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SUMMARY

The flow and filling characteristics of a forging process are important be-
cause they are related to the study of the forgeability of metal which is
the cornerstone of forging technology.

which
The usual conception of forgeability is the extent to,the metal being
deformed without failure. The old criterion of failure is the appearance
of cracks, whereas this criterion is now found to be inadequate by the
fact that cracks can appear anywhere in the forging. Furthermore, a non-
homogeﬁeously deformed or incompletely filled forging can also be called a
failure. Since it is for strength that the forging is to serve, any damage
to the strength through deformation of the forging can be considered as
failure. It is on the study of the deterioration of strength through defor-

mation that this project is based.

The deformation from point to point in the forging is not only non-uniform
but very large as compared with the small deformationscommonly analysed In
the analysis of small strain. So a new mathematical tool, namely, the

analysis of large deformation, has been developed in Part A of this thesis.
This method is a combination of the work by Professor Hsi and the mathema-

tical method of Truesdell and other mathematical physicists.

The objective of this project is to use this mathematical tool to analyse
the deformation in upsetting processes, and consequently explore the im-
plications to the loss of strength of the forging through deformation. With
the use of this analytical tool, a scalar value called the deformation in-

tensity value r , is developed to represent the extent of the deformation

(1)



of an element. Subsequently, contour maps with varying deformation in-
tensity values of the forging are produced to represent the distribution
of the various levels of damage due to deformation. Such contour maps are

essential tools for forging designers in deciding the shape of the forging.

Deformation is so non-uniformly distributed in a forging that a homogeneity
value has been developed to indicate how much the most damaged part

deviates from the least damaged part in the forging.

It has been revealed that the initial filling of the die cavity which is
also one of the criteria included in the study of forgeability, is dominated

by the folding of metal from the side face of the forging.

The analysis presented in this thesis cannot claim to be the solution to

all the problems in the study of forgeability, but a proper route has been

found to further this study.

(11)
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NOTATTONS

The notation used throughout this thesis closely follows the format used

in Truesdell's "Classical Field Theory" (85).

Italic letters or Greek letters -- A, a,----- etcs.; Scalar or indices
of the vectors.
Bold~face letters or Greek letters =- ,‘\, F:,‘lr,—---etc., are vectors,

matrices or tensors.

A number in a the number of reference in the Bibliography.

bracket for

example, (5)

Hencky's logarithmic strain matrix.
right Cauchy-Green deformation matrix.
rate of deformation matrix.
Lagrangy strain matrix.
deformation gradient matrix.
displacement gradient.

unit matrix.

velocity gradient.

rotational matrix.

traction force.

right stretch.

left stretch matrix.

€<C-IIH_HI'anhm

spin matrix.

(xii)
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initial undeformed column matrix.
elements of arc before transformation.
acceleration vector.

left Cauchy-Green deformation matrix.
Eulerian strain matrix.

displacement vector.

velocity vector.

final or terminal position matrix.
element of arc after deformation.
rotational matrix for the principal angle
deformation matrix.

rotational matrix for the principal angle
stretch matrix.

strain rate matrix.

principal strain rate matrix.

strain matrix.

principal strain matrix.

incremental strain matrix.

stress matrix.

incremental stress matrix.
dimensionless work per unit volume.
redundant work.

apparent work.

rate of work.

shear stress

load required.

(xiii)

of the

for the



X9X, X, X,

Rl e 2

spread coefficient.

sideway displacement coefficient.

work per unit volume.
co~ordinates of a point.
total areas

width of the specimen.
horizontal displacement; ideal
ment.

function.

function.

heights of the specimen.
length.

uniform dilatation.
hydrostatic pressure.
radius of the specimen.
time.

element of time.

displacement.

horizontal displace-

displacement in the x, direction.

co-ordinates of a point.
deformation intensity.

filling coefficient.

% of reduction:height.

average reduction strain.
principal angle of the rate of

rate of spin.

(Xiv)

deformation matrix.



non-coaxiality angle.

@

£ 6 & principal strains.

= effective strain.

éo principal strain rate.

d& dézde5 principal incremental strain.l

effective incremental strain.
homogeneity wvalue.
characteristic index of strain.

principal angle of stretch matrix.

};ch@“‘k%‘

stretch.

20 principal stretch.

coefficient of friction.

folding coefficient.

deformation dispersion efficiency.

the radius of curvature of the strain path.

9 ~ -~ Y X

G, G3 principal stresses.
effective stress.

yield stress.

o

angle of the rigid body rotation.

o



CHAPTER ONE

Introduction



Forging is a basic production process and it has dominated the manufacturing
industry for centuries past. Its history can be traced back to the pri-
mitive age when men used stones or heavy objects to beat pileces of metal
into usable objects, such as knives and tools. Long after its existence,
people seldom tried to explain the mechanism behind the forming processes
till sometime in the 17th century, when Galileo established the foundation
of the mechanics of solids in his book "Two New Sciences". But, not much
progress was made until the end of the 19th century. Material scientists
and mathematicians such as Tresca, Coulomb, Saint Venant and Lévy began
their study of the plastic behaviour of metals. After these pioneers' work,
the research done in this field began to gather momentum. Especially since
the second world war, many great advances have been made and theories con-
cerning the mechanism of the various deformation processes have been esta-
blished.

the
Although various theories have been proposed in the analysis of forging
process in which simple upsetting is a basic one, many aspects of its mecha-
nism are still a mystery because of the complexity involved. One fundamental
area of research which has been done for several years past is the forgea-

bility of metal,

The idea of forgeability is often demonstrated in text books on production
engineering or manufacturing technology by photographs of progressively
compressed cylindrical slugs of the same material, some with and some with-
out cracks at the periphery of the severely compressed specimens. The

idea of forgeability illustrated in such pictures is a very rudimentary



one, namely, that metal can crack if sufficiently compressed, as

in forging processes. Suchi&emonstration is, however, also misleading.
In the first place, cracks can as easily appear inside, the workpiece as
on its surface, indeed, in some cases they start inside the metal before
the surface begins to crack. In the second place, cracks big enough to
be visible to the naked eye can hardly serve as the criterion for the end
or exhaustion of forgeability, rather, they indicate that the work is
falling apart. Forgings fail long before they fall apart; they fail when
their static, dynamic or fatigue strength has seriously deteriorated.
Whether the static, or the impact, or the fatigue strength should be used

as the criterion depends on the use which the forged product is to serve.

The research reported in this thesis is based on a wider and at the same
time more precise conception of forgeability. Forgeability is conceived
in terms of the retainment of strength in general, rather than in terms
of the appalling visible cracks alone, hence it is a wider conception.
Such an idea of forgeability is not based on a refined criterion of crack
detection, say, from those comfortably visible in photographs, to those
visible with a lens, to those detectable under more and more powerful
microscopes, till one begins to question what qualifies as a crack. If,
however, ductility is based on the idea of strength, then such an idea

is both more realistic and more easily measurable, because it is for st-
rength that components are forged rather than fabricated or cast, and the
methods of measuring various types of strength are well established and
standardized. A forging must be thought of as having failed if its

dynamic or fatigue strength, for example, is below the admissible, no



matter what size of cracks are detectable in it, with what microscope.
Equally, a forging is counted as a successful one if it is sufficiently
strong, no matter what size of cracks are detectable in it with some

migcroscope or other.

This conception of forgeability opens up a whole field of research, of
which it is the aim of this thesis to provide a starting point. In
delineating the scope of this thesis, therefore, it is necessary to survey
the broad outlines of this new field of research and to choose an area as

the starting point.

There are obviously two aspects in this new area of research, the loss of
strength (or structural damage) due to forging and a definition of the
degree of forging. Information on forgeability is then seen as a quanti-
tative relationship between the degree of forging and the internal damage
or weakening of the workpiece. This being a field in which little research
results are available, a choice has to be made in the manner of tackling
the problem. Either some degree of forging is taken as a working criterion
in some specimens and some tests for strength are conducted on them; or

a narrow area is to be covered at a greater depth. It is recognized that
even 1f only ad hoc forging processes and tests for strength were used,

the results would be more sound than looking for cracks. However, it is
also recognized that research on manufacturing processes in general and
forging in particular suffers precisef;?: lack of depth and thoroughness.
Itwas therefore decided to make a start in this general area by concent-
rating on the degree of forging. That the definition of the

degree of forging is in itself a topic of sufficient complexity and



difficulty to warrant a major effort in research will become evident in

the course of this thesis.

The degree of forging is usually thought of as the reduction in height of

a cylindrical slug compressed along its axis. The simplicity of this
definition covers a concealed illusion. The illusion that this is a good
measure of the degree of at least upsetting lies in the fact that the
reduction in height is thought of both as a compressive strain and as the
degree to which the specimen is compressed. Now, the reduction in height
can represent both a strain and the general deformation of a slug only if
the deformation is homogeneous. In most actual cases of upsetting, the
deformation is far from being homogeneous. If then the reduction in height
is thought of as strain, it represents the strain of no particular element
in the specimen. All that can be said of it then, is that it is an "average
strain", the averaging being so rough and ready as to be practically meaning-
lesss If, on the other hand, the reduction in height is meant to represent
the general deformation of the specimen, then it becomes of dubious validity
when the specimen is not a cylindrical slug with flat and parallel ends

and the die faces are not flat and parallel.

To find a better basis for the degree of forging it is necessary to take
the major, and apparently negative step of abandoning the reduction in
height, as a representation of strain. (It is only useful as a practical
parameter to represent the progress of the upsetting process, like time
or cross - head travel. ) From this rejection of the reduction in height,

emerges a method of measuring the degree of forging in which both the
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unsatisfactory "average strain" and the limitation to cylindrical slugs
with parallel ends, are avoided. This method consists of the analysis

of large deformations in depth.

The analysis of large deformation is, curiously, a relatively unfamiliar

and uncommon topic among the research workers in applied plasticity. This
relative neglect is curious because it is almost tautological to say that
metal forming always involves large deformations and the basic investigation
of any metal forming process must include the analysis of large deformation.
Although this thesis does not cover all the ground in the topic of forgea=-
bility, the method and the approach adopted here can legitimately be claimed
to be germane to all metal forming processes. Of course, the avoidance of
the analysis of large deformations is understandable. The mechanics of solids
begin in the analysis of small deformations, as in the Theory Of Elasticity.
The ease of superposition, the simplicity of the Mohr circle and the apparent
generality of the definitions of small strains conspire to encourage a mental
inertia visible in many attempts to force large deformation, especially
theoretical ones, willy-nilly into the moulds of small strains. Thus, strain
analysts sometimes still talk of simple shear where the deformation is not
simple shear at all, and of direct strain, when only a longitudinal displace-
ment gradient exists. In this manner, the analysis adequate only for small
strains is overworked and stretched into the area of large strains where

it is either inadequate and erroneous, or severely limited and impotent.

The reduction in height is a useless measure because the deformation in a

compressed specimen is practically never homogeneous. The analysis of large



deformation begins, therefore, with the recognition that the deformation
in forgings is always a point function, in other words, it varies from
point to point. It is more helpful to talk of?deformation field, or the
distribution of deformation, than to talk simply of deformation. Once
deformation is analyzed on the basis of the deformation at (or in the
vicinities of )a point, then it is at once unnecessary to think in terms
of a cylindrical slug compressed along its axis, or to imply homogeneous
deformation in such a specimen. Any forging produced in any die is now
open to this analysis, because in it there must be various points, and

at each point there is a particular deformation. Such an approach is far

more incisive than the imprecise reduction in height.

Apart from being more precise and more widely applicable, the analysis

of large deformations can rightly be claimed to be the proper way to
study forgeability. The whole idea of forgeability hinges on the damage
to strength through deformation. Since deformation is never homogeneous
in a forging, whatever other factors enter into the damage to strength —
such as hydrostatic stress and surface friction — the damage to strength
is also never uniformly distributed in a forging. The only adequate way
to investigate the damage to strength through deformation must begin,
therefore, wit;:;nalysis of the deformation from point to point. So now
in the study of forgeability we investigate the deformation from point

to point in a forging to see how much the damage to the strength at any

point in the product approaches an unacceptable value.

As has been previously explained, the analysis of large deformation is

not an exercise indulged in for its elegance or profundity, but is an
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inevitable route to a better understanding of forgeability.

An engineer, to whom mathematics is always only a means to an end, is
entitled to the less aesthetic but more practical approach of seeking
the simplest mathematics adequate for his purpose. As will be seen in
Part A of this thesis, to establish a relatively simple mathematical
technique requires some labour and it may require some justification.

The justification is explained in the following.

Unlike jet propulsion and nuclear explosives, forging is not a technique
arising out of theoretical studies. It has existed since primitive times.
The Industrial Revolution stimulated the theoretical studies of thermo=-
dynamics because the source of mechanical power in heat became a major
concern, but the Industrial Revolution had little immediate effect on

the mechanics of solids, because the strength of materials was not at
first an acute issue, people simply built thicker foundations or used
heavier chains. Processes of metal forming proliferated and were develo-
ped, but the developmentgzggngerously based on unhealthy exclusive faith
in empirical methods and an unfounded sceptism against theoretical resear-
ch. This type of conservatism of the engineers in the metal forming in-
dustries is well known. Nevertheless, small achievements of empirical
experience and guess-work can continue to maintain a distrust of theore-
tical studies, till the pressureof commercial competition forces industry
to seek all possible means of staying commercially on top, even among

the possibilities of theoretical studies. This has been the climate of

studies of applied plasticity since world war 1, and more so after world

war II. In such a climate, one important task of a research engineer



is to provide a bridge between the theoretical physicists and the
engineers who design and operate the metal forming processes. The
mathematical physicists are hardly interested in the actual problems
of metal forming because they are too bedeviled by a multitude of
real but irritating effects, or because the basic equations are too
simple and lack structural beauty; whereas the die makers and press
operators are shy of the simplest differentia] equations and try to
excuse their ignorance by a self generated scorn for any theory what-
soever. Left to these two groups of people, little progress can be
expected in the basic studies of metal forming. The engineer has
the advantage over the technician in that he, the engineer, is not
daunted by the complexity of the mathematics, and he has the advan-
tage over the mathematical physicist in that he is not daunted by
the simplicity of the mathematics either. To him the mathematics

is a tool only, the simpler the better, so long as it is adequate .
He is neither committed to the beauty of mathematical displays, nor
has he an interest in shunning equations. In fact, he is uniquely
qualified to make use of the necessary mathematical technique, however
plain it may seem to the mathematician, to further the understanding
and serve the improvement of metal forming, even though he may have
to brave the rejection of the technicians and mechanics. He needs
only occasionally to excuse himself to the mathematical physicists
for simplifying the mathematics from its full generality and beauty,
and to excuse himself to the press operators for introducing more

mathematics than is required for sums.



In order to study these forging processes methods of deformation
analysis have to be developed. In particular, methods for strain
analysis with the use of matrix algebra originally developed by

Hsi (29,30,31,32) co;pled with the mathematical approach of Truesdell,
Toupin, Eringen, Noll,iala.‘:éllr nHill (85,86,16,64,57,25) are chosen and
extended further to be used in our analysis. The development of this
mathematical tool is described in chapters three and four in this thesis
in which the changes in the co-ordinates of a distorted square grid
(used to represent a minute homogeneous deformation field) are used

to calculate the state of strain.

factor
In chapter six, a deformation intensityhfﬂ is introduced. The use of

this deformation intensig:;E;rscalar quantity) is to indicate the degree
or extent of deformation that the element has experienced. The defor-
mation intensity is different from the effective strain. Even in a
co-axial strain path in which the principal straining directions do

not rotate with respect to the material throughout the history of defor-
mation of an element, the effective strain is a poor measure for the
extent of deformation owing to the varying strain ratio resulting in a
curved strain path. In a forging process such as simple upsetting, most
elements within the metal body during deformation behave non=-coaxially
due to the non-homogeneity of deformation, that is, their principal
straining directions rotate with respect to the material. These rotations

throughout their history require extra work to be done even if the defor-

mation does not involve changing the shapes of the elements. From our
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strain analysis, for non-coaxial paths, the extent of deformation can
be represented by a scalar quantity which is the summation of all its
incremental principal strains referred to a fixed configuration, from
the initial state of strain, through the strain history to the final

state. The scalar value is the deformation intensity factor [ .

In most literature on the deformation analysis of the upsetting process,
researchers (25,38,45,52,2,44) have either concerned themselves with
theories to predict the load and stresses required for the process or

were Just satisfied with the investigation of the flow of metal on

the surface of the specimen only (47,48,81,50,41). So, the objective

of this project is to look into how the metal flows and how the deformation
is distributed in the cross-section of the specimen with the aid of

the strain analysis method developed in this thesis.

Most of Part A of this thesis is devoted to the development of the mathe-
matical tool to analyse the large deformation. Part B is the adoption

of this analytical method in analysing the upsetting processes in a
thorough and precise way. In Chapter two of this thesis, the various
past methods in the analysis of deformation in upsetting processes are
reviewed in two groups (i) the predictive theories and (ii) the experi-
mental methods. Chapter three, which begins with a brief description

of the various strain measures, describes the development of the analysis
of large deformation by matrix algebra by Professor Hsii. Different modes

of deformation and velocity field are presented to provide a guide to
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the actual deformation analysis. This analysis has also,extended to
cover deformation in both plane strain and axisymmetrical conditions.
The representation of the state of strain in a triangular co-ordinate
system developed by Professor Hsi is described in Chapter four. The
distinction between different types of strain paths such as coaxial
and non-coaxial paths is also included. The resulting strain distri-
bution of a deformed specimen analysed by means of a histogram is also
presented in the later section of the chapter. Chapter five goes back
to the analysis of large deformation in which the essential feature is
the derivation of a scalar value — deformation intensity factor [" to
represent the extent of deformation that an element has experienced.
The work done in various upsetting processes and their differences are
explained and developed in Chapter six. The curvature of the strain path,
which, under certain conditions, determines the work is also included.
Chapter seven involves the study . of the bulk reactions of the deformed
specimen such as the spreading of the metal and the filling of the forging.
The experimental technigue and equipment. used are described in Chapter

eight.

Part B of this thesis is mainly the discussion of results. In it, Chapters
nine and ten contain the discussion of the deformation distribution
patterns, the significance of the zonal paths and the resulting homogen-
eity of deformation. Chapterseleven and twelve are concerned with the

work consumed in the various upsetting processes and the significance in
the filling and spreading of the metal when compressed between the dies.

are

The conclusions are in Chapter thirteen and followed by & descriptions
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and suggestions for the various unresolved and remodelled theoretical

as well as experimental methods in Chapter fourteen.

These various studies are intended to clarify some obscure areasin the
study of forgeability in upsetting processes and it is hoped that they
will contribute to solving some of the complex problems faced by the

industry.



CHAPTER TWO

Literature Review
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2k Introduction

Metal deformation processes are well established even in the primitive
period of human history. Yet, the analysis of deformation was not started
until after 1900 and during the period since 1900, the material scientist
began to realise the importance of these studies. The application of
the various theories of plasticity to the analysis of the phenomenon of
forging gives rise to the prediction of strain, stress, load and energy
consumption in forging. The simple upsetting process which is the begin-
ning of most forging processes, is most frequently used as a test or
model for either the experimental determination of the wvarious measurable
quantities in the process or the establishment of the theoretical models
for prediction. This review is just a brief study of the vast quantity
of literature in this field which is related to our project and it is
divided into two main parts : -

(i) the predictive theories and

(ii) the experimental methods.

242 Predictive theories

As far as literature goes, the publications on the predictive theories
started at around 1900. From then onwards, the aims of these predictions
can be grouped into : -
(1) to predict the distribution of the state of strain in the
deformed specimen,
(ii) to predict the distribution of the stresses,
(ii1) to find the average load or the energy required by the process,

and (iv) the geometrical changes in the specimen.
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In order to achieve these objectives, several basic assumptions have
been made such as : -
(1) the isotropy and incompressibility of the material,
(i1) simple forming shapes are considered such as in plane
strain or axisymmetrical conditions,Bauschinger effect is nejlec.‘ted,
and (111) a certain stress-strain relationship such as Lévy Mises
flow rule.

The following is a brief review of the predictive theories used in
analysing forging, both in simple upsetting and in closed die forming

of simple shape.

2.2.1 The analytical method using the approximate theory

The essence of this method is that the whole forginsgi‘{ism%?ewed at differ-
ent stages as composed of several components.Forces and stresses are
calculated for each component and then added together to give the total
forging load. For each component, an approximate theory is used such

as the slab method.

This elementary approach in the approximate solutionwas proposed by
Siebel (77) as early as 1930. On top of the assumptions made in the
previous section, he added that the
(1) concentric cylindrical surfaces in the material remain
concentric cylindrical i.e., barrelling of the free surface
is neglected and

(ii) frictional force is governed by the Coulomb's friction law.
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This approach was further improved by others such as Kobayashi (43,82),
Lippmann (55) and Altan (2). Under the plane strain condition as given
in fig.(2.1), by considering the equilibrium of the forces acting on

the element and equating them, we have the following : -

—Q:x—zexp(&h&-(%—x)) 2.1

where (ﬁ;' stress in the y-direction ;
0o, = vield stress;
S+ the frictional coefficient;
b width of the slab.

Therefore, at any stage of deformation, the forging load is : -

L=2wjb/?-q§)dx

0

Load

E
I

and - of(j?iﬁf( eh - 1)) per unit length.

where w is the length of the specimen.

Similarly, in axially symmetrical cases, the total forging load is
2
L =:'é.~w(o(%)2(e_#rd SEA 1)

where r, is the radius of the specimen.

Naturally, if the frictional condition changes to sticking condition,

the load equation will be quite different.
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These researchers (2,43,55,82,7) made use of these refined approximate
solutionsin analysing forging of axially symmetrical shapes. Such a
forging specimen is assumed to have several components and each indivi-
dual component is analysed by the approximate solution most suitable to
it. In particular, Altan and his colleagues(2) applied this method to
analyse the closed die forging problems and with the help of a digital
computer, have calculated the forging load required and it is found to

be in reasonably good agreement, Fig.(2.2) with the experimental results.

222 Finite element method

Most analytical methods on deformation have neglected the effects of both
the elastic properties and the strain hardening of the material. For
this type of elastic-plastic problem, an exact analytical solution can
hardly be found, and it is usually solved by a numerical method

the
such as,finite element method.

This method was developed as early as 1958 by Clough (11) in analysing
elastic structures. At a later date, Yamada (89) used it and assumed
that the material behaves as an elastic-plastic material and is linearly
strain hardened. Calculation was carried out by a step-by-step incre-

mental method through elastic, partially plastic, and fully plastic ranges.

The finite element approach is basically governed by three sets of rela-
tionships. These are : -

(1) the stress equilibrium condition

g+ T =o0
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(i1) stress strain relationship

a =Me

(iii) strain displacement relationship

€ - Hu

where T is the traction forces

0 is the stress matrix
€ is the strain matrix

}V‘ is the strain stress relation matrix

l-l is the displacement gradient matrix

and these relationships together can be formulated according to the vari-

ational principle.

Nagamatsu, Murota and Jimma (62) followed Yamada's lead and applied the
above approach to solve both the cylindrical and plane strain compression
problems. Half of the body is divided into 288 elements and by analysing
them step by step, plastic zones development, loading curve, and stress

strain distribution can all be computed.

Lee (52,53) made use of the same incremental method and a large digital

computer, and computed a contour map of the deformed specimen as in fig.

(2.3).
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2:243 Slip line field method

This method is one of the most commonly used theories in deformation
analysis of metal under plane strain conditions. The theory originated
in Henckys and Geiringer's papers, (23,20) and was improved by Hill (25).
Basically, the theory is restricted by the following assumptions : =

(1) the metal is perfectly plastic and isotropic

and (i1) the deformation is under plane strain conditions.

Accordingly, if the material is compressed in the plane strain condition ,
the deformation will consist of pure shear only. Also the hydrostatic
pressure P and the shear stress K which is a constant are included.
Therefore, the characteristic of the differential equation of the stress
equation and of the velocity equation should coincide. There are two
orthogonal characteristic directions at any point in the plastic field,
and they coincide with the directions of the maximum and minimum shear
stress and strain rate é and are called the *¢ and (3 lines. The equation
governing the variation of P along the line is, according to Hencky (23).

P+ 2 K® = constant along the o« lines

P -2 K¢ = constant along the 3 lines
where K is the shear stress,

P is the hydrostatic pressure,

¢ is the anticlockwise system of orientation of the slip line

with respect to a fixed space frame.

The set of equations governing the velocity field proposed by Geiringer

(20) is

]

du - vdg 0 along o< line

dv + ud¢

]

0 along (3 line
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i.e. the rate of stretching along any slip line is nil.
where u is the velocity in the o< direction.

v is the velocity in the (3 direction.

With the known boundary condition and the assumed yield criterion, the
construction of slip line field can be achieved. 1In any slip line field

solution, a complete solution is one which must satisfy both

(1) the kinematically admissible velocity field and,
(2) the statically admissible stress field.

But in most cases, only the partial solution is obtainable and they are

called bounding theories.

Johnson (37,38), Thomsen, Shabaik (82,72), Green (21) and Alexander (1)
have all developed their own slip line field solution for the simple
upsetting process under various conditions (fig.2.4). One author (15)
has even developed a complete computer program to calculate the solution
by this method but his prediction of average load and stress distribution

is not quite accurate.

2:24 4 Extremum or Bounding theorem

A bounding solution proposed by Hill (25) is a partial solution of the
slip line field and is an overestimate or an underestimate of the load
actually required to cause plastic flow. The aim of these methods is to
replace the laborious way of constructing the slip line field net, by
some assumed boundary lines thus permitting a quicker way to compute the

average forging load.
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A. Lower bound method

and Avitzur
In a lower bound solution in Kobayashi (44) , Johnson%SB?,BB,h), it

is stated that lower bound is an under-estimate of the load required
to cause metal flow and can be calculated from an admissible stress
field(f:which sati&fies the equilibrium equation, stress boundary condit-
ions and the yield criteria. The surface traction force T over the
surface S with the velocity 4f and the product “T 4» will give the
rate of work on the surface, with the assumed stress field inside the

body. The rate of work for the actual equilibrium stress field @ is

E =Jtr(Tv)ds = J}r(d‘ € ) av

S

where tr( )is a trace of

*
and the rate of work for any other statically admissible stress field @

_j;r ( ‘rﬁtr ) ds = ,ftr ( G'? e ) ay

S \'s
The lower bound theorem states that

Je(T-The)s- fucr-cH &razo
S v

In other words, when a body is yielding and is undergoing small incremen-
tal displacement, the increment of work done by the actual force on S
is greater than or equal to, that done by the force of any other stati-

cally admissible stress field.

B. Upper bound method

Again Johnson, Kudo and others (37,38,45,46,4,5,) have taken this concept
of assuming a kinematically admissible velocity field to calculate the

average forming load. The essence of the over-estimation of load which
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is called the upper bound solution,is that, if a velocity field can be
found as V', the rate of work due to the over-estimated load, exceeds
the rate of internal energy dissipation. Therefore, the rate of energy

dissipated will be : -

E = Iv éJ'tr(O'é ) av + Jtr(K’U’)dS
y S

The first term on the right hand side expresseé??ower required for in-
ternal deformation over the volume of the body V and the second term
includes the shear power over the surface of velocity discontinuity or
boundary surfaces. The actual power consumed by the external body is
never greater than the computed E and that is why it is called the upper

bound theorem for the assumed kinematical velocity field.
Johnson and Kudo, Kobayashi and Thomsen and Avitzur (38,44,45,4) have
all applied this method to calculate the average load required for de-

forming a plane strain specimen and an axisymmetrical one (fig. 2.5).

2e 31 Experimental methods in the analysis of deformation processes

Experimental methods applied to the analysis of deformation processes
began way back in the early days of this century. Marks and flow
lines were observed in the specimen so that the deformation pattern or
flow lines can be qualitatively described (8,61,51). ILater on, grid
marks or photo-grid patternswere put on the surface of the metal and

distortion was measured as a mearsof quantifying the deformation. These

approaches are significantly different from the predictive theories in
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that they are not trying to predict but to quantify the degree of defor-
mation evaluated by different experimental techniques on various basis
of strain measures. These methods are just used to find out the dis-
tribution of stresses based on an assumed stress strain relationship and

to solve the problems of failure in deformation.

2¢3.2 The behaviour of metal on the surface of the specimen under

compression
These researchers (47,54,41,81) tend to neglect the non-uniform distribution

inside the body of the specimen and concentrate on the flow of metal on
the circumferential surfaces. Strain measurements are carried out on
these surfaces to find the state of strain and stress under the assumptions

they made.

Kudo and his colleagues (47,48)were the first to apply this technique to
analyse the forgeability of metal. Indentation marks were made on the
circumferential surface of the cylindrical specimen along the equator
and used to compute the circumferential and tangential strain values.
The variation of these two strains during the process were plotted till
microscopic cracks appeazedas in(fig. 2.6). By adopting the Lévy-Mises
flow rule, stresses were calculated. This method was repeated with
different lubricants and shapes of dies and followed by ah analysis of

various fracture criteria applicable in the forging process.

Thomason (81) also followed Kudo's approach but he included the conside-

ration of anisotropy in the calculation of stress. In the experimental
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method, he used a very ductile metal, aluminium, as an analogue model
material to steel so that the complete history of deformation could be
traced so as to eliminate inaccuracy in measuring the fracturing strain of
a steel specimen. The inclusion of anisotropy in the calculation of stress

shows significant differences from Kudo's results.

Kobayashi, Lee and Kuhn (41,42,50,54) closely extended this idea by refin-
ing the technique and included a few more interface conditions and metals
in consideration. Furthermore, fracture criteria proposed by Cockecroft

and Latham (12,13) were used in a failure equation for the definition of

the forgeability of metal.

Hsit and Young (35) developed an ingenious idea by using a properly adjusted
quantity of lubricant to eliminate the frictional effect on the bulk
material so that an almost ideal uniaxial compression was achieved. In
fact, this method has rectified one main defect in this kind of semi-
experimental analytical method because the deformation is homogeneous

throughout the whole bulk of the metal.

All these workers have tried to analyse the deformation patterns and their
N

final collapsing criteria. But, most of them either neglectedinternal

distribution of deformation or, by perfecting the experiments into nearly

those of homogeneous deformation, succeeded in theorising only the ideal

deformation rather than the actual one.
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2s3e3 Visioplasticity

As the name of this method implies, it is a semi-analytical method in
which the velocity field is computed from actual data for the deformed
specimen. This is essentially an experimental means to find out the
flow of the metal not just on the surface but in the cross-section of

the specimen under certain restrictions such ag:ilane strain condition.
Originally, this method was applied to analysing the metal flow in the
steady state condition as extrusion and rolling (59,73). Shabaik and

his colleagues (73,72,74) perfected the system so that in the non-steady
state such as forging, the particle paths in the cross-section are mea-
sured by means of a scanning machine and are used in a computer program
they -developed to compute the velocity. From the definition of strain

rate, the components of the strain rate matrix will be : -

2 du S OOV ‘ Ju dv
ex ox ey-by 4

and the effective strain rate is equal to : -

i
2

)

Consequently, the total effective strain € can be derived from integrating

the € along the flow lines with respect to time
t
g i HJ‘Zi at
0
By assuming that the material behaves in a perfectly plastic manner and
follows the Lévy-Mises flow rule, the state of stress at various instances
can be derived and its distribution is given in (fig.2.7) after computation.

This is an effective way to analyse the detailed mechanism during deformation
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since it is based on an actual flow field of the metal, and the final
stress results are found to be in close agreement with other experimental
results. One defect in that research is that the state of strain at
various stages and its historyare omitted. Although the effective strain
givesan index of deformation yet, it does not show the history of that

deformation.

2.3.4 The welded tube method

In order to visualise the distribution of deformation within the body

of the specimen, Buhler and Bobbert ( 9 ) and others ( 63 ) had  proposed
a direct method in which the cylindrical specimen was prepared by

brazing 10m.m. thick steel discs together. The deformed specimen was

cut and etched so that the sharp brazed lines can be measured. Local
compression ratio can thus be calculated to show the degree of deformation.
Some non-homogeneous contour maps are shown in (fig.2.8). Furthermore,
they analysed the pattern of deformation and came up with a distribution
curve of local deformation (fig.2.9). One conclusion from their work

is that the lubricants have no significant effect on the deformation

patterns.

This kind of measure of distribution of deformation is rather crude
because the plate is too thick to represent a minute area and the defor-
mation measure does not indicate how the element is being deformed. The

brazing would also affect the real performance of the solid metal.
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2.4 Concluding Remarks

The above brief summary covers only a part?g vast amount of work done in
the field of deformation by upsetting. It can be seen that most of the
recent work done in this field revolvesaround the predictive theories;
mostly, by refining the theory in terms of more realistic velocity fields
etc., so as to calculate the average load required. Computer programs
have also been developed to help to calculate the work load of the various
approaches. Comparative curves in fig.2.10 have predictea:ion-dimen—
sional load of the various theories. Table 2.1 is an abstract of the
various authors' predictions and assumptions.Anexperimental or semi-
analytical method such as visioplasticity is another way to eliminate this
kind of inaccurate assumption as the flow fieldsare those measured by
experimental techniques. But this kind of semi-analytical method is
still defective in that some essential aspects are not included, such as
the state of deformation, the principal directions, the degree of rigid
body rotation of the particle, its final alignment directions and their
total deformation. These authors' achievements and methods are summarised
in table 2.2. Fig.(2.11) shows the variation of the principal strains

at the equatorial free surface of a cylindrical specimen with unlubricated
die by the various researchers. These different theories and experimental
results are presented on a triangular co-ordinate system for comparison.
The triangular co-ordinate system developed by Professor Hsu (30) is used
to record the variation of the three principal strains of a deformation

on the same graph. On it, a number called the characteristic index for
strain,?t, varying from 0 to 12, is used because it is analogous to the
number on the clock face and all the odd numbers represent pure shear. This
system has been shown to be very useful in clarifying the difference

between the lubricated and those unlubricated paths.
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PART A

Theoretical Derivation

of Large

Deformation Analysis



CHAPTER THREE

Deformation, Strain and Rate

of

Deformation == the Analysis of
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el Introduction

Deformation is a continuous process and the progress of it can be evaluated
with respect to time or other variables. The trace of the progress of
deformation from one stage to the other of an element in a deformed
specimen is called the strain history or strain path. If the step taken

is finite, then the state of strain is called finite strain whereas if

the step taken is vanishingly small, then this state is called incremental
strain. The deformation of an element in a specimen is the culmination

of all the incremental deformations or incremental strains along the path
or history and the total deformation of the deformed specimen is the sum

of all the individual deformations of the specimen. The strain rate is

the ratio between the incremental strain and the increment itself.

S Definition of conventional engineering strain and natural strain

in one dimension.

The conventional engineering strain e is defined as the ratio of the
extended (or compressed) length of the element and its original length.

As in (fig. 3.1), the engineering strain is equal to

T e M S+1

For large strains, this conventional strain cannot cope with the real
deformation. Therefore, in large deformations, the natural strain €

is used which is : -

L
N L3 ok - A
E = J’ 1, 1HL 302
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32 General consideration of deformation analysis

3.2.1 Deformation in terms of the affine transformation of a point

and 1line element.

Consider a particle P in a three dimensional space displaced from the
initial undeformed position P (X,, X,, X;) to a terminal position P'(x,,
X,y X5) as in (fig.3.2). The deformation is represented by the ordinate

transformation of this system i.e.,

X,

= fXI (L) = fxz(x,xzxé) X,= fxs(x,xlxs)

If the motion is continuousand differentiable, the displacement vector “,
will also be a function of the undeformed (X, X,X,) co-ordinates, or vice
versa.

Hence, we can find out that the position of the deformed particle P'(x,

X,X;) which has undergone displacement Ad is

x, =X+ uxl( X, X,X,)
X, =X+ uxz( X, X,X,) 3.3a
x, = X+ uxs( X X,X,)

x, = x( X,Xz){s)
%, = x,( X.szs) 3.3b
P xa( XIXZX?’)

This is the general transformation of points.

When the particle P is displaced, a very close point Q ( X,+8X,,
X, +6X,, X5 +8X, ) is also displaced to its terminal position
Q' ( X, +5x|, X5 +gxz, :r:35+gx3 ) and is related to its initial

position by A+ A Al as in (fig.3.2).
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dx, = dX, +du_ ( ax,ax,dx,)
dx, = dX, + duxz( dXIdX?_dxa) 3.4a
dx, = dX, + duxa( XmdJ(,_dX_,,)

or equation 3.4a equal to

&
I

ax, ( dX,d.deXB)

&
[

, = dx,( aX, ax,ax,) 3.40

dx 5 = dx,( aX aX,dX,)
When this small amount d Alis projected onto this initial position ( X,
X,X,) in terms of the first order of dX, dX, dX, by neglecting the
higher orders, the relation will be equal to the total differentials

of its components.

?ux 'Bux Bux
= \ AN |
e s R
. _?Eﬁdx fﬁldx N
e S e 2%, Dhy ' 345
a —Bux-a ax +~%2. dX 2a X_, dX
br PR TS s Rl 5y,

By combining equation 3.5 and equation 3.4a, we have the transformation

equation.
du,, Bux aux
R T el e e TR ol
ax, :Xx‘ ax, +dx, + z;x ax, -::;K ax, 3.6
“du, ?bu ?Bux
dx, = 5}—[—1@}: +2Tédx + ax +3T:dx5

Equation 3.6 expresses the transformation of a line element ( dx,dxzdxa)

in terms of the original element ( dX, dX,dX, ).
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e Matrix algebra in deformation analysis and its displacement

gradient and deformation gradient matrices

The application of matrix algebra in strain analysis has been well deve-
loped by Professor Hsii and others (29,30,32,57,17,18,60,34) and its
advantages can be illustrated by using a linear equation to represent

the equations in the last sections and equation (3.3a) becomes

2 =X+u(X) 3.7
and also equation (3.3b) becomes

ax =x(X ) 3.8a
or =-?;—?)§ 3.8b
and from equation (3.4a)

dac =aX +am(aX ) 3.9

dac=dax (aX ) 3.10

where ¢ 1is a column matrix
X 1is a column matrix defining the point P ( X, X,X, )
AL displacement column matrix
When applied to the linear transformation equation such as equation (3.5),

it becomes

dae = H aX 311
The matrix }1 is called the displacement gradient matrix. Again, when

matrix algebra is applied to equation (3.4b), it becomes

dx =F aX 3.12
The matrix | is called the deformation gradient matrix which is equal

to a unit matrix plus the displacement gradient matrix.
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F-1+H 5132

and in component form is

X, °x 2%, du, du, du

1
X, oy B, S e R
oK,  Bxy  On = Su, 1 + vz du, 3.13b
X, X, X, X, X, K 4 ’
90Xy  2xX; 32Xy Qus  2us 4 , Bu,
X, e, X4 X, X, X3
3.2.3 Various measures of finite deformation and their relationships

The change in length and in relative direction occasioned by deformation

is called, roughly, strain.

As a result of the line element transformation during a deformation

described in the previous section, the square of the length of the newly
z

deformed element Jd:t1 or d32 may define the magnitude of the deformed

element in the body.

ds” = ascdxe 3.1ba,

The magnitude of the same element before deformation dS, will be :-

as’=ax a X 3. 14D

A. Lagrangian and Eulerian Strain matrices

The change in the square of lengths can be found by substituting equation

3412 into equations 3.14a and b., and they become

as® - as? = 2 aX EaX 3.15a
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Here the matrix E is called the Lagrangian strain matrix and similarly,

the reciprocal representation will be

2 2
ds - dS =2dx e dx 3.15b

The matrix € is called the Eulerian strain matrix. By combining equations
3+14a and b and 3.12, it can be seen that the strain matrices can be

expressed in terms of the deformation gradient matrix.

2€E= FF - 1 3.16a

%
2e

Il

BCF YV E D 3+160

I

B. Cauchy and Green deformation matrices

There are,in the theory of plasticity, also two other measures of strain
due to the creation of Cauchy and Green. They found that any changes

in length and direction can be derived from just the squared element

of length.
2
dés =4d¥XC aX 3.17a
The matrix C is the Green's deformation matrix.
2 -1
ds Sdxt e o dx 3.17b

< 1is the Cauchy's deformation matrix.
In terms of the deformation gradient matrix, the Green and Cauchy matrices

become

It

C-FF 3.18a
-1 1T

-1
P F F 3.18b

I

C. Hencky's logarithmic strain matrix.

There is another means to measure the deformation which was proposed by
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Hencky called the logarithmic strain (84). He saw the advantages of
taking the natural logarithm of the elongation factor in linear measures.
So, he suggested to take the logarithm of the deformed squared length

of the line element.

aX B aX
21n(ds ) =aX BaX
and B =4in( FTF ) 3.19

where B is Hencky's logarithmic strain matrix.

in ( as )2

I

1l

This measure of deformation is not popular because it is inconvenient

to be used in the mathematical analysis of deformation.

D. Other measures

There are a few more measures of deformation such as Murnaghan's who

suggested the stretch matrix|)as the measure of deformation.

1
U C & 3.203»

and V = & 3.20b

I

ol

]

The advintage of using this measure is that its principal values are the
principal stretches of the deformation but, the weakness is that it is

rather difficult to expand in term of the displacement gradient matrix.

E. The relationship of wvarious strain measures

By substituting equation 3.16 into equation 3.18, we have
3E'=C-1

and similarly



2e=1-¢71 3.21
If equation 3.16 is substituted into - Hencky's strain equation

2B=1mC =mn([+2E ) 3.22
Deformation measures by Cauchy, Green, Lagrangy etc., strain matrices
are either expressed in the initial position or the final position of
their principal axes which is inconvenient to use in the practical
analysiss. Therefore, a measure described in the next section will be

always applied in all the analysis in this thesis.

3.2.4 Decomposition of the deformation gradient matrix

For large finite deformations, the pure strain and rotation components
have a multiplicative relationship instead of the additive properties

for small strain.

It is stated in the polar decomposition theorem (85,86,64) that any

invertible linear transformation as F: has two unique multiplicatives.

F=RU=VR 3.23

in which R is orthogonal and (J and \f are symmetric and positive definite
matrices.

Therefore, when this theorem is applied to the linear transformation

in a deformation, the deformation gradient matrix F'can then be decomposed
accordingly. F{ will be the rigid body rotation matrix and \J is the

right stretch matrix or \/ is the left stretch matrix of the deformation

and they have the following properties : -
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v’-c - FF Gece

VZ-c-FF = RCKR 34204

As stated in section 3.2.3, these matrices (J or \/ can be used as a
measure of deformation but, the only weakness is that their components

are irregular functions of the deformation gradient.

343 Deformation in two dimensions

In most of the manufacturing processes, such as rolling, drawing, forming
and forging etc., the deformations are so large that superposition of
strain,which is a routine in elastic analysis, cannot be applied. There-
fore, this section is confined to the study of the large finite defor-
mation in the simplified two dimensional cases such as axisymmetrical

extrusion and plane strain forging.
The analysis of large deformation in two dimensions by matrix algebra

was developed by Professor Hsii (29,30,32). The following sections are

a condensed summary of his works.

343.1 The analysis

In large deformation, a square configuration in the undeformed state is
deformed into a parallelogram as shown in (fig,3.3). In mathematical
terms, this homogeneous deformation can be represented by the affine

transformation of the configuration. The transformation equation is

x=FX 3.8b

and in terms of components



xl fll flf. X\ 3 8
| —] L] c
e 8 > A8 X,

According to the axiom of continuity and permanence assumed in the matter
(85,86), the deformation and its inverse are single valued and continuously
differentiable. Furthermore, no region of the finite volume is deformed
into zero or infinite volume. For this reason, it is necessary that the

determinant of the the deformation gradient does not vanish.

detF 70 3.25

In a two-dimensional plane strain deformation, the matrix F5 tgralZ by 2
matrix and if the area of the configuration is assumed to be constant, the

determinant of If must always be equal to unity.
det P =1 3.26

Baled Some typical examples of deformation modes represented by matrices

A. Aligned pure shear

In this aligned pure shear, the principal axis of the deformation process
coincides with the principal axis of the original undeformed configuration
as in (fig.3.4). This affine transformation can be represented in the tran-

sformation equation

x:’FX 3.8b

and in this case, the deformation gradient matrix F: will be in terms of

components
T D
v
3 1
7

where ?& is the principal stretch of the deformation.
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The natural strain in pure shear will be the logarithm of the principal
stretches and therefore

o 0 e 0
f: - 1 = . i PPAr
0 _7\_.., e-e

where €,1is the principal pure shear strain in an aligned pure shear

process and it is equal to
€,= loge o

B. Pure rigid body rotation

Pure rigid body rotation is a special type of transformation without any
deformation involved. In the physical sense, the configuration before
the transformation will not be changed by this operation as in fig.3.5.

The transformation equation representiythis operation is again

x=-FX %8

and in this case, the components of the transformation matrix are
cos - sin W

F - 3.28

sin O cos o

where W is the angle through which the body is rigidly rotated during

the operation and positive when it is rotating anti-clockwise.

3+3:3 Principal values and directions of a stretch (strain) matrix {J

It was stated in Cauchy's fundamental theorem (16,85) that at any point
)( , there exist a direction in which the stretch is not less than any
other direction::; second direction, perpendicular to it, in which the
stretch is not greater than in any other direction . These stretches are
called the principal stretches and their directions are the principal
directions. The principal stretches are the most important quantities

connected with the strain.
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In mathematical terms, any real, symmetric and non-singular matrix will
have real and distinect roots called eigenvalues and their corresponding
directions are represented by what are called eigenvectors. Whereas

in mechanics, the eigenvalues of a stretch (strain) matrix are the
principal stretches A, (or strains €, ) and the eigenvectors are along
the principal directions (the angle © ). This transformation can be
carried out by the matrix algebra called diagonalization, i.e., to trans-
form a real and symmetric matrix into a diagonal matrix in which the
diagonal components are the principal components. From the matrix algebra

as shown in appendix I , the stretch matrix can be split into: -
=1
U-=-=0e@ 3429

where @ is the rotational matrix with the principal vector at angle®
of the stretch matrix U .

In terms of components, equation 3.29 becomes

ee’ 0

0 g%

Sy | cos®  -sin@ cos® sinb

Uz\ UZ?.

-sin@ cos © 3.30

sinb cos &

and by mutliplying the right hand side of equation 3.30, it becomes

U, U
U

cosh€, + sinh€, cos 20 sinh €, sin 2© E} a1
U

sinh &, sin 26 cosh€, - sinh €,cos 2

21 22

In equation 3.30, we can see the middle matrix in the right hand side of
the equation is the same matrix which in section 3.3.2 describes an ali-
gned pure shear deformation. Therefore, we can clearly see that the

matrix lJ represents a nonaligned pure shear deformation with the prin-

cipal strain as €,and at a principal direction © to the x-axis in f1g.3.6.
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Section 3.2.4 will show that the deformation gradient matrix F can be
decomposed into a rotation matrix and a stretch matrix. When this
decomposition is combined with the diagonalization of the stretch matrix,

we can find that any deformation will consist of

F-ROcO™ 5328

and in terms of components

- SO o cosw) =sinw ||lcos® -sin® e w0 cos® sin®
TR sinw cosw l|sin® cos9 | |0 é€| |-sin© cos®© 3.32b
or cosw =-sind ||cosh€, + sinh€,cos2 O sinh €,sin20
sin®d cosW||sinhe, sin2b cosh€ - sinh€,cos20

3.3.4 Practical analysis of a deformation.

At the end of the last section, we can see that any deformation gradient
matrix which describes the deformation can be decomposed into a series
of matrices on the right hand side. In the physical sense, the defor-
mation of a configuration consists of : -
(1) A rotation of the undeformed configuration in the prin-
cipal direction at angle - J
(ii) The deformation is followed by a pure shear of the
principal strain €,.
(111) A reverse rotation of the deformed configuration through
an angle © i.e., the first angle.
(iv) The deformation lastly followed by a rigid body rotation
of the deformed configuration to its final position

through a further angle W .
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The above sequences are shown in (fig.3.7) and the decomposition in equa-

tion (3.32b) is

e cosw) =-sinuwd | |coshe, + sinh €, cos 20 sinh €,sin2 8

3.32b
sinW cos®© sinh €, sin2 @ coshé€, - sinh€,cos 26

By comparing the components of the left hand sidewith the product in
the right hand side, we can derive the three parameters uD, 6 and =

in terms of F .

These are : -
£ - f
t nU:)= L2 21 -
¥ £ +t1f, 3305
z i st o o)
21~ 22
tan 29 = BT 2 2 2 3'33b
In +f2| -f‘g -fzz
z .2
£,.& +f 5 3y + + ( £3,- F f
and s S =n/( i 12 £24 12)1. (_fa 2 ) £y 3.33¢
i

If the co-ordinates of the deformed configuration are known, then the
three parameters which define a deformation can be calculated by sub-

stituting the co-ordinates into the above equations.

3.4 Velocity field and rate of deformation

Basic principles.

3eltel Motion of a particle — velocity

The motion of a particle is defined relative to the same co-ordinate

system by ¢ -

x=2x(X »t) 3o 34

which means that & =2c( X, t ) is the position occupied at typical
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time t by the particle whose original position is x at time %, .
Therefore, the motion in equation (3.34), chronicles the place &€ occu-

pied by the particle )( in the course of time.

If the motion is continuous, the axiom of continuity states that it
possesses continuous partial derivatives. The velocity which is the

rate of change of position of a given particle will be : -

x':x(x lt)
This means that this velocity is a function of time for a given particle

)( « But, we use velocity in terms of time at the current position 2C.

Therefore, the velocity

v=LE O x(x,t) 3.35a
ot felie

and injma‘trix transformation equation, the derivative of the function

is called the velocity gradient |, and the above equation:équal to

v-Sx-Lx 3.35b

For a line element dx moving to da€ , the relative velocity of 4 2C

will be (provided it is homogeneous ).

i = %{I— ix =Lax 3.35¢

3.4.2 The decomposition of the velocity field into the rate of defor-

mation matrix and spin matrix

According to Euler and Stokes (85,86), any instantaneous state of motion
may be resolved at each point into the sum of a symmetric matrix called

the stretching or rate of deformation matrix D and an anti-symmetric,
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orthogonal matrix called the spin matrix W .

L= D+W 3.36
where [) is an irrotational field in which curl D = 0 and
W is the solenoidal field in which div W = 0

Furthermore, the rate of deformation matrix is equal to

D=+(L+L) =tawv L 3.37a

and the spin matrix equal to

W=3(L-L) =fcum1lL 3.37b

Both [) and W are pure rate matrices.

3+4.3 The principal axis of stretching

Since the rate of deformation matrix [ is a symmetrical one, its real
principal axis is called the principal axis of stretching and along it,
no shearing exists. Its real values are the principal stretching or

the principal rate of deformation.

As suggested in section 3.3.3, the matrix operation can be applied to
find the principal values and directions by diagonalization of the

symmetric matrix D ’

. =
D-®d¢& & 3.38
where the éa is the principal stretching matrix

P is the principal eigenvector of the matrix D

3.4.4 Some examples of velocity gradient field in two dimensions

The analysis of velocity field by matrix algebra has also been developed
by Professor Hsii (31,32) as part of the analysis of large deformation.

Below is only a brief summary of some of his works.
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A. Aligned velocity field.

In an aligned pure shear of an incompressible media as in (fig.3.8),
the principal stretching axis is fixed throughout the process so that
the velocity of the particle will be described as in the following
equation.

ox g
or in terms of components

2% é,

ot

w 339

ox
2 =
ot g = i

Here é,is called the principal rate of stretch or rate of deformation.

B. Rotational field

At an instantaneous motion, the deforming body is assumed to have sudd-
enly solidified and at the same time rotating rigid bodily at its local
angular velocity 2 . The motion is called the rotational field and is

represented by the following equation

DX,
>% B =3 X,
= 3.&'0
o%, 20 X,
Dt

where the first matrix in the right hand side is the rotational field

and (L is the rate of spin.

C. Velocity field for pure shear with rotated axis

Fig.(3.9) , shows the typical velocity field in which the principal

axes of stretching is along & nonaligned angle ¢ . By applying the



diagonalization of this velocity field

X Dx

0t o
é éo@ 3.38

Il

]

D

and in terms of components

cos ¢ -sin® | |&, O cos @ sin &
D - i . : 3.41a
sind cos® ||0 -&, | |-sin & cos @
o% &, cos 2& €, sin 29
= g A41Dp
D &, sin 23 &, cos 2¢ 3.4

The last matrix is the one which expresses the non-aligned pure shear

velocity field.

3.4.5 General analysis of a velocity field

In a two dimensional homogeneous velocity field, owing to the incom-
pressibility of the material, the diagonal elements of the matrix should
be equal in magnitude. The velocity field matrix is

L, L.,

3.42
Ligp . t=Ligy

In section 3.4.2, it has been stated that any velocity field can be
decomposed into the sum of:hse'bre'bching field ( D ) and a rotating
field (W ). As we are considering the general case, the stretching
field is taken as a non-aligned pure shear field. Therefore, according
to the decomposition and diagonalization stages, the general velocity

gradient will be split into
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L-W+D -W:+PEP 3.3

in terms of components

. ; ) Lhr : L,* Lzl
Ly 12| 2 i i 2 14D
. T I T 0 e T o1 RIS
21 2 2 5 l
or ) .
OF =} €,cos 2¢ €,sin 2
T AT €,5in 2& écos 2
By comparing each component of the matrices, we arrive at
L, -1
&
Q — ——_I-T?,'_i 3_{_;,4&
L i
. 2
By e & lezf + ( : > £ )2 or = + D”2 + D5 3.44b
. T D
$ =1 ‘I:..sl.lfl_1 ( % 2‘) or = % tan 1( i ) 3.44c
2L Dy,

Therefore, if the velocity gradient matrix is found, the three
parameters fl ( the spin rate ) & ( the principal stretching axis

angle ) and E'i‘,( the principal stretching rate ) can be computed.

S Axisymmetrical deformation analysis

So far, we have confined our analysis to plane strain conditions. In
practice, quite a few of the forgings are axially symmetrical products.
So, the analysis of large deformation has to be extended to cover the

axisymmetrical deformation processes.

345:1 Uniform dilation in two dimensions

Uniform dilation is one of the deformationsin which the original square

is uniformly expanded or contracted into a larger or smaller square
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respectively as given in (fig.3.10). The deformation represented by the

co-ordinate transformation equation is as follows : -

x =FX

where the deformation gradient matrix is represented in terms of components

&
e 0

m
': i m o 0 g Em

o

Since uniform dilation is concerned with the increase or decrease in the
area of the square and the determinant of the deformation gradient matrix

‘: is equal to the area of the square, the component m is equal to

m = ,Jdet ( F: )

a0 Ew=1nm 3445

3a5.2 Axisymmetrical deformation

In this kind of deformation, the meridian plane remains plane hence it is
convenient to measure the deformation in such a plane. On such a plane,
(fig.j.ii,) a square will be deformed into a parallelogram not necessarily
of the same area due to the circumferential strain acting in the direction
perpendicular to this plane which is perpendicular to the paper in (fig.3.11)

and it is equal to

21r'e r
e Int——ar e =1ln — 3.U46a
2mr, o

(=

However, for each elemental volume, constancy of volume deformation must

be satisfied,



therefore,
2owr $a =2mzr&a
o o
X 6 ag
'—;; % &Sa
or €g 5 %0

3.z'l'6b

In the analysis of large deformation, any uniform changes in the area of
the assumed homogeneous field is called uniform dilatation as in section

3+.5.1 and it is equal to

Sao 1
HE 6 2 = [ 3'“’?

e 9
Also, in section 3.5.1, the determinant of the deformation gradient matrix

is equal to the proportional changes in the area of the deformation field.

In this axisymmetrical deformation, we can see that the deformation is

taken in two steps, first, the square is deformed into a smaller one due

to the circumferential strain. This is followed by the unaligned pure

shear which transforms the square to a parallelogram. In other words,

the whole deformation begins with a uniform dilatation and then follows

by a nonaligned pure shear of the square. The resultant deformation gradient
matrix fr'representing the whole deformation can be firstly decomposed

into another deformation field §= as follows : -

L
‘:'= m f: 3.48
and the second deformation field is then decomposed further

F - RU- R®e®



e

combining equatior(3.48) and the above equation,equation (3.48) equal to

g T
F - nR@e® 3.49
In this successive decomposition, the principal strains in this axisymme-

trical deformation will be as follows : =

the principal stretching strain

Er =log m + €p or = €,- 1€, 3.50a

the principal shrinkage strain

€ =1logn- & or =-(€, +3& ) 3. 50b
and the circumferential strain

Sy =-2logm 3+50¢c
345.3 Velocity field of a uniform dilation in two dimensions

In a uniformly dilating deformation field, the homogeneous deformation
field represented by a unit square before deformation is being uniformly
expanded or contracted into a larger or smaller square. The velocity

field representing the motion is

-5-;=1.r=l.x 3.35b
where 2 is the current position vector of the particle
AF is the velocity vector

L is the velocity gradient matrix

x - FX

by substituting this equation into equation (3.35b) and differentiating,

Since

we get

0% . FX - FFx 551



- 49 =

Equation (3.51) is equal to 3.35b and, therefore, the velocity field

matrix b is equal to
L-FfF* 3.52

In section 3.5.1, it can be seen that the deformation gradient matrix

of a uniform dilation is equal to in terms of components,

> m O g Em 0

- = or

0 m 0 em

This is substituted into equation (3.52) and differentiating, we get

- en .

— m O e Em 0

> =lo.a  |o* 0 emE.,

and 1 1 )
,F:i _|m 0 s e or e 0
c
0 1 0 1& or e
m o &

H‘l L
Loplieeh s mlies
m -
= A

3.5.4 Velocity field for an axisymmetrical deformation

In section 3.5.2, the deformation on the meridian plane is taken in two
steps. Similarly, the velocity field of the deformation is considered
to involve three separate velocity fields. According to Euler and Stokes
(85,86), any instantaneous state of motion may be resolved at each point

into the sum of several fundamental fields. These are the uniformly
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dilating field €, , the stretching or irrotational field D and the
spin or the solenoidal field W . Therefore, the velocity field from

an axisymmetrical deformation L can be decomposed into the following: =

L-¢&,+D+W 3.52
Similar to the derivation in section 3.5.2, the various components of

principal strain rates are as follows : -

the circumferential strain rate

& =2 &, 3. 53

the fastest stretching strain rate

é_r = €,- L€, 3.53b

the fastest shrinkage rate

€, =-( & +3 &) 3. 53¢

where €, is the principal strain rate.
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In recent years, considerable progress has been made in applying plasti-
city theories to practical metal working operations. Yet, the phenomenon
connected with the flow and the failure of the metal under compression

is still difficult to resolve. Therefore, this chapter is devoted to

the basic understanding of the deformation and flow pattern of a bulk

material under compressive load.

4.1 General Considerations

When a bulk of metal is compressed between two flat platens the free
surfaces begin to bulge as in (fig.4.1). The degree of bulging of the
specimen depends on the condition of the boundary constraints existing
at that instant and previously. This barrelling effect has been
studied by several scientists (72,42,36,87) and they concluded that this
is due to the frictional effects at the tool-work interface. Hsu (33,35)
has developed a means of eliminaﬁgathe barrelling by adding Jjust enough
lubricant at the interface. Fﬁ%hermore, he found out that excessive

lubricant will produce a bollard-shaped specimen as in (fig.4.2)

Cook, Jain and others (36,87,76) have also found out that the forming
speed will affect the behaviour of the metal. There are others who sugg-
ested that the die geometry has an influential part in determining the
deformation pattern. Therefore, the following sections will deal with

the basic concept in the deformation pattern of the specimen.

4.2 Graphical representation of the extent of deformation.

In all manufacturing process such as forging of metal, deformation will

depend not only on the current state of strains but also on the past
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history of strain. The locus of the past history of strain ( a measure
of deformation ) is called strain path or deformation path. A triangular
co-ordinate system is proposed by Hsii (30) for recording the past state

of strains.

4.2.1 The Triangular co-ordinate system

A state of strain is usually represented by its three principal natural
strains, say €, €, 63 « In assuming that the metal is incompressible,
we imply that the sum of the three principal natural strains will be

equal to zero.

el+62+ 65 =

Three axes which are 120° apart in a plane can be used to record the
varying state of natural strains, as in (fig.4.3). In the co-ordinate
system, any point P in the plane which located by the position vector
OP can be referred to these three reference axes 0I,0II, OIII as

€, = Ecos P

€, = Ecos (120 - )

€, = Ecos (240 - ¥ )
where € is the effective strain of the state of strain and is the length

of OP.

4/ is the angle between OP and OI.

In (fig.4.4), the three axes represent the uniaxial tension lines and
their backward extensionsshow the uniaxial compression lines. There are

lines in between each alternate tension and compression lines and they
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represent pure shear. These twelve lines which are analogous to the
clock face, can be used to represent the deformations and the clock
numbers are used to represent the type of deformations such as pure
tension and pure compression etc. The clock number is called the charac-
teristic index of strain 1Z in which the odd numbers mean pure shear and
the even numbers mean either pure tension or compression. The index'7

is given by

6
Pear
In this way, a state of strain can be represented as in the polar co-
ordinate system by 7 and € , as in (fig.4.3). The history of the state

of strains recorded on this co-ordinate system will show the progress

of a deformation and the scalar equation of this coaxial path is

g€ = € (3 b2

L.2.2 Co-axial and non-coaxial path

Consider two deformations in which the particle P at position )( moves
to X, and then to its final position 2L ,. These two transformations
can be represented by the two deformation gradient matrices F, % F2 >

The resultant deformation will be Fi .

The definition of coaxiality: Two deformations are coaxial if and only
if the principal directions of strain in the final resultant matrix Fé
are equal to their initial principal directions of P& . In other

words, their principal stretching directions in successive deformations

do not vary with respect to the material.



- 54 -

In mathematical terms, the two deformations are carried out by multipl-

ving their deformation gradient matrices.

F3 = FZ.Fi e

From Hsii's thorough investigations into the non-coaxiality problems
(30,32) the coaxiality of deformations depends on the constancy of the
principal axis angle of the first and the resultant deformation, If we

take their components equations

! 1] i (] !
cos W' - sinw" & 0 cos © sin@"
= = i i >
F3 " |sin W cos O 0 &% | | -sin®” cos 8" b.lia
~ |cos W' -sin W’ e% 0 | |cos o sing@’ b4
"-; “|sin L’ cos w' 0 €| | -sin@' cos @' E
i-: _|cos w0 -sin e 0 cos B sin O
' |sin O cos W 0 e €| | -sinp cos B bt

By combining equations 4.4a, 4.4b, 4.4c, the coaxiality condition as
stated in the above definition will require that the resultant principal

o
angle ) equals the initial principal angle € .
(
9' . 9 “‘-5&
Therefore, as further proved in Hsl's paper (30,32), a necessary and
sufficient condition for coaxiality is that the above equation is satis-

1"
fied. If the two angles © and © are not equal, the difference between

them is called the non-coaxiality angle (3 and :‘equal to

=06 -0 4. 5b
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Le2.3 Coaxial strain path

In section 4.2.1, a method has been devised to represent the triaxial

coaxial strain path. We have seenthat the path has the equation
€ = E ( 1) 4.2

Any finite deformation is just the current state of strain of the particle

in question, represented by € and 7 .

Generally, most researchers (36,69,70,87,73) assume the ratio of the

three principal strains i.e.,‘Q is constant throughout the deformation.
This path is called the radial coaxial path, as path A in (fig.4.5).
Naturally, most coaxial deformation processes such as sheet metal drawing
and extrusion processes, etc., will not exhibit this kind of constancy
except in certain well controlled experiments. Therefore, a curved path,
as path B in (fig.4.5), will be the usual character in an ordinary coaxial

deformation.

L.,2.4 Non-coaxial path

In most manufacturing processes, the principal axes of stretching vary
with respect to the material. This kind of deformation is called non-
coaxial deformation and their degree of non-coaxiality can be found by

" o
the difference between O and O in section 4.2.2.

In triaxial conditions, the rotation of the principal axes can be expressed
in terms of three angles, but in two dimensional cases, we can have a

single angle € which is the non-coaxiality angle defined in equation
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(4.5b). Therefore, the strain path in non-coaxial deformation can be
represented by a space curve in terms of three parameters 3 ’ ’z )

and 3 as in (fig.4.6) and their equation,

T=7(%) b.6
P=A(t)
where t is the time or any other parameter- which varies with the path.

4.2.5 Strain path in plane strain condition

For the study of deformation processes, three dimensional problems are
difficult to solve practically, and most processes such as. 6 plane strain
extrusion or sheet drawing, strip forging etc., in which one of the
principal axes is perpendicular to the plane of deformation, can be con-
sidered in two dimensional plane strain conditions. It is assumed that
there is no deformation during the process along this direction under

the plane strain assumption as in (fig.4.7).

€ =-6€ L.7

A coaxial strain path will become, in this case, a radial path along the
5 o'clock direction of the triangular co-ordinate. Whereas, a non-coaxial

path will be a curve plotted on a plane perpendicular to the clock face
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and along the 5 to 11 o'clock line with the ordinate in termsof @ ( the
non-coaxial angle ) (fig.4.8). Throughout the thesis, as the deformation
is limited to plane strain non-coaxial deformation, this strain path graph

is adopted.

4.2.6 Finite deformation — its meaning and its measure

In a continuous deformation process, the configuration of the specimen
keeps on changing plastically. A finite deformation is the end product

of this continuous process. Consider a particle P in a continuous defor-
mable medium. The minute area around P is assumed to be 4n a homogeneous
field in which the configuration of that area at the vicinity of P is
being deformed throughout the process. The end product of the deformation
— the final configuration & will determine the finite deformation in
(fig.4.9). In other words, the history of the deformation is excluded

from the deter@pation of the finite deformation.

The finite deformation is measured by the strains which can be found by
comparing the terminal deformed configuration & with the undeformed
configuration X in terms of the affine transformation. The finite strain
can be obtained from the decomposition of the deformation gradient matrix

as shown in sections 3.2.4 and 3.3.

4.3 Distribution of finite deformation of a workpiece in'simple plane

strain upsetting process

Simple upsetting, which is the beginning of most forging processes, is

similar in nature to a compression experiment i.e., a bulk of metal is
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compressed between two flat platens. Owing to the friction at the tool-
piece this

work ;interface, the latter tends to bulge andﬂproduces non-homogeneous

triaxial strains in part or whole of the work. This non-homogeneous

strain field is theoregtically undesirable because differential material

properties will result.

R Finite strain distribution of a deformed workpiece

In plane strain conditions, the deformation plane, as in (figh.11), is
printed with some minute square grids. This square is assumed to repre-
sent the vanishinglysmall homogeneous deformation field around the vici-
nities of its location in the workpiece. Applying the strain analysis
method shown in section 3.3.4, a finite strain for various points in the
plane can be determined and plotted on a contour map. (Fig.4.10) is a

typical example of a deformation contour map.

h.3.2 Finite strain distribution histogram

The contour map presented in the previous section shows the real finite
deformation pattern of a deformed workpiece. But, in the analysis of
deformation::;ontour map alone presents a difficult task in further theo-
retical work. So, a graph with the finite strain plotted against their
respective percentage of area on the deformation plane is used. This
graph is called the strain distribution histogram and (fig-b.lZ) is a

typical example of a finite deformation.

b.3.3 Non-dimensional strain distribution histogram

In order to compare different deformation patterns, a dimensionless strain

distribution diagram is used in which the finite strain axis is replaced
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by the percentage of strain. (Fig.4.13) shows the same deformation in

the dimensionless diagram. The percentage of strain is equal to

M
1
M1 M

g, = ~—— x 100 % 4.8

my
_‘
1

where € is the minimum effective strain
€.is the maximum effective strain

€,1is the effective strain.

L.3.4 Homogeneous deformation

A homogeneous deformation of a specimen is defined as one in which the
finite strains in the whole specimen are uniform. In another words, the

current state of strains at various points of the specimen are the same.

L. Examples of deformation models in plane strain upsetting

L.lh.1 Ideal reduction model

An ideal deformation of a workpiece is an efficient deformation process.
In order to obtain this high efficiency within the deformation regions,
the direction of the incremental strains should be coaxial with the direc-
tion of the maximum principal stress, and the resultant deformation will

be a homogeneous one.

Siebel and Pomp (33) have developed a method to perform an ideal deformation

by compressing the specimen between two conical dies. But they can obtain

that within the elastic 1limit only. For cylindrical specimens, Hsii and

Young (35), found out that if enough lubricant (PTFE) is placed between



R

the tool/work interface, an ideal plastic deformation can be obtained.
The compression is a characteristic uniaxial one and its strain path

is along 6 o'clock in the triangular co-ordinates. They also found a
reverse of the barrel shaped specimen — a bollard shaped — if excessive
lubricant (PIFE)is used. In plane strain extrusion, Richmond and others
(66,14) have also developed a special die profile for extrusion processes

so that a nearly ideal deformation is achie@ved.

In compression under plane strain conditions, an ideal deformation means
that the frictional effects on +the tool/work interface are negligible.
The strain path will be radial along the 5 o'clock direction. All the
finite deformation should be homogeneous and coaxial. This can be
demonstrated by a specimen with square grids on its deformation plane

as in (fig.4.14a). After deformation, the grids will be transformed

into aligned rectangles as in (fig.4.14b).

The strain distribution graph, (fig.4.15), shows that the distribution

for this type of deformation is Jjust a horizontal straight line. The
2 intercept increases in proportion to the percentage of reduction

in height of the specimen and the percentage of reduction in height is

equal to

x 100% 4.9

where ho is the original height of the specimen;

h is the height of the deformed specimen.
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If the reduction in height is used as an average reduction strain,
then it is equal to

- 2 ~
'fe=J—Tln(1- T ) 4.10

L.L,2 A theoretical zonal reduction model

Nadai, Hsii, Kobayashi etc. (61,29,41,78,32) have all reported that in
an actual compression of metal, some parts of the specimen received more
deformation than the other and the former parts are called shear bands
as zone (1) in (fig.4.16). This means that the deformation is non-homo-

geneous and far from ideal. Therefore, a zonal model is proposed.

We realised that in most deformation processes, the distribution of
deformation in the end product is usually non-homogeneous. So, we simp-
lified the problem further by upsetting a rectangular prism as
in (fig.4.11), in which the length is far longer than the width and height
of its cross—-section so that plane strain condition can be achieved. 1In
the end product, a non-homogeneous finite deformation is assumed and the
deformations are concentrated in certain regions(shear zones ) only,
leaving the rest of the regions undeformed (dead zones). (Fig.4.16) is
the model itself with the undeformed and deformed grids showing the area
of concentrated shearing. Zone (1) is the shear zone and (2) is the dead
zone. The width of the zone (1), shear zone, increases as the reduction

in height proceeds.

This zonal reduction model is proposed for theoretical comparisom with
the ideal model only because the mechanism in operating this model is

kinematically inadmissible as it involves the opening and closing of metal
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in the central region of the specimen when the specimen is being compressed.
Assuming that this model is possible, the deformation distribution curve
will look like (fig.4.17). It will be a rectangular curve and the area

the
enclosed will expand as deformation progress. ( i.e., ¥ increases )

4.b.3 Comparison of the two models

Theoretically, these two models are opposite ways of reducing a work-
piece geometricallyto the same level. The ideal model is feasible in
practice and a homogeneous distribution is achieved by spreading the
deformation evenly all through the product. Although the zonal model is
practically impossible, yet, it shows in theory that by concentrating the
deformation along certain zones, this extremely uneven distribution of

strain can also produce the same degree of reduction.

Naturally, we can deduce from these two diagonally opposite models that

an actual distribution will be one between these.



CHAPTER FIVE
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In finite deformation anlysis, in the previous chapter, only the end
product of a series of deformations was considered and from this finite
configuration, we derived the finite strain. In other words, the strain
path taken by the particle is neglected or assumed to be radial and co-
axial and only the current state of strain is analysed. This approach

when applied to the analysis of most manufacturing processes such as
rolling, drawing, and strip forging are unrealistic because they involve the
varying strain ratio 7 ’ ar:burved strain path, and rotation of the prin-
cipal axes. The extra work done due to the rotation of the principal

axes, is neglected in the finite strain analysis. In order to avoid the

+h
discrepancies due to the neglect of extra work,

e
nincremental strain path

is considered.

5.1 Basic principles

5elel The incremental strain

In section 3.4, the basic concept in deriving the incremental deformation
is presented. A few examples of velocity fields and matrices represent-
ing rates of strain are also included and from that we can get the incre-

mental strain.

i€ = D at 5.1a

where D is the rate of deformation matrix.

and the principal incremental strain in two dimensions is

i€, = € at 5.1b

where é%is the strain rate.



5:1.2 Frame of reference

In general, a frame of reference means a set of co-ordinates system in
which the fundamental measurable quantities in kinematics such as dis-
tance and time intervals of an event ( X , t ) can be specified. Phy-
sically, it is a set of stationary reference objects which does not
change in time and it is used to relate the physical phenomenon at a

three dimensional space with a real time axis.

5.1.3 Change of frame and frame indifference

A change of frame is a one-to-one mapping of the point particle in space
and time such that distances, time intervals and orders are preserved.
An event under a change of frame will involve a rigid transformation and

a shift in time. Therefore, the new position of the event will be

é=R(t)xor=.‘£(x,;) 5.1c

-
where t =t - a
a = constant

Fz, ( t) is the orthogonal matrix.

Under a change of frame, transformation will be induced for each time t,
on scalar, vectors and tensors. In order to preserve the relationship
among the different variables, the following transformation laws must be
followed under a change of frame.

(i) Scalars remain unchanged.

(i1) A vector A is transformed into another vector.

T = R(v | 5.2a
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(iii) A second order tensor or a matrix is transformed according to the

following: -

S -R(HS R @& e

where f; is a second order tensor or matrix.

Function and field whose values are scalars, vectors or tensors matrices
are called frame indifferent if both the dependent vectors and matrices
transform according to the above laws. In other words, if the relation-
ship among all the parameters of the event before the transformation is
preserved after the transformation, then the transformation follows the

above laws and the event is said to be frame indifferent.

5e1.l Equivalent motion and equivalent deformation paﬁh (16,57,85,86)

Equation (3.8a) shows the motion of a body referred to some frame of

reference as in the following : -

X =2(X ,t) 3.8a

But, equation 5.1c described in the previous section, describes the same

motion in a new frame.

®
X = Rax 5.1c

Physically, both equations express the same motion in the eyes of differ-

ent observers and their framesare changed according to the transformation
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laws in equation (5.2a,b) as stated in the last section. Their mathe-
matical relationship is Jjust a time-dependent rigid transformation and

a time shift. Therefore, we can say that the motion is frame-indiffe-
rent, and the motions described by the two equations are called equiva-
lent motion. Furthermore, any histories of motions which are transformed
according to the above transformation laws are also called equivalent
motions histories. Since deformation path is a function.ofiﬁistory of
the motion, any two deformation paths whose histories of motion are

related by the transformation laws are also called equivalent deformation

paths.
5.2 Total deformation analysis
5.2.1 The extent of deformation and the curvature of the strain path

The significance of the curvature of a strain path can be elucidated by
exploring the strain path of constant curvature. Such exploration will,
in the following, be divided into (i) the coaxial case and (ii) the non-
coaxial case with constant strain ratio (like the plane strain deforma-

tion).

(i) In the coaxial case, if a strain path of constant curvature starts
from the origin, it will, obviously, return to the state of zero defor-
mation represented by the origin. ©Such a circular path may be looked
upon as generalized from a radial path starting from, and returning to
the origin. In the circular path of this type,(fig.5.1) the effective

strain € is related to the length of the path s , as follows

S =2Rsin'2—R



where R is the radius of curvature. Along such a path the effective

strain € eventually ( when s is 2 W R ) returns to zero.

If a coaxial circular path is concentric to the origin, the fact that

it adds nothing to the effective strain representing the apparent defor-
mation is even more clearly seen. Along such a path, (fig.5.2) defor-
matioé%ccuringcuﬁinuously though the severity of deformation, represented
by € , apparently remains constant. The deformation that is added along

such a path somehow fails to show.

(1i) To isolate the effect of non-coaxiality alone, it is desirable to
illustrate the curvature due to non-coaxiality in a radial and non-coaxial
path, in which the strain ratios remain constant (for instance, in plane
strain deformation) and the principal axes of the incremental strains

rotate with respect to the material.

In the second type of coaxial circular path shown in (fig.5.2) the radius
of curvature is the effective strain itself. Although the severity of
deformation remains constant here, the shape of the deformed body changes
— as can be seen in (fig.4.4). In the corresponding circular path in
the non-coaxial case, both the shape and the apparent severity of the
deformation remain constant while the body is continuously being deformed.
That such deformation is possible can be easily illustrated in (fig.5.3)
where an ellipse is incrementally stretched amﬂcnnﬂﬂ?sﬂﬁalong the arrow
heads shown. Under such a non-coaxial deformation, the ellipse retains

its shape, though its axes rotate slightly in the anti-clockwise direction.
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(The mathematical treatment of this problem can be found in (30,32) ).

Thus, deformation can occur, and can continue, without change of shape,
contrary to common sense expectations. The corresponding curve in (fig.5.4)
is of course, a vertical line excluding the (3 -axis. In such a circular
path (fig.5.5) the effective strain is also the radius of curvature,

exactly as in the corresponding coaxial case.

t
Incidentally, there is also a circular non-coaxial path correspondingf}he
circular coaxial one which starts from the origin. If [' is the integral

of the non-coaxial incremental strains, then for such a path

e = 1 L
2 R sin >R

where R is the radius of curvature. Along such a path the shape of this

specimen will, of course, change.

The above considerations are hardly applicable to forging in which such
strange strain paths can hardly be expected. However, it is of theore-
tical interest and provides a clear illustration that total deformation
and energy of deformation on the one hand, and effective strain based on
the shape of the deformed body on the other are two different things.

Problems in forging are related to the former, not to the latter.

B2 Pure deformation

In section 3.3.1 a pure deformation in a body has been described and the

motion is represented by equation (3.8b).
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x =FX 3.8b

In this particular deformation, the deformation matrix i: is a symmetrical
one and if it is decomposed, the matrix F will be equal to U , the right
stretch matrix because there is no rigid body rotation, i.e., R is equal

to unit matrix.

5:2.3 Total deformation of a process

In a continuous deformation process, the total deformation of a particle

in a deformable body is the accumulation of all the infinitesimal defor-
mations along the strain path from the initial undeformed state to the

final terminal state. In other words, the total deformation is a function

of the history of deformation. Therefore, the total deformation intensity factor

[ in term of the deformation history will be : -

= DURICX s )0 5.3a

or the intensity value in two dimension equals

n
[ e E(é,&t), 5.3b
1=0 1
al = & at 5.3¢
where o L £t

5.2.4 Total deformation with superimposed rigid body rotation

If we consider another deformation which differs from the one described
in section 5.2.2 by superimposing a rigid body rotation on the pure

*
deformation, the new position of the particle X will be X and the
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motion will be : -

< -(R)(F)X

*
or X = ( Fz e )
The total deformation of this new deformation will be : -

:

N DWW RUE2IF X a7 )

or in two dimensions

* 2 .
F= (R & 8¢),
i=0 ; 1
According to the principle of frame indifference, the deformation in the
above equation and the deformation in equation (5.3b) are equivalent and

their scalar values, i.e. the total deformation, will be unchanged.

Therefore,
*
A 5.4
The above equation shows that in any equivalent deformation process, the
total deformation [ is the same.

factar

5.3 The determination of the total deformation intensity [ of a
A

non-coaxial strain path

A finite deformation as analysed in Chapter four involves an initial angle,
the deformation itself and the final rotated angle. A coaxial deforma-
tion will simply mean that the initial angle of the deformation is con-

stant throughout the process as described in section 4.2.2. The total



_71_

deformation will be the sum of all the incremental deformations. This
is also valid in calculating the total deformation of a non-coaxial path
except in the determination of the incremental strain in which the rotation

of the principal axes have to be considered.

5:3e1 An eguivalent deformation path

According to the principle of equivalence in motion and deformation path,
a history of motion with rigid body rotation elements superimposed is
equivalent to a history of motion without that rigid body motion, provided
that they are related by the transformation laws =-- equation(S.z ad&b) in
section 5.1.3. Therefore, a motion with rigid body rotation is the same
as one without it. In other words, a deformation path with rigid body
rotation is indifferent from a pure deformation path. For a pure defor-
mation path, the history of the deformation will consist of the strain

matrix only.

fae. ) =" R T )

where DT L %

Here, the rigid body rotation is assumed to be equal to one, therefore,
e =LUkt) 5.5

5:3.2 The derivation of the incremental strain or rate of deformation

matrix [) in terms of fixed configuration

In section 3.4, the incremental strain or the rate of deformation matrices

referred to the current configuration is derived. It is impossible to
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integrate all the incremental deformations if there is no fixed reference
configuration. Thus, a fixed reference has to be used instead of the
current configurations, and, in this case, the undeformed configuration

is used.

A. The relationship between the derivatives of the deformation gradient
matrix ‘: and the velocity field matrix L. .
The motion of a deformation is described by equation (3.8b) and if dif-

ferentiated with respect to time t, the equation becomes : -

D 2¢ o o)
g a!:x *F_a%'

ot

Since the initial configuration is constant, therefore

DX

t

Q)

2% - FX A0

t

oV

S0,

It

whereas,the velocity field gradient matrix Lo as defined in section 3.4

as § -
4 = 2C
or B
x  _
= =il 5.7

o
Dt

where V' is the velocity of the particle and is equal to
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Equation (5.6&5.?) should be equal and if equation (3.8‘0) is substituted

into the equations and we have

[ =1
L - FF 5.8
B. The derivation of [ in terms of the stretch matrix U .
Again, section 3.4 shows that a velocity gradient matrix can be decomposed

into a stretching matrix D and a spin matrix W and is related to l_-

by the equation.

L

Il

W+ D 3.36

and

Dbl wlo yiedaw |

]
nol
noje

Il

a
3.37.5

I

W=i(L-L) =3aml

roj

Thus, by substituting equation (5.8) into the above equations, we get,
-Ir - T

D=%(¢Fﬂl+ FF) 5.9

In section 3.2.4, the deformation gradient can be decomposed into matrices

R and U and its derivations will be : -

£ - RU+ RU 5.10

also, the reciprocal of the deformation gradient matrix is : -

=1 -1 -1 -1
F -(tRU) - U R
As R is an orthogonal matrix R = R"1= = R"
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Therefore

F = U R 5.11

Again 7 e

Py
-

5.12

because

U

T

U symmetric matrix

and

UTRT N UT'RT 45

I

Combining all the equations (5.13, 5.12, 5.11, 5.10) into equation (5.9),

we have
. -4 T T -] TeT of el
D -+ {RUUR + RUUR + RUUR + RUUR } 5.1
Since, the matrix properties show that
uu'- 1
RR--RR
Equation (5.14) will be reduced to
D-tR(UU + UU R 5.15
Similarly, we get the spin matrix
W- RR+R(UUJ -UU R

Equation(5.15 and 5.16) are important because they are referred to the
fixed undeformed configuration and so their successive incremental strain

can be summed to give the total deformation of the prescribed path. When
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these equations are applied to analysing an equivalent deformation path,
the equations are reduced to the equation below because in the equivalent
path, the rigid body rotation element is assumed to be nil. Therefore,

equation (5.15) becomes : -

-f =}

D =% ( 0U + UU) 5,17

eq

5.3.3 The calculation of total deformation of this equivalent path

Equation (5.3b) expresses the total deformation in two dimensions,in terms
of the principal rate of stretching and its time intervals. In order to
calculate the principal rate of stretch éo , the rate of deformation
matrix D or in this case Deq have to be found and by applying equation
(3.44b) ,€can be found for each incremental time interval t . The total
deformation will be : -
n
Pl Emddp e, 2t ) 5.3b
eq A=0 e

and from the frame indifference principle, section 5.1.3, this is equal

to the actual total deformation.



CHAPTER SIX

Work, Path Characteristic and Redundant

Work of a Perfectly Plastic Body
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6.1 Introduction

factor
The derivation of the total deformation intensitypf' in the last chapter

using the incremental theory is a step forward when the non-coaxiality of
deformation is considered. Normally, the state of finite strain is under-
stood to represent the degree of deformation and in such a representation,
the non-coaxial effect on the path is neglected. So, the inclusion of the
non-coaxial effect in the intensity'factorfﬂcan be used as a measure of
the deformation intensity of that particle. ILater on in this chapter,

the work done by this particle is derived, assuming the metal behaves per-

fectly plastically.

6¢1¢1 Work done by an element of a perfectly plastic deformable medium

Hill and Nadai and others (24,25,61) have made use of the incremental theory
to obtain the incremental work done per unit volume by the element and it

is equal to

iw = tr (g~ d€& ) 6e1a

where @ is the stress matrix

d€ is the incremental strain matrix

and the above equation is also equal to

dw =G de 6.1b

where &= |3 ( (07 - N+ (62-G )+ (05-07 ) )

J—j—((ae.-aezf + (ae,-ae,f + (aé6-asf)

de

For a perfectly plastic material, the effective stress will become the
yield stress of the material ¢, and equation (&db) will become

dw = G::ié
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When the incremental work of the element is integrated along the strain

Jdﬁ = JG} de

and the total work done per unit volume is equal to

path, we have

W =g, lde 6.2

The non-dimensional work done by the stress can be derived by dividing

equation 6.2 by the yield stress to give
A = -fﬂ—jdé = lae 6.3
g

where A is the dimensionless work done per unit volume and is always grea-

ter than one if flow has occurred.

The incremental dimensionless work will be

dA = d€ 6.l

Equation 6.4 shows that the incremental dimensionless work is equal to the
incremental strain. In Chapter five, equation 5.1 relates the rate of the
deformation matrix with the incremental strain matrix and when this equa-

tion is used, the incremental dimensionless work per unit volume is

A= g(é&at) 6.5
where g represents a function .

Again, equation(5.30) shows that the incremental total deformation inten-
factor

sityhﬁfﬂ is the new parameter which we derived in the incremental analysis

and it can be substituted into the above equation.

Hence,
dA=g(ar) 6.6

and when the total work done per unit volume is considered, the dimension-

less work of the element becomes
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f fé ar)

g () 6.7

&
I

=
I

The above equation means that the work of an element is a function of the

total deformation that element has experienced.

A R, Apparent work done by the element

Apparent work is defined as the work required to deform an element plasti-
cally from its undeformed state to its final terminal configuration at con-
stant strain ratio in a fixed principal direction. In = other words, the
path taken by the element from the initial position to the final position

is a radial and coaxial strain path.

Similarly, we can quite easily have the same relation when perfect plastic
material is considered. The dimensionless apparent work B
B =B (€ ) 6.8

where € is the effective strain.

We may conclude that the dimensionless apparent work is a function of the

finite strain which derived from the deformation theory in Chapters three

and four.

6.2 An ideal work path and the path characteristics of an element in
a deformable body

6.2.1 An ideal deformation path of a particle in a deformable body

In this section, the meaning of an ideal deformation path is considered to
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be one along which the work done by the particle is minimum. As stated in
section 4.2.3 on the coaxial path and section 4.2.4 on the non-coaxial

path, the minimum work path is the coaxial and radial path which connects
the initial position O in (fig.é.l), to the current position P and is a
straight line in the triaxial co-ordinates system i.e., path A. In Nadai's
book (61), the minimum work path in terms of the deformation, is a hyperbo-
lic curve as shown in (fig.6.2). Along this path, the work done which is

derived from the incremental theory, will be equal to the apparent work done.

Ai = Bi = minimum work done per unit volume.
In all deformations, the apparent work done is the minimum work required

in deforming the element into the current state.

6e2.2 Curved coaxial path

Following the above section, the minimum work path is an ideal path, and
also the radial coaxial path. But in an actual coaxial deformation, a
constant strain ratiot? s is difficult to maintain and practically unrealis-
tic. Therefore, a curved path such as path B in (fig.6.1), is a typical
example in a coaxial deformation. Naturally, the work done along the curved
path is more than the work done in the ideal path because the actual work
done depends on the path length. The work done per unit volume of a curved
coaxial path of a perfectly plastic element is equal to the following
equation : -

1

W=a’:’f(€g) 6-9a

’
where @, is a contant flow stress
€ is the effective strain
f represents a function

Q is the equivalent radius of curvature of the path.
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The equivalent radius of curvature of this curved coaxial strain path can
be derived by assuming that the length of the path equals the arc of a

circle with radius @ as in (fig.6.1).

When the coaxial path is radial, then the work will be : -
W =g0; & 6-4b

where the function is equal to the effective strain.

6.2.3 Path characteristic for non-coaxial plane strain deformation

In section 4.2.5, it has been shown that the non-coaxial path has its own
special character and it is similar to a curved coaxial path. Firstly, an
imaginary path is assumed to represent the deformation path in which the
length of this path is equal to the extent of the deformation and measured
by the deformation intensityfacter[” . 1In addition, the imaginary path
is further assumed to be an arc of a circle of radius ¢ , and the length
of the arc equals . the deformation intensig;ifqr. The effective strain
€ which represents the finite deformation, is just the chord inside the
same circle joining the arc. The angle 4P 1is half the angle sustained by
the arc [ of the circle. See (fig.6.3). Therefore, this particular path

can be derived from the properties of circles and we get : -
N = 2Ry 6.0z,
and the effective strain is equal to

E = 2 @ sin¢ 6.10p

where ﬁﬂ is in radians.



- -

If equation 6.0b is divided by equation 6.0z, the ratio between the effec-

tive strain and the deformation intensity will be : -

—?— = Sj;;LF 6.10¢

and this ratio can never be greater than one.

€
By a
The radius of curvature e for this particular path can be determined from

the measured value I , and the angle ﬁp . It is equal to

r
(T2

For each instantaneous moment during the deforming process, the ratio of

6.104d

deformation, and the angle LP can be calculated. Then, an equivalent
radius of curvature can be derived from the equation (6.18d. This radius
Q can also be determined graphically as in (fig.6.4). A radius of cur-
vature of the path can be obtained by plotting the radius Q against the
reduction in height ¥ which is being used to describe the progress of a

deformation acting on an element.

For a plane strain non-coaxial path, the work done per unit volume of a

perfectly plastic element will be equal to : -

¥ =g Qa:sin'i( ) bl

é
R
where g, is the flow stress

@ is the equivalent radius of curvature of the path.
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The curvature of the path indicates the effect of the non-coaxiality exis-
ting during the deformation process. The final results are that a non-

coaxial deformation consumes more work than the work consumed by a coaxial

path.
6.3 Distribution of work done by a deformed body
6e3el Distribution pattern represented by means of a contour map

The distribution of work done on a specimen which is compressed in the
plane strain condition is similarly plotted as in section 4.3.1%A The dif-
ference between the two is the use of two different theories in the deter-

mination of work in which the former leads to the calculation of apparent

work and the actual work done for the latter.

6432 Distribution pattern in term of a histogram

Again, this deformation pattern representation is similar to the finite
strain representation in section 443.2 in which the work done replaces the

finite strain € as shown in(fig.6.5).

belb Total work and redundant work for a simple reduction process

6albel Total work done

In simple upsetting, a block of metal is reduced to a lower height and
the total work done is the summation of all the work done by each element

of the whole cross-section of the specimen.
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From the dimensionless work distribution graph as in section 6.3.2 and
in (fig.6.5), the area beneath the curve is the total work done by the
process on the whole surface area. Therefore, the total dimensionless

work done per unit volume by the process is t -

1
a
Ap = WJ’A =) 6.12
(-]
where a is the total area of the cross-section

a,1is the actual area

AT = total dimensionless work done per unit volume
A = dimensionless work per unit volume.
In order to calculate the total work done, the area beneath the curve

in the work distribution histogram will be measured at different percen-
tages of reduction of height, and their corresponding total works are

plotted against the reduction in height.

6alta?2 Redundant work

An ideal reduction process is an efficient method in compressing a piece

of metal from one configuration to the terminal one as explained in section
L.4.1. For a simple upsetting process, the ideal process is a uniaxial
compression, in which the distribution of finite strain as well as the work
done is homogeneous in every part of the body. Whereas, in actual upset-
ting, the distribution of strain is non-uniform and the total work done is
usually found to be higher than the ideal process as shown iﬁ:;xtrusion
process by Richmond (66) and Hill (27,25). So, Hill has proposed that this
extra work required in deforming the block of metal to the same overall

severity is called the redundant work AR and is equal to : -
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8207 AT A ' 6.13
where A.qp 1s the ideal total work.
In fact, this redundant work is necessary in an actual process to overcome
all the outside constraints such as the friction at the die/work interface
and the geometry of the die. Furthermore, the redundant work can be used
to determine the efficiency of the deforming process, as when the redundant
work is near zero, the process will tend to be as efficient as the ideal
case. Therefore, the efficiency ; of deformation is equal to & -

£5 - (-1

iT

) x 100% 6. 14

An efficient process will not just save energy, the wear of the die which
is affected by the amount of load exerted on the die, is also reduced. Any
excessive load usually distorts the alignment of the machine, but this is

also minimised in an efficient process.

6.4.3 Apparent redundant work

From the finite deformation analysis, the total apparent work can also be
determined from the strain distribution histogram and the apparent redund-

ant work BR is equal to : -

B, = B, ~ A, 6.15

where BT is the total apparent work.

The significance of this apparent redundant work is that it can be any
value between a negative redundant work to a positive value. The variation
means that if the metal is reduced non-homogeneously but coaxially as well

as radially, the total work done may be less than the ideal process. The
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above statement may be true theoretically as the total apparent work of
an ideal reduction model is compared with the zonal model in (fig.6.6).
The difference in the total apparent work can also be seen in Hsii's papers
(33,35) and (fig.6.7) in which cylindrical specimens are compressed in
an ideal and an ordinary test experiment . We can explain why the work
consumed by the barrelled specimen is less than the ideal specimen,
because we know that only the apparent work done and not the actual work,
is considered. The difference between the redundant work and the apparent
redundant work, i.e., AR - BR » 1s an indicator of how much work is con-

sumed in rotating the principal directions in this non-coaxial process as

compared to a stationary coaxial process.



CHAPTER SEVEN

The Filling and Spreading Characteristics

in a Closed Die Forging Process
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Tl The spreading of the metal

P [ General considerations

A specimen under compression will either bulge outwards into a barrel
shape or else take a bollard shape. Hill (26) has found out that this
bulge profile can be represented by a spread coefficient. Baraya,
Johnson, (5,38) and Tomlinson(83), followed Hill and applied approximately
the same definition of spread by using the extreme condition such as
sticking condition at the work/tool interface. But, Shabaik (72) traced
the profile by recording the co-ordinates of the free boundary. In order
to have a better quantitative understanding of the spreading mechanism,
the following section is devoted to the study of the bulge and spread

phenomenon.

712 An ideal spreading process

This ideal process is the resultant of the ideal reduction process pro-
posed in Chapter four. Every stage will result in a homogeneous defor-
mation and every particle will pursue a radial and coaxial strain path
(in plane strain condition) or the minimum work path. Under this con-
dition, the sideways spread of the metal will be the ideal one. In (fig.
7.1), the ideal sidewaysspread d, of the particle P at the edge of the

interface AP of the specimen will be : -

d.i =A'""P' -=AP =Db' =D 7.1a

when the specimen is under plane strain condition and the material is

incompressible, equation (7.1a) will be equal to : =
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b h +b
; -b =
< ht 100-Y

7.1b

where T is the percentage of reduction in height.
In this ideal spreading process, every element will be displaced the
same amount djalong the free boundary thus forming a straight edged

specimen.

Tels3 Actual spreading of metal at the interface.

Spreading of metal is the horizontal movement d of the edge of the inter-
face before deformation from P to P" in (fig.7.2). 1In fact, this edge
displacement is of two phases. One is the sideway expansion of the ori-
ginal end face i.e. from P to P' in (fig.7.3) and the other is the ro-
tation or the folding process of the element on the free boundary on to
the interface. (Fig.7.3) is showing the two processes in operation,

the element Q which is at the free boundary before deformation is folded
on the work/tool interface Q. The existence of the folding process is
due to the excessive frictional restraint and the high compressive pre-
ssure. So, an actual spreading will be a combination of the two with

the folding of metal dominating the spreading process.

el The spread coefficient

Hill and Johnson (26,5) have proposed a spread coefficient which is a
function of the logarithm of spread ratio and reduction of height ratio.
In compression, this index can hardly tell how much the spread is varied.

Therefore, another spread coefficient is suggested which can show the
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variation of the spread straight away. This coefficient is the ratio
of the actual spread d over the ideal spread di for the same percentage
reduction and the same width to length ratio. The spread coefficient

S is equal to : -

S =_£1._ 2.2
ds

In the previous section, it has been explained that the spreading is
composed of two processes. In order to distinguish the two, an expansion

coefficient SD, of the original end face, and a folding coefficient,¥,

are used and their sum is equal to the spread coefficient.
S =8D + ¢/ 73

where the sideways displacement coefficient SD is equal to

the actual horizontal displacement

SD = of the original end faces Gl

ideal spread di

and the folding coefficient % is equal to
Vv =S -8SD 7.5

Zels 5 The bulge profile i

The spread coefficient discussed in the previous section concerned the
horizontal displacement along the work tool interface which is directly
influenced by the frictional condition. But the bulge profile can

hardly be defined. It was found that if the spread coefficient at the

*Note: This analysis is only applicable to specimenswith single barrel.
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interface was less than the coefficient along the x-axis of symmetry,
this difference means the bulge is a barrel shape , whereas if there
is no difference, the spreading is near to the ideal case and also

bulges do not exist.

(Sm -8, ) =+ ve bulge shape, barrel
k3 %00, I8 =40 straight
(Sm Eey ) == ve bollard

where Sm = spread coefficient along the equatorial axis

St = gpread coefficient at the interface
7e2 Filling characteristic
Te2el General consideration

The success of the forming process does not depend on just the non-exist-
ence of cracks. The degree of the die cavity being filled is also another
criterion for the success of the process. For a complete filling, the
usual practice is to make the blank larger than required which results

in a larger material wastage and forming energy. Naturally, an optimum
size is ideally desirable but practically impossible to define. Up to
now, there is no way to determine to what extent the die is filled, and
the effect of blank size, frictional condition and excessive material in
the filling process are all a mystery. In order to study these problems,
the following is formulated for the investigation of the filling charac-

teristic in a simple closed die forming process.



=100

Te2:2 The filling coefficient

The filling of a die cavity can be simply described as the metal surface

which is in contact with the surface of the die cavity.

Therefore, the coefficient is the ratio between the surface area of the
workpiece in contact with the die cavity to the surface area of the die

cavity. The filling coefficient is A .

A Surface area of specimen in contact ﬁith die 2.6

Surface area of the die cavity

This coefficient is an index to show whether the die is being filled

completely, i.e., when /\ =1, or else, i.e., when A < 1.



CHAPTER EIGHT
Experimental Equipment

and Technique
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Sal: The experimental methods and data

The experiment consists of two parts; the first part is the investigation
of the distribution of deformation in terms of the flow pattern and its
complicationssuch as the orientation of the plateau, rigid body rotation,
bulge shape and homogeneity of deformation,and the latter part concen-
trates on the filling process of the die cavity. The experimental tech-

nique and equipment are described in separate sections in the following.

8.2 Experimental technique in the investigation of flow characte-

ristic of metal under simple upsetting

82+ Speecimen data

After a series of tests for finding suitable material for the flow ex-
periment in which solder,(lead and zine) copper and pure aluminium have
been tried, an aluminium alloy BS HE 30 is chosen so that this kind of
extruded alloy commonly used by the forging firm, will provide a more
realistic performance value. The composition of the alloy according to

British Standard BS 1474 is

H.E. 30 Al Cu| Mg Si Fe Mn Zn | Cr others

composition
percentage | Rem. | 0.1 0.5{ 5 0.24.3 0.5 0.&4 ol 0-2]0.25( 0.2

A preliminary metal testing program which involves the determination of
(1) a suitable specimen size so that plane strain condition can be main-

tained, (2) the choice of suitable grid size, (3) theabsence of any other
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metallurgical side effects, is carried out. It was found that when the
length to width ratio is over four, the longitudinal spreading of the

metal in the centre section is negligible. When the capacity of the
compression machine is considered, the specimen size chosen is of %+ x Zinch
(1.27 x1.27 cm.), cross-section and 1 inch (2.5 cm.), long and two speci-
mens are fixed together to form a specimen of %+ by % inch (1.27 x1.27 cm.)

in cross-section and 2 inch or (5.08cm.) long.

One major obstacle during the preparation of the specimen is the grain
size of as-received Aluminium alloy. Because of the orange peel effect
whichaduersﬂyaffectsthe accurate grid measurement, the alloy of the

same material has to be cold worked (by compression) to over 50% in three
principal directions so as to reduce . the grain size. Standard annealing
then follows in a salt bath maintained at 400°C for 20 minutes, and then
the specimen is cooled slowly in the furnace. The metal is then machined
to the required dimensions. The grain size is found to have greatly
reduced to a workable size and the orange peel effect is minimised. The

end faces are then polished ready for grid printing.

8.2.2  Preparation of the checker board (Master grid)

At the beginning of the project, a decision was made on the choice of

experimental technique to measure the finite strain on the cross-section
of the specimen. A checker board pattern with black and white squaresis
preferred to scribing grid lines. The reasons for the use of a checker

board are that (1) the line of a grid line has a finite thickness and

it may vanish after severe deformation and that may be detrimental to the
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measurement, (2) the contrast of a black and white square gives a better
and easier measuring alignment, (3) a more contrasted deformed print,

(4) stress concentration is eliminated.

In order to make this kind of checker board grid, a master board was made.
A piece of white formicawas fixed onto a wooden board measuring 2+ feet
square. Then the white formica sheetwas painted with a black ceramic
paint. The choice of this paint is because of its brittleness when dried
and the ease with which it can be scraped off. The painted formica board
is cut with an extremely fine knife edge both horizontally and vertically
making 100, = inch (0.63cm.) squares on each side of the board and al-
together 10,000 squares. Then the paint in alternative squares is peeled
off with?fine chisel. This laboriously finished checker board is shown
as in Plate P1. The master grid is taken to the university visual aid
department for photographs. The final negatives are in five different
square grid sizes : - (1) 0.026 in. (0.66m.m.), (2) 0.021 in. (0.53m.m.),
(3) 0.016 in. (0.4m.m.), (4)0.007 in. (0.17m.m.), (5) 0.00% in. (0.1m.m.),
their variation in dimension is found to be less than 4% of the above
mentioned value. After several preliminary experiments, the optimum size
is chosen so that at over 60% reduction in height, the sides of the grid
do not bend. In other words, if the sides of the grid become curved,

it means that the square circumferenced by the sides can no longer repre-
sent a homogeneous deformation field and the deformation in this square

is non~linear.

8a2e3 The printing technique

A. Equipment and chemicals.
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(1) A rig for the photographic printings is used for producing repeatable
grids and for locating the specimen in close contact with the negative.
(2) A centrifuge — An o0ld record player rotating at 120 r.p.m.
is used to spread and dry the photo-resist evenly on the surface of the
specimen.

(3) Ultra-Violet lamp or U.V. lamp. A U.V. lamp with wave length 3650 A
supplied by Griffin Co., is connected with a choke to expose the unde-
veloped photo-resist.

(4) Chemical used.

(a) Kodak printed circuit resist — a solution of resin in an organic
solvent which becomes light sensitive when dried.

(b) Kodak printed circuit resist thinner — used to dilute the solution.
(c) Kodak printed circuit dye developer — for dissolving the unexposed
area of the circuit resist and for colouring the exposed area.

B. Printing process.

The chosen grid size, 0.016 inch or (0.4m.m.) is printed on the polished
surface of the specimen. The procedure of printingfés follows & =

(1) The surface of the specimen is cleaned with carbon tetrachloride.
(2) The Kodak circuit resist and Kodak resist thinner is mixed in 4 toi
ratio by volume. The mixture is spread on the specimen surface.

(3) The coated specimen is placed in the centrifuge for drying.

(4) The coated specimen is located onto the specially designed rig for
printing.

(5) A - weight is put on top of the specimen. This is to ensure that

the coated face and negative are in direct contact so that a good sharp

contrasting print can be obtained.
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(6) The specimen is exposed to the Ultra Violet light for about 43
minutes.

(7) The exposed specimen is placed in a bath developer for about 60
seconds + 10 seconds during which time shaking of the specimen is
desirable.

(8) The specimen is taken out and carefully rinsed with water.

(9) A fan blower is used to dry the specimen.

8.2.4 Experimental procedure

(1) The testing machine -- A 50 tons (500 KN.) capacity Denison universal
machine is used for loading the sub-press and a fixture is attached
to raise or lower the sub-press.

(2) The sub-press-- A cast steel sub-press made to specification by
Colley Brothers (Tools) Ltd. The use of the sub-press is to ensure
uniform and parallel travel of the two opposing platens. Plate P.2.
Two pairs of dies were made. One pair is made to a ground smooth
surface finish of ( 0-42 micvon) 5o as to carry out lubricated experi-
ments. The other pair is a machine-finished (4-5 wmicron )
die to simulate rough sticking frictional conditions. Both of these
dies are made of special tool steel and heat~-treated.

(3) Measuring microscope -- A travelling microscope is used which can
measure down to * 0.0002 inch or (0.005m.m.) . The microscope is made
by Scientific Instrument and the model is a Pye travelling microscope

model no.6147.
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Preliminary material test -- These tests involve the choice of a sui-
table ductile but commonly used metal, the optimum size of the grid
squares and the die set alignment. The first and the second parts of
these tests were described in the previous section 8.2.1 except the
last test which is to test the alignment of the dies. Dial gauges were
fixed on the die faces to check the parallelism between the two opposing
faces during compression. See (fig.8.1). Again, dial gauges were
fixed to the side faces of the moving die to ensure that lateral move-
ments did not exist. These tests are essential as they may affect the
deformation pattern in the final product.

The upsetting experiment --The experiment to investigate the metal flow
consists of two parts, one is the upsetting of a Yectanﬂu.lar prismatic
specimen to 50% reduction in height withirough die set. This is to
simulate a rough frictional upsetting process and at every successive
10% reduction in height, the specimen is taken out and the changed co-
ordinates of the grids are measured. The other series of experiment

is to simulate lubricated conditionsin which the machine ground die set
is used. PIFE sheet is used as lubricant between the die and the work
piece. At every stage, the same quarter section of the specimen is
viewed under the microscope and the = changes in co-ordinates with the
reference axis (the reference face is the contact face of the specimen)
are recordeds Owing to the large number of squares involved, it was
decided that alternative squares only are measured.

Symmetry tests —- As there are nearly 1600 squares in the whole speci-
men and if only half of them are measured, the tedious measurement is

too laborious, so a simplification is necessary. Since the specimen is
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assumed to be symmetrical along the two axes, i.e., the x-axis and the
y-axis, only a quarter of the original squaresare required to be mea-
sured. So, there are about 1600 readings to be taken for each stage

of reduction in height. In order to make sure this symmetry assumption
is valid, several squares in each quadrant are measured and their cal-
culated values are compared to check for symmetry. Their variations
are found to be less than 5% in terms of strain at 50% reduction of
height. But, for the lubricated series, the strain measured in each
quadrant is found to have varied around 10% about the mean at 50% re-

duction in height.

8.2 5 Analysis of data

First, the co-ordinates of the grids are recorded on data cards and the
state of strains, principal angle of the deformation the degree of rigid
body rotation and the effective strain are computed by the digital computer.
Since the specimen is deformed under the assumed plane strain condition, i.e.
one of the three principal strains is zero and the absolute values of the
other two are equal, the state of strain can be represented by one value.

If this is a coaxial strain path, it will be a radial path at 5 o'clock on
the triangular co-ordinate as explained in section 4.2.1. but, when all the
history of the deformation is computed, it is found that the non-coaxial
path is pre-dominant. The plane strain radial non-coaxial path can be plo-
tted as in (fig.8.2) where @ is the angle of non-coaxiality of a particle
at different stages of reduction. The calculated state of strain and prin-
cipal direction are plotted and the best fitted polynomial curve is chosen

by means of the least square method. The curve fitting is carried out by a
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HP 9830 desk mini-computer. For every square measured and their state of
strain plotted, a polynomial curve is fitted and the coefficient for each
strain path is punched on data cards. Another program is developed to cal-
culate the velocity field, the rate of strain and its principal directions
by the ICL 1905E digital computer.. These computed results are used for

further analysis and the graphs plotted are represented in later chapters.

843 Experimental method for the investigation of the filling charac-
teristic
8:.3.1 The specimen and its preparation

For this kind of investigation, a ductile metal,Aluminium,is chosen. The
most convenient ductile Aluminium is EI1C and its composition according

to BS : 1474 standard is : -

EiC Al Cu Si Fe Mn Zn Note

Composition| 99.0 0.1 0.5 0.7 0.1 0 | Cu + 5i + Fe +
percentage max. | maxe | max. | max. | max. | Mn + Zn = 1%

Round bars of diameter 13 inch (3.81cm.) are bought from the retailer.

They are machined to the required dimensionsof height to diameter ratio

of 2.0, 1.8, 1.5. A centre hole is made for locating the specimen in the
centre of the die cavity. The right location of the specimen in the centre
of the die cavity is essential as a slight misalignment will make one side
of the specimen touching the face of the cavity earlier than the other side

of the specimen. The machined specimensare annealed by heating them to
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360°C in a blow fan air furnace for 20 minutes and cooled in the furnace.

They are marked and ready for testing.

8.3.2 Equipment (22)

(i) Press and die set --The same Denison Universal testing machine is
used as in the previous experiment.

(1i) Sub-press -- A different sub-press is chosen for this particular
purpose. Plate P.3, the press was purchased from an outside factory
and machining was done to accommodate the dies. The ram with its
hemispherical head, so as to provide a certain degree of self align-
ment, was connected to the top platen of the Denison machine.

(1ii) Dies -- All the dies and other equipment were made from a 5r inch
(13.3cm. ) diameter bar of high carbon-chromium steel supplied by
Wrighton & Co. Ltd.of Birmingham. The dies were made to the dimen-
sions of 1 inch(2.54cm.), 1% inch (3.81c m.) and 1% inch (4.45¢c m.)
diameters. After machining, they were hardened by soaking inifurnace
at 9?000 for one hour and then oil quenched. Quenching was then fo-
llowed by heating the dies up to 220°%C for 30 minutes and cooled.
The hardness achieved was around 60 Rockwell C. After heat treatment
the parts were ground and polished to the finished dimensions as in

plate P.3.

8:343 The forging procedure

The specimen is located in the centre of the die cavity by means of a
location pin. A thin smear of carbon suspended grease is put between the
die/specimen interface. The specimen is then compressed to the required
height and taken out for measurement. Another specimen is similarly deformed

but to a larger reduction in height. This is carried out until the die is
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finally closed. Then, another series of experiment is repeated with

different height to diameter ratios of the specimen.

8.3.4 The measuring procedure

The deformed specimen is degreased by means of carbon tet%chloride. The
surfaces of the specimen which are in contact with the die face are traced
onto a piece of paper by means of inking the contact area. This contact

area is then measured with a planimeter and recorded.

84345 Computation of data

This data is used for computing the filling coefficient and the spreading

characteristic of a closed die forging process.






CHAPTER NINE

The Distribution of Deformation

under Continuous Loading
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9.1 Introduction

Simple upsetting, which is the beginning of every forging process, has been
studied closely in the past decade. Several theoretical predictions by
Altan, Hill, Green, Lee, Kudo and Johnson (45,43,44,46,52,26) as well as
experimental investigations such as those by Kudo, Lee and Kuhn, Thomason
(47,5,81,72) have been carried out. The past investigations are either
experimental studies concentrated on the deformation of the surface elements,
neglecting the deformation pattern in the cross-section , or theoretical
predictions based on simplified and unrealistic assumptions. Under this
state of uncertainty and misunderstanding in the forging process, a better
critexion has to be developed to represent and study the degree of deforma-

tion in the forging.

As has been explained in the introductory chapter, the representation of
the degree of forging by reduction in height is both vague and unrealistic.
Thus, the analysis of large deformation, developed in Part A of this thesis,
is the proper tool to study the deformation in a specimen. With the reco-
gnition that the deformation in a specimen is a point function, it is more
realistic to talk about a deformation field or distribution of deformation
than to talk simply of deformation. Once deformation is analysed from
point to point, a pattern of distribution of deformation will emerge.

Every forging can be analysed in this way because in it there must be va-
rious points and at each point, there is a particular deformation, and their
resultant deformations will collectively produce a pattern of distribution
of deformation. This chapter is wholly devoted to the study of the various

elemental deformations and their resulting pattern of deformation field.
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9.2.1 The development of the pattern of distribution of deformation

under continuous loading

Following the above argument that the deformation of a specimen is a point
function, the resulting deformation pattern can be seen as a record of

how the various elements are deformed during the process. Apart from the
ideal reduction process in which every elementisdeformed similarly and
coaxially, a specimen compressed between a pair of dies will have some por-
tionsof the specimen deformed more severely than others. This non-uniform-
ity in the deformation of the various elements in the specimen will

produce a non-homogeneous deformation pattern. In this project,in order

to study the non-homogeneity of deformation in forging, square grids are
printed on the crossfsection of the Tectnrgular prismaticspecimen and these
grids are used to analyse the deformation pattern on this plane. Since the
deformation perpendicular to this plane is found to be negligible in our

experiments, plane strain condition is assumed.

If the deformation is non-homogeneous under loading, the square grids printed
on the cross-section of the specimen will display various degrees of distor-
tion as shown in Plate P. 4 in which the specimenwas compressed down to

over 60% reduction in height and momsymmetrical deformation to both x- and
y-axes of the specimen appeared. Some squares will transform to rectangles
or rotated parallelograms while the remaining squares maintain nearly their
original shape -~ squares. As a minute square is used to represent a small
homogeneous deformation field in a particular position, the opposite sides

of a deformed square should remain parallel. The development of the square
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grids on the deformation plane can be seen from (fig.9.1 to 9.4) in which
a specimen is reduced in height to different levels between a pair of
unlubricated dies. The most severely distorted grids can be found to
concentrate along the diagonal of the specimen. The flow lines of a few

particular elements are shown in (fig.9.5).

Lubrication at the tool/work interface tends to reduce the shearing strain
within the specimen. Thus, a set of less severely distorted grid patterns
can be seen in (fig.9.6 to 9.9) when compared to those distorted grid patt-
erns in (fig.9.1 to 9.4). Again, the flow of a few particular elements

for this lubricated process are shown in (fig.9.10). A comparison. of the
distorted grids between the two processes can be seen in (fig.9.12§? If
enough lubricant is added at the tool/work interface, uniformly distorted
grids will result. In other words, the deformation will be a homogeneous

one.

Q.22 The principal directions of the finite strains

In the past, deformation of a specimenwss represented in general terms by
the reduction in height. Apart from an ideal reduction process, this
measure neither represents the real deformation within the specimen nor
the nature of the directions of the deformations. The analysis of large
deformation developed in Part A is, therefore, most suited to the study of

deformation of a specimen in a thorough and realistic way.

Once the deformation is non-homogeneous, in other words, the deformation

varies from point to point, the principal directions of deformation at
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different points will not be in the same general direction. The non-
alignments of principal directions are mainly caused by the fact that
different elements pursue their own deformation paths. Owing to the fact
that the deformation is non-uniform, some elements are deformed in a non-
coaxial manner, i.e., the principal directions of deformation rotate with
respect to the material during loading. The resulting principal
directions of deformation of the various elements in the specimen will

be as shown in (fig.9.12a and fig.9.12b).

9.2:.3 The development of the zonal patterns

In pursuing the above argument that the deformation of a specimen is a
point function, the state of deformations in any position should not be

the same. By applying the analysis of large deformation developed in

Part A of this thesis, the deformation, which is measured by the effective
strain, along the tool/work interface of both a lubricated and unlubricated
specimen are found to be unequal as given in (fig.9.13 and 9.14). The
differences in deformation from point to point in the specimen show another
defect in the representation of the degree of forging by the reduction in

height, in which a homogeneous deformation is implied.

In proceeding further with the analysis, the deformation of the various
points or elements in the specimen can be represented by the deformation
intensity factor f’, which is equal to the sum of all the incremental
strains taken along the strain path. The detail definition of this
quantity is given in section 5.3. The usefulness of this factor is shown

by the fact that this scalar value is the measure of the extent of
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deformation along the strain path taken by the element. In contrast, the
effective strain, commonly used by other researchers to represent the de-
formation, is just the state of strain in which the history of deformation
is neglected. With the effects of non—coax%iity and varying strain ratio
taken into account, the actual deformation can only be measured by the

intensity factor I” in the analysis of large deformation.

Contour maps with lines of equal deformation intensity factor and plotted
on the actual cross-section of the specimen can reveal the current defor-
mation pattern. With the exception of the homogeneous deformation, actual
deformation of a specimen will display a pattern in which some areasare
deformed more than the others. If this pattern is drawn on a three dimen-
sional diagram, it will look like a section of a geographical region which
consists of mountains and valleys. Examples of these three dimensional
deformation maps are shown in (fig.9.15 to 9.18). 1In terms of deformation,
the appearance of plateaus and valleys will signify that the deformation
is non-homogeneous and the plateaus represent severe deformation regions
while the valleys show that the metal is hardly deformed. The plateau
regions are commonly called the shear zones and the valleys are termed

the dead metal zones. In fact, this is exactly what happened when a
specimen was compressed between a pair of unlubricated dies as shown in
£ig.9.19 to 9.22 . Iubrication at the tool/work interface will just
either shift the orientation of the plateau region or diffuse the distinc-

tion among the various zones as in £ig.9.23 to 9.26).
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The two loading curves shown in (fig.9.27) can be seen to consist of three
stages. These three stages are : -

(1) metal deformed elastically,

(i1) the establishment of plastic deformation sites and lastly

(iii) the widening of the plateau regions.

9.3 The distinction of deformation zones in terms of the behaviour

of the zonal elements

9.3.1 Introduction

The application of the analysis of large deformation in a compressed speci-
men has, so far, proved that an actual deformation field is a highly non-
homogeneous one both in severity and in character. In addition, the defor-
mation field is, in fact, divided broadly into two types of deformation
zone — the shear and the dead metal zones. It can be seen immediately
that the use of reduction in height as a measure of the degree of forging

is far from being adequate.

The use of this analysis of large deformation is not for the purpose of
showing simply that the deformation is non-uniform. The analysis is neces-
sitated by the need for a thorough study in depth of the deformation process.
Furthermore, this method of analysis reveals some aspects of the process
that other researchers havgj}ound. This is the individual behaviour-
of the zonal elements which collectively determine the pattern of the de-
formation field. Therefore, the following section is an extension of the

analysis on the deformation field of a specimen.
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9.3.2 The path characteristics.

A strain path is a record of deformations which a particular element has
experienced. In section 4.2, the difference between a coaxial and a non-
coaxial path has been explained. Under triaxial strain conditions, a non-
coaxial path is a space curve as that in (fig.4.6). In our experiments,
plane strain conditions are assumed and a two dimensional curve as in (fig.
4.8) can be used to represent the history of the deformation because one
of the principal strains is equal to zero. With the exception of an ideal
reduction process, any non-homogeneous deformation process will produce

various individual strain paths according to their locality in the specimen.

G.3.3 The behaviour of strain paths in different deformation zones

In the last section, two types of deformation zones have been established.
They are (i) the shear zones and (ii) the dead zones. In fact, when the
contour maps are looked into more closely, the two types of deformation
zones can be seen to be located in five different areas. If the deformation
of a typical element from each of these zones is studied by the method of
large deformation analysis, the difference in the magnitude of deformation
and the prircipal directions of deformation among the various zonal elements
can confirm that the first type is the shearing zone and there are three
areas in which this type occurs. The strain paths in zone (1) in (fig.9.28
and 9.29) are essentially nearly coaxial paths which means that the principal
directions of deformation are fixed with respect to the material. Zone (2)
is the corner zone in which the deformation is quite severe but the prin-
cipal direction of deformation has been rotated through its history, some-

times in a positive and sometimes in a negative sense -- here positive means
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anti-clockwise direction and vice versa. Zone (3) is the central shearing
zone, and owing to the shearing process in this region, the path is charac-
terised by a large deformation and the principal directions of deformation

have been rotated during the process.

The second type is the dead metal zone . As the name implies, these regions
are scarcely deformed. Zone (4) and (5) are regions belonging to these
zones in which the strain paths are of low magnitude of deformation and

their principal directions of deformation are only slightly rotated.

9.3.4 Curvature of the strain path

A. Co=-axial path.
As suggested in section 6.2.2, the extent of deformation of a curved co-
axial path B and the radial coaxial path A as shown in (fig.9.30), are quite
different. Thus, the work done per unit volume for these paths are : -

for path A, the work per unit volume for a perfectly plastic

material is equal to
W =0, €
and for path B, the work is equal to

%
W= g f (5H
where g— is the yield stress
€ 1is the effective strain
e is the equivalent radius of curvature as defined in section 6.2.2.

f represents a function.
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It can be seen that the work done by the curved coaxial path is a function

of the curvature of path and the effective strain. When the path is
1

Q)

radial as path A in (fig,9.30), the function f ( € ) will simply be

—_

equal to the effective strain € .

B. The non-coaxial path

In the case of a non-coaxial path in the plane strain condition , a non-
coaxial path can be represented on a two dimensional diagram as shown in
(fig.4.8) and this non-coaxial path experiences more deformation than a
coaxial path given the same finite deformation at the end. In conﬁ;ast
with the coaxial path in which the length of the path determines the
extent of deformation, the length of the non-coaxial path as in (fig.4.8)
does not represent the true extent of deformation because one of its axes,
i.es, the non-coaxiality angle (3 ordinate, has no meaning in the extent
of deformation. So, as explained in section 6.2.3, an imaginary path
with its length equal to the extent of deformation which is represented
by the deformation intensity wvalue [ s has been proposed. Furthermore,
this path is assumed to be an arc of a circle with radius @ and the
length of the arc is equal to the deformation intensity value [T . The
effective strain € is equal to the chord inside the same circle joining
the arc. Angle ¥ is equal to half the angle sustained by the arc of the
circle. See (fig.9.31a). As derived in section 6.2.3, it can be seen

that the radius of curvature e of this path is equal to

0 = 5_50 6.104

where [ is the deformation intensity value

(P is half the angle sustained by the arc Je
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Again, from section 6.2.3, the ratio of the effective strain € and the
deformation intensity [ is equal to the ratio of the sine of the angle ¢

and  itself, i.e., equation (6.10).

& A sing b 10c
Fias

where ?0 is in radians.

Therefore, if the ratio of the effective strain and intensity value is
known, the angle LF can be computed from the upper curve in (fig.9.31b).
Thus, by projecting the known values of [T and 30 into the lower curves in
(fig.9.31b), the intercept of these projections gives the radius of curva-
ture of the path.

Iﬁiﬁiame strain condition as in our experiments, a coaxial path is also a
radial one and the curvature of the path is nil or in other words, the
radius of curvature of the path is infinite. In contrast, the curvature
of the non-coaxial path depends on the degree of non-coaxiality and it can
never be equal to zero unless it is coaxial. So,in our results, a curved
path will mean a non-coaxial path and the non-coaxiality is a function of

the curvature of the path.

Fig.(9.32 and 9.33) show the radii of curvature of different strain paths
in various zones as a function of the average reduction in height. It can
be seen that all the non-coaxial paths have small radii of curvature. In

contrast, the nearly coaxial paths have large radii of curvature.
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9.3.5 Rigid body rotation of the zonal element

In section 3.2.4, it has been explained that deformation consists of a
component of pure strain as well as a component of rigid body rotation (75).
Both of these two components can be extracted from the deformation gradient

f: of the deformation by polar decomposition as given in equation (3.23).

F-RU 23

where IR is the rigid body rotation matrix,

LJis the right hand stretch matrix.

In fact, this rigid body rotation does not consume work and is a by-product
of the neighbouring movements. The result of this bodily rotation of the
element will affect not just the subsequent incremental strain directionms,
but also the spreading of the workpiece and the filling of the die cavity.

Therefore, it is necessary to study the rigid rotation in a thorough way.

With an ideal reduction process, the various elements in the specimen will
behave similarly so that a homogeneous deformation results. In contrast, a
non-homogeneous deformation will produce zonal characteristicsin rigid body
rotation. In zones other than the corner zone and those near to the free
boundary, the elements have rotated only moderately as can be seen in (fig.
9.34 and 9.35). In the corner zones, the elements are found to have rotated

severely to more than 140°,

So, we can see that in a non-homogeneous deformation, the metal, encount-

ering frictional constraint, will be forced to rotate bodily during
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deformation instead of deforming uniformly. The degree of rotation in re-
gions near to the free boundary and the corner zones depends on the fric-

tional constraint at the work/tool interface.

In our experiments, with sufficient lubrication at the tool/work interface,
the elements in the corner zones have rotated half the amount as compared
with the same elements deformed without lubrication. In other words,
friction existing along the interface will encourage the elements in the

corner zones to rotate bodily, as shown in (£ig.9.36).

The rigid body rotation of elements near to the free boundary have been
found to have contributed to the barrelling of the specimen. With lubrica-
tion at the interface, the rotation is less severe than the specimen deformed
without lubrication and thus, the bulge is less pronounced as given in

(£1g+9+37)+

9.4 The effect of lubrication on the deformation distribution pattern.

In the previous sections, it has been shown that the general patterns of
deformation on the cross-section of the specimen are affected by the appli-
cation of lubricant. In the following section, the effect of lubrication
will be further explained in terms of the orientation of the deformation

plateau, the deformation pattern and the behaviour of various zonal elements.

9.4.1 The zonal pattern and the orientation of the plateau.

When a specimen is compressed between a pair of lubricated dies,the friction

at the tool/work interface will be reduced and thus the deformation will be
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more homogeneous than the specimen compressed between unlubricated dies.
Consequently, the increase in homogeneity of deformation will dilute the
deformation and diffuse the zonal distinction up to the stage when there is
no difference in deformation among the various zones, in other words, the
deformation is homogeneous. The difference between the lubricated and un-
lubricated processes can be seen clearly when the two contour maps are com-

arb

pared for the same reduction in height as in (fig.9.46).

Sometimes, lubrication will also delay or re-orientate the development of
the deformation plateau. As far as the analysis has indicated, the deforma-
tion of a specimen compressed between unlubricated dies is concentrated on
the same elements from the beginning of the forging process. The lubricat-
ion in the process dilutesthe concentration of deformation into a wider area
so that the difference between the peak and the lowest deformation is only
half of the difference between the peak and the lowest deformation of the
unlubricated specimen. Owing to the efficient dispersion of deformation in
the lubricated process,ideformation plateau does not appear until lubrication
breaks down. The plateau at this time emerges in a different position.
These can be seen in the contour maps (fig.9.38 to 9.45) which are plotted
on the original undeformed grid position. The deformation plateausare

shown on these coloured portions.

9.4.2 The effect of lubrication on the behaviour of fhé zoﬁﬁi éiements

As in the previous section, the analysis has shown that lubrication diffuses

the distinction of various zonal appearance. Any diffusion of the zonal
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distinction means that the various zonal elements behave nearly similarly.
In another sense, the path histories, the curvature of the paths and the
rigid body rotations of the various zonal elements will tend to be similar,
consequently, a nearly homogeneous deformation pattern will result. In
our experiments, this is exactly what happens when sufficient lubrication
is added at the tool/work interface. The pathsare similar as in (fig.9.29)
and the same for the rigid body rotation and the curvature of the paths.

These similarities begin to change when lubrication breaks down.

9.5 Concluding Remarks

On the whole, this chapter gives a general description of what the reaction
of the material is towards external forces. Apart from the ideal reduction
process, two types of deformation zone can be distinguished in both the
lubricated and unlubricated specimens tested in this project. In each type
of deformation, further differences can be observed in the characteristics
of the strain paths, the differences being related to the locality of the
sites analysed. If distribution is made on the basis of these differences,
then five sub-types of deformation can be observed. Thus, of the two main
types, the 1st type is the shear zone, with three sub-types and the second

is the dead zone with two sub-types.

Under continuous loading, the metal flow is mainly controlled by the out-
side boundary condition. Thus, as in the lubricated process, the dispersion
of deformation is so efficient that concentration of deformation, which
gives rise to the formation of deformation plateau§ does not appear until

the lubrication has broken down. In contrast, the reverse will happen if
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the outside constraint exists right at the beginning of the process. Some
regions will be clearly underdeformed and an ever increasing portion is
deformed further away from the average level. The existence of this
rising plateau, if concentrated along a narrow band only, will be fatal to
the success of the process as cracks may appear in these regions. Unless a
carefully lubricated process is devised so that the plateau is re-orien-
tated to areas which can subsequently be machined away, concentration of

plateau range is inevitable.

The inclination of the principal directions of deformation in each element
which is determined by the lubrication existing along the work/tool inter-

face, signifies whether or not the deformation is homogeneous.

The difference in the behaviour of elements in various zones in terms of
path history, curvature of path and rigid body rotation are summarised in

the following table . 1.
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10:1 General introduction

In the last chapter, the zonal development of a deformed specimen has
been discussed initially, followed by a detaildanalysis of the indivi-
dual behaviour of elements in the various zones. Apart from being more
precise and widely applicable, the analysis of large deformation has, so
far, been demonstrated to be the proper tool to study forgeability. As
argued in the introductory chapter of this thesis, the whole idea of
forgeability hinges on the damage in strength through deformation. Since
deformation is seldom homogeneous, the damage to the strength of the
forging is also seldom uniformly distributed. So, the use of reduction
in height as a measure to record the degree of forging by some researchers

(58,68) can be seen at once to be unrealistic.

In the results presented so far, it can be seen that an actual deformation
I's non-homogeneous. In fact, the more the deformation deviates from

a homogeneous one, — the more severe the differential is between the
peak and the lowest deformation and the damage to the strength is further
away from being homogeneous, so, the extent of the distribution of defor-
mation or the homogeneity of deformation should be included in the

consideration of the degree of forging.

In the following section, the homogeneity of deformation will be discussed.
An idea will be proposed to quantify the deformation distribution in terms

of a characteristic equation of homogeneity.
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10.2.1 The criteria of homogeneity in deformation process

The distribution of deformation is found to be a continuous process in
which the degree of homogeneity is varying. The changing homogeneity

is governed by the following two criteria : -

(1) The initial external condition will determine the initial homogeneity
value.

(ii) The continuously changing outside constraints coupled with the in-
ternally developed pattern, will determine the resulting homogeneity of

deformations.

It can be seen that the formation of a non-homogeneous deformation pattern
is a continuous process in which the deformation pattern, determined by
the outside constraint, keeps on changing with the varying outside envi-

ronment till its final terminal pattern is established.

10.2.2 The meaning of homogeneity

In order to study the deformation pattern on a comparable basis, the di-
mensionless deformation distribution histogram developed in Chapter five
is applied., In a homogeneously distributed deformation, every elements

in the specimen attains the same degree of deformation and the distribut-
ion curve of the deformation is a horizontal curve at the top of the
dimensionless histogram. Thus, any non-homogeneous deformation will
change the curve into one below that horizontal line. So, the homogeneity
value can be defined as the ratio between the total actual deformation Wa

and the total peak homogeneous deformation WT and is equal to
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1

7 - e j(—%—)a (2 10.1
T 0

Where r; is the actual deformation intensity

f} is the peak deformation intensity
ﬂ; is the actual area

a is the total area.

Therefore, the homogeneity value will be equal to one for a homogeneous

deformation and less than one for a non-homogeneous deformation.

10.2.3 The characteristic equation of homogeneity

In section 10.2.1, it has been suggested that every upsetting process has
its own characteristic distribution of deformation which is conditioned
by its own initial stage and varies according to the changing external
environment. Thus, the homogeneity of deformation is a function of the

process parametex"r;wmich is the reduction in height and is equal to

4 - G +e( L) 10.2

where é;is the initial homogeneity value,

f is a funection.

The first term on the right hand side in the above equation (10.2) is the
initial homogeneity value. It is the projected homogeneity value for a
particular process in which the pattern of distribution of deformation is
assumed to have been established right at the beginning of the deformation

by the outside environment. This projected value is a constant in a
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particular deformation process. So, for a virgin material, when the load
acts on the specimen, the initial homogeneity wvalue can be any value
depending on both the initial frictional condition at the too0l/work in-
terface and the subsequent deformation patterns. For a pre-forged spe-
cimen, the new initial homogeneity value for re-forging will be the
previous final homogeneity value plus the effect of the new initial
deformation. The new value can never be equal to one unless both the
previous pre-forging and the new deformation are homogeneous. The second
term is a function of the process parameter‘féamd by differentiating

the equation, we can get the following : -

o
5%
=3

= d _f_e 10-3

joh

=

The differential of the homogeneity equation indicates the trend of the de-

formation distribution of the process.

10.2.4 Some aspects of the homogeneity of deformation

Apart from upsetting between flat and parallel platens, absolutely homo-
geneous deformation is not even geometrically possible. In any actual
forging process it is,for obvious reasons, advantageous to achieve as
nearly homogeneous deformation as possible. It is, therefore, interes-

ting to investigate the factors which favour homogeneity of deformation.

If the stress is always homogeneous throughout the workpiece, the defor-
mation must be homogeneous. Friction causes non-homogeneity of stress,

hence, the higher the friction, the less homogeneous the deformation.
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On the other hand, the non-uniform distribution of the flow stress in
the material due to work-hardening improves homogeneous deformation
distribution. Take an example of two materials, A and B, subjected to
the same forging process, where A is very highly work-hardening and B is
hardly work-hardening at all. When non-uniform strains are developed in
B, the flow stress remains constant, so that non-uniform deformation
continues to develop under the heterogeneous stress conditions. In
contrast, as soon as non-homogeneous strain develops in material A, the
flow stress becomes very uneven so that the deformed parts require much
higher stresses for further deformation and the relatively undeformed
parts will flow much more easily. Thus, even under non-homogeneous stress
conditions, the deformed parts will cease to flow until the relatively
undeformed parts are also work-hardened to somewhere near the same level
of hardness as the parts already deformed. In other words, deformation

will tend to be dispersed.

10.2.5 The homogeneity of deformation in upsetting processes

The dimensionless deformation distribution curves are used to show the
distribution of deformation at various reductions in height on a compa-
rable basis. When the deformation is nearly homogeneous, the distribution
curve will be a curve near to the straipght horizontal line of the homo-
geneous deformation. The dimensionless distribution curves for the
deformations with or without lubyvication are shown in (fig.10.2 and 10.1)
respectively. It can be seen immediately that there are two distinctive
trends in the changes in shape of the distribution curves under contin-

uous reduction in height.
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In the first diagram, (fig.10.1), the area beneath the curve increases
with the reduction in height. On the other hand, the latter graph,
(fig.10.2), shows the reverse trend, i.e., the area decreases with the
increase in reduction in height. Since, the area beneath the distribu-
tion curve indicates the degree of homogeneity, the unlubricated process
as shown in (fig.10.1), shows that the deformation starts off with a low
homogeneity value, in other words, the deformation is severely non-
homogeneous. But, as the deformation proceeds, the degree of homogeneity
improves. On the contrary, lubrication at the tool/work interface pro-
duces a high initial homogeneity value. But, the gradual decrease in
the value indicates that the deformation becomes less homogeneous than
before. This reduction in the degree of homogeneity also coincides with
emergence of the deformation zones as shown in (fig.9.!8 ). The two
different trends for the two deformation processes are summarised in
(£ig.10.3) which shows the homogeneity value as a function of the reduc-

tion in height.

10.3 Concluding remarks

All throughout the chapter, it has been demonstrated that an actual de-
formation can hardly be homogeneous and so is the damage to the strength
of the forging. Therefore, the distribution of deformation in the spe-
cimen has to be included when considering the degree of forging. The
distribution of deformation in a specimen was represented by the homoge-
neity value suggested in the last section. This homogeneity value is a
function of the process parameter iZ . Apart from the ideal homogeneous

deformation in which the homogeneity value is equal to one, all the other
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deformations will have the homogeneity value of less than one. It can
be seen that the smaller the homogeneity value, the larger the differ-
ential between the peak and the lowest deformation in the specimen and
the zonal development is more distinct than the deformation with a larger
homogeneity value. So, more severe damage to the strength of the for=-
ging will result with a low homogeneity value of deformation than the

one with a high homogeneity wvalue.

A work-hardened material by theory tends to improve the homogeneity of
deformation under continuous loading even though the stress distribution
is non-uniform. On the contrary, the flow stress of the non-work-hardened
material remains constant, so that, non-uniform deformation continues to

develop under the heterogeneous stress condition.



CHAPTER ELEVEN

Redundant Work and Redundant Deformation

of a Perfectly Plastic Medium
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$is1 Introduction

Engineers have, hitherto, talked about forgeability of metals in terms of
fracture due to deformation, but, in fact, forgeability cannot be quanti-
fied by Jjust looking for the appearance of cracks, as thgy may exist in
of obsevvatin.

areas which are inaccessible to all optical means, So, a new idea has to
be found to relate the forgeability with the damage to the strength of
metal through deformation. Again, damage is hard to detect and there are
so many types of damage to the metal that none can be used alone in de-
fining forgeability. Therefore, the logical step is to find the deforma-

tion that the specimen has experienced. Actual deformation has been found

to be non-uniform and so is the damage to the strength of the forging.

The old idea of representing the degree of forging by the reduction in
height has to be dropped because of the non-homogeneity of deformation
existing in most forgings. The analysis of small strains has also to be
abandoned because the magnitude and directions of deformation in forging
are of such a nature that the superposition of strains is impossible. So,
the only proper route to the study of forgeability, via the damage to the

the strength by deformation, is by the analysis of large deformation.

With the application of the analysis of large deformation developed in Part
A of this thesis, the deformation phenomena in the upsetting process have
been studied thoroughly as given in the previous two chapters. Not only
two types of deformation zones have been found, there are, in fact, five
various zones and the zonal elements behave quite differently. So, it can
be seen that the study of forgeability cannot do without the analysis of

deformation zones which, in turn, determine the homogeneity of deformation
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in a specimen. The latter is essential in representing the degree of for-
ging, because any average value, such as the reduction in height, is a

poor measure. The distribution of deformation represented by the homoge-
neity value of the deformation is important in the consideration of the
degree of forging because a deformation with a low homogeneity value is
bound to be more damaging to the strength of the forging than the one with

a high homogeneity value, other things being equal. This is true because

a low homogeneity value means that the deformation of a specimen is severely
non-homogeneous and this extreme concentration of deformation encourages

crack growth (65,69).

If the upsetting process is looked at from the point of view of work con-
sumption, it can be seen that any extra work required to reduce the specimen
to a lower level will produce one with more deformation than theoretically
necessary. This extra amount of work may either be directed to deform those
scarcely deformed elements in the specimen or to encourage crack growth in
those already highly deformed elements. The former will cause the distri-
bution of deformation to become more uniform while the latter is fatal to
the forging. Therefore, the following chapter is devoted to the analysis

of work done, the redundant work and the deformation dispersal efficiency

of the processes.

1.2 The total work done in upsetting process

11241 Deformation distribution curves

51,87,58)
Many engineers (7045,assume that the work consumed in deforming a specimen
n

is a simple function of the reduction in height. Since an actual deformation
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is found to be never homogeneous, the total work done can never be a simple
function of the reduction in height alone. It should be, in fact, equal

to the sum of all the work done by every element in the specimen, in which
the individual degree of deformation is not the same. In our analysis

as suggested in Part A, the extent of deformation of an element can be
represented by the scalar value called the deformation intensity factor I
and it is used extensively in the last two chapters. For a perfectly plastic
material, the dimensionless work is equal to the deformation intensity factor
[T , assuming the constant flow stress to be unity. When all the defor-
mations of every element are plotted against the percentage of area occu-
pied, a deformation-distribution-histogram can be derived. It can be seen
immediately that any non-uniformity in deformation will change the shape of
the deformation distribution histogram. A homogeneous deformation means
that, the deformations of every element are the same and on the histogram,
the distribution curves will be just horizontal straight lines. Any non-
uniformity in the deformation of the specimen will be reflected as a change
of shape of the distribution curve from horizontal lines. Figs(11.1and11.2)
are deformation distribution curves of the lubricated and unlubricated
processes. 1t can be seen that the lubricated process producesjflatter

distribution curve than the unlubricated process.

11242 The work done on a perfectly plastic body

By what is said in the above paragraph, deformation intensity varies from
point to point and can be plotted in a histogram. Since the work done on

a perfectly plastic material, as developed in section 6.1.1 is equal to

W o= U:de
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the dimensionless work done per unit volume,A, is then equal to

A =-£0:Ljar

=jdr

where 0, = yield stress

{" = deformation intensity
and it means that the dimensionless work done per unit volume will vary
according to the deformation intensity value. Therefore, the total dimen-
sionless work will be equal to the area beneath the deformation distribu-
tion curve. It can be noticed that every process will consume a certain
amount of energy and, for the same reduction in height, different processes
will consume different amounts of energy. Again, here, the use of the
reduction in height as the sole representation of the degree of forging
can be seen to be inadequate. For the work done by different processes,
represented by the reduction in height in which homogeneous deformation
is implied, will be the same. The limitationin using a poor measure to re-
present the degree of forging, which leads to the subsequent wrong conclu-
sion in work consumption, has been perpetuated in the past. In fact, the
old idea of relating the reduction in height with forgeability is wvery much
vulnerable to the change in shape of the deformation-distribution curve.
As given in (fig.11.3), it can be found that the work done for the same
reduction in height depends on the outside constraints that the specimen
has experienced. The discrepancies in work consumption from the homogene-
ous deformation depend on the nature of the distribution curves. In (fig.
11.3), one thing stands out in that the work done by a piece of perfectly
plastic metal, compressed between a pair of lubricated dies, has been found

to be less than the work consumed by the homogeneous deformation.
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This observation is found to have contradicted the general belief that the
ideal process is the most efficient process and consumes the least amount
of work. But, these apparent discrepancies may be due to the following
two reasons. The first reason is what most researchers did in concluding
that the ideal process is the most efficient, is that the processes they
have investigated are deformation processes in which deformations are res-
tricted in all directions, such as the extrusion process. Whereas, iﬁjfree
upsetting process, the restriction is one degree only. So, an ideal
upsetting process, in which every element is deformed similarly, may not
be as efficient as the lubricated process in which some elements take most
of the load and the remaining regions are deformed less than the average
deformation. The second reason is the ‘hypothesis made in assuming that
the metal behaves in a perfectly plastic manner and this theme is explained

in more detail in the following section.

11.2.3The effect of strain hardening on the total work done

In Chapter six, we assumed that the metal behaves as a perfectly-plastic
body and with that assumption,a dimensionless work can be derived. If,
however, strain hardening is taken as the actual behaviour of the metal,

then the effective stress will be equal to : -

G =g(€) 11.1

where 0 = effective stress,
€ = effective strain,
g 1is a function,

and the work done per unit volume of an element will be : =~

w=jg(fé)dé 14.2

As shown in (fig.11.4), the work done on a perfectly-plastic-element, equal

to area A, is less than the work done on a strain hardened element (A+B).
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So, if the strain hardening effect is taken into the consideration of the
work distribution histogram, the total work done will be higher than the

work done by the perfect plastic material as given in (fig.11.5).

11.3 Redundant deformation and redundant work in a perfectly plastic

body
Hi11 (27,25) and Richmond (14,66) have proposed the concept of redundant
work by comparing the work done in the actual process with that in the
ideal process. In the upsetting process, it can be seen that there are
several ways to reduce the specimen to the same level of reduction in

height, disregarding the shape of the side faces.

As suggested in section (11.1), any extra amount of work required to re-
duce the specimen to a lower height may be diverted either to act on those
scarcely deformed elements thus improving the homogeneity of deformation,
or to further the concentration of deformation which may lead to crack
growth. So, the following section is the analysis of redundancy in both

deformation and work and lastly of the deformation dispersion efficiency.

11.3:1 The redundant deformation and redundant work

As suggested in the above paragraph, there are several ways to reduce a
specimen to the same level of reduction in height. So, the difference
between the ideal total work and the actual total work is called the re-

dundant work of the process.
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The dimensionless redundant work for the perfectly plastic body is given

by equation (6.13),

or
LTS jr.la (2
T T
where AR = redundant work,
A, = actual total work,
A.+ = total ideal work,
i

[: = actual deformation,
[1 = ideal deformation,
a4 = actual area occupied by the actual deformation,

total area.

W
I

In overcoming the outside constraints such as friction at the tool/work
interface, more work is needed and so is the redundant work required.

This is shown to be the case in (fig.11.6). As the ideal reduction process
consumes more work than the process with lubricated dies, the redundant
work so defined, is negative. See (fig.11.6). But, this trend tends

to reverse at higher reduction in height which coincides with the emergence

of the deformation plateau as in (fig.9.25 and 9.26).

The difference between the average total deformation and the ideal defor-
mation is called the redundant deformation. Equation (6.13) gives the
difference of the two amounts of work done in the process. Since the ideal
deformation and the average total deformation .flw are constant, equation

(6.13) can be replaced by
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AR =((r¢u) = Fl)jd(%) 11.3

where [’i is the ideal deformation
and the term inside the bracket ( ( [,,) - fﬂi) is the redundant defor-
mation [ﬂ .

Then equation (11.3) becomes
e = L4 Jd (2s-) 11.4

and the redundant deformation is similar to the redundant work of the pro-
cess. Fig.(11.6) shows the same curves as the redundant work but with a

different ordinate. It can be seen that in order to reduce the specimens
to the same height, some processes deform the specimen more than the other

processes.

13342 The efficiency of deformation dispersion

In Chapter six, it has been shown that the success of a process depends
partly on how efficiently the deformation is dispersed throughout the
whole body of the specimen. Hill, Richmond and Davernport (27,66,14) in
analysing extrusion processes, have stated that the most efficient reduc-
tion process is the one in which the deformation is uniformly distributed,
or the ideal process. The higher the efficiency of deformation dispersal,
the better the process is in termsof work consumption. The lesser the
work consumed, the less the likelihood of crack appearance, so that,

severe concentration of deformation will be reduced. The efficiency of
deformation dispersion developed in section 6.4.2 is repeated here, and the

efficiency equation is
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z; = (4 SR ) x 100% 6.14
Ast
where Ap = redundant work,
A._ = total ideal work.
= i

Fig.(li.?) shows the efficiency of the unlubricated and lubricated processes.
It can be seen that the lower the efficiency; the higher the work consumed
and the lubricated process is the most efficient process in achieving the

same overall reduction in height.

11.4 Concluding Remarks

Once again, it has been demonstrated all throughout this chapter that the
forgeability of metal or process is not a simple matter that can be handled
by a single factor such as the maximum reduction in height. The use of
this factor is fundamentally based on the tacit implication that the de-

formation is homogeneous.

In the last two chapters we have already concluded that an actual defor-
mation can hardly be homogeneous. Zonal developments, their distinctive
zonal behaviours and their resulting deformation patternsmeasured by a
homogeneity value, are all parts of the natural phenomena revealed in our
study. So, it can be seen that the work consumption of various processes
can never be the same and the differences in work depend on the shapesof

the deformation-distribution curves.

In our upsetting experiment, it has been found that the total work con-
sumption is greatly influenced by the nature of the deformation distribution

curve. The old concept of work consumption is related to the reduction in
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height alone, is proved to be extremely vulnerable to the change in the
shape of the deformation-distribution curves, or in other words, the
homogeneity of deformation. For the same reduction in height, the work
consumed by the unlubricated process is far in excess of the ideal as well
as lubricated processes. In fact, it is the lubricated process which con-

sumes the least amount of work.

The difference in work consumption for the same reduction in height by
different extrusion processes have been suggested by Hill (27) and Richmond
(66,14) and they are called the redundant work. In the upsetting process,
the same term can be applied. It is found that a negative redundant work
exists in the lubricated process in which the deformation is not uniform.
In other words, a lubricated process produces a slightly non-homogeneous
deformation and consumes an amount of work less than both the unlubricated
and homogeneous deformation processes. The subsequent deformation disp-
ersal efficiency which is the ratio of the amounts of redundant work to
the ideal work, has also confirmed that the lubricated process is the most
efficient one. This is contrary to the concept suggested by the above two
pioneers, that the ideal homogeneous process should be the most efficient
one. But, as we can see i;:§psetting process, the boundary constraint is
one degree only, (i.e. the reduction in height,), Unless the deformation is
restricted in every direction such as the extrusion process, in an ideal
upsetting process, every element 1s deformed in the specimen and may not
be the most efficient process in reducing the specimen to the same height.

The amount of redundant work in the free upsetting process such as ours,

may have caused the samesevigous side effects in the forging or the process
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itself. Since an actual deformation can seldom be a homogeneous one, the
extra work or redundant work, is most likely used in creating a severely
concentrated deformation pattern as in the unlubricated process in our
experiments. Any highly concentrated deformation regions are usually sites
for crack propagation. In another words, the extra work consumed is used

for encouraging the crack growth which can be seen in several research

papers (69,65).

Die wear is another problem related to this redundant work. As suggested
by some researchers (39,80,71) extra work required to overcome the friction
at the tool/work interface must contribute to the abrasive wear of the
forging dies. Since the work used to overcome the friction causes a con-
siderable rise inj;;mperature of the dies and enhances the weakening of

the surface material, the die life is reduced. So, redundant work is most

undesirable because it shortens die life.



CHAPTER TWELVE

The Spreading and Filling

Characteristics

of the Forming Process
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121 General considerations

Up to this chapter, we have discussed the significance of forgeability

by means of studying the damage to the strength through deformation, in
other words, the study of the distribution of deformation so that a degree
of forging can be properly established. It has been demonstrated through-
out every chapter so far that the searching forcracks is outdated and
unrealistic and that the old idea of relating the degree of forging to

the reduction in height leads very much to fallacy. On the contrary,
actual deformations can hardly be homogeneous and the total work consumed
by the deformation is never the same. In other words, processes condi-
tioned by different environments such as friction at the tool/work inter-
face, consume different amountsof energy and produce various deformation

patterns.

One thing has been neglected in our discussion so far, and it is that the
success of a forging process also depends on the success ofigpreading
and filling of the die cavity. The modes of the changing outside bounda-
ries of the workpiece to suit the rigid shape of the die cavity are the
aspects that most researchers have missed in the study of forging. Neither
an incompletely filled forging norzhadly filled forging with a lot of
laps (folding holes) can be claimed to be a success. Since the aim of

the project is to analyse the forging process in a thorough way, the
mechanisms behind the success of a forging process and a better forgeabi-
1ity criteria, such as spreading and filling characteristics, have to be
included in our investigation. Therefore, this chapter is totally devoted

to the study of these two mechanisms.
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12.2.1 The spreading phenomenon and the bulge profile of the specimen

under continuous loading

Fig.(12.1) shows the spreading coefficient, as defined in Chapter seven ,
of the lubricated and unlubricated processes, as a function of average
reduction strain ;f;. This coefficient derived in section 7.1, is an in-
dicator of how much the end face of the specimen has expanded as compared
with the ideal spreading. It can be seen that lubrication at the tool/work
interface has improved the sidewaysspreading of the metal initially, but
the coefficient drops and settles at around 0.25 at higher reductions in
height. In our results, the lubricant used has been exhausted early in
the deformation process and this lack of further lubricant reduces the
metal movement. In contrast, in the unlubricated process, the metal spreads
nearer to the ideal spreading as described in section 7.1.2 when initial
spreading restriction is overcome. This high spreading value is essential
for the die designer who likes to have a quickly spread product without

resorting to elaborate lubricating equipment..

It has been explained in section 7.1.5 that the bulge profile is influenced
by the differences between the spreading of metal in the middle section

of the specimen and the spread at the tool/work interface, provided the
height to diameter ratio ( H/D ) of the specimen is less than two. (if

H/D > 2, double barrelling will occur) If the difference in spread be-
tween the middle section and the top is positive, then the pnﬁﬂeis

barrel shapedand if it is negative, it is bollard shaped. The

curves in (fig.12.1) have shown that the differences in the spread. in
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both processes are positive and thus the profile is  barrel shaped

as shown in (fig.9.37).

12.2.2 The relationship between the two spreading mechanisms

In the past, it was assumed that the spreading process consists of sideways
expansion of the end faces of the specimen only. Schey (87) and others
(49) have found that spreading is not just the expansion of the end faces
of the specimen. It also includes the folding of metal from the side face

of the specimen.

In section 7.1.4, the spreading of the metal by the two mechanisms has
been explained. These are the sideways expansion of the original end faces
of the specimen and the folding of the side metal onto the contact faces.
Their relative percentage magnitudes can be derived from the following
equation : -

the percentage of sideways expansion of the original end faces, N, is equal
to

,V)xioo%

s

where s is the total spread coefficient defined in section 7.1.4.
Y is the folding coefficient defined in section 7.1.4.
Since the total spread of metal is made up of two processes,the percentage

of folding M is then equal to : -

M= 1060 - N

From the results obtained in our experiments, in an unlubricated process,

the total spread of metal at the interface is caused mostly by the folding
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of metal while the folding is less in the lubricated process. Fig.(12.2)
shows the proportion of folding against the reduction in height of both
the lubricated and unlubricated processes and it can be seen that at high
reduction,over half of the spread is. due to the folding of metal from

the side face.

12.2.3 The effect of rigid body rotation on folding

In Chapter nine, it has been suggested that rigid body rotation of the
elements in the corner regions has contributed to the folding of metal
from the free boundary surface to the tool/work interface. It is antici-
pated that a vigorous rigid body rotation of those elements near to the
free boundary and the corner zone will result in a high percentage of metal
being folded onto the contact face. Thus, a smaller degree of rotation
will produce a lower percentage of folding in the spread of metal at the
interface. Fig.(12.3) shows the rigid body rotation of one particular
element in the corner zone against the percentage of folding. It can be
seen that a high rigid body rotation correlates well with a high percen-

tage of folding in the frictional process.

12.3 The filling of the die cavity

In place of the reduction in height, it has been proposed to use the an-
alysis of large deformation. The reduction in height has, as explained
before, been thought of both as a strain and as a general measure of the
degree of forging for the whole specimen. In the former sense, namely,

a strain measure, it is now replaced by the analysis of large deformations.
It is also necessary to find a more significant measure of the degree of

forging for the workpiece as a whole. The measure proposed for this purpose



= 438 =
is the filling coefficient. If a forging is incompletely filled, it is
treated as scrap and the process has failed. The coefficient is, thus,
developed to indicate how near a forging is to its completion and how

the various parameters influence the filling process.

For the sake of simplicity, an axisymmetrical, cylindrical forging is
chosen for the investigation of the filling processes. As there are so
many parameters affecting the process, some of them are isolated so that

the effect of the others can be analysed more precisely.

12.3.1 The height to diameter ratio ( H/D ) of the specimen

The relationship between the H/D ratio of the specimen and the H/D ratio
of the die cavity is essential in determining the spread of the filling

the
process. As our experiment is concerned with,filling of a die of simple

¥
shape, cylindical dies are used throughout the experiments. When the H/D
ratio for the die cavity is one, the cavity will be filled quickly provided

the H/D ratio for the specimen is near to one as in (fig.12.4).

In the figures (12.4 to 12.6), it can be seen that there are different
rates of filling throughout the process. Before the specimen touches the
side face of the die, the rate of filling is rather low and consists mainly
of the spreading of the end faces of the specimen. But, after the specimen
touches the side face, the rate increases quickly and the H/D ratio of the
specimen plays an essential part in the speed of filling. $So, it can be

derived from these two distinctive ratesof filling that if the die profiles

as shown in (fig.12.7a and b ) are to be filled by the same size specimen,
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the one in (fig.12.7b) will be filled faster than the one in (fig.12.7a).

12.3:2 The effect of extra volume of metal

In all the results mentioned so far, the volume of metal of the speci-
mens are within one or two percent of the exact volume of the die
cavity. But any extra volume of metal has been found to have great
influence on the filling process. Fig.(12.8 and fig.12.9) show the
filling characteristic of specimens which have excess metal. It can

be seen that the speed of filling increases with the amount of extra

volume of metal in the specimen.

In(fig.12.10) are curves for the effect of any extra volume of metal
in the specimen. Increase in the volume of metal has quickened the

filling process irrespective of changes in H/D ratio of the specimen.
Therefore, if the amount of energy consumption of a forging is neglected,
it can be said that anincrease in the volume of the specimen will result

in a quickly filled cavity.

12.3.3 The loading factor in the filling process

The load situation has not so far been discussed in the previous argu-
ments. Nowadays, load required is one of the essential considerations
which every die-designer has to consider. As the press capacity is equal
to the peak load required to deform the specimen, any saving in maximum

load requirement will mean the same amount of saving in press capacity.

If the press has to provide more load than the forging required, then
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the excessive load, according to several research papers e.g. (39,80),may
contribute to serious die wear problems. Therefore, a proper design
of the forging will reduce the die wear problems and the choice of the
right press size will provide an optimum usage of machines. Fig.(12.11
and 12.12) show curves of load against the filling coefficient of the
forging process. It can be seen that a specimen with the same volume as
the die cavity consumes the least amount of load in filling the die cavity.
Practically, specimen with the exact volume as the die cavity is difficult
to produce a completely filled forging. So some extra amount of volume is

desirable.

It is shown in (fig.12.11 and 12.12), that the load rises slowly when the

die is nearly filled, especially after the specimen touches the side of

the cavity, but relatively rapidly in the early stages. (But the load rises
sharply when the die is nearly g;gggg.) The filling process consists of

two stages, one, the spreading of the metal on the end faces and the other,
the complete filling of the side of the cavity. As the load increases more
rapidly in the early stage, and the early stage is just the filling of the
end faces, it can be seen that more load is required to fill just the end
faces than the filling of the sides of the cavity. See (fig.12.11 and 12.12).
In addition, after the specimen touches the side of the cavity , the specimen
with more metal will fill the die quicker than the one with the lesser

amount of metal. Fig,(12.13) shows the summary of curves with the load
plotted against the extra volume of metal with the H/D ratio of specimen

varying from 1.5 to 2.0.



- 13-

When complete die filling is not the principal criterion in selecting a
a
process then,specimen with the exact volume is ideal for minimizing

the load.

12.4 Concluding remarks

Throughout this chapter, we have discussed the two essential phenomena

in forging processes. The spreading of metal at the end face of the
specimen is presented separately from the filling characteristic of a closed
die forming process. The spreading has been found to consist of two se-
parate processes. These are the folding of metal and the sidewaysexpansion
of the original end faces. The folding process has been seen to be the
dominating mechanism in the spreading process. Iubrication reduces the
proportion of folding in the spreading process, but over half of the sprea-
ding of metal in this lubricated process is due to the folding process.
Rigid body rotation of elements near to the corner zone and the free boun-
dary have been found to influence the folding process. Since friction
encourages the rigid body rotation of elements in those regions, folding

is also very severe in the unlubricated process.

The filling process which is the essential criteria in forging has also
been studied with the aim of a better understanding of the process. The
various effects of the process parameters are summarised in the following

table. 12-1].



*JUBSUOD DPoUTBUTEU ST L3TABD STP oUF JO OT4BI (/H oYL * HION

SUTTTTF JO oaxdep oWES 8U3 JIOF @  =m=———— 9SBOIOUT SutsesIOUT
SUTITTI JO eeaxl8ep owWes oyj} JI0JF 9SeaIoUT 9SBaJOoUT JUBSUOD
SUTTTITI JO ooxBep aues 8yl IO SEBOTOWE & 0 Jo1 s e e e 2SBaIOUT
TIEF OF MOTE = se—eem @SBaIouT 2S5BaIO8D

£1TABD. oYY TLEE OF TOHOEAD: samea SursesIout QUBLSUOD
oT4®Y Q/H

INHLOTHHHOD DNITITH avotT HNOTOA VEIXHE NEWTIDHA S

T *<T °T9®L






- 142 -

In the past, the use of the appearance of crackson the surface of the
forgingwas the sole criterion of forgeability. As described throughout
the thesis the concept of forgeability is not as simple as is generally
thought to be. This is because visible cracks in a forging are both mis-
leading and difficult to define. It is misleading because cracks may have
initiated from the inside of the specimen and those areas are usually in-
accessible to optical means or observation. By the time cracks appear on
the face of the forging, it may be already too late, as the visible cracks
indicate that the forging is falling apart rather than that it has started
to crack. It is difficult to define because the size of the visible cracks
is hard to define, as cracks visible by eye are different from those
visible through the use of a microscope. So, the inaccuracy of the method
coupled with the unsuitability of the appearance of cracks for defining the
failure of a forging requires the development of other more widely appli-

cable criteria.

The idea of relating the forgeability to the loss of strength through de-
formation is more realistic than that of standardising the means of detecting
cracks. Since the loss of strength is a continuous and gradual process, a
point must be chosen for any particular forging process beyond which a
forging must not be deformed. This end point is determined by the minimum

acceptable strength rather than by the crack size.

The end point defined by the limiting reduction in height is very unrea-
listic. To represent the degree of forging by the reduction in height has

been proved throughout the past chapters to be inadequate. The use of this
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measure implies that the deformation of the specimen is homogeneous. As
revealed in Chapter nine, actual deformation can hardly be homogeneous,
andneﬁhgzghe loss of strength. This non-homogeneity of deformation will
affect the forgeability of metal in such a way that a highly non-homogene-
ous deformation will faill mere easiky than a homogeneous one,other things
being equal. For the former represents a severely concentrated deformation
in which crack growth and exhaustion of ductility happen simultaneously.

Therefore, the use of reduction in height as a measure of the degree of

forging is erroneous.

We have indicated, so far, that a deformation can hardly be uniform,
in other words, it is a point function. Deforming a specimen produces a
deformation distribution pattern and this pattern varies according to the
outside environment such as friction at the tool/work interface. In order
to study this deformation in a thorough way, analysis of large deformation
has been developed as in Part A of this thesis so that the limitation of
both the reduction in height which implies a homogeneous deformation, and
the small strain analysis in which elastic deformation is assumed, are
eliminated. The development of this analysis came out of the necessity in
the forgeability study rather than its elegant mathematical display. In
fact, with the application of this analysis, the derivation of the defor-
mation intensity factor P , which is used to measure the extent of defor-
mation of an element, is an essential tool in the analysis of large defor-
mation. The zonal pattern of the deformation and the spreading mechanism

are also revealed.
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As a consequence of this analysis, the homogeneity value of tkedeformation
of a specimen is also derived. With it, it is possible to overcome the
inability, by the use oéiéverage value such as the reduction in height, to
represent the degree of forging of a non-homogeneously deformed specimen.
In other words, a low homogeneity value means a deformation with very
severe concentration of deformation and consequently, any further deforma-

tion may have exhausted the ductility of metal in the already highly deformed

region and work the metal beyond its acceptable strength level.

In this thesis, forgeability is based on the deterioration of strength through
deformation. Of course, forgeability is only a particular manner in which

the ductility of the material manifests itself, the manner being determined
by a practical forming process, namely, forging. It is, therefore, also
reasonable to extend this point of veiw to the concept of ductility itself,
and generalize the usual idea of ductility to mean the deterioration of stren-
gth through deformation in general, whether it is induced by forging, or

drawing, or extrusion, or biaxial stretching.

It has long been recognized that ductility depends on both the hydrostatic
compression and the deformation (12,13,67,68). For the present purpose, it
is convenient to refer to the criterion proposed by Cockcroft, namely, that

fracture will occur when

€,

4 *
Jf(%;_-l’—)aéw

where p is the hydrostatic stress,

¢ ,E are effective stress,strain,

#*

G is the local maximum principal tensile stress,

é% effective strain at fracture.
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Although the function Jeéj"( éd;_—p ) d€ in Cockcroft's formula is un-

°
known, theoretical considerations suggest and experimental results on
crack formation in different forming processes confirm that the strength
of metals in general is damaged by deformation, but the damage is mitigated
by the hydrostatic compression accompanying the deformation. Hence, for a
radial coaxial strain path, the exhaustion of ductility increases with the
deviatoric stress (OA in fig.13.1) and decreases with the hydrostatic stress
(OB in fig.13.1), in other words, for the same stress vector, (DA + OB )%,
the larger the angle, ¥, the better for the engineer. Both the deviatoric
component OA and the hydrostatic component OB are dealt with in this thesis

from the point of veiw of forgeability.

With regard to the deviatoric stress component OA, as was explained in
Chapter five, the true amount of deformation is the length of the strain
path [, rather than the finite strain as determined from the deformed grid.
Of even greater importance, however, is the distribution of the total defor-
mation. Apart from the hydrostatic pressure, the total deformation at a
point in the product represents the damage to the strength at that point.
Thus, a contour diagram like (fig.9.19to 9.26) shows the variations of the
damage, without taking the effect of the hydrostatic pressure into account.
Such a contour diagram is of fundamental importance in the study of forgea-
bility, defined with regard to the damage to the material strength. Forging
is used for parts which have to be strong, otherwise it is cheaper to cast
or fabricate the part. Therefore, when a forged product is in service it is
highly stressed. We can consider, as the designer does, the stress distri-
bution in the part under service conditions. At every point in the part

there are three principal stresses and of these principal stresses, the part
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to cause flow or fracture is the deviatoric component. Thus, if the effect-
ive stress, or the magnitude of the deviatoric stress component is plotted
throughout the product under service conditions, we will get another contour
diagram showing how much each part of the product is endangered. The
contour diagram in (£fig.9.19 to 9.26) shows, as explained before, the degree
the product is weakened. Forgeability as conceived in this project goes
beyond a test for some characteristics of the material or the process to
determine how far the forging process can proceed without "fracture', what-
ever that means. The study of forgeability as conceived here aims at the
design of the forging process to maximize its effectiveness, and a forging
process is considered to be effective if it causes little damage to the
strength of the product. When metals are deformed, some damage is bound to
be done to the strength of the material, especially when the deformation is
non-uniformly distributed , as in forging. The distinction between the
strength of the material and the strength of the product opens up the possi-
bility of rational design of the forging. The contour diagrams like (fig.
9.19 to 9.26) which show the distribution of the weakness of the material

in different parts of the product may also be seen in reverse as showing

the distribution of the strength of the product. Now, a forging process
well designed from the point of view of forgeability (as conceived here)
requires a matching of (i) the contour diagram showing the distribution of
the weakness, to the drawing showing which parts are subsequently machined
away, so that the weak regions, which are inevitable, can be designed to
take the positions of what is to be machined away; and (ii) the contour
diagram showing the distribution of the strength, to that showing the effec-
tive stress in the product under service, so that the strongest part (or at

least not the weakest part) can coincide with the part that is most endangered.
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In this conception of forgeability, a process of high forgeability is not
even one with relatively little damage to the strength of the material;
rather it is one in which severe damage can occur, but only in regions to

be machined away, and some damage occurs, as it always does in forging,

but only where the stress in service is low. In other words, no engineering
material is perfectly forgeable, and in so far as all of them are not per-
fectly forgeable, they suffer some loss of strength when forged. The present
study of forgeability proposes that the inevitable loss of strength should
be placed where it does not matter or, to be more precise, the weaker material
should be where it matters less, the most weakened where it matters least
and the hopelessly weakened part where it does not matter at all. Improving
forgeability is then not merely a matter of finding a more forgeable mat-
erial or a set of more forgeable conditions ( such as hot forging )y bk
also a matter of using an imperfectly forgeable material to its best forging

potentiality.

The application of such a concept of forgeability wil#lead to totally new
avenues of design principles. Instead of designing the shape of a forging
for the function of the product, the shape and size should also be designed
with due regard to its forgeability -- as it is conceived here. For example,
by the criterion of forgeability proposed here, a forging may take a part-
icular shape because of the advantageous re-positioning of the most severely
deformed zones. Machining may be done on the forged product for no funct-
ional reason, but in order to remove weakened material. Or else, some bulk
may be added in the design to certain parts of the forging to gain a more
suitable distribution of the deformation. Indeed, it is not altogether
inconceivable that some bulk may be added in a sophisticated design, so

that it takes the greatest deformation from other more essential parts of
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the product and then the added bulk is machined to strengthen effectively
the product. Such applications to forging design would not be possible
without a valid analysis of the non-homogeneous deformation as is proposed

in this thesis.

As it is, the soundness of forgings are at present often judged by what

are called "flow lines" —-- which neither are lines nor represent any flow,
being streaks formed by the elongated grains and revealed by etching.
Needless to say, "soundness", itself an ill-defined concept, is somehow or
other guessed from the appearance of these "flow lines" in some intuitive
manner, at its best of a hit -and miss nature and its worst, pure magic.
That suchj;nspection technique is still widely used is a symptom of the

real need for a strain analysis that is related to forgeability. Indeed,
"flow lines" may be considered to be a kind of primitive strain analysis
based mostly on artistic imagination. What is achieved in this project is
the 1ifting of the strain analysis from the intitive level, at which elong-
ation of grains get confused with flow, to a scientific and rigorous level,
at which large deformations are properly split into their essential compo-
nents. An incidental and curious consequence of the mathematical analysis
practised here is the revelation of the home-spun character of the evaluation
of forgings by "flow lines". In that method, the acute need for some analy-
sis or other had overwhelmed even the demand for clarity and vigous in
the technologists, to make them resort to a vague method suggested by ima-

gination and supported by the half-obscurepatterns of fictitious "flows".

As suggested by Siebel and confirmed in our expeiments,different degreesof

deformation exist in a zonal manner when a metal body is compressed. In
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fact, two main groups are found, which are (A) the active or shear zones,

and (B) the passive or dead zones; as shown in (fig.9.15 to 9.18).

These groups are further divided into five different zones as shown in (fig.
9.28) namely, the central uniaxial zone (1) the corner zone, (2) the shearing

zone, (3) and the two dead metal zones, (4) and (5) as shown in(fig. 9.28).

The history of deformation is recorded in the strain path. In a deformable
medium, the various elements will have their own local behaviour which may

or may not conform to the overall bulk behaviour. In terms of strain paths,
different zones will have dissimilar paths in magnitude, and in nomeoaxiality.
In general, we can say that the paths in the shearing zones are characterised
by their large magnitudes in deformation. The curvatures of strain paths
reflect +the non-coaxiality and the changing strain ratio of the deformable
elements. The curvature of the paths is found to be quite similar exceptfar
the one in the central zone. This means that the larger the radii, the more
nearly coaxial the path will be and this is reflected in the strain path

plot for the centml zone.

Rigid body rotation of the deformable element is usually neglected in the
deformation analysis. In fact, it influences not just the principal direct-
ions of the incremental stresses, but also the physical shape of the whole
specimen. All the other zones exhibit a small degree of rigid body rotation
excepgrthe corner region and those along the free boundary. Friction en-
courages the rigid body rotation of these elements in the unlubricated
process to rotate to twice that amount achieved in the lubricated speci-

men. Furthermore, this bodily rotation has been found to be the main
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mechanism in the folding of the metal.

Previously, the work done by various upsetting processeswas assumed to be
a function of the amount of reduction in height. Owing to the fact that
deformation is hardly homogeneous ., work consumed by the various processes
should be different and should depend on the outside constraints such as
friction existing at the tool/work interface. In fact, for the same
reduction in height in upsetting processes, the work done has been found
to be not the same for the same material and the difference between the
work required by the ideal process and the work done by the actual process
is called the redundant work. Naturally, the redundant work means more
work consumed than required and this extra amount of work may induce fur-
ther concentration of deformation, crack growth, die wear problems and the

usage of press capacity.

It is also necessary to find a more significant measure of the degree of
forging for the specimen as a whole. So, the measure proposed for this
representation is the filling coefficient. In the forging studies, the
filling process is seldom investigated because of its complexity. But, an
incompletely filled forging is usually treated as scrap. So, the degree
of forging has to include the consideration of whether or not the specimen
is near to its completion by means of the filling coefficient developed

in Chapter seven.

It has been found that when the height-to-diameter ratio H/D of the die
cavity is unity, any increase in H/D ratio of the specimen will slow down

the filling process. As can be expected, this filling process will be
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speeded up when the H/D ratio of the die is less than 1. Extra volume of
metal added will generally speed up the filling process irrespective of

the specimen H/D ratio.

The stress compoent OB, in (fig.13.1), does not, of course, contribute to
the tendency towards deformation but only adds to the load on the forging.
In the chapter on the filling characteristics (Chapter twelve), it is shown
how the load increases rapidly when the die is nearly closed, especially
after the work has touched the sides of the cavity, but, it is retatively
low in the early part of the forging process. The forging load is bound
to increase in any forging process, owing to strain-hardening and to the
hydrostatic stress in the later part of the stroke. Nevertheless, from
the point of view of damage to the strength, the ideal forging load is one
which is relatively high at the beginning and increases 1little during the
stroke. In such a process, the hydrostatic compression is high throughout
the process, so as to mitigate the damage to the strength of the material
and the load is not increased very much, so that the capacity of the press
is not wasted in most parts of the stroke. As it is, the natural tendency
of the forging process is such that in the major part of the stroke the
material is deformed without high hydrostatic compression, causing damage
to the strength of the product, and towards the end of the stroke, the
hydrostatic pressure is greatly increased but the amount of deformation
then is very small, that is, the protective influence against damage is

ineffective.

The abrupt increase in the forging load at the end of the stroke is unde-

sirable in practical terms for several reasons. In the first place, a
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large capacity of the press is needed for only a small part of the process.
In the second place, the high load towards the end of the stroke endangers
the die, especially since it is almost an impact load. Even if the die

does not break, it is likely to be deformed and worn after long use.

The individual behaviour of various elements in the whole body of the metal
will collectively determine the bulk reaction towards external conditions.
A similar performance for each individual element will result in a homoge-
neous deformation, a zoneless distribution pattern, a uniform spreading at
the free boundary, and in fact, an ideal deformation. Apparently, in actual
processes, this ideal situation is far from the truth and various elements
will behave according to their "locality" which result in a non-homogeneous
deformation pattern. In forging practice , a non-homogeneous deformation
is the result of both the metal and the process being unable to disperse
the deformation. This concentration of deformation and the subsequent
building up of strain gradient between the shear zones and the dead zones
are found to have encouraged the growth of hair cracks internally which are
undetectable from the surface, as shown in papers on fractures (65,69).
Unless subsequent machining is aimed at removing the severely deformed area
leaving those dead or less deformed metal as the finished product, non-

homogeneous deformation is undesirable.

Rigid body rotation provides the folding mechanism and frictlon encourages
the rotation. Furthermore, friction produces a quicker spread of metal
than the lubricated process which is contrary to what is generally believed

to be the case. Again, in forging practice and design , it has been
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suggested that spreading in a form of folding has speeded up the filling
of the end face of the die cavity. But, in closed die forming processes,
this folding of metal from the side face of the specimen may be prevented,
by the contact of the specimen with the sides of the die, thereby, making
filling cqhers much more difficult. Futhermore, forging defects such as
laps which are formed whenever métal folds over itself will be found owing
to the folding of metal. 1In the design of forging dies, the ability for
the metal to flow easily determine the choice of the corner radii, fillet
radii and sometimes the draft angles. Take an example of comparing the
corner radii of aluminium and tungsten (70) forgings. We anticipated that
aluminium can flow and rotate more freely than tungsten, and the result is

that the corner radii for tungsten must be at least twice that of aluminium.

In practice, when complete die filling is not the principal criterion in
selecting a process, the minimization of load may assume considerable

importance.
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Like the study of formability and drawability in sheet metal forming or

the machinability in metal cutting, the forgeability of metal involves a
wide range of material as well as process parameters that the present
knowledge is outdated and overstretched. A more precise understanding of
the forging mechanism and consequently forgeability, is much needed in
securing a better competition with the other processes. The concept of
forgeability as conceived here as the deterioration of strength in the
forging, is of such an important and wide application in the forging in-
dustry that only a part of its implication can be dealt with within the
scope of the present study and many other investigations immediately suggest
themselves. But, there are only a few which stand out and warrant further
study. The first one concerns the improvement in the experimental technique
much used throughout the present project. The others are more fundamental
in the study of forgeability problems in forming processes, that is, the
detection of structural damages. The last area worth further investigation
is the flash behaviour in the closed die forming which determines the

£illing process of each forging.

14.1 The improvement in experimental technique

In this project, the essential bottlenecks, if it can be called that, are
the co-ordinates measurements of the distorted grids. As there are more
than four thousand readings at each stage of reduction, the time consumed
for this laborious and eye tiring, manual job is relatively large (around
two to four weeks). Furthermore, another problem arises from this lengthy

process in that ageing of the material will occur and thus, when it is
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compressed futher:tg}operties of the material may have already changed.

In order to eliminate this side effect and speed up the measurement, a
mechanised equipment has to be used. It is found that the distorted grids
can be accurately photographed and subsequently, the specimen will be
deformed without further delay. This will minimise theageing effects.

The negative of the photograph after developmentwill be enlarged by pro-
jecting onto the measuring table which is connected to a mechanised co-
ordinate punching machine commonly used in the physics department for mea-
suring the elementary particles paths and radii of curvature etc. Therefore,
by locating a grid point on the projection table and pressing a button,
this particular co-ordinate will be automatically recorded and punched
onto a computer carde This data: will be analysed by the computer. This

method has been estimated to have saved around 70% of the original time.

14.2 The detection of structural failure

From our understanding so far, part of the forgeability criteria is the
structural failure of the forgings such as cracks appearance etc. There
are two ways to determine the damage . The first one is the detection of
growth and initiation of cracks. As cracks are, strictly speaking, not
initiated but only grow, so some scales have to be found to record their
growth. Density is one of this scale and worth further work. The next
method is the static and fatigue strength of the forging according to its

function in use.

ezl The density evaluation method

Following the above argument, density can be used as one of the standard
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scales to record the growth of cracks. In fact, quite a few researchers
have employed this tool in the studies of structural damage: and the

leading ones are Rogers, Horon, Garofalo and Wriedt (67,68,70,88,28,19).

A1l of them have found that density does decrease when deformation increases.
Their various views and methods are summarised in table 14.1 and also their
respective results presented in (fig.14.1). The decrease in density from
their results cannot be said to be related to the state of strain of the
particle directly because it is only the average reduction in area of the
whole specimen that they are considering. With the use of our strain
analysis method, a direct relationship between the state of strain and the

density variation can be found.

The density evaluation can be carried out simply by using %;himedes prin-
ciple. To detect the growth of cracks, the density has to be measured up
to an accuracy of 10—4. This accuracy can be achieved as most chemical
balances can easily measure down to a tenth of a milligram.

A. Temperature effect

The variation in temperature of the measuring media and the specimen have
been one of the major obstaclésin the design of this experiment. This is
important because a difference in temperature will affect the density
calculatio§5which is undesirable. Therefore, a constant temperature en-
vironment has to be maintained between the measuring media, the deformed
specimen and the undeformed specimen. A temperature controlled room with

variation in temperature of 1°C is desirable for the site of the equipment. .

If hydrostatic weighing method is used, then, a constant temperature bath
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with a thick copper calorimeter immersed in it is most suitable. The tem-
perature of the bath is controlled by a temperature gauge and compensated
by the ultra violet light source. The ultra violet light is used because
its radiation can heat up a large volume of the circulating medium. This
bath should be ideally kept within a variation of less than - 0.0180 and
constantly stirred. The measuring media is kept in the thick wall calori-
meter so that the good conductivity of copper and its thickness will balance
out any minor fluctuation in temperature of the media. The liquid used in
the constant temperature bath is pure water but the choice of the measuring
media depends on other factors (i) economic reason, and (ii) side effects
such as bubble-formation and corrosive action. The temperature inside the
measuring media should be maintainedi;rounii 0.005 C. It was found that
changes in the density of the measuring media, in this case water, due to

" the changes in temperature of 0.1°%C at the nominal temperature of 24°C, is

around 0.03%.

In the course of finding a better and accurate meams to control the tempera-
ture variation within the measuring media, several researchers (88,6) have
derived some specific method such as the differential weighing method in
which both a deformed specimen and undeformed specimen of the same metal

are hung on both sides of the chemical balance and the changes in density
can be derived. But, this method requires similarly complicated tempe-
rature control equipment . So a new method is desirable so that complicated
instrumentation can be eliminated. By extending Bell's mathematical approa-
ches (6), the ratio of changes in density of the specimen can be found to

be equal to
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where A%g is the change in density of the specimen
{?Sois the density of the undeformed specimen

W_is the weight of undeformed specimen in air

ao
Wlois the weight of undeformed specimen in liquid
Wanis the weight of the deformed specimen in air

Winis the weight of the deformed specimen in liquid,

R is the temperature correction factor and it is equal to

R=(1+i§+(5+,) 14.2

where 4 is the changein density of the measuring media
R is the original density of the measuring media

2 is the coefficient of cubical expansion of the measuring media,

With the use of the above equations, the changes in density of the deformed
specimen can be evaluated, provided that accurate measurement of temperature
and elimination of all damaging factors such as bubbles and surface tension

etec. can be achieved.

B. Bubble formation

Bubbleéj:sually formed when a rough surfaced metal body is immersed into a
liquid from air. These bubbles will adhere onto the rough surfaces and
increase the buoyanqy of the specimen which is detrimental to the density
measurement. They can be reduced either by physically shaking the specimen

until all the visible ones have disappeared or by choosing a high viscosity
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liguid. In fact, the latter is more effective in tackling the formation

of bubbles and one example of the liquid used is diethylphalate.

C. Corrosive effects
Some measuring media will react to the metal specimen which is no good for
density measurement. So a medium has to be chosen which is inert towards

the specimen.

D. Surface tension

The capillary action of the liquid molecules of the measuring media exerting
on the suspension wire is a headache in the precision density measurement.
Although, the force acting on the wire is minute in the weighing of the whole
specimen, yet, the changes in density of the deformed specimen areso small
that this pulling force cannot be neglected. For an ordinary wire, the pul-
ling force is estimated to be around ‘Img . Therefore, in order to main-
tain the pulling force constant in every measurement, the meniscus of the
liquid to wire interface should be kept to the same shape so that in calcu-
lating the ratio-:%Fj,in the changes in density of the specimen, the error

caused by the surface tension can be eliminated.

E. Measuring liquid level

The level of the measuring mediumis essential because any decrease or increa-
se in the liquid level means a corresponding decrease or increase in the
total immersed length of the suspension wire which, in turn, affects the
minute changes in the density of the deformed specimen. So the liquid level

has to be checked and maintained at the same height in every experiment.
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A typical layout of the equipment is shown in (fig.iu.z), and from our
tests, this method is found to be most promising in evaluating the damages

of a metal after cold working.

14.2.2 Fatigue test

In the service function of a forging, the static or the fatigue strength
of it is more fundamental in the determination of a structural failure. As
we all realise, the more similar the testing method to its real serving sit-
uation, the more realistic the testing results. Most of the forging used
in industry are under constant dynamic stress such as a connecting-rod
or crank shaft in the motor engine, which are different to the conditions
in static testing method. Therefore, it is better to know the fatigue
strength of the forged parts than the likely appearance of cracks etc., as
the fatigue tests simulate closely the actual condition that the forging
will experience. Naturally, again, with the use of our strain analysis
method, a direct relation will be found between the fatigue strength and

the state of strain of the specimen.

14.3 The flash behaviour and its effects

Flash which is a form of extra volume of metal in the forging will usually
speed up the filling process as shown in our filling experiments but also
it consumes more energy. In order to achieve a fully filled forging, a
considerable amount of extra volume of metal in the form of flash has to

be used. Firstly a series of experiments to study the flash formation mech-
anism has +to be designed. It will consist of a standard die shape and a

varying flash geometry. The resultant flow characteristic and distribution
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of deformation will determine the mechanism of its formation. The next set

of experiments will involve the study of the effects of flash on the filling
characteristic of the forming process. A completely filled forging is always
a necessity in most closed die forging, but there are several parameters
which have to be considered such as the specimen size, shape, the die cavity
shape and the flash geometry. Their inter-relationship is so complex that
their effects on the filling process due to the flash formation can only be

studied by carefully isolating some of them.
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*
Diagonalization of a positive definite and real symmetric matrix

In order to show that a general real symmetric matrix can be reduced to
diagonal form by means of an orthogonal transformation, a real symmetric
A is assumed to have distinct characteristic roots ¥, ¥, =-----m- ¥

Let x', x?, ————- x" be an associated set of characteristic vectors norma-

i =1, 2, ————— n

Consider the matrix T formed upon using the vectors x* as columns.

Schematically,

Y- (x5 - )

i P
Then T is the matrix obtained using the x' as rows,

and is called the transpose of T .

Since
T . =
A =00 5200 =i
where cS is the Kronecker delta

it can be seen that ‘T is an orthogonal matrix.

* NOTE : refer to Bellman, R., Introduction to Matrix Analysis, McGraw-Hill,

1970.
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It follows that

TAT - (% (£x)) = (% &)
or in terms of components

T Kt O
AT -
O

4
The matrix on the right hand side has its main diagonal the characteris-
tic values ( K, y Iy mm——— ¥n ) and zeros every place else. A matrix
of this type is called a diagonal matrix. This process of reducing a
real symmetric matrix to a diagonal matrix by orthogonal transformation

is called the diagonalization and is represented by the above equation.
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