THE RELATIONSHIP BETWEEN MATERIALS, ECONOMIC STRUCTURE AND PERFORMANCE

BRIAN KEITH JOHNSON

Volume 11

A Thesis submitted for the degree of Doctor of Philosophy at the University of Aston in Birmingham

CONTENTS

.

VOLUME 11

		Page
Contents		(i)
List of Tables		(iii)
List of Figures		(viii
TABLES and FIGURE	S	1-93
Glossary of Terms		94
List of Abbreviat	ions	97
Nomenclature		98
APPENDIX		101
Appendix 2.1	The Effect of Supply and Demand Parameters upon Price and Output	102
Appendix 4.1	Input and Output Tables and Analysis	104
Appendix 4.2	The 1968 Absorption Matrix at 1963 Prices	129
Appendix 4.3	Specification of the Technologies of Production	131
Appendix 4.4	Adjustments to the Transformed Commodity x Commodity Matrix	133
Appendix 4.5	Industrial Classification of 48-order Matrix according to MLH	135
Appendix 4.6	Input-Output Tables Derived for the Analysis	136
Appendix 4.7	Industrial Classification for 23-order Matrix by MLH	165
Appendix 4.8	Revaluation of the 1954 and 1972 Final Demand, Import and Gross Output Vectors to 1968 Prices	166
Appendix 5.1	S.I.T.C. Codes for Headings for Tables 5.1-5.5	180
Appendix 5.2	Imports and Exports at Constant Prices	181
Appendix 5.3	Interpretation of Worked / Unwrought Ratios for Trade in Metals	187
Appendix 5.4	SIC and SITC Codes of 24-order Matrix used in Chapter 5	188

		Page
Appendix 6.1	Condition for Dovring Productivity Index to be unbiased	190
Appendix 6.2	Explanation of Notation in Equation 6.11	191
Appendix 6.3	Why the "Intensiveness" Index is insensitive to Deflation Errors in Non-Principal Industries	194
Appendix 6.4	Capital Stock Estimates	196
Appendix 6.5	Factors Affecting Engineering Industry Productivity	198
Appendix 6.6	Intermediate Output Change of Industries Implied by Coefficients and Final Demand	201

NOTES TO TEXT	202
Notes to Chapter 1	203
Notes to Chapter 2	204
Notes to Chapter 3	205
Notes to Chapter 4	206
Notes to Chapter 5	208
Notes to Chapter 6	210

REFERENCES

212

LIST OF TABLES

VOLUME II

Table	Title	Page
1.1	Standard Industrial Classification of Materials Industries	1
1.2	Output and Employment of Materials Industries Compared with other Manufacturing Industries in the UK, 1968	3
1.3	Capital Stock at 1970 Replacement Cost, 1968	. 4
1.4	Energy Consumption by Manufacturing Industry, 1968	5
2.1	Deviation from Trend in Gross Domestic Product	8
2.2	Percentage of Firms Reporting Below Capacity Working	9
3.1	Specific Consumption of Four Materials in Manufacturing and Construction, UK	12
3.2	Growth of End-Use Industries, 1954-74	13
3.3	Consumption and Specific Consumption of Finished Steel in End-Uses	14
3.4	Consumption and Specific Consumption of Primary and Secondary Aluminium in End-Uses	16
3.5	Consumption and Specific Consumption of Refined Copper in End-Uses, 1968	17
3.6	Consumption and Specific Consumption of Plastics, 1968	18
3.7	Output per Employee in Materials Industries	19
3.8	Energy Requirements for Materials Production	20
3.9	Input Costs in Aluminium Conversion, 1963	22
4.1	Price Indices for 1968 by Commodity Row Total	23
4.2	Final Demand Vectors for 1963 and 1968 at 1968 Prices	25
4.3	Final Demand Vectors for 1954 and 1972 at 1968 Prices	27
4.4	Imports Vectors for 1954 and 1972 at 1968 Prices	28
4.5a	Direct and Total Requirements of Labour and Capital	29
4.5b	Total Capital/Labour Ratios, Changes in Labour and Capital Intensiveness and Comparison with Changes in Output and Price Ratios	30
4.6	Energy Intensiveness of Materials	33

4.7a	Price Ratios for Raw and Processed Materials 1968/1963	34
4.7b	Raw Materials, Energy and Wages Coefficients of Materials, 1963	35
4.8a	Origin of Output Change - 1963 Commodity Based Estimates	36
4.8b	Origin of Output Change - 1968 Commodity Based Estimates	37
4.8c	Origin of Output Change - 1963 Industry Based	38
4.8d	Origin of Output Change - 1968 Industry Based	39
4.9	Direct Materials Commodity Coefficients 1963 and 1968	40
4.10	Direct Materials Industry Coefficients 1963 and 1968	41
4.11	Weighted Average Direct Commodity Coefficient Change for Materials 1963-68	42
4.12	Weighted Average Direct Industry Coefficient Change for Materials 1963-68	43
4.13	Changes in Intermediate Demand for Competitive Commodities 1954-63	44
4.14	Substitution Indicators	45
4.15a	Change in Intermediate Output 1954-63	46
4.15b	Change: in Intermediate Output 1963-68	47
4.15c	Change in Intermediate Output 1968-72	48
4.16	Change in Gross Commodity Outputs, 1954-63	49
4.17	Ranking of Materials in Terms of Final Demand and Coefficient Impact upon Consumption	50
4.18	Relationship between Production Structural Change, Labour Intensiveness and Relative Price Change, 1963-68	51
4.19a	Relationship between Coefficient Induced Change in Output and Price Changes	52
4.19b	Relationship between Coefficient Induced Change in Output and Price Changes Estimated by Moving Average Method	53
4.20	Relationship between the Relative Price of Raw Materials and Processed Materials	54
5.1	Commodity Structure of UK Imports 1953-76 at Current Prices	55
5.2	Commodity Structure of UK Imports 1953-76 at Constant Prices	56

5.3,	Commodity Structure of UK Exports 1953-76 at Current Prices	57
5.4	Commodity Structure of UK Exports 1953-76 at Constant Prices	58
5.5	UK Trade in Materials and Other Commodities 1976	59
5.6a	Comparison of Engineering Materials and Products, Imports and Exports 1962	60
5.6b	Comparison of Engineering Materials and Products, Imports and Exports 1972	61
5.6c	Comparison of Engineering Materials and Products, Imports and Exports 1976	62
5.7a	Trade Balance in Unwrought and Worked Iron and Steel for Major Producing Countries	63
5.7b	Trade Balance in Unwrought and Worked Aluminium Products for Major Producing Countries	64
5.7c	Trade Balance in Unwrought and Worked Copper for Major Producing Countires	65
5.8a	Imports and Exports of Metals, UK and West Germany 1962	66
5.8b	Imports and Exports of Metals, UK and West Germany 1972	67
5.8c	Imports and Exports of Metals, UK and West Germany 1976	68
5.9a	Implied Price of Metals Imports and Exports UK 1962, 1972, 1976	69
5.9b	Implied Price of Metals Imports and Exports West Germany 1962, 1972, 1976	70
5.10a	Direct and Indirect Output Requirements for Exports, UK and West Germany 1972	71
5.10b	Direct and Indirect Output Requirements for Exports, UK and West Germany, Bilateral Trade, 1972	72
5.11a	Imported Commodities Absorbed Directly by Final Demand, 1972	73
5.115	Analysis of Actual and Implicit Final Destination of all Imported Commodities (Final and Intermediate), 1972	74
5.11c	Analysis of Implicit Final Destination of Intermediate Imports, 1972	75
5.12	Net Trade Effects of Domestic Substitution for Imported Materials	76

6.1	Productivity - Example 1 Input-Output Tables	78
6.2	Productivity - Example 2 Input-Output Tables	79
6.3	Productivity - Example 3 Input-Output Tables	80
6.4	Employment by Industry 1963 and 1968	81
6.5	Gross Capital Stock by Industry 1963 and 1968	82
6.6	Gross Output by Industry 1963 and 1968	83
6.7	Index of Net Output, Primary Inputs and Productivity, 1968	84
6.8	Index of Gross Output, Direct Plus Indirect Primary Inputs and 'Total' Productivity	86
6.9	Comparison of S.N.A. and Gross Output 'Intensiveness' Index	88
6.10	Dependence of S.N.A. Index upon Intermediate Input Proportion of Gross Input	89
6.11	Contribution of Materials Industries to Gross Output of Engineering Industries, 1963	90
6.12a	Contribution of Materials Industries to Gross Output of Engineering Industries, 1968	91
6.12b	Contribution of Materials Industries to Gross Input of Engineering Industries, 1968	92
6.13	Index of Materials' Contribution to Industry Productivity, 1963-68	93

APPENDIX TABLES

Appendix 4.6

A

Table 1	Domestic Commodity x Commodity Matrix 1963 at 1968 prices
Table 2	Domestic Commodity x Commodity Matrix 1968 at current prices
Table 3	Imported Commodity Matrix 1963 at 1968 Prices
Appendix 4.8	
Table 1	Commodity Classification for Revaluation of 1954 Vectors to 1968 Prices
Table 2	1954 Final Demand - Revaluation to 1968 Prices
Table 3	1954 Imports at 1968 Prices
Table 4	Estimation of Intermediate Output plus Competitive Imports

Appendix 5.2

Table 1	Base Data for Table 5.1	183
Table 2	Base Data for Table 5.2	184
Table 3	Base Data for Table 5.3	185
Table 4	Base Data for Table 5.4	186
Annandiu C E		

Appendix 6.5

Table 1	Variables used in Productivity Regressions,	
	Ratio:1968 to 1963	200

LIST OF FIGURES

VOLUME II

Figure	Title	Page
1.1	Input-Output Flow Diagram, UK 1968	2
2.1	Schematic Representation of Factors Affecting Materials Consumption	6
2.2	Index of Coincident Business Cycle Indicators	7
3.1	Index of Growth of Industrial Production and Consumption of Four Materials, 1954-74	10
3.2	U.K. Ratio of Production 1973/1953	11
3.3	Index of Prices of Materials 1953 to 1973	15
3.4	Energy Consumption per Tonne of Crude Steel Output in the United Kingdom	21
4.1	Labour Intensiveness and Price Ratios for Materials, 1968/1963	31
4.2	Labour Intensiveness and Net Output Ratios of Materials, 1968/1963	32
6.1	Technical Efficiency and Price Efficiency	77
Appendi	x Figures	
Appendi	x 2.1 Supply and Demand Schedules for Materials	102
Appendi. Figure		128

TABLE 1.1

Standard Industrial Classification of materials industries

MLH	Crude Materials
102, 103, 109	Stone, slate, chalk, clay, sand, gravel extraction.
	Other non-energy material mining and quarrying.
	Processed Materials
276	Synthetic Resins
311, 312, 313	Iron & Steel
321	Aluminium & Alloys
322, 323	Other Non-ferrous metals
464	Cement
461, 469	Bricks, fireclay, refractory goods and other building materials
471	Timber
491	Rubber .

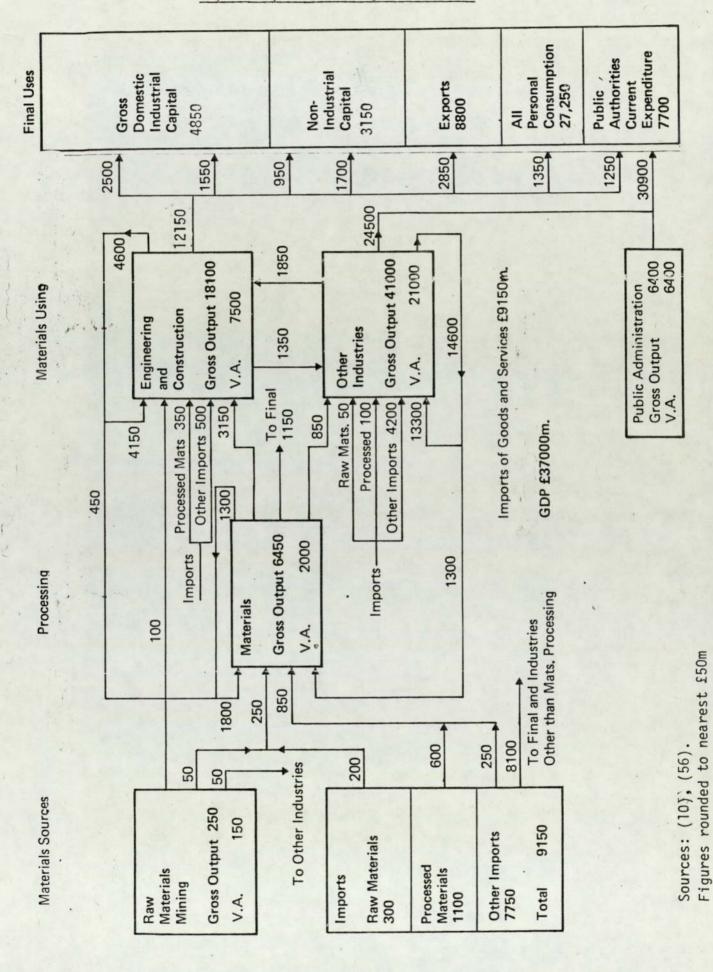


FIGURE 1.1 Input-Output Flow Diagram: UK 1968

2

TABLE 1.2

		Net Output f million	%	No. Employed £ million	<u>d</u> %
MATERIALS	TOTAL	2282	16.1	1112	15.3
Iron & Steel		789	5.6	414	5.7
Non-ferrous	metals	280	2.0	131	1.8
Plastics Mat	erials	197	1.4	57	0.8
Bricks, Refr Products etc		104	0.7	58	0.8
Glass		139	1.0	73	1.0
Cement		49	0.3	14	0.2
Miscellaneou Materials	ıs Building	196	1.4	86	1.2
Timber		269	1.9	155	2.1
Rubber	and of the state	259	1.8	124	1.7
ENGINEERING		6411	45.2	3413	47.1
OTHER MANUF	ACTURING	5497	38.7	2724	37.6
TOTAL MANUF	ACTURING	14190	100	7249	100

Output & Employment of Materials Industries Compared with Other Manufacturing Industries in the UK 1968

Source: Census of Production 1968 (11)

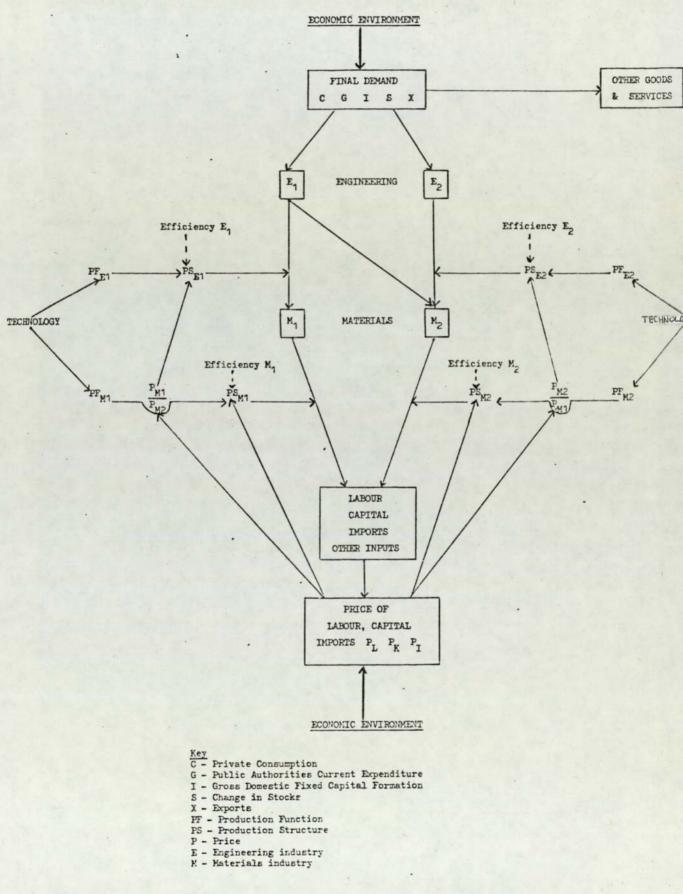
Capital Stock	at 1970 replaceme 1968	ent cost (end-year)
	£ million	
TOTAL MATERIALS	7574	% of total manufacturing 20.9
Iron and Steel	4001	11.1
Non-ferrous Metals	756	2.1
Synthetic Resins	627	1.7
Bricks & Miscellaneous Building Materials	721	2.0
Cement	272	0.8
Glass	307	0.8
Timber	344	1.0
Rubber	546	1.5
TOTAL ENGINEERING AND TRANSPORT EQUIPMENT	11311	31.3
TOTAL MANUFACTURING	36157	100.0

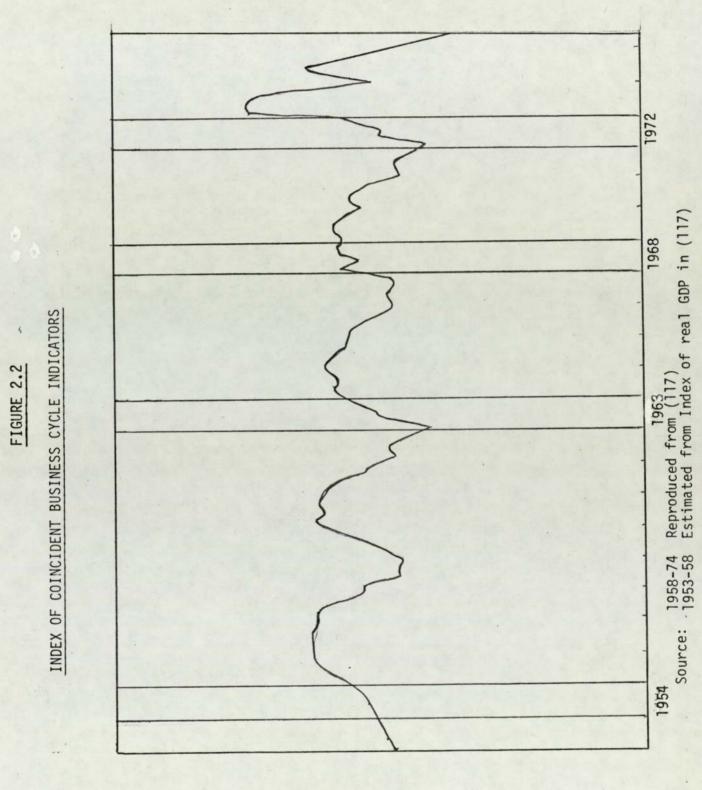
TABLE 1.3 sital Stock at -

Source : (12)

C -

TΛ	RI	E 1	Λ
IA	DL		. 4


Energy Consumption by Manufacturing Industry, 1968


	Million Therms	<u>%</u>
TOTAL MATERIALS	11236	50.6
Iron and Steel	5841	26.3
Non-ferrous Metals	496	2.2
Synthetic Resins	519	2.3
Building Materials	2765	12.5
Cement	1044	4.7
Timber	118	0.5
Rubber	453	2.0
TOTAL ENGINEERING & TRANSPORT EQUIPMENT	3713	16.7
OTHER MANUFACTURING	7253	32.7
TOTAL MANUFACTURING	22202	100

Source: (59), (7) and own estimates based upon (59), (7) and (10).

FIGURE 2.1

SCHEMATIC REPRESENTATION OF FACTORS AFFECTING MATERIALS CONSUMPTION

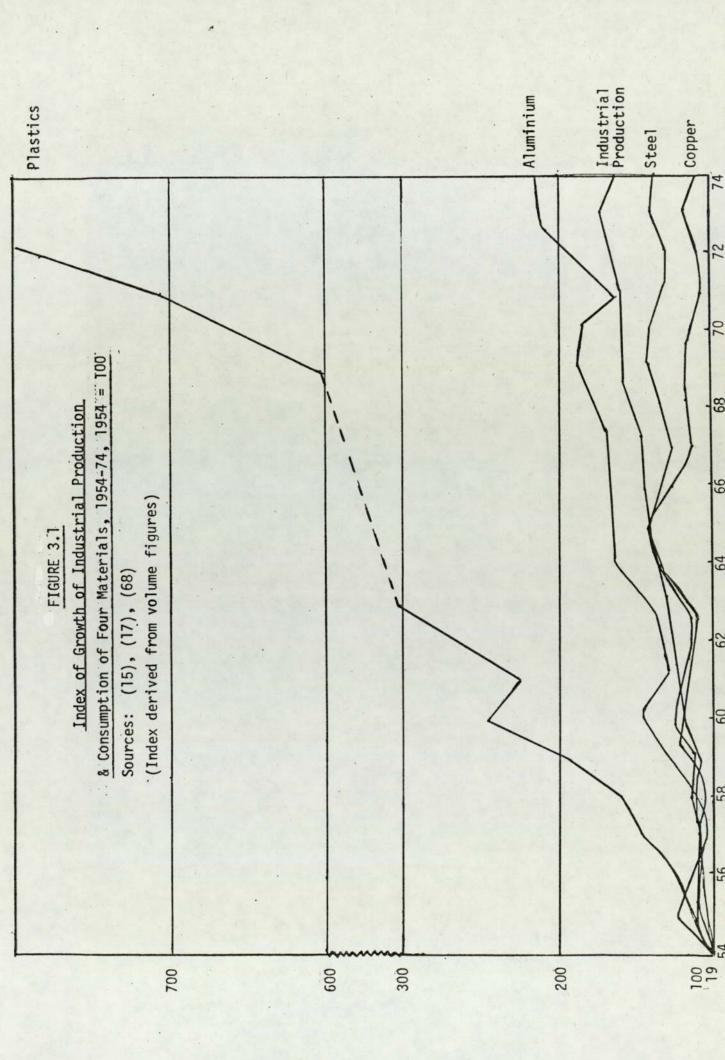
	GDP	5 Year	%
	(Output Measure)	Moving Average	Deviation
	1975 = 100		
1953	58.10	58.58	- 0.82
1954	60.70	60.04	1.10
1955	62.40	61.72	1.10
1956	63.20	62.90	0.48
1957	64.20	64.10	0.16
1958	64.00	65.68	- 2.56
1959	66.70	67.46	- 1.13
1960	70.30	69.22	1.56
1961	72.10	71.56	0.75
1962	73.00	74.20	- 1.62
1963	75.70	76.60	- 1.17
1964	79.90	78.94	1.22
1965	82.30	81.44	1.06
1966	83.80	84.12	- 0.38
1967	85.50	86.40	- 1.04
1968	89.10	88.54	0.63
1969	91.30	90.66	0.71
1970	93.00	92.90	0.11
1971	94.40	95.76	- 1.42
1972	96.70	97.78	- 1.10
1973	103.40	99.18	4.25

TABLE 2.1

Deviation from trend in Gross Domestic Product

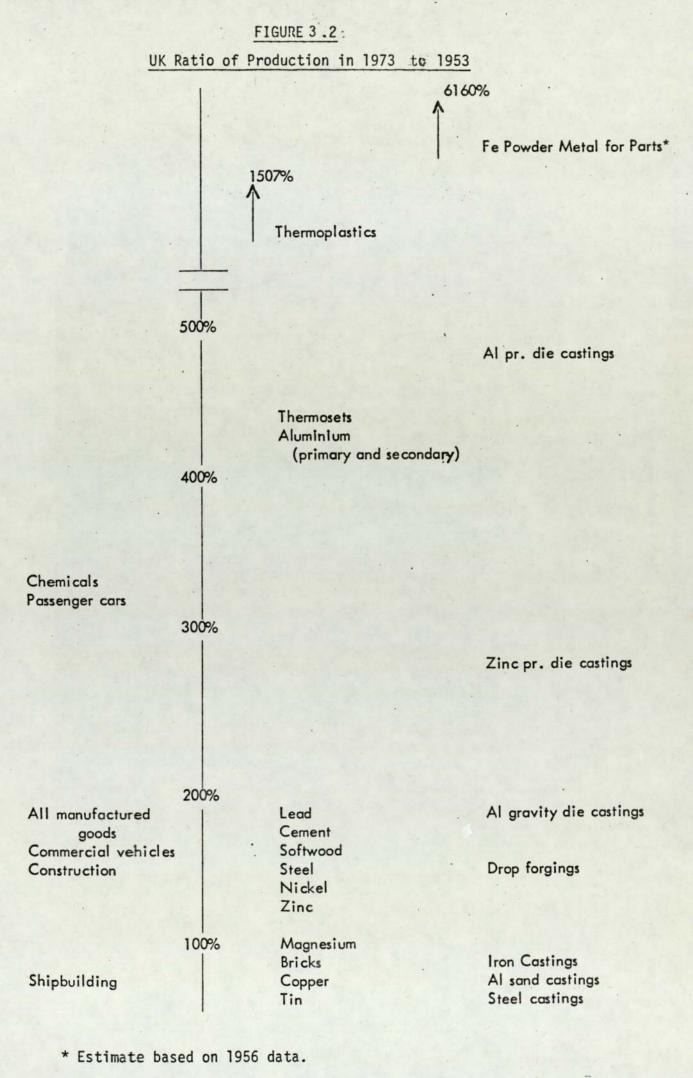
Source: Estimated from information in (117).

TAB	IF	2	2
IND		٤.	6


	February	June	October
1960		40	41
1961	45	45	51
1962	60	63	67
1963	68	65	57
1964	50	42	40
1965	38	43	47
1966	47	48	54
1967	65	66	68
1968	. 61	55	49
1969	42	46	46
1970	51	51	49
1971	n/a	63	67

i crecticuge of films hepot cring below capacity work	of Firms Reporting Below Capacity Working	KING
---	---	------

		January	April	July	October
1972		71	67	63	59
1973		52	47	39	44
1974		71	50	54	56
1975	4	61	71	75	73


This information is collected on a sample basis and allowance for seasonality is made by respondents.

Source: CBI Industrial Trends Survey (118).

10

6 ----

Source: Annual Abstract of Statistics.

11

Specific Consumption of Four Materials in Manufacturing and Construction, UK

Units: tonnes/f'000 at 1963 prices.

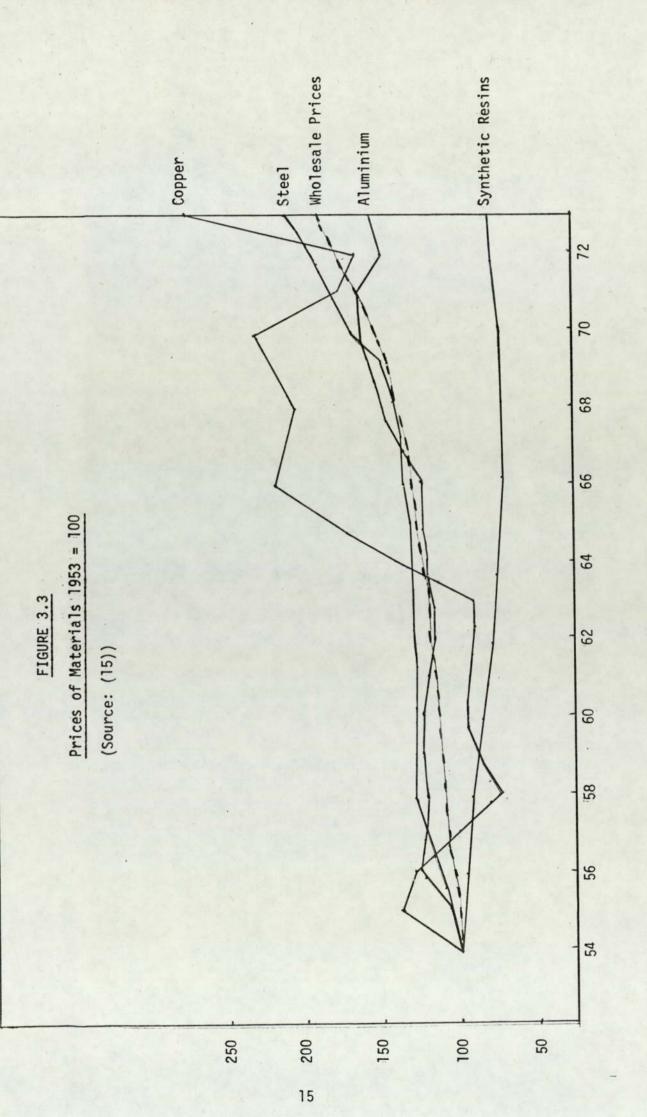
	1954	1963	1968	1972
Crude Steel (ingot equilavent)	1.703	1.604	1.513	1.365
Aluminium (primary and secondary)	0.032	0.037	0.037	0.036
Copper (primary and secondary)	0.059	0.055	0.044	0.040
Synthetic Resins	0.020	0.049	0.072	0.095

Sources: C.S.O. Annual Abstract of Statistics (15) Metallgesellschaft (18) Rubber and Plastics Research Association (Private Communication) (68) Iron and Steel Annual Statistics (17) Report on the Census of Production 1968 (11)

Growth of End-Use Industries 1954-74

Percent (volume terms)

TOTAL MANUFACTURING & CONSTRUCTION	71%
Mechanical Engineering	78%
Electrical Engineering	203%
Transport Equipment	54%
of which Motor Vehicles	125%
Aircraft & Other Vehicles	3%
Shipbuilding	-22%
Other Mietal Goods	37%
Construction	48%


Sources: Department of Applied Economic, Cambridge -A Programme of Growth No. 12 (53) CSO: Annual Abstract of Statistics (15)

Notes: The percentages were calculated using net output indices from (53) and linking with indices from (15) for post 1968 figures. Engineering sectors disaggregated using (15). The index uses an amalgam of 1963 and 1970 weights.

Consumption and Specific Consumption of Finished Steel in End-Uses

Units: Consumption - '000 tonnes Specific Consumption - tonnes/£'000 output 1963 prices c

Sources: (15), (17), (53), (55).

Consumption & Specific Consumption of Primary & Secondary Aluminum in End-Uses

Units: Consumption - '000 tonnes Specific Consumption - tonnes/£'000 output 1963 prices

		1958			1963	
	Consumption	8	Specific Consumption	Consumption	*	Specific Consumption
Transport Equipment	87.5	32.8	0.088	112.6	32.2	0.095
of which Motor Vehicles Other	33.3 54.2	(12.5) (20.3)	0.067 0.109	67.2 45.4	(19.2) (13.0)	0.087 0.109
Mechanical Engineering	19.4	7.3	0.019	23.6	6.8	0.019
Electrical Engineering	26.1	. 9.8	0*037	43.1	12.3	0*045
Other Metal Goods	32.3	12.1	0.052	52.3	15.0	0.078
Construction	20.4	7.6	0.013	29.2	8.4	0.016
Packaging	25.2	4.6	n/a	27.2	7.8	n/a
Other	56.0	21.0	n/a	61.5	17.6	n/a
TOTAL	266.9			349+5		
		1968			1972	
Transport Equipment .	135.3	28.0	0.105	131.8	27.0	0.089
of which Motor Vehicles Other	98.7 36.6	(20.4)	0.091	90.6 40.8	(18.6) (8.4)	0.094 0.107
Mechanical Engineering	27.4	5.7	0.017	25.0	5.1 .	0.015
Electrical Engineering	64.2	13.3	640*0	56.0	11.5	0.035
Other Metal Goods	55.8	11.5	0*024	54.0	11.1	0*075
Construction	36.3	7.5	0.016	42.2	8.6	0.019
Packaging	36.7	7.6	n/a	38.3	7.8	n/a
Other	127.6	26.4	n/a	141.1	28.9	n/a
TOTAL	483.3			488.4		

Note: The 1958 allocation of transport equipment consumption of aluminium between motor vehicles and other was done on the basis of the expanded 1954 input-output tables, (55) since 1958 census does not contain sufficiently detailed information.

(46) (48) (62) (66)

16

Consumption & Specific Consumption of Refined Copper in End-Uses 1968

Unit: Consumption - 000 tonnes Specific consumption tonnes/£'000 output 1963 prices

	Consumption	<u>% of total</u>	Specific Consumption
Transport Equipment	45	7.8	0.035
of which			
Motor Vehicles Other	24 21	(4.1) (3.7)	0.027 0.052
Mechanical Engineering	44	7.6	0.028
Electrical Engineering	269	46.5	0.205
Other Metal Goods	52	9.0	0.068
Construction	56	9.6	0.025
Other	113	19.5	n/a
TOTAL	578.7	Sector of	

Sources: Chapman (28) (Percentage breakdown) Metallgesellschaft (18) (total consumption excluding direct use of scrap)

Note: Figures for other years not available.

Consumption & Specific Consumption of Plastics 1968

Units: Consumption - '000 tonnes Specific consumption - tonnes/£'000 net output at 1963 prices

	Consumption	<u>% of total</u>	Specific Consumption
Transport Equipment	56	5	0.043
of which Motor Vehicles Other	45 11	(4) (1)	0.051 0.027
Mechanical Engineering	38	3.5	0.024
Electrical Engineering	191	17	0.146
Other Metal Goods	n/a		
Construction	266	24	0.118
Packaging	248	22	n/a
Other	326	29	n/a
TOTAL	1125		

Sources: RAPRA (Private Communication) (68) - These figures estimated by author from data provided. Figures for other years not available.

Output per Employee in Materials Industries

State of the second	1054	1963	1968	1972
	<u>1954</u>	1903	1908	1372
Crude Steel	28.1	32.8	40.1	39.7
Aluminium	2.6	3.1	3.9	7.0
Copper	6.4	4.0	4.1	3.9
Plastics	8.7	17.8	21.4	35.7

Units: tonnes/employee/year

Source: Iron & Steel Annual Statistics (17) Metallgesellschaft (18) RAPRA (Private Communication) (68) Report on Census of Production 1954, 1968 (11) Business Monitor Census of Production 1972 (11)

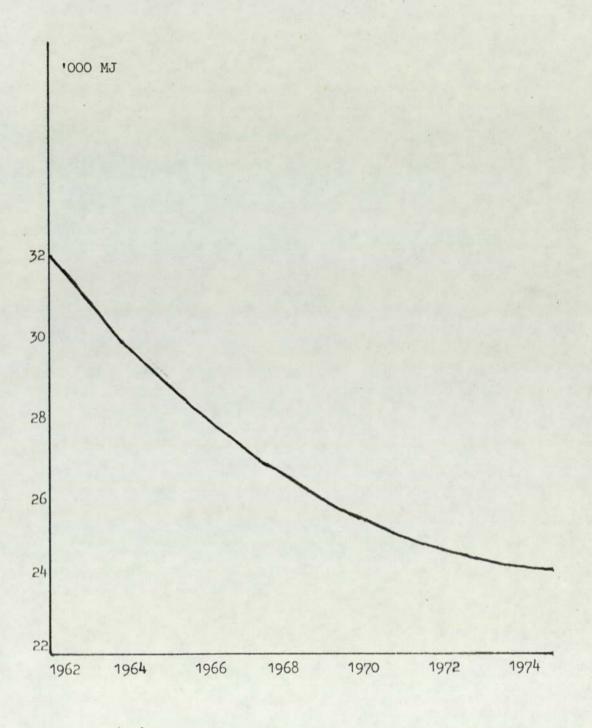

	KWh/ton
Finished Steel	13200
Aluminium	90000
Copper	20000
Ainc	14700
Lead	12900
Cement	2361
Glass	7200
Synthetic Rubber	19600
PVC	19270

TABLE 3.8 Energy Requirements for Materials Production

Source: Chapman (22)

FIGURE 3.4

Energy Consumption per Tonne of Crude Steel Output in the UK

Source: (25).

Input Costs in Aluminium Conversion, 1963

Cost of inputs per ton of output (dollars) Product Process (Price)

Mining	Bauxite	Mining, including explorations etc.	1.0-3.0
	(\$8/ton)	Beneficiation	Nil-1.C
		Drying	0.8-1.5
		Shipping	3.0-4.5
		Local taxes, mining and shipping company	Delener
1		profits	Balance
		Total	\$8.0
		Bauxite	16.8
	1.4.1	Caustic Soda	5.1
a to the state of	West Discussion	Steam	3.3
		Electric Power	1.0
		Fuel for calcination	2.6
		Labour, operating, maintenance and indirect	
		costs	12.5
Ore Refining	Alumina (\$75/ton)	Maintenance (materials and equipment) Capital cost:	3.0
nor mano	()))	Depreciation on fixed capital	11.8
		Interest on fixed capital	10.3
214.56	The space	Miscellaneous supplies and general expenses	9.5
1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	and the second	mate 3	\$75.0
		Total	p13.0
			450.0
		Alumina	150.0
		Fluorides	25.0
		Carbon	25.0
		Operating and maintenance supplies	18.0
		Power	61.0
		Labour	42.0
Aluminium Smelting	Primary Aluminium	Miscellaneous and general expenses Capital charges:	38.0
and	Ingot	Depreciation	53.0
Refining	(\$450/ton)	Interest on fixed capital	38.0
		Total	\$450.0
			-00.0
		Primary Aluminium	580.0
		Other non-ferrous metals	60.0
		Other Materials	110.0
	2 THE SHE WAY	Fuel	12.0
Aluminium	Wrought	Wages	148.0
Rolling and	Semis	Salaries	51.0
Drawing	(\$1100/ton)	Depreciation	90.0
		Heating, lighting and other services	28.0
		Maintenance expenditure	9.0
		Rates and insurance	12.0
		Total &	1100.0

Price	Indices for 1968 by Commodity	Row Total
1.	Agriculture	1.073
2.	Forestry and Fishing	1.174
3.	Coal Mining	1.138
4.	Other Mining	1.079
5.	Grain Milling	1.175
6.	Other Cereals	1.156
7.	Sugar	0.959
8.	Cocoa etc.	1.176
9.	Other Food	1.142
10.	Drink	1.092
11.	Tobacco	1.221
12.	Coke Ovens	1.111
13.	Mineral Oil Refining	1.046
14.	Pharmaceuticals	1.061
15.	Paint	1.037
16.	Soaps	1.149
17.	Synthetic Resins	0.979
18.	Other Chemicals	1.054
19.	Iron and Steel	1.089
20.	Aluminium	1.256
21.	Other Non-ferrous Metals	1.807
22.	Agricultural Machinery	1.125
23.	Machine Tools	1.174
24.	Industrial Engines	1.175
25.	Textile Machinery	1.125
26.	Construction Equipment	1.182
27.	Office Machinery	1.135
28.	Other Non-Electrical Machinery	1.098
29.	Industrial Plant and Steelwork	1.241
30.	Other Mechanical Engineering	1.180
31.	Instrument Engineering	1.133
32.	Electrical Machinery	1.134
33.	Insulated Wires and Cables	1.151
34.	Electronics	1.533
35.	Other Electrical	1.200
	(continued)	

TABLE 4.1

(continued)

36.	Shipbuilding	1.120
37.	Motor Vehicles	1.051
38.	Aerospace	1.187
39.	Other Vehicles	1.090
40.	Engineers' Small Tools	1.111
41.	Cans and Metal Boxes	1.529
42.	Other Metal Goods	1.139
43.	Man-Made Fibres	0.880
44.	Cotton	1.169
45.	Woollen	0.960
46.	Textile Finishing	1.095
47.	Other Textiles	1.068
48.	Leather	1.160
49.	Clothing	1.162
50.	Footwear	1.127
51.	Pottery and Glass	1.085
52.	Cement	1.137
53.	Other Building Materials	1.107
54.	Furniture	1.178
55.	Timber	1.191
56.	Paper and Board	1.110
57.	Paper and Board Products	1.123
58.	Printing and Publishing	1.214
59.	Rubber	1.080
60.	Other Manufacturing	1.108
61.	Construction	1.343
62.	Gas	1.041
63.	Electricity	1.268
64.	Water Supply	1.297
65.	Rail, Road Transport	1.189
66.	Other Transport	1.221
67.	Communications	1.144
68.	Distributive Trades	1.184
69.	Miscellaneous Services	1.187

Source: Estimates derived from (10) and (51)

	Prices		
		£m 1963	n. 1968
1.	Coal Mining	261.1	186.9
2.	Other Mining and Quarrying	32.9	39.8
3.	Coke Ovens	38.1	70.5
4.	Mineral Oil Refining	229.6	339.1
5.	Chemicals	827.4	1019.9
6.	Paint	44.0	58.2
7.	Synthetic Resins	68.9	122.7
8.	Iron and Steel	207.2	269.1
9.	Aluminium	16.5	31.9
10.	Non-ferrous Metals	116.5	186.9
11.	Agricultural Machinery	58.6	65.7
12.	Machine Tools	157.1	190.7
13.	Inudstrial Engines	78.0	72.9
14.	Textile Machinery	107.1	136.2
15.	Construction Equipment	290.6	400.3
16.	Office Equipment	62.9	68.1
17.	Other Non-Electrical Machinery	603.7	647.4
18.	Industrial Plant & Steelwork	335.0	466.0
19.	Other Mechanical Engineering	199.5	198.4
20.	Instrument Engineering	173.2	336.1
21.	Electrical Machinery	249.7	338.3
22.	Insulated Wires and Cables	115.2	89.6
23.	Electronics	592.0	720.9
24.	Other Electrical Engineering	270.1	294.8
25.	Shipbuilding	327.9	418.2

TABLE 4.2

(continued)

C. L. M.

TABLE 4.2 - contd...

		1963	1968
26.	Motor Vehicles	1522.2	1732.8
27.	Aerospace	704.4	567.1
28.	Other Vehicles	103.2	84.2
29.	Engineers' Small Tools	30.2	25.7
30.	Cans and Metal Boxes	6.4	5.0
31.	Other Metal Goods	428.0	470.8
32.	Pottery and Glass	67.9	118.1
33.	Cement	8.3	6.1
34.	Building Materials	37.9	71.7
35.	Furniture	251.7	274.4
36.	Timber	64.9	128.6
37.	Paper and Board	54.3	64.7
38.	Paper Products	79.4	115.2
39.	Rubber	85.7	139.9
40.	Other Manufacturing	208.8	304.5
41.	Construction	3874.5	4811.5
42.	Man-made Fibres	24.6	78.5
43.	Other Textiles etc.	1837.6	2009.0
44.	Gas, Electricity, Water	886.1	1185.8
45.	Road and Rail Transport	751.7	838.3
46.	Other Transport	1129.3	1543.4
47.	Distribution	4879.1	5258.4
48.	Services, Agriculture, Food etc.	9386.1	11456.3

Source: (10) and estimates derived from (51)

TABLE 4.3

Final Demand Vectors for 1954 & 1972 at 1968 Prices

£ million

		1954	1972
		Domestic and Imported	Domestic
1.	Energy	950	1981
2.	Other Mining	11	44
3.	Chemicals	521	1369
4.	Textiles	1722	1806
5.	Synthetic Resins	20	174
6.	Iron and Steel	139	221
7.	Aluminium	21	23
8.	Other Non-ferrous Metals	. 89	143
9.	Mechanical Engineering	1610	2281
10.	Instrument Engineering	145	412
11.	Electrical Engineering	761	1602
12.	Shipbuilding	438	434
13.	Motor Vehicles	753	1969
14.	Aerospace	592	605
15.	Other Vehicles	193 ·	91
16.	Metal Goods n.e.s.	375	489
17.	Building Materials	117	240
18.	Timber	51	106
19.	Paper and Paper Products	169	193
20.	Rubber	79	142
21.	Other Manufacturing	457	639
22.	Construction	2635	5211
23.	Other	14465	23473

Sources: See Appendix 4.8

Vectors of Imports 1954 & 1972 at 1968 Prices

£ million

	<u>1954</u> Total Minus Intermediate Complementary Imports	<u>1972</u> Total Competitive Imports
1. Energy	120	223
2. Other Mining	12	44
3. Chemicals	176	441
4. Textiles	317	415
5. Synthetic Resins	9	163
6. Iron and Steel	26	173
7. Aluminium	44	74
8. Other Non-ferrous Metals	210	244
9. Mechanical Engineering	110	176
10. Instrument Engineering	18	44
11. Electrical Engineering	25	232
12. Shipbuilding	5	14
13. Motor Vehicles	15	64
14. Aerospace	51	45
15. Other Vehicles	4	5
16. Metal Goods n.e.s.	39	601
17. Building Materials	14	58
18. Timber	• 21	0
19. Paper	18	22
20. Rubber	3	31
21. Other Manufacturing	14	517
22. Construction	0	0
23. Other	2972	1087

Sources: See Appendix 4.8

TABLE 4.5a

Direct and Total Requirements of Labour and Capital

Man-years per £ output at 1963 prices Capital stock employed at 1970 prices per £ output at 1963 prices Units:

(Rank ordering in brackets)

DIRECT

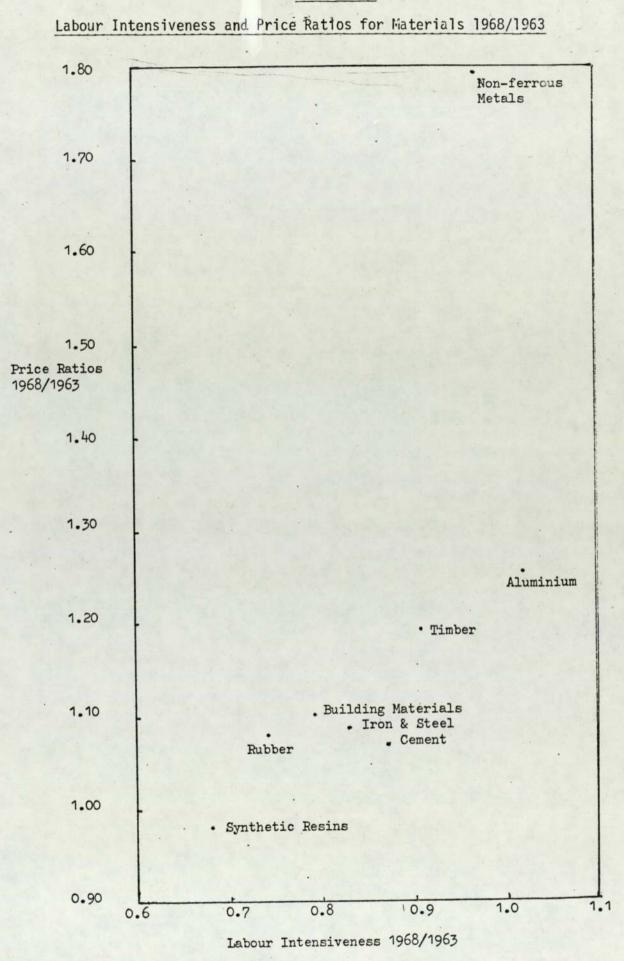
DIRECT PLUS INDIRECT

	961	1963	1968		1963		1968		1972	
	Labour	Capital	Labour	Capital	Labour	Capital	Labour	Capital	Labour	Capital
Synthetic Resins	0.17 (8)	1.57 (3)	0.12 (8)	1.30 (4) 2.57 (2)	0.60 (7) 0.72 (6)	4.36 (4) 5.85 (2)	0.41 (8) 0.60 (6)	3.78 (6) 6.38 (2)	0.33 (8) 0.61 (4).	3.40. (7) 6.25 (2)
Aluminium	0.34 (4)	0.84 (7)	0.30 (3)		0.76 (4)	3.07 (7)	0.77 (2)	4.32 (5)	0.62 (3)	4.13 (3)
Non-ferrous Metals	0.19 (6)	1.15 (6)	0.17 (6)	1.31 (3)	0.75 (5)	4.84 (3)	0.73 (3)	6.08 (3)	0.80 (1)	6.31 (1)
Cement	0.18 (7)	2.51 (2)	0.15 (7)	2.96 (1)	0.58 (8)	5.86 (1)	0.51 (7)	6.89 (1)	0.59 (5/6) 4.06 (4/5)	(4) 90.4 (
Building Materials	0.38 (1)	1.16 (5)	0.26 (5)	1.26 (6)	0.76 (3)	4.21 (5)	0.61 (5)	4.86 (4)		
Timber	0.37 (2)	0.71 (8)	0.32 (1)	0.73 (8)	0.90 (1)	2.72 (8)	0.82 (1)	2.95 (8)	0.66 (2)	2.39 (8)
Rubber	0.35 (3)	1.23 (4)	0.29 (2)	1.29 (5)	0.84 (2)	3.53 (6)	0.62 (4)	3.41 (7)	0.55 (7)	3.57 (6)
	Source:	Source: Estimates derived from constructed input-output tables for 1963, 1968 and 1972 at 1963 prices.	erived from	constructed	input-outpu	t tables for	1963, 1968	and 1972 at	: 1963 price	

29

TABLE 4.5b

Total Capital/Labour Ratios, Changes in Labour and Capital Intensiveness and Comparison with changes in Output and Price Ratios



Brackets)	
in	
ordering	
(Rank	

	Capital /Labour 1963	and the	Capital /Labour 1968 2	Capital /Labour 1968/63 3	Labour Intensiveness 1968/63 4	Capital Intensiveness 1968/63 5	Gross Output Ratio 1968/63 6	Net Output Ratio 1968/63 7	Output Price Ratio 1968/63 8
Synthetic Resins	7.23 (3)		9.22 (3)	1.28 (7)	0.68 (8)	0.87 (8)	1.98 (1).	2.23 (1)	(8) 626.0
Iron & Steel	8.07 (2)		10.63 (2)	1.32 (4)	0.84 (5)	1.09 (5)	1.13 (7)	1.06 (5)	1.089 (5)
Aluminium	4.05 (7)		5.61 (6)	1.39 (2)	1.02 (1)	1.41 (1)	1.18 (5)	0.85 (7)	1.256 (2)
Other non-ferrous Metals	(4) 44.9		8.33 (4)	1.29 (6)	0.97 (2)	1.26 (2)	1.02 (8)	0.80 (8)	1.807 (1)
Cement	10.04 (1)		13.50 (1)	1.35 (3)	0.87 (4)	1.18 (3)	1.14 (6)	1.04 (6)	1.083 (6)
Other Building Materials	5.50 (5)		8.08 (5)	1.46 (1)	0.79 (6)	1.15 (4)	1.40 (2)	1.23 (3)	1.107 (4)
Timber	3.01 (8)		3.60 (8)	1.20 (8)	0.91 (8)	1.08 (6)	1.33 (3)	1.12 (4)	1.191 (3)
Rubber	4.21 (6)		5.46 (7)	1.30 (5)	0.74 (7)	(2) 26.0	1.28 (4)	1.39 (2)	1.080 (7)

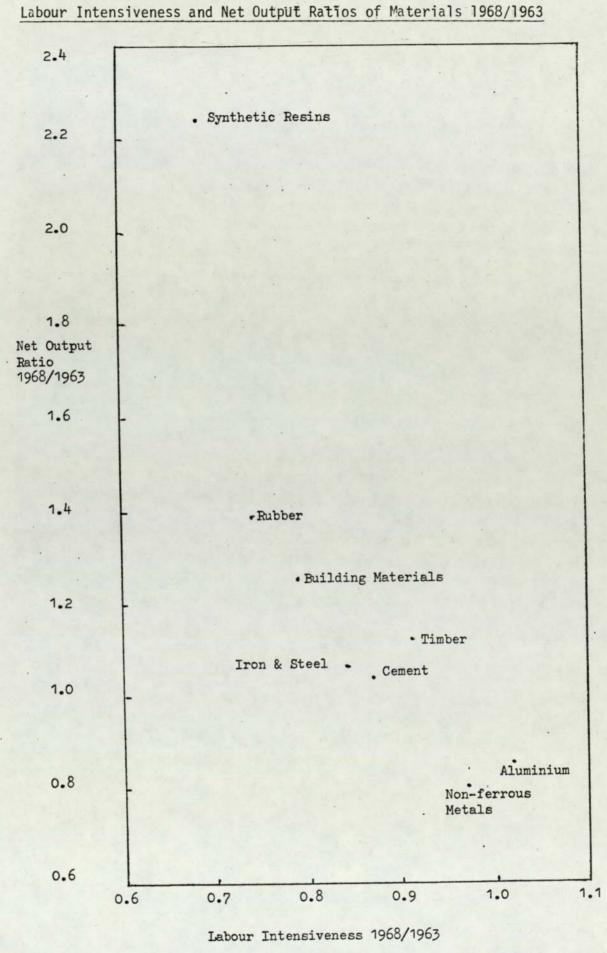

Sources: Column 1, derived from Table 4.5a Column 3 = Column 2/Column 1 Column 6 and 7 (51) Column 8, Table 4.1

FIGURE 4.1

Source: Table 4.5%

FIGURE 4.2

Source: Table 4.56

Energy Intensiveness of Materials Rank ordering in brackets

	Wright KWh/f	NEDO £(coal & oil)/£ Output	Esti
	1963	1968	1963
Synthetic Resins	115.1 (4)	0.084 (4)	0.147
Iron and Steel	124.5 (3)	0.087 (3)	0.234
Aluminium	51.5 (6)	0.028 (6)	0.134
Non-ferrous Metals	50.8 (7)	0.023 (7)	0.107
Cement	146.9 (2)	0.211 (1)	0.375
Building Materials	317.2 (1)	0.093 (2)	0.226
Timber	39.6 (8)	0.016 (8)	0.068
Rubber	68.5 (5)	0.042 (5)	0.09(

Sources: (57), (58) and estimates from input-output tables derived.

		(9)	(1)	(2)	(2)	(3/4)		(8)	(2)
utput	1972	0.126	0.268	0.141	0.174	(1) 0.171 (3/4)		0.058	0.079
rrer /F C		(4)	(2)	(2)	(9)	(1)	(3)	(8)	(7)
Estimates of Current Work £ Total Energy/£ Output	1968	0.147 (4) 0.141 (4) 0.126	(2) 0.236 (2) 0.268	(5) 0.123 (5) 0.141 (5)	0.107 (6) 0.094 (6) 0.174 (2)	(1) 0.376	0.226 (3) 0.216 (3)	0.068 (8) 0.062 (8) 0.058 (8)	0.090 (7) 0.086 (7) 0.079 (7)
ates		(4)	(2)	(2)	(9)	(1)	(3)	(8)	(1)
Estim £ To	1963	0.147	0.234	0.134	0.107	0.375	0.226	0.068	060.0

TABLE 4.7a Price Ratios for Raw and Processed Materials 1968/1963,

(Rank Ordering in Brackets)

Material		Natural Resource	
Synthetic Resins	0.98 (7)	Crude Petroleum	1.10 (5)
Iron and Steel	1.09 (5)	Iron Ore	1.02 (6)
Aluminium	1.26 (2)	Bauxite	1.27 (3)
Non-ferrous Metals	1.81 (1)	Non-ferrous ores	1.80 (1)
Building Materials and Cement	1.11 (4)	Stone, Slate, Sand etc.	1.40 (2)
Timber	1.19 (3)	Softwood	1.25 (4)
Rubber	1.08 (6)	Natural Rubber	0.87 (7)

Sources: (53), (36), (15), and estimates based upon (51).

Note: Only the direct raw material was used, though the price of coke for steel and carbon for aluminium etc. may be thought to be equally, if not more important. In Table 4.7b all non-energy crude materials are included in the intensiveness estimate.

TABLE 4.7b

Raw Materials, Energy and Wages Coefficients of Materials, 1963

£/f Output (direct and indirect, domestic and imported)
(Rank ordering in brackets)

	Raw Materials	Energy	Wages
Synthetic Resins	0.034 (8)	0.147 (4)	0.522 (8)
Iron and Steel	0.076 (5)	0.234 (2)	0.623 (5)
Aluminium	0.037 (7)	0.134 (5)	0.648 (3)
Other Non-ferrous metals	0.137 (2)	0.107 (6)	0.621 (6)
Cement	0.042 (6)	0.375 (1)	0.526 (7)
Building Materials	0.088 (4)	0.226 (3)	0.635 (4)
Timber	0.476 (1)	0.068 (8)	0.689 (1)
Rubber	0.092 (3)	0.090 (7)	0.653 (2)

TABLE 4.8a

Origin of Output Change - 1963 Commodity Based Estimates

£ million

Synthetic Resins 0.5 Iron and Steel -18.5 Aluminium -0.5 Non-ferrous Metals -16 -	2 2	0.5		Construction	& Construction	& Construction	Coefficient)	CHANGE	DEMAND	TOTAL
0.5 -18.5 -0.5 Ls -16	5 15 N	0.5							5	- the
-18.5 -0.5 tale -16	5 2		0	0	-6.5	1.5	8	C-11	5	Ē
-0.5 -16	2	13	22.5	33.5	0	55.5	21	96.	199	256
-16		4	0.5	89	0	1	-21	-11	94	44
	-20	- 15 -	-41.5	-8.5	-3.5	-104.5	-116	-51	102	-65
Cement 0	0	0	0	-4.5	0	-4.5	-5	0	8	15
Building Materials -4	+	3.5	0	24.5	0.5	25.5	19.5	13	104	136.5
Timber -4.5	£-	-7-5	0	6-	-2.5	-26.5	-40.5	-2	73.5	28
Rubber 5	٢	8	0	0	3.5.	17.5	5	5.5	42	52.5

36

5

TABLE 4.8b

Origin of Output Charge - 1968 Commodity Based Estimates

£ million

Total TOTAL PS INDIRECT Engineering (Direct ep COEFFICIENT FINAL & Construction Coefficient) CHANGE DEMAND TOTAL	1 69 19-5 53 141	55 26 35 195.5 256.5	-6.5 -26 -12.5 53 14.5	-127.5 -130 -49 113 -66	-5 -6 1 20 15	34.5 24 17 95.5 136.5	30.5 -42 -20 90 28	77 6 5 41 52
Other Engineering & Construction	9-	1.5	0	4	-0.5	1.5	-4-5	5.5
Construction	0	14	-10	-10	-4.5	31	-10	0
Other Metal Goods	0	26.5	0	-48	0	0	0 .	0
Transport Equipment	0	12	4.5	-18.5	0	3	-8.5	80
Electrical Engineering	٤ .	5.5	-0-5	-27-5	0	2	-1.5	1.5
Mechanical Engineering	0	-31.5	0	-19.5	0	-3	-6	- 2
CHANGE IMPLIED BY -	!							
CHANGE Mechanical MATERIAL IMPLIED BY - Engineering	Synthetic Resins	Iron and Steel	Aluminium	Non-ferrous Metals	Cement	Building Materials	Timber	Rubber

TABLE 4.8c

Origin of Output Change - 1963 Industry Based

£ million 1963 prices

Direct Coefficients

	Total Engineering & Construction	Total PS ep	Indirect Coefficient Change	Final Demand	Total
Synthetic Resins	З	47	36	82	165
Iron and Steel	50.5	22	32	193.5	247.5
Aluminium	0.5	-15	-5	33	12
Other Non-ferrous Metals	-58	-72.5	-33	91.5	-14
Cement	-4	-4.5	1	16.5	13
Building Materials	27	37.5	5	93.	135.5
Timber	-17.5	-22.5	-13.5	54.5	18
Rubber	12.5	5	8	40	53

TABLE 4.8d

Origin of Output Change - 1968 Industry Based

£ million 1968 prices

	Total Engineering and construction	Total PS ep	Indirect Coefficient Change	Final Demand	Total
Synthetic Resins	2	99	34	65.5	165
Iron and Steel	50	24	33.5	190	247.5
Aluminium	-0.5	-16.5	-12.5	41	12
Other Non-ferrous Metals	-73	-84.5	-41.5	112	-14
Cement	-5.5	-5.0	0	18	13
Building Materials	34.5	42	9.5	84	135.5
Timber	-20.5	-36	-23	77	18
Rubber	13.5	9.5	9.5	34	53

t

Direct Materials Commodity Coefficients 1963 & 1968

£ Direct requirements/£1000 of output at 1968 prices

PURCHASING INDUSTRY	1963	Synthetic Ra 1968	Resins % Change	1963	Iron and Steel 1968 % C	Steel % ^C hange	1963	Aluminium 1968	% Change	Other 1963	Non-ferr 1968	Other Non-ferrous Metals 1963 1968 % Change	
	1												1
1 Coal Minima	0	0		43	111	2.3	0	0	•	0	0	•	
1963	0	0	•	0	0		0	0	•	0	0 0	•	
	0	0 .		0	0	•	0	0		0 0	0 0	•	
4. Mineral Oil Refining	0	0	•	0	0	•	0	•••		0 0	2 8		
	5	13	160.0	2	-		5	0	•	5	8 0	C+C	
	22	82	9.3	0.	0	•	00	0 *			-		
7. Synthetic Resins	64	160	150.0	ŧ	0	• •	0 0	- ,	•	CI.	Inc.	2 00-	
	٢	٢	•	19	17	10.5	N			to -	÷-	26.32	
	0	٢	•	0	2	•	393	322	-18.1	24	+0	2.00	
	0	2	•	4	-	• .	15	21	0.04	2/2	CKS	C*0	
	0	0		130	152	16.9	0	0	1	200	0.74	4. 14	
2.55	0	0	•	125	105	-16.0	0	•;	- 02	10	01	6 64-	
	0	0	•	114	112	-1.8	10	13	0.05	- °	ų c	1-1	
-	0	0	•	26	85	11.8	6	10	1.11	01	~ 0		
	0	0	1	127	122	-3.9	5	4	•	~		•	
1.5	0	0	•	43	29	-32.6	0	0		D ;		- 20	
	2	2	•	102	107	6.4	10	41	0*0+	66	2:		
18. Industrial Plant and Steelwork	0	0	•	177	132	-25.5	6	2		11	5.5	C.C	
	0	0	,	108	109	6.0	21	15	-20.0	8	~		
	22	9	-72.7	50	26	30.0	12	12	0	12	3	-10-1	
	00	9	-	8	66	7.8	10	6	-10.0	2	4		
	28	42	50.0	2	9	•	19	27	42.1	204	5		
	11	10	-9.1	13	15	15.3	6	10	1.1	81	63		
	6	18	100.0	51	53	3.9	53	8	-13.0	21	R°	C-17-	
	0	0	•	401	8	-13.5	2	4	•	R	2.	K-10-	
-	-	1	•	143	641	4.2	19	23	21.1	0	2:	-20-0	
	0	0	•	30	39	30-0	8	22	-15.4	2	51	0.00	
	0	0	•	108	123	13.9	12	13	. 6.3	11	-		
	0	0	•	68	117	31.5	0	5		21	1.		
	0	0	•	531	264	+-9-	13	19	2.04	12		C.FC-	
	2	5	•	10	181	10.4	22	R	-5-7	SIL	0.0		
	9	4		0	0	•	0	0	•		•	• •	
	0	0	•	0	0	•	0	0		- -			
	4	4	•	10	12	20.0	00	10	200-02	* 0	+ 0		
	15	6	0.04	5	* 0	•	0 -	+ -		4	•	•	
	6	13.	4.44	0	00	•	+ 0	• •			0	•	
37. Paper and Board	m	6		••		•				0	0	•	
	61	22	0.001	~	4 4		0	0 01	•	0	90	'	
	R	200	14	44		-57.1	0	0	•	11	00	-21-3	
-	00	30	0	28	36	28.6	~	0	•	6	2	•	
-	174	144	-17.2	0	0	•	0	0	•	0	0	•	
	5	1	120.0	-	-	0	0	0	•	0	••	•	
	10	0	•	16	10	-37.5	0	0	•	-		•	
He ned and Dail Musemont	0	0	•	∞	9	•	0	0	•	0	0	•	
47. NORD BIID NELL IF BURPUT	0	0	•	0	0	1	0	0	•	0 0	0 0	1	
	-	0		0	0	-	0	0		• •	. •	• •	
	1	2		-	-		2	2	•	-	-		

· for coefficients of less than 1 per 100 in both 1963 and 1968, the percentage change is not shown.

Direct Materials Industry Coefficient, 1963 & 1968

£ Direct requirements/£1000 of output at 1963 prices

	PURCHASING INDUSTRY	Synt 1963	Synthetic Resi 3 1968	ins % Change*	1963	Iron and Steel 1968 %	teel % Change*	1963	Aluminium 1968	% Change.	-non- 1963	Non-ferrous M	Metals % Change*	
1.	Coal Mining	0	-0		94	44	-4.3	0	0	•	0	0	•	
	Other Mining	0	0	•	2	0	1	0	0	•	0	0	•	
	Coke Ovens	0	0	•	5	0	•	0	0	•	0	0		
4.	Mineral Oil Refining	0	•		-	0	•	0	0.		0	01		
5	Chemicals	4 -	13	225.0	2	2	•	5	4	•	12	~	-41.6	
19	Paint	12	68	-4.2	0	2	•	۴	-	•	5		•	
2.	Synthetic Resins	72	84	16.7	4	0	•	0	0	•	20 9	5		
	Iron and Steel .	-	2	•	8	19	-5.0	- :	2		38	5	-20.1	
	Aluminium	0	-		9	2	•	288	242	-16.0	14	55-	0.41-	
10.	Non-ferrous Metals	0	0		6	0		185	184	-0-5	606	200	C.01	
11.	Agricultural Machinery	. 0	0	•	129	158	22.5	0	0		0 0	0 0		
12.	Machine Tools	0	0	•	120	101	-15.2	0.	0;	• •	2 4	7	-10.0	
13.	Industrial Engines	0	0		117	116	6.0	0 0	= 0	C-1C	R .	5		
14.	Textile Machinery	0	N		2.	8	C./1	-	~ ~			<i>.</i>		
15.	Construction Equipment	00	00	•	2	121	- 1-1-				0	10		
16.	Office Equipment				104	100	0.1		12	33.3	26	18	-30.8	
17.	Other Non-Electrical Machinery			•	00	101	20.00		บัน	- 54 5	11		-37.4	
18.	Industrial Plant and Steelwork	0.0	0,		141	141	0.0-	: 8	11	0.02-	46	14	-19.6	
19.	Other Mechanical Engineering	•	0.		24		21 2	30			16	14	-12.5	
8	Instrument Engineering	53	‡ '	1.46-	0.10		2.2				38	0%	-21.1	
21.	Electrical Machinery	5	~	- 01	K ŧ	22		. t	- 00	52.6	286	316	10.5	
22.	Insulated Wires and Cables	÷.	1	20.0	1	44		000	ŗœ		8	17	-15.0	
53.	Electronics	- 6	15		5	5	6-0	17	16	5.9	51	37	-27.5	
2	Other Electrical Engineering	20	0.		270	19	-3.2	. r	*	•	16	11	-31.2	
67	Shipbullding				140	148	5.2	4	19	11.8	18	6	-50.0	
ė 8	2.25	. 0	~	•	42	52	23.8	30	24	-20.0	80	15	87.5	
28.	Aerospace Other Vehicles	00	10	•	115	125	8.7	6	12	33.3	6	9	11.1	
20		0	0		108	126	16.7	-	m;	•	22	18	-55-5	
30.	-	0	9	•	528	488	-2-6	53	44	21.3	94	21	-62-0	
31.	Other Metal Goods	4	5	•	182	202	0-11	Q 9	÷, c	·.+		۲		
32.	Pottery and Glass	2	5		- (- (•			• •				
33.	-	0-	0-			5	c. cc	5 6	10	140.0		, n		
34.		+ ų		- In o	2	Ľ				•	0	0		
35.	210	20	· +	0.00	~	1	37.5	*	m		m	0		
è.	0.1	NK	. 0	233.3	0	0		m	N	•	0	0	•	
-10	Paper and board	2	22	10.01	*	2	,	0	٢		٢	2		
20.		106	46	-11.3	0	۶	1	0	0		0	0.	•	
		109	173	58.7	14	9	-7.1	0	0		9	. t.	•	
41.		0	0	•	74	44	29.4	т	m	•	2	0		
42.	100	128	118	-7.8	0	0		0	0 0	•	00	0 0	• •	
43.		5	80		- !	- :				•		7		
44.	-	0	0		17	6.	-41.2	00	0 0		- 0	- c		
45.		0 0	0 0		5	× 0		50			00	0		
46.	-								• c		0	0		
-24			0 0	1 1		00) N	2		•	-	•	
01	Services, Agriculture, rood etc.	2	U			>		,						

· for coefficients of less than 1 per 100 in both 1963 and 1968, the percentage change is not shown.

Weighted Average Direct Commodity Coefficient Change for Materials 1963-68

		and the second second			
	No. of non-zero cells in 1963*	Weighted average change	Number Conforming to Sign	Number not Conforming to Sign	Little Change
Synthetic Resins Iron & Steel Aluminium Non-ferrous Metals Building Materials Timber Rubber	19 31 21 24 18 29 18	32.2% 10.2% -3.6% -18.2% 5.8% -27.0% 10.2%	8 8 9 16 7 22 6	6 11 8 3 10 2 6	5 12 4 5 1 5 6
	Engineering and (Construction	1		
Synthetic Resins Iron & Steel Aluminium Non-ferrous Metals Building Materials Timber Rubber	8 22 18 20 12 17 9	5.3% 12.9% -4.6% -20.2% 7.5% -27.0% 7.0%	2 8 8 15 6 12 3	2 5 7 3 5 1 2	4 932 144

All purchasing commodities (excluding materials)

* Cells for which transaction exceeded £0.5 million.

+ Coefficients for which change was less than 10%.

Weighted Average Direct Industry Coefficient Change for Materials, 1963-1968

	All Purchasing I	ndustries (excluding mat	erials)	
	No. of non-zero cells in 1963*	Weighted Average Change	Number Conforming to Sign	Number not Conforming to Sign	Little Change
Synthetic Resins	19	34.8%	9.	5	5
Iron & Steel	31	10.3%	6	9	16
Aluminium	21	-2.5%	9	7	5
Non-ferrous Metals	24	-22.3%	19	3	2
Building Materials	18	7.1%	6	6	6
Timber	29	-24.8%	20	4	5
Rubber	18	9.8%	5	6	7
	Engineering & Co	onstruction			
Synthetic Resins	8	3.4%	2	3.	3
Iron & Steel	22	13.1%	6	3	13
Aluminium	18	-3.9%	7	7	4
Non-ferrous Metals	20	-25.0%	18	2	0
Building Materials	12	7.6%	5	4	3
Timber	17	-22.1%	10	2	5
Rubber	9	8.1%	3.	0	6
		a astrication	A CALIFORNIA TON		A Realized

All Durchasing Industries (excluding materials)

* Cells for which transaction exceeded £0.5 million.

+ Coefficients for which change was less than 10%.

Changes in Intermediate Demand. for Competitive

Commodities, 1954-1963

	Percentage change in direct coefficients*.		s with o entries
Input Commodity	Weighted average	Total number in row	Number conforming to sign of weighted average
 1.1 Raw Meat 1.2 Cereals 1.3 Agricultural products n.e.s. 2. Coal 3.4 Mining products n.e.s. 4. Cereal products 5.1 Meat and fish products 5.4 Processed foods n.e.s. 6. Drink 7.2 Tobacco manufactures 8. Coke 9. Refined mineral oil 10. Chemicals n.e.s. 11. Iron and steel 12. Non-ferrous metals 13. Engineering products 14. Ships etc. 15. Motor vehicles 16. Aircraft 17. Vehicles n.e.s. 18. Metal goods n.e.s. 19. Textile fibres 20. Textiles n.e.s. 21. Leather, clothing, footwear 22. Building materials 23. Pottery and glass 24. Timber, furniture etc. 25.2 Paper and board 26. Paper n.e.s., printing etc. 27. Rubber products 28. Manufactures n.e.s. 29. Construction 30. Gas 31. Electricity 32. Water 33. Transport and communications 34. Distribution 35. Services n.e.s. 	$\begin{array}{c} -20.0 \\ 6.1 \\ -17.0 \\ -28.6 \\ -3.2 \\ 4.7 \\ 5.0 \\ 16.3 \\ -13.0 \\ -31.0 \\ -11.2 \\ 52.4 \\ 11.5 \\ -6.9 \\ -1.5 \\ 21.5 \\ -18.2 \\ 17.5 \\ 87.0 \\ -42.0 \\ -9.9 \\ 21.0 \\ -42.0 \\ -9.9 \\ 21.0 \\ -23.9 \\ -0.3 \\ 29.1 \\ -13.2 \\ 9.8 \\ 20.9 \\ 1.6 \\ 54.2 \\ -31.1 \\ -17.0 \\ 37.5 \\ -15.4 \\ 1.9 \\ -4.6 \\ 8.4 \end{array}$	268 37771411243587768261177176049991554779728888	2 5 6 37 3 3 1 2 1 1 20 1 25 1 9 23 2 7 1 1 21 1 23 5 11 0 23 5 1 98 15 23 15 7 6 19 6 10 20 10 2

* Coefficients less than 1 per 1000 are excluded. Reproduced from Table III.4 of (53)

٠,

1

Substitution Indicators

Plastics ⁺	Iron & Steel	Aluminium	Non-ferrous metals
		+37%	-26%
-56%	+32%		-15%
+30%			-11%
+19%		3	-24%
+280%		+17%	-44%
	+27%	-14%	
	+24%	and the second	-29%
	A STATE OF THE OWNER	+37%	-42%
	+11%		-28%
The Party	+29%		-19%
I DATE AND			- Station and the second
	-56% +30% +19%	-56% +32% +30% +19% +280% +27% +24% +11%	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

* Average of percentage change implied by commodity and industry table.

+ For the purposes of this table, the coefficients for the 'other manufacturing' category were added to those for 'synthetic resins' to form the 'plastics' category, since the decline in synthetic resins. coefficients was often offset by an increase in 'other manufacturing' coefficients, the major proportion of which category, represents the output of plastics products.

TABLE 4.15a

Change in Intermediate Output, 1954-63

1968 Prices

		Change output		Implied ficients	Change final	Implied by demand
	£	%	£	%	£	%
Synthetic Resins	185	325%	131	230%	54	95%
Iron & Steel	214	20%	÷81	-8%	295	28%
Aluminium	147	94%	63	40%	84	54%
Non-ferrous Metals	122	15%	-129	-16%	251	32%
Building Materials (incl. Cement)	219	45%	31	6%	188	39%
Timber	-5	1%	-85	-21%	60	15%
Rubber	68	35%	3	2%	65	33%

TABLE 4.15b

Change in Intermediate Output, 1963-68

1968 Prices

		Change		Implied fficients		Implied by demand
	£	%	£	%	£	%
Synthetic Resins	141	58%	77	32%	64	26%
Iron & Steel	256	20%	57	5%	199	16%
Aluminium	14	5%	-32	-11%	46	15%
Non-ferrous Metals	-65	-7%	-167	-18%	102	11%
Building Materials (incl. Cement and fottery and Glass)	188	22%	5	1%	153	22%
Timber	28	7%	-45	-11%	73	18%
Rubber	52	20%	10	4%	42	16%

TABLE 4.15c

Change in Intermediate Output, 1968-72

1968 Prices

		Change output		Implied fficients	Change final	Implied by demand
	£	%	£	%	£	%
Synthetic Resins	62	16%	21	6%	41	11%
Iron & Steel	-17	-1%	-77	-5%	60	4%
Aluminium	2	1%	-30	-9%	32	10%
Non-ferrous Metals	26	3%	-39	-5%	65	8%
Building Materials (incl. Cement)	116	12%	51	6%	65	7%
Timber	29	7%	-3	-1%	32	7%
Rubber	-4	- 1%	-50	-16%	46	15%

Changes in Gross Commodity Outputs, 1954-1963

(percentages)

Commodity	Change implied by changes in final demand	Change implied by changes in intermediate	Actual change
 1.1 Raw meat 1.2 Cereals 1.3 Agricultural products n.e.s. 2. Coal 3.4 Mining products n.e.s. 4. Cereal products 5.1 Meat and fish products 5.4 Processed foods n.e.s. 6. Drink 7.2 Tobacco manufactures 8. Coke 9. Refined mineral oil 10. Chemicals n.e.s. 11. Iron and steel 12. Non-ferrous metals 13. Engineering products 14. Ships etc. 15. Motor vehicles 16. Aircraft 17. Vehicles n.e.s. 18. Metal goods n.e.s. 19. Textile fibres 20. Textiles n.e.s. 21. Leather, clothing, footwear 22. Building materials 23. Pottery and glass 24. Timber, furniture etc. 25.2 Paper and goard 26. Paper n.e.s. printing etc. 27. Rubber products 28. Manufactures n.e.s. 29. Construction 30. Gas 31. Electricity 32. Water 33. Transport & communications 34. Distribution 	57 26	$ \begin{array}{c} -9 \\ 2 \\ -3 \\ -22 \\ -6 \\ -6 \\ 0 \\ 5 \\ 2 \\ 0 \\ -15 \\ 43 \\ 12 \\ -15 \\ 0 \\ 9 \\ -5 \\ 0 \\ -13 \\ -8 \\ -10 \\ -20 \\ -6 \\ -1 \\ 10 \\ -20 \\ -6 \\ -1 \\ 10 \\ -20 \\ -6 \\ -1 \\ 29 \\ -1 \\ -10 \\ 20 \\ -4 \\ 0 \\ -1 \\ 2 \end{array} $	48 8 4 1 3 1 7 4 8 9 5 6 9 3 5 4 9 9 8 1 6 0 4 6 2 4 5 6 8 9 9 3 7 2 5 0 3 4 9 9 8 1 6 0 4 6 2 4 5 6 8 9 9 3 7 2 5 0 3 4

Reproduced from Table III.5 of (53)

÷.,

Ranking of	Materials in	n terms	of pe	ercentage	Final	Demand
and	Coefficient	Impact	upon	Consumpt	ion	

	1954	-63	1963	-68
Service States	Coefficients	Final Demand	Coefficients	Final Demand
Synthetic Resins	1	1	1	1
Iron and Steel	5	6	2	5
Aluminium	2	2	5	6
Non-Ferrous Metals	6	5	7	7
Building Materials (incl. cement)	3	3	4	2
Timber	7	7	6	3
Rubber	4	4	3	4
	1968	-72	1954	-72
	Coefficients	Final Demand	Coefficients	Final Demand
Synthetic Resins	2	2	1	1
Iron and Steel	5	7	4	5
Aluminium	6	3	3	2
Non-Ferrous Metals	4	4	7	6
Building Materials (incl. cement)	1	5	2	4
Timber	3	6	6	7
Rubber	7	1	5	3

Source: From Tables 4.15 a, b and c.

5:0

Relationship between Production Structural Change, Labour Intensiveness & Relative Price Change, 1963-1968

	Output Chan Production	ge due to ¹ Structure	Labour Inte	ensiveness ²	Price	Change ²
a has Cars	%	Rank	%	Rank*	%	Rank*
Synthetic Resins	28%	1	-32%	1	-2%	1
Iron & Steel	2%	4	-16%	4	9%	3
Aluminium	-8%	5	+2%	7	26%	6
Non-ferrous Metals	-13%	7	-3%	6	81%	7
Building Materials (incl. Cement)	4%	2	-18%	3	10%	4
Timber	-10%	6	-9%	5	19%	5
Rubber	2%	3	-26%	2	8%	2

1 From Table 4.8a

2 From Table 4.5b

* For price ratios, materials are ranked in inverse order of increase to facilitate comparison with the structural change indicators.

TABLE 4.19a

Relationship between Coefficient Induced Change in Output and Price Changes

		1954-1963		•	1963-1968			1968-1972	
	Coefficient Change ¹ (Rank)		Rank*	Price Change ² Rank* Coefficient Change ³ (Rank)	Price Change ⁴	Rank.	Price Change ⁴ Rank [*] Coefficient Change ⁵ (Rank)	Price Change ²	Rank*
Synthetic Resins	1	-21%		1	-2%	۰	2	8%	2
Iron & Steel	5	29%	2	2	36	ю	5	39%	~
Aluminium	2	16%	4	5 .	26%	9	9	1%	
Non-ferrous Metals	. 9	6%	2	2	81%	2	4	10%	м
Building Materials (incl. Cement)	£	15%	£	4	10%	4	٢	35%	9
Timber	2	27%	9	9	19%	5	3	23%	4
Rubber	4	21%	5	3	8%	~	. 2	33%	5

1 From Table 4.15a

2 Estimated from (53), (15), (51) & other CSO data

3 From Table 4.15b

4 From (51)

5 From Table 4.15c

· For price ratios, materials are ranked in inverse order of increase to facilitate comparison with the structural change indicators.

TABLE 4.19b

Relationship between Coefficient Induced Change in Output & Price Changes estimated by Moving Average Method

Price Change Rank 9 N M 4 5 5 1968-1972 861 46% 18% 33% 54% 37% 42% 8 Coefficient Change⁴ (Rank) N 5 9 t m 2 -Price Change² Rank 5 N 9 2 M + 1963-1968 84-65% 11% 20% 12% 21% 10% 20 Coefficient Change³ (Rank) 5 9 N 5 t M Price Change² Rank 5 N 0 t 0 N 1954-1963 -22% 26% 10% 17% 16% 33% 6% 25 Coefficient Change (Rank) N 9 0 5 M t

> From Table 4.15a ~

N

Non-ferrous Metals Building Materials

(incl. Cement)

Rubber Timber

Synthetic Resins

G Iron & Steel Aluminium Estimated from (53), (15), (51) and other CSO information.

From Table 4.15b From Table 4.15c m-t

* For price ratios, materials are ranked in inverse order of increase to facilitate comparison with the structural change indicators.

Relationship between the Relative Price of Raw Materials & Processed Materials

	Raw Materia 1954-		Processed Mat 1954-	
	% Change	Rank*	% Change	Rank*
Synthetic Resins	-5%	3	-29%	1
Iron and Steel	-21%	1	39%	4
Aluminium	-4%	4	50%	5
Non-ferrous Metals	113%	7	69%	6
Building Materials (incl. Cement)	26%	6	38%	3
Timber	29%	5	52%	7
Rubber	-8%	2	26%	2

Estimated from figures given in (15), (51), (53), (110)

*Ranking in inverse order for consistency with Tables 4.18 and 4.19.

Commodity Structure of UK Imports 1953-76 at Current Prices

Per Cent

	1953	1958	1963	1968	1972	1973	1974	1976
ENGINEERING MATERIALS	10	10	45	10	11.	14	15	17
TOTAL	18 4	16	15	18 z	14		15 4	13 4
Iron and Steel *		36	3.6	3 9	36	36	6	
Non-Ferrous Metals*	7		.0	1	.1	1	2	5
Plastics	2	-2	1	1		_	2	_
Crude Rubber	5	4	3	3	2	3	3	2
Wood, Lumber, Cork Building Materials &)	т	,		-	-	-	-
Miscellaneous Minerals	1	1	1	1	1	1	1	1
Mibeerrancoub minerarb								1.120
OTHER MATERIALS								
TOTAL	19	13	11	7	5	5	5	5
Textile Fibres	12	6	5	3	2	5 2 1	1	1
Paper Pulp etc.	2 5	34	5 2 3	322	5222		1	1
Others	5	4	3	2	2	2	2	2
	~	7	7	4	5	. 4	5	5
CHEMICALS (excluding Plastics)	2	3	3	4	2	4	2	,
FUELS	9	12	11	11	11	11	20	18
T CLED	-							Oracle Dans
MACHINERY AND TRANSPORT EQUIPMENT								
TOTAL	53	53	8	15 8	20	21	17	20
Non-Electrical Machinery	3	3	5	8	9	10	8	10
Electrical Machinery and						1.114		
Appliances	-	1	2	3	5	5	4	4
Transport Equipment	2	1	1	4	6.	6	4	6
OTHER MANUFACTURED COMMODITIES								
TOTAL	7	11	15	18	22	23	20	21
Manufactures of Leather	1	1	1	-			-	-
Manufactures of Rubber	-	-	_	-	-	-	-	-
Manufactures of Wood and Cork	1	1	1	1	1	2	1	1
Manufactures of Paper and Board	1					3	3	3
Textile, Fabrics and Articles	1	2	23	23	33	33	33	33
Non-Metallic Mineral								
Manufactures n.e.s.+	2	2	31	4	5	5 1	4	4
Manufactures of Metal n.e.s.	-	-	1	1	1	1	1	1
Other	1	2	5	6	8	8	7	8
	70	70	71	24	21	20	16	16
FOOD AND BEVERAGES	39	39	34	24	21	20	10	10
OTHER	2	2	• 2	2	2	2	2	2
	100	100	100	2 100	100	2 100	100	100
TOTAL IMPORTS (c.i.f.)	0	-0	1.000	-	0001-7	15950	27271	71160
VALUE (£ Million)	3378	3832	4982	7899	11143	15052	23234	51109
								199-8-1

* Including ores and scrap.

+ Including Pottery, Glass and Precious Stones.

Sources: (15), (36), (112).

Commodity Structure of UK Imports 1953-76 At Constant Prices

(per cent)

	1953	1958	1963	1968	1972	1973	1974	1976
ENGINEERING MATERIALS					-			
TOTAL	23	20	19	18	16	16	16 4	16
Iron and Steel*	4 12	3 12	3 10	3 10	3	4	47	562
Non-Ferrous Metals * Plastics	-	12	10	10	7 2	7 2	2	2
Crude Rubber	1	1	1	1	1	1	-	1
Wood, Lumber, Cork	5	3	3	3	2	2	2	2
Building Materials &	1						See.	
Miscellaneous Minerals	1	1	1	1	1	1	1	1
OTHER MATERIALS							122	
TOTAL	13	10	9	7	5	5	5	5
Textile Fibres	7 2	52	4	32	522	1	1	1
Paper Pulp etc.	4	3	23	2	2	2	2	2
Others	4	2						
CHEMICALS (excluding Plastics)	2	2	3	4	5	. 5	5	5
FUELS	6	7	9	10	10	9	8	7
MACHINERY AND TRANSPORT EQUIPMENT								
TOTAL	6	?	9	16	21	23	23	24
Non-Electrical Machinery	4	4	. 5 2 2	8	10	11	12	12
Electrical Machinery	1 2	1	2	34	55	75	75	76
Transport Equipment	-		٢	4	,	,	,	U
OTHER MANUFACTURED GOODS								
TOTAL	9	12	17	18	22	23	24	24
Manufactures of Leather	• 1	1	1	-	-	-	-	-
Manufactures of Rubber	1	1	1	1	1	1	1	1
Manufactures of Wood and Cork Manufactures of Paper and Board	1							
Textile Yarn and Manufactures	1	2 2	33	23	33	34	34	34
Non-Metallic Mineral Manu-				-				
factures n.e.s.+	2	3	3	4	5	5	5	5
Manufactures of Metal n.e.s.	1	1	1	1	1	1	2 9	529
Other	1	2	5	6	8	9	9	9
FOOD AND BEVERAGES	40	40	32	25	20	17	17	17
OTHER	1	2	1	2	2	2	2	3
TOTAL VALUE (£ million) (1970 prices)	4251	4967	6241	8496	10488	12007	12075	12066

* Including ores and scrap.

+ Including Pottery, Glass and Precious Stones.

Sources: (15), (36), (112), (53), (77).

Commodity Structure of U.K. Exports 1953-76 At Current Prices

(per cent)

THE NUMBER OF THE OWNER OWNE	1953	1958	1963	1968	1972	1973	1974	1976
ENGINEERING MATERIALS TOTAL Iron and Steel* Non-Ferrous Metals * Plastics Crude Rubber	10 5 3 1	11 6 3 1	11 5 3 1	12 4 5 2	11 4 4 2	11 4 4 2	12 3 5 2	10 3 3 2
Wood, Lumber, Cork Building Materials &	-	-	-	-	-	-	-	-
Miscellaneous Minerals	1	1	1	1	1	1	1	1
OTHER MATERIALS TOTAL Textile Fibres	33	32	42	2	2	2 1	2 1	2
Paper Pulp etc. Others	-	1	-1	1	1	-	1	1
CHEMICALS (excluding Plastics)	6	7	7	8	8	8	11	10
FUELS	6	4	4	3	2	3	5	5
MACHINERY AND TRANSPORT EQUIPMENT TOTAL Non-Electrical Machinery Electrical Machinery and	36 15	41 17	42 20	41 20	41 21	38 19	37 19	39 20
Appliances Transport Equipment	7 14	7 17	7 15	7 14	7 13	6 12	7 11	8 12
OTHER MANUFACTURED COMMODITES TOTAL Manufactures of Leather Manufactures of Rubber Manufactures of Wood and Cork	30 1 1	25 1 1	23 1 1	24 1 1	26 1 1	27 1 1	25 1 1	25 1 1
Manufactures of Paper and Board Textile Yarn, Fabrics & Articles Non-Metallic Mineral Manu-	1 5 12	1 8	1 6	1 5	1 5	1 5	1 5	1 4
factures n.e.s. + Manufactures of Metal n.e.s. Other	366	4 5 6	4 3 7	538	6 3 10	7 3 9	6 3 9	6 3 9
FOOD AND BEVERAGES	6	6	6	7	7	7	6	7
UN-ALLOCATED	3	3	3	3	3	3	3	3
TOTAL EXPORTS VALUE (£ million)	2601	3251	4365	6434	9759	12505	16600	25909

* Including ores and scrap.

+ Including Pottery, Glass and Precious Stones.

Sources: (15), (36), (112).

Commodity Structure of UK Exports 1953-76 At Constant Prices

(per cent)

	1953	1958	1963	1968	1972	1973	1974	1976
ENGINEERING AND CONSTRUCTION								
MATERIALS TOTAL	11	13	12	12	13	12	11	10
Iron and Steel*	4	5	5	5 5 2	4	4	3	332.
Non-Ferrous Metals*	5	7	5 5 1	5	5 2	52	52	3
Plastics		1	1	2	2	2	2	2.
Crude Rubber	-	-	-	-	-	-	-	- 1
Wood, Lumber, Cork	-	-	-	-	-	-	-	-
Building Materials and								
Miscellaneous Minerals	1	1	1	1	1	1	1	1
OTHER MATERIALS								
TOTAL	1	1	1	2	2	2	2	2
Textile Fibres	1	1	1	1	1	1	1	1
Paper Pulp, etc.	-	-	-	-	-	-	-	-
Others	-	-	-	1	1	1	1	1
CHEMICALS (excluding Plastics)	4	5	7	8	8	9	10	10
FUELS	3	2	2	2	2	2.	2	2
MACHINERY AND TRANSPORT EQUIPMENT	1.0	43	43	41	39	38	38	39
TOTAL	40 21	20	21	20	20	19	20	
Non-Electrical Machinery	6	6	6	6	7	7	7	19 8
Electrical Machinery	13	17	16	14	13	12	12	12
Transport Equipment	0	.,	10		.,			
OTHER MANUFACTURED GOODS								
TOTAL	31	26	25	25	26	27	26	27
Manufactures of Leather	1	1	1	1	1	1	1	1
Manufactures of Rubber	,1	1	1	1	1	1	1	1
Manufactures of Wood and Cork	-	-	-	-	-	-	1	1
Manufactures of Paper and Board	1	27	1	1 5	1	1 5	5	4
Textile Yarn and Manufactures	11	1	5	2	2	2	,	7
Non-Metallic Mineral Manu-	1.	1.	5	5	5	6	5	6
factures n.e.s.+	4	4	2	53	53	63	3	63
Manufactures of Metals n.e.s. Other Manufactures	8	8	8	9	10	10	10	11
Other Manufactures	0	0	U	,	.0			
FOOD AND BEVERAGES	5	5	6	7	6	7	7	7
OTHER	4	• 4	. 3	3	3	3	4	3
TOTAL VALUE (£ million) (1970 prices)	4075	4701	5629	7099	8991	10215	10728	11260

* Including ores and scrap.

+ Including Pottery, Glass and Precious Stones.

Sources: (15), (36), (112), (53), (77).

58

UK Trade in Materials and Other Commodities, 1976

(£ million)

TRIGENERDETING AND GONGEDUCETON	Imports	Exports	Balance
ENGINEERING AND CONSTRUCTION MATERIALS TOTAL	4102	2508	-1594
Iron and Steel*	1252	850	-402
Non-Ferrous Metals *	1432	793	-639
Plastics	463	531	+68
Crude Rubber	140	61	-79
Wood, Lumber, Cork	585	9	-576
Building Materials and		0(1	-1.
Miscellaneous Minerals	230	264	+34
OTHER MATERIALS	.1.60	1.60	1000
TOTAL	1468	468	-1000
Textile Fibres	438	260	-178 -454
Paper Pulp, etc.	463 567	9 199	-368
Others	207	199	-900
CHEMICALS (excluding Plastics)	1536	2514	+978
FUELS	5645	1254	-4391
MACHINERY AND TRANSPORT EQUIPMENT			
TOTAL	6386	10125	+3739
Non-Electrical Machinery	3255	5056	+1801
Electrical Machinery & Appliances	1382	2004	+622
Transport Equipment	1749	3065	+1316
OTHER MANUFACTURED GOODS			
TOTAL	6422	6463	+41
Manufactures of Leather	107	148	+41
Manufactures of Rubber	130	300	+170
Manufactures of Wood and Cork	290	53	-237 -548
Manufactures of Paper & Board Textile Yarn and Manufactures	826 911	278 933	+22
Non-Metallic Mineral Manu-	911	900	TLL
factures n.e.s. +	1276	1572	+296
Manufactures of Metal n.e.s.	415	800	+385
Other Manufactures	2467	2379	-88
FOOD, BEVERAGES AND TOBACCO	4983	1692	-3291
OTHER	627	885	+258
TOTAL	31169	25909	-5260

* Including ores and scrap.

+ Including Pottery, Glass and Precious Stones. Sources: (15), (36), (112).

TABLE 5.6a

Comparison of Engineering Materials and Products Imports and Exports, 1962

IMPORTS

		Franc	ce	West Ger	rmany	<u>U.K</u>	<u>.</u>
SITC Code		Million \$	% of Total ¹	Million \$	% of Total ¹	Million \$	% of Total ¹
23 24 28 58 67 68	Crude Rubber Wood, Lumber, Cork Metal Ores and Scrap Plastic Materials Iron and Steel Non-Ferrous-Metals	111 123 134 64 447 299	1 2 2 1 6 4	119 320 489 81 644 565	1 3 4 1 5 5	172 439 389 89 150 675	1 3 3 1 1 5
-	TOTAL	1178	16	2218	18	1915	15
7 8	Machinery and Transport Equipment Other Manufactures	1417 336	19 4	1499 590	12 5	1105 577	9 5
	TOTAL FINISHED GOODS	1752	23	2089	17	1683	13

		EXPORT	TS	1			
		Franc	ce	West Ger	rmany	<u>U.K</u>	<u>.</u>
SITC Code		Million <u>\$</u>	% of Total ¹	Million <u>\$</u>	% of Total ¹	Million \$	% of Total ¹
23 24 28 58 67 68	Crude Rubber Wood, Lumber, Cork Metal Ores and Scrap Plastic Materials Iron and Steel Non-Ferrous-Metals	13 83 171 74 769 128	- 1 2 1 10 2	17 21 66 284 1245 262	- 1 2 9 2	23 3 55 151 562 369	- 1 1 5 3
	TOTAL	1238	17	1895	14	1162	11
7 8	Machinery and Transport Equipment Other Manufactures	1975 640	27 9	6127 1076	46 8	4653 703	44 7
	TOTAL FINISHED GOODS	2615	36	7204	54	5356	50

¹ Percentage of total exports of goods.

Source: OECD Commodity Trade Statistics, Series C.

TABLE 5.6b

Comparison of Engineering Materials and Products Imports and Exports, 1972

IMPORTS

		Franc	ce	West Ger	rmany	<u>U.K</u>	<u>.</u>
SITC Code		Million \$	% of Total ¹	Million \$	% of Total ¹	Million <u>\$</u>	% of Total ¹
23 24 28 58 67 68	Crude Rubber Wood, Lumber, Cork Metal Ores and Scrap Plastic Materials Iron and Steel Non-Ferrous-Metals	135 318 393 515 1632 965	1 1 2 6 4	158 528 1026 639 2136 1541	- 1 3 2 5 4	119 635 712 359 631 1118	- 2 3 1 2 4
	TOTAL	3958	15	6029	15	3573	13
7 8	Machinery and Transport Equipment Other Manufactures	6927 2365	26 9	7653 4555	19 12	5593 2230	20 8
	TOTAL FINISHED GOODS	9292	35	12207	31	7824	28

EXPORTS

		Fran	ce	West Ger	rmany	<u>U.K</u>	
SITC		Million \$	% of Total ¹	Million \$	% of Total ¹	Million \$	% of Total ¹
23 24 28 58 67 68	Crude Rubber Wood, Lumber, Cork Metal Ores and Scrap Plastic Materials Iron and Steel Non-Ferrous-Metals	109 125 283 434 1777 422	- 1 2 7 2	75 59 167 1347 3005 817	- - 3 7 2	71 6 72 441 942 867	- - 2 4 4
	TOTAL	3151	12	5471	12	2399	10
7 8	Machinery and Transport Equipment Other Manufactures	8545 2486	33 10	22309 4274	48 10	10039 2316	41 10
-	TOTAL FINISHED GOODS	11031	43	26583	57	12354	51

¹ See Table 5.6a.

Source: As Table 5.6a.

TABLE 5.6c

Comparison of Engineering Materials and Products Imports and Exports, 1976

IMPORTS

		Fran	France West Germany		rmany	<u>U.K.</u>	
SITC Code		Million \$	% of Total ¹	Million <u>\$</u>	% of Total ¹	Million <u>\$</u>	% of Total ¹
23 24 28 58 67 68	Crude Rubber Wood, Lumber, Cork Metal Ores and Scrap Plastic Materials Iron and Steel Non-Ferrous-Metals	277 665 925 1276 3242 1899	- 1 2 5 3	342 847 2256 1667 3888 2660	- 1 3 2 4 3	252 1049 1230 830 1732 1864	- 2 2 1 3
	TOTAL	8283	13	11661	13	6957	12
7 8	Machinery and Transport Equipment Other Manufactures	14951 5554	23 9	15840 9774	18 11	11459 4431	20 8
-	TOTAL FINISHED GOODS	20505	32	25614	29	18890	28

EXPORTS

		France		West Germany		<u>U.K.</u>	
SITC Code		Million <u>\$</u>	% of Total ¹	Million <u>\$</u>	% of Total ¹	Million \$	% of Total ¹
23 24 28 58 67 68	Crude Rubber Wood, Lumber, Cork Metal Ores and Scrap Plastic Materials Iron and Steel Non-Ferrous-Metals	248 229 618 1770 3765 816	- 1 3 7 1	172 301 498 3227 6655 1902	- - 3 7 2	110 16 177 953 1480 1296	- - 2 3 3
	TOTAL	5852	11	12755	12		9
7 8	Machinery and Transport Equipment Other Manufactures	20925 4643	37 8	48527 8946	48 9	18175 4275	39 9
	TOTAL FINISHED GOODS	25568	46 .	57473	56	22450	48

¹ As in Table 5.6a

Source: As Table 5.6a.

TABLE 5.7a

Trade Balance in Unwrought & Worked Iron and Steel for Major Producing Countries

Unwrought

Th. Tonnes

	U.K.	W. Germany	France	Italy	U.S.	Japan
1962	- 280	701	-415	-1186	n/a	- 1456
1968	- 295	1446	-502	-1852	n/a	-3384
1972	- 487	735	-919	-3532	n/a	n/a
1976	-1188	- 317	-681	-2769	n/a	5148

Worked

Th. Tonnes

	U.K.	W. Germany	France	Italy	U.S.	Japan
1963	2730	2800	2333	-1735	-2548	4921
1968	2392	3741	2396	410	-14157	n/a
1972	2045	2196	1372	1216	-12974	19049
1976	297	3951	757	2501	-9777	n/a

Sources (76), (114), (115)

TABLE 5.7b

Trade Balance in Unwrought & Worked Aluminium Products for Major Producing Countries

Unwrought

Th. Tonnes

	U.K.	W. Germany	France	Italy	U.S.	Japan
1962	-245	-110	+52	-90	-142	-12
1968	-335	-269	+89	-61	-458	-168
1972	-182	-262	-29	-161	-490	-316
1976	-56	-124	-102	-187	-379	-360

Worked

Th. Tonnes

	U.K.	W. Germany	France	Italy	U.S.	Japan
1958	33	23	9	3	-13	7
1963	29	35	21	-8	22	17
1968	2	49	11	20	57	32
1972	-51	26	n/a	22	65	n/a
1976	-57	73	-11	34	n/a	n/a

Sources (76), (114), (115)

•

TABLE 5.7c

Trade Balance in Unwrought & Worked Copper for Main Producing Countries

Unwrought

Th. Tonnes

	U.K.	W. Germany	France	Italy	U.S.	Japan
1962	-360	-316	-193	-259	+20	-35
1968	-350	-378	-251	-218	-375	-279
1972	-385	-461	-375	-312	-145	-278
1976	-401	-480	-354	-310	-285	-204

Worked

Th. Tonnes

	U.K.	W. Germany	France	Italy	U.S.	Japan
1958	150	73	9	8	-48	10
1963	52	46	8	-3	n/a	17
1968	63	37	5	12	-78	30
1972	73	21	17	20	-80	n/a
1976	68	87	55	17	n/a	132

Sources (76), (114), (115)

TABLE 5.8a

Imports and Exports of Metals, U.K. and W. Germany, 1962

		Th. Tonnes		
	<u>U.</u>	К.	W. Ger	rmany
	Imports	Exports	Imports	Exports
IRON AND STEEL				
Ore, Scrap Unwrought Worked	12897 608 494	1102 318 3076	30444 1613	282 2315
COPPER				
Ore, Scrap Unwrought Worked	2 536 4	8 158 63	1261 431 20	15 115 63
NICKEL				
Ore, Scrap Unwrought Worked	56 8 4	2 20 6	4 19 1	- 1 5
ALUMINIUM				
Ore, Scrap Unwrought Worked	439 255 22	20 60 59	1445 118 12	95 6 46
LEAD				
Ore, Scrap Unwrought Worked	29 180 -	- 36 2	144 98 1	5 22 3
ZINC				
Ore, Scrap Unwrought Worked	188 142 1	12 7 7	133 127 12	15 25 7
TIN				
Ore, Scrap Unwrought Worked	50 8 -	10 1	8 12 -	2

Sources: (32), (112), (115)

14.)

TABLE 5.8b

Imports and Exports of Metals, U.K. and W. Germany, 1972 (Bilateral Trade in Brackets)

Th. Tonnes

A Starting	<u>U.</u> k	<u>.</u>	W. Germany		
	Imports	Exports	Imports	Exports	
IRON AND STEEL	Santar and				
Ore, Scrap Unwrought Worked	17752 (3) 991 (23) 2203 (269)	1091 (42) 504 (16) 4249 (108)	43072 (-) 2710 (16) 9262 (108)	2174 (6) 3445 (23) 11456 (269)	
COPPER					
Ore, Scrap Unwrought Worked	18 (-) 449 (24.0) 24 (3.3)	4 (0.7) 64 (16.0) 97 (2.3)	489 (0.7) 569 (16.0) 100 (2.3)	37 (-) 108 (24.0) 122 (3.3)	
NICKEL					
Ore, Scrap Unwrought Worked	63 (0.3) 18 (0.4) 3 (0.8)	5 (0.8) 33 (6.8) 12 (0.9)	9 (0.8) 35 (6.8) 2 (0.9)	2 (0.3) 3 (0.4) 11 (0.8)	
ALUMINIUM					
Ore, Scrap Unwrought Worked	333 (-) 267 (2.5) 86 (5.5)	3 (0.9) 85 (13.7) 35 (2.2)	2416 (0.9) 347 (13.7) 144 (2.2)	23 (-) 85 (2.5) 169 (5.5)	
LEAD					
Ore, Scrap Unwrought Worked	$\begin{array}{c} 32 & (& - \\ 207 & (& 0.7) \\ 1 & (& - \end{array} \right)$	6 (-) 147 (32.6) 2 (-)	218 (-) 122 (32.6) 3 (-)	17 (-) 67 (0.7) 7 (-)	
ZINC	in a second the				
Ore, Scrap Unwrought Worked	113 (1.3) 231 (4.8) 1 (0.2)	7 (-) 16 (-) 7 (0.5)	514 (-) 144 (4.8) 19 (0.2)	54 (1.3) 105 (4.8) 11 (0.2)	
TIN					
Ore, Scrap Unwrought Worked	61 (0.3) 6 (-) - (-)	$ \begin{array}{c} - & (& - \\ 16 & (& 1.6 \\ 1 & (& -) \end{array} $	7 (-) 16 (1.6) - (-)	$\begin{array}{c} - \left(\begin{array}{c} - \\ - \\ 1 \\ 1 \end{array} \right) \\ 1 \end{array}$	

Sources: (36),(76),(114)

.

TABLE 5.8c

Imports and Exports of Metals, United Kingdom and West Germany, 1976 (Bilateral Trade in Brackets)

	<u>U.K.</u>		W. Germany		
	Imports	Exports	Imports	Exports	
IRON AND STEEL Dre, Scrap Jnwrought Worked	19497 (61) 1551 (265) 3210 (613)	598 (120) 363 (58) 3507 (243)	49226 (120) 2887 (58) 9156 (243)	2704 (61) 3204 (265) 13107 (613)	
COPPER Dre, Scrap Jnwrought Worked	15 (0.3) 434 (26.0) 34 (8.0)	39 (16.0) 33 (17.0) 102 (2.8)	731 (16.0) 582 (17.0) 144 (2.8)	40 (0.3) 102 (26.0) 231 (8.0)	
NICKEL Ore, Scrap Unwrought Worked	59 (1.0) 20 (0.2) 4 (1.6)	5 (2.2) 30 (8.6) 10 (1.2)	21 (2.2) 43 (8.6) 5 (1.2)	6 (1.0) 1 (0.2) 15 (1.6)	
ALUMINIUM Ore, Scrap Unwrought Worked	18 (1.3) 218 (5.1) 119 (15.0)	7 (3.1) 162 (19.1) 62 (5.9)	4189 (3.1) 405 (19.1) 206 (5.9)	54 (1.3) 281 (5.1) 279 (15.0)	
LEAD Ore, Scrap Unwrought Worked	14 (-) 252 (0.2) 1 (0.1)	21 (0.8) 104 (22.0) 2 (-)	214 (0.8) 110 (22.0) 2 (-)	29 (-) 72 (0.2) 9 (0.1)	
ZINC Ore, Scrap Unwrought Worked	125 (0.8) 203 (7.3) 4 (2.4)	13 (1.6) 131 (0.7) 4 (-)	621 (1.6) 134 (0.7) 20 (-)	90 (0.8) 105 (7.3) 13 (2.4)	
TIN Ore, Scrap Unwrought Worked	43 (0.9) 8 (0.3) - (-)	$ \begin{array}{c} - & (& - \\ 10 & (& 0.7 \\ 1 & (& 0.4) \end{array} $	10 (-) 16 (0.7) 1 (0.4)	$\begin{array}{c}1 & (\ 0.9)\\2 & (\ 0.3)\\1 & (\ - \)\end{array}$	

Source: As Table 5.8b

.

TABLE 5.9a

Implied Price of Metals Imports and Exports, United Kingdom, 1962, 1972, 1976

\$/tonne Exports Imports Exports Imports Exports Imports • IRON AND STEEL Unwrought Worked COPPER Unwrought Worked NICKEL Unwrought Worked ALUMINIUM Unwrought Worked

Source: (76),(115)

TABLE 5.9b

Implied Price of Metals Imports and Exports, West Germany 1962, 1972 and 1976

\$/tonne								
	19		19	972	<u>19</u>	1976		
	Imports	Exports	Imports	Exports	Imports	Exports		
IRON AND STEEL		4.						
Unwrought Worked	95 132	77 191	146 188	119 226	302 329	251 446		
COPPER								
Unwrought Worked	640 935	665 1045	1020 1350	1090 1705	1325 1870	1505 2220		
NICKEL								
Unwrought Worked	280	240	300	385	485 605	645		
ALUMINIUM								
Unwrought Worked	515 990	1030	513 960	555 1215	864 1590	910 1750		

- Implies quantity is insufficient to estimate a price.

1

Source: As Table 5.9a

,70

7

TABLE 5.10a

Direct and Indirect Output Requirements for Exports, United Kingdom

and West Germany 1972

£ Million

	<u>U.K.</u>			W. Germany			
	Direct	Indirect	D/I	Direct	Indirect	D/I	
Synthetic Resins	181	/ 140	1.29	553	303	1.83	
Iron and Steel	346	723	0.48	1088	1597	0.68	
Aluminium	34	149	0.23	97	306	0.32	
Other Non-Ferrous Metals	193	418	0.46	150	840	0.18	
Building Materials	171	137	1.25	362	316	1.15	
Timber	16	74	0.22	86	168	0.51	
Rubber	109	95	1.15	176	210	0.84	
TOTAL MATERIALS	1050	(1736) ¹	0.60	2512	(3740) ¹	0.67	
Mechanical Engineering	1459	404	3.61	3845	916	4.20	
Instrument Engineering	232	42	5.52	456	89	5.12	
Electrical Engineering	662	347	1.91	1723	688	2.50	
Shipbuilding	185	14	13.20	444	31	14.32	
Motor Vehicles	1049	65	16.14	2578	145	17.78	
Aerospace	314	19	16.53	53	12	4.42	
Other Engineering	438	665	0.66	468	1274	0.37	
Construction	0	93	0	0	209	0	
TOTAL ENGINEERING AND CONSTRUCTION	4154	(1635) ¹	2.54	9567	(3364) ¹	2.84	

¹ This column is not strictly additive, but the summation is made to indicate relative magnitudes.

Source: (10),(76)

1

1

TABLE 5.10b

Direct and Indirect Output Requirements for Exports, United Kingdom -West Germany Bilateral Trade, 1972

	1	Million					
		- <u>U.K.</u>		1	W. Germany		
	Direct	Indirect	<u>D/I</u> ²	Direct	Indirect	<u>D/I</u> ²	
Synthetic Resins	6	9	0.71	31	12	2.58	
Iron and Steel	10	38	0.28	22	84	0.26	
Aluminium	4	9	0.40	4	15	0.27	
Other Non-Ferrous Metals	25	28	0.90	10	42	0.24	
Building Materials	10	8	1.34	12	15	0.80	
Timber	2	4	0.38	5	7	0.71	
Rubber	6	5	1.12	6	10	0.60	
TOTAL MATERIALS	63	101	0.62	90	185	0.49	
Mechanical Engineering	97	24	4.02	200	50	4.00	
Instrument Engineering	12	3	4.65	26	5	5.20	
Electrical Engineering	50	22	2.28	119	39	3.05	
Shipbuilding	11	1	11.00	123	4	29.75	
Motor Vehicles	43	3	12.30	114	8	14.28	
Aerospace	26	1	18.30	10	1	9.24	
Other Vehicles	11	38	0.30	15	65	0.23	
Construction	0	6	0	0	10	0	
TOTAL ENGINEERING AND CONSTRUCTION	250	98	2.55	607	182	3.34	

¹ See footnote to Table 5.10a.

 2 The figures in this column may not exactly equal the ratio of the figures in the first two columns, because of rounding.

Source: As Table 5.10a

TABLE 5.11a

Imported Commodities Absorbed Directly by Final Demand, 1972 (f Million)

	Private Consumption	Authorities Current Expenditure	Gross Fixed Capital Formation	<u>Stocks</u>	<u>Total</u>
ENGINEERING AND CONSTRUCTION MATERIALS TOTAL	43	0		0	43
Iron and Steel		0	-	0	0
Aluminium	-	0	-	-	0
Other Non-Ferrous Metals	-	0	-	0	0
Synthetic Resins, etc.		•			- 6
Rubber and Rubber Products	6	-	-	ō	22
Timber & Misc Wood Manufactures	22			0	15
Building Materials	15	A State of the second s		0	15
Mining and Quarrying Products					
ENGINEERING AND CONSTRUCTION	552	32	947	-73	1458
				1.1.1	470
Mechanical Engineering	11	4	455	0	470
Instrument Engineering	54	12 2	61	-	340
Electrical Engineering	169	2	169	0	68
Shipbuilding		-	68	0	371
Motor Vehicles	261	0	110	0	83
Aerospace		14	69		16
Other Vehicles	15	-	1	-73	-22
Metal Goods n.e.s.	42	-	9	-/3	-22
Construction					
OTHER COMMODITIES	1922	114		-10	2026
TUTAL					47
Energy	51	9	-	-13	107
Textiles, etc.	107		a water and	0	36
Paper and Board, Packaging	33	-		3	1836
Other	1731	105		0	1050
ALL COMMODITIES TOTAL	2517	146	947	-83	3527

- Zero

0 Transactions less than £0.5 and thus rounded to zero.

TABLE 5.11b

Analysis of Actual and Implicit Final Destination of All imported Commodities (final and intermediate), 1972

(per cent)

	Private Consumption	Public Authorities Current Expenditure	Gross Fixed Capital Formation	Stocks	Exports
ENGINEERING AND CONSTRUCTION MATERIALS TOTAL	30	8	31	- 1	32
Iron and Steel Aluminium Other Non-Ferrous Metals Synthetic Resins, etc. Rubber and Rubber Products Timber Building Materials Mining and Quarrying Products	22 26 21 44 50 39 40 24	8 10 10 8 7 6 7 8	35 25 27 14 18 46 34 26	- 1 - 2 0 0 0 1 - 2	35 40 44 34 25 10 18 43
ENGINEERING AND CONSTRUCTION TOTAL	38	6	44	- 2	13
Mechanical Engineering Instrument Engineering Electrical Engineering Shipbuilding Motor Vehicles Aerospace Other Vehicles Metal Goods n.e.s. ² Construction	9 34 40 1 64 11 77 61	3 12 7 8 1 25 0 8 -	80 42 40 84 29 50 9 17	0 0 0 1 -11 -	8 12 13 7 6 13 14 25 -
OTHER COMMODITIES TOTAL	70	8	6	0	16
Energy Textiles, etc. Paper and Board, Packaging Other	59 68 58 75	10 4 10 7	11 4 9 5	- 1 - 1 1 0	20 25 22 13
ALL COMMODITIES TOTAL	• 55	7	20	- 1	18

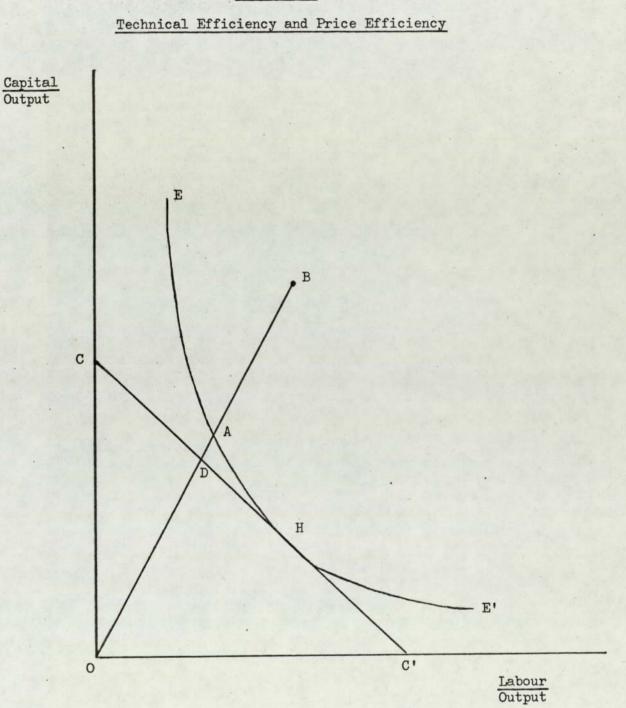
TABLE 5.11c

Analysis of Implicit Final Destination of Intermediate Imports, 1972

(f Million)

	Private Consumption	Public Authorities Current Expenditure	Gross Fixed Capital Formation	Stocks	Exports	Total
ENGINEERING AND CONSTRUCTION MATERIALS TOTAL	446	131	517	-15	520	1599
Iron and Steel Aluminium Other Non-Ferrous Metals Synthetic Resins, etc. Rubber Timber Building Materials Mining and Quarrying Products	46 25 79 65 16 124 18 73	17 10 35 12 3 24 6 24	73 24 98 21 8 186 28 79	0 - 1 - 9 0 - 1 - 1 - 5	73 39 162 51 11 41 15 128	209 97 365 149 38 374 68 299
ENGINEERING AND CONSTRUCTION TOTAL	542	152	291	4	378	1367
Mechanical Engineering Instrument Engineering Electrical Engineering Shipbuilding Motor Vehicles Aerospace Other Vehicles Metal Goods n.e.s. Construction	50 8 67 1 28 15 2 371 -	16 11 38 7 4 21 0 55 -	73 16 68 4 2 2 1 105	- 1 0 1 0 1 1 0 22	56 22 75 6 28 18 3 170	194 57 249 18 83 57 6 703
OTHER COMMODITIES	2362	356	397	5	1016	4139
Energy Textiles, etc. Paper and Board, Packaging Other	685 277 261 1139	117 20 52 167	138 20 47 192	- 1 - 4 3 7	252 143 110 511	1191 456 473 2016
ALL COMMODITIES	3350	639	1205	- 6	1914	7102

Figures rounded to nearest flm


TABLE 5.12

Net Trade Effects of Domestic Substitution for Imported Materials

Materials Saved f Million

	Synthetic Resins	Iron and Steel	Aluminium
Synthetic Resins	+149.8	- 0.2	- 0.2
Iron and Steel	- 0.2	+208.8	- 0.3
Aluminium	- 0.1	- 0.3	+97.1
Other-Non-Ferrous Metals	- 0.6	- 5.1	- 3.9
Rubber	- 3.8	- 0.5	- 0.7
Ores and Scrap	- 0.8	- 12.0	- 2.0
Chemicals n.e.s.	- 18.3	- 1.4	- 0.7
Energy Other	- 4.6 6.2 - 6.2	- 10.8 6.1 - 6.1	- 2.3 - 3.6 - 3.6
NET TRADE EFFECT	115.2	172.4	83.4

FIGURE 6.1

<u>Productivity - Example 1</u> <u>Input-Output Tables</u>

Period 0

	<u>Ind. 1</u>	<u>Ind. 2</u>	<u>Ind. 3</u>	Final Demand	Gross Output
Ind. 1	0	0	0	20	20
Ind. 2	5	0	0	0	5
Ind. 3	5	0	0	0	5
Net Output	10	5	. 5	20	
(Labour Input)	(10)	(5)	(5)		
Gross Input	20	5	5	1	

Period 1

	Ind. 1	Ind. 2	<u>Ind. 3</u>	Final Demand	Gross Output
Ind. 1	0	0	0	20	20
Ind. 2	7.5	0	0	0	7.5
Ind. 3	5	0	0	0	• 5
Net Output	7.5	7.5	5	20	
(Labour Input)	(7.5)	(7.5)	(5)		i i i i i i i i i i i i i i i i i i i
Gross Input	20	7.5	5		

All output figures in period 0 prices

Productivity - Example 2 Input-Output Tables

Period 0

	<u>Ind. 1</u>	<u>Ind. 2</u>	Ind. 3	Final Demand	Gross Output
Ind. 1	0	0	0	20	20
Ind. 2	5	0	0	0	5
Ind. 3	. 5	0	0	0	5
Net Output	10	5	5	20	
(Labour Input)	(10)	(5)	(5)	(20)	
Gross Input	20	5	5		

Period 1

	Ind. 1	<u>Ind. 2</u>	Ind. 3	Final Demand	Gross Output
Ind. 1	0	0	0	20	20
Ind. 2	7.5	0	0	0	7.5
Ind. 3	2.5	0	0	0	2.5
Net Output	10	7.5	2.5	20	146
(Labour Input)	(10)	(5)	(2.5)	(17.5)	1
Gross Input	20	7.5	2.5	6. Uper 6	-Section .

All output figures in period 0 prices

Productivity - Example 3 Input-Output Tables

Period 0

	<u>Ind. 1</u>	Ind. 2	Ind. 3	Final Demand	Gross Output
Ind. 1	0	0	0	20	20
Ind. 2	5	0	0	0	5
Ind. 3	5	0	0	0	5
Net Output	10	5	5	20	
(Labour Input)	(10)	(5)	(5)	(20)	
Gross Input	20	5	5		1

Period 1

	Ind. 1	<u>Ind. 2</u>	Ind. 3	Final Demand	Gross Output
Ind. 1	0	0	0	20	20
Ind. 2	5	0	0	0	5
Ind. 3	2.5	. 0	0	0	2.5
Net Output	12.5	5	2.5	20	
(Labour Input)	(10)	(5)	(2.5)	(17.5)	
Gross Input	20	5	2.5	and the second	

Period 1 values erroneously believed to be at period 0 prices. If accurate deflation had taken place, the period 1 situation would be as in Table 6.2.

Employment by Industry 1963 and 1968

Man-Years

		Opera	tives	Administrative, Clerical		
		1963,'	1968	1963	1968	
1.	Coal Mining	547.9	355.4	45.3	35.2	
2.	Other Mining and Quarrying	44.4	40.4	9.7	9.1	
3.	Coke Ovens	15.4	14.5	12.2	2.9	
	Mineral Oil Refining	19.3	15.7	17.4	8.4	
5.	Chemicals	212.7	193.8	125.9	123.2	
	Paint	19.2	16.3	18.9	15.9	
7.	Synthetic Resins	. 26.0	34.5	16.0	22.2	
8.	Iron and Steel	351.9	323.0	85.5	90.4	
9.	Aluminium	44.9	44.9	12.4	13.1	
10.	Non-ferrous Metals	59.9	53.3	19.0	19.4	
11.	Agricultural Machinery	15.6	15.1	5.5	6.1	
12.	Machine Tools	53.3	48.9	20.6	22.7	
13.	Industrial Engines	24.4	22.0	13.1	11.4	
14.	Textile Machinery	40.8	37.3	10.0	11.4	
15.	Construction Equipment	64.8	67.1	30.2	34.4	
	Office Equipment	21.3	19.9	8.8	10.8	
17.	Other Non-Electrical Machinery	187.7	200.6	87.3	107.2	
	Industrial Plant and Steelwork	85.9	97.9	45.3	55.5	
19.	Other Mechanical Engineering	148.7	146.3	46.5	51.5	
20.	Instrument Engineering	99.4	108.6	44.1	60.7	
21.	Electrical Machinery	144.6	106.0	74.9	61.1	
22.	Insulated Wires and Cables	37.3	37.3	15.6	16.6	
23.	Electronics	205.6	212.4	104.7	122.5	
24.	Other Electrical Engineering	131.7	142.6	48.5	52.3	
25.	Shipbuilding	170.1	148.1	32.5	38.2	
26.	Motor Vehicles	362.6	373.6	95.3	108.3	
27.	Aerospace	146.6	129.6	107.9	106.9	
28.	Other Vehicles	83.7	56.1	16.0	12.0	
29.	Engineers' Small Tools	42.4	48.6	13.0	15.5	
30.	Cans and Metal Boxes	24.9	24.3	5.3	4.9	
31.	Other Metal Goods	354.8	335.8	91.2	96.2	
32.	Pottery and Glass	108.0	102.4	23.5	24.9	
	Cement	10.9	10.7	3.3 .	3.2	
34.	Building Materials	126.3	118.7	29.2	30.7	
	Furniture	90.0	80.9	20.0	18.5	
	Timber	115.4	119.9	26.6	29.4	
	Paper and Board	73.3	61.7	15.0	14.3	
Shine St	Paper Products	107.3	124.4	29.1		
	Rubber	87.7	90.2	29.1	33.3	
	Other Manufacturing	136.3	157.4	35.8	256.7	
	Construction	1338.9	1231.9	237.1 8.9	9.6	
	Man-made Fibres	28.3	30.8	161.4	161.9	
	Other Textiles etc.	1088.8	943.6		154.0	
	Gas, Electricity, Water	273.0	255.0	133.1 243.0	286.0	
	Road and Rail Transport	600.0	476.0	126.0	154.0	
10000	Other Transport	310.0	256.0	900.0	1132.0	
	Distribution	2027.0	1700.0	1428.0	1875.0	
48.	. Services, Agriculture, Food etc.	5731.0	5720.0			

Gross Capital Stock by Industry 1963 and 1968

Value of Capital Stock at end of year at 1970 replacement cost

		Capital	Stock
		1963	1968
1.	Coal Mining	1800.0	1800.0
2.	Other Mining and Quarrying	300.0	500.0
3.	Coke Ovens	566.3	588.0
4.	Mineral Oil Refining	752.5	1110.3
5.	Chemicals	3185.9	4063.2
6.	Paint	209.5	246.1
	Synthetic Resins	387.8	627.3
7. 8.	Iron and Steel	3624.8	4001.4
9.	Aluminium	140.5	201.2
	Non-ferrous Metals	473.5	554.7
	Agricultural Machinery	75.2	80.7
	Machine Tools	253.2	254.7
			79.6
	Industrial Engines	73.6	
	Textile Machinery	207.6	226.0
	Construction Equipment	165.0	213.9
	Office Equipment	56.2	78.3
	Other Non-Electrical Machinery	774.6	894.7
	Industrial Plant and Steelwork	443.1	605.3
	Other Mechanical Engineering	645.6	729.4
	Instrument Engineering	237.8	315.9
	Electrical Machinery	373.7	431.7
22.	Insulated Wires and Cables	227.2	236.5
23.	Electronics	461.1	745.4
	Other Electrical Engineering	246.7	333.8
25.	Shipbuilding	601.0	599.0
	Motor Vehicles	1781.9	2156.9
27.	Aerospace	733.0	833.0
28.	Other Vehicles	370.9	364.6
29.	Engineers' Small Tools	133.3	196.1
	Cans and Metal Boxes	127.2	187.2
31.	Other Metal Goods	1329.2	1489.6
32.	Pottery and Glass	282.9	388.6
	Cement	205.6	272.2
10000	Building Materials	472.9	721.3
	Furniture	168.5	194.5
	Timber	272.5	343.5
1.	Paper and Board	429.3	448.0
	Paper Products	701.5	1019.4
	Rubber	410.0	546.0
			560.8
	Other Manufacturing	349.0	
1121000	Construction	1300.0	2000.0
	Man-made Fibres	279.6	507.5
	Other Textiles etc.	3171.5	3440.9
	Gas, Electricity, Water	12200.0	16600.0
	Road and Rail Transport	9500.0	9700.0
	Other Transport	5300.0	5600.0
	Distribution	6500.0	9000.0
	Services, Agriculture, Food etc.	15900.0	21200.0

Gross Output by Industry 1963 and 1968 (Excluding Duplication)

£ million 1963 prices

		Gross	Output
		1963	1968
1.	Coal Mining	910.3	724.0
2.	Other Mining and Quarrying	184.8	219.9
3.	Coke Ovens	190.1	206.3
4.	Mineral Oil Refining	564.5	859.2
5.	Chemicals	1617.9	2137.1
	Paint	153.3	169.2
	Synthetic Resins	247.3	488.7
8.	Iron and Steel	1804.0	2045.6
9.	Aluminium	203.1	240.4
10.	Non-ferrous Metals	505.8	514.8
11.	Agricultural Machinery	63.3	74-5
12.	Machine Tools	168.6	198.1
13.	Industrial Engines	133.9	109.2
14.	Textile Machinery	118.7	143.4
15.	Construction Equipment	288.0	413.6
16.	Office Equipment	63.4	93.7
	Other Non-Electrical Machinery	699.9	950.8
18.	Industrial Plant and Steelwork	392.2	609.4
19.	Other Mechanical Engineering	397.0	506.3
20.	Instrument Engineering	268.6	434.1
21.	Electrical Machinery	413.4	493.9
22.	Insulated Wires and Cables	220.2	245.3
23.	Electronics	657-9	925.1
24.	Other Electrical Engineering	454.4	610.0
25.	Shipbuilding	426.3	457.6
26.	Motor Vehicles	2009.3	2420.4
27.	Aerospace	572.1	549.3
0.537.0	Other Vehicles	187.3	149.5
	Engineers' Small Tools	105.1	137.5
	Cans and Metal Boxes	102.8	133.3
	Other Metal Goods	1211.4	1364.3
Contract of the	Pottery and Glass	240.8	297-3
	Cement	83.0	94.3
	Building Materials	424.2	593-3
	Furniture	259.4	314.5 541.4
1.000	Timber	408.2	
	Paper and Board	378.8	400.7
20002	Paper Products	393-2	575.4
	Rubber	344.6	646.9
	Other Manufacturing	399.5	4741.6
1000	Construction	3930.5	393.0
	Man-made Fibres	205.8 2878.5	3222.4
	Other Textiles etc.	1634.2	2068.7
	Gas, Electricity, Water	1498.6	1512.6
	Road and Rail Transport	1539.0	1957.0
	Other Transport Distribution	4688.9	4930.5
1272		13009.3	15608.3
40.	Services, Agriculture, Food etc.		.,,

Source: (51) & derived input-output tables.

83

			196	53 = 100					
Rank	ENGINEERING	OUTPUT	OPS	ADMIN TECH	CAPITAL	TOTAL PRIMARY	PROD	PARTIAL $A_1 = A_0$	Lawrence Constraint
	the second secon								
13	AGRICULTURAL MACHINERY	1.13	0.95	1.11	1.07	1.02	1.11	1.15	0.96
18	MACHINE TOOLS	1.00	0.90	1.10	0.99	0.97	1.03	1.21	0.85
20	INDUSTRIAL ENGINES	0.79	0.89	0.87	1.05	0.91	0.86	0.89	0.97
8	TEXTILE MACHINERY	1.23	0.89	1.14	1.10	0.99	1.25	1.22	1.02
4	CONSTRUCTION EQUIPMENT	1.51	1.03	1.14	1.26	1.13	1.33	1.27	1.05
6	OFFICE MACHINERY	1.42	0.94	1.23	1.33	1.11	1.28	1.33	0.96
11	OTHER NON-ELECTRICAL MACHINERY	1.29	1.00	1.23	1.16	1.13	1.14	1.20	0.95
2	INDUSTRIAL PLANS AND STEELWORK	1.86	1.12	1.22	1.40	1.21	1.54	1.29	1.20
10	OTHER MECHANICAL ENGINEERING	1.22	0.96	1.11	1.13	1.04	1.17	1.23	0.95
9	INSTRUMENT ENGINEERING	1.46	1.07	1.38	1.36	1.23	1.19	1.31	0.91
1	ELECTRICAL MACHINERY	1.30	0.71	0.82	1.20	0.84	1.56	1.43	1.09
15	INSULATED WIRES AND CABLES	1.11	0.96	1.06	1.07	1.02	1.08	1.09	0.99
16	ELECTRONICS AND TELECOMMUNICATIONS	1.33	1.00	1.17	1.65	1.24	1.08	1.14	0.95
3	DOMESTIC AND OTHER ELECTRONICAL GOODS	1.53	1.06	1.08	1.35	1.15	1.34	1.17	1.14
7	SHIPBUILDING	1.18	0.86	1.17	0.99	0.93	1.27	1.16	1.10
17	MOTOR VEHICLES	1.15	0.99	1.14	1.22	1.08	1.06	1.11	0.95
21	AEROSPACE	0.64	0.86	0.99	1.10	0.94	0.69	1.02	0.66
14	OTHER VEHICLES	0.76	0.66	0.75	0.99	0,69	1.10	1.15	0.95
12	ENGINEERS' SMALL TOOLS	1.40	1.14	1.19	1.48	1.24	1.13	1.06	1.07
5	CANS AND METAL BOXES	1.42	0.97	0.92	1.48	1.11	1.29	1.17	1.10
19	OTHER METAL GOODS	1.02	0.91	1.05	1.12	1.00	1.02	1.12	0.91
	TOTAL ENGINEERING	1.20	0.94	1.10	1.19	1.06	1.13	1.16	0.97

	TABLE	E 6.7			
Index of Net Output.	Primary	Inputs	and	Productivity	1968

-84

			ABLE 6.	7 (Conti	nued)				
		NET OUTPUT	OPS	ADMIN TECH	CAPITAL	TOTAL PRIMARY	PROD	PARTIAL A1= A	
Rank	MATERIALS								
1	Synthetic Resins	2.23	1.29	1.39	1.62	1.48	1.50	1.33	1.28
4	Iron and Steel	1.06	0.91	1.06	1.10	0.99	1.07	1.15	0.93
8	Aluminium	0.85	0.97	1.06	1.38	1.10	0.77	1.07	0.72
7	Other Non- Ferrous Metals	0.80	0.87	1.02	1.16	0.99	0.81	1.03	0.79
3	Building Materials n.e.s	1.23	0.92	1.05	1.52	1.12	1.10	1.25	0.88
6	Cement	1.04	0.88	0.97	1.35	1.14	0.91	0.99	0.92
5	Timber	1.12	1.02	1.10	1.26	1.10	1.02	1.20	0.85
2	Rubber	1.39	1.00	1.14	1.31	1.12	1.23	1.13	1.09
	TOTAL MATERIALS	1.14	0.96	1.09	1.21	1.07	1.06	1.15	0.93
,	OTHER INDUSTRIES								
	Construction	1.12	0.89	1.08	1.54	1.07	1.05	1.13	0.93
	Mineral Oil Regining	1.48	0.79	0.93	1.46	1.06	1.40	1.43	0.98
	Chemicals n.e.s	1.24	0.89	0.98	1.26	1.09	1.14	1.21	0.94
	Paper	1.12	0.82	0.95	1.05	0.92	1.22	1.15	1.06
	Textiles	1.12	0.85	1.00	1.09	0.93	1.24	1.21	1.00
	Other Manufacturing	1.77	1.14	1.22	1.61	1.30	1.36	1.25	1.09
	Road and Rail Transport	1.03	0.80	1.18	1.02	0.95	1.08	1.06	1.02
	Distribution	1.13	0.82	1.26	1.38	1.15	0.99	0.92	1.08
	TOTAL ALL INDUSTRIES	1.18	0.91	1.19	1.24	1.08	1.09	1.11	0.98

÷

	1	Index of Gr Primary In					\sim		
Ran	k	NET OUTPUT	OPS	ADMIN TECH	CAPITAL	TOTAL	PROD	PARTIAL $A_1 = A_0$	F. = F.
14	AGRICULTURAL	1.14	0.93	1.12	1.15	1.04	1.09	1.14	0.96
18	MACHINE TOOLS	1.15	0.98	1.21	1.18	1.09	1.06	1.20	0.88
20	INDUSTRIAL ENGINES	0.80	0.78	0.86	0.95	0.84	0.96	1.00	0.96
7	TEXTILE MACHINERY	1.19	0.90	1.14	1.15	1.01	1.18	1.18	0.99
4	CONSTRUCTION EQUIPMENT	1.41	1.03	1.21	1.34	1.17	1.20	1.19	1.01
6	OFFICE MACHINERY	1.69	1.20	1.49	1.75	1.41	1.19	1.29	0.94
11	OTHER NON- ELECTRICAL MACHINER	Y .	1.01	1.22	1.24	1.13	1.12	1.14	0.98
2	INDUSTRIAL PLANT & STEELWORK	1.60	1.11	1.27	1.45	1.24	1.30	1.20	1.07
10	OTHER MECHANICAL ENG.	1.25	0.98	1.19	1.26	1.10	1.14	1.20	0.95
8	INSTRUMENT ENGINEERING	1.50	1.11	1.43	1.47	1.30	1.15	1.21	0.96
1	ELECTRICAL MACHINERY	1.20	0.76	0.87	1.17	0.89	1.35,	1.28	1.04
17	INSULATED WIRES & CABLES	1.07	0.89	1.06	1.11	1.00	1.07	1.09	0.97
15	ELECTRONICS & TELECOMMUNICATION	1.20	0.91	1.10	1.39	1.10	1.09	1.06	1.02
3	OTHER ELECTRICAL GOODS	1.31	0.96	1.08	1.26	1.08	1.22	1.13	1.07
4	SHIPBUILDING	1.10	0.83	1.09	1.00	0.91	1.20	1.16	1.03
16	MOTOR VEHICLE	1.11	0.92	1.08	1.18	1.03	1.08	1.09	0.99
21	AEROSPACE	0.77	0.86	1.01	1.19	0.97	0.79	0.93	0.84
13	OTHER VEHICLES	0.77	0.65	0.74	0.86	0.70	1.10	1.11	0.98
12	ENGINEERS' SMALL TOOLS	1.32	1.07	1.17	1.38	1.18	1.12	1.06	1.05
9	CANS & METAL BOXES	1.25	0.93	1.09	1.34	1.09	1.15	1.14	1.00
19	OTHER METAL GOODS	1.06	0.90	1.08	1.56	1.01	1.04	1.11	0.94
	TOTAL ENGINEERING	1.17	0.92	1.10	1.23	1.05	1.11	1.13	0.98

86

		Ī	ABLE 6.	8 (Conti	nued)				
nk		NET OUTPUT	OPS	ATC	CAPITAL	TOTAL PRIMARY	PROD	PARTIAL A = Ao	F, = F,
	MATERIALS								
1	Synthetic Resins	1.89	1.20	1.42	1.63	1.44	1.31	1.18	1.09
4	Iron & Steel	1.12	0.90	1.14	1.22	1.04	1.08	1.15	0.94
8	Aluminium	1.01	0.99	1.18	1.43	1.16	0.88	1.06	0.82
7	Non-Ferrous Metals	0.96	0.85	1.11	1.19	1.01	0.94	1.06	0.90
6	Cement	1.14	0.92	1.14	1.33	1.13	1.01	1.04	0.97
3	Building Materials n.e.s.	1.35	1.01	1.32	1.56	1.24	1.09	1.16	0.94
5	Timber	1.12	0.97	1.12	1.23	1.08	1.04	1.11	0.94
2	Rubber	1.24	0.90	1.07	1.20	1.03	1.19	1.12	1.06
	TOTAL MATERIALS	1.22	0.94	1.14	1.30	1.09	1.12	1.12	0.99
	OTHER INDUSTRIES								
	OTHER INDUSTRIES								
	Construction Mineral Oil	1.18	0.92	1.15	1.46	1.10	1.07	1.13	0.95
	Construction Mineral Oil Refining	1.73	1.18	1.55	1.77	1.47	1.17	1.23	0.96
	Construction Mineral Oil Refining Chemicals	1.73	1.18	1.55	1.77 1.25	1.47 1.06	1.17	1.23 1.12	0.9
	Construction Mineral Oil Refining	1.73 1.19 1.00	1.18 0.86 0.74	1.55 1.04 0.92	1.77 1.25 0.99	1.47 1.06 0.86	1.17 1.12 1.16	1.23 1.12 1.11	0.9
	Construction Mineral Oil Refining Chemicals	1.73 1.19 1.00 1.10	1.18 0.86 0.74 0.82	1.55 1.04 0.92 0.99	1.77 1.25 0.99 1.12	1.47 1.06 0.86 0.94	1.17 1.12 1.16 1.18	1.23 1.12 1.11 1.15	0.9 0.9 1.0 1.0
	Construction Mineral Oil Refining Chemicals Paper	1.73 1.19 1.00	1.18 0.86 0.74	1.55 1.04 0.92	1.77 1.25 0.99	1.47 1.06 0.86	1.17 1.12 1.16	1.23 1.12 1.11	0.9 0.9 1.0
	Construction Mineral Oil Refining Chemicals Paper Textiles	1.73 1.19 1.00 1.10	1.18 0.86 0.74 0.82	1.55 1.04 0.92 0.99 1.25 1.09	1.77 1.25 0.99 1.12 1.55 0.97	1.47 1.06 0.86 0.94 1.27 0.88	1.17 1.12 1.16 1.18 1.27 1.09	1.23 1.12 1.11 1.15 1.18 1.06	0.9 0.9 1.0 1.0 1.0
	Construction Mineral Oil Refining Chemicals Paper Textiles Other Manufacturing Road and Rail	1.73 1.19 1.00 1.10 1.61	1.18 0.86 0.74 0.82 1.07	1.55 1.04 0.92 0.99 1.25	1.77 1.25 0.99 1.12 1.55	1.47 1.06 0.86 0.94 1.27	1.17 1.12 1.16 1.18 1.27	1.23 1.12 1.11 1.15 1.18	0.9 0.9 1.0 1.0 1.0
	Construction Mineral Oil Refining Chemicals Paper Textiles Other Manufacturing Road and Rail Transport	1.73 1.19 1.00 1.10 1.61 0.96	1.18 0.86 0.74 0.82 1.07 0.74	1.55 1.04 0.92 0.99 1.25 1.09	1.77 1.25 0.99 1.12 1.55 0.97	1.47 1.06 0.86 0.94 1.27 0.88	1.17 1.12 1.16 1.18 1.27 1.09	1.23 1.12 1.11 1.15 1.18 1.06	0.9 0.9 1.0 1.0 1.0

-

'Intensiveness' Index S.N.A. (Rank) Agricultural Machinery 1.09 14 1.02 11 Machine Tools 1.06 18 1.00 13 Industrial Engines 0.96 20 0.92 21 Textile Machinery 1.18 7 1.09 7 Construction Equipment 1.20 5 1.11 5 Office Machinery 1.19 6 1.28 1 Other Non-electrical Machines 1.12 11 0.99 14 Industrial Plant & Steelwork 1.30 2 1.24 3 Other Mechanical Engineering 1.15 8 1.01 12 Electrical Machinery 1.35 1 1.24 2 Insulated Wires & Cables 1.07 17 0.99 15 Electronics 1.09 15 0.88 20 Other Electrical Engineering 1.22 3 1.11 6 Shipbuilding 1.20 4 1.14 4 <th></th> <th></th> <th>1 ·</th> <th>2</th> <th></th>			1 ·	2	
Agricultural Machinery 1.06 18 1.00 13 Machine Tools 1.06 18 1.00 13 Industrial Engines 0.96 20 0.92 21 Textile Machinery 1.18 7 1.09 7 Construction Equipment 1.20 5 1.11 5 Office Machinery 1.19 6 1.28 1 Other Non-electrical Machines 1.12 11 0.99 14 Industrial Plant & Steelwork 1.30 2 1.24 3 Other Mechanical Engineering 1.14 10 1.06 9 Instrument Engineering 1.15 8 1.01 12 Electrical Machinery 1.35 1 1.24 2 Insulated Wires & Cables 1.07 17 0.99 15 Electronics 1.09 15 0.88 20 Other Electrical Engineering 1.22 3 1.11 6 Shipbuilding 1.20 4 1.14 4 Motor Vehicles 1.08 16 <th></th> <th></th> <th></th> <th>S.N.A.</th> <th>(Rank)</th>				S.N.A.	(Rank)
Industrial Engines 0.96 20 0.92 21 Industrial Engines 1.18 7 1.09 7 Construction Equipment 1.20 5 1.11 5 Office Machinery 1.19 6 1.28 1 Other Non-electrical Machines 1.12 11 0.99 14 Industrial Plant & Steelwork 1.30 2 1.24 3 Other Mechanical Engineering 1.14 10 1.06 9 Instrument Engineering 1.15 8 1.01 12 Electrical Machinery 1.35 1 1.24 2 Insulated Wires & Cables 1.07 17 0.99 15 Electronics 1.09 15 0.88 20 Other Electrical Engineering 1.22 3 1.11 6 Shipbuilding 1.20 4 1.14 4 Motor Vehicles 1.08 16 0.94 18 Aerospace 0.79 21 0.69 21 Other Vehicles 1.10 13 <td< td=""><td>Agricultural Machinery</td><td>1.09</td><td>14</td><td>1.02</td><td>11</td></td<>	Agricultural Machinery	1.09	14	1.02	11
Industrial Engines 1.18 7 1.09 7 Textile Machinery 1.18 7 1.09 7 Construction Equipment 1.20 5 1.11 5 Office Machinery 1.19 6 1.28 1 Other Non-electrical Machines 1.12 11 0.99 14 Industrial Plant & Steelwork 1.30 2 1.24 3 Other Mechanical Engineering 1.14 10 1.06 9 Instrument Engineering 1.15 8 1.01 12 Electrical Machinery 1.35 1 1.24 2 Insulated Wires & Cables 1.07 17 0.999 15 Electronics 1.09 15 0.88 20 Other Electrical Engineering 1.22 3 1.11 6 Shipbuilding 1.20 4 1.14 4 Motor Vehicles 1.08 16 0.94 18 Aerospace 0.79 21 0.69 21 Other Vehicles 1.10 13 0	Machine Tools	1.06	18	. 1.00	13
Construction Equipment 1.20 5 1.11 5 Office Machinery 1.19 6 1.28 1 Other Non-electrical Machines 1.12 11 0.99 14 Industrial Plant & Steelwork 1.30 2 1.24 3 Other Mechanical Engineering 1.14 10 1.06 9 Instrument Engineering 1.15 8 1.01 12 Electrical Machinery 1.35 1 1.24 2 Insulated Wires & Cables 1.07 17 0.99 15 Electronics 1.09 15 0.88 20 Other Electrical Engineering 1.22 3 1.11 6 Shipbuilding 1.20 4 1.14 4 Motor Vehicles 1.08 16 0.94 18 Aerospace 0.79 21 0.69 21 Other Vehicles 1.10 13 0.98 16 Engineers' Small Tools 1.12 12 1.09 8 Gans & Metal Boxes 1.15 9	Industrial Engines	0.96	20	0.92	21
Office Machinery 1.19 6 1.28 1 Other Non-electrical Machines 1.12 11 0.99 14 Industrial Plant & Steelwork 1.30 2 1.24 3 Other Mechanical Engineering 1.14 10 1.06 9 Instrument Engineering 1.15 8 1.01 12 Electrical Machinery 1.35 1 1.24 2 Insulated Wires & Cables 1.07 17 0.99 15 Electronics 1.09 15 0.88 20 Other Electrical Engineering 1.22 3 1.11 6 Shipbuilding 1.20 4 1.14 4 Motor Vehicles 1.08 16 0.94 18 Aerospace 0.79 21 0.69 21 Other Vehicles 1.10 13 0.98 16 Engineers' Small Tools 1.12 12 1.09 8 Gans & Metal Boxes 1.15 9	Textile Machinery	1.18	7	1.09	7
Other Non-electrical Machines 1.19 0 1.12 Other Non-electrical Machines 1.12 11 0.99 14 Industrial Plant & Steelwork 1.30 2 1.24 3 Other Mechanical Engineering 1.14 10 1.06 9 Instrument Engineering 1.15 8 1.01 12 Electrical Machinery 1.35 1 1.24 2 Insulated Wires & Cables 1.07 17 0.99 15 Electronics 1.09 15 0.88 20 Other Electrical Engineering 1.22 3 1.11 6 Shipbuilding 1.20 4 1.14 4 Motor Vehicles 1.08 16 0.94 18 Aerospace 0.79 21 0.69 21 Other Vehicles 1.10 13 0.98 16 Engineers' Small Tools 1.12 12 1.09 8 Cans & Metal Boxes 1.15 9 1.03 10	Construction Equipment	1.20	5	1.11	5 '
Other Non-electrical Machines 1.12 1.12 1.24 3 Industrial Plant & Steelwork 1.30 2 1.24 3 Other Mechanical Engineering 1.14 10 1.06 9 Instrument Engineering 1.15 8 1.01 12 Electrical Machinery 1.35 1 1.24 2 Insulated Wires & Cables 1.07 17 0.99 15 Electronics 1.09 15 0.88 20 Other Electrical Engineering 1.22 3 1.11 6 Shipbuilding 1.20 4 1.14 4 Motor Vehicles 1.08 16 0.94 18 Aerospace 0.79 21 0.69 21 Other Vehicles 1.10 13 0.98 16 Engineers' Small Tools 1.12 12 1.09 8 Cans & Metal Boxes 1.15 9 1.03 10	Office Machinery	1.19	6	1.28	1
Industrial Flant & Decension 1.00 1.00 9 Other Mechanical Engineering 1.14 10 1.06 9 Instrument Engineering 1.15 8 1.01 12 Electrical Machinery 1.35 1 1.24 2 Insulated Wires & Cables 1.07 17 0.99 15 Electronics 1.09 15 0.88 20 Other Electrical Engineering 1.22 3 1.11 6 Shipbuilding 1.20 4 1.14 4 Motor Vehicles 1.08 16 0.94 18 Aerospace 0.79 21 0.69 21 Other Vehicles 1.10 13 0.98 16 Engineers' Small Tools 1.12 12 1.09 8 Cans & Metal Boxes 1.15 9 1.03 10	Other Non-electrical Machines	1.12	11	0.99	14
Uther Mechanical Engineering 1.15 8 1.01 12 Instrument Engineering 1.35 1 1.24 2 Electrical Machinery 1.35 1 1.24 2 Insulated Wires & Cables 1.07 17 0.99 15 Electronics 1.09 15 0.88 20 Other Electrical Engineering 1.22 3 1.11 6 Shipbuilding 1.20 4 1.14 4 Motor Vehicles 1.08 16 0.94 18 Aerospace 0.79 21 0.69 21 Other Vehicles 1.10 13 0.98 16 Engineers' Small Tools 1.12 12 1.09 8 Cans & Metal Boxes 1.15 9 1.03 10	Industrial Plant & Steelwork	1.30	2	1.24	3
Instrument Engineering 1.35 1 1.24 2 Insulated Wires & Cables 1.07 17 0.99 15 Electronics 1.09 15 0.88 20 Other Electrical Engineering 1.22 3 1.11 6 Shipbuilding 1.20 4 1.14 4 Motor Vehicles 1.08 16 0.94 18 Aerospace 0.79 21 0.69 21 Other Vehicles 1.10 13 0.98 16 Engineers' Small Tools 1.12 12 1.09 8 Cans & Metal Boxes 1.15 9 1.03 10	Other Mechanical Engineering	1.14	10	1.06	9
Insulated Wires & Cables 1.07 17 0.99 15 Electronics 1.09 15 0.88 20 Other Electrical Engineering 1.22 3 1.11 6 Shipbuilding 1.20 4 1.14 4 Motor Vehicles 1.08 16 0.94 18 Aerospace 0.79 21 0.69 21 Other Vehicles 1.10 13 0.98 16 Engineers' Small Tools 1.12 12 1.09 8 Cans & Metal Boxes 1.15 9 1.03 10	Instrument Engineering	1.15	8	1.01	12
Insulated wires & Cables 1.09 15 0.88 20 Other Electrical Engineering 1.22 3 1.11 6 Shipbuilding 1.20 4 1.14 4 Motor Vehicles 1.08 16 0.94 18 Aerospace 0.79 21 0.69 21 Other Vehicles 1.10 13 0.98 16 Engineers' Small Tools 1.12 12 1.09 8 Cans & Metal Boxes 1.15 9 1.03 10	Electrical Machinery	1.35	1	1.24	2
Itectronics 1.09 19 1.11 6 Other Electrical Engineering 1.22 3 1.11 6 Shipbuilding 1.20 4 1.14 4 Motor Vehicles 1.08 16 0.94 18 Aerospace 0.79 21 0.69 21 Other Vehicles 1.10 13 0.98 16 Engineers' Small Tools 1.12 12 1.09 8 Cans & Metal Boxes 1.15 9 1.03 10	Insulated Wires & Cables	1.07	17	0.99	15
Other Electrical Engineering 1.22 9 1.14 4 Shipbuilding 1.20 4 1.14 4 Motor Vehicles 1.08 16 0.94 18 Aerospace 0.79 21 0.69 21 Other Vehicles 1.10 13 0.98 16 Engineers' Small Tools 1.12 12 1.09 8 Cans & Metal Boxes 1.15 9 1.03 10	Electronics	1.09	15	0.88	20
Shipbuilding 1.20 1.20 1.20 1.20 Motor Vehicles 1.08 16 0.94 18 Aerospace 0.79 21 0.69 21 Other Vehicles 1.10 13 0.98 16 Engineers' Small Tools 1.12 12 1.09 8 Cans & Metal Boxes 1.15 9 1.03 10	Other Electrical Engineering	1.22	3	1.11	6
Motor Venicies 1.00 10 0.09 21 Aerospace 0.79 21 0.69 21 Other Vehicles 1.10 13 0.98 16 Engineers' Small Tools 1.12 12 1.09 8 Cans & Metal Boxes 1.15 9 1.03 10	Shipbuilding	1.20	· 4	1.14	4
Aerospace 0.17 1.0 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.09 1.00	Motor Vehicles	1.08	16	0.94	18
Engineers' Small Tools 1.12 12 1.09 8 Cans & Metal Boxes 1.15 9 1.03 10	Aerospace	0.79	21	0.69	21
Engineers' Small Hools 1.12 12 12 10 Cans & Metal Boxes 1.15 9 1.03 10	Other Vehicles	1.10	13	0.98	16
Cans & Metal Boxes	Engineers' Small Tools	1.12	12	1.09	8
Other Metal Goods 1.04 19 0.95 17	Cans & Metal Boxes	1.15	9	1.03	10
	Other Metal Goods	1.04	19	0.95	17

Sources: Column 1 from Table 6.8 Column 2 is the first column of Table 6.8 divided by an index of inputs, combining intermediate inputs with primary inputs using base year weights.

TA	BLE	6.	10

Dependence of SNA Index upon intermediate input proportion of gross input

	siveness' Productivity Index SNA Productivity Index	Intermediate proportion of gross input 1968/1963
	bita illoude, livity index	grobb input ()coj ()coj
Agricultural Machinery	1.07	1.05
Machine Tools	1.06	1.19
Industrial Engines	1.04	1.03
Textile Machinery	1.08	1.00
Construction Equipment	1.08	0.98
Office Machinery	0.93	0.93
Other Non-Electrical Machinery	1.13	1.13
Industrial Plant & Steelwork	1.05	0.84
Other Mechanical Engineering	1.07	1.08
Instrument Engineering	1.13	1.20
Electrical Machinery	1.08	0.91
Insulated Wires & Cables	1.09	1.04
Electronics	1.24	1.23
Other Electrical Engineering	1.10	0.92
Shipbuilding	1.05	0.91
Motor Vehicles	1.15	1.10
Aerospace	1.15	1.69
Other Vehicles	1.11	1.12
Engineers' Small Tools	1.03	0.90
Cans & Metal Boxes	1.12	1.00
Other Metal Goods	1.09	1.12

Note: Simple correlation coefficient: 0.56

Source: Tables 6.8, 6.9 and derived input-output tables.

Contribution of Materials Industries to Gross Output of Engineering Industries, 1963

1963 Gross Output = 100

		Synthetic Resins	Iron å Steel	Aluminium	Non-ferrous Metals	Building Materials (inc. cement)	Timber	Rubber	Principal Industry
. 90	Agricultural Machinery Machine Tools Industrial Engines Textile Machinery Construction Equipment Office Machinery Other Non-Electrical Machinery Industrial Plant & Steelwork Other Mechanical Engineering Instrument Engineering Electrical Machinery Insulated Wires & Cables Electronics Other Electrical Engieering Shipbuilding Motor Vehicles Aerospace Other Vehicles Engineers' Small Tools Cans and Metal Boxes Other Metal Goods	000000000000000000000000000000000000000	8.4 7.1 5.6 5.6 6.6 10.9 6.3 3.3 7.3 3.3 7.3 7.3 7.3 7.3 7.3 7.3 10.1 10.1	0.4 0.6 0.6 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7	0.66 0.67 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.1	0.5 0.7 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	0.00 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.000000000000000000000000000000000000	49.7 553.9 555.9 555.00 555.00 555.00 555.00 555.00 555.00 555.000

TABLE 6.12a

Contribution of Materials Industries to Gross Output of Engineering Industries, 1968

	COCI	non a shann con in con	-				
Synthetic Resins	Iron & Steel	Aluminium	Non-ferrous Metals	Building Materials (inc. cement)	Timber	Rubber	Principa ¹ Industry
0.5	10.0'	0.3	0.5	0.5	0.3	1.1	56.4
0.2	7.2	0.3	0.6	0.3	0.2	0.5	65.9
0.2	5.5	0.5	0.7	0.6	0.3	0.3	42.3
0.4	6.8	0.6	0.5	0.5	0.6	0.6	67.7
0.3	10.3.	0.4	0.4	0.4	0.3	1.3	76.7
0.7	5.6	0.8	0.7	0.5	0.5	0.5	96.5
0.4	7.7	0.8	0.8	0.5	0.4	6.0	75.2
0.3	11.5	0.5	0.5	2.1	0.6	0.5	89.0
0.4	7.0	0.7	1.2	0.6	0.2	0.5	80.7
0.7	2.4	0.6	0.6	0.3	0.1	0.7	107.9
0.6	6.4	0.5	0.8	0.7	0.2	0.4	1.8.1
3.6	3.0	1.7	5.1	0.7	0.4	6.0	48.0
1.1	2.0	0.5	0.6	0.4	0.4	0.4	79.2
1.6	4.6	0.9	1.0	08	0.4	1.2	74.9
0.3	5.7	0.2	0.5	0.3	0.4	0.3	69.2
0.8	0.0	0.9	0.6	0.4	0.4	2.8	56.4
0.4	2.7	0.8	0.5	0.3	0.2	0.5	43.9
0.3	5.6	0.5	0.4	0.3	0.4	0.8	41.9
0.1	7.5	0.3	0.4	0.5	0.1	0.3	97.3
0.7	28.9	0.7	0.6	6.0	0.1	0.5	47.5
0.5	10.7.	1.1	1.4	0.4	0.3	0.0	9.16
	Synthetic Resins 0.5 0.4 0.3 0.4 0.3 0.4 0.3 0.3 0.3 0.3 0.4 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3		Iron & Steel Steel Steel 2.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.6 7.7 7.7 7.7 7.7 7.7 7.7 7.5 5.6 5.4 5.6 5.4 5.7 5.5 5.7 5.6 5.4 5.7 5.6 5.4 5.7 7.5 5.6 5.4 5.7 7.5 5.6 5.4 5.7 7.5 5.6 5.4 5.7 7.5 5.6 5.4 5.7 7.5 5.6 5.4 5.7 7.5 5.6 5.4 5.7 7.5 5.6 5.4 5.7 7.5 5.6 5.4 5.7 7.5 5.6 5.4 5.7 7.5 5.6 5.4 5.7 7.5 5.6 5.4 5.7 7.5 5.6 5.4 5.7 7.5 5.6 5.4 5.7 7.5 5.6 5.4 5.7 7.5 5.6 5.4 5.7 7.5 5.6 5.4 5.7 7.5 5.6 5.4 5.6 5.4 5.7 7.5 5.6 5.4 5.7 7.5 5.6 5.4 5.6 5.6 5.6 5.6 5.6 5.6 5.6 5.6 5.6 5.6	Iron & Aluminium Steel Aluminium 7.2 0.3 5.5 0.5 6.8 0.6 10.3 0.4 7.7 0.8 7.7 0.8 7.7 0.8 7.7 0.8 7.7 0.8 7.7 0.6 6.4 0.5 7.7 0.6 6.4 0.5 7.7 0.5 7.7 0.5 8.4 0.5 7.7 0.5 7.7 0.5 8.4 0.5 7.7 0.5 7.7 0.5 8.4 0.5 7.7 0.6 7.7 0.6 7.7 0.6 7.7 0.5 7.7 0.5 7.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0	Iron & AluminumNon-ferrousSteelAluminumNon-ferrous10.0'0.30.57.20.30.56.80.30.65.60.30.67.70.80.77.70.80.77.70.80.77.70.80.77.70.80.77.70.80.77.70.80.77.70.80.77.70.60.67.70.60.66.40.50.66.40.50.67.60.90.67.50.90.67.50.30.68.90.70.67.50.30.47.50.30.47.50.30.67.50.30.67.50.71.17.50.70.67.50.70.67.50.70.67.50.70.67.50.70.67.50.70.67.50.70.67.60.70.67.71.11.4	Iron & AluminiumNon-ferrousBuildingSteelAluminiumNon-ferrousBuildingSteel0.0NaterialsNaterials7/20.30.50.5Cement)7/20.30.60.30.57/20.30.60.30.66.80.60.70.60.37/20.80.60.70.66.80.60.70.60.37/70.80.70.60.47/70.80.70.60.47/70.80.70.60.77/70.80.70.60.77/70.90.60.70.62.40.60.70.60.77.00.50.60.70.62.11.70.60.70.72.00.50.60.70.72.10.60.60.70.72.00.50.60.70.32.10.60.60.70.32.70.70.60.60.32.80.70.60.60.32.90.70.60.60.32.11.70.60.60.32.70.70.60.60.32.80.70.60.60.32.90.70.60.60.32.90.70.60.60.32.9	Iron & AluminiumNon-ferrousBuildingTimberSteelMaterialsMaterialsImber5.50.50.50.50.57.20.50.50.50.55.50.50.50.50.55.60.50.50.50.67.00.30.50.50.57.70.80.70.60.37.00.80.70.60.37.10.80.70.60.37.00.70.60.70.67.00.70.60.70.67.00.70.60.70.67.00.70.60.70.67.00.90.70.60.77.00.90.70.60.77.00.90.70.60.77.00.90.60.70.67.00.90.60.70.67.00.90.60.70.78.70.60.70.70.49.00.90.60.70.47.00.90.70.60.78.70.60.70.60.78.70.60.70.70.49.00.70.60.70.48.70.80.70.70.49.00.70.60.70.78.70.70.60.70.79.0

×

TABLE 6.12b

I

Contribution of Materials Industries to Gross Input of Engineering Industries, 1968

1963 Gross Output = 100

	Synthetic Resins	Iron & Steel	Aluminium	Non-ferrous Metals	Building Materials (inc. cement)	Timber	Rubber	Principal Industry
Agricultural Machinery Machine Tools Industrial Engines Textile Machinery Construction Equipment Office Machinery Other Non-Electrical Machinery Industrial Plant & Steelwork Other Mechanical Engineering Insulated Wires & Cables Electronics Other Electrical Engineering Shipbuilding Motor Vehicles Aerospace Other Vehicles Engineers' Small Tools Cans and Metal Boxes Other Metal Goods	0.22 0.22 0.23 0.23 0.23 0.23 0.23 0.23	9.4 9.6 5.2 5.2 5.2 6.0 7.2 7.2 7.2 7.2 7.2 7.2 7.2 7.2 7.2 7.2	0.4 0.7 0.5 0.6 0.6 0.6 0.6 0.7 0.6 0.6 0.7 0.6 0.7 1.1 0.6 0.6 0.7 1.1 0.6 0.7 1.1 0.6 0.7 1.1 0.6 0.7 1.1 0.6 0.7 1.1 0.6 0.7 1.1 0.6 0.7 1.1 0.6 0.7 1.1 0.6 0.7 1.1 0.6 0.7 1.1 0.6 0.7 1.1 0.6 0.7 1.1 0.6 0.7 1.1 1.1 0.6 0.7 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1	0.5 0.6 0.6 0.6 0.6 0.6 0.6 0.7 0.6 0.6 0.6 0.7 0.6 0.7 0.6 0.6 0.7 0.6 0.7 0.6 0.7 0.6 0.7 0.6 0.7 0.7 0.7 0.6 0.7 0.7 0.6 0.7 0.7 0.6 0.7 0.7 0.6 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7	0.4 0.3 0.4 0.5 0.3 0.3 0.4 0.5 0.3 0.4 0.5 0.3 0.4 0.5 0.3 0.3 0.4 0.5 0.3 0.4 0.5 0.3 0.4 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	0.2 0.3 0.4 0.3 0.4 0.3 0.4 0.3 0.4 0.3 0.4 0.3 0.3 0.4 0.0 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3	0.5	50.9 57.0 57.0 57.0 57.0 56.0 56.1 56.1 37.0 56.1 37.0 56.1 56.1 56.1

Index of Materials' Contribution to Industry Productivity 1963-68

1963 = 100

Industry

6.00 Other Non-Electrical Machinery Industrial Plant & Steelwork Other Mechanical Engineering Other Electrical Engineering insulated Wires & Cables instrument Engineering Engineers' Small Tools Agricultural Machinery Construction Equipment Electrical Machinery Cans and Metal Boxes Industrial Engines Other Metal Goods extile Machinery Office Machinery Motor Vehicles Other Vehicles Machine Tools Shipbuilding Electronics Aerospace

Index

Rank - 0 00-4

Glossary of Terms

Adaptive Structural Change - The process whereby industries alter their input mix as a result of changing relative efficiency in the production of those inputs, usually reflected in changing relative prices. - Where a nation has a cost advantage in Comparative Advantage one product relative to another with respect to its trade with another country. It is possible for one country to have an absolute advantage in both product A and product B, but the other country must, by definition have a comparative advantage in one or the other. Competitive and Complementary - Competitive imports are those which compete Imports with domestic products. For complementary imports there is no (or very small)

Complementary Inputs

Deflator

Elasticity

Externality

Factors of Production

Final Demand

Inertia Factor

- Those which are jointly required in a production process, e.g. Labour and capital, iron and coke, etc.

domestic counterpart.

 Price relative used to revalue the output of a product to the prices of a different year.

- The price elasticity of demand is the percentage change in consumption resulting from a one percent change in price (ceteris paribus).

- Where the social cost of an activity exceeds its economic cost e.g. A production process which pollutes the atmosphere.

 The inputs to the economic system which share the returns of economic activity - usually labour and capital.

- Consumption of goods by domestic or foreign consumers, government or firms' capital account. In social accounting terms, goods which go to final demand are those which are not further processed within the domestic economy.

 The rationale for the simultaneous existence of different technologies using different input mix to produce the same end-product. In a perfect market, 'best-practice' technology would be adopted everywhere instantaneously.

Intensiveness

Intermediate Output

Marginal Cost

Oligopoly

Primary Inputs

Principal Industry

Production Function

Production or Input Structure

Quality Adjusted Price

Resources

- The 'intensiveness' of energy in steel is the direct plus indirect requirements of energy (measured in £'s or thermal units), per unit of output of steel. Indirect requirements for energy are those which are not for energy inputs to the production process of steel, but those required to produce all the other inputs required for steel production.
- That which goes to other industries on current account (bought-in materials).
- The additional cost of an incremental unit of input.
- An industry where the number of sellers is small enough for their price and output decisions to be interdependent. (The case for most producers of primary materials).
- The 'original' inputs to the inputoutput system - Not part of interindustry transactions. Depends upon definition -Imports may or may not be primary. Capital is a primary input in a static inputoutput system, but becomes endogenous over time.
- In productivity measurement this distinguishes the industry being studied from those from which it purchases inputs.
- The maximum output attainable from a set of inputs for a given state of technical knowledge. This is determined by purely technical (not economic) factors.
- The combination of inputs which are actually used in the production of a good. Depends upon the production function, relative prices and efficiency.
- In order to compare the output of an industry at two different points in time, it is not sufficient to simply compare quantities or weights, especially for sophisticated products. It is necessary to adjust for quality change. Published price deflators are sometimes inadequate for this task.
- The 'fundamentals' of the economic system. The system is endowed with resources, it does not make them.

Returns to Scale

- The ratio of output to input may be dependent upon the scale of the activity. If output more than doubles when all inputs are doubled, the activity is said to exhibit 'increasing returns to scale'.

Specific Consumption

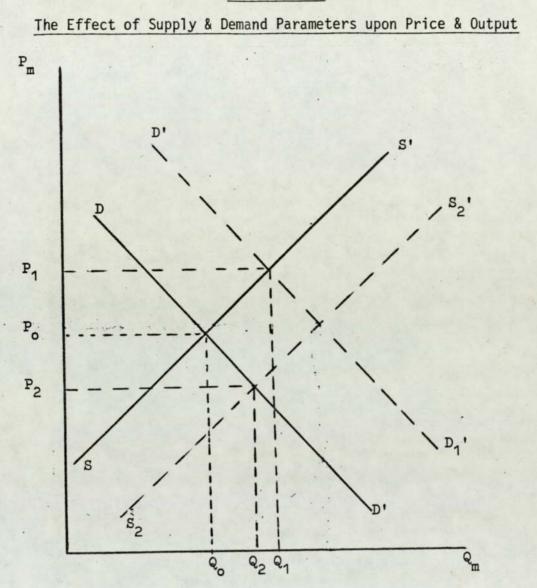
- Consumption of a material per unit value of output of an industry or economy. An indicator of how intensively the material is used in an industry or economy.

List of Abbreviations

Cet.par.	- Ceteris paribus (everything else constant)
CSO	- Central Statistical Office
D _{ep}	- Demand for the end-product using a material.
MLH	 Minimum List Heading: The classification system for industries (see SIC below).
NEDO	- National Economic Development Office
P	 Price of input a to the production of the material.
P _M	- Price of the material.
PFM	- Production function of the material.
PS _{ep}	 Production structure of the end-product using the material.
PSM	- Production structure of the material (Also PS etc production structure of engineering industry 1).
SIC	 Standard Industrial Classification:- The method of classifying domestic industries and commodities for census purposes (see (116))
SITC	 Standard Industrial Trade Classification - The method of classifying internationally traded commodities.
SNA	- 'A System of National Accounts' (see (47)).
(Ŵ/U)	 Worked to unwrought metals ratio in external trade.
VA/direct factor	 Index of productivity using value added (net output) as numerator and primary inputs as denominator.

NOMENCLATURE

The following notation was used throughout except in certain cases where an author's original notation was used. These are shown at the end of this section.


А	=	Commodity x commodity (or industry x industry) coefficient matrix
A _H , A _M	=	Domestic and imports commodity x commodity coefficient matrices
В	=	Commodity x industry (absorption) coefficient matrix
С	=	Product mix matrix - showing the proportion of the output of each industry represented by each commodity.
D	=	Market share matrix - showing the proportion of each commodity produced in each industry.
Fo	=	Vector of primary input (volumes) in year zero.
н	=	Industry x industry flow matrix
I	=	Identity matrix
K	=	Capital Stock input (in production function)
L	=	Labour input (in production function)
М		Make matrix - showing the commodities made by industries
M1,M2	=	That part of make matrix to be treated on commodity technology and industry technology basis respectively
P,P*	=	Matrices of price deflators
P,P* R	=	Matrices of price deflators Matrix for transforming commodity x industry tables into commodity x commodity tables
		Matrix for transforming commodity x industry tables into
R	=	Matrix for transforming commodity x industry tables into commodity x commodity tables
R S		Matrix for transforming commodity x industry tables into commodity x commodity tables Relative level of subsidies for worked and unwrought metals
R S T		Matrix for transforming commodity x industry tables into commodity x commodity tables Relative level of subsidies for worked and unwrought metals Relative average tariff levels for worked and unwrought metals
R S T W		Matrix for transforming commodity x industry tables into commodity x commodity tables Relative level of subsidies for worked and unwrought metals Relative average tariff levels for worked and unwrought metals Commodity x commodity flow matrix
R S T W W ⁶⁸ 63		Matrix for transforming commodity x industry tables into commodity x commodity tables Relative level of subsidies for worked and unwrought metals Relative average tariff levels for worked and unwrought metals Commodity x commodity flow matrix Commodity flow matrix for 1963 at 1968 prices
R S T W W 68 63 (W/U)		Matrix for transforming commodity x industry tables into commodity x commodity tables Relative level of subsidies for worked and unwrought metals Relative average tariff levels for worked and unwrought metals Commodity x commodity flow matrix Commodity flow matrix for 1963 at 1968 prices Ratio of worked to unwrought metals in external trade

^a ij	=	Element of A etc
f	=	Vector of total final demand by commodity
fI	=	Vector of final demand classified by industry
g	=	Vector of gross industry output
h	=	Vector of domestic final demand
k	=	Vector of capital input
1	=	Vector of labour input
m	=	Vector of imports
р	=	Vector of price deflators
pf	=	Price of competing foreign products
P _X	=	Price of Exports
q	=	Vector of gross commodity output
ĝ	=	Diagonal matrix with the vector q as the leading diagonal
r	=	Vector of price indices of primary inputs (sometimes specifically rate of return on capital
to	=	Vector of total non-factor primary inputs in year zero
۷	=	Matrix of primary input coefficients
W	=	Wage rate
x	=	Vector of exports
×I	=	Vector of exports classified by industry
× _{ij}	=	Element of inverse matrix (I-A) ⁻¹
		Exceptions to above notation
Chapter 5		
g _i	=	Demand for primary input i by all industries
v _{i,m}	=	Change in coefficient of primary input i in industry m
t _m	=	Gross output of industry m
em	=	Change in direct coefficient of material p in industry m
ď _p ,	=	EEm Sm,p

where: Sm,p	=	direct and indirect coefficient of industry m in material p
Xi,p	=	direct and indirect requirement of primary input i per unit of output of material p
θj	=	primary input coefficient to commodity j
M	=	Matrix of complementary imports purchased by industry groups
Sections 6.	2-6	.4
Å A	=	Index of residual growth in industry or economy
x x	=	Index of non-intermediate inputs
R ₁	=	Materials input to industry 1
d _{ij}	=	input from industry i to industry j in flow form
u _{ij}	=	share of industry i gross output directly required for the output of industry j
^p ij	=	share of industry i gross output required directly and indirectly for the output of industry j
	=	Proportion of industry 1 output indirectly required to support the output of industry 1 itself
^{mi} 63	=	Materials industries' contribution to gross input 1963
^{mo} 68	=	Materials industries' contribution to gross output 1968
d	=	Marginal product of labour
β	=	Marginal product of capital
Х	=	Marginal product of materials

APPENDICES

The above figure shows the familiar diagrammatic supply and demand schedules. The line DD' represents the relationship between the demand for the material m and its price, if all other factors such as the prices of substitute materials are constant. Similarly, SS' represents the relationship between price and the forthcoming supply of the material if all other parameters are constant.

The intersection of SS' and DD' would give the market clearing price P_0 of the material and the quantity consumed, Q_0 .

A change in any of the parameters of Section 2.2 would shift either the demand or the supply curve, and a different price/quantity combination would result.

A rise in the price of a substitute for material m, P_s , would shift the demand curve to D_1D_1 ', thus increasing both the price of the material to P_1 and the quantity consumed to Q_1 . An increase in the demand for the end-product using the material D_{ep} , or a change in the production structure PS_{ep} , such that the material became more intensively used, would have the same effect.

The reverse applies in each case.

A decrease in the price of P_{w} of one of the inputs to the production of the material would shift the supply curve to S_2S_2' , thus reducing price to P_2 and increasing the quantity consumed to Q_2 . A similar effect would arise from a change in technology leading to a change in the production structure of the material such that the requirement for one or more inputs was less, whilst the requirement for other inputs was not increased (or increased only to an extent where, at prevailing relative prices, total input cost would be reduced).

A complete theoretical approach would need to deal with the problems of different types of competition amongst suppliers, the difference between short and long-run price elasticities and non-instantaneous adjustment to changes in supply and demand parameters. Nevertheless, this diagrammatic approach demonstrates the way in which each parameter influences the price/ quantity combination and may help to clarify the role of these various parameters in the determination of the consumption of materials.

APPENDIX 4.1

Input-Output Tables and Analysis

A number of general accounts of this technique exist (eg. Armstrong (32), Miernyk (33), Yan (34)), and thus only a brief description of the methods and assumptions involved will be presented here, together with an account of the particular applications of the techniques adopted in Chapters 4, 5 and 6.

The Input-Output Concept

An economic system should correctly be perceived as an infinitely divisible process of creating value, but, as noted in Chapter 1, a system of industrial (or commodity) classification is necessary for the observation of economic structural change.

Such an industrial classification permits the recording of the flows of value between one process and another over a given period of time. The matrix W of which the element w_{ij} represents the flow from process i to process j, is an input-output matrix. It would be desirable to obtain a matrix recording flows between highly disaggregated engineering processes in order to obtain insight into the changing intensity and efficiency of use of various materials at the micro level. Unfortunately, the effort required for the collection and manipulation of data renders it necessary to aggregate processes or activities into larger groups which may be identified as commodities or industries. Industries and commodifies are defined in the following way: An industry is the aggregation of a group of production establishments, the major part of sales from all of which is that range of goods and services which are regarded as characteristic of the industry's output and are called its 'principal product'. Most industries also sell, as a subsidiary activity, certain products which are principal to other industries. It is possible that an industry's principal product may be divided into more than one commodity such that there are more commodifies than industries, but usual practice is to assume that each industry has one principal product and thus that the number of commodifies equals the number of industries.

The Basic Tables

In the U.K. the basic information for the tables is collected in the form of a Census of Production, in which the purchases of the reporting establishments are analysed in such a way that an estimate may be made of the value of purchases of each commodity by each industry in a given year. In order to provide uniform valuation of a commodity across a row, producers' prices are used rather than purchasers' prices, and thus taxes, transport and distribution margins are separated out and allocated to separate rows.

The census covers only manufacturing, mining, construction, gas, electricity and water. Information on other industries, such as agriculture, transport, communication etc., is collected from government departments and the nationalised industries, but for distribution and miscellaneous services, less information is available and relatively approximate methods must be used.

The Census information is translated into three basic tables: The make matrix, the absorption matrix and the imports matrix. The make matrix, M, shows the production of each commodity by each industry. Each row and column is dominated by the diagonal element which represents the principal production within the industry, whilst the off-diagonal elements record the extent of subsidiary production.

The absorption matrix, X, records the purchases of each commodity by each industry.

Since the number of types of commodity purchased by all industries reported in the Census exceeds the number of industries classified, commodities must be grouped into an identical classification to that for industries for the make matrix to be square. This was the practice in the construction of the 1963 and 1968 input-output Tables for the U.K. (10), although certain writers, for example Gigantes (35) have discussed the possibility of using rectangular make and absorption matrices.

Finally, the imports matrix X_m represents the purchases of imported commodities by domestic industries. The information for total imports of commodities is obtained from the "Trade & Navigation Accounts of the United Kingdom" (36), although allocation of the purchases of particular industries between domestic and imported commodities must often be undertaken on a pro rata basis in the absence of the relevant information on source.

The tables also typically show the commodity analysis of final demand (i.e. demand for those products which are not required for further domestic processing), and an industrial analysis of primary inputs. The

latter are the inputs which are not a part of the current output of domestic industries and, in the case of the U.K. tables for 1968, include total value added and indirect taxes. There is also a row referred to as "sales to final buyers" which encompasses sundry transactions such as sale of second-hand goods etc.

The accounting framework for these tables is shown in Figure 1. of this appendix. ($P_{2}qe 126$)

Conversion of the Basic Tables into Pure Industry or Commodity Tables

Since the basic data are collected as a set of purchases of commodities by industries, it is necessary, for the study of economic structure, to convert the basic tables, (the make matrix and the absorption matrix,) into matrices of commodity purchases by commodity production processes or of industrial output by industries.

Having constructed a "pure" table it is then possible to obtain a column of coefficients representing the purchases from each industry or commodity required per unit of output of the industry or commodity to which the column refers. These are obtained by dividing each element in the column by the column total or gross input.

If the matrix A was disaggregated to the level of the process, each column would be a good representation of the technology of production of that commodity.

In fact, because of the unavoidably high level of aggregation, a change in input structure may not necessarily be due to changes in the technology of production. The latter is only one factor in structural change. Others may be changes in the product mix of the commodity or industry group engendered by aggregation, and changes in the process mix, in that several processes may be in use simultaneously in the production of the same commodity.

As Carter (9) notes: "Steels, which are identical from the user's point of view may be produced by the basic oxygen process, characterised by one input structure; or by the open hearth process characterised by another; or by the electric furnace process, with still a third input structure. Even when a single process seems to enjoy a unique advantage for producing a given product at a particular time, several processes may be used simultaneously for historical reasons".

Carter also indicates the difficulty when interpreting changes in input coefficients, in differentiating between pure technological change on the one hand, (i.e. a change in the production function), and substitution, (changes in the input mix within the context of a given production function) on the other.

Nevertheless, changes in input coefficients whether through product mix, substitution or pure technological change, give an indication of technological developments within the economy, and are thus of interest.

Since a large proportion of the work reported in Chapter 4 involved the conversion of make and absorption matrices to "pure" commodity or industry matrices, it is necessary to provide some detail here of the methods of obtaining these pure matrices.

Since the total commodity output of the economy is given by the vector of row sums of the commodity transactions matrix K plus the vector of final demand for commodities,

$$q = Ki + f$$
 $\underline{2}$

where i is the unit vector, having the effect of summing the rows of K and f is the matrix of final demand for commodities.

Substituting for K from 1 into 2

$$q = Aq + f$$
 3

In order to obtain this matrix A, certain assumptions must be made concerning the input structures of commodities produced in various industries.

Commodity and Industry Technology Assumptions

The basic task involved in obtaining a commodity x commodity matrix from the absorption matrix, is to adjust the columns of the latter such that the total commodity output remains the same but the destination is delineated by commodity or process rather than by industry. Similarly, industry x industry tables are obtained by maintaining column totals constant, but adjusting rows such that the non-principal production of commodities is allocated to the row representing the industry where that production took place. Since there is typically no information concerning the allocation of inputs between the various outputs of an establishment or industry, assumptions must be made concerning the allocation of these inputs.

In general, two extreme assumptions may be made in order to allocate each commodity output to a particular process or commodity destination, or industry output to a particular industry destination. These two extremes are the industry technology assumption, which implies that the same input structure is relevant to all commodities produced by a given industry, and the commodity technology assumption, which implies that a commodity is produced using the same input structure, irrespective of the industry of origin.

An example of where the commodity technology assumption is appropriate is for the production of chemicals by engineering industries, since the input structure for this non-principal production would obviously differ from that of the principal product. An example of where the industry technology assumption is appropriate is the non-principal production of mechanical engineering goods by a mechanical engineering industry.

Commodity Technology Assumptions

In the notes to the 1968 Input-Output Tables for the United Kingdom (10), the commodity technology assumption is associated with a "product mix" matrix, the columns of which show the proportions in which a particular industry produces commodities. This is obtained by dividing the columns of the transposed make matrix (i.e. the columns showing production of each commodity by each industry), by the gross outputs of industries i.e. $C = M' \hat{g}^{-1}$ 4

.........

Where g is the vector of gross outputs of industries. Thus C is the matrix of coefficients of production of commodities per unit of output of each industry.

(The prime notation indicates the transpose of a matrix).

If B is the matrix of coefficients of commodity requirements per unit of industry output, then:

		$B = X g^{-1}$		
Thus		Bg = Aq = Xi	= Ki	<u>5</u>
Now since	the vector of th	e row sums of the	transposed make matri	x is the
vector of	total commodity	outputs,		
		M'i = q		

and thus from 4

Substituting for g from 6 in 5

 $BC^{-1}q = Aq$ $BC^{-1} = A$

6

7

Thus

A is thus the commodity x commodity coefficient matrix obtained via the commodity technology assumption.

7 may also be expressed in the form:

B = AC

q

Cressy (37) obtained this result in another way by first expressing the requirements of a commodity i for an industry k, to be the weighted average of the input coefficients of commodities absorbing i within industry k.

Thus $b_{ik} = \sum_{j}^{k} a_{ijk} \frac{1}{j} \frac{1}{j} m_{jk}$ (Notation altered from (37) but identical algebra) where m_{ik} is the "make" of commodity j in industry k, b_{ik} is an element of B and a ijk is the input of the ith commodity per unit of the jth commodity, produced in the kth industry.

Hence: $b_{ik} = \sum_{j=1}^{k} a_{ijk} c_{jk}$

where c_{jk} is an element of C and is the proportion of commodity j in the output of the kth industry.

8 is valid irrespective of technology assumptions.

The commodity technology assumption implies the additional constraint:

 $a_{ij} = a_{ijk}$ for all k <u>9</u> substituting <u>9</u> into <u>8</u> gives:

In the notes to the UK Input-Output Tables for 1968 (10), a matrix E is obtained by substituting for Aq from 5 into 3 to obtain

Substituting for q from 5 in the above:

demand,

where E is the industry x industry coefficient matrix.

One solution to 12 and 13 is:

This is not a unique solution following inevitably from the commodity technology assumption, since it implies the further assumption that each interindustry transaction consists of all the commodities produced by the selling industry in proportion to the output of that industry. This is the proportional output purchase assumption of Becker (7). What this means may be demonstrated by premultiplying 14 by C to obtain CE = B

then $b_{ij} = \sum_{k} c_{ik} e_{kj}$

The interpretation of this equation is that the purchase of commodity i by industry j as a proportion of total industry j purchases = the proportion of commodity i in the output of industry k x the requirement of the output of the industry k for the production of the output of industry j.

This is clearly correct, provided the proportions of commodity i in the output of industry k are constant for each sale of industry k output. This must hold for all industries k.

Industry Technology Assumptions

The industry technology assumption states that every commodity produced by a given industry has the same input mix, and thus the input structure of a commodity depends upon the industry in which it was produced. This assumption was associated in (10) and (38) with the "market shares" matrix D which shows the proportions in which industries contribute to the total production of each commodity.

D is obtained by dividing the columns of the (non-transposed) make matrix by the commodity totals.

Thus: $D = Mq^{-1}$

..... <u>15</u>

The reasoning presented by the C.S.O. in the notes to the 1968 UK Input-Output Tables (10) was as follows:

From <u>15</u>, $M = D\hat{q}$ and thus $Mi = D\hat{q}i$

Cressy disputes that the industry technology assumption is sufficient for a solution such as <u>17</u>, since the former has no implications for the form of the industry to commodity transformation matrix.

He demonstrates this by expressing the industry technology assumption as:

b ik = a ijk for all j
(notation as before).

18 may then be substituted into 8 to obtain:

 $b_{ik} = \sum_{j=1}^{k} b_{ik} c_{jk} = b_{ik}$, since $\sum_{j=1}^{k} c_{jk} = 1$ This is a trivial result.

However, a counterpart to $\underline{8}$ is another basic result, that the commodity x commodity coefficient a_{ij} is a weighted average of the individual a_{ij} 's for each industry. The weights are the proportions of commodity j's output produced in the kth industry (industry k's share in the market for commodity j), and the result, like $\underline{8}$, is valid irrespective of technology assumptions.

kth industry or $m_{jk}/\frac{k}{k}m_{jk}$, where m_{jk} is the "make" of commodity j in industry k.

Using the industry technology assumption, <u>18</u> may be substituted in 19 to obtain:

Substitution of the commodity technology condition <u>9</u> in <u>19</u> also gives a trivial result:

 $a_{ij} = \sum_{k}^{a} a_{ij} d_{kj} = a_{ij} \sum_{k}^{d} d_{kj} = a_{ij}$

Thus using the basic result <u>19</u>, it is possible to associate the market shares matrix with an industry technology assumption, for the construction of a commodity x commodity matrix, contrary to Cressy (37).

The industry x industry table derived from an industry technology assumption, as for that derived from the commodity technology assumption, requires an industry purchasing assumption. This time it is the "proportional market purchase assumption" (7), which states that "each commodity is purchased from every producer of that commodity in proportion to each industry's market share of that commodity". Using this assumption, it is possible to obtain the solution:

Thus, in summary, Cressy is correct in stating that the industry technology assumption leaves the output structure of industries indeterminate. However, this does not mean that a unique commodity x commodity matrix cannot be obtained using the industry technology assumption throughout.

Industry x industry matrices require purchasing rather than input technology assumptions.

It is thus argued that continued use of the method followed by the C.S.O. in constructing the 1968 Input-Output Tables involving the use of an industry technology assumption, is valid.

Hybrid Technology Assumptions

As Armstrong (39) suggests, whilst it is reasonable to assume that commodity technology is more appropriate in general, an industry technology assumption may be more suitable for subsidiary production which is a by-product of an industrial process.

It is not necessary exclusively to employ either extreme assumption and the usual procedure is to use a mixture or "hybrid" of the two assumptions.

Various approaches to hybridisation are possible, but that used for the construction of the 1968 input-output tables was set out by Armstrong (39).

The methodology requires the separation of the elements of the make matrix into those for which a commodity technology assumption is deemed appropriate and those for which an industry technology assumption should be used. The former are grouped into a matrx M_1 and the latter into M_2

such that $M = M_1 + M_2$.

Armstrong derives: $C_1 = M_1' g_1^{-1}$ $M_2 = D_2 q_1^{-1}$ and $g_2 = M_2 i = D_2 q_1^{-1}$

where q_1 and q_2 are the totals of commodity output produced respectively under the commodity and industry technology assumptions. Similarly for g_1 and g_2 .

A column j of C₁ gives the share of each commodity produced on a commodity technology basis in the total of the output industry j produced under the commodity technology assumption.

A column j of D_2 gives the shares of each industry's by-products in the total output of commodity j.

There is no need here for a reiteration of this procedure. It appears in (39) pp. 73 and 74 and (10) pp. 25 and 26.

It results in the expression for a commodity x commodity matrix: $A = B (C_1^{-1} (I - D_2' i) + D_2) \dots \underline{22}$ If $R = C_1^{-1} (I - D_2' i) + D_2$ then the industry x industry table under a hybrid technology assumption

may be obtained via the expression:

E = RB

. 23

although once again, as indicated above, purchasing assumptions are required for solution 23.

Armstrong (39) obtained an alternative formulation for a commodity x commodity table under the assumption that the output of by-products in M_2 is linked to the outputs of producing industries rather than to industries' market share in that commodity. In the context of the current study, it was considered that the choice between different hybrid technology assumptions was of relatively minor importance in comparison with the problems of, for example, deflation.

As a result, the method used by the C.S.O. and reported in (10) was used in the construction of the tables. The allocation of cells of the make matrix to the commodity or industry technology assumption was undertaken on a similar basis to that of the C.S.O., and described in Chapter 4, section 4.2.3.

The Imports Matrix

Since the basic imports matrix has the dimensions commodity x industry, the same multiplier may be applied to obtain a commodity x commodity imports matrix.

i.e. $A_m = B_m R$... 24 where $R = C_1^{-1} (I - (D_2' i)) + D_2$

Negative Entries

The hybrid technology solution <u>22</u> tends to produce some negative entries. A description of why these occur and how they were removed is given in Chapter 4, section 4.2.3.

The Inverse Matrix

Since the gross output of each industry or commodity is equal to total consumption by final and intermediate users, the rows of the coefficient matrix may be considered to be a set of n simultaneous equations, where n is the number of commodities.

From $\underline{3}$ q = Aq + fwhich may be solved for q to obtain: $q = (I-A)^{-1} f \dots \underline{25}$

An element x_{ij} of $(I-A)^{-1}$ (the Leontief inverse), represents the value of commodity i required per unit output of commodity j, both directly, and indirectly via other commodities.

Thus <u>25</u> may be used to calculate the change in gross output requirements q, consequent upon a change in final demand f. In order to do this, the critical assumptions must be made that the elements of the A matrix (the technical coefficients) remain constant, whatever the level of output, and that the output classified to a given commodity is homogeneous across consuming commodities. The implication of the first assumption is that each commodity has a linear homogeneous production function.

Thus, the use of these assumptions implies that such phenomena as economies of scale and product mix differences within a given commodity classification are ignored, which is a serious limitation in the use of these tables for forecasting and hypothesis testing, and this must be emphasised in the interpretation of results obtained from input-output analysis.

Theoretically, these assumptions could be circumvented by the more realistic specification of input-output relationships but the cost in terms of both data and complexity is sufficiently large to place a severe constraint upon such non-linear extensions. These were regarded as being beyond the scope of the current work and the latter relies exclusively upon the linear model.

Primary input requirements for a given demand may also be estimated since these are assumed to be proportional to the gross output of each commodity. Thus the expression:

 $v'(I-A)^{-1}f$... <u>26</u> where v is the vector of requirements of a given primary input per unit of gross output of each commodity, gives the total use of that primary input for a given final demand f. <u>26</u> may be used to estimate changes in physical labour and capital requirements, or values of net output and imports, consequent upon a change in final demand.

Applications of Input-Output Analysis

The most obvious application is the estimation of the direct plus indirect requirements for the production of each commodity to produce a given final demand. If final demand changes and the intermediate coefficient matrix A is unaltered, then the change in commodity requirements resulting from that change in final demand may be estimated, and potential supply constraints identified. This indicates the usefulness of the tables in planning and forecasting, though the long lead time required for the production of the tables means that they are a few years out of date on publication. As a result, it must either be assumed that coefficients are stable, or that they may be updated using mechanical techniques such as the RAS method, together with extraneous information. See for example Stone (41), Barker (42).

The effect of changes in coefficients, through substitution between intermediate inputs may be estimated using techniques such as those of Becker (7).

Another application is the study of intertemporal structural change in the economy, undertaken by measuring the changes in direct and indirect coefficients and the total requirements of commodities to produce the same final demand with the technical coefficients of different years.

In addition, the primary input component of the price of each commodity may be estimated, and thus the impact upon final prices of "autonomous" changes in primary input prices, (such as wages, imported oil prices etc.), may be measured.

Other applications are in development and regional economics, and various modifications may be made for the study of particular inputs and outputs, such as energy or pollutants.

In this current work, the techniques were applied in a relatively straightforward way.

The tables are used in the study of economic structure and structural change in Chapter 4.

In Chapter 5, input-output analysis is used in order to estimate import requirements under different assumptions concerning the production of engineering materials.

This type of analysis may also be used for the estimation of net output and productivity indices, as shown in Chapter 6.

Finally, if estimates of coefficients of various types of capital per unit of output can be calculated, a dynamic system may be set up, using a simple accelerator model and assumptions concerning replacement. See for example Leontief (79).

Only static systems were employed throughout the current work.

Problems in the Comparison of Input-Output Tables (i) Industrial and Commodity Classification

The initial problem in the intertemporal or international comparison of economic structure using input-output tables is that of industrial classification. Different countries, in addition to having different accounting procedures, also have different systems for classifying the output of individual establishments to particular commodity groups. The lack of standardised international tables containing the degree of detail required, precluded the use of tables other than those for the UK in the present study.

(ii) Aggregation

The second major problem in the use of input-output tables for the comparison of economic structure is that of aggregation.

Since each commodity classification contains several products, each growing in use at a different rate, the growth rate of the sector will be the weighted average of the growth rates of all the subcommodities contained in that sector. For example, if the aluminium sector was aggregated with other non-ferrous metals over the post-war period, the resultant coefficients would show an aggregated sector with a growth rate higher than that of the old non-ferrous metals category, but much slower than that of the aluminium sector alone.

There is also the problem of completely new products which grow so fast that they eventually require a category of their own, whilst for a time they remain subsumed in another category. In short, product mix problems increase with aggregation.

Aggregation bias may affect the predicted output of sectors which have not been aggregated. i.e. Assume a sector A and sector B are aggregated, and sector A requires a large input from sector C, whilst sector B requires none. Any sector which purchases the output of sector B will appear to have an indirect requirement for C even if it had no such requirement before the aggregation of A and B.

Thus even if there is little interest, for the purposes of a given study, in a range of sectors, the aggregation of these sectors may be injudicious because of this potential bias.

The implications of aggregating two sectors A and B are most serious for a sector X when there is a substantial difference between A and B in their direct or indirect consumption of the output of X.

Hence, a simple criterion for the appropriateness of sectors to be aggregated is their similarity of input structure.

More complex criteria have been derived by Balderston and Whitin (44) and Fisher (45).

In the current study, it was decided to adopt a judgemental rather than a statistical approach to aggregation, and, in general, to aggregate sectors producing commodities of similar type. (E.g. commodities of different 3-digit SIC minimum list headings belonging to the same 2digit MLH.) This was firstly for the reason that commodities from similar SIC groups tend to have similar input structures, secondly since constraints upon computer storage resources provided an incentive to aggregate sectors of the economy with which the current study is not concerned.

Tests were undertaken throughout the course of the empirical work, in order to ascertain whether the results obtained in Chapters 4,5 and 6 were sensitive to the aggregation of these large sectors.

The specific pattern of aggregation employed is described in Chapter 4, together with the construction of the constant price commodity and industry tables for 1963 and 1968.

(iii) Relative Prices

Since input-output tables are, of necessity, in value terms, a change in the relative prices over a period of time will influence the relative size of entries in the intermediate coefficient matrix, and of the components of final demand. The change in an input coefficient a_{ij} will be a combination of the change in the physical usage of commodity i by commodity j, and the change in the price of i relative to j.

Thus in order to disentangle the changes in volumes and prices, deflators must be used to obtain each intermediate table and vector of final demand, in the prices of the base year. Ideally, each cell of the intermediate matrix should be deflated separately, and exports should have a different deflator from that of the remainder of final demand. In practice, it is necessary to apply general row deflators to many cells of the matrix, whilst selecting particular cells for special treatment, these being the ones where the heterogeneity of the classification demands separate deflation for each commodity within the sector.

Fortunately, for the purposes of the current study, most of the deflation necessary had already been carried out by the C.S.O. Details are given in Chapter 4 of the price deflation undertaken as part of the current work.

In fact, as Carter (9) indicates, for the purposes of determining output requirements, the inaccurate deflation for a particular commodity will simply affect the observed output requirements for that commodity. For other commodities, the error in their coefficient of input to the production of the wrongly deflated commodity is exactly offset by the under or overstatement of the requirements of that commodity.

(iv) The Treatment of Imports

Since the basic UK input-output tables include a table of imports of commodities by industries, it is possible to treat imports as distinct commodities and provided an industry to commodity conversion is applied, calculate their requirements from a variant of 26

 $A_{m} (I-A_{H})^{-1} f \dots 27$

where A_m is the matrix of coefficients of imports requirements by domestic commodities and A_H is the domestic coefficient matrix. This gives the requirements of each imported commodity for a given vector of final demand.

However, it could be argued that whether goods are purchased from a domestic or imported source is irrelevant for the purpose of the comparison of economic structure. This would militate for the summing of the domestic and imports intermediate matrix, such that the change in commodity requirements, regardless of source, could be estimated. Certain imports do not have a domestic counterpart, and may thus be considered "complementary", and treated as in <u>27</u>. The majority could be considered "competitive" and may be aggregated with the domestic matrix to obtain a more accurate representation of economic structure.

The principal problems arising from this approach are:

(a) The normal practice for input-output tables is to value imports on a c.i.f. basis, i.e. including insurance and freight charges up to the domestic port of entry. This is in order to make them as comparable as possible with their domestic equivalent. However, if the objective is to approximate an input structure in physical terms, insurance and freight charges may overstate the "value" of the input relative to the domestic

product. It is not easy however to improve upon this system.

(b) If the intermediate matrix includes imports, the Leontief inverse derived from that matrix will reflect the output necessary to produce those imported goods, as well as that for domestic production. The resultant gross outputs from an actual final demand vector will exceed the gross outputs of the domestic economy. The only means of avoiding this is to deduct the total value of the competitive imports of each commodity, from the corresponding final demand row.

For the purpose of comparing input structures for different years, undertaken in Chapter 4, the matrix of competitive imports was aggregated with the domestic matrix.

FIGURE 1 .

Simple Input-Output Accounting Framework

	Commodity	Industry	Home final demand	Exports	Totals
Flow	W	x	f	x	q
Coeff.	$A = W_q^{A-1}$	$B = Xg^{-1}$			
Flow Industry Coeff.	Μ	Н.	fI	xI	g
Incomes		V			
Imports	W _m	X _m			
	· 14				
Totals	q	g			

Adapted from (32)

APPENDIX 4.2

The 1968 Absorption Matrix at 1963 Prices

The construction of the 1968 absorption matrix and imports matrix at 1963 prices was explained fully in (51). Some of the important points are reiterated here:

(i) The appropriate price deflators for the larger entries in the table were obtained by breaking them down into finer commodity detail and then applying the appropriate deflator for each commodity. For the small entries, a simple price relative was applied. At the time of calculation, only 1963 purchases were available for weighting the deflators for certain cells, but it is thought that this was of little significance.

Thus the process was not simply a matter of applying uniform row deflators.

- (ii) Price deflation for commodities purchased by final buyers was based totally upon a 1963 weighting pattern for the disaggregation of the cells.
- (iii) Double deflated estimates of value added are obtained by subtracting all the deflated estimates of intermediate inputs to each industry from the gross industry input, calculated by applying Laspeyre volume indices to 1963 gross outputs at 1963 prices.

- (iv) Specific import deflators were used where these were available, but a large proportion of imports had to be deflated by the corresponding domestic deflator.
- (v) Price data for non-manufacturing industries is particularly difficult to acquire and the reports of the nationalised industries were used to approximate the deflators for certain of these industries.

For distribution and services, a rule-of-thumb approach was used, assuming the price of the output of these sectors to be proportional to the weighted average of the cost of their inputs.

(vi) Aluminium and synthetic resins were among the industries with the largest discrepancies between input and output volume indices, and thus double deflation is particularly appropriate to these industries.

APPENDIX 4.3

Specification of the Technologies of Production

The specification was as similar as possible to that indicated by the C.S.O. in (10).

Those cells of the matrix representing subsidiary production treated on a commodity technology basis were as follows:

(Classification as in Table 4.1)

Row	Columns
1 2 3 4 5 6 7 8 9	None None 19, 21, 52 None
6	None
7	None
8 9	None
10	None
11	None
12	30
13	30
14	31, 44
15	53, 60
16	None
17	33, 46, 55, 61
18	23-35, 40, 41, 45, 46, 50, 51, 53, 61
19	59, 61
20	56-58
21	20, 60
22	None
23	18, 19, 22, 34, 60
24	53
25	20, 53, 60
26	19, 34, 36, 61
27	34, 57
28	17-21, 34, 36, 38, 51, 53, 56, 57, 58, 61
29	12, 17-20, 36, 38, 53, 61
30	18-21, 36, 38, 53, 60, 61

20, 36, 38, 51, 53, 56, 57, 60 18, 19, 21, 36, 51, 61 None 18, 36, 38, 51, 53, 56 18, 19, 20, 38, 53, 59-61 21, 61 17, 19, 21, 36, 38, 51, 53, 60 17, 18, 36, 51, 53 17, 19, 20, 36, 60 19, 20, 21, 34, 60 55 18-21, 36, 38, 49, 57-61 None 51, 53, 56, 57, 59, 60 44, 53, 59 33, 37, 42, 59, 60 59 39, 57, 58, 60 42, 55, 56 55, 56 19, 29, 31, 34, 35, 36, 37, 42, 60, 61, 66 None 4, 19, 21, 28, 31, 33-37, 41, 42, 58, 59 28, 34, 35, 37, 42, 60, 61 10, 19, 22, 25-37, 53, 60, 61 20, 53 20, 21, 27, 28, 33, 42, 53 20, 21, 37, 38, 39 25, 33, 34, 37, 38, 44, 46, 55 18, 20, 25-30, 33-39, 41, 42, 44-46, 53, 55, 61 A11 51 25, 27, 37 None None None None A11 A11

31

33

34 35 36

37

42

43

44 45 46

47 48

49

50 51 52

53

59

60

61

62 63

64

65

66

67

68

69

32 .

APPENDIX 4.4.

Details of Adjustments to Commodity x Commodity Tables

In transforming the matrix, the primary objective was to make as few adjustments as possible, whilst acknowledging the necessity of eliminating anomalous coefficients and obtaining a good representation of input structures.

The transformation exercise was necessary since no commodity x commodity table on a 1968 SIC basis was available. The C.S.O has, however, published a commodity x commodity table (Table I in the 'Purple Book' (10)) which was used as a benchmark for this exercise. Coefficients for which the SIC change had not engendered any change of definition of the selling and purchasing industries should have been almost identical between the published tables and the results obtained from the 1968 SIC data.

In fact there were a number of differences, especially in the large distribution and services rows. Where there was a considerable discrepancy, not attributable to SIC changes, the figure was adjusted to within 5% of the figure in the published tables.

Having obtained the transformed matrix, it was necessary to correct approximately one hundred negative coefficients. Those of less than 1 per 1000 or representing flows of less than £0.5 million could be rounded to zero without the need for compensating adjustments.

The largest errors occurred in the cells representing the input of construction to water supply (-0.026) and to electricity (-0.016)

and the majority of negative coefficients were in the columns representing utilities or services and resulted from the construction activity of these sectors.

There were several small errors in the requirements of coal and other mining products by engineering industries. The industrial plant and metal goods industries were most apparent in this, and the anomaly probably arises via the production of chemicals by these industries, and some non-existent inputs of mining products are transferred away as a result. This is a case where neither an industry nor a commodity technology assumption is appropriate.

There were also several substantial negative coefficients in the textiles rows and services column.

The errors were corrected by firstly adjusting the rows by determining the cell of the make matrix in which the error originated, and then adjusting the columns via a row representing a commodity which had a large input into both affected columns. The services row was mainly used for this process, since it was peripheral to the work of this study.

Industrial Classification of 48-order Matrix, according to MLH

.

....

1.	Coal Mining	101
2.	Other Mining	102, 103, 104, 109
3.	Coke Ovens	261
4.	Mineral Oil Refining	262, 263
5.	Chemicals	271-273, 275, 277-279
6.	Paint	274
7.	Synthetic Resins	276
8.	Iron and Steel	311-313
9.	Aluminium	321
10.	Other Non-ferrous Metals	322, 323
11.	Agricultural Machinery	331
12.	Machine Tools	332
13.	Industrial Engines	334
14.	Textile Machinery	335
15.	Construction Equipment	336, 337
16.	Office Machinery	338
17.	Other Non-electrical Machinery	333, 339
18.	Industrial Plant & Steelwork	341
19.	Other Mechanical Engineering	342, 349
20.	Instrument Engineering	351-354
21.	Electrical Machinery	361
22.	Insulated Wires & Cables	362
23.	Electronics and Telecommunication	363-367
24.	Other Electrical Goods	368
25.	Shipbuilding	370
26.	Motor Vehicles (inc. Tractors)	380, 381
27.	Aerospace	- 383
28.	Other Vehicles	382, 384, 385
29.	Engineers' Small Tools	390 .
30.	Cans and Metal Boxes	395
31.	Other Metal Goods	391-394, 396, 399
32.	Pottery and Glass	462, 463
33.	Cement	464
34.	Other Building Materials	469
35.	Furniture	472, 473
36.	Timber	471, 474, 475, 479
37.	Paper	481
38.	Paper and Board Products	482-484 -
39.	Rubber	491
40.	Other Manufacturing	492-495, 499
41.	Construction	500
42.	Man-made Fibres	411
43.	Other Textiles	412-419, 421-423, 431-433, 441-446, 449, 450
44.	Gas, Electricity, Water	601-603
45.	Road and Rail Transport	701-704
46.	Other Transport	705-707, 709
47.	Distributive Trades	810-812, 820, 821, 831, 832
48.	Other	All other except Public Administration
	Complementary Imports	
	Crude Mineral Oil	104,
	Other Mining	102, 103, 109

Crude Mineral Oll Other Mining Timber Paper & Board Rubber Tobacco 104, 102, 103, 109 471, 474, 475, 479 481 Part of 001 Part of 001 -

APPENDIX 4.6

Derived Input-Output Tables

The following are some of the Tables derived for the purpose of the analysis.

The tables shown are:

(i)	The domestic	commodity x commodity matrix
	for 1963 at	1968 prices (pp137 - 146)
1	The demonstra	

- (ii) The domestic commodity x commodity matrix for 1968 at current prices (pp.147 - 154)
- (iii) The matrix of commodity imports for 1963
 at 1968 prices (pp.155 164)

The 48-order classification system is as shown in Appendix 4.5

												DC	me	es	tı	-	-	-			-	-	-		tr	1X	-	9	63						•											
	-			-			_										at	1	9	68	F	r	ic	e	5																					
	-			C		(5		(-		(-			0	1				1				,	1	0		1	~	*				Э		1	0			-			C
																																						1						•		
																																					•									
								1										*																												
	~	~			0	0 .			. 15		-	4	0	-	-	-										-	-						-	~	~	~	~	NF		~ .	~ 1		00		~	
1	-	13.	:	3.					26.				0.0	٠	•	2.		•	•		•	•	•	• •				-	13.6	:	• •		5	.9	36.0	-				÷ .			· .	-	•	
																																													-	
	+	+	+	+	+ .	+ •	• •	• •	+	•	+ +	+	+	+	+	+	+	+ -	•	• •	• •	• •	• •	• •	+	+	+	+	+ -	• •	• •	• •	+	+	+	+	+	+ •	+ -	+ ;	+	+	+ •	• •	+	
	-	2	•	4	5	• •	- 0	• •			12	10	14	5	16	11	18	6	0.	1:				4		8	62	30	1	25	50		90	37	38	30	0		2		44	5	9	1	84	
														-						• •	• •	•••														•••	-					-	-			
						_							-				-														-															
	0.0			:		0.0	•			•		-		0.0		•	2.2	•	•					•					3.5	•					•	0.0	•••			•					15.2	
	+	+	+	+	+	• •	• •	• •	• •		+ +	+	+	+	+	+	+	+ •	• •	• •	+ -	• •	• •	• •	• +	+	+	+	+	+ .	+ +	• •	+	+	+	+	+ -	+ •	+ -	+ •	+	+	+ •	+ -	+	
	-	2	e	4	5	••			- 0		11		4	2	9	-	8	6			~		r u	- 4		. 8	6	0		2	m *	r	9	2	8	0	0.		2		5	5	.01	~	8	
												-	-	-	-	-	-	- '		~ "	21		4 0	500	3 ~	10	~	m	~						-	m	4.			5.	4	4.		σ.	Ŧ	
in the	5.4	0.0		* *	4.2	0.0			0.0		0.0	0:0	0.0	0.0	0.0	•2			0.0		0.0				0.0		9.	0.0	2.	0.0	0.0		0.0	0.0			0.0	0.0		0.0					2.1	
	13																																									-				
	+	+	+	+	+	+ •	• •		• •		+ +	+	+	+	+	+	+	+ .	•	• •	• •	• •		• •	+	+	+	+	+	• •	+ -	• •	+	+	÷	+	+	+ -	+ -	+ .	+	+	+ •	+	+	
	-	2	3	4	2		- 0				17		4	5	9	2	8	6			2	•	t u	2	~	. 8	6	0		2			. 9	2	8	c	0		N		5	5	9	-	8	
									-	• •			-	1	-	-	-	-	N		~	21	4	40	50	101	2	e	6	m (m e		j w	e	e	3	5	5.	* ·	5.	5	5.	5.	5.	*	
																																											*			
					6.5	0.0					0.0						• •	5.									3.4				8.													4.8		
									**																																	e			-	
	+	+	+	+	+	+ .			+ +		+ +	+	+	+	+	+	+	+	+	+ -	+ •	• •		+ +	• •	+	+	+	+	+	+ -		+	+	+	+	+	+ •	+	+ .	+	+	+ .	+	+	
	-1	2		4	5						10		+	5	9	~	8						5 11			. 8	6	0	-	~		+ v		~	8	6	0		N		5	2		~	8	
									-	••			-	1	-	-	-	-	1	20	2	2	.1 .	20	3 "	10	10	e		m	m r	0 9	n (1	5	9	m	5	5.	5.	5.	*	4.	5.	5 .	5	
1	0.0	0.0	0.0	3.2	2.7	1.1					0.0	9.	0.0	1.1	0.0	6.8	.2	1.6								1.1	4.0	0.0	5.8	0.0	0.0			1.7	0.0	9.9	0.5	3.1	0.0	0.0	6.6	0.3	1.2	2.9	3.6	
	-	-						5							-	F					-					in the second	-		-				-				Ä	~			n	-		Ä		
	+	+	+	+	+	+ .					+ +	+	+	+	+	+	+	+	+	+ .	+ .	+ -				+	+	+	+	+	+ -			+	+	+	+	+ .	+	+ -	+	+	+	+	+	
		~		.+	10						10				~	~	-	-	-									-	-	~				~	-	-	-	_	~	~	5	10		~	-	
	-			4		- 1	- 0		10		12	11	14	15	16	I	16	1	2	2	20	20	5	20	5	28	2	30	31	30	2	0 0	36	S	36	3	4	5	5	5	\$	4	4	5	4	

Domestic Commodity Matrix 1963

)

1.																			• •						•																				*	*	
COLUMN 10	-	17.3	2.1				3	10.6	0.0	0.0	6.	1.	1.	9.	.1	1.1	3	4.0	••	3.0			2.5		3.7	0.0	3.0	1.8	0.0	25.4	0.0	0.0	4.	0.0	4.	0.0	••	.5	4.	L.	0.0	.0	10.8	.9	~	27.0	5
COL	+	+ -	• •	• •	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
a statistica	1	~ ~	5 4	- 50	9	1	8	6	10	11	12	13	14	. 15	16	1.7	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35		37	38	39	40	41	42	43	44	45	46	147	48
6 NW	••	1.1		3.2	•	0.0	٠		10.1	0.0	• 3	0.0	0.0			• 5	•2	8•.	.3	е.	.3	.2.	.2	0.0	•	1.1.	0.0	1.0	0.0	1.2	0*0	0.0	•2	0.0	0.0	3.7	.8	.2	•2	4.	0.0	0.0	7.4	2.4	2.5	6.1	4.7
COLUMN	+	+ .	• •	• •	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
	1	~ ~	•		9	2	8	6	10	11	12	13	14	15 .	16	17	18	19	20	21	22	23	24	25	26	27	28	29	. 30	31	32.	33	34	35	36	37	38	39	40	15	42	43	44	45	46	47	48
8 NHI	\$	11.2		24.0	~	1.6	0.0		78.5	.1	8.4	1.3	0.0	2.4	0.0	1.9	6.2	22.4	1.3	4.8	0.0	.6	4.0	2.4	11.7	0.0	8.1	6.3	0.0	14.9	0.0	0.0	33.8	0.0	1.8	0.0	4.4	5.1	3.0	3.6	0.0	2.	.0	82.5	1.	57.2	25.9
COLUMN	+	+ .	• •	• •	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	•	+	+	+	+	+	+	+	+	+	+
	1	~ ~	•	- 10	•	2	80	6	10	11		13	14	15	16	17	18	. 19	20	21	22	23	24	. 25	26	27	28	53	OE.	31	32	33	34	35	36	37	38	39	40	41	42	43	44	45	44	24	48
L NWI	1.8			73.9		0.0	6.	.1	2.4	0.0	0.0	0.0	0.0	0.0	0.0	• 5			0.0	4.		.2	.5.			0.0	0.0	. 1.2	4.	3.4		0.0		•		4.3	4.4	1.2	1.6	1.1	0.0	1.7	10.3	4.3	4.2	6.2	21.6
CULUMN	+	+ -	• •	• •	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	•	+	+	+	+	+	•
and the second	1	~ ~	n :	+ 50	0	7	8	6	10	11	12	13	14	15	16	17	18	13	20	21	22	23	24	25	26	27	28	59	30	31	32	33	34	35	36	37	38	39	64	41	42	43	44	45	46	47	48
0 NMU 6				35.4	:0			.1	• 5			0.0				.1	.1	4.	0.0	0.0	0.0	0.0	.1	0.0	0.0	0.0	0.0	.1	8.3	1.0	.1	0.0	• 5	0.0	ç.	0.0	1.4	-2	1.6	2	0.0	0.0	. 1.7	2.2	1.0	3.2	28.2
COLUMN	+	+ •	+ •	• •	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
	1	~	n .	* u	. 9	2	80	6	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	16	32	33	34	35	36	37	38	39	40	41	42	43	44	45	46	14	48

		C	-				0	-		-		,	C		-	C			(_		(-	12	,		:			0						~		~					-	1		
15	• 3	0.0			٠	1.1		:-	2.9	0.0	9.	12.9					-					.2	1.0	0.0	6.4	0.0	0.0	1.2	0.0	26.9	۰.	0.0	•••					2.8		0.0	4.		2.8	2.0	12.6	m	
COLUMN	+	+	+	+	+	+ +	. +	+	+	. +	.+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+ •			. +	+	+	+	+	+		+	+		
0	-	2		* *	5	91				11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	27	38	30	40	14	42	43	44	45	46	47	48	
						•																																									
11 N	4.	0.0				·	0.5	•	1.0		.2	0.0	0.0	0.0	0.0	• 5	0.0	10.1	6	1.6	0.0	.5	••	0.0	.1	0.0	0.0	9.	0.0	12.5	0.0	0.0		0.0		4.0		9.	.5	0.0	1.		••	1.1	3.6	11.9	
COLUMN	•	+	+	•	+	• •	•	+	+	•	+	+	+	+	+	•	+	+	+	+	+	•	•	•	+	+	•	•	+	•	•	+	+	• •			• •	+	+	•	+	+	+	+	+	+ \	
	-	2	3	4	5	0 +	. «	. 0	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	200		66	40	41	42	43	44	45	46	14	48	
3	2	0	1	.5	.2	Nn			1	0	9	0	0	0	0	8	3		6		6	2	5		1	0	0	8	0	1	2	0	6	0.0		2 1		.0	3	0	1	0	1	8	7	5	
I NWN		.0	•		i	•	14.	-	.9	.0		.0	.0	.0	.0	1.	•	·•	•			•		•	з.	.0	.0		•	11.	•	•	÷	•	•	5			•	.0	•	2.	1.	•	4.	••	
COLUMN	+	+	+	•	+	+ +	•	+	+	+	+	+	+	+	•	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+ •	• •	•	• •	+	+	+	+	+	+	+	•	+	
	1	2	3	4	5	21			10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	. 26	27	28	29	30	31	32	33	34	35	500	39	90	40	41	42	43	44	45	44	24	48	
12	·4	0.0	.1	.7	••		2.7	•	3.4	-2	0.0	•	. 0.0		0.0	1.8	.7	6.9	·••	2.9	.6	• 5		0.0			0.0	••	0.0	0.6		0.0	• 3	0.0				. 9	• 5	0.0	0.0	2.8			5.6	5.5	
COLUMN							2							-										-										-													
C O	+ 1	+ 2	+ 6	* *	+	+ +		+ 6	+ 01	+ 11	+ 27	+ 61	+ +	+ 5	+ 91	+ 11	+ 81	+ 67	+ 02	+ 11	+ 22	+ 6:	+ +	+ 5:	+ 97	+ 23	+ 83	+ 0	+ 01	+ 11	+ 21	+ 61	+ +	+			+	+ 0.	+ 1 +	+ 24	+3 +	+ +	+ 5+	+ 9+	+ 2.	+ 8+	
											-	-		-	-	-	-	-			-0	-0	-0	~	-0		ru	e.1	-	-	m	(*1	(1)						4	5	4	4	-	4	4	4	
11	.1	0.0	0.0	2.	·		8.1		4.	0.0	0.0	2.4	0.0	0.0	0.0	2.	1.3	4.1	.1	9.	0.0	0.0	1.	0.0	0.0	0.0	0.0	.2	0.0	5.9	•1	0.0	0.0	0.0					.1	0.0	0.0	·.	• •	-2	2.2	4.1	
COLUMN	+	+	+	+	+	+ •		+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+ .				+	+	+	•	+	+	+	+	+	
	1	2	•	4	5	210	- @		10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	28.	33	34	35	27	BE	30	40	41	42	43	44	45	46	47	48	

				1		-								-				-		4	-	-				-			-	-		-	-		-		-			-					- 1		
														21																																	
														4																																	
							-								-											-																					
1 20	2.	0.0					5.0	3.1	6.8	0.0	.2	0.0	0.0	0.0	0.0	2.	2.	4.6	0.0	3.0	1	10.2	6.9	0.0	2.	0.0				5.9	1.9			0.0									2.2	1.6	1.0	2.0.6	0.01
COLUMN										•																																					
D	-	N		* 15		~		. 6	0		~			5		-		•		-	~			5				•		-	~																
										1	1	1	1	1	1	-	F	1	2	2	2	2	2	2	2	2	2	N	ĩ		e				n n								5	5	3 4		F.V.
6	6	-				6	0.	4	8	0	1	0	0	8	1	••	.8	••	9	8	2	4	2	0	0	••	• 5	9	0	-		0								- 0						- 0	
I NW	-			~ ~			56.	10.	34.1	0	2	i	ò			4		0						0	-	o		5	0	12.		0		0	•	n n	4			10	5 -		101	2.		1 1	
COLUMN	+	+	+	• •	+	+	+	•	+	+	+	+	+	•	+	+	•	+	+	+	+	+	+	+	•	•	•	+	+	+	+	+	+ -	••	• •			• •	•	• •		• •	+ -	• •	• •		•
-	-	2	m .	a r		2	8	6	10	11	12	13	14	15	16	17	18	19	20	21	22	23	54	25	26	27	28	59	30	31	32	33	34	35	000		000	07	214	10	14	5	55	42	40		0+
18	.8	0.0	2.	1.0			76.4	4.2	E.1.	1.8	••		0.0	1.6	0.0	14.6	0.0	4.5	4.5	3.6	••	•••	*.	0.0	•••	0.0	0.0	1.7	0.0	13.6	*.	2.	3.5	0.0	1.1		•••		5 75			•••	5.3	1.4		0.4	:
COLUMN																																															
CO		*	+	• •	+	+	+	+	+	+	•	+	+	•	+	+	•	+	+.	*	•	+	+	+	+	•	+	+	+	+	+	+	+	+ •	• •						• •	•	•	•	• •		•
	1	2	е .	* *		1	8	0	10	11	. 12	13	14	15	16	17	18	19	20	21	22	23	54	25	26	27	28	29	30	31	32	e e	34	35	00		0 0	0.7	1.4	14	5	54	55	54	£ .	+	5
1	9	0	8		1				1			. 6		5	0		5		3	9	3	5	4	0	\$	0	0	4	0	-	4	0	5	0 0	• •	- 0							5			n .	*
I NH	1.		•			1.	78.	.8	30.	.0	2.	4.	••	•	•	•	e.	60.	5.	14.	2.	•	1.	•		•	•	з.	.0	27.	1.4	•	2		;	•	÷					• •		•			• • • •
C OL UMN	+	+	+	+ +	• •	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+ •	• •							• •	+	+	+ •		•
	-	2	'n	s v		~	8	0	10	11	12	13	14	15	16	17	18	19	20	21	22	23	54	25	26	27	28	59	30	31	32	33	34	35	0 0		000	107	0.1	10	25	5.5	44	42	940		2
16		0.0	0.0				2.8	• 5	1.	0.0	0.0	0.0	0.0	0.0	0.0	• •	0.0	1.0		••	• 3	0.0	•1	0.0	0.0	0.0	0.0	• 8	0.0	1.5	0.0	0.0	0.0	0.0				: 0	• •		0.0	0.0	1.2			•••	
COLUMN																																															
COL		+	+	+ +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+ •	+ -	• •	+ -		• •	• •	• •	+	+	+	+ ·	• •	+
	1	2	9	4 U	0.0	-	8	6	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	000		000	50	5	1 .	25	43	55	45	95	5	5

C

٢.

	(· · ·		,	-		5	,		0			0		-		-		~			2		£		1	-			2	-	C	-		3.		-	*		• 2
and a series																•																													
25				9-1		•		Nº C	•	1.7		0.0	•	0.0		2.	٠	1.7	1.0	1.1									1.3		1.3						2.8	•				:.	14.8	:	
COLUMN	• •				+	+	+ .					. +	+	+	+	+	+	+ .		+ .	+ .							+	+	+	+	+ -				+	+	+	+	+	+	+	+ •	+	
			n .	+ v	9	2	æ (11		1 5	15	16	17	8	6	0	- :	N		5 4		10	-		0	31	32	83	34	52	0	B	6	0.	11	2.	6	5 4	5	9	47		
													-	-	-	-	-								• •					(-1					1	-		•	-	-	4	-			
				3.8						0.0		0.0	•	0.0	3.4	•3	29.2	6.2	8.8	12.9	1.5	0.0						22.3	10.3	0.0	3.1	0.0	1.2		5.2	11.6	1.0	0.0	5.7	6.4	4.1	2.2	14.4	1.64	
COLUMN	+ .				+	+	+ .						+	+	+	+	+	+	•	•	+ .	+ -	• •	• •					+	+	+	+ .				+	+	+	+	+	+	+	+	+	
	- •	~	5.	+ v	9	7	80 1		0.1	11	11	14	15	16	17	18	19	50	11	22	53		0	20	12	0.0	20	31	32	33	34	35	20	30	00	40	41	42	64	44	45	46	47	48	
																																						-	2	200	-				
23		0.0	0.0	6.3	8.	7.0	7.8	5.6	14.6	0.0		0.0	.1.	0.0	:2	0	26.1	80	1.5	9.8	0.0	2.6	0.0	0.0	0.0			27.8	· ~	0.0	2	12.9	2.2		1.0	10.6	-	0.0	••	8.0	2.4	3	25.1	0	
NHATO	+ .						+	+ .					+		+		+		+	+	•	+ .	+ .						+	+	+	+					+	+	+	+	+	+	+	+	
C		2	n .	+ u		7	8	0.0	-	11	1 2	14	2	16	17	8	61	0	11	22		*	2	90		0			32	8	34	35	90	20	000	0	14	2	13	44	15	46	14	48	
																	•																					-	-	-	-				
22		0.0	0.0		5.	8.0	2.1	5	65.8	0.0			0.0	0.0	••	0.0	1.6	0.0		0.0	·.	0.0	0.0	0.0	0.0	0.0	•••	4444		0.0	2.1	0.0	1.2				0.0	0.0	4.0	2.9	3.3	2.3	4.8	17.9	
COLUMN	+	+							-																																		+		
			m .	5 U	1.0	-1-	8	6	0			5	- 15		2	8		0	1	2	3	5	5		~	B		0 -	10		4	5	91	1	DO			10	3	4	5	9	2	0	
-									-			1-	1		-	-	1	2	2	2	~	-1	2	-		2	21				e	e	m 1		n n			3	3	4	4	4	4	4	
21	1.3	0.0	0.0	1.2		3.1	34.6	÷.	21.3	0.0	1.1				6.	3.4	13.9	8.0	:	15.4	5.2	1.6				2.0	1.2	0.0	4.5	0.0	4.6	0.0	1.7		0 u		1.1	0.0	2.	6.4	2.8	2.1	12.1	*	
CULUMN	+						-																																			+	+	+	
CL		2	e .	4 0	0.5	~	. 8	6	0	11:		2		2.0	-	. 8	6	0	1	. 2	3	4	5	9	1			0.	10	E	51	15	96	1	5		-	10	E	4	5	9	11	84	
						-			-				1-		-	-	-	2	~	2	2	2	2	2	~						. (1)	6	m			2	4	4	4	4	4	4	4	4	

																														*																		
1912-1						0.0		-	2.6			0.0	0.0		0.0	•2	0.0	• 3	0.0	0.0						0.0	0.0		0.0		0.0	0.0	0.0	0.0	0.0				.1	٠	0.0	٠	٠			3.7	•	
NWN TO D	+	+ -					+	+	+	• +	+	+	+	+	+	+	+	+	+	+	+	•	+	+	+	+	+	+	+	+	+	+	+ .	• •	• •	+	+	+	+	+	+	+	+	+	+	+	+	
	-	~ ~	n .	+ u	• •		. 8	6	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	30	37	38	39			42	43	44	45	46	24		
																					-																											
2	0.0	0.0			2.	• •	12.9	•				.1	0.0	0.0	0.0	9.	•	2.8		٠	0.0		• 3	0.0	• 3	0.0	0.0	0.0	0.0	4.4	0.0	0.0	•	0.0		0.0			•		0.0		2.9			3.2	8.6	
COLUMN	+	• •	• •		• •	• •	+	+	+	+	+	•	+	+	+	+	•	•	•	•	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	•	+	•	+	+	+	
÷9	-	~ ~	•	7 U	• 1	-		0	10	11	.12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40	41	42	43	44	45	46	24	48	
28	1.5	0.	•	•	•			•					0.0	0.0	0.0	.4	• 3	.8	•1		6.	**		0.0	3.6	0.0	0.0				.4	0.0	• 5	0.0		.1		6.	3	• 5	0.0	•5	3.6	••	.7		2.0	
COLUMN	-	•			~		22	10		0		16	0	0	0			10		e .			2	0	3	0	0	-	0	2		0		0	-		1	2	-		0		-			9	~	
	+	+ •	+ •	+ ·	+ +	• •	+	+ 6	+ 0	+	+ 2	+ 6	+ 5	+ 5	+ 9	+ 2	+ · 8	+ 6	+ 0	+ 1	+ 2	+ 6	+ - +	+ 5	+ 9	+ 2	+ 8	+ 6	+ 0	+ 1	+ 2	+	+ 5	+	+ 9	+ 2	+ 8	+ 6	+ 0	+ 1	+ 2	+ 6	+ 5	+ 5	+ 9	+ 2	+ 8	
									1	-	1	1	1	1	-	-	1	1	2	2	2	~	17	2	2 .	2	2	2	e	e	3	e	e	9	e	n	e	e	4	4	4	5	4	4	4	4	4	
27	1.3	0.0	0.0	2.4			5.00	17.7	5.1				0.0	2.		4.7	-2	3.5	15.3	2.	2.6	10.6	2	0.0	1.0	0.0	. 4.	2.7	0.0	42.3	0.0	0.0	••	0.0	1.1		1.3	2.7	6.	2.7	0.0	1.7	6.1	1.0	2.2	16.7	19.8	
COLUMN	+	+ .	+	+ -	+ .				+	+		+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	
	1	~	m .	5 1	n .	• •		0	10	11	12	13	14	15	16	17	10	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40	41	42	43	44	45	4.6	47	48	
																																									-							
N 26	4.5			9.8	6.8	0.01	0 700	30.7	40.2		3.1		0.0		0.0	1.7	0.0	30.4	2.5	7.2	6.3	1.3	69.3	0.0	0.0		2.4		0.0	140.9	10.6	0.0	1.1	20.5	12.9	2.9	5.1	66.5	14.5	4.0	0.0	10.0	25.0	9.3	10.5	69.4	74.8	
COLUMN	+	+	+	+	+ .	• •		• •	+			+		+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	
	1	2	m .	5	5	• •	- 0	• •	10		12	13	14	15	16	17	18	19	20	21	22	23	54	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40	41	42	43	44	45	44	25	48	
12																																																

																		•																														
COLUMN 35		0.0					• •	2.2			•						0.0	.7	0.0						0.0				:			0.0		:			1.5			••	-2				4.1	5.1	24.1	
COL	+	+ .	+	+	+	+ •	• •	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	
	-	~	m .	4	2	01	- 4				12			15	16	17	18	19	20	21	22	23	24	25	26	27	28	59	30	31	32	33	34	35	36	37	38	39	40	41	42	43	**	45	94		48	
	15.4		N	•			• •	2.3					0.0	٠	0.0					٠	0.0										•	21.8						1.2	.8	1.2	••	2.			:		. 5	
COLUMN	+	+ -	+	+	+ •	• •	• •	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	
	1	~	m	5	5	0 1	- a	00	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	33	39	40	14	42	64	44	45	46	47	48	
	10.6	2.2					0.0		0.0	0.0	0.0	0.0	0.0	0.0	0.0	• 5	9*	4.	0.0	.1	0.0	0.0	.1	0.0	•1	0.0	0.0	1.	0.0	• 5	0.0	0.0	1.3	0.0	0.0	÷.	4.0	.1	.1		0.0	0.0	7.3	4.1	÷.	4.9		
CULUMN	•	+ -	+	+	+	+ •		• •	+	+	+	+	+	+	+	+	•	+	•	+	•	+	+	+	+	+	+	+	+	+	+	+	•	+	+	+	+	+	+	+	+	+	+	+	•	+	+	
	1	2	E	4	5	01	- a		10	1	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40	41	42	43	44	45	46	24	48	
COLUMN 32	3.8	7.5	0.0	6.5	13.7	2.	C.1		0.0	0.0	0.0	.1	0.0	.1	0.0	1.1	.1.	1.4	.1		0.0	.1	1.	0.0	• • 5	0.0	.2	2.4		5.0	•	0.0	3.7	0.0	2.2	.2	6.4	•5	2.2	.1	0.0	.8	٠			7.3		
COL	+	+	+	+	+	+ .	• •	+ +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	
	1	2	9	4	5	21	- 0					13		15	16	17	18	13	20	21	22	23	24	25	26	27	28	59	30	31	32	33	34	35	36	37	38	39	40	41	42	43	44	45	46	24	48	
COLUMN 31	2.4		2.	3	11.5		0 306	12.75	128.4	0.0	2.2	.1		1.8			• 5	2.1	1.2	1.6	1.0	•5	2.6	0.0	1.5	.5	1.0	4.6	1.0	0.0	1.0	0.0	2.0	0.0	3.5	1.2	9.5	1.3	6.1	2.4	0.0	5.2	27.5	13.6	8.9	50.9	69.1	
COL	+	+	+	+	+	+	+ +	+ +	+		+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	
	1	2	e	5	5	0	- 0		10	2=	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	05	41	42	43	44	45	44	47	48	

)

	2.4		0.0		1.8		5.9		4.6	0.0	0.0	.1	0.0	•2	4.	1.2		2.8	.2	. .	.1	4.		0.0		0.0	**	1.4	**	8.2				0.0		10.0	. 5	0.0	1.0	0.0	24.5	6.4	5.0	~	10.5	
COLUMN	+	+ -	•	• •		•	+	+	+	+	+	+	+	+	+	+	+	+	+	•	+	+	+	+	+	+	+ -	+ .	+ -	+ .	• •	• •	• •		+	+	+	+	+	+	+	+	+	+	+	+
	-	2	m .	J U	n 4		. 60	6	10	11	12	13	14	15	16	11.	18	19	20	21	22	23	. 24	25	26	27	28	62	30	16	32	33		35		38		40	41	42	43	44	45	46	47	48
3	3.3	٠		÷.					•	0.0	٠	.1	0.0			6.	.1.	1.3	•2	4.	0.0	•2	•2	0.0		0.0	•		0.0	11.9		•	•	0.0	• •					•	29.5	•	٠	8.3	0	29.7
COLUMN	+	• •	+ .	• •		•	+	+	+	+	+	+	+	•	+	+	•	+	+	+	+	+	+	+	+	+	+	+	+ -	+ -	+ ·	+ -	+ -	• •	• •	+	+	+	+	+	+	+	+	+	+	+
	1	2	m .	T 1	c 4	•	. @	6	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	52	30	31	32	66	34	35	200	38	39	40	41	42	43	44	45	46	24	48
UMN 38	1.5			1.6			1.6		.8	- 0*0	0.0		. 0*0			2.5				•2	0.0	0.0	0.0	0.0	0*0	0.0	2.	E.	0.0	1.6	0.0	0.0	0.0							.2	7.0			.9	18.5	
COLUMN	+	+	+	+ ·	+ +	• •	+	+	+	•	+	+	+	•	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+ -	+	+	+ •	• •	•	+	+	+	+	+	+	+	+	+	+
	1	2	e .	4 1	5	10		6	10	11	12	13	14	15	16	17	- 18	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	100	38	90	40	41	54	. 43	44	45	46	24	48
76 NH	17.9	6.4	4.	3.6	19.3		0.0	0.0	0.0	0.0	0.0	0.0	0.0	.1	0.0	5.4			0.0		0.0	0.0	0.0	0*0	0.0	0.0	•	٠	•	2.4		0.0		0.0	•		• •	1.9	.8	4.	6.9	10.1		13.6		*
COL UMN	+	+	+	+	+ •	• •	•	+	+	+	+	+	+	+	+	+	+	+	+	+	•	+	+	+	+	+	+	+	+	+	+	+	+	+ •		+ +	. +	+	+	+	+	+	+	+	+	+
	1	2		*	5	10	- «		10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	2.2	38	00	40	41	42	43	44	45	46	47	48
JMH 36	1.	2.	0.0	1.9	2.7	1.2	0.0	1.8	2.0	0.0	0.0	0.0	0.0	0.0	0.0	1.	.1	1.0	0.0	• 3	0.0	0.0	2.0	0.0	.1	0.0	0.0	.6	0.0	10.2	2.5	·6	2.9	4.1		• •		2.0	• •	0.0	.2.9	4.0	6.1	9.4	5.9	37.0
COLUMN	+	+	+	+	+ •	• •	• •	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+ •	• •	• •	•	+	+	+	+	+	+	+	+	+
	1	.2	e	4	5	• •	- a		10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	53	30	31	32	33	34	35	200	2B	30	40	15	42	43	44	45	46	47	48

		-		c		(0		e			0			c		0	-					1		-	-		(`	,	~		(,		* .		1				4	
		•										and a second		Con Service												11 - T																	
NWN	00		42.5	8.2	0.4		13.9		0.0			0.0	9.	0.0	9.			3.7	.1	1.3	23.6		24.7	0.0	1.01		24.0		0.0	• 5			3.7	45.6	4.5	15.4	0.0	3.3	20.6	0.0	1.5	30.7	C*+C
co .		+ +	+ 5	+ 5	+ 9	+		+ •	+ 11	12 +	13 .+	14 +	. 15 . +	16 +	17 +	+ + 81					24 +					* 08		+ 25	+ 88	34 +	35 +		38 +		+ 05	41 +	4 24	+ 64	+ 55	45 +	+ + + + +	+ 15	
COLUMN 44	2005	2.7		•	1.5	•	26.8		0.0		4.	0.0	••	-2			•		34.5			0.0		0.0		0.0	•	3.5			0.0	1.1		•	1.6	•	•	•	:	41.2	24.9	19.7	C**01
. co		• •	+ 5	5 +	9	+	* *	+ 01	+ 11	12 +	13 +	14 +	15 +	16 +	17 +	1 18	+ 00	- 12	+ 22 +	23 +	24 +	25 +	26 +	+ 12	+ 82 82	+ 62	+ 15	32 +	33 +	34 +	35 +	37 +	38 +	39 +	+ 05	41 +	+ 24	43 +	+ 55	4-2 +	40 4	+ 15	+ 94
COLUMN 43	0.01	5.0	6.0	30.2		11.0	1.3	:-	0.0	.1.		1.71	2.	.3	3.8	***		1.6	.3	1.1	1.6	0.0	6.	0.0	1.2	2.0	24.4	1.	0*0	1.2	E.	8.1	18.4	12.3	12.8	7.3	137.3	0.0	32.5	21.6	61.7	11.5	1+0+1
00 .		· +	+ 5	+ 5	+ •	+ +	+ + © 0	+ 01	+ 11	12 +	+ 11	14 +	15 +	- 16 -+	+ 11	10 +	+ 00	+	+ 22	+ 52	24 +	. 25 +	26 +	+ 12	+ 82	+ 67	+ 15	32 +	33 +	34 +	35 +	37 +	+ 98	39 +	+ 04	+ 15	+ 24	+ 64	+ 55	+ 5+	+ 95.	+ 14	+ 95
COLUMN 42			9.	24.1	0.0	24.5	0.0	0.0	0.0	0.0	0.0	3.1	0.0	0.0	.2				0.0	.1		0.0	.2.	0.0				0.0	0.0	.1	0.0		3.1	.2	•3	֥	0.0	5.9	3.7	1.6	2.5	0.4	10.0
100	+ •	+ +	+ 5	• 5	+ 9	+ 2	+ +	+ 01	+ 11	12 +	13 +	14 +	15 +	16 +	17 +	+ + 01		21 +	22 +	+ 62	+ +2.	25 +	26 +		+ 82	+ 67	+ 15	32 +	33 +	34 +	35 +	+ 46	+ 86	39. +	+ 05	+ 15	+ 25	+ 64	+ +5	+ 5+	4 0 4	+ .7.4	+ 85
COLUMN 41			25.4	.8	53.9	2	113.0	10.4	0.0	0.0		0.0	14.4	.1	66.3	1.11		2.6	45.7	••	28.9	0.0	5.1	0.0	1.2	10.4	71.6	80.9	54.5	310.3	0.0	5.5	2.1	7.2	34.9	0.0	0.0	1.1	19.0	25.5	17.4	13.2	154.3
COL	•••	, +	+ +	+ 5 .	+ 9	+ ~	+ +	+ 01	+ 11	12 +	13 +	14 +	15 +	16 +	+ 11 +	18 +	1 00	21 +	+ 22	+ 62	+ + 52	25 +	+ 92	+ 12	28 +	+ 67	+ 15	32 +	33 +	34 +	35 +	37 +	38 +	39 . +	+ 05	+ 15	+ 25	43 +	+ +5	+ 54	+ 94	+ 25	+ A+

0.0	*	94	437.6	•	85	56.9	•	48
õ	+	24		+	47		+	24
3	+	44	5.0	+	46	0.0	+	46
	+	45		+	45	18.6	+	45
0	+	. 44	. 50	+	44	2.7	+	44
*	+	43	:	+	43	••	+	43
0.0	+	42	•	+	24	0.0	+	24
	+	41		+	15	5.2	+	41
	+	40	2.	+	40	2.3	+	40
m	+	39		+	39		+	99
151.2	+	38	6.45	+	38	1.8	+	38
5	+	37		+	37		+	37
N	+	36	٠	+	. 36		+	36
1.1	+	35	:	+	35	0.0	+	35
6.2	+	34	٠	+	34	•3	+	34
1.6	+	33	٠	+	33	0.0	+	33
	+	32	٠	+	32		+	32
114.3	+	31	:	+	31	2.3	+	31
	+	30		+	90	0.0	+	30
-	+	29		+	29	6.	+	29
. 3.4	+.	28	0.0.	+	28	. 2.7	+	28
0.0	+	27		+	27	10.7	+	27
41.2	+	26	4.8	+	26	•	+	26
6.8	+	25	0.0	+	25	58.6	+	25
62.2	+	24	9.5	+	54		+	24
	+	23	.6.	+	23		+	23
	+	22	1.	+	22	0.0	• •	10
20.1	+	21	3.5	•		0.1	• •	
1.0.7	•	- 20	E.F.	• •			• •	10
L . 7 L	• •	01		• •	01	:-	• •	01
1 1 4	• •	11		• •	10	m	• •	11
1.2	• •	16	5.0	+ ·	16	2.	+	16
• 2	+	15	.1	+	15	.5	+	15
	+	14	1	+	14	0.0	+	14
4.	+	13	1.	+	13	8.	+	13
	+	12	0.0	+	12	1.	+	12
5.1	+	11	0.0	+	11		+	11
16.9	+	10	0.0	+	10		+	10
21.2	+	6	0.0	+	6		+	6
11.1	+	8	1.	+	8		+	8
	+	7	5.8	+	1		+	1
	+	9		+	9	2.7	+	. 9
208.2	+	. 2	1.6				•	
	+		25.3	+	• •		+	4
	•	1			1 4		• •	14
8.8	•			•			• •	4 6
26.8	+	1	2.2	+	1	9.	+	-
	50		I & NUID	C UL		04 1101	10.7	

HATEIX I TEAS TUR D & & RINYS & COLUMNS

9 NW	0.0	5.0	0.0	6.9	6.02	0.0	0.11	0.3	1.0	4.0	0.0	0.0	0 0					2.0	1.0	9.0	0.0	0.0	0 0	0			0.0	0.0	0.0	0.0	1.0	0.)	5.3	1.0	0.0	1.5	0.0	0.3	0.1	1.8	1.4	8.0	1.0	0.0	1.0		2.7	1.1	2.1	0.05
COLUMN	•	+	•	•	•	•	•	•	•	•	•	•	•					•	•	•	•	•	•	•	• •	• •	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
		~	m	4	5	*	~	æ	6	10	11	12		7.6			-	21	15	61	20	21		10			52	26	22	28	62	30	31	32	33	34	35	36	37	3.8	10	40	1.7	42	43	44	57	46	47	4.8
	36.4	8.1	2.4	76.6	0.0	0.6	14.6	1.7	9.3	20.7	0.0	0.0						5.9	3.0	19.0	0.3	0.0	8 0				0.0	0.3	0.0		4.8		25.5	12.6	0.0			3.2	13.1	43.8			3.5	162.4	10.0	8 78	28.84	20.6	28.7	238.9
COLUMN	•	•	•	•	•	•	•	•	•	•	•	•	•			• •		•	•	•	•	•		•		• •	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
	-	2	m	4	\$	•	~	æ	6	10	11	12		2				21	4.8	19	20	21		22		5.0	52	56	27	28	. 53	30	31	32	33	34	35	36	37	3.8	10	40	17	63	2.7	11	57	46	17	48
4 NH	0.0		6.7	0.0	13.7	0.0	0.1	0.0	0.0	0.3	0.0	2.0					0.0	6.5	2.0	3.7	1.5					0.0	0.0	1.0	0.0	0.0	0.8	2.5	5.1	0.0	0.0	4.0	0.0	0.1	0.0	0.8		2.0	0.5	0.0	0.0			162 6	4.6	28.9
COLUMN	•	•	•	•	•	•	•	•	•	•	•	•	•	•			•	•	•	•	•	•	*	•		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•		•	•	•
· · · ·	-	2	•	*	5	•	~	*	6	10		12		2.4			-	11	•	19	20	10				**	22	56	27	28	52	30	1	32	33	34	35	36	12	18		107	17	12	43		57	46	17	48
m	0.1	1.0	0.0	6.1	1.1	0.0	0.0	2 0	0.0	0 0	0 0	0 0					0	2.0	1.7	0 2	0 0	0				0	0.0	0 0	0 0	0 0	0.3	0 .		0 0	0 0	• •	0.0	0 0	0 0	1.0		~ ~ ~	7 0		0 0			~ 0	2 0	2.4
LUM	121	-	-			-	-	-	-	-		1																							-		1100										•			
0.7	+	+ ~	*	+ 7	+	* *	* ~	*	+ 0	+ 0	•	+ •				•	•	* *	• «	+	•	•	•		• •	•	•	* *	* ~	• «	•	•	•	• •	•	• •	•	• *	+ +	•	•	•	•	•	•			*	*	*
																-	-		*		*				~	~	2	~	2	0	~	~	5	*	*		*						-	-	4				*	
~ .	1.1	0.0	1.0	11.1	6.3	0.0	1.0	2.0	0.0	0.0	0 0	0.0			0.0		0.0	5.6	0.0	3.1	0 0			0.0	0.0	2.0	0.0	1.0	0.0	0.0	3.2	1.0	3.9	0.0	6.0	0.0	0.0	2.0	0.0	* *		2 =			2.0		1.4			1.51
rutum	•	•		•	+	•		•			•					•	•		•							•	•	•		•		•	•		•	•			•			•		•	•				•	•
	-	2	5	4	5		1		. 6	1				2:	4	51	**	25	44	5.	20				~	54	52	56	22	24	50	01	11	22	33	34	35	45	12			07	17	10	17			44	14	4.4
	0.0	0.0	1.0	9.2	4.7						0.0			1.6	0.0	2.2	1.0	6°2	0.0		0.0					0.0	0.0	0.0	0.0	0.0	·0.5	0.0	6.1.	0.0	2.0	2.0	0.0	5.3	0.0		0.0		8 52		1.1		1.7.		4.6	2.4
Cothema	•	•	•	•	•	•	•	•	+	•	•				•	•	•	•	•	•	•	•		• •	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	+	•	•	•	• •	• •	•	•
	1	2	5	4		•	2	P	0	10				2 :	*	5	0.	25	10	6.	20			23	2	20	52	26	22	23	62	3.0	31	30	35	75	35	36	11	13	F	67	17		17	2:	**	14	17	44
						1																																												

Domestic Commodity Matrix 1968 at Current Prices

2	···· • •	9	8		0.7	I I I I I I I I I I I I I I I I I I I	M	the second d	9	aler al	(e trans	(a	E	(.		(=	6-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1	(a non in fi	(W	((6	24	((5. 7. 3. 3	to and a second	((2000		(. E.			
COLUMN 12 + 0.1	• 0 •		***			• • •	•••	. 0.4	•••		0.8	• • •	2.2 .	9.0	•••	0.0	•••	0.0	9.F	5.71 .	•••	***	•••	••••	• 1.2		• • •	•••	* 2.6		• •	• 13.1			COLUMN 18	•••	•	
1 11 MH	0.0 2	5·0	0.5 6				·						~	~~	~	~~~	~	2	~				-				~					80			-	2.0		
1 corn			* * *			-							~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		~~~					-						2	0 2	-						16 10 1 +	•••		0.2 6 +
COLUMN 1	2 + 2		•••	•	•••	•	••		•••	••	• •	•••	••		•	• •	•		+	• •	1		•		•		•	42 + 0	•	•••	•	+		•	CO1 UMN .	++	*	•••
COLUMN 9	1.0.1	1.6 + 1	* *	2	8.0	10.7	0.0 +	1.0 + 2	• • •		1.0 + 4		0.0 +		0.0 + 2	0.0 + 5	4.0.+		*	0.0 + + · ·								• • •					and the second		rulumu 15	+		* * *
CULINH a	20.2	42.6	23.5	1.0	0.0	41.5 11	0.6	0.0	0.2	5.4	1 6.2	4.2 11 4.2	2. 4, 21	··· ··· · · · · · · · · · · · · · · ·	2.0	0.0	5 6.6	2 C.U	11.4	6 ⁰	E C.O	5 0.0 F C.7E	0.0	1.0 1.0	E 0.4	1.7	1.4	0.0	118.4 4	40.0P	1.4	14.0 4	the state of the s		JLUMA 14	0.0	c.0	2.0
2 Cu	• 2 • 1.0	0.0 5 +	7.4 5 4			5	0.0	• • • • •	0.2 14 .	0.1 15 +5 +	+ 11 +	0.8 18 •	0.0 20	0.0 21	. 0.	0.		0.	0.		2,2 32			1.0 15		0.0 39		0.	13.8 44	57 0.0	4.8 47	31.8 48	The Lot of	and an and the second second	13	0.4.0	0.1 2 4	2.0 2.0
нинио	· · · · ·	+ 5	+ 5	• 2	+ P		+ 11 -	+ 21	+ 11		+ 24	+ 84	+ 02	+ 12	23 +	24 +	. 92	+ 12	+ 62 +	30 +	32 +	33 +	35 •	36 +	. 38 .	+ + 65	• 17	+ 27	+ 44	+ 57	. 27	+ 87			dun ing		•••	•••
2				-	(10	11-14-14-14-14-14-14-14-14-14-14-14-14-1	- >	142	(10 -			5.	(2:))	52	,		- w)	10	(31		. 36. J	30	(ap)		. (14	52)				5	3	(:		1

•

.

100

.

-

•

- -

\$

5- .+

I

-

-

2.1

149

And and		
0.0 0.3 0.3 0.3 0.3 0.5	0N480CN00000N0N+N46N0000C+NN+ 491-000000N0N90N-BND+D+24++9 94	MU 0000100000000000000000000000000000000
		0 + N M 3 N 0 N 8 0 0 - N M 3 N 2 N 8 + N M 3 N 0 N 8 0 0 - N M 3 N 2 N 8 - N M 3 N 0 N 8 0 0 - N M 3 N 2 N 8 - N M 3 N 0 N 8 0 0 - N M 3 N 2 N 8 - N M 3 N 0 N 8 0 0 - N M 3 N 2 N 8 - N M 3 N 0 N 8 0 0 - N M 3 N 2 N 2 - N M 3 N 0 N 8 0 0 - N M 3 N 2 N 2 - N M 3 N 0 N 8 0 0 - N M 3 N 2 N 2 - N M 3 N 0 N 8 0 0 - N M 3 N 2 N 2 - N M 3 N 0 N 8 0 0 - N M 3 N 2 N 2 - N M 3 N 0 N 8 0 0 - N M 3 N 2 N 2 - N M 3 N 0 N 8 0 0 - N M 3 N 2 N 2 - N M 3 N 0 N 8 0 0 - N M 3 N 2 N 2 - N M 3 N 0 N 8 0 0 - N M 3 N 2 N 2 - N M 3 N 0 N 8 0 0 - N M 3 N 2 N 2 - N M 3 N 0 N 8 0 0 - N M 3 N 2 N 2 - N M 3 N 0 N 8 0 0 - N M 3 N 2 N 2 - N M 3 N 0 N 8 0 0 - N M 3 N 2 N 2 - N M 3 N 0 N 8 0 0 - N M 3 N 2 N 2 - N M 3 N 0 N 8 0 0 - N M 3 N 2 N 2 - N M 3 N 0 N 8 0 0 - N M 3 N 2 N 2 - N M 3 N 0 N 2 - N M 3 N 0 N 2 - N M 3 N 0 N 2 - N M 3 N 2 - N M
COLUMN 2		
N000-00	COCCOCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
COLUM 15 15 16 16 16 16 16 16 16 16 16 16 16 16 16		
0LUMN 21		COLUMN
социни 20	• • • • • • • • • • • • • • • • • • •	
01-10 01-0 01-0 01-0 0 0 0 0 0 0 0 0 0 0		SNENZOZAZZONOSEEA
CULUM 13 + 15 + 15 + 17 + 13 +	· · · · · · · · · · · · · · · · · · ·	-> -> -> -> -> -> -> -> -> -> -> -> -> -
2. 6		

274

I

150

		~ ~ ~ ~ ,
		F, F, F E, K F E
STATES AND		
CMOCOCOC+CONONOC+MONM+C	0-MONN 0000NN04-0	00000000000000000000000000000000000000

C 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	N30578 -NN4N6760C	
N0000000000000000000000000000000000000	0 NC 0 NO 000 + + MN+ CO	00000000000000000000000000000000000000
0110MM	NNN 00104	
	U	FUNTERFEFEENNAN
	ONFOME DOVEDOFEN	0-60000N000000
	E .	
0-++++++++++++++++++++++++++++++++++++		
00120222222222222222222222222222222222	-	
VONN4-80400+0000000+N44000		0040N+8****
Column		
0 A + + + + + + + + + + + + + + + + +	******	+++++++++++++++++++++++++++++++++++++++

0-BCENNDDDN-D44DANON4350D	N4N275 NUNNUTDENE	
- 作用 時間 周期 四期 医肉肉 日日	•••••• U	
5 5 1 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	1333434 1839668 1839668 1839668 1839668 1839668 1839668 1839668 1839668 19397 193968 19397 19377 1937	
N-DDX000420X00N00000000		
Collumn	••••••	• • • • • • • • • • • • • • • • •
55522222222222222222222222222222222222	144444 14444 14440 14440 14440 14440 14440 144600 144600 14400 1400000000	
	(3) (3) (3) (3) (3) (3)	
	151	

••

.

	12.4	. 82	0.0	28		26		· · · · · · ·	••		27			
8	0.0	30 + +	0.0	225	+ 0 4 - C M	62 E E	····	NOM	* • • •	10.01		12.5		e.
+ 22		• • • •		35		221	•••		••••		22			5 1
3.5		34 •		35	0.0	***	•••						and the second second	
and the second second		37 •	0.0			22			++		37			
16 39 +		59 +		30	N. 0.	6	~		+ •		39			
17 40 +	3.1	+ 15		17		35	.+				17			-
+ 27	0.0	+ 25		47		33	• •	• 0	**		35			8
+						44	. 16.	~ 5	••		44		THE PARTY	. 22
+ 9%12	- 10		1.0	**	£.0	:9:			•••	• •	46			
+ E7 5	76.0	48 +	24.6	14		87						5		52
20. IIIII	1111 S7	102	CULUMN 38		COLUMN 19	-	COLUMN 2	0.2	COLUMN		-	1.11HN 42		6
· · · ·	4.6	+	0.0		+ 0.4	2	*	0	+ 2	94.4	2	0.0		
+	4.0	• •		No. No.	0.0	5	•••		**	30.6		3.1		C
* *	14.0	•••	18.1		. 23.4		• 23		•	::	5	31.8		
+ . 4	0.4	• •	0.0	*	• • •		+	4.	•••		-			
· · ·	4.5 0.0	••		~ *	· · · · ·	- 00	nm	• •			~ ~	0.0		
+ 6	0.5	+ 0		0		•	•	4.	• •		•	0.0		0
	0.0	••••••				2.	••	- 0	• •			0.0		25
+ 21	0.0	. 21	0.0		• •	2	•	0.		0.0	~	0.0	-	:
41 13 +	1.0	13 +		11		2:	•••	* 0	• •		14	4.2		
re. 15 +	0.3	• 51				51	•	2.	•••		57	0.0		3
		+ + +	0.0	***	S	• •	•••	- 5	• •	500	21	0.0		Łr
14 .	5.0	. 81				.81	•	2	•		13	0.0		-
+ 41 +		+ 61		:	+ · ·	61	•••	•	•••	. c	10			s
20 +		+ + 12	0.0	2	++	25			••		22		The second s	1 23
+ 77		+ 22		2	0.0.	22	+	~	• •		22			
• 52 •	0.0	* 52	0.0	24	+ +	52	• •		• •		52			5
. 55	0.0	÷ 52		52	•	\$2	+ .		• •	01	52	0.0		24
• •	0.0	* * **	0.0	24		22	• •	- 0			22			:
• •	5.5	* *2		28	0.0 +	28	•	0	+ 8	0.0	28	0.0 .		
* 66	5 1			and the second s	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		- C							

-

.

		•	-	-	-	-	-			-		-	-	-	-	-	-	-	-		-	-	-	-	-		-	-		-	-						-	Ŧ
			r.								-	,					-		-		-		-		-		-		~		-							-
	•	Ľ						5	-	ţ;	P	5	2	N	92	1		5	\$		5	¥	42			9-			5	ų	5		•	11			:	:
			•			1			1					L and							•			: :		an an an				10 14			1 4					
4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 -		•					14.000 C	•						A New Y	đ.,						- e - E			· · ·		12			-	1. See	1	1						
\$			•••										•					0.		4.9				0.0		2.0			1.5				0.0		~			2.5
LUMN				-						in	2			ALL N				52	2		~			•		2	•		1.4		10	•		•	••	•••	~	
100	••	•	• •	••	• •	•••	•	•	• •	•	••			and a	ธ์+	•	••	• • •	••	•	• •	•	••	•	•••	•	••	•	•••	•	•••	•••	•	• •	•	••	••	•••
	2:	35	33	25	-	10		53	15	97	55			*****	-	~		5	c ~		e e	-			5			202	2:	23	2	2.2	22	2 02		56		5
1			0	0	~			•		-			1.2 m		- 0	0		-			00	0			••	10			0									•
1 1		.13.	•			-					.178.							. 23.							••	12.					2	•••			22			
MATO	10 A	••			• •		• •	+	• •	•	• •	and a			Colum	•	• •	•	••	•	• •	•	••	•	• •	•	••	•	•	• •	••	• •	•	••	•	••	••	••
	SE		52	1 P	-		53			- 98	-					~	-	-	••	-	• •	:=	~					20	2	22	2	2 %	22			32	11	
	1.1		1 - 10		1.11		1	12 13	P	1	-21 SAW	-					·		11-2	-	1.4.4.1			a subsection	100													
		0		**								-			90					*.0	00	0.0			2.5		0.0						16.2			00	2.0	0.0
LUNN	100	·	+	1		1.4						**			NHATO .	-				-				-		1										••	••	• •
00	- N	•••	5			•		-			~					2	1		-		0.0	1.0	~			•				~		~	~			52	21	-
	nm	m #	-	-	-		-										1.2.1	•			1 1 1				1	1									• • •			
1	0				- 0		~								5		•	-	~	-	0.0		•	0.0				0,0				0.4			0	-		
1 1 1 1 1	÷ •	CC	0	-	F ; C	0	•	5	0		5		14.1		1					12					0						2			•		-		
COLUMN	•••	••			•		•		•	•	*				COLUMN		•••		•		•••		•		•	• •	•	•	•	• •		• •	••	• •	•	••	••	•
	32	==					5	:5			4.7	5	1			2			*	N.C.	0.				-	**		-		2:	12	23	\$2		25	20	=:	12
	Stat.			-		-1						at a				and the second					1.1					1 Y.L.	-				-					1 2	~	
83 1	0.0	1 1		0.621	0.0	2.1			5.5		25.1	.0.	No.	the set	44	14.4		1.7.	0.0	21.2	.0	0.0			0				- 21	. 12		.0						
COLUMN	•								•		+		Towns.		CULUMI					• •		•	•	•	•		•	•	•			•	• •	• •	•	•••	•••	
- 12	四		35	37	38	10		53	1.11	45	11	87	The second	141		2	13.2	-		~ ~		11	12	-71	15	51	13	-	22	22	52	52	22	28		50	=	15
	T T		1111		1111				1.1.1	1.1.1.1	-			1.1.1		The second	1.27	1			1.1.1	The second	1				1000	***	1		1		· mart		-	1		
37	0.0	0.0	0.0	- 0	1.3		9.6		- 2-0	A	1.3	1.25	1		57	.0.6	5.0	5.4	0.0	2.2	2.0	- 0	0.0	0.0	0.0	0.3	0.0	19.5		0.0		0.0	0.0		0.0	51.3		
NHID'16	1								19.20	. 1				1. 1. L. L.	CULININ.						1 10 1	1							1				1					1
69	• •	•	*	* *	1	•	•		*	• •	-		M	£	C0	• •		•••	1			+ + + + + + + + + + + + + + + + + + + +	•					-		~			0 ~	-01				
	12	21		22	61	69	1		17	4	14	1				-							T			-			n n	N		~	~ ~		~ ~	-		
			1	11	111	* * *		1				100		14		NAL AN		÷			1		1										1		1			
10				4	54 5			2	(167		-		-			R	~)			8	(31)	3.			4	-	1 46			5		1	s .	5		0
		-	-																												-			12				
-		-					-										,	5.2									-								1			

1.111

.

Mi Li 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0	7 COLUMN 48 2 57 COLUMN 48 2 58 + 1940.5 59 + 654.8 1940.5 40 + 4212 41 + 72.5 43 + 105.6 43 + 105.6 45 +	+ 87 + 111111111111111111111111111111111111		
	COLUMN 46 COLUM 46 77 000 41 46 41 41 45 40 41 41 42 41 43 44 43 44 43 44 43 44 44 41 45 40 45 400 45 400000000000000000000000000000000000			
	СОСЦИНИ 37 50 50 50 50 51 51 51 51 51 51 51 51 51 51			

And

-

6.

. . .

.

-

.

154

.

-

. . .

-

																										-																					
COLUMN 5		24.0		88.6	:0			•	. 5.9		0.0			0.0	0.0			.1	9.	0.0	0.0		.1	0.0	0.0	0.0	0.0	•5	0.0		•	0.0		0.0	•	0.0		•	٠	•						0.0	
COL	+	+ -	+ +	+ +	+	+	+	+_	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
	-	~	m .	* 10		~	80	0	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	50	30	31		33				37		39	40	41		43	44	45	46	47	48
DLUMN 4	:	4.99.4	0.0	2.8	0.0	0.0	0.0	0.0	0*0	0.0	0.0	0.0	0.0	0.0	0.0	0.0.	0.0	0.0	0.0	0*0	0.0	0.0	0.0	0.0	0.0	0*0	0.0	0.0	0.0	.2	•	•	•	•	•	•	•	•	٠	•	٠	•	•	•	•	0:0	••
COL	+	+ .	+ +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	•	+.	+	•	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
	1	~	m 4		0	2	80	6	10	11	12	13	14	15	16	17	18	19	20	21	22	23	54	25	26	27	28	53	30	31	32	33	34	35	36	37	38	39	40	41	42	43	44	45	49	47	48
	0.0	0.0	0.0	: -					0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0*0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
COLUMN																																															-1
CO	+	+ ·	+ +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
	1	~	m 4		9	2	8	6	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40	41	42	43	44	45	46	24	48
																		14.		1000		1.15																									
2	0.0			1			0.0		0.0		0.0		٠												0.0	0.0	0.0	-2				٠			•						٠				•	0.0	
COLUMN										11										*				-																							
00	+	+ .	+ •	• •	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
	1	~	5	+ 10	9	-	8																		26																						
	0.0	0.0	0.0		0.0	0.0	• 3	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1.2	.5		0.0	0.0	0.0	0.0	.1	0.0	0.0	0.0	0.0	••	0.0	•2	0.0	0.0		0.0	4.6	0.0	0.0			0.0	0.0	1.	0.0	0.0	0.0	0.0	0.0
COLUMN	+	+							-																																						
5							-	-	-	-	-	-	*	+	+	•	•		*	+		•	•	•		•	•	•	-	+		+		•		+		•	•	+	•	•	•	•	•	-	•
	-	2			-		8	5	10	11	12	13	14	15	16	11	. 18	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40	41	42	43	44	45	46	24	48

Imports Matrix 1963 at 1968 Prices

••		0					C			1.			1 · · ·			5	•		-			(1	-			-			~		-	-		(>		1.1			()	,		(1
IN 10	•		•	6.	• •					0.0						.1	0.0	٠			0.0		.1	0.0	0.0	0.0	0.0	•											•							
COLUMN		•	•	• •	• •	•	•	+	•	+	+	+.	+	•	+	+	+	•	•	+	•	+	•	•	+	+	+	+ .	• •	• •	• •	• •	•	+	•	•	•	+	+	+	•	+	+	+	+	+
	1	2	3	5 4			8	6	10	11	12	13	14	15	16	17	18	19	20	21	22	23	. 24	25	26	27	28	52	30	10	26	46	5.5	36	37	38	39	40	41	42	43	44	45	49	47	48
6 NI	0.0	2.0	0.0		0.0	0.0	0:0	86.5		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0				0.0	0.0	1.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
COLUMN	+	+	+	• •	• •	+	+	+	+	+	+	+	+	+	+	+	+	+	•	+	+	+	+	+	+	+	+	+ .	• •	• •	• •		. +	+	+	+	•	+	+	•	+	+	+	+	+	+
	1	2		4 U		-	8	6	10	11	12	13	. 14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	52	30	10	35	46	35	36	37	38	39	40	41	42	43	44	45	46	25	48
8 NI	0.0		•	9.5	• •		•	•	10.9			0.0					0.0	4.					4.	0.0	0.0	0.0	0.0	1.9	0.0	•			• •		0.0	0.0	1.	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
COLUMN	+	•	+	+ •	• •	+	+	+	+	+	+	+	+	•	+	+	+	+	+	+	+	+	•	+	•	+	+	+ .	* •		• •	•	•	+	+	+	+	+	+	+	+	+	+	+	+	+
	1	2	3	t t	4	~	8	6	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24		26	27	28	62	OF	10	35	46	56	36	37	38	39	40	15	42	43	44	45	44	25	48
	0.0	4.	0.0	1.9		17.1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0*0	0.0	0.0	0.0	0.0		0.0				0.0	0.0			0.0	٠			•	٠		0.0		• 5
COLUMN	+	+	+	• •	• •	+	+	+	+	+	+	+	+	+	+	+	+		+		•	+	+		+	+			•••		+ +	•		+	+		+	+	+	+	+	+	+	+	+	+
	1	2	e	4 1			8	6	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	52	30	10	26	76	51	36	37	38	39	40	41	42	4 3	44	45	46	47	4.8
9 H	0.0		0.0	2.4		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0			0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
COLUMN	+	+	+	+ •	• •	•	+	+	+	+	+	+	+	+	+	+	+	+	+	+	•	+	+	+	+	+	+	+	+ •	• •	• •			+	+	+	+	+	+	+	+	+	+	•	+	+
	1	2	3	3 4	2	- 10	8	6	10	11	12	13	14	15	16	17	18	19	50	21	22	23	54	25	26	27	28	29	30	10	32	46	50	36	37	38	39	40	14	42	43	44	45	46	47	48

								1911																										•														
			,																																													
						-		14								1 12		-																														
15	0.0	0.0	0.0			٠	0.0		٠			0.0		0.0		0.0		0.0		.2	-			0.0	0.0					0.0	.5	0.0		•	0.0			0.0		٠							0.0	
COLUMN																																																
COL	+	+	+	•	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	•
	-	2	•	\$	5	•	~	8	•	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	86	39	40	41	42	43	44	45	46	47	48
										*		-																																				
14		•	0.0		•			•		•	•	•		S					•	•	•		•		•		••	•				•	•	•	•	•			•				•				••	
NW	-	0	0				-		0	0	0	0	0				0	0		0	0	0	0	0	0		0	0	*	0		0	0	0	0		0	0	0	0	•	0	•	0	0	•	0	•
COLUMN	+	+	+	+	+	+ -	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	•	+	+	+	+	+	+	+	+	+	+ -	+	+	+	+	+	+	+	+	•	+	+	+	+
	-	2	e	4	.	0	2	8	6	10	11	12	13	14	15	16	17	18	19	20	21	- 22	23	54	25	26	12	28	62	30	31	32	33	*	32	36	24	88	34	0	-	24		**	5	9	11	8
														-																										-	-	-	-	•	-	-	-	-
	0	0	0	1	0	0	0	5		3		0	2	0	0	. 0	1	0	2	2	1	0	0	0	1	0	0	0	1	0		0	0	0	0	N	0	0	0	0	0	0	0	0	0	0	0	0
N	•	.0	•	•			•	•		•	•	.0		.0	.0	.0	•	.0	•	•	•	.0	.0	.0	•	.0	.0	0.0	•	.0	•	•	•	•	•	•		•••			•	•	•	•	•	•	0.0	•
COLUMN											+														-							-																
U	_		-					-	-	-			-						-									-		-										-					-	Ī	Ī	-
		~		-			-	•	5	10	H	12	13	14	1	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	96 9	E	38	BE		41	42	43	44	45	44	47	48
										-																																						
12	0.0		0.0		0.0	•	•	•	0.0		•	.2	•			0.0		0.0	.2									0.0		•	.2	0.0	0.0	0.0	0.0	-	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
OL UMN						*																																										
COL	+	+	•	+	+	+	*	+.	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+ •	+ .	+	+	+	+	+	+	+	+	+	+	+	+
	-	2	•	\$.	0	-	8	•	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	2.8	50	30	31	32	33	34	35	96	16	38	30	40	41	42	43	44	45	46	24	48
11	0.0	.1	0.0		0.0	0.	•••		0.0		0.0	.0.	.1	0.0	0.0	0.0	0.0	0.0	.1		0.0	0.0	0.	.0.	0.0	0.	••	0.0		0.	2.	••	0.0	0.	•••		•	•••	•		•	••	••		••	0.	0.0	•
NW	0		0	9		0	0		0	0	0	0		0	0	0	0	0		0	0	0	0	0	0	0	0	0	0	0		0	0	0	0		0	0	0	0	0	0	0	•	0	0	0	0
COLUMN	+	+	+	+	+ .	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+ .	+ .	+	•	+	+	+	+	+	+	+	+	+	+
	1	2	•	4	5	•	-	8	6	10	11	.21	13	4	5	9	1	8	6	0	1	25	53	4	52	9	1	8	6	0	T	32	33	*	5	0	12	8	6	0		2		5	2	9	47	80
										-	-	-	-	-	-	-	-	-	-	2		-0	~			~	N			3	442	***	-					-	1	4	4	4	4	4	4	4	4	4
				•																												1																

0

7:

....

				-	-			-	.1	1				-	_	-	2	-	-					-		+	0		-	1		2			0	•		0					9
																			A Real Property and																								
2		0.0		1.5		•	.2	٠		0.0		0.0		•	0.0				6.	9.0		0.0	0.0		0.0	.2				• •				•	•								
COLUMN	• •	• •	+	••	• •	•	+	•	• •	• •	+	•	+	+ .	• •	+	+	+	+	+ •	• •	• •	+	+	•	+	• •	• •	• •	+	+	+	•	+	•	+	+	+	+	• •	• •	•	
		v m	*	5 4	- 10	8	6	10	::	13	14	15	16	11	19	20	21	22	23	54	c2	22	28	29	30	31	32	55	35	36	37	33	39	40	14	24	43	44	45	40			
	0.0		1.0		0.0	1.2	••	1.4						•	0.0		0.0	0.0	0.0		0.0	1.0	0.0		0.0	• 5			0.0		0.0				0.0		•	•	•	0.0	0.0		
COLUMN	• •	• •	+	••	• •	+	•	+	• •	• •	+	+	•	•	• •	•	+	•	•	+ -	• •	• •	+	+	+	+	• •	• •	• •	+	+	+	+	+ -	+ -	• •	+ -	• •	•	• •	• •	•	
		n n	4	5 4	••	8	6	10	11	13	14	15	16	11	81	20	21	22	23	24	22	27	28	29	30	31	32	56	35	36	37	38	39	40	41	25	43	55	45	9 !	1.0	2	
-	0.0	0.0	÷.	0.0	0.0	2.6			0.0	0.0	0.0	0.0	0.0	1.0.	0.0			0.0	0.0	0.0	0.0	0.0	0.0	21	0.0		0.0	0.0	0.0	.1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0			
COLUMN	• •	• •	+	+ +	+ +	+	+	+	+ •	• •	+	+	•	•	+ +	+	+	+	+	+ -	+ •	+ +	+	+	+	+	+ •	• •	• •	•	+	•	+	•	+ .	•	+	+ -	+	• •	• •	•	
		y e	4	5 4	2	8	6	10	1:	11	14	15	16	11	10	20	21	. 22	23	54	0	27	28	29	30	31	32	55	35	36	37	38	39	40	14	24	64	44	45	94	1.5	0+	
1	0.0	0.0		0.0					0.0	2.0	•	٠	٠		0.0			0.0	0.0		0.0	0.0	0.0	.2	0.0	.6	0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0			
COL UMN	•••	• •	+	+ +	• •	+	+	•	• •	• •	+	•	•	+	• •	+	•	•	+	+ •	+ .	• •	•	+	+	+	+ -	• •	• •	•	+	+	+	+	+ -	+	+	•	+	+ .	• •		
		n n	4	5 4	- 0	8	6	10	11	13	14	15	16	11	10	20	12	22	23	. 52 .	62	27	28	29	90	31	32	55	* *	36	37	38	39	05	14	24	64						
	0.0	0.0	0.0	0.0	0.0	.1	0.0	-2	0.0	0.0	0.0	0	12.3	0.0	0.0	0.0	0.0	0.0	•2	0.0	0.0	0.0	0.0	.1.	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
COLUMN	• •	+	+	• •	• •	+	+	+	• •	• •	+	•	+	+	• •	. +	•	+	+	+ .	+ -	• •	+	+	+	+	+ -	• •	•. •	•	•	+	+	+	+ .	+	+	+ .	+ .	+ .	• •		
	1 0	u m	5	5 4		8		10	1:	13	14	15	16	11	81	20	21	22	23	54	02	27	28	29	30	31	32	33	35	36	37	38	39	04	15	24	43	55		94		-	

	1						1		-								•)				-	3		-			8		-	•		0	-		-				4
																																	1										
0.0	0.0	0.0			0.0				0.0	0.0					•••								•											•	•	٠							
•	+	+	+	+ -	+ •	• •	• •	•	•	+	+	•	•	• •	÷ .	• •	• •	• •	+	+	•	+	•	+ +	• •	•	+	+	+	• •	• •	+	+	+	+	+	+	+	+	+	•••	• •	
1 .	2		4	5	•	- 0		10	11	12	13	14	15	16	11	01	200	21	22	23	24	25	26	12	00	30	31	32	33	34	36	37	38	39		41	42	43	55	45	40	84	2
0.0	0.0	0.0	•		•	•		18.6	0.0	0.0	0*0	0*0	0.0								1.7	0.0		0.0				.1	0.0	0.0									•				
+	+	+	+	+ •	+ -	• •	• •	•	• •	+	+	+	•	+	• •	• •	• •	• •	•	•	+	+	+ -	• •	• •	+	+	+	+	+ •	• •	+	+	+	+	•	+	+	+	+	+ •	• •	•
1	2	3	4	5	• •	- 0		10	11	12	13	14	15	16	11	01	20	212	22	23	24	25	26	12	02	30	31	32	33	34	35	37	36	39	40	41	42	⁴³	54	45	95	48	2
0.0	0.0	0.0	· ·			• •		6.0	0.0	0.0	1	0.0	0.0	0.0	0.0						8. 1	0.0	0.0	0.0	· · ·				0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	. 0.0	0.0	0.0	0.0	0.0		
1	2		4	5	01			10	11	12	13	14	15	16	17	01	100-	12	- 22	23	24	25	56	22	000	30	31	32	33	34	36	37	38	39 4	40	41	42	43	44	45	46	14	2
					•		1.4				0.0				•	•			0.0		0.0	.1		•	•	• •	•								٠	•			٠	٠			•
+	+	+	+	+	+ •	• •		• •	+	+	+	+	•	+	+ -	• •	• •	• •	+	+	+	+	+	• •	• •	+	+	+	+	+ -	• •	+	+	+	+	+	+	+	+	+	• •	• •	
1	2		4	5	• •	- 0	00																																				
0.0	0.0	0.0	9.		0.0		D.1		10.0	0.0	*	0.0	0.0	0.0	0.0	0.0	• u		0.0	.1		0.0	0.0	0.0		0.0		.1	0.0	0.0	0.0	0.0		-2	.2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
+	+	•	+	+	+ •	• •		•	• •	+	•	•	•	+	• •	• •	• •			•	+	+	+	+ .	• •	• •		+	+	+ .	+ +	. +	+	+	•	+	+	•	+	•	• •	• •	
-	2		*	5	• •	- 0		101	11	12	13	14	15	16	11	10	1	21	22	23	54	25	26	27	00	30	31	32	33	34	35	37	38	. 39	40	41	42	43	44	45	40	15	2
		0.0 1 + 0.0 1 + 0.0 1 + 0.0 1 + 0.0 1 + 0.0 0 0.0 2 + 0.0	0.0 1 + 0.0 1 + 0.0 0.0 2 + 0.0 2 + 0.0 0.0 3 + 0.0 3 + 0.0 0.0 3 + 0.0 3 + 0.0	0.0 1 + 1 0.0 1 + 1 0.0 1 + 1 0.0 1 + 1 0.0 1 + 1 1 + 1 1 + 1 1 + 1 1 1 + 1 1	$\begin{array}{cccccccccccccccccccccccccccccccccccc$					$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$				2 0.00 1 1 0.00 1 1 0.00 1 1 0.00 1 1 0.00 1 <td< th=""><th></th><th>$\begin{array}{cccccccccccccccccccccccccccccccccccc$</th><th>$\begin{array}{cccccccccccccccccccccccccccccccccccc$</th><th>$\begin{array}{cccccccccccccccccccccccccccccccccccc$</th><th>$\begin{array}{cccccccccccccccccccccccccccccccccccc$</th><th>1 0.0 <td< th=""><th></th><th></th><th></th><th>$\begin{array}{cccccccccccccccccccccccccccccccccccc$</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></td<></th></td<>		$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1 0.0 1 0.0 <td< th=""><th></th><th></th><th></th><th>$\begin{array}{cccccccccccccccccccccccccccccccccccc$</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></td<>				$ \begin{array}{cccccccccccccccccccccccccccccccccccc$															

				~			(c			~			-			0			-			-			2		,	~					~	~		0			(~	
				-	-				-							-					. 1	-	-				-	4			-	-		-		-				-		-				
																												•						**												
3		0.0			0.0			•										•		•	•			•	•	•	•			•																
						-		-	-													-	-	-												-	-	U	-	Ŭ	-		-			-
COLUMN	+	+	+ •	• •	+	+	+	+	+	+	+	+	+	+ -	+ ·	+	+ •	•	+ .	•	+	+	+	+	+	+	+	+	+ •	• •	• •	• •	• •	• •	+	+	+	+	+	+	+	+	+	+	+	+
	1	~	m ·	5 U	0	2	8	•	10	11	12	13	14	15	16	11	18	61	20												26			36			39	40	41	42	43	44	45	49	47	48
2		2.9		• •	0.0	•	•							•					•				•		0.0			•		•		•	•	0.0	•											
COLUMN					-																		-				-																			
5	-	~		* *		-		•	•	-	~	•	*	5		-			•	_	2			5	9	1	•								-			•	-	+		5	5	•	+ 1	
									1	1	-	1	1	-	-	-	-	-	~	2	2	2	2	2	2	2	2	~	m 1	m		•••		36	E	e	3	4	4 .	4	4	4	4	4	5	4
28	0	0	0.			0	5			0		.1	0	0	0	0	0	0	0	0	0	1	-1	0	0	0	*			2.	0.0				0	0	0	0	0	0	0	0	0	0	0	
	0	•	0	c		ò	-			.0	ò	-		0	0	ŏ	0	N	0	0	õ	-		ö	.0	õ	1		ö		•••	50	5 0	5	0	.0	0	0	0	0	0	0	õ	õ	ò	Ċ
COLUMN	+	+	• •	• •	• •	+	+	+	+	+	+	•	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+ ·	+	+ •	• •	• •	• +	+	+	+	+	+	+	+	+	+	+	+	+
	-	~	m •	e v	0	1	8	6	10	11	12	13	14	15	16	17	18	16	20	21	22	23	54	25	26	27	28	53	30	31	32		35	36	37	38	39	40	41	42	64	44	45	49	47	48
																											£																	.*		
27	0.0	0.0	0.0		0.0	0.0		1.1	0.0		-2	0.0	0.0	0.0	0.0	0.0	0.0	2.0	6.	0.0	0.0	0.0		0.0	0.0	5.6	0.0	•2	0.0	1.0	0.0	0.0			0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
COLUMN															•																															
	+	+	+ ·	+ •	+ +	+	+	+	+	+	+	+	+	+	+	+.	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+ .	• •	• •	• •	+	+	+	+	+	+	+	+	+	+	+	+
	1	2	e .	4 4	0 0	-	8																											36												
	-						-			-		-	-	-	-						-		-	-		-	-		-										-	-	1	-	-	-	-	-
• 1	0.0	0.0	0.0	2.8	10.0	0.0	7.0	2.3	2.5	0.0	• 2	0.0	0.0				0.0		•		0.0				7.6		0.0	••	0.0	4.9				1.6		0.0	.5		0.0	0.0		0.0	0.0	0.0	0.0	
COLUMN	+	+	+	+ +		+	+	+		+	+	+	+	+	+	+		+	+	+	+	+	+	+	+	+	+	+		+	+ .	+ .				+	+		+	+	+	+	+	+	+	+
		2	en .	5 1	2 1	1	. 8	6	0	1	2	9	4	5	9	2	8	0	0	1	2	3	4	5	9	1	8	0	0	1	N		5 0	. 4	-	8	6	0	1	2	3	5	5	9	1	8
									Ч	1	-	1	I	-	-	-	1	-	2	2	2	2	2	2	2	2	2	2	m	-	m 1	m (1 (7)	m	6	4	4 .	4	4	4	4	4	4	4
																				1.				•																						

					*																																											
3	•		0.0		4.	0.0	***		2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	• 3	0.0	0.0	0.0	0.0	0.01	0.0		0.0					0.0	0.0	0.0	0.0	1.3
COLUMN	1 +	+ 2	+	+ +	+ 5	+ •	+ •			+ 0	. + . [+ 2	+ 6	+ 5	+ 5	+ 9	+ 2	+ 8	+ 6	+ 0	+ 1	+ 2	+ 5	+ 5	+ 5	+ 9	+ 1	+ 8	+ 6	+ 0	1 +	+ 2	+ .	+ -	+ •		+		+ +					+ .	+ •	+ +	+ •	•
34	.0				2.				2	.0 1	0	.0.	.0	.0	.0	.0 0.	.1 1.		0.	0.	0.		0.	0.	0.			.0				.0							4 0.0							0.0	0.	
COLUMN	•	+ 23	0	• 3	+ 2	+	• •	• •	• •	•	•	•	• 0 •	•	•	• +	+	•	•	•	•	•	•	•	•	• +	• +	•	+	•	+	+	+ .	+ •	•••		• •	•	••			• •	• •	+	+	+ •	+	+
	1	2		4	5	21				10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	53	30	31	32	33	34	35	27	an an	30	40	17	14	11		55	45	44	2.5	24
		0.0	0.0	2.1	1.	0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0	0:0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0*0	0.0	0.0	0.0	0.0	.1	0.0	0.0	. 0.0	0.0	0.0	0.0		0.0		0.0					0.0	0.0	0.0	0.0	0.0
COLUMN	+ 1	2 +	+	+ 5	+ 5.	+ •	+ •	* *	+ 6	+ 01	+ 11	12 +	13 +	14 +	15 +	16 +	+ 11	18 +	19 +	+ 02	21 +	+ 22	+ 52	24 +	25 +	26 +	+ 12	28 +	+ 62	30 +	+ 16	+ 26	33 +	34 +	+ 66	1 1	4 BE		+ 05	+ 17	1 14	4 54		+	42 +	+ 0 +	+ 14	+ 85
32	0.0	0.0	0.0	1.1	•5	0.0	0.0		0.0	0.0	0.0	0.0					.1	0.0	0.0	0.0	0.0	0.0	0.0	0.0			•		• 5 •		0.0	1.1	0.0	0.0	0.0									0.0	. 0.0	0.0	0.0	0.0
COL UMN		•		+	•	+	+ .	• •	+	+	+	+	+	+	+	+ - +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+ .	•••							• •	+	+	+ -	+ .	+
	1	~	1	*	5	9			6	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32	. 33	34	35	270	38	00	50	17	101	11	n .	55	6.5	95	15	48
COLUMN 31	0:0	23.4	0.0	1.9	0.0	0.0	0.0	5.6	3.0	22.22	0.0	0.0	0.0	0.0	0.0	0.0	.3	0.0	.2	0.0	0.0	0.0	.1	.1	0.0	0.0	0.0	0.0	9.	0.0	21.1	0.0	0.0	0.0	0.0	0.0							0.0	0.0	0.0	0.0	0.0	0.0
COL		+ 2		+ 5	+ 5 .	+ 9	+	+ •	+ 6	10 +	+ 11	12 +	13 +	14 +	15 +	16 +	+ 11	18 +	19. +	20 +	21 +	+ 22	+ 52 .	24 +	25 +	26 .+	27 +	28 +	29 . +	30 +	+ 16	32 +	33 +	34 +	35 +	+ +	1 10		+ + +		1.		+	+ 55	+ 55	+ 95	+ 25	+ 84
											•																																					

04 NW0	0.0		0.0	1.0	0.0	12.4	.2	0.0	.3	0.0	0.0			0.0			0.0		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	•	0.0		1.1	0.0	0.0	0.0	••	1.5	0.0			0.0	0.0	2.7	0.0	0.0	0.0	0.0	
COLUMN	+	+ -	• •	• •	• •	+	+	+	+	+	+	+	+	+	+	+	+	+	•	+	+	+	+	+	+	+	+	+	+	+	+	+	+	•	+	+	+	+	+	+	+	+	+	+	+	+	+
1	1	2	m .	4 4	• •	1	8	•	10	11	12	13	14	15	16	17								25																		43		45	44	47	48
COLUMN 39	0.0	0.0	0.0	••••	0.0	11.8	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1.	0.0	0.0	0.0	0.0	0.0	0.0		0.0	•	0.0		.1	0.0	• 3	.1		0.0					3.1						0.0			
CO	+	+ ·	+ ·	+ +	• •	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
	1.	2	m .	* u	• •	~	8	6	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40	41	42	43	44	45	46	25	48
3	0.0	0.0	0.0	•••	0.0	1.3	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0:0	.1	0.0							0.0			0.0	0.0	0.0				0.0			64.4	5.9	0.0		0.0			0.0	0.0		0.0	-2
COLUMN	•	+ .	• •	• •	• •	•	+	+	+	+	+	+	+	+	+	+	+	+	+	+.	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	•	+	+	+	+	+	+
192.21	1	2	m .	4 u		1	8	0	10		-12				16	17	18	19	20	21	22	23	54	25	26	27	28	29	30	31	32	33	34 .	35	36	37	38	39	40	14	42		44	.45	46	25	48
1 37		0.0	0.0	1.1	0.0	0.0	0.0	0.0	0:0	0.0	0.0	0.0	0.0	0.0	0.0	4.					0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	•2	109.0	0.0	0.0	0.0	0.0	0.0	3.4	0.0	0.0		0.0	4.5
C OL UMN																						+				+										-											
Ū							~									-		1				-									-									Ì							
1. 30 CH		2							1	-	1	1	1	1	1	1	1	1	2	2	2	2	2	2	2	2	2	2	3	3	9	Э	6	e	3	3	3	9	4	4	4	4	4	4	4	47	
	0.0	0.0	0.0	9.0	0.0	0.0	0.0	2.	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1.	0.0	0.0	0.0	0.0	0.0	0.0	.2	0.0	0.0	0.0	0.0	144.7	0.0	0.0	0.0	0.0	0.0	0.0		0.0	0.0	0.0	0.0	1.7
COLUMN	+	+	+ -	+ •	• •	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
14.0	1	2	m .	s u	• •	-	8	6	10	11	12	13	14	15	16	17	18.	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40	41	42	43	44	45	44	47	48

																					11										•																
COLUMN 45				0.0			•												.1.	0.0	0.0	0.0	2.2	0.0	0.0	0.0	0.0			1.0	٠						•	٠						0.0			
COL	• •	• •	+ •	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+.	+	+	•	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
	- •	~	n 4		9	7	8	6	10	11	12	13	14	15	16	17	18	19	20	21	. 22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40	14	42	43	44	45	46	47	.48
	0.0	•		1.2	•		•5	٠	0.0	0.0	0.0	0.0	0.0	0.0	0.0	.1	0.0		0.0	• 5	1.0	0.0	•		0.0			.2	0.0	•	٠	٠	0.0	•	٠	٠	.2	•	0.0	٠	٠		٠	0.0	•	•	
COLUMN	• •	+ .	• •	• •	•	+	+	+	+	+	+	+	+	+	•	+	•	•	+	+	•	•	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	•	+	+	+	+	•
•		~	n 4		9	2	8	6	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	59	30	31	32	33	34	35	36	37	38	39	40	41	42	43	44	45	46	14	.84
	0.0	2.0	0.0	10.6	0.0	5.	0.0	0.0	0.0	0.0	0.0	0.0	3.8	0.0	0.0	• 3	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	•2	0.0	0.0		0.0	٠	••	•	0.0	0.0		2.7	••	1.9		:	12.	:		0.0			168.7
COLUMN	• •	• •	• •	• •	+	+	+	+	+	+	+	+	+	•	+	+	+	•	•	+	+	+	•	+	•	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
		2		- 50	9	7	8	6	10	11	. 12	13	14	15	16	17	18	19	20	21	22	23	54	25	26	27	28	53	30	31	32	33	. 34	35	36	37	38	39	40	41	42	43	44	45	44	47	48
4	0.0	0.0	0.0		0.0	5.0	0.0	0.0	0.0	0.0.	0.0	0.0		0.0	0.0	0.0	0.0		0.0			0.0			0.0							0.0	•	•							•	0.0		0.0			.0.0
COL UMN	+ .	+ .	• •		+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	•	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	•	+	+	+	+	+	+	+	+	+
		N			9	2	8	6	-	. 11	-	13	14	15	16	17	18	19	20	21	22	23	24	2.5	26	27	28	29	30	31	32	33	34	. 35	36	37	38	30	40	41	42	43	. 44	45	94	47	48
15 N	0.0		0.0	0.0	0.0	0.0	0.0	1.1	1.7	0.0	0.0	0.0	0.0	3.3	0.0	3.5	2.4	0.0	0.0	0.0	0.0	0.0	4.2	0.0	0.0	0.0	0.0	1.4	0.0	8.0	5.9	1.7	0.7	0.0	67.7	12.0	0.0	.6	•2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	.1.
COLUMN	+ •	+ .	+ -		+	•	+	+	+	+	+	+	+	+	+	+	+	+	•	+	+	+	+	+	+ .	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	•	+
		2	m .	* *	9	2	8	6	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	59	30	31	32	33	34	35	36	37	38	30	40	41	42	43	44	45	94	25	48

	•			+ 24.2	.9	:		+ 0.0	+ 1.2	+ .2				+ 0.0	•• 0•0			•• 0•0	+ .1	+ 3.0	····	+		+ 0.0	+ 2.8		•		•				+ +			+ .2	+	+			•			+ 0.0	•		
	1	2	3	4	5	9	7	8	6	10	11	12	13	14	15	16	17	18	19	20	12	22	24	25	26	27	. 28	29	30	31	32	EE	34	45	37	38	39	40	41	42	43	44	45	46	47	48	
\$			•		٠										0.0							0.0	•	• •	0.0		•			•	•	•	0.0		• •									0.0			
COL	+ 1	2 +	+ 6	+ 5	+ 5	+ 9	+ 1	8 +	+ 6																26 +																						
04N 46	0.0	0.0	0.0	. 5.0	0.0										0.0		٠				•			• •	0.0			٠																			
COL	+ 1	2 +	+ 6	+ 5	+ 5	+ 9	+ 1	+ 8	+ 6	+ 01	+ 11	12 +	+ 61	+ . +1	+ 51	16 +	+ 11	+ 81	+ 61	+ 02	+	+ +	+ + + + 2 + +	+ 50	+ 92	+ 12	+ 82	+ 62	+ 08	+ 18	+ +	+ .	+ +	+ +	+	+ 88	+ 68	+ 0.	+ 14	+ 24	+ 6+	+ 5+	+ 5+	+ 94	+ 24	+ 8+	

C.

APPENDIX 4.7

Industrial Classification for 23-order Matrix by 1968 MLH

•

1.	Energy	101, 104, 261, 262, 263, 601, 602
2.	Mining and Quarrying n.e.s.	102, 103, 109
3.	Chemicals	271-275, 277-279
4.	Textiles	ORDERS $\underline{XIII} - \underline{XV}$
5.	Synthetic Resins	276
6.	Iron & Steel	311, 312, 313
7.	Aluminium	321
8.	Non-ferrous Metals	322, 323
9.	Mechanical Engineering	ORDER VII
10.	Instrument Engineering	ORDER VIII
11.	Electrical Engineering	ORDER IX
12.	Shipbuilding	ORDER X
13.	Motor Vehicles	380, 381
14.	Aerospace	383
15.	Other Vehicles	382, 384, 385
16.	Other Metal Goods	ORDER XII
17.	Building Materials	ORDER XVI
18.	Timber	471, 474, 475, 479
19.	Paper & Paper Products	481-484
20.	Rubber	491
21.	Other Manufacturing	472, 473, 492-499
22.	Construction	ORDER XX
23.	Other	All other except Public Administration

APPENDIX 4.8

Revaluation of the 1954 & 1972 final demand, import & gross output vectors to 1968 prices

1. The Vectors for 1954

For the purposes of Chapter 4, it is necessary to obtain vectors of final demand and imports for 1954 at 1968 prices on the 23-order classification basis shown in Appendix 4.7. In addition, 1954 intermediate output, including competitive imports must be estimated for the purposes of comparison.

For consistency with the estimates for 1963 and 1968, all 1954 vectors were first revalued to 1963 prices and then revalued to the prices of 1968, using the same deflators as were used to revalue the 1963 matrix to 1968 prices. This implies the use of intra-commodity weights for different years and a mixture of the 1958 and 1968 SIC, but this was considered to be a minor problem relative to the general problem of revaluation with inadequate data.

The 1954 absorption matrix on a 1958 SIC basis constructed by Woodward (55), was used as the basis of the estimation. Though Woodward urges caution in the interpretation of his figures (55), this table has the advantage of identifying all the products required for the current study, except aluminium, which is subsumed in the nonferrous metals category.

Woodward attempted to construct the 1954 table on the same basis as the C.S.O.'s Input-Output Tables for 1963, which is more similar to the basis used in the current work (the C.S.O. 1968 input-output system), than, for example, that of the 'Programme for Growth No. 12' (53). Whilst the latter was of enormous use in the revaluation process, it is more aggregative and differs in its treatment of transport and distributive margins, invisible imports and protective duties. For example, the allocation of transport margins to the category 'Transport and Communication' in (53) leads to a large negative entry for imports into that category, whereas in the C.S.O. system, there are no imports allocated to that category. Woodward allocates these margins to the services category. The C.S.O. only allocates foreign freight incurred in importing to the imported services row, and the domestic cost to the transport row of the domestic absorption matrix.

Since these categories are peripheral to the current study, it was considered that this difference in treatment would not substantially affect the results.

Protective duties and invisible imports were allocated across products in both (55), and (53), but not in the C.S.O.'s framework. This again, is a relatively minor problem in the study of the materials industries.

Woodward's table does not distinguish between imports and domestic output. It does, however, provide a list of imports by commodity group in a subsidiary publication (55).

For comparison with 1963 and 1968 intermediate output, vectors are required of final demand for domestic output (minus intermediate competitive imports) and of (domestic intermediate output plus intermediate competitive imports).

Since (55) provides vectors of final demand including imports and of total imports, the required vectors may be obtained in the following way:

From (51)

 $f + m_1^* + m_2^* \dots (1) =$ vector of final demand including imports and $m_1 + m_2 + m_1^* + m_2^* \dots (2) =$ vector of total imports where f is final demand for domestic output

 m_1 is the vector of intermediate competitive imports m_2 is the vector of intermediate complementary imports m_1^* is the vector of competitive imports purchased directly by final demand m_2^* is the vector of complementary imports purchased directly by final demand

(1) - (2) gives $f - m_1 - m_2 \dots (3)$

The vector required is $f - m_1$ and so the vector of intermediate complementary imports, m_2 , should be added to (3).

To obtain the vector of intermediate domestic output and competitive imports, the resultant vector $f - m_1$ should be subtracted from the vector of domestic gross outputs, also obtainable from (51).

The first step was to aggregate f from (55) to the categories in (53). In addition, certain other categories which are not isolated in (53) but are required for this work were identified. Altogether, there were 40 categories shown in Table 1 of this Appendix.

Deflators to revalue most categories to 1963 prices were then obtained by dividing the 1954 final demand at 1963 prices given in Table 8 of (53) by that at current prices given in Table 7 of (53). Although it would be possible to use the figures of Table 8 directly, this was not considered appropriate, since the current price figures did not always agree with those in (55) which had been deemed to be the basis.

For the categories not identified in (53) - 10, 13, 14, 15, 16, 17, 27, 28 and 31 in Table 1, revaluation was effected in different ways:

For engineering, timber, furniture and printing and publishing, deflation was carried out in the same way as for the majority of categories, i.e., using implicit deflators from (53). However, since these all constituted only parts of categories in (53), the aggregate category in (53) was used as a proxy.

For synthetic resins, the wholesale price deflator in (15) was used.

Final demand for aluminium and non-ferrous metals had first to be separated. Since almost all final demand for these products was in the form of exports, the proportion of aluminium in the total value of non-ferrous metals exported was obtained from the Trade & Navigation Accounts of the U.K. (36) and final demand allocated in these proportions. (Fortunately total exports of non-ferrous metals in (36) agreed with those in (55)).

Deflation was then effected, for aluminium, by using the index in (15) for castings, since this was thought to be more appropriate to final output than an index for primary metal. Prices of rolled products would be a better indicator, but at the time the research was carried out, no such indiex was available. A later comparison with information from industry sources and the Department of Industry suggested that the price index for castings moved in line with that for rolled products and the implied volume index would be appropriate.

For non-ferrous metals, L.M.E prices were used, as quoted in (15). An index for copper, lead, zinc, nickel and tin was extracted from (15) and these were weighted together on the basis of the proportion of each in exports. A 3-year moving average was used for each metal to compensate for excess volatility in the L.M.E.price.

Having revalued the 40 categories to 1963 prices, the revaluation to 1968 prices was carried out using implicit final demand deflators from the Input-Output Tables for 1968 at 1968 and 1963 prices respectively.

Exports were not revalued separately because the return in terms of increased accuracy would be small relative to the large potential error in the data.

Final demand (including imports) for 1954 at 1954 and 1968 prices, together with the deflators used, is given in Table 2 of this Appendix.

For 1954 imports at 1968 prices, the same classification procedure is followed, except that crude mineral oil, natural rubber and tobacco were deflated as separate categories.

Where the estimate of imports for a particular category in (55) was equal to that in (53), the estimates in Table 8 of the latter were used directly. For other categories, Tables 7 and 8 of (53) were once again used to provide implicit deflators for revaluation to 1963 prices.

This accounted for all but aluminium, non-ferrous metals, synthetic resins and the complementary imports.

For synthetic resins, the domestic price index from (15) was used, whilst for aluminium, the price index of imported primary aluminium from (15) was used. (A 3-year moving average was again used because of the volatility of this series).

For non-ferrous metals, the L.M.E prices for metals were again used, this time with import rather than export weights. (This produces a substantially different index to the export weighted index). There is a problem that total imports of non-ferrous metals reported in the Trade&Navigation Accounts (£168 million excluding re-exports) differs from that estimated by Woodward (£183 million), and this is not accounted for by coverage and valuation adjustments or protective duties. Since the total output (domestic plus imported) shown in Woodward's Table includes £183 million of imports, it was thought appropriate to use this figure and so the value of non-ferrous metals, excluding aluminium was increased pro rata.

Imports were then revalued to 1968 prices using implicit deflators from the 1968 'Table C' at 1968 and 1963 prices. In the case of aluminium, this was not used, because it differed so greatly from the domestic index

for the same period and from the index for imported primary aluminium given in (15). As a result, the latter was substituted.

The values of imports for 1954 at 1954 and 1968 prices are shown in Table 3. of this Appendix.

Complementary imports were estimated in the following way: For Crude mineral oil, natural rubber and tobacco, these appear as single cells in the 1954 absorption matrix and are revalued using indices from (53). For timber, paper and mining products, the proportion of intermediate outputs in total imports was assumed to be the same as in 1963, (only a small proportion goes directly to final demand), and the revaluation effected using deflators from (15) or (53).

Finally, in order to obtain an estimate of 1954 intermediate output plus intermediate competitive imports, it is firstly necessary to revalue domestic gross output to 1968 prices. This is done by subtracting total imports from the total output vector given in the 1954 absorption matrix and then using Tables 7 and 8 of (53) or wholesale price indices in (15), to revalue to 1963 and implicit gross output deflators from the C.S.O. Input-Output Tables for 1968 at 1968 and 1963 prices respectively.

For aluminium and non-ferrous metals, gross output had to be estimated from the Report on the Census of Production for 1954.

Having estimated gross output at 1968 prices, the values of final demand minus competitive intermediate imports for the materials categories were subtracted.

There was still the problem of intra-commodity output which in the calculations using the 1963 and 1968 matrices, was netted out and thus, for comparison the same was done for 1954.

The ratio of intra-industry output on a commodity-commodity basis to that on a commodity-industry basis was assumed to be the same in 1954 as in 1963 and the domestic component of the intra-commodity value registered for 1954 was estimated by obtaining the domestic component of intra-commodity output in 1963 and multiplying this by the ratio of the share of imports in the total output of the commodity in 1954 compared with 1963.

The results of these calculations are shown in Table 4.

2. The Vectors for 1972

Deflating the vectors for 1972 was somewhat easier than the revaluation of the 1954 vectors, since imports going direct to final demand are separated from domestic final demand and from other imports in the Business Monitor Input-Output Tables for 1972.

Deflators for most manufacturing MLH were supplied by the C.S.O. The proportion of each MLH in the output of each of the manufacturing categories of the 1972 Tables was also supplied by the C.S.O and it was possible to weight together the deflators on this basis for most of the final demand categories identified in the Tables.

For the missing categories, a proxy was used from the Department of Industry indices published in (15).

Some crude estimates for non-manufactured goods were also supplied by the C.S.O; but for certain categories, such as 'distributive trades' and 'miscellaneous services', an index of average earnings had to be used, since no deflators were available.

For aluminium, an index of wrought aluminium prices was used to deflate final demand (including exports), whilst for other non-ferrous metals, a weighted average of export price indices was used (weighted by export values in 1972).

For products which had a substantial non-export final demand, exports were deflated separately using C.S.O supplied indices for SITC categories and wholesale price indices given in (15) (see Appendix 5.2).

For competitive imports, deflators for SITC categories were available from 1970 onwards. For the period 1968-70, the methods described in Appendix 5.2 were used.

TABLE 1

Commodity Classification for revaluation of 1954 vectors to 1968 prices

	Category	Equivalent in (55)
1.	Agriculture	1, 2
2.	Coal Mining	3 4
3.	Other Mining (including oil)	
4.	Cereals	5, 6
5.	Food	7, 8, 9
6.	Drink	10
7.	Tobacco	11
8.	Coke	14
9.	Mineral Oil	12
10.	Synthetic Resins	17
11.	Chemicals n.e.s.	13, 15, 16, 18
12.	Iron & Steel	19
	Aluminium	20)
14.	Non-ferrous Metals	21)
	Mechanical Engineering	22, 23, 25-31
16.		32
	Electrical Engineering	33-36
	Shipbuilding	39
19.		40
	Aircraft	. 41
	Vehicles n.e.s.	42
	Metal Goods	24, 37, 38
23.		43-48
24.		49-51
25.	Building Materials	52-53
26.	Pottery & Glass	54
27.	Timber	56
28.	Furniture	55
29.		57
30.		58
31.		59 60
32.	Rubber	61
33.	Other Manufacturing	62
34.	Construction	63
35.	Gas	64
36.	Electricity	65
37.	Water	66, 67, 68
38.	Transport & Communication	69
39.	Distribution	70
40.	Services	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

TABLE	2
-------	---

1954 Final Demand-Revaluation to 1968 Prices

	Category	Final Demand	1954-63	1963-68	Final Demand
	Longe the start has a function	1954 prices	Deflator	Deflator	1968 prices
		£ million			£ million
1.	Agriculture	1116	1.092	1.181	1438
2.	Coal	190	1.507	1.127	322
3.	Other Mining	8	1.286	1.031	11
4.	Cereals	396	1.323	1.210	634
5.	Food	1260	1.062	1.128	1508
6.	Drink	235	1.210	1.101	312
7.	Tobacco	157	1.441	1.183	267
8.	Coke .	12	1.689	1.137	24
9.	Mineral Oil	130	0.822	1.112	118
10.	Synthetic Resins	17	0.813	0.968	20
		428	1.130	1.074	521
11.	Chemical n.e.s.	132	0.969	1.086	139
12.	Iron & Steel	12		1.256	21
13.	Aluminium	48	1.325	1.658	89
14.	Non-ferrous Metals		1.132	1.165	1610
15.	Mechanical Engineering	1097	1.260		145
16.	Instrument Engineering	103	1.260	1.115	
17.	Electrical Engineering	547	1.260	1.105	761
18.	Shipbuilding	327	1.221	1.103	438
19.	Motor Vehicles	602	1.128	1.107	753
20.	Aircraft	309	1.250	1.535	592
21.	Vehicles n.e.s.	139	1.238	1.119	193
22.	Metal Goods	230	1.351	1.207	375
23.	Textiles	783	1.090	1.037	885
24.	Leather, etc.	740	1.029	1.096	837
25.	Building Materials	39	1.211	1.108	53
26.	Pottery & Glass	47	1.191	1.142	64
27.	Timber	34	1.245	1.187	51
28.	Furniture	168	1.245	1.175	245
29.	Paper & Board	39	1.270	1.131	56
30.	Paper Products	81	1.219	1.141	113
31.	Printing & Publishing	194	1.464	1.343	380
32.	Rubber	66	1.120	1.073	79
33.	Other Manufacturing	145	1.311	1.109	211
34.	Construction	1682	1.297	1.208	2635
. 35.	Gas	152	1.359	0.991	205
36.	Electricity	162	1.161	1.248	235
37.	Water	34	1.112	1.288	49
38.	Transport & Communicati		1.285	1.198	1798
	Distribution	2560	1.416	1.180	4278
39. 40.	Services n.e.s.	2182	1.469	1.202	3852
40.	Dervices n.e.s.	LIVE			

TABLE 3

Imports 1954 at 1954 & 1968 prices

£ million

	Category	1954 impo 1954 prio		imports prices
1.	Agriculture	919		1097
2.	Coal	17		27
3.	Other Mining		Complementary	
4.	Cereals	32		43
5.	Food	642		658
6.	Drink	25		33
7.	Tobacco (manufactures)	1		1
8.	Coke	0		0
9.	Mineral Oil	84		93
10.	Synthetic Resins	9		8
11.	-	160		176
	Iron & Steel	25		26
	Aluminium	31		44
	Non-ferrous Metals	153		233
	Mechanical Engineering	72		110
16.		11		18
17.		17		25
18.	Shipbuilding	4		5
19.		9		15
20.		20		51
21.		2		4
22.		20		39
23.		237		249
24.		40		68
25.	Building Materials	5		6
26.	Pottery & Glass	6		8
27.	Timber	see	Complementary	Imports
28.	Furniture	1		1
	Paper & Board	see	Complementary	Imports
30.	Paper Products	2		2
31.	Printing & Publishing	5		8
32.	Rubber	55		3
33.	Other Manufacturing	10		13
34.	Construction	0		0
35.	Gas	0		0 0 0
36.	Electricity	000		0
37.	Water	0		0
38.	Transport & Communication	n .0		03
39.	Distribution	1		
40.	Services n.e.s.	843		1253

TABLE 3 (Cont)

Complementary Imports	1954 imports 1954 prices	1954 imports 1968 prices	. Of which intermediate
Crude Mineral Oil	193	212	212
Iron Ore	54	55	55
Non-ferrous Ores	77	138	138
Mining Products	31	40	28
Timber	187	242	223
Paper & Board	146	163	147
Tobacco	67	89	89
Natural Rubber	40	35	35

Estimation of intermediate output plus competitive imports

TABLE 4

	Gross Output + Imports 1954	Imports	Gross Output 1954	Deflator* 1954-63	* Deflator 1963-68	Gross Output 1954 at 1968 Prices	Final Demand Minus Competitive Imports	Intermediate Output Plus Competitive Imports	Adjustment For Diagonal Element	Intermediate Output 1954 Including Competitive Imports
Synthetic Resins	5-16	9.3	88.2	0.809	0*965	69	5	58	٦	57
Iron and Steel	1272.5	25.2	, 1247.3 .	1.258	1.079	1696	113	1583	- 125-	1052
Aluminium	148.2	31.0	117.2	1.15	1.258	168	-23	191	-35	156
Non-ferrous Metals	· 542.3	153.0	389.0	1.13	1.732	761	441-	905	-114	162
Building Materials (incl. Pottey & Glass)	493.6	12.2	4.184	1.16,1.16	5 1.09,1.108	8 623	103	520	-35	485
Timber	445.3	183.0	262.3	1.39	1.23	844	59	614	-15	404
Rubber	219.5	4.8	214.7	1.201	1.068	276	94	200	4	196

* Deflators for building materials are for building materials, Cement and Pottery and Glass respectively

-

APPENDIX 5.1

S.I.T.C. Codes for hea	dings in	Tables	5.1-5.5
------------------------	----------	--------	---------

S.I.T.C. code

Heading

Engineering Materials:

281, 282, 67	Iron and Steel
283, 284, 285, 68	Non-ferrous Metals
58	Plastics
23	Crude Rubber
24	Wood, Lumber, Cork
661, 662, 663,	Building Materials &
273-276	Miscellaneous Minerals

Other Materials:

21 22 25 26 271 29	Hides, Skins, Furs Oil seeds, nuts and kernels Pulp and waste paper Textile Fibres, not manufactured and waste Crude Fertilizers Crude Animal and Vegetable Materials
Chemicals:	
51-57, 59	Chemicals (excluding Plastics)
Fuels:	
3	Mineral Fuels, Lubricants etc.
Machinery and Transport	Equipment:
71 72 73	Non-Electrical Machinery Electrical Machinery and Appliances Transport Equipment
Other Manufactured Comm	odities:
61 62 63 64 65 664-667 69 8	Manufactures of leather and furs Manufactures of rubber Manufactures of wood and cork (excluding furniture) Manufactures of Paper and paperboard Textile yarn, fabrics and articles Non-Metallic Mineral Manufactures n.e.s. Manufactures of Metal n.e.s. Other
Food and Beverages:	

0, 1

Food, Beverages and Tobacco

Unallocated:

4, 9

APPENDIX 5.2

Imports & Exports at Constant Prices

The purpose of obtaining constant price estimates of imports and exports by commodity group was to present a more authentic representation of trends in the commodity composition of trade than those available using undeflated data. This was necessary because of the substantial changes in relative price structure over the period. In particular, the share of fuels in imports rose dramatically in 1974 in current price terms, but this was solely attributable to price changes.

Since the estimates are not used in any further analysis, the approximate method of deflation used was thought to be adequate.

The methodology was as follows:

<u>1</u> For all years post-1970, deflators were constructed for each twodigit SITC category by the CSO. These were obtained via Mr J.Wailing of the CSO. Thus the 1972, 1973, 1974 and 1976 figures could be reestimated at 1970 prices.

<u>2</u> For years preceding 1970, the import and export volume index for the larger commodity groups, given in the Annual Abstract of Statistics (15) were used as control totals.

<u>3</u> For the commodity sub-groups, all categories were converted to 1968 prices using figures presented in (53), (Tables 48-59). The categories given in these Tables did not correspond to the categories used in Tables 5.1 to 5.4. As a result, a proxy was used in certain cases. For example, the chemicals category in Tables 5.1 to 5.4 excludes synthetic resins, whereas the chemicals

category in (53) includes this group of products. Since synthetic resins only constitute a small proportion of the chemicals category, this discrepancy was ignored in the deflation of 'chemicals n.e.s.'.

In some cases, where the corresponding category in (53) was too aggregated, a proxy from the Annual Abstract of Statistics was used. (Wholesale price index table, derived from figures published by the Department of Industry).

<u>4</u> The figures for years pre-1970 were converted from 1968 to 1970 prices, in the case of exports, using figures for exports by MLH again provided by the CSO. Once again, Annual Abstract wholesale price proxies were used where SIC categories did not coincide with the SITC categories or where there were gaps in the data. For imports, the conversion from 1968 to 1970 prices was made on the basis of wholesale price index numbers given in (15), except for a few commodities for which specific import price index numbers are available, either from (15) or implied from figures in the Annual Statement of Trade (36).

This is probably the weakest link in the process, but since it only covers a period of two years, it is hoped that this would not seriously affect the general indicators of trends provided by the constant price figures.

The import and export volume figures for the larger categories were once again used as control totals and adjustments were made to commodities for which deflators were suspect, such that the sub-groups summed to the commodity group totals where these were applicable.

The figures upon which Tables 5.1 - 5.4 are based, are given in the following tables:

0

Imports

£ million

	1953	1958	1963	1968	1972	1973	1974	1976
ENGINEERING MATERIALS								1.400
TOTAL	608	627	759	1418	1509	2266	3447	4102
Iron and Steel *	130	120	140	240	362	· 535 888	893	1252 1432
Non-Ferrous Metals *	230	242	312	748	621		1358 361	463
Plastics	5	16	43	82 48	143 47	205 75	100	140
Crude Rubber	56	76 140	53 170	231	253	458	590	585
Wood, Lumber, Cork Miscellaneous Building	159	140	170	2)1	2))	4,00	550	,0,
Miscellaneous building Materials and Minerals	28	33	41	69	82	105	145	230
Materials and Minerals	20	"	1	• • • •	02			-,-
OTHER MATERIALS								
TOTAL	629	480	549	541	600	847	1050	1468
Textile Fibres	391	247	268	219	213	322	310	438
Paper Pulp etc.	68	98	115	155	172	201	330	463
Other	170	135	166	167	215	324	410	567
CHEMICALS (excluding Plastics)	70	104	162	333	508	692	1218	1536
FUELS	313	439	558	901	1242	1724	4626	5645
MACHINERY AND TRANSPORT EQUIPMENT								
TOTAL	159	210	407	1189	2238	3293	3903	6386
Non-Electrical Machinery	97	131	254	633	1040	1526	1959	3255
Electrical Machinery	10	32	93	237	528	847	1009	1382
Transport Equipment	52	47	60	319	670	919	935	1749
OTHER MANUFACTURED GOODS						~	101.	
TOTAL	225	421	769	1429	2471	3645	4641	6422
Manufactures of Leather	21	20	27	34	47	67	61	107
Manufactures of Rubber	1	3	8	28	42	57	88	130
Manufactures of Wood and Cork	24	38	53 114	96 185	142 311	244	232 725	290 826
Manufactures of Paper and Board	33 48	78 85	145	231	370	515	688	911
Manufactures of Textiles Non-Metallic Mineral Manu-	40	05	149	251	570	20	000	,
factures n.e.s.+	53	88	146	320	531	816	914	1276
Manufactures of Metal n.e.s.	11	16	31	71	136		286	415
Other Manufactures	34	93	245	464	892			2467
FOOD, BEVERAGES AND TOBACCO								
TOTAL	1303	1491	1676	1900	2356	3094	3762	4983
NON-ALLOCATED IMPORTS	71	60	102	187	219	292	588	627
TATOT	3378	3832	4982	7899	11143	15852	23234	31169

* Including ores and scrap. + Including Pottery , Glass and Precious Stones.

Sources: (15), (36), (112).

Imports

- -

£ million 1970 Prices

	1953	1958	1963	1968	1972	1973	1974	1976
ENGINEERING MATERIAL	979	1009	1193	1551	1626	1920	1932	1889
TOTAL Iron and Steel *	170	130	193	290	365	447	504	555
Non-Ferrous Metals *	530	595	640	803	730	817	845	750
Plastics	8	13	43	85	160	198	217	223
Crude Rubber	43	62	48	51	56	64	53	62
Wood, Lumber, Cork	194	171	214	247	239	297	235	206
Building Materials &		-0					-0	07
Miscellaneous Minerals	34	38	55	75	76	97	78	93
OTHER MATERIALS		- 4-			-1.1.		500	F(7
TOTAL	551	513	578 246	573	544 190	556 173	570 170	563 167
Textile Fibres	.290 81	253 110	143	230 179	169	168	170	156
Paper Pulp etc. Other	180	150	189	164	185	215	230	240
					1. 1. 2.			
CHEMICALS (n.e.s.)	85	119	198	337	485	557	570	590
FUELS	272	361	575	817	1048	1062	1005	822
MACHINERY AND TRANSPORT EQUIPMENT								
TOTAL	253	330	555	1337	2175	2767	2816	2955
Non-Electrical Machinery	160	198	335	722	1079	1303	1392	1417
Electrical Machinery	23	60	125	263	548 548	811 653	850 574	818 720
Transport Equipment	70	72	95	352	240	000	2/4	120
OTHER MANUFACTURED GOODS								
TOTAL	371	612	1043	1558	2322	2812	2895	2870
Manufactures of Leather	30	28	32	37	40	38	32	39
Manufactures of Rubber	3	4	10	31	37	47	58	55
Manufactures of Wood and Cork	55	60	78	108	131	171	135	119
Manufactures of Paper and Board	58 62	107	168 190	211 245	282 355	313 433	362 442	484
Manufactures of Textiles Non-Metallic Mineral Manu-	. 02	119	190	245	555	4))	442	POP
factures n.e.s.+	98	156	214	348	501	600	622	578
Manufactures of Metal n.e.s.	25	38	41	81	132	162	188	189
Other Manufactures	40	100	310	497	844	1048	1056	1100
FOOD AND BEVERAGES	1690	1948	2019	2120	2088	2094	2026	2072
OTHER	50	75	80	203	201	239	260	305
TOTAL	4251	4967	62/11	8406	10488	12007	12075	12066
TOTAL	4231	4907	0241	0490	10400	12007	1201)	12000

* Including ores and scrap.

+ Including Pottery, Glass and Precious Stones.

Sources: (15), (36), (56), (53), (77).

Exports

£ million

TRATING NAMEDTALC	1953	1958	1963	1968	1972	1973	1974	1976
ENGINEERING MATERIALS TOTAL Iron and Steel * Non-Ferrous Metals * Plastics Crude Rubber Wood, Lumber, Cork	258 135 66 25 -	359 191 98 36 -	490 218 140 64 19 -	786 279 302 111 17 1	1076 393 360 176 28 2	1419 448 560 225 38 3	1931 56 3 750 366 54 6	2508 850 793 531 61 9
Miscellaneous Building Materials and Minerals	32	34	49	76	117	145	192	264
OTHER MATERIALS TOTAL Textile Fibres Paper Pulp etc. Other	82 71 - 11	95 75 - 20	156 108 1 48	153 93 2 58	202 108 2 92	278 172 4 102	334 202 12 120	468 260 9 199
CHEMICALS (excluding Plastics)	153	227	308	496	785	1047	1778	2514
FUELS	146	131	167	168	239	370	767	1254
MACHINERY AND TRANSPORT EQUIPMENT TOTAL Non-Electrical Machinery Electrical Machinery Transport Equipment	937 398 172 367	1347 566 222 559	1838 878 326 634	2657 1310 423 924	4014 2054 662 1298	4774 2413 807 1554	6059 3083 1132 1844	10125 5056 2004 3065
OTHER MANUFACTURED GOODS TOTAL Manufactures of Leather Manufactures of Rubber Manufactures of Wood and Cork Manufactures of Paper and Board Manufactures of Textiles Non-Metallic Mineral Manu-	789 17 29 2 29 325	819 20 37 3 38 254	986 31 49 5 47 260	1546 46 62 7 66 309	2489 67 96 11 102 445	3353 84 121 15 129 590	4127 94 167 25 199 745	6463 148 300 53 278 933
factures n.e.s. + Manufactures of Metal n.e.s. Other Manufactures	86 146 155	115 151 201	169 134 291	333 185 538	552 290 926	925 339 1150	948 470 1479	1572 800 2379
FOOD, BEVERAGES AND TOBACCO TOTAL	146	188	280	430	660	876	1063	1692
NON-ALLOCATED IMPORTS	90	85	140	198	294	388	541	885
TOTAL	2601	3251	4365	6434	9759	12505	16600	25909

* Including ores and scrap.

+ Including Pottery, Glass and Precious Stones.

Sources: (15), (36), (112).

Exports

£ million 1970 Prices

	1953	1958	1963	1968	1972	1973	1974	1976
ENGINEERING MATERIALS TOTAL	458	633	695	868	1141	1261	1148	1159
Iron and Steel*	172	220	283	333	393	390	301	339
Non-Ferrous Metals* Plastics	215 15	330 30	278 62	336 115	436 186	531 204	490 212	395 250
Crude Rubber	-	1	6	18	26	31	33	24
Wood, Lumber, Cork	-	-	-	1	1	2	3	. 4
Building Materials and Miscellaneous Minerals	56	52	66	85	99	103	109	147
		-						
OTHER MATERIALS TOTAL	50	55	79	164	189	191	199	212
Textile Fibres	45	45	66	98	106	118	117	124
Paper Pulp etc. Other	- 5	- 10	- 13	66	83	- 73	82	3 85
Other	,	10	.,	00				
CHEMICALS (excluding Plastics)	170	254	390	559	750	918	1105	1080
FUELS	130	110	140	168	218	221	210	223
MACHINERY AND TRANSPORT EQUIPMENT								
TOTAL	1636	2020	2420 1180	2900 1424	3496	3876	4105 2096	4386 2133
Non-Electrical Machinery Electrical Machinery	853 238	956 280	359	450	1775 587	1973 669	709	853
Transport Equipment	545	784	881	1026	1134	1234	1300	1400
OTHER MANUFACTURED GOODS								
TOTAL	1279	1219	1385	1742	2366	2777 56	2830 61	3028 59
Manufactures of Leather Manufactures of Rubber	32 45	27 48	35 63	51 70	55 85	102	106	118
Manufactures of Wood and Cork	4	5	7	. 8	8	11	15	21
Manufactures of Paper and Board Manufactures of Textiles	60 430	75 312	65 305	76 324	91 441	109 504	128 494	123 489
Non-Metallic Mineral Manu-	4,0	7.2						
factures n.e.s.+	162	202	265	362	488	657 288	584 317	669 329
Manufactures of Metal n.e.s. Other Manufactures	236 310	190 360	200 445	636	936	1050	1125	1220
FOOD, BEVERAGES AND TOBACCO TOTAL	192	230	330	468	581	696	730	802
NON-ALLOCATED	160	180	190	210	250	274	401	370
TOTAL	4075	4701	5629	7099	8991	10215	10728	11260

* Including ores and scrap.

+ Including Pottery, Glass and Precious Stones. Sources: (15), (36), (112), (53), (77).

APPENDIX 5.3

Interpretation of Wrought/Unwrought Ratios for Trade in Metals

This section is based on the assumption that a relatively high ratio of worked to unwrought $(\frac{W}{U})$ metal in exports and a low $(\frac{W}{U})$ ratio in imports is typical of an industrial country which specialises in processing metals rather than producing the primary metal principally for export.

To assist the interpretation of the text:

Inference may be made both from the 'static' $\frac{W}{U}$ ratios and the relative growth in these ratios over time.

The bilateral comparisons with West Germany are used since this is the most appropriate way to test for international specialisation. They also allow the comparison of ratios in the UK's total trade to those in trade with an advanced industrial competitor.

It should be possible to infer, by this method, in which products the UK had a comparative advantage, under conditions of relatively few tariff distortions.

The effect of tariffs and subsidies is discussed in Section 5.1.3.

APPENDIX 5.4

SIC Codes of 24-order matrix used in Chapter 5

1.	Energy	101, 104, 261, 262, 263, 601, 602
2.	Mining and Quarrying n.e.s.	102, 103, 109
3.	Chemicals	271-275, 277-279
4.	Textiles	ORDERS $\overline{XIII} - \overline{XV}$
5.	Synthetic Resins	276
6.	Iron and Steel	311, 312, 313
7.	Aluminium	321
8.	Non-ferrous Metals	322, 323
9.	Mechanical Engineering	ORDER VIT
10.	Instrument Engineering	ORDER VIII
11.	Electrical Engineering	ORDER TX
12.	Shipbuilding	ORDER X
13.	Motor Vehicles	380, 381
14.	Aerospace	383
15.	Other Vehicles	382, 384, 385
16.	Other Metal Goods	ORDER XII
17.	Building Materials	ORDER XVI
18.	Timber	471, 474, 475, 479
19.	Paper & Paper Products	ORDER XVIII
20.	Rubber	491
21.	Other Manufacturing	472, 473, 492-499
22.	Construction	ORDER XX
23.	Transport	701-707
24.	Other	Remainder excluding Public Administration

APPENDIX 5.4 (CONTINUED)

SITC Codes of 24 commodity headings

1.	Energy	3
2.	Mining and Quarrying n.e.s.	27, 28
3.	Chemicals	51-57, 59
4.	Textiles	61, 65, 84, 85
5.	Synthetic Resins	58
6.	Iron and Steel	67
7.	Aluminium	684
8.	Non-ferrous Metals	68 (ex. 684)
9.	Mechanical Engineering	71 n.e.s. 812.1
10.	Instrument Engineering	86
11.	Electrical Engineering	714.2B, 714.3B, 719.1(5), 72, 812.4, 891.1, 891.2
12.	Shipbuilding	711.1B, 711.3A, 711.5A, 711.6B, 735
13.	Motor Vehicles	711.5B, 712.5, 732
14.	Aerospace	711.4, 734
15.	Other Vehicles	711.10, 731, 733
16.	Other Metal Goods	667, 69, 812.3, 896, 897
17.	Building Materials	661-666
18.	Timber	243, 63
19.	Paper and Paper Products	25, 64, 892
20.	Rubber	62
21.	Other Manufacturing	719.9(3)C, 81 n.e.s. 82, 83, 891 n.e.s 893, 894, 895, 899
22.	Construction	-
23.	Transport	-
24.	Other	All other categories.

APPENDIX 6.1

Condition for Dovring Productivity Index to be unbiased

Dovring estimates total indirect labour requirements for industry l by multiplying the total intermediate input to industry l by the share of wages in the output of the rest of the economy. This figure is assumed to be the total wage component of the intermediate input to industry l and division by the average wage rate for the rest of the economy provides an estimate of the volume of labour required to produce this input.

Thus, assuming there are 3 industries in the economy and using the notation of Section 6.4.2, the total wage component of the intermediate input industry 1 is estimated by:

$$(d_{21}+d_{31}) \times \frac{(w_2 l_2 + w_3 l_3)}{(Y_2 + Y_3)}$$
(1)

where Y_2 and Y_3 are the total net output of industries 2 and 3 respectively.

The labour requirement for this input is estimated by dividing (1) by $\frac{w_2 l_2 + w_3 l_3}{l_2 + l_3}$, the average wage rate in the economy, excluding industry 1.

This gives the expression:

Now the "correct" labour requirement for this input is obtained by the separate estimation of labour requirements of each industry involved:

$$= \frac{\frac{d_{21} \times \frac{w_2}{Y_2}}{w_2}}{\frac{d_{21}}{Y_2}} + \frac{\frac{d_{31} \times \frac{w_3}{Y_3}}{w_3}}{\frac{w_3}{Y_3}}$$

assuming the wage rate is homogeneous within industries (Dovring assumes it is homogeneous across all industries).

Thus for Dovring's estimate of total labour requirements to be correct, it is necessary for (2) to equal (3) and thus for the condition $\frac{d_{21}}{d_{31}} = \frac{(1_2 + 1_3) Y_2 Y_3 - 1_3 Y_2 (Y_2 + Y_3)}{(1_2 Y_3 (Y_2 + Y_3) - (1_2 + 1_3) Y_2 Y_3} \dots (4)$ to hold.

Multiplying out brackets, cancelling and dividing through $Y_2 Y_3$, (4) becomes

$$\frac{d_{21}}{d_{31}} = \frac{1_2 - 1_3 \frac{Y_2}{Y_3}}{1_2 \frac{Y_3}{Y_2} - 1_3} = \frac{\frac{1_2 Y_3 - 1_3 Y_2}{Y_3}}{\frac{1_2 Y_3 - 1_3 Y_2}{Y_2}} = \frac{Y_2}{\frac{Y_3}{Y_3}}$$

Thus industry 1 must purchase the outputs of industries 2 and 3 in proportion to the total outputs of those industries.

If labour's share of income is constant across industries, then this condition becomes $\frac{d_{21}}{d_{31}} = \frac{w_2}{w_3}\frac{l_2}{l_3}$ and thus industry 1 would have to purchase the output of industries 1 and 2 in proportion to the wage component of the output of each industry.

This condition will hold if there is no interdependence between industries 2 and 3 or if wage rates are uniform throughout the economy,

When generalised to n inputs, it is very unlikely that there will not be interdependence between the non-principal inputs and so this system has a high probability of bias, the magnitude of which depending upon the variance in wage rates across industries.

APPENDIX 6.2

Explanation of Notation in Equation 6.11

In order to deflate a coefficient a_{ij} , it should be considered as the ratio of the flow d_{ij} to the gross output of j, q_j .

The flow d_{ij} should be multiplied by the deflator relevant to the industry i. q_j should be multiplied by the price ratio relevant to industry j.

Thus the coefficient a_{ij} should be multiplied by the deflator for i and divided by the deflator for the industry j.

Assuming for the amount that deflators are uniform across commodity rows the algebraic expression for this operation would be:

$$p_i a_{ij}/p_j$$
 or in matrix form $\hat{p}_0 A_1 \hat{p}_0^{-1}$.

Though the deflators actually used were not uniform across rows, it was thought that this was an adequate algebraic expression of the process involved.

APPENDIX 6.3

Why the "intensiveness" index is insensitive to deflation errors in non-principal industries

If the deflator for industry K is incorrectly estimated, making the assumption that both the correct and erroneous deflators are uniform across all purchasers of the output of industry k, then only row and column k of the inverse matrix will be affected by this error. The other cells will be as if all industries had been correctly deflated.

The numerator of the productivity index for all industries except k will be unaffected, since the gross output of each industry is deflated independently of the deflation of the output of other industries.

Under certain circumstances, the denominator will be unaffected as well:

If the ratio of the correct price multiplier to the incorrect one is $\hat{\xi}$, then each element of row k of the inverse matrix would be estimated as x_{kj} . $\hat{\xi}$ where x_{kj} is the correct element for the k th row and j_{th} column. Since one element in each column is thus incorrect, this may still be the source of error when columns of the matrix are used to estimate the primary input intensiveness of an industry. However, if the gross output of commodity k has also been estimated as q_k . $\hat{\xi}$ instead of q_k , then the estimate of the ratio of primary input to gross output for industry k will be $\frac{1}{\hat{\xi}}$ times as great as it should be. When this primary input coefficient for the k_{th} industry is multiplied by an element in the k_{th} row of the inverse matrix, the errors cancel out, and since all other elements are correct, the accurate primary input estimates are obtained for all industries except k.

Of course this does not reduce the need to correctly deflate the output of industry k if it is wished to estimate the productivity change in that industry, but under these conditions, such an error will not affect the estimates for other industries.

This is not true of the VA/direct factor index, since the double deflated estimates of real output depend upon the deflation of the output of all industries.

APPENDIX 6.4

Capital Stock Estimates

The estimates of capital stock in manufacturing industry were constructed by Mr. A. Armstrong of the University of Bristol from figures supplied by Mr. T. Griffin of the C.S.O. Some of the information was obtained via Mr. I. Elliot of NEDO.

The estimates are at 1970 replacement cost and refer to the end of the year concerned.

For non-manufacturing industries, there was some very aggregated information in the C.S.O.'s National Income & Expenditure, and in (53). Where no figures were given in sufficiently disaggregated form in the Blue Book, disaggregation was performed by using the estimate of capital stock at 1963 replacement cost in (53) as weights. Since this approximation only applied to industries which were peripheral to the current study, it was not considered to be a serious flaw.

The manufacturing capital stock figures were estimated by the perpetual inventory method which measures end-year stock by adding gross capital formation during the year and subtracting scrapped plant and equipment from the beginning of year figure. The average life of plant was assumed to be 16 years and scrapping was assumed to take place over a range of years distributed about a mean of 16 years after the original investment. The average life of commercial vehicles was assumed to be 7 years. No allowance is made for embodied technological change and this was considered an advantage for reasons given in the text. This implies that there is no necessity to obtain data on the different vintages of capital stock employed in each industry, since the figures provided are adequate for estimating the average productivity of capital or average capital-output ratio, to which the current work is limited. The estimation of marginal productivity or incremental capital output ratio was beyond the scope of the current work.

APPENDIX 6.5

Factors affecting engineering industry productivity

1. Capacity Utilisation

(i) The inventory measure of capacity utilisation was obtained by subtracting the change in inventories for each industry over the year 1963 from that for 1968 (in 1963 prices) and dividing by the gross output for 1963.

The rationale was that firms tend to accumulate inventories at times of above average demand (which tend to coincide with times of strong expected demand) and to run-down inventories when demand is low. As explained in the text, these assumptions are not very satisfactory and this probably explains the poor performance of the measure in the statistical analysis.

(ii) The unemployment indicator was obtained from the figures relating to unemployment and to total employment by industry in the Department of Employment Gazette (109).

The indicator was:

$$\frac{U_{68}}{U_{68} + E_{68}} / \frac{U_{63}}{U_{63} + E_{63}}$$

where U_{68} is unemployment by industry in 1968, E_{68} is employment by industry in 1968.

Similarly for U63.

(iii) The output-capital ratio was obtained by the division of the first column of Table 6.8 by the fourth column of Table 6.7. The figures for all three indicators are given in Table 1 below.

2. Scale

The figures for average number of employees per establishment in 1968 relative to 1963 were obtained from the Report on the Census of Production 1968, Summary Table 42A (11), and are shown in Table 1 below.

3. Factor Ratios

The ratio of capital to labour was obtained by dividing the fourth column by the second column of Table 6.7.

4. Materials

The plastics coefficient ratios were obtained by summing the coefficients for synthetic resins and other manufacturing (the latter category consisting largely of plastics products), and dividing the 1968 coefficients (at 1963 prices) by the 1963 coefficients.

Similarly for the other materials. The change in the ratio of one material to another was obtained by dividing the above ratio for one material by that for another.

The ratios for each material (1968/1963) are shown in Table 1 (below).

Variables used in productivity regressions - Ratio 1968 to 1963

Non-ferrous Metals Ratio 1.12 0.76 0.81 0.81 0.56 1.00 6.03 62.0 0.62 0.64 1.86 0.75 14.0 0.73 0.83 0.82 0.87 1.40 0.64 0.77 1.17 Aluminium Ratio 06.0 1.42 1.11 0.87 0.57 0.85 1.08 2.50 1.46 0.96 1.40 0.78 1.00 1.21 1.25 1.30 1.11 0.80 1.57 0.71 1.00 Steel Ratio Iron & 1.15 1.14 0.67 1.05 0.75 1.01 1.30 1.08 0.86 1.04 0.87 1.04 1.30 1.31 46.0 1.10 1.17 0.98 1.12 0.96 0.84 Plastics Ratio 0.65 1.48 1.30 1.19 0.80 2.90 5.00 0.83 4.00 8.00 1.50 1.00 0.33 1.19 0.64 0.33 0.83 44.0 0.83 0.57 1.00 Operatives Administrative etc. 0.96 0.78 06.0 0.76 0.81 0.92 0.86 0.78 0.87 0.91 0.85 0.98 42.0 0.87 0.87 0.88 1.05 0.87 0.86 0.82 1.02 Capital 1.69 1.65 1.15 1.23 1.28 1.50 1.30 1.53 1.16 1.25 1.18 1.27 1.11 1.27 1.23 1.13 1.10 1.18 1.24 1.22 1.41 Establishment Average 69.0 1.05 Size 1.00 0.78 1.09 0.96 66.0 0.88 0.85 1.01 0.78 66.0 0.76 0.84 0.83 0.73 0.80 1.38 1.03 0.87 0.88 Output Capital 0.78 0.95 1.09 1.10 1.00 1.00 62.0 26.0 1.11 16.0 0.54 0.89 0.84 1.16 1.08 1.11 1.27 1.14 1.11 1.06 0.76 Capacity Utilisation Unemployment 3.06 1.48 1.75 1.00 1.09 0.64 2.11 1.45 1.15 06.0 0.96 0.10 2.05 1.11 1.49 0.22 1.23 1.01 1.05 1.40 0.92 Inventory (±1000) -12 9 9 62-64--52 -18 -137 Ŷ -14 -52 -25 18 22 8 N 7 5 31 44 Other Non-Electrical Machinery Other Electrical Engineering Industrial Plant & Steelwork Other Mechanical Engineering Insulated Wires & Cables Engineers' Small Tools Agricultural Machinery Construction Equipment Instrument Engineering Cans and Metal Boxes Electrical Machinery Industrial Engines Other Metal Goods Textile Machinery Office Machinery Other Vehicles Motor Vehicles Machine Tools Shipbuilding Electronics Aerospace Industry 200

TABLE 1

APPENDIX 6.6

Intermediate output change of industries implied by coefficients & final demand

£ million

4

		e implied by	Change implied by Final Demand			
	1963 based*	1968 based	Average	1963 based	1968 based	Average
gricultural Machinery	3.4	4.2	3.8	2.7	1.9	2.3
achine Tools	3.3	3.5	3.4	4.7	4.5	4.6
ndustrial Engines	-8.6	-10.7	-9.6	6.0	8.1	7.0
extile Machinery	0.2	-0.1	0.1	3.8	4.1	3.9
construction Equipment	32.0	40.0	36.0	13.3	5.3	9.3
office Machinery	12.1	14.2	13.1	5.6	3.5	4.6
ther Non-Electrical Machinery	90.1	104.7	97.4	48.1	33.5	40.8
ndustrial Plant & Steelwork	58.1	72.5	65.3	34.8	20.4	27.6
ther Mechanical Engineering	84.3	91.6	87.9	49.1	41.8	45.5
nstrument Engineering	-2.8	-1.7	-2.2	18.7	17.6	18.1
lectrical Machinery	-16.9	-22.9	-19.9	20.8	26.8	23.8
insulated Wires & Cables	-7.1	-9.1	-8.1	· 26.7	28.7	27.7
lectronics	104.9	113.2	109.1	23.0	14.7	18.8
Other Electrical Goods	64.7	66.6	65.6	41.6	39.7	40.7
Thipbuilding	-37.9	-48.8	-43.3	9.6	20.5	15.0
fotor Vehicles	22.1	27.2	24.6	28.4	23.3	25.9
Aerospace	13.6	14.0	13.8	-1.4	-1.8	-1.6
Other Vehicles	-25.1	-28.8	-26.9	3.0	6.7	4.8
Engineers' Small Tools	21.1	20.2	20.6	14.7	15.6	15.2
Cans & Metal Boxes	8.7	10.8	9.7	19.3	-17.2	18.3
Other Metal Goods	1.3	4.2	2.7	133.1	130.1	13.6

• 1963 based implies 1963 final demand based.

NOTES TO TEXT

NOTES TO CHAPTER 1

 The Standard Industrial Classificaction (SIC) is a system of classification of establishments according to industry, facilitating the comparability between statistics relating to industries.

The SIC gives a set of 3-digit Minimum List Headings relating to industry groups, which are aggregated into larger groups or 'orders'.

Slight revisions to the SIC are made from time to time and the classification used for the work of this thesis was that of 1968. (116).

2. The apparent discrepancies between Figure 1.1 and Table 1.2 in the estimate of the net output in materials and engineering industries occurred because the former was constructed using aggregated figures from Tables B and C of the 1968 Input-Output Tables (10), whilst the latter used the Report on the Census of Production (11).

All the input and output flows shown in Figure 1.1 sum to the gross output for each industry provided adjustments are made to inputs for indirect taxation. In the case of final demand, adjustment must be made for imports, indirect taxes and sales by final buyers.

NOTES TO CHAPTER 2

Please note these abbreviations since they occur frequently in the text. A list of abbreviations is given on Page 97

A list of definitions of terms is given on Page 94

However, it could be argued that primary aluminium producers, for example, are frequently affected by capacity shortages or surplus since there are few producers in the market and a long-lead time is required for investment.

The magnitude and indivisibility of the commitment is also a problem.

However, these are essentially short-term problems and the long run,price of inputs and output has been the overriding factor in determining the trend in consumption.

The fact that short-term capacity inflexibility is excluded from the price-output determination system should not lead to the conclusion that the problem of the large energy requirement for smelting is not accounted for. Any change in the price of energy inputs would be one of the supply determinants listed: $P_{\mathbf{x}}$ where \mathbf{x} = electricity.

References are occasionally made to dates outside this time period for the purpose of illustrating long-term trends.

The materials considered in this study are those which have a large number of applications across the economy. The production and consumption of these materials therefore affects, and is affected by, a wide range of economic factors.

The minor materials (or those whose total consumption in volume terms is relatively low), whilst sometimes crucial to specific processes and of geo-political importance, tend to be more specific in application and do not have the same degree of complexity of interdependence with the rest of the economy as do the "bulk" materials.

Methods do exist for the mathematical interpolation of production structures between census years, but they are of little value in the present exercise.

A general description of input-output techniques is provided in Appendix 4.1.

NOTES TO CHAPTER 3

- The period covered is broadly that between 1954 and 1974, although owing to differences in the availability of data, some information may refer to years outside this range, and similarly some tables may cover less than the whole period.
- Specific consumption is only an approximate measure and is subject to distortion via stock fluctuations and other factors. Over a long period, it is an indicator of the trend in intensiveness of use of a material.
- 3. The consumption figures in Table 3.3 refer to finished steel only - They ignore the non-steel output of the steel industry, mainly in the form of iron castings consumed by the transport equipment sector. This is a relatively small and declining portion of iron and steel output. (Production fell 15% between 1955 and 1975)
- 4. For the purpose of obtaining a weighted average index of end-use growth for a material, all end-use categories not listed in Table 3.2 were assumed to have grown at the same rate as manufacturing and construction in general. This probably produces a bias against those materials which are very intensively used in packaging since this sector has undoubtedly experienced above average growth. However, there are no figures covering the period concerned for aggregate packaging output, though there are figures for the output of certain types of packaging.

Having consulted 'Packaging Review' and P.I.R.A. it was decided that no meaningful figure for the 'packaging industry' could be obtained for the period in question.

- 5. Roberts (23) also produced a set of energy intensiveness figures based on process analysis and obtained substantially different results for aluminium, copper, zinc and lead. This is due to the allowance made by Roberts for scrap recycling which is a less energy intensive process than the production of the material from primary sources.
- Old scrap is that which is collected at the end of the life of the finished good. New scrap is that occurring in processing and available for immediate recycling.

NOTES TO CHAPTER 4.

- Constructed by V.H. Woodward and obtained from Marjorie Osborn of the C.S.O. Described in reference (55).
- 2. Subscripts represent the year described by the matrix. Superscripts represent the year at whose process the matrix is valued.
- Supplied by J. Wailing of the C.S.O. The absorption matrix for 1968 at 1963 prices was estimated by P. Wilding of the C.S.O. Some details of the calculations underlying this table are given in Appendix 4.2
- 4. There are alternatives to this approach. For example, Armstrong (39) suggests the occasional replacement of small negative entries with small positive ones where there is evidence of a significant value of transaction for that call.
- These deflators by MLH categories were supplied by Mr J. Wailing of the C.S.O.
- 6. The ratio of the volume of rolled aluminium sales in 1954 relative to 1963 was later obtained from industry sources. It did not conflict substantially with the original estimates of relative gross output for the two years.
- 7. As explained in Appendix 4.1 industry tables are more appropriate to the study of primary input intensiveness, since the original information on the purchase of primary inputs is collected on an industrial basis.
- 8. See Appendix 6.4.
- 9. Rank correlation is a way of measuring the relation between two variables when their probability distribution is not known. It is especially useful when there are few observations for each variable. It is measured by ascribing each observation of both variables a rank according to its place in the ordering of the variables when they are arranged in increasing (or decreasing) order of magnitude. The degree of correspondence between the ranking of the two variables is an indication of the correlation between them. Spearman's rank correlation coefficient is given by:

$$r_s = 1 - \frac{6 \le d^2}{n(n^2 - 1)}$$

where d is the difference between the rank of each observation of the two variables and n is the number of observations. The significance of r_s may be tested according to some Tables constructed for the purpose. When there are 8 observations as is the case in most of this Chapter, r_s must be at least about 65% to be significantly different to zero and thus to accept the hypothesis that there is some dependence between the 2 variables. r_s must be at least 70% if there are only 7 observations.

- 10 Intra-energy industry duplication was removed by subtracting from the total of each type of energy purchased indirectly, that proportion of energy which is consumed in conversion by the energy industries themselves.
- 11 Other important studies in this field were undertaken by Strout (113) and Reardon (61). The latter used a similar method to Carter.
- 12 See Appendix 4.1 for explanation of this equation.
- 13 The allocation of output change between final demand and coefficient change differs substantially between estimates for the two base years because of the interaction between final demand and intermediate coefficients. Some authors have attempted to overcome this problem by averaging the two estimates. Fromm(65) points out that the index number problem engendered is such that the average has no economic meaning, even though the two components exactly exhaust the change in output. This is an important theoretical point, but not one which has a great significance for a study such as the current one.
- 14 This is partly, but not wholly accounted for by the difference in price base. The discrepancy is possibly a result of the difference in non-principal production patterns between the two years. Nonprincipal production by the non-ferrous metals industry appeared to be relatively greater in 1968 than in 1963, thus making the ratio of outputs for 1968 over 1963 greater for the industrial comparison than for the commodity comparison.
- 15 Cement was omitted, since the only coefficient change of note was in the construction industry.
- 16 There may be technical factors concerning the use of the input-output tables which have tended to reduce observed aluminium consumption over time. A substitution of imported ingot by domestically smelted metal increases the value of domestic intra-industry transactions and thus more value is netted out from gross output. This will tend to reduce intermediate requirements for any given level of final demand.

NOTES TO CHAPTER 5

- This refers to the gross output of all industries necessary to produce the set of goods which are exported. The set of exports as conventionally measured, referred to as 'direct exports', is only one component of export-related output.
- These being categories 4 and 5 of the 1968 Input-Output Tables MLH 102, 103 and 109. That proportion of category 5, which was MLH 104 (crude petroleum), was included in 'other imports' in Figure 1.1.
- 3. The materials categories in Table 5.1-5.5 differ slightly from those used elsewhere, principally because SITC rather than SIC categories were used. The SITC categories corresponding to the headings in these tables are given in Appendix 5.1.

The method of deflation used to obtain the figures in Tables 5.2 and 5.4 is given in Appendix 5.2.

4. The proportion of non-chemical manufactures (SITC categories 6,7 and 8) in the total value of imports by the countries currently constituting the OECD increased from 41% to 48% in the period 1960 to 1976, in spite of a strong increase in the relative price of primary products.

Such growth is not sufficient to explain the rapid increase in the share of manufactures in UK imports over the period.

5. The figures for West German exports were obtained by firstly extracting the dollar values of exports according to SITC categories from (76) and then allocating them to the SIC categories represented in the 24-commodity breakdown used for the empirical work. These figures were then compared with the dollar values of UK exports according to the same categories and estimates of the sterling value of German exports obtained by multiplying the UK exports vector by the ratio of German to UK dollar export values.

The 24-commodity headings used for this exercise and their SIC and SITC equivalents are given in Appendix 5.4.

- 6. The nomenclature is the same as in (7) and therefore differs slightly from that in the remainder of this thesis.
- The fact that a domestic substitute exists makes it inappropriate to treat these commodities on a fixed volume/flexible price basis.
- The category 'timber and miscellaneous wood products' contains some products which are decidedly competitive. However, the imports of this category are more intensive of timber and basic wood products than the domestic counterpart.

NOTES TO CHAPTER 5 (Continued)

- 9. The NEDO methodology is algebraically represented in a slightly different way (58) but the actual calculations are analogous to those described here.
- 10. The alternative would be to use the more complex computations described by Becker (7) to take account of the interaction effect when changes in the coefficient of more than one commodity are postulated. This refinement was not thought necessary here, given the approximate nature of the exercise.

1.

NOTES TO CHAPTER 6

1. This is a very strong assumption since natural resources are undoubtedly a primary factor. In a period of abundance of raw materials, the assumption that labour and capital are the only scarce resources is incorrect but of little practical significance, since the total value of the output of this stage of production is so low relative to the total product of a developed economy (See Figure 1.1, Chapter 1). The rent component of raw materials is subsumed in the return to the factors of production responsible for the mining or otherwise obtaining of that material.

However there are signs that we are moving into an age of raw material shortage (106) (107) and thus the traditional emphasis upon labour and to a lesser extent capital saving, may have to be reviewed in the light of ever increasing natural resource rents. In this situation, the traditional labour and capital productivity comparisons would underweight the economic value of raw material saving.

- 2. Discussed in Section 6.3.
- 3. The inconsistencies and empirical errors engendered in ascribing a "productivity" to materials are discussed in Section 6.4. It may be, as suggested in Section 6.4 that improvements in the processing properties of materials leads to factor productivity gains in the user industries, but if this additional value is not reflected in the cost to the user industry or the return to the materials producer, it represents an allocative inefficiency, not a basis for a concept of "materials productivity".
- The environment here refers to the exogenous constraints acting upon the industry as opposed to those variables within the control of management and the workforce (Hall et al (108)).
- In addition, some movements towards one axis which do involve a movement away from the other, may be consistent with an improvement in productivity, dependent upon relative factor prices.
- 6. The term "principal industry" is used to denote that industry of which the productivity is being measured. "Non-principal industries" are those which have a direct or indirect input to the principal industry, but are separate entities.
- Assuming the marginal rate of substitution between the two inputs to be such that, within a given range, if the resource intensiveness of the intermediate input equals the direct resources displaced, output is unchanged.

NOTES TO CHAPTER 6 (Continued)

- 8. It will be remembered that the objective here is to construct an index of industry productivity and not an aggregate one for the economy. Thus additivity is not essential. However, use of the Thomson index leads to bias at both industry and national level.
- The appropriateness of this algebraic representation will be discussed in Section 6.5.
- The nomenclature has been changed to accord with that of the rest of this Chapter.
- 11. A similar method has nevertheless been used to estimate capital stock employed: West (98) used the "Giffen" method which derives an estimate of capital stock in each industry by multiplying the total income of capital by the reciprocal of the rate of return to capital by industry.
- 12. The algebra does not, of course, reflect the fact that some cells were deflated individually and uniform row deflators were not comprehensively applied.
- 13. Imports are included in the interindustry matrix.
- See Appendix 6.6 for change implied by coefficients and by final demand for engineering industries.

REFERENCES

(1)	PICK H.J.,	"Some Economic Consequences of Technical Decisions", Materials Science and Engineering, Vol. 10,1972, p. 301-323
(2)	BALLAL H.K.,	"Material Utilisation for High Productivity", The Production Engineer, Vol. 47,1968, p.352-353
(3)	RAWICZ-SZCERBO J.,	"Productivity of Materials", <u>The Production Engineer</u> , Vol. 42,1963, p.510-516
(4)	BAHIRI S.,	"Comparative Productivity Analysis in West Midlands Fasteners, Electrical, Metalworking and Vehicle Industries", Ph.D. Thesis, University of Birmingham, 1970
(5)	ZENZ G.J.,	"The Economics of Materials Management", Ph.D. Thesis, University of Wisconsin, 1967
(6)	PICK H.J., BECKER	P.E., "Direct and Indirect Uses of Energy and Materials in Engineering and Construction", Applied Energy, Vol. 1, 1975, p. 31-51
(7)	BECKER P.E.,	"Materials, Engineering and the Economy: An Input-Output Study of Technical Decisions in the United Kingdom", Ph.D. Thesis, University of Aston in Birmingham, 1975
(8)	BECKER P.E., PICK	H.J., "Resource Implications of Materials Waste in Engineering Manufacture", Resources Policy, Vol. 1, No. 3, 1975p. 142-153
(9)	CARTER A.P.,	"Structural Change in the American Economy", Harvard University Press, 1970
(10)	CENTRAL STATISTICA	AL OFFICE "Input-Output Tables for the United Kingdom 1968", HMSO 1974
	Also	"Input-Output Tables for the United Kingdom 1963", HMSO 1970
	Also	"Input-Output Tables for the United Kingdom 1972" Department of Industry Business Statistics Office, HMSO 1975
(11)	DEPARTMENT OF INDU	JSTRY BUSINESS STATISTICS OFFICE "Report on the Census of Production 1968", HMSO, 1973
	Also	"Report on the Census of Production 1963", and "Report on the Census of Production 1954"

(12)	ARMSTRONG A.G.	, CENTRAL STATISTICAL OFFICE Capital Stock Estimates by MLH (Unpublished)
(13)	ALEXANDER W.O.	"The Simple Economics of Rivalries Between Materials", Contemporary Physics, Vol. 8, Jan. 1967
(14)	KENNEDY A.J.,	"Future Markets for the Non-Ferrous Metals", Metal and Materials, p. 489
(15)	CENTRAL STATIS	STICAL OFFICE "Annual Abstract of Statistics", HMSO
(16)	PICK H.J.,	"The Role of Engineering Materials in the UK Economy", Draft NEDO paper, 1976
(17)	BRITISH STEEL	CORPORATION IRON AND STEEL STATISTICS BUREAU "Iron and Steel Industry Annual Statistics for the United Kingdom", B.S.C.
(18)	METALLGESELLS	HAFT A.G., "Metal Statistics", Frankfurt am Main
(19)	ANON	"Aluminium Extensions Undercut Steel in Assembly Costs", p.19-22 Metals and Materials, April 1976
(20)	UNITED NATIONS	S E.C.E. "Aspects of Competition between Steel and other Materials", U.N. (ST/ECE/STEEL/17)
(21)	ALUMINIUM IND	USTRY Private Communication
(22)	CHAPMAN P.F.,	"Energy Costs of Producing Copper and Aluminium from Primary and Secondary Sources", in "Proceedings of the Conference on the Conservation of Materials", Harwell, 1974
(23)	ROBERTS F.,	in "Proceeds of the Conference on the Conservation of Materials", Harwell, 1974
(24)	SCIENCE POLIC	Y RESEARCH UNIT, UNIVERSITY OF SUSSEX "Materials Conservation and Substitution", Draft NEDO paper 1976, University of Sussex
(25)	FINANCIAL TIM	ES 24 January 1977, reproduced from: "Cambridge Information and Research Service - Energy Report"
(26)	KIESSLING R.,	"Will Steel Appeal in AD 2000?", Metals and Materials, Vol. 8, February 1974, p. 112
(27)	TURNER M.S.,	"An Analysis of Factors Influencing the Consumption of Aluminium in the United Kingdom", M.Sc. Thesis, University of Aston in Birmingham, 1975

(28)CHAPMAN P.F., "Energy Conservation and Recycling of Copper and Aluminium", Metals and Materials, June 1974, p. 311-319 (29)DOWSING, R.J., "Copper: The enduring metal adapts to meet changing markets", Metals and Materials, June 1976, p. 19-25 (30)CROWTHER J.. in "Proceedings of the Conference on the Conservation of Materials", Harwell, 1974, p. 263-276 (31) FREEMAN C. "The Plastics Industry", National Institute Economic Review Nov. 1963 p. 22-62 (32)UNITED NATIONS, DEPARTMENT OF ECONOMIC AND SOCIAL AFFAIRS "Input-Output Tables and Analysis", Studies in Methods, Series F, No.14, Rev.1, 1973 (33)MIERNYK W.H., "The Elements of Input-Output Analysis", Random House, 1965 (34)YAN C.S., "Introduction to Input-Output Analysis", Holt, Rinehart and Winston, 1969 (35)GIGANTES T ... "The Representation of Technology in Input-Output Systems" in "Contributions to Input-Output Analysis" (Carter A.P. and Brody A. Eds); North Holland Publishing Co. Amsterdam, 1970 (36)UK BOARD OF TRADE "Trade and Navigation Accounts of the United Kingdom", **HMSO** (37)CRESSY R.C., "Commodity and Industry Technology: Symbols and Assumptions". Manchester School of Economic and Social Studies, 44(2), 1976 (38)STONE R., BACHARACH M., AND BATES J., "Input-Output Relationships 1954-1966", A Programme for Growth, Volume 3, Department of Applied Economics Cambridge, Chapman & Hall, 1963 "Technology Assumptions in the Construction of UK (39)ARMSTRONG A.G., Input-Output Tables" in Allen R.I.G. & Gossling W.F.(eds); "Estimating and Projecting Input-Output Coefficients", Input-Output Publishing Co., London, 1975 LEONTIEF W., (ed) "Studies in the Structure of the American Economy -(40)Theoretical and Empirical Explorations in Input-Output Analysis", N.Y. Oxford University Press, 1957 (41)STONE R.A., "Input-Output Relationships 1954-60", Department of Applied Economics, Cambridge, Chapman & Hall, 1963

- (42)BARKER T.S., "Projecting Alternative Structures of the British Economy" Department of Applied Economics, Cambridge, Reprint Series No. 6, Cambridge 1976 (43)LEONTIEF W., "The Dynamic Inverse", in "Contributions to Input-Output Analysis" (Carter A.P. & Brody A., Eds) North Holland Publishing Co., 1976 BALDERSTON J.B., AND WHITIN T.M., "Aggregation in the Input-Output Model" in (44)0. Morgenstern (Ed): "Economic Activity Analysis", N.Y., 1954 "Criteria for Aggregation in Input-Output Analysis", FISHER W.D., (45)Review of Economics and Statistics, XL No. 3, p. 250-260, 1958 (46)GHOSH A., "Input-Output Analysis with Substantially Independent Groups of Industries", Econometrica, 28, p. 88-96, 1960 (47)UNITED NATIONS DEPARTMENT OF ECONOMIC AND SOCIAL AFFAIRS, STATISTICAL OFFICE "A System of National Accounts", Studies in Methods, Series F, No. 2, Rev.3, U.N., N.Y., 1968 (48)EILON S., GOLD B., AND SOESAN J., "Applied Productivity Analysis for Industry", Oxford, Pergamon Press, 1976 GOSSLING W.F., (49)"Productivity Trends in a Sectoral Macro-Economic Model", Input-Output Publishing Co., 1975 (50)GOLD B., "Explorations in Managerial Economics: Productivity, Costs, Technology and Growth", N.Y., Basic Books, 1971
- (51) WILDING P., "A 1968 Constant Price Input-Output Table for the United Kingdom" - Tables and Description of Construction (unpublished C.S.O. paper)
- (52) BARKER T.S., "Foreign Trade in Multisectoral Models", in Brody, A. and Carter A.P. (eds): "Input-Output Techniques", North Holland Publishing Co., 1972

(53) ARMSTRONG A.G., "Structural Change in the British Economy 1948-68", Department of Applied Economics Cambridge - "A Programme for Growth No. 12", Chapman & Hall 1974

- (54) CENTRAL STATISTICAL OFFICE "Price Index Numbers for Current Cost Accounting", HMSO, 1976
- (55) WOODWARD V.H., "A 70 Sector Input-Output Table for 1954", Department of Applied Economics, Cambridge, 1971

CENTRAL STATISTICAL OFFICE (56)"National Income and Expenditure", HMSO "The Natural Resource Requirements of Commodities", WRIGHT D.J., (57)Applied Economics, 7, 1975, p. 31-39 NATIONAL ECONOMIC DEVELOPMENT OFFICE (58)"The Increased Cost of Energy - Implications for UK Industry", HMSO, 1974 "Price Propagation in an Input-Output Model and determining the implications of high energy costs for industrial prices", HMSO, 1975 DEPARTMENT OF INDUSTRY (59)"United Kingdom Energy Statistics", HMSO, London "Applications of Input-Output Analysis to Energy CARTER A.P., (60)Problems", Science, April 1974, Vol. 184 p.325-329 Science, April 1974 "An Input-Output Analysis of Energy Use Changes REARDON W.A.. (61) from 1947 to 1958 and 1958 to 1963", Pacific Northwest Laboratories, Battelle Institute, 1972 BRAVARD J.C., AND PORTAL C., (62) "Energy Requirements in the Production of Metals". Oak Ridge Laboratory Report VACCARA B.N., AND SIMON N.W., (63) "Factors affecting the post-war industrial composition of real product" in "The Industrial Composition of Income and Product", National Bureau of Economic Research, N.Y., 1968 BEZDEK R.M., AND WENDLING R.M., (64)"Disaggregation of Structural Change in the American Economy 1947-1966", Review of Income and Wealth, 1976 p. 167-85 "Comments to (63) in "The Industrial Composition FROMM G., (65) of Income and Product", N.B.E.R., N.Y., 1968 "Changes over Time in Input-Output Coefficients for (66)VACCARA B.N., the United States" in "Applications of Input-Output Analysis", Carter A.P. and Brody A.(Eds), North Holland Publishing Co., Amsterdam, 1969, p.238-260 "The Contribution of the Materials Scientist in NURSE R.W., (67)Building", Royal Society of London Philosophical Transactions, Series A, Vol.272, p.585-593, 1972 RUBBER AND PLASTICS RESEARCH ASSOCIATION (68)Private Communication

- (69) DEUTSCHES INSTITUT FÜR WIRSCHAFTSORSCHUNG "Disaggregated medium term forecasting model for West Germany" Reported in DIW Economic Bulletin
- (70) HECKSCHER E., "The Effect of Foreign Trade on the Distribution of Income" in "Readings in the Theory of International Trade", Ellis H.S. and Meltzler L.A. (eds) (Phil. Blackiston, 1949)
- (71) OHLIN B., "Interregional and International Trade", Cambridge, 1933
- (72) DAVIES R., "Product Differentiation in the structure of UK Trade", Bulletin of Economic Research, May 1975 21(1), p.27-41
- (73) PANIC M., "Why the 'UKs' Propensity to Import is High", Lloyds Bank Review, Jan.1975
- (74) NATIONAL ECONOMIC DEVELOPMENT OFFICE "International Price Competitiveness, Non-Price Factors and Export Performance", (Unpublished) NEDO, April 1977
- (75) PANIC M., AND RAJAN A.H., "Product Changes in Industrial Countries' Trade 1955-1968", NEDO Monograph 2, London 1971
- (76) ORGANISATION FOR ECONOMIC COOPERATION AND DEVELOPMENT "Trade by Commodities, Series C", OECD
- (77) CENTRAL STATISTICAL OFFICE Unpublished deflators for imports and exports by SITC category, 1970-76
- (78) LEONTIEF W., "Domestic Production and Foreign Trade; The American Capital Position Re-examined", in Proceedings of the American Philosophical Society, Sept. 1953
- (79) LEONTIEF W., "Factor Proportions and the Structure of American Trade; Further Theoretical and Empirical Analysis", Rev. Economics and Statistics, Vol. 38, 1956 p.386-407
- (80) BARKER T.S., AND LECOMBER J.R.C., "The Import Content of Final Expenditures for the UK, 1954-72", Bulletin of the Oxford University Institute of Economics and Statistics, Vol. 32, No. 1, 1970, p. 1-17
- (81) DEPARTMENT OF APPLIED ECONOMICS CAMBRIDGE "The Determinants of Britain's Visible Imports, 1949-66", "A Programme for Growth No. 10", Chapman and Hall, London 1970

(82)	FENSKE R.W.,	"Analysis of the Meaning of Productivity", Productivity Measurement Review, No. 42, Paris, August 1965
(83)	SIMON H.,	"Administrative Behaviour", MacMillan, New York, 2nd Edition, 1961
(84)	FARRELL M.J.,	"The Measurement of Productive Efficiency", Journal of the Royal Statistical Society, Vol.120, Pt.3, Series A, 1957 p. 253-290
(85)	STIGLER G.,	"Economic Problems in Measuring Changes in Productivity", in "The measurement of real output and inputs", 1961
(86)	SCHMOOKLER J.,	"The Changing Efficiency of the American Economy, 1868-1938", Rev. Economics and Statistics, Vol. 34, 1952
(87)	ABRAMOVITZ M.,	"Resource and Output Trends in the U.S. Since 1870", American Economic Review, May 1956, 46, (2), p.5-23
(88)	SOLOW R.M.,	"Technical Change and the Aggregate Production Function", Rev. Economics and Statistics, 39, 1957, p.312-320
(89)	KENDRICK J.W.,	"Productivity Trends in the United States", National Bureau of Economic Research, General Series, No. 71, Princeton University Press, 1961
(90)	DENISON E.F.,	"The Sources of Economic Growth in the U.S. and the Alternatives Before Us", Committee for Economic Development, Supplementary Paper No. 13, N.Y., 1962
(91)	REDDAWAY W.B.,	AND SMITH A.D., "Progress in British Manufacturing Industries in the Period 1948-54", Economic Journal, Vol. 70, 1960 p. 17-37
(92)	JORGENSON D.W.,	AND GRILICHES Z., "The Explanation of Productivity Change", <u>Rev. Economic Studies</u> , Vol. 34, No. 99, 1967, p.249-282
(93)	ARROW K.J., CHEI	NERY H.B., MINHAS B.S., AND SOLOW R.M., "Capital-Labour Substitution and Economic Efficiency", <u>Rev. Economics and Statistics,</u> 43, p.225-250, 1961
(94)	DOMAR E.,	"On the Measurement of Technological Change", Economic Journal, December 1961
(95)	STAR S.,	"Accounting for the Growth of Output", American Economic Review, 1974
(96)	THOMSON E.J.,	"Productivity: Major Element in Economic Change?", Productivity Measurement Review, August 1965

(97) LOOMIS R.A., AND BARTON G.T., "Productivity of Agriculture, United States, 1870-1958", Technical Bulletin 1238, U.S.D.A., 1961 (98) WEST E.C., "Canada - U.S. Price and Productivity Differences in Manufacturing Industries, 1963", Ottawa, 1971 (Canada Economic Council Staff Studies No. 32) (99) DOVRING F., "Productivity of Labour in Agricultural Production" University of Illinois College of Agriculture, Agriculture Experiment Station Bulletin 726, Urbana, Illinois, Sept. 1967 (described in reference (49)) CHRISTENSEN L.R., AND JORGENSON D.W., (100)"U.S. Real Product and Real Factor Input, 1929-1967", Review Income and Wealth, March 1970 p.19-50 (101)CREAMER D., "Measuring Capital Input for Total Factor Productivity Analysis: Comments by a sometime estimator". Review of Income and Wealth, Series 18, No. 1, 1972 p. 55-78 "Some Approaches to the Theory and Measurement of (102)NADIRI M.I., Total Factor Productivity: A Survey", Journal of Economic Literature, Vol. 8, No.4, 1970, p.1137-77 "Concentration and Labour Earnings", (103)WEISS L.T., American Economic Review, March 1966, p. 96-117 "The Concept of Net Volume of Output with Special (104)GEARY R.C., Reference to Irish Data", Journal of the Royal Statistical Society, Vol.107. parts 3-4, 1944, p.251-292 FABRICANT S.S., "The Output of Manufacturing Industries, 1899-1937", "The Output of Manufacturing Posearch, N.Y., 1940 (105)National Bureau of Economic Research, N.Y., 1940 MEADOWS D.L., MEADOWS D.H., RANDER S.J., AND BEHRENS W.W., (106)"The Limits to Growth", Earth Island, London 1972 (107)CONNELLY P., AND PERLMAN R., "The Politics of Scarcity" Oxford University Press, 1975 (108)HALL M., KNAPP J., AND WESTERN C., "The Ambiguous Notion of Efficiency", Economic Journal, Vol 69, March 1959, p.71-86 (109)DEPARTMENT OF EMPLOYMENT "Department of Employment Gazette", HMSO

(110)	UNITED NATIONS	STATISTICAL OFFICE "Monthly Bulletin of Statistics" N.Y.
(111)	SALTER W.E.G.,	"Productivity and Technical Change", Cambridge University Press, 1960
(112)	INSTITUTE OF G	EOLOGICAL SCIENCES "United Kingdom Mineral Statistics"
(113)	STROUT A.M.,	"Technological Change in the United States Energy Consumption, 1939-1954", University of Chicago, Doctoral Dissertation, 1967
(114)	UN STATISTICAL	OFFICE "Statistics of Commodity Trade, Series P", UN
(115)	OEEC	"Commodity Trade Statistics, Series C", OEEC, Paris
(116)	CENTRAL STATIS	TICAL OFFICE "Standard Industrial Classification, 1968", HMSO
(117)	CENTRAL STATIS	TICAL OFFICE "Cyclical Indicators for the UK Economy" <u>Economic Trends</u> No. 271, May 1976 (updated quarterly)
(118)	C.B.I.	"Industrial Trends Survey"