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SUMMARY

An experimental and theoretical investigation into the effect
of interface dynamic properties on the overall response of coupled
complex structures has been successfully completed. Experiments
were carried out on an idealised laboratory model comprising two
cantilevers coupled at two positions via simple connectors which
allowed only axial forces to be transmitted from one cantilever to
the other. Datz was collected from frequency response tests on the
uncoupled cantilevers and combined with theoretical connector data
by the 'Impedance Coupling Technique' in order to predict the
coupled system response.

It has been shown that the behaviour of complex coupled
systems can be predicted to an acceptable degree of accuracy up to
frequencies of 500 Hz. Further, the results show quite clearly
that in certain cases a considerable reduction in energy transmission
between two coupled structures can be effected within a narrow
frequency band by optimising on the dynamic characteristics of the
interface mechanism. In particular adjusting the stiffness of the
interface was found to be very effective in this detuning process
where relatively high coupling stiffness could be utilised without
appreciably altering the overall dynamic response of the system.

This thesis reflects the effort expended in developing the
required experimental technique, instrumentation and computing
software necessary to obtain and manipulate the experimental
results.
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NOMENCLATURE

flexibility matrix

flexibility sub-matrix including only translational elements

apparent mass, force/acceleration ratio; [A] apparent mass matrix

area
damping co-efficient

Coulomb, unit of electrical charge

decibel, logarithmic ratio

Young's modulus of elasticity

torce; {F}, force vector

gravitational unit of acceleration, normally 9.81 m/s2
complex magnification factor for nth mode of vibration
Hertz, unit of frequency, ie cycle per second

tensor parameter
Inertance, acceleration/force ratio . [1] inertance matrix

2nd moments of area; mass moments of inertia

imaginary number /i} tensor parameter

stiffness co-efficient; [k], stiffness matrix; kilo, ie x 10°
stiffness matrix including only translational elements

length

mass; metre, unit of length; milli, ie X 1073

mega, ie X 10°

nth mode of vibration

Newton, unit of force

pico, ie x 10 12

nth principol co-ordinate, displacement; pp, velocity;

Pn, acceleration

forces associated with principal co-ordinates
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]

generalised co-ordinate, displacement; q, velocity;

a, acceleration; {q}, displacement vector etc

generalised force; {Q}, generalised force vector

ratio of exciting frequency to nth natural frequency,

ie Q/wn

second, unit of time

time

volts, unit of electrical potential

co-ordinate, ie in x direction; displacement

co-ordinate, ie in y direction; displacement; §, velocity;

;, acceleration; {y}, displacement vector etc

Loss factor

damping ratio

mass density

moment; {7}, moment vector

rotation co-ordinate; angular displacement; {¢}, angular
displacement vector

characteristic shape function - nth mode

frequency

nth natural frequency

exciting frequency

stress, ie load/area






CHAPTER ONE

[ NTRODUCT | ON

Recent years have witnessed an unprecedented increase in
quantity and sophistication of dynamic based problems in engineering
which by necessity has required the Engineer to look deeper into
this subject area and to use up-to-date technology as an aid to
rationalise these problems. This activity has evolved not only
because of the increased awareness of noise pollution but also due
to the fact that engineering structures are becoming lighter (more
flexible) in the Engineer's quest for increasing power to weight
ratios.

The problems with which the Engineer is confronted are usually
categorised into noise radiation and vibration of structures though
are very often linked together in some cause and effect situation.
Nevertheless, the Engineer may find this division useful when
quantifying or choosing a possible solution. TFor example, does the
solution require sound-proofing or an adjustment in structural
flexibility? This division though, which is usually made on the
basis of frequency range, may not always be quite clear, so then
the Engineer may find himself in a 'grey area'. Such an area is in
the lower audio range of frequencies where either or both methods
of approach may be helpful.

The research program outlined in this report was instigated
by the Helicopter Cabin Acoustic Group based at RAE studying the
problem of cabin noise in a helicopter. The problem has many of
the ingredients previously mentioned. In particular, the modern
helicopter has a much improved power to weight ratio over its

O



forerunners but inevitably its noise problem has become severe,
especially in the lower audio range.

The Helicopter Cabin Acoustic Group has co-ordinated research
and development in various directions with a view to alleviate this
problem. The main areas of activity are: noise/vibration absorption,
reduction of exciting forces generated within the gear box and
reduction of vibration transmitted from the source (gear box) to
the receiver (airframe). The investigation outlined in this thesis
is confined to the latter area.

From previous noise and vibration experiments on a helicopter
carried out by Westland Helicopters Limited' it was observed that a
prominent peak of vibration and noise occurred at a gear meshing
frequency; this frequency is confined to a narrow frequency range
which is dependent on flying conditions. The initial hypothesis
was, that if the helicopter could be considered as a coupled complex
system involving the airframe and gear box/rotor as the two major
sub-systems coupled via an interface mechanism, then the interface
might be designed such as to optimise the helicopter response at
the meshing frequency and, consequently, the noise might be
significantly reduced. Because of the high modal densities of
these sub-systems, this de-tuning procedure is likely to be effective
over only a narrow frequency bandwidth.

The sub-systems to be joined are of such complexity it is
unlikely that a purely theoretical analysis would be of sufficient
accuracy to define the response of these systems to vibratory forces
at relatively high frequencies. Thus it is necessary to obtain the
dynamic characteristics of each sub-system by experiment. Having
gained confidence in the accuracy with which the sub-systems can be

measured, this data can be used in a theoretical examination to
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establish the effect of a particular spring/mass/damper interface
on the overall energy flow from one sub-system to another on the
assumption that vibratory forces are generated within one such sub-
system and are transmitted to the other.

This method of combining sub-~systems has become very popular
in recent years and is referred to as the 'Impedance Coupling
Technique' or the 'Building Block Approach’, L The technique
requires the measurement or theoretical prediction of the
mechanical impedance of each sub-~system at all the points where they
are connected in the assembled structure. The response of the
connected structure is then predicted by combining vectorily, since
mechanical impedance has magnitude and phase, the impedance data at
all the connecting points.

Mechanical Impedance was first introduced as an engineering
quantity by Professor A.G.Webster of Clark University in 1918 when he
presented a paper entitled 'A Mechanically Blown Wind Instrument' at
the Baltimore meeting of the American Physical Society. However, it is
only since World War II that this quantity has been used extensively in
the mechanical vibration of structures’ . Two significant text books
on this topic were published in this period: Bishop and Johnson's
'The Mechanics of Vibration' and Salter's 'Stead State Vibration'
(references 6 and 7 respectively). In addition numerous articles and
research papers have been presented. One of the earliest significant

@ ipn which they outline the use of

papers was by Kennedy and Pancu
mechanical impedance measurements in the vibration analysis of complex
structures. In 1958 the ASME held a colloquium on mechanical impedance
methods ® and by the mid 1960's Schloss reported on the accurate measurement

10,11

of mechanical impedance whilst Remmers and Belsheim'? presented the

results of a 'Round Robin' test which demonstrated the difficulty of
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attaining reliable and repeatable impedance data. This 'Round

Robin' test involved 19 organisations, each one measureing the same

set of three test structures. Experimental skill and ability

to select optimum measuring and force generating equipment was

shown to vary considerably between each organisation. An envelope

of these results showed calibration errors of 6 dB's, a spread of

25 to 35 dB's in magnitude measurement and large errors in resonant
frequencies which were, in some cases, not even detected. The

report ends with a useful 10 point recommendation for reliable measure-
ments.

During the past decade one of the most prolific researchers
in this field has been Ewins of Imperial College, London, who together
with research papers and reports, has produced a comprehensive
bibliography of Mechanical Impedance13 in which he has listed and
categorised some 284 references.

The general term 'Mechanical Impedance' is used to describe a
group of frequence response functions. These functions are derived,
for an elastic system, by comparing the exciting force (or moment)
with the resulting response at some point in the system. This
comparison is made at all frequencies in the range of interest and
is expressed as a complex ratio i.e. a quantity having both magnitude
and phase or, if preferred, having real and imaginary components.

This ratio may be expressed as the exciting force per unit response

or vice versa and, furthermore, the response may be expressed in

terms of displacement, velocity or acceleration. Thus the fre-

quency response function can be expressed in any of six different forms.
The terminology used to describe these ratios is only now in the
proceés of being standardised and Table I shows the most widely used

terms and particularly those recommended by BS 3015: 1976. When the
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response is measured at the point of application of the force then the
measurement is referred to as a direct or driving point measurement;
for example driving point impedance. If the force is applied to one
point in the system and the response is measured at another then the
measurement is called a transfer measurement; for example transfer

mobility.

Response
Displacement Velocity Acceleration
Ratio
Response/force Receptance Mechnical Inertance
mobility#*
Force/response Dynamic Mechnical Apparent
stiffness* impedance* mass¥*

* Recommended for use by BS3015: 1976.

Table I

Which one of the six frequency response functions should be used is
entirely a matter of personal preference since each function contains
the same information but in a slightly different form. Response
is usually measured by accelerometers and so inertance and apparent
mass have the advantage of being expressed directly in terms of the
measured quantities. However, mobility and impedance are extensively
used.

The most recent work on the 'Impedance Coupling Technique'
was successfully completed by Ewins and Silva ll'where they predicted
major structural resonances, within a 3-30 Hz frequency range, of a

helicopter structure with an externally coupled store carrier and store.
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*

This practical application proved to be a difficult and laborious
operation involving several procedures which are summarised as follows

The carrier assembly, which had several coupled sub-structures,
was coupled to the helicopter airframe at four points, each point
having a possible six degrees of freedom. Both the airframe and the
carrier required the experimental formulation of an impedance matrix
of order 24. This required a total of 1152 impedance measurements
at each frequency increment, although this figure was significantly
reduced due to experience, judgement and the use of reciprocity
relationshipsto a total of 29 measurements for each structure, see
Chapter 2, reference 14. Raw data taken directly from measurements
of these complex structures proved not only to be inconsistent in
terms of modal parameters but was of such quantity as to prevent their
use directly in the 'Impedance Coupling Technique .' The researchers
elected to proceed by a lengthy and detailed method of rationalising
and regenerating the raw data via modal analysis. This process not
only refines the raw data but also provides a more efficient means of
storing it 35

Clearly this work has many features which may be directly
applicable in the de-tuning exercise outlined earlier in this chapter.
To avoid repeating this work it was decided to concentrate on the
effect of interface characteristics on the coupled system response and
to implement this procedure in a higher frequency range. The work
described in this report was performed on a simplified model in order
to reduce the quantity of 'Impedance'* data as compared with that

measured by Ewins and Silva and to allow the use of unrefined

"Impedance' is used as a generic term for frequency response type
measurements.
-.7__



experimental data since the inaccuracies are not likely to be so
significant. The research, therefore, proceeded initially on a two
plate system with four connection points, but due to measurement
difficulties was completed on a two cantilever system with two
connection points. Hence this thesis is concerned for the main part
with the two cantilever system especially in the theoretical study
since this system is more easily solved by classical analytical

me thods .
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CHAPTER TWO

THEORET|CAL STUDY

2.1 INTRODUCTION

The first part of this chapter is a review of the 'Impedance
Coupling Technique'* applied to a two cantilever system coupled at
two positions by connectors which have dynamic properties. The
resulting system matrix equation shows how the sub-systems are
theoretically coupled by manipulating their individual ' Impedance'*
matrices. These matrices may be obtained theoretically or from
experiments on the sub-systems. Since, from a theoretical point of
view, each element within these matrices has mass, stiffness and
damping coefficients, then readily available models of cantilever systems
may be built up using the stiffness influence coefficients and mass
properties of beams. A study on a very simple two cantilever system
is shown to be a valuable aid in demonstrating and quantifying the
effect of rotational intertia/stiffness of the connectors on the coupled
system. Finally, frequency response functions are theoretically
generated for cantilevers of differing specifications by using classical
forced response theory. This approach has the advantage over the stiff-
ness influence coefficient techniques in that it is relatively easy to
include the higher modes thus producing a more accurate frequency response
function. These results are then combined, together with various
connector configurations, by the use of the 'Impedance Coupling Equation',*
in order to compute the coupled system responses. This part of the study
gives a more detailed representation of system behaviour and is comple-
mented by a discussion.

* 'Impedance' is a general term comprising all frequency response type data
involving motion and force ratios. See Chapter 1.
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2.2 ' IMPEDANCE COUPLING TECHNIQUE'*

The 'Impedance Coupling Technique' used in this work is described
in detail in references 2, 3, 4, 16 and only a brief review of this
theory as applied to two coupled cantilevers is given.

When two cantilevers are coupled by two connectors as shown in
Fig 2.1, 24 co-ordinates are necessary to completely describe the
system frequency response at the four connecting points, six co-ordinates
per point allowing for translation and rotation in three planes.

However, if we assume that translation and rotation in two planes
are not excited, then the number of co-ordinates is reduced to 8, 1.e,

one vertical translation and one rotation at each point.

q? q1

S I N
r‘t : i ]1 Top Cantitever
Connectors

q4 Q3
q%’/ 2> q?’(' jg\

\ \\\\ \

Bottom Cantilever

e

FIG 2.1 TWO CANTILEVER SYSTEM COUPLED AT TWO POSITIONS

Assuming a linear elastic system then the apparent mass matrix,
[A], is defined thus:-
[A] {4} = {qQ} ... eq 2.1
where {&} is a vector of translational and rotational accelerations.
{Q} is a vector of forces and moments.
The inertance matrix, [I], is defined as:-

1] {Q} = {q} T

* This coupling technique is applied using apparent mass since acceleration
was measured in the experimental work.
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so that

[1] = [‘a‘]m1 STTl - e

Two other sets of related matrix equations may be formulated
in terms of displacement and velocity as explained in Chapter 1.

The dynamic behaviour of each sub-system, when considered in
isolation, may be described by its own matrix equation. In
particular, the two cantilever system of Fig 2.1 may be considered
to be composed of three sub-systems; the top cantilever, the
coupling system and the bottom cantilever. The independent behaviour
of each sub-system is described by the following equations:-

(Al (i}, = {Q}y

[A]c {ﬁ}C {Q}C M

(Al {@)g = {Qlg

where the subscripts have the following meaning:-

T - top cantilever

B - bottom cantilever
C - coupling system

S - coupled system

For convenience let the coupling system matrix equation and the
coupled system matrix equation be partitioned such that those
co-ordinates associated with coupling points 1 and 2 are together
and those of points 3 and 4 are together.
ie
[A11] [A12] e {Q}~ré
[A21] [A22] {q)*** {Q}3:"
Then, if the system is to be coupled at these four connecting points,

the forces at the points must be equal to the algebraic sum of the

forces in the sub-systems

e YO



{Q}T + {Q}Cl,z -l {Q}Sluz
PR - R
and {Q}B + {Q}Ca’h = {Q}Saill
and the accelerations must be compatible such that
{a}T = {a}clsz s {&}Sl.z
eq 2.6
sud. {8l = (gl = (gl

Using equations 2.4, 2.5 and 2.6 the coupled system apparent mass

matrix becomes

alg = [laly + [an1le  [ar2]g
s el 2Rl
[az21]¢ (aAlg + [A22]¢

Since this matrix equation will be of order eight the amount
of experimental data required for each sub-system matrix will be
quite substantial. For example, the top cantilever matrix will
require 16 frequency response measurements at each frequency. These mea-
surements will have a mixture of translation and angular responses
due to transmitted forces and moments. This clearly would add
complications to this initial experimental demonstration and it can
be seen that the amount of data would be significantly reduced if
the transmission of moments could be neglected, ie from 16 to 4
measurements at each frequency for the top cantilever. In order to
investigate this possibility a model of this coupled system was set
up using stiffness influence coefficients and mass properties of

beams .
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2.3 DYNAMIC ANALYSIS OF A TWO CANTILEVER SYSTEM

Y
e TR, S
vl
? Yz
4 @) & /i\

FIG 2.2 SIMPLE REPRESENTATION OF A TWO CANTILEVER SYSTEM COUPLED
AT THE END POSITION ALLOWING 4 DEGREES OF FREEDOM

A mathematical model may be obtained for the simplified rep-
resentation of the two cantilever system shown in Fig 2,2 to demonstrate
the effect of coupling the cantilevers at their free ends. The connect-
or is allowed both linear and rotational stiffness together with mass and
inertia.

if we assume small oscillations then each cantilever may be rep-
resented by a single dynamic element which utilises the consistent mass

matrix, see references 17 and 18.

For cantilever 1
EI [ 12 -62]- w’pA [156% -2222] yi] = [Fl]
23 |-t 4g? 420 |-2292 497 3 T4

eq 2.8

A simple connector having four degrees of freedom may be represented

by:-
kK =k 0 0 m 0 0 0 vi F,
=0 0 [=wlo m 0 0 y2| = | Fa
0 0 Kk, <=k o & T 0 b3 T3
0 0 -k k. 6 6 o I dy T
eq 2.9
The coupled system matrix equation then becomes:-
124K ~K 8L 0 156+4M 0 -220% o L 1 F,
EI|-K 12+K O -64 - w’pAl o0 156+M 0 -220 y2|= |F2
23]-62 0  42%+K, -K. 420 |-220° 0 4%+1" 0O b3 Ty
0 -64 -K,  4224K, 0 -220 0 4L%+17|}{du T4
eq 2.10

o 14



where

3 .420
g = &2 i RAZ
EI PA
kpl 3 L 1450
Kp = =& I'=
EI PA

If k,. is small then the connector will offer negligible
torsional restraint to the cantilevers. So, if there are no
externally applied moments then the rotations will be dependent
on the deflections which will reduce this 4th order matrix equation
to an order of 2. For example when a rotational stiffness element
is connected to the tip of a cantilever the rotation at the tip can be
assumed to be dependent on the deflection to within 1% when the ratio
of rotational stiffness to cantilever rotational stiffness (er/EI) is
less than 1%*

To investigate this concept more thoroughly a static model
of a two cantilever system was constructed which was coupled at two
positions by pure linear stiffnesses. This was a valid exercise
since it can be seen from eq 2.10 that the inclusion of the mass matrix

does not change the fundamental nature of the analysis, only the

y
Rfsff\1 ﬁtrf<
ky ks
Yi Y3
?s 27
! P,

! S

complexity.

ARG

i

FIG 2.3 STATIC MODEL OF TWO CANTILEVER SYSTEM COUPLED AT
TWO POSITIONS WITH PURE STIFFNESSES

The effect of end restraint on the natural frequencies of cantilevers
is discussed in section 6,2 of this thesis.

= 8=



Each cantilever is allowed 4 degrees of freedom and has a stiffness
matrix equation of the form

[k] {y} = {F} R R

which includes rotations.

The overall system stiffness matrix equation is obtained and is

of similar form to eq 2.11. It may be partitioned such that the

rotational elements are separated as shown:-

[kii] [kiz] {y} = |{F} . . eq 2.12
[k21] [kz2] {¢} {t}
If there are no externally applied moments then:-
{1} = {0} - T s

The partitioning of equation 2.12 gives two matrix equations:-

[k11] {y} + [k12] {¢} = {F} 2o em 2R

[k21] {y} + [k22] {9} = {0} . 5 . eq 2.15
Equation 2.15 gives

{0} = = [k22]7" [k21] {y} . v . eq 2.16

and by substituting eq 2.16 into 2.14

([k11] = [ki2] (k22170 [k21]) {y} = {F} . eq 2.17
or (k] {y} = {F} i oa s ea BB
where [k] = ([ky1] - [ki2] [kz22]™' [ka1]) s v o= g 2009

Equation 2.17 reduces the stiffness equation to a 4th order since

the angular deflections are dependent on the translational deflections.
Further, the inversion of eq 2.18 yields:-

[a] {F} = {y} . . . €q 2.20
where [a] = [k]™' = ([ki1] - [kiz] [k22]™' [k21]) 'eq 2.21

[El is the sub-matrix of the system flexibility matrix which consists

of only the translational elements. This sub-matrix, defined by

eq 2.21, may be easily proved by matrix inversion via partitioning,

see Chapter 1, reference 18,
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Equation 2,20 is particularly useful since in statics it is
experimentally more practical to measure the flexibility matrix and
then invert to obtain the stiffness matrix. This is also true for
the dynamic case where the mobility* matrix is measured and inverted
to give the impedance** matrix. Indeed this is logical since, for

example, each element in the dynamic stiffness matrix follows the form

kKap + JCapfl - map?’ = Sab
where the
damping (C) is assumed to be viscous. The static case is when
2 = 0 and so the dynamic stiffness coefficients disappear leaving
the stiffness coefficients.

A numerical example on the use of equations 2.18 and 2.20
using simple beam theory is shown in Appendix 1. The example
demonstrates the implementation of the static equivalent to the
'Impedance Coupling Technique'where the translational elements of the
flexibility matrices are measured, inverted, then coupled together

to formulate the system stiffness matrix.

2.4 FREQUENCY RESPONSE OF CANTILEVER BEAMS

The dynamic and static analyses of section 2.3 demonstrated that,
providing the connectors offer little angular constraint, the rotational
motions are dependent on the flexual motions in the system shown in Fig 2.1.
Therefore, only the vertical translational elements are required in the
cantilever matrices of the 'Impedance Coupling Equation.' It is
theoretically and experimentally’ easier to obtain the inertance matrix
of the cantilever shown in fig 2.4 which may then be inverted as in eq 2.3,
to obtain the required apparent mass matrix used in the 'Impedance Coupling
Equation' eq 2.7.

* or receptanceor inertance

** or dynamic stiffness or apparent mass

see section 4.2
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Equation 2.2 for the cantilever shown in Fig 2.4 is:-

Ty - Tz F = 1
. eq 2.22
Iz1 Iz2 Fa y2
Providing there is only one input force, then:-
;1
Iij = ;;- i,j=1,2 or e e €0 2183

The inertance elements defined by eq 2.23 may be found
by classical forced response of beam theoryza. A summary of this
theory is as follows:

The free vibration solution is obtained in order to find the
natural frequencies and mode shape functions. Reference 21 gives
these functions together with the solutions to the frequency
equation for the first five modes of vibration and formulae for
obtaining an estimate for the higher modes. The forced response is

then solved by using energy methods and transforming into principal

co-ordinates such that

{1
Y::§:¢n Pn woaow o eq 2,24
n=1
where y is the displacement response

n is the nth mode of vibration

¢n is the characteristic function of the beam (mode
shape) in its nth mode

and pp are the principal co-ordinates.
- I8



Then by using Lagrange equation the equations of motion become:-
2 TaLL L
19ﬁf¢n2 dx | iin+{0f¢n2 dx | pn +{E1f¢>n2 dx } pp = Py
(3] o
j w6 225
where Pp are the external forces associated with the principal
co-ordinate system.
The integrals of eq 2.25 are readily obtained from reference 22
for all possible boundary conditions. Therefore, using the solutions
to the integrals for a cantilever and transforming back into the x,y

co-ordinate system assuming harmonic motion:-

e Fsinﬂt2:¢n(a)¢n(b) -Hp

y(d pAL

eq 2.26

where H, is the complex magnification factor and if Q/w, = rq

(1 - rp’) - j2Cry

e (1 - rp?)2 + (20ry)?2 i s ey B3R

Acceleration response is:-

- 0?FsinQt f:cbn(a)q:n(b) Hn

v 8
y () g eq 2.2
pAL e Wn
For peak inertance, I,0
m
a) (b) H
I12() :%: DMJZ("“( on R .. eq 2.29

In practice equation 2.29 is only summed over the first m modes as
shown and is a good approximation when Q<<mm. The inertances

shown in section 2.6 were obtained by summing over the first 15 modes.

2.5 FREQUENCY RESPONSE OF CONNECTORS

In order to complete the theoretical model of the cantilever
system, it was necessary to obtain theore@ical frequency responses of
suitable connectors. Initially, the connectors were represented by
simple stiffness elements and as such it was not necessary to obtain their
frequency response since they could be added to the system matrix as
demonstrated in equation 2.10, However, in addition to stiffness, the

- 18 -



experimental work utilised connectors with mass and damping properties
which were distributed along the length of the connector. In
particular, a rubber connector was used to demonstrate low stiffness
coupling and this connector was shown to have complex dynamic properties.
Although both connectors used in the experimental work could be idealised
to a 2 degrees of freedom model, since only the first mode was excited
in the frequency range, it was first necessary to investigate this
assumption by comparing the experimental frequency response of the connect-
ors together with theoretical data obtained by a 2 degrees of freedom
model and a more accurate model using the classical theory of longitudinal
vibration of rods.

Only two translational coordinates were required to describe the
frequency response of each connector* and these coordinates were positioned
at the boundaries of the connectors. Therefore, the analysis is simplified

to computing four elements in the apparent mass matrix as shown in eq 2.30.

SNy
| Ay A+ Fq

=
e ot
A3y Azsl|ya Fs

CONNECTOR

...eq 2.30

Each element in the apparent mass matrix is computed or measured by

'grounding' or 'blocking'** each coordinate in turn giving the following

relationships.

The connectors were designed to satisfy the conditions discussed in
section 2.3

Coordinate y3 was selected to conform to the coupled system coordinates

See section 4.7 for a detailed description of a 'blocked Impedance' test.
- 20 - '



]

Ais £ :i- = 1.3 when §1= 0
3'3
r s B 231
= -——i-‘- = v =
Ail g i 1,3 when Y. 0
Yy
To find ﬁ.. i: j = 1!3
e O e )

(i) Two Degrees of Freedom Model

The connector may be discretised by concentrating its mass at
each end and by connecting these rigid masses by massless stiffness
and damping elements. The resulting apparent mass equation has

the form:

L= ha) = dg 22 Figl 7= [P . eq 2 9
k » X A k e =
T @ tig m -gx) - 3g| [ [
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(ii) Forced Response of Rods in Longitudinal Vibration

The apparent mass elements defined by equations 2.31 may be

obtained by the classical theory of forced response of rods in

13

longitudinal vibration . A summary of this theory is as
follows:
71 Ty @
;::: E, A,p, o | =g F, sinfl t
g x ‘ e Y|

GROUNDED ROD IN LONGITUDINAL VIBRATION

The wave equation for the rod shown above is:

dyx) +Pyx = o0 ...eq 2.33
dx”
where 62 = ﬁip
E

The boundary conditions are -

]
o

(1) y (o)
«ee-€q 2.34

]
=1

(ii) o) dy, =

|

dx

=

which gives the following solution to the wave equation

when x = §
Fl
— .. = m cos B R
2 e B LTt <+ + eq 2.35
(1]
i B & sing g

where me is the mass of the rod.

.



Equation 3.5 may be modified to allow for

(a) a concentrated mass at the free boundary

(b) the internal damping of the rod.

a) Concentrated Mass at the Free Boundary

Equation 2.35 may be modified to allow for concentrated masses
at the ends of the rod by the use of the 'Impedance Coupling Technique'

as follows:-

It

X
!
o
+

it

The apparent mass equation of the rod and end mass is:-

g = ihg v A oo OF 236

Since for the mass

A =m
m
Therefore F1
L = - m, cos B 2 + m v - eq.2.37
.y.l i
g 2 sing g
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b) Internal Damping of the Rod

Equations 2.35 and 2.37 may be further modified by introducing
internal damping which may be taken into account by expressing Young's

Modulus of elasticity as a complex quantity such that -

*
E(Q) = E(2)@A+38¢2)N ... g 2.38
where é is the loss factor. In general the complex modulus
varies with exciting frequency as shown. Equations 2.35 and 2.37

are modified by replacing B with £ * which is complex and is

related to E* by

Therefore

=
— = =my cosf Q e <+ eq 2.39

¥, 8‘1 i B‘l

The complex trigonometric functions in eq 2.39 are manipulated by

the following identities -

{ =4 h -~ 4 sin sinh
cos (p+jq) cos p cosh q - J P 4 ... eq 2.40

sin (p+jq) = sin p cosh q + J cos p sinh q

- 24 -



To obtain E* from Experimental Results

It was found during the 'blocked Impedance' tests on the rubber
connector that the complex modulus varied significantly over the fre-
quency range. It was therefore necessary to obtain values of Ex*
at selected frequencies in order to improve the theoretical model.
The apparent mass Fl/;l of the rod together with an end mass was
measured and an estimate of E* was computed via Newton's iteration

formula. From eqs 2.36 and 2.37 the apparent mass of the rubber

rod is -

AR = F, - m = _EHCOSB"'. sy S 81
*
v, B lsinﬂ-h

Let b =84 then eq 2.41 becomes

A = -mp cos b

b sin b

Let
g (b) = m,cosb + A

b sin b

then by using Newton's iteration formula:

bn-+1 - bn SR (bh) ...eq2.42
(b, )
where : 2 .
g (b) = =« mR b cos b sin b + ARb sin b -...eq y
&) m, (cos b sin b 4 b)

Hence a value of b and therefore E* may be computed at a selected

frequency.
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2.6 APPLICATION OF 'IMPEDANCE COUPLING TECHNIQUE' TO THE TWO
CANTILEVER SYSTEM

The 'Impedance Coupling Equation'. eq 2.7 has been simplfied
to a 4th order equation as shown in rig 2.5. The cantilever
inertance matrices may now be generated by experiment or from classical
theory and the connectors may be modelled by a simple two degree of
freedom system with 2 masses, a spring and a damper. Various computer
programs were written to generate cantilever and connector apparent mass
data using equations 2.29 and 2.32 and to manipulate this data according
to equation 2.7 in order to compute the coupled system response and the
effect of dynamic characteristics of connectors on the system response,

These programs are discussed in section 3.6 of this thesis.

2.7 THEORETICAL RESULTS OF TWO CANTILEVER SYSTEMS

A selection of frequency response curves were theoretically
generated for some cantilevers. The dimensions of these cantilevers
are tabulated in Table 2.1 and were taken from existing cantilevers
in order that this study might follow as closely as possible the
experimental work. This data was coupled with theoretically generated
coupling data in various system configurations as shown in Table 2.2.
Some of the coupling dynamic characteristics were also purposely
chosen to represent previously manufactured connectors.

It was necessary to provide a small amount of damping in the
generation of inertance data for the cantilevers in order to avoid
infinite values of inertance at natural frequencies. A damping ratio
(C) of 0.05% was selected for this purpose and was considered constant

for all the modes.
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CANTILEVER LENGTH WIDTH THICKNESS
IDENTIFICATION mm mm mm
a 973 63.5 6.35
b 930 50.8 6.35
c 963 63.5 12.7
d 930 50.8 6,35

TABLE 2.1 CANTILEVER DIMENSIONS

Description of Theoretical Results

Figures 2.6 - 2.9 show the theoretically generated frequency
response curves for the four cantilevers obtained by equation 2.29.
The graphs show inertance magnitude within the frequency
range 30 - 500 Hz at discrete frequency intervals of 0.5 Hz, The
inertance magnitude is expressed as:-

| 5] = |1.I*|% . ¢ v €q 2.44

where T* is the complex conjugate of I. The phase is not shown on

any of these graphs since it predictably changes from in-phase to
out-of-phase at resonances and antiresonances and is not of direct
significance in this study.

Figures 2.10 - 2.14 show the coupled system inertance
magnitudes as described in Table 2.2 The curves shown
represent a quarter of the possible system matrix and these were
selected to show coupling effects. Since reciprocity was assumed
then these matrices are symmetric and so:-

Iij = 1ji .« . eq 2.45
Figures 2.15 - 2,18 show the effect of varying the coupling stiffness
on frequency response of the system at selected frequencies. In
each of the examples neighbouring frequencies are overlaid to give
an indication how these contours vary with frequency. This effect

would be more ideally represented in three dimensions.
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2.8 DISCUSSION OF THEORETICAL RESULTS

The frequency range of these results was purposely chosen to
be 30-500 H, such that direct comparisons could be made with the
experimental results. Very low frequency response was of no part-
icular interest to this investigation. Also the equipment was not
ideally suited to operate at frequencies less than 30H, Therefore
the frequency response in the range 0-30H, is omitted with the conse-
quence that the first peak in the plots are the cantilever's second
natural frequency.

The curves for cantilever d (Fig 2.9) show that position 3 is
very close to a node position for the third and fifth modes of
vibration. The frequency responses of the system indicate an increase
in modal density which is due to the coupling of the two cantilever
sub-systems. Some of these additional modes are very sensitive to
the coupling stiffness. In particular, the curves of system 1 and 2
are quite different, system 1 being fairly rigidly coupled,whereas system
2 has a flexible coupling. However, both curves show the presence of
modes that are of similar frequency to the individual cantilever modes
and these modes do not seem to be so sensitive to coupling

stiffness. This is also true in system 3 where the two cantilevers
have significantly different cross-sections, although some of their
natural frequencies almost coincide, eg cantilever c has its third
mode around 200 Hz whereas cantilever d has its fourth mode at this
same frequency. These effects are shown more clearly in the graphs
of inertance against coupling stiffness at selected frequencies. For
example, Fig 2.15 shows the effect of coupling stiffness on inertance
I13 for system 1. It is seen that at stiffnesses of about 500 kN/m
and 1500 kN/m the system will have a resonance at 400 Hz, but will

have an antiresonance at this frequency if the coupling stiffness
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is 800 kN/m. Therefore, if this system needs to be detuned at 400 Hz,
coupling stiffnesses of 800 kN/m will be selected. Conversely other
resonant frequencies are not so easily detuned and this is seen in
Fig 2.16 where the coupling stiffness does not have much effect on
inertance above 400 kN/m. Below this stiffness the coupling is

fairly soft. The overlaying curves in this graph are the contours

of a resonant frequency which is near to the top cantilever's

fourth natural frequency.

Figures 2.17 and 2.18 show similar characteristics for system 3.
In this case the contours of Fig 2.17 show that this system is
particularly sensitive to changes in frequency around 140 Hz,

However, detuning is still possible at 1000 kN/m.

Figures 2.13 and 2.14 show the effect of coupling two identical
cantilevers. In Fig 2.13 the extra coupling modes are just evident
even though the stiffness of the coupling is quite rigid. Figure
2.14 is the same system with a much higher coupling stiffness. These
curves have similar characteristics of cantilever a, but with a
general fall in inertance level of 6 dB's. This is due to the combined
system behaving effectively as a single cantilever with twice the mass and
stiffness of cantilever a.

In order to clarify this difference in the behaviour of coupled
system modes, that are either sensitive or non-sensitive to coupling
stiffness, further coupled system models were theoretically generated
using a series of concentrated rigid masses linked together with massless
stiffness elements. These models allowed a quick but comprehensive
representation of coupled systems which clearly show the effect of coupling

stiffness on mode shapes and natural frequencies.
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Three examples of coupled systems are shown in Fig 2.19 to 2.22
together with their mode shapes and natural frequencies. In all three
examples the coupled system is represented by eight masses linked by
nine stiffness elements. Each of the two sub-systems within the coupled
system model is represented by four masses together with three stiffness
elements and a further stiffness element at one end which is used to
ground the system, the other end being free. The sub-systems are
coupled at their free ends by a stiffness element which is situated in
the middle of the model diagram. The three examples were selected to
represent three combinations of coupled systems with sub-systems of
differing dynamic properties. These are, coupleé systems with

1) sub-systems of similar dynamic properties such that
their natural frequencies occur in the same frequency
range (as Tig 2.19)
(ii) sub-systems in which their range of natural frequencies
overlap each other (as Fig 2.20)
(id1} sub-systems in which their ranges of natural frequencies

do not overlap (as Fig 2.21).

The natural frequencies and mode shapes of the 2 sub-systems
and the coupled system are shown throughout. Two system character-
istics are presented for each example and these represent both low and
high stiffness coupling.

The first example shown in Fig 2.19 offers the most representative
model of the cantilever systems investigated in the preceding paragraphs

since the cantilevers were of similar dimensions and as such exhibited

similar dynamic properties. In this example the system coupled with a
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low and a high stiffness shows how the modes are affected by the
coupling stiffness. When the coupling stiffness is low the modes

occur in pairs with the natural frequencies of each pair near to the
corresponding sub-system natural frequency. The mode shape within
each pair also corresponds to the sub-system mode shape the only differ-
ence being that the coupling stiffness element becomes active in the
second mode of each pair which allows a 180 degree phase shift across

the coupling element but with each sub-system retaining its individual
shape. Increasing the coupling stiffness has, therefore, a significant
effect on these particular modes. In contrast, the first mode of

each pair is not affected by the coupling stiffness in mode shape or
natural frequency. In this example the low coupling stiffness is 10%
of a typical sub-system stiffness and as such becomes active at the

second mode. The high coupling stiffness is one thousand times greater
than a typical sub-system stiffness and this does not become active until
the eighth mode. In consequence, the second mode in each pair is moved
up the frequency range.

The second and third examples shown in Figs 2.20 and 2.21 both
indicate that the coupling stiffness has an effect on all the naturaj
frequencies and mode shapes., In general, an increase in coupling stiff-
ness increases all the natural frequencies and causes a change in the
mode shapes.

When the coupling stiffness is very high the natural frequencies
and mode shapes are changed to such an extent that each mode resembles the
next higher mode of the low stiffness coupled system. The exception
to this is the highest frequency mode where the mode shape is dominated
by the activity of the stiffness element and its natural frequency is very

high. When this coupling stiffness becomes infinite, such that the two
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middle masses are rigidly connected, the number of generalised coordinates
for the coupled system will be reduced to seven, thereby giving seven nat-
ral frequencies and so the 8th mode will not be present.

The effect on natural frequencies and mode shapes can be clearly
seen in Fig 2.22 where the 4th, 5th and 6th modes of the second coupled
system (of Fig 2.20) are shown with intermediate coupling stiffnesses,

The biggest change occurs when the coupling stiffness element becomes
active.

Comparing the results of the cantilever systems with these models
indicate that the first example is the most representative of the cantilever
systems and this is because the cantilevers also had similar dynamic
properties. Therefore it follows that a stiffness element connecting
two cantilevers will not affect the cantilever modes that do not require
any activity of the stiffness element. For example if two cantilevers
are connected at their free ends, then increasing or removing the stiff-
ness will not affect the cantilever modes in which the ends vibrate in
phase to each other. Conversely the modes in which the ends vibrate
out of phase to each other will be greatly affected by the coupling stiff-
ness. Introducing extra restraints at other coordinates is therefore
likely to have an increasing effect on all the modes since, for example,

a rotational stiffness element connecting the free ends would need to

become active at all the cantilever modes.

In conclusion, the theoretical study has shown that it is
possible to detune a coupled system which comprises two complex structures
connected at two positions, This is accomplished by optimising on
coupling characteristics at selected frequencies. In particular,
the stiffness was shown to have the greatest effect within the frequency
range analysed, i.e. 30 - 500 H,
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CHAPTER THREE

INSTRUMENTAT ION AND COMPUT ING SOFTWARE

3.k INTRODUCTION

During the investigation it was necessary to continually
revise and update instrumentation techniques in order to attain the
required level of accuracy. In particular the measuring instrumen-
tation changed from an analogue to a digital system allowing greater
frequency discrimination with a dynamic range in excess of 80 dB's,
The digital system finally adopted utilised a digital Frequency
Response Analyser controlled by a desk-top computer. The computer
was also used to process both experimental and theoretical data in
the Impedance Coupling Equation.' Extensive software had to be

developed to perform these tasks.

3.2 TRANSDUCERS AND SIGNAL CONDITIONERS

Transducers

D J Birchall miniature piezo-electric seismic accelerometers
were used. These transducers were approximately 3 grams total mass
with a nominal charge sensitivity of 3 pC/g. Bees wax was usually
used to attach these accelerometers to the test structure.

A Bruel and Kjaer piezo-electric force transducer type 8200
was used to measure the force input to the test structure. The
force range of this transducer is 1 kN tensile to 5 kN compressive.
Its total mass is 21 grams and it has a nominal charge sensitivity

of 4 pC/N.
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Signal Conditioners

Charge amplifiers, type CAl, manufactured by Environmental
Equipment Ltd, were used to condition the output from the transducers.
The gain of the amplifier can be adjusted by a multiturn potentio-
meter. These charge amplifiers give a 4.6 volt dc bias to the
conditioned signal. Therefore, it was necessary to construct a dec
balancing  circuit which was inserted between the amplifier and
the analyser in order to utilise the full dynamic range of the
instrument.

Calibration

The transducers together with a B & K Standard accelerometer
were mounted on a vibrator table and subjected to a known level of
excitation at various frequencies. The gains of the charge
amplifiers were adjusted such that their output sensitivities were
set to 100 mV/g for the accelerometers and 100 mV/N for the force
transducer. Details of the calibration procedure and the frequency
response characteristics of the transducer/charge amplifiers are

recorded in Appendix 2 of this report.

3.3 ANALOGUE DYNAMIC ANALYSER SYSTEM

At the beginning of the investigation sweep tests were
performed using an analogue spectrum analyser system as shown in
Fig 3.1. The system centred around two dynamic analysers: these
were essentially bandpass filters tuned such that their centre
frequencies were varied over the frequency range of interest. This
is effected by a B & K sweep frequency oscillator which also drives
the electro-dynamic vibrator via a power amplifier. The filtered
force signal is fed back to a compressor circuit in the oscillator
and forms a feed-back loop which controls the force input to the

structure under test. Since the force input remains constant then
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the filtered acceleration signal is proportional to the frequency
response. The dynamic analysers have a constant 100 k Hz phase coherent
filtered output which may be compared to give the phase difference between
the force input and accelerometer signals. Both analyser and phase
meter have dc outputs which are proportional to acceleration and
phase respectively and this output is used to drive the X-Y plotter.

It was apparent, after taking preliminary sweep tests, that
this method of instrumentation had serious limitations. The
compressor circuit which controlled the force input was only
capable of giving a constant force within * 3 dB limits using a
realistic sweep rate; the worse conditions were encountered at the
high rates of change of force input in the region of resonances due
to the lightly damped structures under test. Another disadvantage
was that the outputs from the analyser and phase meter are of
analogue form which require digitising in order to manipulate the
data in an 'Impedance Coupling Technique.' This was not possible
with the equipment available at that time. Fortunately, a Solartron
Frequency Response Analyser and a Hewlett Packard 9825A desk-top
computer became available which provided all the advantages of a
digital analyser system. Work was then discontinued on the analogue

system.

3.4 FREQUENCY RESPONSE ANALYSER

The FRA analyses two input analogue signals by a correlation
technique using its own signal generator output. It, therefore,
operates in a closed loop measuring system where the signal
generator output is used to excite the structure under test. The
instrument is programmable such that a sweep test may be set
up by inputting frequency limits and incremental frequency steps.

A further facility of the FRA is a digital interface; this allows a
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computer to be used as a remote controller and data acquisition
system. At each frequency the magnitude and phase measurement
from both input channels is passed to the computer.

If force input and response is measured then the frequency
response may be computed without the need to compress the force
input as in the analogue analyser system. This insures a more
accurate measurement providing the system under test is linear
elastic since the force may vary considerably during the sweep.
Fig 3.2 shows how the force, response and computed inertance
vary with frequence during a test on a cantilever. The curves
show the importance of computing the frequency response since the response
characteristics on their own give an inaccurate representation of
natural frequenciesz*. In fact the response does not alter at the
first natural frequency. It is only by observing the force input
that this natural frequency is detected.

The dynamic measuring range of this instrument is potentially
very large, in excess of 80 dB's (attained during experimental work),
due to its ability to automatically select its measurement range

from 10 mV to 100 V in 20 dB steps.

3.5 CONTROLLER AND DATA ACQUISITION SYSTEM

A Hewlett Packard 9825A desk-top computer was used to control
the FRA and to accept the digital results. The results were then
passed to a mass store, which was a floppy disc capable of storing
up to 0.4 mega-bytes. Hard copy output was attained by the use of
an X-Y Plotter. These peripheral devices were connected to the
computer via an interface bus system. Several bus systems are
available for this computer but only two systems were necessary for
this work. A 16 bit input/output bus was used for the mass storage
since this bus has very high data transfer rates. For the FRA and
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X-Y plotter a General Purpose Interface Bus (GPIB), IEEE 488 Standard

was used. Fig 3.3 shows the instrumentation set-up for the frequency

response experiments.

HP 9825A Desk-Top Computer

The 9825A has a work space of 22 k bytes of random access
read/write memory. The program language HPL is interpreter type
which is stored in Read Only Memory (ROM) and is similar to BASIC.
The language allows matrix manipulations and was found to be
adequaté for all the necessary processing of theoretical and
experimental data.

IEEE 488 Standard Interface Bus

This bus allows data to be transferred bi-directionally
between computer and peripheral device via 8 data lines in an 8 bit
parallel, byte serial mode. A further 8 lines are used for bus

management and data validation purposes.

3.6 COMPUTING SOFTWARE

During this work various computer programs were written and
developed to enable the computer to perform its task as controller
to the FRA and to manipulate or generate 'Impedance' data via the
procedures outlined in Chapter 2 of this thesis. Some of these
programs are summarised below and a more detailed description may
be found in Appendix 3.

SWFRA: To set up the FRA for a sinusoidal sweep test and

read the measured data from the FRA internal store
during its incremental sweep. The data is then

passed to the floppy disk store.
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PMOB :

IMPC:

CMOBB :

TCMOB :

DET:

A general plotting program for experimental or
theoretical frequency responses which plots magnitude
and phase against frequency.

Computes the theoretical coupling apparent mass

matrix, based on a simple two mass, spring

and damper system, for a specified frequency range.

This data is then passed to the floppy disk.

'Impedance Coupling' program for 2 beams and 2 connectors.
Computes system inertance as in equation 2.7 (4th order
matrix equation). Inputs experimental or theoretical
frequency response data for the beam sub-system and combines
them with the coupling data previously computed by
"IMPC* .

Computes theoretical inertances of

cantilever beams, as equation 2.29, over a selected
frequency range. Required inputs are: dimensions of
beam; modal damping ratios and number of modes to be
summed.

Computes a particular system inertance with differing
counling stiffnesses at selected discrete frequencies.

Plots results in graphical form.
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CHAPTER FOUR

DEVELOPMENT OF EXPERIMENTAL TECHNIQUE
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CHAPTER FOUR

DEVELOPMENT OF EXPERIMENTAL TECHNIQUE

4.1 INTRODUCT ION

The object of the experimental work was to verify the
predictions made by the theoretical study in which a coupled system
could be detuned at chosen frequencies by careful selection of
connector dynamic characteristics.

This work involved the measurement of the sub-systems inertance
matrices which were then processed together with connector informa-
tion in the 'Impedance Coupling Equation' 2.7 as shown in Fig 2.5.
Since the manipulation of the experimental results involved three
matrix inversions it was essential that the measurements should be
very accurate. This chapter outlines the development of the
techniques required to measure these inertances covering the initial
experiments on a 'free-free' plate and then progressing to work on
the two cantilever system where the measurements proved to be of
sufficient accuracy to be used in the'Impedance Coupling Technique'
The computer controlled Frequency Response Analyser System, as
described in section 3.5 and Fig 3.3, was used throughout this
experimental work.

The predicted system response was then checked by connecting
the two cantilevers together. Two different types of connectors
were used, a 'rigid' piano wire connector and a 'flexible' rubber
connector. Both connectors were subjected to 'blocked Impedance'

tests in order to obtain their frequency response characteristics.
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4.2 EXPERIMENTAL MEASUREMENTS

The 'Impedance Coupling Technique' requires the measurement of the
apparent mass matrix of each sub-structure to be coupled. Direct
'Impedance'’ type measurements of a complex structure is often a difficult

or even impossible task. In order to measure each element in the
matrix the translational and rotational responses at all except one
of the co-ordinates of the structure needs to be restrained to zero.
Measurements are then taken of the response at the free co-ordinate
and of the restraining forces and moments at all other co-ordinates.
Each co-ordinate in turn is left free until all the elements in the
matrix have been obtained. This procedure is termed as a 'blocked
Impedance‘%est.

The alternative to this test is to measure the inertance matrix
which is then inverted to give the apparent mass matrix. The method of
measuring the inertance matrix is the reverse of the 'blocked

Impedance' test. A force is applied to each co-ordinate in turn
while the responses at the other co-ordinates are measured. An
example of this procedure can be demonstrated on the cantilever
shown in Fig 2.4. If a force is applied to position 2 by means of

a vibration generator - the inertance equation 2.22 becomes:-

Tl 113 0 = V1
F21 T2z F2 ¥2
or
s, .3
112 F>

and Iz22 = Y2
Fj

* A 'blocked Impedance' test measures the dynamic stiffness or the
mechanical impedance or the apparant mass depending on the type
of motion measured.
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The force is then applied to position 1 to obtain the remaining
inertance elements. Hence it is evident that this procedure is
analogous to that adopted in the theoretical study in section 2.4.

Care must be taken to ensure that a pure force is transmitted
to the structure, ie no restraining or associated moments. This is
usually successfully accomplished by inserting a de-coupler assembly
between the structure and the vibrator''!. The de-coupler assembly
is designed such that the transmission of an axial force is very
efficient but the assembly offers negligible angular restraint., Since
this design requirement is the same as that of the piano wire connector

used to couple the cantilevers, these connectors were also utilised as de-

coupler assemblies.

4.3 INERTANCE MEASUREMENTS OF A FREE-FREE PLATE

The free-free plate consisted of a steel plate 620 mm by
437 mm and 1.22 mm thick suspended at the four corners by thin
elastic. The plate was designed to have four connecting points; at
each of these points there was an 18 gram concentrated mass which
provided the means of connection. Four accelerometers were fixed
to the top of the masses whilst the excitation input was attained
by connecting a vibrator to the underside of the plate directly
beneath the masses. The force transducer was located at the junction
point in contact with the plate and was uncoupled from the vibrator
by a de-coupler assembly which was manufactured from 1 mm diameter
piano wire.

Sinusoidal sweep tests were performed oﬁ the plate in order to
measure its inertance matrix for the four connecting points (vertical
translational inertances only). This, by necessity, required 16

tests since the Frequency Response Analyser could measure only one
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inertance at a time. In these tests it was only possible to sweep
a maximum of 100 discrete frequencies due to software limitation
at that time.

Figure 4.1 shows a typical frequency response curve. The
frequency range is 750 - 850 Hz, swept in 1 Hz steps, which is in
the vicinity of the 50th plate mode. The two curves are reciprocal
transfer inertances I’. and I!l’ I‘~being the acceleration response
at position 1 divided by the input force at position 4 and Iu
being the response at position 4 divided by the input force at
position 1. From theoretical considerations these transfer inertances
should be identical for a linear elastic system, see equation 2.29,
section 2.4. The curves exhibit serious discrepancies from this
theory, in particular the resonant frequencies appear to have
shifted by as much as 3 Hz when moving the input position. At this
stage it was not known whether these discrepancies were due to
experimental error or inherent in the structure due to non-linearity.
It was therefore decided to proceed with the experimental investi-
gation on a simpler structure with fewer connection points; a

cantilever beam with 2 connection points was chosen.
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4.4 INERTANCE MEASUREMENTS OF A CANTILEVER BEAM

Méasurement tests were carried out on a cantilever beam which
consisted of a rectangular section steel bar clamped at one end to
a massive machine bed plate as shown in Fig 4.2. The cantilever was
designed to have two connecting points - one near the free end and
the other near its mid-point. In the initial tests the configuration
of the de-coupler assembly and the force transducer was the same as
in the plate tests.

The force transducer measures the force transmitted to its
diaphragm which is connected to the test structure. This adds mass
to the structure which may be cancelled electronically or mathemati-
ca11y24. However, for the purpose of this demonstration, it was
easier to redefine the cantilever sub-system to include this extra
mass and also the accelerometer masses. Since the measurement of
the inertance matrix requires the movement of the force input from
one position to the other, then the diaphragm mass (3 grams) must be
'balanced' out by adding an equivalent mass to the system at the
non-excited position.

Inertances were measured at two frequency ranges centred at
the 3rd and 7th mode of the cantilever. Again, as with the plate
tests, serious discrepancies were evident between the reciprocal transfer
inertances. In particular the 7th mode resonant frequency differed
by 20 Hz when changing the force input from position 1 to 2 and also
the antiresonant frequencies were not compatible.

A series of tests were devised to establish the effects of
varying the test procedure and changing the test configuration on
the inertance measurements.

The first three tests, comprising repeatability of test,
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changing the sweep direction and altering the sweep rate were
performed to assess the reliability of the measured results. These
tests are summarised below:

Repeatability

Repeating the same test after a week and dismantling the
vibrator connections had no significant effect on the inertance
measurement.

Sweep Direction

An increasing frequency sweep was always programmed for these
tests. Changing the sweep direction to decreasing frequency had
little effect on the measurements.

Sweep Rate
The sweep rate of the Frequency Response Analyser can be altered
by judiciously selecting the following parameters:-
(i) frequency step value,
(ii) integration time,
(iii) measurement delay.

A low sweep rate with a step value of 0.1 Hz, a delay of
0.1 second and selecting x 100 integration time greatly improved
the smoothness of the curves but there was no fundamental difference
to the previous sweep test results which utilised 0.5 Hz steps,

0.1 second delay and minimum integration time.

Having established the reliability of the measurements the
next three tests were performed to indicate how sensitive the results
are to changes in test configuration. In particular the transfer
inertances and resonant frequencies were compared for each of these
tests in order to find out any possible causes for the previous

discrepancies. These tests are summarised as follows:-
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Adding a Concentrated Mass to the System

A mass of 18 grams was added to one of the connecting points
on the cantilever. This mass was comparable to the force transducer
and six times that of the accelerometer. It had the effect of
increasing the 7th mode resonant frequency by 10 Hz but the transfer
inertances ghowed similar discrepancies to the initial cantilever
tests.

Altering Mass and Stiffness of Vibrator Moving Parts

The stiffness of the vibrator moving parts was decreased by
removing the protective diaphragm. Altering the vibrator stiffness
and adding mass to the moving parts did not effect the inertance
measurements.

Two Vibrators Simultaneously Coupled to the Cantilever

Two vibrators were used, one connected to each of the connecting
points. The object was to excite each point in turn without
disturbing the system mechanically. Sweep tests showed that resonant
frequencies exhibited the same discrepancies depending on which

vibrator was energised.

These experiments were invaluable in helping to obtain a 'feel'
for the measurement process and its sensitivity to changes of the
cantilever structure. It was concluded that this shift in resonant
frequency was not due to non-linearities in the structure but to an
error in the measuring process. Usual instrumentation checks were
carried out including a complete change of transducers and a re-
calibration. The methods of attaching the transducers to the
structure were then inspected and it was at this stage that the

cause of the error became known. It was noticed that the piano wire,
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used in the de-coupler assembly, was cemented into its adapters

with Araldite, thus giving a 'soft' joint. The method of connecting
the vibrator to the cantilever was redesigned such that the force
transducer was fixed directly to the vibrator, the de-coupler assembly
being situated betwen the transducer and the cantilever. The piano
wire of the de-coupler assembly was soldered into its adaptors thus
giving a more 'rigid' joint.

Repeating the inertance measurements indicated that the previously
found discrepancies between the transfer inertances had been significantly
reduced such that the resonant and antiresonant frequencies coincided to
within approx. 0.5 H, throughout the frequency range of 30-500 Hj.
Therefore, it was concluded that the experimental technique was sufficient
to provide frequency response meésurements to an acceptable accuracy such
that they could be used in the 'Impedance Coupling Equaticn'.

4.5 INERTANCE MEASUREMENTS OF THE CANTILEVER SYSTEM FOR USE IN THE
' IMPEDANCE COUPLING TECHNIQUE'

The experimental set-up which proved to give the most accurate
frequency response is shown in Figure 4.3. The cantilever sub-system
consisted of the cantilever together with the two accelerometers,
de-coupler assembly and a 'balance' mass. The 'balance' mass was
equivalent to the mass of the de-coupler assembly plus the force
transducer diaphragm mass.

The de-coupler assembly was therefore considered to act as a rigid
body over the frequency range of the tests. This assumption was based
on the frequency response results of the piano-wire connector shown in
Fig 4.12 and discussed in section 4.7, since the de-coupler assembly
was the same as the piano-wire connector used to couple the cantilever

systems. The apparent mass measurements of the piano-wire connector
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shown in Fig 4.12 indicate a very high stiffness of 5.4 MN/M, with a
first, natural frequency at 2200 H,,

The accuracy of the frequency response measurements was first
checked by comparing the reciprocal transfer inertances. In Fig 4.4
the two transfers inertances for cantilever b, Isk and Iks were compared
to verify that all the resonances and anti-resonances were coincident.
Experience has shown that the mass balance was required to be within
1 gram of the optimum for the frequency range of interest. This
mass is relative to a cantilever mass of 2.5 kg and a de-coupler mass
of 15 grams.

The 2nd order inertance matrix was measured for two cantilevers
a and b in tables 2.1 and 2.2. These matrices were then manipulated,
together with various mathematical models of connectors, by the use
of the 'Impedance Coupling Equation', equation 2.7, in order to obtain
the predicted system inertances.

The cantilevers were then coupled with the two different types of
connector in order to measure the system inertances and compare them
with the predicted results. The experimental set-up for these tests
is shown in Figures 4.5 and 4.6. These connectors were designed using

piano-wire or rubber to give either a 'rigid' or 'flexible' coupling.
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4.6 LINEARITY CHECKS ON CANTILEVER SYSTEMS

The most important assumption in applying the 'Impedance
Coupling Technique'is that the structures to be coupled must behave
as linear elastic systems within their environmental operating
range, ie the maximum forces encountered in service must lie within
the system's elastic range and this range must be linear.

Since the cantilever systems were used as laboratory models,
then the maximum exciting force that these systems were likely to
be subjected to was restricted by the maximum possible output of
the vibration generator used throughout the tests. Furthermore,
when the initial tests were performed, an optimum input to the
power amplifier was set to avoid overdriving the systems under test.
Therefore, the maximum exciting force possible under these condi-
tions was obtained when the power amplifier gain was set to its
highest value.

The linearity of the structures under test was checked by
repeating inertance measurements with different gain settings on the
power amplifier,

Figure 4.7 is a typical result from cantilever b. These
tests indicated that the assumption of linearity was valid within

the operating range of the equipment used.

4.7 CONNECTOR DESIGN AND TESTING

Two types of connector were manufactured to enable the two
cantilever sub-systems to be coupled. One type, considered to be
'rigid' was made of piano-wire; the other connector, made of rubber,
represented the flexible end of the stiffness range of interest.

The connector assembly included a force transducer which was
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initially added to allow the measurement of forces in the connector.

Although unnecessary in the investigation the transducers remained
in situ to save modifying the rig. The connectors were designed to
give a minimum of angular restraint at the coupling points, thus
giving the connectors long and slender proportions which allowed

high transverse flexibility.

'Blocked Impedance' Tests on Connectors

The connectors were subjected to dynamic tests in order to
obtain apparent mass data for use in the 'Impedance Coupling Equation.'
Due to their high transverse flexibility the 'blocked Impedance'’
test, as described in section 4.2, was more suitable than the inertance
test used in the plate and cantilever tests. This 'blocked Impedance'
test was greatly simplified due to thea:zsumption that the connectors
transmitted only axial forces since the effective apparent mass matrix

is reduced to a 2nd order matrix as shown in Figure 4.8.
b e

All Al3d ;l Ly F1

Y3 -
1 A31 p33 y? F3

FIG 4,8 EFFECTIVE APPARENT MASS MATRLX EQUATION FOR CONNECTORS

A sequence of tests, as shown in Figure 4.9, was necessary
to obtain the complete apparent mass matrix. Each coordinate was

'blocked’ in turn by fixing one end of the connector to a large
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mass via force transducer, whilst the other end was connected to
the vibrator. A force transducer and an accelerometer were inserted
to measure the force input and response at the 'free'end.

Figures 4.10 and 4.11 show some initial apparent mass measurements
on the piano-wire and rubber connectors respectively. It can be seen
that the curves are not very smooth or well defined, especially at the
low frequencies, which may be attributed to the fundamental difficulties
associated with'Impedancg testing of this type of structure.

Attempts were made to use this low quality experimental data
directly in the 'Impedance Coupling Equation' but the results proved
to be unsatisfactory. The errors compounded to such an extent that
the shape of the predicted system inertance was completed masked by
numerical 'noise'.

To overcome this problem it was necessary to re-generate these curves
from a suitable mathematical model. In order to obtain sufficient data
to construct and test such a model the apparent mass measurements were
repeated and extended to a higher frequency. The results obtained from
each connector are discussed separately as follows:

(i) Piano Wire Connector

The apparent mass measurements on the piano wire connector
are shown on a logarithmic frequency base in fig 4.12. The
results clearly show a connector resonant frequency at 2200 Hz
and an anti-resonant frequency at 12000 H,. This anti-resonant
frequency was thought to be associated with the rig characteristics
and to investigate this more closely a separate test was con-
ducted on the rig with the connector removed. Apparent mass

measurements of the rig, at the force transducer, indicated that
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the rig stiffness was about 150 MN/ m. A stiffness line
representing the rig stiffness is shown on the same graph as
the apparent mass measurements of the connector and it can be
seen that the connector measurements taken at frequencies in
excess of about 5000 H, are completely dominated by the
dynamic characteristics of the rig and as such will be invalid.
When this is taken into account the results show the typical
characteristics of a grounded one degree of freedom system which
is mathematically described by the apparent mass element A3j
in equation 2.32 of section 2.5. The mass, stiffness and
damping for the mathematical model was obtained by estimating the
stiffness from the low frequency results. Then accurately
measuring the resonant frequency and calculating the mass from the
relationship.
ol
"
The calculated mass was compared with the mass found by direct
measurement and was accurate to within one gram which was equal
to five percent of the total mass. The damping, which was assumed
to be viscous was estimated from the apparent mass measured at the
resonant frequency. In order to obtain an accurate measure-
ment a separate sweep test was performed with small frequency
increments in the vicinity of the resonant frequency. It
was assumed, since the damping ratio was very small that the
resonant frequency was coincident with the natural frequency.
Therefore the damping ratio Ma¥ be calculated for a one degree
of freedom system by the following relationship.
r =A

2m when 2 = w,

Where Ais the apparent mass measured at the natural frequency Wi e
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The frequency response of the mathematical model of equation 2. 32
using these measured dynamic properties is also shown in Fig 4.12. The
frequency response of the model is in close agreement with the experimental
results up to approximately 4000 Hz‘ Above this frequency the experimental
results deviate from the model but is due to the limitations of the rig as
previously discussed. In conclusion the two degrees of freedom model
of equation 2.32 using the mass stiffness and damping coefficients
computed from the experimental results was shown to be of sufficient accuracy
such that it may be used in the 'Impedance Coupling Technique'. The
measured parameters used in this model are shown in Fig 4.16.

(ii) Rubber Connector

The apparent mass measurements on the rubber connector are shown
in Fig 4.13. Measurements at frequencies above 5000 H, are not shown
because, as in the piano wire connector experiments, the rig dynamic
properties have a dominant effect on the results above this frequency.

The results indicate a fundamental resonant frequency at approx-
imately 240 H, and a second resonant frequency in the region of 1600 B,.
This second resonant frequency is only just detectable. There is
evidence of very high damping and the low and high frequency response is
characteristic of a spring and mass respectively.

In contrast to the piano wire connector, obtaining a model for the
rubber connector presented a more difficult problem principally due to the
following reasons.

(a) The stiffness of the rubber increased as the frequency

increased and as such could not be accurately modelled by a

linear stiffness coefficient.
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(b) The damping properties of the rubber could not be

accurately modelled by a viscous damping coefficient since

the damping was not proportional to velocity.

(c) The specification of the rubber was unknown and as

such it was not possible to obtain accurate values of Young's

modulus of elasticity and the loss factor.

Initially the apparent mass measurements were compared with

the frequency response obtained by equation 2,39 using realistic values
of Young's modulus of elasticity (E) and loss factor ( ¢§ ) together
with the measured values of cross-sectional area, density, length and
end mass. The theoretical frequency response showed characteristics
which closely corresponded to the measured results. However, the
apparent mass levels were in error up to approximately 500 Hz and the
first resonant frequencies were not coincident. These discrepancies
indicated an error in the stiffness properties of the theoretical model
which implied an error in the value used for Young's modulus since the
stiffness of the rubber is proportioned to E. An imhroved value of E
was estimated from the low frequency apparent mass measurements
since the stiffness is the pre-dominate dynamic property at these
frequencies. To illustrate this point the apparent mass equation of the

connector, eq 2.37, shown below, must be considered:

Fg -m, cos B 2
¥ B LsinB ¥ vi¥y
where 2
Q
g = fs
E
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If 2 is very low ( Q <<1 rad/s ) then by using the expansions of
the sine and cosine functions and discarding the cubic and higher fre-

quency terms, such that

F 3.9
__:_3_ = -mpy L
™ 2 + lﬂ3
Y3

8.8 K Bk )

and observing that m, = pAL then

Fg
= -EA + p Al + m,,
¥a okl 2

Since the static stiffness of the rubber rod, k is

k = EA
'8

and the second term is the effective mass of the rod at low frequency,
the low frequency response ie characteristic of the one degree of
freedom system used in the piano wire model. Furthermore, since at
low frequency the stiffness term is very large compared to the mass
terms the latter terms may be neglected. In practice, as the measure-
ments of the rubber and piano wire connector show, the stiffness may be
accurately determined from the frequency response at frequencies up to
approximately one octave below the first natural frequency.

A more accurate value of E was therefore computed from the low
frequency response together with a value of the loss factor, §
which was calculated from the ratio of the real and imaginary parts of
the apparent mass using equation 2.38. These new values gave a much
improved frequency response function, however, the theoretical natural
frequencies were lower than that measured. Closer inspection of the
real and imaginary parts of the measured apparent mass indicated
that the stiffness, hence E, and the loss factor were not constant

over the frequency range 0-5000H,; but both increased with frequency.
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This second attempt to obtain a mathematical model of the connector
was not considered to be accurate enough to be used in the 'Imped-
ance Coupling Equation'. Therefore the investigation proceeded by
obtaining experimentally derived values of E* (i.e. E and § )

against frequency such that they could be used in the mathematical
model . The experiment to obtain accurate values of E* involved re-
peating the 'blocked Impedance' test on the rubber connector but

with the end mass (i.e. the dummy force transducer) removed.

This was necessary in order to increase the stiffness dominated
frequency range thereby giving accurate results to a higher frequency.
The measured apparent mass at selected frequencies was used in the
iteration formula of eq 2.42 to obtain values of E and (3 and
these values are plotted in figs 4.14 and 4.15 respectively.

The results indicate a significant increase in both values as the
frequency is increased. The scatter of the results at the high
frequency is because the high frequency response is mass dominated

and as such it is difficult to obtain accurate stiffness properties

at these frequencies. Curves were fitted to the results to assist
in the generation of the mathematical model using polynomials of 1

and 2 degrees for § and E respectively. The theoretical apparent
mass using the frequency dependent values of E and 8 is shown on the
same graph as the experimental results in fig 4.13. It can be seen

that the correlation is very good up to about 3000 H, The experi-

mental results start to diverge from the theoretical results above
this frequency and this is due to the effects of the rig as discussed
in the piano wire connector experiment in the previous section.

An accurate mathematical model of the rubber connector was

found. However, the method used was both complex and time-consuming.
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An alternative to this modelling technique is to use a simple mathe-
matical model similar to the one used for the piano wire connector.

The dynamic properties may be optimised depending upon the frequency
range in which the connectur is to be modelled. Since the connector

in this investigation is used up to 500 H, then the stiffness property
is dominant over most of this range. The damping is dominant in the
vicinity of the natural frequency and the mass is dominant at the higher
frequencies. A model may be found by optimising on the mass such that
the natural frequency is accurately modelled and by using an equivalent
viscous damping coefficient. The apparent mass of such a model is
shown on the same graph as the experimental results and the theoretical
model discussed in the preceding paragraphs, fig 4.13. It can be

seen that the mass used in this model is lower than measured but this
parameter was purposely reduced so that the natural frequency of the
model coincided with the measured natural frequency. This was necessary
because of the increase in the stiffness properties of the rubber at this
frequency. The equivalent viscous damping was obtained by accurately
measuring the imaginary component of the apparent mass at the natural

frequency and by using the relationship

Imag (Az3) = -—¢
where ¢ is the viscous damping coefficient. : The phase characteristics
of the apparent mass show that the damping is inaccurate at the lower
frequencies but is adequate at the natural frequency. However, this
optimised model proved to be of sufficient accuracy when used in the
'Impedance Coupling Technique' and as such was used throughout the
investigation.

The optimised dynamic properties used in the 2 degrees of freedom

model of the rubber connector are shown in fig 4.16.
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CHAPTER FIVE

EXPER IMENTAL RESULTS OF CANTILEVER SYSTEMS

.1 INTRODUCTION

The results included in this chapter are those obtained from
the measured inertance data of the two cantilevers a and b of table
2.1. Comparisons between the measured system inertances and those
predicted by using the experimental data of the individual canti-
levers and the re-generated coupling data in the'lImpedance Coupling
Technique 'are given for the two types of connector. This comparison
may be used to indicate the validity of the experiments, mathematical
manipulation and assumptions made in the prediction process. Having
gained confidence in the process the cantilever data was further
manipulated with hypothetical coupling data. In particular,
coupling was effected with pure stiffness elements since this para-
meter was shown to have the most significant effect on the system
inertances in the frequency range of interest.

Finally, a theoretical dynamic absorber was coupled to the
system by extending the 'Impedance Coupling Technique' to show the
use of this type of device and to demonstrate the flexibility of
the Technique.

All the results span the frequency range 30-500 Hz in
frequency steps of 0.5 Hz. This frequency range was covered by
two sweep tests 30-300 Hz and 250-500 Hz.

Most of the results quoted are of system inertance

Iu » i.e. the ratio of the acceleration response at position

1 (on the top cantilever - a) to the input force at position 3 (on
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the bottom cantilever - b). These positions are directly across one

connector so that the inertance 'B pives a measure of the vibration

transmission from the bottom to the top cantilever.

5.2  MEASURED INERTANCES OF CANTILEVERS a AND b

(as shown in Figures 5.1 and 5.2)

The inertance magnitudes arc presented in matrix
formation. The dimensions and position locations are the same as
cantilevers a and b in systems 1 and 2 of the theoretical study
(see tables 2.1 and 2.2). These curves may be usefully compared
with the theoretical results of Figures 2.6 and 2.7. The first
resonant peak in these curves are the cantilevers' second
natural frequencies since the fundamental resonant frequencies are
below 30 Hz. In general the experimental results show that the
cantilevers' natural frequencies are below those predicted by
classical theory; this is primarily due to non-idealised boundary
conditions at the clamped end and the inclusion of transducer,

de-coupler and balance masses within the cantilever sub-system.

5.3  PREDICTED [NERTANCES OF SYSTEMS 1 AND 2

(as shown in Figures 5.3 and 5.4)

The experimental results of cantilevers a and b, Figures 5.1
and 5.2, were manipulated together with the re-generated connector
data in the'Impedance Coupling Technique'to obtain these predicted
system inertances. System 1 comprises the two
cantilevers coupled with the mathematical model of the piano-wire
connectors and in system 2 the cantilevers are coupled with the 2 D.O.F.
mathematical model of the rubber connectors. These results may be
usefully compared with systems 1 and 2 in the theoretical study, ie
Figures 2.10 and 2.11,

= 03 -



5.4 MEASURED INERTANCES OF SYSTEMS 1 AND 2

(as shown in Figures 5.5 and 5.6)

The cantilevers a and b were coupled with the two types of
connector (ie piano-wire and rubber), cantilever a being the top
cantilever in the coupled system. Figure 5.5 shows the experimen-
tally measured inertance magnitudes of system 1 which
was coupled by the piano-wire connectors and Figure 5.6 shows the

results from system 2 where the rubber connectors were used.

5.5 COMPARISON OF PREDICTED AND MEASURED INERTANCES FOR THE TWO TYPES
OF CONNECTOR

(as shown in Figure 5.7)

This figure shows in detail the differences between predicted
and measured system inertances. The system inertance 113 is taken
from the preceding graphs and is shown on the same graph for
comparison. The upper two curves correspond to the piano-wire
connected system and the lower two to the rubber connected system.

The correlation between the predicted and measured inertances
is good considering the simplicity of the mathematically re-generated
connector wodels used.Furthermore, the inertance gpilots show that
when using the flexible connectors the coupled system exhibits
resonances that are basically the individual cantilever resonances.
When the systems are rigidly coupled extra resonances appear in the
frequency range but the top cantilever resonances, in particular,
are still evident. This is a characteristic feature when coupling
two similar structures with such a simple connector, see section 2.8

for a detailed discussion.
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5.6 PREDICTED SYSTEM INERTANCE T,. WITH VARIOUS STIFFNESSES

(as shown in Figure 5.8)

The upper two curves in this graph are the measured point
inertances of the two uncoupled cantilevers. The
lower five curves were cbtained by applying the 'Impedance Coupling
Technique'to combine the experimental cantilever data with hypo-
thetical flexible connectors (with no mass or damping properties)
to predict the overall system characteristics. The stiffnesses of
the connectors were chosen to cover the range 250-4000 kN/m, the
lower stiffness being approximately 5 times greater than the
rubber connector stiffness and the upper stiffness being approximately
equal to the piano-wire connector stiffness. It can be observed
that at the higher frequencies the system resonances vary dramati-
cally with change in connector stiffness but at low frequencies
(< 100 Hz) connector stiffness has much less effect on the inertance
predicted. If the frequency of 390 Hz is taken as an example, the
system shows a resonant peak when the coupling stiffness is 500 kN/m
but as the stiffness is increased to 1000 kN/m the system shows an

anti-resonance.

5.7 EFFECT OF COUPLING STIFFNESS ON SYSTEM INFATANCE I;: AT
SELECTED FREQUENCIES

(as shown in Figure 5.9)

These figures show the effect of coupling stiffness on
system inertancemore clearly than Figure 5.8 since the inertance
is plotted against coupling stiffness, the frequency
remaining constant. At the frequency of 390 Hz, Figure 5.9 (a), it

can be seen that the inertance reaches a maximum when the coupling
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stiffness is 500 kN/m and 1500 kN/m and reaches a minimum when the
stiffness is 1000 kN/m. Thus, to detune the system at 390 Hz the
optimum coupling stiffness would be 1000 kN/m. Other stiffness-
inertance curves at neighbouring frequencies are overlaid to give an
indication of the frequency band within which this de-tuning would
be effective.

Inertance against stiffness plots for frequencies of 260 Hz
and 190 Hz are given in Figures 5.9 (b) and (c) respectively. The
plot at 260 Hz shows that de-tuning can again be achieved, but at
stiffnesses greater than 1500 kN/m the inertance is extremely
sensitive to changes in frequency and the plot at 190 Hz shows that
de-tuning is not possible with coupling stiffnesses greater than
250 kN/m. The system resonance at 193 Hz coincides with the fourth

natural frequency of the top cantilever - a.

5.8 THE APPLICATION OF A DYNAMIC ABSORBER TO THE TWO CANTILEVER
SYSTEM

(as shown in Figures 5.10 and 5.11)

Using the computer programs developed it is relatively easy
to examine the theoretical effect of any additional mass/spring/
damper element on the real cantilever sub-system. For example,
Figure 5.10 shows the effect of adding a mass/spring dynamic absorber
to the system when the two sub-systems are connected by springs of
500 kN/m. The absorber was tuned to a frequency of 390 Hz with a
mass of 14.5 grams compared with the total system mass of 5.4 kg.

Figure 5.11 shows the response of the mass due to an input
force to the system at the point of attachment of the absorber.

This shows the increase in activity of the mass in the 390 Hz region.
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CHAPTER SIX

D1SCUSS ION

Gl INTRODUCTION

This chapter conveniently divides into four parts allowing a
discussion on the four principal areas of the investigation as
follows:

(a) The experimental technique developed in measuring the Zfrequency
response to the required accuracy in order that these measurements
might be further processed.

(b) The theoretical and experimental results when manipulated by

the 'Impedance Coupling Technique, '

(¢) The optimisation of the interface dynamic characteristics in
order that the system may be de-tuned at selected frequencies.

(d) A general discussion on the 'Impedance Coupling Technique'which

forms the basis of the optimisation procedure.

6.2 DISCUSSION OF EXPERIMENTAL TECHNIQUE

The most important part of the investigation was to perfect a
measuring technique since the frequency response of a general structure is
too complex to predict theoretically. Only then was it possible to
manipulate these experimental results together with a theoretical
interface in the search for optimum conditions in the overall
performance of the coupled system.

The system under investigation comprised two cantilever

structures coupled at two points via some interface system. The
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cantilevers were disconnected and were subjected in turn to frequency
response tests in order to accumulate all the necessary impedance
data to be able to predict the coupled system response. This post
test analysis required experimental data of an extremely high
quality which was not-only very demanding in terms of instrumentation
but also required a high degree of skill in experimental technique.
The cantilever structures used in the investigation offered
many advantages for attaining highly accurate frequency response measurements
these being due to a relatively flexible structure with well
defined frequency response characteristics. The experimental
measurements could be checked at every stage with predictions
obtained by classical forced response of beam theory. Some of the
inaccuracies associated with measuring the frequency response of a
structure are due to the incorrect selection of vibration generator or force
transducer which may have stiffness characteristics not suited to the
type of test structure and the frequency range of interest. In
general the force transducer has high stiffness with low mass giving
a flat frequency response to a moderately high frequency. However,
if the test structure is mass-like, ie it has high stiffness, then
the contact stiffness (between the transducer and the structure)
and the transducer stiffness elements will become active at somewhat
lower frequencies giving incorrect fregquency response measurements. Errors
of this sort were avoided in the investigation since the cantilevers
had lower stiffness properties, although similar errors did occur
in the initial tests due to low stiffness joints in the dejcoupler
assembly which connected the vibrator to the force transducer. This

was remedied by soft-soldering the joints giving a high stiffness to
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the assembly which increased its useful frequency range to

approximately 1000 H,,
The effect of these stiffnesses on the measured inertance is

more readily appreciated by constructing a simplified mathematical

model of the test configuration?.

Let the structure to be measured be represented by a simple

mass and spring system as shown below:

Lt LS i
Y1 Ky Ky cL2Z
my F
s A
:
Mechanical Model Impedance Model

The point fnertance at (a) would be:-

2
T4 O T == eq 6.1

where Sp = ﬁL
1

At resonance all elements are active and this resonant

frequency would be

=

= =% » 095 o
R - eq 6

If extra stiffness and mass elements are introduced between

the measured force input and point (a) (as shown gver leaf)
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b k
Y; kz Q 2
my
j b
-——6H|m
e B E,
F2

Mechanical Model Impedance Model

then the input force measured would now be represented by F; and
the measured acceleration would be at point (a). These extra
elements represent the following:
(i) contact stiffness between the transducer and

the test structure,

(ii) any concentrated masses added to the structure
at the force input point, eg transducer diaphragm mass,

(iii) force transducer stiffness,

(iv) de-coupler assembly mass and stiffness.

The inertance would be

B Saf® :
Iab . m' QZSR p"; QI‘ o pR . e . eq 6.3
oo les _ ki ky ko _ kiky
where Sp = s ? Sg = Ny %, + my and Pp = il

At resonance all elements are active and the resonant frequencies
Ry, R2 may be found by solving the equation
Q" - ’Sg + PR = 0 . ee og 8.4
Clearly the inertance of equation 6.3 is not the same as that
of equation 6.1, However, as my * 0 and k;, >©@equation 6.3 approaches

equation 6.1
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This is demonstrated in Fig 6.1 where the theoretical inertances

using equation 6.3 is plotted against frequence for various contact

stiffness. The mass Mgy is taken as zero and the mass and stiff-
ness values of the model of the test structure are both unity. The
true frequency response of the 1 degree of freedom system is mass=like
at high frequency i.e. the inertance becomes constant. However, the
introduction of a contact stiffness causes the high frequency response to
become stiff-like, i.e. the inertance becomes proportional to gz
Further an anti-resonance is introduced into the frequency
response function at a higher frequencdy than the natural frequency.
It can be seen from the graphs that a reasonably accurate frequency
response may be measured up to one decade higher than the natural fre-
quency when the contact stiffness is 1000 times that of the system
stiffness. In the cantilever experiments the contact stiffness
included the de-coupler *assembly which had a stiffness of approximately
50000 times that of the static stiffness of the cantilever therefore the
errors due to contact stiffness were very small. The de-coupler
assembly was originally placed in this position for convenience and also
to give extra protection to the force transducer since it could be
bolted to the vibrator for the duration of the investigation. If
higher frequency responses are measured or if the test structure has
higher stiffness properties then a higher contact stiffness would be
required. To achieve this the force transducer would be connected
directly to the test structure giving a much higher contact stiffness.
The advantage gained by using flexible cantilever structures
was somewhat offset by the relative ease with which the necessarily
attached vibration generating equipment could alter the boundary

conditions of the test structure. In the case of a cantilever any
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restraint at its free end will result in significant errors in the
frequency response especially at low frequencies. An example to
illustrate this point is to compare the theoretical constants used to
evaluate the natural frequencies of a cantilever with free and sliding end
conditions - the first natural frequency will be increased by 57% and the
third natural frequency by 21% due to the torsional restraint at the
sliding end boundary condition. To overcome this problem it was
necessary to connect the vibration generating equipment to the cantilever
via a de-coupler assembly. This assembly consisted of a short length
of piano wire thus ensuring that only axial forces were transmitted giving
little rotational restraint because of its high transverse flexibility.

The rotational stiffness of the piano wire was calulated as less
than 1% of the cantilever rotational stiffness at the free end, this
giving an error in the first natural frequency of less than 19%.

The testing configuration 1inslly adopted iu the experimontal
procedure consisted of a cantilever connected to a vibrator via the

de-coupler assembly and force transducer.

It is important to realise, with this testing configuration,
that the de-coupler assembly and the accelerometers were within
the measuring system boundary and as such the resulting inertance
would include the inertances of these extra elements. These
elements, which may be considered as concentrated masses, could
normally be cancelled by an electronic circuit or simply taken into
account in any subsequent matrix manipulation, but since
these cantilever structures were used as demonstration sub-systems
the accelerometers etc. were considered as an integral part of the
measured sub-system. Further, an additional dummy mass was
required within this measuring system boundary at the connection

point which was not excited in order to maintain consistency when
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transferring the de-coupler assembly and vibrator from one position

to the other. This mass, which was termed as a 'balance’' mass, was
equal to the de-coupler assembly mass. It was found that a useful

way of checking the balance of the system under test was to compare

the transfer inertances since the reciprocity relationships should be
maintained, i.e. the transfer inertance Iij should be identical to Iji
for a linear system. Experience has shown that the 'balance' mass

was required to be within 1 gram for the cantilevers tested up to

a frequency of 500 Hz and this took into account the small diaphragm

mass within the force transducer since it is effectively part of the

measuring system. This mass balancing shows how sensitive the
system is to relatively small amounts of mass.

However if the system under test is massive then the effect
of the transducer masses may be negligible. For example table 1
shows the theoretical change in natural frequences when a concentrated

mass (representing the transducer) is placed at the tip of a canti-

lever.

Mass of transducer Change in Change in Change in

as a ¢ of beam wr % w, wg ®

mass

0.1 0.2 0.2 0.2

1 L.8 18 17

10 16 12 6.4

TABLE I
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Comparing the reciprocal transfer inertances gave added
confidence in the accuracy of the measured frequency response, since
a change in the position of excitation can produce a change in the
effect of contact stiffness, rotational restraint and the mass of
transducers that are moved from one position to another on the

measured frequency response.
The cantilevers provided a sufficient number of resonant

frequencies within the frequency range of 30-500 Hz to adequately
demonstrate the effects of coupling configurations on the overall
system response. The low damping inherent in these structures gave
an immediate visual check on the positions of resonant frequencies
which eliminated the need to subject the sweep test results to
further modal identification procedures. However, high dynamic
ranges are associated with lightly damped structures and a change of
80 dB's from an anti-resonant to a resonant peak in the ine#t

ance levels was found to be typical. Fortunately, the Frequency
Response Analyser used in the investigation was able to measure these
changes without any loss of data, providing a suitable sweep rate
was selected.

The optimum sweep rate was obtained by a trial and error
selection of integration time and frequency step value. A long
integration time would have had an added advaﬁtage of a more
accurate measurement but was impractical due to the excessively
long sweep time. Careful selection of frequency step value was
necessary because too small a value would have increased the amount
of discrete frequency data points, and too large a value would have
resulted in loss of definition in the response curves. In this
respect the selection of the frequency step value is synonymous

with effective bandwidth of an analogue filter since a large band-
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width reduces the frequency resolution. A frequency step of 0.5 H, was
selected for all the cantilever tests giving 940 discrete frequency data
points within the range 30-500 H,, The time taken to sweep these fre-
quencies was approximately 45 minutes.

An alternative to this procedure is to concentrate measurements at
the resonant frequenciés but this requires a knowledge of the position of the
coupled system resonances. Further, if these resonances are to be moved by
the optimising process then their final positions in the frequency range may
not be known before commencing tests of the sub-systems.

6.3 EXPERIMENTAL AND THEORETICAL RESULTS

The experimental frequency response curves for the cantilevers show
quite clearly the need to use experimental data when predicting a coupled
system response since even with these simple structures classical theory does
not predict the response with sufficient accuracy. This is mainly due to
the non-idealised boundary conditions at the clamped end and partly due to
the extra masses within the measuring system boundary. The discrepancy between
the theoretical and experimental results could be improved by taking into
account realistic boundary conditions and by including these extra concen-
trated masses. But it is doubtful whether these modifications would improve
the situation to the extent that the results would be practically viable,since
the objective is to optimise the coupled system response in a very narrow
frequency band. Taking, as an example to illustrate this point, the first
few modes of vibration of a general structure, a successful prediction of
resonant frequency would be considered to be within 10% and predictions would
become more inaccurate for higher modes. Therefore, an dptimisation of
frequency response within a bandwidth of less than 10% of the centre frequency
is not possible. However, the totally theoretical study was extremely useful
for the purposes of this investigation which was primarily concerned

with the general behaviour of a simple cuupled system with
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respect to alterations in the dynamic properties of the interface
mechanism.

The experiment was idealised primarily to avoid unnecessary
complications such as measuring rotational inertances and can, as
such, be considered aé successful since the connectors in particular
were shown to be predominantly axial transmitters of energy. This
can be seen by the high correlation between the predicted and
measured system mobilities for the two types of interface connector,
shown in Figure 5.7, since the predicted result was obtained by
manipulating the experimental data from the cantilevers with theore-
tical connectors having purely axial properties. Mass, stiffness
and damping values necessary for the theoretical re-generation of the
connectors were estimated from 'blocked Impedance' tests. Initiallx
attempts were made to use the raw connector data from these tests
but it was found that the results were of low quality. This is due
to the inherent difficulties in carrying out such a test where the
structure is required to have perfect restraint at all except one
of the prescribed co-ordinates whilst accurately measuring the

restraining forces.

6.4 OPTIMISATION OF COUPLED SYSTEM RESPONSE

The results show quite clearly that in certain cases a
considerable reduction in energy transmission between two coupled
structures can be effected within a narrow frequency band by
_optimising on the dynamic characteristics of the interface mechanism.
This de-tuning process is achieved by varying the interface
properties in a mathematical model of the coupled system so that

the predicted system resonances are moved away from the selected
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frequency at which the de-tuning is to be effected. The bandwidth

in which de-tuning is effective is therefore dependent on the modal
density of the system. The interface in this mathematical model is,
by necessity, theoretically generated in contrast to the experimentally
obtained data of the éub—Systems. The type of interface is therefore
restricted to one in which an accurate mathematical prediction is
possible, ie interfaces of low modal density. Once the optimum
values of mass, stiffness and damping of the interface are found

then a prototype may be constructed. During the investigation a
simple mass-spring-damper interface was used to demonstrate how

each of these elements could be utilised in the de-tuning of a two
cantilever system coupled at two positions.

Of these three dynamic properties adjusting the stiffness of
the interface was found to produce the most interesting effects on
the response of the system. Adjustments to the mass and damping
produced effects of a less complex nature. In general the shift in
resonant frequencies increases as mass is added to or subtracted
from the system and increases in damping and, although having little
effect on position of resonant frequencies, does decrease the dynamic
range of the system by attenuating the resonant frequencies and
increasing the dynamic levels at anti-resonances. It is due to this
last point that low damping would be necessary if optimisation of
mass and stiffness produce anti-resonant conditions at the de-tuned
frequency.

In the two cantilever systems tested two groups of system
resonant frequencies were evident. One group was easily moved by

adjustments in the coupling stiffness whereas the other group, which
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comprised the individual cantilever resonances, was not affected
by any such adjustments. This phenomenon was principally due
to the similar dimensions of the cantilevers but may also hold
true in many practicai situations in which the connected system
exhibits uncoupled modes where the restraints imposed by the
interface mechanism are not sufficient to prevent the sub-system
acting as an independent system. This effect is more pro-
nounced in the two cantilever system tested since the interface

only provided wyertical restraint at two positions along

their length.

In the case of the de-tunable modes relatively large shifts
in system resonant frequencies were effected by small changes in
coupling stiffness up to a stiffness of about 2 MN/m. Further
increases in stiffness had little effect indicating that this
figure is, for practical considerations, the 'rigid' limit for the
system, ie when the interface acts as a rigid body within the system.
Within this limit adjustments to coupling stiffness may be used to
a great effect without appreciably altering the overall dynamic
response of the system and this may be an important factor if low

frequency stability must be maintained.

6.6 IMPEDANCE COUPLING TECHNIQUE

The' Impedance Coupling Technique'was used to good effect in
simulating and optimising the dynamic characteristics of a coupled
system. This Technique is particularly useful when combining

experimental data with theoretical data in a mathematical model of
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a proposed system in order to predict the effect of changes within
the system on the system response.

One of the major limitations of this Technique is that the
system responses are Qescribed by a discrete set of co-ordinates and,
as such, predicted system behaviour is confined in terms of these
co-ordinates. Therefore, any additional information of system
behaviour at other locations in the system is not possible without
re-collecting the basic data to include any extra co-ordinates.

Likewise, adding mass or stiffness to the system is only possible

at the chosen co-ordinates. This also applies when the effect of

rotations are necessary to the investigation since in this case

rotational co-ordinates must be included in the system. Measuring a frequency
response which include a rotation 4ig difficult since the sub-

systems must be excited by a pure moment and the rotational response

must be measured; furthermore, instrumentation and equipment is not

readily available for this type of experimentation. ‘owever,

measurements of rotational frequency response has been successfully completed
and utilised by Ewins and Silva'" in which they have designed an

exciting block to apply moments to the test structure whilst

monitoring two adjacent accelerometers provided the means to

determine the rotational response.

In this investigation the Technique utilised raw experimental
data; raw data being the measured inertance, magnitude and phase, at
each frequency increment. The utilisation of this raw data proved
to be satisfactory since the quality of the predicted results were
adequate for this demonstration exercise. However, slight errors

were evident, in particular twin or split peaks occured at some
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predicted resonances. This was due to the non-rationalised raw

data where the measured resonances of the sub-systems were not

exactly the same when changing the force input position.

Rationalising the data by measuringzﬁ, comparing and then optimising

on all modal parameters in the sub-systems and estimating some of the frequency

27,28

response elements might be necessary for systems of higher

I

complexity1 but this procedure is lengthy, and is very much

dependent on the skill and judgement of the analyst.
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CHAPTER SEVEN

CONCLUS |ONS

An experimental model was successfully used to demonstrate
the effect of varying the interface mechanism between two coupled
complex structures on the overall system response. In this model
the complex structures were represented by cantilevers and the
interface consisted of simple connectors which allowed only axial
forces to be transmitted from one cantilever to the other.

Experimental data was collected from frequency response tests on the
un-coupled cantilevers and combined with theoretical connector
data by the 'Impedance Coupling Technique'in order to predict the
coupled system response. Throughout the investigation it was
necessary to develop instrumentation and measuring techniques in
order to obtain experimental data of an extremely high quality so
that this raw data could be used directly in the'Impedance Coupling
Technique. Considerable effort was expended in writing and
developing software to enable a desk-top computer to be utilised
as a controller in the experiments, data acquisition/manipulation
system and to generate theoretical data.

It has been shown that the behaviour of complex coupled
systems can be predicted to an acceptable degree of accuracy up to
frequencies of about 500 Hz. Further, the results show quite
clearly that in certain cases a considerable reduction in energy
transmission between two coupled structures can be effected within

a narrow frequency band by optimising on the dynamic characteristics
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of the interface mechanism. In particular, adjusting the stiffness
of the interface was found to be very effective in this de-tuning
process where relatively high coupling stiffnéss could be utilised
without appreciably altering the overall dynamic response of the
system and this might be an important factor if low frequency

stability must be maintained.
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APPENDIX 1

AN EXAMPLE OF THE 'IMPEDANCE COUPLING TECHNIQUE'
USING SIMPLE STATIC DEFLECTION OF BEAM THEORY

INTRODUCTION

This example demonstrates the 'Impedance Coupling Technique' by
using the stiffness influence coefficient method on a two cantilever
system. The example is of interest since it shows how the rotations
are accounted for by measuring only the translational elements in

the flexibility matrix providing there are no externally applied moments

to the coupled system.

g A L
A 5 o
o
A ki k
) S
y Yi, P}%
@, 2.
/ L J
o
] ! Ve )& 2
- e g
FIG A1.1 STATIC MODEL OF TWO CANTILEVER SYSTEM COUPLED AT

TWO POSITIONS WITH PURE STIFFNESSES
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The overall stiffness matrix equation of the system in

Fig Al.1 is:-
EI _24+K -12 0 -K
23
-12 12+K =K 0
0 -K 12+K -12
-K 0 -12 24+K
-hl;_i;i_-__ﬂ 0
6% -64 0 0
0 0 -6% 6%
0 0 -6 0
3
where K = EE-:&I“

: 0 64
|

' 62 -62
L

o 0

|

() 0

] 5

| SP‘Z 2;1?
]

| 202 482
|

10 0

]

) 0

]

0 s
0 y2
-64 Y3
0 Yu
0 b5
0 be
28° G
82%| | s |

eq Al.1

but since the rotations are dependent on the deflections eq Al.1 can

be reduced to a 4th order matrix by using equation 2.19, ie

[k] = ([k11] - [ki2] [k22]7% [k2:])

Therefore eq Al.1l becomes

EI |96+K~
7?{3
-30
0
K~
where K~ =

-30
124K~
<H

0

k8
EI

-K‘ yl

0 y2
-30 y3
96+K‘_ Y

-

F2
F3

LFh

-l

eq Al.2

Since it is experimentally easier to obtain the flexibility

matrix than the stiffness matrix, what happens if only the deflections

are measured in the flexibility matrix?

Taking a simple cantilever,

RN AN
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the flexibility matrix is measured as

9° 13 8/8 Pi1l= Iys gl Al e
El
5/6 8/3 Fa y2
- 22 Ta
where [a] = BT /8. 8 eq Al.4
5/6 8/3

inverting eq Al.4 to give the stiffness matrix
- EI 96 -30
[ == eq Al.5
-30 12
If two cantilevers of the same dimensions are connected
together as Fig Al.1 then the resulting stiffness matrix using the
static equivalent of the'Impedance Coupling Equation'2.7 is the same

as Eq A1.2. Therefore, the rotations, in this case, need not be

measured.
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APPENDIX 2

CALIBRATION OF TRANSDUCERS

INTRODUCTION

The force transducer and accelerometers used in the,
experimental work were checked for calibration and their respective
charge amplifiers were adjusted such that their outputs reﬁresented

voltage sensitivities of 100 mV/N and 100 mV/g.
EQUIPMENT

A B & K standard accelerometer set was used as the acceleration
measuring reference. This set comprised a B & K standard
accelerometer type 8305 serial number 397055 and conditioning
amplifier type 2626; the output being set at 100 mV/g. The standard
accelerometer was fixed to a Derritron electro-dynamic vibrator,
type VPS5, together with the transducers as shown in Fig A2.1.

Signal generation and output signal analysis was provided by
the Solartron Frequency Response Analyser, type 1170, and the
Hewlett Packard 9825A desk-top computing system used in the

frequency response experiments as shown in Fig 3.3.

PROCEDURE

The outputs of the charge amplifiers from the standard
accelerometer and the transducer to be calibrated were connected to
FRA channels X and Y respectively. The FRA was set to manual
operation at 200 Hz and continuous measurement was selected. The

gain of the transducer amplifier was adjusted until the correct
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ratio appeared on the measurement display to give the necessary
voltage sensitivities. A computer controlled sweep was then

initiated to sweep between 30-500 Hz with a 1 Hz frequency step
value thus giving the frequency response characteristics of the

transducer and charge amplifier combination.

RESULTS

Accelerometers

Two D J Birchall Ltd Accelerometers, type A/04, serial numbers
139 and 140 were calibrated together with Environmental Equipments Ltd
charge amplifiers, model CAy. The amplifier gains were adjusted to
give a FRA ratio of 1.000 thereby giving 100 mV/g. The sweep test
results are shown in Fig A2.2.

Force Transducer

One B & K force transducer, type 8200, serial number 403132
was calibrated together with a charge amplifier, model CAq.

The FRA ratio necessary to set the output sensitivity to
100 mV/N was obtained from the following analysis.

F is the force measured by the transducer

whilst m is the total mass above the measuring

m Tt] point, including the transducer diaphragm
F (3 grams) and the mass of the standard
accelerometer which measures the acceleration
of this mass.
Therefore F = ma ot el el

The total mass was measured as 139 grams.

. eq A2.2

_ Std.Acc.O/P Volts | 9.81 m/s?
2 0.1 V/g 1g
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Force Trans.O0/P Volts

Ly 0.1 V/N

eq A2.3

Substituting eq A2.2 and A2.3 into eq A2.1 gives

", Force Trans.0/P Vgqlts
Std.Acc.0P/ Volts

Ratio, R
R =1.36

The sweep test results are shown in Fig A2.3.
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Volt.Sonaitivity dB re.BdB=108mV/g

Phaee-Deg.

Valt.Senoitivity dB re. 8dB=188mY/N

Phase-Deg.

A
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Fig. A2.2 CALIBRATION OF ACCELEROMETER DJB 139
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Fig. A2.3 CALIBRATION OF FORCE TRANSDUCER BRK 483132
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APPENDIX 3

DETAILS OF COMPUTING SOFTWARE

INTRODUCTION

Various computer programs were written and developed during
the investigation in order that a Hewlett Packard desk-top computer
be used as a controller in the frequency response experiments, to acquire
and store the data, to manipulate the frequency response data in the
'Impedance Coupling Technique' to generate theoretical frequency response
data. The following programs were written.
SWFRA: To control a sweep test with the Frequency Response
Analyser.
IMPC: To generate theoretical frequency responses of the connectors
CMOBB: To combine the experimental/theoretical frequency response
data by the 'Impedance Coupling Technique'.
PMOB : A plotting program.
DET: A program similar to 'CMOBB' but takes one frequency
at a time and calculates the effect of varying the
interface stiffness on system inertance.
TCMOB: To generate theoretical cantilever frequency response functions,
These programs were written in HPL, an interpreter language similar
to BASIC, for use on the HP9825A. Two of these programs are listed

and explained in this Appendix, ie SWFRA and CMOEB.

SWFRA

This program illustrates some of the HPL statements required

to allow the HP9825A computer to control the Solartron Frequency
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Response Analyser (FRA). The two instruments are connected via a
General Purpose Interface Bus (GPIB) system. A more detailed
explanation of the system and some of the subroutines used may be
found in the Solartron Operating Manual (1183-C; GPIB Interface).

The FRA outputs a program controlled analogue signal to drive
the system under test and two transducer signals may be measured by
the FRA to obtain their magnitude ratio and phase difference. The
sweep generator, analyser and other functions may be programmed
remotely by the computer and data can be sent from the FRA store
to the computer. The program listing shown below uses the interrupt
facility on the GPIB which allows the computer to carry on executing
other tasks until the FRA sends a service request. The computer
will then interrupt its present task in order to receive data from
the FRA and also to reset the interrupt facility for the next
measurement .

The listing of SWFRA is shown at the engq of this Appendix and

a line by line explanation follows.

LINE NUMBER
0: Label at beginning of 'SWFRA' program.
1l: Dimension statement to allocate a string variable for the
data file name.
2: Sends a selective device clear command to the FRA. This
initialises the FRA.
3: Instructs the FRA to enter remote control state.
4: A program control variable is set to zero.
5-7: Operator is required to enter frequency limits and step value.
8-12: A file code is entered and space is allocated on the floppy

disc.
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13-16: The operator selects measurement mode and integration time
and this is validated.

17: Calls subroutine 'analyser', ie lines 29-37 which sets the
FRA analyser section to the required parameters via write
statements. The parameter 718 is the device code for the
FRA.

18: Calls subroutine 'generator', ie lines 39-52 which sets the
FRA signal generator section to the required parameters.

19: Calls subroutine 'sweep', ie lines 54-63 which sets the
sweep parameters.

20: The operator is required to start the test by entering 1.

21: All the setting up parameters are stored in the test file.

22: Defines the interrupt subroutine. When an interrupt is
detected by the computer it will execute the subroutine
‘resultg’.

23: Enables the computer to accept an interrupt from the FRA.

24: Sends coded message, decoded thus
S111 Enables and arms the measurement suspend and
interrupt facility of the FRA.

;2 Instruct FRA to take a single measurement.

25: This line is necessary to prevent the computer finishing
the program before all the interrupts have been received.

26: Loads the plotting program into the memory of the computer.

Subroutine 'results'

83: Label at beginning of subroutine 'results'. Once the
interrupt has been received the computer executes this
subroutine. The subroutine transfers the current measurement
data from the FRA to the floppy disc test file.

84/5: Reads status byte. This should be 64 (decimal) when the

measurement is completed.
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86: Prints frequency response data in a + jb form to the test file.
a and b is transferred and decoded by the subroutines -
'b' and 'Vans'. Subroutine 'fout' is also available to
read the current frequency from the FRA.
87-89: Reads the sweep control settings. If the sweep has been
completed Z is set to 1 and control is passed to main program.

90: If sweep has not ended the FRA is re-armed for the next

measurement.
CMOBB

This program combines the two cantilevers with the coupling
data to predict the coupled system response by the use of eq 2.7,
The data for the sub-systems and couplings are retrieved from the
data files and loaded into the matrices one frequency at a time.
The matrices representing the cantilevers are inverted to give their
apparent mass matrices. The resulting system apparent mass matrix is
inverted to give the inertance matrix. All these matrices are
complex, therefore, since the computer is unable to perform complex
matrix arithmetic, the program uses method 2 in Appendix 4 to
formulate real matrices.

Each data file represents a frequency response element and is
divided into blocks (records) of 32 numbers. The firsf eight
numbers in the file are the sweep test parameters and are compared
for compatability. Each subsequent pair of numbers is the real and

imaginary parts of the frequency response at a frequency determined

by its position in the file.
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LINE NUMBER

21-70:

40-68:

41-46:

47-62;

63-67:

'I' loop. The data is loaded into 32 element vectors
block by block by the use of subroutines 'Red D' and 'Red Z'.
The sweep parameters are checked in the first block by the
subroutine 'CﬂData' and any mismatch causes the program to
terminate.

'K' loop. Processes data frequency by frequency.

The inertance data for the sub-systems, is loaded into real
matrices by the use of subroutine 'MAT' and are inverted

to give the apparent mass matrices.

The apparent mass duta of the sub-system and couplings is
combined and loaded into a real matrix [R], this being the
system apparent mass matrix.

Matrix [R] is then inverted to give the system inertance

matrix and the required elements are stored in data files.
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APPENDIX 4

INVERSION OF A COMPLEX MATRIX USING REAL MATRIX ALGEBRA

INTRODUCTION

The' Impedance Coupling Technique'involves complex matrix
manipulations including matrix inversion. The HP9825A was not able
to perform this type of arithmetic since it could only manipulate
real matrices. Therefore, a method was required to invert the
complex matrix using real matrix algebra. Two methods were
investigated, one using conventional matrix algebra and substitution
whilst the second requires the formhlation of a specially coded
real matrix. The latter method was taken from a paper by Predmore
and Davis®?,

Take, as an example, a simple 2nd order complex matrix.

aj; + jbn a12 + jby2

a1 + jbaa aza + jbaa

METHOD 1
This complex matrix can be rewritten as:
a;, aiz b1, b2
azi azz bz bz2
or [A] + j[B]

If the inverse of this matrix be

[c] + j[p]
such that

([c] + j[oD ' = [A] + j[B] T, |
then ([A] + j[B]) ([c] + j[D]) = [1] S eg AR

where [I] is the identity matrix.
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After some matrix algebra eq A4.2 yields the following
equations:
[c] = - [B]™! [A] [D] e B e A4S

(D]

- ([A] [B]™' [A] + [BDT! . . . eq Ad.4
Therefore, two inversions. four multiplications and one matrix
addition are required to invert this 2nd order complex matrix.
METHOD 2

This method utilises a coded real matrix which is twice the
order of the complex matrix. The matrix is divided into sub-
matrices which are always 2 X 2 and contain the complex element;
the real part being repeated on the two diagonals and the imaginary
part on the off diagonals, there being a change of sign on the
lower off diagonal. The coded real matrix for the 2nd order

complex matrix is shown below.

e | =
a biy: ) 4djz b2
]

-b1, aj; ' =biz ayz
_______ et e B Wt
|
azi b2; ; azz2 b2z
i
=bz2, azy : =bz2 az2

This matrix may be manipulated as a real matrix so matrix
addition, multiplication and inversion is possible. The resulting
matrix is decoded to give the complex matrix in exactly the same
way since the position of the elements is not effected by these

manipulations.
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