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Summary 

The deformation of a superplastic zinc-aluminium 
eutectoid alloy is examined by subjecting thin circular 
diaphragms to one-sided hydrostatic pressure at elevated 
temperature. The geometry, the stress, the strain, and the 
strain-rate are determined at various points covering the 
whole specimen and at various stages of the forming process. 

One distinctive feature of this study is the use of 
the curvatures of the thin shell for the stress analysis. 
It is shown that the ratio of the two principal stresses at 
a point in the formed shell is related in a simple way to 
the ratio between the principa] curvatures at that point. 
In fact the ratio between the principal curvatures is also 
a measure of the deviation of the local geometry from the 
spherical shape. 

The rheological properties of the material under this 
biaxial stress system are presented in triangular coordinates. 
The nature of the stresses, strains and strain-rates at the 
dome and the rim of the bulge are discussed in detail. It 
is shown that the strain rates vary widely in the material at 
different regions. The biaxial stress is analysed into a 
strain proportional and a strain-rate proportional component 
which represent respectively, the quasi-solid and the quasi- 
liquid behaviour of the superplastic material. 
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Chapter 1 

INTRODUCTION 

Superplastic alloys have been considered by engineers 

and metallurgists with less than perfect justification, to 

be materials of exceptionally high ductility. Actually, 

superplasticity is not a matter of ductility, which is 

defined by the strain at fracture under quasi-static 

conditions, but is due to the dependence of flow stress on 

the strain rate, in other words, it is a rheological 

phenomenon. The basis of superplasticity is neither in the 

late development of the localised neck in the material when 

stretched, nor in the large strain at the fracture, but lies 

in the fact that the neck does not aggravate itself after 

it is formed, the strain-rate effect on the flow stress 

preventing the formation of the highly localised necking in 

the tension test specimens of ordinary ductile metals. 

The deformation characteristics of some superplastic 

materials are similar to those of heated thermoplastics 

and consequently certain forming processes developed by the 

plasticsindustries are applicable to superplastic sheet 

metal forming processes. Most of these forming operations 

involve free bulging of the material, at one stage or another. 

Therefore the axisymmetrical bulge test seems to be the most 

suitable test to predict the mechanical behaviour of these 

materials under biaxial tensile stress. 
>



The bulge test, widely used for determining the 

ductility of sheet materials, consists of clamping the test 

material over a circular die hole and deforming the sheet 

with hydrostatic pressure on one side of it till it forms 

a bulge. The ductility of the test material is represented 

by the height of the bulge when fracture occurs. The hydro- 

static pressure in the bulge test transmits a uniform 

pressure over the entire bulge during the test and the 

process is in a frictionless state. The failure usually 

occurs at the pole, where balanced biaxial stretching occurs. 

By making suitable grids onto the face of the specimen and 

measuring their geometrical transformation, the mechanical 

behaviour of the work material can be determined. 

* 

In the last decade a number of papers (56 - 67) have 

been published on the bulge test of superplastic materials. 

In these papers flow stress is assumed to be a unique 

function of strain-rate and any strain dependence is 

neglected. This stress-strain rate relation is obtained froma 

uniaxial tensile test, using an empirical equation in the 

form 

o =k (é)™ (1.1) 

where o is flow stress, k is a constant for any given testing 

conditions and is a function of grain size and temperature, 

@ is strain-rate and m is the strain-rate sensitivity index 

of the material defined as 

d(ing) (1.2) 
6(1ne) 

*Numbers in brackets designate reference at the end of the thesis. 
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The stress-strain-rate relations so obtained, are applied to 

stress states that are biaxial and in some cases triaxial, 

by using the effective stress and effective strain rate of 

plasticity theory. However, there is concern among some of 

the researchers about the validity of such concepts in this 

context. 

In the bulge test of superplastic material, some 

investigators have introduced special assumptions in order 

to simplify the problem and bypass potentially difficult 

experimental measurements. These assumptions are as follows: 

a At any instant the membrane is equivalent to part of a 

thin sphere subjected to internal pressure (56), (58), 

(64 - 67). 

Ze The thickness of the bulge remains uniform at any 

stage of the forming operation (56), (66). 

These assumptions, naturally cannot be simultaneously satisfied 

in the bulging of superplastic sheet material. The work 

presented in this thesis is therefore undertaken to analyse 

the deformation behaviour of superplastic material with a 

more realistic approach involving no assumptions of this 

type.



 



Chapter 2 

I - Physical metallurgy of superplasticity 

2.1 The Historical Review 

The first data on the viscous behaviour of eutectic 

alloys can be found in the paper published by W. Rosenhain 

et al (1) in 1920. A few years later, the exceptional 

ductile behaviour of some non-ferrous alloys was observed 

by F. Hargreaves (2) and C.H.M. Jenkins (3), whilst in 1934 

Pearson (4) published a photograph of a tensile specimen of 

Sn - Bi alloy which had been fractured after 19503 

elongation. He showed that in the case of extruded tin- 

lead entectic even higher ductility can be obtained. 

It is surprising that these sensational results were 

ignored by both scientists and engineers for 28 years before 

the next paper on superplasticity was published in western 

literature (5). 

However, the term "superplasticity" was first used in 

Russian literature (6) to describe the high ductility in 

combination with very low flow stress. The work of Bochvar 

and Sviderskaya (6) was the initiation of the intensive 

study of superplasticity in Russia. 

The properties of alloys of Zn - Al system were studied 

and it was discovered that superplasticity only occurs with 

Zn - Al alloys in certain conditions of heat treatment. 

Research on these and other alloys (11- 14) was continued in order 

to develop an understanding of this phenomenon and the 
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subject became fashionable in that country during the 

1950's and 1960's (7). 

The renaissance of superplasticity in the western 

literature was publication of a paper by Backofen and his 

co-workers (15) in 1964 in the U.S.A.. Since then hundreds 

of papers have been published concerning the basic facts, 

theoretical explanations and practical implications of 

superplasticity and it has become one of the most interest- 

ing research subjects throughout the world. 

eae Types of Superplasticity 

From the many studies that have been carried out, it is 

well understood that superplastic materials can be classified 

into two groups:- 

1. Those in which a characteristic microstructure exists 

and which are said to exhibit "structural super- 

plasticity", usually referred to as "micrograin" or 

"isothermal" superplasticity. 

2. Those in which special environmental conditions are 

necessary and which are said to exhibit "environmen- 

tal superplasticity". 

2.3 Structural Superplasticity 

The special microstructure conditions for a material 

to behave superplastically are:- 

1. A fine equi-axed grain size of the order 1 to 10 um 

which is stable under the conditions of deformation. 

2. A working temperature above approximately half the 

absolute melting point. 
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3. The use of slow strain rates. 

Structural superplasticity has received much more 

attention than environmental superplasticity. The 

reason is that if superplasticity is to be applied to 

commercial fabrication of metals, it would be more 

feasible to have the equipment operating at a constant 

temperature than to cycle it repeatedly over a range of 

temperatures as in the case of environmental super- 

plasticity. 

Structural superplasticity has been observed mostly 

in two-phase alloys, many of which are based on eutectic 

or eutectoid compositions, but relatively pure metals can 

also behave superplastically under special testing 

conditions (23). A list of known superplastic materials 

can be found in reference (22). 

Two-phase alloys Having fine-grained structure are 

called "microduplex structure". Such a structure can be 

created by a variety of methods (16 - 21), utilizing one 

or more of the familiar metallurgical processes of hot 

working, cold-working, recrystallization and precipitation. 

All of these processes are included in the general term 

"thermomechanical processing". 

2.3.1 Proposed mechanisms 

Several detailed explanations of the mechanisms have 

been proposed to account for structural superplasticity,



but it is not yet clear which deformation mechanism or 

combination of mechanisms predominate in these structures 

when superplastic deformation occurs. 

It has been explained (23) that it is unrealistic to 

say that some of the preposed mechanisms apply to a very 

wide range of materials. However, the proposed theories 

are known as: 

Nabarro-Herring diffusion creep (24 - 25), Coble creep (26 

dislocation motion (27 - 28), Grain boundary sliding (29 - 

30, 31 - 32), dynamic recrystallization (33 - 34), Grain 

boundary sliding with accommodation by dislocation motion 

(35 - 36), Grain rotation (37), Grain boundary sliding 

combined with diffusion creep (25), (39) and Grain 

boundary sliding combined with several Grain deformation 

mechanisms (40). It can be seen that current thinking 

leans toward a combination of proposed mechanisms 

depending upon the material and experimental conditions 

involved. 

2.4 Environmental Superplasticity 

This form of superplasticity occurs in a wide range 

of polycrystalline materials in a particular set of 

environmental conditions. There are three well-known 

conditions under which this phenomenon occurs: 

1. During temperature cycling through a phase 

transformation. 

2. During temperature cycling of a material with 

anisotropic thermal expansion.



3. During neutron irradiation. 

Large elongationsof 150 to 500% have been 

produced by a small tensile stress on the material in one 

of the above conditions. A list of known environmental 

superplastic materialscan be found in reference (22). 

The materials for which environmental superplasticity 

has been shown to occur are usually subjected to phase 

transformation. In the remaining two areas, relatively 

limited work has been reported. 

2.4.1 Phase Transformation 

Phase transformation superplasticity has been 

observed in a wide range of materials, especially ferrous 

alloys. It has been established that mechanical weakening 

occurs during phase transformation. 

Saveur (41) is quoted to have first observed this 

phenomenon on iron during the a-y transformation. 

Lozinsky and Simeonova (42) exposed iron specimens 

(with 0.03%c) to a temperature gradient and simultaneously 

cycled the temperature of the hottest centre part between 

800°C and 1000°C. Application of a small load resulted in 

localized deformation in the cooler part of the specimens. 

This wae attributed to the occurrence of the phase 

transformation at the grain boundaries, where carbon 

segregation locally reduced the transformation point.



More systematic and quantitative experiments were 

carried out by De Jong and Rathenau (43) and Clinard and 

Sherby (44). The ferrous specimens were subjected to 

tension, torsion and compression tests during a tempera- 

ture cycle and it was concluded that the type of loading 

has no special significance for the transformation 

plasticity. The amount of strain per cycle was found to 

depend linearly on stress in all experiments. Oelschlagel 

and Weiss (46) also observed this linear dependence in 

three plain carbon steels under constant loads during the 

phase transformation. 

De Jong and Rathenau (43) reported a large value of 

strain during y-a transformation on cooling, whereas 

Clinard and Sherby (44) found more elongation during 

heating (a-y transformation). Variation of the heating 

and cooling rate also provided no clear result. While in 

(47) a change in the heating and cooling rate had no effect, 

in (44) a definite decrease in strain resulted from a 

further increased heating or cooling rate. 

Enhanced plasticity was also observed in U, Zr, Fe 

and Co (46) during phase transformation. 

2.4.2 Temperature Cycling 

Some materials can be made superplastic by tempera- 

ture cycling under a small applied load. One of the 

materials known to exhibit this behaviour is alpha- 

uranium. The internal stresses that account for its



superplastic behaviour under these conditions derive from 

the anisotropy of the thermal expansion coefficients of 

the single crystal. Large elongations (431% after 600 

cycles between 400° and 600°C) have been measured in an 

alloy known as adjusted uranium (48). Pure zinc has also 

been caused to exhibit superplasticity by thermal 

cycling in the experiments of Lobb et al (48). Elongation 

of up to 158% were recorded after 1664 cycles between 150 

and 300 °c. 

2.4.3 Irradiation 

In 1955 Konobeevsky et al (49) reported that the 

creep of uranium metal increases under neutron irradiation. 

Roberts and Cottrell (50) showed that under neutron 

irradiation at 100°C alpha-uranium exhibits a steady state 

strain rate of 3 x 1071+ sec? under a stress of 1% of 

(m) 
yield. The corresponding strain rate sensitivity was 0.8. 

However, large elongations have not been demonstrated 

because of the low strain-rate involved. 

2.4.4 Proposed Mechanisms 

In the early papers, superplasticity during a phase 

transformation was attributed to a temporary reduction in 

strength caused by position changes of the atoms. 

Roberts and Cottrell (50) argued that superplasticity can 

be produced by generation of the internal stresses 

considerably higher than the external stress. This was a 

satisfactory explanation which was expanded theoretically 

by Greenwood and Johnson (45), but they argued that the 
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Plastic deformation is restricted to the weaker phase 

present during thermal cycling. Other theories are as 

follows: 

dislocation motion (51), dislocation climb (44), 

dislocation pile-up (52), preferred alignment of 

martensite plates (53), work hardening (54). 

ahs



II - Mechanical behaviour of 

superplastic materials 

2.5 Tensile Test 

Most of the data ey easeabiaas behaviour of super- 

plastic materials has been obtained from uniaxial tensile 

tests. It will be shown later eau eonatie test is far 

from being a satisfactory measure of superplasticity in an 

engineering sense. However, from the review of the results 

so obtained, conclusions can be drawn that the flow stress 

of structurally superplastic materials is a sensitive 

function of strain-rate, temperature and grain size. The 

details are described in the following sections. 

2.5.1 Effect of Strain-Rate 

In superplastic materials the flow stress is 

sensitive to the rate of deformation and a quantitative 

description is frequently given by an empirical equation 

of the form 

= (8) (2.1) 

where o is flow stress, « is a constant for any given 

testing conditions and is a function of grain size and 

temperature, é€ is a strain-rate and m is the strain-rate 

sensitivity index of the material defined as 

6 lng 

6 1né 
m = (2e2) 

the 
Conventionally, superplasticity is measured by, strain- 

rate sensitivity index, and the total ductility observed 

a2



in the tensile test is attributed to high values of 

m (15). 

The requirement of a high value of m is often 

demonstrated by substituting in Eq (2.1) for o and é in 

terms of tensile load L, the cross sectional area A and 

time T 

c= (2.3) 

» ul 4a 
=n an (2-4) 

the rate at which any area decreases can be expressed as 

Lt, l/m mk 
-@ " waa (2.5) 

  

at 

ga 
aT 

becomes increasingly independent of A, and when m= 1 

Eq. (2.5) shows that when m approaches unity, 

(Newtonian flow), 

=e San ae (2.6) 

i.e. the rate of reduction in cross-sectional area is 

dependent only on load and independent of the area of the 

specimen. For superplastic materials parameter m 

normally has a value between 0.4 and 0.9 (22), compared 

with a value of unity for ideal Newtonian fluid behaviour. 

Eq. (2.5) also shows that any local stress increase, 

produces only a small change in strain-rate and as a 

result such regions deform at a rate not significantly 

different from the rest of the specimen. 
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Nuttall (79) has shown the relationship between the 

flow stresses and strain rate as straight lines, plotted 

on logarithmic scales, Fig. (2.1). It can readily be 

seen from this figure that m is constant. and independent 

of strain-rate for a given working temperature and grain 

size, and its magnitude is the slope of the line for any 

particular temperature. 

Except Nuttall (79), all other investigators 

have reported a characteristic sigmoidal variation of the 

flow stress with strain-rate for constant temperature. 

The behaviour may therefore be divided into three regions 

(see Fig. 2.2). Here regions I and III correspond to 

ms 0.3 at very low and high values of the imposed strain — 

rate respectively, while at intermediate strain rate 

oS 107 s eu region II) m increases to v 0.5 (lo 

and this region is the superplastic regime where very 

large elongations occur. 

Several methods have been established to determine 

the log o/log é relation. In most cases, a series of 

incremental strain-rate changes are imposed on a single 

specimen and the flow stress corresponding to each strain- 

rate measured and plotted as log o vs. log &. In this 

case it is assumed that the flow stress is independent of 

strain and that no necking occurs. However, there is a 

controversy about the effect of strain on the flow stress. 

Nicholson (18) found that, for a Zn-Al eutectoid alloy 

tested at constant strain-rate, the value of the strain 
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hardening index b in the stress-strain relationship 

b 
o = ke (2.7) 

was 0.06 and concluded that this small dependence of 

stress upon strain does not represent true work hardening 

in the conventional way but a slight instability in the 

structure of the superplastic alloy. This conclusion has 

been supported by other investigators (81 - 82). 

The results obtained by Fields and Hubert (80), on 

the other hand were quite different. They found that the 

behaviour of Zn - Al eutectoid alloy depends on the 

processing of the material. Results from tensile test at 

constant cross-head speed on the alloy in'Saenched 

condition showed strain softening during superplastic 

deformation, (see Fig. 2.3), whereas in the quenched and 

cold rolled condition it tended to strain harden, (Fig.2.4). 

The evidence obtained by these investigators is not 

conclusive as the data was obtained from tensile test 

performed at constant cross-head speed, rather than at 

constant strain-rate. 

the 
As mentioned earlier, , strain rate sensitivity index 

(m) is an important parameter in superplasticity, and 

there are at least five different methods of measurement 

the 
for , m value,which are fully explained in reference (22). 

2.5.2 Effect of Temperature 

As mentioned in section 2.3, structural super- 

plasticity is a high-temperature phenomenon, occurring at 
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about half the homologous melting point. The effect of 

temperature on superplastic flow is well documented 

for a wide range of materials in terms of the strain-rate 

sensitivity index m. Fig. (2.5) shows a plot of 

temperature against strain-rate sensitivity index for 

quenched Al - 80% Zn alloy for a constant strain-rate 

test. As seen in this figure, the highest degree of 

superplastic behaviour (i.e. maximum m value) in 

Al - 80% Zn alloy occurs around 260°C. Furthermore, by 

increasing the deformation temperature, the overall 

level of the flow stress can be reduced (see Fig. 2.2 

and Fig. 2.6). 

2.5.3 Effect of Grain Size 

In structural superplasticity, one of the conditions 

for a material to behave superplastically is having a 

fine equi-axed grain size of the order 1 to 10 um. The 

quantitative relation of flow stress to grain size is not 

yet clear from the published work. However, the following 

relations have been frequently used to describe the 

influence of grain size on the flow stress and strain-rate, 

o aw? and é a l/r? (2.8) 

where L is the mean grain diameter and the values of a 

and b depend upon material temperature and thermal 

history of the material (22). Fig. (2.6) shows the 

variation of flow stress with temperature at constant 

strain-rate for Zn - Al entectoid alloy at three different 

grain sizes. The figure indicates that there should be a 

direct proportionality between stress and some power of 
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the grain size. 

Eq. (2.1) appears to be simple enough for stress 

analysis ih ntasdal tensile test. In’ metal forming 

operation, however, strain-rates vary widely in the 

material at different regions and therefore m cannot 

be taken as a constant. Furthermore, superplastic sheet 

metal forming processes involve the biaxial stretching of 

the material and in this stress system the analysis of 

the superplastic properties of the sheet are more 

complex than those of a superplastic rod in uniaxial 

tension. For these reasons, the bulge test has been used 

extensively to analyse the mechanical behaviour of super- 

plastic materials. 

2.6 Bulge Test 

The bulge test is a widely used sheet metal test to 

examine the ductility of sheet materials under, Biaxial 

stress system. This test provides a means of studying 

stress-strain relationships and strain-hardening 

characteristics of the conventional materials. 

the 
In superplastic forming,, bulge test is of great 

importance, as most of the forming operations involve 

free bulging at one stage or another. Therefore, this 

simple test enables a quantitative account to be given of 

the effect of the flow stress, strain-rate and all the 

other parameters involved. 
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Several papers have been devoted to experimental 

and theoretical studies of the hydrostatic bulging of 

superplastic sheet materials. 

2.6.1 Experimental Investigations 

Backofen and his colleagues (15) were among the 

first to examine the possibility of deformation of super- 

plastic sheets by the method of bulging under gas pressure. 

Their interest grew out of curiosity about the bulging 

limits of such materials. A dome was formed with the 

height far greater than had ever been seen in a pure metal 

or alloy. They did not report any quantitative work on 

bulging behaviour of superplastic material. However, a 

few investigators tackled the problem with different 

objectives using different methods. 

Thomsen and his colleagues (57) examined the 

variation in the mean meridian strain and the distribution 

of the thickness as a function of strain rate sensitivity 

(m) and pressure. 

A range of m values was developed for Zn - Al 

eutectoid and Sn - Pb eutectic superplastic alloys at 

different temperatures, using the strain-rate change 

technique inGniaxial tension test described by Backofen 

wa 
et al (15). The mean meridian strain definedas: 

z= (7p) - 1 (2.9) 

where D is Pnitial diameter of the die hole and C is the 

1 
length ofl meridian line on the bulge. 
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was 
The fractional thickness reduction ,defined as: 

R= 1- (°/s) (2.10) 
the 

where S, and S are,initial and final sheet thicknesses 

respectively. A set of graphs were plotted to show the 

development of non-uniform thickness in the bulge. 

These authors concluded that, by increasing m, the height 

of the pole before tearing can be raised, the overall 

shape becomes more nearly spherical and the wall thickness 

becomes more nearly uniform. Similar results were also 

reported by Hestbech et al (58) for Zn - Al eutectoid 

alloy. In the former work, no attempt was made to show 

the effect of the grain size on thickness distribution 

and flow stress, whereas in the latter, it was shown that 

the large grained specimens have a higher flow stress than 

the fine grained specimens and average distribution of the 

thickness is independent of grain size and strain-rate. 

They also reported that the value of m is independent of 

grain size. 

There is a certain contradiction between these results 

and those obtained from tensile testsin the other 

investigations (55), (59). The approach adopted by Al-Naib 

(60) was totally different from those mentioned above. A 

special machine consisting of two chambers was built, a 

Zn - Al eutectoid sheet specimen was clamped between the 

chambers and air pressure applied to bulge the 

specimen. When the bulge radius of curvature reached 

that of the chamber, the expansion became a combined free 
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bulge and draw along the chamber wall, therefore the 

process was not a true free bulge forming. However, he 

showed that the thickness distribution remained constant 

along the wall irrespective of the polar height, which 

indicated that the deformation of the material ceased 

once it made contact with the wall. This interesting 

feature was used to develop a technique to form top-hats 

with nearly uniform wall thickness (60). 

Al-Naib assumed that the profile of the bulge is 

always spherical and the locus of any point on the 

deforming sheet is a circular arc whose centre of 

curvature is in the plane of the undeformed sheet. On 

the basis of these assumptions he attempted to formulize 

a relationship between forming pressure, time, material 

constant parameters « and m and bulge height. His 

results, however, could not be considered reliable 

because the process was not a true bulge test. 

Cocks and his colleagues (61) examined the bulge 

forming characteristics of two superplastic copper alloys 

(Cu-9.5 Al-4re, and Cu-0.4Co - 2.8 Al - 1.8Si) and showed 

that the true thickness strains for these alloys are lower 

than those predicted by Cornfield and Johnson (64) for 

titanium alloy and stainless steel. They suggested that 

this could be accounted for by material being drawn from 

between the clamped edges of the die which was not 

considered by Cornfield and Johnson (64). 
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2.6.2 Theoretical Investigations 

In addition to experimental investigations on the 

bulge test, several attempts have been made to predict 

the superplastic behaviour of materials for this process 

(56), (59), (64 - 69). Two types of theoretical 

predictions can be classified. The first type belongs to 

the special solution in which the bulge shape is assumed 

before stresses and strain rates are predicted for 

successive polar heights (56), (66). The second type of 

prediction is referred to as, numerical solution in which 

displacements and shape of the bulge for various polar 

heights are predicted by iteration techniques on a 

computer (59), (64), (68). 

Whether by special or numerical solution the general 

line of approach to the prediction is the same. 

The previous investigations are reviewed in the following 

sections:-— 

(a) - main assumptions 

(b) - constitutive equations 

(c) - stress-strain rate-relationship 

(d) - comparison of predicted and actual results 

(a) Main assumptions 

The problem of Muige test has unanimously been 

simplified by the following general assumptions: 

1 - The material is isotropic. 

2 - The material is incompressible so that the three 

principal strains add up to zero, 
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i.e. +e_te =O (2eLL) ee s t 

3 - Elastic strains are negligible 

4 - The material does not work harden and flows under 

any load. 

5 - The thickness to diameter ratio of the membrane is 

very small and bending effects are negligible. 

6 - At the periphery, the diaphragm is rigidly clamped 

and deforms as a frictionless hinge. 

7 - The flow stress o is strongly dependent on the 

strain rate & in accordance with 

EGt(2.1), de. o = "(2)". 

In addition to the general assumptions mentioned 

above, some investigators introduced special assumptions 

and over-simplified the problem and hence affected the 

accuracy of the solution to different extents. 

These assumptions are as follows:- 

1 - At any instant the membrane is equivalent to part 

of a thin sphere subject to internal pressure (56), 

(59), (64 - 66), (68). 

2 - The thickness of the bulge remains uniform at any 

stage of the forming operation (56), (66). 

(b) Constitutive equations 

On the basis of the above assumptions, there are 

certain relationships and equations which can be divided 

into two groups: 
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(1) The kinematic relations between displacement and 

shapes on the one hand, and strains and strain- 

rates on the other hand. 

(2) The equations which relate the specimen shape and 

the hydrostatic pressure with the stresses. 

For a spherical bulge, the material everywhere along 

the profile is subjected to balanced biaxial stretching. 

Therefore, it can easily be deduced that the radius of 

curvature (p) is 

2 2 pe coe (2.12) 
2H 

where a is the radius of the die hole and u is the 

height of the bulge. 

The natural through thickness strain is 

c 
z (2513) 

° 

€ = In 

where t and t are current and initial thickness ° 

respectively. 

Forespherical bulge, the incompressibility condition 

of metals Eq. (2.11) together with Eq. (2.13) are 

sufficient to determine the state of strain. Thus, 

a —— e e = Ze, = 2e4 In te (2.14) 

where ca is meridianal tangential strain and cs Ls 

circumferential strain. 

For the measurement of strain and strain-rate, 

Belk (66) adopted a different approach. He measured the 
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average natural strain defined as: 

new surface area ) 
Sane aqiaat surface area 

this 
For a spherical bulge,becomes 

2 2 « *& in tlat + BS) 

ma2 

H2 
ein (+=) (2.15) 

Hence, the average strain rate is 

. _ de 2u au Belo een, 2.16 
&* ar H2va2 aT ( ) 

The balanced biaxial stresses can be calculated from the 

following equation 

P 

ae? 

a2 + H2 
BH ie 27) 

P 

“e ¢ 

(c) Stress-strain-rate relationship 

In the previous papers (56 - 61), (64), (66 - 69), 

the mechanical behaviour of structural superplasticity is 

frequently described by the well-known empirical uniaxial 

stress-strain-rate relationship 

o = «(é)™ 

In this equation, m is assumed to be constant for a given 

temperature, strain rate and grain size. 

Tang and Robbins (65) argued that the range of strain- 

rates involved in the bulge test is quite wide. There- 
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fore, m cannot be taken as a constant. In addition to 

that, the grain size also has no role in this equation. 

Hence, they adopted the empirical relationship proposed 

by Avery and Backofen (24) 

rae p 2 HaCG Bo US ee ay (2.18)   

where L is the grain size, we BY and 8 are material 

parameters. 

(d) Comparison of predicted and actual results 

It is evident that the accuracy of the predicted 

results depends totally on the number of the assumptions 

involved together with the corresponding equations. This 

section is devoted to a summary of the line of approach 

together with®comparison of Mreaictea and actual results 

of different investigators. 

Jovane (56) and Belk (66) derived an approximate 

analysis for Saige forming of superplastic material by 

assuming that the bulge is spherical and the thickness 

remains uniform during forming. However, non-uniformity 

in sheet thickness is an important practical consideration 

and the experimental results showed that the difference 

between mean and actual thickness could be as high as 

50%. Holt (59), on the other hand proposed a more detailed 

solution with particular emphasis on the resulting 

thickness profile, but another assumption still remained 

which was that the dome shape is spherical. With this 

assumption, he used an iterative method of solution, in 
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which the sheet was divided into ten annuli. During the 

deformation, the thickness of any annulus is assumed 

uniform. The profile was found by following the 

increase in width of the annuli with time. Since the 

edge of the annulus at the clamp is fixed, this would 

indicate the position of the other edge of that annulus, 

which in turn would locate the position of the next 

annulus and so on. It was shown that the deviation 

between the experimental and predicted results was not 

too great. 

Cornfield and Johnson's analyses (64) are also based 

on iterative solution. These investigators assumed that 

the hoop strain increased from zero at the clamp to a 

value equal to the tangential strain at the pole. The 

sheet was divided into concentric annuli and the change 

in the surface area was followed over the bulge from which 

the new radius of curvature and thickness distribution 

were found. However, in the analysis the way in which 

the hoop strain changes its value was not given, thus 

making it difficult to follow the steps taken in the 

computation. Comparison of theoretical and experimental 

results was shown to be reasonable. 

The approach adopted by Tang and Robbins (65) was 

totally different from those mentioned above. In their 

analysis, they rely on Stress-strain rate relationship 

proposed by Avery and Backofen (24). They assumed that 

the bulge is spherical and the thickness of the shell is 
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linearly distributed. However, the results showed that 

the predicted rupture time for linearly distributed 

thickness deformation fits the experimental data for a 

limited range of experimental aah, ona theidisorepancy 

occurs at the high strain rate region. The reasons were 

given as: 

1. the shape of the shell is conical instead of spherical; 

2. the thickness variation at very high strain rate may 

be nonlinear; 

3. inaccuracy of experimental measurements ign 

strain rate tests. 

2.7 Concluding Remarks and Objectives 

From the above brief review of the past literature on 

the bulge forming of superplastic materials, it can easily 

be observed that the studies on this particular type of 

process have hitherto been almost exclusively confined to 

predicting the behaviour of the bulge specimen through 

assumed or empirical strain rate hardening characteristics 

of the material as determined in the tension test, as well 

as through an assumed spherical shell and uniform thick- 

ness distribution. However, it would be useful to know 

whether the strain-rate sensitivity index (m) determined 

from,tensile test can be applied to the biaxial stress 

conditions which occur in bulge forming. 

The basic assumptions in the uniaxial tension test 

used are the coaxiality and radiality of the strain paths. 

are 
Only in axisymmetrical forming ,the strain paths 
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coaxial in which the principal axes do not rotate with 

respect to the material. A strain path is said to be 

radial when the strain ratios E,iegre. remain constant 

during deformation. In an axisymmetrical bulge test, the 

strain path at the pole of the shell is always radial 

having strain ratio E,:€,:€, = -2:1:1 (stress condition e**s 

Of (Gn 2 co = 1: 0: 0). When there is no draw-in it eo’ os ~ 

of the flange, the strain ratio at the die edge is 

always eas = : Bs = -l1: 0: 1. However, every 

Ppositoin between the pole and the die edge, the strain paths 

are not radial. Thus, uniaxial test is equivalent to a 

balanced-biaxial tension test, and therefore is valid fora 

spherical bulge. InActual case, however, the bulge cannot 

be a sphere (chapter 3) so that the stress-strain-rate 

relationship of a material in the uniaxial tension test 

can no longer be applicable to the unbalanced biaxial 

stretching case in the bulge test. The only condition 

where the uniaxial tension test result may be applicable 

to the bulge test is at the pole of the shell. Further- 

more, the value of m defined as the slope of the 

logarithmic o vs. é& curve, is assumed to be constant 

for a constant strain-rate. In chapter (8) it will be 

shown that the strain-rate during bulge forming is far 

from being constant. These considerations complicate a 

direct comparison between bulging and tensile m values. 

The other assumptions concerning spherical shell 

and uniform wall thickness are also unrealistic, though 

mathematically convenient. The membrane stress, on these 
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assumptions, becomes uniform 

throughout the bulge profile for a pressure P, and there- 

fore, the fracture must occur at the die edge, whereas in 

actual fact, fracture usually occurs jin the vicinity of 

the pole. Moreover, if the shell is assumed to be 

spherical, then the ratio of the principal curvatures 

defined as N = Pe should be equal to one. It will be 

Ps 

shown in chapter(3)that the actual bulge can never be a 

surface of constant N value let alone a sphere of N = l. 

In the present study an attempt is made to measure 

the stresses, strain and strain-rates through the geometry 

of the bulge. Thus, the bulge test can be used to study 

the stress-strain and strain-rate relationship in the 

material under actual conditions in) theet metal forming 

process.
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Chapter 3 

3k Introduction 

Superplastic alloys in the form of sheet can be 

formed by pressure to produce useful components by 

techniques similar to those employed in the glass and 

plasticsindustries. Obviously, these forming operations 

involve free bulging, at one stage or another. 

This chapter is devoted to the theoretical solution 

of the bulging deformation problem based on the following 

assumptions: 

(i) the material is isotropic and incompressible; 

(ii) the dome is a surface of revolution; 

(iii) elastic strains are negligible; 

(iv) the wall thickness is small compared with radii 

of curvatures and other dimensions of the bulge, 

hence, bending and shear stresses are ignored. 

362 Relation between principal stresses and principal 

curvatures 

In the shell of revolution shown in Fig. (3.1l.a), 

the principal stresses may be determined by consideration 

of the equilibrium of the shell element cut out by two 

parallel circles whose planes are normal to the vertical 

axis of symmetry of the shell and two meridians (generators) 

of the shell. If the small stress in the through-thick- 

ness direction is ignored, then the shell element may be 

considered to be under biaxial stresses. The circum- 

ferential stress (09) and the meridianal stress (a, ) thus 

appears as shown in Fig. (3.1.b). The radius of curvature 
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of the meridian (p,) is defined by perpendiculars to the 

shell through points B and D of Fig. (3.1.b). Another 

radius of curvature (og) is defined by perpendiculars to 

the shell through points A and B of Fig. (3.1.b). By 

geometry the centre of curvature corresponding to g must 

lie on the axis of symmetry. 

The component of the forces acting on the edges of 

the element normal to the shell element are 

2 o9 . do t sin (3) in the circumferential direction 

and 2 Ts Py ae t sin(S2) in the meridional direction. 

The sum of these normal forces is in equilibrium 

with the normal pneumatic pressure (P) on the inside 

surface of the element, thus, 

de, Of) = 2 w% P, dot sin (>) + 20, py dot sin (>) Ponce Pact 

(3501) 

divide by t Py ae e a¢ and put 

sin (32) > = and sin 2) > = 

o so that ‘oe a oe (3.2) 

% es t 

the 
This fundamental equation applies to,axisymmetric 

deformation of all thin shellsof revolution, and it 

determines the stresses for a particular geometrical 

configuration of the work piece. At any particular stage 

of the bulge test and at any point of the shell, these 

biaxial stresses are, in fact, the flow stresses of the 
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material at that point. As deformation progresses, the 

pressure (P) produces incremental stresses throughout the 

shell and these incremental stresses give rise to 

incremental strains according to the strain rate 

sensitivity of the test material. The change in the shape 

of the bulge is, of course, closely related to these 

incremental strains. In Eq. (3.2) the meridional 

tangential stress (o,) is always tensile, but the 

circumferential stress (o,) can be compressive near the 

rim of the bulge, and it is assumed that both these 

stresses are uniformly distributed through the thickness. 

Obviously, the biaxial stretching of the work material 

involves progressive thinning, which increases from the 

edge towards the pole due to the clamping effects. 

Considering a cap of radius r shown in Fig. (3.2) 

it can be concluded that the equilibrium of the shell 

under vertical forces is 

_ Pr 
°s ~ 2t sind (73) 

also by 
x (3.4)   

geometry 

hence o_ = Pha (3i55) 

Combining Eqs. (3.2) and (3.5), we get 

P Pa % =—-p - o 
8 t "9 pa 

Z Po =o, (2 - x (3.6) 
s



The ratio of the local principal curvatures (Po) is of 

es 

fundamental importance, since it determines the ratio of 

the principal stresses at anywhere along the bulge 

profile. We shall call this ratio N, 

yn = £0 (3.7) 
es 

substituting in Eq. (3.6), we get 

0 
NOS 2a (3.8) 

Cs 

The equations governing the deformation in the thin shells 

can now be traced. 

3.2.1 Surface of constant N-values 

Two cases of stresses in thin shells of revolution 

with constant N value are usually considered in elementary 

strength of materials. These are for N = O (cylinder), 

where the hoop stress (%@) is twice the longitudinal stress 

(o,), and for N = 1 (sphere), where the two membrane 

stresses are equal. As can be seen from Eq. (3.8), in a 

surface for which N = 2, the hoop stress (o,) disappears. 

Such surfaces have been used in the design of pressure 

vessels, like the ends of boiler drums. There are, of 

course, infinitely many surfaces of revolution with constant 

N values. T.C. Hsu et al (70) have constructed some of 

these surfaces by expressing the meridian sections in 

Parametric equations as follows: 

  Panis aa (359)



Combining Eqs. (3.4) and (3.9) 

= §§._ cosh N os antral (3.10) 

dé 

and 

therefore no «= eae (B12) 
= sin6 

When N is constant, equation (3.11) can be integrated as 

N 
r =A sin® (3.12) 

where A is the constant of integration. For exploring the 

shapes of these surfaces, it is convenient to assume 

(3.13) 
(r) = 

o=m, 

So that Eq. (3.12) takes the following simpler form 

sing = xN (3.14) 

The curves relating r and sine for constant N values 

given by Eq. (3.14) are non-linear and they can be 

linearised by the use of (log - log) scales so that the 

curves become radial lines emerging from the origin, each 

having a shape of N. See Fig. (3.3). 

For the other coordinate, 1, combination of Eq. (3.4) 

and (3.14) and definition of N gives 

1-N 
N 

p= (sing) (3.15) 
N 

However, ale -e. sin@ d@ (3.16) 

the negative sign is due to the increase in 1 with decrease 
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in 6, hence, 

1 a Yn 
as -§ (sine) de (3527) 

1/2 

Eq. (3.17) cannot be expressed in terms of elementary 

functions except for values of N equal to zero, +1 and 

reciprocal of integers; but it can be easily evaluated by 

graphical or mechanical means. These meridian sections 

are shown in Fig. (3.4). This figure shows that only 

when N is positive, the surfaces closed, otherwise 

they are bollard-shaped and open at the top and the 

bottom. As positive N increases indefinitely the 

surface becomes like the outside surface of flatter and 

flatter pancakes; and as N approaches negative infinity, 

the surface becomes like two flat sheets of paper each 

with a hole and the two sheets are joined at the edges of 

the holes. 

The variation of the radius of curvature in the 

circumferential direction (64) for constant N values can 

be explored by elimination of 6 from Eq. (3.4) and 

(3.14), hence, 

=r (3.18) 

These variations are shown in Fig. (3.5). The variations of 

the radius of curvature intferidian direction (62) 

follows the same pattern as Fig. (3.5), but in different 

scales, of course. The line for constant p_,(N = 1) is 

self-explanatory; but the linear variation for N = 0 

requires some elucidation. When N = O the surface may 
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either be a cone or a cylinder. When it is a cylinder, 

only the point (9, ae ‘ = 1 is operative; and when it is a 

cone, eA is, of es proportional to xr. For surfaces 

of constant N-value, at the pole (r = 0), the stress- and 

the radius of curvature, is either zero (N < 1), or 

infinity (N > 1), except for the sphere (N = 1). When N 

is less than unity, the meridional tangential tension 

a 
2t 

approached, and when N is greater than unity, this 

rises gradually or rapidly towards as the equator is 

tension starts at x at the equator and rises gradually 

or rapidly towards infinity as the pole is approached. 

In surfaces of constant N value, the circumferential 

stress is, of course, proportional to the meridional one, 

hence, Fig. (3.5) also represents the variations of the 

circumferential stress. The ratio between the meridional 

tangential and the circumferential stress is not, however, 

simply N, but is related to N as in Eq. (3.8). For 

exploring the variation of the circumferential, or hoop 

stress, it is desirable to divide the N values into four 

ranges, as in table (3.1) 

40



  

  

  

  

  

  

  

  

Ranges | N = Po Shape of Surfaces 09/95 

Ps 

>2 pancake shaped <O (a, compressive) 

as 

=2 tangerine shaped 59 = 0 (uniaxial tension test) 

1< N < 2 | oblate spheroid o< 8 <1 (tensile % less 

> than ¢ 
s) 

2 

=1 sphere % = oC (balanced biaxial stretch) 

O< N <1 | prolate spheroid L.< a <2 
s 

3 

=O cone or cylinder % = 20. 

4 <o bollard-shaped 8% > 20             

Table (3.1) - Summary of surfaces of constant N values 

3.2.2 Prolateness of the real~shell 

Any real specimen of sheet material formed by hydro- 

static pressure can never be a surface of constant N 

value, owing to the constraints on the deformations in 

the material. Thus, at the pole the strains and stresses 

are, by symmetry, balanced biaxial stretching and there N 

must be equal to unity; but at the edge of the bulge, the 

circumferential strain is either zero, or slightly 

compressive (if there is draw-in), hence the meridional 

tangential stress must be at least twice the circumferen- 
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tial stress, and the N value must therefore, be greater 

than one but smaller than two. 

In most of the papers on the bulge test, the work- 

piece has been assumed to be a spherical surface in the 

predictive or interpretative theories, (56), (59), (64 - 

66), (68). It has just been shown that a real specimen 

cannot be any surface of constant N value, let alone a 

sphere, the simplest of constant N surfaces. Even just 

for describing an actual bulged specimen, therefore, it is 

necessary first to define accurately the characteristics 

of an actual surface from point to point. Also, stresses 

are related to curvatures, not directly to the 1 and r 

coordinates. Hence, a bulge may be nearly a sphere, but 

its stresses very different from those in a sphere. 

At any point in a continuous surface of revolution, 

there is an N value, which applies to a vanishingly narrow 

ribbon of surface at the same latitude. If this (positive) 

value of N is less than one, then the surface at that 

latitude may be said to be more pointed than a sphere 

(prolate); and, if it is greater than one, to be more 

flattened than a sphere (or oblate), because, if a surface 

of that constant N value is constructed to pass through 

that point, that surface will be prolate or oblate, 

respectively, as compared with a perfect sphere. In fact, 

(1 - N) may be defined as prolateness, PB, and the negative 

of prolateness, when N>1, is oblateness. Prolateness and 

curvatures are two distinct concepts, and a surface can 
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have either large curvature and large prolateness, or 

small curvature and large prolateness. As the bulging 

action progresses, the curvature generally increases, but, 

in theory, the prolateness does not necessarily decrease. 

As has been shown, a sheet metal bulged specimen is 

always spherical (zero prolateness) at the pole, and 

theoretically, it is oblate at the edge, because, if 

there are no bending (only membrane stresses present) and 

no draw-in, then the circumferential strain disappears at 

the edge, and both the stress ratio og and the prolateness 

Gs 
(1 - N) are equal to 4 there; though in practice, there 

are, in metal shells being formed, always bending and 

friction at the rim so that the theoretical ratios of the 

curvatures and stresses are obscured. Between the pole 

and the rim, the surface may be prolate, spherical or 

oblate, as the plastic properties of the work material 

dictate. Indeed, they are all three, as will be shown 

in chapter 6. 

3.3 Relation Between Strains and Shape of the Bulge 
  

The bulged specimen is illustrated in Fig. (3.2) in 

the cylindrical coordinate axes on and or. In such an 

axisymmetrical case, the geometrical transformation is 

completely determined by the two parametric equations as 

follows: 

L=1(ro 7 T) 
(S219) 

r= r(Lo , T) 

43



where 1 and r are the current longitudinal and radial 

coordinates, respectively, and r, and T are the initial 

radial distance and time, respectively. The elimination 

of the parameter r, for a particular value of fT in Eq. 

(3.19) yields a relationship between 1 and r which 

represents a meridian contour of the partly formed shell; 

and the elimination of the parameter tT for a particular 

value of Xo yields the path of a particle in the work- 

piece. 

In order to derive the mechanical behaviour of the 

work material from the bulge test, it is necessary to 

determine the strains from the basic equation in Eq. (3.19). 

By symmetry, the principal strains are the meridional 

tangential (e,), the circumferential (eg ) and the through 

thickness oy) strains and they are by definition, 

a ds 
€, = log, Ge) (3.20) 

= log, (=) (o2t) ey = log, ro ° 

= 
e.= bog, () (3822) 

° 

where s is the arc length of the meridian section in 

Fig. (3.2), t and t, are the current and original 

through thickness, respectively. In experimental 

investigations, however, the principal strains are 

determined by marking suitable grids onto the face of the 

specimen and measuring their geometrical transformations. 

As the material is assumed to be incompressible, 
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therefore, three principal (natural) strains add up to 

zero, Eq. (2.11). With triaxial strains having only two 

degrees of freedom, any two of them are sufficient to 

define the state of strain of the material particle 

concerned under a given applied stress condition. 

Investigators have unanimously measured the 

circumferential strains because they can be obtained 

easily and accurately with a travelling microscope. For 

the remaining two strains, there is an alternative choice. 

Some workers prefer through-thickness strains because they 

can be read directly from a dial gauge installed on a rig 

with a fixed anvil at the base and with the specimen placed 

between the fixed and the measuring anvils of the dial 

gauge. It is evident that this Method requires the anvils 

to be normal to the specimen. Some investigators, how- 

ever, have measured the meridional tangential strain (e.) 

instead. There are two different methods of measuring eo 

The first method involves arc length measurement of the 

deformed bulge, Eq. (3.20), by a tape provided with 

squares identical to those on the undeformed grid. The 

second method is modification of e Term in Eq. (3.20). 
s 

the 
Suppose @ is the angle of inclination of meridian 

section with the OR axis, Fig. (3.2), then 

ds 
ae (3723) sec 0 = 

so that E, in Eq. (3.20) becomes 
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€ = log (— =) (3.24) 

The angle 6 can be measured easily with a workshop 

protractor. 

3.4 Principal Strain Rates in Terms of Rate of Change 

of r and 1 

It was explained in the previous chapter that super- 

plastic materials exhibit an unusually high level of strain-— 

rate hardening; and in the bulge test the change of 

shape for subsequent deformation is closely related to the 

principal strain rates. 

Since the geometrical transformation of the specimen 

is completely determined by the parameters r and 1 for any 

stage of deformation, Eq. (3.19), the principal strain-— 

rates can sufficiently be defined by the rate of change of 

x and 1. The rate of any variable can be expressed in 

terms of time (T), and this is usually shown by a dot above 

the parameter considered. 

The principal strain rates can easily be derived 

through the definition of principal strains, Eqs. (3.20) - 

  

(3522); 

2 = Ja 30 aay ele ey QT OT oun = ) a (325) 
° 

2 = td 5 = £. 
S. * or an ‘7°36 on t (3.26) 

46



= 2s . 0 ds 5 or ar (log as) 
° 

eno. dr dx,2 
= 3, 19%, Ge in (Ga) (ee) 

The three principal strain rates also should add up 

to zero (incompressibility condition), hence, 

é +é +6 = 0 (3.28) 

3'55) Principal Strain Rates in Terms of Rate of Change 

of r, 1, and 6 

It is frequently more convenient to express the 

principal strain rates in terms of the bulge profile 

inclination (6) as a variable, specially for és: The 

variable 9is in fact related to r and 1 by the 

function 1 
0 = tan > ($4) (3.29) 

Thus, the meridional tangential strain rate in Eq. 

(3.27) can be obtained by differentiating Eq. (3.24) with 

respect to T, 

dr ie 

8," op (109, Ge cose) 

== + 6 tan 6 (3.30) 

The rate of change of current radius in the bulge test can 

be expressed by the time rates of circumferential 

curvature and profile inclination so that 
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= by sin 6 + a, @ cos 0 (373) 

The circumferential strain rate then becomes, 

HH
: = +2 46 cote (3.32) 

8 > 
and the corresponding through-thickness strain-rate can 

be calculated through the incompressibility equation, 

Eq. (3.28). 
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    shell element 

    
shell element 

  
(b) 

Fig. 3-1 — Thin shell of revolution subjected to 

internal pressure. 
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Fig. 3-2 - An axisymmetrical deformed bulge. 
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Fig. 3.4— Meridian sections of surfaces of constant 

N values, after T.C.Hsii et al (70). 
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Fig. 3-5- Variations of g with r for surfaces of 

constant N values , after Hsi et al (70). 
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CHAPTER 4 

GRAPHICAL REPRESENTATION OF 

MECHANICAL BEHAVIOUR OF SHEET 

MATERIALS DURING DEFORMATION



Chapter 4 

4.1 Introduction 

Metal forming processes are always three-dimensional, 

even in the tension or the compression test. Although 

only the stress and the strain in the loading direction 

are normally considered significant, the deformation is 

still three-dimensional. In such a process, the stress 

and the strain in the loading direction are determined 

and plotted against each other in the stress-strain 

curve which is usually considered to represent the 

mechanical behaviour of the material. 

Sheet metal forming processes are more complex than 

those of uniaxial tension or compression test, and in such 

a complex deformation, states of stress rather than single 

stress and states of strain rather than single strain are 

involved, and, when measured, they can no longer be 

plotted against each other in a single curve. 

Many investigators have used the generalised stresses 

and strains in order to show the mechanical behaviour of 

metals by a single curve. This generalised stress-strain 

relationship is expressed as:- 

6 = F(e) (4.1) 

= BAL a 2 “e.)7 See lee where 5 =Ny (‘oy 94) + (0 -0,) + (0, el | (4.2) 

- 2 Ff 2 2 F 
= f2 a 2 s 4, and € 5 fey =F) +(e, e,) 12 ee g) (4.3) 
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In Eq. (4.1), the basic assumptions are the coaxiality 

and radiality of the strain paths. In sheet metal 

forming, neither of the two assumptions ton Ganeraliaed 

stress-strain relationship is true. Therefore, this 

relationship is only an approximation. In an axisymmetri- 

cal bulge test, the strain path at the pole of the shell 

is always radial having a strain ratio : 

Be : . Jes = -2 : 1: 1. When there is no draw-in of 

the flange, the strain ratio at the die edge is always 

Oy : Gs : e = -l1 : 0: 1. However, everywhere 

between the pole and die edge, the strain paths are not 

radial. Thus, the stress-strain relationship in the 

bulge test must be of the form: 

o =F (fae) (4.4) 

where fade represents the length of the strain path. 

In this thesis, a totally different type of graphical 

method is used to represent the states of stress,strain and strain 

rate in axisymmetrical forming. This particular co- 

ordinate system is galted)ecianguide coordinate system, 

and has been proposed independently by Marciniak (71) 

and Hst (72), (73). Hsii has extensively applied this 

system to sheet metal forming processes (74) - (77) and 

details are available in the appropriate references. 

Therefore, only the fundamentals will be discussed in 

this section. 
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4.2 Triangular Co-ordinate System for Strains 

The triangular co-ordinates for strain are based 

on the fact that the metals are incompressible, and, 

the sum of three principal (natural) strains is zero, if 

the elastic strains, which are comparatively very small 

in metal forming problems, are ignored. 

In the triangular co-ordinate system shown in 

Fig. (4.1), the origin represents the undeformed state. 

Three axes spaced 120 to one another in a plane are the 

co-ordinate axes for the three principal strains. Every 

point in this co-ordinate system represents a state of 

strain with a set of values for the three principal 

strains. For instance, a typical point p (Fig. 4.1) 

such that the line OP makes an angle a with the oe 

axis represents a state of strain with 

€_ = OP cosa 
< 

Pos An. E;, = OP cos (“> -a) (4.5) 

€ == OOS a -a) 
III OP 3 

— 4m 2T eo 
and 6 te 0 te = OP [cos a + cos (=- - a) +cos > -a)] = 0 

Tate Aor 3 

(4.6) 

which satisfies the condition of incompressibility of metals. 

Assignment of each axis to a particular strain is 

arbitrary so that it becomes advantageous to adopt a 

standard choice of coordinates. Of the six different ways 
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of assigning them, HSU (72), (73) suggests the vertical 

axis to denote the through-thickness strain since sheet 

metal engineers are often interested in the thickness of 

materials during deformation; and psychologically, the 

vertical axis is the most prominent of the three. In 

most axisymmetrical sheet metal forming, the meridional 

tangential strain is always tensile whilst the 

circumferential strain falls on both the positive and 

negative region of the e, axis depending on the 

condition of draw-in of the flange. Thus, in order to 

suit right-handed people by having most of the strain 

paths falling on the right hand side of the &, axis, 

HSU further suggests the Ey and eS axes to be on the 

left and right hand side of es axis respectively. The 

choice of the coordinate axis in this thesis will follow 

that proposed by HSU and is shown in Fig. (4.2). 

Using the sign conventions shown in Fig. (4.2), it 

is obvious that the points on the three axes, together 

with their backward extensions, represent state of strain 

given by 

=e. oy 4 
CH ated ooo die Ke sate 8703) (4.7) 

These are the states of strain involved in both uniaxial 

tension and compression tests for isotropic materials. 

Thus, the strain paths for uniaxial tension tests will 

follow the positive axes and those for compression tests 

58



will follow the negative axes. By introducing 6 more 

lines through the origin and perpendicular to the axes, 

these lines then represent pure shears whose states of 

strain are given by 

fy = =25 9 © =O (1,37. = &)) 0, s) (4.8) 

By numbering these 12 lines from O to 12 clockwise, like 

the face of a clock, each number has a specific physical 

meaning, and is called the characteristic index for 

strain (n). As can be seen in Eq. (4.5), the ratios 

between the principal strains are dependent on the 

angle athrough the equation 

n= >a (4.9) 

Thus, odd numbers are for pure shear and the even 

numbers for cylindrical strains. With the co-ordinate 

axes for €, and «, chosen as shown in Fig. (4.2), Es, e 

the zones of thickening and thinning, circumferential 

expansion and contraction, and tangential stretching 

and compression are clearly divided. All the typical 

modes of deformation are shown in Fig. (4.3). It has 

been shown (74) that under the usual axisymmetrical 

sheet metal forming processes, the strain paths fall be- 

tween 2 to 8 o'clock, and processes corresponding to 

strain paths beyond this range, though possible, rarely 

exist. In the bulge test, however, geometrical and 

mechanical constraints require that the state of strain 
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at the pole of the bulge is along 6 o'clock where 

balanced biaxial stretching occurs. The state of strain 

at the die edge, for the case of draw-in, is along 

5 o'clock. 

A strain path of constant ratio is called a radial 

(or proportional) strain path. This particular type 

of strain path occurs at the pole of the bulge for 

obvious reasons. If the material particles in the work- 

piece is designated by a single parameter (r,), the 

distance from the centre in the blank, then for every 

constant value of Xor the state of strain varies for 

every stage of deformation. Therefore, the strain paths 

plotted in the triangular co-ordinate system become 

curved and they are known as curved strain paths. 

In sheet metal forming processes, it is obvious 

that the strain paths plotted on the triangular 

co-ordinate system do not fall exactly along the 12 

lines representing typical modes of deformation; that 

is the values of n are not integers. In this case 

the deformation is neither a pure tension or 

compression nor a pure shear but is something in between. 

Since any point in the co-ordinate system shows a state 

of strain, it is possible to perform vector addition 

and resolution on the triangular co-ordinate diagram 

into a combination of plane strains; or cylindrical 

strains; or a cylindrical and a plane strain depending 

on the convenience at the time of analysis. 
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The magnitude of any position vector in the 

triangular co-ordinate system can be found from the 

following analysis. In Fig. (4.4), let vector OP be 

resolved into two perpendicular components along 

n #12 and n = 3, then 

Roe ee 

Es ac 
Y = Gos30 * tan 60 

fi 
nV (20, + e,) 

2 2 
then, [oP | 24 y? = ef + 1/3 (2e, + &,) (4.10) a x + he 

Using the incompressibility equation, Eq. (2.1), Eq. 

(4.10) becomes 

202 2 2 2 
3 lop | =2e, +26, + 4e6 + 2(-6 ~e) rN, 

=A(e +e 4e ) 44 (ec etee+eece) (4.11) 
t s 8 st @¢t 6s 

The incompressibility equation can also be expressed as 

e fe +e Helle ev cc + © €) (4.12) 
t 8 st ti 6 s 0 

so that Eq. (4.11) is further reduced to 

3lop|? = 2 (ee Her fe) 
s ; 0 

which gives the magnitude of vector OP as 

Jop| ae (ee ees ety (4.13) 
° 3 c s 8 

and inclination 

(4.14) 

 



4.3 Triangular Co-ordinates for Strain Rates 

Having obtained the states of strain involved in 

the bulge test, it is possible to pursue towards the 

strain rates. Just like strains, the principal strain 

rates have only two degrees of freedom as shown in Eq. 

(3.28), so that the triangular co-ordinate system may 

be used in the analysis of strain rates also. 

In order to comply with the use of this co-ordinate 

system for strains, the vertical axis denotes the 

through-thickness strain-rate; and the left and the 

right hand axes represent the circumferential and 

meridional-tangential strain-rates, respectively. 

Therefore, the axis in Fig. (4.4) now represent the 

three principal strain rates. Referring to this 

figure, the point p shows the state of strain rates 

(60, © Gs ) and is obtained by differentiating the 
t 8 

strain path at that point (e,€ 7&5) also in the 
0 

triangular co-ordinate system. The direction of the 

radial line passing through the origin and (€,7 8. )is 

also that of the tangent at that point Cepresees) on 

the strain path. The position vector OP in the 

triangular co-ordinates for strain rates is also shown 

to be 

ie A ‘eee soe ee lop] = 2 [ie -8) + (a8, + @-e,? | (4.15) 
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4.4 Triangular Co-ordinate System for Stresses 

It has been indicated in the previous section that 

the triangular co-ordinates for strain are based on the 

fact that the sum of the three principal strains is 

zero. But unlike the strains, states of stress can not 

be plotted directly in the triangular co-ordinates 

because the three principal stresses, in general, do not 

add up to zero. However, the triangular co-ordinate 

system may be used for graphical representation of the 

stresses, if the following definitions are considered. 

4.4.1 Hydrostatic and deviatoric stresses 

The general three dimensional state of stress can 

be specified in terms of nine Cartesian components 

acting at a point by the following stress matrix 

11 12 13 

Cay oo O13 (4.16) 

S51 O32 %33 

In this stress matrix, the diagonal elements are the 

normal stresses and the non diagonal elements represent 

shear stresses. If the triaxial co-ordinate axes for 

the stress matrix in Eq. (4.16) are chosen so that the 

shear stresses vanish, then these three orthogonal axes 

represent the principal directionsof the triaxial stresses. 
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Simultaneously, any triaxial state of stress can 

readily be denoted by a point in this stress space with 

ob , 0) ’ 5 k as three mutually perpendicular axes 

representing the scalar principal stresses as shown in 

Fig. (4.5). Thus, the stress matrix (4.16) becomes 

9 ° ° 
1 

° o ° 
2 

° ° o 

and the position vector OP in this space is the stress 

vector written mathematically as 

OP =ocji +o j++ ok = 1~ 2 

o o ° ° & 
1 1 

o a ° 0 ° j 
2 = 2 = = 

o ° ° o k 
3 3 = 

It is often desirable to split the stresses 

into two components of which one is the mean stress, that 

is 
0. go+o+o ° o| |20 -¢ 

1 Lae ees, 
3 3 

0 4 o+o+0 
2 = ° ° 4] ° 

3 

0 ° ° o+o +o ° 

3 
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(4.17) 

(o,¢,0) 
a 2 s 

  

we 
tu
. 

te



¢ 
or ij Fou 9, (4.18) 

where iG, = 173 (6. +o +9) 
1 2 3 

The mean stress q, given by the first invariant Te is 

also termed the hydrostatic component of stress. The 

combination of the second and third invariants I and I, 
2 3 

is called deviatoric or reduced component of stress &, . 

The equation (4.18) may be written in matrix form as 

o a ° ° 0 ° ° i 
1 m 1 a 

o = ° o ° + ° o ° x 3 
ai m Ks = 

o ° ° o ° ° o k 
3 m 3 — 

(4.19) 

or OP = ¢o (i +5 +k) + (op 4 + o' 3 + ok) (4.20) 
a m - = co. 3 

and og +0 +0 =0 (4.21) 
1 2 3 

In Fig. (4.5), the hydrostatic axis can be viewed 

geometrically as along an axis passing through the origin 

of the vector space and making equal angles with axes 

oe , oj, ok and, the hydrostatic stress (line Pp) Se 3 

: ; ; oe ‘ has» direction cosines (ee B B with the three 

principal axes. The deviatoric stress (lineOP) is also 
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shown to lie in the deviatoric or mt plane of equation 

a + o + oF =o. It is well known that a moderate 

hydrostatic pressure either applied alone or super- 

posed on some state of combined stress does not affect 

yielding of metals to the first approximation (78). 

This means that hydrostatic stresses produce only 

elastic dilatation which is recoverable on removal of the 

stresses. Consequently, it can be said that plastic 

deformation can only occur by the action of deviatoric 

stresses. The Mohr circles for stress (oy or oy) shown 

in Fig. (4.6) can also be used to find the deviatoric 

stresses. 

4.4.2 Triangular co-ordinates for deviatoric stresses 

It has been shown in the previous section that the 

sum of the three deviatoric stresses is zero (Eq. 4.21). 

This property enables us touse the triangular 

co-ordinate system for representation of states of 

deviatoric stress. Like states of strain, states of 

deviatoric stress components are readily shown as points 

in the triangular co-ordinate system described earlier, 

just by knowing any two of the three deviatoric stresses. 

In order to obtain the stress-strain and stress-strain 

rate relationships, it is necessary that the assignment 

for the axes for deviatoric stresses corresponds to that 

for strains and strain rates. It means that in the 

triangular co-ordinate system for deviatoric stresses, 

the vertical axis represents o_ and the right and left hand side of 

oe axis denote o’ and o’ axes respectively. It can be 
s 8 
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seen from Fig. (4.7) that with this system of graphical 

representation, recovery of states of stress (in space) 

is not possible, because the magnitude of the hydrostatic 

components are not shown. The position vector |op| is 

readily shown to be 

iy 2 2 2 2 Jop| a2 [ro - 9,) + ee = (0) # (go) ] (4.22) 

The method of arriving at this equation is similar to 

that for strains, in Eq. (4.13), together with the 

following property, 

Gg = ig = ¢ 
< 8 ie 8 

, 1 Cio = 8 -— & 4.23 
8 s 8 s ( ) 

ft A 
woe Fee 

The magnitude of the deviatoric component ¢ given by part 

of Eq. (4.20) can be shown to be 

o =(¢74+ of 24 of 2) 
c s 8 

i; [a ae ee ee 
PN [co oy + © oa + a 9) ] (4.24) 

Therefore, any position vector in such a co-ordinate 

system has a magnitude proportional to the deviatoric 

stress component through the equation 

Jop| -\2 o (4.25) 

The position vector Jor] is also proportional to the 

effective stress shown by the equation 
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|op| = o (4.26) 

The mode of the deviatoric stress system can be 

defined by a characteristic index (¢), similar to that 

for the triangular co-ordinates for strain. Therefore, 

1 
the deviatoric stress ratios (9 270.0: ¢) can be related 

to a particular line of the 12, emerging from the 

origin of the axes (¢ = 4, 8, 12) represent uniaxial 

tension and the negative branches (¢ = 2, 6, 10) denote 

uniaxial compression through the following equation:- 

a 
c= ee (deka = t, 8, 0) (4227) 

Similarly, odd values of ~¢ represent pure shears whose 

states of deviatoric stress are given by 

G = 0 o == 9, (lp dy ke = tr Seno) 

(4.28) 

showing pure shear systems of 

Therefore, any position vector in this co-ordinate 

system is sufficient to determine the characteristic 

index for deviatoric stresses (¢), as well as the 

effective stress (¢). Unfortunately the principal stresses, 

or the applied stress state cannot be recovered because 

of the absence of the hydrostatic component. 
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An alternative method may be used to represent 

the states of stress GAP ianguter co-ordinate system. 

This is best demonstrated by considering the projection 

of the stress states, such as vector Jor] in Fig. (4.5) 

on to the 7m -plane by looking along the hydrostatic 

axis. This means that hydrostatic stresses are neglected. 

The positive principal axes 00), om, ces appear in 

the m-plane, Fig. (4.8), inclined at 120° to each other. 

The co-ordinates of vector |oP| in Fig. (4.5) appear in 

Fig. (4.8) as the projected lengths 

om =y2o, mn = 
301 

  

By resolving vector oP along ee (¢ = 12) and the line 

perpendicular to it (¢ = 3), then, 

-/2 2/2 soe ; x -\2 2 -/2 a, cos 60 3 ese 60 

1 
aaj= (20 = 6G =6) 

6 2 3 1 

2 2 2 tb and Y =Vso cos 30 Sala 6 sin 60 a) 2 

fe 
=a (oS o ) 

i eniles 2) = fi 2 Ze so that GE & (x + ¥ = E (2a, - 0, - 0°) ht, 0) ] 

2 2 ’ i 2 
OP = 1 [‘o, ee a) aS ( cs s P gs = a) ] (4.29) 

(4.30) 
Wis. % | 
20 =o -o0 

2) 23) ik 

and a = tan? ( 
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With this method, the length of any position vector reads 

the deviatoric component of a stress state (0, dg, 5, 

and is consequently proportional to the effective stress 

given by the following equation:- 

OP = ¢ =v 3G (4.31) 

Fig. (4.9) represents the Mohr stress circles for some 

typical stress systems. 

4.5 Stress-Strain and Stress-Strain Rate Relationships 

in the Triangular Co-ordinate System 

The stress, strain and strain-rate relationships 

of the material during deformation can be derived by 

superposing the three sets of triangular coordinates for 

stress, strain and strain-rate one on to the other; and 

study the relationships in vectorial form. For each 

point on the specimen there are three vectors for G, € 

and é. 

In the simplest case of a radial strain path, symmetry 

requires that these three vectors are collinear and the 

relations are as in the uniaxial case. In such a case it 

is impossible to separate the strain-dependent and the 

strain-rate-dependent parts of the stress in a single 

test. In the case where pecker for stress is always 

parallel to the corresponding vector for strain, the 

material is not strain rate sensitive (e.g. ordinary 
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ductile material). It is very unlikely, though theoreti- 

cally possible, that the strain-rate may influence the 

magnitudes of, but not the ratio between the stresses. 

In the case where the vector for stress is always 

parallel to the corresponding vector for strain-rate, 

the material is a liquid. 

In general, the vectors for stress, strain and 

strain-rate are all in separate directions. Then, it is 

possible to find, at any point on the stress path, a 

strain-proportional and a strain-rate-proportional 

component. Thus, let op in Fig. (4.10a) be the vector 

for stress and the associate vectors for strain (€) and 

strain-rate (@) are as shown. By resolving the vector 

op in the two components along € and & we get om as 

the strain-proportional component and on as the strain- 

rate-proportional component of the stress. 

The vector for stress can not lie outside the acute 

angle formed by € and &. Suppose it does lie outside 

the angle on the side of the strain-rate vector (Fig. 

4.10b), then the strain-proportional component of the 

stress must be in the opposite direction to the strain 

vector. In an ordinary ductile material, such stresses 

occur only when the strain path is abruptly reversed, as 

when observing the Bauschinger effect. If, on the other 

hand, the vector for stress liesoutside the angle on the 

side of the strain vector (Fig. 4.10c), then the strain- 

rate-proportional component of the stress is opposite to 
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the strain-rate vector, resulting in a reversed 

flow from the material to the testing apparatus. 

the vector for stress must normally lie between 

strain and the strain-rate vector. In the case 

consideration; the strain path is nearly radial 

there are no sudden turns, let alone reversals. 

energy 

Thus, 

the 

under 

and 

The two components of the stress vector are shown 

in Fig. (4.10a). The resultant stress is 

(4.32) 

By Sine Law 

    

  

ea ee (4, 33) 
sina sin8B 

oF 9 = Sing _ Zz 

6 sin B (4. 34) 

Z represents the ratio of the solid to liquid behaviour; 

the 
and the sum of,two angles (a+ 8) represents, roughly 

speaking, the-curvature of the strain path. 
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Fig. 4-1 — Triangular coordinate system. 
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(+ve) (-ve) Compression™ 

(-ve) 
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Thickening (+ve) 

Me 
Eg €s Thinning (-ve) 

Fig. 4-2 ~ Regions of tensile and compressive 

strains in the triangular coordinates , 

after Hs (76)- 
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Deformations of a cube corresponding 

to different values of the characteristic 
Fig. 4-3 - 

index , after Hsu (72). 

7S



  

  

Eo 

Fig. 4.4 — The strain vector in triangular coordinates. 
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Fig. 4-5 - Hydrostatic and deviatoric stresses. 
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Fig. 4-6— Mohr stress circles. 
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Fig. 4:75 

  

  

Deviatoric stress in triangular coordinates. 
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Fig. 4-8 - Projection technique for deviatoric stress . 
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Fig.4-9- | Triangular 
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coordinates for deviatoric stresses .
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Fig. 4.10-The strain-proportional and the strain-rate- 

Proportional components of the stress vector . 
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Chapter 5 

Material preparation and 

Experimental Equipment 

§.1 Material Preparation 

The mechanical behaviour of superplastic materials 

can be varied widely by processing. Impurities and 

alloying additions have a similar effect due to 

alteration in microstructure and boundary precipitation. 

The material used for the measurements given in this 

project was supplied by Imperial Smelting Corporation 

in the form of sheets 1170 x 640 x 2.54 mm, 1350 x 545 x 

1.91 mm and 1500 x 600 x 1.27 mm in the heat treated 

condition, from which specimens for the bulge test were 

cut. The alloy was based on the zinc-aluminium 

eutectoid (77.5% Zn, 22% Al) to which 0.5% copper was 

added to improve its creep properties. 

The forming specimens were sheared in the form of 

square sheets 172 mm x 172 mm from which circular blanks 

of 170 mm diameter were machined by sandwiching the 

blanks between backing plates pressed firmly between the 

head and tail stock of a lathe. The specimens were 

checked for thickness uniformity and surface smoothness 

and those with scratchy surfaces or thickness 

variations exceeding 0.01 mm within a specimen were 

rejected. Prior to forming, physical contaminants such 

as dirt or oxides on the surface of the blanks were 

removed by using scouring powder. A photographic 

technique was used to print a grid of concentric circles 
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and radial lines on each specimen surface for the 

measurements of the geometrical transformation of the 

material particles after deformation. 

5.2 The grid printing technique 

(A)— Equipment 

(1) A specially designed rig for producing 

repeatable grids and for locating the negative 

accurately in.the centre of the specimen. 

(2) A turntable rotating at 80 r.p.m. - for 

spreading and drying the photoresist evenly on 

the surface of the specimen. 

(3) An ultra-violet lamp (wave length 3650 FN) 

connected to a choke - for exposing the photo-resist. 

(B)- Chemicals 

(1)- Trichlorethylene - a chemical used for cleaning 

of organic contaminants such as grease in the form 

of finger marks or as a film. 

(2)- Kodak Photo-Resist Type 3 - a chemical which 

becomes light sensitive when dried. 

(3)- Kodak Ortho Resist Developer and Kodak Photo 

Resist Dye (black) - a mixture of these two 

chemicals (ratio of 1: 1) used for desolving the 

unexposed area of the photo-resist and colouring 

the exposed area. 

(C)- Printing process 

The procedure of printing was as follows:- 

(1)- The surface of the specimen was cleaned to 
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5.3 

Deoedl 

ensure good adhesion of photo-resist using tri- 

chlorethylene and then washed thoroughly to 

remove any traces of detergent. Oil-free 

compressed air was used to dry the specimen. 

(2)- The specimen was mounted in the centre of the 

turntable. Photo-resist was then poured on to 

the specimen to flood the surface. The turntable 

was then whirled to spin off the excess resist for 

a period of about 30 seconds. The table was then 

stopped and the material removed for drying in air. 

(3)- The uniformly coated specimen was located on 

to the specially designed rig for printing. 

(4)- The chosen negative (grid of concentric circles, 

2 mm pitch) was placed in the centre of the 

specimen and was mounted in close contact with the 

coated surface by using a cylindrical weight. 

(5)- The ultra-violet light was then switched on 

for 3; minutes. 

(6)- The exposed specimen was then immersed in the 

dye developer for about 2 minutes with agitation 

of the dye developer. 

(7)- After a spray water wash, the specimen was 

dried by using air knife. 

Apparatus 

Die Set 

The die set consisted of two parts fabricated from 

mild steel. The sheet to be bulged was clamped between 

the hold down ring (clamping ring) and the die (base 
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plate) by tightening the nuts on the six 12 mm diameter 

studs extended upward from the clamping ring and spaced 

uniformly along a pitch of 240 mm diameter, as shown in 

Fig. (5.1). A torque spanner set at 140 NM was used to 

ensure the uniformity of the pressure on the clamping 

ring. The split clamping ring had an aperture diameter 

of 142 mm, rounded at its inner edge to a radius of 4 mm 

to prevent the specimen from fracturing at its periphery. 

The surfaces of the clamping ring and the base plate 

contacting the specimen were serrated with mating 

grooves of 3 mm pitch and 1.5 mm deep in an annular 

area from 145 mm to 163 mm in diameter (see Fig. 5.1). 

These grooves prevented all movement of the flange 

during the forming process. The die set was fixed 

inside the oven by four 12 mm diameter bolts. 

5.322 Oven 

The basic parameters dictating the selection of the 

oven are as follows:- 

(a)- The optimum superplastic behaviour of the 

material used in this investigation occurs around 

270 C. This temperature should be achieved in a 

short period of time in order to avoid any 

possible structural change of the material. 

(b)- Maintaining a uniform temperature distribution 

over the specimen during the forming process is 

important as the optimum superplasticity occurs 

over a narrow temperature range. 
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(c)- The specimen should be observed during the 

whole forming process for measurement of the bulge 

rate. Therefore, the door of the oven should be of 

pyrex or similar heat resisting transparent material. 

In the light of the above parameters a medium size 

oven with a transparent door was chosen and four 

electric resistance heating elements each of 1000 watts 

were installed at the bottom of the oven. These heating 

elements were controlled independently in order to 

minimise the temperature variations and compensate the 

heat losses during the clamping of the specimen. 

Thermostats of bulb type sensor capable of controlling 

temperature to within * 2‘ in the temperature range 

200 ¢ - 350 € were used to control the heating elements. 

Ten thermocouples of Chromel/Alumel insuglass insulated 

wires, were attached to various parts of the oven and 

the die to ensure the uniformity of temperature. It was 

found that the variation of temperature could be 

maintained to within +5. 

5eSa3 Pneumatic circuit 

The pneumatic circuit consisted of a cylinder of 

nitrogen gas connected to a set of pressure regulators. 

Two push button manually-operated valves were used to 

admit the gas into the forming chamber and release the 

built-up pressure from the bulged specimen. Pressure 

regulators were used so that forming pressure could be 
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selected prior to testing. Pressure at the regulators 

and at the forming chamber were recorded by two sets of 

pressure gauges. Prior to testing, nitrogen was passed 

through a pre-heating coil installed inside the oven. 

5.3.4 Bulge rate monitoring device 

the 
In the study of,mechanical behaviour of superplastic 

materials, it is required to measure the strain rates 

which are expressed in terms of time (T). Thus, time 

is a very important factor and should be measured 

accurately. G.J. Cocks et. al. (61) have monitored their 

bulge rates with a dial gauge connected to a lightweight 

probe in contact with the specimen. They found that the 

bulged specimens of copper alloys were not constrained by 

the probe. However, in our experiments an attempt was 

made to use the same type of equipment, but the results 

showed that any direct contact between the bulged 

specimen and the bulge rate monitoring device would 

constrain the specimen, especially at the final stage of 

the process. At this stage the bulged specimen behaves 

like a toy balloon and even a very small force will 

prevent the normal geometrical transformation of the 

material particles. Therefore, a new technique had to 

be employed. A cylindrical glass of pyrex graduated in 

5 mm intervals was placed on the orifice of the die and 

the bulge rates were monitored by observation. The 

coincidence of the apex of the bulged specimen with each 

line on the glass was recorded as height ia enanyout ie 

time was measured by a stopwatch. The cylindrical glass 

and other equipment are shown in Fig. (5.2. 

88



5.235 Measuring Instrument 

l. A two-dimensional travelling microscope reading to 

0.02 mm for measuring the current (projected) 

radius of the bulge. 

2~— A workshop protractor reading to 5 min. for 

measuring the profile slope of the bulge. A 

magnetic stand placed on the surface plate was used 

to guide the movement of the protractor so that 

accurate meridional slope is ensured. 

3. A stand vernier reading to 0.02 mm for measuring the 

axial (longitudinal) displacement of the bulge. 

It must be mentioned at this stage that throughout 

the experiments no measurement was made at the rim of 

the bulge, since the material in this region is formed 

not only by the membrane stress but by bending as well. 

The membrane stress in the material in this region, must, 

of course, also conform to Eq. (3.2), but the uncertainty 

of the frictional and normal stress on the die surface 

makes it unrewarding to analyse them. 
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Detailed diagram of the die set. Fig. 5-1 
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Fig. 5-2 - The die set and related equipment.  
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Chapter 6 

Behaviour of the work material 

in_the bulge test 

It is shown in Chapter 3 that the mechanical 

properties of the material in the bulge test can be 

determined through the geometry of the shell. However, 

it is essential to keep in mind that the geometry of the 

bulge itself varies widely at different testing 

conditions. Therefore, it is necessary to investigate 

the geometry of the bulge under a particular testing 

condition. 

The major factors affecting the forming behaviour 

of superplastic materials are temperature, strain-rate 

and grain size. Since the effect of grain size onthe 

bulge behaviour of Zn-Al eutectoid alloy is reported 

elsewhere (58), and because the material used in this 

investigation was supplied in one grain size, therefore, 

this parameter is not considered. 

Before discussing the other two factors, it is 

necessary to consider the effect of grain coarsening 

during the test and anisotropy of the material. 

6.1 Effect of grain growth in the bulge test 

It has been said earlier that one of the conditions 

in 
for a material to behave superplastically is having a 

fine approximately equi-axed grain size, stable during 

deformation. In the case of Zn-Al eutectoid alloy, 
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however, limited grain growth is normally observed 

during superplastic deformation (55). It is generally 

agreed that changes in grain size during superplastic 

deformation depend upon the material, temperature and 

strain-rate. In the bulge test, in order to determine 

the stresses, each test must be run several times for 

the measurements of displacements at various stages. 

It means that the specimen is subjected to heat for a 

considerable period of time, and consequently this 

results in the occurrence of grain growth. Therefore, 

it is important to measure the rate of grain growth and 

to check whether this grain coarsening has any effect 

ou forming behaviour of the material. 

In order to measure the rate of grain growth, an 

undeformed specimen having an initial grain size of less 

than lum (Fig. 6.la) was held at a temperature of 270 c 

without stress for a period of 48 hr. and the final grain 

size was found to be less than 3ym (see Fig. 6.lb). The 

bulge test was carried out on this specimen in order to 

check whether this small increase in grain size had any 

effect i tee behaviour of the material, but no 

significant difference was observed between aged and 

as received specimens. 

The microstructure of the specimens was also 

Studied after the bulge test and detailed measurements 
the 

of grain shape near,fracture of the bulged specimen 

the 
revealed that the elongated grains of, initial micro- 
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structure (see Fig. 6.la) became equi-axed and some- 

what larger after deformation (Fig. 6.3). 

6.2 Anisotropy effect in the bulge test 
  

Superplastic materials are usually considered to be 

isotropic due to the absence of grain orientation, 

being a direct result of the grain structure pre- 

requisite. However, Johnson et. al. (34) have shown 

that specimens of originally circular cross-section 

machined from hot rolled superplastic Zn-Al eutectoid 

alloy became elliptical when strained in the rolling 

direction which indicates the anisotropy of the 

material. In the present investigation a bulge of 

142 mm diameter and polar height of 82 mm was produced 

and thickness strains were measured along and 

perpendicular to the direction of rolling. Fig. (6.4) 

shows a plot of thickness strain against initial 

radial position at © and 90° to the rolling direction. 

It can be seen that the thickness strains are distinctly 

higher at 0° except at the rim (undeformed part) and at 

the pole. Further analysis revealed that the stresses 

in the direction of rolling for a given strain rate 

are almost 10% higher than those in the transverse 

direction. Therefore, in the following experiments all 

the measurements are taken at 45° to the direction of 

rolling in order to obtain the average values. 
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6.3 Effect of temperature in the bulge test 

The influence of temperature on flow stress, 

the 
strain-rate and strain-rate sensitivity index in,uni- 

axial tensile test is well documented. The following 

effects are reported for Zn-Al eutectoid alloy. 

1. The maximum attainable ductility increases with 

increasing temperature, and the highest degree of 

superplasticity occurs around 250°C, (15). 

2. The overall level of the flow stress is reduced by 

increasing the temperature (55). 

3. Under certain conditions superplastic behaviour is 

observed above the invariant temperature (275°C), 

but total elongation is considerably less than the 

value observed after deformation at 250°C, (83). 

In the present investigation, similar effects were 

observed in the bulge test, but it is of value to 

mention that the bulge tests, at this stage, were 

performed mainly to elucidate the effect of temperature 

on the geometry and fracture of the bulge rather than its 

effect on ductility and level of flow stress. 

Fig. (6.5) shows three bulged specimens formed to 

fracture at different sets of conditions of temperature 

and strain rate. Specimen A in Fig. (6.5) was formed 

ae esee imum superplastic condition of 250°C and inter- 

2 
mediate pressure (0.103 N/mm). Under these conditions 

the bulge grows to a height of about 180 mm (H/a = 2.68), 
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before it breaks at its pole, and takes the shape of a 

rugby football. The detailed studies of the fractured 

specimen under this condition reveals that the material 

fails due to severe thinning and the thickness of the 

material is nearly uniform over a relatively large area 

at the pole. 

At temperatures below 250°C, the material still 

behaves superplastically, but only at higher pressure; 

and total surface strain is appreciable, though 

considerably less than the value obtained after bulging 

at 250°C. Specimen B in Fig. (6.5) which was formed at 

a temperature of 100°c and pressure of 0.345 Nyame; has 

reached the height of 102 mm, and fractured at the 

pole in a manner totally different from that observed 

after failing at 250°C. At low temperatures the 

material necks down to a very fine point at fracture, 

and at final stages of deformation, the bulge takes a 

conical shape. Fig. (6.6) shows the meridional sections 

(solid curves) and the particle trajectories (dotted 

curves) of specimen B, for the successive stages of 

deformation. 

Finally, specimen C in Fig. (6.5) was formed at a 

temperature of 300°C and at a constant pressure of 0.69 

7am It is of value to mention that even at this 

temperature, which is well above the invariant temperature 

of 275°C, the material is strain rate dependent, but 

fails in an apparently brittle manner at a diffused neck. 
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The maximum attainable height is 62 mm (H/a = 0.87), 

which is nearly equal to the maximum height obtained 

in the bulging of non-superplastic material (84). 

The peculiar behaviour of Zn-Al eutectoid alloy 

above the invariant temperature of 300°C may be 

explained in terms of microstructural change which is 

shown in Fig. (6.2). It can readily be seen from the 

figure that the fine two-phase initial microstructure 

(shown in Fig. 6.la) is completely destroyed and has 

become a lamellar structure. 

As seen from the above experiments, one of the 

interesting features efisulge process on superplastic 

Zn-Al eutectoid alloy is the geometry of the instantaneous 

bulge profile which is closely related to the temperature. 

In practical application, however, the alloy is usually 

formed at optimum superplastic conditions of 250°C and 

intermediate strain rates. Thus, the bulk of the 

following sections involve the detailed examination of 

the bulge profile under the above conditions. 

6.4 Geometrical transformation of material particles 

in_the bulged specimen 

The axial and radial displacements of each material 

particle are determined by the parametric equations 

given by Eq. (3.19) which is 

WS ton Ti Ff = Feo, 7 2) 

S7



In practice, however, it is easier to show the 

displacements by tracing out the profile of the 

product at successive stages than to express Eq. (3.19) 

analytically. 

The radial movements of the material particles 

can adequately be elucidated by plotting the current 

radius against the original radius as shown in Fig. (6.7). 

It can be seen from this figure that the radial 

displacement is non-uniform along the specimen at every 

stage of deformation. The longitudinal displacements 

of the bulge profile at each stage of deformation are 

obtained through the measured inclination of the profile 

(®) as 

  

(O..2) 

where H is the polar height of the bulge and the 

integral in Eq. (6.1) is obtained by a planimeter. The 

meridional sections of the deformed bulge on one side 

of the axis of symmetry for the successive stages of 

deformation are shown in Fig. (6.8) as solid lines. 

The dotted lines in Fig. (6.8) are the particle 

trajectories. 

It is interesting to note that in the bulge test 

for non-superplastic materials the bulge rarely reaches 

a height equal to the radius of the die hole, whereas 

in the case of superplastic Zn-Al eutectoid alloy, the 
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sheets can be formed into a bulge of H/a > 2.7 before 

it breaks. The maximum bulge of a typical non-super- 

plastic material is obtained from ref. (84) and its 

meridional section is plotted in Fig. (6.8) as a dotted 

line. 

Actually, Fig. (6.8) does not represent all the 

experimental data that can be obtained in the bulge 

test of superplastic Zn-Al eutectoid alloy. The bulge 

grows to a height of 190 mm before it breaks at its 

pole, but only the data up to a height of 140 mm are 

shown in Fig. (6.8). Below 140 mm, the forming process 

is controlled by supplying, or shutting the supply of, 

the pre-heated nitrogen and the bulge ceases to grow 

once the gas supply is stopped. However, at some 

height between 140 and 150 mm, the bulge grows by itself 

even after the gas supply is turned off, showing that 

deformation continueswith decreasing internal pressure. 

This unstable regime, which requires cinematographic 

experimental techniques to study, is not investigated 

in this project, but a qualitative analysis is given here 

for this peculiar behaviour. Suppose the bulge is 

idealised as a spherical shell of radius R, so that 

the stress o is 

es (6.2) 

considering that the volume of the shell material (V) 

remains constant at (4mR*t) and that during expansion 

the pressure obeys the gas law 
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(Pressure) x (Volume). = p “ne = constant K (6.3) 

it can readily be seen in Eq. (6.2) that 

Q a 

t
l
w
 

als
 

(6.4) 

which is constant. In other words, according to Eq. (6.4) 

a bulge can grow without additional gas supply, with 

thinning shell and decreasing pressure, only if there 

is no strain-hardening. Actually, the bulge is not a 

sphere, but in the theory of membrane stresses (section 

3.2), it can be seen that the arguments for a constant 

or nearly constant flow stress is valid. Hence, the 

strain-rate is the main factor governing the flow in 

this case. 

6.5 Sphericality of the diaphragm in the bulge test 

In the papers published on the bulge test of super- 

plastic materials for most analyses a spherical bulge 

profile has been the major assumption made. It is 

shown in section (3.2.2) that this assumption is not 

true, because the prolateness of the surface (P) in the 

bulge test is never constant. In order to study the 

local sphericality of the bulged specimen, the variation 

of the principal curvatures must be discussed first, 

since the sphericality of a shell is defined as the 

ratio of the principal curvatures. 
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6.5.1 Distribution of 6 curve in the bulge test 

The distribution of the radius of curvature in the 

circumferential direction may be obtained by considering 

its definition in conjunction with the definition of 

the index of sphericality (N), 

y = $8. “sine 
dr 

Ps /a eine) 

dr & x 

Boe N-a@ino) ~ sino (6.5) 

The ratio (ear) in Eq. (6.5) is the average slope of 

the r against sin@ curve at any point, and 8 /a(sind) is 

the slope of thetangent to this curve. The index of 

sphericality (N) is always positive in order to have a 

close surface in the meridional section of the deformed 

shell (section 3.2.1). The prolateness (P = 1-N) or 

oblateness (negative prolateness) of the dome, however, 

depends upon the relative magnitudes of the slopes in 

Eq. (6.5); it means that, when 

dr > x 
d(sin 6) sin®@ 

  then N <1 

dr re x then N>1 (6.6) 
d(sin 6) sind 

  

  

dr e x SS 
deine) ~ sing 9 “Bee N= 

lol



In order to show the 9 distribution curve in 

relation to the r against sino curve, it is necessary 

to approach from the definition of Py and its differential 

coefficient with respect to the current radius. Thus, 

differentiating Eq. (3.4) and combining the results of 

the differentiation with Eq. (3.9), we get 

N = 1- sino Seo (6.7) 

comparison of Eq. (6.6) and (6.7) then yields, 

do EOe aS a (a) if @ «47o.~=8©6Cr then «=oN<1 and (Eig) ee! sie 

    

do a 
i ene eidy. = (b) if ape then N>1 and asin) * sind (6.8) 

(cy 2 Sey =0 then n=1 and 2%. _*_ dr d(sin@) siné 

These three cases are shown in Fig. (6.9). As seen 

in this figure, when the r against sine curve is sagging, 

®5 is monotonically increasing, and when it becomes 

hogging, p, is monotonically decreasing. For a radial 

x against sin@ curve, however, Py becomes a horizontal 

line. 

As mentioned earlier, a real specimen cannot be any 

surface of constant N value, and the principa 

curvatures must have a variation along the bulge profile. 

Therefore, condition (b) in Fig. (6.9) cannot be valid. 
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From the set of bulged specimens shown in Fig. 

(6.10), it can readily be seen that in superplastic 

material the bulge grows not only if Wongituainal 

direction, but an Gadiaa direction as well. The effect 

of this radial expansion on against sin@ curve is a 

cusp at the angle of 90°as shown in Fig. (6.11). 

To identify the variations in the circumferential 

radius of curvature, the following technique can be used 

on the experimental r against sin@curves. Around any 

curve from Fig. (6.11), say an intermediate stage f£ of 

polar height 80.2mm, draw a radial line from the origin 

of the co-ordinate ore Feanvane to the curve (Fig. 6.12a). 

The initial segment (oa) of curve f£ intersects the 

radial line in an anticlockwise direction as shown by 

the arrowhead in Fig. (6.12a). Thus, at any point along 

the segment (oa), condition (c) of Eq. (6.8) is valid 

and e, is monotonically increasing. For the segment (ab) 

of curve £ in Fig. (6.12a) which crosses the radial 

line in a clockwise direction, condition (a) of Eq. (6.8) 

holds and the point of tangency between the radial line 

and the curve £ corresponds to a maximum e as shown in 

Fig. (6.12b). 

The above analysis is valid for the specimens of 

polar height in the range of approximately 35 to 85 mm 

(O.5 <4/, <1.2). Beyond this range, the meridional 

slopes of the shell vary in a different manner as shown 
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in Fig. (6.13). This figure suggests at least three 

different modes of deformation in the bulge test. At 

small deformations (up to stage b), p, is always 

monotonically decreasing and the location of maximum Py 

appears to be at the pole of the bulge. For larger 

deformation (stage b to f£), the point of tangency 

defined in Fig. (6.12a) shifts towards the die edge as 

the specimen deforms further in general, showing that 

the ring of maximum Po expands with deformation. When 

(H74) exceeds 1.2 (stage g to 1), however, due to the 

radial expansion there is a turning point one, 

distribution curve at the angle of 90°. Before the 

cusp is reached %% is monotonically increasing; and 

afterwards, it becomes almost constant (see Fig. 6.13). 

It is also interesting to note that from curve g to 

1, the specimen is formed into a shell of higher 

curvature, but the deformation is increasingly 

concentrated near the pole. As explained in section 

(6.4.3), the deformation of the bulged specimen up to 

stage 1 is controlled by supplying or shutting the supply 

of the nitrogen gas, and the bulge ceases to grown once 

the gas supply is stopped. Above this region, the 

forming process is unstable, and the bulge grows by 

itself even after the gas supply is turned off. The 

radius of curvature then decreases sharply just 

near the pole until it fractures. 
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6.5.2 Determination of °s; in the bulge test 

The radius of curvature in meridional direction 

( e,) may be obtained by measuring the slope of the 

curves in Fig. (6.11). Since 

- dr 
°s = @ Gind) 

In practice, however, it is difficult to determine 

accurately the slope in Fig. (6.11) for any particular 

value of r, because the curves are all nearly straight 

lines passing through the origin. It is more practicable 

to derive the value of Me from Fig. (6.13). ‘Thus, 

combining Eq. (6.7) with the definition of the index of 

sphericality (N), we get 

E (6.9) 
= 1 =sine 92% 

dr 

Although the graphical differentiation in Pig. (6.11) 

and that in Fig. (6.13) both involve finding the slope 

of curves drawn through experimental points ,it is in 

practice considerably easier to manipulate the adjustable 

set square in Fig. (6.13) than in Fig. (6.11) to coincide 

with the tangent at any chosen point on the curve. 

Neither of these methods, however, can be applied for 

the final stages of deformation, because of the sharp 

turning point on the curves near the rim of the bulge. 
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Since the values of the slopes at these regions can- 

not be decided from either of the graphs, it is 

advisable to determine the value of e, from Eq. (3.9) by 

differentiating the xr against @ curve graphically by 

an adjustable set square in Fig. (6.14). 

The By distribution curve can now be obtained by 

considering its definition in conjunction with Eq. (6.7). 

Thus from 

ap, _ dr _ . S50. 

Ps cos®@ dé ao ie eae dr 

de, (6.10) 
we have Pp =p +tane —— 

s 0 dé 

ep and Pp are always positive quantities, but tané and 
s 

99 can take both positive and negative values 
de 

depending on the stage of deformation. 

It has been shown in the previous section that 

there are three different modes of deformation in the 

bulge test of superplastic materials. The P, 

distribution curve can be observed as a result of the 

variation of tan® and dp, in each mode of 

dé 

deformation. 

By referring to Fig. (6.15), it is observed that 

in the first mode of deformation (up to stage b, Ls $0.5) iy, 
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a9 is always negative, and tan 6 is positive so 

40 the 
that Ps < Pg meaning a decreasing function Of, curve 

the 
over,entire region 6. For the second mode (stage b to 

£7= 5055 ea <1.2), tan@é is also always positive, and 

the sign of the term dP6 is the sole factor 
de 

determining the relative magnitudes of 8, and ®- When 

de 
ap 7° «(over a region 6, Eq. (6.10) suggests that p = PR? 

s 

and by similar argument Cs e, over the region 6 

where 9% Bee For the special case of a local sphere, 
dé 

Eq. (6.10) shows that the paen pe curves intersect at the 
s 

position where oP, a Finally, in the third mode of 
de i 

. Hy dp, . 
deformation (stage g tol - a 2162), @ is always 

de 

positive, and tan @ determines the relative magnitude of 

Ps and 5 7 When 0 <90°, Eq. (6.10) shows that p> PF 

and similarly, p, < p, ; over the region @>90°. When 

e= oe, however, the magnitude of e must be decided by 

interpolation of ®, distribution curve. The effect of Pe 

on 0 for three modes of deformation is shown in 
s 

Fig. (6.16). 

6.5.3 Prolateness of the bulged specimen 

It has been shown earlier that the shape of any 

surface is defined by an index of sphericality (N). In 

order to provide a clear picture of the N distribution 

in the actual test specimen, it is necessary to analyse 

the variation of N with respect to the curvature Pg 

107



At the pole of the bulged specimen, the material is 

subjected to balanced biaxial stretching and N is 

obviously unity. Then re can take any value 

including zero, and the shape of the Pg curve within 

the neighbourhood of the pole can be anything 

continuous. At the edge of the bulge, the circum- 

ferential strain is either zero, or slightly 

compressive (if there is draw-in), hence the meri- 

dional tangential stress must be at least twice the 

circumferential stress, and the N value must there- 

fore, be greater than one but smaller than two. 

For the general case that 5 is a non-linear 

function of xr, Po can either have or not have a 

turning point. When a turning point does not exist 

and with @ >0, Eq. (6.7) suggest that for mono- 

tonically increasing e, the entire surface is always 

prolate and for monotonically decreasing og is always 

oblate. 

By virtue of Eq. (6.7), the N value corresponding 

, apg : to the condition a is 

N=1 js 8 >0 (6.11) 

andthe turning point of N can be obtained by the 

differential co-efficient of Eq. (6.7 

dp dp an z d 8 a0 ~~ ar 0089 - sine =, ae) (6.12) 
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and on equating Eq. (6.12) to zero yields the condition 

dp dp 
Gh jos as po eee = - tand Cae) Caic3) 

and, the magnitude of N at the turning point 6 is 

a 8 
N I He 8 tan 6 ore (r) 1 sin an a 

The shape of the N distribution curve can now 

be predicted for a given o, distribution curve in 

conjunction with the mechanical constraints at the 

pole and die edge. Two simple cases of monotonically 

increasing and monotonically decreasing functions of 

Py have already been discussed in the previous 

paragraph. Since N= 1 at 6 >o corresponds to 

do, 
a = o (Eq. 6.11), the N curve must cross the line 

r 

of N = 1 for a non-linear oF curve with turning point(s). 

Obviously, for a o curve with one turning point, the 

N curve must cross the N = 1 line only once, and it 

must have either a minimum with Na) 

or maximum with Nin >1 at minimum p. On the other 
8 

hand, for two crossings, the simplest N curve is 

< 1 at maximum Bae 

maximum WN >1) initially and becomes a N cry Ney zi 
minimum (N < 1) towards the die edge and ,corresponding 

(T) 

°F curve has a minimum initially,followed by a maximum 

value towards the die edge. Similar deductions may 

the 
be made for,multiple intersection of N with the line 

of N=1. Fig. (6.17) is an attempt to summarise the 
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possible N and e curves in their simplest forms. 

From the above analysis, it can be seen that the 

bulge along the entire meridian section can either be 

oblate or a combination of prolate, oblate and 

spherical shapes. The prolateness of a deformed 

bulge can also be visualised from the basic curves 

shown in Fig. (6.11). The method of analysis is 

similar to that for circumferential curvature 

variations shown in Figs. (6.12a and b). By virtue 

of Eqs. (6.6) and (6.8), the surface is oblate over 

the region where the basic curve intersects the 

radial lines in the clockwise direction. A prolate 

surface will be revealed over the region where the 

basic curve crosses the radial lines in the anti- 

clockwise direction. Similarly, it can easily be 

shown that the point of tangency represents (spherical 

shape. This method of analysis shows that the 

deformed bulge consists of a sphere at the pole and 

a spherical ring whose diameter keeps expanding with 

deformation between the pole and die edge. Between 

the pole and ring , the bulge is everywhere 

prolate, and becomes oblate in the region between the 

ring and the die edge. 

The complex variation of prolateness and stress 

conditions within a real bulged specimen and through- 

out the forming process can be seen in Fig. (6.18). 

As seen in this figure, in the first mode of 
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deformation, the shell is always oblate; and a study 

of the polar heights for the second mode of deformation 

(stages b to £) suggests that the bulge has only one 

particular shape regardless of further deformation 

indicating the stability of the process. Thus, 

between curves b and f, near the rim, the 

prolateness actually increases (shell becomes more 

pointed) with the general decrease in curvature 

showing that curvature and prolateness are two distinct 

geometrical properties. During the stable 

deformation, the shell is divided into two zones by 

an annular ring of perfect spherical surface (N = 1), 

prolate inside and oblate outside it. In the third 

mode of deformation, however, a minute change in 

polar height will result in a large variation of 

shape, and as the forming progresses, the prolate 

expands outwards. This prolate region except near 

the pole, becomes more pointed; and the oblate region 

diminishes in size till near the end of the forming 

process. Consequently, the whole shell at this stage 

becomes prolate and the N value falls below unity 

(curve 1 in Fig. 6.18). 

It is worth mentioning here that the same 

general variation of prolateness with respect to r 

has been found in non-superplastic bulged specimens 

(70, 84). In this section, an attempt is made to 

compare the results in Fig. (6.18) with those obtained 

by T.C. Hsu et. al. (70) in the bulge test for copper 
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specimens. These are shown in Fig. (6.19) for various 

values of the effective strain at the pole Ce) 

As seen in this figure, the similarity in the general 

shapes of the curves between two sets is remarkable. 

However, some differences between theirs and the 

present results are noticeable. At the initial 

stages (e.g. for oa 0.15), the bulge is entirely 

oblate for superplastic material whereas they have 

found that the bulge is partly prolate (N<1) even at 

the very beginning. For €,> 0.8, the non-superplastic 

bulge is in the unstable regime wherdas eecereiastic 

shell reaches to this stage when & > 3.2. 
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Fig.6-1.a— Optical micrograph of Zn— 22 %o Al 

eutectoid alloy showing microstructure 

Prior to testing ; average grain size 

L<1#m ; magnification 2650 times - 

  

Fig.6.1-b~ Optical micrograph of Zn- 22% Al 

eutectoid alloy showing microstructure 

after aging for 48 hr at 270°C; 
average grain size L<3#m ; 

magnification 2650 times. 

3



    a eS 

Fig. 6-2 Optical micrograph showing a_ typical 
lamellar structure of Zn_Al eutectoid 
alloy ; the specimen was held at 300C 

for 1 hr and furnace cooled : 
magnification 2650 times. 

  
Fig.6-3- Optical micrograph showing the structure of 

the bulged specimen near fractured region 
at 270°C; magnification 2650 times . 
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the specimen formed at low temperature,(100°c). 
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Fig. 6.6 - The meridional sections and particle trajectories of 
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CHAPTER 7 

FLOW STRESSES IN THE BULGE 

TEST



Chapter 7 

Tet Forces involved in the bulge test 

It has been clearly shown in section (6.5.3) 

that the N value varies widely along the bulge 

profile, and is locally a sphere only at the pole and 

at an annular ring whose position shifts towards the 

die edge as deformation progresses. At everywhere 

before this annular ring is reached from the pole, 

the shell is prolate and becomes oblate after this 

ring is passed, Fig. (6.18). From the variation of 

the N values, it is possible to analyse the variation 

of the forces in the deformed shell for any particular 

stage of deformation. For the present analysis the 

second mode of deformation (stage b to f - 

0.5<4/ <1.2) is chosen as it represents a typical 

deformation in the bulge test. This analytical 

approach is also applicable to both the first and 

third modesof deformations. 

As seen in section (3.2), there are two forces 

involved in the bulge test, namely (9, t) the force 

per unit length of the meridian section, and (a, t) 

the force per unit length of the circumferential 

section. The variation of these forces will be 

discussed in turn. 

Ted Meridional tension 

The variation of the meridional tension may be 
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obtained by differentiating Eq. (3.5) with respect to 

r, hence 

d(o,t) 

dr 

Ap, 

dr 
    G7eL) ane 

2 

since the pressure (P) is constant, then comparison 

of Eqs. (6.8) and (7.1) yields, 

  

  

  

dp, a(o,t) 
a) if -——>o then >o and N<1 

dr dr 

é do, a (a, t) 
Ded: “az 7 then ae =o and Nel (7.2) 

pp a(o,t) : 
Gc) Af =—=—<o then <o and Nel 

dr dr 

By virtue of Eq. (7.2), in the region of 

do 
prolateness (N<1l), = is always positive and the 

meridional tension is monotonically increasing, (Path 

ABC in Fig. 7.1). The annular region of unity N, 

d(o,t) 
corresponds to the maximum meridional force ( as Oo) 7,   

Point C in Fig. (7.1), and when this point is passed 

  

  

d(o,t) 
= becomes negative. Therefore, for successive 

. d(a, t) 
deformations, a locus for ae =o representing 

maximum meridional force can be drawn. From the N 

distribution curve shown in Fig. (7.1), it is easy to 

visualise two separate features in the region to the 

left of the maximum (o,t) locus. These features are 

characterised by the minima of N. Thus, in spite of 

the property of N<1l in this region, x is negative 
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initially and then becomes positive towards the 

maximum (o, t) locus. Therefore, for the successive 

stages of deformation it is possible to draw a locus 

passing through point B in Fig. (7.1) to indicate 

; aN _ 
minimum N (eS =o). 

7.1.2 Circumferential tension 

The variation of the circumferential tension 

can be obtained from Eq. (3.6), thus 

Ogt = (2-N) ot (753) 

differentiating Eq. (7.3) with respect to r yields, 

(og t) d(o, t) 

dr dx 
    

aN 
= (ovary (7.4) 

It can readily be seen from Fig. (7.1) that at 

the position near the pole (Path AB), 2st) is 
dr 

positive and a is negative. Hence, Eq. (7.4) 

requires that a(ogt) ee and the circumferential 
dr 

force must be monotonically increasing. At everywhere 

in the specimen after the maximum (o, t) locus is 

passed (Path CD), both meridional and circumferential 

  

forces are decreasing functions since Sts, and 

dr 

an , Alogt) 
ar 7° In the area between the two loci ar =o 

and se = o (Path BC), the circumferential force 
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becomes monotonically decreasing although the meridional 

tension is still increasing. 

These three distinctive properties of AB, BC and 

CD in Fig. (7.1) may also be obtained by plotting 

(o,t) against (o,t) in Cartesian coordinates. 

These curves are shown in Fig. (7.2) with the line of 

45 degrees, representing equal forces with unity N. 

The direction of the curves from the starting point 

on the line of 45° has a definite meaning. Along 

the line of 45 degrees, N is equal to one, and the 

forces are balanced biaxial stretching forces, (point 

A and C). Above this line, N is less than unity, the 

shape of the shell is prolate, and the circumferential 

force exceeds the meridional tangential (Path ABC); 

and below this line, N is greater than unity, the 

shape of the shell is oblate, and the relative 

magnitudes of the forces are reversed (Path CD). 

Therefore, all the curves take a spiral shape in the 

clockwise direction towards the die edge except those 

for the initial and final stages of deformation. It 

is evident that the curves for the initial stages of 

deformation must lie below the line of 45° , Since 

the shells are totally oblate (e.g. curve a, in 

ELGS 7. 2). 

Some features of the forces per unit sectional 

length are noticeable in Fig. (7.2). Point B is the 

position r in the specimen where the resultant force 
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is maximum and this corresponds to a point having 

passed the minimum N value with N still less than 

unity but its gradient dN becomes positive. When 
dr 

the curves in Fig. (7.2) intersect the line of 45 

degrees (N = 1) at C, the local surface is 

temporarily a sphere, and it can easily be shown that 

2 is maximum and the tangent at C in Fig. (7.2 
8 

then becomes vertical, giving aay o The locus 

dr 

of this point (C) for successive stages is then 

represented by a horizontal line N = 1 and the 

a(%,t) 
dr 
  = o locus in Fig. (7.1). 

It can be seen from Fig. (7.2) that the position 

vector at point B has always a maximum value. 

the 
Therefore,,locus of this point for successive stages 

the 
represents the locus of,maximum resultant force which 

occurs only in the second mode of deformation 

(0.5 <"/a <1.2), at 18< r<30 mm. 

the 
The fact that,maximum resultant force does not 

occur at the pole can be explained by the following 

analysis. 

Let F be the resultant force. By vector algebra 

2 2 2 
Foe (ogt) + (ot) (7.5) 

by substituting Eq. (7.3) into Eq. (7.5) 
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F? = (0,t)7, (1-(2-N)? ) (7.6) 

F? = (ot) (N? -4n + 5) 

Thus F = (o,t) - (N2-4n + 5)7 (7.7) 

Beto 

where R= ost na) 

F,= (N2- 4n + 5)" 

in Eq. (7.8), Fy is maximum along the maximum 

(ot) locus and F, is maximum along the minimum N 

locus. Some reflection will show that the maximum 

resultant force must occur at some position between 

an Sees) 
the =~ =o and as ar loci, that is between   

points B and C in Fig. (7.1). 

A striking feature of the curves in Fig. ( 72) 

is the reduction of resultant forces for the 

successive stages of deformation which is due to the 

constancy of pressure (P) and decrease of the 

principal curvatures as the forming progresses. 

7.2 Flow stresses in the bulged specimen 

Having obtained the trend of the force distribution 

curves in the deformed shell, it is possible to pursue 
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towards the flow stresses. This can simply be done 

by taking into account the thickness (t) in Eqs. (3.5) 

and (3.6). Thus the stress distribution curves can 

be plotted as in Figs. (7.3) and (7.4). Comparison 

between Figs. (7.2) and (7.3) shows that in the 

former, the loops in the curves above the line of 

45 degrees (N = 1) are all inSclockwise direction, 

whereas in the latter they are impanticlockwise 

direction. This reversal is due to the effect of 

the variation in the thickness (Fig. 7.5). The other 

noticeable difference between the force and the 

stress curves is the radial movement of the points 

on the stress curve near r =o relative to the rest 

of the curve, outwards from the origin, and each 

movement is greater, the greater the variation in 

thickness. Obviously, if the shell were always a 

perfect sphere, with uniform thickness distribution, 

each stress distribution curve would collapse into a 

single point on the line for N= 1. For the actual 

shells, however, the stress curves cross this line 

only at the pole and at an annular ring which is 

locally a sphere. Elsewhere, the state of stresses 

is more complicated, because with increasing 

deformation, not only the magnitude of the stresses 5, 

and o, increases due to the thinning of the material, 

but the ratio between them changes also. The effect 

of severe thinning of material in the third mode of 

deformation (Ha >1.2) on the stress distribution 

curves becomes conspicuous in Fig. (7.4), and at the 
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final stages of deformation (curves k and 1), the 

stress curves cross the line for N = 1 only once and 

that is at the pole of the shell. 

The intensity of triaxial stresses is measured 

by the effective stress which in this case is that 

for the Von Mises ellipses, as follows, 

Ang = c G, % o. Go, = constant 

A series of Von Mises ellipses are plotted in Figs. 

(7.3) and (7.4) as guides to show that the greatest 

effective stress is not at the pole, except at some 

stages in the third mode of deformation (curves i to 1). 

Before these stages the point of maximum effective 

stress remains near os al 16 mm. 

This particular behaviour of the material in 

the biaxial test is very different from the uniaxial 

one in which the stress is inversely proportional to 

the cross-sectional area of the specimen at any 

particular stage, so that, the maximum stress 

always occurs at the thinnest section. This condition 

is also valid for a perfect spherical bulge with 

non-uniform profile thickness, but such a case can 

never occur experimentally in the usual test method. 

In the actual bulge test, because of the effects of 

Pg and t, the maximum stress will occur at the 

thinnest section only when the curvature of the bulge 

does not affect the stress function. 
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of the 
The magnitude, resultant stress follows that of 

the resultant force vector and the position of maximum 

  

dN a (st) 
resultant stress is between the =— = o and =o 

dr ar 

loci, that is between points B and C in Fig. (7.1). At 

the final stages of deformation the variation of the 

thickness near the pole is much greater than the 

variation of the curvatures, and because of the opposite 

effect of t on the stress function, the position of 

maximum stress shifts towards the pole of the shell. 

In forming processes without draw-in and neglecting 

the effect of the die edge, the value of N varies between 

O and 1.5, Fig. (6.18). Thus the stress condition varies 

from the mean condition of balanced biaxial stretching 

(a = 9.) to those conditions of plane strain (9, = 20, 

and o = 20,)- In the two conditions of plane strain at 

the extremes, at one extreme when % =2o0 , the meridional 
Ss 

tangential incremental strain tends to be zero, the 

circumferential expansion being compensated by thinning; 

and at the other extreme when c= 29, , the circumferential 

incremental strain tends to be zero, the stretch in the 

meridional tangential direction being also compensated by 

thinning. All the stress conditions inbetween these 

extremes may, in fact, be resolved into two components, a 

balanced biaxial stretching, and a stress for plane 

strain (or pure shear, as it is sometimes called); thus, 

S69 +%s 
Gy a 

  

(79) 

os



Onan: Oo 

ee (7.9) s 2 2 

where the first terms of the right hand sides of Eq.(7.9) 

constitute a balanced biaxial stretching, and the second terms 

constitute the stress producing plane strain, or pure shear. 

The ratio between these two components is, of course, a 

function of N, or prolateness (p), thus, 

  

The balanced biaxial stretching stress is always 

positive (tensile), but the pure shear component in Eq. 

(7.10) can be positive or negative depending on the 

prolateness or oblateness of the deformed shell. 

In Fig. (7.6), the pure shear stress is plotted 

against balanced-biaxial stress with the radial lines 

indicating the prolateness of the local surface. These 

lines are obtained from Eq. (7.10), and the line of N = 1 

Oy +9 

2 
Oo, _ 0 

(4,—) axis shows an oblate spheroid of N= 1.5. If the 

5) axis denotes a sphere and the negative   or the ( 

surface of a deformed shell had been a sphere for all stages 

of deformation, everywhere the shell would be subjected to 

balanced biaxial stretching and the curves in Fig. (7.6) 

would collapse into a horizontal line. 

As seen in Fig. (7.6), the maximum variation of the 

balanced biaxial stresses along the bulge increases with 

deformation, and the highest balanced biaxial stress on each 

curve corresponds to the pole of the bulge. The difference 

of the balanced biaxial stresses at the pole and annular ring 

also increases with severity of deformation until fracture 

takes place. The variation of pure shear stresses 

in the specimen between the pole and 
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die edge has the same pattern as balanced biaxial stresses, 

but at some stages in the third mode of deformation 

(curves h to k), the maximum pure shear stress variation 

increases tremendously. This maximum variation in terms 

of length along the (cae es) axis consists of two 

parts separated by the line N= 1. Thus the length 

above the line N= 1 represents pure shear stress 

variation in the prolate section of the shell; and the 

length beneath the line N= 1 shows the shear stress 

variation in the oblate region of the bulge. The shear 

stress in the bulged specimen can now be visualised 

clearly. In general, the shear stress variation in the 

prolate portion increases with deformation throughout 

the bulging process owing to the general increase of 

prolateness. The shear stress variation in the oblate 

portion, however, reduces its magnitude rapidly with 

further deformation. 

Te3 Relationship between deviatoric stresses and 

prolateness 

As discussed in section (4.4.1), any flow stress 

consists of two components, hydrostatic and deviatoric 

responsible for elastic and plastic deformation 

respectively. In the present analysis, the hydrostatic 

component is ignored since only large plastic strains are 

considered. States of deviatoric stress can be deduced 

from Eq. (4.18), thus 
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hydrostatic stress Git ie We (9, + 09) 

deviatoric circumferential stress o,=0,-a 
6 8 m C7 aL) 

deviatoric meridional tangential stress o,= I~ Oy 

and deviatoric through-thickness stress = -¢, = - (0, +0) 

It is possible to relate any state of deviatoric stress 

to the prolateness of the deformed shell by introducing 

the index of sphericality (N) into the Eq. (7.11). 

Therefore, by the definitions of o, and O% given by Eqs. 

(3.5) and (3.6), the hydrostatic and deviatoric stresses 

  

  

are 

= JN re 
om 3 s 

‘ N 

os a 3 %s 

(7-12) 
‘ 3_- 2N 
Chee 3 os 

ne Near 
Sey 9 as s 

The relationship between the non-dimensional stresses 

and index of sphericality are obtained by dividing the 

Eq. (7.12) by the meridional tangential stress. Thus, 

on 1 ey 
9, 3 

Ss 

y (7.13) 

oS on 

gs 
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é 
8 2 
a 7 + 38 

y 
t 2 
— = FN-1 
o 3 

These non-dimensional stresses in Eq. (7.13) are only 

functions of N so that when they are plotted against 

N, the dimensionless hydrostatic stress (2) becomes 

a straight line of slope (- 173) passing kueeuds the 

coordinate (0, 1), line AE in Fig. (7.7). d /9, is also 

a straight line (AD) of slope (- 273) passing through the 

same coordinate. Similarly, the dimensionless deviatoric 

meridional tangential and through thickness stresses 

are both straight lines having positive slope of (1/3), 

the former (line OD) passing through the origin, and 

the latter (line BC) passing through the point (0, -1) in 

Fig. (7.7). The two straight lines (OD) and (AD) 

intersect at N= 1, thus forming a triangle having 

vertices of coordinates O (0,0), A (0,1) and D (73), 

Moreover, for any given value of N, it can easily be shown 

that the prolateness of the shell corresponding to this 

N value is given by the vertical distance between the 

two sides (AD and OD) of the shaded triangle OAD in 

Fig. (7.7). 

The above analysis suggests the possible use of the N 

value onto the clock diagram for deviatoric stress so 
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that prolateness (P = 1 - N) can be related to the 

characteristic indices (¢) as shown in Fig. (7.8). 

The insets in Fig. (7.8) for 2<¢<8 show the 

meridional sections of constant N surfaces which are 

discussed in Fig. (3.4). Thus, it is seen that within 

this region of 2<r¢<8, the surface is prolate only when 

6<t<7; and at everywhere of 2<¢<6 , the surface is 

always oblate. For the special case of ¢=6, the surface 

is spherical. Some reflection will show that the surface 

of the shell is always closed for 2<¢<7 and becomes open 

in the region 7<¢<9. 

7.4 Deviatoric stresses in the bulge test 
  

It has been shown in section (4.4.2) that the 

deviatoric stress components (o., oe 

principal stresses (co. +0, ) in the bulge test have only 

,) of the biaxial 

two degrees of freedom, i.e. o, + dtd, = 0. This 

property is used for representation of states of 

the 
deviatoric stress on,triangular coordinate system. 

The set of curves in Figs. (7.9) and (7.10) 

represent states of deviatoric stress in the second and 

third modes of deformation of the specimen and are 

plotted on different scales for clarity. In these 

figures, the deviatoric stress paths and deviatoric 

stress distribution curves are represented by solid and 

dotted lines respectively. It can be deduced from Figs. 

(7.9) and (7.10) that the deviatoric stress paths for the 

second mode of deformation (0.5<H/q<1.2) are nearly 
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radial, specially for o <r, <32 mm. In the third mode 

of deformation, however, the deviatoric stress paths 

are more curved when r,>0. The characteristic index 

(¢) shifts from 5 o'clock to 7 o'clock as deformation 

progresses. The reason for this phenomenon can be 

explained by the N distribution curves, Fig. (6.14), 

and their effects on the clock diagram which are shown 

in Fig. (7.8). 

At the initial stages of deformation the specimen 

is totally oblate, and therefore the deviatoric stress 

distribution curve crosses the line of ¢ = 6 only once 

and that is at the pole and the whole length of the 

curve lies in the region of 5<z¢<6 (not shown in Fig. 7.9). 

In the second mode and some stages in the third mode of 

deformation, the deformed shell is divided into two zones 

by an annular ring of perfect spherical surface (section 

6.5.3), prolate inside and oblate outside it. Moreover, 

the local sphericality at the pole of the bulge is 

always a perfect sphere (N = 1). From Fig. (6.18) it 

may be concluded that, in the clock diagram for 

deviatoric stresses, the stress distribution curves must 

intersect the ¢ = 6 line twice, thus forming a loop in 

the region of prolateness (6<¢<7). The direction of the 

loops in the clock diagram in Figs. (7.9) and (7.10) can 

easily be seen by considering the meridional tangential 

stress condition at the pole and annular ring of perfect 

sphere. At these two positions in the bulge, N is unity 

and from Figs. (7.3) and (7.4), it can easily be deduced 
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from Eq. (7.10) that the loops must emerge in the counter- 

clockwise direction. 

The start of the second mode of deformation 

characterised by curve (b) in Fig. (7.9) reveals that 

the local sphericality is less prolate before and less 

oblate after the annular ring of perfect sphere is 

reached on comparing with the sphericality at some final 

stage in the second mode of deformation (e.g. curve f 

in Fig. 7.9) so that change of direction of ¢ results from the 

second to the third mode of deformation. For further 

deformation (curves g to k), the general trend is 

increasing prolateness so that the deviatoric stress 

paths have to curve towards the left ae 6 line as 

shown in Fig. (7.10). attfinal stages of deformation, 

the prolate region expands outwards and the whole shell 

becomes prolate. Thus, it can be seen from Fig. (7.10) 

that the deviatoric stress paths, especially near the 

die edge, are more drastically curved towards the prolate 

region of the clock diagram (6<zr¢< 7) so that the 

entire stress distribution curve lies within this region. 
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Fig. 7.4- Stress distribution in the third mode of deformation - 
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Fig. 7-8- Prolateness and characteristic index for deviatoric 

stresses . 
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CHAPTER 8 

STRAINS AND STRAIN-RATES 

IN THE BULGE TEST



Chapter 8 

Strain and Strain-Rates 

in_the Bulge Test 

This chapter is focussed on the detailed study of 

the states of strain and strain-rates of a real bulged 

specimen based on sections (3.3) to (3.5). The trace of 

the progress of deformation from one stage to the other 

of an element in the deformed specimen together with 

the states of strain are plotted in the triangular 

coordinate system. To serve as a basis for stress strain and 

strain-rate relationship determination, states of 

strain-rate are also calculated and plotted in the 

triangular coordinate system. 

Sel Strain paths and strain distributions 

As shown in section 4.2, the states of strain in the 

bulge test can graphically be represented as points in 

the triangular coordinate system. These points can be 

plotted from the experimental results not only for 

every stage in the deformation, but also along the 

entire specimen. These constitute the strain paths and 

strain distribution curves respectively. 

Through the incompressibility condition of metals 

in plastic deformation , only two principal strains of 

the three are sufficient to define the state of strain 

of any elementary particle in the bulged specimen. In this 

project, the circumferential and through thickness 

strains are calculated from the following procedures: 
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The circumferential strain is simply calculated 

from Eq. (3.21) which is €g = 1n (r/ro), by measuring 

accurately the original and current radii. The through- 

thickness strain can be calculated from Eq. (3.22) which 

is €&, = In (t/to), by measuring the current thickness 

of the bulged specimen. However, due to inaccuracies 

of the thickness measurements specially at the final 

stages of deformation, a new way based on the measured 

angle of inclination of meridian section (6) and 

circumferential strain (e,) to calculate gis proposed 

and used in this project. By differentiating ea inyt/ ro) 

with respect to x and substituting the term = into that 
° 

. re - dr ol term in the definition of e, (= SN Sosg)s the 

following compatibility equation is obtained, 

deg 
ity ae 

ee) s 8 cos 6 (8.1) 

Using the incompressibility equation, the through- 

thickness strain is, 

de 9 
Ake eorereny 

& = -2e, - ln cra 08/2) ic 8 cos 6 5 

de 

The value of a is derived from Fig. (8.1) by an 
° 

adjustable set square; and the source of the largest 

error in the calculation of ef, is iné@. The overall 

maximum error in e, is estimated to be less than 3 percent 

except for the region very near to the pole. 
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The characteristic index (n) of any state of strain 

can be decided by Eq. (8.1), or simply by the definition 

of e, and Ey - Thus, 

as dz 1 Fo 
fs 9%) 5 4° “ax, cose or) 

(8.3) 

Lond Glar) 
en (Soe6 d (1nx) } 

Cbviously, for any stage of deformation, the bracketed 

term in Eq. (8.3) must have some positive values, that 

is, 

a q w Gy 

a2) 
dr, cosé r 
  > 0 (8.4) 

r and x, are positive quantities, but cosd and GF can take 

both positive and negative values depending on the stage 

of deformation. By referring to Fig. (8.2), it is 

observed that up to stage "f" (HA <2) a is always 
O 

positive and cos@ is also positive (@ < ™/2). When By, 

exceeds 1.2, the bulge expands in@radial direction, 

resulting in a negative cos@near the rim of the bulge 

(6 > T/2) + Over this region ae must be less than zero, 

cone a gi ; 
meaning, decrease of rwith rm: This condition is shown 

in Fig. (6.2). 

The strain paths and strain distribution curves 

for superplastic Zn-Al eutectoid alloy in the bulge test 

are shown in Fig. (8.3) in which the solid and dotted 
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lines represent strain paths and strain distributions 

respectively. The maximum strain (e,) obtainable in 

the bulge test is much greater than the value -1.3 

shown in Fig. (8.2) (specimen £, H =80.2 mm), and is 

-3.44 when H is 142 mm and considerably exceeds -4.0 

when the bulge breaks. 

It is clearly shown in Eq. (8.3) that the 

characteristic index (n) in the bulge test is greater or 

dr Ly oe 
4) less than 6 o'clock depending on whether {ar aae = 

is less or greater than unity respectively. For the 

curves plotted in Fig. (8.3), all the strain distribution 

curves lie in the region 5<n<7 in accordance with Eq. 

(8.4) and the Nvariation in the shell. 

It has been shown in section (6.5.3) that in the 

second and third modes of deformation, the bulge is 

divided into two zones by an annular ring of perfect 

spherical surface, prolate inside and oblate outside it. 

Moreover, the bulge is always a perfect sphere at the 

pole. Therefore, it may be concluded that the strain 

distribution curves Gf Hanghiae coordinate system must 

intersect the n=6line (the line of balanced biaxial 

stretching) twice and form a loop in the region of 

prolateness (6<n<7). Obviously, at the final stage of 

deformation, when the whole shell becomes prolate, the 

entire strain distribution curve lies within the prolate 

region of the diagram (6<n<7). 
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It is seen in Fig. (8.3) that the strain paths in 

the first and second mode of deformation are nearly 

radial along the specimen towards the die edge, 

indicating an almost constant strain ratio for any 

particular element particle during successive deformation. 

In the third mode of deformation (not shown in Fig. 8.3), 

every particle element is subjected to a different 

strain ratio at a different stage of deformation because 

the strain distribution curves shift to the left of the 

diagram at this stage. 

8.2 Strain-rates in the bulge test 

The principal strain rates, just like principa 

strains, have only two degrees of freedom as shown in 

Eq. (3.28), so that the triangular coordinate system 

may be used in the analysis of strain-rates. In order 

to comply with the use of this coordinate system for 

strains, the vertical axis denotes the through-thickness 

strain-rate; and the left and right hand axes represent 

the circumferential and meridional tangential strain- 

rates respectively. 

It was suggested in Chapter 3 that the strain-rates 

in the bulge test can be obtained by measuring the rate 

of change of r, 1 and 6. However, it is more 

practicable to obtain the state of strain-rate simply by 

differentiating each principal strain with respect to 

time (T). This requires accurate measurements of time 
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which can be done easily by the method described in 

section (5.3.4). Fig. (8.4) shows the time-height 

relationship at a constant pressure of 0.103 N/mn? 

As seen in this figure, in the first mode of deformation, 

the bulge rate varies rapidly and there is an almost 

instantaneous expansion followed by a comparatively 

short period in which the bulge rate falls to an almost 

constant value. In the third mode of deformation, the 

bulge rate accelerates and finally leads to rupture. 

Having obtained the time-height relationship in 

the bulge test, it is possible to construct the strain- 

time graph- for any two of the three principal strains 

and differentiate them for the values of strain-rates. 

Since the initial stage of the bulging process is of 

short duration and the final stage leads quickly to 

rupture which results in relatively high strain-rates, 

therefore, the values of strain-rates cannot be shown 

clearly in €riangular coordinate system for the whole 

process of bulging. However, the greatest interest lies 

in the second mode of deformation in which the bulge 

rate is almost constant. By using the above method, the 

states of strain-rate and strain-rate paths are plotted 

in Fig. (8.5) as dotted and solid lines respectively. 

An alternative method may be used to represent the 

state of strain rate (& é &,) as a point in the id 

triangular coordinate system by differentiating the strain 

path at the point (ee € e,) also in the triangular o’ 
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coordinate system. The direction of the radial lines 

passing through the origin and (é, by é, ) is also that 

of the tangent at the point (e,, €,, €,) on the strain 
8 

path. 

The vertical strain-rate path pointing downwards 

in Fig. (8.5) represents a balanced biaxial stretch 

(é, negative). It is easily seen in this figure that 

the strain-rate paths are nearly radial along the 

specimen indicating an almost constant strain-rate ratio 

for any particular elementary particle during successive 

deformation. 
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Chapter 9 

Stress-strain and stress-strain rate 

Relationships in the Bulge Test 

As described in Section (4.5), the stress, strain 

and strain-rate relationships of the material during 

deformation can be derived by superposing the three sets 

of triangular coordinate for stress, strain and strain- 

rate one into the other; and study the relationships in 

vectorial form. Thus, in the bulge test of superplastic 

material in which the deviatoric stress distribution 

curves are spaced between 5 and 7 o'clock as shown in 

Figs. (7.9) and (7.10), there are infinite numbers of such 

relationships along the entire bulge profile which can be 

expressed in vectorial form. 

In the past papers on the bulge test of superplastic 

material (56 - 61), (64), (66 - 69), flow stress is 

assumed to be a unique function of strain-rate and any 

strain dependence is neglected. As a starting point in this 

chapter, let us investigate the validity of such, assumption 

by studying the stress-strain-rate relationship at the pole 

of the bulge,which is subjected to balanced biaxial 

stretching. 

Since the pole of the bulge has zero prolateness (N = 1), 

the effective stress is simply the meridional-tangential 

stress defined as: 

a Pp 
qo = 5 (9.1) 
P 2ty 
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where e is the polar curvature, and is obtained by extra- 

polation of the curves in Fig. (6.13). The effective strain- 

rate is the through-thickness strain-rate defined as: 

- &, 
gp = & = In (2) (9.2) 

° 

The variation of stress against strain rates is 

shown in Fig. (9.1) on the logarithmic scale for different 

constant pressures. Some features of the flow stresses 

and strain-rates are noticeable in this figure. As 

deformation proceeds, the stress in the diaphragm 

decreases, reaches a minimum and then increases rapidly. 

Similarly, the strain-rate in each test decreases initially 

and after reaching to a minimum value, increases sharply 

until fracture occurs. The growth of the bulge is 

indicated by arrows in Fig. (9.1). 

As seen in Eq. (9.1), the variations of flow stress 

0, 
depends only upon the variations of the term cn ), since 

the pressure (P) is constant. At initial stages of 

deformation, as the bulge expands, the polar radius of 

curvature decreases rapidly and consequently (By decreases. 
PB 

Further deformation causes a little change in the magnitude 

of both polar curvature and polar thickness. At the final 

stages of deformation, however, severe thinning of the 

material together with a decrease of prolateness cause a 

sudden increase of flow stress. Fig. (9.2) illustrates the 
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roy 

variation of eal against polar height. 

Pp 

The experimental curves shown in Fig. (9.1) have 

different slopes, whereas the general shape of the curves 

should be the same for any applied pressure. The cause 

could be one or the combination of the following factors: 

(i) inaccuracy of experimental measurements at high 

strain-rate tests; 

(ii) fluctuation of temperature during the test; 

(iii) the flow stress is a function of both the strain and 

the strain-rate. 

However, it can be shown by further analysis of the results 

in Fig. (9.1) that the last reason mentioned above is the 

most likely one. In order to investigate this point 

further, let us consider Specimen C in Fig. (9.1); and 

the 
study its behaviour in, triangular coordinate system. 

For each point on the specimen there are three vectors 

for ¢,e€ and =~ as in Fig. (9.3), where all the three 

quantities (stress, strain and strain-rate) are expressed 

non-dimensionally as fractions of the corresponding 

quantities at the pole. It can readily be seen from this 

figure that the vector for stress lies between the strain 

and the strain-rate vector. The two components of the 

stress vector (a, ane o,) are shown in the inset of Fig. 

(923); 
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The mechanical behaviour of this superplastic 

material is described by Eq. (4.34), which is 

  

Se sin oa 
= = = 2 

oe sin B 

where Z represents the ratio of the solid to liquid 

behaviour (Section 4.5). Fig. (9.4) illustrates the 

variation of Z in the bulged specimen. As can be seen in 

this figure, when Z is zero, the material behaves like 

a liquid, in that the deviatoric stresses are entirely 

proportional to the strain-rates; when Z is infinitely 

large, the material behaves like an ordinary ductile 

material insensitive to the strain-rate; and when Z is 

unity, the material behaves as much like a solid as like a 

liquid, a pure mongrel, so to speak. As can be expected, 

nowhere in the bulge does the material behave entirely like 

a solid (Z less than infinity), but it behaves like a liquid 

at some values of To- Near the pole, the material is more 

and more quasi-solid as rg increases. At the point where 

N = 1, the strain and strain-rate vectors are collinear and 

there it is empirically impossible to differentiate and 

theoretically meaningless to talk about strain-proportional 

and strain-rate-proportional stress components. Beyond 

2S 40 mm the material behaves most consistently, in fact 

it is everywhere about twice as quasi-liquid as it is quasi- 

solid (N nearly equals 4). 
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It is now well worthwhile to return to Eq. (2.1 

where the behaviour of a superplastic material is expressed 

as entirely strain-rate dependent. It has been shown in 

this study that at least one superplastic material does not 

behave like that at all. The superplastic material 

investigated in this study not only exhibits a mixture of 

quasi-solid and quasi-liquid behaviour, but the proportion 

between these two types of behaviour changes according to 

the stress ratio and the relative magnitudes of the strain 

and the strain-rate. In defence of Eq. (2.1), however, it 

should be added that it was originally based on the tension 

test in which it was impossible to distinguish between the 

strain-proportional and strain-rate proportional stresses. 

As is shown in Figs. (9.3) and (9.4), in a biaxial stress 

system involving curved strain paths, the stress system 

consists of the above mentioned two components of stress, 

hence the use of Eq. (2.1) is both unnecessary and mis- 

leading. Indeed, the merit of the bulge test lies precisely 

in averting the need to take the simplistic view of super- 

plastic behaviour of materials represented by Eq. (2.1). 
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Chapter 10 

General Conclusions and Suggestion 
  

for Further Work 

10.1 Conclusions 

It has been shown that the simple relationship 

o= ke” usually used to describe the superplastic flow 

inSuniaxial tension test to be inadequate for,biaxial stress 

system. The bulge test provides a suitable means of 

loading a superplastic sheet specimen to study the 

mechanical behaviour in biaxial tension. With the aid of 

principal curvatures the state of stress, strain and strain- 

rate can be accurately determined throughout the bulge test. 

In this project the complex variations of the 

principal curvatures are measured at every point in the 

bulged specimen and the states of stress, strain and strain- 

rate are plotted in the triangular coordinate system instead 

of the usual Cartesian coordinate system. 

In the past literature on the bulge test of super- 

plastic materials, the surface is usually assumed to be 

spherical (56), (59), (64 - 67). It is shown here that such 

an assumption is far from being adequate in either 

predictive or interpretative theories. That such an assump- 

tion is inadequate is not only because the surface deviates 

from a sphere, but also because the exact deviation is of 

fundamental significance in the forming process. This 
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deviation is now quantitatively defined and the complexity 

of the geometry is revealed and measured. Another 

assumption which has been oversimplifying the problem is 

the constancy of the thickness of the whole sheet at any 

stage of the forming operation (56), (66). However, it is 

now shown that, non-uniformity in sheet thickness is an 

important practical consideration and in industrial 

applications may limit the acceptance of a particular 

alloy in pressure forming processes. 

A method is devised and applied to present results 

of reporting the quasi-solid and quasi-liquid behaviour of 

a superplastic material under biaxial stresses, by resolving 

the state of stress into two components, the strain- 

proportional and the strain-rate-proportional components. 

The ratio between the magnitudes of these two components may 

be said to represent the relative predominance of the quasi- 

solid to the quasi-liquid behaviour of the material. It is 

found that the ratio between the quasi-solid and the quasi- 

liquid resistances to deformation by no means remains 

constant; in other words, the same material exhibits a 

different bias between its solid-like and liquid-like 

nature according to circumstances. 

The data presented can form the basis of more refined 

predictive theories in the future, perhaps by step-by-step 

solutions using computer programmes, and the theoretical 

and experimental techniques can be used to solve specific 

problems. Apart from these techniques and results, however, 
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the final conclusion can be drawn in this project that 

the characteristic of axisymmetrical superplastic sheet 

forming by pneumatic pressure is both complex and 

delicate and cannot be fully observed except by careful 

analysis of very accurate measurements. 

10.2 Suggestion for further work 

The analysis presented in this thesis is applicable 

to co-axial deformations of superplastic materials. It may 

be possible to obtain some significant results on the 

behaviour of such materials under non-coaxial conditions. 

The standard bulge test using a circular die can be 

extended to elliptical dies and square dies with round 

corners. The square die may be used to draw some 

conclusions useful in practical forming processes. It 

would be of great interest if the thickness distribution 

of a non-circular diaphragm could be determined simply from 

the geometry of the bulge. 

It is now clear that the behaviour of superplastic 

Materials is not entirely strain-rate dependent. Therefore, 

further study of the parameters affecting superplastic flow 

is required, and a new relationship should be developed. The 

effect of grain size and temperature must be included in this 

relationship. 

The experimental work presented in this investigation 

indicates clearly that the ratio between quasi-solid and 
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quasi-liquid resistance to deformation is never 

constant. Further work is, however, required to find the 

parameters affecting this function. 
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APPENDIX I 

Specification of the work material   

The test material used in this project was a zinc- 

aluminium alloy basically of eutectoid composition of 77.5% 

zinc - 22% Aluminium with 0.5% various additives to improve 

its properties, such as strength and creep resistance. 

The material was supplied by Imperial Smelting Corporation. 

Thickness of the work material 1.27 mm, 1.91 mm and 2.54 mm 

Physical Properties 

Density (g/cm?) 520) 

Specific heat (cal/g/%) 0.102 

Thermal coefficient of expansion/°c 22.86 x 10° 
(20 - 100°c) 

Electrical conductivity at 2OlC1s tea CLS e 34 

Modulus of Elasticity (N mit) 42.76 x 103 

Melting point ec 473 

Thermal conductivity (cal /cni¥cm/sec/°C) 0.31 

182



REFERENCES 

W. Rosenhain, 
I.L. Haughton, & 
K.E. Bingham 

F. Hargreaves 

C.H.M. Jenkins 

C.E. Pearson 

E.E. Underwood 

Bochvar & 
Sviderkaya 

A.A. Presnyakov 

183 

"zinc alloys with aluminium 

and copper", J. inst. metals, 

1920, 23 (1), pp. 261-324. 

"The ball hardness and the 

cold working of soft metals 

and eutectics", J. inst.metals, 

1928, 39 (1), pp. 301-335. 

"The strength of a cadmium- 

zine and of a Tin-lead alloy 

solder", J. inst. metals, 1928, 

40 (2), pp. 21-39. 

"The viscous properties of 

extruded eutectic alloys of 

lead-tine and bismuth-tin", 

J. inst. metals, 1934, 54, 

pp. Lil-124, 

"A review of superplasticity 

and related phenomena", 

J. Metals, 1962, 14, 

pp. 914-919. 

"“Superplasticity phenomenon in 

the alloys of zinc containing 

aluminium", IZvest. Akad.Nauk, 

SSSR, otdel, Tekhn, 1945, 9, 

pp. 821-824. 

“sverkhplasticknost metallov i 

splavov", Alma-Ata, 1969, 

Translated by Dr. C.B. Marinkov 

British Library Board, 1976.



10. 

ae 

12). 

13. 

14, 

F. Sauerwald 

D. Oelschlagel 

C.M. Packer & 
O.D. Sherby 

A.A. Presnyakov & 
V.V. Chervyakova 

A.A. Presnyakov & 
V.V. Chervyakova 

A.A. Presnyakov & 
G.V. Starikova 

A.A. Presnyakov & 
V.V. Chervyakova 

184 

"on very ductile zinc- 

aluminium alloys", Archiv fur 

Metallkunde, 1949, 3 (5), 

pp. 165-173. 

"Superplasticity in metals", 

J. Japan Inst. Metals, 1966, 

6, pp. 11-20. 

"An interpretation of the 

superplasticity phenomenon in 

Two-phase alloys", Trans. 

A.S.M., 1967, 60, pp. 21-28. 

"The phenomenon of super- 

plasticity in the aluminium- 

copper system", Izvest. Akad. 

Nauk, SSSR, 1958, (Tekhn), 3, 

pp. 120-121. 

"On the super-ductility of 

alloys", Fizika Metallov i 

metallovedenie, 1959, 8 (1), 

pp. 114-121. 

"Condition for the occurrence 

of superplasticity in cast 

eutectics", Izvest.Akad. 

Nauk, SSSR, Met. i. Topl., 

1959, (Tekhn), 1, “pp. 75-77. 

"The superplasticity of 

eutectoid alloys of aluminium 

and zinc", Izvest.Akad.Nauk 

SSSR, Met. i. Topl., 1960, 

(Tekhn), 3, pp. 92-98.



15. 

16. 

17. 

18. 

19. 

20. 

ai. 

225 

W.A. Backofen, 
I.R. Turner & 
D.H. Avery 

W. Hayden, 
-C. Gibson & 
H. Brophy 

. Hayden, 
- Gibson & 
. Brophy 

R.B. Nicholson 

R.H. Johnson 

T.Y.M. Al-Naib & 
J.L. Duncan 

J.W. Edington 

J.W. Edington, 
K.N. Melton & 
Clr. Cutter 

185 

“Superplasticity in an Al-zn 

alloy", Trans. A.S.M. Guart, 

1964, 57, pp. 980-990. 

"Superplastic metals", 

Scientific American, 1969, 

220 (3), pp. 28-35. 

"Relationship between super- 

plasticity and formability", 

Proc. Symp. on the relation 

between theory and practice of 

metal forming, Cleveland, Ohio, 

1970, pp. 475-497, 

"Exploitation through metal- 

lurgical development", 

plasticity and superplasticity; 

Development in their exploit- 

ation. Inst. of Metallurgists 

review course, Oct. 1969, 

pp. 19-37. 

"Superplasticity", 

Metallurgical Reviews, 1970, 15, 

pp. 115-134. 

"Superplasticity metal forming" 

Int. J. Mech. Sci., 1970, 12 

(6), pp. 463-477. 

"physical metallurgy of super- 

plasticity", Metals Technology, 

1976, 3, pp. 138-153. 

"Superplasticity", Progress 

in materials science, Pergamon 

Press, U.K., 1976, 21 (2), 

pp. 61-158.



23. 

24. 

25. 

26. 

27. 

28. 

20s 

30. 

S. Floreen 

. Avery & 
- Backofen 

S.W. Zehr & 
A. Backofen 

M.J. Stowell, 
J.L. Robertson & 
B.M. Watts 

P. Chaudhari 

H.W. Hayden & 
J.H. Brophy 

T.G. Langdon 

J. Weertman 

186 

“Superplasticity in pure 

nickel", Scripta Metallurgica 

1967, 1, pp. 19-23. 

"A structural basis for super- 

plasticity", Trans. A.S.M. 

Guart., 1965, 58, pp. 551-562. 

"Superplasticity in lead-tin 

alloys", Trans. A.S.M. 

Guart, 1968, 61, pp. 300-313. 

"Structural changes during 

superplastic deformation of 

the Al-cu eutectic alloy", 

Met. Sci. J., 1969, 3, pp. 

41-45. 

"Deformation behaviour of 

superplastic zn-al alloy", 

Acta Metallurgia, 1967, 15, 

pp. 1777-1786. 

"The interrelation of grain 

size and superplastic deform- 

ation in Ni-Cr-Fe alloys", 

Trans. A.S.M. Guart., 1968, 

61, pp. 542-549. 

"Grain boundary sliding as a 

deformation mechanism during 

creep", Phil. Mag., 1970, 22, 

pp. 689-700. 

"Theory of steady-state creep 

based on dislocation climb", 

J. Appl.Phys., 1955, 26 (10), 

pp. 1213-1221.



31. 

32. 

33. 

34. 

B55 

36. 

37% 

38. 

C.A.P. Horton & 
C.J. Beevers 

R. Raj & M.F. Ashby 

C.M. Packer, 
R.H. Johnson & 
O.D. Sherby 

R.H. Johnson, 
C.M. Packer, 
L. Anderson & 
O.D. Sherby 

A. Ball & 
M.M. Hutchinson 

R.C. Gifkins 

A.K. Mukherjee 

J. Gittus 

187 

"Anisotropy of grain boun- 

dary sliding in zinc bi- 

crystals examined in terms 

of a dislocation climb-glide 

mechanism", Acta Metallurgia, 

1968, 16, pp. 733-741. 

"On grain boundary sliding 

and diffusional creep", Met. 

Trans. 1971, 2, pp. 1113-1127. 

"Evidence for the importance 

of crystallographic slip 

during superplastic deforma- 

tion of eutectic zinc- 

aluminium", Trans. A.I.M.E., 

1968, 242, pp. 2485-2489. 

"Microstructure of super- 

plastic alloys", Phil. Mag., 

1968, 18, pp. 1309-1314. 

"Superplasticity in the 

aluminium-zinc eutectoid", 

Metal. Sci. J., 1969, 3, 

pp.. L=7< 

"The measurement of grain 

boundary sliding in poly- 

crystalline specimens", 

Metal Sci. J., 1973, 7, pp-15-19. 

"The rate controlling 

mechanism in superplasticity" 

Mater. Sci. Eng., 1971, 8 , 

pp. 83-89. 

"Creep, Viscoelasticity and 

creep fracture in solids", 

Applied Science Publisher Ltd. 

London, 1975, pp. 509-554.



39. 

40. 

41. 

42. 

43. 

44, 

45. 

46. 

F. Ashby & 
-A. Verral 

P.M. Hazzledine & 
D.E. Newbury 

A. Sauveur 

M.G. Lozinsky & 
I.S. Simeonova 

M. De Jong & 
G.W. Rathenau 

» Chinard & 
« Sherby 

W. Greenwood & 
H. Johnson 

D. Oelschlagel 
Vv. Weiss 

188 

"Diffusion-Accommodated flow 

and superplasticity", Acta 

Metal., 1973, 21, pp. 149-163. 

"A model for micrograin 

superplastic flow", Proc. 

Conf. on the microstructure 

and design of alloys, Cambridge, 

Aug. 1973, 1 (41), pp. 202-206. 

"What is steel - another 

answer", Iron Age, 1924, 

113, pp. 581-588. 

"Super-high ductility of 

commercial iron under cyclic 

fluctuations of temperature", 

Acta Met. 1959, 7, pp.709-715. 

"Mechanical properties of iron 

and some iron alloys while 

undergoing allotropic trans- 

formation", Acta Met., 1959, 

7, pp. 246-253. 

"Strength of iron during 

allotropic transformation", 

Acta Met., 1964, 12, pp. 911- 

9197. 

“The deformation of metals 

under small stresses during 

phase transformation", 

Proc. Roy. Soc., 1965, 283A, 

pp. 403-422. 

"Superplasticity of steel 

during the Ferite =* Austerite 

transformation", Trans. 

A.S.M. Guart, 1966, 59, 

pp. 143-154.



47. 

48, 

49, 

50. 

$1. 

52. 

53. 

54. 

M. De Jong & 
G.W. Rathenau 

R.C. Lobb, 
E.C. Sykes & 
R.H. Johnson 

T. Konobeevsky, 
F. Pravdyuk & 
I. Kutaitsev <

2
a
n
 

C. Roberts & 
-H. Cottrell 

R. Kot & V. Weiss 

L.F. Porter & 
R.C. Rosenthal 

H.P. Sattler & 
G. Wasserman 

G.R. Yoder & 
V. Weiss 

189 

“Mechanical properties of an 

iron-carbon alloy during 

allotropic transformation", 

Acta Met. 1961, 9, pp. 714- 

720. 

"The superplastic behaviour 

of anisotropic metals thermally 

cycled under stress", Met. Sci. 

Jisy L972, Oy “pps (33=39). 

"The effect of irradiation on 

the structure and properties 

of structural materials", 

Int. Conf. Peaceful uses of 

atomic energy, 1955, Paper 

(8/P/680), 5 pp. 

"Creep of alpha uranium during 

irradiation with neutrons", 

Phil. Mag., 1956, 1, pp.711-717. 

“transformation plasticity in 

iron-nickel alloy", Met.Trans. 

1970, 1, pp. 2685 - 2693. 

"effect of applied tensile 

stress on phase transformation 

in steel", Acta Met., 1959, 

7, pp- 504-514. 

"Transformation plasticity 

during the martensitic trans- 

formation of iron with 30% Ni", 

J. Less Common Metals, 1972, 

28, pp. 119-140. 

“Superplasticity in eutectoid 

steel", Met. Trans., 1972, 

3, pp- 675-681.



So. 

56. 

57. 

58. 

59. 

60. 

61. 

F.A. Mohamed, 

M.M.I. Ahmed & 
T.G. Langdon 

F. Jovane 

T.H. Thomsen, 
Debs HOLe & 

W.A. Backofen 

J. Hestbech, 
E.W. Langer & 
A. Rosen 

D.L. Holt 

W. Johnson, 
T.Y.M. Al-Naib & 
J.L. Duncan 

G.J. Cocks, 
G. Rowbottom & 
D.M.R. Taplin 

190 

"Factors influencing 

ductility in the super- 

plastic zn- 22% al eutectoid" 

Met. Trans. A, 1977, 8A, 

pp. 933-938. 

"An approximate analysis of 

the superplastic forming of 

a thin circular diaphragm", 

Inst. J. Mech. Sci., 1968, 

10, pp. 403-427. 

“Forming superplastic sheet 

metal in bulging dies", 

Metals Eng. Quart., 1970, 10, 

(2), pp. 1-7. 

"Bulging of the eutectoid 

zn-al alloy", J. Inst. 

Metals, 1971, 99, pp. 306- 

309. 

"An analysis of the bulging 

of a superplastic sheet by 

lateral pressure", 

Int. J. Mech. Sci., 1970, 12, 

pp. 491-497. 

“Superplastic forming techni- 

ques and strain distribution 

in a zn-al alloy", 

J. Inst. Metals, 1972, 100, 

pp. 45-50. 

"Bulge-forming characteristics 

of two superplastic copper 

alloys", Metal Technology, 

1976, 3, ‘pp. 332-337.



62. 

63. 

64. 

65. 

66. 

67. 

G.G.W. Clemas, 
S.T.S. Al-Hassani & 
W. Johnson 

S. Tang 

G.C. Cornfield & 
R.H. Johnson 

S. Tang & 
T.L. Robbins 

J.A. Belk, 

J.F. Brandon, 

H. Lecoanet & 
Cc. Oytana 

191 

"The bulging of a super- 

plastic sheet from a square 

die", Int. J. Mech. Sci., 

1975, 17, pp. 711-718. 

"Analysis of superplastic 

forming of Titanium sheet 

into shallow hat-section", 

Structures, Stuctural dynamics 

and Materials Conference, 

American Inst. Aeronautics 

& Astronautics Inc., 1978, 

pp. 256-261. 

"Forming of superplastic 

Int. J. 

1970, 12 (6), 

sheet metal", 

Mech. Sci., 

pp. 479-490. 

"Bulging rupture of a super- 

plastic sheet", Trans. 

A.S.M.E. J. Eng. Mater. Tech. 

Series H, 1974, 96 (1), 

pp. (7-796 

"A quantitative model of the 

blow-forming of spherical 

surfaces in superplastic 

sheet metal", tnt... 

Mech. Sci., 1975, 17, 

pp- 505-511. 

"A new formulation for the 

bulging of viscous sheet 

Int. J. Mech. 

21, pp. 379-386. 

materials", 

Sci., 1979,



68. 

69. 

70. 

71. 

126 

Te 

J.P. Lechten, 
J.C. Patrat & 
B. Baudelet 

I.H. Wilson, 

J.L. Duncan & 
W. Johnson 

T.C. Hsu, 
H.M. Shang, 
T.C. Lee & 
S.¥. Lee 

Z. Marcinial 

T.C. Hsu 

T.C. Hsu 

192 

"Theoretical and experimental 

analysis of the bulge test 

in superplastic region", 

Revue de physique appliquee, 

1977, 12, pp. 7-14. 

"Biaxial creep testing", 

J. Mech. Eng. Sci., 1971, 

13 (6), pp. 397-403. 

"Flow stresses in sheet 

material formed into nearly 

spherical shapes", 

A.S.M.E., J. Eng. 

1975, 

Trans. 

Mat. Tech. Series H., 

97 (1), pp- 57-65. 

"Graphical representation of 

stress and strain", 

Nadbitka 2 

Stosowanej, 

273. 

Archivum Mechaniki 

195), pp. 261- 

"The characteristics of 

coaxial and non-coaxial 

strain paths", J. Strain 

Analysis, 1966, 1 (3), 

pp. 216-223. 

"The effect of the rotation 

of the stress axes on the 

yield criterion of prestrained 

materials", A.S.M.E. Winter 

1965, Annual Meeting, Chicago, 

Paper No. 65-WA/Met-4.



74. T.C. Hsu, 
W.R. Dowle, 

C.¥. Choi & 
Pyke ee 

75.. PK. Lee, 
Cc.Y. Choi & 
T.C,. Hsu 

76. %T.C. Hsu 

Tig et. Cans 

78. GR. HLL 

79. XK. Nuttal 

193 

"Strain histories and strain 

distributions in a cup 

drawing operation", A.S.M.E. 

Winter Annual Meeting, New 

York, 1970, Paper No.70-WA/ 

Prod.-6. 

"Effect of draw-in on 

formability in axisymmetrical 

sheet metal forming", A.S.M.E. 

Winter Annual Meeting, New 

York, 1972, Paper No. 

72-WA/ Prod - 1. 

"Some remarks on sheet metal 

formability and its measure- 

ment", Proc. Int. Conf. on 

Mechanical Behaviour of 

Materials, Japan, Aug. 1971, 

1, pp. 206-217. 

"Present scope and future 

trend of sheet metal forming 

research", Int. J. Prod. 

Res., 1974, 12 (1), 

pp. 99-115. 

"The mathematical theory of 

plasticity", Oxford 

1950. Clarendon Press, 

"The relationship between 

microstructure and mechanical 

properties of the super- 

plastic zn-al eutectoid alloy", 

Ph.D. Thesis, Manchester 

University, U.K. 1969.



80. 

81. 

82. 

83. 

84, 

85. 

D.S. Fields, Jr. & 
J.P. Hubert 

W.B. Morrison 

P. Lukac & 
P. Malek 

K. Nuttall 

H.M. Shang & 
T.C. Hsu 

Y. Tomita & 
R. Sowerby 

194 

"Superplastic metal forming", 

Advances in deformation 

processing, Sagamore Army 

Materials Research Conf. 

Proceedings (21), Plenum 

Press, 1978, U.S.A. 

"The elongation of super- 

plastic alloys", Trans. 

A.I.M.E. 1968, 242, 

pp. 2221-2227. 

"Superplasticity in a zn-al 

alloy", 5th Inter. Conf. 

on the strength of metals 

and alloys, Aachen, West 

Germany, Aug. 1979, 1, 

pp. 369-374. 

"Superplasticity above the 

invariant in the eutectoid 

zn-al alloy", J. Inst. Metals, 

1971, 99, pp. 291-292. 

"Deformation and curvatures 

in sheet metals in the bulge 

test", Trans. A.S.M.E. 

Series B, 1979, 101 (3), 

pp. 341-347. 

"An approximate analysis for 

studying the deformation 

mechanics of rate sensitive 

materials", Int. J. Mech. 

Sci., 1978, 20, pp. 361-371.



86. 

87. 

88. 

89. 

90. 

91, 

K.A. Padmanabham & 
G.J. Davies 

W. Johnson & 
P.B. Mellor 

A.K. Ghosh & 
C.H. Hamilton 

S. Tang 

I.M. Bidhendi & 
T.C. Hsu 

Cc. Hsu & 
-M. Bidhendi 

195 

"“Superplasticity", 

Materials Research and 

Engineering, Springer- 

Verlag, 1980, 2, 292 pp. 

"Plasticity for Mechanical 

Engineers", D. Van Nostrand 

Co. Ltd., London, 1962, 

"On Constant Membrane stress 

test for superplastic metals", 

Met. Trans. A, 1980, 1A, 

pp. 1915-1918. 

"Progress in mechanics of 

superplasticity", Advances 

in Materials Technology in 

the Americas. San Francisco, 

U.S.A., Aug. 1980, 2, 

pp. 43-50. 

"A Rheological Study of a 

superplastic sheet metal 

forming process", Proc. 8th 

Int. Congress on Rheology, 

Napoli/Italy, Sept. 1980, 

3, pp. 585-590. 

"A study of strain and strain- 

rate dependent properties of 

a superplastic n-al alloy 

under biaxial stresses", 

To be published in A.S.M.E.


