
 



FORMABILITY OF SHEET METAL 

UNDER 

NON-COAXIAL AND ZIGZAG STRAIN PATHS 

A thesis presented for the degree of 

DOCTOR OF PHILOSOPHY 

of the 

UNIVERSITY OF ASTON IN BIRMINGHAM, ENGLAND. 

by 

Shiun-Yong LEE 

  

Or k9 eta Cc Ac 

\AOY1O 2 7,APR 1876 

dune, 1975.



Summary 

The aim of this thesis is to provide a wider conception 

of theformbility of sheet metal to cover a wider range of 

sheet metal products. 

In circular cup drawing, the deformation in the work= 

piece is coaxial owing to axial symmetry; in other words, 

during the forming operation, the principal axes of stress 

and strain coincide with each other and are fixed with 

respect to the material. The directions of the principal 

axes are along the meridional tangential and the circum- 

ferential directionmsall the time during the forming 

operation. In non-axisymmetrical forming, however, non— 

coaxial deformation is involved in the forming operation 

owing to the lack of axial symmetry. The principal axes 

of stress and strain do not coincide with each other and 

they both rotate with respect to the material. 

To widen the meaning of formability, it is defined on the one 

hand to mean the forming limits of sheet metal, which is 

represented by the forming limit curve; on the other 

hand, to mean the drawability of sheet metal in a drawing 

process. The forming limits of sheet metal under coaxial 

simple and coaxial zigzag strain paths as well:as the draw- 

ability of sheet metal in a circular cup drawing have been 

investigated by many sheet metal forming research scientists 

hitherto. There has not been, however, any investigation 
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on the forming limits of sheet metal under non-coaxial 

strain paths. This omission is no doubt due to the lack 

of theoretical analysis of non-coaxial strains, as can be 

seen in the usual incomplete representation for a state 

of strain by only the three principal strains. 

Although there are some investigations on non-circular cup 

drawing, they are all empirical studies, The drawability 

of sheet metal is up to now limited to ™ circular cup 

drawing and the definition of drawability is restricted to mean 

the ratio of the blank diameter to the punch diameter, as 

defined in the Swift test. 

In this thesis, a fundamental analysis of non-coaxial 

strains is pursued, A state of strain is completely 

represented by the three principal strains and the 

directions of the principal axes of strain with respect to 

the material. With the complete representation of a state 

of strain, a non-coaxial strain path can be represented 

graphically and is plotted for the first time in this 

thesis. The relation between the rotation of the principal 

axis of stress with respect to the material and that of 

the principal axis of strain is investigated. The non- 

coaxiality of the principal axes of stress and strain 

results in a type of zigzag strain path, and such zigzag 

strain path is also investigated both theoretically and 

experimentally. At the same time, the definition of 

drawability is generalised to be the largest draw-in 
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at the completion of the drawing operation so that it is 

applicable to any shape of cup drawing. An index of 

nansymmetry is proposed to specify the characteristics 

of a non-circular forming process. The large volume of 

useful experimental work which these investigations can 

lead to is discussed in a separate chapter on 

suggestions for future work. 

The achievements of this project are as follows: 

1. The investigation of non-coaxial deformations 

on both theoretical and experimental bases. 

2e The generalisation of the definition of draw- 

ability and the drawability test to cover all 

shapesof cup . 

3. The provision of a theoretical link between 

the partial view of stretchability in the 

Forming Limit Curve and Swift's Limiting 

Drawing Ratio to form a more nearly complete 

view of sheet metal formability.
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NOTATION 

A number in a 
blanket for 
example, (5) 

X,,Xq 5X1, Xo 

|aij| 
m,M 

8 

XK 

€ 

Cry G: G3 
Ay A, 

telus 

1 

the number of reference int ibliography, 

co-ordinatesof a point. 

matrix with elements Aij. 

uniform dilatation, 

the angle specifying the directions of 
the principal axes of strain with respect 
to the material. 

an angle, a pure number. 

natural strain, 

principal strains. 

areas, 

thicknesses, 

length, 

angle, the orientation of the blank 

with respect to the rolling direction. 

Characteristic index of deformation, 

gross surface strain, 

magnitude of non-coaxiality , an angle, 

a positive number, 

strains, 

elastic and plastic strains respectively. 

stress, 

equivalent stress, 

equivalent incremental strain, 

work, 

constants | 
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a a ratio, 

draw-in,. 

the area of material being drawn into the 
boundary. 

the area inside the boundary. 

the area of material being drawn at the 
completion of the drawing operation. 

the surface area of the cup. 

anvangle, the inclination of the cuts 
in coupon form specimen , index of nansymmetry , 

distance between the cuts in coupon form 
specimen. 

the orientation of the blank with tespect 
to the punch and die. 

average surface strain. 
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Introduction 

This chapter is devoted to defining the problem for which 

this thesis provides the answer. That the problem requires 

definition is due as much to the imprecise use hitherto of 

such basic terms as "formability" and "drawability” in the 

research literature on sheet metal forming, as to the need 

to delineate, for the sake of clarity, the scope and limit 

of the project. A complete definition of the problem also 

provides the schema by which the different parts of the 

research project are related to each other. 

Sheet metal is used in many different kinds of manufact-— 

uring process involving plastic deformation of metal, 

such as blanking, caining, shaving, ironing, bending, 

stamping, folding, stretching and polishing. In this 

thesis, forming is understood to be the Process in which 

a workpiece of sheet metal is clamped against a die and 

a punch pushes the sheet through a hole in the die. To 

confine the project to such a process is a matter of 

deliberate choice, based on the generally accepted usage 

of the term "sheet metal forming". It is, of course, 

understood that the sheet metal is thin enough for the 

variation of the deformation across the thickness to be 

negligible, otherwise, the process becomes one of forging. 

The need for a test of sheet metal formability is a 

practical need and research into sheet metal form- 

Continueds..cee



Cee 

ability has always been motivated by practical engineering 

problems. Formability is what formability tests measure. 

Therefore "formability" has come to mean, not a material 

property such as hardness and elastic rigidity, but the 

resistance to failure and the performance of sheet metal 

in the forming process. Those who wish to determine 

sheet metal formability do not look for a physical 

property of the material, rather they wish to know "how 

well a sheet material will stand up to the forming process". 

The precision of its meaning lies somewhere between that 

of forgeability, which has more or less the same meaning 

as ductility, and that of machinability, which has an 

even less distinct connotation. Indeed, part of the 

research and research results reported in this thesis 

consists of careful analysis and accurate definition of 

sheet metal formability. Such accurate analysis is 

necessary in any study in depth of an engineering problem. 

Without the precision in such a pedagogical study, the 

measurement of formability can hardly be serviceable in 

practical processes, quite apart from the elimination of 

semantic confusion. 

The phrase “how well will a material stand up to the 

forming process" conceals several ambiguities and tacit 

implications. A precise definition of formability is 

best found by removing these ambiguities and exploring 

these implications. A forming process (fig. 1-1) 
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consists of producing a cup or bulge out of a flat sheet. 

The phrase “how well a material will stand up to the 

forming process" implies an extent of forming to a limit 

which is a failure of material in the forming process. 

To get a precise meaning of formability, therefore, it 

is necessary first to confine oneself to a mode of failure. 

To the practical engineer, a forming process may fail by 

puckering, fracture or excessive deterioration of the 

surface finish. In this project, the mode of failure 

investigated is the mechanical failure of the workpiece, 

namely, necking leading to fracture,or fracture itself. 

It is, for obvious reasons, necessary to limit the scope 

of the research project to a manageable magnitude with a 

unity of purpose, hence the exclusion of metallurgical 

study. Such a choice in no way implies, of course, that 

the other modes of failure in sheet metal forming are 

unimportant. 

In sheet metal forming, stretching is always associated 

with drawing, and failure in the workpiece normally 

occurs in the stretching region. But the severity of 

stretching is largely determined by the conditions in 

ene drawing region. The success of a sheet metal forming 

process, therefore,relies on the strength of the material 

under forming and the resistance of material to being drawn 

in in the forming process. Formability of sheet metal is 

investigated in these two aspects. 
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The first aspect of formability is the ductility of the 

material. This is dependent on the strain path, as will be 

explained later in this thesis. In the tension test, 

ductility is measured as the percentage elongation or the 

percentage reduction in area, both of which, taken at the 

critical section where necking and fracture occur. The 

material in the tension test is, of course, deformed along 

a particular strain path. If in another forming process, 

say, in biaxial stretching, the material at the critical 

section is deformed under another strain path,then the 

ductility of material in biaxial stretching is different 

from that in the tension test. In fact,atension test is 

only one of the infinite number of forming processes and 

ductility is only the formability in a particular forming 

process. Therefore, the formability of material under 

forming in all possible forming processes, as usually 

represented by. Forming Limit Curve (RoC nt ste a 

spectrum of ductility but not a single material property. 

Because formability is strain path dependent, it is 

significant to study the strain path under which the mate 

erial at the critical section is deformed. 

However, the Forming Limit Curve hitherto has been 

investigated either by measuring the strain at the neck 

without showing the strain path (Keeler's and Goodwins! 

curves) or by measuring the strain at the neck with strain 

path leading to the limit in axisymmetrical forming 
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process so that the strain path is limited to be a coaxial 

one. A distinction between a coaxial and a non-coaxial 

deformation is made in the following. 

A square (fig,1-2 (a)) is deformed into a rectangle (fig, 

1-2 (b)). From the ellipse inside the rectangle (fig,1-2 

(b)), it is known that the principal axes of stress are 

along the fibres AC and BD when the square is deformed. 

The principal strains are measured from the major and 

minor axes A'C' and B'D' respectively of the ellipse. 

The principal axes of strain in “fig.1-2 (b) are along 

the fibres A'C' and B'D' which when referred back to 

the undeformed state are the fibres AC and BD in the 

square (fig,1-2 (a)). Suppose the rectangle (fig,1-2 

(b)) is further deformed into another rectangle (fig,1-2 

(c)). Again, from the ellipse in the further deformed 

rectangle (fig,1-2 (c)), the principal strains are 

measured from the fibres A" C" and B" D". The principal 

axes of strain in fig.1-2 (c) are along the fibres A" C" 

and BY" D" which, when referred back to the undeformed 

state,are the fibres AC and BD too. It is understood that 

the principal axes of stress are fixed and are along the 

fibres A' C' and B' D' when the rectangle (fig.1-2 (b)) is 

further deformed. Therefore, from the square (fig, 1-2 

(a)) to the rectangle (fig,1-2 (b)) and from the rectangle 

(fig, 1-2 (b)) to another rectangle (fig,1-2 (c)), the 
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principal axes of strain are fixed with respect to the 

material, and the principal strains at the two states 

(fig,1-2 (b) and fig,1-2 (c)) are all measured from the 

deformed states of the fibres AC and BD. The deformations 

from fig, 1-2 (a) to fig,1-2 (b) and from fig,1-2 (b) to 

fig, 1-2 (c) are said to be coaxial because the principal 

axes of strain are fixed with respect to the material in 

the deformations. The strain path of the material in fig, 

1-2 (a) deformed to fig,1-2 (b) and then to fig,1-2 (c) is 

a coaxial one. 

Figs.1-3 (a) and (b) show the same deformation as that in 

figs.1-2 (a) and (b). The principal axes of stress and 

strain are along the fibres AC and BD in the square. If 

the rectangle (fig.,1-3 (b) ) is further deformed into that 

as shown in fig,1-3 (c), from the ellipse in the parallel- 

gram, the principal strains cam: Still; be obtained by 

measuring the major and minor axes of the ellipse which 

are E" G" and F" H". The fibres E" G" and F" H" if referred 

back to the state in fig,1-3 (b) and fig.1-3 (av,, 8° Gly 
respective, 

F' H' and EG, FH (fig jt-34a){bI,. From fig,1-3 (a) to fig. 

1-3 (b) the principal axes of stress and strain are along 

the fibres AC and BD and, principal strains are measured 

from the deformed state of AC and BD. But from fig,1-3 

(b) to fig,1-3 (c), the principal axes of stress are not 

along At C* and B' D', otherwise, the rectangle in fig. 

1-2 (c) should be obtained, and the principal strains 
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would be measured from the deformed state of AC and BD 

instead of EG and FH. The principal axes of strain in 

fig,1-3 (b) and in fig,1-3 (c) with respect to the 

material are not coincident, those in fig.1-3 (b) are 

along AC and BD and those in fig,1-3 (c) are along EG 

and FH. Therefore, the deformation from fig,1-3 (b) to 

fig,1-3 (c) is said to be non-coaxial. The strain path 

of the material deformed from fig,1-3 (a) to fig,1-3 (b) 

and then to fig,1-3 (c) is a non-coaxial one. Further 

discussion about the difference between a coaxial and a 

non-coaxial deformation will be made in this thesis. 

For the completeness erecornine limiting curve of sheet 

metal, it is necessary to investigate non-coaxial strain 

paths. There are some more significant reasons than the 

completeness of “forming limiting curve of sheet metal. 

The non-coaxidity of principal axes of strain will zigzag 

the strain path even when the stress ratio is kept constant. 

This zigzagging of “Strain path may bring another mode of 

failure. And, in fact, the deformations in which the 

material is deformed under non-coaxial and zigzag strain 

paths are very common in practice. Any forming process 

apart from axisymmetrical one, for example. an elliptical 

cup drawing, would involve those kinds of deformation». 

In axisymmetrical forming like a circular cup drawing, if 

the blank is not a round one there will be non-coaxial 

deformations or,even if the blank is a round one, the 

earring would induce the involvement of non-coaxial 

deformation. In*Sheet metal industry, many products are 
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not formed in one forming process, in particular, redrawing 

is widely used in deep drawinge Multiple forming 

processes and redrawing are very likely to bring non- 

coaxial deformation to the material under forming due to 

the wonalignment of the principal axes of stress in 

different parts of the forming processes. The necessity 

for exploring non-coaxial deformation is quite obvious. 

In the second aspect, formability is the performance of 

sheet metal in a forming process. As said in the second 

paragraph in this chapter, forming is understood to be 

the process in which a workpiece of sheet metal is clamped 

against a die and a punch pushes the sheet through a hole 

in the die. There are two possible cases in forming. 

One is pure stretching in which the workpiece is clamped 

firmly so that no material clamped is drawn in to form 

the wall of the shell and the punch stretches the material 

in the unsupported region. The performance of the 

material in pure stretching is usually called stretch- 

ability and can be represented by the maximum punch 

penetration as in the Erichsen test or by the average 

surface strain in the shell. The formability of sheet 

metal in pure stretching can also be represented by the 

forming limit at the critieal section, which lies in the 

first aspect of formability. The other case in forming 

ie deep drawing in which both stretching and drawing are 

involved. Drawability is used to represent the formability 
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in deep drawing. 

In deep drawing, the measure of drawability is the largest 

blank that can be used — hence the Swift!* test. 

However, the Swift'* test has probably encouraged the 

impression of drawability as a material property. In 

fact, drawability is the performance of sheet metal in a a 

forming process so it is dependent on the forming process. 

As “forming limit curve is'a spectrum of forming limits 

of, material deformed under different possible strain 

paths and the ductility of material in’tension test is 

only one of the forming limits informing limit curve, 

the drawability should also be a spectrum of the perform- 

ance» of material in different forming processes and the 

Limiting Drawing Ratio defined in the Swift's test is 
one 

only of the performances in that spectrum. 

The Swift’ test is limited to the drawing of circular 

cups. In fact, this limitation was not set by Professor 

Swift himself. The investigation of non-circular cups 

was not done by Professor Swift because he thought the 

problem of the circular cup should be solved first. To 

quote Professor Swifts- 

“When the intensity of the drawing 

and blank-holding action vary from one 

point to another, as for example, in the 

case of a pressing of square plan with 
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round corners, local distortion and the 

possibility of another mode of failure 

arises which may bring into play 

another property of the material. But 

while the simple drawing and stretching 

problem is still unsolved little purpose 

would be served by pursuing this 

more complex effect." 

Proceedings, Institute of Automobile 

Engineers, 1940, vol. 34, page 365. 

This quotation shows that the complexity in non-circular 

cup drawing was observed at a very early stage of 

sheet metal forming research. After three and a half 

decades of these remarks being made, it is surely not too 

early to pursue the "more Complex effect" which that 

writer eschewed. In this project, the definition of 

drawability and the drawability test is generalised to 

cover all shapesof cup . The quantitative distinction 

between stretching and drawing is also made in this thesis. 

The achievements of this project are therefore mainly as 

follows, 

LS The investigation and development of 

non-coaxial deformation on both theoretical 

and experimental bases. 
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26 To define and generalise the definition 

of drawability and the drawability test 

to cover all shapesof cup. 

3. To link up the drawability wakh Poewina 

Limits. Curve for a complete view 

of formability, otherwise Swift's Limiting 

Drawing Ratio and Keeler's Forming 

Limit Curve remain unrelated. 

In this thesis, the research reported is put in its 

historical perspective in Chapter 3, Review of Past 

Literature and the theoretical background of the work is 

outlined in Chapter 4. In Chapter 5 and Chapter 6, strain 

analysis is presented for both the coaxial and the non- 

coaxial case. This analysis is necessary because the 

strains in sheet metal have hitherto been investigated with 

the two definitions of elastic strain - direct and simple 

shear strains = and in some literature the engineering 

rather than the natural strains are used. The slightly 

more complicated mathematics is: therefore merely to meet 

a realistic need. The implications of the theory of 

plasticity, including the strain-hardening, Lévy-Mises 

equations and the stress-strain relationship. in the=non- 

coaxial case are discussed in Chapter 7. In Chapter 8, 

the performance of sheet metal in a forming process is 
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defined and the definition of drawability is generalised 

to be applicable to all shapes of cups. The experimental 

technique is described in Chapter 9 and the results and 

discussions are in Chapter 10 and Chapter 11. In Chapter 

12, the characteristics of a forming process in terms of 

the convergence of metal flow and an index of “« round- 

ness are defined. The conclusionsof this project are 

presented in Chapter 13 and some suggestions for 

future work are made in Chapter 14. 
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Definitions 

Because of the inconsistency in the use of the terms in 

sheet metal forming literature, it is necessary,for the 

clarity of later discussion, to define the basic terms 

clearly first. 

2.1 Strain 

Strain is the quantitative measurement of the displace- 

ment of points in a material relative to one another when 

the material is deformed. There are two strain measures, 

engineering strain and natural strain. For instance when a 

bar of material with gauge length lo is strained under a 

uniaxial tension to a length lis the engineering strain 

is (1)-lo)/lo and the natural strain, 1n (1;/lo). 

In fact, the term “strain” is»very often used as the 

abbreviation of “state of strain". In a real material, 

deformation is always three-dimensional and is represented 

quantitatively by, three direct strains which are the 

relative displacement along the co-ordinate axes, and 

six shear strains which are the tranverse displacement 

gradients. These nine components representing a state 

of strain could be reduced to three by choosing 

suitable co-ordinate axes, It is always possible to find 

three orthogonal axes passing through the material before 

the deformation, which remain orthogonal after the 

deformation. In other words, there are always three and 
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in general only three fibres in the material which are 

orthogonal to one another both before and after the 

deformation. No relative rotation occurs among these 

transverse 

three fibres in the deformation, therefore no,displace- 

ment gradient or shear strain occurs along these fibres. 

These orthogonal directions are called principal directions 

or principal axes. The strain along the principal axes 

are called principal strains. Thus, a state of strain is 

normally represented by the three principal strains 

instead of three direct strains and six shear strains. 

Strictly speaking, three more factors specifying the 

principal directions with respect to the material are 

necessary for completely representing a state of strain. 

The principal directions with respect to the material are 

very often neglected when only a state of strain is 

discussed or when the principal axes of all the states of 

strain discussed are fixed with respect to the material. 

Thisdoes not mean that specifying the principal axes with 

respect to the material is not necessary, it only means 

that in some special cases. the principal axes with 

respect to the material is less interesting. In fact, the 

principal directions with respect to the material are very 

important when two or more states of strain discussed have 

their principal directions different from one another. 

Therefore, generally speaking, there are six values needed 

for specifying a state of strain. 
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In Sheek metal forming, one of the principal axes is 

always normal to the sheet surface no matter how the 

material is deformed. This fixture of one principal axis 

cuts down the three factors necessary for specifying 

the principal axes with respect to the material to one 

only. Therefore, in sheet metal forming, a state of strain 

is completely represented by four parameters, three princ-— 

ipal strains and one to specify the principal directions 

with respect to the material. 

In this thesis, natural strain is always used because it 

is more convenient for large strainslike thase in plastic 

deformation. Also,due Potiaconereaetou ety of metal, the 

sum of the principal strains is equal to zero when natural 

strains are used. 

2.2 Coaxial and Non-coaxial Deformations. 

In sheet metal a state of strain is completely represented 

by the three principal strains and an angle specifying 

the directions of the principal axes of strain with respect 

to the material, but not the three principal strains only. 

Deformation is changing the state of strain. As long as 

deformation occurs, the state of strain of the material 

changes. The state of strain may be changed by changing 

the principal strains and keeping the directions of 

principal axes of strain fixed with respect to the material, 

or by changing the directions of the principal axes of 

strain with respect to the material. 

d Continued......
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and keeping the principal strains unchanged or by 

changing both. 

A deformation which changes a state of strain by 

changing only the principal strains but not the 

directions of the principal axes of strain with respect 

to the material, is a coaxial deformation such as that 

from fig,1-2 (b) to fig.1-2 (c) described in thei last 

Chapter. A deformation which changes a state of strain 

by changing the directions of the principal axes of 

strain with respect to the material no matter whether the 

principal strains are changed or not, is a non-coaxial 

one such as that from fig.1-3 (b) to fig,1-3 (c). 

A deformation which changes the state of strain of the 

material fromaquneformed state to a state of strain with- 

out showing the intermediate state can always be reckoned 

as a coaxial one such as that from fig,1-2 (a) to fig. 

1-2 (b) and that from fig.1-3 (a) to fig,1-3 (b), 

2.3 Strain Path 

A deformation is a change of state of strain. The 

changing from an initial to a final strain can not, of 

course, be instantaneous, nor can a material change from 

an initial to a final strain without passing through the 

intermediate stages. 

A strain path is the trace, or locus, of all the inter- 

mediate states of strain between the initial and the 
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final states of strain. Strain can always be plotted in 

a co-ordinate system and so can a strain path. A strain 

path plotted in a co-ordinate system will be a line 

threugh 
passing . he initial, all intermediate and the final strains. 

24 Forming Process and Forming Conditions 

A forming process is a forming operation which is specified 

by the forming tools, such as deep drawing and hydrostatic 

bulging. Forming conditions are conditions of forming in 

a forming process, such as condition of lubrication, size 

and shape of the blank, holding pressure and location of 

the blank and so on. 

' 

A forming process can be operated under different forming 

conditions. Changin the lubrication condition, for instance, 

may involve \a change im the behaviour of material under 

forming. This is a change of forming condition but not of the 

forming process. 

2.5 Formability 

The term “formability" is usually loosely understood to 

mean on the one hand, the resistance of material under 

forming to fernver een the other hand, the performance of 

material in a particular forming process. There has not 

yet been a clear definition for it. The large number of 

different sheet metal tests in current use, and the even 

larger number of those being proposed, are symptoms 

showing that the term “formability" has not been defined 
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with scientific precision. The question “what is the 

formability of the material?" would not make much sense 

before the question "what does formability mean?" 

is answered. 

To obtain logical precision, it is necessary first to 

distinguish between, and separate, the two aspects of 

formability, the resistance of sheet metal under forming 

to failure and the performance of sheet metal ina 

particular forming process. Unless they are clearly 

distinguished, the formability of sheet metal can not 

be sensibly discussed. 

A. Forming Limit at the Critical Section 

There are usually three types of failure in sheet metal 

forming. They are: deterioration of surface finish, 

puckering and excessive thinning leading to fracture. 

The deterioration of surface finish when a material is 

deformed is a metallurgical rather than a mechanical 

problem, and puckering is a problem of instability of 

plastic deformation which is outside the scope of this 

thesis. In the following, the failure of sheet metal is 

confined in this thesis to the excessive thinning and 

fracture only. 

In sheet metal forming, the material generally fails 
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locally. The position in the material where excessive 

thinning or fracture eventually occurs is called the 

critical section. The behaviour of the material at the 

critical section decides how far the material can be 

deformed in that forming process under certain forming 

conditions. The material at the critical section is 

deformed under a certain strain path to a state of strain 

at which © excessive thinning or fracture occurs. That 

state of strain is the limit the material can be deformed 

under that strain path and is the forming limit at that 

critical section. 

The material at the critical section is deformed under 

different strain paths depending on the forming process 

and forming conditions. Therefore, the forming limit at 

the critical section of a material is dependent on the 

strain path and if it is discussed, the strain path must 

be specified at the same time. 

Be Forming Limit Curve 

One of the two aspects of formability, namely, the 

resistance of sheet metal under forming to failure, is 

defined by the forming limit curve. 

Sheet metal can be deformed under various forming 

conditions in various forming processes,and under each 

set of forming conditions in each forming process, the 
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material at the critical section is deformed under a 

particular strain path which has an end point at which the 

local thinning or fracture occurs. If all the possible 

strain paths under which the material at the critical 

section is deformed are provided,the end points of the 

strain paths are the limits the material can be deformed, 

throu; A 

and the curve passing, these end points is the forming 

limit? curve. 

Strain paths can always be plotted in a co-ordinate 

system. Then the forming limit curve of a material is 

the curve in a co-ordinate system which covers all the end 

points of strain paths. A material under forming would 

fail when its strain path reached the forming limit 

curve. 

The forming limit curve of a material is not a simple 

material property which can be represented by a single 

index, but is a spectrum of properties which can only 

be represented by a curve. It is the limit that a 

material can be deformed without the occurrence of local 

thinning or fracture. 

C. Performance in a Forming Process 

The other aspect of formability of sheet metal is the 

performance of the material in a forming process. Many 
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sheet metal tests are proposed to rate the formability 

of sheet metal and every test has its own index to specify 

the performance of the material in the ee such as the 

maximum punch penetration, used as an index in, Erichsen 

test; the polar height at the maximum pressure used in 

the hydrostatic bulge test; and the limiting drawing ratio 

used in Swift’ test. It is understood that the test 

itself is a forming process. Therefore, formability in 

this aspect is the performance in a forming process and 

is dependent on the forming process. 

iavectual sheet metal forming, there is no process in which 

the material everywhere in the workpiece is deformed under 

the same strain path as that at the critical section. 

The material outside the critical section is not deformed 

to the strain limit but the strains are related to that 

at the critical section. By changing the forming 

conditions the location of the critical section in the 

workpiece as well as the strain path of the critical 

section may be moved so that the performance of the 

material in that forming process is changed. 

The forming limit curve of a material is a spectrum 

of innate material properties and can only be changed or 

improved by changing its chemical composition, grain size 

or heat treatment condition which are all in the 

metallurgical field. The performance of a material in 
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forming processes can be improved by choosing the 

suitable forming conditions like blank shape, size and 

lubrication and so on. 

Now it is possible to discuss the formability of a sheet 

metal by specifying the forming limit ofacertain strain 

path» or the performance in a particular forming process. 
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Review of Past Literature 
  

As mentioned in ase Chapter, the term "formability” has 

been loosely and inconsistently used in the sheet metal 

forming literature. After clearly describing the two 

aspects of formability, namely the forming limits of 

sheet metal and the performance of sheet metal in a 

particular forming process, it is possible and easy to 

review the past literature concerning formability of 

sheet metal from the point of view of these two aspects. 

In this review, due to the huge quantity of past 

literature in sheet metal forming, it is not possible to 

mention the papers one by one but only the parts which 

are significant to this thesis will be discussed. 

Jel Forming Limit ® Curve of Sheet Metal 

Sheet metal tests, such asErichsen, Olsen, Fukni and 

Swift*® tests, were originally proposed for testing the 

quality of sheet metal under forming. But, for a single 

test, for instance, the Erichsen test, some-times , 

inconsistent results are obtained when a high Erichsen 

value material fails in a forming process but a low 

Erichsen value material succeeds. Now it is understood 

that no single » sheet metal test can’ rate the quality 

of material under all forming operations. Sheet metal 

tests may not duplicate the process involved in an actual 

sheet metal forming operation so that the test results are 

mot adequate for predicting precisely the performance of 
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the material in the forming process. Therefore, another 

approach perused in pursuing the limiting strains a 

material sustains before excessive thinning and fracture 

occur, for all possible forming operations. Formability 

curves fer mild steel have been investigated by Keelery:) 

Goodwin, and, Lee and Hst and some others. 

A. Keeler's Curve 

In Keeler's forming limit  « curve (1) the two principal 

strains on the sheet surface were measured at the onset of 

fracture in a number of biaxial stretching experiments 

(2) in which eight-inch diameter steel blanks were securely 

clamped between a die wing and blank holder, and stretched 

by various shapes of punches under different lubrication 

conditions. 

The formability curve, or by the name Keeler called it, 

the critical strain level, was plotted in a co-ordinate system 

with the large strain on the sheet surface as ordinate and 

the smaller one as abscissa, and both strains were presented 

in the engineering strain measure. The curve separated 

the failure and non-failure of states of strain that mild 

steel could be deformed to. In fact, it was shown as a 

band (3) covering the scattering of failure and non- 

fadlure states of strain. The scatter could be due to 

many causes such as inhomogeneity of the material, the 

défficulty in the determination of end points, variable 

draw-in, and errors arising from"using a fine enough 
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grid or even the involvement of non-coaxial deformation. 

Keeler's formability curve was redrawn by Goodwin (4) as 

shown in fig,3-1. The curve was obtained by biaxial 

stretching, therefore it only covered the region in which 

both the major and minor strains on the sheet surfacewere 

positive. 

B. Goodwin's Curve 

Goodwin (4) expanded Keeler's formability curve to the 

tension-compression quadrant by means of various cup and 

tension tests to obtain the failure strains in that region. 

The cup tests were made by using flat and sound nosed 

circular punches to draw various shaped blanks into a two- 

inch diameter die. The shape of the blank and the clamping 

pressure controlled the location of failure and the degree 

af minor strain. By varying the clamping pressure from a 

minimum which was just large enough to prevent the buck- 

ling of the blank when it was drawn into the die, to a 

maximum where the minor failure strain was positive, the 

formability curve (fig,3-1) in both™tension=tension and 

tension-compression regions,was obtained. 

It is interesting to note that Goodwin used a different 

shapesof blank in his experiment and found that an 

elliptical blank in combination with the round nosed punch 

produced the greatest variety of failure strains. An 

elliptical blank drawn by a circular punch is no longer 

an axisymmetrical forming and it would involve non-coaxial 
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deformation somewhere in the workpiece. 

a. Lee and Hsii's Formability Curve 

In Lee and Hsii's formability curve (5)%Strain path 

under which the material at the critical section is 

deformed is plotted in a triangular covunainateRCnudeH 

will be discussed in Chapter 4.). A series of symmetrical 

forming processes (fig,3-2) with different punch nose 

profiles - from semi-spherical to very small radius nose 

- different lubrication conditions dH ding eens die 

face and blank holder, and different holding pressures 

were used to get the material at the critical section 

deformed under strain paths with different strain ratios. The 

Formability curve which passes all the end points of the 

strain paths is drawn in the regions of tension-tension 

and pepe oreceneres= ene Two branches of the formability 

curve meet at a cusp which suggests that there are two 

mechanisms of neck formation, one in the tension-tension 

region and one in“£ension-compression region. 

Lee and Hsti's curve is a curve instead of a band like 

Keeler's and Goodwin's curve. In Lee and Hsti's work, it 

is significant that the strain paths are shown together 

with the formability curve, because tHe formability curve 

is dependent on the strain path. 

€.9- 
Although there are still many papers (6)-(9) concerning 

the forming limits of sheet metal, they are almost the 
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same as those having been reviewed. Differences lie» in 

the determination of end point which is a problem of 

instability and is outside the scope of this project. 

Bed Formability of Sheet Metal under Zigzag Strain Paths 

It is well known that a flat blank can be drawn into a 

deeper cup without fracture by redrawing in two or more 

stages. The strain path of the critical section in the 

redrawing operation may be zigzagged because the straining 

varies from one stage to another. 

The formability of sheet metal is path dependent +, surely, 

it would be affected by the zigzagging of the strain path. 

This is the reason why many efforts “(10)-(12) were made to 

investigate the effect of “Vigzag strain path on formability 

of sheet metal. 

Due to the similarity of the experimental results in past 

literature on the effect of zigzag strain pathson form- 

ability, a typical one (910) is reviewed. The effect of the 

strain path on the fracture strain of steel sheet was 

investigated in two stages of forming, combining uniaxial 

tension, biaxial and equi-biaxial tension and tension- 

compression, with the principal axes of stress and strain 

fixed with respect to the material. The fracture strain 

is plotted in Cartesian co-ordinates with €x and €y which 

are the two principal strains on the sheet surface, as 

axes. Between the lines with strain ratio €x/éy from +1 
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to -l1, it is divided into three regions, region I 

(fig.3-3) in which fracture never occurs no matter what the 

combination of the two stages of deformation, ‘%» region 

where i where 
II,,fracture always occurs and | region Ill,, fracture 

occurs depending on the strain path or the combination 

of the deformations. co) The diagram (fig.3-3), 

clearly shows that * region III in which the occurence 

of fracture is uncertain,spreads over a very large area 

compared with * region I in which fracture never 

occurs. In other words, the formability of sheet metal 

under zigzag strain paths can not be represented by a 

curve or a narrow band as that under linear or nearly 

linear strain paths. The reason is due to 

the large number of possible variety of stress combinat- 

ions which produce a large number of different strain 

paths. The zigzag strain paths investigated 

are all obtained by two or more stages of deformation with 

the principal axes of stress and strain fixed with respect 

to the material. In other words, the strain paths are 

zigzagged by changing the strain ratios with the principal 

axes of stress and strain fixed with respect to the 

material. 

When the principal axes of stress are fixed with respect 

to the material, the strain ratios can only be changed by 

changing the ratios between the principal stresses. But 

changing the ratios between the principal stresses is not 

the only way to change the strain ratios. Strain ratios 
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can also be changed by keeping the ratios between the 

principal stresses constant but rotating the directions 

of principal axes of stress with respect to the material 

in which non-coaxial deformation is involved. 

However, quite a large number of industrial sheet metal 

products are not circular and are manufactured by re- 

drawing operations. In these products the strain path 

of the critical section in the product will be both 

non-coaxial and zigzag ones. Hitherto, no non-coaxial 

zigzag strain path has been investigated. In this thesis, 

non-coaxial zigzag strain path will be investigated both 

theoretically and experimentally. 

3.3 Sheet Metal Test 

The other aspect of formability is the performance of sheet 

metal in a particular forming process or a sheet metal test. 

For convenience, cost and co-ordination between producer 

and user, a flexible system of testing based on the 

principle of reproducing the essential material behaviour 

under forming in a simplified form is needed. For an 

engineer or a process designer in™sheet metal industry, 

although a test does not provide the exact information 

needed, if a reasonable guidance could be obtained, it is 

very helpful. Empirical tests can be extremely useful in 

practice, even though they may not be the same as the 

actual forming process or processes, the behaviour of the 

material in the tests may happen to be very similar to 
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that in, actual forming operation to which the test results 

are to be applied. This is the reason why sheet metal | 

tests are still widely used even though it is known that 

the results of a single test are not adequate to rate the 

forming quality of sheet metal for general validity. 

According to Shawki (13), 5 »s at least nineteen 
are 

sheet metal tests have» been proposed and,in current 

use. In this review, only typical tests and those 

significantly related to the project in this thesis will 

be reviewed. 

A. The Erichsen Test 
  

The test was proposed by Erichsen (14) in 1914. The 

general configuration of the test and its principal 

dimensions are specified in British Standard No. 3855, 

1965. This is the only sheet metal test in the B.S.S.. 

In the test, the blank is held against a holder, and as 

deformed by a cylindrical punch with¢spherical nose of 

standard diameter 20mm. The maximum punch penetration 

attained before fracture occurs is taken as the Erichsen 

value. 

Tele ieheen test, the blank» holding load is set to be 

1000 (4100) kgf. It is doubtful-if'. the material in the 

flange could be prevented from being drawn into the curved 

part. The amount of draw-in and its influence on the 

Erichsen value under a variety of testing conditions were 
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measured by Kaftanoglu and Alexander (15). 

‘the. 
If the draw-in is prevented completely,,Erichsen test is 

a purely stretching test. 

Be The Hydrostatic Bulge Test 

Although no standard form is suggested, the blank is held 

with “special clamping device (16)-(17) against a die and a 

is deformed by hydraulic pressure instead of a solid 

punch. The polar height at the maximum pressure is used 

as the index for the test. 

Because there is no friction between the blank and the 

punch, the stresses and strains can be calculated by 

assuming the bulged shape as part of a sphere (17)-(20). 
been measured 

The real shape or its deviation from the sphere has, recently 

(21) and the stress distributions in the shell 

are determined. 

The hydrostatic bulge test is a stretching test too. 

c. The Swift's Test 

The Swift!» test (22)-(24) is one of the deep drawing tests. 

There are several proposals of the deep drawing test (25)- 

(27) and the Swift'® test is the best known and is well 

established. In the early standard Swift’ test, a flat 

nosed punch of 2.000 in, diameter with a profile radius of 

0.25 in, was used (25). Recently, the International Deep 

Drawing Research Group on Swift's Cup-Drawing Test (28) 
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proposed standard test conditions for the test. They are 

as follows:- 

Punch diameter 5Omm 

Punch radius 4.5 mm 

Die opening diameter 53.65 mm 

Die radius 13.0 mm 

Die surface roughness CLA 0,.04-0.15 pm 

*Puncth speed 1.7 mm/sec. 

Clamping load: it is set to be just large 

enough to prevent wrinkling 

of the blank. 

Lubrication conditions: 

the die and the holding plate 

are lubricated with polythene 

film on grease, and the punch 

is unlubricated. 

In the test, a circular blank located symmetrically with 

respect to the punch is drawn through the die hole. The 

diameter of the blank drawn is progressively increased 

until fracture occurs in the cup. The maximum diameter 

of the blank which can be drawn successfully, divided by the 

punch diameter is known as the Limiting Drawing Ratio and 

serves as a criterion of drawability. 

The Swift test has several attractive features, it is so 

closely simulative of many common forms of pressing, the 
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specimen is inexpensive, the testing technique is simple 

and it reveals any directional properties of the material 

by the formation of ears. But it has also its disadvant- 

ages and in its simplicity lies the limitation for the 

exten$ion and generalisation of the definition of draw- 

ability and of the drawability test which will be done 

in this project. 

In order to find the Limiting Drawing Ratio in the Swift 

test, blanks of progressively increased diameter are drawn 

until fracture occurs in the cup. In fact, this is a 

trial-and-error approach. It was found (29) that the 

relationship between the maximum drawing load and blank 

diameter was nearly linear, and the maximum diameter of 

the blank which could be drawn successfully was that when 

the maximum drawing load was near the fracture load of the 

cup. Alsa, the fracture load of the cup depended on the 

strength of the material at the punch profile region which 

was nearly constant and independent of the blank size. 

Therefore, a single-blank test was suggested (29). 

Usually, at the stage where the maximum drawing load is 

reached, only + or + of the drawing operation has been 

completed. Thus the maximum drawing load can be measured 

without completing the whole drawing operation. A blank of 

diameter Ds which can be drawn successfully is drawn until 

the maximum drawing load Ls is reached and recorded. 

Then the flange of the uncompleted cup is clamped firmly 
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and ounah travel continues. Because the flange of the 

cup is clamped firmly, the drawing load goes up with the 

punch travel and reaches the fracture load Lf of the cup 

when fracture occurs in the cup. Because the relation- 

ship between the maximum drawing load and the diameter of 

blank is nearly linear. 

Where De is the maximum diameter of blank which can be 

drawn successfully and K is the slope of the maximum 

drawing load and blank diameter relationship. In order 

to find K, another blank of diameter Dt other than Ds 

should be drawn and the maximum drawing load is Lt. Thus 

K = Dt - Ds 

Lt - Ls 

and 

De = Dt - Ds 
34 (Lf - Ls) + Ds 

In fact in the single-blank test at least two blanks must 

be used. Even so, it is a good approach and this approach 
‘ 

is used in this project. 

The anisotropy of sheet metal is usually represented by the 

@ — value which isthe ratio between the strains in’width 

and the thickness directions in a rectangular tensile test 
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piece. It is well known that the anisotropy of sheet 

metal produces earring in deep drawing and there are many 

research papers (30)-(33) concerning the anisotropy of 

sheet metal and its effects in forming operations. But 

those papers are not significantly related ee ihie torodeet. 

The effect of the anisotropy of sheet metal on formability 

in the forming operation investigated in this project is 

classified as the orientation SF blank with respect to 

the rolling direction of the sheet and will be discussed in 

Chapter ll. 

Among the papers so far reviewed, those concerning the 

forming limit curve are either limited to the coaxial 

case or'“faid no attention at all to the coaxiality of the 

principal axes of stress and strain, and those concerning 

the performance of sheet metal in a forming process are 

limited to the performance in an axisymmetrical forming 

operation. Hitherto there has been no literature reporting 

the investigation of non-coaxial deformation in sheet 

metal forming and there has been no general assessment of 

the performance of sheet metal in all forming processes, 

including both axisymmetrical and non-axisymmetrical 

forming operations. The incompleteness of the forming 

limit curve requires naturally the development and 

investigation of non-coaxial deformation, and as many 

sheet metal products are not axisymmetrical, it is 

necessary and significant to develop and investigate the 

Continuedsere.oe



ae NG oe 

more complex cases in non-axisymmetrical forming. These 

are the main purposes of this project. 

3.4 Non-axisymmetrical Formings 

Many investigations have been done both theoretically 

and experimentally on axisymmetrical forming, like 

cylindrical cup drawing, hydrostatic bulging and so on. 

The behaviour of material under axisymmetrical forming 

is well understood and many sheet metal tests based on 

it are in current use. It is well known that the 

behaviour of material in a non-axisymmetrical forming 

process is much more complex than that in anaxisymmetrical 

one. Test results in general are reliable only when the 

actual forming process and forming conditions are the 

same as those in the test. The more they deviate from 

those in the test, the less reliable the test results are 

for predicting the performance in the actual forming 

process. However, there has not been either a test or 

even a definition of measurement for specifying the per- 

formance of sheet metal in non-axisymmetrical forming 

processes, Although non-axisymmetrical sheet metal 

products have been produced for many decades in industry 

and non-axisymmetrical forming has been investigated by 

many sheet metal forming research scientists, the achieve- 

ment is mainly on the purely empirical aspect, perhaps 

due to the lack of theoretical development. 

Car body and automobile panel making is one of the most 
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processes 
popular non-axisymmetrical forming, in industry. The 

study of formability in car body and automotive panel 

making is still limited to the measurement af limiting 

strain at the critical section (1),(4),(34),(35) and 

mostly by using;circular grid which fails to distinguish 

between coaxial and non-coaxial deformations. 

Square, rectangular and elliptical cup drawing have been 

investigated by many sheet metal research scientists (36)- 

(46). The blank shape for a rectangular shell was sketched 

out, by assuming that the material in the shell walls did 

not thicken or elongate during the drawing operation and that 

the amount of material for forming the four corners was 

equal to that required for drawing a cylindrical shell of 

a diameter double the corner radius of the rectangular 

shell, having the same height and bottom radius as in the 

rectangular shell, and then modification was done on smooth- 

ing the blank corners (36)-(38). No significant conclusion 

about the formability was made. 

The strain distribution along the meridian of a square 

shell was measured and investigated in different shapes 

of blank (37)-(40). Only purely empirical but no 

significant conclusions for the formability of sheet metal 

in non-axisymmetrical forming, were suggested. 

The effect of anisotropy of sheet metal on the depth in a 

rectangular cup drawing was investigated by Lilet (41). 
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The cup could be drawn deeper if the rolling direction 

of the sheet was 45° to the flat side of the rectangular 

cross-section. This effect was also investigated by ~— 

Wilson (42) in square cup drawing. A ¢ircular blank was 

drawn and the largest diameter of the blank which could 

be drawn successfully, namely, the critical blank diameter, 

was used to represent the formability in the square cup 

drawing. He found that the critical blank diameter was 

larger when the rolling direction of the sheet was 

parallel to the diagonal of the square section than that 

when it was ie to the diagonal. Even so, the extent of 

forming in*hon-axisymmetrical case was limited to the 

circular blank drawing. 

The “draw-in" in a bon Scdaunnet wicciveae defined by 

Miyauchi et al (43) as 

  

fo Ale 
Als 

where A ls = ls = lso 412 1 = 10 and 

olp= 41- 41s (fig.3-4) 

From fig 3-4, it is understood that Oils is the elong- 

ation of lso, but what Al represents is difficult to 

visualise because ¢' is not the current position of the 

point b in the blank. This vagueness makes the definition 

difficult to © understand. A more general and logical 

definition of "“draw-in" will be defined in this thea ie: 
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A Square grid was used for strain measurement in a square cup 

drawing by Masuda and Mishiro (40). Not only the strain 

distribution along the meridian and) at the flange of a 

square cup at different stages of drawihg operation was 

measured, but also the directions of the principal strains 

were pointed out. Unfortunately, they did not pay 

attention to the changé «im direction: of the principal 

axes of strain and thereby © missed the discovery of 

non-coaxial deformation. 

In the deep drawing of elliptical shells, Yoshida et al 

(45) found that a rectangular blank of certain dimensions 

can be successfully drawn while another rectangular blank of 

the same length in the major axis direction but smaller 

width in the minor axis direction, can not be drawn 

successfully. The metal flow in the blanks was invests 

igated for understanding this phenomenon. But the effort 

was put onto purely empirical grounds caletind the blank 

size to the r-value and the n-value without any theoret- 

ical analysis. The metal flow in deep drawing of some other 

irregular-shaped shells was also investigated by Yoshida 

et al (46). It is hard to expect a sound conclusion 

based on, purely empirical approach unless a huge amount of 

experimental data is provided. 

It is believed that for investigating the deep drawing of 

non-circular shape, careful study of the metal flow in the 
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present 
blank provides a good approach. But before the, experiments 

are discussed 
some theoretical analysis is necessary, otherwise the work 

may be self-defeating due to the infinite number of 

irregular shapes 
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Strain Analysis 

The typical sheet metal forming process considered in 

this thesis is illustrated in fig,4-l. A piece of sheet 

metal, flat and of uniform thickness, is clamped at its 

edge (between the edge B and the closed curve Bo) and 

formed by a rigid or liquid punch so that the material 

inside the curve C becomes a curved surface. Such a 

process may be idealized mathematically as a transform- 

ation of a plane into a curved surface. 

system 
A co-ordinate,fixed with respect to the material, has an 

axis always normal to the sheet surface no matter how the 

flat plane is deformed, and that axis is always one of 

the principal axes in sheet metal forming. Also, due to 

the incompressibility of metal in plastic deformations the 

sumsof the three principal strains is zero and there are 

only two degrees of freedom for the three principal strains. 

Therefore, it is sufficient and convenient to analyse 

the strain in two-dimensions in sheet metal forming. 

4.1 Deformation Represented by an Affine Transformation. 

A typical point (X,,X2) in the blank is deformed or (47) 

transformed to a new position (X;',X9" ) in a co-ordinate system 

which is fixed with respect to the material, The equations 

for this transformation are as follows, 

X,' Xp! (Xp XQ). 
4-1 

Xgf = XB! (XE, XS) 
the 

In general, Eqs, 4-1 are nonlinear functions and, may be 

Continuedse.ese-



—O42 = 

expanded in Taylor's series at the vicinity of the point 

under consideration provided that the transformation in 

the region around the point is continuous. 

Eqs. 4-1 are expanded in Taylor's series at the point 

whose initial co-ordinates are(a,b), and becomes 

’ ’ ba 

earl tonto ee (he ee oni) 
aX, aX, 

zy! 2 27 
st aa + (Xa) "+ a3 , (Xj -a) (Xg-b) 

  

a 
+1 ax 2 —= X=)b)- —) wadudaasde oe 

Xe OK, 5X5) ah Stash) Oke (X,-2) + 2X2 (X,=b) 
aK; OX» 

+1 37% 2 
oe X,-b a) Sass S TAR Se 21 axe (X,-b) 

They may also be written as: 

“ ‘ Ox £ ot. 

X, (X, 2%, )- X, (ayb) Se (X,-a) +24. (X, -b) 
OX, 

+ terms of higher orders in (X,-a) and (X,=b) 
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Xe OG 5%) keane Ee oa (ised + an (X,-b) 
2 

4-3 

+ terms of higher orders in (X,-a) and (X,-b) 

If the deformation around the point (a,b) °° is 

considered to be homogeneous, or the region being 

considered is small enough so that the higher orders of 

(X,-a) and (X,-b) canis be neglected, in other words, 

straight lines remain straight and parallel lines remain 

parallel after the deformation, then OX, ox ax: 
SRD a okee ne ORT 

and ax,” are all constant and terms of higher orders in 
OX2 

(X,;-a) and (X,-b) vanish. Equations 4-3 become 

/ : 
X,  (X\,X,)=- KX, (ayb) = A,, (X,-a) + Ay, (X2-b) 

4-4 

Xion (pen Sek (a bye Ae hk eater Annee Ei 

where 

Aire Aine Avy and Azz are 9X, aX," aX," and) Xe 
OX epuehs 5 SX aX, 

respectively. 

If the point being considered is taken as the origin of 

the co-ordinates before and after the transformation, or 

, , 
a=@, b=Oand X, (a,b) = 0, X,(a,b) = 0, then 

Continuedsescove
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Eq. 4-4 becomes, 

XU eee ade oer, aA Enea tect ay ae 
ax, OX, 

4-5 

De Been yee OMES oy 1 a, ae AleX 
ax, OX, 

It may also be written in matrix form as 

' aX ax.’ x, ee |] x, Ay, Baa || % 

uF 7 4-6 

She ok! 
Xe ax, aXe Ae Aa, Are X, 

where Xj and X3, Xj\' and X,' are the Cartesian co-ord- 

inates of a point near the point being considered, before 

and after the deformation respectively, and 

Aij me ext hoon 
Oxj 

The co-ordinates X, and X, may also be considered as the 

two components of the vector X drawn from the origin to the 

pens 
point (X,,X,) ina Cartesian co-ordinate,and, similarly, 

ay and xy! as the components of the vector X' in the 

sysTem 
same Cartesian co-ordinate, (fig,4-2). The matrix Jaia] 

changes the vector X' into a different vector X'. Eq. 4-6 

represents a transformation and this linear function in 

fact, is also called affine transformation. Let 

Continueds...ee
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or 

US oh = 

Ue Xe o- 

Eq. 4-6 becomes: 

  

x! OX, 
' OX, 

’ aXe. OX2 
me x, 

eur 
Lt aX, 

Que 
ax, 

= Bh Ae 

Aay Aoo 

Thus: 

Ay, ee 4 

Ayg # au 
aX, 

A, = —oU, 
ax, 

hoy = a 

- 45 - 

  

1+ U2 
  

4 

x
e
 

xi
c 

  

x 
x 
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Where 9dU and 2U2 are longitudinal displacement 
ah aX, 

gradients inX} and X, directions respectively, and, QU2 
ax, 

and 2U are the transverse ones. 
aX, 

In a transformation, in order to find Aij in Eq. 4-10, 

at least two points near the point being considered in the 

directions of X,- and X,- axes have to be considered too. 

As shown in fig,4-3, the origin O of the co-ordinate is 

the point being considered; oA and OB are the vectors 

before the transformation; and, OA’ and OB are the vectors 

after the transformation. The co-ordinates of the point 

and 

  

A' are (1+ 2U,)* Xj and QU y and those of B' are 
' 

au 
aX, 2X, ax 

  

(ly 2Uayexe. 
aX, 

Therefore, when the deformation at a point is investigated, 

a small square grid with the point at one of the corners, 

which is so small that the deformation in it is uniform 

and the same as that at the point being investigated, is 

printed or scribed on the material. After the deformation, 

by measuring the co-ordinates af the two corners adjacent to 

the point in the deformed grid, Aij, which represents the 

transformation or deformation,can be obtained. It will be 

proved later that the position of the co-ordinate axes for 

measuring the deformed grid can be arbitrarily chosen with= 

out affecting the transformation or deformation. 

Continued...ee5
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4.2 Matrices Representing Typical Modes of 

Deformationg. 

As shown in Eq. 4-6, the matrix JAi3| represents the 

transformation of co-ordinatesor deformation in metal 

forming. In“fast section it has been said that by 

measuring the deformed square grid, Aij can be found. 

Now some matrices obtained from some deformed grids 

representing a few typical modes of deformation are 

illustrated in the following, 

is a unit matrix and from Eq. 4-6 

u x< XEt m= 1s XE + Oy x2 

XH! = 0. Xf + 1 4 Xe = xX 

it represents a null deformation. 

represents the transformation 

Xe oon. XH 4 0. XE = xh 

X2' =O. Xj +m. Xp = mXe 

It is a uniform dilatation if m>1 (fig. 4-4a) and is a 

uniform contraction if m<1l (fig. 4-4 b). All the fibres 

elongate or contract to a ratio 'm, 

Continuedessece
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-sin8 

x,' 

and 

xy! 

X,! 
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sinB cos6 -sin6 
and represent the 

cos8 sin8 cos transformation 

= cos8 Xj + sinB X2 

= -sin@ Xj + cosB X% 

= cos8 Xj = sin® X; 

= sin® Xp + cos6 X, 

which are clockwise and anti-clockwise rigid body 

rotations,respectively, (fig.4-4c and fig.4-4 d), where 

6 is the angle the body rotates through. No changé -~ of 

shape or size occurs in these transformations. 

x, 

Xe 

represents the transformation 

= 1. Xh + re X% 

20. Xf +1. x¥ = xg 

which is a transformation of simple shear (fig.4-4c) and 

ris the shear strain. 

Continuede..eee
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represents the transformation 

xp? = Bf, XR +0. Xe = 2° xg 

X2' Di. Xa 2-8 2 XE wre xe 

which is a transformation of pure shear (fig.4-4f), 

and @ is the natural base and €, “natural strain. This 

pure shear is also called aligned pure shear because in 

it the maximum extension and contraction of radial lines 

in the square are aligned with the co-ordinate axes 

(fig. 4-4F). 

An aligned pure shear may be visualised as a deformation 

of stretching and compressing to the same strain along the 

the 
directions of co-ordinate axes. 

An unaligned pure shear is a pure shear with its maximum 

extension and contraction of radial lines not along the 

co-ordinate axes but at an angle to them. As shown in 

fig.4-5a, a square OABC is stretched along the direction 

with an angle 8 to Xj-axis,.or along the fibre OP, and 

compressed in the perpendicular direction to the same amount 

of strain €. It is a pure shear and OA'B'C' is the 

deformed figure. Because OP is in the direction of 

stretching and perpendicular to that of compressing, it will 

not rotate in the deformation, thus the final position of 

Continued.....
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OP' after the deformation should still be in the direction 

making an angle 8 to X;- axis. 

This deformation, an unaligned pure shear, may now be 

analysed and can be shown to be equivalent to the result- 

ant of three operations: first, a clockwise rigid body 

rotation through an angle 6, (fig,4-5b) so that the fibre 

OP is aligned with®\g-axis; second, an aligned pure shear 

by stretching along*Xj-axis and sompressing along’ X3-axis 

(fig, 4-5c),the fibre OP which becomes OP' is still aligned 

With eeenieseciieds an anti-clockwise rigid body rotation 

through an angle 8, (fig,4-5d), so that the final position 

is exactly the same as that in fig.4-5a. Thus, an 

unaligned pure shear (48) may be represented by a product 

of the three matrices as follows; 

cos8 -sin8 ee 0 cos8 sin® 

sin8 cos8 0 ere -sin8 cos8 

cosh€ + sinh€ cos 28 sinh€ sin28 

sinhi€ + sin28 cosh € - sinh€cos28 | 4-11 

In other words, the matrix sat the right hand side in Eq. 

4-11, represents an unaligned pure shear having the 

principal strain € and -€ in the directions making an 

angle 8 to the co-ordinate axes. It can be seen that the 

matrix is symmetrical. 

Continuedececee
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4.3 The Thiekaees Strain 

In sheet metal forming, the Retetiay often fails due to 

excessive thinning which leads to fracture, therefore, it 

is important and desirable to know whether the material 

becomes thinner after the deformation, and if so, by how 

much. 

Due to the incompressibility of metal, the volume of the 

material does not change in any plastic deformation. and 

is equal to the product of surface area and the thickness. 

In mathematical language, it is as follows:# 

AS xX tis Vi= ho xito 

or 4-12 

Ag th 
x aa Ws 

Ao to 

Where Ao, to and A,,t; are the surface area and thickness 

of the material before and after the deformation,respectively. 

It may also be written as: 

In Ab » inte = 0 4-13 
Ao to 

and 

Et = in tu = -In Ay 4-14 
to Ao 

The thickness strain is equal to the negative of the sur- 

face strain. 

Continued....e.
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A unit square OABC having its sides aligned with the 

co-ordinate axes is deformed or transformed by Eq. 4-1 

to a parallelogram OA'B'C' (fig,4-6). By substituting 

the co-ordinates of the corners A (1,0) and C(0,1) into 

Eq. 4-1, the co-ordinates of A' and C' can be obtained 

and are CAy eho (Ce respectively. In other words, 

when a deformation or transformation represented by Eq. 

4-6, transforming a unit square having its sides aligned 

with the co-ordinate axes to a parallelogram, the elements 

of the matrix | Aad | in Eq. 4-6, are just the co-ordinates 

of the two corners of the deformed parallelogram. 

The surface area of a unit square is unity and it can be 

proved that the area of a parallelogram with its four 

12 Aa, + 
corners at (0,0), (A,,,A,,)» (Ajo »A2.) and (A,,+A 

A,,) (fig,4-6) is just the determinant of the matrix 

| Aa | or 

Avs Aye 2 
z Ay hee SA A2( = M 4-15 

Az, Azo 

In Ac = In Ay Aga Ap Ad = In me G26 
Ao 1 

and 

een ag A, ety 2 ze ee ‘in a ra in M 4-17 
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4.4 Matrix Analysis of Deformation (48) 

A unit square is deformed or transformed into a 

parallelogram by the matrix [Aas] in Eq. 4-6. Because 

the surface strain is just the determinant of the matrix 

JAii | » it is possible to factoritthe deformation into two 

parts, one in balanced biaxial tension which produces only 

surface strain without changing the shape, namely, uniform 

dilatation or contraction, and the other, in changing the 

shape without thinning or thickening. Thus: 

A A 

  

  

  

  

    

_ 

Ai, Are - ° Ay Azz Ai 2 Aa, Avi Age Ara Aan 

a Ag Azz 

Agr Aez 9 JAiAez= Bia Aai||Porn Baz Ria Fav [Rvs Baa ~Avz Aas 

M oO Aa Aiz 
= M M 

o OM Aes Aza 
M M 

M oO B B = vy 2 4-18 

oO M B., Baa 

where M =[A,, Aza ; and Bij = Aij 
M 

The first matrix, reading from the left, in the right hand 

side in Eq. 4-18 is a uniform dilatation or contraction 

depending on the value of M, and the second one is a matrix 

with its determinant equal to unity or 

By, Biz 
= 1 3 4-19 

B,, Bao 
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Any affine transformation can always be changed into a 

symmetrical one by multiplying it with a rotation matrix. 

cosm sinx]|B,, B, B 

-sin®& cos ||/B2, B,, -B,, sinX+B,, cosa -B,,sin&X+B,2 cosx 

11 COSKX=-B,,sinx B,,cosx +B,, sink 

  

4-20 

If the matrix at the right hand side in Eq. 4-20 is 

symmetrical then B,, cosxK+B,,sin& = -B,, sin&+B,, cos si 

tano = Bz, -By MSs 
= 4-2 

B,, +B. ‘ ) . 

and 

sing = Xx cosX = z 4-22 
(1+ X7)% (147 )% 

(positive value of square roots is taken) 

Let | cos sinx B,, Bie Cy, Cie 

-sinx cosx Bz, Bae bey aoa 

then| B,, Bye cosx -sinx]|C,, Cie 

B,, B., sinx cos || Cy, Cy 

i ake |e c THEN iso Sve 
= 4-23 

rx 1 
TIFA 2 1+ FIC 2 Co. 

where Bii+BaX Bi2+Bo2X 
(iene Cie) 

Ci, Cie 
= 4-24 

Beets Bai-ByA Bue ABia 
(1+ A? )% (147% 
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In order to describe the deformation, a typical deform- 

ation without changing the surface area, such as pure 

shear or simple shear, has to be chosen as a standard 

type of deformation for easy reckoning. Strictly speaking, 

any deformation may be considered as a standard type, but 

in this thesis, pure shear is chosen as a standard type of 

deformation due to the following advantages: 

1. It satisfies the condition of no changing 

of surface area. 

26 It is easy to visualise; stretching in one 

direction and compressing in the perpendicular 

direction to the same amount of strain. 

3. Pure shear, no matter how large the strain 

is, is a coaxial deformation, but not, for 

example, simple shear, (will be discussed 

in Chapter 5). 

Any symmetrical matrix having its determinant equal to 

unityas that in Eq. 4-24, may be analysed into three 

matrices as those at the left hand side in Eq. 4411. 

Thuss 

Gr Ce cos8 -sin8 ef o cos8 sin@ 

Ci eoas a sin8 cos8 Bre -sin6 cos8 
4-26 

Continuedecccee



Therefore, 

A Aye 

Az, Azz| |O Mi] sink cos« 

a 86S 

from Eqs, 4-18, 4-23, and 4-26 

cosx -sinx||cos8 -sin8 ef o cos8 sin 

sin8 cos8 -sin8 cos8 

        

      Geter 

And by solving Eqs. 4-18, 4-23, 4-26 we find, 

Meas (Ay Week eho) 4-28 

Yano = pebo ac 4-29 

C2, 

i) 

Ay. + Aza 

2(A,, Ava +A Ase 4-30 

ae + hc eee. 

2 C,,-C a 
In( iC ae) ec +Caz ) 4-31 

2 

Aus (Avi +Az2 )+Aas (Aas Ariz ) 
(0A, Raz Ariz Aor) (CA. +Aae + (Aa Ara PE 

Avs Are +Azy Aas 
(TA,, Az -Ar2 Aa) {TA,, #022 F + (Aa, -Ar2 PEE 

4-32 

Aaz (Ar +Az2) = Aiz (Azi Aire) 
(Ar Aza “Ara Aa, D{TA,, +Az2 F +CAz, -A,, Fe 

In other words, any deformation represented by the matrix 

|Aij] which is obtained from measuring the co-ordinates of 

the corners of the deformed parallelogram, may be analysed 

into the combination of, an unaligned pure shear (the 

Continuedssrece
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first three matrices reading from the right), a rigid 

body rotation (the fourth matrix) and a uniform 

dilatation (the fifth matrix), as shown in Eq. 4-27. 

In fact, the operation of rigid body rotation does 

nothing to the shape or the size, It is only due to 

the choice of the position of the co-ordinate axes with 

respect to the deformed parallelogram. A set of 

co-ordinate axes printed or scribed on the metal surface, 

in general, will be changed after the deformation. When 

the deformed parallelogram is measured, the original 

co-ordinate axes have disappeared and another set of 

co-ordinate axes is drawn arbitrarily for the measurement. 

This is the reason why a rigid body rotation which is not 

concerned with deformation appears in Eq. 4-27. With the 

suitable choice of the position of the co-ordinate axes so 

that Ajz = Azf~, the rigid body rotation will disappear. 

The elements of the matrix JAij| are obtained by measuring 

the co-ordinates of two corners of the deformed parallel- 

ogram in an arbitrarily chosen co-uediee Changing the 

relative position of the co-ordinate axes with respect to 

the deformed parallelogram, surely, will change the 

magnitudes of Aij. But it can be easily proved that these 

changes in the magnitudes of Aij will only affect the 

magnitude of & but not the strain € and the angle @. 

Continuedscecc.s
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The uniform dilatation or contraction is non-directional 

and its effect on the deformation cani® be considered by 

adding a strain In(M)to both the two principal strains no 

matter where the principal directions are. Then our 

attention should be concentrated on the pure shear which 

is the most significant one in a deformation analysis. 

The shape of a deformed parallelogram is unique by 

deforming a unit square under pure shear. A deformed 

parallelogram can have many different JAaa] matrices to 

describe it, but the shape can only be obtained by 

deforming a unit square under a pure shear having its 

principal axes in the directions making an angle 8 to the 

sides of the unit square until a pure shear strain € is 

produced. In other words, for a deformed parallelogram, 

no matter how many JAij| matrices are obtained from 

different choices of co-ordinate axes, the magnitudes of 

8 and € in Eqs. 4-30, 4-31 are all unique. 

By considering the uniform dilatation or contraction 

together with the pure shear, the principal strains of a 

deformation should be as follows: 

Gt = InM+E 
4-33 

@ = InMeE 

and the thickness strain 

G3 = - (E+E) = - 2 In M = - in Ww 4-34 

Eq. 4-34 is exactly the same as Eq. 4-17. 
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4.5 The Incapability of ACircular Grid for Strain 

Measurement in Non-coaxial Deformation. 

Acircular grid is widely printed, scribed or etched on a 

metal surface for strain measurement due to the following 

advantages. 

Le It is easy and quick to produce the grids, 

especially photoprinting has been well 

deveiepeds 

2e Acircle is non-directional therefore align- 

ment is not necessary when producing the 

grid. 

3. When the material is deformed, the circides 

become ellipses, and the principal strains 

can be readily measured from the major 

and minor axes of the deformed ellipse. 

4. The major and minor axes of the ellipse 

are also the principal axes of strain. 

In fact, the advantage that a circle is non-directional 

is a disadvantage because it involves the incapability of 

a circle to detect the rotation of the major and minor axes 

of the ellipse when it is deformed in a non-coaxial 

deformation. This will be discussed in the following-section. 

A circle is deformed into.an ellipse in a finite deform- 

ation (fig,4-7a), the major and minor axes of the ellipse 
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the 

are the principal axes of strain and, principal strains can 

be obtained by measuring the major and minor axes of the 

ellipse, thus 

€, = cine be 
a 

x 4-35 
€é,2 nia 

a 

If the ellipse is further deformed with the principal axes 

of stress along*x, - and X,-axes or the major and minor 

axes of the ellipse, the ellipse will become another 

ellipse, as shown in fig,4-7b, The ellipse of the dotted 

line is the deformed ellipse and the solid line is the 

further deformed one. This deformation is a coaxial one, 

and the principal axes of strain are still aligned with the 

major and minor axes of the further deformed ellipse. The 

strain increments or the principal strains in the further 

deformation ares 

€/ = ln be 
b, 

4236 

Co =eoin en 
c, 

The resultant strains are : 

F Gece = ii Dee - ine bpeet9 
a a oy
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= (Ss os (es 

ce = ino. =. In 6) nee 4-37 

a a ey 

a é? in ed 

and are just the sum of the two deformations. 

If the further deformation which has the same amount of 

work done as that ayieat paragraph is achieved with its 

principal axes of stress not along®% ,- and X,-axes, but 

along the directions with an angle y to them, as shown 

in fig.4-7c, the dotted ellipse which is the same as that 

in fig, 4-7b is deformed into the solid one. This deform- 

ation, obviously is non-coaxial. The total amount of work 

done to the material in fig,4-7c is exactly the same as that 

in fig. 4-7b. 

The material is supposed to be isotropic throughout the 

deformation, thus, the resultant strains should be the 

same. But if the resultant strains are measured from the 

further deformed ellipse in fig.4-7c, they are as follows: 

Gj, = 7 In be 
a
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and 

Gin® fie e €an*® E26 
for a 

This shows the incapability of using,circular grid truthful 

strain 
ameasuring in non-coaxial deformations. 

4.6 Strain Measurement by Dedede scene Grid 

It may be convenient to use“circular grid if it is known 

that the deformation is coaxial, otherwise that grid 

system may induce errors as described inast section. In 

fact, as said before, even in a circular cup drawing 

operation, earring would bring the involvement of non= 

coaxial deformation to the workpiece. It is better to 

use, square grid in cases when non-coaxial deformation is 

involved, especially when the forming operation is unsym- 

metrical. 

When a square grid is used for strain measurmnt in a 

forming operation, it is printed or scribed on the metal 

surface, (fig.4-8a). The square grid should be so fine 

that the deformation inside the grid is uniform, and 

therefore, when the material is deformed, the square grid 

is distorted into a parallelogram (fig,4-8b). From the 

deformed parallelogram, three principal strains and the 

directions of the principal axes of strain with respect to 

the material are obtained. As discussed in section 4.1, 

the transformation matrix [Ais] ean be obtained from the 

co-ordinates of the corners of the parallelogram. But 

because of the deformation, the original co-ordinate axes 

Continued....ee
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along which the sides of the square grid are aligned ha 
going 

disappeared. Now, where are we,to set the co-ordinate 

axes with respect to the parallelogram for measuring the 

co-ordinates of the corners of the parallelogram? 

The answer is “anywhere". It will be proved that the 

arbitrary setting ateeotand inate axes does not affect the 

strain measurmat. The deformed grid is put without any 

alignment under a travelling microscope, and a corner 

of the parallelogram (the point O in fig,4-9) is chosen 

as the origin of the Poovea inate ane the axes in” nicro- 

scope are the co-ordinate axes, (X,-and X,-axes in fig. 

4-9). Therefore the co-ordinates of the points A' and 

B' (fig, 4-9) march (alee) and (b,,b3) respectively, can be 

measured. Now, the deformation may be explained as a 

co-ordinate transformation as shown in fig.4-3, OACB is 

the undeformed grid and, OA and OB are transformed into 

OA' and OB'. If the square grid size is 1 x l, then, 

according to Eq. 4-10 and fig,4-3, 

a " b zy o (= b M > b 

  

i > e » 

  

o u oo yl = Aad 
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Thus, 

ASP = a. 
1 

Ag, = a 
EE 

Aie2 = Saal 4-39 

Aaa = ba 
de 

By substituting Aij into Eqs. 4-28, 4-30, 4-31, and 4-32, 

the uniform dilatation M, the angle 6 and the pure shear 

strain can be found as follows:- 

Mo = (Ay AA, 2A2,) 4-39 

tan 26, = 2( Ais Az +A ai Ane 

Ale Shea Ane eae 

€ = 1n ( Cre 7 (Gece ee Nees, ) 4-41 
2 2 

where Cij are those in Eq. 4-32. 

The principal strains, therefore, are 

€, = in M+ € 

€,=1nM-€ 4-42 

€, =-In me 4-43 
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The angle 8, obtained from Eq. 4-40 is the angle in the 

undeformed grid (OACB in fig,4-lo) between the fibre 

OA and. the fibre OS which in the deformed state (0S' 

in fig. 4-10)is parallel with the principal axis of the 

major strain (SS in fig,4-10.), 
if 

4.7 Invariance of the Transformation Matrix 

As illustrated in the last section, after Aij are found, 

the principal strains and the directions of the principal 

axes of strain with respect to the material can be easily 

obtained. But there is an SRO ieee ysenae the co-ordinate system 

axes for measuring the co-ordinates of the points A' and 

B' (fig,4-9) are set arbitrarily without explanation. In 

this section, it will be proved that the transformation 

matrix is invariant with respect to the choice of the 

co-ordinate axes. 

In the last section, the points A' and B' were measured 

with respect toe and X2- axes. Now if another set off 

co-ordinate axes, say Yj- and Y2- axes, are set for the 

measurement, the co-ordinates of the points A' and BY 

would be (bjj+1,bayt1) and (bj9*1,b33°1) respectively, and 

by, = cos K Ay = sink Ag, 

bar = sin® Aj, + cosK A>; 

by2 = caosK Ajg — sinX Age 

bee = sinK Ai2 + cosK Aag 
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For calculating the principal strains and the angle 

specifying the directions of the principal strains with 

respect to the material, bij are substituted into Eqs. 

4-28, 4-30, 4-31 and 4-32, and 

Mos (bj bas = by, b3,) 

= (cosKA,, -sinXAs,) (sinKA,2+cosKA2, ) 

- (sin&A,, +cosKA,,) (cosKA,, -sinKA,, ) 

) 4-45 (Avi Aaa By Ae, 

tan 28,= 2 (bi bi, + ba, bz ) 
<br, -b}. 

by ' +B, 22 

= 2 (A,, Aiz +A2, Arr) 

An An -Aia -Aze 4-46 

Similarly, the pure shear strain € is the same as that 

the 
obtained in, last section, and so are the principal strains 

and the angle 6, 

Thus it is proved that a transformation or a deformation 

is determined by the shape of the deformed grid and is 

not dependent on the relative position of the co-ordinate 

axes for the measurement. When the shape of the deformed 

grid is determined, the principal strains and the directions 

of the principal axes of strain with respect to the material 

can all be found. 
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4.8 The Detection and the Magnitude of Non-coaxiality. 

When the material is deformed, the principal strains and 

the directions of the principal axes of strain can be found 

by measuring the deformed grid as described in the last 

two sections. Now if the material in fig,4-8b is further 

deformed, the parallelogram in fig, 4-9 will be distorted 

into another parallelogram(OA"B"C" in ifig,4-11). From 

the parallelogram OA"B"C", the principal strains and the 

directions of the principal axes of strain with respect to 

the material can be found. If the angle specifying the 

directions of the principal axes of strain with respect 

to the material is found to be 6% which is different from 

8; as in Eq. 4-40, it means that before this subsequent 

deformation, the principal axis of the major strain is 

along the fibre OS (fig,4-12) which lies in the direction 

with an angle 8; to the fibre OA, and after the subsequent 

deformation, the principal axis of the major strain is 

along the fibre OT (fig,4-12) which lies in the direction 

making angle 8g with the fibre OA in the undeformed state 

of the material. In this subsequent deformation, the 

principal axis of the major strain with respect to the 

material rotates from 0S to OT. Therefore, this subsequent 

deformation is non-coaxial. The magnitude of the non- 

coaxiality of the principal axis of strain in this non- 

coaxial deformation is, therefore, represented by the 

angle between the fibres OS and OT or by the angle 83-6}. 
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In other words, the detection of the coaxiality of a 

deformation depends on the equality of the value of 8 

measured and calculated from the deformed grids before 

and after the deformation, and the magnitude of the non- 

coaxiality of the deformation is the difference between 

the values of the angle 8 before and after the deform- 

ation. 

Hitherto, the full analysis of finite strains heewcesn 

possible by sheet metal forming research scientists due 

to the use of ‘circular grid, which fails to specify the 

directions of the principal axes of strain with respect to 

the material. Only the principal strains were used to 

represent a state of strain, even in unsymmetrical cases 

in which non-coaxial deformationwas involved. Here, with 

the complete representation of a state of strain including 

the directions of the principal axes of strain with respect 

to the material, and the mathematical analysis, non-coaxial 

deformation can be handled. More complicated analysis 

will follow in the next few chapters. 
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Graphical Representations of Strain Paths 

Astrain path is a series of states of strain and a 

state of strain is represented by quantitative numbers, 

hence it should be possible to represent,strain path in 

a co-ordinate system. The more suitable the co-ordinate 

system is,the better the representation will be. There- 

fore, it is worth considering the most suitable co-ordinate 

system for the best representation of ‘strain path. 

Metal deformation is always three-dimensional, even in the 

tension or the compression test. Although only the strain 

in the loading direction is considered,the deformation is 

still three-dimensional. The other two strains are 

numerically equal to half of the strain being considered 

and are both compressive (intension test) or tensile 

(an compression test) for large deformations. As defined 

in Chapter 2, in sheet metal forming, a state of strain is 

completely represented by three principal strains and a 

factor specifying the pring coat axes of strain with respect 

to the material. There are four variables. Due to the . 

incompressibility of metal, the sum of the three principal 

strains is zero and there are only two degrees of freedom 

among these three principal strains. Even so, it is still 

desirable to show the thickness strain as well as the two 

principal strains on the sheet surface because the fail- 

ure of material in sheet metal forming is mostly due to 

excessive thinning. Therefore, the most suitable co-ord- 

inate system is that which is capable of showing the three 
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principal strains and the factor specifying the principal 

axes of strain with respect to the material. 

In the coaxial case, because the principal axes of strain 

are fixed with respect to the material throughout 

the deformation, the factor specifying the principal axes 

of strainY with respect to the material becomes less 

interesting and is normally ignored. Then there are only 

two degrees of freedom left although there are three 

variables. Many co-ordinate systems are capable of showing 

two-dimensional graphs. Cartesian co-ordinate system is 

the most popular one. The two principal strains on the 

sheet surface are used as”to-ordinates (fig, 5-1), But as 

stoted in the last paragraph, it is desirable to read the 

thickness strain immediately when the graph is shown. The 

Cartesian co-ordinate system fails to achieve that. Apart 

from that, the lines representing typical modes of deforms 

ation such as uniaxial tension, uniaxial compression and 

pure shear, are not evenly distributed (fig,5-1). Another 

limitation pe acanteeien co-ordinate system is its in- 

eability to show four variables with three degrees of 

freedom as in“hon-coaxial case. Therefore, one particular 

co-ordinate system, namely, “triangular co-ordinate system 

first » proposed by Professor Hsii (49)-(51) is introduced 

and used in this thesis. 
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5.1 2-D Triangular Co-ordinate System 
system : 

The co-ordinate,is shown with its co-ordinate lines in 

fig,5-2. The origin represents the undeformed state. 

Three axes spaced 120° to one another in a plane are the 

co-ordinate axes for the three principal strains. Every 

point in this Cosordinuteiwenressnta a state of strain 

with a set of values for the three principal strains. 

For instance, a typical point P (fig,5-2) such that the 

line OP make an angle @ with the é - axis represents a 

state of strain with 

i= OP cos } 

€, = oF cos ( 27 -¢) 
3 

= OP cos (4m -g) 
3 

and 

€*€,+ G= OP (cosprcos (20 - >) + cos(4m -p)) = 0 
3 3 

which satisfies the incompressibility of metal. 

As can be seen in Eq. 5-1, the ratios between the principal 

strains are dependent on the angle donly.and it should be 

possible to represent the ratio» by a number from O to 

2m or O° to 360°, But it is more convenient to use a 

number from 1 to 12 because the radial lines shown in fig, 

5-3 are so similar to those on a clock face that it is 

easy to visualise the direction of the lines by analogy 
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to the clock face. The number is called the 

characteristic index for strain because it represents 

the characteristics or type of deformation anditto be 

represented by » so that 

Bete ee 
The diagram with twelve radial lines on it may be called 

the "clock diagram". 

In the strain path along the €,-axis (= 12), €, as 

positive and (ee and €; are both negative and numerically 

equal to £,/2. The deformatsar is the same as in a 

tension test, pulling in only one direction to produce a 

tensile strain €, and compressive strains (— €,/2)in both 

the other two principal directions. This type of deform- 

ation is called pure tension. The deformation having 

strain paths along (Sie ((=4) or €q -axes (=8) is also 

pure tension. In the strain path along the negative branch 

of the axis, or along (= 2, or 6, or 10, the deformation 

is the teverse of pure tension andiscalled pure compression. 

In the strain paths with,odd number of the characteristic 

index, one of the principal strainsis zero and the other 

two are equal in magnitude but opposite in sign, For 

example, along N= 3, €,is zero and 6 = ~€3, se it is 

a pure shear or plane strain. In other words, the 

deformation along a stin path of even characteristic 

index is either a pure tension Us 12,4,8) or a pure 
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compression th = 6,10,2) and that along odd numbersof 7 

is a pure shear. When Yis not an integer, the deform 

ation is neither a pure tension or compression nor a 

pure shear but is something in between. 

SZ 3-D Triangular Co-ordinate. System 

In order to represent the state of strain in sheet metal 

forming completely, including not only the three principal 

strains but also the dixectionsof princips! axes of strain 

with respect to the material, another co-ordinate axis is 

needed. The additional co-ordinate axis, 8-axis,is set 

perpendicular to the clock diagram, (fig,5-4). A point 

in?3-D triangular Sue etioe a a prebohis a state of strain 

with three principal strains which are obtained by project— 

ing the point on to the clock diagram, and the value of B 

represents the magnitude of the non-coaxiality of the 

principal axes of strain with respect to the material. 

Of course, for only a single state of strain, it is not 

necessary to use 3-D triangular co-ordinates but when non- 

coaxial deformation occurs, the strains have different 

directions fortk principal axes of strain with respect to the 

material, It id“fecessary to represent this difference 

system 2 ne 5 strain 5 the i * 
in, principal direction and,3-D triangular co-ordinate,is 

used. 
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5.3 Coaxial Strain Path 

A strain path is the locus of all the states of strain when 

the material is being deformed from the initial state to 

the final state of strain. Material is normally deformed 

from the igdakorned state, therefore, the strain path 
system 

plotted in a co-ordinate, goes out from the origin of the 

co-ordinate system. 

A coaxial strain path is a trace of states of strain which 

all have their principal axes of strain in the same direct- 

ions with respect to the material so that it can be plotted 

in 2-D triangular co-ordinates. In fig,5-5 a coaxial 

strain path OCD is shown. 

In the coaxial strain path, all the states of strain 

are measured along the same directions in other words, all 

the states of strain are measured from two fibres which 

are deformed but remain perpendicular to each other all the 

time, It is important to distinguish between finite and 

incremental strains.fora state of strain © on the strain 

path OCD in fig.5-5, the finite strain is represented by 

the vector oc drawn from the origin to the point C,and the 

magnitude of the vector OC represents the intensity of 

of strain. The vector aoc or € may be written as 

a — i: 
€@- 0 = @ i+ @, j oo 
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where cs and i are unit vectors along the co-ordinate axes. 

The incremental strain at C is represented by a vanishingly 

small segment of the strain path in the vicinity of C. It 

is represented by a vector 1 (fig,5-5) which is in the 

tangent direction of the strain path at C, and 

ae 
‘Gee Gi Re j ede, 

Strain rate is the time rate of strain increment and is a 

vector too. It msy be written as 

ee de 6 - dé. —= 
Bea dt eee i aoe 5-4 

A strain path normally goes out from the origin of the 

co-ordinate, so, a straight or linear strain path is also 

a radial one. There are two ways of checking the linear- 

ity of a coaxial strain path. Firstly, if a coaxial 

strain path is radial, all the states of strain on the 

strain path should have the same ratio between the strain 

components, or, E/e, is constant everywhere. Secondly, 

the finite strain vector € at any point on the strain 

path should align with the incremental strain vector at 

that point, or, 

¢ oe dé. = 0 5-5 

A radial coaxial strain path is also a strain path with 

constant characteristic index ne 
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5.4 Non-coaxial Strain Path 

fon-coaxial strain path is the locus of states of strain. 
i between these Two sTrain paths 

as,coaxial strain path is, But the difference, is that in 

a non-coaxial strain path, the states of strain are not these 

with the same directions of the principal axes of strain 

th 
with respect to the material. There is, One more degree of 

freedom in the representation of a non-coaxial strain 

path than that in a coaxial one. eo ™, A non-coaxial 

ma ‘ 
strain path,be presented in 3-D triangular co-ordinates 

in which not only the three principal strains but also the 

magnitude of the non-coaxiality of the principal axes of 

strain with respect to the material can be presented. 

A non-coaxial’ strain path is a spate curve in 3-D 

system 
triangular co-ordinate. The vertical axis perpendicular 

to the clock diagram in a 2-D triangular co-ordinate is 

the axis for the magnitude of non-coaxiality of the 

principal axes of strain with respect to the material. 

In a non-coaxial strain path, the magnitude of non-coaxial- 

ity ata state of strain should be the difference between 

the values of the angle @ at that state of strain and at 

the beginning of the forming operation. In practice, it 

may be difficult to find the directions of the principal 

axes of strain with respect to the material at the beginn- 

ing. of the deformation, but this difficulty can always be 

overcome by extrapolation, 7 
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A non=coaxial strain path OCN which is a space curve in 

system 

3-D triangular co-ordinaté,is shown in fig,5-6. The 

projection of the strain ac on the clock diagram, 

called projected strain path, is OC'N'. From the 

projected strain path, the principal strains, €}, €, and 

€, are found and the vertical distance between the 

ae strain path and the non-coaxial strain path 

represents the magnitude of the non-coaxiality of the 

principal axes of strain with respect to the material. 

The strain path of a simple shear which is non-coaxial 

will be shown later in this Chapter and some other non- 

coaxial strain paths are shown in Chapter 10, 

Sea Linearity of Non-coaxial Strain Path 

Like,coaxial strain path, it should be possible to define 

a linear non-coaxial strain path. Because, non-coaxial 

strain path involves rotation of the principal axes of 

strain,a linear non-coaxial eines path has not only 

constant ratios between the principal strains but also a 

constant rate of rotation of the principal ‘axes of 

strain. Therefore, a linear non-coaxial strain path is a 

straight line in 3-D triangular co-ordinates and 

(Cyan, (e,ja @ (Jee (CJR. , (6, lems lc, once 
Pa Xa Ba Ay , Bp Be 
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or dG 3 d6@, 4% dag g dp = constants. 

It is easy to visualise the stress states or stress path 

for producing a linear coaxial strain path. If the 

ratios between the principal stresseare kept constant and 

the principal axes are fixed with respect to the material, 

a linear coaxial strain path is produced. When the 

principal axes of stress rotate with respect to the 

material, the stress state producing a linear non-coaxial 

strain path is complicated and is not easy to visatalise. 

It will be shown in the next section that within certain 

limits, the strain path of a°simple shear is nearly a 

linear non-coaxial one. 

5.6 Simple Shear 

Simple shear is a very common deformation. Perhaps, 

because it is so popular and so often mentioned, people 

tend to discuss it without any doubt and thorough under— 

standing. Simple shear means a square being deformed by 

a shear force into a parallelogram as shown in fig,5-7. 

In fact, without a compressive force on the side BC or a 

clockwise rigid body rotation, the square OABC can not be 

deformed into OA'B'C' in that position shown in fig,5-7. 

In small deformations like an elastic deformation, simple 

shear is assumed as pulling and compressing in the diagonal 

directions. This is accepted not because it is correct 
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but due to the induced error beijso small that it can 

be neglected. But in a large deformation like plastic 

deformation, the error increases with the severity of 

the deformation and is no longer negligible. The 

state: of stress in a large simple shear is rather 

complicated and is outside the scope of this thesis. 

Only the states of strain including the principal axes 

of strain with respect to the material will be discussed 

here. 

A unit square like OABC in fig,5-7 is deformed under a 

simple sheen becomes OAB'C' and then OAB"C" and so on. 

The strain analysis of this deformation can be done by 

measuring the deformed parallelograms and using Eqs. 4-27, 

4-28, 4-29, 4-30, the Principal strains and the directions 

of principal axes with respect to the material can all be 

obtained. 

Fig,5-8 shows the strain path of a simple shear plotted 

in 3-D triangular co-ordinates. The curve OPS is a space 

curve and OP'S' which lies on the clock diagram is the 

projection of OPS. From a point P' on the projected 

curve, lines perpendicular to the three axes on the clock 

diagram can be drawn and three principal strains are 

obtained. PP' is the amount of non-coaxiality. The non- 

coaxiality shows that in a material under simple shear 

deformation, the most stretched and compressed fibres are 

not the same ones but are changing all the time during the 
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deformation. The strain path OPS or brojected one OP'S! 

is not,a strain path of certain fibres which lie in the 

same directions as the principal axes of stress and strain, 

as in a coaxial strain path,rathers it is only a series of 

states of resultant strain of the material under forming. 

In fig, 5-8, it is shown that the strain path OPS is 

nearly linear atbeginning. In other words, if the strain 

is not too large,or smaller than 0.3, the strain path is a 

non=coaxial linear strain path. 
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Analysis of Non-coaxial Deformation 

Non-coaxial deformation has been defined as a deformation 

in which the principal axes of strain rotate with respect 

to the material. This rotation of the principal axes of 

strain with respect to the material is induced by the 

noralignment of the principal axes of stress and of strain 

during the deformation. 

A deformation in a material from the undeformed state to 

a state of strain without any knowledge of the intermediate 

state, can always be reckoned as coaxial, and in that 

deformation, the principal axes of stress coincide with 

the principal axes of strain. If a subsequent deformation 

follows, the coincidence of the principal axes of stress 

with the principal axes of strain at the state before the 

subsequent deformation is the key factor for deciding 

whether the subsequent deformation is coaxial or non- 

coaxial. If they are coincident, then the subsequent 

deformation will be coaxial, otherwise, it will be non- 

coaxial. When it is non-coaxial, what will be the result 

of the successive deformations? How will the result be 

different from that of a coaxial one? How will the 

principal axes of strain rotate and what is the relation 

between the directions of the principal axes of stress and 

those of strain with respect to the material if they are 

not coincident? All these questions are discussed and 

answered in this Chapter. 
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6.1 Resultant of Two Deformations. 

Ae Resultant of Two Coaxial Deformations 

As mentioned before, a deformation is a transformation 

of co-ordinate and can be represented in matrix form, for 

example, as follows: 

where X4,Xa3 and X,',X,' are*to-ordinates of a typical 

point in. the material before and after the deformation 

respectively, and, S and Ss are the principal strains 

produced by the deformation. The principal axes of strain, 

or the directions of the most stretched and coe ed 

fibres referred back to the undeformed state of the 

material,in the finite deformation represented as in Eq. 

6-1, are along” j- and X2- axes (fig,6-1) because the 

non-diagonal elements of the matrix in Eq. 6-1 are zero. 

It is also obvious that the principal axes of stress in 

this deformation are along/Kj- and X3- axes too. 

If another finite deformation takes place in the material 

the, 
with principal axes of stress along, Xj- and Xz- axes and. 

x," pee Oo xR 

’ 6-2 
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where X,', X3' and Xj", X," are co-ordinates of a typical 

point in the material before and after the second deform 

ation respectively, and €,' and €,' are principal strains 

produced in the second deformation. Then the resultant 
. 

of the two finite deformations is as follows: 

fi 
x," ef Q x¥ 

cat - : 

Xz" 0 Eee Xo 

4 
e& 0 ee Q xf 

i} ee oO e& xe, 

penned? o xq 
= 6-3 

0 para” X3 

The resultant principal strains are: 

(lc = per 

(le = Efe+i@! 6-4 

(@§)c = — ( (E+E) + (G+) 

and the principal axes of strain as well as of stress with 

respect to the undeformed material are along the fibres 

OA and OC (fig,6-1). 
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Because the principal axes of stress and strain coincide with 

each other in both the two finite deformations, the 

principal strains are obtained by measuring along the 

same fibres in the material so that the resultant strain 

is only the sum of the strain in each deformation. 

Be Resultant of Two Finite Non-coaxial Deformations (47) 

If the deformation as in Eq. 6-1 is followed by another 

deformation with the principal axes of stress not along the 

Xj- and X,- axes but along the direction in which the 

fibre OP' ‘lies and its perpendicular direction (fig,6-1), 

then these two deformations are non-coaxial and the second 

deformation can be represented as 

‘ ! 
xf" cos¢ -sing ef 0 rcosm sing X@' 

5 3 - 6-5 
‘ 

xe" sing cos® 0 po -sing cas¢ xX! 

where gis 4 A'OP' (fig,6-1) or the angle between the 

principal axes of stress in the first and the second 

deformations, instead of that in Eq. 6-2. 

The resultant of these two deformations then is 

a 
xe" cos¢ -sin® p& go cos¢ sing xf! 

xe" sing cos¢||0 e& -sino® cos@ Xa! 
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4 * 

= cos@ -sing ef 0 coso sind || ee i) XxX} 

6-6 
‘ 

sing cos>||0 ee -sinp cos® |/0 ef Xo 

Eo | 
=|cos@ -sin¢ ||M" 0 PS? 0 cos? sing |iM O pfe o Xi 

6-7 
=thd =< 

sing cosp|jO M'I0 E -sinécos¢ || 0 M]| 0 eae X2 

wher ‘ 
ee oO mt oo | | ef O 

o 6 ef loom Jo an ke 

em o 022.0 ef 0 

0 e& 0 M oO p-&e 

and 

we Met + Gt ie’ = Ke =f 

6-8 

y= i+ & €, = #6. 
2 iz 

Eq. 6-6 may also be written as 

tack Ei € 
xy" MM oO cosg -sing e athe coso BE a Oe ean 

= , 6-9 

XE" |>| 0 MMt sing cos@ -P EF ne en (forbes) 
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The first matrix reading from right to left em the right 

hand side’ of Eq. 6-9 can be factorisd into the product of 

four matrigs as those in Eq. 4-24 with M = 1. Thus: 

G+! G6 
e cos@ Pp sing cosx -sinc| |cose’ -sing’ 

6 @ sr) pales i cree es 5 
e sing e@ cos sinx cosc||sin@ cos@ 

€ ’ aa? 
e 0 cos@’ sing 

° ° 6-10 

0 e*||-sine’ cose’ 

according to Eqs. 4-a6, 4-27, 4-28 and 4-29 

‘ , 
& Cie 

tan K= (ene -2 ) sin¢ 
[Eigse a) “FE cos 

‘ 
- cosh (€.~— €) - cosh (€.4¢/) tang 6-11 

tan 26! = Sin 2 
sin )* cos €, cos <¢ 
tanh 2 €f 

and 

cosh?€ = cosh2( €, - €< )+ (cosh? ( €.+ €/)-cosh?( €, - €/ Jeos*p 

= cosh2( €, + €/)-(cosh?( Ez + €/)-cosh?( icone ex) sin®p 6-13 

Therefore Eq. 6-9 may be written as 

x,'| a’ o cos¢ -sin¢||cosx -sinx | |cose’ -sine'|le® 0 cos@ sing’ 

X,| |0 MM'||sing cos¢||sinx cosx||sine’ cose’||0 ef -sing’ cos@’ 
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MM’ 0 ||cos(@+«) -sin(@+«)| }cos9’ -sine’}le® 0|| cose’ sine’ 
= | ; } i 614 

sé , ’ 
O MM'/lsin(g+x) cos(p+«)||sine’ cose'||0 @ ||-sine’ cose 

The matrices on the right hand side of Eq. 6-14 are 

similar to those in Eq. 4-24. In other words, the 

resultant of those two non-coaxial deformations is like 

a deformation with its principal axes of strain in the 

directions ag the fibres making an angle 8'. (Eq. 6-12) 

with the sides of the undeformed unit square (dotted 

line in fig,6-1) and the three principal strains are as 

follows:- 

(€,)non in (MM') + € 

(€,)non u In (MM) - € 6-15 

a (€3)non -2 In (MM') 

The amount of nonscoaxiality in these two deformations 

is 

B=8' - 0% = Btabtan"ly sin 2¢ 6-16 
sinh 2¢€. + cosh 2€,cos2¢ 
tanh2e! 

If $40, from Eq. 6-13,€ is always smaller than (€.+€), 

If bak € = (€.4+€) = § and §>0,then 

(€,)non In(MM"') + € 

" InM+1nM'+ (€,+€/) - § 

(€/+é,) - § 
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(€,)non = 1In(MMt) = € 

= InM+1lnM'- (e+ €!)+ § 

= (G+ €!) + 5 

6-17 

(€3)non = =((€,)non + (€,)non ) 

= -((€+6') + (6+ €')) 

6.2 The Wenaligqnment of the Principal Axes of Stress 
  

and Strain in Non-coaxial Deformations. 

The principal axes of stress and strain always coincide 

in coaxial deformations. When the principal axes of stress 

rotate, SO will the principal axes of strain,® 

and non-coaxial deformation takes place. The relation- 

ship between®@ which is the angle the principal axes of 

stress rotate and 8' which is the angle the principal axes 

of strain rotate, is shown in Eq. 6-12. From Eq. 6-12, 

it is clearly shown that the relation between gand 86! 

is not only dependent on €;, the prestrain, but also 

on -€,', the amount of straining in the second deformation. 

If the strain in the second deformation «continues, 

will the principal axes of strain coincide with the 

principal axes of stress again? 

The principal axes of stress in the second deformation are 

parallel and perpendicular to OT (fig,6-1), and stay fixed 

there ehesu Anouk the deformation. Therefore, if the 

principal axes of strain do coincide with the principal 

axes of stress again, it means that Exh 
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the most stretched fibre must be the fibre OP' in OA'B'C! 

(fig,6-1). Because the directions of, principal axes of 

strain, or the angle 8' in Eq. 6-12,is always referred 

back to that in the undeformed unit square OABC, when the 

principal axes of strain and stress coincide again, the 

angle 8' should be CAOP instead of ZA0p, 

According to Eq. 6-1 and Eq. 6-8, 

(XP g, = OF (xe)e 
6-18 

(xg gp = BMF (xe)S 

€,= M+ & 
and 6-19 

eo = M = ee 

ZA'OP! = 

tan’ {Ka)ot oh ¢ eM6 (xa)p ) 
(Xi) pe B(x R)p 

= tan! (p>? €e tan(4A0P)) 6-20 

Thus tang= e72€ tang! 

or tan8! = Pi tang 6-21 

Substituting 6'in Eq. 6-21 into Eq. 6-12, 

tan 28'= 2tanb’ 2€6 an? 
1-tan*@’ 1 pits tan2p 
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= sin 2 

aH Ter + cosh 2 € cos 2¢ 6-22 
° 

ho gi@ oe a in fo * 2 d % tanh 2.€;' = ae “3, 

sin2 (1-846 $an-o e28 

In Eq. 6-23, tanh 

which should be p 

if ¢ and € are n 

principal axes of 

they have shifted 

It is proved that 

will not coincide 

other. Then, how 

easily seen that 

deformation becom 

Because tanh oo= 

tan 26! = 

“tang cosh 2 € cos2p 

= -l1 6-23 

2 Ej= -l. There is no value of €, 

ositive to satisfy&9623. In other words, 

ot zero, it is impossible for’ the 

stress and strain to coincide again after 

from each other. 

the principal axes of stress and strain 

again after they have shifted from each 

close could the two axes be? It is 

the two axes are closest when the second 

es infinite or €, is infinitely: large. 

1, Eq. 6-12 becomes 

sin 29 
Sinh2€, +cosh2€, cos 2? 

sin 2¢ 
sinh 2 € .+co0shZ€,(1-2 sin?) 

sin 2? 
2€. 265,972 5 

e - (e +27 ) sin? 

sin 2¢ 
abs 2 =2€. ae 

£ cos @ -P oe sin > 
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gp-2€& tand 

= 1-8 °™'tan"o 

2 (prefs tan? ) 

mel = (BS can) 6-24 

-2€, 
Therefore, tan 6' = B tan® 6-25 

Fig, 6-2 shows the relationship between @ and 8! at the 

extreme conditions. The curves under the line @ = 8! 

are curves showing the relationship between @ and 8' as 

in Eq. 6-25 at different degrees of prestrain €, 

and the second deformation becomes inf initelys large. The 

curves above the line o=8' are curves showing the relation- 

ship between @ and 8' as in Eq. 6-21-if the 

principal axes of strain coincided with the principal 

axes of stress. At certain degree of prestrain €., the 

difference between the two curves, one under and one above 

the line $= 8', at fixed value of represents the min- 

imum angle between the final position of the principal 

axes of stress and strain with respect to the undeformed 

material in non-coaxial deformation. 

6.3 Deformations without Changing the Resultant Strain 

As said before, deformation is a change of state of strain 

and a state of strain may be changed by changing the 

principal strains and keeping the principal axes of strain 

fixed with respect to the material, or by changing the 

directions of the principal axes of strain with respect to 
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to the material and keeping the principal strains unchanged, 

or by changing both. The first case is the result of a 

coaxial deformation and the second and the third are results 

of non=coaxial deformations Generally speaking, in a non—- 

coaxial deformation, both the principal strains and the 

directions of the principal axes of strain with respect to 

the material are changed. ‘But it is still possible that the 

non-coaxial deformation only changes the directions of the 

principal axes of strain with respect to the material and 

keeps the principal strains unchanged. In this case, the 

strain path in 3-D triangular co-ordinatesis a vertical 

line coming out from somewhere other than the origin of 

the co-ordinate on the clock diagram. It is not only 

interesting but significant to investigate this special 

case, .especially when.circular grid is widely used for 

strain measurement in sheet metal forming. When @circular 

grid is used for strain measurement the principal strains 

are measured from the deformed grid, namely, the ellipse. 

It is quite possible, as will be discussed in«the following, 

that the shape of the ellipse hence the principal strains 

is not changed in a subsequent deformation. This is the 

danger of using circular grid for strain measurement, 

especially in a non-axisymmetrical forming. 

A simple case is taken as an example to explain the complex 

implication in the deformation without changing the result- 

ant strain, then a theoretical analysis follows for the 
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more complicated cases. A circle (A in fig.6-3a) becomes 

an ellipse (B in fig,6-3a) after a deformation and the 

principal strains are obtained by measuring the major and 

minor axes of the ellipse. If another deformation reverses 

the previous one with campressing instead of pulling and 

pulling instead of campressing along the major and minor 

axes respectively of the ellipse, the ellipse B will 

recover to a circle (C in fig,6-3b) and the strains 

measured from the deformed shape are zero. If the deform-= 

ation -conTtinues, © the recovered circle € will be 

deformed again to another ellipse (D in fig,6-3c) but 

with the major and minor axes interchanged with each other. 

In the deformation from B to C then to shape D,the strains 

obtained only by measuring the major and minor axes of the 

deformed ellipse, do not change at all. This is a deform- 

ation without changing the resultant strain and it is well 

known but not much development has been done in this 

approach. In fact, although the principal axes of stress 

and strain are coincident all the time during the deform- 

ation, strictly speaking, it is a non-coaxial deformation. 

The major axis of the ellipse has been turned 90°, Fig, 

6-4 shows the strain paths of the deformations. A is the 

undeformed state and from A to B (fig,6-3a) the strain 

path is AB along 3 - o'clock on the clock diagram. From 

B to C (fig, 6-3b), the strain path is BC which coincides 

with AB. If these are all deformations, then they are 

coaxial. But if the deformation continues,there is a 
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sudden jump of non-coaxiality. The major axis is turned 

through 90° and from C to D (fig,6-3c) the strain path is 

C'D which is a space line in 3-D triangular co-ordinate 

and its projection on the clock diagram coincides with AB. 

If the non-coaxiality is neglected, the strain paths AB, 

BC and C'D all coincide, “es. This is an error 

impossible ton det ectdand explaindby using\circular grid. 

Te Jeavexe grid is used, or points are marked on the 

circular grid, the error would be noticed and avoided. 

The above-mentioned deformation is only one of the deform- 

ations which take place without changing the resultant 

strain. In the non-coaxial case, those deformations can 

occur very often, Eq. 6-13 is copied here for further 

discussion. 

cosh*€ = cosh? (€.+ €.") =(cosh2(€,+ €! )-cosh?(€,- E! sin? 

6-13 

where referring to the deformations mentioned in fig,6-3 

€, is the pure shear strain from A to B, €', from B to 

C to D, €, the resultant strain in D and 9,ratation of the 

major axis of stress. Eq. 6-13 may also be written as 

cosh 2€ = cosh2(€,+ €')-(cosh2( €+ €,!)-cosh2( €,- €!) sin*p : 

because 6-26 

cosh7€ = $(cosh 2€+ 1) 

Now, if there is no change inSesultant strain, that is 

€=€6,. Therefore: 
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cosh2 €, = cosh2( €,+ €/)-(cosh2( €, + €,/)-cosh2( €, - €/))sin?¢ 

cosh2(€, + €/) - cosh2€, = (cosh2( €, + €,')-cash2( €.- €))sin?> 

2 sinh (2 €,+ €,’)sinh€, = 2 sinh 2€ sinh 2€,’ sin@p 

2 sinh 2 €,(2 sinh €, cosh €, )sin? 

sinh 2 @cosh€, +sinh €,!_ cosh2€, = 2 sinh2 €, cosh &, sin*> 

(sinh 2€,-2 sinh2€,sin?@ ) cosh €, + sinh eS cosh2 €, = 0 

sinh 2 €, cos2@ cosh€, + sinh€, cosh 2€, = O 

tanh 2€ cos 2@ + tanh €,) = O 

es tanh €, = —- tanh 2€ cos 2¢ 6-27 
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Because 

0 < tanh é< 1, 

so -1 < tanh (2 €,)cos 2¢ <0 

and because 

O< tanh ( 26) <1 

so -1< cos2$¢ < 0 

ais Bik 7< $<   
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In other words, no matter what the prestrain is (other 

than nothing) there is always the possibility of another 

deformation which will produce no change in™>esultant 

strain. Fig,6-5 shows the relationships between Eo, Got 

and $ for those deformations. 
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Implications On the Theory of Plasticity 

Formability as defined in Chapter 2 has two aspects, one 

is the forming limits of the material and the other, the 

performance of the material in a forming process. As 

reviewed in Chapter 3, the forming limiting curve of 
previous 

sheet metal that has been investigated,is the formability 

curve covering the end points of only coaxial strain paths. 

In other words, the formability curve, in fact, does not 

represent completely the forming limits of sheet steel but 

is only a partial view of them. A complete representation 

should cover the end points of both coaxial and non- 

coaxial strain paths. 

theoretical analysis of non-coaxial deformation was firstly 

done by Professor Hs (48)-(50) in 1965 and 1966. But 

hitherto no further investigation and no actual non- 

coaxial strain path has been pursued and plotted. In this 

thesis, non-coaxial strain pathswill be plotted in 

Chapter 10. In this Chapter, the effect of non-coaxiality 

on the formability of sheet metal from the point of view 

of plastic work of deformation and the implication on the 

theory of plasticity will be discussed. 

Tel Plastic Work Done (52)-(54) in Coaxial Deformation 

When a material is deformed, it is firstly deformed 

elastically, and elastic work is needed to produce elastic 

strains After removing the load, the material recovers to 

Continued......
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its original form and elastic energy is released during 

the recovery. For a plastic deformation, after removing 

the load, a permanent strain exists. It needs plastic 

work done on the material. 

The external work per unit volume done on the material 

during the strain d€ij is Tij-d€ij or dw =%1ij d€ij 7-2 

where Cij is the stress tensor. The work includes elastic 

and plastic work and the strain includes elastic and 

plastic strain too. Thus: 

dws = dw-dwe =Tij (d€ij - d€i3) 

Ossie a2 

where dwe and dwp are elastic and plastic work respectively 

e ce : seats 
and, d€ij and d€i5 are elastic and plastic strain-incre- 

ments. 

Due to the incompressibility of metal, plastic deformation 

always takes place at constant volume and “%» hydrostatic 

pressure or tension only produces elastic strains. There- 

fore no plastic work is done by*hydrostatic component of 

the applied stress and the plastic work is done only by 

the deviatoric or reduced stress 

' 

CG atisg soea4 1-3 

where T(=t 0H) is the hydrostatic component of the stress. 

Eq. 7-2 can also be written as: Continued...see
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dwe = ij d€i} = Tij deaf 7-3 

In coaxial deformation, the state of strain is represented 

by three principal strains measured from three orthogonal 

fibres which remain orthogonal to each other in the deform- 

ation, and the principal axes of strain with respect to 

the material are usually ignored because they are fixed. 

The strain-increment is represented by three principal 

strain-increments which are also the strain-increments of 

those three orthogonal fibres, so that the strain-incre- 

ment is additive and integrable. Therefore the total 

plastic work done on the material from the initial to the 

final state of the deformation is 

p 1 p 
we = fan - fois aes? -[ots d€ ij’ 7-4 

where the integral is taken over the actual strain paths 

Eqs. 7-2 and 7-4 imply ‘(repeated suffixes i and j) that 

the total plastic work is the sum of the work done by 

each component of stress. For simplicity, a generalised 

or equivalent stress g and equivalent incremental plastic 

strain d€ are introduced and defined as follows: 

F -(4{(a-aF +0 o- ay + (-6, HE rs 
Continuedesseee
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-(${ 5 a }} 1-6 

where Ti» O3 T3 are the principal stresses, and 

p 
S 2 dE = (2/9 (deh -06B)?, (ge geB)24( a8 -aeh)20*) 721 

Pp Pp 1% 
= (4 (4635 4€55) FO 7-8 

Therefore: 

p 
dwp = Ti; 463; 

= 7 dé 1-9 

and 

wp = [dp -Jz dé 7-10 

7.2 Plastic Work Done in Non-coaxial Deformation 
  

In a non-coaxial strain path, the incremental strain, in 

fact, does not mean the same thing as the incremental 

strain in a coaxial strain path. In a non-coaxial deform- 

ation, a state of strain is determined not only by the 

three principal strains but also by the directions of the 

principal axes of strain with respect to the material. 

The principal strains are determined pytnast severely 

deformed fibres in the grid. Because of the non-coaxiality, 

the fibres measured for obtaining the principal strains at 
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one state are different from those measured at another 

state of strain. For instance, at stage A, fibres a and 

b are the most severely deformed fibres and are measured 

for principal strains €a and Eb. At stage B, fibres € 

and d instead of a and b are the most severely deformed 

and are measured for principal strains Ec and €d. From 

stage A to stage B, the resultant principal strains are 

from €a and €b to: Ge and €a, but the strain differences 

(Ec-€a) and (€b-€d) are ‘not the strain increments of 

either fibres a and b or fibres c and d. The strain- 

increment between stage A and stage B is not measured 

from the same fibres in the material. This is one of 

the reasons why Eq. 7-3 can not be integrated over the 

strain path. The other reason that Eq. 7-3 can not be 

integrated is that in the non-coaxial case, the direction 

of Cag is no longer coincident with that of d€35, and Eq. 

7-3 can be true only when the direction of Tij is coin- 
p 

cident with that of d€ ij... 

Eq. 7-3 is not integrable, then what is the plastic work 

done in non=-coaxial deformations? The plastic work done 

in a deformation under, non-coaxial strain path can be 

found if the angle between the principal axes of stress 

and principal axes of strain with respect to the material 

at every stage Or cefernation is known. The non-coaxial 

strain path is divided into several parts and each part 

in which it is assumed that the principal axes of stress 

Continued. sess
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are fixed with respect to the material representsa stage 

of deformation, The first and the second parts are handled 

first. The first one starts from the undeformed state, and 

the same as 
the plastic work done is,that in the coaxial case. for the 

second stage, the angle ( ) between the principal axes of 

stress and those of strain with respect to the material 

after the first stage of deformation,is known, Also the 

resultant strain € and the amount of non-coaxiality after 

the second stage of deformation are known from the non- 

coaxial strain path. BY. substituting » , €,and €o which 

is the resultant strain after the first stage of deform- 

ation,into Eq. 6-12 or 6-13, €5 » the amount of straining 

in the second stage of deformation can be obtained. In 

other words, if a square or a circular grid is printed 

or scribed on the metal surface before the second stage 

of deformation, a strain €o will be obtained at the end 

of the second stage of deformation. Therefore, the plastic 

work done in the second stage of deformation is: 

fa, 
(weg =) Gage d&aj Ta1u 

oO 

Eq. 7-11 is integrable because the strain measured is along 
, 

the same direction» as that of Taj . 

The plastic work done in the first stage of deformation is: 

eee 
(wp)j = Cijr d€ij ae 

o 

which is also integrable. 
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So, the plastic work done in the first two stages of deform- 

ation is 

  

5 lean 
| ijt a3 (pat 

o 

eoeat i P 

Ts} dey 5 T-14 

If the non-coaxiality is neglected, or the non-coaxial 

strain path is treated as“coaxial one, the plastic work 

done in the first two stages of. deformation would be as 

follows: 

eo ee 
(wp ee el TijedEis’ 7-15 

Oo 

‘ 
From Eq. 6-13, if ¢*0, € is always smaller than (€o0+€6). 

Therefore in the first two stages of deformation, there 

is a plastic work difference between”Goaxial and non- 

. Onde 
coaxial cases,,it is 

(awy) = (wp)m2z - (wp)ce 

€o+€o' , P 
= ij dij? 

° 

   
7-16 

In other words, for two deformations both with the same 

amount of principal strains but one under coaxial and the 
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other under non-coaxial strain path, the one under non- 

coaxial strain path will need more plastic work done for 

getting the same amount of resultant strain. 

Now suppose the first two stages of deformation dre treated 

as the first stage,and the third stage is treated as the 

second stage. Then, 

6460", P Bs P 
a wy a Oijd€i;? we Oijed€:; Tau 

Oo o 

“ , 
where € is as €o, €o° as €o" and €' as € in Eq. 7-16. So 

the plastic work done in the first three stages of deform— 

ation is: 

€' ’ P 

(wp)n3 = Ti5d€i; + Aw) + dw 7-18 
o 

where the first term reading from left to right interight 

hand side of Eq. 7-18 is the plastic work done under a 

coaxial strain path and the last two terms are the plastic 

& the Sa a 
work differences between ,coaxial and non-coaxial cases. 

Repeating the procedures as ‘fors (§* Eqs. 7-16, 7-17 and 

7-18, a series of differences in plastic work between the 
components 

coaxial and non-coaxial,in each stage of deformation, aw 3 

Ow seeeees and Bway) can be obtained. Then, the total 

plastic work done in a non-coaxial deformation is the 
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sum of the total plastic work done jm a coaxial deformation 

with the same amount of strain as that in sa’ non-coaxial 

one, plus those plastic work differences between coaxial 

and non-coaxial deformations in the small stages of deform- 

ation. It is: 

eer ES 
(wo)n «| oj! f > Aw: 7-19 

i 

where the integral is taken over the projected strain path 

of the non-coaxial one on the clock diagram. 

7.3 Work-hardening 

When a material is deformed plastically, its resistance to 

further deformation increases. Such a material is called 

a work-hardening material. 

The hypothesis of work-hardening is that the degree of 

hardening is a function of the total plastic work done only 

and is otherwise independent of the strain path (52). The 

degree of hardening is measured by the yield criterion 

which is represented by the equivalent stress g as defined 

in Eq. 7-5. In mathematical language, it may be written 

ass 

& =F (wp) ‘ %-20 

The total plastic work done is dependent on the strain 

path. This is well known and the literature concerning the 
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hypothesis of work-hardening states this dependence. But 

it is not usually pointed out that Eq. 7-3 can not be 

integrated for obtaining the total plastic work if the 

strain path is non-coaxial. As shown in Eq. 7-19, there is 

a difference ae between the total plastic work done in 

coaxial and non=-coaxial deformations Surely, the degree 

of work-hardening will be different due to that difference. 

Therefore, for a material deformed under a coaxial strain 

path, the degree of work-hardening is: 

zee Pe 
(BG F (we) = F( 0459655 5 i] 

F (lr dé) 7-21 

and for the material deformed under a non-coaxial strain 

path, the degree of work-hardening should be as follows: 

os 4 - Po ones 
F =F (wg) = ri [ Tusdesh +3 awp) 1-22 

i 

For the same amount of resultant strain, material 

a 
deformed under,non-coaxial strain path is ©» > 

harder! than under “coaxial strain path. 

1.4 Validity of Lévy-Mises and Prandtl-Reuss Equations. 
of plasticcty theery 

The stress-strain relations,were originally proposed by Saint- 
He assumed 

Venant in 1870 (85), that the principal axes of the strain- 
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increment coincided with the principal axes of stress. 

Then a general relationship between strain-increment and 

the reduced stress was introduced by Lévy (56) in 1871 

and independently by von Mises (57) in 1913. The 

relations were expressed in equations as the following. 

  

d& = déy = dé = dty = dVyz = d¥zx = dX 7-23 

g, Gy Gn Ty Tyz TH 

or more compactly,as 

‘ 

d€ij = TijdA 7-24 

where dA is a constant of proportionality, and the equat-— 

the , 
ions were called,Lévy-Mises equations. 

in levyaMvues equations, total strain-increment was used so 

that they could only be applied to materials which are 

rigid before plastic strain took place. The extension of the 

Lévy-Mises equations * toe materials which are not 

Plastic-rigid was done by Prandtl (58) in 1924 for the 

plane-strain problem, and in complete generality by Reuss 

(59) in 1930, The equations were expressed as 

Pp P. & Pag P Ray , dR = dky” = gfP - diixy = dhyz = difze = aN 7-24 
Tx! Ty! Oz Txy Tyz T 2x 

or 

PL , 
dei 05 an 7-25 
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and were called Prandtl— Reuss equations. If principal 

the , 
stresses and principal strain-increment are chosen,, Lévy- 

Mises equations may be written as 

OR eS ng Sed Oe dX oe 

g; g; os 

the. 
and,Prandtl - Reuss equations as 

    

P g P 
acy = Me se MSL ax 7-27 

gq,’ G os 

It is significant to note that the strain-increments used 

are the strain differences between om state of 

strain and its adjacent state of strain. In”eoaxial case, 

because all the states of strain are obtained by measuring 

certain fibres all the time during the deformation, the 

strain difference between a state of strain and its adjacent 

state is a strain-increment of the same fibre at different 

stages of forming. This is a very important condition 

under which*Lévy-Mises and Prandtl-Reuss equations are valid. 

In the non-coaxial case, owing to the rotation aa! etnias 

axes of stress, the principal axes of strain are rotating 

with respect to the material all the time during the deform- 

ation. The pi zeinederenentawrech means the strain diff- 

erence between a state of strain and its adjacent state, 

is a strain difference of different fibres at different 

stages of forming. Although" Lévy-Mises and Prandtl-Reuss 

equations are valid in the coaxial case, they are not 
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valid in the non-coaxial case unless the strain-increment 

. the x A : sales 
in,non-coaxial case is re-defined as the strain-increment 

of a certain fibre and not the principal strain-increment. 

If principal stresses and principal strain-increments are 

the , i : : 
chosen, then, Lévy-Mises equation may be written as: 

¢ 
f a 

Te AG 7-28 

where a €,and 46 are infinitesimal principal strain- 

increments. Suppose a material is deformed under stresses 

, 
with constant ratioA(= @ ) to a state of strain which 

a 

is represented by the three principal strains (€,)0,(€,)0 

and (&3)o0, and because of the constant stress ratios, the 

strain ration (€j)o0/(€j)o is equal tor. If the stressing 

continues with the same stress ratio and the principal 

axes of stress remain ~ fixed with respect to the material, 

the material will be further deformed to a new state of 

strain, €,, €, and €3, and because 4&6 # Gy. mo 
sg Oe 

& (Gi)o 
(€3)o0. 

therefore: © st = AUG)o+ AME wx 
iS (1S, o+ Ales (@)o+ AG us 
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A state of strain can also be represented by a uniform 

dilatation and a pure shear strain as shown in the 

analysis in Chapter 4. Therefore, the strains in the 

first deformation may also be represented bs follows: 

in Mo { €\ )0+( €2)o0 7-29 

é, = (G))o-(€2)0 7-30 

2 

where ln Mo is the amount of uniform dilatation and 0, 

the pure shear strain. It is understood that (€3)o = 

-2 ln Mo. Because €,, €, and €, are the resultant strains 

of the two deformations, the strains in the second deform- 

ation are 

  

in.Mo' = Sats = 1n Mo Toa 

’ ea 
eoks= Bais Eo 7-32 

2 

If the stressing in the second deformation is such that 

the stress ratio is unchanged but the principal axes of 

stress rotate through an angle ¢ with respect to the 

material it is a non-coaxial case and the resultant 

strains will be as follows, According to Eq. 6-13 

cosh2€ = cosh? (€o7€0' )=(cosh* (€ot€o' ) cosh? (€o=£o')) sinte 
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and 

1nM = InMo+1nMo' 

because uniform dilatation is non-directional. If > +0, 

€ is always smaller than (Eoxto ), so, let 

, 
€ = (€o+€o") - § 7-33 

where § has a positive value. Then the resultant 

principal strains are: 

€' = InM+E€ 

= InMo + 1lnMo! + (€o+€5 )- 5 

  

2 2 

= @- $ 7-34 

é,, = InmM- € 

= €+5 7-35 

and (@! = -21nM = -(€,+6) = € 7-36 

then 

+ : 7 Be (Cineaatasey) Way 
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d ‘ / 
yaeee € = 6'-(6)o Ei -( Gj )o- § 

ae €'-(€,)o0 €5-(€2)o+ § 

oG@-5 9m os 

A+ 5. oO, a 

the 
Therefore it is proved that,Levy-Mises equations are not 

; the : 
valid for,non-coaxial case. 

1.5 Stress-Strain Relationship 
  

In simple tension, although it involves a three-dimensional 

the 
deformation, only the load and the strain in,loading 

can be 
direction are interesting and,plotted in Cartesian 

co-ordinates. The stress-strain relation is very simple, 

and the area under the curve represents the total work 

done. 

In other deformations, the stressing condition is more 

complicated and can not be represented aoe simple way 

as that in the tension tests Therefore, the effective or 

equivalent stress and the effective strain are used to 

represent the stress-strain relation, where the effective 

or equivalent stress is as defined in Eq. 7-5 tye ef tees ive 

or equivalent strain is the integral® » of the incremental 

strain along the strain path, as follows. 

& =(ae = | (2 {(de,-dej)?+(ae,-aie)?+(aej-ae,)*} 9% — 7-39 }‘93 3 3 
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If the incremental strain ratios are kept constant all the 

time in the strain path, in other words, if there is a 

linear strain path, or 

ds, : di€,= dé, = 12: - (14K) 7-40 

where K is a constant 

then, 

2 2 
dé = (4 (de +a €, +06) )% 

if Fr (14x + 7)F we, 7-41 
and 

a@ [ae = = (14 a 02) fae, 

(1+ K+ x2)? G 

(€,2+ 62+ ie)? 7-42 a]
 

Bs
 

In the coaxial case, when the effective stress and effect- 

ive strain are used to represent the stress-strain 

relation, the area under the curve, /Tdé, is the total work 

done. In the non-coaxial case, if the non-coaxiality is 

neglected and only the stresses and*principal strains are 

measured, then the stress-strain relation represented by 

the effective stress and effective strain will be different 

from that in“€0axial case. The area under the curve will 

represent not the total work done but the total work done 

minus 5 a wj as shown in Eq. 7-19. Because @ is a function 
i 
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of total plastic work done only, therefore, for a certain 

amount of total plastic work done,¢ is determined. But 

the resultant strains in coaxial and non-coaxial cases for 

the same amount of total plastic work are different. This 

is the reason why the stress-strain relationship in coaxial 
deformations 

and non-coaxial,are different. 

Take, for example, the cases discussed in the last section, 

The stress ratios are the same but the directions of the 

principal axes of stress with respect to the material are 

different from each other .’the ratio of the resultant 

strains is 

Gs 

, We 2 : 
instead of €1/€, in,non-coaxial case. The stress-strain 

relations in the first stage are exactly the same, but in 

the second stage, 

a= =xX 71-43 
a 

and Ag" 2 aie 5 BS SAK 1-44 
A ie, amet 5 

The effective strain increment in the second stage in the 

coaxial case is 

  (ab c= LE oe) we)? + ( ales) 7-45 
and in*hon-coaxial case, Panes 

er ie ie , a 0d, - EB [ect oot ath m6 
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Because 4 €,= a6; 7-47 

therefore, 

6+ 46 = a€' + a6,' 

and 

(14a) 46, = (1+a!) ae! 7-48 

From Eqs. 7-43 and 7-44 

2 ( agy)*+( a) 7m (14x) E,)° 7-49 

and 

( AG) 7+( ag!) = (14a'?) ( ae)" 7-50 

= (14)!2) (14a)? Jiae0? Tost 
(a4a')2 

If we assume that (4@)c is equal to (A€)n, then, 

2 

(4A e014) es (a)? 
(ixtye 

(a7) (4x1)? = Gant?) (ar)? 

(14x?) (Crear? y+ 2n'] = (4X) [Catr2042 a] 

(142). 2at = (14n'2).2 

Dota ne ee Do NS 
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Eq. 7-52 shows that only when >! = 1 then 

a 

(a€)c = (a€)n 

otherwise they are not equal. 

This is a clear proof that the stress-strain relations in 

coaxial and non-coaxial casesare different. 

The whole theory of plasticity is hitherto built on the 

basis of Lévy-Mises and Prandtl-Reuss equations. Now it 

is proved that tevy-Miaes and Prandtl-Reuss equations are 

valid only in"€oaxial case, Therefore, the theory of 

Plasticity or the stress-strain relationship int hon- 

coaxial case needs to be modified, depending on the non- 

coaxiality of the principal axes of stress and strain as 

discussed in this Chapter. 

126 The Effect of Non-coaxiality on Formability 

In sheet metal forming, very often, the material fails 

due to excessive thinning, leading to fracture. But 
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excessive thinning is not the only reason which leads the 

material to fracture, For instance, low cycle fatigue could 

lead the material to fracture. Infmon-coaxial case, part 

of the work done is consumed without producing measurable 

strain, therefore, it is very possible that the material 

fails not ‘because of excessive thinning but because of 

too much work done on it. In other words, the material 

fails because of being too severely work-hardened so 

that the stress exceeds the strength of the material. 

Because of the non-coaxiality of the principal axes of 

stress and strain, the strain path of a non-coaxial 

deformation deviates from that of a coaxial one. Because 

the formability is dependent on the strain path, the dev- 

iation of ‘Strain path in*non-coaxial deformation, will 

affect the formability of material. In addition, the 

non-coaxiality, Geetcatths associated excess work con- 

sumed, may induce fracture without excessive thinning. 

This is the possibility that the forming limit curve 

of sheet metal in which hitherto the forming limit ‘is: 

determined based on the material failure of excessive 

thinning leading to fracture can be extended to cover the 

forming limits which are due to fracture without excessive 

thinning. An example of material failure without excessive 

thinning will be shown in Chapter 10. 
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The Drawability of Sheet Metal 

As briefly described in the Introduction of this thesis, 

the formability of sheet metal is investigated in two 

aspects, one is the forming limits of the material under 

metal forming conditions and the other, the performance 

of sheet metal in a forming process. The forming limit 

of a material is dependent an the strain path under which 

the material is deformed. This path dependence requires 

the investigation of non-coaxial deformation. In the last 

few Chapters, non-coaxial deformation and strain path are 

analysed in detail. In this Chapter the second aspect of 

the formability of sheet metal,namely, the performance of 

sheet metal in a forming process will be discussed. 

sheet metal test was originally proposed to test the 

material property. When the test result failed to predict 

the material behaviour ina@nactual forming process, another 

test was proposed, The large number of tests is a good 

indication thatasheet metal test is only one of an 

infinite number of forming processes and the test result 

is only the performance of the material in that forming 

process. Formability of sheet metal, as the performance 

in a forming process, is, therefore, dependent on the 

forming process. 

"Stretchability" and "drawability" are used to present 

the performance of sheet metal in a forming process. But 
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because the failure of material in most of the forming 

processes is due to stretching, the forming limits of a 

material, in fact, has included the stretchability of the 

material, However, there are some other presentations such 

as the height of the punch travel in the Erichsen test and 

the height of the shell at the maximum pressure in the 

hydrostatic bulge test, which represent also the stretchability 

of the material in * purely stretch — forming processes, 

Since stretching always occurs in a forming process, such 

cases as those in the Erichsen test and the hydrostatic 

bulge test will be tackled as the performance in a forming 

Process without drawing. Therefore, this Chapter is 

mainly devoted to the drawability of sheet metal in a 

forming process. 

The definition of drawability, hitherto, is based on and 

limited to the drawing of round cups as in the Swift’ 

test, and the limiting drawing ratio is used to represent 

the drawability of sheet metal. But it is well known 

that the Swift’. test can not predict the drawing 

properties of all materials in all drawing processes. 

Even in cylindrical cup drawing, the Swift's test can not 

predict accurately if the forming conditions deviate from 

those in the Swift test. The more the forming conditions 

in the actual forming operations deviate from those in the 

test, the less reliable the test results are for predicting 

the behaviour of the material in non-cylindrical cup 

drawing. This is not because the Swift’ test fails to 
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reveal the "true drawability", or that a drawability test 

has not, but can someday be found, by discovering perhaps 

the right combinations among the practically infinite sets 

of testing conditions, but because the drawability so 

defined is only for round cup drawing. 

The Swift! test was proposed thirty five years ago (22) 

and at that time the understanding of the behaviour of 

sheet metal under forming was relatively limited. It 

can hardly be expected that the first proposal should be 

perfect. In fact, Professor Swift did notice thatamore 

complex effect existed in non-axisymmetrical pressing. 

If Professor Swift were still alive, he might have done 

the extension and generalisation of the definition of 

drawability and the test, as is being done in this thesis. 

Two paragraphs of Professor Swift's words (22) are quoted 

here to show that he did point out the complexity in non- 

axisymmetrical forming but did not investigate it because 

the simple problem 6f axisymmetrical forming was still 

unsolved. 

"A material which is best able to withstand 

its own drawing action and which at the 

same time is best able to endure the stretching 

action imposed by impressed conditions which 

combine drawing and stretching in uncertain 

or varying proportions. When two materials 

A and B are compared in which A is superior 
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under simple stretching and B superior under 

drawing, the preference for any particular 

press operation must depend on the relative 

severity of the impressed stretching and 

impressed drawing conditions." 

"Those observations are made with some 

confidence so far as symmetrical pressings 

are concerned. When, however, the intensity 

of the drawing and blank-holding actions 

vary from one point to another, as, for 

example, in the case of a pressing of 

square plan with round corners, local 

distortions necessarily occur in the 

regions of transition and the possibility 

of another mode of failure arises which 

may bring into play another property of 

the material. But while the simple 

drawing and stretching problem is still 

unsolved little purpose would be served 

by pursuing this more complex effect." 

’ 

In the first paragraph, he pointed out that the comparison 

of two materials in any particular press operation must 

depend on the relative severity of the impressed stretching 

and drawing. This emphasises the importance of the analysis 

of a forming process and the quantitative distinction 

between stretching and drawing in the forming process. 

‘ 
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In the second paragraph, he mentioned that local distort- 

ions necessarily occur in the regions of transition ina 

pressing of square plan with round corners. This is true 

and can be easily observed as will be shown in Chapter 12. 

Nia addition, he also mentioned that local distortions 

might give rise to another mode of failure. It is 

reasonable to assume that the other mode of failure is 

the failure under non-coaxial deformation. This mode of 

failure will be shown in Chapter 10 as fracture without 

excessive thinning. 

In order to extend and generalise the definition of draw- 

ability and the test to cover non-circular cup drawings, 

it is necessary to re-examine the Swift™, test first. 

8.1 Arbitrary Elements in the Swift Test. 

In the Swift test of which the forming operation is shown 

in fig, 8-1, the extent of drawing is measured by the drawing 

ratio, namely, the ratio between the blank diameter and 

the punch diameter in the fully drawn cup. The drawability, 

defined as the largest extent of drawing without failure, 

is measured by the limiting drawing ratio which is the 

largest drawing ratio. 

There are four arbitrary elements in the Swift test and it 

is significant and necessary to identify them before the 

definition of drawability based on them can be extended to 

include non-circular cup drawings. 

Continued......



- 124 - 

A. Forming Conditions and Process Parameters, 

The forming conditions and process parameters like punch 

profile radius, die profile radius, lubrication condition 

and holding pressure are chosen arbitrarily in the standard 

Swift test. It is known that those parameters have 

influence on the limiting drawing ratio or the drawability. 

Thus, strictly speaking,a Swift test result is reliable 

only for a drawing operation with the forming conditions 

and process parameters which are the same as those in 

standard Swift test. 

Be The Assumed Boundary. 

In the Swift hese deawine ratio in a successfully drawn 

cup is used to represent the extent of drawing, and 

” 
successfully drawn" means the edge of the blank is drawn 

in,passing the die profile and becomes part wcbrtiesi 

wall of the cup. In other words, the definition of the 

extent of drawing used in the Swift test, namely, the 

drawing ratio in a successfully drawn cup, implies a 

boundary for the cup, and the boundary is a circle between 

the vertical and the non-vertical parts of the die. The 

successfully drawn cup is a flangeless cup. There is no 

theoretical reason why such a boundary should be assumed. 

Indeed, in practice, a small flange is often required in 

the product for holding a cover or screw fastenings or 

further forming. The Swift test result applies, therefore, 

only to the drawing of flangeless cups, and the maximum 
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extent of drawing in a flanged cup can differ from that 

determined in the Swift test. 

Cc. The Assumed Shape and Orientation ofA Blank. 

In the case of a round cup drawing, it is natural to assume 

that the blank should be circular and should be located 

both the the: 
symmetrically with respect to,punch and,die. When non- 

circular cups are to be drawn, however, the largest 

possible extent of drawing depends on the shape of the 

blank as well as the orientation of the blank with respect 

Ce ene and die, hence the shape and the orientation of 

the blank are inevitably the arbitrary elements in the 

definition of drawability. In fact, even in the Swift 

test, the circular blank is not, theoretically speaking, 

the correct shape for the largest possible extent of 

drawing, if earring occurs, as it usually does. 

Of the four above mentioned arbitrary elements in the 

definition of drawability implied in the Swift test, the 

first, in the forming conditions and process parameters, 

is readily recognised. The second, the third and the 

fourth, related to the boundary of the cup, the shape 

and the orientation of the blank, are less obvious, and are, 

in fact, unimportant within the limited scope of the Swift 

test. 

It will be shown later in this thesis how these arbitrary 

elements are involved in the generalised definition of 
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drawability which is applicable to all shapes of cup draw- 

ing. 

8.2 The Boundary and the Completion ofA Drawing Operation. 

. As mentioned in™last section, although in the Swift's test, the 

boundary is not defined explicitly, it is implied in the 

definition of the extent of drawing. In the Swift test, 

"successfully drawn" means all the material is drawn in 

to form part of the cylindrical wall of the cup, and when 

the cup is "successfully drawn", it is the completion of 

the drawing operation. The circle around the cylindrical 

wall is supposed implicitly to bu boundakys If earring is 

neglected, at the moment of the completion of drawing, the 

blank edge everywhere reaches the implied boundary at the 

same time. In non-circular cup drawing, it is possible to 

set the boundary at the wall of the cup, but the large ears 

would make the setting impractical. In fact, the boundary 

should depend on the purpose of the product. Suppose the 

dotted line in fig,8-2 is the boundary of the product, 

which is also the closed curve where the drawn cup is to 

be cropped, the cup then must be reckoned to have been 

fully drawn when the edge of the blank anywhere first 

touches the boundary. If the drawing is finished without 

the blank edge touching the boundary at all, it is a 

waste of material and a smaller blank could be used for 

that drawing operation. If the drawing operation is 

stopped after the blank edge touches and goes into the 

boundary, then the drawn cup is not the product, but is 
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scrap. Therefore, the completion of the drawing operation 

should be when the blank edge anywhere first touches the 

boundary and to be"successfully drawn” means the drawing 

operation is completed without failure. 

8e3 The Extent of Drawing. 

The main idea of using“drawing ratio in the Swift test as 

the measure of the extent of drawing has a subtle strength 

which will be exploited in the following. If, following 

the term "deep drawing" one chose the depth of a success-— 

fully drawn cup as the measure of the extent of drawing, 

one would have ineldded in that measure stretching of the 

material and the measure would be a mixture of stretching 

and drawing of unknown proportion. The drawing ratio, on 

the other hand, measures only the extent of drawing because 

it represents the amount of material being drawn in. To 

explain how the drawing ratio is a measure of draw-in, 

suppose we consider the diameter of the punch in the Swift 

test as a conventionalised way of expressing the mean 

diameter of the cup, and a circular ring with its diameter 

the same as the mean diameter of the cup. at the level of 

the point (asQin fig.8-1) whére the work leaves the die 

profile is taken as the boundary. Draw-in then is the 

amount of material that has passed through the boundary 

and can be measured in various ways, such as an absolute 

value of so many in? or in some non-dimensional ratio. 

It will be shown that the drawing ratio is one of the 

measures of the draw-in in the completed cup. By 
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definition, 

Drawing ratio = De 
: Do 

where D is the diameter of the blank and Do is, for the 

Purpose of the present discussion, the mean diameter of 

the cup and, also the diameter of the boundary. Draw-in 

can be adequately measured by the following ratio R (60), 

(Area of undeformed) + (Area of undeformed material ) 

  

R = material drawn in originally inside the boundary 

Area of undeformed material ) 
originally inside the boundary 

8-2 

2 

Do! ee 

  

The simple relation between the drawing ratio and R is 

obvious. In fact, the use of areas in measuring draw-in, 

as in Eg:2, serves a better purpose than the use of linear 

dimensions, as in the drawing ratio, because the latter 

gives a distorted scale of the areas. for instance, it is 

well known that a relatively small increase in the limiting 

drawing ratio corresponds to a large increase in the height 

of the cup. It is also more logical to use an area ratio 

than to use a length ratio to represent the amount of 

material being drawn because the amount of Continued......
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material in sheet metal can be represented by the area in 

the blank in the undeformed state. 

8.4 Generalised Definition of Drawability. 

When’ Limiting drawing ratio is used to represent the draw- 

ability of sheet metal, it is, in fact, simply a measure 

of draw-in in the flang@ less cylindrical cup drawing, 

maximised through the right choice of blank size. It is 

now proposed to specify the generalised test for draw- 

ability to cover all shapes of cup drawing. 

It is proposed to define draw-in as the natural logarithm 

of the ratio R in Eq. 8-2 in conformity with the natural 

strains used in studying plastic deformations in sheet 

metal. Thus, 

Draw-in, W =i1nR 8-4 

andwis analogous to a surface strain, like that used in 

the analysis of stretching in sheet metal forming. The 

choice of this measure of draw-in in the generalised 

definition of drawability is necessitated by the fact that 

the drawing ratio is no longer a feasible quantity in non- 

circular cups and blanks. Now, the draw-in in any cup 

drawing can be expressed as win Eq. 8-4. Take, for 

example, the square cup drawing operation shown in fig, 8-3, 

At a certain stage of drawing, let the curve a in the blank 
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(fig, 8-3) be the locus of the particles which occupy the 

boundary at that stage of drawing, then the amount of 

draw-in (61) at that stage is 

- = in Aga 8-5 
. Ab 

where Adais the area inside the curve ain the blank and 

Ab, the area inside the boundary. If the cup is drawn 

further and becomes a completed drawn cup then at the 

completion of drawing, the curve cin the blank (fig, 8-3) 

is the locus of the particles which reach the boundary, 

and the amount of draw-in at the completion of drawing, 

le
 jo o i a Vv, = In 

> 7 

where Ac is the area inside the curve c. In the Swift 

test, if the boundary is to be modified as that in section 

8.3, then, 

WV =2+1n (Drawing Ratio) 8-7 

It is generally believed that drawability represents how 

much a material can "withstand" drawing, or how "well" it 

draws. For a scientific definition of drawability, the 

ideas of “withstanding drawing" and "drawing well" have to 

be translated in more precise terms capable of quantitative 

expressions. The drawability, therefore, is defined as the 
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greatest achievable draw-in, or in other words, the maximum 

achievable es The drawability so defined, heed not only 

be applied to cylindrical cup drawing as shown in Eq. 8-7, 

but also be applied to any shape of cup drawing. It will 

be shown later in this thesis, that the drawability of 

sheet metal is not a purely material property, like 

poisaane ratio Be tonsate yield stress but is the perform- 

ance of the material under-the composite influence of a 

set of forming conditions in a forming process, Therefore 

it is dependent on the forming conditions as well as the 

geometry of the forming process. 

In the last section, the definition of drawability, based 

on the idea of the Swift test, is generalised to cover 

non-circular cup drawings, and it was said that stretching 

is always associated with drawing iwadeep drawing process. 

However, drawability has been defined so as to exclude 

the stretching in the drawing process. It is desirable 

and necessary to distinguish between drawing and stretching 

quantitatively because the performance of a material in a 

drawing process depends on the relative severity of drawing 

and stretching in thal process. 

In order to make the distinction between drawing and 

stretching, a square cup drawing as shown in fig, 8-3 is 

taken as an example. A flat blank is held between the die 

and the pressure plate and a punch pushes it through the 

die to form a cup. As the drawing operation progresses, 
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some material near the centre of the blank is stretched 

by the punch so that it becomes thinner, At the same time 

the material still held between the die and the pressure 

plate, called the flange, moves generally inwards and 

part of it becomes the vertical walls of the cup. As the 

flange moves inwards, the material in it is generally 

compressed in the circumferential direction and part of 

such material becomes thereby thicker than the blank. 

To illustrate the difference between stretching and drawing, 

let the following somewhat hypothetical processes be 

assumed to take place. First, let it be assumed that the 

surfaces of both the die and the pressure plate are so 

rough, and the blank is held so firmly between them that 

no movement of the material occurs in the flange. In such 

a process the material is pushed through the die purely by 

stretching. The stretchability of sheet metal is usually 

measured by the strain at the thinnest section where 

fracture eventually occurs. 

Now, suppose that there is a different process in which 

the material in the flange moves inwards, or is drawn in 

freely to form the walls of the cup, and that the relative 

amounts of stretching and draw-in in the cup are such that 

it has the same average thickness as the blank. In such 

a cup it can be said that there is no overall stretching 

and that the flat blank. is formed into a cup purely by 

drawing. The drawability is measured as defined in“ast 
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section. In actual drawing operations both drawing and 

stretching occur. The drawability is a measure of how 

much the eed Eee drawn in,but the practical engineer 

is usually interested in knowing how deep the cup can be 

drawn. In fact, the greatest achievable depth depends not 

only on the amount of drawing, but also on that of stretch- 

ing. It is only correct, to avoid confusion, to define 

and measure the amounts of drawing and stretching separately 

because a material less drawable but more stretchable than 

another may well be capable of being formed into a deeper 

cup. 

It is easy to see that the amount of stretching in the 

material varies from one point to another in the cup and 

is related to the local thickness, because the area of any 

vanishingly small part of the blank can be increased only 

at the expense of the thickness. The total amount of 

stretching (62) in the cup is therefore related to the 

average thickness taken over the whole cup. The amount of 

stretching is defined as follows: 

Amount of stretching j@ Surface area of the cup inside 
ge ie the boundary 

a Area of the blank inside curve a 

8-6 

et Asa 
= ian Aaa 8-7 

where Asais the surface area of the cup inside the boundary 

and Adais the area of blank inside curve a as described 

the 
in, last section. 
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Obviously, the amount of stretching is also equal to the 

natural logarithm of the ratio between the average thick- 

ness of the cup end chaertece of the blank. At least 

theoretically, it is possible for the cup to have. average 

thickness larger than the blank thickness and for 

the amount of stretching to be negative. The area Asain 

Eq. 8-7 is, strictly, speaking, that of a geometrical 

surface midway between the outer and inner surfaces of the 

cup but, for practical purposes,it is usually adequate to 

use the outer surface of the cup instead. 

The amount of draw-in defined in Eq. 8-5 is rewritten 

here for the convenience of discussion, 

Po
 

da 
Amount of draw-in,¥ =1n 7G. 8-5 

Then, 

Aaa Asa 
+ = ln 7, + In Osa 

+ a RS Aga 

Asa =1n Ab 8-8 

Eq. 8-8 represents the overall surface area increase 

inside the boundary. Before the drawing operation, the 

area inside the boundary is Ab and at certain stages of 

drawing, the surface area inside the boundary would be Asa, 

and this increase is partly due to the draw-in Ww, and 

partly due to the stretching, both of which produce increase 

in area inside the boundary, The amount of draw-in and 
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the amount of stretching in a drawing process can be 

represented quantitatively in percentage of the overall 

surface area increase as (Y/(y +g}%200% and |? /iyeriph 200%" 

With the generalised definition of drawability, it is 

possible to compare the performance of a material in 

different forming processes and to investigate the "more 

complex effect" as in non-circular cup drawing. Hecause 

the failure of material in a deep Grewing neanele occurs 

at the stretching region and the stretching and the 

drawing actions are interrelated, it is possible, with the 

quantitative distinction between stretching and drawing, 

to haveabetter understanding of the behaviour of the 

material in a forming process so as to improve the perform- 

ance of the material. 
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Bel Experimental Equipment, (Experimental Technique») 

Ae Test Machines 

(1) Denison Testing Machine 

Capacity 3 50 tons 

Model : T42/B4 

(2) Hounsfield Tensometer. 

C3) Hille 20/40 ton Universal Sheet Metal Testing 

Machine. 

The Hille 20/40 ton Universal Sheet Metal Testing Machine 

designed for sheet metal research workers, is a hydraulic 

press incorporated with an electronic X —Yrecorder so 

that the punch load and punch penetration during a press— 

ing operation can be recorded. The die, the pressure plate 

and the punch are all changeable, therefore, with a square 

die and punch,a square cup can be drawn in this machine. 

Performance Data : 

Maximum depth of draw Sin. (127.0 mm) 

Maximum blank diameter 6.5 cine “(165.2 mm). 

Maximum drawing load 20/40 ton (199.28/398.56 KN) 

Clamping load ranges + 

Low pressure : 800 = 5000 1b (3.56 = 22.24 KN) 

High pressure : 2000 -25000 1b (8.89 = 111.20 KN) 

Drawing speed : infinitely variable up to 

approximately 15.7 in./min. (398.78 mm/min.) 
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(4) Hordern, Mason & Edward O.P. 55, Geared Single 

Action, Open Front Inclinable Power Press. 

This machine is used for the blanking of circular blanks. 

Be Forming Tools. 

(1) Punches. 

Circular punch 3: 

diameter 1.968 in. (50 mm) 

profile radius 0.394 in, (10 mm) 

Square punch ¢ 

the dimension is shown in fig, 9-1. 

(2) Dies. 

Circular die : 

die hole diameter 2.156 in, (54.76 mm) 

die profile radius 0.788 in, (20 mm) 

Square die 3: 

as shown in fig, 9-1. 

c. Measuring Machines 

Societe Genevoise Universal Measuring Machine, model MU 

214B is used for measuring the deformed grids and for 

scribing linear lines. The smallest unit of measuring is 

0.00001 inch and a cutter could be put on the machine so 

that very high accuracy of lee gi ces could be achieved 

on the specimen. 
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In addition to the Universal Measuring Machine, a travell- 

ing microscope and a planimeter are also used for measur- 

ing grids and areas. 

9.2 Data _on Work Material. 

The material used in this project is the "Deep Drawing 

Quality" mild steel sheet (B.5.5. 1449, Part I, 1972, CR3) 

with its chemical composition: as follows: 

G 0.10% max, 

Mn 0.50% max 

3 0.040% max 

p 0.040% max, 

The thickness of the sheet is 0.048" (1.22 mm) and the R- 

value is 1.028. 

Ves Experimental Technique 

Ae Preparation of Specimens 

(1) Specimens for non-coaxial deformation test: 

Specimens are cut to a coupon form . of) dimension 3+" x 

7" (82.55 x 19.05 mm) first. The edgesof the coupon are 

well filed, Then the coupons are milled to be as shown in 

fig,9-2 in different values of Sand different width (d) 

between the cuts. 
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The area between the cuts, (P,;P,Q,Q, in fig, 9-2) called the 

effective region, is covered with square grids scribed in 

the Universal Measuring Machine. 

(2) Specimens for zigzag strain path test: 

The preparation is divided into two steps. In the first 

one, the specimen is cut into coupon farm with dimensions 

5" x 24" (127 x 63.5mm) as shown in fig.9-3. The edges of 

the coupon are well filed and square grids are scribed in 

the Universal Measuring Machine at the central postion of 

the coupon. The second step is that, after the specimen is 

pulled in, Denison Testing Machine under a certain load, 

small coupon pieces as shown in fig 9-3 are milled out from 

the central portion of the deformed specimens at different 

anglesX (fig,9-3). 

(3) Specimens for deep drawing: 

Cirgular blanks are blanked out in the Hordern, Mason & 

Edward O.P.55, geared, single action, open front inclinable 

power press and then turned in a lathe to the required 

sizes of 43", 44", 5", 54", St", 5H" and 54" (120.65mm, 

123.82mm, 127.Omm, 130.17mm, 133.35mm, 136.52mm and 139.70 

mm) in diameter. 

Square and octagonal shape of blanks are cut by a guill- 

otine and the edges are well filed. 
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Orthogonal parallel lines are scribed over one-eighth or 

one quarter of the blank for later measurement. 

‘ 

Be Line Scribing 

In order to scribe square gridswith high accuracy,”“Universal 

Measuring Machine is used to scribe the line, By putting a 

weight onto the cutter,auniform line of 0.0012" (0.03 mm) 

in width can be scribed on the specimen. th specimen is 

clamped on the turning table in the Universal Measuring 

Machine and parallel lines with spacing 0.025" (04635mm) are 

scribed. Then the table is turned through 909, and an 

orthogonal set of parallel lines js obtained. 

C. Reprinting of Deformed Grids 

Grids are scribed on the surface of the specimens. In the 

experiments, the forming operation is stopped at several 

stages and the deformed grids are reprinted by a special 

technique (51). Colour pencils are used to scratch over 

the grids and then the surface is wiped clean so that 

colour particles are left only in the scribed lines A 

strip of clean transparent adhesive tape is used to cover 

the grids on the specimen so that the colour particles 

stick to the tape. Then the tape is taken from the 

specimen and put on a flat surface for measuring. 

With some carey, the stretching of the tape when the tape 

is taken from the specimen could be avoided. The stretch- 
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ing is so small that under a travelling microscope 

reading to 0.0001", no change could be observed. This 

een oc technique makes it possible to record the 

deformation of a small piece of material in which. the 

deformation is uniform. Also, by using this reprinting 

technique, the metal flow in a forming process can be 

traced. 

9.4 Experimental Procedure... 

A. Non=coaxial Strain Path. 

Specimens with different inclined angle of cuts and 

different distances between the cuts are tested in the 

preliminary test (will be discussed in next Chapter), to 

find the suitable inclination of the cut and the suitable 

distance between the cuts. 

The specimen is clamped in the tensometer and pulled by the 

manual operation wheel so that the forming speed is low 

enough to observe the occurrence of necking. Because 

the stressing in the effective region is very complicated 

and is outside the scope of this project, the load to pull 

the specimen is taken only for reference but not recorded 

on the drum. 

The scribed grids are reprinted at several stages. The 

deformed grid at every stage of the point where necking, 
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and final, fracture occurs can be traced, measured and 

calculated, From fhis the three principal strains and the 

magnitude of non-coaxiality are obtained and“hon-coaxial 

strain path can be plotted. 

B. Non-coaxial Zigzag Strain Path 

Square grids are scribed at the central part of the spec- 

imen (24" x 5") which is shown in fig,9-3 with the grid 

lines aligned to the edges of the specimen. Then the 

specimen is pulled in“Denison testing machine to a certain 

strain under certain load. Four other specimens were 

pulled by repeating the above procedure. The deformed 

grids are reprinted. The strain at the central part of 

the specimen is checked to ensure that the deformation at 

that part is uniform and the amount of strain at each 

specimen is exactly the same. 

Then the specimens are cut and machined to the shape Shown 

in fig.9-3 (small piece) with different angle to the 

direction of loading in the first pulling. 

The small specimen is pulled again in a tensometer and the 

grids are reprinted at several stages during the pulling. 

This procedure is repeated in the other small specimens. 

The strain path under which the material fails is obtained 

from the NekeraeT grids. 
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Ce Deep Drawing Tests 

(1) Cylindrical cup drawing: 

Different sizes of circular blanks on which two diameters 

along and perpendicular to the rolling direction are 

scribed, are drawn by a circular punch in the Hille 

Machine. The blank is centred by means of three centering 

fingers. A polyvinyl chloride (P.V.C) sheet of 0.004" 

(0.10mm) enaek is used as lubricant between the blank 

and the die.the holding pressure is set at 2500 1b (11.12 KN) 

for all drawing operations. Punch load against punch 

penetration is recorded by the X-Y recorder. 

The drawing operation is stopped at several stages and at 

each stage, the edge of the unfinished cup is traced with 

marks for the position of the two perpendicular diameters. 

By joining the marks and taking the average of these two 

current diameters, the movement of blank edge at each 

stage is obtained. 

(2) Square cup drawing: 

(a) Alignment of punch, holding plate and die, 

Although the square punch, die and holding plate were made 

so that they would be allocated automatically at the 

central position in the Hille machine, the relative posit- 

ions among the punch, die and holding plate still have to be 

lack of 
aligned due to the,axisymmetry of a square. 
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through 
two perpendicular lines passing,the centre 

of the punch cross-section and parallel to 

the sides of the cross section are drawn 

on the punch head. 

two tiny copper wires perpendicular to each 

other, passing through the centre of the 

die and parallel with the sides of the die 

hole, are hung and stuck on the die face by 

covering a strip of adhesive tape. (fig, 9-4a) 

the same procedure as (b) is repeated on 

the holding plate (fig,9-4a). 

the punch is screwed into position in 

the Hille Machine. The orientation is 

decided by screwing down the punch to the 

limit so that the screws could not be 

further tightened and the punch is fixed 

in the machine. 

holding plate and die are put in the Hille 

Machine. The alignment is done by aligning 

the strings on the holding plate, the die 

face and the lines on the punch head 

together. 
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(#) marks are put on the holding plate and the 

site of the holding plate in correspondence 

to each other and on the die and the die 

holder as well, so that the positions of 

the die and the holding plate can always 

be checked (fig,9-4b). 

(g) the copper wires on the holding plate and 

the die face are removed and four tiny 

lines are scribed on the holding plate for 

blank location (fig,9=4b). 

(3) Location of Blanks: 

Phreusgh 
Four equalyspaced lines passing, the centre of the blank 

are scribed on the blank. By aligning these four lines 

with those on the holding plate, the blank is located 

centrally with respect to the die (fig,9-4b). 

(4) Forming procedures: 

(a) the grids on the blank are reprinted so that 

the material particles which reach the 

boundary in the drawing operation can be 

traced back to stage zero of the drawing 

operation. 
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the blank is drawn in the Hille Machine by 

the square punch and die and the machine 

is stopped at “certain punch penetration as 

stage 1 of the drawing operation. 

by mounting a ring (fig,9-5) which specifies 

the boundary on the work piece, the boundary 

is drawn on the surface of the workpiece, 

and then the grids near and outside the 

boundary are reprinted so that the particles 

which occupy the boundary at stage 1 of the 

drawing operation are recorded. 

the drawing operation is continued and the 

procedures (b) and (c) are repeated for the 

stage 2, 3, eesss. until the edge of the 

flange touches the boundary. Thi$ is the 

completion of the drawing operation. 

Measurement of draw-ins 

From the reprinted grids at every stage of the drawing 

operation, the points which occupy the boundary can be 

traced back to the original positions at stage zero of the 

drawing operation. In other words, the points on the 

blank before the drawing operation, which would reach the 

boundary at different stages of the drawing operation 
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could be traced. As shown in fig,9-6, the curve marked 

by a number, say 2, is the locus of the points which will 

reach the boundary at stage 2 of the drawing operation. 

The amount of draw-in at certain stages of the drawing 

operation is obtained by Eq. 8-5, namely, 

the area inside the closed curve 

Draw-in, Vi = In i (fig.9-6 
the area inside the boundary 

The maximum draw-in of the drawing operation is obtained 

at the completion of the drawing operation, so 

the area inside the curve 4 (fig.9-6) 
the area inside the boundary Max. Dzewsin ve = 

De Determination of the End Point. 

Many sheet metal research scientists have experienced the 

difficulty of determining the end point of the forming 

process. This difficulty is due to the lack of “precise 

definition of plastic instability im sheet metal. 

In this project the determination of the end point is 

not so difficult as in other investigations. There are 

two kinds of end point determination due to different 

types of forming. The first one is the determination of the 

end point in the non-coaxial and the non-coaxial zigzag 

strain path experiments. Because the experiments are 

similar to the tension test, the determination cn eae 

point can be referred to that in the non-coaxial strain 
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path Eee nary eis deformation concentrates in the 

effective region and is not so uniform as that in the 

tension test. However, because the progress of forming 

is recorded by the reprinted grids at that region.in a 

very small forming interval, the grids just before the 

occurrenceof fracture is taken as the end point of the 

forming .process. 

The second one is the determination Beant point in the 

cup drawing tests. Because the measurement in this 

experiment is the amount of draw-in or the movement of 

the flange, as soon as the onset of plastic instability 

occurs, draw-in or the movement of the flange stops. By 

the observation of necking in the punch profile region 

or the sudden drop of punch load in the X-Y recorder, the 

end point of the drawing operation can be judged well 

enough in ah® unsuccessful draw,«.. For successful draw- 

ing, when the flange edge is near the boundary, the 

interval between stages of the drawing operation is set so 

small, that the completion of the drawing 

operation can be located. 

Continueds.eree



 



- 149 - 

Non-coaxial and Non-coaxial Zigzag Strain Paths. 
  

As has been briefly mentioned before, most. of the sheet 

metal tests in current use are axisymmetrical forming 

operations in which only coaxial strain paths are 

involved. It is easy to peas of the sheet metal 

products are not axisymmetrical and sheet metal products 

are often not manufactured in one forming operation. 

Lack of axisymmetry of the product will obviously induce 

non-coaxial deformations. In multiple manufacturing 

operations, unless they are all axisymmetrical and well 

aligned in all forming operations, non-coaxial and non- 

coaxial zigzag strain paths are bound to be involved. 

Again, even in nominally axisymmetrical forming operations, 

the strains are non-coaxial owing to earring. Therefore, 

for the better understanding of material behaviour under 

forming, it is not only significant but also necessary 

to test sheet metal under non-coaxial conditions. 

In the workshop it is difficult to avoid non-coaxial 

strains, but in the laboratory it is difficult to obtain 

the desired non-coaxial strain paths. The reason for the 

experimental difficulty is easy to see. The experimental 

strain paths must be such as to lead to necking and 

fracture. In one set of unsymmetrical die and punch, one 

such path may be obtainable at the critical section. For 

another non-coaxial strain path, either the punch or the 

die or both have to be changed. Even where a different 

strain path is obtained in this way, it is difficult to 
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control it, so that, for instance, a whole set of punch 

and die could be prepared only to find that the strain 

path at the critical section is nearly the same as that of 

the last set. Therefore, to obtain significant experimental 

results on the non-coaxial strain paths in pctuat forming 

operation, a very large investment in both expenses and 

experimental time is required, which lies outside the 

scope of this Ph.D, project. It is doubtful if such 

research expenses are justifiable unless they are directly 

related to large scale manufacture, like the car industry. 

In this project, a more manageable and workable experiment- 

al technique is chosen, namely that of tension test 

specimens in coupon form, (as shown in fig.9-2 and fig. 

9-3). In this technique, the variables can be controlled 

adequately, as will be shown later. 

The experimental results obtained in this manner—the 

first results on non-coaxial strain paths in the field of 

sheet metal forming research=provide the theorgtical and 

experimental techniques with which research and development 

work on specific problems can be tackled, as well es some 

significant results of general validity. The objection 

may, of course, be raised that these are not the non- 

coaxial strain paths in actual forming operations, but, as 

explained in the precediag paragraphs, the cost of the 

dies and punches alone makes such pursuit of realism 

impracticable. 
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10.1 Preliminary Tests, 

In order to pursue non-coaxial strain paths, the specimens 

in coupon form with inclined cuts at the edges (fig,9-2) 

are tested. Preliminary tests are done for finding the 

suitable inclination of ‘the cut and the width between the 

cuts. As shown in fig,9-2, the area between the cuts, 

(P,P29,Q,) is called the effective region where the deform- 

ation occurs when the specimen is tested. The inclination 

of the cut is represented by an angle &(fig.9-2) which is 

the angle between the cut and the transverse direction of 

the coupon form, The width between the cuts is represented 

by d (fig,9-2). 

The preliminary tests show that when § is very large, the 

deformation is localised at Pg and Q, (fig,9-2), and then 

two necks or even tearing will occur. When&is very small, 

the non-coaxiality of principal axes of strain of the 

deformation in the specimen is too small to be detected 

within the accuracy of measurement, and the deformation in 

the effective region is localised at the line connecting 

the ends of the cuts so that the strain can not be accurat- 

ely measured due to'finsuf ficiently fine grid used. If finer 

grid is used, the deformation inside the grid will be more 

uniform than that in the larger grid. But because the 

strain is obtained by measuring the deformed grid and the 

accuracy of the measuring machine which is a fixed absolute 

value, the finer the grid is, the larger the percentage of 

error due to“émaller gauge length.A finer grid is not 
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measuring machine of 
helpful unless a,Higher accuracy ; is 

provided. When d is very small, the effective region 

(P,P2Q)Q, in fig,9-2) is turned rigidly with bending 

along the sheet surface at the corners soon after the 

afterwards 
test is started. Necking and fracture take» place,as 

those eneaanial case, afterwards. Fig,10-1 shows the 

different regions. 

Only those specimens are tested in which the inclination 

of cut and the width between the cuts are not too small 

to produce detectable non-coaxiality of principal axes 

of strain and not so large as to produce tearing. 

The inclinations and widths between the cuts together 

with the labelling of the specimens to be tested are 

listed in the following table. 

  

  

  

                      
  

labelling 4 
| Az Aq Aq Ad ASB OBB BA 

(degree) 
0 20) 29 30) 4y 0 20 25) 30 

(in) 0.125)0.125).125p.125).125).150p,150b. 150.150 

10.2 Non-coaxial Strain Paths, 
  

The strain paths of the material in the specimens being 

tested are plotted in three-dimensional triangular co- 

ordinates fig, 10-2. The coloured curves,except the one 

covering the points B,',B3' and B,', are the strain paths 

of the material in the specimens Bl, B2, B3 and B4. The 
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strain path OB, is coaxial, because the specimen Bl has 

cuts perpendicular to the eee nererore the material in 

the effective region is deformed under a coaxial strain 

path. It is coaxial, so it lies on the clock diagram 

in » triangular co-ordinates. The other three curves 

OBz, OB3 and OBg are non-coaxial and eueneces curves in 

3-D triangular co-ordinates. The projection of the 

non-coaxial strain. paths 0B,, OB; and OB, on the clock 

diagram, called projected strain paths, are also shown 

as 0B3', OB$' and OBy' in fig,10-2, The vertical dist- 

ance from the projected strain path to the spaced non- 

coaxial strain path represents the magnitude of non- 

coaxiality ei petneipel axes of ‘strain with respect to 

the material, 

The magnitude of non-coaxiality at a certain state of 

strain is defined as the angle between the fibres which 

lie» along the direction parallel to the principal axis 

of the major strain at the beginning of the deformation, 

and the fibre which will lie along the direction parallel 

to the principal axis of the major strain at eeeecete 

of strain. The angle’ measured >) in the material jn the 

undeformed state. But practically it is rather difficult 

to determine it accurately because it is difficult to 

find the exact fibre which lies along the direction 

parallel to the principal axis of the major strain at the 

beginning of the deformation. This difficulty is due to 

the inaccuracy of measurement at very small 
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strain. If a higher accuracy or more powerful measuring 

machine and technique is provided, this difficulty could 

be overcome. In this project, the magnitude of the non- 

coaxiality is determined by using the state of strain when 

the major principal strain is around 0.2 as an ea lent 

of that at the beginning of the deformation. Therefore, the 

space curves of non-coaxial strain paths in fig, 10-2 and 

fig. 10-3 leave the clock diagram into the space at the 

state of strain when €1 is around 0.2. 

In fig, 10-3 the strain paths of the material in specimens 

Al,A2,A3,A4 and A5 are shown. The strain paths except the 

nNon-coaxial one OAg in fig,10-3 are similar to those in 

fig,10-2. The projected strain path of OAs is shown and 

the characteristic of the strain path is between 3 and 4 

o'clock in the clock diagram. The strain path reaches 

its end point at very small thickness strain (-0.17), 

which is rarely seen in sheet metal forming. But it is 

not difficult to visualise the failure of material in 

this case, say, a failure due to simple shear or twist at 

the cross-section of the sheet could happen even without 

any thickness strain. This type of failure may be 

reckoned as fracture without excessive thinning and it, 

in fact, is the case which Professor Swift pointed out 

thirty five years ago, 

"local distortions necessarily occur in the 
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regions of transition and the possibility 

of another mode of failure arises which 

may bring into play another property of 

the material." (22) 

‘The local distortion is a shearing or twisting as will be 

discussed in Chapter 12, and the material is obviously 

deformed under a non-coaxial strain path. Professor 

Swift might well have observed the type of failure 

due to this local distortion when he mentioned another 

" 
mode of failure". 

This is the first time the non-coaxial strain path has been 

investigated and represented graphically. It is found 

that although the strain path ends at the region between 

4 and 5 o'clock on the clock diagram, the early part of 

the strain path is mostly in the region between 3 and 4 

o'clock. The downward shifting of the strain path is 

obviously due to local thinning. If the thickness strain 

atVearly stage of the deformation is small (like AS in 

fig. 10-3), the material will fail without local thinning. 

10.3 Forming Limiti#y Curve. 

In the coaxial case, the forming limiting curve such as 

Lee and Hsu's curve, is the forming limits of the material 

under coaxial deformation. In a non-axisymmetrical form- 

ing process, the material somewhere or even everywhere in 

the workpiece is bound to be deformed under non-coaxial 

strain paths It is possible that fracture occurs at the 
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a place where the material is deformed under a non-coaxial 

Steere especially in a cup of irregular shape and in 

forming processes with several stages of re-drawing. Then 

like the forming limits in“coaxial case, there should be 

forming limits for the material under non-coaxial deform- 

ation. 

A curve passing the end points (Bj',B3' and By") of the 

projected strain paths in fig,10-2 is drawn. This curve 

represents part of the forming limits of the material under 

non-coaxial strain paths and this is only to illustrate 

that- forming limit curve of sheet metal under non- 

coaxial strain paths like that under coaxial strain paths 

can be pursued. The forming limit curve of material 

under non-coaxial deformation can be pursued on several 

bases, for example, on the same degree of non-coaxiality, 

where a series of forming limiting curves of different 

degree of non-coaxiality including the one under coaxial 

deformation (zero degree of non-coaxiality) can be drawn 

on the clock diagram in a triangular co-ordinate. In fact, 

instead of the series of forming limit curves on the 

clock diagram, a formability surface covering all the end 

points of strain paths including coaxial and non-coaxial 

ones in. 3-D triangular co-ordinatesis the complete form- 

ing limit» of a material,: 3 iene 

10.4 Non-coaxial Zigzag Strain Paths. 
  

The zigzag strain path discussed in this thesis is a strain 
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path zigzagged due to non-coaxiality of the principal axes 

of stress with respect to the material instead of changing 

of the stress ratio in the deformation. The strain paths 

shown in fig,10-4 are those of material deformed under the 

stressing with the same stress ratio but different direct- 

ions of principal axes of stress with respect to the 

material. 

As described in“ast Chapter, specimens of the same size 

24" x 5" (as shown in fig,9-3) are deformed under the 

same load so that the material at the central part in 

every specimen is deformed to the same state of strain 

under the same strain path. The strain path is shown as 

OC on the clock diagram in 3-D triangular co-ordinates in 

fig. 10-4 and it is coaxial. Then the deformed specimens 

are cut into the small specimens from the central part of 

the specimens with different angles & (fig.9-3). The 

state of strain of the material in each small specimen is 

the same, o» ‘ Soc, but the angle between the axis 

of the major strain with respect to the material and the 

axis the small specimen is going to be stressed, namely, 

the angle, is different, j han. After the 

small specimens are cut from the deformed specimens, the 

angle ® in each small specimen is measured and the small 

specimens are labelled as in the following table: 

  

Specimen Cr Gz C3 c4 cS 
  

« Beal cone 46.9° | 60.8°| 90°                 
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® 

Then the small specimens are tested again in a tensometer. 

Because the small specimens are of the same material at the 

same degree of work-hardening and of the same shape and 

size, if the material is assumed to be isotropic all the 

time through the deformation, the stress-strain relation 

under ss. testing in“tensometer would be the same in every 

small specimen. But the strain paths plotted in fig,10-4 

turn out very differenthfrom one another,not only in the 

degree of non-coaxiality Fee incial axes of strain with 

respect to the material, but also in the strain ratio. 

Coloured curves in fig.10-4 except the red one are the 

strain paths, OC is the coaxial strain path representing 

the deformation in the large specimen» and, OCo and Cooly, 

CC3, COCs, CC, and CC, are those of the deformation in the 

small specimens Cl, C2, C3, C4 and C5,respectively. The 

small specimen Cl is cut from the large deformed specimen 

in such a way that the axis of mater principal strain is 

perpendicular to the direction of loading in the small 

specimen. At the early stage of testing in the small 

specimen, the major principal strain is decreasing and the 

minor is increasing. But the principal axes oF strain 

remain unchanged with respect to the material. Therefore 

the strain path is coaxial, When the strain path reaches 

Co' where the major and minor principal strains are equal, 

suddenly the axis of minor principal strain becomes that 

of major principal strain and the axis of major principal 

strain becomes that of minor principal strain. This is 
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é : 
explained as a sudden 909 rotation of the principal axes 

of strain with respect to the material. The strain path 

in this case is represented in 3-D triangular co-ordinates 

by discontinuous curves CCo' and CoC) with 90° of non=- 

coaxiality. 

The curves CC3, CC3 and CCy4 are strain paths with different 

amounts of non-coaxiality of principal strains with 

respect to the material, which is due to different amount 

of non-coaxiality of the axes of principal stress. CCs5 

is coaxial because the small specimen C5 is cut such that 

the axis of major principal strain is along the direction 

of loading in the small specimen. 

A curve passing the end points of the projected strain 

paths on the clock diagram is drawn. It represents the 

formability of sheet metal under non-coaxial zigzag strain 

paths. Like that under coaxial zigzag strain paths, the 

formability curve depends on the amount of prestrain. 

Those non-coaxial zigzag strain paths shown in fig,10-4 

are due to the same type of failure, namely, excessive 

thinning leading to fracture, therefore, the formability 

curve is nearly a curve of constant thickness strain. 

It is clearly shown that the strain path may be zigzagged 

without changing the stress ratio. If the non-coaxiality 

of the principal) axes of strain is neglected, a zigzag 
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strain path would lead to the wrong conclusion that the 

stress ratio changes in the forming operation. In non- 

axisymmetrical forming processes, especially forming 

processes involving irregular shapes and multiple-stage 

forming operations, it is very likely that the material 

at the critical section is deformed under a non-coaxial 

strain path or a non-coaxial zigzag strain path. As most 

of the sheet metal products are non-axisymmetrical, it is 

significant and necessary to examine the strain path under 

which the material at the critical section is deformed. 

Even in those axisymmetrical ones, earring will bring the 

involvement of non=coaxial deformation to the material in 

the workpiece. Therefore, for a strict investigation of 

material behaviour in a forming process, the coaxiality 

of the principal axes of strain should always be examined. 
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Drawability - A Generalised Definition. 

In Chapter 8, the Swift test was re-examined and the draw- 

ability, originally defined as the largest drawing ratio, 

was generalised to be the largest draw-in at the completion 

of the drawing operation. By the generalised definition 

of drawability, the amount of draw-in in a forming process 

is to be maximised. The factors which affect the draw- 

ability of sheet metal in a forming process will be 

investigated and illustrated with experimental results in 

this Chapter. 

Vel Process Parameters and Forming Conditions. 

In a cup drawing operation, the process parameters are 

partly dictated by the requirements of the finished 

product and partly chosen for the ease of the operation. 

Thus, the shape of the cup and the punch and“die profiles 

are usually dictated by the purpose to which the product 

is put. The forming conditions such as holding load and 

lubrication condition are chosen to avoid both excessive 

friction and the tendency to wrinkling. It is understood 

in any drawability test that, within the limits of the 

required shape of the product, the process parameters and 

forming conditions are roughly those conducive to the 

maximum extent of drawing. In other words, it is under- 

stood that in the drawability test the process parameters 

and forming conditions are nearly optimized. They are 

optimized because they should be nearly those used in 

manufacturing practice where the drawing operations are 
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made as easy as they can possibly be; and they are only 

nearly optimized because the optimum conditions vary from 

one work material to another. The Swift test fulfils these 

optimum conditions but is limited to circular cup drawing. 

It fails to measure the drawability or the performance of 

sheet metal in a non-circular cup drawing operation. Now 

the definition of drawability is generalised, therefore, 

it should be possible to measure the drawability in any 

shape of cup drawing. In a non-circular cup drawing 

operation, the process parameters and the forming conditions 

such as holding load and lubrication conditions shall be 

optimized as they are in the Swift test. 

Apart from those factors mentioned above, there are some 

other factors which affect the drawability, such as the 

blank shape and the blank orientations with respect to the 

rolling direction and with respect to the punch and die. 

But before they are investigated, one significant factor, 

namely, the boundary of the product, should be discussed 

first. 

11.2 Boundary and Blank, 

The cup drawn in the Swift test is confined to not only a 

circular one but a flangeless circular cup. The implied 

boundary of the product is the closed curve around the 

vertical cylindeieal wall of the cup. As stated before, 

many cup drawing products are not flangeless, in other 

words, the boundary of the product is not set like that 
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in the Swift test. Therefore, for better service of the 

test result, the position of the boundary should be taken 

into account in the test, and, whether and how the position 

of the boundary affects the drawability should be invest- 

igated. 

The importance of the position of the boundary in the 

definition of drawability can be illustrated by consider- 

ing the variation of the drawing force in the Swift test. 

The: drawing operation in that test is shown in fig. 

8-1. The drawing force is plotted against the current 

position of the edge of the flange in fig.1ll-l. The 

strength of the cup is based on the maximum drawing force 

of curve b, because a larger diameter of blank can not be 

successfully drawn. In fact, the strength of the cup is 

dependent on the strength of the material near the punch 

profile (point P in fig,8-1) and is nearly constant with 

respect to the blank size (29). When the maximum drawing 

force in the drawing operation is equal to or lower than 

the strength of the cup, the drawing operation can proceed 

till a flangeless cup is formed.(curves a and b.), If the 

drawing force reaches and then exceeds the strength of the 

cup, the material near the punch profile (point P in fig.) 

8-1) breaks and the drawing operation can not go further. 

For every particular drawing operation, there is a critical 

size of blank (represented by the radius-0B in fig,11-1) 

for which the maximum drawing force is equal to 
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the strength of the cup. Such a blank is called tritical- 

sized blank; a blank which is larger than the critical- 

sized blank is called supercritical-sized blank and one 

that is smaller is called subcritical-sized blank. 

If a boundary is set at the position which is reached by 

the critical-sized blank when the drawing force is at its~ 

maximum, then such a boundary (representéd by the hori- 

zontal distance OK in fig.11-1) is called the critical- 

sized boundary. Similarly, a boundary which is larger 

than the critical-sized boundary is called supercritical- 

sized boundary and that which is smaller is called sub- 

critical-sized boundary. 

In order to find the drawability of the material in 

circular cup drawing, the amount of draw-in should be 

maximised. For choosing the optimum blank size, two 

different ranges of the product boundary must be considered, 

the supercritical-sized ones and the subcritical-sized 

ones. For a subcritical-sized boundary, say that represent— 

ed by the point M in fig,11-1, the amount of draw-in at 

the completion of the drawing operation is maximised by 

using a critical-sized ‘blank. Then the maximised draw-in 

can be represented by the horizontal distance between B 

and M in fig,ll-1. If a.subcritical-sized blank is used, 

say, blank A, the amount of draw-in at the completion of 
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the drawing is represented by the horizontal distance AM 

in fig.,11-1, which is obviously smaller. Suppose a 

supercritical-sized blank is used, say, blank C. The 

movement of the blank edge is restricted to the horizontal 

distance between C and H. If the position of B is marked 

in blank C, it is easy to see that when C reaches H, the 

mark B can not reach M or even K,but reaches a point to 

the right of K. In other words, a point to the left of the 

mark B in blank C reaches the boundary M. Then the maximum 

draw-in by using a supercritical-sized blank for a sub- 

critical-sized boundary is less than that obtainable by 

using a critical-sized blank. For a critical-sized 

boundary, the arguments are the same as those for the sub- 

eritical-sized boundary and the critical-sized blank is 

the optimum blank to use. 

Now consider a supercritical-sized boundary, say, at H 

in fig,ll-1. It is to be shown that the optimum blank 

is that whose edge touches the boundary when the drawing 

force just reaches the strength of the cup, as blank C in 

fig,ll-1. In any blank smaller than blank C, the draw-in 

at the completion of the drawing, as explained before in 

the subcritical-sized boundary case, would be smaller than 

that in blank C. Suppose a blank D which is larger than 

blank C is used and the position of C is marked in the 

blank D. As blank C is used for a critical-sized or 

subcritical-sized boundary, a point to the left of C will 
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reach the boundary when the drawing force reaches the 

strength of the cup, therefore the amount of draw-in 

is smaller. 

The amount of draw-in at the completion of the drawing 

operation is plotted against the blank size in fig.11-2 

for different size of boundaries. Each curve in fig.11-2 

represents a boundary, and a point on the curve represents 

a blank size and the amount of draw-in at the completion 

of the drawing operation associated with the boundary. 

The size of the boundary can be seen from the curve because 

it is the blank size when the draw-in at the completion of 

the drawing operation is zero. Curves A and B are for 

suberitical-sized boundaries, curve C for the critical- 

sized boundary and curve D is for a supercritical-sized 

boundary. The point K represents the size of the critical- 

sized boundary (4.22", 107.19mm diameter). From the 

curves in fig.11-2, the arguments in the last few para- 

graphs are clearly shown. For the drawing operations with 

subcritical-sized or critical-sized boundary, the blank 

which achieves the largest draw-in at the completion of 

the drawing operation is 5" (127.0mm) diameter as shown in 

the curves A, B and C, and it is the critical-sized blank. 

When a larger blank is used, the draw-in drops as shown in 

the dotted line. For the drawing operation associated with 

a supercritical-sized boundary, as shown in the curve Di, 

the blank which achieves the largest draw-in at the complet- 

ion of the drawing operation is not the critical-sized 
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blank (5" or 127.0mm diameter) but is a supercritical- 

sized one (54" or 130.17mm diameter). When too large a 

_supercritical-size blank (greater than 5%" diameter) is 

used, the draw-in at the completion of the drawing 

operation drops. The supercritical-sized blank should 

be that im which the edge touches the boundary when the 

drawing force is equal to the strength of the cup. 

Now a conclusion can be drawn, namely, to achieve the 

largest draw-in in a drawing process, the critical-sized 

blank should be used for a boundary smaller than or equal 

to the critical-sized boundary, and the blank, the 

edge of which touches the boundary when the drawing force 

is equal to the strength of the cup, should be used if the 

boundary is supercritical-sized. 

In fact, the blank having the limiting drawing ratio in the 

Swift test is the critical-sized blank, and the boundary 

implied is the smallest possible, yielding the maximum 

amount of draw-in at the completion of the drawing operation. 

It can be easily observed in fig.11-2, fer ss a certain size 

of blank which is critical-sized or subcritical-sized, the 

smaller the boundary, ). the larger the amount of draw-in 

at the completion of the drawing operation. For instance, 

in the critical-sized blank (5" or 127.0mm diameter), when 

the boundary is 3.5" (88.9mm) diameter, the draw-in is 0.713 

(curve A) and it is 0.446 when the boundary is 4" (101.6mm) 
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diameter (curve B), and is only 0.339 when the boundary 

is set at the critical position (4.22" or 107.19mm 

diameter, curve C). The Swift test can not measure the 

drawability or the performance of sheet metal in a non= 

circular cup drawinge It can not even measure the draw- 

ability in a circular cup drawing if the boundary is a 

supercritical-sized one. 

The above arguments apply equally to non-circular cup 

drawing operation. fFig.11-3 shows the drawing force 

plotted against the current position of the edge of the 

flange in a square cup of which the punch and die is shown 

in fig.9-1. The current position of the edge of the 

flange refers to the edge on the line OX (the inset of 

fig,11-3) chosen for convenience because it is on this 

line that the edge of the flange touches the boundary 

first. The three solid line curves are taken from the 

actual pen records of the drawings represented in fig,11-3 

by the line TT, The strength of the cup is determined 

from the maximum drawing force in blank C (fig.11-3). 

Thus a curve (dotted line) can be extrapolated in which 

the maximum drawing force just reaches the strength of 

the cup. The reason that it is extrapolated instead of 

being taken from the experimental data is that scattering 

occurs near the critical size for a successful drawing. 

Figure 11-3 is labelled in the same way as that in fig,1ll-1 

as far as possible, so that the arguments in the last few 
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Paragraphs can be applied easily to the drawing operation 

in which a square cup is drawn from a square blank. As 

for the curves in fig,ll-l, in fig,11-3 the point K 

represents the critical size of the boundary and the point 

B represents the critical size of square blank. If the 

boundary is subcritical (to the left of K), the critical- 

sized blank or a square blank with its side equal to twice 

OB should be used for achieving the largest draw-in at the 

completion of the drawing operation. A supercritical- 

sized blank will bring about premature failure in the cup 

and a subcritical-sized blank will produce a smaller draw- 

in than that in the critical-sized blank. If the boundary 

is supercritical-sized (to the right of K), then the blank 

should be such that the edge of the flange touches the 

boundary when the drawing force is just reaching the 

strength of the cup. These arguments in the cup drawing 

process are valid in square cup drawing as much as in 

circular cup drawing. A line which is normal to the 

boundary at the point where the edge of the flange touches 

the boundary first, can always be found. This line is 

taken to be the reference for the movement of the edge of 

the flange. The movement of the point at the edge of the 

flange which touches the boundary first is not necessarily 

on the line of reference but can always be projected to 

it, Therefore, for cup drawing of any shape, a figure 

like fig,11l-1 or fig,11-3 can always be plotted and the 

arguments about the boundary and the drawability can be 
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applied to it. 

The definition of drawability is generalised to be the 

largest draw-in at the completion of the drawing operation. 

For both "“draw-in" and "completion of the drawing", a 

boundary should be defined first. The necessity of 

defining the boundary is strengthened by the above 

arguments, especially because when the boundary is super- 

eritical-sized the drawability is different from that when 

it is subcritical or critical sized. Following the 

discussion about the effect of the boundary on drawability, 

the other factors are discussed below. 

In circular cup drawing, because the punch and die are 

circular, it is natural to choose a round blank for 

cup drawing because a circle is non-directional. Although 

the sheet metal is anisotropic there is only one way to 

cut the round blank, and because’ the blank, the punch and 

die are all circular, it is easy to locate the blank with 

respect to the punch and die. But all this simplicity does 

not exist in a non-axisymmetrical forming process. If the 

punch and die are not circular, a round blank is usually 

not the most suitable blank to use. Then the blank cutting 

with respect to the rolling direction of the sheet is not 

simple and the location of the blank with respect to the 

punch and die is not simple either. It will be clearly 

shown later that these factors in a forming process, in 

fact, are interrelated. In order to investigate the effect 

of Mindividual factor in the drawing neneeees it is 
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necessary to fix the other factors and vary only that 

one which is being investigated. 

Tis 3. The Orientation of the Blank with Respect to the 

Rolling Directions 

In » circular cup drawing, the anisotropy of sheet metal 

produces earring and apart from changing the blank shape, 

there is nothing more to be done about the earring. Ina 

non-circular cup drawing process, usually a non-circular 

blank is used for the best performance of the material in 

the process and the geometry of the blank is no longer non— 

directional. Then, the anisotropy of the material which in 

a circular cup drawing process can not be optimized may 

become an advantage with careful blank cutting. In order 

to investigate the effect of the anisotropy of the material 

on drawability, the other factors like blank shape and the 

location of the blank with respect to the punch and die 

should be fixed. 

Blanks of the same size (5" x 5" or 127.0mm x 127.0mm), same 

shape (square) and same oriéntation of the blank with 

respect to the punch and die (as shown in the inset of 

fig,11-4) but of different orientation with respect to the 

rolling direction, were drawn in a square cup drawing 

process with the same size of boundary (subcritical- 

sized). The angle@as shown in the inset of fig,11-4, 

which is the angle between the blank edge and the rolling 

direction of the sheet, is used to represent the orient- 
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ation of the blank with respect to the rolling direction 

of the sheet. In a square cup drawing, the angle $varies 

from 0° to 459, The amount of draw-in against the punch 

penetration is plotted in fig,11-4. It is seen from fig. 

11-4 that the current values of the draw-in, and the draw- 

in at the completion of the drawing operation are almost 

the same for all the blanks with different valuesof >. 

However, it would be unwarranted to. judge in fig, 11-4 

that the rolling direction or the anisotropy of the material 

has no effect on the drawability in the square cup drawing 

process. In this square.cup drawing process, the boundary 

is set to be a subcritical one (6.24" in size or 158.50mm), 

therefore, the largest draw-in, defined as drawability, 

should be achieved by the critical-sized blank. So, apart 

from those shown in fig,11-4,-it is necessary to check 

whether the blank is a critical-sized one or not. This 

checking is done by comparing the maximum drawing force 

in the drawing process for each blank. The maximum drawing 

forces for the blanks with different value of ¢ are shown 

together with the strength of the cup (line TT as that in 

fig. 11-3) in fig,11-5. It is understood that an increase in 

the blank size will result in a larger drawing force, 

Because the maximum drawing forces for those blanks of the 

same size are all below the strength of the cup, their 

sizes can be increased to reach the strength of the cup by 

increasing the blank size. Because the blanks are all of 

the same size, the one for which the maximum drawing force 
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is the lowest will have the largest increase in size to 

become a critical-size blank. Such a blank is ‘that which 

is cut in such a way that the rolling direction of the 

sheet is 45° degree to the edge of the square blank. 

The larger the critical-sized blank is, for the same 

boundary, (subcritical-sized), the larger the draw-in 

at the completion of the drawing operation. Therefore, 

when the shape and the orientation of the blank with 

respect to the punch and die are fixed in a square cup 

drawing process, the drawability is the highest if the 

square blank is cut in such a way that the edge of the 

square blank is 45 degree to the rolling direction of 

the sheet. 

11.4 The Orientation of the Blank With Respect to 

the Punch and Dies 

In the last section the orientation of the blank with 

respect to the rolling direction is shown to have an 

effect on the drawability of sheet metal in the forming 

process. In this section, the effect of the orientation 

of the blank with respect to the punch and die is invest- 

igated and for clarity, the other factors such as the 

orientation of the blank with respect to the rolling 

direction and the blank shape, are fixed. 

Square blanks, sized 5" x 5" (127.O0mm x 127.0mm), cut with 

the blank edges along and perpendicular to the rolling 

direction of the sheet but located in different orientations 
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with respect to the punch and die,were drawn in a square 

, cup. drawing process. The orientation of the blank with 

respect to the punch and die is represented by an angle 

which is the angle between the blank edge and the flat 

edge of the square punch cross-section. The angle 5 | 

varies ep 0° to 45° for a square blank in a square cup 

drawing process. The amount of draw-in is plotted against 

the punch penetration in fig.11-6 when a subcritical- 

sized boundary is taken. At a certain punch penetration 

the amount of draw-in of the blank orientated at small 3 

‘is larger than that of the blank at large values, of S. 

This is because (say for the blank at S= o ,!curve A), 

the material that will be drawn in at the flat part of the 

punch has less resistance due to“Small flange in that 

part, therefore the draw-in is large, and the drawing 

force is ene When $ increases, the flange at the flat 

part 6f the punch is relatively increased, so that the 

resistance to the drawing action becomes larger. The 

draw-in’is then lessened but the drawing force increases. 

Until the drawing force reaches the strength of the cup, 

the angle for successful drawing reaches its critical 

value. From the maximum drawing force in the drawing 

process as shown in curve A in fig,11-7, it can easily be 

seen that the critical value of 3 for a square blank sized 

5" x 5" (127.0mm x 127.0mm) for successful drawing in this 

square cup drawing process is around 32.59. If the 5" x 

5" square blank is located at an orientation of J over 

ass", fracture will occur in the cup. A set of blanks 

Continuedsesoee



- 175 - 

sized 4§" x 4$" (123.82mm x 123.82mm) were drawn in the 

same drawing process and the maximum drawing forces of 

the blanks at different values of 5 are shown in curve B. 

The critical value of g for successful drawing in curve B 

is around 429, This immediately leads to a guess that a 

smaller square blank can be found which is capable of being 

drawn successfully at any orientation . This guess is, 

in fact, true,because a 4}" x 43" (120.65mm x 120.65mm) 

square blank is drawn successfully at any value of is 

From these maximum drawing forees, the strength of the cup 

can be found and is nearly constant with respect to the 

blank size or orientation of blank location. 

It is well known that in a square cup drawing, the material 

moves faster at the flat side than at the corner of the 

punch cross-section. When increases, it provides larger 

amount of material at the flange corresponding to the flat 

side of the punch cross-section. It increases the resist— 

ance to drawing due to“Larger amount of material to be 

drawn but it delays the completion of the drawing operation 

and increases the draw-in at the completion of the drawing 

operation. Therefore, the orientation of a square blank 

of fixed size in a square cup drawing process, for the 

largest draw-in at the completion of the drawing operation, 

is that which provides as much material as possible at the 

flange corresponding to the flat side of the punch cross- 

section where the material movement is fast, while the 

maximum drawing force does not exceed the strength of the 
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cup. Such an orientation may be called the critical 

orientation of the blank of fixed shape and size in a 

forming process. If the blank shape is fixed to be square, 

for any orientation of blank location with respect to the 

punch and die there should be a critical size of blank so 

that the maximum drawing force in the drawing operation 

is equal to the strength of the cup. Similarly, for a 

certain size of square blank, there is a critical orient- 

ation for it. The relation between the critical size of 

the square blank and the critical orientation of blank 

location in a square cup drawing process (dimensions of 

the punch and die are shown in fig,9-1) is shown in fig. 

11-8. Any square blank which is equal to or smaller than 

the 43" x 42" (120.65mm x 120.65mm) square can be drawn 

successfully at any orientation of blank location with 

respect to the punch and die. The curve in fig,11-8 

separates the successful and unsuccessful regions. 

So far the blank shape has been assumed to be square. 

But it is easy to see from the insets of fig,11-7, that 

the position of the flange edge at the completion of the 

drawing operation is not everywhere on the boundary. In 

other words, for that boundary, the square blank is not 

the most suitable blank for that square cup drawing. 

Therefore it is necessary to explore what shape is the 

best for a drawing process. The blank shape and size for 

the best performance in a drawing process is discussed in 

the next section. 
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12,5 Blank Shape and Size. 

For a circular cup, it is natural to choose a round blank 

for the cup drawing. For non-circular cups, the choice 

of the shape for the blank is always less obvious than 

that for the round one. The drawing operation is consid- 

ered to be completed when the edge of the flange touches 

the boundary. In a non-circular cup drawing, the edge 

of the flange does not normally touch the boundary every- 

where at the completion of the drawing operation (fig. 11-9). 

The pees between the boundary and the edge of the 

flange at the completion of the drawing operation is called 

the residual flange. In practice, the residual flange is 

cropped off and its area represents roughly the amount of 

wasted material. Ideally it is desirable to elim- 

‘inate the waste and have the right shape of blank so that 

there is no residual flange at the completion of the draw- 

ing operation. Practically, a better shape or a Blank of 

smaller area is not always accompanied by any saving in 

the material because of the stacking consideration and the 

expenses of the additional stamping tool. However, in 

some drawing operations, material saving can be achieved 

without the need of expensive stamping tools, and apart 

from material economy, there is a better reason to choose 

a good blank shape, namely, for a better performance in the 

drawing process. 

From the discussions in the previous. sections, a clear 
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guide line for the shape and size of the blank emerges. 

To achieve the largest draw-in in a drawing process a 

blank must be such that the maximum drawing force in the 

drawing operation is equal to the strength of the cup 

to ensure a successful drawing, and the edge of the flange 

everywhere must reach the boundary simultaneously at the 

completion of the drawing operation. A blank so shaped 

that the edge of the flange everywhere reaches the boundary 

simultaneously at the completion of the drawing operation 

is called the zero-residual-flange blank. - An abbreviation 

2Z.R.F. will be used for *zero-residual-flange" in the 

following discussions. It is possible to have a series of 

Z.R.F, blanks for a drawing process. The blank capable of 

achieving the largest draw-in in the drawing process is not 

only a Z.R.F.! blank but also one in which the maximum 

drawing force is equal to the strength of the cup. This 

later requirement, in fact, is the limiting size of the 

Z.R.F. blank. In other words, the blank capable of achiev- 

ing the largest draw-in in a drawing process is the largest 

Z.R.F, blank. 

It has been said that a Z.R.F. blank is the best shaped 

blank for a drawing process. Why can a non-Z.R.F,. blank 

not achieve the largest draw-in at the completion of the 

drawing operation? The reason can be explained by the 

energy consideration in the drawing operation. Consider 

a vanishingly short step of the drawing operation just 

before the drawing force reaches the maximum, when a non— 
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Z.R.F, blank is drawn in the drawing operation. In this 

small step the energy of deformation goes partly into 

the flange which includes the residual flange at the 

completion of the drawing operation, and partly into the 

cup inside the boundary. The total energy is supplied by 

the drawing force in the punch which moves through a small 

distance into the cup. If the residual flange were cut 

off before the drawing operation, the drawing force in 

this small step in the trimmed workpiece would be smaller 

than that in the untrimmed one. Take an example, curve b 

in fig,11-3 when it reaches the maximum point which is 

also the strength of the cup at L. If the residual flange 

were cut off before the drawing operation, the maximum 

drawing force would be below the strength of the cup. 

Therefore a larger trimmed blank could be drawn success— 

fully, thereby increasing the draw-in at the completion 

of the drawing operation. The increase in the draw-in 

at the completion of the drawing operation is shawn in 

fig.11-10. The amount of draw-in is plotted against the 

current position of the flange edge on the line OX (inset 

of fig.11-10). Curve B is that of the square blank B 

(fig.11-3) with size 5" x 5", and curve A is that of the 

blank shown in fig,l11-11, which is trimmed from a 54". x 

54" square blank and near to a Z.R.F.blank. The draw-in 

at the completion of the drawing operation in curve A 

(1.16) is larger than that in curve B (1.04) due to the 

longer distance and the more material to be drawn along 

the line OX, 
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Although it has been shown that a Z.R.F, blank is the best 

shaped blank for a drawing process, it is both difficult 

and unnecessary to find the exact shape of the Z.R.F. 

blank. It is difficult because the problem does not lend 

itself readily to any theoretical solution and cut-and- 

trial treatment is tedious. It is unnecessary itesuee 

small variation in the mechanical properties of the material 

from one blank to another and enait variations, in the 

forming conditions may change the exact shape of Z.R.F 

blank, and the change would make it difficult even to 

define the exact shape of the Z.R.F. blank. Even if the 

exact shape of the Z.R.F. blank could be found easily, it 

is still impractical and expensive to cut it. 

However difficult it is to find the exact shape of the 

Z.R.F. blank it is relatively easy to find the approximate 

shape of the Z.R.f. blank, and in an approximate Z.R.F. 

blank the performance of the material in the drawing process 

can be considerably, improved. Therefore it is worthwhile to 

pursue the approximate Z.R.F, blank for a drawing process. 

Some approximate Zee blanks for a square cup drawing 

process have been tried and found in this project. 

A square with round corners is symmetrical with respect to 

fout planes passing through the centre and perpendicular 

to the cross-section. It is justifiable to assume that the 

exact or an approximate shape of the Z.R.F. blank would have 
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also these four planes of symmetry and therefore rather 

like an octagon. A series of octagonal blanks of equal 

sides were drawn in the square cup drawing process and the 

largest one successfully drawn was found. Although it is 

not the exact shape and size of the Z.R.F, blank, it is near 

to the Z.R.F. blank. The largest regular octagonal blank 

was cut from a Sy" x 54" (139.95mm x 133.35mm) square blank 

so that its side ‘s 23" (66.67mm) dongs It was observed 

that the movement of the material in the flange correspond- 

ing to the flat side of the punch cross-section was faster 

than that at the corner. Thus simple advantageous modif- 

ications of the shape can be made by increasing the amount 

of material around the line OX (fig.11-12) where the edge 

“of the flange touches the boundary first and decreasing 

the amount of material around the line OY (fig,11-12) where 

the residual flange is found at the completion of the draw— 

ing operation. This "increasing and decreasing modification” 

was done jm steps of 4" in the directions of OX and OY (fig. 

11-12). Therefore a series of approximate Z.R.F.blanks was 

cut and drawn in the square cup drawing process. The dimen- 

sions and area of these blanks and, the size of the bound- 

ary and the draw-in at the completion of the drawing oper- 

ation are listed in the following table, 
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Table 1ll-l. 

Blank A B C D 
  

  

the size of 
square blank 
the blank is | 54"x54"| 5$"x5g"| 5x5" | 4g"x4g" 
cut from 
  

distance in 
OX direction aa" ail, 23" 2720 
(€iq.11=12) = 
  

distance in 

  

  

OY direction 23" wot aa" 28 
(fig, 11-12) 16" 16" 

Blank area 
(1n*) 22.83 22.76 22.53 | 22.15 

size of 
the boundary 6.24 6.24 6.24 6.24     Draw-in at 
the completion | 
of the drawing | 1.120 
operation. 

1.120 T5169 1.144           
Those blanks are shown in different colours in fig.11-12 

and the amount of draw-in against the current position of 

the edge of the flange on the line OX is shown in fig,11-13. 

It is seen in fig.,11-13 that the curve for blank D 

does not touch the vertical line in the co-ordinate which 

represents the boundary, as the others do. This is because 

_in . blank D, the distance on the line OX between the 

boundary and the blank edge is too long so that at the 

completion of the drawing operation the point at the edge 

of the flange on the line OX does not reach the boundary 
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because some other points reach it first (as F in fig.11-14). 

Blank D together with the position of the flange at the 

completion of the drawing operation is shown in fig,11-14. 

There is a hint here that further “increasing and ape ceeezae 

nedifieaetone” will not help. When the dimensions of the 

blanks A,B,C and D are increased an ox direction without 

decreasing in’by direction, the blanks are, in fact, greatly 

enlarged in area dnd are all found to be incapable of being 

drawn successfully. This is the proof that the size of 

the blanks A,B,C and D are near to the critical size. In 

fig,11-12, apart from the corners, the blanks are very 

near to the Z.R.F, blank. Therefore, the blanks A,3,C and 

D are, in fact, very near to the largest Z.R.F. blank. 

As shown in the table 11-1, blank C achieves the largest 

draw-in at the completion of the drawing operation. But 

af material economy is taken into account, one may 

sacrifice a little draw-in and prefer using blank D rather 

than blank €. Blank C is cut from a 5" x 5" (127mm x 127 

mm) square blank and blank D is cut from a 44" x 4¢" 

(123.83mm x 123.83mm) square one. If blank D is used, the 

material saving is (5x5 - 44x4¢)/(5x5) = 5%. 

Now an overall conclusion about the blank used in a draw- 

ing process can be drawn. There is a unique combination 

of the shape, the size and the orientation of the blank 

with respect to the punch and die, which yields the best 

performance in a drawing process. This combination is 
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represented by the largest Z.R.F. blank. When the aniso- 

tropy of the material is taken into account in a square 

cup drawing process, the largest Z.R.F. blank should be cut 

in such a way that the rolling direction of the sheet is 

along the direction OY (fig.11-12). In the Swift test, 

any round blank is a Z.R.F. blank and the blank with the 

size of the limiting drawing ratio is the largest Z.R.F. 

blank (unless Z.R.F. blanks are considered, for the elimin- 

ation of the ears). 

11.6 The Stretching and the Drawing Actions. 

In a drawing process, a piece of sheet material is clamped 

between a holding plate and a die, and a punch pushes it 

through the die hole. The energy supplied by the punch is 

transferred into stress in the material around the punch 

profile and transmitted as drawing force to draw the 

material in the flange into the die hole. When the resist- 

ance to drawing of the material in the flange is large, the 

stress in the material around the punch profile should be 

large so that the drawing force is large enough to draw 

the material in the flange into the die hole. If the 

stress induced is so large that it exceeds the yield stress 

of the material, stretching elas place. If the material 

around the punch profile is strong enough to sustain the 

stress which transmits the drawing force to the flange 

being drawn, the drawing operation will be successful, 

otherwise, fracture will occur in the cup. Therefore the 

success of a drawing operation depends on the balance 
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between the strength of the material around the punch 

profile and the resistance to drawing of the material in 

the flange. The strength of the material is related to the 

forming Limit’... curve and the resistance to drawing of the 

material in the flange is rather a complicated problem 

which will be investigated by considering the shape of the 

cup in the next Chapter. In this section, only the quant- 

itative distinction between the stretching and the drawing 

actions in a drawing process is discussed. 

As defined in Chapter 8, draw-in at a certain stage, say, 

stage a, of the drawing operation is the logarithm of the 

ratio of the amount of material inside the boundary at 

stage a to that before the drawing operation, namely, 

¥ the amount of material inside the boundary 
Draw-in, 7a = ln at stage g 

the amount of material inside the boundary 
before the drawing operation. 

It can be written in terms of the area in the blank 

because the amount of material is just the product of the 

area and the thickness of the blank. Thus: 

(the area in the blank)+(the area in the 
being drawn into the blank inside the 

tn —boundary) boundary) 
the area in the blank inside the boundary 

Draw-in, 

a
 uv 

Ada 

Ab a
a
 

in li-1 u 
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where Ada is the area enclosed by a closed curve in the 

blank and the closed curve is the locus of the material 

particles occupying the boundary at stage a of the drawing 

operation; and Ab is the area in the blank inside the. 

boundary. 

The depth of the cup is not used as the measure of the 

drawability of sheet metal because in the cup drawing 

process it involves not only drawing but also stretching 

action. A deep cup may be drawn with little draw-in and 

a shallow one may have a large fea This is the reason 

why the depth of the cup is not used to represent the draw- 

ability. However, the practical engineer may well be 

interested in how deep a cup can be drawn from sheet 

metal, and indeed, the depth of the cup still has some 

meaning and can be used to represent the performance of 

sheet metal in a drawing process. It is important to 

explain clearly what the depth of the cup means in relation 

to drawability. The depth of the cup, in fact, represents 

the surface area in the cup. Suppose the surface area 

inside the boundary is considered. The surface area inside 

the boundary before the drawing operation is Ab and that at 

certain stage of the drawing operation is As. Then a gross 

surface strain ” may be defined as follows: 

a. surface area of the cup inside the boundary 
c es " ‘surface area inside the boundary before the 

drawing operation. 
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= ln ib 11-2 

It is "gross" because the material in the cup inside the 

boundary at/ certain Boece of the drawing operation is not 

the material in the blank inside the boundary before the 

drawing operation, but includes that which is outside 

the boundary before the drawing operation drawn into the 

boundary in the drawing operation. A net or average sur- 

face strain in the cup inside the boundary then can be 

defined as follows: 

surface area of the cup inside the boundary 

oY a0 (amount of material in the cup inside the 
boundary) 
the thickness of the blank 

surface area of the cup inside the boundary 
  

ce. surface area in the blank enclosed by a closed 
curve which is the locus of the material 
particles occupying the boundary in the draw= 
ing operation. 

a As a = I1n hd 11-3 

where Yis the average surface strain in the cup inside the 

boundary. It can also be considered as the surface strain 

due to stretching in the drawing operation, in other words, 

the amount of stretching in the drawing operation. 

From Eqs. 11-1, 11-2, and 11-3. 

Pe Asa Ada Asa Tee 
Na = ln Ap. 2 oh aR in cde 
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=Ya +Ya 11-5 

where "a" means at stage a of the drawing operation. 

In general, Eq. 11-5 can be written as : 

Y= wry 11-6 

Eq. 11-6 means that inside the boundary the change in the 

surface area in the drawing operation is due partly to the 

stretching action and partly to the drawing action. 

According to the definitions stated above, the drawing 

action consists of compression in one direction and an 

equal amount of tension in the perpendicular direction so 

that no change in surface area occurs. If the surface area 

of the cup inside the boundary As is equal to Ad, there is 

no average surface strain, and the deformation may be said 

to be a pure drawing operation. If the blank is clamped 

firmly so that no material in the flange is drawn into the 

boundary, Ad is equal to Ab, then the gross surface strain 

is equal to the average surface strain and it is a pure 

stretching operation. 

The relation and quantitative distinction between the 

amount of stretching and drawing actions in the square cup 

drawing process in which the blank C (fig,11-12) is drawn, 

are shown in fig,11-15. At stage a (punch penetration 

1.75"), for example, PoPy (0.78) represents the amount of 
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draw-in Ya and P).P2 (0.17) represents the amount of stretching 
a 

and, Max 100% = 0248, fo 100% = 17.9%. The percentage of 

the dzawing action inocesacs with the progression of the 

drawing operation. The amount of stretching is increasing 

at the early stage of the drawing operation and becomes 

nearly constant after the maximum drawing force is reached 

(at 1.5" punch penetration). There is a little decrease at 

a later stage because near the completion of the drawing 

operation the material around the point which is Ean to 

touch the boundary first is compressed severely and drawn 

across the boundary. This peculiar phenomenon decreases 

the average surface strain and if the drawing operation 

continues, ironing may occur. 
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Characteristics of the Forming Process. 

In the previous Chapters it has been explained and 

demonstrated that there is an aspect of drawability which 

depends as much on the characteristics of the forming 

process as on the material properties. By recognising that 

drawability is inseparable from the characteristics of the 

forming process, it has been possible to define drawability 

in such a general way as to make it applicable to all shapes 

of cups. It is therefore natural to ask what character— 

istics it is in the forming processes that determines their 

relative drawabilities. The object of this Chapter is to 

provide the answer to this question. 

Laie d Convergence of Metal Flow. 

A hint of this answer lies in the well known fact that, 

other things being equal, the drawability is largest in a 

round cup. The characteristic of the forming process which 

determines its drawability must, therefore, be unique in 

the axisymmetrical process and, if this characteristic is 

expressed quantitatively,itis likely to reach an extremum 

walue in the axisymmetrical process. One may justifiably 

guess at this stage that it has to do with some definition 

of roundness. 

As it turns out, this characteristic, although not having 

been noticed hitherto by those investigating sheet metal 

forming, is a simple geometrical property of the process, 
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and lies in a fundamental aspect of the drawing action. It 

has been pointed out previously in this thesis that cup 

drawing or deep drawing consists essentially of movement 

and deformation of the flange to form the walls of the cup. 

It is now proposed to take a particular view of the kine- 

matics of this drawing action, namely, the velocities of 

the material particles in the plane of the flange as in 

fig,12-1. In the plan views shown in fig,12-1 the veloc- 

ities are schematically represented by the relative lengths 

of the arrowheads, and it is understood that, where the 

actual velocities are not in the plane of the flange, the 

velocities represented here are the projections in that 

plane. In other words, it is proposed to examine the two- 

dimensional vector field in the plane of the flange. 

Obviously, in a cup drawing process, the velocities must 

be generally directed inwards whatever the shape of the 

cup. The velocities leave the plane of the flange when 

the material is drawn into the die profile region, and 

their projections in the plane of the flange are zero when 

the material leaves the die surface and becomes the vertical 

wall, of the cup. The only external force exerting on the 

material is from the punch and is transmitted to the cross- 

section of the vertical walls of the cup. To identify and to 

describe quantitatively the drawing operation of non- 

circular cups, it is necessary to analyse in detail the 

kimematics of the matal flow involved in it. In the 

following, the square cup with rounded corners is chosen 
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to represent non-circular cups in general and it can be 

readily seen that the analysis applies equally to all other 

cups of non-circular shapes. 

As shown in fig,12-2, the wall of the cup is the portion 

above the line abed, the flange is represented by the region 

lehn, and between the two regions, namely, the part marked 

adhe, lies the part of the workpiece in contact with the 

die profile. In the wall above the line abed the material 

mostly moves bodily upwards with no or very little deform- 

ation, and the velocities of the material particles is 

constant in both magnitude and direction. Consider now the 

material particles just below the line abcd. The principal 
  

tensile stress is everywhere vertical and perpendicular to 

abed and the velocity of the material just above it is also 

perpendicular to it. The constraints are such, therefore, 

that the velocities just below abcd must be perpendicular 

to abed. 

We now examine a quantity, called convergence, defined as 

the product of the velocity and the curvature of a line 

drawn perpendicular to it, namely, 

ae 
ds 

We 

In the region beqf, assuming that all the velocities lie 

in the planes passing through the axis of the cup, the 
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convergence is 

y.—sin8 
rg 

where is the radius of the circular arc in the section 

normal to the axis of the cup and angle f is the angle of 

inclination of the velocity with respect to the vertical 

line, as shown in the inset (fig,12-2). As can be seen 

iin the expression V SinB the convergence is zero at line 
3 

be and equal to V_ at the line fg; where both V and r, 

Te 

refer, of course, to the local conditions. 

At this point it is desirable to make a clear distinction 

between actual empirical conditions and the idealized flow. 

In actual square cups the flow across line efgh is in 

general not perpendicular to it and the deviations, and 

the reasons for them, will be discussed in the last part of 

this Chapter. Here, however, we are not concerned with the 

analysis of the actual flow patterns, but rather with the 

characteristics of a non-circular cup drawing process. 

The essential characteristic of such a process is the 

deviation of the shape of the cup from the circular shape, 

and the essential feature of the drawing process is the 

effect of such a deviation on the flow of the material in 

the workpiece. 

Any closed curve can be chosen as the boundary of the 
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product. But there is one which is significantly related 

to the shape of the cup and the characteristic of the 

drawing process. That is the line efgh which is the line 

where the material leaves the die face. In order to study 

the characteristic of the drawing process, such a boundary 

is chosen as the reference line and an assumption is made 

that all the velocities passing this reference line are 

perpendicular to it. Then it can be readily seen that the 

characteristic of the forming process we seek concerns the 

convergence of the velocity across such a boundary as the 

line efgh. One may tentatively surmise that the reason for 

the maximum drawability in the round cup is the unique 

kinematic characteristic of uniform convergence of the 

flow in that shape. Since the convergence is defined as 

the product of the velocity and the curvature of a line 

drawn perpendicular to it, and since the velocities are 

assumed to be perpendicular to the reference line or 

boundary, the convergence in a forming process is the 

product of the velocity and the curvature of the reference 

line (or boundary) chosen in this section. It is now 

important to explore these two factors, the velocity and 

the curvature of the boundary, which determine the converg- 

ence of the flow. 

12.2 The Index of Nonsymmetry. 

The velocities across the boundary are determined not only 

by the material property. and the shape of the cup but also 

by the forming conditions of the drawing operation such as 
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lubrication condition, blank size and shape. The velocity 

field is complex and will be discussed later. Now, in order 

to know how the shape of the cup or the boundary affects 

the convergence of the flow, the velocities across the 

boundary are assumed to be equal everywhere at the boundary. 

A very short length 45 on the boundary is considered (fig. 

12-3). 

5h = P ae, ioe 

where — is the radius of curvature of the boundary at 

4 Se and 4% is the angle the direction of the curve 4So 

changes through. Because the instantaneous speed of the 

flow crossing the boundary is assumed to be the same 

everywhere at the boundary, the particles at 4S, will 

reach 4S after At, and 

as =p Ad. 12-3 

Then the circumferential strain along the boundary is 

  
  6 ain, A Sse eon e 12-4 
A Se Bs 

and 

cea, 12-5 
dp 7 

Because eo P = Vat 

therefore p ee 12-6 

and Cones v 12-7 
aa: 
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v = = (V = constant) 12-8 

Curvature of the reference line is thus seen to be the 

circumferential strain rate per unit particle velocity in 

the drawing process. In a non-circular cup this specific 

circumferential strain rate varies from one point to another 

along the reference line, hence the less favourable drawing 

conditions than in the circular cup. These consequences 

of the deviation from axial symmetry in the geometry of 

the cup are characterised in the preceding: discussion by 

assuming that the velocities are perpendicular to the 

reference line efgh (fig,12-2), for the sake of elucidating 

the relationships between the cup geometry and the draw- 

ability, and for the sake of expressing these relationships 

in quantitative terms. That the sharp inequalities of 

convergence, strain rate and so on assumed in the ideal 

cases are ameliorated in the actual cups by the continuity 

of stress and strains in the material in no way invalidates 

the characterisation of the non-circular drawing process 

presented here. 

In so far as drawability is concerned, the significant 

characteristic is not, of course, the absolute value of 

the convergence, but rather the uniformity of the con- 

vergence, or the uniformity of the curvature of the 

boundary. Therefore, an index of nansymmetry is defined as 

follows: 

|
 

  

3 See 
  = | d@ 12-9 

>|
- 8 
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where 8 (fig.12-4) is the polar co-ordinate of a point on the 

boundary when the centroid of the shape of the boundary is 

chosen as the origin of the co-ordinate system, and 

20 

a a | lag 12-10 Pp eer s r 

Eq. 12-9 defines the quantitative deviation of a shape 

from a round one. When § is zero, the shape is a circle. 

The larger the value of & is, the more uneven the convergence 

along the boundary will be, and the worse the character-— 

istic of the forming process is. 

‘ 

The indices of nonsymmetry of a square and a rectangular 

shape® with round corners and an elliptical shape are 

formulated as follows; 

(1) A square shape of 2a x 2a with round corners 

of radius xr, (fig, 12-4) 

  tang, = a=x 
a 

A = 
(Sen? av.   

Gr (ae SPE 4 

ne | 1 ey de 
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(2) A rectangular shape of 2a x 2b with round 

corners of radius r, (fig, 12-5) 

  

  

  

tan 6, a =B = = 

tan 6, = b 
a-or 

-L) = zt (6.-6,) 

es = 
2 

tei Mide el 
_ 4 E Pp Se es 

fase 

= 4x 2 x (XH - (0,-6,)) 
am 2 

(3) An elliptical shape (fig.12-6) 

2 2 Se as 
a b 

aie eae eK a = ahye 
=. Gea y22) e (KX? Y? (aty*+ b*x7 

7 

= 
i de Pee gah Ba 
T 
ee 

= | mA he Ree 
= 27 J ee at de 

Pp ey, 
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1263 Stresses in a Non-circular Cup Drawing Process 
  

The deviation of a shape from a circle is defined by the 

index ofnonsymmetry. It is not only a geometrical property 

of the forming process, but also represents the uniformity 

of the distribution of the incremental circumferential 

strain at the boundary. It is known that when the shape 

of the cup deviates from a circle, the velocities crossing 

the boundary will not be the same everywhere at the 

boundary. Even in a round cup drawing operation, if the 

blank is not a round one or if there is anisotropy of the 

material, the velocities crossing the boundary will be 

different too. The unequalness of the velocities across 

the boundary is due partly to the uneven curvature of the 

boundary which is determined by the shape of the cup, and 

partly to the resistance to drawing of the material in the 

flange which is determined by the forming conditions such 

as the lubrication condition, the blank shape and size 

and so on. The larger the curvature of the boundary is, 

the smaller the velocity across the boundary will be, The 

resistance to drawing of the material in the flange is 

investigated by the consideration of the energy of deform- 

ation in the flange as will be discussed in the following. 
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Now consider the cross-sectional surface of the workpiece 

at the exit of the die throat where the material leaves 

the die, surface to become the vertical wall of the cup 

(fig,12-7). The energy for the drawing action is supplied 

by the force transmitted across this cross-sectional area 

and the movement of the material at this curve, 

Thus, 

Energy input per unit lerigth of the boundary 

= (20; 0 =) aun 

Energy of deformation = (Area) x tay x (Strain rate )ay 

x(average yield stress) 

where @ is the stress and t is the thickness at the cross— 

section, and U is the velocity of the material particle 

at that cross-section; (Area) is here idealised as the area 

in the flange between the lines normal to the ends of a 

unit length at the cross-section (as station 1 or 2 in 

fig, 12-7) and tay the average thickness in the flange. To 

compare the stresses at two stations in the wall of a 

square cup, one at the corner (station 1 in fig,12-7) 

and onmeat the flat side (station 2 in fig.,12-7), we have 

GT tiU _ (Area), x (tay,) a (strain rate ayy B (dy ) 

Gt, U2 (Area), (tap), (strain rate ws, (Fy do 

or 

Gs tz y Ue x (Area), , (ta) (strain rate )avi Z oy) 

G +t; Uy (Area), (ta, “(strain rate ays (ey) 

12-11 
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Of the ratiosin the right hand side of Eq. 12-11, the 

thickness ratios tz/ty and (tay)//(tay.)2 are nearly unity 

because the thickness in the wall and in the flange are 

nearly the same at the corner and at the flat side, the 

speed ratio Us/U, is nearly unity because the velocities of 

material particles in the wall of the cup are nearly equal 
nearl, 

around the cup, and the dy-ratio is unity too. The area 

ratio and the ratio of the strain rates in the square cup 

drawing as shown in fig,12-7 are much larger than unity. 

Hence, the stress at the corner where the convergence is 

high is very much higher than that 

cup. 

plotted with respect to the length 

at the flat side of the 

If the stress per unit length of the cup periphery is 

of the cup periphery, a 

curve can be obtained, (conjectured results are shown in 

fig, 12-8). The blank of which the stress distribution 

curve (curve A in fig,12-8) reaches the strength of the 

material is the critical sized blank in that drawing process. 

The area under the curve (curve A) 

the cup can sustain or the maximum 

mitted to draw the flange into the 

In a round cup drawing process, if 

and the anisotropy of the material 

distribution along the cylindrical 

everywhere uniform, and if plotted 

a horizontal line. The blank size 

the stress in the wall of the cup 

the material. The maximum drawing 

represents the force 

drawing force trans- 

boundary. 

a round blank is used 

is neglected, the stress 

wall of the cup is 

as that in fig.12-8, is 

can be increased until 

reaches the strength of 

force transmitted to 
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draw the flange into the boundary in a round cup drawing 

operation is then represented by the area under the 

horizontal line B which also represents the strength of 

the material. It is obvious that the maximum drawing 

force transmitted to draw the flange into the cup in a 

non-circular cup drawing process is smaller than that in 

a circular cup drawing process. This is the reason why 

the drawability drops in a non-circular cup drawing process. 

By considering the drawing force in the forming processes, 

an equivalent round blank represented by curve C in fig. 

12-8, can be found that the area under curve C is equal 

to that under curve A. In other words, the maximum draw- 

ing force transmitted to draw the flange into the cup in 

@ non-circular cup drawing process when a critical-sized 

blank (of certain shape) is drawn, is equal to that ina 

circular cup drawing process when the, equivalent blank is 

drawn. The larger the forceccan be transmitted to draw 

the flange into the cup is, the larger the draw-in will 

be. The size of the equivalent blank is dependent on the 

variation of curve A. The smaller the difference between 

the peak and the valley of the curve is, the larger the 

equivalent blank is. The variation of the stress distrib- 

ution curve will be discussed in the following. 

Equation 12-11 may be written as: 

(Area)f x potssin rate )ay Ae a2 
rea), strain rate )ayig 
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after the cancellations of the velocity ratio, the thick- 

ness ratio and the yield stress ratio. In order to equalize 

the stresses, it is found from Eq. 12-12 that it concerns 

the product of the area ratio and the average strain ratio. 

The aoa Eq. 12-12 is determined by the curvature of 

the boundary and the distance between the boundary and the 

edge of the blank. If the distance between the boundary and 

the edge of the blank is constant, the larger the curvature 

of the boundary is, the larger the (ea); cavtespancana to 

the unit length of the boundary is (as station 1 in fig, 

12-7). The curvature of the boundary as well as the shape 

of the cup is determined by the punch Sadie? Thus the 

(Areas dependa on the distance between the boundary and the 

edge of the blank. For a constant area, the blank should 

be such that the distance between the boundary and the edge 

of the blank is nearly inversely proportional to the curv- 

ature of the corresponding boundary. The average strain 

ratio is a bit more complicated than the area ratio as will 

be explained as follows. In a square cup drawing process, 

if a square blank is drawn (as that in fig,12-7), it is 

possible to draw the line SS (fig,12-7) which separates 

the flat side region and the corner region. If all the 

particles moved in the directions normal to the boundary, 

then there would be no circumferential stress and strain 

in the flat side region and a sudden jump of circumferential 

stress and strain on the line SS. In practice it is 

impossible to have such a jump of stress and strain because 

the two regions are in the same piece of material. If the 

line SS were a rigid wall, then when the corner region 
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moved in, there would be a large circumferential stress 

near the boundary and the netenieinevect a compressive 

force into the imagined wall SS. The imagined wall would 

exert, as a reaction,acompressive force onto the material 

in the corner region to produce strain in that region. The 

average strain rate ~is therefore dependent on the inward 

velocities of the particles in that region, and the area 

of that region which depends’ on the curvature of the 

boundary, as well as the distance between the boundary and 

the edge of the blank. But, in fact, the line SS is not 

a rigid wall. When there is a compressive force acting on 

the line SS, the force is transmitted through it to the 

adjacent region and balanced by stresses in the material in 

the two regions. That stress should be greater than the 

yield stress of the material and produce circumferential 

strain somewhere or everywhere so that the material can 

move ine In the case shown in fig,12-7, at the first 

moment of the drawing operation, every particle in the 

corner region, for example the point P, tries to move in 

a direction PN (fig,12-7) so that it is moving without 

being deformed. But in a drawing process it is impossible 

for every particle to do so, and, in fact, every particle 

should go in the direction PM which is normal to the 

boundary... Therefore the direction of the movement of the 

particle is determined by the balancing of the stresses in 

that region and the adjacent region. If the particles in 

the corner region are moving in the directions normal to 

the boundary, then the average strain in that region is 
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the largest and aif they are moving in the directions 

parallel to TT (fig,12-7) so that it is a rigid body 

translation, the average strain is the smallest, Therefore, 

the average strain rate depends on the velocity of the 

feeding-in of the material, and the swinging of the lines, 

which are the border of that region,from the directions 

normal to the boundary. The larger swinging of the border 

to the adjacent regions, the more the decrease in average 

strain rate is in that region. Of course, the swinging of 

the border to the adjacent regions will increase the average 

strain rate in the adjacent regions. For a constant average 

strain rate. in different regions, the region corresponding 

to a large curvature of boundary should invade the region 

corresponding to a small curvature boundary. 

12.4 The Optimization of the Blank Shape and Size, 

In order to approach the equalisation of the stresses at 

the wall of the cup, the blank corners (fig,12-7) are cut 

off to decrease the area corresponding to the boundary with 

large curvature at the corner. This cut-off decreases the 

area ratio (in Eq. 12-12). But the portions being cut off 

are normally less atrained,“the cut-off will increase the 

average strain rate in that region. The decrease in area 

in the corner region also decreases the swinging of the 

border thus increasing the average strain rate. The 

variation of the stress ratio is therefore dependent on 

the variations of the area ratio and the average strain 

rate ratio. Because of the cut-off, the energy of deform- 

Continued. cece



- 206 - 

ation needed at the corner region will decrease and so will 

the stress «' the wall of the cup at the corner. A square 

blank of critical size is drawn in the square cup drawing 

process (fig, 12-7) 0"the guessed distribution curve of the 

stress at the wall of the cup is shown at curve A in fig. 

12-8. When the corners of the blank are cut off, the 

distribution curve of stress will lower «1+ due to the 

decrease in the energy of deformation needed. Because of 

the variations of the area ratio and the average strain 

rate ratio, the stress ratio has three possible variations. 

It may increase or decrease or keep constant. The stress 

ratio, in fact, represents the uniformity of the stress 

at different stations. The smaller the stress ratio * 

the more uniform'the stress distribution in the wall of 

the cup + Therefore, the favourable way of cutting is 

that leading to a decrease in the stress ratio. Then the 

distribution curve of stress at the wall of the cup lowers 

(fig 12-9) and the difference uevogee the peak and 

the valley of the curve is thereby decreased. Because the 

highest stress at the wall of the cup in the cut blank is 

lower than the strength of the material, a larger blank of 

the same shape can be drawn without failure and the 

distribution curve of stress in the wall of the cup will 

be that as shown in fig,12-9. The difference between the 

peak and the valley is smaller in the larger blank with a 

cut than that in the square blank of the critical size; in 

other words, the uniformity of the étfess distribution at 

the wall of the cup is improved by the cutting. If the 
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cutting off is done on “the larger blank with cut", the 

distribution curve of stress at the wall of the cup could 

be smoothed further and further, and finally a nearly 

horizontal line is obtained. This in fact, is another 

approach +6 getting the largest Z.R.F. blank. 

12.5 The Involvement) of Non-coaxial Deformation in 

Non=-circular Cup Drawing Processes. 

The velocities (U in fig,12-7) of the particles in the 

vertical wall of the cup are nearly equal everywhere along 

the cup. But the velocities of the material particles across 

the boundary are certainly not equal unless the forming 

process is axisymmetrical. This difference in speed, as 

said before, is mainly due to the variation of the curvature 

of the boundary and partly due to the resistance of the 

material in the flange to being drawn in. Because the 

shape of the cup is not circular, the curvature of the 

boundary is not equal everywhere. The boundary in a draw- 

ing process is like a bottle-neck. The larger the 

curvature of the boundary, the narrowrthe neck will be, 

and the slower the velocity of moving-in will be. When 

the curvature changes, the velocity of moving—in will 

change as well. The differential velocities of particles 

crossing the boundary will result in shear deformation 

which is positively a non-coaxial deformation (as described 

in Chapter 5). And this difference in velocity across the 

boundary will induce the rotation of the material in the 

flange so that the direction of moving of the material 

Continued......
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particle in the flange is changing all the time before it 

reaches the boundary. This changing of moving direction, 

obviously, will produce non edexdal deformation somewhere 

in the material. It is understood that the deformation of 

the material in the flange varies from one point to angthere 

It is very complex, but it is a fact that the material is 

under non-coaxial deformation in,non-circular cup drawing 

process. 

Material particles moving across the boundary with different 

velocities produce shear deformation. There is a great 

possibility that material failure occurs due to large 

shearing, especially at the transitional region where the 

changing rate of the boundary curvature is large. The 

severity of shearing is proportional to the velocity 

gradient along the boundary. The larger the velocity 

gradient along the boundary, the more severe the material 

is sheared, Let V be the velocity vector of the material 

particle across the boundary and s be the boundary, then 

the velocity gradient along the boundary is 

dt (Vem) 
ds 

where M is the unit normal to the boundary s- Because 

the velocities across the boundary are, or are almost 

normal to the boundary, the velocity along the boundary is 

zero, or 
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Therefore, 

  
Vig =) eee dis Vi: dbs y pe ers se cal 

be ee sm 

In other words, the severity of the shearing can be 

represented by the curl of the velocity across the 

boundary. The larger the curl of the velocity is, the 

larger the possibility of material failure due to shear- 

ing at that region. 

This Chapter provides the basic analysis of a non- 

circular cup drawing process. Without the quantitative 

measurement of a shape different from a circle, it is 

difficult to start the investigation. Although only a 

square cup drawing process is discussed and illustrated, 

the arguments are well applicable to any shape of cup 

drawing. 
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Conclusions 

“Formability" is not a new term in sheet metal forming and 

there has been a large number of research papers about the 

formability of sheet metal. But hitherto there has not been 

a clear, precise and generally agreed definition for the 

formability of sheet metal. Because of the ambiguity of 

the meaning of "formability", it is sometimes difficult to 

communicate between the research worker and the engineer 

in industry, or even among sheet metal forming research 

workers themselves. In this thesis, in order to give a 

clear definition of the formability of sheet metal, the 

forming process is to mean a blank held between a blank 

holder and a die, and a punch pushes it through the hole 

in the die; and only excessive thinning and fracture 

of the material are considered as material failure. The 

formability of sheet metal is then defined . as the 

forming limits of the material and the performance of the 

material in a forming process. The forming limit of the 

material is the limiting strain the material under forming 

can withstand. It is dependent on the strain path under 

which the material is deformed. Therefore, the formability 

which means the forming limits of the material is not a 

property 
single, but is a spectrum of material properties. It can 

not be represented by a single index but can only be 

represented by a curve, such as the forming limit CUrVe. 

On the other hand, the performance of the material in a 

forming process, because the forming process is defined 

as a drawing process, is represented by the drawability 
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in a forming process. Because drawability is the perform- 

ance of sheet metal in a forming process, it is obviously 

dependent on the forming process. Therefore, the draw- 

ability of sheet metal, like the forming limits of the 

material is a spectrum of material properties depending 

on the forming process. 

The strain or a state of strain used to be represented ~ 

by the three principal strains only. The directions of 

the principal axes of strain with respect to the material 

were neglected all the time. In sheet metal forming, in 

fact, there are many cases in which the material is 

deformed with the principal axes of strain rotating with 

respect to the material. For example, any forming process 

other than cylindrical cup drawing, involves a 

deformation in which the principal axes of strain rotate 

with respect to the material, namely, @ non-coaxial 

deformation. Even the cylindrical cup drawing process, 

if the anisotropy of the material is taken into account, 

involves non-coaxial deformation as well. The strain path 

of the material in the redrawing of a circular cup is 

normally a zigzag path, but the principal axes of strain 

are fixed with respect to the material. In other words, 

it is zigzag but coaxial. But in the redrawing of a non= 

circular cup, due to thenonmalignment of the principal 

axes of strain and stress in the different stages of 

forming, the strain path is not only zigzag but also non- 
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coaxial. As many sheet metal forming products are not 

axisymmetrical, for the better understanding of the 

material behaviour in the forming process, it is necessary 

and significant to investigate what the non-coaxial deform- 

ation is and how to find the formability when non-coaxial 

deformation is involved. 

The lack of ~.» development and investigation in non- 

coaxial deformation is obviously due to the incomplete 

representation of a state of strain by using,circular 

grid system for strain measurement. The state of strain as 

measured by “a'r circular grid system is represented by 

the three principal strains only. A complete represent- 

ation of a state of strain should involve not only the 

three principal strains but also the directions of the 

principal axes of strain with respect to the material. 

In this thesis, a state of strain is therefore fully 

represented by not only the three principal strains but 

also a factor specifying the directionsof the principal 

axes of strain with respect to the material. The coaxial- 

ity of the principal axes of strain with respect to the 

material can therefore be easily detected. The non- 

coaxial strain analysis by using square grid system ,which 

was first developed by Professor Helis further developed. 

A three-dimensional triangular co-ordinate system in which 

not only the three principal strains but also the direct- 

ions of the principal axes of strain with respect to the 

material are represented explicitly, is proposed, so that 
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the non-coaxial strain path can be actually plotted. 

The significant difference between a coaxial and a non- 

coaxial deformation lies on the fundamental basis of strain 

measurement. The theory of plasticity hitherto proposed 

is built up on the basis that the principal axes of stress 

and strain are coincident to each other in the deformation, 

in other words, the coaxial case is assumed. Based on this 

fundamental assumption, the work-hardening hypothesis and 

the stress-strain relationship are developed. In this 

thesis, this fundamental assumption is removed and the 

work-hardening and the stress-strain relationship antnon- 

coaxial case are discussed by considering the work con- 

sumption in the deformation. It is shown that™Lévy-Mises 

and Prandtl-Reuss equations, if they are true in“éoaxial 

. the. 3 
case, are not true in, non-coaxial case. 

There is another significant difference between a coaxial 

and a non-coaxial deformation. The strain path can be 

shifted or zigzagged without changing the stress ratio. 

in a non-coaxial deformation. ‘This is just due to the 

non-coaxiality of the principal axes of stress and strain 

with respect to the material. In other words, under the 

same stresses, the strain paths are different in coaxial 

and non-coaxial deformations. There is a danger that 

if the non-coaxiality of the principal axes of strain 

with respect to the material is neglected in non- 

coaxial deformation, the shift or the zigzagging of the 
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strain path may mislead research workers to consider it as 

a change of stress ratios. For any forming process which 

may involve non-coaxial deformation it is important to 

consider the coaxiality or otherwise of the principal 

axes of strain with respect to the material. 

The energy consumption for producing a certain z 

strain in a non-coaxial deformation is more than that in 

a coaxial one. Owing to this effect, it is possible that 

the material is severely work-hardened with small 

strains(without unloading and reloading). Because of 

the severity of work-hardening, the material, if it fails, 

will fracture without excessive thinning. This is another 

type of material failure which does not normally happen in the 

coaxial case. The forming limits of the material are 

dependent on the strain path. Therefore the material 

should have forming limits under non-coaxial strain paths. 

Apart from the type of material failure, intnon-coaxial 

case, the strain path is shifted or zigzagged due to the 

non-coaxiality of the principal axes of stress and strain, 

When the strain paths are different, the forming limits 

are bound to be affected. 

The definition of drawability, hitherto, is based on and 

limited to the drawing of circular cups as in the Swift” 

test. As said before, the drawability is the perform- 

ance of sheet metal in a forming process and is dependent 

on the forming process, and the drawability of sheet metal 
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should be a spectrum of performance depending en; feening 

processes. Therefore, it is necessary to extend the 

investigation of the drawability of sheet metal to some 

other forming processes. In fact, the need for extending 

the investigation to the drawing of non-circular shape 

was stated thirty-five years ago by Professor Swift. 

After thirty five years, it is certainly opportune to do 

it. Inthe circular cup drawing process, the material 

everywhere is deformed under a coaxial strain path and 

the material at the critical section is deformed under a 

coaxial strain path too. But in a non-circular cup draw- 

ing process, the material in the blank is in general 

deformed under a non-coaxial strain path. The material 

at the critical section may be deformed under a non- 

coaxial strain path and the type of material failure may 

not be the same as that in a circular cup drawing proce’ss. 

This non-coaxial deformation makes the material 

behaviour in a non-circular cup drawing process deviate 

from that in the Swift test so that the test results in 

the Swift test are not applicable to non-circular cup 

drawing. In the Swift’ test, the drawability is defined 

by the limiting drawing ratio which is the ratio of the 

diameter of the largest blank capable of being drawn 

successfully, to the punch diameter. i ieneeieedver cup 

drawing process, although round blanks can still be used 

so that there is a blank diameter, there is no longer a 

punch diameter. Therefore, in order to extend’™ the 

investigation to the cup drawing of non-circular shapes 
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the definition of drawability should be generalised first. 

The Swift’) test is re-examined and the implication of the 

limiting drawing ratio in the , test is explored. 

In the Swift’. test, the blank shape, the boundary of the 

product and the location of the blank are concealed. The 

blank shape is circular. In fact, it is the best shape 

for circular cup drawing. But it does not mean that a 

square blank is the best one for square cup drawing. 

The circular cup drawn in the Swift’ test is a flangeless 

cup. The boundary of the product is therefore set 

implicitly at the vertical wall of the cup and when the 

cup is drawn completely, the edge of the flange everywhere 

just reaches the boundary of the product. But there is no 

theoretical reason why the cup should be flangeless. The 

position of the boundary of the product can be set ina 

position depending on the purpose of the product and the 

completion of the drawing operation should be such that 

the edge of the flange anywhere first touches the boundary. 

In the Swift test, it is easy to locate the blank with 

respect to the punch and die because of the axialsymmetry of 

both the blank and the punch and die. But in a non- 

Circular cup drawing PeGeeesen ere is no longer axial 

symmetry, the blank location should be taken into account. 

After exploring these concealments, the drawing ratio was 

found to be the square root of the ratio of the area of 

the blank to the area inside the boundary (which is 

roughly the area of the punch cross-section). Based on 
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this idea, the definition of drawability was generalised to 

be the largest draw-in at the completion of the drawing 

Operation. With the generalised definition of drawability 

the performance of sheet metal in any forming process and 

the distinction between the drawing and the stretching 

actions in a forming process can be quantitatively 

represented. 

The factors affecting the drawability such as the boundary 

of the product, the blank shape and size, the orientations 

of blank with respect to the rolling direction and to the 

punch and die were discussed independently first. Finally, 

all the factors are considered together and the conclusion 

is obtained that the blank for the best performance in a 

forming process is the largest Z.R.F. blank. Although 

there is no equation proposed for the shape of the Z.R.F. 

blank, an approximate Z.R.F. blank for a reasonable shape 

of cup drawing can be obtained by a few steps of cut-and- 

trial method. 

A square cup drawing is illustrated as an example following 

the arguments. The arguments are well applicable to any 

shape of cup drawing process. Because the characteristics 

of a forming process are so much dependent on the shape of 

the cup, an index of wansymmetry is proposed for a systematic 

investigation in non-circular cup drawing. The differential 

draw-in near the die profile region where large shearing 
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occurs is shown to be the curl of the velocity. Further 

investigation requires a lot of experimental work which 

will be discussed in the next Chapter. 

The aim of this project histo investigate ©» sheet metal 

forming processes at the fundamental level. The need 

for such an investigation is conspicuous in the very 

Narrow range of topics hitherto dealt with in the research 

papers in this area; for example, the confinement of 

measurements of drawability to round cups, the neglect 

of non-coaxial strains, the theoretical and practice! 

consequences of non-coaxiality and the exclusion of forming 

conditions from concepts and the measurement of form— 

ability. In such an investigation it is inevitable that 

the principles unearthed cover a large theoretical area 

and point to many possible specific experimental studies, 

too wide and too many to be undertaken here. The experi- 

mental results shown in this thesis are therefore for 

illustrating the theory and elucidating the principles 

rather than for data-logging in preparation for practical 

applications. 
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Suggestions for Future Work. 

Following the theoretical analysis and development in non- 

in partieular the 
coaxial deformations and,non-circular cup drawing process 

in this thesis, some suggestions for future work emerge 

clearly. There are two lines, one in experimental study 

and the other in theoretical development. In fact, they 

can be considered as only one line because after certain 

depth of investigation in theoretical development, it is 

necessary to have some experimental results to support and 

verify the theory and the experimental results will provide 

hints on further investigations in the theoretical develop- 

ment. Some suggestions for future work are listed as 

follows. 

(1) Non-coaxial Strain Paths. 

In this thesis, non-coaxial and non-coaxial zigzag strain 

paths are obtained from specimens of coupon form due 

to huge expense of searching for non-coaxial strain paths 

in actual forming processes as has been explained in 

Chapter 10. In Rone ite syaneericst forming, non-coaxial 

deformation is bound to be involved. In the redrawing or 

multiple-stages forming of non-circular shapes the strain 

path of the material in the workpiece is non-coaxial and 

zigzag. With the strain measurement fusing the square 

grid system, noneebexial cad non-coaxial zigzag strain 

paths in actual forming processes can be found. It is 

suggested that when the material in actual forming processes 

simple 
is found to’be deformed under non-coaxial, or non-coaxial 
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zigzag strain path, by similarity, a simulate forming process 

can be made for investigation and improvement. 

(2) Forming Limits of Sheet Metal. 

The forming limit is the limiting strain the material can 

sustain under a Becein path, in other words, it is the end 

point of the strain path under which the material is 

deformed. When a set of strain paths, coaxial ar non- 

coaxial, is obtained, the precision of the forming limit 

curve of the material depends on the precise determination 

of the end points of the strain paths. As the determination 

of the end point of the strain path is a crucial matter in 

the formability of sheet metal, the material failure or 

the development of excessive thinning (or necking) may be 

further investigated so that a more precise criterion of 

the end point of a strain path can be established. 

The comparison of forming limits among different materials 

requires not only Sa@ precise end point determin- 

ation but also @ control of the strain paths. When the 

forming limits of two materials are compared, they should 

be compared on the same basis, namely, under the same 

strain path. Therefore,amore reliable control of the 

strain path at the critical section of the workpiece in a 

forming process is needed. 

(3) Stress-Strain Relationship and Theory of Plasticity 

It has been shown theoretically in this thesis that the 
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stress-strain relationship inthe non-coaxial case is different 

from thatinthe coaxial case, It is desirable to find the 

actual stress-strain relationship ina non-coaxial case so 

thatacomparison between coaxial and non-coaxial cases can 

be made. 

It may be difficult to find the stress in anunsymmetrical 

forming product. But withaspecial device, for example, 

rotating the punch when it is proceeding in a drawing 

process (fig,14-1) with the central part of the blank 

fixed to the punch head, so that twisting occurs in the 

workpiece in the forming process, the stress in the work- 

piece may be obtainable aftenh some calculations. As shown 

in fig,14-1, 

PO a 2m S Sine: oO. t 14-1 

As See We eee Eis 2 14-2 

where P is the punch load; r, the current radius of a 

point in the workpiece;o, the slope of the profile; gj, 

the tensile stress in the meridional direction; T, the 

torque applied to rotate the punch; t, the current thick- 

ness of the workpiece andt, the shear stress along the 

circumferential tangential direction. From Eqs. 14-1 

and 14-2, 

  = en 14-3 
Tv T sing 
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If y= 0 of T = @, the directions of the principal 

axes of stress and strain are in the meridional and the 

circumferential tangential directions respectively. If 

T * 0, then because of the shear stress, the principal 

axes of stress will shift from the meridional and the 

circumferential tengential directions. Therefore, the 

deformation in the workpiece is non-coaxial. By using 

Eq. 14-3 and the equation for membrance stresses, the 

stresses and the directions, of the principal axes of 

stress with respect to the material can be found. The 

strain, by using the square grid system for strain 

measurement, can also be obtained. The relation between 

the stresses and the strains would thereforebeobtained. By 

changing the punch penetration and the punch rotating 

speed in the forming operation, another ratio of the 

stress g; to the shear stress T in Eq. 14-3 can be obtained. 

Therefore, a set of stress + strain relations in the non- 

coaxial case would bea found. 

With these experimental results, the theory of plasticity 

including the strain-hardening, the deviation of the stress-— 

strain relation from that vlueuy ieee equations in the non- 

coaxial case can be greatly extended. 

(4) Drawability of Sheet Metal. 

The drawability of a sheet metal used to mean the perform— 

ance of the material in a circular cup drawing process as 

the limiting drawing ratio in the Swift test. With the 
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generalised definition of drawability, namely, the largest 

draw-in, it is possible to represent the drawability of the 

material in any forming process including the circular cup 

drawing process. 

It is useful to have the limiting drawing ratio shown in 

a handbook for sheet metal properties. If the drawabilities 

of sheet metal in other shapes of cup drawing processes can 

be provided in a handbook as well, it would be more useful 

for applications because the limiting drawing ratio 

provides very little information ‘on the performance of 

the material in a non-circular cup drawing process. There- 

fore, in future work, the drawability of sheet metal 

if not in all possible shapes of sheet metal forming 

products, at least, in some popular shapes like squares, 

rectangles and elliptical shapes of cup drawing processes 

could be pursued and shown in a handbook. 

The index of nonsymmetry is proposed to specify the 

characteristic of a forming process. Of course, there 

may be some other representations for this index. 

~ For example, the length of the periphery of 

the shape could be used instead of the position angle @ 

(Chapter 12) s0 that the index ofmansymmetry is represented 

as follows: 
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where S is the length of the periphery. 

The index of wonsymmetry defined in Eq. 14-4 is related to 

that defined in Eq. 12-9, It is rather more complicated but 

is more powerful when the shape is irregular and without 

any plane of symmetry. 

With the experimental results, the relation between the 

drawability of sheet metal and the index of nonsymmetry 

can be found. This would be extremely useful for practical 

applications as well as for the sheet metal forming designer.
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