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PART T

B ST oy

INTRODUCTION

As the complexity of equinment is increasing,
the achievement and maintenance of quality and reliability

are becoming very real problems, Today the emphasis is on

what has become to be called "total quality control®.
This involveg: -
(1) defining quality standards,

(ii) appraising the conformance to the standardas,

(1i1)  taking act' on whenever the standards are
exeeeded hmt”aut%a{hen[.
(iv) planning for improvement in the standards.

The techniques of quality control are basic to any

manufacturing process and can be used in industries ranging

from engineering to food, clothing, paper and tektil@sy
although the methods of“approach are somewhat different
depending upon the type of manufacture. Tn mass producti on

quality control is centered on the product, but in job-Tlot

manufacture it is centered on thesprocess,

Statistics are used in a total quality controd
programme where and when they may be considered to Dbe
appropriately apnlied, but are only one part of the overall
pattern, The four statistical tools used ares-

(1) frequency distributions,

control charts,

sampling plans,




(iv) special methods.

A study ofpublishedutéxts on quality @ontrol h&%vwwrﬂVu
indicated that gaps exist in the treatment of certain
aspects of sampling plans, particularly from an
analytical point of view and the object of the
investigation was to make good some of these deficiencies.
The aspects in question are:-

(1)  the Average Outgoing Quality Timit:(AOQL)
of single samnling plans,

(i1)  The Average Outgoing Quality Timit (AO0QT)
of double sampling plans,

(11i)  The Average Sample Number (ASN) of double

sampling plans,

Alongside the analytical treatments a further object
of the investigation was to devise methods for accurately
determining the fraction defective of the incoming
material which will result in the maximum value of the
Average Outgoing Quality (ie. the AOQL) and that which will
result in the maximum value of the ASN. It is parthcularly
important from an economic point of view that these values
be known, as the AOQ and the ASN will reveal the cosgts of
the sampling plans. There is insufficient evidence from
the results of the investigation, however, to show whether
or not there is any correlation between the value of the
fraction defective of the ineoming material to give the
maximum value of the AOQ and that to give the maximum value
of the ASN,

The analytical treatments have led to the development
of the two theorsms stated in the summary. Ariging from

. 10




the first of these, a table has been prepared from which,~_ 

the AOQL of a plan may be readily determined, or, conversely,

the table may be used to design a plan to assure a oiven
AOQL, A similar table has been prepared in respect of

certain combinations of ¢y and ¢, for double sampling

2
plans where ¢y is the aeoeptanaa‘number on the first
sample and Cp the acceptance number on combined samples,
In the following section on some fundamental concepte
associated with sampling olans, the natures of the above

asgpects are fully explained,

11,




PART IT

SOMy FUNDAMENTAT GONGEPPS ASSOCIATED

WITH SAMPTLING PLANS

1, Quality and Quality Control

1, (i) Definitions

The quality of a given characteristic is
acceptable if the characteristic meets specification

requirements,

Quality control of which sampling inspection

forms only a part may be defined ag:-

"An effective system for co-ordinating
the quality maintenance and quality improvement efforts
of various groups in an organisation so as to enable
production at the most economic levels which allow for

full customer satisfaction".

1, (ii) Economic Aspects

Ecenomlc aspects of quality and quality
control are illustrated in Figures 1 and 2,

Figure 1 shows the relationship between
quality of design.and cost. Absolute perfection can be
achieved only at infinite cost and in rractice an optimum
%conoﬁio level is sought after. This optimum level wiill

bengents to Fhe
occur at a point where thedtwo curves are parallel, Above
this point, although the quality of design will be higher,

a large rise (a) in the cost of achisving the inocrease in




the quality of design will occur with very little rise (Db)
in the value. Felow this point there will be a reduction

in cost (c) but with a considerable drop in value (d).

Figure 2 shows the relationship between quality of
conformance (that is the degree to which a characteristie
meets the specification requirements) and cost. One
hundred per cent conformance would only result in a
prohivitive cost of quality control although the cost of
rejects would be zero. At the other end of the scale where
there is no degree of conformance, the cost of rejects would
be prohibitive wut there would be no cost of quality control,
The theoresctical cost of wages and materials would remain
constant whether the characteristic is within the speocification
requirements or not. The total cost is the algsbraic sum
of the three curves. The optimum degree of conformance is
where the total cost is a minimum. It will be seen from the
totallcost curve that this cost can be the same for
characteristics exceeding or falling short of the optimum,

Whereas on the one hand the costs of rejects is lower, this

§
{

i§ offget Ly an increased cost in quality control, on the

other hand the reduction in the cost of quality control is

offset by an increase in the cost of rejects,

2. Sampling Inspection

2., (1) Purposes of sampnling insnection

Inspection is an essential part of the

guality control function. One hundred per cent inspsction
of the onroduct may be carried out or inaspection may be on

a sgystematic sampling basis. The former, apart from heing




uneconomic is not necessarily one hundred per cent efficient
and unless one hundred per cent inspection is particularly
stipulated - as it is for some types of product - most
inspection today is done on a sampling basis.

Samnling inspection may be used in two ways:-

(1) for control of thé process,
(i1) for acceptance of the product.

The rost effective way of controlling the
process 1g by the use of control charts. In conjunction
with these, mpecéial process capability studies may be
carried out. A process capability study involves techniques
for appraising all the sources and natugé of variability
such as within-piece, piece-to-piece; time-to-time, and in
the case of multi-stream processes such as multi-spindle
machine tools and multi-cavity diecasting machines, gtream-
to-stream. However, such studies gre outside the scope of
the present work.

As far as acceptance of the product is
concerned, once it has been estavlished that a process is
in gontrol and that the level of control is satisfactory
the control chart may then be adopted as standard for the
process and used for acceptance of the product.

Samn.ing inspection is used not only for the
acceptance of material at the source of production, vut
for the acceptance of incoming material from an outside
supnlier, In this connection the term "acceptance sampling"

is generally used .

Wi o e
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2_(41) Distinction between gitxibutes and

variables inspection.

Whether inspection is one hundred per cent
or on a sampling basis, it can ve either by attributes or
by variables, In attributes inspection, inspection merely
involves testing to see whether or not a characteristic
meets specification requirements without refersnce to
degree and may be by the use of a "G0" - "NOT GO" gauce
or be purely visual. In variables inspection, actual
measurements are carried out on the characteristics.

There exist both contrel charts and sampling inspection
p'ans to cover each of these categories and although

reference has been made to variables inspection in this

thesle, 1t is essentially with attribubes plans that

the work 1s concerned.

2, (1ii) Acceptance sampling by attributss

There are four main typeg of attribubes
sampling plans:-

Single,
Double,
Multiple,
Sequential,

The schematic arrangement of each type is
shown in Pigures 3, 4, 5 and 6 respectively,

In single sampling a lot is either accepted
or rejected as the result of the Inspection of a single
sample. Thus the probability of rejection is one minus
the prowability of acceptance, The plan is designated by
a sample size n and an acceptance number o,

Tpn double sampling a lot may be accepled oy E

15




rejected on the first sample, but unlike single sampling

1f 1t 1s not accepted on the first sample - as disflinct
from being outrightly rejected - a second sample is taken,
Unless a decision is reached on the first sample, it is
reached on the second sample,

Multiple sampling is a logical extension
of double sampling and reference to Tigure 5 will show
that the taking of samnles could continue until the lot
is exhausted without a decision being reached., However,
most multiple sampling nlans are designed to force a

decigion after a certain number of inconclusive samples

have been taken.

ITn the first three schemes, sampleg ars

of finite size bLut in sequential sampling the items are

taken from the lot one at a time and the number of
defective items against the total number of items inspected

is plotted on a chart. Two decision lines are nlaced on the

chart to mark the acceptance and rejection regions. As
soon as a point falls below the lower line the lot is
accepted without any furthér inspection. As soon as a point
falls above the upper line the lot is rejected. As long

as the points fall between the two lines, inspection is
continued. As with multi~le sapling this could continue
until the lotiigcexhausted but in practice a decision is
reached after a certain specified number of items has

been inspected.

2 (iv) Comparative advantages of sincle, double

aid multiple sampling.

The comparative advantages of mingle, double

16



and multiple sampling are illustrated in Figure 7.
Sequential sampling is not included in the table as it
is basically different from the other three schemes.
Consider each of the listed aspects in turn.

Brotection:~ Ty this is meant the protection
afforded to the consumer against the acceptance of a
bad lot vy virtue of an optimistic sample; also the
protsction arforded to the producer against the rejection
of a2 good lot by wirtue of a pessimistic sample. In
general, all three schemes can be so desiecned that lots of
specified quality shall have the same chance of
acceptance (or rejection). In other words, the operating
characteristic curves can be almost alike.

The total inspection cost:= TIn single
sampling for the same proteciion the sample size is always
higher than the size of the first sample in double sampling
and that, in turn, higher than the size of the first samnle
in multiple sampling. Material whose incoming fraction
defective approaches zero will .nearly always be accepted
on the first sample and thus the total inspection cost,
on the basis that the cost is evaluated as so much per
piece inspected, will be greztest in single sampling, less
in double and least in multinle. Ty simnle reasoning,
material of very poor guality will nearly always be rejected
on the first sample thus rendering unnecessary the taking
of subsequent samples.

Variability of inspection loady— Tn single
sampling a lot is accepted or rejected as the result of the

inspsotion of a mingle sample irrespective of the valuse

17




of the fraction defective of the invoming material., Thus

the inspection load is constant,

In double and multiple sampling a lot will be
accepted on the first sample if the fraction defective of
the incoming material is equal to zero., As the quality
of the incoming material deteriorates so will become
greater the necessity for taking subsequent samples,
so that the inspection load will vary with the quality
of the incoming material,

Accurate estimation of lot quality:- Small
samples tend to be optimistic, that is, they tend to
reflect a rather better quality than is actually present.
The greater the sige of the sample the more representative
ig it of the lot from which it is drawn. As stated above,
the sample size for single sampling is higher than that of
the first samnle for double and multinle sampling and thus
single sampling gives the best estimation of lot quality.

Amount of record keeping:- In gingle samopling
it is necessary to enter only the result of the inspection
of a single sample. In the other two schemes, the resulte
of the inspection of more than one sample must be ent ered,
Thus, the amount of record keeping is least in single, more
in double and most in multiple sampling.

Psychological: - This aspsct 1is from the noint
of view of the nroducer, In s'ngle gamnling a lot
submitted for inspection has only one chance of acceptance,
Tn other wahemes, however, if & lot is not acceplted on
the first sample it has a chance of being acoepted

on a subsequent sample, fAny advantage is only illusionsyy,




however, as each of the three types of plan may be designed

to give the same protection,

3> Fundamental Properties of 8ampnling Plang

3 (i) The operating characteristic of a

sampling plan.

Associated with any samnling plan is the
operating characteristic or 0,C. curve. The curve shows
the relationship between the fraction or per cent defective
of the incoming material and its provability of acceptance,
The ideal shape of the curve is sheown in Tigure 8,
Incoming material up to some specified Acceptable Quality
Tevel would have a 1.0 probability of acceptance and
anything in excess of this would have a zero provability
of acceptance. |
o sampling plans, however, are '§0
discriminating. There 1s always an element of risk in
sampling and although the shape of the operating characteristic
of some plans may apnroach the ideal shape very closely,
a more practical shape of the curve is shown in Plegure 9,
There are certain "key" points on the curves-
D is known as the acceptable quality level and is used
in conjunction with the Producer's Risk, & ., 7This 1is the
probability that a lot of material of incoming AQIL
(Acceptable guality Tevel) will be rejected, The symbol
pp is known as the Tot Tolerance Fraction Defective or
Tot Tolerance Per cent Defective (LIPU) and is used in
conjunction with the Consumer's Riﬂkﬁig « This is the

probability that alot of material of LIPD quality will

19
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be accepted. (X and ﬁ are akin to the terms Type T
error and Type IT error used in statistics which represent
respectively the probability of rejection of a true
hyvothesis and the probability of acceptance of a false

hypothesis).

2 (ii) The concept of average outgoing

quality (AOG).

The evaluation of Average Outgoing Quality
(A@g@ is based on the premise that rejected lots are one

hundred per cent inspected, defective items being either

repaired or replaced with effective items. Thus, if the
incoming material is of very high quality, that is, having
a fraction defective aprroaching zero, then the outzoing
material will also Dbe of very high quality because nearly
all the lots will pe accepted, On the other hand, if the
incoming material is of very low quality, the outgoing
material will again be of very high quality, because nearly
2171 the lots will be rejected,

Sunnose incoming material whose fraction
cefective is p has a probability of acceptance of Pa, then

out of 1000 lots, say, 1000 Pa lots will Le accepted and

so out at p fraction defective. The remaining (7 - Pa) 1000
lots will be rejected and as the defective items are either

repairec or replaced with effective items then these lots

will go out at zero fraction defective, Thus the jAverage
Outgoing Quality is (1000 Pa x p + (1 = Pad1000 x 0 Y/1000
= p x Pa; that is the Average Outgoing Quality is equal

to the product of the fraction defeclive of the incoming

20



material and its probability of acceptance.

As the value of p increases so will the value
of the A.0.Q. until a critical value of p is reached when
the A.0.Q. reaches a maximum value., Tncreasing p still
further will cause the A.0.Q. to fall. The maximum value
of the A.0.Q. is referred to as the A.0.Q.T. or Average
OQuteoing Quality Timit,

For any single sampling nlan, the following

dgsumptions are made: -

1. The lot size N is constant,
2. One hundred per cent inspection finds all the

defective items,

ER The defective items are replaced with affective
items.

4. N is large in comparison with the samnle size,
n.

An exact determination of the A.0.Q. is given

n
by the formwla p.Pa (1 - = ).
N

As N is generally large in comparison with

n, for all practical purposes the A0, dis evaluated asg

7o illustrate the apnlication of the above
consider the single sampling plan n = 100, ¢ = 1,

maple T indicates the evaluation of the
probability of acceptance and the A.0.Q. for arvitrarily
chosen values of p and Figures 10 and 11 show respectively

A
o

the 0,0, and the A.0, curves for this plan,

21




As the A.0.Q0.L is the maximum value of the

A.0.Q. which itself is the product of p and Pa, the 4.0.Q.T,
is the maximum area under the 0.C, curve .

Table T seems to indicate that the A.C.Q.T.
is about 0.008370 but it is not evident from the table
what the actual value of the A.0.Q.T. is and Figure 11
indicates that it is of the order of 0.0084,

A more exact determination using the theorem
developed hereafter sives the value as 0.0083%9742,

The differences are small and in the
particular example quoted are insignificant from a
practical point of view, However, not always would there
e such close agreement and it 1s always vetier to evaluate
the A.0.2.L. a= accurate’y as possible in the first
instance (which the above method does not allow) and to
rovnd it off afterwards 1f necessary.

The same procedure may be applied to the
evaluation of the A.0.Q. and hence the A.0.Q.L. of
double sampling p 'ans, Condidép' tfe double samplineg nlan

ny = 40, e, = 0; n, = 60, C, = 5.

As the comnutations are more involved than
those for single sampling it will be suffieient to
take one point on the 0.C. and A.0.Q. curves to illustrate
the method.

The probability of acceptance on combined
samples (i.e. the total probability of acceptanse, Pa) is
the sum of the probabilities of acceptance on the firat

and gecond samnles.

N2
D
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S
I

1 probability of no defective items

i

Pa9

probability of 1 defective item in

first sample with 2 or less defective items in second sample,
+probability of 2 defective items in first

sample with 1 or less defective items in second sample.
+probability of 3 defective items in

first sample with no defective items in second sample.

If the incoming material is 0.0% fraction
defective, nlp = 40 x 0.3 = 1,2
and n,p = 60 ¥ 0.3 = 1.8
From tables of the cumulative Pcisson
distribution (appendix ?79
Pa; = 0.301
and Pa, = (0.66% —~ 0.301) §0a731)
+ (0.897 ~ 0.663) (0.463)
+ (0.966 - 0.897) (0.165)
= 0.384
Hence Pa = 0.%01 + 0.384
= 0.685 oF the hlan

Thig will be a point on the O,Cg/gurve\L

at p = 0.03.
The 4,0.Q. at p = 0.0% is p x Pa

0.0% x 0.685

il

= OHO2OBN

\J1
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(iii) The average sample number curve

In single sampling incoming material is

either accepted or rejected as the result of the inspection

no




of a single sample and the Average Sample Number will

therefore be constant irrespective of the value of the
fraction defective of the incoming material. Even though
the rejection number may be reached before the inspection
of the sample has been completed, the samnle is
nevertheless fully insvected for the inspection: records,
In double sampling although a decision
can be reached as the result of the inspection of the first
sample, material not accented on the Ffirst sample - but
not rejected - will have a further chance of being accepted
on a second sample, If the incoming material has a
fraction defective of zero then all the lots will be
accepted on the first sample and no second sample will be
taken. As the gquality of the incoming material deteriorates
then so will become greater the necessity for taking more
second samples until in the limit material 100% defective
will be rejected on the first sample although this limit
will not pe reached in practice., Thus for incoming material
of zero fraction defective the Average Sample Number will
be equal to nq and for material of very poor guality it
will approach ny. Retween the two, there is a value of p
which will give a maximum value of the AN,
The determination of the ASN will depend

upon whether: -

M}QUJ,(i) the second sample is completely inspected,

Mebhoy(ii\ inspection of the second sample is curtailed
or truncated when the number of defective i1tems in the

combined msamples is found to exceed the acceptance numbser,

Co e
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Method (ii) has found some favour as less

inspection is involved, but this is not true generally for
extremes of quality where material would be accepted or
rejected on the first sample accordingly.

The writer favours method (i) for the
following reasons: -

1. A Dbetter estimate of lot quality is obtained
on account of the greater number of items inspected,.

2. Currently published sampling inspection
tables such as the American WIT-STD 105D (Ref.1) and the
Fritish equivalent DEF -131A (Ref.2) assume no curtailment
of the second sample. hese standards are widely used
today throughout Loth countries, particularly by Government
Departments, and for this reason the section on ASBN in
this thesis is pased on the agssumption that the second
gsample is completely inspected. In any case truncated
inspection is used onlv when a lot is rejected and quality
improvement efforts should result in greater numbers of lots
being accepted.

When the second sample is completely inspected,
the ASN is given by:-
ASN = ny o+ P2n2

Where P, ig the probability of taking a second

sample,

Again consider the above double sampling plan with
the incoming material at 0,025 fraction defective, <The
expected number of defective items in the first sample

m =1 op =40 x 0.025 = 0 The probability of acceptanae
1 1

on the first sampie is the probability of no defeotive items

nNa
T




and from tables of the cumulative Poisson distributio

equal to 0,.%68,

The probability of rejection on theefirst
sample is the probability of four or more defective items
in the sample and is equal to 1 minus the probability of
three or less., From the same tables, this is equal to
1 = 0.981 = ©«0ia

Therefore the provability of a decision
on the first sample 1s equal to 0.%68 + O:0lg = 0*3%>7 and
the provability of taking a second sample is 1L a2y =
0ei3

Hence the ASN = 40 + ©+Gl% x 60 =76\ 7%

(This figure is higher than that obtained when
truncated inspection is used as will be seen by reference
to Appendix 19).

For the above plan, values of the ASN for
a range of values of p have been calculated on the basis
of complete inspection of the second sample. The
computation for this is shown in Table TI with the

corresponding graph in Figure 12.

3 (iv) The average total inspection (A.T.T.)

curve

On the basis that rejected lots are one
nundred per cent inspected, the Average Total Tnspection
will depend upon the sampling plan itself, the number
of items in the lot, and the fraction defective of the

incoming meterial.

In the case of aingle samnling a sample




of n items is always inspected, Tf Pa ig the probability
of acceptance then the probability of inspecting the
residue is 1 - Pa and %f N is the number of items in the
lot, the numver of items in the residue N - n. Hence the
average number of items inspected in the residue is (1 - Pa)
(W - n) and the Average *otal Inspection i3 given by

AT T, =n 4+ (1 -« Pa) (N -~ n)

Evaluations of the A.T.T., for three

different single sampling plans for a givén value of p

are shown in Taible III.

[

The greater the value of p the greater the
AT, L. so this section has not been treated analvtically,
Nevertheless, Fisure 1% shows the A.T.I. curve for the
gingle sampling plan n = 100, ¢ = 1 and a lot size N = 1000,
where ¢ is the acceptance number,

Tn double samnling, the Averasge Total
Inspection is given by.

AL = nqPay + (nl + np Pap + N (1 - pa)

=N, + N (1 - Paq) + [N - (ny + ng)} (1 - Pa)

1
Again, the greater the value of p the

greater the A T.I. as will be seen from Figure 13A in respect
of the double sampling plan n, = 1005 cq = 05 np = 200,
c. = 1 and = lot size of 1500,

Thus, as in the case of single samnling, this
topic has not been treated analyvtically.

The 0... and A.0.J. curves are concerned
with the protection provided by the plan,

mhe A.S.N, and A, T.I. curves reveal the

coste of the plan,




4 Some notes on _the design of sampling plang

This thesis is not concerned esgsentially
with the design of samnling plans,; but it would not be
out of place to make some reference to this and to show
how samn’ing plans may be desisned so that incoming material
of a given quality shall have some specified probability
of acceptance,

Tf onlv one point on the 0.C., curve is
specified, then in theory an infinite number of plans may
be designed whose 0.C, curves all pass through this point,
If two points are specified then the plan will be
completely defined.as anl Curye Follows The Cousspn disteibubian

Supnose that in single sampling it 1is

required that incoming material 47 defective shall have

one in ten chance of being accepted. As sample sizes

and acceptance numbers must Le integers it may not be
possible to.esign a plan to meet this requirement completely
but the plan would be sufficiently close to meet the

requirement from a practical noint of view,

The procedure may follow one of two paths:-
(1) decide on a samnle size and determine the

acceptance number,
(ii) dec1de on an acceptarnce number and determine
the sample size.
The latter is by far the more widelyv adonted
method as acceptance numbers are genera: ly small in comparimon
with the sample s.ze, starting at zero unpwards,

Supnose 1t is desired to maswe the acceptarnce
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number zero, then from tables of the cumilative Poisson

distrivbution (Appendix 16 (ii1)) when ¢ = 0 and Pa = 0. .,
) , 2,31 2.3l

np = 2.31 (vy interpolation Thu === :

[ ). s n % =0 o4 = 58

the plan is therefore n = 58, ¢ = 0
Similarly, at the same value of Pa = 0.1

when ¢ = 1, no = 3,9 and n = 98
when ¢ = 2, np = 5,33 and n = 133

The operating characteristic curves of these
plans will all pass through the point k = 0.04, Pa = 0,10,
put will not pass through any other common point (Pigure 13%B)
On the basis that rejected vatches arc 1009 inspected,
cach of these plans will involve a different amount of
Average Total Inspection. Table TIT shows the com utation
of the A.%.I. when the incéming material is 0.5% fraction
defective and the lot size N is 500.

It will be seen that the plan n = 98, ¢ = 1
will give the minimum A.T.I. This is not necessarily true
for otner values of N however. Two other plans whose 0.C,
curves pass through the point Pa = 0.1, p = 0.04 are n = 168,
c = 3% and n = 200, ¢ = 4. When N = 1000, the A.T.I. values
for the five nlans are regpectively 294, 176, 157, 177 and
20%, Thus, in the case of N = 1000, the plan n = 133, ¢ = 2
will give the minimum A.T.IL.

plans shown in published sampling tables ares
those which will result in the minimum A.T.I. for a given
scombination of lot size and incoming material fraction

(or per cent) defective. To minimise the number of plans
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involved, the plans are based on ranges of lot sizes and
ranges of fraction defective rather than on individual
values.

Consider the plan whose 0.C, curve passes

through the noints Pa = 0.1, p = 0.07; Pa = 0.9, P = 0.01

Only one plan will meet - or very nearly
meet - this requirement. The procedure is to take

arbitrary values of ¢ and from Poisson tables find rip at

Pa = 0.100 and at Pa = 0.900, find their ratio and take

as the acceptance number the particular values of ¢ for which

the ratios of the np s is 7, or very nearly 7,
nps _ pp . 0.07 = 7
(because npy ~ py ~ 0.01 )

Table IV shows the method of determining
the required value of c.

As the value of ¢ 1is increased, the ratio
decreaseg and it will be seen that 7.%45 is the nearest
to 7 when ¢ = 1.

When np = 3.89%, n = 3.893/0.07 = 55.6

and when np = 0.5%0, n = 0.530/0.01 = 53.0

}ecause the ratio of the nps 1s not exactly

7 (if it were so the values of n would be the same) it
will be sufficiently accurate for all practical purnoses
to take the mean value of n as 54.

The plan is therefore n = 54, ¢ = 1

To illustrate how closely this plan meets
the requirements the probabilities of acceptance may Dbe

caleulated for p = 0.01 and p = 0.07




it
It

When p = 0.01, np

0.54 and Pa 0.897

When p 0.07, np = 3,78 and Pa 0.109

il
1f

‘he same basic principles can be extended
to the design of double, multiple and sequential plans.
A1l types of plan may be so designed so that their 0.C.

curves are very nearly the same,
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PARD ITT

ANATYTICAT TREATMENTS

5, The A.0.Q.5. of Single Sampling Plans

5_(1) Titerature Survey

From a .literature survey no evidence of
an analvtical aporoach has been found. WMost authors who
deal with the A,0.9.L. of a sincgle sampling plan choosge
arbitrary values of p, find p x Pa for each value of p and
note where the maximum value of p x Pa occurs.

Tn this connection turr (Ref, %) takes as
an example the single sampling plan n = 150, ¢ = 4 and
concludes that the A.0.Q.T. is about 0.017.

Duncan (Ref. 4), following this method,

i
}__l
O
(@)
Q
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N

takes as an examnle the single sampling plan n
Poth these authors plot the graph of p x Pa
and estimate where the maximum value occurs,
Feigenbaum (Refs. 5 & 6), on the other hand,
sketches the 4.0.0. curve for the plan n = 60, ¢ = 0 but
shows no comnutations, merely stating that the A.0.0.T.

occurs when the incoming material is 1.7% defective and is
equal to 0.68% (The writer does not agree with this figure
as application of his first theorem shows 1t to be 0.61%),

Similarly Freeman, Friedman, Mosteller and

vy

Wwallis (Ref. 7) sketch the A.0.Q, curve for n = 225, ¢ = 14

but do not show the comnutations, merely stating that the

A.C.0. T, is 4.2

crant (Ref. 8) takea n = 75, ¢ = 1 and finds that the
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maximum A.0.Q. is 1.12% when p = 2,2%

Hill (Ref. 9) considers the plan n = 25,
¢ = 1 and using the standard method of comnutation arrives
at the conclusion that the A.0.Q.L. is 3.3%2 when p = 0,06
Huitson and Keen (Ref. 10) consider the nlan
n =20, ¢ = 1 and show how the 4.0,Q, curve can be constructed,
adding that the A.0.Q.L. can be read off at about 4.4%
Juran's book (Ref. 11) contains a chapter
on "statistical methods in the quality function" by
J. W. Enell. As with the others, nc analytical treatment
ig attemptea, Computations of p x Pa are made for the plan
n =178, ¢ = 1 and the A.0.Q.L., given as 0.01100,
Smith (Ref, 12) takes as an examnle the
plan n = 180, ¢ = 2, and merely quotes the A.0.0.T. an

0.,6%%.

5 (ii) Fackground to the present investigation

Havine examined the treatment by others
of this asvect of samling, th'¢ writer concluded that an
analytical treatment would be more degirable as it would
result in a determination of the value of the fraction
defective of the incoming material to give the A.0.%2.7..
to as high a degree of accuracy as one wished.

The initial investiegation (Ref, 1%) which
led to the development of the first of the two theorems
stated earlier consisted in taking values of 0, 1, 2, 3 eto,

for ¢, the acceptance number, in turn and determining in

oA A
each case the value of mjan follows., (A®s stated in annendix

16 (iii) the Poisson distribution is Ly far the most widely
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- Py b S : 2 4 ® o . 'Y o 3
used provability distribution in sampling inspection and

is apnlied here),

When the acceptance number ¢ = 0 the »

probability of acceptance of the lot is given by
~Np

. P - - i ‘R i
Pa = e Lﬁ.tke,§&rsf fePhn oT Fhe ﬁnfﬁghliistﬁgbtxtiuh

il ~ ~ - o 3,
the A.0.Q0., Q, is given by O = p.Pa

-nn
Thus Q = pn.e
ag =P -np
and dp = e - npe
ag

For maximum Q, dp = 0

~ND
As e # 0 and as np = m

1l «=m=0 orm=1

When ¢ = 1,

e )s)
Pa = e (1 + np)
~1p 5
and Q = e (p + np )

—-np -1p 2 2
dn = e (1 + 2np) = e (np + np )
dp  -np

Again as e £ 0 and as np = m

oa

As m cannot be negsative this gives m = 1,618

Then ¢ = 2

—np .22
Pa = e (L+np +2n P )
-np > .23
Q=6 (p + np° + &n'p” |
-1p 2 oo ~Tp o 0 33
a0 = e (1 +2np + 2 np ) -e (np + n p  +54 p )
dp A -np
Por maximum Q, dQ = 0 and as & # 0 and np
- dy

2 10
1+ m + Fm° = zm”
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When c = 3

R
-7 ) L = i

o " 1€ 7 IR

P+ 1np” +snp +1/6n"p )

an _ ~1np . 2 2 % 3
G2 =0T v o 4 3/20%0” 4 230

D o7 z
-e " (np 4n“p°~ 4 %nﬁpJ + 1/6n4p4)

For maximum Q, do
na x: ) . -n
ol = (0 and as e b ;zé 0 and np = m

gp
1+ m & Zm +1/6r_@2_ = 1/60
fhen ¢ = 4
- ) 7 .2 e .
Pa = e P14 np 4+ %n2p + 1/6n"p’ + 1/241’14 pq)

- 2 . » A 45
Q=2¢e "p (p+mnp + En°p’ + 1/6n3p + 1/24ﬁ1p)\

L i

nNo
N

an -NN . - o D ooz % 4
Ip = e ~ (1 + 2np + 3/2n°p° + 2/3n7p” + 5/24r4p4)
=10 2.0 53 i A co-
~ e "V (np + np° + En'p” o+ '1/61'14[)4 + 1/2417 p? )

Por maximum ¥, 99 = 0 and as e “™1P £ 0 and

1+ m 4+ dm +,1/6m5 + 1/24m§§w1/24m5

Equations for values of c¢ in excess
of ¢ = 4 were not developed as it became apparent that
these followed a general pattern and the eguations were

first examined by tabulating them "en bloc”:-

When ¢ = O 1=m
2
When ¢ = 1 T +m =m
2 P
When c = 2 Lem+ ™ =0
2! 21
Z
' m2 m” ot
When ¢ = 3 Lam =
L2 Y
2 D 270w
m m mt . m
When ¢ = 4 T+m+ 4 T
21 50 4T AT

Fy the inspection of the above, the equation was

L
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written down for ¢ = 5 .-

2 % 4
m m~ m 5 6
I +m + " L 02o_m

N
AN
L
o
G e
2
L
2
Lo

and for ¢ = 6

-
w3
N
=
0
3
B
=
(|
=]
(o)
=
~J

N
N
o~
I
o
o
S

o

) m
Foth sides of the equation were multirlied by e~ giving:-

1) it m> m mb - -+
AL CaTr

D 5 ]

~Mmn CH L

la = (c+lle m \

Covi) et
fhe T.,H, side of the equation gives the probability of
thaf wt]pesoftmfhe AOHL

acceptance of material of lot quality p,@and the R.H, aside
of the eguation (c+1) times the provauvility of exactly
(c+1) defective items in the sample.

wWith the ald of tables of the cumulative Poisson
distrivution, values of m were determined for a range of
values irom ¢ = O to ¢ = 10 and these are shown in Table V.,

When m was pletted against ¢ it was found that with
the excention of the cases where ¢ = 0 and ¢ = 1, the points

on a reasonable straight line and the linear regrension

@

equation cormecting m and ¢ frome =2 to ¢ = 10 wa

determined as
m o= 0,725¢ + 0,761

The eraph of this equation is shown in Figure 14.

Values of m were detertined to only two nlaces of

decimals ac n is larse in comnarison with p,

Tater. the writer determined for each value of ¢ from
2, B o

0 to o = 24 a factor K for determining the AOUT of a

o]
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given single samrling the results of which were published

in the Journal of the Institute of Qual ity Assurance (Ref,14)

= . . .
Reference will apgain be made to this factor in the

section on the present investigation.

5. (1ii} The present investisation

In the present investigation the range of
values of ¢ was extended up to ¢ = %30, Tt was considered
that this was a sufficiently hish value of ¢, @although
DEF-1%1A (Ref.2) and MIT-STLH-105D (Ref.1) pives values
of ¢ up to ¢ = 44, values of this order are arsociated with
high AQL values and the occasions when such values would
be used are fTew, Rather than take individual values of
¢ as was done in the original investigation, the theovem
wags developed vy taking the general case on its own.

In a gingle sampling plan where n is the
cample size and c¢ the acceptance number, the probability

of acceptance of a lot of material whose incoming fraction

defective is equal to p is given LY

- 2.7 C_1 C-1 )
-1 n n- =1l Che
Pa = e (1 + np + QD~ o o} n o+ EWE“)
C'B‘ (O““—]\J (‘.7
-

Tf Q denotes the Average Outgoing Quality,

then Q = p.Pa

- 2 ooz c-1 ¢ C_ g+
= e np(p + np° 4+ 07D et N +np-t )
e (=)} c!
Nifferentiating with respect to p we gets-~
' “HP 3 12p° 0= 01 . c G
ag = e (T +20p + 3 1P et G, T D 4 (Q,_‘“‘l] \1:’}.&4 " 3
dp 'ég (O“’l‘); U,j,«

NN
-3

)




g

(,

=1p, 2 z 3
- e (np + n°p° + n’p’ + nCpC ﬂe+lp0+1\
' s e i i sy S
2 (c=1)! c!
s d¢
For maximum Q, mg = 0, from which
dp
2 :
«-TD ng n- =1 _c-] oo
e (L + np + o5 _ n p= =t -
( E o t T LL )
(c-1)! c!

=YD c+1 c+1l
I ¢ i

c.
Yultiply the numerator and denominator
of the R.H. fraction by (¢ + 1). The L.H. side of the
equation then becomes equal to

/ np ¢+l c+l
(c + 1) e n p

b S S S s GRS D

cl (c+1j

= (o + 1) ™M Ec+1pc+1

(dr+ 1)

The left hand rside of the equation gives
the provability of ¢ or less defective items and the richt
nand side (¢ + 1) times the probability of exactly (c 4+ 1)
dcTfective items.

Tn conjunction with the Comnuter Centre
of the University, a programme was developed and values
of m and Pa were determined. Details of the programme
are given in Appendix 14 and the values of m and Pa together
with their product in Table VI

Although in the original investigatlon
(Ref.1%) values of ¢ were taken up to ¢ = 10 and a linear
relationship estaplished Letween m and ¢, the present
investigation has shown that this relatiorship is only

apnroximate and is not true for higher values of o as igm

.
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shown Dy the curvature of the graph in Figure 15.
As ¢ is always a whole number and
because of this the distribution is discrete as distinct
from continucus, no attempt has been made to establish
an equation connecting m and ¢ for values of ¢ in excess
of ¢ = 10. It is therefore recommended that the tabulated
values of me be used for all corresponding values of c.
In the original investigation graphs
of the fraction defective of the incoming material, p, to
give the AOQL were plotted against the sample size n,
for various va'ues of ¢. It i1s considered that no useful
purpose would be served by reproducing them all here,

lTowever, that for ¢ = 20 is shown in Tisure 16,

b

Tt would have been practically impossible

e

to have nroduced graphs for all values of ¢ and at the time
of the original investigation it was considered sufficient
just to show graphs for a few values of ¢, viz ¢ = O,
¢ = 5 and ¢ = 10.

Their object was to determine the value of
p direct from the graph rather than by dividine m by the
sample size, and for intermediate values of ¢ values of
p could bLe determined aporoximately wuy interpolation,

Tn the nregent example when n = 110,

say, the va'ue of p céan be read from the TL.H. scale of

the graph as 0.145.

7Prom tavle VI, al ¢ = 20, m = 15,8206
and hence n = _]5.‘0/206/“1-10 = (\31!'177).

Algo 1in the original inveastiration a

sraph of the probauility of acceptance ol incoming material

o
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to give the AOQL was plotted

against the acceptance number
¢ for values of ¢ up to ¢ = 10. This has been extended
for values of ¢ up to ¢ = 30 and is shown in Pigure 17,

Reference has already bLeen made in the
section on the vackground to the present investieation
to a factor ¥ developed uy the writer.

As the AOQL is the product of p and Pe
and as p = =, the AOQT may bLe written as mPa |

The factor ¥ is the product of m and Pa

and values of ¥ for values of ¢ ranging from ¢ = 0 to c

1
AN}
-

are shown in Table VT,

The table mav be used 1in two ways :-

1, To determine the ACQL of any given samnling
plan,

2 70 degign a sampling plan to assure a given
AOGQ T,

Tn the former connection, suvvose it is
required to determine the AOQL of the single sampling
nlan n = 120, ¢ = 3. Reference to Table TV shows that at

¢ = %, K = 1,9424, Hence the AOQT, of the nlan 1s 1.9424/120

; . .
0.01619 or approximately 1.62%

i

Tn the latter connection, supnose it is

required to design & single sampling plan to ansure an

A0OT, of %7 and that it is decided that the acceptance
numver be 4. The table shows that at this value of ¢,

K = 2.54%5, Hence the samnle size 1 = 2.5435/0,0% = 85,
The plan 1is therefore: -

n = &5, ¢ =4,

o




The relationship between ¥ and c¢ is

represented graphically in Figure 18. As was the case of
the relationship between m and c, the graph exhibits

a marked curvature but again no attempt was made to
determine a mathematical relationship because of the
disgcrete nature of the distribution. TIn any case it would
not necessarily follow that any such mathematical
relationship would hold good for values of ¢ in excess

of 30. Such values could be determined using the method

for ¢ = 0 to ¢ = %0,

5 (iv) Discussion of results,

The results of the forergoing investipation
have, in general, been discussed in context as the nature
of the investigation and the method of its treatment was
such that it was considered preferable to do this rather
than to treat the discussion as a separate 1lssue.

Tt has been pointed out in the literature
survey that those authors who have dealt with the topic
have merely used graphical methods, taking arbitrary

values of p, in order to determine that value which will

result in the AOQL.
This method will result only 1in &an

apnroximate value for p and, aside from other considerations,

can be very lengthy whereas the writer's theorem and the
developments arising therefrom may be used to evaluate

the value of p to as great a degree of accuracy as 1

required.

The authors named may consider that their
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method is sufficiently accurate

for practical purposes
and indeed this could well be so in some apnlications as

p is small in comparison with n,

However, occasions might arise when it

becomes necessary to evaluate p to a greater degree of

accuracy and it was with this in mind that the investigation

was carried out.

6. The AOQL of Double Sampling Plans

6 (i) TIiterature survey

Authors generally have made reference
to published sampling tables based on AOQL values with
1ittle or none to the computation of the ACQL value of
a double sampling plan,

Turr (Ref.3) does not specifically deal
with the AOQL of double sampling plans but refers to
published sampling tables based on AOQL values.

Duncan (Ref.4) merely states that the AOQ
is given by the product of p and Pa and sketches the
40Q curve for the plan n1= 50, ¢q = 25 Dy = 100, Cp = 6
but does not attemnt to show the computations involved.

FPeigenbaum (Ref. 5 & 6) as Burr, does
not deal with this but again refers to published sampling
tables based on AOQL values.

Freeman, Friedman, Mosteller and Wallis
(Ref.7) also do not cover this aspect but make reference
to tables based on AORD values.

crant (Ref.8) makes no reference to the

AOQT, of double samnling plans.

42




N

Hultson and Keen (Ref.10) refer only to

published sampling tables based on AO0QT,

Again the only reference to the AOQL of
double sampling plans is in respect of published sampling
tables In the chapter on “Statistical methods in the quality

function" by J. W. Enell in the book by Juran (Ref.11).

6_(ii) tackground to the present investigation

As was the case of single sampling the
writer considered that the topic was one which would lend
itself well to analytical treatments. These have recently
been carried out and publication of the method of treat-
ment and results is pending (Ref.15).

The computation by analytical methods of the
AOQT of double sampling plans and hence the value of p to
give the AOQL is more complicated than in single sampling.

The following relates to double sampling plans where cj = 0

and co ranges from cp = 1 to cp = 6.

6 (i1ii) The present investigation

Tn a double sampling plan where cq 1is
the acceptance numwer on the first sample and cp the
acceptance number on combined samples, then the probablility
of acceptance on the first gample is the probabllity of
Gy or less defective 1tems. The probability of

scceptance on the second sample 18 the probability

of Gy + 1 defective items in the first sample with On = (GW
or leass defective items in.the second sample

plus the probabllity of ¢ + 2 defeotive 1tems in the firat.
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sample with Cp = (c1 + 2)

or less defective items in the

second sample P US —emmmem LT — the probability of

cp, defective items in the first sample with no defective
items in the second sample, The probability of acceptance
on combined samples is the sum of the probabilities of

acceptance on the first and second samples.
Thus P = Pay + Pap

The Average Outgoing Quality (AOQ)
is equal to p times Pa where p is the fraction defective
of the incoming material,

The Average Outgoing Quality Timit (A0QT)

is the maximum value of the AOQ,

When ¢y = 0 and ¢cp = 1

o =yl -1
Pa, = e "P ang Pap = e 1P nipe 2P

v
&
il
v
m
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+
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Ay
N
t

Q = AOQ = p.Pa = pe——l’llp n n1p2e-(lﬂ,+ ny )p

dg = e~P1P ~Yi1 D -(n1 + np)p 5
dp

aq
For maximum Q, 3% = 0 and as e=-ILP # 0

=11, 2 2 2 wl’];‘)p _
1 - nyp + 2nqppe 2P - (ny"p + nynop Ye 4 =0

putting nqp = M and n,p = m, we get
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f n

then 'km1

2

= log ™ + mlm2 - 2my
1 - My
= kn g nm, = Km
1 2 1
m ¢ + kK 21
= log, 1 M- emy
1 - m
L
1 1 Vme ©
— 10ge(k*1’ml emy g 2my = (k+1)mp 2
K = _ —I.Oge : -
1 - my k my - 1

the corres

numerator

1 log
e

s

. the solution of which is satisfied vy m,
B

practical

2m1 -

neveriheless not meaningle~s because for k

Tt must uve pointed out that for k = 1 and

ponding value of m = 1, although both the

and the denominator of the exprersion
and so itacz,@,t“@("“"""‘:‘ te >
2
(kJr]_ \ml . .
L+ are equal to Zero , the expression 1s
- 1

1=

m., - L

1

~m
(2my - 2m12)e 1

15

That this is so can be shown by considering a

example. Tor a lot size of from 151 to 280 itemsn

and an AOL of 1.5%, DLF131A (Ref.2) guotes the following

double sampling plan (normal ingpection).




1’1_1 = 209 Ol = O; n2 = 20, 02 =7

Now Pa = P81 + P82 = e“nlp + e“nlmqpe"qép

, - - \ .
and 7 = p.Pa = p.e nlp + e (n1+n2'gﬁhpa

As nl = n, = 20, i.e. k = 1, we may rewrite the

expression for the Average Cutgoing Quality as

- 2 =
0 = p.e. 20 4 pop7eThOP

The computation of the AOQL is shown in
Table VIT and the AOQ curve in Fiecure 19,

It will be seen that the AOCYT whose value

is 0.02516 occurs when p = 0.05.

>4
(@)
o
1
[
-
o

Thus my = nlp = 20
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When o1 = 0 and ¢ = 2

2
=N, P -
e and P32 e 1 nyp x e 2p(1 4 ngp)
3 2 2 :
.6 nlp Ny Doy e—ngp
ST
22
o=(ny4my )y oy =(mpamp m o
(n1p+n]n9p”3 +e 2!
-(n_+n, )p 2 22
=e 1 2 (nq D4+ N, D +#ny )

Probability of acceptance on combined samnles

= Pa, + PTa

L 2
-1, P ~ (1, 40,0 2 D
= e L 4+ e 1T (1’11 p4niNsn o In f T}Q )

Aiverage Outgoing Quality (AGQY = Q :.%a?a

_{(ny14n5)p 2 5 7

- ewnlpp + e (njpg+n1n2p)+%n(ﬂpj>

Differentiating with respect to p, we get:-

_ MY L e n,p
+ e“(n1+n2>D(2nln+3n1n2p2+3/?n12p2)
e“<n1+n2}p(n12gin12n2p5+%nfap3+nln2ﬁa+n1n22h3+%n§?ngp3\
For maximum Q, %% = 0
e eanlp 4 0 and outting n,p = M, and nyp = m, we ooty e
- mod ewmg(2m1+3m1m2+5/2m7?wm1?”m{2mgm%m15mmqmgwmmmglw%ml
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me \j‘%
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- - My

= 10

! zm-ﬁ(amié«g»lak)mzm(k—%m%%k\mﬂ = 0
+ emkm1f2m1+(2k+%)m12—(k2+1%k+%)m1j} = 0
(mlwl\ekml = 2m1+(2k+%)m12w(k2ﬁ13k4%)m15
2m1+(2k+%)m12”(k2+1%k+%hﬁéﬂ

My

If no = km i.e. m, = kmy then
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~km 2 2 3
1(2m1+3km1 +1%m1 -m Q»kaJ
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When ¢, = 0 and o, =

wn1”+ew(n1+n2>p

pa = ¢ 2 2 2 3z
NP+ NP +3mn, DB+%n12p“+%nfgn2p3+1/6n138 Y
~ ~nyp  =(nq+n,) 5
0 = ppa = o Mt 1t )p, 2 3 2 2
Q Dl p+e (nqp +1, 15D +ENq10 p4+%n1 p
, 2 4 oz 4
+519 NoD +1/bn]’p )

dQ) = _~nqp _-Nqr - - T %
) 1P D (1440, ) - 2 7
— & Pnipre™ 172 p{?n1p+jnln2p +2n1m92p)
dp ”
g . 22 2 3 . =z3 22 2 3 22 4
+3/2n7"p + 2ny n5p +2/5n1’p -n P -n, nop ~kn, 7nop
Z B 3
; 4 4 2 2 7 3
—5n jm~n n,p ~] 6n -1 e P -% >t
b0y p ) /fn pl-mn p -minTp ~Enyn,p
2 z
1o 3 4.2 2.4 E 47
-En. n p -kn_“n_ pTt-1l/6n_ n_)
1L PP TER Ty PR BRP ]

For maximum Q, 49 = ¢
=, )
e 1P # 0. Put nyp =m and np = M

_‘1,
Thus ¢ -
2

e ] m 2 P,
1 - m +e £2m1+2m1(km1)+ml(km1) “%ml(kml) %ml

, -
+Em, ¢ ? (tem. )mmlg(kmj) +1/6m13ﬂ2/3m13(km])w1/6m1} = 0

_km 5 % 7z 4 2 3 4
1 = m, +e 1'[Em,i+2T<Tm‘]2+1<: mT/mv]ngm1 +5 ; +%km1 mk2m1

- 4 4
+1/6m]5w2/3km] w1/6m1 } = 0

r7

o -~ 2 “
1 - my+e ka%ij (2k+%)mld+(k +5k+1/6 my " = (5 1 4 +2 /3K 1/63m14§

= 0
2 1 P, ) 4
1 2m1+(2k+5,m (k7 k1 /6\m (a k +2/3k+1/6m,
m. = — log L L.
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0N = p.Pa = e p = e - “ (nlp +n"1>1‘)2p9-f—j%‘l’lllf12 P +1/6n1n,2 P

P 2 5

>3 2 4 |
4—;’571/1”l p)+%nl no p¢+ nlgrg D +1/6n13p +1/6n Jng /94nf p )

A p _~N7P ~(n,+n, p 0 2 2
d? = e~ Pe l‘n1p+e 12 (2n1p+3n1n2p +21nqNo p

2

A 2 2 2 2 24 a0 3 4
+5/6n1n?5p'+5/2n12p +217 Npp +5/4n12n2 p +2/3n7p +5/6n13n2p +

4 4
5/24n11p')

~(n, T2 p . o 24 2 35 3 3 4
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+7“an 1’12 p
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I o 5 s
+%n12n2p3+%n12n25p1+%n1 ng ’p 41/6H n?p Jr]/6f1 Ny p +1/24ﬂ1 n,yp )
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For maximim i, T = 0

4 0, Put nyp = My and  nyp = My

Tf n, = kny, then m, = kimq
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~km 2 .2 3 3 2
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dQg = e Tl-e 1<m1
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When c, = 0 and o, = 5

p ~Ns D
1 n.pe 2 2 3
1P (1+n2p+%n2 p2+1/6n2 p3+1/24ﬁz4p4)

2 2
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6 7 ? 2
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1

S, 34 5 5 ., 3 20 45 46
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values of ‘m .  The value of k were decided upor

examination- of the Do@ge—BQQ@gg; /éamgliﬁg'fableS

(Ref.16). Grapks of k againsizmizw e /;b,/%wngiquresa
20 to 25. : sEREE B
Using regression methods, the best fitting curves

have Dbeen determined giving the following results

= 4 o
m_ = 1.6069—1.4771k+1.716k2—1.3574k9+0.67392k —0.18317k5

+0.020576%° B )

2 - -
m. = 2,1004-1.4627k+0.72702k -0.14815k (2)

c, =05 ¢p = B

2 3
m_ = 2.5700-1,5462k+0.57125k -0.084028k

m = 2.2638-0,64807k+0.08500k

¢c = 0; ¢, =5

9: G /z b =

m. = 2.6742-0.77603k+0.091429%

SO
M, = 2.8710»Os73717k+Qf07428§¥ :
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Although aecond degre

in the cases for 02 =4, ¢
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Emmae ok

m = 1,909038 - 0.2996k

=0 =5
Cl 9 02 9)

m_ = 2,0580 - 0.3%30060k

m, = 2,1586 - 0.27660k

As r = - 0.999 with 95% oonfldence but 11m1t of - 1.000

t0 - 0.992 when ¢ = 4, - 0.999 with 95% confidence limits
5 : \

of - 1,000/~ 0.990 when c, = 5 and again - 0.999 with

5% confidence limits of - 1.000/= fOi992 Whenc2 = 6, ]inearfﬂ

equations may be %ufflglentlv accurate from*a practlcal p01nt

of view for these values of 02.

In DEF - 1314 (Ref. 2) an&4MIL, /TD~105D (Rec. 20

doubling sampling plans have the same samole 51ze for L@th

first and second SdeleS, igeulk =

When c, = O tne equatlons for the probablllty 

of acceptance of material to give the AOQL when c

5.and -c

¢, =2,c, =73, ¢, = 4, c, = 2t:j6,/become resgegﬁiy
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Lt
= e 1+ Mn +lgm

1 ),
- -2m 2 e
= —-2m

2 3 4 ,
Pa = e + 4+ ¢ T(m.+1% 1.1 Lt p
(my+ B, f,'f(6?11t?/%él;);zz; ’ —(10)

Pa = e "l +e m1<m1+1%m1 +1,1/6m13+5/8mf4+31/1zom15) =—(11)

- -2m 2 4 5 6 :
Pa = e 'l 4o 1(m1+1%m1 +1.1/6m13f5/8m1 +31/120my +7/80ml ) — i
el

In Philips Double Sampling Takles (Ref. 17) and

i.e.

Columbia Double Sampling Tables (Ref. 18), n, = 2n,,

k = 2.
In these conditigns the-above”equgtiQﬁé mey be
rewritten,

—-m _Bmlm

o= e Tre — (3)
Pa = e_ml - e~3m1(m1+2%m12) e b _“(14~L
e 3 o ,
Pa = e L1+ 1(m +2~m +3 1/6m e : (153
- : 5 s 2 ;;{a/;;f et
pa = e L 4 e™?M(m +2%m +3.1/6m_"+2.17/24m s 6
112 1 e | \
_ml e 1 2. s DS ; 4 B
Pa = e + € (m1+2§m1 +3;l/6miq+2317/24m1 +1'91/120m14§~5'
—(17)
- 2
Pa = el +e i (mf? B 43 1/6m ’r2. 17/24m14+1 91/12Om15~)

6.
+133/144m, );,;(1



curves we

graphs

TX for k

the AOQL
sampling

be used i
plan is s
n =

1

from the

assure an

twice nj.
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S
A
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(18) to determine Pa. Values of K =

to include k = 1 = 2 ted e
o CV) fe L&/
re still smooth ones«andfhenQQVﬁhe equationslof the

were used to determine ihé values Of~ml

for k = 1 and ¥ = 2,

These values were substituted in equations (7) to
m,Pa are shown din Table
= 1 and k = 2,

In the same way that Table VI was used to determine
of a single sampling plan or té design a single
plan to assure a given AOQL, Table TIX may likewise
n respect of double sampling plans.

In the former connection, if a double sampling

peeified as

100, ¢, = 0; n, s“idd;’cz = 3,

table, at ¢, = 3 and k = 1, § = 0.99297. !
Hence the AOQL of the plan ig 0.099297/100
= 0.,0099 or approximately\l%

In the latter connect;onfsgprse‘it is deéiféd.ﬁp .

AOQL of 2% and that ¢

> = thatan kel by

0,54542: hence nl =

The plan is therefore: -

graphs of X agéin3£”69/f6f:k”£'1'énd k = 2 EfFigures~

e
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K = 0.18491 + 0.27824c, + 0.00062¢,°

2
K = 0.,208956 + 0.17389302 + O.OOO6102H

- 2 . ; ;
As the coefficients of 02 are small in each case,
I . 2 .
and in the foregoing c has a maximum value of %6,

separate linear regression equations were determined giving

N
Il

0.185909 + 0.2782402

=
i

0.209879 + 0.17389%c,

> =6

represents a practical range in.conjunction with ol = 0 no

As the range of values of Qéefrom Cy = T to ¢

attempt was made to evaluate a prediction equation for ml
in respect of values of ¢, in excess of cp = 6, although

in the case of k = 1, the relation§higyb§?Ween;ml an@“o

2

is almost linear. 5wy HBTEELLEE

6 (iv) Discussion of results.

. As was the case 1in single sampling the

St s e Sl
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results have loaned themselves better to
and the comments in "Diseussion of results" in:slﬂg,\m

sampling are similarly apnllcable to double samplln

The anal YSlu could be prendpd +n include

other combinations of c¢. and ¢ However, the comnutatlon

1 2°
of m1 for the general case is outside ﬁhe,éggge5of the
present thesis but the complexity can bé,ééeh/ﬁi considering =
its derivation,

The probability of acceptance on the first

sample is the probability of c1 or less defective items‘and

is given by

2 33 fcq-1) (e-1)
Pal _ e—nlp(1+nlp+f}—i + f.l.,..i_ +”"f""“*‘+ 1 )_.( T "
2! 31 c Cq (c1h1\v
5 p )
_EZTwmu

The probability of acceptance on the second
sample is the probability of exactly (c +T\ defective 1tems

in the first sample with (c -1) or leos defectlve ltxﬂ&

°1
in the second sample plus the probability of exactly (01+2)‘

defective items in the first sample with (02~c1—2\ or less

defective items in the second sample

plus etc.,

plus the probability of eyactly (02-/~‘;éféétive itemé in ;
the first sample with 1 or less defectlve items in the‘
second sample, plus the-probability of exacﬁly 02 defe@t?V?;:”
items in the first sample with‘novdefective.itﬁms in\fhéf% }5

second sample and is given by:-
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. -n_p (Q1+1) (Cl+l) .
Pa, =& 1 %y D by

(01+1)1

1
(02'—01—2):

(C -C_ -2 - ::Kf
n2 2 c >p(02 Cl 2),

+

7 3 3
-1+ D (Gl+2) (e +2) -n o 2

2r Tar

Ao e e

(Cl+2 ),'

O g Wt e

n2(02‘01—3) (02—01~3) (ep=cq=2) (02~01~2))
p LB
(02-01-3): . ‘(02—0 )

+ etc.,

_p. (es=1) (ey=1) on
Le”fyTny 2 Tp 2 g 2p(1+ﬂ2p)

(02-1>3

- Cy, C ~noP ;
4o P1Pny %p 2 ¢ 2 ~

02!

A s e L e B R e O e A L R R AR R A R R

The probability of acceptance on combined samples

Pa = Pa1 + Pa2 and as the Average Outgoing Quélity, Qy s

given by Q = pPa, Q is equal to:=

2 3 3 4 (C =1) Ie) o (C il )

- 27 in"1l n Y1 1 3

—T n n n |
. nlp(p+n p2+E] R R e Gt | T ey
LY 3! (ep-1)¢  eq!

v (cq*1) (cq+2) (cq+1) c143)
—(11e+115 ) 1 RS R T N

cq+1)L o (eq#1)r v”fw;;f
(oq+1 )1 I .

(c1+i)l 2L



(cl+2) 3 (cl+6) (cl+1) (02_01,3§ Co

n, p tormin n, p
PR '
(Ol+“>' 51 (01+2)1 (cg-cl~3):
. (01+2)n (02—61~2\ (02+1)’1
H 1 2 p
(e3+2)! (co=-c =21 ,
+ etc.,
1 ) ' - \ : s &<
+e_(n1+r2/pp (02 1,p02 o (o2 l)n p(02+1)
1 -1 2
(co=1)! (co-1)!
4 (c_+1O\
e C S SR
\ : /
c, !

respect to p and eguated to zero, n4p put equal t0 my

n p put equal to m2 and this in turn egual to Kml;vas'

ae-n
e

be found for my, again in the form -

ey

Tf the expression for Q is differentiated with

P and e~12P are not equal to zero, an expression may

!
|
|




lgge(some function of ml)‘

Tn order to determine’valués'Of"ml’for ¢y =0

and the range of values of ¢, from c, =1 to’éé = 6, very

good initial apnroximations were first made by trial and
error.
From a practical point of view this method could

not be applied to the general case and since nothing'iSQ'

then known about the location of the roots of the equation,
i.e. no initial ap»roximations are known, and as the nature

of the equation is very complex conwergence may well tend

to be slow, and in fact convergence may not be achieved at
all, Additional work will have to be carried out to see if

convergence does or does not oceur.

7 The ASN of Double Sampling Plangs

7 (i) Titerature survey

Again, a literature survey has shown no
evidence of an analytical approach to this topic.

Purr (Ref. %) takes a particular double

sampling plan, viz n, = 1oo,fcif:52;“ﬁ§?fféoég?c2 =g,

end vlots the ASN against p.

Duncan (Ref. 4), aé{Bﬁrr’takeg only a

\

numerical example, viz, n, = 50, ¢q = 2: n2‘= IOO,”ééfé”é."”"

and evaluates the ASN from arbitrary values ofgfi‘
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Feigenbaum (Refs,

5
to the ASN of double sampling plans.

6) makes no referenc

Freeman, Eriedman;;MOStellér-and Wallis
(Ref. 7" mske no reference to thiéiaspedt:

Grant (Ref. 8) merely makes relative
comparisons of the amounts of inspection involved under
single, double and multiple plans, | J

Hill (Ref. §) only states a formula for
determining the ASN, viz:=-

ASN = first sample size + (probability that

a second sample 1s needed) x (second sample size).
Huitson and Keen (Ref. 10) make no mention

of this.

Juran's book (Ref.11) contains a chapter on

"Statistical methods in the Wuality Punction’

by J. W. Enell

who does not deal specifically with tnis but shows

graphically comparisons of the average number of items

inspevted in single and double sampling.

7 (ii) Packground to the present investigation

From both practical and economic points of

view it is important to know whether some given value of the

fraction defective of the incoming material will result in

R PO L R A A LAV E RN

the maximum value of the ASN, and in particular, the actual

value of the fraction defective of the incoming material which

will result in the maximum value of the ASN., Tt was with
this in mind that the writer decided to treat the subjedt
analytically as to choose arbitrary values of p in ofder”toifHﬂ

determine the maximum value of the ASN could be very Cedicna
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and time consuming, and would give only an approximate v
of p to give the maximum ASN,

‘The tr@atment in the 1n1tlal 1nveqt1gatlon

(Ref. 19) whlch led to the aevelopment of second of the

two theorems stated earlier was as follows:—

Tn a double sampling plan, the probability of

acceptance on the first sample is given by

0 2 2 c,-1 cq=1 cq,.CY
Pa = e nlk(1+n YRC N o R ——— 177p 1 M 1p ,
f 17 e
21 (cy-1)!1  cq!

The probability of a rejection on the first sample

is given by

=N 2 2 eq=l.cqa=1 - e7 ¢
Pr4 = 1l-e 1P 12 R ny L p’”l nil lp 1‘]
1 (1+n_p+ + + | + B )
1 2! (Cl—l)lu/; cy!l
c,+tl c +1 -1 c, -1 Ch_ Co
+1’11 1 p 1 o e +1’11 2 p 2 1’11 2p )
(cl+1): (cpo=1)! cyt

The probability of a decision on the first sample

is given by Py = Pa_ + Pr_.

1% 1
-n.p(_ a- +1 C. +1 n.C t2 Cot2 o Ch=1 co=1 Co C5)
T A (5 R M e W
( (cl+1)2 (cq+2)! . (ep=1)! col )

The probability of taking a second sample‘?z ésu;,ﬂu

equal to 1 - Pl'

Hence: -~
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1D co+1l e,+i c 2.
Py =e L (Pptipal Bl p
(eq+1)! (cqy+2)!
N ) o |
= = - e i
_ cqt+l _c Cq+2 c.t1l =1 Ccp=2 Chr Ch=T1 |
iga e~ PPNy 1 1 1 1 e 3172 p 2 1 2. 72 %
dp oy to +1)! (c,-2) (ep=1)! zi
|
_ cCo+2 Co+1 C,o+3 Cq+2 Ch C.=1 o Cp+1l ¢C
P L L R G 1 29 2 1 pe2 !
(cq+1)! (01+2).' (co=1)! col i
|
aP §
For the maximum value of Py, T_Z = 0, and as .
dp )
~-n-Pp
e 1 # 0, then
c_+1 ¢ c,+1l c
1 2 2
oo P o= P :
i
Cq! 025 y
¢ ~-C. C,=~C / :
n 2 lp 2 71 Y Cos /
1 -— P il /::j,
]
Cl’

It was found that if c, was retained constant

and c¢_ varied, the relationship:befw:égjeingm1 and Co was almost
5 Weed > Was. a.most

linear for a practical range of values of 02 and “of the;f'$tfm

form m, = ac, +b,  When cl was. zero and_cg_wasuwixhig the

range from c, = 1 to Cp = 7, the equation was
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ml =;O.39602 + 0,618

The "graph of ‘this equation‘is'b@@Wﬂfiﬁ\FigﬁﬁéWQBAf
which also shows the plot of/the?VEiﬁeéfdf~m1,"Theﬂcloseness
to linearity was examined by ‘evaluating the eoefficient of

correlation r, where -

Ztaa,

e ——

2

>
i

giving a value of 0.9928.

J(c,)% 5 (my)

Linear regression equations for other values of ¢y

up to c, = 10 with ranges of cgécommencing at ¢, = cq +1

had been determined and in all :cases the coefflolent of

correlation aprroximated to unity. For example; when cq was

equal to 2, for a range of values of c

the equation connecting m1 and 02 was found to ve
m_ = 0.424c_ + 1.8
1 het 2

with a coefficient of correlation r = 0. 993

Tt was further found that the relatlonshlp between

b and ¢ apvnroximated vewV cloqely to 11near1ty and could
1 : -

= 0.559¢q + 0:600:, aousiions

and with the range of values of é; froﬁ;éi = 0 to ¢1 - G
the coéffioient\of'oorrelation was 0.9965.

Thus the general equation m1 = ac, +b could be

rewrit ten as:=
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m = ac + O.v . .i.v &
1 5 55901 + 0.600

It was suggested that the value of "a" depended -

upon the values of cq‘and c buf was of the order of 0.45%.

2
It was concluded that although the eguation

gave an exact value of mq it

mattered 1little whether one used this equation or the one
immediately preceding it as n1 was large in comparison with
p and it was the value of p in which one was nltimately

interested (i.e. p = 11 ) .

Ny

7 (iii) The present investigation

In the present investigatioh,iv%&ues
of m, were determined to a greatéf degree of accuracy with the
aid of a comnuter programme develoved in conjunction with the

Computer Centre of the Tmiversity, the range of values of

{= 30. The values are shown in

Tables X-0 to X-30 and details of the comnuter programme &dre
AN

\

c, being extended un to c¢
given in appendix 15.

Tt was appagrent that the relationship between

m. and c_ was again almost linear whatever the value of Gl'
1 2 - : ,

Hence, linear regression equations together with the corres—

onding coefficients of correlation were determined, giving

the following results.

m, = 0.3960c, + 0.619484 T

10

S R e e i

R e R




0.418%¢c
4 302

0.423902 +

0.4—26702 +

0.432402 +

0.4%54¢c +
2

0.4%5%c, +

43%07c +
0.43%07 5

+

0.432602

0.435102 +

71

1.792605

2.388179

3,502442

4.097955

4.373094

5.3%82%6

5.885883

1.000

1,000

1.000

1,000

R h
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Ol = 1C

pr—

p——

0.4350c, + 6.482102

c = 11
L
ml = 09456109 + 6,.619657 r .= =1.000
c = 12
S
my = 0.458%¢c + 7.1%2006 r = 1.000
<

m1 = 0.460202 + 7.64%155 r = 1°OQO
e i
m, = 0,462002 + 8.153259 r = 1,000
c = 15
m = 0.4637c, + 8.662520 r = 1.000
c = 16
L
ml = 0,4651c + 9.171022 r = 1,000
2
= 1
-t
m, = 0.4665c, + 9.678748 ro= 1,000
= 18
‘1
n, = 0.4678¢c, + 10.18603 T = l;QQQ}f;
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o = 22

e e g st St

o = 25

S Sormgne i e

m

m

p

0.4689c
2

0.4700c
2
0'471002

OD472OCA
Z

0'472932

0.4'737¢c
2

0.4745¢,

0.4752¢

0‘475902

7%

4

-+

10.69270

11.19887

11.70469

12°21016

12.71528

13021995

13.72444%
14.22872”

14.73262

1000
1,000
1.000
1,000
1000
1.00 o
1000

liOQo’“;




[P

= 30

[P

each case,

values,

=

but to Hegt further the closeness

it

1

i

0.476002 +

0. 2
477 02

+

0.477802 +

The value

of the equation:-

AN

o v P

A

r, has been determined to

15.74009

16.24%45

of the coefficient

the third place of

1.000/1. 000

0.999/1.000

0.999/1.000
@6999AlaQQO;J
0.999/1.000
1..000/1.000
1.000/1.000
1.000/1.000

1.000/1.000

decimals in

for r have been determined giving the following range of

1.000

1.000

1.000

of correlation,

to linearity

95% confidence limits

!
i
%
-
5




1.000/1.000

c, =10 1.000/1.000
cqp = 11 1.000/1.000
c, = 12 f1.ooo/1;000ﬂ
c, =13 1.000/1.000
c, =14 ©1.000/1. C00:
o7 = 15 1.000/1.000"
¢, = 16 1.000/1.000
¢, = 17 1.000/1.000
e, = 18 1.000/1.000
c, = 19 1.000/1.000
o, = 20 1.000/1.000
¢, =21 1.000/1.000
cq = 22 -~ 1.000/1.000
c, = 23 . ¢ =2l, 000/120000 188
cq = 24 1.000/1.C00
c, = 2 1.000/1.000"
c = 26 1.000/1.000
c, =27 1.000/1.000
c, = 28 1.000/1.000
¢y = 29 1.000/1.000
¢, = %0 1.000/1.000

Graphs of the above 11near regreq51on equatlons

are shown in Figure 28B. leferenoes in the slooe0 are ’

not very marked and in fact in the earller 1nve%t1gatlon 1t
wa s suggestea that thlq could be taken as 0. 43 for all
practical purpos ses. however, the Dresent 1nvest1gatlon has

shown that this could no 1ongpr hon throughout the who]e_~
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range of values of c..
Values of "a" and "b" for‘eaéh*§éiu’\

together withtheir 95% confidence limits have been.separéfeiy

tabulated and these are shown in Ta%le XTI 2nd Table XIT

respectively.

The relationship between cq and "a" and cq

and "b" are shown graphically in Figufe 29 and Figure 30 :
respectively.

It will be seen that in each graph there
is a marked change in the nature of the relationship after .

01 = 10,

As far as the relationship between "a" and

c, is concerned, because of the irregularity of the graph

1

fromc_, = 0 to ¢, = 10, no attempt has been made to establish

a relationship between these two variables for this range of

values of c_.
1
For the range ¢, = 11 to/ci =500 thedd -

relationship is much more clearly defined. = Foth first(linear)

and second degree polynomial equations have been determined

giving respecively the following results:-

O]
i

0.446803% +@OOlO96cl/

0.44681 + 0.001096ci~;41a5f

o
i

As was found in the earlier investigation there

is a marked linear relationship between b and cq although'

its nature changes after o1 = 10.

Tinear regression equations connecting b and

c. for values of cq from c = 0 to ¢, = 10 and for ValueS'”(
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of ¢_ frome. =11 to ¢ = 30 have
1 1 1 \
together with their respective coefficients of

erefore been dete

These are as follows:—

c. =0 toc = 10

I

0.587501 + 0.60927

T 1.000

95% confidence limits for r:- 1.000/1.0600

1

b 0.506257801 + 1,066407
r = 1,000

95% confidence limits for r:- 1,000/1.000

As Tar as the feietiehship between "a" and
Cq is concerred there is very little practical difference
between the value of "a" using a fi}st degree polynamial and
that using a second degree polynomial. On plotting the
linear equation it was found that all the points lay between
the 95% confidence limits (Figure 31).

Hence the linear eqﬁéfienfé.ii6803 + 0;00109601

may be used for the determination of "a" within the vange

of values of c1 from 01/2 1% tO/Cl jrB?;

The original equation.

T

m = ac + Db o o
1 2

now becomes

1 = ac,. + 0.587501 + 0.60927

7



for a range of wvalues of olvfrdeCﬁ
1.
appropriate value of "a" being taken from Table X\

n _ l’ ] L -
] 0664 4 O.5Q6301;T7Q1091%0192

+ 0.4469c,

for a range of values ef c

— - 3
1 from ¢, = 11/#9‘0 ?’O'.

(iv) Discussion of results

Recause of the nature of the investigation
the results have been discussed in context as Was the case
of the AOQL of single and double sampling plans,

The formula:-

will give an exact value for p:-

The equations exprea51nn ml in terms of ¢y

and ¢_ were developed as an alternatlve means for the

determination of m, (and hence p) It was 1ntended that this

alternative method be used for values of c1 and 02 con51derea.:,

Tt may never’heless, with discrimination, be used to determine

m_ for values of Cq and ¢, outside these ranges. For

example when c 40 and c, = 60, the writer's SeOOnd.thébre@Q*

1

as 50.77 and the alternative equation m

gives m
1

3
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The choice of method will be influenced by the degl‘ee Of

accuracy to which-one wants to determine m.. It must\wp\_

1.
pointed out that p is small in,cbmparison~with_n1 and whem

v

m1 is divided vy nL the dlfference in the value of p in
the two cas es De 1n51gn1flcant | Where accuracy is requlrrd
it 1s recommended that the theorem be used in the determination
of m] for all combinations of cq and Coe |

B Somewhat out of context but from a nurely
mathematical point of view it is interesting to note that

despite its non-linear appearence an equation of the form

Y
N,

(u iz @ constant and x>u, x and u being integers) gives a

relationship between y and x which is almost linear.

8 Conclusions and Summary

8 (i) Conclusions

ml.e AOQL of single sampling plans:-
1. The probability of acceptance, Pa, of materlal of
incoming quality such as will result in the AOQT is
given by

—np ¢+1 CH
(c+l)e mn °p

(c+1 )'



From
is almost linear and has been evaluated as m = 725c

with a coefficient of correlation of 0.9984.

The equation can not (as was previously thought to Be
the casge) be used as a prediction equation for m for all
values of ¢ becamse as the values of ¢ is increased

curvatéare becomes quite marked.

For walues of ¢ up to ¢ = 30, corresponding values of m

may be read from the tavle,

The value of ¢ at %0 represents a practical value.
However, for values of ¢ in excess of 30, corresponding
values of m may be détermined by making use of the theorem.

This will give an exact value of m,

The value of m to give the AOQL is independent of the

individual values of n and p.

The value of m to give the AOQL depends only on the

acceptance number C.

The theorem may be used to determine the AOQL of any

given single sampling plan.

The theorem may be used to degign & gingle sampling plan

to assure a given AOQL.
The AOQL of double sampling plans:-
The value#of my to give the AOQL is again independent of:ff

the individual values of n, and p.
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11. The wvalue of my to give the AOQL is 1ndependent of the‘ 
individuel values of n, and n2 but does depend on thelr
ratio and on the acceptance numbers on the first and

combined samples.,

12, The value of m, can be expressed by an equation of the
form
1 -
=k of m,
Although the investigation has been essentially
confined to c, = 0 with ¢, ranging from c, = 1 tocy, = 6,

further exploration in the field has shown that:-
(1) The numerator consists of c, positive term and
one negative term i.e. the total number of terms in the
numerator is one more than the acceptance number on combined
samples, S |
(ii) ‘For a given value of ég the nﬁmerator has c, = 1
terms in common with that for Cp - 1.
(1ii) TFor a given value of c,, the denominator is
constant irrespective of the value of co and the number of
terms in the denominator is equal to c1 + 2.

(iv) The denomlnator con31qts of one p051u1ve term and

Cq + 1 negative terms. It maV be shown that~~
: . 2
when ¢, = 1, the denominator 1s mlwf?lflf
he d inator is m > an2im 1
when cq = 2, the denomln em, ~zly 1
sof 82 HiRehal
when ¢, = %, the denominator 1is 1/6m »1/6m ~%m1 ~.ml..,_l

when cq== 4, the denomina?qrcis 1/24m13*1/24m14~1/651

81



The denominatoms also consist of common

$erms.

good for any combination of ¢ and c¢..

13.

14

15.

ml = \;(C’Lwﬁ |>>

the size of the second sample and gives an exaet value of m .,

16.

All the statements under 12. appear to hold

1 2

The equations expressing m, in terms of k, i.e.

1

nz/nl may be used to predict m, for all practical -

1

values of k.

Ariging from 13. the equations may then be used to

determine the AOQL of amydouble sampling plan® within

the limits of Cqy and 02 under consideration or conversly
to design a double sampling plan to assure a given

AOQL,
The ASN of double sampling plans:~—

The value of my to give the maximum value of the

ASN may be expressed by the equation:-

/ 1

Tt is thus independent of the value of n,,

l ::

For a given value of Cqs the relationship between m 1

and c, ig almost linear (r = 1.000 for the values

of ¢ and c5 under consideration) and from a practical

point of view can be expressed in the alternative form.

mi’z 302 + b



17. The relationship»beﬁWeeﬁv“a"“énﬁ’el*depen&S‘dﬁ thé
range of val ues of Cqe .
(1) For ¢, = 0 tocq =10, the relationship between
"a'" and ¢ 4s an irregudar one and no attempt has been made
to establish a relationship.
(ii) For cq = 11 to ¢y = 30 the relationship is more
clearly defined. It is not a strict linear relationship but
the graph of a linear equation falls between the 95%

confidence limits for "a" (Figure 31). This relationship

may be expressed as

a

i

0.44680% + 0.00109601

18. The relationship between b and c1 again depends on the
range of values of cq and, as is the case of "a" there

ig a definite "break" at 01 = 10.
(i) For c, = 0 to ¢y = 10, the relationship is

linear and has been determined as:-
b = 0.587501 + 0,60927

with a coefficient of correlation of 1.000 (95% confidence
1imits for r are 1.000/1.000)
(ii) For c, = 11 to c, = 30, therreiationship is

1inear and has been determined as: -

|

b = 0.506257801 + 1.066407

with a coefficient of correlation of 1.000 (95% confidence
1imits for r are 1,000/1.000).
19. Arising from 17. and 18, the original equation

m = ac, + b now becomes:-—

1
8%




authors of standard works on gquality control have all taken
aroitrary values ofp in order to determine the AOQL and

the maximum ASN of a plan. The method is very time consuming
and can give only an approximzte value for p. It might Dbe
sufficiently accurate for some practical purposes but

occasions . - ., CC uld arise When 1t beoomes

that obtained using the above methoa

plans the computation of the value of p is less straightforward.

Use can be made of the predlctlon equatlons for m1

hence p

acourate than the’t cbtained using the method involving

each value of p chosen.

= 8C, + 0.587501 +0.60927 for cq -

and m. = 1.,0664 + O.5063c1 + 0.,0011c

1 13102 + Q.446§§20fbfrw

H
= 11 % = . i B {
1 o} cl 20, & v -

The value of "a" is obtained from Table IX,

8 (ii) Summary

As indicated elsewhere in this thesis the

necessary to determine p to a greauer aegree oi accuracy than

In the case of the AOQB of single sampllng
plans it is a straightforward matter if use is made of the’

writer's first theorem as this will give an exact value for
In the case of the nOQL of d@uhle samp11ng

Y

- 8na

develoned by the wrlter They al] follow

the same general pattern and will give & value of p more

choosing arbitrary velues of p and evaluating the AOQ for

84
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In the case of the ASN 4Of double sampling p]_ans
the value of p may be accurately determined by making use of
the writer's second theérem. The/equationsrgn.pagé |

have been put forward as an alternative, but not guite so

accurate, method for the determination of p, but certainly

more accurate than the method used by the authors stated.

G et A

9 Future Work
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As already suggested in the section on

“The AOQL of Double Sampling Plans", the analysis could

be extended to cover all ether combinations of c, and ¢, .
Tt would then be possible to prepare a table of factors for
determining the AOQL of amy double sampling plan.

However, with regard to another topic one tool
of quality control already referred to is control charts. As
with sampling inspection schemes these fall into two categories
- attributes and variables. In the former category are charts
for fraction defective, number defective and number of ~defects.
There are a greater number of charﬁs in the second category
such as charts for individual values, mid-range, median, standard |
deviation etc., but the two most widely used -are average and
range charts. N s A

Most of the authors ﬁéferyedito~in this thesis
treat the subject of their construction and use in controlling
the process and in aceeptance of the product ¥ery thoroughly
and have correctly stated that in the case of wvariables charts f
the sample size 1is generally much less than that for
attpibute charts, but on the other hand, any such saving in thé&
rumber of items inspected could be more than offset by the

greater amount of time spent in taking actual measurements.,

QR



However, comparisons of théir rela%i;e effectiveness are
seldom made, |

In order for a chart to be effective in
detecting change it is vital tha% tﬁéjéhange be detected as
soon as pessible after it has taken place. The conventional
type of control chart is not as efficient as it should be in
this respect and it is possible for some defective parts to

be produced before the change is finally detected.

A chart which has proved much favour during
the last decade particularly in the process industries or
where the product is in a continuous stream such as in textile
or confectionary manufacture is the cummulative sum chart or
cussum chart as it 1s popularly called.

L

Tt is beyond the scepe of the present work %o

digcuss in detail the prinoiple,Oféc5nstrﬁotion and use of the

cusum chart but although it was originally designed ag a
variables chart it is the writer's opinion that it might well
act as an alternative to, or even a replacement of, number
defective and number of defects charts.

Preliminary tests by thﬁfwriter using a simulation
technique, details of which are given in Reference 20, have
so far indicated that a change in’thefproéess average 1is
detected sooner with a cusum éhaft%tﬁéﬁfﬁithﬁa number defective
or number of defects chart. However, the tests are in their
preliminary stages and although the reshilts so far are very
encouraging, much work remains to be done before any

conclusive evidence can be obtained.



10. Tables

p np Pa A0Q = p.Pa
0.0002 0.02 1.000 0.000200
0.0015 0.15 0.9%0 20.001405
0.0050 | 0.50 ‘| 0.910 0.004550
0.0070 | 0.70 | 0.844 0.005908
0.0080 | 0.80 | 0.809 0.006472
0.010 1.00 | 0.736 0.007360
0.015 1.50 | 0.558 0.008%70
0.020 2.00 | 0.406 0.008120
0.026 2.60 | 0.267 0.006942
0.0%0 3.00 | 0.199 0.005970
0.03%6 3.60 | 0.126 0.0045%6
0.040 4.00 | 0.092 0.00%680
0.046 4,60 | 0.056 0.002576
0.050 5.00 | 0.040 0.002000
0.060 6.00 | 0,017 '0.001020
0.070 7.00 | 0.007 0.000490
0.080 8.00 | 0.00% 0.000240
0.090 9.00 | 0.001 0.000090

PAFIE T

rvaluation of 0.C, and AOQ curves for the

single sampling plan @ = 100, ¢ = 1.
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i
b np Paq Prq %ai+Pr1 lu%dl 2
0.0025 0.10 0.905 | 0.000 | 0.905 0.695 |
0.005 0.20 0.819 | 0.000 | 0.819 0.181 |
0.010 0.40 0.670 | 0.001 | 0.671 0.329
0.015 0.60 0.549 | 0.00% | 0.55% 0.447
0.020 0.80 0.449 | 0,009 | 0.458 0.542 |
0.025 1.00 0.368 | 0.019 | 0.387 0.613 |
0.03%0 1.20 0.301 | 0.0%4 | 0.335 0.665 |
0.0%5 1.40 0.247 | 0.054 | 0.3%01 0.699
0.040 1.60 0.202 | 0.079 | 0.281 0.719 |
0.045 1.80 0.165 | 0.109 | 0.274 0.726 |
0.050 2.00 0.1%5 | 0.14% | 0.278 0.722 '
0.060 2.40 0.091 | 0.221 | 0.312 0.688
0.070 2,80 0.061 | 0.308 | 0.369 0.631 |
0.080 3,20 0.041 | 0.397 | 0.438 0.562 |
0.090 3,60 0.027 | 0.485 | 0.512 0.488
0.100 4.00 0.018 | 0.567 | 0.585 0.415 !
0.125 5.00 0.007 0.735 0.742 0.258 |
0.150 6.00 0.002 0.849 0.851 0.149 ;
0.175 7.00 0.001 | 0.918 | 0.919 0.081
0.200 8.00 0.000 | 0.958 | 0.958 0.042
0.225 5. 00 0.000 | 0.979 | 0.979 0.021
0.250 | 10.00 0.000 | ©0.990 | 0.990 0.010 |

TARFTE IT

1’11 = 40, Cl = 0 I12 = 60’ (32

4+ A

~AAn A @mamnle
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| Falng) | mpePplng) |
5.0 47.70
| 10.86 50.86
19,74 59. 74
| 26.82 66.82
| 35.52 72.52
56.78 76.78
| 39.90 79.90
| 41.94 81.94
| 4%.14 8% .14
| 4%.56 8%.56
| 43.32 83.32
] 41.28 81.28
37.86 77.86 :
| 33.72 73.72
| 29.28 69.28
| 24.90 64 .90
| 15.48 55.48
| B8.94 48.94
4.86 . 44 .86
| 2.52 42.52
| 1.26 41.26
? 0.60 40.60
L
TAFLE IT - Continued from page 88.
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PLAN
n = 58
c = O
n = 98
0.49 0.913% 0.087 402 Z5 133
c = 1
n = 153
0.66 0.971 0.029 267 11 144
c = 2
% {
Table IIT Computation of ATI for the three single sampling
plans n = 58, ¢ = 0; n=98, ¢ = 1; n=13%, ¢ = 2.
When p = 0.5% and N = 500,
]
np
e RATTO
O 2.%10 0.106 21,792
1 %.897% 0.5%0 T.%45
2 5.%29 1.100 4,845
Table IV Computation for value ef ¢ for a single sampling

plan whose 0.C. curve passes through the two

points Pa = 0.1, p = 0.07; Pa = 0.9, p = 0.01,

90




Table V

C m = np
0 1.000
1.618
2 2.27
3 2.95
4 %. 64
p) 4.35
6 5.06
7 5.80
8 6.55
9 7.30
10 8.06

Values of m to give AOQL in Single Sampling.

(Original Tnvestigation).
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1.0000 0.3679 0.3679

1.6180 0.5191 0.8400

2.2695 0.6041 1.3711

2.9452 | 0.6595 1.94241

3.6395 0.6989 2.54%5

4.3430 0.7285 3.1682

5.0712 0.7517 3.8120

5.8041 0.7705 4.4719
8 6.5464 0.7860 5.1457
9 7.2970 0.7992 5.8%14 Table VI
10 8,0549 0.8104 6.5277 Values of m_Pa
11 8.8194 0.8202 7.2334 and mPa to givi
12 9.5900 0.8287 7.9476 AOQL in Single
1% 10.%660 0.8363 /8.6695 Sampling (Present
14 11.1471 0.8431 19.3984,/( Investigation). é

15 11.93%28 0.8492 10.13%8"
16 12.7228 0.8548 10.8751
17 1%.5169 | 0.8598 11.6219
18 14,3147 0.8644 | 12.377%8

e AL S S e e 1

1¢ 15,1560 0.8687 12.13%05
20 15,9206 0.8726 1%.8918 =«
21 16.7284 0.8762 14.6571
22 17.5%91 0.8796 15.4265
2% 18,3526 0.8827 16,1996
24 19.1687 0.8856 16.9763
25 19.9874 0.8884 17.7563%
éé 20.8485 0.8910 18.5396
217 21.6%18 0.89%4 19.3%258
s | 22.4574 | 0.8957 | 20.1150

29 »3.0851 | 0.8979 | 20.9070
‘ 92
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(3)

(5)

-20p
oe )

0.8187
0,670%
0.5488
0.4493
0.%679
0.%3012
0.2466
0.2019
0.165%

0.135%

0.090%

0.0608
0.0408
0.027%
0.018%

0.008187
0.013406
0.016464
0.017972
0.018395
0.018072
0.017262
0.016152
0.014877
0.013530
0.010884
0.008512
0,006528
0.004914
0.003660

0.6703%

0.4493
0.%012

0.201%

0.1353

0.0907
0.0608

0.0408

0.027%
0.018%
0.00823
0.00370
0.00166
0.000747
0.000%35

0.0001
0.,0004
0.0009
0.0016
0.0025
0.0036
0.0049
0.0064
0.0081
0.0100
0.0144
0.0196
010256
0.0324

0.0400

Table VII

Computation of AOQ for the Double Sampling

Plan n

1

93

= 20, ¢C

Oy n_=

2

02:

SOt 35 B o e

i e i

e i ek R

R e

s»wmw‘w,..a_,.M_Amﬂmkmm.mmww~%;ﬂ S



(7)

(4)(6)

AOQ = (3)+(7)

0.0013406 0.0095276
0.00%5944 0.0170004
0.0054216 0.0218856
0.0Y64608 0.0244%28
0.0067650 0.0251600
0.00653%04 0.0246024
0.0059584 0.023%2204
0,0052224 0.021%744
0.0044226 0.0192996
0.00%6600 0.0171900
0.0023704 0.01%2542
0.00145040 0.0099624
0.00084992 0.0073779
0.000484056 0.005%981
0.000268000 0.00%9280
Table VII

Continued from page 93%.




i

mable VIIT

VALUE VATUE OF m  WHEN ¢ = 0 W
0F 1 1
k = EEA ¢y, = 1 Cy = 2 c. =73 c =14 :
ny 2 2 i
0.2 1.3704 | | E
0.% 1.2865 r
0.5 1.1646 .
0.6 1.1195 i |
-0.8 1.0499 | 1.3%197 | |
0.9 1,2648 : ﬁ
1.0 1.0000 | 1.2166 | 1.5111 |
1.1 0.9804 | 1.1740 |
1. 1.1%60 | 1.3916 |
1.3 1.1021 ; %
1.4 1.2946 |
1.5 0.9268 :
1.6 1.2144 |
1.8 1.147% | 1.3727 | .
1.9 1.3392 "
2.0 0.8969 1.0904 | 1.3076 i
21 1.2777 |
2.2 Besd9o %
0.3 1.2228 | ﬁg
|

values of m. to give AOQL in Double Sampling

1
for various values of n,/n; and ¢, (cq = 0.




Continued from Page 95.

| 2.
‘ 2.5

nNd

N
-]
i

1.5%84
1.%055
1.2746
1.2455

1.2181

1.3580
1.%280
1.2997 -
1.2728
1.2473

56




0).

l e
e =1 ko= 2 <
Pa K = m,Pa Pa K = mqPa
1 0.50%22 0.50322 0.46851 0.42021
2 0.59792 0.72743 0.58655 0.54542
% 0.65712 0.99297 0.64616 0.70457
4 0.74946 1.27460 0.67768 0.88613%
5 0.79066 1.57310 0.71629 1.06573%
6 0.85465 1.88717 0.753%86 1.28896
Table IX Values of Pa and mlPa to give AOQL in Double
Sampling for n2/n1 = 1 and nz/nl = 2 (cl
Cq = 0

o !

1 1. 00000
2 1.41421
3 1.81712
4 2.21%36
5 2.60517 .
6 2.993%80
7 3,38002

Table X - O

T

97




2 my

2 2.00000
B 2.44949
4 2.88450
5 3.%0975
6 %.,72792
7 4.14068
8 4.54916
9 4.95416
10 5.%5627

Table X ~ 1
c = 2
S

02 ml

3 3, 00000
4 | 3.46410
5 3.91487
6 4 .35588
7 4.789%9
8 5.2169%
9 5.63959

10 6.05817

11 6.47329

98

02 ml

12 | 6.88542

13 | 7.29496

14 | 7.70220

15 | 8.10741
Table X - 2




2 my
4 4.00000
5 4.47214
6 4.9%242
7 5.%83%56
8 5.827%9
9 6.26521
10 6.69799
11 7.12649
12 7.55128
1% 7.972684
14 8.39154
15 8.80770
16 9,22158
17 9.6%%40
18 10.043%%7
19 10.4516%
20 10.858%3
Table X - 7

cp m
5 5.00000

6 5.47723

7 5.94392

8 6.40217

9 6.85347.
10 7.29892
11 7.73928
12 8.17553
13 8.60789
14 9.05690

1 15 9.46294
16 9.88631
17 10.3Q725
18 10;7269Q_
19 11.14275
20 11.55765
21 | 11.97086
22 1é.38251

Table X - 4




Co my
6 £.00000
7 6.48074
8 6.95205
9 7.41559
10 7.87257
11 8.%2%94
12 8.77046
1% 9.21271
14 9.65119
15 10.08630
16 10.51838
17 10.9477%
18 11.37458
19 11.79916
20 12.22164
21 12.64220
22 1%.06098
23 15.47809
24 13.89367
25 14.30781
Table X - 5

100

- Co Ty

7 7.00000
8 1.48%5%1
9 7.95811
10 8.4257%
11 8.88719
12| 9.343%1
13 979475
14 10.24199
15 10.68554
16 11.125793
17 11.56290
18 11.99731
19 12.42920
20 12.85877
21 13.28620
22 1%,71165
2% 14 ,13525
24 14.55715
25 14.97744
26 15.39623
27 15.81361
28 16.22966
29 16;64446
30 17.05809
Table X - 6
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10
11

12

14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
50
31
(32

8.00000
8.48528
8.96281
9.433%68
9.89877

10.%5877

10.81426

11.26571

11.71%5%

12.15805

12.59956

13.03833%

13.47457

1%.,90848

14.34022

14 .76995

15.19781

15.62%91

16.04837

16.47129

16.89276

17.31285

17.7%165

18.14922

18.56563

18.98093
19.%9518
19.80€43
20.22072
20.63211
21.04261
21.45229
21.86116

Table ¥ - 7
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2 !

9 9.00000
10 9.48683
11 9.96655
12 | 10.44009
13 10790817
14 | 11.37142
15 | 11.8%0%3
16 | 12.285%5
17 | 12.73682
18 | 13.18506
19 | 13.6303%4
20 | 14.07290
21 | 14.51295
22 14 .95066
23 | 15.38621
24 | 15.81973
o5 | 16.25136
26 | 16.68122
27 | 17.10940
o8 | 17.5%602
29 17.96115
30 | 18.38488

(32 .ml

31 | 18.80729
32 19,22843
53 19.64837
34 20.06718
35 20.,48490
36 20.90158
37 | 21.21727
38 | 21.73202
39 22.,14585
40 | 22,55882
41 $22:497095
42 23,%8229
473 2%.79285

Table X - 8
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2 mq

10 10.00000
11 10.48809
12 10.96961
1% 11.445%6
14 11.91596
15 12.38196
16 12.84%81
17 13.3%0188
18 13.75652
19 14,20801
20 14.65659
21 15.10248
22 15.54589
23 15.98698
24 16.42591
25 16.86282
26 17.2978%
27 17.731C5
28 18.16259

=}

2 1
29 | 18.59254
30 | 19.02099
31 | 19.44802
32 | 19.87370
33 | 20.29809
34 | 20.72126
35 | 21.14326
36 | 21.56415
37 | 21.98937
38 | 22.40278
39 | 22.82062
40 | 23.23752
41 | 23.6535%
42 | 24.06866
43 | 24.48298
44 | 24.89649
45 | 25.30924

Table X f/9
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e 1
11 11.00000
12. | 11.48913
1% 11.97216
14 12.44977
15 12.92252
16 13.39089
17 1%.85527
18 14.%1602
19 14.7734%
20 15.22776
21 15.67926
22 16,12812
2% 16,57452
24 17.01863
25 17.46059
26 17.90053
27 18.33859
28 18.7748%
29 19.20943
30 19.64241

Table X - 10

104

02 ml
31 20.07388
32 20.50391
33 20.93258
34 21.359%
35 21.78606
56 22.21100"
37 22.6%481
38 2%.05753
39 23.4792%
40 |+2%,89990
11 | 24,3196
42 2473844
47 25.1563%7
44 25.57%45
45 | 25.98971
46 26.40518
47 26.81988
48 27.23%85
49 | 27.64711
50 | 28.05969




13
14

15
16
17
18
19
20
21
22
2%
24
25
26
27
28

29

30
%1

30

1%.00000
1%.49070
1%.97610
14 .45670
14.93300
15.40520
15.87380
16.33%890

16.80100

17.26010

17.71650
18,1704 0
18.62190

19.07120

‘19;51830‘

19.96350
20.40690
20.84840
21.?8830,

21.72660

12 12.00000
1% 12.49000
14 12.974%0
15 1%.45350
16 1%.92810
17 14.,3%9860
18 14.86250
19 15.%2820
20 15,78810
21~ 16.24500
22 16.69910
2% 17.15060
24 17.59960
25 18.04650
26 18.49120
27 18.9%390
28 19.37470
29 16.81370
%0 20.25110
51 20.68680
Table ¥ - 11
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21
22
23
24
25
26
27
28
29
30

32
3%

14, 00000
14.49140
14 .97770
15.45960
15.93720
16.41100
16.88130
17.34830
17.81230
18.27%50
18.73200
19.18800
19.64170
20.09326
20.54270
20.99020
21.43580
21.87970
22.%2190

22.76250

21
22
23
24
25
26
2T
28
29
30
37
32
33
34

15.00000
15.49190
15.97910
16.46200
16.94090
17.41620
17.88800
18.35670
18.82250
19.28540
19.74590
20.20390
20.65960
21.11310

21.56460:
22.01420
22.46200
22.,90800
2%.%5230
2%.79510

Table X - 13
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16
17
18
19
20
21
22
23
24
25
26
2l
28

16.00000
16.49240
16.98040
17.46420
17.94420
18.42080
18.89400
19.%6420
19.8%150
20.29620
20.75830
21.21810
21.67570
22.13110
22.58450
2%.0%600
2%.48570
2%.93370
24 .38010

24 .82490

Taple ¥ - 15
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17
18
19
20
21
22

24
25
26

28

29

17.00000
17.49290
17.98150
18.46610
18.94720
19.42490
19.89940
20.%7090
20.83%970
21.%0590
21.76960
22 .2%5110
22.690%0
2%.14740
2%.60260
2405590
24 .50740
24.95730
25.40550

25.85210 |

Table X - 16




¢, =
L

ot s ol e

27
28
29
30

32
53
54
55
36
37

18.00000
18.49%20
18.9€824.0
19.46790
19.949€0
20.42860
20.90420
21.37700
21.84710
22.31470
22.77990
2%.24280
2%.70%60
24 ,16240
24.,61920
25.07410
25.52730
25.97890
26.42880

26.87720

19
20

21

19. 00000
19.49360
19.98330
20.46950
20.95230
21.43190
21.90860
22.38260
22.85%90
2%,%2280
23.78930
2425360
24 . 71580
25,17610
25.63440
26.,09090
26.54570
26.99880
27.45030
27.90030

PR AR

Table X - 17
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Table X - 18




\/‘\f\_‘/\\

02 m1

20 20.00000
21 20.49390
22 20.98410
23 21.47090
24 21.95440
25 | 22.43500
26 22.91260
27 23%.38760
28 2%.86010
29 24.33010
30 24.79790
51 25.26350
%2 25.72710
33 26.18870
54 26.64840
35 27.10640
36 27.56260
37 28.01720
38 28.47020
%9 28.92170

Table X - 19

- 109 ‘

2 ™

21 21.00000
22 21.49420
23 21.98480
24 22.47220
25 22.95640
26 23.43770
27 23%.916%0
28 24.39230
29 24 .86580
30 25.33690
31 25.80580
32 26.27270
3% 26.73750
34 27.200%0
35 27.66140
36 28.12070
37 28.578%0
38 29.0%43%0
39 29.48870
40

29.94170

Table X = 20

-
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= 2%

[ s RI S—

24 ,00000
24 ,49490
24.98670
25.47550
25.96150
26.44480
26.92570
27.40410
27.88030
2835470
28,.83630
29.29620
29.7643%0
30.2%050
30.69510

31.15790

31.61910
32 .07880
52.53700
32.99380

Table X - 23

T 1l0a

25
26
27
28
29
%0
31
32

z
2

54

35
36

37
38
39

4.0

41
42

45

44

15N 2

25.00000

25.49510
25.98720
26.47640
26.96290
2744680
27.9283%0
28.40750
28.88450
29.359%0
29,83%210
30.20%00
30.77200

51.2%930

3170480

32.16870

3263100

5%.09180
2%.55120

“34.,00910

Table X - 24




22.,00000
22.49440
22.,98550
2%.47%40
23.95820
24 .440%0
24 .91970
25.39650
25.87100
26.%4%20
26.81320
27.28110
27.74710
28,21110
28.67340
29,13400
29.59290
%0. 65020
30.50590

30.96020

Table X - 21

110 b

273
24
25

27
28
29
30
31

33

34
35
%6
37

39
40
:41‘
47

23%.00000
23.49470
23.98610
24 .47450
24.95990
25.44270
25.92280
26.40050

26.87580

27.34890

27.81990

28.28890

128.75600
29.22120
1 29.68460

%30.14630

30.60640

51506500
_31.52200

31,97760 |

Talile X = 22

¥
i
4
:
3
;
|
g
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26.00000
26.49530
26.98760
27.47730
27.96420
28.44870
28.93080
29.41070
29.88840
30,7364 00
%0.83760
31.%0940
31.779%0
32.24°750
32.71400
2%.17890
33,64220
34.,10400

%4 ,56440

35.02340

02 ml

27 27.60060
28 27.49550
29 27.98810
30 28.47810
31 28.96550
32 29.45050
3 29.93%3%10
34 30.41360
35 30.89200
36 %1.%6830
37 %1.84280
38 $2.31550
39 32,78610
40 33.25520
41 33.72260
42 34 .18840
43 34.65270
44 35.11550
45 35.57690
46

36.03%690 |

Table ¥ - 25
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Table X =26

R e e e




02 my
28 28.00000
29 28.49560
30 28.98850
31 29.47880
e 29.96660
3% 30.45210
34 30.935%0
35 31.41640
36 31.89540
37 32.37240
38 32.84760
39 3%.%2090
40 3%.79250
41 34 ,26240
42 24 .73070
43 %5.19740
44 35.66260
45 36.,126%0
45 36.58870
47 37.04970

Table X - 27

112

Co my
29 | 29.00000
30 29,49580
31 29.98890
32 30.47950
33 30.96770
34 31.45360
35 31.93%730
36 32.41900
37 32.89860

- 38 3537630

: 39 | 33.85210 |
40 34,%2620
41 34,779850
42 35,26920
43 35.7%830
44 %6.20580
45 %6.67190
46 %7,13660
47 57.59980
48

%8.06170

Table X = 28

SRS |

R i R S A

e

e




Co m,

50 30. 00000
31 50.49590
32 30.98920
3% 51.48010
34 51.96870
55 52.45510
56 32.93930
37 3%.42140
%8 33%,90160
39 34.%57990
40 34 .85640
41 55.33110
42 35.80420
47 %6.27560
44 36.74550
45 37.21%80
46 37.68070
47 38.14620
48 38.61030
49 39.073%10

Table X - 29

11%

&5 my
31 31.00000
30 31.49600
33 31.98960
34 %2 .48080
35 32.96970
36 3%.45640.
37 3%.94100
38 34..42370
39 34..90440
40 25538530
41 | 35.86000
42 56.3%580
473 36.80950
44 37.28170
45 37.752%0
48 38.22140
47 38.689.10
48 39.15540
49 39.62030
50 | 40.08400

e R R s e B R N RO

S A o SR S

R

Table X = 30

el

it e

ey

ndrbnibisan

R



—
¢, a ¢ ~%
21 | 0.4710 | 11.70469 %
22 | 0.4720 | 12.21016 %
23 0.4729 12.71528 g
24 | 0.4737 | 13.21995 |
25 0.4745 13.72444 %
26 | 0.4752 | 14.22872 Z
27 | 0.4759 | 15.23262 §
26 | 0.4766 | 15.23648 |
29 | 0.4772 | 15.74009 §

0.4778

1624345

—

a b
0.3960 0.619484
0.4183% 1.198058
0.4239 1.792605
0.4267 2.388179
0.4324 2.9%917¢
0.4354 5.502442
0.4353 4.097955
0.4%07 4.77%094
0.4%26 5.338236
0.4551 5.885883
0.4350 6.482102
0.4561 6.619657
0.458% 7.1320006
0.4602 7.643155
0.4620 8.153259
0.4637 8.662520
0.4651 9,171022
0.4665 9.678748
0.4678 | 10.1860%
0.4689 | 10.69270
0.4700 11.19887

Table XTI
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Values of "a" and "b" in the equation my

to gilve maximum ASN in Double Sampling.

E 1
e i e i

e s S



~ Tower Upper Tower :'*:7ﬁ§pérfu
"a ~ nar e npn
0 @.%906 0.401% 0.595604 0.643%64
1 0.4119 0.4248 1.155960 1.240156
> 0.4186 0.4293 1.740601 1.844609
3 0.4220 0.4313 2.328192 2.448166
4 0.42779 0.43%69 2.87%153% %,004198
5 0.4%11 0.4%96 3.4%2587 3.572296
6 0.4314 0.43%9 4,022%43 4.173567
0.4274 0.433%9 4,68900% 4.857184
8 0.4295 0.47358 5.250330 5.426142
9 0.43%20 0.4%82 5.795033 5.9767%4
10 0.4321 014379 4.386694 6.577505
11 0.4525 0.4598 6.538450 5. 700863
12 0.4547 0.4618 7.049662 7.214350
13 0.4568 0.4637 7.5598473 7.726467
14 0.4587 0.4654 8.068995 8.2%7524
15 0.4604 0.4669 8.577457 8.T747582
16 0.4620 0.4683 9.085202 9.256841
17 0.46%4 0.4696 9.592222 ~95765274
18 0.4648 0.4708 10.09€8% 10.27%2%
19 0.4660 0.4719 10.60489 10.78051
20 0.4672 0.4729 11.11051 11.28724
21 0.4683 0.4738 11.61577 11,79%61
Pable ¥II to be continued.
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0.4693
2% 0.4702
24 0.4711
25 0.4°720
26 0.47727
27 0.4735
28 0.4742
29 0.4749
50 0.4755

0.4°747
0.4755
0.4763
0.4770
0.4777
0.4'783
0.4789
0.4795
0.4800

12.12079

12.62542

13.12970

13.63372
14.13765
14 .64117
15.14468
15.64791
15.15101

12.80515
1231020
1%.81516
14.31980
14.82407
15.3%2829
15.8%228

16.33589

Table XII Upper and Lower 95% Confidence Timits

for "a" and "b" in the Equation my = acp +b.
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Producer's Risk
Consumer's Risk

AVERAGE OUTG OING QUALITY

AVERAGE OUTGOING QUATITY LIMITf
ACCEPTABLE QUALTY LEvEL e
AVERAGE SAMPIE NUMFER

AVERAGE TOTAT INSPECLION

Acceptance Number in Single Sampling
Acceptance Number on‘Fifst/Sémpie in Doubie Saﬁpling
Acceptance Number on Combined Samples in Double
Sampling N | ‘
A factor for determining thezAOQL
Ratio of secbnd/séﬁéle size to first sample size in

double sampllng , )
Lot TOLERANCE PeRCEVT bE?Q:\VE'

Expected number of defective
single sampling ;
Expected number of déféé%i/éfitems in first sample
in double samnling - .
Expected number of defective items in:éecohd.ggmp\e
in double sampling
Tot or batch size

Size of sample 1n single samp

Size of Secondisample‘
OPERATING CUARACTER!

Fraction defective of

Fraction defedtive of 1ncom1ng materlald‘n\“

with the producer's Risk &



Pa

Pa,

Pa

Pr

=

Fraction defective of

Total probability O;,
material | R
Probability of | 7 1 in*double
sampling
Probability of acceptance on secondfsa 1é‘in éoﬁble
sampling . - g
Provability of rejection on first sample in double
sampling

Probability of taking/a second sample in double
sampling

An alternative symbol for AOQ

Coefficient/ofrﬁ03feléfion



14 _Computer Programme (AQQT, of Siﬁ;i

STATEMENT
NO.

0 ' FEGIN' 'REAL'PA M, MFAR;,

2 t INTEGER'C;

% *R“AL"PEOCBJURB‘F(” [,C,PA);
4 'RMAL'MQPA,'IATEGLR‘L,
6 "FEGIN' 'REAT'SUM, T :RM; 'INTEGER 'R, TERM: =SUM: —I
10 'FOR'R*~1FSTEP'1‘UNTIL‘C+1'UO'
10 nGINY

11 TLRM’ =TERV*M/( 'IF'R< C+1'THEN'R'ETSE'-%):
12 SUM: =SUM+T ERM;

1% "END':

4 F:=EXP(-M)*SUM: PAg= TERM¥EXP(-M):

16 "END '

17 "REAT' ' PROCEDURE 'FDASH(M,C):

18 ‘REAL'M "INTEGER'C:

20 EGIN''INTEGER'T: 'REATL'CFAC: 2

2% CFAC.:l,

24 "FOR'I: 1'STEP‘l'UVTIL‘C'DC'CFAC-—I*CFAC:
25 FDASH: =MAC/CFAC*EXP(-M)* (M-C-2):

26 "END ' FDA SH: c;=o .

28 NEXT

28 M:=READ:

29 'FOR'W@AR=~N_1(M a, PA)/FUASH(1 )'WHILE'

29 Abs(MHmR_M\;>o OOOOOB‘DO‘BBGIN'M%MbAR OUTPUT(PDASﬁ(M #)): 'END '
%% WRITETEXT( ' ('VAIME7OF%C*) Y SPACE (4 ): OUTPUT(C): '
%6 WRITETEXT( ' ( 'ROODSM' )" ): SPACE (2): . OUTPUT (M) |
39 WRITETEXT( ' (' VALUE%PA' )" ): SPACE(2): - OUTPUT(PA+B(M, o} JPA)):
42 1 IF'C< 30! THEN' '"BEGIN'  C:=C+1: *GOTO'NEXT: 'END' .
46 'END':



STATEMENT

NO.

0 "TRACE' 2

0 "BEGIN'

1 "INTEGER' I,J,01,C24,C2B:

o 'REAT' M1: h

7 'ARRAY' FACT(0:50):

4 FACT(O):=1: .
5 '"FOR' I:=1'STEP' 1 'UNTIL' o (T
6 PAPERTHROW: Lt 50 'DO PAGR(L,
7 L1

7 Cl::REAr °

8 "TF' C1/99'THEN' 'GOTO' FIN: -

9 WRITETEXT('('C3=")"):

10 PRINT(C1,2,0):

11 NEWLINE(2 ):

12 C2A:=READ:

1% Q2R :=READ:

14 J:=PACT(C1): 5

w6 warrETExT( (11 (reshyrcar(rest)mr(1C) ) )
16 '"FOR' Is:=C2 'STEP! -1 'UNTIL' C2R  'DO'
16 'BEGIN' B
17 M1. =BXP( IN(FACT(T)/3)/(I-C1)):

18 PRINT(T,2,0):

19 SPACE(3):

20 PRINT(M1,1,5):

21 NEWLINE(1):

22 "END ! :

23 "GOTO' Tl:

24 FIN:

24 "END' OF PROGRAM:

15 Computer Programm

* K KK



16__Bagic Probability distributions used in Qmality Con

This thesis is not concerned fuﬁ&égéhfaLljﬁ,w
with provapility theory}although the appiication of'prdoability'
theory is an eusentialvpart of quality control., Tt is therefore
considered not out of place to diseuss some of the basic
probability distributions.

| The four most widely used distributions are
The hypergeometric distripution
The binomial distribution
The Poisson distribution

The normal distribution

16 (i) The hypergeometric distribution

The number of ways c¢f arranging n things all

together is n! and the number of ways (combinations) of

drawing r from nl! is ?

Tf a 1ot of 1000 items is 1% defective then the

Sle-
{
H
~A
¢ |
NSRS R A R e

number of defective items in the lot is 10 (alternatively, the

number of defective items in the 1ot may be giveﬁ;Kénd\ﬁot iheﬁ
fraction defective, but this makes no difference-to“fhe#
computations invelved).

If the sample size is 100, the number of ways

os drawing 100 from 1000 is 10008
100! 900!

GhehanwE e e

If the acceptance number ¢ = 2, then the
probability of acceptance of the lot is the probability of42‘dr;)5
less defective items in the sample and is equal to the sum of ¢

the probabilities of 0, 1, and 2 defective items i

The probability of acceptance is therefore qu

158




to 990! 100::900!
100t 890 1000!

. 990! 10! 100: 900!
991 891t 1! 97 10004

! 900
8! 1000:

+ | 990! 10:.100
98¢ 892! 2!
These, when evaluated, Will give exact
probabilities but, in view of the nature of the calculations
involved, in practice approximations are used which will give
values which are sufficiently close for all practical purposes,

In general, the smaller walue of the fraction

defective p and the greater the value of the sample size n the

smaller is the error.

16 (ii) The binomial distribution

If a random sample of n items is drawn from a
lot whose fraction defective is p then the terms offexpansicn~»{'
of (q + p)" give respectively the= probabilitdesiof 0, 1, 2, 3
etc, defective items in the sample, where'q = 1 = p, |

In the example gquoted above n = 100 énd‘pﬁé&O;bif
g0 that the expansion of (0.99 +~O.Ol)1QO would givefthé‘
probabilities.

Fortunately, calculations are much less involyed '
as tables of the binomial‘disﬁrﬁPgtiqn a?eipuﬁiished from Whiehf

it is possible to read off direct the prgbabilitiés involved.

16 (iii) The Poisson Distribution

If x is the average or expected number of

: -x
ences of an event then the terms of the expansion of e xe

1159




give respectively the probability of 0, 1, 2, 3 etc. occurence:

of the event,
In a sample of n items drawn from a lot whiéh.iéw
p fraction defective, the expected number of defective items
in the sample, m = np.
-Thus the terms of the expansion of

e™P(1 4 np + BR

1
@

v;.a F o ————— +) give respectively the
probabilities of 0, 1, 2, e etc. defective items in the sample,.
Cumulative tables of the Poisson distribution
(Appendix IZ) are available from which the probability of
acceptance may be read off direct. In the example quoted above,
np = 100 ¢ 0.01 = 1,0 and by referring to these tables it will

be seen that the probability of acceptance (i.e. the probability

of 2 or less) is 0,920.
The Poisgson distribution assumes constant probab-
ility from draw te draw and ignores the changing probabilitiés |

resulting from the the depletion of the lot by the dra

samples,
However, in sampling inspection the Poisson
distribution is by far the most widely used and in thiec thesis

the Poissen distribution is used throughout.

16 (iv) The normal distribution

The results of the measurements from many indust-
rial processes follow a normal distribution. Used as a

probapility distribution, the total area of the ﬁofﬁé1 ¢u;§\

160




is unity, and in this connection /rea'under,the cu
between the value of a variable x = 0 to x = x gives tt

probability of this value being less than x, Unlike other

distributions referréd to (except in the cése of the binomial

distribution when p = q = %) it ié a symmé%rical distribution
terminating at = . For most practical purposes, however, it
may be assumed to terminaterat just over t3 standafd deviations
from the mean. However, no further reference will be made to

the distribution in this thesgis.
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17 _CUMUIATIVE POISSON DISTRIFUTTON

Probability of ¢ or less events

1

i

0 1 2 3 4

02 . 980 1.000 ‘

04 .961 .999 1.000

06 .942 . 998 1.000

08 .92% .997 1.000

10 .905 .995 1.000

15 .861 +990 .999 1.000

20 .819 .982 .999 1.000

25 . 779 .974 .998 1.000

%0 CT41 .96% . 966 1.000

35 .705 .951 .994 1.000

40 .670 . 938 .992 .999 1.000

45 . 638 .925 .989 .999 1.000

.50 .607 .910 .986 .998 | 1.000

.55 557 .894 .982 .998 1,000

.60 549 .878 977 . 997 1.000

.65 .522 .861 .972 . 996 2999

.70 <497 844 .966 .994 +999

.75 472 827 .959 .993 <999

.80 449 .809 . 953 .991 .999

<85 427 .791 <945 .989 . 998

.90 407 772 .937 .987 .998

.95 387 . 754 .929 . 984 . 997
1.00 .568 . 736 .920 .981 .996
1.1 3373 .699 .900 .974 <995
1.2 .301 ¢ .66% .897 .966 .992
1.7% 273 .627 .857 .957 . 989
1.4 247 .592 833 .946 -986
1.5 .22% .558 .809 .981
1.6 .202 .525 .78% 1 .976
1.7 .183% 493 .157 [ .970
1.8 .165 463 731 ¢ .94
1.9 .150 434 . 704 - .956
2.0 <135 406 677 N7
2.2 .111 .355 .623% .928
2.4 .091 .3508 .570 - .904
2.6 074 267 .518 877 .97
2.8 .061 .231 .169 .848 |
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1.000

1.000
1.000
1.000
- 999
-999

- 999
.998
. 997
. 997
.995
. 997
.988
.976
. 966

1.000
1.000

1.000
1.000
« 999
. 999
.999

.998
.997
.995
.992
.996

1.000
1.000
1,000

1,000
-999
. 999
. 998
.996

1.000

1.000

-999
.999

1.000

Ctd. from page 164
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m 0

3.2 041

3.4 .0%3%

3.6 .027

3,8 . 022

4.0 .018 |

4.2 .015 .078 220 . 395 .590 -15%

4.4 .012 . 066 .185 .359 .551 .720

4.6 .010 .056 .163 .326 .51% .686

4.8 .008 . 048 . 1473 . 294 476 651

5.0 . 007 .040 .125 .265 440 .616

5.2 . 006 . 034 . 109 .23%8

5.4 ..005 . 029 .095 .213

5.6 . 004 . 024 .082 .191

5.8 . 003 .021 .072 .170

6.0 . 002 . 017 .062 .151

6.2 .002 .015 . 054 . 1%4

6.4 . 002 .012 .046 .119

6.6 . 001 .010 . 040 .105

6.5 . 001 . 009 .0%4 .093%

7.0 .001 . 007 L03%30 |- .,082

11 12 135 | 14

3,2

3.4 1.000

3,6 1.000

3.8 .999 1.000

4,0 .999 1.000

4,2 .999 1.000 0

4.4 .998 . 999 1.000 ; ~ | |

4.6 - 997 . 999 1.000 ! 0
| 4.8 .996 .999 1.000 o -
% 5.0 .00 . 998 . 999 1.000- | ' ~
| 5.2 .993 .997 999 | 1.000 |

5.4 .9&0 . 996 . 999 1.000 |

5.6 .988 .995 .998 .999 | 1.000

5.8 . 984 .993% .997 |- 999 -} 1.000

6.0 . 980 .991 .996 | .999 <999

6.2 . 975 . 989 «995 .998 999 |

6.4 . 969 .986 994 | .997 | .999 :«,w

6.6 .963% .982 .992 <997 999'>W1%

6.8 . 955 .978 .990 .0Q6 .988 .

7.0 <947 .977% . 987 .994 .998




m 6 P
3,2 . 955 9 .
3.4 2942 . o . .99
2,6 . 927 .969 . 988 .996 . 999
3.8 .909 .960 . 984 .994 . 998
4,0 .889 . 949 . 979 .992 .997
4.2 .867 .93%6 972 . 989 .996
4.4 . 844 .921 964 . 985 .Q94
4.6 .818 .905 .955 980 992
4.8 . 791 .887 . 944 975 090
5.0 .762 .867 .93%2 . 968 .986
5.2 . 7%2 .845 . 918 960 982
5.4 :?@2 .822 .903 .951 .977
5.6 . 670 . 997 .886 .941 972
5.8 .63%8 771 .867 .929 .965
6.0 .606 . 744 8417 .916 . 957
6.2 D74 . 716 .826 902
6.4 .542 . 687 .803% 886
6.6 .511 . 658 . 780 869
6.8 480 .628 . 755 850
7.0 1

-450

.599
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\Iﬁ\ 0
7.2 . 001 .006 .025 ;.072 , 156 .276
7.4 .001 . 005 L0227 L.063 |7 L140 .25%
7.6 .001 004 .019 L0551  .125 251
7.8 . 000 . 004 .016 Lo48 | 112 .210
8.0 . 000 .003% . 014 L042 100 .191
8.5 . 000 .002 . 009 .03%0 " . 074 . 150
9.0 . 000 .001 .006 .021 <055 .116
9.5 . 000 .001 .004 .015 .040 .089
10.0 -0800 .. 000 . 003 .010 029 .067
11. . 000 . 000 .001 . 005 015 . 038
12 . 000 . 000 .001 .002 008 .020
13 . 000 . 000 .000 .001 004 .01l
14 .000 . 000 .000 . 000 .002 . 006
15 . 000 .000 . 000 . 000 . 001 . 00%
11 12 1% 14 15 16
7.2 .9%7 .967 .984 .993
7.4 .926 .961 | .980 .991
7.6 .915 954 | .976 .989 |
7.8 .902 .945 .971 .986
8.0 ,888 .9%6 .966 | .983
8.5 .849 .909 .949 SO
9,0 .803 .876 .926 959
9.5 .752 .8%6 .898 . 94.0
10.0 . 697 . 792 . 864 917
11 .579 . 689 .781 .854
12 A62 .576 .682 LTS
13 «.35% 463 O35 .675
14 .260 .358 | .464 |  .57C
15 .185 .268 36375 466 | L
22 2% 24 25
10.0 1.000 .
11 . 599 1.000 st .
12 . 997 1.999 . 999 Lo ;
1% . 992 .996 . 998 <999
14 .983% 991 . 995 <997
15 .967 . 981 £989 . 994
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7.2 420 .569 .

7.4 .392 - .5%9 676 . 788 871c

7.6 .365 .510 . 648 .765 .854

7.8 .338 .481 .620 T4 .835

8.0 . 313 .45% <593 717 816

8.5 .256 . 386 L5273 653 .76%

9.0 .207 . 324 456 .587 .706

9.5 .165 .269 .392 .522 645

10.0 .130 .220 <333 .458 .58%

11 .079 .1473 . 232 <341 460

12 . 046 ,090 .155 242 c 34T

13 .026 . 054 .100 166 L2520

14 .014 . 0%2 .062 109 .176

15 .008 .018 .037 070 .118"

17 18 19 20 21

7.2 . 999 1.000°

7.4 . 999 1,000

7.6 .999 1.000"

7.8 .999 1.000

8.0 .998 .999 | 1.000
- 8.5 . 997 . 999 2999 | 1,000

9,0 . 995 .998 .999 1,000

9.5 .991 . 996 29984 +,999 00 000
10.0 .986 .993 . 997 .998 989

1 968 . 982 .991 995 | o9 |

12 .937 .96% 979 .988 - .994

1% .890 .9%0 957 . 975 . 986
14 .827 .883% .92% ¢ e 9520 971 |
15 . 749 .819 .875 917 947 |

28 29
14 1.000
15 . 999 1,000z bz o L2 4 .



18 Published Sampling Tables

18 (i) Dodge-Romig Sampling Tables

Dodge and Romig (Ref. 16) provide four

different sets of tables:-

Single sampling lot tolerance
Double sampling lot tolerance
Single sampling AOQL
Double sampling AOQL
The first and second sets of tables are
classified according to lot tolerance per cent defective at
a constant consumer's risk of 0.10.
The third and fourth sets are classified accord-

ing to the average outgoing guality limit which they assure.

Lot tolerance plans;e@phasingQFfonstantglow
consumer's risk with varying AOQILs, that is, they ére

designed to give considerable assurance that individual lots
of poor material will seldom be accepted. 'The AOQL plans
emphasize the 1limit on poor quality in the long rﬁmy\buﬁ dQ£ff'
not offer constant assurance that individual lots of low =
guality will not get through.  They are apopropriate only‘wheﬂ‘
rejected lots are 100 per cent inspected. The relative

importance of these two objeotivesfWilljgﬁideithe Ghoioer0f~qk

plan,

18 (ii) Columbia Sampling Tables
These were originally prepared Dby the Staiiétlcafl

Research Group at Columbia University following a reQu@Stﬂh

the U, S. Navy and were later incorporated in a peace time

manual "Sampling Inspection”.
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Five inspeciion leve
the producer's risk is 5% for each level, Sin le \\*g, .
multiple and sequential plans are available. Iﬁ,thejéégep”
of double sampling n, :’2nl aﬁd/iﬂ”ﬁﬁiiible sampling for a
given plan the sample sizes are all equal.

18 (iii) MIL-STD 105 D Sampling Procedures and

Tables for inspection by attributes.

These tables are published by the U. S.
Department of Defense. The plans provide for three general

and four special inspection levels,

Single, double and multiple plans are available.

Tike the Columbia tables, for a given multiple

plan the sample sizes are all the same, but in double sampling

1 =
plans n, n,.

18 (iv) DEF-131-A Sampling Procedures and Tables

e by S

for ingpection by attributes.

Defence and, with the exception of a section Offsequenti%¥:'

sampling which these tables carry are identical With*th9ﬂ  ,f

american MIT~STD-105D. . .f
Associated with DEF-131-A is DBE-7-A which is |

a guide to the use of the tables.

The appropriate #dmeriecan
authorities have collaborated in the preps 'Of,thefﬁébles,

the Cana@iam.equivalenf'beingéek—




18 (v) RS 6001: 1972 Specific

Procedures and Tables for Inspection Dy attri@g*'

RS 6000: 1972 fuide to the use of FS 6001

These tables, published by the Pritish

Standards Instituse are identical with DEF-1351-A.

18 (vi) BS 9000; 1967 Specification for general

?@@gﬁiements for Electronic Parts of Assessed Quality.

BS 9001: 1967 Spesification for sampling procedures and tables

for inspection by attributes for Electronic Parts of Assessed

Quality.
These tables are similar to the preesdimg
ones except that they are directed speoifically to electronic

parts,.

18 (vii) Other published sampling tables.

Many companies have devised their own sampling
inspection tables. v ’

Phillips Electrical Timited have dévised 31ngle,
double and multiple samnllng tables based on what the combany

terms the "point of control" which is that percentage defeetlvmj

of the incoming material which stands equ”lv hanees of

acceptance and rejection. The point ¢} Zg§/91~ramges¢irom\‘

iq, to 10%. In single and double sa"
that the samples should be taken from at least flve dlfferenh_'

parts of the batch and in double sampling n, = 2ny. -
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The compang's multiple samp Iﬁgﬁsgh* 
Take 5 samples of N parts.
1) Pass batch if each sample éoﬁ%&iné”iess £hén

p rejects. ” : LLi T TRE USRS -

2) Reject batch if any sample contains more than

p rejects or more than one sample contains p rejects.

3)  Take a second 5 samples of N parts if just one %

sample contains as many as p rejects and then;;
a) Pass batch if each of the second 5 samples contains
leas than p rejects,
D) Reject batch if any of the second 5 samples contains
p or more rejects.
Talo lated values of W and P are related to the
point of control and to the range of batch sizes.
Companies within thé%véiﬁofgréﬁp5HSé tables based
on MIL-STD-105D, and although this calls for single, double
and multiple sampling with norﬁgl,fﬁightehéarof feauéed iﬁspéci
ion, Volvo uses only double sampling with normal and redaeedgf'
inspection. The group has produced an admirabié%ﬁ@bkﬁe%”

entitled "Volvo Inspection".

19 RB.S.I. Publications

F.S. 600: 1935  APPLICATION OF S$A$ISTiGAL METHODS TO
INDUSTRIAL STANDARDIZAT{ON?ﬁﬂE?Qﬁiiﬁ@Y'CONTROB*k 'k

B.§. 1313:1947 FRACTION‘DEFEGTIVE‘CHARTS-FORvQUALITY~ 
CONTROT, ‘

F.S.2564§1955 DRAPTING SPECIFICATIOstBAsﬁﬁﬁoﬁ)ii&f@
THE NUM ER OF DEFECTIVE ITEMS PERMITTED fN SMAﬁﬁ1,*

SAMPIES.

b Iy
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R.8.4778:1971 GIOSSARY OF GBNERAT TERNS USED IN |

QUALITY ASSURANCE

B.S.6000:1972 ‘ A CUIDE TO THE USE -OF R.S.6001
R.S.,6001:1972 SPECTFICATION FOR SAMPTING PROCEDURES

AND TAETLES FOR IN”DECWICﬁ Y ATmRIBUi%S

-

E.S.9000:1967 SPECIFICATION FOR GENFRAL RLQUIREMENTS

FOR ELECTRONIC PARTS OF AtSESSEJ “UQLITV

E.53.9001:1967 SPECIFICATION FOR SAMPLING PROCEDURES
AND TARTES FOR INSPECTION FY ATTRIFUTES FOR EIECTRONIC

PARTS OF ASSESSED QUALITY,

20 The A.S.N. of double sampling plans with curtailed

inspection of the second sample.

The A.S.N, WLth ourtalled 1nsnectlon of the

second %ample is given by the equatlon--

. - } ” ,j
ASN = nq +»2:. Pny: s’in?p n2:02-§+’u-25m§i} fn2+1:ezus+%]
s =cq + 1 ’ g i

Where Pny:s = Probability of -exactily s defé@@

P no:cp-s = Probability of cpo=s or less defectives out of‘né

P n2+1:09~s+2 = Probability of co-s+2 or more defectives out of

s is a summation variable.

To i11ustwaté”fhéfaﬁélf at: /of’thé above
equation consider the double Qalelng plan n = 404 01 'O°
n, = 60, cy = 3, The comnutatlon of the ordinate of the ASN

curve at p = 0.025 is shown in the table that follows,\tjf\




ASN = 40 + %32.21 = 7221

[?he ASN with complete inspection of th
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(1)
S
Ol + 1 =1
Cq 2 =2
c1 + % =3
total
Lo
(5) (6) (7) (8)
P'n2 + 1: Co ~ps + 1 n, (4) (3Y(7)
cp, =8 +2 | v (5)6) |
, - -
0.069 120 56.82 20.91
0. 197 80 51.04 9.%9
0.450 40 31,38 1.91\
%2421

e second. sample is 76.187
e o
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DEMONSTRATION AIDS FOR USE IN THE

TEACHING OF QUALITY CONTROL
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THE FRACTION DEFECTIVE OF INCOMING

MATERIAL TO GIVE THE MAXIMUM ASN

IN DOUBLE SAMPLING
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