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Summary :

This thesis describes an analytical and experimental study to
determine the mechanical characteristics of the pump mounting,
bell housing type. For numerical purposes, the mount was modelled
as a thin circular cylindrical shell with cutcuts, stiffened

with rings and stringers; the boundary conditions were considered
to be either clamped-free or clamped-supporting rigid heavy mass.
The theoretical study was concerned with both the static response
and the free vibration characteristics of the mount. The approach
was based on the Rayleigh-Ritz approximation technique using beam
characteristic (axial) and trigonometric {(circumferential)
functions in the displacement series, in association with the
Love - Timoshenko thin shell theory. Studies were carried out to
determine the effect of the supported heavy mass on the static
response, frequencies and mode shapes; in addition, the effects
of stringers, rings and cutouts on vibration characteristics

were investigated. The static and dynamic formulations were

both implemented on the Hewlett Packard 9845 computer. The
experimental study was conducted to evaluate the results of the
natural frequencies and mode shapes, predicted numerically. In
the experimental part, a digital computer was used as an
experiment controller, which allowed accurate and quick results.

The following observations were made:

1. Good agreements were obtained with the results of other
investigators.
2. Satisfactory agreement was achieved between the theoretical

and experimental results.

3. Rings coupled the axial modal functions of the plain cylinder
and tended to increase frequencies, except for the torsion
modes where frequencies were reduced. Stringers coupled the
circumferential modal functions and tended to decrease
frequencies. The effect of rings was stronger than that of
stringers.

4. Cutouts tended to reduce frequencies; in general, but this
depends on the location of the cutouts; if they are near
the free edge then an increase in frequencies is obtained.
Cutouts coupled both axial and circumferential modal
functions.

5. The supported heavy mass had similar effects to those of the
rings, but in an exaggerated manner, particularly in the
reduction of torsion frequencies.

6. The method of analysis was found to be a convenient
analytical tool for estimating the overall behaviour of the
shell with cutouts.

Proposals are offered regarding further relating work.
Key words: Pump mounting s Shells s Rayleigh-Ritz 5 C.A.D.
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CHAPTER ONE

INTRODUCTION

Noise may be regarded, generally, as any undesired signal,
although it is usually interpreted as an unwanted type of sound.
The source of noise is vibration and in mechanical systems it
may imply undesirable behaviour, perhaps resulting in mal-
function of machinery. In modern society, noise has also come
to be regarded as a form of pollution so that there is
increasing attention paid to controlling the problem.

Man has been concermed with noise since his first steps on
this planet, annoyed with the noise from many sources; thus,
nature itself can produce noise with very high levels such as
those sound disturbances$associated with waves beating on rocks,
wind howling through trees, thunder in the sky or the eruption
of volcanos. Besides these natural sources of noise, man
himself created a lot of noise and began to pollute his
surroundings when he started to manufacture his primitive tools
and weapons for hunting and other purposes. But the industrial
revolution heralded the start of the present noise age!

The new revolution brought about all kinds of polluticn;
smell, smoke, eye sores in the landscape and noise. These
problems were associated with all stages of the
industrial revolution from the steam engine, railway
locomotives, internal combustion engine to the diesel and

jet engines. All these and others add to the noise



problem, and many people are disturbed and suffer because:of ‘the

problem. With more complicated built machines, the problem "has
grown to such an extent that noise reducticn and control has become
the exact science of today.

The problem of sound and vibration had a great attention from the
early days of the ancient Greek scientists. Pythagoras experimented
with the vibration of a stretched string, Aristotle, Euclid and
Ptolemy produced some theories, but not directly relating to the
physical aspect of sound. The foundations of acoustics were laid
by Galileo Galilei, 2000 years after Pythagoras, but the fathers
of the modern science of acoustics are usually regarded as having
been Hermann Helmholtz and Lord Rayleigh who, in the later half of
the 19th century, developed many fundamental theories. While
Helmholtz was concerned with the theory of resonators, Rayleigh
produced a more general concept in his publication, The Theory of
Sound (1).

Because of the health hazards due to high noise level, people
are now more concerned about the probleéem tharn previously and more
researches about the subject, in general, are available in the
literatures, dealing with noise sources, reduction and control
(2, 3, 4, 5). The author is concerned here with the noise problem
in hydraulic systems.

The higher speeds and pressures employed in modern hydraulic
systems create significant problems in noise production and radiation

and this at a time when legislation is becoming increasingly string-

ent in its objectives of controlling industrial noise levels. The



noise problem in hydraulic systems is a complicated one due to

the mechanism of operation and the pump function. In operation,
the pumping action and the movement of the mechanical parts inside
the pump casing generate pressure pulsations in the fluid and mechani-
cal vibrations. These vibrations give rise to movement of the pump
casing, which in turn is in mechanical contact with other parts of
the system, e.g. mount, valves and pipes. Some of the produced
vibrations are transmitted to other parts and they, in turn, radiate
noise and transmit vibration.

In general, the noise in a fluid power system is produced as
mechanical vibration of the structure, known as structure borne
noise (S.B.N.) and as pressure fluctuations in the fluid, known as
liquid borne noise (L.B.N.). The S$.B.N. and L.B.N. produce what is
known as air borne noise (A.B.N.), the audible sound radiated through
the surrounding medium. The airborne noise due to the liguid borne

noise is discussed in (6, 7, 8). Experimental work was reported

,
in (8) to measure the air borne noise due to the structure borne
noise in the system, but no theoretical studies were mentioned.

The main object of the present work is to study the vibration
characteristics of pump mountings as a first step towards the under-
standing of the structural borne noise of that part in the hydraulic
system.

All the fluid power system components, in particular, the
pump mount - which links the pump to the motor or to the founda-

tion - have a marked influence on noise due to radiation from its

surface brought about by structural vibration transmission from



the pump and other components and also the part transmitted to the
motor casing. Due to its compact construction, the pump itself is
not a strong radiator of ncise even though it is a powerful: generator.

Also the pump mount, especially of the flanged bell housing type,
has a strong influence on the noise that radiates from the pump
casing. That is because it alters the effective stiffness and mass
of the casing. This effect could be minimized if there were a
substantial mis-match of the mechanical impedance between the case
and the mount, which results in reducing the energy flow between the
punp and its mount.

The techniques used to reduce noise in the hydraulic systems
can be classified as:-

1. Reduction of noise at sources (pump construction, valves)

2. Interrupt the transmission path with damping and igolating

materials.
3. Reduce the fluid bornre vibration by damping out the pressure
ripple with an acoustic silencer.

4, Interrupt the pipe transmission paths with flexible hose.

5. Acoustic cladding (masking).

The problem under investigation here, namely the reduction of
the effect of the mounting, may suggest that technique 2 is suitable
to be used in order to isclate the pump generated noise. In practice
however, the bell housing is bolted onto a motor and the pump is
bolted to the bell housing, usually, or preferably, rigidly connected
to minimise the misalignment due to the over hung weight and torque

deflection. Unfortunately using an isolating material might increase



the possibility of misalignment. In addition, the properties

of the isolator material are highly affected by temverature
variations and the other environmental operating conditions,
hydraulic fluids, hydrocarbons, ozone...etc. Furthermore, it
is difficult to be sure of a complete metal to metal isolation,
especially in awkward places. The high expenses of the isolator
materials add to these disadvantages.

With these facts in mind, the noise problems associated with
the bell housing can be controlled by reducing its response to
the exciting forces. So far, the pump mount should be designed to
minimise its influence on the whole system generated noise by:-

1. Reducing the mount capability for radiating noise.

2. Reducing its capability for transmitting mechanical
vibrations between the various parts it connects,

These goals can be achieved through the following considerations:-—

1. Mount to have the minimum dimensions necessary to support
the pump adequately.

2. Mount natural frequencies to be well removed - if possible -
from the forcing frequencies imposed upon it, to reduce the
possibility of exciting the mount at its own natural modes
of vibrations (i.e. prevent or reduce the resonance
effects).

Since the natural frequencies of any structure are functions of
its material constants, relative dimensions and the geometric
arrangement of its built up components, these facts provide

humerous parameters to be tested from the vibration point of view.



The type of the pump mounting investigated here is the bell
housing one. In its most complex geometrical shape, the bell
housing mount consists of a cylindrical thin wall shell
stiffened with longitudinal stringers (ribs), circular flanges
and containing some cutouts to observe and allow the coupling
of the driving shaft. The main objective of this thesis is to
present analytical and experimental methods for determining
the mechanical characteristics of the pump mounting - bell
housing type. In a more precise way, to provide a comprehensive
technique to study both the static and dynamic characteristics
of such components and so assist in their design. This main
objective is achieved through the following sub-objectives:-
1. To develop a mathematical model of the bell Lcusing
mount to determine the elements of the mechanical
problems, namely the stiffness and force matrices
for the static part and the stiffness and mass
matrices for the free vibration (dynamic part).
2. To develop a computer program to generate the elements
based on the theory developed.
3. To solve the formulated problem:
a) Equations Of equilibrium in the static case.
b) Eigen value problem in the dynamic case.
in order to obtain the stress distribution forms and
alsc the natural frequencies with their associated
mode shapes.
4. To build a test rig to study experimentally the vibration

behaviour of the model.



To test the theoretical method against other methods

available in the literature.
6. To compare the experimental test results with the
predicted computational results.
7. To study the effects,on the frequencies and mode
shapes, of varying parameters such as size and
locations of cutouts, the supported pump inertia...etc.
In chapter two, a survey of the literature on the vibration
of stiffened or unstiffened cylindrical shells is given with an

indication of its deficiencies in relation to the present problem.

Chapter three is concerned with the developed theory which will
handle the actual model with a variety of conditions. Chapter
four is a description of the computer program built up, the
required input data, generation of mass, stiffness and force
matric es, solution of the problem and finally the output formats.
In chapter five, a description of the experimental test rig
is given, test procedures are explained, with the associated
precautions to be considered for instrumentation arrangements
and measurement technique. Chapter six is concerned with the
results.

First the predictions of the presently developed model
are compared with known related results; such tests were
required to ascertain that the modelling and associated rather
elaborate computer programs were functioning. Next, the
influence of varying relevant system parameters 1is reported.
Finally the computer predictions were compared with experi-

mental data prcoduced in the tests carried out. Chapter seven




presents the conclusions and suggestionsfor further investiga-

tions. If the mathematical expressions of the theoretical
part are interrupting the flow of the theory, then such

expressions are presented in the relevant Appendices.




CHAPTER TWO

REVIEW OF LITERATURE RELATING TO

SHELL DVNAMICS

2.1 Introduction

Geometrically, the bell housing pump mounting is essentially

a cylindrical shell stiffened with longitudinal stringers

(ribs), two end ring flanges and, perhaps, some intermediate
ring stiffeners. To provide access to the driving shaft and
coupling, there may be one or more cutouts. This configuration
represents the utmost complications that may occur in a bell
housing mount, it could be found in a more simplified form.

In view of this described geometry, it was decided that
this class of pump mountings would be modelled as a thin
walled stringendimgreinforced cylindrical shell in which one
or more cutouts may be present. Although this represents a
significant simplification compared with treating the mounting
as a three dimensional object, the static and dynamic problems
are still extremely complicated so that some approximation
techniques are required to effect a solution. 1In this chapter,
we discuss some of the approaches which have previously

been applied to this type of problem.




2,2 Approximation Meéthods

It has been pointed out that the model under investigation
is quite complex structure, so some approximate technique
should be called in to find the stress levels and the vibration
characteristics associated with it.

The approximate techniques are used either to formulate
the elasticity partial differential equations in an
approximate manner, then solving the set of resultant equations
in exact form, or solving the exact partial differential
equations in an approximate manner. In other words, methods
of approximations in general, may be classified into two
categories:- =

(i) Approximate treatment of an exact differential
equations set, such as finite difference method.

(ii) Exact treatment of an approximate system, such as
Rayleigh~Ritz and finite element methods.

In the finite difference method, the set of governing
differential equations, as well as the equations defining the
boundary conditions are replaced by the corresponding finite
difference equations. This, then, reduces the problem to a
set of simultaneous algebraic equations. The accuracy of the
method depends upon the size of the intervals, or the mesh size.
The finer mesh increases the accuracy, but on the other hand, the
resulting equations are increased and hence the amount of work
required for solution increased materially, with higher round

off errors.

10.



In the second group of methods, which are called energy or

variational methods, the governing differential equations of an
elasticity problem can be obtained as a direct consequence of the
minimisation of a certain energy expression, Instead of solving

the differential equations, we may therefore seek a solution which
will minimise the energy expression and may thereby avoid the
mathematical difficulty in the solution of such partial differential

equations.

In the case of static problems, the starting point may be taken

to be the potential energy principle. Here with the aid of the
assumed displacement pattern, we may proceed to the classical
Rayleigh~Ritz and other methods, or more recently developed
finite element method. 1Indeed the latter technique may be viewed
as a plecewise Ritz method. The significant factor is that such

methods generate the static equilibrium equations in the form

il

ESEREY;

Q1 2.1.

In the case of free vibration, the starting point is the

Hamilton's principle, which in turn, gives the linear eigen value

problem in the form

dx] - M)y {a} = fo) 2.2.

The detailed contents of [k] and [M] depends on which particular
method and displacement model is assumed, but in any case, use of

computer is essential.




The Rayleigh~Ritz method may be carried out as follows: First
assume the solution in the form of a series which satisfies the
boundary conditions, but with undetermined parameters, qi. Second,
insert these functions into the expression of the potential energy
in static case, or the potential and kinetic energies in the
dynamic case, and carry out any required integration. The resulting
expressions are functions of the undetermined parameters, qi, where
i =1, 2.., n. Since the potential energy must be minimum at
equilibrium, in the static case, the q's can be determined from the

minimising conditions:

o]
[~
w

where ]l is the total potential energy of the system, including the
strain energy of the deformed body, and the potential energy of the
external forces. With some mathematical manipulations, equation 2.3
takes the form 2.1, from which the values of q's may be found.
Substituting these values of q's into the assumed form of the
functions, we have an approximate solution of the given problem. The
accuracy of the solution improves when more undetermined parameters
are taken. One way to get an idea of the accuracy of the solution
is to solve the problem by successively taking more q's and
comparing the final results.

If the results converge rapidly, then we may conclude that the
approximation is good. The same process is performed in the
dynamic case, which in turn yields the eigen value problem in the

form 2.2.
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In the finite element technique, the solid body is imagined
as divided into a finite number of elements, connected with each
other through nodal points. Within each element, the distribution
of the displacements are assumed in a suitable form with some
associated parameter, which may be identified with nodal values of the
wanted displacement functions and their derivatives. Then, on the
basis of these assumed displacements, the strain and kinetic
energies of an element may be computed in a similar manner as
previously discussed in Rayleigh-Ritz method. Summation over all
the elements yield the total energies of the whole structure. In
the static case, the actions of the applied loads are taken into
account. The overall assembled structure yields the equations of
equilibrium in the form 2.1 for the static case, or the eigen
value problem in the form 2.2 for free vibration case. The accuracy
of the technique can be improved by using a more fine mesh, but the
preparation of the input data for the computer solution is indeed
a tedious and time consuming job, and also the round off errors
associated with large size matriX manipulations always
occurred. Further, if a new kind of finite element is to be
developed to achieve more convergence, one has to reformulate the
whole mass and stiffness properties of the new element. But from
the designers point of view, a desirable analysis technique is
that which gives an adequate solution with the greatest ease. In
the context of the present work, the finite difference approach result

in large round off errors and large computer storage. Also the

13.



finite element approach requires a substantial amount of data
preparation for each candidate design solution considered: in contrast
this is far simpler for a Rayleigh-Ritz approach. As will be seen later,
this does not imply that the development of a computer program is

a simple task in the Ritz case, but, then the user is not concerned

with such details., A comprehensive dccodntof the energy method is

given by Richards in reference (10).

2.3 Historical literature survey on shell vibration

A thin shell is a three dimensional body which is bounded by
two closely spaced curved surfaces, the distance between the
surfaces being small in comparison with the other dimensions. As
a construction element, the thin shell has been used since the time
of the ancient Greeks, who used shells as part of their architecture.
One of the main reasons of using shells rathexr than the plates
(which are considered as a special limiting case of shells, having
no curvatures) is that while the plate can support the lateral
load by the action of bending and twisting moments - except
for large deflexions - a shell supports the applied load by in-
plane (membrane stresses) as well as bending and twisting stresses.
This difference in properties makes a shell much stiffer and
more economical structure than a plate under the same conditions.
The penalty for this advantage in application is that the theory

of the shell behaviour is far more complicated than that for plates.
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In the case of plate problems, for small

of the bending and membrane stresses are
separate bending and membrane theories.

governing partial differential equation,

x, y (12) is
w 3" w O w
3.0+ 2 2, 2 + = D
Ox 3x> 3y 3y" a/
where w 1is the lateral deflection
q 1is load density (load/area)
D 1is plate flexural rigidity = Eh
12(1-v %)
In the second theory - plane stress situation, (13)

uncoupled,

deflections,
resulting,

In the former case,

partial differential equation in the x-y co-ordinates

”@

W + 2

where ¢ is the

XX =

defined to satisfy:

in the absence of the body forces.
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All academics agree on these forms of the classical fourth
order partial differential equations in the case of plates. Such
agreement does not exist in the shell theory. Thus because of the
combination of both bending and membrane actions, the classical
theory of shells is governed by an eighth order system of
governing partial differential equations. Numerous different
shell theories have been derived and used, differences being due
to various basic assumptions about shell behaviour, particularly
the strain-displacement relations. Therefore, if analytical
results for stresses or frequencies of a given shell are presented,
the corresponding shell theory used in the analysis must be
specified.

Modern theoretical and experimental studies on thin shells
began in the 1820's, in order to solve the problems associated with
shell applications in pressure vessels, piping, roof huilding...etc.
Since starting to investigate the problems associated with shells,
about 5000 papers, (14) have been published. Also, reference (14)
gives an approximate expression for the number of papers published

each year as an exponential function of the form

N = e0.074 n 1 2.7
where N = number of papers produced in the nth year
n = number of years taken from an arbitrary origin of 1886.

Since the author is concerned with shell vibration, the next
section will deal with some of the fundamental theories

associated with his purpose.
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2.3.1

Notes on the fundamental theories of shell vibration

The main purpose of this section is briefly to review some

of the fundamental theories used to describe shell vibrations,

particularly the thin cylindrical shell, which is considered to

be appropriate idealisation of the pump bell housing mount.

All the following theories derive from Love's postulates. The

following assumptions were made by Love (15).

1. The thickness of the shell is small compared with the
other dimensions.

2. Strains and displacements are sufficiently small so that
the higher order magnitudes in the strain-displacement
relations, except the first order, may be neglected.

3. The transverse normal stress is small in comparison
with the other two normal stresses and may be neglected.

4, The normals to the undeformed middle surface remain
straight and normal to the deformed middle surface and
suffer no extension (Kirchhoff's hypothesis)

These approximations are universally accepted by others to develop
their own shell theories. No attempt will be made to derive

these theories in detail, but they can be found in the relevant
references.

The earliest study on the vibration of cylindrical circular

shells was made by Rayleigh (1); he investigated both the

extensional and in-extensional vibration.

For the first category,

he deduced the frequency equation:
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0(1-v?) 2 p2(1-v2ya??

where w is the angular frequency, n is the circumferential wave

number, a is the radius of the middle surface, } is the half length
of the cylinder. If the length is large with respect to the radius,
one can distinguish between two types of vibration: almost purely

radial motion with frequency:

w = __E
p(l~\)2)a2 2.9.a
and almost purely longitudiral motion with frequency:
w? = anﬂi
2 2.9.b
o3 |
For the second category, he derived the following eguation:
2 2,2 2 2, 2,2
Eh - — ,
w? = n (n"-1)" 1 + 6{(1-v)ya“/n“} 2.10
12p (1-v¥)a® n?+1 1 + 3a%/n?(%+1)1?

for the natural frequency.

It has been pointed out by Leve (15) that the inextensional
displacements, used by Rayleigh, fail to satisfy the equations of
motion and the boundary conditions, and in general, these results
are only approximate, because the bending stiffness had been
neglected in the extensional motion.

Donnell and Mushtari, (16, 17), developedamore advanced

theory. They derived the following equations of motion
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3% (a-vy 3?2

+
ds? 2 362
1+v 52
2 RERLS!
v 3 1+kV* 4y 232
ds a6 at® ~
= {0} 2.11
where \‘{2 - Q(l“Vz)RZ ’ k= h2 b vz = ._..._2_ + -—-ﬁ—
E 12R? ds? 2302

and X
8 = e
R
Equations 2.11 imply neglectOffﬁFeffect of the tangential
displacements (u and v), and their derivatives on the midsurface
changes in curvatures and twist. They are accurate as far as
the factor k is small.
Love (15) and Timoshenko (13), in their formulations,
retained the tangential displacements and their derivatives,
but neglected the terms in z/R in the strain-displacement

relations. Their equations of motion are similar to those in

2.11, with addition of the following term to the left hand side

of 2.11:
0 0 0
u
K 0 (1-vy 3% 3% -t 9 y
3s? 262 08236 063
0 -(2-v) 9% 33 0 y
3s236 0807
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Flugge (18) and Novozhilov (19) used similar strain-displacement

relations, but by keeping a higher order

of z/R terms, they

obtained different force and moment resultant expressions; these

differences were reflected in the corresponding equations of

motion. In the case of Flugge's theory,

should be added tc the left hand side of

“1-v 9° 0 -
2 2962
k] O 3(1-v) 3% _
2 ds?
_ 5° L, - 32 (-v  ?° 1
g ® 2 23s08? 2 3s236

the following terms

2.11:

+ 2 3
362

The corresponding expression due to the Novozhilov theory takes

the form
r -
0 0 0 u
k [0 z@-w 3® 37 -(2-vy_ 2> 3} y
9s? 307 98?36  30°
o -2-v) 23> @’ 0 y
i 9s?50  90°
In the Sander's theory (20) - sometimes described as the
"exact" theory - the strain-displacement relations were
developed from the principle of virtual work. Sanders approach

led to the addition of the following term to the equation 2.11
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8 362 8 35930 2 23s36%
k| -3(1-v) 32 9(1-v) 32 . 52 -(3-v) 3?3
8 35936 8 93s? 362 2 3s%38
(1-vy 33 -(3-v) 33 s 0
2 3s36? 2 3s?386  »0°

A more detailed discussion of the subject can be found in
(21, 22, 23).

Nevertheless, one may say that the differences in the
equations arises basically from small differences in the
formulation of the strain-displacement relations and the
expressions for force and moment resultants. The discrepan-
cies occur only in terms which, numerically, have little
significance, as long as the limitations of thin shell theory are
observed.

In many cases, the results of the various formulations
are very close or even identical as demonstrated by Kadi in a
very comprehensive study (24). The same conclusions were

reported by Warburton (26).

2.3.2. Boundary Conditions:

The boundary conditions associated with either the
equations of equilibrium in the static case, or the equations

of motion in the dynamic case may be derived from the fact
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that the work done by the reactions at the boundaries is zero.

In the case of the cylindrical circular shell, these simple

boundary conditions may be listed as follows:-

at x = 0 and x = L
either NX =0 oru=290 2.12.a
N + M
! 0
? _x6 =0orve=0 2.12.b
R
+ 1 oM
! Qx R x0 =0 orw=0 2.12.¢c
30
and M = 0 or dw= O 2,12.d
% oW
ox

Since the partial differential equations governing the
shell theory are of eighth order, this gives a 136 possible
combinations of these gimple conditions. In other words, there
are 136 distinct possible classes of problems. Some of them
were discussed in (25). ¥rom these 136 problems, there are 16

cases where the shell has identical boundary conditions at both

ends; i.e. simply supported-simply supported, free-free,
clamped-clamped...etc.

The problem of circular cylindrical shell with simply
supported conditions at both ends has received the most
attention in the literature; this is due to the fact that a simple

form of solution to the eighth order differential eguations can
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satisfy these boundary conditions exactly. Next to the simply
supported end conditions, the problems with identical boundary
conditions at both end$,in general, have received a reasonable
attention. This is because in the case of identical boundary
conditions, the problem can split up into two: concerned with
the modes symmetric and antisymmetric with respect to the
middle section of the shell. Separately, each yields a fourth
order characteristic determinant instead of the original
eighth order one. Unfortunately, few papers are available,
concerning cylinders with different boundary conditions at the
two ends, from which the clamped-free case is chosen to
idealise the problem under consideration, in the intermediate
analysis stage.

Forsberg (27) gave a method for determination of the
natural frequencies of a cylindrical shell with any prescribed
end conditions. Instead of using the usual procedure of
finding the natural frequency for a shell of given length,
Forsberg, starting from the equations of motion, reversed the
process, i.e. first he assumed the natural frequency, then
the equivalent length of the shell can be found exactly for
these prescribed natural frequency and boundary conditions.
Doing such process for many frequencies, the corresponding
lengths may be calculated and a relation between frequency and length
may be drawn. From such relation, the natural frequency of a shell
with given length can be estimated. The solution is exact, but
the computation required for the method is considerably greater

than that for standard approximate methods.

23.



2.3.3. Unstiffened clamped-free cylindrical shell

Sewall and Naumann (53) used the Rayleigh-Ritz technique
with Novozhilov's theory (19) to obtain the natural
frequencies of a clamped-free cylindrical shell. They reported
a good agreement between the predicted results and the
experimental ones. Resnick and Dugundji (28) used beam
functions in their energy method with Sanders theory (20) to
solve the same problem, but disagreements between theoretical
and experimental results were reported, particularly for lower
mode numbers. Ramamurti and Pattabiramm (29) and Ucmaklioglu
(47) used the finite element method to study the problem, and
comparisons of their results with other simpler methods showed
small discrepancies. Sharma and Johns (49, 52) presented
extensive numerical results, using the Rayleigh-Ritz technique
in conjunction with the Flugge theory. But imposing the
conditions of zero hoop and shear strain in the median plane
limited the application of their method to a quite high
length to radius ratio, as in the case of tall slender chimney

stacks.

2.3.4. Stiffened Cylindrical shell

The vibration problem of stiffened cylindrical shells
has been studied in the aero-space field. 1In general, the
stiffeners were treated either by averaging their properties
over the shell surface or treating them as discrete elements.
In the former 'smearing' technique, the orthotropic circular
cylindrical shell equations were used. The method gives a

good regult if the stiffening elements are relatively closely
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épaced. When the distance of separation is large then the
structure must be represented as a combination of shell elements

and stiffener elements, each having its own equation of motion,

and coupled to each other through equations of continuity
(compatibility).

The second technique is regarded as more general in the
sense that the stiffeners may be few in number, nonuniform
in shape and nonuniformly spaced.

Sewall and Naumann (53) investigated the effect of
longitudinal stiffeners on the vibration of thin cylindrical
shells with different end conditions, using the smearing
technique. The same technique was utilized by Sewall et al
(50) to study the effect of rings on the vibration of ring-stiffened
cylinders.

Mikulas and McElman (30) established the equations of
motion for ring-stringer stiffened cylindrical shells, using
Donnell-Mushtari equations.

Egle and Sewall (31) gave an analytical method to treat
the stiffeners as discrete elements, but the results they
presented were only for cylinders with simply supported end
conditions and longitudinal stiffeners. Forsherg (51) developed
an exact solution for the eguations of motion for ring-
stiffened cylinders, treating rings as discrete elements. A
comparison of his results and those of the present analysis are
given in chapter six. A similar method was developed by Wah

and Hu (32) to solve the vibration problem for ring-stiffened



cylinders, but the results given therein are: .only for simply
supported shells. Sharma and Johns (49, 52) also treated the
game problem, but once more, their solution is only accurate
for tall cylinders.

Egle and Soder (54) gave an extensive study of a
cylindrical shell stiffened by rings and stringers, using the
discrete analysis approach with arbitrary end conditions. They
used Flugge Strain-displacement relationsin the analysis. A
comparison of their results and those of the present method is
shown in chapter six. Boyd and Rao (46) solve the same
problem, treating the stiffeners as discrete elements in
conjunction with Flugge theory and Rayleigh~-Ritz approximation

technique.

2.3.5. Cylindrical shell with cutouts

The problem of vibration of shells with cutouts is of
special interest. The cutout may be introduced in the structure
for purposes of access and visibility ~ for instance as in the
case of the present problem. However, the published results
are indeed very limited. Pattabiraman et al (33) in their review,
were concerned only with different methods of investigating the
effect of static and dynamic loading on stress concentrations
around holes. Brogan et al (34, 58) appear to be the first to
investigate - experimentally and analytically - the effect of
cutouts on the natural frequencies and mode shapes of a

cylindrical shell with integral end rings. They employed the
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finite difference method with up to 4200 degrees of freedom.
The fundamental natural frequency decreased by less than 7%

for a considerable cutout size (120 degree arc, 0.3 L span) -

L is the cylinder length. The method used required a
complicated difference grid and suffered from large round off
errors due to the high order of the differential equations
always associated with shell theory.

Mahabaliraja and Boyd (55), using the Rayleigh-Ritz
technique, solved the problem in an approximate manner, but
their results did not include the fixed-free boundary
condition. In contradiction to the results of (34, 58),
Mahabaliraja and Boyd reported a substantial reduction in the
fundamental frequency, of the order of 569% compared with a
complete cylinder. This reduction occurred when using two
rectangular cutouts, diametrically opposed, 90 degree arc
and 0.3 L span length.

Toda and Komatsu (56) reported a reduction of up to
22% in the fundamental frequency of a clamped-free cylindrical
shell, with two circular holes of diameters 0.5 of the shell
radius.  Ramamurti and Pattabiraman (57) have shown a reduction
of about 11% in the fundamental frequency for a rectangular
cutout of size 120 degrees arc and 0.143 L span, compared
with the complete cylinder. They employed the finite element
method due to Olson and Lindberg (35), with 28 degrees of
freedom per element, and of total 412 degrees of freedom for
one half the length of the shell, due to symmetry of the

structure, in axial direction. They used the same boundary
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conditions as (34, 58). The above survey about the effect of

the cutout on the fundamental frequency may be summarized in

Table 2.1

Shell parameters F
Ref, Cutout configuration ;eq.
h/R L/R B.C. change
34,58 | 0.0055; 1.28 | end rings | single rectangle, 1200, Drop 7%
0.3 L
55 0.01 2 simple 2 rectangles, diamet. " 56%
supports oppos.,QOo, 0.3 L
56 0.004 | 3.06| clamp 2 circular diamet. "o229
free oppos.,diameter = 0.5R
57 0.027 | 2.5 end rings | single rectangle, 1200 " 119
0.143 L
where h = thickness |, I, = 1length
R = radius R B.C.= boundary condition
Table 2.1

A survey on the effect of cutouts on vibrations

of cylindrical shells
The first three models of table 2.1 were manufactured from
aluminium, while the fourth one was made from steel. The
general conclusion from table 2.1 is that the cutouts reduce

the frequencies, but the question is how much? This seems to
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depend, to a certain extent, on the boundary conditions and

thickness to radius ratio for a given size of the cutouts. In
the present work, the latter influences were examined for the
fixed-free condition only; in the proposal for further work it
is suggested that the influence of boundary conditions should

also be examined.

2.3.6. Clamped-supporting heavy mass shell

To the author's knowledge, the vibration problem of
clamped-supporting heavy mass cylinder has not been
investigated so far in the literature. Only Holmes (36)
presented a simple method to study the axisymmetric vibrations
of a conical shell supporting a mass. The problem is covered

in a more general fashion in the present work.

2.4 Closing Remarks

The general complications associated with vibrations

of the cylindrical shell have been pointed out and different

relevant theories have been discussed. The problem has heen
widened to include stiffened as well as unstiffened shells
and yet some important points are still uncovered and need
more investigation or sometimes require a new modelling,
particularly the cutouts effects and shells supporting heavy
masses. In regard tc the theories of thin shell, since the
discrepancies between various theories are quite small, the
Love-Timoshenko theory has been chosen as the basis for the

work reported in this thesis.
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CHAPTER THREE

ESSENTIAL THEORY

3.1. General:

The analysis of this study is based on the well known
eénergy method, employing the Rayleigh-Ritz procedure. The
technique can be summarized as follows:

First, the general expressions for both the kinetic and
potential energy are written for the whole structure
comprising the cylindrical wall shell, rings and ribs as well
as the kinetic energy of the rigid supported mass, if
required, in the case of the free vibration analysis, or
the total potential energy of the whole system, i.e. the
Structure and the applied load, in the static case analysis.
The mode shapes are, then, assumed as a function of the
spatial coordinates, with undetermined coefficients, to
satisfy the appropriate (prescribed) end conditions; i.e.
to satisfy the kinematic boundary conditions, but not
necessarily the kinetic one, as Meirovitch illustrated in
reference (11). From the assumed displacement functions, the
Strain can then be re-expressed in terms of the undeter-
mined coefficients which are the generalized coordinates for
the substitute finite degree of freedom system which has
thus been created.

At this stage, the energies are re-expressed as

functions of the generalized coordinates, a process which
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requires a significant amount of integration. Finally,

applying the principle of minimum potential energy, in the
static case, one may obtain the equations of equilibrium, or
in the free vibration analysis, applying the Hamilton's
principle on a limited time integral of the difference
between the strain and kinetic energies the equations of
motion of the system can be formulated. The solution in the
static case gives the values of the generalized coordinates,
while in the free vibration case the natural frequencies

and the associated mode shapes can be found as a solution of

the formulated eigen value problem.

3.2. Analysis:

The structure under investigation is modelled as a
thin wall cylindrical shell fixed at one end and free or
supporting a heavy rigid mass at the other, stiffened with
rings (flanges) and longitudinal ribs (stringers) and with
machined rectangular cutouts. A typical bell housing
mount is shown in Figure 3.1.

The middle surface of the shell is taken as the
reference surface. The coordinate lines x and 6 are the
parametric lines of the reference surface and coincide with
the orthogonal lines of principal curvature - where the
lines x = constant and 0 = constant intersect orthogonally-.
The coordinate z is the outward normal to the reference

surface at the point (x, 8). The location and the size of
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cutout are specified by the coordinates of its four corners,
(x ., 0. x ., 0

1i’ 11), ( o 1i), (xzi, 621) and (xli, ezi). The
coordinate system used is illustrated in Figure 3.2. The
geometries of a typical stringer and ring (both of rectangular
section) as well as their local coordinate systems are shown

in Figure 3.3. Although the stringers are located

externally, rings may be external or internal to the shell.

3.2.1. Stiffener-shell compatibility relations:

The term “compatibility " here means the relations

that signify the mode of attachment of the stiffeners to the

shell in order to express the displacements of any point in

the stiffener interior in terms of those of the middle surface
of the shell. These relations were derived under the
following assumptions:

1., The stiffenerS are attached to the shell along a single
line of attachment.

2. A stiffere’ cross section normal to the line of attach~
ment before deformation remains normal to the line of
attachment after deformation.

3. The components of rotation transferred from the shell
middle surface to the stiffenerS at any point of
attachment are small.

In addition to that, it is also assumed that the stiffeners
have a uniform shape along their length, with rectangular
cross-section. The derivation of the stiffeners-ghell

compatibility relations are presented in Appendix A, which
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Fig.

3.2 Geometry of a Circular Cylindrical Shell

with Cutout
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Centroid?

Line of Rttachment

a) Stringer Coordinate System

Centroid

Line of Attachment

b} Ring Coordinate System

Fig. 3.3 Geometry of Typical Stringer and Ring
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gives the following expressions:

3.2.1.1 Stringer-shell compatibility relations:

u = u- v - .

s yS -~ (ZS * ZS) W,X 3.1.a
v = (1+zZ +2)v -2 + 2

s . ) i ZS. Vg 3.1.b

R R

wooo= - V4t w4y ow

5 ZE ZE. "6 3.1.c

R R

where u, v and w refer to the displacement components of
the shell middle surface, and u , v , w are those of the
s

S S

point (y\, 7 ) in the stringer interior.
S S

3.2.1.2 Ring-shell compatibility relations:

u =u-(z +2)w, 3.2.a
r r T b4
\ — N - \ N
v = - X u + (1l +2z +2z2)v-(z +2z2)w, +x 2z W
r r '© r r’ ( r r 0 r r ’x6
R R R R
c c
3.2.b
N\
w =W o+ X w, 3.2.¢c
r r pd
where v , v , and v are the displacement components of the
r r r

point (x , z ) in the ring interior.
. r r

3.3 Strain-displacement relations:

3.3.1 Shell strain-displacement relations:

The strain displacement relations used here are based

on the assumption in Love's first approximation theory,
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previously discussed in Chapter two, section 2.3. Based on
those assumptions, Timoshenko (12) derived the following

strain-displacement relations:

exx = u,x - zw,xx 3.3.a
e66 = 1 (‘V,6 + W) + 2z (v,e «w,Ge) 3.3.b
R 2
R
exe = _1%_ U‘Fe + V,X + ‘g‘ (ij— 2“”}(6) 3.3.C

Equations 3.3 may be given the following mechanical interpre-
tation by recasting them into another form. The terms free
from the z coordinate represent the strains of the middle

surface element arising from the "membrane" theory:

Exx = u,X 3.4.a

egg = L (V,g + W) 3.4.b
R

éxe = }__u,e -+ V,x 3.4.c
R

The terms multiplied by , give tke change of curvatures and

twist:
Xx = - w’xx 3.5.a
Xg = L g -w, ) 3.5.b
2 00
R
T = %_(v,x - 2W’x@) 3.5.¢c

3.3.2. Stiffener strain-displacement relations:

The strain-displacement relationship for the stiffeners

takes into account the effect of both bending and twist

deformation of the stiffeners.
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3.3.2.1. Stringer strain-displacement relations:

The stringer is assumed to be subjected to normal strains
and shearing strains. The extension strain for a string is

given by:

while the angle of twist per unit length is:
1 - v 3
" L N .6.Db
R
Substituting for us in equation 3.6.a from the stringer shell

compatibility relation 3.1.a, e has the forms
XX

s
- N N

e = u, =~ {(z+2z)w, -y Vv,
XX x S s X s

S
- N N .
= u, -z W, -z W, -y Vv, 3.7
bid s XX 5 XX s XX

Equation 3.7 shows the direct strain at the centroid of the

stringer cross section,

e = u, - Z W, 3.8.a
XX X s XX

In addition, there are the strains due to both changes

in curvature; namely, sagging curvature change:

= 3.8.b
szs w’xx

and yawing curvature change

Xy XX

In the above expressions, eXX is the noxmal strain of
s
the stringer in x direction, and Ts is the angle of twist

per unit length about the x axis.
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3.3.2.2. Ring strain displacement relations:

Only the normal strain in the 6 direction and shearing
strain due to twist of the cross-section about the 6 axis
are considered significant. The normal strain in this case

is given by:

e66 = 1 (vr + w ) 3.9.a
r Rc )

and the angle of twist per unit length is:

T = x0

T = 1l-u, + (-1 + z ) w, 3.9.b
0 r
Re -

Rc Rc

where Rc is the radius of the centroidal line of the ring.

Substituting for vr and w in equation 3.8.a from 3.2.a, the
r

normal strain of the ring may then be written as a function of

the shell middle surface displacements as:

€gg = 1 | (1 + Er + z;) Vig (§r+ z;) w, + w+ x; L
r Rc % —5 60
- EL— %100 " x; ;r W’x
Rc Re 0@__1 3.10.a

, which, again, can be split into the strain due to

extension in the centroidal line, EGOr’ and the two changes

in curvature Xyz , ny
r r
e = 1 - - .
GGr e [ (1 + 2z VigT ZWigg TV 3.10.b
R R
X = ”_L__(V; - W, ) 3.10.c
Y2y RcR 6 8
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X = -1 (1 u -w, -z, w ) 3.10.d ‘ i
X — — 7 ! Ly ) . . ‘ .
VEr Rc  Rc o8 ¥ Rc *06

3.4 Stress - Strain Relations:

The next step is to express the state of stress
developed in the structure. The stress- strain relations
are empirical ones and depend on the material of the
structure. Here the linearized form, Hooke's law, is
employed with the material of the structure considered to be

isotropic.

3.4.1 Shell stress-strain relations:

Since the shell is considered to be thin, it is
assumed that the small element is in a state of plane stress.
The last assumption leads to neglect of the direct stress in
z direction, Ozz as well as the shearing stresses parallel

to it, C© and O Thus, Hooke's law in this case has

Xz ez :
the form:
© = B (exx v ee@) 3.11.a
XX ?Ij_gz)
O = B (egg * Ve ) 3.11.b
(1-v%)
o = Ge = E € 3.11.
x0 x0 2 (1o x6 c

The above relations may be expressed in terms of the

displacement components and their derivatives by substituting
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equations 3.3 into 3.11. Having done that and integrating

through the shell thickness h, the following stress

resultants can be obtained - i.e. the force or moment per

unit length:

|
+
<
o |

N = El
.
(1-v?)

<

= Eh [ Uy Vv, W)J 3.12.a
(1-v?)

=

N, = ' e
. Eh [ gg * Ve :]
(1-v?)

1l
bt
jos

|
e

(v,, + W) + Vu, 3.12.b
o X
(1-v%) ]

x6 x0

i
i

- Eh _1_u,©+v,

=1 3.12.c
2(1+V) | ® * J

% [ ortal o

_ 3 y -
M = Eh xX +V XG_J
12(1-v?%)

3 v - w ’ 3.12.d
— hend » 4 .
= Eh w, + v ( 'g 766)

- 1 3 /
My = Eh [ Xg *+ V xx:]
12(1-v?)

12 . e

W

3 . -
= Eh [ _}_ (Vre W’ae) \)W,
12(1-v?) R?

XX
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= ___En’ E v, - 2w, ] 3.12.f
X x6
24 (1+V)R

3.4.2. Stringer Stress-strain relations:

The stringer is assumed to be subjected to both

extension and twisting, and this gives a normal force N ,

X
s
sagging bending moment M , yawing bending moment Mz and
s s
torque M . The expressions for these forces are:
*s
N EA e 3.13.a
X = s XX
s s
M = g I X 3.13.b
Xz
Ys ¥Y¥gq “q
M = E L X 3.13.c
z z2z Xy
s s S
M = (GJ) T 3.13.d
be s s

J 1is the torsion constant of the cross-sectional area
s

of the stringer, given by

where b and a are stringer depth and thickness respectively,
s s

and b > a . The dimensionless ccnstant kl depends on the

ratio b/a as given in (13).
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3.4.3. Ring Stress - strain relations:

The ring is assumed to be subjected to both normal
strain in 6 direction, and shearing strain due to twisting.

As in the case of stringer, the resultant normal force N ,

r
two bending moments M , M and the torque M on a
*r 2y Ir
cross-section of coordinate 6 may be written as:
N = EA e
. - 06 3.15.a
r
r
M = E I
N x Xyz 3.15.b
r r r
= I
Mz E . ny 3.15.c
r r T
M . .
y = (GJ) T 3.15.d
r r
r

The sign conventions of the expressions 3.12, 3.13, 3.15

are given in Figure 3.4.

3.5 Strain Energies:

3.5.1. Shell strain energy:

Provided the shell is considered to be in a state of
plane stress, the strain energy per unit volume, Ue' (strain

energy density) takes the form

w

— .16
U = _%_(Oxx eXX + 086 ee@ + Ox9 exe)

43.




a) Shell Element

b) Stiringer Element ¢) Ring Element

Fig. 3.4 Sign Convension of Ferces and Moments
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Substituting for stresses ¢
XX

s 068’ Ox@ from equation 3.11

into 3.16 yields:

XX 66

gy = E e2 4+ el +2ve e 4 (1-v) e? 3.17
e ; 006 XX = x9
2(1-v?)

The strain-displacement relations of the shell, 3.3 are then
used to give the strain energy density in terms cf the
displacements u, v, w of the middle surface and their
derivatives,

The total strain energy of the whole shell is found by
integrating the resultant expression over the entire volume
of the shell. Having done that, the total strain energy of

the shell, U 1is, then, expressed as:
o

2T
__EhR u,2 + 1 (v,, + w) + 2V u, (v,, + w)
o “/P J/‘ x - 0 X 0
2(1-v?) R*
o]

(]
1f

y . 2 . 2 2 ~
+ (1-V) (iu,6 4 V’x) + E*{jw’xx + 1 (v,e W’@6)2
2 R 12 y
R
2=
+ 2V LA (w,66 - v,e) + 2(1-V) (v,x 2w,Xe) J
R2 r2

}dxde 3.18

The expression 3.18 presents the strain energy due to the

extensional - membrane - deformation, (the terms including h),

and that due teo inextensional, or bending, deformation, the

. . 3
terms including h™.
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3.5.2 ‘Stringer strain energy

The strain energy stored in a stringer is due to extension

and twisting deformation; it can be expressed as:

L
U =1 N e + M y : .
s __Jf(x x g Xez TM, Xy +*E T )| dx 3.19
2O s s s s s s S

Subsgtituting for N , M Mz and M from 3.13 into 3.19
X

X
s Vg? s

S
and then for e , X, X and T from 3.6, 3.8 into the
xxS xzS xyS s

resultant equation, the strain energy contribution of a

stringer has the form:

L
U =1 d/}EA (u, -z w, )2 + EI w,2 + EI v,2
S - s X s XX Yy XX ZZ XX

2 s s

Q

+ GJ

8 (w, . -v, )% dx
— x0 X

2
R -

O’es 3.20

where 6 1is the circumferential location of sth stringer.
s

3.5.3. Ring Strain energy:

The strain energy of a ring can be expressed as:

247 —
M T ) |Rc dB
U =1 (N e + M X + Mz X x + .
"'J/. Yy 66r X, Y2, r r y

o X=X

Subsgtituting for N , M, MZ and My from 3.15 into 3.21
y
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and then for e

the resulting equation the strain energy expressed

function of u, v, w and their derivatives becomes :

2
EIxxr ['V’B h W’eél * EIZZr{;u'SQ T W T

R Rc
GJ
I p (-1 +
R 2L R
c c

where x is the axial location of rth ring.
r

00 Xyz ’ ny and Tr from 3.9,3.10
r r

R02 Re

_ 2
' *%-W'GG + WJ +

into

2

W’x@@]

For subsequent manipulation in formulating stiffness

matricies, it is convenient to expand equations 3.20 and 3.22.

Details of this are given in Appendix B.

3.6 Kinetic Energies:

In the following expressions for the system kinetic

energy, the rotary inertia contribution of the thin wall

shell is neglected, while the same effects for stringers and

rings are taken into account.

3.6.1.

Shell kinetic energy:

Neglecting the contribution of rotary inertia, the shell

kinetic energy may be written as:
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T =

1 “+ "/2 + \i,z) de dx 3.23
° 2

PRh

§

where p is the mass density of the shell material, and the

o 3
~~
[«

dot refers to the derivative with respect to time.

3.6.2. Stringer kinetic energy:

The kinetic energy of a stringer is:

L 2 2 2
T =1 ¥ y i
s Ep Joof @ v o+ ) d (area). dx 3.24
0
area
i
Substituting for us, vs and v from 3.1 into 3.24, the
stringer kinetic energy takes the form:
L L2, -2 .2 - . . .
TU=Llo A G e +w)—2ZA[uw, +v(w,—v)]
s Py s s s x 0
2 0 —
R
+ I v,2 + (w, 0)2 + (z2 A + X ) w,2 + (w, 03 .
zzs X 6 yys x . 5] ?
R R 9
} dx
0=0, 3.25 @
Note that equation 3.25 includes both the translation and j
rotary inertia effects. %
3.6.3. Ring kinetic energy:
The kinetic energy of a ring is:
i .2 .2 .2 6
T = 1p } ‘[ (ur + vr + wr) d(area) Rc db 3.2
. =
2 O area
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Substituting for u
and integrating over the ring area cross section, the

’

V. and w
r r

from equation 3.2 into 3.26,

kinetic energy of a ring has the form:
T =1 o A (@% + 92 + %) 22 A (aw ERE
r 5 f { r r r (u You T yrv W'G)
0 8 R
P EDA Ty @ v 2w, w2 )
r or XX ! — '8 ‘0
r R2 —
R2 R2
L 1 N2 L2 w2 on o o 2 0 %
er[ u'e “ W’x@ 2zr u,0 w’xO + w, } Rc d
R? R? R?
X = x 3.27
r

Again, one might note that expression 3.27 includes both the

translation and rotation kinetic energies of the ring.

3.6.4. Pump kinetic energy:

It is assumed that the pump is a rigid body with a
attached rigidly to the '"free'" end

relatively heavy mass,

6 degrees of freedon,

gravity (C.G.) of the pump in the X, Y and Z directions,
The three

As a rigid body,

the pump has

of the cylindrical shell.
three translations of the centre of

respectively,

and three rotations about the X, Y and Z axes.

VCG and WCG

cG’
®

C.G.

translations denoted by U

while the three rotations denoted by ¢ , &y and

7 -

The relations governing these displacements and

rotations to the displacements of the "free" end of the

mounting may be written as:



UCG - 3.28.a i
- a .oa
Veg TV v lu 3.28.b
R
W s s
€& = w + 1uR 3.28.c¢
R
Ta
=¥ 3.28.d
R
Rs
= u 3.28.¢
Y R
a
¢, = u 3.28.% ;
R @

where the superscripts s and a refer to the symmetric and
antisymmetric displacements with respect to the plane
"8=0". The superscripts A, T and R refer to axial, torsion
and rotation in the X direction, about the X axis and about
the Y axis respectively. Also, 1 is the distance of the
pump C.G. from the'free" end of the shell. Here u, v and w
should be interpreted as the displacements of the middle
surface of the shell at the "free" end; i.e. where x = L. The
equations 3.28 are based on the assumption that the plane
circular "free" end of the cylindrical shell remains plane and
circular after deformation. The deformed shape of the shell
as well as the C.G. set of axes are shown in Figure 3.5.

The vibrations of a cylindrical shell supporting a
heavy mass at the '"free" end, may be represented as a
superposition of terms symmetric and antisymmetric with

respect to 6=0 plane, as discussed later.
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Symmetric Mode

b)

Antisymmetric Mode

Fig. 3.5 Defiected Shape of Pump-Mount
Fig. 3. 2 f e

Coordinate System

Pump C.G

and Pump C.G.
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To this end, the relations 3.28 may, then, be divided

into two groups, concerned with the symmetric and the
anti-symmetric modes. Relations 3.28.a, 3.28.c and 3.28.e
are related to the former group, while relations 3.28.b,
3.28.d and 3.28.f are those of the second group.

Having clarified these points, the kinetic energy of

the pump associated with the symmetric modes may be written

as:
_ .S .Rs_? 2 2
Too=1wm | G +1u)+ﬁAS}+1 1 e
ps 2 P R 2 ny
2
R 3.29
For the anti~symmetric modes we have:
2 2
.a .a . .T
T = 1 M (v +1 )>+1 1 u* +1 1 ¥
b > p = - ZZ = XX
a 2 R 2 p 2 o
R? R?
3.30
In equations 3.29 and 3.30, Mp is the mass of the pump,
IXXp’ IYYp and IZZp are the three moments of inertia of the

pump mass about the three axes X, Y, Z respectively, having
their origin coinciding with the C.G. of the pump. Also, it
is assumed that these axes are the principal axes of inertia,
otherwise there will be coupling terms between symmetric and
anti-symmetric modes as indicated by Meriam (60). Since

the mounting is short and movements are small, gyroscopic

effects are considered negligible.

3.7 External work of the pump weight:

Considering the mounting to be held horizontally in
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the gravitational field, at the "free" end of the shell

we have the pump weight (Mpg) and a couple (1M g) arises
p

from transferring the pump weight to the "free" end of

the shell. 1In the static case, the external work done by

these forces may be written as:

S
W =-Mg wi(LO) +1Mg o
e p ' pf v 3.31

S .
where w (L,0) is the outward radial displacement of the
"free" end at x=L, 0=0, and the rotation angle ®Y is given

by equation 3.28.e.

3.8 Total potential and kinetic energies:

Since the displacement field is assumed to apply to
the entire cylindrical shell, it is necessary to subtract
the terms corresponding to the cutout regions. So if there
are cutouts of total number Nc’ then, the following terms
should be subtracted from the corresponding potential
and kinetic energy expressions of the whole shell, 3.19

and 3.23 respectively:

N, B2 ox,, oi
u =1 T J’ Qf J" U RdB dx d=z 3.32
C ) e
o 0
i=1 -h  *y4 1i
2
N X o 0., ‘2 2 ")
T =1 ¢ pRh 21 21 (u® + v° 4+ w°) dbdx 3.33
C 2 Z
™ x 6
i=1 11 1i
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The total strain energy of the system is, themn, given by;

where Uo and UC are those related to the shell and cutouts,
while Us and Ur should be interpreted as the strain energies
of all stringers and rings respectively. UO and Uc have the
expressions 3.18 and 3,32, Us and Ur are the summation of
individual stringer and ring strain energies, given in 3.20
and 3.22 respectively.

Similarly, the total kinetic energy of the system is

given by:

T = T +T +T +T -7 3.35
T 0 s r P c

where To' Tpand Tc are given by expressions 3.23, 3.29 (for
symmetric modes) or 3.30 (for anti symmetric modes) and 3.33
respectively. Also, here TS and Tr are the total kinetic
energies of all stringers and rings, given individually by

3.25 and 3.27.

3.9 Modal functions:

The modal or displacement functions should be chosen
in such a way as to satisfy the prescribed end conditions.
Here, the displacements u, V and W of the middle surface
of the shell are assumed to be double finite series. Each
term of the series is a product of a circumferential and
axial modal function, weighted by time dependent generalized
coordinates - unknown amplitude factors. Each term in the

chosen functions satisfied the boundary conditions and so,

consequently, will the whole series.
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3.9.1 Shell with fixed-free end condition;

The displacements u, v and w defining the deflected

middle surface of the shell are chosen in the form:

. us 1
u(x,8,t) = I Z[q(‘t) cos nb + q‘Z%) sin n e] ® (x) . 3.36.a
m n mn mn m
v(x,0,t) = L L Vst . va
- n[:qmé )51n no - qmét)cos nb ] @m (x) 3.36.b
w(x,8,t) = L Z!:qw?t) cos nf + qwa(t) sin nG:]® (x) 3.36.c
mmn mn mn o

The periodic functions -~ cos nf and sin nf - are used

for the circumferential direction, 8, since the shell is
wSs
. . . . us VB
closed in that direction. The functions ¢ , q and g
mn
nmn mnn

are the time dependent generalized coordinates associated

with the O-symmetric modes for the displacement u,v and w

wa
respectively. Similarly, the functions qua R qva and ¢
mn nn mn
are those associated with the O-anti-symmetric modes. The
us wa
functions q ----q are assumed to be harmonic functions
mi mn

of time. Functions @m(x) are the axial mode functions, and
@;(x) their first derivatives with respect to the spatial
coordinate x. These functions were chosen to be the
characteristic functions representing the normal (lateral)

modes of vibration of a uniform beam, fixed at the end x=0,

and free at the other end, x=L. These functions are the
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solution of the well known partial differential equation

of motion for the uniform beam:

Ely,xx TPV, T 0 3.37

where I is the second moment of area of the beam cross-
section, y is lateral deflection, and p is the mass per
unit length of the beam. Functions @m(x), then, satisfy

the equation:

49 gY@ 3.38
——t m m

dx

and may be written in the form:

® (x) = coshB x - cosB x - & (sinhf x - sinf x) 3.39.a
m ™m m m m m

Then

P (x) = B {sinhB x + sinf x - O (coshB x - cosfB x)}3.39.b
m m m m m m m

where B> = W 0 1is given by the roots of the

m oo ET

transcendental equation:
coshf L cosf L+ 1=0 3.39.c
m m

and

sinhf L-sinf L
oL T m o 3.39.d

coshf L + cosf L
m m

with the following boundary conditions

i
o
w
W
(s}
[

i

ot
@m(O) -m(O)

(A}

@ (L) 3.39.f
m

]
o

¢ W

56.




The choice of the beam mode functions for & (x) allows
m

some simplification in the analysis, through the orthogonal

properties:

L L
Jj; 0 () & (x) dx = ﬁ“ o (x) fb‘s' (x) dx = 0 3.40
(o]

(r#+ s)

Further properties and numerical values of the beam

characteristic functions are given in (37), (38).

3.9.2. Shell clamped at one end, supporting a heavy mass at

the other

The problem here is quite difficult due to the end
condition imposed on the shell by the supported heavy mass.
It is assumed that the pump is integrated rigidly into the
shell at the '"free" end. Since the pump is considered as
a rigid body, this leads to the following consideraticns

when the displacement functions are chosen:

1. The pump should be allowed to move with six degrees

of freedom, namely, three translations in X, Y and 2 dir-

ections, and three rotations about these axes.

2. The end face of the shell (x=L), which is circular
and plane before deformation, should preserve these
conditions during deformation. In other words, the
end face suffers no warping.

These requirements can be achieved if the following

functions are incorporated as displacement functions:
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u(x,0,t)
v(x,0,t)

wi{x,0,t)

where, as
symmetric

functions

us(x,G,t)

ua(x,e,t)

vs(x,G,t)

Va(xsert)

WS(X)est)

Wa(X,G;t)

|

uS(X,@,t) + ua(x,G,t) 3.41.a

S
vo(x,0,t) + vo(x,0,t) 3.41.b

]

s a
wo(x,8,t) +w (x,0,t) 3.41.c

before, the superscripts s and a refer to the
and anti-symmetric modes, respectively. The

s a
u (x,0,t) through w (x,0,t) have the form:

Tz quSR(t) [(l—x/L)cos n® + cos 6]+ qUSA(t) dr(x)
m n mn m n

= o°F 4 S8 3, 42.a
=1 I ¢ () [(-x/L)sin nb + sin 8] @ (x)
m n mn m
= u” 3.42.b
=% I q°(t) [(I-x/L)sin n0 + sin 8] @ (x)
m n mn m
- v 3.42.¢c
va vT
=2 {L q (t) [(1-x/L)cos 6+ cos 6]+q (NP (x)
min ™° m n
o ¢ 4 0T 3.42.d

=5y ¥ - qws(t) [(1~X/L)cos nB + cos O} @m(x)
n mn

s 3.42.¢e

1

5% q o (t) [(A-x/L)sin n0 + sin n8] ¢ (%)
m n MD n

a 3.42.f
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In the expressions 3.42, the superscripts R, A and T refer

to rotation about Yﬁaxis, purely axial displacement, and
pure torsion respectively. It is quite clear that the
requirements set in 1 and 2 mentioned earlier can be
achieved if x = L is substituted in 3.42, with the
following constraint conditions:

a) for the symmetric modes:
s . s
v (L,0,t) sin 6+ w (L,0,t) cos O = const. 3.43.a
b) for the anti-symmetric modes:

ac a
v (L,0,t)cos 6 + w (L,0,t) sin 6 = const. 3.43.b

a .

v (x,8,t), as shown in equation 3.42.d, may be divided
into two parts, the pure torsion modes associated with the

. . vT ,
generalized coordinates q (t), and the radial-
n va
circumferential coupled modes, associated with qmn’ which
ac .

given the symbol v ~, appears in 3.43.b.

It should be noticed that the two constraints 3.43.a
and 3.43.b must be fulfilled overjall modes. These

B

conditions may be achieved if the relations between the

corresponding generalized coordinates can be cast in the

forms:
vs wSs sc
= t = t 3.44.a

qmn(‘t) qmn( ) qmn( )
and
va wa ac

t)y = t = (t) 3.44.b
qmn( ) qmn( ) @
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3.10 The Frequency Equation:

Having expressed the displacements as functions of
the system of generalized coordinates, now the total strain

energy, U and the total kinetic energy, T can be

T’ T’
re—-expressed as a function of those coordinates. Hence,
us wa
U = U —
T T (qmn, , qmn) 3.45.a
.us wa
T =T ————
T T (qmn’ ! qmn) . 3.45.b

Hamilton's principh? may be, mathematically, stated

as:
£2 t2 s

SA=§ | (T~ Up) dt = 0T 6UT) dt = 0 3.46
tl tl

where A is the action integral, t1 and tz are two arbitrary
points in the time domain, § is the variational operator
which is assumed to be commutative with the integral
operator.

Using the expressions 3.45 and 3.46 leads to the
familiar algebraic eigen value problem, which may be
expressed in different forms, for different set of mode

shapes, for different kinds of boundary conditions, as

explained in the following sub-sections, 3.10.1 and

7.10.2.
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3.10.1 Equations of motion for fixed-free case:

The total strain energy of the structure may be

written in this case as:

U,=1 2ZI7Z K ~- q - 3.47
T 2 mnmgy DR, D0 mn Tan nEe-a
where
2 2
K -= = K-- = 9 UT = g UT
mn, mn mn, mn 5 5 Y Y 3.47.b
Tun qmn Yo Unn

are known as elements of the stiffness matrix.

Likewise, the total kinetic energy may be written

as:
T, =1 ZZZILI M -~ q  q--
T - - - mn, mn qmn qmn 8.47.c
2 mnmn
where
32 T m
— = M- = T = a2 Ty 3.47 .d
mn, mn mn, mn P Se—aa
qmn qmn qmn qmn

are known as elements of the mass matrix.

The mass and stiffness matrices obtained by the above
operation (3.47) together with application of Hamilton's
principle (3.46)

, were used to formulate the regular

equation of motion for free vibration, in the form:

(] a} + [&] () = fo} 3.48
where [M] and [K] are the generalized mass and stiffness
matrices, and the gq's are the generalized coordinates,
associated with 0 symmetric modes and 0 - anti-symmetric

modes . [MJ and [K] are square matrices of size 6M(N+1),
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where M present the highest integer index associated with

the longitudinal mode shape function, and N the correspon-

ding integer for the circumferential direction.

Equation 3.48 can be re-arranged in the

following
partitioned form:
ss sa Y:)
M LN {q} S S I P
L . o = {o} 3.49
! * N B '
saT t aa ..qa SaTl aa a
M ] M {q} K ! K {q}

where superscript T denotes the transposed matrix.

In equation 3.49, the off-diagonal submatrices MSa
and KSa as well as their transposes, vanish if the
cross-section of the structure is symmetric with respect to
the planelb = Ot Thus in this case, the above equation
is uncoupled into two independent matrix equations,
one for the symmetric and the other for the anti-symmetric
modes. Moreover, assuming the motion to be simple harmonic,

of frequency w, the equation of motion for the symmetric

modes may be written as:

K11 K12 K13 M11 M12 M13
T 2 T . 8
12 K22 K23 - w" | M12 M22 M23 [l{q" |= {0}
T LT
K13' k23 K33 M13 M23 M33 |
3.50

In equation 3.50, each of the 18 submatrices is a square of

order M(N+1).
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Similar equations can be written for the anti-symmetric

modes. The elements of the mass and stiffness mairices in

equation 3.50 are presented in Appendix C.

3.10.2 Equations of motion for fixed-supporting heavy mass

cases:

a) Symmetric modes:
Following the same procedures as in article 3.10.1, the

symmetric modes equation of motion has the form 3.50, but

the generalized coo<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>