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Summary

The aim of this thesis is to provide a wider conception
of the formbility of sheet metal to cover a wider range of

sheet metal products.

In circular cup drawing, the deformation in the work=—
piece is coaxial owing to axial symmetry; in other words,
during the forming operation, the principal axes of stress
and strain coincide with each other and are fixed with
respect to the material. The directions of the principal
axes are along the meridional tangential and the circum-
ferential directioms all the time during the forming
operation. In non-axisymmetrical forming, however, non=-
coaxial deformation is involved in the forming operation
owing to the lack of axial symmetry. The principal axes
of stress and strain do not coincide with each other and

they both rotate with respect to the material.

To widen the meaning of formability, it is defined on the one
hand to mean the forming limits of sheet metal, which is
represented by the forming limit: curve; on the other
hand, to mean the drawability of sheet metal in a drawing
process. The forming limits of sheet metal under coaxial
simple and coaxial zigzag strain pathsas well as the draw-
ability of sheet metal in a circular cup drawing have been
investigated by many sheet metal forming research scientists
hitherto. There has not been, however, any investigation
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on the forming limits of sheet metal under non-coaxial
strain paths. This omission is no doubt due to the lack
of theoretical analysis of non-coaxial strains, as can be
seen in the usual incomplete representation for a state

r
of strain by only the three principal strains.

Although there are some investigations on non-circular cup
drawing, they are all empirical studies, The drawability

of sheet metal is up to now limited to ... circular cup
drawing and the definition of drawability is restricted to mean
the ratio of the blank diameter to the punch diameter, as

defined in the Swift test.

In this thesis, a fundamental analysis of non-coaxial
strains is pursued, A state of strain is completely
represented by the three principal strains and the
directions of the principal axes of strain with respect to
the material. With the complete representation of a state
of strain, a non-coaxial strain path can be represented
graphically and is plotted for the first time in this
thesis. The relation between the rotation of the principal
axis of stress with respect to the material and that of
the principal axis of strain is investigated. The non=-
coaxiality of the principal axes of stress and strain
results in a type of zigzag strain path, and such zigzag
strain path is also investigated both theoretically and
experimentally. At the same time, the definition of
drawability is generalised to be the largest draw-in
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at the completion of the drawing operation so that it is
applicable to any shape of cup drawing. An index of
nansymmetry is proposed to specify . the characteristics
of a non-circular forming process. The large volume of
useful experimental work which these investigations can
lead to is discussed in a separate chapter on

suggestions for future work.

The achievements of this project are as follows:

1. The investigation of non-coaxial deformations

on both theoretical and experimental bases.

2% The generalisation of the definition of draw-
ability and the drawability test to cover all

shapesof cup .

3. The provision of a theoretical link between
the partial view of stretchability in the
Forming Limit Curve and Swift's Limiting
Drawing Ratio to form a more nearly complete

view of sheet metal formability.
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NOTATION

A number in a the number of reference in??ihliograp@.
blanket for
example, (5)

Xy, Xa5 %, X5 co-ordinatesof a point.

IAﬁ' matrix with elements Aij,

m, M uniform dilatatian,

o the angle specifying the directions of
the principal axes of strain with respect
to the material.

X an angle, a pure number.

E natural strain,

G,, Gz, 63 principal strains.

Ay 5 A areas,

;3 Sl thicknesses,

| length,

P angle, the orientation of the blanlf
with respect to the rolling direction.

2 characteristic index of deformation,
gross surface strain,

}9 magnitude of non-coaxiality , an angle,

J a positive number,

EU strains,

E'j : E; elastic and plastic strains respectively.

a‘u stress,

a= equivalent stress,

d€ equivalent incremental strain,

W work

P ): constants .
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a ratio,
draw=in,

the area of material being drawn into the
boundary.

the area inside the Euundary.

the area of material being drawn at the
completion of the drawing operation.

the surface area of the cup.

an angle, the inclination of the cuts
in coupon form specimen , index of mnsymmetry

distance between the cuts in coupon form
specimen.

the orientation of the blank with fespect
to the punch and die,

average surface strain.

(%)






Introduction

This chapter is devoted to defining the problem for which
this thesis provides the answer. That the problem requires
definition is due as much to the imprecise use hitherto of
such basic terms as "formability" and"drawability" in the
research literature on sheet metal forming, as to the need
to delineate, for the sake of clarity, the scope and limit
of the project. A complete definition of the problem also
provides the schema by which the different parts of the

research project are related to each other.

Sheet metal is used in many different kinds of manufact-
uring process involving plastic deformation of metal,
such as blanking, ceining, shaving, ironing, bending,
stamping, folding, stretching and polishing. In this
thesis, forming is understood to be the process in which
a workpiece of sheet metal is clamped against a die and
a punch pushes the sheet through a hole in the die. To
confine the project to such a process is a matter of
deliberate choice, based on the generally accepted usage
of the term "sheet metal forming". It is, of course,
understood that the sheet metal is thin enough for the
variation of the deformation across the thickness to be

negligible, otherwise, the process becomes one of forging.

The need for a test of sheet metal formability is a
practical need and = research into sheet metal form-
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ability has always been motivated by practical engineering
problems. Formability is what formability tests measure,
Therefore "formability" has come to mean, not a material
property such as hatdmness and elastic rigidity, but the
resistance to failure and the performance of sheet metal
in the forming process. Those who wish to determine

sheet metal formability do not look for a physical
property of the material, rather they wish to know "how
well a sheet material will stand up to the forming process".
The precision of its meaning lies somewhere between that
of forgeability, which has more or less the same meaning
as ductility, and that of machinability, which has an

even less distinct connotation. Indeed, part of the
research and research results reported in this thesis
consists of careful analysis and accurate definition of
sheet metal formability. Such accurate analysis is
necessary in any study in depth of an engineering problem,
Without the precision in such a pedagogical study, the
measurement of formability can hardly be serviceable in
practical processes, quite apart from the elimination of

semantic confusion,

The phrase "how well will a material stand up to the
forming process" conceals several ambiguities and tacit
implications. A precise definition of formability is
best found by removing these ambiguities and exploring
these implications. A forming process (fig. 1-1)
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consists of producing a cup or bulge out of a flat sheet.
The phrase "how well a material will stand up to the
forming process" implies an extent of forming to a limit
which is a failure of material in the forming process.

To get a precise meaning of formability, therefore, it

is necessary first to confine oneself to a mode of failure.
To the practical engineer, a forming process may fail by
puckering, fracture or excessive deterioration of the
surface finish. In this project, the mode of failure
investigated is the mechanical failure of the workpiece,
namely, necking leading to fracture,or fracture itself.
It is, for obvious reasons, necessary to limit the scope
of the research project to a manageable magnitude with a
unity of purpose, hence the exclusion of metallurgical
study. Such a choice in no way implies, of course, that
the other modes of failure in sheet metal forming are

unimportant.

In sheet metal forming, stretching is always associated
with drawing, and failure in the workpiece normally
occurs in the stretching region. But the severity of
stretching is largely determined by the conditions in

£he drawing region. The success of a sheet metal forming
process, therefore,relies on the strength of the material
under forming and the resistance of material to beingdrawn
in in the forming process. Formability of sheet metal is

investigated in these two aspects.

Continuetdescsss



The first aspect of formability is the ductility of the
material. This is dependent on the strain path, as will be
explained later in this thesis. 1In the tension test,
ductility is measured as the percentage elongation or the
percentage reduction in area, both of whicﬁ?%aken at the
critical section where necking and fracture occur. The
material in the tension test is, of course, deformed along
a particular strain path. If in another forming procesé,
say, in biaxial stretching, the material at the critical
section ' is deformed under another strain path,then the
ductility of material in biaxial stretching is different
from that in the tension test. In fact,a tension test is
only one of the infinite number of forming processes and
ductility is only the formability in a particular forming
process. [Iherefore, the formability of material under
forming in all possible forming processes, as usually
represented hyf?orming Limit « Curve (F.L.C.TT?; a
spectrum of ductility but not a single material property.
Because formability is strain path dependent, it is
significant to study the strain path under which the mat~

erial at the critical section is deformed.

However, the Forming Limit Curve hitherto has been
investigated either by measuring the strain at the neck
without showing the strain path (Keeler's and Goodwins'
curves) or by measuring the strain at the neck with strain
path leading to the limit in axisymmetrical forming
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process so that the strain path is limited to be a coaxial
one. A distinction between a coaxial and a non-coaxial

deformation is made in the following.

A square (fig,1-2 (a)) is deformed into a rectangle (fig,
1-2 (b)). From the ellipse inside the rectangle (fig,1-2
(b)), it is known that the principal axes of stress are
along the fibres AC and BD when the sjuare is deformed.

The principal strains are measured from the major and
minor axes A'C' and B'D' respectively of the ellipse.

The principal axes of strain in fig,1-2 (b) are along
the fibres A'C' and B'D' which when referred back to

the undeformed state are the fibres AC and BD in the
square (fig,1-2 (a)). Suppose the rectangle (fig, 1=2

(b)) is further deformed into another rectangle (fig, 1-2
(e)). Again, from the ellipse in the further deformed
rectangle (fig,1-2 (c)), the principal strains are
measured from the fibres A'" C" and B" D". The principal
axes of strain in fig.1l-2 (c) are along the fibres A" C"
and BY D" which, when referred back to the undeformed
state,are the fibres AC and BD too. It is understood that
the principal axes of stress are fixed and are along the
fibres A' C' and B' D' when the rectangle (fig.1-2 (b)) is
further deformed. Therefore, from the square (fig, 1-2
(a)) to the rectangle (fig.1=2 (b)) and from the rectangle
(fig, 1-2 (b)) to another rectangle (fig,1-2 (e¢)), the
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principal axes of strain are fixed with respect to the
material, and the principal strains at the two states
(fig,1-2 (b) and fig,1-2 (c)) are all measured from the
deformed states of the fibres AC and BD. The deformations
from fig, 1-2 (a) to fig,1l-2 (b) and from fig,1-2 (b) to
fig,1-2 (c) are said to be coaxial because the principal
axes of strain are fixed with respect to the material in
the deformations., The strain path of the material in fig,
1-2 (a) deformed to fig,1-2 (b) and then to fig,1=2 (c) is

a coaxial one.

Figs.l=3 (a) and (b) show the same deformation as that in
figs.1=2 (a) and (b). The principal axes of stress and
strain are along the fibres AC and BD in the sguare. If
the rectangle (fig,1-3 (b) ) is further deformed into that
as shown in fig,1-3 (c), from the ellipse in the parallel=-
gram, the principal strains can stTill.. be obtained by
measuring the major and minor axes of the ellipse which
are E" G and F¥ HY. The fibres EY G" and F" H" if refesrred
back to the state in fig,1-3 (b) and fig.1-3 (a)TTEl G',
respectivel
FY HY and Eb, FH,(4}9J1'3(6UB£, From fig.,1=3 (a) to fig.
1-3 (b) the principal axes of stress and strain are along
the fibres AC and BD andT%rincipal strains are measured

from the deformed state of AC and BD. But from fig, 1-3

(b) to fig,1=3 (c), the principal axes of stress are not

along A' C' and B' D', otherwise, the rectangle in fig.

1-2 (c) should be obtained, and the principal strains
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would be measured from the deformed state of AC and BD
instead of EG and FH. The principal axes of strain in
fig,1-3 (b) and in fig,1=3 (c) with respect to the
material are not coincident, those in fig,1-3 (b) are
along AC and BD and those in fig,1-3 (c) are along EG
and FH, Therefore, the deformation from fig,1l-3 (b) to
fig,1-3 (c) is said to be non-coaxial. The strain path
of the material deformed from fig,1-3 (a) to fig,1-3 (b)
and then to fig,1-3 (c¢) is a non-coaxial one. Further
discussion about the difference between a coaxial and a

non-coaxial deformation will be made in this thesis.

h

For the completeness nf,?nrming limiting curve of sheet
metal, it is necessary to investigate non-coaxial strain
paths, There are some more significant reasons than the
completeness off?nrminq limiting curve of sheet metal.
The non-coaxidity of principal axes of strain will zigzag
the strain path even when the stress ratio is kept constant.
This zigzagging fogtrain path may bring another mode of
failure. And, in fact, the deformations in which the
material is deformed under non-coaxial and zigzag strain
paths are very common in practice. Any forming process
apart from axisymmetrical ones, for example. an elliptical
cup drawing, would involve those kinds of deformation. .
In axisymmetrical forming like a circular cup drawing, if
the blank is not a round one there will be non-coaxial
deformations or, even if the blank is a round one, the
earfing would induce the involvement of non-coaxial

deformation. In?gheet meta} industry, many products are
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not formed in one forming process, in particular;redrawing
is widely used in deep drawinge. Multiple forming
processes and redrawing are very likely to bring non-
coaxial deformation to the material under forming due to
the nanralignment of the principal axes of stress in
different parts of the forming processes. The necessity

for exploring non-coaxial deformation is quite obvious.

In the second aspect, formability is the performance of
sheet metal in a forming process. As said in the second
paragraph in this chapter, forming is understood to be

the process in which a workpiece of sheet metal is clamped
against a die and a punch pushes the sheet through a hole
in the die. There are two possible cases in forming.

One is pure stretching in which the workpiece is clamped
firmly so that no material clamped is drawn in to form

the wall of the shell and the punch stretches the material
in the unsupported region. The performance of the
material in pure stretching is usually called stretch-
ability and can be represented by the maximum punch
penetration as in the Erichsen test or by the average
surface strain in the shell. The formability of sheet
metal in pure stretching can also be represented by the
forming limit at the critieal section, which lies in the
first aspect of formability. The other case in forming

is deep drawing in which both stretching and drawing are
involved. Drawability is used to represent the formability
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in deep drawing.

In deep drawing, the measure of drawability is the largest
blank that can be used . hence the Swift!! test.
However, the Swift'! test has probably encouraged the
impression of drawability as a material property. In
fact, drawability is the performance of sheet metal in a
forming process so it is dependent on the forming process.
Aé??nrming limit curve is a spectrum of forming limits
of:material deformed under different possible strain

paths and the ductility of material inftension test is
only one of the forming limits inf%nrming limit curve,
the drawability should also be a spectrum of the perform-
ance: of material in different forming processes and the
Limiting Drawing Ratio defined in the Swift's test is

ane
onlyhuf the performances in that spectrum.

The Swift’ test is limited to the drawing of circular

cups. In fact, this limitation was not set by Professor
Swift himself. The investigation of non-circular cups
was not done by Professor Swift because he thought the
problem of the circular cup should be solved first. To
quote Professor Swifts-
"When the intensity of the drawing

and blank-holding action vary from one

point to another, as for example, in the

case of a pressing of square plan with
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round corners, local distortion and the
possibility of another mode of failure
arises which may bring into play

another property of the material. But
while the simple drawing and stretching
problem is still unsolved little purpose
would be served by pursuing this

more complex effect.™

Proceedings, Institute of Automobile

Engineers, 1940, vol. 34, page 365,

This quotation shows that the complexity in non=-circular
cup drawing was observed at a very early stage of
sheet metal forming research. After three and a half
decades of these remarks being made, it is surely not too
early to pursue the "more complex effect"™ which that
writer eschewed. In this project, the definition of
drawability and the drawability test is generalised to
cover all shapesof cup «. The guantitative distinction
between stretching and drawing is also made in this thesis.
The achievements of this project are therefore mainly as

follows,

1. The investigation and development of
non-coaxial deformation on both theoretical
and experimental bases.

Continuedeeeses



2e To define and generalise the definition
of drawability and the drawability test

to cover all shapesof cup .

the
3. To link up the drawability with Forming
Limits+ Curve for a complete view

of formability, otherwise Swift's Limiting
Drawing Ratio and Keeler's Forming

Limit - Curve remain unrelated.

In this thesis, the research reported is put in its
historical perspective in Chapter 3, Review of Past
Literature and the theoretical background of the work is
outlined in Chapter 4, In Chapter 5 and Chapter 6, strain
analysis is presented for both the coaxial and the non-
coaxial case. This analysis is necessary because the
strains in sheet metal have hitherto been investigated with
the two definitions of elastic strain - direct and simple
shear strains = and in some literature the engineering
rather than the natural strains are used. The slightly
more complicated mathematics is' therefore merely to meet
a realistic need. The implications of the theory of
plasticity, including the strain-hardening, Lévy-Mises
equations and the stress-strain relationship. in the-nen-

coaxial case are discussed in Chapter 7. In Chapter 8,

the performance of sheet metal in a forming process is
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defined and the definition of drawability is generalised
to be applicable to all shapes of cups. The experimental
technique is described in Chapter 9 and the results and
discussions are in Chapter 10 and Chapter 11. In Chapter
12, the characteristics of a forming process in terms of
the convergence of metal flow and an index of s round-
ness are defined. The conclusionsof this project are
presented in Chapter 13 and some suggestions for

future work are made in Chapter 14.
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Definitions

Because of the inconsistency in the use of the terms in
sheet metal forming literature, it is necessary, for the
clarity of later discussion, to define the basic terms

clearly first.

2wl Strain

Strain is the quantitative measurement of the displace=-
ment of points in a material relative to one another when
the material is deformed. Thepe are two strain measures,
engineering strain and natural strain. For instance when a
bar of material with gauge length lo is strained under a
uniaxial tension to a length Ei’ the engineering strain

is (1;-10)/1o and the natural strain, 1ln (1;/1lo).

In fact, the term “strain™ is very often used as the
abbreviation of "state of strain™. In a real méterial,
deformation is always three-dimensional and is represented
quantitatively by, three direct strains which are the
relative displacement along the co-ordinate axes, and

six shear strains which are the tranverse displacement
gradients. These nine components representing a state

of strain could be reduced to three by choosing

suitable co-ordinate axes, It is always possible to find
three nrthagﬁnal axes passing through the material before
the deformation, which remain orthogonal after the

deformation., In other words, there are always three and

Cantinuedecsssiee



i

in general only three fibres in the material which are

orthogonal to one another both before and after the

deformation., No relative rotation occurs among these
Trnsverse

three fibres in the deformation, therefore no,displace-

ment gradient or shear strain occurs along these fibres.

These orthogonal directions are called principal directions

or principal axes. The strain along the principal axes

are called principal strains. Thus, a state of strain is

normally represented by the three principal strains

instead of three direct strains and six shear strains.

Strictly speaking, three more factors specifying the
principal directions with respect to the material are
necessary for completely representing a state of strain.
The principal directions with respect to the material are
very often neglected when only a state of strain is
discussed or when the principal axes of all the states of
strain discussed are fixed with respect to the material.
This does not mean that specifying the principal axes with
respect to the material is not necessary, it only means
that in some special cases. the principal axes with
respect to the material is less interesting. In fact, the
principal directions with respect to the material are very
important when two or more states of strain discussed have
their principal directions different from one another.
Therefore, generally speaking, there are six values needed

for specifying a state of strain,
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Inlgheet metal forming, one of the principal axes is

always normal to the sheet surface no matter how the
material is deformed. This fixture of one principal axis
cuts down the three factors necessary for specifying

the principal axes with respect to the material to one
only. Therefore, in sheet metal forming, a state of strain
is completely represented by four parameters, three princ-
ipal strains and one to specify the principal directions

with respect to the material.

In this thesis, natural strain is always used because it
is more convenient for large strainslike thase in plastic
deformation. Also,due tuf?ncampressibility of metal, the
sum of the principal strains is equal to zero when natural

strains are used.

P Coaxial and Non-coaxial Deformations.

In sheet metal a state of strain is completely represented
by the three principal strains and an angle specifying

the directions of the principal axes of strain with respect
to the material, but not the three principal strains only.
Deformation is changing the state of strain. As long as
deformation occurs, the state of strain of the material
changes. The state of strain may be changed by changing

the principal strains and keeping the directions of
principal axes of strain fixed with respect to the material,
or by changing the directions of the principal axes of

strain with respect to the material.
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and keeping the principal strains unchanged or by

changing both.

A deformation which changes a state of strain by

changing only the principal strains but not the
directions of the principal axes of strain with respect
to the material, is a coaxial deformation such as that
from fig,1l=2 (b) to fig.l=2 (c) described in thei last
Chapter. A deformation which changes a state of strain
by changing the directions of the principal axes of
strain with respect to the material no matter whether the
principal strains are changed or not, is a non-coaxial

one such as that from fig,1-3 (b) to fig,1-3 (c).

A deformation which changes the state of strain of the
material fromapudeformed state to a state of strain with-
out showing the intermediate state can always be reckoned
as a coaxial one such as that from fig,1-2 (a) to fig.

1-2 (b) and that from fig.1-3 (a) to fig,1-3 (b),

2 e Strain Path

A deformation is a change of state of strain. The
changing from an initial to a final strain can not, of
course, be instantaneous, nor can a material change from
an initial to a final strain without passing through the

intermediate stages.

A strain path is the trace, or locus, of all the inter-
mediate states of strain between the initial and the

Eontaintieds s sss



e L e

final states of strain. Strain can always be plotted in
a co-ordinate system and so can a strain path. A strain
path plotted in a co-ordinate system will be a line

threagh
passing the initial, all intermediate and the final strains.

2.4 Forming Process and Forming Conditions

A forming process is a forming operation which is specified
by the forming tools, such as deep drawing and hydrestatic
bulging. Forming conditions are conditions of forming in

a forming process, such as condition of lubrication, size

and shape of the blank, holding pressure and location of

the blank and so on.

A forming process can be operated under different forming
conditions. Changim the lubrication condition, for instance,
may involve ‘a change in the behaviour of material under
forming. This is a change of forming condition but not of the

forming process.

2k Formability

The term "formability"™ is usually loosely understood to
mean on the one hand, the resistance of material under
forming to failurs:rgn the other hand, the performance of
material in a particular forming process. There has not
yet been a clear definition for it. The large number of
different sheet metal tests in current use, and the even
larger number of those being proposed, are symptoms
showing that the term "formability"™ has not been defined
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with scientific precision. The guestion "what is the
formability of the material?" would not make much sense
before the question "what does . formability mean?"

is answered.

To obtain logical precision, it is necessary first to
distinguish between, and separate, the two aspects of
formability, the resistance of sheet metal under forming
to failure and the performance of sheet metal in a
particular feorming process. Unless they are clearly
distinguished, the formability of sheet metal can not

be sensibly discussed.

A. Forming Limit at the Critical Section

There are usually three types of failure in sheet metal
forming. They are:deterioration of surface finish,
puckering and excessive thinning leading to fracture.
The deterioration of surface finish when a material is
deformed is a metallurgical rather than a mechanical
problem, and puckering is a problem of instability of
plastic deformation which is outside the scope of this
thesis. In the following, the failure of sheet metal is
confined in this thesis to the excessive thinning and

fracture only.

In sheet metal forming, the material generally fails
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locally. The position in the material where excessive
thinning or fracture eventually occurs is called the
critical section. The behaviour of the material at the
critical section decides how far the material can be
deformed in that forming process under certain forming
conditions. The material at the critical section is
deformed under a certain strain path to a state of strain
at which " excessive thinning or fracture occurs. That
state of strain is the limit the material can be deformed
under that strain path and is the forming limit at that

critical section.

The material at the critical section is deformed under
different strain paths depending on the forming process
and forming conditions. Therefore, the forming limit at
the critical section of a material is dependent on the
strain path and if it is discussed, the strain path must

be specified at the same time.,

B. Forming Limit = Curve

One of the two aspects of formability, namely, the
resistance of sheet metal under forming to failure, is

defined by the forming limit~ curve,

Sheet metal can be deformed under various forming
conditions in various forming processes,and under each
set of forming conditions in each forming process, the
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material at the critical section is deformed under a

particular strain path which has an end point at which the

local thinning or fracture occurs. If all the possible

strain paths under which the material at the critical

section is deformed are provided,the end points of the

strain paths are the limits the material can be deformed,
thireu,

h
and the curve passingﬂﬁﬁese end points is the forming

limit’ CUTVE.

Strain paths can always be plotted in a co-ordinate
system. Then the forming limit curve of a material is
the curve in a co-ordinate system which covers all the end
points of strain paths. A material under forming would
fail when its strain path reached the formipng limit

Curve.

The forming limit curve of a material is not a simple
material property which can be represented by a single
index, but is a spectrum of properties which can only

be represented by a curve. It is the limit that a
material can be deformed without the occurrence of local

thinning or fracture.

By Performance in a Forming Process

The other aspect of formability of sheet metal is the
performance of the material in a forming process. Many
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sheet metal tests are proposed to rate the formability

of sheet metal and every test has its own index to specify
the performance of the material in the tes£, such as the
maximum punch penetration, used as an index iﬁ?%richsen
test; the polar height at the maximum pressure used in
the hydrostatic bulge test; and the limiting drawing ratio
used in Swift' test. It is understood that the test
itself is a forming process. Therefore, formability in
this aspect is the performance in a forming process and

is dependent on the forming process.

Inﬁgctual sheet metal forming, there is no process in which
the material everywhere in the workpiece is deformed under
the same strain path as that at the critical section.

The material outside the critical section is not deformed
to the strain limit but the strains are related to that

at the critical section. By changing the forming
conditions the location of the critical section in the
workpiece as 'well as the strain path of the critical
section may be moved so that the performance of the

material in that forming process is changed.

The forming limit. curve of a material is a spectrum

of innate material properties and can only be changed or
improved by changing its chemical composition, grain size
or heat treatment condition which are all in the
metallurgical field. The performance of a material in
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forming processes can be improved by choosing the
suitable forming conditions like blank shape, size and

lubrication and so on.

Now it is possible to discuss the formability of a sheet

metal by specifying the forming limit ofacertain strain

path or the performance in a particular forming process.
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Review of Past Literature

As mentioned infiast Chapter, the term "formability" has
been loosely and inconsistently used in the sheet metal
forming literature. After clearly describing the two
aspects of formability, namely the forming limits of
sheet metal and the performance of sheet metal in a
particular forming process, it is possible and easy to
review the past literature concerning formability of

sheet metal from the point of view of these two aspects.

In this review, due to the huge quantity of past
literature in sheet metal forming, it is not possible to
mention the papers one by one but only the parts which

are significant to this thesis will be discussed.

J L Forming Limit#®  Curve of Sheet Metal

Sheet metal tests, such aé?%richsan, Olsen, Fukni and
Swift'® tests, were originally proposed for testing the
quality of sheet metal under forming. But, for a single
test, for instance, the Erichsen test, some-times,
inconsistent results are obtained when a high Erichsen
value material fails in a forming process but a low
Erichsen value material succeeds. Now it is understood
that no single »+ sheet metal test can ' rate the guality
of material under all forming operations. Sheet metal
tests may not duplicate the proﬁess involved in an actual
éheet metal forming operation so that the test results are
npt adequate for predicting precisely the performance of
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the material in the forming process. Therefore, another
approach ha;T?sed in pursuing the limiting strains a
material sustains before excessive thinning and fracture
occur, for all possible forming operations. Formability
curves #6r mild steel have been investigated by Keeler 1)

Gnndwiﬁfgnd, Lee and Hsﬁgfgnd some others.

A. Keeler's Curve
In Keeler's forming limit®  curve (1) the two principal

strains on the sheet surface were measured at the onset of

fracture in a number of biaxial stretching experiments

(2) in which eight-inch diameter steel blanks were securely
clamped between a die ring and blank holder, and stretched

by various shapes of punches under different lubrication

conditions.

The formability curve, or by the name Keeler called it,

the critical strain level, was plotted in a co-ordinate syslem
with the large strain on the sheet surface as ordinate and
the smaller one as abscissa, and both strains were presented
in the engineering strain measure. The curve separated

the failure and non-failure of states of strain that mild
steel could be deformed to. In fact, it was shown as a

band (3) covering the scattering of failure and non-
fadilure states of strain. The scatter could be due to

many causes such as inhomogeneity of the material, the
défficulty in the determination of end points, variable
draw=in, and errors arising Frcm?ﬁsing a fine enough
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grid or even the involvement of non-coaxial deformation.
Keeler's formability curve was redrawn by Goodwin (4) as
shown in fig,3-1l. The curve was obtained by biaxial
stretching, therefore it only covered the region in which
both the major and minor strains on the sheet surfacewere

positive.

B Goodwin's Curve

Goodwin (4) expanded Keeler's formability curve to the
tension-compression quadrant by means of various cup and
tension tests to obtain the failure strains in that region.
The cup tests were made by using flat and mound nosed
circular punches to draw variouslshaped blanks into a two-
inch diameter die. The shape of the blank and the clamping
pressure controlled the location of failure and the degree
Df?%inor strain. By varying the clamping pressure from a
minimum which was just large enough to prevent the buck-
ling of the blank when it was drawn into the die, to a
maximum where the minor failure strain was positive, the
formability curve (fig,3-1) in hath?%ansiun-tension and

tension-compression regions,was obtained.

It is interesting to note that Goodwin used a different
shapesof blank in his experiment and found that an
elliptical blank in combination with the round nosed punch
produced the greatest variety of failure strains. An
elliptical blank drawn by a circular punch is no longer

an axisymmetrical forming and it would involve non-coaxial
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deformation somewhere in the workpiece.

Ce Lee and Hsu's Formability Curve

In Lee and Hsi's formability curve (5}f§train path

under which the material at the critical section is
deformed is plotted in a triangular cu-ordinagng;hich
will be discussed in Chapter 4.). A series of symmetrical
forming processes (fig, 3-2) with different punch nose
profiles - from semi-spherical to very small radius nose
- different lubrication conditions in;l;dinquewated die
face and blank holder, and different holding pressures
were used to get the material at the critical section
deformed under strain paths with different strain ratios.The
formability curve which passes all the end paints of the
strain paths is drawn in the regions of tension-tension
and tension—compreasigﬁTs Two branches of the formability
curve meet at a cusp which suggests that there are two

mechanisms of neck formation, one in the tension-tension

region and one in?%ensimn-cnmpression region.

Lee and Hsl's curve is a curve instead of a band like

Keeler's and Goodwin's curve. In Lee and Hsu's work, it
is significant that the strain paths are shown together
with the formability curve, because the formability curve

is dependent on the strain path.

e.9.
Although there are still many papersf(ﬁ)-(g) concerning
the forming limits of sheet metal, they are almost the
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same as those having been reviewed. pifferences liex in
the determination of?gnd pdint which is a problem of

instability and is outside the scope of this project.

3a2 Formability of Sheet Metal under Zigzagq Strain Paths

It is well known that a flat blank can be drawn into a
deeper cup without fracture by redrawing in two or more
stages. The strain path of the critical section in the
redrawing operation may be zigzagged because the straining

varies from one stage to another.

The formability of sheet metal is path dependent , surely,

it would be affected by the zigzagging of the strain path.

e.q.
This is the reason why many effortsj(lﬂ)-(lZ) were made to
+
investigate the effect of:EiQZag strain path on‘?nrmability

of sheet metal.

Due to the similarity of the experimental results in past
literature on the effect of zigzag strain pathson form-
ability, a typical one (1@ ) is reviewed. The effect of the
strain path on the fracture strain of steel sheet was
investigated in two stages of forming, combining uniaxial
tension, biaxial and equi-biaxial tension and tension=-
compression, with the principal axes of stress and strain
fixed with respect to the material. The fracture strain
is plotted in Cartesian co-ordinateswith €x and ey which
are the two principal strains on the sheet surface, as
axes. Between the lines with strain ratio Ex/Ey from +1
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to -1, it is divided into three regions, region I

(fig.3-3) in which fracture never occurs no matter what the

combination of the two stages of deformation, %+ region
where g where
I1,, fracture always occurs and ' = region III,ﬁ$}acture

occurs depending on the strain path or the combination
of the deformations. ‘. The diagram (fig.3-3),
clearly shows that + region III in which the occursence
of fracture is uncertain,spreads over a very large area
compared with = region I in which fracture never
occurs., In other words, the formability of sheet metal
under zigzag strain paths can not be represented by a
curve or a narrow band as that under linear or nearly
linear strain paths. The reason is due to
the large number of possible variety of stress combinat-
ions which produce a large number of different strain
paths. The zigzag strain paths w41 investigated
are all obtained by two or more stages of deformation with
the principal axes of stress and strain fixed with respect
to the material. In other words, the strain paths are
zigzagged by changing the strain ratios with the principal
axes of stress and strain fixed with respect to the

material.

When the principal axes of stress are fixed with respect
to the material, the strain ratios can only be changed by
changing the ratios between the principal stresses. But
changing the ratios between the principal stresses is not
the only way to change the strain ratios. Strain ratios
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can also be changed by keeping the ratios between the
principal stresses constant but rotating the directions
of principal axes of stress with respect to the material

in which non=coaxial deformation is involved.

However,quite a large number of industrial sheet metal
products are not circular and are manufactured by re-
drawing operations. In these products the strain path

of the critical section in the product will be both
non-coaxial and zigzag ones.. Hitherto, no non-coaxial
zigzag strain path has been investigated. In this thesis,
non-coaxial zigzag strain path will be investigated both

theoretically and experimentally.

33 Sheet Metal Test

The other aspect of formability is the performance of sheet
metal in a particular forming process or a sheet metal test.
For convenience, cost and co-ordination between producer
and user, a flexible system of testing based on the
principle of reproducing the essential material behaviour
under forming in a simplified form is needed. For an
engineer or a process designer infgheet metal industry,
although a test does not provide the exact information
needed, if a reasonable guidance could be obtained, it is
very helpful. Empirical tests can be extremely useful in
practice, even though they may not be the same as the
actual forming process or processes, the behaviour of the
material in the tests may happen to be very similar to

CDI"ItiFIUBd. " " 880



s

that inT;ctual forming operation to which the test results
are to be applied. fhiq is the reason why sheet metal
tests are still widely used even though it is known that
the results of a single test are not adequate to rate the

forming quality of sheet metal for general validity.

According to Shawki (13), son »u at least nineteen
are

sheet metal tests have . been proposed and,in current

use, In this review, only typical tests and those

significantly related to the project in this thesis will

be reviewed.

A. The Erichsen Test

‘The test was proposed by Erichseﬁ (14) in 1914. The
general configuration of the test and its principal
dimensions are specified in British Standard No. 3855,
1965. This is the only sheet metal test in the B.S5.S..
In the test, the blank is held against a holder, and is
deformed by a cylindrical punch with?spherical naose of
standard diameter 20mm. The maximum punch penetration
attained before fracture occurs is taken as the Erichsen:

value,

Iﬁf%richsan test, the blanks holding load is set to be
1000 (£100) kgf. It is doubtful if the material in the
flange could be prevented from being drawn into the curved
part. The amount of draw-in and its influence on the
Erichsen value under a variety of testing conditions were
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measured by Kaftanoglu and Alexander (15).
the
If the draw-in is prevented completely, Erichsen test is

a purely stretching test.

B. The Hydrostatic Bulge Test

Although no standard form is suggested, the blank is held
withfspecial clamping device (16)=(17) against a die and
is deformed by hydraulic pressure instead of a solid

punch. The polar height at the maximum pressure is used

as the index for the test.

Because there is no friction between the blank and the
punch, the stresses and strains can be calculated by
assuming the bulged shape as part of a sphere (17)-(20).
been measured
The real shape or its deviation from the sphere has,recently

(21) and the stress distributions in the shell

are determined.

The hydrostatic bulge test is a stretching test too.

C. The Swift': Test

The Swift's test (22)-(24) is one of the deep drawing tests.
There are several proposals of the deep drawing test (25)-
(27) and the Swift't test is the best known and is well
established. In the early standard Swift' test, a flat
nosed punch of 2.000 in, diameter with a profile radius of
0.25 in, was used (25). Recently, the International Deep
Drawing Research Group on Swift's Cup-Drawing Test (28)
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proposed standard test conditions for the test. They are

as follows:=-

Punch diameter 50mm
Punch radius 4.5 mm
Die opening diameter 53.65 mm
Die radius 13.0 mm

Die surface roughness CLA 0.04-0.15 pm

"Punch speed 1.7 mm/sec.

Clamping load: it is set to be just large
enough to prevent wrinkling

of the blank.

Lubrication conditionss
the die and the holding plate
are lubricated with polythene
film on grease, and the punch

is unlubricated.

In the test, a circular blank located symmetrically with
respect to the punch is drawn through the die hole. The
diameter of the blank drawn is progressively increased
until fracture occurs in the cup. The maximum diameter

of the blank which can be drawn successfully,divided by the
punch diameter is known as the Limiting Drawing Ratio and

serves as a criterion of drawability.

The Swift' test has several attractive features, it is so
closely simulative of many common forms of pressing, the
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specimen is inexpensive, the testing technique is simple
and it reveals any directional properties of the material
by the formation of ears. But it has also its disadvant-
ages and in its simplicity lies the limitation for the
extension and generalisation of the definition of draw-
ability and of the drawability test which will be done

in this project.

In order to find the Limiting Drawing Ratio in the Swift
test, blanks of progressively increased diameter are drawn
until fracture occurs in the cup. In fact, this is a
trial-and-error approach. It was found (29) that the
relationship between the maximum drawing load and blank
diameter waslnearly linear, and the maximum diameter of
the blank which could be drawn successfully was that when
the maximum drawing load was near the fracture load of the
cup. Alsa, the fracture load of the cup depended on the
strength of the material at the punch profile region which
was nearly constant and independent of the blank size.

Therefore, a single-blank test was suggested (29).

Usually, at the siage where the maximum drawing load is
reached, only + or + of the drawing operation has been
completed. Thus the maximum drawing load can be measured
without completing the whole drawing operation. A blank of
diameter Ds which can be drawn successfully is drawn until
the maximum drawing load Ls is reached and recorded.

Then the flange of the uncompleted cup is clamped firmly
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and?ﬁunch travel continues. Because the flange of the
cup is clamped firmly, the drawing load goes up with the
punch travel and reaches the fracture load Lf of the cup
when fracture occurs in the cup. Because the relation-
ship between the maximum drawing load and the diameter of

blank is nearly linear.

where Dc is the maximum diameter of blank which can be
drawn successfully and K is the slope of the maximum
drawing load and blank diameter relationship. In order
to find K, another blank of diameter Dt other than Ds

should be drawn and the maximum drawing load is Lt. Thus

K = Dt = Ds
Lt - Ls
and
Dce = Dt - Ds
e Lf - L D
Y g ( s) + Ds

In fact in the single-blank test at least two blanks must
be used. Even so, it is a good approach and this approach

]
is used in this project.

The anisotropy of sheet metal is usually represented by the
xr — value which is the ratio between the strainsiﬁ?&idth
and the thickness directions in a rectangular tensile test
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b
piece. It is well known that the anisotropy of sheet

metal produces earring in deep drawing and thare-éra many
research paper;t%BD)-(BB) concerning the anisotropy of
sheet metal and its effects in forming operations. But
those papers are not significantly related fu this”ppoject.
The effect of the anisotropy of sheet metal on formability
in the forming operation investigated in this project is
classified as the orientation ofTElank with respectlto

the rolling direction of the sheet and will be discussed in

Chapter 11.

Among the papers so far reviewed, those concerning the
forming limit’ curve are either limited to the coaxial
case Df?g%id no attention at all to the coaxiality of the
principal axes of stress and strain, and those concerning
the performance of sheet metal in a forming process are
limited to the performance in an axisymmetrical forming
operation., Hitherto there has been no literature reporting
the investigation of non-coaxial deformation in sheet
metal forming and there has been no general assessment of
the performance of sheet metal in all forming processes,
including both axisymmetrical and non-axisymmetrical
forming operations. The incompleteness of the forming
1imit§; curve requires naturally the development and
investigation of non-coaxial deformation, and as many
sheet metal products are not axisymmetrical, it is
necessary and significant to develop and investigate the
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more complex cases in non-axisymmetrical forming. These

are the main purposes of this project.

3.4 Non-axisymmetrical Formings

Many investigations have been done both theoretically

and experimentally on axisymmetrical forming, like
cylindrical cup drawing, hydrostatic bulging and so on.
The behaviour of material under axisymmetrical forming

is well understood and many sheet metal tests based on

it are in current use. It is well known that the
behaviour of material in a non-axisymmetrical forming
process 1is much more complex than that in anaxisymmetrical
one. JTest results in general are reliable only when the
actual forming process and forming conditions are the
same as those in the test. The more they deviate from
those in the test, the less reliable the test results are
for predicting the performance in the actual forming
process. However, there has not been either a test or
even a definition of measurement for specifying the per-
formance of sheet metal in non-axisymmetrical forming
processas. Although non-axisymmetrical sheet metal
products have been produced for many decades in industry
and non-axisymmetrical forming has been investigated by
many sheet metal forming research scientists, the achieve-
ment is mainly on the purely empirical aspect, perhaps

due to the lack of theoretical development.

Car body and automobile panel making is one of the most
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processes
popular non-axisymmetrical forming, in industry. The

study of formability in car body and automotive panel
making is still limited to the measurement ufTiimiting
strain at the critical section (1),(4),(34),(35) and
mostly by usingfcirCUlar grid which fails to distinguish

between coaxial and non-=coaxial deformations.

Square, rectangular and elliptical cup drawing have been
investigated py many sheet metal research scientists (36)=-
(46). The blank shape for a rectanqular shell was sketched
out, by assuming that the material in the shell walls did
not thicken or elongate during the drawing operation and thal
the amount of material for forming the four corners was:
equal to that required for drawing a cylindrical shell of

a diameter double the corner radius of the rectangular
shell , having the same height and bottom radius as in the
rectangular shell, and then modification was done on smooth-
ing the blank corners (36)-(38). No significant conclusion

about the formability was made.

The strain distribution along the meridian of a square
shell was measured and investigated in different shapes
of blank (37)-(40). Only purely empirical but no
significant conclusions for the formability of sheet metal

in non-axisymmetrical forming, were suggested.

The effect of anisotropy of sheet metal on the depth in a
rectangular cup drawing was investigated by Lilet (41).

Continuedess e



Al o

The cup could be drawn deeper if the rolling direction
of the sheet was 45° to the flat side of the rectangular
cross-section, This effect was also investigated by .
Wilson (42) in square cup drawing. A c¢ircular blank was
drawn and the largest diameter of the blank which could
be drawn successfully, namely, the critical blank diameter,
was used to represent the formability in the square cup
drawing. He found that the critical blank diameter was
larger when the rolling direction of the sheet was
parallel to the diagonal of the square section than that
when it was 450 to the diagonal. Even so, the extent of

forming in

anNon-axisymmetrical case was limited to the

circular blank drawing.
draw
The "draw-in" in a non-axisymmetrical,was defined by

Miyauchi et al (43) as

C =y Alf"
A ls
where A ls = 1s = 1lso Al =1 - lo and
alf = A1 - onls (fig , 3-4)

From fig 3-4, it is understood that & ls is the elong-
ation of lso, but what A 1l represents is difficult to
visualise because €' is not the current position of the
point b in the blank. This vagueness makes the definition
difficult to ' understand. A more general and logical
definition of "draw-in" will be defined in this thesis.
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A square grid was used for strain measurémedt in a square cup
drawing by Masuda and Mishiro (40). Not only the strain
distribution along the meridian and: at the flange of a
square cup at different stages foﬁrawiﬁg operation was
measured, but also the directions af ﬁhe principal strains

~were pointed out. Unfortunately, they did not pay
attention to the change «in  direction of the principal
axes of strain amd thereby  missed the discovery of

non-coaxial deformation.

In the deep drawing of eliiptical shells, Yoshida et al

(45) found that a rectangular blank of certain dimensions
can be successfully drawn while another rectangular blank of
the same length in the major axis direction but smaller
width in the mineor axis direction, can not be drawn
successfully. The metal flow in the blanks was invest=
igated for understanding this phenomenon. But the effort
was put onto purely empirical grnunﬁsrelating the blank

size to the r-value and the n-value without any theoret-
ical analysis. The metal flow in deep drawing of some other
irregular-shaped shells was also investigated by Yoshida

et al (46). It is hard to expect a sound conclusion

based Dn:purely empirical approach unless a huge amount of

experimental data is provided.

It is believed that for investigating the deep drawing of
non-circular shapes careful study of the metal flow in the
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blank provides a good approach. But before the, experiments
are discussed
,some theoretical analysis is necessary, otherwise the work

may be self-defeating due to the infinite number of

irregular shapes
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Strain Analysis

The typical sheet metal forming process considered in
this thesis is illustrated in fig,4-1. A piece of sheet
metal, flat and of uniform thickness, is clamped at its
edge (between the edge B and the closed curve Bo) and
formed by a rigid or liquid punch so that the material
inside the curve C becomes a curved 5urfaca. Such a
process may be idealized mathematically as a transform-
ation of a plane into a curved surface.

s1ysfem
A co-ordinate,fixed with respect to the material, has an
axis always normal to the sheet surface no matter how the
flat plane is deformed, and that axis is always one of
the principal axes in sheet metal forming. Also, due to
the incompressibility of metal in plastic deformations the
sumtof the three principal strains is zero and there are
only two degrees of freedom for the three principal strains.
Therefore, it is sufficient and convenient to analyse

the strain in two-dimensians in sheet metal forming.

4.1 Deformation Represented by an Affine Transformation.

A typical point (X, ,X;) in the blank is deformed or (47)
transformed to a new position (X;,X2" ) in a co-ordinate sysfem
which is fixed with respect to the material, The equations
for this transformation are as follows,

Xy! X§  (X§,x3) .
X3! = Xg' (X;,Xz)

4-1

14
In general, Egs, 4-1 are nonlinear functions and‘%ay be
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expanded in Taylor's series at the vicinity of the point
under consideration provided that the transformation in

the region around the point is continuous.

Egs. .4-1 are expanded in Taylor's series at the point

whose initial co-ordinates are (a,b), and become:

’ ’ , ]
X (X, 0%, ) =% (ash) + 820 (X =a) +2AL (X5 <b)
ax, 2X,
o e e e Xg-a) (X%
= SE?L ,=a) + £ '! 7 (Xy=-a)(Xa-b)
) 3%, 2
‘2—2" Tx"z— (X;"b) e s S E bz s o
Xt (X, 4) = X; (a,b) + 2Xa (X, -a) + 29Xz (X, =b)
X, X,
ez
3K 29/
*a Spr— (Xi-a)® ¢ 2 Kan (X -a) (X -b)
-
$o X .jiiﬁi (X _b)Z 4 FhsssEd il
7 e 2

They may also be written as:

’ 4 4
Xy (B X5 )e K, LalbY = SR80 (X a) & XL o (X, -b)

+ terms of higher orders in (X,-a) and (X,-b)
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’ 2 ax ! 3 /
Xz (X,4X;)= X, (a,b) = Sg&- (X,-a) + %._ (X,=b)
2
4-3

+ terms of higher orders in (X,-a) and (X,-b)

If the deformation around the point (a,b) ' ' is
considered to be homogeneous, or the region being
considered is small enough so that the higher orders of
(X,-a) and (X,=b) can. be neglected, in other words,
straight lines remain straight and parallel lines remain

parallel after the deformation, then 92X, 8X|' X
OR, y PAg ¢ R

and 9X;’ are all constant and terms of higher orders in
2X ,

(X,-a) and (X,-b) vanish. Equations 4-3 become

X : (e g Yo My ) RO O S RTIS T
4=4

A

SR ¢ I S R S 3o (R i T R ey

where

AI! ’ A:z ’ Az: and A, are axif axl’ axz‘ and aX;
29X, sy Ok , 9K, 92X,
respectively.

-

If the point being considered is taken as the origin of

the co-ordinates before and after the transformation, or

a=0, b=0 and X,f(a,b) = 0, X;(a,b) = 0, then
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Eg. 4-4 becomes,

. e B rig TR SRSR R ) O
4-5
Aplv, PR A
X, = X, + =2 X. = A, X, + Az X,
2X , 29X,
It may also be written in matrix form as
' X3 ax,'
X ai: aﬁ; Xy A,, AL,
r 3 4-6
Bt B,
xXg! ax‘: X, X, Az Azz X2
where X| and X;, X,' and X,' are the Cartesian co-ord-

inates of a point near the point being considered; before

and after the deformation respectively, and

Aij = 2Xi df
9Xj
The co-ordinates X, and X, may also be considered as the

two components of the vector X drawn from the origin to the

STM
point (X,,X,) ina Cartesian co-ordinate,and, similarly,

Xl' and Xz' as the components of the vector X' in the

sysTem
same Cartesian co-ordinate, (fig,4-2). The matrix IAijI
changes the vector X' into a different vector X', Eqg. 4-6
represents a transformation and this linear function in

fact, is also called affine transformation. Let

Eontimiedes s «ee
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Eqs. 4-6 becomes:

v DR ax,’ X
( 22X, X, :
/ Xy’ )
e X, DX 2 A
aU. aU:
e R Ris
U2 1+ 2U» X
ax. axz =
= A i A2 X 1
Azl A2z X,
Thus:
R" = 3 + 2U,
22X,
Ava = 2U,
X,
4-10
A, = alU.
X,
f\zz = 1 + aUa

]
x
N
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Where 22U, and 2U. are longitudinal displacement

gradients inX)§ and X, directions respectively, and, 32U,

and 2U; are the transverse ones.

In a transformation, in order to find Aij in Eg. 4-10,

at least two points near the point being considered in the
directions of X,- and X,- axes have to be considered too.
As shown in fig,64-3, the origin 0 of the co-ordinate is
the point being considered; ﬁf and-ﬁﬁ'ara the vectors

before the transformation; and, 0A’ and DBTare the vectors

after the transformation. The co-ordinates of the point

A' are (1+ 2U,) - X, and aU;x and those of B' are QU.xand
ax, X, ! 2X.

(1+ 2U2)-x
.xz

2 L]

]

Therefore, when the deformation at a point is investigated,
a small square grid with the point at one of the corners,
which is so small that the deformation in it is uniform
and the same as that at the point being investigated, is
printed or scribed on the material. After the deformation,
by measuring the co-ordinates of the two corners adjacent to
the point in the deformed grid, Aij , which represents the
transformation or deformation, can be obtained. It will be
proved later that the position of the co-ordinate axes for
measuring the deformed grid can be arbitrarily chosen with=-

out affecting the transformation or deformation,

Continuedesssee
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4,2 Matrices Representing Typical Modes of

Deformationg.

As shown in Eq. 4=6, the matrix 1Aijf represents the
transformation of co-ordinatesor deformation in metal
forming. Infﬁast section it has been said that by
measuring the deformed square grid, Aij can be found.
Now some matrices obtained from some deformed grids
representing a few typical modes of deformation are

illustrated in the following,

is a unit matrix and from Eq. 4-6

I
>

X" &=l X‘ + 1 - XZ = Xz

it represents a null deformation.

represents the transformation

X4 = m o X+ 0 o X§ = mx§

XZ' =U . x' + M o Xz:ﬂ'\xz
It is a uniform dilatation if m>1 (fig.4-4a) and is a
uniform contraction if m<1l (fig,4-4 b). All the fibres

elongate or contract to a ratio M,

Eantinuads « ses s



= AR

cosB sinB cosB -sinB
i and
-51in8 cosB sinB cosB
X,' = cosB Xj + sinB X,

Xz2' = -sinB X; + cosB X;

and

X3{' =-cosB X, - sinB X;

Xz' = sinB X; + cosB X,

represent the
transformation.

which are clockwise and anti-clockwise rigid body

rotations, respectively, (fig.4-4c and fig,4-4 d), where

B8 is the angle the body rotates through.

No change - of

shape or size occurs in these transformations.

represents the transformation

X"=l¢x|+r.x2

XZ'=D.X,+1.X2=X2

which is a transformation of simple shear (fig,4-4c) and

r is the shear strain.

ContinuBde e sess
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e 0
0 p-t represents the transformation
X§' = BS, X} + 0 . Xz = E® xj

X§' =0 . Xp+ €% . X§ = B7° X}

which is a transformation of pure shear (fig,4-4f),
and € is the natural base and E,T;atural strain. This
pure shear is also called aligned pure shear because in
it the maximum extension and contraction of radial lines

in the square are aligned with the co-ordinate axes

(fig.4-4f).

A aligned pure shear may be visualised as a deformation
of stretching and compressing to the same strain along the

the
directions Dfnco-ordinate axes.

An unaligned pure shear is a pure shear with its maximum
extension and contraction of radial lines not along the
co-ordinate axes but at an angle to them. As shown in
fig.,4-5a, a square OABC is stretched along the direction
with an angle B to X;-axis,.or along the fibre 0P, and
compressed in the perpendicular direction to the same amount
of strain €. It is a pure shear and OA'B'C' is the
deformed figure. Because 0P is in the direction of
stretching and perpendicular to that of compressing, it will

not rotate in the deformation, thus the final position of

Eontintiedsaase
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OP' after the deformation should still be in the direction

making an angle B to X;- axis.

This deformation, an unaligned pure shear, may now be
analysed and can be shown to be equivalent to the result-
ant of three operations: first, a clockwise rigid body
rotation through an angle 8, (fig,4-5b) so that the fibre
OP is aligned witﬁT&i—axis; second, an aligned pure shear
by stretching alnng?&i—axis and compressing alunﬁ?&z-axis_
(fig, 4-5¢),the fibre OP which becomes OP' is still aligned
witH?&,—axis;iﬁhird, an anti-clockwise rigid body rotation
through an angle 8, (fig, 4-5d), so that the final position
is exactly the same as that in fig.,4-5a. Thus, an
unaligned pure shear (48) may be represented by a product

of the three matrices as follows:

cosB -5inB e® 0 cosB sinB

sinB cosB 0 gre -sinB cosB
coshE + sinh £ cos 28 sinh € sin2B

sinh/E + sinZB cosh £ - sinhf cos2B 4-11

In other words, the matrix at the right hand side in Eq.
4-11, represents an unaligned pure shear having the
principal strain E and -€ in the directions making an
angle B8 to the co-ordinate axes. It can be seen that the

matrix is symmetrical.
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4,3 The THickneas Strain

In sheet metal forming, the méterial often fails due to
excessive thinning which leads to fracture, therefore, it
is important and desirable to know whether the material
becomes thinner after the deformation, and if so, by how

much .

Due to the incompressibility of metal, the volume of the
material does not change in any plastic defermation and
is equal to the product of surface area and the thickness.,

In mathematical language, it is as follows:#

AR x t& =V = Ao x to
or 4=-12
AR - %8
X =T |
Ao to

where Ao, to and A;,ty are the surface area and thickness
of the material before and after the deformation,respectively.

It may also be written as:

In Abel T an Bl e 4-13
Ao to
and
Et = 1ln L = =1n Ay 4-14
to Ao

The thickness strain is equal to the negative of the sur=-
face strain.
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A unit square OABC having its sides aligned with the
co-ordinate axes is deformed or transformed by Eq. 4-1

to a parallelogram OA'B'C' (fig,4-6). By substituting

the co-ordinates of the corners A (1,0) and C(o,1) into
Eg. 4-1, the co-ordinates of A' and C' can be obtained

and are (A,,,Hzl), (A,a,Azz) respectively. In other words,
when a deformation or transformation represented by Eq.
4-6, transforming a unit square having its sides aligned
with the co-ordinate axes to a parallelogram, the elements
of the matrix |Aij| in Eq. 4=-6, are just the co-ordinates

of the two corners of the deformed parallelogram.

The surface area of a unit square is unity and it can be
proved that the area of a parallelogram with its four

A -

12 ? 21

corners at (0,0), (A ,A, ), (A, ,A,,) and (A, +A

A,,) (fig,4-6) is just the determinant of the matrix

|Aij| or
Ay Az 2
! . = Ayiailipn, v Bya Ao v 4-15
2| 22
Then, the surface strain
in -E-!- = 1n AL Aza=A g Ayy = 1n M2 4-16
1
and
€t w =In & = 1n ¥l 4=1T
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4.4 Matrix Analysis of Deformation (48)

A unit square is deformed or transformed into a
parallelogram by the matrix IAijl in Eq. 4-6. Because

the surface strain is just the determinant of the matrix
|Aij| , it is possible to factorstthe deformation into two
parts, one in balanced biaxial tension which produces only
surface strain without changing the shape, namely,.unifnrm
dilatation or contraction, and the other, in changing the

shape without thinning or thickening. Thus:

Ay A
JAI i A2z =A,, AZI JAI i Az.e —Aaz Az,

Ave Az ./All Az 'Ar: Az o

o A;| A".’_
A-g” Azz o JAIiAZZ_A|2A2| "ﬁ||A22 -A|2 Az| JAIIAZZ:\IE AZI
M D An! A|2
= M M
U M Az] Azl
M M
M 0 B B
- i 12 4-18
0 M B,, B.,
where M =[A,, Ay, =A,; A, and Bij = Aij
- M

The first matrix, reading from the left, in the right hand
side in Eq. 4-18 is a uniform dilatation or contraction
‘depending on the value of M, and the second one is a matrix

with its determinant equal to unity, or

BII BIZ

i
=

4-19
B?l Bzz

Continugdeseceseass
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Any affine transformation can always be changed into a

symmetrical one by multiplying it with a rotation matrix.

cosx sinX | |B,, B, B,, cosx-B,;sinX B,,cos& +B,, sinX
-sinX cosex | |Bxy B, =B, sinX+B,, cosX -B,, sinX+B;, cosx
4-20
If the matrix at the right hand side in Eq. 4-20 is
symmetrical then B, cos«+B,,sinX = =B, , sinX+B,, cosX &
tan X = B, -Bj, )
B, +B,, ( =
and
sinK = A cosK = 1 4=22
(positive value of square roots is taken)
Let | cose¢ sinX B B,s Eyy C,2
-sinX cos& B,, Bz Egs « E3n
then| B,, B,s cosxx =sinx||C,, Cre
B,, B., sin cosX Ciq s
& =X C C
(T+ XV {1+ X705 12
= 4-23
A 1
I+ X% (1+A7)%||C,2 Czz
where Biy +Bay AN Bia+Baa A
(1+ A% (1+ A2 ik
Ciy Ci2
= 4-24
CIZ sz B;]"B“A B;z—)\Bll
(L+A3)2 (1+ )5
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In order to describe the deformation, a typical deform-
ation without changing the surface area, such as pure

shear or simple shear, has to be chosen as a standard

type of deformation for easy reckoning. Strictly speaking,
any deformation may be considered as a standard type, but
in this thesis, pure shear is chosen as a standard type of

deformation due to the following advantages:

1. It satisfies the condition of no changing
of surface area.

29 It is easy to visualise; stretching in one
direction and eompressing in the perpendicular
direction to the same amount of strain.

Sie Pure shear, no matter how large the strain
is, is a coaxial deformation, but not, for
example, simple shear, (will be discussed

in Chapter 5).

Any symmetrical matrix having its determinant equal to
unity as that in Eq. 4-24, may be analysed into three

matrices as those at the left hand side in Eq. 4-=11.

Thus:
€ (5567 cosB -sinB B¢ o cosB sinB
SR B g sinB cosB g g -5inB cosB
4-26
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Therefore, from Eqs, 4-18, 4-23, and 4-26

A A,:| |IM Of| cosx -sinx||cosB =sinB e¢ 0 cos8 sinB

Ay Mg 0 M|| sinx cosX -s5inB cosB

sinB cosB 0 E‘

And by solving Eqs, 4-18, 4-23, 4-26 we find,

M = (A" A22 -Alz A2| ) 4-28
w D=l .-
tano = gy = 4-29
. B 2(A;, A #+AziAa2)
el SCA T A.‘. "'Azlla -Aalgz -EI::. : heil

z C] "E 2
E = ln(jcrz +(‘—-[—'—2'—"£'E"'} + E”;Caz ) 4-31
where
Ay (A||+Au )+Aa|(A3| '-Am.)
Ly = [(An Aaz =A2 Ay, ) {(A” +A.; )14‘“'\2, -A, . )z}]*”*
Ay Az +Az Aaa
G5 = il hap Bl Jeith; AR F 4Ry, ke T
4-32
A:z ‘A]f‘f‘A;;) - AIZ (AZI—AIZ)
E23 = [(Arr A2z =A,; A, ){(A|I +Az, r +(Az| -Arz )ZIJ%

In other words, any deformation represented by the matrix
|Aij‘which is obtained from measuring the co-ordinates of
the corners of the deformed parallelogram, may be analysed
into the combination of, an unaligned pure shear (the

Contintued:.ceese
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first three matrices reading from the right), a rigid
body rotation (the fourth matrix) and a uniform

dilatation (the fifth matrix), as shown in Eg. 4-27.

In fact, the operation of rigid body rotation does

nothing to the shape or the size, It is only due to

the choice of the position of the co-ordinate axes with
respect to the deformed parallelogram. A set of
co-ordinate axes printed or scribed on the metal surface,
in general, will be changed after the deformation. When
the deformed parallelogram is measured, the original
co-ordinate axes have disappeared and another set of
co-ordinate axes is drawn arbitrarily for the measurement.
This is the reason why a rigid body rotation which is not
concerned with deformation appears in Eq. 4=-27. With the
suitable choice of the position of the co-ordinate axes so

that A}, = A;{, the rigid body rotation will disappear.,

The elements of the matrix lAij| are obtained by measuring
the co-ordinates of two corners of the deformed parallel-
ogram in an arbitrarily chosen cu-ordinafgithhanging the
relative position of the co-ordinate axes with respect to
the deformed parallelogram, surely, will change the
magnitudes of Aij. But it can be easily proved that these
changes in the magnitudes of Aij will only affect the
magnitude of X but not the strain € and the angle 8,

Continueds ses s



The uniform dilatation or contraction is non-directional
and its effect on the deformation can.’ be considered by
adding a strain 1n(M)to both the two principal strains no
matter where the principal directions are. Then our
attention should be concentrated on the pure shear which
is the most significant one in a deformation analysis.
The shape of a deformed parallelogram is unique by
deforming a unit square under pure shear. A deformed
parallelogram can have many different IAij] matrices to
describe it, but the shape can only be obtained by
deforming a unit square under a pure shear having its
principal axes in the directions making an anglé 8 to the
sides of the unit square until a pure shear strain E is
produced. In other words, for a deformed parallelogram,
no matter how many IAijl matrices are obtained from
different choices of co-ordinate axes, the magnitudes of

8 and € in Egs. 4-30, 4-31 are all unique.

By considering the uniform dilatation or contractiaon
together with the pure shear, the principal strains of a

deformation should be as follows:

B4 = In M+ E
4=33
E’Z = lﬂM-E
and the thickness strain
€3=- (E+€) = -2 1n M = - 1n M 4-34

Eqe 4-34 is exactly the same as Eq. 4-17.

Continuedasesee
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445 The Incapabilityv of ACircular Grid for Strain

Measurement in Non-coaxial Deformation.

A circular grid is widely printed, scribed or etched on a
metal surface for strain measurement due to the following

advantages.

1. It is easy and quick to produce the grids,
especially photoprinting has been well
developea.

2e Acircle is ncn—directional}tharefure align-
ment is not necessary when producing the
grid.

3. When the material is deformed, the circles
become ellipses, and the principal strains
can be readily measured from the major
and minor axes of the deformed ellipse.

4, The major and minor axes of the ellipse

are also the principal axes of strain,

In fact, the advantage that a circle is non-directional

is a disadvantage because it involves the incapability of

a circle to detect the rotation of the major and minor axes
of the ellipse when it is deformed in a non-coaxial

deformation. This will be discussed in the following.seclion.

A circle is deformed into .an ellipse in a finite deform-
ation (fig,4-7a), the major and minor axes of the ellipse

CDntinUBdoqo 'R
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the
are the principal axes of strain andnprincipal strains can

be obtained by measuring the major and minor axes of the

ellipse,thus

El = ~Ifis b
a

{ 4-35
Ez = - In- o
a

If the ellipse is further deformed with the principal axes
of stress alonﬁ?&,— and X, -axes or the major and minor

axes of the ellipse, the ellipse will become another
ellipse, as shown in fig,4-7b, The ellipse of the dotted
line is the deformed ellipse and the solid line is the
further deformed one. This deformation is a coaxial one,
and the principal axes of strain are still aligned with the
major and minor axes of the further deformed ellipse. The
strain increments or the principal strains in the further

deformation are:

"

m
Il
)
= |
o
{ ¥]

o

m
s
il
T
3
0
~

0

The resultant strains are 2

w
o
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w6 e,

ezc = I gy = In gy iln e 4-37
a a C,

= 62‘ + EZH‘

and are just the sum of the two deformations.

If the further deformation which has the same amount of
work done as that iﬁ?iast paragraph is achieved with its
principal axes of stress not alond?&,— and X,-axes, but
along the directions with an angle ¥ to them, as shown

in fig,4-7c, the dotted ellipse which is the same as that

in fig, 4=-7b is deformed into the solid one. This deform-
ation. obviously is non-coaxial. The total amount of work
done to the material in fig,4-Tc is exactly the same as that

in fig. a“Th.

The material is supposed to be isotropic throughout the
deformation, thus, the resultant strains should be the
same., But if the resultant strains are measured from the

further deformed ellipse in fig.4-7c, they are as follows:

€L in by
a

4-38
Ezn= lng;—
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and

elnﬂr‘ € 1€ Ezn* E:c
for
a
This shows the incapability of using,circular grid truthful

strain

Ameasuring in non-coaxial deformations.

A
4.6 Strain Measurement by Using,Square Grid

It may be convenient to use:circular grid if it is known
that the deformation is coaxial, otherwise that grid
system may induce errors as described inﬁiast section. In
fact, as said before, even in a circular cup drawing
operation, earring would bring the involvement of non-
coaxial deformation to the workpiece. It is better to
use:square grid in cases when non-coaxial deformation is
involved, especially when the forming operation is unsym-

metrical,.

When a square grid is used for strain measummnl in a
forming operation, it is printed or scribed on the metal
surface. (fig,4-8a). The square grid should be so fine
that the deformation inside the grid is uniform, and
therefore, when the material is deformed, the square grid
is distorted into a parallelogram (fig,4-8b). From the
deformed parallelogram, three principal strains and the
directions of the principal axes of strain with respect to
the material are obtained. As discussed in section 4.1,
the transformation matrix ;lﬂijlcan be obtained from the
co-ordinates of the corners of the parallelogram. But
because of the deformation, the original co-ordinate axes

EDntinUBd......
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along which the sides of the square grid are aligned ha
going

disappeared. Now, where are we, to set the co-ordinate

axes with respect to the parallelogram for measuring the

co-ordinates of the corners of the parallelogram?

The answer is "anywhere". It will be proved that the
arbitrary setting of?éo—ordinate axes does not affect the
strain measurmet. . The deformed grid is put without any
alignment under a travelling microscope, and a corner

of the parallelogram (the point 0 in fig,4-9) is chosen
as the origin of the co—ardinat??g:d the axes in?ﬁicrn-
scope are the co-ordinate axes. (X,-and X,-axes in fig,
4-9). Therefore the co-ordinates of the points A' and

B' (fig,4-9) whic;:ka,,a,) and (b,,b3) respectively, can be
measured. Now, the deformation may be explained as a
co-ordinate transformation as shown in fig,4-3, OACB is
the undeformed grid and, OA and 0B are transformed into
OA' and OB'., 1If the square grid size is 1 x 1, then,

according to Eq. 4-10 and fig,4-3,
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Thus,
Afg = _a,
i)
Ay = _au
1
Avg = -%L- 4-39
Aaz = _by
1

By substituting Aij into Egs. 4-28, 4-30, 4-31, and 4-32,
the uniform dilatation M, the angle B and the pure shear

strain can be found as follows:-
M = (A,A;=AA,) 4-39

+tah 28. = 2(_Ail Az +A2, Aaa )
A 2 Z Z
1 ) +A2| _A|2 -AEZ

V4 4-40

€ = 1n (jc,22+(ct,—r:;i ol T ) 4-41
2 2

where Cij are those in Eq. 4-32,

The principal strains, therefore, are

6| =1ln M + €
€, =1n M- ¢ 4-42
63 ==1n Mz 4-43
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The angle B, obtained from Eq. 4-40 is the angle in the
undeformed grid (OACB in fig,4-lo) between the fibre

OA and. the fibre 0S which in the deformed state (0S'
in fig,4-10)is parallel with the principal axis of the
major strain (5SS  in fig,4-10.),

't

4o Invariance of the Transformation Matrix

As illustrated in the last section, after Aij are found,

the principal strains and the directions of the principal

axes of strain with respect to the material can be easily
obtained. But there is an ambiguity?that the co-ordinate sysfem
axes for measuring the co-ordinates of the points A' and

B' (fig,4-9) are set arbitrarily without explanation. In

this section, it will be proved that the transformation

matrix is invariant with respect to the choice of the

co-ordinate axes.

In the last section, the points A' and B' were measured
The

with respect to,Xy- and X3- axes. Now if another set af

co-ordinate axes, say Y;- and Yz- axes, are set for the

measurement, the co-ordinates of the points A' and B!

would be (by*l,bael) and (bjy'l,b,,71) respectively, and

by, = cos X A, = sinX Ay,
bzy = sin Ay + cosX A,
by = cosX Ajz = sinX A2z
b2z = sinX A2 + cosX Az

Eantinueds see s
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For calculating the principal strains and the angle
specifying the directions of the principal strainswith
respect to the material, bij are substituted into Egs.

4-28, 4-30, 4-31 and 4-32, and

M = (b” b22 - buzbu)
= (cosXA,, -sinXA,, ) (sinXA,,+cosXA,, )
- (sinXA,, +cosXA,, ) (cosXA,, -sinXA,,)

(A||A22-Aizﬂzl) 4"‘&5

tan 28,= 2 (byy bz + bz baz)
b # +b;' =b: =h!

] 12 22

(An Ao #+A:, A, )

El

o Az, ‘Allz -A2, 4-46

Similarly, the pure shear strain € is the same as that
+he
obtained in,blast section, and so are the principal strains

and the angle B,

Thus it is proved that a transformation or a deformation

is determined by the shape of the deformed grid and is

not dependent on the relative position of the co-ordinate
axes for the measurement. When the shape of the deformed
grid is determined, the principal strains and the directions
of the principal axes of strain with respect to the material

can all be found.
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4.8 The Detection and the Magnitude of Non-coaxiality.

When the material is deformed, the principal strains and
the directions of the principal axes of strain can be found
by measuring the deformed grid as described in the last
two sections., Now if the material in fig, 4-8b is further
deformed, the parallelogram in fig, 4-9 will be distorted
into another parallelogram(OA"B"C" in ifig,4-11). From
the parallelogram OA"B"C", the principal strains and the
directions of the principal axes of strain with respé:t to
the material can be found. If the angle specifying the
directions of the principal axes of strain with respect

to the material is found to be Bz which is different from
By as in Eq. 4-40, it means that before this subsequent
deformation, the principal axis of the major strain is
along the fibre 0S (fig,4-12) which lies in the direction
with an angle By to the fibre 0A, and after the subsequent
deformation, the principal axis of the major strain is
along the fibre OT (fig,4-12) which lies in the direction
making angle Bz with the fibre OA in the undeformed state
of the material. 1In this subsequent deformation, the
principal axis of the major strain with respect to the
material rotates from 0S to O0T. Therefore, this subsequent
deformation is non-coaxial, The magnitude of the non-
coaxiality of the princiﬁal axis of strain in this non=-
coaxial deformation is, therefore, represented by the
angle between the fibres 0S and OT or by the angle Bz-Bj.

-
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In other words, the detection of the coaxiality of a
deformation depends on the equality of the value of B
measured and calculated from the deformed grids before

and after the deformation, and the magnitude of the non-
coaxiality of the deformation is the difference between

the values of the angle B before and after the deform-
ation.

Hitherto, the full analysis of finite strains hagfgaen
possible by sheet metal forming research scientists due
to the use offcircular grid,which fails to specify the
directions of the principal axes of strain with respect to
the material. Only the principal strains were used to
represent a state of strain, even in unsymmetrical cases

in which non-coaxial deformationwas involved. Here, with
the complete representation of a state of strain including
the directions of the principal axes of strain with respect
to the material, and the mathematical analysis, non-coaxial
deformation can be handled. More complicated analysis

will follow in the next few chapters.
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Graphical Representations of Strain Paths

A strain path is a series of states of strain and a
state of strain is represented by quantitative numbers,
hence it should be possible to representfstrain path in
a co-ordinate system. The more suitable the co-ordinate
system is,the better the representation will be. There-
fore, it is worth considering the most suitable co-ordinate

system for the best representation of:strain path.

Metal deformation is always three-dimensional, even in the
tension or the compression test. Although only the strain
in the loading direction is considered,the deformation is
still three-dimensional. The other two strains are
numerically equal to half of the strain being considered
and are both compressive (in?%ension test) or tensile
(inTEDmpressiun test ) for large deformations. As defined
in Chapter 2, in sheet metal forming, a state of strain is
completely represented by three principal strains and a
factor specifying the pringipal axes of strain with respect
to the material. There are four variables. Due to the 1
incompressibility of metal, the sum of the three principal
strains is zero and there are only two degrees of freedom
among these three principal strains. Even so, it is still
desirable ta.show the thickness strain as well as the two
principal strains on the sheet surface because the fail-
ure of material in sheet metal forming is mostly due to
excessive thinning. Therefore, the most suitable co-ord=-

inate system is that which is capable of showing the three
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principal strains and the factor specifying the principal

axes of strain with respect to the material.

In the coaxial case, because the principal axes of strain
are fixed with respect to the material throughout
the deformation, the factor specifying the principal axes
of strains with respect to the material becomes less
interesting and is normally ignored. Then there are only
two degrees of freedom left although there are three
variables. Many co-ordinate systems are capable of showing
two-dimensional graphs.lkk Cartesian co-ordinate system is
the most popular one. The two principal strains on the
sheet surface are used as?%o—urdinates (fig, 5-1), But as
sfated in the last paragraph, it is desirable to read the
thickness strain immediately when the graph is shown. The
Cartesian co-ordinate system fails to achieve that. Apart
from that, the lines representing typical modes of deform=
ation such as uniaxial tension, uniaxial compression and
pure shear, are not evenly distributed (fig,5-1). Another
limitation of?&artasian co-ordinate system is its in-
rability to show four variables with three degrees of
freedom as infﬁcn-coaxial case. Therefore, one particular
co-ordinate system, namely,f%riangular co-ordinate system
first . proposed by Professor Hsi (49)-(51) is introduced

and used in this thesis.
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521 2-D Triangular Co-ordinate SysTem
sysTem
The co-ordinate,is shown with its co-ordinate lines in

fig,5=2. The origin represents the undeformed state.
Three axes spaced 120° to one another in a plane are the
co-ordinate axes for the three principal strains. Every
point in this co—ordinatzftgpresents a state of strain
with a set of values for the three principal strains.
For instance, a typical point P (fig,5-2) such that the

line OP make an angle ¢ with the Eﬂ - axis represents a

state of strain with

E: = EE cos ¢

é& = 0P cos ( 27 -¢)
3

K = 0P cos (4m -¢)
3

and

EI+EJI+ €n= OP (cos¢+cos (2m = ¢) + cos(4m -¢)) = O
3 3

which satisfies the incompressibility of metal.

As can be seen in Eq. 5-1, the ratios between the principal
strains are dependent on the angle ¢ only.and it should be
possible to represent the ratio. by a number fraom 0 to

2w or 0° to 360°, But it is more convenient to use a
number from 1 to 12 because the radial lines shown in fig,
5-3 are so similar to those on a clock face that it is
easy to visualise the direction of the lines by analogy
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to the clock face. The number is called the
characteristic index for strain because it represents
the characteristics or type of deformation and?tu be
represented by % so' that

-4
The diagram with twelve radial lines on it may be called

the "clock diagram",

In the strain path along the Er—axis (T: 12), €, is
positive and, 62 and €, are both negative and numerically
equal to 5,/2. The deformation is the same as in a

'
tension test, pulling in only one direction to produce a
tensile strain €, and compressive strains (= €,/2)in both
the other two principal directions. This type of deform-
ation is called pure tension. The deformation having
strain paths along b ({=4) or €y -axes ([=8) is also
pure tension. In the strain path along the negative branch

of the axis, or along’Z: 2, or 6, or 10, the deformation

is the reverse of pure tension andiscalled pure compression.

In the strain pathswithfhdd number of the characteristic
index, one of the principal strainsis zero and the other
two are equal in magnitude but opposite in sign, For
example, along 7= 3, €,is zero and £, = -€,, so it is

a pure shear or plane strain, In other words, the
deformation along a stmin path of even characteristic
index is either a pure tension (/= 12,4,8) or a pure

Continuedesecees
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compression (? = 6,10,2) and that along odd numbersof ?
is a pure shear. When Qis not an integer, the deform-
ation is neither a pure tension or compression nor a

pure shear but is something in between.

5.2 3-D Triangular Co-ordinate.System

In order to represent the state of strain in sheet metal
forming completely, including not only the three principal
strains but also the directionsuf?érincipal axes of strain
with respect to the material, another co-ordinate axis is
needed. The additional co-ordinate axis, @-axis, is set
perpendicular to the clock diagram, (fig,5-4). A point

¢ sysTem
infﬁ—D triangular co-ordinate, represents a state of strain
with three principal strains which are obtained by project-
ing the point on to the clock diagram, and the value DFJB

represents the magnitude of the non-coaxiality of the

principal axes of strain with respect to the material,

Of course, for only a single state of strain, it is not
necessary to use 3-D triangular co-ordinates but when non-
coaxial deformation occurs, the strains have different
directions fertk principal axes of strain with respect to the
material, It ig?ﬁacessary to represent this difference
sTrain the sysTem

he : . :
in,principal direction and 3-D triangular co-ordinate, is

used.,.
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Sed Coaxial Strain Path

A strain path is the locus of all the states of strain when
the material is being deformed from the initial state to
the final state of strain. Material is normally deformed
from the un&efnrmed state, therefore, the strain path

sysTem

plotted in a co-ordinate, goes out from the origin of the

co-ordinate system,

A coaxial strain path is a trace of states of strain which
all have their principal axes of strain in the same direct-
ions with respect to the material so that it can be plotted
in 2-D triangular co-ordinates. In fig,5-5 a coaxial

strain path OCD is shown.

In the coaxial strain path, all the states of strain
are measured along the same directions in other words, all
the states of strain are measured Froﬁ?%wo fibres which

are deformed but remain perpendicular to each other all the
time, It is important to distinguish between finite and
incremental strains.Fera state of strain € on the strain

path OCD in fig,5-5, the finite strain is represented by

the vector OC drawn from the origin to the point C,and the

magnitude of the vector OC represents the intensity of

of strain. The vector EE ur_g'may be written as
e, — e e
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where i and j are unit vectors along the co-ordinate axes.
The incremental strain at C is represented by a vanishingly
small segment of the strain path in the vicinity of C. It

is represented by a vector CT (fig,5-5) which is in the

tangent direction of the strain path at C, and
dé = CT = dE€,

Strain rate is the time rate of strain increment and is a
vector too. It msy be written as

. $E 8. w7 5-4
A strain path normally goes out from the origin of the
co=ordinate, so, a straight or linear strain path is also
a radial one. There are two ways of checking the linear-
ity of a coaxial strain path. Firstw,if a coaxial
strain path is radial, all the states of strain on the
strain path should have the same ratio between the strain
components, or, €,/¢, is constant everywhere. Secondly,
the finite strain vectnr'f'at any point on the strain
path should align with the incremental strain vector at
that point, or,

—_—

€ x dé = DO 5=5

A radial coaxial strain path is alsoc a strain path with
constant characteristic index z.
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Bed Non=-coaxial Strain Path

hon-coaxial strain path is the locus of states of strain,

a between These Two sTrain paths
as,coaxial strain path is, But the difference, is that in
a non=-coaxial' strain path, the states of strain are not those
with the same directions of the principal axes of strain

4 : YD ;
with respect to the material. There 15,3%3 more degree of

freedom in the representation of a non-coaxial strain

path than that in a coaxial one. v e S A non-coaxial
ma :
strain path,be presented in 3=D triangular co-ordinates

in which not only the three principal strains but also the
magnitude of the non-coaxiality of the principal axes of

strain with respect to the material can be presented.

A non-coaxial strain path is a spébe curve in 3=D
triangular cn—nrdinaggfm The vertical axis perpendicular
to the clock diagram in a 2-D triangular co-ordinate is
the axis for the magnitucde of non-coaxiality of the
principal axes of strain with respect to the material.

In a non-coaxial strain ﬁath, the magnitude of non-coaxial-
ity at a state of strain should be the difference between
the values of the angle B at that state of strain and at
the beginning of the forming operation. In practice, it
may be difficult to find the directions of the principal
axes of strain with respect to the material at the beginn-
ing.a? the deformation, but this difficulty can always be
overcome by extrapolation, . o
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A non-coaxial strain path OCN which is a space curve in
sySTem

3-D triangular co-ordinate,is shown in fig, 5=-6. The
projection of the strain path on the clock diagram,
called projected strain path, is OC'N%. From the
projected strain path, the principal strains, €}, €, and
€; are found and the vertical distance between the
projected strain path and the non-coaxial strain path

represents the magnitude of the non-coaxiality of the

principal axes of strain with respect to the material.,
The strain path of a simple shear which is non-coaxial
will be shown later in this Chapter and some other non-

coaxial strain paths are shown in Chapter 10.

e Linearity of Non-coaxial Strain Path

Like?coaxial strain path, it should be possible to define
a linear non-coaxial strain path. Becausefnon-coaxial
strain path involves rotation of the principal axes of
strain,a linear non-coaxial stfain path has not only
constant ratios between the principal strains but also a
constant rate of rotation of the principal ‘axes of
strain. Therefore, a linear non-coaxial strain path is a
straight line in - 3=D triangular co-ordinates and

(€00 . “ (c)a  (cIa® (B, t(c. b #ilc 0l s

. L] ) » L]

fa /Ha /Sa Ay Ay /GQ
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It is easy to visualise the stress states or stress path
for producing a linear coaxial strain path. If the

ratios between the principal stressesare kept constant and
the principal axes are fixed with respect to the material,
a linear coaxial strain path is produced. When the
principal axes of stress rotate with respect to the
material, the stress state producing a linear non-coaxial
strain path is complicated and is not easy to viaualise.
It will be shown in the next section that within certain
limits, the strain path of a“simple shear is nearly a

linear non-coaxial one.

Seb Simple Shear

Simple shear is a very common deformation. Perhaps,
because it is so popular and so often mentioned, people
tend to discuss it without any doubt and thorough under-
standing. Simple shear means a square being deformed by
a shear force into a parallelogram as shown in fig,5-7.
In fact, without a compressive force on the side BC or a
clockwise rigid body rotation, the square OUABC can not be
deformed into OA'B'C' in that position shown in fig,5-T7.
In small deformations like an elastic deformation, simple
shear is assumed as pulling and sumpressing in the diagonal
directions. This is accepted not because it is correct
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but due to the induced error hmgsa small that it can
be neglected. But in a large deformation like plastic
deformation, the error increases with the severity of

the deformation and is no longer negligible. The
state: of stress in a large simple shear is rather
complicated and is outside the scope of this thesis.

Only the states of strain including the principal axes

of strain with respect to the material will be discussed

here.

A unit square like OABC in fig,5-7 is deformed under a
simple sheartf?t becomes OAB'C' and then OAB"C" and so on.
The strain analysis of this deformation can be done by
measuring the deformed parallelograms and using Egs. 4-27,
4-28, 4-29, d-BU:?gha principal strains and the directiaons
of principal axes with respect to the material can all be

obtained.

Fig,5-8 shows the strain path of a simple shear plotted
in 3-D triangular co-ordinates. The curve OPS is a space
curve and OP'S' which lies on the clock diagram is the
projection of OPS., From a point P' on the projected
curve, lines perpendicular to the three axes on the‘clock
diagram can be drawn and three principal strains are
obtained. PP' is the amount of non-coaxiality. The non-
coaxiality shows that in a material under simple shear
deformation, the most stretched and caompressed fibres are
not the same ones but are changing all the time during the
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deformation. The strain path OPS fohrujectad one OP'S!
is not,a strain path of certain fibres which lie in the
same directions as the principal axes of stress and strain,
as in a coaxial strain path rather: it is only a series of

Ll

states of resultant strain of the material under forming.

In fig,5-8, it is shown that the strain path OPS is
nearly linear atTEeginning, In other words, if the strain
is not too large,or smaller than D.,3, the strain path is a

non=-coaxial linear strain path.
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Analysis of Non=coaxial Deformation

Non-coaxial deformation has been defined as a deformation
in which the principal axes of strain rotate with respect
to the material. This rotation of the principal axes of
strain with respect to the material is induced by the

nomalignment of the principal axes of stress and of strain

during the deformation.

A deformation in a material from the undeformed state to

a state of strain without any knowledge of the intermediate
state, can always be reckoned as coaxial, and in that
deformation, the principal axes of stress coincide with
the principal axes of strain. If a subsequent deformation
follows, the coincidence of the principal axes of stress
with the principal axes of strain at the state before the
subsequent deformation is the key factor for deciding
whether the subseguent deformation is coaxial or non-
coaxial. If they are coincident, then the subsequent
deformation will be coaxial, otherwise, it will be non-
coaxial. When it is non-coaxial, what will be the result
of the successive deformations? How will the result be
different from that of a coaxial one? How will the
principal axes of strain rotate and what is the relation
between the directions of the principal axes of stress and
those of strain with respect to the material if they are
not coincident? All these guestions are discussed and
answered in this Chapter.
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6.1 Resultant of Two Deformations.
A esultant of Two Coaxial Deformations

As mentioned before, a deformation is a transformation
of co-ordinate and can be represented in matrix form, for

example, as follows:

"
(=)}
1
fan

where X;,X2; and X,',X;' aré?%o-urdinates of a typical
point in the material before and after the deformation
respectively, and, €, and €, are the principal strains
produced by the deformation, The principal axes of strain,
or the directions of the most stretched and coun e ed
fibres referred back to the undeformed state of the
material, in the finite deformation represented as in Eq.
6-1, are along?&f— and X,- axes (fig,6-1) because the
non-diagonal elements of the matrix in Eq. 6-1 are zero.

It is also obvious that the principal axes of stress in

this deformation are alan&?&,- and X,- axes too.

If another finite deformation takes place in the material

the
with principal axes of stress alongAXi— and X,- axes and

0 X.'r'

6-2
X'
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where X', X3' and X", X," are co-ordinates of a typical
point in the material before and after the second deform-
ation respectively, and €,' and €,' are principal strains
produced in the second deformation. Then the resultant

L
of the two finite deformations is as follows:

gt g
X" p& 0 Xy
ke . F
Xz" 0 EG; IXZ
g& 0 g® 0 X3
0 g 0 e*e| | xg,
EEI*E'J' U xl
= 6=3
0 Eg+§' X3
The resultant principal strains are:
(&)e = €pivig!
(E)e = Eh+ig Coi
(E8)c = —((Ei+%,') + (€+€,))

and the principal axes of strain as well as of stress with
respect to the undeformed material are along the fibres
0A and OC (fig,6-1).
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Because the principal sxes of stress and strain coincide with
each other in both the two finite deformations the

principal strains are obtained by measuring along the

same fibres in the material so that the resultant strain

is only the sum of the strain in each deformation.

B. Resultant of Two Finite Non-coaxial Deformations (47)
If the deformation as in Eq. 6-1 is followed by another
deformation with the principal axes of stress not along the
X)= and X3- axes but along the direction in which the

fibre OP' ‘lies and its perpendicular direction (fig, 6-1),
then thésa two deformations are non-coaxial and the second
deformation can be represented as

i
!

x3" cos¢ =sin¢ p& O *cos¢ sing Xy!

= ¢ : : 6-5
i
Xg" sing¢ cos ¢ 0 p& -sin¢ cos ¢ X3!

where ¢ is £« A'0OP' (fig,6-1) or the angle between the
principal axes of stress in the first and the second

deformations, instead of that in Eq. 6-=2.

The resultant of these two deformations then is

it

X§" cos¢ -sino || P& O cos¢ sing X§'

X;"| |sin¢ cos¢ ||D P& -sing cos¢ X8
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= |cose -sing|le® o cos¢ sin ||e& O X
6-6
sing cos¢ (|0 p&e -sin® cos® || O p€: X5
] e:t: & . € r
=|cos¢ -sin® [|[M' O E¥* 0 cos¢ sing¢ [|[M O|| B 0 X4
6=T
-é:.- 8=
sing cos¢ ||0 M'||O E -sin¢cosq¢ ||0 M|| O P X2
wher : ‘
p&l’ 0 M o ||e* 0
o e& |0 wm||o g€
o B M D pé 0
0o e G 0 p-te
and
M o 26 : 8 e 3 .';E.’
6-8
M o= B & €. i, W%
¥ 2 2
Eq. 6-6 may also be written as
Ee'l' ¢ E"i“e
X" MM' O cosg =sing & cos¢p E - sin
— - 6_9
69..6 ! . ‘.'l
X" 0 MM sin¢ cosg -B : sing E (€°+e°cga¢
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The first matrix reading from right to left en the right
hand side' of Eq. 6~9 can be factorigd into the product of

four matrices as those in Eq. 4=24 with M = 1, Thus:
E"!'Qf G;—ea -

e cosgp P sin¢ cosxX =-gin| [cosg’ =sing’
ee'e: . —(E“"GQ:J W . ! s 4 ’
e sing¢ s cos ¢ sinX cosc«(| |SinB® cos@

P € 0 cosg’ sin@’
e L 6“10

0 E"E -3in@’ cos@’

according to Eqs. 4-86, 4-27, 4-28 and 4-29

E B Ep‘ 6‘.’_ 6:-
: -2 ) sin¢
E"(Eu‘f‘f")) CDS¢

tan K = (-P
(BeT* & 4

-gosh (€.~ €) ., 6-11
cosh (€, + ¢/) ¢

tan 28! = sin 2 ¢ 6=12
( sinh 2 € )+ cosh 2¢, cos 2@
tanh 2 €/
and

cosh?€ = cosh?( €, - Ec')+(cosh2( €.+ €/)=caosh?( €, - €/ )]casch

= cosh?( €, +€:]-(cosh2( €. +6;)-cnsh2( € 6:)] sin%¢ 6-13

Therefore Eq. 6-9 may be written as

X,'| ' o cos¢ -sing¢||cosx -sinx | |[cosg’ -sine’lle€¢ 0 cos@’ sing’

"

X,| |0 MM'||sin¢ cos¢||sinx cosx sing” cosg’||0 E-€ -8ing’ cosg’
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M’ o cos(p+x) =sin(od+x) | |cose’ -sing’ e€ 0 cos @’ sing’
{ 6-14

r . ’ ’ -e . , 4
0 MM'||sin(¢+x) cos(p+x)| |sing” cos@’[|[0 € ||-sin8” cos@

The matrices on the right hand side of Eg. 6-14 are
similar to those in Eq. 4-24, In other words, the
resultant of those two non-coaxial deformations is like
a deformation with its principal axes of strain in the
directions a$ the fibres making an angle B'. (Eq. 6-12)
with the sides of the undeformed unit square (dotted
line in fig,6-1) and the three principal strains are as

follows: -

(€, )non 1n (MM') + €

( €,)non = 1n (MM') - € 6-15

]

(€3)non -2 1In (MM')

The amount of non=coaxiality in these two deformations

is

B=8"-0°-= B'=~1rtan'l( ain 2 ¢ )6-16
E&ﬂﬁidé? + cosh 2€ cos2¢
tanh 2 €/

If ¢p%0, from Eq. 6-13,€ is always smaller than (€&, +€),

If da% €= (E,+€) - § and 5'.>,0,then

(E,)Jnon = 1n(MM') + €

= 1nM+1nM'+ (€,+€]) = §
(€/+€) - §
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(€,)non = 1In(MM') = €
= 1nM+1nM'= (€q+ €))+ §
= (€+€) + §
6-17
(E3)non = =((€,)non + (€;)non )
- () + (e
6.2 The Neralignment of the Principal Axes of Stress

and Strain in Non-coaxial Deformations.

The principal axes of stress and strain always coincide

in coaxial deformations. When the principal axes of stress
rotate, S0 will the principal axes of strain %
and non-coaxial deformation takes place. The relation-
ship between ¢ which is the angle the principal axes of
stress rotate and B' which is the angle the principal axes
of strain rotate, is shown in Eq. 6-12. From Eq. 6-12,

it is clearly shown that the relation between ¢ and 8!

is not only dependent on €, the prestrain, but also
on -n‘, the amount of straining in the second deformation.
If the strain in the second deformation i centinues,

will the principal axes of strain coincide with the

principal axes of stress again?

The principal axes of stress in the second deformation are
parallel and perpendicular to OT (fig, 6-1), and stay fixed
there throughou£ £he deformation. Therefore, if the
principal axes of strain do coincide Qith the principal
axes of stress again, it means that Nl
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the most stretched fibre must be the fibre OP' in OA'B'C!
(fig,6-1). Because the directions nf?arincipal axes of
strain, or the angle B' in Eg. 6-12,is always referred
back to that in the undeformed unit square OABC, when the
principal axes of strain and stress coincide again, the

angle B' should be <¢AOP instead of ¢ ADRY,

According to Eq. 6-1 and Eq. 6-8,

(Xi')pt = E':'e' (xt’f’
6-18
(xR Ig = Ee"(xz)P'
€=M+ &
and 6-=19
€,=-M- €,
LAYOPY = ¢
tan-1 {Xz)p' =t5% EM'€° (X2)p )
(X3)pde g (XE)p
= tan | (p=26 tan({2A0P)) 6-20
Thus tan ¢ = E'ze‘ tanB!
or tanB' = pli. tan ¢ 6=21

Substituting B'in Eq. 6-21 into Egq. 6-12,

tan 28'= 2tanB’ 22250§an¢
l=tan B' 1l- E4 Etan ¢
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o ; sin 2 &
{S:;.:: S e cosh 2 €, cos 2¢ 622
2 a
tanh 2€,' = sinh 2 €, « 2B tan ¢

sin2¢ (1-B%% tan“e)=2B°% tan¢ cosh 2 €. cos2¢

= =1 6-23

In Eq. 6-23, tanh 2 €= -1, There is no value of €,
which should be positive t_c: satisfyEq623. 1In other words,
if ¢ and €&s are not zero, it is impossible for: the
principal axes of stress and strain to coincide again after

they have shifted from each other.

It is proved that the principal axes of stress and strain
will not coincide again after they have shifted from each
other. Then, how close could the two axes be? It is
easily seen that the two axes are closest when the second
deformation becomes infinite ar Bl dia infini‘tei-y' largé.

Because tanheo= 1, Eq. 6-12 becomes

tan 28" - sin 2 ¢
sinh 2 €, +coshZ €, cos 2 ¢

sin 2¢

= sinh 2 €, '+coshZ €,{1-2 sin*¢ )
sin 2 ¢

= E'2 b e (EeSnpTeS sin’¢
sin 2 ¢

= E’zE‘ cos @ —E-Ze‘ sinch
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op-2€ tang¢
= 1l - E-q.E, tanch

2 (B=2% tano )
= 1= (BT ianp )E 6-24

€.

-2
Therefore, tan B' = B tan ¢ 6=-25

Fig, 6-2 shows the relationship between ¢ and B' at the

extreme conditions. The cufues under the line ¢ = B8

are curves showing the relationship bgtween ¢ and B' as
in Eq. 6-25 at different degrees of prestrain €, ,

and the second deformation becames infinitewf large. The

curves above the line ¢=8' are curves showing the relation-

ship between ¢ and B' as E in Eqe. 6=21.3if the

principal axes of strain coincided with the principal

axes of stress. At:certain degree of prestrain €&,, the

difference between the two curves, one under and one above

the line ¢= B', at fixed value of ¢ represents the min-

imum angle between the final position of the principal

axes of stress and strain with respect to the undeformed

material in non-coaxial deformation.

63 Deformations without Changing the Resultant Strain

As said before, deformation is a change of state of strain
and a state of strain may be changed by changing the
principal strains and keeping the principal axes of strain
fixed with respect to the material, or by changing the
directions of the principal axes of strain with respect to
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to the material and keeping the principal strains unchanged,
or by changing both. The first case is the result of a
coaxial deformation and the second and the third are results
of non=-coaxial deformations Generally speaking, in a non=-
coaxial deformation, both the principal strains and the
directions of the principal axes of strain with respect to
the material are changed. ‘But it is still possible that the
non-coaxial deformation only changes the directions of the
principal axes of strain with respect to the material and
keeps the principal strains unchanged. In this case, the
strain path in 3-D triangular co-ordinatesis a vertical
line coming out from somewhere other than the origin of

the co-ordinate on the clock diagram. It is not only
interesting but significant to investigate this special
case, .especially when:circular grid is widely used for
strain measurement in sheet metal forming. Whenfcircular
grid is used for strain measurement the principal strains
are measured from the deformed grid, namely, the ellipse.

It is quite possible, as will be discussed in:the following,
that the shape of the ellipse hence the principal strains

is not changed in a subsequent deformation. This is the
danger of using circular grid for strain measurement,

especially in a non-axisymmetrical forming.

A simple case is taken as an example to explain the complex
implication in the deformation without changing the result-
ant strain, then a theoretical analysis follows for the
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more complicated cases. A circle (A in fig,6-3a) becomes
an ellipse (B in fig,6-3a) after a deformation and the
principal strains are obtained by measuring the major and
minor axes aof the ellipse., If another deformation reverses
the previous one with compressing instead of pulling and
pulling instead of campressing along the major and minor
axes respectively of the ellipse, the ellipse B will
recover to a circle (C in fig, 6=3b) and the strains
measured from the deformed shape are zero. If the deform=
ation continues, the recovered circle € will be
deformed again to another ellipse (D in fig, 6=3c) but
with the major and minor axes interchanged with each other.
In the deformation from B to C then to shape D,the strains
obtained only by measuring the major and minor axes of the
deformed ellipse, do not change at all. This is a deform-
ation without changing the resultant strain and it is well
known but not much development has been done in this
approach. In fact, although the principal axes of stress
and strain are coincident all the time during the deform-
ation, strictly speaking, it is a non-coaxial deformation.
The major axis of the ellipse has been turned 90°, Fig,
6-4 shows the strain paths of the deformations. A is the
undeformed state and from A to B (fig, 6-3a) the strain
path is AB along 3 - o'clock on the clock diagram. From
B to C (fig, 6-3b); the strain path is BC which coincides
with AB, If these are all deformations, then they are
coaxial. But if the deformation continues,there is a
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sudden jump of non-coaxiality. The major axis is turned
through 90° and from C to D (fig,6=-3c) the strain path is
C'D which is a space line in 3-D triangular co-ordinate
and its projection on the clock diagram coincides with AB,
If the non-coaxiality is neglected, the strain paths AB,
BC and C'D all coincide, ° W&t This is an error
impossible to:detachﬁand explaindby usingjbircular grid.
Iffsquara grid is used, or points are marked on the

circular grid, the error would be noticed and avoided.

The above-mentioned deformation is only one of the deform-
ations which take place without changing the resultant
strain. In the non-coaxial case, those deformations can
occur very often, Egq. 6-13 is copied here for further

discussion.

cosh?€ = cosh? (E.+ €)) -(cush2(64+-6:)-coshz(ea- 5:)sin2¢
6-13
where referring to the deformations mentioned in fig,6-3
€. is the pure shear strain from A to B, €', from B to
C to D, €, the resultant strain in D and ¢, rotation of the
major axis of stress. Eqg. 6-13 may also be written as
cosh 2€ = cosh2( €.+ €')-(cosh2( &+ €,')-cosh2( €, - €') sin®g ‘
because 6-26

cosh?€ = $(cosh 2€+ 1)

3 s . _th : .
Now, if there is no change 1nn§esultant strain, that is

€ = €,. Therefore:
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. cosh2 €, = cosh2( €,+ €/)-(cosh2( €, + €/)-cosh2( €, - €))sin®¢

cosh2(€, + €/) - cosh2€, = (cosh2( €, + €,/)=cosh2( €, €))sin?¢

2 sinh (2 €, + €/ )sinh €, 2 sinh 2 €, sinh 2 €, sinztp

2 sinh 2 €,(2 sinh €, cosh €/)sin?¢

sinh 2 €cosh E; +sinh €' cosh2€, = 2 sinh2 €, cosh E: sinzqh

(sinh 2 €,-2 sinh2€,s5in%¢ ) cosh €’ + sinh €, cosh2 €, = O

sinh 2 €, cos2¢ cosh €, + sinh € cosh 2€, = O
tanh 2€, cos 2¢ + tanh €, = O
e« tanh € = - tanh 2€, cos 2¢ 6=27
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Because

0 < tanh €< 1,
so0 = < tanh (2 €,)cos 2¢ <O
ang because

0< tanh ( 2€)<1

so -1'< cos2¢ < O

Al i
P Sis
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In other words, no matter what the prestrain is (other
than nothing) there is always the possibility of another
deformation which will produce no change in?}esultant
strain. Fig,6-5 shows the relationships betwren Ec, Eé'

and ¢ for those deformations.
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Implications On the Theory of Plasticity

Formability as defined in Chapter 2 has two aspects, ane

is the forming limits of the material and the other, the
performance of the material in a forming process. As
reviewed in Chapter 3, the forming limiting curve of

sheet metal that has been inuestigategfzg the formability
curve covering the end points of only coaxial strain paths.
In other words, the formability curve, in fact, does not
represent completely the forming limits of sheet steel but
is only a partial view of them. A complete representation

should cover the end points of both coaxial and non-

coaxial strain paths.

theoretical analysis of non-coaxial deformation was firstly
done by Professor Hsii (48)-(50) in 1965 and 1966. But
hitherto no further investigation and no actual non=
coaxial strain path has been pursued and plotted. In this
thesis, non-=coaxial strain pathswill be plotted in

Chapter 10. In this Chapter, the effect of non-coaxiality
on the formability of sheet metal from the point of view

of plastic work of deformation and the implication on the

theory of plasticity will be discussed.

Tk Plastic Work Done (52)-(54) in Coaxial Deformation

When a material is deformed, it is firstly deformed
elastically, and elastic work is needed to produce elastic
straimss After removing the load, the material recovers to
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its original form and elastic energy is released during
the recovery . For a plastic deformation, after removing
the load, a permanent strain exists. It needs plastic

work done on the material.

The external work per unit volume done on the material

during the strain d€ij is Tij-d€ij or dw =9 ij d€ij 7-1

where 61j is the stress tensor. The work includes elastic
and plastic work and the strain includes elastic and

plastic strain too. Thus:

dwy = dw-dwe =Tij (d€ij - d€if)
0 i5d€:5 T2

where dwg and dwp are elastic and plastic work respectively
% E.E p _
and, dEJJ and d€ij are elastic and plastic strain-incre-

ments,

Due to the incompressibility of metal, plastic deformation
always takes place at constant volume and &+ hydrostatic
pressure or tension only produces elastic strains. There=-
fore no plastic work is done byT%ydrastatic companent of
the applied stress and the plastic work is done only by
the deviateric or reduced stress

Tij = 04ij -08i;] 7-3

where U(=%GT}) is the hydrostatic component of the stress.

Eq. 7-2 can also be written as: Continuedscsces
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dwp = 0ij d-E’iﬁ = O—i;i d€if Tal

In coaxial deformation, the state of strain is represented
by three principal strains measured from three orthogonal
fibres which remain orthogonal to each other in the deform-
ation and the principal axes of strain with respect to

the material are usually ignored because they are fixed.
The strain-increment is represented by three principal
strain-increments which are also the strain-increments of
those three orthogonal fibres, so that the strain-incre-
ment is additive and integrable. Therefore the total
plastic work done on the material from the initial to the

final state of the deformation is
;s B ' P
W =J'dw, = [0ijd€ij =[Tijd€ij’ 7-4
where the integral is taken over the actual strain path,

Eqs. 7-2 and 7-4 imply  (repeated suffixes i and j) that
the total plastic work is the sum of the work done by
each component of stress. For simplicity, a generalised
or ‘equivalent stress g and equivalent incremental plastic

strain d€ are introduced and defined as follows:

T =(H{(a-al+ (-0 + (0 -0 })f 1-5
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o [ A »

where J7j, 0;, Jy» are the principal stresses, and

p
3 A 2
d€ - (2/9 ((d€} -a€B)2, (4eP-aeR )%+ (e I 1
cP P : ¥
= (% (4€35d€55) ¥ 7-8
Therefore:
p
dwp =Tij d€4j
=T d€ 7-9
and
wp = | dwp =j'o"— d€é 7-10
1.2 Plastic Work Done in Non-coaxial Deformation

In a non-coaxial strain path, the incremental strain, in
fact, does not mean the same thing as the incremental
strain in a coaxial strain ﬁath. In a non-coaxial deform=-
ation, a state of strain is determined not only by the
three principal strains but also by the directions of the
principal axes of strain with respect to the material.

The principal strains are determined bj?%nst severely
deformed fibres in the grid. Because of the non-coaxiality,
the fibres measured for obtaining the principal strains at

Eontinueds s« o
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one state are different from those measured at another
state of strain. For instance, at stage A, fibres‘i and
b are the most severely deformed fibres and are measured
for principal strains €a and Eb. At stage B, fibres c
and E_instead of a and b are the most severely deformed
and are measured for principal strains €c and €d. From
stage A to stage B, the resultant principal strains are
from €a and €b to ec and Ed, but the strain differences
(€c-€a) and (Eb-€d) are not the strain increments of
either fibres a and b or fibres c and d. The strain-
increment between stage A and stage B is not measured
from the same fibres in the material. This is one of

the reasons why Eg. 7-3 can not be integrated over the
strain path. The other reason that Eq. 7-3 can not be
integrated is that in the non-coaxial case, the direction
of G}j is no longer coincident with that of dei?, and Eq.
7-3 can be true only when the direction of 0ij is coin-

p
cident with that of 9€ij..

Eg. 7-3 is not integrable, then what is the plastic work
done in non-coaxial deformations? The plastic work done
in a deformation underfnun—caaxial strain path can be
found if the angle between the principal axes of stress
and principal axes of strain with respect to the material
at every stage foﬁeformatiun is known. The non-coaxial
strain path is divided into several parts and each part
in which it is assumed that the principagl axes of stress

Continuede.eeee
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are fixed with respect to the material representsa stage
of deformation, The first and the second parts are handled
first. The first one starts from the undeformed state, and
the same as

the plastic work done is,that im the coaxial case. For the
second stage, the angle (¢) between the principal axes of
stress and those of strain with respect to the material
after the first stage of deformation,is known, Also the
resultant strain € and the amount of non-coaxiality after
the second stage of deformation are known from the non=-
coaxial strain path. BK substituting ¢ ,E,and €o which
is the resultant strain after the first stage of deform-
ation into Eqg. 6-12 or 6-13, E; y» the amount of straining
in the second stage of deformation can be obtained. In
other words, if a square or a circular grid is printed
or scribed on the metal surface before the second stage
of deformation, a strain E; will be obtained at the end
of the second stage of deformation. Therefore, the plastic
work done in the second stage of deformation is:

€

(wplg =) Tijn d€yj 7-11
(2]

Eg. 7-11 is integrable because the strain measured is along

/
the same direction as that of G&j'.

The plastic work done in the first stage of deformation is:

TR
(wp)y = Tis% &Bij P=1p

o
which is also integrable.
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So, the plastic work done in the first two stages of deform-
ation is

’

60— ’ s P eI‘:l ’ P
(wP)nae = (wp), :i-(wpﬂz -j G—ijideij -J O—ijdeij T=13

o o

50+£f;‘ v 4 Py
T35 d€; ;" 7-14

o

If the non-coaxiality is neglected, or the non-coaxial
strain path is treated as?coaxial one, the plastic work
done in the first two stages oﬂ)défarmatiun would be as

follows:

€ X 3
(wp)e2 =J G_ijid-éij‘-‘-} 7-15

. /
From Eq. 6=13, if ¢ %0, € is always smaller than (€o+E6).
Therefore in the first two stages of deformation, there
is a plastic work difference betweeﬁ?éoaxial and non=-

. ond’ .
coaxial cases,,6 it is

(Bwy) = (wplnz = (wp)c2
€or€o - ESd 5 :
=J Tij d&ij ‘-J Tsy i 7-16
n]

In other words, for two deformations both with the same
~amount of principal strains but one under coaxial and the

Continuedsaseee



- 105 =~

other under non-coaxial strain path, the one under non-
coaxial strain path will need more plastic work done for

"getting the same amount of resultant strain.

Now suppose the first two stages of deformation dre treated
as the first stage,and the third stage is treated as the

second stage. Then,

E+EL:|"- / Py . R P
avl = [ aijd€;;® _j 0i;ed€;; T=17

o e]

. A ’
where € is as €o, €o as €0’ and €' as € in Eq. 7=-16. So
the plastic work done in the first three stages of deform-

ation is:

» P
(wpdnd = | Taje€iss o Auf + 2wy 7-18

8]

where the first term reading from left to right interight
hand side of Eq. 7-18 is the plastic work done under a
coaxial strain path and the last two terms are the plastic

: the o :
work differences between,cuax1al and non-coaxial cases.

Repeating the procedures as  4for: ' Egs. 7-16, 7-17 and

7-18, a series of differences in plastic work between the
umpanmts

coaxial and non-coaxial,in each stage of deformation, awj

OWs s.seeee and EVhﬁr can be obtained. Then, the total

plastic work done in a non-coaxial deformatinn_'is the
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sum of the total plastic work done in a coaxial deformation
with the same amount of strain as that in a non-coaxial
one, plus those plastic work differences between coaxial

and non-coaxial deformations in the small stages of deform-

ation. It -is:

. ~1
/ E
(wg)n =,}°Fij'd-'eij + § o, 7-19
i

where the integral is taken over the projected strain path

of the non-coaxial one on the clock diagram.

Te3 Work-hardening

When a material is deformed plastically, its resistance to
further deformation increases. Such a material is called

a work-hardening material.

The hypothesis of work-hardening is that the degree of
hardening is a function of the total plastic work done only
and is otherwise independent of the strain path (52). The
degree of hardening is measured by the yield criterion
which is represented by the equivalent stress g as defined
in Eq. 7=-5. In mathematical language, it may be written
as:

g =F (wp) ¢ 7-20

The total plastic work done is dependent on the strain
path. This is well known and the literature concerning the
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hypothesis of work-hardening states this dependence. But
it is not usually pointed out that Eq . 7-3 can not be
integrated for obtaining the total plastic work if the
strain pafh is non-coaxial. As shown in Eq. 7-19, there is
a difference Egidwi between the total plastic work done in

coaxial and non-coaxial deformationms Surely, the degree

of work-hardening will be different due to that difference.

Therefore, for a material deformed under a coaxial strain

path, the degree of work-hardening is:

= . P
T = F (wy) = F(J0ij9€4]

1l

F (Jo‘" d& ) 12D

and for the material deformed under a non-coaxial strain

path, the degree of work-hardening should be as follows:

= £ P Rsy
T =F (wp) = F(JG'ij'deij +3 Awp) te22
1
For the same amount of resultant strain, ° material
a
deformed under, non-coaxial strain path is = ]

a

,coaxial strain path.

hardes ! than under

7.4 - Validity of Levy-Mises and Prandtl-Reuss Equations.
of P_fmf"”ty -H:ury :
The stress-strain relations,were originally proposed by Saint-
He assumed
Venant in 1870 (55Lﬁthat the principal axes of the strain-
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-increment coincided with the principal axes of stress.
Then a general relationship between strain-increment and
the reduced stress was introduced by Lévy (56) in 1871
and independently by von Mises (57) in 1913. The

relations were expressed in equations as the following.

gfi = dﬁv = déz = d?%v = d7vz = dex = gN. J=23
ax a o Txy Tyz Tox

or more compactly, as

#€ij - Ti;dA 7-24

where d X is a constant of proportionality, and the equat-

+he
1ons were called,Levy-Mises equations.

ﬂ’el . L4 ~;
In,Levy-Mises equations, total strain-increment was used so

that they could only be applied to materials which are

rigid before plastic strain toock place. The extension of the

Lévy-Mises equations ¢ tor materials which are not
plastic-rigid was done by Prandtl (58) in 1924 for the
plane-strain problem, and in complete generality by Reuss

(59) in 1930. The equations were expressed as

P P P . P P R ,
d,'Ex = d_e_x &= E& i de! = dTVZ = d'—;rzx =dA T7-24
Tx! Jy! 0z Txy Tyz T 2«
or
d€ii® _ T35 an’ T q-25
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and were called Prandtl — Reuss equations. If principal
the
stresses and principal strain-increment are chosen,,lLevy-

Mises equations may be written as

d E[ = d ez = d E; = d A 7=-26
- ST 7 ET]
T, T, T3

m
and,FPrandtl - Reuss equations as

= dX T=27

It is significant to note that the strain-increments used
are the strain differences between one state of
strain and its adjacent state of strain. IHTEaaxial case,
because all the states of strain are obtained by measuring
certain fibres all the time during the deformation, the
strain difference between a state of strain and its adjacent
state is a strain-increment of the same fibre at different
stages of forming. This is a very important condition
under whichftévy-Mises and Prandtl-Reuss equations are ﬁalid.
In the non-coaxial case, owing to the rotation Danrincipal
axes of stress, the principal axes of strain are rotating
with respect to the material all the time during the deform-
ation. The strainlin:rement,which means the strain diff-
erence between a state of strain and its adjacent state,
is a strain difference of different fibres at different
stages of forming. Althcugﬁ?ﬁéuy-Mises and Prandtl-Reuss
equations are valid in the coaxial case, they are not
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valid in the non-coaxial case unless the strain-increment

. _the ; : ; ol

in,non-coaxial case is re-defined as the strain-increment

of a certain fibre and not the principal strain-increment.
\

If principal stresses and principal strain-increments are

the X : :
chosen, then,Lévy-Mises equation may be written as:

/ A =
04 s A4 €, 7-28

s
03 L€,

where A €,and A £, are infinitesimal principal strain-

increments. Suypose a material is deformed under stresses

with constant ratioA(= ¥, ) to a state of strain which
qu

is represented by the three principal strains (E.)D,(Ez)n
and (63)0, and because of the constant stress ratios, the
strain ration (€j)o/(€3)o is equal to A. If the stressing
continues with the same stress ratio and the principal

axes of stress remain  fixed with respect to the material,

the material will be further deformed to a new state of

strain, €,, E2 and 63, and because 05‘1 = - Oy g
A =
2 a,

]

iherefore: €& = Eif’".)u-l-.ae,;

)\! éx !O+ A AE: =
€, 2

€,)o+ A E, (&)o+ A€,
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A state of strain can also be represented by a uniform
dilatation and a pure shear strain as shown in the
analysis in Chapter 4. Therefore, the strains in the

first deformation may also be represented bs follows:

Tacha e ﬁeﬁ)g+(ei)n 7-29
€, = (€)o-(€2)0 7-30
2

where ln Mo is the amount of uniform dilatation and Eo,
the pure shear strain. It is understood that (63)0 =

-2 1n Mo. Because €,, €, and €; are the resultant strains
of the two deformations, the strains in the second deform-

ation are

1n- Mot @ = f%ij; = 1n Mo A A
AR s ¢, T=32
2

If the stressing in the second deformation is such that
the stress ratio is unchanged but the principal axes of
stress rotate through an angle ¢ with respect to the
material it is a non-coaxial case and the resultant
strains will be as follows. According to Eq. 6-13

cnshzf = cushzfeufeb')—(coshz(eoten')-coshzfeoien'))sin2¢
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and
1nM = 1nMo+1lnMo'
because uniform dilatation is non-directional. If ¢ 0,

€ is always smaller than (€n+€$ Pr-Bohsdes
/
€ - (Eovkar) - § 7-33

where § has a positive value. Then the resultant

principal strains are:

&' = 1In M+ €

= 1nMo + 1lnMo' + (ED+6$ ) - 5

2 2
= & - § 7-34
€' = 1nM = €
= €+ 4 7-35
and g, = -21nM = -(E;+E) = &, 7-36
then
_&:— . %i_:_g_ £ A (in general) =37

EDntinuEd..--.-
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and g i .
' L€ = B'-(B)o = £-(8§)o-§
AC'; €. -(€,)o | €,-(€,)o+ §
% _&*_g o ='«0']..!
= #)\ = i -
A ei_‘_g 0,2 7-38

the
Therefore it is proved that,Levy-Mises equations are not

valid for,non-coaxial case.

Te5 Stress-5train Relationship

In simple tension, although it involves a three-dimensional
deformation, only the load and the strain in?iuading
direction are interesting an?:;;otted in « Cartesian
co-ordinates The stress-strain relation is very simple,

and the area under the curve represents the total work

done.

In other deformations, the stressing condition is more
Tl f-"l
complicated and can not be represented in,a simple way
as that in the tension tests Therefore, the effective or

equivalent stress and the effective strain are used to

represent the stress-strain relation, where the effective
Hh

[}
Aeffective

or eguivalent stress is as defined in Eg. 7-5 and
or equivalent strain is the integral® + of the incremental

strain along the strain path. as follows.

r g =jd€ - f(%{(de,ﬁ-deé)zudez-d €)°+(d€s-de,) )95 T-39
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If the incremental strain ratios are kept constant all the
time in the strain path, in other words, if there is a

linear strain path, or

dif, : di€, = digg =1 : XK : -~ (14KX) 7-40

where X is a constant

then,
2 2
d€ = (% (d€ +d g, +d-E,2) )%
= f"%_ (14X + O(z)"l' d €, 1547
and
-E— - .(dz =J—_§_—-—- (l+ X+ Mz)%jdﬁ,

(1+ K+ 0(2)% &

SR

(622 vight 7-42

In the coaxial case, when the effective stress and effect-
ive strain are used to represent the stress-strain
relation, the area under the curvaAJFﬂéﬂ is the total work
done. In the non-coaxial case, if the non-coaxiality is
neglected and only the stresses and?%rincipal strains are
measured, then the stress-strain relation represented by
the effective stress and effective strain will be different
from that inféoaxial case. The area under the curve will
represent not the total work done but the total work done
n-i

minus > aw; as shown in Eq. 7-19. Because § is a function
i
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of total plastic work done only, therefore, for a certain
amount of total plastic work done,d is determined. But

the resultant strains in coaxial and non-coaxial cases for
the same amount of total plastic work are different. This
is the reason why the stress-strain relationship in coaxial

deformdliens
and non-coaxial,are different.

Take, for example, the cases discussed in the last section,
The stress ratios are the same but the directions of the
principal axes of stress with respect to the material are
different from each nther:fihe ratio of the resultant

strains is

&+ §

: ; _he ; :
instead of 5./62 in,non-coaxial case. The stress-strain
relations in the first stage are exactly the same, but in

the second stage,

S 7-43
A€

and Ag' - 563—5 = )\, % N\ T7-44
A..Ezl QE!"- S

The effective strain increment in the second stage in the

coaxial case is

2 e 2 £ 2 b 2 9E
(A€)c = -J_._*-_a;'——[(ﬁe,) +( Aéz) + ( Ae3) ] 7-45

€ o]
and in non-coaxial case,

= Iz "2 "2 L2 YE il e
(68) = j_% ((a€N+ (a€)"+ (a€))°] 7-46

n

Continued......ss



- 116 -

Because A 63= A'ea'
therefore,

A€ + A€ = A€ + o'
and

(1+A) s €, = (1+A') ag)

From Egs. 7-43 and 7-44

(AB°+la @) °= (1425)( 4K, )°

and

( 467+ Al = (1+n°) ( a)°

S —————

(1+2'2) [ (l+,\)2 }{A..él)z
(1+A')2

If we assume that (4 €)c is equal to (AE),—,, then,

7
(14 50) (A EE) 2= (1400 %) {LH-L] (a€)°
(14x')2

(l+)\2) (l+>_\')2 = (l+)\'2) (1+)\)2
(l+)\2)[(1+>\'2 ) 2,\'] = (1+;\z) [(1+)\2:J+2 )\J

(14)\2) o 2 = (1+)\'2).2>\
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X =l =Rt AN )

-.. b o Qb =1

or Al =

7=-52

>l=

Eq. 7-52 shows that only when X' = 1 then
A

(a€)c = (4€)n

otherwise they are not equal.

This is a clear proof that the stress-strain relations in

coaxial and ‘¢ non-coaxial casesare different.

The whole theory of plasticity is hitherto built on the
basis of Levy-Mises and Prandtl-Reuss equations. Now it
is proved that?tévy—ﬁises and Prandtl-Reuss equatiﬁns are
valid only in?ﬁoaxial case, Therefore, the theory of
plasticity or the stress-strain relationship iﬁ?ﬁon-
coaxial case needs to be modified, depending on the non-
coaxiality of the principal axes of stress and strain as

discussed in this Chapter.

Tisa The Effect of Non-coaxiality on Formability

In sheet metal forming, very often, the material fails
due to excessive thinning)leading to fracture. But
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excessive thinning is not the only reason which leads the
material to fracture, For instance, low cycle fatigue could
lead the material to fracture. In?%an—:oaxial case, part
of the work done is consumed without producing measurable
strain, therefore, it is very possible that the material
fails not'beﬁause of excessive thinning but because of

tbq much work done on it. In other words, the material

fails because of being too severely work-hardened so

that the stress exceeds the strength of the material.

Because of the non-copaxiality of the principal axes of
stress and strain, the strain path of a non-coaxial
deformation deviates from that of a coaxial one. Because
the formability is dependent on the strain path, the dev-
iation of?gtrain path in:non—caaxial deformation. will
affect the formability of material. In addition, the
non-coaxiality, becausef;he associated excess work con-
sumed, may induce fracture without excessive thinning.
This is the possibility that the forming limit curve

of sheet metal in which hitherto the forming limit is
determined based on the material failure of excessive
thinning leading to fracture can be extended to cover the
forming limits which are due to fracture without excessive
thinning. An example of material failure without excessive
thinning will be shown in Chapter 10.
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The Drawability of Sheet Metal

As briefly described in the Introduction of this thesis,
the formability of sheet metal is investigated in two
aspects, one is the forming limits of the material under
metal forming conditions and the other, the performance
of sheet metal in a forming process. The forming limit
of a material is dependent an the strain path under which
the material is deformed. This path dependence requires
the investigatiaon of non-coaxial deformation. In the last
few Chapters, non=coaxial deformation and strain path are
analysed in detail. In this Chapter the second aspect of
the formability of sheet metal, namely, the performance of

sheet metal in a forming process will be discussed.

sheet metal test was originally proposed to test the
material property. When the test result failed to predict
the material behaviour inanactual forming process, another
test was proposed, The large number of tests is a good
indication thatasheet metal test is only one of an:
infinite number of forming processes and the test result
is only the performance of the material in that forming
process. Formability of sheet metal, as the performance
in a forming process, is, therefore, dependent on the

forming process.

"Stretchability" and "drawability" are used to present
the performance of sheet metal in a forming process. But
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because the failure of material in most of the forming
processes is due to stretching, the forming limits of a
material, in fact, has included the stretchability of the
material. However, there are some other presentations such
as the height of the punch travel in the Erichsen test and
the height of the shell at the maximum pressure in the
hydrostatic bulge test, which represent also the stretchability
of the material in + purely stretch — forming processas,
Since stretching always occurs in a forming process, such
cases as those in the Erichsen test and the hydrostatic
bulge test will be tackled as the performance in a forming
process without drawing. Therefore, this Chapter is

mainly devoted to the drawability of sheet metal in a

forming process.

The definition of drawability, hitherto, is based on and
limited to the drawing of round cups as in the Swift’

test, and the limiting drawing ratio is used to represent
the drawability of sheet metal. But it is well known

that the Swift’ . test can not predict the drawing
properties of all materials in all drawing processes.

Even in cylindrical cup drawing, the Swift'® test can not
predict accurately if the forming conditions deviate from
those in the Swift’'® test. The more the forming conditions
in the actual forming operations deviate from those in the
test, the less reliable the test results are for predicting
the behaviour of the material in : non-cylindrical cup
drawing. This is not because the Swift'® test fails to
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reveal the "true drawability", or that a drawability test
has not, but can some day be found, by discovering perhaps
the right combinations among the practically infinite sets
of testing conditions, but because the drawability so

defined is only for round cup drawing.

The Swift'  test was proposed thirty five years ago (22)
and at that time the understanding of the behaviour of
sheet metal under forming was relatively limited. It

can hardly be expected that the first proposal should be
perfect. In fact, Professor Swift did notice thatamore
complex effect existed in non-axisymmetrical pressing.

If Professor Swift were still alive, he might have done
the extension and generalisation of the definition of
drawability and the test, as is being done in this thesis.,
Two paragraphs of Professor Swift's words (22) are quoted
here to show that he did point out the complexity in non=-
axisymmetrical forming but did not investigate it because
the simple problem éf axisymmetrical forming was still

unsolved.

"A material which is best able to withstand

its own drawing action and which at the

same time is best able to endure the stretching
action imposed by impressed conditions which
combine drawing and stretching in uncertain

or varying proportions. When two materials

A and B are compared in which A is superior
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under simple stretching and B superior under
drawing, the preference for any particular
press operation must depend on the relative
severity of the impressed stretching and

impressed drawing conditions."

"Those observations are made with some
confidence so far as symmetrical pressings
are concerned. When, however, the intensity
of the drawing and blank-holding actions
vary from one point to another, as, for
example, in the case of a pressing of
square plan with round corners, local
distortions necessarily occur in the
regions of transition and the possibility
of another mode of failure arises which
may bring into play another property of
the material., But while the simple
drawing and stretching prnbiem is still
unsolved little purpose would be served

by pursuing this more complex effect.”

'

In the first paragraph, he pointed out that the comparison

of two materials in any particular press operation must

depend on the relative severity of the impressed stretching

and drawing. This emphasises the importance of the analysis

of a forming process and the quantitative distinction

between stretching and drawing in the forming process.

4
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In the second paragraph, he mentioned that local distort-
ions necessarily occur in the regions of transition in a
pressing of square plan with round corners. This is true
and can be easily observed as will be shown in Chapter 12.
[In addition, he also mentioned that local distportians

might give rise to another mode of failure. It is
reasonable to assume that the other mode of failure is

the failure under non-coaxial deformation. This mode of
failure will be shown in Chapter 10 as fracture without

excessive thinninge.
In order to extend and generalise the definition of draw=-
ability and the test to cover non-circular cup drawings,

it is necessary to re-examine the Swift®, test first.

8.1 Arbitrary Elements in the Swift Test,

In the Swift test of which the forming operation is shown

in fig,8-1, the extent of drawing is measured by the drawing
ratio, namely, the ratio betwsen the blank diameter and

the punch diameter in the fully drawn cup. The drawability,
defined as the largest extent of drawing Qithout failure,

is measured by the limiting drawing ratio which is the

largest drawing ratio.

There are four arbitrary elements in the Sﬁift test and it
is significant and necessary to identify them before the
definition of drawability based on them can be extended to
include non-circular cup drawings.
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As Forming Conditions and Process Parameters,

The forming conditions and process parameters like punch
profile radius, die profile radius, lubrication condition
and holding pressure are chosen arbitrarily in the standard
Swift test. It is known that those parameters have
influence on the limiting drawing ratio or the drawability.
Thus, strictly speaking a Swift test result is reliable
only for a drawing operation with the forming conditions
and process parameters which are the same as those in

standard Swift test.

B. The Assumed Boundarye.

In the Swift test;?%rawing ratio in a successfully drawn
cup is used to represent the extent of drawing, and

L]
successfully drawn" means the edge of the blank is drawn

in,passing the die profile and becomes part ogriertical
wall of the cup. In other words, the definition of the
extent of drawing used in the Swift test, namely, the
drawing ratio in a successfully drawn cup, implies a
boundary for the cup, and the boundary is a circle between
the vertical and the non-vertical parts of the die. The
successfully drawn cup is a flangeless cup. There is no
theoretical reason why such a boundary should be assumed.
Indeed, in practicé, a small flange is often required in
the product for holding a cover or screw fastenings or
further forming. The Swift test result applies, therefore,

only to the drawing of flangeless cups, and the maximum
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extent of drawing in a flanged cup can differ from that

determined in the Swift test.

B The Assumed Shape and Orientation ofA Blank.

In the case of a round cup drawing, it is natural to assume
that the blank should be circular and should be located
beth the the.
symmetrically with respect tonpunch and ,die. When non-
circular cups are to be drawn, however, the largest
possible extent of drawing depends on the shape of the
blank as well as the orientation of the blank with respect
tgjgunch and die, hence the shape and the orientation of -
the blank are inevitably the arbitrary elements in the
definition of drawability. In fact, even in the Swift
test, the circular blank is not, theoretically speaking,

the correct shape for the largest possible extent of

drawing, if earring occurs, as it usually does.

Of the four above mentioned arbitrary elements in the
definition of drawability implied in the Swift test, the
first, in the forming conditions and process parameters,

is readily recognised. The second, the third and the
fourth, related to the boundary of fhe cup, the shape

and the orientation of the blank, are less obvious, and are,
in fact, unimportant within the limited scope of the Swift

tEStl

It will be shown later in this thesis how these arbitrary
elements are involved in the generalised definition of
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drawability which is applicable to all shapes of cup draw-

il'lgo

B.2 The Boundary and the Completion ofADrawing Operation,

. As mentioned iﬁTﬁast section, although in the Swift': test, the
boundary is not defined explicitly, it is implied in the
definition of the extent of drawing. In the Swift test,
"successfully drawn" means all the material is drawn in

to form part of the cylindrical wall of the cup, and when
the cup is "successfully drawn", it is the completion of
the draﬁing operation. The circle around the cylindrical
wall is supposed implicitly to b;rgnundary. If earring is
neglected, at the moment of the completion of drawing, the
blank edge everywhere reaches the implied boundary at the
same time. In non-circular cup drawing, it is possible to
set the boundary at the wall of the cup, but the large ears
would make the setting impractical. In fact, the boundary
should depend on the purpose of the product. Suppose the
dotted line in fig,B8-2 is the boundary of the product,
which is also the closed curve where the drawn cup is to
be cropped, the cup then must be reckoned to have been
fully drawn when the edge of the blank anywhere first
touches the boundary. 1If the drawing is finished without
the blank edge touching the boundary at all, it is a

waste of material and a smaller blank could be used for
that drawing operation. If the drawing operation is
stopped after the blank edge touches and goes into the
boundary, then the drawn cup is not the product, but is
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scrap. Iherefore, the completion of the drawing operation
should be when the blank edge anywhere first touches the
boundary and to be"successfully drawn" means the drawing

operation is completed without failure.

B3 The Extent of Drawing,

The main idea of using?ﬂrawinq ratio in the Swift test as
the measure of the extent of drawing has a subtle strength
which will be exploited in the following. If, following
the term "deep drawing" one chose the depth of a éuccess-
fully drawn cup as the measure of the extent of drawing,
aone would have inclhded in that measure stretching of the
material and the measure would be a mixture of stretching
and drawing of unknown proportion. The drawing ratio, on
the other hand, measures only the extent of drawing because
it represents the amount of material being drawn in. To
explain how the drawing ratio is a measure of draw-in,
suppose we consider the diameter of the punch in the Swift
test as a conventionalised way of expressing the mean
diameter of the cup, and a circular ring with its_ﬁiameter
the same as the mean diameter of the cup. at the level of
the point (asQ in fig.B-1) wheére the work leaves the die
profile is taken as the boundary. Draw-in then is the
amount of material that has passed through the boundary
and can be measured in various ways, such as an absolute
value of so many in? or in some non-dimensional ratio.

It will be shown that the drawing ratio is one of the
measures of the draw-in in the completed cup. By
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definition,

Drawing ratio = D 8-1

where D is the diameter of the blank and Do is, for the
purpose of the present discussion, the mean diameter of
the cup and, also the diameter of the boundary. Draw=-in

can be adequately measured by the following ratio R {EDL

(Area of undeformed) + (Area of undeformed material )
R = material drawn in originally inside the boundary

Area of undeformed material
originally inside the boundary

The simple relation between the drawing ratio and R is
obvious. In fact, the use of areas in measuring draw=-in,
as in Eq§2, serves a better purpose than the use of linear
dimensions, as in the drawing ratio, because the latter
gives a distorted scale of the areas. Ffor instance, it is
well known that a relatively small increase in the limiting
drawing ratio corresponds to a large increase in the height
of the cup. It is also more logical to use an area ratio
than to use a length ratio to represent the amount of

material being drawn because the amount of Continuede.sees
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material in sheet metal can be represented by the area in

the blank in the undeformed state.

8.4 Generalised Definition of Drawability.

When?iimiting drawing ratio is used to represent the draw-
ability of sheet m?tal, it is, in fact, simply a measure
of draw-=in in the flang®less cylindrical cup drawing,
maximised through the right choice of blank size. It is
now proposed to specify the generalised test for draw-

ability to cover all shapes of cup drawing.

It is proposed to define draw-in as the natural logarithm
of the ratio R in Eq. B8-2 in conformity with the natural
strains used in studying plastic deformations in sheet

metal. Thus,
Draw=-in, q; = 1n R B-4

and y is analogous to a surface strain, like that used in
the analysis of stretching in sheet metal forming. The
choice of this measure of draw-in in the generalised
definition of drawability is necessitated by the fact that
the drawing ratio is no longer a feasible quantity in non=-
circular cups and blanks. Now, the draw-in in any cup
drawing can be expressed as yin Eq. 8-4. Take, for
example, the square cup drawing operation shown in fig, 8-3,
At a certain stage of drawing, let the curva_E‘in the blank
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(fig, 8-3) be the locus of the particles which occupy the
boundary at that stage of drawing, then the amount of

draw=-in (61) at that stage is

\[l o In Ada 8-5
a Ab

where Adais the area inside the curve a in the blank and
Ab, the area inside the boundary. If the cup is drawn
further and becomes a completed drawn cup then at the
Icompletion of drawing, the curve E.in the blank (fig, 8=3)

is the locus of the particles which reach the boundary,

and the amount of draw-in at the completion of drawing,

L 8-6
Ve Ab

where Ac is the area inside the curve c. In the Swift
test, if the boundary is to be modified as that in section

B.3, then,
TF =2+1n (Drawing Ratio) 8-T

It is generally believed that drawability represents how
much a material can "withstand" drawing, or how "well" it
draws. For a scientific definition of drawability, the
ideas of "withstanding drawing" and "drawing well" have to
be translated in more precise terms capable of quantitative

expressions. The drawability, therefore, is defined as the
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greatest achievable draw-in, or in other words, the maximum
achievable xPc. The drawability so defined, need nntlnnly
be applied to cylindrical cup drawing as shown in Eg. B8-T7,
but also be applied to any shape of cup drawing.- It will
be shown later in this thesis, that the drawability of
sheet metal is not a purely material property, like °
Paissnﬁs ratio ofT%ensile yield stress but is the perform-
ance of the material under -the composite influence of a

set of forming conditions in a forming process, Therefore
it is dependent on the forming conditions as well as the

geometry of the forming process.

In the last section, the definition of drawability, based
on the idea of the Swift test, is generalised to cover
non-circular cup drawings, and it was said that stretching
is always associated with drawing inadeep drawing process.
However, ~ drawability has been defined so as to exclude
the stretching in the drawing process. It is desirable

and necessary to distinguish between drawing and stretching
quantitatively because the performance of a material in a
drawing process depends on the relative severity of drawing

and stretching in thal process.

In order to make the distinction between drawing and
stretching, a square cup drawing as shown in fig, 8-3 is
taken as an example. A flat blank is held between the die
and the pressure plate and a punch pushes it through the
die to form a cup. As the drawing operation progresses,

Eontinted, i «eas



- 132 -

some material near the centre of the blank is stretched
by the punch so that it becomes thinner, At the same time
the material still held between the die and the pressure
plate, called the flange, moves generally inwards and
part of it becomes the vertical walls of the cup. As the
flange moves inwards, the material in it is generally
compressed in the circumferential direction and part of

such material becomes thereby thicker than the blank.

To illustrate the difference between stretching and drawing,
let the following somewhat hypothetical processes be
assumed to take place. First, let it be assumed that the
surfaces of both the die and the pressure plate are so
rough, and the blank is held so firmly between them that
no movement of the material occurs in the flange. In such

a process the material is pushed through the die purely by
stretching. The stretchability of sheet metal is usually
measured by the strain at the thinnest section where

fracture eventually occurs.

Now, suppose that there is a different process in which
the material in the flange moves inwards, or is drawn in
freely to form the walls of the cup, and that the relative
amounts of stretching and draw-in in the cup are such that
it has the same average thickness as the blank. In such

a cup it can be said that there is no overall stretching
and that the flat blank. is formed into a cup purely by
drawing. The drawability is measured as defined ﬂ:fiast
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section. In actual drawing operations both drawing and
stretching occur. The drawability is a measure of how

much the materialtbeing drawn in,but the practical engineer
is usually interested in knowing how deep the cup can be
drawn. In fact, the grealtest achievable depth depends not
only on the amount of drawing, but also on that of stretch-
ing. It is only correct, to avoid confusion, to define

and measure the amounts of drawing and stretching separately
because a material less drawable but more stretchable than
another may well be capable of being formed into a deeper

CUP

It is easy to see that the amount of stretching in the
material varies from one point to another in the cup and
is related to the local thickness, because the area of any
vanishingly small part of the blank can be increased only
at the expense of the thickness. The total amount of
stretching (62) in the cup is therefore related to the
average thickness taken over the whole cup. The amount of

stretching is defined as follows:

Surface area of the cup inside
the boundary

Area of the blank inside curve a

Amount of stretching, 7%

q; = 1n

B-6
=1 Asa
= In Ada : B-7

where Asagis the surface area of the cup inside the boundary

and Adais the area of blank inside curve a as described
the
inﬁlast section.
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Obviously, the amount of stretching is also equal to the
natural logarithm of the ratio between the average thick-
ness of the cup and?ihickness of the blank. At least
theoretically, it is possible for the cup to havef%uerage
thickness larger than the blank thickness and for®

the amount of stretching to be negative. The area Aain
Eq. B8-7 is, strictly, speaking, that of a geometrical
surface midway between the outer and inner surfaces of the
cup but, for practical purposes,it is usually adequate to

use the outer surface of the cup instead.

The amount of draw-in defined in Eq. B=5 is rewritten
here for the convenience of discussion,

M o Aua
Amount of drdw-ln,¢a=ln e B-5

Then,
Ada -
'43 + q% = 1n ap *t 1n Asa

Ada

Asa
Y 7

Eg. B-8 represents the overall surface area increase

inside the boundary. Before the drawing operation, the
area inside the boundary is Ab and at certain stages of
drawing, the surface area inside the boundary would be Asa,
and this increase is partly due to the draw-=in qﬁa and
partly due to the stretching’bath of which produce increase
in area inside the boundary. The amount of draw-in and
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the amount of stretching in a drawing process can be

represented quantitatively in percentage of the overall

surface area increase as[xpy(#,+¢4x180% andpw/hp+¢JXlDD%'

With the generalised definition of drawability, it is
possible to compare the performance of a material in
different forming processes and to investigate the "more
complex effect" as in non-circular cup drawing. Because
proce 55
the failure of material in a deep drawing normally occurs
at the stretching region and the stretching and the
drawing actions are interrelated, it is possible, with the
quantitative distinction between stretching and drawing,
to haveabetter understanding of the behaviour of the

material in a forming process so as to improve the perform-

ance of the material.
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9.1 Experimental Equipment. (Experimental Technigue+)
Ae Test Machines
(1) Denison Testing Machine

Capacity s 50 tons

Model :  Ta2/Ba
(2) Hounsfield Tensometer. :
(3) Hille 20/40 ton Universal Sheet Metal Testing
Machine.

The Hille 20/40 ton Universal Sheet Metal Testing Machine
designed for sheet metal research workers, is a hydraulic
press incorporated with an electronic X — Y recorder so

that the punch load and punch penetration during a press-
ing operation can be recorded. The die, the pressure plate
and the punch are all changeable, therefore, with a square

die and punch,a square cup can be drawn in this machine.

Performance Data :

Maximum depth of draw 5in. (127.0 mm)
Maximum blank diameter 6.5 cine (165.1 mm)
Maximum drawing load 20/40 ton (199.28/398.56 KN)

Clamping load ranges :
Low pressure : B00 - 5000 1b (3.56 = 22.24 KN)
High pressure : 2000 -25000 1b (8.89 - 111.20 KN)
Drawing speed : infinitely variable up to

approximately 15.7 in./min. (398.78 mm/min.)
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(4) Hordern, Mason & Edward 0.P. 55, Geared Single
Action, Open Front Inclinable Power Press.

This machine is used for the blanking of circular blanks.,

B Forming Tools.

(1) Punches.
Circular punch
diameter 1.968 in, (50 mm)
profile radius 0.394 in, (10 mm)
Square punch :

the dimension is shown in fig, 9-1.

(2) Dies.
Circular die 3
die hole diameter 2.156 im - (54,76 mn)
die profile radius 0.788 in, (20 mm)
Square die :

as shown in fig, 9-=1.

Es Measuring Machines

Societe Genevoise Universal Measuring Machine, model MU
214B is used for measuring the deformed grids and for
scribing linear lines. The smallest unit of measuring is
0.00001 inch and a cutter could be put on the machine so
that very high accuracy of paralle?tf;ies could be achieved

on the specimen.
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In addition to the Universal Measuring Machine, a travell-
ing microscope and a planimeter are also used for measur-

ing grids and areas.

b Data on Work Material.

The material used in this project is the "Deep Drawing
Quality" mild steel sheet (B.5.5. 1449, Part I, 1972, CR3)

with its chemical composition as follows:

E 0.10% max
Mn 0.50% max
5 0.040% max,

P 0.040% max,

The thickness of the sheet is 0.048" (1.22 mm) and the R-

value is 1.028.

9.3 Experimental Technique:
A, Preparation of Specimens
(1) Specimens for non-coaxial deformation test:

Specimens are cut to a coupon form  ©f  dimension 34" x

+" (82.55 x 19.05 mm) first. The edgesof the coupon are
well filed, Then the coupons are milled to be as shown in
fig,9-2 in different values of Eand different width (d)
between the cuts.
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The area between the cuts, (P,P,Q,Q, in fig, 9-2) called the
effective region, is covered with square grids scribed in

the Universal Measuring Machine.

(2) Specimens for zigzag strain path test:

The preparation is divided into two steps. In the first
one, the specimen is cut into coupon form with dimensions
5" x 24" (127 x 63.5mm) as shown in fig.9-3. The edges of
the coupon are well filed and square grids are scribed in
the Universal Measuring Machine at the central postion of
the coupon. The second step is that, after the specimen is
pulled iﬁ?%enison Testing Machine under a certain load,
small coupon pieces as shown in fig 9-3 are milled out from
the central portion of the deformed specimens at different

anglestX (fig,9-3).

(3) Specimens for deep drawing:

Cirgqular blanks are blanked out in the Hordern, Mason &
Edward 0.P. 55, geared, single action, open front inclinable
power press and then turned in a lathe to the required
sizes of 43", 4%", 5", 5%", 5%", 53" and 5%" (120.65mm,
123.82mm, 127.0mm, 130.17mm, 133.35mm, 136.52mm and 139,70

mm) in diameter.

Square and octagonal shape of blanks are cut by a guill=-

otine and the edges are well filed.
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Orthogonal parallel lines are scribed over one-eighth or
one quarter of the blank for later measurement.

g
B, Line Scribing
In order to scribe square gridswith high accuracnyUniversal
Measuring Machine is used to scribe the line, By putting a
weight onto the cutter,auniform line of 0.6012“ (0.03 mm)
in width can be scribed on the specimen.Thesnecimen is
clamped on the turning table in the Universal Measuring
Machine and parallel lines with spacing 0.025" (B.635mm) are
scribed. Then the table is turned through 90°, and an

orthogonal set of parallel lines js obtained,

55 Reprinting of Deformed Grids

Grids are scribed on the surface of the specimens. In the
experiments, the forming operation is stopped at several
stages and the deformed grids are reprinted by a special
technique (51). Colour pencils are used to scratch over
the grids and then the surface is wiped clean so that
colour particles are left only in the scribed lines. A
strip of clean transparent adhesive tape is used to cover
the grids on the specimen so that the colour particles
stick to the tape. Then the tape is taken from the

specimen and put on a flat surface for measuring.

With some cere,, the stretching of the tape when the tape

is taken from the specimen could be avoided. The stretch-
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ing is so small that under a travelling microscope
reading to 0.0001", no change could be observed. This
raprinting technique makes it possible to record the
deformation of a small piece of material in which the
deformation is uniforme. Also, by using this reprinting

technique, the metal flow in a forming process can be

traced.
9.4 Experimental Procedure . .
A. Non-coaxial Strain Path.

Specimens with different inclined angle of cuts and
different distances between the cuts are tested in the
preliminary test (will be discussed in next Chapter), to
find the suitable inclination of the cut and the suitable

distance between the cuts,.

The specimen is clamped in the tensometer and pulled by the
manual operation wheel so that the forming spead is low
enough to observe the occurrence of necking. Because
the stressing in the effective region is very complicated
and is outside the scope of this project, the load to pull
the specimen is taken only for reference butfnot recorded

on the drum.

The scribed grids are reprinted at several stages. The

deformed grid at every stage of the point where necking,
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ard final , fracture occurs can be traced, measured and
calculated. From fhis the three principal strains and the
magnitude of non-coaxiality are obtained and?ﬁun-coaxial

strain path can be plotted.

B. Non-coaxial Zigzag Strain Path

Square grids are scribed at the central part of the spec-
imen (24" x 5") which is shown in fig, 9-3 with the grid
lines aligned to the edges of the specimen. Then the
specimen is pulled inﬁhenison testing machine to a certain
strain under:certain load. Four other specimens were
pulled by repeating the above procedure, The deformed
grids are reprinted. The strain at the central part of
the specimen is checked to ensure that the deformation at
that part is uniform and the amount of strain at each

specimen is exactly the same.

Then the specimens are cut and machined to the shape Shown
in fig.9-3 (small piece) with:different angle to the

direction of loading in the first pulling.

The small specimen is pulled again in a tensometer and the
grids are reprinted at several stages during the pulling.
This procedure is repeated in the other small specimens.
The strain path under which the material fails is obtained
from the aefnrmsd grids.
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G Deep Drawing Tests
(1) Cylindrical cup drawing:

Different sizes of circular blanks on which two diameters
along and perpendicular to the rolling direction are
scribed, are drawn by a circular punch in the Hille
Machine. The blank is centred by means of three centering
fingers. A polyvinyl chloride (P.V.C) sheet of 0,004"
(0.10mm) thick is used as lubricant between the blank

and the die.The holding pressure is set at 2500 1b (11.12 KN)
for all drawing operations. Punch load against punch

penetration is recorded by the X=Y recorder.

The drawing operation is stopped at several stages and.at
each stage, the edge of the unfinished cup is traced with
marks for the position of the two perpendicular diameters.
By joining tHB marks and taking the average of these two
current diametefs, the movement of blank.edga at each

stage is obtained.

(2) Square cup drawing:

(a) Alignment of punch, holding plate and die,

Although the square punch, die and holding plate were made

so that they would be allocated automatically at the

central position in the Hille machine, the relative posit-

ions among the punch, die and holding plate still have to be
lack of '

aligned due to the axisymmetry of a square.
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(a)

(b)

(c)

(d)

(e)

At

Through
two perpendicular lines passinqA?Ee centre

of the punch cross-section and parallel to
the sides of the cross section are drawn

on the punch head.

two tiny copper wires perpendicular to each
other, passing through the centre of the
die and parallel with the sides of the die
hole, are hung and stuck on the die face by

covering a strip of adhesive tape. (fig, 9-4a)

the same procedure as (b ) is repeated on

the holding plate (fig,9-4a).

the punch is screwed into ! position in
the Hille Machine. The orientation is
decided by screwing down the punch to the
limit so that the screws could not be
further tightened and the punch is fixed

in the machine.

holding plate and die are put in the Hille
Machine. The alignment is done by aligning
the strings on the holding plate, the die
face and the lines on the punch head

together,
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(f) marks:aré ﬁut on the holding plate and the
site of the holding plate in correspondence
to each other and on the die and the die
holder as well, so that the positions of
the die and the holding plate can always

be checked (fig,9-4b).

(g) the copper wires on the holding plate and
the die face are removed and four tiny
lines are scribed on the.holding plate for

blank location (fig,9-4b).

(3) Location of Blank:

Hheeugh
Four equallyspaced lines passingA{he centre of the blank

are scribed on the blank. By aligning these four lines
with those on the holding plate, the blaﬁk is located

centrally with respect to the die (fig.Q;db).

(4) Forming procedures:

(a) the grids on the blank are reprinted so that
the material particles which reach the
boundary in the drawing operation can be
traced back to stage zero of the drawing

operation,
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(b) the blank is drawn in the Hille Machine by
the square punch and die and the machine
is stopped at?certain punch penetration as

stage 1 of the drawing operation.

(e) by mounting a ring (fig,9-5) which specifies
the boundary on the work piece, the boundary
is drawn on the surface of the workpiece,
and then the grids near and outside the
boundary are reprinted so that the particles
which occupy the boundary at stage 1 of the

drawing operation are recorded.

(d) the drawing operation is continued and the
procedures (b) and (c) are repeated for the
stage 2, 3, sessse uptil the edge of the
flange touches the boundary This is the

completion of the drawing operation.

(5) Measurement of draw-in:

From the reprinted grids at every stage of the drawing
operation, the points which occupy the boundary can be
traced back to the original positions at stage zero of the
drawing operation. In other words, the points on the
blank before the drawing operation, which would reach the
boundary at different stages of the drawing operation
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could be traced. As shown in fig, 9-6, the curve marked
by a number, say 2, is the locus of the points which will

reach the boundary at stage 2 of the drawing operation.

The amount of draw-in at certain stages of the drawing
operation is obtained by Eq. 8-5, namely,
the area inside the closed curve

Draw—in,\yi = 1n i (fig.9=6).
the area inside the boundary

The maximum draw-in of the drawing operation is obtained

at the completion of the drawing operation, so

the area inside the curve 4 (fig.9-6)
the area inside the boundary

Max . Draw—infrc =

D. Determination of the End Point.

Many sheet metal research scientists have experienced the
difficulty of determining the end point of the forming
process. This difficulty is due to the lack offbracise

definition of plastic instability im sheet metal.

In this project the determination of the end point is

not so difficult as in other investigations. There are

two kinds of end point determination due to different

types of forming. The first one is the determination of the
end point in the non-coaxial and the non-coaxial zigzag
strain path experiments. Because the experiments are
similar to the tension test, the determination of?gnd

point can be referred to that in the non-coaxial strain
Eontinuedo s e e



- 148 =

where
path experiment, the deformation concentrates in the

effective region and is not so uniform as that in the
tension test. However, because the progress of forming
is recorded by the reprinted grids at that region in a
very small forming interval, the grids just before the
occurreénce of fracture is taken as the end point of the

forming.process.

The second one is the determination of?%nd point in the
cup drawing tests. Because the measurement in this
experiment is the amount of draw=in or the movement of
the flange, as soon as the onset of plastic instability
dccurs, draw-in or the movement of the flange stops. By
the observation of necking in the punch profile region

or the sudden drop of punch load in the X-Y recorder, the
end point of the drawing operation can be judged well
enough in an: unsuccessful draw,: . For successful draw-
ing, when the flange edge is near the boundary, the
interval between stages of the drawing operation is set s0°

small, that the completion of the drawing

operation can be located.
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Non-coaxial and Nen-coaxial Zigzag Strain Paths,

As has been briefly mentioned before, most of the sheet
metal tests in current use are axisymmetrical forming
operations in which only coaxial strain paths are
involved. It is easy to seé?ﬁost of the sheet metal
products are not axisymmetrical and sheet metal products
are often not manufactured in one forming operation.

Lack of axisymmetry of the product will obviously induce
non-coaxial deformations. In multiple manufacturing
operations, unless they are all ax isymmetrical and well
aligned in all forming operations, non-coaxial and non-
coaxial zigzag strain paths are bound to be involved.
Again, even in nominally axisymmetrical forming operations,
the strains are non-coaxial owing to earring. Therefore,
for the better understanding of material behaviour under
forming, it is not only significant but also necessary

to test sheet metal under non-coaxial conditions.

In the workshop it is difficult to avoid non-coaxial
strains, but in the laboratory it is difficult to obtain
the desired non-coaxial strain paths. The reason for the
experimental difficulty is easy to sce. The experimental
strain paths must be such as to lead to necking and
fracture. In one set of unsymmetrical die and punch, one
such path may be obtainable at the critical section. For
another non-coaxial strain path, either the punch or the
die or both have to be changed. Even where a different
strain path is obtained in this way, it is difficult to
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control it, so that, for instance, a whole set of punch

and die could be prepared only to find that the strain

path at the critical section is nearly the same as that of
the last set. Therefore, to obtain significant experimental
results on the non-coaxial strain paths in actuai forming
operation, a very large investment in both expenses and
experimental time is required, which lies outside the

scope of this Ph.D, project. It is doubtful if such
research expenses are justifiable unless they are directly

related to large scale manufacture, like the car industry.

In this project, a more manageable and workable experiment-
al technique is chosen, namely that of tension test
specimens in coupon form, (as shown in fig,9-2 and fig.
9-3). In this techn;que, the variables can be controlled

adequately, as will be shown later.

The experimental results obtained in this manner — the
first results on non-coaxial strain paths in the field of
sheet metal forming researchs= provide the theorgtical and
experimental techniques with which research and development
work on specific problems can be tackled, as well a; some
significant results of general validity. The objection
may, of course, be raised that these are not the non-
coaxial strain paths in actual forming operations, but, as
explained in the preceding paragraphs, the cost of the
dies and punches alone makes such pursuit of realism
impracticable.
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10,1 Preliminary Tests,

In order to pursue non-coaxial strain paths, the specimens
in coupon form with inclined cuts at the edges (fig,9-2)
are tested. Preliminary tests are done for finding the
suitable inclination of ‘the cut and the width between the
cuts. As shown in fig,9-2, the area between the cuts,
(P,P,0;Q;) is called the effective region where the deform-
ation occurs when the specimen is tested. The inclination
of the cut is represented by an angle B(fig.9-2) which is
the angle between the cut and the transverse direction of
the coupon form, The width between the cuts is represented

by d (fig,9-2).

The preliminary tests show that when § is very large, the
deformation is localised at P; and Q; (fig,9-2), and then
two necks or even tearing will occur. Wheng is very small,
the non-coaxiality of principal axes of strain of the
deformation in the specimen is too small to be detected
within the accuracy of measurement, and the deformation in
the effective region is localised at the line connecting
the ends of the cuts so that the strain can not be accurat-
ely measured due td?ﬁnsufficien@,fine grid used. If??iner
grid is used, the deformation inside the grid will be more
uniform than that in the larger grid. But because the
strain is obtained by measuring the deformed grid and the
accuracy of the measuring machine which is a fixed absolute
Qalue, the finer the grid is, the larger the percentage of
error due totgmaller gauge length.A finer grid is not
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measuring machine of
helpful unless a,Higher accuracy ' e is

provided. When d is very small, the effective region
(PyP20;Q, in fig,9-2) is turned rigidly with bending
along the sheet surface at the corners soon after the
affernards
test is started. Necking and fracture take place,as

those iﬁ?ﬁaaxial case, afterwards. Fig,l0-1 shows the

different regions.

Only those specimens are tested in which the inclination
of cut and the width between the cuts are not too small
to produce detectable non-coaxiality of principal axes

of strain and not so large as to produce tearing.

The inclinations and widths between the cuts together
with the labelling of the specimens to be tested are

listed in the following table.

labelling 4
| Al A A3 A4 A5 Bl B2 B3 B4
(degree)
0 20 25 30 45 0 20 25 30
d(i“J D.lZED.lZSU.lZSU.125P.lZSD.lEDD.lSDP.lEDF.lSD
102 Non=coaxial Strain Paths.,

The strain paths of the material in the specimens being
tested are plotted in three-dimensional triangular co-
ordinates fig,10-2. The coloured curves,except the one
covering the points B,',B3' and B4”are the strain paths
of the material in the specimens Bl, B2, B3 and B4. The
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strain path 0B, is coaxial, because the specimen Bl has
cuts perpendicular to the sdg;:therefore the material in
the effective region is deformed under a coaxial strain
ﬁath. It is coaxial, so it lies on the clock diagram
in * triangular co-ordinates. The other three curves
0Bz, 0By and 0B4 are non-coaxial and ar;?;ggbe'curves in
3=D triangular co-ordinates, The projection of the
non-coaxial strainapaths 0B, 0Bz and 0B, on the clock
diagram, called projected strain paths, are also shown
as 0Ba', OB3' and 0Bg' in fig,10-2. The vertical dist-
ance from the projected strain path to the spaced non-
coaxial strain path represents the magnitude of non-
coaxiality Df?;rincipal axes oF'stréin with respect to

the material.

The magnitude of non-coaxiality at a certain state of
strain is defined as the angle between the fibres which
lie: along the direction parallel to the principal axis
of the major strain at the beginning of the deformation,
and the fibre which will lie along the direction parallel
to the principal axis of the major strain at thgfgthe

of strain. The angle?measured 1 in the material {a the
undeformed state. But practically it is rather difficult
to determine it accurately because it is difficult to
find the exact fibre which lies along the direction
parallel to the principal axis of the major strain at the
beginning of the deformation. This difficulty is due to

the inaccuracy of measurement at very small
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straim. If a higher accuracy or more powerful measuring
machine and technique is provided, this difficulty could

be overcome. In this project, the magnitude of the non-
coaxiality is determined by using the state of strain when
the major principal strain is around 0.2 as an aq;ivalence
of that at the beginning of the deformation. Therefore, the
space curves of non-coaxial strain paths in fig, 10-2 aﬂd
fig, 10-3 leave the clock diagram into the space at the |

state of strain when €1 is around 0.2.

In fig, 10-3 the strain paths of the material in specimens
Al,A2,A3,A4 and A5 are shown. The strain paths except the
non-coaxial one OAg in fig,10-3 are similar to those in
fig, 10-2. The projected strain path of 0OAs is shown and
the characteristic of the strain path is between 3 and 4
n'clock in the clock diagram. The strain path reaches
its end point at?very small thickness strain (-0,17),
which is rarely seen in sheet metal forming. But it is
not difficult to visualise the failure of material in
this case, say, a failure due to simple shear or twist at
the cross-section of the sheet could happen even without
any thickness strain. This type of failure may be
reckoned as fracture without excessive thinning and it,
in fact, is the case which Professor Swift pointed out

thirty five years ago,

"local distortions necessarily occur in the
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regions of transition and the possibility
of another mode of failure arises which
may bring -into play another property of

the material." (22)

'The local distortion is a shearing or twisting as will be
discussed in Chapter 12, and the material is obviously
deformed under a non-coaxial strain path. Professor
Swift might well have observed the type of failure

due to this local distortion when he mentioned another

"
mode of failure®,

This is the first time the non-coaxial strain path has been
investigated and represented graphically. It is found
that although the strain path ends at the region between
4 and 5 o'clock on the clock diagram, the early part of
the strain path is mostly in the region between 3 and 4
o'clock. The downward shifting of the strain path is
obviously due to local thinning. If the thickness strain
atﬁ%arly stage of the deformation is small (like A5 in

fig.10-3), the material will fail without local thinning.

IHEs Forming Limit =% Curve.

In the coaxial case, the forming limiting curve such as
Lee and Hsu's curve, is the forming limit: of the material
under coaxial deformation. In a non-axisymmetrical form=-
ing process, the material somewhere or even euerywhere‘in
the workpiece is bound to be deformed under non-coaxial
strain paths It is possible th;t fracture occurs at the
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a place where the material is deformed under a non-coaxial
strain'path, especially in a cup of irregular shape and in
forming processes with several stages of re-drawing. Then
like the forming limits iﬁ?%aaxial case, there should be
forming limits for the material under non-coaxial deform=-

atione.

A curve passing the end points (B,',B3' and Bg') of the
projected strain paths in fig,10-2 is drawn. This curve
represents part of the forming limits of the material under
non-coaxial strain paths and this is only to illustrate
that:farming limit® + curve of sheet metal under non-
coaxial strain paths like that under coaxial strain paths
can be pursued. The forming limit. ' curve of material
under non-coaxial deformation can be pursued on several
bases, for example, on the same degree of non-coaxiality,
where a series of forming limiting curves of different
degree of non-coaxiality including the one under coaxial
deformation (zero degree of non-coaxiality) can be drawn

on the clock diagram in a triangular co-ordinate. In fact,
instead of the series of forming limit -+ curves on the
clock diagram, a formability surface covering all the end

points of strain paths including coaxial and non-coaxial

ones in . 3-D triangular co-ordinatesis the complete form-
ing limit# of a material ies¥®elariieo,
10.4 Non-coaxial Zigzag Strain Paths.

The zigzag strain path discussed in this thesis is a strain
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path zigzagged due to non-coaxiality of the principal axes
of stress with respect to the material instead of changing
of the stress ratio in the deformation. The strain paths

shown in fig,10-4 are those of material deformed under the
stressing with the same stress ratio but different direct-
ions of principal axes of stress with respect to the

material.

As described iﬁ?iast Chapter, specimens of the same size
2+" x 5" (as shown in fig,9-3) are deformed under the
same load so that the material at the central part in
every specimen is deformed to the same state of strain
under the same strain path. The strain path is shown as
OC on the clock diagram in 3-D triangular co-ordinates in
fig,10-4 and it is coaxial. Then the deformed specimens
are cut into the small specimens from the central part of
the specimens with different angles & (fig.9-3). The
state of strain of the material in each small specimen is
the same, sy e 2, but the angle between the axis
of the major strain with respect to the material and the
axis the small specimen is going to be stressed, namely,
the angle X, is different, wdtlw® o After the
small specimens are cut from the deformed specimens, the
angle X in each small specimen is measured and the small

specimens are labelled as in the following table:

Specimen &l 2 3 C4 C5

o

>4 6% |- 30,3 46,921 60.8%| 90
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Then the small specimens are tested again in a tensometer.
Because the small specimens are of the same material at the
same degree of work-hardening and of the same shape and
size, if the material is assumed to be isotropic all the
time through the deformation, the stress-strain relation
under ¢« testing igfaensometer would be the same in every
small specimen. But the strain paths plotted in fig,l0-%
turn out very differentlyfrom one another,not only in the
degreeé of non-coaxiality D#T;rincipal axes of strain with
respect to the material, but also in the strain ratio.
Coloured curves in fig,l0-4 except the red one are the
strain paths, OC is the coaxial strain path representing
the deformation in the large specimen. and, 0Co and CoCd,
.LC2, CC3, CC4 and CCg are those of the deformation in the
small specimens Cl, C2, C3, C4 and C5, respectively. The
small specimen Cl is cut from the large deformed specimen
in such a way that the axis Df?%ajmr principal strain is
perpendicular to the direction of loading in the small
specimen. At the early stage of testing in the small
specimen, the major principal strain is decreasing and the
minor is increasing. But the principal axes‘uf strain
remain unchanged with respect to the material. Therefore
the strain path is cﬁaxial. When the strain path reaches
Co' where the major and minor principal strains are egual,
suddenly the axis of minor principal strain becomes that
of major principal strain and the axis of major principal
strain becomes that of minor principal strain. This is
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; [
explained as a sudden 90° rotation of the principal axes

of strain with respect to the material. The strain path

in this case is represented in J-D triangular co-ordinates
o

by discontinuous curves CCo' and CoC) with - 90 of non=-

coaxiality.

The curves CC;, CC3z and CC4 are strain paths with different
amounts o} non-coaxiality of principal strainé with

respect to the material, which is due to different amount
of non-coaxiality of the axes of principal étress. EC

is coaxial because the small specimen C5 ié cut such that

the axis of major principal strain is along the direction

of loading in the small specimen.

A curve passing the end points of the projected strain
paths on the clock diagram is drawn. It represents the
formability of sheet metal under non-coaxial zigzag strain
paths. Like that under coaxial zigzag strain paths, the
formability curve depends on the amount of prestrain.
Thoée nﬁnAcoaxial zigzag strain paths shown in fig,10-%
are due to the same type of failure, namely, excessive
thinning leading to fracture, therefore, the formability

. curve is nearly a curve of constant thickness strain.

It is clearly shown that the strain path may be zigzagged
without changing the stress ratio. If the non-coaxiality
of the principal axes of strain is neglected, a zigzag

Continuedesesse



- 160 -

strain path would lead to the wrong conclusion that the
stress ratio changes in the forming operation. In non-
axisymmetrical forming processes, especially forming
processes involving irregular shapes and multiple-stage
forming operations, it is very likely that the material
at the critical section is deformed under a non-coaxial
strain path or a non-coaxial zigzag strain path. As most
- of the sheet metal products are non-axisymmetrical, it is
significant and necessary to examine the strain path under
which the material at the critical section is deformed.
Even in those axisymmetrical ones, earring will bring the
involvement of non-coaxial deformation to the material in
the workpiece. Therefore, for a strict investigation of
material behaviour in a forming process, the coaxiality

of the principal axes of strain should always be examined.
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Drawability - A Generalised Definition.

In Chapter 8, the Swift test was re-examined and the draw-
ability, originally defined as the largest drawing ratio,
was generalised to be the largest draw=-in at the completidn
of the drawing operation. By the generalised definition
of drawability, the amount of draw-in in a forming process
is to be maximised. The factors which affect the draw-
ability of sheet metal in a forming process will be
inuestigated.and illustrated with experimental results in

this Chapter.

1351 Process Parameters and Forming Conditions.

In a cup drawing operatiaon, the process parameters are
partly dictated by the requirements of the finished
product and partly chosen for the ease of the operation.
Thus, the shape of the cup and the punch and?%ie profiles
are usually dictated by the purpose to which the product
is put. The formiﬁg conditions such as holding load and
lubrication condition are chosen to avoid both excessive
friction and the tendency to wrinkling. It is understood
in any drawability test that, within the limits of the
required shape of the product, the process parameters and
forming conditions are roughly those conducive to the
maximum extent of drawing. In other words, it is under-
stood that in the drawability test the process parameters
and forming conditions are nearly optimized. They are
optimized because they should be nearly those used in
manufacturing practice where the drawing operations are
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made as easy as they can possibly be; and they are only
nearly optimized because the optimum conditions vary from
one work material to another. The Swift test fulfils these
optimum conditions but is limited to circular cup drawing.
It fails to measure the drawability or the performance of
sheet metal in a non-circular cup drawing operation. Now
the definition of drawability is generalised, therefore,

it should be possible to measure the drawability in any
shape of cup drawing. In a non-circular cup drawing
operation, the process parameters and the forming conditions
such as holding load and lubrication conditions shall be

optimized as they are in the Swift test.

Apart from those factors mentioned above, there are some
other factors which affect the drawability, such as the
blank shape and the blank Drientatiﬁns with respect to the
rolling direction and with respect to the punch and die.
But before they are investigated, one significant factor,
namely, the boundary of the product, should be discussed

first,

s G Boundary and Blank,

The cup drawn in the Swift test is confined to not only a
circular one but a flangeless circular cup. The implied
‘bqundary of the product is the closed curve around the
vertical ;ylindrical wall of the cup. As stated before,
many cup drawing products are not flangeless, in other
words, the boundary of the product is not set like that
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in the Swift test. Therefore, for better service of the
test result, the position of the boundary should be taken
into account in the test, and, whether and how the position
of the boundary affects the drawability should be invest-

igated.

The importance of the position of the Qoundary in the
definition of drawability can be illustrated by céﬁsider-
ing the variation of the drawing force in the Swift test.
The drawing operation in that test is shown in fig.
8-1. The drawing force is plotted against the current
position of the edge of the flange in fig,11-1. The
strength of the cup is based on the maximum drawing force
of curve b, because a larger diameter of blank can ﬁot be
successfully drawn. In fact, the strength of the cup is
dependent on the strength of the material near the punch
profile (point P in fig,B8-1) and is nearly constant with
respect to the blank size (29). When the maximum drawing
force in the drawing operation is equal to or lower than
the strength of the cup, the drawing operation can proceed
till a flangeless cup is formed.(curves a and b.), If the
drawing force reaches and then exceeds the strength of the
cup, the material near the punch profile (point P in fig.

B-1) breaks and the drawing operation can not go further.

For every particular drawing Dpera£iun, there is a critical
size of blank (represented by the radius 0B in fig,11-1)
for which the maximum drawing force is equal to
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the strength of the cup. Such a blank is called?%ritical—
sized blankj a blank which is larger than the critical-
sized blank is called supercritical-sized blank and one

that is smaller is called subcritical-sized blank.

If a boundary is set at the position which is reached by
the critical-sized blank when the drawing force is at its-
maximum, then such a boundary (represented by the hori-
zontal distance OK in fig.l11-1) is called the critical-
sized boundary. Similarly, a boundary which is larger
than the critical-sized boundary is called supercritical-
sized boundary and that which is smaller is called sub-

critical-sized boundary.

In order to find the drawability of the material in

circular cup drawing, the amount of draw-in should be
maximised. For choosing the optimum blank size, two
different ranges of the product boundary must be considered,
the supercritical-sized ones and the subcritical—sized

ones. For a subcritical-sized boundary, say that represent-
ed by the point M in fig,ll-1l, the amount of draw-in at

the completion of the drawing operation is maximised by
using a critical-sized '‘blank. Then the maximised draw-in
can be represented by the horizontal distance between B

and M in fig,11-1, If a .subcritical-sized blank is used,
say, blank A, the amount of draw-in at the completion of
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the drawing is represented by the horizontal distance AM

in fig,l1l-1, which is obviously smaller. Suppose a
supercritical-sized blank is used, say, blank C. The
movement of the blank édge is restricted to the horizontal
distance between C and H. If the position of B is marked
in blank C, it is easy to see that when C reaches H, the
mark B can not reach M or even K,but reaches a point to

the right of K. In other words, a point to the left of the
mark B in blank C reaches the boundary M. Then the maximum
draw-in by using a supercritical-sized blank for a sub=-
critical-sized boundary is less than that obtainable by
using a critical-sized blank., For a critical-sized
boundary, the arguments are the same as those for the sub-
critical-sized boundary and the critical-sized blank is

the optimum blank to use.

Now consider a supercritical-sized boundary, say, at H

in fig,1l-1. It is to be shown that the optimum blank

is that whose edge touches the boundary when the drawing
force just reaches the strength of the cup, as blank C in
fig,11-1. In any blank smaller than blank C, the draw-in
at the completion of the drawing, as explained before in
the subcritical-sized boundary case, would be smaller than
that in blank C. Suppose a blank D which is larger than
blank C is used and the position of C is marked in the
blank D. As blank C is used for a critical-sized or
subcritical-sized boundary, a point to the left of C will
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reach the boundary when the drawing force reaches the
strength of the cup, therefore the amount of draw-in

is smaller.

The amount of draw-in at the completion of the drawing
operation is plotted against the blank size in fig,11-2

for different size of boundaries. Each curve in fig,1l1-2
represents a boundary, and a point on the curve represents
a blank size and the amount of draw-in at the completion

of the drawing operation associated with the boundary.

The size of the boundary can be seen from the curve because
it is the blank size when the draw-in at the completion of
the drawing operation is zero. Curves A and B are for
subcritical-sized boundaries, curve C for the critical-
sized boundary and curve D is for a supercritical-sized
boundary. The point K represents the size of the critical=-
sized boundary (4.22", 107.19mm diameter). From the

curves in fig,1l1-2, the arguments in the last few para-
graphs are clearly shown. For the drawing operations with
subcritical-sized or critical-sized boundary, the blank
which achieves the largest dréw-in at the completion of

the drawing operation is 5" (127.0mm) diameter as shown in
the curves A, B and C, and it is the critical-sized blank.
When a larger blank is used, the draw-in drops as shown in
the dotted line. For the drawing.operation associated with
a supercritical-sized boundary, as shown in the curve D,
the blank which achieves the largestb draw-in at the complet-
ion of the drawing operation is not the critical-sized
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blank (5" or 127.0mm diameter) but is a supercritical=-
sized one (54" or 130.17mm diameter). When too large a
_supercritical-size blank (greater than 5¢" diameter) is
used, the draw-in at the completion of the drawing

operation drops. The supercritical-sized blank should
be that m which the edge touches the boundary when the

drawing force is egual to the strength of the cup.

Now a conclusion can be drawn, namely, to achieve the
largest draw-in in a drawing process, the critical-sized
blank should be used for a boundary smaller than or equal
to the critical-sized boundary, and the blank, . the
edge of which touches the boundary when the drawing force
is equal to the strength of the cup, should be used if the

boundary is supercritical-sized.

In fact, the blank having the limiting drawing ratio in the
Swift test is the critical-sized blank, and the boundary
implied is the smallest possible, yielding the maximum
amount of draw-in at the compietinn of the drawing operation.
It can be easily observed in fig.11-2, ~feri. a certain size
of blank which is critical-sized or subcritical-sized, the
smaller the boundary, . the larger the amount of draw-in
at the completion of the drawing operation. For instance,
in the critical-sized blank (5" or 127.0mm diameter), when
the boundary is 3.5" (88.9mm) diameter, the draw—in.is 0.713
(curve A) and it is 0,446 when the boundary is 4" (101.6mm)

CUhtiﬂUEdc EEEE



- 168 -

diameter (curve B), and is only 0.339 when the boundary
is set at the critical position (4.22" or 107.19mm
diameter, curve C). The Swift test can not measure the
drawability or the performance of sheet metal in a non-
circular cup drawing. It can not even measure the draw-
ability in a circular cup drawing if the boundary is a

supercritical-sized one.

The above arguments apply equally to non-circular cup
drawing operation. Fig,11-3 shows the drawing force
plotted against the current position of the edge of the
flange in a square cup of which the punch and die is shown
in fig.9-1. The current position of the edge of the
flange refers to the edge on the line OX (the inset of
fig, 11-3) chosen for convenience because it is on this
line that the edge of the flange touches the boundary
first. The three solid line curves are taken from the
actual pen records of the drawings represented in fig,11-3
by the line TT, The strength of the cup is determined
from the maximum drawing force in blank C (fig.11-3).

Thus a curve (dotted line) can be extrapolated in which
the maximum drawing force just reaches the strength of.
the cup. The reason that it is extrapolated instead of
being taken from the experimental data is that scattering

occurs near the critical size for a successful drawing.

Figure 11-3 is labelled in the same way as that in fig,ll-1

as far as possible, so that the arguments in the last few
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paragraphs can be applied easily to the drawing operation
in which a sguare cup is drawn from a square blank. As
for the curves in fig,ll-1, in fig,1l1-3 the point K
represents the critical size of the boundary and the point
B represents the critical size of square blank. If the
‘boundary is subcritical (to the left of K), the critical-
sized blank or a square blank with its side equal to twice
OB should be used for achieving the largest draw-in at the
completion of the drawing operation. A supercritical-
sized blank will bring about premature failure in the cup
and a subcritical-sized blank will produce a smaller draw-
in than that in the critical-sized blank. If the boundary
is supercritical-sized (to the right of K), then the blank
should be such that the edge of the flange touches the
boundary when the drawing force is just reaching the
strength of the cup. These arguments in the cup drawing
process are valid in square cup drawing as much as in
circular cup drawing. A line which is normal to the
boundary at the point where the edge of the flange touches
the boundary first, can always be found. This line is
taken to be the reference for the movement of the edge of
the flange. The movement of the point at the edge of the
flange which touches the boundary first is not necessarily
on the line of reference but can always be projected to
it,., Therefore, for cup drawing of any shape, a figure
like fig,l1l-1 or fig,11-3 can always be plotted and the
arguments about the boundary and the drawability can be
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applied to it.

The definition of drawability is generalised to be the
largest draw=-in at the completion of the drawing operation.
For both "draw-in" and "completion of the drawing", a
boundary should be defined first. The necessity of
defining the boundary is strengthened by the above
arguments, especially because when the boundary is super-
critical-sized the drawability is different from that when
it is subcritical or critical sized. Fnllo@ing the
discussion about the effect of the boundary on drawability,

the other factors are discussed below.

In circular cup drawing, because the punch and die are
circular, it is natural to choose a round blank for

cup drawing because a circle is non-directional. Although
the sheet metal is anisotropic there is only one way to

cut the round blank, and because the blank, the punch and
die are all circular, it is easy to locate the blank with
respect to the punch and die. But all this simplicity does
not exist in a non-axisymmetrical forming process. If the
punch and die are not circular, a round blank is usually
not the most suitable blank to use. Then the blank cutting
with respect to the rolling direction of the sheet is not
simple and the location of the blank with respect to the
punch and die is not simple either. It will be clearly
shown later that these factors in a forming process, in
fact, are interrelated. In order to investigate the effect

of & individual factor in the drawing process, it is
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necessary to fix the other factors and vary only that

one which is being investigated.

1143 The Orientation of ¥he Blank with Respect to the

Rolling Direction.

In © + circular cup drawing, the anisotropy of sheet metal
produces earring and apart from changing the blank shape,
there is nothing more to be done about the earring. 1In a
non=-circular cup drawing process, usually a naon-circular
blank is used for the best performance of the material in
the process and the geometry of the blank is no longer non-
directional. Then, the anisotropy of the material which in
a circular cup drawing process can not be optimized may
become an advantage with careful blank cutting. In order
to investigate the effect of the anisotropy of the material
on drawability, the other factors like blank shape and the
location of the blank with respect to the punch and die

should be fixed.

Blanks of the same size (5" x 5" or 127.0mm x 127.0mm), same
shape (sgquare) and same orientation of the blank with
respect to the punch and die (as shown in the inset of
fig,11-4) but of different orientation with respect to the
rolling direction, were drawn in a square cup drawing
process with the same size of boundary (subcritical-
sized). The angle $ as shown in the inset of fig,l1-4,
which is the angle between the blank edge and the rolling
direction of the sheet, is used to represent the orient-
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ation of the blank with respect to the rolling direction

of the sheet. In a square cup drawing, the angle ¢ varies
from 0° to 459, The amount of draw=-in against the punch
penetration is plotted in fig,ll1-4. It is seen from fig,
11-4 that the current values aof the draw-in, and the draw-
in at the completion of the drawing operation are almost
the same for all the blanks with different valuesof ¢.
However, it would pe unwarranted to judge in fig, 11-4

that the rolling direction or the anisotropy of the material
has nD¥BFFECt on the drawability in the square cup drawing
process. In this square.cup drawing process, the boundary
is set to be a subcritical one (6.24"™ in size or 158,50mm),
therefore, the largest draw—in,‘defined as drawability,
should be achieved by the critical-sized blank. So, apart
from those shown in fig,11-4, - it is necessary to check
whether the blank is a critical-sized one or not. This
checking is done by comparing the maximum drawing force

in the drawing process for each blank. The maximum drawing
forces for the blanks with different value of ¢ are shown
together with the strength of the cup (line TT as that in
fig, 11-3) in fig, 11=-5. It is understood that an increase in
the blank size will result in a larger drawing force,
Because the maximum drawing forces for those blanks of the
same size are all below the strength of the cup, their
sizes can be increased to reach the strength of the cup by
increasing the blank size. Because the blanks are all of
the same size, the one for which the maximum drawing forge
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is the lowest will have the largest incrcease in size to
become a critical-size blank. Such a blank is ‘that which
is cut in such a way that the rolling direction of the
sheet is 45° degree to the edge of the square blank.
The larger the critical-sized blank is, for the same
boundary, (subcritical-sized), the larger the draw=in
at the completion of the drawing operation. Therefore,
when the shape and the orientation of the blank with
respect to the punch and die are fixed in a square cup
drawing process, the drawability is the hiéhest if the
square blank is cut in such a way that the edge of the
square blank is 45 degree to the rolling direction of

the sheet.

11.4 The Orientation of the Blank with Respect to

the Punch and Dies

In the last section the orientation of the blank with
respect to the rolling direction is shown to have an
effect on the drawability of sheet metal in the forming
process. In this section, the effect of the orientation
of the blank with respect to the punch and die is invest-
igated and for clarity, the other factors such as the
orientation of the blank with respect to the rolling

direction and the blank shape, are fixed.

Square blanks, sized 5" x 5" (127.0mm x 127.0mm), cut with
the blank edges along and perpendicular to the rolling
direction of the sheet but located in different orientations
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with respect to the punch and die,were drawn in a square
. cup. drawing process. Ihe orientation of the blank with
respect to the punch and die is represented by an angle
which is the éngle between the blank edge and the flat
edge of the square punch cross-section. The angle 3§
varies frbﬁ 0° to 45° for a square blank in a sguare cup
drawing process. The amount of draw-in is plotted against
the punch penetration in fig,ll-6 when a subcritical-
sized boundary is taken. At a certain punch penetration
the amount of draw-in of the blank orientated at small &
‘is larger than that of the blank at large values, of &G,
This is because (say for the blank at T= o /lcurve A),

the material that will be drawn in at the flat part of the
punch has less resistance due td?gmall flange in that
part, therefore the draw-in is large, and the drawing
force is smail. When § increases, the flange at the flat
part &f the punch is relatively increased, so that the
resistance to the drawing action becomes larger. The
draw-in-is then lessened but the drawing force increases.
Until the drawing force reaches the strength of the cup,
the angle;f%nrsuccessful drawing reaches its critical
value, From the maximum drawing force in the drawing
process as shown in curve A in fig,ll-7, it can easily be
seen that the critical value of § for a square blank sized
5" x 5" (127.0mm x 127.0mm) for successful drawing in this
square cup drawing process is around 32.59, If the 5" x
5" square blank is located at an orientation of1§ave¥
32.50, fracture will occur in the cup. A set of blanks
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sized 4" x 4%4" (123.82mm x 123.82mm) were drawn in the
same drawing process and the maximum drawing forces of

the blanks at different values of 3 are shown in curve B.
The critical value of g for successful drawing in curve B
is around 429, This immediately leads to a guess that a
smaller square blank can be found which is capable of being
drawn successfully at any orientation . This guess is,
in fact, trué,because a 43" x 43" (120.65mm x 120.65mm)
square blank is drawn successfully at any value of T.

From these maximum drawing forces, the strength of the cup
can be found and is nearly constant with respect to the

blank size or orientation of blank location.

It is well known that in a square cup drawing, the material
moves faster at the flat side than at the corner of the
punch cross-section. When g increases, it prouidesflarger
amount of material at the flénge corresponding to the flat
side of the punch cross-section. It increases the resist-
ance to drawing due tn?iarger amount of material to be
drawn but it delays the completion of the drawing operation
and increases the draw-in at the completion of the drawing
operation. Therefore, the orientation of a square blank

of fixed size in a square cup drawing process, for the
largest draw-in at the completion of the drawing operation,
is that which provides as much material as possible at the
flange corresponding to the fiét side of the punch cross-
section where the material movement is fast, while the
maximum drawing force does not exceed the strength of the
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cup. Such an orientation may be called the critical
orientation of the blank of fixed shape and size in a
forming process. If the blank shape is fixed to be square,
for any orientation of blank location with respect to the
punch and die there should be a critical size of blank so
that the maximum drawing force in the drawing operation
is equal to the strength of the cup. Similarly, for a
certain size of square blank, there is a critical orient-
ation for it. The relation between the critical size of
the square blank and the critical orientation of blank
location in a square cup drawing process (dimensions of
the punch and die are shown in fig,9-lj is shown in fig.
11-8. Any square blank which is equal to or smaller than
the 43" x 43" (120.65mm x 120.65mm) sqguare can be drawn
successfully at any orientation of blank location with
respect to the punch and die. The curve in fig,11-8

separates the successful and unsuccessful regions.

So far the blank shape has been assumed to be square.

But it is easy to see from the insets of fig, 11-7, that
the position of the flange edge at the completion of the
drawing operation is not everywhere on the boundary. In
other words, for that boundary, the sguare blank is not
the most suitable blank for that square cup drawing.
Therefore it is necessary to explore what shape is the
best for a drawing process. The blank shape and size for
the best performance in a drawing process is discussed in
the next section.

Continued. ssees



S 17T -

1395 Blank Shape and Size.

For a circular cup, it is natural to choose a round blank
for the cup drawing. Ffor non-circular cups, the choice

of the shape for the blank is always less obvious than

that for the round one. The drawing operation is consid-
ered to be completed when the edge of the flange touches
the boundary. In a non-circular cup drawing, the edge

of the flange does not normally touch the boundary every-
where at the completion of the drawing operation (fig,li—g).
The materiél between the boundary and the Eage of the
flange at the completion of the drawing operation is calledl
the residual flange. In practice, the residual flamge is
cropped off and its area represents roughly the amount of
wasted material. ° Ideally it is desirable to elim-

+ inate the wagte and have the'right shape of blank so that
there is no residual flange at the completion of the draw-
ing operation. Practically, a better shape or a bla;k of
smaller area is not always accompanied by any saQiﬂg in

the material because of the stacking consideration and the
expenses of the additional stamping tool. However, in

some g¢grawing operations, material saving can be achieved
without the need of expensiqe stamping tools, and apart
from material economy, there is a better reason to chnose

a good blank shape, namely, for a better performance in the

drawing process.

From the discussions in the previous sections, a clear
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guide line for the shape and size of the blank emerges.

To achieve the largest draw-in in a drawing process a

blank must be such that the maximum drawing force in the
drawing operation is equal to the strength of the cup

to ensure a successful drawing, and the edge of the flange
everywhere must reach the boundary simultaneously at the
completion of the drawing operation. A blank so shaped
that the edge of the flange everywhere reaches the boundary
simultaneously at the completion of the drawing operation
is called the zero-residual-flange blank. - An abbreviation
Z.R.F. will be used for "zern-résidual—flange“ in the
following discussions. It is possible to have a series of
Z;R.F.blanks for a drawing process. The blank capable of
achieving the largest draw-in in the drawing process is not
only a Z.R.f.! blank but also one in which the maximum
drawing force is equal to the strength of the cup. This
later .requirement, in fact, is the liﬁiting size of the
Z.R.F.blank. In other words, the blank capable of achiev-
ing the largest draw-in in a drawing process is the largest

ZsRoF 5 bBlanks

It has been said that a Z.R.F. blank is the best shaped
blank for a drawing process. Why can a non-Z.R,F, blank
not achieve the largest draw-in at the completion of the
drawing operation? The reason can be explained by the
energy consideration in the drawing operation. Consider
a vanishingly short step of the drawing operation just
before the drawing force reaches the maximum, when a non-
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Z.R.F. blank is drawn in the drawing operation. In this
small step the energy of deformation goes partly into

the flange which includes the residual flange at the
completion of the drawing operation, and partly into the
cup inside the boundary. Ths total energy is supplied by
the drawing force in the punch which moves through a small
distance into the cup. If the residual flange were cut
of f before the drawing operation, the drawing force in
this small step in the trimmed workpiece would be smaller
than that in the untrimmed one. Take an example, curve b
in fig,1l1-3 when it reaches the maximum point which is
also the strength of the cup at L. If the residual flange
were cut off before the drawing operation, the maximum
drawing force would be below the strength of the cup.
Therefore a larger trimmed blank could be drawn .success-
fully, thereby increasing the draw-in at the completion
of the drawing operation. The increase in the draw-in

at the completion of the drawing operation is shown in
fig,1l1-10., The amount of draw-in is plotted against the
current position of the flange edge on the line 0OX (inset
of fig,11-10). Curve B is that of the square blank B
(fig.11-3) with size 5" x 5", and curve A is that of the
blank shown in fig.l11-11, which is trimmed from a 54" x
5+" square blank and near to a Z.R.f.blank. The draw-in
at the completion of the drawing operation in curve A
(lL.16) is larger than that in curve B (1.04) due to the
longer distance and the more material to be drawn along
the line OX.
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Although it has been shown that a Z.R.F, blank is the best
shaped blank for a drawing process, it is both difficult
and unnecessary to find the exact shape of the Z.R.F.
blank. It is difficult because the problem does not lend
itself readily to any theoretical solution and cut-and-
trial treatment is tedious. It is unnecessary béca;sa
small variation in the mechanical properties of the material
from one blank to another and smail variations, in the
forming conditions may change the exact shape of Z.R.F.
blank, and the change would make it difficult even.tu
define the exact shape of the Z.R.F. blank. Even if the
exact shape of the Z.R.F. blank could be found easily, it

is still impractical and expensive to cut it.

However difficult it is to find the exact shape of the

Z,R.F. blank it is relatively eaéy to find the approximate

shape of the Z.,R.F. blank, and in an approximate Z.R.F.

blank the performance of the material in the drawing process
can be considerably improved. Therefore it is worthwhile to
pursue the approximate Z.R.F, blank for a drawing process.
Some approximate Z.R.ﬁ blanks for a square cup drawing

process have been tried and found in this project.

A square with round corners is symmetrical with respect to
four planes passing through the centre = and perpendicular
to the cross-section. It is justifiable to assume that the
exact or an approximate shape of the Z,R.F, blank would have
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also these four planes of symmetry and therefore rather
like an octagon. A series of octagonal blanks of equal
sides were drawn in the square cup drawing process and the
largest one successfully drawn was found. Although it is
not the exact shape and size of the Z.R.F, blank, it is near
to the Z.R.F. blank. The largest reqular octagonal blank
was cut from a 53" x 5%" (133.35mm x 133.35mm) square blank
so that its side s 23" (66.67mm) daongs It wis observed
that the movement of the material in the flange correspond-
ing to the flat side of the punch cross-section was faster
than that at the corner. Thus simple advantageous modif-
ications of the shape can be made by increasing the amount
of material around the line OX (fig,11-12) where the edge
"of the flange touches the boundary first and decreasing
the amount of material around the line 0Y (fig,11-12) where
the residual flange is found at the completion of the draw-
ing operation. This "Mincreasing and decreasing modification"
was done in steps of " in the directions of OX and QY (fig.
- 11-12). Therefore a series of approximate Z.R.F.blanks was
cut and drawn in the square cup drawing process. The dimen-
sions and area of these blanks and, the size of the bound-
ary and the draw-in at the completion of the drawing oper-

ation are listed in the following table,
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Table 11-1,
Blank A B C D

the size of
square blank
the blank is S54"x5%" | SE"x5%"| 5"x5" | 4%"x4F"
cut from

distance in

S ; ik
g5 dtseenion - g ek Bikeb i L v

distance in

0Y direction 23" Dok 23" 2.3
(fig.,11-12) 16" 16"
- Hlank area
(1n ) 22,83 22.76 2203 224615
éize of '
the boundary 6.24 6.24 6.24 6.24

Oraw-in at _
the completion [
of the drawing | 1.120
operation.

1.120 1,169 1.144

Those blanks are shown in different colours in fig,l11=12
and the amount of draw=-in against the current position of

the edge of the flange on the line OX is shown in fig,1l1-13.

It is seen in fig,1l1-13 that the curve for blank D

does not touch the vertical line in the co-ordinate which
represents the boundary, as the others do. This is because
Cdn s blank D, the distance on the line 0X between the
boundary and the blank edge is too long so that at the
completion of the drawing operation the point at the edge
of the flange on the line 0OX does not reach the boundary
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because some other points reach it first (as F in fig,k11-14).
Blank D together with the position of the flange at the
completion of the drawing aperafiun is shown in fig,11-14,
There is a hint here that further "increasing and decfeasing
deificatians" will not help. When the dimensions of the
blanks A,B,C and D are increased i;?bx direction without
decreasing in?bY direction, the blanks are, in fact, greatly
enlarged in area dand are all found to be incapable of being
drawn successfully. This is the proof that the size of
the blanks A,B,C and D are near to the critical size. In
fig.1l1-12, apart from the corners, the blanks are very

near to the Z.R.F, blank. Therefore, the blanks A,B,C and

D are, in fact,'very near to the largest Z.R.F, blank.

As shown in the table 11-1, blank C achieves the largest
draw-in at the completion of the drawing operation. But

o material economy is taken into account, one may
sacrifice a little draw-in and prefer using blank D rather
than blank C. Blank C is cut from a 5" x 5" (127mm x 127
mm) square blank and blank D is cut from a 4%" x 44"
(123.83mm x 123.83mm) square one. If blank D is used, the

material saving is (5x5 - 44x4%)/(5x5) = 5%,

Now an overall conclusion about the blank used in a draw-
ing process can be drawn. Thgre is a unique combination
of the éhape, the size and the orientation of the blank
with respect to the punch and die, which yields the best
performance in a drawing process. This combination is
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represented by the largest Z.R.fF.blank. When the aniso-
tropy of the material is taken into account in a square
cup drawing process, the largest Z.R.F. blank should be cut
in such a way that the rolling direction of the sheet is
along the direction 0Y (fig.l1-12). In the Swift test,
any round blank is a Z.R.F. blank and the blank with the
size of the limiting drawing ratio is the largest Z.R.f.
blank (unless Z.R.F, blanks are considered, for the elimin-

ation of the ears).

11.6 The Stretching and the Drawing Actions.

In a drawing process, a piece of sheet material is clamped
between a holding plate and a die, and a punch pushes it
through the die hole. The energy supplied by the punch is
transferred into stress in the material around the punch
profile and transmitted as drawing force to draw the
material in the flange into the die hole. When the resist-
ance to drawing of the material in the flange is large, the
stress in the material around the punch profile should be
large so that the drawing force is large enough to draw

the material in the flange into the die hole. If the
stress induced is so large that it exceeds the yield stress
of the material, stretching t;kes place. If the material
around the punch profile is strong enough to sustain the
stress which transmits the drawing force to the flange
being drawn, the drawing operation will be successful,
otherwise, fracture will occur in the cup. Therefore the

success of a drawing operation depends on the balance
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between the strength of the material around the punch
profile and the resistance to drawing of the material in
the flange. The strength of the material is related to the
forming Yimit® .. curve and the resistance to drawing of the
material in the flange is rather a complicated problem
which will be investigated by considering the shape of the
cup in the next Chapter. In this section, only the quant-
itative distinction between the stretching and the drawing

actions in a drawing process is discussed.

As defined in Chapter B, draw-=in at a certain stage, say,
stage a, of the drawiné operation is the .logarithm of the
ratio of the amount of material inside the boundary at
stage @ to that before the drawing operation, namely,

' the amount of material inside the boundary
Draw=in, Ta = 1n at stage 3

the amount of material inside the boundary
before the drawing operation.

It can be written in terms of the area in the blank
because the amount of material is just the product of the
area and the thickness of the blank. Thus:

) (the area in the blank)+(the area in the
Draw=-in,

being drawn into the blank inside the
¥ = 1In boundary) boundary)
a "the area in the blank inside the boundary
v Ada
. = ¥n % 11-1

Ab
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where Ada is the area enclosed by a closed curve in the
blank and the closed curve is the'lmcus of the material
particles occupying the boundary at stage a of the drawing
operation; and Ab is the area in the blank iﬁSide théfi

boundary.

The depth of the cup is not used as the measure of the
drawability of sheet metal because in the cup drawing
process it involves not opnly drawing but alsnfstretching
action. A deep cup may be drawn with little draw-in and

a shallow one may have a large draw—in. This is thé reason
why the depth of the cup is not used to represent the draw-
ability. However, the practical engineer may well be
interested in how deep a cup can be drawn from sheet
metal, and indeed, the depth of the cup still has some
meaning and can be used to represent the performance of
sheet metal in a drawing process. It is important to
explain clearly what the depth of the cup means in relation
to drawability. The depth of the cup, in fact, represents
the surface area in the cup. Suppose the surface area
inside the boundary is considered. The surface area inside
the boundary before the drawing operation is Ab and that at
certain stage of the drawing operation is As. Then a gross

surface strain 7 may be defined as follows:

i surface area of the cup inside the boundary
7 o surface area inside the boundary before the
drawing operation.
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= 1in FE 11=2

It is "gross" because the material in the cup inside the
boundary at?certain s%age of the drawing operation is not
the material in the blank inside the boundary before the
drawing operation, but includes that which is outside

the boundary before the drawing operation drawn into the
boundary in the drawing opefatinn. A net or average sur-
face strain in the cup inside the boundary then can be

defined as follows:

surface area of the cup inside the boundary

Cﬂ ot (amount of material in the cup inside the
boundary)
the thickness of the blank

surface area of the cup inside the boundary

e surface area in the blank enclosed by a closed
curve which is the locus of the material
particles occupying the boundary in the draw-
ing operation.

- As 11=3

=. 1n 3

where ¢ is the average surface strain in the cup inside the
boundary. It can also be considered as the surface strain
due to stretching in the drawing operation, in other words,

the amount of stretching in the drawing operation.

From Eqs. 11-1, 11-2, and 11-3.

=
m
m

11-4

1? =  In b et 5 + 1n

=
B
]
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Wl 115

where "a" means at stage a of the drawing operation.

In general, Eq. 11=5 can be written as :

)Z=1p+<p 11-6

-

Egq. 11-6 means that inside the boundary the change in the
surface area in the drawing operation is due partly to the

stretching action and partly to the drawing actiaon.

According to the definitions stated above, the drawing
action consists of compression in one direction and an
equal amount of tension in the perpendicular direction so
that no change in surface area occurs. If the surface area
of the cup inside the boundary As is equal to Ad, there is
no average surface_strain, and the deformation may be said
to be a pure drawing obaratimn. If the blank is clamped
firmly so that no material in the flange is drawn into the
boundary, Ad is equal to Ab, then the gross surface strain
is equal to the average surface strain and it is a pure

stretching operation,

The relation and quantitative distinction between the
amount of stretching and drawing actions in the sguare cup
drawing process in which the blank C (fig,11-12) is drawn,
are shown in fig,l11-15. At stage a (punch penetration
1.75"), for example, PoP, (0.78) represents the amount of
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draw-in Ya and PiP2 (0.17) represents the amount of stretching

@

and, -‘fix 100% = 82.1%‘—5-03)( 100% = 17.9%. The percentage of
the dr:wing action incr:ases with the progression of the
drawing operation. The amount of stretching is increasing
at the early stage of the drawing operation and becomes
nearly constant after the maximum drawing force is reached
(at 1.5" punch penetration). There is a little decrease at
a later stage because near the completion of the drawing
operation the material around the point which is éoing to
touch the boundary first is compressed severely and drawn
across the boundary. This peculiar phenomenon decreases

the average surface strain and if the drawing operation

continues, ironing may occur.
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Characteristics of the Forming Process.

In the previous Chapters it has been explained and
demonstrated that there is an aspect of drawability which
depends as much on the characteristics of the forming
process as on the material properties. By recognising that
drawability is inseparable from the characteristics of the
'forming process, it has been possible to define drawability
in such a general way as to make it applicable to all shapes
of cups. It is therefore natural to ask what character-
istics it is in the forming processes that determines their

relative drawabilities. The object of this Chapter is to

provide the answer to this question.

el Convergence of Metal Flow.

A hint of this answer lies in the well known fact that,
other things being equal, the drawability is largest in a
round cup. The characteristic of the forming process which
determines its drawability must, therefore, be unique in
the axisymmetrical process and, if this characteristic is
expressed quantitatively,itis likely to reach an extremum
.walue in the axisymmetrical process. 0One may justifiably
guess at this stage that it has to do with some definition

of roundness.

As it turns out, this characteristic, although not having
been noticed hitherto by those investigating sheet metal
forming, is a simple geometrical property of the process,
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and lies in a fundamental aspect of the drawing action. It
has been pointed out previously in this thesis that cup
drawing or deepldrawing consists essentially of movement
and deformation of the flange to form the walls of the cup.
It is now proposed to take a particular view of the kine-
matics of this drawing action, namely, the velocities of
the material particles in the plane of the flange as in
fig,12-1. In the plan views shown in fig,l12-1 the veloc-
ities are schematically represented by the relative lengths
of the arrowheads, and it is understood that, where the
actual velocities are not in the plane of the flange, the
velocities represented here are the projections in that
plane. In other words, it is proposed to examine the two-

dimensional vector field in the plane of the flange.

Obviously, in a cup drawing process, the velocities must

be generally directed inwards whatever the shape of the

cup. The velocities leave the plane of the flange when

the material is drawn into the die profile region, and

their projections in the plane of the flange are zero when
the material leaves the die surface and becomes the vertical
wally of the cup. The only external force exerting on the
material is from the punch and is transmitted to the cross-
section of the vertical walls of the cup. To identify and to
describe quantitatively the drawing operation of non-
circular cups, it is necessary to analyse in detail the
kinematics of the metal flow involved in it. In the
following, the sguare cup with rounded corners is chosen
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to represent non-circular cups in general and it can be
readily seen that the analysis applies equally to all other

cups of non-circular shapes.

As shown in fig, 12-2, the wall of the cup is the portion
above the line abcd, the flange is represented by the region
lehn, and between the two regions, namely, the part marked
adhe, lies the part Df.thE workpiece in contact with the
die profile. In the wall above the line abcd the material
mostly moves bodily upwards with no or very little deform-
ation, and the velocities of the material particles is
constant in both magnitude and direction. Consider now the
material particles just below the line abed. The principal
tensile stress is everywhere vertical and perpendicular to
abed and the velocity of the material just above it is also
perpendicular to it. The constraints are such, therefore,
that the velocities just below abcd must be perpendicular

to abcd.

We now examine a quantity, called convergence, defined as
the product of the velocity and the curvature of a line

drawn perpendicular to it, namely,

In the region bcgf, assuming that all the velocities lie
in the planes passing through the axis of the cup, the

Contintedses «ne



- 193 =~

convergence is

Ve sinp

i g ov‘!

where r, is the radius of the circular arc in the section
normal to the axis of the cup and angle B is the angle of
inclination of the velocity with respect to the vertical
line, as shown in the inset (fig,12-2). As can be seen

in the expression V 8inf the convergence is zero at line
AL ~

bec and equal to MV at the line fgs3 where both V and =,
ro

refer, of course, to the local conditions.

At this point it is desirable to make a clear distinction
between actual empirical conditions and the idealized flow.
In actual square cups the flow across line gfgh is in
general not perpendicular to it and the deviations, and

the reasons for them, will be discussed in the last part of
this Chapter. Here, however, we are not concerned with the
analysis of the actual flow patterns, but rather with the
characteristics of a nan-circular cup drawing process.

The essential characteristic of such a process is the
deviation of the shape of the cup from the circular shape,
and the essential feature of the drawing process is the
effect of such a deviation on the flow of the material in

the workpiece.

Any closed curve can be chosen as the boundary of the
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product. But there is one which is significantly related
to the shape of the cup and the characteristic of the
drawing process. That is the line gfgh which is the line
where the material leaves the die face. In order to study
the characteristic of the drawing process, such a boundary
is chosen as the reference line and an assumption is made
that all the velocities passing this reference line are
perpendicular to it. Then it can be readily seen that the
characteristic of the forming process we seek concerns the
canvergence of the velocity across such a boundary as the
line gfgh. One may tentatively surmise that the reason for
the maximum drawability in the round cup is the unique
kinematic characteristic of uniform convergence of the
flow in that shape. Since the convergence is defined as
the product of the velocity and the curvature of a line
drawn perpendicular to it, and since the velocities are
assumed to be perpendicular to the reference line or
boundary, the convergence in a forming process is the
product of the velocity and the curvature of the reference
line (or boundary) chosen in this section. It is now
important to explore these two factors, the velocity and
the curvature of the boundary, which determine the converg-

ence of the flow.

o The Index of Nensymmetry.

The velocities across the boundary are determined not only
by the material property and the shape of the cup but also
by the forming conditions of the drawing operation such as
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lubrication condition, blank size and shape. The velocity
field is complex and will be discussed later. Now, in order
to know how the shape of the cup or the boundary affects
the convergence of the flow, the velocities across the
boundary are assumed to be equal everywhere at the boundary.
A very short length A5, on the boundary is considered (fig,

12-3),

AS§g =0 ad, 1242

where P; is the radius of curvature of the boundary at

A Ss and a®, is the angle the direction of the curve AS,
changes through. Because the instantaneous speed of the
flow crossing the boundary is assumed to be the same
everywhere at the boundary, the particles at A S, will

reach AS after at, and
A =P ad, 12-3

Then the circumferential strain along the boundary is

€ = In. AS . = 1In P 12-4
A Sy P
and
g_e s 12-5
P P
Because ﬁ-— F = V-at
therefore F.J = V 12-6
and E=L£ - v 12-7
e P
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(V = constant) 12-8

o

w

o |~
i

-::lr'h.

Curvature of the reference line is thus seen to be the
circumferential strain rate per unit particle velocity in
the drawing process. In a non-circular cup this specific
circumferential strain rate varies from one point to another
along the reference line, hence the less favourable drawing
conditions than in the circular cup. These consequences

of the deviation from axial symmetry in the geometry of

the cup are characterised in the preceding discussion by
assuming that the velocities are perpendicular to the
reference line efgh (fig,12-2), for the sake of elucidating
the relationships between the cup geometry and the draw-
ability, and for the sake of expressing these relationships
in gquantitative terms. That the sharp inequalities of
convergence, strain rate and so on assumed in the ideal
cases are ameliorated in the actual cups by the continuity
of stress and strains in the material in no way invalidates

the characterisation of the non-circular drawing process

presented here.

In so far as drawability is concerned, the significant
characteristic is not, aof course, the absolute value of
the convergence, but rather the uniformity of the con-
vergence, or the uniformity of the curvature of the
boundary. Therefore, an index of nansymmetry is defined as

follows:

|-

5 =;'—Tj

l -1 ‘ de _ 1229
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where 8 (fig,12-4) is the polar co-ordinate of a point on the
boundary when the centroid of the shape of the boundary is

chosen as the origin of the co-ordinate system, and

| o 12«10

Ege. 12-9 defines the quantitative deviation of a shape

from a round one. When § is zero, the shape is a circle.
The larger the value of § is, the more uneven the convergence
along the boundary will be, and the worse the character-
istic of the forming process is.

The indices of nansymmetry of a square and a rectangular
shapet with round corners and an elliptical shapé are

formulated as follows.

(1) A square shape of 2a x 2a with round corners

of radius r, (fig, 12-4)

tang, = a=I
a
1 Ry
(_F_)am i

1_}’—
y
E=‘28?£| =k |40
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(2) A rectangular shape of 2a x 2b with round

corners of radius r, (fig, 12-5)

s
tan g, = = L
tan @, = b
a-rx
(_]..__ = %(ez"'el)
av.
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(3) An elliptical shape (fig,12-6)
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4 4
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12.3 Stresses in a Non-circular Cup Drawing Process

The deviation of a shape from a circle is defined by the
index ofnonsymmetry. It is not only a geometrical property
of the forming process, but also represents the uniformity
of the distribution of the incremental circumferential
strain at the boundary. It is known that when the shape
of the cup deviates from a circle, the velocities crossing
the boundary will not be the same everywhere at the
boundary. Even in a round cup drawing operation, if the
blank is not a round one or if there is anisotropy of the
material, the velocities crossing the boundary will be
different too. The unequalness of the velocities across
the boundary is due partly to the uneven curvature of the
boundary which is determined by.the shape of the cup, and
partly to the resistance to drawing of the material in the
flange which is determined by the forming conditions such
as the lubrication condition, the blank shape and size

and so on. The larger the curvature of the boundary is,
the smaller the velocity across the boundary will be, The
resistance to drawing of the material in the flange is
investigated by the consideration of the energy of deform-
ation in the flange as will be discussed in the following.
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Now consider the cross-sectional surface of the workpiece
at the exit of the die throat where the material leaves
the die, surface to become the vertical wall of the cup
(fig,12-7). The energy for the drawing action is supplied
by the force transmitted across this cross-sectional area
and the movement of the material at this curve,
Thus,

Energy input per unit lerigth of the boundary

= (T INY
Energy of deformation = (Area) x tg, x (Strain rately,

x(average yield stress)

where @ is the stress and t is the thickness at the cross-
section, and U is the velocity of the material particle

at that cross-section; (Area) is here idealised as the area
in the flange between the lines normal to the ends of a
unit length at the cross-section (as station 1 or 2 in

fig, 12-7) and tay the average thickness in the flange. To
compare the stresses at two stations in the wall of a
square cup, one at the corner (station 1 in fig,12-7)

and ore at the flat side (station 2 in fig,12-7), we have

9 t, U _ (Area) > (tax), x {strain rate)laus 3 (9y),
0, t2 U (Area), (tav ), (strain ratelav, (Ty ),
or
3 <%z % Us x (Area), % {tav.), x_(_stra:i.n rate g % (9y),
a5 k] u, (Area), (taw): "~ (strain ratelys (ay ),
12-11
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Of the ratios in the right hand side of Eq. 12-11, the

thickness ratios t;/ty and (tay),/(ts.); are nearly unity

because the thickness in the wall and in the flange are

nearly the same at the corner and at the flat side, the

speed ratio Uz/U,

is nearly unity because the velocities of

material particles in the wall of the cup are nearly equal

nearl

around the cup, and the Oy-ratio is, unity too.

The area

ratio and the ratio of the strain rates in the square cup

drawing as shown in fig,12-7 are much larger than unity.

Hence, the stress at the corner where the convergence is

high is very much higher than that
cup.

plotted with respect to the length

at the flat side of the

If the stress per unit length of the cup periphery is

of the cup periphery, a

curve can be obtained, (conjectured results are shown in

fig, 12-8). The blank of which the

stress distribution

curve (curve A in fig, 12-8) reaches the strength of the

material is the critical sized blank in that drawing process.

The area under the curve (curve A)
the cup can sustain or the maximum

mitted to draw the flange into the

In a round cup drawing process, if
and the anisotropy of the material
distribution along the cylindrical
everywhere uniform, and if plotted
a horizontal line. The blank size
the stress in the wall of the cup

the material. The maximum drawing

represents the force
drawing force trans-

boundary.

a round blank is used

is neglected, the stress
wall of the cup is
as that in fig, 12-8, is
can be increased until
reaches the strength of

force transmitted to
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draw the flange into the boundary in a round cup drawing
operation is then represented by the area under the
horizontal line B which also represents the strength of
the material. It is obvious that the maximum drawing
force transmitted to draw the flange into the cup in a
non-circular cup drawing process is smaller than that in
a circular cup drawing process. This is the reason why
the drawability drops in a non-circular cup drawing process.
By considering the drawing force in the forming processes,
an equivalent round blank represented by curve C in fig,
12-8, can be found that the area under curve C is equal
to that under curve A. In other words, the maximum draw-
ing force transmitted to draw the flange into the cup in

a non-circular cup drawing process when a critical-sized
blank (of certain shape) is drawn, is equal to that in a
circular cup drawing pro:esé when the. equivalent blank is
drawn. The larger the furcé?gén be transmitted to draw
the flange into the cup is, the larger the draw-in will
be. The size of the equivalent blank is dependent on the
variation of curve A. The smaller the difference between
the peak and the valley of the curve is, the larger the
equivalent blank is. The variatinn of the stress distrib-

ution curve will be discussed in the following,.

Equation 12-11 may be written as:

A4

. (Area)p x (strain ratelam 12-12
(Areal, (strain rate)y.s
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after the cancellations of the velocity ratio, the thick-
ness ratio and the yield stress ratio. In order to equalize
the stresses, it is found from Eq. 12=-12 that it concerns
the product of the area ratio and the average strain ratio.
The (ﬂrearrln Eq. 12-12 is determined by the curvature of
the boundary and the distance between the boundary and the
edge of the blank. If the distance between the boundary and
the edge of the blank is constant, the larger the curvature
of the boundary is, the larger the (Areafrgnrresponding to
the unit length of the boundary is (as station 1 in fig,
12-7). The curvature of the boundary as well as the shape
of the cup is determined by the punch andldie. Thus the
(Arsaf?ﬁepands on the distance between the boundary and the
edge of the blank. For a constant area, the blank should

be such that the distance between the boundary and the edge
of the blank is nearly inversely proportional to the curv-
ature of the corresponding boundary. The average strain
ratio is a bit more complicated than the area ratio as will
be explained as follows. In a square cup drawing process,
if a square blank is drawn (as that in fig,12-7), it is
possible to draw the line S5 (fig,12-7) which separates

the flat side region and the corner region. If all the
particles moved in the directions normal to the boundary,
then there would be no circumferential stress and strain

in the flat side region and a sudden jump of circumferential
stress and strain on the line 55. In practice it is
impossible to have such a jump of stress and strain because
the two regions are in the same piece of material. If the

line S5 were a rigid wall, then when the corner region

[:Dntinuedo DR



- 204 =~

moved in, there would be a large circumferential stress
near the boundary and the materiafig;ert a compressive
force into the imagined wall S55. The imagined wall would
exert, as a reaction,a compressive force onto the material
in the corner region to produce strain in that region. The
average strain rate ' is therefore dependent on the inward
velocities of the particles in that region, and the area
of that region which depends aon the curvature of the
boundary, as well as the distance between the boundary and
the edge of the blank. But, in fact, the line SS is not

a rigid wall, When there is a compressive force acting on
the line 55, the force is transmitted through it to the
adjacent region and balanced by stresses in the material in
the two regions. That stress should be greater than the
yield stress of the material and produce circumferential
strain somewhere or everywhere so that the material can
move in. In the case shown in fig,12-7, at the first
moment of the drawing operation, every particle in the
corner region, for example the point P, tries to move in

a direction PN (fig,12-7) so that it is moving without
being deformed. But in a drawing process it is impossible
for every particle to do so, and, in fact, every particle
should go in the direction PM which is normal to the
boundary.. Therefore the direction of the movement of the
particle is determined by the balancing of the stresses in
that region and the adjacent region. If the particles in
the corner region are moving in the directions normal to
the boundary, then the average strain in that region is
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the largest and 4if they are moving in the directions
parallel to TT (fig,12-7) so that it is a rigid body
translation, the average strain is the smallest, Therefore,
the average strain rate depends on the velocity of the
feeding-in of the material, and the swinging of the lines,
which are the border of that region, from the directions
normal to the boundary. The larger swinging of the border
to the adjacent regions, the more the decrease in average
strain rate is in that region. O0f course, the swinging of
the border to the adjacent regions will increase the average
strain rate in the adjacent regions. For a constant average
strain rate in different regions, the region corresponding
to a large curvature of boundary should invade the region

corresponding to a small curvature boundary.

12,4 The Optimization of the Blank Shape and Size,

In order to approach the equalisation of the stresses at
the wall of the cup, the blank corners (fig,12-7) are cut
off to decrease the area corresponding to the boundary with
large curvature at the corner. This cut-off decreases the
area ratio (in Eq. 12-12)., But the portions being cut off
are normally less strainedf?ghe cut-off will increase the
average strain rate in that region. The decrease in area
in the corner region also decreases the swinging of the
border thus increasing the average strain rate. The
variation of the stress ratio is therefore dependent on

the variations of the area ratio and the average strain
rate ratio. Because of the cut-off, the energy of deform-

Continued: « oo



- 206 -

ation needed at the corner region will decrease and so will
the stress  the wall of the cup at the corner. A square
blank of critical size is drawn in the square cup drawing
process (fig.l2-7)??the guessed distribution curve of the
stress at the wall of the cup is shown at curve A in fig,
12-8. When the corners of the blank are cut off, the
distribution curve of stress will lower due to the
decrease in the energy of deformation needed. Because of
the variations of the area ratio and the average strain
rate ratio, the stress ratio has three possible variations.
It may increase or decrease or keep constant. The stress
ratio, in fact, represents the uniformity of the stress
at different stations. The smaller the stress ratio i
the more uniformfthe stress distribution in the wall of
the cup « Therefore, the favourable way of cutting is
that leading to a decrease in the stress ratio. Then the
distribution curve of stress at the wall of the cup lowers
(fig 12-9) and the difference Between the peak and
the valley of the curve is thereby decreased. Because the
highest stress at the wall of the cup in the cut blank is
lower than the strength of the material, a larger blank of
the same shape can be drawn without failure and the
distribution curve of stress in the wall of the cup will
be that as shown in fig, 12-9. The difference between the
peak and the valley is smaller in the larger blank with a
cut than that in the square blank of the critical sizej in
other words, the uniformity of the stress‘distributinn at
the wall of the cup is improved by the cutting. If the
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cutting off is done on "the larger blank with cut", the
distribution curve of stress at the wall of the cup could
be smoothed further and further, and finally a neariy
horizontal line is obtained. This in fact, is another

approach t¢ getting the largest Z.R.F. blank.

25 The Involvement B of Non-coaxial Deformation in

Non-circular Cup Drawing Processes.

The velocities (U in fig,12-7) of the particles in the
vertical wall of the cup are nearly equal everywhere along
the cup. But the velocities of the material particles across:
the boundary are certainly not equal unless the forming
process is axisymmetrical. This difference in speed, as
said before, is mainly due to the variation of the curvature
of the boundary and partly due to the resistance of the
material in the flange to being drawn in. Because the

shape of the cup is not circular, the curvature of the
boundary is not equal everywhere. The boundary in a draw-
ing process is like a bottle-neck. The larger the
curvature of the boundary, the narrowsrthe neck will be,

and the slower the velocity of moving-in will be. When

the curvature changes, the velocity of moving-in will

change as well. The differential velocities of particles
crossing the boundary will result in shear deformation

which is positively a non-coaxial deformation (as described
in Chapter 5). And this difference in velocity across the
boundary will induce the rotation of the material in the
flange so that the direction of moving of the material
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particle in the flange is changing all the time before it
reaches the boundary. This changing of moving direction,
obviously, will produce non:goaxial deformation somewhere

in the material. It is understood that the deformation of
the material in the flange varies from one point to anqgthere.
It is very complex, but it is a fact that the material is

under non-coaxial deformation in,non-circular cup drawing

process.

Material particles moving across the boundary with different
velocities produce shear deformation. There is a great
possibility that material failure occurs due to large
shearing, especially at the transitional region where the
changing rate of the boundary curvature is large. The
severity of shearing is proportional to the velocity
gradient along the boundary. The larger the velocity
gradient along the boundary, the more severe the material

is sheared, Let V be the velocity vector of the material
particle across the boundary and s be the boundary, then

the velocity gradient along the boundary is

—

(Vem)

o

ds

where T is the unit normal to the boundary s. Because
the velocities across the boundary are, or are almost

normal to the boundary, the velocity along the boundary is

zero, OT
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Therefore,

L S - SR ‘le;d)
ds

In other words, the severity of the shearing can be
represented by the curl of the velocity across the
boundary. The larger the curl of the velocity is, the
larger the possibility of material failure due to shear-

ing at that region.

This Chapter provides the basic analysis of a nan-
circular cup drawing process. Without the gquantitative
measurement of a shape different from a circle, it is
difficult to start the investigation. Although only a
square cup drawing process is discussed and illustrated,
the arguments are well applicable to any shape of cup

drawing.
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Conclusions

"Farmability" is not a new term in sheet metal forming and
there has been a large number of research papers about the
formability of sheet metal. But hitherto there has not been
a clear, precise and generally agreed definition for the
formability of sheet metal. Because of the ambiguity of
the meaning of "formability", it is sometimes difficult to
communicate between the research worker and the engineer
in industry, or even among sheet metal forming research
workers themselves. In this thesis, in order to give a
clear definition of the formability of sheet metal, the
forming process is to mean a blank held between a blank
holder and a die, and a punch pushes it through the hole
in the diej; and only excessive thinning and fracture
of the material are considered as material failure. The
formability of sheet metal is then defined .as+~ .. the
forming limits of the material and the performance of the
material in a forming process. The forming limit of the
material is the limiting strain the material under forming
can withstand. It is dependent on the strain path under
which the material is deformed. Therefore, the formability
which means the forming limits of the material is not a
preperly
single, but is a spectrum of material properties. It can
not be represented by a single index but can only be
represented by a curve, such as the forming limit CUrve.,
On the other hand, the performance of the material in a
forming process, because the forming process is defined
as a drawing process, is represented by the drawability
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in a forming process. Because drawability is the perform-
ance of sheet metal in a forming process, it is obviously
dependent on the forming process. Therefore, the draw-
ability of sheet metal, like the forming limits of the
material is a spectrum of material properties depending

on the forming process.

The strain or a state of strain used to be represented  ~
by the three principal strains only. The directions of
the principal axes of strain with respect to the material
were neglected all the time. In sheet metal forming, in
fact, there are many cases in which the material is
deformed with the principal axes of strain rotating with
respect to the material. For example, any forming process
other than cylindrical cup drawinq’involuES a
deformation in which the principal axes of strain rotate
with respect to the material, namely, ‘a2 non-coaxial
deformation. Even the cylindrical cup drawing process,

if the anisotropy of the material is taken into account,
involves non-coaxial deformation as well. The strain path
of the material in the redrawing of a circular cup is
normally a zigzag path, but the principal axes of strain
are fixed with respect to the material. In other words,
it is zigzag but coaxial. But in the redrawing of a non=-
circular cup, due to themomalignment of the principal

axes of strain and stress in the different stages of
forming, the strain path is not only zigzag but also non-
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coaxial. As many sheet metal forming products are not
axisymmetrical, for the better understanding of the
material behaviour in the forming process, it is necessary
and significant to investigate what the non-coaxial deform-
ation is and how to find the formability when non-coaxial

deformation is involved.

The lack of « ' development and investigation in non-
coaxial deformation is obviously due to the incomplete
representation of a state of strain by usingfcircular

grid system for strain measurement. The state of strain as
measured by va’'r ' circular grid system is represented by
the three principal strains only. A complete represent-
ation of a state of strain should involve not only the
three principal strains but also the directions of the
principal axes of strain with respect to the material.

In this thesis, a state of strain is therefore fully
represented by not only the three principal strains but
also a factor specifying the directions of the principal
axes of strain with respect to the material. The coaxial-
ity of the principal axes of strain with respect to the
material can therefore be éasily detected. The non-
coaxial strain analysis by using?square grid system,which
was first' developed by Professor Hsé?gs further developed.
A three-dimensional triangular co-ordinate system in which
not only the three principal strains but also the direct-
ions of the principal axes of strain with respect to the

material are represented explicitly, is proposed, so that
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the non-coaxial strain path can be actually plotted.

The significant difference between a coaxial and a non-
coaxial deformation lies on the fundamental basis of strain
measurement. The theory of plasticity hitherto proposed

is built up on the basis that the principal axes of stress
and strain are coincident to each other in the deformation,
in other words, the coaxial case is assumed. Based on this
fundamental assumption, the work;hardeninq hypothesis and
the stress-strain relationship are developed. In this
thesis, this fundamental assumption is removed and the
work-hardening and the stress-strain relationship in?%oﬁ-
coaxial case are discussed by considering the work con=-
sumption in the deformation. It is shown thatTi%vy-Mises

and Prandtl-Reuss equations, if they are true in?éuaxial

. T ;
case, are not true 1nﬁnmn—coaxlal case.

There is another significant difference between a coaxial
and a non-coaxial deformation. The strain path can be
shifted or zigzagged without changing the stress ratio .
in a non-coaxial deformation, ‘This is just due to the
non-coaxiality of the principal axes of stress and strain
with respect to the material. In other words, under the
same stresses, the strain paths are different in coaxial
and non-coaxial deformations. There is a danger that
if the non-coaxiality of the principal axes of strain
with respect to the material is neglected in non=
coaxial deformation, the shift or the zigzagging of the
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strain path may mislead research workers to consider it as
a change of stress ratios. For any forming process which
may involve non-coaxial deformation it is important to
consider the coaxiality or otherwise of the principal

axes of strain with respect to the material.

The energy conauhptimn for producing a certain o
strain in a non-coaxial deformation is more than that in
a coaxial one. OUOwing to this effect, it is possible that
the material is severely work-hardened with small

strains (without unloading and reloading). Because of
the severity of work-hardening, the material, if it fails,
will fracture without excessive thinning. This is another
type of material failure which does not normally happen in the
coaxial case. The forming limits of the material are
dependent on the strain path. Therefore the material
should have forming limits under non-coaxial strain paths.
Apart from the type of material failure, inT%on—coaxial
case, the strain path is shifted or zigzagged due to the
non-coaxiality of the principal axes of stress and strain,
When the strain paths are different, the forming limits

are bound to be affected.

The definition of drawability, hitherto, is based on and
limited to the drawing of circular cups as in the Swift?®
tests. As = said before, the drawability is the perform-
ance of sheet metal in a forming process and is dependent
on the forming process, and the drawability of sheet metal
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should be a spectrum of performance depending oﬁf?urming
processes. [herefore, it is.nacessary to extend the
investigation of the drawability of sheet metal to some
other forming processes. In fact, the need for extending
the investigation to the drawing of non-circular shape
was stated thirty-five years ago by Professor Swift.
After thirty five years, it is certainly opportune to do
ite In the circular cup drawing process, the material
everywhere is deformed under a coaxial strain path and
the material at the critical section is deformed under a
coaxial strain path too. But in a non-circular cup draw=-
ing process, the material in the blank is in general
deformed under a non-coaxial strain path. The material
at the critical section may be deformed under a non-
coaxial strain path and the type of material failure may
not be the same as that in a circular cup drawing proce'ss.
This non-coaxial deformation ° . makes the material
behaviour in a non-circular cup drawing process deviate
from that in the Swift® test so that the test results in
the Swift test are not applicable to non-circular cup
drawing. In the Swift® test, the drawability is defined
by the limiting drawing ratio which is the ratio of the
diameter of the largest blank capable of being drawn
successfully, to the punch diameter. IﬁT%Dn-circular cup
drawing process, although round blanks can still be used
so that there is a blank diameter, there is no longer a
punch diameter. Therefaore, in order to extend = the
investigation to the cup drawing of non-circular shapes
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the definition of drawability should be generalised first.

The Swift' test is re=examined and the implication of the
limiting drawing ratio in the *5*8 test is explored.

In the Swift' test, the blank shape, the boundary of the
product and the location of the blank are concealed. The
blaﬁk shape is circular. In fact, it is the best shape
for circular cup drawing. But it does not mean that a
square blank is the best one for square cup drawing.

The circular cup drawn in the Swift' test is a flangeless
cup. The boundary of the product is therefore set
implicitly at the vertical wall of the cup and when the
cup is drawn completely, the edge of the flange everywhere
just reaches the boundary of the product. But there is no
theoretical reason why the cup should be flangeless. The
position of the boundary of the product can be set in a
position depending on the purpose of the product and the
completion of the drawing operation should be such that
the edge of the flange anywhere first touches the boundary.
In the Swift test, it is easy to locate the blank with
respect to the punch and die because of the avialsymmetry of
both the blank and the punch and die. But in a non-
€ircular cup drawing pruceas???ﬁere is no longer axial
symmetry, the blank location should be taken into account.
After exploring these concealments, the drawing ratio was
found to be the square root of the ratio of the area of
the blank to the area inside the boundary (which is

roughly the area of the punch cross-section). Based on
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this idea, the definition of drawability was generalised to
be the largest draw-in at the completion of the drawing
operation. With the generalised definition of drawability
the performance of sheet metal in any forming process and
the distinction between the drawing and the stretching
actions in a forming process can be quantitatively

represented.

The factors affecting the drawability such as the boundary
of the product, the blank shape and size, the orientations
of blank with respect to the rolling direction and to the
punch and die were discussed independently first. Finally,
all the factors are considered together and the conclusion
is obtained that the blank for the best performance in a
forming process is the largest Z.R.F, blank. Although
there is no equation proposed for the shape of the Z.R.F.
blank, an approximate Z.R.F, blank for a reasonable shape
of cup drawing can be obtained by a few steps of cut-and-

trial methods

A square cup drawing is illustrated as an example following
the arguments. The arguments are well applicable to any
shape of cup drawing process. Because the characteristics
of a forming process are so much dependent on the shape of
the cup, an index of mansymmetry is proposed for a systematic
investigation in non-circular cup drawing. The differential
draw-in near the die profile region where large shearing
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occurs is shown to be the curl of the velocity. Further
investigation requires a lot of experimental work which

will be discussed in the next Chapter.

The aim of this project Méf?o investigate  sheet metal
forming processes at the fundamental level. The need

for such an investigation is conspicuous in the very
narrow range of topics hitherto dealt with in the research
papers in this area; for example, the confinement of
measurameﬁts of drawability to round cups, the neglect

of non-coaxial strains, the theoretical and practiéal
consequences of non-coaxiality and the exclusion of forming
conditions from concepts and the measurement of form-
ability. In such an investigation it is inevitable that
the principles unearthed cover a large theoretical area
and point to many possible specific experimental studies,
too wide and too many to be undertaken here. The experi-
mental results shown in this thesis are therefore for
illustrating the theory and elucidating the principles
rather than for data-logging in preparation for practical

applications.
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Sugqgestions for Future Work,

Following the theoretical analysis and development in non-
wn padticular The

coaxial deformations and,non-circular cup drawing process
in this thesis, some suggestions for future work emerge
clearly. There are two lines, one in experimental study
and the other in theoretical development. In fact, they
can be considered as only one line because after:certain
depth of investigation in theoretical development, it is
necessary to have some experimental results to support and
verify the theory and the experimental results will provide
hints on further investigationsin the theoretical develop-

ment. Some suggestions for future work are listed as

follows.

1) Non-coaxial Strain Paths.

In this thesis, non-coaxial and non-coaxial zigzag strain
paths are obtained from specimens of coupon form due
th%uge expense of searching for non-coaxial strain paths
in actual forming processes as has been explained in
Chapter ;G. In noﬁ—axisymmetrical forming, non-coaxial
deformation is bound to be involved. In the redrawing or
multiple—étager forming of non-circular shapes the strain
path of the material in the workpiece is non-coaxial and
zigzag. With the strain m935urement?using the sguare
grid system, nmn-cnaxiafrg:d non-coaxial zigzag strain
paths in actual forming processes can be found. It is
suggested that when the material in actual forming processes
simple

is found to be deformed under nun-cnaxialnnr non-coaxial
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zigzag strain paths, by similarity, a simulate forming process

can be made for investigation and improvement.

(2) Forming Limits of Sheet Metal.

The Forming limit is the limiting strain the material can
sustain under a stréin path, in other words, it is the end
point of the strain bath under which the material is
deformed. When a set of strain paths, coaxial ar non-
coaxial, is obtqined, the precision of the forming 1imit M
curve of the material depends on the precise determination
of the end points of the strain paths. As the determination
of the end point of the strain path is a crucial matter in
the formability of sheet metal, the material failure or
the development of excessive thinning (or necking) may be

further investigated so that a more precise criterion of

the end point of a strain path can be established.

The comparison of forming limits among different materials
requires not only “&  precis@aw end point determin-
ation but also ‘@ control of the strain paths. When the
forming limits of two materials are compared, they should
be compared on the same basié, namely, under the same
strain path. Therefore,a more reliable cnnfrnl of the
strain path at the critical section of the workpiece in a

forming process is needed.

(3) Stress-5train Relationship and Theory of Plasticity

It has been shown theoretically in this thesis that the
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stress-strain relationship inthenon-coaxial case is different
from thatinthe coaxial case, It is desirable to find the
actual stress-strain relationshipina non-coaxial case so
thatacomparison between coaxial and non-coaxial cases can

be made.

It may be difficult to find the stress in anunsymmetrical
forming product. But witha special device, for example,
rotating the punch when it is proceeding in a drawing
process (fig,14-1) with the central part of the blank
fixed to the punch head, so that twisting occurs in the
workpiece in the forming process, the stress in the work-
piece may be obtainable after some calculations. As shown

in fig,l4-1,

-
I

emeising -0, ¢ 14-1

s = e HeEs T T 14-2

where P is the punch loadj r, the current radius of a
point in the workpiece; ¢ , the slope of the profile; g,
the tensile stress in the meridional direction; T, the
torque applied to rotate the punch; t, the current thick-
ness of the workpiece and T, the shear stress along the
circumferential tangential direction. From Eqgs. 14-1

and 14-2,

A L 14-3
T T sine
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It r= 08 or T = B8, the directions of the principal
axes of stress and strain are in the meridional and the
circumferential tangential directions respectively. If
T = 0, then because of the shear stress, the principal
axes of stress will shift from the meridional and the
circumferential tengential directions. Therefore, the
deformation in the workpiece is non-coaxial. By using
Eq. 14-3 and the equation for membrance stresses, the
stresses and the directions of the principal axes of
stress with respect to the material can be found. The
strain, by using the square grid system for strain
measurement, can also be obtained. The relation between
the stresses and the strainswmuthéreﬂme&obtained. By
changing the punch penetration and the punch rotating
speed in the forming operation, another ratio of the
stress (g; to the shear stress T in Eq. 14-3 can be obtained.
Therefore, a set of stress = strain relations in the non-

coaxial case would be found.

With these experimental results, the theory of plasticity
including the straih—hardsning, the deviation of the stress-
strain relation fraom that iJ?iévy~Mises equations in the non-

coaxial case can be greatly extended.

(4) Drawability of Sheet Metal.

The drawability of a sheet metal used to mean the perform-
ance of the material in a circular cup drwing process as
the limiting drawing ratio in the Swift test. With the
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generalised definition of drawability, namely, the largest
draw-in, it is possible to represent the drawability of the
material in any forming process including the circular cup

drawing process.

It is useful to have the limiting drawing ratio shown in

a handbook for sheet metal properties. If the drawabilities
of sheet metal in other shapes of cup drawing processes can
be provided in a handbook as well, it would be more useful
for applications because the limiting drawing ratio
provides very little information T"on the performance of

the material in a non-circular cup drawing process. There=
fore, in future work, the drawability of sheet metal

if not in all possible shapes of sheet metal forming
products, at least, in some popular shapes like squares,
rectangles and elliptical shapes of cup drawing processes

could be pursued and shown in a handbook.

The index of mansymmetry is proposed to specify the
characteristic of a forming process. O0Of course, there
may be some other representations for this index.

. For example, the length of the periphery of
the shape could be used instead of the position angle @
(Chapter 12) so that the index ofnansymmetry is represented

as followss

g, T o, Faey e =
g = d 14-4
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where S is the length of the periphery.

The index of vansymmetry defined in Eg. 14-4 is related to
that defined in Eq. 12-39, It is rather more complicated but
is more powerful when the shape is irregqular and without

any plane of symmetry.

With the experimental results, the relation between the
drawability of sheet metal and the index of nonsymmetry
can be found. This would be extremely useful for practical

applications as well as for the sheet metal forming designer.
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