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SUMMARY 

The two-phase theory of fluidization has been extended to cover heat 

transfer at surfaces by introducing the concept of a property boundary layer 

in the vicinity of the surface. The property boundary layer is a consequence 

of changed voidage and hence of changed thermophysical properties of the 

emulsion phase at the surface. A method of defining and calculating this 

boundary layer has been developed. A model of heat transfer from a surface 

to a gas fluidized bed based on the extended theory has been developed. 

Aggregative gas fluidized beds and bubbling gas-liquid systems can be 

unified from the point of view of heat transfer by defining a general 

two-phase system consisting of a discrete gas bubble phase and a continuous 

dense phase. The thickness of the property boundary layer of the dense 

phase, which is in the vicinity of the surface, differentiates between 

bubbling liquids and aggregative gas fluidized beds since it is zero in 

the former case and non-zero in the latter one. 

To investigate the mechanism of the bubble induced heat transfer, the 

multi-bubbling system has been simplified by generating a single continuous 

stream of gas bubbles in a stationary dense phase. Furthermore, a special 

probe which can be used to discriminate between conductive and convective 

modes of heat transfer has been designed. A model of the bubble induced 

heat transfer in the simplified system based on the surface renewal and 

penetration theory has been developed. It has been found that transient 

conduction into the dense phase is the most important mechanism of the 

bubble induced heat transfer. In the case of aggregative gas fluidized beds 

of small particles operating below the radiative temperature level, it is 

responsible for at least 90% of heat transfer; in the case of bubbling 

gas-liquid systems for about 75% of heat transfer. In the former case the 

remainder is contributed by superimposed gas convection, and in the latter 

case by liquid convection.
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Chapter 1. 

INTRODUCTION 

Fluidization is an operation by which fine solid particles are trans- 

formed into a liquid-like state through contact with gas or liquid. The 

contact between the solid particles and the fluid (and hence the trans- 

formation into a liquid-like state) is usually accomplished by passing the 

fluid through a bed of fine solid particles. At low flow rates, fluid 

merely percolates through the void spaces between the stationary particles. 

When the flow rate is increased, a point is reached when the frictional 

force between solid particles in the bed and the upward flowing fluid is 

exactly counterbalanced by the particles weight. The particles are 

suspended in the upward flowing fluid. The bed is then considered to be 

just fluidized and is referred to as a bed at minimum fluidization’, At 

this point bed behaviour exhibits many of the features which are 

characteristic of the behaviour of liquids; namely, the free surface 

remains horizontal, solid bodies float in the bed, liquid-like flow pro- 

perties of the bed etc. At even higher fluid flow rates, the bed behaviour 

generally depends on the properties of used fluid. For liquid fluidized 

beds, the bed progressively and uniformly expands, for gas fluidized beds 

a different behaviour is observed. With gas flow rates increased beyond 

minimum fluidizing conditions, large instabilities occur and bubbles 

rising through the bed are observed, The two-phase theory of fluidization 

suggests? /»°° that all gas in excess of that necessary for minimum 

fluidization rises through the bed as bubbles. Hence a gas fluidized bed 

can be regarded as analogous to a bubbling liquid. 

Bubbles rising through a fluidized bed cause its continuous and 

vigorous mixing. This mixing is responsible for the high rates of heat 

transfer between a surface and a fluidized bed. Because of the rapid



ee 

replacement of solids at the heat transfer surface, heat transfer 

coefficients at cooling or heating of surfaces are of the order of magni- 

tude higher than in equivalent fixed beds or in comparable single phase 

gas flow. A heat transfer mechanism based on the liquid analogy has been 

developed*®, giving a good qualitative agreement between theoretical and 

experimental data, but failing completely for certain conditions. On the 

other hand, the liquid analogy (and the two-phase theory of fluidization) 

gives an excellent agreement between theoretical and experimental data in 

other aspects of fluidization, as for example, in the case of the rising 

velocity of gas pubbies!®, 

The object of the present work is to examine the analogy between 

fluidized beds and liquids from the point of view of heat transfer and to 

investigate the mechanism of the bubble induced heat transfer in both 

systems (gas-liquid systems and gas flutdized beds). 

In Chapter 2, the analogy between liquids and fluidized beds is 

discussed in more details and it is shown that in order to obtain a 

quantitative understanding of the problem of the bubble induced heat 

transfer, simplified systems must be used and a special heat transfer probe 

must be developed. 

In Chapter 3, the analogy is extended by introducing the concept of a 

property boundary layer in the vicinity of the heat transfer surface in a 

fluidized bed and a new model of heat transfer in fluidized beds is deve- 

loped and the theoretical results are compared with the experimental data 

available in the literature. 

In Chapter 4, gas-liquid systems and gas fluidized beds are unified, 

the development of the special heat transfer probe is described and the 

general multi-bubbling system is simplified. Furthermore, a model of the 

bubble induced heat transfer, based on the surface renewal and penetration 

theory, is developed for the unified bubbling system. 

In Chapter 5, the theory derived in Chapter 4 is applied on gas-
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liquid systems and is compared with experimental data. Similarly, in 

Chapter 6, the theory is applied on gas fluidized beds and is again 

compared with appropriate experimental data. 

In Chapter 7, a general comparison of both systems is made and 

conclusions are drawn, Some suggestions for further work are also 

discussed.
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Chapter 2. 

THE ANALOGY BETWEEN FLUIDIZED BEDS AND LIQUIDS. 

2.1. INTRODUCTION. 

Under certain conditions a fluidized bed exhibits in many respects a 

liquid-like behaviour. To investigate various processes in a fluidized bed, 

it is sometimes convenient to use this analogy in order to assign thermo- 

physical and transport properties to a fluidized bed. Thus one can speak, 

for example, about viscosity and thermal conductivity of a fluidized bed. 

The analogy is briefly discussed; it is shown that in many aspects the 

agreement between the theoretical results, based on the analogy, and the 

experimental data is very good, but that in the case of heat transfer the 

analogy gives only qualitative agreement. Hence it is proposed that the 

analogy must be extended to cover also this aspect of fluidization. 

It is further shown, that even an analogous bubbling gas-liquid 

system (with well defined thermophysical and transport properties) is very 

complicated for theoretical investigation. It is suggested that a special 

heat transfer probe must be developed and that the mechanism of the bubble 

induced heat transfer can be best determined in simplified bubbling systems, 

2.2. REGIMES OF BED BEHAVIOUR. 

If a fluid is forced upward through a bed of fine solid particles, 

depending on the fluid velocity, several distinct regimes of bed behaviour 

can be observed. First, at low fluid flow rates, fluid merely percolates 

through the void spaces between the stationary particles. This is a fixed 

(or packed) bed. As the fluid flow rate increases, the drag forces on 

individual particles (and the total frictional force produced by the 

flowing fluid) increase too. Finally a point is reached when the frictional 

force between any particle in the bed and the fluid exactly counterbalances 

the weight of the particle. At this point particles become suspended in the
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fluid and rearrange to offer less resistance to the flow, giving rise to 

an incipiently fluidized bed. The bed is considered to be at minimum 

£luidization’. There are many theoretical equations and experimental 

correlations for the calculation of the minimum fluidizing velocity 

available in the literature!” *18>42 

If the flow rate of the fluid is increased above that required for 

incipient fluidization, the behavior of fluidized beds generally depends 

on the fluidizing agent. The bed will either continue to expand, so that 

the average distance between particles will become greater, or some of the 

excess fluid (above the flow rate required for minimum fluidization) will 

pass through the bed in form of bubbles! ”. In the former case, which is 

typical of liquid fluidized beds, flow instabilities are damped, and large 

scale instabilities are not usually observed - the bed is termed parti- 

culately (or homogeneously) fluidized. In the latter case, which is 

typical of gas fluidized beds, flow instabilities grow and bubbling and 

chanelling of the gas is observed. In addition, the aggitation of the bed 

increases with increasing gas flow rate, the movement of the solids becomes 

more vigorous and the bed usually does not expand much beyond its volume at 

minimum fluidization. The bed is then called aggregatively (or hetero- 

geneously) fluidized bed. Parameters which affect the fluidized bed 

behaviour are many and are widely discussed in the literature. A criterion 

for distinguishing between particulate and aggregative fluidization was 

developed by Wilhelm and Kwauk?9 , The effect of a small void or perturba- 

oeiaes > A void tion in a fluidized bed has been considered mathematically 

once formed due to a flow instability can be either absorbed by the bed or 

grow into a larger void. The stability of a bed with respect to a small void 

can be used as yet another criterion to distinguish between particulate and 

aggregative fluidization. 

At very high flow rates, the drag force on an isolated particle will 

be greater than its weight and the particles will be transported from the



fluidized bed in the fluid stream. This regime is called dilute (or lean 

phase) fluidized bed with pneumatic transport of solids. Hence a fluidized 

bed can exist in only a certain range of fluid velocities - bounded at the 

minimum by the minimum fluidizing velocity and at the maximum by the 

terminal fluid velocity. 

This work is mainly concerned with aggregative gas fluidized beds. 

2.3. LIQUID ANALOGY. 

The resemblence of fluidized systems to bubbling or boiling liquids 

is one of their most readily observable features, The literature about the 

analogy has been reviewed elsewhere?®, There are many different aspects of 

the analogy and only some of them (mostly those related to the present 

work) are summarized here. 

Solid bodies immersed in fluidized beds obey the laws of floating 

bodies, the upper surface of the bed remains horizontal and when two beds 

are connected their levels equalize. When a fluidized bed is disturbed, 

waves appear on the surface of the bed and behave like waves on the free 

surface of a Liquia?®, Further, particles in fluidized beds are in random 

motion which in many ways resembles Brownian motion of molecules in 

liquids”. The similarity between a number of phenomena in a liquid and in 

a fluidized bed results from the analogy between the energetic states of 

both systems, The measure of kinetic energy of molecules in liquids is the 

liquid temperature and the measure of kinetic energy of particles in 

fluidized beds is the velocity of the fluid. Hence the temperature of the 

liquid and the fluid velocity may be regarded as analogous-”. 

The analogy between liquids and fluidized beds can be used to assign 

certain flow properties to fluidized systems. The most obvious one is the 

viscosity. Many investigators measured viscosity of fluidized beds. The 

direct method of Schugerl et at”? using a rotating cylinder appears to be 

most satisfactory since it offers least disturbance to the bed. Grace?
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used the analogy between bubbles in liquids and in fluidized beds to 

calculate the viscosity of fluidized systems indirectly. The fact that the 

values of viscosities, obtained by so different methods, are similar 

confirms indirectly the analogy. The analogy is even more succesful in 

comparing rise velocities of bubbles in liquids and fluidized beds. This 

is discussed in the next Section. 

2.4. DISTRIBUTION OF GAS BETWEEN EMULSION AND BUBBLE PHASES. 
  

A gas fluidized bed contains regions of low (and sometimes zero) solid 

density, which are called gas bubbles. The region of higher solid density 

is called the emulsion phase. Bubbles in fluidized beds are very important 

for they are responsible for most of the features which differentiate 

a fixed from a fluidized bed. Because they modify gas flow through the 

system and induce and influence particle movement and mixing, which are 

responsible for high heat transfer rates between the bed and immersed 

surfaces, it is important to know the distribution of gas between emulsion 

and bubble phases, The simplest two-phase theory of fluidization, due to 

Toomey and Johnstone’°, suggests that all gas in excess of that required 

just to fluidize the system will pass in the form of bubbles, leaving the 

emulsion phase of the bed at the point of incipient fluidization. The direct 

evidence on the merit or otherwise of the simple two-phase theory of 

fluidization is scarce, There is some experimental evidence that for a 

number of gas-solid systems, the two-phase theory of fluidization is an 

19,27,28 Because of its usefulness and simplicity it oversimplification 

will be assumed as correct in the present work and where necessary it will 

be used in the following modified form: It is assumed that for a particular 

gas flow rate through the bed some of the gas will pass through the bed in 

the form of gas bubbles, leaving the emulsion phase at uniform voidage (not 

necessarily the voidage at minimum fluidization), which can be determined 

experimentally.



Basically, a fluidized bed is a two-phase system, where the continuous 

phase is provided by the gas and the discrete phase by solid particles. 

Using the two-phase theory of fluidization, the bed is still considered a 

two-phase system, but the characteristics and the functions of the two 

phases are different - gas bubbles constitute the discrete phase and the 

emulsion phase provides the continuous phase. 

Gas bubbles have been investigated by many workers, both theore- 

18,35 ,48 and experimentally®, Gas bubbles in liquids and in gas tically 

fluidized beds are in many respects analogous, the main difference being 

that, as opposed to gas-liquid systems, there is an interchange of gas 

between discrete and continuous phasesin gas fluidized beds. The validity 

of the analogy is perhaps best demonstrated on the agreement between rise 

velocities of bubbles in liquids and in gas fluidized beds, which for the 

same dimensionless descriptions are, within the experimental error, 

identicai)®, The analogy can also be demonstrated in other aspects of 

bubble behaviour, as for example, the wall effect and the bubble generation 

from a single orifice, where excellent quantitative agreement between 

behaviour of gas bubbles in liquids and in gas fluidized beds can be 

also observed. 

2.5. HEAT TRANSFER, 

2.5.1. ANALOGY. 

Heat transfer in aggregative gas fluidized beds is of the order of 

magnitude higher than heat transfer in fixed beds or in single phase flow 

under similar flow rate conditions. Similarly, it has also been observed 

that two-phase gas-liquid flow is usually associated with large increase 

in heat transfer rates, as compared with single phase flow under similar 

flow conditions “2, Hence the following analogy can be postulated. First, 

because the voidage of the emulsion phase is uniform, it is assumed that 

certain average thermophysical properties can be assigned to it. Then the
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emulsion phase can be regarded as analogous to liquid and thus a bed at 

minimum fluidization is analogous to stationary liquid and an aggregative 

gas fluidized bed to a liquid through which gas is bubbled. The heat 

transfer mechanism in the above described bubbling systems has been long 

established. Bubbles act as stirring agents and thus cause a continual 

mixing of the system (bubbling liquids or gas fluidized beds). The regions 

of high heat capacity (liquid or emulsion phase) are brought into contact 

with the heat transfer surface where they act as local heat sources or 

sinks. While the regions of high heat capacity are in contact with the heat 

transfer surface, heat is transferred by a non-steady heat transfer process. 

After a certain time they are replaced and the process is repeated. Models 

of heat transfer in gas fluidized beds, based on this analogy’®, give good 

qualitative agreement between theory and experiment, and good quantitative 

agreement can also be obtained if certain empiricism is included. (The 

situation is discussed more fully in Chapter 3.) The qualitative agreement 

between both systems (bubbling liquids and gas fluidized beds) can also be 

observed by comparing correlations for heat transfer from horizontal 

circular cylinders to bubbling Liquids’? and to gas fluidized beds®®, 

Similar dimensionless groups occur in both correlations and trends of both 

correlations are also similar. 

The analogy, as it stands, gives a good qualitative description to the 

mechanism of heat transfer in gas fluidized beds, but to obtain also 

quantitative agreement, the liquid analogy must be extended. This is 

further discussed in Chapter 3. 

2.5.2. HEAT TRANSFER IN BUBBLING LIQUIDS. 

It seems now appropriate to demonstrate the difficulties in theoretical 

investigations of mechanism of heat transfer in multi-bubbling systems, 

The problem discussed is one of heat transfer from circular cylinders 

into bubbling liquids (which are simpler, because the thermophysical pro- 

perties of the continuous phase - liquid, are well known and tabulated).
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The method of solution and the experimental apparatus have been described 

by the present author in more details elsewhere’, The solution described 

ine will be closely followed here. 

2.5.2.1. Theoretical analysis. 

Heat transfer from horizontal circular cylinders to bubbling liquids 

is investigated as follows: The presence of gas bubbles causes turbulence 

of the liquid, This turbulence is responsible for the continuous mixing of 

the liquid in the bulk of the pool (the mixture of gas and liquid inside 

the containing vessel). Because of the continuous mixing in the bulk of 

the pool, the bulk of the pool remains isothermal. Without loss of genera- 

lity the pool temperature ,T, is set at the reference zero. Due to mixing 

in the pool, liquid elements are continually brought into contact with the 

surface of the heat transfer probe. (A liquid element is defined as an 

elemental volume of liquid only, containing no gas bubbles.) While a liquid 

element is in contact with the heat transfer surface, heat is transferred 

by a non-steady heat transfer process. The amount of heat transferred 

depends on the duration of the contact time between the surface of the heat 

transfer probe and the liquid element. After a certain time, known as the 

"residence time', each element on the heat transfer surface is replaced by 

a new element from the bulk of the pool. In this way the liquid elements on 

the surface of the probe are being periodically replaced. It is assumed 

that gas does not come into contact with the surface of the probe and that 

the time taken for the liquid elements to be transferred to and from the 

surface is negligible, although their residence time on the probe surface 

is finite. It is further assumed that a liquid element remains stationary, 

once it is brought into contact with the surface of the probe and that there 

are no convection currents within the element. This implies that the only 

mechanism of heat transfer from the probe into the liquid element is 

transient conduction, 

To obtain the time-mean coefficient of heat transfer from the probe to
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the pool, it is necessary to know the residence time of each liquid element 

on the surface of the probe. It is assumed that the frequency of surface 

renewal is constant and that the residence time of all liquid elements on 

the surface is the same. Hence the Higbie uniform age distribution 

function®*, is used to calculate the time-mean heat transfer coefficient. 

The walls of the heat transfer probe are thin and of low heat capacity. 

It is further assumed that the heat flux provided by the probe over its 

outer surface is uniform and constant with time. It is also assumed that 

the heat is transferred in the radial direction only and that the heat 

never penetrates beyond the outer boundary of the liquid element. Hence the 

one-dimensional heat diffusion equation in a semi-infinite medium is used 

for the mathematical description of the problem. 

To obtain the instantaneous temperature field in a liquid element, 

subject to the above assumptions, requires the solution of the following 

  

equations: 
aT, o°T,, 1 or, 

t20,r2a — =«,( 6 ie eee) (233) 
ot or? ror 

subject to 

ts 0, 7 2 2 Tye 0, (2.2) 

aT, 
t20,r=a -k;—= f (2.3) 

5 s 
ir 

A complete solution of equations (2.1) to (2.3) is given by Carslaw 

and Jaeger!”. For small values of the Fourier number ,Fo, the instantaneous 

surface temperature of the probe may be approximated by: 

2af 
s 1 

1? 
(7. Fo?*5( 

    Sie z= 0.25 Fo"**) (2.4) 

L 

The time-mean surface temperature of the probe, using the Higbie 

uniform age distribution function, is calculated as 

1/f 
(T. en £ A (T)) 5 dt (2.5) 5) 

where f is the frequency of the surface renewal of the liquid elements.
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Substituting equation (2.4) into equation (2.5), the time-mean surface 

temperature of the probe is given by 

2af. 
7 Ss 2 065 

Cee nat he ( yee Fo, = 0.125 Fo, ) . (2.6) 

The experimental time-mean heat transfer coefficient is calculated by 

dividing the surface heat flux by the experimentally obtained temperature 

difference between the time-mean surface temperature of the probe and the 

temperature of the pool, The theoretical time-mean heat transfer coefficient 

is defined accordingly as 

ho = £,/(1. (2.7) 
s)m . 

Substituting equation (2.6) into (2.7), the expression for the 

theoretical time-mean heat transfer coefficient is, for small Fourier 

numbers (Fo, < 1), obtained in the following form: 

ea (2.8) 
gee ro"** = 0125"Fa 

3ro°5 nm nm 

  

The only non-primary parameter on the right hand side of equation 

(2.8) is the mean frequency of the surface renewal of the liquid elements, 

£, which is obtained experimentally. Expression (2.8) is valid for small 

Fourier numbers only. Similar, but more complicated expressions can be 

also found for large and intermediate Fourier numbers. 

2.5.2.2. Experimental. 

The experimental apparatus is shown in Figure 2.1. It consists of a 

bubbling column (BC), a distributor plate (DP), placed between the bubbling 

column and the distributor (DS), a cylindrical heat transfer probe (HT) and 

a cooling element (CE). Gas is introduced through a filter and a system of 

valves and flowmeters (VF). The direction of the heat flow is chosen for 

convenience from the heat transfer probe to the gas-liquid pool, because 

electrical heating of the probe is used. A schematic diagram of the heat 

transfer probe is shown in Figure 2.2. A hollow cylinder (HC), 138 mm long,
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made of stainless steel and 2.15 mm in diameter is used as the heat 

transfer probe. The temperature of the outer surface of the cylindrical 

probe is measured by at least five surface thermocouples which are soldered 

into it and insulated from the gas-liquid pool by a thin layer of 'Araldite'. 

This results in a slight local roughness of the outer surface of the probe, 

but its effect is negligible because the rough area is much smaller than 

the total surface area of the probe. The temperature of the gas-liquid pool 

is measured by shielded thermocouples. 

Heat is supplied to the heat transfer probe by a heating element (HE) 

made from a nichrome wire, The rate of heat generation in the heating 

element is measured by a wattmeter. The temperature of the pool is kept 

constant by placing a cooling element (CE) inside it and by adjusting its 

cooling water flow rate in such a way as to counteract the high rate of 

heat supplied to the pool by the heat transfer probe. Because of the 

practically isothermal characteristic of the pool, no distortions of the 

temperature field within it are introduced by inserting the cooling element. 

Furthermore, the cooling element does not change the flow pattern. This can 

be verified by comparing heat transfer coefficients from the probe to the 

pool with and without the cooling element. 

To place the probe across the bubbling column (BC), a "perspex! 

support (PS) is used. Because of the low thermal conductivity of 'perspex', 

heat losses from the ends of the probe to the 'perspex' support are low 

and are estimated to be below 3 % of the total heat supply to the probe. 

Hence the heat supplied by the heating element, corrected for the end 

losses, is calculated. The heat transfer coefficient from the probe to the 

pool is calculated from the heat supplied by the probe and from the 

temperature difference between the average time-mean wall temperature of 

the probe and the temperature of the pool. 

Water-air system is used to investigate the validity of the model 

based on transient conduction as the only mechanism of heat transfer. The
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frequency of surface renewal of the liquid is determined as follows: The 

temperature of the surface of the probe and of the liquid element in contact 

with it increases with the residence time. When this particular liquid ele- 

ment is swept away and a 'new' cold liquid element is brought into contact 

with the surface of the probe, the temperature of the surface drops 

suddenly and then starts increasing again, Hence the frequency of the sur- 

face renewal of the liquid is identical with the frequency of oscillation 

of the surface temperature of the probe, which is measured by a surface 

thermocouple and recorded. 

2.5.2.3. Discussion, 

For a particular gas flow rate, the fluctuations of the surface 

temperature were recorded. A typical time-temperature profile is shown in 

Figure 2.3. The mean frequency of surface renewal was determined and the 

heat transfer coefficient calculated from equation (2.8) was compared with 

that determined by a direct experiment. Equation (2.8) was applicable, 

because the maximum time-mean Fourier number encountered (Fo, =0.13) was 

below unity. Both results (in dimensionless form) are shown in Figure 2.4. 

Figure 2.4 shows that the trend of both theoretical and experimental 

results is about the same, but that the theoretical values are, on average, 

about 40% smaller than the experimental ones. Reasons for this discrepancy 

are probably twofold. First, it is possible that incorrect readings of the 

mean frequency of the surface renewal were taken. Secondly (and more 

likely) there is a probability of the presence of a mechanism of heat 

transfer additional to conduction which was the only mechanism of heat 

transfer considered in the theoretical analysis. The additional mechanism 

of heat transfer (liquid convection) would increase the experimentally 

obtained heat transfer rates and be responsible for this discrepancy. 

Although it seems reasonable to assume that transient conduction is the 

most important mechanism of heat transfer in bubbling liquids, the evidence 

of its exact contribution is inconclusive. In order to get a better insight
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into the problem, a heat transfer probe with well defined boundary condi- 

tions and multi-bubbling systems with controlled frequency of bubble 

generation must be used. 

2.6. CONCLUSIONS, 

The analogy between liquids and gas fluidized beds is a powerful tool 

for the investigation of many aspects of fluidization. Some aspects of it 

can be described by the analogy very well (for example, the bubble 

behaviour), but the analogy gives only qualitative agreement between theory 

and experiments in the case of heat transfer at surfaces. 

It has been shown that transient conduction into the liquid phase is 

the most important mechanism of heat transfer in freely bubbling gas-liquid 

systems. It has been also shown that liquid convection might be responsible 

for up to 40% of heat transfer in these systems. 

It is desirable to determine the exact contribution of various modes 

to the overall mechanism of heat transfer in bubbling systems, but it has 

been demonstrated that the investigation of the mechanism of heat transfer 

is very difficult in multi-bubbling systems. Hence simplified systems 

must be used in order to shed some more light on the precise mechanism of 

the bubble induced heat transfer.
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Chapter 3. 

EXTENSION OF THE ANALOGY. A MODEL OF HEAT TRANSFER IN GAS FLUIDIZED BEDS, 

(Note: This Chapter uses separate notation listed in Section 3.8.) 

3.1. INTRODUCTION. 

Models for heat transfer between fluidized beds and surfaces are 

discussed in this Chapter. The approach to theoretical investigation is 

either to look at the behaviour of a single particle in the vicinity of the 

heat transfer surface or at the behaviour of a packet of the emulsion phase 

there (thus applying indirectly the liquid analogy). It is shown that 

models based on these two approaches provide basically two asymptotic solu- 

tions. The model developed here is a variant of the surface renewal and 

penetration theory of heat transfer. The packet theory (liquid analogy) is 

modified to allow for, and to describe quantitatively, variations of the 

emulsion phase voidage in the vicinity of the heat transfer surface (or in 

general, in the vicinity of any constraining wall). The voidage variations 

in the vicinity of the constraining surface are estimated from simple 

geometrical considerations and are then used to calculate the variations of 

the thermophysical properties of the emulsion phase there, The model so 

derived shows a good agreement with available experimental data without 

recourse to any of the semi-empirical approximatios that are features of 

the previous models, 

Hence it follows that in order to obtain reasonable agreement between 

theoretical and experimental data of heat transfer, the liquid analogy must 

be extended: It is still assumed that everywhere, except in the vicinity of 

the constraining surface, the voidage of the emulsion phase of a gas 

fluidized bed remains uniform. It is then further assumed that the 

constraining wall influences the emulsion phase voidage only locally; thus 

the properties of the emulsion phase in the vicinity of the constraining 

wall are different from those in the bulk of the fluidized bed. Hence the
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concept of a property boundary layer is introduced. In bubbling liquids 

this situation does not arise. So the extended analogy can be described 

completely as follows: Gas fluidized beds (bubbling liquids) consist of a 

discrete gas bubble phase and a continuous emulsion (liquid) phase. 

Emulsion (liquid) phase has constant voidage and thus constant thermo- 

physical properties everywhere in the bed except in the vicinity of the 

constraining surface, where a property boundary layer must be considered. 

The thickness of the property boundary layer is finite in the case of the 

emulsion phase of a gas fluidized bed and zero in the case of the liquid 

phase of a bubbling liquid system. (It is important to note that the pro- 

perty variations are assumed to be due to the influence of the constraining 

surface on the packing of particles only. To simplify the subsequent 

analysis the influence of temperature on the properties of the continuous 

phase is neglected and it is assumed that the temperature associated 

property boundary layer may be neglected too.) 

3.2. BASIC MODELS, THEIR LIMITATIONS AND EXTENSIONS. 

3.2.1. GENERAL CONSIDERATIONS. 

Measurements of heat transfer between fluidized beds and boundary 

surfaces have been carried out by many investigators and extensive 

experimental data are available in the literature. A number of mathematical 

models have been proposed for the prediction of heat transfer coefficients, 

the most useful types being based upon transient conduction between the 

particles (or the emulsion phase) and the surface. None of the models gives 

agreement with experimental data, even under closely controlled residence 

time conditions, unless some empiricism is invoked, although when coupled 

with experimentally derived equations most models are capable of fitting 

experimental data gathered under wide range of conditions. The model pro- 

posed here has the advantage over the previous models that it can fit most 

of the available controlled residence time data, without any a posteriory
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empirical constants being used. 

Nowdays, when considering mathematical models of fluidized bed heat 

transfer, two basic philosophies can be discerned. Both methods use a two- 

phase description of the system, but for each approach the characteristics 

and the functions of the phases are different. The first approach is to 

regard the bed as a fundamental system consisting of a continuous phase, 

provided by the fluidizing agent, and a discrete phase which is provided by 

the solid particles, and sets out to solve the transient heat transfer 

equations for single particles during their residence on the surface. The 

second approach uses the analogy between fluidized beds and liquids, so 

considers the emulsion phase to be the continuous phase and gas bubbles to 

constitute the discrete phase. The transient conduction equations are 

solved for a packet of emulsion phase swept up to the surface by the 

bubbles, a stirrer or by flowing the particles over the surface. Each of 

these approaches has some inherent advantages over the other. 

3.2.2, SINGLE PARTICLE MODELS, 

The simplest model based on this approach was developed by Botterill 

and Willians?°, who assumed that an isolated particle surrounded by gas 

contacts the heat transfer surface for a certain time during which the heat 

is transferred to it by transient conduction. The solution was necessarily 

numerical and the experimental results gathered from closely controlled 

residence time experiments were much lower than those predicted theoretically. 

This shortcoming was removed by the expedient of introducing a gas film 

between the particle and the surface. With this adjustment a good agreement 

between predicted and experimental data was possible for short particle 

residence times on the heat transfer surface. This is the major limitation 

on the use of this type of models, since even if the position and the 

residence time of particles near the surface are known precisely, there are 

still mathematical limitations in the basic model. The model will be accurate 

only if the heat from the heat transfer surface does not penetrate beyond
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the first layer of particles. The depth of heat penetration is given Bye 

0-5 
Lo (kb) Gy) 

and hence 
L 
% a Foo*S (3.2) 

Where kK. is the thermal diffusivity of the emulsion phase. Thus the single 
E 

particle approach can be expected to be accurate at low Fourier numbers 

only. This limitation has been long recognised and Botterill et ae and 

Gabor”° have solved the heat diffusion equations for additional layers of 

particles, however, the mathematical modelling of individual layers of 

particles has limitations and it is doubtful if the extension of the 

domain to further layers can be justified physically. 

3.2.3, EMULSION PHASE MODELS, 

The models based on the liquid analogy stem from the work of Mickley 

and Fairbanks“°, who consider a packet of constant voidage emulsion phase 

being swept into contact with the heat transfer surface for a period of 

time, During this time, known as the packet residence time, the heat is 

transferred by a non-steady conduction until the packet is replaced by a 

fresh packet from the bulk of the bed. Even assuming that all thermo- 

physical properties of the packet can be determined accurately, the model 

still has limitations in that the presence of the heat transfer surface 

changes the voidage distribution of the packet in its vicinity and hence 

the packet properties in the vicinity of the surface differ from those in 

the bed. For this surface effect to be negligible, the heat penetration 

depth must be much greater than the layer of altered thermophysical pro- 

perties (which is usually of the order of one particle diameter). Hence this 

model will be accurate for large values of the Fourier number only. 

Models based on this approach have been considerably refined to extend 

their validity to low Fourier numbers. The methods used are either to 

introduce a time independent contact resistance at the bed-surface interface 

to account for the increased voidage in the vicinity of the surface >,
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or, to consider the packet to have a limited depth (thus setting a boundary 

constraint)°*. The concept of the time independent contact resistance 

appears to be a good first approximation to the problem, as it enables good 

curve fitting of the available data’, however the physical reasoning behind 

it is somewhat tenuous and its introduction the result of mathematical 

expedience, rather than physical considerations~°, The evaluation of this 

contact resistance is based upon empirical considerations, which enable a 

good data-fit to be obtained. 

In conclusion, each of the basic approaches has limitations: the first 

being reasonable at low values of the Fourier number, the latter at large 

values, Extensions of these asymptotic solutions rely upon empirical 

considerations which somewhat reduce their theoretical validities. The 

model developed here is based upon the extended liquid analogy, by using 

the penetration theory on the emulsion phase with a modification to allow 

for variable properties in the vicinity of the heat transfer surface, 

3.3. PROPOSED MODEL FOR SURFACE TO BED HEAT TRANSFER. 

3.3.1. ASSUMPTIONS FOR THE THEORETICAL TREATMENT. 

The assumptions are similar to those introduced by Mickley and 

Fairbanks’°; 

i) The emulsion phase has constant voidage and is isothermal when 

in the bulk of the bed. Without loss of generality the temperature 

of the bed is set at the reference zero. 

ii) Packets of emulsion phase, initially isothermal, are transferred to 

the heat transfer surface, either by bubble induced circulation, by 

stirring or by flowing the solids. The heat transfer mechanism is 

one of transient conduction during the time of packet residence 

on the surface. 

iii) The only constraint on the position of particles at the surface is 

provided by the surface itself?, which influences the local packing
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and hence alters the local thermophysical properties of the packet. 

iv) The variation of the packet voidage is confined to the plane 

normal to the wall. 

3.3.2. FORMULATION OF THE MODEL. 

Consider that the heat transfer is confined to the direction normal 

to the surface in the semi-infinite layer of the emulsion phase. The 

Fourier equation then takes the following form: 

ee dgr = PikOoety (3.3) 
subject to 

Vv o t=0, x T= 0 (3.4) 

+ Iv 0,x=0 -k(x)eb= £, 
(3.5) 

All thermophysical properties refer to the emulsion phase and are functions 

of position. 

These equations can be rewritten in dimensionless form 

2 

OW = H(z * Lz (3.6) 

Fo 9z? oz 
subject to 

Fo= 0,220 W=0 Ge 

aw 
Fo)>-0}0Z>=-0 57 = ~1/b(0) (3.8) 

by using the following transformations 

W = Tk,/f.4p (3.9) 

Z = x/d, (3.10) 

Fo = K,t/d5 (3.11) 

g(Z) = p(Z)cp(Z)/(Pc,)g (3.12) 

b(Z) = k(Z)/k, (3.13) 

H(Z) = b(Z)/g(Z) (3.14) 

L(z) = BY 7 gz) (3.15) 
where suffix E refers to those properties of the emulsion phase which are 

un-influenced by the constraining surface (properties of the packet beyond 

the property boundary layer).
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In order to solve equations (3.6) to (3.8), the functions defined by 

equations (3.14) and (3.15) must be evaluated. These evaluations require a 

knowledge of the voidage variations in the vicinity of the heat transfer 

surface. This is discussed in the next Section. 

3.3.3, VOIDAGE VARIATIONS IN THE VICINITY OF A CONSTRAINING WALL, 

The variations of local voidage of fixed beds in the vicinity of a 

constraining wall have been investigated by several workers©*40.51,52 

Using spherical particles the usual observation is that the voidage 

variation with distance from the constraining surface takes the form of a 

damped oscillation curve with a voidage minimum occurring at about one 

particle radius from the surface. In the case of fluidized beds, the 

39,40 4 oscillations of the voidage appear to be damped much more rapidly 

the voidage minimum is shifted further from the constraining surface. This 

situation is further amplified for non-spherical particles: the voidage 

remaining practically constant after a distance of one particle diameter 

from the wall and its minimum occurring at about 0.75 dp from the surface. 

As mentioned previously, particles at the same distance from the 

constraining surface will be influenced by it in the same way. Hence the 

mean voidage at any plane parallel to the constraining surface is a function 

of the distance of the plane from the constraining surface. The area mean 

voidage of these planes is defined as 

€(x) = 1 - B(x) (3.16) 

where B(x), the solid concentration is given by 

BG = ABD (3.17) 
B 

and where A(x) is the solids cross sectional area at a reference plane, 

which is situated at a distance x from the constraining surface. In order 

to calculate the solid cross sectional area at any distance from the 

constraining surface, it is assumed that the particles in the bed can be 

approximated by uniform spherical particles having the diameter equal to
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the mean equivalent diameter of the actual particles, without affecting the 

voidage distribution within the packet of emulsion phase. 

It is now postulated that for a bed of uniform spherical particles, 

the particles cross sectional area A(x) at a distance x from the 

constraining surface is proportional to the cross sectional area of a 

cylinder whose volume and height are identical to those of the segment of 

a spherical particle which can be found between the reference plane and the 

constraining surface while touching the constraining surface (Figure 3.4a). 

When the reference plane is situated beyond one particle diameter from 

the surface, the fraction of a spherical particle which can be found 

between it and the surface is constant and equal to the entire particle. 

Thus it is implied that the asymptotic material cross section »Bps is 

attained at a distance of one particle diameter from the surface. The 

voidage variation can then be calculated as 

xsd, A(x) a V(x)/x (3.18) P 

x>d A(X) & Vp/dp (3.19) 
Pe 

where V(x) is the volume of that segment of a spherical particle between 

the surface and the reference plane and Vp is the volume of the whole 

particle. 

Equations (3.18) and (3.19) can be rewritten as 

x<d, B(x) 

x> d, B(x) = C V,/dp (3.21) 
where C is a constant of proportionality. The right hand side of equation 

C V(x)/x (3.20) 

(3.21) is a constant, un-influenced by the constraining surface, equal to 

the material concentration within the emulsion phase. 

Hence 

C Vp/dp = Pse.= 6 (3.22) 
B E 

and the following forms of equations (3.20) and (3.21) can be obtained: 

ache B(x) = (1 - e,) = ae (3.23) 

x > d, BG) = (1 - €,) (3.24)
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where V(x), the volume of the segment of a spherical particle between the 

reference plane and the constraining surface, is given ast 

eye = m2 (1.54, =x) (3.25) 

Equations (3.23) and (3.24) can be rewritten in dimensionless form: 

1-30 - ,)@ - 32%) (3.26) As 1 €(Z) 

fe Sta ep (3.27); 

The predicted variations of the voidage for two values of the emulsion 

voidage »Ep» are plotted in Figure 3.1. These predictions agree well with 

the experimental data of other investigators*?*4°, 

Equations (3.26) and (3.27) are used in the next Section to calculate 

the functions H(Z) and L(Z). 

3.3.4. FUNCTIONS H(Z) AND L(Z). 

i) When the fluidizing agent is a gas, then its heat capacity can be 

neglected as compared with that of the solids, so that 

0(Z)ep(Z) = (ecp)p + B(Z) (3.28) 
and 

(pcp), = (otp)p * BE (3.29) 

and hence 

g(@) =B(Z)/e, (5050) 

ii) The effective thermal conductivity of a packet of emulsion phase 

can be calculated from one of the models available in the literature. In 

this work the method proposed by Kunii and smith’ is used and it is 

assumed that its validity can be extended into regions of high voidage, as 

suggested by them’, The local effective thermal conductivity of a packet 

of emulsion phase can then be expressed in the following form: 

k(Z) = fn[ kp * ke 5 £(2)) ] (3.31) 

Using equations (3.13) and (3.31), function b(Z) can be readily calculated; 

but k(Z) can be more easily evaluated graphically than from its explicit 

form*>, Figures 3.2 and 3.3 show the behaviour of function b(Z) for various 

ratios of particle and gas thermal conductivities and two values of the
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emulsion phase voidage pe 

iii) Function H(Z) is then calculated from equation (3.14). In order to 

calculate function L(Z), function b(Z) must be differentiated either 

graphically (using Figures 3.2 and 3.3) or, as in this work, by numerical 

differentiation. Function L(Z) is then given by equation (3.15). 

3.4. THEORETICAL HEAT TRANSFER COEFFICIENTS. 

3.4.1, NUMERICAL CALCULATIONS. 

Equations (3.6) to (3.8) were solved numerically using the voidage 

distribution given by equations (3.26) and (3.27). The calculated thermo- 

physical properties vary very rapidly close to the heat transfer surface, 

which type of variations lends itself most readily to constant flux 

boundary conditions, The physical situation is somewhere between constant 

surface temperature and constant surface flux, however the solutions 

obtained by either approach are very similar!>, In order to solve the 

equations accurately, very small space (and hence time) increments must be 

used because of these large variations of properties close to the surface. 

The size of increments needed makes computer times requirements extremely 

large. 

In order to overcome this complication while not sacrificing much 

accuracy, it is assumed that the first space increment from the surface 

remains at steady state, so that the situation is as shown in Figure 3.4, 

and the dimensionless wall temperature Wis can then be calculated, as 

shown in Appendix 1, from 

a bs Az Wy = (0) = W(Az) + Bon (3.32) 

where 

b(AZ)_- b(0) b = b(0) (3.33) 
<a in 2642) 

b(0) 

The temperature field in the packet is calculated for each time increment 

by a standard numerical technique.” until a point is reached at which the
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dimensionless temperature ,W, becomes smaller than 1072". At this point 

the calculation is terminated and restarted for the next time increment. 

The space incremental size used is AZ = 0.05, The solution thus obtained 

was checked for accuracy by halving and quartering the step-size. This 

demonstrated both, the adequacy of the original step-size and that the 

simplification (equations (3.32) and (3.33)) was numerically reasonable, 

leading to a great saving in computer time, while incurring a negligible 

loss of accuracy. 

3.4.2, THE INSTANTANEOUS NUSSELT NUMBER, 

The instantaneous Nusselt number is defined as 

hid, 
  Nu; = (3.34) 
ke 

where h., the instantaneous heat transfer coefficient can be expressed as 

  

f, 
hy = Gs55) 

(Ty); 

so that dpé 

Nu, = eS J (3.36) 

ky) y 

Thus from equation (3.9), 

Nu, = 1/0); (3.37) 

Figure 3.5 shows the variation of the instantaneous Nusselt number with 

the instantaneous Fourier number, Fo. It should be noted that the 

instantaneous surface temperature Mas is equal to the packet 

temperature ,W, obtained from equations (3.6) to (3.8), calculated at the 

point Z=0, 

3.4.3, THE TIME-MEAN NUSSELT NUMBER, 

The time-mean heat transfer coefficient (and hence the time-mean 

Nusselt number) can be calculated, it the mean residence time of the packets 

and their age distribution function on the surface are known, as 

By, = yee/cr in (3.38) Wm :
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In order to evaluate (Ty) in a certain age distribution function must 

be used. The simplest form for fluidized beds appears to be the uniform age 

distribution function®?°>, although many other forms can be used! ?1026 | 

The effect of the distribution function is not numerically dereer so 

that using the uniform age distribution function, 

fea 
Gp), == ‘ (7); at (3.39) 

where Tt is the periodic time of packet renewal on the heat transfer surface 

(mean packet residence time). The time-mean Nusselt number is 

Nu, = Wy), (3.40) 

where 

1 Fo, 
Wn * Fo, ‘ (Wy) 5 dFo : (3.41) 

Figure 3.6 shows the variation of the time-mean Nusselt number with the 

time-mean Fourier number for various solid-gas combinations. 

3.5. COMPARISON WITH EXPERIMENTAL DATA. 

3.5.1. CURRENT EXPERIMENTAL METHODS. 

The discrepancies amongst the available experimental data, obtained in 

freely bubbling beds under apparently identical conditions of fluidization, 

can be of several orders of magnitudes”, reflecting the many parameters 

which can influence fluidized bed heat transfer rates. Hence in order to 

test various theories or develop new models, simplified systems, in which 

the bed behaviour is closely controlled, are used. The experimental 

systems can be classified as follows: 

i) The low thermal capacity probe. In this technique a small, low 

heat capacity heating foil is used to measure both heat transfer coefficients 

and packet residence times in freely bubbling beds’ ’. While this technique 

is very useful, the results obtained are subject to errors, because the 

surface boundary conditions are not usually well defined, and further, 

because the packet voidage at the surface is disturbed by the passing
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bubbles. 

ii) Stirred beds. The heat transfer probe is moved through the bed on 

a stirrer’}, or the bed is stirred past the heat transfer probe, in 

order to effect the residence time control. However this technique involves 

two questionable assumptions. First, that particle replacement over the 

entire surface is complete, and secondly, that the bed structure is 

uneffected by the stirring. Each of these assumptions has been shown to be 

of limited validity”°, 

iii) Flowing packed beds. According to the two-phase theory of 

fluidization, the emulsion phase of a fluidized bed is considered to be 

under approximately incipiently fluidized conditions. The incipiently 

fluidized bed has many of the characteristics of a packed (fixed) bed-=s 

so that the emulsion phase can be for many purposes simulated by a packed 

(fixed) bed. Many experimental data have been gathered for packed beds 

flowing over heat transfer surfaces. The main experimental limitation of 

this technique is that particle spin has been observed under some 

conditions? 3 

iv) Transient response. In this technique a heat transfer probe of known 

heat capacity and initial temperature is submerged into an incipiently 

fluidized, or packed, Bede The variation of the heat transfer coefficient 

with time, obtained from the temperature response of the probe, is analogous 

to the response of a packet of particles (or emulsion phase) at a heat 

transfer surface in a fluidized bed over the same time interval. This 

technique suffers from the same disadvantage as the first method because, 

again, the boundary conditions might be difficult to define, however the 

packing at the surface is not, in this case, disturbed by the passing 

bubbles. 

Experimental data, obtained under all of the above conditions, are 

available in the literature. In comparing these data with the prediction 

of this work, it was sometimes necessary to use assumed values for the
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emulsion phase voidage. The voidage then used was ¢€,, = 0.41 and the thermo- 
E 

physical properties were calculated as outlined in Section 3.3.4. The 

properties of the solid particles and gases, used in this comparison are 

set-out in Table 3.1. Calculated thermal conductivities of the emulsion 

phase are shown in Table 3.2. 

3.5.2. COMPARISON. 

The predictions for the instantaneous Nusselt numbers, obtained here, 

are compared with the results of Antonishin et ate in Figures 3.7 to 3.9. 

The asymptotic Mickley and Fairbanks solution’©, assuming a constant 

surface flux boundary condition, and given by Carslaw and feceee as 

Nu, = 0.5 MmeweRoa o's 1. (3.42) 

is also included. 

The experimental results of a number of workers for the time-mean 

Nusselt numbers are compared with the predictions of the present theory in 

Figures 3.10 to 3.19. Again the Mickley and Fairbanks solutions, calculated 

from equations (3.38), (3.39) and (3.42) as 

Nu, = 0.75 no? Font 5 (3.43) 

are included. 

3.6. DISCUSSION, 

As the present model involves the use of the experimental and 

theoretical results of several workers, for example in calculating voidage 

variations near surfaces or emulsion phase properties, it is very satisfying 

to observe the very good agreement between the present theory and the 

experimental data available in the literature. It is significant that the 

best agreement between theory and experiment was obtained using the results 

from experiments conducted under very carefully controlled conditions, with 

materials of well known thermophysical properties. This suggests that where 

the disagreement is most pronounced, the true experimental conditions may 

not have been known. These errors may be due to:
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i) The stirrer not being 100% efficient. 

ii) In flowing packed beds some particle rotation could occur. 

iii) The voidage of the emulsion phase was not reported in many of these 

experiments and the value of & = 0.41, assumed here,may not be 

correct. 

iv) Because of the relative lack of knowledge about the thermal 

conductivity of the emulsion phase, the calculated thermal 

conductivity of the emulsion phase is probably the biggest single 

source of error, This error is indicated by the fact that in cases 

where the disagreement is strongest, the results of a particular 

study fall systematically either above or below the theoretical 

curve. 

v) In the case of fluidized metals a further complication is that a 

microlayer of oxides on the surface of the particles would consi- 

derably effect their conductivity and hence also the effective 

thermal conductivity of the emulsion phase. 

Some of these effects could be eliminated by calculating the effective 

thermal conductivity of the emulsion phase from heat transfer results for 

long packet residence times, using the asymptotic Mickley and Fairbanks 

Solution ©. However, the agreement obtained without using this method 

seems to make such a refinment unnecessary. 

None of the previous models of heat transfer in fluidized beds 

(Section 3.2) has been capable of producing acceptable agreement with 

experimental results over the full range of experimental data without the 

introduction of some form of a semi-empirical approximation . While these 

approximations, such as a gas film or a finite penetration depth, have 

obvious physical significance, they are ad hoc expedients rather than 

solutions to the real problem of behaviour of particle packets in the vici- 

nity of a heat transfer surface. The model developed here is similar to the 

variable wall properties approach, long used in single phase heat transfer’,
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Since most of the experimental data used in the comparison (Section 

3.5.2) were obtained from experiments conducted in fluidized beds of small 

particles, the contribution of gas convection to the overall mechanism of 

heat transfer can be neglected??>*, Figures 3.7 to 3.19 then demonstrate 

that the model developed here gives good agreement with experimental data 

in cases where conduction is the predominant mode of heat transfer. In 

principle this model could be extended to more complicated mixed-mode heat 

transfer situations, for example to high pressure systems where gas 

convection heat transfer becomes significant®. 

The voidage variation in the vicinity of a surface could probably be 

described by a more accurate expression than that developed here and the 

theoretical solution and numerical calculations could be improved, however 

it is doubtful whether the increase in precision of the theoretical solu- 

tions could be justified in terms of experimental limitations. In order to 

get further justification of the present model, it is desirable to obtain 

some more experimental results, particularly in the range where the 

property boundary layer is controlling. This is done in Chapter 6. 

Bubbling liquids and gas fluidized beds can be unified from the point 

of view of heat transfer by introducing the concept of the property boundary 

layer. Bubbling liquids differ from the gas fluidized beds in the thickness 

of the property boundary layer, Because the voidage variations are confined 

to a distance of one particle diameter from the surface, the property 

boundary layer is of the same thickness - i.e. one particle diameter. 

Hence the thickness of the property boundary layer varies from relatively 

large (for gas fluidized beds of coarse particles), through relatively small 

(for gas fluidized beds of fine particles) to zero (for bubbling liquids). 

3.7. CONCLUSIONS. 

Bubbling liquids and gas fluidized beds have been unified from the 

point of view of heat transfer by introducing the concept of the property
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boundary layer in the vicinity of the heat transfer surface. The concept of 

the property boundary layer results from the presence of the heat transfer 

surface and its effect on the local voidage of the emulsion phase there. 

The thickness of the property boundary layer is assumed to be one particle 

diameter, The thickness of the property boundary layer differentiates 

between liquids and fluidized beds: - it is zero for bubbling liquids and 

non-zero (equal to the particle diameter) for fluidized beds. 

The model of heat transfer derived here, based on the packet theory, 

extended to take into account the property boundary layer, agrees well 

with experimental data available in the literature. 

3.8. NOTATION. 

(Note: This notation is applicable to this Chapter only.) 

AB bed cross sectional area [m?] 

A(x) eross sectional area of solid particles at point x [m7] 

Beg equivalent dimensionless conductivity - eqn.(3.33) [-] 

b(Z) function defined by eqn. (3.13) [-] 

Cp specific heat [J/kgK] 

cp) specific heat of emulsion phase at point x [J/kgK] 

c constant of proportionality [1/m?] 

dp particle diameter [m] 

Ee surface flux [W/m?] 

fn(x) function of x 

Fo Kpt/d5, instantaneous Fourier number [-] 

Fo, Kat/ des time-mean Fourier number [-] 

g(Z) function defined by eqn. (3.12) [-] 

h heat transfer coefficient [W/mK] 

H(Z) function defined by eqn. (3.14) [-] 

k thermal conductivity [W/mK] 

k(x) thermal conductivity of emulsion phase at point x [W/mK]



L(Z) 

Nu 

V(x) 

W(Z) 

AZ 

Greek s 

8 

B(x) 

€ 

e(x) 

p(x) 
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heat penetration depth [m] 

function defined by eqn. (3.15) [-] 

hd,/k,» particle Nusselt number [-] 

contact time [s] 

emulsion phase temperature [K] 

surface temperature [K] 

volume [m?] 

volume of the particle segment - eqn. (3.25) [m°] 

dimensionless temperature defined be equation (3.9) [-] 

dimensionless emulsion phase temperature at point Z [-] 

distance from the surface [m] 

x/dp, dimensionless distance from the surface [-] 

step-size used in the numerical calculation [-] 

ols 

solid concentration [-] 

solid concentration in the emulsion phase at point x [-] 

voidage [-] 

voidage of the emulsion phase at point x [-] 

thermal diffusivity [m/s] 

specific density [kg/m*] 

specific density of the emulsion phase at point x [kg/m*] 

mean packet residence time [s] 

Subscripts 

E 

G 

emulsion phase un-influenced by the constraining surface 

gas 

instantaneous value at time t 

time-mean value 

particle 

wall, heat transfer surface
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Chapter 4. 

BUBBLE INDUCED HEAT TRANSFER IN A UNIFIED TWO-PHASE SYSTEM. 

4.1. INTRODUCTION. 

It has been shown in Chapter 3 that the analogy between gas fluidized 

beds and bubbling liquids can be extended to cover heat transfer at surfaces 

as well as other processes, by introducing the concept of a property 

boundary layer in the vicinity of the heat transfer surface. Hence a unified 

two-phase bubbling system can be defined. It has been shown in Chapter 2, 

that rising gas bubbles are the agents responsible for the high rates of 

heat transfer in such a system; it has been further shown that bubble 

coalescence and interactions make it very difficult to determine the 

mechanism of the bubble induced heat transfer in multi-bubbling systems. 

In this Chapter it is shown that more detailed knowledge of the heat 

transfer processes involved can be obtained if the multi-bubbling two- 

phase system is simplified to one in which the frequency of bubble 

occurrence in the vicinity of the heat transfer surface can be controlled. 

A special heat transfer probe which can be used to discriminate between 

conductive and non-conductive modes of heat transfer is developed and heat 

transfer from the probe into the surrounding medium, when conduction is the 

only mode of heat transfer, is calculated. The supporting instrumentation 

of the probe is also discussed and the application of the probe is descri- 

bed. Finally, a general model of bubble induced heat transfer in two-phase 

systems, based on the surface renewal and penetration theory, is developed. 

4.2. GENERAL CONSIDERATIONS. 

It has been shown that the analogy between gas fluidized beds and 

bubbling liquids can be extended to cover heat transfer at surfaces, by 

introducing the concept of a property boundary layer in the vicinity of any 

constraining surface, (and particularly, the heat transfer surface). The
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thickness of the property boundary layer depends on the bubbling system 

used; it is finite for fluidized beds and zero for bubbling liquids. Hence 

both systems can be unified by defining a general two-phase system, 

consisting of a discrete gas bubble phase and a continuous dense phase. 

The dense phase has constant thermophysical properties everywhere in the 

bed except in the vicinity of any constraining surface, where a localized 

property boundary layer must be considered. In the case of bubbling liquids, 

the liquid constitutes the dense phase and the thickness of the property 

boundary layer is zero, in the case of gas fluidized beds, the dense phase 

is provided by the continuous emulsion phase and the thickness of the 

property boundary layer is finite. 

In order to describe the mechanism of the bubble induced heat transfer 

precisely, one must know the behaviour of the dense and the bubble phases 

in the vicinity of the heat transfer surface. The parameters which must be 

known are, for example, residence times of the dense and the bubble phases 

on the heat transfer surface, the frequency of bubble occurrence on the 

heat transfer surface and the age distribution function of the elements of 

the dense phase on the heat transfer surface. In a multi-bubbling system, 

it is very difficult to measure precisely any of the above listed 

parameters’<, hence to get more insight into the problem of the bubble 

induced heat transfer, it has been decided to simplify the general multi- 

bubbling system by generating a single continuous stream of discrete gas 

bubbles into a stationary dense phase. The bubble volumes and the frequency 

of their generation are measured and thus known. (The mixture of the dense 

phase and gas bubbles within the system, will be referred to as the 'pool! 

throughout this work.) 

It was suggested in Chapter 2, that transient conduction into the 

dense phase is the most important mechanism of the bubble induced heat 

transfer in two-phase bubbling systems, however the evidence was inconclu- 

sive. To compare the contributions of the various modes of heat transfer,
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a heat transfer probe which can be used to discriminate between conductive 

and convective modes of heat transfer must be developed. This is described 

in the next Section. 

4,3, THE HEAT TRANSFER PROBE. 

4.3.1. REQUIREMENTS AND DESIGN. 

Ideally, any heat transfer probe should be of such construction that 

the boundary conditions met in its experimental application are well 

defined mathematically and hence identical to those for which the solution 

of the governing equations has been obtained. Additionally, the solution 

of the governing equations should be in such a form that the parameters 

required for its evaluation are directly measurable. 

In order to satisfy the above requirements and to achieve maximum 

sensitivity of the probe, the smallest bubble likely to be encountered in 

the system should envelop the entire surface area of the probe, thus 

setting its maximum permissible dimension. Furthermore, the smallest 

dimension of the probe, its diameter in the case of cylindrical probes, 

must be large enough to be sufficiently strong to withstand the stresses 

induced in it by the violent bubbling and eddying normally encountered in 

two-phase flows. The probe should also have a certain symmetry, so as to 

make the mathematical description, and the subsequent solution, simpler. 

The probe developed here and used later is a thin wire of finite length 

but, unlike conventional probes, with well defined boundary conditions, 

which will arise in its practical use, The schematic design of the probe 

is shown in Figure 4.1. A thin platinum wire (serving as the heat transfer 

probe) is stretched between two flat copper supports, the wire being 

electrically heated and the copper supports serving as electrical leads. 

The length of the wire is equal (or about equal) to the diameter of gene- 

rated bubbles. The bubble generating orifice (described later) is placed 

below the centre of the platinum wire. The probe and the generating orifice 

are submerged into the stationary dense phase.
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To obtain experimental data from the probe, the wire has been 

incorporated into one branch of a standard Wheatstone bridge - Figure 4.2. 

The current through the bridge is supplied by a 12 V battery and regulated 

by the variable resistor Rl. The digital voltmeter (DV) is used to measure 

the voltage across the wire. The bridge is balanced by the variable 

resistor R2. More detailed description of the experimental application of 

the wire is discussed in Section 4.5. 

4.3.2. APPLICATION. 

It is usually difficult to distinguish between conductive and non- 

conductive modes of heat transfer from a heat transfer probe to the 

surrounding dense phase, but due to the special features of the present 

probe, it can be used to discriminate between conductive and non-conductive 

modes, This is due to the fact that heat transfer from the probe to the 

surrounding dense phase, when conduction is the only mode of heat transfer, 

can be calculated theoretically to a high degree of accuracy. Hence the 

compound effect of heat transfer modes other than conduction, can be 

determined by comparing the experimentally observed heat transfer rates 

from the probe under mixed-mode conditions (conductive and non-conductive 

modes) with those determined theoretically, in which conduction is the only 

mode of heat transfer. The contribution of the non-conductive modes of 

heat transfer can therefore be assessed from the difference between 

experimental and theoretical results. 

As mentioned previously, it is desirable to express the theoretical 

solution in terms of directly measurable parameters. These will be obtained 

by considering the experimental application of the probe. It is not 

practicable to detect the local wire temperature; in practice the wire 

temperature is determined from the electrical resistance of its entire 

length. If, as in the present case, the wire is used in a similar way to 

a constant current anemometer, a certain Space-average wire temperature 

will be measured. This space-average wire temperature is the directly
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measurable parameter upon which the theoretical solution should be based. 

It is therefore necessary to find the relationship between the local wire 

temperature distribution oTys at any time t and the space-average wire 

temperature ,T, at the same instant. Hereafter the term ‘average wire 

temperature' will be used to denote the space-average wire temperature, It 

is shown in Appendix 2, that the average wire temperature is given as 

aS 
L 
fT, dx (4.1) 

c L 

NI
 

where L is the wire halflength. 

As a result of the probe construction, the following assumptions 

about its behaviour, which are used in the subsequent analysis, are made: 

i) Since the electrical and thermal resistances of the copper supports 

(Figure 4.1) are small compared with those of the wire material and 

their surface area is large compared with that of the wire, it is 

assumed that they remain at the pool temperature ,T,,, throughout 

the process. 

ii) It is further assumed that the radial extent of the copper supports 

and of the medium between them is infinite, compared with the very 

small radius of the wire (heat transfer probe). Hence the system 

can be regarded as axisymmetric about the x-axis. 

iii) Since the length of the probe wire is many times greater than the 

thickness of the property boundary layer and since, from the point 

of view of heat transfer, the copper supports provide only secondary 

heat transfer surfaces, it is assumed that the thickness of the 

property boundary layer of the dense phase in the vicinity of the 

copper supports is zero. Hence the concept of the property boundary 

layer will be applied on the probe wire only, resulting in the 

assumption that the thermophysical properties of the dense phase 

vary in the radial direction only. 

iv) Since the wire is very thin and is made of material whose thermal
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conductivity is very much greater than that of its surrounding 

medium, the radial distribution of temperature within the wire will 

be nearly uniform, The wire then may be for many purposes regarded 

as a finite rod with heat generated within it and being dissipated 

(a) from the outer surface to the surrounding medium and (b) from 

its ends by conduction to the copper supports*”, 

It is further assumed that all wire material properties remain 

constant and that only Joule heating (1?R,) of the wire is 

considered. 

4.4, A MODEL OF THE BUBBLE INDUCED HEAT TRANSFER, 

4.4.1, ASSUMPTIONS USED IN THE THEORETICAL MODEL. 

A theoretical model of the bubble induced heat transfer in the present 

system, 
16,32 

based on the surface renewal and penetration theory » has been 

developed. The model is based on the following assumptions, some of which 

are similar to those used in Section 2.5.2.1: 

i) 

ii) 

The heat transfer process is periodic with period t = 1/f, where 

f is the frequency of bubble generation. 

The presence of gas bubbles in the pool causes turbulence of the 

dense phase, which is responsible for the continuous mixing of the 

dense phase in the pool. Because of the continual mixing in the 

bulk of the pool, the temperature of the dense phase throughout the 

bulk of the pool remains constant. When a bubble passes the surface 

of the heat transfer probe, the 'old' dense phase, which has been 

heated by the wire prior to the bubble arrival is replaced by 

"fresh' dense phase from the bulk of the pool, which was brought 

by the passing bubble in its wake. While this dense phase is in 

contact with the surface of the heat transfer probe, heat is 

transferred to it by a non-steady heat transfer process. For a 

particular case the amount of heat transferred to it depends on the 

duration of the contact time between the surface of the heat
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transfer probe and the dense phase. After a certain time, known as 

the 'residence time' of the dense phase on the surface of the heat 

transfer probe, the next bubble arrives and the now 'old' dense 

phase is again replaced by the fresh dense phase from the bulk of 

the pool. In this way the dense phase on the surface of the heat 

transfer probe is being replaced periodically at frequency f. 

The diameter of passing bubbles is approximately equal to the length 

of the probe. Hence it is assumed that the dense phase is being 

effectively replaced over the whole surface area of the heat transfer 

probe. It is further assumed that the residence time of gas bubbles 

on the surface of the heat transfer probe is negligible compared 

with the residence time of the dense phase there. This implies 

that only dense phase is in contact with the surface of the heat 

transfer probe and hence that only dense phase is responsible for 

the heat transfer from the probe to the pool. On the other hand, 

gas bubbles cause the surface renewal of the dense phase and hence 

they are (neglecting natural convection) entirely responsible for 

mass transport in the pool. 

Since heat supplied by the probe wire to the pool is negligible 

compared with the heat capacity of the pool, it is assumed that the 

temperature of the pool ,T,,, remains constant not only in space 

but also with time, Without loss of generality, T,, is set at the 

reference zero. 

It is further assumed that all wire material properties and dense 

phase properties outside the property boundary layer, remain 

constant, that the property boundary layer is formed on the wire 

surface only (Section 4.3.2) and that the properties there are 

functions of the radial position only. 

Finally it is assumed that the dissipation of mechanical energy 

and the radiative heat transfer can be neglected.
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4.4.2, FULL DIFFERENTIAL DESCRIPTION OF THE SYSTEM. 

Only the slab of the dense phase between the two copper supports 

(Figure 4.1) is considered and it is assumed that each heating period of 

the dense phase and of the wire starts at the moment when the dense phase 

on the wire surface has just been renewed. Cylindrical coordinates are used 

to describe the system during each period. Using the assumption for the 

mechanism of the bubble induced heat transfer (Section 4.4.1) and for the 

behaviour of the probe (Section 4.3.2), the following energy equations 

apply” 

oO, k 2 a5 IETF 
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olrep(x)( 2+ uP + 2 Pru—2) = 
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at ar eden? ets OK 

subject to 

t7=0; 2 >a, [x] <b T= 0 (4.4) 

t=0, rsa, |x| <L Ty = To(r,®,x) (4.5) 

20, r2a, |x| <2 Ty = 0 (4.6) 

20,2 < a, |x| = Ty = 0 (4.7) 

aT) 
eon, rita, x #0 — =0 (4.8) 

ax 

aty 
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ox 

be 0, va, |x| ou ay (4.10) 

aT) aT y 
$20) r= a, |x| <1 -k(a)— = -ky— (4.11) 

or or 

These energy equations together with the momentum and continuity
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equations provide the complete description of the system. Neglecting 

natural convection the momentum and the energy equations are uncoupled and 

the momentum equations can be readily written down. Thus, at least in 

principle, the solution could be obtained. 

4.4.3. NON-STEADY HEAT TRANSFER MECHANISM. 

The system of differential equations, describing the bubble induced 

heat transfer in the present system (Section 4.4.2), is very complex and to 

solve it, even numerically, would be extremely difficult. So an alternative 

method of attack must be developed. The method is based on separating 

conductive and convective modes of heat transfer, 

While the wire is in contact with the surrounding dense phase, the 

heat is transferred from the wire to the dense phase by a non-steady heat 

transfer process. In equations (4.2) and (4.3) this non-steady heat transfer 

mechanism is defined generally as consisting of a conductive and a 

convective components. The convective component of the heat transfer 

mechanism can be calculated only after the velocity field in the dense phase 

in the wire vicinity has been determined. The calculation of the velocity 

field in the wire vicinity (and hence the contribution of the convective 

component to the total mechanism of heat transfer) causes the main 

difficulties in finding a full theoretical solution. As mentioned 

previously (Section 4.3.2), the present probe can be used to discriminate 

between conductive and convective components of heat transfer, In order to 

achieve this, heat transfer from the probe to the surrounding dense phase, 

when conduction is the only mode of heat transfer, must be calculated. Hence 

in the subsequent analysis the effect of additional convection is neglected 

and it is assumed that conduction is the only mode of the bubble induced 

heat transfer. 

The neglect of the convective mode of heat transfer implies the 

following simplifying assumption: Gas bubbles cause the renewal of the 

dense phase on the wire surface only, and the dense phase remains stationary
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once in contact with the surface of the probe (there are no convection 

currents within the dense phase). This is clearly the most controversial 

assumption and its validity will be discussed later. If the experimental 

heat transfer rates are higher than the theoretical ones, which assume that 

conduction is the only mechanism of the bubble induced heat transfer, the 

assumption does not hold. In that case convection provides an important 

contribution to the bubble induced heat transfer and its importance can be 

assessed from the difference between experimental and theoretical results, 

(the greater the relative difference, the greater the contribution of 

convection) . 

The implication of neglecting convection is that 

  

U,=U,=U,=0 (4.12) 

which simplifies equation (4.2) to 

oT er 1 ar 1 Yt! 39 aT, 
e(r)ep(x) 2 = k(ry(¢ —B + -2+ — 2+ 2) - SO 

ot dr? or Orr? 067 ax? or 

serch (e135) 

Hence equations (4.13) and (4.3) subject to equations (4.4) to (4.11) 

give the solution of the conductive heat transfer from the probe to the 

surrounding dense phase. Because the heat transfer probe and the surrounding 

dense phase are, at least in the vicinity of the probe, symmetrical about 

the x-axis (axisymmetric), temperatures Tp and Ty are independent of 6 and 

hence equations (4.13) and (4.3) can be simplified further by putting the 

6 - derivatives equal to zero. 

4.4.4, INFLUENCE OF THE INITIAL WIRE TEMPERATURE. 

At the start of each heating cycle, when the dense phase has just been 

replaced on the surface of the heat transfer probe, the initial temperature 

of the dense phase in the wire vicinity is the same as the temperature of 

the dense phase in the bulk of the pool, T,,. The initial temperature of 

the wire is different. Because the probe wire has finite heat capacity, 

finite times are required for finite changes of the wire temperature. Hence
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the initial wire temperature is different from the initial temperature of 

the dense phase, The initial wire temperature depends on many factors, such 

as the bubble residence time on the wire surface, thermophysical properties 

of the bubble gas etc, To discuss the influence of the initial wire 

temperature »To, equations (4.13) and (4.3) are rearranged in the following 

way, (assuming the system to be axisymmetric about the x-axis): 

Let 

t<T > Fy, (4.14) 

Host lee eT (4.15) 
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The solution of equations (4.26) and (4.27) provides only a transient 

non-trivial temperature field, due to the non-zero initial wire temperature. 

The importance of this solution will be greater for larger wire diameters 

(the larger the wire diameter the greater the amount of heat stored in it 

at the beginning of each heating cycle), smaller thermoconductivities of 

the dense phase (heat transfer from the wire increases with increasing 

thermal conductivity of the dense phase) and smaller times of contact 

between the dense phase and the wire surface. This can be summarized by the 

following statement: The greater the instantaneous Fourier number ,Fo, the 

smaller the influence of the non-zero initial wire temperature on the total 

temperature field in and around the wire. Hence the solution of equations 

(4.16) to (4.25) will provide the first approximation to the temperature 

field in and around the wire when conduction is the only mechanism of heat 

transfer between the wire and the dense phase, and its accuracy will 

increase with increasing values of the instantaneous Fourier number. This 

approximation implies the assumption that at the beginning of each heating 

cycle the temperature of the wire drops instantaneously to the initial
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temperature of the dense phase ,T,,, which is set at the reference zero 

(Section 4.4.1). 

4.4.5. FIRST APPROXIMATION TO THE WIRE TEMPERATURE. 

Equations (4.16) to (4.25) provide the first approximation to the 

temperature field in and around the wire when conduction is the only mode 

of heat transfer between the probe and the surrounding dense phase. They 

can be solved numerically but to simplify the numerical calculations 

without incurring much loss of accuracy it is advantageous to separate the 

temperature fields within the wire and in the dense phase (Appendix 3). It 

has been argued that the wire can be approximated by a rod with uniform 

radial temperature distribution (Section 4.3.2). It is shown in Appendix 3 

that the differential equation (4.17) and boundary conditions (4.24) and 

(4.25) then simplify into one boundary condition (4.40). Hence the original 

system of equations (equations (4.16) to (4.25)) can be approximated by the 

following equations: 

t210;, 1 2a, Islan 
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Equations (4.36) to (4.40) can be rewritten in dimensionless form as 
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by using the following transformations, 

es 2 Wor = Tkp/2 (4.46) 

Fo = Kyt/a* (4.47) 

R= r/a (4.48) 

Z = x/L (4.49) 

a(R) = e(R)c,(R)/(Pcy) p (4.50) 

b(R) = k(R)/kp (4.51) 

H(R) = b(R)/g(R) (4.52) 

Lee) = B® 7 acm) (4.53) 
Ky = kp/ky (4.54) 

Ko = Ky/Ky (4.55) 

A= L/a (4.56) 

where suffix D refers to those properties of the dense phase which are 

un-influenced by the heat transfer surface (properties of the dense phase 

in the bulk of the pool, beyond the boundary of the property boundary 

layer). 

If all parameters of a particular system are known, functions H(R) and 

L(R) can be defined (similarly to Section 3.3.4) and equations (4.41) to 

(4.45) can be solved numerically, The method of numerical solution is briefly 

described in Appendix 4 and a typical computer programme is shown in 

Appendix 8. Finally, the first approximation to the dimensionless 

instantaneous average wire temperature 2(W,);, (defined analogously to 

equation (4.1)) can be obtained. From the point of view of the overall 

time-mean heat transfer, the time-mean average wire temperature is of far 

greater importance. The time-mean average wire temperature can be calculated 

only if the age distribution function of the elements of the dense phase



-48- 

on the surface of the heat transfer probe is known (compare with Section 

3.4.3). It is assumed that the dense phase on the wire surface is stationary 

(Section 4.4.3) and this implies that the required age distribution function 

is the Higbie's uniform age distribution function?” with the mean residence 

time of the dense phase on the wire surface given by the frequency of 

bubble generation. Hence the first approximation to the dimensionless time- 

mean average wire temperature Wa» is defined (Section 3.4.3) by 

Fi 
(Ww. e (Wy); 4Fo (4.57) 

o
n
o
 

Dm 
nm 

and can be calculated. 

In a special case when the thickness of the property boundary layer 

is zero and hence properties of the dense phase are constant throughout, 

an analytical solution of equations (4.41) to (4.45) can be obtained. Since 

zero thickness of the property boundary layer defines a liquid dense phase, 

subscript L will be used instead of subscript D. 

First, equations (4.41) to (4.45) simplify to 

Foe 0, R21, |2Z| <1 
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subject to 
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The method of solution of equations (4.58) to (4.62) is shown in Appendix 5. 

The first approximations to the dimensionless instantaneous, (W,); , and 

time-mean Wi)» average wire temperatures are then given by the following 

equations (Appendix 5): 

-y Fo y dy 4 1 (Wear ae ei ae ee (4.63) 
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co © -y,Fo, 

W),=— e Ss -o-p-e ) ee (4.64) 
ernest 0. eee y,(# + ¥?) 

If then all properties of the system and wire dimensions are known, 

temperatures Wy); and Wy are calculated as functions of Fourier numbers 

by numerical integration. The exact solution, given by equation (4.63),is 

later used (Section 5.5.1) to test some of the assumptions used for the 

theoretical model of heat transfer developed in this Chapter. 

4.4.6, TEMPERATURE FIELD DUE TO INITIAL WIRE TEMPERATURE. 

The temperature field due to the influence of the initial wire 

temperature is given by the solution of equations (4.26) to (4.35). It is 

again assumed that the radial distribution of the wire temperature is 

nearly uniform (Section 4.3.2) and hence the initial wire temperature can 

be rewritten as 

Tg (t,x) = Ton ¢=£n(x) (4.65) 

where fn(x) is normalized such that 

1 L 
Cait f fn(x) dx = 1 (4.66) 

-L 

and hence Ton is the initial average wire temperature. Equations (4.26) 

to (4.35) can be rewritten in dimensionless form as 
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using the following transformations 

Wea inal ton (4.77) 

Wyo = Two/Toa (4.78) 

in addition to those defined by equations (4.47) to (4.56). 

Function fn(Z) is the normalized dimensionless initial temperature 

distribution over the wire length. It is either known or it must be 

estimated. Once function fn(Z) is known, equations (4.67) to (4.76) can be 

solved numerically. The numerical method used here is similar to that 

discussed in Appendix 4, the main difference being that the convergence 

conditions are much stricter and hence that larger computer times are 

required for numerical calculations. A typical computer programme is shown 

in Appendix 9, 

The radial distribution of the wire temperature is nearly uniform and 

hence equation (4.1) can be used to calculate the average wire temperature. 

Finally, as in Section 4.4.5, the dimensionless instantaneous (Wa), and 

time-mean 2 (Wy) average wire temperatures due to the influence of the 

initial wire temperature can be calculated. 

4.4.7, FULL SOLUTION FOR THE AVERAGE WIRE TEMPERATURE. 

Full solution for the temperature field in and around the wire is 

defined by equations (4.14) and (4.15). Similarly the instantaneous and the 

time-mean average wire temperatures can be defined as 

T. = 7); + (12) 5 (4.79) 
i 

MT), + 7), (4.80) T. 
m 

respectively, Equations (4.79) and (4.80) can be rewritten in dimensionless 

forms as 
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using the following transformations 

W, = Tk, /Qa? (4.83) 

Wi Tk) /Qa? (4.84) 

(Wy) 5 = (Ty) kp/Qa? (4.85) 

(Wy), = TD gk p/Qa? (4.86) 

Gi O)5/T5n (4.87) 

CW) = (Ty) Ton (4.88) 
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Similarly to function fn(Z), function ¥ must be also estimated or 

experimentally measured. The determination of functions fn(Z) and ¥ provides 

the main difficulties in finding the complete theoretical solution to the 

problem. On the other hand, the first approximation to the wire temperature 

can be determined theoretically to a high degree of accuracy. It will be 

shown later (Section 4.5), that under certain circumstances boundary 

condition (4.19) can be satisfied experimentally, so that the first 

approximation to the wire temperature will be identical with the exact wire 

temperature which is given by the full solution to the problem. This is the 

main reason for separating the temperature fields in and around the wire. 

4.4.8. CONDUCTION MODEL OF BUBBLE INDUCED HEAT TRANSFER. 

It can be shown that Qa/2(T 1); and Qa/2(T)) can be regarded as first 

approximations to the instantaneous and the time-mean heat transfer 

coefficients for the conduction model of the bubble induced heat transfer 

in the present system respectively. Similarly Qa*/ky (7), and Qa*/ky (7), 

can be regarded as first approximations to the instantaneous and the 

time-mean Nusselt numbers respectively. 

Hence 

(Nu); = W/(W)5 (4.90) 

(Nu), = 1/ (Wy) (4.91) 

and similarly 

Nu; = 1/W, (4.92) 

Nu, = 1/W, (4.93)
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where Nu; and Nu, are full solutions for the instantaneous and the time- 

mean Nusselt numbers respectively (assuming that conduction is the only 

mode of heat transfer). 

If then the properties of the dense phase and of the wire material 

and the wire dimensions are known, the Nusselt number can be calculated as 

a function of the Fourier number. As mentioned previously, the calculation 

must usually be done numerically, but in one special case (equations (4.63) 

and (4.64)) an analytical solution can be obtained. 

4.5. EXPERIMENTAL TECHNIQUE AND INSTRUMENTATION, 
  

Only experimental techniques and instrumentation concerning the 

application of the heat transfer probe are discussed in this Section. The 

design of the bubble generator depends on the character of the dense phase 

used and is described later (Chapters 5 and 6). 

The heat transfer probe has three basic functions: 

i) it serves as a heat transfer probe, 

ii) using the principles of anemometry it is employed to measure its 

own instantaneous average temperature, 

iii) it is used to measure the frequency of bubble generation. 

This has been achieved by incorporating the probe into one branch of a 

standard Wheatstone bridge - Figure 4.2. The current through the bridge is 

supplied by a 12 V battery (BT) and regulated by a variable resistor Rl. 

The digital voltmeter (DV) is used to measure the voltage across the wire 

and the UV-recorder to record voltage fluctuations across the bridge. The 

bridge is balanced by the variable resistor R2, To obtain accurate 

measurements of the wire resistance, the resistance of the connecting leads 

of the probe should be as small as possible. Using heavy copper leads their 

total resistance is about 0.0029 2, which is much less than even the 

smallest resistance of the wire. Wire materials of high temperature coeffi- 

cient of resistance (as, for example, tungsten or platinum) must be used in
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the design of the probe. Because of the simplicity of handling platinum, 

platinum wire probes are used throughout this work. 

To measure the instantaneous average wire temperature, principles of 

anemometry are applied’, The wire is calibrated in liquid at known 

temperatures and the relationship between the average wire temperature and 

the resistance of R2 (Figure 4.2) is obtained. During the calibration the 

current through the wire is very low and thus the rate of heat generation 

in it is negligible. (This is accomplished by connecting the switch Slwith 

a high resistance variable resistor R3 in its branch and by disconnecting 

the switch $2) Because heat transfer coefficients for wires are very large, 

the difference between the wire temperature and the known temperature of the 

calibrating liquid is small and can be neglected. Hence the wire temperature 

is identical, within a small error, with the temperature of the liquid. 

Because the bridge is balanced by the variable resistor R2, the calibration 

curve of the wire (average wire temperature versus the resistance of R2) 

is then determined. The same method, but in reverse, is used to determine 

the temperature of the pool during experimental runs. If during an experi- 

ment the value of resistance of R2 for a balanced bridge is known, the 

average wire temperature may then be determined from the calibration curve. 

It has been mentioned previously (Section 4.4.7) that under certain 

circumstances boundary condition (4.19) can be satisfied experimentally. 

Since this implies that the initial wire temperature is equal to the initial 

temperature of the dense phase, the first approximation to the conductive 

model of heat transfer is then identical with the exact description of it. 

Boundary condition (4.19) can be satisfied experimentally in the following 

way: It has been suggested above that the temperature of the wire remains 

equal to the temperature of the dense phase surrounding it, even with 

switch Sl connected. Hence the switch Slcan be connected throughout the 

process, supplying the base current which is necessary to determine the 

initial temperature of the dense phase and of the wire. Then at certain
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time t = 0, switch S2 is connected too, thus supplying the full working 

current through the bridge and hence also the full working heating load 

into the probe wire. The heating input generated within the wire can be 

approximated very well by a step function starting at time t = 0. Thus, if 

conduction is the only mechanism of heat transfer between the heat transfer 

probe and the surrounding dense phase, equations (4.16) to (4.25) can be 

satisfied experimentally and their solution provides the full description 

of the problem. This finding will be used later (Section 5.5.1) to test 

some of the assumptions used in this Chapter. 

Assume that a heating input is applied into the wire which is a part 

of an originally balanced bridge. Because of the heat generated within the 

wire its temperature and hence also its resistance start to rise, the bridge 

becomes un-balanced and finite potential across the bridge is formed. The 

changes of potential across the wire are recorded by the UV-recorder. It is 

shown in Appendix 6, that from the known values of all resistors in the 

circuit (Figure 4.2), the known calibration curve of the wire, the known 

voltage across the wire (measured by the digital voltmeter), the sensitivity 

of the galvanometer in the UV-recorder and the UV-recorder traces, it is 

possible to determine the instantaneous average wire temperature. 

To investigate the mechanism of the bubble induced heat transfer, the 

procedure is as follows: For a given frequency of bubble generation (from 

the bubble generating orifice placed below the centre of the probe - 

Section 4.3.1), the time-mean average wire temperature is set approximately 

at the required level by setting the resistor R2 at the value corresponding 

to this temperature and by adjusting the current through the bridge (with 

the switch S2 connected) in such a way that the bridge is approximately in 

balance, The current through the bridge is regulated by the resistor Rl. 

Once the bridge is roughly balanced, the UV-recorder traces are obtained. 

Using the known calibration constant for the UV-recorder traces (Appendix 6), 

the variations of the instantaneous average wire temperature are obtained.
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The exact time-mean average wire temperature is then calculated by 

graphical integration. Because of the surface renewal character of the 

bubble induced heat transfer mechanism, the wire is periodically heated and 

cooled (Section 4.4.1) and hence the frequency of the periodic fluctuation 

of the wire temperature is equal to the frequency of bubble occurrence on 

the wire surface. 

The voltage across the wire, corrected for the potential drop across 

its leads, is obtained from the digital voltmeter readings. For set values 

of resistors Rl and R3, the variation of this voltage with time is small and 

can be neglected. The rate of heat generation per unit volume of the wire, 

Q, is assumed constant and is calculated from the constant voltage across 

the wire and the average wire resistance corresponding to the time-mean 

average wire temperature. The change of the average wire resistance with 

time is also neglected. (The error introduced by these two approximations 

is small and can be estimated for each particular case.) 

The experimental instantaneous Nusselt number »(Nuy); 5 corresponding 

to a particular value of the instantaneous Fourier number, is then calcula- 

ted from the known values of the rate of heat generation per unit volume of 

the wire ,Q, and the instantaneous average wire temperature difference 

AT; = Ty)4 - T,, . Similarly the experimental time-mean Nusselt numbers are 

calculated as functions of the time-mean Fourier numbers. 

It should be noted that the temperature difference used in the defi- 

nition of Nuys the experimentally determined Nusselt number, is the tempera- 

ture difference between the experimentally determined average wire tempera- 

ture, Ty, and the temperature of the pool ,T,, . This temperature difference 

corresponds to the average wire temperature calculated from the theory 

developed in Section 4.4, in which the temperature of the pool is set at 

the reference zero.
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4.6. CONCLUSIONS. 

It has been shown that in order to investigate the mechanism of the 

bubble induced heat transfer in bubbling two-phase systems in more details, 

the multi-bubbling system must be simplified, in this work by generating 

a single continuous stream of discrete gas bubbles in a stationary dense 

phase. A special heat transfer probe has been developed. Finally, a 

theoretical model of the bubble induced heat transfer in the present 

system, based on the surface renewal and penetration theory, has been 

derived. 

In this Chapter, bubble induced heat transfer in a unified two-phase 

system has been considered. The purpose of this Chapter has been to present 

some of the theoretical analyses which are necessary for the subsequent 

work, In Chapter 5 this analysis is applied on gas-liquid systems and in 

Chapter 6 on gas fluidized beds. In Chapter 7 the unification is discussed 

and final conclusions are made.
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Chapter 5. 

BUBBLE INDUCED HEAT TRANSFER IN GAS-LIQUID SYSTEMS, 

5.1. INTRODUCTION, 

The general system and analysis developed in the preceeding Chapter 

will be applied on the bubble induced heat transfer in gas-liquid systems. 

Since the thermophysical properties of the dense phase (called liquid in 

this Chapter) are assumed constant even in the vicinity of the heat transfer 

surface, these systems are characterised by the zero thickness of the 

property boundary layer, This feature of gas-liquid systems will be utilized 

to check on some of the assumptions used in the preceeding Chapter. 

It will be further shown that in the present system, where a single 

continuous stream of gas bubbles is generated into a stationary liquid, 

transient conduction is the predominant mode of heat transfer. Transient 

conduction is responsible for about 75% of heat transfer and the remainder 

is contributed by the convective mode of heat transfer. 

5.2, THEORETICAL ANALYSIS, 

5.2.1. RESPONSE TO A STEP HEATING INPUT. 

Assuming that liquid properties are constant with temperature, they 

are then uniform in the vicinity of the heat transfer surface. Functions 

b(R) and g(R) are then constant and equal to unity (equations 4.50 and 4.51) 

and hence from equations (4.52) and (4.53): 

H(R) 1 (S.1) 

L(R) = 0 (5.2) 

The first approximation to the dimensionless instantaneous average wire 

temperature, assuming that conduction is the only mode of heat transfer, 

can then be expressed in an analytical form and is given by equation (4.63). 

It has been demonstrated in Section 4.5 that if conduction is the only 

mechanism of heat transfer between the heat transfer probe and the
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surrounding liquid, by generating a step heating input in the wire, the 

first approximation to the wire temperature is identical with the exact 

temperature of the wire, which is obtained from the full description of 

the problem. 

Furthermore, if the wire is placed in the stationary liquid there are 

no forced convection currents within the liquid and, because of the liquid 

inertia, finite times after applying the step heating input into the wire 

are necessary for the development of natural convection currents. For small 

diameter wires these times are of the order of seconds. (This can be 

expressed more precisely as follows: If, as in the present case, the 

Rayleigh number of the wire in the liquid is smaller than one, the time 

necessary for the development of the natural convection currents is of the 

order of seconds.) 

Hence for short times after applying the step heating input into the 

wire, which is placed in the stationary liquid, there are no convection 

currents within the liquid and conduction is the only mode of heat transfer 

between the wire and the surrounding liquid. Then, provided the assumptions 

for the probe behaviour (Sections 4.3.2 and 4.4.1) are correct, equations 

(4.58) to (4.62) give the full energy description of the system and their 

solution, given by equation (4.63), constitutes an exact solution to the 

problem. Using the experimental technique discussed in Section 4.5 

experimental data can be obtained and from the agreement (or otherwise) 

between the theoretical results, (equation 4.63), and these experimental 

data, the merit (or otherwise) of the assumptions used to describe the 

probe behaviour can be ascertained. 

5.2.2. BUBBLE INDUCED HEAT TRANSFER, 

The first approximations tothe dimensionless instantaneous, (Wy); and 

time-mean ,(W,)_, average wire temperatures are given by equations (4.63) 
Vn 

and (4.64) respectively. The full solution to the problem can be determined 

only after the temperature field in and around the wire due to the initial
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wire temperature oT» has been calculated. If the initial temperature 

distribution within the wire »To, is known, the temperature field in and 

around the wire is obtained from equations (4.67) to (4.76), with H(R)=1 

and L(R)=0, by numerical calculations. Hence in order to obtain the full 

solution to the problem, the initial temperature distribution »Tg, Within 

the wire must be determined. In this work the initial wire temperature 

distribution is defined by the initial average wire temperature sTone and 

the normalized dimensionless wire temperature distribution fn(Z) - 

equation (4.65). 

It will be confirmed experimentally (Section 5.5.2, Figure 5.4) that 

the initial average wire temperature is approximately equal to the 

experimentally determined time-mean average wire temperature , ya 

Because the theoretical analysis developed in this work is based on the 

assumption (Section 4.4.1) that the pool (initial liquid) temperature ,T,,, 

is zero, the initial average wire temperature which must be used here is 

given by the temperature difference between the experimentally determined 

time-mean average wire temperature Ty) p> and the pool temperature ,T_: 

To, = Tq > Te Ce) 
It is difficult to determine the initial wire temperature distribution »Tos 

and hence it is assumed that T, is uniform across the cross section of the 
0 

wire (Sections 4.3.2 and 4.4.6). Furthermore, the simplest form of the 

function fn(Z), satisfying all boundary conditions, is assumed. Hence a 

parabolic function is chosen, so that (Section 4.4.6): 

€n(Z)) = 165 (1 - 2°) (5.4) 

Equations (4.67) to (4.76) can now be solved numerically (a typical 

computer programme is shown in Appendix 9) and the instantaneous and the 

time-mean average Wire temperatures due to the initial wire temperature »To> 

can be calculated. 

It should be noted that for the above value of the initial average wire 

temperature Toa? the function ¥ (equation 4.89) takes the following form
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(Gy) 7.) & 
Ve em (5.5) 

Qa? 

which can be rewritten as 

Ys 1/(Nuy),, (5.6) 

where (Nu), is the experimentally determined time-mean Nusselt number 

(Sections 4.4.8 and 4.5). Hence finally, the instantaneous and the time- 

mean Nusselt numbers can be calculated as (Section 4.4.8) 

Nu; = 1/W; 6.7) 

Nu = 1/W,, (5.8) 

where 

W, = 0), + WW,),/Ou), (5.9) 
= Wn + (Wo) ,/ ay) (5510), 

and where all variables have their usual meanings. 

5.3. APPARATUS, INSTRUMENTATION AND EXPERIMENTAL TECHNIQUE. 

5.3.1. EXPERIMENTAL APPARATUS AND INSTRUMENTATION. 

A photograph of the experimental equipment is shown in Figure 5.1, and 

its line diagram in Figure 5.2. The gas is supplied through a system of 

valves (V) and rotameters (R), which are used to measure the gas flow rate. 

The liquid is contained in a glass vessel (GV), which is separated from the 

plenum chamber (GC) by a 'perspex' plate (PP), in the middle of which is 

situated the bubble generator (BG). The bubble generator consists of a 

thin stainless steel tube with a valve (GV) at one end. Three different 

bubble generator diameters are used - 0.8 mm, 1.6 mm and 2.8 mm, The 

maximum frequency of bubble generation (for convenience referred to 

henceforth as 'frequency') is obtained with the smallest diameter bubble 

generator and is of the order of 40 bubbles per second, 

The heat transfer probe (HT) (described in Chapter 4) is placed above 

the generating orifice. Using additional glass sections (AS) it is possible 

to adjust the distance between the probe wire and the generating orifice. 

The smallest distance between the wire and the generating orifice is about
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1 mn. Four different wire diameters ranging from 41 um to 305 um are used, 

From the point of view of the accuracy of the theoretical solution to the 

problem, the platinum wire diameter should be as small as possible; however 

it was found that the wake following each bubble imposed a constraint since 

it damaged those platinum wires whose diameters were very small. The shortest 

length of the probe wire is 4.2 mm, so as to be comparable with the 

diameter of the generated gas bubbles. 

5.3.2. EXPERIMENTAL TECHNIQUE. 

Three different liquids (water, n-heptane and 50% aqueous solution of 

glycerol) were used for the experimental investigation of the phenomenon. 

Their thermophysical properties calculated at the film temperature T,=25°C 

are shown in Table 5.1. Air was used as the gas phase. 

The frequency of bubble generation and their size depend on the dia- 

meter of the generating orifice, the gas flowrate through this orifice and 

the properties of the liquid phase. A coarse adjustment of bubble frequency 

was achieved by adjusting the opening of the end valve (GV). Fine adjustment 

was effected by adjusting the gas back pressure. The maximum frequency was 

about 40 bubbles per second and the minimum was effectively zero when no 

bubbles were generated and only stationary liquid was present. Some 

difficulties were encountered when the biggest generating orifice was used 

in liquids of small surface tension, because the frequency then fluctuated 

with time. In these cases the bubbles were counted over a longer period of 

time and the time-mean frequency of bubble generation was used as a para- 

meter to describe the situation. (The frequency was measured by the heat 

transfer probe - Section 4.5.) 

Volumes of generated bubbles were determined from the known gas flow- 

rate and from the known frequency of bubble generation. Because the bubbles 

were small it was assumed that they were of a spherical shape and their dia- 

meters were calculated from their volumes. 

For the basic experiments the length of the wire was 4.45 mm, but for
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some additional experiments wires up to 27 mm long were used. The distance 

between the wire and the generating orifice was chosen as 10 mm. When this 

distance was too small, the currents in the liquid, caused by bubbles 

growing at the orifice (local source effect in the liquid) tended to 

distort the temperature field near the wire. When this distance was too 

large, the rising bubbles sometimes by-passed the wire because of the 

oscillatory character of the horizontal component of their velocity. It was 

found experimentally that when this distance was about 10 mm the distortions 

of the temperature field were very small (the bubble induced heat transfer 

was influenced by rising bubbles only and bubbles growing at the orifice 

had negligible effect on it). The bubbles then always hit the wire and 

were nearly always bisected by it instead of rolling over the wire 

surface or completely missing it. 

For the basic experiments the working time-mean temperature difference 

between the time-mean average temperature of the wire and the temperature 

of the pool was chosen by a compromise: the time-mean temperature 

difference being big enough to keep the error of its measurement small, 

but small enough for the assumption of constant wire and liquid properties 

(Sections 4.3.2 and 5.2.1) to hold. For the basic experiments the time-mean 

temperature difference was set at about 10°C and the film temperature oTps 

was kept at about 25°C, In some additional experiments the film temperature 

»Tps was increased in order to investigate its influence on the mechanism 

of the bubble induced heat transfer. 

The use of the probe and the method of evaluating the experimental 

data are described in Section 4.5. 

5.4, EXPERIMENTAL RESULTS. 

5.4.1. RESPONSE OF THE WIRE TO A STEP HEATING INPUT. 

A typical plot of the instantaneous Nusselt number as a function of 

the instantaneous Fourier number obtained from the temperature response of
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the probe wire to a step heating input is shown in Figure 5.3, The 

experimental data were obtained using 305 um diameter, 34.6 mm long 

platinum wire in water. The solid line is the theoretical result given by 

equation (4.63). 

5.4.2, INSTANTANEOUS BUBBLE INDUCED HEAT TRANSFER. 

For standard conditions experiments the length of the wire was 4.45 mm 

(i.e. of the same order as the diameter of the generated bubbles). The 

distance between the wire and the generating orifice was 10 mm. The liquid 

temperature was kept at 20°C and the time-mean temperature difference was 

set at about 10°C (AT, = 10°C). 

The variation of the instantaneous average wire temperature with time 

is shown in Figure 5.4. This Figure was obtained by photographing some of 

the UV-recorder traces. The ripples on these traces are due to noise, These 

temperature variations were obtained using a platinum wire of 41.15 um dia- 

meter in water. The choice of the liquid in the pool had little effect on 

the general character of the temperature curves, but the influence of the 

wire diameter was profound, The greatest sensitivity to bubble frequency, 

and hence the clearest outputs, was obtained with the smallest diameter 

wire, since its heat capacity was small and the distortions due to it were 

minimized. 

Some experimentally obtained instantaneous Nusselt numbers are plotted 

against the instantaneous Fourier numbers in Figures 5.5 to 5.8, The two 

lines are the theoretical results given by equations (4.63) and (5.7). 

5.4.3. TIME-MEAN BUBBLE INDUCED HEAT TRANSFER. 

Some of the experimentally obtained time-mean Nusselt numbers, taken 

under standard conditions (Section 5.4.2) are plotted against the time- 

mean Fourier numbers in Figures 5.9 to 5,15. The solid lines are the 

theoretical results given by equations (4.64) and (5.8). 

Experiments have been conducted to investigate the influence of 

elevated temperatures on the mechanism of the bubble induced heat transfer.
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All experimental conditions except the film temperature »Tps remained the 

same as in the standard conditions experiments (Section 5.4.2). Only two 

sets of readings were taken. The liquid used was water. Experimental 

results are shown in Figure 5.16, the solid line being the theoretical 

result given by equation (4.64). 

The time-mean heat transfer coefficients for wires appreciably longer 

than the diameter of generated bubbles were also investigated. The purpose 

of this series of experiments was to investigate the effectivness of the 

'sweeping' action of the bubbles on the surface renewal of the liquid on 

wires appreciably longer than the diameter of the generated bubbles. These 

experiments were performed in water on a 101 im diameter platinum wire, 

placed 10 mm above the generating orifice. Operating temperatures were the 

same as in the standard conditions experiments (Section 5.4.2). The wire 

length-bubble diameter ratio ,&, varied from 1 to about 9. Some of the 

experimental results are shown in Figures 5.17 to 5.19. The solid lines are 

the theoretical results given by equations (4.64) and (5.17). 

5.5. DISCUSSION. 

5.5.1. THE HEAT TRANSFER PROBE. 

Figure 5.3 shows a typical plot of the instantaneous Nusselt number, 

obtained from the temperature response of the probe wire to a step heating 

input, as a function of the instantaneous Fourier number. It has been 

argued (Section 5.2.1) that for short liquid residence times (short contact 

times between the probe and the surrounding liquid after the step heating 

input has been applied) transient conduction is the only mechanism of heat 

transfer between the probe and the surrounding liquid. The solid line in 

Figure 5.3 is the theoretical solution of the conductive heat transfer 

between the probe and the surrounding liquid, given by equation (4.63). The 

very good agreement between the theoretical results and the experimental 

data obtained for short liquid residence times, demonstrates the compound
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validity of many assumptions discussed in Chapter 4, namely: 

i) The copper supports remain at the pool temperature ,T. 00? throughout 

the heating process (Section 4.3.2). 

ii) The radial extent of the copper supports and the liquid in between 

them is effectively infinite (Section 4.3.2). 

iii) The radial distribution of the temperature within the wire is very 

near to uniform (Section 4.3.2). 

iv) All wire material properties remain constant throughout the heating 

process (Section 4.3.2). 

v) The method used for evaluation of the experimental data, which is 

discussed in Section 4.5, is a very good approximation to the exact 

situation. 

Figure 5.3 demonstrates that using all of the above assumptions, the 

systematic error between the experimental data and the theoretical solution 

is very small (below 2%). Figure 5.3 also indicates the good accuracy of 

the experimental technique, because the scatter of the experimental data 

is very small. 

The discrepancy between the experimental data and the theoretical 

solution during large liquid residence times is due to natural convection, 

which then provides an additional mechanism of heat transfer between the 

probe and the surrounding liquid and hence places the experimental data 

above the theoretical curve. 

5.5.2. BUBBLE INDUCED INSTANTANEOUS AVERAGE WIRE TEMPERATURE. 

A typical bubble induced instantaneous average wire temperature versus 

time diagram is shown in Figure 5.20. No simultaneous photographs of rising 

gas bubbles were taken. However a simple explanation of this temperature~- 

time profile can be made. 

Referring to Figure 5.20, assume that the periodic process starts at 

point 0, when the wake of a passing gas bubble brings fresh liquid in 

contact with the wire. At that moment two heat transfer processes are



-66- 

competing. The first is the heating of the wire by the heat generated 

within it, (which is present throughout the process); the second is the 

simultaneous rapid cooling of the wire by the fresh cool liquid. From 

point 0 to point 1 the cooling rate is greater than the heating rate, at 

point 1 they are equal, and from point 1 to point 2 the transient heating 

of the wire and of the liquid surrounding it is the only heat transfer 

process present. The transient heating of the wire and of the surrounding 

liquid is undisturbed until the next bubble approaches the wire. Then the 

nose of this bubble forces the 'old' warm liquid away and replaces it 

partially with the fresh liquid, causing some cooling of the wire. This 

corresponds to the temperature drop from point 2 to point 3. At point 3 the 

gas bubble itself comes into contact with the wire and at least some of the 

liquid in the vicinity of the wire is replaced by the gas contained inside 

the gas bubble. This causes a marked drop in the heat transfer rate and 

hence in turn a sudden rise of the wire temperature. This corresponds to 

the temperature rise of the wire from point 3 to point 0', When the bubble 

leaves the wire, cold pool liquid in its wake hits the wire and the whole 

process is repeated again. 

The residence time of gas bubbles on the wire ,t,, corresponds to the b? 

time interval necessary for a bubble to pass the wire and is of the order 

of 10 to 20 miliseconds. This agrees well with the experimental observations 

of bubble sizes and velocities. The bubble diameter was about 4.5 mm and 

the corresponding bubble velocity about 300 mm/sec, implying a residence 

time of the bubble on the wire surface of about 15 miliseconds. 

Figure 5.4 demonstrates that the initial average wire temperature »Toa> 

(point 0, Figure 5.20) is in most cases approximately equal to the time-mean 

average wire temperature. This value of the initial average wire temperature 

is used to determine dimensionless temperatures Wo) 5 and WW) - 

Sections 4.4.6 and 5.2.2.
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5.5.3. SURFACE RENEWAL AND OTHER ASSUMPTIONS. 

The rate of heating of the wire during the time when a bubble is 

present on it (corresponding to the time interval from point 3 to point 0', 

Figure 5.20) was investigated. The observed rate of temperature rise of the 

wire was far below the value expected for heating of a bare wire in air, 

even when the time constants of the wire, bridge and recording instruments 

were allowed for. From this it was deduced that there was a liquid film 

attached to the wire during the bubble residence on the wire surface. 

Next it was investigated if this liquid film remained attached to the 

wire permanently. The question about the permanent attachment of the liquid 

film is closely related to the question about the effectivness of the 

surface renewal of the liquid by the action of passing bubbles. This was 

investigated as follows: 

Assume that when the wake of a passing bubble hits the wire (point 0, 

Figure 5.20) the liquid on the surface of the wire is completely replaced 

and that conduction is the only mechanism of the subsequent heat transfer. 

The instantaneous average wire temperature is then given (equation 4.79) by 

To (T); x (7), (5.11) 

where @); and 7); are determined by methods described in Sections 5.2.1 

and 5.2.2 respectively. 

Temperature T; goes through a minimum, the value of which is calculated 

theoretically from equation (5.11). This minimum has also been observed 

experimentally (point 1, Figure 5.20 and Figure 5.4). The experimental 

values of the minimum have been found on average to be about 25% lower than 

the theoretical ones calculated from equation (5.11) on the basis of the 

complete surface renewal of the liquid and conduction as the only mechanism 

of heat transfer. It is shown in Section 5.5.4 that when Fourier numbers 

are sufficiently large (i.e. when temperature (T)), is negligible compared 

with temperature (T)55 which can be determined very accurately theoreti- 

cally), convection is responsible for about 25% of the bubble induced heat
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transfer. This implies that for identical conditions, experimental 

temperatures are about 25% lower than the theoretical ones, which are 

calculated on the assumption that conduction is the only mechanism of the 

bubble induced heat transfer. It is reasonable to assume that the same 

situation occurs for extremely small Fourier numbers, which must be 

considered when investigating the effectivness of the surface renewal of 

the liquid. This then necessarily means that the surface renewal of the 

liquid on the wire surface is complete and that the liquid film does not 

remain attached to the wire permanently. Had this been the case, the 

experimentally observed minimum wire temperatures would have been nearer to, 

or even above, the theoretically calculated minimum wire temperatures. 

Hence the liquid film is attached to the wire only during the presence 

of gas bubbles on it, when, perhaps, the momentum of gas bubbles is not 

sufficiently large to force all liquid away from the wire vicinity. When 

the bubble passes the wire the large momentum of the bubble wake causes a 

complete liquid replacement in the wire vicinity. 

For the calculation of the time-mean heat transfer coefficients, it is 

assumed that the residence time of gas bubbles on the wire surface »Ty> is 

negligible and that only bubble wakes are responsible for the surface 

renewal of the liquid (Section 4.4.1). Clearly this is not the case, because 

the bubble residence time oth» is finite and the bubble nose is responsible 

for a partial liquid renewal on the wire surface (Figures 5.4 and 5.20). 

The influence of these two effects will be more important for higher 

frequencies of bubble generation when the ratio T/T is relatively large. 

Because of the influence of two opposing effects during the liquid renewal, 

which are most prominent for higher frequencies of bubble generation 

(Figure 5.4), the error due to the above mentioned discrepancies will be 

attenuated. The two opposing effects are the partial drop of the wire 

temperature during the approach of the bubble nose (interval 2 to 3, 

Figure 5.20) and the wire temperature rise during the presence on the wire
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of the bubble itself (interval 3 to 0', Figure 5.20). This is schematically 

shown in Figure 5.20, The broken line represents the case of an ideal liquid 

renewal, The areas Ay and A, below and above the broken line respectively, 
2 

do, at least partially, cancel each other out. This situation is most 

pronounced for high frequencies of bubble generation - Figure 5.4, last 

diagram, 

5.5.4, BUBBLE INDUCED HEAT TRANSFER. 

It has been shown in Section 5.5.1, that the assumptions used for the 

mathematical description of the heat transfer probe are satisfied to a high 

degree of accuracy. It has been further shown in Section 5.5.3, that bubble 

induced liquid replacement on the surface of the probe wire is a 100% 

effective mechanism of mass transport there. Hence the theoretically derived 

solution for the instantaneous bubble induced heat transfer from the wire 

to the surrounding liquid, based on transient conduction as the only 

mechanism of heat transfer, should result in heat transfer coefficients 

which are lower than those obtained experimentally. This must be the case 

because the additional convection in any form (forced or natural), which 

increases the experimentally obtained heat transfer coefficients, is 

neglected in the theoretical analysis. Because of the liquid moving with 

the bubble wake, the effect of forced convection is most prominent for short 

liquid residence times and hence for small values of the instantaneous 

Fourier number ,Fo. On the other hand, the effect of natural convection 

becomes important for large liquid residence times (large values of the 

instantaneous Fourier number). For intermediate values of liquid residence 

time, both types of convection are important. 

Figures 5.5 to 5.8 demonstrate that the above requirement is well 

satisfied. The experimental results are about 25% higher than the theoretical 

predictions which are based on transient conduction as the only mechanism 

of the bubble induced heat transfer. This confirms the assumption that 

transient conduction is the most important mechanism of the bubble induced
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heat transfer, Transient conduction is responsible for about 75% of the 

total heat transfer and liquid convection contributes the remainder. 

Situations similar to the case of the instantaneous bubble induced heat 

transfer can be observed on graphs of the time-mean bubble induced heat 

transfer (Figures 5.9 to 5,15) - all experimental results lie 20 to 30% 

above the theoretical prediction. The experimental results of the time-mean 

bubble induced heat transfer, coupled with the experimental observation 

that transient conduction is responsible for 75% of heat transfer also in 

the case of the instantaneous bubble induced heat transfer, confirm 

indirectly the assumption that the bubble wakes are primarily responsible 

for the surface renewal of the liquid on the wire surface and, furthermore, 

that the effect of the finite residence time of the bubbles on the wire 

and the effect of the bubble 'noses' cancel each other out (Section 5.5.3). 

Figures 5.5 to 5.15 demonstrate that the non-zero initial wire 

temperature ,T,, has with increasing values of the Fourier number decreasing 

influence on the full temperature of the wire. Hence for large values of 

the Fourier number, assuming that conduction is the only mode of heat 

transfer, the first approximation to the wire temperature given by W, is 

nearly identical with the exact wire temperature given by W. 

Some results have been obtained from experiments conducted at higher 

film temperatures (Figure 5.16). These results show a slight increase in 

heat transfer coefficients for the case of higher film temperatures which is 

probably due to the increased contribution of liquid convection. These 

results do not differ appreciably from results obtained from experiments 

conducted under standard conditions and confirm once more that transient 

conduction is the most important mechanism of the bubble induced heat 

transfer. 

The theoretical solution to the present problem shows (and experimental 

results confirm) that the frequency of bubble generation has profound effect 

on the time-mean bubble induced heat transfer. The time-mean heat transfer
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coefficient increases with the frequency of bubble generation. Hence in 

order to maximize the time-mean bubble induced heat transfer, the frequency 

of bubble generation should be as high as possible. 

The influence of the liquid viscosity is also investigated. Since the 

liquid viscosity affects only the convective component of the bubble 

induced heat transfer, its influence is examined by comparing the 

contributions of the convective mode of heat transfer in liquids of various 

viscosities (n-heptane and 50% aqueous solution of glycerol). The convective 

contribution is given by the difference between the experimentally observed 

heat transfer rates, obtained under mixed mode conditions, and the 

theoretically derived heat transfer rates which assume conduction as the 

only mechanism of the bubble induced heat transfer. Since for liquids of 

different viscosities the convective components are all about the same, it 

is concluded that the influence of the liquid viscosity on the bubble 

induced heat transfer is small. 

5.5.5. INFLUENCE OF THE WIRE LENGTH/BUBBLE DIAMETER RATIO. 

The influence of € defined by 

& = 2L/d, (5.12) 

has been investigated. A rigorous theoretical treatment of this problem is 

difficult and only a numerical solution based on far reaching assumptions 

is possible. Hence the problem has been treated as follows. 

It has been found experimentally that when & is smaller than 1.5, the 

bubble induced heat transfer does not depend upon it. So it is assumed that 

the replacement mechanism is completely effective on only a part of the 

wire (1.5 4, long) and that natural convection is the mechanism responsible 

for heat transfer on the remaining portion of the wire (2L - 1.54, long). 

The coefficient of the time-mean bubble induced heat transfer for the middle 

section of the wire is calculated from equation (4.64). (The aspect ratio, 

A, used in equation (4,64) is based on the total wire length.) The 

coefficient of natural convection heat transfer for the remaining sections
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of the wire (2L - 1.54, long) is assumed equal to that for the whole wire 

and is determined experimentally in stationary liquid. 

Assuming that the time-mean temperature difference between the wire 

and the liquid (pool) temperatures is approximately constant along the wire 

length, the total time-mean heat transfer coefficient can be found from 

the energy balance on the wire as 

Feet 5 2th, = 15 dyhy + (2L - 1.5 4 hy (5.13) 

From equation (5.13) the dimensionless equations for the total time- 

mean Nusselt number »Nups can be obtained as 

B< 1.5 Nup = Nug (5.14) 

Bae 15 Nu, = 15 wu, Ge = 23) Nu (5.15) 
eS E 

Taking into account that conduction is responsible for about 75% of 

the bubble induced heat transfer and assuming that the first approximation 

to the conduction mechanism of the bubble induced heat transfer provides 

a good description of the real situation (a small diameter wire is used 

and hence large Fourier numbers are considered and thus the temperature 

field in and around the wire, due to the initial wire temperature »Tgs can 

be neglected - Sections 4.4.4 and 5.5.4), the final result for Nu is 

given as 

eee Nu, = 1.25 (Nu,),, (5.16) 

oes Nup = ae (uy), + (1 - a Nuy (5.17) 

where Qu), is given by equations (4.91) and (4.64) and the natural 

convection Nusselt number »Nuy, is determined experimentally. Equation (5.17) 

is included in Figures 5.17 to 5.19, from which a very good agreement with 

the experimental data is observed. Hence it follows that the above 

assumptions for the mechanism of the bubble induced heat transfer from wires 

appreciably longer than the diameter of generated bubbles are well justified.
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5.6. CONCLUSIONS. 

Bubble induced heat transfer in simplified gas-liquid systems with 

controlled frequency of bubble generation, using a special heat transfer 

probe has been investigated. It has been found that: 

i) The assumptions used for the mathematical description of the heat 

transfer probe, developed in Chapter 4, are correct to a high 

degree of accuracy. 

ii) Surface renewal and penetration theory, as developed in Section 4.4, 

can be used to describe the bubble induced heat transfer in the 

present system to a high degree of accuracy. 

iii) Bubble wakes are primarily responsible for the surface renewal of 

the liquid. 

iv) Complete surface renewal of the liquid takes place over a wire 

surface of up to one and half bubble diameters long. 

v) Transient conduction into the liquid phase is the most important 

mechanism of the bubble induced heat transfer, being responsible 

for about 75% of the total heat transfer. Convection contributes 

the remainder. 

vi) To maximize the time-mean bubble induced heat transfer, the frequency 

of bubble generation should be as high as possible. 

vii) To allow high frequencies of bubble generation without bubble 

coalescence and to decrease the residence time of bubbles on the 

wire surface, the volume of generated bubbles should be as small as 

possible (but the ratio wire length/bubble diameter should not 

be greater than 1.5). 

viii) The only possible advantage of larger gas bubbles is that their 

velocity is greater, thus increasing the contribution of the 

additional forced convection to the overall bubble induced heat 

transfer. Nevertheless, the corresponding small increase in heat 

transfer rates is far outweighed by the adverse effects associated
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with large gas bubbles, namely, large bubble residence time on 

the wire surface and the limit on the maximum frequency of 

generation of discrete gas bubbles. 

ix) The direct effect of liquid viscosity on the bubble induced heat 

transfer is small, because liquid viscosity affects only the 

convective component of heat transfer which makes only a small 

contribution to the total bubble induced heat transfer.



= 5e 

BUBBLE INDUCED HEAT TRANSFER IN GAS FLUIDIZED BEDS. 

6.1. INTRODUCTION. 

The general system and analysis developed in Chapter 4 will be applied 

on the bubble induced heat transfer in gas fluidized beds. As shown in 

Chapter 3, these systems are characterised by a finite thickness of the 

property boundary layer in the vicinity of the heat transfer surface. 

Functions H(R) and L(R) which define the property boundary layer are 

calculated by a method similar to that used in Section 3.3.4. Further 

experimental evidence on the justification and the validity of the concept 

of the property boundary layer and the method of calculating functions H(R) 

and L(R) is presented. 

It will be further shown that in the present system, where a single 

continuous stream of gas bubbles is generated into a stationary emulsion 

phase of small particles, transient conduction is the predominant mode of 

heat transfer responsible for about 90 to 95% of heat transfer. The 

remainder is contributed by emulsion convection and gas phase convection. 

6.2. THEORETICAL ANALYSIS. 

6.2.1. HEAT TRANSFER MECHANISMS, 

After the emulsion phase on the surface of the probe wire has been 

renewed (or after the step heating input into the wire has been applied) 

the heat is transferred from the probe to the surrounding emulsion phase 

by a non-steady heat transfer process (Section 4.4.3), Assuming that the 

temperature of the system is below 600°C, the contribution of the radiative 

component of heat transfer can be neplected*>. The remaining components 

can be defined as follows: 

i) Conduction into the stationary emulsion phase. This mechanism is 

analogous to conduction into the stationary liquid phase (without
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any convection currents within it) in two-phase gas-liquid systems. 

ii) Convection due to moving emulsion phase. This mechanism is analogous 

to convection due to moving liquid in the case of two-phase gas- 

liquid systems. Whereas liquid convection can be of two different 

forms (forced or natural), the emulsion convection is due to forced 

convection only (the thermal driving force necessary for the 

development of the natural convection velocity field is very small 

in gas fluidized beds). In the present system, forced emulsion 

convection is due to the emulsion moving with the bubble wake. 

iii) Convection due to the superimposed gas flow through the interstices 

between the particles in the emulsion phase, called gas convection. 

The feature of gas fluidized beds is that the gas is flowing upward 

through the bed of particles (Section 2.2), providing an additional 

mechanism of surface to bed heat transfer, Provided that the 

diameter of the solid particles is small, the gas velocity is 

generally small too and hence the contribution of gas convection 

can usually be neglected’. This mechanism of heat transfer has no 

analogue in gas-liquid systems. 

As discussed in Chapter 4, the heat transfer probe can be used to 

discriminate between conductive and non-conductive modes of heat transfer. 

Using an experimental technique discussed in Section 6.3.2, it is possible 

to discriminate also between gas and emulsion convections. 

As previously (Chapters 4 and 5), the theoretical solution of the 

problem is based on the assumption that conduction is the only mechanism of 

heat transfer, The compound effect of convection is then determined by 

comparison with experimental results (as suggested in Section 4.3.2). 

6.2.2. THE FUNCTIONS H(R) AND L(R). 

If the functions H(R) and L(R) are known, the solution of the problem 

can be obtained by the general method described in Chapter 4. Hence functions 

H(R) and L(R), defined by equations (4.52) and (4.53) respectively, must
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be determined. Once the voidage variation in the vicinity of the probe wire 

(which constitutes the constraining surface) is determined, functions H(R) 

and L(R) can be calculated by the technique discussed in Section 3.3.4. 

The method of calculating the voidage variation in the vicinity of the 

probe wire is analogous to that discussed in Section 3.3.3. Since the wire 

radius is comparable with the radius of the solid particles in the emulsion 

phase, the curvature of the probe wire must be taken into account when 

calculating the voidage distribution in the wire vicinity. As mentioned 

in Section 3.3.3, particles at the same distance from the constraining wall 

(probe wire in the present case) are influenced by it in the same way. Hence 

the mean voidage at any cylindrical plane, concentric with the probe wire, 

is a function of the distance of this cylindrical plane from the probe wire. 

The postulate used in Section 3.3.3 to calculate the solid cross sectional 

area is modified to take into account the curvature of the constraining 

surface in the following way: For a bed of uniform spherical particles, the 

solid cross sectional area on a particular cylindrical reference plane, 

distance Ar from the cylindrical constraining surface, is proportional to 

the cross sectional area of a cylinder whose volume and height are identical 

to those of that part of a spherical particle which can be found in the 

annulus of the reference and the constraining cylinders, while touching the 

constraining cylindrical wall- Figure 6.1. 

The subsequent method of calculation of the voidage distribution in the 

wire vicinity is similar to that suggested in Section 3.3.3 and is described 

in more detail in Appendix 7, The predicted variations of the voidage in the 

Wire vicinity for various ratios of the wire and the particles radii are 

plotted in Figure 6.2. 

From the calculated values of the voidage in the wire vicinity, 

functions g(R) and b(R) can be obtained by the method described in 

Section 3.3.4. Similarly functions H(R) and L(R) can be calculated too. 

Figures 6.3 and 6.4 show the behaviour of function b(R) for various ratios
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of the wire and the paticles radii and for two ratios of the gas and the 

solid thermoconductivities. 

6.2.3. RESPONSE TO A STEP HEATING INPUT. 

It has been demonstrated in Section 4.5, that were conduction the only 

mechanism of heat transfer between the heat transfer probe and the 

surrounding emulsion phase, by generating a step heating input into the 

wire, the first approximation to the wire temperature, given by the solution 

of equations (4.41) to (4.45), would be identical with the exact temperature 

of the wire which is obtained from the full description of the problem. 

If the wire is placed in a stationary emulsion phase of small particles, 

there are no convection currents within the emulsion phase and gas 

convection contribution to the overall heat transfer is small. The 

contribution of gas convection can be further decreased be keeping the gas 

flowrate as small as possible. Hence after applying a step heating input 

into the wire which is placed in a stationary emulsion phase of small 

particles, transient conduction into the emulsion phase is the only mecha- 

nism of heat transfer between the wire and the surrounding emulsion phase. 

It has been shown (Section 5.5.1) that the assumptions used for the 

mathematical description of the heat transfer probe are correct to a high 

degree of accuracy. Furthermore, the design of the heat transfer probe is 

such that the property boundary layer of the surrounding emulsion phase has 

a profound and controlling influence on the mechanism of heat transfer. 

This is due to the inclusion of the copper supports in the design of the 

heat transfer probe (Section 4.3.1) which provide secondary heat transfer 

surfaces by acting as heat sinks. The depth of heat penetration from the 

wire into the surrounding emulsion phase is then kept small and comparable 

with the thickness of the property boundary layer. 

The only parameters in equations (4.41) to (4.45) which are not well 

defined are the functions H(R) and L(R). Hence the agreement (or otherwise) 

between the theoretical results given by equations (4.41) to (4.45) with
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functions H(R) and L(R) calculated by the method of Section 6.2.2, and the 

experimental results obtained by applying a step heating input into the 

wire in a stationary emulsion phase of small particles, can be used as a 

criterion in regarding the merits (or otherwise) of the assumptions used in 

defining the property boundary layer, given by functions H(R) and L(R). This 

technique can be used to obtain further experimental evidence for justifying 

the concept of the property boundary layer developed in this work, 

The solution for the conduction model of the instantaneous heat 

transfer is given by equation (4.90) as 

(Wu), = 1/0); (6.1) 
where Wy); is the dimensionless instantaneous average wire temperature 

(assuming that transient conduction is the only mode of heat transfer) 

given by solving equations (4.41) and (4.45). The method of numerical 

solution is shown in Appendix 4 and a typical computer programme is shown 

in Appendix 8, 

6.2.4, BUBBLE INDUCED HEAT TRANSFER, 

As discussed in Sections 4.4,7 and 5.2.2, the full solution to the 

temperature field in and around the wire is determined by adding the 

temperature field due to the non-zero initial wire temperature to that 

describing the first approximation to the problem. As in Section 5.2.2, it 

is again assumed that the initial average wire temperature (compare with 

Figure 6.16) is given by 

Tea cutlets (6.2) 

and that function fn(Z) is of the form given by equation (5.4). The 

dimensionless instantaneous and time-mean average wire temperatures, due 

to the non-zero initial wire temperature 21g» are then calculated from 

equations (4.67) to (4.76) by the method similar to that described in 

Appendix 4. A typical computer programme is shown in Appendix 9. The 

instantaneous and the time-mean bubble induced Nusselt numbers are then 

calculated from equations (5.7) to (5.10).
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6.3. APPARATUS, INSTRUMENTATION AND EXPERIMENTAL TECHNIQUE. 
  

6.3.1. EXPERIMENTAL APPARATUS AND INSTRUMENTATION. 

The photograph of the experimental equipment is shown in Figure 6.5, 

and its line diagram in Figure 6.6. To enable good observation of the bubble 

motion and to ensure uniform fluidization across the bed cross section, all 

experiments have been performed in a two-dimensional bed. The bed, made of 

'perspex', is 600 mm high, 350 mm wide and 12.7 mm thick. Solid particles 

are contained in this two-dimensional bed (TB). The bed is separated from 

the plenum chamber (GC) by a high pressure drop porous distributor (PD). 

The gas used to provide incipiently fluidized conditions in the bed is 

supplied through a valve (V1) and a rotameter (RT1), which is used to 

measure the gas flow rate. The bubble generator (BG) is situated in the 

centre of the bed cross sectional area about 30 mm above the distributor 

plate. The bubble generator consists of a thin stainless steel tube (1.6 mm 

in diameter) with a solenoid valve (SV) at one end, The triggering signal 

for the solenoid valve is supplied by a triggering mechanism (TM) consisting 

of an electrical motor, a series of cams and a microswitch. The gas to the 

bubble generator is supplied through a microrotameter (RT2) and a valve (V2). 

The tank (TK), placed between the valve (V2) and the solenoid valve (SV), is 

used to dampen the pressure oscillations in the gas supply line, which are 

initiated by the action of the solenoid valve. The maximum frequency of 

bubble generation (referred to henceforth as 'frequency') obtained with the 

present set up is about 2 bubbles per second. This is the maximum frequency 

with which a continuous stream of discrete gas bubbles can be maintained in 

the bed under present conditions using the above described bubble generator. 

The heat transfer probe (HT), described in Chapter 4, is placed 80 mm 

above the generating orifice. The probe wire used in the present series of 

experiments is 125m in diameter and 14,2 mm long. The probe wire is 

shorter than the smallest observed diameter of generated gas bubbles so 

that the theoretical analysis developed in Section 4.4, for the mechanism
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of the bubble induced heat transfer, is applicable. 

The instrumentation of the heat transfer probe is described in 

Section 4,5. 

6.3.2, EXPERIMENTAL TECHNIQUE. 

Silica sand particles of various size ranges and five different gases 

were used for the experimental investigation. Their properties, calculated 

at temperature of 25°C, are shown in Table 6.1. The solid particles were 

carefully graded on a sieving machine and very close size ranges were 

obtained. The mean particle diameter used is the geometric mean, calculated 

from the two sieve sizes which specify each particle size range. No metal 

particles were used for the investigation of the mechanism of heat transfer, 

because the metal particles available were not clean (there was a layer of 

metal oxides on their surface) and their thermophysical properties were not 

known. As discussed in Section 3.3.4, emulsion phase properties can be 

calculated only if the emulsion phase voidage and the properties of both 

phases are known. Mean emulsion voidage »€p, Was determined experimentally 

from the volume of the incipiently fluidized bed and the true density of 

the solid particles. 

The condition of incipient fluidization was determined experimentally 

by a combination of pressure drop measurements through the bed and visual 

observations. Gas bubbles were generated into a bed incipiently fluidized 

by the same gas. It was found difficult to generate bubbles into an 

incipiently fluidized bed, since the generated bubbles were unstable and 

each bubble was accompanied by a swarm of smaller bubbles which followed 

in its wake. By a trial and error method it was found that when the bed was 

fluidized at about 95% of incipiently fluidized conditions, stable bubbles 

could still be generated and maintained, but that the smaller bubbles 

following the main one were eliminated. (The 95% incipiently fluidized bed 

is for convenience referred to henceforth as the 'incipiently fluidized 

bed'.) The frequency of bubble generation was controlled by the speed of
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the cam and their volume by the design of the cam and the gas back pressure 

in the tank. Volumes of the generated bubbles were determined approximately 

from the rate of gas supply to the tank and from the known frequency of 

bubble generation. 

As discussed in Section 5.3.2, the working time-mean temperature 

difference between the time-mean average temperature of the wire and the 

temperature of the pool must be chosen by a compromise; in the present case 

it is set at between 10 and 20°C, 

The use of the probe and the method of evaluating the experimental 

data are described in Section 4.5. 

It has been shown in Section 6.2.3 that when the wire is placed in a 

stationary emulsion phase, emulsion convection is eliminated as a heat 

transfer mechanism between the wire and the surrounding emulsion phase. 

Hence the remaining mechanisms of heat transfer are emulsion conduction and 

gas convection. The influence and contribution of gas convection can be 

approximately determined in the following way. The probe is placed into a 

fixed (packed) bed and a step heating input is applied into the wire. The 

gas flowrate is then increased in steps and the step heating input into the 

wire is applied for each value of the gas flowrate. The contribution of gas 

convection is then obtained by comparing the responses of the wire for 

various values of the gas flowrate. During these experiments care must be 

taken to keep the bed structure undisturbed. 

6.4, EXPERIMENTAL RESULTS. 

6.4.1. RESPONSE OF THE WIRE TO A STEP HEATING INPUT. 

A typical influence of gas velocities on the response of the probe 

wire, situated in a fixed bed, to a step heating input is shown in 

Figure 6.7. Air is used as the gas phase and silica sand 4 (size range 500 

to 600 um) provides the solid particles. Similar graphs have been obtained 

for other gases and particle sizes, but with a decreased particle size, the
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influence of gas velocity is not so marked. 

The response of the probe wire submerged in an incipiently fluidized 

bed to a step heating input has been also studied. The experimental data 

obtained are plotted in dimensionless form in Figures 6.8 to 6.15. The 

solid lines are the theoretical solutions given by equation (6.1). The mean 

voidage of the emulsion phase »Ep> determined experimentally by the method 

of Section 6.3.2 and used for calculating the properties of the emulsion 

phase is included in each Figure. Also included are the values of the 

thermophysical properties of the emulsion phase. 

6.4.2. INSTANTANEOUS BUBBLE INDUCED HEAT TRANSFER. 

The variation of the instantaneous average wire temperature with time 

for various frequencies of bubble generation is shown in Figure 6,16. This 

Figure was obtained by photographing some of the UV-recorder traces. The 

ripples on these traces are due to noise. These temperature variations have 

been obtained by placing the probe into an incipiently fluidized bed of 

copper shot (T,, = 20°C). The copper shots have been chosen because the 

shape of the generated bubbles is well defined and reproducible, and, 

further because it is relatively simple to keep the bed at incipiently 

fluidized conditions. Similar, but not so well defined graphs, have been 

obtained also for fluidized beds of silica sand. 

Some experimentally obtained instantaneous Nusselt numbers » (Nu) 55 are 

plotted against the instantaneous Fourier numbers ,Fo, in Figures 6.17 to 

6.22, The two solid lines (in each Figure) are the theoretical results 

given by equations (6.1) and (5.7) - as discussed in Sections 6.2.3 and 

6.2.4, The values of the mean voidage of the emulsion phase and the 

thermophysical properties of the emulsion phase are also included. 

6.4.3. TIME-MEAN BUBBLE INDUCED HEAT TRANSFER. 

Some of the experimentally obtained time-mean Nusselt numbers »(Nuy) 

are plotted against the time-mean Fourier numbers »Fo., in Figures 6.23 to 

6.26. The two solid lines (in each Figure) are the theoretical results
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obtained by the method described in Sections 6.2.3 and 6.2.4. The values 

of the mean voidage of the emulsion phase and the thermophysical properties 

of the emulsion phase are also included. 

6.5. DISCUSSION. 

6.5.1. THE INFLUENCE OF GAS CONVECTION. 

It has been shown in Section 6.3.2 that when a heat transfer probe is 

placed in a fixed bed and a step heating input is applied into the probe 

wire, the only mechanisms of heat transfer between the probe and the 

surrounding fixed bed are emulsion conduction and gas convection. Further- 

more, as shown in Section 6.2.1, the contribution of gas convection 

increases with the velocity of the gas. There is no mechanism of heat 

transfer analogous to gas convection in gas-liquid systems. Hence in order 

to make both systems comparable (gas-liquid systems and gas fluidized beds), 

the contribution of gas convection should be as small as possible. 

Because in incipiently fluidized systems gas velocities increase with 

the particle size!® , the contribution of gas convection is greater in 

gas fluidized beds of coarse particles. In the present set up the 

contribution of gas convection is given by the difference in heat transfer 

rates between cases of zero gas velocity and gas velocity at 95% of 

incipient fluidization. 

Figure 6.7 shows that for the largest particles used in the present 

investigation (silica sand 4), with air as the gas phase, the contribution 

of gas convection to the total heat transfer is below 10%. Experiments 

were also conducted to determine the contribution of gas convection in beds 

of silica sand 1,2 and 3 (Table 6.1). There the contribution of gas 

convection is so small that it cannot be determined by the present 

experimental technique. Hence by using silica sand of size ranges below 

600 um, the contribution of gas convection can be kept small, and by using 

silica sand of size ranges below 300 um, the contribution of gas convection
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can be neglected. This agrees well with experimental data of other 

investigators’?°*, 

6.5.2. THE CONCEPT OF THE PROPERTY BOUNDARY LAYER, 

The situation where the heat transfer probe is placed in an incipiently 

fluidized bed (stationary emulsion phase) of small particles has been 

discussed previously (Section 6.2.3). It has been shown that under these 

circumstances the only mechanism of heat transfer following a step heating 

input into the wire is emulsion conduction (Sections 6.2.3 and 6.5.1). Hence 

by comparing the experimental data on heat transfer with the theoretical 

results given by equation (6.1), the validity of the assumptions used for 

determining the functions H(R) and L(R), which specify the property 

boundary layer, can be tested. 

Figures 6.8 to 6.15 demonstrate the very good agreement between 

experimental data and theoretical results, With exception of silica sand 4/ 

air (Figure 6.11) and silica sand 2/helium (Figure 6.14), where the 

theoretical results fall below the experimental data, the theoretical 

results are on average about 10% higher than the corresponding experimental 

results, 

The mean voidage of the emulsion phase »&p> which is determined 

experimentally, varies from 0.40 (silica sand 4/air - Figure 6.11) to 0.49 

(silica sand 2/helium - Figure 6.14). The latter voidage has been obtained 

in an expanded bed. As mentioned previously (Section 6.3.2), the mean 

voidage of the emulsion phase is determined experimentally, assuming that 

the voidage is uniform throughout the bed, from the volume of the whole bed, 

The validity of the assumption of constant voidage has been tested by 

calculating a controlling theoretical solution which is based on a different 

value of the mean voidage of the emulsion phase. This is done in Figure 6.8a 

where the controlling theoretical solution is included. This solution is 

based on an assumption that the voidage of the emulsion phase is €, = 0.50, 

which is much higher than the value of the mean voidage which is determined
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experimentally (e, = 0.45). The controlling solution is nearer to the 

experimental data but still overpredicts them by about 10%. This shows that 

in this region the theoretical solution is relatively insensitive to a 

change in the mean emulsion voidage and hence that the assumption that the 

emulsion voidage is uniform throughout the entire bulk of the bed can 

be used. 

With increased particle size the experimental points get nearer to 

(Figures 6.8 to 6.10) or even above (Figure 6.11) the theoretical curve. 

This is due to the contribution of gas convection (Section 6.2.1) which 

increases with increasing particle size (Section 6.5.1) and hence causes an 

increase in experimental heat transfer rates, which is most prominent in 

the case of silica sand 4/air (Figure 6.11). Hence one can assume that were 

the effect of gas convection taken into account and subtracted (Section 6.5.1), 

all experimental results would then fall below the theoretical predictions 

(Figures 6.8 to 6.11). 

Hence assuming that conduction is the only mechanism of heat transfer 

between the probe wire and the surrounding emulsion phase, the theoretical 

results are higher than the experimental data (with possible exception of 

silica sand 2/helium, where the contribution of gas convection was not 

determined) by, on average, about 11%. 

Since it has been demonstrated previously that the numerical technique 

used here is sufficiently accurate (Sections 4.4.5 and 4.4.6), the above 

results indicate that some systematic error is being made during the 

theoretical calculation of functions H(R) and L(R), which define the 

property boundary layer. But considering the wide range of particle sizes 

used (75 to 600 um) and the wide range of gas thermal conductivities 

(0.0097 to 0.148 W/mK), the agreement may be regarded as satisfactory. It 

is doubtful if any refinement of the method of calculating the functions 

H(R) and L(R) is required, since the present method gives good agreement 

with experimental data and is based on very simple geometrical considerations
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(Section 6.2.2) and well established techniques’ (Section 3.3.4). 

The present theory has not been tested in gas fluidized beds of metal 

particles, because no clean partcles with well defined thermophysical 

properties were available. There is some scope for future work. 

It has been argued in Section 6.2.3, that using the present probe, 

property boundary layer of the emilsion phase plays an important role in 

controlling the heat transfer rates. The importance of the property 

boundary layer is demonstrated in Figures 6.9 and 6.11. Each of these 

Figures contains also two theoretical solutions based on the respective 

assumptions that (a) the emulsion phase behaves as a liquid with zero 

thickness of the property boundary layer and (b) that only stationary gas, 

(and not solid particles), is present in the system, The theoretical 

solutions have been obtained from equation (4.63), using the thermophysical 

properties of the emulsion phase and of the gas respectively. One can 

observe that if the property boundary layer is not considered the 

theoretical predictions diverge greatly from the experimental results. 

The excellent agreement between the theoretical and experimental 

results provides a very powerful argument for the justification of the 

concept of the property boundary layer and hence for the model of heat 

transfer in gas fluidized beds, developed in Chapter 3. 

As seen from Figures 6.8 to 6.15, the theoretical heat transfer rates 

have not been calculated for emulsion phase residence times in excess of 

1 sec. This is due to the complications with numerical calculations 

(Section 4.4.4), since very large computer times are required. Because heat 

transfer coefficients vary most rapidly for short emulsion phase residence 

times, the termination of the numerical calculations for residence times 

of about 1 sec is regarded as an acceptable compromise. 

6.5.3. BUBBLE INDUCED INSTANTANEOUS AVERAGE WIRE TEMPERATURE. 

The variations of the bubble induced instantaneous average wire 

temperature with time for various frequencies of bubble generation are
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shown in Figure 6.16. A typical bubble induced instantaneous average wire 

temperature versus time profile is shown in Figure 5.20 (but here the time 

coordinate points in the opposite direction). The explanation of this 

temperature-time profile is identical to that one made in Section 5.5.2. 

Similar results for the instantaneous probe temperature were obtained 

by Tuot and c1ist>”, 

The residence time of gas bubbles on the wire ots corresponds to 

the time interval necessary for a bubble to pass the wire and is, in this 

case, of the order of 0.1 to 0.3 seconds. This again agrees well with the 

experimental observations of bubble sizes and velocities. The bubble 

diameter is about 30 mm and the bubble velocity about 200 mm/sec, implying 

the bubble residence time on the wire of about 0.15 sec. 

Figure 6.16 demonstrates that the initial average wire temperature, 

Tons (point 0 - Figure 5.20) is in most cases approximately equal to the 

time-mean average wire temperature (T,)_. This value is used to determine 
mn 

the dimensionless temperatures WW); and Wa), - Sections 4.4.6 and 6.2.4. 

6.5.4. BUBBLE INDUCED HEAT TRANSFER. 

As discussed in Section 5.5.4, the theoretically derived solutions 

for the instantaneous bubble induced heat transfer from the wire to the 

surrounding emulsion phase, based on transient conduction as the only 

mechanism of heat transfer, should result in heat transfer coefficients 

which are lower than those obtained experimentally. This must be so because 

the additional mechanisms of heat transfer (gas convection and emulsion 

convection) , which increase the experimentally obtained heat transfer 

coefficients, are neglected in the theoretical analysis. Again, as in the 

case of bubbling liquids, the effect of emulsion convection should be most 

prominent for short emulsion residence times and hence for small values of 

the instantaneous Fourier number ,Fo. To decrease the influence of gas 

convection, particles of small diameters only have been used for the 

experimental investigation of the bubble induced heat transfer.
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Experimental results of the instantaneous bubble induced heat transfer 

are shown in Figures 6.17 to 6.22. As seen from these Figures, the first 

approximation to the instantaneous bubble induced heat transfer is again 

(as in Section 6.5.3) calculated for residence times of up to 1 second. It 

has been mentioned previously (Section 4.4.6) that the numerical method 

used to calculate the temperature field in and around the wire due to the 

initial wire temperature, requires even larger amount of computer times than 

the numerical method which is used to calculate the first approximation to 

the bubble induced heat transfer, Hence the full theoretical solution for 

the instantaneous bubble induced heat transfer has been obtained for 

emulsion phase residence times of up to about 0.3 seconds. This is regarded 

as a good compromise, since for larger emulsion residence times the first 

approximation to the instantaneous bubble induced heat transfer becomes 

nearly identical with the full solution of the problem (Section 4.4.4). 

From Figures 6.17 to 6.22, one can observe that as in the case of the 

wire response to a step heating input (Section 6.5.2), the theoretical 

results are higher, on average by about 10%, than the experimental data. 

Assuming, as in Section 6.5.2, that the reason for this anomaly is some 

systematic error made during the theoretical calculations of functions H(R) 

and L(R), which define the property boundary layer, a correction can 

readily be made to take this effect into account. The theoretical heat 

transfer coefficients for the instantaneous bubble induced heat transfer 

are decreased by an amount which is equal to the difference between the 

theoretical and experimental results of heat transfer, following a step 

heating input into the wire when submerged into an identical emulsion 

phase. This difference (or correction factor) can be obtained from Figures 

6.8 to 6.10, 6.12 and 6.13. (The correction factor has not been determined 

for the bed of silica sand l1/argon - Figure 6.21.) The corrected theoretical 

results are also included in Figures 6.17, 6.18, 6.19, 6.20 and 6.22, 

The corrected theoretical results and the experimental data for the
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instantaneous bubble induced heat transfer are, within the range of 

experimental errors, nearly identical. This is consistent with the 

assumption that transient conduction is the most important mechanism of 

the bubble induced heat transfer in gas fluidized beds of small particles. 

The present experimental results indicate that transient conduction is 

responsible for nearly 100% of the total heat transfer and that the 

contribution of emulsion convection is almost negligible. The reason for 

this feature of heat transfer in the present case could be that the bed is 

slightly below the value of incipient fluidization and that the movement of 

the bubble wakes might be restricted. But the fact that the bubbles can be 

generated and maintained in the middle section of the bed (Section 6.3) 

seems to indicate that what is called in this work 95% incipient fluidization 

over the whole cross section of the bed corresponds to incipiently fluidized 

conditions in the middle section of the bed. This then implies that the 

movement of the bubble wakes in the middle section of the bed is 

unrestricted. 

Some of the experimentally obtained time-mean bubble induced heat 

transfer coefficients (in dimensionless form) are shown in Figures 6.23 to 

6.26, The theoretically obtained results are also included. Because of the 

extremely large computer times required for the numerical calculations, the 

theoretical results cover only a small portion of the experimental range 

of the time-mean Fourier numbers, Fo. Using the method described above, 

the theoretical results are again corrected to take into account the 

systematic error made during the theoretical calculations of functions H(R) 

and L(R). Even after taking into account this correction, theoretical 

predictions are in the regions where the theoretical solutions have been 

obtained slightly higher (on average by about 10%) than the experimental 

data. This discrepancy is probably due to the finite residence times of 

gas bubbles on the surface of the wire, Th: 

The theoretical solutions are based on the assumptions that the
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residence time of gas bubbles on the surface of the wire is zero and that 

only the bubble wakes (and not the bubble 'noses') are responsible for the 

renewal of the emulsion phase on the wire surface (Section 4.4.1). Since 

the heat capacity of the gas is much smaller than the heat capacity of the 

emulsion phase, heat transfer from the wire to the surrounding gas during 

the bubble presence on the wire is very small and can be neglected. The 

bubble residence time on the surface of the wire ,T, 
b 

directly but was estimated as between 0.1 and 0.3 seconds, giving a mean 

» Was not measured 

value of about 0.2 seconds Cy, = 4,/U,). 

If the bubble wakes only were responsible for the mechanism of surface 

renewal (Section 4.4.1), the experimental results would be considerably 

smaller than the theoretical ones, calculated on the assumption that the 

residence time of gas bubbles on the wire surface is zero. For example, for 

frequency of bubble generation of 2 bubbles per second, the residence time 

of the emulsion phase on the surface of the wire is only about 0.3 seconds 

out of the total periodic time of 0.5 seconds. The experimental results 

should then be, for a frequency of 2 bubbles per second, about 30 to 40% 

below the corrected theoretical predictions. Similarly, for frequency of 

1 bubble per second, the experimental results should be about 15 to 20% 

below the theoretical predictions. It has been found during the present 

experimental work that the difference between the experimental and 

corrected theoretical results is much smaller; for frequencies of between 

1 and 2 bubbles per second the difference has been found to be, on average, 

about 10%. The influence of the finite residence time of gas bubbles on the 

surface of the wire is more important for high frequencies of bubble 

generation when the ratio t/t is relatively large (Section 5.5.3). This 

then indicates that for high frequencies of bubble generation there must be 

an additional mechanism influencing the time-mean bubble induced heat 

transfer. This is the effect of the bubble 'noses', which, as in the case 

of gas bubbles in liquids - Section 5.5.2, provide an additional mechanism
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of surface renewal of the emulsion phase on the wire surface, thus 

increasing the time-mean heat transfer and hence opposing the effect of the 

decreased heat transfer rates during the residence of gas bubbles on the 

wire surface, The two effects, as in the case of gas-liquid systems, cancel, 

at least partially, each other out. This can be seen in Figure 6.16, where 

for the case of high frequencies of bubble generation the mutual 

elimination of both effects is best demonstrated. 

The time-mean bubble induced heat transfer does, in general, depend on 

the volume of the gas bubbles. Since it has been found quite difficult to 

achieve reproducible bubble volumes, there is a considerable scatter of 

the experimental data of the time-mean bubble induced heat transfer 

(Figures 6.23 to 6.26). Because of the difficulties in keeping the bubble 

volumes constant and defining the bubble shapes and calculating their 

dimensions, it has not been considered practicable, in the present work, 

to investigate some of the behaviour of the system which was investigated 

in the case of bubbling liquids, as, for example, the exact mechanism of 

the surface renewal of the emulsion phase and the influence of the wire 

length/bubble diameter ratio. 

As in the case of gas-liquid systems (Section 5.5.4), the frequency of 

bubble generation has been shown to have a very strong influence on the 

time-mean bubble induced heat transfer. In order to maximize it, the 

frequency of bubble generation should be as high as possible, but care 

should be taken to ensure that the decrease of the time-mean heat transfer 

due to the bubble residence on the wire surface does not outweigh the 

favourable effects of high frequencies of bubble generation. 

6.6. CONCLUSIONS. 

It has been shown that the heat transfer probe used in this work can 

be used to determine the contribution of gas convection to the overall 

mechanism of heat transfer.
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Using the probe in incipiently fluidized beds, a further justification 

for the concept of the property boundary layer has been obtained. It has 

been found that the method of evaluating the property boundary layer, 

developed here, gives a very good agreement with the experimental data. The 

use of the present method results in theoretical heat transfer coefficients 

which are, on average, about 10% above the comparable experimental data. 

Bubble induced heat transfer in simplified gas fluidized systems with 

controlled frequency of bubble generation has been investigated. It has 

been found that: 

i) Surface renewal and penetration theory, as developed in Section 4.4, 

with the property boundary layer given by functions H(R) and L(R), 

calculated by the method of Section 6.2.2, can be used to describe 

the bubble induced heat transfer in the present system to a good 

degree of accuracy. 

ii) The bubble wakes are primarily responsible for the renewal of the 

emulsion phase on the wire surface, while their 'noses' have been 

shown to be responsible for at least some surface renewal of the 

emulsion phase. The effect of the bubble residence time on the 

surface of the wire oT» on the time-mean bubble induced heat 

transfer is not as important as one might expect from the fraction 

of the bubble residence time over the whole periodic time ot /T. 

This is due to the action of the bubble 'noses' which provide an 

additional mechanism of renewal on the wire surface, thus 

increasing the time-mean bubble induced heat transfer and hence 

cancelling, at least partially, the decrease of the heat transfer 

during the residence of gas bubbles on the surface of the wire. 

The theoretical time-mean heat transfer coefficients can then be 

calculated on the assumption that the bubble wakes only are 

responsible for the surface renewal of the emulsion phase and the 

effects of the bubble 'noses' and bubble residence times can be
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neglected, The theoretical results so obtained are in acceptable 

agreement with the experimental data obtained here. 

Transient conduction into the emulsion phase is the most 

important mechanism of the bubble induced heat transfer, being 

responsible - in the present case - for more than 90% of the total 

heat transfer, The remainder is provided by superimposed gas 

convection, whose contribution increases with mean particle size. 

The contribution of emulsion convection is shown to be very small 

and can be neglected, 

To maximize the time-mean bubble induced heat transfer the 

frequency of bubble generation should be as high as possible, but 

their volumes should be small so as to keep their residence time 

on the surface of the wire also small compared with the residence 

time of the emulsion phase there.
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Chapter 7. 

GENERAL CONCLUSIONS AND SUGGESTIONS FOR FURTHER WORK. 

The purpose of this dissertation has been to investigate the analogy 

between fluidized beds and liquids from the point of view of heat transfer 

at heating or cooling of surfaces, and to determine the contribution of 

various modes to the mechanism of the bubble induced heat transfer in 

the two systems. 

Experimental data available in the literature show that the presence 

of any constraining surface (and in particular, a heat transfer surface) 

in a bed of particles changes the packing of the solid particles in its 

vicinity and hence alters the voidage of the emulsion phase there. It has 

been demonstrated that the influence of the constraining surface on the 

voidage of the emulsion phase extends to a distance of about one particle 

diameter from the surface; beyond that its influence decreases rapidly and 

the voidage of the emulsion phase can be assumed to be un-influenced by 

the presence of the constraining surface and constant. 

Since the thermophysical properties of the emulsion phase are functions 

of its voidage, the concept of a property boundary layer of the emulsion 

phase in the vicinity of the constraining surface has been introduced. 

By introducing the concept of a property boundary layer, the liquid 

analogy has been extended to unify gas fluidized beds and bubbling liquids 

from the point of view of heat transfer. Both systems are unified by 

defining a general two-phase system consisting of a gas bubble discrete 

phase and a continuous dense phase which has constant thermophysical 

properties everywhere in the bed except in the vicinity of the heat transfer 

surface where a localized property boundary layer must be considered, In 

the case of bubbling liquids, liquid constitutes the dense phase and in the 

case of aggregative gas fluidized beds, the dense phase is provided by the
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emulsion phase. The main difference between gas fluidized beds and 

bubbling liquids is in the thickness of the property boundary layer which 

varies from relatively large (for gas fluidized beds of coarse particles) 

through relatively small (for gas fluidized beds of fine particles) to 

zero (for bubbling liquids). 

A method of defining and calculating the property boundary layer 

is presented, 

It has been demonstrated that in order to investigate the mechanism 

of the bubble induced heat transfer in more detail, the freely bubbling 

system must be simplified, in this work, by generating a single continuous 

stream of discrete gas bubbles into the stationary dense phase. Furthermore, 

a special heat transfer probe which can be used to discriminate between 

conductive and non-conductive modes of heat transfer has been designed. 

A general model of the bubble induced heat transfer in a unified two- 

phase system has been developed; the model being based on the surface 

renewal and penetration theory with transient conduction into the dense 

phase as the only mechanism of heat transfer. Heat transfer from the probe 

to the surrounding dense phase when conduction is the only mode of heat 

transfer has been calculated theoretically to a high degree of accuracy, 

(as confirmed experimentally), so that the probe can be used to discriminate 

between conductive and non-conductive modes of heat transfer, The compound 

effect of the non-conductive modes of heat transfer is determined by 

comparing the experimentally observed heat transfer rates from the probe 

under mixed-mode conditions (conductive and non-conductive modes) with 

those obtained theoretically in which conduction is the only mode of 

heat transfer. 

The theory of the bubble induced heat transfer developed here has 

been tested experimentally in both simplified, gas-liquid and gas 

fluidized, systems. The theories of this work have been justified 

experimentally, leading to the following conclusions:



207 

i) The surface renewal and penetration theory can be used to describe 

ii) 

the bubble induced heat transfer in the present system to a good 

degree of accuracy. Bubble wakes are primarily responsible for the 

renewal of the dense phase on the heat transfer surface and it is 

this frequent renewal of the dense phase which is the cause of the 

high rates of heat transfer at surfaces. Since the heat capacity 

of the gas is much smaller than that of the dense phase, heat 

transfer rates are decreased during the residence of gas bubbles 

on the surface of the wire. However, the bubble 'noses' are 

responsible for a partial surface renewal of the dense phase, thus 

providing an additional mechanism of heat transfer. The effect of 

the bubble 'noses' and of the bubble residence times partially 

cancel each other out in their influence on the time-mean bubble 

induced heat transfer. It is shown that when the theoretical 

coefficient of the time-mean bubble induced heat transfer is 

calculated on the assumption that only bubble wakes are responsible 

for the surface renewal of the dense phase, the effect of the bubble 

'nose' and the bubble residence time on the surface of the heat 

transfer probe can be neglected without incurring a large error. 

The effect of gas within the bubbles on heat transfer was shown to 

be negligible, the heat transfer from the probe to the surrounding 

dense phase being primarily responsible for the bubble induced heat 

transfer. The modes of heat transfer from the probe to the 

surrounding dense phase can be classified as dense phase conduction, 

dense phase convection and, in the case of gas fluidized beds, 

superimposed gas convection, It has been demonstrated that for 

sand particles of sizes below 300 um in diameter, the effect of gas 

convection can be neglected, and for sand particles of diameters 

between 300 um and 600 um, the gas convection contribution is 

below 10% of the total heat transfer. Hence for gas fluidized beds
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of small particles the effect of gas convection (which has no 

analogue in gas-liquid systems) can usually be neglected. Dense 

phase convection takes the form of emulsion phase convection in 

gas fluidized beds and liquid convection in bubbling liquids. 

Whereas liquid convection can be of two different forms (forced or 

natural), only forced emulsion phase convection is possible in gas 

fluidized beds. Forced dense phase convection is due to the dense 

phase moving with the bubble wake. In the case of gas fluidized 

beds, the effect of forced emulsion phase convection is negligible. 

In the case of bubbling liquids, liquid convection is responsible 

for about 25% of the bubble induced heat transfer. Hence dense 

phase conduction is the most important mechanism of bubble induced 

heat transfer in a general two-phase system investigated here. In 

the case of bubbling liquids, liquid conduction is responsible for 

about 75% of the bubble induced heat transfer, and in the case of 

gas fluidized beds of small particles operating below the radiative 

temperature level, emulsion conduction is responsible for more 

than 90% of the bubble induced heat transfer. 

In order to maximize the time-mean bubble induced heat transfer 

the frequency of bubble generation should be as high as possible. 

However, to allow high frequencies of bubble generation without 

bubble coalescence, the volume of generated bubbles should be as 

small as possible. During the process of maximisation of the time- 

mean bubble induced heat transfer, care should be taken to ensure 

that the adverse influence of the residence time of gas bubbles 

on the heat transfer surface on the time-mean bubble induced heat 

transfer is compensated by the action of the bubble 'noses'. 

The assumptions used for the mathematical description of the 

heat transfer probe used in the present work are correct to a 

high degree of accuracy.
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The concept of a property boundary layer is a physically justified 

concept and the present method of its definition and calculation 

is acceptable for the prediction of surface-to-bed heat transfer 

rates, 

Heat transfer in multi-phase systems is a very complex problem. The 

simplified system considered here is no exception. Some problems have not 

been considered, solutions of others have been only attempted and there 

are plenty of areas of future research among them the following: 

i) 

ii) 

iii) 

iv) 

The validity of the present work has not been justified conclusively 

in the case of fluidized beds of metal particles which, due to a 

layer of oxides on their surface which changes their effective 

thermophysical properties, introduce additional complications and 

hence provide the biggest scope for future research. 

Some more experimental data for the voidage variation in the 

vicinity of a constraining surface should be obtained, and 

further research would be also justified on improvement of the 

method of calculating the functions H(Z) and L(Z) which specify 

the property boundary layer. 

As demonstrated previously the heat transfer probe developed here 

is very versatile and can be used in many other heat transfer 

investigations as, for example, in determining the contribution 

of gas convection to the overall mechanism of heat transfer in 

high pressure gas fluidized systems. 

It has been shown that using the present set up, transient 

conduction is by far the most important mechanism of the bubble 

induced heat transfer in liquids. Since transient conduction is a 

function of the liquid thermal conductivity, as well as of liquid 

heat capacity which can be determined experimentally with little 

difficulties, some work has been done to use the present probe for
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rapid determination of thermal conductivities of liquids. It has 

been estimated that liquid conductivity can be determined with a 

probable error of about 7%. Since this application of the probe 

is of direct industrial use, some further research on this line 

is well justified. 

The present work provides the first step in a more complicated 

investigation: to determine theoretically the mechanism of heat transfer 

in freely bubbling systems, The theories developed in this dissertation 

enable one to extend the validity of heat transfer solutions obtained 

in simpler gas-liquid systems into the regimes of aggregative gas 

fluidized beds.
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k cp 9 

W/mk I/kegk kg/m? 

helium 0.148 5200 05165 

air 0.026 1008 1.19 

earbon dioxide 0.016 850 1.79 

freon 12 0.0097 650 5.14 

copper 380.0 385 8950.0 

steel 45.0 480 7800.0 

silica sand 1.87 860 2600.0 

glass 0.85 765 2700.0 

slag”! 0.59 152 2720.0 

Table 3.1: Thermophysical properties of solid particles and 
gases at 25°C. 

carbon 
ky (w/mkK) helium air Raorida freon 12 

copper 2.25 0.486 0.312 0.200 

steel 1.54 0.374 0.245 0.159 

silica sand 0.548 0.182 0.130 0.090 

glass 0.363 0.139 0.103 0.0725 

slag 0.300 0.122 0.090 0.065             
Table 3.2: Calculated values of thermal conductivity of the 

emulsion phase for €, = 0.41. (Method of Kunii 
& Smith4>.) 
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k cy e yu 

W/mK 3/kgk kg/m? kg/ms 

water 0.615 4180 1000 0.000895, 

n-heptane 0.140 2130 ‘700 0.00042 

50% aqueous solu- 

tion of glycerol 0.420 3390 1125 0.0057 

Table 5.1: Thermophysical properties of used liquids at 25°C. 

size mean 

range |diameter k ep ic 

pm um W/mK I/kgk ein 

silica sand 1 15 = 190 82 

silica sand 2 125-180] 150 
1.87 860 2600 

silica sand 3 250-300] 274 

silica sand 4 500-600] 548 

helium 0.148 5200 0.165 

air 0.026 1008 1.19 

argon 0.0177 520 1.63 

carbon dioxide 0.016 850 1.79 

freon 12 0.0097 650 5.14 

Table 6.1: Thermophysical properties of solid particles and gases at 25°C.
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Fig. 2.1: Schematic diagram of the experimental apparatus used for the 
experimental investigation of heat transfer in two-phase gas-liquid 
systems. 

 



-104- 

  

  

   
recorder 

HC 
   

  

thermocouple 

   
   

    

    

HE    5 
~220 V 

  

transformer     
  

Fig. 2.2: Probe used in the investigation of heat transfer in two-phase 

gas-liquid systems.
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Fig. 2.3: A plot of a typical variation of the instantaneous 
surface temperature of the probe with time in a two-phase 
air-water system. 
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Fig. 2.4: Comparison of experimental data with the theoretical 
result for the time-mean heat transfer in a two-phase air-water 
system.
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Fig. 3.1: Variation of the emulsion phase voidage in the 
vicinity of a flat surface. 
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Fig. 3.2: Variation of the dimensionless conductivity b(Z) with 

Z for emulsion phase voidage €_= 0.40. 
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Fig. 3.3: Variation of the dimensionless conductivity b(Z) with 

Z for emulsion phase voidage Ey = 0.50.
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Fig. 3.4: Considerations for deriving Le used in the numerical 
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Fig. 3.4a: Considerations for describing the voidage 
distribution in the vicinity of a constraining surface.
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Fig. 3.7: Instantaneous heat transfer in the system glass ballotini- 
air. Comparison of the present theory with experimental data of 
Antonishin et al?. 
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Fig. 3.8: Instantaneous heat transfer in the system glass ballotini- 
carbon dioxide. Comparison of the present theory with experimental 
data of Antonishin et al?.
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Fig. 3.9: Instantaneous heat transfer in the system glass ballotini- 

freon 12. Comparison of the present theory with experimental data of 
Antonishin et al@.
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Fig. 3.12: Time-mean heat transfer in the system copper shot— 
carbon dioxide. Comparison of the present theory with experimental 
data of Desai20, 
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Fig. 3.13: Time-mean heat transfer in the system glass ballotini- 
helium. Comparison of the present theory with experimental data 
of Hampshire? - e, and Harakas & Beatty?! - o. 
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Fig. 3.14: Time-mean heat transfer in the system glass ballotini- 
air. Comparison of the present theory with experimental data of 
Butt!2 - ©, Cain!3 - e, Hampshire? — ¢, Harakas & Beatty»! - 0, 
and Williams & Smith60- o, 
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freon 12, Comparison of the present theory with experimental data 
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Fig. 3.16: Time-mean heat transfer in the system steel shot-heliun. 
Comparison of the present theory with experimental data of 
Hampshire 9 
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Fig. 3.17: Time-mean heat transfer in the system steel shot-air. 
Comparison of the present theory with experimental data of 
Buttl2 —- 0, and Hampshire30 - e,
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Fig. 3.18: Time-mean heat transfer in the system slag spheres-air. 
oar een of the present theory with experimental data of Dunsky 
et alc’, 
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Fig. 3.19: Time-mean heat transfer in the system silica sand-air. 
Comparison of the present theory with experimental data of 
Desai20 — 0, and Ernst24 — e.
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Fig. 4.1: Schematic diagram of the probe used for the 
investigation of the bubble induced heat transfer.
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Fig. 4.2: Supporting bridge and instrumentation of the heat 
transfer probe.



  Fig. 5.1: Photograph of the experimental apparatus.



-122- 

        

   
bridge and 
instruments - 

Figure 4.2       

   air_line 

Fig. 5.2: Line diagram of the experimental apparatus.
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Fig. 5.3: Response of the probe wire, placed in stationary water, 

to a step heating input (a = 152.5 wm, A = 113, To = 20 C).



  

  

  

Fig. 5.4: Variation of the instantaneous average wire temperature 
ee time (water, a = 20.6 um, A = 108, T.. = 20°C, — = 1.0 to 1.1). 

From top to bottom: f = 0.8, 1.2, 2.3, 3.8, and 10.4 1/sec.  
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Fig. 5.5: Instantaneous bubble induced heat transfer from a 41.15 jm dia 

wire into water (A = 108, — = 1.1, T, = 25°C). 
F 

  

  

    ee et Lt tal chi hs a aha 
  

nN
 5 10 30 Fo 100 

Fig. 5.6: Instantaneous bubble induced heat transfer from a 41.15 ym 

dia wire into 50% glycerol solution (A = 108, — = 1.1, T, = 25°C).
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Fig. 5.7: Instantaneous bubble induced heat transfer from a 125 yum 

dia wire into water (A = 35.6, & = 1.1, Nae 25°C), 
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Fig. 5.8: Instantaneous bubble induced heat transfer froma 125 um 
dia wire into n-heptane (A = 35.6, & = 1.3, ee 250C).
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Fig. 5.9: Time-mean bubble induced heat transfer from a 305 um dia 
wire into water (A = 14.6, — = 1.1, = 25°C), 

  

  
    

] 3 10 20 
For, 

Fig. 5.10: Time-mean bubble induced heat transfer from a 125 um dia 
wire into water (A = 35.6, B= 1.15 Ty = 250C).
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Fig. 5.11: Time-mean bubble induced heat transfer from a 41.15 wm 

dia wire into water (A = 108, — = 1.1, ae 25°C). 
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Fig. 5.12: Time-mean bubble induced heat transfer from a 125 ym dia 
wire into n-heptane (A = 35.6, eet es, Tp = 25°C).
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Fig. 5.13: Time-mean bubble induced heat transfer from a 41.15 um 

dia wire into n-heptane (A = 108, € = 1.3, t, = 25°C). 
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Fig. 5.14: Time-mean bubble induced heat transfer froma 125 jm dia 
wire into 50% solution of glycerol (A = $5.6, 6 =. i = 25°C), 
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Fig. 5.15: Time-mean bubble induced heat transfer from a 41.15 yum 
dia wire into 50% solution of glycerol (A = 108, & = 1.1, ee 250¢). 
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Fig. 5.16: Influence of elevated film temperatures on the time-mean 
bubble induced heat transfer from a 125 ym dia wire into water 
(A =35.6, © = 1.1 to 1.3).
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Fig. 5.17: Influence of &€ on the time-mean bubble induced heat transfer 
froma 101 jm dia wire into water (A = 128, E = 2.8, 1, = 25°C). 
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Fig. 5.18: Influence of € on the time-mean bubble induced heat transfer 
from a 101 jm dia wire into water (A = 264, E = 5.8, 1 = 25°C).
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Fig. 5.19: Influence of & on the time-mean bubble induced heat transfer 

F 
from a 101 ym dia wire into water (A = 264, — = 9.1, T, = 25°C). 
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Fig. 5.20: A typical plot of the instantaneous average wire temperature 
as a function of time.
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Fig. 6.1: A spherical particle in the wire vicinity. 
Equation of the wire r =a. 2 2 
Equation of the spherical particle (r - a - ap) +x = ap. 
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Fig. 6.2: Variation of the emulsion phase voidage in the wire 
vicinity for three different values of o and & = 0.40.
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Fig. 6.3: Variation of the dimensionless conductivity b(R) 

in the wire vicinity for ep = 0.40), kp Ky = 10 and three 

values of o . 
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Fig. 6.4: Variation of the dimensionless conductivity b(R) 
in the wire vicinity for e, = 0.40, k/kq = 10 000 and 
three values of o .



      Fig. 6.5: Photograph of the experimental apparatus.
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Fig. 6.7: Influence of gas velocity on the response of the wire, 
placed in the emulsion phase of silica sand 4 - air, to a step 
heating input.



4 Tee eae ae NT T [apes lees ee 

eee 5 ET es 
fe oeke=e 1] W/mK I 

| kg=1-23x10 ” m/s is] 

4 fe Ie CSI | ommega e | P ] 
2 5 10 20 50 100 

  

-138- 

  

silica sand 1 - air a 

    
    

  

Fo 

Fig. 6.8: Response of the wire, placed in an incipiently fluidized 
bed of silica sand 1 - air, to a step heating input. (Experimentally 
obtained value of the emulsion phase voidage. 
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Fig. 6.8a: Response of the wire, placed in an incipiently fluidized 

bed of silica sand 1 - air, to a step heating input. (Results are 
based on an assumed value of the emulsion phase voidage. )
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Fig. 6.9: Response of the wire, placed in an incipiently fluidized 

bed of silica sand 2 - air, to a step heating input. 
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Fig. 6.10: Response of the wire, placed in an incipiently fluidized 
bed of silica sand 3 - air, to a step heating input.
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Fig. 6.11: Response of the wire, placed in an incipiently fluidized 
bed of silica sand 4 - air, to a step heating input. 
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Fig. 6.12: Response of the wire, placed in an incipiently fluidized 
bed of silica sand 1 - helium, to a step heating input.
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Fig. 6.13: Response of the wire, placed in an incipiently fluidized 
bed of silica sand 1 - freon 12, to a step heating input. 
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Fig. 6.14: Response of the wire, placed in an incipiently fluidized 
bed of silica sand 2 - helium, to a step heating input.
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Fig. 6.15: Response of the wire, placed in an incipiently fluidized 
bed of silica sand 2 - carbon dioxide, to a step heating input.



Fig. 6.16: Variation of the instantaneous average 
wire temperature with time (incipiently fluidized 

bed of copper shot - air). From top to bottom: 
f= 1.7, 1.1, 0.83, 0.49, 0.33 and 0.13 1/sec.  
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Fig. 6.17: Instantaneous bubble induced heat transfer from the wire 

into an incipiently fluidized bed of silica sand 1 - air. 
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Fig. 6.18: Instantaneous bubble induced heat transfer from the wire 
into an incipiently fluidized bed of silica sand 2 - air.
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Fig. 6.19: Instantaneous bubble induced heat transfer from the wire 
into an incipiently fluidized bed of silica sand 3 - air. 
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Fig. 6.20: Instantaneous bubble induced heat transfer from the wire 
into an incipiently fluidized bed of silica sand 1 — helium.
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Fig. 6.21: Instantaneous bubble induced heat transfer from the wire 

into an incipiently fluidized bed of silica sand 1 - argon. 
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Fig. 6.22: Instantaneous bubble induced heat transfer from the wire 
into an incipiently fluidized bed of silica sand 1 - freon 12.
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Fig. 6.23: Time-mean bubble induced heat transfer from the wire 
into an incipiently fluidized bed of silica sand 1 - helium. 
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Fig. 6.24: Time-mean bubble induced heat transfer from the wire 
into an incipiently fluidized bed of silica sand 1 - air.
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Fig. 6.25: Time-mean bubble induced heat transfer from the wire 
into an incipiently fluidized bed of silica sand 1 - argon. 
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Fig. 6.26: Time-mean bubble induced heat transfer from the wire 
into an incipiently fluidized bed of silica sand 1 - freon 12.
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Appendix 1. 

EQUIVALENT CONDUCTIVITY OF THE FIRST SLAB. 

Constant flux condition at the surface of the heat transfer probe is 

given by equation (3.8) as 

i : (Al.1) 
az b(0) 

Equation (Al.1) is valid only at the surface of the heat transfer probe 

(Z = 0). If a finite difference numerical method is used, with a finite 

material slab thickness, equation (Al.1) is not applicable and must be 

modified as 

eH 2 ae A (A1.2) 
yan 

eq 

where Beg is the equivalent dimensionless thermal conductivity of the 

first slab (Figure 3.4). 

Referring to Figure 3.4, the temperature at the wall, W(0), can be 

  

calculated from temperature W(AZ) at point Z = AZ aoe 

WO} WAZ), (A1.3) 
Oe 

Equation (Al.3) is based on the assumption that the first slab of material 

remains at steady state throughout the heating process. The same assumption 

can be applied on a material slab of variable conductivity by solving the 

following equations: 

au, pees 0 (Al.4) 
dz az 

subject to 

Z=0 -b (0) ae 1 (A1.5) 
dz
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Z= 2 W = W(AZ) (A1.6) 

It is further assumed that, because the slab thickness is small compared 

with the particle diameter, the variation of the dimensionless thermal 

conductivity can be, in the first slab, approximated by a linear function 

satisfying the following conditions: 

Z=0 b(Z) = b(0) (Al1.7) 

Z = AZ b(Z) = b(AZ) (A1.8) 

The function b(Z) can then be approximated in the first slab by 

b(AZ)_- b(0) Zz 

AZ 
b(Z) = b(0) + (A1.9) 

The solution of equation (Al.4) subject to equations (Al.5) and (Al.6) with 

b(Z) given by equation (A1.9) is 

Az + —b(0) 42 

WCZEE a) ) ne , SE Loe (Al. 10) 
b(AZ) - (0) 5 _, _b(0) Az 

b(AZ) - b(0) 

from which the wall temperature W(0) can be calculated as 

WOVE TN (Az)ee eee ene Oe yy PO) 
b(Az) - b(0) b(0) . (ALD 

Finally comparing equations (Al.3) and (Al.11), the expression for 

the equivalent dimensionless thermal conductivity of the first slab is 

obtained as 

b = b(AZ) - b(0) 

in BCA2) 
b(0) 

(Al.12)
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Appendix 2. 

SPACE AVERAGE WIRE TEMPERATURE. 

The wire used in the present work is made of platinum. Because the 

wire temperature fluctuations are small, the relationship between the wire 

temperature and the wire resistance may be approximated with sufficient 

accuracy by a linear function. It is assumed that the radial distribution 

of temperature within the wire is uniform (Section 4.3.2); hence the wire 

temperature and wire resistance vary along the wire length only. 

Let R,, and Ry be the values of wire resistance per unit length at 

temperatures T.. and Ty respectively and let a be a temperature 

coefficient of resistance of the wire material. 

Then 

Ry - Roo = O(Ty - To) (A2.1) 

and because the wire resistance per unit length varies along the wire length 

only, the total wire resistance, Ros which is measured when the wire is 

used in the present application, is given by the following expression: 

L 
Rp = f Ry dx (A2.2) 

-L 

The total wire resistance, Roe corresponds to a space-average wire 

resistance per unit length,R,, defined by 

x Qe 
a oy R. (A2.3) 

and to a space-average wire temperature, T, defined by 

R, - Ro = a(T - To) . (A2.4) 

Comparing equations (A2.1), (A2.2), (A2.3) and (A2.4), the space- 

average wire temperature is finally obtained as 

1 L 

T=— fs Ty ax : (A2.5) 
2L -L
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Appendix 3. 

SIMPLIFICATION OF EQUATIONS (4.16) TO (4.25). 

Since the wire is approximated by a finite rod with uniform radial 

temperature distribution, equations (4.17) and (4.25) are not applicable. 

Energy balance on an element of the wire shows that for 

t 2 0, r= 'ap.[x| 22 

  

k,, oT, 227 
ot: WL - 28, +Q (A3.1) 
Woot x? 

where fg is the heat flux which is being dissipated from the outer surface 

of the probe wire by conduction into the surrounding dense phase and hence 

oT. 
£, = - k(a)[ (A3.2)   

rea 
or 

Equation (A3.2) is substituted into equation (A3.1): 

2 

i ~ Aad Sh Q +o r (A3.3) 
Kw oat ax? or s oe W 

Equation (4.24) is then substituted into equation (A3.3) to obtain 

for 

eG en |x| 

2 

fee nye mee Dies, 2kta) eo Dr —— = ee s (A3.4) 

Woot x? W oor W 

Equation (A3.4) constitutes an additional boundary condition for 

equation (4.16). Hence the wire and the dense phase temperatures are 

uncoupled and the dense phase temperature can be obtained by solving 

equation (4.16) subject to equations (4.18), (4.20), (4.22) and (A3.4). 

The wire temperature, Ty,, is calculated from equation (4.24) as 

Tw = Mplea. (A3.5)
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Appendix 4. 

METHOD OF NUMERICAL SOLUTION OF EQUATIONS (4.41) TO (4.45). 

First it is assumed that functions H(R) and L(R) are known. The grid 

used for the numerical calculation is shown in Figure A4.1. Since the probe 

and the surrounding dense phase are symmetric about a plane parallel to the 

copper supports and passing through the origin (Figure 4.1), only one half 

of the whole domain is considered. Subscripts x and y refer to the R- and 

Z-coordinate respectively and superscript p refers to time such that 

Fo = AFo * p (A4.1) 

and all the remaining notation is shown in Figure A4.1. To make the 

notation in this Appendix simpler, symbol W is used instead of "oi? 

All derivatives are rewritten, using a standard difference 

technique!> » as follows: 

aw? wet _ yP 
eye pe (A4.2) 

oFo AFo 

aw? Moe 8 
ee eee Gy (A4.3) 

aR 2 AR 

a wees - awe + WP 
ey ey ay ey (A4.4) 
aR? (AR)2 ; 

2yP P P P aw. - Wop CHE eH oy a S 

9z2 (AZ)? 

Using the notation 

M= — (A4.6) 
(AR) 

2 

Nese 8) eee (A4.7) 
(az)?
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platinum wire 

copper support 
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wy 

Wy uy XY 

nels 

Nines Sees lene ae 3 x * ms < - 

in at x i) b 

plane of symmetry 

sel |   
axis of symmetry 

Fig. A4.1: Grid used for the numerical calculation.



-159- 

the following system of equations can be substituted for equations (4.41) 

to (4.45): 

pes (0 rs x< Usd ys 

We = 0 (A4,8) 

poids <x <p, 1<y-< h 

We = Wea ly CD46, (946, 60 ]4NP_ LC, (2)~C, (2)-C, (0) ] 
+LWE yar H y-1 104 COANE , [1-246 (x)4C, 0H] (A4.9) 

Pie Oy xe ll <yu< 1 

Pelayo) trae P P P Wer = MP yl1-2CCo*Gg) I+ OME vartWh y sICy#C enh +c, (Ad. 10) 

p20, lsxa1, yet 

Ps Wel 0 (A4.11) 

pea, x= Tul < yes a 

Pos = We W = W A4,12 
UWsy url,y Ue) 

pre iO 1 Sx, ye 1 

tee = ee (A4.13) 

where 

C, (x) = MAR+L(x) /2 (A4.14) 

C(x) = M-H(x) (A4.15) 

C,(x) = 0.5M-H(x) *AR/[1+(x-1) AR] (A4.16) 

C,(x) = M-N-H(x) /A? (A4.17) 

Coane= M-N/(KyA*) (A4.18) 

Cy = 2M*AR+Kg*b(1) /Kg (A4.19) 

cy = Mek q+ (AR)? /ky (A4,20) 

Similarly to Section 3.4.1, it is desirable to redefine the constant 

Cg. Equation (4.45) is valid only at the surface of the probe wire. In 

order to solve the difference equations accurately, very small space (and 

hence time) increments must be used, because the function b(Z) varies very 

rapidly near the surface. In order to overcome this complication, while not 

sacrificing much accuracy, the equivalent thermal conductivity of the first
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slab, eae is used (see Section 3.4.1). Hence equation (A4.19) is 

redefined as 

Ce. = 2M-AR“Kg*b_0/Ky i (A4.21) 

where eat is calculated as in Appendix 1, but the curvature of the first 

slab is also taken into account. The equation to be solved is 

a [R-b(R) pana. 0 (A4..22) 
dR dR 

subject to 

R=1l “pay =l1 (A423) 
dR 

R=1+AR W = W(1 + AR) (A4,24) 

and where b(R) is approximated by a linear function (Appendix 1) which 

satisfies the following conditions: 

R=1 b(R) = b(1) (A4.25) 

R= 1+ AR b(R) b(1+AR) (A426) 

Hence function b(R) can be calculated and equations (A4.22) to 

(A4.24) can be solved. Similarly to Appendix 1, the equivalent dimensionless 

thermal conductivity of the first slab can then be defined as 

AR‘e, 
eq ¥6,) CER (A4.27) 

In Teak 

where 

es [b (1+AR) -b (1) ]/AR (A4.28) 

e&, = b(1)-e, (A4.29) 

e, = e,/e, - (A4. 30) 

Next by standard methods*®, convergence conditions are determined as 

2 
AR < aatleee elGO (A4.31) 

T#(x-1)aR * HG) 

M < mint 2 ; : Fal (A432)   

2H(x) [14N/A2] 2IN/kgA® + MR-ky-b0/Ko]
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For each time interval, the temperature field is calculated until a 

point (on the plane of symmetry) is reached at which the dimensionless 

temperature, W, becomes smaller than 10°71", At this point the calculation 

is terminated and restarted for the next time interval. It has been found 

that the accuracy of the numerical solution is relatively insensitive to 

the size of AR-increments and AR = 0.25 or 0.2 can be used to achieve 

sufficient accuracy. On the other hand, the accuracy of the solution is 

very sensitive to the size of AZ-increments, but too small values of AZ 

step-size require very large computer times, Hence a compromise has been 

reached by using AZ = 0.33333 or AZ = 0.25. The error is then kept 

below 5% (as confirmed by decreasing the AZ step-size to obtain a check). 

The instantaneous wire temperature is defined by equation (A3.5). The 

instantaneous space-average wire temperature is calculated from equation 

(4.1) and the time-mean space-average wire temperature from equation (4.57).
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Appendix 5. 

METHOD OF SOLUTION OF EQUATIONS (4.58) TO (4.62). 

Equation (4.58) subject to equations (4.59) to (4.62) was first 

solved by Jaeger”, who obtained a solution for the maximum instantaneous 

temperature only. Despite an extensive literature search, the author has 

been unable to find a complete solution to the problem. The solution of 

equations (4.58) to (4.62) is, in principle, simple and will be shown 

only briefly. It is more convenient to use the original notation given by 

equations (4.36) to (4.40), which for the present case simplify to: 

tor 0b > a, [xls b 

    

  

    

oT, aT. 1 oT a°T 
Lig KC iment bled Li ) (A5.1) 

ot dr? ropor ox? 

subject to 

fe Oye aye xl) 1) Ty, = 0 (AS.2) 

t 20, e ee, |x| «2 T= 0 (A5.3) 

ol 
t 20 eS a,x a:0 = 0 (AS.4) 

ox 

1 OT °T, 2k, aT, Q 
exe ken ix <te. e—. uh. —t Le (AS.5) 

Kw ot Ox’ aky or kw 

First, the Laplace Transformation of equations (A5.1) to (A5.5) with 

respect to time is 

370 | 1 20 026 Oa ae”, ee r2a, |x| <L - qo = 0 (A5.6) 
dr? or Or ax? 

subject to 

psa (x|-= 1b @=0 (AS.7) 

a6 
= Se Fee 10 yx ne (AS.8) 

2 2k 
Pia, |x| <L Bo. 28, 48,2 (A5.9) 

W ax? aky or Pky 

where ¢ is the Laplace Transformation of T,, defined by
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of e™e dt (AS.10) 
and 

as 
ae aoe (AS.11) 

Next © and 1 are expanded using a cosine Fourier series 

eS SX 
= Es R@ cos = (AS,12) 
ne 

fo” sx l= i. cos =~ (A513) 

where R@ is a functionof r only and 

so Mtl, (A5.14) 

Equations (A5,12) and (A5.13) are substituted into equations (A5.6) to 

(A5.9) which must be identically satisfied for all values of x. This is 

possible only if for 

  

d?R 1 aR 2 
Te >a Bete ete (iq) Ren (A5.15) 

dr? Dat a 

subject to 
2 2k, dR n 

ie Big =-Sn+—t=a.Q C0 | (AS.16) 
Wis Le aky dr Pw 

Equation (A5.15) is a modified Bessel equation of the zeroth order; 

using the implied condition that the temperature at infinity is finite, 

Bessel functions of the first kind are excluded and the solution of 

equations (A5.15) and (A5.16) is then obtained in the following form: 

  

rea 

20K, (-1)” K, (6x) 
ReGee 2 (A5.17) 
n psky z ae 

[p + “wel kK, (8a) ¥ Taker BK, (Ba) 

where : 

Be arg (AS.18) 

and Ky (Ba) and K, (Ba) are modified Bessel functions of the second kind. 

Substituting (A5.17) into (A5.12) and using the Inversion Theorem for
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the Laplace Transformation!*, an expression for T,, is then obtained: Ll 

r2a, |x| <L 

2a«, (-1)"K, (8r) cos ml He Wee L 
Tian yin’ | DK, nko 5 : sae peop (ASSIS) 

s LW 
(p+ ir 2) Ko (Fa) + ak 8K, (Ba) 

Reversing the order of integration and summation, using the theorem for the 

Laplace Transformation of an pneeeeale = and writing 

2 
= = p'=p+ Ky, 2 (A520) 

i202 eee 
(c= 86> = (AS.21) 

a 

equation (A5.19) then simplifies to 

20K co ¢_4)0 
cer eo 1)” cos sx ij exp[-k, G)?AJw(A) ad (A5.22)   

where 

i K,(q'z) q VRs 90), 0 
WO) =5ar eit   dp': 

2 2k, K, 

[P'+ (ye) FI (a! 2) ae a'k, (q'a) 

wisle CAD eS) 

Because the integrand of (A5.23) has a branch point at the origin, a 

contour shown in Figure AS.1 is used for evaluating of (A5.23). It is known 

that if Kw > Kr (which is the case for most liquids) there are no poles 

of the integrand inside this region and on its boundaries”? 3 the integrand 

is also a single valued function inside the closed contour. It is simple 

to show that integral (A5.23) round the small circle tends to zero as 

wee 0 and that this integral along the contours A to B and E to F 

(Figure A5.1) also tends to zero as Ro >, Thus when ty + 0 and R. 725 

integral (A5.23) can be substituted by the sum of real infinite integrals 

over BC and DE. To obtain the real infinite equivalent of (A5.23), 

«,@ 2 eit +it 
and K,@? e are substituted for p' (equation (A5.20)) on
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Fig. A5.1: Contour used for the inversion of function (A5.23).
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contours (DE) and (BC) respectively (Figure A5.1) and the following 

; poet OLD 
identities > are used: 

Ky Gy 60-2 0.5m [-3,) 7 iy] (AS. 24) 

Ko IE gis [-J,) + iY,00] (A5.25) 

The result is then substituted into equation (A5.22). Changing the order 

of integrations and finally integrating with respect to time leads to an 

expression for the temperature field in the medium surrounding the wire in 

the following form 

£e0, re a(x) ab 

  es ee 8G Gy ot “oar ake, (AS.26) 
apne oh y, (6290) 

ere = y¥,(y) + CYp(y) (A5.27) 

v= yJy(y) + CIO) (A5.28) 

c= ae IG? - yg (5.29) 

yz + @? (AS. 30) 

and where y is the integration parameter, Fo is the instantaneous Fourier 

number and Bessel functions have their usual meanings. 

Temperature of the wire is obtained from equation (A5.26) with r=a 

(equation(A3.5)). Using equation (4.1), the first approximation to the 

dimensionless instantaneous average wire temperature, (Wh); is then 

calculated as 

4 iL 1B eee a 
WW) s m2 N=0 52 

SEC san yee 
] 3 (A5.31) 

y, (9? + W?) u
m
s
 

o
s
s
 

[l-e 

and finally using equation (4.57), the first approximation to the 

dimensionless time-mean average wire temperature, Wy) is obtained in 

the following form 

8 -y, Fo a 
Tis yy eae OY (AS 232) 

y,(¢? + W?) 
aS 

0 52 Ww) 1m O
5
8
 -4 

1? i)
 1 (rer [l- e 

ny
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Appendix 6. 

CALIBRATION OF THE UV-RECORDER TRACES. 

In Figure A6.1, R denotes the resistance of the probe, Ra the 

resistance of the centre branch (including the galvanometer) and the 

other resistances refer to the remaining branches. The bridge is originally 

balanced so that 

R.R,=R -R (A6.1) 

Ip = 0 (A6.2) 

and the equilibrium average wire temperature ,T, is determined from the 

resistance R, and the wire calibration curve, Let the average wire 
2 

temperature increase by ST, This causes an increase of the wire resistance 

by SR from R to R + 6R. The current I, has a non-zero value and using 

  

R 

Kirchhoff's Laws°* can be calculated as 

R+ Ry + OR 
I, =a, Vv (A6.3) 

(R + 6R) 0, - ayRy) 

where 6R + Ry 
aaa (A6.4) 
(R, ~, R(R + Ry + OR) 

R,(R + 6R) RR. 
‘4 208 

by = RvR, +R z +R a Ry (46.5) 

and where V is the voltage across the probe wire. Neglecting small values 

of 6R as compared with larger values of other resistances, equations (A6.3) 

to (A6.5) can be simplified to 

Ip a, R+R 
  

    

oe - aa (A6.6) 

where R, 
OS a eras ear (A6.7) 

(Ry + R) (R + Ry 

RR. RR 

in e R a R. e : R — oe 
2 3 4 

For probe wires made of platinum and small temperature changes, the
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Fig. A6.1: Schematic diagram of the bridge incorporating the 

heat transfer probe.
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calibration curve for the average wire temperature may be approximated by 

a straight line, so that 

sr 
6R, 

= Sy (A6.9) 

where Sy is a calibration constant which is determined experimentally. 

Furthermore, the calibration constant of the galvanometer is given by 

ea (A6. 10) 

8 qh 
where 6x is the deflection of the UV-recorder from its equilibrium 

position. Constant S, is either obtained from tables or determined 

experimentally. 

Hence the calibration constant of a UV-recorder trace, defined by 

So oT (A6.11) 
6x 

can be rewritten as 

oT 6R, 6R I 
5 5 — SR (A6. 12) 

8R, 6R Ip 6x 

where 

6R R, 
Say gee (A6.13) 
OR Ry 

Finally comparing equations (A6.6) to (A6.13), the final result for 

the calibration curve of the UV-recorder traces is 

Ss, 
a aunt (A6.14) 

VS, *S 05 
where 

R R+R a. 
Se 5 es geen tale A sae : (A6.15) 

R R b
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Appendix 7. 

VOIDAGE DISTRIBUTION IN THE WIRE VICINITY. 

The material concentration, B(r), is given analogously to equations 

(3.23) and (3.24) as 
4d, V(r) 

(1-e,) — 
Ar Vp 

  Ar < dy 8 (x) 

Ar > dy B(r) = (1-€,) 

where 

Ar=r-a 

(A7.1) 

(A7.2) 

(A7.3) 

and where V(r), the volume of that part of a spherical particle which can 

be found in the annulus of the reference and the constraining cylinder, is 

calculated as follows (Figure 6.1): 

Let 

V(r) = Vv, @) + Av, (2) (A7.4) 

where Vv, @) is the volume of that segment of the particle which is cut by 

a plane distance Dy from the origin and V, (2) is the volume of a quarter 

of the remaining part of V(r). 

V, (4) is given by standard textbooks”? as, 

E 2 2. L 3 Vv, (4) = 0.5m(r* - DD) , -a)+ gt, - a) 

and Vv, (2) is calculated as follows 

Peotr)ixc(r, 2) 
V,(r) =ai 1 » radxidd (dr 

OOO: 
BE 

where 

x(r,0) = [a5 - (x - a - ap)7]°°5 

6(r) = arctan IF Neos Te |e es 
1 

Next, the integrations with respect to x and 6 are performed, 

i 

Vox) = f x O(x) x(r,e) ar, 
my 

(A7.5) 

(A7.6) 

(A7.7) 

(A7.8) 

(A7.9)



and e 

where 
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quation (A7.9) is rearranged as 

oR 
V,(R) = af S nfl - (n-o-1)?]°*Sarctan[(Q)?- 1]°°* an (A7.10) 

6 

R= r/a (A7.11) 

o= a/ap (A7,12) 

2 
micah) ci 20 5 E (A7.13) 

2(o + 1) 

From equations (A7.1), (A7.2), (A7.4), (A7.5) and (A7.10), the final 

t for the voidage distribution in the wire vicinity is obtained as 

2 R<l+e 

3(1-e,) 
e(R) = 1- ——= {0.5n(o?R? - 62)(6 - 0) + gn(6 - 0)? 

270 (R-1) 

oR n 
+4 Sn[l - (n-o- 1)7]°** arctan[(g)?- 1]°*Fdn} (A7.14) 

6 

2 
Ro> aes a 

e(R) = eE 5 (A7.15) 

The numerical values of the voidage are obtained by the numerical 

integration of equation (A7.14). The method of the numerical integration is 

shown in Appendix 8.
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Appendix 8. 

PROGRAMME FOR THE NUMERICAL SOLUTION OF EQUATIONS (4.41) TO (4.45). 

This programme is used to calculate the first approximation to the 

average temperature of the wire which is placed in an emulsion phase of 

solid particles and the fluidizing gas. Certain modifications of the 

programme are required when the wire is placed in a liquid. The modifications 

are discussed at the end of this Appendix. 

MASTER ALENA 

DIMENSION A(100,10),B(100,10),ALPHA(100),BETA(100),H(100), 
X¢(100) , DERH(100),c1 (100) ,c2(100) ,c3(100),¢4(100) 
MP = number of steps in the R-direction 
NP = (number of steps in the Z-direction) + 1 
DELTA = step size in fractions of the wire radius 

= thermal conductivity of the fluidizing gas 

AKS = thermal conductivity of solid particles 
= thermal conductivity of the wire material 

AKPG = thermal diffusivity of the fluidizing gas 

= thermal diffusivity of solid particles 
AKPW = thermal diffusivity of the wire material 
ASP = aspect ratio of the probe wire 
AW = radius of the probe wire 
AP = mean equivalent radius of the solid particles 
VOID = mean voidage of the emulsion phase 
FI1 = function of (AKG,AKS) given by Kunii and Smith43 
FI2 = function of (AKG,AKS) given by Kunii and Smith4? 
SOME ADDITIONAL PARAMETERS 

AKGS=AKG/AKS 
AKPGS=AKPG/AKPS 
ASP2=ASP*ASP 
DELTA2=DELTA*DELTA 

RATWP=AW/AP 
AN=(DELTA* (NP-1.0) )**2.0 
ANASP2=AN/ASP2 
CONC=1 .O-VOID 

MP1 =MP—1 
MP2=MP-2 

NP1=NP-1 

NP2=NP-2 
Y=0.0 
SUMMN=0.0 

DELTR=DELTA*RATWP 
THERMOPHYSICAL PROPERTIES OF THE EMULSION PHASE - KUNII & SMITH (43) 

AKB = THERMAL CONDUCTIVITY OF THE EMULSION PHASE 
AKPB = THERMAL DIFFUSIVITY OF THE EMULSION PHASE 

IF(VOID.GT.0.476)FI=FI1 
IF VOID. LE.0.476.AND.VOID.GE.0.260)FI=F12+(FI1-F12) 

X*(VOID-0.260)/0.216 
IF(VOID.LT.0.260)FI=F12 
AKB=AKG* (VOID+0.95*CONC/(FI+0. 66666*AKGS) ) 
AKPB=(AKB*AKPS)/(AKS*CONC ) 

e
a
a
g
a
a
a
a
a
a
a
a
a
a
a
a
a
a
 

Fi a 

a
a
a



8400 

810 

820 

830 

208 

850 

ease 

SOME ADDITIONAL PARAMETERS 
AKGB=AKG/AKB 
AKBW=AKB/AKW 
AKPBW=AKPB/AKPW 
CALCULATIONS OF PROPERTIES 
DO 100 J1=1,MP 
RD=(J1-1.0)*DELTR 
IF(RD.LT.0.0000001) GO TO 208 
IF(RD.GE.2.0) GO TO 101 
DELTAP=1.O+RATWP 
ZETA=RD+RATWP 
ZETA2=ZETA*ZETA 
ZETAO=0.5* (ZETA2+2.O*RATWP+RATWP*RATWP) /DELTAP 
ZB=ZETAO-RATWP 
VOL1=1 .5'708* (ZETA2-ZETAO*ZETAO )*ZB+0.5236*ZB*ZB*ZB 
DZBTA=ZETA-ZETAO 
IF(DZETA .LT.0.000001) GO TO 810 
DET=DZETA/20.0 
ETA=ZETAO-DET 
SVOL=0.0 
DO 8400 K=1,21 
BTA=ETA+DET 
EZO=ETA/ZETAO 
EZ02=EZ0*EZO 
ee AGT=0.0 
IF(BZ02.6T.1.0) AGT=(BZ02-1.0)**0.5 
ETD=ETA-DELTAP 
SX=BTA*DET* ((1.0-ETD*ETD)**0.5) *ATAN(AGT) 
IF(K.EQ.1.0R.K.EQ.21) SX=0.5*SX 
SVOL=SVOL+SX 
CONTINUE 
Go TO 820 
VOL2=0.0 
GO TO 830 
VOL2=4.0*SVOL 
BERTA1=0.47746* (VOL1+VOL2)/RD 
GO TO 850 
BERTA1=0.0 
ERTA=1 .O-CONC*BERTA1 
IF(ERTA.GT.0.476)FI=FI1 
TF(BRTA.LE.0.476.AND.ERTA.GE.0.260)FI=F12+4.63*(FI1-FI2)* 

X(ERTA-0.260) 

101 

100 

200 

XBETA 
XBETA 
XBETA 
XBETA(25), BETA a5 oe a) 
KBETA 

XBETA 

IF(ERTA.LT.0.260)FI=F12 
6 . — { 1.0/CONC-BERTA1 )/AKPGS+BERTA1 
H(J1 )=AKGB*(ERTA+(0.95*(1.0-ERTA) )/(FI+0.66667*AKGS) ) 
GO TO 100 
a ee 
H(J1 )=1.0 
CONTINUE 
DO 200 J2=2,MP1 
DERH (J2)=(H(J2+1 )-H(J2-1) )/(2.0*DELTA) 
ALPHA (J2)=DERH(J2)/¢(J2) 
BETA(J2)=H(52)/¢(s2) 
CONVERGENCE CONDITIONS 

HMAX=AMAX1 (BETA(2), BETA(3), BETA(4), BETA(5), BETA(6), 
7), BETA(8), BETA(9),BETA(10),BBTA(11),BETA(12), 
13),BETA(14), BBTA(15),BETA(16),BETA(17) , BRTA 
19), BETA(20), BBTA(21), BETA(22), BRTA(23 

AE , BETA (29 
, BETA (32), BETA(33), BETA(34), BETA(35), BETA 
, BETA (38), BETA(39), BETA(40), BETA(41), BETA 

  

31 
37 

   



a
a
a
a
 

a 
a
a
a
a
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AM1=0.5/(HMAX* (1.0+ANASP2) ) 
AM2=0.5/(ANASP2/AKPBW+H(1)*AKBW*DELTA/AKPBW) 
AM=AMIN1 (AM1 , AM2) 
FMULT=AM*DELTA2 
DELTCHCK=2.0/(1.0+ALPHA(2)/BETA (2) ) 
WRITE(2,1000) AM,FMULT,AM1 ,AM2,DELTCHCK,H(1),G(1) 
AM = given by equation (A4.6) 

FMULT = step size in the Fo-direction; equation (A4.1) 
IF (DELTCHCK.LT.DELTA) STOP 
WRITE(2,1001 ) 
DO 300 J3=2,MP1 
01 (33)=0.5*AM*DELTA*ALPHA (33) 
02 (33 )=AM*BETA (33) 
03 (33 )=0.5*AM*DELTA* BETA (J3)/(1.0+(33-1.0)*DELTA) 
C4 (J3)=AM*ANASP2* BETA (53) 

300 ae eats) -auaaik( 35) eee 
XC1(J3),C2(I3),C3(I3),c4(J3) 
01(J3) = given by equation ‘A4.14) 
C2(J3) = given by equation a 
C3(J3) = given by equation (A4.16 
C4(J3) = given by equation (A4.17) 
WRITE(2,1001 ) 
CALCULATION OF THE EQUIVALENT CONDUCTIVITY OF THE FIRST SLAB 
CSB=(H(2)-H(1))/DELTA 
CSA=H(1)-CSB 
RAB=CSA/CSB 
HEFF=(DELTA*CSA )/(ALOG((1.0+RAB)*(1.0+DELTA)/(1.0+RAB+DELTA) ) ) 
WRITE(2,1010) H(1),HEFF,H(2) 
HEFF = equivalent conductivity given by equation (A4.27) 
WRITE(2, 1001) 
H(1 )=HEFF 
C5=AM*ANASP2/AKPBW 
C6=2.0*AM*H(1)*DELTA*AKBW/AKPBW 
C7=AM*DELTA2*AKBW/AKPBW 
C5 = given by equation (A4.18 
C6 = given by equation (A4.21 
C7 = given by equation (A4.20 
INITIAL VALUES 
DO 10 K1=1,MP 
DO 10 L1=1,NP 
a Lt es 

10 B(K1,11 
DIFFERENCE EQUATIONS 
DO 20 J20=1 ,200000 
F=FMULT*I20 
DO 30 K3=1,MP2 
DO 40 L4=1,NP2 

40 B(14K3, 1404 )=A(2+K3, 1414) * (C1 (14K3)+C2 (1+K3)+03(14K3))+ 
aL fod) (G2 103)-~04 (1-051) 4041148) 
X(A(14K3,2+14 )+A(14K3, 14) )4A(14+K3, 1414)*(1.0-2.0*(C2(14K3)+ 
X04 (1+K3))) 
B(1+K3,NP)=B(1+K3,NP1 ) 
IF (B(1+K3,NP).L2.0.0000000001 ) GO TO 50 

30 CONTINUE 
K3=MP2 

50 AJ2=520 
DO 60 L6=1,NP2 
B(1,14+L6)=A(1,1+L6)*(1.0-2.0*C5-C6)+C5*(A(1,2+16)+A (1,16) )+ 

XC6*A(2,1+L6)+C07 
60 B(MP,1+L6)=B(MP1 ,1+L6) 

B(1,NP)=B(1,NP1) 

n
o
u
a
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B(MP,NP)=B(MP,NP1 ) 
K7F=K3+2 
DO 70 K7=1,K7F 
DO 70 L7=2,NP 
‘A(K7,L7)=B(K7, U7) 
ANU=0.5*A(1,NP) 
DO 11 J=2,NP1 
ANU=ANU+A(1,J) 
ANU=ANU/NP1 
SUMMN=SUMMN+ANU 
Z=10.0*ALOG10(AJ2)-Y 
IF(Z.12.1.0) GO T0 20 
Y=Y4+1.0 
ANUM=FMULT* SUMMN/F 
WRITE(2,1003)F, ANU, ANUM, K3 

70 

ae 

a
a
a
 

= time-mean average wire 

F = instantaneous Fourier number 
instantaneous average wire temperature 

temperature 
wane, i ((A(18,38) ,J8=2,NP),18=1,66,5) 
WRITE 
CONTINUE 
FORMAT (7E15.6) 
FORMAT (/) 
FORMAT (9E11.4) 
FORMAT Bae 7 
FORMAT (3811.3) 
FORMAT (3E20.8) 
STOP 
END 
FINISH 

2,1001 
20 

1000 
1001 
1002 
1003 
1004 
1010 

10K, 17) 

If the wire is placed in a liquid, the liquid constitutes the dense 

phase and hence the thermophysical properties of the dense phase do not 

have to be calculated. 

The input parameters then are: 

MP 
NP 
DELTA 
ASP 
AW 
AKW 
AKPW 
AKB = thermal conductivity of 
AKPB = thermal diffusivity of 
H(J) = 1, for all J 
G(J) = 1, for all J 
ALPHA(J) = 0, for all J 
BETA(J) = 1, for all J 

The modified programme is then 

parameters and the original program 

CONVERGENCE CONDITIONS. 

the liquid 
the liquid 

obtained by using the above input 

from the statement
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Appendix 9. 

PROGRAMME FOR THE NUMERICAL SOLUTION OF EQUATIONS (4.67) TO (4.76). 

This programme is used to calculate the temperature of the wire which 

is placed in an emulsion phase of solid particles and the fluidizing gas. 

Certain modifications of the programme are required when the wire is placed 

in a liquid. The modifications are analogous to those discussed in Appendix 8. 

MASTER ALENA 

DIMENSION A(100,10),B(100,10),ALPHA(100),BETA(100),H(100), 
XG(100) , DERH(100) ,c1(100),C2(100),¢3(100),¢4(100),c5(100), 
x06 (100) 

L = number of steps in the R-direction 
NP = (number of steps in the Z-direction) +13 taken as 4 

DELTA = step size in fractions of the wire radius 
AKG = thermal conductivity of the fluidizing gas 
AKS = thermal conductivity of solid particles 
AKW = thermal conductivity of the wire material 

thermal diffusivity of the fluidizing gas 

thermal diffusivity of solid particles 
thermal diffusivity of the wire material 

ASP = aspect ratio of the probe wire 
AW = radius of the probe wire 
AP = mean equivalent radius of the solid particles 
VOID = mean voidage of the emulsion phase 
FI1 = function of (AKG,AKS) given by Kunii and Smith 
FI2 = function of (AKG,AKS) given by Kunii and Smith 
SOME ADDITIONAL PARAMETERS 

AKGS=AKG/AKS 
AKPGS=AKPG/AKPS 
ASP2=ASP*ASP 

LPH=1 /DELTA+1 
DELTA2=DELTA* DELTA 

RATWP=AW/AP 
AN=(DELTA*3.0)**2.0 
ANASP2=AN/ASP2 
CONC=1 .O-VOID 

L1=L-1 

LPH2=LPH-1 

LPH3=LPH+1 
LPH4=LPH+2 

Y=0.0 

SUM=0.0 

DELTR=DELTA*RATWP 

THERMOPHYSICAL PROPERTIES OF THE EMULSION PHASE - KUNII & SMITH (43) 

AKB = THERMAL CONDUCTIVITY OF THE EMULSION PHASE 

AKPB = THERMAL DIFFUSIVITY OF THE EMULSION PHASE 

IF(VOID.GT.0.476)FI=FI1 
IF(VOID.LE.0.476.AND.VOID.GE.0.260)FI=F12+(FI1-F12) 

X* (VOID-0.260)/0.216 
IF(VOID.LE.0.260)FI=F12 
AKB=AKG* (VOID+0..95*CONC/(FI+0.66666*AKGS) ) 
AKPB=(AKB*AKPS)/(AKS*CONC ) 

45 
43 

a
a
a
a
a
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SOME ADDITIONAL PARAMETERS 
AKGB=AKG/AKB 
AKBW=AKB/AKW 
AKPBW=AKPB/AKPW 
CALCULATIONS OF PROPERTIES 
DO 100 J1=LPH,L 
RD=(J1-LPH)*DELTR 
IF(RD.GE.2.0) GO TO 101 
IF(RD.LP.0,000001) GO TO 208 
DELTAP=1 .0+RATWP 
ZETA=RD+RATWP 
ZETA2=ZETA*ZETA 
ZETAO=0.5* (ZBTA2+2.O*RATWP+RATWP*RATWP ) /DELTAP 
ZB=ZETAO-RATWP 
VOL1=1 .5708* (ZETA2—ZETAO*ZETAO) *ZB+0.5236*ZB*ZB*ZB 
DZETA=ZETA-ZETAO 
IF(DZETA.LT.0.000001) GO TO 810 
DET=DZETA/20.0 
ETA=ZETAO-DET 
SVOL-0.0 
DO 8400 K=1,21 
ETA=ETA+DET 
EZO=ETA/ZETAO 
EZ02=BZ0*EZO 
oe AGT=0.0 
IF(EZ02.6T.1.0) AGT=(AZ02-1.0)**0.5 
ETD=ETA-DELTAP 
SX=ETA*DET* ((1.0-ETD*ETD)**0.5)*ATAN (AGT) 
IF(K.EQ.1.OR.K.EQ.21) SX=0.5*SX 
SVOL=SVOL+SX 

8400 CONTINUE 
GO TO 820 

810 VOL2=0.0 
GO TO 830 

820 VOL2=4.0*SVOL 
830 BERTA1=0.47746* (VOL1+VOL2 )/RD 

GO TO 850 
208 BERTA1=0.0 
850 ERTA=1 .O-CONC*BERTA1 

101 

IF(ERTA.GT.0.476)FI=F1 
IF(ERTA.LE.0.476.AND.ERTA.GE.0.260)FI=F12+4.63*(PI1-FI2)* 

X(ERTA-0.260) 
IF(ERTA.LP.0.260)FI=F12 
G(J1 )=AKGS*(1.0/CONC-BERTA1 )AKPGS+BERTA1 
H(J1 )=AKGB* (ERTA+(0.95*(1.0-ERTA) )/(FI4+0. 66667*AKGS) ) 
GO TO 100 
G(J1)=1.0 
H(J1 )=1.0 

100 CONTINUE 
DO 200 J2=LPH3,L1 
DERH(J2)= Ges ee ee. O*DELTA ) 
ae J2) 

200 BETA(J2)=H(J2)/4¢ (32) 
CONVERGENCE CONDITIONS 
HMAX=AMAX1 (BETA (LPH3) , BETA(LPH4) ) 
eee ) 
AM2=0.5*AKPBW/(1.0+ANASP2 
AM=AMIN( (AM1 , AM2 ) 
FMULT=AM*DELTA2 
DELTCHCK=2.0/(1.0+ALPHA(LPH3)/BETA (LPH3) )
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WRITE(2,1000)AM, AM! ,AM2, FMULT, DELTCHCK, H(LPH),G(LPH) 
WRITE(2,1001 ) 

IF (DELECHCK. L?.DELTA) STOP 
AMKAP=AM/AKPBW 
C'7=AMKAP*ANASP2 
(C8=1 .0-2.0*AMKAP* (1 .O+ANASP2) 
ee 
WRITE(2,1001) 
DO 400 J4=2,LPH2 
C5 (34 )=AMKAP*(1.0+0.5/(J4-1)) 
C6(34.)=AMKAP*(1.0-0.5/(34-1)) 

400 eee) 
WRITE(2,1001 
DO 300 J3=LPH3, 11 
C1 (J3)=0.5*AM*DELTA*ALPHA (J3) 
C2(J3)=AM*BETA (J3) 
03(J3)=0.5*AM*DELTA*BETA (J3)/(1.0+(33-LPH) *DELTA) 
C4 (J3)=AM*ANASP2*BETA (J3 ) 

300 WRITE(2,1004.)J3,H(J3), eae , DERH(J3),ALPHA(J3),BETA(J3), 
XC1 (33) ,C2(I3),03(J3) C4 (3 
WRITE(2, 1001 
CALCULATION OF THE EQUIVALENT CONDUCTIVITY OF THE FIRST SLAB 
CSB=(H(LPH3)-H(LPH) )/DELTA 
CSA=H(LPH)-CSB 
RAB=CSA/CSB 
HEFF=(-1.0)*CSA*ALOG(1.0-DELTA)/(ALOG((1.0+RAB)*(1.0+DELTA) / 

x(1. O+RAB+DELTA))) 
AKAST=AKBW*HEFF 
AKAST1=AKAST+1.0 

eee ime) patie 
WRITE(2,1001 
INITIAL VALUES 
DO 9100 M1=1,LPH 

     

    

A(M1,1)=1.286 
A(MA 2 
A a 

9100 A(M1,4)=0.0 
DO 9200 M2=LPH3,L 
DO 9200 _N: 
A(M2,N2)= 

9200 B(M2,N2)=0.0 
DIFFERENCE EQUATIONS 
DO 9300 L3=1, 100000 
F=FMULT*L3 
DO 9400 M4=2, LPH2 
DO 9400 N4=2,3 

9400 Br 14 )=c5 (ma) *a (4-41 
XA(Ma, N41) )aca®a (m4, na) 
DO 9500 M5=LPH3, 11 
DO 9501 N5=2,3 

9501 B(M5, Bp )eA(t6s ,N5)*(¢1 Oe eee eave ay 
X(C2(M5 )-C1 (M5 )-C3 (M5 ) )+04 (M5 )*(A(M5 ,N5+1 )+A (M5, N5-1) 
XA(M5,N5)*(1.0-2.0* (C2 (M5 )+04 (M5) )) 
IF(B(m5, 1) «L.0.0000000001 ) GO TO 9600 

9500 CONTINUE 
M5=L 

9600 AL3=L3 
M7P="5 
DO 9601 N=2,3 

9601 B(LPH,N)=(AKAST*B(LPH3,N)+B(LPH2,N))/AKAST1 
DO 9602 M=2,LPH2 

N4.)+C6 (M4) *A(M4—1 ,N4)+07*(A(M4,N441 )+



a
a
a
 

9602 

9603 

9604 

9605 

9700 

9300 
1000 
1001 
1002 
1003 
1004 
1005 
1006 
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B(M,1)=B(M,2) 
DO 9603 M=LPH3,M7F 
B(M,1)=B(M,2) 
DO 9604 N=2,3 
B(1,N)=B(2,N) 
DO 9605 N=1,3 
B(L,N)=B(11 ,N) 
tae ee ,2)+B(2,1)) 
B(LPH, 1 )=0.5*(B(LPH,2)+(B(LPH2,1)+AKAST*B(LPH3,1))/AKAST1 ) 
TEM=0.375* (B(LPH,2)+B(LPH,3) )+0.125*B(LPH, 1) 
DO 9700 M7=1 ,M7F 
DO 9700 N7=1,3 
A(M7,N7)=B(M7, NT) 
SUM=SUM+TEM 
Z=10.0*ALOG10(AL3)-Y 
IF(Z.LT.1.0) GO TO 9300 
Y=¥+1.0 
TEMTM-SUM*FMULT/F 
WRITE(2,1006)F, TEM, TEMTM, M7F 
F = Fourier number 

TEM = instantaneous temperature given by equation (4.87) 
TEMIM = time-mean temperature given by equation (4.88) 

WRITE(2,1001) 
CONTINUE 
FORMAT (7H12.5) 
FORMAT (/) 
FORMAT (2820.5) 
FORMAT (15,2B12.5) 
FORMAT (15,9B12.5) 
FORMAT (4825.10) 
FORMAT (3E20.8, 110)


