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SUMMARY 

Two projects considered during the early stages of this research are 

discussed briefly. These are concerned with engine cooling and exhaust pollution 

control by fluidised particles. The advantage of cooling an engine by this means is 

that the engine may be run at an optimum temperature and radiated noise 

attenuated. The high thermal conductivity and surface area of fluidised particles 

would result in improved after reaction in comparison with conventional exhaust 

thermal reactors and catalysts. 

The fuel consumption, engine cooling system and air-conditioning system of 

a Jaguar XJ6 motor car have been studied experimentally and analytically, and 

mathematical models used for their analysis. Recommendations are made for 

improvements to performance, cost, and fuel consumption. 

The efficiency required of a steplessly variable transmission to compete 

with the present system on the bases of acceleration’and fuel economy has been 

calculated. 

As a result of a literature survey, fluids suitable for air-conditioning a motor 

car using an absorption cycle are recommended. The advantage of such a system 

is the reduction of fuel consumption by the removal of the compressor brake load 

from the engine. The feasibility and limitations of such a system are studied and 

providing the condenser air flow rate is increased and a reduced refrigeration load 

at idle is acceptable, such a system may be developed. 

AUTOMOBILE AIR-CONDITIONING RADIATOR ABSORPTION FLUIDISATION
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CHAPTER 1



INTRODUCTION 

Three different projects were considered during the early stages of this 

period of research. Two of these, concerning engine cooling by fluidised particles 

and exhaust pollution control by fluidised particles, are discussed briefly in 

chapter 2. The third project entails a study of a motor car air-conditioning 

system and the effects of the system on the fuel economy and engine cooling 

systems. 

The primary function of a motor car air-conditioning system is that it should 

reduce, and maintain at a reduced level, the humidity and temperature in the 

Passenger compartment, whilst maintaining adequate ventilation. The most 

severe conditions, with regard to the temperature of the air and surfaces in the 

car, exist when the car has been left standing in strong sunlight resulting in 

temperatures higher than ambient. The effectiveness of the air-conditioning unit 

may be judged by the time taken for the unit to reduce the temperature inside the 

car to the design level. 

The temperature in the car may be reduced either by refrigerating the air in 

the car or by ventilating the space with air drawn in from outside and 

refrigerated. The advantage of the latter system is that ventilation is maintained 

and the refrigeration load is less, on initial starting when the air in the car is 

hotter than ambient, than if recirculation were employed. 

Data for the calculation of the required refrigeration load for motor car 

refrigeration is contained in a technical report published by the American 

Coolaire Organisation. The experience of the ranttactarer: however, has been 

that a cooling load dependent on ambient conditions and sufficient to supply 

0.15 kg/s of dry air at a temperature a little above 0°C (to prevent the evaporator 

from freezing) provides a performance both adequate and competitive with other 

vehicle manufacturers’ products.



It is the means of providing this cooling load that is the subject matter of 

the bulk of this project. The present system used by the manufacturer is a vapour 

compression unit with refrigerant R12 as the working fluid. The compressor is 

driven from the engine and delivers vapour to a finned tube heat exchanger 

Positioned in front and upstream of the engine cooling radiator. The position of 

this, the condenser, links the performance of the engine cooling system and the 

refrigeration system, and a modification to one system cannot be viewed entirely 

independently of the other. It is necessary therefore in examining the 

refrigeration system, to also study the engine cooling system. 

Initially the project was aimed as a feasibility study of the use of absorption 

refrigeration for motor car air-conditioning. The advantage to be gained from 

such a system would be a reduction in engine brake power consumption, giving a 

fuel consumption benefit. The technical feasibility of the absorption system rests 

on four factors: 

(i) | Whether fluids are available which might be deemed safe for use in 

such a system. 

(ii) Whether the refrigerant thought suitable for use in an absorption 

refrigeration system may be used at the temperatures expected in the 

condenser and evaporator. 

(iii) Whether sufficient heat energy is available from the engine exhaust 

gas to drive the system at a level competitive with the present system. 

(iv) Whether the motor car heat rejection system might be engineered to 

Operate at the higher loads resulting from the expected lower 

coefficient of performance of a refrigeration system having a low- 

grade energy input. 

The problem of examining these four factors has been tackled by: a survey 

of literature relevent to absorption refrigeration, an experimental study of energy 

and mass transfers to and from the engine, and a mathematical model of the 

present engine, engine cooling system, and refrigeration systems.



The project is broader than this however and examines the present system to 

find its limitations, its effect on the cooling system and its effect on the fuel 

consumption. An attempt to improve the present system is undertaken, having 

found its limitations. The effects of varying parameters, influencing the ecoling 

systems of both the air-conditioned and non air-conditioned versions of the car, on 

the engine coolant temperatures are examined. The fuel consumption of the 

vehicle is apportioned to the brake loads imposed on the engine to highlight 

possible economies. The optimum transmission gear ratios, for both fuel economy 

and performance, and the required efficiency of a steplessly variable transmission 

to compete with the present fixed ratio transmission, are calculated. 

Chapter 3 deals with the literature survey and a description of the present 

Jaguar XJ6 motor car, the vehicle used as a basis for the study. 

Chapter 4 deals with the heat rejection system by experimental 

measurement and mathematical analysis for the purpose of extrapolation. 

Chapter 5 deals with the engine and experimental determination of engine 

cooling requirements, fuel flow, exhaust gas enthalpy, and exhaust gas mass 

capacity rate. Also examined in this chapter is the road load, the transmission 

efficiency, and the engine coolant mass flow rate. 

Chapter 6 is a study of the fuel economy of the non air-conditioned car and 

the extent to which this is influenced by the brake loads imposed on the engine. 

The influence of transmission gear ratio and the required efficiency of a 

hypothetical steplessly variable transmission, to compete with the present system 

on the bases of fuel economy and performance, are examined. 

Chapter 7 is a study of the engine cooling system based on the results from 

the mathematical model. Both the non air-conditioned and the air-conditioned 

versions of the car are considered, the latter with the air-conditioning system 

switched off. The influence of component sizes of both the engine cooling system 

and the refrigeration system condenser are studied. Finally in this chapter, the 

result on coolant temperatures of auxiliary brake loads is calculated.



Chapter 8 is concerned with the present refrigeration system and a 

comparison of the maximum refrigeration load available from a hypothetical 

absorption system, and the calculated performance of the present system. The 

mathematical model of the present systern, and its limitations are discussed, and 

the influence of individual components on the system calculated, with a view to 

suggesting methods of improving the refrigeration load and/or reducing the fuel 

consumption penalty of running the air-conditioning. The advantages of a vapour 

compression system using R22 are discussed, together with the limitations for its 

use. In chapter 9 the conclusions and recommendations are briefly reviewed. 

From this research it is believed that in addition to the conclusions arrived 

at, the experimental techniques and mathematical models of the systems 

considered will be of use as design and development aids in the future. To this end 

the complete model in the form of a computer program is given in appendix A5. 

The program is written to be run on a Hewlett-Packard 9830 calculator, and as 

such may easily be modified to be used as an interactive package in the design 

office.



CHAPTER 2



ENGINE COOLING AND EXHAUST POLLUTION CONTROL. 

USING FLUIDISED PARTICLES 

INTRODUCTION 

At the initiation of this research several alternative projects were given 

consideration, involving the use of fluidised bed technology. Two of these topics 

are discussed briefly in this chapter. 

ENGINE COOLING BY FLUIDISED PARTICLES 

In the internal combustion engine, less than one third of the chemical energy 

of the fuel is converted into work, one third is lost in the exhaust gases and one 

third is rejected by cooling. This is an approximate division, the actual balance 

depending on engine design, type of fuel, cooling system, ambient conditions etc. 

Heat carried off by cooling must be considered a definite loss because, apart from 

the fact that no useful work can be obtained from it, part of the engine 

performance i.e. the mechanical work produced, is frequently used for its 

removal. 

Cooling of the engine is necessary for the following reasons. The maximum 

temperature of the cylinder walls is determined by lubricating conditions. Above 

a certain temperature lubrication of the sliding surfaces deteriorates and rapid 

wear of pistons, piston rings and cylinders commences and seizure may result. 

The maximum temperature depends on the lubricating oil used and ranges from 

160° to 200°C. In addition to this, the alloys (aluminium) of which the piston and 

cylinder head are commonly produced are weakened at elevated temperatures. 

Any heating of the inlet air by heat transfer from the inlet tract decreases the 

volumetric efficiency. Higher octane fuel is also required at higher engine 

temperatures. 

Further to this, the formation of oxides of nitrogen increase as combustion 

temperature increases.



Conversely, if the engine is running cool, other problems become apparent. 

There is a greater heat transfer from the combustion gases to the cylinder 

resulting in a lower efficiency and higher fuel consumption. Combustion chamber 

surface temperature affects the unburned hydrocarbon emissions by changing the 

thickness of the combustion chamber quench layer and the degree of after- 

reaction. Were worth: in studying the effect of such changes on hydrocarbon 

emissions from an engine, found a decrease of 1.04 to 0.63 p.p.m. of hexane per 

Kelvin rise in combustion chamber surface temperature. In one test an increase 

of 56K decreased hydrocarbon emissions by one third. In addition to changing 

quench layer thickness and after reaction, increases in engine temperature 

increase fuel evaporation, resulting in more complete combustion. 

When running at low temperatures, products of combustion condense on the 

walls of the cylinders and etching of the cylinder walls sets in which, together 

with poor lubrication at these temperatures, causes excessive wear. The highest 

rate of wear occurs in the top third of the cylinder which may indicate the 

significance of this chemical action on the bores as suggested by Mackerle, Rich 

mixture running, when starting from cold, causes fuel to be condensed on the 

cylinder walls, diluting the film of lubricating oil and decreasing its effectiveness. 

A distinct advantage of running an engine at a higher temperature is the 

decrease in the cooling heat transfer surface required, no matter what means are 

used to cool the engine. Atmospheric air is the ultimate sink whatever heat 

transfer system is used. The ambient air temperature may vary between -40°C 

and 55°C. For an engine operating at 100°C the temperature difference to 

produce the required heat transfer in a hot climate is 45K. For an engine 

Operating at 200°C the temperature difference is 145K. Hence, assuming a 

similar overall heat transfer coefficient for the two engines, the heat transfer 

surface area may be reduced by a maximum of approximately 69% for the hotter 

engine.



A further factor to consider with regard to engine cooling system design is 

the time taken from initial starting to reach the operating temperature. This 

involves two factors. The cooling control system and the thermal capacity of the 

engine. The engine should be designed to operate ai an optimum temperature, 

found by consideration of each of the above mentioned factors. Hence, until it 

reaches this optimum temperature the disadvantages of running at a low 

temperature will be manifested. From this point of view the increased levels of 

hydrocarbon emissions is probably the most critical. The Californian legislation 

test procedure for measurement of emissions includes starting the engine from 

cold. At the end of the test the average emissions (in grammes per mile) of 

hydrocarbons, oxides of nitrogen and carbon monoxide are measured and compared 

with the maximum statutory levels. During the period of initial starting and low 

temperature running a large percentage of the unburned hydrocarbons measured in 

the test are produced. Hence there is a great deal to be gained by designing the 

engine such that the engine warms up as quickly as possible. 

The two systems of engine cooling used to date in vehicles are direct air 

cooling and water cooling. 

Water cooled engines have the advantage that the components are kept at a 

constant and even temperature. Cooling of exhaust valve gear, injectors, and 

spark plugs, which are localised high temperature regions, is easier and more 

effectively carried out on water cooled engines than with any other system at 

present. 

The water cooling system consists of a water jacket surrounding the engine 

and connected to a remote 'radiator'. If the radiator is mounted at the front of 

the vehicle then the pressure build up at the front of the vehicle when it is 

travelling may be sufficient to produce a flow of air through the radiator matrix. 

The pressure drop across the 'radiator' is very small and such that, when 

stationary, only a small fan is needed to blow sufficient air through the matrix. 

To prevent damage due to freezing in cold climates an ethylene glycol antifreeze



is mixed with the water. This modifies the thermal properties of the coolant. The 

temperature of the coolant is limited by its boiling point which may be increased 

by pressurising the system. The pressurised system has to be designed such that it 

is strong enough to withsiand the pressure. If the flow of water around the system 

is not solely induced by thermsyphon action then a pump may be included; the 

pump will operate more effectively in a pressurised system where the likelihood of 

cavitation is lessened. 

The radiator in a water cooled system being made of non-ferrous metal 

(usually brass and copper) is an expensive component. It is easily damaged and is 

isolated from vibration of the engine by flexible rubber connections. Failure of 

the water cooling system usually arises as a result of a leak from one of these 

connecting hoses. Control of the temperature of a water cooling system is simple 

and is provided by a thermostatic water flow valve, usually with a bypass to 

prevent stationary pockets of the coolant evaporating and causing local 

overheating. The large capacity of water contained in the water jacket, in 

addition to material comprising the water jacket, results in a lengthy warm up 

time from a cold start. A weight penalty is also incurred as a result of this. The 

water in the water jacket does have the advantage of providing a damper against 

vibration of the walls of the cylinder. 

With regard to reliability the water cooled engine does not have a very good 

record. Mackerle states that statistics show that 20% of all engine failures are 

due to faults in the water cooling system. The air cooled engine has the 

advantages over the water cooled engine of lower weight, higher running 

temperature, quicker warm up time, lower air flow, and simplicity of production, 

operation and reliability. 

Its major shortcoming is its higher noise level. In addition to lacking a water 

jacket to damp noise radiated from the cylinders, air cooled engines are commonly 

made of aluminium alloys which have a higher thermal conductivity than cast iron, 

mostly used for water cooled engines, to promote fin efficiency. Aluminium does



not have the noise and vibration damping characteristics of cast iron. Recent 

trends have, however, been towards lighter engines (in the interests of economy) 

and aluminium is now commonly used for water cooled engines. 

All-of the engines produced by British Leyland, both past and present, have 

been water cooled, the objection to air aaere engines probably being the higher 

noise level associated with this type of engine. Air cooled engines have been 

produced by other companies however. In Germany Dr. Eng. F. Porsche designed 

the well known Volkswagen engine. The Volkswagen Beetle holds the record 

among European cars for the highest production numbers. Dr. Porsche also 

designed the air cooled engines for the sports car which carries his name. The 

success of both of these designs is probably the best reference whies can be given 

to engines of this type. The Tatra Company of Czechoslovakia has produced a 

great variety of air cooled engines since 1923 for road, rail and aircraft 

applications. The products of the Tatra company have shown that air cooled 

engines are not limited to smal! capacities. 

In recent years interest has grown around the use of fluidised bed heat 

exchangers, the magnitude of gas to immersed surface heat transfer coefficients 

being of the order of 5 to 10 times those of conventional systems. Much of the 

research has been on deep beds, which have the disadvantage of producing a high 

pressure drop, but more recent work has been concerned with the heat transfer 

coefficients in shallow beds. The appearance of a bubbling fluidised bed led early 

investigators to believe that the surface heat transfer coefficients were limited 

by a phenomenon corresponding to the laminar film in conventional convective 

systems. More recent work by Botterill, et al has shown that heat transfer 

between particles and surfaces is by transient conduction through the gas 

interface, during the time of point contact. The work of Al-Ali is a useful source 

of data on heat transfer to immersed plain and finned surfaces in shallow fluidised 

6 
beds, using the model of Botterill, and relevant to engine cooling by this method.
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Direct air cooling of engines by the medium of fluidised particles may make 

air cooled engines more acceptable than at present if it were found that the 

fluidised bed attenuated the engine noise sufficiently. If this were the case then 

we should have all of the advantages of air cooled engines without the major 

disadvantages of noise. The high heat transfer coefficients available with 

fluidisation would mean less finning of the cylinders and cylinder head, making 

production easier and also localised hot spots (e.g. around the exhaust valve 

guides) could be cooled more effectively than in a directly air cooled engine. The 

disadvantages of cooling the engine in this way are the possibility of the particles 

entering the engine and causing heavy wear on bearing surfaces and the problem 

of supplying a flow rate of air between the required limits. Velocity of the gas in 

a fluidised bed may vary by a ratio of up to 8 to 1 and so the fan could conceivably 

be driven by the crankshaft through a viscous coupling. When not fluidised the 

particles would act as a thermal insulation, decreasing the warm up time from a 

cold start, if the temperature control system was engineered to accommodate 

this. 

Conclusions and Recommendations 

It would appear at this stage that direct cooling of an engine by fluidisation 

would give the advantages of direct air cooling possibly without the disadvantages 

associated with air cooled engines of radiating higher noise levels. It would be 

necessary to build a prototype engine to study the level of attenuation of noise 

possible with this system. 

EXHAUST CLEANING 

To date the most successful exhaust treatment technique used commercially 

has been air injection into the exhaust system. To meet extremely low emission 

levels proposed for the late 1970's it is likely that additional exhaust treatment 

devices will be needed. Both catalytic and thermal exhaust reactors have the
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potential for very low emissions. 

Thermal Reactor 

One of the currently used methods to reduce hydrocarbon and carbon 

monoxide emissions is air injection into the exhaust system as described by 

Steinbagen et al. 

Oxides of nitrogen are not reduced, in fact they may be increased if 

sufficiently high exhaust temperatures result from the combustion of the carbon 

monoxide and hydrocarbons with the added air, or if the injected air enters the 

cylinder during the overlap period. To achieve a high degree of oxidation of the 

hydrocarbons and carbon monoxide, a high exhaust temperature coupled with 

sufficient oxygen, and a long enough residence Has inpiate the combustion. 

If a flame is established the heat generated by the combustion of the carbon 

monoxide and hydrocarbons keeps the reaction going. 

Because of its abundance, the carbon monoxide in the exhaust gases provides 

most of the combustion generated heat. Quite often carbon monoxide 

concentrations of several percent are measured. On the other hand, hydrocarbon 

emissions are only a few hundred parts per million. As a result thermal reactors 

are developed most easily for rich carburation. Brownson and Stebar have studied 

thermal reactor performance for a reactor coupled to a single cylinder co- 

operative fuel research engine. In their work an exhaust mixing tank of 2.4 litres 

was used for some of their tests. They determined that the basic factors 

governing combustion of carbon monoxide and hydrocarbons in the exhaust gas are 

composition of the reacting mixture, temperature and pressure of the mixture, 

and residence time of the mixture or time available for reaction. 

Graph 2.1 shows the hydrocarbon and carbon monoxide emissions as a 

function of air/fuel ratio and injected air flow rate. The emission concentration 

Tesults were corrected for the added air. Injected air flow rate is indicated as a 

Percentage of the engine air volume flow rate. The insulated 2.4 litre mixing tank
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was used. 

The minimum hydrocarbon concentrations occurred at rich mixtures. When 

too much air was injected, especially at lean mixtures, excessive cooling of the 

exhaust increased hydrocarbon concentrations to above those with no air. Thus 

the normal oxidation process was apparently inhibited by this cooling. The effect 

of air injection on carbon monoxide concentration was somewhat different. 

Exhaust carbon monoxide was uniformly low at most rich air fuel ratios. A small 

increase in carbon monoxide occurred at fuel/air ratios slightly richer than 

stoichiometric. For stoichiometric mixtures and leaner, carbon monoxide was 

very low. Best results occurred for rich mixtures with air injection at 20 - 30% of 

inlet air flow. The leanest air fuel ratio for best emission reduction was 13.5:1. 

Normally engine operation at such a mixture would reduce fuel economy by 10%. 

To further study the peculiar shape of the carbon monoxide curve with air 

injection, a quartz window was installed in the exhaust system. For each air 

injection rate tried, a blue white luminous flame was observed for all mixture 

ratios to the left of the small carbon monoxide peak up to the rich mixture where 

the large carbon monoxide increase occurred near 11:1. The very low emissions 

with rich mixtures and air injection arose from a 'fire!' in the exhaust system. For 

mixtures leaner than the small carbon monoxide peak, non-luminous oxidation 

occurred and carbon monoxide emission reduction was relatively poor. 

At each air/fuel ratio there exists one minimum air injection rate that 

provides maximum emission oxidation. Minimum air flow is desired in order to 

reduce pump power requirement, and hence size and cost. Graph 2.2 shows the 

optimum air injection rate for the data of graph 2.1 for both hydrocarbon and 

carbon monoxide emissions. It is apparent that air injection was not highly 

effective in reducing carbon monoxide emission unless luminous burning occurred. 

This did not happen when the mixture ratio provided by the carburettor was 

chemically correct or leaner. 

Graph 2.3 shows the result of a small (44K) decrease in exhaust temperature,
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at 14:1 air fuel ratio. As a result of the temperature decrease, luminous burning 

could not be achieved, and minimum carbon monoxide concentration required a 

90% air flow rather than 20%. A result such as this demonstrates the possible 

dependence of the required air injection rate on ambient temperature, and prior 

engine operation (state of warm up). Conversely this data also shows that small 

changes in engine condition might produce large changes in air injection 

effectiveness. 

Exhaust system insulation may be necessary to achieve high reaction rates in 

engines with well cooled exhaust ports. Insulation also helps to reduce emission 

concentrations during warm up by accelerating warm up rate. 

At mixtures significantly leaner than stoichiometric in the range of 16 to 

17.531 air injection is not needed to supply oxygen; in fact it would only cool the 

exhaust to too low a temperature for any reaction to take place. On the other 

hand at such lean mixtures only extremely good heat conservation can produce 

temperatures high enough for appreciable reaction. Warren has studied this lean 

region and has concluded that with improved carburation it is possible to achieve 

surge free operation at 17 to 17.5:1 and leaner. When this can be achieved both 

hydrocarbon and carbon monoxide emissions are reduced to extremely low values 

(hydrocarbons less than 50 parts per million and carbon monoxide less than 0.1%, 

Federal Emission Tests) if exhaust temperature is kept high enough through good 

insulation. Unfortunately oxides of nitrogen are high at air fuel ratios of 17:1. 

Even leaner operation is necessary to reduce all three emission components. 

Promising work has been done on stratified charge engines by Honda in particular 

(Environmental Protection Agency ‘Automobile Emission Control - the state of the 

art as of December 1972"). 

Graph 2.4 shows the effect of temperature and reactor volume on exhaust 

hydrocarbon concentration at an oxygen input concentration of 3%. Reactor 

volume may be viewed as the volume of the exhaust system which is insulated and 

at the high temperature needed for reaction. Note that if the exhaust
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temperature were 760°C only twice the conventional system volume would be 

needed for virtually complete combustion. On the other hand, if the temperature 

were only 650°C eight times the volume would achieve only a 76% decrease in 

concentration. A pair of conventional exhaust manifolds has a volume of about 

2.5 litres. 

Increasing the exhaust system volume increases the residence time during 

which reactions can occur. This is a benefit provided the added surface area does 

not result in excessive cooling. Thus when large volume exhaust manifolds are 

used they must be well lagged. 

The importance of reactor residence time in connection with gas 

temperature and composition was shown theoretically by Seawina for exhaust 

system oxidation of carbon monoxide and hydrocarbons. His results show how the 

extent of oxidation is determined by a balance between rate of reaction and 

residence time and the energy liberated by combustion. Schwing's approach can 

be used as a design base for thermal reactors which are well mixed. Levenspiel 

gives a fundamental discussion of reactor engineering and Blenk etal and 

Pattern give applications of these fundamentals to a multicylinder engine 

thermal reactor system. 

Graph 2.5 shows the volume advantage which Browneon found when he added 

increased insulated exhaust volume at a mixture ratio of 14.5:1. In this case 

carbon monoxide and hydrocarbon concentration reduction are sought. 

Significant hydrocarbon reductions were noted as volume was increased. No 

carbon monoxide concentration reduction was found for this non-luminous 

oxidation mixture ratio. Graph 2.6 shows that at a rich mixture of 12.3:1 both 

carbon monoxide and hydrocarbons were reduced to virtually zero with 2.4 litres 

of added insulated volume. In addition to this the minimum air injection rate 

requirement was decreased as added volume increased. Without insulation at 

12.3:1 no decrease was noted in either emission constituent in spite of the volume 

increase. This result suggests that the exhaust oxidation process occurring in the
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unmodified engine was in the port and immediately downstream thereof. The 

increased surface area of the added uninsulated volume downstream allowed 

enough cooling to stop the reactions that might otherwise have proceeded within 

this added volume had the exhaust temperature been sufficiently high. 

In conclusion, increasing the residence time of the exhaust by increasing 

volume improves both the carbon monoxide and hydrocarbon oxidation 

effectiveness of air injection and reduces the air flow rate required provided that 

heat losses are low. This conclusion applied to both rich and lean mixtures and, as 

Warren demonstrated if surge free operation can be maintained at a weak enough 

setting, no air injection is needed. 

The exhaust reactors mentioned so far have taken the form of a well 

insulated exhaust system in which the exhaust gas is maintained at a high 

temperature for an extended period of time. Combustion of the carbon monoxide 

and, to a lesser extent, hydrocarbons, provides additional heat ta maintain and 

propagate the combustion process. If this heat were conducted backwards against 

the direction of flow of the exhaust gas, then the process could reasonably be 

expected to be further assisted. This is the logic behind the proposal to use a 

fluidised bed as an exhaust thermal reactor. The process of gas combustion in 

fluidised beds is well reported, in addition to papers and established texts 

(Davidson and Harrisons and Kuni and Levenspiel) on the thermal and fluidic 

properties. 

Several papers have reported very high thermal conductivities in the vertical 

direction. They mostly agree on what is defined as ‘effective thermal 

conductivity! of a fluidised bed. One of the earliest papers on fluidised bed 

conductivities was that of Shrikhande. Shrikhande worked with very tall columns 

and obtained values for the thermal conductivity at 12 cm intervals, for different 

rates of heat transfer through the bed. Linear temperature profiles were found 

and from this it was possible to define an ‘effective thermal conductivity’ as that 

which enabled the heat transfer to be described by Fourier's Law. This
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conductivity increased linearly for an increase in fluidising velocity. 

Conductivities ranging from 63 to 450 kW/mK were reported for glass beads of 

varying diameters. 

Similar results were published by Lewis, Gilliand and Giroverds 

Conductivities ranging from 2 to 430 kW/mK were noted. Measurements of 

conductivities in the radial direction (horizontal) produced values of only about 2% 

of those in the axial (vertical) direction. In this work a honeycomb baffle was 

placed halfway down the bed and although this did not affect conductivities above 

and below the baffle it did produce a sharp discontinuity in the bed. This baffle 

would have stopped the vertical movement of solids. 

The work of several Russian workers has been published by Zabrocsky: 

These tend to agree with the aforementioned work but one interesting point 

emerges. The Russian workers recorded bed temperatures at very close intervals 

and found that there was not a linear gradient near the bottom of the bed. From 

this they concluded that the effective thermal conductivity was much less at the 

bottom of the bed. 

The most noticable aspects of these works is the very high conductivities. 

Contributions from the fluidising medium are very small in comparison. 

A comprehensive study of gas combustion in fluidised beds is given by 

Broughton. He attempted unsuccessfully to obtain combustion with separate 

injections of gas and air, combustion only occurring above the surface. This 

illustrates poor gas stream mixing in the bed. With pre-mixed gas streams 

Brouenten studied temperature variation down the vertical axis of the bed. It was 

found that the temperature was constant down the greater length of the bed, but 

near the distributor plate the temperature increased to a maximum and then 

decreased towards the plate. Broughton obtained successful pre-mixed 

combustion with particles of less than 1 mm diameter until he reached a diameter 

of 0.3 mm diameter. To explain this he used Davidson's model to show that with 

very small particles a high proportion of the feed gas passes rapidly through the
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bed in the bubble phase and does not mix within the bed. This bypass would also 

remove some of the heat from the bed. 

An interesting paper presented by Elliott and vite at the Third International 

Conference cn F luidised Bed Combustion, outlines initial studies at the University 

of Aston in Birmingham. They argued that shallow beds are preferable to deep 

beds since this would reduce the heat loss from the bed container. Because of 

this, their work was involved in studying how a shallow bed could be used without 

combustion occurring above the bed surface. All of this work was with pre-mixed 

air-gas supplies, separate gas injection being rejected on the grounds that deep 

beds would be required for complete combustion. Initiation of bed combustion was 

obtained by igniting the air-gas mixture just above the surface and allowing 

recirculation of the particles to warm up the bed. 

Exploratory studies into the possibility of reducing atmospheric pollution by 

fluidised combustion have shown the advantages to be gained. Oxides of nitrogen 

were of the same low level as reported by Dard et al, and near stoichiometric 

conditions carbon monoxide/carbon dioxide ratios of less than .002 have been 

reported. This represents a considerable improvement on the conventional gas 

burner. Tests were performed by Cole and Essenhigh to find at what bed 

temperature a fresh air gas mixture could be injected with an initiation of 

combustion. It was found that this would occur at temperatures as low as 400°C. 

This temperature is very low and it is possible that there were hot spots within the 

bed sufficient to ignite the mixture, but even so, this work is encouraging in the 

application considered here. 

The greatest problem liable to arise in an attempt to use a fluidised bed as 

an exhaust thermal reactor is due to the large range of exhaust gas flows which 

the device must handle. The exhaust gas flow from the engine will be of the order 

of 100:1 from idle to maximum speed and throttle conditions. The range of gas 

velocity which can be passed through the bed between incipient fluidisation and 

the onset of allutriation is of the order of 8:1. This wide range of fluidising
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velocities will probably not be efficiently usable, maximum emission 

concentration reduction being maximised at one particular velocity which may be 

expected to be above the onset of the bubble phase and below velocities such that 

gas passes through the bed without reacting. A further problem will be due to the 

relatively low velocities obtainable resulting in a large distributor area. These 

problems may possibly be removed by using a rotating fluidised bed where the 

particles are under the action of a centrifugal force field. Metcalfe has found 

experimentally that the bed throughput (at the minimum fluidising velocity) 

increases as the centripetal acceleration to the power of 0.54. These results were 

only for a range of accelerations of from 5 to 30 gravities. From this a 100 fold 

increase in throughput requires an increase in rotational velocity of 145 times. 

Metcalfe also found that the minimum fluidising pressure increases as the square 

of the rotational speed. Hence at high throughputs the pressure drop in the bed 

will be very high (1452 times the pressure drop at idling). Hence, if at idling the 

bed pressure drop is of the order of 150 mm of water, at the maximum flow rate 

the pressure drop will be of the order of 3 km of water gauge. Extrapolation over 

such a wide range may be unreliable but it may be sufficient to conclude that high 

flow rates may only be obtained at the expense of very high pressure drops. 

Hence this idea seems to be ruled out. 

Using a bed under the action of gravity, a bed of approximately 0.6 m 

diameter would be required for the 4.2 litre XJ6 engine. This is for the engine 

running at maximum speed and throttle opening. At idle the bed would not be 

fluidised unless some system of blanking off some of the area were found. A bed 

of smaller area could be used to provide a fluidised reactor at low engine speeds 

and throttle openings and a fixed bed at higher speeds and openings. This would be 

advantageous in that the unit would be more compact and fluidised combustion 

would occur in the most troublesome operating conditions i.e. at rich mixture 

settings when idling producing higher emissions at lower temperatures, The 

pressure drop would be higher when the bed became packed, but packed beds have
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been used on motor vehicles as catalyst supports. Fluidised beds do not operate 

successfully unless the distributor plate is horizontal. This situation would be 

difficult to achieve in a motor car. 

It may be that the properties of a fluidised bed are such that gas pressure 

pulsations (as exist in an I.C. engine exhaust system) are attenuated by passing the 

gas through a fluidised bed. If so this would be an added benefit of such a system. 

Conclusion and Recommendations 

From the literature it would appear that a fluidised bed would work well as 

an exhaust thermal reactor because of the high axial conductivity obtainable. It 

would appear, however, that the engineering problems associated in using such a 

device in a motor car may prohibit its use. Such a device may be worthy of study 

for constant speed stationary engines such as used for power generation, or water 

or gas pumping. 

Catalyst Support 

Several catalysts have shown the ability to oxidise hydrocarbons and carbon 

monoxide in the exhaust. Usually a noble metal such as platinum, or an oxide, is 

needed. Catalysts are often granular alumina pellets with a very high surface 

area per unit volume, the catalyst material being deposited on the surface of the 

pellets. Alternatively a ceramic matrix is used, the catalyst being similarly 

deposited on its surface. The mode of operation of such a catalyst is as for an 

exhaust thermal reactor, the additional benefit being that the catalyst permits the 

oxidation reactions to occur at relatively low temperatures. 

One problem with catalysts is that they deteriorate with mileage. Often the 

deterioration is caused by lead compounds in the exhaust which coat the active 

catalyst surface. The lead in the exhaust comes from the addition of tetra-ethyl 

lead to the petrol to improve its anti-knock qualities.
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Catalysts may use air injection to complete combustion or may operate 

without air and utilize excess oxygen from lean mixture operation if sufficient 

heat conservation can be achieved. There is evidence that some catalysts 

accumulate oxygen during lean mixture operating modes such as cruising. Ihis 

oxygen then reacts during rich mixture modes such as idling. 

Catalytic reduction of oxides of nitrogen is more of a problem. A 

chemically reducing environment is required and this involves rich mixture 

operation and a fuel economy problem. Many reducing catalysts have been found 

to produce ammonia (as reported by Hunter and Bernstein) a pollutant possibly 

more dangerous than the oxides of nitrogen. All catalysts may emit trace metallic 

compounds as the catalysts break up in normal driving, and health aspects have to 

be considered. 

Since the catalysts used for control of automotive exhaust emissions operate 

in a similar manner to exhaust thermal reactors, the possible advantages of using 

fluidised particles as catalyst supports are the same, i.e. the high thermal 

conductivity of the fluidised bed should help to maintain the reactions involved. 

Additionally the high surface area of the particles is available for coating with the 

catalyst. Some degree of particle cleaning may be afforded by the abrasive action 

of the particles on their neighbours to reduce contamination of the catalyst with 

lead from the fuel. Unfortunately the same engineering problems also present 

themselves. 

Conclusion and Recommendations 

The same advantages would be gained by using a fluidised bed as a catalyst 

support system as for an exhaust thermal reactor. Similarly engineering problems 

may prevent the use of such a device, as they may the use of fluidised bed exhaust 

thermal reactors.
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REFRIGERATION FOR MOTOR CAR AIR-CONDITIONING 

INTRODUCTION 

The penalties of air-conditioning the passenger compartment of a motor car 

are increased manufacturing cost and, if the system is driven by the mechanical 

power output of the engine, an increase in fuel consumption. Vapour systems, 

essentially reversed Rankine cycles, have the potential for high coefficients of 

performance owing to the isothermal modes of heat addition and rejection. Gas 

cycles such as the air cycle do not have this advantage and are also limited by 

lower refrigerant side heat transfer coefficients, than are available with two 

phase flow in the condenser and evaporator of vapour cycles. The two systems 

considered here are the mechanical vapour compression system, as is used at 

present, and the absorption cycle. Both cycles are similar except in the method of 

attaining a pressure difference between the evaporator and condenser. For the 

mechanical vapour compression system this is achieved by direct compression of 

superheated vapour in a mechanical compressor, and in the absorption system is 

achieved by dissolving the refrigerant in a liquid absorbent and pumping this liquid 

to a high pressure. The refrigerant is driven off from the solution by raising of 

the temperature in the generator, and the absorbent is throttled back to the 

absorber. 

To reduce the mass flow rate of absorbent required between absorber and 

generator and the resulting losses due to sensible heat effects, a refrigerant and 

absorbent of high affinity are required. 

The requirements of both systems, with regard to choice of a suitable 

refrigerant, are similar with the exception of the need for a compatible absorbent 

of high affinity for the absorption system. 

For the vapour compression system the ultimate coefficient of performance 

is that of a reversed Carnot cycle working between the same two temperatures. 

For a system with a heat input the ultimate coefficient of performance is that of
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a Carnot cycle engine driving a reversed Carnot cycle refrigerator, as calculated 

by the method of Bosnjakoviec and shown by Threlkeid. The temperatures 

considered for the Carnot engine are those of the generator and absorber source 

ana sink and for the Carnot refrigerator are the temperatures of the medium 

being cooled and the sink to which heat is rejected from the condenser. 

Theoretically the coefficient of performance increases with generator 

temperature. The heat which may be transferred from the engine exhaust gases 

decreases as the temperature at which this heat is transferred is increased. An 

optimum coefficient of performance may therefore be expected to exist. 

THE CHOICE OF A SUITABLE REFRIGERANT 
  

For convenience and brevity refrigerants are henceforth described by the 

numbering system of BS4580 (1970). Many texts have dealt with descriptions of 

refrigerants, notably that of Kuprianoff, Plank and Steinie who give 

comprehensive details and also A.S.H.R.AE- In this project choice has been 

limited to established refrigerants, the search for new substances being outside 

the scope of work. For motor car air-conditioning the first requirement must be 

safety with regard to toxicity and flammability. 

The relative safety of the established refrigerants is published in BS4434 and 

in the A.SH.R.ALE handbooks. In BS4434 the refrigerants are listed in three 

groups. Group 1 is described 'Refrigerants in this group are non flammable and 

may be used in direct expansion equipment where the total charge, adequate in 

quantity for the refrigeration requirements of the spaces concerned, could escape 

into the humanly occupied spaces without creating undue hazards’. Included in 

this list are most of the halogenated hydrocarbons with the notable exception of 

R30 and R40, but including R11, R12, R13, R13B1, R21, R22, R113, R114, R115, 

C318, R500, and R502. Water, although not mentioned, must also fall into this 

category. Group 2 lists refrigerants whose principal objection is their toxicity. 

Ammonia, R30, R40 and R160 fall into this category. Group 3 refrigerants are
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objectionable by virtue of their flammability and include the light hydrocarbons 

such as butane. Only the refrigerants of the above group 1 are worthy of further 

consideration in this application. In ANSI Standard B9.1 - 1958 refrigerants are 

similarly listed in three groups under similar headings. The list of 'safe! 

refrigerants is as for the British Standard, with the exception that R30 falls into 

the American group 1. 

The American Underwriters Laboratories Classification is based on acute 

toxicity tests on guinea pigs. Of the refrigerants listed as group 1 by the BEI and 

ANSI, all appear in the higher categories (lowest toxicity) of the Underwriters 

Laboratories Classification. Group 6 refrigerants (the least toxic) are described 

as gases or vapours which in concentrations of up to at least 20% by volume for 

durations of exposure of at least 2 hours do not produce injury, and the group 

includes R12, R114, and R13B1. Group 4 refrigerants are quoted as being lethal or 

producing serious injury in concentrations of 2% to 24% for durations of exposure 

of 2 to 24 hours. Refrigerants R21 and R40 fall into this group. Two groups 5a 

and 5b include R11 and R22. 

On the grounds of safety it would seem that any of the refrigerants of group 

lin BS 4434 with the exception of R21 are worthy of consideration. 

The freezing point of the refrigerant should lie below the lowest 

temperature expected in the evaporator, or expected to be experienced in 

climatic conditions in which the car might be used. To ensure that a high heat 

transfer coefficient is available for heat rejection and that heat is rejected 

isothermally, the critical temperature should be above the maximum temperature 

expected in the condenser. With an expected maximum condensing temperature 

of around 90°C, R13, R13B1, and R115 may be unacceptable as having critical 

temperatures below 90°C. Refrigerant R113 has a freezing point at -35°C which 

is probably low enough to be acceptable in all but the worst of climatic conditions, 

but water, in many other ways a perfect refrigerant, is unacceptable on this point.
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The specific enthalpy of evaporation of the refrigerant should be high to 

reduce the required mass flow rate around the system. Specific enthalpies of 

evaporation of BS 4434 Group 1 refrigerants at 0°C are compared on graph 3.1. 

To illustrate the advantage of water in this respect, it has an enthalpy of 

evaporation some 16.5 times as high as the present refrigerant R12. Of the 

refrigerants deemed acceptable so far in this study R22 has the highest enthalpy 

of evaporation, some 36% higher than R12. 

The required volumes of components in the two systems considered is 

dependent on the specific volume of the refrigerant, and more important the 

enthalpy of evaporation per unit volume. In this respect R22 is superior to R12 by 

an increase of 61%, indicating a reduction in compressor swept volume per unit 

time for the vapour compression system, of the same amount for the same 

refrigeration load, and a possible cost saving by using a smaller compressor. 

The evaporator pressure should not be less than atmospheric to prevent air 

leaking into the system and reducing the condensing heat transfer coefficient. 

The condenser pressure should be moderate, to enable the components to be light, 

and yet of sufficient strength. The saturation pressures of BS4d34 group 1 

refrigerants at 0°C and 90°C are plotted on graphs 3.2 and 3.3 for comparison. 

The requirement of lubrication of the compressor of the vapour compression 

refrigeration system, entails refrigerant coming into contact with the lubricating 

oil, To prevent reductions in heat transfer coefficients in the evaporator owing to 

coating of the surfaces with oil carried over from the compressor, and 

modification of the refrigerant properties - in particular the reduction of 

evaporating pressures, the oil and refrigerant should be mutually immiscible. 

Care must be taken to ensure that the lubricating oil is carefully chosen and/or 

that effective oil separators are incorporated. The usual method of oil separation 

is described by nderscne The addition of an oil separator is an extra cost to be 

avoided if possible. The absorption system, having moving parts only in a liquid 

pump, may need no additional lubrication.
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From the above analysis of refrigerants it is apparent that as an alternative 

to refrigerant R12 used at present, R22 may have an advantage. Its drawbacks 

are higher pressures requiring stronger components, and a lower critical 

temperature which may entail improving heat transfer in the condenser to 

maintain a temperature sufficiently lower than the critical for heat transfer to be 

by condensation. 

The coefficient of performance of the vapour compression system, operating 

between given source and sink temperatures, is limited by the temperature 

differences required for heat transfer and also by the isentropic efficiency of the 

compressor. The temperature differences required for heat transfer are 

dependent on the overall conductances and the air mass capacity rates. The 

conductances , with two phase or liquid flow in the evaporator and condenser, may 

be assumed to be limited on the air side and are primarily dependent on the heat 

transfer surface areas and the air velocities. The compressor isentropic 

efficiency is limited, in the case of a positive displacement device as used at 

present, by refrigerant pressure losses at the compressor inlet and outlet. These 

pressure losses will be a strong function of refrigerant velocity, and the use of a 

refrigerant of lower specific volume, in reducing these velocities, may result in a 

higher isentropic efficiency. The compressor volumetric efficiency, a reduction in 

which increases the required displacement per unit time, decreases as these 

pressure losses increase, giving a further advantage to the use of a refrigerant 

having a higher enthalpy of evaporation per unit volume. 

THE CHOICE OF SUITABLE ABSORBENT REFRIGERANT COMBINATIONS 

FOR THE ABSORPTION CYCLE 

The requirements of a fluid to act as the working fluid in the vapour 

compression cycle are similarly relevant to the refrigerant in the absorption 

cycle. 

Probably the most complete literature survey of absorption refrigeration is
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that of Ellington et al in 1957. This includes a list of 50 refrigerants considered 

for this system, together with relevant references. The importance of absorption 

refrigeration with regard to commercial usage of large plants is stated by Archie 

as accounting for more than a quarter of the systems sold in capacities of greater 

than 350 kW, and illustrates the research effort put into such systems. 

The traditional fluids used as refrigerant and absorbent are ammonia and 

water, clearly unsuitable in this application owing to the toxicity of ammonia. 

These fluids and their use as an absorbent refrigerant pair are well documented 

generally and the properties of the mixture charted thoroughly by Macriss et al. 

The most important commercial alternative fluids are water as a refrigerant and a 

solution of lithium bromide salt in water as an absorbent. This combination has 

the advantage that the lithium bromide has no vapour pressure and hence carry 

over of absorbent from the generator is not a problem and no rectification is 

required as with the ammonia/water system. Limitations of the system are due to 

the low vapour pressure of water at the evaporator temperature and the resulting 

possible leaks of air into the system, and the high freezing point of water. The 

system has found most use in large commercial air-conditioning installations 

where the danger of freezing is avoided and the need for continual purging of air 

is a disadvantage outweighed by the other advantages. 

Attention to refrigerant/absorbent pairs might be limited for motor car air- 

conditioning to BS4434 Group 1 refrigerants and suitable absorbents. 

As mentioned in the introduction, for a high coefficient of performance the 

quantity of absorbent circulated between the absorber and generator must be kept 

low in relation to the quantity of refrigerant circulated around the system. This 

implies a solubility in excess of ideal solubility as defined by Hala et al anda 

negative deviation from Raoult's Law as defined by the same authors. 

Unfortunately when a solution is formed in this way heat is generated and this 

additional heat, known as the heat of solution, has to be rejected in the absorber. 

In order to evaporate the refrigerant from the absorbent more energy than
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indicated by the latent heat of evaporation has to be added at the generator. 

Buffington proposed that the overriding factor in selecting absorbents should be 

this negative deviation fromRaoult's law. Jacob Albright and Tucker questioned 

this however and suggest that there may be an optimum, beyond which the 

irreversibility due to the heat of solution is equal to, or greater than, that due to 

the sensible heat carried over by the absorbent from the generator to the 

absorber. 

The history of refrigerants in general and absorbent/refrigerant 

combinations in particular is outlined in two papers by Hainsworth. He also lists 

the desirable properties of the binary combination. The first commercial air- 

conditioning machine to be put on the market using a halocarbon refrigerant, used 

R21 and dimethy! ether of tetraethylene glycol and was marketed by Williams Oil- 

O-Matic Heating Corporation in 1937. 

Several papers have been written by Zellncater on this and similar machines. 

Similar refrigerant absorbent combinations have since been studied and the results 

published by the same author and by Albright et al. Zelihceter et al postulated 

the existence of C-H<-O or C-H<—N bonds of which there is much evidence. 

Refrigerants having a hydrogen atom in the molecule are superior therefore, and 

refrigerants R21, R22, R133a, R31, R124a and R134 show high solubilities. In 

1959 Mastrangelo published a paper on the solubility of halocarbons in the same 

absorbent as was used by Williams Oil-O-Matic and a further paper postulating an 

equation of solubility based on statistical thermodynamic considerations, which is 

a source of data for calculation of heats of solution in absorption systems using 

halocarbon refrigerants. Eiseman calculated the performance of an absorption 

machine using the same absorbent for the six refrigerants having a hydrogen atom 

and mentioned above. Of the six, refrigerant R22 gave the highest solubility but 

gave a lower coefficient of performance than R21, which required a lower mass 

flowrate owing to its higher enthalpy of vapourisation. A disadvantage of R22 was 

due to the high pumping power required, owing to the large pressure difference
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required between the evaporator and condenser. Doubts are expressed as to the 

temperature stability of R21 at the generator temperature of 111°C and evidence 

in the form of experimental results published showing the superiority of R22 over 

R21 in this respect. These results extend up to temperatures of 177°C. The other 

four refrigerants considered gave lower coefficients of performance owing to 

reduced solubilities. 

The proposed application of absorption refrigeration for the air-conditioning 

of space stations and spacecraft has been reported. This is an application 

comparable more closely perhaps with the air-conditioning of motor cars than is 

domestic or commercial refrigeration. The constraints on the design of safety, 

being operable in any gravitational attitude and of being light in weight, compact 

and of small load are similar. The research was carried out by Lockhead Missiles 

and Space Company and is contained in two reports,by Hale et al and by sims et 

al. Their conclusion with regard to choice of a refrigerant/absorbent combination 

is in agreement with Eiseman, and R22 and dimethyl ether of tetraethylene glycol 

are used in a prototype. With a generator temperature of 177°C a coefficient of 

performance of 0.59 is reported, considerably higher than calculated by Eiseman 

and due to the increased generator temperature. 

Using the fluids proposed by Hale et al and sima et al an absorption system 

suitable for motor car air-conditioning might be made operable. 

THE LIMITATIONS OF THE ABSORPTION SYSTEM AND THEIR EXAMINATION 

The first limitation to consider with regard to this system is the cooling load 

which might be produced using the heat energy of the exhaust gas. In chapter 5 

this heat energy is measured experimentally and in chapter 8 the cooling load, 

assuming a generator temperature of 177°C and a coefficient of performance of 

0.59 as found by Sime et al, is calculated and compared with the cooling load 

available with the present system. 

Refrigerant R22, shown to have possible advantages over R12, has a lower



35 

critical temperature. Difficulty may be found installing sufficient condenser heat 

transfer surface and providing sufficient air flow, maintaining the condenser 

temperature low enough relative to the critical, for the system to operate 

efficiently using either vapour compression or absorption cycles. This limitation 

of R22 is studied in Chapter 8 using a mathematical model of the vapour 

compression system, and the model of the heat rejection system developed in 

chapter 4. 

The removal from the engine of the burden of the compressor will yield 

extra capacity of the engine cooling system, which might be used for heat 

rejection from the absorber. This extra capacity whether used directly, or by a 

reduction of radiator size and the inclusion of a third heat exchanger, will be 

necessary to reject heat from the absorber. 

The dependence of the stability of halocarbon refrigerants on temperature 

will entail the use of a temperature limiting heat transfer device of some form, 

which may take the form of a mechanical thermostat, a temperature limiting heat 

pipe using a non condensible gas as described by Dunn and Reay, or by a similar 

temperature limiting thermosyphon. 

Control of the system may be of the form of an on/off switch on this 

temperature limiting device transferring heat from the exhaust gases to the 

generator. 

The limitations mentioned in the latter three paragraphs are practical 

problems requiring further investigation if the absorption system appears 

favourable after examining the limitations outlined in the first two paragraphs. 

The advantage to be gained from the absorption system in terms of reduced 

fuel consumption is quantified in chapter 8.
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THE PRESENT SYSTEM 

For this project the Jaguar XJ6 is used as a subject and is taken to be a 

vehicle typical of its type. It is a high performance saloon car having an engine 

capacity of 4.2 litres and mid-laden mass of just under 2000 kg. The 6 cylinder 

spark ignition engine is water cooled, coolant being circulated by a centrifugal 

pump driven from the crankshaft via a vee belt. Control of coolant temperature 

is by a wax bulb thermostat and radiator bypass which is blanked off as the 

thermostat opens. The radiator is front mounted and convection from the radiator 

is assisted by an axial flow fan, driven from the crankshaft, via a vee belt and 

viscous coupling. For the version of the car considered, the transmission is by a 

five ratio manual gearbox and dry plate clutch. The air-conditioned version of the 

car has a vapour compression refrigeration system using R12 as the working fluid. 

The compressor is a 6 cylinder positive displacement reciprocating device, driven 

through an electromagnetically loaded clutch from the engine crankshaft via a vee 

belt. Refrigerant from the compressor passes to a dryer bottle and thence to the 

condenser, a finned tube heat exchanger mounted in front of the radiator. 

Expansion of refrigerant is by a thermostatic expansion valve to the evaporator 

mounted inside the front bulkhead. Control of the air temperature leaving the 

evaporator is by switching off the current to the compressor clutch when the 

temperature drops to less than 2°C. The state of the refrigerant entering the 

compressor is maintained as having a nominal 24K superheat by the thermostatic 

expansion valve, which senses the temperature and pressure of the refrigerant at 

the evaporator exit. No other automatic controls are incorporated in the 

refrigeration system itself, but the system is switched on and off, via the 

compressor clutch, by the air distribution control system. Pressure overloading of 

the compressor is precluded by a safety valve as an integral part of the 

compressor. 

Air is sucked over the evaporator at a nominal 0.15 kg/s mass flowrate of 

dry air, on the maximum fan speed. The maximum refrigeration load and the most
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severe climatic conditions may be taken as occurring when operating with the fans 

at the highest speed and an ambient temperature and relative humidity of 45°C 

and 50%. 

THE VARIABLES INFLUENCING THE AIR-CONDITIONING SYSTEM, AND ITS 

INFLUENCE ON THE CAR 

These variables are those which influence each of the components of the 

system. 

The compressor has a direct effect on both the evaporator load and the 

coefficient of performance. The displacement per unit time and volumetric 

efficiency influences the mass flow rate of refrigerant and hence the evaporator 

load, and the isentropic efficiency is a dependent variable of the coefficient of 

performance. 

The evaporator, and the overall conductance of heat from the air being 

cooled to the refrigerant, through the evaporator, has an influence on the 

coefficient of performance by setting the lowest temperature in the cycle. This 

conductance is a function of the temperature and humidity of the air, the air 

velocity, and the evaporator geometry. 

The condenser and the overall conductance of heat from the refrigerant, 

through the condenser and to the atmosphere, has a direct influence on the upper 

temperature of the cycle and hence the coefficient of performance. This 

conductance is dependent on the air velocity and the condenser geometry. 

The air velocity over the condenser is produced by the engine cooling fan 

and by the forwards motion of the car. This air velocity also influences the 

radiator heat transfer coefficient, since on leaving the evaporator, the air passes 

over the radiator. The engine cooling system temperatures are dependent on the 

radiator overall conductance and the mass capacity rate and temperatures of this 

air flow. The relative positions of the condenser, radiator, fan cowl and engine 

cooling fan are shown on figure 3.1. The condenser does not completely cover the
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radiator and does not have the advantage of the same air mass flowrate. The fan 

cowl is fitted with simple rubber flaps to act as non return valves and take 

advantage of ram air when the car is moving but constrain the air flow, due to the 

fan, to be through the radiator when stationary. The temperatures of the engine 

coolant are also dependent on the mass flow rate of coolant between the engine 

and radiator, the mass capacity rate and radiator coolant side heat transfer 

coefficient being functions of this. 

In addition to providing the tractive effort, which must equal the rolling 

friction of the tyres and aerodynamic drag, the engine has to supply other loads. 

These are primarily the transmission losses, the air-conditioning compressor and 

the engine cooling fan and viscous coupling. The fuel consumption may be 

calculated as a strong function of brake load and engine speed. By calculating the 

fuel consumption with and without each of these loads, the fuel consumption 

contribution of each load may be taken as the difference. 

In later chapters each of the variables is quantified and a mathematical 

model of the system built up. Using this model the complete system is studied and 

improvements suggested.
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THE MECHANISM OF HEAT REJECTION FROM THE ENGINE AND 

AIR-CONDITIONING SYSTEM 

METHOD OF CORRELATICN 

As illustrated in chapter 3 the mechanism of heat rejection from both the 

engine and the air-conditioning system is by forced convection to the atmosphere 

from extended surface heat exchangers. The velocity of air over these surfaces 

has an influence on the heat transfer coefficient and also on the mean 

temperature difference between the air and the heat exchanger surfaces. It is 

necessary therefore to obtain data on the air velocity over the heat exchangers 

and on the parameters which control this air flow. The air flow is generated by 

the forwards motion of the car and by the engine cooling fan. 

The forwards motion of the car produces a region at the front where the 

velocity of the air relative to the car is greatly reduced and the pressure is high. 

In the region underneath the car the air may be expected to be at a pressure 

different to atmospheric due to the velocity of the car with respect to the ground. 

Air passing through the condenser and radiator travels from the high pressure 

region at the front and is exhausted to the underside of the car. The passage of 

air in this way must be due to a pressure difference which must equal the 

frictional pressure drop. 

To analyse the system the following assumptions are made: 

(a) | That compressibility effects may be neglected 

(b) That the air flow around the car whilst travelling at some velocity U, is 

effectively the same as when the car is stationary with a wind blowing over 

the car with velocity Uy and the road moving under the car at velocity Uy.
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AIR VELOCITY = U, 

   

  

VELOCITY OF CAR 
RADIATOR AIR 
VELOCITY = U; 

     
5 ROAD VELOCITY = U, 
  

(c) That the pressure at (4) is equal to the pressure at (5) and that the pressure 

at (5) is independent of the velocity at (4) (i.e. that the volume flow rate 

from (4) to (5) is small compared with the total volume flow rate past (5) and 

that there is no constriction between (4) and (5)). 

(d) That the pressure at (3) is equal to the pressure at (2) (i.e. the grill does not 

restrict the air flow). 

(e) That the piezometric pressure difference between the free stream at (1) and 

the underside of the car (5) is directly proportional to the square of the wind 

and road velocity Uy. 

i.e. Pak, Us 

E e 

= Fy 4.1 

e
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Applying Bernoulli's equation between (1) and (2) 

2 eee 4.2 
BOT et eS 
2 Z e 

Applying Bernoulli's equation between (3) and (4) 

= 2 

saat, cs 22 a 
e e 2 e 

Hence by solving to give U, in terms of Uy 

U-=.U. = kU 4.4 r v v 

  

Tr 

This suggests a linear relationship between the velocity through the radiator 

and the car velocity which will later be shown to be the case experimentally. 

Theoretically the car could be driven with the radiator and condenser removed and 

ky calculated from measurement of the air velocity through the radiator orifice. 

The constant k was however calculated by measurement of U, and measurement 

of kee 

The assumption that the pressure drop across the radiator is proportional to 

velocity squared is an approximation but variations in kn with velocity may be 

compensated for by allowing ky to vary with Uy. This produces a slightly non 

linear variation of U, with Uy in the final relationship when heat exchangers of 

different pressure/velocity relationships are considered. An alternative would be 

to assume that k varies slightly with Uy as may be the case, and that ky is a 

constant. The former method was chosen for this analysis. 

The engine cooling fan has a pressure/volume flow rate characteristic curve 

which must, at its operating point, be coincident with the pressure/volume flow 

rate characteristics of the heat exchangers. By measuring these characteristics 

and by assuming that the velocity is directly proportional to fan speed as 

suggested by Woods Guide it is possible to calculate the air velocity due to the 

fan.
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Addition of the ram air velocity and the fan air velocity must take account 

of the influence of the ram air velocity on the fan. For an axial flow fan a low 

fan speed coupled with a high ram air velocity would produce a turbine effect with 

the ram air tending to motor the fan. For a paddle bladed centrifugal fan no such 

reaction is possible. The fan in question was found to behave as the latter case. 

The engine cooling fan is driven from the engine crankshaft via a vee belt 

and a viscous coupling. For a solidly driven fan, the fan air velocity might be 

assumed to vary linearly as the engine speed, as suggested above. The effect of 

the viscous coupling is to reduce the fan speed and hence the fan air velocity at 

car speeds such that the ram air velocity is sufficient to provide adequate cooling. 

The mechanism by which fan power consumption is reduced may be understood 

from a simple analysis for which the following assumptions are made: 

(a) That the fluid used is newtonian. 

(b) That the fluid viscosity does not vary with temperature and hence with 

power dissipation in the coupling. 

(c) That the power consumed by the fan is proportional to the cube of its speed. 

(d) That the air velocity is proportional to the speed of the fan, 

Free body diagrams involving the fan, viscous coupling and pulley are shown 

9 Choe 
FAN AND OUTER MEMBER INNER MEMBER OF COUPLING 

OF COUPLING AND DRIVEN PULLEY 

below. 
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From (c): T, = kU,” 4.5 

From (a) : ky W-W,) =T, 4.6 

From (d): W, = Uk; 4.7 

Solving to give U, intermsof W 

UL cs bois 1+4 kw re ol 4.8 

2k, Ukegk}? 

This is a monotonous relationship (i.e. U. does not reach a maximum) shown later 

not to represent experimental data. 

Of the assumptions made (b) is the least applicable. As the torque and hence 

the slip and power dissipation in the coupling increases with speed, the 

temperature of the fluid increases and its viscosity decreases resulting in 

increased slip. Equilibrium is reached when the coupling attains a temperature 

such that heat is generated and dissipated to the airstrearn at the same rate. 

Hence a maximum fan speed is reached which cannot be increased by increasing 

the driven speed of the coupling. To produce a model representing this mechanism 

completely would require heat transfer data for the coupling and 

viscosity/temperature data for the fluid. A simple model is sufficient however to 

predict that at zero driven speed the rate of change of fan speed with driven 

speed is zero, a factor subsequently used for fitting equations to experimental 

data. 

Air side piezometric pressure drops across extended surface heat exchangers 

are traditionally correlated as friction factor against Reynolds number. The 

possible variation in geometry may also be taken into account in terms of non- 

dimensional geometric ratios. By plotting these dimensionless groups it is possible 

to see discontinuities in the relationship to suggest a change in the type of flow, 

i.e. laminar to turbulent. For both the present radiator and condenser, the 

friction factor has been plotted against Reynolds number and a value of critical 

Reynolds number obtained. The critical Reynolds number has been assumed to be
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independent of changes in the geometry of the heat exchanger, due to variations 

in fin density or core thickness. This approximation is necessitated by a lack of 

experimental data at low values of Reynolds number. 

Heat transfer and pressure drop data, in terms of j factor and friction 

factor, are correlated against Reynolds number and the ratio of passage length to 

mean diameter, for the radiator. The manufacturer's design date is used for 

calculation of the condenser pressure drop and air side heat transfer coefficient. 

For the coolant side heat transfer coefficient of the radiator the familiar 

Nusselt number, Prandtl number, Reynolds number relationship is used with an 

experimentally derived constant. 

The refrigerant side heat transfer coefficient for the condenser is dealt with 

in chapter 8. 

CONDENSER AIR VELOCITY MEASUREMENTS IN SITU 

A hot wire anemometer was developed and calibrated for this purpose. The 

device and the method of calibration are described in Appendix Al. 

Using the hot wire anemometer the air velocity over the condenser was 

measured under the following conditions. 

a) Car stationary, viscous coupling locked 

b) Car moving, fan removed 

c) Car stationary 

d) Car moving in first, second, third, fourth and fifth gears 

The tests with the car stationary were carried out with the car indoors to 

remove the influence of crosswinds. The tests on the moving car were conducted 

on straight roads at constant speed, the car being driven in both directions. Tests 

out of doors were not conducted in wet or windy conditions, the wind speed being 

less than 5 m/s in all cases. Atmospheric pressures were noted during the tests 

and efforts made to ensure that the nickel wire was kept clean using a soap 

solution.
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RESULTS 

The experimental data and computed velocities are listed in Appendix A2. 

The plotted data of velocity against engine speed with the viscous coupling 

lucked lie closely about a straight line as shown on graph 4.1. This line was fitted 

by the method of least squares and constrained through the origin. The gradient 

of the curve with the viscous coupling unlocked and the car stationary is assumed 

at zero engine speed to be as for the straight line with the viscous coupling 

locked, as discussed earlier. Hence a curve of the form: 

U = A(1-Bu) 4.8 
cFan 

(where A, B, and n are constants) was fitted to the data by the method of least 

squares, and found to give a good representation as shown on graph 4.2. 

The points plotted for air velocity against road speed with the fan removed 

were similarly fitted to a straight line constrained through the origin. The fit of 

this line, as shown on graph 4.3, lends validity to the analysis of the variation of 

ram air velocity with road speed. 

With the car moving and the unlocked viscous coupling driving the fan the 

combined effect of ram air velocity and fan generated velocity are evident. It 

was found that the data could be described by an equation of the form: 

2 2 2 
Uctotal a Ucran a UcRam 4.9 

Functions of this form are shown plotted with the data on graphs 4.4 to 4.8 

inclusive, and deviations from the data tabulated in appendix A2. The logic for 

this method is that both the fan and the ram effect impart kinetic energy to the 

air and the function illustrates the effect of adding the kinetic energy from each 

source. The independence of the kinetic energy imparted by the fan, from the 

ram air velocity suggests that the fan behaves as a centrifugal fan, as discussed 

earlier.
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By using the function above an equation was developed for the condenser 

face air velocity: 

2 U2 = (Ag, w (1-8 (gw)? + (Cow)? 4.10 

where U is the face velocity, A, B, and C are constants derived from the 

experimental data, 3) is the fan pulley gear ratio, Go is the car gear ratio and W is 

the engine speed. Using this equation it is possible to calculate the condenser air 

face velocity given any combination of Gy» Io and W. It is also possible by 

varying the value of B to study the effect of varying the viscosity of the fluid in 

the viscous coupling, since the slip and B are both dependent on this viscosity. 

Using the developed equations the condenser air face velocity has been 

plotted against road speed in miles/hour on graph 4.9, and against engine speed in 

rev/min on graph 4.10. 

A further ramification of the fitted equations for condenser air face 

velocity is that knowing the fan power consumption at one speed it is possible to 

calculate the power consumption of both the fan and viscous coupling as a 

function of engine speed and pulley ratio. 

As above: 

Use an = AWG, (1-8 Wa,)”) 4.11 

and 

Uc an a AW s 4.12 

hence: slip=Wg, -W,=B (wa)? 4.13 

Assuming that the torque varies as the square of the fan speed: 

T, = kw? = k(wg,)* 1-89," 4.14 

-*. Power dissipated by coupling 

= k BW9,)™ (1 - B(Wa,)? 4.15
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Power dissipated by fan 

= k Wg,) 0 - Bwa)" 4.16 

Total dissipation by fan and coupling 

= 1, wo, 4.17 

" k (wa,)? 1 - Bw)? 4.18 

Using data obtained by the roantfectticers of torque against volume flow rate 

at a fixed fan speed, for an identical fan with the same tip clearance but using a 

different cowl, the value of k was calculated. As seen from the manufacturers 

data plotted on graph 4.11, the torque does not vary with volume flow rate over 

the range of flow rates for which the fan may be used. Using this value of the 

constant k in the above equations the power dissipation by the fan and coupling 

are plotted on graph 4.12. Also plotted for comparison is the power which would 

be consumed were the fan solidly driven, showing the dramatic effect the coupling 

has in reducing power consumption at high speeds. 

MEASUREMENT OF FAN PRESSURE/VOLUME FLOW RATE 

CHARACTERISTICS 

A test rig owned by Smiths Industries of Witney was used to establish data 

on the present engine cooling fan and fan cowl. This rig is adaptable for the 

testing of engine cooling fans or extended surface heat exchangers of the type 

used for car radiators, air-conditioning condensers, car interior heating matrices 

etc. The rig consists of three chambers of approximately 2m by 2m by 2m. Air 

enters the first chamber through an aperture. This chamber is fitted with 

pressure tappings to register the static pressure. Air flows from this chamber 

through one of a range of nozzle orifices (designed to BS1042 part 1) to the second 

chamber. Each of the nozzle orifices is provided with a rubber bung, the nozzle 

selected being the only one unblocked. From the second chamber the air passes 

through a duct to the third chamber. This duct has a centrifugal fan, driven from
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a Ward-Leonard set, and a remotely operated sluice connected in series, to 

generate and/or control air flow. The third chamber is similarly provided with 

static pressure tappings as is the first. Air from the third chamber is exhausted to 

atmosphere through an apperture. 

The element to be tested is fitted to either of the appertures on the first or 

third chamber and by manipulation of the rig fan speed and the sluice, the 

required volume flow rate may be set and read off an inclined manometer 

connected to a suitable nozzle orifice. The piezometric pressure drop is read 

from an inclined manometer connected to the static pressure tappings on the same 

chamber to which the element being tested is fitted. A mercury barometer and 

mercury in glass thermometer were provided for the measurement of atmospheric 

pressure and ambient temperature. 

The fan cowl was secured outside the aperture in the third tank and an air- 

tight seal effected with adhesive tape. The fan was mounted on the shaft of a d.c. 

electric motor, driven from a Ward-Leonard set, and fitted with an electronic 

impulse tachometer. 

Two tests were carried out: 

a) With the ram air flaps unsealed 

b) With the ram air flaps sealed with adhesive tape. 

In each case the driven speed was maintained at 1,000 rev/min and the volume 

flow rate varied between zero and the maximum in noted steps, the piezometric 

pressure difference across the fan being noted at each step. The ambient 

temperature and barometric pressure were read during the tests. A hand held 

smoke generator was used to study the air flow pattern around the fan and cowl. 

The measured pressures were corrected to standard temperature and 

pressure by assuming that the piezometric pressure difference varies as the 

density, as given by Woods. The two sets of results are shown on graph 4.13 to 

show the absence of leakage through the ram air flaps when unsealed. The curves 

drawn through the data points for the flaps unsealed are cubic splines for the
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purpose of interpolation. 

The form of the curve is as may be expected, the rate of pressure rise 

decreasing as the flow is reduced until the pressure recovers and the flow becomes 

less stable. 

A sketch showing the airflow around the fan is shown in figure 4.1. This is 

the airflow pattern expected for a centrifugal fan and not an axial flow fan, 

lending validity to the method of correlating ram air velocity and fan air velocity. 

This effect may be promoted by the position of the electric motor acting as a 

bluff body stream of the fan, but a similar configuration exists in the car with 

the engine in the same position and somewhat larger than the electric motor. 

EVALUATION OF THE FRICTION FACTOR OF THE PRESENT RADIATOR AND 

CONDENSER TO ESTABLISH VALUES OF THE CRITICAL REYNOLDS 

NUMBERS 

Velocity/piezometric pressure drop data were established experimentally for 

the radiator and condenser, as fitted to present air-conditioned cars, using the 

flow rig which was used for the tests on the engine cooling fan. The condenser 

and radiator in turn were affixed over the aperture in the first (air inlet) chamber 

and the volume flow rate increased whilst readings were taken of piezometric 

pressure drop. Atmospheric pressure and ambient temperature were read during 

the tests. 

From the results, values of friction factor and Reynolds number were 

calculated. The experimental and calculated results data are tabulated in 

appendix A2. The air velocity was calculated from the volume flow rate and free 

(minimum) flow area. The mean diameter was calculated for the radiator as a 

series of triangular passages whose base length equals the fin pitch minus fin 

thickness and perpendicular height equals the coolant tube spacing. For the 

condenser the mean diameter was calculated as for a series of parallel plates. 

The fin geometries of the radiator and condenser are shown on figs. 4.2 and 4.3.
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In calculating the velocity and mean diameter for the condenser, no account was 

taken of the refrigerant tubes. Figures 4.2 and 4.3 show the dimensions of the 

radiator and condenser, 

The friction factor is plotted against Reynolds number on a log-log plot on 

graph 4.14. Discontinuities exist for both the radiator and condenser at Reynolds 

numbers of 227 and 329 respectively. At lower Reynolds numbers the form of the 

functions approximate to rectangular hyperbolas as would be expected for laminar 

flow. In this laminar region for the radiator the line fitted by the method of least 

squares has the equation: 

f = 50.217 4.19 

Rel995 

The expected equation for an infinitely long smooth circular pipe is: 

16 

Re 4.20 

indicating a friction factor of approximately 3.1 times as high as calculated from 

theory. 

For the condenser the equation fitted in the laminar flow region is 

constrained to have a gradient of -1 on the log-log plot and is 

f = 85.7 2) 
Re 

The expected equation for infinitely long flat plates is: 

f = 24 4.22 

Re 
which indicates that the friction factor is approximately 3.6 times as high as 

calculated from theory. For both the radiator and condenser the divergence from 

theory is largely due to the short length (core thickness) of the airflow passages, 

and also to the existence of louvres on the radiator and tubes and crinkled fin 

edges on the condenser. 

This being the case, the influence of the length to mean diameter ratio on 

the value of the critical Reynolds number may be considerable as may be other
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dimensionless geometric ratios describing the louvres and tubes. 

The factors believed to influence the magnitude of the friction factor in 

laminar flow are also believed to account for the low values of critical Reynolds 

number when compared to vaiues of 2300 from the literature for smooth circular 

pipes. A low critical Reynolds number and the resultant turbulent flow at low 

velocities is desirable in a heat exchanger to promote high surface heat transfer 

coefficients. To make this an advantage the heat exchanger should be operated 

with a velocity sufficiently high to ensure that the Reynolds number is higher than 

the critical value. 

DETERMINATION OF THE RADIATOR COOLANT-SIDE HEAT TRANSFER 

COEFFICIENT 

Experimental data from a series of tests carried out by the radiator 

manufacturer on radiators of similar design to that used on the present car were 

made available for this project. This data is tabulated in appendix A2. Two sets 

of test data were used for evaluation of the coolant-side heat transfer coefficient, 

each of these sets of data giving a variation of coolant and air flow rates for 

particular radiator dimensions. 

Overall conductance was calculated using the equation due to Stevens given 

by Rohsenow and Hartnett for cross flow heat exchangers. By assuming fluid 

mixing on the coolant side the calculation is greatly simplified, and the air off 

temperature is only used for calculation of the bulk temperature and fluid 

properties, which for both coolant and air was taken as the arithmetic mean. 

Errors arising from the assumption of coolant mixing are less significant if the 

coolant temperature change is small, which is the case in practice but not at the 

high air flow rates and low coolant flow rates in some of the experimental results. 

A constant fin efficiency on the air side is assumed. 

The overall conductance is the inverse of the sum of the resistances and 

assuming a zero resistance for the copper of the tubes the resistances considered
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are those on the coolant side and the air side. MeAdarne gives the following 

equation for the forced convection heat transfer coefficient inside a smooth 

circular tube. 

Nu =0.023 Re%™8 pr9-4 where Re > 10° 4.23 

For both the air side and water side, the heat transfer coefficients are assumed to 

vary as the mass velocity to the power of 0.8 as given in this equation. 

    

Hence: 

ea Sec macs 4.24 

UoveraLL  m@-8 mo:8 
water air 

This equation was fitted separately to the data for the two radiator tests by 

the method of least squares to find the value of Cy. The data and fitted equations 

are plotted on graphs 4.15 and 4.16. The resultant coolant side equation became: 

0.8 ppl-4 
Nu = 0.0138 Re 4.25 

- for the two row 1.59 mm fin pitch radiator, and 

Nu = 0.0136 Re™8 p24 4.26 

- for the three row 2.12 mm fin pitch radiator, assuming indexes of 0.8 and 0.4 for 

the Reynolds number and Prandtl number respectively. Properties were 

calculated from the data of Mayhew and Rogers at a temperature of 80°C. The 

agreement between these figures indicates that the method and result of the 

calculations is a good approximation. A mean value of the constant of 0.0137 was 

subsequently used. Although water was used in these tests on the radiators, the 

dimensionless equation is assumed to be applicable to other fluids and was 

subsequently used for a water antifreeze mixture as used in the car. The 

properties of a 45/55 water antifreeze mixture were obtained from the antifreeze 

67 
manufacturers, and were also taken at 80°C.
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CORRELATION OF AIR SIDE _j AND f FACTORS WITH REYNOLDS NUMBER 

AND FIN GEOMETRY 

60 
For the radiators tested by the radiator manufacturer and tabulated in 

Appendix A2, the following dimensionless equations were fitted: 

Digi 
t= A,Re (L/d) 4.27 

b. Cc. 

AjRe ? (Lia) ? 4.28 

where d is the mean diameter and L is the core thickness, and Ay by, c, Ay bos 

Cy are constants. Properties of air and water were calculated using polynomials 

fitted to data from Mayhew and ere and for both were taken at the arithmetic 

mean bulk temperatures. The overall conductance was calculated using the 

equation due to Stevens as for the determination of radiator coolant side heat 

transfer coefficient. The water side heat transfer coefficient was calculated 

using the Nusselt number, Prandtl number, Reynolds number relationship 

developed earlier. The thermal resistance of the tubes was assumed to be zero. 

The fin efficiency was calculated iteratively using the relationship 

Nfin = tanh x 4.29 

x 

2t k 

where x = We h 

where: 

We is the fin width measured between the tubes, 

h is the surface heat transfer coefficient, 

k is the thermal conductivity of the fin material, 

t is the fin thickness. 

The conductivity of the copper fins was taken to be constant, and a value of 

400W/mK given by the manufacturers used. The mean diameter was calculated 

for the air passages by the method described earlier. The characteristic length L
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is taken to be the core thickness. The area of flow is the minimum open area of 

the matrix as before. 

The resultant calculated values of j and f are plotted against Reynolds 

number on graphs 4.17 and 4.18, Also shown are the fitted equations at the values 

of (L/d) used. The fitted coefficients of equation 4.27 are: 

AL = 3.122 

by = -0.40 

c= -0.33 

and for equation 4.28 are: 

A = 1.478 

bo = ~0.48 

e = ~0.47 

The R.M.S. deviations of j and f are 8.4% and 5.8% respectively. Comparison with 

the equation fitted for turbulent flow through the present radiator using data 

obtained at Smiths Industries gives a mean deviation of 14.5% from that data over 

the range of Reynolds number of 500 to 5000. This is probably due both to the 

inadequacy of the equation in Reynolds number and (L/d) to represent the data and 

also the scatter of the data. 

From the experience gained by measuring the velocity/pressure drop 

relationship for the present radiator and condenser at Smiths Industries 

laboratory, an expression of the form: 

n, m f = (A, +B3Re’) (A, +B, (L/d)”) 4.30 

where Az 83, n, Ay By and m are constants, would give a more accurate fit to 

experimental data. The data currently available on this particular pattern of 

radiator is insufficient in both quantity and quality to permit this.
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For turbulent flow through a smooth circular pipe of infinite length and a 

Prandtl number of 1: 

  

= 2 4.31 

For the relationship established here for j and f the higher ratio of approximately 

6 is probably due to the losses at the exit from the air passages. This multiple of 

3 is consistant with the earlier comparison of the friction factor with a simple 

theoretical analysis in the laminar region. 

The expected similarity between j and f suggests that a similar relationship 

to equation 4.30 would also provide a better representation of j. 

CONDENSER AIR SIDE PIEZOMETRIC PRESSURE DROP AND HEAT 

TRANSFER COEFFICIENT 

Experimental data, on the pattern of heat exchanger used as a condenser, 

made available by the manufacturer is insufficient in quantity, for analysis by the 

method used for the radiator. Design data from the same source on this unit was 

made available in graphical form. The following is an algebraic representation of 

this data. 

h = L716 xR/F x U7 4.32 

P = 8.284xR/F xU.174 4.33 

where P is the pressure drop in Nim’, R is the number of tube rows, F is the fin 

pitch, and h is the heat transfer coefficient in W/m? of face area. U, is the 

condenser face velocity. 

COMPARISON OF RADIATOR AND CONDENSER AIR VELOCITIES 

As shown in chapter 3, the physical layout of the radiator, condenser, fan 

cowl, and engine cooling fan is such that the radiator completely covers the fan 

cowl, but the condenser of smaller area does not. This configuration renders 

analysis of the air flow impossible except on the basis of potential flow. Potential
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flow analysis in this situation would be exceedingly complex and probably yield 

results of poor accuracy. The method of analysis used here is based on the 

following assumptions: 

a) The velocity of air flowing through that portion of the radiator shadowed by 

the condenser is the same as for the condenser. 

b) The piezometric pressure drop experienced by the fan is that due to the 

radiator and condenser in series with an air velocity equal on each. 

c) The volume flow rate, pressure rise characteristics of the engine cooling fan 

are unaffected by the close proximity of the radiator matrix. 

Following these assumptions and using the data obtained with the hot wire 

anemometer, the friction factor/Reynolds number relationship, developed from the 

manufacturer's data on the radiator, the velocity/pressure drop design data on the 

condenser, and the data obtained on the engine cooling fan. The condenser 

velocity was found to be 15.5% greater than the radiator velocity. This is as 

might be expected from the layout of the components. 

Using the same method, a mathematical model was developed to calculate 

the radiator and condenser air velocities for any combination of fin pitches and 

core thicknesses. The model was extended to include the effects of ram air 

velocity, calculated from equation 4.4. The ratio of condenser air velocity to 

radiator air velocity is assumed to remain constant and to be an effect of the 

component layout. This model is included in Appendix A5 in the form of a 

computer program. An improvement, especially with regard to the influence of 

ram air velocity, would result from measurement of the radiator air velocity using 

a similar hot wire anemometer covering the area of the radiator matrix. 

An improved hot wire anemometer, giving a more accurate mean velocity 

over the area of flow and/or a matrix of point velocities, is suggested and 

described in appendix Al. This may be a useful instrument for the development of 

engine cooling fans and fan cowls.



61 

RESULTS OBTAINED BY THE CAR MANUFACTURER FOR THE AIR FLOW 

RATE THROUGH THE RADIATOR 

Volume air flow rates through the radiator of the car have been measured by 

the sponsor with the car stationary and the viscous coupling locked. The method 

adopted was to attach a sharp edged circular duct to the front of the car and 

sealed such that all of the air passing through the radiator passed first through 

this duct. The air velocity was measured at the entrance to the duct using a vane 

anemometer and was assumed to be uniform over the cross section. The vane 

anemometer which gives a direct reading of velocity has since been calibrated in a 

wind tunnel, of cross-section approximately ten times the diameter of the 

anemometer, against a pitot static tube giving a reading of kinetic head on a 

Chattock gauge. A plot of the radiator air velocity using the results thus 

corrected, against engine speed is shown on graph 4.19 and the corrected results 

tabulated in appendix A2. The resultant air volume flow rate, at a fan speed equal 

to that used when testing the fan volume flow rate/pressure rise characteristic, is 

apparently greater than the fan can achieve against a zero pressure head. Two 

reasons for this discrepancy are that the close proximity of the radiator has an 

influence on the fan characteristics and/or the assumption that the velocity 

profile at the entrance to the duct is uniform. The latter reason is the most 

credible and invalidates the test except as a method of comparing two systems. 

A method which would yield more accurate data on volume air flow rate is 

to use a conical inlet duct as recommended by The Fan Manufacturers! 

Associaticn. The advantage of this device is that the flow rate is calculated from 

a pressure head on an inclined manometer, the density of air, and an established 

coefficient. A disadvantage which remains is that the nozzle produces an 

increased head against which the fan has to work. It would be possible to use a rig 

similar to that owned by Smiths Industries and used for the fan, radiator, and 

condenser tests. Such a rig would, however, be expensive, cumbersome, and only 

be usable with the vehicle stationary.
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FIGURE 4.2 
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GRAPH 4,17 

LOG-LOG PLOT OF j AGAINST Re FOR VARIOUS RATIOS OF L/De 
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GRAPH 4,18 

LOG-LOG PLOT OF f AGAINST Re FOR VARIOUS RATIOS OF L/De 
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MASS AND ENERGY TRANSFERS TO AND FROM THE ENGINE OF THE 

NON AIR-CONDITIONED CAR 

INTRODUCTION 

For the purpose of this work the engine is assumed to be a system which 

takes in chemical fuel and produces mechanical work, and hot exhaust gas, and 

rejects heat to a coolant flowing from the radiator, through the system and back 

to the radiator. In considering the energy and mass transfers, their magnitudes 

are assumed to be functions of the engine speed and mechanical power only, 

except in the case of the coolant flow rate, which is dependent on its temperature 

on leaving the system, and also on the coolant side friction factor of the radiator. 

Hence it is assumed that the enthalpy increase of the coolant as it passes through 

the system is independent of the temperature of the coolant either entering or 

leaving the system. This is justified by the large temperature difference between 

the cooling water and the combustion gases, in relation to small possible 

variations in the mean coolant temperature. Similarly it is assumed that the 

enthalpy of the exhaust gases is unaffected by small changes in coolant 

temperature. Other energy transfers (i.e. by radiation and convection and also 

heat transferred in the oil cooler) are unaccounted. 

The energy and mass transfers to and from the system have been quantified 

for the purpose of this work as: 

Coolant flow rate = f (engine speed, coolant outlet temperature, 

and radiator friction) 

Exhaust gas enthalpy =  f (engine speed, and brake power) 

Exhaust gas mass capacity rate 

=  f (engine speed, and brake power) 

Heat rejected to coolant = f (engine speed, and brake power) 

Fuel flow rate f (engine speed, and brake power)
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For the purpose of quantifying the latter four dependent variables, an engine 

was set up on a test bed and instrumented, and a series of tests carried out. 

The speed of the engine is dependent on road speed and overall gear ratio. 

The mechanical power delivered at the road wheels is dependent on the 

aerodynamic and frictional drag, gradient and vehicle acceleration, the 

aerodynamic drag being dependent on the shape of the car and its velocity, and 

the frictional drag being dependent on the coefficient of rolling friction for the 

tyres and the vehicle mass. In driving up a gradient the power requirement is also 

a function of the vehicle mass and the gradient. The additional power required to 

accelerate the car is directly proportional to its mass and acceleration. The 

power delivered at the wheels may be termed the road load. The power produced 

by the engine is therefore the sum of the road load, transmission losses, and the 

loads produced by the auxilaries, i.e. the engine cooling fan, alternator, power 

steering pump, etc. With the exception of the cooling fan the power consumption 

of the auxilaries is small (i.e.< 1 kw), the maximum alternator output being 

approximately 250W and the power steering pump working against a pressure only 

when the steering wheel is being turned, and a spool valve closed to divert the 

fluid to the steering rack. 

For the calculation of the road load and transmission losses data had 

previously been obtained by the iia Power consumption of the engine cooling 

fan and viscous coupling is as given by the function developed in chapter 4. 

Coolant is pumped from the radiator to the engine by a centrifugal pump 

which is an integral part of the front timing cover. The pump rotor is directly 

coupled to the pulley, driven from the crankshaft, which drives the cooling fan 

viscous coupling. Coolant from the engine flows back to the radiator through a 

thermostatic valve. This valve is arranged to divert flow from a bypass hose 

(bypassing the radiator) to the radiator, as the coolant temperature increases. 

Data on coolant flow rates with the thermostat propped fully open and the bypass 

17 
hose blanked off were previously obtained by the sponsor. No data is available on



86 

the influence of thermostat opening on flow rate and hence a linear variation is 

assumed. This is justified in examining the limits of the cooling system 

performance since the limit is imposed at coolant temperatures such that the 

thermostat is fully open. 

DETERMINATION OF FUEL FLOW RATE AND ENGINE ENERGY TRANSFERS 

IN THE LABORATORY 

The Test Rig 

A standard 4.2 | Jaguar XJ6 engine was solidly mounted on a test bed in a 

laboratory. 

The exhaust gases from the engine passed through a large expansion chamber 

to reduce resonance effects and then through a 100 mm diameter pipe to a stack. 

A fan in the stack provides a small draught to prevent a build up of flammable gas 

and also reduce the pressure drop in the system. When running, the maximum 

exhaust pressure measured in the engine manifold was found to be less than 150 

mm water gauge. 

The engine was cooled by water in a pressurised closed circuit, heat being 

transferred from a motor car radiator immersed in a water bath. Water from a 

reservoir was pumped into the bath and returned via a forced draught cooling 

tower. The standard engine thermostat was retained and circulation of water 

through the engine and radiator was assisted by the standard engine coolant pump. 

Oil from the engine sump was circulated by a mains electric pump through a 

shell and tube heat exchanger, and a paper element filter and back to the sump. 

The oil flow rate was adjustable by means of a gate valve at the pump outlet. The 

coolant side of this heat exchanger was fed by water from the reservoir, and 

regulated by a valve. 

The dynamometer was fed with water from the same reservoir, regulating 

gate valves being installed upstream of the brake and on the brake outlet itself.
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Connection to the brake was via flexible, convoluted, rubber hose. It was found 

necessary to install an additional pump to supplement the supply pressure 

available to the brake. This was installed upstream of the inlet regulating valve. 

Fuel was supplied to the engine from a tank and via a filter. The tank was 

mounted above the engine to provide a gravity feed and an S.U. electric fuel pump 

fitted in addition to ensure a sufficient delivery when the supply from the tank 

was cut off and the engine fed from a measuring cylinder. 

The ignition system and starter motor were supplied with current from a 12 

volt lead-acid accumulator. No charging system was used whilst tests were in 

progress, the accumulator being recharged between tests. 

The throttles were connected to a quadrant, bolted to the cylinder head. A 

return spring was fitted to the butterfly spindle of each carburettor to prevent 

movement through backlash in the linkage. The quadrant was provided with a 

thumbscrew such that it could be locked in any position. 

The Engine Tested 

The engine, prior to testing, was completely dismantled and examined for 

defects. On rebuilding, any worn or suspect components were replaced. The 

engine specification was as built for the 1973 British market and described in the 

manufacturer's workshop penal and spares catalogues for that year. 

The only auxiliary driven from the crankshaft was the engine coolant water 

pump. In the absence of the power steering pump, which is pivoted to adjust the 

tension of the water pump vee belt, a jockey pulley was fitted. 

Mechanical power transmission was taken from the engine flywheel to an 

adaptor plate and universally joined shaft to the dynamometer. 

The induction system was adapted for the inclusion of a viscous air flow 

meter by modification of the air filter box. This box was connected via a 63.5 mm 

inside diameter rubber pipe, 150 mm long to the air meter, which has, as an 

integral component, a felt air filter. The standard air filter elements were 

excluded.
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Prior to testing, new spark plugs and contact breaker points were installed 

with the gaps set to the manufacturer's recommended figures. The ignition timing 

was set statically with the aid of a 12 volt bulb and the accumulator, the setting 

being to the manufacturer's Pecommendatiane Setting cf the carburettor butterfly 

valves was achieved by measurement of the air flow to each carburettor using a 

vane anemometer, giving a direct reading of velocity, and a duct tapered to fit 

1mm inside the intakes. With the engine idling at 750 rev/min a velocity reading 

for each carburettor was taken and the throttle linkage adjusted until the two 

readings were identical. The fuel/air mixture strength was set with the engine 

idling at 750 rev/min to give 2.75% carbon monoxide (as a volumetric fraction of 

the dry products) measured at the separate exhaust manifolds, receiving exhaust 

gas, from the three cylinders supplied by each carburettor. This setting was 

recommended by the personnel of the manufacturer's engine development 

department. 

No choke was fitted to the engine for cold starting purposes, a rich mixture 

being produced for this purpose by manually lowering the main jet of one 

carburettor against its spring, without adjustment of the mixture strength 

adjusting screw. 

Instrumentation 

The engine was coupled to a hydrodynamic dynamometer (Heenan and 

Froude type DPX3) for the measurement of brake power output. The static 

balance of this dynamometer was checked prior to use. 

A proximity detector registering six steel pegs in an aluminium wheel was 

mounted on the front of the crankshaft, the output of the detector being 

connected to an electronic digital counter for the measurement of engine speed. 

The calibration of this counter was checked against the A.C. mains electric 

frequency of 50 hz and found to be accurate over a 10 second period.
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For the purpose of obtaining a continuous reading, found useful when setting 

the engine speed, an impulse tachometer was wired into the engine ignition 

system. 

Fuel flow rates were measured using a graduated cylinder (with graduations 

of 100, 200 and 400 ml) and a stop-watch, the accuracy of which was checked 

against the G.P.O. 'speaking clock’. No error could be found. 

The induction air flow rate was measured using a flowmeter with a viscous 

element, the pressure head across the element and vacuum down-stream of the 

element being read off a manometer of variable inclination. This equipment was 

manufactured by Ricardo and Co. and designated by them, type H and having a 

recommended flow rate limit of 165 1/s. 

The temperature of the air entering the viscous flow meter was read off a 

mercury in glass thermometer. 

Coolant temperatures were measured independently at the inlet and outlet 

by bare, unsheathed chromel-alumel thermocouples. Coolant flow rates were read 

off a variable area flow meter manufactured by GEC Elliot Limited (type number 

35K). 

Fuel inlet temperatures were measured using chromel-alumel thermocouples 

in the carburettor float chambers. Care was taken to ensure that the leads which 

passed through the float chamber air vents did not prevent free movement of the 

floats. 

Exhaust gas temperatures were measured at the cylinder head/manifold 

interface by 1 mm diameter, stainless steel sheathed, chromel-alumel 

thermocouples. These were installed through drilled holes in the exhaust manifold 

in positions such that approximately 50 mm of the sheaths were exposed directly 

to the exhaust gas. 

Other temperatures monitored throughout the tests but not noted were the 

coolant temperature at the thermostat (monitored to prevent overheating) and the 

temperature of the lubricating oil in the sump (monitored in order to maintain a
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constant temperature by manual adjustment of the water flow rate through a shell 

and tube oil-cooler). 

All of the thermocouples were connected via a selector switch to a digital 

voltmeter manufactured by Solartron (type A200) and having a resolution of 1 LV 

and range of 1 [LV to 1.2 kV. The maximum error is stated as +0.005% on all 

Tanges except the lowest where this increases to +0.01%. All of the 

thermocouples except those for measurement of exhaust gas temperatures were 

connected through independent ice cold junctions. 

The percentages by volume of dry gas, of carbon monoxide and carbon 

dioxide, were measured using a non-dispersive infra-red meter manufactured by 

Horiba (type Mexa 300). This meter was calibrated using prepared gases marketed 

by the same company. The meter was connected through a condensing coil 

immersed in cold water, and a silica-gell drying bottle, to a three way valve 

connecting the meter, in turn, to either of the manifolds receiving gas from the 

front or rear three cylinders, or downstream from the point at which the pipes 

from each of these manifolds merge. 

A vane anemometer in a duct was used to measure the relative air flow to 

the two carburettors, in order to balance these. 

Method of Testing 

Tests were performed both with the dynamometer connected to the engine, 

and disconnected to represent idle performance. With the dynamometer 

disconnected readings were taken at engine speeds of 500 to 4500 rev/min, in 

steps of 500 rev/min. With the dynamometer connected, readings were taken at 

the same speeds and with the brake load adjusted in steps up to the maximum. 

The maximum power settings were limited by the maximum available from the 

engine or by the maximum which the brake could absorb under stable conditions. 

At each setting of the brake load and/or engine speed, the engine was run 

until the water inlet and outlet, and thermostat temperature appeared to have
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reached constant values. The oil flow rate through the oil cooler was adjusted to 

maintain a sump temperature of 90 to 95°C. The readings taken were as listed in 

the experimental results tables in appendix A3. The results are tabulated 

separately at each speed, the zero load readings being the first result in each 

table. These results were not obtained during the same test run as the rest of the 

results in each table. 

Results 

Temperatures were calculated from the thermocouple readings using the 

calibration equation contained in B.S.4937 part 4 (1973). In the case of the 

exhaust temperatures, cold junction compensation was made by adding to the 

measured potential the potential relating to ambient temperature. From this sum 

the temperature was calculated. 

In calculating the air inlet mass flow rate, compensation was made for 

changes in temperature and pressure, as they influence density and viscosity, away 

from the calibration temperature of 20°C and pressure of 760 mm of mercury. 

The variation in viscosity of air with temperature was calculated from a cubic 

regression to the data tabulated by Mayhew and Rogers, over the temperature 

range of 0 to 190°C. The manufacturer's calibration equation was used as a basis 

and is: 

vol/(ft?/min) = 16.0 x head/(inches water gauge) 

For the calibration of fuel mass flow rate the relative density of petrol is 

taken as 0.744 from the data of Spiers. 

For the calculation of the water flow rate a cubic was fitted to data read 

off the calibration chart supplied with the flow meter. This calibration was 

subsequently checked by weighing a constant water flow through the instrument 

over a time interval measured with the same stop-watch used in the measurement 

of fuel flow rate. Water flow rates used were at either end of and in the middle 

of the instrument's range. The maximum deviation of the calibration equation was



92 

found to be at the lowest reading and to be less than 1.5%. Values of the enthalpy 

of liquid water were calculated from values of the specific heat taken from 

Mayhew and Rogers by fitting a quadratic and integrating. 

The mass flow rate of the exhaust gas was calculated as the sum of the air 

and fuel flow rates. The constituent proportions of the exhaust gas were 

calculated by assuming combustion to give products of nitrogen, carbon monoxide, 

carbon dioxide, and superheated steam. The enthalpy of the products was 

calculated at the arithmetic mean of the gas temperatures measured, above a 

datum of 250°C, by integration of the equations, for the specific heat of these 

gases, given in Hamblin. The mass capacity of the exhaust gases at 250°C was 

also calculated using these equations. The calculated results are also tabulated in 

appendix A3. 

Presentation of Results 

Each of the four quantities required as functions of mechanical power output 

and engine speed may be assumed to vary in a similar manner as the exhaust gas 

mass flow rate. The exhaust gas mass flow rate was plotted against engine speed 

at idle as shown in graph 5.1. If the energy available per unit mass of combustible 

mixture (and hence exhaust gas) were constant then this graph would represent a 

measure of friction power against engine speed. Friction losses include coulomb 

friction, viscous friction, and pumping losses, suggesting that the total is the sum 

of linear, squared and cubed terms. At both high and low engine speeds 

combustion efficiency is known to be poor, and results in the need for ignition 

advance. This produces higher mass flow rates at both high and low engine speeds 

as evidenced by the experimental data. A cubic was found to give a good 

representation and is forced through the origin on the assumption that friction 

power and hence mass flow rate approaches zero at zero speed. 

The exhaust enthalpy, and mass capacity rate are direct functions of exhaust 

gas temperature and this quantity has also been plotted against engine speed at



93 

idle, and is shown on graph 5.2. The form of this curve suggests that the exhaust 

mass capacity rate curve will be of a similar form to the exhaust mass flow rate 

but with a sharper rise at low engine speeds due to the sharp rise of temperature 

and hence specific heat at these speeds. Extrapolation from the exhaust gas 

temperature data down to zero speed, suggests that at zero speed the exhaust gas 

temperature would be less than the 250°C datum chosen for the exhaust gas 

enthalpy calculations, resulting in a negative enthalpy at zero speed. 

Each of the four quantities to be expressed as functions of mechanical power 

and engine speed are plotted on graphs 5.3, 5.4, 5.5 and 5.6, at idle. A cubic was 

fitted to each of these curves on the basis of the above arguments, with the 

exception of the exhaust enthalpy which appears to represent a straight line. At 

high speed the upturn of the exhaust gas mass flow rate seems to be balanced by 

the downturn of the temperature. The plot of heat rejection to the cooling system 

follows the same pattern as for the exhaust mass flow rate which suggests that 

the heat transfer coefficient between the hot gases and cylinder walls is a strong 

function of piston velocity. The sharper gradient at low engine speeds than exists 

in the mass flow rate plot may be due to the sharply rising temperature of the 

combustion process as its efficiency increases. 

Each of the four quantities are plotted against brake power output at each 

engine speed on graphs 5.7 to 5.11 inclusive. Each of the quantities are fitted to 

an equation of the form: 

AP x (1+ BP)+C 5.1 

where A, B, and C are functions of engine speed. The constant (with respect to 

mechanical power) C is the function fitted at idle. The constant A, which 

represents the gradient at zero speed was fitted next, with B fitted last as a 

perturbation from a straight line. 

In the case of heat rejection to the cooling system this quantity does not 

appear as a strong function of power output. This may be attributed to a fairly 

constant combustion temperature with increasing power, but a strong function of
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heat transfer coefficient with increasing piston speed. 

The enthalpy and capacity rate of the exhaust gas and fuel flow rate all 

increase rapidly with increasing power, as may be expected since the mass flow 

rate of combustion products similarly increases. 

In the case of a few of the readings, the calculated air fuel ratio was such 

that there was too little oxygen present to oxidise all of the carbon in the fuel. 

These readings were omitted in the calculation of exhaust enthalpy and mass 

capacity rate. Doubts as to the setting and correct metering of the carburettors 

called for the colour of the spark plug electrodes to be examined on completion of 

the tests. A colour photograph of these is shown on plate 5.1. The chocolate 

brown colouring of the electrodes and ceramic insulators is indicative of correct 

mixture strengths in each of the six cylinders. 

The expected maximum power output of the engine could not be realised 

using this rig. It is believed that this was due to the throttling effect of the 

viscous flowmeter and could have been overcome by supercharging the engine to 

produce the same vacuum at the carburettor inlets, as could be measured without 

the viscous flow meter fitted. 

At higher engine speeds (above 3000 rev/min) it was found that the 

dynomometer could not be adjusted to stably hold the engine at a constant speed 

at full throttle. This may either have been due to a lack of pressure in the water 

supply or the furred and corroded condition of the brake which has been in service 

for several years. 

The maximum power results of tests carried out on an identical engine at 

the company's experimental departmiere have been adopted for use in this project. 

A plot of these results is shown on graph 5.11, against engine speed. A quartic 

was found to give an excellent least squares fit to this data. On the graphs of fuel 

flow rate, heat rejection to coolant, exhaust enthalpy, and exhaust mass capacity, 

the fitted equations are shown extrapolated to this maximum power equation, and 

also to an engine speed of 5000 rev/min, the maximum recommended speed of the
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engine. Tests were not run at this speed in fear of damaging the engine at low 

brake loads. 

ROAD LOAD 

The rolling resistance of the tyres has been calculated using tyre friction 

data obtained by the econeon from the tyre manufacturer (Dunlop). To this data, 

in the form of a graph of resistance per unit vehicle weight, has been fitted an 

equation of the form: 

n = A+BU, + CU, 5.2 

where A, B, C and n are constants. This gives an excellent fit to the data. Using 

this equation and the mid-laden mass of the vehicle quoted by the raanttactarecss 

the power required to overcome this resistance is plotted on graph 5.12. The 

aerodynamic resistance is added to the rolling resistance and also plotted on this 

graph. The power dissipated in overcoming the aerodynamic drag is assumed to 

vary as the cube of the road speed, and was calculated from a figure, gained by 

experience in tests on this model by the sponsor, of the power dissipated at 100 

miles/hour. 

TRANSMISSION EFFICIENCY 

Figures quoted by the manufacturer have been used in calculating 

transmission efficiencies. These are: 

93% for the rear axle 

97% for the manual gearbox in direct drive 

94% for this gearbox in indirect drive 

COOLANT FLOW RATE 

7 
Tests on the coolant flow rate have been carried out by the sponsor. For 

these tests a 4.2 1 XJ6 engine was set up on a test bed and connected, as in the 

vehicle, to a radiator, the radiator being immersed in a tank of water instead of
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an air stream. The thermostat was propped fully open and the bypass hose blanked 

off. The water flow rate was measured using a turbine flowmeter at increments 

of engine speed, for the Marston's Supapack I radiators fitted to both air- 

conditioned and non air-conditioned versions of the car. The results of these tests 

are plotted on graph 5.13. In the absence of further data, the water flow rate 

with a fully open thermostat is assumed to vary linearly with the ratio of tube 

length/number. Ideally an additional test could be carried out with the radiator 

replaced by two header tanks (cut from a radiator) linked by a straight length of 

large diameter tube which could be assumed to exhibit zero pressure drop along its 

length. This would set a more realistic upper limit to the water flow rate. 

The thermostat fitted to the cooling system of the engine is of the wax 

capsule type and set to commence opening at 82°C and be fully open at 100°C. 

The opening of the thermostat has been found by the vehicle Peantraecarer to be 

approximately linear with temperature. In the absence of further data the water 

flow rate is assumed to vary linearly with opening and hence temperature. 

On starting the thermostat is known to any in the fully closed position, 

from the pressure on it which prevents it opening until a temperature somewhat 

higher than 82°C. Since this is a dynamic effect, it is neglected in this project, 

but borne in mind that pressure balanced thermostats are available. 

VARIATION OF ENERGY AND MASS TRANSFERS WITH ROAD SPEED 

Using the fitted equations a mathematical model was developed in the form 

of computer subroutines. These are shown in appendix A5. Using these 

subroutines the variations of fuel flow rate, heat rejection to engine coolant, 

exhaust enthalpy and exhaust mass capacity have been plotted on graphs 5.14 to 

5.17 inclusive, for the car using the 5 speed manual gearbox with a rear axle ratio 

of 3.54:1. The power developed by the engine is the sum of the fan and viscous 

coupling consumption, the aerodynamic drag, the tyre rolling resistance, and the 

transmission losses.
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ASPECTS OF THE FUEL ECONOMY AND ACCELERATION OF THE 

NON AIR-CONDITIONED CAR 

THE INFLUENCE OF BRAKE LOADS ON FUEL ECONOMY 

Using the model developed in chapter 5 the fractions of the fuel flow 

attributable to the rolling resistance of the tyres, the aerodynamic drag, and 

power consumption of the engine cooling fan and viscous coupling have been 

plotted against road speed, for each of the 5 gear ratios on graphs 6.1, 6.2 and 6.3, 

and that due to the fan and coupling at idle against engine speed on graph 6.4. 

Since the rolling resistance is directly proportional to the vehicle weight graph 6.1 

may also be considered as the fraction of the total fuel flow attributable to the 

mass of the vehicle. Since this fraction varies almost linearly with mass the 

result of weight reduction on fuel economy may be calculated from this graph. It 

is apparent that a considerable weight reduction is required to produce a 

significant reduction in fuel flow rate, but this is only for the steady state 

condition considered. Mass reduction results in an increase of acceleration at a 

given engine power output above the steady state load, and conversely to achieve 

a given acceleration a reduction in mass results in a reduction in fuel flow rate. 

The overall fuel saving which might be achieved given a reduction in vehicle mass, 

will therefore be greater than predicted from this graph. 

The influence of a reduction in drag coefficient may similarly be predicted 

from graph 6.2. At high speed it is apparent that such savings may be very 

significant, the result of a 20% reduction in the drag coefficient resulting in a 

12% reduction in fuel consumption at speeds above 100 miles/hour. 

The saving of fuel by an increase in cooling fan efficiency is also significant 

as may be predicted from graphs 6.3 and 6.4, but only at high engine speeds. The 

figure for an idle speed of less than 1300 rev/min is less than 1%. At the present 

idle speed of 750 rev/min the fan and coupling increase the fuel consumption by 

only 0.15%. The most significant fuel saving to be gained from the cooling fan
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system would result from the use of a constant speed fan - independent of engine 

speed. This would need to be sized to take account of low speed driving as well as 

idling. An electric or hydraulic system would have the additional advantage of 

being easily controlled thermostatically, an on/off system for the former and 

proportional control for the latter. The electrical load of an electric cooling fan 

needs to be high even given a fan of high efficiency, and a hydraulic system would 

probably be expensive. Possibly the cheapest way of providing a constant speed 

fan would be to include a centrifugal governor in the present viscous coupling to 

move the plates further apart as the fan speed rises. The effect of a Ronatene 

speed cooling fan on engine temperature is considered in chapter 7. The fan at 

present used has an efficiency of approximately 30%. For the present engine 

driven system a 60% efficient fan would give a fuel saving of approximately 2% at 

70 miles/hour in fifth gear, given that the viscous coupling was changed to give 

the same slip/speed characteristics as at present. Of the three possible economies 

considered above the cooling fan is probably the item to yield a return most 

readily. 

THE EFFICIENCY AND RATIOS REQUIRED OF A STEPLESSLY VARIABLE 

TRANSMISSION 

Using the model developed in chapter 5, the fuel flow rate at constant 

engine brake loads up to the maximum has been plotted on graph 6.5. At low 

brake loads it is apparent that for a given brake load there is an engine speed at 

which the fuel flow rate reaches a minimum. The locus of these minima has also 

been plotted. At very low brake loads this minimum does not exist and at high 

loads the minimum is at the engine speed for which the load is the maximum 

which the engine can achieve. The spark ignition engine, by virtue of the method 

of power output regulation, i.e. intake throttling, may be expected to give 

maximum economy at full throttle when the pumping losses are least. At low 

engine speeds for this engine, the influence of throttle opening on fuel air mixing
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is probably the reason why maximum economy is achieved at part throttle 

openings. The desirability of turbulence in the inlet manifold for improved fuel 

economy is well known. 

Also plotted on graph 6.5 is the fuel flow in each gear ratio for the mic- 

laden car in steady state on a zero gradient. It is immediately obvious that the 

gear ratios do not lie anywhere near the optima for fuel economy. 

The selection of ratios for a fixed ratio gearbox inevitably results in a 

compromise between economy and high acceleration. The high costs of fuel have 

recently encouraged interest in steplessly variable transmissions. Use of such a 

transmission may allow for the engine to be run at an optimum speed for economy 

and acceleration. Steplessly variable transmissions inevitably suffer lower 

efficiencies. than their fixed ratio counterparts owing to greater complexity and 

slip in the mechanism. Whilst a particular steplessly variable transmission has not 

been studied, the required ratios and efficiency of such a system to compete on 

the basis of fuel economy and acceleration have been calculated using the model 

developed in chapter 5. 

Optimised gear ratios against road speed are shown on graph 6.6. For the 

engine to give maximum economy the engine is made to run at 750 rev/min at 

road speeds up to that for which the engine brake load gives a minimum fuel flow 

rate for that engine speed. The engine speed of 750 rev/min was chosen as the 

lowest speed at which the engine will run smoothly. At road speeds higher than 

this the engine is constrained to run at the speed which produces a minimum fuel 

flow rate. This pattern continues until the minimum fuel flow rate which can be 

achieved is by running the engine at a speed such that maximum power is being 

developed. The maximum speed of the car is achieved with the engine running 

such that its speed is that which produces the maximum power available. 

Maximum acceleration is obtained by maintaining the engine speed such that 

maximum power is being produced.
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The graph of gear ratio against road speed shows the ratio required for 

transmission efficiencies of 50 to 100% in steps of 10%. To give the overall 

transmission efficiency this figure must be multiplied by the 93% efficiency, 

assumed to still exist for the rear axle. The present fixed gear ratios are also 

shown for comparison. For this graph the gear ratio has been assumed to be 

variable down to a zero ratio. Such a ratio would in theory give an infinitely high 

torque at the road wheels and in practice would have to be limited. Depending on 

the mechanism chosen, the use of a clutch of some kind may be required for 

starting. This would be the case for mechanical steplessly variable transmissions 

in which complete velocity reduction is not possible. The minimum gear ratio 

required for smooth traction at starting speeds may be taken as that of the 

current first gear ratio. Under such conditions and with the exclusion of down hill 

running the ratio of maximum to minimum gear ratios would be of the order of 

10.5 to 1 for a 100% efficient system and 7 to 1 for a 50% efficient system. 

The optimum fuel flow rates for transmission efficiencies of 100% down to 

50% have been plotted on graph 6.7. Also on this graph is the present fuel flow 

rate for each of the current gear ratios for comparison. To clarify this, the 

efficiency required, for an optimised system to compete with the present gearbox, 

has been plotted against road speed on graph 6.8. It is apparent that a 

transmission with an efficiency as low as 75% may give an improved overall 

consumption. 

Maximum acceleration has been plotted against road speed for steplessly 

variable transmissions of 100% efficiency down to 50% efficiency on graph 6.9. ‘In 

calculating vehicle acceleration no account has been taken of the angular 

acceleration of the road wheels, transmission or engine components, and the 

results should be used for comparison only between the two systems. As for the 

fuel flow rate the minimum efficiency required for the steplessly variable 

transmission to compete has been plotted on graph 6.10. An efficiency as low as 

75% would again be worthy of consideration.
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A further advantage of the steplessly variable unit is that due to the lower 

engine speeds, heat rejection from the engine to the cooling system is reduced. 

This is shown by graph 6.11 where the heat rejected to the coolant has been 

plotted against road speed, for the zero acceleration case. 

For both economy and acceleration an overall transmission efficiency of 

75% seems to be the minimum worthy of consideration. For both cases lower 

efficiencies at low speeds would not deter the use of such a system. At high 

speeds and high powers, the level of heat rejection from the transmission and the 

problem of providing sufficient heat transfer surface may be difficult to overcome 

and is a further indication that the higher efficiency of the transmission, if of 

varying efficiency, should be at the top of the speed range. 

Given a steplessly variable transmission the requirement of the engine to 

operate at all power/speed combinations, and to do so without producing exhaust 

pollution, or high noise and vibration levels is an unnecessary constraint on its 

design. This may in the future make the diesel engine or the stratified charge 

spark ignition engine more favourable than at present. An engine designed for use 

with a steplessly variable transmission would doubtless compete with the present 

engine/transmission system with lower efficiencies than are suggested to be 

needed by this analysis. 

Prior to the cessation of production of constant displacement steam engines 

for cars, one of their major advantages was the smoothness of their acceleration. 

This must be among the major advantages also of an internal combustion engined 

car with a steplessly variable transmission.
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THE CONTROL SYSTEM REQUIRED FOR A STEPLESSLY VARIABLE 

TRANSMISSION 

The arrangement of a control system for a car with a steplessly variable 

transmission should be such that there would be no problem for a driver used to 

driving cars with conventional manual or automatic transmissions. 

The conventional accelerator pedal effectively calls a power output from 

the engine, although the relationship between throttle opening and power is also a 

function of engine speed. The suggested control system for a car with a steplessly 

variable transmission would be similar. The displacement of the accelerator pedal 

would call for a finite power output from the engine. The control system by 

either analogue or digital means would calculate the required engine speed and 

throttle opening required. The engine speed would be set by comparing the speed 

of the road wheels with the required engine speed. On the result of this 

comparison a gear ratio would be calculated. The throttle opening and gear ratio 

would then be set by servo-mechanisms operated by the control system. Lifting of 

the pedal would effectively call a negative power output from the engine, and as 

with the present system use the pumping losses in the engine as a braking system. 

Particularly if rear wheel traction were retained, the amount of power absorbed 

by lifting the pedal fully should be limited. The separate braking system, operated 

from a separate pedal should be retained and be completely independent of the 

transmission/ engine control system. 

Such a control system could be linked to also control the fuel injection 

system and the ignition system rather than controlling these from the dual inputs 

of engine speed and manifold depression. 

The time constant of the control system would need to be short to avoid 

making the car both unattractive and possibly dangerous. This requirement may 

point in favour of an analogue rather than a digital system, although recent 

advances in electronics have made the digital system feasible.
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THE ENGINE COOLING SYSTEM 

THE MODEL OF THE ENGINE COOLING SYSTEM 

The model of the engine cooling system assumes steady state operation, 

obviating the need for data on the thermal capacity of the system components and 

calculations involving unsteady state heat transfer. The model in the form of a 

computer program is contained in appendix AS. 

The heat flux to the coolant is calculated from the model described in 

chapter 5. The model thus takes account of engine speed and engine brake power 

output, which equals the road load divided by the transmission efficiency, plus the 

power consumption of the engine cooling fan and viscous coupling. 

The radiator air velocity is calculated from the model described in chapter 4 

which takes account of the air velocity components due to ram pressure and to the 

fan, the fan volume flow rate/pressure characteristics being described by cubic 

spline equations to experimental data. The radiator and condenser piezometric 

pressure differences are found from equations 4.27 and 4.33 respectively. 

The coolant flow rate is calculated by the method described in chapter 5. 

The radiator air off temperature is a function of the air mass flow rate, the 

air on temperature, and the specific heat capacity of air. The latter is calculated 

from an equation fitted to the data of Mayhew and Rogers, as was used in chapter 

4 for the calculation of radiator heat transfer data from the experimental results 

of the radiator manufacturer. 

The coolant side heat transfer coefficient for the radiator is found from 

equations 4.25 and 4.26 with a constant which is a mean of the two given, the 

properties of the coolant being calculated by the method described in chapter 4. 

The radiator air side coefficient is calculated from equation 4.28, the 

properties of air being calculated by the method described in chapter 4. The 

radiator fin efficiency is calculated from equation 4.29. The equation due to 

63 64 
Stevens and given by Rohsenow and Hartnett for a cross flow heat exchanger is
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used, with fluid mixing on the coolant side assumed, as discussed in chapter 4, for 

the calculation of coolant temperatures. 

At temperatures above 100°C at which the thermostat is assumed to be fully 

open the coolant mass flow rate is a function of engine speed only. By assuming 

an initial top hose temperature of 100°C a more accurate top hose temperature is 

calculated. If this is more than 100°C then the thermostat is fully open and an 

iterative procedure is used to calculate the coolant temperatures. This is 

necessitated by the variation in coolant properties with temperature.. If the first 

result indicates that the top hose temperature is less than 100°C then a Newton- 

Raphson iterative procedure is used to calculate the water mass flow-rate and 

coolant temperatures. The iteration is of coolant mass flow rate, the top hose 

temperature being calculated as a function of this. 

RESULTS CALCULATED FROM THE MODEL 

To study the cooling system all of the results calculated are for vehicles 

without thermostats in an ambient temperature of 45°C, taken to be the 

maximum design temperature. The effect of the thermostat is to produce a 

minimum top hose temperature of 82°C. 

Graphs 7.1, 7.2 and 7.3 show the results from the model for the non air- 

conditioned car. The fan cow! used on the non air-conditioned car is slightly 

different to that of the air-conditioned version, a factor not taken into account in 

the model. 

Graph 7.1 shows the influence of engine speed on cooling system 

temperature with the engine idling, for both water and a 45/55 mixture of water 

and antifreeze as a coolant. The reduced coolant side heat transfer coefficient, 

due to the properties of the water antifreeze mixture in comparison with water, 

results in higher coolant temperatures. This is partially compensated for by the 

87 
increased boiling point of the water antifreeze mixture, which as for water is 

calculated at the blow off pressure (1.034 bar above atmospheric). Graphs 7.2 and
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7.3 show coolant temperatures for the non air-conditioned car using water and the 

same water/antifreeze mixture. The comparison between the coolants is similar. 

It is apparent that under no steady state condition does the coolant temperature 

reach its boiling point except when using the water/antifreeze mixture and idling 

at an engine speed in excess of 4,900 rev/min. This is not a condition in which the 

car may be expected to be used. 

Graph 7.4 shows the variation in cooling system temperatures for the 

air-conditioned car against engine speed. The water antifreeze mixture is used 

and the air-conditioning system is not running, resulting in a radiator air on 

temperature equal to ambient. Graph 7.5 shows the cooling system femnperatines 

for the same vehicle under similar conditions except with the car moving and is 

plotted against road speed in miles/hour. Comparison between the air-conditioned 

car and the non air-conditioned car indicates that coolant temperatures of the air- 

conditioned car are higher than the non air-conditioned version, even with the air- 

conditioning system not running. This suggests over cooling in the non air- 

conditioned car, if the cooling system of the air-conditioned car with the air- 

conditioning running is effective. This is examined in chapter 8. The body shell of 

both cars being the same the radiator face area for both versions is conveniently 

the same. The number of radiator tubes and fin pitch are reduced on the non air- 

conditioned car. Reduction of fin pitch may not be necessary. 

The influence of radiator fin pitch and tube rows for the engine idling at 750 

rev/min is shown for the non air-conditioned car on graph 7.6 and for the air- 

conditioned car on graph 7.8. 

The resultant Reynolds number accompanying these radiator variations are 

plotted on graphs 7.7 and 7.9 and indicate the limits above which laminar flow 

may be avoided. The optimum radiator design is that which functions adequately 

and costs least. It may be assumed that radiator cost is a strong function of the 

number of tube rows and a weaker function of the number of fins.
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The influence of radiator face air velocity for the non air-conditioned car 

and for the air-conditioned car is shown on graphs 7.10 and 7.11 respectively. In 

both cases a considerable increase in velocity is needed to produce a significant 

reduction in coolant temperature, and this would be at the expense of increased 

fan power and noise. 

The influence of coolant mass flow rate on coolant temperature is shown on 

graphs 7.12 and 7.13 respectively for the non air-conditioned and air-conditioned 

versions at an idle speed of 750 rev/min. In each case the coolant mass flow rate 

may be increased to produce a decrease in coolant temperature, and this with 

little influence on power consumption and no influence on noise level. Hence a 

larger water pump (or running the pump at a higher speed) may make a smaller 

radiator possible or a decrease in the number of fins and/or tube rows. An 

optimum total cost of pump and radiator may be achieved on this basis. 

Graphs 7.14 and 7.15 show the effect of using a constant speed fan having 

the same driving torque and producing the same velocity as the current fan at a 

750 rev/min idle. The fuel economy advantage and a suggested practical means of 

achieving the constant speed are considered in chapter 6. Obviously at the 

current idle speed of 750 rev/min the temperatures are as for the current system. 

In low gears the temperature of the top hose is increased but driving in these low 

gears is unlikely for any length of time. In the higher gears the difference from 

the present system is very small. 

The effect of a constant speed fan has only been examined for the non air- 

conditioned version of the car. This might be extended and found advantageous 

for the air-conditioned car also, although the effect on the air-conditioning 

system may be a reduced coefficient of performance and an increased compressor 

load, which may outweigh the advantage of the reduced fan load. In view of the 

small effect of the fan on the cooling system in the higher gears, this is unlikely. 

The influence of changes in the condenser geometry on engine cooling 

system temperatures is shown on graph 7.16. It is apparent that for the range of
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changes shown the effect is small. The influences of such changes on the 

condenser air side Reynolds number and the refrigeration system are considered in 

chapter 8. 

Graph 7.17 shows the influence of changes in the condenser tin pitch and 

tube configuration on the engine cooling system temperatures when the air- 

conditioning system is turned off, at an idling engine speed of 750 rev/min and 

also when moving at 70 miles/hour in fourth gear. The curve at idle extends to 

the maximum brake load which the engine can supply at this engine speed. The 

influence of moderate loads, as may be due to auxiliary devices, is small.
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THE REFRIGERATION SYSTEM 

THE COMPRESSOR 

The compressor, manufactured by General Motors Limited, is a 6 cylinder, 

reciprocating, positive displacement unit, driven from a swash plate through an 

electromagnetically engaged clutch. The inlet and exhaust valves of each cylinder 

are comprised of shim steel strips cantilevered across the ports. Data available 

from the compressor manufacturer is included in appendix A4. Compressor 

performance may be described by the volumetric, isentropic, and mechanical 

efficiencies and by the displacement and volumetric compression ratio. Using 

values read off the manufacturer's data sheet, an attempt was made to calculate 

the mechanical efficiency. The results were inconclusive, in some cases a 

mechanical efficiency greater than one being indicated. A mechanical efficiency 

of unity was assumed, in ignorance of contrary data, as for such a mechanism it 

may be expected to be high. For the purpose of a mathematical model, 

polynomials were fitted to this data for the volumetric and isentropic efficiency, 

and these efficiencies assumed to be functions of compressor speed only. 

THE EVAPORATOR 

This is a conventional, extended surface, counter flow heat exchanger, 

manufactured by Sunstrand Limited. The refrigerant enters the unit after being 

split into six streams in a header, each stream having ten horizontal passes. The 

manufacturer's graphical data relevant to the conductance of the unit is contained 

in appendix A5, and gives conductance as a function of the entering air enthalpy 

per unit mass of dry air, the refrigerant temperature, the air velocity and the 

dimensions of the unit. For the purpose of a mathematical model, functions were 

fitted to data read off these graphs and a computer subroutine written to 

calculate the refrigerant temperature, given the entering air enthalpy per unit 

mass of dry air, the air mass flow rate, and the cooling load. The velocity is based
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on a constant density of the air, being that at 3°C (the nominal controlled air off 

temperature). This subroutine is included in appendix AS. 

THE CONDENSER 

The condenser, manufactured by Marston Radiators Limited, is an extended 

surface, cross flow heat exchanger, the present unit having two tubes with fifteen 

horizontal passes. 

The air side heat transfer coefficient is discussed in chapter 4. The 

refrigerant side heat transfer is by three stages; gas cooling, condensing, and 

liquid sub cooling. For the purpose of the mathematical model the condenser is 

assumed to consist of three separate cross flow heat exchangers whose total face 

area and tube length are equal to the actual face area and tube length. The 

refrigerant side heat transfer coefficients are calculated for gas cooling and liquid 

cooling using the Nusselt number, Reynolds number, Prandtl number relationship 

given by McAdams for circular tubes, and Reynolds numbers greater than 10°. 

The heat conductances calculated this way are large compared with the air side 

conductances and the dependence on overall conductance minimal. The 

condensing heat transfer coefficient is expected to be very large and is ignored in 

the calculation of overall conductance. The hypothetical heat exchangers for gas 

cooling and liquid sub cooling are assumed to behave as cross flow heat exchangers 

with fluid mixing on the refrigerant side, the equation due to Stevens being used 

for the calculation of temperatures, as for the radiator in chapter 4. This 

assumption is only completely true for a single tube but considered to be a valid 

approximation in this case. 

The mean temperature difference between the air and the refrigerant, in the 

hypothetical condensing heat exchanger, is calculated as the logarithmic mean. 

The final form of the mathematical model of the refrigeration system 

involves calculation of the face areas required for gas cooling and condensation. 

For liquid sub cooling the final refrigerant temperature is required, given the heat
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exchanger face area. The subroutines for these calculations are included in 

appendix A5. 

THE CONTROL OF THE REFRIGERATION SYSTEM 

The state of the refrigerant entering the compressor is controlled by a 

thermostatic expansion valve. The mechanism of this device is as described by 

Anderson. The refrigerant temperature and pressure sensed by the valve are both 

at the evaporator outlet; the alternative of sensing the pressure at the evaporator 

inlet requiring compensation for the refrigerant pressure drop in the evaporator. 

The valve maintains a nominal 2}K superheat at the compressor inlet. 

Icing of the evaporator is prevented by a thermostatic switch, which 

switches off the current to the compressor clutch. The switch is activated by a 

vapour charged thermal element in the airstream leaving the evaporator and the 

current, and hence the system, are switched off at a temperature of 2°C and on 

again when the temperature rises to (2e5 

System pressure in excess of 30.3 bar (gauge) is precluded by a safety valve 

fitted to the compressor. 

THE PRESENT REFRIGERATION CYCLE 

The temperature of the evaporating refrigerant is set by the thermostatic 

expansion valve which admits refrigerant to the evaporator at a temperature such 

that the superheat on entering the compressor is as prescribed. The temperature 

which is set, is dependent on the refrigeration load and the evaporator 

conductance. The specific enthalpy of the refrigerant entering the compressor, 

being a function of temperature and pressure, is hence also set by the expansion 

valve. 

The mass flow rate of refrigerant is the product of the compressor 

displacement per unit time, the density of the refrigerant entering the 

compressor, and the volumetric efficiency.
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The pressure difference between the condenser and evaporator is set by the 

expansion valve in attaining the required evaporator temperature. The specific 

enthalpy of the refrigerant leaving the compressor is a function of the isentropic 

efficiency, the specific entropy at inlet, and the inlet and outlet pressures. For a 

given condenser pressure, and hence compressor outlet and condensing 

temperatures, the temperature of the refrigerant, at the condenser exit, may be 

reduced to some level which may approach the ambient air temperature but must 

be some finite difference above ambient. From the condenser outlet the 

refrigerant is throttled to the evaporator inlet, the throttling process being 

isenthalpic. 

As the condenser pressure is increased the volumetric efficiency of the 

compressor decreases and hence the mass flow rate, owing to the finite clearance 

volume which must exist in the compressor. 

Equilibrium is reached when the properties at the compressor inlet and 

outlet are such that the enthalpies at the condenser outlet and evaporator inlet 

are equal. 

At low compressor speeds, the refrigerant mass flow rate may be such that 

the evaporator air off temperature is above that at which the thermostatic switch 

disengages the compressor clutch. Under these conditions the design refrigeration 

load is not achieved. At higher compressor speeds the increased refrigerant flow 

rate may produce an evaporator load in excess of that required and the 

thermostatic switch will then stop the cycle when the evaporator air off 

temperature drops to the prescribed level. The air flow over the evaporator then 

increases the evaporator temperature and the drive is restored when the air off 

temperature has risen sufficiently. The frequency, at which the cycle is started 

and stopped, is dependent upon the thermal capacity of the evaporator, and the 

temperature and thermal capacity of the refrigerant, which continues to be 

throttled from the condenser to the evaporator. If the thermal capacity of the 

evaporator is reduced then this frequency is increased and in the limit the
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compressor may be considered a variable speed unit, its maximum speed being 

that when the clutch is engaged. In practice a higher frequency of engagement of 

the clutch may produce intolerable wear and fatigue. 

REFRIGERANT PROPERTIES 

Thermodynamic properties of refrigerants 12 and 22, for the purpose of the 

mathematical model, are calculated from equations supplied by 

Du Pont de Nemours and Company. Temperatures, as functions of the specific 

enthalpies of the saturated liquids, are calculated from polynomials, fitted to data 

generated by the subroutines, and are valid approximations between reduced 

temperatures of 0.7 and 0.96. These subroutines and functions are included in 

appendix A5. 

Viscosity and conductivity of the liquid and superheated refrigerants are 

calculated in the model as functions of temperature only, using polynomials fitted 

to data given by ASHRAL. 

Specific heat capacities of the liquid refrigerants are calculated from 

differentiated polynomials, fitted to temperature/saturated liquid specific 

enthalpy data generated from the subroutines, and are assumed to be functions of 

temperature only. They are valid for temperatures from o°c up to reduced 

temperatures of 0.96. These functions are included in appendix A5. 

The specific heat capacity of the superheated refrigerant is calculated, at 

the condenser pressure, as the difference between the specific enthalpies relating 

to the compressor inlet entropy and the saturated vapour, divided by the 

temperature difference between these states. The error resulting from 

extrapolation to the compressor exit temperature is small, since the rate of 

change of specific heat capacity with temperature, at a constant pressure in the 

superheated region, is small. 

The transport properties are used only for calculation of refrigerant side 

heat transfer coefficients, which are not controlling.
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CALCULATION OF THE ENTHALPIES OF THE COOLED AIR 

A computer subroutine was written for this purpose and gives the enthalpy 

per lkg of dry air as a function of temperature and relative humidity. Equations, 

fitted to the data of Mayhew and agers over a range of temperature of 0°C to 

100°C are used. This subroutine is contained in appendix A5. 

THE MATHEMATICAL MODEL OF THE REFRIGERATION SYSTEM 

This model is designed for the calculation of properties and the mass flow 

rate of the refrigerant, the compressor and refrigeration loads, and the 

temperature of the air onto the radiator, at given engine and car speeds and 

climatic conditions. 

The refrigeration system is assumed to be operating in a steady state, the 

effect of the compressor clutch cycling being to reduce the mass flow rate of 

refrigerant as if the compressor speed were reduced. Heat transfer coefficients 

on the refrigerant side in the condenser are however calculated as time average 

coefficents rather than those due to the hypothetical reduced mass flow rate. This 

assumption obviates the necessity for computation involving unsteady heat 

transfer. 

The mathematical model of the refrigeration system is included in 

appendix A5 in the form of a computer program. 

The refrigeration system is assumed to operate in one of three ways, 

depending upon the prevailing speeds and climatic conditions. The design cooling 

load is taken as producing an evaporator air off temperature of 3°C (the nominal 

thermostatic switch operating temperature) and relative humidity of 100%. 

N.B. Numbers on the diagrams refer to the states of the refrigerant as in 

the computer program and the text. 

In the text: 

m Radiator air mass flow rate 
= 

m Refrigerant mass flow rate R
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Compressor load = me (hy -h,) 
2 

Evaporator load = Mp thy - hy) 

Evaporator design load as defined above 

Ambient (condenser air on) temperature 

The condensing temperature assuming an_ infinite 

coefficient of performance (i.e. hz = hy) and an infinite 

condenser air mass capacity rate 

The compressor safety valve blow off pressure 

The condenser face area 

The condenser face area attributable to cooling of the 

superheated gas 

The condenser area attributable to condensation 

  
  

achieve LED: 

  

The dotted line represents the change in h in the evaporator necessary to 

In this case MR is such that Le D cannot be achieved owing to the limitation 
. 

that refrigerant in the condenser cannot be cooled to a temperature lower than 

T 
o
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(ii) 

P 

is achieved. LED is achieve: 

MR is reduced. 

(iii) 

Pp 

68. 5 3 

T=To 

a 2 
Lep/ma 

h 

Le D is achieved. 
/ 

MR is reduced such that refrigerant leaves the condenser as saturated liquid, 

partial condensation not being possible.
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Method of calculation 

he is initially calculated as that of the saturated liquid at Ty oT is 

calculated, as is necessary to produce Le po consideration of the evaporator 
2 

conductance. Pi. i, 

calculation of ho from Le Mp and hos hy is compared with hes If he is greater 

ry nN , and hence ho and Mp are calculated. After 

than hy then Le is iteratively decreased until he = ho. 

Vv 

T, is calculated and also an initial Ts assuming that h, is that of the 
6 

saturated liquid and equal to hy If a. is greater than Ts then the initial value of 

y 

Ts is set to equal To 

Ps is calculated and compared with Pa. If Ps is greater than Pg then Ps is 

set to equal Pa and the resulting Ts is calculated. he is recalculated as that of 

saturated liquid at Ts and Mp is decreased to give LED» with hy equal to he: 

8) and hy are calculated and hence hs and T; on consideration of Nisen’ 

As and AG are calculated. If Le is equal to teD and As plus AG is less than 

A then the system operates as in (iii). If not, or if Le has already been reduced, 

the system operates as in (i) or (ii). 

Hence if the system is operating as in (iii): 

Mp is iteratively decreased until As plus Ag is equal to A, 

If the system is operating as in (i) or (ii): 

Ps is iteratively increased until liquid sub cooling takes place. A 

minimum, he is found as a function of Ts. If he is greater than hy then 

the system operates as in (i), and if not then (ii). 

If the system is operating as in (i): 

Ley tT) he» and hy etc., are iteratively calculated until he is equal to 

ho.
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If the system is operating as in (ii): 

Mp is iteratively decreased until he is equal to ho. 

The radiator air on temperature is calculated iteratively, as the result of a 

specific enthalpy increase to the radiator air flow equal to m,(h, -h,)/m.. 
Fe enGuerrt: 

THE LIMITATIONS OF THE MODEL 

The assumption of steady state operation is invalidated by the method of 

controlling the refrigeration load to prevent evaporator icing and also by the 

effect of changing engine speed during normal driving. The former invalidation is 

not a limitation in the climatic conditions chosen in which to examine the system 

(i.e. an ambient temperature and relative humidity of 45°C and 50%) since the 

design cooling load is never achieved. 

Calculations involving a reduction in the mass flow rate of refrigerant give 

an estimate only of the parameters calculated, with the exception of the 

refrigeration load. The accuracy of the estimate increases as the frequency of 

cycling of the compressor clutch. The calculation of refrigeration load however, 

may be expected to retain a reasonable degree of accuracy at low cycling 

frequencies. 

The assumption of volumetric efficiency being dependent only on compressor 

speed is made on the basis that the manufacturer's data is that of conditions 

representative of the use of the device. In practice the volumetric efficiency 

must reduce with pressure ratio and also be a function of temperature, a 

maximum pressure ratio being reached when the volumetric efficiency reduces to 

zero. The volumetric efficiency therefore has an influence on the condensing and 

evaporating temperatures, the refrigerant mass flow rate, and the refrigeration 

and compressor loads. 

The assumption of isentropic efficiency being dependent on compressor 

speed only, is similarly only valid if the manufacturer's data is that of conditions
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representative of the use of the device. The isentropic efficiency is decreased by 

pressure losses, at the inlet and exhaust valves, and reduces as the mass flow rate 

and volumetric efficiency increase. The isentropic efficiency is also therefore a 

function of pressure ratio and temperature. The influence of isentropic efficiency 

on the cycle produces a negligible effect on the refrigeration load but a 

considerable effect on the compressor load. 

No account is taken of pressure losses in the heat exchangers or pipe work. 

Pressure losses in the heat exchangers during condensation or evaporation make 

these modes of heat transfer non isothermal. Pressure losses, in the pipes linking 

the heat exchangers and the compressor, effectively reduce the isentropic 

efficiency of compression. Pressure losses, in the pipes linking the heat 

exchangers and the expansion valve, have no effect on the system and are 

compensated for by the thermostatic expansion valve. 

On the calculator used (a Hewlett-Packard 9830) the program running time 

was long and consequently the tolerances, placed on the results from iterative 

procedures, were large. The calculation of condensing temperature, as giving a 

minimum specific enthalpy at the exit from the condenser, suffers particularly. 

RESULTS FROM THE MODEL OF THE REFRIGERATION SYSTEM 

In all cases, the climatic conditions are taken as an ambient temperature 

and relative humidity of 45°C and 50% respectively. With an evaporator dry air 

mass flow rate of 0.15 kg/s, as measured by the car menutaceiners the design 

refrigeration load is then 16.89 kW. 

The Present System 

The refrigeration and compressor loads are plotted against engine speed at 

idle on graph 8.1 and against road speed on graph 8.2. The resulting refrigeration 

system temperatures and pressures are plotted on graphs 8.3 to 8.6 inclusive. At 

idle the compressor safety valve exhausts the system at an engine speed greater
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than 3400 rev/min, in the climatic conditions considered. The exact speed has not 

been calculated but is certainly outside the range of normal idling conditions. 

Under no driving conditions does the system pressure reach the set pressure of the 

safety valve. 

In the climatic conditions considered, the design refrigeration load is never 

achieved and consequently the compressor clutch is never disengaged. The 

refrigeration load is limited by the rate of displacement of the compressor. This 

rate of displacement of the compressor may be increased, by increasing the pulley 

ratio or the displacement, but would result in an increased compressor load and 

engine brake load. The compressor load at idle, as a fraction of the maximum 

brake load which the engine can achieve, has been plotted on graph 8.7. 

Increasing the rate of displacement of the compressor, at a given idle speed, 

would increase this fraction and may result in the engine stalling under extreme 

climatic conditions. 

The refrigeration load may also be increased by increasing the condenser air 

mass capacity rate and/or the condenser conductance and/or the evaporator 

conductance. Results from the model, at the present idle speed of 750 rev/min, 

indicate that an infinite air mass capacity rate and heat transfer coefficient, 

giving a condenser outlet temperature equal to that of the ambient air, would 

increase the refrigeration load by only 4%. Further work may show the influence 

of condenser air mass capacity rate on the compressor load. The condenser air 

mass capacity rate at idle may only be increased at the expense of increased fan 

noise and brake power consumption, unless an improved fan were fitted, the 

condenser face area increased, or a condenser and/or radiator having lower air 

side pressure drops but similar conductances used. From the volume/pressure 

characteristics of the fan, plotted on graph 4.13, the maximum improvement in 

the condenser air mass capacity rate that might be achieved by reducing pressure 

drops, without increasing the fan speed, is 32%. An increase in the condenser face 

area may require modifications to the body and aesthetic appearance of the car.
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The influence of condenser fin and tube geometry, at the present idle speed 

of 750 rev/min, on the refrigeration and compressor loads, is shown on graph 8.8, 

on system pressures on graph 8.9, and on the condenser air side Reynolds number 

on graph 8.10. Little improvement can be made to the refrigeration or 

compressor loads without reducing the air side Reynolds number to the critical, 

unless the air velocity is increased at the expense of increased fan power 

consumption and noise. Condenser cost may be assumed to be a strong function of 

the number of tubes and a weaker function of the fin pitch. Cost reduction is 

limited by an increase in system pressure, and the compressor safety valve 

blowing off. 

The fuel consumption, attributable to the refrigeration system, has been 

plotted against engine speed at idle on graph 8.11 and against road speed on graph 

8.12. This may be reduced by reducing the compressor load. As stated above the 

isentropic efficiency of the compressor has a strong influence on compressor load 

but little influence on the refrigeration load. Compressor load has been plotted on 

graph 8.13 against isentropic efficiency at the present idle speed of 750 rev/min. 

The maximum reduction in compressor load, resulting from isentropic compression 

is 36%. A similar reduction in fuel consumption attributable to the refrigeration 

system would also result. The isentropic efficiency, being reduced by pressure 

losses at the inlet and exhaust valves, would be improved by using a vane 

compressor not requiring these valves. 

Savings in the fuel consumption are unlikely to result from changes in the 

condenser fin and tube geometry for the reasons mentioned above. The influence 

of an increased condenser air mass capacity rate on the compressor load and 

hence fuel consumption, might be profitably studied using the model, particularly 

if an improved fan design is developed. An increase in fan speed will produce an 

increase in the air mass capacity rate and a reduced compressor load but at the 

expense of an increased fan power consumption. An optimum fan speed may be 

found using the model but may result in an intolerable noise level. Furthermore,
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this optimum would depend on the climatic conditions and a thermostatic fan 

speed control system be required, to take account of varying ambient 

temperature. 

Cooling system temperatures have been plotted against engine speed at idle 

on graph 8.14 and against road speed on graph 8.15. Boiling of the coolant 

apparently does not occur under normal steady state driving conditions, high 

engine speeds at idle and in first gear being very unusual. In considering 

modifications to the refrigeration system, which may increase the compressor 

load or the radiator air on temperature resulting from an increased condenser 

load, the effect on the cooling system should be considered. 

Comparison of graphs 8.14 and 8.15 with graphs 7.1 and 7.3 indicates that 

the cooling system of the non air-conditioned car has a cooling capacity greater 

than required. Cost and fuel consumption savings may result from the reduction 

of fan size and/or speed and radiator face area and/or geometry. 

The Use of Refrigerant R22 

In order that R22 may be used in the vapour compression system, resulting in 

a reduction in sizes of compressor and connecting pipework owing to the improved 

latent enthalpy of evaporation per unit volume, the condensing temperature may 

need to be reduced. This temperature may be reduced, without influencing the 

refrigeration load, by an increase in the condenser air mass capacity rate and/or 

an increase in the isentropic efficiency of compression, as discussed above for the 

present system using R12. 

The increase in latent enthalpy of evaporation per unit volume of R22 over 

R12, results in the need for a reduction of compressor displacement rate of 42%, 

calculated on the basis of an infinite condenser air mass capacity rate, an infinite 

condenser conductance, and a decrease in the compressor pulley ratio. 

The influence of condenser geometry on condensing pressure is shown on 

graph 8.16 for the present system using R22. The safety valve blow off pressure
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has been taken at the same reduced pressure (as a fraction of the critical) as for 

R12 with the present system. The compressor displacement rate is decreased, by 

42% by decreasing the compressor pulley ratio, and increased volumetric and 

isentropic efficiencies are implied. Apparently R22 may be used with the present. 

system with a decreased compressor pulley ratio if the condenser geometry is 

changed. The model of the system, with the tolerances placed on iterative 

procedures has only a limited accuracy for calculation of condensing pressure. 

The use of a larger calculator or a computer and smaller tolerances are 

recommended for a further study. 

The Absorption System Using Refrigerant R22 

The method of producing the pressure difference in the absorption system is 

likely to produce higher condenser loads, and hence temperatures and pressures, 

than produced in the vapour compression system. The difficulty of using R22 in 

the vapour compression system is likely therefore to be worsened in the absorption 

system and may prevent its use. 

Graphs 8.17 and 8.18 show the refrigeration loads available, using the 

absorption system, against engine speed at idle and road speed respectively. The 

results are based upon the maximum heat transfer to the generator, at a 

temperature of 17726; from the exhaust gases, and a coefficient of performance 

of 0.59 as found by Sime et al. Comparison with graphs 8.1 and 8.2 shows that the 

enthalpy of the exhaust gas, at the temperature of the generator of i7°c, is 

sufficient to provide a competitive refrigeration load at high engine speeds. At 

low engine speeds a similar refrigeration load is not available, the reduced load at 

the present idle speed of 750 rev/min being a particular disadvantage. 

The potential fuel saving, by utilisation of absorption refrigeration, is as 

plotted on graphs 8.11 and 8.12.
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CONCLUSIONS AND RECOMMENDATIONS 

The advantage of cooling an engine through the medium of fluidised 

particles may be that the engine can be run at an optimum temperature, as for an 

air cooled engine, but with attenuation of noise by the particles. 

A fluidised bed, as either an exhaust thermal reactor or catalyst support, 

would have advantages over conventional systems but for the practical problems 

of installing such systems in a car. A possibility is to use a bed of particles such 

that it is fluidised at idle and fixed at higher engine speeds. 

Because of the interrelationships between the engine, the engine cooling 

system and the air-conditioning system a study of any one of these topics 

necessitates the inclusion of the other two. A mathematical model and the use of 

a digital computer have been found essential to this end. 

The mass and energy transfers to and from the engine may usefully be 

expressed as functions of engine speed and brake power. 

To obtain a model for the purpose of predicting air velocities through the 

condenser and radiator under any conditions, a hot wire anemometer has been 

developed and found suitable, and an improved version suggested for studies of 

velocity distribution. 

In studying the condenser and radiator, discontinuities in the relationships 

between friction factor and air side Reynolds number were observed. These have 

the characteristics of laminar flow breakdown. 

For the calculation of fluid temperatures at the inlets and outlets of the 

condenser and radiator, the assumption of fluid mixing on the coolant and 

refrigerant sides simplifies the computation considerably. The condenser may be 

considered as three separate cross flow heat exchangers responsible for cooling of 

superheated gas, condensation of vapour,and sub cooling of liquid. 

The efficiency and ratios, required for a steplessly variable transmission, to 

compete with the present manual fixed ratio transmission on the bases of fuel
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consumption and acceleration, have been calculated at varying road speed. An 

overall minimum efficiency of 75% is proposed but higher efficiency at high road 

speeds is desirable and a lower efficiency at low road speeds acceptable. The use 

of such a transmission may result in a smaller radiator being sufficient, but a 

transmission cooling system is necessary. 

The engine cooling fan has an influence on fuel consumption, the air- 

conditioning compressor load (and fuel consumption penalty) and on the cooling 

system performance and cost. The present fan, although designed as an axial flow 

fan, acts as a paddle bladed centrifugal fan. The development of a more efficient 

mixed flow fan would give improvements to the fuel consumption and the 

refrigeration system, and enable a cost reduction of the engine-cooling system to 

be attained. The viscous coupling used in the power transmission to the cooling 

fan has a great influence on the power consumption of that fan at high engine 

speeds, and is more cost effective than would be an electric or hydraulic 

transmission. A fuel consumption reduction would be obtained by the use of a 

viscous coupling having a mechanical governor. The effect on coolant 

temperatures of the non air-conditioned version of the car would be negligible 

under normal driving conditions. 

In comparison with the air-conditioned version of the car, the performance 

of the cooling system of the non air-conditioned car is greater than necessary and 

may be reduced to give a cost reduction. 

The overall cost of the radiator and coolant pump may be optimised, a larger 

pump capacity resulting in a higher radiator coolant side heat transfer coefficient 

to compensate for a reduction in the air side surface area. 

The influence of a mixture of water and antifreeze on the performance of 

the cooling system is to promote higher coolant temperatures than if water is 

used, owing to the reduced coolant side heat transfer coefficient in the radiator. 

This is partially compensated for by the higher saturation temperature of the 

mixture at the same pressure.
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The refrigeration load available from the present system is probably limited 

by the power consumption of the compressor at idle. This may be reduced by an 

increase in the condenser air velocity or an increase in the isentropic efficiency of 

the compressor, and potentially either the fuel consumption may be reduced 

and/or the refrigeration load increased. To this end, the use of a vane compressor 

having a potentially higher isentropic efficiency is recommended. 

An increase in cooling fan speed will result in an increase in the power 

consumption of the fan but a decrease in the power consumption of the 

compressor. Optimisation of the fan speed to reduce the total power consumption 

is possible but is dependent on climatic conditions. A thermostatically controlled 

fan drive may be advantageous. 

The use of refrigerant R22 instead of R12 would provide a cost saving and/or 

an increase in the refrigeration load and/or a reduction in fuel consumption and is 

considered safe for use in the present system. An increased condenser air flow 

rate is necessary for its use but may be provided by modifications, as 

recommended above, to the engine cooling fan. 

For motor car air-conditioning using an absorption cycle, refrigerant R22 

and dimethyl ether of tetraethylene glycol as an absorbent have the highest 

potential of known combinations. The condenser air velocity would need to be 

increased above that required for R22 in a vapour compression system, owing to 

the lower coefficient of performance. There is a potential fuel saving but a 

reduced refrigeration load has to be accepted at idle. An optimum generator 

temperature may exist, giving the highest refrigeration load at idle, the 

coefficient of performance theoretically increasing with generator temperature 

but the heat energy transferable from the exhaust gas decreasing.
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RECOMMENDATIONS FOR FURTHER WORK 
  

Experimental test data under steady state conditions of operation should be 

gathered, pertaining to radiator and condenser air velocities, the engine, the 

engine cooling system, and the refrigeration system, to examine the authenticity 

of the results from the models. 

The steady state models of the engine cooling system and vapour 

compression refrigeration system may be improved, given more complete data on 

the radiator and condenser air side j and f factors, especially at low face 

velocities. The dependence of j and f factors on non dimensional ratios other than 

the ratio of mean passage diameter to passage length might be considered. The 

critical Reynolds numbers should also be examined for a range of condensers and 

radiators and their dependence on geometrical ratios considered. 

The radiator air velocity should be measured to give more complete data on 

the influence of the relative position of the condenser, radiator, and engine 

cooling fan. 

The influence of thermostat opening on engine coolant flow rate might be 

studied. 

Experimental data relating the compressor isentropic and volumetric 

efficiencies to compressor speed, pressure ratio and temperature should be 

gathered with a view to modelling of these parameters, and improving the model 

of the refrigeration system. 

To extend the models to unsteady state, a first step may be to use a driving 

cycle representative of the use of the vehicle and study the resulting fuel 

consumption, assuming that the steady state model is applicable. The overall fuel 

consumption over this cycle may be optimised, and also the required efficiency of 

a steplessly variable transmission, to compete with the present system on the 

basis of fuel consumption, calculated. To obtain a true unsteady state model, 

transient heat transfer data is required on the engine, the radiator, the condenser, 

the evaporator and the compressor. The most important of these are the engine
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and the evaporator. 

If the absorption system is considered worthy of further study, in view of the 

reduced refrigeration load at idle, then the cycle should be modelled and the 

influence of generator temperature. on refrigeration load studied. An optimum 

generator temperature may exist but may be above the range of temperatures for 

which stability data is available on the fluids considered. Hence experimental 

data on the stability may be required.
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THE HOT WIRE ANEMOMETER USED FOR THE MEASUREMENT 

OF THE RADIATOR/CONDENSER AIR VELOCITY (IN SITU) 

THE SELECTION OF A SUITABLE METHOD 

The device used for the measurement of this air velocity must fulfil the 

following requirements: 

a) It must fit into the very limited space either in front of the condenser 

or behind the radiator. 

b) ‘It must be capable of operating in the environment of a moving car 

(i.e. it must be insensitive to vibration and changes in level). 

c) The pressure drop due to the instrument should be insignificant. 

d) ‘The reading should be either the mean effective velocity over the area 

of flow, or a matrix of point velocities over this area. 

A hot wire anemometer was designed and developed in an attempt to fulfil 

these requirements. 

DESIGN AND CONSTRUCTION OF THE HOT WIRE ANEMOMETER 

A circuit diagram and pictorial drawing of the anemometer are shown on 

figures Al.1 and Al.2 and a photograph on plate Al.1. 

The active element consists of a 3.386m length of 30 s.w.g. nickel wire, the 

purity of this wire conforming to Henry Wiggin and Company's specification N200. 

The wire is silver soldered to 6.3mm diameter copper terminals at each end, and 

Passes through 1mm diameter drilled holes in similar copper studs at the turning 

points. The result is that 3.328m of the wire is exposed to the air flow. The 

balancing resistance consists of a 0.818m length of 0.9mm diameter constantan 

wire manufactured by Tempco Limited. This wire is also silver soldered to 6.3mm 

diameter copper studs. Both of the wires are tensioned by coil springs acting on 

the bottom row of studs, the tension being just sufficient to keep the wires taut. 

The wire lengths were measured against a steel tape and the diameters measured
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at 15cm intervals using a travelling microscope. Both the R.M.S. and arithmetic 

mean diameters were calculated for subsequent use. 

The wires complete with studs and connectors were removed from the 

condenser and mounted into a framework to fit into a temperature calibration 

bath produced by N. H. Irving and Son to a design of the National Physical 

Laboratory. Each wire in turn was connected to a wheatstone bridge 

manufactured by Pye Instruments which was used with an external galvanometer 

of the same make. The temperature of the silicone oil used in the bath was read 

from thermometers calibrated by the National Physical Laboratory. 

No change in the resistance of the constantan wire was noted over a 

temperature range of 20 to 180°C. 

The resistance of the nickel wire was plotted against temperature and a 

quadratic found to give an excellent least squares fit. Using this function the 

resistances at 20°C and 100°C were calculated for subsequent use. Knowing the 

resistances R) and Ro in fig. Al.2, the resistances Rs and Ry were calculated by 

the relationship: 

ees “ 
Ry Ry 

A precision 10 turn potentiometer provides the resistances R and Ry The 

resistance of this potentiometer was chosen to be high (20 k{2 ) relative to the 

nickel and constantan wires, to minimise errors due to the connecting wires but 

low in relation to the impedance of the digital voltmeter (10 MQ). The 

potentiometer has a temperature coefficient of 2 x 10° /K and was marketed by 

R.S. Components. 

The setting of this potentiometer was achieved using the 'Pye’ wheatstone 

bridge. 

The digital voltmeter used with the device was manufactured by the 

Solartron Electronic group (model number A200). The tolerance of this instrument 

is stated as +0.005% on all ranges, except the lowest (10 mV) where this figure is
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increased to +0.01%. The rangeis1 [UV to 1.2kV. 

The thermocouple, mounted on the condenser for the measurement of air 

temperature, is of chromel-alumel, with an ice cold junction. 

To ensure a pure d.c. power supply, 12 volt lead-acid accumulators were 

used, the potential being adjusted via a series potentiometer. 

ANALYSIS OF ERRORS ARISING FROM NON-UNIFORM VELOCITY 

DISTRIBUTIONS 

Accuracy of the anemometer is reliant on its ability to read a mean 

effective velocity in a non-uniform velocity distribution. For the purpose of this 

analysis, the effective mean velocity is taken to be that velocity which produces 

an identical heat transfer coefficient over a surface for which the heat transfer 

coefficient varies as velocity to the power of 0.6. 

For this analysis the rate of heat transfer from the wire was calculated from 

82 
an equation, developed by L.V. King which reduces to: 

  

  

q= O[k+(2T% Oc k au)}] Al.2 

Noting that q! = PR! and using non-dimensional terms: 

_R 8. z =1+x¢? Al.3 
et 

Re 8 

where: 

2 

2 eS AL.4 
kaon 

Al.5 

and = Al.6
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A linear variation of wire resistance with wire temperature is used, the 

resistances at 20°C and 100°C (the ambient and mean wire temperatures 

respectively) being as calculated from the fitted quadratic. 

Hence: 

eats 1) ALT R! 
m 

where B= a, 8 a Al.8 

and T = B/g Al.9 
m 

Combining Al.3 and Al.7: 

  

  

ee z (1-2) Al.10 

1-Bz2+x@¢ t 

By definition of mean Wire temperature: 

EF dn = 1 Al.11 

where 7) is the displacement as a fraction of the semi length. 

Hence: 1 

zQ-B)M  . 4 Al.12 

1l- fz+xX ¢? 
3° 

ee 4, 

1 #2z(1-f) 1- 1-Bz (2\"* Al.13 

x 1-fz+ xg? dd 

Since the actual velocity distribution is not known, a linear distribution is 

assumed and described as: 

bos 2 «n +1) Al.14 
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The factor x describes the non-uniformity of the velocity distribution such that: 

x = maximum velocity _ 1 Al.15 
minimum velocity 

Bx*x =? -93-(@-Azn| 1-Pz+xd? Al.16 
T oO 

z (1 -BYx + 2) 1-fz+xd,? 

where: 

$o Ss whenn= O Al.17 

x+2 

and: 

, = 2&+)) when 2 = 1 Al.18 

x+2 

This equation may be solved numerically to give X as a function of z. 

In a uniform velocity distribution @ =1l and T =1 and equation Al.3 

reduces to: 

X=z-1 Al.19 

which was used to calculate the apparent velocity measured by the device in such 

a non-uniform velocity distribution and hence to calculate the error defined as: 

% error = U apparent _- U effective x 100 Al.20 

U effective 

A plot of % error against the ratio of maximum to minimum velocity under 

these conditions is shown on graph Al.1. 

Clearly in a non-uniform velocity distribution the wire temperature varies 

along the wire and there is a danger of the wire oxidising or melting at local hot 

spots. To study this possibility the temperature distribution along the wire was 

plotted at varying velocity ratios and varying velocity on graphs Al.2 and Al.3 

using equation Al.10. Similarly the maximum wire temperature has been plotted 

against velocity ratio at various velocities and is shown on graph Al.4. Under the
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expected conditions of operation the maximum wire temperature may not be 

expected to reach damagingly high levels. 

CALIBRATION 

Calibration of such an anemometer should be under conditions of uniform 

velocity. The provision of a uniform velocity over an area as large as the 

condenser is difficult and hence a small anemometer, using wire from the same 

spool was constructed. This anemometer is illustrated on figure Al.4 and the 

circuit diagram, basically similar to that of the larger anemometer is shown on 

figure Al.3. Photographs of the calibration anemometer and equipment are on 

plates Al.2 and Al.3. Construction and temperature calibration methods were 

identical to those used for the condenser anemometer. 

cA 
Kings equation, used in the error analysis above, reduces to: 

Nu = 1 + 2 Re Pr Al.21 
™ Ty 

Relationships for the heat transfer by forced convection from a heated 

cylinder are usually quoted in the form 

Nu = f (Re, Pr) Al.22 

For air, over the temperature range under consideration, the Prandtl number is 

very nearly constant and the relationship reduces to: 

Nu = f (Re) Al.23 

Both Hilpert, and Collis and Williams, suggest that the ratio between the absolute 

temperatures of the wire and free steam forms a further relevent parameter, but 

this is omitted here since the temperatures may be expected to remain fairly 

constant. 

The effect of upstream turbulence is a further factor which has been 

discussed in several publications but this is generally in the context of heat 
85 

transfer to boiler tubes. Kestin suggests that the Nusselt number is a function of
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the turbulence defined as the ratio: 

  

Al.24 

i.e. the ratio of the time R.M.S. velocity perpendicular to the direction of flow, to 

the mean velocity in the direction of flow. He also suggests that some parameter 

should be included to take into account the scale of the turbulence, this being 

large in the case of a hot wire anemometer. 

As an alternative to a measure of the scale of turbulence the flow may be 

more fully described by quoting the percentage turbulence as defined above, and 

also the Strouhal number, defined by Schlichting as: 

S=nd Al.25 

u 
where n is the frequency of the turbulence, d is a representative length (in this 

case the wire diameter) and U is the free stream velocity. This parameter is used 

in studies of vortex shedding, but in this case it is suggested that n should be the 

time average frequency of the upstream turbulence. 

Heat transfer from the wire may then be more fully described by the 

relationship: 

Nu = f (Re, Tu, S) Al.26 

No work has been carried out to substantiate this but the work of cane 

illustrates the effect of increasing turbulence on the Nusselt number. In this work 

the intensity of turbulence was calculated from the apparent change of 

conductivity of the airstream, after the method used by Schanbale and described 

by Dryden. It was shown that at low levels of turbulence the rate of change of 

Nusselt number was high compared with higher levels of turbulence where the 

Nusselt number appears to be asymptotic to a finite value. The results from 

Comings work have been plotted on graph Al.5. Unfortunately the diameter of 

the body used was large compared with the hot wire anemometer, resulting in a
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Reynolds number of 5800. At lower values of Reynolds number (down to 410) 

Comings" work showed that the influence of turbulence was less. 

The location of the hot wire anemometer in the car is such that turbulent 

flow is produced upstream by the radiator grill. In view of this and the evidence 

of Comings, calibration of the anemometer was carried out in turbulent flow 

conditions, The anemometer was placed 25mm inside the open end of a 100mm 

diameter pipe. Air was blown out of this pipe by two d.c. electric centrifugal fans 

3m upstream. The velocity of the airflow was adjusted by varying the voltage 

applied to the fans, the voltage being infinitely variable over the range of 

operation. The range of air velocities used was from 0.836 to 20.2 m/s resulting in 

Reynolds numbers, based on the pipe diameter of 5,500 to 127,000 respectively, 

The standard used for measurement of the air velocity in the region of the 

wire was a pitot-static tube, made to B.S. 1042 (Part 2) by Airflow Developments. 

The kinetic head from the pitot static tube was measured using a Chattock 

manometer, manufactured by Cassela, at low velocities and an_ inclined 

manometer, manufactured by Airflow Developments, at high velocities. The 

results noted in the laboratory are shown on table Al.l. The pitot-static tube was 

also used to measure the distribution across the diameter of the pipe. It was 

found that the velocity was uniform to within 15mm of the pipe walls. 

Calculation of Reynolds and Nusselt numbers for the wire requires values of 

the properties of air. The effective mean temperature at which these properties 

should be calculated must lie between the upstream air temperature and the wire 

temperature. The arithmetic mean temperature was used as did Hilpert: and 

Collis and Willieme: 

The heat dissipated from the wire may be calculated from the measured 

Potential across the wire and the known resistance, but this includes heat radiated 

to the surroundings and conducted to the end connections. Heat transferred by 

radiation was estimated to constitute less than 1% of the total dissipated, and 

would be of the same order for both the calibration and large anemometers. Heat
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transferred by natural convection would also be of the same order for both 

anemometers since the angle of inclination for each was the same, and from the 
84 

work of Collis and Williams, would be negligible at Reynolds numbers considered 

here. The proportion of the heat dissipated by conduction to the end supports is 

not common to both devices but was taken into account as follows. The 

assumptions made are: 

a) 

b) 

c) 

d) 

The variation of resistance of the wire with temperature is linear, the 

coefficient of resistance at the mean temperature of the wire (which 

is the same for both anemometers) being such that the resistance of 

the wires is as predicted at 20°C and 100°C. 

The end connections are at the same temperature as the air stream. 

This assumption is made on the basis that they are of copper with no 

internal generation and having a surface area per unit length, and cross 

section much larger than those of the wire. 

The convective heat transfer coefficient does not vary with 

temperature. From the relationships published by Collis and Williams 

for heat transfer from a wire, the effect of a wire temperature change 

from 20°C to 120°C results in a change in heat transfer coefficient of 

less than 2%. 

The conductivity of the nickel wire does not vary with temperature. 

The variation is in fact small over the temperature range in question 

and the value used was at 20°C, i.e. approximately the lowest 

temperature and hence the temperature at which the temperature 

at 
gradient is greatest. This data was from Henry Wiggin & Co.
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U 

Wire temperature = 9 
relative to ambient 

Mean Wire temperature = On 

qt = R! - 28 Al.27 
mr? r 

2 T, 2 
St ay (1-@8,) - a - I Ra 8 Al.28 

mre r mre 

d’9 + q™ = 0 Al.29 
dl Ky 

ae igh bers 0 A1.30 
iz dn ky 8 es 

che oe alee || ane PR BU? |r =0 AL31 
2 iz Zz 

dn Tire ke 8 rm mk, Tr kon, 

Dedeee Met + Nis 0 A132 
dn? 

given the boundary conditions when 2 = 0 , T= 0 A1.33 

andwhen n=1 ,dt = 0 Al.34
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the solution becomes T = N 1-coshM (1- n) A1.35 

‘we M 
Integrating the latter equation: : 

' 

[ra Se ace | di) arate 
7 eee 

2 M cosh M 
° 

-.  1=N_ [1-tanhM Al.37 
Me M 

This equation was solved numerically to give h and hence Nu using the 

experimental data from the calibration anemometer, and subsequently for the 

condenser anemometer. 

Me = ee pee ee A1.38 
mr? 

and N =_L? z(1-f) A1.39 
Tr 

For an infinitely long wire (i.e. at uniform temperature equal to @ in 

Tee A1.40 

and M2 = N AL.4l 

hence Bi = _z_ Al.42 

2m 

Values of Bi are shown on table Al.2 against z for various ratios of length to 

diameter for a nickel wire as used. This table shows the influence of this aspect 

ratio on calibration. This is also shown by the graphs of wire distribution for the 

calibration anemometer and each span of the larger anemometer, plotted from 

equation A1.35 and shown on graphs A1.6 and Al.7. 

Using equation Al.47 values of Nusselt number and Reynolds number for 

each velocity reading were calculated and unconventionally plotted as Reynolds 

number against Nusselt number to give the former explicitly as a function of the 

latter. A cubic was found to give an excellent least squares fit. This plot is
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shown on graph Al.8 and tabulated values of Reynolds number, Nusselt number, 

velocity, and heat transfer coeficient are given on table Al.3. 

COMPARISON OF NUSSELT NUMBER REYNOLDS NUMBER DATA WITH 

PREVIOUSLY PUBLISHED WORK 

Plots of Nusselt number against Reynolds number for comparison with the 

equations given by King, McAdams Ailpects and Collis and Williams are shown on 

graphs A1.9, Al.10 and Al.11. Comparison on the same graph is made difficult by 

the different authors’ choice of representative coarse for calculation of 

fluid properties. King used the upstream air temperature, MeAdams used the 

arithmetic mean temperature for all properties except density which is at the 

upstream air temperature, and Hilpert, and Collis and Williams used the arithmetic 

mean temperature as used here. For the purpose of this comparison Nusselt 

numbers and Reynolds numbers have been recalculated, and an equation of the 

form: 

Nu =A+B Re” Al.43 

fitted to the data by the method of least squares. 

The resulting values of the constants are given with the results of these 

other workers, and the deviations of their equations from the fitted equations at 

either end of the range of Reynolds number on table Al.4. 

The major difference between the methods used by these other workers and 

here is that this anemometer was purposely calibrated in turbulent flow, while the 

others used equipment designed to produce laminar flow. The result is an 

increased Nusselt number at a given Reynolds number, as predicted from the work 

of Comings: It is suggested that the discrepancies between the results of these 

workers is due to the very low levels of turbulence attained and that at these 

levels the rate of change of Nusselt number with turbulence is high. 

The effect of upstream turbulence on the Nusselt number Reynolds number 

relationship is not clear, probably because of the difficulty, in experimental work,
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of producing and measuring the required levels of turbulence. More data is needed 

in order to develop a better understanding in this field of heat transfer. 

SUGCESTIONS FOR A MORE ACCURATE DEVICE GIVING A MATRIX OF 

POINT VELOCITIES OVER THE AREA OF FLOW 

The device used was designed to give a mean velocity over the area of flow, 

but a similar device might be used for measurement of velocity distribution, 

giving a matrix of velocities over the area of flow. A sketch of such a device and 

a circuit diagram are shown on figures Al.5 and Al.6. This instrument would 

replace a matrix of separate hot wire anemometers over the area of flow and have 

the advantage of needing only one power supply and balancing system. The power 

supply in the diagram is a stabilised unit, the output being controlled by feedback 

from the wheatstone bridge. By setting the total resistance of the elements in 

series and measuring the total potential across them the current may be 

calculated. Measurement of the potential across each individual element enables 

the resistance of, and power dissipation from, each element to be calculated. By 

using the equation developed for compensation of end losses by conduction, and a 

calibration equation relating Nusselt number and Reynolds number the velocity 

over each element may be computed. An added refinement to enable readings to 

be made quickly and easily is the use of an automatic scanning switch and data 

logging device, which outputs the voltage readings onto punched tape for input to 

a digital computer. Such a system would enable readings to be taken quickly, 

Teducing errors due to time variations in the velocity. 

In computing velocity using this device the output could give the velocity 

distribution over the area and calculate accurately the mean effective heat 

transfer velocity. A suggested application is for use in developing motor car 

cooling fans and cowls, and studying the influence of grill design on air flow.
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FIGURE A1l.2 

DIGITAL VOLTMETER 
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CIRCUIT DIAGRAM = 

“SWITCH POSITIONS St: "1 temperature reading (air) 
2 temperature reading (wire) 
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FIGURE A1.3 
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FIGURE Al.4 ve 

CONSTRUCTION OF THE CALIBRATION ANEMOMETER HEAD 
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FIGURE A1.6 
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EXPERIMENTAL DATA FOR CALIBRATION 

PT TEMP (C) VOLTAGE (v) HEAD (mmH20) PATTMOS (mmHg) 

il 20.8 0.1840 0.0424 750.50 

2 20.3 0.1922 0.0787 724.30 

3 20.1 0.1967 0.1130 724.30 

4 20.6 0.2100 0.2530 750.50 

5 20.8 0.2305 0.6220 750.50 

6 20.8 0.2430 1.0800 750.50 

I 20.8 0.2518 1.5500 750.50 

8 19.8 0.2575 1.7970 724.30 

3 19.6 0.2682 2.4110 750.50 

10 19.8 0.2690 2.4700 724.30 

ah 19.6 0.2735 2.9190 750.50 

12 19.8 0.2760 3.2790- 724.30 

13 19.8 0.2790 3.9100 750.50 

14 19.6 0.2880 5.0190 724.30 

15 19.6 0.2940 5.9400 724.30 

16 19.6 0.2993 7.1590 724.30 

A 19.8 0.3063 8.6000 724.30 

18 19.8 0.3120 10.0500 724.30 

19 20.1 0.3173 11.9100 © 724.30 

20 20.6 0.3216 13.7000 724.30 

21 20.6 0.3243 15.3000 724.30 

22 20.6 0.3284 17.3800 724.30 

23 21.1 0.3317 19.4500 724.30 

24 20.8 0.3356 21.8500 724.30 

25 21.3 0.3385 23.9000 724.30 

TABLE A1.1
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CALCULATION OF REYNOLDS NO & NUSSELT NO:-FOR CALIBRATION 

PT REYNOLDS NO NUSSELT NO U(m/s) H(W/m*2K) 

a 10.0737 2.3723 0.8367 296.6606 
2 13.4949 2.6158 1.1593 326.8948 
3 16.1730 2.7560 1. 3887 344, 3264 
4 24.6237 3. 2323 2.0431 404.1025 
5 38.6027 4.0116 3.2047 501.6565 
6 50.8568 4.5192 4.2228 565.1395 
7 60. 9381 4.8937 5.0589 611.9711 

8 64.5106 5.0811 5.5349 634.5822 
9 76.0750 5.5478 6.2960 692.6815 

10 75.6320 5.5979 6.4891 699.1267 

Lt 83.7068 5.7927 6.9276 723.2620 

12 87.1421 5.9243 7.4767 739.8798 

23 96.3638 6.0568 8.0207 757.6852 

14 107.3291 6.4888 9.2468 810.1693 

15 117.3061 6.7879 10.0595 847.5217 

16 128.7815 7.0576 11.0436 381.1941 

“7 141.1258 7.4393 12.1084 929.0923 

18 152.5598 7.7429 13.0894 967.0153 

9! 166.0381 8.0593 14.2569 1006.9203 

20. 178.0069 8.3470... 15.3044 1043.5416 

au 188.1145 8.4990 16.1734 1062.5442 

22 200.4941 8.7324 17.2377 1091.7201 

23 212.0127 8.9762 18.2516 1122.9296 

24 224.7670 9.1716 19.3346 1146.9300 

25 234.9303 9.3991 20.2393 1176.1406 

TABLE A1.3
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EXPERIMENTAL AND CALCULATED DATA 
  

RELATING TO THE HEAT REJECTION SYSTEM
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TABLE A2.1 

DATA FOR CALCULATION OF VELOCITY 

PT GEAR VOLTAGE TEMPERATURE IGNITION PATTMOS 
deg.C COUNT mm(Hg) 

L 0 20.67 21.6 286 758.18 
2 0 22.26 2028 377 758.18 
3 0 23.85 22.1 514 758.18 
4 0 25.14 2205 636 758.18 
5 0 26.18 2253 741 758.18 
6 0 27.24 2148 876 758518 
7 0 20.67 22.8 303 758.18 
8 0 22.14 2253 390 758.18 
a 0 23.80 22.6 518 758.18 

10 0 25513 22.6 690 758.18 
rn 0 27.08 23-3 871 758.18 
ae 0 20.82 21.6 310 758.18 
13 0 22.40 20.3 407 758.18 
14 0 23.48 Zio 502 758.18 
15 0 24.97 22eL 633 758.18 
16 0 26.16 20.8 750 758.18 
L7 0 27,42 20.6 879 758.16 

N.B Car Stationary 
Viscous Coupling Locked
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TABLE A2.2 

DATA FCR CALCULATION OF VELOCITY 

PT GEAR VOLTAGE TEMPERATURE IGNITION PATTMOS 
deg.C COUNT mm(Hg) 

1 3 24.08 9.0 611 754.35 
2 2 25.88 8.0 1136 754.35 
3 3 26.26 8.2 901 754.35 
4 3 27.81 8.7 1073 754.35 

i) 3 29.44 8.2 1222 754.35 
6 2 29.82 9.0 1363 754.35 
7 4 30.01 8.7 1095 754.35 
8 4 30.72 25 1164 754.35 
g; 4 32.20 8.2 1289 754.35 

10 2 32.48 9.0 1408 754.35 
ve 4 33.10 8.7 1502 754.35 
2 4 33.46 8.7 1602 754.35 
13 4 33.95 8.7 1728 754.35 
14 2 35.07 8.7 1533 754.35 
25 a 35.39 8.7 1609 754.35 
16 2 25.33 Lolth 912 754.35 
ae 2 26.62 767 1120 754.35 
18 2 27.30 8.2 1362 754.35 
19 2 28.35 7.7 1591 754.35 
20 2 28.84 8.2 1202 754.35 
21 3 29.72 8.2 1370 754.35 
22 3 30.33 0.3 I5it2 754.35 
23 4 SL uS, Tech 1206 754.35 
24 4 32.16 8.2 1293 754.35 
25 4 32.80 8.2 1409 754.35 
26 4 32.41 8.0 Lote 754,35 
27 4 34.47 8.2 1706 754.35 
28 4 34.01 8.2 1881 754.35 
29 4 35.69 8.5 2200 754.35 
30 5 35.55 9.0 1616 754.35 
SL 2 24.75 8.2 946 754.35 
32 2 24.97 7.4 1132 754.35 
33 é 26.35 8.0 1377 754.35 
34 2 28.05 8.2 1615 754.35 
35 2 28.48 8.0 1796 754.35 
36 si 29.57 8.0 1360 754.35 
ot S 30.12 8.0 E5i5 754.35 
38 2 30.91 7.7 1672 754.35 
ox 4 31.45 Tet 1294 754.35 

N.B. Fan Removed 

Cont.
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DATA FOR CALCULATION OF VELOCITY (Cont.) 

Pir 

40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
Si. 
52 
53 
54 
JD 
56 
57; 
58 
59 
60 
61 
62 
63 
64 
65 
66 
67 
68 
69 
70 
71 
72 
73 
74 
75 

GEAR VOLTAGE 
U
b
 
P
A
E
 
P
E
 
R
W
W
W
N
K
N
N
N
N
U
P
E
 

L
E
E
R
 
E
W
W
W
H
Y
N
N
N
U
S
 
H
E
R
A
 32.30 

32.75 
33.22 
eae 75 
34.79 
35.10 
25.04 
25.57 
27.06 
27.95 
28.49 
29. 66 
30.44 
ai<s3 
32.36 
32.74 
33.34 
33.40 
34.28 
34.53 
34.98 
25.42 
26.41 
21.30 
28.22 
29.16 
29.51 
30.35 
S1.52 
32.10 
32.25 
32.66 
33.16 
34.56 
35.01 
35.24 

TEMPERATURE 

deg.C 
Tol 

D
A
D
D
A
A
D
A
D
I
I
I
N
Y
A
A
D
D
M
D
M
D
I
N
U
N
D
M
M
I
U
I
I
N
D
A
H
D
H
D
M
D
 

H
O
 

C
O
C
W
O
O
C
O
C
A
D
H
H
E
E
F
E
N
D
O
O
C
C
O
U
R
O
C
O
C
O
R
R
R
E
A
R
R
N
O
O
O
O
 

IGNITION 
COUNT 
1413 
1499 
1651 
1726 
1842 
1604 
962 

1132 
1362 
1590 
1210 
1361 
1522 
1200 
1304 
1399 
1517 
1610 
1806 
1930 
1597 
916 

1125 
US72 
1596 
1230 
Lael 
1531 
1210 
1315 
1417 
1538 
1634 
1839 
1835 
1612 

PATTMOS 
mm(Hg) 
754.35 
754.35 
754.35 
754.35 
754.35 
754.35 
754.35 
154.35 
754.35 
754.35 
754.35 
754.35 
754.35 

- 754.35 
754.35 
754.35 
754.35 
754.35 
754.35 
754.35 
754.35 
754.35 
754.35 
754.35 
754.35 
754.35 
754.35 
754.35 
754.35 
754.35 
754.35 
754.35 
754.35 
754.35 
754.35 
754.35
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TABLE A2.3 

DATA FOR CALCULATION OF VELOCITY 

PT GEAR VOLTAGE TEMPERATURE IGNITION PATTMOS 

deg.C CCUNT mm(Hq) 
a 0 23.26 IZ ol 368 760.85 
2 0 24.44 13.1 485 760.85 
3 0 25.81 14.1 675 760.85 
4 ) 26.14 15.8 774 760.05 
5 0 27.08 26.0 1050 760.85 
6 0 27.26 18.3 1154 760.85 
7 0 27.58 19.8 1372 760.85 
8 0 27.21 19.6 1547 760.85 
9 0) 27.18 20.8 1756 760.85 

10 0 27.20 Lonk 1953 760.65 

ad: 0 27.03 22.3 2053 760.85 
12 0 26.55 22.1 2260 760.85 
13 0 22.28 16.1 419 760.85 
14 0 23-15 a6eL 506 760.05 
15. 0 24.68... L203. 651. ...760..05 
16 0 25.27 21.1 790 760.65 
bY 0 26-23 21.8 1003 760.85 
18 0 26.93 20.6 1104 760.85 
2) 0 26.94 23.3 1375 760.85 
20 0 26.87 24.6 1564 760.85 
21 0 26.70 2308 1669 760.85 
22 0 26.71 24.3 1936 760.85 
23 0 26.37 24.6 2060 760.65 
24 0) 25.97 25.3 2257 760. 85 
25 ) 21.70 14.3 390 760.85 
26 0 22.86 15.3 474 760.85 
27 0 24.41 a9SL 674 760.85 
28 0 25.20 20.6 850 760.85 

29 0 29.93 22.3 1007 760. 85 
30 0 26.25 2501 TELS 760.85 
31 0 26.59 23.8 1340 760.85 
32 0 26.79 24.3 1533 760.85 
33 0 26.58 24.6 1694 760.85 
34 0 26.68 24.6 1933 760.85 
39 0 26.56 24.8 2078 760.85 
36 0 26.26 25.3 2206 760.85 

N.B. Car Stationary
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TABLE A2.4 

DATA FOR CALCULATION OF VELOCITY 

PT GEAR VOLTAGE TEMPERATURE IGNITION PATIMOS 

deg.C COUNT mm(Ha) 
1 z 24.74 6.9 491 739.95 
2 1 26.51 6.6 666 739.95 
3 z 27299 Tel 814 139095 
4 e 28.80 6.6 950 739.95 
5 r 29.21 6.9 1099 7139.95 
6 al 29.55 6.6 1290 739-99 
7 1 29.77 6.4 1518 739.95 
8 1 29.90 6.4 1617 739.95 
9 1 30.46 7.4 1867 739.95 

10 Bs 30.54 Ted 2027 139.95 
At 1 30.51 Prod 2321 139.95 
12 1 30.64 had 2041 739.95 
13 1 22. 86 a3) 370 723.95 
14 i 24.17 955 505 723.95 
15 a 25.94 ee 675 723.95 
“16 Ee 27.28 Tel 900 723.95 
17 i 28.52 6.4 1093 123595 
18 z 29.28 6.6 1273 723.95 
19 ao 29.77 6.6 1484 723.95 
20 x 29.94 5.9 1659 123.95 

N.B First Gear
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TABLE A2.5 

DATA FOR CALCULATION OF VELOCITY 

PT GEAR VOLTAGE TEMPERATURE IGNITION PATTMOS 

deg.C CCUNT mm(Hg) 
x 2 24.73 8.0 461 739.95 
2 2 26.63 8.0 666 439.95 
2 2 28.10 7.4 787 39. 95) 
4 2 29.28 7.4 1037 139095 
5 2 29.61 Tel 1093 739.95 
6 2 30. 83 7.4 1292 439.95 
7 2 31.20 724 1546 739.95 
8 2 31.13 Tok 1687 739.95 

5 2 31.49 eae 1952 739.95 
10 iz 32.37 6.9 2052 G39599 
12 2 25.40 6.6 508 739.95 

TZ 2 26.70 6.6 665 739.95 

13 2 28.34 6.6 780 739.95 

14 2 29.46 6.6 1006 739.95 

ES: 2 29.91 6.6 1131 ~739.95 

16 2 30.50 6.6 1382 439.95 

Ly, i 30.83 6.1 1537 739.95 

18 2 31.31 6.1 1695 739.95 

ag 2 31.52 6.4 1959 739.95 

20 2 31.90 6.1 2026 F396 95: 

22 2 32.08 6.4 Zane 739.95 

22 2 32.07 2.9 1871 d23e30 

23 2 SLets sel 1637 723.35 

24 2 30.55 2.6 1343 723.35 

22 ie 30.28 2.6 1116 723.35 

26 Z 29.64 2.6 956 123035: 

N.B Second Gear
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TABLE A2.6 

DATA FOR CALCULATION OF VELOCITY 

PT GEAR VOLTAGE TEMPERATURE IGNITION PATIMOS 
deg.C COUNT mm(Hg) 

a 3 34.70 4.6 2101 723.35 
2 3 34.55 4.6 1986 723.35 
2 3 34.50 4.4 1823 723.35 
4 3 33.21 4.4 1702 123535 
5 3 32.49 Bed 1536 723.35 
6 Z 31.92 Jed 1387 723535 
ti 3 31.14 3.4 1230 723.35 
8 3 30.60 3.1 1078 723.35 
9 3 29.58 3.1 923 723.35 

10 3 28.28 sted 761 723.35 
re a 28.24 2.9 648 723.35 
12 3 26.76 4.4 487 753.00 
eS) 3 28.99 4.1 647 753.00 
14 3 29.40 4.1 776 753.00 
15 a 30.48 4.4 1027 753.00 
16 3 32.06 4.1 1162 753.00 
a7 3 32.99 4.1. 1279 753.00 
18 3. 33.74 4.6 1563 753.00 
19 3 33655 5.0 1657 753.00 
20 3 33.97 4.6 2028 753.00 
ea 3 34.72 4.9 2121 753.00 
22 3 27.01 4.6 462 753.00 
23 3 28.70 4.4 675 753.00 
24 3 30.12 4.4 811 753.00 
25 3 30.43 4.6 1013 753.00 
26 3 Slea2 Sel Lets 753.00 
27 3 32.95 4.9 1406 753.00 
28 3 S3ek3 4.9 1710 753.00 
29 3 33.32 5.1 1671 753.00 
30 3 33.78 Sal 2089 753.00 
sal = 34.54 4.9 2071 753.00 
32 S 25.60 5.1 466 7139.95 
33 3 28.09 5.4 652 739.95 
34 3 28.48 526 802 739.95 
25 3 30.66 5.6 962 739.95 
36 3 31.15 6.1 1128 W39.95 
37 3 32.00 6.4 1324 739.95 

N.B. Third Gear
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TABLE A2.7 

DATA FOR CALCULATION OF VELOCITY 

  

PT GEAR VOLTAGE TEMPERATURE IGNITION PATTMOS 

deg.C COUNT mm(Ha) , 

1 4 27.95 4.6 473 753.00 

2 4 30.19 4.6 679 753.00 

3 4 30.32 Sel 814 753.00 

4 4 32.50 4.6 1025 753.00 

a 4 32.19 4.6 1163 753.00 

6 4 33.69. 4.6 1374 753.00 

iF 4 34.75 4.6 1692 753.00 

8 4 35.43 4.6 1679 753.00 

2 4 36.46 4.6 2100 753.00 

10 4 32.95 2.0 1196 753.00 

id 4 35.25 229) 1709 753.00 

dz 4 26.67 4.9 461 753.00 

13 4 29°47 4.9 634 753.00 

14 4 30.91 4.6 800 753.00 

15 4 32.38 4.9 961 753.00 

‘le 4 oe lo 4.6 » 1160~ . 753.00 ite 

As 4 33.95 4.6 1334 753.00 

18 4 34.56 4.1 1537 753.00 

19 4 35.02 4.6 1804 753.00 

20 4 33.98 4.9 2030 753.00 

21 4 36.36 4.6 2110 753.00 

22 4 33.43 5.6 T51id, 723.90 

23 4 35e7L 6.4 1668 723.90 

24 4 36.80 6.4 Lo Td 723.90 

25 4 36.32 6.4 2164 723.90 

26 4 33.82 5.1 1289 723.35 

27 4 34.50 5.1 1497 723.35 

28 4 31.36 4.4 886 723.35 

29 4 30.56 4.4 666 723.35 

30 4 30.27 4.4 773 723.35 

31 4 31.36 4.1 992 723.35 

32 4 31.88 4.4 1090 Teses> 

33 4 32.03 4.6 1210 723.35 

34 4 34.60 4.6 1435 723.35 

N.B. Fourth Gear
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TABLE A2.8 

DATA FOR CALCULATION OF VELOCITY 

PT GEAR VOLTAGE TEMPERATURE IGNITION PATTMOS 

ceg.c COUNT mm(Hig) 

1 5 34.70 4.9 1268 123.35 

2 a 34.33 4.6 1196 723.55 

3 5 33.05 4.4 1068 123605 

4 2) 32.27 4.4 1005 H23699 

5 5 31.40 4.1 927 723.55 

6 5 31.06 4.1 824 723355 

Us 5 30.46 4.1 732 723.55 

8 5 30.28 4.4 644 723-55 

9 rs 35.50 Vet L729 123-90 

10 5 36.47 6.6 1902 723.90 

La 5 28.80 4.6 478 753.00 

Ee 5 29.61 4.9 661 753.00 

13 a 31.94 4.4 740 753.00 

Dhe. aee Be 326-43 » Ao & « ea 1s 00 

a5 D 33.75 4.6 1727) 9754-00 

16 3 35.01 4.4 1485 753.00 

17 5 36.08 4.4 1532 753.00 

18 5 27.07 4.6 457 753.00 

lee) 5 30.01 4.9 654 753.00 

20 5 31.62 4.9 760 7153.00 

21 > 33.04 3.9 1026 753.00 

22 > 33.70 4.1 2rE 753.00 

a w Fifth Gear
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TABLE A2.9 

CALCULATION OF AIR VELOCITY 

  

ea GEAR CAR SPEED ENGINE SPEED AIR VELOCITY 

mile/hour rev/min m/s 
1 0 0 572.00 1.3016 
2 0 0 754.00 1.8728 
3 0 0 1028.00 2.5568 
4 0 0 1272.00 3.2056 
5 0 0 1482.00 3.7874 
6 0 0 1752.00 4.3969 

io 0 0 606.00 1.3527 
8 0 0 780.00 1.8537 
9 0 0 1036.00 2.5687 

10 0 0 1380.00 3.2431 
Ly u GO 1742.00 4.4647 
12 0 0 620.00 153507 
13 0 0 314.00 1.8467 
14 0 0 1004.00 2.3269 
LS 0 0 1266.00 3.1002 

PL Grae s OD: a0 *1500s00° + 3.6312- 
17 0 0 1758.00 4.1867 

N.B. Viscous Coupling Locked
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TABLE A2.10 

CALCULATION OF AIR VELOCITY 

PT GEAR CAR SPEED ENGINE SPEED AIR VELOCITY 

mile/hour rev/min m/s 

aL 3 19 1222.00 1.9177 
iz 2 23 2272.00 2.5633 

2 3 28 1802.00 2.7381 
4 3 a3 2146.00 3.5114 
5 3 oT 2444.00 4.3836 

6 3 42 2726.00 4.7021 

7 4 47 2190.00 4.7937 

8 4 ijk 2368.00 S.37il 

3 4 50 2578.00 6.3353 

10 4 60 2816.00 6.6872 

il 4 64 3004.00 7.1886 

12 4 69 3204.00 T9233 

as 4 74 3456.00 8.0003 

14 5 79 3066.00 9.1906 

- 15 =) 83 3218.00 «2496 9981, 

16 2 19 1824.00 2.3228 

Ld 2 23 2240.00 2.8662 

18 2 28 2724.00 322179 

19 2 33 3182.00 3.7162 

20 3 37 2404.00 4.0300 

21 z 42 2740.00 4.5564 

22 3 46 3024.00 4.1909 

23 4 52 2412.00 5.4633 

24 4 55 2586.00 6.3027 

25 4 60 2818.00 6.8418 

26 4 65 3024.00 6.4798 

27 4 73 3412.00 8.4374 

28 4 81 3762.00 7.9687 

29 4 94 4400.00 9.1705 

30 5 83 3232.00 9.8155 

3st 2 ae 1880.00 Ze l2sL 

32 2 23 2264.00 2.1681 

33 2 28 2754.00 2. 1652, 

34 2 33 3230.00 3.5972 

35 2 ae 3592.00 3.8115 

36 3 42 2720.00 4.4435 

of 3 46 3030.00 4.7912 

38 3 Du 3344.00 5.2924 

39 4 55 2588.00 5.6832 

N.B. Fan Removed 

Cont.
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CALCULATION OF AIR VELOCITY (Cont.) 

PT GEAR CAR SPEED ENGINE SPEED AIR VELOCITY 
mile/hour rev/min m/s 

40 a 60 2826.00 6.3462 
41 4 64 2998.00 6.7678 
42 4 71 3302.00 7.1839 
43 4 74 3452.00 7.6790 
44 4 a2 3684.00 8.7371 
45 > 82 3208.00 9.1182 
46 2 20 1924.00 2.1448 
47 2 23 2264.00 2.3484 
48 2 28 2724.00 2.9946 
49 2 33 3180.00 3.4601 
50 3 37 2420.00 3.7670 
51 2 42 2722.00 4.5638 
52 3 47 3044.00 4.9374 
53 4 51 2400.00 5.7814 
54 4 56 _ 2608.00 f 6.4383 
55. “4 60 = 2798.00 : 6.7592 
56 4 65 3034.00 Telos 
S7 4 69 3220.00 7.2503 
58 4 1 3612.00 8.1475 
59 4 83 3860.00 8.4614 
60 > 82 3194.00 8.9436 
61 2 1S 1832.00 2.3158 
62 2 23 2250.00 2.7238 
63 2 238 2744.00 3.1204 
64 2 33 3192.00 3.6230 
65 3 38 2460.00 4.1153 
66 = 42 2742.00 4.3208 
67 3 47 3062.00 4.8460 
68 4 52 2420.90 §.5985 
69 4 56 2630.00. 6.0363 
70 4 61 2834.00 6.1947 
gil 4 66 3076.00 6.5286 
WZ 4 70 3268.00 6.9562 
73 4 79 3670.00 8.2830 
74 4 19 3670.00 8.7537 
Ue 5 83 3224.00 9.0032
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TABLE A2.11 

CALCULATION OF AIR VELOCITY 

PT GEAR CAR SPEED ENGINE SPEED AIR VELCCITY 
mile/hour rev/min m/s 

1 0 0 736.00 1.8003 
2 0 0 970.00 2.2435 
3 0 0 1350.00 2.8975 
4 0 0 1548.00 3.1860 
5 0 0 2100.00 3.7073 
6 0 0 2308.00 4.0205 
7 0 0 2744.00 4.3786 
3 0 0 3094.00 4.1227 
9 0 0 3512.00 4.2315 

10 0 0 3906.00 4.3894 
il 0 0 4106.00 4.3008 
Le 0 0 4520.00 3.9763 
eS 0 0 838.00 1.5960 
14 0 0 1012.00 1.9076 
15 0 0 1302.00 2.6007 
16 0 0 1580.00 3.1620 
17 0 0 2006.00 3.7543 
18 6 0 2208.00 4.0538 
L9 0 0 2750.00 4.3558 
20 0 0 3128.00 4.4622 
21 0 0 3338.00 4.2557 
22 0 0 3872.00 4.3197 
23 0 0 4120.00 4.1326 
24 0 0 4514.00 3.9567 
25 0 0 780.00 1.3329 
26 0 0 948.00 1.7613 
Pa) 0 0 1348.00 2.5969 
28 0 0 1700.00 3.0854 
29 0 0 2014.00 366295 
30 0 0 2226.00 3.8968 
31 0 0 2680.00 4.1845 
32 0 0 3066.00 4.3727 
Se 0 0 3388.00 4.2687 
34 0 0 3866.00 4.3347 
35 0 0 4156.00 4.2787 
36 0 0 4412.00 4.1405 

N.B. Car Stationary



241 

CALCULATION OF AIR VELOCITY 

PT GEAR CAR SPEED ENGINE SPEED AIR VELOCITY 
mile/hour rev/min m/s 

1 2 6 982.00 2.0979 
2 L 9 1332.00 2.8024 
3 ZT 10 1628.00 3.5482 
4 1 12 1900.00 3.9447 
5 a 14 2198.00 4.2065 
6 oi i 2580.00 4.3815 
7 L 20 3036.00 4.4967 
8 aL an 3234.00 4.5775 
9 L 24 3734.00 5.0471 

10 Zz 26 4054.00 Sea 305. 
ink Z 30 4642.00 5.1147 
12 1 26 4082.00 5.2046 
13 £ > 740.00 1.5811 
14 - a 1010.00 2.0566 
15 < 9 1350.00 2.6300 
16 1 12 1800.00 3.3060 
17 rE 14 2186.00 3.8572 
18 u 16 2546.00 4.3136 
19 1 19 2968.00 4.6161 
20 Z 21 3318.00 4.6538 

TABLE A2.12 N.B. First Gear
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TABLE A2.13 

CALCULATION OF AIR VELOCITY 

PT GEAR CAR SPEED ENGINE SPEED AIR VELOCITY 

mile/hour rev/min m/s 
L 2 9 922.00 2.1487 
2 2 14 1332.00 2.9463 
3 2 16 1574.00 3.6295 
4 2 21 2074.00 4.2944 
5 2 ae 2186.00 4.5907 
6 2 26 2584.00 5.3032 
7 2 32 3092.00 §.5695 
8 2 35. 3374.00 5.4821 
9 2 40 3904.00 5.7477 

10 2 42 4104.00 6.4134 
il 2 10 1016.00 2.3369 
12 2 14 1330.00 2.8874 
13 2 16 1560.00 3.6932 
14 2 21 2012.00 4.3273 
45 2 23 2262.00 4.6037 
16 2 28 2764.00 4.9865 
Ay a 32. 3074.00 Deloon 
18 2 35 3390.00 5.4925 
LS. 2 40 3918.00 5.6826 
20 2 42 4052.00 5.9316 
2 Z 45 4424.00 O.ti1T 
22 2 38 3742.00 5.17923 
23 2 34 3274.00 5.5671 
24 2 28 2686.00 4.7171 
25 2 23 2232.00 4.5491 
26 2 20 1912.00 4.1690 

N.B. Second Gear
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TABLE A2.14 

CALCULATION OF AIR VELOCITY 

Ba GEAR CAR SPEED ENGINE SPEED AIR VELOCITY 
mile/hour rev/min m/s 

eb 3 64 4202.00 8.3492 
2 3 61 3972.00 8.1972 
3 3 56 3646.00 8.1114 
4 3 52 3404.00 6.9113 
5 3 47 3072.00 6.1376 
6 3 43 2774.00 5.7055 
7 3 38 2460.00 5.1870 
8 2 33 2156.00 4.7984 
9 3 28 1846.00 4.1779 

10 3 23 1522.00 3.4756 
LL 3 20 1296.00 3.4410 
i 3 LS 974.00 2.7296 
23 3 20 1294.00 3.7746 
14 3 24 1552.00 3.9976 
LS 3 ol 2054.00 4.6617 
16 3 30e. 2324.00 5.6998 
Ly 2 39 2558.00 6.4164 
18 3 48 3126.00 7.1247 
Lo 3 51 3314.00 7.0187 
20 S 62 4056.00 7.3310 
21 3 65 4242.00 8.0933 
22 a 14 924.00 2.8501 
23 3 21 1350.00 3.6455 
24 3 25 1622.00 4.4408 
25 2 31 2026.00 4.6502 
26 5 34 2224.00 Sct oL9 
27 3 43 2812.00 6.4950 
28 3 52 3420.00 6.6442 
29) 3 SL 3342.00 6.8344 
30 3 64 4178.00 7.2387 
31 2 63 4142.00 7.9167 
32 3 14 932.00 2.3369 
33 3 20 1304.00 3.4702 
34 3 25 1604.00 3.6880 
35 3 29. 1924.00 4.9856 
36 3 35 2256.00 5.3781 
37 3 41 2648.00 6.0483 

N.B. Third Gear



244 

TABLE A2.15 

CALCULATION OF AIR VELOCITY 

PT GEAR CAR SPEED ENGINE SPEED AIR VELOCITY 
mile/hour rev/min m/s 

X 4 20 946.00 3.2840 
iz 4 29 1358.00 4.5022 
3 4 35 1628.00 4.6309 
4 4 44 2050.00 6.0949 
5 4 50 2326.00 5.8580 
6 4 59 2748.00 7.0805 
7 4 72 3384.00 8.0697 
8 4 72 3358.00 8.7655 
$ 4 90 4200.00 9.9201 

10 4 SL 2392.00 6.1066 
alg 4 ne 3418.00 8.2636 
12 4 20 922.00 2.8071 
13 4 27 1268.00 329375 
14 4 34 1600.00 4.9578 
15 4 41 1922.00 6.0411 
16 4 50 2320.00 6.2918 
17 4 57 2668.00 423129 
18 4 66 3074.00 7.7984 
ag) 4 77 3608.00 8.3400 
20 4 87 4060.00 7.3883 
21 4 90 4220.00 9.8024 
22 4 65 3022.00 7.2870 
23: 4 71 3336.00 9.8209 
24 4 82 3822.00 11.1949 
25 4 93 4328.00 10.5702 
26 4 55 2578.00 7.5730 
27 4 64 2994.00 8.2370 
28 4 38 1772.00 5.4529 
2) 4 29 1336.00 4.9051 
30 4 33 1546.00 4.7176 
32. 4 42 1984.00 5.4183 
32 4 47 2180.00 5.8344 
33 4 52 2420.00 §.9739 
34 4 61 2870.00 8.2476 

N.B. Fourth Gear
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TABLE A2.16 

CALCULATION OF AIR VELOCITY 

Be GEAR CAR SPEED ENGINE SPEED AIR VELOCITY 

mile/hour rev/min m/s 

es 5 65 2536.00 8.4045 

2 5 61 2392.00 7.9763 

3 3 55 2136.00 6.7717 

4 5 52 2010.00 6.1330 

5 > 48 1854.00 5.4452 

6 5 42 1648.00 5.2074 

7 5 38 1464.00 4.8079 

8 5 aS) 1288.00 4.7227 

9 5 89 3458.00 9.8631 

10 2 98 3804.00 10.8115 

ik S 20) 956.00 3.7135 

42 5 34 1322.00 4.1858 

13 Si 38 1480.00 5.6483 

14 5 50 1958.00 6.0408 

oO) 5 58 2254.00 Telos D 

16 5 76 2970.00 Becdse 

a7. 5 79 3064.00 9.4372 

18 5 23 914.00 Seb Sid 

19 5 34 1308.00 4.4216 

20 5 39 1520.00 5.4771 

21 5 53 2052.00 6.4293 

22 2 58 2262.00 7.0130 

N.B. Fifth Gear



TABLE A2.17 

CAR STATIONARY; 
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EDITTED DATA 
DATA TO FUNCTION, DEVIATION CALCULATION 

Pr DATA w 
rev/min 

L 1350 
2 1548 
3 2100 
4 2308 
a 2744 
6 3094 
z 3512 
8 3906 
9 4106 

10 4520 
Ly 1302 
12 1580 
13 2006 
14 2208 
£5 2750 
16 31238 
LY? 3338 
138 3872 
19 4120 
20 4514 
21 1348 
22 1700 
23 2014 
24 2226 
25 2680 
26 3066 
27 3388 
28 3866 
29 4156 
30 4412 

DATA U 

m/s 
2.8975 
3.1860 
3.7073 
4.0205 
4.3786 
4.1227 
4.2315 
4.3894 
4.3008 
3.9763 
2.6007 
3.1620 
3.7543 
4.0538 
4.3558 
4.4622 
4.2557 
4.3197 
4.1326 
3.9567 
2.5969 
3.0854 
3.6285 
3.8968 
4.1845 
4.3727 
4.2687 
4.3347 
4.2787 
4.1405 

FN (w) 
m/s 

2.7651 
3.0663 
3.7527 
3.9513 
4.2581 
4.3953 
4.4293 
4.3299 
4.2301 
3.9162 
2.6878 
Sotizs 
3.6520 
3.8600 
4.2613 
4.4034 
4.4325 
4.3436 
4.2218 
3.9218 
2.7619 
3e278L 
3.6609 
3.8770 
4.2224 
4.3879 
4.4341 
4.3459 
4.1998 
4.0121 

ABS DEV. 

m/s 
0.1324 
0.1197 

-0.0454 
0.0692 
0.1205 

-0.2726 
-0.1979 
0.0594 
0.0707 
0.0601 

-0.0871 
0.0497 
0.1023 
0.1939 
0.0945 
0.0589 

-0.1768 
-0.0240 
0.0892 
0.0348 

-0.1651 
-0.1927 
-0.0324 
0.0199 

-0.0379 
-0.0152 
-0.1654 
=0 0122 
0.0789 
0.1284 

RMS ABSOLUTE DEVIATION= 0.1167m/s 

RMS FRACTIONAL DEVIATION= 0.03177 

FRAC DEV 

0.04569 
0.03756 

-0.01226 
0.01722 
0.02752 

-0.06613 
-0.04676 
0.01354 
6.01645 
0.01511 

-0.03348 
0.01570 
0.02724 
0.04782 
0.02170 
0.01319 

-0.04154 
-0.00555 
-0.02155 
0.00880 

-0.06356 
-0.06244 
-0.00892 
0.00510 

-0.00906 
-0.00348 
-0.03874 
-0.00258 
0.01843 
0.03100



TABLE A2.18 

CAR STATIONARY; COMPLETE DATA 
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DATA TO FUNCTION, DEVIATION CALCULATION 

PT 

C
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RMS ABSOLUTE DEVIATION= 

RMS FRACTIONAL DEVIATION= 

* Points Omitted for Curve Fit 

DATA w 
rev/min 

736 
970 

1350 
1548 
2100 
2308 
2744 
3094 
3512 
3906 
4106 
4520 
838 

1012 
1302 
1580 
2006 
2208 
2750 
3128 
3338 
3872 
4120 
4514 
780 
948 

1348 
1700 
2014 
2226 
2680 
3066 
3388 
3866 
4156 
4412 

DATA U 

m/s 
1.8003 
2.2435 
2.8975 
3.1860 
3.7073 
4.0205 
4.3786 
4.1227 
4.2315 
4.3894 
4.3008 
3.9763 
1.5960 
1.9076 
2.6007 
3.1620 
3.7543 
4.0538 
4.3558 
4.4622 
4.2557 
4.3197 
4.1326 
3.9567 
Lesse9 
1.7613 
2.5969 
3.0854 
3.6285 
3.8968 
4.1845 
4.3727 
4.2687 
4.3347 
4.2787 
4.1405 

FN(w) ABS DEV. 
m/s m/s 

1.6542 0.1461 
2.1084 0.1351 
2.7651 0.1324 
3.0663 0.1197 
3.7527 -0.0454 
369513 0.0692 
4.2581 0.1205 
4.3953 -0.2726 
4.4293 -0.1979 
4.3299 0.0594 
4.2301 0.0707 
3.9162 0.0601 
1.8567 -0.2608 
2.1859 -0.2784 
2.6878 -0.0871 
Se Ll23 0.0497 
3.6520 0.1023 
3.8600 0.1939 
4.2613 0.0945 
4.4034 0.0589 
4.4325 -0.1768 
4.3436 -0.0240 
4.2218 -0.0892 
3.9218 0.0348 
1.7424 -0.4095 
2.0673 -0.3060 
2e7619° =O 717651 
3.2781 =-0.1927 
3.6609 -0.0324 
3.38770 0.0199 
4.2224 -0.0379 
4.3879 -0.0152 
4.4341 -0.1054 
4.3459 -0.0112 
4.1998 0.0789 
4.0121 0.1284 

0.1542m/s 

0.07692 

FRAC DEV 

0.08114 
0.06022 
0.04569 
0.03756 

-0.01226 
0.01722 
0.02752 

-0.06613 
-0.04676 
0.01354 
0.01645 
0.01511 

-0.16339 
-0.14593 
-0.03348 
0.01570 
0.02724 
0.04782 
0.02170 
0.01319 

-0.04154 
-0.00555 
-0.02158 
0.00880 

-0.30723 
-0.17374 
-0.06356 
-0.06244 
-0.00892 
0.00510 

-0.00906 
-0.00348 
-0.03874 
-0.00258 
0.01843 
0.03100 

* 

* 

* 
* 

* 
*



TABLE A2.19 

CAR MOVING; FIRST GEAR 
DATA TO FUNCTION, DEVIATION CALCULATION 

er DATA w 
rev/min 

1 982 
Z 1332 
3 1628 
4 1900 
5 2198 
6 2580 
7 3036 
8 3234 
9 3734 

10 4054 
1l 4642 
12 4082 
t3 740 
14 1010 
15 1350 
16 1800 
17 2186 
18 2546 
kg 2968 
20 3318 

RMS ABSOLUTE DEVIATION= 

RMS FRACTIONAL DEVIATION= 

DATA U 

m/s 
2.0979 
2.8024 
3.5482 
3.9447 
4.2065 
4.3815 
4.4967 
4.5775 
5.0471 
5.1353 
5.1147 
5.2046 
T5811 
2.0566 
2.6300 
3.3060 
3.8572 
4.3136 
4.6161 
4.6538 
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FN(w) ABS DEV. 

m/s m/s 
2.2368 -0.1389 
2.8879 -0.0855 
3.3743 0.1739 
3.7682 0.1765 
4.1410 0.0656 
4.5284 -0.1469 
4.8589 -0.3622 
4.9584 -0.3809 
5.0957 -0.0486 
5.1030 0.0323 
4.9766 0.1381 
5.1008 0.1037 
1.7397 -0.1585 
2.2919 -0.2352 
2.9192 -0.2892 
3.6293 -0.3233 
4.1272 -0.2700 
4.4981 -0.1845 
4.8186 -0.2026 
4.9927 -0.3389 

0.2187m/s 

0.06498 

FRAC DEV 

-0.06621 
-0.03052 
0.04902 
0.04474 
0.01559 

-0.03354 
-0.08054 
-0.08321 
-0.00963 
0.00630 
0.02700 
0.01993 

-0.10026 
-0.11439 
-0.10995 
-0.09779 
-0.06999 
-0.04277 
-0.04388 
-0.07282



TABLE A2.20 

CAR MOVING; 
DATA TO FUNCTION, 

Pr 
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RMS ABSOLUTE DEVIATION= 

RMS FRACTIONAL DEVIATION= 

DATA w 

rev/min 
922 

1332 
1574 
2074 
2186 
2564 
3092 
3374 
3904 
4104 
1016 
1330 
1560 
2012 
2262 
2764 
3074 
3390 
3918 
4052 
4424 
3742 
3274 
2686 
2232 
1912 

DATA U 

m/s 
2.1487 
2.9463 
3.6295 
4.2944 
4.5907 
5.3032 
5.5695 
5.4821 
5.7477 
6.4134 
223369 
2.8874 
3.6932 
4.3273 
4.6037 
4.9865 
Se1L55h 
5.4925 
5.6826 
5.9316 
6.1111 
5.0923 
Seo st 
4.7171 
4.5491 
4.1690 
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SECOND GEAR 
DEVIATION CALCULATION 

FN(w) ABS DEV. 
n/s n/s 

2.2601 -0.1114 
3.1059 -0.1597 
3.5565 0.0730 
4.3720 -0.0776 
4.5335 0.0572 
5.0454 0.2578 
5.5633 0.0063 
5.788L 6023070 
6.1078 -0.3601 
6.1969 0.2164 
2.4631 =0.1262 
3e1020  =-0.52147 
3.5314 0.1618 
4.2793 0.0479 
4.6387 -0.0350 
5.2458 -0.2594 
5.5474 -0.3924 
5.8007 -0.3082 
6.1145 -0.4319 
6.1752 -0.2436 
6.3116 -0.2005 
6.0239 -0..2316 
5.7138 =-0.1467 
5.1613 -0.4442 
4.5976 -0.0485 
4.1246 0.0442 

0.2290m/s 

0.04773 

FRAC DEV 

-0.05185 
-0.05419 
0.02012 

-0.01806 
0.01246 
0.04861 
0.00112 

-0.05601 
-0.06265 
0.03374 

-0.05399 
-0.07435 
0.04380 
0.01107 

-0.00760 
-0.05201 
-0.07611 
-0.05611 
-0.07601 
-0.04106 
~0.03281 
-0.03998 
-0.02636 
-0.09417 
-0.01066 
0.01061
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TABLE A2.21 

CAR MOVING; THIRD GEAR 
DATA TO FUNCTION, DEVIATION CALCULATION 

PT DATA w DATA U FN(w) ABS DEV. FRAC DEV 

rev/min n/s m/s m/s 
1 4202 8.3492 8.0884 0.2608 0.03124 
2 3972 8.1972 7.8367 0.3605 0.04398 
3 3646 8.1114 7.4572 0.6543 0.08066 
4 3404 6.9113 7.1542 -0.2429 -0.03514 
5 . 3072 6.1376 6.7037 -0.5661 -0.09224 
6 2774 5.7055 6.2608 -0.5553 -0.09733 
¢ 2460 5.1870 5.7506 -0.5636 -0.10866 
3 2156 4.7984 5.2112 -0.4128 -0.08602 
9 1846 4.1779 4.6128 -0.4349 -0.10410 

10 1522 3.4756 3.9335 <-0.4579 -0.13175 
ae 1296 3.4410 3.4265 0.0145 0.00421 
ne 974 2.7296 2.6566 0.0730 0.02676 
13 1294 3.7746 3.4219 0.3527 0.09344 
14 Losz 3.9976 3.9988 -0.0012 -0.00031 
15 2054 4.6617 5.0198 -0.35d1 -0.07681 
16 2324 5.6998 5.5149 0.1848 0.03243 
17 2558 6.4164 5.9148 0.5016 0.07817 
18 3126 7.1247 6.7800 0.3447 0.04838 

19 3314 7.0187 7.0363 -0.0176 -0.00250 

20 4056 7.3310 7.9299 -0.5989 -0.08170 
21 4242 8.0933 8.1311 -0.0377 -0.00466 
22 1350 3.6455 3.5501 0.0954 0.02616 

23 1622 4.4408 4.1492 0.2916 0.06567 

24 2026 4.6502 4.9663 -0.3161 -0.06798 

25 2224 Bei 519 5.3358 -0.1839 -0.03570 

26 2812 6.4950 6.3194 0.1756 0.02703 

27 3420 6.6442 7.1749 -0.5307 -0.07988 

28 3342 6.8344 7.0733 -0.2389 -0.03496 

29 4178 71.2387 8.0626 -0.8240 -0.11383 

30 4142 7.9167 8.0238 -0.1071 -0.01353 

oe 932 2.3369 2.5520 -0.2151 -0.09205 

32 1304 3.4702 3.4449 0.0253 0.00729 

33 1604 3.6880 4.1107 -0.4228 -0.11464 

34 1924 4.9856 4.7681 0.2175 0.04363 

35 2256 5.3781 5.3937 -0.0156 -0.00290 

36 2648 6.0483 6.0616 -0.0133 -0.00220 

RMS ABSOLUTE DEVIATION= 0.3648m/s 

RMS FRACTIONAL DEVIATION= 0.06738



TABLE A2.22 

CAR MOVING; 
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RMS ABSOLUTE DEVIATION= 

RMS FRACTIONAL DEVIATION= 

DATA w 
rev/min 

1358 
1628 
2050 
2326 
2748 
3384 
3358 
4200 
2392 
3418 
922 

1268 
1600 
1922 
2320 
2668 
3074 
3608 
4060 
4220 
3022 
3336 
3822 
4328 
2578 
2994 
Lie 
1546 
1984 
2180 
2420 
2870 
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FOURTH GEAR 
DATA TO FUNCTION, DEVIATION CALCULATION 

DATA U 
m/s 

4.5022 
4.6309 
6.0949 
5.8580 
7.0805 
8.0697 
8.7655 
9.9201 
6.1066 
8.2636 
2.8071 
329579 
4.9578 
6.0411 
6.2918 
Vs 3129 
7.7984 
8.3400 
7.3883 
9.8024 
7.2870 
9.8209 

11.1948 
10.5700 
729730 
8.2370 
5.4529 
4.7176 
5.4183 
5.8344 
569739 
8.2476 

FN(w) ABS DEV. 

m/s m/s 
4.1824 0.3198 
4.9154 -0.2845 
5.9973 0.0977 
6.6645 -0.8065 
726276 ~-0.5471 
8.9646 -0.8950 
8.9123 -0.1468 

10.5314 -0.6113 
6.8196 -0.7130 
9.0328 -0.7692 
2.9291 -0.1220 
3.9307 0.0068 
4.8409 0.1168 
5.6772 0.3639 
6.6503 -0.35386 
7.4500) =0.51372 
8.3285 ~-0.5302 
9.4083 -1.0683 

10.2710 =2.8527 
10.5684 -0.7660 
8.2190 -0.9320 
8.8679 0.9530 
9.8215 153733 

10.7676 ~-0.1976 
7.2476 0.3254 
S297 0.0773 
5.2932 0.1597 
4.6962 0.0214 
5.8331 -0.4148 
6.3154 -0.4810 
6.8848 -0.9109 
7.8940 0.3535 

0.7761m/s 

0.10358 

FRAC DEV 

0.07103 
-0.06145 
0.01602 

-0.13768 
-0.07727 
-0.11091 
-0.01675 
-0.06163 
-0.11676 
-0.09308 
-0.04345 
0.00172 
0.02357 
0.06024 

-0.05699 
-0.01876 
-0.06798 
-0.12810 
-0.39017 
-0.07815 
<0. 12791 
0.09703 
0.12267 

-0.01869 
0.04297 
0.00938 
0.02928 
0.00453 

-0.07656 
-0.08244 
-0.15248 
0.04287
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TABLE A2.23 

CAR MOVING; FIFTH GEAR 
DATA TO FUNCTION, DEVIATION CALCULATION 

PT DATA w DATA U FN(w) ABS DEV. FRAC DEV 

rev/min m/s m/s m/s 
2536 3.4045 8.1358 0.2687 0.03197 
2392 7.9763 7.7386 052377 0.02980 
2136 6.7717 7.0153 -0.2436 -0.03597 
2010 6.1330 6.6508 -0.5179 -0.08444 
1854 5.4452 6.1915 -0.7463 -0.13707 
1648 5.2074 5.5710 -0.3636 -0.06983 
1464 4.8079 5.0029 -0.1950 -0.04056 
1288 4.7227 4.4469 0.2757 0.05839 
3458 9.8631 10.5357 -0.6726 -0.06820 
3804 10.8114 11.3853 -0.5739 -0.05308 
1322 4.1858 4.5553 -0.3695 -0.08827 
1958 6.0408 6.4987 -0.4580 -0.07581 
2254 TnLsa5 7.3515 -0.2180 -0.03056 
2970 8.2932 9.2940 -1.0007 -0.12067 

“3064 9.4372 9.5377 -0.1005 -0.01065 
914 3.1977 3.2240 -0.0263 -0.00823 

1308 4.4216 4.5107 -0.0892 -0.02016 
1520 5.4771 Salise 0.2999 0.05475 
2052 6.4293 6.7730 -0.3436 -0.05345 
2262 7.0130 7.3741 -0.3612 -0.05150 
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RMS ABSOLUTE DEVIATION= 0.4356m/s 

RMS FRACTIONAL DEVIATION= 0.06507
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TABLE A2.24 

RADIATOR AIR VELUCITY CALCULATED FROM TESTS CARRIED OUT AT JAGUAR 
USING VANE ANEMOMETER 

(ANEMOMETER RESULI'S CORRECTED BY CALISRATION) 

ee ENGINE AIR 
SPEED VELOCITY 

1 572 1.23466 
2 Ba 1.94718 
3 1028 2.76658 
4 1272 3.55033 
5 1462 4.26286 
6 1752 5.06445 
7 203u 6.04418 
3 2200 6.32916 
3 2496 7.2911 
lo 660 1.48404 
i 730 2.12531 

AZ 1036 2.83783 
23 1742 5.18515 
l4 1950 6.11541 
i5 2212 6.54294 
16 2456 7.01172 
L? 620 1.44841 
18 814 2.05406 
19 1004 2.6597 
20 1266 3.55033 
21 1500 4.47062 
22 1756 5.15352 
23 2014 6.003850 
24 2146 0.40043 
25 2470 7.04735 

N.B. Viscous Coupling Locked 
Engine Speed in rev/min 
Air Velocity in m/s
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TABLE A2.25 

JAGUAR XJ6 RADLATOR (MARSi?UN RADIATORS SUPAPACK I) 
AIRSIDE PIBZOMETRIC PRESSURE DROP/VELOCITY DATA 

fin pitch 3.588mm atmospheric pressure 750.50mm(Hg) 
fin gauge 0.0564mm air temperature 24deg.C 
wo. of tubes rows 3 
test area length 0.36Um 
test area width 0.336m 
core thickness 49,53mm 
face area U.12i2m 2 
flow area 0.0979m°2 
equivalent diameter 3.584mm 
L/ve ratio 13.82 

   

volume flow delta P face ke £ 
rate velocity 

m°3/s mm 20 m/s 
0.0453 0.229 0.374 106 0.3228 
0.0310 0.229 0.421 119 0.2550 
0.0566 0.254 0.467 133 0.2295 
u.0ou4 0.279 0.498 142 0.2219 
0.0665 0.3u5 0.542 156 0.2001 
u.0706 U. 330 0.532 165 u.-ly922 
0.0748 0.330 0.617 175 0.1712 
0.0959 u.432 0579. 225 0.1361 
0.1173 0.584 0.908 215 0.1231 
v.14l6 0.513 1.168 332 0.1175 
0.1661 1.0106 1.371 389 0.1067 
0.1888 1.270 15558 442 0.1033 
Ne cdoe 12575 1.776 5u4 0.0985 
0.236U 1.303 1.947 553 0.0939 
0.2600 2.210 2.146 ous 0.0947 
0.28532 2.692 Zwaas 664 0.0973 
0.2997 2.390 2.473 702 0.0934 
0.3223 3.200 2.560 155 0.0893 
0.3186 3.200 2.029 746 0.0914 
0.3356 3.454 2.769 736 0.0839 
0.3577 3.861 2.952 338 0.0874 
0.3734 4.216 3-131 3389 0.0849 
0.3997 4.574 3.298 937 0.0843 
0.4262 5.182 seDk? 999 0.082 
0.4493 5.613 3.707 1053 0.03806 
0.4767 6.147 35933 1117 0.0754 
0.5173 7.163 4.293 1212 0.0776 
0.3460uU 7.374 4.5U0 1279 0.0765 
0.5715 3.687 4.716 1339 0.0771 
0.6211 9.906 S225 1455 0.0744 
0.6603 11.170 5.448 1547 0.0743 
0. 7117 12.827 5.873 1668 0.0734 
0.7513 13.343 6.200 1760 0.0711 
0.7882 15.240 6.3503 1847 0.u711 
0.7896 15.24u 6.515 1350 0.0709 
0.7929 15.3875 6.542 1858 0.0732 
0.3259 16.764 6.315 1935 0.0712 
0.3495 17.520 7.010 199t 0.0704 
0.3873 19.050 Leoee 2079 0.0701 
v.9014 19.812 7.438 21h? 0.0707 
0.9392 21.344 7.750 2201 0.0713 
0.9466 21.590 7.828 2223 0.0695 
0.9722 22.006 8.022 2273 0.0693 
1.0070 24.130 3.314 2361 U.0089 
1.043u 25.400 3.000 2444 U.0077
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TABLE A2.26 

JAGUAR &J6 CONDENSER(MARSTON RADIATOR’S SHIPLEY FINCOIL) 
AIRSIDE PIEZOMETRIC PRESSURE DROP/VELOCITY DATA 

fin pitch 2.309mm atmospheric pressure 750.55mm(Hg) 
fin gauge 0.152mm air temperature 23.5deg.c 
NO. Of tupes rows 2 

test area length 0.359m 
test area width 0.234m 
core thickness 44mm 
face area J.1020m"2 
flow area 0.0952m72 
eguivalent diameter 4.61é8nm 
L/pe ratio 9.53 

   

  

    

volume flow delta P face Re £ 
rate velocity 

m°3/s mmd 20 n/s 
0.0748 0.5038 0.733 233 0.3611 
0.0971 0.606 0.953 302 0.2883 
0.1416 1.210 iv339 441 0.2517 
Ont o1t 2.59 1.875 595 0.2347 
0.2388 3.277 Beske 743 0.2282 
U. 2636 4.521 2.782 333 0.2232 
0.2869 4.572 2.815 893 0.2206 
0. 3327 0.172 3.204 1036 0.2215 
0.3794 7.696 3.722 1131 0.2123 
u.4 9.652 4.199 1333 0.2092 
u.4 11.430 4.629 1469 0.2038 
0.5 13.343 L060 lo2l 0.2029 
Q. 16.510 5.550 1762 0.20438 
QO. 18.745 Og 1907 0.1984 

21.844 0.458 2050 0.2002 
24.892 6.981 2216 0.1952 
27.432 7.388 2345 0.1921 
3U.988 7.305 2496 OVLoTS 
ju. 460 7.370 24598 0.1361 
34.036 8.425 2074 0.1833 
38.100 3.365 2614 0.1653 
42.416 9.374 2215 0.1845 
46.482 9.560 312 0.1827 

1.0383 49.022 10.184 3232 0.1806 
1.0655 34.1u2 1u.647 3379 u.1824
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REFRIGERATION SYSTEM COMPONENTS 

MANUFACTURERS! DATA
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THE COMPUTER PROGRAM OF THE MATHEMATICAL MODEL OF THE 

REFRIGERATION SYSTEM, THE ENGINE, THE ENGINE COOLING SYSTEM, 

AND THE ROAD AND AUXILIARY BRAKE LOADS 

The program is listed as for the present vehicle at 750 rev/min engine speed 

in third gear. Refrigerant R12 is used and a 45/55 water antifreeze mixture as 

the engine coolant. 

The language used is Basic as adapted by Hewlett-Packard for use on their 

9830 calculator. Although listed here as one program, the capacity of the above 

machine is insufficient, having only 8k words of storage capacity, and the program 

must be split into two or more sections.
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The following functions are alternatives to represent 
  

water as the engine coolant.
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The following subroutines and functions are alternatives for a 

vapour compression system using refrigerant R22. 

In addition, the reducing factor of 0.9 in line 8112 reiating to the evaporator 

conductance should be omitted for R22.
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