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SUMMARY 

An experimental and theoretical investigation into the effect 

of interface dynamic properties on the overall response of coupled 

complex structures has been successfully completed. Experiments 

were carried out on an idealised laboratory model comprising two 

cantilevers coupled at two positions via simple connectors which 

allowed only axial forces to be transmitted from one cantilever to 

the other. Datz was collected from fxequency response tests on the 

uncoupled cantilevers and combined with theoretical connector data 
by the 'Impedance Coupling Technique’ in order, to predict the 
coupled system response. 

It has been shown that the behaviour of complex coupled 

systems can be predicted to an acceptable degree of accuracy up to 

frequencies of 500 Hz. Further, the results show quite clearly 

that in certain cases a considerable reduction in energy transmission 

between two coupled structures can be effected within a narrow 

frequency band by optimising on the dynamic characteristics of the 
interface mechanism. In particular adjusting the stiffness of the 

interface was found to be very effective in this detuning process 

where relatively high coupling stiffness could be utilised without 

appreciably altering the overall dynamic response of the system. 

This thesis reflects the effort expended in developing the 
required experimental technique, instrumentation and computing 

software necessary to obtain and manipulate the experimental 

results. 

Key Words 

Mechanical Impedance 

Frequency Response 
Beam Vibrations 
Interface Dynamics



ACKNOWLEDGEMENTS 

I wish to thank my supervisors, Professor E Downham and 

Dr J E T Penny for their guidance and support during this work. 

I also want to acknowledge the assistance given by the 

technician staff of the Department of Mechanical Engineering. In 

particular, thanks to Brian, Barry and Malcolm. 

I would also like to thank Anne for typing this thesis. 

Special thanks are also due to Pam and my wife Mary-Rose for 

their most valuable assistance in the preparation of this thesis. 

Financial support for the project was provided by the 

Science Research Council, and the Royal Aircraft Establishment, 

Farnborough, (MOD).



 



Chapter 1 

CONTENTS 

INTRODUCTION 

Chapter 2 THEORETICAL STUDY 

Chapter 3 

Chapter 4 

2.4 

2.2 

2.8 

Introduction 

‘Impedance Coupling Technique’ 

Dynamic Analysis of a Two 

Cantilever System 

Frequency Response of Cantilever 

Beams 

Frequency Response of Connectors 

Application of ‘Impedance Coupling 

Technique' to the Two Cantilever System 

Theoretical Results of Two Cantilever 
Systems 

Discussion of Theoretical Results 

INSTRUMENTATION AND COMPUTING SOFTWARE 

Introduction 

Transducers and Signal Conditioners 

Analogue Dynamic Analyser System 

Frequency Response Analyser 

Controller and Data Acquisition System 

Computing Software 

DEVELOPMENT OF EXPERIMENTAL TECHNIQUE 

Introduction 

Experimental Measurements 

Inertance Measurements of a 'Free-Free' 
Plate 

Inertance Measurements of a Cantilever Beam 

Inertance Measurements of the Cantilever 

System for use in the 'Impedance Coupling 
Technique’ 

Linearity Checks on Cantilever Systems 

10 

az 

14 

17 

19 

26 

26 

28 

50 

51 

51 

52 

53 

54 

55 

60 

61 

62 

63 

64 

68 

70



Chapter 5 

Chapter 6 

Chapter 7 

APPENDICES 

4.7 Connector Design and Testing 

EXPERIMENTAL RESULTS OF CANTILEVER SYSTEMS 

5.1 Introduction 

5.2 Measured Inertances of Cantilevers 

5.3 Predicted Inertances of Systems 

5.4 Measured Inertances of Systems 

5.5 Comparison of Predicted and Measured 
Inertances for two types of Connector 

5.6 Predicted System Inertances I; with 
Various Stiffnesses 

5.7 Effect of Coupling Stiffness on System 
Inertance I,, at Selected Frequencies 

5.8 The Application of a Dynamic Absorber to 
the Two Cantilever System 

DISCUSSION 

6.1 Introduction 

6.2 Discussion of Experimental Technique 

6.3 Experimental and Theoretical Results 

6.4 Optimisation of Coupled System Response 

6.5 ‘Impedance Coupling Technique’ 

CONCLUSIONS 

REFERENCES 

ad An Example of the ' Impedance Coupling 

Technique' using Simple Static 

Deflection of Beam Theory 

2 Calibration of Transducers 

3 Details of Computing Software 

4 Inversion of a Complex Matrix using 
Real Matrix Algebra 

92 

93 

93 

94 

94 

95 

95 

96 

107 

108 

108 

116 

117 

119 

123 

126 

130 

134 

140 

151



 



FIGURE NUMBER 

LIST OF FIGURES 

Two Cantilver System Coupled at Two Positions 

Simple Representation of a Two Cantilever System 
Coupled at the End Position Allowing four 
degrees of Freedom 

Static Model of Two Cantilever System coupled 
at Two Positions with Pure Stiffnesses 

Cantilever Beam 

‘Impedance Coupling Technique! 

Theoretical Inertances of Cantilever (a) 

Theoretical Inertances 

Theoretical Inertances 

Theoretical Inertances 

Theoretical Inertances 

1- k= 4 MN/m 

Theoretical Inertances 

Theoretical Inertances 

3 -k = 4 MN/m 

Theoretical Inertances 

4-k = 4 MN/m 

Theoretical Inertances 

5 - k = 400 MN/m 

of 

of 

of 

of 

of 

of 

of 

of 

Cantilever 

Cantilever 

Cantilever 

System 

System 2 

System 

System 

System 

(b) 

(c) 

(d) 

Effect of Coupling Stiffness on System 1, 
Inertance I,3 , Frequency Range 390-410 Hz 

Effect of Coupling Stiffness on System 1, 
Inertance I,; , Frequency Range 195-200 Hz 

Effect of Coupling Stiffness on System 3, 
Inertance I,; , Frequency Range 140-145 Hz 

Effect of Coupling Stiffness on System 3, 
Inertance I,; , Frequency Range 195-200 Hz 

Mode Shapes and Natural Frequencies of 
Discrete Coupled Systems - Example 1 

15 

18 

34 

35 

36 

37 

38 

39 

40 

41 

42 

43 

44 

44 

45 

45 

46



4.15 

Mode Shapes and Natural Frequencies of 
Discrete Coupled Systems - Example 2 

Mode Shapes and Natural Frequencies of 
Discrete Couples Systems - Example 3 

Mode Shapes and Natural Frequencies of 
the 4th, Sth and 6th Modes of Example 2 

Analogue Spectrum Analyser System 

Sweep Tests on a Cantilever using a 

Frequency Response Analyser 

Instrumentation for Frequency Response Tests 

Reciprocal Transfer Inertances of 
'Free-Free' Plate 

Set-up for Initial Cantilever Frequency 
Response Tests 

Set-up for Bottom Cantilever Frequency Response 

Tests 

Transfer Inertances for Bottom Cantilever 

Set-up for System Frequency Response Tests 

with Piano Wire Connectors 

Set-up for System Frequency Response Tests 

with Rubber Connectors 

Linearity Test on Cantilever (b) 

Effective Apparent Mass Matrix for Connectors 

"Blocked Impedance' Tests on Connectors 

Apparent Mass of Piano Wire Connector A;; 

Apparent Mass of Rubber Connector A;; 

Apparent Mass Measurements and Theoretical Model 

for Piano Wire Connector A33 

Apparent Mass Measurements and Theoretical Models 

for Rubber Connector A33 

Real Part of Complex Modulus against Frequency 

Loss Factor against Frequency 

Dimensions and Estimated Dynamic 

Properties of Connectors 

Page 

47 

48 

49 

57 

58 

59 

79 

80 

81 

82 

83 

83 

84 

73. 

85 

86 

86 

87 

88 

89 

89 

90



AL,1 

A2.1 

A2.2 

A2.3 

TABLE NUMBER 

Measured Inertances of Cantilever (a) 

Measured Inertances of Cantilever (b) 

Predicted Inertances of System 1 

Predicted Inertances of System 2 

Measured Inertances of System 1 

Measured Inertances of System 2 

Comparison of predicted and Measured 
Inertance for Two Types of Connector 

Predicted System Inertance 1,3 with 
Various Stiffnesses 

Effect of Coupling Stiffness on System 
Inertance I; at selected Frequencies 

Predicted System Inertance I,; with 
Dynamic Absorber Tuned to 390 Hz 

Predicted Inertance I¢;0f Dynamic 
Absorber Mass 

Effect of Contact Stiffness on the 
measured Frequency Response 

Static Model of Two Cantilver System 
Coupled at Two Positions with Pure 
Stiffnesses 

Set-up for Calibration of Transducers 

Calibration for Accelerometer DJB 139 

Calibration for Force Transducer B&K 403132 

LIST OF TABLES 

Cantilever Dimensions 

Description of Cantilever System 

99 

100 

101 

102 

103 

104 

105 

106 

106 

122 

131 

138 

139 

139 

27 

33



 



Ph 

P. 

NOMENCLATURE 

flexibility matrix 

flexibility sub-matrix including only translational elements 

apparent mass, force/acceleration ratio; [4] apparent mass matrix 

area 

damping co-efficient 

Coulomb, unit of electrical charge 

decibel, logarithmic ratio 

Young's modulus of elasticity 

force; {F}, force vector 

gravitational unit of acceleration, normally 9.81 m/s* 

complex magnification factor for nth mode of vibration 

Hertz, unit of frequency, ie cycle per second 

tensor parameter 

Inertance, acceleration/force ratio ; [x] inertance matrix 

2nd moments of area; mass moments of inertia 

imaginary number V1; tensor parameter 

stiffness co-efficient; [k], stiffness matrix; kilo, ie x 10? 

stiffness matrix including only translational elements 

length 

mass; metre, unit of length; milli, ie x 10 ° 

mega, ie x 10° 

nth mode of vibration 

Newton, unit of force 

pico, ie x 10 '* 

nth principol co-ordinate, displacement; by, velocity; 

Pn, acceleration 

forces associated with principal co-ordinates



a 

n 

w 

generalised co-ordinate, displacement; 4, velocity; 

a, acceleration; {ql}, displacement vector etc 

generalised force; {a}, generalised force vector 

ratio of exciting frequency to nth natural frequency, 

ie Q/un 

second, unit of time 

time 

volts, unit of electrical potential 

co-ordinate, ie in x direction; displacement 

co-ordinate, ie in y direction; displacement; y, velocity; 

y, acceleration; {y}, displacement vector etc 

Loss factor 

damping ratio 

mass density 

moment; {t}, moment vector 

rotation co-ordinate; angular displacement; {o}, angular 

displacement vector 

characteristic shape function - nth mode 

frequency 

nth natural frequency 

exciting frequency 

stress, ie load/area
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CHAPTER ONE 

(NTRODUCT [ON 

Recent years have witnessed an unprecedented increase in 

quantity and sophistication of dynamic based problems in engineering 

which by necessity has required the Engineer to look deeper into 

this subject area and to use up-to-date technology as an aid to 

rationalise these problems. This activity has evolved not only 

because of the increased awareness of noise pollution but also due 

to the fact that engineering structures are becoming lighter (more 

flexible) in the Engineer's quest for increasing power to weight 

ratios. 

The problems with which the Engineer is confronted are usually 

categorised into noise radiation and vibration of structures though 

are very often linked together in some cause and effect situation. 

Nevertheless, the Engineer may find this division useful when 

quantifying or choosing a possible solution. For example, does the 

solution require sound-proofing or an adjustment in structural 

flexibility? This division though, which is usually made on the 

basis of frequency range, may not always be quite clear, so then 

the Engineer may find himself in a 'grey area'. Such an area is in 

the lower audio range of frequencies where either or both methods 

of approach may be helpful. 

The research program outlined in this report was instigated 

by the Helicopter Cabin Acoustic Group based at RAE studying the 

problem of cabin noise in a helicopter. The problem has many of 

the ingredients previously mentioned. In particular, the modern 

helicopter has a much improved power to weight ratio over its 

Ay



forerunners but inevitably its noise problem has become severe, 

especially in the lower audio range. 

The Helicopter Cabin Acoustic Group has co-ordinated research 

and development in various directions with a view to alleviate this 

problem. The main areas of activity are: noise/vibration absorption, 

reduction of exciting forces generated within the gear box and 

reduction of vibration transmitted from the source (gear box) to 

the receiver (airframe). The investigation outlined in this thesis 

is confined to the latter area. 

From previous noise and vibration experiments on a helicopter 

carried out by Westland Helicopters Limited’ it was observed that a 

prominent peak of vibration and noise occurred at a gear meshing 

frequency; this frequency is confined to a narrow frequency range 

which is dependent on flying conditions. The initial hypothesis 

was, that if the helicopter could be considered as a coupled complex 

system involving the airframe and gear box/rotor as the two major 

sub-systems coupled via an interface mechanism, then the interface 

might be designed such as to optimise the helicopter response at 

the meshing frequency and, consequently, the noise might be 

significantly reduced. Because of the high modal densities of 

these sub-systems, this de-tuning procedure is likely to be effective 

over only a narrow frequency bandwidth. 

The sub-systems to be joined are of such complexity it is 

unlikely that a purely theoretical analysis would be of sufficient 

accuracy to define the response of these systems to vibratory forces 

at relatively high frequencies. Thus it is necessary to obtain the 

dynamic characteristics of each sub-system by experiment. Having 

gained confidence in the accuracy with which the sub-systems can be 

measured, this data can be used in a theoretical examination to 
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establish the effect of a particular spring/mass/damper interface 

on the overall energy flow from one sub-system to another on the 

assumption that vibratory forces are generated within one such sub- 

system and are transmitted to the other. 

This method of combining sub-systems has become very popular 

in recent years and is referred to as the ‘Impedance Coupling 

Technique' or the "Building Block Approach’, ~?°?" The technique 

requires the measurement or theoretical prediction of the 

mechanical impedance of each sub-system at all the points where they 

are connected in the assembled structure. The response of the 

connected structure is then predicted by combining vectorily, since 

mechanical impedance has magnitude and phase, the impedance data at 

all the connecting points. 

Mechanical Impedance was first introduced as an engineering 

quantity by Professor A.G.Webster of Clark University in 1918 when he 

presented a paper entitled 'A Mechanically Blown Wind Instrument' at 

the Baltimore meeting of the American Physical Society. However, it is 

only since World War II that this quantity has been used extensively in 

the mechanical vibration of structures® . Two significant text books 

on this topic were published in this period: Bishop and Johnson's 

'The Mechanics of Vibration' and Salter's 'Stead State Vibration’ 

(references 6 and 7 respectively). In addition numerous articles and 

research papers have been presented. One of the earliest significant 

papers was by Kennedy and Pancu® in which they outline the use of 

mechanical impedance measurements in the vibration analysis of complex 

structures. In 1958 the ASME held a colloquium on mechanical impedance 

methods” and by the mid 1960's Schloss reported on the accurate measurement 

0,22 of mechanical impedance + whilst Remmers and Belsheim?* presented the 

results of a 'Round Robin' test which demonstrated the difficulty of 

ani



attaining reliable and repeatable impedance data. This 'Round 

Robin' test involved 19 organisations, each one measureing the same 

set of three test structures. Experimental skill and ability 

to select optimum measuring and force generating equipment was 

shown to vary considerably between each organisation. An envelope 

of these results showed calibration errors of 6 dB's, a spread of 

25 to 35 dB's in magnitude measurement and large errors in resonant 

frequencies which were, in some cases, not even detected. The 

report ends with a useful 10 point recommendation for reliable measure- 

ments. 

During the past decade one of the most prolific researchers 

in this field has been Ewins of Imperial College, London, who together 

with research papers and reports, has produced a comprehensive 

bibliography of Mechanical fupedance in which he has listed and 

categorised some 284 references. 

The general term 'Mechanical Impedance’ is used to describe a 

group of frequence response functions. These functions are derived, 

for an elastic system, by comparing the exciting force (or moment) 

with the resulting response at some point in the system. This 

comparison is made at all frequencies in the range of interest and 

is expressed as a complex ratio i.e. a quantity having both magnitude 

and phase or, if preferred, having real and imaginary components. 

This ratio may be expressed as the exciting force per unit response 

or vice versa and, furthermore, the response may be expressed in 

terms of displacement, velocity or acceleration. Thus the fre- 

quency response function can be expressed in any of six different forms. 

The terminology used to describe these ratios is only now in the 

process of being standardised and Table I shows the most widely used 

terms and particularly those recommended by BS 3015: 1976. When the 
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response is measured at the point of application of the force then the 

measurement is referred to as a direct or driving point measurement; 

for example driving point impedance. If the force is applied to one 

point in the system and the response is measured at another then the 

measurement is called a transfer measurement; for example transfer 

mobility. 

  

    

  

  

  

Response 

Displacement Velocity Acceleration 

Ratio 

Response/force Receptance Mechnical Inertance 

mobility* 

Force/response Dynamic Mechnical Apparent 

stiffness* impedance* mass*           
* Recommended for use by BS3015: 1976. 

Table I 

Which one of the six frequency response functions should be used is 

entirely a matter of personal preference since each function contains 

the same information but in a slightly different form. Response 

is usually measured by accelerometers and so inertance and apparent 

mass have the advantage of being expressed directly in terms of the 

measured quantities. However, mobility and impedance are extensively 

used. 

The most recent work on the ‘Impedance Coupling Technique’ 

was successfully completed by Ewins and Silva 14 wnere they predicted 

major structural resonances, within a 3-30 Hz frequency range, of a 

helicopter structure with an externally coupled store carrier and store. 
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This practical application proved to be a difficult and laborious 

operation involving several procedures which are summarised as follows 

The carrier assembly, which had several coupled sub-structures, 

was coupled to the helicopter airframe at four points, each point 

having a possible six degrees of freedom. Both the airframe and the 

carrier required the experimental formulation of an impedance matrix 

of order 24. This required a total of 1152 impedance measurements 

at each frequency increment, although this figure was significantly 

reduced due to experience, judgement and the use of reciprocity 

relationshipsto a total of 29 measurements for each structure, see 

Chapter 2, reference 14. Raw data taken directly from measurements 

of these complex structures proved not only to be inconsistent in 

terms of modal parameters but was of such quantity as to prevent their 

use directly in the ‘Impedance Coupling Technique .' The researchers 

elected to proceed by a lengthy and detailed method of rationalising 

and regenerating the raw data via modal analysis. This process not 

only refines the raw data but also provides a more efficient means of 

storing it aT 

Clearly this work has many features which may be directly 

applicable in the de-tuning exercise outlined earlier in this chapter. 

To avoid repeating this work it was decided to concentrate on the 

effect of interface characteristics on the coupled system response and 

to implement this procedure in a higher frequency range. The work 

described in this report was performed on a simplified model in order 

to reduce the quantity of 'Impedance'* data as compared with that 

measured by Ewins and Silva and to allow the use of unrefined 

* 'Impedance' is used as a generic term for frequency response type 

measurements. 
ag ae



experimental data since the inaccuracies are not likely to be so 

significant. The research, therefore, proceeded initially on a two 

plate system with four connection points, but due to measurement 

difficulties was completed on a two cantilever system with two 

connection points, Hence this thesis is concerned for the main part 

with the two cantilever system especially in the theoretical study 

since this system is more easily solved by classical analytical 

methods.



CHAPTER TWO 

THEORETICAL STUDY



CHAPTER TWO 

THEORETICAL STUDY 

2.1 INTRODUCTION 

The first part of this chapter is a review of the ‘Impedance 

Coupling Technique'* applied to a two cantilever system coupled at 

two positions by connectors which have dynamic properties. The 

resulting system matrix equation shows how the sub-systems are 

theoretically coupled by manipulating their individual "Impedance! * 

matrices. These matrices may be obtained theoretically or from 

experiments on the sub-systems. Since, from a theoretical point of 

view, each element within these matrices has mass, stiffness and 

damping coefficients, then readily available models of cantilever systems 

may be built up using the stiffness influence coefficients and mass 

Properties of beams. A study on a very simple two cantilever system 

is shown to be a valuable aid in demonstrating and quantifying the 

effect of rotational intertia/stiffness of the connectors on the coupled 

systen. Finally, frequency response functions are theoretically 

generated for cantilevers of differing specifications by using classical 

forced response theory. This approach has the advantage over the stiff- 

ness influence coefficient techniques in that it is relatively easy to 

include the higher modes thus producing a more accurate frequency response 

function. These results are then combined, together with various 

connector configurations, by the use of the "Impedance Coupling Equation' ,* 

in order to compute the coupled system responses. This part of the study 

gives a more detailed representation of system behaviour and is comple- 

mented by a discussion. 

* 'Impedance' is a general term comprising all frequency response type data 
involving motion and force ratios. See Chapter 1. 
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2.2 ‘IMPEDANCE COUPLING TECHNIQUE' * 

The 'Impedance Coupling Technique' used in this work is described 

in detail in references 2, 3, 4, 16 and only a brief review of this 

theory as applied to two coupled cantilevers is given. 

When two cantilevers are coupled by two connectors as shown in 

Fig 2.1, 24 co-ordinates are necessary to completely describe the 

system frequency response at the four connecting points, six co-ordinates 

per point allowing for translation and rotation in three planes. 

However, if we assume that translation and rotation in two planes 

are not excited, then the number of co-ordinates is reduced to 8, i.e, 

one vertical translation and one rotation at each point. 

q2 q, 

eer SaigAe 
2 

Top Cantilever 

        

  

A
 

     Connectors 

  Bottom Cantilever 
    

FIG 2.1 TWO CANTILEVER SYSTEM COUPLED AT TWO POSITIONS 

Assuming a linear elastic system then the apparent mass matrix, 

[A], is defined thus:- 

{4] {a} = {a} a> S482 

where {q} is a vector of translational and rotational accelerations. 

{Q} is a vector of forces and moments. 

The inertance matrix, [I], is defined as:- 

[rt] {9} = {a} wee ea eee 

* This coupling technique is applied using apparent mass since acceleration 
was measured in the experimental work. 
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so that 

(t] = fay"? ie © eG. 3: 

Two other sets of related matrix equations may be formulated 

in terms of displacement and velocity as explained in Chapter 1. 

The dynamic behaviour of each sub-system, when considered in 

isolation, may be described by its own matrix equation, In 

particular, the two cantilever system of Fig 2.1 may be considered 

to be composed of three sub-systems; the top cantilever, the 

coupling system and the bottom cantilever. The independent behaviour 

of each sub-system is described by the following equations:- 

[Alp ta}q = {0}, 

[Ale {alg = {Qh ee 0g 2.4 

[Alp {ay = {olp 

where the subscripts have the following meaning:- 

T - top cantilever 

B bottom cantilever 

C - coupling system 

Ss 1 coupled system 

For convenience let the coupling system matrix equation and the 

coupled system matrix equation be partitioned such that those 

co-ordinates associated with coupling points 1 and 2 are together 

and those of points 3 and 4 are together. 

ie 

[Ari] [are] ta?" {q}}? 

[A2i] [Aze] {q}** {q}*>" 

Then, if the system is to be coupled at these four connecting points, 

the forces at the points must be equal to the algebraic sum of the 

forces in the sub-systems 

a2 =



{hy + {@)g??? = {a}g)?? 
2s @2 2.5 

and {Q}p + {Q}cp??* = {Q}g°"" 

and the accelerations must be compatible such that 

{Gq ~ fate B, Gig 

eq 2.6 
and ti}, = {a},°°* = {a),°"* 

Using equations 2.4, 2.5 and 2.6 the coupled system apparent mass 

matrix becomes 

[alg = |lalp + [ara]g [arale 
eh Oy Za 

[Azile [alg o [az2]¢ 

Since this matrix equation will be of order eight the amount 

of experimental data required for each sub-system matrix will be 

quite substantial. For example, the top cantilever matrix will 

require 16 frequency response measurements at each frequency. These mea- 

surements will have a mixture of translation and angular responses 

due to transmitted forces and moments. This clearly would add 

complications to this initial experimental demonstration and it can 

be seen that the amount of data would be significantly reduced if 

the transmission of moments could be neglected, ie from 16 to 4 

measurements at each frequency for the top cantilever. In order to 

investigate this possibility a model of this coupled system was set 

up using stiffness influence coefficients and mass properties of 

beams . 
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2.3 DYNAMIC ANALYSIS OF A TWO CANTILEVER SYSTEM 

  

  
FIG 2.2 SIMPLE REPRESENTATION OF A TWO CANTILEVER SYSTEM COUPLED 

AT THE END POSITION ALLOWING 4 DEGREES OF FREEDOM 

A mathematical model may be obtained for the simplified rep- 

resentation of the two cantilever system shown in Fig 2,2 to demonstrate 

the effect of coupling the cantilevers at their free ends. The connect- 

or is allowed both linear and rotational stiffness together with mass and 

inertia. 

If we assume small oscillations then each cantilever may be rep- 

resented by a single dynamic element which utilises the consistent mass 

matrix, see references 17 and 18. 

For cantilever 1 

EI [ 12 -62)- wpa [1562 | v1 a 
23 |-62 427] “420 |-222? 4g? b3 Ts 

ee a Q 208 

  

A simple connector having four degrees of freedom may be represented 

  

by:- 

k -k 0 0 m0 00 yi Fy 
=k -k--0——0 | =u" |'0" & 0 0 y2| = | Fo 

0 0 kk -k, oO 6 1 6 ba 13 
OEhOr =i tks C760 f by Ty 

eq 2.9 

The coupled system matrix equation then becomes:- 

124K -K 6h 0 1564M 0 =2287 0 malibas iy 
EI|-K 124K 0 -6L - wpa] 0 1564M 0 -222 y2|= |F2 
23|-62 0 4274K, -K, 420 |-2227 6 42341" © ba ‘te 

0 -62 -K, 4224K, 0 -222? 0 4£3+I {Hoy Ts 

win, Olas 10 
sot ae



where 

  ke? _ m.420 
ney A pk 

$ 2, 12420 ee eee) 
EI pA 

If k, is small then the connector will offer negligible 

torsional restraint to the cantilevers. So, if there are no 

externally applied moments then the rotations will be dependent 

on the deflections which will reduce this 4th order matrix equation 

to an order of 2. For example when a rotational stiffness element 

is connected to the tip of a cantilever the rotation at the tip can be 

assumed to be dependent on the deflection to within 1% when the ratio 

of rotational stiffness to cantilever rotational stiffness (k,£/EI) is 

less than 1%* 

To investigate this concept more thoroughly a static model 

of a two cantilever system was constructed which was coupled at two 

positions by pure linear stiffnesses. This was a valid exercise 

since it can be seen from eq 2.10 that the inclusion of the mass matrix 

does not change the fundamental nature of the analysis, only the 

complexity. 

  

  

FIG 2.3 STATIC MODEL OF TWO CANTILEVER SYSTEM COUPLED AT 
TWO POSITIONS WITH PURE STIFFNESSES ee WEE EEE CL LES NESSES 

The effect of end restraint on the natural frequencies of cantilevers 
is discussed in section 6,2 of this thesis. 
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Each cantilever is allowed 4 degrees of freedom and has a stiffness 

matrix equation of the form 

[k] {fy} = {r} eq 2.11 

which includes rotations. 

The overall system stiffness matrix equation is obtained and is 

of similar form to eq 2.11. It may be partitioned such that the 

rotational elements are separated as shown:- 

[ki] [kr2] fy} =e) ts) 60) 2.42 

(21) [22] {o} {t} 

If there are no externally applied moments then:- 

{t} = {o} She thedsd 28 

The partitioning of equation 2.12 gives two matrix equations:- 

[ii] fy} + [ki2] {6} = {r} « ¢) eo 2.04 

[koi] fy} + [k22] {6} = {o} <=. 8a 2.45 

Equation 2.15 gives 

{G6} = = foo) * fez) tet qe ¥ eq 2046 

and by substituting eq 2.16 into 2.14 

COei1] - Gere) [ie22]7? [eei)) {y} = {F} « @q 2.47 

or {k] {y} = {r} <a) 5 eq) 2528 

where [i] = ([kii] - [kre] [k22]* [ki]? .. - eq 2.19 

Equation 2.17 reduces the stiffness equation to a 4th order since 

the angular deflections are dependent on the translational deflections. 

Further, the inversion of eq 2.18 yields:- 

[a] {F} = {y} ss eq 2,20 

where [a] = [kK] = ([ki1] - [12] [k22]7* [k21])~'eq 2.21 

[a] is the sub-matrix of the system flexibility matrix which consists 

of only the translational elements, This sub-matrix, defined by 

eq 2.21, may be easily proved by matrix inversion via partitioning, 

see Chapter 1, reference 18. 
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Equation 2.20 is particularly useful since in statics it is 

experimentally more practical to measure the flexibility matrix and 

then invert to obtain the stiffness matrix. This is also true for 

the dynamic case where the mobility* matrix is measured and inverted 

to give the impedance** matrix. Indeed this is logical since, for 

example, each element in the dynamic stiffness matrix follows the form 

kap + iCab® - mab = Sab 

where the 

damping (C) is assumed to be viscous. The static case is when 

Q = 0 and so the dynamic stiffness coefficients disappear leaving 

the stiffness coefficients. 

A numerical example on the use of equations 2.18 and 2.20 

using simple beam theory is shown in Appendix 1. The example 

demonstrates the implementation of the static equivalent to the 

‘Impedance Coupling Technique'where the translational elements of the 

flexibility matrices are measured, inverted, then coupled together 

to formulate the system stiffness matrix. 

2.4 FREQUENCY RESPONSE OF CANTILEVER BEAMS 

The dynamic and static analyses of section 2.3 demonstrated that, 

providing the connectors offer little angular constraint, the rotational 

motions are dependent on the flexual motions in the system shown in Fig 2.1. 

Therefore, only the vertical translational elements are required in the 

cantilever matrices of the 'Impedance Coupling Equation.’ It is 

theoretically and experimentally* easier to obtain the inertance matrix 

of the cantilever shown in fig 2.4 which may then be inverted as in eq 2.3, 

to obtain the required apparent mass matrix used in the ' Impedance Coupling 

Equation' eq 2.7. 

or receptanceor inertance 

or dynamic stiffness or apparent mass 
see section 4.2 

aT tm



  

  
|» x F sinat 

FIG 2.4 CANTILEVER BEAM 

Equation 2.2 for the cantilever shown in Fig 2.4 is:- 

Tidy 112 Fil = | yi 
- @q 2,22 

E2t 122 F2 y2 

Providing there is only one input force, then:- 

¥, = — = BER? oa 2.23 ay F, Ld) 1,2 eq 

The inertance elements defined by eq 2.23 may be found 

by classical forced response of beam theory?”. A summary of this 

theory is as follows: 

The free vibration solution is obtained in order to find the 

natural frequencies and mode shape functions. Reference 21 gives 

these functions together with the solutions to the frequency 

equation for the first five modes of vibration and formulae for 

obtaining an estimate for the higher modes. The forced response is 

then solved by using energy methods and transforming into principal 

co-ordinates such that 

be 
y=>o¢n pn abdren, Bean 

n=1 

where y is the displacement response 

n is the nth mode of vibration 

$n is the characteristic function of the beam (mode 

shape) in its nth mode 

and py are the principal co-ordinates. 
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Then by using Lagrange equation the equations of motion become:- 
2 R Lu. 

{eA fon? ax} iy + fe fon? ax} bn + {ET f on? ax} pn = Pp 
0 

: os 6g 2526 

where Py are the external forces associated with the principal 

co-ordinate system. 

The integrals of eq 2.25 are readily obtained from reference 22 

for all possible boundary conditions. Therefore, using the solutions 

to the integrals for a cantilever and transforming back into the x,y 

co-ordinate system assuming harmonic motion:- 

Fics Esinft bn (a) on (>) -Hn oa a seg 2.38 
pAL Wn? 

where H, is the complex magnification factor and if Q/w, = rp 

G1 = rn*) = 5326p _ 
ec fn7)? + (2ex,)2 oe 5 eq 2.2% 

Acceleration response is:- 

a _ > UFsint yr baa) entb) Hn eq 2.28 yQ) = ane 2 Se ben qd 

For peak inertance, Ij) 

  

Ti2@) = 2 =~ oe -Hn 
Fo re 

“+ » (4 2.29 

In practice equation 2.29 is only summed over the first m modes as 

shown and is a good approximation when Q<<u The inertances 

shown in section 2.6 were obtained by summing over the first 15 modes. 

2.5 FREQUENCY RESPONSE OF CONNECTORS 

In order to complete the theoretical model of the cantilever 

system, it was necessary to obtain theoretical frequency responses of 

suitable connectors. Initially, the connectors were represented by 

simple stiffness elements and as such it was not necessary to obtain their 

frequency response since they could be added to the system matrix as 

demonstrated in equation 2.10. However, in addition to stiffness, the 
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experimental work utilised connectors with mass and damping properties 

which were distributed along the length of the connector. In 

particular, a rubber connector was used to demonstrate low stiffness 

coupling and this connector was shown to have complex dynamic properties. 

Although both connectors used in the experimental work could be idealised 

to a 2 degrees of freedom model, since only the first mode was excited 

in the frequency range, it was first necessary to investigate this 

assumption by comparing the experimental frequency response of the connect- 

ors together with theoretical data obtained by a 2 degrees of freedom 

model and a more accurate model using the classical theory of longitudinal 

vibration of rods. 

Only two translational coordinates were required to describe the 

frequency response of each connector* and these coordinates were positioned 

at the boundaries of the connectors. Therefore, the analysis is simplified 

to computing four elements in the apparent mass matrix as shown in eq 2.30. 

  

ae y, 
| Air Ais} [Hi] 2 Ph 

E,A,0,2% at 
, Asi AsalLy3 F3 

x 
Ys 

CONNECTOR 

+..eq 2.30 

Each element in the apparent mass matrix is computed or measured by 

"grounding' or "blocking'** each coordinate in turn giving the following 

relationships. 

The connectors were designed to satisfy the conditions discussed in 
section 2.3 

Coordinate yg was selected to conform to the coupled system coordinates 

See section 4.7 for a detailed description of a ‘blocked Impedance’ test. 
- 20 -



i= 1,3 when yi= 0 

sas 8q 268% 

  

i=1,3 when ve © 

  

dad Two Degrees of Freedom Model 

The connector may be discretised by concentrating its mass at 

each end and by connecting these rigid masses by massless stiffness 

and damping elements. The resulting apparent mass equation has 

the form: 

  

  es e 

Paleo ate eq 2.32 

S
/
o
 

D
I
A
 

1 

y3 E3 
  

  

  

    

- 21 -



(ii) Forced Response of Rods in Longitudinal Vibration 

The apparent mass elements defined by equations 2.31 may be 

obtained by the classical theory of forced response of rods in 

23 

  

  

longitudinal vibration ‘| A summary of this theory is as 

follows: 

Zaye @) 
a E, A,p,2 |—————we» F, sin®t 

4 amt ey,       

GROUNDED ROD IN LONGITUDINAL VIBRATION 

The wave equation for the rod shown above is: 

d’y(x) + B® y(x) = 0 ...eq 2.33 
dx* 

where pe S fo 
E 

The boundary conditions are - 

if ° q@) y(o) 

oes eq 2.34 
(ii) ao) " ot 1g

 f a 

which gives the following solution to the wave equation 

when x = & 

  

= oe con B 8 
ee ene «+ + eq 2.35 

Yi B2 sing 2 

where Mm, is the mass of the rod. 

= 22 =



Equation 3.5 may be modified to allow for 

(a) a concentrated mass at the free boundary 

(b) the internal damping of the rod. 

a) Concentrated Mass at the Free Boundary 

Equation 2.35 may be modified to allow for concentrated masses 

at the ends of the rod by the use of the 'Impedance Coupling Technique’ 

as follows:- 

    

\A
\ = 

  
        

ne   

  

The apparent mass equation of the rod and end mass is:- 

Ag = Ag ra dae Od 2696 

Since for the mass 

Therefore EF 

= -M,cos pg + m «+ + eq 2.37 

B 2g sing Q 
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b) Internal Damping of the Rod Sees amps ne Ot the Rod 

Equations 2.35 and 2.37 may be further modified by introducing 

internal damping which may be taken into account by expressing Young's 

Modulus of elasticity as a complex quantity such that ~ 

* 
E(Q) = EC R)(1496 (29) oun 69 2.38 

where 6 is the loss factor. In general the complex modulus 

varies with exciting frequency as shown. Equations 2.35 and 2.37 

are modified by replacing 8 with 8 * which is complex and is 

related to E* by 

Therefore 

F 
' 2 

te ee en ses eq 2.39 
on soot eee 
ns B°2 sin ewe 

The complex trigonometric functions in eq 2.39 are manipulated by 

the following identities - 

eee h q - j sin p sinh cos (p+jq) = cos p cosh q ~ j Pp a se. eq 2.40 
sin (pt+jq) = sin p cosh q + Jj cos p sinh q 
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To obtain E* from Experimental Results 

It was found during the ‘blocked Impedance' tests on the rubber 

connector that the complex modulus varied significantly over the fre- 

quency range. It was therefore necessary to obtain values of E* 

at selected frequencies in order to improve the theoretical model. 

The apparent mass a of the rod together with an end mass was 

measured and an estimate of E* was computed via Newton's iteration 

formula. From eqs 2.36 and 2.37 the apparent mass of the rubber 

rod is - 

da =[ om \= - my cos pg .e.seq 2.41 

B*2 sing’? 

    

Let b = then eq 2.41 becomes 

AR = -m, cos b 

b sin b 

Let 

g (b) = mcosb + A, 

b sin b 

then by using Newton's iteration formula: 

  

Bet "a Be? ...eq2.42 
£ @,) 

where = ie 

g (b) = -m,bcosbsinb + A,b sin b ...eq 2.43 

é() m, (cos b sin b +) 

Hence a value of b and therefore E* may be computed at a selected 

frequency. 
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2.6 APPLICATION OF ‘IMPEDANCE COUPLING TECHNIQUE' TO THE TWO 
CANTILEVER SYSTEM 

The ‘Impedance Coupling Equation'. eq 2.7 has been simplfied 

to a 4th order equation as shown in Fig 2.5. The cantilever 

inertance matrices may now be generated by experiment or from classical 

theory and the connectors may be modelled by a simple two degree of 

freedom system with 2 masses, a spring and a damper. Various computer 

programs were written to generate cantilever and connector apparent mass 

data using equations 2.29 and 2.32 and to manipulate this data according 

to equation 2.7 in order to compute the coupled system response and the 

effect of dynamic characteristics of connectors on the system response. 

These programs are discussed in section 3.6 of this thesis. 

2.7 THEORETICAL RESULTS OF TWO CANTILEVER SYSTEMS 

A selection of frequency response curves were theoretically 

generated for some cantilevers. The dimensions of these cantilevers 

are tabulated in Table 2.1 and were taken from existing cantilevers 

in order that this study might follow as closely as possible the 

experimental work, This data was coupled with theoretically generated 

coupling data in various system configurations as shown in Table 2.2. 

Some of the coupling dynamic characteristics were also purposely 

chosen to represent previously manufactured connectors. 

It was necessary to provide a small amount of damping in the 

generation of inertance data for the cantilevers in order to avoid 

infinite values of inertance at natural frequencies. A damping ratio 

(CG) of 0.05% was selected for this purpose and was considered constant 

for all the modes. 
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CANTILEVER LENGTH WIDTH THICKNESS | 

IDENTIFICATION mm mm mm 

a 973 63.5 6.35 

b 930 50.8 6.35 

c 963 63.5 12% 

d 930 50.8 6.35           
  

TABLE 2.1 CANTILEVER DIMENSIONS 

Description of Theoretical Results 

Figures 2.6 - 2.9 show the theoretically generated frequency 

response curves for the four cantilevers obtained by equation 2.29. 

The graphs show inertance magnitude within the frequency 

range 30 - 500 Hz at discrete frequency intervals of 0.5 Hz. The 

inertance magnitude is expressed as:- 

[acs [rr |? os + 6G B48 

where I* is the complex conjugate of I. The phase is not shown on 

any of these graphs since it predictably changes from in-phase to 

out-of-phase at resonances and antiresonances and is not of direct 

significance in this study. 

Figures 2.10 - 2.14 show the coupled system inertance 

magnitudes as described in Table 2.2 The curves shown 

represent a quarter of the possible system matrix and these were 

selected to show coupling effects. Since reciprocity was assumed 

then these matrices are symmetric and so:- 

tij = 1ji +1 + eq 2.45 
Figures 2.15 - 2.18 show the effect of varying the coupling stiffness 

on frequency response of the system at selected frequencies. In 

each of the examples neighbouring frequencies are overlaid to give 

an indication how these contours vary with frequency. This effect 

would be more ideally represented in three dimensions. 
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2.8 DISCUSSION OF THEORETICAL RESULTS 

The frequency range of these results was purposely chosen to 

be 30-500 H, such that direct comparisons could be made with the 

experimental results. Very low frequency response was of no part- 

icular interest to this investigation. Also the equipment was not 

ideally suited to operate at frequencies less than 30H, Therefore 

the frequency response in the range O-30H, is omitted with the conse- 

quence that the first peak in the plots are the cantilever's second 

natural frequency. 

The curves for cantilever d (Fig 2.9) show that position 3 is 

very close to a node position for the third and fifth modes of 

vibration. The frequency responses of the system indicate an increase 

in modal density which is due to the coupling of the two cantilever 

sub-systems. Some of these additional modes are very sensitive to 

the coupling stiffness. In particular, the curves of system 1 and 2 

are quite different, system 1 being fairly rigidly coupled,whereas system 

2 has a flexible coupling. However, both curves show the presence of 

modes that are of similar frequency to the individual cantilever modes 

and these modes do not seem to be so sensitive to coupling 

stiffness. This is also true in system 3 where the two cantilevers 

have significantly different cross-sections, although some of their 

natural frequencies almost coincide, eg cantilever c has its third 

mode around 200 Hz whereas cantilever d has its fourth mode at this 

same frequency. These effects are shown more clearly in the graphs 

of inertance against coupling stiffness at selected frequencies. For 

example, Fig 2.15 shows the effect of coupling stiffness on inertance 

I;3 for system 1. It is seen that at stiffnesses of about 500 kN/m 

and 1500 kN/m the system will have a resonance at 400 Hz, but will 

have an antiresonance at this frequency if the coupling stiffness 

98 =



is 800 kN/m. Therefore, if this system needs to be detuned at 400 Hz, 

coupling stiffnesses of 800 kN/m will be selected. Conversely other 

resonant frequencies are not so easily detuned and this is seen in 

Fig 2.16 where the coupling stiffness does not have much effect on 

inertance above 400 kN/m. Below this stiffness the coupling is 

fairly soft. The overlaying curves in this graph are the contours 

of a resonant frequency which is near to the top cantilever's 

fourth natural frequency. 

Figures 2.17 and 2.18 show similar characteristics for system 3. 

In this case the contours of Fig 2.17 show that this system is 

particularly sensitive to changes in frequency around 140 Hz, 

However, detuning is still possible at 1000 kN/m. 

Figures 2.13 and 2.14 show the effect of coupling two identical 

cantilevers. In Fig 2.13 the extra coupling modes are just evident 

even though the stiffness of the coupling is quite rigid. Figure 

2.14 is the same system with a much higher coupling stiffness. These 

curves have similar characteristics of cantilever a, but with a 

general fall in inertance level of 6 dB's. This is due to the combined 

system behaving effectively as a single cantilever with twice the mass and 

stiffness of cantilever a. 

In order to clarify this difference in the behaviour of coupled 

system modes, that are either sensitive or non-sensitive to coupling 

stiffness, further coupled system models were theoretically generated 

using a series of concentrated rigid masses linked together with massless 

stiffness elements. These models allowed a quick but comprehensive 

representation of coupled systems which clearly show the effect of coupling 

stiffness on mode shapes and natural frequencies. 
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Three examples of coupled systems are shown in Fig 2.19 to 2.22 

together with their mode shapes and natural frequencies. In all three 

examples the coupled system is represented by eight masses linked by 

nine stiffness elements. Each of the two sub-systems within the coupled 

system model is represented by four masses together with three stiffness 

elements and a further stiffness element at one end which is used to 

ground the system, the other end being free. The sub-systems are 

coupled at their free ends by a stiffness element which is situated in 

the middle of the model diagram. The three examples were selected to 

represent three combinations of coupled systems with sub-systems of 

differing dynamic properties. These are, coupled systems with 

qG) sub-systems of similar dynamic properties such that 

their natural frequencies occur in the same frequency 

range (as Fig 2.19) 

(ii) sub-systems in which their range of natural frequencies 

overlap each other (as Fig 2.20) 

(iii) sub-systems in which their ranges of natural frequencies 

do not overlap (as Fig 2.21). 

The natural frequencies and mode shapes of the 2 sub-systems 

and the coupled system are shown throughout. Two system character- 

istics are presented for each example and these represent both low and 

high stiffness coupling. 

The first example shown in Fig 2.19 offers the most representative 

model of the cantilever systems investigated in the preceding paragraphs 

since the cantilevers were of similar dimensions and as such exhibited 

similar dynamic properties. In this example the system coupled with a 

~ 30 -



low and a high stiffness shows how the modes are affected by the 

coupling stiffness. When the coupling stiffness is low the modes 

occur in pairs with the natural frequencies of each pair near to the 

corresponding sub-system natural frequency. The mode shape within 

each pair also corresponds to the sub-system mode shape the only differ- 

ence being that the coupling stiffness element becomes active in the 

second mode of each pair which allows a 180 degree phase shift across 

the coupling element but with each sub-system retaining its individual 

shape. Increasing the coupling stiffness has, therefore, a significant 

effect on these particular modes. In contrast, the first mode of 

each pair is not affected by the coupling stiffness in mode shape or 

natural frequency. In this example the low coupling stiffness is 10% 

of a typical sub-system stiffness and as such becomes active at the 

second mode. The high coupling stiffness is one thousand times greater 

than a typical sub-system stiffness and this does not become active until 

the eighth mode. In consequence, the second mode in each pair is moved 

up the frequency range. 

The second and third examples shown in Figs 2.20 and 2.21 both 

indicate that the coupling stiffness has an effect on all the natura, 

frequencies and mode shapes. In general, an increase in coupling stiff- 

ness increases all the natural frequencies and causes a change in the 

mode shapes. 

When the coupling stiffness is very high the natural frequencies 

and mode shapes are changed to such an extent that each mode resembles the 

next higher mode of the low stiffness coupled system, The exception 

to this is the highest frequency mode where the mode shape is dominated 

by the activity of the stiffness element and its natural frequency is very 

high. When this coupling stiffness becomes infinite, such that the two 
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middle masses are rigidly connected, the number of generalised coordinates 

for the coupled system will be reduced to seven, thereby giving seven nat- 

ral frequencies and so the 8th mode will not be present. 

The effect on natural frequencies and mode shapes can be clearly 

seen in Fig 2.22 where the 4th, 5th and 6th modes of the second coupled 

system (of Fig 2.20) are shown with intermediate coupling stiffnesses, 

The biggest change occurs when the coupling stiffness element becomes 

active. 

Comparing the results of the cantilever systems with these models 

indicate that the first example is the most representative of the cantilever 

systems and this is because the cantilevers also had similar dynamic 

properties. Therefore it follows that a stiffness element connecting 

two cantilevers will not affect the cantilever modes that do not require 

any activity of the stiffness element. For example if two cantilevers 

are connected at their free ends, then increasing or removing the stiff- 

ness will not affect the cantilever modes in which the ends vibrate in 

phase to each other. Conversely the modes in which the ends vibrate 

out of phase to each other will be greatly affected by the coupling stiff- 

ness. Introducing extra restraints at other coordinates is therefore 

likely to have an increasing effect on all the modes since, for example, 

a rotational stiffness element connecting the free ends would need to 

become active at all the cantilever modes. 

In conclusion, the theoretical study has shown that it is 

possible to detune a coupled system which comprises two complex structures 

connected at two positions. This is accomplished by optimising on 

coupling characteristics at selected frequencies. In particular, 

the stiffness was shown to have the greatest effect within the frequency 

range analysed, i.e. 30 - 500 Hy. 
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CHAPTER THREE 

INSTRUMENTATION AND COMPUTING SOFTWARE 

3.1 INTRODUCTION 

During the investigation it was necessary to continually 

revise and update instrumentation techniques in order to attain the 

required level of accuracy. In particular the measuring instrumen- 

tation changed from an analogue to a digital system allowing greater 

frequency discrimination with a dynamic range in excess of 80 dB's. 

The digital system finally adopted utilised a digital Frequency 

Response Analyser controlled by a desk-top computer. The computer 

was also used to process both experimental and theoretical data in 

the 'Impedance Coupling Equation.' Extensive software had to be 

developed to perform these tasks. 

3.2 TRANSDUCERS AND SIGNAL CONDITIONERS 

Transducers 

D J Birchall miniature piezo-electric seismic accelerometers 

were used. These transducers were approximately 3 grams total mass 

with a nominal charge sensitivity of 3 pC/g. Bees wax was usually 

used to attach these accelerometers to the test structure. 

A Briel and Kjaer piezo-electric force transducer type 8200 

was used to measure the force input to the test structure. The 

force range of this transducer is 1 kN tensile to 5 kN compressive. 

Its total mass is 21 grams and it has a nominal charge sensitivity 

of 4 pC/N. 
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Signal Conditioners 

Charge amplifiers, type CAl, manufactured by Environmental 

Equipment Ltd, were used to condition the output from the transducers. 

The gain of the amplifier can be adjusted by a multiturn potentio- 

meter. These charge amplifiers give a 4.6 volt de bias to the 

conditioned signal. Therefore, it was necessary to construct a de 

balancing circuit which was inserted between the amplifier and 

the analyser in order to utilise the full dynamic range of the 

instrument. 

Calibration 

The transducers together with a B & K Standard accelerometer 

were mounted on a vibrator table and subjected to a known level of 

excitation at various frequencies. The gains of the charge 

amplifiers were adjusted such that their output sensitivities were 

set to 100 mV/g for the accelerometers and 100 mV/N for the force 

transducer, Details of the calibration procedure and the frequency 

response characteristics of the transducer/charge amplifiers are 

recorded in Appendix 2 of this report. 

3.3 ANALOGUE DYNAMIC ANALYSER SYSTEM 

At the beginning of the investigation sweep tests were 

performed using an analogue spectrum analyser system as shown in 

Fig 3.1. The system centred around two dynamic analysers: these 

were essentially bandpass filters tuned such that their centre 

frequencies were varied over the frequency range of interest. This 

is effected by a B & K sweep frequency oscillator which also drives 

the electro-dynamic vibrator via a power amplifier. The filtered 

force signal is fed back to a compressor circuit in the oscillator 

and forms a feed-back loop which controls the force input to the 

structure under test. Since the force input remains constant then 
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the filtered acceleration signal is proportional to the frequency 

response: The dynamic analysers have a constant 100 k Hz phase coherent 

filtered output which may be compared to give the phase difference between 

the force input and accelerometer signals. Both analyser and phase 

meter have de outputs which are proportional to acceleration and 

phase respectively and this output is used to drive the X-Y plotter. 

It was apparent, after taking preliminary sweep tests, that 

this method of instrumentation had serious limitations. The 

compressor circuit which controlled the force input was only 

capable of giving a constant force within + 3 dB limits using a 

realistic sweep rate; the worse conditions were encountered at the 

high rates of change of force input in the region of resonances due 

to the lightly damped structures under test. Another disadvantage 

was that the outputs from the analyser and phase meter are of 

analogue form which require digitising in order to manipulate the 

data in an ‘Impedance Coupling Technique.' This was not possible 

with the equipment available at that time. Fortunately, a Solartron 

Frequency Response Analyser and a Hewlett Packard 9825A desk-top 

computer became available which provided all the advantages of a 

digital analyser system. Work was then discontinued on the analogue 

system. 

3.4 FREQUENCY RESPONSE ANALYSER 

The FRA analyses two input analogue signals by a correlation 

technique using its own signal generator output. It, therefore, 

operates in a closed loop measuring system where the signal 

generator output is used to excite the structure under test. The 

instrument is programmable such that a sweep test may be set 

up by inputting frequency limits and incremental frequency steps. 

A further facility of the FRA is a digital interface; this allows a 
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computer to be used as a remote controller and data acquisition 

system. At each frequency the magnitude and phase measurement 

from both input channels is passed to the computer. 

If force input and response is measured then the frequency 

response may be computed without the need to compress the force 

input as in the analogue analyser system. This insures a more 

accurate measurement providing the system under test is linear 

elastic since the force may vary considerably during the sweep. 

Fig 3.2 shows how the force, response and computed inertance 

vary with frequence during a test on a cantilever. The curves 

show the importance of computing the frequency response since the response 

characteristics on their own give an inaccurate representation of 

natural frequencies**. In fact the response does not alter at the 

first natural frequency. It is only by observing the force input 

that this natural frequency is detected. 

The dynamic measuring range of this instrument is potentially 

very large, in excess of 80 dB's (attained during experimental work), 

due to its ability to automatically select its measurement range 

from 10 mV to 100 V in 20 dB steps. 

3.5 CONTROLLER AND DATA ACQUISITION SYSTEM 

A Hewlett Packard 9825A desk-top computer was used to control 

the FRA and to accept the digital results. The results were then 

passed to a mass store, which was a floppy disc capable of storing 

up to 0.4 mega-bytes. Hard copy output was attained by the use of 

an X-Y Plotter. These peripheral devices were connected to the 

computer via an interface bus system. Several bus systems are 

available for this computer but only two systems were necessary for 

this work. A 16 bit input/output bus was used for the mass storage 

since this bus has very high data transfer rates. For the FRA and 
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X-Y plotter a General Purpose Interface Bus (GPIB), IEEE 488 Standard 

was used. Fig 3.3 shows the instrumentation set-up for the frequency 

response experiments. 

HP_9825A Desk-Top Computer 

The 9825A has a work space of 22 k bytes of random access 

read/write memory. The program language HPL is interpreter type 

which is stored in Read Only Memory (ROM) and is similar to BASIC. 

The language allows matrix manipulations and was found to be 

adequate for all the necessary processing of theoretical and 

experimental data. 

IEEE 488 Standard Interface Bus 

This bus allows data to be transferred bi-directionally 

between computer and peripheral device via 8 data lines in an 8 bit 

parallel, byte serial mode. A further 8 lines are used for bus 

management and data validation purposes. 

3.6 COMPUTING SOFTWARE 

During this work various computer programs were written and 

developed to enable the computer to perform its task as controller 

to the FRA and to manipulate or generate 'Impedance' data via the 

procedures outlined in Chapter 2 of this thesis. Some of these 

programs are summarised below and a more detailed description may 

be found in Appendix 3. 

SWFRA: To set up the FRA for a sinusoidal sweep test and 

read the measured data from the FRA internal store 

during its incremental sweep. The data is then 

passed to the floppy disk store. 
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PMOB : 

IMPC: 

CMOBB: ' 

TCMOB: 

DET: 

A general plotting program for experimental or 

theoretical frequency responses which plots magnitude 

and phase against frequency. 

Computes the theoretical coupling apparent mass 

matrix, based on a simple two mass, spring 

and damper system, for a specified frequency range. 

This data is then passed to the floppy disk. 

Impedance Coupling’ program for 2 beams and 2 connectors. 

Computes system inertance as in equation 2.7 (4th order 

matrix equation). Inputs experimental or theoretical 

frequency response data for the beam sub-system and combines 

them with the coupling data previously computed by 

"IMPC'. 

Computes theoretical inertances of 

cantilever beams, as equation 2.29, over a selected 

frequency range. Required inputs are: dimensions of 

beam; modal damping ratios and number of modes to be 

summed. 

Computes a particular system inertance with differing 

coupling stiffnesses at selected discrete frequencies. 

Plots results in graphical form. 
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CHAPTER FOUR 

DEVELOPMENT OF EXPERIMENTAL TECHNIQUE 

4.1 INTRODUCTION 

The object of the experimental work was to verify the 

predictions made by the theoretical study in which a coupled system 

could be detuned at chosen frequencies by careful selection of 

connector dynamic characteristics. 

This work involved the measurement of the sub-systems inertance 

matrices which were then processed together with connector informa- 

tion in the 'Impedance Coupling Equation’ 2.7 as shown in Fig 2.5. 

Since the manipulation of the experimental results involved three 

matrix inversions it was essential that the measurements should be 

very accurate. This chapter outlines the development of the 

techniques required to measure these inertances covering the initial 

experiments on a 'free-free' plate and then progressing to work on 

the two cantilever system where the measurements proved to be of 

sufficient accuracy to be used in the'Impedance Coupling Technique’. 

The computer controlled Frequency Response Analyser System, as 

described in section 3.5 and Fig 3.3, was used throughout this 

experimental work. 

The predicted system response was then checked by connecting 

the two cantilevers together. Two different types of connectors 

were used, a 'rigid' piano wire connector and a 'flexible' rubber 

connector. Both connectors were subjected to 'blocked Impedance’ 

tests in order to obtain their frequency response characteristics. 
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4.2 EXPERIMENTAL MEASUREMENTS 

The ‘Impedance Coupling Technique’ requires the measurement of the 

apparent mass matrix of each sub-structure to be coupled. Direct 

‘Impedance’ type measurements of a complex structure is often a difficult 

or even impossible task. In order to measure each element in the 

matrix the translational and rotational responses at all except one 

of the co-ordinates of the structure needs to be restrained to zero. 

Measurements are then taken of the response at the free co-ordinate 

and of the restraining forces and moments at all other co-ordinates. 

Each co-ordinate in turn is left free until all the elements in the 

matrix have been obtained. This procedure is termed as a 'blocked 

Impedance’ test. 

The alternative to this test is to measure the inertance matrix 

which is then inverted to give the apparent mass matrix. The method of 

measuring the inertance matrix is the reverse of the 'blocked 

Impedance! test. A force is applied to each co-ordinate in turn 

while the responses at the other co-ordinates are measured. An 

example of this procedure can be demonstrated on the cantilever 

shown in Fig 2.4. If a force is applied to position 2 by means of 

a vibration generator - the inertance equation 2.22 becomes:- 

Pla. fz Oo} = |v 

Foi (722 F2 yo 

or 

= 12% 

ae and = 122 Fo 

A ‘blocked Impedance' test measures the dynamic stiffness or the 

mechanical impedance or the apparant mass depending on the type 

of motion measured. 

- 62 -



The force is then applied to position 1 to obtain the remaining 

inertance elements. Hence it is evident that this procedure is 

analogous to that adopted in the theoretical study in section 2.4. 

Care must be taken to ensure that a pure force is transmitted 

to the structure, ie no restraining or associated moments. This is 

usually successfully accomplished by inserting a de-coupler assembly 

between the structure and the vibrator'". The de-coupler assembly 

is designed such that the transmission of an axial force is very 

efficient but the assembly offers negligible angular restraint. Since 

this design requirement is the same as that of the piano wire connector 

used to couple the cantilevers, these connectors were also utilised as de- 

coupler assemblies. 

4.3 INERTANCE MEASUREMENTS OF A FREE-FREE PLATE 

The free-free plate consisted of a steel plate 620 mm by 

437 mm and 1.22 mm thick suspended at the four corners by thin 

elastic. The plate was designed to have four connecting points; at 

each of these points there was an 18 gram concentrated mass which 

provided the means of connection. Four accelerometers were fixed 

to the top of the masses whilst the excitation input was attained 

by connecting a vibrator to the underside of the plate directly 

beneath the masses. The force transducer was located at the junction 

point in contact with the plate and was uncoupled from the vibrator 

by a de-coupler assembly which was manufactured from 1 mm diameter 

piano wire. 

Sinusoidal sweep tests were performed on the plate in order to 

measure its inertance matrix for the four connecting points (vertical 

translational inertances only). This, by necessity, required 16 

tests since the Frequency Response Analyser could measure only one 
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inertance at a time. In these tests it was only possible to sweep 

a maximum of 100 discrete frequencies due to software limitation 

at that time. 

Figure 4.1 shows a typical frequency response curve. The 

frequency range is 750 - 850 Hz, swept in 1 Hz steps, which is in 

the vicinity of the 50th plate mode. The two curves are reciprocal 

transfer inertances I, and Tyy> I, being the acceleration response 

at position 1 divided by the input force at position 4 and I41 

being the response at position 4 divided by the input force at 

position 1. From theoretical considerations these transfer inertances 

should be identical for a linear elastic system, see equation 2.29, 

section 2.4, The curves exhibit serious discrepancies from this 

theory, in particular the resonant frequencies appear to have 

shifted by as much as 3 Hz when moving the input position. At this 

stage it was not known whether these discrepancies were due to 

experimental error or inherent in the structure due to non-linearity. 

It was therefore decided to proceed with the experimental investi- 

gation on a simpler structure with fewer connection points; a 

cantilever beam with 2 connection points was chosen. 
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4.4 INERTANCE MEASUREMENTS OF A CANTILEVER BEAM 

Measurement tests were carried out on a cantilever beam which 

consisted of a rectangular section steel bar clamped at one end to 

a massive machine bed plate as shown in Fig 4.2. The cantilever was 

designed to have two connecting points - one near the free end and 

the other near its mid-point. In the initial tests the configuration 

of the de-coupler assembly and the force transducer was the same as 

in the plate tests. 

The force transducer measures the force transmitted to its 

diaphragm which is connected to the test structure. This adds mass 

to the structure which may be cancelled electronically or mathemati- 

cally”. However, for the purpose of this demonstration, it was 

easier to redefine the cantilever sub-system to include this extra 

mass and also the accelerometer masses. Since the measurement of 

the inertance matrix requires the movement of the force input from 

one position to the other, then the diaphragm mass (3 grams) must be 

"balanced' out by adding an equivalent mass to the system at the 

non-excited position. 

Inertances were measured at two frequency ranges centred at 

the 3rd and 7th mode of the cantilever. Again, as with the plate 

tests, serious discrepancies were evident between the reciprocal transfer 

inertances. In particular the 7th mode resonant frequency differed 

by 20 Hz when changing the force input from position 1 to 2 and also 

the antiresonant frequencies were not compatible. 

A series of tests were devised to establish the effects of 

varying the test procedure and changing the test configuration on 

the inertance measurements. 

The first three tests, comprising repeatability of test, 
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changing the sweep direction and altering the sweep rate were 

performed to assess the reliability of the measured results. These 

tests are summarised below: 

Repeatability 

Repeating the same test after a week and dismantling the 

vibrator connections had no significant effect on the inertance 

measurement. 

Sweep Direction 

An increasing frequency sweep was always programmed for these 

tests. Changing the sweep direction to decreasing frequency had 

little effect on the measurements. 

Sweep Rate 

The sweep rate of the Frequency Response Analyser can be altered 

by judiciously selecting the following parameters:- 

(i) frequency step value, 

(ii) integration time, 

(iii) measurement delay. 

A low sweep rate with a step value of 0.1 Hz, a delay of 

0.1 second and selecting x 100 integration time greatly improved 

the smoothness of the curves but there was no fundamental difference 

to the previous sweep test results which utilised 0.5 Hz steps, 

0.1 second delay and minimum integration time. 

Having established the reliability of the measurements the 

next three tests were performed to indicate how sensitive the results 

are to changes in test configuration. In particular the transfer 

inertances and resonant frequencies were compared for each of these 

tests in order to find out any possible causes for the previous 

discrepancies, These tests are summarised as follows:- 
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Adding a Concentrated Mass to the System 

A mass of 18 grams was added to one of the connecting points 

on the cantilever. This mass was comparable to the force transducer 

and six times that of the accelerometer, It had the effect of 

increasing the 7th mode resonant frequency by 10 Hz but the transfer 

inertances showed similar discrepancies to the initial cantilever 

tests. 

Altering Mass and Stiffness of Vibrator Moving Parts 

The stiffness of the vibrator moving parts was decreased by 

removing the protective diaphragm. Altering the vibrator stiffness 

and adding mass to the moving parts did not effect the inertance 

measurements. 

Two Vibrators Simultaneously Coupled to the Cantilever 

Two vibrators were used, one connected to each of the connecting 

points. The object was to excite each point in turn without 

disturbing the system mechanically. Sweep tests showed that resonant 

frequencies exhibited the same discrepancies depending on which 

vibrator was energised. 

These experiments were invaluable in helping to obtain a 'feel' 

for the measurement process and its sensitivity to changes of the 

cantilever structure. It was concluded that this shift in resonant 

frequency was not due to non-linearities in the structure but to an 

error in the measuring process. Usual instrumentation checks were 

carried out including a complete change of transducers and a re- 

calibration. The methods of attaching the transducers to the 

structure were then inspected and it was at this stage that the 

cause of the error became known. It was noticed that the piano wire, 

=167 =



used in the de-coupler assembly, was cemented into its adapters 

with Araldite, thus giving a ‘soft' joint. The method of connecting 

the vibrator to the cantilever was redesigned such that the force 

transducer was fixed directly to the vibrator, the de-coupler assembly 

being situated betwen the transducer and the cantilever. The piano 

wire of the de-coupler assembly was soldered into its adaptors thus 

giving a more 'rigid' joint. 

Repeating the inertance measurements indicated that the previously 

found discrepancies between the transfer inertances had been significantly 

reduced such that the resonant and antiresonant frequencies coincided to 

within approx. 0.5 H, throughout the frequency range of 30-500 Hz. 

Therefore, it was concluded that the experimental technique was sufficient 

to provide frequency response measurements to an acceptable accuracy such 

that they could be used in the 'Impedance Coupling Equation’. 

4.5 INERTANCE MEASUREMENTS OF THE CANTILEVER SYSTEM FOR USE IN THE 

"IMPEDANCE COUPLING TECHNIQUE' 
  

The experimental set-up which proved to give the most accurate 

frequency response is shown in Figure 4.3. The cantilever sub-system 

consisted of the cantilever together with the two accelerometers, 

de-coupler assembly and a 'balance' mass. The 'balance' mass was 

equivalent to the mass of the de-coupler assembly plus the force 

transducer diaphragm mass. 

The de-coupler assembly was therefore considered to act as a rigid 

body over the frequency range of the tests. This assumption was based 

on the frequency response results of the piano-wire connector shown in 

Fig 4.12 and discussed in section 4.7, since the de-coupler assembly 

was the same as the piano-wire connector used to couple the cantilever 

systems. The apparent mass measurements of the piano-wire connector 
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shown in Fig 4.12 indicate a very high stiffness of 5.4 MN/M, with a 

first, natural frequency at 2200 H,. 

The accuracy of the frequency response measurements was first 

checked by comparing the reciprocal transfer inertances. In Fig 4.4 

the two transfers inertances for cantilever b, 3, and Ii, were compared 

to verify that all the resonances and anti-resonances were coincident. 

Experience has shown that the mass balance was required to be within 

1 gram of the optimum for the frequency range of interest. This 

mass is relative to a cantilever mass of 2.5 kg and a de-coupler mass 

of 15 grams. 

The 2nd order inertance matrix was measured for two cantilevers 

a and b in tables 2.1 and 2.2. These matrices were then manipulated, 

together with various mathematical models of connectors, by the use 

of the 'Impedance Coupling Equation', equation 2.7, in order to obtain 

the predicted system inertances. 

The cantilevers were then coupled with the two different types of 

connector in order to measure the system inertances and compare then 

with the predicted results. The experimental set-up for these tests 

is shown in Figures 4.5 and 4.6. These connectors were designed using 

piano-wire or rubber to give either a 'rigid' or ‘flexible' coupling. 
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4.6 LINEARITY CHECKS ON CANTILEVER SYSTEMS 

The most important assumption in applying the 'Impedance 

Coupling Technique'is that the structures to be coupled must behave 

as linear elastic systems within their environmental operating 

range, ie the maximum forces encountered in service must lie within 

the system's elastic range and this range must be linear, 

Since the cantilever systems were used as laboratory models, 

then the maximum exciting force that these systems were likely to 

be subjected to was restricted by the maximum possible output of 

the vibration generator used throughout the tests. Furthermore, 

when the initial tests were performed, an optimum input to the 

power amplifier was set to avoid overdriving the systems under test. 

Therefore, the maximum exciting force possible under these condi- 

tions was obtained when the power amplifier gain was set to its 

highest value. 

The linearity of the structures under test was checked by 

repeating inertance measurements with different gain settings on the 

power amplifier. 

Figure 4.7 is a typical result from cantilever b. These 

tests indicated that the assumption of linearity was valid within 

the operating range of the equipment used. 

4.7 CONNECTOR DESIGN AND TESTING 

Two types of connector were manufactured to enable the two 

cantilever sub-systems to be coupled. One type, considered to be 

'rigid' was made of piano-wire; the other connector, made of rubber, 

represented the flexible end of the stiffness range of interest. 

The connector assembly included a force transducer which was 
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initially added to allow the measurement of forces in the connector. 

Although unnecessary in the investigation the transducers remained 

in situ to save modifying the rig. The connectors were designed to 

give a minimum of angular restraint at the coupling points, thus 

giving the connectors long and slender proportions which allowed 

high transverse flexibility. 

"Blocked Impedance' Tests on Connectors 

The connectors were subjected to dynamic tests in order to 

obtain apparent mass data for use in the 'Impedance Coupling Equation.' 

Due to their high transverse flexibility the 'blocked Impedance’ 

test, as described in section 4.2, was more suitable than the inertance 

test used in the plate and cantilever tests. This ‘blocked Impedance’ 

test was greatly simplified due to thea®sumption that the connectors 

transmitted only axial forces since the effective apparent mass matrix 

is reduced to a 2nd order matrix as shown in Figure 4.8. 

a 
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FIG 4,8 EFFECTIVE APPARENT MASS MATRIX EQUATION FOR CONNECTORS 

A sequence of tests, as shown in Figure 4.9, was necessary 

to obtain the complete apparent mass matrix. Each coordinate was 

‘blocked’ in turn by fixing one end of the connector to a large 
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mass via force transducer, whilst the other end was connected to 

the vibrator. A force transducer and an accelerometer were inserted 

to measure the force input and response at the 'free'end. 

Figures 4.10 and 4.11 show some initial apparent mass measurements 

on the piano-wire and rubber connectors respectively. It can be seen 

that the curves are not very smooth or well defined, especially at the 

low frequencies, which may be attributed to the fundamental difficulties 

associated with Impedance testing of this type of structure. 

Attempts were made to use this low quality experimental data 

directly in the 'Impedance Coupling Equation’ but the results proved 

to be unsatisfactory. The errors compounded to such an extent that 

the shape of the predicted system inertance was completed masked by 

numerical ‘noise’. 

To overcome this problem it was necessary to re-generate these curves 

from a suitable mathematical model. In order to obtain sufficient data 

to construct and test such a model the apparent mass measurements were 

repeated and extended to a higher frequency. The results obtained from 

each connector are discussed separately as follows: 

(i) Piano Wire Connector 

The apparent mass measurements on the piano wire connector 

are shown on a logarithmic frequency base in fig 4.12. The 

results clearly show a connector resonant frequency at 2200 HL 

and an anti-resonant frequency at 12000 H,- This anti-resonant 

frequency was thought to be associated with the rig characteristics 

and to investigate this more closely a separate test was con- 

ducted on the rig with the connector removed. Apparent mass 

measurements of the rig, at the force transducer, indicated that 
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the rig stiffness was about 150 MN/ m. A stiffness line 

representing the rig stiffness is shown on the same graph as 

the apparent mass measurements of the connector and it can be 

seen that the connector measurements taken at frequencies in 

excess of about 5000 HZ are completely dominated by the 

dynamic characteristics of the rig and as such will be invalid. 

When this is taken into account the results show the typical 

characteristics of a grounded one degree of freedom system which 

is mathematically described by the apparent mass element A33 

in equation 2.32 of section 2.5. The mass, stiffness and 

damping for the mathematical model was obtained by estimating the 

stiffness from the low frequency results. Then accurately 

measuring the resonant frequency and calculating the mass from the 

relationship. 

m=k 
Be 

The calculated mass was compared with the mass found by direct 

measurement and was accurate to within one gram which was equal 

to five percent of the total mass. The damping, which was assumed 

to be viscous was estimated from the apparent mass measured at the 

resonant frequency. In order to obtain an accurate measure- 

ment a separate sweep test was performed with small frequency 

increments in the vicinity of the resonant frequency. It 

was assumed, since the damping ratio was very small that the 

resonant frequency was coincident with the natural frequency. 

Therefore the damping ratio MAY be calculated for a one degree 

of freedom system by the following relationship. 

c=A 
2m when 2 = W, 

Where Ais the apparent mass measured at the natural frequency w, , 
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The frequency response of the mathematical model of equation 2.32 

using these measured dynamic properties is also shown in Fig 4.12. The 

frequency response of the model is in close agreement with the experimental 

results up to approximately 4000 Hy. Above this frequency the experimental 

results deviate from the model but is due to the limitations of the rig as 

previously discussed. In conclusion the two degrees of freedom model 

of equation 2.32 using the mass stiffness and damping coefficients 

computed from the experimental results was shown to be of sufficient accuracy 

such that it may be used in the ‘Impedance Coupling Technique’. The 

measured parameters used in this model are shown in Fig 4.16. 

(ii) Rubber Connector 

The apparent mass measurements on the rubber connector are shown 

in Fig 4.13. Measurements at frequencies above 5000 H, are not shown 

because, as in the piano wire connector experiments, the rig dynamic 

properties have a dominant effect on the results above this frequency. 

The results indicate a fundamental resonant frequency at approx- 

imately 240 H, and a second resonant frequency in the region of 1600 Le 

This second resonant frequency is only just detectable. There is 

evidence of very high damping and the low and high frequency response is 

characteristic of a spring and mass respectively. 

In contrast to the piano wire connector, obtaining a model for the 

rubber connector presented a more difficult problem principally due to the 

following reasons. 

(a) The stiffness of the rubber increased as the frequency 

increased and as such could not be accurately modelled by a 

linear stiffness coefficient. 
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(b) The damping properties of the rubber could not be 

accurately modelled by a viscous damping coefficient since 

the damping was not proportional to velocity. 

(c) The specification of the rubber was unknown and as 

such it was not possible to obtain accurate values of Young's 

modulus of elasticity and the loss factor. 

Initially the apparent mass measurements were compared with 

the frequency response obtained by equation 2,39 using realistic values 

of Young's modulus of elasticity (E) and loss factor ( 6 ) together 

with the measured values of cross-sectional area, density, length and 

end mass. The theoretical frequency response showed characteristics 

which closely corresponded to the measured results. However, the 

apparent mass levels were in error up to approximately 500 Hz and the 

first resonant frequencies were not coincident. These discrepancies 

indicated an error in the stiffness properties of the theoretical model 

which implied an error in the value used for Young's modulus since the 

stiffness of the rubber is proportioned to E. An improved value of E 

was estimated from the low frequency apparent mass measurements 

Since the stiffness is the pre-dominate dynamic property at these 

frequencies. To illustrate this point the apparent mass equation of the 

connector, eq 2.37, shown below, must be considered: 

  

  

F3 7m, . cos BL 

ss BR sinB 2 ie.) 

where a 

8 bi a*o 

E 
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If Nis very low ( Q <<1 rad/s ) then by using the expansions of 

the sine and cosine functions and discarding the cubic and higher fre- 

quency terms, such that 

EF, 22 
=e = ~m, Cs) 
‘’ 2 + m3 

Ue 
Bk BRD 

and observing that m= pA then 

#3 
= <cEA +pak + nm, 

A ay 2 

Since the static stiffness of the rubber rod, k is 

k = EA 
£ 

and the second term is the effective mass of the rod at low frequency, 

the low frequency response is characteristic of the one degree of 

freedom system used in the piano wire model. Furthermore, since at 

low frequency the stiffness term is very large compared to the mass 

terms the latter terms may be neglected. In practice, as the measure- 

ments of the rubber and piano wire connector show, the stiffness may be 

accurately determined from the frequency response at frequencies up to 

approximately one octave below the first natural frequency. 

A more accurate value of E was therefore computed from the low 

frequency response together with a value of the loss factor, § 

which was calculated from the ratio of the real and imaginary parts of 

the apparent mass using equation 2.38. These new values gave a much 

improved frequency response function, however, the theoretical natural 

frequencies were lower than that measured. Closer inspection of the 

real and imaginary parts of the measured apparent mass indicated 

that the stiffness, hence E, and the loss factor were not constant 

over the frequency range O-SOOOH, but both increased with frequency. 
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This second attempt to obtain a mathematical model of the connector 

was not considered to be accurate enough to be used in the 'Imped- 

ance Coupling Equation'. Therefore the investigation proceeded by 

obtaining experimentally derived values of E* (i.e. E and § ) 

against frequency such that they could be used in the mathematical 

model. The experiment to obtain accurate values of E* involved re- 

peating the ‘blocked Impedance' test on the rubber connector but 

with the end mass (i.e. the dummy force transducer) removed. 

This was necessary in order to increase the stiffness dominated 

frequency range thereby giving accurate results to a higher frequency. 

The measured apparent mass at selected frequencies was used in the 

iteration formula of eq 2.42 to obtain values of E and 6 and 

these values are plotted in figs 4.14 and 4.15 respectively. 

The results indicate a significant increase in both values as the 

frequency is increased. The scatter of the results at the high 

frequency is because the high frequency response is mass dominated 

and as such it is difficult to obtain accurate stiffness properties 

at these frequencies. Curves were fitted to the results to assist 

in the generation of the mathematical model using polynomials of 1 

and 2 degrees for 5 and E respectively. The theoretical apparent 

mass using the frequency dependent values of E and 4 is shown on the 

same graph as the experimental results in fig 4.13. It can be seen 

that the correlation is very good up to about 3000 H, The experi- 

mental results start to diverge from the theoretical results above 

this frequency and this is due to the effects of the rig as discussed 

in the piano wire connector experiment in the previous section. 

An accurate mathematical model of the rubber connector was 

found. However, the method used was both complex and time-consuming. 
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An alternative to this modelling technique is to use a simple mathe- 

matical model similar to the one used for the piano wire connector. 

The dynamic properties may be optimised depending upon the frequency 

range in which the connectur is to be modelled. Since the connector 

in this investigation is used up to 500 H, then the stiffness property 

is dominant over most of this range. The damping is dominant in the 

vicinity of the natural frequency and the mass is dominant at the higher 

frequencies. A model may be found by optimising on the mass such that 

the natural frequency is accurately modelled and by using an equivalent 

viscous damping coefficient. The apparent mass of such a model is 

shown on the same graph as the experimental results and the theoretical 

model discussed in the preceding paragraphs, fig 4.13. It can be 

seen that the mass used in this model is lower than measured but this 

parameter was purposely reduced so that the natural frequency of the 

model coincided with the measured natural frequency. This was necessary 

because of the increase in the stiffness properties of the rubber at this 

frequency. The equivalent viscous damping was obtained by accurately 

measuring the imaginary component of the apparent mass at the natural 

frequency and by using the relationship 

Imag (A353) = 

  

where ¢ is the viscous damping coefficient. The phase characteristics 

of the apparent mass show that the damping is inaccurate at the lower 

frequencies but is adequate at the natural frequency. However, this 

optimised model proved to be of sufficient accuracy when used in the 

‘Impedance Coupling Technique’ and as such was used throughout the 

investigation. 

The optimised dynamic properties used in the 2 degrees of freedom 

model of the rubber connector are shown in fig 4.16. 
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Fig. 4.5 SET-UP FOR SYSTEM FREQUENCY RESPONSE TESTS 

WITH PIANO WIRE CONNECTORS 

  

Fig. 4.6 SET-UP FOR SYSTEM FREQUENCY RESPONSE TESTS 
WITH RUBBER CONNECTORS 
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CHAPTER FIVE 

EXPERIMENTAL RESULTS OF CANTILEVER SYSTEMS 

Bak. INTRODUCTION 

The results included in this chapter are those obtained from 

the measured inertance data of the two cantilevers a and b of table 

2.1. Comparisons between the measured system inertances and those 

predicted by using the experimental data of the individual canti- 

levers and the re-generated coupling data in the'Impedance Coupling 

Technique ‘are given for the two types of connector. This comparison 

may be used to indicate the validity of the experiments, mathematical 

manipulation and assumptions made in the prediction process. Having 

gained confidence in the process the cantilever data was further 

manipulated with hypothetical coupling data. In particular, 

coupling was effected with pure stiffness elements since this para- 

meter was shown to have the most significant effect on the system 

inertances in the frequency range of interest. 

Finally, a theoretical dynamic absorber was coupled to the 

system by extending the Impedance Coupling Technique’ to show the 

use of this type of device and to demonstrate the flexibility of 

the Technique. 

All the results span the frequency range 30-500 Hz in 

frequency steps of 0.5 Hz. This frequency range was covered by 

two sweep tests 30-300 Hz and 250-500 Hz. 

Most of the results quoted are of system inertance 

Tyg, i.e. the ratio of the acceleration response at position 

1 (on the top cantilever - a) to the input force at position 3 (on 
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the bottom cantilever - b). These positions are directly across one 

connector so that the inertance ly gives a measure ot the vibration 

transmission from the bottom to the top cantilever. 

5.2 MEASURED. INERTANCES OF CANTILEVERS a AND b 

(as shown in Figures 5.1 and 5.2) 

The inertance magnitudes ar presented in matrix 

formation. The dimensions and position locations are the same as 

cantilevers a and b in systems 1 and 2 of the theoretical study 

(see tables 2.1 and 2.2). These curves may be usefully compared 

with the theoretical results of Figures 2.6 and 2.7. The first 

resonant peak in these curves are the cantilevers' second 

natural frequencies since the fundamental resonant frequencies are 

below 30 Hz. In general the experimental results show that the 

cantilevers' natural frequencies are below those predicted by 

classical theory; this is primarily due to non-idealised boundary 

conditions at the clamped end and the inclusion of transducer, 

de-coupler and balance masses within the cantilever sub-system. 

5.3 PREDICTED {NERTANCES OF SYSTEMS 1 AND 2 Ee) AND 2 

(as shown in Figures 5.3 and 5.4) 

The experimental results of cantilevers a and b, Figures 5.1 

and 5.2, were manipulated together with the re-generated connector 

data in the'Impedance Coupling Technique'to obtain these predicted 

System inertances. System 1 comprises the two 

cantilevers coupled with the mathematical model of the piano-wire 

connectors and in system 2 the cantilevers are coupled with the 2 D.0.F. 

mathematical model of the rubber connectors. These results may be 

usefully compared with systems 1 and 2 in the theoretical study, ie 

Figures 2.10 and 2.11. 
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5.4 MEASURED INERTANCES OF SYSTEMS 1 AND 2 

(as shown in Figures 5.5 and 5.6) 

The cantilevers a and b were coupled with the two types of 

connector (ie piano-wire and rubber), cantilever a being the top 

cantilever in the coupled system. Figure 5.5 shows the experimen- 

tally measured inertance magnitudes of system 1 which 

was coupled by the piano-wire connectors and Figure 5.6 shows the 

results from system 2 where the rubber connectors were used. 

5.5 COMPARISON OF PREDICTED AND MEASURED INERTANCES FOR THE TWO TYPES 
OF CONNECTOR 

(as shown in Figure 5.7) 

This figure shows in detail the differences between predicted 

and measured system inertances. The system inertance Us is taken 

from the preceding graphs and is shown on the same graph for 

comparison. The upper two curves correspond to the piano-wire 

connected system and the lower two to the rubber connected system. 

The correlation between the predicted and measured inertances 

is good considering the simplicity of the mathematically re-generated 

connector mudels used.Furthermore, the inertance piots show that 

when using the flexible connectors the coupled system exhibits 

resonances that are basically the individual cantilever resonances. 

When the systems are rigidly coupled extra resonances appear in the 

frequency range but the top cantilever resonances, in particular, 

are still evident. This is a characteristic feature when coupling 

two similar structures with such a simple connector, see section 2.8 

for a detailed discussion. 
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5.6 PREDICTED SYSTEM INERTANCE 1,, WITh VARIOUS STIFFNESSES 
  

(as shown in Figure 5.8) 

The upper two curves in this graph are the measured point 

inertances of the two uncoupled cantilevers. The 

lower five curves were obtained by applying the 'Impedance Coupling 

Technique'to combine the experimental cantilever data with hypo- 

thetical flexible connectors (with no mass or damping properties) 

to predict the overall system characteristics. The stiffnesses of 

the connectors were chosen to cover the range 250-4000 kN/m, the 

lower stiffness being approximately 5 times greater than the 

rubber connector stiffness and the upper stiffness being approximately 

equal to the piano-wire connector stiffness. It can be observed 

that at the higher frequencies the system resonances vary dramati- 

cally with change in connector stiffness but at low frequencies 

(< 100 Hz) connector stiffness has much less effect on the inertance 

predicted. If the frequency of 390 Hz is taken as an example, the 

system shows a resonant peak when the coupling stiffness is 500 kN/m 

but as the stiffness is increased to 1000 kN/m the system shows an 

anti-resonance. 

5.7 EFFECT OF COUPLING STIFFNESS ON SYSTEM JNEATANCE Ty: AT 
SELECTED FREQUENCIES 

(as shown in Figure 5.9) 

These figures show the effect of coupling stiffness on 

System inertancemore clearly than Figure 5.8 since the inertance 

is plotted against coupling stifiness, the frequency 

remaining constant. At the frequency of 390 Hz, Figure 5.9 (a), it 

can be seen that the inertance reaches a maximum when the coupling 
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stiffness is 500 kN/m and 1500 kN/m and reaches a minimum when the 

stiffness is 1000 kN/m, Thus, to detune the system at 390 Hz the 

optimum coupling stiffness would be 1000 kN/m. Other stiffness- 

inertance curves at neighbouring frequencies are overlaid to give an 

indication of the frequency band within which this de-tuning would 

be effective. 

Inertance against stiffness plots for frequencies of 260 Hz 

and 190 Hz are given in Figures 5.9 (b) and (c) respectively. The 

plot at 260 Hz shows that de-tuning can again be achieved, but at 

stiffnesses greater than 1500 kN/m the inertance is extremely 

sensitive to changes in frequency and the plot at 190 Hz shows that 

de-tuning is not possible with coupling stiffnesses greater than 

250 kN/m. The system resonance at 193 Hz coincides with the fourth 

natural frequency of the top cantilever - a. 

5.8 THE APPLICATION OF A DYNAMIC ABSORBER TO THE TWO CANTILEVER 
SYSTEM 

(as shown in Figures 5.10 and 5.11) 

Using the computer programs developed it is relatively easy 

to examine the theoretical effect of any additional mass/spring/ 

damper element on the real cantilever sub-system. For example, 

Figure 5.10 shows the effect of adding a mass/spring dynamic absorber 

to the system when the two sub-systems are connected by springs of 

500 kN/m. The absorber was tuned to a frequency of 390 Hz with a 

mass of 14.5 grams compared with the total system mass of 5.4 kg. 

Figure 5.11 shows the response of the mass due to an input 

force to the system at the point of attachment of the absorber. 

This shows the increase in activity of the mass in the 390 Hz region. 
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CHAPTER SIX 

DISCUSS LON 

6.1 INTRODUCTION 

This chapter conveniently divides into four parts allowing a 

discussion on the four principal areas of the investigation as 

follows: 

(a) The experimental technique developed in measuring the frequency 

response to the required accuracy in order that these measurements 

might be further processed. 

(b) The theoretical and experimental results when manipulated by 

the ‘Impedance Coupling Technique. ' 

(c) The optimisation of the interface dynamic characteristics in 

order that the system may be de-tuned at selected frequencies. 

(d) A general discussion on the 'Impedance Coupling Technique! which 

forms the basis of the optimisation procedure. 

6.2 DISCUSSION OF EXPERIMENTAL TECHNIQUE 

The most important part of the investigation was to perfect a 

measuring technique since the frequency response of a general structure is 

too complex to predict theoretically. Only then was it possible to 

manipulate these experimental results together with a theoretical 

interface in the search for optimum conditions in the overall 

performance of the coupled system. 

The system under investigation comprised two cantilever 

structures coupled at two points via some interface system. The 

~ 108 -



cantilevers were disconnected and were subjected in turn to frequency 

response tests in order to accumulate all the necessary impedance 

data to be able to predict the coupled System response. This post 

test analysis required experimental data of an extremely high 

quality which was AeLL ony very demanding in terms of instrumentation 

but also required a high degree of skill in experimental technique. 

The cantilever structures used in the investigation offered 

24s many advantages for attaining highly accurate frequency response measurements 

these being due to a relatively flexible structure with well 

defined frequency response characteristics. The experimental 

measurements could be checked at every stage with predictions 

obtained by classical forced response of beam theory. Some of the 

inaccuracies associated with measuring the frequency response of a 

structure are due to the incorrect selection of vibration generator or force 

transducer which may have stiffness characteristics not suited to the 

type of test structure and the frequency range of interest, In 

general the force transducer has high stiffness with low mass giving 

a flat frequency response to a moderately high frequency. However, 

if the test structure is mass-like, ie it has high stiffness, then 

the contact stiffness (between the transducer and the structure) 

and the transducer stiffness elements will become active at somewhat 

lower frequencies giving incorrect frequency response measurements. Errors 

of this sort were avoided in the investigation since the cantilevers 

had lower stiffness properties, although similar errors did occur 

in the initial tests due to low stiffness joints in the de-coupler 

assembly which connected the vibrator to the force transducer. This 

was remedied by soft-soldering the joints giving a high stiffness to 
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the assembly which increased its useful frequency range 

approximately 1000 H,. 

The effect of these stiffnesses on the measured inertance is 

more readily appreciated by constructing a simplified mathematical 

model of the test configuration’. 

Let the structure to be measured be represented by a simple 

mass and spring system as shown below: 

LIDS. Le 

4 ky ky <I 

my 

of 

  

      

  

ieee 

lr, F, 

Mechanical Model Impedance Model 

      

The point inertance at (a) would be:- 

1 ag? oe 2 6 laa ni Gararay ei S (6g 6.2) 

where Sp = = 
1 

At resonance all elements are active and this resonant 

frequency would be 

Ri -/2 + « (€4 6.2 
m) 

If extra stiffness and mass elements are introduced between 

the measured force input and point (a) (as shown over leaf) 
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y1 ky ky < 

T eel ee 

Ys kp + ke 

a oe -—12 64] m Med Ne? e, 

Fa 

Mechanical Model Impedance Model 

then the input force measured would now be represented by F2 and 

the measured acceleration would be at point (a). These extra 

elements represent the following: 

(i) contact stiffness between the transducer and 

the test structure, 

(ii) any concentrated masses added to the structure 

at the force input point, eg transducer diaphragm mass, 

(iii) force transducer stiffness, 

(iv) de-coupler assembly mass and stiffness. 

The inertance would be 

eames SA2” : 
Tab “hy 028R - 2 - PR Bene 

oh -ft,&,& = Bike where Sa =o.’ Sr = 7 ct es + ny and PR aii 

At resonance all elements are active and the resonant frequencies 

R,, Ro may be found by solving the equation 

0" - sp + Pp = 0 7 0g 6.4 

Clearly the inertance of equation 6.3 is not the same as that 

of equation 6.1. However, as m; > 0 and ky + equation 6.3 approaches 

equation 6.1 
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This is demonstrated in Fig 6.1 where the theoretical inertances 

using equation 6.3 is plotted against frequence for various contact 

stiffness. The mass My is taken as zero and the mass and stiff- 

ness values of the model of the test structure are both unity. The 

true frequency response of the 1 degree of freedom system is mass=like 

at high frequency i.e. the inertance becomes constant. However, the 

introduction of a contact stiffness causes the high frequency response to 

become stiff-like, i.e. the inertance becomes proportional to 9 

Further an anti-resonance is introduced into the frequency 

response function at a higher frequency than the natural frequency. 

It can be seen from the graphs that a reasonably accurate frequency 

response may be measured up to one decade higher than the natural fre- 

quency when the contact stiffness is 1000 times that of the system 

stiffness. In the cantilever experiments the contact stiffness 

included the de-coupler “assembly which had a stiffness of approximately 

50000 times that of the static stiffness of the cantilever therefore the 

errors due to contact stiffness were very small. The de-coupler 

assembly was originally placed in this position for convenience and also 

to give extra protection to the force transducer since it could be 

bolted to the vibrator for the duration of the investigation. If 

higher frequency responses are measured or if the test structure has 

higher stiffness propertiesthen a higher contact stiffness would be 

required. To achieve this the force transducer would be connected 

directly to the test structure giving a much higher contact stiffness. 

The advantage gained by using flexible cantilever structures 

was somewhat offset by the relative ease with which the necessarily 

attached vibration generating equipment could alter the boundary 

conditions of the test structure. In the case of a cantilever any 
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restraint at its free end will result in significant errors in the 

frequency response especially at low frequencies. An example to 

illustrate this point is to compare the theoretical constants used to 

evaluate the natural frequencies of a cantilever with free and sliding end 

conditions - the first natural frequency will be increased by 57% and the 

third natural frequency by 21% due to the torsional restraint at the 

sliding end boundary condition. To overcome this problem it was 

necessary to connect the vibration generating equipment to the cantilever 

via a de-coupler assembly. This assembly consisted of a short length 

of piano wire thus ensuring that only axial forces were transmitted giving 

little rotational restraint because of its high transverse flexibility. 

The rotational stiffness of the piano wire was calulated as less 

than 1% of the cantilever rotational stiffness at the free end, this 

giving an error in the first natural frequency of less than 1%. 

The testing configuration Linglly adopted in the experimental 

procedure consisted of a cantilever connected to a vibrator via the 

de-coupler assembly and force transducer. 

It is important to realise, with this testing configuration, 

that the de-coupler assembly and the accelerometers were within 

the measuring system boundary and as such the resulting inertance 

would include the inertances of these extra elements. These 

elements, which may be considered as concentrated masses, could 

normally be cancelled by an electronic circuit or simply taken into 

account in any subsequent matrix manipulation, but since 

these cantilever structures were used as demonstration sub-systems 

the accelerometers etc.were considered as an integral part of the 

measured sub-system. Further, an additional dummy mass was 

required within this measuring system boundary at the connection 

point which was not excited in order to maintain consistency when 
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transferring the de-coupler assembly and vibrator from one position 

to the other. This mass, which was termed as a "balance’ mass, was 

equal to the de-coupler assembly mass. It was found that a useful 

way of checking the balance of the system under test was to compare 

the transfer ee since the reciprocity relationships should be 

maintained, i.e. the transfer inertance Tlij should be identical to Iji 

for a linear system. Experience has shown that the ‘balance’ mass 

was required to be within 1 gram for the cantilevers tested up to 

a frequency of 500 Hz and this took into account the small diaphragm 

mass within the force transducer since it is effectively part of the 

measuring system. This mass balancing shows how sensitive the 

system is to relatively small amounts of mass. 

However if the system under test is massive then the effect 

of the transducer masses may be negligible. For example table 1 

shows the theoretical change in natural frequences when a concentrated 

mass (representing the transducer) is placed at the tip of a canti- 

  

  

          
  

lever. 

Mass of transducer Change in Change in Change in 

as a q of beam or % Ww % We % 

mass 

O.1 0.2 0.2 0.2 

EE 1.9 230) . 

10 16 12 6.4 

TABLE I 
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Comparing the reciprocal transfer inertances gave added 

confidence in the accuracy of the measured frequency response, since 

a change in the position of excitation can produce a change in the 

effect of contact stiffness, rotational restraint and the mass of 

transducers that are moved from one position to another on the 

measured frequency response. 

The cantilevers provided a sufficient number of resonant 

frequencies within the frequency range of 30-500 Hz to adequately 

demonstrate the effects of coupling configurations on the overall 

system response. The low damping inherent in these structures gave 

an immediate visual check on the positions of resonant frequencies 

which eliminated the need to subject the sweep test results to 

further modal identification procedures. However, high dynamic 

ranges are associated with lightly damped structures and a change of 

80 dB's from an anti-resonant to a resonant peak in the inert 

ance levels was found to be typical. Fortunately, the Frequency 

Response Analyser used in the investigation was able to measure these 

changes without any loss of data, providing a suitable sweep rate 

was selected. 

The optimum sweep rate was obtained by a trial and error 

selection of integration time and frequency step value. A long 

integration time would have had an added advantage of a more 

accurate measurement but was impractical due to the excessively 

long sweep time. Careful selection of frequency step value was 

necessary because too small a value would have increased the amount 

of discrete frequency data points, and too large a value would have 

resulted in loss of definition in the response curves. In this 

respect the selection of the frequency step value is synonymous 

with effective bandwidth of an analogue filter since a large band- 
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width reduces the frequency resolution. A frequency step of 0.5 H, was 

selected for all the cantilever tests giving 940 discrete frequency data 

points within the range 30-500 H,, The time taken to sweep these fre- 

quencies was approximately 45 minutes. 

An alternative to this procedure is to concentrate measurements at 

the resonant Ercniencice but this requires a knowledge of the position of the 

coupled system resonances. Further, if these resonances are to be moved by 

the optimising process then their final positions in the frequency range may 

not be known before commencing tests of the sub-systems. 

6.3 EXPERIMENTAL AND THEORETICAL RESULTS 

The experimental frequency response curves for the cantilevers show 

quite clearly the need to use experimental data when predicting a coupled 

system response since even with these simple structures classical theory does 

not predict the response with sufficient accuracy. This is mainly due to 

the non-idealised boundary conditions at the clamped end and partly due to 

the extra masses within the measuring system boundary. The discrepancy between 

the theoretical and experimental results could be improved by taking into 

account realistic boundary conditions and by including these extra concen- 

trated masses. But it is doubtful whether these modifications would improve 

the situation to the extent that the results would be practically viable,since 

the objective is to optimise the coupled system response in a very narrow 

frequency band. Taking, as an example to illustrate this point, the first 

few modes of vibration of a general structure, a successful prediction of 

resonant frequency would be considered to be within 10% and predictions would 

become more inaccurate for higher modes. Therefore, an éptimisation of 

frequency response within a bandwidth of less than 10% of the centre frequency 

is not possible. However, the totally theoretical study was extremely useful 

for the purposes of this investigation which was primarily concerned 

with the general behaviour of a simple cuupled system with 
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respect to alterations in the dynamic properties of the interface 

mechanism. 

The experiment was idealised primarily to avoid unnecessary 

complications such as measuring rotational inertances and can, as 

such, be considered as successful since the connectors in particular 

were shown to be predominantly axial transmitters of energy. This 

can be seen by the high correlation between the predicted and 

measured system mobilities for the two types of interface connector, 

shown in Figure 5.7, since the predicted result was obtained by 

manipulating the experimental data from the cantilevers with theore- 

tical connectors having purely axial properties. Mass, stiffness 

and damping values necessary for the theoretical re-generation of the 

connectors were estimated from 'blocked Impedance' tests. Initially, 

attempts were made to use the raw connector data from these tests 

but it was found that the results were of low quality. This is due 

to the inherent difficulties in carrying out such a test where the 

structure is required to have perfect restraint at all except one 

of the prescribed co-ordinates whilst accurately measuring the 

restraining forces. 

6.4 OPTIMISATION OF COUPLED SYSTEM RESPONSE 

The results show quite clearly that in certain cases a 

considerable reduction in energy transmission between two coupled 

structures can be effected within a narrow frequency band by 

_optimising on the dynamic characteristics of the interface mechanism. 

This de-tuning process is achieved by varying the interface 

properties in a mathematical model of the coupled system so that 

the predicted system resonances are moved away from the selected 
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frequency at which the de-tuning is to be effected. The bandwidth 

in which de-tuning is effective is therefore dependent on the modal 

density of the system. The interface in this mathematical model is, 

by necessity, theoretically generated in contrast to the experimentally 

obtained data of the Bined/ebews The type of interface is therefore 

restricted to one in which an accurate mathematical prediction is 

possible, ie interfaces of low modal density. Once the optimum 

values of mass, stiffness and damping of the interface are found 

then a prototype may be constructed. During the investigation a 

simple mass-spring-damper interface was used to demonstrate how 

each of these elements could be utilised in the de-tuning of a two 

cantilever system coupled at two positions. 

Of these three dynamic properties adjusting the stiffness of 

the interface was found to produce the most interesting effects on 

the response of the system. Adjustments to the mass and damping 

produced effects of a less complex nature. In general the shift in 

resonant frequencies increases as mass is added to or subtracted 

from the system and increases in damping and, although having little 

effect on position of resonant frequencies, does decrease the dynamic 

range of the system by attenuating the resonant frequencies and 

increasing the dynamic levels at anti-resonances. It is due to this 

last point that low damping would be necessary if optimisation of 

mass and stiffness produce anti-resonant conditions at the de-tuned 

frequency. 

In the two cantilever systems tested two groups of system 

resonant frequencies were evident. One group was easily moved by 

adjustments in the coupling stiffness whereas the other group, which 
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comprised the individual cantilever resonances, was not affected 

by any such adjustments. This phenomenon was principally due 

to the similar dimensions of the cantilevers but may also hold 

true in many practical situations in which the connected system 

exhibits uncoupled modes where the restraints imposed by the 

interface mechanism are not sufficient to prevent the sub-system 

acting as an independent system. This effect is more pro- 

nounced in the two cantilever system tested since the interface 

only provided vertical restraint at two positions along 

their length. 

In the case of the de-tunable modes relatively large shifts 

in system resonant frequencies were effected by small changes in 

coupling stiffness up to a stiffness of about 2 MN/m. Further 

increases in stiffness had little effect indicating that this 

figure is, for practical considerations, the 'rigid' limit for the 

system, ie when the interface acts as a rigid body within the system. 

Within this limit adjustments to coupling stiffness may be used to 

a great effect without appreciably altering the overall dynamic 

response of the system and this may be an important factor if low 

frequency stability must be maintained. 

6.5 IMPEDANCE COUPLING TECHNIQUE eats COUPLING TECHNIQUE 

The' Impedance Coupling Technique' was used to good effect in 

simulating and optimising the dynamic characteristics of a coupled 

system. This Technique is particularly useful when combining 

experimental data with theoretical data in a mathematical model of 
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a proposed system in order to predict the effect of changes within 

the system on the system response. 

One of the major limitations of this Technique is that the 

system responses are described by a discrete set of co-ordinates and, 

as such, predicted system behaviour is confined in terms of these 

co-ordinates. Therefore, any additional information of system 

behaviour at other locations in the system is not possible without 

re-collecting the basic data to include any extra co-ordinates. 

Likewise, adding mass or stiffness to the system is only possible 

at the chosen co-ordinates. This also applies when the effect of 

rotations are necessary to the investigation since in this case 

rotational co-ordinates must be included in the system, Measuring a frequency 

response which include a rotation is difficult since the sub- 

systems must be excited by a pure moment and the rotational response 

must be measured; furthermore, instrumentation and equipment is not 

readily available for this type of experimentation. However, 

measurements of rotational frequency response has been successfully completed 

and utilised by Ewins and Silva’* in which they have designed an 

exciting block to apply moments to the test structure whilst 

monitoring two adjacent accelerometers provided the means to 

determine the rotational response. 

In this investigation the Technique utilised raw experimental 

data; raw data being the measured inertance, magnitude and phase, at 

each frequency increment. The utilisation of this raw data proved 

to be satisfactory since the quality of the predicted results were 

adequate for this demonstration exercise. However, slight errors 

were evident, in particular twin or split peaks occured at some 
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predicted resonances. This was due to the non-rationalised raw 

data where the measured resonances of the sub-systems were not 

exactly the same when changing the force input position. 

Rationalising the data by measuring’, comparing and then optimising 

on all modal parameters in the sub-systems and estimating some of the frequency 

response elements?’’?® might be necessary for systems of higher 

4 
complexity’ but this procedure is lengthy, and is very much 

dependent on the skill and judgement of the analyst. 
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CHAPTER SEVEN 

CONCLUS IONS 

An experimental model was successfully used to demonstrate 

the effect of varying the interface mechanism between two coupled 

complex structures on the overall system response. In this model 

the complex structures were represented by cantilevers and the 

interface consisted of simple connectors which allowed only axial 

forces to be transmitted from one cantilever to the other. 

Experimental data was collected from frequency response tests on the 

un-coupled cantilevers and combined with theoretical connector 

data by the ‘Impedance Coupling Technique’ in order to predict the 

coupled system response. Throughout the investigation it was 

necessary to develop instrumentation and measuring techniques in 

order to obtain experimental data of an extremely high quality so 

that this raw data could be used directly in the'Impedance Coupling 

Technique.’ Considerable effort was expended in writing and 

developing software to enable a desk-top computer to be utilised 

as a controller in the experiments, data acquisition/manipulation 

system and to generate theoretical data. 

It has been shown that the behaviour of complex coupled 

systems can be predicted to an acceptable degree of accuracy up to 

frequencies of about 500 Hz. Further, the results show quite 

clearly that in certain cases a considerable reduction in energy 

transmission between two coupled structures can be effected within 

a narrow frequency band by optimising on the dynamic characteristics 
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of the interface mechanism. In particular, adjusting the stiffness 

of the interface was found to be very effective in this de-tuning 

process where relatively high coupling stiffness could be utilised 

without appreciably altering the overall dynamic response of the 

system and this might be an important factor if low frequency 

stability must be maintained. 
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APPENDIX 1 

AN EXAMPLE OF THE 'IMPEDANCE COUPLING TECHNIQUE’ 
USING SIMPLE STATIC DEFLECTION OF BEAM THEORY 
  

INTRODUCTION 

This example demonstrates the ‘Impedance Coupling Technique’ by 

using the stiffness influence coefficient method on a two cantilever 

system. The example is of interest since it shows how the rotations 

are accounted for by measuring only the translational elements in 

the flexibility matrix providing there are no externally applied moments 

to the coupled system. 

y vi ds fete 

  

k ky 1 2 : 

Ye y3 
- ds, By 

’ ? | 
ae aera a ree eee 

FIG Al.1 STATIC MODEL OF TWO CANTILEVER SYSTEM COUPLED AT 
TWO POSITIONS WITH PURE STIFFNESSES 
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Fig Al.1 is:- 
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Al.1 can 

be reduced to a 4th order matrix by using equation 2.19, ie 

Therefore 
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Ci] = (fir) - [r2) [22]? [ker] 
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eq A1.2 

Since it is experimentally easier to obtain the flexibility 

matrix than the stiffness matrix, what happens if only the deflections 

are measured in the flexibility matrix? 

Taking a simple cantilever, 
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the flexibility matrix is measured as 

Pays 576 = [ya ee al ea ales 
EI 

5/6 8/3) Lr, y2 

3 - L 
where [a] == Ui th = oi, 6Q AL 4 

5/6 8/3. 

inverting eq Al.4 to give the stiffness matrix 

= E 96 -30 
ete eq Al.5 

-30 12 

If two cantilevers of the same dimensions are connected 

together as Fig Al.1 then the resulting stiffness matrix using the 

static equivalent of the ‘Impedance Coupling Equation’ 2.7 is the same 

as Eq Al.2. Therefore, the rotations, in this case, need not be 

measured. 
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APPENDIX 2 

CALIBRATION OF TRANSDUCERS 

INTRODUCTION 

The force transducer and accelerometers used in the 

experimental work were checked for calibration and their respective 

charge amplifiers were adjusted such that their outputs represented 

voltage sensitivities of 100 mV/N and 100 mV/g. 

EQUIPMENT 

AB &K standard accelerometer set was used as the acceleration 

measuring reference. This set comprised a B & K standard 

accelerometer type 8305 serial number 397055 and conditioning 

amplifier type 2626; the output being set at 100 mV/g. The standard 

accelerometer was fixed to a Derritron electro-dynamic vibrator, 

type VP5, together with the transducers as shown in Fig A2.1. 

Signal generation and output signal analysis was provided by 

the Solartron Frequency Response Analyser, type 1170, and the 

Hewlett Packard 9825A desk-top computing system used in the 

frequency response experiments as shown in Fig 3.3. 

PROCEDURE 

The outputs of the charge amplifiers from the standard 

accelerometer and the transducer to be calibrated were connected to 

FRA channels X and Y respectively. The FRA was set to manual 

operation at 200 Hz and continuous measurement was selected. The 

gain of the transducer amplifier was adjusted until the correct 
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ratio appeared on the measurement display to give the necessary 

voltage sensitivities. A computer controlled sweep was then 

initiated to sweep between 30-500 Hz with a 1 Hz frequency step 

value thus giving the frequency response characteristics of the 

transducer and charge amplifier combination. 

RESULTS 

Accelerometers 

Two D J Birchall Ltd Accelerometers, type A/04, serial numbers 

139 and 140 were calibrated together with Environmental Equipments Ltd 

charge amplifiers, model CA,. The amplifier gains were adjusted to 

give a FRA ratio of 1.000 thereby giving 100 mV/g. The sweep test 

results are shown in Fig A2.2. 

Force Transducer 

One B & K force transducer, type 8200, serial number 403132 

was calibrated together with a charge amplifier, model CAy. 

The FRA ratio necessary to set the output sensitivity to 

100 mV/N was obtained from the following analysis. 

F is the force measured by the transducer 

  whilst m is the total mass above the measuring 

      
m fa point, including the transducer diaphragm 

ic (3 grams) and the mass of the standard 

accelerometer which measures the acceleration 

of this mass. 

Therefore F = ma aoe >| OG: WALL: 

The total mass was measured as 139 grams. 

2 _ Std.Ace.0/P Volts [see] Mey hate 0.1 V/g lg 
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Fe Force Trans.0/P_ Volts 

0.1 V/N 

Substituting eq A2.2 and A2.3 into eq A2.1 gives 

. = Force Trans.0/P Vgits 

Rarhovek Std.Acc.0P/ Volts 

R = 1.36 

The sweep test results are shown in Fig A2.3. 
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APPENDIX 3 

DETAILS OF COMPUTING SOFTWARE 

INTRODUCTION 

Various computer programs were written and developed during 

the investigation in order that a Hewlett Packard desk-top computer 

be used as a controller in the frequency response experiments, to acquire 

and store the data, to manipulate the frequency response data in the 

‘Impedance Coupling Technique’ to generate theoretical frequency response 

data. The following programs were written. 

SWFRA: To control a sweep test with the Frequency Response 

Analyser. 

IMPC: To generate theoretical frequency responses of the connectors 

CMOBB: To combine the experimental/theoretical frequency response 

data by the ‘Impedance Coupling Technique’. 

PMOB: A plotting program. 

DET: A program similar to 'CMOBB' but takes one frequency 

at a time and calculates the effect of varying the 

interface stiffness on system inertance. 

TCMOB: To generate theoretical cantilever frequency response functions. 

These programs were written in HPL, an interpreter language similar 

to BASIC, for use on the HP9825A. Two of these programs are listed 

and explained in this Appendix, ie SWFRA and CMOBB. 

SWFRA 

This program illustrates some of the HPL statements required 

to allow the HP9825A computer to control the Solartron Frequency 
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Response Analyser (FRA). The two instruments are connected via a 

General Purpose Interface Bus (GPIB) system. A more detailed 

explanation of the system and some of the subroutines used may be 

found in the Solartron Operating Manual (1183-C; GPIB Interface). 

The FRA outputs a program controlled analogue signal to drive 

the system under test and two transducer signals may be measured by 

the FRA to obtain their magnitude ratio and phase difference. The 

sweep generator, analyser and other functions may be programmed 

remotely by the computer and data can be sent from the FRA store 

to the computer. The program listing shown below uses the interrupt 

facility on the GPIB which allows the computer to carry on executing 

other tasks until the FRA sends a service request. The computer 

will then interrupt its present task in order to receive data from 

the FRA and also to reset the interrupt facility for the next 

measurement. 

The listing of SWFRA is shown at the end of this Appendix and 

a line by line explanation follows. 

LINE NUMBER 

0: Label at beginning of 'SWFRA' program. 

1: Dimension statement to allocate a string variable for the 

data file name. 

2: Sends a selective device clear command to the FRA. This 

initialises the FRA. 

3: Instructs the FRA to enter remote control state. 

4: A program control variable is set to zero. 

5-7: Operator is required to enter frequency limits and step value. 

8-12: A file code is entered and space is allocated on the floppy 

disc. 
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13-16: 

aes 

18: 

19; 

20: 

21: 

22: 

23: 

24: 

25: 

26: 

The operator selects measurement mode and integration time 

and this is validated. 

Calls subroutine 'analyser', ie lines 29-37 which sets the 

FRA analyser section to the required parameters via write 

statements. The parameter 718 is the device code for the 

FRA. 

Calls subroutine 'generator', ie lines 39-52 which sets the 

FRA signal generator section to the required parameters. 

Calls subroutine 'sweep', ie lines 54-63 which sets the 

sweep parameters. 

The operator is required to start the test by entering 1. 

All the setting up parameters are stored in the test file. 

Defines the interrupt subroutine. When an interrupt is 

detected by the computer it will execute the subroutine 

‘results’. 

Enables the computer to accept an interrupt from the FRA. 

Sends coded message, decoded thus 

$111 Enables and arms the measurement suspend and 

interrupt facility of the FRA. 

;2 Instruct FRA to take a single measurement. 

This line is necessary to prevent the computer finishing 

the program before all the interrupts have been received. 

Loads the plotting program into the memory of the computer. 

Subroutine 'results' 

83: 

84/5; 

Label at beginning of subroutine 'results'. Once the 

interrupt has been received the computer executes this 

subroutine. The subroutine transfers the current measurement 

data from the FRA to the floppy disc test file. 

Reads status byte. This should be 64 (decimal) when the 

measurement is completed. 
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86: Prints frequency response data in a + jb form to the test file. The 

a and b is transferred and decoded by the subroutines 'a', 

  

and 'Vans'. Subroutine 'fout' is also available to 

read the current frequency from the FRA. 

87-89: Reads the sweep control settings. If the sweep has been 

completed Z is set to 1 and control is passed to main program. 

90: If sweep has not ended the FRA is re-armed for the next 

measurement. 

CMOBB 

This program combines the two cantilevers with the coupling 

data to predict the coupled system response by the use of eq 2.7. 

The data for the sub-systems and couplings are retrieved from the 

data files and loaded into the matrices one frequency at a time. 

The matrices representing the cantilevers are inverted to give their 

apparent mass matrices. The resulting system apparent mass matrix is 

inverted to give the inertance matrix. All these matrices are 

complex, therefore, since the computer is unable to perform complex 

matrix arithmetic, the program uses method 2 in Appendix 4 to 

formulate real matrices. 

Each data file represents a frequency response element and is 

divided into blocks (records) of 32 numbers. The first eight 

numbers in the file are the sweep test parameters and are compared 

for compatability. Each subsequent pair of numbers is the real and 

imaginary parts of the frequency response at a frequency determined 

by its position in the file. 
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LINE NUMBER 

21-70: 

40-68: 

41-46: 

47-62: 

63-67: 

'I' loop. The data is loaded into 32 element vectors 

block by block by the use of subroutines 'Red D' and "Red Z'. 

The sweep parameters are checked in the first block by the 

subroutine ‘chData' and any mismatch causes the program to 

terminate. 

'K' loop. Processes data frequency by frequency. 

The inertance data for the sub-systems, is loaded into real 

matrices by the use of subroutine 'MAT' and are inverted 

to give the apparent mass matrices. 

The apyurent mass data of the sub-system and couplings is 

combined and loaded into a real matrix [R], this being the 

System apparent mass matrix. 

Matrix [R] is then inverted to give the system inertance 

matrix and the required elements are stored in data files. 
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APPENDIX 4 

INVERSION OF A COMPLEX MATRIX USING REAL MATRIX ALGEBRA 

INTRODUCTION 

The' Impedance Coupling Technique’ involves complex matrix 

manipulations including matrix inversion. The HP9825A was not able 

to perform this type of arithmetic since it could only manipulate 

real matrices. Therefore, a method was required to invert the 

complex matrix using real matrix algebra. Two methods were 

investigated, one using conventional matrix algebra and substitution 

whilst the second requires the forauiation of a specially coded 

real matrix. The latter method was taken from a paper by Predmore 

and Davis’’. 

Take, as an example, a simple 2nd order complex matrix. 

aii + jbii ai2 + jbi2 

a21 + jbai a22 + jb22 

METHOD 1 

This complex matrix can be rewritten as: 

aii ai2 bi biz 

a21 a22 bar b22 

or [A] + 3[B] 

If the inverse of this matrix be 

[ce] + j[D] 

such that 

({c] + j[p})? = [a] + 5[B) ve ee 

then ({A] + j[B]) C[e] + j[p]) = [1] +3. eq Aa.2 

where [I] is the identity matrix. 
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After some matrix algebra eq A4.2 yields the following 

equations: 

{c] = - [{B]™ [a] [pd] 7h Seq Ad 8 

[D] - fa] [B]* [a] + [B]? De. feqrAd.4 

Therefore, two Tavera ions, four multiplications and one matrix 

addition are required to invert this 2nd order complex matrix. 

METHOD 2 

This method utilises a coded real matrix which is twice the 

order of the complex matrix. The matrix is divided into sub- 

matrices which are always 2 X 2 and contain the complex element; 

the real part being repeated on the two diagonals and the imaginary 

part on the off diagonals, there being a change of sign on the 

lower off diagonal. The coded real matrix for the 2nd order 

complex matrix is shown below. 

' 
aii bi) ai2 biz 

' 
-bit aii | -bi2 aiz 
Soe (oe 

' 
a21 bai, &22 bo2 

' 

-b21 821) | =be2 a22 

This matrix may be manipulated as a real matrix so matrix 

addition, multiplication and inversion is possible. The resulting 

matrix is decoded to give the complex matrix in exactly the same 

way since the position of the elements is not effected by these 

manipulations. 
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