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Summary 

The aim of this work was to investigate the computer aided stress 

analysis of centrifugal fan impellers fabricated from thin plate. The 

finite element method has been chosen as a tool to solve this problem, 

since it has gained considerable attention, wide spread popularity, and 

proved to be a powerful tool for the designer engineer. 

The semiloof shell element was adopted, in view of its demonstrated 

ability to deal with thin branching shells having sharp corners and 

multiple junction regions such as are found in fan structures. 

The objectives of this research were achieved by establishing: 

(1) A general purpose finite element package for plates and shells using 

the semiloof shell element for stresses and displacements. 

(ii) A 'tailor made' finite element package for the impellers themselves 

where rotational stresses are significant for stresses and 

displacements. This package was developed further to cater for the 

sectorial symmetry of rotating fan impellers: by these means, data 

preparation, memory requirements and computing time are greatly 

reduced. 

An experimental study was conducted, using the strain gauge technique, 

to evaluate the displacements and stresses predicted numerically. This was 

carried out for a simplified and an actual fan impeller as well as special 

Simple test structures. 

Numerical results for the thin plate and shell structures showed 

excellent agreement with those obtained by other methods. A satisfactory 

correlation was obtained between the experimental and the numerical 

predictions for the simplified and actual fan impellers. 

A desk top computer HP9845B was used since it is a ‘user friendly', 

low cost machine with interactive graphics and other powerful facilities. 

Other topics which may be investigated as an extension for this work 

have been pointed out. 
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INTRODUCTION 

Over recent decades, there have been considerable 

pressures on engineering designers to provide more 

accurate methods of stress analysis for engineering 

components subjected to specified loading. This is 

a Significant consequence of attempting to satisfy the 

purchasing public's demands for better performance, 

economy, and a standard of safey in engineering products, 

In the case of fan impellers, design stressing models 

have previously been extremely simple and inaccurate 

necessitating the use of large factors of safety which 

could imply excessive material and weight in the fan 

structure, Most methods were experimental; they were 

relatively time consuming and could be expensive and were 

reserved for backgroundresearchers, On the other hand, 

numerical modelling techniques have become available to 

designers; amongst those, the finite element method occupies 

an outstanding position because of its applicability to 

arbitrary shapes, different loading and support conditions 

and many aspects of practical design applications, The 

application of this method to the stress analysis of 

rotating fan impellers permits a much more sophisticated 

approach, but requiring the aid of a computer. to provide 

the necessary facilities for the development of this 

efficient numerical method, 
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Since centrifugal fan impellers are fabricated from 

a thin sheetmetal into a backsheet, conesheet and the 

blades between them, the piecewise continuum model is 

an assemblage of plates and shells. A suitable element 

for a finite element discretisation is then the semiloof 

shell element, was designed recently by B. Irons, it 

was chosen for this work, because it is valuable for 

modelling plate and shell structures in which 

intersections and sharp corners exist, similar to those 

found in impeller structures, 

The ultimate objective of this research was to develop 

a computer package, based on this semiloof shell element 

to analyse the displacements and stresses in fan impeller 

structure, due to rotational loads, This was achieved 

through the following steps; 

(1) Develop a finite element computer program for 

general thin plate and shell structures. 

(2) Test this program by correlating its predictions 

for selected problems with those obtained by 

other methods and reported in the literature. 

(3) Extend the computer program of item (1) to accept 

a segmental solving routine in order to be able 

economically to tackle more complicated plate 

and shell structures in which the stiffness 

matrix cannot be held in the computer memory 

ao



for solving in one straightforward pass. 

(4) Modify this program to suit fan impellers by 

taking a full advantage of their sectorial 

symmetry, and test this program against some 

examples of rotationally periodic structures. 

(5) Build a rig for the strain gauge analysis of 

rotating fan impellers. 

(6) Compare the experimental results using the 

strain gauge technique, with those predicted 

by the finite element, 

In Chapter 2, a suryey of the literature relevant 

to the theoretical and experimental stress analysis of 

the rotating fan impellers is given with an indication 

of their deficiencies in relation to the current problem. 

Chapter 3 is concerned with the chosen numerical 

modelling technique (finite element method) in the analysis 

of the rotating fan impellers. A major part of this 

chapter was given to a survey of shell elements, so that © 

a suitable shell element could be chosen as a discretisation 

element. 

Chapter 4 is a description of the semiloof shell 

element and the computer program built-up for general 

thin plate and shell structures; details of input data, 

generation of the system stiffness matrix, solution of 

din



equilibrium equations and the output (displacements, 

strains and stresses) are given. 

Chapter 5 describes a number of numerical examples 

used to assess the performance of the semiloof shell 

element in examining several plate bending and 

stretching as well as shell examples. 

Chapter 6 deals with the modifications of the 

computer program, described in Chapter 4, to make it 

possible to analyse one sector of structures such as 

discs, cones and impellers in which the loading pattern, 

geometry and material properties; display secotrial 

“symmetry. 

In Chapter: 7, a.description of the test rig, strain 

gauge circuits and experimental procedure are given for 

a simplified and an actual fan impellers, The experimental 

results are compared with the numerical predictions for 

these impellers. 

Chapter 8 presents a summary, conclusions and 

suggestions for further work.



CHAPTER TWO 

REVIEW OF THE LITERATURE RELATED 

TO THE MECHANICAL DESIGN OF THE 

ROTATING FAN IMPELLERS



2.1 GENERAL INTRODUCTION 

The determination of stress and deformation levels 

is an important element in the design of mechanical 

equipment. In the past, the theoretical methods used 

to estimate the stresses in rotating impellers proved 

to be unsatisfactory due to a general lack of knowledge 

regarding their effectiveness with respect to calculation 

accuracy: this problem will be discussed in the 

literature review later. An efficient tool is 

required which applies a careful and accurate stress 

analysis method in order to ohtain the overall stress 

pattern that exists in thin walled rotating fan 

impellers under the action of rotational loads. On the 

one hand, experimental methods are available to provide 

analysis of stress in rotating impellers, Thus, strain 

gauge measurements are suitable for complicated structures, 

such as the rotating fan impellers of interest here, 

but this will consume time and can be expensive, 

especially in comparison with modern methods of analysis 

based on digital computers which have become more 

common: Most technical methods are implemented on 

relatively accessible computing systems. 

In this chapter some of the previous theoretical and 

experimental investigations related to thin rotating 

impellers will be reviewed. 
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2.2 THIN WALLED CENTRIFUGAL IMPELLERS 
  

It is probable that the majority of all fans are 

thin centrifugal or radial flow type. Such fans 

consist of an impeller running in a casing and having 

a spirally shaped contour. The air enters the impeller 

in an axial direction and is discharged at the 

periphery, the impeller rotation being towards the 

casing outlet. The amount of work done on the air, 

evident in the pressure developed by the fan, depends 

on the angle of fan blades with respect to the 

direction of rotation at the periphery of the impeller. 

The impeller is the most highly stressed part of the 

fan. The stresses in the impeller are caused by 

rotation, temperature and aerodynamic forces, but the 

most important are the stresses caused by rotation. 

The impeller consists of a back sheet and a front cone- 

sheet with radially spaced blades continuously welded 

between them. 

There are three main types of impellers, 

Fig. 2.1, depending on the blade type. These are:



(a) the backward bladed impeller, in which the blade 

tips incline away from the direction of rotation 

and the angle of the blade 8<90°. 

(b) the radial bladed impeller, in which the blade 

tips are radial, therefore, B=90°, 

Cog the forward bladed impeller, where the blade tips 

incline towards the direction of rotation and 8>90°, 

Centrifugal fan impellers have been used in a wide 

range of industrial applications, such as induced 

draught, equipment for industrial boilers and compact 

units for heating and ventilating applications.
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2.3 REVIEW OF LITERATURE RELATING TO THE STRESS: ANALYSIS 
  

OF FAN IMPELLERS 

The releyant literature reyealed few references 

dealing with the stress analysis of rotating impellers. 

The previous experimental and theoretical work related 

to the rotating impellers will be reviewed. In addition, 

some of the work carried out by previous investigators 

on the stress analysis of rotating discs, rotating 

cones and the stresses produced by rotation in the blade 

of centrifugal fan impellers are mentioned briefly. 

2.3.1 Rotating Discs 

The backsheet, which is the main part of the rotating 

fan impellers has previously been considered as a disc. 

The stress distribution in simple rotating discs with 

constant thickness is given by Timoshenko Ref. (1). 

Haerle Ref. (2) has developed a theoretical method 

to obtain the stress distributions in rotating discs 

with a hyperbolic profile. His method is based on the 

general formulae for the tangential and radial stresses 

in a rotating disc as. given in Ref. (3). These are:.: 

o = 2, [(a43v)Kx7+(1+v)b, +(1-v bax (2.1) 16 - vt — fe - - = 4 ox 1 eo09000 e 
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a, = —Egl (Bev iat by ev bg” ] peace mee 

=(1-v")u" 

8gE 
k 

where Ci ce radial and tangential stresses at any 

Then 

radius x respectively. 

v = Possions ratio 

E = Youngs modulus of elasticity 

1? bo = constants depending upon the condition 

(stress) prevailing at the bore and 

periphery of the disc 

u = Wx = rotational velocity of a point of a disc 

at radius x 

Q +
 Q i ”n
 il sum of principal stresses 

Q 1 Q li oO
 ll t a difference of principal stresses 

it can be shown that 

S ii Cty) $ Gua] en 

Oo i] Q oe 
(1-v) 4g [a7 Hc 2] 

2eo0ee (25 4) 
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2 
4gEb,. 8gEw bo 

where Ky = ee Ko = AOU» aR 

(1-v7)p (1-v")p 

If S and D are known for any point on the disc, the 

stresses at that point are given by: 

+ 

se cae 

o, = 52 ee) 

Equations (2.3) and (2.4) are plotted in Ref,(2) for 

varying speeds of rotation. In these two equations, 

the only variables are the constants Ky and Ko. 

Therefore, Haerle Curves, as represented by equations 

(2.3) and (2.4), are based on different values of ky 

- and Ko respectively. For a dise of constant thickness, 

the stresses can be found by selecting the appropriate 

sum and difference curves, which conform to the applied 

boundary conditions. 

S and D charts can be applied to the discs or hubs of 

a hyperbolic profile by replacing the actual hyperbolic 

profile by stepped discs consisting of a number of 

concentric rings, each with a constant thickness (as shown 

in Fig. 2.2). The assumption is made that, providing 

the steps are comparatively small the stresses in 

adjacent concentric rings, on either side of the step, 

are inversely proportional to the thickness of the ring. 

=| 3m



  

    

      
Fig.2.2 Simplified disc : Haerle 
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The sum and difference chart is applied to each ring 

by assuming an initial tangential stress at the rim. 

The analysis is then carried to the next ring. The 

procedure is repeated with a new assumed tangential 

stress at the rim until the stresses obtained at the 

bore of the disc match the desired boundary conditions. 

The main disadvantage of the Haerle method is that 

the stresses are obtained by making initial assumptions 

and by working up to the final results by trial and 

error. 

2.3.2 Rotating Cones 

Another main component of the rotating fan impeller 

has been treated essentially as a rotating cone. The 

most suitable solution to predict the stress distributions 

in the rotating cones has been given by Meriam, Ref.(4) . 

Meriam has extended the theory of axially symmetric 

shells by including the body forces of rotation about 

the axis and applying the results to the rotating conical 

shells. The Meriam analysis is based on the linear 

theory of elasticity. The equations of equilibrium and 

compatibility are manipulated into two linear fourth-order 

differential equations by using the Meissner operator. 

A method of analysing the fan impeller, which has been 

used hy Bell, Ref.(5) , is to treat the backsheet, cone- 

Sheet and blades separately and examine the interaction 

ee



between them. Bell has used Meriam solution to predict 

the stresses in the conesheet., Another suitable 

approach for the rotating cone is given by Timoshenko 

and Woinosky-Krieger, Ref. (1 ). 

Few references dealing with conical shells are 

availalbe in Bell, Ref.(5) , who concluded that they 

were too general for the -conesheet, such as Refs.(6, 7). 

2.3.3 Blade Analysis 

Few references are available to estimate the blade 

stresses. Among these are: 

Osborne, Ref.(8 ) has considered the blade as a beam 

built in at both ends. Osborne estimated the maximum 

bending stresses produced in a blade onthe basis of the 

centrifugal force acting at the centroid of the blade. 

Patton, Ref. (9 ) has attempted to use plate theory 

Ref. (1) to predict the stresses in the plate panels. 

However, this proved to be unsuccessful due to the 

complexity of the geometries and the inability of the 

plate theory to treat the interaction of backsheet and 

conesheet with blades. 
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2.3.4 Stress Analysis of Rotating Impellers 

As mentioned before, the number of references 

dealing with the rotating impellers is limited, The 

important literature in this respect includes: 

(a) Glessner, Ref. (10) has presented a method of 

analysing the stresses in a rotating impeller. His 

method is characterised by obtaining an elastic balance 

between the blades, disc and cover, when these parts 

are subjected to inertia forces arising from rotation. 

Fig. 2.3 shows a front view and section of the Glessner 

impeller. He approached the problem by analysing a 

simplified structure, the disc, blades and the cover 

separately. The disc carries its own centrifugal load, 

and some portion of the blade and cover loads, The 

blades are approximated by built in beams of span equal 

to the blade width. They are subjected to the centrifugal 

force due to their own mass. The cover is considered 

as a rotating disc with a conical profile and supports 

itself. 

The Glessner Method depends upon: 

Ci) the calculation of the blade load caused by 

centripetal acceleration. 

Ci) the calculation of the cover and disc loads 

by use of the Haerle sum and difference curves 

(discussed in Section 2.3.1). 
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Once the centrifugal loads for the three components 

have been calculated, the distribution of the blade load 

on the cover and disc is found by balancing forces 

and deformations. This can be done by assuming a spring 

constant for the three components which are to be 

calculated from their deflections eaas no blade load 

and full blade load conditions. By using these constants 

the proportion of the blade load on the disc and cover 

can be calculated. The stresses in the disc and cover 

can then be calculated as the sum of stresses due to the 

body forces and the blade bending forces. 

(b) Patton , Ref. (9 ) has described an experimental 

programme of stress analysis of rotating impellers using 

brittle lacquer and strain gauge techniques for three 

impellers of ai fterent sizes running at different speeds. 

Patton has compared his results with the method suggested 

by Hearle, Ref. (2), which involves the treatment of 

the backsheet and the conesheet separately, allowing for 

the blade loading to add radial stresses at various radii. 

It was found that there was poor correlation between the 

experimental and analytical results, since the analytical 

method used proves to be unsuitable in that no account is 

taken of any symmetry or conical nature of the disc profile 

or of the discontinuous nature of the blade loading. These 

effects create bending and local stresses, which increase . 

the safety factors required in fan design to cover these 
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effects, especially in the design of high pressure fans. 

Patton observed this poor correlation at critical points 

of high stress on the conesheet and backsheet. 

(c) Thurgood , Ref. (11) has investigated the surface 

stresses in rotating discs of an asymmetric profile. 

The results are compared with the measurements made 

on photoelastic models by the 'frozen-stress' technique. 

His analysis is based on the 'step-by-step' method of 

Ref. (12). but is extended to include the effects of hlade 

loading, asymmetry, and blade stiffening when necessary. 

Thurgood assumes that the stresses vary linearly across 

the thickness of the disc, the disc only carrying loads 

- and moments in the tangential direction, but both discs 

and blades carrying loads and moments radially, as 

shown in Fig. 2.4. Reasonably good correlation has 

been obtained between the predicted stress distributions 

and those obtained from the photoelastic models, except 

where few blades give rise to interblade bending and 

occasionally in the bore region. 

(d) Bell and Benham, Ref.(13 ) have discussed the 

theoretical and experimental stress analysis of 

centrifugal fan impellers, Brittle lacquer and strain 

gauge methods used in the experimental programme to 

determine stress distributions in a simplified model and 

an actual centrifugal fan impeller. Bell and Benham have 

applied the finite element method using a flat triangular 
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element in which the bending and membrane behaviour are 

separately represented. (This type of element will be 

discussed in Chapter Three). 

The centrifugal forces are calculated at the centre 

of each element and one third of the force is applied 

at each node of the element. Good agreement has not been 

obtained between the experimental and the finite element 

method for the bending moments in the region of fixed 

edges. 

Bell's work Ref. (5) on the rotating fan impellers 

is the first which attempts to apply a modern general 

method (finite elements) for obtaining the stress levels 

in these structures. He has used a.simple element 

for discretisation , which needs a very fine mesh in 

order to converge to the exact solution. Bell assumdd 

that the fan structure is quarterly symmetric. The 

research project described in the present thesis is aimed 

to develop a method which overcomes the disadvantages 

mentioned above. The method is structured to suit the 

requirements of industry and widely available but powerful 

user friendly desk-top computers. 
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2.4 CLOSING REMARKS 

The literature review, discussed in the previous 

sections, related to analytical and experimental methods 

of stress analysis for thin rotating impellers. It 

has shown relatively little work for dealing with such 

complex structures. Consequently, a general lack of 

knowledge regarding detailed investigations of the 

intersection areas (blade-backsheet and blade-conesheet ) 

can be seen. It has been pointed out that the most of 

the methods used were experimental. The analysis 

provided in the literature deals with the classical 

approach, except the work presented in Ref. (5). 

The new analysis reported here deals with the stress 

analysis of thin rotating fan impellers by the finite 

element method. A suitable shell element is chosen for 

discretisating the impeller structure. The element 

should provide reasonable modelling of the interactions 

' between the blades and backsheet and conesheet, 

In the next chapter, the finite element method is 

briefly explained, and afterwards the existing shell 

elements are presented. Suitable shell element can then 

be selected for the discretisation of thin rotating fan 

impellers. 
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CHAPTER THREE 

MODELLING FOR STRESS ANALYSIS 

IN DESIGN: APPLICATION TO FAN 

IMPELLERS 
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3.1 INTRODUCTION 

In the stress analysis of complex engineering 

structures, numerical modelling techniques are now 

widely used (see Refs (14,15)). The quality of the 

models depend substantially on the experience and 

judgement of the analyst (defining the detailed geometry 

and loading and interpreting the results). At present 

numerical modelling techniques are well-known and the 

following factors have contributed to their development, 

tad the rapid decline in digital computing costs. 

ctr) the firm establishment of rational numerical 

modelling techniques (particularly the finite 

element method of linear elastic and non-linear 

elastic problems). 

The traditional approach to structural design modelling 

was Simple and this was successful when the loading 

regimes and structural forces were essentially simple. 

Analogue models, particularly photoelastic ones, could 

be used to get detailed localised stress data. Such 

experimental techniques yield accurate data if there is 

an adequate investment of effort, but the cost is high. 

These experiments were usually reserved for background 

research and development studies. Widely available 

cheap computing power has given the stress analysis 

engineer a new capability of better modelling of complex 
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engineering structures. However, the approach to the 

problem is still based on understanding and modelling 

the problem. Furthermore, the familiarity of the analyst 

engineer with the limitations of the description of the 

model under investigation, as well as his ability to 

sense or judge the solutions play a major role in 

obtaining a reasonable solution to the problem in hand. 

In this chapter, the appproximate techniques to form 

a stress analysis model will be discussed. Depending on 

the requirements of the problem concerned, the approximate 

method is chosen, which in turn requires experience in 

order to make adequate judgement. The finite element 

method will be explained, including its mathematical 

basis, accuracy and advantages. This is the technique 

used in developing a stress analysis computer package 

for general thin plate and shell structures which is then 

tailored for application to fan impellers (to be 

presented later). 

As mentioned in Chapter 2, fan impellers are fabricated 

from a thin backsheet, a thin conesheet and the blades 

between them. Thus, it is necessary to have a general 

knowledge of the shell elements, so that a suitable 

element for the mesh discretisation can be chosen, The 

blades may be treated as a special case of the shell, 

perhaps with zero curvature, The shell elements will be 

presented in Section 3,4, 
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3,2 METHODS FOR SOLVING ELASTICITY PROBLEMS 

3.2.1 Exact Method 

The exact solution for any elasticity problem defined 

by the differential equations, for the equilibrium and the 

compatibility requirements, needs a great effort due to 

the difficulty of satisfying the boundary conditions. 

An approach to this is to get the stresses and strains using 

trial and error (for example Ref. (2) ). This implies 

that if the trial functions satisfy the equilibrium, the 

compatibility and the boundary conditions, then they 

are the correct solution to the problem, otherwise, 

another trial function should be used until the boundary 

conditions are satisfied. For some types of problems, 

the classical analytical method is either impractical, 

or virtually impossible. As an example, Ref.(16) , in 

the plain plate problem the general governing equation 

for the bending of thin plates is a fourth order partial 

differential one; for circular plate defined in terms 

of cylindrical co-ordinates r, 6 and z in which the 

governing equation is of the form: 

qe P 
voy on 

2 2 

where VY“ is the operator — + - = * = 2) 
9 Ee ae 

P is the intensity of loading on the plate 
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w is the transverse deflection of the plate 

D is the flexural rigidity of the plate. 

A direct analytical solution of this equation is 

rarely possible; except in the case of axisymmetric 

loading and it implies that the plate is homogenous 

and of constant thickness. In this case the equation 

is reduced to a relatively simple ordinary differential 

equation where the loading and deflection are functions 

of the radius only, In. almost all other cases, 

approximate methods of solutions are necessary. The 

basic outlines of the approximate methods will be 

discussed in the following section. 

3.2.2 Approximation Techniques 
  

As mentioned before, the approximate techniques 

are necessary to deal with stress analysis problems 

when considering complex structures, in which a complete 

theoretical solution may be impractical with respect 

to time, cost and degree of difficulty. As pointed out, 

the component under investigation here is a complex 

structure; therefore an approximation technique needs 

to be used in order to obtain the stress levels in these 

types of structures. Methods of approximations may be 

classified into either, 
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(i) approximate treatment of an exact differential 

equations, such as finite difference method. 

or; 

(ii) exact treatment of an approximate system, such 

as Rayleigh-Ritz and finite element methods 

(Energy methods). 

3.2.2.1 The Finite Difference Technique 
  

In this technique, the continuous functions, such 

as the displacements or stresses, are represented by 

values at a finite number of points within the solution 

domain. This, then reduces the problem to a set of 

simultaneous algebraic equations. The accuracy of the 

method depends upon the size of the intervals, or the 

mesh size. The finer weal increases the accuracy. 

On the other hand, the resulting equations are increased 

and hence the amount of work required for a solution 

increases with higher round-off errors, in addition to 

large computer storage requirements and running times. 

An important advantage of the finite difference methods 

is the ease with which they may be formulated and 

programmed for a solution by a digital computer. In case 

of irregular boundary slopes and in concentrating points 

in regions of the solution domain, the lack of the 

geometric flexibility in fitting makes the finite 
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difference method to be. unsatisfactory for solving 

these cases. This is considered as a main disadvantage 

of this method. However, the technique becomes very 

hard to use with a component containing assemblages of 

plates or shells, such as those found in fan impellers 

due to difficulties of writing the mathematical 

description of the structure geometry. Another approach 

‘howe be used when dealing with these types of 

structures. 

3.2.2.2 Energy Methods (Variational Methods) 
  

In these methods, a functional.which describes a 

physical property of the system, such as the potential 

energy, is extremised with respect to independent 

parameters (displacements and/or stresses), thus 

resulting in the governing differential equations of 

the problem. These methods can also be used as a 

means for solving problems by an approximate technique. 

The principle of minimum potential energy, for instance, 

has been widely used in connection with Rayleigh-Ritz 

and finite element techniques to solve complex problems 

in the context of solid mechanics, In this principle, 

an approximate displacement field which satisfies the 

compatibility epeon. is used to obtain an expression 

for the total potential energy of the system, By 

minimising this expression, one obtains the approximate 
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equilibrium equations of the system. 

In the Rayleigh-Ritz technique (see Ref, (17), the 

solution is assumed in the form of a series of 

function which satisfies the boundary conditions, but 

with undetermined parameters, These functions are 

inserted into the expression of the potential energy 

and the required integration is carried out. The 

minimisation of the potential energy results in equation 

from which the undetermined parameters can be found. 

The accuracy of the solution improves if more undetermined 

parameters are taken, Even in the days of the finite 

element method, Shebak Ref, (18 ) has recently used 

this method successfully to predict the mechanical 

vibration characteristics of Bell-type pump mountings.. 

The finite element method may be viewed as piecewise 

a Ritz method. According to this method the continuum 

is imagined as divided into a finite number of elements, 

connected with each other through nodal points. The 

displacement function within each element is assumed in 

a Suitable form, then the strain energy is computed. 

Summation over all the elements yields the total energy 

of the whole structure. As in the Ritz method, minimisation 

of the total energy generates the static equilibrium 

equation in the form; 

[kK]{a} = {Q} ogee 8-1) 
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The detailed contents of [K] depend upon the technique 

used and displacement model assumed. A discussion of 

the finite element method, adequate for the purposes of 

this report, will be given in Section 3.3, 
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3.3 THE FINITE ELEMENT METHOD IN STRESS ANALYSIS 
  

Sr oe Introduction 

As mentioned in the previous section, the finite 

element method is an approximation technique in which 

a continuum, with infinite degrees of freedom, is 

approximated by an assemblage of elements, each with a 

finite number of degrees of freedom. The element 

behaviour is described by a set of assumed functions 

representing the stresses or displacements. The assumed 

functions are usually of a polynomial form which is 

chosen because of the ease with which the mathematics 

can be manipulated when formulating the stress or strain 

equations. By using a sufficient number of elements, 

an acceptable representation of the overall real 

situation of the structure under consideration is obtained. 

The advances made in the design of digital computers in 

the 1950s have given a new impetus to the development 

of this technique, as it enables structural engineers 

using the technique of matrix algebra, to deal with 

problems which would otherwise be too large to tackle. 

This represents the beginning of the finite element 

method as a Significant tool for engineering analysis. 

Initially, structural mechanics reasoning was used to 

extend the matrix methods to continuum problems. It 

was not until the early 1960s that stiffness finite 
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element analysis was formulated in terms of the principle 

of stationary total potential energy. Today the finite 

element method has already become a very powerful tool 

for analysing complex problems in structural and 

continuum mechanics. A vast number of papers and books 

have been written on this subject (see Refs.(19,20). ). 

Now this method is firmly established in civil engineering 

and widely used by mechanical and aeronautical engineers 

for the analysis of stress in solid components. In 

general, the finite element method has the following 

advantages: 

Ci) the ability to model structures of arbitrary 

geometry. 

(ii) the ability to. deal with structures with 

arbitrary loading, including thermal loading 

and arbitrary support conditions. 

(iii) the ability to model composite structures 

involving different structural components, 

such as combination of plates, bars and solids. 

(iv) the ease with which the actual structure may 

be visualised because the finite element 

structure closely resembles the actual structure. 

Inspite of all the advantages, there are disadvantages 

which are not unique to the finite element method. These 

include: 
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(is) a specific numerical result is obtained for 

a specific problem. 

Cii).. to conatruct a good and efficient: finite 

element model, experience and judgement are 

needed. 

(iii) a large computer is essential for large structures. 

(iv) input and output may be large and tedious. 

In the following section a brief outline of the 

process will be presented. 

3.2.2 Outline of the Finite Elements Process 
  

When applying the finite element method, two phases 

are to be considered. These phases consist of studying 

the individual elements and assemblages of the elements. 

In the following section the various steps involved when 

the finite element method is applied to stress analysis © 

problems. The method can be conveniently summarised into 

five essential steps; for the so-called displacement or 

stiffness formulation, these are as follows (see Ref. (19)). 

(i) Definition of the Finite Element Mesh 
  

At this step, the continuum is subdivided into 

subregions or finite elements. Each element is connected 

-34-



to the next through node points at its boundary; the 

nodes are numbered and referenced to a co-ordinate origin. 

Depending on the nature of the problem, such elements 

can be one, two or three dimensional. 

Bar type elements (Fig. 3.1) are appropriate when 

the geometry and dependent variables, such as, displacement 

can all be expressed in terms of one independent co-ordinate. 

This co-ordinate is measured along the axis of the element. 

In case of two-dimensional problems (Fig. 3.2) the 

element usually takes the form of a triangle or quadrilateral. 

The general three-dimensional solid (Fig. 3.3) may be 

divided-up into tetrahedron or more general shapes, while 

if the solid enjoys axial symmetry in its geometry, the 

ring type elements of Fig. 3.4 may be used. As a general 

guide, the element density is increased in areas of rapid 

stress changes and, conversely, reduced in areas of 

nearly uniform stress. 

Cit) Selection of the Displacement Model 
  

In the finite element method the assumed element 

behaviour is governed by a displacement function. These 

functions are approximate and chosen to define uniquely 

the displacement field within the element in terms of 

its nodal displacements. The simple functions 

representing the approximate displacements are variously
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called displacement models, functions, fields, patterns, 

or shape functions. The displacement functions are 

commonly assumed in a polynomial form. The degree of the 

polynomial governs the ability of the element to 

approximate the true displacement field. The simplest 

form for the displacement of an element is a linear function, 

and higher order elements may be used for improved accuracy 

in any particular problem (see Ref.(20) )-. Usually the 

same element formulation is used throughout the 

discretisation process, but it is possible to mix element 

types in order to gain a more efficient approximation 

to the real structure. The choice of a suitable 

displacement function, which limits the infinite degree 

of freedom of the system can be very difficult. Asa 

rule, the solution converges to the true one for the 

structure as the number of elements is successfully 

increased but a true minimisation of the potential energy 

never be reached, irrespective of the fineness of the 

subdivision. To ensure this convergence, the displacement 

function must satisfy the following convergence 

requirements (See Ref. (19) ): 

Ci) The displacement function must be continuous 

within the element, and between the adjacent 

elements, i.e, no opening or overlaps must be 

implied. 

-38-



(ii) The displacement function must include the 

rigid body displacement of the element. This 

condition implies that all the points in the 

element should experience the same displacement. 

(iii) The displacement function should allow for all 

the states of uniform strain within the element. 

This is a necessary condition, because if the 

body is imagined to be divided into smaller 

and smaller elements, the strain state of each 

of the infinitesimal elements approaches a 

constant value, 

The starting point for the process is to assume a 

displacement pattern for an arbitrary element of the 

solid: 

{q}° = [N] fa}€ PED) 

where {q}©° is the displacement field within the elements 

whereas tq}e is a vector of element nodal displacements; 

and [N] is the shape function. 

(iii) Formulating the Discrete Stiffness Equations 

The strains at any point within the element may be 

expressed in terms of the element nodal displacements. 

This can be done by a suitable differentiation of the 

displacements defined by equation (3.2), so that: 
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{e}° = [9] [N] fale 

or 

(=) 

{e}° = [BI a oe 

where {c}© is the element strain vector; 

[a] is a matrix of differential operators; and 

[B] contains the appropriate derivatives of [N]. 

The strain energy stored in a typical element is (see 

Ref.(19)): 

oe et e 
Btipubicntel [Dl ieldvol Std 

vol 

substituting from equation (3.2), 

ue = $ta}S*cf [B]* P] [B]avo2){at° 
: oO 

or 

° 

1 t ue = Stade” [k] *ta}® 

The matrix 

[x]? =f [B] °[D] [B] avo1 oa 

is the element stiffness matrix. 
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Now, the total strain energy stored in the system 

To 

2 e ia 2.0 a oes 

where n is the total number of elements in the assemblage. 

If all the element nodal displacements are denoted 

by: 

heen 
OQ 

fy = tayo fq}? 3 3) q q O Oo ee ° - 

3 
ta} 

and the element stiffness matrices are displayed as: 

Ll essen 
~ [k] 

pel Sane) 

[k]* 

The equation (3.5) can be written as: 

U = 4% {q}*[k] {a} os en 

Because the displacements are matched at the nodes; a 

compatible or connection matrix [C]is formed which expresses 

the necessary compatibility between the locally and 

globally measured displacements, therefore: 
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tat ee ee a (3.11) 

where {qi} is the vector of system generalised co-ordinates. 

Equation (3.10) can be expressed in terms of {q}. 

That tac 

v = # ta}*[c]* [kl [c] fa) 

or 

ui 5 {q}* [kK] {aq} oe a 

where [K] is the assemblage or system stiffness matrix. 

In order to establish the stiffness equilibrium 

equations, the total potential of the applied loads must 

be determined. If the external applied loads are denoted 

- 2 N : . 2 N 
by (Q°,-.Q5,...,Q°) corresponding to (q', @,.-.,q4 ), then 

eee (3.13) 

where N is the total number of nodal degress of freedom 

that is, the total number of equations to be solved for the 

assemblage. The total potential energy in the discrete 

system is then, 

v = sfa}*[K]{a} - ta}*{Qh ie esc: 
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Now, the principle of minimum potential energy to 

the assemblage is applied, i.e. for equilibrium 6éV=0, 

so that: 

{6q}*([K]{q} - {Q}) = 0 

But 6q are arbitrary so that: 

[k]{aq} = {Q} Sas 

These are the required equilibrium equations for the 

'assembled' approximate system. 

(iv) Solution of the Stiffness Equations 
  

The solution of matrix equation (3.15) is a standard 

procedure in matrix algebra. A number of equation solving 

routines, usually based on the Gaussian elimination or 

Cholesky decomposition processes, are available. [In 

order to obtain an acceptable representation of the 

continuum system, the number of unknowns resulting from 

the discretisation needs to be very large. 

As a consequence, the solution cannot be contemplated 

without the aid of a high speed digital computer. The 

efficient solving routines take into account the 

symmetric, banded nature of the stiffness matrix in 

order to reduce the storage requirements demanded of the 

computer. 
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(v) Determining Element Strains and Stresses: 

Once the nodal displacements have been determined 

the element strains can be calculated from the 

displacement model using the strain-displacement relations. 

The stresses are then obtained by means of Hooke's law. 

If the strains are calculated from equation (3.3) 

and the material obeys Hooke's law, the stress vector 

{o} may then be written as follows: 

fo on [Bo he i uel Sud) 

Since the equilibrium conditions are only satisfied in 

some average overall manner and not point by point: at 

particular stations within an element and on inter-element 

boundaries. Consequently, the accuracy of the stresses 

at a particular node may be improved by taking the 

average of the individual element stresses at that node. 

3.3.3 Convergence and the Patch Test 

As mentioned in Section 3.2.2, for convergence to 

exact solution, the assumed displacements for an element 

should be continuous within the element and across the 

element boundaries. In addition, the rigid bady motion 

needs to be included and the displacement field must be 

able to accommodate the state of constant strain. The 
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reason for this is that any real problems, when idealised 

by a very fine mesh of elements over any assemblage of 

few neighbouring elements, experiences sensibly uniform 

stress in the correct solution. However, if the necessary 

condition of inter-element continuity is not met fully, 

these elements may not necessarily reproduce uniform 

strain conditions, even though the individual elements 

can give constant strains, If these classical 

convergence requirements nea fully met, the element is 

known as a conforming one. [If displacement discontinuity 

exists along the element boundaries, the element is known : 

as a non-conforming element. An example is the non- 

conforming bending triangle Ref. (21) in which an 

arbitrary assemblage of elements fail to reproduce 

constant strain conditions while the individual element 

can satisfy the constant strain criterion. In practice, 

some types of non-conforming finite elements have been 

found acceptable in engineering applications. Among 

these are: 

(i) Elements that do not meet the classical 

requirements, i.e. non-conforming elements. 

(ii) Elements that contain signularities. 

(iii) Elements in which the energy is approximately 

integrated. 

(iv) Elements with no clear physical basis. 
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Irons Ref. (22 ) has recently established a test 

to guarantee the convergence for any type of element. 

This is called Patch Test. A necessary and sufficient 

condition for convergence is that the element is required 

to pass the patch test. This test involves prescribing 

displacements to the external nodes of a small patch of 

elements which corresponds to a known, but arbitrary state 

of constant strains. If the free nodes voluntarily take-up 

the assumed displacements giving constant strains at 

every point within the patch, the element converges 

in the limit. 

In conclusion, if a non-conforming element ‘passes 

the patch test, it can be used with confidence and 

convergence can be achieved. A comprehensive study of 

this test is given in Refs, (22, 23, 24) : 
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3.4 THIN SHELL ELEMENTS 
  

3.4.1. Introduction 

Thin shells provide some of the more difficult 

problems that have been attempted by finite element 

analysis. A number of shell elements have been found 

in the literature, as will be illustrated in this 

section. In the selection of an element to solve shell 

problems, it is necessary to consider the geometry and 

symmetry of the structures, the type of behaviour to be 

studied and the computing facilities which are available. 

There are many different elements dependent on shell 

theory, which can lead to very complex formulations. 

Each element has its own advantages and disadvantages. 

The following section deals with the literature on thin 

shell elements, later the selection of one of these 

elements, suitable for discretisation of thin plate 

and shell structures having intersections similar to 

those junctions found between blades, backsheet and 

conesheet of thin rotating impellers will be described. 

There are two main approaches to thin shell elements; 

(a) Flat shell elements. 

(b) Curved shell elements, 
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3.4.2 Flat Shell Elements 
  

This type of formulation has been used by various 

researchers to model shells due to its simplicity. In 

this approach Ref, (20) the curved surface is 

approximated by an assemblage of flat elements, such as 

plane stress, to represent the membrane stiffness of 

the shell and plate bending elements to represent 

flexure. 

Fig. 3.5(c) shows a triangular element formulated 

by superposition of stretching behaviour (Fig. 3.5(a)) 

and bending behaviour (Fig. 3.5(b)). 

A iA si . 4. 
: te Ss A - 7 — — + + + fot ae oe 

Stretching Bending Superposition to 
represent shell 

behaviour 

(a) (b) (c) 

Pag. 3.2 Flat shell element 
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Flat rectangular and quadrilateral elements are 

restricted in use, but they were the earliest used for 

analysing cylindrical shell roofs, Ref. (25); cylindrical 

shapes can be represented well by these elements. In 

the idealisation of an arbitrary shell into flat elements 

only triangular elements can be used. Flat elements 

have the capability of rigid body motion without strain. 

Their mathematical formulation is found in Ref. (20) . 

These elements have in common the disadvantage of uncoupled 

representation of membrane and bending behaviour. For 

a curved geometry idealisation it is necessary to 

construct a fine mesh in order to achieve a reasonable 

degree of accuracy. Among these, flat triangular elements 

are: 

(i) The Carr triangle Ref.(26 ) withnine degrees 

of freedom; cubic interpolation has been used 

for both membrane and bending behaviours. 

(ii) The Chu and Schnobrich triangle “Ref. (27. ), 

This uses quadratic in-plane displacement functions, 

together with quartic bending displacement functions 

Ref. (21 ), The element has three corner nodes 

and three midside nodes, The degrees of freedom 

‘Ow ow ae 
at corner nodes are u, V,.¥, aS = and the midside 

OW 
nodes are u,V,W, Sn



(iii) Dawe Ref. (28 ) used a facet element in the 

analysis of shells. The element is of triangular 

plane form and it’s assumed displacement field 

is such that the membrane stresses and the 

bending moments are uniform within the elements. 

The twelve degrees of freedom per element are three 

displacement components u, v and w at each corner 

node, plus the value of the slope normal to the 

edge, = at the midside of each edge. 

(iv) Mervyn, et.al. “Ref. (29 ) has formulated the 

18 degrees of freedom flat triangular shell 

element. A three node stress triangle with 

three degrees of freedom per node is used 

(in-plane displacements and the in-plane 

rotation). The plane stress triangle is combined 

with the well-known 9 parameter bending triangle. 

The final element stiffness matrix is (18x18). 

(v) Klaus and Lee-Wing Ref (30) have developed a simple 

flat three-node triangular shell element for linear 

and non-linear analysis of general shell structures, 

The element stiffness matrix with six degrees 

of freedom per node is obtained by superimposing 

its bending and membrane stiffness matrices. 

In conclusion, if these elements are used on shells 

of high curvature, the number of elements required for 

discretisation should be high. 
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3.4.3 Curved Shell Elements 

These types of elements generally have a complex 

formulation, but this means that fewer elements are 

needed accurately to model a shell than in the case of 

flat type elements. Curved shell elements, based on 

the assumption of different thin-shell theories, have 

been developed as an attempt to overcome the disadvantages 

of flat elements. The curved shell elements are either: 

(a) cylindrical shell elements 

or 

(b) doubly curved shells and doubly curved shallow 

elements. 

(a) Cylindrical Shell Elements 

The curved cylindrical shell elements have heen 

investigated by many researchers, which has resulted 

in a great many papers. They haye been written, to take 

into account the type of geometric symmetry existing in 

cylindrical shells.. Among these are: 

(i) Connor and Brebbia ‘Ref. (31) have formulated a simple 

cylindrical shell element. The four term polynomial 

(1 x y xy) is chosen to describe the membrane displacement, 

while the radial displacement is described by a twenty-—term 

A 38 38 2 3 23 
polynomial (1 x y x2 RY YO SAY By FY RTy xy°). The 

nodal degrees of freedom are five at each node, namely, 

ei



three displacements u, Vv, w and two rotations Woe and 

CH, -= ) where R is the shell radius, The element has 

20 d.o.f. and is a non-conforming element. It has proved 

to be the simplest cylindrical shell curved element. 

(ii) Gallagher Ref.(32 ) gave a 24 d.o.f. conforming 

element similar to the one suggested by Ref.(31), but has 

the following term added to w (xy? x°y" x“y* x°y?) and 

the additional nodal d.o.f. Wxy* 

(iii) Cantin and Clough  Ref.,(33 ) have modified the 

polynomial displacement used by Gallagher to reproduce 

the rigid-body modes of the element. The element has 

been modified so that all rigid-body displacements are 

explicitly represented. Trigonometric terms are 

introduced into the shape function, as well as the 

coupling between expressions for u, v- and w. The element 

is a conforming one with 24 d.o.f. having the same six 

nodal d.o.f. as the Gallagher element. 

(iv) Olsen and Lindberg Ref. (34) have formulated the 

stiffness matrix for a four-sided cylindrical shell 

element using Love's strain-displacement equations Ref.(35). 

The twelye-term polynomial (1 x y x? xy y* x° x@y xy” y 

xy xy”) has been chosen to describe the radial displacement 

w, While the membrane displacements are described by 

U-Or VS, =z, ¥; Sy, ye, xy", y°, xy’. The displacement 

oes
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parameters at each node are: U,v,w, 35, 7 oe and 

ow 
Ov 

but full compatibility is not, 

The rigid body mode requirements are satisfied, 

(v) Giannini and Miles, ‘Ref. (36) have derived the stiffness 

equations for curved elements of orthotropic axi-symmetric 

thin shells. In:tmeir analysis a stiffness matrix was 

derived for an element defined by arbitrary parametric 

equations. Polynomials of any degree are included in 

the displacement field approximation. 

(vi) Henshell et al. Ref. (37) have formulated a 

cylindrical hybrid shell element by assuming a fourteen- 

term opitmum stress function within the element. Bilinear 

polynomials are used for u and v and the Birkhoff, et al 

Ref. (38) polynomial (modified so as to include rigid 

body modes) has been used forw. 

(vy Fonder Ref. (39) has developed a 48 d.o.f. element 

using the higher-order polynomials to represent rigid-body 

displacements. This gives a satisfactory approximation 

to rigid body displacements with the modification carried 

out by Ref. (33) . Fonder has taken bicubic interpolation 

polynomials for all the curvilinear displacements u, v andw, 

which leads to 48 d,o.f. per element with twelve unknown 

displacements at four corners, This element has proved 

able to ensure continuity of displacement, their first 

derivatives and some of their second derivatives. 
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tb) Doubly Curved Shell Elements and Doubly Curved 

Shallow Elements 

In the following section, a review of the elements 

published to deal with types of thin doubly curved shell 

elements and doubly curved shallow elements is introduced. 

Extensive literature on this subject is available, It 

includes 

(i) 2 wey St al. Ret. (40 ) have described a curved 

quadrilateral shell element with transverse shear, The 

displacement field is represented by Hermition polynomials 

(values and their first derivatives) coupled with the 

isoparametric concept Ref, (41), Rigid body mode 

requirements are not satisfied by the shell theory used. 

(ii) . Greene, et al, Ref. (42 ) have described an 

approach to shell analysis based on the generalised 

variational principle Ref. (43 ). The displacements 

are represented by cubic polynomials, 

Gb i & | Remeaer. et al. Ref. (44 ) have derived a linear 

theory ee thin shells, which includes transverse shear 

deformation in terms of the middle surface displacements 

and the rotation of the normal to the middle surface. 

These displacement parameters, for a curvilinear 

quadrilateral element, are then represented by simple 
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polynomials in the curvilinear surface co-ordinates. 

Continuity of displacement is imposed at the four nodes 

only. 

(iv) Argyris and Scharpf Ref, (45 ) have formulated 

the SHEBA element. The formulation is based on a complete 

quintic polynomial (21 terms each) for all three 

displacement components, [Inter-element continuity is 

assured by the use of midside nodes having derivatives 

at three nodes as degrees of freedom, The corner nodes 

have 18 degrees of freedom each: three translational 

displacements, all six of the first derivatives and all 

nine of the second derivatives, Results in Ref. (46) 

showed that this element is reliable to produce accurate 

solutions, 

(v). The super-—parametric quadratic shell elements of 

Ahmed Ref, (47 ) as modified by Too Ref. (48 ), are 

efficient in representing both thin and thick plates 

" and shells, 

Cyvi) Cowper, et al. Ref. (49) have developed a 

conforming shallow shell finite element of arbitrary 

triangular shape, The element incorporates 36 generalised 

co-ordinates, namely, the displacement, w, and its first 

and second derivatives as well as the tangential displacements 

u, v and their first derivatives at each vertex, The 

a



displacement function for the normal deflection, w, of 

the shell is taken as a polynomial (21 terms) while 

the tangential displacements, u and v for the shell are 

each expressed as cubic polynomials (20 terms each). 

The final element has 36 d.o.f., with 12 at each of 

u Vi the corner nodes; these consist of u, u Vi; Ves y? sc v2 

WwW Ww. BNC we). W, Yo ‘Ky’? “xx yy y? 

(vii) Dupis and Goel Ref. (84) have used a triangular 

thin shell finite element. The formulation satisfies 

all necessary requirements for convergence of the 

potential energy. Rational functions are used to define 

the displacement functions (see Ref,(20) ). The rigid 

body motion is satisfied, 

(viii) Ernest Ref, (50) has examined some aspects of 

the developments of a curved triangular shell element, 

which is capable of describing the general non-linear 

theory of thin elastic shells, A correct description of 

the rigid hody displacements is given, 

(ix) Mohr Ref. (51) has developed a doubly curved 

isoparametric triangular shell element with six nodes. 

Quadratic interpolation is applied to the freedoms u, v, 

a and = at each node, Consequently, the element 

has 30 freedoms, 

WwW 
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(x) Sander Ref. (52) . ° has developed a family of 

quadrilateral finite elements allowing for variable 

curvature. It is reported that in deep shell elements 

a complex formulatiaqn of the shell theory exists: In 

particular it is not easy to preserye the continuity of 

both the displacements and the rotation of the middle 

surface. Sander's elements are conforming elements and 

each element contains three displacement components and 

two rotation components. in each corner, Along the 

interface, a tangential rotation is always present. 

It is recommended that these elements are used for the 

study of shells with small curvature radii. 

(xi) Recently, Irons Ref. (53) has developed the 

semilocf shell element formulated on the basis of curved 

shell theory, The semiloof shell element has nodal 

parameters selected in such away as to simplify the 

treatment of problems with multiple junctions, It is 

essentially a non-conforming element incorporating 

discrete Kirchoff assumptions. Since this element is a 

non-conforming one, it owes its usefulness to the Patch 

Test. This element passes the Patch Test Ref. (53 ) 

therefore, the convergence is achieved. The rigid body 

motions are satisfied exactly. 
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3.5 CLOSING REMARKS 

In the present work, the finite element method was 

chosen as a tool to predict the stress levels in 

rotating fan impellers, since it is the most powerful 

method to deal with such complicated structures, The 

element chosen for discretisation is the semiloof shell 

element, because (as explained in Chapter Two) the 

centrifugal fan impellers are essentially thin shells 

with sharp corners having junctions between the blades 

and sheets (Backsheet and Conesheet). All these 

problems can be overcome by using this element as 

recommended by [rons. 

In the next chapter, the mathematical formulation 

of the semiloof shell element will be summarised in 

order to aid an account of the development of a computer 

program implemented in desk top computer HP9845B. This 

program is designed to solve for displacements, strains 

and stresses for general thin plate and shell structures 

using the semiloof shell element. 
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CHAPTER FOUR 

SEMILOOF SHELL ELEMENT IN THE 

ANALYSIS OF THIN PLATE AND SHELL 

STRUCTURES 
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4,1 INTRODUCTION 

The finite element method described in Chapter Three 

has become a standard powerful tool in the analysis of 

thin plate and shell structures, to find their stresses 

and displacements. This is because the available 

analytical solutions to such structural problems are 

limited and do not apply to arbitrary shapes, load 

conditions, irregular stiffening, support conditions 

and many other practical problems, In contrast the 

finite element technique can deal with the above 

requirements efficiently. 

This technique has been used in the analysis of 

thin plate and shell structures such as the work 

involving aerospace structural design and naval 

architecture, The stress analysis of such structures 

has been subjected to large research activities, since 

the early days of the finite element method, by virtue 

of the specific needs of aerospace structural design, 

Different discretisation approaches were presented (see 

Refs.(53,54) ) such as the method involving flat, 

isoparametric and curved thin shell elements. [In this 

project the semiloof shell element has been chosen, since 

this element has nodal parameters which are selected 

to simplify the treatment of the problem with multiple 

junctions and intersection situations, 
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A description of the semiloof shell element is given 

here. The computer programs were developed using this 

element to solve the stresses and displacements in thin 

plate and shell structures. The plate is considered 

as a shell with zero curvature. Therefore, all the 

explanations are related to shell elements. 

4,2 THEORY OF THE SEMILOOF SHELL ELEMENT 

4.9.1) Introcuccioen 

A large proportion of plate and shell structures 

are thin with sharp corners and multiple junction regions. 

The semiloof shéll element was developed by B. Irons(53) 

to meet the practical needs of analysing such structures, 

This element is a non-conforming one which has passed 

the Patch Test. Kirchhoff assumptions of shell theory, 

that normals to the mid-surface plane remain normal in 

deformation, are made at the integration points. The 

versatility of the most familiar isoparametric elements 

have been passed on to semiloof one, The element was 

developed as a direct stiffness displacement element. 

In fact, it is the result of a gradual process beginning 

at the isoparametric elements developed by Ergatoudis(55) 

and a membrane and membrane stack elements, developed by 

Ahmad (47) which is turn was derived from the solid 

elements, An improvement to this model was achieved by 
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the use of reduced integration see Ref.( 56) which 

made the element more economical, since it could be 

used to model thin shells. It has been used by various 

researchers due to its generality, type of formulation 

and excellent performance,it is now regarded as one of 

the most efficient elements for engineering shell and 

plate applications, Amongst those investigators, 

Martins Ref (57) showed that the semiloof shell element 

is extremely competitive for the solution of structural 

stability and natural vibration problems. Javaherian et al.(58) 

have extended the use of the element to include large 

deflection and plastic deformation effects, while 

Martins Ref (59) has extended the use of this element to 

nonlinear situations in which elastic-plastic or large 

deflection effects are present, Denis et al, Ref (60) 

used the element for the solution of elastic-viscoplastic 

and elasto-plastic large deformation thin plate and shell 

problems. It can be concluded that this versatile 

element is one of the most suitable elements to deal with 

thin engineering structures, Its application to the solution 

of structural problems follows the same general procedure 

outlined in Chapter 3. In the following section, the 

semiloof shell element theory will be discussed while 

the relevant matrix equations are described in a form 

suitable to be implemented in the computer programs 

the development of which is described in Section 4.3, 
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The discussion presented here covers the quadrilateral 

semiloof shell only, but both quadrilateral and triangular. 

versions have been implemented in the computer programs. 

4.2.2 Nodal Configuration 
  

Two versions of the semiloof shell element are 

available: triangular with three corner nodes and three 

midside nodes and quadrilateral with four corner nodes 

and four midside nodes. The midside node lies on the 

perpendicular bisector plane of the two end nodes 

allowing parabolically curved edges. Topology is 

ordered by starting at any corner node and progressing 

round the element, as shown in Figs. 4.1(a) and ACD). 

This order defines the direction of the local Z-coordinates 

using a right hand screw rule. The element degrees of 

freedom are: three displacements at each corner and 

midside node; two rotations normal to the side at two 

Bf 

2¥ 3 

side length from the middle of the side, these nodes 

points along each side, positioned at a distant x 

  

are called loof nodes. This gives a total of 32 d.o.f. 

for a quadrilateral and 24 for a triangular element. 

4.2.3 Shape Function Polynomials 

The semiloof shell element adopts the well-known 

isoparametric 8-noded parabolic model, The introduction 
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Fig.4.1 
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Semiloof shell element. (a) Quadrilateral 

type (32. d.o.£). ¢h) Triangular type. (24 .d.0.£) 
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of the normal rotation variables at the loof nodes on 

the element periphery is to maintain the cl_continuity. 

The following shape functions in terms of curvilinear 

coordinate system ( &,n ) are used for quadrilateral 

elements (6. = &, 0 i n) (See Fig. 4.2) Se oe 

(a) For corner nodes 

aad: 
\ qi + gc4 + noite, tel 1) ae 

(b) For midside nodes 

1 2 a 
New ee Ol oe tk tN), &, = 0 . 

Il oO Meee (i gd + 8), fy wee 

(c) For loof nodes; 

The shape function of the loof nodes L(&,n) is a 

polynomial with 8 terms, which is given in Ref. (58) 

ie LY = 

w
 

Eso 24 eo 8 

(4.1) 

(4.2) 

(4.3) 

g(367-n7)+ g[3E,(1-n* )+3ng (36 #ng-1+ 3g-666°-n*)}] 

(4.4) 

ae 3 (3n7=6")+ §[3n7(1-67) +86 ,¢8n- ng 1+ FaNo(Ng-e | 

=O9— 
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(d) Central node: the bubble function (Fig. 4.3) 

Nee Gi eee 

The consideration of this shape function has been 

given in Ref.(61). 

4.2.4 In Plane Behaviour 
  

Fig. 4.4 shows a quadrilateral semiloof shell element, 

relative to global axes (0,x,y,z), and a general point 

p with local coordinates X, Y, Z. Describing the in-plane 

behaviour means determination of the displacement of 

a particular point contained in a plane tangent to the 

element. A set of local axes comprises one axis normal 

to the surface, while the other two are contained in a 

plane tangent to the element at a point of interest. The 

displacement with respect to local axes may be found by 

determinating the displacements in the global axes and 

projecting them on the directions of the local axes. 

Define the displacements in global axes as follows: 

u displacement in x direction 

{d} = “v = displacement in y direction )... (4.7) 

w displacement in z direction 
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conventional 
nodes 1 

  

  
  

>x 

Fig.4.2 Nodal configuration of the 

semiloof shell element 

(quadrilateral type) 

  

  

  

Fig.4.3 The bubble function 

N.B The bubble function Nn? had to be added in order 

that the patch test be satisfied. See Ref.(61) fora 

discussion relating to the quadrilateral semiloof 

shell element. 
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These displacements are interpolated inside the element. 

using the shape functions defined by equations (4.1 - 4.3) 

and the shape function for the central node defined by 

equation (4.6) as follows: 

1 2 9 
= u,N +; USN Feeeeetlg N Uo (4) 

- 1 2 9 
v= v4N + VON ee +VoN Be CaO) 

1 2 9 
WwW Soe w,N ote WoN +eeeee tWoN eoaad (4.10) 

If a matrix of shape functions |N| is defined by the 

following expression: 

GG Ns Oo ww 6 6 

ee 0 SN or 0 NS oO aries 0s NO 

SO Ne Oo OOo 

bee bias) 
then, the displacements with respect to global axes may 

be written in a simple matrix equation: 

{d} = [N]{6}° ee i ye 

  
  

Fig 4.4 
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along at corner node 1 

along at corner node 1 

along at corner. node 1 

along at midside node 2 

along at midside node 2 

along at midside node 2 

where {6}° = 

Ug displ. along at central node 9 

Vo displ. along at central node 9 

Wg - displ. along at central node 9 

oo e (4.13) 

For convenience it is defined: 

sae, rotation normal to the side at loof node 1 

foe = et = |) rotation normal to the side at loof node 2 

92 rotation along € at the central node 9 

XZ 

oe CS. ee 

ey rotation along the side at the loof node 1 

{e5,}= BS, = Jrotation along the side at the loof node 2 

bog rotation along the n at the central node 9 
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The displacements, U and V in the directions of the local 

axes X and Y respectively may be obtained as follows: 

u = (xi ia} ae) 

{y}*{a} oo ha <i
 | 

The vectors {X}, {Y} together with {Z} Fig. (4.4) correspond 

a set of local axes one being normal to the surface, another 

which is oriented along the €&-direction and a EL IG 

defined by vector multiplication to give an orthogonal 

system, 

If a point p(x,y,z) of the mid-surface of the element 

is considered, the vectors X, ¥ and Z may be written in 

terms of non-dimensional parameters (&,n ) as follows: 

+ oP , 2p a ee 
eae Sy X = 3F: Y = XxZ 

These vectors are normalised to give X, Y and Z (see Ref.(61)),. 

Xy Yy 

h = = = = where X = {xX} Xy eo ae ANF ¥y 

Xz x; 

e9oa0 (4.18) 

2x 

and Loe oe ee 

2, 

Ley.



To define the membrane strains, the derivatives of 

the membrane displacements have to be found, i.e, 

OW t: ron 8 
b> aes {xX} ae] (6 } 

  

ay = txi* [6% 

sae (4, EQ9 

a t ON e 
oo 

oy t ran e 
aren eee! 

He 9 
oN oN 

here [24 = . aN" - aNY 4g wherein 3S 3x 
- 9 

oN oN 
noe ere 

i. (4.20) 

Similarly 

r i 9 
oN oN 
woe Be oO 

1 9 
oN ON oN 
el! Os ae. 0 ae 

i 9 
oN oN 
ee ee 

(4,21) 
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4,2.5 Out-Of-Plane Behaviour 

As far as out-of-plane behaviour is concerned, it 

is of interest to find the displacement, W, at each point 

along the normal to the element surface (i.e. the displacement 

along the local axis 2). 

As has been done for U and V in the previous section, 

here, the {d} is projected on to Z in order to obtain 

the displacement, W, as follows: 

w = {z}*{a} 

or using (4.12) 

w= (z}* (NJ {6°} vee C4022) 

In order to write the bending strain expressions for 

this element, it is necessary to obtain the contribution 

of the loof nodes and the corner midside nodes as follows: 

The first derivative of the out-of-plane displacement 

of a particular point p(x,y,z) of the element can he 

written as: 

Q n 
OU dU dU 

sy Cyd tap) 
oe 8 (4,23) 

g n 
OV = oV oV 

ay Gay) + Coy) 
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where 

& represents the effect of the rotations at the loof 

nodes and central node, and 

n represents the effect of the displacement at the 

corner and midside nodes, 

A comprehensive discussion of the out-of-plane 

behaviour is available in Ref.( 61 ),. However, in this 

section the equations are only dealt with briefly in order 

to show the expressions which are sued in deriving the 

relation between strain and element nodal displacements. 

To define the bending behaviour in the semiloof shell 

element, a vector thickness at the loof nodes and central 

node, j, needs to be defined. 

Vector thickness is specified as 

qT = 9 2 oo On e4y 

where tJ is the scalar shell thickness at node Sie 

In addition, the rotation and the slope along the 

edge are to be defingd (see Fig. 4.2). 
> 

Ry 

ah pas Cee 
R = a xY = RB: e209 8 

ry’ 

mJ 
Ry 

(4,25) 
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and. 8° = t°-y? ={¢§ ee 4S) 

As mentioned earlier, the derivative a has two contributions 

one from the displacements {6}°; the other due to the 

rotations eee These are respectively: 

Gy) = = l-Ttx)" E5gl- T(x)" [3] ] (83° ie (28D) 

20) * = 2 cay" fal fu] ced, } + = (8) i) teG,) Sees 

where [Lu] is a (9,9) diagonal matrix with shape functions 

for the 8 loof nodes on the element boundary and the 

central loof node: 

eo Oat 

O oe O 

1.603 Gh =o. O pe Cea 

a3 

L° L is       
and where [R] and [S] represent two (3x9) matrice, 

with (x,y,z) components: 
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RE R? eee2008 e200 Re 
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ee ee Be 
x ~ 34 
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ee 
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lo2 7) and i657) were defined in equations (4.14) and (4.15). 

The derivatives required to define the bending behaviour 

are given by: 

2 aR QT 
oe oT ryt aN 
Boz = E> Bye RT - og? (8) Gg 

aT 
+ aye (2 * RR HOo}+ S(x}* [R] [Sy] (0g,) 

- = (x}* [s] [Se] {e¢,) cea C4, 82) 

2 gT oT 

dyoz = = f- oy? (HS) - ae 8)" BR] + or 

czy" Ryo} + Six)" TR] (G1 (683+ 

1 5 
=(x}"[s] [SF] (e¢y) oy Cane) 
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xo = dt wv) RT - atte 

awe tz}* AB] i6°)+ Sev) IR] BGI (eX) 

=t¥}" [s] (23 q! {8¥z, ea 

ae oT eon ate xt oN t aN 
soz 7 eo ae fe bey] > ay? SY ley 

aye (2) Cy} 6°)+ = ty} [RL EA ey, 

+ = ty)" [8] Bel toy,) age ae) 

Each of the equations (4.32 - 4.35) contains the 

initial 45 d.o.f. of the element. The displacements 

at the centre are combined to create a displacement 

normal to the element giving the unconstrained element 

43 0.6.1. 

4.2.6 Application of Constraints 

As mentioned in the previous section, the number 

of degrees of freedom for the unconstrained semiloof 

shell element (quadrilateral type) is 43 d.o.f. At 

this stage 11 variables are eliminated to give a final 

total of 32 d.0.2. for the element. . In’ Tact, the most 

are



critical stage in the preparation of the semiloof shell 

element is the definition and application of shear 

constraints. The application of these constraints is 

treated briefly in order to obtain the unconstrained 

semiloof shell element. These constraints are as 

follows: (for details see Ref.(62)). 

(i). Shear strain Yyz caused by the rotation 857 to be 

zero at the loof nodes, this provides 8 constraints. 

(ii) The area integrals 

f X..y.da = [ Y..y.dA = 0 
A Cc A Cc 

“aw 

where Xo and io represent unit vectors at the centre 

(§=n=0) and y=X.V yz + Y.Yyz represent the vector of 

lateral shears. 

(lita { (thickness ) Yxz° d(boundary) = O 

The integral which is carried over the element boundary 

provides another constraint. 

After the application of the above 11 constraints 

the final nodal variables have 24 displacement components 

with respect to the global axes at the corner and midside 

nodes, as well as 8 rotations , Oxg > normal to the edge 

element at each loof node, The application of the shear 

dU aV 
constraints to the equations (4.19) &, Zyree2e9y) 
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and the equations (4.30) aS cece eas Sm) given them 

in terms of non-constrained degrees of freedom for the 

element. These degrees of freedom can be arranged in 

vector {6} as follows: 

om + 

    
{6} = 9x7 be ONES 

x
 
N
 <
o
~
 

    
The sequence of the degrees of freedom collected in 

vector {é}is shown in Fig, 4.5, 

4,2.7 Strain-Displacement Relations 

The strain-displacement relationships for thin shells 

of general geometry using the semiloof shell element may be 
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Fig.4.5 Evolution of semiloof 
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formed by considering the corresponding relations for 

infinitesimal displacements, The strain components 

can be separated into the in-plane components {e"} and 

the bending terms bei They are given by: 

m dU 

a Ox 

m ov 

2 OY 

m m dU aV E € ao t =o 
fe}={- -} (ME). a( 2P_0- 88 - - - - pe cn a7s 

b b _ 930 
. ox OxXOZ 

b Soo 
oY dYOL 

2 2 b 970 32y 
Exy - (yoz * 3xo7? 

The displacements U and V, with respect to the local 

coordinates system X, Y and Z are set up at every point 

of the shell. For a point at a distance Z from the shell 

midsurface, the contributions due to both membrane and 

bending strains are: 

= om b 
Ey = Ey as Ley 

m b 

éy “ey * Sey te ge 

Exy = €xy + Bes 
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Equation (4.37) may be written as follows: 

m m 

wt eee Ht £6} pes eee 

where {6} is given by equation (4.36) [B™] and [BP] represent 

the strain-displacement matrices for the membrane and 

bending effects respectively. 

The element stiffness matrix [Ke] is then 

t 

[ke] = _f [8] [D][B] vol ces 440) 
Vv 

The elasticity matrix (D], which includes both a membrane 

and bending part, is defined by: 

  

D O 

ID} = |----Fr--- 3 (e-21) 

Oe oke DP 
| 

where 
dl: Vv O 

m E [p"] = gered sy (eae) 
yey ae 

oS 

and 
i Vv 

oo 
(p°] = — Vv i O 

ToC uy) —. 

a 
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4,2,8 Numerical Integration 

Equation (4.40) should be integrated numerically, 

using a five-point rule for the quadrilateral element, 

as suggested by Irons. 

This rule is as follows: 

LJ 4 
{ [0 o€E,n)d&dn = 0,26(0,0) + 0.95 £ $(+0, 592348878 

ied ade 

+0, 592348878) Poet 4 40) 

4.2.9 Element Strains and Stresses 
  

As will be seen later, the element strains and 

stresses are calculated at the integrating points. 

Smoothed nodal stresses may also be obtained for the 

quadrilateral element, Using equation (4.39) to 

obtain the nodal strains, the nodal stresses can then 

be calculated as follows:- 

{o} = [D]fe} a 

where [D] is given by equation (4,41) and {6} is the 

vector of nodal stresses, 
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4,3 DEVELOPMENT OF THE FINITE ELEMENT PROGRAMS 

4.3,1 General Introduction 
  

The work implemented in the programs has been developed 

employing the application of the finite element method 

to analyse the thin shell structures. In thin shell 

structures the effects of bending and in+plane actions 

have been taken into consideration, these are achieved 

by using the semiloof shell element as a discretisation 

element in this work, Equations necessary for 

implementation have been described in Section 4,2. Thin 

plate structures can be solved as shells with zero curvature, 

The programs include both versions of the semiloof shell 

element (quadrilateral type with 32 d.o.f. and triangular 

type with 24 d.o.f. as shown in Fig. 4.6,. 

  

24 d.o.f 

2 4 

- 
(a) 

1 

Fig 4.6 Versions of the semiloof shell element 

-83-



The formation of the finite element method in 

general leads to a large number of simultaneous equations. 

For a reasonable solution accuracy, a large number of 

elements are required in the mesh subdivision, 

Consequently, the system stiffness matrix [K] requires 

a large storage computer, The overall stiffness matrix 

storage can be minimised as follows: 

Since [x] is symmetric, only the upper or lower 

triangle needs to be generated and stored. In addition, 

since it is banded, only the coefficients of either the 

upper or lower band need to be retained. By using the 

scheme developed by Jennings and Tuff , Ref. (63), the 

overall stiffness may be stored as a one-dimensional 

array, in which only the coefficients between the first 

non-zero terms in any row and diagonal are retained. 

The coefficients of the one-dimensional array are 

referenced to the two-dimensional array through an 

address sequence. This will be explained later, The 

structure of the programs including the implementation 

of the essential steps in the finite element programs 

is presented in the following section, 

These programs are required to have: 

Ci) Taking in the required input data. Such data 

includes the geometry of the structure, support 

conditions, material properties and loading to 

which the structure is subjected. 

SoA



Ga) An analysis of element stiffness matrices. 

(iii) An assembly of the overall stiffness matrix. 

Civ) A solution of the force-displacement matrix equation. 

(v) An evaluation of strains and stresses, 

The programs were required for implementation on the 

Hewlett Packard HP9845B computer. The machine has a 

Read/Write Memory (RAM) of 187060 bytes available, with 

mass storage provided by two tape cartridges drives and 

a single flexible disc unit. Furthermore, it is possibie 

to add another flexible disc unit, in case more mass 

storage is required. In fact, this desk top computer is 

hard-wired to interpret the BASIC language only, so that 

the programs need to be written in this language. 

However, these can be changed into other languages by 

simple alterations. All calculations are performed with 

12-digit precision. 

In the following section, the programs developed in 

order to prepare a stress analysis package for thin plate 

and shell structures using the semiloof shell element 

for the displacements, strains and stresses are described. 

The flow charts for these programs are also presented. 
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4.3.2 Structure of the Developed Programs 
  

As in any systematic programming, the finite 

element programs are divided into various subprograms 

or subroutines. These are written separately and may 

be called either once or several times. 

The programs are developed in a form suitable for 

a desk top computer (Hewlett Packard HP9845B) in such a 

way that there is a master program called SMILOF through 

which the other subprograms are linked whenever they are 

required. This is discussed in Section 4.3, Ok 

The control data, nodal coordinates, nodal connections 

and boundary conditions are all read by subprogram SMINPT 

via the 'Feinput'" subroutine, The address array is 

formed in this subprogram through the "Addarray" 

subroutine. The address sequence is a one-dimensional 

array of length equal to the structure's degrees of 

freedom. This is explained in Section 4.3.2.2. 

In section 4.3.2.3, the elasticity matrix [D] is 

formed in subprogram SMNSTR. When the subroutine "Constrel" 

is called by the main Program. The SMASBL subprogram 

is presented in section 4.3.2.4 which is concerned with 

assembly of the overall stiffness matrix [K]}. 

The external loading, such as concentrated loading, 

is transferred to the load vector {Q} in the subprogram 
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SMLDAP using the subroutine "Loadapp". This is discussed 

in Section 4.3.2.7. The subprogram SMYVBS, presented 

in Section 4.3.2.9, contains the following subroutines: 

(a) "Geombc" : through which the boundary conditions are 

applied. 

(b) "Symvbsol" : This solving subroutine, using cholesky 

decomposition, has been written by Ref. (63) to 

obtain the nodal displacements. 

In using the computer nodal displacements, the related 

subprogram is linked to the main program depending on 

whether the nodal or element strains and stresses are 

required, This is explained in Section 4.3.2.10. An 

overall block diagram showing the broad structure of 

the program is shown in Fig. 4.7. 

AT a



  

Taking in input 

data required to 

the program       

!   
  

Form the element 

stiffness matrice, 

and assemble the 

  overall stiffness matrix   
  

    
Apply the boundary 

conditions       

1 

Solve the system 

  
  

of equations for 

the displacements 

of the nodes and 

the rotations of the 

loof node     
  

    
Compute stress 

    resultants 
  

Fig. 4.7 Block diagram of the program 
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4.3.2.1 ° SMILOF 

This is the master program through which the other 

subprograms are linked, This is done by using the LINK 

statement available in the HP9845B computer, The 

appropriate subroutine is called to perform a specific 

calculation or formulation, and the control variables 

are read via this program. With reference to the flow 

chart, shown in Fig. 4.8, the main steps in program 

SMILOF are as follows: 

1, Dimension of arrays, Some arrays and variables are 

declared as integers in order to save some memory space. 

Two classes of input data are read: type of element 

(Qort) which is either zero for triangular or one for 

quadrilateral and the number of jobs (Njob) to be solved. 

2. A loop is set for the number of jobs to be solved. 

Mesh details of each job are read, where: 

Nelemt = Number of elements 

Nnode -= Number of nodes 

Nsetfs = Number of set of forces 

Princ = Input .1 if principal stresses are required; 

otherwise input QO 

Nskw = Number of skewed nodes 

Nmat = Number of materials 

Prnt = 1,2,3 depending whether the element or nodal 

strains and stresses are required. 
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ll Chil Gravity effect (weight/unit area) 

Ch2 Normal distributed load 

Omg Rotational speed (r.p.m.) 

The rest of the input data are read through the subroutine 

"Peinput", 

Two files are created at this stage (using CREATE 

statement - see Appendix A). N$ file is used to store the 

following data for each integrating point except the 

central point of the element; 

(i) {B]matrix (strain-element nodal displacement 

relationship). 

(ii) Thik (interpolating thickness at the current 

integrating point). 

Girt) [Ro] array (direction cosine of the local axes). 

(iv) fpoin} array (x,y and z coordinate of the current 

integrating point). 

While E$ file is used to store the data mentioned 

above for the element centroids, This is required in 

view of the complicated formulation of the [B] matrix 

for the semiloof shell element and takes significant 

.computing time. These data are stored at the stage 

of formulating the element matrices and retréived at™ 

the stage of calculating the strains and stresses instead 

not.



of formulating them again, 

3, A loop is set for the number of materials, for each 

material number, the elastic properties are read via 

the subroutine "constrel'’. Furthermore, the elasticity 

matrix [C] is formed. 

4, If skewed conditions are found, the required data 

for each skewed node are read. This involves the 

reading of its number and the angle of skew. 

5, Element stiffness matrices are calculated and the 

overall stiffness matrix is assembled. Within the 

subroutine "Assembly", the following subroutines are 

called: 

(a) "“Haloof"; in order to form the strain-element nodal 

displacements relationship for every integrating point 

in each element. 

(b) '"Skewedcon": at this subroutine, the application of 

skewed conditions is considered for each element 

before the assembly of the overall stiffness matrix. 

6, The external loads are applied and transferred to the 

overall load vector {Q}. 

7. The subroutine "skewload"' is called to modify the 

overall load vector for any skewed displacements, 
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8, Boundary conditions are applied using the subroutine 

"Geombc", while the equilibrium equations are solved 

using the "Symvbsql” solving routine, 

9, "Skewload" is recalled in order to convert skewed 

displacements back to the global coordinate system, 

Subsequently, the nodal displacements in global directions 

and the loof rotations are printed. 

10, Element and/or nodal strains and stresses are calculated 

if required. 

Steps 2-10 are repeated for the next job. 

4.3.2.2 Subprogram SMINPT 
  

This contains two subroutines, namely .'Feinput" and 

"Addarray". 

(a) . "Feinput" 

This subroutine is written in order to read and print 

the input data necessary to specify the mesh, Such data 

includes the nodal coordinates and the element nodal 

connections with reference to the flow chart, shown in 

Fig. 4.9, the various steps involved are: 

1, Initialisation of various arrays used later in the 

subroutine, 

2. The reading of the nodal coordinates, 
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Fig. 4.8 Flow Chart of Program SMILOF 
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IF Prnt = 2 OR Prnt 3)>—————— 
    

  

| 
| 

| 
| 
| 
| 
| 
| 
| 

| 

| 
| 
| 

| CREATE 
NS 

| 
| 
| 
| 
| 

| 
| 
| 
| 
| 

| 
| 

| 

  

      

  

| CALL Addarray |    



  

  

  
Subprogram : SMCNSR 

    

  

  

aac ~<For I = Matno TO Nmat> 

| 
| 

| 

| l CALL Constrel ] 

— ee ee ee 

IF Nskew = 0 >———_——_ 

piri SK FOR I = 1 TO Nskw > 

| 
| 

| Nosk(I), Angsk(1) 

c 

  

      
        

  

      

  

Subprogram : SMLDAP 

peanan—m =< POR 1 = 1 TO Nnode> 

| [ CALL Loadapp 

      

  

  

    

  

Subprogram : SMSKLD 

[ CALL Skewload I 

      

      
04.



10   

Subprogram : SMYVBS 

—~< FOR I = 1 to Nnode 5 

| 

: 
| 

| 
| 
| 
Ce hi ieee alo ae ee ew ta 

  

      

CALL Symvbsol 

  

IF Nskw = 0>——_———_—_ 

Subprogram : SMSKLD 

| CALL Skewload I 

Nodal point displacements 

    

  

      

        
and loof rotations 

  

  

  

IF prnt = 1 OR prnt = }——__ 

Subprogram : SMELST 

| CALL Elstrs I 

IF prnt = 2 OR prnt = mae 

[ 
Subprogram : SMNDST 

  

  

      

        
  

  

      

      

— eS ee ee  



3, The reading of element nodal connections and material 

number for each element. 

4, The reading of the thickness for each element. 

5, Formulation of the array {Test}. This array is 

introduced in a size equal to the number of nodes in the 

dugcrenveea structure, A loop is set for the number of 

nodes. Each element in the {Test} array is set 1 for 

each corner node and O for each midside node. 

6. Degrees of freedom are calculated on the basis that 

each corner node has 3 variable displacements (u,v and w) 

in the global directions (x,y and z respectively) and 

each midside node has 5 variable displacements (namely, 

3 displacements u, v and w in the global directions x,y 

2 
and z respectively, and 2 rotations 8x7 and 8x7, at the 

loof nodes on both sides of each midside node). 

7. Specification of the boundary conditions of che. corner 

nodes and midside nodes, i.e. specifying their code (see 

Appendix A). This does not include the specifications 

of the rotations at the loof nodes. 

8. Description of the rotations at the loof nodes: this 

is to specify the rotations on both sides of each midside 

node (see Appendix A). 

9. Nodal coordinates and element nodal connections are 

output. 
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Fig. 4.9 Flowchart of subroutine "Feinput" 
  

SUB Feinput (Xx(*), Yy(*), Zz(*), Ulx(*), Vly(*), Wiz(*), Tht(*), Thikn(*) 

INTEGER Kode(*), Kodel(*), Test(*), Node(*), Nfree, Nnode, Nelemt, Qort) 

( START ) 
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MAT Test = ZER 
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(b) ‘Addarray" 

This subroutine forms the address sequence for the 

1-D stiffness array. It is formed from the input data, 

This is the next subroutine to be accessed. Each 

coefficient in the sequence is equivalent to the sum of 

all previous coefficients in the array, plus the number 

of terms between the first non-zero term and the leading 

diagonal of the stiffness matrix. The address sequence 

locates the position of the diagonal elements within the 

one-dimensional representative of the [K] array, This 

scheme, as mentioned before, has been developed by Ref .(63), 

If [K] is considered (in Fig. 4.10), only either 

the lower or the upper triangle of (K] is-stored by rows 

in a line array. Only those elements from the first 

non-zero elements to the diagonal elements are stored 

for each row. The address sequence is used to locate 

the position of the diagonal elements in this array 

(as will be demonstrated). Moreover, the method of 

storing the matrix and forming the address sequence is 

dealt with here. 

LO 

3 6 

4 2 8 

el 6-60 6 Ti 
O O 5 2 7 

Fig. 4.10 Address Array Sequence 

-101-



According to this technique, only the enclosed area 

of Fig. 4.10 is stored as follows: 

Rio 3 8 8. 1 8, 2 7 

The address sequence locating the position of the diagonal 

elements in this array is as follows: 

BaGCT SG, 7, 10) 

The coefficients of the Add array are determined before 

the assembly of the overall stiffness matrix starts. This 

is done so that the stiffness coefficients can be located 

directly in their proper positions in the one-dimensional 

stiffness array. For this reason the "Addarray" subroutine 

is called before the "Assembly" subroutine. 

In the example of Fig. 4.11, 4 quadrilateral semiloof 

shell elements are used to represent a quarter of a thin 

rotating disc. 

The form of the overall stiffness matrix is shown in 

Fig. 4.12 and is determined by the assembly rules, where 

nodes connected through a common element have a connection 

in the overall stiffness matrix. 
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Fig. 4.11 (2x2) Mesh (quadrilateral semiloof shell element) 

With reference to the flow chart shown in Fig. 4.13, | 

the steps involved are as follows: 

1. The Add array coefficients for the first three rows 

in the overall 2D stiffness matrix are set; first node is 

assumed as a corner node, Initialisation of two integers 

Addtemp and Itemp. 

Addtemp = is the Add array coefficient for the last 

row number in the overall 2D stiffness matrix, 

Itemp = is the last row number in the overall 2D 

stiffness matrix plus one, 
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2. A loop is set to the number of nodes. For the 

second node, each element is searched as to whether it 

contains this node. The elements sharing this node are 

stored in an array [A]. 

3. This step comprises scanning the nodal connections 

of the first element found in step 2 which contains this 

node in order to find the lowest node number connected 

to the current node. This is repeated for all the elements 

of the array [A]. Thus, the smallest node number connected 

to the current node can be found, 

4, The number of columns present in the overall stiffness 

matrix for the current node is calculated. 

5. The address array coefficients are determined for 

the number of columns present in this node, 

Steps 2-5 are repeated for all the nodes, 

4.3.2.3 Subprogram SMCNTR 
  

The construction of the elasticity matrix [D} is 

carried out in this subprogram, For this purpose the 

"Constrel" subroutine was written to generate this 

matrix » which relates the stresses to the strains. 

Isotropic material is used in which the two independent 

elastic constants are read,Modulus of elasticity E, and 

Poisson's ratio v, The coefficients of the elasticity 
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Fig. 4.13 Flow Chart of Subroutine’ Addarray "' 

SUB Addarray (INTEGER Test(*), Nelemt, Nnode, Add(*), Node(*), Qort, Nfree) 

( START ) 

    

      

    

Add(1) =1 
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i Add(3) =6 
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| | 
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Aud 

Addtemp = Add(Itemp + 5-2*Test(I)) 

    Itemp + 5-2*Test(I) i 

  

 



matrix [DT] according to equation (4.41) was programmed. 

The flow chart and the various steps involved in the 

subroutine are as follows: (see Fig. 4.14): 

1. The material number and its elastic constants are 

read. 

2. Print headings, data of elastic constants and the 

density of the material on the line printer which has 

been chosen. 

3, Certain variables are declared and defined in terms 

of the elastic constants. 

4, The coefficients of the elasticity matrix are stored 

in the one dimensional array [2]. 

4.3.2.4 Subprogram SMASBL 

This subprogram contains three subroutines, namely 

"Assembly", '"Haloof" and '"Skewedcon". 

(a) “Assembly" 

In this respect, the discussion will cover the 

individual element stiffness matrices and their assembly 

into the overall one-dimensional stiffness array. Having 

the strain-element nodal displacements relationship [B] 

constructed, the equation (4.40) is integrated numerically 
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Fig, 4.14 Flow Chart of Subroutine''Constrel "' 

SUB Constrel (Z(*), Th(*), INTEGER Matno) 
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C22) = C1: 

C33 = C11*0.5*(1 — AC2)) 

C44 = C55 = C11/12 

C54 = C45 = C11*A(2)/12 - 

C66 = 0.5*C11*(1-A(2))/12 
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Z(Matno, 1) = Cll 

Z(Matno, 2) = C12 

Z(Matno, 3) = C13 

Z(Matno, 4) = C14 

Z(Matno, 5) = C15 

Z(Matno, 6) = C16 

Z(Matno, 7) = C22 

Z(Matno, 8) = C23 

Z(Matno, 9) = C24 

Z(Matno,10) = C25 

Z(Matno,11) = C26 

Z(Matno,12) = C33 

Z(Matno,13) = C34 

Z(Matno,14) = C35 

Z(Matno,15) = C36 

Z(Matno,16) = C44 

Z(Matno,17) = C45 

Z(Matno,18) = C46 

Z(Matno,19) = C55 

Z(Matno,20) = C56 

Z(Matno,21) = C66 

SUBEND 
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to obtain the element stiffness matrix. The integrations 

are carried out using the five point Gauss integration 

rule (described in equation (4,43) for the quadrilateral 

semiloof shell element) or the three point Gauss rule 

for equation (4.40) appropriate to the triangular element. 

The overall stiffness matrix [K] is obtained by 

considering each element in turn and locating the coefficients 

of the element stiffness matrix in their correct positions 

in the overall stiffness matrix as shown in Fig. (4.12): 

for which the address sequence, discussed in Section 

4.3.2.2, has been used, 

The process is repeated for all the elements, summing 

contributions from each one into the overall system 

equations, 

(bob). “Hatloot" 

This subroutine is called by the main subroutine 

"Assembly". No flow chart is included as the subroutine 

was taken as a package from Ref. (-64:...),. It ‘Ras heen 

transferred from FORTRAN language to suit the BASIC of the 

HP9845B computer. This subroutine calls for. each 

integrating point at the element of interest in order to 

form (B] matrix. The input to this subroutine comprises: 
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(i) [Elxyzt] : this is an array of (7+2*Qort,4) size, 

It is constructed from the point nodal coordinates and 

the thickness of each node in the element as follows: 

1 a ty 

° ° ° 

° 
o 

° 

{Eilxy2t} =}, ‘ 

X742*Qort Y742*Qort 2742*Qort (+2*Qort 

ct
 

where Xx); . a, and ty etc. are the x,y,2Z coordinates 
tc od 

and the thickness of node number 1 etc, 

The (7+2*Qort )*? node is the central node, Its 

coordinates and the thickness are found by interpolation. 

Fy bo Fess e™ + 642*Qort = thickness of the current 

element (on the assumption that the element thickness 

is constant). 

Cit) Element nodal connections, 

(iii) The natural coordinates —€ and n of the current 

integrating point, 

The output of this subroutine comprises: 

(a) poin(3) : The interpolated x,y,z of the current 

integrating point. 

(b) Thik : the interpolated local thickness of the current 

integrating point. 

(c) Area: the integrated area over the face of the element. 
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(d) Ro(3,3): whose columns give unit local axes, 

(e) Wshel (13,45): This provides useful shape function 

output in its 24 or 32 columns for the triangular or 

quadrilateral element. The following useful rows give: 

oe The displacement components in local axes 

2. °.¥ 

os. os 

4, 9U/dxX 

D5: Omeee The in-plane deflection derivatives in 

6, dVj/ax the local axes. 

Te OVios 

10. 97U/3xez 
2 The bending terms. 

11, 9°U/SY3Z 

12, 9“v/a¥ez 
2 13, 3“v/aveZ 

The numbers refer to the row number in Wshel array. 

(c) 'Skewedcon" 

This subroutine is called if skewed conditions prevail 

at the nodes of the current element, This is discussed 

in Section 4.3.2.6. 
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4.3.2.5 Application of Body Forces and Distributed Loads 
  

During the construction of the subprogram "SMASBL", 

the subroutines are written in such a way that they are 

able to take the following types of loading into 

consideration, First, the body forces per unit volume — 

due to gravity and rotational forces, and secondly, the 

normal distributed loading. 

(a) Body Forces 

Tf B,, By and = are the body forces per unit volume 

along the global axes x,y and z respectively, then the 

element load vector { Felvec} © is given by: 

{Felvec}® = _[{Bf}*[Ro] [NJ dvol Ce eae) 
V 

By 

where {Bf} is a (3,1) array and =( By) , 

By, 

fRoJis (3,3) matrix, this contains the direction 

cosine of the unit vectors; i.e. 

x. t a 

[RO a ae wae (4,46) 

x Y Z 
Z Z Z 

and [N] is a (3,24 + 8*Qort) shape function matrix. Its 

three rows correspond to the in-plane and out-of-plane 
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displacements (U, V and W). This is represented in the 

first three rows of Wshel array. 

The {Felvec} is a vector with (24+8*Qort) coefficients. 

This gives the contribution of the body forces to the nodes 

of the current element. 

(b) Distributed Load 

For the distributed load, the shape function corresponding 

to the displacement normal to the surface is used, 

{Felvectis as follows: 

{Felvec}° = ,{{8ce.n) pas Sete ae 

where A represents the area of the middle surface and p 

is a function of natural coordinates. The numerical 

integration of equations (4.45) and (4.47) is performed 

simultaneously with the formation of the element stiffness 

matrices governed by the same rules of numerical 

integration. After summing for all points of integration 

for the current element, the {Felvec}© coefficients are 

transferred to their proper positions in the overall 

load vector {Q} , as demonstrated in the following 

discussion of the flow chart of the "Assembly" subroutine. 
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Summary of the Flow Chart of the '"SMASBL"' Subprogram 

After the subprogram 'SMASBL" is linked to the main 

program SMILOF using the LINK statement, the "Assembly" 

subroutine is called through the master program "SMILOF", 

The following flow chart is drawn for the "Assembly" 

subroutine. It constructs each element stiffness matrix 

and assembles the overall stiffness as a one-dimensional 

array using the address sequence, Furthermore, it 

constructs the element load vector described in Section 

4.3.2.5. 

With reference to the flow chart shown in Fig, 4.15, 

the following steps summarise the subroutine "Assembly". 

1. The definition of the different arrays and variables. 

This step also involves an optional ASSIGN.of files. The 

ASSIGN statement sets up or references an existing internal 

file table and allows the utilisation of data files (with 

PRINT# and READ# statements). The data files are created 

in the master program SMILOF, The optional ASSIGN is 

decided by the control variables (see Appendix A). 

2. Coefficients of array W are set to the coordinates 

of the integrating points (natural coordinates), while 

the coefficients of array A are set to weighting functions. 

3. This is a preparation step to call the "Haloof" subroutine, 
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This subroutine needs the element nodal connections in 

the following sequence (see Fig. 4,.6(b)):' (1.2.34 5.6 7 8) 

whereas in the input data, the following sequence is 

normally used: (135 7 2.4 6 8). The INTEGER array 

{Mod} defined here, is used as a reference for the 

sequence of the nodes required by the "Haloof" subroutine, 

For example: the element nodal connections for the current 

element Z is changed to the sequence required by the 

"Haloof" as follows: 

(Node(Z,Mod(1)), Node(Z,Mod(2)),....,Node(Z,Mod(8) )) 

i.e, €1 3 5 7 2:4 6 8) as required Oy VHeAGCOr . 

4, A loop is constructed round the number of elements 

in the mesh. This step involves the initialisation of 

different arrays and the declaration of some variables 

in order to call the "Haloof ' subroutine. This 

contains all the input requirements to this subroutine. 

5. A loop is constructed on the number of integrating 

points. 

6, The "Haloof' subroutine is called in order to evaluate 

the coefficients of the strain-element nodal displacement 

array [B]. 

7. The matrix multiplications of equation (4,40) are 
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performed using the coefficients of the elasticity matrix 

[D] to calculate the element stiffness matrix. 

8, This comprises the optional PRINT¥ of the [B] array, 

Thik ., [Ro] array and the interpolated coordinates x,y and 

z of the current integrating point as required by the 

control variables. It is a continuation of step 4. 

9, The element load vector {Felvec}° is calculated (as 

explained in Section 4.3.2.5) if the body forces and/or 

normal distribution are applied. 

Steps 5-9 are repeated for the rest points of integration. 

10. The subroutine "Skewedcon" is called if skewed 

conditions prevail at the node(s) of the current element. 

If skewed node constants are found, the element stiffness 

matrix is transformed to the skewed directions before 

starting the assembly of the system stiffness matrix [K]. 

This will be illustrated later, 

1l. The element stiffness coefficients are located in their 

appropriate positions in the overall stiffness matrix as a 

one-dimensional array using the element nodal connections 

matrix. This stage has been programmed to accept the 

element nodal connections matrix sequence as it is in the 

"Haloof" subroutine (see Step 3). 
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12. The element load vector {Felvec}© coefficients 

are transferred into the system load vector {Q} in 

their proper positions, 

Steps 4-12 are repeated for the other elements of the 

mesh, 
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Fig. 4,15 Flow Chart of Subroutine''Assembly " 

SUB Assembly (Q(*), K(*), Xx(*), Yy(*), 2z(*), B(*), Th(*), Omg, Chl, 

Ch2, Thikn(*), Angsk (*), N$, E$, INTEGER Node(*), Test(*), Nelemt, 

Add(*), Nfree, Nskew, Nosk(*), Qort, prnt). 

START 

  

    
Dimension arrays 

and INT declaration 

of variables and arrays       
    

Lnodz = 6+2*Qort 

Lvabz = 4*Lnodz       

  

    

  

  

    

  

  

  
  

        

      

1 IF prnt = 1 OR prnt = 3>———__—__ 

ASSIGN 

E$ 

IF prnt = 2 OR prnt = > 

ASSIGN 

N$ 

or 23) 
A(1)=A(2)=A(3)=A(4)=0.95 A(1)=A(2)=A(3)=A(4)=1 

A(5)=0.2 W(1,1)=W(2,2)=0 

W(1,1)=W(1, 2)=W(2, 2) W(1, 2)=W(2,1)=W(3,1) 
< =W(4,1)=0. 592348878 =W(3,2)=0.5 

W(2,1)=W(4, 2)=W(3,1) W(4,1)=W(4, 2)=0. 333333 
=W(3,2)=0.592348878       
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Mod(1) = 1 

Mod(2) = 4+Qort 

Mod(3) = 2 

Mod(4) = 54Qort 

Mod(5) = 3 

Mod(6) = 64+Qort 

Mod(7) = 4 

Mod(8) = 8     

  

TO 6+2*Qort > 
  

  

    
  
A1(I) = Node(Z,1) 

        
  

r—-< FOR ; = 1 TO 6+2*Qort> 
  

  

  
Node(Z,i) = Al(Mod(I)) 

        
MAT Ke 

MAT Xyzpre 

MAT Elxyzt 

Nozpre = 

MAT Shear 

Thick 

i 

  

ZER 

ZER 

ZER 

ZER 

Thikn(Z) 
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    | 
| 

| K = INT (ABS(Node(Z,I)) 

Elxyz+(1I,1) = Xx(K) 

| Elxyzt(I,2) 
| 
| 
| 

|     
= Yy(K) 

Elxyzt(1,3) = Zz(K) 

Elxyzt(1I,4) = Thick 
  

  

  

    
aS 2 IF M=5>         

Xita(1) = W(M,1) Xita(1) =0 

Xita(2) = W(M,2) Xita(2) = 0             

    

    
CALL Haloof (Xita(*), Area, Thik, Ro(*), poin(*), 

Elyzt(*), Wshel(*), Thick, Shear(*), 

Xyzpre(*), Vloof(*), Swop(2), Node(*), 

Inodz, Nozpre, Z, Nelemt) 
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ae ~< FOR I=110 24+ 8*Qort > 
  

  

      

a 

! | 
B(1,1I) = Wshel(4,I) 

| B(2,1) = Wshel(7,1) 

B(3,1) = Wshel(5,I) + Wshel(6,1) 

| B(4,1) = Wshel(10,I) 

| B(5,1) = Wshel(12,1) 

, B(6,I) = 2*Wshel(11,1) 

Ma aad 

    
Detj = Area 

Jn = Node(Z ,7+2*Qort )       

  

  
IF M = 4 AND Gort = 0 

Sead mcd ts —~< FoR K=1704> 

K TO 21+8*Qort+(K-1) STEP 4> 

  

  

.
 |     

an
 | 

: @ qy
 ll I TO 21+8*Qort+(K-1) STEP 4» 

  

C(Jn,1)*B(1,I) + C(Jn,2)*B(2,1) + C(Jn,3)*B(3,1) 

C(Jn,2)*B(1,1) + C(Jn,7)*B(2,1) + C(n,8)*B(3, I) 

C(Jn,3)*B(1,I) + C(Jn,8)*B(2,1) + C(Jn,12)*B(3,1) 

(C(Jn,16)*B(4,1) + C(Jn,17)*B(5,1) + C(Jn,18)*B(6,1)*Thik+2 

(C(Jn,17)*B(4,1) + C(Jn,19)*B(5,I1) + C(Jn,20)*B(6,1))*Thikt2 

(C(Jn,18)*B(4,1) + C(Jn,20)*B(5,I1) + C(Jn,21)*B(6,1))*Thikt2 

Ke(J,I) = Ke(I,J) = Ke(I,J) + A(M)*(B(1,J)*A+B(2,J)*B 

+B(3,J)*C+B(4, J)*D+B(5, J) *E+B(6,J)*F)*Det j*Thik. 

hy
 
“
E
l
 

OG 
2
O
e
 

W
e
 

ll 

    
  

  

     IF J = 24+8*Qort 
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Ke(I,J+1) = Ke(J+1,1) = Ke(J+1,1I)+A(M)*(B(1,J+1)*A 

+B(2,J+1) *B+B(3,J+1)*C+B(4,J+1)*D+B(5,J+1) 

*E+B(6,J+1)*F)*Det j*Thik     
  

    
  

  
IF J = 23+8*Qort» 

— 
Ke(I,J+2) = Ke(J+2,1) = Ke(J+2,1)+A(M)*(B(1,J+2)*A 

7 +B(2,J+2)*B+B(3,J+2)*C+B(4, J+2)*D+B(5,J+2)*E 

+B(6, J+2)*F)*Detj*Thik 

  

    
  

  

  
IF J = 22+8*Qort 
  

Ke(I,J+3) = Ke(J+3,1) = Ke(J+3,1)+A(M)*(B(1,J+3)*A+B(2,J+3) 

*B+B(3, J+3) *C+B(4, J+3)*D+B(5 , J+3) *E+B(6 , J+3)*F) 

*Detj*Thik 

  

      

    

    

(2) Ro(*) ,poin(*) 

Azh 

IF prnt # 2 AND prnt ¢ Sa 

B( *) , Thik 

Ro(*) ,poin(*) 

See et 

  

  

    

  

    
      

  

IF Chi O AND Ch2 = 0 
  

    
Weight Area*Ch1*A(M)       

  

—~——-~<7R K = 1170 24+8*Qort > 
  

  

  
IF Chl = 0 

: 
! 

Cs) ie ES) 
   



  

  

  
Gash = Felvec(K) 

    

  

      

  

  
  

  

press 
  

  
Gash = Felvec(K) 

    

  

  
Felvec(K ) = Gash 
  

  

  
Felvec(K) = Gash+Ch2*A(M)*Wshel(3,K) 

        

  

    

  

  
Ro = Th(Node(Z,7+2*Qort ) ) 

    

————-— ~< FRI = 1 10.2) 

  

tC 
| 
| 
| 

  
Bod(I) = Ro*Ong*Omg*poin(I)*Thik*Area*A(M) 

    

  

      

  

-——— FOR K = 1 TO 24+8*Qort > 

@ 

  

  

Gash = 
  

Felvec(K) 
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eS ee alas 

Felvec(K) = Gash 

ES 8 A A ae 

R12 

IF Nskew # > 

Icounl = 1 

Teoun2 = O 

Itest. = 1 

- — —— —<FOR I = 1 10 6+2*Qort 
| 

N=0 © 

-—-——-<RR I = 

  
iO 3 

  

| | Gash = Gash+(Bod(1)*Ro(1,1)+Bod(2) 
| *Ro( 2, I)+Bod(3)*Ro(3,1))*Wshel(I,K)       

-- ~C FOR K = 1 TO Node(Z,I)> 

  

      

  
  

  
  

  

  
  

  

CALL Skewedcon(Angsk(*) , 
Ke(*), NSkew, Nosk(*), 

Node(*), Mod(*), Test(*), 

Z, Qort) 
  

J 
  

  

      

    

  

  

      

    
N = N+5- 

  
2*Test (K) 

    

eee 
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- — — — —<FR J = 1 TO 6+24@ort > 

© 
  

  

Jf1 =O 

      

    

| | 
| L = L+5-2*Test(K) 
  

      

  

      

  

— —<TOR M = 4.2*Test(Node(Z,J)) 10 0 STEP -1> 
      

Subl = N-4+2*Test(Node(Z,I)) 

    
Sub2 = N-3+2*Test (Node(Z,I)) 

Sub3 = L-M 

Sub4 = N-2+2*Test (Node(Z,I)) 
  

    
IF Test(Node(Z,I)) = oa 

    

    
Sub5 

Sub6 

N-1 

N         
  
  

  

  

  
IF Sub1 < Sub3> 

  

  
K(Add(Sub1)—-Sub1+Sub3) = K(Add(Subl1 )- 

Sub1+Sub3)+Ke(Itest , J£1-M)     
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  (a)



  

Subl1 

  

IF Sub2 < Sub3>— 
    

    
K(Add(Sub2)—Sub2+Sub3) = K(Add(Sub2) 

—Sub2+Sub3 )+Ke(Itest+1 , Jf1-M)       

  

  

    
IF Sub4 < Sub3> 

    
K(Add(Sub4)-Sub4+Sub3) = K(Add(Sub4) 

—Sub4+Sub3 )+Ke(Itest+2, Jf1-M)       

Lab3 

  

  
IF Test(Node(Z,1I)) #0 
  

  

IF Subs < Sub3 
        

K(Add(Sub5 )-—sub5+Sub3) = K(Add(Sub5) 

-Sub5+Sub3 )+Ke( Itest+3 , Jf1-M)       

Lab4 

  

IF Sub6 < Sub3 
    

    
K(Add(Sub6 )—-Sub6+Sub3) = K(Add(Sub6) 

—Sub6+Sub3)+Ke(Itest+4 , Jf1-M)       

eee 
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Lab3



  

  

    

    

      

IF Icoun2 < Tcoun!»——_____ 

    

  

Icounl-1 

Tcoun2+1 

Itest+3 
  

  

  

  
  

  

      

  

      
  

©) Icounl = Icounl+1 Icounl 

Icoun2 = Icoun2-1 Icoun2 

) Itest = Itest+5 Itest 

ee 

IF Chl = Ch2 = Ong = O-———___ 

J=1 R13 

r —— —<FOR I = 1 TO 6+2*GQort STEP 2» 

M=0 

N=0O       

  

IF Node(Z,I) = 1 
    

  

— ~ FOR K = 1 10 Node(Z,I)-1> 
  

  

    
M = Mt+5-2*Test (K) 
  

  

—~< FOR K = 1 TO Node(Z,I+1)-1> 
  

  

N = N+5~-2*Test(K) 
      

ii ——   
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Q(M+1,1) = Q(M41,1)+Felvec(J) 

Q(MH2,1) = Q(M+2,1)+Felvec(J+1) 

Q(M+3,1) = Q(MH3, 1)+Felvec(J+2) 

Q(N+3,1) = Q(N+3,1)+Felvec(J+5) 

Q(N+4,1) = Q(N+4, 1)+Felvec(J+6) 

Q(N+5, 1) = Q(Nt+5,1)+Felvec(J+7) 

@) Q(N+1,1) = Q(N+1,1)+Felvec(J+3) 

©) Q(N+2,1) = Q(N+#2,1)+Felvec(J+4) 
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4.3.2.6 Subroutine "Skewedcon" 
  

In applications, the structures are commonly 

constrained to move in the direction of the global 

axes. This means that the prescribed displacements 

are in the direction of the global coordinates. 

However, the prescribed displacements can also be 

in other directions (as shown in Fig.4,.16), in which 

the skewed rectangular plate is constrained to move 

in the directions X, Y and Z, while the global 

axes are xX, y and Z. 

>
<
 

    
Fig.4.16 Skewed rectangular plate 
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This situation needs a transformation of the matrices 

for the nodes where those skewed conditions are present. 

In fact, it is necessary to transform the element stiffness 

matrices, and the load vector to refer the skewed directions 

for the skewed nodes. 

For a typical corner node i it is easy to construct 

the transformation matrix [tT] as follows: 

  

u cos -sino O U 

Vv = sino cos¢ O V coe. (4.48) 

Ww O O ae W 
glo skewed 

and for the midside node j: 

. cos -sind O O O U 

Vv sing cos O O O V 

bw we} O i O O W 

oe 2, 
Ose O O O a O x7 

cao a 
Oe O O O O L oy 

glo 

re Ge: | 

or 

{a} = [tT] {a"} eee (4.50) 
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where 

{d} = is the nodal displacement vector associated with 

global axes 

fd} is the nodal displacement vector associated with 

skewed axes, 

and [T]= the transformation matrix connecting the two sets 

of degrees of freedom, 

For the entire nodal displacement vector, the 

transformation matrix may be constructed as follows: 

[1] 

(s] = a dol 

where [T] corresponds to the nodes which are prescribed 

in the skewed directions, [I] is the identity matrix, 

which is (3x3) if it corresponds to a corner node, and 

(5x5) if it corresponds to a midside node, 

The number of diagonals = 6+2*Qort, 

The transformation of the element stiffness matrix 

and the element load vector are found in the following 

way: 

-133-



The work done by the force applied in the skewed 

and unskewed conditions must be the same, as shown by: 

(F}"¢a}® = cr }*¢a 3° oles 

e The element displacement vector {u}~ in the global 

direction is as follows: 

{d}° = [s}ra-3° | pas he. 58) 

aoe 

where {d - represents the element displacement vector 

in the skewed directions and [S] is given by equation (4.51), 

Substitution equation (4.5%) for i) into equation 

(4.52) results in the following equation: 

t 
e “ait e 

{F }° = [S] {F} ese (4,54) 

The equilibrium equations for the unskewed system is: 

[Ke]{u}° = (F}° 

pre-multiplying by [s]* gives: 

(s](Ke]{u}° = [s]* ¢ry® 

or 

[s]*{Ke] (s]{u 3° = [s]*cry® 
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: 

i.e. [ke [tu fie ee 

where 

[ke J-[s] * [ke] [s] ) as a oo 

and 

(F }® = [s]°{F} os (4.56) 

This transformation is applied individually for the element 

stiffness matrices using the subroutine "Skewedcon" before 

the assembly of the overall stiffness matrix. 

The flow chart of the "skewedcon" illustrates the 

steps involved. With reference to the flow chart, shown 

in Fig. 4.17, these steps are as follows: 

1. Coefficients of the transformation array [S] according 

to equation (4.51) are constructed for the current element. 

2. Matrix multiplications of equation (4.55) are performed 

on the element stiffness matrix, 

4.3.2.7 Subprogram SMLDAP 
  

The subroutine "Loadapp" has been written in this 

subprogram to take into account the application of 

concentrated forces and normal moments at the loof nodes. 
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Fig. 4.17 Flow Chart of Subroutine'Skewedcon" 

SUB Skewedcon (Angsk(*), Ke(*), INTEGER Nskew, Nosk(*), Node(*) 
? 

Mod(*), Test(*), Z, Qort). 

START 

    
Declaration of 

    Variables 
  

    
MAT S IDN 

      

    

Im = Mod(I1) 

| - K = K+5-2*Test (Node(Z, Im) ) 

1 | -—-—— FOR J = 1 TO Nskew 

| 

r IF Node(Z,Im) # Nosk(J)>——_———_ 

Skb 

  

i eee ae 

| 
      

  

  
  

  

    

> i} 

    
K-4+2*Test (Node(Z, Im) ) 
  

    
S(A+1,A+1) = S(A,A) = COS(Angsk(J))*0.0174533 

| | S(A+1,A) = SIN(Angsk(J) )*0.0174533 
! | S(A,A+1) = -S(A+1,A)         
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7 
| 

l 
| | 

a) 
(a 1 TO 24+8*Qort> 

1 TO 24+8*Qort > 

  

      

  

-- —CF0R K=110 24+8*Qort > 

  

Gash = Gash+S(K,J)*Ke(K,1I) 
      

  

      

  

  

  

      

  

BORNE stem ak 

S1(J) = Gash 

| 

--——~CFOR K = 1 TO 24+8*Qort) 
| 

| Ke(K,I) = S1(K) 
ae ee 

Se 

[- — — —<POR I = 1 TO 24+8*Qort> 

| 
| 
| 
| 
| 
| 
| 
| 

  

  

  

      

  

oe << FOR K = 1 TO 24+8*Qort > 
  

  

| Gash = Gash+Ke(I ,K)*S(K,J) 
      

  

    
S1(J) = Gash 
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~< FOR K=1 TO 24+8*Qort> 
  

  

Ke(J,K) = S1(K) PS       

— ee ee ee   
SUBEND 
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This needs to establish the degree of freedom in the 

direction of the required load at the node of interest. 

The subroutine "loadapp" does precisely this and adds 

these types of loadings (if they exist) to the system 

load vector {Q}. 

The following flow chart illustrates the steps involved 

which are not more than checking the code of the current 

node (see Appendix A). On this basis the direction is 

defined to correspond to the degree(s) of freedom on 

which the concentrated force or normal moment is applied. 

4.3.2.8 Subprogram SMSKEW 

As explained in Section 4.3.2.5, the overall load 

vector {Q}needs to be modified to correspond to skewed 

coordinates. For a typical skewed node, the modified 

load vector for this node follows equation (4.5 6) 

: iG 

iF te TLS] Cle 

The steps involved are presented with reference to the flow 

chart shown in Fig. 4.19: 

1. A loop is set for the number of skewed nodes, 

2. The coefficients of the transformation matrix are 
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Fig, 4.18 Flow Chart of Subroutine’ 'Loadapp " 
  

SUB Loadapp (Ss, C, L, 2, DU"); A, 6; Kw, F, irot), 

  

  
  

  

  

  

    

  

  

Sr 

IF A= 3 OR A = 5} 

Aud2 

wa N IF A= 15 

IF A= 4> 
    

  
Aud3 B 

  

D(K-Irot,F) = D(K-Irot ,F)+B 
      

  

  

    

  

  
  

  

ECON: If Ai=2> 

IFA=6> 

Aud2 |     
D(K-Irot+1,F) i © . MH & ct

 
+
 

i
 es & 

      

    

  

   
IFA=3 ORA 
  

Aud3 

  

D(K-Irot+2, F) D(K-Irot+2,F)+L 

IF G = 0 OR Irot # 4—______ 

(Audt ) 

      

  

  
  

      
D(K-Irot+3 ,F) 

D(K-Irott+4,F) 

D(K-Irot+3, F)+E 

D(K-Irot+4, F)+E       

Audl 

  
( SUBEND }) 
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calculated for the current skewed node, 

3, The load vector {Q} is modified using step 2. 

Steps 2-3 are repeated for the other skewed nodes, 

4.3.2.2 Subprogram SMYYBS 
  

This subprogram contains two subroutines. They are . 

called through the main program "SMILOF" as required, 

The first one, ''Geombc", is used to adjust the overall 

stiffness matrix [K] and the load vector {Q} in 

allocating the prescribed displacements, while the second, 

"Symvbsol" is a solving routine to give the nodal 

displacements in the global directions. 

(a) '"Geombc" 

In Section 4.3.2.6, the skewed conditions have been 

explained. It was shown that the necessary transformations 

must be done for any skewed boundary conditions, 

At this subroutine, the values of such prescribed 

displacements are applied. The principle for the application 

of such kinematic displacement is explained by partitioning 

and re-arranging the overall stiffness equations (see 

Ref. ( 65 ). This can be summarised as follows: 
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Fig. 4.19 Flow Chart of Subroutine’'Skewload " 

SUB Skewload (Q(*), Angsk(*), Test(*), Nosk(*), Op) 

( START ) 

il f—-— — — —< WRI = 1 TO Nskew > 

  

    
| 

| 

| A=0 

| Sn = SIN(Angsk(1) )+0.0174533 

2 Cn = OOS(Angsk(1) )*0.0174533       

  

- —<GOR K = 1 TO Nosk(I)> 
  

  

| A = At5-2*Test (K) 
          

M = Q(A-4+2*Test (Nosk(I)) 

N = Q(A-3+2*Test (Nosk(I)) 

Q(A-4+2*Test (Nosk(TI) ),1) Cn*M+Sn*Op*N 

Q(A-3+2*Test(Nosk(I) ,1) —Oo*Sn*M+Cn*N         
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The following system of equations is considered 

{u,} 

a 

where {uy} is a vector of free nodal displacements and 

{ug} is a vector of specified displacements. This may 

be written as: 

(K,,]{uy} ={0,} -[Ky)] {ug} 

and 

{OFnF = [Ko,]{uz}+ Kye] {ug} 

where {Q.} represents the reactions at the constrained nodes. 

For the particular case where the values of the specified 

displacements are zero, the rows and columns of the system 

equations corresponding to the constrained degrees of 

freedom are eliminated. For the general case the system 

of equations may be written as: 
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In fact, the rows and columns of |K| corresponding 

to the constrained degrees of freedom are made zero, and 

the diagonal is made unity. Finally, the prescribed 

values of displacements are inserted in the load vector. 

(b) '"Symvbsol" 

This solving routine for the system of equations is 

given by Jennings and Tuff,Ref(63) using Cholesky triangular 

factorisation. 

The equations of equilibrium are of the form: 

[kK] fq} ={Q} see (4.57) 

The solution vector {q} is obtained by performing a triangular 

decomposition on the matrix [K] by the square root method 

of Cholesky, which requires that (K] be symmetric positive 

definite. The Cholesky triangular factorisation method 

is suitable for large problems, [It requires no storage 

facilities other than that available for the stiffness 

matrix [K}. 

Using Cholesky factorisation, [K} , can be written 

as follows: 

[x] = [4] (41° eee) 

where [L] is upper triangular matrix. 
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Now equation (4.58) becomes: 

[x] [tJ *iqi = {@} i (8.595 

This represents two triangular systems; 

by defining ([L]°{q} ={r} oS Ga 6) 

equation (4,59) becomes [L]{r} = {Q} ogi h et Bl) 

Equation (4.61) is solved for {r} by forward elimination 

while equation (4.60) is solved for {q} by back 

Substitution. This type of solving the equilibrium 

equations eliminates the need for complicated inversion 

of the stiffness matrix, The matrix [L] overwrites in 

the store by using the recursive relationships, 

  

j-l 
Li = (Ky ~ ee Lix Lx x Ls, eras ee cohh G2) 

Lig = yf Key st a (Lx) ,» for diagonal terms 

vee "C4, 63) 

The subroutine "Symybsol" together with "'Geombec" have been 

used by Ref. (65). In this work these subroutines have 

been translated from the ALGOL language to 

Suit the desk top computer HP9845B, Therefore, no flow 

charts are included as they were taken directly from 

Ref.(65) . However, the listing of these subroutines is 

given in Appendix (B). 
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4,3.2.10 Subprogram SMELST 
  

The subroutine "Elstrs'" which is written in this 

subprogram is designed to evaluate the strains and stresses 

at the centroid of each element. Once the nodal displacements 

have been determined, the element strains and stresses 

may be obtained using equation (4.3): 

{e} = [B]{d} 

The order of {ce} matrix is 6: three membrane strains 

m m m ; 
Ey, fy and Exy> while the other three refer to the 

bending strains a : ey and a, The element stresses 

are calculated using equation (4.44): 

{o} = [D] fe} 

{o} contains 3 membrane stresses: \ yee are the forces 

per unit length acting normal to the sides of the elements; 

and Nyy is the shear force per unit length acting in 

the plane of the sides of the element. The three bending 

terms: Ms as are the bending moments per unit length, 

and Myy: is. the torsional moment per unit length. As 

mentioned in Section 4.3.2.1, the strain-element nodal 

displacement matrices are read from the file prepared 

to print these matrices in the stage of formulating the 

element stiffness matrices. The reason for storing 

these matrices is that the evaluation of [B] matrices 

takes a significant time in the desk top computer HP9845B, 
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especially for quadrilateral semiloof shell element: 

storing therefore, means saving computing time. 

The output of this subprogram as required by the 

control variables are as follows: 

(i) Strains and stresses at each element centroid in 

the direction of local axes. These strains and stresses 

are transferred to the directions of the global axes 

by using the direction cosine matrix |Ro]. 

(ii) Principal strains and stresses at each element 

centroid. 

The transformation matrix of strains and stresses from 

local axes directions (X, Y, Z) to the global axes 

directions (x, y, Z) is explained as follows: 

  

o
N
 

vA 

Fig. 4.20 Direction Cosine 
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Consider Fig. 4.20, suppose the global axes are related 

to the local axes by the following direction cosine 

  

  

  

        
  

    

matrix: 

x ¥ z 

x hy Lo Le 

y m4 Mo mM. 

Z ny No Ne 

i.e. a 2 23 

m m m = altg 3 iso ts : sas (264) 

mt ae Og 
L ,       

The stresses and strains are 

( 66) ) operations (see Ref. 

{o} 
Loc Pro oles : 

fel jee wo ital tel as" 

Matrices | and a 

inverse of one equals the transpose of the other, 

Cook ,Ref(66)has written them 

transformed by the following 

me
an
 

Q
 

fo
od
 

i 

af [te te 
loc 

(4.65) oe 8@ 

oO
 

m Ww | [t,]"*te} loc 

each have the property that the 

Robert 

in matrix form as follows: 
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(4.66) ooo 

  

  

peg ete 
a my ny 2kjm) m,n 2n,%, 

ee 
fo Mp | NE | komo anoNo 2noto 

Seas : ; 
M, Mg | BQ | Se gg ann, 2ngho 

Gia pw re orc Ter aa a re at a a 

Lokg Mog | Nong} (LoMy+% Mo) | (MpNtmMgNo) | (Nots*ng%o) 

Loh) MyM | Hen, | (4m) +2smy) | (myn; +m Ns) | (ng, +n, 23)             
  

If the above matrix [rel is partitioned into 3x3 

submatrices, matrix [T,] may be written in terms of the 

submatrices as follows: 

' [T19] i. G75] 

fons) = fob 
1 [To] (2T21] 1 [Tee ] 

CED) 

As a result of using equations (4.65), the stress and 

strain components (at each element centroid) in the 

direction of the global axe, 
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are as follows:



{e}™ = cee ee - ego): 

{o}" = {N, New Ne Ne. No 

te} = {e, a eee eu? xe tcc eeo 

{o}? = tm, ew, a KS Met? 

where the superscripts m and b refer to the membrane 

and bending components respectively. 

When the global z-axis is in the same direction with 

local z-axis, then, the z-components of strains and stresses 

in equations (4.68) vanish, 

  

  

  

SS 

Fig.4.21 Orthogonal axes at the element centroid 

(stress component definition) 
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Fig. 4.21 shows the orthogonal local axes X, Y. 

The X, Y are in the tangent plane to the shell at the 

point considered, while Z is perpendicular to them. 

If other points on the same element are taken, the local 

axes are approximately parallel, except for the fact 

when the curvature is changed, this results in a change 

in Z-direction. 

In conclusion, the output mentioned in item (i) refers 

to these directions. This can be transferred to the 

global axes using equation (4.66). The steps involved 

are described with reference to the following flow chart 

shown in Fig. 4.22. 

ds Dimension arrays and INT declaration of arrays and 

variables. The data file E$ is opened by using the ASSIGN# 

statement. Thus the recorded data at the Assembly stage 

are retrieved by using READ# statement. 

2. A loop is set for the number of elements. For the 

first element, the strain-element nodal displacements, 

the interpolating thickness, the direction cosine of 

the local axes and the interpolating coordinates of the 

centre of the first element are read using READ# statement. 

3. "Eldisp1" subroutine is called to arrange the array 

containing the displacements of the node, for the current 

element from the nodal displacements vector {Q}. This 

is discussed in Section 4.3.2.11,. 
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4, Matrix multiplications are carried out using equations 

(4,39) and (4.44) to determine the element strains and 

stresses in the direction of local axes, as well as to print 

them on the line printer chosen, 

5. The element strains and stresses are transferred to 

the global axes using the transformation matrices (4.66) 

and are then printed. 

6. Principal stresses are calculated (optionally), as 

required by the control variables. 

Steps 2-6 are repeated for each element of the mesh used, 
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ot 

Fig. 4.22 Flow Chart of Subroutine'Elstrs" 
  

SUB Elstrs (E$,Q(*),B(*),C(*) , INTEGER Node(*), Test(*), Nelemt, Nnode, 

Qort, Princ). 

( START ) 

Dimension arrays and 

INT declaration of 

    

variables and arrays 

1 ASSIGN# 

E$ 

Headings 

      

  

    

    
     

  

FOR Z = 1 TO Nelemt 

    
SUB Eldispl ((ldsp1(*), Q(*), Node(*), 

Test(*), Z, Gort, Nelemt) 

—— — —~< FR I = 1 TO 3+Qort as 
| : 

G@ B(*), Thik, 

; Ro(*), Point(*) 

-——— — PR K=176 

      

      
   

  

Gash = O 
      

  

| 

| 

| r —<FOR J = 1 TO (6+2*Qort)*4 > 

| | 
| 
| 
| 

  

  

  
| | Gash = Gash + B(K,J)*Eldsp1(J) 

    

  

Estrn(K,I) = Gash 
         



  

  

Estrs(1) = (Estrn(1)*C(Jn,1) + Estrn(2)*C(Jn, 2) )*Thik 

Estrs(2) = (Estrn(1)*C(Jn,2) + Estrn(2)*C(Jn,7))*Thik 

Estrs(3) = Estrn(3)*C(Jn,12)*Thik 

Estrs(4) = (Estrn(4)*C(Jn,16) + Estrn(5)*C(Jn,17))*Thik*Thik*Thik . 

Estrs(5) = (Estrn(4)*C(Jn,17) + Estrn(5)*C(Jn, 19) )*Thik*Thik*Thik 

Estrs(6) = Estrn(6)*C(Jn, 21)*Thik*Thik*Thik 
  

  

  

     
  

Estrn(1), Estrn(2), Estrn(3) 

Estrn(4), Estrn(5), Estrn(6) 

Estrs(1), Estrs(2), Estrs(3) 

Estrs(4), Estrs(5), Estrs(6) 

  

    
    

   

  

    

  

r———<rRI=1104 SEP 3 
  

    
Dmy(1) = Estrn(I)*Ro(1,1)*Ro(1,1)+ 

Estrn(I+ 1)*Ro(1,2)*Ro(1,2)+ 

Estrn(I+2)*Ro(1,1)*Ro(1,2)*2 

Dmy(2) = Estrn(I)*Ro(2,1)*Ro(2,1)+ 

Estrn(I+1)*Ro(2,2)*Ro(2,2)+ 

Estrn(1+2)*Ro(2,1)*Ro(2,2)*2 

Estrn(I+1)*Ro(3,2)*Ro(3,2)+ 
Estrn(I+2)*Ro(3,1)*Ro(3, 2)*2 

Dmy(4) = Estrn(1)*Ro(1,1)*Ro(2,1)+ 

Estrn(I+1)*Ro(1,2)*Ro(2, 2)+ 

| 

| 

| 
| 

| 

| Dmy(3) = Estrn(I)*Ro(3,1)*Ro(3,1)+ 

| 

| 
| 

| Estrn(I+2)*Ro(.,1)*Ro(2,2)+Ro(1,2)*Ro(2,1)) 

| 

|     
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Dmy(5) = 

Duy (6) 

Dmy (7) 

Dny(8) 

Dmy (9) 

Dmy (10)= 

Dny(11)= 

Dmy(12)= 

Estrn(1I)*Ro(2,1)*Ro(3,1)+ 

Estrn(I+1)*Ro(2,2)*Ro(3, 2)+ 

Estrn(I+2)*(Ro(2,1)*Ro(3,2)+Ro(3,1)*Ro(2,2) 

Estrn(I)*Ro(3,1)*Ro(1,1)+ 
Estrn(I+1)*Ro(3,2)*Ro(1,2)+ 
Estrn(1+2)*(Ro(3,1)*Ro(1, 2)+Ro(3,2)*Ro(1,1)) 

Estrs(I)*Ro(1,1)*Ro(1,1)+ 

Estrs(I+1)*Ro(1,2)*Ro(1,2)+ 

Estrs(1+2)*Ro(1,1)*Ro(1,2) 

Estrs(I)*Ro(2,1)*Ro(2,1)+ 

Estrs(I+1)*Ro(2,2)*Ro(2,2)+ 

Estrs(1I+2)*Ro(2,1)*Ro(2,2) 

Estrs(I)*Ro(3,1)*Ro(3,1)+ 
Estrs(I+1)*Ro(3,2)*Ro(3,2)+ 
Estrs(I+2)*Ro(3,1)*Ro(3, 2) 

Estrs(I)*Ro(1,1)*Ro(2,1)*2+ 

Estrs(I+1)*Ro(1,2)*Ro(2,2)*2+ 

Estrs(I+2)*(Ro(1,1)*Ro(2,2)+Ro(1,2)*Ro(2,1) ) 

Estrs€1I)*Ro(2,1)#Ro(3,1)*2+ 

Estrs(I+1)*Ro(2,2)*Ro(3,2)*2+ 
Estrs(I+2)*(Ro(2,1)*Ro(3,2)+Ro(2,2)*Ro(3,1)) 

Estrs(I)*Ro(3,1)*Ro(1,1)*2+ 
Estrs(I+1)*Ro(3,2)*Ro(1,2)*2+ 

Estrs(I+2)*(Ro(3,1)*Ro(1,2)+Ro(3,2)*Ro(1,1)) 
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=A IF I = 1) 
      

    
    
    
  

  

Bending strains 

and stresses 

in global directions 

  
     

  

  

Membrane strains 

and stresses    

  

in global directions     
  

  

  

    

  

———_—___—_<For I = 1 10 6 STEP 3 

  
  

  

Theta = 0.5*ATN(2*Estrs(I+2) / 

(Estrs(1)—Elstrsg(I+1))       

N2   
  

  (2) IF Theta < 0 > 
    

  

  
Theta = Thetat3, 1415926536 
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Sn = SIN(Theta) 

Cn = COS(Theta) 

Princ(1) = Estrs(1)+Sn*(2*Cn*Estrs(1+2)+ 

Sn*(Estrs(I+1)—Estrs(1I))) 

Princ(2) = Estrs(I)+Estrs (I+1)-Princ(1)   
  

  

  
IF ABS(Princ(1)) < 0.99999*ABS(Princ(2) — 
  

  

  
Theta = Theta-1.570796327 

    

  
  

(a2) 

    
SUBEND 
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4,.3,2.11. Subroutine "Eldips1" 

This subroutine is intended to adjust the array 

{Eldsp1} which contains the displacements of the nodes 

for the current element from the nodal displacements 

array {2}. The {Eldsp1} should be adjusted so that 

the degrees of freedom are ordered according to the 

sequence of equation (4.36). This is because the 

strain-element nodal displacements matrix resulted from 

the "Haloof" subroutine has been formulated according 

to this sequence and in doing so, the multiplications 

of equation (4.39) are easily carried out in the 

subroutine "Elstrs". 

The flow chart shows the steps needed to establish 

the {Eldsp1} array. With reference to the flow chart 

shown in Fig. 4.23, these steps are as follows: 

1. This is similar to step 3 mentioned in describing 

the flow chart of the "Assembly" subroutine. It assists 

to arrange the coefficients of the {Eldisp1l} array 

according to the sequence of equation (4.36). 

2. A loop is set for the number of nodes in the element, 

For the first node, the displacements are allocated in 

their proper positions in the array {Eldsp1}. 

Step 2 is repeated for the other nodes of the element, 
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Fig, 4, 23 Flow Chart of Subroutine'Eldisp1" 

SUB Eldisp1(Eldisp1(*), Q(*), INTEGER Node(*), Test(*), Z, Qort, Nelent) 

(START) 

    
Mod(1) 

Mod(2) 

Mod(3) 

Mod( 4) 

Mod(5) 

Mod(6) 

Mod(7) 

Mod(8)   

i} fb 

4+Qort 

Il bo
 

5+Qort 

ll oO
 

6+Qort 

el 

oo
     

  

    
J=1 

< FOR I = 6+2*Qort 

Il = Mod(I) 

J2=0 

A = Test (Node(2,Mod(1)) 

  

  
  

      

  

g = i 1 TO Node(2,Mod(1))> 

  

cy
 

bo
 ll J2+5-—2*Test(J1) 

              
Eldsp1(J,1) = Q(J2-4+2*A,1) 

Eldspl(J+1,1) = Q(J2-3+2*A,1) 

Eldsp1(J+2,1) = Q(J2-2+2*A,1) 

IFA=0 

Eldsp1(J+3,1) = Q(J2-1,1) 

Eldsp1(J+4,1) = Q(J2,1) 

[gy = J+5-2*a | 
Ls 

SUBEND 
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4,.3.2.12 Subprogram SMNDST 

The subroutine "Nodstr" is written in this subprogram 

in such a way that the element stresses and strains are 

calculated at the integrating points within each element 

and are printed at the element output stage. The 

strains and stresses are given in terms of local element 

coordinates, as shown in Fig. 4.24, andare defined in 

Section. 4.0.2. 10. 

  

  

  

Pig. «24 Orthogonal axes at the integrating points 

(stress component definition) 

The transformation described in Section 4.,3.2.10 for 

element strains and stresses has pean fee eee for the 

integrating points in order to produce them in terms of 

the global element coordinates, The smoothed nodal values 

for stresses are calculated using the smoothed stresses 

technique which is presented in Ref (67) . This makes 

it possible to obtain the smoothed nodal stresses. This 

technique can be summarised as follows: 
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For two-dimensional problems, the stresses are 

assumed to have a bilinear variation over the element: 

oGE,n) = [4.€ n én] 

a 

2 
@ 

TS
 

eo)
 

en
 

If the four integrating points in Fig. 4.25 in 

quadrilateral type are considered, then: 

the 

  

  

  

a -0,59234 -0,59234 0.3508 
8878 8878 ts 

1 0.59234 -0,59234 0.3508 
8878 8878 “i 

1 0.59234 0.59234 0.3608 
8878 8878 C7 

1 -0,59234 0,59234 0.3508 
8878 8878 ah         

The smoothed nodal values for stresses may now 

gives: 

  

(4.69) 

rr) (4.70) 

be calculated 

  

  

  

by substituting equation (4.70) into equation (4.69). This 

3 i 
1.8066 -0,46250 0.118412 -0,4625 ie \ 

O7 98 707 098 I 

-0,46250 1.8066 -0,4265 0.118412 & 
98 OM 048 707 II 

0.118412]-0.4625 1, 8066 -0.4625 - 
707 098 O7 098 Tis 

-0,4625 0.118412 | -0.4625 1, 8066 S 
098 ar 098 O7 Pes       
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or 

{o} = [A] {o} (4.71) 
smoothed ING. DOintS ee 

where [A] is the smoothing matrix based on the mean 

square average. 

    

  

\. 0.592348878 
Sahn 

  

  

1 2 

aa 

Fig.4.25 Location of integrating points 

Now, stresses calculated at the four integrating 

points are multiplied by the smoothing matrix [A] to 

give smoothed values at the vertices, i.e. matrix 

multiplications of equation (4.71). Smoothed values 

from adjacent elements are then averaged at the element 

vertices, while the midside node smoothed stresses may 

be found by averaging the smoothed stresses for corner 

nodes, 
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The flow chart, show in Fig. 4.26, and the steps 

involved are as follows: 

1. Dimension arrays and INT declaration of arrays and 

variables. The data files N$ is opened by using the 

ASSIGN# statement. Thus the recorded data at the Assembly 

stage are retrieved by using the READ# statement, 

2. This step is similar to step 2 in the flow chart 

which was drawn in Section 4,.3.2.10, except that a 

new loop for the number of integrating points is set 

inside the number of elements loop. 

Steps 3, 4, 5 and 6 are similar to those in Section 

4.3.2.10. 

7. Smoothed strains and stresses at the corner nodes 

for the current element are evaluated, This implies 

carrying out the matrix multiplications of equation (4.71). 

8. A loop is set round the number of nodes in the mesh. 

For the first corner node each element is searched to find 

if it contains this node, so as to divide the values of 

smoothed strains and stresses by the number of elements 

containing this node. At the end of this step all the 

smoothed strains and stresses are found for the corner 

nodes only. 

9. This step is designed to evaluate the smoothed strains 

and stresses for the midside nodes in a process similar 
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to that applied in step 8. 

10. The smoothed strains and stresses are printed on 

the line printer chosen. 
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Fig. 4.26 Flow Chart of Subroutine''Nodstr"' 

SUB Nodstr (N$, Q(*), B(*), C(*), INTEGER Node(*), Test(*), Nelemt, 

Nnode, Qort, Princ) 

START 

    
Dimension arrays and 

INT declaration of 

variables and arrays 

ASSIGN Cr 

FOR Z = 1 TO Nelemt 

      

  

    
    

      BC*), -Thik 

Ro(*), Point(*)   

    

  

Eldispl (Eldsp1(*), Q(*), Node(*), 

= Test(*), Z, Qort, Nelemt) 

-———-—<FORJ=1706> 

      

  

  
Gash = O 

    

    
~~ <POR I = 110 (6+2hQort)*4> 

| 
| | Gash = Gash+B(J,1)*Eldsp1(I,1) 

  

  

      

  

| 
| 
| 
| 
| 
| 
| 
| 
|       

  

  
Jn = Node(Z, 7+2*Qort ) 

        
7 Af



  

Strs(1,1I) = 6trn(1,1)*C(Jn,1)+Strn(2,1)* 

C(Jn, 2) )*Thik 

Strs(2,I) = (Strn(1,1)*C(Jn, 2)+Strn(2,1)* 

C(Jn, 7) )*Thik 

Strs(3,I) = Strn(3,1)*C(Jn,12)*Thik 

Strs(4,I) = (Strn(4,1)*C(Jn,16)+Strn(5,1)* 

C(Jn,17) )*Thik*Thik*Thik 

Strs(5,1I) = (Strn(4,1)*C(Jn,17)+Strn(5,1)* 

C(Jn, 19) )*Thik*Thik*Thik 

Strs(6,1) = Strn(6,1)*C(Jn, 21)*Thik*Thik*Thik       

  

      
         
  

   Strn(1,1), Strn(2,1), Strnc3,I) 

Strn(4,1), Strn(5,1), Strm(6,1) 

btre 2,1), Strste,1), Stret3,1) 

Strs(4,I), Stres(5,1), 

Strs(6,1I) 

  

me eerste FOR L = 110 4 STEP 35 

| 
| | Dmy(1) = Strn(L,1)*Ro(1,1)*Ro(1,1)+Strn(L+1, 1)* 
| Ro(1,2)*Ro(1, 2)+Strn(L+2,1)*Ro(1,1)* 

Ro(1,2)*2 

  

| | pny(2) = Strn(L,1I)*Ro(2,1)*Ro(2,1)+ 

| Strn(L+2, 1) *Ro(2,2)*Ro(2,2)+ 

! Strn(L+2,1)*Ro(2,1)*Ro(2,2)*2 

= Strn(L,1)*Ro(3,1)*Ro(3,1)+ 

Strn(L+1,1)*Ro(3,2)*Ro(3,2)+ 
| Dmy (3) 

| Strn(L+2,1)*Ro(3, 1)*Ro(3,2)*2 
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Dmy(4) = 

Dmy(6) = 

Dmy(7) 

Dmy (8) 

Dmy (9) 

Dmy(10)= 

Dny(11)= 

Dmy (12)= 

Strn(L, I) *Ro(1,1)*Ro(2,1)+ 

Strn(L+1, I) *Ro(1,2)*Ro(2,2)+ 
Strn(L+2,1)*(Ro(1,1)*Ro(2,2)+ 
Ro(1,2)*Ro(2,1)) 

Strn(L,I)*Ro(2,1)*Ro(3,1)+ 

Strn(L+1,I)*Ro(2,2)*Ro(3,2)+ 

Strn(L+2,1)*(Ro(2,1)*Ro(3,2)+ 

Ro(3,1)*Ro(2,2)) 

Strn(L,1)+Ro(3,1)*Ro(1,1)+ 
Strn(L+1, 1) *Ro(3,2)+Ro(1,2)+ 
Strn(L+2,1)*(Ro(3,1)*Ro(1,2)+ 
Ro(3,2)*Ro(1,1)) 

Strs(L, I)*Ro(1,1)*Ro(1,1)+ 
Strs(L+1,1)*Ro(1,2)*Ro(1,2)+ 
Strs(L+2,1)*Ro(1,1)*Ro(1, 2) 

Strs(L, 1)*R0(2,1)*Ro(2,1)+ 

Strs(L+1,1)*Ro(2,2)*Ro(2,2)+ 

Strs(L+2,1)*Ro(2,1)*Ro(2,2) 

Strs(L, I)*Ro(3,1)*Ro(3,1)+ 
Strs(L+1,1)*Ro(3,2)*Ro(3,2)+ 
Strs(L+2,1)*Ro(3,1)*Ro(3, 2) 

Strs(L,I)*Ro(1,1)*Ro(2,1)*2+ 
Strs(L+1,I)*Ro(1,2)*Ro(2,2)*2+ 
Strs(L+2,1)*(Ro(1,1)*Ro(2,2)+ 
Ro(1,2)*Ro(2,1)) 

Strs(L, I1)*Ro(2,1)*Ro(3,1)*2+ 

Strs(L+1,1)*Ro(2,2)*Ro(3,2)*2+ 

Strs(L+2,1)*(Ro(2,1)*Ro(3,2)+ 

Ro(2,2)#Ro(3,1)) 

Strs(L, 1)*Ro(3,1)*Ro(1,1)*2+ 

Strs(L+1,I)*Ro(3,2)*Ro(1,2)*2+ 

Strs(L+2,1)*(Ro(3,1)*Ro(1,2)+ 
Ro(3,2)*Ro(1,1)) 
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———~<FWRK=116)5 

  

  

    

        
        

  

  

    

  
r-- 

Stngm(1,I), Stngm(2,1I), Stngm(3,I) 

Stngm(4,1), Stngm(5,1), Stngm(6,1) 

Stsgm(1,1I), Stsgm(2,I), Stsgm(3,1) 

Stsgm(4,I), Stsgm(5,1), Stsgm(6,1) 

Stngb(1,I), Stngb(2,I), Stngb(3,1) 

Stngb(4,1I), Stngb(5,1), Stngb(6,1I) 

~Stsgb(1,1), Stsgb(2,1I), Stsgb(3,1) 
Stsgb(4,I), Stsgb(5,1), Stsgb(6,I1)   

  _|IF Princ = O 
  7 
  

  

—< FOR J = 1 10 4 STEP 3 » 
  

  

  

aN IF l= 1> 

Stngb(K,I) = Dmy(K) Stngm(K,I) = Dmy(K) 

Stsgb(K,I) = Dmy(K+6) Stsgm(K,1I) = Dmy(K+6) 

J 

Gi) 

  

Theta 

  
O, S*ATN( 2*Strs(J+2,1)/(Strs(J,I1) 

- Strs(J+1,1)     

N2 
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IF Theta < 0 > 
  

  

Theta = Thetat+3,1415926536 
      

      
  

  

Sn = SIN(Theta) 

Cn = COS(Theta) 

  
Princ(1) = Strs(J,1)+Sn*(2*Cn*Strs(J+2,1)+ 

Sn*(Strs(J+1,1)-Strs(J,I))) 

Prine(2) = Strs(J,1I)+Strs(J+1,1I)-Prinec(1) 
  

  

  
IF ABS(Princ(1)) < 0,99999*ABS(Princ(2)) >—— 
  

  

Theta = Theta-1.570796327 
      

  
  Ga) 

N1 
  

  

  

  
IF Qort = o» 
  

  

-——— ~< FOR I1=1706> 

  

      

    
  

Gash = Gush = Gish = Gosh = O 
     



    

  

r-———~<PR12=1104> 
  

  
  

  

Gash 

Gush = 

Gish 

Gosh 

Gash+A(J,12)*Stngm(I1, 12) 

Gush+A(J,12)*Stsgm(I1, 12) 

Gish+A(J,12)*Stngb(I1, 12) 

Gosh+A(J ,I2)*Stsgb(I1,12)     

    

  

Ndsnm(Node(Z,1I),11) = Ndsnm(Node(Z,1I),11)+Gash 

Ndstm(Node(Z,1I),I1) 

Ndsnb(Node(Z,1I),11) 

Ndstb(Node(Z,1I),1I1) 

Ndstm(Node(Z,1I),1I1)+Gush 

Ndsnb(Node(Z, 1) ,21)+Gish 

Ndstb(Node(Z,1I),I1)+Gosh     

  

      

    
rete 

N 

IF Quort = 0>-   
  

nee nee laren a elec FOR U = 1 TO Nnode ob 

  

  
IF Test(U) 4 1 >——__—_____ 

(4) 

  

  

  

      

  

< FOR Z = 1 10 Nelent » 
    
  

ao -< FOR Cntl = 1 TO 6+2*Qort > 
  

  

| 
IF Node(Z,Cati) = U>-— 5 
  

  

      

 



  

  

ann oo ok TOR TE = 1 106 > 

Ndsnm(U,I1) = Ndsnm(U,I1)/Cnt 

Ndstm(U,I1) = Ndstm(U,I1)/Cnt 

Ndsnb(U,I1) = Ndsnb(U,I1)/Cnt 

Ndstb(U,I1) = Ndstb(U,I1)/Cnt 

    

      

ees FOR U = 1 TO Nnode > 

  

IF Test(U) = 1 > 

(N5 ) 

    

  

  

—— ~~ FR Z = 1 TO Nelemt > 

r 

| 
| 
| 
| 
| 
| 
| 
| 
| 
| 
| 

  

  

~X FOR I = 4+Qort 10 6+2gort > 

IF U # Node(Z ,1) > 

( N6é ) 

  

  

    

  

~< FOR I1=1T06)5 = 

| 
ome 

| 

| 

| 

|   
al 
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( SUBEND ) 
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Bl = Ndstm(Node(Z, I-(3+Gort)) , 11) 
Cl = Ndstm(Node(Z,I-(2+Qort)) , 11) 
Dl = Ndstm(Node(Z,1),11) 

Fl = Ndsnm(Node(Z, I-(3+Qort)) , 11) 
9 Gl = Ndsnm(Node(Z, I-(2+Qort)) ,I1) 

H1 = Ndsnm(Node(Z,1) ,11) 

B2 = Ndstb(Node(Z,I-(3+Qort) ) ,I1) 
C2 = Ndstb(Node(Z, I-(3+Qort)) ,I1) 
D2 = Ndstb(Node(Z,1),11) 

F2 = Ndsnb(Node(Z, I-(3+Qort)) ,I1) 
G2 = Ndsnb(Node(Z, I-(2+gort )) ,I1) 
H2 = Ndsnb(Node(Z,1),I1) 

IF I = 6+2*Qort 

Ndstm(U,I1) = (B1+C1)/2 Ndstm(U,I1) = (D1+B1)/2 
Ndsnm(U,I1) = (F1+G1)/2 Ndsnm(U,I1) = (H1+F1)/2 

gender: Ndstb(U,I1) = (B2+2)/2 | | Nastb(u,I1) = (D2#B2)/2 | | 
| ced | Ndsnb(U,I1) = (F2+G2)/2 | | Ndsnb(U,I1) = (H2+F2)/2 

co 
)} | b---—~- 

eo 5 
ie Siete Beers cael 

ee eee | 
E Ne J 

Output the smoothed nodal 
10 strains and stresses 

(membrane and bending 

terms ) 
oe 

N3 
a 

 



4,3,3 Modifications of plate and shell structure programs 

to accept a segmental solving routine 
  

In complicated plate and shell structures, the mesh 

used should be fine, in order to obtain reasonable results, 

The sizes of the stiffness matrices resulting from such 

problems are large and cannot be held in the memory of 

the desk top computer such as HP9845B. 

From equations (4.62) and (4.63), it is apparent 

that to form any coefficient hij) only rows (1) and (3) 

of the main sequence need to be in the memory of the 

computer, 

On this basis Jennings and Tuff ,Ref(63) proposed a 

method of storing the system stiffness matrix [K] in a 

segmental form in some mass storage facility. Only two 

segments are required in the memory at any one time, 

Wood, Ref. (68)has constructed a solving routine based 

on Jennings and Tuff's idea to solve fracture mechanics 

problems. The backing store in the desk top computer 

HP9845B are; two cartridges and one flexible disc. More 

storage devices may be connected if necessary. The 

maximum number of segments cannot exceed 10. This is a 

limitation of the operating system (see Appendix (A). 

There are also time penalties in adopting this method 

of storage. Large segments are more efficient as less 

time would be used in transfer operations. 
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Inspite of all these difficulties, the solving 

routine "Segsol" (see Ref. (68) ) has been developed as 

a means of overcoming the problem of limited memory 

facility. Consequently, the subroutine "Addarray" is 

modified to be used with backing store as well as the 

subroutine "Assembly". The subroutine "Addarray" 

modification involves the division of the Add array 

into segments, each containing approximately the 

same number of coefficients and also an integral number 

of rows. The largest segment has been limited to 10000 

coefficients. The number of segments may be found by 

dividing the number of coefficients of [K] into subarrays 

each containing approximately 10000 coefficients. The 

limits of each segment is computed, The maximum segment 

size is found in order that sufficient computer memory 

can be made available. 

The subroutine "Assembly" modification involves 

a check to determine whether the coefficient lies within 

the bound of the segment in store, This is because only 

one segment is held in the memory of the computer. The 

subroutine "Test'' does this and also exchanges the segment 

in store with the required segment in the backing store. 

A comprehensive discussion of the backing store 

technique together with the flow chart of the solving 

routine is given in (Ref.(68)). The listing of the 

modified programs is given in Appendix B. These are 
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presented jointly with the programs dealing with the 

sectorially symmetric structures, which are discussed 

in Chapter 6, 

4.4 CLOSING REMARKS 

In this chapter, the theory of the semiloof shell 

element as developed by Irons, Ref.(53), has been discussed. 

The development of a general finite element package for 

plate and shell structures using the semiloof shell element 

has been described. This package was implemented on the 

HP9845B desk top computer. The master Program SMILOF 

was developed and stored in a separate file together with 

the following subprograms, which are independently saved 

into data files in order to save some memory storage. 

(SMINPT, SMCNTR, SMASBL, SMLDAP, SMSKEW, SMYVBS, SMELST, 

SMNDST). Only one subprogram is linked to the main 

program to perform a special task at a time using the 

"LINK" statement. 

For larger problems, the programs were modified to 

be used together with the P.Wood segmental solving 

routine "Segsol". 

The package has been tested against some known 

solutions and this is the subject of the next chapter. 
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CHAPTER FIVE 

NUMERICAL EXAMPLES 

-176-



5.1 INTRODUCTION 

The semiloof shell element described in Chapter 4 

has been applied to the solution of a number of thin 

plate and shell structures. Various examples are 

tested to establish the generality and validity of 

this element to deal with such structures. In order 

to see the performance of the computer eee came: the 

selected problems do not include complex shell geometry, 

due to the need to provide comparison with available 

solutions, On the other hand, these examples cover 

different types of loading and boundary conditions, 

such as the structures may contain: 

(Gi) curved boundaries 

-2a clamped edges, simply supported edges,...etc. 

(iii) uniformly distributed loads, concentrated 

loads, gravity effects and in-plane tensile 

loading. 

A number of complex shell geometries with multiple 

junctions were tested. These do not have exact solutions, 

Two of the above structures have been compared with the 

experimental results which are presented in Chapter 7, 

In this chapter two complex shell geometries with multiple 

junctions are examined by the developed finite element 

programs. These are to show the rate of convergence of 

the semiloof shell element in dealing with sharp corners 
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and multiple junctions, 

In the given examples, except the first one, the 

semiloof shell element quadrilateral typewas used. This 

is because the smoothed nodal stresses are needed to 

be compared with the published results. Triangular type 

may be used, but the comparison will be with fewer points 

since the stresses here are obtained at the midside 

nodes only (integrating points). 

In all the examples. tested, the output of the computer 

programs are as follows: 

(i) The nodal displacements (u, v and w) in the direction 

of the global axes (x, y and z) respectively and the loof 

nodes rotations. These resulted from the solving routine. 

(ii) The subprogram SMELST output are: 

(a) The membrane strains and stresses Cy = Bey: Nx, 

b 
N_ and Ny) and, the bending strains and stresses (ey, Ey» 

+ 

ee. Mx, My and Myy). These are calculated and printed 

at each element centroid in terms of the local element 

coordinates (see Section 4.3.2.10). 

(bo) The results of (a) are calculated in terms of the 

global element coordinates. 

(c) The principal stresses (tensions and bending moments 

and their directions)are computed at each element centroid. 
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(iii) The subprogram "SMNDST" outputs are: 

(a) The membrane and bending strains and stresses as 

defined in item (ii) for each integrating point within 

each element in terms of the local element coordinates. 

Direction cosines of the local axes with respect to the 

global ones and the nodal coordinates for the integrating 

point are also printed, 

(b) The results of (a) are computed in terms of the 

global element coordinates, 

(c) For each integrating point within each element, the 

principal stresses (membrane and bending moments) and 

their directions are determined. 

(d) If the quadrilateral element is used, the smoothed 

nodal strains and stresses are calculated and printed 

in terms of the global element coordinates, 

In the following chapter several examples are presented 

to demonstrate the accuracy obtainable from the finite 

element programs developed in Chapter 4, 

-179-



5.2 CLAMPED DISC UNDER UNIFORM TRANSVERSE LOAD 
  

This is a simple example to demonstrate the usefulness 

of the semiloof shell element when used to idealise 

curved boundaries in structures. Because of symmetry 

conditions only one quarter of the disc is idealised. 

Figure 5.1 shows the geometry and meshes used. The 

deflection and bending moment profiles were compared 

with the exact solution of Timoshenko, Ref. (1). Accurate 

prediction of the bending moments and the displacements 

were obtained using only three quadrilateral elements 

or five triangular elements as shown in Fig. 5.2. 

This demonstrates the ability of the semiloof shell 

element adequately to represent the curved boundaries 

of thin pirates. 
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R = 600 mm 
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Mesh A Mesh B 

Pig 5.3 Geometry and the finite element meshes 

used for clamped disc under uniform load 
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5.3 SQUARE PLATE CONVERGENCE STUDIES 
  

The following convergence studies have been carried 

out for a simple case of a thin plate of side 2, Poissons 

ratio vi,and flexural rigidity, D.(see Fig. 5.3)... The 

boundary conditions are taken as: 

€4) simply supported edges. 

(ii) clamped edges 

and the load cases are: 

Ci) uniformly distributed load 

(ii) central concentrated load, 

Because of symmetry conditions, only one quarter of 

the plate needed to be considered. Four uniform meshes 

were used. These were: (1x1), (2x2), (3x3),and (4x4). 

In order to study the rate of convergence, some of the 

results are plotted, others are compared numerically with 

the exact solution given by Timoshenko - Refi) as shown in 

Tables (5.1) and (5.2). In all cases, the numerical results 

presented in Tables (5.1) and (5.2) indicate a rapid 

rate of convergence to the exact solution given by 

Timoshenko for >. both displacements and stresses. Also, 

it is clear that the comparison drawn in Figs. 5.4 - 5.6 

shows that the semiloof shell element approaches the exact 

solution with a minimum number of degrees of freedom, 
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Mesh in Symmetric Quarter (1x1) (2x2) (3x3) (4x4) | Theory 

Ref( 1 ) 

Central deflection 

x10°s 2 1442 1264 1263 1262 1260 

ae 

Uniformly : 

Distributed Edge Bending 

Load Moment x, 3543 4638 4883 4953 5130 

(q) x10°x+5 
qe 

Central Bending 

e bee 2484 2674 2454 2379 2310 

x10, 
qe 

Central deflection 

x10° —2 7025 | 6071 | 5859 | 5768 | 5600 
Concentrated py" 
Central 

nee Edge Bending 
(P) Moment M- 1564 1187 1280 1258 1257 

Assi, 
x1O xp             
  

Table (5.1) Clamped Square Plate Under Uniformly Distributed Load (q) and Concentrated Load (P) 

 



~
o
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l
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Mesh in Symmetric Quarter (1x1) (2x2) (3x3) (4x4) Theory 

Ref (1 ) 
  

Uniformly distributed 
load (q) 

Central deflection 

5 Dp 
x10 4 

qe 

4085 4046 4054 4057 

  

Central bending 

6835 5134 4937 4871 4791 

  

  Concentrated Central 
load (p)     1315   1212   1188   1177   1160 

  

Table 5.2 Simply Supported Square Plate 

and Concentrated Load (p) 

Under Uniformly Distributed Load (q) 
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Fig.5.4 Convergence of deflections for a 

square plate with uniform loading 
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8.4 IN-PLANE TENSILE LOADING OF A FLAT PLATE 
  

The problem considered here is a square flat plate 

loaded on two opposite sides by a parabolically distributed 

normal traction, while the other two are stress free. 

Results are compared with exact solution published in 

Ref. (40) . The equivalent nodal forces due to the 

normal distribution pressure are calculated using the 

principle of virtual work (see Ref. (19) ). 

Figure 5.7 shows the details of the goemetry and 

the meshes used. The excellent agreement of the 

computed displacements and stresses gives a confidence 

into the performance of the semiloof shell element to 

idealise the thin plate and shell structures subjected 

to in-plane (membrance) loading. Some of these results 

are presented in Table 5.3. 
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ae | eee 
Mesh (1-V"Nok | (1-VNQk | (1-¥" NR 

(i) 4 as 1,194 5,068 

(2x2) | -1,4759 1.255 5.023 

(3x3) | -1.470 1.2628 f* 5.0157 

(4x4) | -1,474 1.266 5,038 

Exact | -1.519928 | 1.27727 | 5.073478 

Finite a A ee ae aN BN ¢ 

Mesh . O° o O O 

(1x1) | -3,0285 | 8.9088 | -0.045 | 4,3893 | 0.0499 

(2x2) | -1.6505 | 8.7663 | 0.00562 | 4.1611 | -0.0034 

(3x3) | -1.5014 | 8.638 0.00588 | 4.0959 | -0.0112 

(44) | -1.4064. | 8.637 0.004156] 4.0911 | -0.0106 

Exact | -1,40954 | 8.59046 0 4.1067 0           
  

Table 5.3 Numerical Results for rectangular plate with 

parabolically distributed edge tractions 
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5.5 CYLINDRICAL SHELL ROOF 
  

The programs were tested on the problem of a 

cylindrical shell roof loaded by its own weight. The 

details and dimensions of this system are shown in 

Fig. 5.8. The straight edges supported by diaphragms 

are assumed to be infinitely rigid in their plane 

and infinitely flexible out of it. This is one of the 

most typical examples used as a performance test for 

the finite shell elements programs; membrane and 

bending effects are of comparable importance in the 

solution. It has been used by many finite element 

investigators to test their elements. 

Some of the results are given in Table 5.4 together 

with the results of other elements for comparison 

purposes. Meshes (A, B and C) are drawn on the exact 

solution as given in Ref. (69). By observing the 

results tabulated in Table 5.4, it can be seen that the 

finite element results obtained using the semiloof shell 

element are accurate even with the coarsest mesh and 

the convergence is rapid. Also, it yields the best 

accuracy for the minimum number of degrees of freedom, 

The comparison between the results of the finite element 

approach using the meshes A, B and C and of the analysis 

of Scordelis and Lo (Ref. 69), is given in Figs. 5.9-5.11. 

The displacements, membrane stresses, and bending moments 

are considered in these figures. Good agreement 
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between the two sets of results have been obtained, 

Also, a high rate of convergence to the exact solution 

was noticed, 

  

  

  

  

  

  

    

Element | Net no.of | U, in Wee sien u_in We an : fe A B B Cc Grid equations 

2x2 a —0 0735 -4,571 Zot 0,601 Ref( 29 ) 

3x3 63 -0.1049 -3,629 1,912 0.5281 simple flat 

4x4 108 —0.1201 -3,530 1.861 0.5234 triangular 

55 165 -0.1283 =, 527 1,860 OF5275 shell 

10x10 630 -0.1417 -3 564 1.881 0.5414 elenent 

4x5 ~ - -3,56 - 0.48 Ref( 70 ) 

8X12 _ - -3.71 - 0.54 curved shell 

12x18 - ~ - - - element 

4x5 - - -2.49 - 0.398 Ref( 71 ) 

8x12 - - -3,324 - 0.535 curved shell 

12x18 = - -3,531 - 0,54 element 

1x2 53 -—0,1288 -3.0396 | 1.6493 | 0.4056 Present 

2x3 121 ~0,1418 -3, 437 1,8159 | 0,4964 analysis 

3x4 212 —0.1489 -3.5834 | 1.8889 | 0.52087 | semiloof 

4x4 21D —0.1488 -3,5913 | 1.8942 | 0.5248 shell element 

Exact ~0.15133 | -3,7033 | 1.9637 | 0.5249 Ref( 40 ) 

Exact -3,696 0,552 Ref( 69 )               

Table 5.4 Numerical Results for Cylindrical Shell Roof Problem 
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5.6 A DEEP PINCHED CYLINDRICAL SHELL 

As a complex problem to test the programs developed, 

a deep pinched cylindrical shell is analysed. Figure 

5.12 shows geometry, loads, material properties, and 

meshes used, The cylinder is freely supported at both 

ends, and subjected to two central loads acting at 

diametrically opposed points, Because of symmetry 

conditions only one-eighth of the shell need be 

considered in an analysis: in the present test, this 

has been done using three different meshes; these are 

designated (2x2),(3x3) and (4x4) , 

The displacement and stress resultsants are presented 

and compared with exact results from a double Fourier 

series solution by Flugge Ref. (72). 

The non-dimensional results for the displacements, 

stress resultants and the bending moments are given in 

Figs. 5.13 - 5.15. They are in good agreement with the 

Flugge solution and indicate a high rate of convergence, 

This example makes it evident that the semiloof shell 

element can also tackle even a deep shell problem, 
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5.7 FOLDED PLATES 

These problems concern plates with intersections 

under a point load. Two examples are presented here, 

Details and geometry are given in Figs. 5.1@a) and 5.22(a). 

The finer mesh for each structure was used as a reference 

for comparison with other used meshes in order to predict 

the rate of convergence. 

Various displacements and bending moments along 

different cross-sections are presented. These structures 

are as follows: 

(a) Three intersecting plates at right angles to each 

other; details of the geometry, loading and the meshes 

used are shown in Figs. 5.16(a),(b),(c),(d), (e), 

Displacements and bending moments are plotted in 

Figs. S748 GO oS, e.. 

(b) Two intersecting plates at right angles to each 

other, another plate is welded to them. Details of the 

geometry, loading and the meshes used are shown in 

Figs. 5.22(a),(b),(c),(d). Displacements and bending 

moment distributions are plotted in Figs. 5.23 to 5.27. 

In both cases (a) and (b), the semiloof shell element 

has proved to be an efficient element to tackle structures 

with sharp corners and multiple junctions. High rate 

of convergence for the displacements and bending moments 
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were obtained. These indicate the good performance of 

the semiloof shell element in the idealisation of such 

complicated structures, which is a lead into the actual 

fan impeller structures of interest in this work, 

since the blade/backsheet and blade/conesheet junctions 

of the fan impellers are similar to those found in the 

above examples. 

Another two examples of multiple junctions were 

tested experimentally. These are presented in 

Chapter 7, where a comparison of finite element 

predictions and experimental results are given, 
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5,8 CLOSING REMARKS 

The semiloof shell element has been used to solve 

plate and shell structures with different boundary 

shapes. Very good results were obtained confirming 

the value of the semiloof shell element and showing 

that the associated computer program developed in 

this work functional correctly. 

In the next chapter, the programs developed in 

Chapter 4 are modified to exploit sectorial (or 

rotationally periodic) symmetry in structures: a 

significant feature in rotating fan impellers, 
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CHAPTER SIX 

ROTATIONALLY PERIODIC STRUCTURES 
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6.1 INTRODUCTION 

Axial symmetry exists in many engineering structures, 

A considerable range of computer programs have been 

developed by different researchers for analysing 

structures, taking full advantage of their axisymmetric 

behaviour in minimising computational effort in predicting 

performance, 

If the structure is not exactly symmetric and 

cannot be represented by an axisymmetric idealisation, 

it is necessary to analyse the whole structure, which 

is often impracticable for computer storage and cost 

reasons. .Some of these structures contain a series of 

identical structural elements, linked by identical 

junctions. Such types of construction with regularly 

repeated sections, has the property of periodicity (cyclic 

or sectorial symmetry). In this chapter, these 

rotationally periodic Se roccures cc considered with a 

view to analysing only one repeating sector. This 

approach would normally require much less computer time 

and storage than analysing the complete structure, The 

programs developed in Chapter 4 have been modified so 

as to match the cyclic symmetry of rotating fan impellers. 

This enables the designers efficiently to analyse a fan 

impeller using the developed finite element package. 

Numerical examples for testing the modified programs 

are also given. These are compared with known solutions. 
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6,2 CYCLIC SYMMETRY (ROTATIONALLY PERIODIC STRUCTURES ) 

Rotationally periodic structures consist of identical 

coupled substructures positioned symmetrically about an 

axis. In these structures, one can recognise a 

repetition of goemetry and loading. If the geometry of 

the structure is defined for any radial or axial position 

at some angle @, it will be identical at (6+ n Gala 

where is a, and n and N are integers, N is structure 

dependent (the number of identical substructures that 

constitute the structure). Structures which possess 

the property of cyclic symmetry include rotating fan 

impellers, bladeq turbine discs, centrifugal pumps 

and cooling towers. 

Figure 6.1 shows a sector of a fan impeller (radial 

type) with 10 equispaced blades. If the geometry of the 

fan is completely defined for an angular segment of 

ai such as the sector boundaries shown in Fig. 6.1, the 

rest of the fan can be generated by repeated rotation 

of the segment through a rad. Also the loading is 

repeated as the geometry is repeated. Stresses and 

deformations also display cyclic symmetry. Therefore, 

only one sector needs to be analysed. This technique 

has been used successfully by a number of investigators. 

MacNeal, Harder and Mason ,Ref. (73), have developed a 

method of simplifying the analysis of rotationally periodic 
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structures and have incorporated the technique in the 

finite element program NASTRAN, which can be used for 

static analysis, steady-state heat transfer analysis, 

and vibration analysis. Thomas, Ref(74), has used the 

technique for studying natural frequency and mode shapes 

of rotationally periodic structures consisting of a finite 

number of identical substructures forming a closed ring, 

Nelson Ref.(75has made use of the method adopted by 

Thomas in the investigation of cooling towers, 

McEwan Ref.(76has idealised curved bladed pump impellers 

as a sector bounded by two radial planes. 

The implementation of cyclic symmetry, in the finite 

element programs is described in the following section, 

This will show how the analysis of a fan sector could be 

used to obtain an analysis of the complete fan impeller... 
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6,3 IMPLEMENTATION OF THE SECTORIAL SYMMETRY IN THE 

FINITE ELEMENT PROGRAMS: 
  

In this section, a method of exploiting the repeated 

similarities of geometry, material properties and loading 

of rotating fan impellers of complicated design, is 

introduced, This will reduce the amount of data preparation, 

memory storage and computing time required in evaluating 

mechanical design. 

6.3.1 Theory of Repeated Structures 

Figure 6.2. shows a rotating disc, This is an 

axisymmetric structure which can be regarded as a 

rotationally periodic structure where the- periodicity 

tends to infinity; i.e. No, 

A typical segment between sections (a-a) and (b-b) 

is isolated. For anlaysis purposes a stiffness relationship 

can be written in the following form: 

[K] {a} = {Q} ic (eu 

For the typical sector: 

art bBas) (Syl Piast {Q,} 

[Fox] [Eee] [Soa] | \i9eht = °j {2} oP Bens 

[K31] [K32] [X33] | |{93} {Q3} 
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Hist 6.2 > Rovating Dise 

where ta,} and {agi represent degrees of freedom on 

edges (a-a) and (b-b) respectively, and {a} represent 

all other degrees of freedom of the structure. Forces 

{Q,} and {Q,}. are applied loads. 

Subscript (1) refers to nodes on boundaries (a-a) 

Subscript (2) refers to internal nodes 

Subscript (3) refers to nodes on boundaries (b-b). 

But ia, } = {43} , therefore equation (6.2) can be 

written as follows: 

1K, ,1+IK, 3] [K,,] {qo}! \taot 

(6.3) 
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Thus the complete repeated structure can he solved 

by solving one sector with corresponding contributions 

along the internal boundaries assembled into the same 

location and treated as one set of variables. 

Equation (6.3) can be produced automatically by 

the element assembly process, which can be achieved by: 

(i) Giving the same node number to cyclically 

Symmetric nodes along (a-a) and (b-b). This numbering 

is only for element assembly purposes. Actual point 

co-ordinate must be used in the formulation of element 

stiffness matrices. 

(ii) Ensuring the element division along each of 

the repeated boundaries is the same. This means that 

each node will have a corresponding node with exactly 

the same behaviour. If the disc in Fig. 6.2 is 

idealised, a small sector is used with symmetry 

conditions of zero circumferential displacement on the 

bounding radial planes (a-a) and (b-b). If the mesh 

in Fig. 6.3 is considered; then node 1 will have node 17 

with exactly the same behaviour J Sess es Cle w Aliso: the 

number and spacing of elements (a-a) must be the same 
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along (b=b) 5 Tapie [St] is. set up to contain the pairs 

of similar behaviour nodes. 

    

  
Fig.6.3 Sector Idealisation 

For the mesh shown in Fig. 6.3, [St] is constructed 

as follows: 

1 EZ, 

2 18 

[st] = 

7 21 
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This will be used during the assembly in order that 

the contribution to both similar nodes are assembled in 

the same location. After solution, this Table is used 

again to give the similar nodes the same displacements. 

The nodal stresses are calculated in the normal way. 

6.3.2 Modifications of the Developed Finite Element Programs 

to Include Sectorial Symmetry 

In cases of complicated plate and shell structures 

in which the resulting stiffness matrix is large and 

cannot be held in the computer memory, the segmental 

technique was suggested in Chapter 4 to solve these 

problems. This was implemented in a package called 

"TMPSMF'', The fan impeller is an example of a complicated 

plate and shell structure in which the cyclic symmetry 

of substructures exist. As mentioned above, the resulting 

stiffness matrix is large, therefore, in adopting the 

cyclic symmetry in the finite element programs, it is 

essential to use the segmental technique. In the current 

discussions, the developed package "IMPSMF" is modified 

to include the sectorial symmetry of repeating structures. 

This is similar to the "SMILOF" package except that the 

modifications of cyclic symmetry and segmental technique 

are applied here. A code is introduced in "IMPSMF" for 

distinguishing between the problems of repeating structures 

and normal structures, The input data is very similar 
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to that described in Section 4.3.2.1 for the "SMILOF". 

A new variable (Nk) is introduced with the control 

variables. The (Nk) refers to the number of nodes on 

a side of repeated boundary (e.g. Nk=7 for the sector 

in Fig. 6.3). If Nk=O, then the programs execution is 

directed as normal complicated plate and shell structures. 

In order to include the cyclic symmetry in the "IMPSMF" 

package, the subroutines 'Addarray", "Assembly" and 

"Skewedcon" are modified and the subroutines "'Skewiml" 

and Skewim2) are introduced, 

-The flow charts of the modified subroutines are 

not drawn, owing to the similarity to the original 

subroutines. However, the listings are given in 

Appendix B. The modified subroutines are presented 

briefly below: 

(a) Subroutine 'Maddarray" 

The subroutine "Addarray" described in Section 4,3.2.2. 

is modified to take into account the cyclic symmetry. 

A loop is set for the (Nnode-Nk). This is because, only 

the nodes on one repeated boundary are considered, 

Another new loop is set inside the main loop. Here, each 

node is checked to see if it is repeated on Section (b-b) 

of Fig. 6.3; the number of this node is made the same 

as the corresponding node on Section (a-a).. The other 

steps to form the subroutine '"Maddarray" are as they were 
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described in Section 4.3.2.2... However, the listing of 

this subroutine is given in Appendix B., 

(b) Subrountine 'Massembly" 

In this subroutine, the location of the element 

stiffness coefficients in a one-dimensional array [K] 

is done as explained in Section 4.3.2.4, using the 

modified address array sequence. The location is done 

automatically for the similar nodes on the repeated 

boundaries. The load vector is split into two vectors: 

(i) {Q} vector is used to keep the nodal loads for the 

nodes of houndary (a-a) and the internal nodes, i.e. 

({Q, } and {Qo} a: 

(ii) {Qg} is used to keep the nodal loads for the nodes 

on the boundary (b-b). 

These nodal loads are formed automatically for the 

body forces inside this subroutine in the direction of the 

global axes as explained in Section 4,3.2.5 . The 

listing of this subroutine is given in Appendix B. 

(c) Subroutine 'Mskewedcon" 

Following the discussions presented in Section 4,3.2.6, 

Skewed conditions prevail on the sector boundaries (a-a) 

-234-



and (b-b). The method of constraining the nodes on the 

repeated boundaries involves prescribing the nodes on 

one section which is (a-a) with respect to local axes, 

The program automatically takes into consideration the 

concept of two similar nodes on sector boundaries having 

equal displacements. These displacements are prescribed 

in the directions of local axes, therefore, a transformation 

of the system matrices is required between the constructed 

Local: gues (fr, 8, Gy and tie global axes (x, yy, 2); 

For a backsheet element of the fan impellers, the 

transformation matrix [T] is exactly the same as that 

defined in equation (4,48) and (4,49). To obtain (T] 

for a conesheet element, the cone of Fig, 6.4(b) is 

considered. A sector is defined between Py and Po- The 

local: axes are r; s and. t, r is.directed along the 

longitudinal direction, t tangent to the parallel circle, 

while s is perpendicular to both, and a is the semi-cone 

angle. From geometry, the relation between the global 

axes (x, y and x) and the local axes (r, s and t) may 

be written as follows: 

x -cos¢cosa -Sina cosd -sing zr 

y = | -singcosa -sind sina coso S ‘se ee 

Z -~sina . cosa OQ iG 
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(a) Typical sector of radial fan impeller 
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(b) Typical sector of the conesheet 

Fig.6.4 Typical repeated structures 
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A code is introduced to distinguish between the 

backsheet, blade and conesheet elements, in order to 

choose the proper transformation matrix [T]. This is 

achieved by the type of element, It is stored in the 

last column of the nodal connections matrix. The type 

of element is either 1, 2 or 3 respectively, referring 

to the backsheet, hlade or conesheet element. If 

Fig. 6.4(a) is considered (intersection of backsheet and 

the blade), the blade element A contains the nodes ay, 

ag on the sector boundaries. In this case the type of 

this element should be 1 (since ay and a. are common on 

the sector boundary between the blade and the backsheet). 

In the case of intersection of the conesheet with 

the blade on the sector boundaries (if it exists), the 

blade element type will be 3, For a general plate and 

shell structure, the element type is 1. 

Having the suitable transformation matrix ead ep the 

element stiffness matrix is transformed from the global 

axes to the local axes using equation (4.54). This 

subroutine follows the same procedure of that explained 

in Section 4.3.2.6 and the listing is given in 

Appendix B. 
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(d) Subroutine "Skewiml1" 
  

As mentioned before, the body forces per unit volume 

due to gravity and rotational forces are evaluated 

automatically in the subroutine "Massembly". These are 

in the directions of the glohal axes. With cyclic 

symmetry, the nodes on the sector houndaries (a-a) and 

(b-b) are specified with respect to the directions of 

the constructed local axes. Their stiffnesses are 

transferred to these local axes in the subroutine 

"Mskewedcon", Therefore, the loads acting on these 

nodes i.e. {Q,} and {Q3} must be in the direction of 

these axes. This subroutine does this job and transfers 

the loading resulting from the subroutine "Massembly", 

to the local axes directions (ie et). 6 tne 

procedure used is similar to that explained in Section 

4.3.2.7. A flow chart of this subroutine, shown in 

Fig. 6.5, follows and the steps involved are, with 

reference to the flow chart: 

1. A loop is set for the number of skewed nodes. 

2. Each node is checked to see if it is on the boundary 

(a-a) or (b-b) in order to define its position in {Qa} 

or in 1GQ 3; 

3.° The proper coefficients of the transformation matrix 

are calculated. 
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4, The load vector is modified for the current skewed 

node using equation (4.54). 

Steps 2-4 are repeated for the other skewed nodes. 

Having the loads in the local axes directions, the 

loads on Sections (a-a) and (b-b) are added together 

as defined in equation (6.3). This is performed in 

the main program. The prescribed displacements are 

applied using the subroutine "Geombc", The overall 

system equations can now be solved to determine values 

for nodal displacements. The resulting displacements 

on Section (a-a), which are the same as on (b-b) are 

in the local coordinate system. 
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Fig.6.5 Flow Chart of Subroutine'Skewimi" 
  

SUB Skewiml (Q(*), Angsk(*), Qb(*), AIP, INTEGER Test(*), J, Nosk(*), 

Nskew , St(*), Skewd, Skewc). 

    FOR I = 1 TO Nskew 

  

| A=A1l=L=0 

| Ang = Angsk(1)*0.0174533 

| 

| — —< FOR Jl = 110 Nk P< RE a 
| 
| 
| 

      

  

  
IF Nosk(I) = St(J1,2) > 
  

    
| = Ltl 
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IT =< ic 

        

Phi = Ang S(1,1) = COS(Ang) 

Al = AIP*0,0174533 S(1,2) = SIN(Ang) 

S(1,1) = -COS(Phi)*00S(A1) S(2,1) = -SIN(Ang) 

S(1,2) = -SIN(Phi)*COS(A1) S(2,2) = COS(Ang) 

8(1,3) = -SIN(A1) S(3,3) =1       

S$(2,1) = -COS(Phi) 

S(2,2) = -SIN(Phi)*SIN(A1) 

S(2,3) = COS(Al) 

S8(3,1) = -SIN(Phi)           

  

S(3,2) = COS(Phi) 
8(3,3) =O 

aN L=0>-   
  

  
  

© 
    

  

An = Al-4+2*Test(St(J1, 2) 

M = Qb(An) 

N = Qb(An-1) 

O = Qb(An-2) 

Qb(An) = S(1,1)*M+S(1,2)*N+S(1,3)*0 
Qo(An-1) = S(2,1)*MHS(2,2)*N+S(2,3)*0 
Qo(An-2) = S(3,1)*MH4S(3,2)*N+S(3,3)*O     
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N1 

    
An = A-4+2*Test(Nosk(I) ,J) 

M = Q(An) 

N = Q(An-1) 

O = Q(An-2) 

Q(An) = S(1,1)*M+S(1,2)*N+S(1,3)*0 

Q(An-1) = S(2,1)*M+S(S,2)*N+S(2,3)*0 
Q(An-2) = S(3,1)*M+S(3, 2)*N+S(3,3)*0           
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(e) Subroutine "Skwim2" 
  

At this subroutine, the displacements on the sector 

boundaries (a-a) and (b-b) are converted back to the 

global axes. The final displacements are in the global 

directions. A flow chart, shown in Fig. 6.6, and the 

steps involved are, with reference to the flow chart: 

1. A loop is set for the number of skewed nodes. 

2. The table [St] is used to define the position of the 

current skewed node on the sector boundaries. 

3. Using step 2, the coefficients of the displacements 

for the current skewed node are defined. 

4, The proper coefficients of the trnasformation matrix 

are calculated. 

5. The displacement vector {Q} is modified. 

Steps 2-5 are repeated for the other skewed nodes. Final 

displacements are in the global directions. 
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Fig.6.6 Flow Chart of Subroutine'Skewim2" 
  

SUB Skewim 2 (Q(*) ,Angsk(*), Qo(*), AIP, INTEGER, Test(*), J, Nosk(*), 

Nskew, St(*), Nk, Nskwd, Nskwc). 

at Count = O 

  

      

  

Se FOR I = 1 TO Nskew 

  

  
| IF I > Nskwd > 

  

  

Count = 1 
        

      
A=AL=L=0O 

| Ang = Angsk(1)*0,0174533 

4 | ere AT 31 1 Nic > 

IF Nosk(I) = St(J1,2) 

ee ee ees oe 

    
  

  

    
  r

-
-
-
7
 

    
L= Ltl 
  

  
  

|. 
-   

    
  

A = A+5-2*Test (K) 
  

  

~< RR K=170 Nosk(I) > 

| 

| 
|     
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Count = 0 AND I > Nskwd+Nskwe/2)>——— 
  

  

  Count = 1 AND I > Nskwd/25———, 
      

M = Q(A-4+2*Test (Nosk(T) , J) 

N = Q(A-3+2*Test (Nosk(I) ,J) 

O = Q(A-2+2*Test (Nosk(I),J)       

  

Coun = Countl 

Coun > 1 >—— 

Jn = Nskwd/2 

ere 

    

  

        
      

    

  

Jn 
  

= Jn+1 
    

  

~~ rR K=1 TO St(Jn,1) > 

  

  
Al = A1+5-2*Test(St(K,1)) 

      
  

  
  

        Count > 
Phi = Ang 

Al = Alp*0.0174533     

      

      

S(1,1) = COS(Phi)*C0S(Al) S(1,1) = COS(Ang) 

S(2,1) = -SIN(Phi)*COS(Al)| | S(1,2) = SIN(Ang) 

S(3,1) = -SIN(A1) S(2,1) = -SIN(Ang) 

S(1,2) = -COS(Phi)*SIN(A1)| | S(2,2) = COS(Ang) 

S(2,2) = -SIN(Phi)*SIN(A1)} | S(3,3) = 1 

S(3,2) = COS(Al) 

S(1,3) = -SIN(Phi) 

S(2,3) = COS(Phi) 

S(3,3) =O 
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Q(An,J) = S(1,1)*M+S(1, 2)*V+S(1,3)*0 

Q(An-1,J) = S(2,1)*M+S(2,2)*N+S(2,3)*0 

| 

| 
| 
| An = A-4+2*Test(Nosk(I)) 

| 

| Q(An-2,J) = S(3,1)*M+S(3, 2)*N+S(3,3)#0       

  
SUBEND 

-246-



6.4 TESTED EXAMPLES 

The choice of the examples aims at having a problem 

with a known solution, preferably an exact theoretical 

one for test purposes. This will make it possible to 

show the use of the constraints on the sector boundaries, 

which equals the displacements of two given identical 

nodes such as the rotating discs and the rotating cones, 

The convergence studies are carried on for another 

complicated structures such as the radial fan impeller 

with and without conesheet, 

6.4.1 Rotating Disc 

This example concernsthe use of the semiloof shell 

element in rotating parts. A simple disc is taken to 

establish the performance of the constraining technique 

explained in this Chapter, compared toa known solutions. 

For this purpose a sector of angle 20° is used with 

symmetry conditions (tangential displacement v=O ) on 

the bounding radial planes, The geometry and the meshes 

used are shown in Fig. 6.7. Figures 6.8 and 6,9 show 

the excellent agreement between the finite element results 

and the Timoshenko solution Ref.(1) for both radial and 

tangential stresses. 
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6.4.2 Rotating Cone 

A rotating cone with the geometry shown in Fig. 6.10 

has been solved analytically by Bell, Ref. (5) using the 

classical solution discussed in Ref. (77). 

For comparison purposes, this problem is chosen to 

be solved and the Bell solution has been taken as a 

reference for the sector analysis discussed here, The 

inner edges are assumed to be built in. A sector of 

20° angle was used, The details of the geometry and the 

meshes used are shown in Fig. 6.10. The results are drawn 

on the exact solution published in Ref. (5) Phe 

results of the stresses are taken through the longitudinal 

direction, The radial, displacements and the membrane 

forces Ny converge to ae exact solution with few elements 

while the bending moment needed more refinement for the 

meshes used, as shown in Figs. 6.11, 6.12 and 6.13. 

respectively. 
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6.4.3 Simplified Fan Impellers 
  

As the rotating fan impellers (simplified and actual) 

are examined experimentally in the next chapter, two 

examples are presented here in order to study the convergence 

of the solution for such intersecting structures and to 

show the validity of the implementation of cyclic symmetry 

in the developed computer programs, These are as follows: 

(7) A rotating impeller with 10 equispaced radial blades 

(geometry and the meshes used are shown in Fig. 6.14(a), 

(D2, €c) and Cdj). 

(Gatat)) Impeller (i) plus a conesheet added to it (geometry 

and the meshes used are shown in Fig. 6.15(a), (b), (c) and 

(d)). 

Using the repeatibility principles, the impeller 

can be analysed by dividing ( 5 ) of the structure into 

elements and imposing the equal displacements on the 

repeated boundaries (a-a) and (b-b). The sector has an 

included angle of 36°. 

Mesh C was drawn for hoth impellers (i) and (ii) 

for a reasonable numerical solution in order to study 

the convergence for the displacements and stresses, The 

results from mesh A shows that a finer mesh was required 

compared to the results from mesh C, especially for 

impeller (ii), therefore only the radial displacements 
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are drawn on the solution of mesh C, 

Two sections on the backsheet have been investigated, 

these are at (a-a) and (d-d). Results are shown in 

Figs. 6.16 to 6.18. anc Figs...6.19 to: 6.21. for. both 

impellers (i) and (ii) respectively. Rapid convergence 

for the displacements, in-plane tensile forces and the 

radial bending moment are obtained. The results for 

the tangential bending moment shows that a finer mesh 

other than mesh B is required, The effects of adding 

the conesheet to impeller (i) are drawn in Figs. 6.22 

and 6,23 on the backsheet at sections (c-c) and (d-d). 
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6.5 CLOSING REMARKS 

The technique of analysing one sector of a structure 

in which the loading pattern, geometry and material 

properties are repeated is incorporated in the developed 

computer program discussed in Chapter 4. The 

constraints of equal node displacement should be imposed 

by specifying that nodes at equivalent positions on the 

sector boundaries. The comparison of the finite element 

results with the exact solution for the given examples 

has shown excellent agreement using meshes containing 

few elements. This also proves the correct representation 

of element centrifugal force as equivalent nodal loads 

using the element shape function which has been coded 

into the program. 

The convergence study of the simplified radial fan 

impeller with and without conesheet, is promising in as 

far as the specification of the cyclic symmetry technique 

is concerned. 

An actual fan impeller will be solved by the finite 

element method using the technique discussed in this 

chapter. The results will be compared with those obtained 

experimentally and described in the next chapter. 
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CHAPTER SEVEN 

EXPERIMENTAL INVESTIGATION AND 

CORRELATION WITH NUMERICAL 

PREDICTIONS 
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7.1 INTRODUCTION 

Generally, if a given problem is solved by a theoretical 

approach, the results must be verified by experimental 

means. In the stress analysis field, three basic 

conventional experimental methods are available, These 

ae: 

(i) Photoelastic method. 

(ii) Brittle lacquer coating method. 

(iii)Strain gauges and associated instrumentation. 

The photoelastic method would not be suitable for 

the present task in view of the difficulties of obtaining 

a reasonable size model of fan impellers fabricated from 

thin plate. 

The brittle lacquer coating methods are not suitable 

to achieve the objectives of this part of the work, 

because only qualitative results are obtained, The 

magnitude and direction of the actual stresses are 

required in order to be able to obtain a comparison 

between the experimental and the numerical results to 

assess the ability of the finite element model 

adequately to represent the rotating fan impeller, 

The strain gauge technique has been found to be a 

versatile tool in this field, due to its relative 
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simplicity, and the fact that it is applicable directly 

to component under service loading conditions: it gives 

more accurate results than other experimental techniques. 

This chapter is mainly devoted to discussing the 

experimental stress analysis of the thin walled centrifugal 

fan impellers (simplified and actual). In addition to 

these examples, two complicated plate structures, which 

have been examined experimentally at the early stages of 

developing the finite element package, are presented 

to provide a comparative solution for the problems of 

intersecting plates which characterise fabricated fan 

impellers with their blade/backsheet and blade/conesheet 

junctions. A comparison between the finite element 

process using the sectorial symmetry technique is 

discussed in Chapter 6, and the experimental results 

are given in order to assess the adequacy of this approach 

to treating thin walled centrifugal fan impellers.



7.2 BACKGROUND THEORY OF STRAIN GAUGES 
  

Having decided that the strain gauge technique 

should be used, more background information on electrical 

strain gauges and information was sought and a brief 

summary is presented here, 

7.2.1 Electrical Resistance Strain Gauges 
  

Strain gauges technique has been applied to stress 

analysis problem in almost every branch of engineering, 

The electrical resistance strain gauge measurement,is 

the most popular method, in which a change in length 

(strain) produces a change in the electrical 

characteristic of resistance. The important advantage 

common to all electrical gauges is the relative ease 

with which the output can be displayed and recorded, 

There is a wide variety of electrical resistance strain 

gauges. The bonded foil resistance gauge is the most 

widely used, because of its small size, lightness, high 

sensitivity and ease of attachment and their great 

stability during long time and elevated temperature 

tests. When these gauges are strained, their resistance 

changes. This change of resistance is related to the 

change of strain by the following equation: 
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ec = ae 

where 

€ = strain, 

AR = change in gauge resistance 

R = gauge resistance 

F = gauge factor or strain sensitivity. 

The gauge factor is usually about 2 with eno actual 

value for a given batch being supplied by the manufacturers. 

The foil strain gauge is mounted onto a specimen with an 

adhesive. This adhesive serves a very vital function 

in the strain measuring system in that it must transmit 

the strain from the specimen to the sensing element 

without distortion, The wires leading to each gauge 

should be firmly fixed to prevent them from flexing. 

The types of gauges used in the eperca investigation 

are either linear gauges or rectangular 45° rosettes (foil 

type). 

The linear gauges of Fig. 7.1(a) are designed to 

record the strain along one paritcular axis. 

In general, normal and shearing stresses act in 

arbitrarily chosen directions at a given point so that, 

in such cases, the directions of the principal stresses. 
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stresses are not always known: A single linear strain 

gauge cannot be used for analysis and three (or more) 

gauges at known orientations with respect to each other, 

together forming a "rosette" must be used. In the 

strain-rosette method the stress at a point is 

completely determined by measuring the unit strains at 

the point in three independent directions. The state 

of stress at a point will be obtained in terms of the 

principal stresses and their directions, The strain- 

gauge rosette equations can be obtained using the 

Mohr's circle for strain (see Ref. (78) ). The 

principal strains are first determined, and then the 

principal stresses are evaluated using the stress-strain 

relations. For the rectangular 45° rosette of Fig. 7.1(b), 

the equations for the principal strains and stresses 

are as follows: 

The principal strains are: 

  Cog a Ge 

  

  

  

  

ee 1 2 2 
Snax on 5 + 5’ CE ,-Eq) +(2€,-€,-Eq) 2 00 Cl 2p 

e, te o8 ct.) 
So Age © il 2 2 

ein er a Pac? Para 

and the principal stress are: 

o ee Ce +ve ) (7.4 max va "max min a 24) 
1l-\y 

= py ea ( + ) 
Comin ie Emin ~ Yemax ose (7.5) 
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The direction of the principal stresses is given by: 

2E.-£,—-€ 

  

aL -1 BEA 0, = 5 tan (—>—=—) p 2 En-EG 

(a) (b) 

Linear Gauge Three-gauge 45° 

Rectangular Rosette 

Fig. 7.1 Foil Strain Gauge Types 
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7.2.2 The Wheatstone Bridge 
  

The Wheatstone Bridge is an electric circuit which 

can be employed to determine the very small change in 

resistance which a gauge undergoes when it is subjected 

to a strain, It may be employed to determine both 

static and dynamic strain-gauge readings. The bridge 

may be used either as a direct read out device, where 

the output voltage My is measured and related to strain, 

or the bridge may be used as a null-balance system where 

the output voltage V, is adjusted to a zero value by 

adjusting the resistive balance of the bridge. In either 

of the modes of operation the bridge may be effectively 

be employed in a wide variety of strain-gauge applications. 

If the circuit. shown in Fig. 7.2 is considered, a “DC 

voltage V, is applied across the terminals ac. It can 

be shown that the resulting voltage across the terminals 

bd is given by: 

EE Gy cos 
oO CR, +R) (R3tR, ) » | 

when the bridge is balanced: 

oie 
and 

R1Ra = RoR, age Cae) 
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d 

1 | a 
v, 

i 

Fig. 7.2 The Wheatstone Bridge Circuit 

If each value of resistance Ri» Ro, Re and Ry are 

AR SR. and..AR 
2 i n* 3 

respectively, then the out-of-balance potential across 

increased by an incremental amount AR 4 

bd is: 

(Ry t4R, ) (R3tARg)-(RotAR,) (RytAR, ) 

a ee tt. | 
a 

(Ry +4R,) (RotARy) (Rg+ARg)(R,tAR,) 
  

By expanding the above expression, neglecting second order 

terms, and noting that 

for balance it is possible to show: 
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RR AR, AR, AR. AR, 

‘ 
) eo° CTS. 

Q 1 (Ry +R) Ro Rg Ry 1 

This equation represents the basic equation which governs 

the behaviour of the Wheatstone bridge in strain 

measurement. 
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7.3 PRELIMINARY TESTS 

These tests were carried out at the early stages 

of developing the finite element program in order to 

confirm the ability of the semiloof shell element to 

model the sharp corners and multiple junctions which 

are found in the fan impeller. For this reason two 

examples were chosen: 

Gi) Three intersecting plates, 

(ii) "L" shaped plate, 

7.3.1 Three Intersecting Plates 
  

This example was solved by the finite element 

method using a coarse mesh of 12 elements. The details 

of the geometry and the meshes used are shown in Fig. 7.3. 

Concentrated loads were applied in the z-direction (the 

positions of the applied loads are shown in Pies 75 SCAay) 

and deflection was measured in y-direction using a dial 

gauge, This was repeated for the nodes numbered in 

Fig. 7.3(b). The measured deflections were compared with 

those obtained using the finite element method as shown 

in Table? .1 
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(a) Geometry Dimensions in mm's 

E = 2.1 E5 N/mm 

v. = 0.29 

21 thickness = 1.01092 

  
(b) Mesh used 

ldalef 4 Teas! Geometry and the finite element 

mesh used for the three intersecting 

plates 
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Table 7.1 Comparison of measured deflections with 

finite element results for three intersecting 

  

  

  

plates. 

Node Direction of Deflection xP (mm) 
Number | measured Error % 

deflection . F.E.M. Exp. 

6 y-direction -0.0195 0.0225 13.33 

7 y-direction -0.0167 -0.0175 4,57 

9 y-direction -0,0226 —0.0225 0.40 

10 y-direction -0,0226 —0,0225 0.40 

11 y-direction -0,0226 -0.0225 0,40 

17 y-direction 0.02702 0.02375 | 14.0 

18 y-direction 0.0271 0.02375 | 14.0 

19 y-direction 0.02609 0.0300 13.3 

35 y-direction -0,02269 | -0.0262 13.7. 

36 y-direction -0,.02269 | -0.0262 13,7 

37 y-direction -0.02269 | -0.0262 13.7 

46 y-direction -0.0481 -0.050 3.8 

47 y-direction -0.0477 -0.045 6.0 

48 y-direction -0.048 -—0.050 4,0 

49 y-direction -0.0736 -0.065 13.0 

50 y-direction -0.073 -0.08 8.75 

SL y-direction -0.072 —0.0725 0.68             
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7.3.2  “"L" Shaped: Plate 

For this example, the geometry and the meshes used 

are shown in Figs. 7.4 to 7.7. A concentrated load P 

was applied in z-direction as shown in Fig. 7.4 and 

deflection measured in this direction using a dial gauge. 

This procedure was carried on for the nodes numbered in 

Fig. 7.6. The measured deflections were compared with 

those obtained from the numerical technique, as shown 

in Maple 7.2. 

7.3.2.1. Strain Gauge Tests for "Lh" Plate 
  

Strain gauge tests were carried out on the "L" plate. 

The gauges were placed in x-direction at points 

corresponding to six selected integrating points for 

mesh B and on both directions x and y at the centroids 

of four chosen elements, as shown in Fig. 7.9. 

7.3.2.2 Strain Gauge Circuit for "L'' Shaped Plate 

The strain gauges shown in Fig. 7.9 are bonded 

to the inside of the plate. The strain gauges are 

connected in the form of a Wheatstone Bridge using the 

Peekel "Data Strain" instrument as shown in the following 

diagram. 
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Pigg s5 Finite element mesh A for the "L" shaped plate 
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Fig.s.6 Finite element mesh B for the "L" shaped plate 
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Bite tes Finite element mesh C for the "L" shaped plate 
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Element Results for the "L" Shaped Plate 

Table 7.2 Comparison of Measured Deflections with Finite 

  

  

  

  

Node Pen in z-direction 

Number | *‘ Error % 

Mesh A Mesh B -EXp, 
nig 

1. 0.0927 0.0885 0.082 5 duke 

2 - 0.079 0.080 (AD 

3 0.078 | 0.0708 | 0.0698 |. 1.4 
4 - 0.0624 0.0693 .10.0 

> 0.048 0.0466 0.04246 9.0 

6 - 0.0352 0.0397 10.2 

= 0.0233 0.0163 0.0166 1.8 

8 - 0.00647 | 0.0058 10.0 

9 O O O 0.0 

10 0.0745 0.073 0.0733 0.0 

18 5 - 0.059 0.054 9.2 

12 0.0388 0.0393 0.039 0.0 

13 - 0.014 0.016 12.5 

14 O O O 0.0 

15 0.0526 0.0504 0.058 13.7 

16. - 0.0455 0.043 4.6 

17 0.045 0.0436 0,041 4.8 

18 - 0.0406 0.0468 13.0 

19 0.0394 0.0363 0.0343 5.8 

20 - 0.026 0.0237 13.0 

21 0.0168 0.0133 0.0129 3.0 

22 - 0.0056 0.0063 12.6 

23 O O O 0.0           
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bridge unit Senet Se output 
Measuring device 

Gat (printer) 

    

    

    30 channels 
              

Strains produced are measured in the Data Strain system 

by means of an AC carrier operated measuring unit. The 

DC output voltage from the carrier amplifier is measured 

by means of a high speed digital voltmeter. Strain 

gauge energization voltage, and input configuration 

mode can be selected on the rear panel according to the 

requirement of the test. Calibration and zero check can 

be carried out using a front panel switch. The measured 

value is displayed directly on the 5-decade tableau at 

the front panel of the central measuring unit. The 

system is completed with a printer as output device. 

To each measuring point a full, half or quarter bridge 

Circuit of strain gauges can be selected. 

7.3.2.3 Test Procedure 

In this test, each active gauge was connected to 

form a quarter bridge circuit of strain gauges. A three 

wire system was used as shown in Fig. 7.9. 

- 292 -



  

Active gauge 

  

    

Fig. 7.8 Quarter Bridge ; 3 Wire System 

Each active gauge used is manufactured in such 

a way that there is no resistance variation when its 

geometry changes solely due to temperature, However, 

the three wires connected to each active gauge will 

cancel out the effect of any temperature change in the 

lead wires, because the leads 1 and 3 of Fig. 7.8 are 

in opposite arms of the bridge, Therefore, any change 

in the resistance caused by the change of temperature 

in one lead will be compensated by the change of the 

resistance of the other lead. A series of tests for 

each strain gauge were carried out. The readings were 

taken for loads 8, 16, 24, 32 and 40 Newton. In order 
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to check the behaviour of the strain gauges, two typical 

gauges were selected (their positions are shown in 

Fig. 7.9), and the measured strain was plotted against 

the applied load giving the linear relationship shown 

in Fig. 7.10. This was expected, since the load is 

proportional to the strain produced, and thus gave 

confidence in the results obtained. This process 

has been applied for all the gauges used, and the 

measured strains for 24 N were compared with those 

obtained from the finite element solution and shown 

in Table 7.3. 
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S
 

  \ o oO 

  

Fig. 7.9 Strain gauge distribution on the "L' shaped plate. 
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Table 7.3 Comparison of the Measured Strains with the 

Finite Element Results for the "L" Shaped Plate 

  

  

  

  

Strain| Exp. Finite Element Results ; 
Gauge | ue Error % 
No. Results | Mesh B ‘| Mesh C 

1 - 5 - 28.5 

2 46 46 - O 

3 11 14 - 27.2 

4 81 94 - 16 

5 47 43 - 8.5 

6 damaged 2 - _ 

’ 26 is 21 19.2 

8 27 25 28 3.7 

9 80 70 79 1.2 

10 12 10 12 O 

11 5 12 5 O 

12 12 9 13 8.3 

13 14 3 15 o54 

14 | 4 1 ‘ 4 O             
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7.3.3 Discussion on the Results for the Preliminary Tests 
  

Tables 7.1 and 7.2 have shown very good correlation 

between the measured deflections and those obtained from 

the finite element solution using coarse meshes, 

The measured strains for the "L' shaped plate have 

also shown reasonable agreement compared to those obtained 

from the finite element method as shown in Table 7.3. 

The results of strains for mesh B indicated some points 

with an error more than 20% compared to the measured 

strains. This is because the tested problem has sharp 

corners with concentrated force and such situations 

in the finite element analysis need finer meshes to 

idealise the problem. However, the results in general 

gave confidence in using the semiloof shell element to 

idealise the fan impellers having the junctions of blade/ 

backsheet and blade/conesheet.



7.4 SIMPLIFIED FAN IMPELLER 

In order to confirm the technique of exploiting the 

sectorial symmetry, described in Chapter 6, in solving 

the rotating fan impellers, it was decided to analyse 

a Simplified radial fan impeller numerically, using the 

finite element method and experimentally using the 

strain gauges technique. A photograph of this model 

is shown in Fig. 7.11. The impeller was constructed 

from mild steel, The backsheet was formed from 

4.1 mm thickness steel sheet. Eight equispaced radial 

blades of thickness 3.38 mm were welded to the 

backsheet. Dimensions and positions of the blades on 

the backsheet are shown in Fig. 7.12. 

7.4.1 Experimental Investigation 
  

7.4.1.1 Strain Gauges Distribution 
  

The simplified radial fan impeller was strain gauaged 

using linear and 45° rosette strain gauges. These gauges 

were installed on the inside and outside of the backsheet 

and on the inside of the blade. The position of the gauges 

on the inside of the backsheet and the blades are shown 

i Fae. foe 
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Simplified fan imveller  
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(a) Backsheet dimensions 

blade tip 

blade root | 

| 

| 
70 80 

(b) Blade dimensions 

Dimensions in mm's 

Fig.7.12 Dimensions and position of the blades on the 

backsheet for the simplified fan impeller 
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7.4.1.2 Experimental Apparatus 
  

A photograph of the rig is shown in Fig. 7.14;: It 

consists of a 50 mm diameter shaft mounted on ball 

bearings positioned on a rigid structure which is bolted 

and securely fixed to the ground. The shaft was driven 

by V belt and pulley system with speed ratio 1:1 from 

a 220V, 5 HP variable speed motor. The signals from 

the strain gauges mounted on the rotating impeller were 

obtained via slip rings. 

The equipment used throughout the experiments was 

as follows: 

(1) Simplified fan impeller. 

(2) Variable speed AC motor type KNX-C184, 5 HP, 

(3) Five digits digital voltmeter Soglatron model A200. 

(4) Michigan Scientific 10 way slip ring. 

(5) Farnell Instrument Ltd. DC power supply (0-30 

volts, O-l.amp). 

(6) Micro measurements linear and 45° rosette 

temperature compensated strain gauges type 

FRA-3-11 with gauge factor 2.11. 

7.4.1.3: Strain Gauge Circuits 
  

The circuit is essentially a Wheatstone bridge which 

is fed with four gauges. The quarter bridge three system 

was used in this test. In this system of wiring only one 
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Fig 7,14 Rig used in testing the simplified fan impeller  



single active gauge needs to be installed and three dummy 

gauges were used in the other arms of the bridge, thus 

the total number of strain gauges required is reduced. 

The dummy gauges were arranged in the adaptor fixed 

to the shaft as near as possible to the centre of rotation, 

in order to give insignificant strain on the three 

dummy gauges in each circuit, and thus they contribute 

no effect on the signal measured due to the active gauge, 

The signal is taken from the bridge by using a 10 channel 

slip ring assembly, four channels of data and two channels 

for the de power supply as shown in the circuit diagram 

of Fig. 7.15. This circuit was recommended by Gall, Ref(79), 

who described the practical uses of slip rings for strain 

gauge measurements on the rotating objects. The slip 

ring noise which is caused by the slight variation in the 

Slip connection resistance and the rubbing contacts, is 

the main problem when using slip ring assemblies. In this 

circuit, the slip ring and its rubbing contacts are 

outside the bridge circuit, therefore, they cannot affect 

the bridge balance, In well designed slip ring 

assemblies the peak noise attributed to the slip ring 

contacts is less than 0.1% of the signal. 

A high accuracy five digits digital voltmeter was 

used to measure the output signal. The signal was constant 

with the fan running at a constant speed which gave 

confidence in the circuit used with insignificant noise 

of the slip ring during the test. 
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The unbalance output signal (mv) can be converted to 

strain as follows: 

For a quarter bridge circuit, it is given by: 

  € =F io eho eee 

where € is the strain, Vo is the measured unbalance voltage 

(The difference between the unbalance signal with the fan 

stationary and with the fan rotating) due to change in 

resistance of the active gauges as a result of the 

rotating fomces. acting on it. 

The tests were carried out at different speeds 

between 800 - 1300 rpm. «.. For. each gauge,.as.for 

the two selected typical gauges shown in Fig. 7.16, the 

measured unbalance ie was plotted against the speed squared 

giving the linear relationships expected. The position 

of these gauges are shown in Fig. 7.12. The behaviour 

of the strain gauge in this manner gave confidence in 

the installation of the strain gauges and the circuit used, 
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7.4.2 Finite Element Analysis 
  

A finite element analysis for this model has been 

carried out using the program developed in Chapter 6, 

Since the impeller is sectorially symmetric, only one- 

eighth of the impeller need to be divided into elements 

and imposing the equality of the displacements for the 

geometrically corresponding nodes on the sector boundaries. 

7.4.2.1 Boundary Conditions 
  

As mentioned before, each node on the radial bounding 

plane (a-a) shown in Fig. 7.17 needs to be specified and 

due to symmetry a prescribed displacement of zero in the 

tangential direction should be specified for these nodes. 

The rotation of each loof node on the bounding plane 

(a-a) is also imposed as zero, The structure of the fan is 

assumed to be built inside, 

Specifications of the nodes are assigned according 

to the instructions given in Appendix A, 

7.4.2.2 Finite Element Meshes 
  

The finite element meshes used are shown in Figs. 7.18 

to 7.20. A quadrilateral semiloof shell element was chosen 

as a discretised element. These meshes are as follows: 
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(1) 

was 

and 

(2) 

was 

the 

(3) 

was 

and 

Mesh I, shown in Fig. 7.18, in which the impetler 

discretised into 12 and 6 elements in the backsheet 

the blade respectively. 

Mesh II, shown in Fig. 7.19, in which the impeller 

idealised by 24 and 8 elements in the backsheet and 

blade respectively. 

Mesh III, shown in Fig. 7.20, in which the impeller 

represented by 30 and 10 elements in the backsheet 

the blade respectively. 
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7.4.3 Discussion of the Results for the Simplified Fan 

Impeller 

As expected, the finite element results showed that 

the principal stresses for the Gauss points on the line 

9=24° (between the blades) are radial and tangential. For 

this reason, two linear gauges were installed on this line 

to measure the principal strains from which at each Gauss 

point the radial and tangential (principal) stresses were 

calculated. Good agreement has been obtained for the 

principal stresses between the finite element results and 

those calculated from the strain gauges readings on the 

inside and outside of the backsheet as shown in Fig. 7.21 

and 7.22. Tables 7.4 and 7.5 contain the experimental and 

the numerical values of the radial and tangential stresses 

for the Gauss points on the line 9=24°. As expected, both 

bending and membrane stress resultants exist, but the 

bending stresses are dominant due to the effect of the blade 

which becomes significant at the inner edge, because the 

angular distance between the welds of the adjacent blades 

is smaller than the outer edge. The radial stresses shown 

in Figs. 7.21 and 7.22 rapidly decrease to zero, as expected, 

for both the inside and outside the backsheet, and the high 

stress occurs near the edge of the backsheet. 

For the numerical and experimental results of the Gauss 

points on line 9=39 , it was decided to represent the 

stresses in the form shown in Figs. 7.23 and 7.24, for both 
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the inside and outside the backsheet, to get an insight 

into the directions of the principal stresses, The 

principal directions of the stresses in the gauss points 

here are no longer radial and tangential as those 

obtained for gauss points on line 9=24°, This is due 

to the effect of the blade which becomes significant at 

this section. Good agreement for the magnitude and 

direction of the principal stresses was obtained, between 

the experimental and the finite element results, Both 

techniques indicate high stress at the inner edge as 

expected. 

The magnitude and direction of the principal stresses 

calculated from the measured strains on the inside of the 

blade compare resonably with those obtained from the 

finite element solution using Mesh II as shown in 

Fig. 7.25. The bending stress is zero as there is no 

out-of-plane force acting on the blade. Excellent 

agreement was obtained for the radial membrane stress, 

as Shown in Fig. 7.26, between the es and the 

numerical results for the line of the gauss points shown 

in Sie 7720. The membrane stress, as expected, 

decreases rapidly to zero at the free end, 
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Table 7,4 Approximate values of Radial and Tangential Stresses on 

oO 
6=24°, simplified model, Outside Backsheet Along 

  

  

  

  

  

  

                
    

Table 7.5 Approximate Val 

‘Inside Backsheet along 9=24°: simplified model. 

Radius mm Radia], Stress Tangeptial Stress 

UN /m”") ‘Error (MN /m ) Error 

F,E.M. Exp. F.E.M, Exp. 

260 -1,92 -1,6 -0,.20 -15,36 -15.9 0.033 

190 0.915 1,172 0.219 - 9.2416} -11,59 0.20 

222 0,843 1,2 i, 297 - 6.712 - 9,5 0,29 

246 0.4318 0,417 0,683 - 6,048 oO, t 0,30 

ues of Radial and Tangential Stresses on 

  

Radia} Stress 

  

Tangeygtial Stress 

  

  

  

  

      

Radius mm (MN/m") Error ON fm") Error 

FL.E.M, Exp, F,E.M. _ Exp, 

160 6,643 5.26 0,26 18.816 20.9 0,099 

190 2,368 1.74 0,36 12,448 16,4 0,24 

222 0,876 0.615 -0,42 9,35 12,26 O.237 

246 0,347 -0.55 iG 8,134 10.9 O7253       
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7.4.4 Comments on the Finite Element Analysis of the 
  

Simplified Fan Impeller 
  

Having discussed the correlation between the 

experimental and the numerical solutions for this 

impeller, it can be concluded that the modelling of 

such complicated structures by means of finite element 

by exploiting the sectorial symmetry technique is a good 

approach, giving an important step forward to the better 

stress analysis design of the rotating fan impellers. 

The results of the stresses obtained using Mesh III 

was drawn as a reference solution in order to compare the 

stress resultants when using Mesh I and II. The results 

drawn on Figs. 7.27 to 7.30 have shown excellent 

convergence for the two selected sections on the backsheet 

i.e. at 0=22.5° and 37.5°. 

As expected, the stress resultants (bending moment 

and in-plane force/unit length) drawn on Figs. 7.27 to 

7.30, decrease as the radius increases and approach zero 

at the free end. Also, the maximum bending moment occurs 

at the inner edge near the intersection of the blade with 

the backsheet. This is due to the action of the blade 

and the blade welds. To estimate the maximum principal 

stress in the backsheet, two sections were chosen using 

the results of mesh II at the gauss points at 9=28.5° near 

midway between the blades and at 9=43/47° néar the 
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blade/backsheet junction. 

The principal stresses at the gauss points on line 

9 = 28,5° are reasonably radial and tangential for both 

the inside and outside the backsheet as shown in 

Figs. 7.31 and 7.32 (except at the inner edge since this 

edge was assumed to be built in), while the direction 

and magnitude of the principal stresses at the gauss 

points on line 9 = 43,47° are altered greatly by the 

action of the blade as shown in Figs. 7.31 and 7.32, 

From the results of the principal stresses, shown in 

Figs. 7.31 and 7.32; on the inside and outside the 

backsheet, it can be concluded that the bending stresses 

are dominant, as expected, and on section 9 = 43,47 the 

bending component is many times greater than the 

membrane one. This is again due to the effect of the 

blade on the backsheet. The maximum stress occurs near 

the blade/backsheet junction at the inner edge where the 

angular distance between the welds of adjacent blades 

is smaller as mentioned before, and the bending stress 

becomes significant compared with the membrane stress 

(for example oF = 3 MN /m compared to oF = +115 MN/m7) . 

The membrane stress resultants obtained from the 

finite element method using mesh II are in the directions 

parallel to the blade tip and root as shown on Figs 7.33 

and 7.34 respectively. The stresses decrease to zero at 

the free end, as expected, and the maximum stress in the 

blade occurs at the blade/backsheet junction. 
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7.5 ACTUAL FAN IMPELLER 

The actual fan impeller is the final problem to be 

analysed numerically and experimentally in this work. 

The correlation between the results obtained from these 

techniques will be investigated, 

The model chosen was typical of one in commercial 

production. It was a 650 mm diameter laminar, backward 

bladed impeller having ten equispaced blades and was 

balanced statically and dynamically to reduce the 

vibration: a photograph is. shown in Fig. 7.35. The 

model was mounted on the same rig used for the previous 

model, except that the shaft used was modified to 100 mm 

diameter and was supported in bearings on rigid plate 

structure as shown in Fig. 7.36, The dimensions of the 

backsheet, blades and the conesheet are shown in 

Figs. 7.37, 7.38 and 7.39 respectively. 

7.5.1 Experimental Investigation 
  

The fan was strain gauged using 45° rosette gauges, 

The rosette gauges were installed on both the inside 

and outside surfaces of the backsheet, blade and conesheet. 

The position of these gauges on the outside surfaces of 

the backsheet, blade and conesheet are shown in 

Figs. 7.37, 7.38 and 7.39 reapectively, and those on 

the inside surfaces were in similar positions, 
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The experimental apparatus described in section 

7.4.1 was used to carry out strain gauge tests on this 

model, but it was not capable of producing enough power 

to drive this fan at its normally rated speed of 2000 rpm. 

As the motor speed was increased more than about 1200 rpm 

it was overloaded, i.e. it took more than the specified 

current caused the motor to run hot, Therefore, it 

was decided to carry out the strain gauge tests at 

speeds ranging from 800-1200 rpm even though it was 

required that some strain gauge signals could be rather 

low. For each strain gauge, as shown in Fig. 7.40 for 

the two typical strain gauges, whose positions are shown 

in Fig. 7.37, the bridge output voltage was plotted 

against the speed squared, A straight line was obtained 

in each case which confirms the expected behaviour of 

the strain gauges, and thus gave confidence in the measured 

results. The corresponding strains were calculated from 

the measured unbalance output voltage at speed of 1000 rpm. 

by using equation (7.10). The stresses were then 

calculated using the stress-strain relations, 

7.5.2 Finite Element Analysis 
  

Since the actual fan impeller was sectorially symmetric 

only one tenth of the impeller needed to be analysed. 

This sector comprises part of the backsheet, one complete 

blade and a part of the conesheet. A triangular semiloof 

shell element was used. Once the division was ready, 
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the system topology was recorded by numbering the 

elements consecutively starting from those in the 

backsheet,then proceeding to the blade and the conesheet. 

7.5.2.1 Boundary Conditions 
  

In this analysis, the inner edges were assumed to 

be built in. The displacements at geometrically 

corresponding nodes on the sector boundaries (a-a) and 

(b-b) of Fig. 7.41 were prescribed to be the same. As 

before, the codes for these nodes were assigned according . 

to the instructions given in Appendix A, 

7.5.2.2 Finite Element Meshes 
  

The finite element meshes used to represent the 

sector of the actual fan impeller were as follows: 

CL) Mesh I, shown in Fig. 7.42, in which the fan 

‘impeller was discretised into 16, 12 and 8 elements 

in the backsheet, blade and the conesheet respectively. 

(2) Mesh IZ, shown in Fig. 7.43, in which the fan 

impeller was discretised into 24, 18 and 18 elements 

in the backsheet, blade and the conesheet respectively. 
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7,5.3 Discussion of the Results for the Actual Fan 

Impeller 

(a) Comparison of the Results for the Backsheet 

It was decided to present the results on the line 

of strain gauges on the backsheet in the form of radial 

and tangential stresses on the inside and outside 

surfaces as shown in Fig. 7.44 and 7.45, Generally, 

reasonable agreement was obtained between the experimental 

and the numerical results. 

If the strain gauge positioned at R = 267 mm is 

considered for direct comparison, a good agreement 

between the calculated stresses from the measured strains 

and those obtained from the finite element solution is 

noticed, These results are as follows: Exp 
  

Tangential Radial 
  

  

0.97 16.67 

Outside the backsheet~> 

PS Sees 18.9 

hE Mi. 

Inside the backsheet > _ -10.7 

-14,3       

  

  

In general, the investigation of the radial and 

tangential stresses on the inner and outer surfaces of 

the backsheet for the line of strain gauges indicates 

that the stress field is very complex and the bending 

stresses are dominant. 
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The finite element results for the inside and 

outside of the backsheet at the element centroids, using 

meshes I and II, are shown in Figs. 7.46 to 7.49, 

The calculated principal stresses from the measured 

strains are also shown on these figures. As expected, 

the diedetion of the principal stresses on the areas 

towards the outer radius (i.e. in hetween the blades) 

are reasonably radial and tangential while those near 

the blade/backsheet junction are altered because of 

the very complex interaction of the blade with the 

backsheet. The results also indicate, that the bending 

stresses are dominant and the highest stresses occur 

just below the blades, This was expected due to the 

blade effect and blade welds on the backsheet. 

(b) Comparison of the Results for the Blade 
  

The calculated stresses from the measured strains 

on the top and bottom surfaces of the blade are presented 

in the form of the longitudinal and transverse stresses, 

They compare well with those obtained from the finite 

element meshes Of Figs. 7.42 and 7.43. The comparisons 

areshown in Figs. 7,50 to 7.53. On examining the 

experimental and numerical stress distribution on the 

top and bottom surfaces of the blade, it can be seen 

the bending stresses are dominant, and the maximum bending 

stress occurs at the centre of the blade. Also, the stress 
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distribution at the blade/backsheet is higher than 

that at the blade/conesheet junction indicating that 

the backsheet applies a greater restraining moment than 

the flexible conesheet, 

(c) Comparison of the Results for the Conesheet 
  

The strain gauge rosettes were installed on the 

inside and outside conesheet surfaces, It was not possible 

to install more than three gauges on the considered line 

particularly on the inside of the conesheet, because of 

the cramped space making the soldering of the leads 

impossible. As for the backsheet, the results of the 

principal stresses on the inside and outside the conesheet 

were presented in the form shown in Figs 7.54 and 7.55. 

From both techniques, the direction of the principal 

stresses away from the blade are reasonably radial and 

tangential. Qualitative comparison, shown in Figs. 7.54 

and 7.55, between the experimental and the numerical 

results has shown discrepancies, especially for the 

strain gauge positioned below the blade, 

This was expected due to the presence of weld material 

which becomes significant at the blade/thin conesheet 

junction, Examining the finite element results of Figs. 

7.94 and 7,55, it can be seen that the bending stress 

is higher than the membrane stress near the blade/conesheet 
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junction (for example, the estimated stresses at point A, 

b 
1 

is 1,525 MN/m?), This was 

the o@ is 11.15 MN/m* , while the o” is 23,35 MN/m@ and 
1 

ee is 0.835 MN /m? while oF 

expected again, because of the action of the blade on 

the thin sheet from which the conesheet was constructed. 

Although, the bending stresses are dominant, membrane 

stresses are significant and in some areas (towards 

the outer radius) are of the same order or higher than 

the bending stresses, 

It is interesting to note the radial stresses 

(reasonably radial) at the free end and away from the 

blade/conesheet junction tend to be zero which gave 

confidence in the numerical technique in the analysis 

of such complicated components, 
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7.6 CONCLUSIONS ON THE NUMERIAL ANALYSIS OF THE ROTATING 

FAN IMPELLERS 

The objective of this research work, to develop a 

finite element package for rotating fan impellers, 

has been achieved and confirmed by an experimental 

programme. 

The reasonable correlation between the numerical 

and experimental techniques has proved the adequacy of: 

(1) Representation of the centrifugal force for each 

integrating point in the element as equivalent nodal 

forces using the element shape function which has automated 

in the finite element program. 

(2) The facility of exploiting sectorial symmetry in 

the rotating fan impellers and using the appropriate 

boundary conditions (as well as the equal movements of 

goemetrically corresponding node pairs) which has been 

incorporated in the finite element program. 

(3) The suitable design of the finite element meshes 

which produced acceptable results, Finite element 

solutions converged to the experimental results as the 

mesh was made finer (as explained for the simplified model), 

but at the expense of heavy data preparation and computer 

cost. 

-361-



Since the size of the memory of the Hewlett Packard 

model 9845B computer available is limited to 187 K bytes, 

therefore it was not possible to use a finer than Mesh II 

in the actual model analysis. 

In conclusion, the developed finite element package, 

using the high performance semiloof shell element, has 

been seen to provide accurate information on the stress 

distribution in rotating fan impellers. 

7.7 CLOSING REMARKS 

In this chapter, the evaluation of the numerical 

results for the fan impellers has been carried out by 

a comparison of the finite element predictions with 

those obtained experimentally, using the strain gauge 

technique. An acceptable conclusion was obtained in 

the comparison of the results. These comparisons have 

been carried out for a simplified model and a commercial 

fan impeller. Some relevant points about the discrepancies 

were discussed. 

In the following chapter, an overall summary and 

conclusions of the whole research, as well as some 

recommendations for further work are presented, 
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SUMMARY, CONCLUSIONS AND 

RECOMMENDATIONS FOR FURTHER 

WORK 

-363-



Having achieved all the aims set forward in 

Chapter One, this chapter presents a summary, conclusions 

and recommendations for futher work, 

8,1 SUMMARY 

The work carried out in this thesis could be 

summarised as follows: 

1. The finite element method was applied to complex thin 

plate and shell structures, A computer program SMILOF 

based on the semiloof shell element was developed and 

tested against several plate and shell structures. The 

results were compared with numerical or analytical results 

reported by other researchers, 

2, The computer program was extended to accept the 

segmental solving routine to solve more complicated plate 

and shell structures, 

3. The computer package IMPSMF was further developed 

to take advantage of the sectorial symmetry of rotating 

fan impellers. In particular, this was tested on 

rotating cones and the rotating discs, for the 

displacements and stresses, prior to application to an 

actual impeller. 

4, The convergence of the displacements and stresses was 

studied for a simplified radial fan impeller with and 

-364-



without a conesheet, 

5, An experimental program was carried out for a simplified 

and an actual fan impellers, 

6, The experimental results were compared with the 

numerical predictions. 

8.2 CONCLUSTONS 

From the results of this work, the following 

conclusions and observations appear to be valid. 

1. The computer program SMILOF developed to solve thin 

plate and shell structures for displacements and stresses 

is well tested and reliable. 

2. The rate of convergence of the semiloof shell element 

is higher than for the other elements with which it was 

compared. 

3, The numerical modelling technique used (finite element 

method) for the fan impellers proved to be satisfactory 

for design work. 

4, It is possible to analyse only one sector of the fan 

impellers successfully using the computer package IMPSMF. 

Exploiting sectorial symmetry yields significant 

computational benefits. This package may be used for a 

detailed study of the complex interaction hetween the 

backsheet, blades and the conesheet before the production 
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stage in fan industries. This significantly reduces the 

need for experimental investigations which are costly 

in money, manpower and time, 

5. Good agreement was obtained between the experimental 

and numerical predictions for the simplified radial fan 

impeller and a satisfactory agreement for the actual one, 

6. The position, magnitude and direction of the principal 

stresses on the backsheet, blade and conesheet, obtained 

from the finite element analysis agreed fairly well with 

those obtained using the experimental programme. 

7. The "user friendly" desk top computer with suitable 

memory size may be used for handling complicated engineering 

problems. 

8. The accuracy of the results depends on the number of 

elements into which the structure is divided in the course 

of the finite element analysis. The greater the number 

of elements the more accurate the results would be. This 

is limited by the computer facility available for the work, 

Since the use of finer finite element meshes needs more 

memory size. 

9. Finally, it is possible to introduce the computer 

program "IMPSMF" within a C.A.D. package to provide a 

useful design tool for rotating fan impellers, and for 

this reason the programs have been designed to be used 

by the stress analysis engineers without much computer 

experience, 
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8.3 SUGGESTIONS FOR FURTHER WORK 

The following suggestions for further study are 

made to improve on the present work and to carry this 

research forward: 

1. Development of a finite element mesh generation 

program based on the semiloof shell element (triangular 

and quadrilateral type) for the general thin plate and 

shell structures, The orientation of this programme 

should make it possible to take into account the sectorial 

symmetry of rotating fan impellers, This facility will 

reduce the tedious preparation of the input data when 

changing from one mesh to another, References (80, 81, 

82, 83) are offered as a starting point in developing 

this package, 

2, The execution time for the segmental solving routine 

could be improved by using a hard disc instead of the 

floppy disc used in this work. FPRINT¥ and FREAD# are 

used in this disc which improves the speed (as much as 

25:1) over the ordinary PRINT# and READ# statements. The 

new version of the desk top computer HP9845C together 

with the hard disc provide an excellent means for 

implementating the finite element package IMPSMF for the 

rotating fan impellers and it can be an efficient 

recognised package in the industrial fields. 
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3, The developed finite element programs may be extended 

to analyse other problems related to the fan impellers 

such as vibration and fatigue analysis. 
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APPENDIX A 

USER INSTRUCTIONS FOR THE COMPUTER PROGRAMS 

A.1 A Guide to data preparation and sample problem for the 

computer program SMILOF 

The primary purpose of this document is to set out 

the rules which must be followed in using the program 

SMILOF, Data instructions and a sample problem will be 

presented. 

A.ls1l Data input instructions 
  

CAs Number of jobs to be solved, 

* 

(By « * Bype:- of: element (1) 

(CC). ou BOr the firet.ioh. 

(1) Number of elements, 

(2) Number of nodes, 

(3) Number of sets of forces. 

(4) Principal stresses and strains?) 

(5) Number of nodes where skewed boundary conditions 

are applied. 

(6) Number of materails, 

C7). “Tyne of output $?? , 

(8) Gravity effect (weight/unit area). 

  

* : 
Superscript refer to notes which follow the data input 
instructions. 
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(9) 

(10) 

(D) 

(1) 

(2) 

(3) 

(E) 

(F) 

(1) 

(2) 

(3) 

Normal distributed pressure, 

Rotational speed rpm. 

For the number of nodes in B(2), input 

x-coordinate 

y-coordinate 

z-coordinate 

Nodal connections and material number of each 

(4), element 

For the number of elements in C(1), input 

Number of like elements (similar thickness) 

Thickness 

String of like nodes. 

(repeat F(1) and F(2) upto the number of elements in the 

discretised structure). 

(G) 

(H) 

(1) 

(2) 

(3) 

C4) 

(5) 

Number of specified nodes. 

For the number of specified nodes in G, input 

Number of like nodes, 

Code? (prescribed load or displacement ) 

Value of prescribed load or displacement in 

x-direction. 

Value of prescribed load or displacement in 

y-direction. 

Value of prescribed load or displacement in 

z-direction, 
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(6) String of like nodes, 

(repeat H(1) to H(6) up to the number of specified nodes). 

(tT) Number of specified midside nodes. 

(J) _ For the number of specified midside nodes in I, 

input: 

(1) Number of like midside nodes 

G2) Code‘ ®) (prescribed rotation or normal moment ) 

(3) Prescribed loof nodes rotations.or normal moments 

for the two loof nodes positioned on the right 

and left of the current midside node, 

(4) String of like midside nodes. 

(repeat J(1) to J(4) up to the number of specified midside 

nodes). 

(K) . For elements with material number'1, input: 

(7) (1) Elastic constants 

(2) Density. 

(repeat K(1) and K(2) for material numbers 2,3,....etc.) 

If C(5) = 0, pass section L 

(L) For the number of skewed nodes in C(5), input: 

(a) Node number 

(bob) Angle of skew?) , 

(M) For the next job repeat from (B). 
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Notes 

1, Put, 0 for triangular mesh 

1 for quadrilateral mesh, 

2, Put, 1 if the principal stresses are required 

Oo TE Ot; 

3. Put, 1 if nodal strains and stresses are required 

2 if element strains and stresses are required 

3 if both nodal and element strains and stresses 

are required. 

4, The nodal connections and material number for each 

element must be specified using the following sequence: 

  

  
  

  
  

¥ ¥ 

3 

5 
6 

1 2 

a 

x 

Triangular Type Quadrilateral Type’ 
  

If M is the material number, then input 

123456M for the triangular type, and 

12345 67 8M for the quadrilateral type. 
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Kode= 

This represents prescribed loads in the x, y and 

Z direction. 

this represents prescribed displacements in x 

and y and load in z direction, 

this represents prescribed load in y and 

‘displacements in x and z direction. 

this represents prescribed load in z and 

displacements in x and z direction, 

this represents prescribed load in z and 

displacements in x and y direction. 

this represents prescribed displacement in x and 

loads in y and z direction. 

this represents prescribed displacement in y 

and loads in x and z direction, 

this represents prescribed displacement in z and 

loads in x and y direction, 

6. Tf Kode 1 = 

O, this represents prescribed normal moments on 

both loof nodes (to the right and to the left 

of the current midside node), 

this represents prescribed loof rotations on 

both loof nodes, 

3 1 hie



@. Hlastic constants are. EB and \v. 

8, Specified in degrees and taken in anti-clockwise 

direction from the global x-axis, 

A.1.2 Sample Problem 

If the problem shown in Fig. A.1 is considered, the 

input data instructions necessary for running this case 

10mm 

Smm 

—— Central concentrated 

  

force 
= LN 

Thickness = 0.5 

v = 0,29 
E = 2,1 E5 N/m? 

Fig. Al 0 = 7.8 E-9 N/mm? 

(Adj 24 

CBee I 

(Cy. 3s Control variables 

28S; ee Oy ay ay OO 8 
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(D) 

(E) 

(F) 

(G) 

Nodal coordinates 

10. 

0, oO 
ee

 
e
e
 

OD
 

OO.
 
O
O
 

UOC
 

Nodal connections and material number, 

win) 

12 
? 

C
O
s
 

ee
e 

3 

O, 

QO, 

0, 

O ? 

Specified nodes 

Grea. es 

O98, 7S. 

6, 2 

at 
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(I) + (J) Specified midside nodes 

OOo Oe. a ee i 

Ck) Elastic constants: 

2 as, 0289; 4.6 Bag: 

A.2 A Guide to data preparation and sample problem for 

the package IMPSMF 
  

Input data sequence is similar to that explained 

in section A.1.1 with the addition of new item after C, 

say Cl. This contains the new following input data: 

Ci Gl) Nk - Number of nodes having similar behaviour. 

If NK = O pass C1(2) and C1(3). 

Cl 3@2) Alp - The semi cone angle, 

Cl. >) The array St(*) containing the numbers of nodes 

having similar behaviour, 

The following points should be noticed: 

1. There is no need to specify the nodes on the sector 

boundary b—b. 

2. The element and nodal connections matrix contain 10 

columns, The element type (backsheet, blade or conesheet ) 

is stored in the tenth column, 
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3. For non-periodical structures Nk = O, 

4, Alp = O for radial bladed impellers, 

PE al Sample Problem 

If the sector of radial fan impeller of Fig. A.2 

is considered, the sequence of the input data are as 

follows: 

CA) pat 

CB) ered: 

(Cy): 3, 28,3, 1,6; 1, 3,0, 0,200.0 

(C1) 

6 

52246 
S.tC*) 

ao 19 

S$ 3s 

(Die 492.8 eae O 

163.8 67,8 fe) 

235.3 97.4 O 

83 55.5 O 

211.6 141.5 O 

70.7 70.7 O 

125.5 125.5 O 
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(E) 

() 

(G) 

(H) 

(1) 

(J) 

(K) 

180.3 

70.7 

180.3 

1. e 

125.5 

160.3 

55.5 

141.5 

38.2 

67.8 

97.4 

180.3 

10.7 

180.3 

70.7 

125.5 

180.3 

83 

211.6 

92.3 

163.8 

235.3 

8 6 

6 ] 20: 416 

6 8 

6 

aod 

BoB: 

3 

20. 8. 

2.7 ES, 

190043 

oO; 

0, O, 

0, a 

0.29, 

35 

40 

70 

75 

80 

GO 
© 

©
.
.
.
 

oO 

< 

14 

8 E-92 

~27 92 

14



(L) pS 22.5 

2 22,5 

3 22.5 

16 67.0 

af 67.5 

18 679 

User instructions for the programs SMILOF and IMPSMF 

Having the required input data file prepared according 

to the instructions given in Appendix A.1,1, the program 

SMILOF operating instructions are as follows: 

LOAD "SMILOF:F8", press CONT 

Press RUN button 

Read the instructions appearing on the CRT 

Choose the printing device (paper or CRT) 

Input the name of the data file 

Input the job name 

If the strains and stresses are required, you are 

asked to CREATE the appropriate size file(s) as 

required by the control variables. This operation 

is fully discussed in the HP manual, 
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For the program IMPSMF, the steps of operating instructions 

are Similar to those used in running the program SMILOF, 

except that the user is asked to CREATE a number of 

files equal to the number of segments. These depend on 

the size of the system stiffness matrix, As the 

machine is interactive, therefore some instructions are 

appeared in running the program. 
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Ry = 100 mm 

Ro = 255 mm 
2 

E = 2.1 E5 N/mm 

v = 0.29 

0 = 7.8 E-9 N/mm® 

® = 1200 rpm 

100 "200 "300 x-axis 

Fig. A.2 Typical finite element discretisation of impeller sector.



APPENDIX A.3 

STRESSES AND STRAINS 

This appendix presents the expressions for the stresses 

and strains of a surface layer of shell at a distance z 

from the middle surface, 

(i) The normal and shearing strains are given by 

m b 
“ye +Z Ey 

m b 

Ey = Ey + Z Ey 

m b 

Exyy= & + Z Eye 

(ii) The normal and shearing stresses are given by 

N M 
LA xX 

om 4 a ae to 12-3 oD 

t 

N M 
OY Y 

Oy . a te 12-3 oe 

iv 

o = “xy 242 nxy Zz 
XY ic +3 - 
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APPENDIX B 

B.1 Listing of the Computer Package SMILOF 

The main program SMILOF and the following subprograms 

are listed: 

(1) SMINPT 

(2) CONSTR 

(3)  SMASBL 

(4)  SMLDAP 

(5)  SMSKLD 

(6)  SMYVBS 

(7)  SMELST 

(8)  SMNDST 

Bee2 Listing of the Computer Package IMPSMF 

The Master Program IMPSMF and the following 

Subroutines are listed: 

(i) "Maddarray" 

(2) "Massembly" 

(3) "Mskewdcon" 

(4) "Skewiml" 

Co») "Segsol" 

(6) "Skewim2" 
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3648 

re 

338 

336 

$08 

418 

428 

434 

440 
459 

o
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2
0
 

© 

on
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«w
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&
 

co
 

PRESSURE Sst Ge 
OPTION. BASE 1 

DIM Kita 
lena Te 

2} 

DIM Thiknt24),Th¢ 16>, Angsk¢323 

IHTEGER Nodetad, 93, Lnodz,lvabz,Helemt, Gort, kodet?7a 

dei¢Pa,i5,Ade fo ,N,Nfree,Matno, Case,Nspec, Ns etf: 
sMnode, Count, Prat,Prince, Hskuw, Op 
IMTEGER Testcras,Hosk S23 

PRC TERS. 6 

PRINT PAGE, SPACS59,"*#+4+4*5TRESS ANALYSIS OF THIN SHELL ST 
PU eae he epee es 

Pell SPA Coeo. St rhe s 
my LINC 1 > 

PRINT SPACs29. "University of Aston",LINs2) 

PRINT "Press CLEAR then CONT" § 

PRINT PAGE, SPACI99, "*#*24*40bject Of The Program*es*#2" 
PRINT 

PRIHT “In this program finite element formulation of the 
Semi toot Shelli"; 

PRINT “Element Is Presented": 

    

  

030,13 en 2670, i AFC 

a
    

  

i
 

ao
t ,13,k 

ey 

it
 

ui
 Analysis GroupiDept. of Mech. Eng. ui
 

PRINT "The problem of thin shell and plate structures may 
Be solved: 45 

PRIHT “For dish]. , Strains And Stresse 

PRIHT "Both versions are implennted he 
triangular "5 

PRINT “Semiloof shell element"; 

Bent eiecs eA thet Gull. 

PAUSE 

DISP "Choose the printing devive @ for paper 16 for 
screen's 

THPET 7 

PRINTER ls | 

DISP "What is the Name of your input data File"; 
IHPUT Hames 

ASSIGH #2 TO Hamed ,C 

PeeNO i oe Them Gero, sol 

Beer 

DiS? JF rle net found! tru sagan. 5 

WAIT 2688 

GOTO 2668 

READ #2; ort, job 

FOR Count=1 TO Njob 

CONE One in Wane, Of tite Jib. n.% 6 os mat more than 28 

charecters'",AF 

PRT ob tether. «cee. Vee eel 

READ #2; Nelemt,Hnode,Nsetfs, Princ, Hskw,Nmat,Prent,Chi,Che 

BRET CMO Of “Slemenits.....0.ce ss Ne lemt 
PRINT 

Rene No Gta node secs senses see Ode 
PRIWT 

TR cPentc ol AND CPrent<>3) THEN GOTu: 475 

Dis “lnput the name of -the fTletEsssto be created ta 

tore Bisd to tind. Hod. otres..2 5 

IHPUT Ess 

WS CREATE Ese nS suitble size oto store data for E¢ 

»,Rot#3,Thik, point*# 3 for the integrating points for the 

lements then Press CONT"; 

FRUSE 

TE CPrnt<s2> AND CPrent< ooo: THEN GOTO S2e 

Disr “Tnput the name of the filetHs# toa be created to st 

Bide to find wee. (str Sis 

IHPUT Hs 

DSP “CREATE Est (hh a Ssultole Size to store data tor, Bus 

a, ROCS2, THK, pointsifor the element centroids THEN: Press 
BONTES: 

oe Na 

= 3 

1B 

ii
 

eK 
m 
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LISTING OF FILE Ss SHrlor Page 2 

ells = 
PRINT ErNCas 

REDIM Mode, YutHrodes, Z2¢Hnoded, KodetNnode, Hsetfsa,k 

odeitHmode,Hsetfes,HodetNelemt, Ptee¢dort a, UletHrode, Nsetr 

soyVlyvtHnode, Hsetfst,Wlz¢Hnode,Hsetfs: 

REDIM Thtxzt node, Nsetfs 3, CtHmat, 219, Test (Hnodes 
REDIM Bie, f4+84Gort3, Thiknthelemto, Tho bmato,Angsk CHskwt) 

*,Hosk CHskwt+lo 
IF Gort=8 THEM FRIWHT SPAC12°, "Element selected is a tria 

ngular type"; 

IF Gort=1 THEN FPRIWHT SPACL25,"Element selected is a quad 

rilateral types 

OmgeOmqgeserl-s8e 

Soke votlii ie. 1 ook 
GALL Feinput (KxCe od, Yu 4s, 2Z2ceo Ul Kt eo Vives WI zee), Thtx 

Zzt#¥), Thikn¢*#>, #2, Kodec#),Kodel C+), Test (#), Nodes), Nfree, 

Hrode,Nelemt, Gort 

REDIMN GeHfree, Hsetfso,Addthfrees 
CALL Addarrayve Test #9, Nelemt,Nmode,Addt#%s,Hodet#), Gort, 

frees 

LIHE “SMCNTR",1609 

FOR Matrmo=1 TO Hmat 

GALE Constrel(Cces, The), #2, Matno? 

HET Matric 

IF Hskw=8 THEM GOTO Fla 

FOR T=1 TO Nskw 

READ #2;Hosk¢I),Angsk¢.> 

HEXT I 

REDIMN Kt Add¢Hfreea) 

LIHK "“SMASEL", 1608 
CALL Assembl ycac4s, KC¥9, Axt #2, TyC ea, 22049, C0649, BCe3, The) 

,Omg,Ch1,Ch2, Thiknt#s, Angskt#3,Ns#,Es%,Hodet#s, Test cts, 

elemt,Add¢#3,Hfree,Nsku,NoskC#), Gort, Proto 

7448 ELH = SuEBAP YY. 1ou8 
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vee FOR T=1 TO Hnode 

7re J=4-2¢Test et.) 

Vso KSk+5-2#Testt.a 
P98 CALL LoadapptUlx<c1, 19, ¥VivcI, lo ,Wl2tl, 13, Thtxze1, 19,005, 

Kode tl, 13, Kodeil¢I,19,k,1,J5) 

388 HEXT I 
3148 IF Nskw=8 THEN GOTO 346 

828 ETHK “SHSKLDY 1668 
838 CALL Skewload¢G¢s5,Angsk¢#2,Testt#),Hsetfs,Hosk¢#o,Hsku, La 

348 ELH vsti VES). taue 
S38 REM ---INMTROUDUCTION TO KIHEMATIC CONSTRAINTS 

868 E=8 

37a FOR T=1 TO Mnode 

33a J=4-feTestcls 
398 Kek+5-24#Testcl 

968 IF KodetIl,19=8 THEN GOTO Test 
9148 IF ¢KodetI,13=29 OR ¢KodetI,1%=6>9 THEM GOTO Ece 

92 IF KodecI,19=f THEN GOTO Kes 
938 CALL Bounconst CUlx¢CI,13,8¢89,K¢#),K-J,Nfree, 1,Add¢#29 

9468 IF KodecI,19=3 THEN GOTO Kes 

IF KoadecI,is=5 THEH GOTO Test 

KeZt CALL Bounconst CY¥1lycl, lo, acs 

IF ¢KodecI,13=49 OF ¢KodetI,12= 

CALL BounconsttW12¢1,13,8 

IF ¢Jio4o OR CKodel¢I,13=68. 

LC’ Bounconst <Thtxzel, £3,0¢4) ,KCe0,K-J+s, Nfree, 1, Add s>> 

‘ALL Bounconst¢Thtxz61,12,0¢#9,K¢43,K-J+4,Nfree, 1, Add¢#)) 

Mext: NEXT I 
PRINT CLINGS) 
PRINT SPARC LOo. too e sa Symvbso.) begins------" 
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w
o
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 »,KC#) K-J+1, Nfree,1,Add¢#)> 

6&2 THEH GOTO Test 
PKC 49, Ko J+2, Nfree, 1, Addt 433 

THEM GOTO Hext 
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1388 

13148 

1328 

1336 

1346 

1356 

1368 

1378 

1388 

13 ag
i a 

IF Hskw=8 THEM GOTO 1836 

ELNK “ShSkKEDe wleas 
iis Skewload¢acs), Angsk (#3, TestC#o,Hsetfs,Hoskt#o,Nskw,-12 

PRET | SeHCs 2. Nod al displ acements" 

PRIME. SRA ; 

PRINT LING2) 
PRINT (Node: . Uisp Iho soo1r. sy 

Sy espe ih, 221th. 

k= 

FOR I=1 TO Nrode 

Jse4-24Tester3 

Kek+5-24Testc.s 
PRINT USTHG USD Gk SCMnD. SDE SSRs Tl cK — I, ho Oc K—J+1.13 8 

Kelis 

PRINT 

Me cine L 
FRIWT 

Reel ie 

PRINTS 

k=8 

PRIWT 

FOR I=1 TO Nnode 

RSk+5-24Testc.3 

J=4-24Testcr3 
IF TesttIls¢36 THEN GOTO WH 
PRINT USING "3D,3%,26(MD.SDE,3K9"31,Q¢K-J+3, 15, Q¢K-J+4, 13 

FRIWT 

NS Hes 

FRIWT 
IF ¢Prnt¢ei) AND ¢Prnt<>3) THEN GOTO 1346 

ELK: “SMBEST  teon 
CALL Elstrs(Es$, 00#),BC#),00#),Nodec#), Test (#),Nelemt,Nn 

ode, Gort, Freie? 

LINK "SMNDST", 1660 
IF ¢Prent<>3> AND ¢Prnt<s33 THEN GOTO 1368 
CALL Nodstr¢Hsd, 0649, B¢C#9,CC# 2, Hodec#), Test ¢#>,Nelemt, Hn 

ode, fort,Princ) 

EMD 

   

  

on
 re ee eS 1th ver Cal teag o tei 

Ag ds ; cs ations at loof nodes" 

Acd3 " 

Fp 

i 
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PROGRAMME STORED TH FILE : Stile: Page 1 
ElLSrel On: 547.83 

18 { RE-SAVE SMINPT" 

28 SUE Fei nput CAxCe), Fyhe), 220 Fs eee | cede Meh ekg ine Gon o 
sThiknt#3, #2, IHTEGER Kodec#),Kodetlc#s, Test ¢#3,Nodec*#),HNf 

ree, Hmode, Helemt, Qoart 3 

34 CE Le Me pic 

44 DIM. Jelwes 

5a THTEGER I,J,K,L,Nspec, Nspecm 

58 MAT Test =ceR 

ie MAT Kode=ceER 

38 MAT Kodel=ZER 

38 MAT Ul x=ZER 

168 MAT W1ilysZER 

118 MAT WlZ=Z2ER 

1248 MAT Tht=ZER 

138 FOR [=1 TO Hnode 

144 RED these l rele fon ee TD 

158 HEXT I 

1648 READ #23; Hodec #2 

178 READ #25.K,Thik 

136 FOR T21l TO K 

138 READE #2036 1) 

268 Thikne ICT 2=Thik 

219 NEXT I 

226 L=L+k 

23 IF Le=Nelemt THEH GOTO 258 

246 GOTO 174 

258 FOR [T=1 TO WNnoade 

264 FOR J=1 TO Helemt 

27k FOR K=1 TQ 6+2#Qort 

258 bee t<rNodet sh Tren GOTO 215 

298 IF K<=3+Qeart THEN TestcIo=t 

308 GOTO A 

318 NEXT K 

328 NEXT J 

339 A: NEXT I 

348 FOR T=1 TO Hnode 

358 Hfrecshfree+5-seTest oI 

368 Mesa I 

378 MAT J=ZER 

338 READ #2; Hspec 

338 L=8 

488 READ #2;K,Kod,U1,¥1,W1 

419 BOR fal 10 

428 READ #2; J¢13 

439 KodeCJt¢Io, 1 s=kod 

449 UlxeJeIo, 195) 

456 Vive sel), t3s¥) 

465 Wh2cJ¢I>, 19s) 

475 HEXT I 

435 L=Lt+k 

434 IF LesNspec THEN GOTO 3148 

348 GOTO 448 

314 READ #2; Hspecm 

528 L=8 

338 IF Nspecm=8 THEN GOTO 638 

344 READ #2;k,Kad1,Thet 

358 FOR T=! TO K 

568 READ #25 J¢1> 

378 Kodel¢Jclo, 1 3=kodl 

3868 The cJI¢ls, Losthet 

538 NEST I 
504 L=L+k 

618 IF L>=K THEM GOTO 634 

628 GOTO 3448 
Sod) PEM THE HOD POTN. Ua la 
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PRIWMT LING 4) 

PRINT SPAHC13>3 “Nodal point data" 

este p Le ai ecstatic ee Cyl NG) 

FOR I=1 TO Nnode 

PREM svode ,ormn esis  cOOhde sore Coe gra Oor cay oR AG 4st e 

Poni oho spe. cee Coe DSi ee otic se eDeloiay soie 

ACo3; <2 Disp” 
PRINT SPAC439; "or load"s;SPACS); "or load";SPACS23 "or load" 
PRINT “----" SPA039)"------- "SSPACS) yp "------- "SSPACH35"- 
bib nwe MBs A 95) Fes FV cd rg 1h we mca PA 8 18 ee ir coe mr OS AG tg meme mest fe 

SS ey mcr aan fe 

FOR I=1 TO Nnode 

PRINT USING “3D, 34,3°MD. SDE, 2x4>,20,24, 50ND. SDE, 2h) "5 1, 4x 

Clo, iUCle ect i a, Kode<l, to Ulxcly too viuCl Lo Wl Zecl, lo 

NMEA 1 

PRIWT 

PRINT LING43 

PRIWT Oe ita ae data" 

vrei cen etal tate ieee eco er PyL Lice? 

PRIHT "Element "tSPAC L2+8eQorto3 "Modal connections"; SPACLS 

t+4e¢ortay "Material" 
eee ie ere paneer ea ed hip ctatoy es 20 te ee ote Hives 

+44) ae t. 4 3 Vem ee eee re 

PRIWT 

FOR W=1 TO Helemt 

IF Qort=8 THEN GOTO 358 
PRINT USING “3D, 78,863D,289,138,2D"3W,Nodet,13,NodecW,e 

Y,Nodech, 39, NodetW, 43, Nodeth, 52, NodetW,59,Nodech, ?3,Node 

CM, = Nodech, 93 

Goto 368 

PRIHT WSING cape 8 

yModetW, 3s, Nodec 

NERT l 

PRIHT 

SUBEND 'END OF FEINPUT 
SUB AddarraycINTEGER Test ¢#3,Nelemt,Nnode, Addt#3,Nodec#), 

Qort,Nfreed 

IHTEGER Itemp,Addtemp,Ll,I,k,M 

Add¢is=1 

Addt25=3 

Add’ 35=6 

AddtempsAdd¢ 33 

249,138, 2D"3W,HodetcW, 19,NodecW, 

odech,5),NodetW,6),Nodech, r 

Itempast 
FOR =2 TO Hrode 

k=] 

H=8 

FOR Z=1 TO Helemt 

FOR L=1 TO 6+24Qort 

IF Nadec2,Lo9<>I THEN GOTO 1Lu4sg 

N=N+1 

RON= 

NEXT 

HEMT 

FOR = 

M=AceS 

FOR L=1 TO &+24hort 

IF HodecM,Lo<k THEN K=NadecM,LbLa 

Le Me 

i;
 

S
 
i
n
t
 

NEaT L 

NEXT < 

M=8 

LF K=1 THEN GOTO 1175 

FOR, Calero «= 

M=M+5-24Test¢bo 

ME 
Addit ltenmp>sAddtemptiltemp-m 

Addi ltemprlssAddt lrempit+tltemprila-m 
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fh
 

fs
 
P
e
 

=
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o
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OD
 
o
t
 

on“
 

ho
 

“J
 

Den
] 

2308 

3 cw
 

ow
 

h3
 

co
 

we
 

wo
 

1%
 

a
 

Addi itemprSssAddeltempti geo ltemptcasn 

IF Test¢Is=1 THEN GOTO Aud 

Addi ltempt Ss sAdde ltemprestc ltempe som 

Adds ltemptdosAdde ltemptos tc ltempt4i-M 

Aud: AddtempsAddt lremptd-2eTest clus 

Ttrempeltempti-2eTest 13 
Next> NEAT I 

DISP "Noteithe one dimensional stiffness matrix has"sAdd 
CHfreesy "elements" 

SUBEND ! EHD OF ADDARRAY 

PROGRAMME STORED IN FILE : SMCHTR Page 1 

Seep OM: B77 33 

ees ee eh ire 

SUB Constrel (ices, The#2, #2, IHTEGER. Hatnos 

REM ---Calculation of #lastic properties for several ele 

N
h
 
h
f
 

Mh 
ho
 
f
h
 

WD O
o
O
U
O
o
n
O
O
 

OM
 
O
D
 

c 
O
s
h
o
 

b
h
 

hh
 

w
e
 
a
w
a
 

a
 
a
w
e
 

O 3 

= 

mM c
o
 

a
 o

O 
-& 

2335 
2321 
23548 

2369 

2378 

2938 

Ww &
 

o
e
 

m 
& 

©
 

3928 

38348 

3448 

34878 

3886 

3698 

3188 

31148 

3128 

3138 

3148 

3158 

31568 

3178 

31368 

3198 

3288 

3218 

32ak 
3238 

249 
3250 

3268 

3279 

3238 

32348 

ments. 

OPTION BASE 1 

DIN AS 23 

READ #2;A°#29,Th¢Matnod 

IF Matna<c>l THEN GOTO 293988 

BRIM LTH cs 3 

PRINT Jhaterial last Te: preopehhl es. 
PRINT “seeeeeexee tees ee ee eee cence" LINC 1S 

PRINT 

PRINT "Modulous of elasticitye"sACL> 
PRIHT 

PRINT “Poissons Fatio=" 7 AC 

PRINT 

   

S 

6 

PRINT "Density of this material Humber" ;Matnay"="3ThiMatno? 

CLSSCi4sCListisastasetadeCasst2as=c3 Srpandibegpame- Rie 36=SC41= 

C4+2SC43SC46SC 5 LSCSSSCSSSCSS=SCSLSCe Sate tsCS4=Cs5=8 
Plane=ACloecl-AC25“25 

C1LlL=Plane 

CLlS2=C21S=F laneeAe 2 

C22=P 1 ane 

C33=Plane#., 3*#01-AC2335 

Bend=Plane-12 

C44sC055=Bend 

CS54=C45=Bend4Ac 22 

Cé&s=Bend#. S#01-ACS)35 

Z2¢Matno,1l2=011 

e(Matrna, 22=C12 

Z2¢Matno, 232013 

2 Matna, 495014 

Z2¢Matno, 

2tMatria, 

Zt Matno, 

Z¢Matno, 

Z(Matno, 

Z2¢Matno, 18 

é(Matno, ll 

Z2(Matno,12 

2¢Matno, 13) 

Ses 143=C: 

CMatno, 13. ee 

(Matra, Les 

CMatno, LFoas 

2(Matno,18)=C46 

Zi Matno,.1399=C55 

2tMNatno, 289=C56 

2tMatna,219=C66 

SUBEND !'End of Constrel subroutine 
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eee Mass 57 

    

  

Hives oie es! 
Se ROS Cee nC et er he) Ce BC ince) 

Ch2, Thikn¢#3,Angs kC#9,NS$, E33, IHTEGER Nodet#3,T 

any Addtsos,1,Hskew, Hos #1, fort, Pr 

OPTION Biome 1 

DIN Gixure Cs el Wahel (ls. 404, 41 tate) ROC, oo, a) Yer Vetere 

+HOrts, SHeartil 437, 4yenrecs, 441, ¥1oofts., 369,ACS7,Po0incs? 

pHode so, KeCed¢+3ehort, 24+3ehort 3 

INTEGER JM, 2,lvabe, Nozsre, swopt5), _nodz, [test , lcounl, Ic 

Ghnds Wn ohlelent Sub l, Subd, subd, Sub4, SubS, SubG Nrree, Mode 

S2,Al¢Sa 

Lradza6+2elort 

Lywabze4e#lnadz 

Me lent =H 

HP ree 

[Po CPrai oo UF 

Te oPreee) OR 

IF Qort=8 THEY 

ACLISAC2ZI=AC39=AC 

ACS =.2 

   

  

3) THEH ASSIGN #3 TO Hs 

33 THEN ASSIGN #4 TO Ess 

TO 138 

49=,95 

cPr 

cPr = 3 

Igl 

WOL, 1ISWCL, 2ISNC2, QI=EWC4, 19=-,5923949978 
WO2, 13SWC4, 2ISWES, LIEWC3, 29=.592349879 
GoTo be 

ACLISACS2 SACS sac 40Sl 

(cL iste o3s0 

Wed ei=WCe Loses. 13 

Wed, LIHSNC4, 22=. 333533 

MAT KSZER 

MAT Q=ZER 

Modtlo=t 

Modt2:=4+Qort 

Mod¢35s2 

Mod 4 3=5+Qort 

Modt¢53=3 
Modt 6 3=6+Qort 

Mode Fase 

Modes 

NEXT i 

FOR I=1 TO 5+24Qort 

MHodetZ, 1T9=ALCMod¢ 132 

HET I 

MAT Ke=ZER 

MAT Avzpre=ZER 

MAT Elxy2tsZzeR 

Hozpree =e 

MAT Shear=Z2ER 

Thick=—hrkris 2? 

FOR T=1 10 Cnodz 
KSIMNTCRABS¢Hode ce, 1933 

Elxyzt¢l,49=Thick 

Elxyztcl, Lysnxtka 

Elxy2tctl, 2IsS¥ucks 

El xyerc lr, s3sZzzck > 

Mee f 
FOR M=1 TO 4+art 

te Me a. THEN GOT 

Mitac Lossitacasse 

GOTO 388 
SitaeclLoswen, 13 

Mitac2.swem, 23 
CALL Halooftsitat#), Area, THik, Rot#s, Point#s,Elxyztc#o,Ws 

hel¢#3, Thick, Sheart#),Kyzpre (4), Vloof #3, Swapt#s,Noadec#) 

yLnodz,Hozpre, Z2,Nelemt,Qort> 
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Elon 

3948 

508 

618 

628 

820 
$30 

$44 
854 

868 
370 
829 
338 
308 
318 
928 
930 
949 
350 
962 
378 
932 
330 
1998 
1810 
1920 
1938 
Lada 
1956 
1968 
1978 
1338 
1996 
1198 
1119 
1128 
1130 
1140 

1159 

1166 

  

    
   

TNG OF PIER. SshAsse Page 2 

Jnehtodet i, F+2eQart 2 

FOR I=1 TO Lyabz 

Bel, [s=Wshel¢4,19 

Bea, lssWshelt?, 13 

BOS, l2sWehel tS, ls+hsahel td, 12 

ete T) 

Bes, ls=Wsh : 

B(6, L)azeWshelci1,1) 
MEwT I 

Det j=Area 
IF <M=4> AND ¢Qortsh> THEN GOTO 1248 

FOR K=1 TO 4 

FOR I=K TO 21+8#Qort+(kK-15 STEP 4 

FOR J=sI TO 21+8*Qo0rt+(K-1> STEP 4 

ABC JIn, 134BC1, L406 In, 2948 C2, Pt In, S9*BC 3, To 

B= GC In, 228BC1, LI+CCIn, 79#BC2, 12400 In, 99¥#BC3, LD 

Ba2bC Ins eel, Lote cineca, LeteC In, 1234803, > 

PSt(Ct In, 1es2B 4, LotO i Jn, Le 7 e805, 1at+tt In, 18348Cs, 1394 Thik 

#Thik 

E=(COC In, 172*BC4, 19406 In, 199 4EBCS, Tet In, 2b9*BCS, [3 5*Thik 

#Thik 
F=cCt Jn, LS94BC4d, 13+Cc In, 2094865, 13+06 In, 219*8b65, Lo o*Thik 

#Thik 

KectJ,1ysketl, J9skec J, DotA M a eC BCL, JO#A+ BCS, JI B+BC3, J9¥e 

+BC4, J0#D+BC S, J#E+BCS, J>#F #Det j¥Thik 

iF Jz24+34Qort THEM GoTo Le 
Ketl, JtLosketJ+1,13sketJ+1, La+ACM eC Bel, Je1L 2 #At+BCa, Jel oe 

BrBus, 2 DEDFBC4, JH1 34 D+ BCS, JH 15 2E+Btd, T+ 1 eFoeDet j*#Thik 

IF J=23+84Qort THEN GOTO Lé 

KeCl, Je2usketI+2, leskeC J+2, L3+ReMo eC Bel, Jt234A+Be2, Je 29% 

Brecs, J+ CHBCd, T4294 D+ BCS, T4294E+ BCG, J+] > #F)#Det j#Thik 

IF Jee2at+setort THEN GOTO Lé 
Keel, J¢39sKe0J+3, DoskeCJ+3, L3+R OM eC Bll, J+39#A+ BCS, J+39% 

B+HBC3, JH3 C+ BC 4, JH SoH D+ BCS, J+ B0 HE + BCS, J+ 39eF 0 #Det j*Thik 

Coe Nea ol 

He xaes 1 

MHERT K 
IF “<Chi=8> AMD ¢Che=82 ee GOTO 18568 

IF Chi=8 THEN GOTO Pres 

Weight =AreatChilsAcns 

FOR K=1 TO 24+5#Qort 

Gash=Felwect ka 

FOR els io 3 
Gash=GashtWeight#Rat3, lo#Wsheltt,ko 

NEST I 

IF Che<>8 THEN GOTO 1926 

FelvectKs=Gash 

GOTO 14844 

Press: FOR K=1 TO Lvabs 

2 eaetibe 

Gash=Felwect kha 
Felwect Ko =GashtPress#AreatA tM ehshel OS, Ko 

NEXT K 
IF Omg=8 THEH GOTO 1138 

Ro=ThtNoadecZ, *+2eHort 93 

FOR Ist 70 3 
Bodt ly=RasOmgeOmgePoint loysThiksAreaxAc ne 

Bod¢33=8 : 

Neo i 

FOR K=! TO Luabz 

Gash=Felwectks 

FOR: 1=t 70S 

Gash=GashtoBod(tiseRoct, larBadc2seRac2, 1lo+Bodt 3 2*#Roac3, 133 

#Wshel Cl, ko : 
HET 1 

FelvectKo=Gash 
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1170 

1136 

1138 

1288 

1215 

1229 

1236 

1244 

12548 

1265 

1278 

1238 

1296 

1388 

1318 

132t 
1338 
1345 
1355 
1365 
1378 
1336 
1398 
14465 
1415 
1428 
14368 
1445 
1458 
1458 
1475 
14348 
14948 
1586 
1518 
1528 
1534 
13544 
1554 
1568 
15748 
135348 

1536 

1668 

16148 

1629 

1538 

1648 

16548 

8 
= wy 

nh 1 

1 m
a
n
 

1536 

1696 

1786 

1718 

1726 

1738 

1748 

1758 

1768 

Mew. tke 

IF Pr=0@ THEN GOTO 1236 

IF ¢M=44+Qort: OR ¢CPr=2> THEN GOTO Lledo 

MAT PRINT #35 

PRIHT #3; Thik 

MAT PRIHT #23;Ro0 

MAT PRIHT #233 Poin 

TP Ns Se t+hornt? OF CPrRslo GR CRPrSh> THEN GOTO 123u 

MAT FRIHT #4;8 

PRIHT #4; Thik 

MAT PRINT #4; Fo 

MAT PRINT #4: Pain 
NEXT ff 

IF Hskeuw=8 THEN GOTO 13248 

CALL SkewedcontAngskt#),KeC#s,Nskeu, Mosk t#s,Modec#s, Test 

€#39,2,00rt> 
Ieounit=t 

Icoune=a 

Itest=l 

FOR I=1 TO 6+24Go0rt 

H=a 

FOR K=1 TO NodecZz, 13 

H=H+5-S2*Test ck 

NEST K 

FOR J=1 TO 6+2*Qort 

Jf1=8 

L=8 

FOR K=1 TO Nodec2, J3 

L=L+3-2*Test CKo 

NEXT K 

PUR Kale TO. J 

Jfisifil+s-24Test (Nodet2, kK) 

HET 

Rupee st ONoOme Ge .al oO Skee = 

SubL=H-4+S4%Test CHodec2, 199 

Sub2sH-3+24Test (Hodet2, 13> 

Sub3=L-"4 

Subssh-2+24¢Test (Nodet2,192 

IF Test ¢Node(Z,139<>8 THEN GOTO 1576 

Subs=H—1 

Subs=H 

tf Subl<Subs THEN GOTO Labpl 
KCAdd<Sublo-Subilt+Subs3sk (Add (Subli-Subl+Subsot+KecItest, J 

Celene 

Eabl: TF Sube<Subs THEN GOTO Lake 

KO Add¢Sub23-Sub2+Sub3 Sk CAdd¢ Sub2)-Sub2+SubsitKetItesttl 
,JPL-MD 

Lab2: IF Sub4<Sub3 THEN GOTO Lab3 

KCAdd Sub4s-Subs+Sub3 sk Add¢ Subst o-Subdt+SubsitkecItest+2 

JHLanp ’ 
Lab3: IF Test¢Node¢Z,199¢>8 THEN GOTO Lab 

TF SubS<Ssubs THEN GOTO Laps 

Kt Add SubS3-SubS+SubsS sk C Add’ SubSs-SubSt+Subsstke tC Itest+3 

JFL? 5 3 

Lab+: IF Subs<sub2 THEN GOTO Lab 
Et Add¢Subes-Subet+Subs sk tAdd¢ Subss-Subetsubss+kecI teste 

JTF LM 
Labs NEXT M 

NEXT J 

IEF Leounz>lcounl THEN GOTO 17358 

Teount=lIcount-1 

Tesun2=Icoune+l 

Itest=altest+3 

GOTO Hexti 

Iceounleleoounttl 

Teoune=Ieooaune-t 
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77h (ltestaltest+5 

lyoo. Mext 1s Hea 1 
1730 IF ¢Chl=82 AWD ¢Ch2=8> AMD (Omgs8" THEH GOTO 2828 

1300 J= 

1$i0° FOR I=! 70 StertGort STEP .2 
1328 6 M=4 

1330 N= 

1848 IF Nodete,[5=1 THEN GOTO Azl 

1390 “FOR K2l TO Nodecs, 1 2—1 

13860 M=M+5-24Test eka 

1870 NEKT K 

{1886 Azl: FOR 

19390 N=H+5-24 

13988 HET § 

1318 WCMeL, Lose Med, Le +P elvect I; 

1928 RBCM+S, 12 SON], Lo+PelvectJ+15 

1938 QCM+3, 1L2SQCMN+S, LatPelvect J+25 

1948 RWCN+1, LISACN+1, LItFelvect I+35 

1958 RCN+t]2, LISHCN+], LI+FelvectI+45 

1968 OCN+3, 19 =Q20N49, 19+Felvect(JI+53 

1978) RWCHt+4, LOSMQCNSe4, LO+F el vec ¢J+6> 

1986) OCN+5,19=Q0N+5, 194+Felvect J+r3 

13996) J=J+2 

2980 NERT I 

26196 MAT Felvec=ZER 

2626 FOR [=1 TO &+2#ort 

26308 Nodete, LssAicls 

2646 NEXT I 

2658 NEKT 2 

2000: [rf (Prag) OR CPr=1) THEN ASSIGN #3 TO + 

2670 IF ¢Pr=3> OR ¢Pr=2) THEN ASSIGN #4 TO * 

2089 N=Nelemt 

2096 IJ=Nfree 

21996 SUBEHD !End of Assembly 

2l16 SUB Halocttaitat*> Area, imik,Pram( +), Point +? Elxozt car 

die Hae etHTeR enwer tunity izprec#3,¥loofces, IHTEGER Swoop cs 

>, Lnodst+), tned2z,Nozpre, Nel, Nelz, Gort 

2126 OPTION BRSE 1 ' 

2ieo DIM Areavcs) frame ts, co, Gansid 6s, 4), 519tts >, Inikddts, 3), 

Trans (ze) Moaus(4, 49,41 loof (9, 4), Xlocal <2), Xyzdd(3,3),h 

cornc1l@, 33, Wioof¢14,39, Point ¢3> 

2146 INTEGER (ies Lahti bate, Luabzz, Lnomax, Lnodzh 

2150 INTEGER Nstage 

2166 Lrodza=Lnodzt+l 

2176 Lvyabz=Lnodz+4 

2186 Limz=3#Lnodz-2-1 

2196 LwabzasLluabzt+l 

22608 Lvyabzz=lvabzt+Limz 

2218 Lromax=Lrodz 

2229 MAT READ Gensid 

Seo So CURT Leis Ugh ig Lig ig kg Opp tig lg pea og 1 gly lig ie ig Lee ig Len mr 

39,1 

2240 MAT READ XKiloof 

4 

gt
 

ti 10 Nodec2d, lrio-1t 

at 

W
 kK 

2250 DATA .211324966,9,-.577350269,-1,. 738675134, 9,. 577359269 
poly. 788, .2113 2496651,1,-. 577359263, .211324366,.798,1,.5 
77350269 ueee eee ee 1132496 

2268 DATA -.57735 o269 333 333,-1 
1,-.57 7350269 

2278 MAT READ ¥gaus 
2288 DATA @,.5,-.5 

  

SU S69. Sy os 
358269 

2239 MAT Wshel=ZER 
2368 REM ---Generate NHstage to define the path through Haloof 

231@ IF ¢Lyrodz¢>6) AND ¢Lnodz<¢>8) AND (Lyabzt >Lnodz*#4) THEN GOTD 
Message 
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oe
 

B 
a 

232k 

2330 

23465 
2354 

236 

2375 
2388 

2334 

2488 

24198 

2428 
2438 
2440 
2450 
2460 
2470 

2490 
2490 
2580 
2518 
2528 
2538 
2548 
2558 
2560 
2570 
2530 
2590 
2600 
2610 
2620 
2630 
2640 
2650 
2669 
2670 
26e0 
2690 

2788 
2718 
2728 
2738 
2748 
2758 
2766 
2778 

2358 

2378 

2338 

2398 

2988 
2919 

Hstage=4 

IF Lnodzt3Nozpre THEN Nstage=2 

Hozpre=Lniodz 

FOR Enod=1 TO LCnrodz 

FOR Hx=1 TO 4 

     IF Elxyettlnod Heid eeyvepretlLnoad,Hsx3 THEN Nstages2 

HER te 

HET Lnod 

IF Nstage=4 THEM GOTO H1s 

REM ---Initialization for new element ,Nstage=l find the 

center coordinate. 

FOR Hx=1 TO 4 

Gash=3 

Lnodzh=Lrsdz2 

FOR Korn=1 TO Lrodzh 

FOR K=1. Fu.2 

Gash=Gashnt3eb levee (2ekKoarntk-2, Hed“ C2le ek -4h8-Lnodze (214k 

col 

NET 

NEAT Korn 

Elxyete9,Nx2=Gas 

MEXT Ms 

REM ---Diagnostic for a new 2lement.relate coordinate centre 

BUR lo). 10 Lnoedz 

IF Elxyet¢.I,42<=6 THEN GOTO Message 

IF I=tLnedz THEN GOTO N3 

Ja=I+t 

FOR JeaJa (1G Cnodz 

IF ABS¢LrodstHel, P3SABS¢LnoedstHel, J905 THEM GOTO Message 

FOR K=1 TO: 3 

TF Elxyetcl Ket cel xyetct,Ks THEN GOTO Ne 

NEAT K 

GOTO Message 

N83: NEAT J 

N93: FOR Nx=1 TO 4 

tr Nx< os THEN El xpotcl Nese i xuet Cl Nx Ee I xyzt¢o. Nx) 

Ryzprecl, Nx sElxyetc., es tRer pen se the old element 

NEXT Hoe 

HET I 

REM -- interpolate to est im: 

nodes. 

Viloofel, LyabzassElxyetc9, 42 

FOR Hside=1 TO 6 

Swopthside d =1 

NEXT Nside 

Last=Lnodz-1 

FOR Next=i 10 Enodz STEP 2 

Mid=Lastt+l 

IF RBStLnadsthNel Next oC ABSCINT¢LnodstNe],Llast 359 THEH 5 
woptMide2ss-1 

we) OOts lb, ++iast —oy 

ihe cyztOMid, $9 -. 122603 

Yioofel, tii d-33 
levee cad, tot. 455 

| ---Check that 

Gash=4 

Gish=9 

Gush=9 

FOR 1sk 0-3 

Elmid=ElxyzrcMid, 13 

Gash=GashttElxyvet (Next, ls-Elmidas*2 

Gish=Gisht+ctElxyzt Last, lo-Elmida*2 

Gush=Gushtt Els wot (Last, L+Els cU2h GNex<t lie elmioee mid sae 
HET I 

Last sHext 

HEAT Mext 

te normal thickness at loot 
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23928 
2938 

2948 

2958 

2968 

2978 

9 

3 

o 
“0
 

oo
 

Pe
) 

fh
) 

Ps
 

3888 

3419 

3428 

3638 
3046 
3958 
3666 
3078 
39348 
3898 

3138 
3118 
3128 
3138 
3148 
3158 
3168 
3178 
3138 
3198 
3208 
32148 
3228 
3238 
3248 
3258 
3269 
3278 
3238 
3299 
3388 
3318 
3328 
3339 
33448 
3358 
2366 
3373 
3388 
3396 

3490 
3410 
3420 
3430 
3440 
3450 
3468 
3479 
3430 
3490 

3588 

REM ---Urganise loop around loaf nodes for Hstage=2 

REM. ---FOR Nstages2 TO 4+ 

M15? Hloof=8 

M15: Hlosft=Nlooftl 

FOR [=t 70 2 

IF (Nstage=2) OR CHlaeftelnadz2 THEN #localtlo=Kilaottn) 

oof, Lnodz+T-6> 

REM ---also around the integrating points if nstage=3 

IF “Hstage=30 AWD CHloof}bnoadz> THEN local’ ls=k#gaustNlo 

Phot ney erg Le Pict ee 

Es el 

BOTO N23 

BEM -e-fest whether Input point 16 3 loof node: plus orm 

inus .@8o1 

Hise roR t= (oO 2 

Rlocal¢ls=Kitacls 

Hermie 1 

Nloof=Lnraadza 

FOR Mavbesl TO Lnadz 

BOR T=) 702 

[Te Abotklocaltlsi=xiloor¢Mayvbe, Lncdz+1-619>.G081 THEN GOTO 

M2 

Meese. 

MHloof=Naybe 

H22: HET Maybe 

N23: ! 

CALL Sfreklocal (#3, Wcorn¢ts), Wloof¢#),Lnodz,Nstage? 

K=98 

FUR I=l TO 3 

EUR J=1 10) 5 

Gash=4 

Fue b=1 10 Unod= 

Gash=GashtWeorntL+K, LosElevet tl, Jo 

Hew 

SYzdd¢J,ls=Gash 

IF Hstage=2 THEN GOTO H2s5 

Gash=8 

FOR L=1 TO Lnodza 

Gash=GashtWloof¢L+kK, loe¥loaft¢ I, 4*#L-1) 

Ment 

Thikddt J, 1 3=Gash 
N26: NEAT J 

af
 

i 

K=1 

WES ht 

REM ---Create a vector arga=Varea, at given point #i,Eta 

Areavellosstyvzdd(2, 22#kyzddt3, So9-Hyezdd(3, 2yeeyzddc2, 35 

Areavt2sakyzddt3, 239ehyedde 1, So-Kyveddt 1, 22eehyrddt3, 33 

Areavd S skhyzddtl, 22#kyzdd¢], J -Kyedd(2, 234eeyzdde1, 33 

AreasgqeAreauCliotAreavt lot+Areavl 2) ¢Areau (So +Areaul 2a eAreaud 35 

IF Areasg¢=8 THEN GOTO Message 

Area=SRt Areasg> 

REM ---Normalize vector area tnto Frame,Csol 3 as loca unit 

normal 

REM ---Col 2 af Frame Becomes unit yo around edge 

ror Gol 3h 

Frame, 3: =Areavc lo-Area 

Gash=9 

FOR J=!1 TO 2 
Gash=GashtGensidi INTC cH loof4l seas, Lnodzt+J-se ek yrdd¢l, J+13 

MEXT J 

Frame¢I,29=Gash 

MEST I 

REM ---Normalize *,and implement swop by reversing sign of 

We 

REM ---Put approximatian vector thickness into vieof for 

  

     

  

== nstage=2 -396-
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3518 
an

 
cn

 
&)

 
fo

 

Ww 
i)

 

©
 

3546 
3558 
3565 
3579 
3538 
35948 

A
A
a
a
n
a
n
n
 G
 

a
g
o
 
m
u
a
 

@
 

&
 

m
a
b
 

i
 
h
e
e
 

W
i
a
d
 

4808 
$8145 

$9248 

4938 

4849 

4858 

4068 

4979 

468 

4998 

SidesqsPrame (1,22: ¢Framet1, 2) +Framet2, 2) 4Framec2,23+Frame 

Coe mie ame Gos 2) 

IF Sidesqi=8 THEM GOTO Message 

Side=SaReSidesqa 

FOR Toi. 10) 3 
Frame(],29=Frametl, 224SwoptInTetHloofttivaso/side 

IF Nstage<>2 THEN GOTO H31 

Wlooftl, ¢4#Nloof-29=FramecI, 22 
Yloof¢l, 4+4Hloof-L2sFrame C1, 394V loaf l, 4#Nloof-35 

Yloof¢l, 4¢4NloofssFramet., 33 

Note: Hex Tt 
REM --- Cio 1 is unit #,the outward pointing in plane normal 

       

Framect, LisFramec2,23#Framec3, 33-Framec3, 29*#Pramet2, 32 

Frame¢Z, 1) =Frame¢3,2>#Framet1, 39 -Frameti,20#Framec3, 33 

oo
 Framet3, l3=Frame(1,23#Framet2, 33-FPramec2,29*Frameci, 32 

REM --- Check that normals are reasonably parrallel while 

Nstagese 
IF Nstage>2 THEN GOTO N35 

IF Hloof=1 THEN GOTO H6? 

Kz=4*#Nloof-4 

FOR K=4 TO Kz STEP 4 
Point tLes¥loof(2,44Nloof #¥ loaf lS, K9-Vlooft 3, 44Nloofoe¥) 

oot oe, Kk? 
Point cS2veVlooft3, 44h loot ae¥looftl, Ko-¥iooftl, ¢4#Hloaofoe¥l 

aorta, K> 
Point eSya¥loof it, ¢4Nloofte¥ lat ta, Ka-Vlooft2, 44N oof oe] 

oofct,K> 
CaossqePointcLiePoint (Lo +Pointt2.sPaint C2latPoaint C33 #Pointdss 

IF Cossq>.75 THEN GOTO Message 

NEXT K 
REM ---Place contribution af cental node in VYlooftNstafe=2) 

IF Nloof<=Lnodz THEN GOTO Né? 

Thikc=¥looftl, Lvabzas 

FOR IT=1 TO 3 

EOR Jsi [02 
VlooftI,Lvabz+J2=Framet1, Jo*#Thike 

HEST J 

HEAT: of 

GOTO N67 
REM ---Create the 242 Jacobian matrix and invert it. ¢Nst 

age=3 or 4) 

NSS: FOR Jai T0-2 

FOR T=1 TO -2 

Trans¢J,[3=Frameci, lo*#Xyzddei1,J+19+Frame (2, lo#eyzddc2, J+ 

19+Frame¢3, loekyzdd¢3,J+13 

HEART. I 

NEw 

Gash=Transtt, la 

Trans(1,13=Trans¢2,2: “Area 

Trans¢2, 23) =Gash-“Area 

Trans(1,2%=-Trans(1,23 Area 

Trans(2,19=-Trans(2, li-Area 
REM ---Transform Weorn and Hloof into local ax 

FOR N=1 TO Lnodza 

FOR I=1 TO 2 

Gash=9 

Gish=4 

FOR J=1 TO 2 
Gash=Gash+Trans tl, J:eWcornthtt, J+ia 

Gish=Gish+Transtl, JieWlooftN+t, J+13 

NEST. 

WeoorntN, l+1la= 

Wloof tN, l+13= 

MEXT I 

NEXT 
REM ---put the thickness and derivatives into loca coord 

inates system -397- 
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Gash 

Gish 
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FOR I=1 TO 3 
FOR J=1 TO 2 4118 

4126 

4138 

4148 

4158 

4155 

4179 

4139 

4198 

4209 

4218 

4228 

4230 

4246 

4255 

4265 

4278 

4236 

42908 

4386 

4316 

4320 
43358 
4344 
$3558 
4369 
4378 
4380 
4396 
4406 
4414 

4429 
4439 
4449 
4459 
4469 
4479 
4499 
4499 
4530 
4519 
4529 

4538 
4549 
4558 
4560 

4376 

4530 
4598 
46280 
4619 
4629 
453 
4640 
4650 
4668 

4570 

4638 

4690 

Pointe Js=¢ 

FoR Kad 7a: 2 
Point J2sPoint¢Ji+Trans¢JI,ks*Thikddt I, Kk+13 
HERT K 

MHERT J 

FOR J={i 10° 2 

Thikddt 1, J+1 > =PointcJ> 
NEXT J 

HEMT 1 

FOR J=1 76.3 

FOR [=1 TO 3 

PointclssThikddtl, Jo#Frameci,lo+Thikddt2, Jo#Prame(2,19+T 
hikdde3, Jo+Framec3, 1) 
Hest ft 

Bole tal. Li. 

Thtkdd sl, Jo=Point 61> 

HEXT I 

NEXT J 

Thik=Thikdd¢3, 13 

IF Thik<=8 THEN GOTO Messag 

REN ce-rind- the change in | 

hickness of shell 

FOR Lned=1 TO Lrsdza 

TF Nstages>4 THEH COTO NS 
FoR t=2) 70.3 

Gash=6 

ROR J=1 TG :2 

Gash=Gash-Thikddt J, l2#Wearn¢tbLnod, J+12 
NEXT «J 

Point¢I)=Gash 

NEXT 1 

REM ---Create Wehel=shape function array displacement terms 
Pairs + . 

M51: Korn=IhT’t¢lnod+li-23 

FUR K=1 TO 3 

Koals2tkorn+34¢bLnad+k-5 

IF Lrnod?bnodz THEN Kol=S#lnadztit+k 
FOR H=t 310) 7 

Fact=Frameck, No 

WshelOW, Koloshcorn¢lLnoad, Lo #Fact 

IF ¢(Nstage=4> AHD (N=3> THEN Fact=9 
FOR Nd=2 TO 3 

Wshel ON+N+Nd, Kol 2eWecorn¢Lnod, Nd) SF act 

NEAT Nd 

MEXT 

BGR Hal To 2 

FOR Hd=2 TO 3 

WehelOWt+?, EolssWsheliht?, Kol s-Thikdd  Hd-1, 124#Wshel (N+H+H 
d,Kolo-Thik 

IF Nstage=4 THEM Wshelth+N+Ndts,kolss¢Point (Nd2*Frameck, 

Mo+Thikddt 3, Nd34hcorntLnod, N+1)*#Frameck, 3359-“Thik 
NEAT Nd 

NEXT HM 

MEAT K 

REM ---Introduce? rotation terms with bending action Wshel 
FOR L=f 702 

Kol=tLl-Li¢¢#Lnodz+¢2-Lie64kornt+tLnod 

IF Lnod?inedz THEN Kol=S#lnodz+3-b 
FOR H=1 TO 2 

Facte¥loof¢l, 4¢#bnod+l-d3#Framect, Notvloof 2, ¢#Lnad+eL-die 

Frameca,Mot¥ooft3, ¢#lnod+L-d 0 4Framec3, hs 

Wsheltnt7, Kol ssPact*#Wloof¢Lraoad, L3“Thik 

IF Nstage<>4 THEN GOTO N56 

FOR Nd=2 TO 3 

e 

ocal KH, derivatives across +t 

-398-
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4758 

4718 

4728 

4738 

4745 

4758 
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h
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p
e
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Nb

 
wd

 

© 

4790 

4308 

4314 

4328 

4335 

$348 

4358 

$3468 

$378 

43358 

43398 

49068 

4918 
4928 
4938 
49458 

4958 
4968 
4375 

4338 
49993 
5988 
3618 
3628 
5838 

39468 
5459 
S@65 
S878 

5030 
3690 
5168 
S110 
5129 
5139 
3144 
5158 
51698 
3178 
51898 
5134 
5289 
3216 
5228 
5238 
3248 
3258 
5268 
5274 

522 

we
 

% yu)
 

WshelOnN+Hthd+5, Kal .sFact*#Wl oof tbnoad, Ndo-Thik 

NEXT Nd 

NS65 NEAT N 

ME 

Neat Enod 
REM ---Combine last three Columns of Hshel to Create normal 

deflection 

IF Lredz=6 THEN GOTO Hel 

TzaseHstagerl 

Por tat TO bs 

Gash=4 

FOR K=1i 70 

Gash=Gash+Wshel tl, 42tkKoe¥loaftk, 4*#lbnodz+4d5 

MET K 

WsheltI,439=Gash 

NEXT [ 
Hei: IF Hstage=4 THEH GOTO Nee 

REM ---Create array shear for introducing the constraints 

te Hicstyened= THEN GONG Nes 

EGR T=1 TO Lvabzz 

SheartHloaf, ls=Wshel ea, 12 

Sheart ii, toaShear(ii,1)4Wshel CS, 0T3*#Side#Thik#SwoptINT¢cn 

loottlo7 23> 

NEXT I 

GOTO He? 

N63: FOR Kol=1 TO Luyabzz 

FOR Nxysl TO 2 

Gash=SheartLrodzt+Nxy, Kol? 

FOR Meyst TO 2 
Peeve eee ny ey iger (1, 4elLnadzthxy oth rane ce Mey? Vi oo 

FOZ, ¢4¢bnodzthey i +PramecS, Mey oe¥ loots, ¢#lLnadz+Nxy a 

Gash=GashtWshel ¢Mxyt?, Kolo #AreatThik#Fact 

MEXT Mxy 

neat pouzthxwsKols= =Gash 

NEXT Nxy 

NEXT Kol 
REM ---Complete loop around loof nodes ta create YVioof or 

shear 
M67: IF Nloof*slnodz THEN GOTO N16 

IF ¢Hstage=39 AND See THEM GOTO Nis 

IF Hstage<>2 THEN GOTO N? 
REM ---Create plus ar minus sum af thickness vector at loof 

nodes Hstage=2 

FOR I=1 TO 3 

Gash=4 
FOR N=3 TO Lyabz STEP 4 

Gash=-Gash+¥looftI,No 

NEXT N 

Sigt¢Ils=Gash 

REM ---And 343 matrix associated with it stored in &yzdd 

FOR Jet Tis 3 

Gash=8 
IF I=J THEN Gash=Lnodz 

FOR H=2 TO Luvabz STEP 4 

Gash=Gash-Vloaof( I, Ho *#¥looftJ,No 

MEAT N 

Ryzdd¢l, Js=Gash 

HEXT J 

NEAT I 

REM ---Get the adjucate of the 3#3 symmetric positive def 

K=3 

FOR I=1 TO 3 
FramecL, Koyeturdd¢2, lo*#8yzdd¢3,6-I-Kko-Framec3, lo#hyedd¢2, 

Gol Kk > 

Framet2,K2ekuzdd¢3, liesxyeddt1,6-I-Ko-Frameci, Do #xyedd¢3, 

laid 

-399-
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cn
 

fa
 
4
 

Dr
) 

3388 
3318 
5328 

5338 

is
 

a)
 

fo
 G& 

n
o
 

si
g 

WO
 

OD
 

oh
 

ah
 

mm
 

&
 

&
 

ol
 

aw a
 eo 

5390 
5436 
5418 

5428 
5438 
5443 
5458 
5458 
5470 
5428 

3498 

3580 

53518 
5528 
3538 
3548 
33558 
3568 
5378 
5538 
3598 

5689 

55198 

5628 

5639 

5645 

5658 

5668 

5670 

5638 

56398 

5736 

S714 

5729 

5739 

S748 

3756 

3768 

S779 

3738 

3738 

5°39 

3319 

53828 

3339 

3348 

FrameC3,Kuskyrdde1, lo#8uzdd¢2,6-I-K)-Frame2, ly#¥yzdd¢1, 
B-I-K} 
K=I 
NEXT I 
Determ=syvoddt1, Li#Frametl, Lotkyvrdd¢2, LoeFramec]2, 1o+h%yedd 

3,1 9#Framec3, 15 

POUR fat 10°73 

Prod=Frametl,Ts#Sigt¢lLot+Framet2, loesSigtt23+Framec3, 13*Si 
gress 
Point CI]? =Prad-Determ 

HEXT 1 

REN ---Ceorrect Vector thickness in Viloot 

Fact=1 

FOR N=2 TO Lyvab2 STEP 4 

Fact=-Fact 

Prod=Point(1Lie¥ioot¢l, NI+Point (2. *¥ loot <2, No+Point C3944) 

oofrts, Ho 

FOR  T=1 703 

VMi@oPClL Mtlya=Vigottl , NelicPacte (Point tls =-Prods¥loof¢l, N23 

HEXT. I 

REM —--treate Titienent ial v 

| this complete work for Mest 

Rilist ovo t Cl Nin 1) 

V1 oof €1,N—-13=¥1o0f (2, N)#¥loof (3, N41)-Vloof (3, NI #V oof (2 

a Nobo 

VYloof C2, N-LIs¥loof tS, NIe¥loofCl  NtlI-Vloof Cl, Noe¥loaf¢3 

st 

Vloof CS, N-LIS¥ ooh CL No e¥ loo CS NtlLoeViloot ta, Nae¥looftl 

sN+12 

BOR. fai fos 

WioofCl,No=¥loof tl, Ho#TFirst 

MERT I 

MET H 

Hz=4¢Lrnodza 

Hstage=3 

GOTO Wis 

Hees: 

REM ---Shear has been created in Nloof loop for Nstage=s 

»yChoose pivot for reducing array shear and do row changi 

ng 
POR Eqns) 10) Eqimz 

Kp=Lyvabz+Llim 

Pivot =a 

FOR L=lim TO Limz 
IF ABSCPivoetd>ABS(Sheartlk,Kps> THEN GOTO Nrg 

Leig=Ll 
Pivat=SheartLopig, kp? 

Higgs. NER 

FOR K=1 TO Lyabzz 

Change=Sheartlbig, ks 

SheartLlbig,k2=ShearcLlim,k> 

Shear tLim, Kk 2 =Change-Pivot 

NEXT K 

REM --Reduce array sheayto create constraints matrix this 

complete work for Nstage=3 

FOR Nreow=1 TO Limz 

FactsShear (Mra, bpd 
IF (Nrew=lim? OR ¢Fact=0) THEN GOTO N82 

FOR Kol=1 TO Lyabzz 

Shearthrow,KolosSheartNrow,Koli-Fact#3heartlLim,Kal3 

NEXT Kol 

N82: NEAT Nrow 

MEXT Lim 

Nstage=4 

GOTO N13 
REM ---Use array Shear to constrain Wshel at given Point 

sKi,Eta _~400- 

ctors to define rotations ec 

age=2
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S656 Nee: FOR [=!l 10 Luabe 

S860. FOR J=1. 10s 

5375 GashsWehelet, 13 

5338 FOR K=1 .TO Limz 

5399 Gash=Gash-WshelttI,k+Lyabziechearck, Io 

$996 WHEAT kK 

5919 WsheltJI, ls =Gash 

5926 NEXT J 

§936 NEXT I 

5946 REM ---I[mplement Swoop exchange two normal sloape 

5950 -FOR Hs8 TO Luabs STEP 3 

5968 IF SwoptheSo=1 THEN GOTO Ne 

S970: FOR Js) TO 13 

$338 ChangesHshelot, no 

5398 Wsheled,HoshWs heliod,N-1) 

6866 WsheltI,H-1Ls=Change 

6018 HEXT J 

6628 N92: NEAT H 

6839 REM ---Assemble Uxz,Uvz,Vx2,Yyz2 to create Wxx, Wxy,Wyy 

6646 FOR N=1 TO Lyabz 

68958 Wshel(19,Hos=-Wshel¢18,H> 

6668 Weheli ll, Nos-. S*#¢Wshel Cli, No+hshel tl2,Has 

6079 Wehel Cle, Na=-WNshelol3,Na 

6686 NEAT H 

6899 REM ---Put point fram in common also area side with inte 

grating factors 
S198 Area=Areat¢lLnodz-5.63"2.4 

6110 Side=Side*#tLnodz-dir4 

6l2u- FOR fal 0.3 

6130 Point li=xyvedd¢1, Lo +E] xyet co, 1d 

6146 FOR J=1 710.3 

6156 Framtl, Jo=FrametI, J> 

Siow HEAT J 

Stwe. WE I 

6136 GOTO eels : 

Cise Mecesade. PRIN: VER or ----P lease check the THput data’; 

6289 STOP e 

6218 SUBEHD!Ts subroutine shell 

6226 SUB Sfrcklocal (#),Weornt#)  Wloof +>, INTEGER Lnodz,Nstage> 

6236 OPTION BASE 1 

6248 MAT Weorn=ZER 

8258 MAT Wloof=ZER 

6268 DIM Mdt4), Termvc46),Coeft2d75 

S276 MAT READ Ma 

6289 DATA 8,43,98,171 

5296 MAT Termv=ZeER 

6398 Termvcsi=t 

S318 Kisklocalt1: 

6326 Eta=Klacalce: 

6339 MAT READ Coe 

So68 DAA lias p sone et 2545. 8. ty +, lk 

i
 

6350 DATA -1,9,2,8,9,9,9,0,9,4, oe 8,a!2 
6360 DATA 2,4, 0,4,9, 4) -4, 918683603, 1. S77350269!3 
6378 DATA -5.841451984,-6. 196152423, 2.464101615, 3. 92320923, 1. 

7328508803 !14 
63385 DATA -.244815936,.422649731,2.841451984,4,1961524¢23,-4.4 

S641H1615!'5 : 

base DAR —4. Jeeetses, —1 sree OIMe Ney. a coo, Ss 4226497 ol, e 

eorrouge 6915 

6408 5.464101615, 1. 732959808, .333333333!7 

64148 2422549731,5.454101515,5,-1.464191615!8 

6428 244816936, 2.841451954,,422649731,-4. 

  

ee 
6430 DATA -4.454191615,4.196152423,1. 732050387, .919633502,-s. 

841451984!118 
6449 DATA 1.577350269,3.92828323,2.4¢64191515,-6.196152422,-1. 

P326583807!11 ;
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63948 

53908 

6318 

6928 

6939 

6948 

6956 

6968 

6973 

698 

6996 
7908 

78148 

7929 
°838 

7844 

78586 

7868 

   

DAH =1 656.50, 6,-6.0, 2.20,4,0..259,225,.20, —. 20, —~. 20,012 

MPM seclig el race gi etary ig lg a gee g ete alg Alig eels i gee ci ly 

Peo aL Ss 

DAR cag so g's ig itm iy Se Oi gi ee SO Oise 20 sce fly, Pols Ogee 

S,8!i4 

DAR oy Oa no oc oy eee pe ey Oy On eos es eens foveal 

sas, eis 
DR oy, Oe me oy ee Oe ey el ym le oll 1S 

DATA 0, .215506351,-.375,-.993735!5 

DRTR .2lestecsl..239l2s,—7.e43519053,.375, 7: cetroaseo! 1 

DATA Bee, 216506951, —.375, —-.99S75, —..2l6es86351!2 

DATA «28125, .5649519053,.37°5, .3247°59526,4!3 

DATA .evo..eloobeoal, 23125, —-.2lostsssl,—. 89375! 4 

DATA ~. 3rd, 7699519853, ~-.3249759526,8,.37°5!5 

DATA -—. 216506351, : 28125, .216506351,-.89375,-.375!6 

DATA .649519853, .3247°59526,8,~-. 2165869351, .37°5!7 

DATA -.89375, .218506351,.29125,.64395139053,-.37°5!3 

DAR —. setnropdeb, O;. 2lesUbool,.sro,-. dears |S 

DATA —.2l6s06951,.29125, -.649519053,-.375,.324759526 ! 1 

DATA 0, -..0f5,-,215596951, .28125,—. 216586351! 2 

DATA -.83: ee eens os 

DATA -.37! 216500351, .2c120,.clo 006301, ~. 89375! 4 

DATA .375, . 649519953 ,ecerCotdebsl, 6,0, <a, oh, —.09,0,0,015 

Goes 

SINT (Lnodzt+Hstage-3ives 

is H=1 TO Wz 

I an=Ia+H 

H2SH+15 

H3=SH+38 

FOR J=Ia TO Lan 

Termud JehoaTermut Jo#Ki 

Termud JthH2o=TermycJo#¢lan-J3 

TermucJ+th32sTermv¢ J-Ls*#¢J-Laod 

NEXT J 

Ta=Ian 

Termud latHs=Termutla-Lo#Eta 

HEAT WN 

FOR [=8 TO 38. STEP 15 
IF tEnodz=6 THEN TermucTos2e¢Termyd lo-Termvcl+3)9+3"¢Term 

YCT+13—-TermytI +234 

IF Lneadz=3 THEN Termyt lo=Termutl+e5 

IF Lnodz=3 THEN Termvtl+2%=Termycl+6% 

NEXT I 

Nfoisz=INTCtNstagerlavas 

FOR Nfois=1 TO Hfoisz 

NZz=INT¢3¥Lnodz/23+Nfois-4 

IF Nz<>18 THEN GOTO Nil2 

NHz=9 

FOR [=18 TO 46 STEP 15 
TermvdIlosTermyutl+33-Termuc l+53 

HEAT I 

Nie: k= 

FOR [=1 70 3 

FOR N=1 TO Hz 

Gash=4 

Mdel=MdtLnodztNfois-82+N#eNz-L5+I 

Ma=is#*I-14 

ZeL154I+Nz-14 

FOR! M=Ma TO: Mz 

Gash=GashtTerme cM eCoeh i M+ide ] o 

NEST M 

IF Hfais=1 THEN WeorntH+k, lo=Gash 

IF Hfois=2 THEM Hlooft +k, ls =Gash 

HEST MH 

K=t 

NEXT I 
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LISTING OF FILE : SMASBL Page 13 

Tora NEXT Hfois 

7838 SUBEND 

7H98 SUB SkewedcontAngsk¢#9,Kec#o, INTEGER Nskew, Nosk (#9,Nodec 

#2, Test (#),2,Qort) 

7196 OPTION BASE 1 

F118 DIM StS4+SeQort, 244+34Aort), S10 24+84ort 3 

7i2o MAT S=IDN 

34 K=48 

Frida FOR [=i TO §+2eort 

7150 Kek+5-24Test (NodetZ, 139 

7166 FOR J=1 TO Hskeuw 

Cl¢o, le Hoda C2 it oNcek (J) THEM GOTO Skb 

7186 ASkK-4+24Test (Node cZ2,199 

TigG SCH+1 ,A+1 3 =S¢A, AI S=COSCAngsk( J3+4. 8174533) 

F288 SCA+L, AV=SINCANgsk(J2#,. 8174533) 

(2s0 SCR, AtTO=—-SCA+1 AD 

(Zen. Sipe MENT oJ 

71200 “NEAT I 

7246 FOR [=1 TO 24+3#fort 

F258 FOR J=1 TO 34+54hort 

f26ea Gash=8 

2c FOR K=1 710 24+8+Gort 

723@ Gash=Gash+S¢k, Jo*#kKeck, I> 

fevd. NEAT K 

7380 S$1¢J>s=Gash 

7318: NEAT J 

7328 FOR K=1 TO 24+9#Qort 

7330 KetK, Td=S1icks 

7349 NEXT KF 

(300 Mex 1 

7360 FOR [=1 TO 24+8#ort 

f3r6. FOR J=l 70 24+s400rt 

7388 Gash=48 

7390 FOR K= O 24+3*#8ort 

the Cl, Ko#S5CK, I> 

7410 NEAT K 

7426 Sit Ji=Gash 

7436 MEXT J 

7440 FOR K=1 TO 24+84Qo0rt 

7456 Ketl, Kkossicko 

7460 HEXT EK 

74786 HEXT I 

7430 SUBENTD! 
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PROGRAMME STORED IN FILE: 

CiSeD One. Bees 

1g | RE-SAYVE" SMLDAP" 
29 SUB Lioadappcs CL, E.R ie) INTEGER ALG, KF, trots 

39 IF A=1 THEN GOTO Audi 
$9 IF ¢A=3>9 OR CASS) THEN GOTO Rud2 
38 IF A=4 THEN GOTO Auds 
6a DcK~— trot, PIsSDCK-Irot,Fo+8 

79 IF A=2 THEH GOTO Rudi 
39 IF R=8 THEN GOTO Aud3 
38 Aude: Vike Usotrl mea Dokl rot l,l ee 

198 [IF (R=3) OR cA=7> THEN GOTO Rudt 

118 Huds: Bike Tret to. Fost kK-Iratta, Fett 

125 TF ce) OR <frst<>4)0 THEM GOTO Add 

134 DtK—-trot+3, Fe s0¢kK-Trot+3,Fo+e€ 
143 Dik-Iratedt, Fe sDCK—Trotedt, Pek 
150 Aldi: SUBEHD !end of Icading 

PROGRAMME STORED IN FILE ; SMSKLD Page 1 
hS en Wi: bP -33 

18 
29 

348 

49 
338 

68 

7a 

3g 

99 

188 

119 

129 

138 

148 

158 

168 

173 

1388 

198 

288 

218 

220 

| RE-SAVE"SMSKLOD" 
SUB Skewloadta¢#),Anmgsk¢#3, INTEGER TestC#),Nsett,Nosk (#9 
sHekeu, Op 

Poe real. 
FOR I=1 TO Nskew 
R=9 
Sn=SINCAngsk¢134#.8174533> 
CnacostAngsk ¢13#.91745333 
FOR J=1 TO Nsetf 
FOR K21 TO Nosk¢T> 
RSA+5—-24 Test (Kk) 
NET K 
MSQCR—4+24Test (Mosk (159, J3 
NeQCA—3+2¥Test (Nosk (199, J) 
DQeQeA-2+2eTest (Mask C199, 73 
IF TesttNosk¢ Io 0¢>8 THEN GOTO 138 
PSQCA-1, J> 
R=AQCA, J> 
QeA-4+2%T2st (Nosk (I>, J =Cnem+Sne0pen 
WOA-3+2%Test (Nosk (13), J9=-Op#Sn*M+0neH 
Pires og 
MEXT I 
SUBEND! End sf Skewload 

PROGRAMME STORED: LH FILE SMYVES Page 1 

LISD oh: brn os 

18 

28 

38 

46 

38 

68 

38 

36 

188 

118 
1268 

138 
148 
158 

| RE-SAYE"SMYYBS" 
SUE Bounconst¢U,R¢#2,Ak¢#9, INTEGER N,Neq,F,AC#)) 

INTEGER M,K,Cj 
IF Nt ?1 THEN GOTO 7B 

Cj=l 
GOTO 88 
CJHN—-CACNI-ACH—1To +1 

FOR K=G)] 10: N 

ROK, FI=RCK, Fo-Ak CACHO-N+K 9 4U 

Ak C ACH -Ht+tK 3 =8 

NEXT K 

IF N+1>Heg THEN GOTO Lz 

FOR K=H+1 TO Heq 

Cy=K-C ACK I -ACK HL 3 $1 

IF Cj>N THEN GOTO 18@ 
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ci
 

ROK, FaSkck,Fo-Ak CACK a -K+H osu 

AK CACKO-K+Ho=68 

HEXT K 

ee GRC Me aad 

ROH, FSU 
SUBEHD 'END OF BOUHCOHNST 

SUB Symuvbsol¢Ac#),L #9, BC#>, INTEGER SLEDS Ny ee 

INTEGER G,H,1I,J,K,M,P,Q,T,U,¥ 
H=8 

FOR I=1 TO WH 

THI+H-Se1o+i 

G=H+1 
PeScTo=—1 

FUR. JST<70. 73-1 

G=P+1 
H=H+1 

=S¢J) 

K=J+i-P 

  

w
m
 

J)
 

oy
 

=
 

ha
 
B
e
 

ee
 
&
 

o
m
 

  

      

cs
 

a 
I
 

&
 

&
 

&
 

c
y
 

   
     

“oO
 

Gi
 

i
 

‘A 

a
a
a
a
a
n
 a
 

ACH? 
Ke. THEN USU+K=—T 

FOR USSU TG .H=1 
VYeV-LcuseLecu-VWo 

HEXT 

fare Chav) 

LeHasy 

436 -FOR. M=1 TO°R 

B BCI MO =BCI Mo-BCI, Mey 
$56 NEXT M 

460.° NEAT J 

i WeACH+19 

FOR UW=G TO H 
Teeter Clan free 

Nem tl 

TPeetee HEM GOTO S46 

PRIWT “##**#PROGRAM FAILED IH SYMVEOS SUBROUTINE s#*#+" 
alate 

H=H+1 

VeESuRc ya 
LeHosy 

FOR. M=1 TOR 

BOL, Mo =Biel aay 

Hen) Mt 

NE oo. 

Ben Revue CUNPLE Te 

POR bate Oe oho ea 1 

WSLtHa 

FOR M=1 TO R \ 

Bob, Masbel, Mov 

HEAT ff 

IF T=1 THEN GOTO ree 

J=I 

PeStl-1)9 

POR¢h=H=1 JO. P+l STEP. —} 
J=J-1 
VSLCH2 

BOR Mad TO. 
Bei Meebo Nee bo ly Moe TC 

HEAT 

NEAT 2H 

H=F 
HET. 
SUBEHD !EWD OF Symvosol 

O
3
0
 

o3
 

mi
 

a
 

G
m
 

M
m
e
 
O
w
 
O
N
 
H
O
 
h
o
h
e
 

mr
 

h
i
n
d
 

mo
 

hb is
 

im
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a
a
 a
 

se
 

i
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a
 

m
o
r
r
o
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r
a
e
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oe
 

a
m
 
o
o
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ei
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e
m
 

N
™
N
N
N
N
N
N
 
N
N
N
 
O
H
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A
R
A
S
 
A
A
I
 

V
C
a
a
a
o
w
s
 

SS
 

ci 
O
Q
O
n
t
n
a
n
b
o
n
w
e
-
 
O
w
 
n
a
n
a
n
M
N
t
o
n
e
e
 
a
e
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e
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w
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PROGRAMME STORED IN FILE : SMELST Page 1 
Cisted ON: B73 

18 eee ot wees Nee sntau 

28 SUB Elstrs¢Q¢#),B<ce5,C ,E33, INTEGER Nodet#3,Testc#),He 
Nee iiede Gert hein, 

368 OPTION BASE 1 

46 DIM Eldspl(24+SeQort, 15, Point¢3>,Estrs(6>,Estrn(6), Rots, 
39,Sig63?,Prinet2>,Dmy¢l2> 

54 THT EGER ls coe 

68 PRINT SPAC1S9; "Element strains and stresses" 

78 aaa THe ee Sg ta cerca yt 

30 ASSIGN #4 TO Es 

96 FOR 2=1 TO Nelemt 

146 Jn=Nodet2, 7+2#Qort d 

119 MAT READ #458 

128 READ #4; Thik 

136 MAT READ #4;Ro 

148 MAT READ #4; Point 

156 CALL EldisplcEldspl¢#3,8¢#),Nodec#3, Test ¢#3,2,Qort,Helemt > 

168 FOR, J=1 7.0. 6 

178 Gash=6 

188 FOR I=1 TO ¢6+2#Qort 2#4 

138 Gash=Gasht+Be J, ls#Eldsplci, 13 

268 NEAT 2 

218 Estrn¢ J =Gash 

226 MHEXT J 

239 EstrsClosCEstrn¢1se0¢ In, LotEstrntf2400 In, 29 9#Thik 

248 Estrs(Z2=CEstrnc13#0C In, 23t+Estrnc 2 .*0¢ In, 73 2*THIk 

256 Bstrsts3=Estrncs sec Ih, v2oe0hik 

268 Estrs¢4 =CEstrn¢ 4340 In, 16.+Estrn¢S e400 In, 1 edo eThi keThik 
#Thik 

278 Sai ecusoe char hicesxcen a7) abseencsosccdn 19) 5" THIRATHIR 
*#Thik 

236 Estrs(6 =Estrncé24C¢ In, 2124#Thik*#Thik#Thik 

296 PRINT LEMCS> 

368 PROM USTNG Slus AS Estrncio betriice>  Sstrntsl,estrincd) Gs 

trncs),Estrnt6) 

318 IMAGE 2D, 2x, "Exin=",MD.4DE, 2x, "Eyin=",MD.4DE, 2%, "Exyins 
"MD. 4DE/-2%, "Exb=",MD.4DE, 3%, "Eyb=",MD.4DE, 2%, "Exyb=",M 

D.40E 
326 PRINT 
338 PRINT USTHE S40, 2, ESstretl bstrsteo esttrstou, betrs<4), Es 

trsC5),Estrst63 

  

  

346 IMAGE 20,24, "Nxin=",MD.40E, 2%, "Nvin=",MO.40E, 24, "Nxyvin= 

",MD.40DE“45K,"Nxb=",MD.40E, 28"Myb=",MD.40E, 26, "Nxyb=",M0 

»~4DE 

358 PRINT SPACIO), “These stresses at paint " 

368 PRINT SeaG2), x=" 5 Fotnt 1). r= Point (2), 2=" sont to 

378 PRINT SPACIG@G), "The local axes are given by",LIN¢CL> 
386 MAT PRINT Ro 

396 FOR t=) 10 4 Sier 3s 
464 DmytlosEstrncls#Ratl, LeeRoti, latEstrntl+ioeRotl, 22eRotl 

sevtestrnc lr2ieRotl, toekotl, 232 

$148 DmyC2dsEstrnc1l)#Rot2,13*Ro C2, LotEstrnc il +13 #Rot2,234Roce2 

s22tEstrn¢l+23#Rot2, 13 eRot2, 2342 

426 DmyCSdsEstrncld#Roc3, LotRolS, Li+Estrn¢l +1 eRot3, 234Rac3 

se2rEstrnclL+22*Ro03, 1I4RoC3,.22%2 
438 Dmy¢ do =EstrnelatRoti, Lo#Rote, Lo+Estrncl+lieeRotl,23#Race 

,erIt+Estrn< lt2o*CRot1, Lo4Rote,2)+Rotl, 2)*Rate, 12) 

444 Dmy¢CSd=Estrn¢lo#Roc2, 134Ract3, 1 d+Estrncil +1 34#Rot]e,23#Rot3 
ps2rtEstrncl+e2.e¢Rot2, LI#Rat3, 23+Rol2, 29*R0OC3, 139 

456 Dmyt6I=EstrnclyeRot3, LI#Rotl, Lit+Estrnt23eRac3, 29#Rotl,2 

I+EStrn sd #CRoC3, 19*¥ROC1, 25 +RoC3S, 29*Ro0C1, 155 
4658 DmytPosEstrstlo#Raotl, Lo#Roti, lot+Estrstl+io#Rodl, 23#Roacl 

ser testrsCit+2)*Ro<1, 1. 4koc1, 2) 
478 Dmy( 8 =EstrsCl#Rot2, 1 #Rot2,19+Estrstl+1 3 #Rot2,2)#Rat2 

,2)+Estrs(14+2)#R0C2, 1)#ROC2, 2) 
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PrSTINGeOe FIER § SMELST Page 2 

4568 Davi dssEstrs(lyeRot3, 12 #Rat3, Lo+Estracl+11#Rot3, 234Racs 

»2ItEstrs(1+2.#CR0C3,19#ROC3, 292 

498 Dmyt iG =Estrs(ly#Roti, 1 #Rac]a, Lie2tEstrst I +laeRotl, 24k 

oC2, 29#2+Estrs(l+22e¢Rocl, bo#Rot]2,29+Rotl,2o#Rotve, tos 

588 Dmytlis=Estrs CL) #ROC2, 1)#ROCS, LI#2tEstrs C1 +1) #RoCz, 2I4R 

oC3,2)#2tEstrs(l+254¢Rot2, Lo#Rot3, 29+Rote, 22*Rots, 13s 

518 Dmyper2.=Estrs¢lo#Rot3, 1o#Roci, Le2tEstrst i +loeRacs, 224k 

oC1, 2y42+Estrs(l+294¢Rac3, Lo#Rot1, 29+Roc3,29#Rotl, to) 

328 IF I=1 THEN PRINT SPAC42,"Memb. Strns. & Strs. in glob. 

axes ",LINC1> 

534 IF I=4 THEN PRINT SPACS>,"Bend. Strns. & Strs. in glob. 
  

axes." LINCL) 

548 PRINT USING S6QG;2,Dmuc13,Dmyc2>, Dmyt ss, Dmyt4), Dmyecso, Dm ces 

s41 PRINT , CLNG2> 

558 PRINT USING S7@32,Dmyc73, DmytSo,Dmycos, Dave las,Dmytiio,o 

  

  

my¢il2% 

Sol PRINT ,LINC2> 

56 IMAGE 20,2, "Exg=",MD.4DE, 2%, "Eyg=",MD.4DE, 24, "Ezg=", MD 

SDE 428, "Exyg", MD. 4DE, 3%, "Exzg=",MD. 4DE, 28, "Eyzg=" ,Mn.4 

DE 

57a IMAGE 2D,2%,"Sxg=",MD.4DE,2%, "Syg=",MD. erate wk Boe ae tL 

-4DE 2k, "Sxyg", MD.4DE, 3%, "Sxzg=", MD. 40E, 2%, "Syzg=" MD. 4 

DE 

538 NEXT I 
536 IF Prine<>1 THEN GOTO 736 

688 FOR l=1) G0. 4 STEP. Ss 

6168 IF I=1 THEN PRINT "Memb. Prepl. Strs. at Cntr.of Ele."352 

628 IF I=4 THEN PRINT "Bend. Prepl. Strs. at Cntr.of Ele."32 

638 Theta=. S#ATHC2#Estrstl+2:-tEstrst li -Estrscl+15+16&-389) 

646 He: IF Thetat@ THEN Theta=Thetat3.1415926536 

656 Sn=SINC Theta? 

660 Cn=COS¢Theta? 

670 - Princt1 =Estrs(lo+Snet2eCnsEstrs(1+23+SneCEstrstit+is-Es 

trsCI9935 

638 Prine (2 =Estrstlot+EstrstI+19-Prine tls 

698 IF ABSCPrine (13335, 99999994ABS¢CPrinc¢22>9 THEN GOTO N4 

768 Theta=Theta-1.579796327 

718 GOTO Nz 
726 N4: Degree=Thet ats. 29577951 

738 PRINT 
748 PRINT "First principle strss="sPrinc(1>,LIN¢l> 

738 PRINT "At an SOGTES OORT Bs UTS ee to GA, CENC 1) 

766 PRINT "Secon principal stress="7Princt2), LING1) 

7ro PRINT SPAC6), "Direction of this princpal Stress",LINe 13 

738 NEXT I 
7396 NEAT 2 

368 ASSIGN # TO #4 

314 SUBEND !End of Elstrs 
r2 ss es . iwrcee ‘2 _ oan 
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PROGRAMME STORED IN FILE : SMHDST Page 1 

EIrsTeD ON. s 677733 

14 ! RE-SAVE"SMNDST" 
28 SUB Hodstrcc#),Be#3,C¢43,Hst, INTEGER Nodet#>, Test ¢#),Ne 

lemt, node, Gort,Princ> 

38 OPTION BASE 1 
468 DIM Eldspl(24+3#Qort,19,Point¢39,AC4, 49, S5trst6,49,5trn¢c6 

»43,Ndstm¢Hnode, 69, Hdsnm¢Nnode, 69,Ndstb¢Nnode,6%,Hdsnbtn 

Nnode,6),RoCS, 39, Sig%s>,Prhincse>, Umect2o 

38 DIN Strgmts,49,S5tsgb¢6, 43 

68 MAT READ A 
78 DATA 1.866680700845,-. 462509857989, .11841278r526,-. 462509 

$57989,-.462 509957988, 1, 80660700845, -. seZ5G9857988, . 1184 

12787 525, . 118412767 524,-. 462589557957 

so DATA 1.366687 90845, -. 462509857987, -. 4625099579 go,.118412 
POPS25,—.462509957999,1. 9866a 700345 

96 PRINT SPAC15>, "Nodal strains & stresses" 
1968 esree et ni sce et ace ice nec a a re 

1148 ASSIGN #3 TO Ns# 

126 PAVE GER Dee lady bey ll Lege 

138 FOR Z=1 TO Nelemt 
145 CALL Eldispl¢Eldspl¢#2,0¢#9,NodeC#3,Test¢#9,2,Qo0rt,Nelemt 2 

156 FOR I=1 TO 3+Qort 

166 MAT READ #358 
176 READ #3; Thik 

186 MAT READ #3;Ro 
136 MAT READ #3; Point 

264 FOR K=1 TO 6 
214 Gash=8 
228 FOR J=1 TO ¢6+2#Qorto#4 

234 Gash=Gash+Bek, Jo#€ldspltjJ,12 

246 NEXT J 

256 Strntk, 1)=Gash 

268 NEXT K 

276 Jn=Nodet2, 7+2*#0ort>d 
2548 Strs 1,1 =¢Strnt1, 19#C¢ In, ee 

296 Strs(2, 1 =¢Strnel, Pat In, 224Strnc2, 1L#CCIn, 7 7234Thik 

386 Strs(3, Ld =Strn¢3, 1)#0CIn, 12)#Thik 
314 Strst4,1=¢Strne4, l94CC In, 1s 9+Sternt5, laeCt In, 17d. eThik eT 

hik#Thik 
326 Strs¢S, 1l9=¢Strn¢4, L9eCC In, 17 3+Strnc5, 1o*CC In, 1939 *eThikeT 

hik*#Thik 
338 Strst6,13=Strn¢e6, lo4#0C In, 21 2#Thik#Thik#Thik 

348 FRINT LIN¢23 
3568 PRINT SPACG2, 'Strns. & Strs. at The Integ. point '. 13° 

Elemt. No"32 

368 PRINT LIN¢13 
378 PRINT USING 38G;1,Strn¢i1,19,Strn¢2,19,5trn¢3,19,Strn¢4,1 

2, Strnco, b2, Strnce,.0) 
336 IMAGE 20,3%, "Exin=",MD.4DE, 34, "Evin=",MD.40E, 3K, "Exyins" 

sMD.4DE--SK, "Exb=",MD.40E, 34%, "Ey Da 4DE, 3%, YExob=" M10 

~40DEY 
336 PRINT USING 486;1,Strs¢1,19,5trst2,12, 

>, Strs¢S,1),strscé, I> 
446 IMAGE 20D,3%, "Nxin=",MD.40E, 3%, "Nyvin=",MD.40E, 34, "Nxyvins" 

sMD.4DE“-Sh,"MNxb=",M0. 4DE, 3%, "Myb=", MOD. 4DE, 3%, "Mxyb=", MD 

TRS Goel gat ies ht, t wn
 

  

»4DE 
418 PRINT 
428 PRINT SPAC1@>, "These stresses at Poine yest te 

$36 PRINT SPAC2Z9,"8="sPoint¢1)9,"YS"5 Point (2), "22" SPoint¢3) 

449 PRINT LIN 29 
456 PRINT SPAC182,"The local axes are given by",LINCLs 

465 MAT PRINT Ro 
478 FOR: Lat 10 4 SER. 3 
486 Dmyci=Strnel, laeRot1, Lo #Rotl,1o+StrndLei, Lo#Roel,2s#Roe 

1,29+StrntL+2, 19#Ro ti, Lo#Rocl,23*2 
498 DmyC2.=Strn¢elL, LI #Rot2, 1 #Rot2, 19+StrncLt+1, L»#Rot2, 25 #Ro¢ 

Se 22 PSCrnil te, 11 tRO C2 eee Se) te



  

  

  

LISTING GF IEE s SmnusT Page 2 

5468 Dmy 3 2=Strnel, 12 eRoc3, 19#RoC3, LatStrntlL+1, Lo#Rac3, 234Ro¢ 

BS, 27+Strn6l+2, LaeRocd, loeRots, 23%2 

514 DmytdpsStrntl, li#Raci, 1) #Rot2,194+S5trn¢cL+1, [o#Rotl,23#Ra¢ 

2,2)4+S5trn(L+2, L#CRaci, L)#RoC2,2)+Rotl, 234002, 193 

524 Dmy¢S =StrnelL, l3#Rot3,124R063,1) +StrntL+1, Lo#Roc2, 29#R 

063,29 9 +5trntlL+2,19*¢Rot2, 1)#RoC3,29+Rol2, 2.4R003, 193 

538 Dmyceoesernch »12#ROC3, 1>#R061,19+Strn¢L+1, 154#Ro61,29*Ra¢ 

3, 2)+Strn(L+2,1)# CROCS, 1) #ROC1, 2)+ROC3 3, 2)#RaC1, 13 

S44 Dmy¢7 =Strst(L, 19#Roli,19#Rotl,19+StrstLt+1, lo#Rotl, 23*#Ro¢ 

1,2)+Strs(L+2,1)#Roc1,1)#Ro61,2) 
S38 Dmy tS eStrstlL, lo #Rot2,19*Rat]2,139+Strs¢Lt+1, ls#Rot2e, 294#Ro¢ 

2,22+Strs(lL+2 pe ees eye? 
568 Dmy 9 =Strs (lL, 12 #Rot3, 12 #R063, 19+Strs(L+1, Lo#Roacs, 234k 

3, 2)+Strs(L+2,1)#Ro(3,1)#Ro(3,2 ) 

57a Dmytia2=StrstL,lo*Roti, do#Rac2, Loe2+StrstlL+i, lo#Rotl, fa# 

Roc2, 2)#24+StrstLe2, 1#CRaC1, 1) #Ro2, 2)+RoC1, 2)#Ro62, 1)? 

538 Dnyvtiileastrsci, T3#Ro¢2,1>9#ROCS, 19*#2+S5trsce2, IT) ¥RoC2,23*Ro 

C3, 2942+5trst3, loe¢Roc2, LaeRo¢s, 29+Roc2, 29#Rac3, 133 

338 Dmycil2.=Strsctl, 1lreRot1, 1) #Rot3, Las2t+StrstlLr+i, 1)#Ro¢3,2)# 
Roci, 2242+Strs(L+2, 1lo#CRot3, LoeRoti, 29+Rots, 234Raci, loo 

648 IF L<>1 THEN GOTO 668 

616 ROR. Kl. 10) & 

628 StngmekK, lo=Dmy ck o 

638 StsgmCK, 19=Dmyck +69 

6448 NEAT K 

658 GOTO 768 

668 Buk k=l 10) 6 

676 StnrgbtkK, 19=Dmycko 

638 Stsgb¢K, lo=Dmytk+55 

698 NEXT K 

768 Hea E 

716 PRINT 
729 IF Prine<?1 THEN GOTO 388 

736 BOR Tp=1. 10.4 STER. 3 

740 IF Ip=1 THEN PRINT "Memb.Preopl. Tens. at Intg. Pt. "31 

758 IF Ip=4 THEN PRINT “Bend. Prepl. Mom. at Intg. Pt. "31 

76a Theta=.5*#ATN(2¢S5trs¢CIpt2,lircstrstIp, lo-Strsclp+i, Id+1e— 

-363) 
776 M2: IF Thetat<@ THEN Theta=Thetat3. 1415926536 

788 Sn=SINt Theta? 

796 Cn=COsStThet ad 

388 Princti2=Strs¢Ip, li¢Sne¢eeCneStrs tI pt2, 13+SnecStrstipti, 

To-Strs¢Ip,13)2 
8148 Prine(22=StrstCIp, 1o+StrstIipt+il, 19-Prine <1) 

826 IF ABSCPrinc (12332, 99999994RES (Prine ¢235 THEN GOTO 4 

336 Theta=Theta-1.578796327 

348 GOTO Nz 
856 N4: Degree=Thetat57. 295773951 

368 PRINT "First Pricipal stress="SPrincti>,LInels 

378 PRIHT "At an angle="sDegree; "Degree to OxX",LING 12 

830 PRINT “Second principal stress="SPrinct2) 

3948 NET Ip 

966 NEXT I 
918 IF Qort=8 THEN GOTO 1636 

926 FOR Ii=1 TO 6 

938 I=1 
946 FOR J=1 TO 4 
956 Gash=Gush=Gish=Gosh=8 

968 FOR I2=1 TO 4 
978 Gash=GashtACI, 122#S5tngm¢11,122 

938 Gush=GushtAcJI, l29*Stngb¢ll, T22 

998 Gish=Gisht+tACJ, 12.*Stsgme11, 122 

1966 Gosh=GoshtAtJ, l2.*#Stsgb¢1l1,129 

1918 WEXT I2 
1928 Ndstm¢HodecZ,19, 11 3=NdstmtNodec2,19,113+Gish 
1930 Ndstb¢NodetZ,12,113=NdstbtNodet2Z,19,114+Goash 

-409-



LISTING OF PIECE *S SNNDST Pag 3 fu
 

Di
} 

1448 NAdsnmm¢Nodet2,19, 11s=Hdsrnm¢dodet2,19,113+Gash 

1958 NdsnbéNodetZ,1),11).=Ndsnb¢Nodet2,19,119+Gush 

1966 tT[=I+1 
1976 NEXT J 

1986 NEKT Il 

1996 NEXT 2 

1196 ASSIGN #3 TO = 

11186 IF Qort=4 THEN GOTO 1758 

1126 FOR U=1 TO Nnode 
1136 IF Test<Uo<+1 THEN GOTO i26a 

1146 Cnt=8 

1156 FOR 2=1 TO Helemt 
1168 FOR Cntil=1 TO 6+2#Qort 
1178 IF NodetZ,Cntto<oU THEN GOTO Hexn 

1186 Cnt=Crt+1 

119@:°- GOTO i216 

1266 HWexn: NEXT Crt 

L216. NEAT 2 

1228 Por ese pO Ss 

1236 MNdstmCU, lis=NdstmcU, lla“Cnt 

1246 NdstbcUu, 1l19=Ndstbcu, lla“tnt 
1254 NdenmcU, 11s=Ndsrnmtl, lla¢tnt 

1266 NdsnbcUu, lls=Ndsnbeu, lisartnt 

1276 HES Ll 
1288 NEXT U 

1296 FOR U=1 TO Nnode 
1386 IF Test¢Ud=1 THEN GOTO Nex 

1316 FOR Z=1 TO Nelemt 

1326 FOR IT=4+Qort TO 6+2#Qort 
1338 IF U<>Modec2,1> THEN GOTO Hextl 

1346 BOR t=) 1c. 6 
1356 IF I1436+24#Qort THEN NdstmeU, ll2=¢Ndstm¢Nodet2, 1-¢3+iort 

99, 1134+Ndstm(Nodec2,1-C2+Qortdo,Llio2 

1366 IF I¢36+2#Qort THEN Ndstbeu, lis=thdstbtWodet2, I-¢3+ort 

Y>, 112 +NdstbtNodet2Z,1-C2tQortd,Tls32 

1376 IF Il=6+2#Qort THEN NdstmeU, 1i9=¢NdstmeNodec2,19,113+Nds 

tmeNodec2,3+Qort 3, T1332 
1388 IF. l=6+2#Qort THEN Ndstbel, lis=(NdstbtHodec2, 13, T19+Nds 

tb<Nodet2, 3+Qort 3,11 942 
1398 IF I¢36+2#Qort THEN Ndsmmtl, li 2=¢NdsrmtNodec 2, I-¢3+aort 

d9, 11 +Ndsnm¢Hodet2,1-C2tQort yo, TL 32 

1466 IF I¢36+2#Qort THEN Hdsnbcl, lia =¢NdsnbtNodet 2, I-¢3+Qort 

939,11 3+HdsnbtNodet2Z,1-C2+Qort i>, 11392 

i4ig IF [=6+2#Qort THEN HdenmtU, 119=¢(Ndsnmthodet 2,19, 119+Nds 

nm¢NodetZ,3+Hort 2,11. 2 
1426 IF [=6+2#Qort THEN Ndsnbcu,1i=tNdsnbtNodet2,13, 119+Hds 

nb¢NodetZ,3+Qorto, T1332 

1439 NES? T1 

1446 GOTO Nex 

To56 Nex Mev: ol 

1466 WERT 2 

1470 Nex: NEXT U 

1486 PRINT 
149G@ PRINT SPAC20),"Smoothed Strains & Stresses ",LINCS) 

1566 PRINT LIN¢4) 
1516 PRINT SPAC12Z9; "Nodal Strains"; SPAC389,"Stresses";LIN¢1> 

1526 PRINT SPAC1G23 "#*##ee4 HFS EHH ESEE"S SPACSO), “SFE eSSeSE" SLING TO 

1536 PRINT "Node"; SPACS2;"Exmg";SPACT25 "Eymg";SPACT3; "Ezmg"3 5 

PAC1695 "Exymg Exzmg Eyzmg" 
1546: PRINT Vo-—— "SPARC SO) Sa SPARC ty eae SPAN (Dees so 

ACL: -———— Sa oe 

1556 FOR I=1 TO Nnode 
1566 PRINT USING "3D,2K,3¢MD.40DE, 89,48, 3¢MD.40E, ce 

"ST ,Ndsnm¢1,19,Hdsnm¢1,29,Ndsmnm¢l,39,Ndsnm¢l,49,Ndsn 

mCIl,59,Ndsnmcl, 62 

{S78 NEXT I 
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PRINT "Node"$SPACG23"Nxg"$SPAC?23 "Nyg"3}SPAC1G23;"Nzg"3 SPA 
C145 "Nxyg Nxzg Nyzg" 
RN pe emer a meme OG pete wore SG eae a otahy 

Oe ee = ae 

FOR I=1 TO Nnode 
PRINT USING "3D,2%,3¢MD.4DE,4%), 48, 3¢MD.4DE, Ho 

"ST, NdstmeCI,1>,Ndstmel, 23, Ndstmel, 39,Ndstmel,49,Ndst 

mOI,S9,Ndstmcl, 63 

NEXT I 
PRINT SPAC12);"Nodal Strains"}SPAC30),"Stresses";LING1) 
PRINT SPAC12); "##eeeeeeeeeee" | SPACHO), "eeeeeeee GLINCL) 
PRINT "Node" ;SPACT23 "Exbg"3SPAC7)3 "Eybg"3SPAC?25 "Ezbg"35 
PAC12);"Exybg Exzbg Eyzbg",LIN¢1) 
PRINT "----"3SPAC79j"----"s SPAC72 3 "----" 5 SPACP D5 N----- ws 
SPACLZIp"----- eee wee "LING1) 
FOR I=1 TO Nnode 
PRINT USING "SD,2h,3¢MD.40E, 49,44, S°MD.40E, ho 

"eT, Ndsnbtl,1>,Ndsnbel,22,Ndsnbt1,39,Ndsnb¢1l,49,Ndsn 

bet, 5) Ndsnb(T, 6) 

NEXT I 
PRINT ee EE ed eee tone gi sseac 

1295 "Mxyg Mxzg Mvzg SNC LD 
FRIWT PSP Joel Aa a eer Murs suerte ORG Nie ew et 

122s = mermemecr ra Le LMG 

FOR I=1 TO Nnode 
PRIHT USING "3D,2%,3¢MD.40E,42,4%, 3¢MD.40E, mo 

"ST, Ndstb¢I,12,Ndstb¢1l,23,Ndstb¢l,32,Ndstb¢1l,4),Ndst 

bB¢1I,59, Ndstbcl, 62 

HEAT I 
SUBEND !End.of Nodstr 
SUB ee ae Nodec*#o,Test<*),2, acr 

t,Nelemt > 

Mod¢ii= 1 

Mod¢29=4+Qort 

Mod¢35=2 

Mod¢4)=5+ort 
ModtS9=3 

Mod¢69=6+Qort 

Modt 7 =4 

Mod<89=8 

J=1 
FOR I=1 TO 6+2#@ort 

J2=0 
Tl=Mod¢1> 
A=Test ¢NodetZ,1139 

FOR Ji=1 TO NodetZ,11> 

J2=J2+5-24%Test¢Jio> 

HEXT J1 
Eldsplc¢J,19=Q@¢J2-4+24A, 135 

Eldspl¢J4+1,1:=Q¢J2-3+2#A, 12 

Eldspl¢J+2, 1:=Q¢J2-2+24A, 12 

IF A<>8 THEN GOTO Nex 

Eldspl¢J+3,13=Q¢J2-1,15 

Eldspl¢J+4,13=Q¢J2, 13 

Nex: J=J+5-2#A 

NEXT I 
SUBEND !End of Eldispl 
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1148 
128 

136 
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514 

529 

338 

  

Pls eb OM: 

RE-STURE. DNPSMPs 

ORVION BASE 1 

DIM Kessaas 

DIM Hitat2o, edge aE yt A ad 

Wel. BOSS. PECL eed eek 
DIM Thikrne i ,ThC18>,Angsk 
DIM Add¢@ Ao, Liméari53 

DIM. AS¢ie> <8) 

INTEGER Node cea, 10) sort Rodetl4or7,13,Kodeltidr,19,H,Matn 

o,Hspec, icetfs Wor. a) Nnode, Count, Princ, Hskewd, Hskewe 

INTEGER Testcti4¢r),Nosk(33>,Nk,StC16,29,RowtG:15),6o1 Cos. 1 

327, ce9,CK 

CoM Ckl, Cke,Ck3,Ck4, Chta, Chtp,. Size 

COM Alp,Prnt,Nfree, Hsku,Nelemt, Chi, Ch2, Omg 
OVERLAP 

BRIMTERe TS 16 

PRUND S| PHGE, SPHC25 0 'ss*22CRD OF FAN IMPELLERS*+*+*#"  LINK1> 

PRIWT SPACSS9, "Exploiting of Sectorial symmetry are Impe 

Imented'; 
Peli hress  ClEBAR. then. COM] ts 

si? ¥Iiveld?, io, Wl2ci4 

2, lhetxecld¢, 1 

  

     

    

PAUSE 

DISP "Choose the printing devive @ for paper 16 for 
screen"; 

Pe a 

RRinNDeR. bo 1, 

DISF. “input the of-nodes: oh the disc side & aon the cone 

side Nskeud,Nskewe "3 

INPUT Hskewd,Nskewe 

PRIHT "Hskeuwd="SHskeud, SPACLB9, "Nskeuwc=",Hskeuwc 

DISF “What is the Name of Your input data file"; 

ITHPUT H Sie $ 

ASSIGN #2 TO HameF,C 

IF HOT € THEW GOTO s2e 

BEEF 

DISP “Rite not found! Try again’; 

WAIT 28668 

GOTO 136 

READ #2; Gort,Njob 

FOR Count=1 TO Njob 

ELAR Vibe wn Hane of the job...... ..net more than 28 

charecters" , AF 

BAUR alae: tetas eis Aa ae hy Hee eid 
READ #2; Helemt, Hnade 

READ #2;Heetfs, Princ, Hskw,Nmat,Prnt 

PRINT "No of elements....c.0. oe" SHe lent 

PRINT 

PRGHT Ho, Of HOON SS ce cece ap ke cre toc NOUS 

PRINT 

Te Pant < ot ANC Pent < 730 THEN GUTO 478 

DISP “Input the name of the file EF to be 

BEed- to find Ned. Strs 0. 

a cy
 

mm
 

i st
 

iT
 

oO
 

ce
 

co
 

iT
) + c 5 om 

INPUT EF 

Dist. “CReEHibe ES  LHEN ress COUNTY 

PAUSE 

TF cPents fear AMD CPeAt <7 oo THEM GoTo See 

DIsr “Input the name at the tile Nt ta be 

BES) to find Ele. Strs.- 5 

IMPUT He 
DISP "CREATE N$ THEN Press CONT" 5 

PAUSE 

PRINT LIN 25 

REDIMN kxctNmoded, ty CNnode), 22¢Nnoade2, KodetHmoade, Nsetfsd,k 
odeltHnode,Hsetfs3,HodetHelemt, ote Oath? sUle¢Nnode,Nsetf 

Sso,“lucHnoade,Hsetfso,Hlzthnode, Nsetfs: 

REDIN ThetsxztHnode,Nsetfss, Co Hmat, 219, Test ¢Nrnoded 

a]
 

% mw cv
 

mm
 

o
 

+ Oo in
 

+
 

a
 a ib
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an
 

an
 

a]
 

m
i
 

cn
 

m
 

an
 

an
 

o
 

Soe 

598 

6868 

i
h
 _
 

Lo
) 

628 = D 

A
a
n
a
n
 

21
m 

oh
 

&
 

to
 

m
 

o
o
 

©
 

928 
936 

348 
958 

968 

978 

336 
396 
14068 
118 
1928 

1638 

1846 
1858 

1866 
14768 

18388 
19368 

REDIMN Bee, 24+840ort>, Thiknthelemto, TatNmat?,Angsk (Hskwtl 

Y, HoskCHskw+lo 

IF Gort=8 THEM PRINT SPACL2Z2, "Element selected is a tria 

ngular types 

ait Gort=t THEH FRINT SPACL29, "Element selected is 4 quad 

rilateral type"; 

READ #2;Hk,Chl,Ch2,0mg,Alp 

IF Hk=8 THEN GOTO 658 

REDIM St (Hk, 2) 
MAT READ #2; 5+ 

DISP “input No of modes on the disc side & on the cone 

side Hskewd,Nskewoon Ca-as Boundary" | 

THFUT Hekewd, Hskeue 
PRIHT “Hsk ae ;Hekeud, SPACLTA3, "Hskewco=", Hskewe 

Ong=Omg#e*ri- 

LIME pel ae 
CALL Finpe xx (#9, Yyc#s, 22047 ULC eI Vl yc to WI zC#), Thetxze 

»sThiknt es, Hfree,Nelemt, #2, Hnode,Kodet#s,Kodel¢#),Nodec 

yp Test (#3,Gort, Hk, St¢# 93 

L=8 
PO Re Taal. Oi -Mk 

L=L+5-2¥Test¢Stcl,23> 

[pull Barada 
HfresG=HPfreeteh 
REDIMN GtHfreea,Hset fs, Add¢ainfre 

CALL MaddarraytAdd¢#3, ceerean Mfrs 

Pest Cx, Hnode,Nodec#), Gort, 3eg,Ck, 

LIWK "CONSIM", 1618 
FOR Matno=1 TO Nmat 
CALL Constrel¢(C¢#)9,ThC#), #2, Natnod 

HEXT Matra 

FOR I=1 TO Seg 
DISP "What is the name of the file number"jI 

IMPUT AFT 
DISF "CREATE This file in the suitable sizeTHEH Press CONT"; 
FAUSE 

Hewes t 
IF Hskw=8 THEM GOTO 836 

FOR I=1 TO Hskw 

READ #2; Mosk¢I3,Angsk¢I> 

HEART E 

REDIM KCO: Size? 

EINK RSet 5.6 

er
 

    

2), @b¢L) 
zy Helemt, Rowteto, Go Crs 

Nk, St ¢#9) 

CALL MassemblyCH$, ES, ASC So, Ceo, Kec eo, Yyced, 2zce3, Cs, The 

Py, PRHVKHS <2, Angs ee, Qe¢x>,KCs7,R Addc#), Lim¢€#9,Nodec#3,Te 

st (#),Nosk (#), Sort, Nk,St(#), Seg? 

ETH “CORBIN ,.t618 

E=8 
FOR T=1 TO Hnode-Hk 

J=4-SeTest cls 

KSk+5-2#Testcla 
CALL LaoadappcUlxcI, 19, ¥lycl, 19, W1 261,15, 0¢#5,KodecI,15,k 

3l,J> 

HEAT I 
IF Nskw=4 THEN GOTO 1868 
IF Hk=8 THEH GOTO 1869 

CINK “SKWINT". 1e6te 
CALL imiCGC ss, Angsk (#9, Gb¢#>,Alp,Hskw, Test (#2, Nsetfs 
sHosk #2, 5tC#9 Hk, Nskeud, Hskewe o 

Pope tS) pee 
Mel, La=Qc1,19+b¢T) 

NEXT I 
LINK "“GEOMIMN", lé6ie 
REM ---IHTROUDUCTION TO KINEMATIC CONSTRAINTS 

K=8 
FOR IT=1 TO Nnode-Nk 
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1156 

1168 
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1214 
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1248 

1258 

1268 

1275 

1258 

<<;
 

a
 

0
 

0
 

Os
 

oo
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1368 

1378 

13368 

1356 

1465 

i418 

i42u 
1436 

1446 

1458 

1468 

1475 

1456 

i496 

1566 
1518 

1528 

135368 

1546 

1558 

1556 
1576 

1536 
1596 

1668 
1618 

1628 

a 4-24Test (1) 
sites eee 

ee KodecI,15=6 THEN GOTO Test 

Tie éKodecl, 13=2) OR <Kodecl,15=63 THEN GOTO Kee 

IP Radectl., Los? er GOTO Kes 

Crib Geombe Ate of Gull ie Tet ce Ce AicciC eo Nace es Lites 

sK-J,1,5eq9 
IF KodeCi,lo=3 THEN GOTO Kes 

IF Kodeti,ls=3 THEN GOTG: Test 
Keo: CREE GeonboCHs ts) vlUC ls lo, Oce Kos Addts >) Nitec, bi 

Mie) orc ls oe) 

IF ¢KodecI,13=4) OR (KodeCI,19=6) THEN GOTO Test 
Kes: CALL GeombcCAS¢#>, Wlzcl, 15,0¢#>,KC#),Add¢*#),Nfree,Li 

Woe, hole oe 
est: IF «J<>49 OR (Kodel<l, 1>=@) THEN GOTO Next 

CALL Geombc(AS¢*), Thetxz¢1, 13,0643, KC43,Add¢*+),Nfree, Lim 
Cx hots. be 

GALL Geaombc (ASC 4), Thetx2(1, 13,004), K¢4), Addt+>,Nfree, Lim 

Co ee ey? 

Hest. NE 

PRINT CINCS? 

LINK SMSTVING  leig 
Puree Sey Dt ai a ee Symvosol begins------ : 

CALL SegsoltAFc# 9, KC#9, O04), Add¢t# >, Nfres,Limt*), Nsetfs,5 

Sg, colcr), mowox s 

IF Hskw=8 THEM GOTO 1366 

IF Hk=8 THEH GOTO 1368 

Bie ae ieee 
ObCIy=HCT, 1> 

HET I 

Ke Swe s orl 
CALL Skewim2cac#o,Angsk¢#2,GbC#o Alp, Hsku, Test t#o,Nseth: 

sHosk(#),S5tC#), Hk Nskewd, Hskewe 

PRINT ,SPAC4); "Nodal displacements" 

ene RD ee assy Fee bel ccs gr ee _ 

PRINT EIN G23 : 

PRINT UNodels Disp It w-dltre, orHvo, Disp in fodih Sees 

5), °Disp- in. Z-din" si 
k= 

FOR I=1 TO Hnode 
J=4-SeTestcr3 

KSK+5-2%Test cls 
PRINT USING "“SD,3X%, SMD. SDE, Sko"51,QcK-J,129,Q¢CK-Jt1, 19,0 

Ces to 

PRINT 

NEAT I 

PRINT 
PRIWHT SPAC43 3 "Rotations at loof nodes" 
BS Si ee ne or - 

E=8 
Re oH 

FOR T=1 TO WHrode 
Kek+5-2#Test 1d 

J=4-2#Testcl3 

TF test<lo< +b TREN. GOTO. 
PRINT USING “3D, 3%, 2¢MD.8DE, 3432"51,Q¢K-J+3,19,Q¢K-J+4, 135 

PRINT 

Ne WEA 1 

PRINT : 
TF <Prentv< slo AND CPrnt<+3>2 THEN GOTO 1é6sa- 

EINK “Sees i. , to18 
CALL ElstrstE$,@¢45,B¢#9,0¢42,Nodec#), Test ¢#3,Nelemt,Nno 

de, Gort, Princ? 
IF ¢(Prnt<>2> AND ¢Prnt<235 THEN GOTO 1668 

EINK: “SNMHUSE tole 
CALL Nodstr<Ns,Q(#), BC#), CC #),Nodet#), Test (#),Nelemt,Nno 

de, GWort,Princ3) 

  

ii
t 
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Piste ON BP “SS 

236 SUE MaddarraytAdd¢*#),Lime#s, INTEGER Rowe#s,Col¢#3,Test¢#3 

sHelemt,Hnode,Nodet#), Gort ,Nfrece, Seg, Ck Hk, Stc#os 
OR BOW Bin Sees. 

COM: Cki, Ck2,Ck3, Ck4 is an ta, Chtp, Size 
THTEGER Ttemp,ty i, sAC214 
Addeiloa=] 

Pu bee (Oat 
Add¢{ Tl a=Add¢I-1i+] 
BEAT 

Addtemp=Add¢i15 

Itemp=le 

FOR T=4 TO Hrnode-Nk 

k= 1 

Pi 
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m
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V5] 2=6 

Pale 
Piel 

1 TO Nelemt 

i Pobre Gort 

Be Vey lust ne GOTO Ll 
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TS
 

n
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o
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Ea Hes Tb 

NEA 

I3=1 

[rk--Tl2=1 THEN GOTO lies 

FOR -TS=1 10 -T2 

POR fi=10 TO Nk 

FOR L=1 TO 6+2#Gort 

Le eNodecHt ler box ot Cll. 20 PHeM. Got bo 
Leoheot olla loo THEM Kast Cl1,.1> 
GOL: 3 

Leta h Belo 

feeb bo. Neel hl 

23 TFs l2=1 THEN GOTO le41 
1246. HERT 12 

T24l- FOR) 4€=1° 70 12 

M=AC Zo 

BUR Lal 70 ete stort 

IF HodechM,Loek THEM Kk=Nodeth,lo 
NEw 

Bevel 2 
Ne 
The hel VHen GOTe 126 

Bee a ee 

MEM+5-e2eTest oly 

Men 

Addtltenpo=Addtenp+Itemp-l 

Add¢ltemptlo=Add¢ItempatcItemptla-m 

Add¢ltempt2rsAdd¢ltemptioet+eltemprea-t 

Te lest (lox 31 THEN GOLG. Aud 

Addtemp=Add' ltemptes \ 
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=
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S88 Itenpeltemp+s 

4 
Oo 

o
o
 

ed
 

Pm
 at
 

GOTO Hest 

Aud: Add¢ltempts =Addt Itempteattltemp+3a-h 

Addi iltenptds=Addi ltempt sate ltemp+da-h 

L428 AddtemprAdd’ lteemp+ds 

1438 Ttempeltempr+s 

1446 Hexti HEAT I 
1458 Limt@s=6 

1460 Rowlhose 

SeqgeIHTCAdd¢Hfreede 

WeINTCAdd<Nfree)-Seg) 
FOR T=1 TO Seg 

TF l=Seg THEN GOTO A 
Littl e=Wtlime tsi? 

FOR J=8 TO Hfree 
IF Lim ld 3=Add( IHTtWfree“SeqgyeI+J> THEN GOTO Next j 
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CESTING Sheree rae Nee it Page 

he
 

Do
 

Lime ls=Add¢ INT¢Hfre 

Rowe ToSTHTihfreeeS 

GOT Adz2 

HH ee HEA ol 

Ades HEAT. 

Ai Limt Il s=AddtHfresd 

Rowe Seqgsshfree 

SizZe=Limc1s 

FOR T=2 70S 

Leas nt 

rae 2 

+ "I
 

oS
 

m
o
 

  

a m
 

  

G
m
 

&
 

Re
 

bee
 

i 
ty
 

sLim¢I-13. THEN SizesLim¢1l>-Lim¢I-13 

a
 

me
 

—
 

oA
 

m
 

ne
 

4
 

FOR IT=1 TO Ser 
nite, aN bs 

BOR. J=Rowtl-1lo+1 TO: Row¢l > 

Ore uy ean Perea 
IF Cole atChange THEH Change=Colels 

PENS 

EGR J=1.-70..5 

IF Change?Ro 

Calelasy 
GOTO Ads 

Njj: NEAT J 

Has NERT J 

CkKLECk S=Limt es 

Cke=Ck4=Lime 1 
Cht a=Cht pst 

hh = 1 

DISP "Heateithe one dimensional stiffness matrix 
d¢Hfresoy "elements" 

SUBEHD 'EHD OF Maddarray 
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Sel minis SOS) wel Peas ASEM 
Sloe Usb 677 

     

    

ia Poke VE ORSE NIM! 
26 SUB Ma 1s FS, ES, ASC HI, Wed Re CHD, Ty Ceo, 22049, 0089, THe? 

  

, CP, ASCH? 43, R04) ,Addt #2, bim< #2 

ties, Hosk( #9, Hort, Hk, St0#3,5eqg2 
38 OPTION BASE 2 

448 DIM Elxyzet<3,4>,Wshel¢ls, 457, 41tate>, Rk 

#Glorto, Shearctli, 4350, ayvzprecs, 439, Vlao0fes, 

»Bod¢39,5¢6 6, 244+3*90rt) 
DIN 24+8HGort ,2448#G0rt) 
INTEGER J,M,2,luabz,Nozpre, Swopte?,bLnodz, Itest,Icounl, 1c 

Se ee eee a sSUBS, SUBE, ANC e+ S4Gort 3 

Ca Cel Ge. Che, Cha. Ghta, ent pi, o12e 

CEM Alp, PryHfree, Nek, Helemt,Chl,Ch2, Omg 

Lrigdz=6+eeiiort 

Lyuabz=delLnadz 

Bok a ho seg 

ASSIGH #1 TO AF¢Tsa 

MAT PRINT #I15K 

148 Herne. 
158 IF ¢Pr=1> OR (Pr=3> THEN ASSIGN #9 TO N$ 

1648 IF (Pr=20 OR CPr=3) THEN ASSIGN #16 TO ES 

178 IF @ort=8 THEH GOTO 238 

138 AC Le=ACSISAC SSAC 42 =. 95 

198 ACS3S.8 

  

IHTEGER Nodec#3,Tes 

We C2443 

smote        : 

  

m
 

uf
 

a
o
e
 

    

Sy
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oo

 

G2
 
h
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c
 

    
288 Wet, lesWcl, 2o=WNe2, 2o=WC4, lo=-. 59 

2148 We, L2sWed, 29505, 12 SH03, 295, 

228 GOTO 278 

238 ACLesACSssAc as asAc4doal 

246 Wel, Lo=hWee,25=68 

266 Wed, LaahWed, 23 

276 MAT K=ZER 

236 MAT G=2ER 

298 Mod lost 

368 Modi 2os4+hort 

3148 Modt sass 

  

326 Mod 43sS4+ort 

3368 ModtSo9=3 

346 Modt63=6+00rt 

358 Modt P?ix=4 

3668 Modt Ss 9=8 

378 FOR Z2=1 TO Helemt 

338 FOR IT=1 TO 6+2#Qort 

398 Aicls=Nodet2,19 

408 HEXT I 

418 FOR IT=1 TO 6+240ort 

425 Hodet2,T3=ALoModt 1o5 

4238 HEXT I 
$44 MAT Ke=ZER 

456 MAT 

  

pos
h 

en
] 

  

at
 

=
 

FOR M=1 TO 44+Qort 

IF M<>S5 THEN GOTO 616 

Sitatly=NHitat]e2s=o 

GOTO 638 n
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 wo 

398 

388 

3168 

926 

338 

946 

958 

368 

976 

9368 

996 

1868 

1814 

19248 

1838 

18448 

1858 

1868 

1878 

16368 

1896 

1168 

11198 

1126 

11348 

11448 

LiSo8 

1168 

11768 

a wo
 % fh 

Aitaclosehit, la 

HitatZenenm, ao 
CALL Haloof(Xitat*#>,Area, Thik, Rot#>,Point#>,Elxyztc#),Ws 

hel #3, Thick, Shearc#),¥yzprec#),¥loofc#),Nelemt, Suope#), 

Hodec#), Lnodz,Nozpre,2, forts 
In=sHodecZ, 7+2 ioe t 3 

FOR IT=1 TO 4#bLrnodz 

Bet, ls=Wsheltd, 13 

Bez, lssWsheler?, 2 

BES, ls=Wshel (5, lothshel t6,13 

Bed, ls=Wshel tig, .> 

BCS, lo=Wshel¢12,1> 

BCG, 1ys2ehs heloit, To 

Heat. 1 

  

    

  

AMD ¢Gort=82 THEN GOTO 12368 

FOR K=1 TO 4 

FOR I=K TO 21+3*Gort+¢Kk-13 STEP 4 

FOR J=.I TO 21+8*Qo0rt+tK-12 STEP 4 

ASCO In, LI#BC1, L340 C In, 294BC2, 19406 In, S5eBe: 
B=CC Jn, 24BC1, L9+0t In, 7 *BC Ss, Tot c In, B28. 

G=CCIn, S2*#B61, 13+CC In, SdeBC2, 19t+C¢ In, 123948 ¢ 
D=cGCln glossed, LatC Cin, froebeso, late t In. isos 

#Thik 

E=(CCIn, 179#*BC4, 19406 In, 1994BC5, 19+CC In, 2632866, 1394 Thik 

¥#Thik 

P=COt In, 193*8¢4, 1346 In, 2674805, 13 +0C In, 21986, la seThik 

#Thik 
KetJ, lo=Ketl, Jo=Ket J, LItACM eC BC1, JO#AFBC2, JI*¥B+BCS, J9*C 
+BC4, JU4D+ECS, JO*¥E+BC6, J0*#F os eDet j#Thik 

IF J=24+8: rt THEN GOTO L6 
KetI,J+1> CJti, TisketJ+1, 1L3+ACMOeC Bel, J+13#A+BC 2, Jel 

BBe(3, Jt13¥C+BC4, J+1 2 4D+BCS, JtL #Et+ BCG, J+1oeP eDet j*Thik 

IF J=23+S#Gort THEN GOTO L6 
Kecl, J+2.=KetJ+2, lo=KeCI+2, Lo+AC Mo eC Bel, J+224A+Be 2, Jtaa% 

B+B(3, J+2.4C+BC4, J+2)4D+BC5, J+2Z2732E+BC6, 54298) Det j*Thik 

IF J=22+5#Gort THEN GOTO L6 
Kel, J+39=KectI+3, lo=KecCJI+3, LItAC MI eC BCL, Jt3S#At+BC2, Je Si% 

B+Be3, J+S24C+BC4, J¢S4U+BCS, tS 4Et+ BCS, J+ Ss4F oeDet j*Thik 

   

    

   

      

       
Eos = HEAT J 

NEXT I 
HET K 

IF ¢Chil=8> AHD ¢Che2=8> THEW GOTO 1188 

IF Chi=8 THEH GOTO Press 

Weight =AreatCh1leAcMs 

FOR Kk=1 TO Lwabz 
Gash=FelvectkKo 

FOR? T=1 Ta 3 

Gash=Gashthei ght #Rocd, la#hshel el, ks 

HE «TT T 

  

H GOTO 1876 

SH 

Press: FOR K=1 TO Lyvabz 

Press=Che 

Gash=FelvectkKs 
FelvectK2=GashtPress#AreatAt ho eWshel ts, ka 

NEXT K 
IF Omg=8 THEN GOTO 1256 

Ro=Ththodet2, f+2eQort d9 

EUR to) Tas 
Bod¢ ls=RotOmg#0mge#Point la#Thik#AreatAe mo 

Bodt3>=8 
HEAT I 
FOR K=1 TO Lyabz 
Gash=FelvectkKa 

41S
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1778 
1736 

1798 

IF ¢M=4+Qort?. OR ¢Pr 

  

FOR I a 

= + ek Tot+Bodt2o#Rat2, li+Bod(3)#Ro0¢3,193 Gash=Gas 

#Wsheletl, 

HET I 

FelvectKi=Gash 

HEXT K 

IF Pr=8 THEN GOTO 13464 
2s?) 

; 

] 

1 

a Is 

THEN GOTO 1298 

MAT eRe eos 6 

PRINT #9; Thik 

MAT PRIWT #35 Ro 

MAy PRONT #SsPotn 

IF ¢M<e4+Qort? OR ¢Pr=1> THEH GOTO 1346 

MAT PRINT #148;8 

PRINT #18; Thik 

MAT PRINT #10;Ro0 

MAT PRINT #1483; Poin 

HEXT MM 

IF Hskw=8 THEN GOTO 1378 

CALL MskeuwdcontAst#3,KeC#),Alp,Nsku,Nosk(#9,Nodec#3,Te 
Cr. Such t J 

Tceounl=1 

Tcoung2=8 

Itest=1 

IF HWk=8 THEM GOTO 1438 

FOR T=1 TO 6+2#Q8ort 

Ant ls=WHodec2, 13 

FOR J=1 TO Wk 

tbe Modeca, licest cs, 22 THEN GOTG Next 4 

Node Gz. ly —ot cd, 12 

GOTO Nexti 

OU Tee le 

6h dee Ne rele L 

FOR I=1 TO 6+2*Gort 

H=8 

BOR: K=1 70 Nodecz, 13 

H=N+S5-24%Testck> 

NEAT ok 

FOR J=1 TO 6+2#Qort 

Jf1=6 

L=6 

PUR K=l 10 NodeczZ, 53 

L=L+S5-24Testck> 

NEXT. K 

PORh= 1 Tu J 

JPLHITPL+S-seTest (Hodec2, ko) 

NEST K 

FOR M=4-2#Testt(Nodet2,J>) TO @ STEP -1 

SubL=H-4+24¢Test CNodet2, 1935 

Subs=H-3+S*Test (Hodec2, 193 

Sub3S=L-f 

SuUbS=SN-2+seTest (Hodet2, 153 

IF Test ¢Nodet2, 139438 THEN GOTO 1716 

SubS=H-1 

Sube=H 

Te Subl< Subs: THEN GOTO. Lab 

AnZ=Add¢ Sublo-Subl+Sub3 

CALL TeettCki,Ck2, Chta, Chtp,Ck3, Ck4,Ck1,Ck2,KC*9,KC*#>,ANn 

Z2,Lime#3, #1, #2, 43,44, #5, #5, #7, #3, #9, #15,1, Seq) 

Ans=An2-Ckl 

Anl=INT¢Ans3 

KC AnLISK CAML ot+Ket Itest, JF1-M3 

m
 

ie
 

+ 

Labi: IF Sub2<Sub3 THEN GOTO Lab2 
An2=Addt Sub2)-Sub2f+Sub3 

CALE Test ¢Ck1,Ck2,Chta,Chtp,Ck3, Ck4,Ck1,Ck2,K¢#9,KC#2,An 
2,Lime#>, #1, 42,43, #4, #5,#46,47, 43, ,#9,410,1, Seq) 
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1 
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1336 

1346 

13956 

1966 

1976 

1388 

1990 
2000 

fo
 

Po
 

bo
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o
a
 

mo An3=An2- 

Anl=IH’ 

ECAR. 3 Anl¢+Ketltest +l, If 1-3 

babes Le 77 THEH GOTO Labs 

An2Z=Add¢ Sub4s-Sub4+Sub3 

CALL TesttCki,Ck2,€hta, Chtp,Ck3,Ck4, Cki, Ck2,K¢#),KC#2, An 

2, Limes, #1, #2, #3, #4, 45, #5, #7, #3, 49,415,1, 5292 

An3=An2-Ck 1 

Anil=INTCAnS3 

ROAM LOSKCAnLot+KkeCItest+2, Jf 1-M> 

Lab: IF TesttWModet2,199<¢>8 THEN GOTO Lab 

IF SubS<Subs THEN GOTO Labd 

An2=Addt SubS3-SubS+Sub3 

Eniitest Chet  ebe Che aschtp. bkic , 

Sime el, #2, #3, #4, #35,4#6,4#7, #5, 

An3=An2-Ckit 

Ani=INTCAnS 3 

KCAMIOSKoAnLot+KecItest+3,JP1-M> 

Lab4: IF Subé<Sub3 THEM GOTO Lab 

An2Z=Add¢ Subeé>-Subé+Sub3 

CALE Fest cCki,cCke, Chta, Chtp, ks, 6k4,0k1,ek2, 

2,Lime#), #1, #2, #3, #4, #5, #6, 47,489, #9, #16,1,5e 

Ang=An2- Gilet 

Anl=INTCAn S23 

KOCAnLoSkcAniotke cI test+4d, Tf 1-M2 

Lab: NEXT 

NEST J 

IF Tcoune?Ieaunl THEN GOTO 2839 

Icounl=Icouni-1t 

Teoun2=Icounetl 

Itest=Itest+3 

GOTO Nexti 

Tcountl=Icount+i 

TeounZ=Icoune-1 

Itestsltest+5 

Nesta NEA. I 

IF ¢(Ohl=62 AND CChe=8> AWD ¢Omg=8s THEM GOTO 27ae 

J=1 

FOR IT=1 TO 6+2#0ort STEP 2 

M=H=LisLe=lIcount=lIcoune=8 

IF Hk=8 THEN GOTO 2326 

FOR L=1 TO Wk 

IF Anclo<>St¢L,2> THEN GOTO Next! 

Et=E Per 

IF L=1 THEW GoTo Hil 

FUR SUGL=1 Tike? 

  

   

  

7
 

=
 

on
 

    

  

   
k4,Ck1,Ck2,KC#3,K¢C#3,An 
#9,#18,1, 5292 

  

Tequni=lcauntt+o-2+fest¢stvSubl, 229 

HEAT Subd 

GOTO Hl 
Hextl: NEXT L 

GOTO 23268 

Hl: @3¢Teounlt+1Loa=ost ITcounmt+toa+Felvect Io 

Q3cIeounl+srest leaunl+2s+Felvect I+ 13 

Q3S¢ITcoounl+S:sehseIeoountl+so+FelvectI+23 

GOTO 2376 

IF Hodet2,I3=1 THEN GOTO 2376 

FOR: K=l. 70 WNadecZ, I o—1 

M=M+5-24Test cK 
NEXT K 
IF Hk=G@ THEN GOTO Azi 
FOR L=1 TO Nk 
LE Anci+{(o<>St ck 27: THEN GOTO Ne 

L2=Le+l 
SOR Subl=1. 10 bot 

Tcoun2=Icoune+S-2¢Test cSt ¢Subl,20) 
HET Sub 
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ELST iiG OF Fc ASE Page 

GOTO 2468 

Hee Meas be 

GOTG. Bat 

QSClecoune+?: SC Icoun2+13+Feluect I+33 

CTeounetaia+Feluvect J+4> 
   
    

    

  

    
r
o
a
 

a
 

Ge 
=
 

eA
 Reguine fe. 

Peoune+s (Temune+S35+Fe)uectl 

Icounee+d STemune+434¢Feluect I+63 

MSC LeoounstiassnseIeoounet+S3+Feluect J+? 3 

GOTO 2568 

Cicer Kaw Us Nodete, fl 1 

H=H+5-24TestckK> 

25460 NEAT FE 
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2556 IF Nk=8 THEN GOTO 2578 

eoo0 40h Else4 WEN GOTO. 2619 

eoro QeM+l, 1o=GCN+l, lo +Felvect( I> 

2338 WHMtS, LeSHe Mts, Lot+Pelvect I+135 

ooo OCs loons. lathelivects+2> 

2668 IF Hk=8 THEN GOTO 2626 

e610, [TF Lon >o THEN GOTO 2574 

2626 GWtN+1, LISQCH+1, 19+Felvect I+33 

2638 GQCN+2, LISQCN+2, 19+FelvectI+4) 
2649 GQCN+3, LISQCN+3, 1)+FelvectJ+5) 
2650 OCH+4, 1LI=00N44, 1)4+FelvectI+6) 
2660 QCN+5, LISQCN4S, 1)+Felvec(I+7) 
2670 J=J+s 
2688 HET I 

2690 MAT Felvec=ZER 

2706 FUR T=1 10 sr2tGort 

2010. Hode C2, 1 =A 1G 3 

2726 NEXT I 

2730 HERR 2 

2746 IF ¢Pr=3> OR ¢Pr=1> THEN ASSIGN #3 TO *# 

2roO --1F <Pr=3> OR (Pr=23- THEN ASSIGN #lu 10 = 

2766 SUBEHD !End of Massembly 
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481 

462 

483 

416 
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446 
$54 
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EISTED OM es 

    

PRG ert we ors MLD da! 

SskewimlCWe ss Arngskt #3, Hb¢*#>,Alp,Hskew, INTEGER Test ¢# 

ta J,Hoskt#a, Stce#a, Hk sHskeud, Nskewe D 
OPTIONS BHSE<1 

TOT eG esd 

Rell. =---Ihanstonmatlon:of cise started 
FOR IT=1 TO Hskew 
H=A1=L=8 

FOR? J1T=1. 70 Wk 

IF Nosk¢Io<-St¢J1l,2> THEN: GOTO 126 

L=L+1 

GOTO He 
NEwT Jd 

PPR k= 
A=A+S—-2%7 

NEAT K 

IF L=@ THEH GOTO 2H 

TOs 

+5-24Test (Steck, 299 

1 TO Hoske ls 

eet oka 

    

   

    

GOTO NB 
> PhitAngsk¢13#.6174533 

     

   

   

    

  

SC1,135-COS¢PHiD#COSCAl pe. G17 45333 SC1,23=-SINCPHideCOSCAl ps. G174533) 
SC1,S9=-SINCA ps. G1 745335 

COS Chi oee LNG pees Olt oooD 
STNCPH Oe SINCAl He. OL rdoao s 

YSCOSCA Pe. BLP 45335 
SEN CPR H12 

BECOSCPhi 2 

S03, 39568 
N3: IF L=@ THEN GOTO 420 
M=QbCAl-d¢+2eTest Cstc Jl, 230% 

HeQbCAL-S+2eTest cStcJi, 2399 
O=QbCAL-2+2eTest cSt¢Ji,299) 

QbCAL~4+2#Test CStCJ1,2)99=9¢1, 1) M4501, 294N4S01 32#0 
Beaten ee rest St 61,292 28¢2, 1) a4S(2, 2)4N+8¢2, 3940 

w~2+2#Test(St¢(J1,2)33= a ioe ake ‘ S¢3,.1> M+5¢3,2.#N+5¢3, 3940 

M=Q¢CA-4+2¢Test (Nosk(I99, J) 
N=QCA-3+24Test (Nosk¢(Id), J3 
O=QCA-2+24#Test (Nosk (13,7) 
QCA-44+24Test (Nosk 61>), J=S¢1,19#M4+501,29#N+501, 3940 
QCA-3+2#Test (Nosk (13>, J2=SC2, 1)4M4+902, 294N45¢3 39#0 
QCA~2+2#Test (Nosk (109, J9=9¢3, 1)#M4+S¢3, 298N4S¢3, 3940 NEXT I 

’ 
SUBEND! End of Skewimi 
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lore ve ON-s 6/7/83 

  

COMeld Tests. 14 Chta,15,S5ize 
Di Csi ze? 

THTEGER Tye ly le 

H=8 
FOR I=1 TO Seg 

ASSIGN #1 TO AScl> 
NEST. <1 

READ #Chta, 1 

MAT PRINT #Oht as R 
READ. #4. 
MAT READ #1:A 

FOR <Tsl 70 Seg 
FOURS H=Co) ero 70-1 

IF W=I THEH GOTO 2136 

READ #H, 1 

NED SRE Ae tls 

PUR es RoWw Pat oatt To Rowe tS 
Root ae 

Laem OS Ce er ye) 

G=F+] 

H=Riow! Wt a+ dt 

TR eethl-Oesetirl. THEN GOTO, 2216 

H=i-T 

GOTO 2228 

H=8 

H=H+P 

IF W<>I THEN GOTO 2266 

Pizé-1 

GOTO 2278 

FiLsSRowe hl) 

IF T?G THEH @=T 

ROR T=O.0 TOPs 
(Fs 

H=H+1 

Bev CSC SeJel ort 
WeH-S¢ 73 

She TMG he lam cl = leno 
YSACI13 

IF-Kel- THEN: UsSU+K=T. 
FOR Ws) TO H-1 
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GOTO 2488 
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FOR U=G TO H 
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NEXT U 
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FOR M=1 TO R 
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GO WHEAT iW 
@ IF T=Seqg THEH GOTO Reduced 
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REM REDUCTION COMPLETE 
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19 | RE-SAVE"SKWIM2" 
SUB Skewim2¢Q¢#),Angsk¢#),b¢#),Alp,Nskew, INTEGER Test c# fa

 
a 

    1, J,Hoskt#2, St¢#o,Nk,Nskewd, Hskewe d 

38 OPTION BASE 1 

46 Deh SC oo 

Sa REM ----Transformation of disc started 

6a Count = 

rs FOR IT=1 TO Wskew 

38 IF I3Hskeuwd THEN Count=l 

36 A=AL=L=8 

146 POR Ji=1- 7G Hk 

114 TE Nosk¢la<est¢J1,2> THEN GOTO 146 

128 L=L+1 
GOTO He 

144 HEART: J1 

N2: FOR K=1 TO Hosk¢l> 

A=A+5-2eTest ck a 

HEXT KE 

IF (Count=@3 AHD CleHskewd2o THEM GOTO 248 

IF ¢Count=19 AND CloHskewd+Nskewe29 THEN GOTO 231 
288 MEQtA-d+2eTesttHosk Ola o, J3 

214 N=QCA-S+eeTest CHosk C199, J2 

229 D=Q(A-2+2#Test (Nosk(1)),J) 

236 GOTO 318 
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231 Coun=Countl 

232 IF Coun?1 THEN GOTO 246 

233 Jn=Hsk aud 

244 JIn=Inel 

258 POR sk=1 nul ot Coin. 1 2 

268 Al=Al toes vest (St CK, 17> 
278 HEST 

238 M=GbcRl-4+24¢Test (Mosk C1355 

2908 N=QbCA1-S+24#Test (Nosk¢ 1355 

366 O=QbCA1L-2+24Test (Nosk tI 935 
3168 IF Count=1 THEN GOTO Ni 

328 Be Sy eeeue crneee 65905 Seema, 

338 St1_,29=SIN¢CAngsk¢1d#. 817453335 

348 Soe, l= soln Angsk Clie l6tr4os3> 

    
   

358 St2, 22 =COS¢(Angsk(12*. 81745335 

368 $03, 33=1 
378 GOTO HS 

350 His PRhi=Hngsk(lo*.61745s3 

396 SC1, 1) =-COSK Phi +CUSCAl A+. Glr4ass3 

468 (2) 1)=-81N« PRi2#COSCAl pe. BLP 45335 

418 3,153=-SINCA p+. 81745333 

426 See ese een sae ruee pe. 01 7deos) 

438 SC2,29=-SINCPhHiS#SINCAl pt. 81745335 
446 SOS, 23. SCOSCAl pe. B1745335 

455 SiG se Mita 

468 St2, 33=COSCPhi > 

    

474 a 3228 

480 43 

    

QCA-4+Z2eTest (Nosk (193, J2SS01, 13 #M4S01, 294#N4S01, 9940 
499 = GCA-3+24Test (Nosk C199, D2=S62, 1 24M4S02, 234H4S02, 3940 
388 QCA-2+2%Test (Nosk (1), J=SC3, 1) M4503, 298N4S03, 3940 

316 HEXT I 

52a SUBEND! End of Skewime 
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