	L	- Rotor length (mm).
Data(1,4)	:	Awdth	- Abutment width (mm).
Data(1,5)	:	Aclar	- Abutment clearance (mm).
Data(1,6)	:	Vwdth	- Vane Width (mm).
Data(1,7)	:	Vclar	- Nominal vane tip clearance (mm).
Data(1,8)	:	Pdiam	- Inlet/outlet port diameter (mm).
Data(1,9)	:	Pangl	- Port angular position from datum (deg).
Data(1,10)	:	Abrad	- Cam abutment radius (mm).
Data(1,11)	:	Aarad	- Cam actuation radius (mm).
Data(1,12)	:	Aorad	- Cam operation radius (mm).
Data(1,13)	:	Aangl	- Cam actuation angle (deg).
Data(1,14)	:	Eodiam	- End-plate outer diam. (mm).
Data(1,15)	:	Eidiam	- End-plate inner diam. (mm).
Data(1,16)	:	Eclar	- End-plate clearance (mm).
Data(1,17)	:	Nseg	- Number of vane segments per cycle.
* Elements	15	through	20 of row 1 are undefined.

Operating envelope Parameters:

Data(2,1)	:	Speed	- Rotor speed (rpm).
Data(2,2)	:	Ipsure	- Mean input pressure (bar).
Data(2,3)	:	Opsure	- Mean outlet pressure (bar).
Data(2,4)	:	Cpsure	- Case pressure (bar).
Data(2,5)	:	Rho	- Fluid density (Kg/m^3) .
Data(2,6)	:	Eta	- Fluid viscosity (Ns/m ²)
Data(5,7)	:	Beta	- Fluid Bulk modulus (Ns/m ²)
Data(2,8)	:	Ildiam	- Inlet line diameter (mm).
Data(2,9)	:	Oldiam	- Outlet line diameter (mm).
Data(2,10)	:	Dcff	- Coefficient of discharge.
Data(2,11)	:	Pcav	- Cavitation pressure (bar).

- 85 -
* Elements 11 through 20 of row 2 are undefined.

Inlet Port Parameters:

Data(3,1)	:	Gdpth(1,1)- Hemispherical groove depth (mm).
Data(3,2)	:	Gcdim(1) - Hemispherical groove cutter diam. (mm).
Data(3,3)	:	Gastr(1,1)- Hemispherical groove start angle (deg).
Data(3,4)	:	Gdpth(1,2)- Square groove depth (mm).
Data(3,5)	:	Gcwth2(1) - Square groove width (mm).
Data(3,6)	:	Gastr(1,2)- Square groove start angle (deg).
Data(3,7)	:	Gdpth(1,3)- Triangular groove depth (mm).
Data(3,8)	:	Gcang3(1) - Triangular groove cutter angle (deg).
Data(3,9)	:	Gastr(1,3)- Triangular groove start angle (deg).
Data(3,10)	:	Gtype(1) - Groove type; 0:no, 1:hemispherical
		2:square; 3:Triangular

* Elements 11 through 20 of row 3 are undefined.

Outlet Port Parameters:

Data(4,1)	:	Gdpth(2,1)- Hemispherical groove depth (mm).
Data(4,2)	:	Gcdim(2) - Hemispherical groove cutter diam. (mm).
Data(4,3)	:	Gastr(2,1)- Hemispherical groove start angle (deg).
Data(4,4)	:	Gdpth(2,2)- Square groove depth (mm).
Data(4,5)	:	Gcwth2(2) - Square groove width (mm).
Data(4,6)	:	Gastr(2,2)- Square groove start angle (deg).
Data(4,7)	:	Gdpth(2,3)- Triangular groove depth (mm).
Data(4,8)	:	Gcang3(2) - Triangular groove cutter angle (deg).
Data(4,9)	:	Gastr(2,3)- Triangular groove start angle (deg).
Data(4,10)	:	Gtype(2) - Groove type; 0:no, 1:hemispherical
		2:square; 3:Triangular

* Elements 11 through 20 of row 4 are undefined.

File Type : Sequential Data Type : Short Precision

FIG.5.4.2 PROCESS DATAFILE STRUCTURE

5.4.2 Process Datafile

The general details of the process datafile are presented in figure (5.4.2). The datafile contains seven single dimension arrays of 360 elements each. Each array contains data relating to the fundamental pump processes of segment pressure, net segment leakage, net segment flow, and the inlet and outlet port flow and pressure history. The first element from each array corresponds to the rotor position at the rotor angular datum. Due to the symmetry of the pump, the arrays for a rotor rotation of only the first 180 degrees, need be defined. The process for the second half of the rotor cycle is a repetition of the first. The datafile is of the sequential type and the variables are stored in short precision format, in an effort to minimise storage requirements.

The list below defines the allocation of the elements of the Data array and the variable represented.

Process datafile parameters:

- P(*) Segment pressure array (N/mm²).
- Ll(*) Net total leakage into segment (mm³/s).
- Q(*) Net flow from segment (mm³/s).
- Ip(*) Input port pressure (N/mm²).
- Op(*) Output port pressure (N/mm²).
- If(*) Inlet port flow from port (mm³/s)
- Of(*) Outlet port flow from port (mm³/s).

PROGRAM : VFLGEN SEGMENT : MAIN

FIG.5.5.1 FLOW CHART OF PROGRAM VFLGEN : SHEET 1

4......

PROGRAM : VFLGEN SEGMENT : SUBPROGRAM

FIG.5.5.2 FLOW CHART OF PROGRAM VFLGEN : SHEET 2

- 90 -

5.5 Program VFLGEN

Description:

This program enables the generation and editing of the datafiles accessed by the main simulation program VMODEL. Program facility is selected by an interaction of the display facility and specially defined key functions. As an aid to data handling, data is handled in pages consisting of data groups describing pump geometry, operating envelope, inlet groove and outlet groove parameters. By means of the specially defined keys, pages are selected for display, parameters identified for input or editing, and outputs selected. In addition, the program performs a limited check for an overlap in groove lengths before outputting the datafile to mass-storage.

Program Structure:

The flow charts describing the program are shown in figures (5.5.1) and (5.5.2). The first program process is to define the mass-storage unit and to establish the data assignment list. The assignment list defines the association between the elements of the data array and the physical parameter. After this initialisation process, the program prompts for an input datafile name and a check is made of the status of the filename. If the filename has been assigned to a program, another filename is prompted, otherwise execution continues. If the filename is that of an existing datafile, the data is first read before proceeding with the actual data editing and input processes provided by subprogram Main, which is described by figure (5.5.2).

For the case of a new file, execution automatically branches to routine New. This routine prompts for data input and updates the display accordingly. No editing facility is available at this stage. On completion of this initial input process the program displays the first data page and awaits further execution. Selection of any one of the specially defined keys causes an immediate branching to the appropriate routine. On completion, the program awaits the next function to be selected.

The program permits nine function selection. Four functions are needed to identify any individual parameter. Two functions are required to advance and back step the data pages, and another two to position the cursor within the page. On identifying the parameter, selection of the 'Edit' function permits the replacement of the parameter value. The function 'Store' enables the storing of the edited or new datafile to mass-storage and the outputting of the data list to printer. If an error is encountered during the data check, the routine prints an error message and aborts further execution of this routine. Function 'List' outputs the same data listing and function 'Key', describes the key functions. On selection of 'Exit', key functions are disabled and program execution terminated.

5.6 Program VMODEL

Description:

This is the main program which simulates the flow and pressure states of the vane pump, and operates in two modes 'auto' and 'manual'. In the first mode the program performs batch processing consisting of a series of simulation runs and an optional automatic loading of the Plot program for immediate graphic output, without further operator intervention. In the manual mode the program enables only a single simulation run and termination of the program occurs following the generation of the process datafile. All input and output of data are

FIG.5.6.1 FLOW CHART OF PROGRAM VMODEL : SHEET 1

via datafiles. The required input data is contained in the parameter datafile and the output data is held in the process datafile. There is a limited operator entry at the start of program initialisation, but these entries are only for the setting of the mode of operation.

Program Structure:

Control Module - Sheet 1

The figure (5.6.1) shows the main control module which enables the different modes of operation, with the actual simultion processes being handled by the routine Main. The first process is that of program and system initialisation. This involves selecting system operating modes, defining default devices and variables. Following this, there is a prompt for the required operating mode and branching occurs accordingly. If manual mode has been selected, there is a further prompt for the input data filename. On input of a valid data filename the routine Main is called and executed. Program execution terminates at this point.

In auto mode a prompt requests the input and output data filename prefixes, and the upper and lower limits of the file numbers. The file names have a six character format, consisting of four alphanumeric characters followed by two numeric characters. The second to the fourth character of the parameter datafiles are assigned 'DAT' and that for process file 'GDT'. The first character is the filename prefix and is optional. Following the required inputs the program generates the first filename and check the mass-storage directory for availability. If the file exists, the data is read and routine Main is executed. On return, after the completion of routine Main, a check is made of the limit of the current file number. Another pass is performed, if the upper limit has not been attained, and progress if the limit has been reached. If plotting function has been selected, the program VPLOT is loaded and

Iteration step size and modelling constants are also defined at this stage

Generates array H(*) defining vane clearence at each rotor position

Generates array V(*) defining control volume at each rotor position

Generates array Vdita(*) defining change in swept volume at each rotor position

Generates array Area(*) defining port area at each rotor position

Initialises segment, inlet and outlet pressure arrays P(*),Ip(*),Op(*)

Re-entry point for next pass

Determine start value Assume leakage is a secondary effect at this point

FIG.5.6.2 FLOW CHART OF PROGRAM VMODEL : SHEET 2

- 95 -

FIG.5.6.3 FLOW CHART OF PROGRAM VMODEL : SHEET 3

FIG.5.6.4 FLOW CHART OF PROGRAM VMODEL : SHEET 4

The convergence factor indicates the variability between consecutive iterations of Of(*)

Algorithm requires a minimum number of iterations before executing convergence check

Convergence factor within defined limits

Convergence factor increasing

Branching at 1 for repass No additional pass if maximum number reached

FIG.5.6.5 FLOW CHART PROGRAM OF VMODEL : SHEET 5

FIG.5.6.6 FLOW CHART OF PROGRAM VMODEL : SHEET 6

executed, otherwise program execution is terminated.

Simulation Module - Sheet (2-6)

The flow chart of the simulation module are presented by figures (5.6.2) to (5.6.6). This routine is the master routine controlling all the processes of the simulation process, with the bulk of the computation being assigned to minor modules. The routine starts with the reading of the parameter datafile and the execution of five subroutines. The first four routines Vheight, Vctl, Vdlt and Area generates the fundamental geometrical arrays whose values are required repeatedly during the execution of the program. This has the advantage of savings in performing repeated computation and a simpler program structures, but a larger run time memory. The fifth routine Init sets up the initial port and segment pressure arrays. Inlet and outlet pressure arrays are set at their mean pressure levels, and the segment pressure array is set at levels corresponding to a condition relating to incompressible fluid, zero port losses and steady port pressures.

The next process is to determine the start value for computation. As a first approximation, the program assumes a condition where leakage is a secondary effect and attempts the solution under linear condition. The program computes the first five points corresponding to an advance in rotor angular position and assigns the start value to the mean level calculated. Following this, a check is made to test for an improbable condition where the start value is greater than the inlet pressure. If the start value is improbable, an alternative start value is calculated. The start value is taken to be the mean inlet pressure less orifice losses.

Once the start value has been established, the calculation of the segment pressure history can be performed. This is done in blocks

- 100 -

corresponding to sectors. Within each block, routine Selsol is called and the segment pressure is determined at each rotor step. As a precaution against rounding off error, the adjacent points of sectors are approximated. The flow chart is shown in figure (5.6.3).

After the full segment history has been calculated, the routine Smooth is called to process the array P(*). This routine is effectively a low pass filter which removes discontinuities arising from different solution techniques used in computing the array. The effect of which is to improve the convergency of the arrays. The execution of Gdatl that follows, calculates the segment flow and leakage arrays together with the port flows. The inlet and outlet flow arrays are similarly smoothed by the subsequent execution of routine Smooth. The next routine to be executed is Psure which calculates the line flow arrays simulating the flow into an anechoic line and termination. The next two executions of Smooth processes the input and output flow arrays. The last process shown on this sheet, figure (5.6.4), is a branching involving the convergence test.

For the first pass, the execution by-passes the convergence test and directly stores a segment of the outlet flow array. This data is required in the calculation of the convergence factor, in subsequent runs when a convergency test is performed. Convergency is defined in terms of the variability in the outlet flow array between consecutive passes. The first test is that of satisfying the minimum pass criteria. If the minimum number of runs has not been performed the test is terminated by a branching and an outlet flow array segment is stored. If the first two conditions are satisfied and the convergence factor is within acceptable limits execution successfully proceeds to the next stage of the simulation. This also occurs should a divergence in

FIG.5.6.7 FLOW CHART FOR PROGRAM VMODEL : SHEET 7

- 102 -

the outlet flow array be detected. For the case where both tests are negative, the outlet array segment is stored and another pass is performed, provided the maximum number of permitted passes has not been exceeded. These flow paths can be seen in figure (5.6.5).

Once convergence has been accepted, the program proceeds with the correction of the segment array for the duration when the vane passes below the abutment. Depending on the checklist variable, a detailed listing is output of the fundamental arrays. The next stage concerns the generation of the output process datafile. The output data filename is first tested for availability. If the filename is unassigned, the program proceeds by reducing the size of the output arrays and writing these out to mass-storage. Following this, logical assignments are closed and the routine returns to the calling control module. If the filename was initially assigned to another datafile, it is purged before a new datafile is generated. For the case where the filename was assigned to a program file, execution is aborted.

Select Solution Module - Sheet (7)

This routine identifies the solution type and controls the solution at each iterative point. The general equation defining the process is non-linear and its solutions can be very time comsuming. Under particular conditions, the equation can be simplified to a linear condition, for which solutions are more readily available. The linear solution can be applied when there is no port flow and when leakage is a secondary effect. In this algorithm a third technique, the approximate solution, is also used. This solution technique is used on failure of the non-linear solution, and at the end of the final stages of the cycle, when there is little change of segment history and is classed as a non-linear condition. Attempts to solve directly during

- 103 -

PROGRAM : VMODEL SEGMENT : SUBPROGRAM

FIG.5.6.8 FLOW CHART OF PROGRAM VMODEL : SHEET 8

- 104 -

this period is time consuming and unnecessary. The approximate solution merely assigns the current solution to that of the previous step.

The algorithm starts by attempting to classify the solution type and branching accordingly, to the appropriate routine and can be seen in figure (5.6.7). Taking the case of an identified linear condition, the routine first initialises the error status variable and enables the on error interrupt. The on error interrupt functions by assigning the error status variable to 'l' on encountering a mainframe error, and in this routine, is brought about due to an overflow in the variable specification. Following the initialisation, routine Splin is called and a linear case solution is attempted. On return, the on error facility is disabled and the error status variable is inspected. If no error has occured, the solution is accepted and execution returns to the calling routine. If an error is detected during the linear solution the non-linear solution results in a branching to the approximate solution.

The case for an initially identified non-linear condition is similar to the linear case, except that the routine Spnlin is called instead of Splin. Failure of this solution results directly in an approximate solution.

Non-Linear Solution Module - Sheet (8)

This routine solves the flow-pressure equation for the non-linear condition. The routine is primarily an algorithm performing the Runge-Kutta-Merson method to order four for the solution of differential equations. With this method, there is a danger of partial instability which arises due to an insufficiently small step size being used. Computing throughout at the minimum step size would prove extremely time consuming. A direct variable step size iteration algorithm cannot be implemented without making the program structure extremely complicated and increasing the computational load. In this algorithm a pseudo-variable step method is employed. Each physical step is sub-divided into sub-steps depending on the error term, and at each sub-step the variables are linearly interpolated and the solution determined using the Runge-Kutta-Merson method. This is repeated till the full physical step is reached.

The routine starts with a definition of the iterative constants which indicates the minimum step size, initial step size and acceptable error magnitude. The routine Set that follows determines the gradient of the parameters for which interpolation is required, during the sub-step. The routine next enters a 'For-Next' loop to calculate the solution at each sub-step. Within the loop, the routine Intval calculates the variables at the sub-step and the coefficients of the Runge-Kutta-Merson method and the error term. If the error term is within acceptable limits, execution continues till the end of the physical step. For the case of unacceptable error, the step size is halved, provided the minimum step size has not been reached, and restarts at the new step size. If the minimum step size has been reached, the execution continues at the greater level of error. At the end of each step, a check of the error status variable is performed and the routine aborts if the variable has been set.

At the end of the execution, a check is made of the solution for cavitation level, and is adjusted accordingly.

Linear Solution Module - Sheet (9-10)

For the linear solution condition there are two possible cases. The first is that for zero port flow and the second that for when leakage flow is a secondary effect. The routine Splin checks for these two

- 106 -

PROGRAM : VMODEL SEGMENT : SUBPROGRAM

Provides direct solution

Computational error occured Abort execution

Calculates vane tip leakage at rotor position

FIG.5.6.9 FLOW CHART OF PROGRAM VMODEL : SHEET 9

PROGRAM : VMODEL SEGMENT : SUBPROGRAM

Determine leakage at start of step

Determine constants K₁₁ and K₁₂

See appendix B for details of algorithm

Computational error occured during execution Abort routine

Determine leakage at

Acceptable leakage difference between estimate and corrected leakage value

Repeat pass if maximum number not exceeded

FIG.5.6.10 FLOW CHART OF PROGRAM VMODEL : SHEET 10

conditions and executes the appropriate solution algorithm.

The flow chart of the main driver routine Splin is shown in figure (5.6.9). This routine identifies the port flow condition by checking on the available flow area. For areas greater than zero, routine Acond is selected, and for all other conditions routine Bcond is selected. Following the execution of Acond or Bcond the solution is checked for the cavitation condition and returns to the calling routine.

The routine Bcond is a relatively simple routine. Execution of Solve2 provides the exact analytical solution under the set of conditions. This is followed with a check on the error status and the calculation of leakage at step end. The leakage is required as a basis for testing for the solution condition which, unlike in the other solutions, is not calculated in the intermediate stages of this solution.

The routine Acond begins with an execution of Leak to determine the leakage at the last step. This is used to determine the constants K_{11} and K_{12} at the beginning of the step. Execution proceeds with the solution of the equation and returns for an error status check. The detailed algorithms and solution techniques are contained in appendix C. These are presented in the appendices so as not to distract the reader from an appreciation of the fundamental objectives. The routine continues with another execution of Leak which is used to determine the accuracy of the initial estimate of K_{11} and K_{12} . If the estimate is acceptable, the routine terminates and returns to the calling routine, otherwise another attempt is made at the new estimates of K_{11} and K_{12} . The flow chart is seen in figure (5.6.10).

PROGRAM : VPLOT SEGMENT : MAIN

FIG.5.7.1 FLOW CHART OF PROGRAM VPLOT : SHEET 1

PROGRAM : VPLOT SEGMENT : MAIN

Each plotting process calls three routines which sets the plotting limits, automatic scaling, plots and annotates graphs

FIG.5.7.2 FLOW CHART OF PROGRAM VPLOT : SHEET 2

- 111 -

5.7 Program VPLOT

Description:

The outline of the program VPLOT is described by flow charts shown by figures (5.7.1) and (5.7.2). This program outputs graphically the process simulation data output by the simulation program VMODEL. This takes the form of five graphs showing the segment pressure history, net segment leakage, net segment flow, port flow ripples and port pressure ripples. A choice of two operating modes and three plotting mediums is available. In auto mode the program can be initiated by program VMODEL or manually by the operator. Auto mode permits batch data processing of the graphical output and with manual mode datafiles are processed individually. The plotting options available are; visual display, drum plotter and a flat bed plotter. In visual display mode a hard copy is available via the internal printer.

Program Structure:

The first process involves the defining of the mass-storage unit and the default plotting device. If the auto status variable, has already been set by the previous program, execution branches to the auto sequence routine and output is to the default plotting device. For the other cases, the program prompts for the required plotting device and operating mode. Following this, branching takes execution to the auto or manual routines.

In manual mode the program logic is relatively simple. The operator is prompted for the data filename and following a check on the validity of this entry, the routine Plot is called, which performs the reading of the datafile and graphing processes. Failure of the check causes a request for another filename. On completion of the Plot routine the program terminates.

- 112 -

In auto mode, the operator is prompted for the filename prefix and the lower and upper limits of the data filenames. The data filename has a format consisting of four alphanumeric characters followed by two numeric characters (eg. VGDT24). The program scans the mass-storage unit for datafiles with names specified within the upper and lower limits. If a file exists, the routine Plot is executed, otherwise the next filename is inspected. On reaching the upper limit the program execution is terminated.

Routine Plot is the main graphics routine. The routine starts with a reading of the datafile followed by a scaling operation which converts the data to appropriate engineering units. The subsequent stages involves the actual plotting processes which is performed by three different routines. These routines set the appropriate limits, performs automatic scaling of axes and controls the paper feed processes, while taking into account the plotting device and mode selected.

CHAPTER 6 : STANDARD PUMP SIMULATIONS

6.1 Introduction 6.2 Line Pressure Effects 6.2.1 Pressure Effects on Segment History 6.2.2 Pressure Effects on Flow Ripple 6.3 Speed Effects 6.3.1 Speed Effects on Segment History 6.3.2 Speed Effects on Flow Ripple 6.4 Vane Tip Clearance Effects 6.4.1 Vane Tip Effects on Segment History 6.4.2 Vane Tip Effects on Flow Ripple 6.5 Fluid Viscosity Effects 6.5.1 Viscosity Effects on Segment History 6.5.2 Viscosity Effects on Flow Ripple 6.6 Fluid Bulk Modulus Effects 6.6.1 Modulus Effects on Segment History 6.6.2 Modulus Effects on Flow Ripple 6.7 End-Plate Clearance Effects 6.7.1 End-Plate Effects on Segment History 6.7.2 End-Plate Effects on Flow Ripple 6.8 General Conclusions

- 114 -

6.1 Introduction

In this chapter the effects of some basic operating parameters are investigated for the standard pump, using the pump model computer program. This study concentrates on the effects of line pressure, shaft speed, vane tip clearance, end-plate clearance and fluid constants. In these simulations, parameters are investigated in the range normally encountered in practice. In a radial vane pump, end-plate clearances are typically very small and can, therefore, be neglected. Except for the simulations relating to the study of end-plate clearance effects, all other simulations were made at zero end-plate clearances. The segment pressure history and the flow ripples are good indicators of the total potential for noise generation of the pump. The segment pressure history indicates the character of the case excitation, and flow ripple variations that of the fluid borne noise.

Fluid constants are primarily a function of fluid pressure and temperature. Variations in either of these parameters affects the fluid viscosity, density and bulk modulus. In addition, the presence of entrained air may significantly reduce the bulk modulus. The effects of fluid density are not investigated. Under conditions of constant operating temperature and pressures, within 3000 bars, fluid density does not change significantly.

The fluid constants used in these simulations are for Tellus 37 at the operating temperature of 45 degrees Centigrade. In these simulations, the fluid constants are varied independantly so as to enable a study of the individual effects. It will, however, be demonstrated that within the limits of the operating conditions, the fluid constants produce only a secondary effect, when compared with those due to operating conditions and pump geometry.

- 115 -

6.2 Line Pressure Effects

In this section the effects of mean line pressures are studied in relation to segment pressure history and the port flow ripple. For this study four simulations were made, at mean outlet line pressures of 103, 138, 172 and 207 bars. In a study of the effects of mean line pressures, it is sufficient to vary only one line pressure. The process is primarily dependant on the differences between the mean inlet and outlet levels, at normal operating conditions. The fluid constants for density, viscosity and bulk modulus were 861 Kg/m², 0.025 Ns/m² and 1766 MN/m² respectively. These conditions relate to an operating temperature of 45 degrees and a pressure of 138 bars. The mean inlet line pressure was 6.3 bars, and all other parameters were held constant.

6.2.1 Pressure Effects on Segment History

The figure (6.2.1) shows the effects of mean outlet line pressure on the segment pressure history. The plots are drawn on a percentage scale where the mean inlet pressure is zero and the mean outlet pressure is one hundred percent.

In the rotor angular position of 0 to 45 degrees, the event relates to that of the first sector (ref. section 3.2). For the greater part of this sector history, the segment communicates directly with the inlet port. At the rotor position of approximately 37 degrees, the trailing vane has almost completely swept pass the port. Due to the net leakage into the segment, the segment pressure begins to rise. This continues completely into the second sector and the initial stages of the third sector. At the position of 97 degrees, the segment pressure is seen to

- 117 -

: Mean Inlet Pressure : Shaft Speed : 5.3 bar 2400 rpm

Fig.6.2.2 MEAN LINE PRESSURE EFFECTS ON FLOW RIPPLE rise very sharply. The pressure differential between the port and segment volume causes a back-flow of fluid, from the outlet port to the segment volume, which is taken up by the compressibility of the fluid. Once the segment volume has attained the full port pressure, the segment pressure remains fairly constant for the rest of the third sector and the majority of the fourth sector. At the angular position 173 degrees the segment cycle effectively ends. The segment is swept pass the outlet abutment and emerges into the inlet of another cycle.

On this scale the plots generally coincide, with the exception of the history at the 157 degree rotor position. Across the port there is a pressure difference due to orifice effects. This is a function of flow rate. At high outlet pressures, this pressure is a small percentage of the total pressure range and in comparison not significant. The effect of increasing the mean line pressure is, therefore, to increase linearly the scale of the pressure history.

6.2.2 Pressure Effects on Flow Ripple

The figure (6.2.2) shows the port flow ripple as a percentage of the mean flow at the four different levels of line pressures. Due to the symmetry of the vane segments, the flow patterns repeat at angular intervals corresponding to a vane pitch. For an eight vane machine the vane pitch is 45 degrees.

At the inlet port the flow variations are dominated by the modelled leakage variations, and at the outlet by the compressibility effects. Inlet variations were small in comparison with the mean flow levels. With the outlet at 103 bars, the inlet peak to peak ripple was 2.95 percent. This rose marginally in equal steps to 2.97 percent at the

- 119 -

pressure of 207 bars.

At the outlet, however, flow variations were more significant. At 103 bars, the peak to peak flow ripple was 13.4 percent, rising to 21.9 percent in equal intervals. The dominant flow variations correspond to the period of rapid segment pressure increase. The effects of an increase in line pressure is to increase the level of fluid required to raise the segment pressure to that of the outlet, at the moment of initial port communication, thus resulting in an increase in peak to peak flow ripple. An approximate doubling of pressure levels results in an increase of 0.7 percent for the inlet flow ripple and 63.4 percent for the outlet.

6.3 Speed Effects

This section looks at the effects of shaft speed on segment pressure and flow ripple. For this study four simulations were performed at speeds of 2100, 2400, 2700 and 3000 rpm. The fluid constants for density, viscosity and bulk modulus were 861 Kg/m², 0.025 Ns/m² and 1766 MN/m^2 respectively. These conditions relate to an operating temperature of 45 degrees Centigrade and a pressure of 138 bars. The mean inlet line pressure was 6.3 bars, and all other parameters were held constant.

6.3.1 Speed Effects on Segment History

The figure (6.3.1) shows the effects of shaft speed on the segment pressure history. The plots generally coincide except for the region corresponding to the rotor position of 37 to 97 degrees. In this region

- 121 -

Fig. 6.3.2 SHAFT SPEED EFFECTS ON FLOW RIPPLE the segment volume does not communicate directly with either of the ports. The segment is pressurised by the net leakage into the segment, via the leakage paths across the vane tips and end-plate. At lower speeds the segment pressure levels are generally higher, at any given rotor position, than at higher speeds. The net rate of leakage into the segment, in this rotor position, is independent of speed. At lower speeds the event occurs over a longer time period. This results in a greater leakage flow into the segment and pressurisation at an earlier rotor position.

6.3.2 Speed Effects on Flow Ripple

The figure (6.3.2) shows the inlet and outlet port flow ripple as a percentage of mean flow, at the different shaft speeds. At a speed of 2100 rpm, the inlet and outlet peak to peak flow ripple was 2.94 and 16.8 percent respectively. With an increase in speed there is a slight increase in the magnitude of the peak to peak ripple to 2.97 percent for the inlet and 17.6 percent for the outlet. This corresponds to an increase of 1.0 and 4.8 percent, in the inlet and outlet flow ripple levels respectively, for a 43 percent increase in shaft speed. The marginal increase in outlet flow ripple can be related directly to compressibility effects. At the moment of initial port communication, the segment pressures are lower at higher speeds. This requires a greater volume of fluid for segment pressurisation to bring the segment to full port pressure.

Fig.6.4.1 VANE CLEARANCE EFFECTS ON SEGMENT HISTORY

6.4 Vane Tip Clearance Effects

In this section the effects of the vane tip clearance on the segment pressure history and flow ripple are investigated. For this study four simulations were made at increasing vane tip clearances of 0.03, 0.04, 0.05 and 0.06 millimetres. The fluid constants for density viscosity and bulk modulus were 861 Kg/m², 0.025 Ns/m² and 1766 MN/m² respectively. These conditions relate to an operating temperature of 45 degrees Centigrade and a pressure of 138 bars. The mean inlet line pressure was 6.3 bars, and all other parameters were held constant.

6.4.1 Vane Tip Effects on Segment History

The figure (6.4.1) shows the effects of vane tip clearance on the segment pressure history. Differences in the pressure history can be observed for the rotor position 37 to 97 degrees. As previously described, the behavior in this region is dominated by the net leakage flow available for segment pressurisation. At higher vane clearances, segment pressurisation occurs earlier due to a larger net leakage flow. At the larger vane clearances, a plateau is observed in the rotor position of around 67 degrees. In this position, the inlet and outlet ports are separated by two vanes. For a condition of equal vane clearance and zero end-plate leakage, the maximum segment pressure attained when full fluid compression has occured would be half that of the combined mean port pressures. Under these conditions, the net flow into the segment is zero. With small vane tip clearances, this plateau is not observed due to insufficient flow being available for full fluid compression to occur.

: Mean Inlet Pressure : Mean Outlet Pressure : :Shaft Speed : 6.3 bar 138 bar 2400 rpm

> Fig.6.4.2 VANE CLEARANCE EFFECTS ON FLOW RIPPLE

6.4.2 Vane Tip Effects on Flow Ripple

In figure (6.4.2), the effects of vane tip clearance on the flow ripple are presented. At a vane clearance of 0.03 millimetres, the inlet flow ripple was 3.2 percent. This falls to 2.5 percent at the clearance of 0.06 millimetres. A similar effect is observed at the outlet. Flow ripple values were 20.4 and 13.0 percent for the vane clearance of 0.03 and 0.06 millimetres respectively.

At the outlet, the dominant factor affecting the peak to peak ripple is the level of pre-compression before the segment is exposed to the outlet port. With larger vane clearances, the segment achieves a higher level of pre-compression before direct communication is achieved. This reduces the back-flow required to take the segment up to the full line pressure, and thus reduces the outlet flow ripple. The mechanism dominating the inlet flow ripple is leakage. At larger vane clearances, the flow fluctuation is greater, but there is a decrease in the peak to peak values.

6.5. Fluid Viscosity Effects

In this study the effects of fluid viscosity on the segment pressure and flow ripple are investigated. Two simulations were made at levels of 0.024 and 0.03 Ns/m², corresponding to a fluid temperature of 45 degrees Centigrade and pressures of 69 and 207 bars respectively. The other fluid constants of bulk modulus and density were 1766 MN/m^2 and 861 Kg/m² respectively were kept constant. The shaft speed, mean inlet pressure and mean outlet pressure were 2400 rpm, 6.3 bars and 138 bars respectively.

Fig.6.5.1 FLUID VISCOSITY EFFECTS ON SEGMENT HISTORY

: Mean Inlet Pressure : Mean Outlet Pressure : Shaft Speed : 6.3 bar 138 bar 2400 rpm

> Fig. 5.5.2 FLUID VISCOSITY EFFECTS ON FLOW RIPPLE

6.5.1 Viscosity Effects on Segment History

The figure (6.5.1) shows the effect of fluid viscosity on the segment history. The effect of fluid viscosity changes is similar to that observed due to changes in vane tip clearances. A slight delay in the segment pressurisation is observed at higher viscosity level. A higher viscosity condition corresponds to that of a smaller vane clearance. The greatest effect is seen at the rotor position 37 to 97 degrees. Description of the mechanism affecting segment pressurisation in this region for vane tip effects described in the previous section is appropriate to the effects observed here.

6.5.2 Viscosity Effects on Flow Ripple

The figure (6.5.2) shows the effects of fluid viscosity on flow ripple. As with segment pressure, the effects on flow ripple are similar to that due to vane clearance. The increase in fluid viscosity results in a marginal increase in the level of inlet and outlet flow ripple. Again, a description of the mechanism of the effects observed due to vane clearance are appropriate to that of viscosity. As with the effects on segment pressures, viscosity effects in this range are secondary in comparison to those due to changes in operating conditions and vane clearances.

Fig. 6.6.1 FLUID BULK MODULUS EFFECTS ON SEGMENT HISTORY

: Mean Inlet Pressure : Mean Outlet Pressure : Shaft Speed : 6.3 bar 138 bar 2400 rpm

> Fig.6.6.2 FLUID BULK MODULUS EFFECTS ON FLOW RIPPLE

6.6. Fluid Bulk Modulus Effects

The effects of fluid bulk modulus are shown by three simulations at 1688 and 1805 and 868 MN/m^2 . The first two relate to a fluid temperature of 45 degrees Centigrade and pressures of 69 bars and 207 bars respectively. The presence of entrained air can significantly reduce the effective bulk modulus. The third simulation studies the effects of a 50 percent reduction in effective bulk modulus. The other fluid constants of viscosity and density were 0.025 Ns/m^2 and 861 Kg/m² respectively, were kept constant. The shaft speed, mean inlet pressure and mean outlet pressure were 2400 rpm, 6.3 bars and 138 bars respectively.

6.6.1 Modulus Effects on Segment History

The effects of changes in bulk modulus on segment pressure is shown in figure (6.6.1). Bulk modulus effects are most evident in the rotor position of 37 to 97 degrees. At lower bulk modulus values, a greater amount of leakage is required to pressurise the segment due to the greater compressibility of the fluid. The consequence of this is to delay the pressurisation of the segment. Within the simulated ideal conditions, the effects are hardly noticeable. At the 50 percent level, however, the segment pressurisation is significantly retarded.

6.6.2 Modulus Effects on Flow Ripple

The figure (6.6.2) shows the effects of bulk modulus on flow ripple. From the previous simulations, the main factor affecting the inlet flow ripple levels was leakage. Due to this, little change is visible in

- 133 -

Fig.6.7.1 END-PLATE CLEARANCE EFFECTS ON SEGMENT HISTORY the inlet flow ripple. The effect of an increase in bulk modulus is to reduce the amount of back-flow required to pre-compress the fluid in the segment, at the point of initial communication with the outlet port. An increase in bulk modulus therefore results in a reduction in the flow ripple levels. Within the ideal range these effects are secondary in comparison with those due to the changes in operating conditions and vane clearances. At the reduced bulk modulus value, however, the flow ripple levels shows an increase of over 76 percent.

6.7 End-Plate Clearance Effects

In this section the effects of end-plate clearances on the segment pressure history and flow ripple are investigated. For this study four simulations were made at increasing end-plate clearances of 0.02, 0.03, 0.04 and 0.05 millimetres. The fluid constants for density, viscosity and bulk modulus were 861 Kg/m², 0.025 Ns/m² and 1766 MN/m² respectively. These conditions relate to an operating temperature of 45 degrees Centigrade and a pressure of 138 bars. The mean inlet line pressure was 6.3 bars, and all other parameters were held constant.

6.7.1 End-Plate Effects on Segment History

The figure (6.7.1) shows the effects of end-plate clearances on the segment pressure history. Differences in the pressure history can be observed for the rotor position 37 to 97 degrees. The presence of end-plate leakage reduces the net leakage into the segment available for segment pressurisation. With high end-plate clearances, it is possible for the net leakage to approach zero. This is especially so

: Mean Inlet Pressure : Mean Outlet Pressure : :Shaft Speed : 6.3 bar 138 bar 2400 rpm

> Fig.6.7.2 END-PLATE CLEARANCE EFFECTS ON FLOW RIPPLE

when the vane tip clearance is small. The effect of end-plate clearance is therefore to delay the pressurisation of the segment volume and thus increase the level of pressure mis-match at the point of initial port communication.

6.7.2 End-Plate Effects on Flow Ripple

In figure (6.7.2), the effects of end-plate clearances on the flow ripple are presented. At a vane clearence of 0.03 millimetres, the inlet flow ripple was 2.95 percent. This rises marginally to 2.98 percent at a 0.06 millimetre clearance. A similar effect is observed at the outlet. Flow ripple values were 17.4 and 23.8 percent for the clearance of 0.03 and 0.06 millimetre respectively. The general effect of an increase in end-plate clearance is to increase the inlet and outlet flow ripple. In comparison, the effects on the inlet ripple is negligible.

As explained in the previous studies, the increase in the level of mis-match between segment and port pressures leads to an increase in outlet flow ripple.

6.8 General Conclusions

The purpose of the first three and the sixth simulations involving speed, pressure, vane clearances and end-plate clearance was to study qualitatively the effects of those parameters on the pump output. The two additional simulations, looking at the effects of fluid viscosity and bulk modulus were to demonstrate the secondary effects of these parameters, within the conditions of interest.

- 137 -

The behavior under the effects of speed and pressure are widely known for hydraulic pumps in general. The correlation with the computer model serves as an initial confirmation of the validity of the model.

In normal applications, it is an accepted practice to increase line pressures in preference to increasing the shaft speed, when a greater power output is required. This has been shown to be more beneficial in terms of a lower noise potential, Wusthof et al.(58). This effect has been quantified in the earlier simulations. Power output from a hydraulic pump is a product of line pressure and flow. It has been shown that for a doubling of line pressures, there was an increase in outlet flow ripple of 63.4 percent. The doubling of shaft speed, corresponding to a doubling of flow rate and, at least, a doubling of flow ripple magnitudes. There is therefore an advantage in increasing pressure over speed as a means of increasing power output, in the interest of a lower noise potential.

CHAPTER 7 : RELIEF GROOVES

7.1	Introduction
7.2	Groove Profiles
7.3	Groove Profile Effects
7.3.1	Profile Effects on Segment History
7.3.2	Profile Effects on Flow Ripple
7.4	Groove Length Effects
7.4.1	Length Effects on Segment History
7.4.2	Length Effects on Flow Ripple
7.5	Inlet Groove Effects
7.5.1	Inlet Effects on Segment History
7.5.2	Inlet Effects on Flow Ripple
7.6	Speed Effects
7.6.1	Speed Effects on Segment History
7.6.2	Speed Effects on Flow Ripple
7.7	Line Pressure Effects
7.7.1	Pressure Effects on Segment History
7.7.2	Pressure Effects on Flow Ripple
7.8	End-Plate Effects
7.8.1	End-Plate Effects on Segment History
7.8.2	End-Plate Effects on Flow Ripple
7.9	Optimum Groove Criteria

7.1 Introduction

Relief grooves are resistive flow paths which communicate between the segment volume and the inlet or outlet port area. It has been shown by Taylor (59) and Kelsey et al.(60) that by the application of correctly designed relief grooves, significant reduction in output flow ripple can accrue. Relief grooves permit the segment pressure history to be profiled, enabling the removal of any sudden increases in segment pressures due to pre-compression mis-match between segment and port pressures. The effect of this is to reduce the fluid flow ripple which is a major source of fluid borne noise (FBN).

In this chapter, three different groove profiles are investigated in relation to their effect on the segment pressure history and the flow ripple. The effects of speed, line pressures and end-plate leakage on optimum groove performance are investigated.

7.2 Groove Profiles

In practice there are three commonly used groove types. These are all sloping, and hemispherical, triangular or square in cross-section. These are assumed to possess a linear relationship for groove depth to groove length. This is readily achieved in manufacture. Details of the groove parameter definitions and their geometrical relationships are provided in appendix (A.2).

The figure (7.2.1) shows the cross-sectional area available for flow and figure (7.2.2) the change in cross-sectional area, for the three groove profiles plotted as a function of groove position. The graphs were generated for a condition of unit groove width at the position

FIG.7.2.1 GROOVE FLOW AREA VS GROOVE POSITION

FIG.7.2.2 CHANGE IN GROOVE FLOW AREA VS GROOVE POSITION

of maximum flow area. These reveal a fundamental difference in the groove profile characteristics which must be considered when specifying a profile type.

The primary differences in the three profiles lies in the way the flow area changes with groove position. In the case of the square sectioned groove, the rate of increase in flow area with position is constant. This is not so for the triangular and hemispherical sectioned grooves. The initial increase in flow area for the hemispherical groove is greater than that for the triangular groove. This can be seen in figure (7.2.2).

Further differences occur in the way increases in flow area relate to their fundamental parameters. An increase in depth of a square section groove results in a proportionate increase in flow area. The increase in flow area with groove cutter angle for a given depth, in the case of the triangular section, and the increase in groove cutter diameter, in the case of the hemispherical groove, does not produce corresponding increases in flow area. In practice when cutter angles are in the region of 30 to 60 degrees, the behavior for the triangular section is approximately linear in this respect.

7.3 Groove Profile Effects

In this section the effects of groove profile is studied in relation to segment pressure history and the port flow ripple. The data for this study consists of data from four simulations. The first is for the original pump without any relief groove, and the others are for the same pump but incorporating an outlet groove for each of the three groove type studied. The four simulations were made at the same

- 143 -

8

.

Fig.7.3.1 OUTLET GROOVE PROFILE EFFECTS ON SEGMENT HISTORY

operating conditions and all other unspecified parameters were kept constant. The outlet grooves had the same maximum flow area of 7.5 square millimetres, an angular groove length of 20 degrees and the same maximum groove width.

7.3.1 Profile Effects on Segment History

The figure (7.3.1) shows the effects of groove profile on the segment history. The full line plot for the no groove condition, serves as a datum for comparing the effects of the various grooved conditions. The effect of the relief groove is to bring about the pressurisation of the segment volume gradually before the segment is opened directly to port. This can be seen in the less steep increase in the segment pressure history, at the angular position of around the 90 degree position. The segment pressure can also be seen to attain full outlet line pressure at an earlier stage. By profiling the segment pressure in this way the back-flow of fluid which is usually needed to pressurise the segment, as it starts to communicate with the outlet port, is substantially reduced. This is achieved by spreading the flow over a longer period.

The difference in groove profile behavior can be seen in the way the segment pressurisation has occured. The pressure rise occurs later in the cycle with the triangular groove. This is due to the very slow initial rate of increase in flow area. The square and hemispherical grooves appear to provide the segment with full line pressures at the same time. The initial increase in segment pressure is marginally more gradual for the hemispherical groove. This effect correlates well with the rate of increase in flow area relationships of the grooves.

: Mean Inlet Pressure : Mean Outlet Pressure : Shaft Speed : 6.3 bar 138 bar 2400 rpm

> Fig.7.3.2 OUTLET GROOVE PROFILE EFFECTS ON FLOW RIPPLE

In general the hemispherical groove appears to be the more advantageous groove profile, it provides a more gradual increase in segment pressure at the start of the cycle and a quicker attainment of line pressures. This is especially beneficial when it is not possible to implement long groove lengths. Long groove lengths would unnecessarily increase the unwanted leakage and lead to a loss in mechanical efficiency. The final choice must, however, relate to the particular pump (motor) geometry.

7.3.2 Profile Effects on Flow Ripple

The figure (7.3.2) shows the port flow ripple as a percentage of the mean flow for the three different groove profiles simulated. A no groove simulation is provided as a datum for comparison.

There appears to be no significant differences in the magnitudes of the peak to peak ripple, for the three grooved conditions. At the inlet, the flow ripple variations were insignificant, varying from 2.98 to 2.97 percent, against the no groove level of 2.94 percent. The corresponding outlet flow ripple levels were 3.58, 3.45 and 3.03 percent, against the no groove value of 16.71 percent. This represents a typical increase of 1.25 percent, in the inlet peak to peak flow ripple levels, against a 79.9 percent reduction in the outlet flow levels. Expressed in terms of the total RMS ripple, a similar trend is observed. The levels were typically 0.20 and 0.21 percent for the inlet and outlet respectively, against the no groove values of 0.19 and 0.89 percent. The hemispherical groove shows a marginally lower RMS value at the outlet.

Fig.7.4.1 OUTLET GROOVE LENGTH EFFECTS ON SEGMENT HISTORY

: Mean Inlet Pressure : Mean Outlet Pressure : Shaft Speed : 6.3 bar 138 bar 2400 rpm

> Fig.7.4.2 OUTLET GROOVE LENGTH EFFECTS ON FLOW RIPPLE

7.4 Groove Length Effects

This section looks at the effects of groove length on segment pressure and flow ripple. For this study four simulations are presented. The first provides the datum no groove condition, and the other three incorporate outlet grooves of different angular lengths of 10, 20 and 30 degrees. All three grooves incorporated the hemispherical section with a cutter diameter of 6 millimetres and depth 1.5 millimetres. All other parameters were held constant.

7.4.1 Length Effects on Segment History

The figure (7.4.1) demonstrates the effects of groove length on the segment pressure history. In all the three cases, there was sufficient groove flow to enable the segment to achieve full port pressure before direct port communication occured. Changes in the groove length can be seen to alter the stage and rate at which port pressure was reached. Longer groove lengths permit a marginally more gradual segment pressure profile. Long grooves can, however, be seen to increase the general leakage levels and thus decrease the mechanical efficiency of the pump. The optimum groove length is the shortest length possibe which could provide the required pre-compression of the segment to occur.

7.4.2 Length Effects on Flow Ripple

The figure (7.4.2) shows the corresponding effects on flow ripple as a percentage of mean flow, for the conditions simulated. The effects at the inlet are minimal with levels of 2.96, 2.97 and 2.97 percent for the 10, 20 and 30 degree groove lengths respectively. The

- 150 -

Fig.7.5.1 INLET GROOVE EFFECTS ON SEGMENT HISTORY

.

corresponding outlet values were 4.11, 3.59 and 3.64 percent. The RMS values provide additional data. The ripple levels increase at the inlet but decreases at the outlet with increasing groove length. The RMS levels were 0.20 and 0.34 percent for the 10 degree groove, and 0.25 and 0.17 percent at 30 degrees, for the inlet and outlet respectively. Provided the groove removes the effects of the abrupt pressurisation of the segment, due to pre-compression mis-match, there is no significant advantage in increasing groove length. The disadvantage of using excessively long grooves are most apparent when there is significant end-plate leakage.

7.5 Inlet Groove Effects

In this section the effects of inlet groove on the segment pressure and flow ripple are investigated. The data from four simulations are presented. Three incorporate inlet grooves and one without. The groove type was hemispherical and of dimensions; cutter diameter 4 millimetres and depth 1 millimetre. The groove angular length was simulated at 5, 10 and 15 degrees. All other parameters were held constant.

7.5.1 Inlet Effects on Segment History

The figure (7.5.1) shows the effects of the inlet groove on segment pressure. When compared with the no groove condition, it can be seen that the groove introduces a delay into the pressurisation of the segment which increases with increasing inlet groove length. The controlled leakage provided by the groove results in a more gently changing pressure profile at the inlet sections. The outlet stage of

- 152 -

- 153 -

1

the cycle, beyond 100 degrees, remain unaffected by the inlet groove.

7.5.2 Inlet Effects on Flow Ripple

In figure (7.5.2) the effects of the inlet groove on the flow ripple are presented. The inlet groove does not appear to be of significant benefit in reducing the peak to peak flow ripple. The inlet levels were 2.94, 2.94 and 2.93 percent for the groove length of 5, 10 and 15 degrees respectively. At the outlet there is a marginal increase in the flow ripple. These levels were 16.9, 17.0 and 17.3 percent. The datum no groove values were 2.94 and 16.7 percent, for the inlet and outlet flows respectively. Observations of the RMS levels indicates a trend of similar magnitude. The increase in outlet ripple levels is due to the delaying effects on segment pressures of the inlet groove. Under the conditions simulated there is no significant benefit to be obtained from an inlet groove. An inlet groove can, however, be of advantage in reducing the risk of cavitation at high speeds.

7.6 Speed Effects

In this study of the effects of speed on the segment pressure and flow ripple, data from three simulations are presented. Simulations were made at three shaft speeds of 2100, 2550, and 3000 rpm for a grooved condition. Only an outlet groove was simulated. The groove type was hemispherical and of length 20 degrees. The other groove dimensions were, depth 1.5 millimetres and groove cutter diameter 6 millimetres. All other parameters were held constant.

3

Fig.7.6.1 SPEED EFFECT ON SEGMENT HISTORY OF SILENCED PUMP

Fig.7.5.2 SPEED EFFECTS ON FLOW RIPPLE OF SILENCED PUMP

7.6.1 Speed Effects on Segment History

The figure (7.6.1) shows the effect of speed on the segment pressure history. The segment pressure can be seen to achieve the same levels at a much later angular position. In the angular position of approximately 37 to 83 degrees, the segment pressurisation occurs primarily due to leakage via the regular paths or the groove flows. At lower speeds, the net flow which is operative over a finite rotational distance, occurs over a longer period of time. The consequence of this effect is that a greater amount of fluid can enter into the segment to pressurise it, than when operating at higher speeds. At low speeds, therefore, smaller groove dimensions are required.

7.6.2 Speed Effects on Flow Ripple

The figure (7.6.2) shows the effects of speed on the flow ripple. At the lower speed of 2100 rpm, the inlet flow peak to peak ripple was 2.98 percent and the outlet level was 3.37 percent. At 3000 rpm the levels were 2.98 and 3.98. The corrsponding RMS values of the flow ripple was 0.19 for both the inlet and outlet at 2100 rpm, and 0.19 and 0.25 at 3000 rpm. Although speed has a significant effect on groove performance, there is a wide range of effective operation.

7.7 Line Pressure Effects

Three simulations were performed to study the effects of the mean line pressure. The data relates to three different mean outlet pressures of 103, 155 and 207 bars. The simulations were made with a hemispherical type outlet groove. The dimensions of the groove were angular length 20

- 157 -

Fig.7.7.1 MEAN LINE PRESSURE EFFECTS ON SEGMENT HISTORY OF SILENCED PUMP

: Mean Inlet Pressure : Shaft Speed : 6.3 bar 2400 rpm

Fig.7.7.2 MEAN LINE PRESSURE EFFECTS ON FLOW RIPPLE OF SILENCED PUMP degrees, cutter diameter 6 millimetres and depth 1.5 millimetres. All other parameters were kept constant.

7.7.1 Pressure Effects on Segment History

The figure (7.7.1) shows the effects of outlet line pressure on the segment pressure. The various plots are drawn on a percentage scale where mean inlet is zero and the mean outlet is one hundred percent. On this scaling basis, the plots generally coincide except for the regions corresponding to the rotor position of 75 to 90 degrees, and the position of 157 degrees. The first region corresponds to the period when the outlet groove is operative. The effects of an increase in line pressure is to increase both the general leakage levels and the level of fluid required to enable segment pre-compression. These effects are seen as a slower pressurisation of the segment. The discrepancies observed in the second region are due to orifice and scaling effects. These effects have been described in section (6.2.1).

7.7.2 Pressure Effects on Flow Ripple

The figure (7.7.2) shows the effects of mean line pressure on the flow ripple. The inlet peak to peak flow ripple was 2.98 at the line pressure of 103 bars. This fell to 2.96 percent at 207 bars. At the outlet, ripple levels were 3.19 and 4.52 percent. The corresponding RMS values were 0.19 for both the inlet and outlet at 103 bars, and 0.20 and 0.25 at 207 bars, for the inlet and outlet respectively. These effects can be explained in terms of an increase in leakage flow levels due to the increase in line pressures.

Fig.7.8.1 END-PLATE CLEARANCE EFFECTS ON SEGMENT HISTORY OF SILENCED PUMP

: Mean Inlet Pressure : Mean Outlet Pressure : Shaft Speed : 6.3 bar 138 bar 2400 rpm

> Fig.7.8.2 END-PLATE CLEARANCE EFFECTS ON FLOW RIPPLE OF SILENCED PUMP

7.8 End-Plate Clearance Effects

Three simulations were performed to study the effects of the end-plate clearance. The data relates to four different clearances of 0.02, 0.03, 0.04 and 0.05 millimetres. The simulations incorporated a hemispherical type groove at both the inlet and outlet. The dimensions of the groove at the inlet were angular length 10 degrees, depth 1 millimetre and cutter diameter 4 millimetres. The outlet groove was of angular length 20 degrees, cutter diameter 6 millimetres and depth 1.5 millimetres. The vane tip clearance was 0.04 millimetres. All other parameters were kept constant.

7.8.1 End-Plate Effects on Segment History

The figure (7.8.1) shows the effects of end-plate clearances on segment pressure. It can be seen that the effect of increasing the end-plate clearance is to delay the segment pressurisation. This is most evident at the angular region of 37 to 97 degrees. Increasing the clearance causes a corresponding leakage out of the segment, thus resulting in a decrease in the fluid available for pressurisation of the segment. The outlet groove can, however, be seen to provide a gradual transition of the segment to full port pressures.

7.8.2 End-Plate Effects on Flow Ripple

The figure (7.8.2) shows the effects of end-plate clearance on the flow ripple. Without silencing grooves (ref. section 6.7), the peak to

- 163 -

peak values were between 2.95 and 2.98 for the inlet, and 17.5 and 23.8 percent for the outlet, for the condition of increasing clearances from 0.02 to 0.05 millimetres. With silencing grooves, these values were reduced to 2.95 and 2.99 percent for the inlet, and 3.6 to 5.5 percent for the outlet. Within the range of end-plate clearances, the reduction of outlet flow ripple was greater than 76.8 percent. This further demonstrates the wide operating range of silencing grooves.

7.9 Optimum Groove Criteria

In the preceeding sections, the various factors affecting the segment pressure profile and the subsequent inlet and outlet flow ripple have been demonstrated. There appears to be no simple criteria on which to base the design of silencing grooves. For any given pump (motor), the factors affecting the flow ripple are too numerous to enable the derivation of a particular optimum solution. The key to the problem is the availability of a suitable simulation program. With this tool many different groove types can be modelled and their effects ascertained. At the risk of over simplifying the problem, the silencing of a pump is a compromise between minimising groove leakage and removing the effects of pre-compression mis-match.

A methodical approach is of particular importance in the route towards a quick solution. In the previous sections, it has been shown that the groove performance was affected by both line pressures and speed. The first stage is therefore to decide on the operating conditions at which to optimise the groove performance. The most logical condition for this, in most applications, is the normal operating condition. This would give optimum silencing under normal conditions and a slight loss

Fig.7.9.1 SEGMENT HISTORY OF THE SILENCED PUMP

: Mean Inlet Pressure : Mean Outlet Pressure : Shaft Speed : 5.3 bar 138 bar 2400 rpm

> Fig.7.9.2 FLOW RIPPLE OF THE SILENCED PUMP

in groove performance outside these conditions.

The first simulation to be performed has to be that at the chosen optimum condition for the original pump (motor). This would provide a datum on which to base silencing improvements, and an insight into the existence of potentially noisy conditions. In the figures (7.9.1) and (7.9.2), a simulation under such a condition exists. The optimum condition was chosen to be 2400 rpm at 138 bar. For the original no groove condition there is oberved a very abrupt increase in segment pressure at about the 97 degree angular position. This corresponds to when the segment at low pressure first communicates directly with the outlet port. At this point there is a sudden backflow of high pressure fluid, and is a main source of fluid and structural borne noise. This point corresponds to the angular position of 7 degrees and subsequent positions at 45 degree increments, in the flow ripple plots. Another position where the segment pressure rises sharply is at 37 degree, when the segment is just beginning to be pressurised. The changes are, however, not as abrupt as for the outlet stages.

In this solution of silencing the pump, sloping hemispherical section grooves are incorporated in both the inlet and outlet ports. The outlet has a 20 degree long groove of 6 millimetres cutter diameter, and a maximum depth of 1.5 millimetres. The groove at the inlet port is 10 degrees long with a cutter diameter of 3 millimetres and depth 1.0 millimetres.

Hemispherically sectioned grooves are chosen for their combined initial slow area chances and faster full flow characteristics. The slow change provided by the triangular section requires a longer groove length. The square section does not have the benefit of slow initial area change. In this particular pump configuration where the segment is only closed

- 167 -

to both inlet and outlet for slightly over 45 degrees, it is important to minimise total groove lengths. Excessively long grooves would unecessarily increase the general leakage levels.

At the outlet, a long groove was introduced to remove the effects of the abrupt segment pressurisation, at initial port communication. A smooth segment pressure history reduces case excitation. The total effect of the outlet groove is a reduction in both the structural and fluid borne noise levels.

A short inlet groove is used primarily for the purpose of smoothing out the initial pressure rise, at the 37 degree position. This is provided as a refinement of the silencing process. The inlet groove has the unwanted effect of increasing leakage and flow ripple. At the designed speed condition this groove is not absolutely essential. Inlet grooves would be more advantages at higher speeds when large port flows or low inlet pressures would increase the risk of cavitation.

CHAPTER 8 : EXPERIMENTAL WORK

5

3.1	Introduction
8.1.1	Data Acquisition and Analysis System
3.1.2	Pump System Schematic
3.1.3	Transmission Line System Schematic
3.2	Pump Model Correlation
3.2.1	Harmonic Analysis of Pump Data
3.2.2	Time Average Analysis of Pump Data
3.3	Correlation of Pump Performance Data
8.3.1	Performance of Standard Pump
8.3.2	Performance of Silenced Pump
8.4	Conclusion on Pump Model
8.5	Acquiring Transmission Line Data
8.5.1	Standing Wave Data
8.6	Conclusion on Transmission Line Model
8.7	Procedure for the Deconvolution of
	Pressure Ripples

FIG.8.1.1 DATA ACQUISITION AND ANALYSIS SYSTEM

8.1 Introduction

In the earlier chapters two analytical models were developed, one for a vane pump and the other for a transmission line. This chapter deals with the work relating to the experimental verification of these models. In the first section is described the data acquisition and analysis system developed for this work. In addition, a brief schematic of the system is presented with particular emphasis on instrumentation. This section is followed by details of the method of data acquisition and analysis, used to obtain the data for correlating the mathematical model to experimental data. The work relating to the pump and transmission line models are handled separately. In sections two, three and four, the data relating to the vane pump is presented. This is followed in sections five and six with the data relating to the transmission line work.

8.1.1 Acquisition and Analysis Systems

The figure (8.1.1) shows the general schematic of the data acquisition and analysis system. The system is based around a desk-top computer, the HP9825B computer with 64k of random access memory. Supporting the computer is a number of peripherals consisting of a plotter, thermal printer, and both cartridge and flexible mass-storage devices. Within this system, the computer serves primarily as a controller for the Spectrum analyser, Transient recorder and Digital voltmeter, and enables the storage of data onto the flexible disk drive. Analysis at this stage is limited. This is performed by the HP9845B system (described in chapter 5). Data is transferred from one system to the other via the data compatible flexible disks.

- 171 -

The related experimental work is essentially based on the measurement of the dynamic pressure fluctuations. For the purpose of detecting the pressure fluctuations, piezo-electric and strain gauge pressure transducers were used. The former operates utilising the piezo-electric effect. A charge is produced which is proportional to the applied force on the transducer diaphram. These transducers possess an extremely high frequency response. The strain gauge pressure transducer exploits the strain gauge effect. A stress on the transducer diaphram is transferred to the strain gauge and results in a change in its resistance. This type of transducer has a lower dynamic range. Unlike the piezo-electric transducer, however, the strain gauge transducer provides both mean and dynamic pressure data.

Prior to measurement, the signal is required to be conditioned by an appropriate amplifier. A charge amplifier is required to convert the output charge from a piezo-electric pressure transducer to voltage, and a strain gauge amplifier is required for the strain gauge pressure transducer. Following conditioning, a voltage proportional to total pressure is obtained from the strain-gauge transducer, and a voltage proportional to dynamic pressure is obtained from the piezo-electric transducer.

In addition, a proximity switch located on the pump shaft, provides a synchronization signal. This is used to correlate the measurements and provide the signal required for time average analysis.

Following signal conditioning, the data can be directly analysed or stored on a multi-channel recorder. Recording enables a detailed analysis of available data as the same block of data can be analysed repeatedly by a variety of methods. This significantly reduces the experimental work relating to multiple channel analysis.

FIG.8.1.2 PUMP SYSTEM SCHEMATIC

FIG.8.1.3 TRANSMISSION LINE SCHEMATIC

8.1.2 Pump System Schematic

The figure (8.1.2) shows the essential elements of the pump system. The two pump outlets are joined at the manifold which feeds into a 30 millimetre bore transducer housing containing a piezo-electric pressure transducer. The housing is inturn connected to a 20 metre long anechoic line of 31.8mm. nominal bore which terminates into a load valve. At the pump end a proximity switch, suitably mounted on the drive shaft, provides a synchronization pulse. In addition a strain gauge pressure transducer, mounted in the pump, measures the pressure of the vane segment. This transducer is located in the vane passage and actually provides the pressure at the base of the vane. Due to the presence of a low resistance pathway, running up the vane and terminating into the segment volume, the segment pressure history is provided by this transducer. The pump is driven by a speed controlled electric motor which maintains a constant operating speed. A cooling circuit maintains a steady operating temperature, and a boost pump and accumulator provides a constant inlet supply pressure.

8.1.3 Transmission Line System Schematic

The figure (8.1.3) shows the schematic of the systems used to verify the transmission model. The essential elements in both the systems is a seven piston axial pump connected to an anechoic, and a reverberant termination. The function of the pump is basically that of a flow ripple source. A piston pump was used as the flow ripple exhibits strong harmonic contents. The pump is instrumented with a proximity switch which provides a synchronization signal, and is driven by a

- 175 -

speed controlled hydraulic motor.

In the first system, the pump is directly connected to a piezo-electric pressure transducer and a 30 metre long anechoic line which terminates at a load valve. The transducer housing has a 30 millimetre bore, and the anechoic line has a 1.25 inch nominal bore. The pressure transducer measures the anechoic pump output.

In the second system, a reverberant chamber possessing an internal bore of 88.9 millimetres and of length 1.95 metres, is connected in place of the transducer housing. Located evenly spaced along this chamber is a set of eight pressure transducers which measures the pressure variations along the length of the chamber.

8.2 Pump Model Correlation

For the purpose of theoretical and experimental correlation, two sets of data are presented. The first relates to the pump operating without silencing grooves, and the other operating with the grooves. For each set, data is presented at the three different operating speed of 700, 1050 and 1400 rpm. The mean inlet and outlet pressures were held constant during these tests at 6.9 bars and 68.9 bars respectively. The fluid temperature was maintained in the range of between 20 to 25 degrees Centigrade. At each of these conditions, dynamic recordings of the pump outlet flow and segment pressure history were made. In addition, measurements were made of the mean outlet flow rate.

In an effort to minimise the system effects, measurements of the pump outlet flow ripple were made whilst connected to an anechoic line. With this pump configuration, it is not possible to completely remove these

- 176 -

Fig.8.2.1 OUTLET SPECTRUM OF UNSILENCED PUMP

Fig.8.2.2 OUTLET SPECTRUM OF SILENCED PUMP

unwanted effects. The pump is required to operate with balanced port pressures and thus necessitates the ports to be connected externally. Introduction of the manifold into the flow stream results in a mis-match of the upstream and downstream admittance at the manifold. This results in wave reflection and a standing wave being created upstream of the manifold.

When measuring the segment pressure, the system effects can be ignored. These effects operate at frequencies much higher than those of the event under study.

8.2.1 Harmonic Analysis of Pump Data

When correlating the experimental data to the theoretical simulations, it is inevitable that system effects are included in the comparison. It is, however, necessary to minimise these system effects to enable the best possible comparisons to be made. Although both the flow and segment correlation will be made in the time domain, preparation of the flow data starts with a spectral analysis. From this spectral data, the significant components are extracted and the corresponding time series re-synthesized. Observations of the data in the frequency domain also aids in the appreciation of the contributions from system effects.

The figures (8.2.1) and (8.2.2) provides the full spectrum and shows the harmonic signatures of the pump at the three speed conditions. This represents the time averaged spectral data of the outlet flow. With a rotating machine, the spectral components can only occur at harmonic intervals of the fundamental frequencies. With a geometrically perfect machine, the fundamental frequency would be that of the vane. In applying this assumption, the sub-harmonic components of the vane

- 179 -

frequency can be neglected. The significance of the relative nature of the standard and silenced spectrums are discussed later in the chapter.

8.2.2 Time Average Analysis of Pump Data

Although the segment pressure measurements, were not affected by the system effects, the strain gauge pressure transducer signal had a significant noise component. This problem was effectively removed by applying 'Time Series Averaging'. This is achieved by taking blocks of consecutive and synchronized time data, and calculating the average time series. Synchronization was provided by the pulse from the proximity switch. When a sufficiently large number of averages are taken, the random noise components are removed leaving a clean pressure history which was used in the subsequent presentation.

8.3 Correlation of Pump Performance Data

The data is presented for correlation by superimposing the theoretical and experimental results. With the segment history study, the data is presented as a percentage of the port pressure range. The difference in mean port pressures represents 100 percent. The pressure measurement obtained by the transducer is effectively the segment pressure, as defined in the pump model. There is, however, a discrepancy which occurs at the later stages of the cycle. The experimental data shows a fall in the pressure at approximately 15 degrees earlier to that simulated. The transducer accesses the segment pressure via a low resistance channel running up the vane. The entrance to this channel

- 180 -

Fig.8.3.1 PERFORMANCE CORRELATION OF STANDARD PUMP AT 700 RPM

6.3 bar 68.9 bar 1050 rpm

Fig.8.3.2 PERFORMANCE CORRELATION OF STANDARD PUMP AT 1050 RPM

- 182 -

Fig.8.3.3 PERFORMANCE CORRELATION OF STANDARD PUMP AT 1400 RPM

NO	GR	00	VE	DA	TA
----	----	----	----	----	----

SPEED (RPM)	MEAN FLOW (1/s)		PEAK TO PEAK FLOW (%)	
	EXPERIMENTAL	SIMULATED	EXPERIMENTAL	SIMULATED
700	1.21	1.11	44.1	46.9
1050	1.88	1.79	29.9	32.5
1400	2.56	2.47	24.1	25.8

TABLE 8.3.1 QUANTITATIVE CORRELATION BETWEEN SIMULATED AND MEASURED FLOW RIPPLE - STANDARD is, however, only completely exposed to the segment when the vane is fully extended. At the end of the cycle, the vane is retracted and results in the premature isolation of the transducer from the segment.

The flow ripple comparison is similarly presented by superimposing the theoretical and experimental data. The theoretical data is shown as a percentage of the mean flow. The experimental data is drawn suitable scaled following re-synthesis from the harmonic data. The scaling results in a forced correlation of the peak to peak values of the theoretical and experimental data. For a quantitative correlation, two comparisons are made, one of the absolute time domain peak to peak flow fluctuations, and the other of the mean flow levels. The flow levels are determined using the equation (4.5.8) for an anechoic termination of characteristic line impedance, and negligible Z_0/Z_s ratio. The constants used are bore diameter 30 mm., fluid density 861 Kg/m³ and effective bulk modulus 883 MN/m². The subsequent peak to peak levels determined were compared quantitatively with the levels predicted theoretically.

8.3.1 Performance of Standard Pump

The figures (8.3.1) to (8.3.3) and table (8.3.1) shows the correlation data for the standard pump. In practice the harmonic content of pumps are generally defined up to the tenth harmonic. Within this range, the significant components are found to be fully represented. In order to minimise the higher frequency system effects, the flow ripple has been subsequently re-synthesized from the first ten harmonic.

The figures demonstrate a high degree of qualitative correlation at the three speed conditions. In addition to the previously explained

- 185 -

discrepancy at the end of the cycle, there are additional differences at the 30 to 60 degree rotor position. At the 35 degree position, the simulation shows the segment pressure falling. This event is observed later in the experimental observations. This discrepancy is easily explained due to the difference between the actual and modelled port geometry. The ports of the tested pump contains a geometrically complex scalloped section. This effectively provides a much greater flow area, up till the instant the vane sweeps past the port, thus delaying the fall in the segment pressure. The rise in the measured segment pressure, at the 60 degree rotor position can be attributed to geometrical imperfections in the actual pump. In this region, the only flow into the segment is due to leakage. As there are also no geometrical changes occuring, the only cause of pressure rise must be due to a net change in leakage levels. This can occur due to both changes in vane tip and end-plate clearances. These variations are observed in geometrical measurements made of the pump.

The flow ripple is seen to correlate equally well with the theoretical predictions. The qualitative comparison provided by the re-synthesized harmonic data shows a good overlap in the theoretical and experimental data. A strong harmonic component, independant of speed, is visible in all the three speed conditions. This component is in the frequency range of 920 to 1000 Hz. With the aid of the full spectral data, this effect can be confidently attributed to a system resonance at this frequency. The table (8.3.1) provides the basis of the quantitative correlation. A comparison is presented between the experimental and simulated peak to peak levels. Within the range studied, a discrepancy of only between 6.3 to 8.7 percent is observed between the simulated and the experimental values.

Fig.8.3.4 PERFORMANCE CORRELATION OF SILENCED PUMP AT 700 RPM

Fig.8.3.5 PERFORMANCE CORRELATION OF SILENCED PUMP AT 1050 RPM

: Mean Inlet Pressure : Mean Outlet Pressure : Shaft Speed : 6.3 bar 68.9 bar 1400 rpm

> Fig.8.3.6 PERFORMANCE CORRELATION OF SILENCED PUMP AT 1400 RPM

ONOOTLD DANN	GRO	OVE	DD	ATA
--------------	-----	-----	----	-----

SPEED	MEAN FLOW (1/s)		PEAK TO PEAK FLOW (%)	
(RPM)	EXPERIMENTAL	SIMULATED	EXPERIMENTAL	SIMULATED
700	1.16	1.06	21.1	17.5
1050	1.85	1.75	16.4	11.2
1400	2.53	2.44	14.1	8.61

TABLE 8.3.2 QUANTITATIVE CORRELATION BETWEEN SIMULATED AND MEASURED FLOW RIPPLE - SILENCED

8.3.2 Performance of Silenced Pump

The correlation data for the silenced pump is presented by the figures (8.3.4) to (8.3.6) and table (8.3.2). A similar correlation technique is applied for the silenced pump as for the earlier standard pump data. The segment pressure history, and the flow ripple are drawn with the experimental data suitable scaled and superimposed on the theoretical data. The experimentally derived flow ripple is, as previously, re-synthesised from the first ten harmonics of the time averaged spectrums.

A good correlation can be seen for the segment pressure history at the three speed conditions. The two discrepancies (explained in the earlier section), is again apparent. This is at the 40 to 60 degree and the 150 degree rotor position. The effects of the silencing grooves are seen to correlate well, both at the inlet and the outlet. The effects of the outlet groove are more apparent, with the resulting earlier and more gradual pressurisation of the segment. At the inlet, the effect of the groove is to delay the fall of the segment pressure in the 40 to 60 degree rotor position. The groove enables a limited pathway between the port and segment, even after the trailing vane has swept past the inlet port. The result of which is to delay the fall in segment pressure for the duration of the effectiveness of the inlet groove. This is seen in both the theoretical and experimental data.

The flow ripple simulations are qualitatively well correlated. The trends in the variability of the simulated flow are reflected in the experimental data. There is observed, however, a significant difference between the experimentally and theoretically predicted ripple levels.

- 191 -

In the region studied, the flow ripples were experimentally determined to be 21.1, 16.4 and 14.1 percent. In comparison, the simulated levels were 17.5, 11.2, and 8.61 percent respectively. This reflects a mean underestimation in the percentage flow ripple of 5.49 percent of the mean flow. The trend of reduction in percentage flow ripple with speed can be seen to be consistent in both the experimental and theoretical data.

8.4 Conclusion on Pump Model

The data provided indicates a good correlation between the theoretical and experimental values. In the case of the standard pump, correlation was achieved within 6.3 to 8.7 percent of the experimental levels. The amplitude levels for the silenced pump was less well correlated, with discrepancies of 17.1, 31.7, and 38.9 percent of the experimental levels, for the speed condition of 700, 1050 and 1400 rpm.

With most pumps, operating under realistic conditions, leakage forms only a small percentage of the total flow of the pump. The pump was tested under non-typical condition of extremely high end-plate and small vane tip clearances, resulting in an exaggerated leakage fluctuation and changes in segment pressure variations. Under these conditions the leakage levels were typically 12.3, 9.61 and 7.56 percent of the swept volume at 700, 1050 and 1400 rpm respectively. The pump model adopts a theoretical estimation of leakage levels based on optimum design values. Local variations in geometry can lead to significant increases in the fluctuation levels.

While operating under the standard pump configuration, the dominant mechanism of flow fluctuation is that due to fluid compressibility

Fig.8.4.1 END-PLATE CLEARANCE EFFECTS ON OUTLET SPECTRUM

- 193 -

Fig.8.4.2 OUTLET SPECTRUM OF STANDARD AND SILENCED PUMP

- 194 -

and the back-flow of fluid into the segment volume at the moment of initial port communication. Under these conditions, any discrepancy between the simulated and actual leakage variations results in only a minimal effect on the simulated flow levels. With the case of the silenced pump, very little (if any) of the flow fluctuation due to the back-flow and compressibility effects remains. The flow fluctuations are based almost completely on leakage effects. Under these conditions accurate estimation of the leakage flow fluctuations is essential to enable precise simulation of flow fluctuation. A small discrepancy between the actual and estimated levels would result in a large percentage error between simulated and measured values.

In an earlier section, two figures (8.2.1) and (8.2.2) were presented, as being the spectrum of the outlet flow for the standard and silenced pump. Following from the theoretical observations made in chapters 7 and 8, the increase in amplitude of the lower harmonics are not to be expected in practice. The simulations of figure (8.4.1) shows the effects of changes in end-plate clearances on the spectral output of the outlet flow. Three simulations were made at end-plate clearances of 0.0525, 0.06 and 0.0675 millimetres. The mean value of 0.06 millimetres was that used in the correlation studies. The increase in end-plate clearance, in the range presented, resulted in a comparable increase in the amplitude of the fundamental component to that observed in the experimental spectra. The variations cited in the simulations are within the range expected, due to measurement errors and re-assembly variations.

The effectiveness of the model is re-affirmed by figure (8.4.2) which provides and compares the spectral content of the pump outlet flow ripple, derived from both theoretical simulations and experimental measurements. Figures (8.4.2a) and (8.4.2b) provides the experimental data and figures (8.4.2c) and (8.4.2d) the simulated data for the standard and silenced pump respectively. As indicated in the earlier section (8.3.1), there is a significant broad band system effect at the frequency of 1000 and 2000 Hz. Accounting for this effect, which manifest itself as an accentuation of the spectra at these frequencies, the diagrams shows a good correlation of the frequency spectra of both the standard and silenced pump. The effectiveness of the silencing grooves in reducing the higher frequency harmonics is clearly shown.

The pump model has been shown to be an effective tool for design and verification. The model has been used effectively to design silencing grooves which has significantly reduced the flow fluctuations. Over the speed range, the flow ripple has been reduced to a typical value of 53.7 percent of the original levels, representing a 5.4 dB reduction in the fluid borne noise output at the expense of a marginal decrease in effiency. The silencing grooves resulted in a mean decrease in effiency of 2.29 percent, over the speed condition studied. The loss in effiency results primarily from an increase in end-plate leakage. In practice end-plate clearances are typically much smaller and thus a lower loss in efficiency can be expected.

8.5 Acquiring Transmission Line Data

The aim of the experiment was to investigate the method of unravelling the standing wave effects (described in chapter 4). The first step was to determine the pump signature under supposedly anechoic conditions at a chosen datum of operating speed 800 rpm., inlet pressure 6.9 bars, outlet pressure 69.0 bars and fluid temperature 20 degrees Centigrade.

DIRCH1:F8

- 198 -

Amplitude:Lin

The full and the harmonic spectrum at the outlet of the pump under this condition, is shown in figure (8.5.1). The spectrum represents a 256 point averaged spectrum of the pump output. In this study the frequency bandwidth of interest is restricted to within the first and the tenth harmonic, thus giving a frequency range of 93.3 to 933 Hertz.

On establishing the pump signature, the test was repeated with the chamber connected inline. While running at the datum condition, simultaneous recordings were made of the pressure transducer readings. Similar to the anechoic data analysis, the spectral content at the eight transducer points were determined. The figure (8.5.2) shows the full spectrum distribution measured along the chamber. This type of presentation is known as a 'Waterfall Diagram'. The spectrums are drawn on an offset Y-axis, determined by the transducer position, and the amplitudes are represented by the distance from the mean offset.

This diagram highlights the problem encountered in measuring the pump performance under the influence of standing wave effects. The spectrums were measured simultaneously, under the same operating conditions. The amplitudes are, however, seen to vary considerably depending on the position of the transducer.

Prior to unravelling the anechoic data from the standing wave effects, the amplitudes of the harmonic component along the chamber was first determined for each of the ten harmonic components of interest.

8.5.1 Standing Wave Data

Given the amplitudes of the various components along the line, the standing wave equation was solved using the 'Least-squares' method

- 199 -

HARMONIC NUMBER	FREQUENCY (Hz)	HARMONIC AMPLITUDES (V)			PERCENTAGE
		BASIC	SCALED	ANECHOIC	ERROR
1	93.3	0.077	0.066	0.066	-
2	186.7	0.102	0.087	0.083	4.8
3	280.0	0.082	0.069	0.078	11.5
4	373.3	0.076	0.065	0.062	4.8
5	466.7	0.088	0.075	0.072	4.2
6	560.0	0.072	0.062	0.067	7.5
7	653.3	0.101	0.086	0.080	7.5
8	746.7	0.080	0.068	0.070	2.9
9	840.0	0.068	0.058	0.098	40.8
10	933.3	0.080	0.068	0.133	48.8

TABLE 8.5.1 QUANTITATIVE CORRELATION BETWEEN ANECHOIC AND DERIVED PRESSURE AMPLITUDES developed in chapter 4. As described earlier (chapter 4), the solution proceeds with the determination of the wave propagation constant and the termination constant. With a knowledge of these unknowns, the solution proceeds to determine the values of the source reflection constant and the effective anechoic amplitude of the particular harmonic component. The procedure is repeated for each of the other components.

The figure (8.5.3) summarises the solution obtained for each of the harmonic components and the obtained fit. The symbol '*' marks the magnitude of the measured harmonic component at the particular position along the chamber, and the full line describes the solved standing wave function.

In attempting to solve a multi-degree of freedom problem, there exists a number of mathematical solutions. Some of these, however, lead to non-physical solutions and must be rejected. In the search for a real solution, the values of the reflection constants are constrained to a modulus of less than or equal to 1. A value greater than 1 infers a reflected wave of greater amplitude than the incident wave, thus resulting in a non-physical solution. The solution was obtained using a computer program developed to implement the solution technique.

The table (8.5.1) shows the correlation between the directly obtained and the derived anechoic levels. The table expresses the amplitudes in volts and can be directly related to pressure levels. The tabled anechoic levels expresses that measured for a 30 millimetre bore, and the chamber had a 88.9 millimetre bore. Before comparing the amplitude levels, the derived anechoic levels have to be related to the same bore size. Using the equations (4.5.1) and (4.5.7), we obtain a scaling factor of 8.51. Combined with a calibration factor of 0.1 reduces this to 0.851. The scaling factor of 10 was introduced into the data to avoid the calculation errors relating to the processing of small values. The table shows a variation in error of between 0 to 48.8 percent. When the two highest frequency harmonics are excluded, the error is reduced to a maximum of 11.5 percent, and a mean of 5.4 percent.

8.6 Conclusion on Transmission Line Model

The good correlation between the anechoic data and the data derived from the reverberant chamber suggests the validity of the analysis. The method has also been shown to be relatively simple to operate and provides good correlation over a wide range of frequencies, given only a relatively small number of transducers. The poor correlation at the nine and tenth harmonic reflects the fundamental problem relating to the optimising of the transducer position, for a given number of transducers.

The standing wave function is cyclic and repeats itself at a wavelength along the line. To define the function effectively, the transducer must provide mutually exclusive data points. At the lower frequencies up to that whose wavelength is greater than the line length, an evenly spaced transducer layout provides the necessary conditions for a good fit. As the frequency increases, and the wavelength decreases, the mutually exclusive condition cannot be guaranteed. A worst case is possible where the only exclusive transducer readings exists within the first cycle, and subsequent data are but a cycle along and in phase. The situation existing with the nine and tenth harmonic are tending towards this condition. For a given frequency range, a solution is to provide a greater number of transducers. This, however, increases both analysis problems and cost. An alternative method would be to distribute a given number of transducers more effectively. This can be achieved by positioning the transducers such that two-thirds of the transducers are located at one half of the line and the remaining third at the other half. Within these groups, the transducers should be distributed evenly. This distribution would improve the mutually exclusive condition of the data at the higher frequencies and not compromise unduly the conditions at the lower frequency end.

8.7 Procedure for the Deconvolution of Pressure Ripples

Due to a change in the project schedule, the technique awaits the implementation on the 'back to back' test rig. This section, however, outlines the rig schematic and details the procedures to be adopted in applying the techniques developed for the deconvolution of the pump, motor pressure ripples from the unwanted system effects.

The rig comprises of two hydraulic propulsion motors coupled together. The motors are identical except that one is operated as a pump. The The main fluid supply is from the pump into the high pressure line, through the motor and returns back to the pump via an oil cooler. The leakage that occurs is made up by external make-up pumps, and the pump-motor combination is driven by another motor. In addition to the standard mean pressure gauges, a set of eight piezo-electric dynamic pressure transducers and a proximity switch are installed to provide the necessary dynamic pressure measurements and synchronization signal. The dynamic pressure transducers are distributed evenly, where possible, around the steel high pressure line. The proximity switch is located on the pump-motor coupling shaft. Prior to data acquisition, the signal from the pressure transducers and proximity switch require the appropriate signal conditioning. The signal from the piezo-electric transducers are converted from a charge to a voltage proportional to the dynamic pressure variations, and the proximity switch signal is processed by a Schmitt trigger to produce a clean square pulse.

The technique for the deconvolution of the individual pump, motor involves two stages. The first stage involves the unravelling of the superimposed pump and motor pressure ripples from the standing wave effects, and the second stage that of separating the individual pump and motor ripples. Although the standing wave effects can be obtained from the eight pressure measurements at one run, the decoupling of the individual pressure ripple effects require data at different phase settings. This is required to provide the necessary data for the solution of the equation (4.7.21) to (4.7.25) which contains three unknowns. If the initial phase setting of the pump and motor are known, only two runs are required to determine the two unknowns of individual pressure ripple amplitudes. As it is difficult to determine accurately the initial phase setting, the alternative scheme of adopting the the initial setting as a datum, and obtaining two further runs at known phase variations is preferred. This, however, requires the additional third run.

At each run, data is simultaneously acquired and stored on a tape recorder possessing the required dynamic range. The data is then available for processing at a later date. Data processing begins with the Fourier analysis of the pressure ripples measured at the eight transducer positions for the three runs, at different phase settings. From this spectral data, the harmonic components are extracted for unravelling. The individual harmonic component are observed to vary in amplitude along the transmission line. This is due to the standing wave effects. The standing wave effects are removed using the numerical analysis techniques detailed in section (4.7.1) and demonstrated in section (8.5). When the standing wave effects are removed, three amplitudes at each harmonic components are left. Using the equations, derived in section (4.7.2), the individual pump and motor pressure ripple components are derived. The procedure is repeated for each of the harmonic components of interest.

CHAPTER 9 : CONCLUSION

9.1	Conclusion
9.1.1	Conclusion on Pump Model
9.1.2	Conclusion on Transmission Model
9.2	Recommendation for Further Work

9.1 Conclusion

This thesis describes the work undertaken, by the author, in part fulfilment of the responsibilities of the University of Aston towards the research and development programme described earlier (chapter 1). The work identified at the start of the project was that of developing a radial vane pump model. A model was required which could enable the assessment of the original fluid borne noise potential, and to study the effects of various parameters and relief grooves, for the purpose of reducing the identified noise level. In addition, a transmission model and technique was required which could be applied to unravel the effects of the standing wave in a transmission line.

In the preceeding chapter (chapter 8), results were presented to enable a correlation between actual measurements and the theoretical model developed. For both these models, good correlation was achieved between theoretical and experimental results.

9.1.1 Conclusion on Pump Model

The resources required to develop a new hydraulic pump is costly in terms of both money and time. With the aid of computer simulation, the development cost and time can be significantly reduced. Taking the particular case of this radial vane pump, there were many development problems to be tackled before the actual noise potential could be ascertained. At the initial stages of development, the fluid borne noise measurements were not necessarily indicative of the true noise levels of a fully developed pump. Through simulations, the computer model would provide an insight into the factors affecting the noise level and indicate the levels to be expected.

- 208 -

At the early stages of development, the vane tips were not extended out to the required clearance. This resulted in a condition which was beneficial in terms of the fluid borne noise levels, and measurements taken at this stage underestimated the true noise potential. During another period of the development, the vane tip clearance was over corrected leading to untypically small clearances. In addition, the effect of a larger than designed end-plate leakage resulted in an accentuated noise level.

In an attempt to improve the computation time required for each simulation, a semi-analytical technique (chapter 3) was implemented for the solution of the 'flow-pressure' equation. This technique has been shown to be significantly faster and less prone to numerical instability in comparison to the standard 'Runge-Kutta' or 'Gear' method, for the solution of the non-linear first order differential equation (3.5.8). The method assumes that leakage is a secondary component within an iterative step. As mentioned earlier (chapter 3), no significant loss in solution accuracy will result if sufficiently small iterative steps are taken. The good qualitative and quantitative correlation presented in chapter 8, indicates that the 'approximation' does not affect the accuracy of the solution, to any discernible extent.

The application of the program for the purpose of designing silencing grooves has also been demonstrate. A significant reduction in fluid flow ripple was obtained at the expense of a minimal reduction in efficiency. The most significant reduction in the percentage flow ripple was observed at the lower speed. At 700 rpm, the percentage flow ripple was reduced from 44.1 to 21.1 percent of its mean flow. This was achieved with a 4.1 percent reduction in efficiency, thus representing a 6.4 dB reduction in the ripple values. The typical reduction over the speed range of 700 to 1400 rpm was 5.4 dB with a corresponding loss in efficiency of 2.29 percent. With typical end-plate clearances, the losses in efficiency can be expected to be reduced.

The results of the simulation studies indicate that there is a very broad range of operation for which the silencing grooves are effective. This has been verified by the experimental measurements made of the pump operating under a wide range of line pressures and speed.

Although the problem of structural borne noise has not been studied, measurements were made of the structural vibration on the casing of the pump. The reduction in structural noise has been significant. As a consequence of the implementation of the silencing grooves the typical case vibration was reduced by 20 dB.

9.1.2 Conclusion on Transmission Model

The data presented in chapter 8, demonstrates the 'Least-squares' method, developed in chapter 4, for unravelling the effects of standing waves. The good correlation obtained between the datum anechoic data and the unravelled amplitude confirms the validity of the technique. Excluding data at the two highest frequencies, correlation was achieved with an error of less than 11.5 percent and a typical error of 5.4 percent.

The 40.8 and 48.8 percent discrepancy at the ninth and tenth harmonic respectively, is attributed to the poor positioning of the transducers in relation to the standing wave pattern. An alternative transducer distribution has been suggested which would improve the mutually

- 210 -

exclusive condition of the data at the higher frequencies, without compromising the conditions at the low frequency end. The recommended layout is such that two thirds of the available transducers are evenly distributed at one half of the line and the remaining transducers at the other.

The technique was primarily developed to enable the derivation of the equivalent anechoic data from measurements along the transmission line under the influence of standing wave effects. Although the experimental work described in chapter 8 demonstrates the ability of the technique developed for this application, the method is not intended to be used as a general means of deriving anechoic data. This is due to the amount of intermediate data processing required to obtain the data. The method is, however, applicable when it is not possible or impractical to implement a test under normal anechoic conditions. The work is also beneficial as it further demonstrates the usefullness of the transmission line theory in the modelling of hydraulic transmission systems.

The problem of numerical instability was encountered while seeking a direct solution of the full standing wave equation. This problem was effectively overcomed by approaching the solution in two stages. When the pressure is expressed interms of a datum, the number of unknowns are reduced. This decreases the number of unknowns at each stage of the solution and significantly improves the stability of the solution technique, thus resulting in a successful solution.

9.2 Recommendation for Further Work

The radial vane pump program has successfully progressed through the 'author validation' stage of development, and has been demonstrated to be useful to the designer. It is recommended that the program be further tested and developed for an industrial design environment. In some less demanding design applications, it is possible to further optimise the program for quicker simulation.

The program has been designed and developed encompassing structured programming techniques. This results in software which is highly modular. Modularity implies independant program segments which can be identified to perform specific tasks. The modular nature of the program lends itself to further development, to include pumps of a different physical configuration.

The program was developed using a simplified theoretical estimation of leakage levels. Under 'silenced' conditions where leakage is dominant, it was observed that there was a significant discrepancy between the measured and simulated leakage values. By employing a more complex theoretical model for leakage or by using an experimentally based leakage model, the leakage estimates may be improved. This is, however, not necessary for the intended application of designing quieter pumps.

The testing of pumps using anechoic terminations is an accepted means of obtaining fluid borne noise data, as it is obtained while operating under conditions representative of normal operations. The implementing of anechoic terminations can, however, at times prove to be expensive and difficult to implement. Due to the effects of standing wave, direct measurement of the pressure wave is not possible.

The application of frequency response techniques are widely applied in

- 212 -

other engineering fields, particularly in structural vibration. If a transfer function can be defined for the reverberant termination, relating the anechoic to the measured pressure levels, pump testing could be simplified. The single measurement at the pump output could be directly transformed to give the required results. In hydraulic applications, there are specific problems which have to be solved before the techniques can be applied.

APPENDIX A : GEOMETRICAL RELATIONSHIPS

A.1	Cam Actuation Profile				
A.2	Silencing Groove Geometry				
A.3	Port Geometry				
A.4	Segment Geometry				

A.1 Cam Actuation Profile

The cam profile defines the vane tip clearance at different rotor positions and consists of three different basic radii. During this cycle, the vane tip is gradually actuated so as to take it from the operating to abutment clearance. A well defined profile is required to minimise cam track stresses during operation. Details of the cam profile analysis can be found in the thesis by Wuerzer(3). In this section the cam profile is re-defined in terms of the three basic radii and the cam actuation angle. These are the parameters used to define the cam profile for manufacture.

With reference to the figure A.l.l, the parameters defining the cam geometry are:

- 1) R₀ : operating radius
- 2) R1 : actuation radius
- 3) R₂ : abutment radius
- 4) ϕ_2 : actuation angle

$$\operatorname{Fan} \phi_1 = - OB$$

Where:

$$AB = R_2 Sin\gamma$$

$$OB = R_2 Cos \gamma - CO$$

$$CO = (R_2 - R_1) Cos \gamma - OD$$

$$OD = (R_0 - R_1) Cos \phi_2$$

$$\gamma = \operatorname{Sin}^{-1}\left(\frac{(R_0 - R_1)\operatorname{Sin}\phi_2}{(R_2 - R_1)}\right)$$

Therefore:

 $Tan\phi_{1} = \frac{R_{2}Sin\gamma}{R_{1}Cos\gamma + (R_{0} - R_{1})Cos\phi_{2}}$

When: $0 \le \theta \le \phi_1$ H = R₀ - OF

Where:

 OF^2 + (2.OC.Cos θ) OF + OC² - (R₂)² = 0

When: $\phi_1 \le \theta \le \phi_2$ H = R₀ - OG

Where:

 $OG^2 - [2(R_0 - R_1)Cos(\phi_2 - \theta)]OG + [(R_0)^2 - 2R_0R_1] = 0$ and OF and OG are the roots of the quadratic equation.

A.2 Silencing Groove Geometry

The silencing groove provides a controlled resistive path between the segment volume and the port. The resistance to flow is dependant on the available flow area offered by the groove. In this section is developed the relationship between rotor angular position, relative to a datum, and the groove cross-sectional area. Relationships for three different profiles; hemispherical, triangle and square are derived.

The figure A.2.1a defines the general groove parameters, which are common to all three profiles.

- θ_s : groove start angle
- θ : groove reference angle

- 218 -

H : groove depth at angle θ H_{max} : groove depth at angular datum

The groove depth is defined by:

$$H = \left(\frac{H_{max}}{\theta_{s}}\right)\theta$$
 (A.2.1)

Using trigonometry relationships, the following equations are derived, for conditions when the groove depth is less than the groove width.

Hemispherical Groove: With reference to figure A.2.1b.

$$R_{0} : \text{cutter radius}$$

$$A_{h} : \text{groove area for hemispherical groove}$$

$$\beta = \cos^{-1}[1 - (H/R_{0})] \qquad (A.2.2)$$

$$A_{h} = 2\beta / [\pi(R_{0})^{2}] - (R_{0})^{2} \text{Sin}\beta \text{Cos}\beta \qquad (A.2.3)$$

)

)

Triangular Groove:

With reference to figure A.2.1c, θ_c : cutter angle θ_t : groove area for triangular groove W: groove width $W = 2H.Tan(\theta_c/2)$ (A.2.4) $A_t = H^2Tan(\theta_c/2)$ (A.2.5) Square Sloping:

With reference to figure A.2.1d,

W : cutter width

 A_{s} : groove area for square groove A_{s} = H.W

(A.2.6)

A.3 Port Geometry

In this section, the geometrical relationship for the port and stator parameters are defined. These equations permit the port to be located, and its area to be defined, in terms of the stator angular position.

With reference to figure A.3.1, which defines the port parameters,

$$D_{p} = AB - CD$$
(A.3.1)
$$AB = R_{s}Sin[\theta + (\phi/2)]$$
(A.3.2)
$$CD = R_{s}Sin[\theta - (\phi/2)]$$
(A.3.3)

Where Rs is the stator radius.

Solving equation (A.3.1), (A.3.2) and (A.3.3) gives:

$$D_{p} = R_{s}[2\cos\theta \sin(\phi/2)]$$
(A.3.4)

and

$$\phi = 2\sin^{-1}\left(\frac{D_p}{D_s \cos\theta}\right)$$

(A.3.5)

Where:

$$D_s = 2R_s$$

FIG.A.4.1 SEGMENT GEOMETRY

Also:

$$\left(\frac{D_p}{2}\right)^2 = \left(\frac{y}{2}\right)^2 + \left(x - \frac{D_p}{2}\right)^2$$

Giving:

$$y = 2 \sqrt{x(D_p - x)}$$
 (A.3.6)

But

$$x = R_{s} \sin \gamma - CD \tag{A.3.7}$$

The port area Ap, is thus defined:

$$A_p = \int_0^x y \, dx$$

(A.3.8)

A.4 Segment Geometry

In this section the segment volume and the effective swept volume are defined with respect to the rotor angular position. The figure A.4.1 shows five vanes indicated by letters A to E. Corresponding to each vane is a volume which is referred to as the segment volume. The associated segment volume is indicated by the lowercase of the character defining the segment reference vane. The equations are derived for a general number of vanes. The geometrical symmetries assumed in section 3.2 are applied.

With reference to figure A.4.1

- L : vane length
- β : angle subtended at centre by vane thickness at stator radius

 α : half the angle subtended by abutment width at centre

 ${\rm H_l}, \, {\rm H_r}$: vane tip extension for the leading and trailing vanes respectively

$$\theta$$
 : reference vane angular position

N : number of vanes

D_s, D_r : stator and rotor diameters respectively

The sector limits are defined:

$$\theta_0 = -\gamma \tag{A.4.1}$$

Where θ_0 is the start of pre-sector and γ is the vane pitch, defined by:

$\theta_1 = \gamma$ (A.4.3)	Ŷ	=	2π/N	(A.4.2)
	θ	=	γ	(A.4.3)

Where θ_1 is the end of first sector

$$\theta_2 = 2\gamma \tag{A.4.4}$$

Where θ_2 is the end of second sector

$$\theta_3 = (\pi - \gamma) \tag{A.4.5}$$

Where θ_3 is the end of third sector

$$\theta_4 = \pi \tag{A.4.6}$$

Where θ_4 is the end of fourth sector

The segment volume V is defined:

For
$$-\gamma \leq \theta \leq [-\gamma + (\beta/2) + \alpha]$$

 $V = 0$ (A.4.7)

For $[-\gamma + (\beta/2) + \alpha] \le \theta \le [\alpha - (\beta/2)]$

$$V = \frac{(D_{\rm s})^2 - (D_{\rm r})^2}{8} [\theta + \gamma - \alpha - (\beta/2)]$$
(A.4.8)

For $[\alpha - (\beta/2)] \leq \theta \leq [\pi - \gamma - \alpha + (\beta/2)]$

$$V = \frac{(D_{s})^{2} - (D_{r})^{2}}{8} (\gamma - \beta)$$
(A.4.9)

For $[\pi - \gamma - \alpha + \beta] \le \theta \le [\pi - \alpha - (\beta/2)]$

$$V = \frac{(D_s)^2 - (D_r)^2}{8} [\pi - (\beta/2) - \alpha - \theta]$$
(A.4.10)

For
$$[\pi - \alpha - (\beta/2)] \le \theta \le \pi$$

 $V = 0$ (A.4.11)
The swept volume V_S is defined:

For $-\alpha \leq \theta \leq [-\gamma + (\beta/2) + \alpha]$

$$V_{\rm S} = 0$$

For $[-\gamma + (\beta/2) + \alpha] \leq \theta \leq [\alpha + (\beta/2)]$

$$V_{s} = \frac{(2H_{1})^{2} - (D_{r})^{2}}{8} L$$
(A.4.13)

(A.4.12)

For $[\alpha + (\beta/2)] \leq \theta \leq \gamma$

$$V_{\rm S} = \frac{(D_{\rm S})^2 - (2H_{\rm r})^2}{8} L$$
(A.4.14)

For
$$\gamma \leq \theta \leq [\pi - 2\gamma]$$

$$V_{\rm S} = 0$$
 (A.4.15)

For $[\pi - 2\gamma] \leq \theta \leq [\pi - \gamma - \alpha - (\beta/2)]$

$$V_{\rm s} = \frac{(D_{\rm s})^2 - (2H_{\rm l})^2}{8}$$
 L (A.4.16)

For
$$[\pi - \gamma - \alpha - (\beta/2)] \le \theta \le [(\pi - \alpha - (\beta/2)]]$$

$$V_{\rm s} = \frac{(2H_{\rm r})^2 - (D_{\rm r})^2}{8} L$$
(A.4.17)

For $[\pi - \alpha - (\beta/2)] \leq \theta \leq \pi$

 $V_s = 0$

APPENDIX B : SOLVING FOR THE ROOTS OF EQUATIONS (3.6.13) AND (3.6.19)

- B.1 Introduction
- B.2 Algorithm 1
- B.3 Algorithm 2
- B.3.1 Starting Point For

Equation (3.6.13) At Branch (A.2.1)

B.3.2 Starting Point For

Equation (3.6.19) At Branch (A.2.3)

- B.4 Algorithm 3
- B.5 Algorithm 4
- B.5.1 Starting Point For

Equation (3.6.13) At Branch (A.4.1)

- B.5.2 Starting Point For Equation (3.6.13) At Branch (A.4.3)
- B.6.1 Solving for the roots of a non-linear equation
- B.6.2 Modified Regula-Falsi Method
- B.6.3 Newton-Raphson Method
- B.6.4 Algorithm for the solution of the root of the equation

FIG.B.1.1 ALGORITHM 1

•

FIG.B.1.3 ALGORITHM 3

- 229 -

.

RETURN

FIG.B.1.4 ALGORITHM 4

B.1 Introduction

The roots of the equation (3.6.13) and (3.6.19) can be found using a reiterative numerical method. A suitable method being the Newton-Raphson method, which exhibits rapid convergence when a good starting point is chosen., William (61). A further saving in computation can accrue if checks are made on the constants Dir, K_{11} and Z_1 , as under certain conditions the roots can be obtained analytically, without the need to resort to a numerical solution. The algorithm that follows is in principal similar to that employed in the piston pump model by Hannan (30), The version documented here has been refined to take into account the symmetry that exist in the original algorithm. This results in a more compact algorithm which permits for a more efficient computer implementation. The algorithms are shown in figures (B.1.1) to (B.1.4).

The relevant equations, from chapter 3, are listed below: a) Without flow reversal:

$$\frac{\text{Dir.}2(z_2 - z_1)}{(K_{12})^2} - \frac{\text{Dir.}2K_{11}}{K_{12}} \ln \left(\frac{z_2}{z_1}\right) - (\theta_2 - \theta_1) = 0$$
(3.6.13)
$$P_2 = P_d + \text{Dir} \left(\frac{K_{11} - z_2}{\text{Dir.}K_{12}}\right)^2$$
(3.6.14)

b) With flow reversal:

$$\theta_{r} = \theta_{1} + \frac{\text{Dir.2}}{(K_{12})^{2}} (K_{11} - Z_{1}) - \frac{\text{Dir.2}K_{11}}{(K_{12})^{2}} \ln \left(\frac{K_{11}}{Z_{1}}\right) (3.6.16)$$
$$- \frac{\text{Dir.2}}{(K_{12})^{2}} \left[Z_{1} + Z_{2} - 2K_{11} + K_{11} \ln \left(\frac{(K_{11})^{2}}{Z_{1}Z_{2}}\right) - (\theta_{2} - \theta_{1}) = 0 (3.6.19) \right]$$

- 231 -

$$P_{2} = P_{d} - Dir \left(\frac{Z_{2} - K_{11}}{Dir.K_{12}}\right)^{2}$$
(3.6.20)

c) Common equations:

From equations (3.6.10) and (3.6.12) is obtained:

$$Z_1 = K_{11} - \text{Dir} \cdot K_{12} \sqrt{P_1 - P_d}$$
 (B.1.1)

$$K_2 = K_{11} - \text{Dir} \cdot K_{12} \sqrt{P_2 - P_d}$$
 (B.1.2)

Where:

$$Dir = Sgn(P - P_d)$$
(P | 3)

The algorithms used for the solution of the roots of the above equations (3.6.13) and (3.6.19) are shown in figures (B.1.1) to (B.1.4). The subsequent sections discusses the structure and processes of the various algorithms.

B.2 Algorithm 1

This is the main algorithm which identifies the direction of the dominant port flow at the start of the step, using equation (B.1.3). For the case of Dir = 0, Dir is assigned the value of Sgn(K_{11}). This defines the dominant port flow after a small angular displacement. If $K_{11} = 0$, then from equations (B.1.1) and (B.1.2), P = P. This implies that the pressure at the end of the step is equal to that at the start of the step.

When Dir # 0, then there are three possible branches that the solution

can progress along. The branching is dependant on the sign of the constant K_{11} and the value of Dir. When Dir.Sgn(K_{11}) > 0, there is no mechanism for flow reversal within the step, and branching progresses along to algorithm 2. For $K_{11} = 0$, equation (3.6.13) can be further simplified and for this condition algorithm 3 handles the solution. The final branch goes to algorithm 4 and this is for the case when Dir.Sgn(K_{11}) < 0. Under this condition there is a possibility of flow reversal and the algorithm has to check for this eventuality.

B.3 Algorithm 2

Within this branch there is a possibility of flow reversal within the step, the first task is therefore to determine the angular position at which flow reversal occurs, using equation (3.6.16)A check can produce one of three possibilities; flow reversal after the end of the step, flow reversal within the step and flow reversal after the end of the step. If flow reversal occurs after the the end of the step, then the equation (3.6.13) can be used, for the condition of no flow reversal. If flow reversal occurs at the end of the step then the pressure P = P_d, the port pressure at the start of the step. For the case of flow reversal within the step, equation (3.6.19) is used.

As mentioned earlier, rapid convergence when employing the Newton-Raphson method is dependant on a good starting point. The following sub-sections deals with the problem of determining a good starting point for equation (3.3.13) and (3.6.16) at branches (A.2.1) and (A.2.3) respectively.

FIG.B.3.1 STARTING VALUES FOR BRANCH (A.2.1)

B.3.1 Starting point for equation (3.6.13) at branch (A.2.1)

The equation (3.6.13) can be written as:

$$Y(Z) = \frac{\text{Dir.} 2(Z_2 - Z_1)}{(K_{12})^2} - \frac{\text{Dir.} 2K_{11}}{K_{12}} \ln\left(\frac{Z}{Z_1}\right) - (\theta - \theta_1)$$
(B.3.1)

The figure (B.3.1) shows the function Y(Z), defined above for the two cases of Dir = 1 and Dir = -1.

From the figures (B.3.1a) and (B.3.1b) it can be seen that Z_1 is a good starting point for the equation (3.6.13). The limits of the root Z_2 at this branch is Z_1 and K_{11} . For values of Z beyond K_{11} , the condition of flow reversal applies.

B.3.2 Starting point for equation (3.6.19) at branch (A.2.3)

The equation (3.6.19) can be written as:

$$F(Z) = -\frac{\text{Dir.2}}{(K_{12})^2} \left[Z_1 + 2K_{11} + K_{11} \ln \left(\frac{(K_{11})^2}{Z_{1.Z}} \right) \right] - (\theta - \theta_1)$$
(B.3.2)

A function F(Z) can be defined as:

$$F(Z) = Y(Z) + {Dir.2Z \over (K_{12})^2}$$
 (B.3.3)

The function F(Z) and Y(Z) are shown in figures (B.3.2a) and (B.3.2b) for the condition Dir = 1 and Dir = -1 respectively. The function Y(Z) is shown in full line whilst F(Z) is shown chain dotted.

From figure (B.3.1) it can be seen that Z_s provides a good starting point for solving the root of equation (3.6.19).

- 235 -

FIG.B.3.2 STARTING VALUES FOR BRANCH (A.2.3)

The point Z_s can be found by substituting equation (B.3.2) into (B.3.3) for the condition $F(Z_s) = 0$:

$$Z_{s} = \frac{(K_{11})^{2}}{Z_{1}} e^{K}$$
(B.3.4)

Where:

$$K = -2 + \frac{Z_1}{K_{11}} + \frac{(\theta_2 - \theta_1)}{\text{Dir} \cdot 2K_{11}} (K_{12})^2$$
(B. 3.5)

B.4 Algorithm 3

With the substitution of $K_{11} = 0$, the equation (3.6.13) reduces to:

$$\frac{\text{Dir} \cdot 2(Z_2 - Z_1)}{(K_{12})^2} - (\theta_2 - \theta_1) = 0$$
(B.4.1)

Re-arranging gives:

$$z_{2} = z_{1} + \frac{(\kappa_{12})^{2}}{\text{Dir.}^{2}} (\theta_{2} - \theta_{1})$$
(B.4.2)

With $K_{11} = 0$, there is no mechanism for flow reversal. The above equation is valid only for the angular limits θ_1 to θ_r . Where θ_r is the equillibrium point. At equillibrium $Z_2 = 0$, substitution into equation (B.4.1) and re-arranging gives:

$$\theta_r = \theta_1 + \frac{2.\text{Dir}}{(\kappa_{11})^2} z_1$$

(B.4.3)

- 237 -

Substitution of $Z_2 = 0$ into equation (B.1.2) gives:

 $P = P_d$

For $\theta_2 > \theta_r$.

B.5 Algorithm 4

This algorithm solves for the condition when K_{11} and Dir are of the same sign, there is therefore no possibility of flow reversal at this branch. The initial check on the sign of Z_1 and the sign of Dir identifies one of three possibilities. Branching to (A.4.1), (A.4.2) or (A.4.3) occurs for Dir.Sgn(Z_1) being greater than, equal to, or less than zero respectively. When Z_1 equals zero, the values of Z_2 and P at the end of the step can be obtained analytically. As K_{11} is assumed constant over the step, the pressure P at the end of the step must be the same as that at the start of the step. For the two other branch conditions, the value of Z_2 must be solved numerically. The subsequent sub-sections deals with the problem of choosing a good starting point.

B.5.1 Starting Point For Equation (3.6.13) At Branch (A.4.1)

The equation (3.6.13) can be presented as equation (B.3.1) :

$$Y(Z) = \frac{\text{Dir.}2(Z - Z_1)}{(K_{12})^2} - \frac{\text{Dir.}2K_{11}}{K_{12}} \ln\left(\frac{Z}{Z_1}\right) - (\theta - \theta_1)$$

A function F(Z) is defined as:

$$F(Z) = Y(Z) - \frac{\text{Dir.}2Z}{(K_{12})^2} = \frac{\text{Dir.}2Z_1}{(K_{12})^2} - \frac{\text{Dir.}2K_{11}}{K_{12}} \ln \left(\frac{Z}{Z_1}\right) - (\theta - \theta_1)$$

- 238 -

(B.5.1)

FIG.B.5.1 STARTING VALUES FOR BRANCH (A.4.1)

.

The function F(Z) and Y(Z) are shown in figures (B.5.1a) and (B.5.1b) for Dir = 1 and Dir = -1 respectively. The function Y(Z) is shown in full line whilst the function F(Z) is shown chain dotted.

From figure (B.5.1) it can be seen that Z_s provides a good starting point for the equation (3.6.13).

Solving the equation above for $F(Z_S) = 0$ gives:

$$z_s = z_1 e^K \tag{B.5.2}$$

Where:

$$K = -\left(\frac{(\theta_2 - \theta_1)(K_{12})^2}{\text{Dir}.2K_{11}} + \frac{z_1}{K_{12}}\right)$$
(B.5.3)

From equation (B.5.1) it can be seen that for small values of Z_s , $F(Z_s) = Y(Z_s)$ and thus $Z_2 = 0$.

B.5.2 Starting Point For Equation (3.6.13) At Branch (A.4.3)

A function F(Z) can be defined as:

$$F(Z) = Y(Z) - \frac{\text{Dir.2}}{(K_{12})^2} (Z - Z_1) = - \frac{\text{Dir.2}K_{11}}{(K_{12})^2} \ln \left(\frac{Z}{Z_1}\right) - (\theta - \theta_1)$$
(B.5.4)

The function F(Z) and Y(Z) as defined by equations (B.5.4) and (B.5.1) are shown in figure (B.5.2a) and (B.5.2b) for Dir = 1 and Dir = -1 respectively. The function Y(Z) is shown in full line and F(Z) is shown chain dotted.

From figure (B.5.2) it can be seen that Z_s provides a good starting point for the equation (3.6.13).

- 240 -

FIG.B.5.2 STARTING VALUES FOR BRANCH (A.4.3)

Solving the equation above for $F(Z_S) = 0$ gives:

$$Z_{s} = Z_{1}e^{K}$$
 (B.5.5)

Where:

$$\kappa = - \frac{(\theta_2 - \theta_1)(\kappa_{12})^2}{\text{Dir.}^{2\kappa_{11}}}$$
(B.5.6)

The starting value given by equation (B.5.5) has a disadvantage in that for small values of Z_s , there is a problem of computer 'overflow' (value outside the range of representation). This problem can be overcomed by first making a check before attempting to proceed with the solution. If Z_s is small, an alternative starting point can be used, as defined by equation (B.5.2). Also from equation (B.5.1) it can be seen that for small values of Z_s , the root of the equation $Z_2 = Z_s$. If both of these branches do not resolve a solution, the value of Z_1 is halved until the function $Y(Z_1)$ changes sign. The value of Z_1 at this point is used as the starting point for equation (3.6.13)

B.6.1 Algorithm for Solving for Root of Non-linear Equation

In the preceeding sections the algorithm for the solution of the differential equations were presented. Integral to this algorithm is one which solves for the roots of the resulting non-linear equation. The algorithm described here, is the one used in the computer implementation of the analytical solution and is an implementation of the Modified Regula-Falsi and Newton-Raphson method for the solution of non-linear equation. The Regula-Falsi is a modified bisection method which has the advantage of always converging and simple to operate. The disadvantage is that convergence is slow. The Newton-Raphson method

- 242 -

on the other hand results in a quick convergence, provided the first approximation is sufficiently close, but is, however, prone to failure due to instability. For a discussion of the numerical techniques mentioned above, references should be made to Williams (61). In this section the implementation of the methods are highlighted, while providing a description of the numerical methods involved.

B.6.2 Modified Regula-Falsi Method

The method of Modified Regula-Falsi is best described with reference to figure (B.6.1). The method begins with a root bounded by the limits a and b. The necessary condition for the presence of a root is for the function value to change sign between the limits. The first process begins with the determination of the intercept of the line y = 0 and the line joining the function at the limits a and b. This intercept point, w, defined by equation (B.6.1) below, is next determined and used as one of the next set of limits. The other point is determined on the function sign at the previous limits. If the sign of the function at w and a are the same, then the value of w is assigned to a, and w is assigned to b for when the sign of the function at w and b are the same. The next stage involves a reiteration of the above procedure, but with a slight modification. The function value at the replaced limit is calculated from the function equation, but the function value at the other limit is arbitarily taken as half that at the previous step. Repeated reiterations converges the limits about the root and terminates when sufficient convergence is achieved.

FIG.B.6.2 NEWTON-RAPHSON METHOD

The position of w is defined by:

$$w_{n+1} = \frac{(G_{an} - F_{bn})}{(G - F)}$$
 (B.6.1)

Where n is the n th iteration, and F and G are the assumed function values at an and bn respectively.

B.6.3 Newton-Raphson Method

The method, in brief, attempts to fit a tangent to the curve of the function at the point of the current estimate of the root of the function. The point of intersection of the tangent with the line y = 0 provides the next estimate of the root. This procedure is repeated till a sufficiently close estimate is obtained. This procedure is shown in figure (B.6.2).

The equation defining the Newton-Raphson method is:

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$$

(B.6.2)

Where n is the n th. iteration.

B.6.4 Algorithm For The Solution Of The Root Of The Equation

The algorithm shown in figure (B.6.3) and (B.6.4) starts with a definition of the iterative constants, these constants define the maximum permitted error tolerences and the maximum iteration count. The first check is of the function value at the start value. If the value is within the acceptable limits, the routine branches to the

- 246 -

Error tolerences and maximum iterations

estimated root

Fzs is function value at position Zs

FIG.B.6.3 ALGORITHM FOR SOLVING ROOTS OF EQUATION - SHEET 1 - 247 -

FIG.B.6.4 ALGORITHM FOR SOLVING ROOTS OF EQUATIONS - SHEET 2

.

Newton-Raphson solution for a closer estimate of the root, otherwise, another check is made to determine the sign of the function at the limits of the root. The condition for the existence of a root between the limits is for the function to be of different signs at these points. For the condition where the function is of the same sign, the limits are doubled until a root is located within the limits. Execution then proceeds to narrow the limits, whilst containing the root of the equation. Within the constraints of a maximum number of reiterations, the Regula-Falsi method is applied. At each stage, a check is made on the size of the limits, and on achieving an acceptable limit, the routine branches to the Newton-Raphson method. For other conditions new limits are defined as determined by the Regula-Falsi method.

The section of this routine which performs the Newton-Raphson method begins, as previously, with a definition of the iterative constants. Prior to processing the Newtons-Raphson method, a check is performed to determine the value of the function at the first estimate point. If the value is within the accepted error tolerence, the routine ends with Z_s as the root of the equation, and proceeds otherwise. With the first estimate, the correction is processed until the required level of convergence is achieved, or the maximum number of reiterations is reached. Termination then occurs taking the current value of Z_s as the root of the equation.

APPENDIX C : LISTING OF PUMP MODEL PROGRAMS

- C.1 Program VPLOT
- C.2 Program VMODEL
- C.3 Program VPLOT

C.1 PROGRAM VFLGEN

10	! RE-STORE"VFLGEN:F8"
20	! **************************** PROGRAM VFLGEN ************************************
30	! *
40	! * THE PROGRAM GENERATES THE DATAFILE FOR THE VANE MACHINE *
50	! * PARAMETERS. *
60	1 *
79	1 # Data is input and edited in groups consisting of
00	I * MAC CERMETRY REPORTING ENVELOPE INLET CORRUS
30	* AVG GEOMETRY, OFERHING ENVELOPE, INCET GROOVE and *
90	<pre>! * UUILEI GRUUVE parameters. *</pre>
100	*
110	! * Functions are controlled by the use of special function *
120	! * keys. *
130	! * *
140	! * *
150	! * Revision#1:18:JUL:83 *
160	! * Included inlet groove data *
170	! *
180	! * ORIGIN: G.SEET MECH.ENG. ASTON VARSITY *
190	! * DATE: 15 MARCH 83 *
200	1 *
210	
220	TIM Y¢(Q)
220	COM = balt(4, 20)[25] = bata(1.4, 1.20) = Namat[10] = 7
230	DOINTED TO 12
240	PRINIER 13 10
250	Mistores=":F8 " ! Define mass_storage unit
260	EXIT GRAPHICS
270	PRINT "ABC"&CHR\$(12)
280	PRINT " PROGRAM VELGEN EXECUTING "
290	! Assign label arrays.
300	Label\$(1,0)=" PUMP GEOMETRY "
310	Label\$(1,1)=" 1 STATOR DIAMETER (mm) :"
320	Label\$(1,2)=" 2 ROTOR DIAMETER (mm) :"
330	Label\$(1.3)=" 3 ASSEMBLY LENGTH (mm) :"
340	Label\$(1.4)=" 4 ABUTMENT WIDTH (mm) :"
350	Label\$(1.5)=" 5 ABUT. CLEARENCE (mm) :"
360	Label\$(1.6)=" 6 VANE WIDTH (mm) :"
370	label\$(1,7)=" 7 VANE CLEARENCE (mm) :"
380	label\$(1,8)=" 8 PORT DIAMETER (mm) :"
200	Labels(1,9)=" 9 POPT' ANCIE(deg) "
400	Labels(1 10)=" 10 COM ABUT PAD (mm) "
410	Label#(1,10)= 10 CHH HDOT, KHD, (MM) .
410	Label#(1,11)- 11 CAN ACL. KAD. (000) .
420	Label\$(1,12)=" 12 CHM OF. RHD. (MM).
430	Labels(1,13)=" 13 UHM HULL HNGLE(deg) :
440	Labels(1,14)=" 14 NUMBER OF SEGMENTS :"
450	Label\$(2,0)=" UPERHIING ENVELOPE "
460	Label\$(2,1)=" 1 SHHFT SPEED (RPM):"
470	Label\$(2,2)=" 2 INLET PRESSURE (bar):"
480	Label\$(2,3)=" 3 OUTLET PRESSURE (bar):"
490	Label\$(2,4)=" 4 FLUID DENSITY (Kg/m3):"
500	Label\$(2,5)=" 5 FLUID VISCOSITY(NS/m2):"
510	Label\$(2,6)=" 6 BULK MODULUS (MN/m2):"
520	Label\$(2,7)=" 7 INPUT LINE DIAM. (mm):"
530	Label\$(2,8)=" 8 OUTPUT LINE DIAM. (mm):"
540	Label\$(2,9)=" 9 DISCHARGE COEFF. :"
550	Label\$(2,10)=" 10 CAVITATION PRESS.(bar):"
560	Labe1\$(3,0)=" INLET GROOVE PARAMETERS "
578	Label\$(3.1)="1)Hemisphere:Groove depth (mm):"
589	Label\$(3.2)=" Cutter diam. (mm):"
590	Label\$(3,3)=" Start angle (deg):"
600	Ishel\$(3,4)="2)Square :Groque denth (mm):"
000	mentation and and a service askan summer

610

Labe1\$(3,5)="

Date: 30:SEPT:84

Groove width (mm):"

Page 2

+

Labe1\$(3,6)=" Start angle (deg):" 620 Label\$(3,7)="3)Triangular:Groove depth (mm):" 630 Cutter angle(deg):" Labe1\$(3,8)=" 640 Labe1\$(3,9)=" Start angle (deg):" 650 Label\$(3,10)="INLET GROOVE TYPE (0-3) 660 Label\$(4,0)=" OUTLET GROOVE PARAMETERS " 670 Label\$(4,1)="1)Hemisphere:Groove depth (mm):" 680 Cutter diam. (mm):" Labe1\$(4,2)=" 690 Start angle (deg):" Labe1\$(4,3)=" 700 :Groove depth (mm):" Labe1\$(4,4)="2)Square 710 Groove width (mm):" Labe1\$(4.5)=" 720 730 Start angle (deg):" Labe1\$(4,6)=" Label\$(4,7)="3)Triangular:Groove depth (mm):" 740 Labe1\$(4,8)=" Cutter angle(deg):" 750 760 Label\$(4,9)=" Start angle (deg):" Label\$(4,10)="OUTLET GROOVE TYPE (0-3) : " 770 780 1 790 Input1:LINPUT "INPUT DATA FILENAME (%DAT%%):", Name\$[1,6] 800 Name\$[7,10]=Mstore\$ ASSIGN Name\$ TO #1,Z 810 IF Z<>2 THEN Start 820 PRINT "ABC"&CHR\$(12) 830 PRINT USING "#,K";CHR\$(27)&"&a23r0C" 840 PRINT " WRONG FILE TYPE :";Name\$ 850 860 Input2:LINPUT " OVERWRITE FILE (Y/N) ",Y\$ IF Y\$="Y" THEN Start 870 IF Y\$="N" THEN Input1 880 GOTO Input2 890 900 Start: ON Z+1 GOTO Oldfile, Newfile, Newfile 910 Oldfile:Newfile=0 MAT READ #1; Data 920 930 GOTO Mainseq 940 Newfile:Newfile=1 950 Mainseg: CALL Main(Label\$(*), Data(*), Name\$, Mstore\$, Newfile) 960 END 970 1 990 1 + 1000 ! + Special key functions and subfunctions ! + 1010 1020 SUB Main(Label\$(*), Data(*), Name\$, Mstore\$, Newfile) 1030 IF Newfile=1 THEN GOSUB New 1040 1050 GOSUB Start 1060 Disp: DISP "SELECT " 1070 WAIT 200 DISP " FUNCTION" 1080 WAIT 200 1090 GOTO Disp 1100 1101 ! ****** Library of Subroutine ****** 1102 1110 Start:! Initialise and define soft keys. 1120 Menu=1 1130 -**GOSUB** Menul 1140 GOSUB Menu 1150 ON KEY #0 GOSUB Curup 1160 ON KEY #8 GOSUB Curdown 1170 ON KEY #1 GOSUB Edit ON KEY #9 GOSUB Store 1180

HP ENHANCED BASIC Date: 30:SEPT:84

ON KEY #2 GOSUB Next 1190 ON KEY #10 GOSUB Back 1200 ON KEY #6 GOSUB Print 1210 ON KEY #7 GOSUB Key 1220 ON KEY #15 GOSUB Exit 1230 RETURN 1240 1250 Curup: ! Moves cursor up IF Cursor <2 THEN RETURN 1260 1270 GOSUB Cursor2 1280 Cursor=Cursor-1 1290 GOSUB Cursor1 RETURN 1300 1310 Curdown: ! Moves cursor down IF Cursor>Curmax-1 THEN RETURN 1320 **GOSUB** Cursor2 1330 Cursor=Cursor+1 1340 GOSUB Cursor1 1350 RETURN 1360 1370 Cursor1:! Mark Down cursor PRINT USING "#, A"; CHR\$(128) 1380 PRINT USING "#.K":CHR\$(27)&"&a"&VAL\$(Cursor+Rofset)&"r"&" 1390 60C" PRINT USING " #.3A"; CHR\$(130)&"*"&CHR\$(128) 1400 RETURN 1410 1420 Cursor2:! Mark Up cursor PRINT USING "#, A"; CHR\$(128) 1430 PRINT USING "#,K";CHR\$(27)&"&a"&VAL\$(Cursor+Rofset)&"r"&" 1440 60C" PRINT USING " #,38";CHR\$(128)&" " 1450 RETURN 1460 1470 Menu: ! Prints Menu on to Display PRINT CHR\$(128) 1480 PRINT "ABC"&CHR\$(12) 1490 Rofset=INT((19-Curmax)/2) 1500 IF Ofset(0 THEN Ofset=0 1510 PRINT USING "#,K";CHR\$(27)&"&a"&VAL\$(Rofset)&"R" 1520 PRINT USING "#,20X,K";CHR\$(129)&Label\$(Menu,0)&CHR\$(128) 1530 PRINT 1540 FOR I=1 TO Curmax 1550 PRINT USING "15X,35A,5D.4D";Label\$(Menu,I);Data(Menu,I) 1560 1570 NEXT I Cursor=1 1580 GOSUB Cursor1 1590 RETURN 1600 1610 Edit: ! Requests variable value BEEP 1620 1630 Data\$="" INPUT " INPUT VARIABLE VALUE :", Data\$ 1640 IF LEN(Data\$)<>0 THEN Data(Menu,Cursor)=VAL(Data\$) 1650 DISP " " 1660 PRINT USING "#,K";CHR\$(27)&"&a"&VAL\$(Cursor+Rofset)&"r"&" 1670 50C" PRINT USING "#,5D.4D"; Data(Menu, Cursor) 1680 1690 -GOSUB Curdown 1700 RETURN 1710 Store:! Stores datafile 1720 Error=0 GOSUB Check ! Check for non-permitted dimensions. 1730 IF Error=1 THEN RETURN 1740 Y\$="" 1750

P	a	a	8	4
	_	_		

		THE REAL PROPERTY PERCENT AND AN AN
1760		INPUT " SHME FILENHME (DEFHOLIST) :", T\$
1770		IF LEN(Y\$)=0 THEN Store3
1780	Store	2:LINPUT " INPUT NEW FILENAME :",Name\$
1790		IF LEN(Name\$)=0 THEN Store2
1800		Name\$[7,10]=Mstore\$
1310		ASSIGN Name\$ TO #1,Z
1820		IF Z=1 THEN Store3
1830		BEEP
1940		DISP "FILE ASSIGNED ", Names
1950		uait 100
1000		THEFT HOUSENERS Eile + V4
1360		INFUL OVERWRITE FILE . , 19
1870		IF YS="Y" INEN GUID Stores
1880		GOTO Store2
1890	Store:	3:Name\$[7,10]=Mstore\$
1900		ASSIGN Name\$ TO #1,Z
1910		IF Z=0 THEN PURGE Name\$
1920		CREATE Name\$,3
1930		ASSIGN Names TO #1.2
1940		MAT PRINT #1: Data, END
1050		
1950		
1960		GUOUB Print
1970		RETURN
1980	Next:	! Select next menu
1990		IF Menu>3 THEN RETURN
2000		Menu=Menu+1
2010		ON Menu GOSUB Menu1, Menu2, Menu3, Menu4
2020		GOSUB Menu
2030		RETURN
2040	Pack .	L Provincies menu
2040	Dack.	TE Manual THEN DETIDN
2000		IF HENRY2 THEN RETORN
2060		menu=menu=1
2070		ON Menu GOSOB Menul, Menu2, Menu3, Menu4
2080		GOSUB Menu
2090		RETURN
2100	Menu1:	:Curmax=14
2110		RETURN
2120	Menu2:	C
2130		:Curmax=10
		RETURN
2140	Menu3	RETURN
2140	Menu3	RETURN Curmax=10 PETURN
2140	Menu3	RETURN Curmax=10 RETURN RETURN
2140 2150 2160	Menu3: Menu4:	RETURN Curmax=10 RETURN :Curmax=10 :Curmax=10
2140 2150 2160 2170	Menu3: Menu4:	RETURN :Curmax=10 RETURN :Curmax=10 RETURN
2140 2150 2160 2170 2180	Menu3: Menu4: Key:	RETURN :Curmax=10 RETURN :Curmax=10 RETURN ! Prints Key
2140 2150 2160 2170 2180 2190	Menu3: Menu4: Key:	RETURN :Curmax=10 RETURN :Curmax=10 RETURN ! Prints Key PRINT CHR\$(128)
2140 2150 2160 2170 2180 2190 2200	Menu3: Menu4: Key:	RETURN :Curmax=10 RETURN :Curmax=10 RETURN ! Prints Key PRINT CHR\$(128) PRINT "ABC"&CHR\$(12)
2140 2150 2160 2170 2180 2190 2200 2210	Menu3: Menu4: Key:	RETURN :Curmax=10 RETURN :Curmax=10 RETURN ! Prints Key PRINT CHR\$(128) PRINT "ABC"%CHR\$(12) PRINT "Curup ";"Edit ";"Next ";TAB(59);"Print ";"Key
2140 2150 2160 2170 2180 2190 2200 2210 "	Menu3: Menu4: Key:	RETURN :Curmax=10 RETURN :Curmax=10 RETURN ! Prints Key PRINT CHR\$(128) PRINT "ABC"%CHR\$(12) PRINT "Curup ";"Edit ";"Next ";TAB(59);"Print ";"Key
2140 2150 2160 2170 2180 2190 2200 2210 " 2220	Menu3: Menu4: Key:	RETURN :Curmax=10 RETURN :Curmax=10 RETURN ! Prints Key PRINT CHR\$(128) PRINT "ABC"%CHR\$(12) PRINT "ABC"%CHR\$(12) PRINT "Curup ";"Edit ";"Next ";TAB(59);"Print ";"Key PRINT "Cdown ";"Store ";"Back ";TAB(65);"EXIT"
2140 2150 2160 2170 2180 2200 2200 2210 " 2220 2220 2230	Menu3: Menu4: Key:	RETURN :Curmax=10 RETURN :Curmax=10 RETURN ! Prints Key PRINT CHR\$(128) PRINT "ABC"%CHR\$(12) PRINT "ABC"%CHR\$(12) PRINT "Curup ";"Edit ";"Next ";TAB(59);"Print ";"Key PRINT "Cdown ";"Store ";"Back ";TAB(65);"EXIT" WAIT 1000
2140 2150 2160 2170 2180 2200 2200 2210 " 2220 2230 2230 2240	Menu3: Menu4: Key:	RETURN :Curmax=10 RETURN :Curmax=10 RETURN ! Prints Key PRINT CHR\$(128) PRINT "ABC"%CHR\$(12) PRINT "ABC"%CHR\$(12) PRINT "Curup ";"Edit ";"Next ";TAB(59);"Print ";"Key PRINT "Curup ";"Store ";"Back ";TAB(65);"EXIT" WAIT 1000 COSUB Menu
2140 2150 2160 2170 2180 2200 2200 2210 " 2220 2230 2240 2250	Menu3: Menu4: Key:	RETURN :Curmax=10 RETURN :Curmax=10 RETURN ! Prints Key PRINT CHR\$(128) PRINT "ABC"%CHR\$(12) PRINT "ABC"%CHR\$(12) PRINT "Curup ";"Edit ";"Next ";TAB(59);"Print ";"Key PRINT "Curup ";"Store ";"Back ";TAB(65);"EXIT" WAIT 1000 GOSUB Menu PETUPN
2140 2150 2160 2170 2180 2200 2210 " 2220 2210 " 2220 2230 2240 2250 2250	Menu3: Menu4: Key:	RETURN :Curmax=10 RETURN :Curmax=10 RETURN ! Prints Key PRINT CHR\$(128) PRINT "ABC"%CHR\$(12) PRINT "ABC"%CHR\$(12) PRINT "Curup ";"Edit ";"Next ";TAB(59);"Print ";"Key PRINT "Curup ";"Store ";"Back ";TAB(65);"EXIT" WAIT 1000 GOSUB Menu RETURN ! Prints data table
2140 2150 2160 2170 2180 2200 2210 " 2220 2210 " 2220 2230 2240 2250 2250	Menu3: Menu4: Key: Print:	RETURN Curmax=10 RETURN Curmax=10 RETURN Prints Key PRINT CHR\$(128) PRINT "ABC"&CHR\$(12) PRINT "Curup ";"Edit ";"Next ";TAB(59);"Print ";"Key PRINT "Curup ";"Edit ";"Next ";TAB(59);"Print ";"Key PRINT "Cdown ";"Store ";"Back ";TAB(65);"EXIT" WAIT 1000 GOSUB Menu RETURN ! Prints data table PRINT DE IS A
2140 2150 2160 2170 2180 2200 2210 2220 2220 2220 2220 222	Menu3: Menu4: Key: Print:	RETURN Curmax=10 RETURN Curmax=10 RETURN Prints Key PRINT CHR\$(128) PRINT "ABC"&CHR\$(12) PRINT "Curup ";"Edit ";"Next ";TAB(59);"Print ";"Key PRINT "Curup ";"Edit ";"Next ";TAB(59);"Print ";"Key PRINT "Cdown ";"Store ";"Back ";TAB(65);"EXIT" WAIT 1000 GOSUB Menu RETURN ! Prints data table PRINTER IS 0
2140 2150 2160 2170 2180 2200 2210 2220 2220 2220 2220 222	Menu3: Menu4: Key: Print:	RETURN Curmax=10 RETURN Curmax=10 RETURN Prints Key PRINT CHR\$(128) PRINT "ABC"&CHR\$(12) PRINT "Curup ";"Edit ";"Next ";TAB(59);"Print ";"Key PRINT "Curup ";"Edit ";"Next ";TAB(59);"Print ";"Key PRINT "Cdown ";"Store ";"Back ";TAB(65);"EXIT" WAIT 1000 GOSUB Menu RETURN ! Prints data table PRINTER IS 0 IMAGE /,21X,33A,/
2140 2150 2160 2170 2180 2200 2210 2220 2220 2220 2220 222	Menu3: Menu4: Key: Print:	RETURN :Curmax=10 RETURN :Curmax=10 RETURN ! Prints Key PRINT CHR\$(128) PRINT "ABC"&CHR\$(12) PRINT "Curup ";"Edit ";"Next ";TAB(59);"Print ";"Key PRINT "Curup ";"Edit ";"Next ";TAB(55);"EXIT" WAIT 1000 GOSUB Menu RETURN ! Prints data table PRINTER IS 0 IMAGE 21X,33A,5D.4D
2140 2150 2160 2170 2180 2200 2210 2220 2220 2220 2220 222	Menu3: Menu4: Key: Print:	RETURN :Curmax=10 RETURN :Curmax=10 RETURN ! Prints Key PRINT CHR\$(128) PRINT "ABC"%CHR\$(12) PRINT "Curup ";"Edit ";"Next ";TAB(59);"Print ";"Key PRINT "Cdown ";"Store ";"Back ";TAB(65);"EXIT" WAIT 1000 GOSUB Menu RETURN :! Prints data table PRINTER IS 0 IMAGE /,21X,33A,/ IMAGE 21X,33A,5D.4D PRINT LIN(3)
2140 2150 2160 2170 2180 2200 2210 2220 2220 2220 2220 222	Menu3: Menu4: Key: Print:	RETURN :Curmax=10 RETURN :Curmax=10 RETURN ! Prints Key PRINT CHR\$(128) PRINT "ABC"&CHR\$(12) PRINT "Curup ";"Edit ";"Next ";TAB(59);"Print ";"Key PRINT "Cdown ";"Store ";"Back ";TAB(65);"EXIT" WAIT 1000 GOSUB Menu RETURN :! Prints data table PRINTER IS 0 IMAGE ∠,21X,33A,∠ IMAGE 21X,33A,5D.4D PRINT LIN(3) PRINT TAB(14);"DATA FILENAME :";Name\$
2140 2150 2160 2170 2180 2200 2210 2220 2220 2220 2220 222	Menu3: Menu4: Key: Print	RETURN :Curmax=10 RETURN :Curmax=10 RETURN ! Prints Key PRINT CHR\$(128) PRINT "ABC"&CHR\$(12) PRINT "Curup ";"Edit ";"Next ";TAB(59);"Print ";"Key PRINT "Curup ";"Store ";"Back ";TAB(65);"EXIT" WAIT 1000 GOSUB Menu RETURN :! Prints data table PRINTER IS 0 IMAGE /,21X,33A,/ IMAGE 21X,33A,5D.4D PRINT LIN(3) PRINT TAB(14);"DATA FILENAME :";Name\$ PRINT
2140 2150 2160 2170 2180 2200 2210 2220 2220 2220 2220 222	Menu3 Menu4 Key: Print	RETURN :Curmax=10 RETURN :Curmax=10 RETURN ! Prints Key PRINT CHR\$(128) PRINT "ABC"%CHR\$(12) PRINT "Curup ";"Edit ";"Next ";TAB(59);"Print ";"Key PRINT "Curup ";"Store ";"Back ";TAB(65);"EXIT" WAIT 1000 GOSUB Menu RETURN :! Prints data table PRINTER IS 0 IMAGE 21X,33A,5D.4D PRINT LIN(3) PRINT TAB(14);"DATA FILENAME :";Name\$ PRINT GOSUB Menu1
2140 2150 2160 2170 2180 2200 2210 2200 2210 2220 2220 222	Menu3 Menu4 Key:	RETURN RETURN :Curmax=10 RETURN ! Prints Key PRINT CHR\$(128) PRINT "ABC"%CHR\$(12) PRINT "Curup ";"Edit ";"Next ";TAB(59);"Print ";"Key PRINT "Curup ";"Edit ";"Next ";TAB(55);"EXIT" WAIT 1000 GOSUB Menu RETURN :! Prints data table PRINTER IS 0 IMAGE /,21X,33A,/ IMAGE 21X,33A,5D.4D PRINT LIN(3) PRINT TAB(14);"DATA FILENAME :";Name\$ PRINT GOSUB Menu1 PRINT USING 2280;Labe1\$(1,0)

2350	FOR I=1 TO Curmax
2360	PRINT USING 2290:Label\$(1.I):Data(1.I)
0070	NEVT I
2310	MEAT 1
2380	PRINT LIN(1)
2390	GOSUB Menu2
2400	PRINT HEINE 2290.1 abol\$(2.0)
2400	FRIMI USING 2200, Laber 4(2,0)
2410	FOR I=1 TO Curmax
2420	PRINT USING 2290;Label\$(2,I);Data(2,I)
2420	NEXT I
2430	
2440	PRINT LINCES
2450	GOSUB Menu3
2460	PRINT USING 2280:Label\$(3.0)
2470	EOP I-1 TO CURRAY
2410	
2480	PRINT USING 2290;Labe(\$(3,1);Data(3,1)
2490	NEXT I
2500	PRINT
2000	COUR Manual
2510	GUSUB Menu4
2520	PRINT USING 2280;Label\$(4,0)
2530	FOR I=1 TO Curmax
2540	PRINT HEINE 2290 Habelt(4 I) Bata(4 I)
2040	FRINT USING 2250, Labers(4, 17, Dava(4, 17
2550	NEXT I
2560	PRINT LIN(8)
2570	PRINTER IS 16
2010	PRIMER 13 10
2580	RETURN
2590	New: ! New data file
2600	FOR Menu=1 TO 4
2010	ON Many CORIER Manuel Manuel Manuel Manuel
2010	UN Menu GOSOB Menui, Menuz, Menus, Menu4
2620	GOSUB Menu
2630	Cursor=1
2640	Next at COSUR Edit
2040	
2650	IF Cursor(Curmax THEN Next_pt
2660	GOSUB Edit ! Overcomes auto check in SUB Edit
2679	NEXT Menu
0.000	
2990	NEW116-0
2690	RETURN
2700	Check:! Check for Inlet/Outlet groove overlap
2710	DEG
0700	
2720	In_groove=out_groove=o
2730	In_gv:IF Data(3,10)=0 THEN Out_gv
2740	In groove=Data(3.3*Data(3.10))
0750	Out out IE Data(4 10)=0 THEN Sum and
2730	but go IF Batatt, is to then but ang
2760	Dut_groove=Data(4,3*Data(4,10))
2770	Sum ang:Total angle=In_groove+Out_groove
2780	Phi=2#ASN(Bata(1.8)/(Bata(1.1)#COS(Bata(1.9))))
2700	$M_{\rm ev} = mala = 100 - 24 (5 \pm Phi \pm Pata (1.9))$
2190	max angle 100-2*(.0*Phi baca(1,222
2800	IF Total_angle <max_angle return<="" td="" then=""></max_angle>
2810	BEEP
2820	PRINT "ABC"&CHR\$(12)
2020	
2830	DISF
2840	PRINT " DATA ERROR DETECTED "
2850	PRINT LIN(1); "OVERLAP OF INLET AND OUTLET GROOVE and/or"
2860	PRINT "GROOVE TOO LONG"
2000	BDINT LINGTON NU
2810	PRINT LINCIS, CONTS
2880	_ PAUSE
2890	Menu=(Data(3,10))=Data(4,10))*3+(Data(3,10)(Data(4,10))**
2900	COSUR Menu
2700	
2910	- Hata bt=(Hata(3,10)(20)★(Hata(3,10)★3)+(Hata(3,10)=0)★(H)
ta(4	,10)*3)
ta(4 2920	(10)*3) FOR Point=1 TO Data pt-1
ta(4 2920	,10)*3) FOR Point=1 TO Data_pt-1 GOSUB Curdown

.

.

2940	NEXT Point
2950	Error=1
2960	RETURN
2970	Exit:! Exits from routine
2980	OFF KEY #0
2990	OFF KEY #8
3000	OFF KEY #1
3010	OFF KEY #9
3020	OFF KEY #2
3030	OFF KEY #10
3040	OFF KEY #6
3050	OFF KEY #7
3060	OFF KEY #15
3070	PRINT CHR\$(123)
3080	PRINT "ABC"&CHR\$(12)
3090	DISP " "
3100	SUBEXIT
3110	SUBEND

C.2 PROGRAM VMODEL

Page 1

! RE-STORE "VMODEL:F8 " 10 20 ! * THE PROGRAM COMPUTES THE GEOMETRIC VARIABLES OF CONTROL * 30 ! * VOLUME, SEGMENT PARAMETERS OF; LEAKAGE, FLOW AND PRESSURE, ÷ 40 ! * AND THE INPUT AND OUTPUT PARAMETERS OF FLOW AND PRESSURE * 50 ! * FOR THE VANE M/C , AT THE VARIOUS ROTOR POSITIONS. * 60 * 70 1 * The model considers the interaction of leakage, fluid * 80 1 ! * compresibility, fluid flow and change in segment volume. ÷ 90 ÷ ! * 100 × ! * Revision Notes: 110 ! * Revision# 1:28:0CT:81 initial model developed. * 120 # 2:24:NOV;81 outlet model change 130 1 * # 3:20:JAN;82 inlet model incl and re-structured × 140 ¥ 1 # 4:11:FEB:82 inc. motor modelling. ÷ 150 1 × # 5:24:MAY:82 anal sol inc removed inlet model × * 160 1 # 6: 8:SEP:82 extended anal. sol & re-structured * 170 1 ÷ # 7:20:0CT:82 restructured with mod sub 'Selsol' × × 180 1 × # 8:13:NOV:82 mod. Sol technique. ! * 190 # 9: 2:FEB:83 dev. inlet and improved conv. chk ÷ 200 . ! * #10: 1:APR:83 Mod Solve2 and data structure. × 1 * 210 × #11:10:MAY:83 Include inlet groove 220 1 * × #12: 6: JUN: 83 Mod SUB Area 1 * 230 × #13:28:FEB:84 End-plate leakage 240 1 * ! * This version performs 1440 point resolution computation × 250 * 260 1 * ! * A smaller step size can be invoked by redefining Resftr ÷ 270 ! * (Resftr:Resolution 1:360,2:720,3:1080,4;1440) × 280 ! * This may be suitable for operating speeds above 2000 RPM.* 290 ! * Below this there is a risk of computational instability ÷ 300 ÷ ! * and/or inaccurate solutions. 310 ÷ 320 1 # ! * The program operates in two modes; AUTO and MANUAL. ÷ 330 ! * AUTO : Automatic control permitting 'BATCH' operation × 340 × with plot option. 350 1 ¥ ÷ * MANUAL: Manual input for single runs. 360 1 * 370 1 ¥ ! * ORIGIN: G.SEET Mech. Eng. ASTON VARSITY ÷ 380 * 1 * DATE: 30 JUNE 81 390 400 410 DIM Data(1:4,1:20),Y\$(0),Name1\$[10],Conv2(10),Iname\$[4] DIM Oname\$[4], Mstore\$[4], Name\$[10], Pite(150), Secart(4) 420 DIM Gdpth(1:2,1:3),Gcdim1(1:2),Gastr(1:2,1:3),Gcwth2(1:3) 430 DIM Gtype(2) 440 COM Auto(1:3), Aprefix\$[1], Err stat 450 COM SHORT Ip(-360:1440), 0p(-360:1440), If(-360:1440), 0f(-360:14 460 40) COM SHORT L1(-360:1440), P(-360:1440), Q(-360:1440) 470 COM SHORT Q10(360),Q11(360),Q01(360),Q02(360),Q03(360) 480 COM SHORT Vdlta(-360:1440), V(-360:1440), Area(-360:1440), H(1440 490 > COM Beta, Doff, Eta, Poav, Rho 500 510 RAD ! Init. 'AUTO' facility array. 520 MAT Auto=(0) Mstores=":T14" ! Defines mass storage device. 530 OVERLAP 540 EXIT GRAPHICS 550 PRINTER IS 16 560 PRINT "ABC"&CHR\$(12)&" PROGRAM VMODEL EXECUTING " 570 580 1

Page 2

```
590 ! Select mode
600 Input:LINPUT "IS AUTO SEQUENCE REQUIRED (Y/N):",Y$
610 IF Y$="N" THEN Manual
     IF Y$="Y" THEN Auto
620
630 GOTO Input
640
     ! *****
650
     ! AUTO SEQUENCE ROUTINE
660
    ! The routine permits batch processing of VDAT%% and the
670
     ! batch running of "VPLOT". Datafiles residing on the
680
690 ! specified mass-storage media are accessed sequentially
700 ! between the specified upper and lower limits.
710
     1
720 Auto: Iname$="VDAT"
730 LINPUT "INPUT FILENAME PREFIX: Default (V)DAT :", Dummy$
     IF LEN(Dummy$)<>0 THEN Iname$[1,1]=Dummy$[1,1]
740
     Onames="VGDT"
750
     LINPUT "OUTPUT FILENAME PREFIX: Default (V)GDT :", Dummy$
760
     IF LEN(Dummy$)<>0 THEN Oname$[1,1]=Dummy$[1,1]
770
780 Aprefix$=Oname$[1,1] ! Auto mode data prefix
790 Auto1: INPUT "INPUT LOWEST DATAFILE NO. (>=0): ", Auto(2)
800 IF (Auto(2)(0) OR (Auto(2))99) THEN Auto1
810 Auto2: INPUT "INPUT HIGHEST DATAFILE NO. (<=99):", Auto(3)
820 IF (Auto(2)(0) OR (Auto(2))99) THEN Auto2
830 Auto3:LINPUT "IS PLOT REQUIRED (Y/N):",Y$
840 IF Y$="N" THEN Auto(1)=2 ! Auto without plot
850 IF Y$="Y" THEN Auto(1)=1 ! Auto with plot
     IF (Y$<>"Y") AND (Y$<>"N") THEN Auto3
860
     Count=Auto(2)
870
    Name$[1,4]=Iname$
880
890 Auto4: T=Count DIV 10
900 I=Count MOD 10
910 Name$[5]=CHR$(48+T)
920 Name$[6]=CHR$(48+I)
930 Name$[7,10]=Mstore$
940 ASSIGN Name$ TO #1,Z
950 IF Z=0 THEN Auto5
960 Count=Count+1
970 IF Count>Auto(3) THEN Aend
980 GOTO Auto4
990 Auto5: GOSUB Main
1000 Count=Count+1
1010 IF Count>Auto(3) THEN GOTO Aend
1020 GOTO Auto4
1030 Aend: IF Auto(1)=1 THEN LOAD "VPLOT"&Mstore$,330
1040 Auto(1)=0
1050
      GOSUB Exit
      STOP
1060
1070
      1
      1080
      ! MANUAL SEQUENCE ROUTINE
1090
      ! The routine requires individual input of data filenames
1100
1110 Manual:Auto(1)=0 ! 'Manual' mode assigned.
1120 LINPUT " ENTER DATA FILENAME (VDAT%%): ",Name$[1,6]
1130 Oname$=Name$[1,1]&"GDT"
1140 PRINT "ABC"&CHR$(12)&" PROGRAM VMODEL EXECUTING "
1150 PRINT USING "#,K";CHR$(27)&"&a23r0C"
1160 Name$[7,10]=Mstore$
1170 PRINT " OUTPUT DATAFILE IS : ";Oname$&Name$[5,10]
1180 ASSIGN Name$ TO #1,Z
```

h

h

1190	IF Z=0 THEN Mart	
1200	BEEP	
1210	PRINT "ABC"&CHR\$(12)	
1220	PRINT USING "#,K";CHR\$(27)&"&a2	3r0C"
1230	IF Z=1 THEN PRINT " NO SUCH FIL	E FOUND : ";Name\$
1240	IF 7=2 THEN PRINT " WRONG FILE	TYPE : ":Name\$
1250	COTO Manual	
1200	Manat COCUP Main	
1200	hart: Good hain	
1270	GUSUB EXIT	
1280	STOP	
1290		
1300	! #####################################	
1310	! MAIN MODELLING ROUTINE	
1320		
1330	Main: PRINT "ABC"&CHR\$(12)&" PROGR	AM VMODEL EXECUTING "
1340	I Set up variable list	
1350	MAT READ #1:Data	
1000	Sdiam=Data(1,1)/10	1 (cm)
1000	Ddian=Data(1,2)/10	l (cm)
1370	Rulam-Data(1,2)/10	
1380	L=Data(1,3)/10	
1390	Hwdth=Data(1,4)/10	! (cm)
1400	Aclar=Data(1,5)/10	! (cm)
1410	Vwdth=Data(1,6)/10	! (cm)
1420	Velar=Data(1,7)/10	! (cm)
1430	Pdiam=Data(1,8)/10	! (cm)
1440	Pangl=Data(1,9)/180*PI	! (rad)
1450	Abrad=Data(1,10)/10	! (cm) .
1460	Barad=Data(1,11)/10	! (cm)
1470	BonadaData(1,12)/10	1 (cm)
1400	Asmal=Data(1,12)/180+PI	(nad)
1400	Faddau = Data(1, 14)/10	((a)
1490	Eodiam=Data(1,14)/10	· · · · · · · · · · · · · · · · · · ·
1500	Eidiam=Data(1,15)/10	i (cm)
1510	Eclar=Data(1, 16)/10	(cm)
1520	Nseg=Data(1,17)	! Num of seg/cycle
1530	Speed=Data(2,1)	! (RPM)
1540	Ipsure=Data(2,2)*10	! (N/cm2)
1550	Opsure=Data(2,3)*10	! (N/cm2)
1560	Cpsure=Data(2,4)*10	! (N/cm2)
1570	Rho=Data(2.5)*1E-8	! (NS2/cm4)
1580	Eta=Data(2.6)*.0001	! (NS/cm2)
1590	Beta=Data(2,7)*100	! (N/cm2)
1600	Ildiam=Data(2,8)/10	1 (cm)
1610	01diam=Data(2,9)/10	l (cm)
1010	Defendet a(2, 57710	Dischange coeff
1620	Derv=Data(2,10)	1 N/cm2 Cou pper
1630	FCAU-DACA(2,11)/10	: NYCHA GAV pres
1640	Gdpth(1,1)=Data(3,1)/10	i (cm) Hemis iniet upth
1650	Gdpth(2,1) = Bata(4,1)/10	! (cm) Hemis outlet aptr
1660	Gcdim1(1)=Data(3,2)/10	! (cm) inlet cutter dim
1670	Gcdim1(2)=Data(4,2)/10	! (cm) outlet cutter dim
1680	Gastr(1,1)=Data(3,3)/180*PI	! (rad) inlet start ang
1690	Gastr(2,1)=Data(4,3)/180*PI	! (rad) outlet start ang
1700	Gdpth(1,2)=Data(3,4)/10	! (cm) Square inlet dpth
1710	Gdpth(2,2)=Data(4,4)/10	! (cm) Square outlet dpt
1720	Gcwth2(1)=Data(3.5)/10	! (cm) inlet wdth
1730	Gcwth2(2)=Data(4.5)/10	! (cm) outlet wdth
1740	Gastr(1,2)=Data(3,6)/180*PI	! (rad) injet start and
1750	Gastr(2,2)=Data(4,6)/180+PI	1 (rad) outlet start and
1760	Ednth(1 2)=Data(2 7)/10	I (cm) Thiand inlat dath
1770	CHA+6(2 2)-Data(3,7//10	I (cm) Thisne outlat dat
1770	General (1)=Data(4,7)/10	(cm) inlat autom and
1780	Gcang3(1)=Data(3,8)/180*P1	i temp inter cutter ang

HP ENHANCED BASIC Date: 30:SEPT:84 PROGRAM: VMODEL Gcang3(2)=Data(4,8)/180*PI ! (cm) outlet cutter ang 1790 Gastr(1,3)=Data(3,9)/180*PI ! (rad) inlet start ang 1800 ! (rad) outlet start ang Gastr(2,3)=Bata(4,9)/180*PI 1810 ! Defines Inlet groove Gtype(1)=Data(3,10) 1820 Defines Outlet groove Gtype(2)=Data(4,10) 1830 Vwang=2*ASN(Vwdth/Rdiam) ! (rad) 1840 ! (rad) Awang=2*ASN(Awdth/Rdiam) 1850 Phi=2*ASN(Pdiam/(Sdiam*COS(Pangl))) ! (rad) 1860 U=Sdiam*PI*Speed/600 ! (cm/s) 1870 ! (rad/s) Omega=PI*Speed/30 1880 ! (cm) plate radius Erad=(Eodiam+Eidiam)/4 1890 ! (cm) Ewth=(Eodiam-Eidiam)/2 1900 Ite err=5.0E-4 ! Permitted iteration error 1910 ! Maximum no. of passes Maxpass=15 1920 ! Resolution factor Resftr=3 1930 1940 Resnum=Resftr*360 ! Total no. points Res=INT(Resnum/Nseg) ! No. points per sector 1950 Inc=PI/(4*Res) ! (rad) 1960 ! Start of Sector0 1970 Secsrt(0)=-Res ! Start of Sector1 1980 Secsrt(1)=1 ! Start of Sector2 Secart(2)=Res+1 1990 ! Start of Sector3 ! Start of Sector4 ! Start of Sector4 Secsrt(3)=Resnum-2*Res+1 2000 Secart(4)=Resnum-Res+1 2010 Modelsrt=(-(PI/Nseg)+.5*(Awang+Vwang))/Inc ! Start 2020 ! End Modelend=(PI-.5*(Awang+Vwang))/Inc 2030 ! Max permitted leakage, Sub: Selsol Leakmax=1500/Res 2040 ! Small Vdlta value ,Sub:Selsol Minudlta=.5 2050 ! Leakage constant ,Sub:Selsol Leakcont=.01 2060 ! Checklist not reqd:0 Checklist=0 2070 ! Press. fluct. suppressor Corftr_o=.1 outlet 2080 inlet 2090 Corftr i=.1 ! Press. fluct. suppressor ! No inlet pressure fluct. Instat=0 2100 2110 ! . 2120 ! ****** 2130 ! This section generates the vane height array. BISP " PROCESSING VHEIGHT " 2140 CALL Vheight (Aangl, Aarad, Abrad, Aorad, Awang, Inc, Res, Rdiam, Sdia 2150 m, Vclar, Vwang, H(*)) 2160 ! ***** 2170 ! This section cal. the ctl. vol. for all angles of rotation DISP " PROCESSING VCTL " 2180 2190 CALL Vctl(Awang, Inc, L, Nseg, Rdiam, Res, Sdiam, Vwang, Vwdth, V(*), H (*)) 2200 ! ****** 2210 ! This section calculates change in ctl. vol. DISP " PROCESSING VDLTA " 2220 CALL Vdlta(Awang, Inc, L, Nseg, Rdiam, Res, Sdiam, Vclar, Vwang, H(*), 2230 Vdlta(*)) 2240 ! ***** 2250 ! This section calculates orifice flow areas. DISP " PROCESSING AREA " 2260 CALL Area(Awang, Gtype(*), Gcdim1(*), Gcwth2(*), Gcang3(*), Inc, L, 2270 Nseg, Pangl, Pdiam, Phi, Res, Sdiam, Vwang, Gastr(*), Gdpth(*), Area(*)) 2280 ! ****** 2290 ! This section sets up starting values of pressure and flow. DISP " PROCESSING INITIAL " 2300 CALL Initial(Ipsure, Nseg, Opsure, Res, Resnum, Secont(*), P(*), Ip(2310 *), Op(*)) 2320 !

Page 4

2330 ! *****

Page 5

2340 ! Start of iteration loop:Recalculates segment pressures till 2350 ! convergence criteria is met. Maximum number of permitted 2360 ! re-iteration is Maxpass PRINTER IS 0 2370 PRINT LIN(2), " PROCESSING : ": Names 2380 2390 Pass=1 2400 1 2410 Repass:! Re entry for next pass 2420 ! 2430 PRINTER IS 0 2440 PRINT USING "/,14A, D, /";" PASS NUMBER :"; Pass, CHR\$(128) 2450 PRINTER IS 16 2460 ! 2470 ! ***** DISP " PROCESSING SEMENT DATA " 2489 2490 Vcau=0 ! Reset cavitation Vol. 2500 ! 2510 ! Determine initial value Idir=1 2520 2530 Sector=1 2540 Pstat=1 ! 1:Inlet mode 2:Outlet mode 2550 Pstart=0 FOR I=1 TO 5 2560 CALL Splin(Aclar, Awdth, Awang, Cpsure, Dir, Eclar, Erad, Ewth, Inc. I 2570 dir, L, Nseg, Omega, Pangl, Phi, Pstat, Res, Sector, U, Vcav, Vclar, Vwang, Vwdth , I) 2580 Pstart=Pstart+P(I) NEXT I 2590 Pstart1=Pstart#.2 ! Averages first 5 points 2600 2610 P(0)=Pstart1 IF P(0)(Ipsure THEN Scomp ! Improbable start check 2620 2630 ! 2640 ! + Escape routine :Alternative start value 2650 ! + Assigns start value as Ipsure less orifice losses. Area=Area(1) 2660 Q=Omega*Vdlta(1) 2670 2680 K1=Q/(Dcff*Area) Ploss=Rho/2*(K1*K1) 2690 Ploss=Rho/2*(Q/(Dcff*Area))^2 2700 2710 Pstart2=Ipsure-Ploss 2720 ! 2730 Scomp:! Starts computing sector pressures. 2740 Csum=0 ! Reset Csum status IMAGE DDD, X, DDDD, XX, 3(DDDD. DD, X), 4(DDDD. DDD, X), X, D. DDDD 2750 IMAGE DDD, X, DDDD, XX, 2(DDDD. DD, X), 8X, 4(DDDD. DDD, X), X, D. DDDD 2760 2770 ! 2780 ! *** PRE-SECTOR *** 2790 ! Pre-sector is calculated in reverse direction to motion. 2800 ! P(0)=P(Secsrt(1)-1) Value attained at start value. ! Dir. of iteration :counter to motion 2810 Idir=-1 ! Sector Identifier 2820 Sector=0 ! 1:Inlet mode 2:Outlet mode 2830 Pstat=1 FOR I=Secsrt(1)-3 TO Secsrt(0)+1 STEP -1 2840 2850 GOSUB Selsol -Ii=I 2860 IF Ii<0 THEN Ii=Ii+Res 2870 PRINT USING 2760;0, I, P(I), P(I+Res), Area(I), Vdlta(I), L1(I), V(I 2880),H(Ii) 2890 NEXT I 2900 P(Secsrt(1)-2)=P(Secsrt(1)-3) ! Transition error

```
Page 6
```

```
2910 P(Secsrt(0))=P(Secsrt(0)+1)
2920 ! *** FIRST SECTOR ***
       Idir=1
2930
                          ! Sector identifier
2940
      Sector=1
2950
      Pstat=1 ! 1:Inlet mode 2:Outlet mode
2960
      L1(Secsrt(1))=L1(Secsrt(1)-3)
2970 P(Secsrt(1))=P(Secsrt(1)-3)
      FOR I=Secsrt(1)+1 TO Secsrt(2)-2
2980
2990 GOSUB Selsol
3000 PRINT USING 2750;1,I,P(I),P(I-Res),P(I+Res),Area(I),Vdlta(I),
L1(I),V(I),H(I)
     NEXT I
3010
      P(Secsrt(1))=P(Secsrt(1)+1)
                                        ! Transition error
3020
      P(Secsrt(2)-1)=P(Secsrt(2)-2)
3030
3040 ! *** SECOND SECTOR ***
3050
      Idir=1
                         ! Sector identifier
3060
      Sector=2
3070 Pstat=1 ! 1:Inlet mode 2:Outlet mode
3080 L1(Secsrt(2))=L1(Secsrt(2)-2)
      P(Secsrt(2))=P(Secsrt(2)-2)
3090
      FOR I=Secsrt(2)+1 TO Secsrt(3)-2
3100
3110
     IF Area(I) <= 0 THEN Pstat=2 ! Change to outlet mode
3120
      GOSUB Selsol
3130 PRINT USING 2750;2, I, P(I), P(I-Res), P(I+Res), Area(I), Vdlta(I),
L1(I),V(I),H(I)
3140 NEXT I
3150
      P(Secsrt(2))=P(Secsrt(2)+1)
                                       ! Transition error
      P(Secsrt(3)-1)=P(Secsrt(3)-2)
3160
3170 ! **** THIRD SECTOR ***
3180 Idir=1
                          ! Sector identifier
3190
      Sector=3
      L1(Secsrt(3))=L1(Secsrt(3)-2)
3200
3210 P(Secsrt(3))=P(Secsrt(3)-2)
3220 FOR I=Secsrt(3)+1 TO Secsrt(4)-2
3230
      GOSUB Selsol
      PRINT USING 2750;3, I, P(I), P(I-Res), P(I+Res), Area(I), Vdlta(I),
3240
L1(I),V(I),H(I)
3250 NEXT I
                                        ! Transition error
3260
      P(Secsrt(3))=P(Secsrt(3)+1)
      P(Secsrt(4)-1)=P(Secsrt(4)-2)
3270
3280 ! **** FOURTH SECTOR ***
3290
      Idir=1
      Sector=4
3300
      L1(Secsrt(4))=L1(Secsrt(4)-2)
3310
3320
      P(Secsrt(4))=P(Secsrt(4)-2)
3330
      FOR I=Secsrt(4)+1 TO Resnum-1
3340 GOSUB Selsol
3350 PRINT USING 2760;4,I,P(I),P(I-Res),Area(I),Vdlta(I),L1(I),V(I
),H(I)
3360
      NEXT I
3370 P(Secsrt(4))=P(Secsrt(4)+1)
      P(Resnum)=P(Resnum-1)
3380
3390 !
3400 ! ******
3410 ! Smooths P array by moving point averaging.
3420
       CALL Smooth(Resnum, .5, P(*))
3430 !
3440 ! ******
3450 ! Generates segment and inlet/outlet data arrays.
3460 DISP " PROCESSING INLET/ OUTLET CONDITIONS :GDAT1"
```

```
CALL Gdat1(Aclar, Awdth, Awang, Cpsure, Eclar, Erad, Ewth, Inc, L, Min
3470
vdlta, Nseq, Omega, Pangl, Phi, Res, Resnum, Secsrt(*), U, Vclar, Vwang, Vwdth)
3480 !
3490 ! ******
3500 ! Smooths If and Of arrays by moving point averaging.
     CALL Smooth(Resnum, 1, If(*))
3510
       CALL Smooth(Resnum, 1, Of(*))
3520
3530 !
3540 ! ******
3550 ! This section generates pump line pressure from the Inlet
3560 ! and outlet flow.
     DISP " PROCESSING INLET/ OUTLET CONDITIONS :PSURE"
3570
3580 CALL Psure(Beta,Corftr_i,Corftr_o,Instat,Ipsure,Ildiam,Oldiam
,Opsure,Resnum,Rho,0,Secsrt(*),Of(*),If(*),Op(*),Ip(*))
3590 !
3600 ! ******
3610 ! Smooths Ip and Op arrays by moving point averaging.
       CALL Smooth(Resnum, 3, Ip(*))
3620
       CALL Smooth(Resnum. 3. Op(*))
3630
3640 !
3650 ! Convergence check
3660 !
     IF Pass(2 THEN Store of ! Skip check & store array.
3670
3680 !
3690 ! Check Of array for convergence
       Ofdiff 1=Ofdiff
3700
3710
       Ofdiff=0
       FOR I=1 TO Res
3720
3730
       Ofdiff=Ofdiff+ABS(Dummv0(I)-Of(I))
       NEXT I
3740
       PRINTER IS 0
3750
     PRINT " Pass convergence indicator :":Ofdiff/Sumof
3760
       PRINTER IS 16
3770
      IF (Ofdiff/Sumof(Ite_err*Resftr) AND (Pass)3) THEN Mdl_corr
IF (Ofdiff)Ofdiff_1) AND (Pass)4) THEN Mdl_corr
3780
3790
       IF Pass>4 THEN Mdl corr
3800
3810 !
3820 Store of:! Store intm Of array & mean value over 1 vane pitch
3830
       Sumof=0
3840
       FOR I=1 TO Res
3850
       Dummy@(I)=Of(I)
       Sumof=Sumof+Dummy0(I)
3860
3870
       NEXT I
3880 !
3890 Nextpass: ! Check before next pass
       Pass=Pass+1
3900
3910
       IF Pass = Maxpass THEN Repass
3920 !
3930 ! Failure to converge
                      ! Sets data check sum for invalid data.
3940
       Csum=9999.
3950
       PRINTER IS 0
       PRINT " NO CONVERGENCE AFTER "; Maxpass;" iterations !!!! "
3960
       PRINTER IS 16
3970
3980 !
3990 Mdl corr:! End model corrections.
4000 1
4010 ! Characteristic line pressure
       CALL Psure(Beta, 1, 1, 1, 1, Ipsure, Ildiam, Oldiam, Opsure, Resnum, Rho,
4020
1.Secsrt(*),Of(*),If(*),Op(*),Ip(*))
4030 !
```
```
Page 8
```

```
4040 ! Abutment correction
       Endgrad=-(P(Modelend)-P(1))/(Resnum-Modelend)
4050
4060
       FOR I=INT(Modelend+1.5) TO Resnum
4070
       P(I)=P(Modelend)+Endorad*(I-Modelend)
4080 NEXT I
4090 !
4100 Checklist: ! Lists data arrays.
      IF Checklist=0 THEN GOTO Outfile ! Checklist not required.
4110
4120
       PRINTER IS Ø
       IMAGE 38,4X,6(X,118)
4130
       IMAGE DDD, 6(X, M5D. 4D)
4140
       PRINT USING 4130;" I", "P(I)", "L1(I)", "Vdlta(I)", " Area(I)", "
4150
  H(I)"," V(I)"
4160 Apos=1
       FOR I=1 TO 4*Res STEP 4*Res/360
4170
       PRINT USING 4140; Apos, P(I), L1(I), Vdlta(I), Area(I), H(I), V(I)
4180
4190
       Apos=Apos+1
4200
       NEXT I
4210
       PRINTER IS 16
4220 !
4230 ! Outputs the generated data into a data file (V)GDT%%
4240 ! File format: sequential access, 360 elements in each array
4250 ! six arrays; P,L1,Q,Ip,Op,If,Of
4260 !
4270 Outfile: ! Generates output file
       Name1$[1,4]=Oname$
4280
4290
       Name1$[5,6]=Name$[5,6]
       Name1$[7,10]=Mstore$
4300
4310 !
4320 ! Lists Input & Output filenames.
4330
       PRINTER IS 0
4340 PRINT USING "28A, DD"; " TOTAL NUMBER OF PASSES: ", Pass
4350
       IMAGE /, 17A, 10A, 3X, 17A, 10A
4360
       PRINT USING 4350;" Input Datafile: ";Name$,"Output Datafile;
",Name1$
4370
       PRINTER IS 16
4380 !
4390 ! Prepares and outputs pump history to datafile.
     DISP " OUTPUTING DATA "
4400
       ASSIGN Name1$ TO #2,Z
4410
       IF Z=0 THEN PURGE Name1$
4420
       IF Z=0 THEN Outfile2
4430
       IF Z=1 THEN Outfile2
4440
4450
      PRINTER IS Ø
       PRINT " DUPLICATE PROGRAM FILENAME !!!"
4460
4470 PRINT " DATAFILE NOT GENERATED "; Name1$
4480
      PRINTER IS 16
4490
       GOTO Outend ! No file generated.
4500 !
4510 Outfile2:! Reorder data array size
       SHORT Dummy0(360), Dummy1(360), Dummy2(360), Dummy3(360)
4520
       SHORT Dummy4(360), Dummy5(360), Dummy6(360), Dummy7(360)
4530
      FOR I=1 TO 360
4540
       J=I*INT(Resnum/360)
4550
      Dummy1(I)=P(J)
4560
4570 Dummy2(I)=L1(J)
4580 Dummy3(I)=Q(J)
4590
      Dummy4(I)=Ip(J)
4600
      Dummy5(I)=Op(J)
4610
       Dummy6(I)=If(J)
```

Dummy7(I)=Of(J) 4620 NEXT I 4630 4640 ! 4650 ! Outputs pump history. CREATE Name1\$,40 4660 ASSIGN Name1\$ TO #2 4670 4680 PRINT #2:Csum 4690 MAT PRINT #2; Dummy1, Dummy2, Dummy3, Dummy4, Dummy5, Dummy6, Dummy7 , END 4700 PRINTER IS 0 4710 PRINT LIN(1), TAB(2); RPT\$("#", 24); "END OF RUN"; RPT\$("#", 25), LI N(1) PRINTER IS 16 4720 4730 ! 4740 Outend: ! Closes logical assignment. ASSIGN * TO #1 4750 ASSIGN * TO #2 4760 ! Reset status checksum. 4770 Csum=0 RETURN 4780 4790 ! 4810 ! DETERMINES SOLUTION TYPE 4820 ! This subroutine check the parameters of change in swept vol 4830 ! and inst. port flow area ; and determines the appropriate 4840 ! solution technique. 4850 ! 4860 ! Solution : Sub "Sphlin" 4870 ! Non-Linear conditions and transition zones. 4880 ! a) Significant leakage condition Check : Vdlta*Omega>Leakcont*L1 4890 ! 4900 ! b) High change in leakage rate Check : Delta L1>Leakmax :Leakmax=1500/Res cm3/step 4910 ! 4920 ! c) Vdlta>0 in second sector. (Secsrt(2) to Secsrt(1)-1) 4930 ! 4940 ! Solution: Sub "Splin" 4950 ! d) Vdlta=0 in second sector.(Secsrt(2) to Secsrt(1)-1) 4960 ! e) All remaining region 4970 ! 4980 ! Solution: Approx 4990 ! P(I)=P(I-Idir) 5000 ! 5010 ! f) Undefined region: X> Modelend , X < Modelsrt 5020 ! g) Very small Vdlta: Minudlta in sector 0 & 4 5030 ! ** This approximation provides for a shorter program time there is no significant error as there is little pressure 5040 ! 5050 ! change in this region. 5070 ! 5080 Selsol:! Selects solution method. ON Sector+1 GOTO Sector0, Sector1, Sector2, Sector3, Sector4 5090 5100 ! 5110 Sector0:! Pre Sector. IF I<=Modelsrt THEN Selsol3 5120 IF Area(I) <= 0 THEN Selsol1 5130 IF (ABS(Vdlta(I))(Minudlta) AND (I(Secsrt(0)+.75*Res) THEN GO 5140 TO Selsol3 5150 IF ABS(Vdlta(I-Idir)*Omega)(Leakcont*ABS(L1(I-Idir)) THEN GOT O Selsol2 IF (ABS(L1(I-Idir)-L1(I-2*Idir)))Leakmax) AND (ABS(L1(I-2*Idi 5160 r)-L1(I-3*Idir))>Leakmax) AND (ABS(L1(I-3*Idir)-L1(I-4*Idir))>Leakma x) THEN Selsol2

5170 GOTO Selsol1 5180 Sector1:! First Sector. IF Area(I) <= 0 THEN Selsol1 5190 5200 IF ABS(Vdlta(I-Idir)*Omega)(Leakcont*ABS(L1(I-Idir)) THEN GOT O Selsol2 IF (ABS(L1(I-Idir)-L1(I-2*Idir))>Leakmax) AND (ABS(L1(I-2*Idi 5210 r)-L1(I-3*Idir)))Leakmax) AND (ABS(L1(I-3*Idir)-L1(I-4*Idir)))Leakma x) THEN Selso12 GOTO Selsol1 5220 5230 Sector2:! Second Sector. 5240 IF Area(I)>0 THEN GOTO Selsol2 GOTO Selsol1 5250 5260 Sector3:! Third Sector. 5270 IF Area(I) <= 0 THEN Selsol1 IF ABS(Vdlta(I-Idir)*Omega)(Leakcont*ABS(L1(I-Idir)) THEN GOT 5280 O Selsol2 5290 IF (ABS(L1(I-Idir)-L1(I-2*Idir)))Leakmax) AND (ABS(L1(I-2*Idi r)-L1(I-3*Idir)))Leakmax) AND (ABS(L1(I-3*Idir)-L1(I-4*Idir)))Leakma x) THEN Selsol2 GOTO Selsol1 5300 5310 Sector4:! Fourth Sector. 5320 IF I>=Modelend THEN Selsol3 IF Area(I) <= 0 THEN Selsol1 5330 5340 IF (ABS(Vdlta(I))(Minudlta) AND (I)Secsrt(4)+.25*Res) THEN GO TO Selsol3 5350 IF ABS(Vdlta(I-Idir)*Omega)<Leakcont*ABS(L1(I-Idir)) THEN GOT O Selsol2 IF (ABS(L1(I-Idir)-L1(I-2*Idir)))Leakmax) AND (ABS(L1(I-2*Idi 5360 r)-L1(I-3*Idir))>Leakmax) AND (ABS(L1(I-3*Idir)-L1(I-4*Idir))>Leakma x) THEN Selsol2 5370 Selsol1:! Linear condition. DISP "I= ";I;" Linear Sol" 5380 5390 Err stat=0 5400 ON ERROR CALL Err rec CALL Splin(Aclar, Awdth, Awang, Cpsure, Dir, Eclar, Erad, Ewth, Inc, I 5410 dir, L, Nseg, Omega, Pangl, Phi, Pstat, Res, Sector, U, Vcav, Vclar, Vwang, Vwdth .I) 5420 OFF ERROR 5430 IF Err_stat=1 THEN GOTO Recover1 5440 RETURN 5450 Selsol2:! Nonlinear condition. 5460 DISP "I= ";I;" Non-linear Sol" 5470 Err stat=0 5480 ON ERROR CALL Err rec CALL Spnlin(Aclar, Awang, Awdth, Cpsure, Eclar, Erad, Ewth, Idir, Inc. 5490 ,L,Nseg,Omega,Pangl,Phi,Pstat,Sector,U,Vcav,Vclar,Vwang,Vwdth,Res,Cs um, I) 5500 OFF ERROR 5510 IF Err_stat=1 THEN GOTO Recover2 5520 RETURN 5530 Selsol3:! Approx solution at model boundaries. 5540 DISP "I= ";I;" Approximate Sol" 5550 P(I)=P(I-Idir) 5560 RETURN 5570 Recover1:! Recovery for linear sol. 5580 Errm\$="Linear" 5590 GOSUB Prt err GOTO Selsol2 5600 5610 Recover2:! Recovery for non-linear sol. 5620 Errm\$="Non-linear"

```
GOSUB Prt err
5630
5640
      GOTO Selsol3
5650 Prt err:! Prints error messages
      PRINTER IS 0
5660
      PRINT "Counter:"; I, TRIM$(ERRM$);" for "&Errm$&" solution"
5670
      PRINTER IS 16
5680
      RETURN
5690
5700 !
5710 ! *********************
5720 ! PRINTS EXIT MESSAGES
5730 !
5740 Exit:PRINT "ABS"&CHR$(12)
      PRINT RPT$("*",80),LIN(2)
5750
      PRINT RPT$("*",34);" COMPLETED ";RPT$("*",35)
5760
      PRINT LIN(2), RPT$("*", 80), LIN(5)
5770
      PRINT " THIS MACHINE IS FREE FOR THE NEXT USER "
5780
      PRINT LIN(2)
5790
      PRINT "PLEASE PLACE DISK/CASETTE IN APPROPRIATE CONTAINER"
5800
      PRINT "THANK YOU"
5810
      PRINT TAB(61);" G.SEET "
5820
      DISP RPT$("*",80)
5830
      DISP " "
5840
5850
      RETURN
5860
      5870 !
                    END OF MAIN PROGRAM SEGMENT
5900 ! + Calculates vane tip leakages into the control volume.
SUB Leak(Aclar,Awang,Awdth,Cpsure,Eclar,Erad,Ewth,Inc,L,Nseg,
5920
Omega, Res, Sector, U, Vclar, Vwang, Vwdth, I)
      COM Auto(1:3), Aprefix$[1], Err stat
5930
      COM SHORT Ip(-360:1440), Op(-360:1440), If(-360:1440), Of(-360:1
5940
440)
      COM SHORT L1(-360:1440), P(-360:1440), Q(-360:1440)
5950
      COM SHORT Q10(360),Q11(360),Q01(360),Q02(360),Q03(360)
5960
      COM SHORT Vdlta(-360:1440), V(-360:1440), Area(-360:1440), H(144
5970
R)
      COM Beta, Doff, Eta, Pcav, Rho
5980
      P3=Cpsure-P(I)
5990
6000
      W3=Ewth
      H3=Eclar
6010
      ON Sector+1 GOTO Leak0, Leak1, Leak2, Leak3, Leak4
6020
6030 Leak0:! ****** Sector0 ******
          Theta=-(Res*Inc)+.5*(Awang+Vwang)
6040
6050 Lek01: IF Inc*I>Theta THEN Lek02
          L1(I)=0
                         ! Sector not defined
6060
6070
          SUBEXIT
6080 Lek02:W1=Vwdth
          H1=H(I+Res)
6090
          P1=P(I+Res)-P(I)
6100
6110
         W2=Awdth
         H2=Aclar
6120
          P2=P(Nseq*Res+I)-P(I)
6130
6140
          L3=Erad*(Inc*(I+Res)-.5*(Awang+Vwang))
          L1(I)=FNLeak1(Eta,H1,H2,H3,L,L3,P1,P2,P3,Sector,U,Vclar,W
6150
1, W2, W3)
6160
          SUBEXIT
6170 Leak1:! ****** Sector1 ******
          Theta=.5*(Awang+Vwang)
6180
```

```
Page 12
```

```
W1=Vwdth
6190
6200
           H1=H(I+Res)
           P1=P(I+Res)-P(I)
6210
6220 Lek11: IF I*Inc>Theta THEN GOTO Lek12
           W2=Awdth
6230
           H2=Aclar
6240
           P2=P((Nseg-1)*Res+I)-P(I)
6250
6260
           L3=Erad*(Inc*(I+Res)-.5*(Awang+Vwang))
           L1(I)=FNLeak1(Eta, H1, H2, H3, L, L3, P1, P2, P3, Sector, U, Vclar, W
6270
1, W2, W3)
6280
           SUBEXIT
6290 Lek12:H2=H(I)
           W2=Vwdth
6300
6310
           P2=P(I-Res)-P(I)
           L3=Erad*(Inc*Res-Vwang)
6320
           L1(I)=FNLeak1(Eta,H1,H2,H3,L,L3,P1,P2,P3,Sector,U,Vclar,W
6330
1, W2, W3>
6340
           SUBEXIT
6350 Leak2:! ****** Sector2 ******
6360
           H1=H(I+Res)
6370
           W1=Vwdth
           P1=P(Res+I)-P(I)
6380
6390
           H2=H(I)
6400
           W2=Vwdth
           P2=P(I-Res)-P(I)
6410
           L3=Erad*(Inc*Res-Vwang)
6420
           L1(I)=FNLeak1(Eta,H1,H2,H3,L,L3,P1,P2,P3,Sector,U,Vclar,W
6430
1, W2, W3)
6440
           SUBEXIT
6450 Leak3:! ****** Sector3 ******
           Theta=(1-1/Nseg)*PI-.5*(Awang+Vwang)
6460
6470
           H2=H(I)
6480
           W2=Vwdth
6490
           P2=P(I-Res)-P(I)
           L3=Erad*(Inc*Res-Vwang)
6500
6510 Lek31: IF Inc*I>Theta THEN GOTO Lek32
           H1=H(I+Res)
6520
6530
            W1=Vwdth
6540
           P1=P(I+Res)-P(I)
           L1(I)=FNLeak1(Eta,H1,H2,H3,L,L3,P1,P2,P3,Sector,U,Vclar,W
6550
1, W2, W3)
           SUBEXIT
6560
6570 Lek32:H1=Aclar
6580
           W1=Awdth
            P1=P(I-(Nseg-1)*Res)-P(I)
6590
           L1(I)=FNLeak1(Eta,H1,H2,H3,L,L3,P1,P2,P3,Sector,U,Vclar,W
6600
1, W2, W3)
6610
           SUBEXIT
6620 Leak4:! ****** Sector4 ******
            Theta=PI-.5*(Awang+Vwang)
6630
6640 Lek41:IF Inc*I>Theta THEN Lek42
6650
            W1=Awdth
6660
            H1=Aclar
            P1=P(I-Nseg*Res)-P(I)
6670
            W2=Vwdth
6630
            H2=H(I)
6690
            P2=P(I-Res)-P(I)
6700
           L3=Erad*(Theta-I*Inc)
6710
6720
            L1(I)=FNLeak1(Eta,H1,H2,H3,L,L3,P1,P2,P3,Sector,U,Vclar,W
1, W2, W3)
```

```
Page 13
```

```
SUBEXIT
6730
                         ! Sector is undefined
6740 Lek42:L1(I)=0
6750
         SUBEXIT
6760 SUBEND
     6770
     ! Calculates total leakage across the segment vane boundary
6730
     6790
     DEF FNLeak1(Eta, H1, H2, H3, L, L3, P1, P2, P3, Sector, U, Vclar, W1, W2, W3
6888
3
     CALL Chkh(H1, H2, Sector, Vclar, He1, He2, Hv1, Hv2)
6810
     Qu=(L*(Hu1^3*P1/W1+Hu2^3*P2/W2)+2*L3*H3^3*P3/W3)/(12*Eta)
6820
     Qe=(He1-He2)*U*L/2
6830
              ! mm3/S
6840
     Q=Qv+Qe
6850
     RETURN Q
     FNEND
6860
6870
     6880
     ! + Checks vane clearence to permitted values.
6890
     ! + This is necessary to hold within bounds entrain effects
                                                           +
6900
     ! + and to avoid unnecessarily low vane tip resistances.
6910
     6920
     SUB Chkh(H1, H2, Sector, Vclar, He1, He2, Hu1, Hu2)
6930
                 ! Entrained flow factor in main sectors
6940
     Entftm=6
                 ! Viscous flow factor in main sectors
6950
     Visftm=6
                 ! Entrained flow factor in end sectors
6960
     Entfte=6
                 ! Viscous flow factor in end sectors
     Visfte=6
6970
6980
    He1=Hv1=H1
6990
    He2=Hv2=H2
7000 ON Sector+1 GOTO Chk1, Chk2, Chk2, Chk2, Chk3
7010 Chk1:! Sector0
        IF He1>Entfte*Vclar THEN He1=Entfte*Vclar
7020
7030
        IF He2>Entftm*Vclar THEN He2=Entftm*Vclar
        IF Hu1>Visfte*Vclar THEN Hu1=Visfte*Vclar
7840
        IF Hu2>Visftm*Vclar THEN Hu2=Visftm*Vclar
7050
7060
        SUBEXIT
7070 Chk2:! Main Sector
7080
        Entftr=Entftm*Vclar
7090
        Visftr=Visftm*Vclar
       IF He1>Entftr THEN He1=Entftr
7100
       IF He2>Entftr THEN He2=Entftr
7110
        IF Hu1>Visftr THEN Hu1=Visftr
7120
7130
        IF Hu2>Visftr THEN Hu2=Visftr
        SUBEXIT
7140
7150 Chk3:! Sector4
        IF He1>Entftm*Vclar THEN He1=Entftm*Vclar
7160
        IF He2>Entfte*Vclar THEN He2=Entfte*Vclar
7170
        IF Hu1>Visftm*Vclar THEN Hu1=Visftm*Vclar
7180
        IF Hu2>Visfte#Vclar THEN Hu2=Visfte#Vclar
7190
7200
        SUBEXIT
7210
     SUBEND
7220
     7230
     1 + Calculates nett flow into the control volume.
7240
     7250
     SUB Flow(Awang, Deff, Inc, Idir, Minudlta, Nseg, Pstat, Res, Rho, Secto
7260
r, Vwang, I)
     COM Auto(1:3), Aprefix$[1], Err_stat
7270
     COM SHORT Ip(-360:1440), Op(-360:1440), If(-360:1440), Of(-360:14
7280
40)
7290 COM SHORT L1(-360:1440),P(-360:1440),Q(-360:1440)
```

```
PROGRAM: VMODEL
```

```
COM SHORT Qi0(360),Qi1(360),Qo1(360),Qo2(360),Qo3(360)
7300
     COM SHORT Vdlta(-360:1440), V(-360:1440), Area(-360:1440), H(1440
7310
    ON Sector+1 GOTO Flow0, Flow1, Flow2, Flow3, Flow4
7320
7330 Flow0:! ****** Sector0 ******
          Theta=-(Res*Inc)+.5*(Awang+Vwang)
7340
7350 Flw01:IF I*Inc1>Theta THEN Flw02
           Qi0(I+Res)=0
                          ! Sector undefined
7360
           Q(I)=0
7370
           SUBEXIT
7380
7390 Flw02:IF ABS(Vdlta(I))>Minudlta THEN Flw03
          IF Theta/Inc-I+Idir=0 THEN F1w02a
7400
           Q(I)=Q(I-Idir)+Q(I-Idir)/(Theta/Inc-I+Idir)
7410
           IF Q(I)>0 THEN F1w02b
7420
7430 F1w02a:Q(I)=0
7440 Flw02b:Qi0(I+Res)=-Q(I)+L1(I)
7450
           SUBEXIT
7460 F1w03:P0=ABS(P(I)-Ip(I))
           P1=P(I)-Ip(I)
7470
          Qi0(I+Res)=SGN(P1)*Dcff*Area(I)*SQR(2*P0/Rho)
7480
           Q(I)=-Qi0(I+Res)+L1(I)
7490
           SUBEXIT
7500
7510 Flow1:! ****** Sector1 ******
           P0=ABS(P(I)-Ip(I))
7520
           P1=P(I)-Ip(I)
7530
           Qi1(I)=SGN(P1)*Dcff*Area(I)*SQR(2*P0/Rho)
7540
           Q(I)=-Qi1(I)+L1(I)
7550
           SUBEXIT
7560
7570 Flow2:! ****** Sector2 ******
          Pp=Ip(I)*(Pstat=1)+0p(I)*(Pstat=2)
7580
          P0=ABS(P(I)-Pp)
7590
7600
           P1=P(I)-Pp
           Qo1(I-Res)=SGN(P1)*Dcff*Area(I)*SQR(2*P0/Rho)
7610
           Q(I)=-Qo1(I-Res)+L1(I)
7620
7630
           SUBEXIT
7640 Flow3:! ****** Sector3 ******
           P0=ABS(P(I)-Op(I))
7650
           P1=P(I)-Op(I)
7660
           Qo2(I-2*Res)=SGN(P1)*Dcff*Area(I)*SQR(2*P0/Rho)
7670
           Q(I)=-Qo2(I-2*Res)+L1(I)
7680
           SUBEXIT
7690
7700 Flow4:! ****** Sector4 ******
           Theta=PI-.5*(Awang+Vwang)
7710
7720 Flw41:IF (I*Inc)Theta) OR (ABS(Vdlta(I))<=Minudlta) THEN Flw42
           P0=ABS(P(I)-Op(I))
7730
           P1=P(I)-Op(I)
7740
           Qo3(I-3*Res)=SGN(P1)*Dcff*Area(I)*SQR(2*P0/Rho)
7750
           Q(I)=-Qo3(I-3*Res)+L1(I)
7760
           SUBEXIT
7770
7780 Flw42:IF I*Inc>Theta THEN Flw43
           IF Theta/Inc-I+Idir=0 THEN Flw42a
7790
           Q(I)=Q(I-Idir)+Q(I-Idir)/(Theta/Inc-I+Idir)
7800
           IF Q(I)<0 THEN F1w42b
7810
7820 F1w42a:Q(I)=0
7830 F1w42b:Qo3(I-3*Res)=-Q(I)+L1(I)
           SUBEXIT
7840
                                 ! Sector Undefined
7850 F1w43:Qo3(I-3*Res)=0
           Q(I)=0
7860
           SUBEXIT
7870
7880 SUBEND
```

7890 ! 7900 1 + This subroutine solves the non-linear equations for 7910 1 + + pressure flow and leakage. 7920 1 7930 1 + ! + Define max. stepsize: Maxstep 7940 7950 SUB Sphlin(Aclar, Awang, Awdth, Cpsure, Eclar, Erad, Ewth, Idir, Inc, L 7960 , Nseg, Omega, Pangl, Phi, Pstat, Sector, U, Vcav, Vclar, Vwang, Vwdth, Res, Csum ,I) COM Auto(1:3), Aprefix\$[1], Err stat 7970 COM SHORT In(-360:1440), Op(-360:1440), If(-360:1440), Of(-350:14 7980 40) 7990 COM SHORT L1(-360:1440), P(-360:1440), Q(-360:1440) COM SHORT Qi0(360),Qi1(360),Qo1(360),Qo2(360),Qo3(360) 8000 COM SHORT Vdlta(-360:1440), V(-360:1440), Area(-360:1440), H(1440 8010 3 COM Beta. Dcff. Eta. Pcav, Rho 8020 SHORT Pite(0:512) 8030 Theta1=-(Res*Inc)+.5*(Awang+Vwang) 8040 Theta2=(1-1/Nseg)*PI-.5*(Awang+Vwang) 8050 ! Max step size Maxstep=512 8060 8070 Csum1=Sector 8989 1 ! ****** 8090 ! Solves for pressure using the Runge-Kutta-Merson method. 8100 ! Geometric variables are assumed linear between steps. 8110 ! Initial Substep. 8120 N=4 8130 **GOSUB** Set 8140 Rungel: ! Start of solution. H=Inc/N 8150 Pite(0)=P(I-Idir) 8160 FOR Natep=1 TO N 8170 Hstep=0 8180 Pc=Pite(Nstep-1) 3190 GOSUB Intval 8200 K1=H*FNFtn1(Area, Beta, Dcff, Eta, H1, H2, Eclar, L, L3, Omega, P1, 8210 P2, Cpsure, Pc, Pport, Rho, Sector, U, V, Vclar, Vdlta, W1, W2, Ewth) Hstep=H/3 8220 8230 Pc=Pite(Nstep-1)+K1/3 GOSUB Intval 8240 K2=H*FNFtn1(Area, Beta, Dcff, Eta, H1, H2, Eclar, L, L3, Omega, P1, 8250 P2, Cpsure, Pc, Pport, Rho, Sector, U, V, Vclar, Vdlta, W1, W2, Ewth) Hstep=H/3 8260 Pc=Pite(Nstep-1)+(K1+K2)/6 8270 GOSUB Intval 8280 K3=H*FNFtn1(Area,Beta,Dcff,Eta,H1,H2,Eclar,L,L3,Omega,P1, 8290 P2, Cpsure, Pc, Pport, Rho, Sector, U, V, Vclar, Vdlta, W1, W2, Ewth) Hstep=H/2 8300 Pc=Pite(Nstep-1)+(K1/8+3*K3/8) 8310 GOSUB Intval 8320 K4=H*FNFtn1(Area,Beta,Dcff,Eta,H1,H2,Eclar,L,L3,Omega,P1, 8330 P2, Cpsure, Pc, Pport, Rho, Sector, U, V, Vclar, Vdlta, W1, W2, Ewth) Hstep=H 8340 Pc=Pite(Nstep-1)+(K1/2-3*K3/2+2*K4) 8350 GOSUB Intual 8360 K5=H*FNFtn1(Area, Beta, Dcff, Eta, H1, H2, Eclar, L, L3, Omega, P1, 8370 P2, Cpsure, Pc, Pport, Rho, Sector, U, V, Vclar, Vdlta, W1, W2, Ewth) 8380 Pite(Nstep)=Pite(Nstep-1)+(K1+4*K4+K5)/6 8390 Pite(0)=Pite(Nstep)

```
Page 16
```

```
Error=(2*K1-9*K3+8*K4-K5)/30
8400
          IF (ABS(Error)).2) AND (N(Maxstep) THEN GOTO Recover1
8410
          ! PRINT N. Error, Nstep, Pite(Nstep)
8420
          IF Err stat=1 THEN SUBEXIT ! Abort: Error occured
8430
8440
       NEXT Natep
8450 Exita:P=Pite(Nstep-1) ! Nstep less one due to counter.
8460
    1
     ! Cavitation check
8470
       P(I)=FNPcau(Inc,Omega, P, Pcau, Vcau, Vdlta(I), L1(I))
8480
       CALL Leak(Aclar, Awang, Awdth, Cpsure, Eclar, Erad, Ewth, Inc, L, Nse
8490
g, Omega, Res, Sector, U, Vclar, Vwang, Vwdth, I)
       SUBEXIT
8500
8510 Recover1:! Doubles no. steps and restarts
       N=N*2
8520
       IF N>Maxstep THEN N=Maxstep
3530
8540
       IF N>=Maxstep THEN Csum=Quad
       GOTO Rungel
8550
8560
      1
! These subroutines determines the parameter value at points
8580
8590 ! within the interval.
8610 Intval:! Start of subroutine Intval
                                     ! L3 deter. in "Intval 0-4"
       Area=Area(I)+Agrad*Hstep
8620
8630
       V=V(I)+Varad*Hstep
       Vdlta=Vdlta(I)+Vdgrad*Hstep
8640
       ON Sector+1 GOTO Intval0, Intval1, Intval2, Intval3, Intval4
8650
8660 Intual0:! Sets interval value for pre-sector
           Pport=Ip(I+Res)+Ppgrad#Hstep
8670
                                   ! Higrad=0
           H1=H(I+Res)+H1grad*Hstep
8680
           P1=P(I+Res)+P1grad*Hstep
8690
8700
           W1=Vwdth
           H2=Aclar+H2grad*Hstep
8710
           P2=P(Nseg*Res+I)+P2grad*Hstep
8720
8730
           W2=Awdth
           L3=Erad*(Inc*(I+Res)-.5*(Awang+Vwang))
8740
8750
           RETURN
8760 Intval1:! Sets interval value for 1st sector
           Pport=Ip(I)+Ppgrad*Hstep
8770
8780
           H1=H(I+Res)+H1grad*Hstep
8790
           P1=P(I+Res)+P1grad*Hstep
           W1=Vwdth
8800
8810 Ival11:IF Inc#I>Theta1 THEN Ival12
                                       ! H2grad=0
           H2=Aclar+H2grad*Hstep
3820
           P2=P((Nseg-1)*Res+I)+P2grad*Hstep
8830
8840
           W2=Awdth
           L3=Erad*(Inc*(I+Res)-.5*(Awang+Vwang))
8850
           RETURN
8860
8870 Ival12:H2=Vclar+H2grad*Hstep
           P2=P(I-Res)+P2grad*Hstep
8880
8890
           W2=Vwdth
           L3=Erad*(Inc*Res-Vwang)
8900
8910
           RETURN
8920 Intual2:! Sets interval value for 2nd sector
           Pp=Ip(I)*(Pstat=1)+Op(I)*(Pstat=2)
8930
8940
           Pport=Pp+Ppgrad#Hstep
8950
           H1=H(I+Res)+H1grad*Hstep
           P1=P(I+Res)+P1grad*Hstep
8960
           W1=Vwdth
8970
8980
           H2=H(I)+H2grad*Hstep
```

-					-
		-		1	1
· ·	- 1 - 1	-	-	*	

8990	P2=P(I-Res)+P2grad*Hstep
9000	W2=Vwdth
9010	L3=Erad*(Inc*Res-Vwang)
9020	RETURN
9030	Intval3:! Sets interval value for 3rd sector
9040	Pport=Op(I)+Ppgrad*Hstep
9050	H2=H(I)+H2grad*Hstep ! H2grad=0
9060	P2=P(I-Res)+P2grad*Hstep
9070	W2=Ywdth
9080	L3=Erad*(Inc*Res-Vwang)
9090	Ival31:IF Inc*I>Theta2 THEN Ival32
9100	H1=H(I+Res)+H1grad*Hstep
9110	P1=P(I+Res)+P1grad*Hstep
9120	W1=Vwdth
9130	RETURN
9140	Ival32:H1=Awdth+H1grad#Hstep ! H1grad=0
9150	P1=P(I-(Nseg-1)*Res)+P1grad*Hstep
9160	WI=Hwdth
9170	RETURN
9180	Intual4; Sets Interval value for 4th sector
9190	Higher Higher Higher Higher
9200	P1=P(I-Neon+Pos)+P1nrad+Heten
9210	W1=Budth
9220	H2=H(I)+H2grad*Hstep
9240	P2=P(I-Res)+P2grad#Hstep
9250	W2=Vwdth
9260	L3=Erad*(PI5*(Awang+Vwang)-I*Inc)
9270	RETURN
9280	
9290	! +++++++++++++++++++++++++++ Set functions ++++++++++++++++++++++++++++++++++++
9300	! These functions determine the gradient between the next
9310	! interval.Linear function assumed over the interval step.
9310 9320	! interval.Linear function assumed over the interval step. ! ++++++++++++++++++++++++++++++++++++
9310 9320 9330	! interval.Linear function assumed over the interval step. ! ++++++++++++++++++++++++++++++++++++
9310 9320 9330 9340	! interval.Linear function assumed over the interval step. ! ++++++++++++++++++++++++++++++++++++
9310 9320 9330 9340 9350	<pre>! interval.Linear function assumed over the interval step. ! ++++++++++++++++++++++++++++++++++++</pre>
9310 9320 9330 9340 9350 9360	<pre>! interval.Linear function assumed over the interval step. ! ++++++++++++++++++++++++++++++++++++</pre>
9310 9320 9330 9340 9350 9360 9370	<pre>! interval.Linear function assumed over the interval step. ! ++++++++++++++++++++++++++++++++++++</pre>
9310 9320 9330 9340 9350 9360 9370 9380	<pre>! interval.Linear function assumed over the interval step. ! ++++++++++++++++++++++++++++++++++++</pre>
9310 9320 9330 9340 9350 9350 9360 9370 9380 9390	<pre>! interval.Linear function assumed over the interval step. ! ++++++++++++++++++++++++++++++++++++</pre>
9310 9320 9330 9340 9350 9360 9360 9380 9380 9390 9400 9410	<pre>! interval.Linear function assumed over the interval step. ! ++++++++++++++++++++++++++++++++++++</pre>
9310 9320 9330 9340 9350 9350 9350 9370 9380 9380 9400 9410 9410	<pre>! interval.Linear function assumed over the interval step. ! ++++++++++++++++++++++++++++++++++++</pre>
9310 9320 9330 9340 9350 9350 9360 9380 9380 9400 9410 9420 9430	<pre>! interval.Linear function assumed over the interval step. ! ++++++++++++++++++++++++++++++++++++</pre>
9310 9320 9330 9340 9350 9350 9360 9380 9380 9400 9410 9420 9440	<pre>! interval.Linear function assumed over the interval step. ! ++++++++++++++++++++++++++++++++++++</pre>
9310 9320 9330 9350 9350 9350 9370 9380 9380 9410 9420 9440 9440 9450	<pre>! interval.Linear function assumed over the interval step. ! ++++++++++++++++++++++++++++++++++++</pre>
9310 9320 9330 9330 9350 9350 9350 9370 9370 9410 9420 9440 9440 9440 9440	<pre>! interval.Linear function assumed over the interval step. ! ++++++++++++++++++++++++++++++++++++</pre>
9310 9320 9330 9330 93350 93350 93350 93350 9410 94430 94430 94430 94450 94450 94470	<pre>! interval.Linear function assumed over the interval step. ! ++++++++++++++++++++++++++++++++++++</pre>
9310 9320 9330 93360 9350 93360 93360 93360 9410 94430 94430 94450 94450 94450 94450 94450 94450 94450 94450	<pre>! interval.Linear function assumed over the interval step. ! ++++++++++++++++++++++++++++++++++++</pre>
9310 9320 9330 93360 93360 93360 93360 93360 9410 94430 94450 94450 94450 94450 94450 94450 94450 94450 94450 94450	<pre>! interval.Linear function assumed over the interval step. ! ++++++++++++++++++++++++++++++++++++</pre>
9310 9320 9330 93360 93360 93360 93360 94100 94410 94420 94420 94450 94450 94450 94450 94450 94450 94450 94500	<pre>! interval.Linear function assumed over the interval step. ! ++++++++++++++++++++++++++++++++++++</pre>
9310 9320 9330 9330 9330 9330 93300 93300 9410 9420 9440 9440 9440 9440 9440 9440 944	<pre>! interval.Linear function assumed over the interval step. ! ++++++++++++++++++++++++++++++++++++</pre>
9310 9320 9330 9330 9330 9330 9330 93300 9420 94420 94420 94420 94420 94450 94450 94450 94450 94450 94500 9510 9520	<pre>! interval.Linear function assumed over the interval step. ! ++++++++++++++++++++++++++++++++++++</pre>
9310 9320 9330 9330 93360 93360 93360 9420 94430 94430 94430 94430 94450 94450 94450 94450 94450 94450 94500 9520 9530	<pre>! interval.Linear function assumed over the interval step. ! ++++++++++++++++++++++++++++++++++++</pre>
9310 9320 9330 93360 93360 93360 93360 93360 9410 94430 94450 94450 94450 94450 94450 94450 94450 94450 94450 94450 95530 95530	<pre>! interval.Linear function assumed over the interval step. ! ++++++++++++++++++++++++++++++++++++</pre>
9310 9320 93340 93360 93360 93360 93360 93360 93360 93400 94420 94450 944780 944780 944780 944780 944780 955300 955340	<pre>! interval.Linear function assumed over the interval step. ! ++++++++++++++++++++++++++++++++++++</pre>
9310 9320 93340 93360 93360 93360 93360 93360 93360 93360 93400 94420 944780 944780 944780 944780 955300 955450 955560	<pre>! interval.Linear function assumed over the interval step. ! ++++++++++++++++++++++++++++++++++++</pre>
9310 9320 93340 93340 93360 93360 93360 93360 93360 93390 93360 93390 934420 94440 944780 944780 944780 95510 95520 9555000 9555000 9555000 9555000 9555000 9555000 9555000 9555000 9555000 9555000 9555000 9555000 95550000 95550000 955500000000	<pre>! interval.Linear function assumed over the interval step. ! ++++++++++++++++++++++++++++++++++++</pre>
9310 9320 93340 93360 93360 93360 93360 93360 94420 94430 94420 94450 94450 94450 94450 94450 955200 955200 955000 955000 9550000000000	<pre>! interval.Linear function assumed over the interval step. ! ++++++++++++++++++++++++++++++++++++</pre>

```
Page 18
```

```
9580
        Ppgrad=Ppgrad/Inc
9590
        H1grad=(H(I+Res+Idir)-H(I+Res))/Inc
        Pigrad=(P(I+Res+Idir)-P(I+Res))/Inc
9600
9610
        H2grad=(H(I+Idir)-H(I))/Inc
9620
        P2grad=(P(I-Res+Idir)-P(I-Res))/Inc
9630
        RETURN
9640 Set3:! Set interval grad. for 3rd sector
9650
        Ppgrad=(Op(I+Idir)-Op(I))/Inc
9660
        H2grad=(H(I+Idir)-H(I))/Inc
        P2grad=(P(I-Res+Idir)-P(I-Res))/Inc
9670
9680 St31: IF I*Inc>Theta2 THEN GOTO St32
        H1grad=(H(I+Res+Idir)-H(I+Res))/Inc
9690
9700
        Plorad=(P(I+Res+Idir)-P(I+Res))/Inc
9710
        RETURN
9720 St32:H1grad=0
        Pigrad=(P(I-(Nseg-1)*Res+Idir)-P(I-(Nseg-1)*Res))/Inc
9730
        RETURN
9740
9750 Set4:! Set interval grad. for 4th sector
        Ppgrad=(Op(I+Idir)-Op(I))/Inc
9760
9770
        Higrad=0
9780
        P1grad=(P(I-Nseg*Res+Idir)-P(I-Nseg*Res))/Inc
9790
        H2grad=(H(I+Idir)-H(I))/Inc
9800
        P2grad=(P(I-Res+Idir)-P(I-Res))/Inc
9810
        RETURN
     SUBEND
9820
9830 !
    9840
     ! This subfunction defines the main differential equation for
9850
     ! the rate of change of cell presure w.r.t angular position.
9860
     9870
     DEF FNFtn1(Area, Beta, Dcff, Eta, H1, H2, Eclar, L, L3, Omega, P1, P2, Cps
9880
ure, Pc, Pport, Rho, Sector, U, V, Vclar, Vdlta, W1, W2, Ewth)
9890
     COM Auto(1:3), Aprefix$[1], Err_stat
9900 CALL Chkh(H1,H2,Sector,Vclar,He1,He2,Hv1,Hv2)
9910 Ditap=Pport-Pc
9920 Y1=SGN(D1tap)*Dcff*Area*SQR(2*ABS(D1tap)/Rho)
                                                    ! Orifice
9930 Y1=Y1+U*L/2*(He1-He2)
                                                    ! Entrain
9940 Y2=L*(Hu1^3*(P1-Pc)/W1+Hu2^3*(P2-Pc)/W2)
9950
     Y2=(Y2+2*L3*Eclar^3*(Cpsure-Pc)/Ewth)/(12*Eta)
9960
     Y=(Y1+Y2+Omega*Vdlta)*Beta/(Omega*V)
9970 RETURN Y
9980
    FNEND
9990
     1
10000 ! ++++++++ End of routines for non-linear solutions ++++++++
10010 !
10030 ! + Solves linear equuations for pressure, flow and leakage
                                                              +
10040 ! + This routine is valid for the conditions;
10050 ! + a) Insignificant leakage comp. with port flow
                                                    :Solve1
10060 ! + b) Significant leakage comp. but no port flow. :Solve2
                                                              +
10080 SUB Splin(Aclar, Awdth, Awang, Cpsure, Dir, Eclar, Erad, Ewth, Inc, Idi
r,L,Nseg,Omega,Pangl,Phi,Pstat,Res,Sector,U,Vcav,Vclar,Vwang,Vwdth,I
3
10090 COM Auto(1:3), Aprefix$[1], Err stat
10100 COM SHORT Ip(-360:1440),Op(-360:1440),If(-360:1440),Of(-360:14
40)
10110 COM SHORT L1(-360:1440),P(-360:1440),Q(-360:1440)
10120 COM SHORT Q10(360),Q11(360),Q01(360),Q02(360),Q03(360)
10130 COM SHORT Vdlta(-360:1440), V(-360:1440), Area(-360:1440), H(1440
>
```

```
10140 COM Beta, Doff, Eta, Poav, Rho
10150 ON 2+SGN(Area(I)) GOSUB Bcond, Bcond, Acond ! Select: Solve 1/2
10160 P(I)=FNPcav(Inc, Omega, P, Pcav, Vcav, Vdlta(I), L1(I))
10170 SUBEXIT
10180 Acond:! With significant port flow
           Cstat=0
                       ! Re-iteration check.
10190
           C1=Inc #I
10200
           K=I-Idir
10210
           CALL Leak (Aclar, Awang, Awdth, Cpsure, Eclar, Erad, Ewth, Inc, L,
10220
Nseg, Omega, Res, Sector, U, Vclar, Vwang, Vwdth, K)
10230
           L1=L1(K)
           CALL Pcons(Beta, K12, Dcff, K11, Eta, Inc, Idir, L1, Omega, P1, Pr,
10240
Pstat, Res, Rho, Sector, I, Area(*), Ip(*), Op(*), P(*), V(*), Vdlta(*))
10250 Start: Dir=SGN(P1)
           IF Dir=0 THEN Dir=SGN(K11)
10260
           IF Dir<>0 THEN Splin1
10270
                             ! Solved
           P=P(K)
10280
           RETURN
10290
10300 Splin1:U1=SQR(ABS(P1))
           Z1=K11-Dir*K12*U1
10310
10320
           P=P(K)
           CALL Solve1(K12, Dir, K11, P, Pr, Inc, Z1, I) ! K12 def. +ve
10330
           IF Err stat=1 THEN SUBEXIT ! Abort : Error occured
10340
10350 Check1:! Checks for accuracy of K11, K12 estimate values.
           K=I
10360
           P(K)=P
10370
           CALL Leak (Aclar, Awang, Awdth, Cpsure, Eclar, Erad, Ewth, Inc, L,
10380
Nseg, Omega, Res, Sector, U, Vclar, Vwang, Vwdth, K)
           Val1=L1
10390
           Va12=L1(I)
10400
           IF SGN(Val1)<>SGN(Val2) THEN Check2
10410
           IF (ABS(Val2-Val1))ABS(1.5*Val1)) OR (ABS(Val2-Val1)(ABS(
10420
.5*Val1)) THEN GOTO Check2
           RETURN
10430
10440 Check2:! New values for K11,K12 and re-iterate.
           L1=L1(I)
10450
           Cstat=Cstat+1
10460
           IF Cstat>=3 THEN RETURN ! Max permited 3 Iterations
10470
           CALL Pcons(Beta, K12, Bcff, K11, Eta, Inc, Idir, L1, Omega, P1, Pr,
10480
Pstat,Res,Rho,Sector,I,Area(*),Ip(*),Op(*),P(*),V(*),Vdlta(*))
           GOTO Start
10490
10500 Bcond: ! No port flow
           CALL Solve2(Aclar, Awdth, Awang, Beta, Cpsure, Eclar, Erad, Eta,
10510
Ewth, Inc, Idir, L, Nseg, Omega, P, Res, Sector, U, Vclar, Vwang, Vwdth, I, H(*), P
(*), V(*), Vdlta(*))
           IF Err_stat=1 THEN SUBEXIT ! Abort : Error occured
10520
10530
           P(I)=P
           CALL Leak(Aclar, Awang, Awdth, Cpsure, Eclar, Erad, Ewth, Inc, L,
10540
Nseg,Omega,Res,Sector,U,Vclar,Vwang,Vwdth,I)
           RETURN
10550
10560 SUBEND
10570 !
10590 ! + Selects appropriate routines for differing conditions of +
10600 ! + suction and delivery flow.
10620 SUB Solve1(K12, Dir, K11, P, Pr, Inc, Z1, I)
10630 COM Auto(1:3), Aprefix$[1], Err_stat
                      ! Sufficiently small Zs
10640 Zstol=1E-4
10650 C1=Inc*I
```

10660	Theta1=C1
10670	Theta2=C1+Inc
10680	X=2-Dir*SGN(K11)
10690	ON X GOSUB Con1, Con2, Con3
10700	SUBEXIT
10710	Con1: X=2-Dir*SGN(Z1)
10720	ON X GOSUB Scontt, Scont2, Scont3
10720	
10730	RETURN
10740	Sconii:2s=Ph2s(2,Ki2,Dir,Kii,Theval,Theval,Ci/
10750	IF HBS(2s)>2stol THEN SCONTIA
10760	22=0
10770	P=FNPsrt(2,K12,Dir,K11,Pr,Z2)
10780	RETURN
10790	Sconlla:Xmin=Zs
10800	Xmax=Z1
10810	IF Xmin <xmax goto="" sconlib<="" td="" then=""></xmax>
10820	Xmin=71
10020	Ymax=7e
10030	Coontib:72-ENGEn(1 K12 Din K11 Thetal Theta2.71.7s.Xmin.Xmax.I
10840	Sconilo.22-Photneti, Kiz, Dir, Kiz, Thevaz, Thevaz, El, El, Shann, Shanay,
>	
10850	P=FNPSrt(2,KI2,D)r,KII,Fr,22
10860	RETURN
10870	Scon12:P=P ! P initialised at P(I-1)
10880	RETURN
10890	Scon13:Zs=FNZs(3,K12,Dir,K11,Theta1,Theta2,Z1)
10900	IF ABS(Zs)>1E-19 THEN Sscon1
10910	Exp=-((Theta2-Theta1)*K12*K12/(2*Dir*K11)+Z1/K11)
10920	IF Exp(=LOG(ABS(1E-19/Z1)) THEN Sscon2
10930	7==71
10040	
10740	
10950	
10960	Xm1n=K11
10970	Xmax=21
10980	IF Xmin <xmax gutu="" scon13a<="" td="" then=""></xmax>
10990	Xmin=Z1
11000	Xmax=K11
11010	Scon13a:Az=FNSfn(1,K12,K11,Dir,Theta1,Theta2,Z1,Zss,Xmin,Xmax,
I)	
11020	IF ABS(Az)/Zstol THEN Sscon4
11030	IF Az<0 THEN Sart
11040	IF AZ>0 THEN Sacon3
11050	Second: IF ABS(7s))7stol THEN Ssconla
11050	72-0
11000	D-END-m+ (2 V12 Din V11 Pn 72)
1107.0	P=PMPSPU(2, K12, D)P, K11, PP, 227
11080	RETURN
11090	Ssconla:Xmin=21
11100	Xmax=Zs
11110	IF Xmin <xmax sscon1b<="" td="" then=""></xmax>
11120	Xmin=Zs
11130	Xmax=Z1
11140	Sscon1b:Z2=FNSfn(1,K12,Dir,K11,Theta1,Theta2,Z1,Zs,Xmin,Xmax,I
>	
11150	P=FNPsrt(2,K12,Dir,K11,Pr,Z2)
11160	RETURN
11170	Sscon2:72=71*EXP(Exp)
11100	P=ENPant (2, K12, Din, K11, Pn, 72)
11100	DETION
11190	RETORN Descent OLZER
11200	SSCONJ:25=HZ
11210	Zz=FNSfn(1,K12,Dir,K11,Inetal,Ineta2,Z1,ZS,Xmin,Xmax,I)
11220	Z2=Zz

```
P=FNPsrt(2,K12,Dir,K11,Pr,Z2)
11230
            RETURN
11240
11250 Sscon4:Z2=8z
            P=FNPsrt(2, K12, Dir, K11, Pr, Z2)
11260
            RETURN
11270
            X=SGN(Theta2-(Theta1-Dir*2*Z1/(K12*K12)))
11280 Con2:
            IF Dir*X<=0 THEN P=Pr
11290
            IF Dir*X>0 THEN P=FNPsrt(3,K12,Dir,K11,Pr,Z2)
11300
11310
            RETURN
            Thetae=Theta1+Dir*2/(K12*K12)*(K11-Z1-K11*LOG(K11/Z1))
11320 Con3:
            X=2-SGN(Theta2-Thetae)
11330
            IF (Thetae(Theta2+.01*Inc) AND (Thetae)Theta2-.01*Inc)
11340
THEN X=2
            ON X GOSUB Scon31, Scon32, Scon33
11350
            RETURN
11360
11370 Scon31:Zs=FNZs(1,K12,Dir,K11,Theta1,Theta2,Z1)
            IF ABS(Zs)>Zstol THEN Scon31a
11380
            Z2=0
11390
            P=FNPsrt(1,K12,Dir,K11,Pr,Z2)
11400
            RETURN
11410
11420 Scon31a:Xmin=K11
            Xmax=Zs
11430
            IF Xmin(Xmax THEN GOTO Scon31b
11440
            Xmin=Zs
11450
            Xmax=K11
11460
11470 Scon31b:Z2=FNSfn(2,K12,Dir,K11,Theta1,Theta2,Z1,Zs,Xmin,Xmax,I
)
            P=FNPsrt(1,K12,Dir,K11,Pr,Z2)
11480
            RETURN
11490
11500 Scon32:P=Pr
            RETURN
11510
11520 Scon33:Zs=Z1
            IF ABS(Zs)>Zstol THEN Scon33a
11530
            Z2=0
11540
            P=FNPsrt(2, K12, Dir, K11, Pr, Z2)
11550
11560
            RETURN
11570 Scon33a:Xmin=K11
            Xmax=Z1
11580
11590
             IF Xmin<Xmax THEN GOTO Scon33b
            Xmin=Z1
11600
            Xmax=K11
11610
11620 Scon33b:Z2=FNSfn(1,K12,Dir,K11,Theta1,Theta2,Z1,Zs,Xmin,Xmax,I
>
             P=FNPsrt(2,K12,Dir,K11,Pr,Z2)
11630
            RETURN
11640
            SUBEND
11650
11660 !
11680 ! + This subroutine solves for segment pressure directly,
11690 ! + when the outlet port is closed.
       + The routine assumes vane clearences at Vclar for forward
11700 !
       + and trailing vane.
11710 !
       + Note: Non defined area checks in Selsol
11720 !
11740 SUB Solve2(Aclar, Awdth, Awang, Beta, Cpsure, Eclar, Erad, Eta, Ewth, I
nc,Idir,L,Nseg,Omega,P,Res,Sector,U,Vclar,Vwang,Vwdth,I,SHORT H(*),P
(*), V(*), Vdlta(*))
11750 COM Auto(1:3), Aprefix$[1], Err_stat
11760 K=I-Idir
11770 ON Sector+1 GOSUB Sol0, Sol1, Sol2, Sol3, Sol4
```

```
Page 22
```

```
11780 CALL Chkh(H1, H2, Sector, Vclar, He1, He2, Hv1, Hv2)
11790 K1=Beta/(V(K)*Omega)
11800 K2=1/(12*Eta)
11810 K3=L*(Hv1^3*Pf/W1+Hv2^3*Pr/W1)+2*L3*Eclar^3*Cpsure/Ewth
11820 A=K1*(K2*K3+U*L/2*(He1-He2)-Omega*Vdlta(K))
11830 B=K1*K2*(L*(Hv1^3/W1+Hv2^3/W2)+L3*Eclar^3/Ewth)
11840 Zz1=A-B*P(K)
11850 Zz2=Zz1*EXP(-B*Inc)
11860 P=(A-Zz2)/B
11870 SUBEXIT
11880 Sol0:! Sector 0
             W1=Vwdth
11890
             H1=H(K+Res)
11900
11910
             Pf=P(K+Res)
             W2=Awdth
11920
11930
             H2=Aclar
             Pr=P(Nseg*Res+K)
11940
             L3=Erad*(Inc*(I+Res)-.5*(Awang+Vwang))
11950
             RETURN
11960
11970 Sol1:! Sector 1
11980
             Theta=.5*(Awang+Vwang)
11990 Soll1: W1=Vwdth
             H1=H(K+Res)
12000
             Pf=P(K+Res)
12010
             IF I*Inc>Theta THEN GOTO Sol12
12020
             W2=Awdth
12030
             H2=Aclar
12040
             Pr=P((Nseg-1)*Res+K)
12050
             L3=Erad*(Inc*(I+Res)-.5*(Awang+Vwang))
12060
             RETURN
12070
12080 Soll2: W2=Vwdth
             H2=H(K)
12090
             Pr=P(K-Res)
12100
             L3=Erad*(Inc*Res-Vwang)
12110
             RETURN
12120
12130 Sol2:! Sector 2
             H1=H(K+Res)
12140
12150
             W1=Vwdth
             Pf=P(K+Res)
12160
             H2=H(K)
12170
12180
             W2=Vwdth
12190
             Pr=P(K-Res)
12200
             L3=Erad*(Inc*Res-Awang)
12210
             RETURN
12220 Sol3:! Sector 3
12230
             Theta=(1-1/Nseq)*PI-.5*(Awang+Vwang)
12240 Sol31: H2=H(K)
12250
             W2=Vwdth
             Pr=P(K-Res)
12260
12270
             L3=Erad*Inc*Res
             IF I*Inc>Theta THEN GOTO Sol32
12280
12290
             H1=H(K+Res)
             W1=Ywdth
12300
             Pf=P(K+Res)
12310
12320
             RETURN
12330 Sol32: H1=Aclar
12340
             W1=Awdth
             Pf=P(K-(Nseg-1)*Res)
12350
12360
             L3=Erad*(PI-Theta-.5*(Awang+Vwang))
12370
            RETURN
```

12380 Sol4:! Sector 4 W1=Awdth 12390 H1=Aclar 12400 Pf=P(K-Nseg*Res) 12410 12420 W2=Vwdth H2=H(K) 12430 Pr=P(K-Res) 12440 L3=Erad*(PI-Theta-.5*(Awang+Vwang)) 12450 12460 RETURN 12478 SUBEND 12480 ! 12500 ! Solves for the root Z2 of the non linear equation using the 12510 ! methods of 'Modified Regula Falsi' and 'Newton-Raphson'. 12530 DEF FNSfn(Egn,K12,Dir,K11,Theta1,Theta2,Z1,Zs,Xmin,Xmax,I) 12540 COM Auto(1:3), Aprefix\$[1], Err_stat 12550 Acount=1 12560 Ftol=.01 .! Acceptable function value 12570 IF FNYfn(Eqn, K12, Dir, K11, Theta1, Theta2, Z1, Zs) <= Ftol THEN GOTO Newton 12580 Regfals:! Set up trip parameters Ntol=20 ! Max iteration 12590 ! Acceptable Z1, Z2 difference Xtol=1E-5 12600 12610 Regsrt:! Start of routine proper & entry for error routine A=Xmin 12620 B=Xmax 12630 12640 W=A Fa=FNYfn(Eqn, K12, Dir, K11, Theta1, Theta2, Z1, A) 12650 Fb=FNYfn(Eqn, K12, Dir, K11, Theta1, Theta2, Z1, B) 12660 IF Fa*Fb>0 THEN GOTO Error1 ! Same sign at endpoints 12670 Fw=Fa 12680 12690 FOR N=1 TO Ntol IF (ABS((B-A)/2))Xtol) AND (ABS(Fw))Ftol) THEN GOTO Srg 12700 fis IF ABS((B-A)/2)(=Xto1 THEN Zs=(B-A)/2 12710 IF ABS(Fw) <= Ftol THEN Zs=W 12720 12730 GOTO Newton 12740 Srgfls:W=(Fb*A-Fa*B)/(Fb-Fa) Prevfw=Fw 12750 Fw=FNYfn(Eqn, K12, Dir, K11, Theta1, Theta2, Z1, W) 12760 12770 ! Change to new interval 12780 IF Fa*Fw>0 THEN GOTO Srgf1s2 12790 A=W Fa=Fw 12800 IF Fw*Prevfw>0 THEN Fb=Fb/2 12810 GOTO Srafls3 12820 12830 Srgfls2:B=W Fb=Fw 12840 IF Fw*Preufw>0 THEN Fa=Fa/2 12850 12860 Srgfls3:NEXT N GOTO Error2 12870 12880 Error1: PRINTER IS 0 PRINT "I :"; I, "Same sign at end points" 12890 PRINTER IS 16 12900 ! Widen Xmin, Xax limits 12910 Xmin=Xmin-.25*(Xmax-Xmin) 12920 12930 Xmax=Xmax+.25*(Xmax-Xmin) 12940 IF Acount>5 THEN GOTO Newton 12950 Acount=Acount+1

```
GOTO Regart
12960
12970 Error2: PRINTER IS 0
          PRINT "I :"; I, "Max permitted iteration"
12980
          PRINTER IS 16
12990
           ! Attempt to solve with 'Newton"
13000
13010 Newton: ! Solves by Newton-Raphson Method
13020
          Irate=1
13030
          Nitol=20
13040
          Nftol=1E-5
          Nerr=.001
13050
13060 Newton2: Yfn=FNYfn(Eqn, K12, Dir, K11, Theta1, Theta2, Z1, Zs)
           IF ABS(Yfn)>Nftol THEN Newton3
13070
          RETURN Zs
13080
13090 Newton3:Ydfn=FNYdfn(Eqn,K12,Dir,K11,Zs)
          Ydlta=Yfn/Ydfn
13100
          Z2=Zs-Ydlta
13110
          IF (ABS(Yd1ta)(Nerr) OR (Irate)Nitol) THEN RETURN Z2
13120
13130
          Irate=Irate+1
          Zs=22
13140
          GOTO Newton2
13150
13160
          SUBEND
13170 !
13190 ! Defines the non-linear equations.
13210 DEF FNYfn(Eqn, K12, Dir, K11, Theta1, Theta2, Z1, Z2)
13220 COM Auto(1:3), Aprefix$[1], Err_stat
13230 ON Egn GOTO Egn1, Egn2
13240 Eqn1:Yfn=2*Dir/(K12*K12)*(Z2-Z1-K11*LOG(Z2/Z1))-(Theta2-Theta1
)
        RETURN Yfn
13250
13260 Egn2:Yfn=-(2*Dir)/(K12*K12)*(Z1+Z2-2*K11+2*L0G(K11*K11/(Z1*Z2)
))-(Theta2-Theta1)
        RETURN Yfn
13270
        FNEND
13280
13290 !
13310 ! Defines the derivative of the equations
13330 DEF FNYdfn(Eqn, K12, Dir, K11, Z2)
13340 COM Auto(1:3), Aprefix$[1], Err stat
13350 ON Egn GOTO Egn1, Egn2
13360 Egn1:Ydfn=2*Dir/(K12*K12)*(1-K11/Z2)
        RETURN Ydfn
13370
13380 Eqn2:Ydfn=-2*Dir/(K12*K12)*(1-K11/Z2)
        RETURN Ydfn
13390
13400
        FNEND
13410 !
13430 !
      Determines start values
13450 DEF FNZs(Eqn, K12, Dir, K11, Theta1, Theta2, Z1)
13460 COM Auto(1:3), Aprefix$[1], Err_stat
13470 ON Eqn GOTO Eqn1, Eqn2, Eqn3
13480 Egn1: Zs=K11*K11/Z1*EXP(-2+Z1/K11+(Theta2-Theta1)*K12*K12/(2*D
ir*K11))
13490
          RETURN Zs
13500 Eqn2: Zs=Z1*EXP(-((Theta2-Theta1)*K12*K12/(2*Dir*K11)+Z1/K11))
13510
         RETURN Zs
13520 Eqn3: Zs=Z1*EXP(-((Theta2-Theta1)*K12*K12/(2*Dir*K11)))
```

```
RETURN Z3
13530
13540
          FNEND
13550 !
13570 ! Evaluates P value
13590 DEF FNPsrt(Egn, K12, Dir, K11, Pr, Z2)
13600 COM Auto(1:3), Aprefix$[1], Err stat
13610 ON Egn GOTO Egn1, Egn2, Egn3
13620 Eqn1: X=(Z2-K11)/K12
          P=Pr-Dir*X*X
13630
          RETURN P
13640
13650 Eqn2: X=(Z2-K11)/K12
          P=Pr+Dir*X*X
13660
          RETURN P
13670
13680 Eqn3: X=-(Theta2-Thets1)*K12/2+Z1/K12
          P=Pr+Dir*X*X
13690
          RETURN P
13700
13710
          FNEND
13720 !
13740 ! + Sets constants K12, K11, P1, Pr. (Ref Documentation)
13760 SUB Pcons(Beta, K12, Dcff, K11, Eta, Inc, Idir, L1, Omega, P1, Pr, Pstat,
Res, Rho, Sector, I, SHORT Area(*), Ip(*), Op(*), P(*), V(*), Vdlta(*))
13770 COM Auto(1:3), Aprefix$[1], Err_stat
13780 K=I-Idir
13790 K12=Beta/(V(K)*Omega)*Dcff*Area(K)*SQR(2/Rho)
13800 Ep=-Beta*Vdlta(K)/V(K)
13810 K11=Beta*L1/(V(K)*Omega)+Ep
13820 ON Pstat GOTO Input, Output
13830 Input:P1=P(K)-Ip(K)
13840
          Pr=Ip(K)
          SUBEXIT
13850
13860 Output:P1=P(K)-Op(K)
          Pr=Op(K)
13870
          SUBEND
13880
13899 1
13900 ! +++++++++ End of routines for linear solutions ++++++++++
13910 !
13920 !
13940 ! Cavitation check
13950 ! Pressures assigned to cavitation values if the calculated
13960 ! pressure is less than the cavitation pressure and/or the
13970 ! cavitation volume is greater than zero.
13990 DEF FNPcav(Inc,Omega,P,Pcav,Vcav,SHORT Vdlta,L1)
 14000 COM Auto(1:3), Aprefix$[1], Err_stat
 14010 IF (P>=Pcau) AND (Vcau(=0) THEN RETURN P
 14020 Vdir=1 ! Increasing cavitation vol.
 14030 IF P>Pcay THEN Vdir=-1
 14040 Iucav=(Vdlta-L1/Omega)*Inc
 14050 Vcau=Vcau+Vdir+Ivcau
 14060 IF Veaux0 THEN Veau=0
 14070 PRINT " CAVITATION Veau= "; Veau
 14080 RETURN Pcau
 14090 FNEND
14100 !
```

```
Page 26
```

```
+
14120 ! + Calculates leakage, net flow out of the control volume
14130 ! + and segment 'port flow at each angular position.
14140 ! + Summed segment port flows produces the inlet and outlet
14150 ! + flow arrays.
14170 SUB Gdat1(Aclar, Awdth, Awang, Cpsure, Eclar, Erad, Ewth, Inc, L, Minud
Ita, Nseg, Omega, Pangl, Phi, Res, Resnum, Secsrt(*), U, Vclar, Vwang, Vwdth)
14180 COM Auto(1:3), Aprefix$[1], Err_stat
14190 COM SHORT Ip(-360:1440), Op(-360:1440), If(-360:1440), Of(-360:14
40)
14200 COM SHORT L1(-360:1440),P(-360:1440),Q(-360:1440)
14210 COM SHORT Q10(360),Q11(360),Q01(360),Q02(360),Q03(360)
14220 COM SHORT Vdlta(-360:1440),V(-360:1440),Area(-360:1440),H(1440
)
14230 COM Beta, Doff, Eta, Poav, Rho
14240 !
14250 ! Generate leakage and flow arrays.
14260 ! *** PRE-SECTOR ***
14270 Sector=0
14280 Pstat=1
14290 FOR I=Secsrt(1)-1 TO Secsrt(0) STEP -1
14300 C1=I*Inc
14310 CALL Leak(Aclar, Awang, Awdth, Cpsure, Eclar, Erad, Ewth, Inc, L, Nseg,
Omega, Res, Sector, U, Vclar, Vwang, Vwdth, I)
14320 CALL Flow(Awang, Dcff, Inc, Idir, Minudlta, Nseg, Pstat, Res, Rho, Sect
or, Ywang, I)
14330 NEXT I
14340 ! *** FIRST SECTOR ***
14350 Sector=1
14360 Pstat=1
14370 FOR I=Secsrt(1) TO Secsrt(2)-1
14380 C1=I*Inc
14390 CALL Leak(Aclar, Awang, Awdth, Cpsure, Eclar, Erad, Ewth, Inc, L, Nseg,
Omega, Res, Sector, U, Vclar, Vwang, Vwdth, I)
14400 CALL Flow(Awang,Dcff,Inc,Idir,Minvdlta,Nseg,Pstat,Res,Rho,Sect
or, Ywang, I)
14410 NEXT I
14420 ! *** SECOND SECTOR ***
14430 Sector=2
14440 Pstat=1
14450 FOR I=Secsrt(2) TO Secsrt(3)-1
14460 IF Area(I) <= 0 THEN Pstat=2
14470 C1=I*Inc
14480 CALL Leak(Aclar, Awang, Awdth, Cpsure, Eclar, Erad, Ewth, Inc, L, Nseg,
Omega, Res, Sector, U, Vclar, Vwang, Vwdth, I)
14490 CALL Flow(Awang, Deff, Inc, Idir, Minvdlta, Nseg, Pstat, Res, Rho, Sect
or, Vwang, I)
14500 NEXT I
14510 ! *** THIRD SECTOR ***
14520 Sector=3
14530 FOR I=Secsrt(3) TO Secsrt(4)-1
14540 C1=I*Inc
14550 CALL Leak(Aclar, Awang, Awdth, Cpsure, Eclar, Erad, Ewth, Inc, L, Nseg,
Omega, Res, Sector, U, Vclar, Vwang, Vwdth, I)
14560 CALL Flow(Awang, Deff, Inc, Idir, Minvdlta, Nseg, Pstat, Res, Rho, Sect
or, Vwang, I)
14570 NEXT I
14580 ! *** FOURTH SECTOR ***
14590 Sector=4
14600 FOR I=Secsrt(4) TO Resnum
```

```
14610 C1=I*Inc
14620 CALL Leak(Aclar, Awang, Awdth, Cpsure, Eclar, Erad, Ewth, Inc, L, Nseg,
Omega, Res, Sector, U, Vclar, Vwang, Vwdth, I)
14630 CALL Flow(Awang, Dcff, Inc, Idir, Minudita, Nseg, Pstat, Res, Rho, Sect
or, Vwang, I)
14640 NEXT I
14650 !
14660 ! Sets output array for Inlet and Outlet flow.
                                       ! End correction factor
14670 Enderr=INT(.05*Res)
14680 !
14690 ! ***
               PRE-SECTOR ***
14700 FOR I=Secsrt(0)+Enderr TO Secsrt(1)-1-Enderr
14710 If(I)=Qi1(I+Res)+Qi0(I+Res)
14720 Of(I)=Qo1(I+Res)+Qo2(I+Res)+Qo3(I+Res)
14730 NEXT I
14740 FOR I=Secsrt(0) TO Secsrt(0)+Enderr-1 ! End correction
14750 If(I)=If(Secsrt(0)+Enderr)
14760 Of(I)=Of(Secsrt(0)+Enderr)
14770 NEXT I
14780 FOR I=Secsrt(1)-Enderr TO Secsrt(1)-1
14790 If(I)=If(Secsrt(1)-Enderr-1)
14800 Of(I)=Of(Secsrt(1)-Enderr-1)
14810 NEXT I
14820 !
14830 ! *** FIRST TO FOURTH SECTOR ***
14840 Kcount=1
14850 FOR J=1 TO Nseq
14860 FOR I=Secsrt(0) TO Secsrt(1)-2
14870 If(Kcount)=If(I)
14880 Of(Kcount)=Of(I)
14890 Kcount=Kcount+1
14900 NEXT I
14910 NEXT J
14920 SUBEND
14930 !
14950 ! + Calculates port pressures from the inlet and outlet flow.+
14960 ! + The routine models a lossless anechoic line and dominant +
14970 ! + source impedance
14980 ! + Intermediate fluctuation are suppressed to aid conv.
15000 SUB Psure(Beta,Corftr_i,Corftr_o,Instat,Ipsure,Ildiam,Oldiam,O
psure, Resnum, Rho, Type, Secsrt(*), SHORT Of(*), If(*), Op(*), Ip(*))
15010 ! Process Output
15020 CALL Psure1(Beta,Corftr_o,Instat,Oldiam,Opsure,Resnum,Rho,Type
,Secsrt(*),Of(*),Op(*))
15030 ! Process Input
15040 IF Instat=0 THEN SUBEXIT
15050 CALL Psure1(Beta, Corftr_i, Instat, Ildiam, Ipsure, Resnum, Rho, Type
,Secsrt(*), If(*), Ip(*))
15060 SUBEND
15070 SUB Psure1(Beta,Corftr,Instat,Diam,Mpsure,Resnum,Rho,Type,Secs
rt(*), SHORT Flow(*), Press(*))
           K=PI*Diam^2
15080
           K=4*SQR(Rho*Beta)/K
15090
           K=Corftr*K
15100
           Sum=0
15110
            Count=Resnum-Secsrt(0)+1
15120
            FOR I=Secart(0) TO Reanum
15130
            Sum=Sum+Flow(I)
15140
```

```
NEXT I
15150
         Nout1=Sum/Count
15160
15170
         ON Type+1 GOTO Sort1, Sort2
15180 Sort1:! Sort intermediate array
         FOR I=Secort(0) TO Resnum
15190
         Press(I)=(Press(I)+Mpsure+K*(Flow(I)-Nout1))*.5
15200
         NEXT I
15210
         Press(0)=Press(Secsrt(0))
15220
15230
         SUBEXIT
15240 Sort2:! Sort final array
15250
         FOR I=Secsrt(0) TO Resnum
         Press(I)=Mpsure+K*(Flow(I)-Nout1)
15260
15270
         NEXT I
         Press(0)=Press(Secsrt(0))
15280
         SUBEXIT
15290
15300 SUBEND
15310 !
15330 ! + Waveform smoothing: a simple moving point averaging :
15340 ! + which is a low pass digital filter.
15350 ! + Excessive smoothing masks the characteristic behavior.
                                                       +
15360 ! + Level of smmoothing is controlled by parameter: Smooth
                                                       +
15380 SUB Smooth(Resnum, Smooth, SHORT Array(*))
15390 Int=INT(Resnum/180*Smooth)
15400 FOR I=Int TO Resnum-Int
15410 Array=0
15420 FOR J=-Int TO Int
15430 Array=Array+Array(I+J)
15440 NEXT J
15450 Array(I)=Array/(2*Int+1)
15460 NEXT I
15470 FOR I=Resnum-Int+1 TO Resnum
15480 Array(I)=Array(Resnum-Int)
15490 NEXT I
15500 FOR I=0 TO Int-1
15510 Array(I)=Array(Int)
15520 NEXT I
15530 SUBEND
15540 !
15560 ! + Recovery routine for numerical errors in Selsol routines.+
15570 ! + Sets err stat to 1 on error and returns call.
15590 SUB Err rec
15600 COM Auto(1:3), Aprefix$[1], Err stat
15610 Err stat=1
15620 SUBEND
15630 !
15650 ! + Calculates the control volume for each rotational position
15670 SUB Vctl(Awang, Inc, L, Nseg, Rdiam, Res, Sdiam, Vwang, Vwdth, SHORT V(
*),H(*))
15680 Theta1=-(PI/Nseg)+.5*(Awang+Vwang)
15690 Theta2=.5*(Awang+Vwang)
15700 Theta3=(1-1/Nseg)*PI-.5*(Awang+Vwang)
15710 Theta4=PI-.5*(Awang+Vwang)
15720 Theta5=PI
15730 V=(Sdiam^2-Rdiam^2)*L/8
```

Date: 30:SEPT:84

```
15740 Vol=V*(PI/Nseg-Vwang)
15750 Thetaa=PI-.5*(Awang+Vwang)
15760 I=-Res
15770 C1=Inc*I
15780 Loop1: IF C1>Theta1 THEN Loop2
15790
         V(I)=0
15800
        I = I + 1
         C1=I*Inc
15810
        GOTO Loop1
15820
15830 Loop2: IF C1>Theta2 THEN Loop3
        V(I)=V*(C1-Theta1)
15840
        I = I + 1
15850
        C1=Inc*I
15860
        GOTO Loop2
15870
15880 Loop3: IF C1>Theta3 THEN Loop4
         V(I)=Vol
15890
        I = I + 1
15900
         C1=Inc*I
15910
         GOTO Loop3
15920
15930 Loop4: IF C1>Theta4 THEN Loop5
         V(I)=V*(Thetaa-C1)
15940
        I = I + 1
15950
15960
        C1=Inc*I
        GOTO Loop4
15970
15980 Loop5: IF C1>Theta5 THEN Exit1
15990
         V(I)=0
         I = I + 1
16000
        C1=Inc*I
16010
         GOTO Loop5
16020
16030 Exit1:SUBEND
16040 !
16060 ! + Calculates the effective flow area for each rotational
                                                                  +
16070 ! + position. The routine also permits the inclusion of three
16080 ! + types of 'relief grooves' to provide for a controlled
                                                                  +
16090 ! + leakage path to the outlet port.
16100 ! +
                                                     :Gtype 1
16110 ! + Defined groove types; a) Hemispherical
                               b) Square sloping
                                                    :Gtype 2
16120 ! +
                               c) Triangular sloping :Gtype 3
16130 ! +
16140 ! +
16150 ! + No overlap of relieve grooves is permitted.
16160 ! + Virtual flow areas are defined in sector 0 and 4 . This
16170 ! + is presented as a percentage of the maximum flow area
                                                                  +
16180 ! + and consistent with a scolloped port configuration.
                                                                  +
16200 SUB Area(Awang, Gtype(*), Gcdim1(*), Gcwth2(*), Gcang3(*), Inc, L, Ns
.eg, Pangl, Pdiam, Phi, Res, Sdiam, Vwang, Gastr(*), Gdpth(*), SHORT Area(*))
16210 DIM Y(250), A(250), Gmax(1:2)
16220 Virftr=.30
                         ! Virtual flow area factor
16230 N=Phi/Inc
16240 N=INT((N+1)/2)
 16250 N=2*N
 16260 Step1=Pdiam/N
 16270 Arcac=Sdiam*ASN(Pdiam/(Sdiam*COS(Pangl)))
 16280 Step2=Arcac/N
 16290 FOR I=0 TO N/2
 16300 X=I*Step1
 16310 Y(I)=2*SQR(Pdiam*X-X^2)
 16320 NEXT I
```

Page 30

```
16330 FOR I=N/2 TO N
16340 X=I*Step1
16350 Y(I)=Y(N-I)
16360 NEXT I
16370 A(0)=0
16380 FOR I=1 TO N
16390 A(I)=A(I-1)+.5*(Y(I)+Y(I-1))*Step2
16400 NEXT I
16410 Oarea=A(N)
16420 Voarea=Virftr*Oarea
16430 I=-Res
16440 J=K=L1=M=0
16450 C1=Inc*I
16460 Theta1=-(PI/Nseg)+.5*(Awang+Vwang)
16470 Theta2=-(PI/Nseg)+(Pangl-.5*(Phi-Vwang))
16480 Theta3=-(PI/Nseg)+(Pangl+.5*(Phi+Vwang))
16490 Theta4=Pangl-.5*(Phi+Vwang)
16500 Theta5=Pangl+.5*(Phi-Vwang)
16510 Theta6=(1-1/Nseg)*PI-(Pangl+.5*(Phi-Vwang))
16520 Theta7=(1-1/Nseg)*PI-(Pangl-.5*(Phi+Vwang))
16530 Theta8=PI-(Pangl+.5*(Phi+Vwang))
16540 Theta9=PI-(Pangl-.5*(Phi-Vwang))
16550 Theta10=PI-.5*(Awang+Vwang)
16560 Theta11=PI
16570 Segang=PI/Nseg
16580 Gmaxang=Theta8-Segang+Vwang
16590 Gmax(1)=Gmax(2)=0
16600 IF Gtype(1)(>0 THEN Gmax(1)=FNGroove(1, Segang, Vwang, Pangl, Phi,
Gtype(*), Gcdim1(*), Gcwth2(*), Gcang3(*), Theta5, Gastr(*), Gdpth(*))
16610 IF Gtype(2)<>0 THEN Gmax(2)=FNGroove(2, Segang, Vwang, Pangl, Phi,
Gtype(*), Gcdim1(*), Gcwth2(*), Gcang3(*), Gmaxang, Gastr(*), Gdpth(*))
16620 IF Gtype(1) THEN End_groove1=Theta5+Gastr(1,Gtype(1))
16630 Loop1: IF C1>Theta1 THEN Loop2
                              ! Seg. undef. flow set to zero
16640
           Area(I)=0
16650
           I = I + 1
           C1=Inc*I
16660
16670
           GOTO Loop1
16680 Loop2: IF C1>Theta2 THEN Loop3
           Area(I)=Voarea
                                         ! Virtual i/flow area
16690
16700
           I = I + 1
16710
           C1=Inc*I
           GOTO Loop2
16720
16730 Loop3: IF C1>Theta3 THEN Loop4
16740
           Area(I)=A(M)
16750
           IF Area(I))Oarea THEN Area(I)=Oarea
           IF Area(I) (Voarea THEN Area(I)=Voarea
16760
           M=M+1
16770
16780
           I = I + 1
           C1=Inc*I
16790
16800
           GOTO Loop3
16810 Loop4: IF C1>Theta4 THEN Loop5
           Area(I)=Oarea
16820
16830
           I = I + 1
16840
           C1=Inc*I
16850
           GOTO Loop4
16860 Loop5: IF C1>Theta5 THEN Loop5a
           Area(I)=A(N-J)
16870
           IF Area(I))Oarea THEN Area(I)=Oarea
16880
16890
           IF Area(I)(Gmax(1) THEN Area(I)=Gmax(1)
           J = J + 1
16900
```

- 288 -

16910 I = I + 1C1=Inc*I 16920 . GOTO Loop5 16930 16940 Loop5a: IF Gtype(1)=0 THEN Loop6 16950 Loop5b: IF C1>End_groove1 THEN Loop6 Area(I)=FNGroove(1,Segang,Vwang,Pangl,Phi,Gtype(*),Gcdim1 16960 (*), Gcwth2(*), Gcang3(*), C1, Gastr(*), Gdpth(*)) I = I + 116970 16980 C1=Inc*I 16990 GOTO Loop5b 17000 Loop6: IF C1>Theta6 THEN Loop7 Area(I)=0 ! Assumes no groove 17010 IF Gtupe(2)<>0 THEN Area(I)=FNGroove(2, Segang, Vwang, Pang) 17020 , Phi, Gtype(*), Gcdim1(*), Gcwth2(*), Gcang3(*), C1, Gastr(*), Gdpth(*)) 17030 I = I + 1C1=Inc #I 17040 GOTO Loop6 17050 17060 Loop7: IF C1>Theta7 THEN Loop8 Area(I)=A(K) 17070 IF Area(I)(Gmax(2) THEN Area(I)=Gmax(2) ! Transition are 17080 a. K=K+1 17090 I = I + 117100 C1=Inc*I 17110 GOTO Loop7 17120 17130 Loop8: IF C1>Theta8 THEN Loop9 Area(I)=Darea 17140 I = I + 117150 17160 C1=Inc*I GOTO Loop8 17176 17180 Loop9: IF C1>Theta9 THEN Loop10 Area(I)=A(N-L1) 17190 IF Area(I))Oarea THEN Area(I)=Oarea 17200 IF Area(I) (Voarea THEN Area(I) = Voarea 17210 17220 L1=L1+1 I = I + 117230 C1=Inc #I 17240 17250 GOTO LOOD9 17260 Loop10: IF C1>Theta10 THEN Loop11 Area(I)=Voarea ! Virtual o/flow path 17270 I = I + 117280 17290 C1=Inc#I 17300 GOTO Loop10 17310 Loop11: IF C1>Theta11 THEN Exit Area(I)=0 17320 ! Seg. undef. flow set to zero I = I + 117330 C1=Inc*I 17340 GOTO Loop11 17350 17360 Exit:SUBEND 17370 ! 17380 ! Defines groove area 17390 DEF FNGroove(Idenpt,Segang,Vwang,Pangl,Phi,Gtype(*),Gcdim1(*), Gcwth2(*),Gcang3(*),C1,Gastr(*),Gdpth(*)) 17400 ON Idenpt GOTO Inlet, Outlet 17410 Inlet:! Inlet port groove 17420 Gtype=Gtype(1) Vrang=C1+.5*Vwang 17430 17440 Astrt=Pangl+.5*Phi+Gastr(1,Gtype) 17450 K=Astrt-Vrang 17460 IF K<=0 THEN RETURN 0

```
Igdpth=Gdpth(1,Gtype)/Gastr(1,Gtype)*K
17470
        ON Gtype GOSUB Groove1, Groove2, Groove3
17480
17490
        RETURN Garea
17500 Outlet:! Outlet port groove
        Gtype=Gtype(2)
17510
        Vrang=C1+Segang-.5*Vwang
17520
        Astrt=PI-Pangl-.5*Phi-Gastr(2,Gtype)
17530
17540
        K=Vrang-Astrt
        IF K<=0 THEN RETURN 0
17550
        Igdpth=Gdpth(2,Gtype)/Gastr(2,Gtype)*K
17560
        ON Gtype GOSUB Groove1, Groove2, Groove3
17570
        RETURN Garea
17580
17590 Groovel:! Hemispherical groove.
              Beta=ACS(1-Igdpth/(.5*Gcdim1(Idenpt)))
17600
              Carea=.25*PI*Gcdim1(Idenpt)^2
17610
              Sarea=2*Beta/PI*Carea
17620
17630
              Tarea=.5*Gcdim1(Idenpt)^2*COS(Beta)*SIN(Beta)
17640
              Garea=Sarea-Tarea
17650
              RETURN
17660 Groove2:! Square sloping.
              Garea=Igdpth*Gcwth2(Idenpt)
17670
17680
              RETURN
17690 Groove3:! Triangular sloping.
              Garea=Igdpth^2*TAN(.5*Gcang3(Idenpt))
17700
              RETURN
17710
17720 FNEND
17730 !
17750 ! + Calculates the vane clearence at each angular position.
17760 ! + The array is defined in the angular position 0 to .5*PI
17770 ! + Vane clearence is calculated for 0<=angle<=.5*PI
                                                                 +
17780 ! + The array is mirrored about the .5*PI
17800 SUB Vheight(Aangl,Aarad,Abrad,Aorad,Awang,Inc,Res,Rdiam,Sdiam,
Vclar, Vwang, SHORT H(*))
17810 I=0
17820 C1=0
17830 Ee=(Aorad-Aarad)*SIN(Aangl)
17840 Aa=(Aorad-Aarad)*COS(Aangl)
17850 Gama=ASN(Ee/(Abrad-Aarad))
17860 Aofs=(Abrad-Aarad)*COS(Gama)-Aa
17870 Theta1=.5*(Awang+Vwang)
17880 Theta2=Abrad*SIN(Gama)
17890 Theta2=Theta2/(Abrad*COS(Gama)-Rofs)
17900 Theta2=ATN(Theta2)
17910 Theta3=Rangl
17920 Theta4=.5*PI
17930 Theta5=PI
17940 Crise=.5*(Sdiam-Rdiam)
17950 Loop1: IF C1>Theta1 THEN Loop2
17960
         H(I)=Crise
17970
         I = I + 1
         C1=I*Inc
17980
         GOTO Loop1
17990
18000 Loop2: IF-C1>Theta2 THEN Loop3
         D=(2*Aofs*COS(C1))^2-4*(Aofs^2-Abrad^2)
18010
18020
         D=SQR(D)
         B=2*Aofs*COS(C1)
18030
18040
         X1 = (-B+D)/2
18050
         X2=(-B-D)/2
```

```
X=X1
18060
         IF (X)Aorad) OR (X(0) THEN X=X2
18070
         H(I)=Rorad-X+Vclar
18080
         IF H(I))Crise THEN H(I)=Crise
18090
         I = I + 1
18100
         C1=I*Inc
18119
         GOTO Loop2
18120
18130 Loop3: IF C1>=Theta3 THEN Loop4
         B=-2*(Aorad-Aarad)*COS(Theta3-C1)
18140
         D=B^2-4*((Aorad-Aarad)^2-Aarad^2)
18150
18160
         D=SQR(D)
         X1=(-B+D)/2
18170
         X2=(-B-D)/2
18180
18190
         X = X1
        IF (X)Aorad) OR (X(0) THEN X=X2
18200
         H(I)=Aorad-X+Vclar
18210
         I = I + 1
18220
         C1=I*Inc
18230
18240
         GOTO Loop3
18250 Loop4: IF C1>Theta4 THEN Loop5
         H(I)=Vclar
18260
         T=T+1
18270
         C1=I*Inc
18280
         GOTO Loop4
18290
18300 !
18310 ! Sets array for
                     other quadrants.
18320 Loop5:Lastpt=I-1
           J=0
18330
18340 Loop6: IF C1>Theta5 THEN Exit
18350
          H(I)=H(Lastpt-J)
          J = J + 1
18360
          I = I + 1
18370
          C1=I*Inc
18380
          GOTO Loop6
18390
18400 Exit:SUBEND
18410 !
18430 ! + Calculates initial estimate of pressure for segment
                                                              +
18440 ! + and the inlet/outlet ports.
18450 ! + Start values assume constant port pressures set to mean
                                                              +
18460 ! + values and negligible compressibility effects.
18480 SUB Initial(Ipsure, Nseg, Opsure, Res, Resnum, Secsrt(*), SHORT P(*)
, Ip(*), Op(*))
         Ditap=(Opsure-Ipsure)/(Nseg-2)
18490
         FOR I=Secsrt(0) TO Secsrt(2)-1
18500
         P(I)=Ipsure
18510
         NEXT I
18520
         FOR I=Secsrt(2) TO Secsrt(3)-1
18530
         P(I)=Ip+Dltap*(INT((I-Res)/Res)+1)
18540
         NEXT I
18550
         FOR I=Secsrt(3) TO Resnum
18560
         P(I)=Opsure
18570
         NEXT I
18580
         MAT Ip=(Ipsure)
18590
         MAT Op=(Opsure)
18699
18610 SUBEND
18620 !
18640 ! + Calculates the change in swept volume for each angular
```

PROGRAM: VMODEL HP ENHANCED BASIC Date: 30:SEPT:84 Page 34

```
18650 ! + position.
18660 ! + Changes in swept vol. is kept to zero until the forward
18670 ! + vane retracts to 1.25* normal vane clearence. This
18680 ! + produces the effect of attributing all the flow to the
                                                                 +
18690 ! + dominant segment communicating with the port.
18710 SUB Vdlta(Awang, Inc.L. Nseg, Rdiam, Res, Sdiam, Vclar, Vwang, SHORT H
(*), Vdlta(*))
                          ! See note above.
18720 Min h=1.25*Vclar
18730 Theta1=-(PI/Nseg)+.5*(Awang+Vwang)
18740 Theta2=.5*(Awang+Vwang)
18750 Theta3=PI/Nseg
18760 Theta4=PI*(1-2/Nseg)
18770 Theta5=PI*(1-1/Nseg)
18780 Theta6=PI-.5*(Awang+Vwang)
18790 Theta7=PI
18800 Odiam=Sdiam-2*Vclar
18810 Vmax=(Odiam^2-Rdiam^2)*L/8
18820 I=-Res
18830 C1=I*Inc
18840 Loop1: IF C1>Theta1 THEN Loop2
        Vdlta(I)=0
                      ! Seq. undefined
18850
         I = I + 1
18860
18870
          C1=I*Inc
18880
         GOTO Loop1
18890 Loop2: IF C1>Theta2 THEN Loop3
18900
         Idiam=Sdiam-2*H(I+Res)
      Vdlta(I)=(Idiam^2-Rdiam^2)*L/8
18910
         IF H(I+Res)(Min h THEN Vdlta(I)=Vmax
18920
18930
          I = I + 1
         C1=I*Inc
18940
18950 GOTO Loop2
18960 Loop3: IF C1>Theta3 THEN GOTO Loop4
18970 Idiam=Sdiam-2*H(I)
18980 Vdlta(I)=(Odiam^2-
18990 IF H(I)(Min_h THEN Vdlta(I)=0
19000 I=I+1
          Vdlta(I)=(Odiam^2-Idiam^2)*L/8
          C1=I*Inc
19010
19020 GOTO Loop3
19030 Loop4: IF C1>Theta4 THEN GOTO Loop5
19040
          Vdlta(I)=0
19050
          I = I + 1
19060
          C1=I*Inc
19070
         GOTO Loop4
19080 Loop5: IF C1>Theta5 THEN Loop6
19090
          Idiam=Sdiam-2*H(I+Res)
19100
          Vdlta(I)=-(Odiam^2-Idiam^2)*L/8
19110
          IF H(I+Res)(Min h THEN Vdlta(I)=0
19120
          I = I + 1
19130
19140
         C1=I*Inc
         GOTO Loop5
19150 Loop6: IF C1>Theta6 THEN Loop7
          Idiam=Sdiam-2*H(I)
19160
19170
          Vdlta(I)=-(Idiam^2-Rdiam^2)*L/8
          IF H(I) (Min h THEN Vdlta(I) =- Vmax
19180
19190
          I = I + 1
        C1=I*Inc
19200
19210 GOTO Loop6
19220 Loop7: IF C1>Theta7 THEN Exit
19230
         Vdlta(I)=0
```

..

19240	I = I + 1
19250	C1=I*Inc
19260	GOTO Loop7
19270	Exit:SUBEND

C.3 PROGRAM VPLOT

! RE-STORE "VPLOT: F8" 10 20 30 1 * The program outputs the vane M/C dynamic characteristic * 40 1 ÷ 50 ! * in a graphical form. 60. 1 * ! * The program provides a choice of three plotting media: 70 ! * Benson, HP 9872A & VDU 80 ÷ ! * Data is read from datafiles "%GDT%%" 90 * 100 1 * ! * The program operates in two modes AUTO & MANUAL: 110 Batch processing of data specified betweed upper 120 ! * AUTO: and lower limits. × 130 1 ÷ ! * MANUAL: Individual input of data filenames 140 ÷ 150 1 ! * Revision#1:18:0CT:1982 160 Re-structured and added A5 size plot option ÷ 170 ! * ¥ 180 1 * * 1 * ORIGIN: G.SEET MECH. ENG. ASTON VARSITY 190 ÷ 200 ! * DATE: 22 JULY 81 210 ! * 220 COM Auto(1:3). Aprefix\$[1] 230 DIM Name1\$[10], Mstore\$[4], Messag1\$[30], Messag2\$[10] 240 SHORT Vcp(360), V1f(360), Vcf(360), Ip(360), Op(360), If(360), Of(36 250 0) 260 PRINTER IS 16 EXIT GRAPHICS 270 280 PRINT "ABC"&CHR\$(12) PRINT " PROGRAM VPLOT EXECUTING " 290 Mstore\$=":T14" ! Define mass storage device. 300 ! 1:Gaphics 2:Benson 3:9872A Chk=2 310 320 Pcount=1 ! Initialize plot count IF Auto(1)=1 THEN Auto4 ! Auto sequence mode 330 340 Select plotting device 350 1 360 Splot:LINPUT " DO YOU REQUIRE VIDEO GRAPHICS (Y/N) :",Y\$ IF Y\$="Y" THEN Chk=1 370 IF Y\$="Y" THEN Input 380 IF Y\$="N" THEN Splot1 390 GOTO Splot 400 410 Splot1:LINPUT " DO YOU REQUIRE BENSON (Y/N) :",Y\$ IF Y\$="Y" THEN Chk=2 420 IF Y\$="Y" THEN Input 430 IF Y\$="N" THEN Splot2 440 450 GOTO Splot1 460 Splot2:LINPUT " DO YOU REQUIRE 9872A PLOTTER ",Y\$ IF Y\$="Y" THEN Chk=3 470 IF Y\$="Y" THEN Input 480 IF (Y\$<>"Y") AND (Y\$<>"N") THEN Splot2 490 GOTO Splot 500 510 520 1 Select mode 530 Input:LINPUT " IS AUTO SEQUENCE REQUIRED (Y/N): ",Y\$ IF Y\$="N" THEN Manual 540 IF Y\$="Y" THEN Auto 550 GOTO Input 560 570 ! 580 590 I AUTO SEQUENCE ROUTINE

600	! This routine permits batch processing of the VGDT%% data.
610	! The datafiles stored at the specified mass-storage device
620	! are accessed and plotted sequentially between specified
630	! upper and lower limits.
640	Auto: Auto(1)=1
650	Aprefix\$="V"
660	Hutol:INPUT "INPUT DHIHFILE PREFIX (Default 'V'):", Hprefix\$
500	HUTO2:INPUT "INPUT LUWEST DHIHFILE NU.(>=0);",HUTO(2)
600	Auto2: INPUT "INPUT HICHEST DATABLE NO (/=99)." Auto(2)
799	IF (Auto(3)(0) DR (Auto(3))99) THEN Auto3
710	IF Auto(2))Auto(3) THEN Auto2
720	Auto4:! Entry for linked call.
730	Count=Huto(2)
740	Mode=1
750	Name1\$[1,1]=Aprefix\$
760	Name1\$[2,4]="GDT"
770	Auto5:T=Count DIV 10
780	I=Count MOD 10
790	Name1\$[5]=CHR\$(48+T)
300	Name1\$[6]=CHR\$(48+I)
810	Name1\$[7,10]=Mstore\$
820	HSSIGN Name1\$ 10 #1,2
040	IF 2=0 THEN HULOB
940	IE Count Seuto(3) THEN COTO Bend
860	GOTO Auto5
879	Butof: GOSUB Plot
880	Count=Count+1
890	IF (Count)Auto(3)) OR (Count)=100) THEN Rend
900	GOTO Auto5
910	Aend: Auto(1)=0
920	GOSUB Exit
930	STOP
940	! #####################################
950	MANUAL SEQUENCE ROUTINE
960	! The routine requires individual input of data filenames
970	Manual:! Manual mode
980	MODEFZ
1000	LINFUI " INFUI DHIH FILENHME (%GD1%%): ",Namel\$[1,6]
1010	$\begin{array}{c} \text{Hamely}(r, 10) - \text{HStorey} \\ \text{HSSICN Name1$ TO #1 7} \end{array}$
1020	IE Z=0 THEN Molot
1030	BEEP
1040	PRINT "ABC"&CHR\$(12)
1050	PRINT_USING "#,K";CHR\$(27)&"&a23r0C"
1060	IF Z=1 THEN PRINT " NO SUCH FILE FOUND ; ":Name1\$
1070	IF Z=2 THEN PRINT " WRONG FILE TYPE ; ";Name1\$
1080	GOTO Manual
1090	Mplot:GOSUB Plot
1100	ASSIGN #1 TO *
1110	GOSUB Exit
1120	STUP
1130) ! ###################################
1150	Plot I Reade graphical data
1160	PEAD #1ºCaum
1170	MAT READ #1:Von.VIE.Vot.In On It Of
1180	! Convert to output units.
1190	MAT Vcp=(.1)*Vcp ! bar

MAT VIF=(1000) *VIF ! mm3/S 1200 MAT Vcf=(1000)*Vcf ! mm3/S 1210 MAT Ip=(.1)*Ip 1220 ! bar 1230 MAT Op=(.1)*Op ! bar MAT If=(1000)*If ! mm3/S 1240 MAT Of=(1000)*Of ! mm3/S 1250 1260 1 1270 ! ****** 1280 ! This routine checks the data status. 1290 IF Caum=0 THEN Plot2 1300 PRINTER IS 0 1310 PRINT " CAUTION DATA FAULTY ** :"; Name1\$ 1320 PRINT 1330 PRINT " DATA STATUS VALUE :";Csum 1340 PRINTER IS 16 1350 Plot2: ! Plots graphical data. 1360 1370 ! ****** ! Outputs the plot VANE SEGMENT PRESSURE Vs ANGULAR 1380 1390 ! POSITION ". Data is Vcp. Iset=1 1400 1410 CALL Set(Iset, Mode, Chk, Pcount, 2) 1420 Messag1#="VANE SEGMENT PRESSURE x1E" 1430 Messag2\$="(bar) 1440 CALL Pitsgl(Name1\$, Vcp(*), Messag1\$, Messag2\$) 1450 CALL Reset(Iset, Mode, Chk, Pcount, 2) 1460 Pcount=Pcount+1 1470 1 1480 ! ***** ! Outputs the plot " VANE LEAKAGE FLOW Vs ANGULAR 1490 1500 ! POSITION ". Data is VIF. 1510 Iset=2 1520 CALL Set(Iset, Mode, Chk, Pcount, 2) 1530 Messag1\$="VANE LEAKAGE FLOW x1E" 1540 Messag2\$="(mm3/S)" 1550 CALL Pitsgl(Name1\$, Vif(*), Messag1\$, Messag2\$) 1560 CALL Reset (Iset, Mode, Chk, Pcount, 2) 1570 Pcount=Pcount+1 1580 ! ***** 1590 ! Outputs the plot "VANE SEGMENT FLOW Vs ANGULAR 1600 1610 ! POSITION" Data is Vcf. 1620 Iset=3 1630 CALL Set(Iset, Mode, Chk, Pcount, 2) 1640 Messag1\$="VANE SEGMENT FLOW x1E" 1650 Messag2\$="(mm3/S)" 1660 CALL Pitsgl(Name1\$, Vcf(*), Messag1\$, Messag2\$) 1670 CALL Reset(Iset, Mode, Chk, Pcount, 2) 1680 Pcount=Pcount+1 1690 1700 ! ***** ! Outputs the plot "INLET/OUTLET FLOW Vs ANGULAR 1710 ! POSITION" Data is If and Of. 1720 1730 Iset=4 1740 CALL Set(Iset, Mode, Chk, Pcount, 2) 1750 Messag1#=" INLET / OUTLET FLOW x1E" 1760 Messag2\$="(mm3/S)" 1770 CALL Pitdbl(Name1\$, If(*), Of(*), Messag1\$, Messag2\$) 1780 CALL Reset(Iset, Mode, Chk, Pcount, 2) 1790 Pcount=Pcount+1

PROGRAM: VPLOT HP ENHANCED BASIC Date: 30:SEPT:84

- 297 -

Page 3

```
1800
     1
1310
    ******
    ! Outputs the plot "INLET /OUTLET PRESSURE
1820
    ! Vs ANGULAR POSITION " . Data is Ip and Op.
1830
1840
    Iset=5
1850
    CALL Set(Iset, Mode, Chk, Pcount, 2)
     Messagis="INLET / OUTLET PRESSURES x1E"
1860
     Messag2$="(bar)
1870
     CALL Pitdbi(Name1$, Ip(*), Op(*), Messag1$, Messag2$)
1880
     CALL Reset(Iset, Mode, Chk, Pcount, 2)
1890
    Pcount=Pcount+1
1900
1910
1920 RETURN
1930
1940
    ! ***************
1950 ! PRINTS EXIT MESSAGES
1960 Exit: EXIT GRAPHICS
        PRINT "ABC"&CHR$(12)
1970
        PRINT CHR$(128)
1980
1990
        PRINT RPT$("*",80)
2000
        PRINT LIN(1)
        PRINT RPT$("*",34); " COMPLETED "; RPT$("*",34)
2010
        PRINT LIN(1)
2020
        PRINT RPT$("*".80)
2030
2040
        PRINT LIN(1)
        PRINT "FOR ANOTHER EXECUTION PRESS 'RUN'"
2050
        PRINT LIN(3)
2060
        PRINT " THIS MACHINE IS FREE FOR THE NEXT USER "
2070
        PRINT
2080
        PRINT "PLEASE PLACE DISK/CASETTE IN APPROPRIATE CONTAINER"
2090
        PRINT "THANK YOU"
2100
        PRINT TAB(61); "G.SEET"
2110
        DISP " "
2120
2130
        RETURN
2150
                   END OF MAIN PROGRAM SEGMENT
     1
     2160
     !
2170
     2180
    ! + Sets plotter limit for "GRAPHICS" facility
2190
2200
     SUB Set(Iset, Mode, Chk, Pcount, Size)
2210
    PRINT "ABC"&CHR$(12)
2220
2230 PRINT " PROGRAM VPLOT PLOTTING "
2240 ON Chk GOSUB Pit1. Pit2. Pit3
2250 SUBEXIT
2260 Plt1: ! Graphics
        PLOTTER IS 13, "GRAPHICS"
2270
        GRAPHICS
2280
2290
        LIMIT 0,184.47,10,135
2300
        FRAME
2310
        RETURN
2320 Plt2: ! Benson plotter
        ! 1:84 , 2:86
2330
        PLOTTER IS 5, "INCREMENTAL", .05
2340
        IF FRACT(Prount/(4*Size))=1/(4*Size) THEN LIMIT 0/Size,297
2350
/Size,20/Size,230/Size
        IF FRACT(Pcount/(4*Size))<>1/(4*Size) THEN LIMIT 0/Size,29 .
2360
7/Size,230/Size,440/Size
2370
        FRAME
```

```
RETURN
2380
2390 Plt3: ! 98728 Plotter
         PLOTTER IS 7,5, "9872A"
2499
2410
         LIMIT 5,275,10,180
         IF FRACT(Iset/4)=1/4 THEN FRAME
2420
         IF FRACT(Iset/4)=1/4 THEN LIMIT 5,140,10,95
2430
         IF FRACT(Iset/4)=2/4 THEN LIMIT 5,140,95,180
2440
         IF FRACT(Iset/4)=3/4 THEN LIMIT 140,275,10,95
2450
         IF FRACT(Iset/4)=0 THEN LIMIT 140,275,95,180
2460
         FRAME
2470
2480
         RETURN
     SUBEND
2490
2500
     1
     2510
     ! + Resets graphic facility.
2520
     2530
     SUB Reset(Iset, Mode, Chk, Pcount, Size)
2540
     ON Mode GOSUB Dmode, Manual
2550
2560 SUBEXIT
2570 Dmode: ! Directory mode
          ON Chk GOSUB Dplt1, Dplt2, Dplt3
2580
2590
          RETURN
2600 Manual:! Manual mode
          ON Chk GOSUB Mplt1, Mplt2, Mplt3
2610
          RETURN
2620
2630 Dplt1: ! Graphics
          DUMP GRAPHICS
2640
          RETURN
2650
2660 Dplt2: ! Benson
          BEEP
2670
          IF FRACT(Pcount/(4*Size))<>0 THEN RETURN
2680
          LIMIT 0,317/Size,-710,0
2690
          MOVE 100,0
2700
          RETURN
2710
2720 Dplt3: ! 98728
             (FRACT(Iset/4)<>0) AND (Iset<>5) THEN RETURN
2730
           IF
          PRINT "ABC"&CHR$(12)
2740
2750
          BEEP
          PRINT CHR$(131)%" PLEASE CHANGE PAPER "
2760
2770
          PAUSE
          RETURN
2780
2790 Mplt1: ! Graphics
          BEEP
2800
          PAUSE
2810
2820
          RETURN
2830 Mplt2: ! Benson
          BEEP
2840
          IF FRACT(Pcount/(4*Size))<>0 THEN RETURN
2850
          LIMIT 0,317/Size,-710,0
2860
2870
          MOVE 100,0
          RETURN
2880
2890 Mplt3: ! 9872A
          IF (FRACT(Iset/4)<>0) AND (Iset<>5) THEN RETURN
2900
          PRINT "ABC"&CHR$(12)
2910
          PRINT LIN(2)
2920
2930
          BEEP
           PRINT CHR$(131)&" PLEASE CHANGE PAPER "
2940
2950
          RETURN
     SUBEND
2960
2970
     1
```

```
2980
     ! + Generates single plots.
2990
     3000
     SUB Pitsgl(Name1$, SHORT Sp(*), Messag1$, Messag2$)
3010
3020
     Ymax=0
     Ymin=0
3030
     FOR I=1 TO 360 STEP 2
3040
3050
    IF Sp(I)>Ymax THEN Ymax=Sp(I)
3060 IF Sp(I) (Ymin THEN Ymin=Sp(I)
     NEXT I
3070
3080 D=Ymax
3090 IF ABS(Ymin)>D THEN D=ABS(Ymin)
3100
     D=LGT(D)
    D=INT(D-1)
3110
    Div=10^D
3120
3130 Ymax=Ymax/Div
3140 Ymin=Ymin/Div
3150 Inc=INT((Ymax-Ymin+10)/10)
3160 Ymax=INT((Ymax+1.5*Inc)/Inc)
3170 Ymax=Inc*Ymax
3180 Ymin=INT((Ymin-Inc)/Inc)
     Ymin=Inc*Ymin
3190
     IF Ymin1>0 THEN Ymin=0
3200
     LOCATE 25,135,15,85
3210
    SCALE 0,720+.25,1.001*Ymin,1.001*Ymax
3220
3230 AXES 30,1,0,0,3,Inc
3240 LORG 6
3250 FOR I=45 TO 360 STEP 45
3260 MOVE 2*I,-((Ymax+ABS(Ymin))/20)
3270 LABEL I
3280
    NEXT I
3290 LORG 8
     FOR I=0 TO Ymax STEP Inc
3300
    MOVE 4.5, I
3310
     LABEL USING "MDDDDXX"; I*10
3320
3330 NEXT I
3340 FOR I=0 TO Ymin STEP -Inc
3350 MOVE 4.5.I
3360 LABEL USING "MDDDDXX"; I*10
3370 NEXT I
3380 LINE TYPE 1
3390 MOVE 0,0
3400 FOR I=1 TO 360
3410
     PLOT I, Sp(I)/Div, -1
3420
     NEXT I
3430
    FOR I=1 TO 360
3440 PLOT I+360, Sp(I)/Div,-1
3450 NEXT I
3460 SETGU
3470 LORG 1
3480
     MOVE 50,6.5
     LABEL "ROTOR ANGULAR POSITION (deg)"
3490
3500
     DEG
     LDIR 90
3510
     MOVE 5,18
3520
     IMAGE 25A, "-", D, 8A
3530
3540
     IMAGE 25A, "+", D, 8A
3550
    Exp=D-1
3560 IF Exp>-1 THEN LABEL USING 3530;Messag1$;ABS(Exp);Messag2$
3570 IF Exp(0 THEN LABEL USING 3540;Messag1$;ABS(Exp);Messag2$
```

```
3580
     LDIR Ø
     MOVE 15.95
3590
     LABEL Name1$
3600
     MOVE 0,0
3610
     SUBEND
3620
3630
     3640
3650
    ! + Generates double plots.
    3660
    SUB Pltdbl(Name1$,SHORT Dp1(*),Dp2(*),Messag1$,Messag2$)
3670
     Ymax=0
3680
3690
     Ymin=0
3700
     FOR I=1 TO 360 STEP 2
     IF Dp1(I)>Ymax THEN Ymax=Dp1(I)
3710
     IF Dp2(I)>Ymax THEN Ymax=Dp2(I)
3720
    IF Dp1(I)(Ymin THEN Ymin=Dp1(I)
3730
3740 IF Dp1(I)(Ymin THEN Ymin=Dp1(I)
3750 NEXT I
3760 D=Ymax
3770 IF ABS(Ymin)>D THEN D=ABS(Ymin)
3780 D=LGT(D)
3790 D=INT(D-1)
     Div=10^D
3800
     Ymax=Ymax/Div
3810
     Ymin=Ymin/Div
3820
     Inc=INT((Ymax-Ymin+10)/10)
3830
     Ymax=INT((Ymax+1.5*Inc)/Inc)
3840
3850 Ymax=Inc*Ymax
     Ymin=INT((Ymin-Inc)/Inc)
3860
3870
     Ymin=Inc*Ymin
3880
     LOCATE 25,135,15,85
     SCALE 0,720+.25,1.001*Ymin,1.001*Ymax
3890
     AXES 30,1,0,0,3, Inc
3900
     LORG 6
3910
     FOR I=45 TO 360 STEP 45
3920
    MOVE 2*I, -((Ymax+ABS(Ymin))/20)
3930
     LABEL I
3940
    NEXT I
3950
3960
     LORG 8
3970
     FOR I=0 TO Ymax STEP Inc
     MOVE 4.0.1
3980
3990 LABEL USING "MDDDDXX"; I*10
     NEXT I
4000
     FOR I=0 TO Ymin STEP -Inc
4010
4020
     MOVE 4.0, I
     LABEL USING "MDDDDXX": I*10
4030
4040
     NEXT I
     MOVE 0,0
4250
4060 LINE TYPE 1
4070
     ! Plots Input pressures (Ip)
4080
     FOR I=1 TO 360
4090
     PLOT I, Dp2(I)/Div,-1
4100
     NEXT I
4110
     FOR I=1 TO 360
4120
     PLOT I+360, Dp2(I)/Div,-1
4130
4140
     NEXT
          T
4150
     MOVE 0,0
4160
4170
     ! Outputs second plot
```
4130 FOR I=1 TO 360 4190 PLOT I, Dp1(I)/Div,-1 4200 NEXT I 4210 FOR I=1 TO 360 4220 PLOT I+360, Dp1(I)/Div,-1 4230 NEXT I 4240 SETGU 4250 LORG 1 MOVE 50,6.5 4260 LABEL "ROTOR ANGULAR POSITION (deg)" 4270 DEG 4280 4290 LDIR 90 4300 MOVE 5,16 4310 IMAGE 288, "-", D, SA 4320 IMAGE 28A, "+", D, 8A 4330 Exp=D-1 4340 IF Exp>-1 THEN LABEL USING 4310;Messag1\$;ABS(Exp);Messag2\$ 4350 IF Exp(0 THEN LABEL USING 4320; Messag1\$; ABS(Exp); Messag2\$ 4360 LDIR 0 MOVE 15,95 4370 LABEL Name1\$ 4380 4390 MOVE 0,0 4400 SUBEND

APPENDIX D : SIMULATION RUN

D.1 Introd	luction
------------	---------

- D.2 Datafile Preparation
- D.3 Process Simulation
- D.4 Graphical Output

D.1 Introduction

The aim of this appendix is to guide the user through a typical simulation run giving details of the required operations and the expected outputs. Within these sections, only very basic knowledge of computer keyboard skills is assumed. The user will be guided through the three stages of; parameter file preparation, process simulation and finally on to graphical output generation.

The following processes assume the default mass-storage device is the HP9885M flexible disk drive set to select code 8 and that the relevant programs VFLGEN, VMODEL and VPLOT are stored on disk. It is essential that the 'PRT ALL' key is latched up, for proper operation of the display facility.

In the documentation quantities bounded by '< >' are acceptable inputs which serve as example values.

D.2 Datafile Preparation

Program : VFLGEN

User Instructions:

- 1) Insert flexible disk into disk drive.
- 2) Load the program:
 - a. Type: LOAD 'VFLGEN:F8'
 - b. Press: EXECUTE
- 3) Start the program:
 - a. Press: RUN
- 4) When 'INPUT DATA FILENAME (%DAT%%): appears on CRT display: Enter: A filename <ADAT01>

- 304 -

PUMP GEOMETRY

:	121.4000
:	115.0000
:	50.0000
:	10.0000
:	.0290
:	7.0000
:	.0400
:	25.4000
:	27.7900
:	93.7100
:	22.3500
:	49.6600
:	38.2500
:	127.5000
:	121.4000
: .	0.0000
:	4.0000

OPERATING ENVELOPE

1	SHAFT SPEED (RPM):	2100.0000
2	INLET PRESSURE (bar):	6.2000
3	OUTLET PRESSURE (bar):	138.0000
4	CASE PRESSURE (bar):	1.5000
5	FLUID DENSITY (Kg/m3):	861.0000
6	FLUID VISCOSITY(NS/m2):	.0250
7	BULK MODULUS (MN/m2):	1766.0000
8	INPUT LINE DIAM. (mm):	31.7500
9	OUTPUT LINE DIAM. (mm):	31.7500
LO	DISCHARGE COEFF. :	.7000
11	CAVITATION PRESS. (bar):	.6800

INLET GROOVE PARAMETERS

1)Hemisphere	:Groove depth (mm):	1.0000
	Cutter diam. (mm):	4.0000
	Start angle (deg):	10.0000
2)Square	:Groove depth (mm):	.6000
	Groove width (mm):	4.0000
	Start angle (deg):	2.0000
3)Triangular	:Groove depth (mm):	3.6000
	Cutter angle(deg):	60.0000
	Start angle (deg):	10.0000
INLET GROOVE	TYPE (0-3) :	0.0000

OUTLET GROOVE PARAMETERS

.5000
.0000
.0000
.2500
.0000
.0000
.6000
.0000
.0000
.0000

FIG.D.2.1 PARAMETER DATAFILE CONTENTS

Press: CONT

- 5) If no such file exists on disk, the program enters into the mode which requests the necessary input values for file generation, If a file already exists, editing can be performed, for which section (5.5) highlights the process. It will be assumed here, that the simulation proceeds from scratch. In this case the display will show the pump geometry page with the cursor at item 1. a: Enter: The parameter value <121.4> b: Press: CONT
- 6) Continue untill all three pages of data are filled. Suitable values are shown in figure (D.2.1), which is an actual print out from the program.
- 7) On completion of input process.a: Press: Key 9
- 8) Display shows 'SAME FILENAME (DEFAULT:Y):' a: Press: CONT Program prints list shown in figure (D.2.1) and outputs to disk.
- 9) Terminate from program.

a: Press: Key 15

First stage complete proceed to next 'Process Simulation'

Editing:

Selection of Key 7 defines the functions.

Select function key as required and proceed, whilst following program prompts.

D.3 Process Simulation

Program : VMODEL

User Instructions:

1) Insert flexible disk into disk drive.

2) Load the program:

a. Type: LOAD 'VMODEL:F8'

b. Press: EXECUTE

3) Start the program:

a. Press: RUN

4) When 'IS AUTO SEQUENCE REQUIRED (Y/N): ' appears on CRT display:a. Enter: N (for manual mode or Y for auto mode)

b. Press: CONT

5a)For manual mode:

When 'ENTER DATA FILENAME (VDAT%%): appears on CRT:

a. Enter: Filename <ADAT01>

b. Press: CONT

If datafile entry is correct the program executes and performs simulation. At the end of the run the datafile <AGDT0l> is output and the program stops. Proceed on to 'Graphical Output'

OR

5b)For auto mode:

When 'INPUT FILENAME PREFIX: Default (V) DAT: ' appears on CRT:

a. Enter: File prefix <A>

b. Press: CONT

6) When 'OUTPUT FILENAME PREFIX:Default (V)GDT: appears on CRT: a. Enter: File prefix

b. Press: CONT

7) When 'INPUT LOWEST DATAFILE NO. (>=0): appears on CRT:

- 307 -

a. Enter: Lowest number <1>

b. Press: CONT

- 8) When 'INPUT HIGHEST DATAFILE NO. (<=99): appears on CRT: a. Enter: Highest number <5> b. Press: CONT
- 9) When 'IS PLOT REQUIRED :' appears on CRT: a. Enter: N (for no plot or Y for plot) b. Press: CONT

The suggested entry assumes the existence of five datafiles with filenames ADAT01 to ADAT05 on disk. The successful run would result in the generation of five files BGDT01 to BGDT05 and no graphical output, as yet. If 'Y' was input for 9 above, the program VPLOT would have been loaded automatically with outputs to the drum plotter, otherwise proceed to 'Graphical output'.

Running Outputs:

During execution the program prints out on the CRT the current results and progress indicators which inform on the progress of the simulation.

D.4 Graphical Output

Program : VPLOT

User Instructions:

1) Insert flexible disk into disk drive.

2) Load the program:

a. Type: LOAD 'VPLOT:F8'

b. Press: EXECUTE

3) Start the program:

a. Press: RUN

4a)When 'DO YOU REQUIRE VIDEO GRAPHICS (Y/N): appears on CRT display

a. Type: Y (for graphics or N for other medium)

b. Press: CONT

If 'Y' goto 5

4b)When 'DO YOU REQUIRE BENSON (Y/N): appears on CRT display
a. Type: Y (for Benson or N for other medium)

b. Press: CONT

If 'Y' goto 5

4c)When 'DO YOU REQUIRE 9872A (Y/N): appears on CRT display

a. Type: Y (for 9872A or N for other medium)

b. Press: CONT

If 'Y' goto 5

5) When 'IS AUTO SEQUENCE REQUIRED (Y/N):' appears on CRT display: a. Enter: N (for manual mode or Y for auto mode)

b. Press: CONT

5a)For manual mode:

When 'ENTER DATA FILENAME (VDAT%%): appears on CRT:

a. Enter: Filename <AGDT01>

b. Press: CONT

If datafile entry is correct the program executes and performs plotting. End of simulation run.

OR

5b)For auto mode:

When 'INPUT DATAFILE PREFIX (Default 'V'): appears on CRT: a. Enter: File prefix

b. Press: CONT

6) When 'INPUT LOWEST DATAFILE NO. (>=0): appears on CRT:

- 309 -

310 --

a. Enter: Lowest number <1>

b. Press: CONT

7) When 'INPUT HIGHEST DATAFILE NO. (<=99): ' appears on CRT: a. Enter: Highest number <5>

b. Press: CONT

The suggested entry assumes the existence of five datafiles of filenames BGDT01 to BGDT05 on disk. The successful run would result in the generation of five sets of graphical output. The figure (D.4.1) and (D.4.2) shows one such set of graphical output.

REFERENCES

List of Abbreviations List of References

LIST OF ABBREVIATIONS

AHEM	Association of Hydraulic Equipment
	Manufacturers
ASME	American Society of Mechanical Engineers
BFPR	British Fluid Power Research
BHRA	British Hydrodynamic Research Association
Conf.	Conference on
Dept.	Department of
Engng.	Engineering
Engrs	Engineers
IASTED	International Association of Science and
	Test for Development
IFIPS	International Federation for Information
	Processing Society
IMechE	Institution of Mechanical Engineering
Int.	International
J.	Journal
JSME	Japan Society of Mechanical Engineers
Mech.	Mechanical
Proc.	Proceedings
Pt.	Part .
Symp.	Symposium
Trans.	Transactions
Vol.	Volume

- 314 -

LIST OF REFERENCES

- 1 Jones, R. Hydraulic Propulsion Motor'. Normalair Garrett
 Ltd. Report T.P.1490. (1976).
- 2 Burgess, C.K. 'Hydraulic Pump-Preliminary Designs'. Normalair Garrett Ltd. Report, (1978).
- 3 Wuerzer, N.J. 'The Design of a Radial Vane Pump'. MSc., thesis. Dept. Mech. Engng, University of Birmingham, 1979.
- 4 Stecki, J.S. 'Noise of Hydraulic Positive Displacement'. Conf. Vibration and Noise in Pumps, Fans and Compressors. Southampton University, 1975.
- 5 BISHOPP, B.E. 'Some Aspects of Pre-compression Variation and the Effects on Pump Noise'. National Conf. Fluid Power, 1972.
- 6 Iyengar, S.K.R. 'Review of Computer Software for Simulating Hydraulic Systems'. BFPR. J., 1979, Vol. 12, Pt. 4
- 7 Foster, K. 'Computer-Aided Design of Positive Displacement Pumps'. Seminar on Applied control and Identification. Copenhagen, Denmark, 28 Jun. - 1 Jul., 1983, IASTED.
- 8 Hooke, C., Madera, G. and Foster, K. 'CAD for the Port Plate of a Two-Bearing Axial Piston Pump Motor'. Seminar on Computer Aided Design in High Pressure Hydraulic Systems. 21 Nov., 1983, IMechE.
- 9 O'Neal, D.L. and Maroney, G.E. 'Measuring Pump Fluidborne Noise Generation Potential'. BFPR., J., 1978, Vol. 11, Pt. 2.
- 10 Crook, A. and Hansford, I. 'Oil Hydraulic Relief Valve Noise'. Seminar on Quiet Oil Hydraulics. 2-3 Nov., 1977. IMechE.

- 11 Heron, R.A. and Hansford, I. 'Airborne Noise Due to Structure Borne Vibrations Transmitted Through Pump Mountings and Along Circuits'. Seminar on Quiet Oil Hydraulics. 2-3 Nov., 1977, IMechE.
- 12 Longmore, D.K. 'The Transmission and Attenuation of Fluid Borne Noise in Hydraulic Hose'. Seminar on Quiet Oil Hydraulics. 2-3 Nov., 1977, IMechE.
- 13 Crook, A., and Heron, R.A. 'Airborne Noise From Hydraulic Lines Due to Liquid Borne Noise'. Seminar on Quiet Oil Hydraulics, 2-3 Nov., 1977, IMechE.
- 14 Hughes, M.L. 'Flexural Vibrations in Rigid Pipework Due to Liquid Borne Noise'. Seminar on Quiet Oil Hydraulics. 2-3, Nov., 1977, IMechE.
- 15 Donaldson, C. 'A Quiet Valve'. Quieter Fluid Power Handbook. BHRA, 1980.
- 16 Helgestead, B.O, Foster, K. and Bannister, F.K. 'Noise in an Axial Piston Pump'. Seminar on Noise Emitted by Fluid Power equipment - Its Causes and Control. 1973. IMechE.
- 17 Martin, M.J. and Taylor, R. 'Optimised Port plate Timing for an Axial Piston Pump'. 5th Int. Symp. Fluid Power. 13-15 Sept., 1978, BHRA.
- 18 Kelsey, J., Taylor, R. and Foster, K. 'Fluid Properties: The Effects of the Fluid Being Pumped on the Noise Emitted by an Axial Piston Pump'. Seminar on Quieter Oil Hydraulics. 29-30 Oct., 1980, IMechE.
- 19 Brown, David and Sons Limited. 'Roloid Pump Gears'. Mechanical World. Vol. 80, 1926.

- 20 Meldahl, A. 'A Theory of Gear Pumps'. Brown-Boveri Review. Vol. 26, 1939.
- 21 Fielding, D., Taylor, R. and Foster, K. 'Notes on the Selection of a Standard Delivery Condition for the Theoretical Prediction and Experimental Measurement of Pressure Ripple'. 5th. International Fluid Power Symp. 13-15 Sept., 1978.
- 22 Mukerjee, P. and Bhattachryya. 'Analysis of Gear Pumps'. J. Inst. Engs. India, Vol. 52,9, Pt. NE5.
- 23 Merritt, H.E. 'Gears', Pitman 19.
- 24 Hadekel Displacement Pumps and Motors'. Pitman and Sons.
- 25 Bloch, P. 'Theoretical and Experimental Investigation in Connection with a Fluid Transmission Mechanism (The Hydro-Titan transmission)'.

Von Roll Mitteilungen. 1953, Vol. 12, Pt. (1/2).

- 26 Zaichenko, I.Z. and Boltyanskii, A.D. 'Reducing Noise Level of Axial Piston Pumps'. Russian Engng. J. Vol. XLIX, Pt. 4, 1969.
- 27 Yamaguchi, A. 'Studies on the characteristics of Axial Plunger Pumps and Motors'. (lst. and 2nd. reports). Bulletin of Japanese Society of Mech. Engrs., Vol. 9, Pt. 34, 1966.
- 28 Helgestad, B.O, Foster, K and Bannister, F.K. 'Pressure Transients in an Axial Piston Hydraulic Pump'. Proc. IMechE. Vol. 180, Pt. 17/74, 1974.
- 29 Kakoullis, Y.P. 'An Investigation of the Torque Characteristics of an Axial Piston Pump'. B.Sc., thesis, Dept. Mech. Eng., University of Birmingham, 1974.

- 30 Hannan, D.M. 'Flow, Pressure and Flow Pulsations in a Hydraulic Axial Piston Pump'. MSc., thesis. Dept. Mech. Engng., University of Birmingham, 1976.
- 31 Foster, K. and Hannan, D.M. 'Fundamental Fluidborne and Airborne Noise Generation of Axial Piston Pumps'. Seminar on Quiet Oil Hydraulics. 2-3 Nov., 1977, IMechE.
- 32 Willekens, F.A.M. 'Fluid Borne Noise in Hydraulic Systems'. 1st. European Fluid Power Conf., East Kilbride, U.K., 1973.
- 33 Kogima, E and Nagakura, H. 'Characteristics of Fluid Borne Noise Generated by Fluid Power Pumps', (1st Report, Mechanism of Generation of Pressure Pulsations in Axial Piston Pump). JSME. B., Vol. 25, No.199, Jan. 1982.
- 34 Fielding, D. and Hooke, C.J. 'Sources of Pressure Pulsation From a Gear Pump'. Seminar on Quiet Oil Hydraulics. 2-3 Nov., 1977, IMechE.
- 35 Bidhendi, I.M., Foster, K., Taylor, R. 'Computer Predictions of Cyclic Excitation Sources for an External Gear Pump'. Seminar on Computer Aided Design in High Pressure Hydraulic Systems. 21 Nov., 1983, IMechE., AHEM. and BHRA.
- 36 Fielding, D., Taylor, R. and Hooke, C.J. 'An Investigation into the Effects of Sideplate Clearance on the Delivery Flow Ripple Produced by an Enternal Gear Pump'. Seminar on Quieter Oil Hydraulics. 29-30 Oct., 1980. IMechE.

- 318 -

37 Kogima, E., Shinada. M. and Yoshino. T. 'Characteristics of Fluid Borne Noise Generated by Fluid Power Pumps', (2nd Report, Pressure Pulsations in Balanced Vane Pump). JSME. B., Vol. 27, No.225, Mar. 1984.

- 38 Constantinesco, G. 'Theory of Wave Transmission, a Treatise on Transmission of Power by Sinusoidal Wave Motion Through Hydraulic Oil ia a Uniform Pipe'. Walter Haddon, 1922.
- 39 Bowns, D.E. and McCandlish, D. 'Pressure Ripple Propagation'. Seminar on Quiet Oil Hydraulics. 2-3 Nov., 1977, IMechE.
- 40 Bowns, D.E. and Edge, K.A. 'The Assessment of Pump Fluid Borne Noise', Seminar on Quiet Oil Hydraulics. 2-3 Nov., 1977, IMechE.
- 41 Edge, K. 'Positive Displacement Pumps as Generators of Fluid-Borne Noise'. Quieter Fluid Power Handbook. BHRA., 1980.
- 42 Iyengar, S.K.R. and Maroney, G.E. 'Estimation of the "Blocked Pressure" ripple for a Fixed Displacement Pump'. BFPR. J. 1979, Vol. 12, pt. 4.
- 43 Conesco Inc. 'Study of Fluidborne Noise and the Development of Fluid Acoustic Filter Test Specification and Rules'. Conesco, Cambridge, Massachusetts. May, 1964.
- 44 O'Neal, D.L. and Maroney, G.E. 'Performance Evaluation of Fluidborne Noise Attenuators'. National Conf. Fluid Power, 1976.

- 45 O'Neal, D.L. and Maroney, G.E. 'A Computer Aided Stationary Transducer Fluidborne Noise Measurement Technique'. BFPR., J., 1978, Vol. 11, Pt. 1.
- 46 Henderson, A.R. 'Measuring the Performance of Fluid-Borne Noise Attenuators'. Seminar on Quiet Oil Hydraulics. 2-3 Nov., 1977, IMechE.
- 47 McCandlish, D., Edge, K.A. and Tilley, D.G. 'Fluid Borne Noise Generated by Positive Displacement Pumps. Seminar on Quiet Oil Hydraulics. 2-3 Nov., 1977, IMechE.
- 48 Tilley, D. 'Fluid Borne Noise in Hydraulic Systems'. Quieter Oil Fluid Power Handbook. BHRA., 1980.
- 49 Taylor, R., Penny, J.E.T. and Seet, G. 'Pressure Ripple Effects with Two Pump Outputs Connected'. Hydraulic and Air Engineering, Oct., 1982.
- 50 Massey, B.S. 'Mechanics of Fluids'. Von Nostrand Reinhold Company, London, 1971.
- 51 Gear, C.W 'The Automatic Integration of Stiff Differential Equations'. Proc. IFIPS. Conf. Edinburgh, 1968.
- 52 Foster, K. Lecture notes on 'Advanced Phase Dissemination Notes on Quieter Hydraulic Systems and Hydraulic Pumps'. Dept. Mech. Engng. University of Aston in Birmingham. 1981.
- 53 Foster, K., and Parker, G.A. 'Transmission of Power by Sinusoidal Wave Motion Through Hydraulic Oil in a Uniform Pipe'. Proc. IMechE. Vol. 179, Pt.1, No.19, 1964-65.
- 54 Oldenburger, R. and Goodson, R.E. 'Simplification of Hydraulic Line by Use of Infinite Products'. ASME. Trans. J. Basic Engng., March 1964.

- 55 Iyengar, S.K.R. 'Pressure Ripple Calculations in Fluid Power Systems Using Linear Systems Theory'. BFPR. J., 1978, Vol. 11, Pt. 3.
- 56 Otnes, R.K. and Enochson, L. 'Applied Time Series Analysis'. Vol. 1. Basic Techniques. John Wiley and Sons. 1978.
- 57 McCalla, T.R. 'Introduction to Numerical Methods and Fortran Programming'. John Wiley & Sons, Inc. 1967.
- 58 Wusthof, P., and Rexroth, G.L. 'An Analysis of Pump Parameters Influence on Noise Level'. Proc. Symp. Fluid Power Testing. Fluid Power Society. 16-18 Aug., 1976.
- 59 Taylor, R. 'Pump Noise and its Treatment'. Quieter Fluid Power Handbook. BHRA., 1980.
- 60 Kelsey, K., Taylor, R. and Wood, K. 'The Practical Benefits of Optimising the Port Timing for an Axial Piston Pump'. Seminar on Quieter Oil Hydraulics. 29-30 Oct., 1980. IMechE.
- 61 Williams, P.W. Numerical Compution . Thomas Nelson and Sons, Great Britain, 1979.
- 62 Bowns, D.E, Edge, K.A and McCandlish, D. 'Factors Affecting the Choice of a Standard Method for the Determination of Pump Pressure Ripple'. Seminar on Quieter Oil Hydraulics. 29-30 Oct., 1980. IMechE.