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SUMMARY

Numerical techniques have been finding increasing use in all aspects of
fracture mechanics, and often provide the only means for analyzing
fracture problems. The work presented here, is concerned with the
application of the finite element method to cracked structures.

The present work was directed towards the establishment of a comprehensive
two-dimensional finite element, linear elastic, fracture analysis package.
Significant progress has been made to this end, and features which can now
be studied include multi-crack tip mixed-mode problems, involving partial
crack closure. The crack tip core element was refined and special local
crack tip elements were employed to reduce the element density in the
neighbourhood of the core region.

The work builds upon experience gained by previous research workers and,

as part of the general development, the program was modified to incorporate
the eight-node isoparametric quadrilateral element. Also, a more flexible
solving routine was developed, and provided a very compact method of solvir
large sets of simultaneous equations, stored in a segmented form.

To complement the finite element analysis programs, an automatic mesh
generation program has been developed, which enables compléex problems,
involving fine element detail, to be investigated with a minimum of input
data. The scheme has proven to be versatile and reasonably easy to

implement.

Numerous examples are given to demonstrate the accuracy and flexibility
of the finite element technique.

FRACTURE FINITE ELEMENTS PLANE 50LIDS
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. CHAPTER 1
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INTRODUCTION

Fracture mechanics has gained in importance over recent years due
to the requirements of high technology industries to attain greater life
expectancy and reliability of their products. In striving for technical
excellence, particularly in the aircraft and associated industries, where
modern stress analysis techniques allow designers to develop optimum
component configurations, the possibility of failure due to fracture
becomes more prominent. Hence the need to determine the relationship
between stress level and resistance to crack propagation, in order that
a tolerable flaw size can be specified which forms part of the normal

design processes. In other words, continuity between the design method

for flawed or unflawed components is required.

The modes in which components fail have been categorized, and for
the geheral three dimensional situation these are; the opening mode,

sliding mode and the out of plane shearing mode. The presence of a

crack in a load carrying structure intensifies the stress distribution

around the crack tip, and in theory, the stress is infinite at the crack

tip In fact, a plastic zone forms around the crack tip and hence
t] 13 - 4 5 g B

stress singularities cannot exist. However, the theory of linear

fracture mechanics’is still a valuable tool. The severity of this local

e o (A2 or o ctpess
ciress field can be interpreted using Irwin's ~o '



i ntensity
intensity factor. The three modes of fracture, given earlier, can be

represented by three stress intensity factors namely, K. the opening mode,

I

KII the tearing or inplane‘shearing mode and K the out of plane

III
shearing mode. Knowledge of the stress intensity factors enables the
onset of unstable fracture to be predicted in real structures, provided
suitable fracture experiments are carried out on cracked specimens. It
is of importance, therefore, to obtain accurate values of the stress

intensity factors in order to provide design data which can be used in

practical situations.

The analysis of fracture mechanics problems has been one of the
most active branches of numerical methods in structural mechanics in
the last decade. The application of the finite element method to
determine crack tip stress fields has been finding increasing use in all
aspects of fracture mechanics, providing a versatile and efficient
engineering tool.  Techniques used, based on this method, can be grouped

under two broad headings: firstly methods for interpretation of the

finite element results and secondly the construction of formulations

s1) |

which model the singularity at the crack tip. The Hilton and Hutchinson
crack tip element can be placed in the latter group of methods and this

technique is the subject of detailed examination and development in the

work presented in this thesis.

The finite element programs, on which this work is based, were

establshed by\RobertsonEZS), whos primary objective was to develop a

general program capable of analysing any two-dimensional structure

acks. This objective was far from being

containing any number of cr

fully realised; a number of problems were unresolved and they form the

basis of the work reported in this thesis.




The finite element method although providing a powerful tool for
the engineer, has one major disadvantage and this is the large amount
of input data required in any realistic problem. Hence a very important
element in the present work was to provide an auto-mesh generation
program, which was versatile and relatively easy to implement. The

details of this program can be found in Chapter Five.

The fracture programs developed by Robertson were designed for
special cases, for example, a program which caters for problems where
there are two crack tips in a mixed-mode configuration. Under the
heading of general program development it was proposed that a multi-tip
fracture program should be compiled, which would allow greater
flexibility in the types of problems which could be investigated. It
was also suggested that the crack tip element should be refined, that is,
extra terms in the series expansion for the near crack tip displacement
field, should be retained. This would benefit the program in two ways:
firstly the solution accuracy would be improved and secondly the crack
tip element could be enlarged, and thus reduce the local element density

required in the previous scheme; refer to Chapters 7 and 4. A further

requirement, necessary in the study of crack propagation, was the

‘ . 16 . .
implementation of Slh'S( ) strain-energy density concept. The

approach provides a nethod for predicting both the onset of cracking

and the direction of subsequent crack growth, and relies on the

determination of the relevant stress intensity factors. As these values

are determined directly as output from the fracture program, the scheme

can be readily accepted within the program; refer to section (7.6).



Robertson investigated the problem of partial crack closure and
achieved some degree of success for mode I crack configurations only.
However, the scheme is not applicable to mixed-mode cases, and this is
an area of research which required further development. Section (7.4)
describes the various techniques which have been employed in order to

provide a physically acceptable finite element model for crack closure.

A variety of examples have been investigated in order to validate
the various numerical procedures which were developed to resolve the
aforementioned fracture mechanics topics. The computed results are
given in Chapter 7 and the general program developments are described
in Chapter 4.  Where applicable, computer procedures are explained

with the aid of a flowchart and a separate program listing is provided

in the Appendix (9.3).

To summarize, the present work was directed towards a general
fracture mechanics program capable of encompassing mode I and mixed-
mode fracture problems of any complexity, with extra facilities to

examine partial crack closure and crack propagation.



CHAPTER 2

THE FINITE ELEMENT METHOD

[aS]
©
—

INTRODUCTION

The finite element method is essentially a process through which

continuum, with infinite degrees of freedom, can be approximated to

Q0

by an assemblage of sub-regions each with a specified but now finite

number of degrees of freedom. The behaviour of each sub-rvegion o

element is described by a set of assumed functions representing the

a

stresses or displacements. The assumed functions are usually of a
polynomial form and by using a sufficient number of elements, an
acceptable representation of the overall real situation is obtained.
The process is analogous to a piece-wise Rayleigh-Ritz method, where
the integrations required to define the appropriate functional must

be evaluated for each element in turn and the total contribution

obtained by summation.

The advent of the digital computer in the early 1950's enabled

the structural engineer, using the techniques of matrix algebra, to

deal with problems previously too large to contemplate.  This

represented the heginning of the finite element method as a significant

tool for engineering analysis. The variational approach to finite

glements was not introduced until a decade later and this providsed

a rational basls from which the technique could be sxtendsd into

pon=structural fields.
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e finite element method gradually became well known during the
9] ¥
1960%s when a vast number of papers were written. The publication
of the text by Zienkiewicz and Cheung (1) consolidated the method,

and similar | ications are given i ’ 3
publications are given in reference (z-4).

2.2 BRIEF GENERALTZED ACCOUNT OF THE FINITE ELEMENT METHOD

fhe sub-region or elements behave according to a prescribed

23

function which describes an assumed displacement and/or stress field.
More commonly the, so-called, displacement or stiffness formulation
is employed.  This approach has been adopted in the work described

in this thesis.  For convenience in subsequent reference, the

process can be summarized as follows.

2.2.1 DEFINITION OF THE FINITE ELEMENT MESH

The continuum is imagined subdivided into sub-regions
or elements. Each element is connected to the next, through node

points on its boundary, and the nodes are numbered and referenced to

a coordinate origin. The elements are defined by a series of node

numbers, (element nodal connections), and from this information an

element stiffness matrix relation may be determined between nodal

forces and displacements. In general purpose programs an assortment

of elements are available, ranging from bar-type elements to three-

dimensional elements. In the case of two-dimensional problems the

element usually takes the form of a triangle or quadrilateral. As

a general guide, the element density is increased in aveas of vapid

sftress changes and conversely, reduced in arecas of nearly uniform

stress. Flgure (2.1) shows a gimplified vepresentation of a

discretised two-dimensional prohlem.



Two Dimensional Continuum,.

_typical
element

sf Continuum using fBenocd
¢ Quadrilateral slemanta.
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2.2.2 DISPLACEMENT FUNCTION

As recounted earlier, the assumed element behaviour is
governed by its displacement function, and this is chosen to define
uniquely the displacement field within the element in terms of its
nodal displacements. If a polynomial function is used, then it will
be appreciated that the degree of the polynoﬁial will govern the
ability of the element to approximate the true displacement field.
Generally, therefore, more 'linear' elements are required as compared
to ‘higher order elements', for a desired accuracy in any particular
problem. Usually the same element formulation is used throughout
the discretisation, but it is possible to mix element types in order

to gain a better approximation to the real structure.

The assumed shape functions limit the infinite degrees of freedom
of the system, and the true minimum of the energy may never be reached,
irrespective of the fineness of subdivision. To ensure convergence

to the correct result the displacement function must satisfy three

criteria, namely,

i. The displacement must be continuous between adjacent elements,
i.e. no opening or overlaps must be implied.
ii. The state of constant strain must be included in the function.

iii. Rigid body displacements must be represented.

».2.% DERIVATION OF THE STIFFNESS EQUATTONS

It is possible to define the strain distribution, and

consequently the strain energy within each elemsnt, on the basis of
the displacement expressions of the previous section. Thus the

glament strain

E

enstgy 18 given by,

Eall

i




U, = Sale}*[c]{e}dvol

DA
vol (-1
where {e} is the vector of strains and from Hooke's law the
matrix [C] is given by {o} = [C]{e}. Considering the total potential
energy of the system, we have,
V=U=+Q-:= T (U +Q) (2.2)

Imposing the condition 6V = 0 for equilibrium yields the stiffness

equations,
[K]{g} = {Q} (2.3)

Here [K] is a matrix of stiffnes

92)

s coefficients for the systen
{q} is a vector of forces and {q} represents the vector of unknown

tiffrness matrix is normally derived using

tn
U‘.\

displacements. The element
numerical integration, although in simpler element formulations this

may be found explicitly.

2.2.4 SOLUTION OF THE STIFFNESS EQUATIONS

Numerous routines are available for the solution of the
stiffness equations (2.3). These are usually based on the Gaussian
elimination or Cholesky decomposition processes. Efficient routines
take account of the symmetric, banded nature of the stiffness matrix
in order to reduce the storage requirements demanded of the computer.

These techniques are further discussed in Chapter Four,

5 2.5 DETERMINING THE ELEMENT STRESSES AND STRAINS

Having computed the nodal displacements it is a simple

matter fo calculate the stré ains via the element displacenmsnt shaps
a ) v

et ety in the faymation of the stiifness matyig;
funetion used previously i1 the farmation of th a5s matyiv
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Since equilibrium is not satisfied exactly but only in some
average fashion, the stress field is discontinuous from element to
element. As an aid to improved accuracy, the stresses at a

particular node may be expressed as the average of the individual

stresses at that node.

2.3 ISOPARAMETRIC QUADRILATERAL ELEMENT

With the firm establishment of the principles of finite element
analysis, the possibilities of improvement of approximation were
confined to devising alternative element configurations and developing
new shape functions. The family of curved, isoparametric, quadri-
lateral elements was introduced by Ergatoudis, Irons and Zienkiewicz (1)
and represented a considerable improvement over simpler 'constant

strain' element formulations.

The quadrilateral element can be defined in terms of local
coordinates £ and n, as shown in figure (2.2). The relationship

between the global cartesian coordinates and the local coordinates can

be written in a general form as,

it

t
Nixp + NaXa2 * N3gXx3 + ..... [N] {Xn}

>
]

(2.4)

H

t
Niy:1 + Nayz + Nays + ..... (N] "l }

<
i

lists the nodal coordinates x and y and
Where X and y, >

N;, Np, etc. are some function of & and 1. For any values of &
3 3 .

and n the x and y coordinates can be found once the functions Ni are

known.
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FIG 2.2 General quadrilatﬁfal elements.
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In fini s s . .
Inite element analysis it will be necessary to define the

variati i oo
tion of displacement components u and v in terms of the nodal

values ’ iot . .
values of these functions. 1In the, so-called, isoparametric

formulati . 7 . ;
on the same functions Ny, N, etc., previously used in equation

(2.4) can be employed again. Thus we have,

!

[o
—_—
Y
=
—

i

= Njuy + Nauz+ ....,. = {N}t{ur}
1

Ny )
T

i

v(E,n) = Navy + Nava+

in which Ny, etc., are termed shape functions and u_, v_ represent the
il

nodal values of displacement.

[
(3]

ENERATION OF POLYNOMIAL SHAPE FUNCTIONS

-
[p]

Suitable polynomials for the various elements which satisiy
the necessary conditions of continuity can be written by introducing
only terms which give the appropriate variation along the sides of the

element. For the quadrilateral element, in figure (2.2.b), we can

write,
X = 0 + 0pf + g + ownE + asE? + agn? + azE%n + agn’E
(2.6)
and substituting the appropriate nodal values;
X‘”""leni“ls Eﬁwli
X = Xz, n =-1, £= 1, etc.
yields eight equations of the type,
= [c]{o ) (2.7
{xn] [cHay
(e x ! 2.8
from which {an} = [e]" x|} (2.8)
and the shape function follows s
RN AN i N (9 (2.0)

[Nys; Nz, Ny.oeo] = [1:€,m.E0E




- 13 -

It i . .
1s possible to use a more direct approach and write by

inspection.
For Corner nodes

1
Nj = 71+ €)1 + o) (& + g - 1) (2.10)

£, =0, N = 2(1- (L + ng)

~
]
q
et
—

[y

o 1 s
N, =0, No=5(1+ &)1 -n7)

where Eo = EE

Mo = NN

b
€4}

ime}

The quadratic element with the central node, figure (2.2.c}, 1

2 member of what is called the Lagrange family.  Member of this

|
T
[9)]
]

‘

family have equally spaced nodes forming a grid. An element of any
order can be generated easily using the Lagrange polynomials, see
ref.(1). The usefulness of this family is limited however, not
only due to a large number of internal nodes present, but also due
to the poor curve-fitting properties of the higher order polynomials.
See figure (2.3).

2.4 'EVALUATION OF THE ELEMENT STIFFNESS MATRIX

In the standard formulation of plane stress or strain the

stiffness matrix is given by,
(K] = /f [p]°1C) [B]dxdy (2.12)
in which [B] is the natrix defining the gtrains in terms of the nodal

displacements and [C] is the glasticity matrix which velates the

stresses to the strains. The strain matrix is given by,




FIG 2.%. Shape functions for am eight-node Isoparametric

and a nine-node Lagrange Quadrilateral Element.

Ref (1)e
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r ‘W ~ N
X v,
e} 0 v
€5 = __X, n Vs
iy | = (B ¢ (2.13)
dy  3x
~ < S~ -7
in which
[B] = [Bli B?. ..... ] [2.111)
with
ANy 7]
ox 0
BNi
B, = o, T {2.153
aN, aN,
ot i
LBy ’ ax |
Equation (2.15) is established using equation (2.4) from

Section (2.3) in which the displacements u, v are related to the nodal

displacements through the shape function [N]. As Ni is defined in

terms of £ and 1 it 1s necessary to change the derivatives to 0/0x

and 9/9y under the integration sign, equation (2.12).

Noting that

g 3 - 4 [ 3 i A
aN, ox dy. M Ny
5| 3 O 0x ox -
{ y = { y = 14 (2.16)
N N
oN; ax By | | b e
I 9 an i ay | LY

in which [J] is the Jacobian matrix which can be easily evaluated

noting that,
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and from equation (2.4)

ax
9X oy
BNi i
then
[j] = —BNI BNZ ~
NT 5 RE ™5 ecs9 0 X1 (‘Z 17,}
ot 9 Xz Y2
oNy. aN,
aﬂ 5 ar‘ 5 s
We can write
- =
oN.
N, 1 §?£
et %
aN.
1
an e s
F oo (2.18)
Iy SN ) SNi
and i . I | —
N [0, 1][J] { I \
oN.
_r
Lo
llence the matrix [Bi] can be formulated. The integral of
equation (2.12) is evaluated numerically; thus, dxdy = det[J]dEdn,

and the limits are -1 and 1 in both integrals.

NUMERICAL INTEGRATION OF RECTANGULAR REGIONS

2.4.1

To obtain the integral,

11 , o

=/ [ f(E,n)dEdn {2.19)
“1 =1
using the Gaussian quadrature formulae we first obtain the inner
integral, keeping n constant, i.e.
1 n ) - e e

;oOf(E,mdE = L Hj ftijm) =4{1) (Z.20)
=1 ' j:]_ i )
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Ev . .
aluating the outer integral in a similar way, we have

1 n
L=/ ¥mydn = 151 Hoo(n,)
n n
) iEI Hijzl Hj f(gj’ni)
n n
EPEL AU R e

In the above the number of integrating points in each direction
was assumed to be the same. Clearly this is not necessary and on
occasion it may be of advantage to use different numbers in each

direction of integration (e.g. the Lagrangian family).

It is of interest to note that the double summation can be inter-
preted as a single one over (n x n) points for a rectangle. Thus in
figure -(2.4), we show the nine sampling points which produce the

exact result for a polynomial of the fifth order in each direction.

2.5 LOSS OF ACCURACY IN CURVED ISOPARAMETRIC ELEMENTS

It has been found in practice that the accuracy of the isopara-

metric element degenerates if the element sides are curved or if the

mjd‘gide nodes are displaced. Several reporis examining this phenomena

have come to light.  Thomas (5) investigates the problem from a

practical point of view and his work forms part of a survey attempting

) Catd ¢ the finite element idealization.  This
to give some guidelines for the finite elemer e ! this

work looks at the effects of element shape distortion, with and

without curvature of the sides, and also displacement of the mid-side

e all based on problems which can e

put]
5]
[ni]

nodes . The test cases
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F1G 2.h. Integration points for n = 3. (Exact for
G 2ot g |
rder in each direction).

polynomial of fifth o
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Fried (6) examined the loss of accuracy in the element from a
theoretical stand point and shows that excessive distortion of a
complex isoparametric element might reduce it to a first-order element.
He suggests that the element should be curved only in the approximation
of curved boundaries and if indiscriminately distorted it will un-

necessarily lose accuracy.

Henshell et al.(7) approached the matter in a more basic manner
and investigated the change in the shape function as the element
becomes distorted. The following section presents the results of
these investipations and the advantages of element distortion.

5 5.1 SOME PRACTICAL CONSIDERATIONS OF ELEMENT DISTORTION

]

The problem of loss of accuracy in distorted isoparametric

elements became known to the author whilst working on a simple problem

involving a load carrying component. It was discovered that large

spurious shear stresses were being computed at stress free boundaries,

and equilibrium was not being maintained. This result was first

thought to be due to a programming error, possibly a boundary condition

fault. In subsequent investigations into the program coding no fault

could be detected. parallel with these investigations, a series of

simple tests were being Tun and it became apparent that the quadratic

element performed perfectly when approximating a linearly varying
stress field. Fried's paper reveals that distorting the elsment

degenerates 1ts accuracy and to demonstrate this effect two examples

were chosen The first heing @ plate in uniform tension and the

socond & bav in a linearly varying stress field.
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p plate in tension, excellent results were obtained

for both the straight and distorted elements, see figure (2.5 a,b).
This result would be expected as the stress field is constant through-
out the region under consideration and hence any loss of accuracy
would not be noticeable. The quadratic element can model a linearly
varying stress field 'exactly' and the second case amplifies the

degenerate effects of distortion. It can be seen from figure

=
Lyt]
p—
gt
i
e
”

curvature of approximately 7.0 ins. Discrepancies of 10.0% were
found in the axial stress, whilst the shear and transverse stresses

attained values within 5% of 8Y maximum. By subdividing the basic

two-element idealization into eight elements and maintaining the same

curvature, the discrepancies were reduced by 50%.  This indicates

that the degeneration is a function of relative element size.  See

figure (2.6 b). The effects of distortion are examined in greater

detail by Thomas (5).
5 5 2 TE SINGULARITY OF ISOPARAMETRIC ELEMENTS

.2 THE SINGULARE®. —
hat the shape function, of the distortsd

The discovery t

isoparametric slements, becomes nodified and causes poor alemsnt
performance was first noted by Henshell et al.(7). To lllustrate
this point a three-node isoparanetric bar element was used where
the mid-side node position Was arbitrary. The subsequent dis-
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FIG b. Plate in linear
stress field.
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Placement formulation shows that a singularity point exists on the
edge of the element causing the displacement field to change rapidly.
It was later realized by Henshell (55) and Barsoum (56,57), that

this element behaviour could be employed to represent the singularity
sought in fracture mechanics analysis as discussed in the following

chapter.

In order to clarify the above statements, consider a one-dimensional
¢lement, which may form the side of an eight-noded isoparametric element.

Figure (2.7) shows that the nodes of this element have been mapped

from the isoparametric coordinates, £ = -1, 0 and 1, to the cartesian
coordinates x = 0, p and 2. The transformation can be written as,
x = Cy + Cof + C4&? (2.22)

Substituting corresponding values of & in equation (2.22), we can
derive the values of C;, C», and C3, which are C, = p, C2 = 1, and
Cy = 1-p. Rearranging equation (2.22) and using the standard

quadratic solution we find,

_ =12/(1 - 4(1-p) (p-x))
£ = 2 (1-p) (2.23)

and -

dg _ ) (2.24)
V(1-4(1-p) (p-x))

In the isoparametric element the displacement function can be
written in terms of & analogously to equation (2.22) and it has been
shown (8) that the vanishing of the quantity under the radical sign
of equation (2.24) is responsible for the stress singularity.
Therefore the desired singularity occurs when,

1 2.25
x =p - 4(1-p) . ( )
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Now, it is possible to select where the singularity will occur

relative to the element, i.e., this is dependant on the position of
the mid-side node as defined by p. Let x = -q, then substitution

into equation (2.25), gives,

_ (1-9)+/(q* + 2q)
3

p (2.26)

This information can be represented graphically and figure (2.8)

illustrates the response of the element for various mid-side node

positions. Note the singularity positions are given by d&/dx = 0.
The element can therefore be constructed so that it is sensitive to
singularity points outside its domain. This ability has been used
to great effect by Lynn and Ingraffea (58), in what are termed
"transition' elements. These elements are further discussed in

Chapters Five and Seven.
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CHAPTER 3

REVIEW OF SOME TOPICS IN FRACTURE MECHANICS

3.1 INTRODUCTION

The susceptibility of engineering structures to the initiation
and propagation of a crack, resulting in catastrophic failure, has

led to the development of Fracture Mechanics. During the early part

of the industrial revolution it was known that pre-existing flaws

% could initiate cracks and fractures resulting in structural failure.
Prevention of such flaws coupled with better production methods and
an increased knowledge of material properties reduced the number of
failures to a more acceptable level. An interesting collection of

accident reports from the last two hundred years is given by Anderson (9).

With the introduction of all welded designs during the 1940's,
a new spate of accidents occurred resulting from structural failure.
Out of the 2500 Liberty ships built during this period, 145 broke in
two and almost 700 experienced serious failures. The failures often
occurred under conditions of low stresses which made them seemingly
inexplicable. Extensive investigations were initiated and the work
revealed that, here again, flaws and stress concentrations present in

the welded structure were responsible for the failures.

The following section describes briefly the foundations of

Fracture Mechanics and the subsequent sections review the techniques
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employed in the analysis of fracture.  The methods employed may be
broadly divided into three groups, namely experimental, analytical
and numerical. Because this thesis is directly concerned with the

numerical analysis of fracture, the two former methods will be given

a brief introduction only.

3.2 THE FOUNDATIONSOF FRACTURE MECHANICS

3.2.1 THE GRIFFITH CONCEPT

It was appreciated by the earliest workers in the field
that most materials show a tendency to fracture when stressed beyond
some critical level. Hence the idea of a 'critical applied stress!
was generally accepted, and used in engineering design as the limiting
stress level. IHowever it was realised, with the growth of experimental
data, that the fracture strength of a material was not consistent, and

that the simple premise of a critical applied stress did not hold true.

The breakthrough came in 1920 with a classic paper by A.Griffith
(10). He considered an isolated crack in a solid subjected to an
applied load, and formulated a criterion for its extension in terms of
the fundamental energy theorems of classical mechanics and thermo-
dynamics. Griffith simply sought the configuration which minimized
the total free energy of the system, the crack would then be in a
state of equilibrium and thus on the verge of extension. Consider
the figure (3.1) which defines an elastic body E, containing an internal
crack S, of length 2c, and is subjected to applied loads on its

boundary L. The first step in the treatment is to write down an

expression for the total energy of the system.
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For the static situation the total energy is the sum of three
terms, namely:-
1. Work done by the applied loads as they undergo

displacement, WLa

[ S

Strain potential energy stored in the elastic

medium, U, .
E

and 3. The mere act of creating a new crack surface
requires the expenditure of free surface
energy, US'

Hence the total system energy is,

U= (—WL + UE) + US {3.1)

For equilibrium therefore,

du/dc = 0 {(3.2)
where dc is a small increment of crack length. Equation{3.2)
represents a criterion for predicting the fracture behaviour of a

body, in that, a crack would propagate if du/de > O.

In this case, Griffith found that crack growth will be unstable

if,
o .2z 4 Ypy/(nc(k+l))
crt *
where JI is the shear modulus, Yy is the specific surface energy, and
¢ is the half crack length. The critical stress dcrt corresponds

+o the value of o required to cause instability.
, y Fed




3.2.2 THE STRESS INTENSITY FACTOR APPROACH TO FRACTURE

The stress intensity factor concept focuses attention on
the local stress field around the crack tip. Westergaard (11), using

the method of complex functions, derived singular expressions for the

stresses in the vicinity of a crack tip and it was noted by Irwin (13,
14}, that they could be interpreted in the following form:
1
o..=Kr 2 f. (6) (3.3
wii = Kt by (©) (3.3)
% .
u, = (K r° g
m i ( m' /p)mbi(e)
where i,j =1,2
m= I, IT; III
, s e o th
- = stress intensity factor of the m mods
d“d
mfij(e)’ mgi(e) are functions given in Appendix (9.,1)
The cylindrical polar coordinates, T and 8, refer to the crack
tip, see figure (3.2). It could be shown that the mechanical energy

released during incremental crack extension is independant of the

loading configuration and that the strain energy release rate is given

by,
G = -3U/0A

I

where U = potential energy stored in the elastic medium.

A = crack area.
The factor K, represents the stress intensity and originated from
Irwin's concept of strain energy release vate, denoted by G. 1% was
demonstrated by Itwin that ¢ and K are equivalent for describing the

stress field intensity in the neighbourhood of the crack tip. In

;2 (%:4])

3LEEANTE TATIG .

e
R
o]
=y
il
pot
T
,N»
.i-"\n
pe
'
el
4y
e
]
,-fm




This practical approach proposed by Irwin, does enable the onset
of unstable fracture to be predicted in real structures, provided
suitable fracture experiments on cracked specimens have been carried
out.  Thus, the material property K. can be defined as the stress
intensity operative at the point of fracture and is analogous to the
limiting stress at the onset of yield. Therefore a characteristic
spatial distribution of stresses was found, each specific case
characterized by the stress intensity factor, K. The three basic
stress environments experienced at the crack tips are, the opening

mode K., the sliding mode K

I and the tearing mode KIII’ as depicted

11’
in figure (3.3).

It became apparent that, except in cases where fracture occurred
at very low stress levels, some account of plastic behaviour was
necessary. The value of KI at the point of fracture was found to be
strongly dependant on plate thickness, and only above a certain thickness
could the critical value (KI ), be regarded as a material property.

c

Because of the high stress concentration ahead of the crack tip
the material becomes plastically deformed. Irwin (14) and 0§§an (15},
ﬁate& that the energy required for crack growth, was larger than the
surface energy to create the new free surface, and suggested that this
was due to the extra energy needed in forming the plastic zone at the
tip of the advancing crack. To allow for this in the calculation of
the stress intensity factor, Irwin made the crack length longer by

adding a correction parameter. The effective crack lemgth is givsn
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3.2.3 THE STRAIN-ENERGY-DENSITY FACTOR

The critical stress intensity approach in fracture mechanics
is analogous to the maximum stress criterion applied to a simple tension
specimen and cannot be used in combined loading situations. For this
reason it has limited applications in structural design. An alter-
native interpretation of fracture phenomena, presented by Sih (16,17}
is the strain energy density theory. Consider the three dimensional
case of a crack in a combined stress field, figure (3.4). We can

express the strain energy stored in the element dV = dxdydz thus,

dW = [— 2 2 2
L (o + oy y GZ )

2k X
(o +0 0 +00)
Xy y z 72X

oA 2 2 2 2N
4 ZU (ny P, Tyz y]dv (3.6)

where the symbols have their usual meaning.

Substituting the expressions for the local crack tip stresses,

equation (3.3) of the previous section, yields the quadratic form for

the strain energy density function.

2 4+ 2a;2K + agoK + a33k

a1
- (a1:1K

2 2
av - I *11 I It )

+ . (3.7)

IR

The higher order terms in r have been neglected and we note that the

strain energy density function near the crack tip possesses a 1/v

energy singularity. The quadratic,
5 = allKIz + ZaléKIKII + aﬁzerg * 333KII12 (ﬁvﬁ)

represents the amplitude or the intensity of the stwain enevgy density




-.34 -

field, and it varies with the polar angle 6, shown in figure (3.4) .

The coefficients ay;, ays,..... azs are given by,

1
ayy = Tgﬁ-[(S - 4y - cos0) (1 + cosB)]
a ::__];..... e 3
12 61 fcosb - (1 - 2v)]2sinb
1
azy = igﬂ‘[4(l - V) (1 - cos0)+(1 + cosB)(3cosb - 1)] (3.9)
ayy = L
33 % 7

where v is the Poisson's ratio, Y is the shear modulus of elasticity

KI - KTII and the stress intensity factors.

The fundamental hypotheses on unstable crack growth in the Sih
theory are as follows,
1. Crack initiation takes place in a direction determined
by the stationary value of the strain energy density

factor, i.e.

QU

S

=0, as 8 = B (3.10)

Q2

9. Crack extension occurs when the strain energy density
factor reaches a critical value, i.e.

5. = S(Kp Kips Kprp)e for 8 = 0o (3.11)

The difference between S and S is analogous to the diffevencs

between K and KC, and thus SC is also a measure of the resistance of

a material agalnst fracture. The additional feature of the styain
energy density approach, is that the dirvection.af crack initiation
can he found and also a single parameter, §., can be used as a material

constant that serves as an indication of the fractuve toughness af the

material.
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The invariant property of the strain energy density factor can

be seen from figure (3.5), wherc the normalized factor S_. is plotted

against crack angle B. It can be seen that the factor Scr remains

essentially constant (16).

3.3 EVALUATION OF STRESS INTENSITY FACTORS

3.3.1 EXPERIMENTAL METIIODS

Experimental methods may either involve divect measuvements
on a model or use a known relationship between the measurable quantity
and the stress intensity factor. In this section two methods are

described as an example of the above techniques.

T. COMPLIANCE

It was shown by Irwin and Kies (18), that the strain energy
release rate G, could be written in terms of the applied load Q and
the change with respect to crack area A of the compliance C of the

test specimen as,

2
G :%__%% (3.12)

Using the relationship,

1+ Ky 7,13
i KI (3.13%)

the stress intensity factor is given by

[

= 9 ...,E._w ,.g_, ]% . .
KI = 2Q1 (k+1) dA (%5.14)

Measuring the compliance C, over a range of cvack lengths, and

detarmining the derivative of the plotted vesults K, may he found,

Considerable care\}sgrﬁqui%@d if satvlsfaciary
ot ol

results ave to be obtained.  See EtfﬁW1ﬁyki1§3*

using expression (3.14) .
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I1I. PHOTOELASTICITY

Of the optical methods for determining stress intensity factors
photoelasticity has been most used. The technique is well known and
experimental equipment and birefringement materials are readily
available. Two methods are presented here which involve measurements
of the stress near to a simulated crack. These are based on the
equation for maximum shear stress, Tm, given by

]

mo —
Yoo/Inr

.

1
[(KIsine + 2K 0056)2+(K1151n6)2]2 (3.15)

I

where v and 0 are polar coordinates at the crack tip.

The first method involves measuring thé& shear stress Ty ON lines

perpendicular to and through the crack tip, represented by,

N

(K2 + K .2
o=t I (3.16)
mn 2/21r

and also on a line outside and collinear with the crack given by,

.
7 = —1L (3.17)
m V2Tr

Having evaluated T_ the above expressions can be used to determine
m

KI and KIIG See references (20,21).

The second method, used by gmith and Smith (22,23), utilizes

the condition arm/ae = 0, which ean be restated as,

K, K .
1 B ! AL ycos20, - Yeo (3.18)

KI M




The angle em’ is that at which a tangent to the isochromatic fringes
is perpendicular to the radius r. By obtaining 0_ the ratio KH/KI
m _

can be determined from equation (3.18) and hence, knowing T_, KI and
mn [

KII can be found using equation (3.15).

ITT. CRACK OPENING DISPLACEMENT METHOD

The crack opening displacement is a measure of the resistance of
material to fracture initiation under conditions where gross plastic
deformation occurs and linear elastic fracture mechanics becomes
invalid.  The main objective of the crack opening displacement (COD)
test is to determine the critical COD at the tip of a sharp crack at
the onset of crack extension. This is done by measuring the
displacement at the mouth of the notch using some form of clip gauge
and by performing a suitable calculation. It is difficult to interpret
the crack tip opening displacement §, from the clip gauge displacement
q. Several methods have been proposed (62,63), and all the methods
assume that plastic deformation occurs by a hinge mechanism about a
centre of rotation at a depth r(W-a) below the crack tip. Here, T

is the notch root radius, W is the specimen width and (a) is the

crack length.

Having calculated the critical crack tip opening displacements,

ode I stress intensity factor is given by the relationship,

the m
K20 -V .
§. = wg T (plane styain)
“t F Gyield
ll 2
ET , .
or § = o (plane styess)

e, "MIyie1d
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where the symbols have their usual meaning, and values for A have

been reported in the literature. A review of these values is

available in (64).

More recently moiré and speckle pattern techniques have been

introduced for this work, but little, as yet, has been reported on

this new development.

3.3.2 ANALYTICAL METHODS

The methods considered heve are those which satisfy all
the boundary conditions exactly. Such methods have the advantage
of leading to explicit expressions for stress intensity factors;
but only certain classes of problems can be solved. In deriving

the stress intensity factor use is made of the formal definition,

KN = Lim ON 27T (3619)

r *0

where Iy is appropriate to the mode of cracking. For simplicity,
all the methods are described for a crack of length 2a along the x

axis with the origin of the X,y coordinates at the crack centre.

T. WESTERGAARD STRESS FUNCTILONS

Westergaard (11) formulated an Airy stress function ¥, which

for mode I, takes the form

Py o= R@[ZI] vy Im[ZI]

where ZI is the Westergaard stress function,
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ZI and Z_ arc defined by

dZI ) ”I
A

o

dz = Z and —— = VA

I d I

where z = x + jy. The cartesian components of stress, in terms of

FI’ are
2

g = 2 i T
dy2 * Gy 55z and

S &
Xy axay

(3.20)

The simplest crack configuration studied by Westergaard was that
of a crack in an infinite sheet subjected to uniform biaxial tension

o_ at infinity; the stress function is,

Z.I = o‘mz/M2 ~ a’ {3.21)

Westergaard also studied a crack opened by wedge forces and an
infinite serics of collinecar cracks under various loading conditions.
The method can be extended to modes II and IIT, and comparison of
the stress field in terms of the Westergaard stress function ZN with
equation (3.19) shows that the stress intensity factor is given by,

Ky = /21 Lim {(Vz - aZN} (%.22)

7 + a
where N = I, 11, III.

several workers (41, 65, 66) have used Westergaard's method for

solving crack problems.




IT. COMPLEX STRESS FUNCTIONS

Mushkelishvili's complex stress function approach (25) enables

the Airy stress function F to be written in terms of two complex

functions ¢(z) and Y(z), as

$

F = Re[z¢(z) + JY(z)dz] (3.23)
which yields from equation (3.20) with FI replaced by F,

O+ 0, = dRe[9 (2] (3.24)
and

Oy = Oyt j2TXy,=2[E¢"(z) Pt (z)] (3.25)

From equation (3.23) and the known properties of ¢'(z) (25) it can be

shown that,

K, - i Ky ® /21 Lim  {Vz - z;0'(2)} (3.26)
Z +> 2

This method of determining stress intensity factors is superior
to the Westergaard method in as much as conformal mapping can be used
to map cracks into holes. This is important from a practical view
point as many cracks initiate from areas of rapid stress change.

This method is discussed in greater detail by Sih (26).

For practical components, however, these techniques are limited

to certain idealized situations and thus numerical methods are adopted

as described in the following section.
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3.3.3 NUMERICAL METHODS

The analysis of fracture mechanics problems has been one
of the most active branches of numerical methods in structural

mechanics in the 1970's The development of finite element methods

to fracture mechanics has been so extensive that it is proposed to
examine this branch of numerical analysis only and reference to

alternative techniques may be found in (27,28,29).

The manner in which numerical methods have been used can be
grouped under two broad headings: firstly, methods for the inter-
pretation of the finite element results and secondly the construction
of formulations which model the singularity at the crack tip. The
methods of both groups will be discussed in brief only and the veader

is referred to the original papers for a more detailed treatment.

I. INTERPRETATION OF THE FINITE ELEMENT ANALYSIS RESULTS

Initial efforts with conventional elements, demonstrated clearly
that hundreds, or perhaps thousands of simple elements are required
to achieve a solution accuracy within 5% (30,31). The complexity of
the problem and the methods employed in the analysis of the results,
dictate the number of elements required for an accurate solution.
Higher order elements may be used to ohtain a more efficient analysis,

dtal. atal
but care must be oxercised, as studies by Fried/(§23 and rnﬁg}(35)

disclose.

i, EVALUATTQN_EéﬁﬁEEDN CLASSICAL SOLUTIONS

The displacements in ¢he vicinity of the crack tip are given

in Appendix (8.1). This expression can he veavvanged to yisld,
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u
K, =2 //gj A
I S ICRY (3.27)
where £(6,v) represents the first term in the expression and uy is
the displacement at location (A). A similar expression holds for Ve

Equation (3.27) can be evaluated at nodal points along a radial line

emanating from the crack tip, producing a plot, such as that given

in figure (3.6).

As stated earlier the number of elements requived to achieve a
solution accuracy within 5% is immense, thus, in using a reasonable
cslement mesh density, the finite element displacement solution neay
the crack tip is inaccurate. By disregarding the results closs to
the crack tip and extrapolating to r = 0, a solution for KI can be
obtained. This method was introduced by Kobayashi (31) and later
an extrapolation procedure was devised by Chan (30). The method has
recently been employed in investigations on distorted isoparametric

clements (34), as described in subsection II(ii) and (iii), below.

ii. EVALUATION BASED ON STRESSES

A similar method to that described above utilizes the classi-
cal expression for the local stress at the crack tip. From Appendix
(9.1), the stress intensity KI can be interpreted in terms of the

vadial stress (Gr) as,
20 / v e
KI = ?T%j- 2r (%.28)

Again £(0) represents the first term in the gapression.,




FIG 540, fxtrapol

Values of K. obtained from
1 .
eq(3.27), and the finite
element results.

ation to obtain KI at r=0,
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Equation (3.28) is evaluated at points along a radial line as before,

and the results can be extrapolated to determine KI at r

atic results if simple constant strain elements are

= 0, This
method gives err
used and studies (35), indicate that the procedure is less accurate
than the corresponding displacement method. This is not unexpected

since the stresses in an assumed-displacement solution are themselves

inferior in accuracy to the displacements.

iii. CORRELATION METHOD

A procedure for the determination of stress intensity factors
has recently been proposed by Murakami (36). The method involves
performing two finite element analyses, the first analysis is carvied
out on the component without a crack to determine the hypothetical
crack tip stress (Og) and secondly the crack tip stress (OTIP) is
computed for the component with the crack. Murakami argues that the
ratio of the stress differences, (OTIP - Og)A/(UTIP - Og)B’ for
problems A and B, is approximately equal to the ratio of the stress
intensity factors KA/KB' Hence, if Ky is known then KB can easily
be computed. Conversely the stress difference (GTIP - dg) is
directly related to the stress intensity factor K, via a conversion

For two dimensional problems the centrally cracked plate in

factor,
uniform tension is used to determine the standard correlation between
(o - ¢ ) and K., The final expression for the stress intensity
TIP g I
factor is given by,
CI
TIP f o
Ky = ”“““”l““”““l“ Vo me (5.28)
I o
' c

where ¢ is the carroction factor and
c

¢ js the crack 1ength.
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The method has been applied to semi-elliptical three dimensional

crack problems and is currently being used in crack propagation work (39).

iv. STRAIN ENERGY RELEASE RATE

The relationship between the strain energy release rate G,
and the stress intensity factor K, has been previously demonstrated
by equation (3.4). By evaluating the strain energy U for particular

cases as the crack is opened, the strain energy release rate can be

obtained. Thus, on a finite difference basis,
Su
G = 5% (3.30)
where 8A is the increase in surface area. Hence subsequent sub-

stitution in equation (3.4) leads to the stress intensity factor.
The method is not as sensitive to grid refinement in the vicinity
of the crack tip as were methods i, and ii, and consequently a

relatively coarse mesh can be used,

It is possible to determine the change in strain energy, using

only the original cracked configuration.  The theoretical basis of

this procedure is as follows. Examining the stiffness equation, we

have,
[K]{u} = {b} (3.31)

where {u} is a vector of displacements, {b} is a vector of corresponding

nodal loads, and [K] is the structural stiffness matrix. Now the
b

ential energy of the structure is given by,

U = —%—{u}t[K] {u} - {u}t{v}

total pot
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Consider a small virtual increase 8a in crack length, with no

change in external loads, then the energy release rate G is obtained

from the variation of u with respect to the constant load, i.e.
8U = = {u)t ¢
5 {u [6K]{u} + {8u} [K]{u}
- {8} b} - {u}ep)

Using equation (3.31), this reduces to,

5U = %-{u}t[GK]{u} ~ {u}t{sp} (3.32)

Providing the loading is due to forces outside the crack tip

elements, the vector {&b} is null, and the final term is dropped, thus,

SU = %-{u}t{GK}{u}

then

1 t 8K
G=~—é—=—-2—{u} {67{}{“} (3.33)

Therefore the stress intensity factor can be obtained by sub-

stitution into equations (3.4). Both Parks (37) and Hellen (38) have

exploited this idea, which has been termed the rdifferential stiffness

procedure’.

v. CRACK CLOSURE INTEGRALS

Yet another procedure for avoiding two analyses is based on

the crack closure integral. (Rybicki and Kanninen (40)). This method

calculates the amount of work required to close the crack at the node

points immediately ahead of the crack tip. Using the properties of
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the so-called crack closure integral (41), an analytical solution (42)
in the vicinity of the crack, and the customary approximation of the
finite element analysis, Kanninen establishes expressions for the

strain energy release rate in terms of the nodal point displacements

and forces of the finite element solution.

vi. LINE INTEGRALS

A quantity of importance in fracture studies is the J-integral,
first introduced by Rice (43) and subsequently used by several investi-
gators . for inelastic as well as elastic situations (67,68). The J-
integral, taken over any boundary I' of a region containing a crack,

results in a constant, given by

J= J (Udy - T. 22 ds) (3.34)

I1 8
where U is the strain energy density, T is the traction vector defined
according to the outward normal along I', u is the displacement vector,
and ds is the element of arc along I'. (see fig. 3.7). The J-integral
is linked directly with the strain energy release rate and hence can

be used to determine the stress intensity factor. It can be shown

that the stress intensity factor KI’ is related to J by

2 (3.35)

for plane strain

Thi§ method has been applied to fracture problems by Chan et al. (30)

and Anderson et al (44), and the concept has been used extensively by

other investigators.
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The J-integral is not the only integral which can be employed,

a Somogliana-type singular integral representation has been proposed

by Stern et al.(45) and Soni et al.(46). This integral has the

advantage of giving the stress intensity factors directly.

II. SINGULARITY FORMULATIONS

The most appealing approach to finite element fracture mechanics
analysis is that which takes explicit account of the crack tip
singularity. Because the majority of finite element programs are
based on the assumed displacement finite element formulation, many
of the embedded singularity procedures incorporate a displacement
field which includes the desired singularity. Singularity formulations
can be divided into four groups,

1. Methods which utilize the displacement functions

already available in classical mechanics.
2. Polynomial displacement functions.
3. Distorted isoparametric element formulations.

4. Hybrid elements.

i. CLASSICAL SOLUTION BASED FUNCTIONS

The series solutions established by Westergaard, Muskhelishvili,

and others, for the stress distribution around a crack tip in an
b

infinite plate, take the form of equation (3.3). The expanded

expressions are given in Appendix (9.1). The first term 1n the stress

-

series 1is proportional to r 2 and represents the singularity in the

stress distribution at the crack tip. By expanding the expression,

additional unknown parameters can be employed as the assumed displace-
The incorporation of the

ments in a multi-node finite element.




classical solution into a finite element was introduced by Byskov (47),
who formulated a singularity element based on the equations of
Muskhelishvili (25). Figure (3.8) shows the element configuration,

which is sited at the crack tip and surrounded by conventional,

constant strain triangles.

The procedures required to incorporate a singularity element,
into a conventional finite element mesh can be conveniently described
with the aid of Lagrange multipliers. See Richards (76,77).

Referring to Chapter Six, the algebraic manipulations result in four

basic equations accordingly,

[X o} - [A1°0) =0 (3.36)
[KinHar} + [Ki21{a2} -{Qu} + {d} =0 (3.37)
[K211{q1} + [Kz2]{q2} - {Q:} = 0 (3.38)

[A]{a} = {q;} (3.39)

where {A} represents the Lagrange multiplier,
[KC] stiffness matrix for the singularity element.
[Kij]’{qi} and {Qi} represent the partitioned stiffness matrices,
fa} parameters in the singularity expression which contain the

stress intensity factors,

and [A] connection matrix relating the displacements at the nodes

on the special element and the parameters in the

singularity expression.

We can use these equations to describe two fundamental approaches,

the merits of which will be discussed more fully in Chapter Seven.




The first method can be adapted to a conventional finite element
program with minor adjustments to the stiffness matrix [K]. The
method solves for the vector {qi}, being the nodal displacements and
then cvaluates the parameters {a} via expression (3.39). Clearly if
the connecting matrix [A], in the above expression, is not square
then some pseudo inverse method must be employed, in order to obtain
the vector {a}. It is possible to minimize computational effort by
making the matrix [A] square, i.e. by taking enough terms in the
singularity expression to balance the displacement degrees of freedom

on the elements boundary.

This approach was used by Fawkes (48) and his element is shown
in figure (3.9); it is rectangular and described by 8 nodes (16 dof).
By using the stresses derived from the Williams stress function (49),
the element stiffness [KC] can be found via the usual strain energy
expression; the integration being carried out numerically. The
element was divided into convenient triangles for the integration

process and 72 gaussian points were used overall.

Utilizing equations (3.36) to (3.39), we can illustrate the

Fawkés method. Substituting equation (3.39) into (3.36) and re-

arranging we have,

03 = (a1H T A ) (3.40)

Subsequent substitution into equation (3.37) reveals that a
simple additional term is imposed on the submatrix [Ky;], thus,
arH T ix 3 e K D {an ke K Hap =)
[K21]{q1}+[K22]{Q2}={Q2} (3.41)
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Solving this set of equations yields the nodal displacements
and on substituting the vector {q;} into equation (3.39) the stress

intensity factors contained in the vector {a} can be computed.

A similar approach is used by Jones and Callinan (50), it differs
in that the number of terms taken in the series expression and also
the number of nodes on the circular element boundary, is optional.

The element is given in figure (3.10). Because of the facility
enabling any number of terms to be taken in the series expression,
matrix [A] will now be non-square. Hence a pseudo inverse or least
squares method is employed in the solution for vector {al}. Thus, by
premultiplying equation (3.36) by [A]t, it can be seen that the

resulting multiple ([A]t[A]) gives a square matrix.

a1 A {a} = [A1%{q:)
or o} = ((A1SAD A Hgg (3.42)

Following the same algebraic manipulations used in the previous

method, it will be found that the Lagrange multiplier becomes,
A S -
= a1 trany AT TR T (AT A T A ) (3.43)

and substituting into equation (3.37) leads to an expression similar
to that of equation (3.41). The solution of the stiffness equation

yields the vector {qi} and the stress intensity factors can be found

on substituting this vector into equation (3.42).

The second scheme determines the stress intensity factors directly

and this is achieved by replacing the displacement vector {q:}, by the
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singularity terms{a}. The method, due to Hilton and Hutchinson (51),
was originally applied by Wilson (52) and again the element formulation
is based on the Williams stress function. As with the previous element,
any number of boundary or interface nodes may be chosen, and the shape
of the element is chosen to be circular. Utilizing the four basic
equations (3.36) to (3.39), the scheme proceeds as follows;
premultiplying (3.37) by [A]t and combining with equation (3.36) gives,
(A1 Tk 1 {and + [A1F[KioT{az) + [K 1o} - [A1*{Qu}= 0

[K211{q:1} + [Ka21{q2} - {Q:} = 0 (3.44)

replacing the vector {q:} from equation (3.39) results in the final

expression,

(K] + [A°[K AT} + [A1T[Kial{qz} - [A]T{Qi} = 0
[K21][A]{@} + [Kzz]{QZ} - {Q} = o0 (3.45)

Solving this set of equations yields the stress intensity factors

and also the nodal displacements.

Both of the methods described above have certain salient features,
and the complexity of installing either scheme in a conventional
finite element program is dependent on the type of stiffness matrix

handling procedures employed. These techniques are examined in more

detail in Chapters Six and Seven.

1i. POLYNOMIAL BASED DISPLACEMENT FUNCTIONS

Using elementary polynomial displacement fields, rather than

the more complex classical function, allows simpler elements to be

constructed. Tracey (53) introduced a triangular element, which
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contained the 1//r singularity. Several of these elements were used

around the crack tip as shown in figure (3.11) and solving for the
stress intensity factors required some secondary procedure to inter-

pret the displacement results. The displacement field for this

element can be described by,

A= (1- 8" + EP(1 - n)A, + EPnA, (3.46)

The coordinates & and n are defined by figure (3.11) and the

displacement field represents a 1/rp singularity, where r is the

radial coordinate with origin at point 1, the crack tip.

A triangular element formulation similar to that above was

proposed by Blackburn (54). The coordinate system is the same as

that used by Tracey, the element has six nodes and the displacement

field is given by,

byE + bsn + bgkn (3.47)
v £+n

A:bl+b2€+b3n+

where £ and n are as defined in figure (3.11). Again, in all of
these element representations, the stress intensity factors are not

obtained directly and must be calculated using one of the schemes

presented in Section I.

iii. ISOPARAMETRIC REPRESENTATIONS

The distorted isoparametric element technique is extremely

interesting from the practical point of view, because of the ease

with which it can be incorporated within a standard finite element
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program. From the early investigations, involving loss of accuracy

in distorted elements, it was recognised that the transformation from
cartesian to isoparametric coordinates can be singular if the nodal
points along the sides of the elements are positioned in a certain way.
Henshell (55) and Barsoum (56) first realized that this element
behaviour could be used in fracture mechanics work, and indeed seems

to be a natural extension of the polynomial element formulation.

During the initial trials with the isoparametric element both the
triangular and quadrilateral forms were used, and in the two
dimensional case, the mid-side nodes were positioned one-quarter of
the way along the edges, nearest the crack tip, see figure (3.12).

It was subsequently found however that the singularity conditions
prevail only along the edges of the element, and not on an arbitrary
ray emanating from the corner singularity point. This condition

was resolved by Barsoum (57), who found by collapsing one side of a
quadrilateral element to form a triangle and adjusting the mid-side
nodes appropriately the 1//r singularity prevails on all rays emanating
from the crack tip. See figure (3.13). It appears that the doubly
distorted elements only give acceptable results if the three edges
are gtraight. The solution accuracy can be improved by surrounding
the distorted crack tip elements by a further ring of elements which
also include the effect of the singularity at the crack tip.  This
was used by Lynn and Ingraffea (58), who show that the inclusion of

such 'transition' elements, significantly improves the accuracy

without additional degrees of freedom.
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Again, as with the polynomial based elements, the stress intensity
factors are not obtained directly and must be determined using one of
the methods described in Section I. The element stiffness matrix
can be calculated in the usual manner, by numerical integration; the
sampling points are not located at the singularity point and therefore
present no difficulty. There is only a slight difference between the
displacement function corresponding to the degenerate isoparametric
element and the special shape function given by Blackburn (54). Thus,

the displacement function for the distorted element is given by,

A= ay + agf + agn + & AN
vE+m
T (3.48)

whereas in Blackburns formulation, the displacements are given by
equation (3.47); it can be seen that the only difference is in the
last term. The performance of these two elements has been examined
by Hellen (59), and there is no significant difference in the

accuracy of the two formulations.

-iv. HYBRID FORMULATIONS

Hybrid formulations involve the choice of two or more assumed
fields of behaviour in a single element.  There are three basic hybrid

models of which the stress formulation seems to be the simplest to

comprehend.  Pian, Tong and Luk (60) introduced this hybrid formu-

lation and used the classical stress field. functions to describe the

stress state within the element, together with a simple conforming

boundary displacement field employed on the edges of the element.
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We can describe the combined stress field as

{o} = [Po]{Bo} + [PS]{BS} (3.49)

where [Po] represents the coefficients of a simple expansion in the
element, [PS] contains the coefficients from the singularity stress

field, and {BS} contains the stress intensity factors. For the two-

dimensional analysis,

{BS} = (3.50)
11

Similarly the surface tractions can be described by,
T = [RI{B )} + [R]{B} (3.51)
and the edge displacements are,

u = [Y]{A} (3.52)

Using the above expressions, we can show that the complementary

energy is given by,

=3
1]

1 t t
Lg o e ) + () 1, ) (8.}

1 t t
+ > {8} B} - {8 }[Q,1{a}

1

t
{8} 1Q 11} (3.53)

t __1 « 1 th . e .
where [Ho] = f[po] [E] [Po]dvol, and similarly for the remaining

terms [H_], [Qo] and [QS]. On taking the variation of 7 _ with

respect to {BS} and {A}, we obtain equations of the form
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Solving these equations yields the stress intensity factors

directly.

Other hybrid methods are combinations of assumed displacement

fields and the assumed stress field.

3.3.4 SUMMARY

The various numerical techniques used to determine the
stress intensity factors will be summarized here so that the method
adopted in this thesis can be put into perspective. As a means of
comparing the efficiency of the various approaches, the complexity
of the mesh, and the accuracy of the solutions, a standard problem
will be used as a reference. This standard problem is that of a
rectangular plate, containing a 90 degree edge crack, in uniaxial

tension. From symmetry only half of the plate need be considered,

see figure (3.14).

The interpretation of the finite element nodal displacements or
stresses using the classical solutions, was found to be inefficient

due to the large number of conventional elements required to give an

accurate result, say within 5%.  The development of the polynomial

and degenerate isoparametric singularity elements has, however,

revived the method and investigators are experimenting to determine

> = (3.54)
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the most effective crack tip mesh configuration. Using the isopara-
metric degenerate element, Barsoum, having only 10 elements in the
basic edge crack problem, obtained results within + 10% of the
generally accepted theoretical solution. Also Lynn and Ingraffea
using a more refined approach, that is with transition elements,
obtained results within * 4% for the same mesh, that is, 10 elements
and 90 d.o.f. The elements used are eight-node quadrilateral iso-
parametric elements and Barsoum recommends a 3 x 3 or 9 point Gaussian

integration over the element.

Murakami's approach, which is another technique for interpreting
the nodal stresses, investigates the single edge crack problem and
shows graphically that good results are obtained in comparison with
Bowies solution. A typical fine mesh idealization contains 295
elements and 175 nodes, whereas the coarse mesh has 165 elemen£§ and
101 nodes. The elements used are simple constant strain triangles
and consequently some numerical advantage is gained in that the element

stiffness matrix is explicitly defined.

The hybrid method, employed by Pian and others, has been used to
solve the edge crack problem and values for KI within 5%, using 35
nodes in the mesh, have been obtained. By increasing the element

density resulting in 92 nodes, the error was reduced to 0.5%,

Finally we have the classically based formulations. The first
interpretation discussed earlier was that used by Fawkes. In the
application of this method very few elements are employed and approxi-

mately 29 nodes or 6-7 elements would be used in the comparison problem.
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Fawkes states that the technique yields good results and with a

minimum of uscr crrors.

The singularity element formulated by Jones and Callinan, is
very versatile allowing the number of nodes on the element boundary
and the number of terms in the singularity expression to be variable.
From investigations carried out to determine the effect of local mesh
density and size of the special element, it was found that a relatively
large singularity element produced the optimum solution accuracy.
Used in conjunction with 4-node isoparametric quadrilateral elements
the basic edge crack problem contained 88 nodes and the solution was

within 3.0% of the accepted value.

The last of the classical formulation methods to be described,
was that used by Hilton and Hutchinson. This technique was employed
by former research workers, Robertson and Alsharqi, and the programs
generated form the basis for the work presented in this thesis.

The method has been improved and for the case of the single edge crack
problem a total of 14 elements and 59 nodes were used to obtain a

result within 2.0% of the accepted solution by Bowie. The techniques

used are given in Chapter 6.

Table (3.15) brings together the various methods and lists the

mesh specifications and solution accuracy for the simple 90 degree

edge crack problem.  From these results it 1s worth noting that the

Hybrid method and the Fawkes formulation, use only a small number of

elements in their model.  In both of these cases the singularity

element is relatively large and hence the back-up mesh is sparse.



N

- 66 -

Method . No: of No: of D.O.F Accuracy Element type in
Klenments Nodes back-up mesh
Degenerate
Isoparametricg 10 Ls 90 + Lo 8-node fuad'l
fuadrilateral -
Murakami coarse 165 101 202 . g %-node Trig'l
method fine 295 175 350 goo
Hybrid coarse 35 70 % 8-node Quad*'l
element fine 92 184 0.5%
Fawkes 6-7 29 58 * good 8~node Zuad'l
formulation
Jones & - 88 176 29, h-node Juad'l
Callinan
element
Present 14 59 118 2% 8-node Quad'l
technique
used herein
TABLE 3.15. Comparing the mesh specification and solution

accuracy of six numerical techniques used in
solving a simple edge crack problem.

» - o,/
A‘ccuracy according to authors. * within 5%
Fs
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In this simple symmetric test problem a sparse mesh seems to be

sufficient to yield good results, i.e. within 5%, but in more complex
practical problems the back-up mesh density should be the same in all
methods used, as appropriate to the element formulation. In other
words, in order to model the stress field accurately a similar mesh
grid must be applied in each case. Therefore, in terms of mesh
complexity, there is very little difference in the techniques. Also
in most practical engineering situations a solution accuracy within

5% is acceptable, and this is met by all of the methods examined.

The factor which segregates the methods, is the degree of
complexity involved in implanting the technique into an existing finite
element program. Perhaps the simplest of these methods is that of
Murakami, which interprets the stress at the crack tip, requiring no
modification in the program structure. This approach does, however,
have a disadvantage in that two runs are required for the complete
solution. The degenerate isoparametric formulation is possibly the
most readily acceptable technique in this respect and can easily be
adapted to most general finite element programs, with the addition
of a displacement interpretation routine. The remaining singularity

formulations, all affect the stiffness matrix to some degree, as

previously explained.

The Hilton and Hutchinson method as used in this thesis was

formulated by Richards and Robertson (61).

The technique and the further developments carried out by the

present author, are further discussed in Chapters Six and Seven.
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CHAPTER 4

———————— e

REFTNEMENT OF EXISTING PROGRAMS

4.1 INTRODUCTION

Two former research workers namely Robertson(zg) and Alsharqi(zg),

investigated two dimensional and axisymmetric crack behaviour using the

finite element method. The structure of both basic programs are similar

with several procedures being common. Both programs utilize the six-
node isoparametric triangular element with appropriate modifications in
each case. As would be expected the mesh configurations are identical
and consequently the same mesh generator can be employed in either
program. Due to time restrictions a general mesh generation program
could not be developed and both investigators resorted to ways of reducing
data input e.g. interpolation, etc. A mesh generation scheme has now
been developed as part of the present invéstigation and the input

procedures of both programs have subsequently been modified to accept the

new data format. See Chapter Five. With the increased use of degenerate

isoparametric quadrilateral elements in fracture work, it was felt that

the integration of this element type within the two-dimensional scheme

was desirable. It would also establish the method for introducing

higher order elements in later modifications. An outline of this program's

operation and subsequent alteration is given in the following section.




- 69 -

A 4
With the development of the fracture mechanics programs and the

introduction of a labour saving mesh generation scheme, larger
problems, involving greater element detail, could be undertaken, The
freedom provided by these developments, however; prompted the need for
a versatile solving routine, Consequently a new segmented solving
routine capable of encompassing the problems which were envisaged has
been implemented.  The routine logic is based on a report by Jennings
and Tuft (69), and has been successfully used in the two-dimensional

finite element program.

A file-index will be found in the Appendix (9.3) referring to

all the programs, with a brief description of their function.

4.2 2-D FINITE ELEMENT PROGRAM DESCRIPTION

The two-dimensional, plane stress, plane strain finite element

(28)

program, written by a previous research worker, A.Robertson utilised

the isoparametric six-node triangular element. The program is
conyeniently structured into sub-procedures which will be briefly

discussed here to set the scene for the present authors work.

The control data, nodal coordinates, element nodal connections and
boundary conditions, are all read by procedure INPUT. The program

uses the solving routine SYMVBSOL, as initially described by Jennings

and TuftC70) and as a result the overall stiffness matrix is

economically stored in a one dimensional array. The coefficients of

the one-dimensional array are referenced to the two-dimensional stiffness

matrixvvia an address sequence,  This address sequence is compiled from
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the input data by, ADDARRAY, which is the next procedure to be accessed.

The address sequence is a one-dimensional array of length equal to the

struc res : o Pl
structurcs degree of freedom. Each coefficient in the sequence is
equivalent to the sum of all the previous coefficients in the array

plus the number of terms between the first non-zero term and the

leading diagonal of the stiffness matrix.

The elasticity matrix [C] is evaluated in procedure CMATRIX and
relates the stresses to the strains. Plane stress or plane strain

can be selected using the appropriate control variable.

The external loading is transferred to the load vector {Q} in the

procedure LOADAPP.

The overall stiffness matrix is assembled within the procedure
FEASSEMBLY . Each element is called in turn and using numerical
integration the element stiffness matrix is obtained. Referring back
to section (2.4.,1), in order to perform the necessary integration the
[B] and Jacobian matrices must be compiled, this is achieved in sub-

procedure AUX. The element stiffness matrix coefficients are positioned

in the one-dimensional stiffness matrix using the address sequence found

earlier.

Where the structure has been given prescribed nodal displacements,

such as anchor points, etc., the procedure GEOMBC zero's the rows and

columns of the stiffness matrix, the leading diagonal is made unity and

the appropriate displacement is allocated to the load vector. Again,

as the stiffness matrix is held in a one-dimensional array, the

appropriate stiffness coefficients are found via the address sequence.
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Haying compiled the stiffness matrix and load vector the solying
routine 1is called; this was written by Jennings and Tuft, and uses
¥ . A

Cholesky's decomposition. The load vector is overwritten by the newly

determined displacements and the stiffness array is also overwritten

by the upper triangular coefficients,

With the nodal displacementsknown at this stage, the nodal strains
and stresses are determined by re-invoking the AUX routine which
formulates the [B] matrix of equation (2.13), hence the strains can be
found and consequently the stresses via the [C] matrix. The nodal
stresses are compiled by considering the average contributions from
the surrounding elements.  The procedure FENOSTR determines the stresses
and strains at the nodes and a separate routine, FEELSTR, determines
the stresses and strains at the element centroids; both are optional

and can be called using the appropriate control variable.

The sequence in which these procedures are called is summarized

here for clarity.

Procedure Function
name
INPUT . Reads the control data, nodal coordinates and

element nodal connections.

ADDARRAY Forms address sequence for the 1-D stiffness array.

CMATRIX Forms matrix [C] which relates the stresses to the
strains.

LOADAPP Transfers external loads to the vector {qQ}.

FEASSEMBLY  Forms the element stiffness matrix and positions it

AUX*

within the global 1-D stiffness matrix.
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GEOMBC Adjusts the matrix [K] and vector {Q} in allocating
the prescribed displacements,
SYMVBSOL, Solving routine.
FENOSTR Calculates and prints the nodal stresses and strains.
AUX*
FEELSTR Calculates and prints the centroidal stresses and strains.
AUX*
*AUX Sub-routine used to determine detJ and matrix [B]

which relates the strains to the nodal displacements.

4.3 MODIFICATIONS IN ADOPTING THE ISOPARAMETRIC QUADRILATERAL ELEMENT

Having looked briefly at the procedures used in formulating the
displacements and subsequent stresses and strains for the six-node
triangular element, we can examine each routine to determine the
alterations necessary in introducing,as an option, a second element;

the eight-node quadrilateral.

Firstly, to distinguish the two element types a control variable

QORT has been adopted, its value being O - for the triangular element
and 1 - for the quadrilateral element. Procedures which are entirely
unaffécted by the modification are:-

CMATRIX,

LOADAPP,

GEOMBC,

SYMVBSOL,

SKEWLOAD,
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Procedures which can be adjusted fairly easily, by altering control

loops and array sizes, etc. are:

ADDARRAY

INPUT

SKEWEDCON

These procedures can accept both element types by the simple use of the

QORT parameter, i.e. (6 + 2*QORT) .

I't would have been possible to modify the procedure FEASSEMBLY to

accept both element types, but it was felt that it would be more

satisfactory to establish a new routine QFEASSEMBLY. The basic

alterations were to increase the size of the element stiffness matrix,
change the values used in the four point numerical integration, and
introduce the new [B] matrix as in equation (2.15). A similar
situation arose with procedures FENOSTR and FEELSTR, but by using the
QORT variable the two elements could be accommodated within the same
routine., The [B] matrix is again used in the forementioned routines

and it was necessary to write a new procedure QAUX to mirror the

existing AUX routine,

A flowchart for routines QFEASSEMBLY, FENOSTR and FEELSTR, was

felt to be unnecessary for this thesis but a formal listing is given

in the Appendix. The QAUX procedure, however, merits a detailed

description.
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4.3.1 PROCEDURE QAUX

The evaluation of the [B] matrix and the Jacobian matrix

is explained in section (2.4.1). The QAUX procedure is explained in

the following steps which refer to the flowchart overleaf,

1. The matrix [P] is formulated and holds the differentiated
shape function coefficients[aN/BE]i and [aN/Bn]i. The
local coordinates are assigned a value on entering the
routine, and these refer to the integration points or
locations in evaluating the stresses.

2. The Jacobian matrix is initialised.

3. From equation (2.17) Chapter (2), the Jacobian matrix

can be formed, using the differentiated coefficients of

matrix [P] and the nodal coordinates,

4. The 4 x 4 Jacobian matrix can easily be inverted and its
determinant is held in variable U.

5, Matrix [B] is initialised.

6. Equation (2,18) of Chapter (2) shows how the derivatives
dN/ox and dN/dy can be found, hence the [B] matrix is

formulated. This is achieved within the loop counter I,using

the inverted Jacobian matrix and the [P] matrix.
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Flowchart for Procedure Qaux:-

START

e
<
LY

, 1] e=(1-2ET0) * (2# ETA+ZETA) /4
]::(1—ZETA)*(2*ETA~ZETA)/4

e
JEN
N

P 1,3:]:=(1+ZETA)*(2*ETA+ZETA)/4
P [1,4] s=(145ETA) * (2*ETA-ZETA) /b
P [1,5] +==RA* (1-2ET4)
;
1 P{j,é};:(1~ZETAT2)/2
P [1,7] s=-erar (1ansTA)
p[1,8] 1 ==(1-2ETAT2) /2
p(2,1] :=(1-BTA) * (2*ZETALETA) /b

2
p[;,g];:(1+ETA)*(2*ZETA-ETa)/4
c=(145TA)* (2*2ETA+ETA) /b
e =(1=BTA) ¥ (2*2LTA-ETA) /b
- == (1-ETAT2) /2
s ==Z2ETA*(1+ETA)

p(2,7) :=(1-ETAT2) /2
p[2,8] 1 =-40TA* (1-ETA)

< J[1,1 :=J[2,2]:=J[1,2J.=J[2,1];=0.0

l——-——-—-————————- I::"]('])_8

J[ﬂ,1]::J[1,1]+P[1,I]*X[N[ZFI]]

5 J[ﬂ,2]::J[1,2j+P[1,I]*Y[r[7,1]]

' MR IR RS R CER)

J[z,2]::J[2,2}+p[2,I]*Y[N[?,I]]
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CHANGE: =3[ 1,1]
Je=(2,2) f
I[1,2):==a3[1,2] /v
Ji=-a[2,7] v
)

:=CTANGE/U

U::J[w,w]*J[é,g]-J[1,2]*J[a,w]

o

EEI0ED)

et s e e

—
|
5e ‘
|
L
6.
|
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4.3,2 EXAMPLES

To test the modified program three examples were chosen,
The first example is that of a curved bar in pure bending shown in
figure (4.,1),. The results, showing the stress distribution along the
vertical axis of the bar, are plotted in figure (4.3), where the
theoretically 'exact' curves, taken from reference (71), are also shown
for comparison. It can be seen that the hoop stress 4 fits the
theoretical curve at all points, whereas the radial stress oL fits the
general shape of the curve but the points are scattered. In theory
the stress distribution over the end of the bar is not linear, as shown
in figure (4.1), but parabolic in form. The size of the segment in
relation to the depth of the bar, would suggest that the proximity of

the linear loading may have attributed to the discrepancies found in

the finite element results.

Example (2), figure (4,2), illustrates the mesh used for a ring
in compression, The results are again plotted to compare with the
theoretically 'exact' stress distribution and figure (4.4) shows the

hoop stress distribution across the horizontal and vertical faces of

the ring.

The finite element results fit the theoretical stress curve

extremely well except close to the singularity at the point of

application of the concentrated force.

The element has been used in the fracture mechanics work in

progress and example (3), figure (4.5) shows the results for a
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EXAMPLE «3. PLATE WITH A 90 DEGREE
EDGE CRACK, IN TENSION.

FIG 4.5.

W =5.0 in

L =10 in

Rc = 0.083 in - core radius
a = 2.5 in -~ crack length
Mesh details

No. of interface nodes - 17
No. of elements - 28

No. of nodes - 111

Result TF.E.

KI/Q'/a_ = 2-8613

K, /@@ = 2.71 x 1077

Theory ref(16)

K /a/a = 286
KII/q/?aT = 0.0

o = 12000 psi

{ } }
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rectangular plate with a 90 degree edge crack in tension. The results
are compared with other predictions from reference (16), and the

discrepancy in the mode I stress intensity was only of the order of 2%.

I't has thus been shown that higher order elements could easily
be accommodated in the basic program framework by adding a simple

shape function procedure, QAUX, together with slight modifications to

the existing procedures.

4.4 A SEGMENTED SOLVING ROUTINE FOR LARGE SETS OF SPARSE

SYMMETRIC SIMULTANEOUS EQUATIONS

4.4.1 INTRODUCTION

During the development of the fracture mechanics program,
it became necessary, due to the increasing size of the problems
encountered and also due to the limited facilities at Aston, to transfer
our work to the much larger computing facilities at Manchester. The
initial difficulties of adjusting to the new system were overcome,
and consisted basically of print and conditional statement variations
and coping with the 1900/7600 operations, Once the programs had been
established, it was found that the size of the stiffness matrix, in
Some-cases, could not be held on the computers' large core memory.

In an attempt to overcome this difficulty, various dodges' and

ttricks! were resorted to, but it became obvious that a new method

for storing the stiffness matrix was necessary.

One method of achieving the required result in a short space of

time, was to use a binary sequential file and manipulate the stiffness
s
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coefficient to and from the file, as if the matrix was stored in core
memory. This was considered to be a very time consuming system and
hence a very costly procedure to operate.  Another approach, given in
reference (69), and on which this work is based, was the method proposed
by Jennings and Tuff.“® The method ideally suited large sets of sparse
simultaneous equations, in which the coefficient array was symmetric
positive, definite. The local variable bandwidth storage scheme is
particularly effective and was used by Robertson(zg) in the earlier

development of the finite element programs, together with the compact

solving routine given in reference (70).

4.4.2 THE LOCAL VARIABLE BANDWIDTH STORAGE SCHEME

During the reduction of a set of sparse equations by any
variant of the Gaussian elimination method, the zero elements before
the first non-zero element in a row will always remain zero provided
that there is no row or column interchange. The Local Variable
Bandwidth storage scheme makes use of this fact by storing, for each
row of the matrix, only the elements between the first non-zero element
and the diagonal. The rows are stored consecutively in a single one-
dimensional array and an address sequence is used to locate the position

of the diagonal elements within the array. Thus the following set

of left-hand side coefficients,

TOW
1 1.5
2 0,2 1.2
SYMMETRIC
3 ...l‘l O 2s2
4 0 0 5.1 10.6
s 0 0 0 0 2.6
6 0 0 -1.2 0 0 6.1 |

would be stored in the computer as a maln SEqUENce.
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Location 1 2 3 4 5 6 7 8 9 10 11 12 13
(1.5, 0.2, 1.2, -1,1, 0, 2.2, 5.1, 10.6, 2.6, <1.2, 0, 0, 6.1]

with a corresponding address sequence

row 1 2 3 4 5 6

[1 3 6 8 9  13]

where the row numbers refer to the rows of the square matrix and the
coefficients locate the position of the diagonal elements with the one-
dimensional main sequence. Thus row 5 has a location number 9 which
corresponds with the main sequence term 2.6, and also with the diagonal

element of the square matrix.

If the address sequence is designated S[i], i = 1,2,...,n, then

the position of eclement (i,j) in the main sequence is,

K[i, j] = K[S[i} - i + jl,
for example
K[4,3] = K[S[4] - 4 + 3]
= K[8 - 4 + 3]
= K[7] = 5.1

This means that the formation of the left-hand side coefficients

can be carried out without difficulty.

4,4.3 CHOLESKI REDUCTION SEQUENCE

The Choleski triangular factorisation method is well suited

to large problems, requiring no storage facilities other than that

available for the stiffness matrix or left hand coefficients [K].
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Exp: i i . .
Xpressing the simultaneous equations in matrix form, we have,

[K1{x} = {p} (4.1)

where [K] is a symmetric positive-definite matrix.

Using Choleski factorisation, [K] can be written, thus,

et = [« (4.2)

To obtain the displacement vector {x}, by substituting equation

(4.2) into (4.1) we have,

L] L]t = {v} (4.3)

Now letting [L}t{x} = vector {y}, we have two sets of equations
which can easily be solved by forward and backward substitution,

eliminating the need for complicated inversion of the stiffness matrix.

Hence, [L]{y} = {b} (4.4)

and  [L]%x} = {y} (4.5)

"It is possible to evaluate vector {y} during the factorisation

of array [K]. The equations (4.4) and (4.5) are solved with vector

{y} overwriting vector {b} and vector {x} overwriting {y}. In the

solving routine the matrix [L] will overwrite matrix [K] by using

the recursive relationships,

j-1
- - R, .., £ < i 4.6
by =y B Rk gy for d < (4.6)
and
i-1 )
o= Ry o B () (4.7)

.. ii
11 v
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4.4.4 PROGRAM LOGIC

From the previous section, equations (4.6) and (4.7), it
is apparent that to form any coefficient iij’ only rows (i) and Cj)
of the main sequence need to be in the core store. Therefore, if the
main sequence is segmented and held in a backing store facility, only
two segments are required in the core at any one time. Whereas it is
suggested that large segments should be adopted to give the least
number of storage transfer operations, it is possible to work with
segments containing only one row, so that the segmented structure is
very versatile and can be used with only a small amount of available

core store (e.g. a desk top machine).

There are time penalties in adopting this method of storage,
and it would appear that large segments are more efficient, as less

time would be used in transfer operations.

Returning to equations (4.6) and (4.7), as stated previously only
row (i) and (j) of the main sequence need to be in the core store.
The segment in which row (i) 1is located will be called the Active

segment while the segment in which row (j) is located will be called

the Passive segment. Segments which are termed passive have all their

coefficients factorised. Active segments however are in the process

of being factorised. Figure (4.6) shows the area in which

coefficients %.. may be determined with the given active and passive
1)

segments, Q and P respectively, in store. The procedure therefore
s

is to factorise the active segment in sections, as shown heavily shaded

in figure (4.6) To perform the factorisation of the Q'th segment
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it is necessary to call in the passive segments in turn from 1 to

Q-1, with a final operation in which the active and passive segments

can be considered to coincide,

Figure (4.7) illustrates a sparse array, in which the local
variable bandwidth scheme has been employed. It can be seen that
for a given active segment Q, it will not be necessary to call in the
first passive segment. Therefore to determine the first passive
segment to be called, it is necessary to inspect the column numbers c;
of the first elements in each of the rows of the active segment. By
taking the least of those to be cq it is possible to determine in which
segment the corresponding row occurs, and this will be the first passive
segment which needs to be called. Figure (4.7) shows the area in
which elements Qij will be determined for a given active segment Q and
passive segment P.  Within this area the coefficients Qij will be

determined in sequence by rows,

4.4.5 DESCRIPTION OF PROCEDURES

(i) PROCEDURE ADDSEQ

The purpose of this procedure is to determine the coefficients of
an address array ADD, which relates the overall stiffness matrix co-

efficients in two dimensional form to their one dimensional form, thus

K[i,j] = K[ADD[i] - i + j] (4.8)

(28)

It was originally constructed by Robertson , and has now been

extended to obtain control variables used in procedure SEGSOL. A

brief account of the address array assembly will be given here, for

further details see references (28,29) or refer back to section (4.4.2).
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For a node (A), the corresponding ADD coefficient is found by

scanning the nodal connections of the first element containing node
(A), and if the largest node number is (B), the number of terms between

the first non-zero and the leading diagonal of that particular row is,

Number = A - B + ] (4.9)

If, in a later element a larger coefficient is found for this TOW,

it will replace the smaller one, so that the maximum number is obtained.

By extending this procedure, it was possible to use the address
sequence in sub-dividing the main stiffness array. The array is
divided into segments each containing approximately the same number of
coefficients and also an integral number of rows. As the segments
have been limited to 35000 words in length, the number of segments can
easily be found. Various control values are also obtained from the
subsequent division of the main array. Firstly, the limits of each
segment must be computed, so that coefficients from the main array
can be correctly located. Also the maximum segment size is found in
order that sufficient computer core can be made available. Lastly,
the solving routine requires the row limits of each segment and also

the identity of the first passive segment which needs to be called,

for each segment, when it becomes active.

The following steps describe how this procedure operates and

correspond with the flow-chart.
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For the first element, the nodal connections are compared

with cach other to find the smallest node number, and the
number of terms between the first non-zero coefficient

and the major diagonal for each node in this element, that
is in each row of the overall stiffness matrix, is
calculated from equation (4.9).

Step (1) is repeated for the rest of the elements and

if the number of terms for a node was found to be greater
than the previously stored value, it is overwritten by

the larger value.

The coefficients of ADD are determined from the assembled
values found by step (2).

The first segment limit and row number are set to zero.
The main array is then segmented, the limits of each
segment and its corresponding row, being recorded in

array LIM and ROW.

The largest segment is found, using the limits previously
calculated in step 4.

The number of the first‘passive segment, which needs to be
transferred into core, initially, when that segment becomes
active, is recorded in array COL.

This is achieved by computing the smallest column number in

each row for a particular segment and then comparing this

value with the row limits of each segment.

Various control variables are set so that procedure TEST

is activated correctly.




Procedure ADDSER  Flowchart

r We=1 (1) NELEMT

|

Cit: =NODE[W, 1]

%

HoDE W, 1] NO

<Cii

ADDTEMP: =NODE [, 1] ~Cil+1

/AJ)DTEMP\ NO

2 L
<DD [nope[w, 1) *2]
\‘\

app[wone v, 1] 2]+ =ADDTEMP

I Ti=1 (1) HNODE)
I
CH:=2*ADD[2*1I]
Vie=2*1
3 ApD[i-1] :=ADD[W-2] +CH~1
ADD 1] : =ADD[W-1] +CH




_r-
ROW[Q]::LIM[O]::O

SEG: =ENTTER(ADD [NFREL] /35000 +1
W:=ENTTER(ADD [NFREE ] /5166 )

l
—<;I i= 1 (1) SE&T>

/I\ YES

P -

<;\\\\f > v (1] :=anD{NFREE]
SEQ / -

MO (/ 4

{LIM[I]::W+LIM[I-1]!
1

b / -
(Y =0 (2) NFRb;j>
///’///J\\\\“\\~ YES
e T A \\\
o [ LH [1] < )
e ADD |(ENTIER(NFREE/SEG*2)*2)*I+J ‘
‘ \\\ .
\\‘\\ / )
T
NO LM [1) : =ADD [ (ENTTER(NFREE/SEG*2)
_ *2)*1+J)
- ROW [1) 1= ENTIER(NFREE/SEG*2) "2
I+d
l— — — —— —
ROW [ SEG | £ =NFREE
STZE:=LIM[I]
NO
5.
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—————— .
—— —

I:=1 (1) spg

S

E{ ANGE ; =NFREE

*m“_“wu;w*_~*_
- — -«<§::ROW[I-1]+1 (1) ROW[iI}
l

tCOL[I]::J«(ADD[J]—ADD[J—1])+1

NO

\

-
L3

CHAHGE: =COL[T]

~{§¢=1 (1) Sm:>

CHANGii:\\\\\\\\ MO

10w )

1
CK1:=CK3:=LIH[0]
CK2:=0Kk s =LIM[ 1]
CHTA:=CHTP: =1

CK:=1

END
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(ii) PROCEDURE TEST

In the ASSEMBLY procedure and various other ancillary procedures,
1t is necessary to locate or recall coefficients in the main array.
Therefore as only one segment is held in core during this operation,

a check is made to determine whether the coefficient lies within the
bounds of the segment in store. The TEST procedure does precisely
this and also exchanges the segment in core with the required segment

in the backing store if the coefficient lies outside the core segment

limits.

The following steps describe how the procedure operates and {
corresponds with the flow chart.
1. The main array element A is compared with the upper and

lower limits of the segment in core, D and C respectively.
2. If the coefficient A lies outside the bounds of the segment

in store, then a loop is set up to find in which segment A

lies. When this is achieved the old segment is returned

and the new segment recalled. The parameter CK refers to the

ACTIVE or PASSIVE segments.
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Procedure TEST Flowchart

NO
1.
-
MO
NO YES
2.
REWIND(%) | | REWIHD( CI{TA)
GETARRAY(Z,P) PUTARRAY (CHTA,K)
CHTP: =% REWIND(%)
CK3:=L1M[2%-1] GETARRAY (% ,K)
CKb s =LIM[2] CHTA: =2
CK1:=LIM[7-1]
¢K2:=LIM[ 2]
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(iii) PROCEDURE SEGSOL

This procedure operates as indicated earlier in section (4.4.4);

the program logic., The construction of the procedure can be split

into two distinct parts; (a) the first section factorises the array

[K] and also determines the first or intermediate vector {y} equation
(4.4), by forward substitution; (b) the second section determines the

displacement vector {x} equation (4.5), by backward substitution.

The first part of the procedure operates in three nested loops:
loop I which calls the active segments into core, loop W which calls
in the passive segments corresponding to the variable COL[I], and
finally the Z loop, which specifies the row numbers within each active

segment.

The recursive relationships, (4.6) and (4.7), are formed within
these loops, The coefficients zij are constructed by the loop J

for each subsection of the active segment; the limits being dependent

on the passive segment that is in core. The coefficients zii of

equation (4.7), are only constructed when the W and I variables coincide,

that is at the diagonal of the active segment.

The second section of the seymented solving routine is formed

around the nested loops J and I. — The J loop, in this section, is used

to recall the factorised segments. Note that the last segment 1s

carried across to the second part of the routine and hence is lost, as

it is never transferred to the backing store. The loop I acts as a

row counter within which the backward substitution is performed.
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The following steps correspond with the flowchart and describe how

the procedure operates,

1. The variable H is initialised and the segment in core is

transferred to the backing store and replaced by the first

active segment, held in array [A].

2. The loops I and W are set up and the first segment is called

and stored in array [L].

3. The row counter z is constructed and variables, necessary
for the control of the following steps, are computed. The
variable H represents the element number of coefficients held
in the one-dimensional array and is computed to correspond
with the active sub-section shown heavily shaded in figures
(4.6) and f4.7). The variables Q and P1 set the limits in
the loop J, of the following section.

4. This step of the procedure corresponds to the recursive
equation (4.6). The J counter, in effect, moves along
each  row of the active sub-section, enabling the
coefficient Qi' to be evaluated. At the start of this
section control variables are computed which determine
the limits of loop U and also the locations of the various
éoefficients within the active and passive segments in
core. When ' the active and passive segments coincide,

coefficients which have already been factorised are taken

from the active segments, as indicated by the conditional

statement All factorised values are stored in the active

segments.

As the factorised values are computed, so the forward

i M.
substitution 1is performed in the counter loop
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The fifth step is only accessed when W equals I, that is
when the last sub-section of the active segment is being
reduced. The algorithm represents the second recursive
equation (4.7) and evaluates coefficients Rii' Again H
represents the one-dimensional location of the stiffness
elements.  The forward substitution is performed as the
reduced elements are obtained as in the previous step.

When the active segment has been reduced it is put into
backing store and the next segment replaces it in array
[A]. Steps 1 to 6 are then repeated until all the

segments have been factorised. The last segment to be
reduced is not transferred to the backing store, instead it
is carried forward into the next section where the backward
substitution is performed.

This last step performs the backward substitution and
finally the displacement vector {x} is derived. The
factorised segments are brought into core in reverse order

via the loop counter J and the substitution process is

similar to that of the above steps 4 and 5.
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Procedure SEGSOL TFlowchart

H:=0
REWIND(CHTA)
1. PUTARRAY (CHTA,A)
REWIND(1)
GETARRAY(1,A)

I

REWIND (W)
GETARRAY (W, L)

e -—~<:Z::ROW[I—1] (M ROW[IL>
|

P:=5[2-1]

P:=2-(S[2] -P)+1

G:=P+1

Q: =ROW [W=1] +1

HO

]H::O
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<§E§\\__ Y55

P’l ::Z«']

NO

[TEH £ =R0W ]

3. S

<iEE:S\\ NO

Vo
LD

— -—<J::'{"l (1) P'}‘>

U =G

He=H4+1
K:=d-(s[7]-5[7-1])+1
V:=H-5[J]

c=n[ 1-LIM[T-1] ]

<

K>T IO
///’

Y&S

U:=U+K-T

NO TES

P

v:=ven[v-1[1-1]]
+p[u-v-Lis[w-1]]

S—— Y::Ymh[U~LIM[I‘1]]
*A[U_V—LIM[I“1]]

YIS

[E;:Y/A[H-V—LIM[I~1]]

y:=v/n[H-v-Lon(u-1] ]

A[H—LIM[I—1]]:=Y

it




i | - 102 -

L, i
B[2Z,M) :=8[z,1] -B[5,M] *y
NO
y-~A[H+1 LIM[1-1]]
P — u:=0 (1) H )
! Y::Y—A[U—LIP[I—1]]T2
L
<:g%;§:§ Y55 \\iﬁfL
NO
O
Y:=SQRT(Y)
H:=H+1
af-rm[1-1] ] =Y
[ M:=1 (1) R
l B[Z,M]::B[Z,M]/Y
e —
L ]




6.

YES

REWIND(T)

PUTARRAY(I,A)
REWIND(I+1)
GETARRAY (T+1,1)

| S—

I
[ — «——4<M:=1 (1) R >

I

<1;:=ROW[J] (-1) ROW[J-1]+{>

|

Y::A[H-LIM[J-1]]

!

3[1,1] r=n[1,1]/Y
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l : B[V,M]::B[V,M]-B[I,M]*Y
). |
f | 5D W

END T

REWIED(J-1)
GETARRAY(J-1,4)
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(iv) ALTERATIONS IN ANCILLARY PROCEDURES

As the stiffness matrix is assembled, one element at a time, each
element must be tested using the previous procedure and positioned in

the main array, This simply means that the procedure TEST is inserted

in the appropriate place in the ASSEMBLY procedure. Also when the
boundary conditions are applied in procedure GEOMBC, where rows and
columns in the stiffness matrix are made zero, the TEST procedure is

again uscd, In fact wherever the stiffness coefficients are manipu-

lated the TEST procedure must be incorporated.
In other programs, such as the fracture solving routines, the
incorporation of the singularity element involves the restructuring

of the stiffness array and hence uses the TEST procedure extensively.

4,4,6 DATA TRANSFER

All data transfers are made via a channel number, these

are declared in the job control cards, see Appendix (9.2). It would

seem logical to have one channel to transfer the segmented stiffness

matrix to and from the backing store, this could then be divided into

several blocks using the limits obtained from the procedure ADDSEQ.

Unfortunately there is no facility to achieve this efficiently, hence

required, one channel per
'SEG' number of separate channels are Teq R

segment To transfer data, each channel is allocated 5K octal

buckets from the Large Core Memory. Extra channels are required to

transfer the finite element data and also record clean copies of the
ra

Therefore a possible 35 K octal

stiffness matrix and force yectorT.

bucket for data transfer alone {s taken from the existing 345 K octal
ucket for
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Large Core
rg re Memory. The computer also requires a large amount of core

to manipulate the program, and hence the problem becomes one of
conflict between computer operational space and data storage, It is
possible to limit the core Space required for each channel by inserting

a REQUEST card in the job deck, this will reduce the storage allocation

to 1 K octal per channel, However the time taken to transfer data

increases because the data can only be moved in 1 K octal buckets.

The channels can be used in a variety of ways, for example the
finite element data is fed into the program via channel 11, so that
all read and copy statements select data from this channel. The
segmented stiffness array is held on 'SEG' number of binary sequential
files and the files are accessed by the PUTARRAY and GETARRAY state-
ments. See program listings. Before the above access statements
can be used the file must be re-wound so that the file marker is
positioned at the start of the data sequence.  Because of the system
used at Manchester Computer Centre each backing store file is given an
input and output channel number differing by twenty. This avoids
confusion and from the job deck examples, in the Appendix (9.2), each

input channel number is equated to its equivalent output channel

number.

4.5 MODIFICATION OF THE AXISYMMETRIC PROGRAM TO ACCEPT THE

GENERATED DATA FORMAT

. . . (29)
The axisymmetric finite element program , written by Alsharqi

has been modified to accept the data format output by the general mesh

already contained a limited mesh

generation scheme. The program

generating system incorporated within the procedure FEINPUT. — Input
erati
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variables controlling this mesh generation scheme, were used to

identify elements which coincided with the vertical axis, i.e. r = 0.

This information was then employed in procedure STRDIS, the equivalent

of procedure AUX in the 2-D program, in order to avoid an indefinite

solution, that is, division by zero. The simple mesh generation

scheme always provided consecutive element numbers on the vertical

axis, however with the more general mesh generation program this

situation would rarely be encountered.

The essential steps needed to modify the program are:-

1. Remove the simple mesh generation scheme attached to the
procedure FEINPUT.

2. Alter the read statements so that the new mesh scheme
data format is accepted.

3. Insert a simple routine for determining all the

clements lying on the vertical axis.

4.5,1 PROCEDURE RZERO

In the limited generation scheme, the elements lying on

the vertical axis could be identified through a simple expression,

withvthc new mesh generation program this was not possible and the
elements on the vertical axis had to be computed.  The procedure
RZERO determines these elements and stores the information in array
{ZER}.  The following steps refer to the flowchart overleaf.

1. The summing integer EC is equated to zero.

2. The loops I and J are formed so that each nodal  coordinate can

be scanned If the node is found to lie on the vertical axis

then its element number 1S recorded in vector {ZER} and the next
e

elements nodes are examined.
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Procedure RZERO Flowchart

No £C:=EC+1

I — ;_ zir[EC) = 1
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4.5.2 ANCILLARY MODIFICATIONS

The procedure STRDIS had to be altered slightly to accept
the new element information of vector {ZER}, the essential logic of the

routine was not altered. Several small adjustments were made to

accommodate the above modifications. A listing of procedure

RZERO and STRDIS is given in the Appendix (9.3) The new axisymmetric
program is held on file under the name IAAXMG: see the file index in

the Appendix (9.3.1).

The modified program was proven using a simple test problem and
the results compared with those obtained using the original program.
The outputs were found to be identical and the program is therefore

considered to function correctly.
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CHAPTER 5

AUTOMATIC GENERATION OF PLANE FINITE

- ELEMENT MESHES

5.1 INTRODUCTION

The finite element method, although providing a powerful tool for
the Stress Engineer, has potentially one great disadvantage: the amount
of input data required for any realistic problem is vast, The
preparation of this data is exacting, time consuming and in most cases
a large portion of the work is attributed to checking the element nodal
connections and mesh co-ordinates, Therefore a general automatic mesh
generation program would greatly relieve this work load. Having
reduced the amount of input data required, the occurrence of human error

will correspondingly be greatly reduced.

Recognizing the need for some form of rationalized data input

scheme, a number of approaches have been suggested.  The scheme

presented by Akyuz(72) considers a region as an assembly of sub-domains,

each sub-domain being defined mathematically. The approach is somewhat

complex and stems from the mathematics of topology. A similar method

is given by Reid and Turner(73), however it cannot be applied to

ed to here for completeness. A

(74)

general problems and is only referr

technique outlined by 7ienkiewicz and Phillips , indicating how a
mesh generation scheme of maximum flexibility could be devised, has the

appealing quality of simplicity. The scheme provides a method for
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generating meshes in planes and more general surfaces in three

dimensions, This method has been adopted here and appropriate computer

coding developed.  The mode of operation is given in the following

sections,

5.2 THEORETICAL BACKGROUND

The basis of the scheme is the use of isoparametric curvi-linear
mapping of quadrilaterals., The mapping technique was originally devised

for generating element shape functions, providing an element which could

approximate a curved boundary. The name 'isoparametric' is derived
from using the same interpolation functions to define the element shape
as are used to define displacements within the element. Isoparametric

co-ordinates are a type of natural co-ordinate system.

Now consider an eight-noded quadrilateral element having sixteen

degrees of freedom uss vy (i = 1-8) corrcsponding to two at each corner
and midside node. Refer to section (2.3). The mapping technique

relates a unit square in isoparametric co-ordinates £ and n to the

quadrilateral in x,y co-ordinates, whose size and shape are determined

by eight nodal co-ordinates xj, Y1, X2.....Y8. The mapping functions
also brovide an interpolation scheme that yields the x and y co-

ordinates of any point within the element when the corresponding iso-

parametric co-ordinates are given. Hence mapping functions of the

form,

X = [NI:NZ; Na, Ny, N5, NG’N7> Ng] X7 |
X2
X3

(5.1)
Xy

Xs

X

X7




- 112 -

8
or x = L N.x, (5.2)

8
and y= L Ny, (5.3)

are required.

The above functions Ni(g,n), have been derived by inspection and
are from the so-called "Serendipity'" family of shape functions described

in References (1, 3 § 4), Hence for
Corner nodes
1
N. = Z(l + E0)(1 +ng)(Ep + Mg - 1) (5.4)

1

and Mid-side nodes

for £, =0, N =i(1-E)( +ny (5.5)
=0, No=2(14+E)( -n?) (5.6)

Eo = EEi, No = nng

If the region in which the mesh is to be generated could be
described adequately by a quadrilateral, as given in figure (5.1a),
then a mesh of any refinement could be automatically generated inside
it by specifying the co-ordinates of the eight nodal points and the

number of required subdivisions in the & and n directions.

In the present scheme the nodal points of the mesh are created

and numbered from the lower left-hand corner, vertically and from column

to column, in equal &, n increments. From this information the element
s 14

nodal connections can be established using an appropriate rule, It can

be seen that various element types can be generated using this inter-
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polation scheme, and figure (5,1a) illustrates how a quadrilateral or

triangular element can be formed., The program presented in Section
(5.4), has been designed to generate data for both the eight-node
quadrilateral element and the six-node triangular element. Returning
to figure (5.1a), it can be seen how the elementary quadrilaterals are
formed, and the shaded area shows how this region is divided, using
the shorter diagonal, to give two triangular elements. Selecting

the shorter diagonal of the elementary quadrilateral ensures that a

better or reasonable triangular shape is obtained.

To avoid confusion, the quadrilateral element used as the basis
of the mapping scheme, will be termed a ‘'zone!. As recounted earlier,
the input information consists of the zone's eight nodal co-ordinates
and it's required subdivision in the & and n directions. If the
zone boundaries are straight, then the co-ordinates of the mid-side
nodes can be omitted from the input data, and this information can be

determined by interpolation. However, the mid-side node will not only

specify the parabolic shape of the zone's boundary, but will also grade
the internally generated elements. This can be seen from figure (5.1b),
where the square symbol represents the mid-side node, positioned so as

to form a graded internal mesh. Figure (5.1b) also represents the

next stage of development, where the zones are grouped in a 'chequerboard!
fashion, described as a zone array, allowing more complicated component
shapes to be meshed. By placing the zones in this uniform grid it is

possible to construct a logical program which examines each zone in turn

and links the zones through the generated nodal points,
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T
N =41
§ =1
— X
FIG 5.1a Isoparametric Quadrilateral element, internal
points can be interpolated using the

function N(7,§).

@ ©) Grid of Quadrilateral

elements - Zone Arraye.

O Specified Pointse

A Not specified
interpolated.

O Specified for mesh

grading purposes.
Distorted

Zone Array.

FIG 5.1b Grouping Quadrilateral elements in a grid
] or zone array allows more complicated
components to be meshed.
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To demonstrate the sequence of operation in the construction of a

finite clement mesh, figure (5.2) illustrates the basic steps, from

the regular zone array to the final meshed component.

The construction of the zone array is dependent on several basic
criteria, Firstly, the zone array must be regular in form, that is
rectangular. It's dimensions are arbitrary, allowing the operator to
select the size of array which is appropriate to his particular

requirements. Secondly the orientation of the zone array may affect

the bandwidth of the resulting stiffness matrix. The matrix bandwidth
is proportional to the difference in adjacent element node numbers.
Hence, for example, the zone array given in figure (5.2), if rotated

through 90 degrees would still provide the same result, although the

zones would be numbered differently, however, the difference in the
element node numbering would be greater and as a result one would
expect the storage space for the [K] matrix to increase. As stated

previously the element nodal points are created and numbered from the

left-hand corner of the zone array, moving vertically and from column
to column in equal & and n increments. Finally zones can be declared

as 'yoid'! that is they are not used in the construction of the finite

element mesh, Figure (5.2) illustrates two such void zones and it is

clear, from the accompanying figures that they play no roll in the mesh

construction. The material number for a void is zero, hence the

program has been designed accordingly to account for such redundant

zones The zones can be drastically distorted, even to the point of

making two sides lie on the same line, forming a triangle. Care must

be taken. however, not to make any corner angles greater than 180 degrees,
5
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as mon-uniqueness of mapping may result. Having provided the basic

framework for the construction of the zone array, it is left to the user

to experiment; some examples are given in Section (5.5) which may help

in this respect.

The zone array is accompanied in figure (5.2) by the distorted zone
array, which illustrates how the zones are used in the construction of
the component shape. Here it is convenient to 'wrap' thé zones around
the semi-circular cut out and discarding zones 4 and 6, allows zone 2 to
be used to complete the component shape. Fach zone must be defined by
eight nodal coordinates obtained by direct input, as data, or interpolated
during the program operation, and also by a set of zone nodal connections.
It was decided to number the zone array in a regular manner, from the
dimensions of the zone grid, as shown in figure (5.2), and thus avoid the
need to insert the zone nodal co-ordinates. In other words, because of
the uniform zone numbering pattern adopted, it was a relatively simple
matter to predict the zone nodal connections from an appropriate rule.
This represents a great saving in the amount of data input, especially in
large problems, but it does require the user to number the zone array in
the manner shown in figure (5.2). It would over-complicate the zone
numbering scheme, if redundant or void zones were to be taken into account
and consequently all of the zones are allocated node numbers whether they
are used or not. The distorted zone array shows clearly the zone node
numbers which need to be specified as input data, and the remaining node
co-ordinates can be interpolated where necessary. Comparing the zone

array and the distorted zone array, it can be seen how the mapping process

functions.
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ba <:> 412 (g} i 20 (:) | 8 © Specified points.
0 Specified to fit curved

3G 11 A 19,‘_§%F~_£ 27 boundary.

7 15 A Not specified interpol-

2 (:) 210 (:) 418 (:) 126 ated.

« Redundant points.

O - Zones

Zone Array

Final Meshed Component

FIG 5.2 Constructing a finite element mesh.
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The final stage of the mesh generation process inyolves determining
the element nodal co-ordinates, This is achieved as indicated by the
previous example, in which a single zone was used, and the element node
co-ordinates were found using the specified zone subdivision.  The
same process is used in the zone array and each zone is treated in turn,
in the order given by the zone numbers shown in figure (5.2). The
element nodal connections are obtained using an appropriate rule and
the program structure is given in section (5.4) where further information

is given on the nodal numbering scheme.

5.3 GENERAL COMMENTS ON MESH CONSTRUCTION

When setting up the finite element mesh, consideration must be
given to where large stress changes are likely to occur, and to
accommodate them by grading the mesh accordingly. Once an idea of the
type of mesh required has been formed, the component can be drawn out
to scale and the distorted zones sketched in. After this rough assembly
has been completed it is necessary to determine whether the zone array
can be constructed. To achieve this, the distorted zone array may

have to be altered. This commonly occurs and some manipulation may be

required before the zone array can be formed.

At this stage the elements should be sketched in lightly and again

the zone co-ordinates might require alteration to acquire a reasonable

element size and proportion. (Note that when drawing in the elements,

for the triangular element, the quadrilateral or zone is sub-divided

and each sub-quadrilateral is split into two triangles across the

shortest diagonal.) Having assembled these two diagrams it is simply

a matter of compiling the data as described in section (5.5.1),
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In practical applications, it is valuable to construct two zone

arrays, one containing the 'super! node numbering and zone numbers, and

the second containing the element node numbers, The term 'super node!
is used to distinguish zone node numbers from element node numbers.

The first diagram is useful when compiling the mesh generation data,
and the second diagram acts as a check on the total number of finite
elements and nodes specified, and also the boundary conditions can be

applied using the element node numbers in conjunction with the distorted

zone array.

In applying the auto-mesh generation program to a large number of
problems, various devices have emerged which can be used directly in
the majority of cases. In areas of high element concentration a
'terminating zone' is usually employed to confine the dense mesh and
prevent it from propagating into low stress areas where larger elements
could be used. A 'terminating zone' takes the form of a triangle, as
shown in figure (5.3), where two sides of the quadrilateral zone form
one side of the triangle. Therefore, if the zones placed around a
high stress concentration, have been subdivided to give a fine element
mesh, then rather than allowing the fine zone subdivision to propagate
from one zone to the next, it can be terminated on the component's
boundary using a 'termination zone'. Where a rapid element size change

is required, it has been found that an arrow shaped zone, termed a

'distribution zone', can be used. Figure (5.3) illustrates the way in

which the distribution zone provides a gradation in element size, in
moving from a dense to a sparse mesh area, avoiding abrupt changes in

element size If a simple extension of the zone array were to be used,
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Distribution

ay Distorted zone configuration. Terminating Zone

b, Meshed zones.

. - . tvpes
FIG 5.3. Diagrams a, and b, show two ba51? zo?e ypes,
and are suitably named the Distribution Zone

and the Terminating Zone.
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either a gradual element size increase is obtained or an undesirable

spiked mesh is generated (see figures 5.4a,b). In the first case

larger elements could have been used with no loss in accuracy, hence

computer storage space has been wasted in handling the eitra number

of elements; in the second case by reducing the number of elements a
spiky mesh has resulted. Care must be taken when using a

"distribution zone' which has a corner angle exceeding 180 degrees,

as the elements may be mapped outside the zone area. For example

care must be taken not to 'over stretch' the zone in an attempt to
reduce the element density rapidly. An example of this is given in
figure (5.5), where the element co-ordinates are mapped outside the

zone boundaries. Note that if this does occur it can easily be
identified in the graphical output. The advantages of the distribution

zone, become apparent, when comparing figures (5.3) and (5.4).

It has been shown in section (2.5), that the isoparametric element
is sensitive to distortion and this can give rise to loss of accuracy
in the finite element solution. The mesh generation program has been
designed so that all zone internal element faces are straight and yet
allows the zone faces to be curved when modelling curved component

boundaries. This safeguards against curved boundary propagation into

the zone and therefore indiscriminate loss of element performance.

The element accuracy is also susceptible to mid-side nodal displacement.

It has been previously stated that mid-side super-nodes can be used to

fit curved boundaries and also effect an element gradation.  Using

the mid-side supernode to grade the mesh in this fashion, displaces

the mid-side element nodes on the zone's boundary and can modify the

displacement function causing loss of accuracy. This problem comes under

the heading of program development and will be discussed in Chapter Eight.
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FIG 5.4, Alternative mesh types to that shown in figure 5.3
Gradual element size increase, resulting in
a high number of nodes and wasted computer

storage space.
b, A reduced element density at the cost of

poor element shapes.
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FIG 5.5. A'strefched Distribution Zone showing
how the clement is mapped outside
the zone's boundary.
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In cases where the mesh is regularly spaced around a circular hole i

Oor re-entrant corner, the zone array can be considered to be of a |

standard form. As these standard geometries occur regularly in practice,

it was found helpful to recognise them as such and develop a routine
which would generate the input data from a few relevant parameters.

Thus the data input is further reduced. Two routines were developed,
COREGEN which generates the input data for a local crack tip mesh, and
STDGEN which can be used in general situations. Both procedures operate
in the same manner and the relevant operation notes can be found in the
Appendix (9.3). Some examples, notably the local crack tip mesh, are

given which indicate the areas where these procedures can be applied.

Section (2.5.2) has dealt with the relatively new 'transition' elements,

which are constructed so as to respond to the crack tip singularity.
The procedure COREGEN has been designed automatically to construct this
element type in a standard geometry. Refer to Chapter Six and the

Appendix (9.3) for further details,

5.4 THE PROGRAM STRUCTURE

The objectives in designing a -flexible mesh generation computer
program, apart from minimizing the data input are:-
1. A facility for grading the mesh so as to achieve

required accuracy of idealization.

2. A nodal numbering system which results in the

best computational efficlency.

3 A facility for describing areas of different materials

wheneyer these occur,

4 An ackievement of element shapes which are of reasonable

form and do not lead to numerical ill-conditioning.

These points will be enlarged upon, as the program structure evolves. é




The program has been developed to cater for a six-node triangular

element and an eight-node quadrilateral element. Because of the two

different element shapes, some of the program procedures had to be split.
Essesntially the procedures perform the same operations and are pre-
fixed by TR or Q, signifying a triangular or quadrilateral routine

respectively. Figure (5.6) illustrates the two element types.

The program operates by considering each zone in turn, starting
from the left-hand corner of the zone array, and moving vertically
through a column and then from column to column. The following steps
indicate how the progran is organised:-

1. The zone array data is read.

[N]

The eight super node co-ordinates for the first zone,
are determined, either from the input data or by direct
interpolation.
3. From the zone's specified subdivision, the element
data is generated, determining the node co-ordinates.
4, The element nodal connections are found using the same
information as in step 3.
5. Steps 2 - 4 are repeated for the remaining zones,
until the whole array has been scanned.

6. The finite element data is stored in a specified file

and the element mesh is plotted.

The generated data can be used in several finite element programs

and each program has a ‘code! ensuring that the output format is correct,

Following the flowchart, for the program, it can be seen that the first

procedure encountered is OUTPUTI, This procedure, as its name suggests,
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6 5 Triangular Blement.
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FIG 5.6, The Mesh Generation Program outputs data
for either of the above element types.
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simply prints out the control variables required by the coded program,

such as the number of elements and nodes in the finite element mesh.

The data needed to generate the nodal co-ordinates and element
nodal connections is read in by procedure MGINPUT. The zone array
can be thought of as a chequerboard, each rectangle being a zone.

The zones are dealt with in turn, starting in the left-hand column and
working vertically, then progressing from column to column. Two loops

are established which control this operation, namely ZN and ZONE.

From the previous section it will be realised that each zone has
eight nodal points which need to be completely identified. It is,
however unnccessary to input the co-ordinates for the mid-side nodes
for a zone which has straight sides, as these can be obtained by
interpolation, Therefore the next procedure to be accessed is ZONEXY,
which performs this particular function. The eight super-node co-
ordinates are established by using an identifying code. For further

information on this procedure refer to the Appendix (9.3).

The next procedure to be accessed is TR/QELETXY, which determines
the finite element nodal co-ordinates. _ Each set of nodal co-ordinates

generated is allocated a node number which is predetermined by the

overall numbering scheme. Nodal numbering begins from the lower left-

hand corner of the zone array and hence £ and n are assigned to be -1

on entering TR/QELETXY. with the input data each zone is given a sub-

division parameter, DIVX and DIVY. The local co-ordinates can be

specified using this information and the corresponding global cartesian

co-ordinates generated, through the mapping function N(&,n).
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As previously mentioned, zones within the array may be declared

redundant or void, that is the zones are not used in the construction

of the finite element mesh. This facility complicates the element

nodal numbering scheme, which has to accommodate any configuration of

zones which may arise.  The numbering organisation is similar in both
element types and the scheme, used in constructing the triangular
elements, will be examined here. The zone array is inspected within
the nested loops ZN and ZONE, as previously stated, and the variables

which combine to make up the numbering system, monitor each zone as

it is met,

Consider a single column of three zones, as in figure (5.7). As
previously stated, the program operates on each zone in turn, generating
the element nodal coordinates and element nodal connections. In the
present example zone 1 would be operated on first, generating nodal
co-ordinates 1-3, 8-10 and 15-17. In order to achieve this an
expression must be available which can define all the node numbers
within the zone under consideration. This expression is developed
through a set of controlling variables, which react with the input data

as the program is operating. The main control variables are,

P, A, ADD, DIFF, ZNAD, VD, VD1 and IN,
their significance will be shown through examples. Knowing the zone

subdiyision, it is possible to construct a nested loop system which
3

can Be used to determine the element node numbers,  The inner loop,

denoted by J, is used to increment the vertical element node numbering,
B h

hence its limits are dependent on the zone's element subdivision. The

outer loop, denoted by I, is used to traverse the zone horizontally,
b
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again using the specified zone subdivision, It will be noticed, from

figure (5.7), that the element node numbering of the first zone increases
from 3 to 8 after the first cycle of the inner loop, thus, some means
of allowing for the influence of the zones above the zone under

consideration is necessary. This can be achieved using variable A,

which represents the number of element nodes on the edge of the column
of zones under consideration. Using these variables it is possible

to define the element nodes within the first zone, thus

FOR I = 1 TO DIVX(ZONE)*2+1
FOR J = 1 TO DIVY(ZONE)*2+1
P = A*(I-1)+J

where P represents the element node number, DIVX and DIVY represent
the horizontal and vertical zone subdivision, and ZONE is the zone
number. As the zone element subdivision is unity in both directions,
the limit of index integers I and J is three. From figure (5.7),
integer A = 7 and therefore indexing J gives element node numbers

1-3. Incrementing I by 1 and repeating the process yields node

numbers 8-10. Similarly nodes 15-17 are obtained on completing

ldops I and J.

The above expression, however, does not function for zones higher

in the column and an extra parameter ADD is required to enable the

expression to be generally applicable to the column of zones. The

integer ADD acts as a spacing device and is dependent on the lower

sone's subdivision, The expression becomes,

P = A*(I_1)+J+ADD (5.7)

where the loops I and J have been omitted.
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FIG 5.7 A column of zones
sub-divided into triangular

elements. Note the zone

numbering system.
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The same process is repeated, as previously explained, however, in the

second zone of figure (5.7), ADD = 2, thus, instead of generating

element node numbers 1-3 the process yields node numbers 3-5, etc.

In zone three, ADD = 4, hence node numbers 5-7 are generated during

the first cycle of counter J. It is possible to infer the value of

integer ADD from the figure (5.7).

Extending expression (5.7) to generate the element node numbers
within a zone other than in the first column of the zone array, requires
a record to be made of the total number of nodes generated in the
previous column of zones, and this is given by integer ZNAD. The

expression now becomes,

P = A*(I-1)+J+ADD+ZNAD (5.8)

where the nested loops I and J have been omitted. Using this

expression in example two, figure (5.8), for zone 3, we have,

ZNAD = 10, A =5, ADD = O
and repeating the same steps as before, we obtain element node numbers

11-13, 16-18 and 21-23.

To account for the arbitrary use of voids in the zone array, the

expression (5.8) becomes more complicated and dependent on a set of

conditional statements. The extra variables now encompassed by the

numbering scheme are shown in figure (5.9), and their values can be

interpreted from the number of nodes within the dashed areas. Zones

which are not required in the construction of the distorted zone arary,

need not be declared, and are considered to be void. The material
)
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number zero is automatically»attached to these void zones and can

thus be dealt with appropriately.  Consider the second column of

zones, where zone 5 is void; in this case variable A = 6 and a new

parameter DIFF is used to represent the number of nodes on the left-
hand edge of the void, not including the end nodes. The final

expression is given below with the corresponding conditional state-

ments,
FOR T = 1 TO DIVX(ZONE)*2+1
FOR J =1 T0 DIVY(ZONE)*2+1
IF I =1 THEN C = VD; ELSE
IF T = DIVX(ZONE)*2+1 THEN
C = DIFF + VD1; ELSE C = DIFF + IN;
P: = A*(I-1)+J+ADD+ZNAD+C (5.9)

The variables VD, VD1 and IN are defined as
VD = DIVY(ZONE-VZONE)*2

VD1 = DIVY(ZONE+VZONE)*2

and are only evaluated after a void has been detected.  The integer

VZONE represents the vertical zone subdivision of the zone array.
Cons?der zone 6 of figure (5.9), evaluating the variables, we have,
ADD = VD = VD1 = 2,
IN = 1, INAD = 14, A = 6,

and DIFF = 1,

Now utilizing eXpression (5.9) the element node numbers are generated,

thus,"
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for I =1, P = 6%0+J+2+14+2
P =19 - 21,

for I = 2, P = 6*1+J+2+14+2
P =25 - 27

for 1 =3 P = 6*2+J+2+14+2
P =32 - 34,

Having clarified the operation of the element numbering scheme, we
can return to the program flowchart where the next procedure to be
accessed is TR/QELENCONS, This derives the element nodal connections,
using the numbering scheme and operating on each element, within the

zone, in turn.

Zones can be joined, usually to effect a better element distribution.
This is achieved by recording the nodes to be retained, on the joining
zone faces, via procedure TR/QIDN, and subsequently refining and
condensing the nodal co-ordinates and element nodal connections using

procedures COINCID and HATCHET.

The final procedure, RESPLOT, plots the discretised component

using the generated data. Each element is plotted individually, hence

any errors in the nodal connections OT co-ordinates can be traced

yisually.

The sub-routine oTr procedures referred to in this section can be

found together with a detailed description, in the Appendix (9.3).
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11owchart for Mesh Generation Prosram -
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D:=DIFF:=0LDA: =ET.TAD:=0
Adz =1
As=LZN:=ADD:=ELT:=CON:=ZNAD: =0
PIVY[0] :=0
[ ~~~~~~~ ~<ZN::1(1)HZONE>
|

’ F7N:=(ZN=1)*VZONE+1

l 7N+ =VZONE*ZN
CU}::DIFF::TIK::A::ADD::ELT::O

NO lDIF‘F::DIFF*-DIVY I-VZONE *2
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i
YES ~
CU% 2 =CUB+1
BS
NO l
Ar=Asd
~DIFF:=DIFF-1
TIK: =TTK+1
DIFF YES
< ¢
0
NO
DIFF: =
CU3 2 =0
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A:=1+2*DIVY (1) ‘

IFF YES

# DIFTF :=DIFF+VD2
0 yd

e

NO

BLANK: =0
Ac=A+1

VD2:=VD: =VD1: :IN: =0

BLANK:=VD2+QORT-OLDTIK

|
o ~—<ZONE := FZN (1) LZN>

" Z0ONE YES
= ADD:=0

ADD:=ADD+DTVY|ZONE-1] *2
I

N:=pLT:=0
7,ONEXY (XCOD,YCOD,NBD,TYPE,NSPD)

7ETA:=ETA:=-1.0
SET: =B:=0
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TRELETXY(DIVX,DIVY,XX,YY)

\

NO

NBELETXY (TRACE ,DIVY,DIVY, XX, YY)

L1

YES

‘TRIDN(DIVX,DIVY,NUM)




- 139 -

QIDN(TRACE,DIVX,DIVY,NUM)

©

i’

VD1 :=VD1+DIVY[ ZONE+VZONE] *2
VD:=VD+DIVY[ ZONE-VZONE] *2

AND
7,0NEALZN

NG
MN [ ZONE
<
MN[ZONE—1

IN:=IN+1
CU1:=CU2:¢=0

]

DIVY[ ZONE
~Y7ONE]

NO CU1:=CUT+1




i
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YES
VD M :VD+1
|
DIVY [Z0NE
VZONE| ,
ey ] YES
NO
CU2:=CU2+1

VD1 :=VD1+1

VD2 :=VD2+1

L1

L- END ZONE-—

OLDA:=A

— — ———<?;::;2&(1)LZN )

REC:=DIVX [I] * (2-QORT)
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YES

ZMAD: =ZNAD+REC*OLDA+DIFF~BLANK
ELTAD: =ELTAD+(OLDA=1-TIK)*REC/2

@NADE:ZNAD+REC*(OLDA+(OLDA+1+TIK)/2)+DIFF~BLANK
ELTAD: =ELTAD+((OLDA-1-TIK)/2)*REC

END 2N

IDENT YES

0

NO

COINCID(NUM,XX,YY)
HATCHET(NUM, XX,YY,SUM,NNODE,NODE,
NELET)

OUTPUT2 (MATCON , XX,YY ,NODE)
RESPLOT(QPLOT, TRPLOT , XX, YY ,NODE)
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5.5 EXAMPLES AND USERS GUIDE

Some examples are given here to guide the user and illustrate
the majority of the program's facilities. Extensive notes have been
added to the users guide, at the end of this section, together with a
glossary of terms. To reduce data input the super-node numbers are
pre-determined from the grid dimensions of the zone array. Each zone
can be automatically defined by a series of super-node numbers, i.e.

zone connections, alleviating the need to specify them in the data

input. Example 1 , figure (5.10) is that of a disc in compression:
from symmetry only a quarter of the plate need be considered. In
this case the six-noded triangular element has been employed. As

stated earlier each zone is defined by eight super-nodes and the regular
numbering sequence of the zone array is clearly illustrated. Note
that the fourth zone is not required and is redundant.  The 'zone’
numbering scheme does not recognise voids, as this would make the
program over complicated and simply numbers the entire grid.  See
procedure ZONEXY.  From the diagram, each zone is defined by a
minimum of four super-nodes, but two further mid-side nodes 8, 18 have
been used so that the zones can be made to fit the curved boundary of
the disc. To achieve a better element distribution zone four has
been.made'void and zone faces 11-13 and 11-19 are joined. The node
1-13 have been retained and this is clearly shown

numbers on zone face 1

in the element array. Refer to procedures COINCID and HATCHET.  The

following data sequence in Table (5.11) corresponds to example .l.

and can be compared with the users guide information.

A recessed bar under compression is considered in the second example

and the idealized structure is given in figure (5.12).  Eight-node




quadrilateral elements are used in this case and because the elements
around the recess, form a regular mesh, the routine STDGEN can be used
to generate the input data; Zones 1, 2 and 3 can be treated in this
manner and a string of parameters, shown in Table (5.13), fully

describe the three zones. As a result the zone array can be assembled
as if these three zones were alrecady specified, therefore only the
super-nodes shown in the discretized figure need be declared. The data
sequence is given in Table (5.13), note that the uniform loading on

the ends of the bar follows a 1,4,1 distribution over the element.

The third example depicts a plate in uniform tension containing
a 90 degree edge crack. From symmetry only half the plate need be
considered and the element subdivision is shown in figure (5.14). As
this problem involves mode I fracture, the data format is adjusted
appropriately using CODE = 2, i.e. program PCQTMIST. From the diagram
it will be seen that zones 9 and 12 are not used in the element
construction, but they are still represented in the grid numbering
scheme, 7ones which are not declared in the data input are assumed
to be void, except where the zones are automatically generated through
procedures COREGEN and STDGEN. In this example the procedure COREGEN
has been used to set up the special ttransition' elements around the
Refer to section (2.5.2). Zones 1 to 4 have been

core element.

generated in this fashion and a set of parameters defining the shape

of the local mesh around the crack tip are entered, as in Table (5.15).

In order for the Singularity core element to be formulated correctly

the nodes on its boundary must be entered in an anti-clockwise direction,

beginning with node one. Again the data input can be compared with

the users guide,

SR e




o
|
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Example (1) Disc in compression.

Six~node
Triangular

Element. Distorted zone array

with elements finely drawn
in. Numbering corresponds
with the super-nodes.

P = 1000

P = 1000
= &5 ']7
1 9
I I I [ | { I I I T ]
o 1 =2 3 Lk 5 6 7 8 9 10
; 8 13 Mat'l consi- E = 3.0%107
C\ A4 G
f \\\\\ = 0.3
@ £ ® N\ G = 1.2%107
34 i :\\\h\\ 19 7one array with super-nodes in position.
Note closing faces A* and numbering
(:) (:) $18 scheme is continuous even with the
void present.
14 & 417
9
(:) - Zone numbers.
br5
9 Element array showing nodes used
2 _ in the boundary conditions.
7 : b3 Nb. Alteration in nodal pattern
due to the closing faces.
5 25
1 ) ; i NNODES =(9*5+5°4)-4 = 61.
5 . 60 NELEMT = 2l
1
179 37 50 58
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-11. Data for example (1) a disc in compression. The data

sequence can be followed from the users guide.

1,0,1

DISC IN COMPRESSION, T=1.0 END OF TITLE
2L ,61,1,%,0,0,1,1,1

9,%3,2,2,1,0,0

e o D e S o e U s s S D T B i b S S e ST

1,0.0,0.0,1 1,0.0,5.0,3

1,0.0,10.0,5 143.82683,9.2588,8 Mesh Generation
1,5.040.,0,9 1,4.0,4,0,11 data.
2,7.07107,7.0717,13,19 1,10,0,040,17

1,9.2288,%.,82083%,18
3:142,2,1,2,3

1

243

0
17

1,%,0.0,0.0 2,1,0.0,0.0 3,1,0.0,0.0
4,1,0.0,0.0 5,1,0.0,0.0 6,1,0.0,0.0
741,0.0,0.0 8,1,0.0,0.0 9,7,0.0,-1,08&3
10,2,0.0,0,0 19,2,0.0,0,0 28,2,0.0,0.0
5742,0.0,0.0 46,2,0.0,0.0 50,2,0.0,0.0
54,2,0.0,0,0 58,2,0.0,0.0

0,0.0,1.0

3.0&7,00%,1.287,3.0&7,0.3
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FIG .12, Example (2) a recessed bar in compression.
Eight-node
Quadrilateral
6 Element
22 33 31

Distorted zone
array showing

- o\ 9 G | rimerin.

1 8
57 23
0 - ? + © 29 Mat'l cons:-
E = 3.0‘107
r T T T T T T 1 T T 1 _
o 1 2 3 k4 5 6 7 8 9 10 V=02
G = 1.,2%10
g 23 q}7 Compression load = 1200
At AY
s @] ® - op
55 o= 279.1__ o = 2Lo
933 —»—‘—‘/LQE
@|®
431
(i) (E) Zones 1,2 & 3 will be generated using
029 the sub-procedure STDGEN.
(:) - Zone numbering
15 8l
@ 82 Element array. Note the different
(E) <:> numbering sequence compared with ex'l (1.

This is due to the different element type.

I

NNODES 15%4 + 8*3 = 8L,

NELEMT 27

7

70
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TABLE 5.15. Lxample (2) A recessed bar in compression. Routine

STDGEN is used in this example to form the mesh
around the semi-circle and also reduce data input.

1,141

RsCsSSAD BAR IN COMPRESSION

W=5, L=10, P=1000 END OF TITLE
21,84,1,%,0,0,1,1,1

8,5,4,2,1,0

1

T e B M - T~ e o e KD o S - T B A o D e e

141,745.0,0.0,2.0,%.0,4.0,0.0,22.50,2,2

1,3.1265,0.7,9 1,%.3178,1.0818,8 Mesh Generation
1,1.240.7,25 1,0.0,0.7,37 data.
1,10.0,0.0,29 1,10.0,5.0,31

1,5.0,5.0,33 1,0,0,540,35

191,247, 4
3,1,142,5,6,7

1,1,1,1,8

0 e
8

74,1,0.0,0.0 7%,0,-400,0,0.0

72,0,-200.0,0.0 71,0,-400.0,0.0

70,3%,0.0,0,0 82,0,200.0,0.0

83,0,800.0,0.0 84,0,200,0,0.0

0,0.,0,1.0

3,087 ,0.3,1.287,3.0&7,0.3
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FIG [". l. v . i
PG 2.0%. TXamp}e'(3) Plate in uniform tension
containing a 90 degree edge crack.
5 "9 47 |
o 1*5
Lo The super-node numbering ;
@ corresponds with that of
the zone array. ;
3
53
35 b 31 Core radius = Rc = a/30
2 - Re = 0.083
® | ® 2 - 205
-] Mat'l cons :-
. ® © P
2 v = 0.3
7
O J = 1.,2*10
57 29
5* { i l L 1
e 3 2 o = 1200
37
7 Edge
<:> gg) 35//49 crack ~
—
<§) (?) 63) Zones 1,2,3 & 4 are
- okt 7 generated by sub=-procedure
@ |6 [ COREGEN to obtain the
' L5 correctly constructed * { f
<:) <:> 31 / "transition' element§. o = 1200
y 4 Note that the numbering
£ sequence 1is maintained
29 despite the 'woid' zones.
25 y 51
9 5 O Quadrilateral elements are used
@ (@! in this example.
59
@ @ @ NNODES = 9*4 + 5*3 +8 =59.
57
@ @ NELEMT = 1k
55 '
<:> <:} (:>‘- Zone numbering
1
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TABLE 5.15. Data for example (3)., Plate in uniform tension with

a 90 degree edge crack.

2,1,1

TRSTING MODE 1 PROG PCRTMIST. RC = 0.083 W=2H= 5.0
END OF TITLE

14,59,1.0,1,1

8,6,4,3,1,1

1,1,9,2.5,0.0,0.083%,0.0,22.5,1,1

- v . - O o WD W S Now e i - U an ot Yo e S ot e D et

0

1,5.0,0,0,29 1,5.0,2.5,31

1,245,2.5,%3 1,0.0,2.5,35 Mesh Generation
1,0.0,0.0,37 1,5.0,5.0,45 data.
1,2.5,5.0,47 1,0.0,5.0,49

[+?1!291’516’7'i8
2,1,1,1,10,11

0 e
12

1,2,0.0,0.0 55,0,0.0,5.0&3

10,2,0.,0,0.0 56,0,0,0,2.0&4

15,2,0.0,0.0 57,0,0.0,1.08&k

24,2,0,0,0.0 58,0,0.0,2.08&k

29,2,0.0,0.0 59,0,0.0,5.08&3

38,2,0.0,0.0 43,3,0.0,0.0

1

3-0&7,0.3,1.2&7,3.0&7,0.3
1
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The last example, figure (5.16), is that of a square plate in
uniform tension containing a 45 degree central crack. This is a
mixed mode fracture problem involving two crack tips, the program
CODE = 3, As in the last eiample procedure COREGEN has been used to
generate the local crack tip mesh, i.e. zones 1-8 and 41-48. The
node numbers around the core element must be numbered anti-clockwise,
this simplifies the matrix manipulation considerably in the fracture
program. It is possible to partition the zone array using a column
of voids and then join the appropriate zone faces to form the final
distorted zone array. This technique has been used in this example
and the joining zone faces are lettered. The advantage of this
technique is that it allows complicated structures to be meshed and 1is
analogous to building a jigsaw puzzle, where the jigsaw pieces are
equivalent to the zone array subsections. Note that when joining zone
faces they must both have the same subdivision, since otherwise a
miss-match will occur. This rule applies to all the zones and any
subdivision can be specified provided continuity is maintained. A
problem arises when joining multiple zone faces, as in this example,

four super-nodes namely 53, 69, 99 and 183, all coincide at the centre

of the plate. The method used to trace the redundant node numbers

relies on the fact that their co-ordinates are unique. Hence in
order that the correct node numbers are selected, a means of over-

riding the selection process is afforded in the data input. See

procedures COINCID and HATCHET.
For details of the job decks and operating methods refer to the

Appendix (9.2).
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107,249 5l
-7
R 2b5 243
219
¥ 521 217
93
195
109 (91 41
81222 197 189 -
215
B 2187
225 53499 A
83 55 85 213
69 95
57 183 B
854 27 | J67 930004
i
11 g 239
65
63
87 & 91 ¢
9
113 115 117 119 237
i { T T | T I f 1 T [
0123456789101{11'21’311145
o = 120
Mat?l cons:~- E = 3.0"‘10’7 1 f
v = 0.3

i

Core radius, Rc
a = 2-8

o = 120

FIG 5.16. Plate in uniform tension with a 4s degree
central crack. The zOnes are joined along
faces A,B,C,D,E&F, also identified in the

zone arraye
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® 7% ? = 1975252
® P )
67
: 9(:5\ 119 197}22}_;x o1
6 1
ZEAR SRD 11951221 ] 4,
6
5 r89 “115 \)19}< 219{ 245
61 8
.07 4115 419142124 5, 5
?9 85 111 ?j89‘215[\241
157 183 4109 | 1871213 | 544
55 81 1107 1851211
E F B I ‘1 237
@] G
16 —& b )
25 131 183

Zone array. Again all zones are allocated super-node
numbers irrespective of status.

(233)
17 A 95118 155 181 79 81

116 138 | .y

136 261

7 257
132

252

104 126 116 138

139 95
1 ” (217)
Element array. NNODES = 17*8 + 9°6 + (8415+47413)*2 -1 = 262
NELEMT = ( 8%3 + 2*6 + 1) *2 = 74

FIG 5.17. Example (&)
FIG Delfle
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a 45 degree central crack.

55741

L5 DG CRACKED PLATE W=L=15 RC= 0.1,

LND OF TITLE

?24,262,1.,0,1,0,0,1,1

39,42,8,9,1
2

191,17,5:5,5¢5,041,%735.0,22.5,1,1
1%1,41,17,9.5,9.5,0.1,48%0,22.5,1,139

6]

_ 199
b,7.5,7.5,53,49,69,18%

215:547.25,55,225
2,15.0,0.0,119,237
1,040,446
1,7:25,5.5,67
1,%.0,3.0,87
1,0.0,10.0,109
1,5.0,0,0,115
1,11.0,9.5,189
1,8.5,10.5,195
14312.5,9.7,215
1,7¢5411.75,221
1,15.0,15.0,243

2,0.0,15.0,107,249
2,94547+75,95,185
1,4.5,6.5,57
1,5.5,4.0,63
1,3.25,7+5,83
1,5.%,2.5,89
1,0.0,5.0,111
1,10.0,0.0,117
1,10,6,10.6,191
1,7¢75,9.5,197
1,12.0,12.0,217
1,15.0,5.0,239
1,10.0,15.0,245

« Plate in uniform tension with

A =28, P = 1800

0 ame e g - - — i —
e e > S o G e i o Y o e S M s s D e A NS 2 e e o

2,5.5,9.5,81,225
249¢5,5.5,93,211
1,4.0,565,59
1,6.5,4.5,65
142+5,543,85
17754325491
1,0.0,0.05113
1,10.5,8.5,187
1,9¢5,11.0,193
1,11.75,7.5,213
1,9.7,12.5,219
1,15.0,10,0, 2k
1,5.0,15.0, 247

16,1,2,1,9,10,11,12,13,14,15,16,49,50,51,52,53, 54 55,56

26,1,1,1,18,19,20,21.22,2),2h,26,27,28 29,30,31
. 58’59’60761 162165a64766’67’68'69’70’71

6 Mesh Generation

9,3,18,4,24,2,24,%,26,4,31,2 data.
2
19,233,95,217

e i i e e S e B e o S o i o i Ol o o i S i e G o S e D g S
-~ —— - ] -

See overleaf for loading

and boundary conditions




TABLE 5.18, cont'd

qn

132,2,0.0,0,0
13%,0,0.0,=4,0%2
134 ,0,0,0,-2.0&2
135,%,0.0,0,0
136,0,0,0,-2.0&2
137,040,0,=4,08&2
1%33,0,060,-1.0%2
1
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126,0,0.0,1.08&2
262,0,0.0,4,0%2
261,0,0.0,2.0&2
260,0,0,0,4,0&2
259,0,0.0,2.08&2
258,0,0.0,b.082
257,0,0.0,1.0&2

3,0%7,043,1.2&7,3.0&7,0.3
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5,5.1 USERS GUIDE

As explained earlier, the mesh generation program has been
adapted to several finite element programs, and a list of the data
required for each class of program is given in Table (5.19). The
programs are described in the Appendix (9.3) and a quick reference
can be found in the FILEINDEX, stored on the departments' files and
also listed in the Appendix (9.3). If any difficulties arise in

interpreting the control variables refer to (28, 29).
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TABLE 5.19 A list of the input data for the various program
classes is given below.
Note the variables are identified in Table (5.21).
PROGRAM
CLASS 1 2 3 4 (1)~
CODE CODE CODE CODE
QORT QORT QORT QORT
NJOB NJOB NJOB NJOB
JOB NAME JOB NAME JOB NAME JOB NAME
NELEMTS NELEMT NELEMT NELEMT
NNODES NNODE NNODE NNODE
NSETFS THICK THICK NSETFS
PRNT NSETEFS NSETFS PRINT
PRINC NSETC NSKEW SOLID
NSKEW SERNO NMAT
NMAT NSETC NSETC
NSETF NSETF NSETF
NSETC
MESH GENERATION DATA TABLE (5.20)
NSPEC
fNODE NO.
B.C's { KODE _—— = = | T
ULX
VLY
(" CASE CASE CASE CASE'!
Mat'l ANG
Con's THICK
LE:V:G:E!\)
Possible 2nd set -
of forces
NOSK HND NOSK
ANGSK ANGSK
Possible 2nd set \| _  __ | — — —| — — —
of constraints
* See notes
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TABLE 5.20  Mesh generation data sequence.

1, CONTROL CARDS

TNSPDS - No. of declared super-nodes, i.e, not including standard
generated nodes.

PZONE - No. of zones being used, i.e. not including voids or
generated zones.
VZONE - No. of vertical zones
7 _ size of zone array
HZONE - No. of horizontal zones
GH - Graphical output (1/yes, 0/no).

2. STANDARD GEOMETRIES

NTIP - No. of crack tips IF>0 then input the following core parameters:i-
NSTART - Super-node no. starting the core.
ZNS - Zone no. starting the core.
N1 - No. of super-nodes on the core face.

X1,Y1 - Coordinates of the crack tip.

RC - Core radius (2)*
A - Starting angle (3)y*
Al - Increment angle (3)*
DY _ 7one subdivision in the y-axis
NS - Node no. starting the core
NGM - No. of generated sections IF>0 then input the following parameters:

NSTART - As above

7ZNS - it i
N1 - ti if
X1,YlL =~ As above

R1,R2,R3- Radii for the inner core, grading node and outer
node respectively.

A - As above
ﬂ] R A §i

pY, DY - Zone's gubdivision.

¥ g@e notss
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3. X & Y COORDINATES OF SPECIFIED SUPER-NODES

Data sequence entered for each node

Q - No. of super nodes occupying the position (4)*
XCOD,YCOD - x and y coordinates (4)*
W - String of super-node mno.'s (4)*

4. DEFINING ZONES

ZONE - No. of like zones : (5)%
MN - Material No. (53%
DIVX,DIVY - Zone subdivision (51%

P -

n

tring of like zone nof

]

ND - No. of closing faces, IF>0 then input the following
parameters for each face:-

ZN - Zone no.
SIDE - Side of face to be joined i.e.(1,2,3 or 4) (6)*
Extra parameters in cases where multiple zone faces are joined..

COIN - No. of coinciding nodes. IF>0 then input the following
parameters for each pair of nodes:-

ND - Node No. retained

CND - Corresponding Node No. {77+

B
Wi
e
&
-l
i
AR
s
W




- 159 -

TABLE 5,21, Control yariables used in the finite element program.

CODE - Program classification number (1)*
NJOB - No, of jobs to be run.
NELEMT - No. of elements.
NNODE - No. of nodes
NSETFS - No. of sets of forces,
NSETF - No. of forces for set of forces input.
PRNT - Type of output i.e. 1 - stress/strain at nodes.
2 - w /o7 at element centroid
3 - 1 /0 for both locations.
PRINC - Principal stresses § strains 1/yes, O/no.
NSKEW - No. of nodes where skewed b.c's are applied (8)*
NMAT - No. of materials.
NSETC - No, of sets of constraints.
THICK - Thickness of plate.
SOLID - 0 - hollow axisymmetric structure.
1 - solid " "
SURNO - No. of nodes along the crack face. (8)*
NSPEC - No. of nodal points where b.c's are prescribed. (B)*
KODE - 0,.prescribed loads in the xg§y direction.
1, " disp't in the x & load in the y direction.
2, " load in the x & disp't in the y direction.
3, " disp't in both x &y directions
ULX - Value of prescribed load or disp't in the x direction.
VLY - " " " oy
CASE - Type of problem (0-plane stress, l-planc strain).
CASE? . 0-Isotropic, I-orthotropic.
ANG - Angle of orthotropy.

E.v,G,E,v - Material constants.

g 5 Fliy

HRD - Direction of crack (9)*
NOSK . Node no. where skewed b.c's are applied (107%
ANGSK - Corresponding angle of skew (107%
JOB NAME - Insert job title foliowed by END GF TITLE.

GORT - |

o ¥ g@s notss
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‘NOTES : -

1.

Program classification:-

CODE
1. Plane stress, plane strain, basic finite element program.

PCPLSS, PLSS, PCPLSEG.
2, As in (1) but modified to compute Mode I fracture problems.
PCQTMIST

3. As in (1) but modified to compute mixed mode fracture
problems and also crack closure.

PCPOY, PCPOXY

4, Axisymmetric finite element program

TAAXMG

The core element radius is usually 1/30th of a crack length,
for details see Chapter Seven - Transition elements.

The Starting angle can be defined as the angle between the
first zone or crack face, and the +ve x-axis.

| -

i.e. X

Al .

h

The incremented angle refers to half the angle taken by the zone.

See examples 3 and 4.

2

In the majority of problems zone faces are joined, hence it is

possible for super-nodes to have the same co-ordinates. To
reduce the data input, the number of super-nodes occupying the
same co-ordinates iz given, followed by the x § y co-ordinates

and the corresponding super-node numbers.
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A similar situation exists with the zone data, to reduce data
input the number of like zones is entcred, followed by its

material type and sub-division, and finally by a string of

corresponding zone numbers.

The zone faces are numbered, e.g.,

Side 1 - the left-hand vertical face.
Side 2 - the top horizontal face.

Side 3 - the right-hand vertical face.
Side 4 - the bottom horizontal face.

See examples 1 and 4,

Where four or more super-nodes coincide in joining zone faces,
an overriding option is available which short circuits the
selection process. Therefore the node to be retained and its
corresponding node are entered. Any number of coinciding

nodes can be entered. See example 4.

The variable SURNO is only specified when partial crack

closure is expected. As the 1ocal node co-ordinates have to
be skewed in order to detect the normal displacement between
adjacent crack face nodes. Usually NSKEW = SURNO. if

other nodes are skewed remote from the crack face NSKEW>SURNG.

1f the crack tip faces to the right,

ivee ;___r,.——"'* then HND = ii
1f the crack tip faces to the laft,

=
g
-
=
pei
=
i
e}

o
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The core element numbering convention for the MIST

program, is

LN 0

See reference (28) for further detailils.

Extension of note 8. When skewed boundary conditions

o

re applied a list of node numbers and corresponding
angle of skew must be given. Usually this process is
only used in the partial crack closure scheme. The

skewed nodes located on the crack face

)

& enterad

oy

%]

first and in adjacent pairs, specifying the upper node
number and then the lower node number. This is
necessary in order to detect an overlap condition.

See Chapter Seven; Partial Crack Closure.
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COMMON ERRORS

For the mesh generation program STDAMG:-
1. If the program fails due to an overflow condition this usually
indicates,
a, The number of super-nodes does not correspond
with the input value.
b, The number of zones does not correspond
to the input value.
¢, An error in the super-node or zome numbering.

d, The zones subdivisions are not compatible.

2 The graphical output is disjointed. Normally this type of error
can easily be traced and may be due to one of the following faults:-

a, An incorrect co-ordinate has been specified.
b, Joining zone faces have been specified incorrectly.

¢, The number of nodes has been computed incorrectly.

For the general finite element programs:-
1. The program fails during the solving routine SYMVBSOL,
a, Elements have been allowed to overlap.
b, The stiffness equations are singular due to incorrectly
defininé the boundary conditions.

The address sequence is incorrect, arising from

411

incorrectly defined element nodal connections -

%

check the data generating scheme (2¢}.

H
z
-3
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2, The program gives incorrect or unexpected results;

a, Check the boundary conditions making sure
they correspond to the correct co-ordinates,

b, Check for equilibrium.

General Comments:

It always pays to check off each punched card against the written
data input sequence, before running the job. Faults which are likely

to be found are miss-prints and incorrectly placed commas and full stops.
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CHAPTER 6

MODIFICATION OF THE FINITE ELEMENT METHOD

TO ACCOMMODATE FRACTURE PROBLEMS

6.1 INTRODUCTION

It is the purpose of this chapter to describe the processes
involved in modifying the finite element method to include the local

crack tip singularity expressions,

Various methods have been used to obtain the stress distribution

around a sharp crack, the majority of which utilise the Airy stress

(75)

function. The method used here is that of Sih and Liebowitz R

@
which is based on the method of Williams combined with the complex

function theory of Muskhelishvili(zs). The local crack tip field
equations are derived in the following section and the final expressions
are listed in the Appendix (9.1),  The combination of the classical
crack tip formulation and the finite element method developed by

Hilton and Hutchinson(51), forms the second part of this chapter.

The algebraic and matrix manipulations form the essential part of the

numerical procedures presented in the following chapter.

6.2 DERIVATION OF THE LOCAL CRACK TIP FIELD EQUATIONS

The displacement and stress fields around the crack tip can be

expressed in terms of the complex functions ¢(z) and ¢(z). According

to Mugyhelighvi1i(25). for isotropic, plane problems these expressions
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are given as,

O * Oy = 2[00 + 9T ()] (6.1)
0y = Oy ¥ joxy = 2[z¢"(z) + ¥'(2)] (6.2)
2Hlu + Ju) = kd(z) - 267(2) - () (6.3)

for Cartesian coordinates, and

O, *+0g = 2[¢'(2) + ¢'(2)] (6.4)
. 230 <., e L
O - O, *+ 32T g = 2677 [30"(2) + Y1'(2)] (6.5)
Zu(ur + jue) = e_)e[K¢(z) - 207 (z) - w*(z)} (6.6)
for Polar coordinates. See figures (6.1) and (6.2).
In these equations,

k = 3 - 4v for plane stress,

k = (3 - v)/(1 +v) for plane strain

p = Shear modulus 6.7)

j0

i

x + jy = re

/-1

The complex number z

i

and j

The prime denotes the derivative with respect to 2 and the bar

indicates the complex conjugate number, thus,

= x - jy and ¢(z) is the equivalent 1o ${z) with j

N

replaced by -j.

In this analysis the Goursat functions are taken as suitable fovms

1
]

for the functions ¢(z) and i(z) in the same mannsT as raference (78],
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FIG 6.1 Notation for rectangular stress components

near a crack tip.
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FIG 6.2 Notation for polar stress components

near a crack tipe
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Hence,

8
>

¢(z)

I
[ e
>

™

n (6.8)

=

8
>

b(z)

[

i
=3
J U e
=~
™~

where An and Bn are complex constants to be determined from the boundary
conditions and An are real eigenvalues. Applying the appropriate

boundary conditions, see reference (28), yields,

An =n/2 (6.9)
and
n_
AnAn + (-1)7 A+ (An+1)Bn =0 (6.10)
where n = 1,..... ,.

Substituting equation (6.9) into equations (6.8) gives

6 (2) (6.11)

1
™M
b

N

P (z) = (6.12)

{
i o1 8

=

N
~
=]
~
13 S]
+
—
~—

Introducing the constants O, 4 and 0, as the real and imaginary

parts of An’ we have,

A =0 +jOL

n 2n-1 2n
also (6.13)
A = - jo
An CL2n-—l I%2n
n = 1, v w'

Substituting expression (6.13) into equation (6.10) yields,
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. n .
(@, ; * Jo, In/2 + (-1) (0, = Joy ) + (57)B

or rearranging

2

n+2

Bn T me2) {FOLZn-l[%+ (fl)n]FjGZn[%-"(bl)n]}

Replacing the complex constants An and Bn in equations (6

(6.12), gives

6(z) = ¥ [o
n=1
> 2
Y(z) = nil ) o
- ja

o1 oo,z

2n

n
1z ¢

n
[5'“ (-1

n/2

1™

)n]}z(n

Now differentiating ¢(z) w.r.t.z, we have

[oo] . n
¢'(2) = Zl [0y * 0] 72
n:

¢”(Z) = nél [ 1"
Similarly,

n
prz) = Loyl

n=
. n
_JGZn[E'

yn(z) = E A !
n:l

n
]5‘(

n
(5'*1)

%—— 1)z

+2)/2

n

(§-~2)

n

(6.14)

.11) and

(6.15)

(6.16)

(6.17)

(6.18)

(6.19)

(6.20)
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The bar forms of these expressions can easily be determined.

On adding equations (6.4) and (6,5) we have

Og * 3T = ¢'(2) + ¢'(2) + e219 [20'"(z) + Y"(z)] (6.21)

and similarly by subtraction,

O - T = 0'(2) + 0 (2) - P0[E8M(2) + PU(2)] (6.22)
Utilizing equation (6.15) - (6.20) and separating the real and
imaginary parts, yields the stress field equations.  Therefore,

after much algebraic manipulation,

5 -1
{a

3T s [G *eosb g 1)~ +(-1)Mcos8 (5 +1)]
2

v o, [-(5 +1)siné (5 D+ -(-DMsine (5 +1)IT (6.23)

Similar expressions are found for . and Tg’ refer to Appendix (9.1).
The displacement expressions can be found in an analogous manner and

therefore the corresponding strain expression can be determined, using

the relations,

(o)

u u

1 8,z (6.24)
€9 = T 36 Y7
Ju
R (6.25)
T or
and ) J
o1 e (6.26)
Yre T 90 ar T

All releyant equations are listed in Appendix (9.1)
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The constants a; and o, are related to Irwin's definition of the

stress intensity fact K
y oTs KI and kII by,

. 1
01 + jOor = —— (K. - 3
Ja P (K; LS (6.27)
therefore
KI
017 —= (6.28)
V2
_X
11
and Qo = —— (6.28)
V2

In some cases the square root term is replaced by 2m, causing
some confusion in the interpretation of the stress intensity values.
Usually, however, the form used is quoted and appropriate action can
be taken. The field equations are all expressed in terms of the a's
and the stress intensity factors are extracted as part of the numerical

procedure, The form given in expression (6.28) has been adopted in

this analysis.

6.3 MODIFICATION OF THE FINITE ELEMENT METHOD TO INCORPORATE THE

HILTON/HUTCHINSON SINGULAR CORE

The Hilton and Hutchinson(51) technique combines the flexibility

of the finite element method with the inherent accuracy of the

classical crack tip expressions. A circular sub-region surrounding

the crack tip is assumed to behave in accordance with the local crack

tip field equations, section (6.2) and (9.1) and this region, the

‘core', is constrained to match the finite element nodal displacements
3

on its boundary.  The method of Lagrange multipliers, as used by

Richards(76’77) is employed to formulate the stiffness equations,
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Firstly the strain energy of the core region must be determined
to complete the potential energy of the system, See figure (6.3),
which illustrates a plate containing a single edge crack; the core
1s surrounded by a simplified finite element mesh. From the

previous section the displacement field within the core can be

described as,

w DN/2
u = nE1 S oy 1 £0,8) + ) g(v,0)) (6.29)
- n/2
_ s v e, p(v,8) +a, q(v,0)} (6.30)
u, n51 s 20l 2n
or {u} = [N]C{a} (6.31)

where the a's represent the unknown quantities and matrix [N]C
contains the relevant functions. Using the strain displacement

relationship we can write,
{e} = [B]C{a} (6.32)
Hence the strain energy of the core region is given by

U =+ f {o}*{e}dvol (6.33)
c 2
vol

Using the stress-strain relation {o} = [C){e}, this becomes

v =Lt s s frcyis] dvollal (6.34)
¢ 2 vol ¢ ¢
ot v = L etk el (6.35)
c 2 c
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b
: }
core - p
region
gion — | \ o
\ y
{ ) \\
x o)
edge A
crack — ]
.
q 3 < 4
q ¢/
3 a N o ‘_“X
TIG 6.3 Plate with a single edge crack, showing the
1ocal crack tip coordinate system of the core 2
element, surrounded by a simplified finite ?
element networke ;
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The circular core considerably eases the integration necessary
to for i i i

m [kc]’ in fact it will be shown later that the matrix can be
expanded to any degree using a single expression, hence taking into

account further terms in the series formulation.

The total potential energy of the core-mesh system is therefore,

1
Vo= 3ot Jode 5 (@K} - (@t (6.36)

where [K] is the stiffness matrix of the surrounding mesh, {q} is the
nodal displacement vector and {Q} is the force vector. The dis-
placements associated with the nodes on the core interface boundary
can be expressed as a function of the unknown a's. Using equation
(6.31) the displacements at these common nodes can be defined,

relative to the local crack tip coordinates, as,

~ ~ ~ -~
{Ul}c [N ]C {o}

{u}C = {UZ}C> = <[N ]C {a}> = [A]l{a}
(6.37)

Referring the local coordinates to the global system yields,

{q1} = [Al{o} (6.38)

where {q1} represents the displacements of the nodes on the core

interface, Using the Lagrange multiplier method to enforce

continuity of displacement at the juncture of the core and the

finite elements, the modified potential energy V is given by
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oy 1 t
V= Slad [k o) + o xILq) - {q)tiQ
+({a1} - [Alah T (6.39)
hence {A} represents a set of Lagrange multipliers. Variation &V

is found by treating the a's and q's as free variables which may all

receive arbitrary independent increments, so that for equilibrium,
67 = 0 = {60} [k _J{a) + (8q)°[KI{q} - {§q}" {Q}
+ (1691} - [Al{6a}) H(A) (6.40)

Partitioning {q} and [K] such that,

{q1} [Ki1]  [Ki2]
{q} = (K] = (6.41)
{q.} [K2h]  [Ka2]
equation (6.40) can be rewritten as,
0 = {sa}t(lx e} - [A1°0AD)
+ {6q1}t([Kll]{QI} + [Ki2]{qz} - (@} + (A1)
+ (8q2) (K21 {an) + [Ke2l{az} - {Q2d) (6.42)

Since {6a},{8q:1} and {8q,} are arbitrary, equation (6.42) yields

three simultaneous matrix equations of equilibrium

[kc]{a} - IAJt {Aa} =0 (6.43)

ki) @t + [Ki2laz} - {Qu} +» A} = 0 (6.44)

[Kzl]{Q1} + [Kzz}{qz} - {Q2} = 0 (6.45)
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Premultiplying equation (6,44) by [A]t and combining with equation

(6.43), yields,

t .
AN K Har} + [A1T[Kied{go) + [k Mo} [ATH{Qi) = 0 (6.46)
Replacing vector {q1} , results in the final expressions,

(k] + [A1F (K] AD e} + (A1 [Kiz]Ma2} - [A1FMQu)
(K211 [Al{a} + [K221{q2} - {Q.}

fl
o

(6.47)

1]
()

These two equations can be expressed in one modified stiffness

equation, thus,

[k*]1{q*} = {Q*} (6.48)
where
[K*] = [Kz22] , [Kz211[A]
(A1 [Ki2], [k_] + [A)F[Kaa]A) (6.49)
{Q*} = {Q.} 6.50)
[A]t{Q1}
and {q*} = {q2} (6.51)
{a}

Equation (6.48) may be solved to determine the nodal displacements

and the crack tip stress intensity factors. Comparing the stiffness

matrices [K] and [K*] of expressions (6.41) and (6.49), gives an

indication of the manipulations required 1in combining the core and

finite element system.




- 177 -

CHAPTER 7

NUMERICAL PROCEDURES AND EXAMPLES FOR

VARIOUS CRACK CONFIGURATIONS

7.1 INTRODUCTION

The fracture mechanics programs, forming the basis of the work

presented here, were written by Robertson(zg), and have been augmented

in line with his suggestions for further program development.  This
chapter deals with the various additional developments, examining each
new feature in turn together with a complementary set of numerical

examples. Firstly, the mixed mode fracture program, originally designed

to accept one or two crack tip core regions, has now been modified and

is applicable to any crack configuration. The computer storage

requirements of the modi fied stiffness matrix has also been minimized.

The number of terms retained in the singularity expression has

been made optional, so that any appropriate degree of expansion can

be chosen. The variable ELDOF controls the number of degrees of

freedom taken in the core element. Unfortunately this area of work

has not been finalized due to an unidentified program erroT. However,

the program functions correctly when using the first two terms of the

crack tip field equation.

The problem of partial crack closure, if treated using the

ent method, results in the physically inadmissible

standard finite elem

T

) g S
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situation where the free crack boundaries have crossed. Problems of

this type were previously treated using an averaged displacement
technique. An iterative approach has been developed, as part of the
present investigation, which examines the free crack surfaces in order
to determine the point of maximum overlap and subsequently condenses
the corresponding adjacent nodal degrees of freedom, giving either a
no-slip model or a frictionless model. A similar method was designed
using bar elements to bridge adjacent nodes, but this was later
abandoned in favour of the above technique.  The scheme is also
applicable to any general situation where free boundaries may overlap
and has been mounted in the multi-tip program for the particular

purpose of examining cracked structures.

The local mesh configuration around the core element has been
examined in much detail by Robertson and to a lesser extent by
Alsharqi(zg), the mesh designs adopted are very similar forming a
finely graded element distribution around the core. Following the
work of Lynn and Ingraffea(sg), it is possible to substitute this

finely graded mesh by a ring of isoparametric quadrilateral elements,

suitably constructed to sense the crack tip singularity. The elements

have been termed rtransition' elements and were used originally in

conjunction with the crack tip degenerate isoparametric elements, in

order to improve the solution accuracy.

The concept of a strain-energy density factor, introduced by

Sih(l6) enables the crack propagation angle to be computed. This

facility has been incorporated in a separate program owing to the

limits of the small core memory (SCM) presently set at the Manchester

oS
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Regional Computer Centre. The SCM is used to store the compiled

program plus any ancillary routines, such as the NAG library,
together with the real and integer variables. Unfortunately the NAG
routines, used in the crack propagation program, causes an overflow
of the SCM, hence this facility cannot be added to the main fracture
progran, A request has been made to increase the SCM limits, so
hopefully the crack propagation program can be added as a further
routine to the main program, The multi-tip mixed mode program
PCPOXY is listed in the Appendix (9.3) with an appropriate flowchart.

&

7.2 MULTI-TIP MIXED MODE PROCEDURE

7.2.1 INTRODUCTION

The adaptation of the general purpose finite element
program for fracture mechanics studies, centres on the matrix
manipulation referred to in Chapter (6.3). In order to illustrate
the matrix operations used in the multi-tip mixed mode procedure,
consider a hypothetical problem containing three crack tips.  The

form of the stiffness matrix is shown in figure (7.1). Because the

matrix is symmetricvabout its diagonal, only half of the matrix is

given, The position of the nodes lying on the core interface dictate

the internal construction of the matrix. Note that the interface

nodal numbering 1is consecutive and this eases the problems involved

in manipulating the sub-matrices. As the nodes are entered in this

regular fashion it is possible to forecast the regions within the

matrix which will be zero.

From figure (7.4) it can be seen that the nodes on the core

e numbers greater than (3*N1)

interface are not connected to any nod
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through the inter-element grid. Here, N1 represents the number of
interface nodes. Using similar reasoning the matrix structure will
have the general form of figure (7.1), taking into account all
possible inter-element connections. Corresponding with the diagrams
the following variables are defined as,

NS[I] - The value of the node number starting the core I.

N1[I] - The number of interface nodes on the core I.

NG - The number of d.o.f, of the original finite element mesh.

Returning to figure (7,1), the shaded areas of the matrix can
be identified as the sub-matrices [Kii1] and [K2:] of equation (6.41),

and these matrices are operated on to form part of the modified stiff-

ness matrix, i.e.

[K11], [Kiz2]
[K] =

(K211, [Kz2]

and the corresponding modified matrix,

[K22], [K2111A]

R I TVAT % PN (DA SRR Y

Clearly, from the above, the sub-matrix [Kz2] remains intact
b

and is simply rehpositioned in the modified stiffness matrix. The

is analogous to the numbered sub-matrices of figure

sub-matrix [Kz2]

(7.1).
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_2NS(1)-1

Crack Tip 1.
_2s(1)-14w1(1))

\F\\<_ 2(NS(1)-1+3N1(1))

Crack Tip 2.
_2(Ns(2)-1+N1(2))

4 2(Ns(2)-1+3N1(2))

5 6 7
_2(Ns(3)=1)
Crack Tip 3. N, 2 (3)=14N1(3))
2(NS(3)=1+3N1(3))
10 11 12 13 1
_NG

NS(I) - Node No. starting the core I.
N1(I) - No. of nodes on the core interface T.

NG -~ No. of d.o.f. in the original element mesh.

Symmetric stiffness matrix (X), showing the

FIG 7.1
for a hypothetical fracture

populated regions,
problem containing three crack tips.

B e
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TN H ()
2 5
_;(Ns(z)-Ns(1)-N1(1))
7>\;_ﬁ(NS(Z)—NS(1)—N1(1)+2N1(2))
5 6 71 8
‘_Z(NS(3)~NS(1)~N1(1)~N1(2))
Yg\l_?(NS(})—NS(1)—N1(2)+2N1(3))
10 11 12 13
7/
/.
/.

Ng(I) - Node No. starting the core I.

N1(I) - No. of nodes on the core interface I.
S = NG;2(1_NS(1)-N1(1)-N1(2)-N1(3))
NG - No. of d.o.f. in the original element meshe.
ELDOF - No. of terms taken in the core element.

FIG 7.2 Modified stiffness matrix (K*), showing the new

positions of the sub-matrices given in figure(7.1).
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10 11 12 13 || 14 15

FIG 7.3 Reassembled stiffness matrix representing

a minimum storage configuration.
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crack

Re

Rigid body rotation,

FIG 7.4 The nodes on the core element interface have

no inter-element connections with node

numbers greater than 3xN1,
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Now consider the equivalent modified stiffness matrix [K*] of
figure (7.1), as given in figure (7.2). This shows the new positions
of the numbered sub-matrices, together with the redefined shaded areas
The dimensions of the sub-matrices are given on the edge of the
diagrams and are in terms of the core parameters NS, N1 and NG.

Before examining the manipulation processes in detail, it is worth
noting that the stiffness matrix [K] can be modified and reassembled

to present a minimum storage configuration, as figure (7.3) illustrates.
However, this arrangement was not adopted due to the complex program-
ming operations involved in relation to the small computer storage
space savings. It will be appreciated, later in this section, that
the size of the storage area for the modified stiffness matrix will

be larger than, or equal to, that of matrix [K] and cannot be smaller.

Hence any storage minimization scheme of this kind may become re-

dundant.

The operation of the program follows that of the conventional
finite element method described in section (4.2), but with the

following modifications, Firstly the storage requirements of the

new stiffness matrix [K*] must be determined in relation to the size

of the original stiffness matrix [K]. This operation is performed

by procedure MMNTKBAND.  Secondly the matrix [K] and corresponding

vectors {ADD} and {Q} must be nodified forming the new matrices

[K*], {ADD*} and {Q*}. Note that matrix [K] is held in a one-

dimensional array and is related to its accepted two-dimensional

form through the address sequence {ADD}. Hence, as [K] is modified

it follows that its address sequence 1is similarly modified.  These

ocedure MMNT.  The reassembly

operations are carried out by the pT
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of the stiffness matrix, in effect implies that the element node

numbers have been redefined, but as this is not so some mechanism is
needed to relate the old scheme with the new numbering system.  This
mechanism is required in the application of the geometric boundary
conditions, and also in the print out information. The program

control sequence is listed in the Appendix (9.3).

7.2.2 DESCRIPTION OF PROCEDURE MMNTKBAND

The storage requirements of the modified stiffness
matrix [K*] may be greater than that computed by procedure ADDARRAY
for the original stiffness matrix [K]. In order to provide for this
eventually, procedure MMNTKBAND predetermines the storage requirements
of the modified stiffness matrix. The numbered sub-matrices of
figure (7.1) remain intact and are simply reassembled as in figure
(7.2). Also, it can be seen, that the sub-matrix pattern is repeated
for each crack tip, for example, sub-matrices 1, 4 and 9 occupy similar
locations, together with bands 2-3, 5-6-7-8 and 10-11-12-13-14-15.

In this procedure the numbered sub-matrices are scanned, examining
the number of coefficients in each row and recording the summed total
in variable BAND. It will be noticed that the numbered sub-matrices

close-up in the reassembled stiffness matrix [K*], reducing the

effective length of the rows. This is automatically taken into account

in the summing process.  The following steps refer to the flowchart

overleaf and the stiffness matrices of figures (7.1) and (7.2):-

1. Various control variables are jnitialised,

2 The counter loop C is constructed to examine each sub-matrix

block Within the loop I, sub-matrices 1, 4 and 9, for

i . The row value O
example are scanned for each crack tip C
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is computed and used to find the new row length via
the ADD array. If the row extends into the shaded
areas, figure (7.1), then the row length is given by I,
else the row is short and corresponds to O.

The control variables R and P are preset. R is an
accumulator finally used in step 6.

The second set of sub-matrices are examined, i.e. 2-3,
5-6-7-8 and 10-11-12-13-14-15, using the counter C.

The rows are scanned using counter I, in a similar
fashion to that of step 2, however, in this case the
blank portions lying between sub-matrices 6 and 7, or
11 and 12, are taken into account within the loop J.

If the row length, determined by D, extends across a
partitioning blank then its reassembled length,

figure (7.2), is modified within loop J.

The size of the shaded regions of figure (7.2) are
computed and added to the variable BAND.  The steps
2-6 are again repeated for each crack-tip or sub-region.
Finally the storage requirements of the reassembled
K*] is compared with that of matrix [K] and

matrix [

variable BAND is set to the greater of these values.

The bounds of the stiffness matrix will later be

declared as K[1:BAND].




Flowchart for procedure MMNTKBAND
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-

b e—

.~

Re=V:=BAND:
N1 [0] :=0
NS [NTIP+1 ] :=NNODE+1

il
O

ey

\I:

1 (1) NTIP>
I

1 (1) 4*N1[dl;>
l

i

gr=T+2+ (s [c] 1441 [c])

ﬁ::ADD[g]fADD[¢_1]

YES

w f\

NO

lBAND::EAND+¢

BAND:=BAND+I

e
———

R:=R+N1[c-1]

pe=pe(ns[can]-ns [c] -z*n1[C])

|

{1 :=10)FP >

¢:=I+2*(NS[C]-1+3*N1[C])
(J:=ADD [ﬁJ ~ADD [Q-’l]
V:=I+h*N1 [C]
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YES

< N=

i BAND:=BAND+¢

P— — <TJ .= NTIP (-1);2>

vi=Va2r (s (g)en (3]s [g-1] w1 [9-1]) %
Se D:=D+2*N1[J] ;

YES

:
| e

| "o BAND : =BAND+@-D

e

e

¢ =—2(uis [¢] -N8 [1]-R) +ELDOF* (C=1)
6. [ +2* (WNODE+1-NS [1]-T1)
BAND::BAND+ELD0F*(¢+(ELD0F/2)+0.5)

ADD [NFREE
>
AND

YES

‘BAND:: DD[NFREB]

END
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7.2.3 DESCRIPTION OF PROCEDURE MMNT

This procedure modifies the stiffness matrix [K] to form
the matrix [K*], as shown in figures (7.1) and (7,2). To achieve
this the matrix operations inferred by equations (6.47) are executed.
Before the above equations can be implemented matrices [A] and [kc]
must be determined. Matrix [A] connects the interface nodal
displacements with the wanted stress intensity factors and rigid body
modes. It is constructed using the rectangular displacement field
equations of expression (6.29) and (6.30), plus the rigid body

displacement terms, thus,

=
il

KIf(r,v,e) + KIIg(r,v,8)+ §x - wrsinb

c
il

KIp(r,v,e) + KIIq(r,v,6)+ 8y + wrcosb (7.1)

where the functions f(r,v,8), g(r,v,0), etc., represent the expressions

given in Appendix (9.1). The series has been truncated taking the

first two terms only, so that n =1, and

0y = KI//2, Oy = -KH//z

§x, Sy and w represent the rigid body displacement components.

By inserting the corresponding values of T and 8 for each interface

node the expression (6.37) can be formed. Referring the local crack

tip displacement coordinates to the global coordinate system, yields,

{q:1} = [Al{ed (7.2)

where {q;} is the vector of interface nodal displacements, and

o

{a} = &x (7.3)

R
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The number of terms taken in the series expression of Appendix
(9.1) can be increased by adjusting the value of ELDOF, refer to

section (7.3).

The core stiffness matrix [kc] can be formed using the series
expression given in Appendix (9.1). It will be appreciated that
the rigid body displacements have no effect on the strain energy
stored in the core element and therefore the relevant coefficients
of the matrix [kc] are zero. Procedure CORK evaluates matrix [kc]
and is described in detail, in section (7.3). Here we shall use

the first two terms in the series and the matrix [kc] takes the form,

= R 0 0 ]
X ]
0 0 0
0 0
7.4
Rem (3+2¢) 0 (7.4)
8u
0
0 Rem (2¢-1)
8y
L _

Having evaluated the matrices [A] and [kc] the sub-matrices,

[A)E[Ki2]

and k] + (A [Kn](A] (7.5)

can be formed, as given in equation (6.47). These sub-matrices are

7.2), and are held in array

represented as shaded areas in figure (

[KC] in a compact form during the operation of procedure MMNT,

This extra storage space is unavoidable and there is no alternative

but to store the expressions of (7.5) in array [KC], whilst the
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overall stiffness matrix [K] is reassembled as [K*]. As stated
earlier the numbered sub-matrices of figure (7.1) are relocated in
the modified matrix as given by figure (7.2). As each row is
relocated the address sequence {ADD} and force vector {Q} are
similarly modified. Finally the sub-matrices of array [KC] are
appropriately positioned in the new matrix [K*], overwriting the
coefficients of the old matrix [K]. The procedure operations are

described by the following steps and refer to the flowchart overleaf:-

1. Array [KC] is initialised.
2. Constants preset using the material properties in array [A].
3. The details of each core are printed giving the core radius,

the number of interface nodes, its starting node number,
and angle relative to the positive x-axis.  The sizes of
the [K] and [K*] matrices are also printed.

4, The variable KAP is determined depending on the particular
case chosen, i.e. 0 = plane stress and 1 = plane strain.

S. The loop C is set up for each crack tip and generates the
array [KC]. Firstly, the crack tip angle is defined and

procedure CORK computes the stiffness matrix [kc] for the

crack tip element under consideration.  See section (7.3)

for the operation of procedure CORK.

6. For ecach interface node the coefficients of equation (6.37)

are formed. Here matrix [F] = [Ni]c, where i = NS[C] to

NS[C]+ N1[C].  The angle of each node with respect to the

local coordinate system is represented by real TA, The

expressions within the loop J are equivalent to the

functions f(r,v,0), g(r,v,0) ete., of expressions (6.29)

and (6.30).

R Y
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11,
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The stress intensity factors aye recognized and divided

by V2.

The matrix [A] given in expression (6,38) is formed by
referring the local crack tip coordinates to the global
system, Here matrix [FI] = [A].

Step 9 represents the formation of sub-matrix

([kc] + [A]t[Kll][A]). The assembly process operates
within the loops Z, W, I and J, where the sub-matrix [Ki1]
is scanned and the appropriate coefficients are recorded

by variable KA.  The array [KC] is partially formed
summing on counters I and J, and by adding the core
stiffness matrix [KT] with loops W and Z.

The array [KC] is computed by adding sub-matrices
([A]t[Klz]). This is achieved in a similar manner

to step 9, where sub matrix [Ky2] is scanned within loops W,
I and J, and the appropriate coefficient is assigned to
variable KA. Array [KC] is then completed using the
coefficients of array [FI].

This section of the flowchart deals with the transfer of the

numbered sub-matrices (1, 4 and 9) of figure (7.1) into

their new positions given by figure (7.2). The force vector

{Q} and the address sequence {ADD} are simultaneously

adjusted.  The TOWS within the sub-matrices 1, 4 or 9

could fall short of the shaded area and this is taken into

account by the conditional statement.
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12. This step is similar to the previous step (11) but
further complicated by the blank sections of the
stiffness matrix, as inbetween the sub-matrices 6-7
for example. There fore further conditional statements
are needed to determine the row length. Note that
each sub-region is dealt with in turn within the loop
c, i.e. 1, 2-3, 4, 5-6-7-8, etc.

13. Finally after the numbered sub-matrices have been
relocated the coefficients of array [KC] are transferred,

completing array [K*], as shown in figure (7.2).

S

HRRE

TR

fd
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Flowchart for procedure MMNT :

|
A

1 (1) ELDOF*NTIPt>

1 (1) A*GRT+ELDOE>

l
KC{I,J]::O.%

cy
1}

PYE:=3,1415926535898
2. MUz =4 (2]
G:=0.5+*a[1])/C1+a[2])

DITAILS OF BACH CORE REGION

5. PRINTED
CASE NO %
‘
KAP:=3-4*A[2] ?
b,
YES
{ﬂfﬁp::(B"A[a])/(q+A[2]) ;
sz [c] s=AL{c] * (prE/180)
5. s =s1n(an(c))

CN::COS(AL[C])
PROCEDURE : CORK
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[ - <;;7 = 1 (1) N1 dI>

TK.:-PYD+2*(Z—1)*PYE/(N1[C]-1)
F{1,1):=-ro[c]*sN(TA)
¥ [1,2]:= Ro[c]*cos(Ta)
; 1)
¥ ]

(.2]:
(o) 51
en):

(@)Y
@

=0,0
:=1.0

2,1):=F [3,2
:=0

‘ (—- — ~—-<;J := 4 (2) ELD0F+1;>
l

l F[J,W}::(((KAP+I/2+(-1)TI)*COS(I*TA/a)

| ~(1/2)*Cos(TA* (1/2-2)))*Ro [c] 7(1/2))/(2+@)
| F [g+1,1]2=-(((KaP+1/2-(-1) TT) *SIN(I*TA/2)

| _(1/2)*SIN(TA* (I/2-2))) *Ro [¢] 7(1/2))/(2*G)
‘ ‘ r[J,a]::(((KAP_I/a-(-1)TI)*SIN(I*TA/a)

| +(1/2)*sTH(TA* (I/2-2))) *RO [¢] 1(1/2))/(2*G)

‘ F[J+1,2]::(((KAP-I/2+(-1)TI)*cos(I*TA/z)

| L (1/2)*C0S(TA*(1/2-2)))*RO [c] T(1/2)) /(2*G)

r(4,1) :=F [4,1) *0.510.5
v (h,2]:=F [4,2]+0.510.5
o] e 51 510
7 (5,2]:=-F(5,2] *0.510.5
| 1

R CER UL

FI[Z*a—w,w]::F[w,w}*CN_F[w,z]*SN

. =7 +ELDOF*(C-1)




- 197 -

\ e — = <x¢ i= 1 (1)ﬁgj>
|

Pkt [C ]
l
— — -<I::1(1)2*N1[C]>

l
‘ g:=I+2(Ns[C]-1)

[ -4<J c= 1 (1) 2*N1[c]>

R:=J+2* (NS [C]-1)
7 NO i\\\\\\ YES

F-R+1

>
ADD[F]-
ADD[¢-1

YES
YES

NO NO

K&:=0.0

s =K (D[ #]-#+E]| Ki: =K [ADD[R] -R+/]

I

S R T P s

‘KC[S,P]::KC[S,P]+(FI[I,Z]‘KA‘FI[J,W])

l}(c [s,P]:=KC [s,P]+KT [z ) k
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— — -—<iy = 11(1)LwN1[p]>

Pr=We2* (NS [¢] -1431 [c])

— <\I := 1 (1) ELDOFT>

@2 =I+ELDOF*(C~1)
l
L" (5 =1 (1) 2*N1[C]>

R:=Je2% (S [¢] 1)

P-g:?\\\\\\ YES
>

ADD [P] -~

ADD M

10.

KA:=0,0

NO

tKA:zﬁ[ADD[P]-P+R]

Kc[g,w]::Kc[¢,w];(KA*FI[J,I]2J

T T S R T R R R R

N1{O]::O .
NS[NTIP—1]:=NNODE+1

e —

T




1.
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1 (1) NTIPT>
l

R:=R+N1 [C_q]
1

1 (1) u*N1Uﬂ>

—
|
|
()

|
|
D

g:=T+2% (5 [c] -1ev1 [c])
s:=I+2* (s [c] -xs [1]-R)
2 (s, u5ETF =0 [, NSETF)
W:= ADD{@)
¢:=ADD[¢}-ADD[¢-1}

YES

s /\

ADD [

[¥2]
[

:=ADD [5-1]+1

se=WaeT

app (5] :=ADD [5-1] 4
We=W-g

‘ p::g*(Ns[c;wj_Ns[c]~3*N1[c])




12,

—

- 200 -

@:=T+2* (s [c]-1+3+11 [c] )
s:=T+2* (N8 [c] -Ns [1] -r+2*m1 [C] )
Qs m5518) 1 =q (g, NsETF)
V:=T+4+n1 [c]

W: =ADD [¢]

#:=A0D (@] -4DD [#-1]

YES

= Nw

NO \;\DD (s]:=apDp-1]+g

We=W -Qf

|
|,_<E 2=2DD [5-1]+1 (1) ADD[S]>

W2 =W+

K[z]:=x[w]

v:=vear (s (7] 401 [J]
g [5-1]-N1 [3-1])
«=D+2*N1 [J]

NO

Yoo

&

g s e
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ADD(S) :

H :W—Q
: =ADD [3,1:] BV

=ADD [5-1] +@-D

+2*(NS[J]-NS[J~1]_N1[J~1])

— T ‘@::ADD

~—

S._.1]+1 (1) ADD[s]>

We

K [/] . =K [W]

=W+1

YES

@

NO

W
J:
g ez (s (o) s [5-1]-m1 [0-1])

:W+2*N1[J]
=J+1

YES

n: =% (UNODE+1-NS [1]-TN1)

J NO

P:=0




13.
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|
r‘”‘ “"* ‘**<fC =1 (1; NTE%?}

i ' P:=P+N1{C-1)

l
tm — ——<1‘ = 1 (1) ELDOF>

¥ :=T+R+ELDOF*(C-1)
s:=g-2* (s [c]-Ns[1]-P)
D[] s =8+40D [g-1)
Q[#,nsETr) :=0.0
W:=I+ELDOF* (C=1)

— ~< J 1= (1; 4+x1 [c) >
| K[ADD[¢]-S+J]:=KC[N,J]

L e— —

— 4<4J :=d (1) S-{J}
|

l K{ADD{ﬁ]-S+J]:=o.o

R
r__ — J :=J (1§i§:>

|

1 K[ADD[ﬁ]_S+J]::KC[W,J~S+I+4*N1[QD
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7.2.4 NUMERICAL EXAMPLES

It is the purpose of this section to illustrate the
application of the multi-tip mixed mode program by obtaining numerical
solutions for a number of specific crack problems, some of which
have been solved previously by other methods. The problems are
chosen to demonstrate the accuracy and flexibility of the technique

for arbitrary two-dimensional component shapes,

The first example, shown in figure (7.5), is that of a
rectangular plate subject to uniaxial tension and containing a 45
degree central crack. The theoretical solution for the infinite

(78)

plate is taken from Rice , where, for tips 1 and Z,

KI = 0v/a sin‘a
Kip = ov/a sino cosa (7.6)

The plate dimensions have been chosen such that they reasonably
simulate an infinite plate,  For the value of o = 45 degrees,

equation (7.6), yields,

= = 0.5
KI/O/a— KII/o/aT

The corresponding finite element results weTre,

= Ja = 0.51
Kh/o/a— Kp,/ova

and

= g/a = 0.51
KII1/O/E‘ KIIZ/

where subscripts 1 and , refer to the crack tips and (a) is the half
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crack length, The number of elements and nodes used in the

discretised problem were 100 and 344 respectively, Using the

'transition' elements around the core element would have reduced
these figures to 68 and 240, representing a considerable saving in

computer storage space. Refer to section (7.5).

The second example, illustrated in figure (7.6), is that of a
plate in uniform tension containing three 90 degree edge cracks. The
problem was one of several used to prove the multi-tip procedure and
the theoretical solutions are given in Rooke and Cartwright(79).

The value of the shearing stress intensity factor is given as zero

and the mode I factors are, for the outer cracks,

0.8925

i

KI/O/ﬂa

and the inner crack,

il

KI/o/ha 0.822

Note that Rooke and Cartwright's definition of Irwin's equation (6.28)

contains a 1/v/m factor.  The corresponding finite element results g
were,
TIP 1. KI/o¢h = 0.8684
KII/O/a = -0.0244
TIP 2. KI/O/a = 0.7981
KII/G/a = -0.00079
TIP 3. KI/G/a = 0,8585
= 0,0216

KII/O/a
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o = 12000 psi

I N

|
W = 16 in
L = 20 in
= 1.0 in
Crack
Tip 20
Mesh details
Crack No. interface nodes - 17
Tip 1. No. elements - 100
No., nodes - 3hb
. 2a = 3in
ALY
X i
@)
l l Le S

FIG 7.5 A rectangular plate in uniaxial tension,

0
containing a 45 degree central crack.
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0= 1.0 psi

|

= 0,9 in
= 3,0 in
W= 6,0 in
b L =16 in

crack 1 CD
\

ox

ct

= 1,0 in

2 ) Mesh details

No, interface nodes =
b 13

No. elements ~ 80

L No. nodes - 299

S

o}
FIG 7.6 A plate containing three 90 degree edge cracks
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The overall discrepancy is -3,0% despite using only 13 core/

mesh interface nodes. Normally 17 interface nodes are used to

reduce the displacement disconitnuity between the core and finite

element mesh, refer to section (7.5). The finite element K_. values

IT

are extremely small compared with the KI results, however, note that

the outer cracks are subject to a higher shear stress as denoted by

the larger KII values.

A shouldered plate having a small crack on the fillet radius,
is taken as the third example. The site of the crack has been
chosen to correspond with the point of maximum stress concentration.
The plate is in uniform tension and is illustrated in figure (7.7).
An extremely fine mesh was used in this problem, resulting in 541
nodes and 244 eclements; 21 interface nodes were taken around the core

element. The normalized stress intensity factor for the finite

element results were,

= 1.644
KI/On/é 1.6

= 0.5169
and KII/On/a

where a = 0.5 and 0_ is the applied stress across the reduced cross-
) n

section As there is no theoretical solution available for this case

. ; ntaining a similar
a comparison can be made with a rectangular plate co &

crack configuration, as shown in figure (7.7).  The loading distri-

bution corresponds with that found around the crack area, and the

following solutions were obtained from reference (79),
= 1.821
KI/On/é

‘g ya = 0,264
KII/On
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FIG 7,7

120001bf

i

W

W
L
g

-0,5 in
2.5 in
5.0 in
15 in
25 in
15°

Mesh details
No. elements - 2hk

No. nodes

K/

- 541

Shouldered plate containing a

small crack on the fillet radiuss

X

W

i}

3 5.0 in

=t
oo

av

Comparison

10.0 in
15°

3 .
= 19 x 107 psi

idealized case.
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The results from the idealized case indicate that the finite
element solutions for the shouldered plate are at least of the same

order of magnitude and gives some confidence in the finite element

solution,

As a final example, the case of a rectangular plate containing
an arcular edge crack, with various root angles, was examined. The
plate is in uniform tension and the crack configuration is shown in

figure (7.8). Again a relatively fine mesh has been chosen and the

details are given in the diagram. Here, also, there is no theoretical

solution and to gauge the validity of the results an idealized case
has been chosen of a plate with a straight edge crack, with a root
angle corresponding to the final inclination angle of the curved
crack; that is angle B. The results determined using the finite
element method and those of the idealized case are shown in Table

(7.9) and are illustrated graphically in figure (7.10). Comparing

the two sets of results it can be seen that they are of the same

order and the plotted curves follow the same general pattern. From

this information it is assumed that the finite element results are

representative of the true solutions.

Other facilities, such as the partial crack closure scheme

written into the program, are demonstrated in later examples.




o= 12000 psi

a = 1,745329 in = crack length
r = 2.0 in
’////B/ P = 2W = 10.0 in
t =1,0 in
T

g/ T~
Mesh details
% No. elements - 132

No. nodes - 299
Rc = 0,036 in

=
SE

a . . . ..
Plate in uniform tension containing

an arcular edge cracke

Plate dimensions as above.

Crack length = a

3

f—*-a—? Idealized cracked structure.

r16_7.8
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Finite Element Results

root angle 1wz Ki1/a/a p
degrees degrees
30° 1.3320% 0.21%94 75°
45° 1.56809 4. 132%107° 90°
60° 1.64278 -0.2418 105°
75° 1,493 ~0.4608 120°
90° 1.1896 ~0.587 135°

Comparison results for a straight crack of the same length,
at root angle 'B'. RBF(16)

: K
root angle KI/Q/E 11/0/a

degrees

75° 1.75 0.23

90° 1.909 0.0

105° 1.75 0023

1?00 1.45 0oLl

q35° 1.0 0.47

. T t ith
TARLE 7.9. Normalized K and KII values for a plate wi

a curved edge crack at various root angles.
[&]

See figure(7.8).
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Normalized

Stress

Intensity

1 Factor

x?O1

o = 12000psi
= 1.745329 in
= 20 = 10 in
o8 = 1,0 in
R
B
~7F
v o

Root Angle

2

F.E. results

Comparison results for a straight

— 70T T  ¢rack of the same length, with
root angle ‘P'.
FIG 7.10 Non-dimensional KI and KII results for

a plate in uniform tension containing

an arcular edge cracke
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7.3  REFINEMENT OF THE CORE ELEMENT DISPLACEMENT MODEL

7.3.1 INTRODUCTION

The fracture problems solved using finite element analysis,
in the early investigations, suggested that a large number of nodes
or degrees of freedom were required in the discretized model in order

to obtain a satisfactory solution. As a result the computer storage

space was overloaded and ways of overcoming this situation were K

examined. A direct approach was to introduce a segmented solving

routine, where the large backing store could be utilized. Alternatively 3?

the size of the storage requirements could be reduced and methods which

may bring about this situation are discussed in this section.

In general, it was found that the Hilton and Hutchinson method,
as described in Chapter six, increased the size of the stiffness matrix.
In other words the modified stiffness matrix [K*] was larger than the
original [K]. This aggravates the computer storage problem and could
be avoided by firstly, reducing the number of elements used in the
finite element model and secondly, by changing the method of solution.

The first proposal lead to the idea of enlarging the core region, and

thus eliminating the fine local crack tip mesh. This would lead to

a reduction in the core elements ability to yield accurate stress

intensity factors and consequently, to maintain the solution accuracy,

more terms would have to be taken in the singularity field equations.

The second approach involves the modification of the matrix equations

(6.47) and the introduction of what will be termed the 'pseudo inverse'

me thod A combination of both schemes would produce an efficient and

accurate program for the solution of fracture problems, The two

methods are described in the following sections.
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7,3.2 PSEUDO INVERSE METHOD

This method has been briefly discussed in Chapter two, in
connection with the classical solution/finite element techniques.

Essentially the method hinges on the transformation of the matrix

equation (6.38), given here as,
{q1} = [A]{a} (7.7)

where vector {q;} represents the interface nodal displacements, and

{a} contains the stress intensity factors. The connecting matrix [A]
is generally not square and equation (7.7) represents an overdetermined
system of equations., The transformation of equation (7.7) requires
the inverse of matrix [A], and this can be found using a least squares

(80) or Peters and

technique similar to that of Businger and Golub
Wilkinson(8l). Returning to the system equations (6.43 - 6.44),

rewritten here as,

[k 1{a} - A1t =0 (7.8)
[Ki:]{q:} + [Kiz]{q2} - {@} + (A} =0 (7.9)
[K211{q1} + [K221{q2} - {Q2} =0 (7.10)

Transposing the equation (7.7)and substituting the vector {a} into
equation (7.8), yields

ATk DI ) = 0 (7.11)

where rA*] is the pseudo inverse of matrix [A], and the matrices are

as given in Chapter six, Replacing the Lagrange multipliers {A} of

equation (7.9), with that of equation (7.11), results in the modified

system,
[kt]{q} = {qQ} (7.12)
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where
’- —

T AT+ [Ki2D),  [Kao)

[K'] = (7.13)
Kz, [K22]

and vector {q} and {Q} are the nodal displacements and nodal forces
respectively. The modified stiffness matrix [K'] has the same
dimensions as the original matrix {K], and is of a simpler form
compared with [K*] of equation (6.49). The solution of equation (7.12)
however, does not yield the wanted stress intensity factors directly

and it is necessary to back substitute the interface nodal displacements

into the transformed equation (7.7), that is,
{a} = [A*]{q:}

(50)

This method has been successfully employed by Jones and Callinan

The essential modifications to the fracture program are as follows:

1. The sub-matrix [K;1] may be sparsely populated, hence, the
. t .
addition of the sub-matrix ([A*] [kc][A*]) could violate the
variable bandwidth storage scheme. To avoid this situation

the address sequence is preset to accept the additional

coefficients.

2. The pseudo inverse matrix [A*] must be determined and the

sub-matrix [A*]t[k 1[A*] formed and added to the overall
c

stiffness matrix.

3. Finally the interface nodal displacements are used to

interpret the wanted stress intensity factors through the

appropriate expression.

The following section examines the procedures required to imple-

ment these various steps.




- 216 -

7.3.3 PSEUDO INVERSE PROCEDURE DESCRIPTIONS

~ PROCEDURE MIIST: _' !

This procedure is equivalent to the multi-tip routine of
section (7.2,3), and matrices [kc] and [A] are formed using the same
computer coding. The matrix handling scheme is different however,
and the NAG sub-routine FOIBLA is used to determine the inverse
matrix [A*]. The formation of the sub-matrices ([A*]t[kc][A*])and its

subsequent addition to the overall stiffness matrix is described by

the following steps which refer to the flowchart overleaf:- %1 i

1. The NAG subroutine FOIBLA is called and computes the pseudo
inverse matrix [A*], storing it in matrix [FI].

2. A looping system is constructed which effectively forms
each coefficient of sub-matrix ([A*]t[kc][A*]), and adds

it to the overall stiffness matrix [K].
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Flowchart for procedure MIIST

FORMATION OF [kc] anp [a] as v
PROCEDURE MMNT,

IFAIL:=0

' PROCEDURE : FO1BLA |
i
— {y = 1 (1) 2*N1>> 3 5
— LW i=1 (1) 3 > |
T P
1
_ ——{:J = 1 (1) ELDOF;>
2.
K [ADD (2] ~z+4) = =K [ADD (2] 2]

+(FI[Z,I]*KT[1,J]*FI[w,J])
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PROCEDURE SOLVIT: -

The solution of the modified stiffness equations (7,12) yields

the nodal displacements of the finite element mesh. The interpretation

if the interface nodal displacements, through the equation (7.7), gives

the wanted stress intensity factors, thus,

{a} = [A*]{q.} (7.14)

The back-substitution process is relatively simple and is

summarized in the following steps which correspond with the flowchart:-

1. The computed stress intensity factors and the rigid body
displacement will be stored in matrix [ALPHA]. Array
[PSO] represents the pseudo inverse matrix [A*] and the
back substitution process is accomplished within the loops

I and J.

2. The determined stress intensity factors are printed.




- 219 -

Flowchart for procedure SOLVIT :

—— e ——{iI := 1 (1) 5:>
l

ALPH[i :=0.0

]
l

o —~<ﬂ':= 1 (1) 2*W1 )
[

ALPU (1] :=PS0[J,1]*q [7,1] +aLPH [1)

STRESS INTENSITY FACTORS
PRINTED.

e,

END
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7,5,4 CORE ELEMENT STIFFNESS MATRIX

Previously only the first two terms were used in the crack

tip singularity expressions, By including extra terms, the solution

accuracy will improve and a larger core element can be employed.
The coefficients of the core stiffness matrix [kc] were found using
the first two terms of the stress and strain near crack tip field
expressions, and the strain energy integral equation, In refining
the core element, the number of terms taken in the series expansion
was made adjustable, hence, the stress and strain expression of
equation (6,23) were used directly. The strain energy stored in

the crack tip core element is given by the expression,

UC = [ —(orer + Oy * Treyre)dvol (7.15)

where r and 6 are the polar coordinates at the crack tip.

For the mixed mode case a circular core element is used and the

integration limits are,

2
g [ (0 e+ 0.6, * Treyre)rdrde (7.16)

t
Uo =50 0 (05 * %%

Now consider the first term in the above expression and let

subscripts n and m refer to O and e We have, using the equations

of Appendix (9.1),

[00] n )
o e )rdrds =% AR [0, 4C = oy D]

mr.
X [qzmﬁll + qsz]}rdrde (7.17)
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where C, D, T and J are functions of 6, 1 is the shear modulus, r is

the core element radius and the o's are constants, o1 and o, are

connected with the stress intensity factors via equation (6.28).

Evaluating the first integral yields,

o ® ¢ r(n+m)/2 27

R S Ao, € -q; Dlfa, I+ o, J]}d8 (7.18)
n=1 m=1 8u (n+m) o 2n-1 2m 7" 2m-1 2m )

Examining the expression under the integral and expanding, we have,

2m

S Ao, .« C,I + C.,J
o m

2n-1 2m-1 OL’znvlaz

-, nasz.J} e (7.19)

2

n a2m“1D.I f o,

Expanding the first term C.I, using the definitions given in Appendix

(9.1), we have

27
C
% 1% o1 g {[Cy4cos8(Cs) + C3cos6(C1)]
x  [CecosB(Cyrg) + Cgcos®(C11)]}d0 (7.20)

where the functions C.(n,m) are also tabulated in the Appendix (9.1)
1

Multiplying the terms and integrating, yields,
2m

C.1)ds =
0 1% ] f‘ (C.7)

sinf(Cs+C10)+ 1 sinB(Cs-C1o) ]

1 1
FCuCel wacT,

1 . ~
1 ) . — sinB(Cs-C11)]
+ CyCel E;:E;T‘SIHG(C5+C11)+ Cs-C1a

1 .
1 . _t—— sinB(C31-C10)]
6(C14Cy0)*
+ C3Ce [ crrcy o (Ca :
T

1 .
sinB(C1+C11)+* L sin8(C1-C11)]) (7.21)

1
+ C3Cq [ i+ Ci1 C1-C11 o
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Repeating the process for each term in equation (7,16), an

expression can be found in terms of the integers m and n for the strain
energy of the crack tip core elements. Thus by simply substituting
the appropriate values of m and n in the strain energy expression,
any coefficient of matrix [kc] can be found. The strain energy

expression is listed in the Appendix (9.1). The embodiment of this

expression within the sub-routine CORK is given in the next section.

7.3,5 DESCRIPTION OF PROCEDURE CORK

The final expression for the core element strain energy, is
rather cumbersome and wherever possible repetitive terms are assigned
the same variable name, The functions Ci of expression (7.21) may be
computed as zero subject to the values of integers n and m. In this
case a cosine term with argument Ci’ under the integration sign, would
yield unity and on integration 6., Similarly a sine term with a zero
argument would be left out of the expression, As the values of the
functions Ci(n,m) are dependent on the values of integers n and m, a
conditional statement is used to detect any zero terms and override

the sine and cosine expressions., Specifying integers n and m

generates a 2 Xx 2 sub-matrix of the core stiffness array [kc] and its

position within the array is dependent on the position of the a's in

the vector {o}.

There is no reason why this formulation cannot be used in the

case of mode I fracture, that is with a semi-circular core element,

' i imi ., In a general
simply by changing the upper integral limit to T g

fracture program this procedure could be used to examine mode I
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and mixed mode crack configurationswith minor adjustments, The

following notes correspond with the steps in the flowchart and relate

the program coding to the theory;-

1. The core stiffness matrix [KT] is initialised and various

parameters are preset.

2. Loops N and M are constructed to generate the coefficients
of the core stiffness matrix. As this matrix is symmetric
about its diagonal only the lower triangular coefficients
are determined.

3. The functions Ci(n,m) are found and correspond with the
functions given in Appendix (9.1). Combinations of
these terms, which are common, are grouped in variable Bi' ?

4. The counter P is formed and represents the upper and
lower limits of equation (7.19), f§

5. To further simplify the strain energy expression the
terms are further reduced within the loops I and J.

The conditional statement detects the zero Bi terms
and accordingly assigns the intermediate constants Ti'

6. The variables Ti are appyopriately assigned to the constant Di'

7. Each coefficient of the stiffness matrix is formed, collecting

Note that each coefficient Ki is

the evaluated terms,

made up of three basic groups arising from the three terms of

equation (7.16). The last group is multiplied by 2 in order

to balance the multiplying parameter S. (see step 3).

8 The sub-matrix coefficients are stored in matrix [KT] for

the first value of P and then carried forward to the final

expression in step 9.
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This constitutes the final expression for the

coefficients of [kc] and each term is multiplied by

the common factor S.  The array [A] terms carry out

the adjustment of the a coefficients to give the stress

intensity factors. See equation (6.28),
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Flowchart for procedure CORK .

START

|

1 (1) ELDOF>

r—— ”{LI : i
1 (1) ELDOF>

K

l KT [I,9]:=0.0

i

G:=0.5*4[1]/C1+a[2]) :
]
— A<1 =1 (1) ELDOF-3>

| |

A1) :=a2{1):=1.0

a1[1):=a2[1]:=0.510.5
a1 (2] s=h2 2] r=-1 (]

|
- N = 1(1) (ELDOF-B)/2>

l

— M:=1 (1) N

¢ [1]: =172+ c[2]:=/2-(=1) N
c [3] c=N/24+(=1)TN C [4]:=3-N/2
¢ [5] :=1/2-1 c[6]:=Kkap-11/2

¢ [7]:=M/2-(-1)m C [8]:=t/2+4(=1)TH
c[9]:=t/2-2+KAP  C [10] :=M/2-1
c[11]:=M/241

5 [1]:=c[5]+C[10] 3[2]:=c[5]-c[10]
8[3]:=c[5]+c[11] 3[s]:=c[5]-c[17]
5[5]:=c[1]+c10] B [6]:=c[1]-C[10]
B7]:=Cc[1]+C [11] 3[8]:=c[1]-C[11]

s —(TrTCK*MAN* (RO [TIR]T( (W4+10)/2)))/ (8*G* (N41))

i
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! O::P*2*3.1415926535898

)

(I:=1(1) )
- — <

YIS

:=0,0

1 [2-3]:=(sIN(e*B[1*2-7]))/B[1*2-J]
1 [4-g]:=(Cos(8*B[1°2-0)))/B[1*2-J]

K [1] £=0(4)*¢(6) +D(1)4C (1) *C(8) *D(2)
+C(5)*6(6)*D(3)+C(3)*C(8)*D(4)
+C(1)*0(9)*D(1)»C(1)*C(8)*D(2)
—C(ﬁ)*c(9)*D(5)+c(3)*c(8)*n(4)
(C(S)*C(10)*D(S)-C(S)*C(B)*D(6)
—C(B)*C(10)*D(?)+C(5)*C(8)*D(8))
___________—____——————————‘

L3

+2
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ive

k2] = -+ c6)*(13) Uy e (7) +n(at)
~C(5)*C(6)*D(TB)-C(B)*C(7)*D(16)
~C(1)*C(9)*D(13)+C(1)*C(7)*D(19)
+C(3)*C(9)*D(15)-C(3)*C(7)*D(16)

+2*(-0(5)*C(WO)"D(9)+C(5)*C(7)*D(10)
+C(3)*C(10)*D(11)=C(3)*C(7)*D(12))

K(3]:= CUNC6) *D(9)+C(h) *c(3) *D(10)
+C(2)*C(6)*D(11)+c(2)*c(8)*D(12)
+C(1)*C(9)*D(9)-c(1)*c(8)*n(10)
~C(2)*Cc(9)*D(11)+c(2)*Cc(8)*p(12)

+2*(C(5)*Cc(10)*p(13)-C(5)*c(8)*D(14) . §
~C(2)*C(10)*D(15)+C(2)*C(8)*D(16)) |

K{#]:= c(4)*C(6)*D(5)+C(h)*C(7)*D(6)
+C(2)*C(6)*D(7)+C(2)*C(7)*D(8)
+C(1)*C(9)*D(5)-C(1)*C(7)*D(6)
-c(2)*c(9)*p(7)+C(2)*C(7)*D(8)

+2*(C(5)*c(10)*p(1)-c(5)*C(7)*D(2)
-C(2)*c(10)*D(3)+C(2)*Cc(7)*D(4))

T:=2*N+2 J:=2*N+3

Ve=2*M+2 '-.'J::2*M+3

NO
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K01, 0] =k [1] <k [1,v] ) #5081 [2010a ]*AZ[ *M-1]
ke [1,0] 2 =(i [2] ke [1,u ] )*5* a1 [2*N=1]*A2 [2*]
K2 [3,v] e=(K [3] kT [0,v] ) *52 2 [a*N]*Az [2#M-1]
k2 [3,10) = 8] ke [ 0] y o501 [2o0] =2 [20)

K7 (v, 1] : =7 [1,V]

KT [W,1] sk [1,0]

KT [V, 9] s =it [3,V]

K [, 9] =7 [7,w]

END

T S O S R S S SR S eI
e S

TS
i)
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7.3.6  NUMERICAL EXAMPLES AND CLOSING REMARKS

To assess the performance of the pseudo inverse method

the case of a plate in uniaxial tension, containing an edge crack

with various root angles, was investigated, The test results are

compared with those obtained using the Hilton and Hutchinson technique
in Table (7.11). It can be seen that the stress intensity factors
and the Trigid body displacements of both methods compare
favourably, éxcept for the rigid body displacement 8x, for the 90
degree edge crack case, where there is a sign difference. On
further inyestigation it was discovered that a spurious negative
displacement, in an essentially positive displacement field, occurred
along the crack faces. This could not be accounted for, despite a
thorough investigation of the numerical procedures. A listing of
the residual nodal forces gave no indication of any applied tractions
along the crack surfaces, to explain this phenomenon.  The technique

was subsequently abandoned due to time restrictions and the need to

investigate more immediately important topics.

A similar set of problems were chosen to test the refined core

element facility, provided by procedure CORK.  This procedure was

used‘in conjunction with the Hilton and Hutchinson method of Chapter

Six Selecting only the first two terms in the series expression,

gave identical results to those obtained with the original program

written by Robertson. lowever, taking a further two terms in the

series did not enhance the solution accuracy as anticipated.  For

the particular case of a rectangular plate in uniform tension, the
shearing mode stress intensity factor is zero; the corresponding

3 i t. A
ini = x 10°, clearly incorrec
finite element result gave K;y 2.75 »
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table of results, giving the finite element solutions with the

corresponding core element degrees of freedom, is presented in Table

(7.12). No explanation has arisen to account for these discrepan-

cies, after considerable efforts were expended to locate the error.
(28)

Robertson derived the expressions for the first four x four co-

efficients of the core stiffness matrix [kc], and the numerical

values of these coefficients, generated by the procedure CORK, are

identical. This problem will be discussed further in Chapter eight.
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|
i
ﬁ
!

¢ Pseudo Inverse
Jegrees Motnod Correct solution ;
(Hilton/Hutchinson) |
£ = 5.51585x10" K, = 5.1821x10"
Kip= 5.95 K-
000 o ~1.3154X10-4 811 8.315 . |
x = 1.52025x10 |
8y = 4.999x107° Sy = b.46388x10™°
W = -2.22x107 W= -1.96687x107°
Kp = 1.31226x10u K; = 1,271419X1O“ |
K1= -6.61098x10° K;1= ~6.54955%10° | ?
45° dx = -2.553x10 §x = ~2.5348x107° ‘ |
by = 1.78086x10™ Sy = 1.781233x10
W = 316942107 W= =3.600x10"" i
Ky = 1.8901'7:410[+ K = 1.798x1o4 ,
Kip= -5.99618x1o3 Kip= -5.9ol+x1o3
307 Sx = -2.307x10 " Sy = -2.286x10 7"
oy = 2.6699x10'3 Sy = 2.663%10™° |
W = —b.7h9203%10"" W = -5.1012x107"

Displacenment -

Results obtained using the

Method, for various edge cra

Units for KI,KII - psi/in

in

tPseudo Inverse!

ck problems.
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|
2-DOF |
L-por |
= =2, -5
< 099)(10 n W = _2.4303)(,]0"3
= —i.:)OSSgX/lOB 6){ - _8.6514-)(10—“
= T e 80 b, ’]Oh -
) 37_9‘ L 8y = 5.0071x10 i
- 2eeI K = 5.16645x10
17 ~-1.7453%10 K o= 2.749x103
a, = 1.112x10 :
a, = 5.3377x10° | |
6-DOF 8-DOF é
= -2.77049x10_j W o= =2.0983%107° ‘ 0
_ -k - AN
= -3.69072x10 dx = -8.6241x10 at
= 5.0102x10° Sy = 5.0102x10° I
= 5.09236x10 K, = 5.2119x10 |
2 R
_— 3.2453x10: K 1= 5.7119x10° R
3 L
= 1.4797x10 a, = 1.2561x10 '
= 4.81659x10f 2, = 5.652x103
l.
= =1.66356%10 az = -2.5124x10
1, z
= 1.937hhx10 ay = 7.036x107 u
ag = 9.077u8x30'
ag = 5.578x10
f o a = 2.5in
L = 10.0in
| a = .
‘ W = 5.0in
t = 1.0in
o = 12000 ibf/in2

{ o

TABLE 7.12. Results obtained using the procedure CORK,

for various COI€ element d.o.f.

Units for KI’KII - psi/in

Displacement - in
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7.4 PARTIAL CRACK CLOSURE

7.4.1 INTRODUCTION

In the application of the finite element method, the
equilibrium displacement solution is obtained from a minimization of
the total potential energy of the elastic body. For the normal
mesh, inter-element compatibility is maintained by assuming suitable
displacement functionswithin each element. No allowance is made,
however, with respect to the compatibility requirements of free
boundaries in close proximity to each other, as in the case of crack
surfaces, Therefore, without special precautions the minimum energy
configuration can result in the physically inadmissible situation where
the free boundaries have crossed. Figure (7.13) illustrates the
case of a rectangular plate with a 90 degree edge crack, under an
applied bending moment M, and also the crack profiles for the correct
and incorrect solutions. In this example the incorrect solution
yields a negative mode I stress intensity factor which implies that
the crack surfaces have crossed. Because of the symmetry of this
problem, overlapping adjacent nodes can be constrained to move

together, but for the mixed-mode problem, where the crack may be

inclined to the global axis, corrective action is rather more

difficult In this situation the adjacent crack surfaces can move

relative to cach other, as shown in figure (7.14). Coalescing

adjacent crack face nodes is equivalent to a no-slip finite element

model,

The problem of partial crack closure was briefly examined by

Robertson(zg) who used an averaged displacement scheme to prevent
3
th K faces overlapping.  The problem was not fully investigated
e crac ’
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however, due to time restrictions, ang only the mode I case was

examined. Essentially the averaged displacement technique examines

the overlapped crack configuration and computes the necessary dis-
placement pattern to bring the overlapped crack faces into line.

This is achieved simply by specifying the average displacements of
adjacent nodes as geometric boundary conditions and re-solving the
modified stiffness equations. This approach functions correctly

for the symmetric mode I case, where only half the plate is considered
and overlapping nodes are assigned to have zero 8y displacements.

See figure (7.13), In mixed-mode crack configurations this approach
is invalid, as nodal displacements are specified using information
from the overlapped component shape, thus violating the condition
which allows the elastic body to take up the shape of minimum

potential energy.

One possible method of overcoming this situation, was to use bar

elements, and bridge the overlapped crack surfaces at the adjacent

nodal points, An iterative scheme was developed which operated as
follows: -
1. A bar element was attached to the pair of nodes

corresponding to the point of maximum overlap.

2, The modified system of equations were solved.

3. Steps 1 and 2 were repeated until the crack

surfaces no longer crossed over,

The bar element type is given in reference (82), section (8.6)

i i i i ss matrix is
and working through the matrix manipulation its stiffne
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given by,
SZ «SC ...Sz sc n
e _EA -s¢ c®  -se 2
=5
-s? Lse s2 e (7.22)
. sc ¢ -sc c?

where E represents the modulus of elasticity, L and A represent the
element length and cross-sectional area, and, s and c represent sina
and cosineaq. The element details are given in figure (7.15). There
are problems associated with the use of bar elements in this fashion.
Theoretically the element length is zero, hence the value of the
constants EA/L is arbitrary. The value of this group of constants
can effect the position of the final closed crack surfaces.  For
example, using the particular case of figure (7.13), a 90 degree edge

crack, the bar element stiffness matrix becomes,

[0 0 0 0
0 1 0o -1
x]® = EA (7.23)
L
0 0 0 0
0o -1 0 1 ]

wheré e Now by changing the value of the constants EA/L the

coefficients of the matrix [k]e can become large relative to the

stiffness coefficients of the overall system. Thus, on solving the

modified sct of equations, the corresponding constrained nodal
displacement tends to zeTo, due to the large diagonal coefficient

introduced when adding expression (7,23), This tendency 1s

. : 1 ‘7.4.3)1
illustrated by an example given in section (
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'~

PIG_7.13

Plate containing a 900
degree edge crack subject

to in-plane bending.

Incorrect crack profile
where the crack surfaces

have crossed.

Correct crack profile.
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Y) ’ '
Inclined crack subject ?
to closure forces. %
Sliding of crack surfaces
for a non-zero KII'
FIG 7.14
o\
1
/ \\u :
v, 1 %
FIG 7.15 Bar Element details.
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The inserted bar element technique does not provide a representa-

tive model for the problem of partial crack closure

(83)

hence, a method

used by Iverson , for determining the stresses in screw threads

was adopted. Here again the problem of free boundaries in close
proximity 1s encountered and Iversen treated the situation by equating
the values of the components of displacement normal to the crack face
for adjacent crack face nodes. Overlap of crack faces is thus
prevented whilst relative sliding is allowed, The method is
described as enforcing equality of displacements and is further
discussed by Cook(s). Consider a set of simultaneous equations, which

do not represent any particular structure,

3x + 8y + 9z = 30
8x + 20y + 1lz = 15 (7.24)
9x + 1lly + 1lz = 6
or in matrix form
3 8 9 X 30
g 20 11 y ) = (15
9 11 1 z 6

If we require x = z then one of the three equations in (7.24)

is redundant and we reduce the number of equations by addition, thus,

7.25
gx + 20y + 1llz = 15 ( )
12x + 19y + 10z = 36 B
and as x = z
(7.26)
20y + 19z = 15
19y + 22z = 36
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or in matrix form, forcing the redundant x to equal zero
s

1 0 0 x 0
oo Yoy A1s (7.27)
0 19 22 . 3

This result implies that the rows and columms of the redundant
displacement are added to the rows and columns of the retained
displacement, Both sets of adjacent nodal displacements can be
condensed in this manner to represent a no-slip model. Various
crack configurations are examined in section (7.4,3) where partial
closure exists and both of the above models are used to obtain a

solution.

7.4.2 THE NODAL COUPLING TECHNIQUE APPLIED TO PARTIAL

CRACK CLOSURE

Before describing the numerical procedures a few notes on

the method of data input are appropriate.

a) The nodes lying on opposite crack faces must have the same

coordinates.

b) The normal displacements of the crack surface nodes are used

to determine whether crack closure has occurred, hence, in the case

of inclined cracks the nodal displacements must be expressed in

local skew coordinates. This is achieved using the procedures

SKEWEDCON and SKEWLOAD,  The data input sequence is given in the

; : the paired crack surface nodes
users guide Chapter five, Now, as P

i i tween the
have the same coordinates, in order to differentiate be
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SURNO = 8 NSKeW = 8

Crack Face Upper Lower
1 45,0 5 45.0
2 45,0 6 45.0
3 45,0 7 45,0
4 45.0 8 k5.0

FIG 7.16 Corresponding crack closure input data.
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upper and lower crack faces, the node numbers are entered as pairs

giving the upper crack face node number first and then the lower crack

face node number, Note that these nodes must be accompanied by the

appropriate angle of skew. Figure (7.16) shows the data input

sequence for an inclined crack.

Implementing the node coupling technique discussed earlier, may

increase the size of the stiffness matrix [K], due to the row and

column interchanges. The address sequence, which relates the one-
dimensional stiffness matrix to the coefficients within the two-
dimensional matrix, is adjusted using the skewed node input data.

This process is carried out as part of the main control program,

before the assembly procedure is called. Its operation is described E
in the following steps, which refer to the flowchart overleaf:-
1. The loop I is constructed so that each pair of nodes on

the crack faces can be scanned.

2, The integers S and J are assigned the values of the pair

of node numbers.
3, The smaller of the two node numbers is made redundant and

the conditional statement determines relative values of

S and J, Making the smaller node number redundant,

automatically ensures that there is room in the stiffness

matrix to carry out the column summation. However, the

row summation does not posSSe€SS this guarantee, hence the

integers W and V are computed, and represent the remaining

unused space in each TOW, corresponding with the nodes S

and J S represents the larger node number ON exiting

step 3.




) o

4,

Lxcernt from the main program PCPOXY flowchart -

If integer W =

matrix to carry out the row summation

V then there is room within the stiffness

, otherwise the appro-

priate changes to the address sequence are carried out.

l

<;I:: 1 (2) su&mo<>

L
K [T+

{
o
|

J:=NOS 17*2
wo 7 s O Y5
i .

Wi=J-(ADD p}-ADD§J~1])+1

Vi=S5-
S::J

.
ADD (o

1=Sa (nnu[ ]_auuis-1})+1

L

Vi=d- (4D Lg) -anD {g-1]) 41 |

5] -0 [5-1])+1

| J
| [ADD[J]::ADD +2~(W:KZJ
L e —

] RAND: =BAND+2* W-V)
L,___-____~___»_~__;]

| ST

IR

T o AT o e T TS e o S e

T T S
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The iterative scheme, discussed in the introduction, requires

that the continually modified system equations be repeatedly solved.
As the solving routine overwrites both the stiffness matrix and force
vector, a method of storing the modified arrays is introduced, where-
by the computer backing store is utilized. Essentially each time
the system equations are modified they are saved in the computer's
backing store, using the transfer routine PUTARRAY, and similarly
recalled using GETARRAY, The complete program listing is given in

the Appendix (9.3).

PROCEDURE CLOSURE ;-

The CLOSURE procedure implements the nodal coupling technique
discussed in the introduction and its operation is described by the
following steps, which correspond with the flowchart:-

1. Various controlling integers are preset and the crack

face nodal displacements are transferred to arrays {x}

and {Y}. Note that the force vector {Q} is overwritten

by the displacements in the solving routine.
2, The counter V records the number of times procedure
CLOSURE has been accessed, Also the array {ovpr}

records the coefficient number of the paired nodes

which have been coupled, and this information is used

so that the redundant normal displacement, which is

i i isplacement.
zero, can be replaced by its twin nodal displa

3. The control loop I is constructed so that each crack face

node pair can be scanned to detect overlap. The

conditional statements determine the point of ‘maximum

overlap which is recorded by W.
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The crack surface nodal displacements are printed

out, together with the computed stress intensity

factors.

If the crack faces do not overlap then the matrix
modification process is not implemented and the

stress intensity factors are scanned. See step 10.
If the crack faces are overlapped then the system
equations are recalled from the backing store, :

using GETARRAY,

Integer J and I take the values of the crack face
node numbers which are at the point of maximum
overlap, that is W; J taking the larger node

number,

This step represents the coupling process, where

the coefficients of the rows and columns corres-
ponding to the redundant node, are added to the
coefficients of the rows and columms of the twin node.
In this case both the x and y d.o.f. are coupled
giving a no-slip model. The counter Z operates on
the integers I and J, so that the paired crack face
nodes are coupled in the 6x and 8y sense respectively.
The frictionless model results from coupling the

normal displacements only and this is achieved by

equating Z to zero. Note that the program PCPOY

contains the frictionless closure procedure, The

coefficients of the stiffness matrix along row I

are transferred to the corresponding row J, and
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similarly the coefficients lying in column I are
added to the coefficients of column J,  Finally
the diagonal coefficients of [K] and the force
vector coefficients corresponding to I and J, are
added,  The sub-procedure GEOMBC is called so
that displacement I is zero on solving the system
equations, as given by equation (7.27).

After the stiffness equations have been modified
the main control program is retraced from position
RESOLVE.,

If the crack faces have not overlapped then the
mode I stress intensity factors are scanned to
determine whether they are still negative, If
this is the case, then they are forced to be zero

by the sub-procedure GEOMBC.

PRI

e B

SV
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Flowchart for procedure CLOSURE :-

£E:=0,0
Vo=V

_ ! I:= 1 (1) SURNO‘>
l

x[1]:=q [2*NosK [1],1)
¥ (1) :=q [27mosk [T-1] ,1]

1ES

NO

cfove [1) e1) s =x [ov2 1]

S ——

x[ove(1)) :=x [ovP(1]+1]

ar=x[2+1-1]
B::X[E*I]
| D::A—B

NO
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NO

Ve :1*2—1

ovp (V] :=w l

INTENSITY FACTORS PRINTED.

COMPUTED CRACK FACE DISPLACEMENT & STRESS

AR

YES

NO

VA2

REWIND(12) GETARRAY(12,K)
REWIND(10) GETARRAY(10,%)

NO

J::NOSK[W+1]*2
1:=NoSK[w]*2

J:=NosK[w] *2
I:=N0SK[W+1]*2
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J:=J+%
I:=I+%2
52:=I-(aDD [I]-4DD [T-1])+1

- 4(5‘:: s2 (1) I—1>

s
)
|w]
<
——
]
<
+
st
-
H

: =K [ADD (7] ~g+F J+K [ADD (I} -1+F)

YES

K[ADD{F]_F+J]::K[ADD[E]—F+J]+K[ADD[F]_F+I]

[—

P

o o1] < oo (1] e (100 1]
q[7,1) r=a[721]+a [1,7]
PROCEDURE : GEOMBC

JR———




9. VA3 { RESOLVE )

Va2 ) We=

1
I ——<J = 1 (1) NTIP>
|

lI::ELDOF*(J—1)

NO

|

NO

‘ REWIND(12) GETARRAY(12,K)
REWIND(10) GETARRAY(10,Q)
\ Ve =1
[ PROCEDURE : GEOMBC 7]

VA3

R e

S e

Dt e e e e S AR e o er
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7.4.3 NUMERICAL EXAMPLES FOR THE CASE OF PARTIAL

CRACK CLOSURE

The first example has been chosen to contrast the results
obtained for the three techniques discussed in the introduction. The
problem is that of a rectangular plate containing a 90 degree edge
crack, subjected to a bending moment M, The results are shown in
Table (7.17) and the final crack profiles are illustrated in figure
(7.18). The example has been treated as a mix-mode fracture
problem, and therefore the shearing mode II can be used as a measure
of the method's accuracy. In this case the shearing stress intensity

factor K should strictly, be zero, As expected the average

Ir’

displacement method yields a poor K.. value (6.7% of KI), and this

IT
indicates that a shear stress distribution has been set up around the
crack tip, resulting from the assumed nodal displacements. A similar
situation arises with the inserted bar element technique, here

Kip = -68.0 lb/ins/2 or 2,5% of KI’ The nodal coupling technique
yields an identical set of results for both the frictionless and
no-slip models, which would be expected from the symmetry of the
problem and the fact that no shear is present. The KII values, in
these results were 0.1% of the KI values. The same problem was
Solved using various bar element stiffnesses, and the resulting crack
profiles are shown in figure (7,19). It can be seen that as the

EA/L value is increased, the joined nodal displacements tend to zero.

Clearly this is not a representative model of the partial crack

closure phenomenon, and the nodal coupling technique is used in the

remaining examples,

i e
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Theoretical solutions for the ‘overlapping' problem in fracture
analysis are limited, because of the inherent complicated boundary
(84)

conditions, A recent paper by Bowie and Freese considers the

case of an internmal crack in an infinite sheet under in-plane bending,
figure (7.20), where the crack tips A and B lie in a compressive and
tensile stress field, respectively., The solution of this problem
was found using Muskhelishvili‘s(zs) method of analysis, with minor

modifications to give a physically acceptable solution. The stress

intensity factors in this case are,

Ky = Kigp = 0.0 (7.28)

K. =T a3/2 sin’o (7.29)
IB

K = -T a3/2 in%acosa (7.30)
1B S :

where o is the angle of crack inclination, a is the half crack length

in the closed configuration, and T is defined by

Ox = -Ty

This solution assumes crack closuyg w%@hqgt slippage, and for
the case of a 45 degree crack, the corresponding finite element
solutions are given‘in Table (7.21). For the case, a = 45 degrees
equation (7.29) and (7.30) yield the sﬁﬁE%Véiﬁéf,“andlin comparison
with the finite element results, for‘ghg 20;§%ig/m9del, it can be
seen that the discrepancy is only =1.3%.  The finite element
frictionless model allows the crack surfaces to slide in a
tangential direction, thus a shear stress intensity exists at crack

tip A, Note that the two K., yalues, for the above model, are
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A
DN
B 2a
AT
-

T(x-8)psi Mesh details : §

o =

Ty = 3000 No. elements = 100
L o=20 ~No, mnodes =34k
W= 16 " Rc = 0.05

t =1.0

a = 1.5

Dimensions - ins

FIG 7.20 Central 45° ecrack in a plate under in-plane.
bending. Example(2)
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Theoretical solution from Bowie and Freese(84),

No-Slip.
Crack Tip 4 KI = KII = 0.0
Crack Tip B Ky = Kpp o= 1060.62

Finite ¥lement results.

No-Friction Model, Iteration 8.

Crack Tip 4 Crack Tip B
3x = 3.4833 x 1077 §x = -3.5045 x 107
5y = -5.157k x 107> 8y = 2.1626 x 1077
K. = 0.0 Kp = 1.0466 x 10°
Kip= -9.6642 x 10° Kpp=  9.64bh x 10°
" -l
w = =1.1955 x 10 w = =8.0094 x 10
No-S51ip Model, Iteration 8.
Crack Tip 4 / Crack Tip B
S5x = 3.4885 x 1072 dx = -3.5097 x 1077
8y = =5.142k x 1072 8y = 2.1675 x 1077
LD
K; = 0.0 K; = 1.0458 x 103 dis'y -1.3%
Kpp= 0.0 . Kig= 1.0467 x 1o~4
= =1.1391 x 1077 w = -8,0064 x 10

Units KI & KII - psi/in

Displacement - ins

o
TABLE 7.21. Comparison of results for a 45” centrally cracked

plate under in-plane bending, see figure(7.20)

example (2) .




-k

Original crack length (in)

1
blll 1 1 I ﬁ Y é : . | ]|y13
Crack

Normal

dis!p
x 10°
(in)

Tip A

FIG 7.22 Final crack profile
example(2).
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identical and that their value is 8.0% lower than found in the no-
slip model, indicating that the shear stress has been relieved due
to the relative movement of the crack faces. Figure (7.22)

illustrates the final crack profile, which is applicable to both finite

element models.

Having shown that the finite element method provides a physically
acceptable solution to the problem of partial crack closure, the
remaining examples illustrate the method's versatility. The problem
of a circular arc crack of radius, R, in a plate subjected to a
uniform uniaxial stress, 0, has been chosen as the third example, see
figure (7.23). There have been several theoretical solutions
proposed for this problem, none of which are entirelyrsatisfactory.
The solution presented by Rooke and/Cartwright(79) quétes negative
values for the opening mode stress intensity factor KI’ implying
that the crack surfaces have overlapped, In fact the results
obtained from the first iteration of the finite element scheme
compare favourably with the solution obtained by reference (79),
however after subsequent iteration the solution is modified and the
results are presented in Table (7,24), and plotted in figures (7.25)
andv(7‘26), It can be seen from fhese/tWOrgTaphs that the crack
closure solutions are essentially compatible withgthe original
results of reference (79), however;‘where the crack orientation
angle B = 0.0 and -30,0 degrees, the solutions differ. Obviously
where crack closure does occur the KI'valueS tend to zero in the
finite element solution, as $1lustrated in flgure (7.25), Also it
would he reasonable to assume that: in the no-sllp model, where KI

tends to zero K.. will similarly tend to zero, due to the restricted

II
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relative crack surface displacement, In the frictionless model
the crack faces are allowed to slide over one another, thus, whereas
KI may tend to zero the unrestricted tangential displacements

can induce a large KII value, This is the case in figure (7.26),

where the KII values in the frictionless model are comparable with

the first iteration solutions, In practice it would be difficult

to assess which model is applicable, from a theoretical point of view

a frictional force would -have to be applied to the closed crack faces
corresponding with the normal crack surface loading. The final

crack profiles are illustrated in figures (7.27, 7.28, 7.29 and 7.30),
both the frictionless and no-slip solutions give similar crack profiles,

which are represented in the above figures.

A similar problem has been chosen as the fourth example. Here,
a rectangular plate contains a crack near a circular hole of radius R.
The crack is on a line which passes through the centre of the hole
and the plate is subjected to a linearly varying stress perpendicular
to the crack direction, see figure (7.31). 1In this example the
sliding mode stress intensity factors KII are zero and therefore the
finite element models yield the same result. The solutions obtained
from reference (79), are given, with the reéults obtained using the
finite element scheme, in Table (7,32). Tt was found that the crack
overlaps at crack tip A, resulting in a negative KI value. For the
first iteration the opening mode KIB value was within 4.0% of the
theoretical solution and after completing the iteration cycles, its
value had not changed significantly: This situation can be

explained using the final crack profile, shown in figure (7.33), only

.

a small section of the crack has actually overlapped due to the large

displacements of the relatively weak region around the hole.
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L =
O t =
R =
g =
FIG 7.25%

W = 10 in
1.0 in
1.0 in
12000 psi

Curved crack in a

Example (3).

Mesh details
No. elements - 98
No. nodes - 338
Rc = 0,023 in

uniaxial stress field.
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Case Loc Lgp 48B L9A Lgc L8C Lgc
Angle 'B' 90° 60° 30° 0.0° -%0° -60° -90°
degrees
1
Theoretical K 0.791 0.7445 0.256 -0.163 -0.102 0.381 0.791
sol'n
Rooke & "
Cartwright(79) KII-o.116 0.30% 0.624 0,488 0,056 -0.233 -0.116
kt | 0,794 0.7453 0,271 -0.153 =0.102 0.371 0.794
I I
F.E. results
1st Iteration 21l
Kir~o.115 0.32%3 0.634 0,506 0,067 -0.243 -0.115
1 1 0.6 0.702 0.271 0,0 0.04 0.372 0.6
F.E. results KI 7 7 7 > 57 ?
Final Iteration
No-S1lip Kt |-0.052 0.33%  0.634 0.0 -0.074 -0.24 =-0.052
Model 1T
1 1 0.779 0. 0.271 0.0 0.0 0.372 0.77
F.E. results KI 779 739 ’ 57 779
Final Iteration
No-Friction k' |-0.095 0.328 0.634  0.511 0,086 -0.24 -0.095
Model 11
K, = K/5To8 / K, K = o/MRsing
P
= %/ s1in| K
Kpp= Kppo/sing /%,
[ — jo]
Ky = KI/q/I
o= K R
111 II/Q/r
TABLE 7.24. and K__ results for an arcular

Normalized KI 11

crack in a uniaxial stress field.

Example(3), see figure(7.23)
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'P‘ degrees

e .'90

Rooke & Cartwright sol'n (79)
F.B. result

o] 1st Iteration

—O— Final Iteration No-Slip Model

—e-p--—Final Iteration No-Friction Model

llllll
9876543210_1-2-3_4

. 1
Normalized stress intensity KI/OVﬁ'X 10

FIG 7.25 Non-dimensional KI plotted against crack angle 'B'.
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FIG 7.26 Non-dimensional K pagainst crack
angle 'P'.

Rooke & Cartwright sol'n (79)
F.E. result

0 1st Iteration
- 0- TFinal Iteration No-Slip Model

N Final Iteration No-Friction Model

-90

'P' degrees

I]
Normalized stress intensity @j/m/§ x10 90 :::ﬁhn
—r T 1 T T 1 [ ] S '
5 8 7 ¢ 5 A 3 2 1 o0 -1 =2 -3 =k
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/

L Q QA

Crack
Tip 1.

Normal Dls't 1x10

>

ins }

-

FIG 7.27 TFinal crack profile
example(3). Case 4384




Normal Dis'p 1x’|03 ins \

FIG 7.28 Final crack profile
example(3). Case L8C
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Q/? o
L
g = 600

FIG 7.29 Final crack profile
example(3). Case 494
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~_ . AN
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\\\\
e ) _
T [ . g = 600
5 ins l

2 1 o -1 =2 Normal Dis'p 1x10

FIG 7.30 Final crack profile
example(3). Case 49C
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o, = Tx c = 1.3

T = 4000

L = 11.0 Mesh details

W= 9.5 Rc = 0.02L

2a = 2.4 No. elements - 12k
R = 1,0 No. nodes - 435
b = 1.5

FIG 7.31. Plate containing a crack near a circular
hole, subjected to a linearly varying

stress. Example(4).
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Theoretical solution from Rooke and Cartwright(79).

/

S Kpq = 0.0

KIZ

H

0.74

Finite element solution

TIP 1. TIP 2.
dx = 1.595 x 1072 dx = -1.687 1077
dy = 5.610 x 10“4 dy = 1.174 1077
-l -
Iteration 1. w = 7.231 x 10 w = 7,237 10 b
K = =0.053 Kp = 0.77
e — —
;7= 0.0 K= 0.0
-3 o -3
5x = 1.591 x 10 dx = =1.689 10
Oy = 5.599 x 10"LF dy = 1.176 1o'i
- "
Iteration 7. w = 7.23% x 10 W = 7233 10
K; = 0.0 K = 70.772
K11: 0.0 Kip= 0.0

Displacement - ins

TABLE 7.32. Normalized KI and KII results for example(h4),

figure(7.31).
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Crack Tip 2

Original
crack pos'n.

FIG 7.33% Final crack profile
example (4),fig(7.31).

Crack Tip 1.

Lo,
Normal Dis'p 1x10  (ins)

V:i;nt!’ T 1
14121086420-2-4-6
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Loading dist'n
case 1.

=
ti

Mesh details No. elements - 116
No. nodes - 414

Yy - Spar boom
y flange.
| f

case 2.

Rivet loading

Iy
P = 30x10 1b
Jo @2 .

FIG 7.34 Example(5).
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Case.l.

Theoretical solution from Bowie and Freese(84)
no holes present.

a
TIP 1. K. = K 3199.872 1bf in /in2

I IT

i

TIP 2. hI KII

1l
il

0.0

Finite element result no-slip model.

Iteration 1. Iteration 9.
bx = ~8.525415x10”3 in 5x = -8.572025x107°  in
-2 -2
oy = 1.147756x10 2 in dy = 1.159465x10 in
TP .|k, = h.611397x10° PSWIR | k= 5.116828x10° Psi/In
Kpp= 4.553698x103 " Kiq= 5.087265;:103 "
W= 3.134445x10'3 Ww o= 3.142822x10'3
ox = 8.525415x1o"3 in ox = 8.464289x10‘3 in
by = -3.587750x10 7 in by = --3.587074}(10‘3 in
TIP 2.|K; = -4.611381x10° si/in K, = 0.0
K..= k.55365 ¥10” " K__= 0.0
II . II _3
w o= 2. 44LLo5x1077 w = 2.,846451%10
Casesle no-closure.
TIP 1. TIP 2.
- L
Sx = -1.698936x107° in 5% = =1.37099x10 in
- -2 .
Ey = ~3.375524x10 2 in %y = 3.13’133}(’]OL+ in
Kp = 3,64 xqoL+ psi/in K = 3.1744 %10 X psi/in
L 1
KII: -5.9647 x10 ; " KII: --7.091<’%16><1(_)L+
w = -5.715322x10" w = 9.72579x10

TABLE 7.35. Finite element results for example(5),
illustrated in figure(7.34).
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The final example consists of a rectangular sheet containing a
45 degree central crack and two offset circular holes of radius R, as
shown in figure (7.34). Two loading configurations were considered:
firstly, the plate was subjected to a linearly varying stress, and
secondly, the plate was considered to be a section from a spar boom
flange of an aircraft wing. In the latter problem, it was assumed
that the inner face of the flange was clamped, representing the rigid
spar centre, The section was subjected to a linearly varying stress
and the holes were given simulated rivet loads. For the first
loading configuration the results can be compared with the theoretical
solution obtained for a 45 degree central crack without holes, as
in example two. Table (7.35) shows that the theoretical solution is
approximately 37% lower than the finite element result. The proximity
of the holes to the crack tip increases the stress concentration giving
rise to the larger stress intensity factors derived using the finite
element method, The second case, which represents a section from
the spar boom flange, can be thought of as a practical application

and its solution revealed that, in fact, the crack faces did not close.

7.5 SPECIAL ELEMENTS USED AROUND THE CORE ELEMENT

The core element is surrounded by a fine mesh so that the rapid

stress changes, in this region, can be accurately interpreted, A

28) . .
series of tests were carried out by Robertson( ) in order to examine

the influence of core radii and the number of interface core nodes,
on the stress intensity factors, Figure (7.36) illustrates the mode I
and mixed-mode local core mesh designs resulting from this investigation.

The "core radius Rc, was linked with thHe crack length a, and optimum

results were obtained within the limits a/30 > Rc > a/50., A similar
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local core mesh design was adopted by Alsharqi(zg) in the investi-
gation of axisymmetric cracked structures and these are shown in
figure (7.37), It was found that a minimum of 17-19 nodes on the
core interface produced both consistent and accurate results. If
the number of interface nodes is reduced then problems with interface
displacement compatibility arise. Because of the standard design

of the surrounding core mesh, it can be generated from a few input
parameters, as explained in Chapter five. The local core mesh
design used in the majority of the previous examples is shown in
figure (7.38) and is based on the results of the previous research

work.

With the need to reduce the number of nodes used in the finite
element mesh idealization, the possibility of reducing the element
density around the core region was appealing. A method proposed
by Lynn and Ingraffea(sg), takes the form of a band of 'transition'
elements arbund the degenerate isoparametric crack tip element. The
'transition' element is described.in Chapter (2.5.2) and is essenti-
ally an isoparametric quadrilateral element with the mid-side nodes
positioned so as to respond to the crack tip singularity. This method
has been used in the present work in conjunction with the core element,
replacing the three bands of conventional elements by a single ring
of 'transition' elements, as illustrated in figure (7.39). The
overall effect is a significant reduction in the number of nodes used
in the finite element idealization, To determine the optimum
"transition' element configuration, a series of tests were carried
out, using the problem of a plate containing a 90 degree edge crack,

subjected to a uniform tensile load, The problem was treated as a
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mixed-mode case, so that the shearing mode II stress intensity
factors can also be monitored. The relevant dimensions of the
surrounding transition elements are given in figure (7.39). The
outer radius Ro of the ring of elements was related to the core
radius Rc by Ro/Rc = constant. Various core radii were selected
and the results are plotted in figure (7.40). It can be seen that
the core radius is directly linked to the crack length, a, hence

the results are applicable to any crack configuration. The
transition elements have not been fully tested but the graphical
results indicate that the ratio Ro/Rc = 3, produces accurate results
within the limits a/30 < Ro < a/13. The equivalent mode I case was
solved using the semi-circular core element, shown in figure (7.39),
with only 9 interface nodes, and the results were identical with
those of the mixed-mode example, Hence doubling the number of nodes
used on the core interface, when using the mode I facility, as in

previous mesh designs, serves mo real purpose.

An isolated mixed-mode case of a 45 degree edge crack problem
was solved using the new mesh configuration and the results were

(16). It is hoped that this

within 2.0% of those given by Bowie
modification will overcome the difficulties encountered with in-

sufficient computer storage space,
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crack

8%

Mode~I crack tip mesh.

Both designs employ the six-node triangular element.

Mixed-Mode crack tip mesh.

FIG 7.36 Local crack tip mesh design, as used by
Robertson(28).
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LRc

crack

Mode~I mesh design.

Mixed-Mode mesh design

] . . - crack

| Y 119

FIG 7.37. Local crack tip mesh design, as used by
Alsharqi(29).
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i)

crack 55 17

) J?Lj

10R¢

Mode~I design.

Both configurations employ 17 nodes on the

core element interface.

e
-/

FIG 7.38 Local crack tip element configuration using

crack

Mixed-Mode design.

the eight-node quadrilateral elemente.
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crack T ! | |

Mode I configuration

crack 43 26 g

Mixed-Mode design

FIG 7.39., Local crack tip element configuration, employing

the 'transition' element. Note the displaced

mid-side nodes.
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FIG 7.40. Normalized stress intensity factor K

crack length/core element dimensionse.

1 against

Rc Rc/a
o
? _ t = 1.0 0,08
Lo & a/13 |
L = 10,0
a = 2.5 = crack length
O o = 12000
. - 0,07
| a/15
fo
— 0,06
Correct
sol'n
i \
- 0,05
‘Rc
1 a/22
<4 Ro b=
— 0.0
(;a/,—’)Q_,.
- 0,03
/50 | .02
a/1Q0al. 0,01
Normalized Stress Intensity KI/q/E 5.0% 1 .4% 2. 1% _slew
I T T
I I I I . o' 8 5t
AR 3.2 3.1 3.0 2.9 7
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7.6 CRACK PROPAGATION

The concept of a strain-energy density factor S, has been
presented in section (3.2.3), where it was shown that the stationary
values of this factor can predict the direction of crack growth under
mixed-mode conditions. The expression for the strain-energy density
factor is given by equation (3.8), and is a function of the stress
intensity factors KI’ KII and KIII' The ability to predict the
direction of crack propagation is essential in fatigue studies and the
finite element method provides a versatile model. Various investi-

gators have used the technique, namely, Ingraffea(85’86) and

Fukuda et al,(87).

The incorporation of the crack propagation facility in the
finite element method presents no difficulties and it has been done
as part of the current project. A standard routine can be called
to determine the stationary value of the strain-energy density factor
and hence the angle of crack propagation.  With the development of
the multi-tip and crack closure procedures, of the previous sections,
it was found that the program length prohibited the introduction of
the crack propagation facility. Basically the method utilized the
standard routine of the NAG library and this exceeded the small core
memory limits, hence a separate program was written. The small
core memory limit is presently being revised and this may allow the
crack propagation = procedure to be added to the main program. The
crack propagation program is given overleaf and the following steps
describe its operation:-

1; The program data input sequence ts given in a comment

statement at the beginning of the program.
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2, Sub-~routine FUNCT contains the function to be
minimized and is called by the standard NAG
routine EO4AAA.

3, The data i1s read into the computer within the
control loop I.

4, Various control variables are defined which are
applicable to the NAG routine EO4AAA.

5. On exit from the routine EO4AAA if IFAIL is zero
then the routine has successfully determined the
angle of crack propagation and all details are

output,
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program PROPAG :-

START

DATA INPUT INSTRUCTIONS

PROCEDURE : FUNCT
A1:=(3-L*MU~COS (TH) *(1+COS(TH))
A2:=(2*SIN(TH) * (COS(TH) =1+2*MU)
4% =(L-L4*MU) *(1-COS(TH) ) +(1+COS(TH) ) *
(3*cos(TH)-1)
SS:=CON*((A1*(K1T2))+(2*A2*K1*K2)
+(A3Z*(K27T2)))

OQUTPUT STATEMENTS

S — 4<I:= 1 (1) V<>

K1:=READ
K2:=READ
MU:=READ
G:=READ
CON:=1/(16*G)
Til:==-1.5707963
D:= 150
E::1.0*1o'5
B:=0.01745
C:=3.1415926
IFAIL:=1
PROCEDURE : EOLAAA




N
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NO

NAG

(&)
[

ROUTINE EOLAAA HAS
OQUTPUT IFAIL

FAILED

TH:=(TH-C)*57.29578

OUTPUT CRACK PROPAGATION
DETAILS

END
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7.6.1 CRACK PROPAGATION NUMERICAL EXAMPLES

The results from some of the previous examples have been
used to illustrate the operation of the crack propagation program,
The first group of examples are various edge crack configurations,
and they are shown with the corresponding propagation angles in
Tables (7.41) and (7.42). The fracture angle 6, has been plotted
against the crack angle B, and the resulfs are givenin figure (7.44).
The graphical results have been compared with those obtained by
Sih(16), for a plate in uniform tension containing a central crack.
The edge crack solutions, for both the curved and straight crack

configurations, lie on the same path, and follow the general pattern

given by Sih's results.

The second set of examples are taken from section (7.4.3) and
represent the central circular cracked plates, subjected to a loading
configuration which induces partial crack closure. The crack
propagation results are shown diagrammatically in figure (7.43), with
the corresponding stress intensity factors.  The results have also
been plotted in figure (7.44), but it is difficult to interpret any
general trend without taking further intermediate cases., The overall
results show that the program is sultable for crack growth studies

and can be used as a procedure for finite element analysis as given

by references (85 - 87),




Root angle 'P’

@)

S0
54°

.0
135

TABLE 7e47.

Root angle 'e<

90
75
60
b5
30

TABLE 7.42.

- 286 -

Angle of propagation
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Crack propagation results for a plate
with an oblique edge crack
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Crack propagation results for a plate
with a curved edge crack
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FIG 7.43. Computedcrack propagation angles for the fracture
problems involving partial crack closure of
section(7.4.3) ,
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FIG 7.4k, Crack angle against fracture angle

for various crack configurations.
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CHAPTER 8

DISCUSSION AND CONCLUSION

8.1 DISCUSSION

The application of the finite element method to determine crack
tip stress fields has seen rapid progress in the past decade. The
technique has been finding increasing use in all aspects of fracture
mechanics, providing a versatile and efficient engineering tool. As

(51)

recounted earlier, the Hilton and Hutchinson crack tip element

has been employed in this study of cracked structures. Although a
small plastic zone forms around the crack tip, it has been shown(14),
that this does not significantly affect the system's strain energy
and consequently assuming linearity remains a good approximation.
Three modes of fracture have been defined in Chapter two: as only two-

dimensional cases are considered here the appropriate modes of fracture

are the opening mode KI and the inplane shearing or tearing mode KII'

. The work presented in this thesis is founded on the programs
written by Robertson(zg),whose original objective was to develop a
general two-dimensional fracture package. This objective was not
fully realised and several problem areas were identified in his
suggestions for future research. The suggested work programme has

been yirtually accomplished and the various difficulties met with and

overcome are reviewed here.

s it e 55
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The introduction of an automatic mesh generation program, was a
primary objective, and has enabled larger problems involying greater
element detail, to be investigated with a minimum of input data.

The scheme has proven to be flexible and reasonably easy to implement.
However, in order to realise the potential of the scheme it is
recommended that the user implement the examples given in Section (5.4).
The scheme functions as follows: the component is appropriately divided
into sub-regions termed 'zones' and an element mesh is generated within
each zone to obtain the final discretized component.  This process is
described in greater detail in Chapter 5. Computational experiments
showed that element distortion incurred loss of accuracy in isoparametric
formulations and in order to minimize this effect, the program has been
designed to make all internal element faces straight with the side

node positioned mid-way along the element face. Elements which have
faces lying on the zone boundary are allowed to take up the boundary
configuration, be it curved or otherwise. This leads on to the problem
of element grading, where the mesh generated by a zone can be graded by
off-setting the mid-side super node. The zone is an eight-node
isoparametric quadrilateral element and in displacing the side super-
node all the boundary face element nodes are displaced. There fore,
considering a single element face lying on the zone boundary, it is
clear that its mid-side node will also be displaced. This situation

is detrimental to the element's performance, as explained in Chapter 2,
and thus using the zone's mid-side node to grade the element mesh, is
not recommended. Figure (8.1) illustrates the problems involved with
the combined facilities of curved zone boundaries and element gradation.

Steinmueller (88) has observed this effect and the corresponding
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restriction in the application of auto-mesh generation using isopara-
metric coordinates., To overcome this effect it is suggested that the
co-ordinates of the element corner nodes are found and then the element
mid-side node co-ordinates can be determined using a quadratic function
based on the shape of the zone boundary. In this way loss of

accuracy can be minimized and element mesh grading can be used to

greater effect.

The various finite element programs have been modified to accept
the new inpuf data format presented by the auto-mesh generation scheme,
and a program index is given in Appendix (9.3). Each program requires
a different data format and the mesh generation data output is controlled
by a program 'code' number. The only programs which have not been
updated in this manner are the axisymmetric fracture programs, and these
need to be updated to bring them in line with the basic axisymmetric

finite element program IAAXMG. See Chapter 4.

During the initial developments of the two-dimensional finite
clement programs, spurious shear components were found on stress free
boundaries and this was first thought to be due to a programming error.
It wés shown, after subsequent investigation, to be due to element
distortion which degenerated the element shape function causing loss
of accuracy. This aspect of element behaviour has been dealt with
in Chapter 2, and it is worth noting here that in problems of this
kind, the program should be tested against the simplest element
configuration possible. Thus high-lighting any malfunctions, which

can subsequently be checked by hand calculation.
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FIG 8.1 The two figures show how the element mid-side nodes

on the zone boundary, are displaced when the grading

facility is used.
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A second element type was introduced to the two-dimensional
finite element programs, namely the eight-node isoparametric quadri-
lateral element. Few problems were encountered with the introduction
of the new element type and Chapter 4 describes the modifications
necessary for the incorporation of any element type. With reference
to the assembly routines, it is possible, with hindsight, to say that
the routine can be condensed to a much greater extent if the matrix
manipulations were to be carried out within a set of control loops,
rather than in the more explicit form presently used. This would
allow the two assembly procedures, which exist at the moment, to be
combined and also save computer storage space. As the trend is
moving toward the use of mini-computers, where storage space is at a
premium, the same criterion will apply, that is, where explicit matrix
manipulations are carried out, these should be condensed as previously

indicated.

With the ever increasing use of the computer centre facilities
at Aston University, users running large programs were advised to move
to the capacious computing facilities at Manchester University, to
which Aston is linked. Having transferred the programs, the initial
difficulties of adjusting to the new system were overcome and consisted
basically of print and conditional statement variations, and coping
with the CDC 7600 operations. Appendix (9.2) elaborates on the use
of channel cards, with respect to data transfer using the backing store
and 1900 computer. Having established the programs, it was found
that, in some cases, the size of the stiffness matrix could not be held

on the large core memory and several methods were investigated, in

order to overcome this difficulty.




- 294 -

Firstly a more flexible solving routine was introduced based on

the scheme proposed by Jennings and Tuff(ﬁg), and provided a very
compact method of solving large sets of simultaneous equations, stored
in a segmented form. The scheme was hampered by the method of
assembling the stiffness matrix and also by the matrix manipulations
implicit in the fracture formulation. Both of these procedures
require the matrix segments to be transformed to and from the backing
store in a random manner, and severely detract from the solving
routine's efficiency. The assembly procedure cannot be performed

on a segment by segment basis, as the nodal numbering of each element
dictates the location of the stiffness coefficient within the overall
array. As the numbering system is random, so the location of each
coefficient is random, therefore it is not possible to reduce the
inefficiency of this process. The re-structuring of the stiffness
matrix to incorporate the singularity element, however, could be
examined more closely and methods of optimising this procedure should
be examined. An example of the increase in cost incurred when using
the segmented solving routine as opposed to the SYMVBSOL procedure,
can be taken from a simple case of a notched bar specimen, having

600 degrees of freedom in the discretized model; the cost was 9 units
in tﬁe segmented scheme as against 5 units using the SYMVBSOL procedure.

The scheme could easily be adapted to small computers with limited

core space, but with backing store facilities.

Secondly, two indirect methods were examined which would solve

the computer storage problem, namely the 'pseudo-inverse' technique

and refinement of the crack tip core element.  The first method has
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been described in detail, see Section (7.3.2), and functioned correctly
for a number of test cases considered. Unfortunately it was found
that for the particular case of a 90 degree edge crack, the displacement
field was not interpreted correctly, and although efforts were made

to resolve this situation, the malfunction was not satisfactorily
explained. All ancillary routines functioned correctly. The pseudo-
inverse matrix, denoted by [A*], was obtained via the Nottingham

routine FOIBLA. This is a 'black box' routine and the solution was
checked using the relationship [A*][A] = [I], and subsequently listing
the coefficients of the identity matrix [I]. The diagonal coefficients
were all found to be equal to unity and the largest off-diagonal terms
were of the order 3.0 x 10—7, which would indicate that the pseudo-
inverse routine was operating successfully. A listing of the residual
forces gave no indication of any applied tractions which would account
for the negative displacements registered in an essentially positive
displacement field along the crack faces. Further examination of the
method was precluded due to time restrictionsand the need to investigate
more immediately important topics, and was subsequently abandoned with
the development of the revised Hilton and Hutchinson technique. The
second, of the indirect methods, proposed, benefits the fracture
program in two ways, firstly the core element would provide a more
accurate estimate of the stress intensity factors and secondly the

core element could be enlarged so that the dense local crack tip mesh
could be dispensed with. To this end a procedure was developed and
has been explained in detail in Section (7.3.4). As this development
will be looked at again in the context of the multi-tip procedure, only

its advantages will be given here.
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To ease the problems encountered with computer storage space,
the element density around the crack tip core element was relaxed and
instead of using 21 interface nodes, only 17 were employed. This
allowed further work to continue and the problem of partial crack
closure was investigated. As recounted in Chapter 7 the problem of

overlapping crack surfaces had been looked at by Robertson(zg)

, but a
satisfactory model had not been devised for the general case.

Robertson used an average displacement scheme, whereby, on solving the
system equations and identifying that crack closure had occurred, then
the adjacent nodes, on the crack surface, would be specified displace-
ments corresponding to their average overlapped displacements.
Therefore, using the standard geometric boundary condition routine
GEOMBC, the adjacent crack face nodes would have the same displacement
on solving the modified system equations. The scheme, however, is
only valid for mode I crack configurations andbreaks down in mixed-mode
fracture problems. A second method which is conceptually valid for
the mixed-mode crack closure configuration, is based on the use of bar
elements. These are used to bridge the closed adjacent crack surface
nodes and the method is discussed in greater detail in Chapter 7.
Subsequent test cases show that in assuming various material properties
and ﬁhysical dimensions, for the inserted element, the final crack
profile can be arbitary. As the bar element stiffness is increased
the resulting closed crack nodal displacements tend to zero and this

is due to the large diagonal stiffness coefficient, corresponding to

the bar element, dominating the smaller coefficients in the same row.

This tendency is shown clearly in figure (7.19).
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As both of the above schemes proved inadequate for mixed-mode
fracture problems, a technique used by Iversen(gs) was adopted. This
method essentially couples the adjacent nodes normal displacements,
preventing element overlap, but at the same time allowing the crack
faces to slide in a tangential sense. The technique has been used
to provide a no-slip model and a frictionless model for the partial
crack closure problem. The no-slip model was used to compare the
results obtained using the finite element method with those obtained

(

theoretically by Bowie and Freese 84) for the mixed-mode crack closure
problem. The finite element solutions are set out in Section (7.4.3)

and correspond with the theoretical solutions to within 1.3%, consequently
this method was used to examine further crack closure problems. In
particular, the problem of a circular crack sited at the centre of a

sheet in uniform tension, had not previously been solved satisfactorily.

(79)

The solution presented by Rooke and Cartwright gives negative values
for the mode I stress intensity factors, implying that the crack surfaces
have overlapped. Both finite element models were used to examine the
problem and the results are plotted in figures (7.25, 7.26). The figures
show that there is good correlation between the theoretical solution and

the finite element results, provided crack closure does not occur. In

the latter case, the new finite element results are considered to be most

satisfactory.

The technique is not restricted to fracture cases involving over-
lapping element faces, the scheme can be used in any situation where
element boundaries may overlap, indeed it can be seen as a further boundary

condition and could be implemented as such in further program developments.



In cases where the crack tip became closed, the stress intensity
factors did not, in the majority of cases, assume a value of zero.

In the no-slip model, for example, K_ and KII are theoretically zero

I
in the above case. The reason for this behaviour stems from the fact
that the core element is in effect subjected to the local shearing and
compressive loads, and therefore interprets this loading in the usual
manner. This problem was overcome by simply forcing the appropriate
stress intensity factors to be zero, using the standard method of
boundary condition treatment via procedure GEOMBC. It was noticed

that in forcing the stress intensity factors to be zero, there was

very little change in the overall solution.

It is interesting to examine the validity of the two crack closure
models. Firstly the no-slip model couples the crack face adjacent

nodes in a complete sense, in effect creating false crack tips, see

figure (8.2). Obviously the mode I stress intensity factor of such a

false crack tip would be very small due to the local compressive stress

field, but in problems where a high shearing stress exists then the
false crack tip might generate a stress field which could affect the
overall solution. Secondly, the frictionless finite element model
allows crack faces to move freely in a tangential direction and so the
problem of a false crack tip does not arise. However, partially closed
cracks are subject to frictional forces, and therefore this model
represents the other extreme given by the no-slip case. In order to
progress with the partial crack closure model it is necessary to gain
experimental information, either through the literature(sg) or from

laboratory tests. In this way frictional effects assumed in the

finite element model can be directly related to experimental data.
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T—False crack
tip

FIG 8.2 TFinal crack profile using the no-slip

finite element model.
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Clearly equal and opposite frictional loads can be applied to the

closed adjacent nodes, but, without knowing the normal crack face
loading this frictional force would be arbitrary. To obtain the
normal crack face loading it would be necessary to determine the
normal stresses and infer the loading conditions from the closed

crack area. This process could be 'triggered' at the end of the

iteration cycle and the system equations could then be re-solved
using the modified force vector. A subsequent check would be
necessary to determine if the applied friction forces are representa-

tive of the final crack configuration.

As part of the general development of the fracture package, a
multi-tip procedure was written and tested against a wide range of
problems, see Section (7.2.4). In the single and double crack tip
configurations, the results obtained were identical to those
determined using the specialized fracture programs. Also in problems
containing more than two crack tips, the results obtained using the
multi-crack tip procedure, were comparable to the theoretically
determined solutions. Coupled with the multi-tip procedure was the
development of the crack tip core element, whereby the number of terms
takeﬁ in the singularity expression was made optional.  This facility
has been mentioned earlier in context with computer storage space
limitations, and it was explained that the procedure did not operate
correctly when more than two terms were taken in the singularity
expression. To determine the reason for this situation, various steps
were taken, The first four x four coefficients of the core strain

energy matrix [k ], had been evaluated, explicitly, by Robertson and
' c
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the numerical values generated by the procedure CORK were identical to
those obtained using the explicit expressions, Refer to Section
(7.3.4) for a detailed description of procedure CORK, The CORK
procedure was overridden and the explicit terms used to form the
matrix [kc], in an attempt to trace the malfunction, but this produced
the same solution discrepancies. The matrix [A] connecting the core
element parameters with the interface nodal displacements, was printed
out and checked by hand calculation, and found to be correctly compiled.
Similarly the various matrix assembly stages were checked by printing
the relevant matrices, and here again the operations were found to be
functioning correctly. In order to resolve this problem, two possible
courses of action are suggested; firstly, in cases of this kind where
nofault can be found in the implementation of the theory, then the
theoretical working should be checked, and secondly, if this proves

negative, then the appropriate procedures should be tested.

With the need to reduce the number of degrees of freedom in the
idealized component, the possibility of reducing the element density
around the crack tip region, would be immensely helpful. The
'transition' element, introduced by Lynn and Ingraffea(ss), allows
the number of elements in  crack tip region to be reduced significantly,
saving 104 d.o;f. in the normal local crack mesh configuration. This
represents a considerable reduction in the overall number of nodes
required in any multi-tip problem, for the same solution accuracy.
Further tests need to Be undertaken before this new element construction
can be used with confidence. From the results of Section (7.5), there

are indications that a smaller outer mesh radius to inner core radius

R /R ratio would allow the dimension of the core element radius to be
o' "¢




more flexible, From figure (7.40) it can be seen that the solution

for the two RO/‘RC ratios chosen, is essentially straight over a wide
range of core sizes, and the trend indicates,that this section of
the curve, could be made to coincide with the theoretical solution,

if a smaller RO/RC ratio was used. If this is the case then

obviously a larger core radius would be used.

To supplement the suggestions which have arisen in the course of
the discussion, a list of further program developments and research topics
suggested for future study are given below:

(a) It has already been suggested that where possible explicit

matrix manipulation should be condensed in order to save

computer storage space. For example in the assembly procedure

the matrix operation [B]t[C][B] can be carried out as follows:

FOR P:=1(1)12+4*QORT

FOR N:=1(1)P
FOR I:=1(1)3
FOR J:=1(1)3

K[P,N]:=K[P,N}+(B[J,P}*C[J,I]*B[I,N])
*W[U,3]*W[U,4]*DETJ*TH;
where QORT is dependent on the element type. In using this
format both of the assembly procedures Q/FEASSEMBLY could be
combined. Similarly procedures FENOSTR and FEELSTR should

be modified in this fashion.




(b)

(c)

(d)

An investigation of the degenerate isoparametric crack tip
element should be undertaken, as the method has proven to be
efficient and accurate(57’58). With respect to mini-computer
applications, the scheme requires no modification of the
conventional finite element method, except for an additional
procedure for interpreting the local crack tip displacement.
Because of the technique's simplicity it would be ideally

suited to work requiring three dimensional analysis and also

in the investigation of crack propagation.

The basic two-dimensional finite element program is
presently being modified to study heat conduction problems.
It could readily be applied to cracked structures in

future studies.

The problem of crack propagation has been investigéted
recently using the finite element method as a fatigue
model. The local mesh must be altered to follow the
progress of the crack, which in turn means that the
stiffness matrix has to be modified to allow for the
various geometric alterations and also the creation

of further crack face nodes. The iteration processes
involved would be extremely complicated and readers are

85,86
referred to Igraffea's work( ).
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8.2 CONCLUSIONS

Significant progress has been made towards establishing a general
purpose fracture analysis progran. Features which can now be studied
include multi-crack tip, mixed-mode problems, of any complexity,
involving partial crack closure. A separate program has been written
which calculates the crack propagation angles and strain-energy-density

factors from the computed stress intensity factors.

To complement the finite element analysis programs, an auto-mesh
generation program has been written, which significantly reduces the
amount of effort required in data preparation. The mesh generation
program has proven to be versatile, reasonably easy to implement and
generally applicable to the range of finite element programs available,

including the general axisymmetric program.

The existing general two-dimensional finite element program has
been modified to include the eight-node isoparametric quadrilateral
element, Also, in order to accommodate problems involving a large
number of elements, a flexible solving routine was developed,
providing a very compact method of solving large sets of simultaneous

equations stored in a segmented form.

The various examples illustrate the wide range of component
shapes which can be examined and the accuracy of the solution.
Generally values for the stress intensity factors are obtained within

5.0% of theoretical solutions, where they are available.
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A great deal of experience has been obtained from the various
problems encountered in applying the finite element technique, and
one of the most important factors governing the solution accuracy is
the size and proportion of the elements used in the discretized

component, Some guidelines can be found in reference (5), which

may help in this respect.

The main objectives have been achieved, but there are areas

of work which still need clarifying as discussed above.
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CHAPTER 9

APPENDICES

9.1.1 FIELD EQUATIONS FOR STRAINS, STRESSES AND

DISPLACEMENTS NEAR A CRACK TIP

The derivation of the local crack tip field equations can
be found in Section (6.2). The constants o, and 0, are related to

ITwin's definition of the stress intensity factors KI and KII by,

oy + jop = = (K - K o) (9.1)

N [

The field equations for both polar and cartesian coordinate systems
are listed below. Refer to figures (6.1, 6.2). The field equations

can be simplified if we assume

Cr= (5+1) Co = (k- 3)

Co = G -(-1™ C; = GG -(-1"

Cs = 5 +(-1") Co = (3 +(-1)™)

Cq-‘—‘(j)—%) c9=(—'2“--2+;<)

Cs = (% - 1) Cro= (% - 1)

Cii= (3 + 1) Cir= (x + 3) (9.2)

The expressions are given in terms of integers n and m, for later

use in the derivations of the strain energy of the core element.
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=§1r(?‘1){ [C1c0s6(Cs)~ C3c056(Cy)]
re” 2 2 o, _11C1c0sB8(Cs)~ C3c0s8(Cy)
+ azn [-ClsinG(C5)+ C251n6(C1)]}
n
n r(z'_l)
o= L = {a [CycosB(Cs)+ CzcosO(Cy)]
T n=1 2 2n-1
- O [CysinB(Cs)+ C2sinb(Cy) 1}
o D.. _1)
.= 5 T2 7 g4 [CssinB(Cs)- C3sind(Cy)]
6 n=1 2 2n-1-"°"
+ azn [Cscos8(Cs)- Cacos0(Cy) 1}
oo A2 :
e, - 5 mrw {0, [CscosB(C1o)- CscosB(Ci)]
0 n=1 4u 2m-1
+ azm[-CgsinG(C10)+ C7s5inb(Cy11)1}
o) m -1)
- mr2 8 (C
€. = m§1 T {u(Zm_l)[Cscose(Clo)«‘ Cecos6(C11)]
+ azm [stSine(Clo)- C7Sin6(c11)]}
© (z -17 . )
Y o= I 5= {a, [C105inB(C10)- Cesind(C11)]
pals) n=1 M 2m-1
+ azm[Clocosﬁ(_Clo)— C7COSG(C11)]}
o m
= r 2 6(Ci1q)- CgcosO(C
u, = m§1 g {aZm’l[CsCOS (C1o)- Cg (Ci11)]
+ uzm[rcssine(clo)* C7sin0(C11)1}
" m '
. oy 22 in®(Cqi0) - Cssind(Ci1)]
u = m§1 g {azm_l[C1251n9( 1o) 8 1

ﬂxzmlcjzcose(ﬁlmf—'CBCOSGCcdllj}
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7)

8)

9)

10)
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Cartesian coordinates

n
- ~£,§A n n n n LN
u, = nzl 2u {azn_l[(K tyt (-1) )cosei-n Ecose(i-«2)]
n n . .
vy (-0 + 5 -(-1)M)sindF + Fsind (G -2)1) (9.11)
oo n
2 n n, . .n n_. n
= 5 X L n no_
uy T fa, I -5 -(-1) )sinz + 5sinb (5 -2)]
n n n n n
+ azn[(K - 5 +(-1) )costz + §c056(§-—2)]} (9.12)

where the symbols have their usual meaning. The stress and strain

equations for the cartesian coordinate system are not required and

hence were not derived, however reference (48) provides a listing.

9.1.2 'STRAIN ENERGY OF THE CORE ELEMENT

The strain energy of the crack tip core element has been

derived using the strain, displacement and stress expressions of the

previous section. The algebraic manipulationsinvolved are given in

Section (7.3.4) and the strain energy can be expressed as

1
Uc =/ 5.(Or€r t Ot 7 TreYre)dVOI (9.13)

For the full circular core or the mixed mode case, figure (9.1), the

integral equation becomes,

2
-t . do 9.14
UC =5 f i (grgr + 0686 + Tr6Yr6)rdr ( )
0
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Completing the necessary algebraic manipulations the strain energy
for the core element can be expressed as a function of 8, the core

radius r, and integers m and n.

Again in order to reduce the size of the strain energy expression,

repetative terms are grouped as follows

i

Ty = (sinB(Cs + C10))/(Cs + C1o)
T, = (sinB(Cs - C10))/(Cs - Cyp)
F T3 = (sinB(Cs + C11))/(Cs + C11)
T, = (sin6(Cs - C11))/(Cs - C11)
Ts = (sin6(Cy + C10))/(Cy + Cyo)

Te = (sinB(C; - C10))/(Cy - Cip)

T; = (sinB(C; + C11)j/(C1 + C11)

Tg = (sinB(Cy - C11))/(Cy - C11) (9.15)

Expressions Tq - Ty are identical with those above but the sine

is replaced by cosine, e.g.

Te = (cosB(Cs + C10))/(Cs + Cio)
T10 = (cosB(Cs - C10))/(Cs - Cig)  etc. (9.16)
The function Ci are listed in the previous section, We can

therefore write the strain energy expressions, as,
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oo
g _t _mn

L {CuCe (T,
+ C3Ce (Ts
+ C1Cq (T
- C3Cq(Ts
x [CsCyo (T2

-C3C10(Te

o, {-CyCs (Tro
- C3Ce (Tyy
- C1Ca(Tyo
+ C3Cq (Tyy

x [-Cs5Cy0 (T

(n+m)

L (n+m) /2

+AT2)+
+ Te)+
+ TZ)—
+ Tg)+

- Ty1)+

CuCs (T3
C3Cs(Ty
C1Cg (T3
C3Cq (T
CsCg (Ty

C3Ce (Tg

+ Ty)

+ Tu)

- T ]}

- Te)- C4C7(Ty12 - T11)

- Ty13)- C3C7(T16 - Tis)

- Ta)+ C1C7(Ty2 - Tia)

= Ti13)- C3C7(Tye - Ti1s)

+ Tyo)+ CsC7(Ty1 + Ti2)

+ C3C10(Tys + Trw)- GsCy(Tys + Ti6) ]}

m_l{Cqu(Tg + Tyo)+ CyCe(T11 + Ti2)

+ C2C6(Ty3 + Tyy)+ C2Cs(T1s + Tis)

+ C1C9(Tg + T10)- C1Ce(T11 + Ti2)

- C2Cg(Ty3 + Tiu)+ C2Cs(Tis + Tisg)

CsC1o(Ty1g - Toa)- CsCg(T12 - T11)

- C2Cy1o(Ty1y - T1a)+ C2Ce(Tys - Tis)]}

{ CuCes (T2

4

+ C2Cs (Te
+ C1Ce (T2 ~

- C2Cq(Tg -

Ty)+ CuC7(Ty
Ts)+ C2C7(Ts
Ty1)- C1C7(Ty

Ts)+ C2C7(Te

T

T3)
T7)
T3)

T7)

+ 2 x [ CsC1o(Ty + T2)- CsCy (T3 + Tu)»

2T
~C2C10(Ts + Tg)+ C2C7(T7 + Te) 1}

o}

(9.17)
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9.2 JOB CONTROL CARDS

A few selected job decks are given overleaf, to aid the user, and
represent the basic requirements necessary to run programs at Aston and
Manchester Computer Centres, Programs run on the Manchester system
are controlled from job decks input at Aston. Data stored on file at
Aston cannot be transferred to Manchester under the present system and
only card information can be transferred directly. This situation
necessitates that the data generation program operates at Aston and also
at the Manchester Computer centre. Therefore, having generated the mesh
data successfully using the Aston system, the same input data can be
used again to run the Manchester version of the auto-mesh generation
program, knowing that the data generated is correct. It is hoped that
in the future information stored on file can be transferred directly to
Manchester, saving this duplication in data generation. The sample
job decks overleaf, provide the basic requirements to operate the
programs, and information on the use of compiled programs, own program
descriptions, standard library routines, etc., can be obtained from the
advisory service, The University of Manchester Regional Computer
Centre provides a Joint System Mini-Manual, which presents the essential

information necessary to operate the system.

The first example shows the job control cards required to run the
mesh generation program STDAMG, on the Aston ICL 1904S computer. The
first card specifies the user and job title, and also the estimated job
time and size, The second card indicates the program name and its
requirements, in this case the standard ICL graph plotting routines
are required, hence *GP ICL, Also as a record of the generated data is

necessary, an output filename is provided, thus *LP1 TEST1, Where LP1
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refers to the line printer 1 and acts as a transfer channel for the
generated data, and TEST1 is the appointed filename. Note that LP1

is a standard channel built into the STDAMG program.

The second example, performs the same function as the previous
example on the joint system at Manchester. The joint system refers to
the 1904S/7600 computers, where the 1904S manages the input and output
from the larger CDC 7600 computer. Jobs run on the 7600 are normally
input on the 1900, passed across the hardware coupler, and run on the
7600, and the output is then passed back to the 1900 for listing or
storing in the filestore. Returning to example two, the first card
identifies the user and specifies the job size and priority. In this
case the job will be run at priority 4000 for, at least 10 decimal
seconds. The ATTACH control statement copies the 1900 file PCSTDAMG
into a. local file ACE on the 7600. The 7600 filename ACE is optional.
The RFL cards request a field length (i.e. an amount of core store)
for, respectively the compilation and execution of the program. The
ALGOL card calls the ALGOL compiler, and the compiler options are

selected by the various parameters.  The most important are,

i

I filename Source program on named file.

VS = 2 All arrays in large Core Memory.
The LGO card loads and executes‘the program using the data which
follows the second end-of-section card (####S). The bracketed (C)
warns the computer that channel cards are being used, As in example
(1) an output channel is specified, which is built into the auto-mesh
generation program, namely channel (11) and in this case the file
DATAFIL receives the generated data. After the program has been
executed the file DATAFIL is re-wound and transferred to the 1900 file-

store using the CATALOG command. Here the generated data is stored on

file PCTESTI.
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Having generated the data file PCTESTI this can be Tun against
the appropriate finite element program. In example three a job deck
is shown, which uses the general two-dimensional finite element program
PCPLSS and runs it against the data stored in file PCTESTL. The first
card identifies the job and specifies the priority, etc., as in the
previous example. Again the ATTACH statement is used in order to copy
the 1900 files PCPLSS and PCTEST! into the local filenames PROG and
DATAFIL, respectively, on the 7600. The remaining commands are
similar to that of example two, except that the results are output using
the standard channels to the line printer. Note, however, that channel
(11) must correspond with the data file DATAFIL, as this channel number
is used to transfer the data to the finite element program and this
channel number has been used in all of the finite element programs
stored on the Manchester system. The RETURN command returns the un-

compiled program to the 1900 store and saves space on the 7600.

The fourth example illustrates the job deck which would be used with
the program PCPLSEG. It is identical to that of the previous example,
but as the segmented solving routine is used the appropriate channels
must be presented, The largest problem which can be run using the
standard solving routine, would be of approximately 1 K d.o.f. or have
an equivalent matrix length of 80 K words, above this limit computer
storage space becomes a problem and hence the need for a segmented solving
routine, Eaéh segment can hold 35 K words and in this example three
channels have been selected, which means that a stiffness matrix of
length 105 K words could be handled. Any number of segments can be
chosen depending on the size of the problem, Refer to Chapter 4 for

further information on the segmented solving routine.




Lxample 1. Job deck for running the Auto-Mesh Generation program

STDAMG, on the Aston I.C.L.19045, storing the generated
data in filename TESTA,

JOB :(username), (jobname) ,JD(JT60,MZLOK)
UAALGOL PRCG STDAMG,*GP ICL,*LP1 TEST1

=~

Mesh Generation Data

* ok ek

EXAMPLE 2. This set of control cards runs the Mesh Generation
program PCSTDAMG, stored at Manchester and is
equivalent to example 1. No graphical output is

generated in this case.

JOB (jobname),:(username),CP76(P4000,TD10,SP)
ATTACH(ACE,PCSTDAMG,ST=S4S)

RFL(45000)
ALGOL(S=2,I=4CE,L,R=0,0=0,C=0,P=0,F=0)
RFL(50000,L=40)

Lgo(c)

REWIND(DATAFIL)

CATALOG (DATAFIL,PCTEST1,ST=S4S)

¢ #H#HHS

CHANNEL,31=DATAFIL

CHANNEL,11=31

####S

Mesh Generation Data

¥k ok %
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EXAMPLE 3. Job control card sequence for running the general

finite element program PCPLSS at Manchester., For
continuity the program is run using the generated

data of the previous example, PCTEST1,

JOB (jobname),:(username),CP76(P3000,TDLO,SP)
ATTACH(DATAFIL,PCTEST1,ST=S4S)
ATTACH(PROG, PCPLSS ,ST=S45)

RFL(45000)
ALGOL(S=2,I1=PROG,L,R=0,0=1,C=0,P=0,F=0)
RETURN (PROG)

RFL (60000 ,L=240)

LGo(C)

HH#FS

CHANNEL,11=DATAFIL

% % ¥k ¥4

EXAMPLLE 4., Job control cards for running the basic finite element
program DPCPLSEG, which contains the segmented solving

routine. Again the data is stored on file PCTEST1.

Job (jobname),:(username),CP?76(P3000,TD50,SP)
ATTACH(DATAFIL,PCTEST,ST=54S)

ATTACH (PROG  PCPLSEG ,ST=S4S)

RFL(45000)
ALGOL(S=2,I=PROG,L,R=0,0=1,C=0,P=0,F=0)
RiTURN (PROG)

RFL(60000,L=240)

LGO(C)

#E##S

CHANNEL,11=DATAFIL

CHANNEL,1=8EG1,B

CHANNEL,2=S8G2,B

CHANNEL,3=SEG3,B

CHANNIL, 21=1

CHANNEL,22=2

CHANNEL,23=3

Ok gk
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EXAMPLE 5. JOB control card sequence for operating the multi-tip,
crack closure programs PCPOY and PCPOXY, again the

data is stored on file PCTi#ST1.

JOB (jobname),:(username),CP?76(P3000,TD50,5P)
R UEST (ARRAYQ,T)

REGUSST(DATAFIL,T)

REQUEST(LGO,T)
APTACH(DATAFIL,PCTST1,5T=S4S)

ATTACH (PROG, PCPOY,ST=545)

RFL(45000)
ALGOL(S=2,I=PR0G,L,R=0,0=1,C=0,P=0,F=0)
RETURN (PROG)

RFL(60000,L=240)

LGo(c)

#iEH#S

CHANNEL,11=DATAFIL

CHANNEL,10=ARRAYQ,B
CHANNEL,12=ARRAYK,B

CHANNEL, 30=10

CHANNEL,32=12

LI 3
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The final example shows how to implement the multi-tip fracture
program PCPOY, which has a facility to investigate partial crack closure
problems. Again the basic commands are as in the previous examples,
however to reduce the amount of core taken in the transfer operations,
i.e. 5 Kg words, a REQUEST statement is used and this reduces the
allocated core space to 1 Kg words. In effect this means that the
data transfer process will be that much slower, as the information
can only be transferred in 1 Kg blocks. Also, because the data
transfer channels which are suppressed in this manner, are only carried
out once in the program cycle, the use of the REQUEST command can be
seen as a core space saving of 8 Kg words. The system equations are
repeatedly modified and solved in the partial crack closure iterative
scheme. As the solving routine overwrites the force vector and
stiffness matrix, a current copy must be saved on the backing store,
hence the need for the two extra channels - ARRAYQ and ARRAYK.

Further information on the use of channel cards can be found in the

Joint System Mini-Manual.

9.3 PROGRAM AND PROCEDURE LISTINGS

9.3.1 PROGRAM INDEX

The following list gives a brief description of the various
programs modified or generated in the course of this work.
Notes: 1. Programs prefixed with 'PC' are designed to operate

on the Manchester system,

2. All programs are written in ALGOL 60, unless stated
otherwise,
3.  Where applicable a program 'code’ is given and this

corresponds to the mesh generation CODE number.
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4, All 2-D finite element programs have the
facility of two element types, namely the
6-node triangle and the 8-node quadrilateral

isoparametric element.

PROGRAM TITLE DESCRIPTION

STDAMG - This is an automatic mesh generation program, it generates
the x and y nodal coordinates, element nodal connections
and the ancillary control variables. It services most
of the finite element programs. Generated data is
stored on a specified filename and a plot of the resulting

mesh configuration is given. See Chapter five.

PCSTDAMG - This is the Manchester version of STDAMG and it does not

provide graphical information.

QTPLSS This is a 2-D finite element program, and apart from the

nodal displacements this program outputs the stresses and
strains at the nodal points and/or at the element centroids.

Refer to Chapter four. CODE = 1.

PCQTPLSS « This is the Manchester version of program QTPLSS. CODE = 1.

QPLSSR - This program is identical to QTPLSS, but has an extra
routine which outputs the residual forces after a

successful run. CODE = 1.




PCPLSEG -~

TAAXMG -

PCQTM1ST -

PCPOY and

PCPOXY -
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This is a Manchester program, based on the QTPLSS program.
It differs in that it has a segmented solving routine
capable of encompassing very large problems, i.e, above

1 Kd.o.f. or [K] lengths > 100 K words. Each segment

can handle 35 K words. See Chapter four. CODE = 1.

This is an axisymmetric finite element program,

employing the 6-node triangular element only. It outputs
the nodal displacements and the stresses and strains at
the element centroids and/or nodes. See reference (29)

and Chapter four. CODE = 4.

This is a 2-D finite element program, used to investigate
mode I, single crack tip problems. It has no crack
closure facility and the elements must all have the same

material property. CODE = 2.

These are 2-D finite element programs, which can
accommodate mixed-mode, multi-crack tip problems, with
partial crack closure. PCPOY and PCPOXY contain
closure routines which give a no-friction and no-slip
finite clement model respectively.  Elements must have
the same material properties, See Chapter seven.

CODE = 3,
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PROPAG - This program calculates the strain-energy density
factor and angle of crack propagation, using the
computed stress intensity factors.  The input data
sequence is given at the head of the program.

Refer to Chapter seven.

9.3,2 PROGRAM LISTINGS

PROGRAM TITLE Page

(i) QTPLSS 321
(ii) PCPLSEG 329
(11i) IAAXMG 334
(iv) PCQTMIST 340
(v) PCPOY OR PCPOXY 346
(vi) PROPAG } 357

(vii) STDAMG 358
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i. The general 2-D F'.E. program QTPLSS.

Program flowchart.

Procedure Declaration

NJCB:=READ
— — count := 1 (1) NI0B )
NELEMNT : =RBA NNODE ¢ =READ
NSuTFS ¢ =READ RNT : =READ
PRINCs=READ NSKEW:=READ
NMAT : =READ QORT : =READ
NSETC:=READ

R ~<s .= 1 (1) NSETC

NO

YES NNEWC : =READ
NSETF : =READ

_ {1:: 1 (1) NNEWC>
|

J:=READ

KODE [J,1] ¢ =READ
ULX [J,1]) £ =READ
VLY [J,1] :=READ
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NSETF: =READ
PROCEDURE : FEINPUT
PROCEDURE : ADDARRAY

- {@Mm:=1m)wm>
AT |

l t PROCLEDURE : CHATRIX

L

1 (1) NFREE:>

|

1 (1) NSETF‘\

1

— — (1
IERCE

| [1,9):=0.0 ]

t

— — <;E .= 1 (1) NNODEA>

|

‘ IPROCEDURE : LOADAPP

NSETF

NO

>
1

YES

— — (I =2 (1%@NSETF )

lNSPEC::READ

- ___ﬂ<iJ = 1 (1) NSP@E;>
l

[ K :=READ

KODE [K,I):=READ
ULX [K,I}:=READ

} VLY [K,I):=READ

| PROCEDURE : LOADAPP




NO PROCEDURE : FEASSEMBLY

PROCEDURE : QIEASSEMBLY

NSKEW NO

YES

PROCEDURE : SKEWLOAD

Kinematic constraints are applied.

PROCEDURE : @gEOMBC

PROCEDURE : SYMVBSOL

NSYJS\W\ NO
£
0

PROCEDURE : SKEWEDCON

Y

Output nodal displacements.
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RNT=1
OR
PRNT=3

NO PROCEDURE : FENOSTR
l YES
\ P
NO PROCEDURE : FEELSTR
L1 e U .
END




DOCUMENT "uTPySS

TREGINY TCOIHIEnTY THIS PrOLDAl EUpLOvYS Tie TSUPARANETRIC
FORMULATION T0OR Twp FROGLENS GF PLANE STHESS/STR
TUg ELENERTS €Al orp SCLECTED, VIA
THE OORT FARAUETER = CI7HER A SIX NODF TolAHGLE
OR Al CIGHT=pURE OOARRILATERAL]J
VCUMMENTY CHANGLS TH InPHT -
HOBAL COMRNECTIUVHS,PATFET AL o,
L, prOPDg Atp BL, THUCKDES]SS
VINTEGER! HUlLel T ot HOLE LS TS bR rs 1, Je KoV aUr CASE nSETC, W HFY0 s S
NJOB  COUNT» PRUT e HEAT s ATHU BSKEV PRI, EORT '
"REALY DELTAYDETJI, ANLD;

' PROCEDURE' DECLARATIONS

NJUB:=READ

TEOR' CoUpy:=1 'Syep' 4 TUBTILY NJoOB Yoot

"REGINY

NEWLINECZ)

WRITETEXTCIC JOU HANE  ammae=t) ),

COPYTEXT (Y (VEHDHORLTITLE Y V)

NELEMTI=READ

NNODL :=READS

NEWLINECZ):

WRITETEXT(VC HOLOFSELENENTS imem=m=1) 00

PRINT(NELENT 3,00

NEWLINECZ);

WRITETEXT (! (' 10%0r%HODESimmr=m==1) 1)

PRINT(NNQDE, 3,001

NFREEssNHODE®?2

NSETFSI=READ;

PRNTS=READIPRINCI=READ; HSKEYi=READI

NMAT }=READS QORTIwREAD!

NEWLINECZ)

WRITETEXT(V (' ELENENTASELECTED mmmm== eyt

l1;ruoaT:OuTHENvuplTETEXT('('TRIhHGULnH‘)')

ngsg'upITETEXT('('QUADRILATFRAL')')?

!BEG]N!.

VINTEGER! BAND,LSPEC 2z, COLPAISLTF: ]

"REAL' TARRAY' XX,YY[q;HUuD!J.ULX.VLVT1!”HOEFr1fN5tTFS}r
QLS NEREES A 1nSETFS ) T EInAT, i1 Al1 e T, THE AT,

ANGSKITtNSKEY H )

'IN?Eéle?ﬁtRZle'HODE[1:HtLLHT.W:T+?au0HT].hﬂDtL1=N”ODE'1=”SETFS]'

NOSKLY g NSKEU+1 Y, AnDIUsnFREETS

NSETC:=2READ

VEOK' Si=q1 'STER' 1 tunTIL' fseTC 00t

TBEGINT '

VIFY s=1 YTHENY 'hEGIN

NSETF:=R H - -

FEINiUT(E?iLD,xx,vY:UFREEa”“”UE'”SVTF'K“”E'“SPtL'”SFTFS'

ULX, VLY, Np LENT, HODE S THIATY



- ADDARRAY(HELEUT NWLONE,ADD, 0ODL) S
VEORY MATHO:=1 'STEP' 4 tunTILY HpaT o epo!
CMATRYXCC, CASE , AgnATilO, TH, ALG)
VEND' TELSE!
TREGINT  HHEYUCI=RFADS
NSETFi=READ:
NEWLINECT0) 4
WRITETEXT(VCYCONSTRATUTASET===") 1)
PRINT(S (2,024
VFOR' 1g=1 'STEPY 1 'unTlL? HLEUC vino
TREGINT JiaREADS
KUDELJ r11312READ; e ldetlgarbEan: ViYLl eT)e=pEADS
VEND' ;
NEWL1NE(2);URthTuXT(v('WuDuLyPHXHTxU\Tﬁ‘)'):
NEWLINE(2) 3 SPACECA) JURTTETEATC (1unbr ) 1) sUACELS)
WRITETEXT(V("X%COnRDYY 1)) SPACE(SY s RITETEXT N CPYYConr0Y Y Ty
SPACE (S)FURITETEAT (P CryYrEt) ) sspichind
WRITETEXT (1 (' XmbIgp ') vy iSPACE(S) junl TRTEAT (! MY =DTsr1) 1))
NEWLINECT) JSPACECA6) JURTITETEAT (M (1OVILGADTY )5
SPACE(4) ] WRITETEXT (' (PORILOADYI Y
VEOR' ls=1 YSTERY 1 TonTier HHOLE v
PBEGIN'  HNEWLpHEC1): sPACECD) ]

PRINTCL,3,0): SPACE(R):
PRINT (XXp11r0. %)
PRINTCYYII, 0,30 SPACEL(2);
DRINT(KOPELT 13,5,0)5  SPACF(RTI
PRIHT(ULXLT¢1Y0 0,507
PRINT CVLVIT,11,2,300

VEND';

VENDY

VEOR' Ti=q 'SYER' 1 tUnTILY BEREE DO
PEORY Jym{ YSTEPD 1 TUNTILY HSETF rbne Gpt,J1a=i. oy
VEQRY [ ¢®1 'STEp! 1 TUnTILY HHowE RO
LOADAPP(KODE[I:1j.ULX[1r1JfVLV[T.1]:0'1u1);
PIF'Y NSETF "Gt 1 'TlHew!
YREGINY
VEOQRY 1332 'greRt 1 'untllt HgETE TROY
"BEGINT
NSPEC :=READ:
NEWLINECZ)
WRITETEXT (1 (' FORCEXSET=====")")i
PRINTC(143,0)
NEWLINE(R) JURITLTEXTC (PHODETY 1))
§PACE(5) jURITETEXRT (! CryyRE ) ) sgpAct ()i
URITETEXT (1 (I xmD TSP 1) 1) SPACE(P) JRITETEATC QY =0ISP Y 1)
NEWLINE 1) 3SPACE (21 FURITETEXT (! (roumioadty )
SPACE (62 JURITETEXT (M CrORELOADL') D
VEOR' Ji=1 'STEP'Y 1 tuuTIl! HgpeC 00!
VBEGIN®
KioREAD: KODETK,1)p=READG  ULXLH, 1 TESREADS VLY TR, Tl =nEdn:
LOADAPP CKODE LK, 1], ULKLK 1D VLY IR, 1Y a0,k DDy
NEWLINEC2)

PRINT(K,3,0)i SPACEL(D)]
PRINT (KUDELK, 10,353,007 SPACEL2)S
_ PRINT(ULX[K,1Y,V,4)7
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PRINTCVLYLKeT) o Upadd
YEND'
VEND '
VEND '
TPORY Tl 'STER!t 1 YUNTILY HSKCU o
PBEGIN' NUSK[pYisREAD;

ANGSKII)i=READ:
VEND'
VREGIN' TREALY TARRAYY K{4:ADDUHTIREL™ Y
CIFYQORTeQETHEN?
FEASSFMHLY(HELEHT,K,XK,YY,DETJ.HHHF,ﬁ,T”pAhh.HFKEP'AHX,SKEHEhLﬂ”,

HSKEW nSETE, ATGSK oS
TELSE!
QFEASSEME LY CHELURT, %o XX oYY DETS  H0pE, ¢, TH, ADD, AFREE, OAUY,
SKEWUEDPOH g NgKEL , HIGETE, alGay, WG]
FTFINSREVINE OV THENY SKEULOAD(NSETF 0, 105K, AHGSKA SR, TS
PCOMMENTY IHTROLUATION OF KINEHATYC ConbTRATHTS:
PEOR Te=q YSTEPY 1 TuyTILY HHOULE o0
TBEGIN'
PIFY KODE[I,1)=U tTHENY '60OTOT KC1:
PIFY KODE([IsY1=2 1 THENY 'GOTOYKCZ:
GEUMBC(ULX£II1];Z*1"1.QIK:HFREE:‘!,ADD‘):
VEORY gi=2 'STERY 4 'unTyL' HSETF 0o Wlp,dle=0ly,1;
PIFY KODE[1,131=1 sTHENY 'o0TOV KCA:
KCey GEUMBC(VLY[T,43r2%lrasKellFKEE T, ADD) S
PEFORY Jgm2 YSTEP! 4 tunTILY HSETF b0y Glp,d1.=001,1)
KCl: TEHD'
NEWLINE ()
WRITETEXT (! (' SyHyLSOLY%BESTRS Y )
SYMVESOL (K, KiADD Oy HFREESLUSETF FATEY
T1FY NSKEU tHpry O 1THEN? SELEULOAD CRSETI o Q, USK e ANGSY , NSKEN, =)
PEOQR® 1p=q 'STERY 1 'unTIL! HSETF tpartiEGLH!
NEWLINECG)
WRITETEXTCY (' HUDALLDISPLACEIENTSNFORY FOpeiisSETIY vy g
PRIHNT (142,02
NEWLlNE(S):SPAC£(1);URITETEXT('(!thﬁ'3');
SPACt(S’iURITETEXT('('X—DIRECTIUH')'):SPACE(H):
WRITETEXT (v ('y=DIpECTIONTY 1) ISPACE (1Y
WR!TETEXT(i(‘NODEv)');SPACE(S):URITETﬁXT(s(‘X*DIRECTIGN!)')l
SPACE () JURITETEXT( N C1y=DIRECTION' Y )
My=2x(unoppt/t2y;

VEORY yiE2 'STEPY 2 'ONTIL' M Tuo?

"BEQINYT NEULINE(2)} Viz2w« (J=1)1
PRINT(C(Jm1),3,0); SPACE(2): PRrhTColY=1017.00
PRINT(QIV,11/0,8): SPacF{432} PRIUTCS, 3000 3
PRINTC(QIV+T, 11, 0,8)5 spAlE(S)S PRyuT (o EV+2, 1]
YENDY,;

VIFY NNODE 'GTv W PTHEN!
"BEGIN' NEULIHNECEY PRINT(HHODE 5,003 sPAcr()i
Vi=2%lHOLE:
PRINT (QIVe1,13,0,0): SPACE(?): prinrQlVverd,n,8)1
VEND '
'END!;
"IFY PRNT=4 'OR' pRHT=3'THEN! 4
- FENUSTR(NSETF,NHOhE,HELEHT.NUDE:XX.YY.DFTJ;UvT“'C:AUX.QA”X))

5)i SPAREC2);
PACE(2) 3
,U,?y);
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tIFY PRNT=2 TOR'PONT=30THEN!
FEE"?TR(NSETF'Q’NrLEHT'“n\UE':/\'\'pYY,Do':TJ,TH,C,,'\IIX:(J,!\(J).();
YEND' ’

TENDY OF CONSTRAIDT LooPp;

LEND' S

YGOTOY FIHNES

FATLINEVLINE(AL)Y !

WRITETEXT (Y CVPRUGEANGEATLED L ING O POCENRITGSYHNVSULY ) vy g
TGOTUYEX] T

FINESTEND' : Hpullip oy

WRITETEXT (VY ENDEOFXNPROGEAN L= AL XITYy 1) g
EXITYENDY OF pROGRAIN;

PR B84
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(ii) The general 2-D finite element-program containing the segmented

solving routine. PCPLSEG

The program flowchart is identical to that of program QTPLSS,
but procedures ADDARRAY and SYMVBSOL are replaced by ADDSEQ and SEGSOL
respectively. A formal program listing is given overleaf in order to
show the use of sub-procedure TEST and all procedures which are

different to those of program QTPLSS, are shown in a later section.



DOCUMENT DECPLSKEG

PBEGINTY 'COHBENTY  THIS PROWVRAM EnprLaysS Tug TSOPARAMETRIC
FORMULATION FOR 2=~p PRONLENS OF pPLANE STRESS/STR
THE ELEMEHT UgED Te A gIX~HUDE TRIANGLE:
PCUMMENT Y CHANGUES IN INPHUTg=
HODAL COHNECTIOUHS ,HATERTAL o,
L. PROPS Alip EL. THICKNESSS
PINTEGERY NELCHT,UNODE HSUTFS NFRFF, 1,4+ %,V U, UsrCASE,HSETC,NHEWNC,S
NJUB COUNT  PRUT I NUAT v ATIHO G HSKEY, prINC,CFA X2 CKI KL CHTASCHTP,
SIZEsCKeSERFQURT,;
YREALY DELTALDETJ, ANG;
VINTEGER' PARRAY L IM . CoL ROULD 15T

* PROCEDURE® DECLARATIONS

SELECY IHpPUT(11):

NJUB:=READ

YPOR' CUMyTe=1 "STEP' 1 'UNTILY wJoi rpof

"BEGINY

NEWLINECZ)

WRITETEXT (P (T JOUAUANE jaem—- =')');

COPYTEXT (P (YEUDWOF4TITLE" ) V)

NELEMT{=READ

NNODE:=READ

NEWLINECL)

WRITETEXT(Y (P HOGORXELEMENT S R====1) 1)

PRINT(NELEMT (3,9

NEWLINECE) !

WRITETEXTCUC  HOGOFYUNDDESmmmmm==T) 1)

PRINT(NNODE, 5,00

NFREE :=NHOUDE*D

NSETFS:=READ;

PRNT :=READIPRINCt=READ: HsKEY:=READI

NMAT:=READ; QURTi=READ:

NEWLINE(Z):

WRITETEXT(V( ELENENTASELECTED S === =yt

'IF'QURTﬂu'THEN'URXTETFXT('('TRIAUG“LAR')')

'ELSE’UQITETFXT(’('HUADRILATFRAL')‘);

"BEGINY

VINTEGERY GAND,WSPEC, Z,COIPASLSETF:

"REAL' TARRAY! KX, YYD e HHODED UL, VLY Tt HODE S TINSETES ]y
u[1;HFREE.1:nSETFsJ'c[1:HHAT,1zé].AE1:SJ,TH[1:NMATJ.

NGS tNSKE .

é:N?Eé;waiﬁxzia,HOUE[1:HﬁLEHT,1:7+2*uﬂRT]:KODE[1:NNODE'1:NSETFS].

NOSK{1sNSHKEU+1) s ADDID:NFREETS

NSETC:=READS

"FOUR' Sigq 'sTEP' 1 'UNTIL' HSETC 'DOY

YBEGIH!

"IFY §=1 vrilENY 'nEGINY

NSE su2RE ' i

FEILEOT(EégﬁblXX,VY,HFREE,HHHUE:N%sTp,zOpg,usptC;HSFTFS,



ULX s VLY s NELEMV, NODESHIIATY ¢
ADDSEWQCNE LENT,HLODEADD linDED S
PEURY MATHO =1 'STEPY 4 'UuTILY HItAT *pof
CHATRYXCC, CASE, A yATHY, TH, AlIG) ;s
PEND® YELSE' '
TREGINY HNEYC e=READ S
NSEVFi=READ:
NEWLINE(10):
WRITETEXT (VP (P CORSTRATHTUS T ===2) ")
PRINVC(S+2,0);
YEORY I1ET 'STEPY Y TunTILY HUEYR v
VREGWENY J:=READ:
KODELJ,1Yi=nEAD;  Nex(Jd,1de=nEAp:  vLYTJ/T):=READS
VEND'
NEWLINECZ) gURITETEXTC (P HUDALYPOTHTYDATATY )
NEWLINECR) 1SPACECA) sURITETEAT (VT obEY ") ssiPACE(S) S
WRITETEXT V(P XLCOORDT Y V) SPACE(SY tHRITETEXT( C'Y%CoNRDY)Y ")
SPACE(S)JURITETEXTC CreYPe ) ') SPACEL(S):
WRVTETEXT (P (P xmDIgP ) 1y ;6 ACE(S) sun Tk TEXTC (NY=DIsPY) ')}
NEWLIHECY)Y JSPACELCAG) JURITETEAT( (YORZLOADIY )
SPACECL) ] WURITETEXTC (VOKZLOADY YY)
PFORY Tt YsTEPY 1 TunTILY HHODE DO
PREGIN'  HEULINECH): SPACL(3);
PRINT(L,3,0);: SPACE(3);
PRINT¢XXp11/0.3);
PRINTCYYTID 0,30 ; SPACE(D),
PRINT(NONELT,13,3.0)5 SPACE(2):
PRINT(ULXLT1,11,0,303
PRINTC(VLYLL13,0,3)9
YEND';
YEND ',
CFOR' Tg=1 *STEPY 1 'UNTILY HFREE DO
PFOR' g1 'STEP' 4 YUNTILY HSETF 100 O[1,03:30.0;
YFORY Jymq 'STEPY 4 'UNTILY HHODE tDO?
LOADAPP (KOUETT 11, ULXII A1 eYLY I AT e, 1a1)i
VIFY WSETE 'GTY 4 'THeM!
"REGIN
VEQRY Jis:Q 'STEV' 1 'uMTIL! “SF.TF tHa
TBEGLINY
NSPEC:=READ)
NEWLINECZ)
WRITETEXT (1 (' FORCFUSETm=mm= RARN
PRINT(1/3,0),
NEWLINECZ2) PdRITETEXTC ¢ HODE" Y ")
SPACE (5) ;yplTETEXT (' (P TYPE!) ") PSPALE(A)S
WRITETEXT (1 (' XmDISP?) 1y SPACE(?) URITETEXT (! (MY =DISPY) 1)y
NEWLIHE (1) 3 SPACE (21) juR ITETEAT (! (T ORTLOADIY 1Y
SPACEC6) jURITETEXT (" (FORNLOAD') ")
VFOR' Jy=q 'STEP' 1 PuUNTILY HSPEC 'DO
"REGIN'

K:=READ: KOUEFK'IJ!:REAU; lJLX{g,,]:sRF/'xD: VLYK, 1):=2rREAD
LOADAPP CKUDELK, 11, ULX IR, T1aVLYIK, 11 a ks 1)
NEWLINEC(Z) ]

PRINT(K,»3,0): SPACE(2Y:
PRINT(KUDELR,11,3,0)5 SPACELD)S
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PRINT (ULXIK,13,U,4):
PRINT(VLY[K,11,0s4);
YEND'
"END'
YEND' S
CEORY TR USTEeY 1 TUNTILY HSKEY tpnn
TREGIN' HusK[1d:i=nEAD;
AHGSK(I):=READ
YENDY
PREGINY '"REALY YARRAY' K[1:STZED;
CTFY O QOKRT=0 P THUHY
FEASSEMHLY(HELEHT,K,X%,YV,DETJ,HHHF,C,TH:ADU,HFREE:ﬂUXrSKEHEDCOH;
HSHEM, USETE, ATGSRK iDL, TEST) !
TELSE! :
QrtAssEMbLY(HLL&HT.K'xx,YY.uETJ,Hunr,r.TN,Awn.NFREF,OAUX,
GRLEUEDCON gKEY s dSLTF, ANGSK ,HOSK TEST) S
VIFINSKEUINEYOQVTHRN? SRETLOAD(NSETE,N,NOSK, ANGSKsNSKEU, 1)
YCUMMENTY THTRODUCTION OF KIHLEHATIC CONSTRATHTS,
PEOR' 11 'STEP' 1 TUNTILY HHODE tuoe
TREGIN'
VIFY OKODELI 1120 *THEN®' '¢OTO' KC11y
VIFY KODE[I,11=22 'THEWN' '"GOTO'KC?;
GEOMBCCULALY 1), 2%1=1,0 K, NFREE.T,ADDLTESTY
TFOR' gi®2 YSTEP' 1 TUNTIL' HSETF 'hO? Qly.03:2Q010%0;
VLFY OKODE[T,11=1 *THEWN® 'GOTO' KC1:
KCZ s GEUHBC(VLYEI,1];2&I.Q.K;HFREF.1;AnU-TEST)i
YVEOR' JIEZ2 YSTER' 1 TUMTILY HSETF fDpOY olr,Jlg=alt.1];
KC1:  TEHDYS
NEWLIHNECA)
WRITETEXT (! (*SEUGSOLA%EFGINSY) ),
SEUSOL(K, ADD Qs WFREEHSETF FATLD
VIFT ONSKEY "nEr 0 YTHEN' SUEULOAD CHSETE s, NOSK e ANGSK, NSKEU, =) 3
FOR' J3=q 'STYEP' 4 ‘unpTIL' HSETF Dot YEEGTH!
NEWLINECA)
WRITETEXT (P (P HUDALUDISPLACEICHTSIFOR™Y FORCEZLSETY) ")y g
PRINT¢Ls2,0);
NEWLIHE C3) s SPACEC1); IRITETEAT (N (TitonE )y ')
SPACE (S) S URITETEXTC (PX=DIRECTIOHTY ") SPACE (A
WRITETEXT (VP (Py=DIRECTION" Y ) iSPACECTIAY S
leTErEXT('<‘uonﬁ'>'>:gPACE<S>:URITETFXT<'<‘X“°’RECT1”“""’
sPACE(8);uRITETExT('('v—DIRECTXJH’)'):
Wyp=2w% (CIHODEY/ " 2Y )
VEOR' Jim2 'STER' 2 'unTIL' W O'DOY
"BEGIN' HEYLinE(2);  vi=2*(d=1);
PRINT((J=1),3,0); gPACE(I): PRIFT(NIV=1,11,0,8)5 SPACE(2);
PRINT(QLY,1),0.,9): SPACEC13): PRINTC(J.3,0): SPACE(Z2)7
PRINT(QLY+1,11,0,3);: SPACE(R); PRINTCOIV+2,11,0:8);
IENDV;
YIFY BNOpE "GT' W 'THen!
VBEGIN' JEWLINE(2YS PRINTCHIODE3.0) 3 SPACE(2)
Vi=2«HUOVE:;
PRINT(ulVat 13,0,3): SPACE(R)S pRINT(QIV/T],0,8)1
IENDI;
IENDI;



tpFY O PRNT=9 PORY PRUHT=3VTHEN!

FENOSTROHSETF HUONE  HE L ENT HODE XX, YY L DETS o0 THo Qo AUX, QAUX) |
VIFY PRNT=2 YOR'PuNTs3YTHeN!
FEELSTROHSETF, Qe NFLENT ,HODE XX YY, DET ), TH, CoAUX QAUX)
TEND

PENDY OF CONSTRAIUT LOOP;

YEND'

TGUTOY FYuE:;

FALLINEWLINE (4) s
wRITETEXT('('PRUGuAH%rAILtD:IH%PPncEnunhlssuauL')‘):
PGUTUYEX] T
FINES END ' HeuLIng(4);:

WRITETEXT (VY EHDYOFAPHOGR AN =L NORGALYEXIT YY)
EXITSPENDY UF PROGRAN;

LB




iii. The general axisymmetric program
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TAAXMG,

Program flowchart

//\

[Procedure declarations
L

|

\NJOB::READ

— = ~<:COUNT t=

1 (1) NJOB >

|

NELEMENT s =READ
NSETFS : =READ
SOLID:=RiAD
NSETC:=READ

NNODE : =READ
PRNT : =READ
NMAT : =READ

t YES

il

‘_ S <s:=w(1)msm9

NO

NNEWC : =READ
NSETF : =READ

—( T:= 1 (1) N\TEAJC>

| I

PROCEDURE

NZETF : =READ
. FEINPUT
PROCEDURE : ADDARRAY

J::READ
KODE [J,1] :=READ
ULX [J,1] : =READ
VLY [J,1] : =READ
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1

\ (—— — 4<EQTNO

1 (1) mer>

‘ k PROCEDURE : CONSTREL

‘ {__- —_— 4< I :=1 (1) NFREE:>
|
\ {,w, — »<:J =1 (1) NSETFj}

— - {1 =1 (‘w NNODE )

L PROCEDURE : LOADING

NSETF
=

1

NO

YES

[_m— — {1 :=2 (1) NSETF S
\NSPEC::READ‘
| |

!uw- — LJ =1 (1) NSP§§:>

K:=READ
(ODE [K,I] :=READ
ULX [K, 1) s =READ
VLY (K,I]:=READ
PROCEDURE : LOADING

| ==
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} i SOLID NO

\ YES

\ PROCEDURE : RZEROQ

1 PROCEDURE : ASSEMBLY

Kinematic constraints are applied
PROCEDURE : BOUNCONST

PROCEDURE : SYMVBSOL

lOutput nodal displacements

///ﬁgﬁT=1 YES

PROCEDURE ¢ NODSTR

PROCEDURE : ELESTR
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DOCUMENT §AAYHG

tpROGRAMI CAXXX)
FINPUT'O=CRN
toUTPUT!O=LRO
TEXTENDED DavAl
VEXTENDED!
VREGIN® 1COMMENT' THIS PROG EIPLAOYS THE 1SOPARAMETRY G
FORMULATION FUR AXISYWETRIC PRORLEMS
THE ELEMENIT USED IS A SIX-HODE TRIANGLESY
PCOMMENTT CHANGES TH INPUTy=
NOPAL COHUNECTIONS,MATFRIAL HO.
ANn ELENENT PROPERTIES!
PINTEGER?Y NFLFMTrNNODE,NSETFS.HFRFFrI.JoK;V,U,U,NSETC,NNENC,s,
NJUBICUUNTrDRNT.NHATIHATNOnSYHrEC,ER,HSHP,SULIDrCASEI
PREALY DELTA,DETS, RHEAN RAVGI Xg e XFaYS, YFi

' PROCEDURE ' DECLARATIONS

NJOB:=READ]

1EOR? COUNT|B1 1STEPY 1 "UNTILY NJOB 1po?t

TBEGINY

WRITETEXT () (1! (1201)  JOBEHAHE a=mmam ) 1)

COPYTEXT (! C1gNDXDpXTITLE ) 1)i

NELEMTIBREADY

NNODE :=READ]

leTETEXT('(!'(!ZC')'NO%OF%ELEHEHTSZ---n')'):

PRINT(NELEMT 3,0)

URITETEX1(|(|v('zcv)vNoanquDEsx__,f__,‘),);

PRINT(NNOPE ,3+0) i

NFREE:=NNODFw2)

NSETFSI®READ]

PRNT  =READ) $OLINn:=READI

NMAT:=READ

At 0 NSETF

VINTEGERY) RAND/NSPEC:Z/C [1PA :

TREAL?Y ';Rnis' yX,YY[1,HHODE].UkX,Vngl,E??ogal;NSETFs),
s wSETFsTCLY S HM T,11107, 1951

'INTESEL:?;:gi;l ﬁgDEE?ZNELEHT11!7]rKUDE[1:HNOOE,1:NSETFS],ADD[O:NH

NSETC:FREADl

"FOR' Sy=1 1§TEp! 1 'UNTIL! NSETC 'hn?

"BEGQIN'

"IFY sal 1THEN! TREGIN!

NSETF::R AD
FEINPUH'&:.Ar'so,><>fvw,Nx:msr-.,NHODE,NS;:,TF.|<0mz,us?!bi“c).Ns’m:s,'.d .
ULXs VLY NELEMT »NODENIHATY ADDARRAY‘“E%E”T'” DE»aDD/RODES
CEOR' MATNDyeq 1STEP' 4 'UNTILY AT PO
CONSTREL (C,A,MATHO,CASEDS
"END® VELSE!
'"BEGIN' NNEWC1eREAD]

NSETYF =READ; .
WRITETEXY(v¢|l(|1nc')'cowsTRAINTASET--ﬂ')')I




pRINT(Slzlosl
vpOR' Tpmt o rsTee! 4 TUNTILY HNEWE 'DOY
TBEGIN' JI=READ]
'END"KODE[J,133=READ; ULx(Jd,1):arEAp: VLY(JsT1T:=nEADI
WRITETEXTCU LT Cr20 1) "HODALyPOINTyNATA (12C45 ") "NODFY (158 1) (XyCOORD
'('ss')'vXCﬁowov(!58')'T?PE'('55'>IX-DISP'<'SS'>'Y—nlsP'('CA6S')'
GRELOAD € 4e 1) ' ORZLOAD ) ')}
rfOR' 1isd 1sTER! 1 "UNTILY NHODE 'pn!
PREGIN'  NEWLIMF(1): SPACE(S3):
PRYNT(T1,3,0): SpPACE(3):
PRINT(XXITIJr0,3):
PRINT(YYT11,0,3); SPACE(2):
PRYNT(rODELI,11/3,0); SPACE(2)]
PR!NT(ULX[I"\'J!O:});
PRYNT(vLYLT1,13,0,3)7
TEND'
YEND '
vEOR' lg=1 18TEP' 1 'UNTIL' HFREE 1o
rPOR' Jimt 1STEB' 4 PUNTIL! HSETF tDO! Qgr,J3:=0.0:
PEOR' Tg=d 1§TEp' 1 'UNTIL! HHODE 'DOY
LOADING(KonE[!r1].ULX[I,1],VLY{1,1].Q.i.1)3
VIFY NSEYF 167! 1 'THEN'
TREGIN'
VFOR' lgm2 tgykp® 4 "yUNTIL! NgETF 10O
'"BEGIN'
NSPEC:=READY
MRITETEXT (1 (17 (120" " FORCEXSET=====1) 1)1
PRINT (1235091 '
wRITETEXT('("(‘20')'NODE'('53')'TYPE'('35')'X_DISP'('75')'Y"D'SP
V(1 C2AS Y T on¥loADT (P65 1) oRULOAD!Y IS
VEOR' J 31 9§TEPY 4 'UNTIL' NSPEC 'DO!
"BEGIN'
K:i=READ; KOPE[K,11:1=READ; ULXTK,1112READ; VLYrK.1J:=READ:
LUADING (KODELK 1], ULXIK, 1T, VLYK 1200 Ko DD
NEWLINECp) )
PRINT(K,3,0y3 sSPaCE(2):
PRINT(KODELy,1),3,005 SPACE(2)
PRINTCULXIK, 1Y, 0,403
PRINT(VLYIK,1Yr004)1
YEND'
"END'
!LNDI;
‘lF'SnLID=O'THEN'I:=1'FLSE'1:=1OO:
"BEGIN!
VREAL' 1ARRAY' K[1:ADDIMFREEIDS
"INTEGERI ' ARRAYIZERDT: 1))
"IFTSOLIp=drTHEN!

RZERO(NODE ¥Xo YV ZER) S :
ASSEMHLY(N;lEMT.K.XX:YY;DETJINODE-CvAhDsHFRkE:NSETF.STRDIS.ZER);

FCOMMENTY fnTROAUCTION OF KINEMATIC CONSTRAINTS
"FOR' li=d t1gTEm' 1 "UNTIL! HNIODE 'DO?

"BEG N

VLFY KODE[1,q1e0 rTHEN' 'GOTO! KC1:

VLFY KODECI,§3sp ' THEN® 'GOTO'KCZ:
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BOUNCONST(UiK[I,1],2*I-1,Q,K,NFREE’q'ADD):

PEOR' JiE? 1STEP' ¢ TUNTIL' NSETF t'DO? Qlp,d):=3Q01,43;

YA KODE[X.13=1 "THEN! 'GOTO' KC13

KCZ 3 ROUNCONST(ULY LT/ 1)s2%1 0 Q, K/ HFREE,14ADD)

VFOR' Ji=2 18TEP' 4 'UNTIL' NSETF vpor Qly,sl:=001,13;

kety  TENDYy

WRITETEXT('("(14(}')'SYNVBSUL%%BEGINS;)1);

SYMVBSOL(KnK,ADh:O,NFREE,NSETF,FAIL):

vpoR' liet 18TEp' 1 "UNTILY NSETF 00!

rgEGINT WRITETEXT (P (1 (vACT) "HODALZDTSPLACENENTSKFORY FORCEXSET!) ')

pRINT(Tr?IO);

WRITETEXTCH (VY (4308 ) P NODE' ('5S ) 'R=DIRECTION' (1AS') 1 Z=DIRECTION

V185" INORE' (155 ' k=DIRECTION' ('85") " 2=pIRECTIONTY ')
Wyz2e (NNODF'/'2)3 :

VEOR' Jis2 1S§TER' 2 'UNTIL' U 'DOY

PREGING NEWLINE(R2): Vi=2w(y=1);

PRINT((Ja1),3,0%: SPACE(2)! PRINT(QIV=1,11,0,3)5 SPACE(2):

PRINT(QLV,13,0,0): SPACE(13): PRINTC(J,3,0); SPACE(2):

PRINTCQCV+1Y,13:0,3): SPACE(2) PRINTC(QIV+2,13,0.8)2

PEND' S

'1F' NNOPE 967! W 'THEN'

TBEGIN' NEWIINE(2): PRINT(NNODE,3,0); SPACE(R):
Viz=2eNNORE:
PRINT(OLY=1,1),0,3)3 SPACE(2) PRINTCQLY/1),0.8)]

,END.;

PEND 'S

T1FY PRNYZEY 10OR! PRNT=3'THEN
NUDSTR(NseT;,anpp,NELFHT.NODE.XX,YY,nETJ.orC,STRnIs.ZER);
PIF! PRNYE2 FORIPRNT=3!THEN' 4
ELESTR(NSETF,O:NELEHT,NODEIXXIYY:DETJ-CoSTRDISIzER)l
!ENDl;

"END' OF CONSTRAINT LOOP:

'END';

FAIL: 'EnD' oF 40m LOOPI

YEND' OF PROGRAM;

W %o
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iv. 2=D F.li. mode I fracture program PCQIM1ST.

Program flowchart
START

Procedure declarations.

|

NJOB:=READ

|

{——— —_— -~—ﬂ<COUNT «= 1 (1) NJOB;>
NELEMT : =READ NNODE : =READ
t THICK:=RBAD NSETF : =RBAD
QORT :=READ NSETC:=READ

_— = <(s := 1 (1) NSETCZ>

NO

}

NNEWC ¢ =READ
NSETF H ::READ

t ‘ (——<LE:: 1 (?) NNEW9;>

J:=READ

‘ KODE F}1}:=READ
l ULX (J,1) :=READ

VLY [J,1) :=READ

pe— ._.-1 '

PROCEDURE : INPUT
PROCEDURE : ADDARRAY
PROCEDURE : CMATRIX
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F_. — 4(} :=1 (1) NNOﬁET>
]

‘ 1 [PROCEDURE : LOADAPP‘

— — — 7

NSETF

~—-<I:=1 H)N$WF>
I
[ﬁSPnczzREAB]
]
o <J;=1 U)N&EC>
1

K:=REA
KODE [K, T :=READ
ULX[K,T]:=READ
‘ VLY [K,I):=READ
| PROCEDURE : LOADAPP

N

[IS—— — — —

NG : =NIFREE N1 :=READ
RO:=READ HND : =READ

=1

NO [ PROCEDURE : FEASSEMBLY |
L

PROCEDURE : QFEASSEMBt;W

Kinematic constraints are applied.

PROCEDURE ¢ GEOMBC

. MODE1A
SYMVBSOL

PROCEDURE
PROCEDURE
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Output nodal displacements and

i crack tip element parameters.,

END
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DUCUNENT PCOTH4ST

rppa Nt TCONHENT! THIS PROGEAIY FlipLnys THE JSOPARALETRIC
FORMNULATION FOR 2=p PROJLENS OF 0LANE STEEGS/STRH
TOG ELENMENTS €Al L SELECTED, VIA TwF
GORT PARALETEER = EITHER A SIX=d0Dr TRIAHGLE
OR AN ECIGHT HODE QUADRILATERAL.
THIS PHOGEALL ACCOIIORATES INDE 1, SINGLE TIP
CRiackr PrOLLENY;
VINTEGERT MELENT HHOUE , HSETE LFREE, Tyd Vi, 1y e CASE, HSETC, HEFIE 5
HyUb e COUHT , WURTS
tREALY DLLTA/DETI, THICKS
PARRAY' 183,103, A01:50;

' PROCEDURE® DECLARATIONS

SELECT IHpUT(11)4

NJOBI=READ S
VEOR' COUnTi=q 'STEPT 4 TURTILY HLiob 1ot
TREGINT
NEWLINE €23
WRITETEXT (1 (P JOLENANE mmm=mmT) 1)
COPYTEXT (! (" ELD%0esTITLE )" )d
N&LtMT:=RgAu;Luunr:=REAU:THICK:=RFAU¥“SETF=““EADV
NEWLINECZ)
WRITETEXT (1 (' L0%OFZELENTHTS hmmmm 1) 1
PRINT(NELENT 3,0) ¢
NEWLINELL) ;
WRITETEXT (1} (' NOROFURODESTH-=mm==="1) "))
QORT 3 =READ;
NEWLINECZ)
WRITETEXT (1 (! ELLHFNTASELECTEPG=mmmmmmtt )
LEVQORTEQNTHEH U I TETEAT (VT TRIANGILART) 1Y
'ELss'uprETEXTc'<‘uuAnR1LATrRAL'>‘>'
NFREE:SNHODE*2: o COnpA
VREGINY ' INTEGERY NSPEC,z, LUNPAI :
REnL #Akiﬁlf XX,YY[1:MHUDE),ULﬁ.VLVIT!”“““5'1‘NSETF]'
QL4 NFREESASISETR]S o .
PINTEGER! 'ARHAYE1ang[q:nELEhT.1za+?*”“RT1'K“DL[1‘“”ODF'1’“°FTF]'
ADDLOINFREE]
NSETC:=RE ;
'FOR? S;iqD:STEP' 4 tynTIL' NSETC 'DOT
TREGINY v1EYos=1 FTHEN
'"BEGLINY .
INPUT(ADDIXXIY‘(INFREE, \JNODE;“SETF:KUF}FI
AooARRAY(uELEuT,NuouE.ADD,H“DE)‘
CMATRIXCC,CASE LAY
VENDY YE[SE!
VBEGIN' lnplcr=READS  NSETFIERLADE
PORY ppmq Tgopet 1 tuNTILG NREHC TEC

HSPEC'ULXoVLY.NELE”ToHODF):
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PBEGINY Ji=READ]
KODELJ 213 =nEAD;  ULXTJ,1)tartAn:  VIYLJr1)espEAD]

TEND 'S

LEND Y

NEWLINECS) S

WRITETEXT (VO 0RO FADEGREESUUFSFRERE RO eme=1) 1),

PRINT(NFREE 3,03
NEWLIHECZ)
VEORY Te=1 YSTERY T tunTILY HFRED hnoe
VEORY Jim1 PSTREY 1 YONTILY NSETE vine wQyp,d1:=0,0;3
vEORY 1= TSTERD Y YUNTILY HRODE vhne
LOADAPPLLOLE T Ty, ULX Tl e1) VLY IL, 10, 100

VIFY ONSETE 'GTY 4 fTHeN!
TREGINT
VFORY Te=1 toyrPt 4 TunylLY HgETE 00
TREGIN?
NSPtC:zREi\D;
NEWLINEC(Z):
WRITETEXT (Y (!
PRINT (13,004
NEWLINEC2) SMRITETEXTCV (M HQDE! ) V)
SPACE(S) JUWRITETEXT (M CrYYREN) ) ISPACE(S) )
WRITETEXT (1 (" XmbIgP' )1y SpACE(S) JURITETERY (M ('Y =DISRY)Y '),
NEWLINE(1);SPACE(10):HRIT[TEXT('('nRﬁLnAD')');
SPACE (L) jURITETLXT (M (P ARTLOADY Y )
PEORY Jei=1 'STEpt 1 TUNTILY BSPEC 'DO!
"BEGIN!

Ki=READ; KOUFTK,I1:=READ] ULy kK, 1112READ;  V0iyrk, TYe=pbAp;
LOAUAPP(KODE[K.I],ULX(K:I]uVLY[K,I3'O.K:I):
NEWLINECZ) ) '
PRINT(KpS,0)7 SPACEC(2):
PRINT(KODELK,11,0,4)F SPACE(2)
PRINT(ULX[K, T3, 0p4)3
PRINT(VLYIK,11,0,4)3
YENDY
"END'S
'ENL)I;
NEWLINECO)
'BEUIN'
VINTEGERY [J1,4G, D3
YREAL'Y RU;
TREAL' TARRAY! K[1=ADD{HFREE]J:
NGIENFREL;,
NT1:=READ; ROg=kEAD: Rl e =kEADS
VIFYQORT=QOVTHEN! . .
FEASSEMU'Ls(;gtE“T‘K'XX,YK{',{)ETJ,HﬂhFc\'.:TnICKrf\DD)

rELse! H1ev, ADD) :

QFEASSEMBLY(NELEHTIKIXX'YY'DETJ'”“DE’C'I {Che - h
VCUMMENTY pHTRODUeTION OF KIHEDATIC CONSTRATIHTS;
VEOR' [gmq tGTER! 1 'UNTIL' HEODE 10O
"BEGINTY

FURCEFASET==m=="')");

VIEY KODEL],11=0 'THER' 'gOTOY KOT:

"IF' KODE[I,43=¢ 'THEN! 'GUTO{kC;:ArD).

GEOMBC(ULKT 1,291, QK HFREE L ADTDE . .
TFUR? J:ig e T NTILy HSETE ro0r GTI I RARNARE



1]F! KODE[I 1 31=1 FTHENY 'GOTOY wE4e

cCey GEONLCCYLYDT, 1Yo 2wl s FR F

vpoR' JiE 'STERD A TUNTILY HSETFE O

ey TEHDYS

NEWLINECT) s5PACE(R)

uRlTETEXT('('HODE1A%BEG Hgty vy

MODE1A(N1.FMJ:HGoNsETF,A,AUD.K,O,CAs[,vnb);

NEWLIHECZ) S

NEWLINECL) 2

VRITETEXT (Y (P sy o ViisOlunhinlis ) 1)y

SYMVESUL(K,KrADb,n,NG~2~W1+D,nStTr,LAI[):

NEWLINELO) S

PFOR 1151 tsTeet 4 TUNTILY HOETE rune

TREGEN!

NEWLINEUA)
URITETERT (1 C
PRIVTCIZ2.000

NEWLINE(S);SPACE(ﬂ):“RITVTFAT(‘('Hnbr')'):

SPACE(5>:URITETEXT('('x-hlnLCT1nn’)’):SPACF(R):

leTETExT('(‘Y-vlpECT1nN')');SPACF(ﬂﬁ);

HRITETEXT('('HOUE')');SPACE(S):UR]TETFXT('('X*UIRFCTYON‘)');

SPACﬁ(8>;uR1TETEXT('('Y-DlRECTIHH')'>:

U:=2*<<HMUD;-N1)'/'2):

VRORY Jy=2 tsTEP! 2 voliTIL! u o tno’

TBEGIIY NEWLTHE(2): Vem2w(J=1): Zp=d*illi
PRINT(L=1,300)1 SPACE(D): ORIRT(HCV—W;IJ,O,H);
spaliced: PRINT ALY, 11,0.8): SACECTS) S
PRINT(Z2,2,00: SpACE(2) PQ]HT(Q[V+1111;U.8)7
SPACE () PRyHT (aly+2, 17, 0,803

YED Y

VIFY dHupt=nt fert ol PR

VBEGIHY nEVLINE(2)d PRINT CunOnr=ii1, 5,0y  SPACFE(2y:
V;=2w(l;NﬁDE"‘H1);
prNT(u[V-1,1J,O,8>;SPACn(?):PhIHr<ﬂtV,l].G.ﬂ)!

I S IVAR

VistGm2ell )

NEWLINEC2) !

URXTETE‘A’T('('(“R;\C‘(:'.':TI{k’f/..ulf‘\PLf\Cr“EHTt’-
1H%X~DIRErTIOu=')')?
PRIHT(Q[V+1,11.0'10>?

NEWLINE ()
!!RITETEKT('(‘HH[)E’If.-ﬁ‘a'THESS'lI
PRI”T(Q[V-&-?II1IO’qO);

»‘*DD);

£r,1,
Eovnoe GLp,aYezalr,ayg

‘hOUAL%vISPLACFHFwTSTFntﬁrUVC&zspT')'>:

HTFHS!TYZFACTURerlz')');

VENDY;
IENDI
YEND!
YEND!
'GOTUY  FINES

FALLHEWLINE L)Y . A&
URITETEX%’I( ,“ESPéUGUAHﬁFAI'L_;;()f';li';‘/,PRH(‘,EDI:R{.,'-SYﬁ;,{i\/S\_)L' )Y
"GOYOYEXLTS

FINEVEND 'y HputIne sy
uleﬁrﬁxT('('ﬁNuZanURoGHAM“
EXIY3PENDY OF prOGRAIT;

“~g ms we

~ZHURHAL¢pxITv):);
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ve 2=D F.lb. program for multi-tip,mixed-mode fracture problenms,

incorporating a partial crack closure facility. PCPOY & PCPOXY

Program flowchart

tProcedure declarations

NJOB:=READ

. —— -<jCOUNT = 1 (1) NJOB >

Mis LEMNT ¢ =READ NNODE : =READ

| THICK:=READ NFREE : =NNODE*2
NSETFS:=READ NSKEW: =READ

l SURNQ:=READ QORT:=READ
NSETC:=READ NSETF :=READ
NTIP :=READ NG :=NFREE

P S R € B NSETC;>

NO

l
NNEWC ; =READ
NSETF £ =READ

[
— (T =1 (1) NNqu;>

B

J:=READ

KODE [J,1] :=READ
| ULX [J,1) :=READ
VLY [J,1] :=READ

. —
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ELDOF:=2

ELDOF : =ELDOF+3
PROCEDURE : FEINPUT
PROCEDURE : ADDARRAY
TN1:=GRT:=0

— —Q :=1 (1) NTIP>
l
N1[I]:=READ RO [I]:=READ
AL [I]:=READ NS [I]:=READ
TN :=TN1+N1 [I]

NO

PROCEDURE : MMNTKBAND
PROCEDURE : CMATRIX

!

:= 1 (1) NFREE;>

e
|

— (J = 1 (1) NSETE’>
l |

q[r,3]:=0.0 ‘

T T




NO

YES

~ %QI c= 2 (1) NSETF?>
NSPEC: =READ
I

——«<J:=1(ﬂlﬁﬂ£>
l

K:=READ
KODz (K,I):=READ
ULX F,I%::READ
VLY [K,I]:=READ
PROCEDURE : LOADAPP

- —

— I :=1 (1) NSKEW>
R

NOSK [I] :=READ
ANGSK [I] :=READ

o {1 = 1 (2) SURNO)

J:
YES E\\\\\\ NO

V::S—(ADD[O] —ADD[ S ])+']

W:=5-(ADD(S) ADD [ w:=J~(ADD[J}-ADD[ 1])+1
V.-—- -

V:=J-(ADD[J] 40D | )+1

Se=d
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NO

ADU s =ADD s 1 W=V

|

—~<J := 5 (1) NFREE>

|

\ aDD (3] 2=4DD 7] +2* (W-V)
BAND :=BAND+2* (W-V)

QORT YES
PROCEDURE FEASSEMBiﬂ

PROCEDURE : QFEASSEMBLY

NS KEW NO

YES

PROCEDURE SKEJLOADI

NS[NTIP+1];=NN0DE+1
I {1::1(1)SURNO>

‘. 7:=N1[1] ovP[I]:=0
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NO

U:=UeN1 [J741]

L

| NOSK [I] :=N0SK [I]-U

:

- 7] L20

PROCEDURE : MMNT

‘ NVAB:=1
U:=NG-2*TN1
We=Z:=5:=0

Kinematic constraints applied

PROCEDURE : GEOMBC

V::O
PUTARRAY (12,K)
PUTARRAY(10,Q)

NO

O\ <

YES

REWIND(12) PUTARRAY (12,K)
REWIND(10) PUTARRAY (10,Q)
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ROCEDURE : SYMVBSOL

A}M YES

G |

PROCEDURE

-
.

CLOSURE

NO

Cutput nodal displacements and crack

tip element parameters.

END
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DOCUMENT pCPUY

PpEGINT TCONERTY  THIS PROGRAM FNpLOYS THE ISUPARAMETRIC
FORMULATION FOR 2=p PRORLENS OF PLANE STRESS/STR/

THY ELEMENTS CAN BF SELECTEDs VIA

THE QORT PARAVETER = ETTHER A SIXeNODE TRIAMNGLE

OR AN CIGHT=HUDE QUADKILATERAL,

THIS PROGRAIL ACCONNONATES IMIXED=MORE MULTI

CKACK TIP PROGLEMS ,UITy PARTIAL €RACK CLOSURE:

VINTEGERY HELENT o uNODE  HSETFS s HFREE 2T, d o Ko e U Ui CASELNSETC,HNEUG S

NJUB, cOULT  PRUT/NVABT, NSKEU, SURNO, 01,02, SETF, QORT ,RAND (HTIP, TNT, ELI

VREAL? DELTA'DETJ’THIC'K'“U'“G'CUHJK‘llK?lTH,?.’)S,‘

VARRAYY CL1:3,1:31,A01:51;

'PROCEDUREY DECLARATIONS

SELECTY THPUYT (11):

OB =REA
?ﬁoi5 CUUS;:=1 PGrEPY 4 tUNTILY HJoR o vpG!
TBEGIN?
PAPERTHROY
NEWLINECZ) : .
WRITETEXT (VP JOLRUANE mmmmer Y
COPYTEXTC (' prip®0psTIvLE ) ))
NELEMY I SRLAD;
NNUDE «=READ
THICK:=READI
NEWLINE(E): .
WRITETEXT (1 (1 H0%0F%E LEMENTSI===" 1315
PRINT(NELEMT»3,0):
NEWLINE (L) . 1yrys
uR]TETexT(l('H0%OF%HODESA”'”"“”" ) '
PRINT(NNODE, 5,007
NFREEs=NNuDE®2:
NSETFS:=RtAD;

NSKEWSEREAD: SHRH();:RE/‘\D:
QORT s =READ;
NSETC =READ; NSETF:;EREAD;
NTIP;=READ
NEWLINE(Z Cr e E)E)
URLTETEXT (1 (0 LENPTSGFLECTED =" by A;;.;'

PELSE'URITETFAT ‘ )

TREGINY . .
VINTEGER' NSPECSZ,COHPAsGRT/ I

l ' ; Pk .N TFS]!

» A{R ; Y \“' L: ULX;VL’!I'“I”“~I‘: .;E .
'R&n|' ’ ¥ A\/! /\XE'Y [F!;I\)Y:“é;— ';’\”(;_K[ :“8 EU ]’A . 0[1:“ Yp]'
W IIN {F:ri [l\;‘ S ) K +1 | R T

. » . ¢ SF Fg]
VINTEGER' " ARRAY' wODF[1'HELE”T,1:G+2wuﬂkf].knut[1.NNODE:1.H E T
) § r .

' ADDLOINFREE], _ ey
NOSKEA gNSKEU+TT M, 1S T0lIT] i

NG i=NFREES ‘ o0
'F()R: S;Z% "STEP’ 1 'UNTIL' HSETC o0



- 353 -

TREGIN!
ppEross1 PTHENY TneGIny
ELDOF: =2 ELDOF:=flLDOFe3;
FElN“”T‘ADD'XX;YY~NFRKFrNHObE,NSETF,knnf,nsPEC,NsETcs,ULx,VLY.Nchmf

NUDEY S
ADDARRAY CHELENT NHODE, ALD , nuDLY
IN13EGRT =04
PPOR e USTEP TV UNT L HT P DO
PREGINY RALI):=KEAD; ROTITi=SKEAD; ALTI):=wEADS

ST de=RrAD THA =THI+1 0T ];

PIFY GRYSNADIYY THEU'GRT:=n101Y0
VEND ' 7
MMNTKBAND (NFREESNT  BALD ADD I HS) S
CMATRIXCC, CASE A :
NEWLINECZ) $
WRITETEXT (VM H0%0E%DEGREESLUFLFREFDO Ime==t) 1),
PRINT(NFREESS5,02:
NEWLINECL) 3
VEND' YELSE!
TREGINY  JINEYC s =RFAD;

NSETFi=READ:
PEOR' 13E1 YSTEPRPY 4 ‘unTIL' HEEUC 'hO?
"TREGIN' J:=READ]
KOpELJ,13:srEAD;  ULXTJ,1)=READS VIYIJe1)e=READ)
IENDW;
lENDl;
PEORY Te=1 'sTEP' 1 'UnTIL' HFREE 'DO?
VEUR' Jim1 YSTEPY 4 'uNTILY HSETF 10! Qrr,d1:30.0;3
VFOR' Tgy=f 'STEP' 1 "UKNTIL' HHODE ‘tboe
LUADAPP(KOUErI,1].ULX[1r1]rVLVEI,1):u,1r1):
VIFY NSETF 'YGr' 9 'THew!
"BEGIN'
PFOR® Jim2 tgyER' 1 'unTIL' HGETF rhO?
VREG LY
NSPEC :=RKEAD:
NEWLINE(Z)
MRITETEXT (1 (V' FORCEXSET=m=mm") 1)
PRINT(Y 5,00
NENLINE(Z):URthTFXT('('NUDE:;'); e
SPACE (5) JURITETEXT (M (P YYPE) 1SpACEL(S {\ '
uRthiex%:?(-;qusp')');5VACE(7):HnITFTEKf(:(fY“DTSD’>')'
NE“LINE(1>;SPACE(?1);URITET£XT('('nnz;nnn y');
SPACE (62 URITETEXT (P CrORLLOAR) TS :
TRUR' JiEq PSTEP' 4 'UNTIL' HISPEE 1RO
"BEGLINY
P=READ;  KODE[K,11:sREARS Y

LORDAPP CKUDE K, 1], ULX K Ty VY IRATTY
NEWLINE(R):
PRINT(K,3,0): SPACEC2)! o
PRINT(KODL [y, 10,3,005 SPaCEC)
PRINT (ULX[K,11,0,4):
PRINTCVLY (K 1Y,004):
'END';
"END';
'END"

1

ULy K, 11:=READS VivIik,!Ji=rEADS
0,Ke1);
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PFOR' T3E1T "STEPY 1 "UNTILY HSKEU 1poo

'REGIHNY HUSK[]1:i=spEAD;
ANGSKITTt=READ:

TEND '

CFOR" s =1 ' STERY2VUNTILtSURRUYpO?

TREGINT

S:=NOSK{IIx2: J:isNOSK[I+1]#2:
PIFEY G5 J "THEN® YREglIi:e
WiZsS= (ADDLSY=ADDIS~11)+1:
tEdm (ADDIJT=ADDIU-11)+1;
EHDY TEULSEYTBEGINT
WiBgwm (ADDLYT=ADpTI~1T) =T
ViEga (ADDIST1=-ADDIS~7))+1;
StRJ: |
'EN[)':
PIFY Uo» VO YTHEN!
TeEGIHY
ADD[S=11e=ADDIS~1)+UV]
YFURY JimS OTEPY A "UNTIL HFREF ' D!
ADDLJY:iEADDY e (UmVy;
GAHD i =LAHD+Ew (WrV) i

YEND Y
YENDT T3
NEWLINEC(H) :

'REGINY TIHTEGERY SUBY,SUL2.SUBS,SUBSCPY
'REALYYARRAY' k[1.BANDY;
VINTEGER' "ARRAY' ovPloeSURNGD;
"IFYQORTEQITHEN'
FEASSEMBLY (HELENT, K, XX, YY,DETI, 0nF,C, THICK,ADD/NFRFE,
AUX, SKEUEDCON HSKEU, HSETF, AHGSK, NOSK)
YELse?
QFEASSEMBLY(LELEMT,K,xx,vv,uETJ,nonE,c.THIcKrADDvNFREF'
uAux,gKEHEnCOH.HSKEN,usETr.AHGsKoHOSK);
PIFY NSKEW 'HE' 0 'THEN!
SKEULUAD CHSFTF U, NOSKrAGSK NSKEW T
NSENTIP+9 ] p=HNODE:
VFOR'J¢=1 VY STEP MV UNTIL SURNUTDO!
"BEGIN'  yUs=HIL1]): ovpP 131807

PFOR'Y =1 ' SYEPrUNTILYHTIPDO!

PBEGIH

PIEYNOSKLT)YLE*NS[J+1)n1  THEN!

PBEGINY NOSK[IT:=HOSKII)=UJ
1GoT0r L2047
"Elip!
"ELSE!
UralU+NT1 a1 ]

PEND Y
L2U3 ' END Y
NEWLINE(6)
MMNT (NG lISETFL.AADRD K, 00
NVABT : =1 ;

UtSNG=2*T11

"COMMENT' 1HTRODUATION
Wi=zi=S1= )
'F0§' I:=$;'STEP| 9 runTILY HEODE-THI ot

we ©o

CASE:THICK,U1,RO:GRT.AL:NS)i

OF p1HEHATIC CONSTRAINTS:
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T oapEGINY
v1FY I>W O PTHEN!
'L»EGX”’ f,!=‘~,+1;
Vel Toe )m1mnifa)i
Ze=2+ilh0sY:
YEnD Y 712749
VIFY KODPE{2¢11=0 "THEN® 'GaTO' KC1:
'IF' kUDL[ZI1]=£ tTHEN ¢ 'GOTD'KCQ;
GEOMECCULKIZ 1Y 2#1=1,0, K, UrELDUF«NTIp,1,a0D);
IF()R' J::Z 'STEP' i 'HNTIL' HSET}' YNt ()[I'\J];:u[l'1l;
VpFY ORODELZ.13=1 vTHEWY 'G0TO' K1y
KCey GEUNBC(YLy (2,173,224l 0, b, UsELNOFLNTIR,1,ADD);
PPORY JrE2 YSTEPT Y TUNTILY HSETF 'DOY upi,d3:=Qf1.173:
kc1; "Ekopt; : _
vizU;
PUTARRAY(12/,K): PUTARRAYU1D,1)
RESUILVE;
CIFY OV Y NEY 0 YTYHEHY YBEGIHY
REWIND (1) PUTARRAY(T2,K):
REGIND(10): PUTARRAY(TO,u);
YENDLY
NEWLINE (L) g
WRITETEXT (VP sYNUVRSOLYUKBEGINSt) )
SYMVBSOLCK Ky ADD 0, UL LDOF*bTIPIUSFTF, FATL) S
NEWLINECZ) ;
VIFYSURND > O "THEN''REGIH!
NRJTETEXT('('CLOSUHEZ:REGIHSww******************w’)‘),'
CLOSURE (K, HUSK ANGSK, ADD, @y RESOLVE SRAND /G 1T, OVP) 3
YENDY
NEWLINECG) !
YFOR' TiEl 'sTEp' 1 tunyTIL' MSETF 'hortREGLH!
NEWLINE (&)
WRITETEXT('('NUDALzblSPLACEHENTS%FUQVFUchxSET')'),
NEWLINE(3)SSPACE(1);URITETEKT(‘('HODF')'):
SPACE(S);URITETEXT('('x-DxRECTIUH')');SPACE(E)7
WRITETEXT (1 ¢ y=DIRECTION') 1) iGPACECTNY
URITETEXT(l('HUDE')‘);gpAcE(S);URITETFXT(‘('K—D!RECTION')'):
SPACt(a);uRITETExT('('v—DIRECTIUH')'):
$:=Vi=0;
YFOR® 2= sTEp Y uNTILHTIP DU!
"BEGIN' Visls[zeq1mns 21010213
VFOR'Y =21 gTlpr2tunrlLrvibo!
YREGT UesJaNS{2Y=2+0102)4
S1=ES+4;

HEWLINECD) .
PRINT (U, 2,00 SPaCt2) s prlgTCQLS=3,1140,8)3

o9y PRINTCULS=e, 11,060 SPACE(T3)
igﬁﬁiiﬁii,;?é?:\spACE(2>: PRINT(uES=1 011008y
SPACE(Z) PRanCu[s,11,0,8>:
VENDY
ARSI AL G1e542;
Bh“‘”'pxixﬁigi§?§:n>;‘stcg<2>:“pu1nr<q[3~1,11,0.3>:
SPACE(2y; PrRInT(ALSTIA0.0Y:
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"END 'S

YEND 2

U:ENG=2*THY: HEVLINECG)Y

TEQR'V ST YSTER YT Y UNTIL v T IR DY

IREGIN! VesELbOrw(Jaq);

NEWLINECO) SPACF(20) .

WRITETEXT (O O CRACKAT I pYNUNBERY . e weweww kw83 1) 3

PRINTC(Js2,0):

NEWLINECE) S spACr(13):

WRITETEXT (P QP CRACKLTIPZDUSPLACENR LT i A =p I HECTIONY =) 1) ;

PRINTC(RLU+2+Y,11,0,10):

NEWLINECR):  SspPACR(13):

WRITETEXT (VY CRACKETIPYUDTSPLACENTHTZ N YUY ~py e ECTION%=%) ") ;

PRINT(QLU+3+y,13,0,10); :

NEWLINECZy:  SPACF(18y:

WRITETEXT (Y CPHODEYASTRESSYUIHTENSITY SRACTIRZETI A=A ) VY

PRINT(QLUw4+Y,11,0,10):

NEWLINECZ) s  spACE(17);

WRITETEXT (Y C LIODEDYSTRESSYTHUTEHSITYRFACTORYATIT A=K ) V)Y ;

PRINT(QLU+S5+Y,11,0,10);

NEWLINECR) T  SpaCr(29):

WRITETEXT (VY (' RIGIN%BODYXRATATIONG 1%=%13");

PRINTC(QIU+4+Y,13,0,10):

YEND ',

VEND '

|END! ;

VEND ' :

!END' ;

VGUTOUREL g

FALL; NEVLINE
MRITETEX

NEWLINECD)

WRITETEXT (V (' FATLOREADUELTO%I=")") s HEULINFL1) 3 SPACECTI?)

WRITETEXT () (' UNREALZPROUBLENAT  ELBUROHGZOANDARYACONDTTLONS 1) 1)

NEMUINEC]); SPACE(17);URITETEXT (M (VELFMEHTSZOVERLAPPINGT) 1y

NEWLINECD) s

(637 , .
TV (1 PROGRANAFATLEDEINAROUTIHEXSYNVASOL 1) 1)

uRlTETEXT(q(lSEt%nunp%_—nmﬂnUt%ToﬁnIV]SIOm%hY%ZFRO')'):
Vi=07 Uizl visu/Vi

"GOTUYEX]) T

FINE;YEND!

NEWLINE(4) g

WRITETEXT (1 (' EHDYEOF%PROGRANG=SHORNALZEXTT Y )
EXITsvENpY UF PROGRAIY;
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(vi) Program PROPAG has been described in Chapter seven and therefore

only a formal program listing is given overlecaf.

DOCUMENT PROPAG

tREGIN' T COMMENTIPROGRAM FOR DETERMINING THE DIRECTINN OF
CrACK PRNOPAGATION & STRAIN FNERGY prtSITY FAGTOR
DATA INPUT,= JOB TITLE ENDPIUG WITH A 'SEMI=fcoLON'!
HUMBER OF CRACK TIPS,
DATA FOR raACH 71IP. -
ISEESAN
HU= POISSONS RATIO,
G = SHEAR MOpuLus,
!INTEGER'[FAILIYI'V,J;
"'(F.AL'EcByC,Dl”"l!r(;,Kl]:KZICO”'THisgz
'WROCEDUREVFOLARA (X, F ABSACC RELACC, XaTEP, FUHCTHAKFUN, TFATL)
PWALUETABSACC  RFLACC, XSTER, HAXFUH;
"KEAL' X F s ARSACE  RELACC XSTEP;
"INTEGERVIFASL , MAXFUN;
"PROCEDURE'rUNGY; 'AlLGoL';

"PROCEDURETBUNCY (TH,SSY
TWALUE'TH] TREAL'TH,SS:
"RBEGIN'"pEALTAY,AD,AS;
Al :2(83=4eMmpOS(TH)Y*(1+COSCTHI Y
AL = (2eSy N (T )W (COS(THI~T+2%IMti)]
AS B (hebaMU)a(q=COS(THII*(14COS(TINY *(3CNSITH) =1
$SECONE ((AT8 (KI1T2))+ (2%wA2WKI¥V )+ (AS*(K242ID) ]
"END' OF PRACEDURFE FUNCT:

NEWLINE(B)Y )

COPYTEXT (P (rypt)r): HEWLINE(S):

Vi=READ] L
URlTETEX7('cnCRACszOZxxxxANGLE%O;%PRupﬁGATtnu')'):
WRITETEXY('<|%tx%stRAxNZENERGY%DENSITYAfAcTOR VAD N
WRITETEXT('(!XZzZ%%Z%ZxKIZ%%%%%%K%%KII') ):
"FOUR'li=q'gyepte'yNTIL V' DO

"BEGIN' .
K1:=READ, K213RFAD; [Mug=READ} G::READ? Cie 0aes:
CON:=9/(16w%ay) THy==1.5707963; n:=150; A

B:i=0,01745) Cru3,1641592614 TFATLEI=1:
EUGAAACTH, S8, R/ F G, FUNCT D, TFATLY:

"LEY LFALL>0 'THEN''BEGIN!

NEWLINE(5) N SN
WRITETEXY () (1NAGSZROUT TNEXEQLAAAKHASHFATLEDT)
NEWLINEC2) ;. , .
URITETEXT(I(']FA]L%:'/,')'); pRINT(}FAlLlZ'O)'

'END'  wELsp!  'BEGIN'

THi=(YH=()«57,20578; )

NEWLINE (2) PRYNT(1,3,00: . 0. .
SPACE:1(§§];hprNT(TH’O’S): SPACE(‘].‘)A ‘;’:‘;!NT(SS T0)Y;
SEACE(B) ) pRrINT(K1 0,505 PRINT(KZ:D.

'[.ND';

'END' LooP )

PAPERTHR QW)

"ENRY' OF bomr Oe0nAG



(vii) The auto-mesh generation program STDAMGhas been described
in Chapter 5, and only a formal program listing is given

overleaf,
DUCUMENT STOalMg

'REGIN'

VCOMMENT Y AUTO=mMEQH GENERATION PROGRAI. GEHERATES Dava FOR
6onNOpE TRTIANGULAR & A=-HOpE QUAURILATERAL ISOPARAHETRIC
ELEMENTS, SERVICES ALL THE 2p F.E« PROGRAMS ANMD THE
GENERAL AXISYHHETRIC PROGRAIN CLAAXIIG) viA A CODE NUHRE?

VINTEGERITNEPNS , N7, NZONES, NNODE/HFLET, H20ONE,VZONE, CODE
s GH,CORPP,QORT,HNSPEC/CASE N1, HNEUC, HND
IN,ZONE,A/LZNIADD,ELT/CONSZNAD/ FZH /B elad 0, NsREC,
Vg, CUT ., CUR, CUS, C1eC2/C3,CL,C5:C6sC7THNTIP,ALT,
C,PiE,SUB,IDENT,D/DIFF,ELTAD,OLDPA,SUM/VD, TN, TIK,
N HRE AAD2, VD2, SET/SP,NSETFS/ NMAT, NSKEW, W, BLANK,
0LD71R15NODE,PZONEINGH;
'REAL'D!AG1,D!AGZ.ZETA,ETA.THICK,FF1;EEZ:HU1.HUZaGE.ANG:RC.
SCALE]
'INTEGER!'AanVan[0:23'SIDE'IDH{1120].NI,NS{1:S]:
"REALYTAQRAYINN,QUADX, 0UADYLT1:8] /RO ALTTIST

"PROCEDURE' DECLARATIONS

SELECT 0UTPUT ¢dy;
OUYPUYY!
"BEGIN'
TREALY YARRAY'XCAD YCODET:SHUDETS
VINTEGERI VARRAY tVARNEY (SHUDET, ML 1HZONEST,
DIVX/DIVYL=yzONpiH2ZONES*YZONED,
NODELTINELET 1 (7+Q0RT=2) ]I
VEOR'11=q 1 §TEPIY UNTILYNZONES DO!
MNET =0 ‘
MGINPU#(;éODfVCOD:HN,DIVX;DIVY,VARNfHOﬁE):
VBEGIN' ' INTEGERT ' ARRAY LHUIIEOsSUIT, 14200
VKEALY ' ARRAY ' XX, Yy[1:unODE+SUNTY '
VFOR'[pEqVSyEP et gNTILISUNTDOY TBEGTH |
XX[MNODE+I3;=YY[NNODE;I];=0.O: TENDY
D:=plFFinOLpatufrLyADI=0s AATZTE .
A=°LZN=¥A001=EL7:ncouzzzHAo:=01VfroJ:=o;
'FOR'ZN3@1'STEP'1'UNTIL'HZOHE'DU"BEGIN
FEN;=(2ZNm1) «VZONELTS
LZN;=VZUNE* YN
CU3:=DIFFngIK|=A,:ADD,:ELT!“OF
'FOR‘I=EFZNl57EP'q'UHTIL'LU4 '
|IF'MN[13=O|THEN'IBEGIN; 5,
DIFF;cDIpFepI VYT InVZONFI™* ,
|lFflﬁgE:FZSEAN;'I'NE‘LZH’THH“'BFGIU'
'IF'MN[IJ(MN[lnﬂJ!THEN'CU31=CU3+1'
VyFrpudeq tTHEN 1BEGIH'
'IF'MN£15<MN[:¢1JiTHEN'CU3x=CU3*1:
"IFICU3B2I THENIDRGINY .
Ai=SAsq1DIFF ahlEFatiTIKEETIKMTS
PIFUDIFF<O) yHENIDTFFi=0iCU31704
VEND'; 1ENR'I'END'I'END'S

DOt VREGIN'
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c2A+2%DIVYLTIIVEND' OF I LOOP:
JFIDIFFINETOPTHEN'DIFFs=pIFFavD2,
A=A+
BLANK: =0
PJFrA=T Y THENY BLANK:=VD2+00RT=0LDTIK,
VDZ;=VD:=VD1 s2lN1a0s
P POR'ZONE ¢sp 2N STEP TP UNT LY LZN'DOY I REGINY
!1F'ZONEBFZN'THFNlADD;=O'ELsE'
ADD=DIVYL2ZONF=9]w2+ADD:
PPFYMNUZONEY=0 ! THEN""GOTO Y LOY;
Ne=ELT:=01}
TCOMMENTT QUADRILATERAL HODAL PTS GEHERATED!
ZONEXY(XCODYFOD/,VARN)
ZETA:=ETatr==9,01 SET:=0/
Bi=U;
PFORIY=0,172'00'8B7I]:=0;
VCOMMENT Y Xey ELEMENT NODAL COORDS ORTAIHNED;
PIFYQORT=OVTHENY TRELETAYCDIVXaDIVY XX YY)
PELSE! QELETXYCTRACE(DIVX DIVY XX YYD
PCOMMENT! ELEMENT NODAL CuNNECTIONS DETERNINED?
"IF' QORy = 0'THEN' TRELNCONS(DIVX;D!VY:XX:YY:NODE,MN)
VELSED QELHCONS (DIVX DTVY XX oYY NODE,MNDJ
TCOMMENT1 CLOSING SIDE NODE NUHBERS STORED:
VIFVIDENT=OITHEN' 1GOTO LY
'FUR'I;=1'STEP'1'HNTILvIDENT'DO"nEGxn'
PIFYIpNLYY=20NETTHEN
'BEGIN'D =D&
"1FY' QORY=QtTHEN' TRIpN(pIVA, DIVY, HUM
VELSE! QIDH(TRACEDIVX, nIvy, )
YEND'
YEND' OF I LOOPy
T6OT0 LT
LOH;VD1:=VD1+DIVYEZOHE+VZONE]*2?
VDIEVD+DIVY P ZONF=yZONET*2:
PIFYTIKSY Y THENY 1GOTO LY
'IF'ZONE!NE!FZN'AND'ZONE'NE'LZN'THEH"BEGIN‘
'lF'MN[ZDNE!<MNPZnNE”1J'THEH"BEGIN'
INgzIM+t ] pUl1=cU2:=20) "Eun':
bypvin>nt THEN' "BEGIN!
VYE'DIVY(ZONELVZOREI=0 THEN P REGTN! Ut =C v
VIEYcuq et i THEN YD :=VD*1: PEND 'y
| CLEVp1vy[ZOKE«VZOE =0 THEN TREGTIY o CU2i=E 2ot s .
’IF'RU2=1'THEH"BEGIH'VD1:=VD1+1: yp2:ayp2+1:tEND
VEND';'ENDIF'ENR')
L1+ YEND' OF 20NF |OOP;
OLDA:=A} OtpTlv:=TIK; .
'FOR'I:nFZM'STFPi1'UNTXL'LZH'DO"RLG’H'
VIFYMNCIY> 00 THEN' 'BEGIN'
REC:=pIVx[1yw(2+QoRT);'GOTO'LIN
LE:D"ELSE' psc.=1:’Eun'; Gl
[N9G 1 1pt T=03 THEN'"BE
H 13 QORzNgh‘::g}jAD-PREC*OLDA*D!;FNBLANK;

E[TAD:“ELTAD*(OLDR-1-TIK)*REC/2}
VEND?
- TELgF I 1BEGIN'

90 ;
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INAD 3 EZNAD4RECH (OLDA+COLDA®I4TIK) /2) +DIFF=BLANK;

ELTAD:=ELTAD+ CLOLnA=1-TIK)/2)*REC;
tgNp' OF 2ZN LOUP;
VEND' S
PCOMMENTH ELEMENT NODAL CONHECTIONS AnJUSTEDS
([FYIDENY=0i THENTT1GOTOMLS:
COINCID(NUM, XX VYy;

HATCHET ENUP, Xx, YY, sUIL, NHODE HORE , HELET) ¢
L[):OUTPUTZ(MATCON,XXI\’Y:HUDE);
SELECT QUTPUTLCOY
RESPLOTCQPLOT  YRPLOT (XX oYY HODED S
VEND'
VEND '}
VEND' OF PRACEDURE MESHGLWS
e kd
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9.3.3 F.E.PROGRAM PROCEDURE LISTINGS

The following procedures are listed overleaf:-

General F.E. routines Multi-crack tip routines
AUX. MMNT

QAUX MMNTKBAND

GEOMBC CORK

LOADAPP CLOSURE

SYMVBSOL

CMATRIX Segmented Solving routines
SKEWDCON SEGSOL

SKEWLOAD TEST

FEINPUT ADDSEQ

FEASSEMBLY GEOMBC

QFEASSEMBLY FEASSEMBLY

FENOSTR QFEASSEMBLY

FEELSTR Pseudo inverse routines
ADDARRAY MIIST

RESTDUAL SOLVIT

Modified IAAXMG routines

STRDIS

RZERO



1pROCEDURE' AUXCLA L2t 3elansY Uil 2)

rVALUE! L1ob2/L30718

PINTEGER' 21

'REAL' L1IL2IL3IU:

I INTEGER' VARRAY ' N

1 ARRAY! XYoo

IREGINY

INTEGERY 1.V

tREALT CHANVE;

tREALY TARRAY! Pl412:1:63,001:2.9:233

PCUMMENTY THIS PROCEDURE EVALUATES THF JAGOLTAN J 178 DETERMINANT U

AND THE STRAIN=DISP ARRAY F:

JL1:1]I=X[N[2.1]]*(4*L1-1)+X[H[Z,31]~(A*L1+A*Ld“5)+A&L2~x[H[Z,L3]-

b*LthlN[z,S]J*L*X(N[z,6]]&(1—2*L1—L2): :

J[1,Z):‘Y[N[Z.1]]*(4*L1~1)*Y[H[Z.?IT*(A*L1+4*LZ"3)+6&L2¢YEN[Z,L]J-

A*LZ*Y[N[Z.5]]+4tV[N[Z.6]]*(1—2*L1-L?):

J[2,13:=X[NE2.2JJ*(a*Lz-ﬁ)~XEN[2,31]*(a*L1+h*LZ-3)+A~L1*x(ntz,al]+

Q*XLN[Z:SJ]*(1-L1—2*L2)-h*L1*X[H{Z.élls

J[ZIZ):‘Y[N[Za2)]*(4*L2~1)+Y[H[Z;31]*(L*L1+&*LZ“3)+L#L1*Y[N[Z,A]]+

atYLN[Z:531*(1~L1—2*L2)~4wL1*Y[Ntz.6]3:

TCOMMENT' U REPLACES DETJ

U:=Jl1:13*JE2.2]-J[1p2]*J[2:1]:

"CUMMENT' THE CUEFFFS OF [J] ARE REPLACED BY THOSE np [J)Y=1;

CHANGE$EJ (1013

JI1,1238J02,23/Y3

JU1e21gemgl1,21/ 0

Jle1yysmyl2,13/U

JU2 2 g =CHANGE /U

PCUMMENT! THE P ARRAY REPS THE DIFF COFFFS OF NUID URy L4 AMD 123

VPOR' 1181 'STEP' 1 CUNTIL' 6 'hO

VFOR' ViEq,2 'DUY ply,11:=0.03

"FOR' 13F1,2 '00!

'"BEGINY P[I'131=J[l:1]*(LwLﬁ"1)5
PL1,2115d 01,20 Chutnddi
p[1,3}:=J[1,1),(1_5wL3)+J{1,2]w(1~awL33J
P[I,Ajgaaw(LZ*J[l,1J+L1*Jtty?1):
p[l,s],aa*(J[I,2]*L3*L2*(J[Ia?]*J[Ic1]))
p[lléjxpa*(J[l,1]wL3—L1*(JtI.4]*J[I:23))

9
[
e
!

VEND'
VFOR' 1yR1 'STER' 1 'UNTILY 12 'pot
PFOR? V!=1,213 Doyt B[V:I)l“o.oi
VEOR' Jqmi 'STEP' 1 'UNTIL! 6 1o
PBEGINY
B[1,(1*2-1)]:un[3,(1*2)]:=Pf1-11:
g[3,(1*2p1)];:n[Z,(l*E)):ﬁP[7'7];
VENDY
YEND' OF AUX:
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VPRUCEDUREY QAUKCFTAZETABaK Yol eZ) e

tVALUE'ETALLETALZ:

VINTEGER'Y 23

FREALYETA, ZETAL U]

PINTEGERY P ARRAY "N

TARRAY T X, Y, b,

'"BEGINY

VINTEGERY 1,V

tREALYCHANGE;

TREALY VARRAY POV, 131, d 012,100

PCUMMENTY THls PROCEDURE EVALUATES THE JACOLIAN J, 1TSS
DETERITTHAWT U, Al THE STrALH nISP ARRAY 8 = FOR
W QUADKILATERAL TISOPARANETRIC! q=HODE ELEMENTI

TCOMMENTY U REPLACES DETJ:

PLY 1Y s i ZETA)* (2*ETA®ZETA) /A

P[WcZJ:=(1—ZETA)*(Z*ETA-ZETA)/ﬁ:

PLT 31 1=( 16 ZETAI* (2*ETA+ZETA) /43

PL1r4)1SCI2ETAI W (2*ETA=LETA) /A3

PLY1,5)1==LTA*(1-2FTA);

PL1,01:=(1=2ETAT2Y/2:

PLT /Y IE~ETA*(1+2FETA)

PL1¢8)sE=(i=2ETAt2)/E:

PLL 1= =ETAY* (P lZETA+ETA) /43

P[z.al:=(1+ETA>*(7wZETA~tTA)/A:

P[d,bJ:=(1+&TA)*(7*ZETA+FTA)/6:

Plesb]) T=ETA) w (PwZETA=ETAY 0

P{ceD]) (1=~ETATZ2y/ 24

Pl 6] = 2ETAx(14FTA);

PLesr115(1=ETATd) /20

Ple,s8)s JETA*=(1=FTA);

J[‘:1]:-J[1.2]:=Jr2,1J:=J[2:21:=“.0:

CFOR'T,E1tSTEP TTONTIL 8 DO!

| B

1

foWw ouu

§ o~

LI

TREGT Y
J[111]:=J[1'1]&P[1IIJrX[H[ZII]]:
J[TIZJ:=J[1,2]¢P[1,IJwY[H[Z;IJJ:
J(z:1]:=J[2,1]+v[p,11*x[H[z,111i
J(e,2)1=y12, 24P 2 1) ey lilLZ 1]
VEND ' ;

U:=JL1,1J«J£2,23-Jt1:21*J£2'13:

VCOMMENT' THE cufsfS vr [o1 ARE REPLACED nY THOSE OF [J1 INVERSE;

CHANGE:=J 1,110
JUV1e1)e=g(2,21/U5
JIVe2Yr=my1,21/U;
J[¢l1);=”J[2,1]/U;
w4 =y T AT
{éoknéared¢xztéJAnRAY REPRESENTS THE nIFF COEFFS OF NCIY UTTH
TU ETA & ZETA:
VEOR' ;=10 8TEP I UNTIL 1A DY
"FOR'Ve=], 2,35 pot Bry,13:=0.03
'FUR'J,=1'sTEp‘1|nNTxL-8‘p0'
'REGINT
BL1y(jwewmyy)i=uld, C1F
BLSy () wemq))i=nl2, (1¥2
YEND';
"END' OF pRUCEDURF WAUXI

J 1,1]wnr1.1)~J[1;2]*P[2.11
J'?,1]*ﬁf1.11*J[2:2)*P[2.|]

RESPEL
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PpROCEDVKEY GEOMBA(U PN, RopK I HEQIF, 2D
PVALUEY Wy NaNgQ.F:
’RﬁAL' Uy
P INTEGERY NoNEQ.F;
tARRAY! K, AK;
VINTEGER' TARRAY' A;
PREGINY Y"INTEGER' M.X,cd;
V1FY ON=1 'THENY Coy=1 tELSE! CJiati=CATHI=ATH=11)+1;
VRPUR'Y OKsE() ST 1 YURTILY 1 OThot
TREGIN'
RIKsFYeERTK FI=AKIATHY=He 1wl
AKLALHY=N+K]:=0.0;
VEND Y
VIFY ON®T 'GY' NEQ YTHEw' 'GUTOY L7
PFURY KpEgel 'STER' vUlTILY NEN DO
TREGINY CUp=K-(AlKI-Alk=11)+1:
"IE' CcJ YLE' N 'THEW!
"BEGIN!
REK FYpsRIK FI=AKTATRY=KeH]*U;
AkTALKI=K+N)3=0,0
VENDY VYELSE!
VENDY
Lzt AKLALNI):=1.0:
RIN¢FI1aU;
YEND Y,

"PROCEDURE? LOADAPPC(A,B,C,D/E,F)I

'VALUE! AIBIC:EIF:

'INTEGER‘ AvEJF

YREALY B, C

"ARRAYY P

YREGIN!

"INTEGER' K1

VIFY A=S VTHEN' '60TOY KLABYS

K:=¢*E;

VIFY A=T CTHEN' 'aOTOY KLABZ:
DLK=1 ¢ FlesDlK=1, FI1*0B:

CIEY A UTNEY O CTHEN' 'GOTOY KLAUA:

KLABZ: DLKsF11=DTK,Fleli

KLAB1: 'CND' OF (OADARP:
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tpROCEDUREY SYHVBSOLCA, Les,b)DINEHNSIONS: Gty R FATLURE EXIT:C(FATL) S
PVALUE' 1, Ri TAKRAY' A, L i "INVEGFR' 'ARRAY' Si 'INTEGER' N,Rr:
PLABEL' FAIL:
TREGINT
VINTEGER! Goer, 1ed KB, Q,T U,V
"REALY Y,
He=Us
PEORY Teml 'STERY 1 tumTIL! Horpne
'BLGIN‘
Tez]+Hau[LY+17 Gi=Hetd
Pe=SETl=14
VEORY Jai=T oSTEpe 1 aUHTILY T=1 oD
PREGT Y
Wiz=Pwly Hesli®el]
pe=sly)r Ki=J+Q-
VeizHepy Ur=0y
YesALH):
VIFEY K YGTY T 'THEN' UrEUSKeTS
"EORY Ugp=U 'STEP' 1 TUHTIL' H-1 ho!
YezYepUlwL[U=V]i
YezY/LCH=v]i 1 {H):=Y
"EOR' pi=1 'STEP' 1 'UHTIL' R DNt
BLLol)esBLl Y =Bly, MYxYi
"END' 4
Ye=zALH+91:
CFORY U.eamG 'STEp' N vUHTILY Hotho!
Ye=vy=L{UlTZ:
Hi=H+1; Yi=SORT(Y):

Linls=Y;

VEOR' Ni=1 TSTEp' 1 "UTILY R O'DO!
Bel,Mly=801,10/v

YENDY O},

YCUMMENTY REDUCTION CoMPLETES
VFOR® Tisp 'STER' =1 PUNTIL' 1 TDOY

TBEGIN?

YisLIH); } ‘
"EURY liz=1 'STEP' 1 vurTILY R OTHO
Ryl MYi=a[1.nd/vs ,

PIFY 1mq YTHEH! 1GOTO' CONPLETES
Ji=1; Pi=sl1-1]

I :
1 *STEP' =1 rUHTIL! ped 1DUT

"EOR' =1 'step' runTILY ROTLOY
Brdelllsp{d HI=Bl1 Y
"ENDY HI
Hy=p;
COMPLETE; 'END' 1:
YEND' SYIIVBSOL:
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1 pRUCEDURE CHATRIX(Z, CASE,AIATHO TH, ANG) ;

CYALUE TMATNU; P THTEGERY HATHU,CASES PREAL'ANGE T ARRAY A, 2, TH

CREGLN' U INTEGER' 13 REAL'S,Cr52,02,83,03,56,640C11,012,022,025,035,¢

VCOMMENTY CALCULATION OF ELASTIC COMSTANTS UHERE SEVERAL NATERTALS

ARE PKESENT FACI UITH VARYIHG ANGLES OF ANTSOTROPY;

CASE:=READS AUG:®READ; THIMATHOT:=READ:

!FUR' 151 YsTERY M URTILY 5 Tpot ATTYISREAD;

rpFr nATRo=1 PTHED!

PREGIN'Y NEULIHE (b)Y

WRlTETEXT(‘(‘HATFRIAL%PR“PERTIES;:!)!); TEULTHE (1)

leTETEXT<'('<HUTFIIF:CA3u=o,THEHHPLAuExsTnfss%ELsp;).),

NEWLINECY )3 SPACE(O)

UPITETEXT('('THL"/;PRU.RLEHT’:IS?l')HEZ()Fy,ple‘;_l[i";ST-{AIH_).)|);

NEWLINE(Z)?

wRITETEXT('('HATERIAL;%%WK%AHULE%o;zx%xeCASExzxxrnrcxuessv)r);

SpACE(21):

WRITETEXT (1 (T ELASTICA:PRIPERTIES ') ) HEULINECT) : sPACE (1))

WRITETEXT (! (P HUHIERAAAYATAITSOTROPY Y1) GPAGEC30);

WRITETEXT (VT EXX") ") SPACE(T1):

WRITETEXT (P (T EYY YY) SPACE(™)

WRlTETEXT(’('Vx%%w%%%%vY%%%%ﬁ%%ﬁﬁan')');

VEND'y HEWwLIHEC2Y? SpACE(Y)

PRINT(MATHO (2,005 SPAcE(7) PRINTCANG,D,2) 3 SPACF<3)3PRTNT(CASE,1

SPAUE(5>;PR1NT<THrHATHOJ,0,&);3PACF<:);pR1NT(AL1],0,3):SDACE(2);

PRlNT(ALA].O.s):SvACE(?>:PRIHT(At?1.ﬂ.2);spACE(2);PptNT<At51.1,2);

SPALE (20 pRINTCALRY.0,3);

ANG =0, 0T74533%ANG! c23:=013:=613:=0,0:

1{FY CASE=( 'THLN?

"BEGINT C11:=A(11/(1—(A[L]/A[1))*A{EJ*A[2)):

C12:=A(4]*A[2]/(1_(A[A]/A[1])*A[R]*A[?]);

C2£3=A[4]/(1—(AL41/A[1])*A[ZJ*A[21):

c3s3=als):

VEND® YELSE!

TREGIN'CASy8A(3)) ’

A[5J==AL1J/((1¢A[G])*(1~A[5]~2*(A(A]/A[1])«A[Z]*A(Z])):

C113=A037(1=AL5TxAL50Y:

C12;=A(51*(A[4]/A[1])*A[Z]*(1+A[51)3 . .

CZZ;=(AL4]/A[1])w(1~(A[4]/A[13)*A[?3*A[2])*A{31'

VEND'

VIFY ANG 'NE' 0.0 'THEN

'BEGIN"s:=s1H(ANn);szcoscAHG>:32,=S*s:
= UL = : )

gtMAiiofﬁﬁ,:%?i*Ei:gi(c1?+2wc33?wc7w57-h~(c13*§d+czz.32)*c*§+c72*sar

Z(MATNO;Z),=(34+Ca)*C12+(C11*C22-&*CJF)*C2*52+3*(C13-C23)*C wgelw (s

=C13)xC%x53;

Z[MATNOcSJx=(c11~c12—2*C33)*03*5*(

+C15%Ch=C23%54:

ZIMATNO 1 4)1=C11*Sa+C22x 13 *

ZLMATNO'S]x:(c11—c12—2*C33)*SS*L*(C1A—

$CLI*Ch=C1I*S4: ,

Z[MATNO'éj;:(C11+c22~2wC12~3

C+C55% (ShwCh);

"END' TELSE!

"BEGINY Z{NATHO 11120113 ZEH;\TI«'Q,?]::MZ;

2IMATNO,3),=C13; ZUIATHD, 61 1=Ca20

ZIMATNO5):15C23: Z[HATHO,63:=C33:

"END';

VEND' OF PRUCEDURE CHATRIX: R

cgs=cwcz83,=32*S:63:=C2*C:

c12-c22+2*c35>*c*g3+3*<523-C13>*g;

C4+&*cq3*C*g1¢a*CZK*CS*S*2*(c12+2*C%3)*c2*52
C22+2*C35)*C3*S+3*(C13-(:23)*();

*C35>*92*c2¢2~(c13~c23)*c3*s+2*(c2x-c13?



PpRUCEDUREY SKEYENCON(Z HODE s ANGSK, HOGK» dSKE' I/ KEFNSETF)
'VALUE' Ly HoKEWINSETF ‘INTEUER‘ 7 HSKE, NSETFS
'INT[GER' PARRAY Y NODE, HOSK) "REAL' TARRAY! riNGSK,KFg
PREGIN' YINTEGER' 1.d, Vv, K, L0 "wEALY 1L, N,0,0,Q iR,eS1, T}
tREALY TARRAY! STA4e12+4=00RTY; v

fpORY IEET YSTEPY 2 YUNTILY 114+4=QORT 1DV e BEGINY
sLId:=%; SiI+13:=00 'FHD';
Vi=Ug

PFOR' sl PSTEPY 1 TUNTILY 642%Q0RT tput

VREGIHY 'FOR' Jr=q4 'STEP' 1 TUNTILY HNSKEY *hO?

CPEY ONODE(Ze1)=H0sK ) PTHEL!

TREGINY $[2%1=11:=COS(ANGSKIJII*0,017453%);
S{2*%1):=SINCANGSK{JI*0,U174533) )

VeiEVel, YOUTUY SeLAB;

PEND '

SKLAbB: TEHUD':

VIFY OV O THLY O 'THENW!

VBEGIN' 'FOR' f:s1 'STEP' 1 TUNTILY A+2%Q0RT ‘DU

‘REGIN'Y SEPE AT

VEOR' JaE1 'StTept 1 tuwnTILY T T0OY

"BEGIN' Li=2wls

MesKELK=1,L=113 ilg=KErK=1,L1;

0:=KELKeL=1); Pr=keElx,Ll;

Q1:=STK=T1%1+5TKI%0; ReESTE=T1I*U+STK 1P

S1:==S LK) #H+S5Lk=11%0) Ti==STpl*Nesix-11%p;

KELK“1:L"1]8=KEEL—1:K-1]:=Q1*S[L—1]*R*SIL]:

KELK=1,L):eKE[L,K-1):2-QTwSTLI+RnSTL~1])

KELK, L=1):aKE[L=1,K)i=81+50L=11+T*slLY:

KELK 1LY isRElL, k) sm=8TwglLleToslL=11")

YEND'

'END';

YEND' S

VEND' OF PRUCEDURE SKEWEDCONS

"PRUCEDUKE ! SKEULDAD(HSETF.NrHOSK.AHGSK:HSKEU.OP);
"WALUE' NSETF,NSKFW, 0P PINTEGER! NSFTF.NSKEU'QP:
VINTEGER' TARRAY' NOSK: 'REAL' PARRAY' 9, ALIGSKS
‘BE(JIN'_'IHTEGER‘ I,J: 'REAL' SH,CH,H,N;
VEORY [pEq 'STEP' 4 TUNTILY HOKET o
"BEGIN' SN:GSIN(AHGSKEI1*0.0174?3331
CH!:CUS(AHGSK[I]*0.017A533)3 '

"FOR' J:=1 'STEP' 1 FUNTILY NSETFE "hO

YREGIN? H::Q[Z*NOSK[IJ—1;J]:

N;:u[)*NOSK[I]:J]: ,
Q[Z*NOSK[I]_1,J];:CH*H+OP*SN*§;
Q[Z*HOSK[I).J]:=”OP*SH*”*C”'“'

VEND'; )
YEND';
'END' OF PRUCEDURF SKEWLOADI
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ypRUCEDUREY FEIWPHT(C, ADD XA e YY s HFREE, N 0F, HGETF , KONE S NSPEC,HSETES
ULX Y LY L LERT  00E AT 5

VWALUE! HFREE, NLONE, HSETE  WoPEC, HFLENT  USETFS, HUAT;

PINTEGER! NERUE S NUODE , NSETF, HSPEC, NELFNUT SETES s NHAT

VINTEGER' TARRAY' ADD,KODE,LUDE]  "REALY TarnAY' XX, vY, ULK, VLY, 0

IREGINT TINTEGERY 14,15 . LY 6

YFOR' 1480 PSTrRY 2 TUNTILY UFREE 'O0V Adp[1):50;

vpoR' 13E1 YSTERY 1 TUNTILY HUHOLE 'hOf
PEORY g8E1 YSTYERT 1 VONTILY HSETFS'D0r Xopi{prgle=0y
VFORY 1= YSTERY 1 tunTILY BLObE oo
PEOR' JpET STEPY 1 TUNMTILY BOLETES Dot
ULt ddseviYredre=0.07
PEORT Temq TSTeRt 4 TURTILY HHAT oot
PFORY Jgmq 'STEPY 1 'UuTILY o thovell,Jli=0.0;
VEOR T30 ' STER A tunT I dtlopt Too Thputn!
XKCT Y i=READIYY T eaREADS
VEND '/

PEORY T = STEP AV NTI L HELEET Y DUt v !
FEORYJ 1S PSTERP IV UNTI L 742w URT DO
NODELT dJiaREADS
TEND Y
NSPEC:=READ]
VEOR' 1ie1 'STERY 4 'yNTILY HSPEC b
TREGIN!
Ji=READI CODELS,H1tsREADS DL s=iEADD VLY Tl r=REALS
VEND Y
PCOMMENT! THE HuDp HUNRER HUST LE SPReTFTED ALOGG UTTH
THE cuDpDpS OF THE HODIEY
NEWLINE () d URTTETEXTC (P HUDALSPUTLTRDATATY 1o
NEWLINE(E):SPAct(a);URITETEKT<'(!HODE!)');gvAcE(S);
WRITETEXT (t (' X%CO0RDYY 1D SPACE(SY 1URTTETEXT (MU YECNORD ) ")
SPACE(S);NRITETEXT('('TYPE')');SPACE(?)F
WRITETEXT('('xnblgp‘)'):SPACE(&)}”P]TFTEKT('('Y"DISD')');
NEWLINE(?):svgcu(aa>:uulTnTtKT('(!nwnynAo->'>;
SPACE (5D URITETEXT(! (PORZLOAD! DY
VEORY Ti84 'Syee! 1 'unTiu! UHOLE UDTR
VREG ' HEWL[HU(M) sPACECSD)S
PRINT(I,3,00; SPACE(3)

PACE(?):

PRINTCYYITT 043 S .
1); SPACE(2)i
i
H

§
PRINT(KOnELT
]

VEND ! ; |
NEWLINE(u);HRITKTFXT(!('FLEHEHTuDATA’)'?;”E“Llﬂh(?)’
WRITETEXT (1 ¢ ' ELERERT T 1) i sPACE (1R+1Twn T
WRITETEXT (1 (T H0LALZCONIECTIVIS) 1) S :
SPACE(T/#5%«Q0RT) ] WRITETEAT (N CHHATERTAL K

VPURY wrmq tsrEP? 1 tunTILT HELERT Tae

YREGIHT  yeuLInb 1)
PRINT(W;3,0)1 (6):
'FUR‘(J;;%OEéTiiéns Tier 7epeoonT 1o
BEGIHY  pRIHT (HONELH, 130003

SPALE(2)

"END';

YEND '

VEND' OF pROCEDURE FETIPUT!
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PPRUCEDURE T FEASSEHRLY CHELENT /K XX, ¥, DTy, O0ECo T, ADD  HERFF

AUX SEEWED PG HEY, USETF - ne. . !
1VALVE! HELEHT,HFnEE,NSKEU.HSkT??COM"“'L" SETFrANGSK, HNSY) S
'lNTEGER' NELENT e FREE,HSKEYU HSETFE: TREALY DETYS
'REAL"ARRAY'K:'A”/‘(.YYICIT“.,AHQSK;IIHTFGEL” !"‘QRA“I' NODE,ARD, E0 K
IPROCEDUREY AUXsSHEWEDCOH; 55
rgEGINY VINTEGERT T.d,us2,VySuB1 5062, 8007,

VREALY TARRAYD L{43371:921,KEQ1:12,1:120 00120607840
IFUR' I;:—") 'STLP? 1 'UHTIL! 0 PN “T!.'\].:L"}.SSS‘;S;:;
N[11&113”[1/3]:?”r2f3]:=”[2:é]x=HFK:?1:=UE§.ﬁ]:=0,SS
W["IQJ:=w[2l2]!:Ur:Sl:j]!:“’[/slfp]::U{’;,f‘]::'”’(,'j]::\)'U:
w{“;d):m,?[fu}]:v"«\JrS,B)::t!(t;,(',]:x:u,'_a,“hua”‘./,,,;];31.U,
CPURT TgEq 'STEPY 1 tunTILY AbDIHFRTREY "oor KELTe=0_ 03
PEORY Zg=1 'STCE 1 tanTiy dpitnr tooe

tpEGINY

PPOR'T3ET 'STEpt o4 tHarilt 14 oot

VEORY 3BT YSTERT O tunTIut 12 oot mepl,a):=0.04

PCUMMENTE THE LUOp FOR Tk PLRER OF [oT pYa 1S CORSTRUCTENS
VFOR' Ugp=1 'STER! 1 tunTILt 3 oroo!

"REGIN!

AUX(W[U(Z];U[U,JJ.W[”,L]:li,l\':(,Y‘(,ivFTJ,Hu‘)gj,';};

VEOR! Ji=1 'SsTEpY 2 orullrrLt 11 rant

PFORY Jemd PSTEPY 2 vUllTrL?r 11 0t

HEGIH!
KE[J:1]1=KE[I.JJ:=KE[1,JJ*UEH,1)w(u{1,J]*(c{wnnn51,71,11*3(1,I1+
C[NUDE(Z:T]ISJwL[XIIJ)+h§3,o]*(ctunDFr?r?i.Jl*“flfIJ+C[H0HFfZ.7Trn1*
BLS 11 %pETIw0. SaTHln0DENZ, 73]
KE[JII+11:¢KE[I*1.JJESKE[1+7rJ]*UfH:11*(”[1'J]*<C[MHDF[2,71'2]a
Blzll+1JWC(HQDE[Z;7]:3]*“[3,I+1J)+B{7,J]*(C[H00Vf1r?].SJwE[R,1+1]#
C[NUDE[Z,TJ,éij[ﬂ,I¢1]))WDETJ*U.5*TH(M“”E[J:7J]:

PENDYS

VEQRY Ja=me tSTER' 2 'UbTIL! 17 !

VEYRY ly=d 'STEp! 2 TUNTILY 12 1007

PBEGIN!
KE[JrI]:FKE[I,JJ::KE[I.J]»U[”,1]w(Ht?.JE*(C[HODE[Z:T1:A]wE[Z,1]*
C[NUDE[Z,?],SJwL[j,IJ)+R[3;JJ*(C§HODFFZ:?],S]*UEZ,I]*C[NODFfZ,?],ml*
B[Sc1]))*DETJwO.S*TH[UOUE[Z;73]:

PLpY [mq1p ‘YreENY 'GoTol Lo YpLsr!
KE[JII*1]:=KE[1*1,J]S:KEZI+1,J]*U{H:11*(n[2rJ]*EC[HﬂﬁE[Z,7]:Z]a
8[1,!+1J+c{uuugcz,7],5]*n[3,1+1J)+n{1,J]~(c{HQDu[z.?],Slwn{«,1+1]+
CINUDELZ 7Y 0wl 1,Iw1)))wDETJ*O.G*THfH“DEfﬁtfj]?

Lo, - TENDY,

'END';
'1F'N3Keuyugvo-THFN'gxgugncuu(z,unnE,Auﬂ?;,nnix{USKru,KF,uqFTr):
VCUMMENTE ASSENLLY OF OVERALL STIFFRTLS OATHTX AS A

OHEmDIlpHSToNAL ARRAYS

b2 1STEPY 4 tONTILY O 1DOY

VEOR' gymq 'STep! 1 TunTIt e tear
"FOR' vimi,0 'po!
PREGIN'  SUBT b OnEL2, 1)=2=T1i

GUBR s mlORE(Z,03%2=Yi
V1R t;ugqs?t?:ﬂ;ﬂ,’?g[{n;;é;;:'UUTU' L AlAS
K[ADD[SUU1]nguui+guh2];=K[AOD[S?311:§HTWZi::?}*hﬁfl*7~1'J*7'V1:
LABA: 11E1 sl 'p7! sus tTHEH GOTH ARt
K[ADl')[SkIJ;i;',]:{s;;ib*:;Lug\] ::K[;\Uh[sl}rk’\]r3|l!s3*,&‘.i)i DYPKE[ VWD, J* 2=V ]
LABES 1ENpY S
'END',‘
VEND! OF pRUCEpURE FEASSENHBLYS

TFORY |

—
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PRUCEDURET QF&ASRE“HLVéQEFt”T:K,YX:VV,UETJ:WOUE,CpTH,AhD,MFRFF:
MKy SEEUE DU, HEKE T, HGETE , Al HOSK) s

LVALUE! ”ELE”T,”FKEE,HSKEu,ﬁgtgygncu dHSYE D IGETE  ANGSK HOSK) ;
PREAL'VARRAY KL KX VY Oy THARRSK TINTEGERT CARRAYY NODEADD, HOSK
FPROCEDUREY QUK sKEYEDCOYL, » AR
PREQINY - VIHTEGERY T/d, U002,V SURT, 5ULD, SURT,
IREALYT TARRAY! bEAe3 10107 KEL1:16, 1146301001
'FUR'I::q'STE”"]‘““TIL'A,%)‘)"{,E(,IH’H{],Q]::\
VENDD

:“U[jr?)z‘”JFZ,Z] =S, ]em=0_ 577350260409
WEE 11 mU 3,2 mtrh, T e=!lpa, 2] =0 5773502460139
PFURT 1384 YSTEPY 4 TUNTILY Adp(HrpEry 'Hov KID1i=0_0;

PEORY ZpE4 'STERY 4 TUNTILY HELLEDT 'hot

TREGINT

VEOR'Y T g vuTERY 4 UpTILy Ao rhoy

VEORY gtEt 'STEPT 1 Tuntlet Yo ‘oo SN EETURYH

VCOMMENT T THE LuGp FOR THE HUBER of 1uT pTs 19 CONSTRUCTED
VEOR' Ugsq 'STEPY 1 'unTiLt 4 rbO?

"TBEGIN!

QAUX CWLU, 4 Y UL, 20, 6 XX Y DETI MO, 7Y

PFURY Jy=1 rsTERPY 7 10HTILY 15 1p0?

PRURY Jymd STEPT 2 tUNTILY 15 100!

TBEGIN!
KE(J:IJ;HKEEI'J]::KE[l)JJ*U[“IEI*U{U,A]*(HCW,JJ*(C[NODEKZ,OJ,11*H[1
CLNUDELZ;9J.SlﬁL[w,11)+n€3.a1w<ctnongzzo0],%1*UL1,11+ctNﬂnFlz,a1,n1w
L3 1 1)) wpETJwTitluoDELZ, "3
KE[J!I+WJ:EKEEI*1.J]:uKE?1+1,J]+U[n.71wwtu,djw(ﬂ[1.J}*(c{nnuﬁgy,qj,.
Blécl+1J*CtuﬂuE[Z,Ollﬁl*ﬁ{3.1+1J)+n{1,J1*<CEHuDE[z,0},Sl*n[E,r+1]+
CINUDELZ,§ 7,630 [, 14130 )W DETIWTHINODETZ, 01 TS

VEHDY;

VEORY Jy=a 18TEPr 2 TURTIL! 10 1p0°*

VFORY Jgma tSTEpr 2 PUHTILY 10 pot

tBEGIN'
KE[J:I];PKE[I.J3:nKE[1,J3*UiUr33*U[“,A]*(n[?cJJ*<CCNODE[Z,O],A]~H[2
CLNUDELZ,OJ,Sl*ulw.1J>+n[3;JJw(Ctﬂnbrrz.9],3}*u€2,I1+ccnnnetz,ol.AJ~
BLS,1 1)) wpETIwrHILODELZ,/ "1

VIFY Im1e 'THENY 1G0T LG YELSH!
KELJ,I+13;=KE[1+1,J];nKEI1+W,JJ+U[U.?]*H[H,A¥*(@f2oJl*(CfnnUEEz,91,2
8[1,1+1JwC[HﬂDE[Z'QJ,Sjwﬂ[S,I+1])+B[3'JJ*(C[NUDt[Z,°],3]*”[7,1¢1]+
C[NUDELZ;9],é]wL[3:I*1]))*DETJ*TH{NUDF[210135

Lo:  TEND'S
YEND'
'IF'NsktUINE!OlTHFN'SKEUE[)CUH(Z,H(H)F..f‘\HGS.“(,hﬂSKINSKFTU'KE'“RETF33
PCOMMENTY ASSENLLY OF OVERALL STIREHESS MATFTA AS A
OHEmDIHENSTONAL ARAY S
PEOR' pgmq 'STER! 1 'ounTIL' 8 oot
"FOR' ggmq 'STER! 1 TunTIL! g rbo?
"FORY vymrt,0 'pu!
TBEGIN'  SUBYp=lOnELZ, 1I%2=11
sUUZ::HOnE[Z.J]*z-v;
Stpd ahO;_{Z,I]*2!
'1f? SUNM')?,Tt stJ:x; VruEND TGUTON LARAE
K[ADD(SUU1]-SUn1+gUbZ]g=ﬁ[ADD[SUD1]"g”“1+S”L“]*KE[I*2'1'J*E‘VW’
LABAY 'IFY sUp3 'iT' SUBC PTHEN' '6OTOY LaABbd . )
K[ADD[SU{SSJHSUHE}*RUUZ}!'—'"-L'\DD[SU[}'."]FSHHD.‘S;H)EJ KE[T#D,Jd®l=\1),
LABBy 1ENDI
"END ! .
IEND' OF PRUCEDURF QFEflSSE”hLY;

thel s b )y
13 )e=a 0y

€
¢
¢
.
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PPROCEDURE! FUHUSTRUUSETE MO NE P LEET e XA VY DET a0, T 0, allK e 0l
WALUE! HSETF UnO0E NELENT: "PHTRGERY GOETE JHIVDE, by LpHT; h
tREAL’ ETd PIHTEGERY "AqiAYY linp(: : -
tREAL! VARRAY AL YY s, Cotit PPROCEDURE Y A, QAUY
tpeGINY TCONBENTY CALCULATIOH OF 3TRATHS gan STRESSFS AT finbA|
POTUTS 1Y AVERAGTHA cOUTRIGUTIONS fRral ’
ADJACEDT ULinElys:
VINTEGERY CUTA,CHy2, YV, 2,00, 4;
PREALY STOGXR Yy STOXY s XYY rxY, erul, g1 S1612, 810 2 b0, 00, 800
PREALY TARRAVY 5To0155), i s0+0%00nT, 4002w 0T, 00 30 g1 0 4war T
VIFYQORT=OMTHE N "EGT
VEOR'VEEIYSTEP I RTI L et
VEORTZ =2 STEP A 0TI v A DoV, 27y=" 03
W['lIZJ:”'H’[ZI:”]z=”r5:"*]3=1.0,‘
uH,dJ==\‘j[4,3]l:w{5,3]zzv;lr_s,,',]::u{(,,ﬁ3:;';(,;,@]::4_3_5,
TEND' VELSE! THEGIMY

W["f'l]:-':'.,}[‘l,2]gz;xJ;E,BJ::H[/“'!323‘,{5,?]::,,{3,1]::_1.n:
W[OIZJ3:”:;'[8,23gﬁ'-JrS,'i]!:!;[7,1:’,;3.0:

MLE 1103, Ty murs, 2y 06, 2)smUrée, M emie?, 27151 Uy
VEND';

QFUR' V;:’) !STE;)I 1 TyuTILY HSETF VDO

"BEGINT

VIETPRINCEAVTHER' 1 6OTOVLINED

NEWLINE(5Y;SpaLE (20);
WRITETEXT (P (P STRATHS' ) V)5 SPACECAT)
WRITETEXT (V¢ T ERSES YY)y HEULINC (1)
WRITETEXT (V¢ qoREusiExx Y0 spacr (1)
leTETExT('('EY\,")‘),‘ SP/V\CE("I(:’);
WRITETEXT (1 (LY !y 1)y sPAcE (210
WRITETEXT (1 (TS 0l =Xyt S 160 Amy it a S il XY P 1)y
PGUTUY LINEG:

LINES: HEWLTHE(Sy: SPACE(10)3
WRITETEXT (1 (P pRINCTPALASTRATHGY)
WRITETEXT (I (' pRINEIPALASTRESSES'
WRITLTEXT('('HUUEH%%E11KHLZLEﬁxg
WRITETENX NN ARNDH SP»'\CE(;A),‘ - | «
“RITLTEX;E'é'LIuHZ LS 1GLA RURAT R L 1 RRE R TRECT IO
AXRARSTOHA EFF?ITYS
LINEG: VFURY Demq 1sTEpr & 'UHTILY miane 'oo!

TREG) ! ©10KK1msTayYizgloky e y=pyy =iy mtyTas=t.0:

VEOR' zemq rSTERY 1 TUNTILY frLent oo
YREG] !

"FOR' CNTq =9 'STtepR' 1
TREGINY PIF' OLETZ.CuT?
VREGIN!

"TEYQORTEQ THEN! .
AUKCWICNTY, 27, ulCoTl a3y HEenTl dT i, Y
VELSE?® | o
QAUX(uLcHT1.1J.u[nM71,23.u.Ax,Yv,nF1J.wTJE.:>{‘
VpoRe Jp=1 teTRD! 4 vpnrIr' 5o tno

LEul!
STRrd Y. =(B1ds1)
+§:,(_),::]ﬂ'&[mﬂm{[}{:{"]*?—-‘l;
He[d,ﬁ]*‘?[!-J\)'Ji‘[iffil*?~1'

-~ N
.
-
-

'):
Y')s
ety qi ACECTO)

YHUTILY ('1-9-?*0(-[27 tpet
T=y YTHLEE

L0 Ty HUDE 7))
wo [1LOUET700 Y2 =g M 1B D 21w ENODETZ, 130, V]

v e Ly, n1eQLHODREL72,2) %2,V
\I\&\\[_],4.]*({[)4’(;)4);-[7_'3‘1*)’\’1




LU T I IR OD L w2 m v e b Dy B QU0 L7, 6T %2, V)
MU TERP ARG LRV eSS EEEE NI IR SRR E NI TN S 205 FYIa
RO T lNODETZ, 0Tl , Y800 120* 0T uaprlZ,61%2,v1);
PTFPQORT=0 P THEN!
STRIYI tmSTRUJVRTHILODELZ, 7))
IELSEI
STRUJT:=(sTil ]
FUId 13T %0 HTDE[2 7040 =1, v B 00 16 I%QINONE(Z, 712, V]
e Dd 10 Txaliianllyz,0Yer=1,yl+ptd 10 valuvonel 7,83 wn, V1) #
TuinOpril,old;
tp by
JIERUPELZ, 7+ 2wl ]}
STGRY e =S RAR«CCTS, 1Y agTo i1 i ld, 2 xSTRI2I+CI0, 0 «sT 5]
BTNV rESTAYY (LT, ST m i+ lu, b asTRI2I+CTIY, DT qTRIT]
GLUKY  ESTERY+ 0TS BTunTor 1l (), 5 d*3TRIPI+CIY, 0)%sTRTT]
EXnsmfEXAesTRITY
EYYtmEYY+STRIZ2TS
EXY o =EXY+STRIS)S
CNTZs=CNT2+%
TEND
VENDTY;
TEND Y ; ‘
STGXX3=STGXA/CNT2:  SygYYeadloYYyouT2y StaaYr=51oXY oNT2;
EXX3SEXX/CHTR;  EvY:spYY/ouT2; FXY e X'/ cutr?;
NEWLINECY)
PRINT(U;£,0);
PIFYPRING=ATHER Y GOTO LINET
PRINT(EXX,0,4):
PRINTCEYY,Q,4)
PRINT(EXY,Q,%): SpACE(10),
PRINT(SIGYX, 0,402
PRINT(SIGYY 0,40
PRINT(STUXY 10,407
TGUTUYLINES; ,
LINE?:E12;=(([XKHvYY)¢2+(EXY)T2)¢O,S:
EVISCEXXH+EYY) /2+E12:
E2i=(EXX+EYY)/2nE2: o
SIGT¢s=C((SIGYX+STGYY) /2242 (5TuXYYP2)iany
SIGT 1= (STGXX*sILuYy )/ Z+s1012)

Gz DL I ENAY 2~81G123 . i ~
?§FfAﬂgiggé;Yﬁéxg;;;<(sIGXY,B,éiS).Tﬁ,ngygffja.ucktqb.
DN (ARCTANCZwS 1 GuY/ (5167 Y=8T6XR)I) TR 007
SEFF1=ABS(SIGI=5T02)/1.41421550
PRINT(EV Q,n):

PRINT(EL,0,0);
PRINT(ETZ,0s%):5PrCECADYS
PRINT(SIGY,0,4):
PRINTCSIG2,0,4) 0
PRINT(S1G12,0,4)
PRINT(DN,Q,4):
pRINT(SEFF;OH’»):’
LINEB: Y END Y

!ENDI;

PEND' OF pRUCEDURE FELGSTRS



1pRUCEDUREY FULELSTRUISETF  a L LunT, inae, X3, ’ iy oy
IVALUE! HSETF,bLLI1T; TR mapry e T B A A
tREALY DETJS  rIHYEGERY TARKAYY Hnpl; '
vRE5L','TQﬁﬁﬁ{ ﬁ%,YYou.C;TH; PRROCED MY AU, QALY
:?E?ézﬁk'hsféegj CALCULATIUH OF viCrenT STEESSES Atin STRATUS:
'REAL! S%GXX'5lbyv’SIGXY'EXK,ﬁYV.FxY,SICW-Si62t51617.F1:F?.E1ﬁ.ﬁu,§‘
PREALY TARRAYY STel1133,001:3,1 01044007 o R
PFOR' VIRET PSTERY 1 TunTILY HSETE oy -
TpEGN!
VIFYPRINC=1 T THEL v Ty LIREY
NEWLINE(DY s SPALE (20);
WRITETEXT (P CYSTRATHS Y 1) sPACE(A™Y
WRITETEXT (P (VSTRERSES YY) BEULINE (1)
WRITETEXTCV (ML Teunstxx Y yd Spicriaong
WRITETEXT (M (T EYY Iy 1)) gPACECTM)
WRITETEXYCH O EXY Y7 SPACEGIT) S
WRITtTEXT('('g1unﬂan%%ZﬂuSlGLA-YQ%ZﬂHVﬁIGHL YT
1GOTUYLINESS
LINEY s HEWLINESy; SpaCh1h) s
WRITETEXTCN CPPRINCIPALESTRATIIST I Y SpAaCE i)
WRITETEXT(V (" pRINCIPALYUSTRESSES Y 'Y nptilye 042
leTETEXT('(‘EL[T%%%E11%ZZ%ZK%%LﬁfRE')'): SrACECTIN)
WRITETEXT (M (T L2ty )y gPACECZT)
WRITETEXT (T ('sTully 4R%7alns1Glia Ney e ST gita 1 LARNAYIDTRPECT IO
ARHBALSTOIA EFFY) Ty
LINES: ' FORY Zy=7 esTEpr 1 vUbiTILh nitlrnT toof
TBEGIN
STGXK:=Sl0yYY:SG10AY  sEiearyspiY =0 04
PIFYQORT=0YTHEN!
AUK (AL 333300, 3538, 0,350, e XX, VY, DETS 0nEs 2
.FLSE!
“Aux<o_U,o,O,UrXX.YY,DFTJ.“”hE:Z)7
VEURY Jp=1 TSTEP! (EERITIE SR S
"WEGLIN'
STR[JJ,=(h[J'?J«u[uoutr7,11*:~1.V}+H£J:a1*ﬁ[“ﬂhFiz,11*2r
R T O LR PR MR NP LA A S A A
Pl R wQENODELZ 3 wont i Ve b Ly o dedLH0 0T Lz, S 1w 2 V]
L0y ,7]ﬁ(J[NO:'E[LI[‘]*?"1 '\;]4.i‘[J':IT*Q[:‘”)‘”‘(ZJI:]*pll\f]
-HS[Jp(‘)]*Q[HODE[Z'SJW;’"" AL [J'('Q]*u““””;[7."51*8'\’1
+htu,11]*u[u0nEEZ,oJ*>-1.wl*H[J,121*u{hnurtz.01*2,v]);

PIFYQORT=0 THEH!
STR{J]:1=5TRIJIwTHINODELZ,T]])
PELSE?
STRIVI=(STRLJI
YRS R .
+b[J,1<J*0[HODt{erJ*2—1:Vi*%[J,1
wip(hoptlz, 0138
tenbrg -
e2liOnNE 4 T wl(iON H
Jé;i_;g;;i‘ig;éxx*(‘l,[j,’J’:a.gT',.zl"l}¢C[\I,RJ*$Tszr?]+(LEJ ,.’f1w§T‘{['"3
SIbYV:*SlGYV*(L[J,ﬁ}wSTUf1]*C[{:4J*§TRT?]*CEJ,gT*QTRLK
SIUXV{=SIGXV*(C[J;53*§TRT1I*Cfd;sl*aer21+CzJ,nl*gTQ[3‘
EXX::EXX+57R[13:
IZYY::EYY+ST$:‘[2];

'

txY::EXY+STV[3],

<

QUEL4r?I* ) r‘:’1"5‘f.Jr"'/‘]'(lEZJ(J(‘Frlgﬂ»*IZ.\H
Sleaiuounkl2 ., 01w )



NEWLINECT)

PRINT(Z¢2,0)1i
,IF'pRINC=1'TnEn"GOTQ'LXNE?;
pRINT(EXX:O:4)7

PRINT(EYY,0rb);

PRINTCEXY,0,4); SpAaCE(10),;
PRINT(SIGXX 0,465

PRINT(SIGYY 0,403

PRINT(SIGXY,Q, 403

1GUTOUYLIHEL

LINECS B2 m((EXAm YY) e+ (EXT) 220400y
EV s CEXX+EYY)/2+E4 2

F2i= (CEXX+EYY)/2-E12;
5;612;=(((sIGxX+51GYY>/H)TR*(slhxv)Tf\+ﬁ.G:
S1GT1=(SIoXA®sILYV)/2es1012:

§1G¢; e (STOXR*SsILYV)/2-S1012,
'lF'ABS(SIGYY~S1GyX)<(sIGMY*H/u&?\'TUFh'ﬂm::“u.J'ELQF‘
DN:=(ARCTAN(Z*SIGXY/(3167Y~sluxx>>)*‘R.°4?89:
SEFFi=ABS(SIG=~5T102)/1 45421555

PR!NT(E""O";*);

PRINTCEL 0, 4);

PRINTCE12,0s4)sSPACECIYS

PRINTC(SIGT,0,4) 3

PRINT(SIG2,0¢4):

PRINT(SIG12,0,43

PRINT (DN, (O, %)

PRINT(SEFF,Vrn);

LINEG:'EHDY,

TEND'

TEND® OF PRUCEDURE FEELSTHY

VPRUCEDURE T ADDARRAY CHELEIT HIOVE, ADD HUDED S
VINTEGER' NELEMT, HNODE:
VINTEGER' TARRAY' NODY, ADDS
PREGIN' 'INTEGER' W, CH, T, ADDTLIMS
PEURY wimq VsTEP' 1 TUNTILY HELERT TR
! [‘b NI v =l . -
PEE %?QR?O?S£211%+EP‘ 4 PUNT L 6+2%a0RT YDhot
P1g! HODE[HW 1Y LT CH PTHAN! nn:=n0p£[¥:l]:
PEURY Ti=1 'STEPT PUNTIL! A+$*QONT DO
PBEGIN' P =NUDE[H TT=Cite
'?t?igUTﬁagft:'AUDERHRE[H.I]w?i'THFH'ADD[NooE[w,1]*2],zADDT
'E”D':
'END’;
"FORY Jimq1 'STEP' 1 runTIL! KHODE N
"BEGIN' CHga2xAbDI2*1 ) Uy=2*l
ADDLid=1)3=ALD (W=2T+CH=T4
ALDLWYs=ANDLM=1]+CHi
YENDY
VEND' OF pRUCENURF ADDARKAYI




- 375 -

PpROCEDURL Y RUSIDHALCK, Gynbdlyy FRER, iSFTE)
PWALUE?Y HFREE, NUEYF;
PINTEGERYHFREE,LSETF;

PINTEGER! TARRAYTD ADD;

tREALY TARRAYY K
tREGIHTY T INTEGEY

P o
!
PARRAYE F L4 s Hrrbn,

PEVEFAPR IS P VN B ol S ol I

;
I
: 1:hSETEY,
PPOR' Lo ST 1 "unTILt HEREER rhos
PRORY J3=1 YSTERY 1 TunTyt BSETE rior Fhyp,aliSUL05
VEORY 2= YSTEPY 1 YURTILY USETFE vhnoo
PEORY 1 g=Eq YSTeet 1 tunTiL! HEREER Do

PREGIIY Cleslaabbrld+anbITI=T]+1]

VFURY J3sQCD vSTEPY vuuTILy LFRUEE oDy

PEEGINY PLEY g tLer Do THEN!

VREGINY ple=ly o D
Feoyur LA

tERDY tELSE!

PEEGINY CyrsdmabDrd IeApDTy="d+1)

VIFe G VLTl aTHENY v 6O o LALGS

plesy;  bJr=la

VEND ' |

LABY: FLIL,ZDi=mfFil,20wuld s d=KLALDIDIT=RIknd ]

LABZ: TENDY;

VEND T

NEWLINE Ch) g URITETEAT (Y CPRESTDUALCFORCES ) V)

NEWLIME C2) 3 SPACE () URTTUTEXTCHCrnDEYY ') SPACE(?)

WRITETEXT(Y("xI) 1y  spACECIE) HRYTETFATC YY) Py iapACr(in)

WRITETEXT (VY C HGRE'Y ") SPAcu(?>:URITETpr('(YX‘>'):gpACF(17)

WRITETEXT('('Y')‘):SPACE(WO)iHRITHTFXT('('H“DE')')?quCF(7))

uRlTETExT<v(';‘y!,;sPAcE(q2>;UR1TﬂTExT(‘('Y')'): MEVILINFE(2) 3

PFOR' T3E] 'STEPY 1 TONTIL' HLETE PO

AR YR

‘FUR'J:=0'STEpv5!nn71L'(upnﬁu/2>~1'hn-'LEn;v'

VEUK' 7= s TEp g tunTiLr 3ot e T

PRV Zed>UFREL /2 THENT P GUTO LGS

PRINT<2*J,A,O>:rR1NT<r[(2+J>*R-1,xl,ﬁ,ﬂ)t

PRINTCFLCz4d)w2:007,005)0

VENDY OF 2 Logpi  NEVLINE(227

VENDY OF g LOOP; 1ot

YEND

PENDY OF pRUCEDURE RESTDUALY

=4
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tPRUCEDUREY  HHUY (NG HSETF, A ADD, 1,0, 0ASE, tHICK,NY, RO, GRY, AL, HS) |
IVALUE!Y NG HSETF,CASE: "ITuTEGER! WG ISFTE, CASErGRT : :
PREALY THICK, VINTEGEIT "ARRAYY ADD, HAL NS PREAL' "ARRAY ! K, Qu A0 ALY
PBEGINY TCOHIENTY MODIEYCATION UF OVERALL STUFFUESS MATRIX FOR THE

MIKED HubE CASE,u=#nntER OF CRACK TIPS )
PINTEGERY 140, CuDeZ,S00,0sR, V1A

PREAL'TALKAR, SHL,ONSHU,GpYL KA
PARRAY T KV rpo0e Viprpfe d Ko UV s amipupinng 1 4%GRT+ELDOET,
FIDYV e 2% ORT Vi ELDOFY, FL1:0Ln0OF , 13527

PEORY Te=1 YSTERY 1 "UNTILY ELDUF«NTIp '

PFORT )i YSTEPY 1 TUNTILY bxGHT+ELDOFE "po? KClr1,4Y:=0.0;
PYE:=5,14159005353¢8;

MUs=ALZ] Cr=0.5«AlT1/7(1«Al2));

3
NEWLINE ()¢
WRITETEXT (VP PROCFDUREZOIETAREGIIS ) 1Y s hEULINECT)
WRITETEXT (P THISYPROCEDRENIUDIFTES T HFLOVLRALLASTIFENESSXHATRIX
CFORAIIXEp%IOpESFRACTURE (= WUEREREOF o PACKLTTPSAPRESENT 1) 1)
TROR' 11 PSTERP T gNTIL NT IR DO
tpEuIne
MEWLINE C3) s HRITETEXT O (P DETATLSE0Fn TIRuli bR =% ") ) s
PRINT(14¢,0) s HEULINEC2Y: SPACECTD):
NRlTkTEXT('('ANGLF%OF%TIPxTuﬁ+vtﬁx~&x1gﬁugGy=g')'); BRINTCALLTIY, 0,40
NEWLINECT) 3 spaCE(12); '
wRITETExT('('uuuﬂrRZDr%HODES%UNZCnnczpLEHENszx')-),
PRENT(NIL1Y /3, 0)inEWULINELTY T SPACE(2T):
WRITETEXT (' (' RADIUSAOFYCORESELENENTRAT ) ")
PRINTCROLLIY 0,401
NEWLINECT ) SpACE(S):
“RITL‘EXT('('HnoEzNUHnFHZSTARTIHGQTchcuquluTEuFAcpxzzn).),
PRINT(NST1Y,3.,0):
!ENUO;
NEWLITE C3) s URITUTEXT (P (M HupULUSANFZRIGIDTTYGB=L") Py P lUT (R, 0,6):
NEWLIME(W):WRITETFXT('('PHISSUN'SQRATIH,ansz')');
PRINT (MU, Q,4);
NEWLINE(2) :
”RITETEXT('('1-D%K-ARRAYLLEHGTHnnAHDxnkKADbEHFREE]z:z')'),
PRINT (BAND, 6,00 F PRINTCADDIHFRLED,10,0)] |
CCOMMENT! NS 15 THE Hupk HUNBER STARTIHG THi  CORE;
PIEY CASE=Q 'THEN® KApy=s(3=A[21)/Ci*AT2D)
PELSEY KApe=i~bwAl2 )
PEOR'CpET STEP I UNTIL HTIR PO
"REGIN
ALLC i =AL{Cle(PYE/180) s 51
CORKCKT, RO, CrKAP) S o
VFOR' 23mq 'SYEP' 1 'umTIL' HaLCT TR0
"BEGINT
TA:=-PYE+2*(z-ﬂ)*PYE/(H1[C]uW):
FL1+4)12~R0LCT*STH(TAYS
FL1,2)32R0OCCTI*COS(TADS
Fr2¢2)1=F(3,11:=0.04
E[ZIWJ:=F{3,21:=1.O;
120
'FOR;J|=4'STEP'2'UMTIL‘ELD0F*1’DO’
"REGT !
Te=1+13

d=SIHCALICTY Coe=fOSCALLICTY S
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FLI, 130 =COKAP+T /24 (=101 1) COSCTaTA/2)

~C1/2)Y%CUSCTAR(I/2=2Y) ‘

) 2R3y eI T/ 2y 12 %Gy ;

F[J*W:1]:="(((KSP+I/2-(“1)TI)*SIH(I*TA/?) )

fC1/2YwSTHCTACI/D=P)))*RQLOITCT/2 ;

F[J;2]x=(((KAP-I/2~(~1)TI)*SIH(I«TA/;g e
_ +(I/E)wSIH(Tn*(I/?~?)))~R0[c]¢(!/£))/(2*6):

FLJ#],2) imClLKAP=1/2+(n1)a1)%c0S(1*TA/2)

LI/ 2w CUSCTA*CL/ 2= ) w R [ CI T/ 20/ (2%G)

[

PEND'J
FL‘*IJJZZF[L:'\)*O.STQ‘S; Fc/"-"-W!““F(LIZ‘]*U.STO,S;
FLS,1):i=mF5,1120.540.0; }-[5,?]::__;[5.’2]*()'5?0'31
VEUR Y =1 ' STEP "1V UHTIL Y ELROFETDOY
THEGINY
FI{2%2-1, Y s=3F[us T I*CH=FILW,2)%5N;
FLUZw2, 0 ar U e 1328 (0, 21w 0Ny
VENn Y
VEND' OF LOuUP 2
POUMMENT! (k221 = [ked + [AYTRAHIKI1ITAY:
VEOR' 7= STERP YT YUNTILYELDOF 0!
"REQIN! Si=/eLLnQF*(c=1)1
VFOR'WeztrsTepstrUgyiLr 2o
TRFEGIY PretebxtirCd;
PFURY D=1 ' STEP 1P UibrIL 2%t ic] 0!
'BEGIHY O,=1+2w¢Hs[C]=1)3
'FUR'J:=1'STEP‘1'HHT1L'2*H1rn]'mn'
"BEGIN Rezgvow(HSICTI=1)1
VIpYRPOYTHENYTLEGTHY
'IF'(H~0*1)>ADD[R1~ADD[R~1]
YTHENHY KAaT=0.0
PELGE" KaseKIADDIRI=H+0 1)
VEGDY 'FLSEY 'BEGINY
VIRt (D=R4T) > ADDTOT~ADD O]
PTHEH!Y KAe=0.0
VELSEY KAp=KLANDLOY=0*RY)
YEuD '
KC(Q,P]:?Kc[3,91*(p1[1.zl*KA*Fl(J.u1);

YENDTT;
VCLs, PYesKCIS s PY+RTIZ Y
TEnDY;
"END' 7
VCUMMENT! [K21]TRAN® = [KeTITAT:

PEOR' =] S TEP T UNTIL 4 [CT 00!
TREGIN'  prayelw(nsLol=T+u10C1)
'PUR'l;:1'STEP'1'”NTIL'ELDUF'DO'
PLEGTY Gr=leELDOE* (L) ’
'FOH'J:=1'STEP'q'UHTIL':«u1th'nﬂ
PBE 1! Rezd+2w(Hulvl=103
ol UR SIS L-R*ﬂ - ADUED1~Aﬁn[P—1]
VrHENY KA:=d.U ‘
VELSEY KA1=K[ADD[01~v+fJ: o
Kn{O;U]:SKC[U,UJ*(Kﬁ*FILJ,IJ3o
ELDYd;
"EHND YT
"END 'L
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vENDY C TIP COUHTER;
PCUMMENTY HOVING K22 LHTO (K11
V.:R'“O' 01001 4=0: HS[NTIU+1] HH3DL+1
TEOR' c-=1'§TLv'1'nNrIL TP Dy
TREGIN Ri=RsN1rC~ 11-
VFORY T em 1t STEP YA YUNTIL Awlip[CY DO
VREGINY  Oem]w2x(nS[CY1=1+11[C)y
i>l=-I*2*(!lS(C]~HS[1J"i{):' DTG, HSETFY:=QL0,NSETFY;
!"/\l))(O\c
De=AnD{Y=Apn{D=1147
CIFY T PLEY 0 YPTHEVTTREGINY ApDISYi=ADDIS=-1317
Hy=ij=1: YEunt
VELSETTREGINT ADU(S)e=ADDLS= 11+0;
Westle)y YEpY
'FDR'J;:AUD(S"1]+1’STEP'1'”HTIL'AD3[83‘DU'
VBEGINY  We=wsl; KIgTisKIUD
TELDY Y
TENDYT
2% (S (Cwe1)ansICIS*1i1lCY) 3
'FnR’I;=1'sTLP'1'J1TIL'P‘DU'
PREGIT sl e2x (g [Cr=T1+I%N11CYy:
4-~I+7*(p§[b]-HS[1} wpe2%10CY) S QUS,HerTF):=al0,NSETF
sEpehe 1 (CYs wr=ADDIOD;
0;=ADD[U]-AHD[U«1];
tIFEr 0 ¢V HEIY
"BEGTIY numl =ADD[S=11+0; Hy=tl=0;
'FUR'Z"'ADD[S 1J+1'STFPM:UHrrL',\n’Esl‘D“'
’RCGIH =l 2] TS RIANRRS T

¢ ADJUSTING rapD]  AND [Q7;

VE YELSFY

’Ukuli Li=0;

VROt ~u11u'sT}p'~1'UWTIL'“'D0'

PBEGTH VeeU+2w (S [II+HT0IT=1STam1 =111 0d=1 )

ye=pD+2xn1 U7
VIFt 0 <V 'THENTTREGTHY
ALDISYi=aDDIS=TT4U=D2 peEl=0;
Uis=ADD[S=T)+0" V*Z*(NS[J]"HS[J"13‘N1EJ-11):
'}OR'Z-—AhD[S 1]*1laTLP'?!UJT]L'ADn[S]‘DO'
YCEGILY ue=tety SVAREIAARE
ryF' oz =0 VIHEHY VUEGH!
u-—U¢v,d1r|], Jral+l;
J-=U+’~(H”[J] NSTJ 13=NaT4=11)y
PTEY g > uTIP PTHEN' 0320
Yeubts
PEND'z: 'aOTON TS
TEND
PEND Y
YENDY
J1 e YELHDYT
"END' C TIP COULTFR; , , .
VCUMMENT?Y [K71]t, (K223~ Allb [072 1 FORIED
P~-U Rosle (HIODE+T - ~N5 01 TH1):
"FOR' C‘-T’STP”'ﬁ'UNTIL‘HTIP Du'
"BEGN! pr=petC-11:
'F”R'I;=1'3TL"1 H“TlLvELuUF'Dﬂ'




- 379 -

tREGLEY! UsETwR+EDUF%(CmTy:
51202 (NgCT=HS[1Imp)y
ADDIOYi=geAbDlU=1]3 OTgL,0SETEY =0,03
el eELDOUE*{{=1);
VEORYJ =4 " STERP" 1P UNTIL 4l )t pn!
xk [ADDITUY=S+dle=ncllU, 000
tetip vy = P STERP Y Y UlTIL S=T D0t
KLADDLOY=S+y1:=0,0;
PRt r=d STERP T UL S RO
LLADDIUY=S+d) I AFIVERES R | R RE
vEuptls
VEND' ¢ CUUHTLRS
VEND' OF PRUCEDURp MLTS

VPRUCEDURL Y IHINTKLAND (NFREE T, AN ADDISY S
VINTEGER'GAND NFRFES
VINTEGER' VARRAY ' N4 /NS, ADD:
PBEGIN' VIUTEGERY 14VrC ProsbrRy
ReaVyempgallp. =0y HA703:=0; NSTHTIP+1T:=0b0DE+T;
PEOR'Ce=] U STER I P UNTIL TP DO
VREG) N
PEFORT ] =1 STEP Y UTIL AxllnLl)rnOY
"BEGIHY Orele2x (s (CI=1+1a0CYY
Or=ANDPIOT=ADDIU=T];
VLEY ] TLEY U Y THENY LANDy=BAHDe]
VELSEY ANDI=RAND+0;

yENDY ]

Ri=R+{1[C=111 ”:=2*(uS[C+1J~NS[C]-3*n1(Cl’i
PFORY o= 'sTLpeUpTIL Pt DY!

YEEGILH!Y

OtEle2* (HSIa)=14+3%H10C]) 3 N1=ANDL01~ADDTU=1T3
Visl+bwii10(C] ‘
VIFTOSV I THEN' BanDi=gAlib+y
PELSEY TBEGTH!
'F“ﬁ:j?iHTIU'STrP'Nﬁ'UNTIL’?'DO'
'HEGIN;" v;;v+2¥(H6[Jj+H1[J1—HS[J—1]—H1[J—1]);
Di=Dp+lwnt i
C1F YoV THE! PpEGIN' BAHDIZRAUDFU=DS
rquTO' 12 tennts
VENDYY
. :EHD'ﬁ
lzgotgféi(HS[C1-NS[11~u)+(ELDOF)*(C-1)+2*(NNODE+1_NS[1]_TH1);
BAHD::nANv+FLDUFw(ﬂ+(ELUOF/7)~0,5);
"END' OF ¢ LUOPI
VIFY AppHFREE] > NAAD THEN
UAHU::ADD[HFREE];
YEND' OF pROCEDURE HHHTKEANDS
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tPROCEDUREY CORKCKXT,RO,TIp,KAP):
TWALUE'T L
CINTEGER' TIP;
TREALT KAp;
TREALY TARQAY KT RO
PREGINY TIHTEGERY I, i, p,
"REAL'G/S,0;
CREALY " AKRAY CIT 110,001 43T :4), 0011161,
AV A2 T ELDOF=3T,kI1:4):

PFOR" PSS STEP " T URTI L ELDOF pO!
CEORT ST PSTEP YTV URTILvELbOryr "o vy l1,03:=20,9;
Gi=U.9*A[1 1/ (1+Ar21);
TFORT T e =1 P STEp Y1 UNTI LY ELDOF~3 00
ATTT)e=Ad(1Y:=1,0;
AY 1) i=A201Y:=0,510.5¢
AT T2)i=A2(2Yi=-A1111
VEOR M BT P STERYIVONTI LY (ELOUF=3) /210
TREGINY
PFORM =) tsTEpr gL Dot
TREGTH

Clrlsmn/esry  CL2Ty=l/2=Ca1) 0y CDSYeah/2¢ (=1 4N;
Claliplail/os Clo1s=l/2~1; CLOY=KAPLII/ 23
CL7)1EN/ 2~ (=) o103 CLRYim/ 24 () 105 CLO):=M/2=24KAP:
Cl10di=t/2-1: Cl14Y:=n/2+13
BLYJieCc[S)ec(10]: Ki2)t2CIST~cl100:
BLIJIRCIOY-011]): BlaleaC(5l-cl11Y
BLSYieCcl1)+cl10): sloliac13=cl10)2
BL7IteCr1)wC 01130 BL3Y1sCl11-c011)
Ste(THICKwllwliw (ROLTIPICCHA11 /D)) 7 (BaGw I+ )3
"FUR'P:=0,1 'poft
"BEGIN'
D:=P*2%5,14150205%5393;
PFOR' 1y =1V STEPY I URTIL 4" 00!
"REGIH!
YFORYJ i =1,0 DO
TREGIH !
VIFY L [1%2-Jd)=0 'THEH''BEGLU
TI2adTr=0; TlA=dl:=0.03
vENDY  TELSE'TUEGTHY
Y[2~J]:5(51H(D*H[I*Z"J]))/”fl*?‘J]:
TLA—J]:ﬂ(COS(O*BI1*2~JJ))/REI*2~J];
PENDY
YEND 'Y
DLIJi=Ti 1 eT(0):  D{I44d:=TL2]-T0110
DLLI*81s=T[4T+T[5]): prl+121:=T{A1=TI%3)
"END' ]
KITJi=clbwplolwpt1lecrol=cl
+CLY 1 wC{91wbr13=Cr13xC1
+2%(CL51%CC101%D51-L 5]
ClS)1«C[81«D[81)7
2li==C ] v SE141-CL3)wC[63%D115)
KLZJ‘ﬂyL[QJ*C(6J'D[13}~CL“}*C[73:;;1%:+0[11*ct71~0t14]+Ct31~cnonwo[1

w (" ; ..C"\]*C[QJ rn
T s (<C51*C 103D [P I+CI5I*CI71un (1D

*CES]*C{10]*D[111-C[3]*C{?]*n[1p]):

31spl21egr 3 lolwpl3Tent3luclAluplA]
G)*D{p]"cij*c[01*0[5]+ct3]*C[Blwn[&]
*C{R]*[,r()]_cgg]*cﬂ0]*0[7]*‘
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k(31120 0ATwl[oY1*Dr9)+CrblwC{N el 1040 [2)4Cl6]%D 1Y 21%C(R71«D[12
+Cl1JfCEVJ*DIOJ-C[1J*C[61*0[101-cr21*cz0110c§1leggjicré?igcfgi
2%« (CL5YwClM0) D031 =CISIwCI8TwnlAA1=Cr2I*Cl10 en15) 4
Cle)«CLadIwb[161);
Kib)i=ClalwClolwDrSienialwl{?)wDla 10121 %C[0)eDI7)ent21%CI7) D[R]
+CLY)*CLOIwb[5)=C11*CL7 *D[é}-ﬁ[p]*C{OJ*DE?J+Crz]*cc?]*nré]
+2% (CUoTwC {101 %D 1)~ LS T (Pl 2Y=cr23%c[19)%D(3) 4
+CLl21%C{71xDr4]);

[1=d*N¥ ey
J::d*N#j;
yisdehtd;
WiSdxi+e3y
ViFY p o= g YTHEN!
PREGINY Ky [I,VYe=xitll:
KTelrvyesw(dls
K1lJd,VY:isxl(3];
KTld,0)e=gls]);
YEND '
YEND' P
KTEL V) ea (KLY ImhT I VI oAl {2011 %A 2%11=1]
KTLL W) ee (KL2TmKTIT MYy wswAT [2id=11wAR T2 w115
KTLI VIS E(KIBI~kTId Vi) wsupl [2xtTwpl i 2wll=11]
KTLd Wl e (KLAT=KTrd Iy w5=AT I2xlTwpd o wtl] s
KTLV,1)3=RY(],VvI;
KTiWe I 3RRT (1, W0l
KTLVedldy=grly, vl
KTtwWweddsrprly,uls
YEND '
YEND'HN ;G
VEND' OF PRUCEDURFE CORK:



'PRUQEDURE' CLOSURECK, NOSK s ANGSK,ADD 0, KESOLVE/BAND ,NG-U,0VP)
PINTEGER' BAND,NG,U: ‘
PINTEGERT PARRAY'NOSKrApb rQVD]
1oEALTVARRAY 'K, ANGSK, Qs
VLABEL Y RESULVE;
PBEGINY VINTEGER 'V, Y 4d, Fy2,8¢52;
"REAL'A/B,D,E,
PREALYPARRAY 'YX, YITSURINT,
PCOMMENTY  HU=FRIATION HODEL 1Es CRACK FACES COUPLEN 1IN
THe HORMAL plSPT SEMSE niiLYs
ge=0 U7 viEy+1,
VEFOR' 1= ' STERPYTYUNTILYSHRNUTDO " TFGTIHY
X 111 =Qr2*HOSKI Y a3 Y11 :=Q[2#N0SKITI)=141)¢ "ENDT;
VFORY 13T v STEPPTVUNTI L v V=11 D0O0 '
TREGIN
YIFY XLove{1)1 = 0.0 '"THEN!
xlovely1d:=s xloypl1lel] 'TELSE!
XIoypl{1ye¢1 1= XLOVPLII1Y:
YEND'
VFOR'1¢=9"'STE
TREGIHY ArsX|
viFr D <0
"BEGINT
PIFY ABSC(D)Y > ABSC(E)Y 'THEN!
TBEGIN' Er=p: u:=lx2=1; TEND':
"END'
VEND'
QVPLVYs=t;
NEWLINE (a4 URITETERT (1 CHESAITERATIONYA~==0T) ")
PRINTCV,5,0);
NEWLIHECS3); spACE(20); uRITETEXT('(’prERxCuACKZFACF')'):
SPACE (38); URITETEXT (' (' LOYERGCRACKAFACE ) M) 3
NEWLINE(Z): SPACE(20);
WRITETEXT (1 €V 0K AL LA LA A %ANGRANTANGENTTALY) V) SPACE(27)
uRIT”-EXT(.(.“mm/\L7;7,m'/,fi?’,’/.?’éf’.‘/i'.‘/;'/:‘r;\I-J(‘.FNTIAL')').‘
NEWLINEC]) ; .
WURITETEXT (1 (P opUSHAi%nsilluDEAGZUTSPLACFIENTALARALLAN SPLACEITENT 1D 1)
SPACE<16);UR1TETEXT('('HﬂnE%KZDISPLACFMEHTZ£%%%%%201spLAcﬁMENrv)-);
NEWLINECZ):
'FUR'[:=1'STEP'B'UHTIL'SURNU'DO'
"REGIN!
PRINT (1s4,0); SPACE(3): PRIUT(NOSK LT, 600)
PRINT(XL]1,0,00; sPACECS); PRINT(YIII.040): 0,69
SPACE (15) : PRIHT(HOSK[I*ql'“'O); pRINT(X[1+17, 1 6)
SPACE(S); pRINT(YLI+1),0000i
NEWLINE(1);
YEND';
NEWLINE (3}
WRITETEXT (1
PRINTCEQ,6)
PRINT(W,4,0)
NEWLINE (L)
le%ETEXTi;('anCK'>'>:/Uﬁﬁbluﬁél3;~u~7y~yzzzxxzxv-n1sP')'>z
WRITETEXT (1 (1o iynahu sl nhiak=0 b mn s sy 1y
URITETEXi('('K;%%H%%%%%%ﬁ%%ZZKIh#4ﬁ“‘“‘“‘Aé”“"//KII ¥

PEYYYONTILrSHRNO/ 2V DO
2wl=13: pe=X[2%1]; De=A=R;
L0 VTHEN®Y

! X HZquRLAP%=%')'); o
”g$;:2(6>- ”RITETEXT('(’.ATZPUSITIUNA-A|)v),

.
'
.
'
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SPACE (IO JURITETEXTC (PROTATIUN' Y Uy
PFOR ST gTER YTV UNTILINTIP DO

TBEGINY  T1FELDOF«(Jd~1)Y;

NEWLINECE) S PRINT(J,4,0);

SPACE (5) ¢  PRINT(O[U+1+2,4740,6):
SPACE(S) ¢ PRINT(0lU+143,13,0,6);
SPACE(S5); PRINTCOTU+144,1),0,6):
SPACE(D) ¢ PRIpT(olU+1e5,13,0,6);
SPACE(5);  PRINT(o[U+141,131,0,6);
'ENDI J
NEWLINE (&)
VIFY B TGE

o~ T

o

0.0 TTHEH'1GATOY VA2
REWIHD(YZ) !  GETARRAY(42:K):
REWINDCYEY ) GETARRAY(10,0)3
PITEYHOSKEYY > NOSp LU+ Tkl
PREGINY J:=il0ok[WYe2)  TizHOSKIVS1 1D
TEND' VELSE!
YREGIHY Ji=
VENDY S
Jisd=1y lit=]1-11
PEOR' 2= thy!
"BEGINT JIFJ+24 Ji=y*ds
SE1=1=CADDL1)mADDIT=11)+1
VFORYFgES2ISTERP T UNT LY I~1 DO
KLADD[J]FJ+F]:mK[ADD[J]"J+F]+KIADD[I1nI+F]3
YEOR'Fs=l41tsTERP 4 UNTIL g TLO!
TBEGHN!
VIFVADDLF)=~AUDTF=1) 'GE' Fei=1 ¥THEN!
KLADDLJJmd#p) 1 8KTADDLIT=d*F 14K ADDIFI-F+1 TS
VENDY S
VEOR'F=JUSTEP YT UNTIL U+ELDOFwHTIP DO!
TREGIN!
VIFY ADDLF1=ADDLF=11 'GE' F+lm1 'THEN'
K[ADD[F]-F+J]:=KfADD[FJ~F¢J1+K{ADD[F]~F+I]X
VEND' F
KLADDLJ1Yt=klADDIJ)I+KEADDITY ]
Qty,11:=alJ,1)+0014133
GEUHBC(O.O,T,u,K,U+ELDOF*HT19.1,ADD):
YEND' 7
VAS:;'6OTOY RESOLVE:
VAZY WiE(: '
'FOR'J,;1vsTEptq'uNTIL'HTIP'DW'
"REGY ! 1¢=ELDOFx(J=1)i _
"1EY qlu+r+4,19)1 < 0.0 PTHEN!
PBEGIN!
VIF H=O 'THE“' '[)f;GI”' )
REWIND(12): GETARRAY(120K):
REWTND(10): GETARRAY (10,4
Wi=qi  TENDYS , ..
GEUﬁBEZO.O,U*1+4.OuK«U*ELDUF*NTIP'1'A””)'
VENDY
YEND!
’?F' JL:1 CTHEN' Y GOTO" VA
"END' PROCEDURE CILOSURES

HOSK{W+13*2;  1y=HOSK{uUY*D;




VpROCEDUREY SEGSO1 (A/n,BYDINEL ! Lo
VWALUET N s "ARRAV YA s 'I”Tpéigj?;é;Aczf?iLURE T AT
VINTEGER Y 11, R, ‘ 4 v
PLABELY FATL;
TpELIn!
VINTEGER' G, HyledaklloP, Qe UV, U, 2,01
tREALTYS ‘ ‘
TREALYTARRAY'LIT 5 12ED:
H:=Uy
REWINDCCHTAY ) PUTARRAY(CHiAWA);
REWIND(1Y: GETAPRAY(1.A):
VEOR' 1e =1 P STEPY T aNTILYSEG T O
"BEGIN'
VFORYW,=COLLI) ' STEprTTUNTILY I no!
"BEGIN®
VPEY W OvEY D vTHERY YLEGTRY
REUTHD (W) & GETARRAY (i, 1)
YENDY;
VEORT ZeRUNTI=T T T STER I " nTIL RO HO
"BEotpil!
pysy[2-1):
TiR =(5[23=p)+1;
Girpwt,
15=RONIU=T T4
PIFEY (210 LT (2#0=T)
YTHEHY Him Q~T P SEY Hi=0g

1

Hisier;
vIFs ) apwy I I‘X‘Ht‘{hp’[;:Z~11FLS}'|P‘|::R’HH.H];
IFY T 'GTY Q "THEH'QIETS

'

;OR'J:=0*STEp-1‘UNTIL'P1'nu-
"BEGIH®
UsaGy
He=het:
Kizgm(sld1=s0y=11)+14
Vem=5lul:
YeozmA[p=LINnLI=131:
VIEY K 'Gert T VTHEN U =UsK =T
'FOR'ngu'STEp'1'UNTIL'H—1'Dn'
vIFYY YFotv ] 'THEH’Y:=Y-4rU~LIH[1—1]1*Atu—v-Llu{1~1]]
| 'ELSE'Y:=Y~A[U~LIH[I-1IJ*L[U-VwLIM[U-1]]
rpFt oy el 'THEH’Y:=V/AEH—v-LxMCI~1J]
'ELSE'Y:“V/L[H“V“LIM[U~1]J:
AlH=LIMII=13):=Y5
YFOR'IEe =1 1QTEP 1T uydTIL! wtnot
U[ZP“]:="1[ZIH..\'-“{JI“]*\{:
YENDY U
VIFY W ottt 'THFN"HEGIN'
y,:A[H+1-LIHEI~1]]§
'FUR'U:=U'RTEP'1"‘»’“TIL'H?D"“
Y::Y*A[U"LIH[I'Tllfﬁi ‘
[gr Y VLED 0 'THEN"GUTU' FATLS

SURT(Y):

e € =




AlymLINII=1))ssy;
PFOR'IT: =T QTERY AV UNTIL R Dot
BlzoNYe=Br2.001/Y;
VEND
VENDTZS
VEND WY
VPRl tEYY SEG YTHEN''GOTUYREDUCED:
REWINDCLy s PUTARRAY (1, AY;
REWINDCT+1) 7 GETARRAY(I=1,n);
REDUCED S END 1
PCUMMENT Y REDUGTION CORPLETLES
Hr=sinli
VEOR'TJIBSEGYSTERP =1 UNTILY I DY
TREGINT
PFORY] i =ROULIYYSTEP =T UHTIL ROWTS=1T+1 100!
TBEGINT
Yi=ALH~LIII{J~11])s
PFOR'Me=1 ' STFP Y TUNTILIRY DU
BCletiye=nll,nl/yY:
YIFY L OYEQ' I VIHEHN' ' QUTO ' COHPLFTE:
Vizli
Pi=SLl=11;
VFOR'Hi=Hwel 'STEP =1 "UNTIL'P#110D0O?
YVBEGIN!
VieVet)
Yi=A[H=LIN[J=11]:
VEOR'[1rml P QTEP 4 Y URTLIL R DOY
BLV, 1) estly, MI-pll, H)xy:
VENDIHS
H:=Pj
YENDTY];
REWIND (dwd); GUTARRAY (J=10A)]
COMPLETE 3 'END'J
"END' OF PROUD SEGSOL’
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' pRUCEDURE TTEST(A,C/D,psK,CK);
PWALUE Ao D Ko
'INTEGER'AICnD.CK:
TREALY PARRAY 'K
tREGINY VINTEGER" 2,15

PIFvAYLE'C

YORTAYGT'D
PTHEN' 'BEGTH?
PEOR' 7= STER P TP UNTLILESEGYDOY PBEGTHT
VLEVAYLEYLINDZY THEN "HEWTYY
VIFYOK=TTHEN Y PBEGTHY

REWINDCCHTAY

PUTARRAY (CHTA,¥): REUTHD(2): GFTARRAY(Z K-

CHiAs=z: CrirsLiiiz=11: Croy=LaInlZy:
TGUTUYSEGEND;
"Eub!

VELSE' YULEGILH!

REWIND(ZY: GETARRAY(L.P)}

CHYPi=z: Cr3:sitMiz=tl; CR4gmlintl2Ys TGUTO'SEGEND

YEND'
YEid';
YEND'Y S
VEND Y
SEGENDtVENDY UF PrOD TFSTS
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IPRUCEDURE' ADDSEQCHE LFMT ,NUIDEADD L TTGDED)
VINTEGER' NELEMT, uNODE
PINTEGER' TARRAY' NODE,ADLS
PREGIN' TINTEGER' WaCi, [y ADDTLHE  CHANGE
CPOR'T WS O TSTEPY O TURTILY HELERT 'no!
tREGIN CHI=HODETW.1]:
VEURY Ti=2 CSTEDY F OTUHTILY ae2*qoRT TDOY
"1k MUDE LUy YPLY POl Y THEN! NIEENDINACTERE
PEORY lr=1 '"STEDY 1 TUNTYILY A4dxonxT TDOS
CPREGIHY apbTenp =L, v y=Chiet
'IF'ADDTYMP'UT'AUD[”UDE?H,11*2]‘THFH'ADD[NODF[H,]1*2]::ADDT
YEND Y
VEND' G
VEOR® 1wl otsTEe A YT HHODE 'Thot
TBEGIN' CHi=2wAbLDI2x11: eSdwrs
AoD[U=113=ADD{u=27+CH=17
App [y e=ApD =1 T +CH
VEND'
LIMLOU)e=0;  rowl01:=0;
SEG:=EN71ER(AUD[NFREE]/SSOOO>+1;
U:=ENTIER(ADD[HFRFE]/SFG):
'FUR'1:=1'STEp'W'UNTIL'SEo'UU‘
'1F'I=SEG'THEH'|IH[I]:EADU[HHUDE*23
PELSEY 'BEGIH?
LiMETJesteLIMrI=11:
‘FOR'J::O’STEva'UNTIL'HHUDEwEvbn'
"peEGTiT ,
vretLanlry ot AUD[(EHTILR(HrpuE/(SEG~2>>*d>*I+J1
PTHENTY THEGIN?
LlMLIJ:FAUD{(FNTIER(HFREE/(SEG*R))*H)*I*JI}
RUW[IJx:EHTlER(NFRFE/(SEG*Z))*?*1+JI
"GOTOY Abp: 'END'S
"END'UF LUOP 0
Ap2:'END';
RUWLSEGL =NFRLE:
SiZt:=LItI(1 ]
'FUR'l!‘Z'STEP'1'HNTIL'SEU'DO'
T1EVS )R VLI 1)_L1H[1r1]
f IHET;IH.éTgE;:LIH[zj—LIH[I-1]:

'FUR'1:=1‘STEP‘1‘HNTIL'SEG'D“'

REGIN!

CHANGE 1 =HFREE: ‘ o
'FOR'JE=R0”r1_1]+1thEp'W'UHTIL'RﬂU[I]'D”'
YBEGIHY '
CUL[IJ;:J_<AUDrJJ—Ano[J,1};+1.
VIFYCOLLLY LT CHANGE 'THEN (
YENDY ' 4
'F”R'J'=‘I'STEP‘1‘UNTIL'SL'G'DU"

; . . - - ¥ FH
Vi Cange 'Lr' RoulJl] THEN . o
| uéEGlN' COLLI)e=di TOOTOTADS PENDT

ADSI'END' ]} £ . oy

CK‘:=CK5;iL1H(0); CKQ,:CKL;:L[H[i], CHTA:=CHTPI=1y

CKi=1;

VEND' OF pRUCEDURF ADDSEN:

HANGrz=CnL[I]:
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The following standard procedures have been slightly

modified to accommodate the segmented stiffness matrix.

"PRUCEDURE! GEOUBACU /i1, Re AR HEQ F o A/TEST) ;
PVALUE' U, HeHEQsFe R
'RtAL' u;

VINTEGER' NelHEQsF:

TARRAY Y R, AK;

VINTEGER' VARRAYY A;

PPRUCEDUREYTEST,

TREGINY YIWNTEGERY MK, 0

PIFY HET P THENY Cog=1 tELSEY CUymi=CATHI~ALa=1])%q:
PFOR' K3aCY 'STEPC T tpdT Lt no oo
*BEGINY

TESTCAIN]=~H+K,CHT,CK2,AK AKX ) :
R{KiF}e=sRrKF}~ AK{\{']-M+.-CP4]*|'
ALIALHTI=N+Kk=C11:=0.0

VEND Y
TIFEY ONY PGTY o onEQ rTHEN' 'GUTOY L7
PFOR' Ki=id+1 'STEp® 1 vdilTiL? HEQ th0?
"BEGIN' CJrakK-(Alr)-Alk=11)+1;
YIFY Cd YLEY HOYTHER'
PBEGLIY
TESTCALK]~K+N, CKT.CKZ, AKrAK 1) 2
RIKFlesRIK,FI=AKIA [ 1-K+H—CK1J*U
A {AlKI=K+N=CK1l:=0
YEND' VELQE!

YEND';
LZ3TEST(AINT, CKTLCK2,AKAK T
AKLAINI=CKI ) 21,0
RINeFli=U;
'END';

Excerpt from procedure FEASSEMBLY showing the inserted

sub-procedure TEST.

PIFY SUBT TLTY sUp2 TTHEHY TGoTUl Lanag
A1:=ADDLSURTI~SUBY+5UR21
TESTCAT s CKA 4CK2, K. KiT)
KLAY=CK1Y3ak[Al~CKT1eKE[IwE=T0dw2=""13
LABA: 'IF» SUy3 'viTr supy rTHEH! 16OTor LARNS
Ad;=ADD(y UU5]-0UH3+»UR2,
TEbT(A ,CK1,CK2, K K, 1)1
K(AC= CK'“-..K(A(_-( K1Jl+kETI®d T LAR
LABB: ‘YEND!';
'END‘:
YEND' OF pRUCEDURE FEASSEHBLYS
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' PROCEDURE MIIST(N1,RO,NG,NSETF,A,ADD,K,Q,CASE,THICK,FO1BLA,FI);
Formulation of BC] and Dq as in procedure MMNT

JFALL:=0;

Fo1uLA(Z#N1,ELDUF,1.O§710!F1,UP,RAHK,;FAzL}:
";UR'2:=1'sTEp'W‘uNTIL'Qwu1'DU'

FORM U EY P STER YA T ONTI v 2 o

PFORY T e =P STER Y I T URTILYELDOT " pO

TFOR =TV STED " TV UNT YLV ELDOF Y po !
K[ADD[23"Z+U]:EK[ADDEZ1"3+H3*(F1[?.IS*KT[I,JJﬁFT[U,J]):
VENDYOF PROD 1111873 o

"PRUCEDUKEY SuLVIT(U,pSO, 1)}
VINTEGER 'Y ‘
TARRAY W, pSu;
"BEGIN'VIUTEGER D, J;

PARKAY VALPHTTSELDOFTS
"FOR"I¢=1'"STER T Y upTIL 2 po!
"BEGIHYALPHIT14=070;
"FOR O =P STEp A uNTI L 2xp1t ot
ALPHLT D 3=PSULU TG, 1 3*alitHLT ]
TEND® QF 1:
NEWLINE (&) . . -
WRITETEXT (' (' CRACKUTIPRDIGRLACENRNTRIRSEA=DIRECT IOy )y
PRINTCALPHIR),0.10) 3
NEWLINE(Z) ) cE TV =
WRITETEXT (! (' CrnCruTpul6PLACEHELTATILZY=pIRECTION=1) 1))
PRINTCALPHISY, 04070):
NEWLIHNECL) , TR .
WRITETEXT (1 (' {0DEA%STRESSLINTENSITYRFACTORKKI= ) 1)
PRINT(ALPHLA),0,90)3
NEWLINE ()3 " .
wkxTLT£x$%;('nnvEPZSTRFSSxanxns:vvnrAcT”leY1")')’
PRINTCALPHIST 00100
NEWLINEC4) . ity
WRITETEXT (M (TplulpgBopysikoraTlolint=") ")
PRINT(ALPHL1),0,10);
YENDY O OF pRUD SULVITY




'PKUUE?URE' STRhIS(U,L2:L3'BrX:Y,U:N.ZuER.SOLID:ZER);
PWALUE tY,12:0%,7;
VINTEGERY Z,ER,sOL1ID;
"REAL' L4,L2,L3,U;
"INTEGERY VARRAY' N/sZ2ER:
"ARRAY' x,Y,R}
"BEGIN!
PINTEGERY 1,V
"REAL' CHANAE,Cy
'REAL"AQPAv!J(1:2,1:ZJ,HLt1:6],P[1z?,1:6];
PCOMMENTY THYS pROCEDURE EVALUATES THE JACOBTAN J I17S DRTERMINANT U
AND THE STRAIN=DISP ARRAY R:

J[1,1]:Ex[NIZ:ﬁ3]*(4*L1~1)#XCH[Z,31]*(A*L1+é*L2~3)+awL2*X[N[Z,A]]—
Lo L2¥XINTZ, 83 V24w IN[Z,61)1w(1=2% 1~L2): :
JIT /€Y EYINTZ o VY e CAw1=1) Y IUIZ, 31w thwl1eian2=3)+4wi 2%vIN(Z, 4]
br L2¥YINTZ, 8y +4ev NIz, 6] u(1m0x1=Ln);
JIC T It EXINTZ i d ) wCbw 2=01)¢XTHIZ, 31 0wl 1eanld=3) 44w 1*XIN[Z,471%
b XINLZoS))e (Vw12 n 2)=bdu I¥X[HI2,67):
JUC 213 EYINTZ 2 ) wCbw2=1)eY L2 X)W (bwldetnl2=3) 44wl 1oy iylz, 6]+
beYINLZs8TTe (1= Mu2el2)=bxY»Y[U[2,6Y];
"CUMMENT Y U REPLACES DETJ:;
Ur=Jd 1013 %dr2,2%=001,21%d02:1)3
"COMMENTY THE COEFFFS OF [J] ARE REPLACED pY THOSE of [J1-=13
CHANGE:= 9,491
JUV, 1N Yemgtl2, 23/
JE1€)iEnyle,2)2U;
JLI2 1 J1Eeyl2,9)/7U;
JL2 &) yBCHANGF /1)
PCOMMENTY N IS THE DIS FUNCTION pNSIDNT 1TS DERIVATIVES WRT §aT;
NLET):s=lie(2el1=t);
NLE2):=Loe(pallwi)!
NLE3) 121 3w(2wl3=1)7
NLLGdishoy e 2}
NLESY:i=2be( 241 %)
NLL6T:5hul 3up )
VIFYSOLIDE1 Y YHENT YBEGIN'

VFORYyss91STRPI4 " UNTIL'EC DO "REGTH!
VIFYZ=ZERTTYITHEN?

"BEGIN!

RMEAN 1 X INEZ, 101X IN{2Z/21)+XINCZ, 310X INTZebTTaxINEZ 5T

X{NPZ,6)))76;

RAVG yERMEAN

'60Tots1 41

YENDYpYEND Y
YEND';
RAVG;=0,01
"FOR'JyE41STEP!4  UNTIL 6" DO

RAVG=RAVG (¥ LilZ 132*NLETD) S
SL1:
'FOR' p3=9 1gTEp' 4 'UNTIL! 6 'DO!
"FOR' Vymt,2 ton' pLV,13:=0.0;
"FOR' Jied,2 '0o'
'BEGIN' Py, 1)y 01,1 % Canll=10)
PLL 2581, 000 cbul2=1)i
vu.53;FJr,,f:m-a*muix'ZJ*”*‘*””




PLLl, 43w 2ed] 1)+ 1wd 1,
PLEI DY 6e ()T, 2)ul3=L2x(ul]
PLIOIEL* (LT ) wl3=Lax(yl]
VEND' S

PFOR' Laet vrsTERT 1 TUNTIL' 12 'por
"FOR" Vie1,2,3,4 'D0' g(V,1]1:=0,0:
PFOR' Tied 1STERY 1 'UNTILY 6 DO
tREGIN?
BLT1,CI%2a¥) Y ymBL4, (I*2)]iapP[1,1];
Blb4, (1®2e1)%yaKr3, (I%2)1:=2p[2,11;
BleoC1e2at)yguNy [11/RAVG,

"END '

"END' OF STepISy

'PROC[‘DUQE'QZFQ(\(NI 'Y ZER)
VINTEGERY ' ApRAVYIN, ZER;
"REAL'TARRAVIX,v;
"BEGIN' BCy1=0}
"FOR')] 124 'SyEP 4" UNTIL'HELENT' DO
"BEGIN!
"FOR1J1=9'SYEPYT UNTILYSE' DO’
"BEGINY
YIptXeNET,J33=0_ 0" THEN'
PREGIN!
Eey=€es1y 26RLECIIRI;  'GOTO'MNEXT
Tenb'y
YENDIOF L0OP g3
NEXTs'ENp' o LnOp I;
YEND' OF PRAp RPEROS
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9.3.4 DESCRIPTION OF PROCEDURES USED IN THE AUTO-MESH

GENERATION PROGRAM

The procedures are described with the aid of flowcharts and
a corresponding formal listing is given.

PROCEDURE INDEX:-

COINCID
TR/QELENCONS
TRACE
TR/QELETXY
MATCON

HATCHET

RESPLOT
TR/QPLOT
TR/QIDN
MGINPUT
OUTPUT1
OUTPUT2
COREGEN
STDGEN

ZONEXY
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PROCEDURE COINCID

This procedure performs a rather complicated function, in that
situations may arise where two opposing zone faces may be joined to
two other zone faces, causing three of the corner nodes to be

redundant. As an example of this situation see the figure below.
—**w*—"*11 2{“‘_"”‘“““
I —‘—-—h—-l

When the four zone faces are joined the nodes 2, 3 and 4, say,

become redundant. It will be appreciated that the four zones are not

in the above positions in the zone array, they may be quite remote from
each other. The problem in this case arises, from the fact that all

four nodes have the same coordinates. Hence when the redundant nodes

are being scanned, using the coordinates of the node to be retained,

any one of the remaining three node numbers could be selected. Therefore

the procedure allows for the node numbers to be altered by the operator

and overrides the scanning facility.

The scanning operation is carried out in order to obtain the node
numbers which will be made redundant and this information is used to
alter the x and y coordinate listing and also the element nodal connections.

The following steps indicate how procedure COINCID operates and correspond

to the flowchart overleaf:
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If the variable COIN is zero then the coinciding node numbers
are not read and the procedure continues as normal.

The control loops I and J are constructed. The I loop limits
being from 1 to the total number of redundant nodes (D).

The J loop allows the coordinates to be scanned. Note that
the lower limit of counter J, starts at the node number to be
retained hence the redundant node number selected is assumed
to be of a greater value.

The inner loop C checks the coinciding node numbers, and
bypasses the scanning operation if the node number under
consideration, corresponds to the coincidential nodes.

Also if COIN is zero this step is bypassed.

The scanning operation is performed within the control loops

I and J, it simply compares the difference in the x and y
coordinates and if the results lie within a certain tolerance
then the redundant node number is assumed to have been found.
If in the scanning process the corresponding redundant node is
not found then it is assumed that it does not exist and

records the redundant node as being the same as the retained

node number.
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Flowchart for Procedure Coincid:-

COIN:=READ

Yis

r- \\I::1(1)COIﬁj>

c1D[1,1] :=READ
CTD[I,2] : =READ

I:=1(1)D ;>

— <fJ::NUM[I+1J+1(1) NNODE+SUM:>

|
~—-A4<c::1(1iCOUQ>

wom[1,2] :=c10[C, 2]




y ais Coc[wum[1,1) ] -xx [o])

YES
1.0&=-6
LAND

e ~ as (vy [vum(1,2])-vy [a])

wu(1,2) 1=0
| iy .
; N IJT~'I[I , 2] : =NUM [I ' ’IJ
D T

END




tpROCEDUREY cOINCYD(HUMI XX YY)
P INTEGERITVARRAY YN(IM;
TREALVTARRAY I XX ,Yy;
PBEGIN' TINTEGERICOING VINTEGER  "ARRAY 0ID[1:10,1:21;
COINgEREAD
"IF'E0IN=0"THEN""GOTOYL16;
'FOR'75=1'STEP'1'UHTIL'COIH'DO"REGIN'
CIDlI,4)1=READ; CID[I1,2)1=RFEAD;tFiID;

L16:

VEORY I =G PSTYREP YA T ONTIL D DO "BEGTI Y
"FOR"JsENUMET » Y 3+4 ' STEP " T rUNTIL NHODE+SUITIDO Y PBEGIN

VEFQRYC =4 STEPV YT UNTILY COTNIDOY v

Py inuMLY  AY=CiolC, 1) THENY Y BEGTH!
NUMPT 2 s=c1DC,s2): TGOTOVL7 v EUDYS
VEND';
PIFYABSCOXXEnunly, 4 =xxlJd1)ST,0G=6 A
ABSC(YYINUMLY, 1) y=yyDd1y<t 0= " THENY "REGTINYHONET , 23 y2J 3V GOTOY L7 VEND
VEND' OF J (OO0PyNUMIY,2):=NUN[T/1]Y;
L7+ YENDY OF 1 LaOpy
VENDY OF PROCEDURE OINCID]
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PROCEDURE QELENCONS AND TRELENCONS:

These procedures operate in the same fashion and determine the
element nodal connections for the quadrilateral and triangular finite
elements. The elements are defined by six nodes in the triangular

element and eight nodes in the quadrilateral element. The numbering

system is shown below.

3 L ? 3
6 5 8 b 66
e ) 1 . 2

The numbering sequence is important and is used to identify the
shape of the element, via its nodal coordinates. The element nodal
connections are determined using the numbering scheme, referred to
earlier and a similar system is used in numbering the elements.

These procedures also interpolate the remaining nodal coordinates,
which are determined at this stage to avoid boundary curves propagating
into the mesh. Also, in the triangular element the position of the

diagonal affects the element nodal numbering and the diagonal nodes

coordinates.

The following steps correspond to the flowchart for procedure

QELENCONS : -

1. The vector BB is initialised and is used later to determine the

node numbering sequence. The first element number is computed,

being incremented accordingly within the procedure.



The counter loops J and I are constructed allowing each
element to be scanned from colum to column.

Depending on the value of the J counter, the variables C and
Cl are found and form a part in the numbering scheme.

To prevent curves boundaries propagating into the inner mesh
some of the node coordinates are not computed. See the
section on errors in distorted isoparametric elements. It
is convenient to calculate these coordinates within this
procedure by interpolation.

The nodal element connections are held in array NODE and the
appropriate node numbers are presented to the array via the
numbering scheme.

At the end of each column of elements within the zone, the

vector BB is incremented together with the element number.
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Flowchart for Procedure Qelncons:-

B3[1] r=A+a0D/2
(2] £ =A+ADD+ (A4 14T TK) /2
BLT:=ELT+(ADD/2) +ELTAD

— — —<(g:=2(2) 2*vrva[zong] )

B:==1

— ~4<E}:1(2) 2*DIVY[Z0NE]-1>
|

1 Be:=B+1
L:=1+ZNAD

C1:=DIFF+VD

DIVX[ ZONE] *2

NO

C1:=DIFF+IN
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C:=DIFF+IN

XX[BB[1]-B+E+DIFF+IN] =
(xx[BB[ 0] +E+C] +
NO xx[BB[2] +£+C1]) /2
vY[BB[1]-B+E+DIFF+IN] =
(YY[BB[0]+E+C +
vy[BR[2]+E+C1])/2

L,

J YES
>
) P:=BB[ O] +E+DIFF+IN
[p+1]»:(XK[ plexx[p+2])/2
vr[pe1) s=(ry[P)+vy[Pe2)) /2
NO
| ELT: =ELT+1
‘ NODE[ ELT, 1] :=BB[ 0] +B+C
i HODE[ELT, 2] ¢ =BB[2] +E+C1

NODE[ELT, 3] : =BB[ 2] +E+C1+2

NODE[ELT, 4] : =BB[O] +E+C+2

5. NODE[£LT, 5] :=BB[1] +E+DIFF+IN-B

| :[s17,6) :=BB[2] +5+C147

NODE[ELT,?]:zBB[1]+E+DIFF+IN+1~B
DE [BL ] :=BB[0]+E+C+1
[“IT,9}:~MN[ZONE]

s ]
e
PUNSINESINIS e o
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%3}

LT :=ELT+ (A-TIK-1)/2-DIVY[ ZONE]
:=A+(A+1+IN) /2

8B[0] :=BB[0] +5

BB[1] :=3B[1]+B

BB[2] :=BB[2] +B

o
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'PRUCEDUPE’ OELNCHNS(DIVX'DIVY:XX,YY,HODE,MH);

VINTEGERTTARRAY 1D YVXypIVY,NODE, N,

VREALPYARRAY XX, Yy

TREGIN'
pBLO0Yy=ADD} BR{1):=A+ADD/2: BRI2T:1=A+ADD+ CA+T«TIKY/ 2
ELTiBELTY2CADR/D)Y+ELTAD;

VFOR"JIB2VSTEPY 2" UNTIL'DIVX[20NETwp P n0)?

"BEGIN'

B:=~1;

PFOR' T34V STEP 2 UNTIL Y (2#DIVYLZONFI=1Y!DO®

tpEGINT

B:=B¥17

Fi=]+2NADJ

CIFY)eDIyXLZONE XD I THEN'C11aDIFF+vVD1

VELSE'CYy=DIFFeIN? ‘

VIFYJE2V YHEN'CoeVNTELSE'C:=DIFF+T1
VIFVIYNEYGYTHENV P BEGINY
XX[BB[1)=-B+E4DyFF+INT:
YY[{BB[1)=RekeDIFF+IN]:
’END'}
VIFYJS 2T YHENEYREGIN®

PyeBRl0l4E4DIFFeIl; _
XX[P+1]g=(XXCP]+XX[P+2])/2;
YyIP+4),y=(YYIPI+YYLps2l)/2:
VEND T}

XXIBBLOY+E+CI+xXIBRL2I+E4C11) /2

= (
=(YY[BBIO1+E«+Cl+YY(DBBL2)+E+L11V) /2

ELT:=ELT 41

NUDELELT,1).:=BET0Y1+E+(:

NODELELT,2)=BBE2Y+E+C1:
NUDELELY,3):=B8r21¢E+C1+<;

NODELELT,6)  =BBr01+E+C+2;
NUDE[ELT}S]g:BB'11+E+DIFF+IN“U;

NUDELELT 6)=Bufr21+E+Cc1+1;
NODECELT,7):=Be 1 1+E+DIFFall+1~b]
NODELELT,8)y=Bepr01+E+Ce1:

ODELELY,S) s =MN[ZONETD;

veNEEEOF'LgéP I:ZgLTzsALT+(A-TIK~1)/?~01VY[20HEJ;
Bi=A+(A4q+IN)/2

BB[OJ;=B;[é518:, nBl17:=BBL11+8I BRI2Y:1=0RL[2]1+8B)
"END' OF J 1 00Py

YEND' OF PROD QELHCONS:
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The procedure TRELECONS is explained by the following steps which

correspond to the flowchart:

The element numbering variable, ELT, is initialised and loops
J and I are constructed. The loops allow each element to be
scanned in a column to column fashion, similar to the node
numbering pattern.

Variables C and Cl, part of the numbering scheme, are set,
depending on the value of counter J.

This procedure determines the element nodal connections for the
triangular element and to form a uniform mesh the shortest
diagonal of the sub-quadrilateral is adopted.  The diagonal
lengths are computed as DIAGI and DIAG2, and are used to
compute the variable SUB.

The central node coordinates are computed using the variable
SUB and node number P.

As before to prevent curved boundaries propagating into the
inner mesh, some of the node coordinates are not formulated
and it was found convenient to interpolate the remaining
coordinates within this procedure.

Each sub-quadrilateral breaks down into two triangular

.eiements, thus two sets of element nodal connections need

to be computed. Also as the shortest diagonal, splitting the

sub-quadrilateral, is chosen, the element nodal connections

have to be adjusted accordingly. Hence the variables C2----C7

are set depending on the parameter SUB.

The element number ELT is incremented at the end of each column

within the zone.
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Flowchart for Procedure Trelncons:-

START

ELT: =ELT+ADD+ELTAD

— — —~%§;:=2(2) DIVX[ZONE]*éj>
l |

— «<I::1(2) 2*DIVY[Z0NE]-1>

S:=T+ADD+ZNAD

nTVX[ZOUE] *2

C1:=DIFF+VD1

NO

{Cﬂ:zDIFF+IN

J YES

= |
%////7 C:=VD
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|

| 1A =GO (9-2) * AsBaC) -Xu[3* AvReec1]) f2+

! (YY[(J—2)*A+E+C]~YY[J*A+E+2+C1])}2){0.5
pTac2:=( ([ (J-2)* asBe2ec] -xx[ g7 a+meC1] ) f 24

| (vY[(J-2)*a+t+240] -v¥[o*asm+c1] ) h2)40.5

YES
<

DT }'\G/

‘EUB::?

—1
SUB:=0

HO

P:=(J=1)*A+E+1+DIFF+IN
X P]::(XK[(J—7)*A+E+C+2*SUB]+XK[J*A+E+C1+2-2*SUB])/2
Yy r]::(YY[(J—a)*A+L‘+C+2*SUB]+YY[J*A+13+C1+2—2*SUB])/2

I YES

# ]

ﬂ///r xx[(J=1) *A+E+DIFF+IN] : =
KO (xx[o*asErC ]+

xx[(J-2) *A+E+C] ) /2
vY[(J=1) *A+E+DIFF+IN] :=
(vy[g*a+E+CT ]+
YY[(J-2)*A+E+C])/2

YES

> p:=(J-2)*A+E+DIFF+IN

e wx[par] c=Cox[P]exx(P+2])/2
yy[pe1]) :=(vY[P] +1Y[P+2])/2

N0
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HODB[ LT, 1] 1 =(J=2) * AvB+C
NODE[ BLT, 2] : =J*A+E+C1
NODE[ELT, 4] :=(J=1)* A+B+DIFF+IN

YES

:=C1
o =DIFF+IN
NO C52=C6:

=C

C6:=C2:=DIFFT+IN
CBZ:CQ::C
C5:=C7:=C1

RODE[ELT, 5] £ =(J=SUB) *A+E+1+C2

NODE[ELT, 3] :=(J-2°8UB) *A+E+2+C3

wODE[ELT, 6] 1=(J-1-SUB)*A+E+1+Ch

nopE[ LT, 7« =Mn[ Z0NE]
ELT:=ELT+1

HODE | BLT, j]-:(J ~2)*A+E+2+C

.= (J-1+SUB) *A A+ E+1+C7

I
pis| &
e
NODE[ELT,ﬂ p=d T A4E+2+0]
|
]
i

HODE ELT,SJ::(J-1)*A+E+2+DIFF+IN
];:MN[%ONQ}
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“ay

1T =ELT+(A~TIK=-1-(DIVY ZONE *2))

~J
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spROQEDURE' TREINGONS(DIVX DIVY X%, YY,HODE, 1IN ;
VINTEGERITARRAYIDIVX/DIVY, NODE, NN
tREALY PARRAYYX X, Yy,
TREGIN'!
ELT(SELT+ADD+ELYAD;
TFOR"J 322 ' STYEP!I 2 UNTILYDIVALZUNEIw2 DOy
TWEGIN'
VFOR' I s "STYEPY 2 ONTIL v (2«DIVYLZ0NETI~1Y D
TREGIN'
E:=]1+ADDeZNAD]
VIRV eDIYX I PONET* D P THENTCY yuDIFF+vpY
PELSEYCY =D1FF+IN:
VpFv e yHEN CreVn ELSE ' Co=DIFF+T s
DIAGT s B CUXXT (Jo?) A+E4CImXX{JwA+EL2«011) 120
(YY[(Um2) @A+ F4CI=YY [ *A+E+2+C1]0¢2)40.5;
DIAGRE (XX €Ym2Y W p«E+ D4 CleXXTJwA+E+C11) %24
(YYL(J“?)*A+E¢P+C]~YY[J*A+E+C1J)¢7)¢0_5:
PIFYDIAGA Y LEDTAGP Y THEN'SUB:=20 'ELSE'SUL=1
pre(J=1)wAspstenlpF+In:
KYLPlim (X[ (ygmi)wasE+C+2*SUBT+XXTUwA+E+CT+2=2%8UB 1) /23
YYIP)asyY L m2Ywa+E4C+2%5UbI+YY T wA+F+CT42-2%wSURYY /2
CIFVIYNEYYVTHENIIBEGIN A
KXLCJmt Y wA+EaDIFFeINY 1 a(XXLI*A+E+C1 14 XX (I=2)*ASESCT1) /2
VY[ (Jm ) wA®E+DTFF*INT 12 CYYLJ*ACESCITI2YY (=8I *A+ELCY) /2
|LND|’
VIF'J 2V THENTTREGTIHY
Pi2(J=2)«AsE+DIFF+IH]
XX [P+4)yas(XXIPI«XXlpP+2]) /2
yyip+qadzsCyyrpleyYlps2dd /2y
YEHD Y}

ELT:=ELT&Y
NODELELT,1):=€J=2)yxA+E+C)
NODELELT,2) puelwatpeCl;
NODECELT, 41 e=(JdwlysA+*E+DIFFeLN;
TIFIYSUBBQYTHEN!
'BEGIN'ngzc3gac13C7::0L:=DIFF+IN;
Cgrzpptsr;
'END.
VE1sE!
"BEGIN'C6rmp2iERnlpF+IN:CI:aChi=Cl
" eSy=c71=C042
'tND';
NUDECELT,5)s=¢J=SB) *¥AwE+1+CC)
NODELELT,3)3=(Jde2wSUB) wA+E+2*C3i
NODELELT,6) 1€ nlnaSUB)«ArE+T*+ChI
NODELELT, 7Y :=MNTZONE];
ELT;=ELT e
NODELELT,3) =(J=2)%A*E+2*C
NODE(ELT.1]z:(J-2+2*SUB)*A*E*C5’
NUDEEELT,A),=<J,2+su3>*A*E+1+cé:
NODECELT,2)s=Jva+vEel+Cai )
NUDE[ELT,A],z(J-ﬁ*sUB)*A*E+1*C7'
NODECELT, 5] =(JnlykA®E+2*DIFFeIN
NODELELT,7)s=MNTZONEDS
VEND' OF LOop 1t FLTi=ELT#+(A
"END' OF J L00Pg
"END' OF PRpp TREINCONSS

~T1K—1-(vaYEznnE]*2)>:
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PROCEDURE TRACE:

The TRACE procedure is an ancillary routine used by QELETXY and
QIDN, its function is to determine the first node number starting each

column in the zone, when generating quadrilateral elements.

When accessed, variables from the node numbering system, A, TIK,
ADD, I and B are presented, and on exit the required node number is

given by variable BB.

Procedure steps correspond to the flowchart:
1. A conditional statement is set up whereby, if (I-B) is greater
than zero, the variable B is incremented by two, and the first

column number of the zone is evaluated and held in BB. If

the reverse is the case then BB is determined for a sparse

nodal column.
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71lowchart for Frocedure Trace:-

ORI

\\
T-RB
Y5
>
0
Be=l4?2
BRr=(A+(A+1+TIK) /2)*
NO ((1-1)/2)+ADD

Pl (A4 (A+14TIK) /2)*
((1-2)/2)+ADb/2+A

'pROCEDURE! TRAFE (BB, A, TIK/ADD T )
"VALUE' A, ADD, T1x]
"INTEGERTA,TIKeaDD, 1 /8,80
"BEGINT
"IFEYCI~BY>0 1 THENM' I1BEGIN'
B gB#Z
Bél=(AL(A+1¢TXK)/2)*((I'1)
PEnb! VELSE'
BByzAelAs (A+14TIK)
'END' OF PROCEDURE TRACES

/2y+ADD:

/Z)i((l-z)/2)*ADU/2}



- 412 -

PROCEDURES QELETXY AND TRELETXY:

Both of these procedures function in the same way and compute the
x and y coordinates for each node generated within the zone under
consideration, The mapping technique relates a unit square in local
coordinates ( & and n ) to the quadrilateral in global coordinates
(x and y), the shape of which depends on the eight super nodes given

in the input data. The mapping function can be written as,

Ni(E,n)xi,

~
i
H Mo

i=1

~<
1

8
El N. (&,n)y;.

1

The vector [N(&,n)] is the isoparametric shape function for a quadri-
lateral element. The mapping technique is comparatively simple and
any point within the zone can be defined in global coordinates by

inserting the corresponding local coordinates into the shape function

[N(E,n)].

Each coordinate generated must be given a node number as part of
the finite element model.  The numbering scheme is explained in

Chapter 5. The system is rather complicated by the fact that in meshing

. 1 14!
a real component it is convenient to make some of the zones 'void', that

is no mesh generated in the zone. It can be appreciated therefore,

that to have maximum flexibility in the generating process, voids can

be placed anywhere in the zone array. Thus the node numbering scheme

must be such that it can operate for any combination of voids that may

arise. To avoid curved boundaries propagating into the inner mesh,

i ound, the remainin
only the finite element corner node coordinates are f , g

nodes being evaluated by interpolation in procedures QELNCONS and TRELNCONS.
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The quadrilateral element has a different node pattern to that
of the triangular element, being consistant but non-uniform. This
presents problems in the node numbering.scheme and a separate sub-

procedure TRACE is used to determine the correct node number.

The procedure steps are as follows and apply to both QELETXY and

TRELETXY :
1. The counter loop I is constructed and represent the column
of node points in the zone. For the quadrilateral element

procedure TRACE is accessed and on exit variable BB[1]
contains the first node number in the column. Similarly
for the triangular element,.B represents the column multiple.
The local coordinate ZETA is determined.

2. The second step evaluates the variable SP and this controls
the number of nodes evaluated in the column by stepping the J
counter. The variable SET is used simply as a control flag.

3. The loop J is constructed, within this loop the local
coordinate ETA 1is determined and in conjunction with the
shape function N(E,n) the global coordinates of each node

are found for the column (I). The node number is

represented by the variable P, which is controlled by the

numbering scheme variables. (See Chapter 5). The loop Q

evaluates the x and y coordinates, calling the individual

i i . d
shape function terms and zone coordinates, Nl(g,n) an

QUAD(x,y) respectively.




- 414 -

rlowchart for Procedure Treletxy:-

. <;Ef:1(1).(DIVX[ZONE]*2)+1>

|

B::I-"]
28T =2ETA+(I-1)/DIVX| ZONE]

OR

SP:=1

1=DIVX[ZONE]*2+1

YES

SP:=DIVY[ZONE] *2
SET:=

NO

o
_ (Jioa(sp) (prve[zomE]*2)+1 )

e
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ET4:=ETA4+ (9-1)/DIVY [ z0NT]
'HXFW}::~O.25*(1~ZETA)*(1-ETA)*(ZETA+ETA+1)
2] := 0.5*(1-2ETA) *(1-(ETA) $2)

L Ji= 0.25%(1-ZETA)* (1+8TA) * (-ZETA+ETA-1)
(4] t= 0.5 (1-(ZETA)42)* (14ETA)

MN[5] 1= 0.25% (1+ZETA)* (1+ETA)* (ZETA+ETA-1)
(6] 1= 0.5 (1428TA)* (1= (BTA)42)

NE[7]:= 0.25* (142EPA)* (1-ETA)* (ZETA-ETA-1)
NN (8] = 0.5*(1-(2ETA)42)* (1-BTA)

i C:=VD

DIVX[ZONE] *2+]

l C:=DIFF+VD

NO

‘ ] C:=DIFF+IN l

]

P::A*B+J+ADD+ZNAD+C
XX[P]::YY[P]::O

xx[P]::xx[rﬂ+NN[Q]*QUADX[Q]
YY[P]::YY[P}+NN[Q]*QUADYD@




ETA: =210

K;mf:)
N

"TPROCEDURET TRELETXY(pIVX,DIVY, AX, YY)
VINTEGER! YARmAYIDIVXeprVY:
PREALY "ARRAY ' XX, Yy
TWEGINT
"FOR' 1!“1'STEP'ﬁ'UNTIL'(DIVX[ZOHE]&:)¢1’DQ'
TBEGINY pimy=-9
2ETALRZETAS (1~ / nIVX{200ET]
VIFIIee ORI IeplYXLZOHET w2+
Pyugn! Spr=1
VELGEY 'REGIYT
PpptSEY=n!THEN' "BEGIN'
Spy=DIVY[20HE)w2]
cEy:=1; PEND!
TELSF!
IBEGINY
RP;EZ: SETIBO;
VENR' g
YEMDI
YEOR! JS“1'SéEP'sP‘UNTIL'(UIVY[N”HH*2)¢1'3“‘
TREGINY ..
ETA;SETAe (Jmq)/nIuY[ZONEDS : _
NNiﬂJ mw(, 28w (1eZpTA)w (1" mETAY CZETA*ETAYD)
NNL’Jg&G Gu (qmdpTa) s (1e(ETAYTRD
NNE3) 80 25 (1myEpAdw (1#ETA) ¥ (~2E
Nl&dywl, §§(1w¢¢gfﬁy¢g)w(1¢FTA)i Crin1)
NE5) gm0, 256 (147ETA)S 1t§72§;é§£YA@ Ae1)
NEg)raD SeqqedeTadr (4=(ET i Ty
N&f&g%g gS%ii*?E?ﬂ)W(ﬁ i{ﬁi:(?fTA wETA=T)
B ® yrgyw e . . FEHENT
N ??@ﬁ?V§;;zc§a5T?EL§W'IF” enluxrzonpyeaet THEN
1F?@vmﬁ0plsa*fz%pisﬁwﬂw
1*d$iﬁﬁ¢§NAD¢€o

Jreyylpyeu0, 0y N
@3$?°E??9'ﬁ°uwriuvg‘nﬁ'
bt

FARETA=T) Y
N
N
K
N
N

{%ﬁéwﬂﬁﬁi@QUAﬁXEQS
i@%%%%?@ﬁ@@UﬁﬁVtuii
%sgwﬁ.ﬁ; )

J ﬁﬁ%i ggTAre=t 0
j

p

BGLLE]
ﬁ%ﬁ ?a%;ETiV

“E“’“ “‘“““’"Eﬁem— m ﬁg.nﬂ

¥
G
P
94
g
I
K
VY|
Vg
i
i
i




- 417 -

Flowchart for Procedure fQeletxy:-

START
[ ‘<TT::1(1) DIVX[ZONE]*2+{>
14
TRACE(B3[1] A, TTK,ADD,T,B)
ZuiT A s =%1TA+ (I=1) /DIVX[ ZONE]
YES
OR SP:=1
1=DIVX[ ZONE]*2+1 SET 120
NO
YES
o SP¢=DTVY[ZONE]
GETe=1
NO
SPy=2
SET:=0




|
|
|
|

|
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— — //J:=1(SP) (DIVY[ZONE]*(2QSET))+1t>

|

BTA:=(1/DIVY[Z0NE] ) *(1+SRT)*
(J-(DIVY[Z0HE] /(148ET)) 1)

NN[W}:: as in procedure

Treletxy.

Ce¢=VD

YES

C:=DIFF+VD1

pe=BB[ 1] +J+ZNAD+C
xu[ P =¥ [Pl £=0.0

—

e
iz
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Q::']('])g

xx [P] =xx[P] N [Q] *quADX [0
vy [¥] s=vY [ 1] +nu Q] *quany 4]

END J

GETA:=-T7,0
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VPROCEODURE! QELETYY(TKACE,DIVX,DIVY XX, YY)
VINTEGERIVARRAYID VX iDIVY;
TREALTVARRAVI XX, YV
P PROCEDUREY TRAFE}
TREGINT
?FOR‘I§%1‘STEP‘4“HNTIL°(DIVXEZONE]*23*1‘DO‘
TEEGINY
TRACE(BBY),Aa,TIK,ADD, 1,B)¢
JETAIBIETAC CT=1Y/pIVXT20HET
PIFITeq ORI aDIVXIZ0ET"241
PYHENTIBRGINY SPems1iSETea0) P FHDT
VELSEY 1RrERINT
P pisEy=Q  THEN "HEGIHY
Spy=DIVYL2ZONET:
efyi=l: TEND'
TEysFE!
IReGIN?
ePy=2y gET:al;
VENR Ty
TEND T
EFﬂﬁgdﬂﬁi'gTFpﬁﬁprNTIL‘CDIVYEZUHFE*E?mSET5)¢ﬁ‘DOV
PREGINT
ETﬁzﬁiﬁ!ﬁiva?0uE13*(ﬁ¢SETSWCJWCDIVV?ynNE3/Ci@SETﬁbﬁi5?
NNiﬁJ2“Wﬁa2@?(?wZETADWCﬁ“ETA)W(ZE?K*ET&*?)?
NnEpdesD SwiqezeTare (1=(ETAIT2)
NNCB)iﬁoezgﬁCﬁ%?ETﬂ)W(ﬁ*ETﬁ)W€“3E7ﬁ¢E?ﬁ“1)}
NNC4Y 20 Se¢i=(7ETA) T2y« (1+ETA)
NNCS]320.25*(1*ZETA)*(1+ETA)*(ZETA+ETA~1):
NNEGYs20, 5¢¢q¢rTAY*(1=(ETAIT2):
NNE7) 180 . 25w (1o pETAY W (1 ~ETA) ¥ (ZETA=ETA=1)
NHEBY:20 Se¢im(7ETAI®2) % (1=ETAY
VIFVIE 1V YHEN' CraVn'ELSEY "TF' T=pIVXEZONET*2+1  THENT
C:eDlFFevDIiELSF ci=DIFF+INI
Peapbll1lederNADSC
XXIplgerYy[pPyse( 0y
FOR'QiE4 T SYEPTA ' UNTILY &' DO
YBEGINY
XxEploaXypyennrQywalapXlnd]
yyYLplisYylpyennraiwaupapylali
VEND '}
CEND' OF J 100y yETA:==1.01
TENDY OF T ro0py
PLRNpY OF PRaAp QFLFTXY;

!
t:
I
i
i
i
i
i
i
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PROCEDURE MATCON:

This procedure, as explained in procedure OUTPUT2, serves to read
in and print out the material constants. As this operation is required

repeatedly it has been adapted into a small sub-procedure.

Tlowehart for :rocedure Matcon:-

Ar=READ B:=READ Cr=BEAD D:=70AD
B:=RoiD PRINT(A,0,10) PRINT(BR,0,10)
PRINT(C,0,10) PRINT(D,0,10)

PRINT(,0,10)

'PROCEDURP! maTeONCA,B,C, 0 E);
"REAL'A,B,C,D,E;
"BEGIN'A =PEAD) Bi=READ!
NEWLINP (1)) PRIHNT(A/ O,
NEWLINE(1)! PRINT(p:.0.,10
"ENDY  OF PRrOCEBRURE I1ATCON:

C:eREAD! Di=READ) EtaREAD:
0); PRINT(Rs0,10); PRINT(C.0,10);
Y PRINTCEr.0410); NEWLINE(1);
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PROCEDURE HATCHET:

4
5

As explained in the introduction, zone faces can be joined, being
originally open in the zone array. Thié facility causes the nodes on
one of the zone faces to become redundant. The purpose of this
procedure is to rearrange the element nodal connections, eradicating
the redundant nodes and condensing the nodal numbering scheme. Hence
if a node number becomes redundant any nodes of greater value are
reduced by 1, etc. Similarly the x and y nodal coordinates are
condensed, so that they correspond to the rearranged element nodal

connections.

The following steps show how the procedure HATCHET operates:

1. The nested loops I, J and Q are constructed, within which the
element nodal connections are rearranged. At this stage the
redundant nodes are simply replaced by their counter parts,
in array NUM.

2. The array NUM is modified and held in array CUT. This array
now contains all the redundant node numbers excluding the
node numbers which happen to be identical.

3. The array CUT is again modified so that the node numbers are
.in numerical order, this allows the re-addressing scheme to
function correctly.

4. The nodal coordinates are condensed, using array CUT.

5. The element nodal connections are condensed, using array CUT.
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Procedure Hatchet:-

Yi5S

1

wope[7,q) :=wun[ I, g

] L
1_, —_— J:=1(1)NELET
i
—1:=1(1) 6+QORT*2:>
NoDE[J,Q)
| N UMWLI ,2)
L G

B1:=B2:=0 A:=1

- (Tt

HUM£1,2

nui([I,1]

NO

B1 :281 +1

Y85

1
CUT[I~B1]:=NUM[I,2]

B3:=B1
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- //J::1(1)SUM~B1:>

(_g _w\\I::J(q)SUM~B1*1:>

CoT| g YES
1]

|
|

CUT[%:jl//ﬁ
TENMP: =CUT [J]

cut| ) : =CUT 1+1]
13+1] : =TEMP

cuT

cur (4]

B3:=B3+1
CUT|I+1]:=1000

YIS

N7
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\

— I:=1(1)NELET >

S ———-<J::1 (1) 6+QQRT*2>
l

(uz=1() sme )

[
|
|
|

| wone[T,J] YES
<
cut [w]//
NODE[I,J] :=NODE (I, J] -W+1J
NO

END
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"pRUCEDVRE! HATtHFT(HUM,XX,YY.SUH,MHOnE,HooE,NELET)x
IVALUEYSUM,NELET,NNODE CINTEGER'SUN,NELET +NNODE;
VINTEGERIVARRAYINUM, HODE "REAL' VARRAY 'XX,YYi
'BEGIN"XNTEGER'J:I,WrAnD1'82.TFHP,RS;
VINTEGER' "ARRAY'CUT (1 :Sum+11:
CUTISUM#411=10000;

"FOR'"I 811 gTFp 4 UNTIL ' DIDOY
TFORYJ1e4 ' STEPI4'UNTIL'NELET' DO
‘FOR'Qzﬂﬂ‘STFp'1'UHTIL'(6+QORT*2)'DO'

VIFY NADECS,0)=Nynll,2)  THEN!
NOPELJY,0ly=nunl1,17;
B4 .2B2:20; A:=1:
'FUR'I:F1'STFP‘1'HNTIL'SUM'D0‘
PYEYNUMDY 20N NUnrI 1]
TYRENT Cuyt(l-pdl:=lUNLI,2) TELSE? 1301+
p3:=81)
VEOR'JyE10gTER 4 UHTIL sUli=81'DN?
'FOR'1:=JvSTEP'1'UHTIL'SUH-B1~1’00'
t1FY CutlJasClirytli+t) CYHENYYBEGTH!
TENMpe=CUTIVI: cuUTLJye=CuTlI+1): CuTlI+1]e=TEmPs
PEND?
VpLgE""1F' cUTLJI=Curlied]d
'THEN"BEGIH'D3:=R3+1icUT(I+11==1000:'END';
'FOR'I:F1'STEP'1'HNTIL'NHuDE+SUH'n0"nEGIN'
"IFteuTPaley tTHEN!
'BEGIN'R218B2+1; ArmAa+l; tEND !
"ELSE! .
1BEGIN! Xxl[Irp2):aXXUI)i vyl1aBR2)lyayv(I1;
i1E'¢1.B2)=NNODE VTHEHYTGNTOYTUDY S
FENRT ) "eND' oF LOOP I
TUO1;'FOR'I|=1'STFP'1'UNT1L'NELET'DO'
QFOP'J|=1$STEP'1'UNTIL'(6¢OORT*2)'DU"BEGINi
';0R'u:=1'STFP'ﬁ'UNTIL'SUH+1'DO'
P71 NOREDT, 03<cuTiW]  VTHEN! "BEGIN'
NODE[I,JjunNuoEEI,J]~U¢1: "GOTO'TEX;
YEuD ')
TEX3'ENDY Of LOAP JJ
VEND! OF PROEEDURE HATCHET: -
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PROCEDURE RESPLOT AND SUB-PROCEDURES QPLOT AND TRPLOT

These procedures plot the final discretised component, and the
graphical representation of the generated data provides a useful
check on the element nodal connections and the nodal coordinates.

Each element is plotted individually from its nodal connections, hence

any errors would become apparent and could be traced readily.

The sub-procedures QPLOT and TRPLOT plot the quadrilateral and
triangular elements respectively. The following steps describe how
the plotting procedure RESPLOT and sub-proceduresQPLOT and TRPLOT
function:-

1. Graphical output can be bypassed by declaring GH to be zero.

2. The plotting procedures are opened giving the size of the
plotting area.

3. The scale of the graphical plot is determined by identifying
the largest dimension of the structure.

4. The element plotting sub-procedures TRPLOT and QPLOT are called
depending on the control variable QORT. This variable is used
throughout the mesh generation program and distinguishes between
the triangular and quadrilateral elements, it is also passed
‘onto some of the bi-element finite element programs. The sub-
proceduresfunction by storing the element coordinates in arrays
X and Y, which are then used in the line plotting procedure
HGPLINE. This simply draws a straight line from one node to the
next, hence where curved boundaries are met a simplified view 1is
given and no attempt has been made to plot the resulting quadratic
curves.

5. The last steps involve the construction of the axis and various

labels.
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Flowchart for Procedure Resplot :-

-

| START

OPENPLOT
HGFLOT(0.0,25.0,0,4)
CHANGE:=0.0

r_______.<\w::1(1)NN0DE>

END

CHANGE : =XX [ W]

o
o
1)

CHANGE : =YY (W]

YES

CHANGE
>
20

SCALE:=1/(ENTIER(CHANGE/

20)+1)

NO

SCATE: =ENTIER(20/CHANGE)
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/s =1 (NELET

TRPLOT(XX,YY,NODE,X,Y)

,QPLOT(XX,YY,NODE,X,Q%

b

STRARR(BCD1,6, " (' X$AXIS') )
STRARR(BCD2,6, ' (' YHAKIS') ")
STRARR(BCD?, 2%, ' (' STRUCTURALHIDEALISATION' ) ")
HGPAXIS(0.0,0.0,BCD1,-6,20.0,0.0,0.0,1.0)
HGPaX15(0.0,0.0,BCD2,6,2%.0,90.0,0.0,1.0)
HGPSYMBL(10,21,0.5,BCD3,0,23)
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"LbROCEDURE! RESPLOT(QPLOT,TRPLOT, XX, YY,NODE)?
VINTEGER|'"ARRAYINQODE]
TREALYPARRAY ' XX,YY
"pROCEDURE! qPLAT,TRPLOT,
TBEGIN' 1COMMENY' GRAPHICAL DISPLAY Of IHpUT DATA;
YREALY XO.Y0,CHANGE:
"INTEGER1 tarrAy' BCD1,BCpD2,BCD3044901:
'REALY YarRav' ¥,v[1:019
VIFYGHSO0ITHEN''€0TYO SKIP:
VEEGINY
QPENPLOT
HOGPLUTC0,0,25,0,0,4);
CHANGE:®0.01
"FPOR' Wied isTEp' 1 "UNTIL' HHODE 'DO!
"REGIN'
P1FY XX[WY>CHANGE 'THEN' CHANGEg=xx({UWli
PTEI YYPWY>CHANGE 'THEN? CHAMGE t=YY Wi
"END '
VIFYCHANGED20' THEN'
SCALE:=1/(ENTIERCCHANGE/20)+1) 'TFLSE!
SCALE;=ENT!ER(ZOICHANGE):
YEOR' Wimt 1STER' 4 'UNTIL' NELET DOV
'IF'QORT=0'THENiTRPLOT(XXcVY,HODFaX.Y)'ELSE'
OPLOTC(XX Y HODE X, V)
STRARR(BEDT, 6, "' ('y%AXs")Y ")
SYRARR(BEDZ,6," (' Y4AXIS ) )i
STRARR(BcD3,23il(|STRUCT”HAL%IDEALISATION')'):
HGPAX1S(o.o,o.oZBCD1,-6.20.0,0.0,0.0.1.0):
HgPAxIS(o.o.0.0;3c02,6.23.0,90.0,0.0.1.0):
HGPSYMBL(Y0,21+n,5,BCD3,0,23);
VEND' OF GRAPM pLOTTER PRUCEDURES:
CLOSEPLOY
SKIP:'END' oF PrOp RESPLOT
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Flowchart for Procedure Trplot:-

START

|
v[1]:=¥[7]: =¥y NODE[wW,1]] *SCALE
w[2] s =xx[wopn[w, b | *scAtE
v[2]:=vy[nope[w,b]
x[;]::XX[NODE[w,a
¥[3) :=Y¥[NODE[W,2
x[4] : =xx[wope[w, 5] ] *scaLe
v 4] :=vy[ nODE[W,5]] *S
x[5] s = vobe[w,3
¥ (5] :=v¥[wopi[w,3] ] *SCALE
x[6] : =xx wops[w,6]] *scaLe
y[6] :=vy| NODE[W,6] ] *SCALE

x[1] :=x[7] :=xx wopE[w,1]] *scALE

—

|
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Flowchart for Procedure Qplot:-

v[1]:= f’97 —YYlNODh(W 1] J*scALE
x[2]: X nope! 5]}*SCALE

v[2]: vy, Nopr‘w,S]

xx| wopE W, 2]

]]

X[ 1] =X 9] - =XX[ NODE[W,1] ] *SCALE

—

S R .

X[’ : i
T3] ¥ hootL 1,2) |
{ 6]7 CALE
? SCALE

\S;
—

-

x4 -
Y[ 4] vy woni w,6
%(5]: (waonu,v 3
{YLNUDHLL,BJ
xx| NoDE| W, 7]}*5CALE
. vy[ nope[w,7] ] *scaLE
. [ wopE[w, 4] ] *scaLE
: YYfNODE'w 4]]«scaLE
. o wop w,8]] *scaLe
: YYLNODLLM,B]] SCALE

KX NODE

*SCALE

n

S
I‘__]!_"‘
o O NJ

M oae R
e T
oo OO

~N 2
I S T U S ST I N L W e
. ve ce

<:%NDj>
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VPROCEDURE! TRPLOT(XX,YY HODE, XYY

" INTEGERI " ARRAYINODE

TREALY VARRAY Y XX, Yy, XrY:

IREGINT

X[11:8X[?7)1exXX(MODELHY,1)1I+SCALE:

Y[1Jg:V[?lgnYytHODEEN,1]]*SCALE;

X{21i=XX[NOpE(®W,671)*SCALES
YI21:=2YYLNODERW,6]1wsCALES

X(3):eEXX{NOPE[Ww,2Y)*SCALE;
yI3YiayylHopE 1,21 )=80ALES

X[é];=XX[NOhE(W,51]*SCALE;
YI41:=YYLNODEDU,511+SCALES

X{S)1:i=XX{NOPELW,31]1+SCALE;
YI5Y:=YYIHODEL 1,31 1%5CALES

X[611uXX{NODE[W,61)*SCALE;
Yié]:=YY[HODE[U.6]]*SCALE;

MOPLINECY Y. 701Y

"END' OF TRIANGUp AR ELERENTS

"PROCEDURE! QPLOT(XX/ YY HODE X, Y):
VINTEGERIYARRAYINODE,
TREALYPARRAY VXX, YV X1 Y
TBEGIN
X[{1):2XL90TpexX(NOpELY, 1) =SCALE
Y(4)3=2v {0 =YYLHODELW,13I*SCALE]
X[e)i=XXENOnELW,51)*SCALE:
. vyI2):=YY{NODEFU,511«sCALE]

X(5)1eXXINOPELW,21)*SCALE;

YI33:3YYLNONELW,2])1w8CALES
X[b)i=XXINORETW,61)*SCALE;

YI4Y:=YYLHODEIY, 61 1%SCALES
X[S)YieXXINOPEfw,31)=SCALE;

yI51:18yYyY(HODELN,311+SCALED
X(6];=XXNOPELW,7Y1)*SCALE;

YI6Y =YY INODELU, 711%SCALE]
X{71:i=XXENOpEIW,431*SCALE;

vI7v:aYYINODELW 4TI *SCALE:
X[B)IEXXENORELwW,BY1wSCALE;
Y6y ;aYY[NODELW,B)I*SCALE;

HGPLINECY Y. 94s1) )
"eEND' OF QuUaD EBLEMENT:
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PROCEDURES QIDN AND TRIDN:

As explained in the introduction, to make the mesh generation
scheme as general as possible a facility has been incorporated into
the program which allows zone faces, originally open in the zone array,
to be joined. This process causes the nodes on one of the zone faces
to become redundant. In order to trace the redundant nodes, a copy
of the nodes which need to be retained is made and by subsequent

comparison of the x and y coordinates, the redundant nodes are found.

The object of these procedures is simply to record the node numbers
which need to be retained when two zone faces are closed and these are

stored in vector NUM.

The following steps indicate how procedures QIDN and TRIDN function:
1. The zone face which is to be closed or joined, in the zone

array, is given a side number, i.e. 1-4. This side number,

together with the zone number is used to evaluate the nodes which

are to be retained. Each side number is tested until the correct

side has been found. Once the side has been identified the node

numbering scheme is evoked and each node number is recorded in

‘array NUM.

Note that the procedure TRACE is used in the case of the
quadrilateral element.

If the zone has more than one face which is to be closed then the

procedures are recalled by the main controlling procedure.
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Wlowchart for Procedure Qidn :-

BR:=B:=0
I:=1
TRACE(BR,A,TIK,ADD,I,B)

(—— — <:7::U(1)DIVY[ZONE]*2+2:>
|

\ \wnM[J,wj;:ZNAD+BB+VD+J-D+1l

I — e ]

[
1D::D+DIVY[ZONE]*2

YES

N —4<j::9(1>D1vx[ZONE]*2+D )

J "-=D

NO
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C:=VD

F+VD1

PRACE(BR, A, TIK,ADD, (J=D+1),B)
NUM[J,w];:ZNAD+BB+C+1+DIVY[ZONE]*(B+D-J)

D::D+DIVX[ZONE]*2

SIDE[I]

y,
)

J:=DIVX[20NE] *2+1
B:=DIVX[Z0NE] *2
TRACE (BB, A, TIK,ADD,J,B)
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— ———<J::D(1) DIVY[TONE]*2+D>

1 MUK [T, 1] s =2NAD+BB+DIFF+VD1+J-D+1

D:=D+DIVY [ZONE] *2

|

Be¢=0

— <J::‘D(4,_2 nth[zom:] *2+D

T+V DA

E::DIFF*—IN
I

|
TRACE (BB, A, TIK,ADD, (J-D+1),B)

WM (7, 1] £ =ZAD+BB+C+1

D =D+DIVX[ZONE] *il
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tPROCEDURE Y QIDN(TRACE, nIVX, DIVY Hund
" INTEGEREYARRAYIDIVXsDIVY  NU[;
"PROCEDURE! TRAPE;:
TREGIN'VINTEGERIB,BB,yJ,Cs
VIFYSIDEEYIINEYQ T YHEN!
"BEGIN'
CIF'SYIDETT) Y NEY2  THEN'
TBEGIN?
"I1ptSypE(YIINE'3THEN?
"BEGIN?
B:;=0;
"FOR' . =D ISTEP 1 UNTIL ' DIVXLZOHFEI*2+n ' DO’
TBEGINT
"IetJdept' THEN'Ci=vD
TeLgE ' "IF'J=DIVX{ZO0UE]#D+D
VYRENTCe=DIFF«VDA
"ELSEYCI=DIFF+IN;
TRACE(BR,AyvIk,ADD, (J=D¥1),B);
NUMIJ,1)1=2HAD+3B+C1 )
TENDT
DimDenIVXPZONEI=2; 'GOTO'LAN:
TEND
TeLQE'’
JizDIVX[20NEY*2¢1; DB:=DIVXIZ0NF]I*D2:
TRACE(BB,A,TIK,ADD,J,0):
VEQRY J1=p! STERVY P UNTILY DIVYLZONFI*2+0 " pO?
NUMIY,113=27NaDeBB+DIFF+vDT+d=De1
D:e=DeplVyrZONEYe2; 'GuTO'L80;
VENDY
TELSF!
B:=0,
VEOR'J1ED'STEP 4 ' UNTI L' DIVXLZUNE] #2401 nO!
"BEGINY
ViFY)=DYYHEN'Ct=VD
PELGE' V1 F1J=DIYX{ZONEI*2+D
PYHEN'C:=DIFF+VDY
VpLgE'C:=DIFF+1H;
TRACE(BB,AoTiK‘.‘ADD:(J”U+1):B):
NUM[Jn1Jz:ZNAD¢BB+C+1+DIVY[ZONE]w(n+DHJ);
"END';
D:=p*pIVXL2oNE)«2: 'GOTO'LBO;
YEND'
VELSE!
By:=Bg=0) 1,=1}
TRACE(BB,A,TYK,ADD,1,DB)2
VFORYy1=ptSTEP 1Y 'UNTILYDIVY[ZONFI*2+D DO
NUNEY, 911 22NAD«BB*+YD+J=~D*1;
D:=D*DIVylZoNFIe2y
LBUs"ENDI 0F PRAD QIDH:



Flowchart for Procedure Tridn:=-

///////Q£Dm[1]

YES

y,
1

NO

r—~ — —<j&:=D(1)DIVY[ZONE]*2t2;>
i

| 30 [3,1] 1= (I D) +ADD+ZNAD+1+VD

l

D:=D+DIVY[ ZOWE |*2

VES
— -—<(J::D(1)DIVX[ZONE]*2+QJ>
J=D YES

HO
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l C:=VD

p1vY[ZONE] *24D

C:=DIFF+VD1

NO

C:=DIFF+IN

w01 [3,1] : =DIVY[ ZONE] * 241+ ADD+ZNAD
#A* (J=D)+C

1D::D+DIVX[ZONE]*2

(m“‘r D

51D&[ 1) VES
y,
>3
1O |
— »<:J::D(W)DIVY[ZONQ]*25§>
|
1 wu[ g, 1] s =a*DIVA[ ZONE] * 2+ADD+ZNAD
L~_ +(J=D+1)+DIFF+VD

__1

\D::D+DIVY[ZONE]‘2
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|

‘ Yi
+=VD
YES
C:=DIFF+VD1
MO
C:=DITF+1IN

Iv-.fm\-'i[J , 1] c =1+ ADD+ZMAD+A* (J-D)+C

D: =D+DIVX[ ZONE] *2
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"pROCEDURE! TRIAN(DIVX,DIVY, HUM);
' INTEGERI YARRAYIDIVX,DIVY, NUIT;
*REGINT
VIFYSIDECTIINFYE P THEN?
PREGIN'"IFIQIDEPIYINEY 2 THEN'
VREGIN''IFIGQINELIY'NE'SVTHEN""REGIN'
VFOR'JsEDNYSTEPT4VUNTIL'DIVXIZONETw24D1 DO
'BEGIN"xF'J=n'vHFN'c:=votELsu"xF'J=n1VXt20HEI~2¢DiTHEN'
C:=DIFFeyDItELSE'C:=DIEF*INI
NUMIJ, 11 1216ADD+ZHAD+AR(J=DYI*Cs " EHD T
D:=D+DIVXIZONE]«2:'GOTO LA 'END'
teLsSkE?
"FOR'J:ED'STEP ¢ UNTIL'DIVY[ZONEJ»2+D1 DO’ '
NUMEJ:13:=A*DIVX[ZOHE]*2+ADD+2NAD¢(J~D+1)+DIFF+VDﬁ
D:=p+plVyl2zoNEl«23'GOTO"LE: '
VEND'
'tLSE"FoRlJ,=D!STEP'1vUUTIL'DIVXtZONE]*2+D'DU"BEGIN‘
'1F'J=D'7HEN'Cs=Vn'ELSF"1F'J:DIVx[ZONE]*2+D‘THEN'
C:=DIEF*VDITELSF s=DIFF+INI
NUMEJ 13 :aDIVYLZOHE)*2+¢14ADD+7NAD+A%(J=D)+Cy PEND!
D:=D+DIVXLZONE)w23'GOTO"LSS
TEND'
'ELSE"FOR‘J:=D!STEP'1'UNTIL'DIVY[ZOHF]*2+D'DO'
NUME 1Y :2Cd=D)+ADD+ZHAD+1+VD}
D:=D+DIVYLZONF )l
L3:YENDY OF prORM YRIDN:



PROCEDURE MGINPUT:

This procedure reads in all the mesh generation data, and the
form in which this data is presented to the program can be found in
the users guide (5.5.1). The program listing is self-explanatory,
and the only point of interest is the sub-procedures COREGEN and STDGEN,
which generate an ancillary set of data for the zones around circular

regions. See procedures COREGEN and STDGEN.

"PROCEDURE® MGIHPUT(XCOD, YCOD, 1N, DIV, DIVY,VARN/NODFY;
PINTEGERI'"ARRAY I Hu, DIVXsDIVY s VARI, HODF:

TREAL' "ARRAY!'XCnD,YCOD

TREGINT

YLOR'JIEYISYEPY4TUNTILPSHODE " DO

VARNIJI209

'FUR'J:aqVZONE‘ETFP'W'UNTIL'NZOHES*VZHNE'DD'
PBEGIN'DIVX I YreDrvY(JTem0r " END s uZ1=0;
'lF'NTIP>0'YHFM|COREGEN(XCOD:YCUD.VARH.HTIP,
VZUONE  MN,DIVUX ¢ DIVY, NZ)
NGMi=READ)
vIFY NGM3O0 1TTHEWM' STDGEN(XCUD:YCOD.VARH;VZDNE;HNIDIVX,D[VY):
PFOR'I 3B VSTYEP Y ST UNTI L THSPOS DO
TREGINY
Q:=RtAD;
MUY =READ]
MUZ;=READ]

VEQRTJ1eq tSTERPIUNTIL QDS

TREGIN! WiuREFADY VARNIWT 1=

XCnDewly=nul;
YCaDrWlj=nUd;

VENDY U
YENDY OF I L0OP
TEOR'ZNI=1ISTERE] IUNT LY PZOHE! DU
YUEGIN'
Q:=READ] lj=zREAN; HNDi=READI NGM:uREAD;
VEOR'J1B4'STEPYQYyNTIL Q' pO!
"BEGINY PierEAn; MNIPY:i&l! DIVAIPTi=HD; DIVY{P) yanG;
'END';

INipIN&Qwmy

PENDYOQF 2N [ 00P)SUM:=0:
IDENTI=READ] ' YFIIDENT=0" THEN" 'GUTO LA
'FOR'1;=1'svgp'q'uNTIL-IDgNT'Do"nEGIH’
1DNLLI)iBREARISIDErTI]i=READ]
'lF'Sonrljazvoa'gon[IJ=4!THEN'suugmsuﬂ+orvxtlo”[111*2*1
'ELSE'SUHI=§UH¢hIVY[TDN[I]1*2*1i'END'i
L& 'ENDY OF prROM HGIHPUTI
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PROCEDURE OUTPUT1:

There are several finite element programs in existence and each
require a different data format. This input data consists of control
variables which are local to each program. The node coordinates,
element nodal connections and boundary condition data has the same

format in each program and represents the bulk of the data.

To distinguish which program is going to be accessed a '"CODE' 1is
used and this controls the data output.  There is no need to add any
further comments on this procedure, except to say that further detailed
information on data presentation can be found in the users guide.

Note that the last block of read statements are control variables

required in the mesh generation scheme and set the array sizes, etc.



- 445 -

tPROCEDURE!Y ouUTerUTYY
"BEGIN'
" INTEGERINJOAB ) PRNT,PRINCNSETF,NSETGC, SURNO:
CODE:=READ) QORTIaREAD! NJOB:=READ:
PRINT(NJOB,3,0); MEWLINE(2)} COPYTEXT ¢ ("ENDAROFRTITLE) 1)
WRITETEXT (1 ¢V ENRYXOFXTITLE YY)
NEWLINEC4); NE{Et:=RgaD; HNHOoDE:=READ!
PRINT(NEET, 3,0y ;nSKEUe=0; PRINT(UNODE,3,0)}
TIFYCODEY Py uENT
TRHEGINT
NSETFS:sREAR: PoMys=READ; PRINC:=READ; HNSKEW:=READ; NHMAT S =RFEAD
NSETF:3READ) NSETa:=READS PRINT(HSFTFS,3:.0)3
PRINT(PRNT ;3,00 s PRINT(PRINC,3,0); PRINTI(NSKEY,3,0) PRINTC(MITATY, 3,0)
PRINT(QORT, 3,003 pRIHTC(NSETF,3,0):
PRINT(NSETC,3,0y; ‘'"Eun'’
VIFYCODE=3tYHENT TREGINT
THICK:=EREADINSETFS:=READS
PRINT(THICK,0,10) PRINTCHSETFS, 3,031
NSKEW:=READS SURNO:=READS
PRINTCHNSKEY,3:0) 3 PRINT(SURNO,3,0)
PRINTYC(OORT ., 3,0):
NGETCs=pEAD; PRINTCHSETC,3,0))
NSETFy=READ) PRINT(NSETF,3,0):
VEND Y
VIFICODEa?2 Y YHENT "REGINT
THICK3imREAD) HNQETFS:=READS] HSETC:=READ:
PRINT(THICK, 0,40y PRINT(NSETFS,3.,0); PRINTCQORT,3,0):
PRINT(NSETC,3,0):
YEND'
VIFY CODE=4&ITHEN'IBEGIN' i
VEOR'I(®11STEP 4 TUNTIL 6V DO ;
"BEGIN' PRNT:=READ: ?
"1gt 1=4tTHEN' HMAT:3PRNT:
PRINT(PRNT,%,0):
TEND'Y
VEND';

TNSPDS:aREAD:

PZONE1=READ;

V?ONE 1 =READ;

HPONE=READ:

GH:=RFAD?

NYIP1=RFAD/

NPONES taVZO|ExH2ZONE;

SNODE 15 ¢VZOHE*2+1) ¥ (HZOHE+1) + (VZ0UE+TIWHZONE!
YEND' OF PRAp 0UTRUTT;
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PROCEDURE OUTPUTZ2:

This procedure prints out the bulk of the data, that is the nodal
coordinates, element nodal connections and boundary conditions,
together with information necessary for the control of the receiving

programs.

A 'CODE' is used to distinguish the various programs, as in
procedure OUTPUT1, and this controls the output format. The following
steps indicate how procedure OUTPUT2 functions:-

1. The x and y coordinates are printed out.
2. The element nodal connectiqns are printed, and depending on

the code, the material number is either included or left out.

3. The boundary conditions are printed.

4. The control variables are printed out for each program
depending on the 'CODE' number. See the users guide for
further information. The sub-procedure MATCON simply reads

in the material constants and re-prints them.
5. The four asterisks are printed and are necessary as a data

block terminator.
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YPROCEDUREY oQUTPUT2C(HATCON XX YY, HDDEY §
"INTEGERIY"ARRAVYINODE
PREALYTARRAVIXX, Yy
"PROCEDUREY MATEONS
TBEGIN!
VEOR I3 ROYSTEPY 2V UNTIL'NHUODE DO YTREGIUTYNEULINECT)
VEOR " JeBqISTYFPI4Q P NTIL2'DOY'BEGTINY
PIFYIRdONNOREY YHENT'GOTO TOWN;
PRINT(XX[14331,0,8)3PRINTCYY(I+J],0,8):
VEND';  TENR') TOUN:NpwLIWECT):
CFOR'" 1 e=4 VSTFP! 2 UNTIL'NELET DO "REGI N
VIFYCODERT 1nRY CODE=4'THEN''REGIHY
VFOR'Ji2YISTEPTYL Y UNTI LY (7+«QO0RT#*2)Y ' pOt _
PRINT(NOPELY,J),3,0) 7 " 1IF'"HELETLSI*4 ' THENT'GOTO'LEAV?
NEWLINEC(Y)Y
YEOR'JISIYSTEPY YT UNTI LY (?+QORT#2Y ' DO pRINT(HODELTI+1,01,3,0)1
TENDY PELSE?
"BEGINGY
VEOR'J ;B4 VSTEPIE P UNTI LY (64QURT*2) ! n0OY
PRINT(NODE[T,J),3,0)i ' 1F "HELETCI+9 ' THEN""GOTN'LEAV
NEWLINE(1)Y;
VEOR' Y4V SYEP! ST UNTIL ' (6+QORT*2Y'DOYpRINTC(HODELI+T,4Y,3,0) 5
YENDYY
LEAVINEWLINF (1) PEND?Y
NSPECs=READy PRINT(NSPEC,3,0) ;NEULIHE(1)
"BEGIN'
VINTEGERI "ARRAYIKADELT s NHODE 1t NHSETFSY, HOSKIT:NSKEWS1];
"REALY ' AgrAYYULY,vLY[1 (NHODE (1 e HNSETFSY,ANGSK[TiNSKEW+1]
VFOR'" 1 eB4'STEP Y UNTIL'NSPEC DO "REGIN®
JieREAD; KODE[4,1):=READ ULXIU,11:=READ} VLYDJr13:=READ:
PRINTCJ ¢%3,05 :PRYNT(KODELJ,11+3,0) s PRINTCULXIIAT1d00,190)
PRINT(VLYIJ,1)Y/0,40)7 NEULINECI); TEND')
VIFYCODEBT VY HENTYREG] !
TFORY L4 'STEP" TP UNTIL'NHAT'DOY P REGIN?
CASE:=READ] PRYHTY(CASE,3,0);
ANG;=READ! THICK:=READIPRINTCANG,0,10)PRINT(THICK, 0,10
MATCONCEFY ,MUT, GEFEE2,11U2) ;
YENDY
"FOR' I 31211 gTEPI T UNTILYHSKEUYDOY IREGIN
NOSK{T)s=READ; ANGSKIIJ:=READJPRINT(NOSKLLI],3,0):
PRINT(ANGSKF!Y,0,70)7 HEULIHEC1):
"ENDUS
UEND!;
ViFICODEe 2 VYHENY ' REG]I Y
CASEy=RFAD! PRINT(CASE.3/0)i
MATCONCEEY +mUq,GE,EEZ,NU2Z)
HND:=REABIPRINT(NT[1],3,0):PRINT(ROI11,0,1037 PRINT(HND,3,9);
'END’3
"IF'e0DF=5'THEN""BEGT !
PEORY 32418 TEP iy "UNTILINTIPIDOY
YBEGINT
PRINTCNTCr1e3,0):PRINT(ROLYI 0:10);PRINTCALITY,0,10)
PRINTI(NGLyY,4,0): NEWULIHEC(Y):
TENP'
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CASES=2READIPRINT(CASESS3/0): MFWLINECT) S
MATCON(EEY , 1111 ,GE,EER,1H1U2)Y;
CFOR'I B4 VSYEPYYYUNTILINSKEW ' DO "REGINY
NOSK[1YssREAD: ANGSKL[IJ:=READI
PRINT(NOSK[13,3,0);PRINTCANGSKIIT,0,10) i HEWLTIHECT)
"END': 'END' COPETRS
Y1FY cODE=4 "THENT'BEGIN'
"FORY 29 grpP i1 UNTIL'NHATYDOY
"BEGINY CASF 1aREAD: PRINT(CASF.3.,0):
MATCONCEEY MUY, GEFEE2/11U2) ;
"END !
VEND' COpEGs
VENDYINEWLINECYY URITETEXT( " (Ywnwwi) ),
YEND' OF PRApD OUTPUTZ;
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PROCEDURE COREGEN:

This procedure has been designed specifically to generate the
"transition' elements around the crack tip core element. It performs
the same operations as procedure STDGEN. Basically a column of zones
is generated from a string of input data, which is effectively 'wrapped'
around the core element. Refer to examples (3) and (4) in section 5.5,
for details on the data input and zone configuration. Section 2.5.2
examines the theoretical aspects of 'transition' elements, which are
further discussed in Chapter six. The following points refer to the
flowchart segments:-

1. The number of crack tips is printed if the multi-tip program
has been selected i.e. CODE=3.
2. The string of parameters are read into the computer and

modified for later use in the F.E.program.

3. The coordinates of the super-nodes lying on the circular
boundary are specified.

4. The coordinates of the super-nodes on the normal zone faces
and also the remaining corner nodes are determined.

5. If the core element takes the form of a full circle, then

the zones will in effect close. To avoid any miss-match,

-due to the inaccuracy of 7, the closing node coordinates

are equated.

6. Finally the zone's material type and sub-division is

specified.
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Flowchart for Procedure Coregen :=-

START

PYE :=3%,14159265359

PRINT(NTIP,3,0)

NO

o *«<w:= 1 (1) NTI§>
| NSTART : =READ
ZNS : =READ

| N1:=READ
X1:=READ

| Y1 :=READ
R[1] :=READ

Az =READ

| A1:=READ
DY : =READ
| NS [W] s =READ

AL[W] :=4+180.0
_l A:=A*PYE/180

|' A1:=A1*PYE/180
ro[W] :=R[1]
| NI[W] :=(11-1)*DY+1

* 2[4] :=3.0*R[1]

| R[;]::R[1]+((R[4]_R[1])*((1-R[1])
} +(R[1]1242*R[1])10.5)) /4
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|

— T ~——<:I 0 (1) N1 f>

|

5. |

-

XCOD[NSPARP+I]::X1+COS(A+A1*I)*R[1]
YCOD[NSTART+I) :=¥14SIN(A+A1*T)*R [1]
VARN[NSTART+I] := 1

— <:::::::;:>

~<:I =0 (1) (N1- 1)/2:>

Ke=NSTARD+N14+I*(J+1)+J* (VZONE+1)
+(VZONE-(N1=1)/2)*2
+ (4NS=(BUTIER(ZNS/VZONE) *VZONE) =1)*(J=-1)
Xcou[K] _<1+coD(A+(A1*I*2))*RfJ+3]
CoD [K] :=¥14S TN (A+ (A1*1%2)) *R[T+3]
VAhN[K] 1

Ar1*((N1-1)/2) NO

XCoDb
YCOD

[
[

I:=VZONE*2-1
XCOD[NSTART+N1—1]::XCOD[NSTART]
YCUD[NSTART+N1—1]::YCOD[NSTART]

XCOD [NSTART+ (N1-1)/2+1 ] :=XCOD [NSTART+1 |
700D [NSTART+ (N1-1)/2+1 | :=YCOD [NSTART+1]

NSTART+(3*I—1)/2+N1]::XCOD[NSTART+(}‘I-1)/2+1]
NSTART+(}*I«1)/2+N1]::YCOD[NSTART+(}*I-1)/2+1]
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1
Ve e=(N1-1)/2
N7 :=NZ+VZ
ZDF ¢ =VZONE-VZ

— ~<<I:: 1 (1) vz_1:>
| l

ZNS:=T+4NS
| v [Z0] z= 1
| DIV [ZN] := 1
DIVY [4N] :

DY

It

END
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*PROCEDUREY  CUREGEN(XcOD,YCOD,VARNSUTIP,

VZUNE/MN,DIVX,DIVY,NZ)Y:

T WALUEIV2ONE:
"INTEGERINTIP,VPONE 2
VINTEGERIYARRAYIVARN 14N, DIVXeDIVY;

YREALVPARRAY'XCOD,YCOD:;

"TBEGIN' )
PINTEGER'NT ,NSTART »1od s oK, 2ZNs2ZNSsZDFVZ3
TREALTA,A1,x1,Y1,PYE,DY; 'REALT'ARRAY'RIT:4];

PYE:=3,14159265%50;

VIFY COPE = 3 'yHEN' pRIHTCHTIP.3,0);

YEOR'U T STERPYY T UNTILIRTIPIDO yRpEG Y
NSTART y=RFAp; ZNS:=READ: N1 :=RFAD: X1:=READS Y1:=reAn;
R{T)yerREAD} R[4].=3,0«R(11);
RE31:eRI4YIe((RILIARITII*CCAImRITI)4(RTIA1YIP242R[T1IT0_8)Y/4:
AyeReaDE ALLW]l:=A+180,0;
A1r=READ) As=AwPYE/T180; A 1=a1wPYE/180;
DY =RFAD} No{W]:=READ;

ROLWIterfiy: HNITWl:i=(N1=1)wehy+1:

PFOR' I 3sO'STEPIT P UNTIL H1d ' DO Y REGTI N
XCODINGTARY+1):EX1¢CUSCA+AT*TYuRI1])
YCODINSTART+#1]:8Y1+SINCA+AT*IY=RTI1];

VARNINSTART&I1:=1;

'END',

YFOR'J:B0 1 IDOYIBEGIN®

"FORIT;eQ'SYEP'1 ' UNTILY(H1=1)/2'D0O "HEGIN'
KsaNSTYAPTeNA+Iw (J+T)¢J* (VZOHE+1Y4 (VZOUE~(NT1=1y/2) 2
+ (INSwm CENTIERCZNS/VZOHE)Y «VZONE) =4 % (J=1) ]
XeoptklieX4+CNS(A+ (ATw]*Q))»RTy+3]);
VCOPIX) =vi+SINCA+(ATwI*2))Y*R{J+3];
VARNTIK] =9
VENDY g
tEND' OF J LOOP;
VIF' AT ((N{1=1)/2y = pYE*2 'THEH!
"REGIN'
1:=eVZONEw2+1 )
XCODINSTART+NT =11 :=xXCOpDIHSTARTY
YCODINSTART¢NT=1]i=YCODINSTARTY:
XCODINSTART+ (N4=1)/2+111EXCODINSTART*]Y;
YCODINSTART¢ ¢(N4=1)/2+1118YCODINGTART*I];
XCODUNSTART+¢3ul=1)/2+11):aXCODIHSTART« (3*1=1)/2411;
YCODINSTART# (3wl=1)/2+1113eYCONINSTART#(3*]=1)/2+4)]

YEND'

VZie(NTI=1) /21 N2Zi=NZ*v2)  2ZDFi=VZ0oNE=VZ)

VFOR'14=208sTER 4 UNTIL ' VZrY DO TREGI N
INyEY+INS ] MHLZNY:=13 DIvX(Znle=1i DIvY[ZN]:abY;,
"END' OF 1 LnQOp}
TENDT ]
TEND' OF PROCEDURE COREGEN




- 454 -

PROCEDURE STDGEN:

In cases where the mesh is uniformly distributed around a hole
or circular region, a standard data generation procedure can be employed.
The region under consideration can be completely defined using a string
of parameters which are used to generate the normal input data. The
use of the procedure represents a data input reduction and can be
viewed as a labour saving device. The method of use is illustrated
by example (2) of Section 5.5. The procedure generates the data for
a column of zones, computing the coordinates of all the corner nodes
and the mid-side nodes along the curved boundary and normal faces.
This allows the internal mesh to be graded in a radial sense. Any of
the super-node coordinates can be overridden by re-declaring them in
the usual fashion, this allows the generated zones to be merged into
the surrounding mesh. The following steps indicate how this procedure
functions and correspond with the flowchart:-
1. The string of defining parameters are read into the computer,

as given in the users guide (5.5.1), for each generated region.

2. The coordinates of the super-nodes along the curved boundary are
designated.
3. The coordinates of the mid-side nodes on the normal zone faces

and the corner nodes are determined summing on counters J and I.
4, Within the loop I, the material number and zone sub-division are

specified.




Flowchart for Procedure STDGEN
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-
o =

I)YE H :5 e

14159265359

_— = = — ‘~4<w¢: 1

(1) NGM>

I

l N1 :=READ
X1:=READ
| Y1 :=READ

‘ | R b]:
R[3)
| R 4]

l As=A*

NSTART:=READ
l ZNS ¢« =READ

: =READ
: =READ
A:=READ

; A1:=READ

I DX :=READ
DY:=READ

‘ A1:=A1*PYE/180

=READ

PYE/180

| - ——4<1:= 0 (

1) N1—1>

XCOD[NSTART+I]:
‘ l YCOD [NSTART+I] :
| | VARN[NSTART+I]:

=X1+C0S (A+A1*1)*R{1]
=Y1+SIN(A+A1*I)*R[1]
= 1




|
|

R — Ji= 0,1 )

. ——<I:: o (1) (N1—1)/2>
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)|

K:=NSTART+N1+I* (J+1)+J* (VZONE+1)
+(VZONE=~(N1=-1)/2)*2
+(ZNS-(ENTIER(ZNS/VZONE) *VZONE) -1)* (J-1)

%CoD [K] £ =X1+C0S (A+(41%1*2) ) *R [J+3)

oD [i) s =¥ 1+8IN(he(a1*1%2) ) *R [T+3)

VARN [K] = 1

VZ:=(N1-1)/2
LDF : =VZONE-VZ




- 457 -

TPROCEDURE!Y STRGEN(XCoD,YCOD, VAR,
VZONE,MN,DIyx,DYIVy):
TWALUEIVZOWNE
VINTEGERIVIBONE}
VINTEGERIVARRAYIVARN/IIN/DIVAK/DIVY
TREAL'PARRAY'XCOD,YCUD;
TREGIN?
VINTEGERYNY  NSTART /1 0d U Ky ZNa2US e Z2DF V2
YTREALIAAT,X1:Y1,PYE,DX,DY: 'REAL'VARRAY'RIT,411
PYE:=3,14159265%50;
TEOR"WESTOSTEPY Y UNTIL UGH' DO "TREGIN
NSTART taREAR; 7NS:=READI N1:=READ! X1:=READ: Y1i=pEAn!
R{13Iy2READ] RI3Y¢=READ;
R{6)y2READ] A:=READ;
A4 y=READ] A:=A¥PYE/180i A11=aA1*PYE/1380;
DXy®READ} Dyv:=READ.
PFORY11s0teTERITIUNTIL ' HY1=T1" DO "DEGTINY
XCOPpINGTART#*1):8X1+COSCA+ATw ) wRIT DS
YCODINGTARTY#+1):BY1+SINCA+ATwIYwR[1D)
VARNENSTART&I V3=
TEND T}
YEOR'J B0, 1 1D0VIBREGIN?
"EORI1 =0 'STYER T UNTILY (H1=1)/2°D0OY 'BEGIN'
KGENSTART+N1*I*(J*1)*J*(VZOHE*1)#(VZQHE-(N1—1)/2)t2
*(7NS*(EHTIER(ZHS/VZONE)*VZONE)“1)*(J'1);
XeO0DIKI1eX1+COS(A+(AT*I#2))wR[J43];
VEOR[KY ey +SINCA+ (ATwI%*2))YwRJ*3]:
VARNIK) g=9q
TENDY
VEMD' OF J LOOPS
vZis(ni=9)/dy ZDF:=2VZONE=VZJ
CFOR'I ;200 gTER 4 UNTIL 'V2Zm1 ' DO 'BEGIN'
INI=1+ING ] MIITZNYs=13 DIVXUZNYe=DXi DrvY[ZN]:=DY;:
YENDY OF 1 LoOp;
YEUDY Y
"END' OF PROCEDURE STDGEN;
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PROCEDURE ZONEXY :

The object of this procedure is to deterﬁine the coordinates of
the missing supér-nodes by interpolation. Each zone is defined by
eight super-nodes. In the construction of a finite element mesh the
zone mid-side nodes can be used to grade the internal mesh or model
curved boundaries. Hence all corner nodes must be specified, but
in the case of straight sided zone faces the mid-side node can be
omitted. As the super-node coordinates are read into the computer a
flag is set, this takes the form of array VARN, which assumes the value
of unity for each node read. Each zone can be pre-defined by a set
of super-nodes using the zone grid dimensions, therefore, it is a
simple matter to test whether the zone's mid-side nodes have been
declared. This is achieved by examining its VARN value, if this is
zero then interpolation is required. An array TYPE is employed to
store the zone's nodal connections, which can be defined from a simple
expression. This method of zone definition eliminates the need to
enter equivalent data and therefore represents a reduction in labour.
The procedure steps are as follows and correspond to the flowchart:-
1. The zone under examination is defined by eight super-node

numbers which are stored in array TYPE.

2. ‘The loop I is constructed so that the four zone faces can be
tested. Variable D is set to unity if the last zone is under
consideration.

3. The mid-side node is checked to determine if it has been

specified in the input data, using the array VARN.
4, If the mid-side node has not been declared .then its co-

ordinates are interpolated from the adjoining corner nodes.
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If the mid-side node has been entered then its coordinates
together with the previous node's coordinates are recorded
in arrays QUADX and QUADY for later use with procedures

TR/QETETXY.

Flowchart for Procedure “%onexy :=-

2.

START

At =VZONLE® 241

B:=VZONE+1

C:=ZONE-VZONE* (ZN-1)
TYPE [1] 120 2-1+ (4+B) * (2N=1)




-1460 -

QuADX [1-1]:

| QUADY [1-1] =
QUaDx[b]:=

| QUADY [D] :=
[1):=

(1]:=

| QUADX
GUADY

— e

=xcoD[rypE [1-1])

=ycob [TyPE [1-1])

xcod [Tvez (D] ]

COD[TYPL[ D] |
(uapX[I-1]+quapx[D])/2

(quaDY[I- ]+“UADY[ ]2

QUADX [1-1 ]: =xcOD[TYPE [1-1]]
qQuapy [1-1]:=vcon{TyYpE[1-1])
quapx (1] :=xcop[TypE 1] ]
quaDY (1] :=vcon[TypE 1] ]

END




10.
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