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SUMMARY 

The object of the research is to predict and confirm 

the predicted steady performance of aerostatic compliant surface 

thrust bearings. The use of a compressible lubricant (air) 

instead of an incompressible lubricant (oil) forms a natural 

extension of previous work, on hydrostatic bearings [esi to 

[295] ” 

The design of the main experimental apparatus was 

assisted by the theory of Dowson and Taylor fees) modified 

for compressible lubricants, 

A subsidiary experimental apparatus to determine the 

bulk modulus of the elastomers to be used was also constructed 

and the design was similar in principle of operation to one 

described by Rightmire [*°5], 

Experiments were first performed on rigid bearings to 

develop the rig. A method of predicting load capacity was 

developed which was considerably simpler than previous theory 

['°®]. The theory lines agreed well with the experiments if 

the experimentally determined discharge coefficient and the 

roughness of bearing surfaces are taken into account. 

Experimental determination of elastomer properties, 

i.e. bulk modulus and elastic modulus, indicated that the 

former is several orders of magnitude larger than the latter. 

This means that the Poisson's ratio of these elastomers is very 

close to 0.5 and the governing elastic equations, obtained by



di 

extending Dowson's theory, had to be modified turther to 

account for nearly incompressible or completely incompressible 

elastomers. A mathematical model has therefore been established 

and an attempt has been made to solve the equations by finite 

difference methods. 

The performance of various elastomers bonded to one 

rigid surface with varying aspect ratio and hardness was 

compared with the performance of unbonded elastomers and to 

rigid bearing performance. It was discovered that the unbonded 

elastomers have inferior performance to bonded ones, but they 

are superior to rigid bearings and they also have advantages 

such as quick removal and easy exchange of damaged compliant 

layers.



Lad. 

"The philosopher may be delighted with 

the extent of his views, the artificer with the 

readiness of his hands, but let the one remember 

that without mechanical performance, profound 

speculation is but an idle dream, and the other 

that without theoretical prediction dexterity 

is little more than brute instinct." 

Dr. S. Johnson
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NOTATION 

Symbol Name Dimension 

AL Restrictor area ie 

A Cross sectional area of the oe 

P perspex tube 

Aa Parameter = 

A Bearing area 1? 

Cy Discharge coefficient — 

Ciske Elastic constants tensor F/L? or M/ (LT?) 

D Effective bearing diameter L 

E Elastic modulus F/L? or M/(LT 3) 

E} Equivalent elastic modulus F/L? or M/(uT 7) 
in Dowson's theory 

F Absolute film pressure squared F2/L" or w@/(tr * 

GC Modulus of elasticity in shear F/L? or M/(LT?) 

(one of the Lamé constants) 

H= BR Dimensionless film thickness ex 

° for compliant bearings 

H= BR Dimensionless film thickness — 

° for rigid bearings 

I Integral in the expression _— 
for load 

J Integer number Ad 

K Bulk modulus F/L? orM/ (LE?) 

L Bearing parameter in modified = 
Dowson's theory 

Lo Capillary length L 

M Mass flow rate FT/Lor M/T 

M Dimensionless mass flow = 

2 Dimensionless pressure -
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Symbol Name Dimension 

Po Dimensionless port pressure 7 

Be Dimensionless supply pressure - 

Q Volumetric flow L/P 

QF Volumetric flow at outer L3/Tt 
bearing radius Lo “ 

Q Volumetric flow at inlet 
P radius rp L°/T 

R Dimensionless radius = 

Re Dimensionless port radius = 

Re Gas constant for air L? (72K) 

Re Reynolds number oa 

s Stiffness F/L or M/T? 

s Dimensionless stiffness cA 

S, Elastomer shape factor ~- 

SF Surface roughness effects L 

T. Ambient and film air 3 
temperature K 

v Elastomer volume L? 

W Bearing load F or ML/T? 

w Dimensionless load - 

W Dimensionless load calcu- = 
c lated by error functions 

W Dimensionless load calcu- - 
2 lated by Sympson's Rule 

b Elastomer thickness in a L 
contact problem (fig.4) 

c Cylinder radius (fig.4) L 

his 
— Dimensionless apparent film . 

Pa thickness
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Symbol Name. Dimension 

eC) Coetficient of u in finite - 
difference expression 

c(h) Coefficient of w in finite ae 
difference expression 

d Diameter of the capillary 
or orifice L 

a, Outer bearing diameter L 

a, Inner diaméterof perspex tube L 

oe Radial strain a 

eo Circumferential strain - 

e, Axial strain a 

er9 Strain in r, 9 plane = 

eo, Strain in 0, z plane -- 

oe Strain in z, r plane a 

44 Strain in subscript notation = 

& Strain deviator =a 

ek (= e,+e,te,) volumetric strain - 

Acceleration _ 

Film thickness L 

ho Uniform bearing clearance as if 

there is no deformation of the 
elastomer L 

- Apparent film thickness L 

A Measured film thickness L 

A factor used to calculate 
compression characteristics of = 

elastomers 

k Capillary coefficient tL?
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Symbol Name Dimension 
2 

Py Gauge film pressure F/L? or M/(LT ) 

Pp Absolute film pressure F/L? or M/(LT?) 

Ps Ambient pressure = 

Bs Absolute port pressure y 

Be Absolute supply pressure " 

q Flow parameter a 

q, Volumetric flow per unit Bee 
length 

x Radial coordinate L 

Xp Port radius L 

Xo Outer bearing radius L 

t Elastomer thickness L 

Initial elastomer thickness L 

u Elastomer displacement in 
the radial direction L 

Uy Preload deflection (ref.(?1*]) .L 

Mean Mean flow velocity (= Q/A) L/T 

we Radial velocity of fluid : 

Vg Circumferential velocity " 
of fluid 

vy, Axial velocity of fluid 2 

Wg Load parameter — 

w Elastomer displacement in 
the axial direction L 

Zz Axial coordinate L 

AH, Real displacement of water 
level under given pressure L 
with elastomer in rig 

AH, Real displacement of water 
level under given pressure 
with dummy steel disc in rig L 

AH, (Tt) Theoretical displacement L 

AH) (a) Theoretical displacement L



  

  

Symbol Name Dimension 

AV, Volume change of the 3 
elastomer due to 
pressurization 

AV, Volume change of the steel L3 
disc 

Ar Radial increment L 

Az Axial increment L 

At Elastomer compression L 

6 Elastic compression of the 
bearing liner ‘ 
(from Dowson's theory ,ref, [?°"] L 

oF Dimensional deflection at exit L 
(ref [?19]) 

n Film viscosity FT/L? or M/ (LT) 

u Coefficient of friction _ 

» One of the Lamé constants F/L? or M/(LT 2) 

v Poisson's ratio = 

B Density of elastomer or fluid FT?/t" or m3 

o, Radial stress Wu? or M/ (LT?) 

8 Circumferential stress § 

oO, Axial stress 

Tre Shear stress in r, 6 plane Ye 

Toe Shear stress in 0, z plane = 

uo Shear stress in z, r plane iB 

Ti Stress in subscript notation W 

T. Stress deviator "
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iz INTRODUCTION 

Fluid film bearings operate witn a layer of liquid or 

gas effectively separating the bearing surfaces. The load 

capacity derived from the pressure within the lubricating 

film may be generated by the relative motion of the con- 

verging bearing surfaces, or by external pressurization, 

or by a combination of both actions. Friction forces arise 

from shearing of fluid between the bearing surfaces. 

The purpose of this work is to study the steady perform- 

ance of externally pressurized compliant thrust bearings 

lubricated by air. One of the surfaces of these bearings 

is compliant and the other is of rigid geometry. In order 

to see how these bearings behave when compared to bearings 

where both surfaces are rigid, Appendix I, "Rigid Bearing 

Theory" is presented. 

Because of the many engineering applications, circular- 

step thrust bearings are an important class of the thrust 

bearing tamily and this geometry has been chosen for investi- 

gations. Consider a circular thrust bearing geometry, fig.1, 

where a rigid bearing ot outside radius ry and inner radius 

Fa is shown. The lubricant is supplied to the film at 

pressure PS into the bearing clearance hy: Pressure distri-~ 

bution in the tilm follows a logarithmic law, see equation 

I - 8, Appendix I, falling to ambient pressure Py at outer 

radius ° 
Xo
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The load capacity of plane thrust bearings can be 

determined by summing all pressure forces in the bearing 

film within the bearing area, so that for circular thrust 

bearings: 
r 

w= an | prdr fy UL i (1) 

° 

In the bearing shown in fig. 1 the load capacity 

=. TD ° 

Wi =27 Pp, rdr + 27 prdr emt “Dp 2 o Pa 
° be 

P 

ze 

= qr? vat qr ameG ec TiasD 2 = ar, Py Be prdr o Pa (2) 

Pp 

i.e. it is determined by the pressure Pp at the inlet of 

the bearing film. 

Now consider a circular externally pressurized thrust 

bearing where the upper surface is compliant, see fig. 2. 

Suppose that the same pressure Po is admitted to the bearing 

clearance with the mean value hy the same as the rigid film 

thickness. Due to the compliant surface, the thickness of the 

film varies with film pressure and thus with radius. The film 

is largest where the largest pressure (e,) exists. 

The compliance of one of the bearing surfaces is achieved 

by elastomers which adhere to the rigid packing plate. These



materials are almost incompressible i.e. their volume is 

nearly constant whilst their profile changes as difterent 

inlet pressures are admitted to the tilm. As pressure p 

is admitted to the film, parts of the film, in the centre 

of the bearingrvare larger than the mean film thickness ho 

and parts of the film, on the periphery, are smaller than 

the mean. 

Consider that the mass flow through the compliant 

bearing, fig. 2 is the same as in the rigid bearing on 

fig. 1. For isothermal flow through the film: 

(3) 

From (I-3), Appendix I, volumetric flow at any radius r 

(rQ Sar rp) is given by 

d 
nL a> (pa) ns 

CSL aelaip meee (4) 

so that mass flow at radius r becomes: 

ee estate ee ee Ge eens 
xs RT ime, * ar ‘Ph (5) 

a. @ aa 

The minus sign in equations (4) and (5) signifies that the 

a 
dr 

are valid tor rigid and compliant bearings lubricated iso- 

pressure gradient (p*) is negative. Both (4) and (5 

thermically by a perfect gas. 

For given mass flow along the compliant bearing radius, 

it is clear trom equation (5) that at any radius where the 

film is smaller than hy (the rigid bearing film), the local



pressure gradient is larger than the corresponding rigid 

bearing pressure gradient. Therefore at the film exit, 

where the film is smaller than the corresponding rigid 

case, the pressure gradient is larger, and at entrance, 

where the film is larger than the corresponding rigid case, 

the pressure gradient is smaller, see fig. 2. 

These two boundary values of pressure gradient 

dictate a modified pressure distribution tor compliant 

bearings as shown in fig. 2. This is an improved pressure 

distribution compared with the rigid case as the area under 

the pressure curve is increased. The load capacity as before 

is given by 

Xo 
oa iz a 2 Wa TE EPS + an f prdr Tr, Pa (6) 

x 
Pp 

but now the integral of equation (6) has a larger value than 

the integral ot equation (2). Thus 

W2 > W, (7) 

i.e. for the same mass flow rate the load capacity of compliant 

bearings is superior to that of rigid bearings. This in turn 

implies that the compliant bearing can support the same load as 

the rigid bearing but with smaller flow rates. 

The superior pertormance as compared with rigid bearings 

is a characteristic feature of compliant bearings. This is the 

major reason for their investigation. The interest of researchers



and engineers in these bearings is also aroused by other 

factors such as: 

It some impurities are admitted accidently into the 

bearing clearance, this is not so critical as with rigid 

bearings, because they can be "accommodated" by the elastomer. 

Tolerances of both compliant and of rigid surfaces 

in compliant bearings need not be so small as when both 

surfaces are rigid. 

Consider a compliant thrust bearing geometry, fig. 3. 

Tt is convenient to take the origin of the co-ordinate system 

at the centre of the elastomer disc and at the point where 

the elastomer is touching its backing plate. This origin 

is then stationary relative to the elastomer and the backing 

plate. The experimental set-up is such that the z-axis 

points downwards. (It is more convenient in the theoretical 

analysis to turn the bearing upside down, so that the z-axis 

is pointing upwards, see chapter [[I). 

After this brief introduction about the compliant 

bearings, it is necessary to search the relevant literature 

and see what is already known about them so that the gaps in 

the knowledge can be discovered.
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ae REVIEW OF RELEVANT LITERATURE 

2.1 Rigid Bearings 

Although this research project does not directly 

concern rigid bearings, it is desirable to be aware of the 

theoretical background and performance of such bearings. 

A further understanding of compliant surtace bearings may 

be achieved by a knowledge of work done with rigid bearings. 

Fuller [1°!] gives a concise guide to hydrostatic 

and hydrodynamic lubrication and the many examples in his 

work give the reader a clear picture about both journal 

and thrust bearings lubricated by oil or air. His simple 

formula about the one-dimensional flow of viscous liquid 

through a slot is developed at the very peginning of the 

book and used repeatedly throughout. The formula states: 

Apb h? 
ge—2   

12n2k 

The width of slot bois assumed to be large compared to film 

thickness h so that one-dimensional flow Q results. A pressure 

difference Ap is the cause of flow Q of the lubricant of 

absolute viscosity n. 

When this equation is applied to a circular hydrostatic bearing 

of circumference 2mr and length dr there follows: 

g= - Spx 2nr x he 
a Ll2ndr



By integrating this expression with respect to r, the 

quantity of flow needed to maintain the film h in a circular 

bearing of outer radius Xr and inner radius - and using 

incompressible lubricant becomes: 

(Depa) mh® Q os Dd a 
(1) 

6n 2n (ro/* 5) 

In the same reference ['°!], Fuller shows that for a compressible 

lubricant, the volume rate of flow at inlet is 

  

& wh? Desepe? 
2p Pp a (2) 

6n & ic 2 n(ro/ =) Pp 

Equation (1) can be used for air "if the pressures involved are not greater 

than a few pounds per square inch. Where greater loads are carried and 

unit pressures are higher, the analysis must include the 

compressibility effect due to significant changes in volume 

as the air passes through the bearing, "so that equation 

(2) is then used. 

The incompressible flow assumption leads to an underprediction 

of the bearing performance. 

Elwell and Sternlicnt {1°2] analyse circular hydro- 

static thrust bearings both experimentally and theoretically 

using incompressible lubricants. Load carrying capacity, 

stiffness and flow rate are evaluated for three different types 

of flow restrictors. While equations (1) and (2) concern the 

bearing film only, equations in [ae consider a flow restrictor 

and bearing film together as a unique bearing element. A 

reasonable agreement between theory and experiments is achieved.
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Comolet ['°*] studies air flow between parallel flat 

plates and unlike the previous references includes inertia 

effects. Turbulence for longitudinal flow occurs at Reynolds 

number based on film thickness of about 1000 and for radial 

flow, laminar flow transforms to turbulent at Re = 550 approx, 

In radial flow, supersonic flow can sometimes exist over a 

part of a bearing film. This supersonic tlow transtorms to 

subsonic through a shock wave. Entrance length is a value of 

radius from which the developed formulae apply. This entrance 

length is smaller for smaller tilm thicknesses, 

Powell, Moye and Dwight [!°5]stuay both thrust and 

journal air bearings. A linear pressure distribution which 

gives an analytic solution for load capacity is assumed for 

thrust bearings. It is shown that tor the geometry chosen, 

validity of this assumption is satisfied. The author of 

this thesis cannot use this assumption because, for the 

geometry of the experiments, see Appendix I, errors in load 

Capacity are as high as 40-50%. Coefficients of discharge 

of the feed hole was measured experimentally with varying 

supply pressure and keeping the bearing load constant [105]. 

The agreement between load-clearance experiments and theory 

taking experimental discharge coefficients into account is 

good. A simple orifice feed hole of area Ay. = md*/4 (where 

d is the feed hole diameter) and annular feed hole AL = tdh 

(where h is the bearing clearance) are considered. 

Grassam and Powell in [!°*] ana (!°7] have given design 

Procedures of aerostatic thrust and journal bearings for 

Maximum stiffness assuming incompressible flow through the 

bearing element. Their design procedures utilate Kg, a gauge



et ee 

pressure ratio of film entry and supply pressures. 

Gross lace] gives a comprehensive theoretical analysis 

about hydrodynamic and hydrostatic compressible lubrication. 

Laminar viscous flow theory is initially used, but also 

inertia effects and supersonic effects, i.e. presence of 

shock waves within the bearing film is analysed. Gas bearing 

Design Manual of MTI fest consists of similar analysis, given 

in more detail and with a lot ot references. Tang and Gross 

[a5] considered orifice and inherently compensated gas thrust 

bearings. They presented design graphs of load capacity 

assuming laminar viscous flow in the bearing and taking 

compressibility of the gas into account. In particular Tang 

and Gross ['°*] derived a bearing load in terms of two error 

functions to evaluate expressions for stiffness, They 

assumed a constant value for the discharge coefficient of 

the restrictor, 

Dudgeon and Lowe fee ,[2?2] and (A 7" |Parso 

Considered both orifice and inherent compensation, They gave 

a design procedure for maximum stiffness assuming compressible 

flow through the bearing. Unlike Tang and Gross es} their 

value of empirical discharge coefficient is not constant but 

depends upon the ratio of film entry pressure to supply 

pressure (221. The discharge coefficient occurs in their 

expression for restrictor flow. 

The author of this report has determined the discharge 

Coefficient of an inherently compensated thrust bearing 

experimentally, see Chapter VI. Discharge coefficients of 

Other restrictors can be obtained in a similar manner. The
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expression for bearing load given by Gross [}°*] is also 

modified, It is shown, see Appendix I, that the load is 

given with sufficient accuracy by means of one error function 

only, In the same appendix the analytic expressions for 

bearing stiffness for all three types of restrictor are 

presented. Stiffness expressions for the orifice and the 

inherent restrictor take into account the variation of the 

coefficient of discharge with the ratio of film entry pressure 

to supply pressure, 

Various authors [1'*] to [*?°] have been concerned 

with inertia effects(with or without rotation)and super- 

sonic flow in aerostatic thrust bearings. It has been shown 

in chapter VI that Reynolds numbers rapidly decrease as 

bearing radius increases. These effects are therefore 

localised and can be neglected for the range of flow rates and 

film thicknesses investigated in this project Cole 

Lewis [*?1]shows that for incompressible fluids the 

flow and load characteristics can be conveniently expressed as 

non-dimensional parameters i.e. as shown in Appendix I, a flow 

parameter. 

Qn 
T= a 

Coe pi)h 

and load parameter 

Ww 

B(p ees) 

  

For uniform-film bearings using incompressible lubricants, 

load parameter Wa and flow parameter q are constant, They do



= As 

not depend upon film thickness but only upon bearing 

geometry. For the case ot a circular step bearing: 

  

Tv 

ae 
6£n(a,/d) 

ie [1-(d/a,) 7] 

g 2an(4./da) 

These parameters can be written in terms of bearing geometry 

only also for compressible lubricants as shown in section 

AI.4 of Appendix I. 

Stiffness, which is the change of applied load Wwith 

film thickness h, aH is another important bearing parameter. 

Stiffness depends on the type of compensating element. It is 

shown by Lewis ['?!] that tor journal bearings, stiffness can 

be expressed in terms of the Load and flow parameters w and 

q and their derivatives with respect to film thickness h. If 

the stiffness is equal to or less than zero, the shaft will 

not be able to support any load so that these derived expressicns 

show when the bearings are statically unstable. Ling Peaet; 

Malanoski and Loeb [*?*] and Lewis and Scouller [)="] are 

concerned with variations of stiffness depending upon the 

restrictor used. Wunsch and Scoles [***] show how stiffness 

can be improved by automatically varying the supply pressure 

as bearing load changes. 

In [176] Kilmister shows that two factors determine the 

load that the bearing will support: maximum pressure jin the 

film and the shape of pressure profile. The relationship
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between the load and the film (i.e. the stiffness) can be improved by 

adjusting the relationship between the thickness of the film and either the 

maximum fluid pressure or the shape of the pressure profile, It is shown 

that a certain degree of stiffness will be achieved if bearing 

surfaces can be arranged so that pockets will develop on the 

bearing surfaces as the load on the bearing is increased, 

This can be achieved by a metallic concave profile diaphragm 

in one of the bearing surfaces. The operation of this 

bearing is thus similar to operation of compliant surface 

bearings. 

In ['?7] a rectangular thrust bearing is analysed. 

Dimensionless stiffness is given as a function of dimensionless 

bearing parameter and it is shown that stiffness is a maximum 

when this parameter is slightly larger than 1. 

Etfects of non-parallel bearing surfaces are discussed 

tne? tie land [?2°}. oad and flow rates increase with 

tilt but stiffness can increase or decrease according to 

geometry [17°], 

The effects of surface roughness are discussed in 

faze] and eye Bailey (233) claims that the largest gaps 

in the separation of the surfaces dominate the flow, i.e. 

in case of scraped surfaces the hollows define the surface, 

rather than flat portions which may be ground and lapped, 

References [ee] and | show how a statistical roughness 

theory can be applied to various lubrication modes. Papers 

[*3*], [228] ana [1*®] also deal with surface roughness 

effects. 

The author of this report has shown that it is 

necessary to take the roughness of the bearing surfaces into
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account in describing the bearing pertormance, see chapter VI. 

2.2 Compliant Bearings 

Solutions for tilm pressure and load by Dowson and 

Taylor Fae are given as pressures and load for rigid 

bearings times a corresponding multiplying factor. Although 

this is a simplified theory, it has its merits of clearly 

showing how compliant bearing solutions depart from rigid 

bearing solutions. In this way this paper may be thought of 

as a crossing between rigid and compliant lubrication and as 

an introduction to compliant bearings. Their solution assumes 

that elastomer strain is only in the axial direction, ites! 

in the direction of the applied load. As circular sections 

are considered, the theory assumes axial symmetry and also 

that elastomer thickness is much smaller than the radius so 

that the elastic compression of the liner is given as 

18 

Se ae where 
E} 

Py is gauge film pressure, t is elastomer thickness and £2) ts 

an equivalent elastic modulus. This means that film pressure 

and elastomer deflection profiles are similar. 

Investigations [?°!] had been initiated because of an 

interest in animal joints. Those joints are a form ot compliant 

surface in which the rigid bone is lined with relatively soft 

articular cartilage. Experiments were done on a thrust bearing 

machine described by Coombs and Dowson [!19]. An important 

feature of this machine is a supporting spherical hydrostatic 

bearing connected to the lower thrust surface. Thus, the
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lower thrust surface aligns itself with the upper surface, 

Changes of film pressures with radius were measured for 

bearings lined with discs of nitrile and polyurethane 

rubbers and using oil as lubricant. Comparisons of experi- 

mental pressure profiles with rigid theory showed an improved 

bearing performance, i.e. increased load capacity. 

Dowson's and Taylor's theory [?°1] breaks down for a 

completely compliant elastomer with Poisson's ratio of 0.5. 

In the author's closure ot [?°1], Dowson and Taylor have 

shown that a column model approximation (which is basically 

their theory) agrees well with Castelli's et al theory for 

Poisson's ratio values of up to 0.45, 

Subsequently, Castelli et al [?°*] developed a theory 

which is not only suitable for lower values of Poisson's 

ratio but also for values near to completely incompressible 

Case including 0.5. 

In their theory, if the rubber is deflected due to the 

film pressure in the central region of a thrust bearing, radial 

Strain which was neglected in feo will displace this volume 

towards the edges of the bearing. There may be “an undershoot" 

and "an overshoot" along the bearing peace Apart from [ee 

this theory is also described in [?°*], [?°*], [295] ana [2°°]. 

Interests in experiments [?9*],[?°9], (Fo ande [253] 

was aroused by initial tests with plastics like nylon and ptfe. 

When used on journal bearings, coefficient of friction 

appeared to be very low even though the oil flow to bearings 

was very small, This low coetficient of friction indicated
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that fluid film lubrication was achieved, Rigid bearings of 

the same geometry would have required much higher flow rates 

for similar coefficients of friction. 

The theory developed at Columbia University distinguishes 

between "finite" and "infinite" elastomers, According to 

feo] in the case of thrust bearings the boundary conditions 

for "infinite" elastomer case will be satisfied in practice 

if the elastomer extends about three to five elastomer thick- 

nesses beyond the corresponding rigid mating bearing surface. 

Experiments of [7°97] were done on a thrust bearing where the 

diameter of a rigid lower plate was 101.6mm. and upper 

compliant discs were 127mm dia. Neoprene rubbers with thick- 

nesses 3,18mm, 4.87mm and 9.47mm were used. Whilst the first 

two cases can be taken as "infinite", the third thickness does 

not satisfy the empirical requirement of [?°7], although it 

was reported as an infinite case. In [?°*]entrance effects 

are neglected and the film entry pressure is taken to be the 

Measured supply pressure. 

In [7°5] an improved version of the test rig is reported 

which allows measurements ot the film entry pressure and film 

thickness. In both [?°?] and [?°5] tests are arranged in 

order of increasing Compliance - from the thinnest specimen 

of the hardest rubber to the thickest specimen of the softest 

rubber. In the case of [*°5] discs of butadiene acrylnitrile 

(paracril) were used both as "finite" and "infinite" cases. 

In [7°?] radial pressure distribution, supply pressure, average 

oil temperature and flow rate were recorded. These results 

showed better load capacity when compared to the prediction 

of rigid bearing theory. They also related the load
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capacity with thickness and hardness of the compliant layer, 

the inverse dependence of load on flow rate and the dependence 

of pressure profile on recess pressure. Reference [?°5] shows 

both experimentally and theoretically better load capacity for 

the 'infinite' case. For a given recess (port) pressure both 

bearings carry several times more load than the equivalent 

rigid bearing. The oil flow rate is reported to be less than 

for an equivalently loaded rigid bearing. For bearings fed 

with oil, temperature effects are important. Performance of 

these bearings depends on the elastomer thermal expansion, 

change of the characteristic modulus of the elastomer and 

change of oil viscosity. 

In the case of gas compliant lubrication [22] 

theory showed that for constant recess pressure there is an 

increased load capacity of compressible films compared to 

incompressible films similarly as with rigid bearings. Also, 

this is because the gas behaves as a secondary elastomer, 

enhancing the beneficial effects derived from the compliant 

bearing itself. 

References [?°*] and [?°°] develop theoretical 

solutions for the infinite width slider and infinite length 

journal bearing. The governing fluid-tilm equation used is 

the incompressible form of the Reynolds equation given in P22] 
and ['**]. the elastomer is defined as a linearly elastic 

homogeneous isotropic body characterized py equations of motion 

in terms of displacements [?°*] and the equations of stress 

equilibrium and a linear viscoelastic stress-strain relation 

beets In both cases body forces are neglected,



= 19) = 

According to [*°*] a three element linear elastic 

model shown in the sketch below, is accurate for elastomers 

i os ter such as rubbers. This model is also known as a three-parame 

solid ['']. 

  

Investigations[?!°] ang [??") were sét up in oraar 
to prove experimentally theory [eo ele Theory [?°°] does not 
Say anything about the effect of compensating elements at 
the entrance to the bearing film, and subsequently Lowe's 
experiments were performed on an inherently compensated 
bearing. The diameter of the bearing inlet hole was 6.35mm 
and the outside diameter was 101.6mm which corresponds to a
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radius ratio of 0.0625. This is one of the radius ratios 

investigated by Castelli and Pirvics fee S | theoretically. 

Pressure tappings were very near to the inlet hole in order 

to establish the pressures immediately after the entrance to 

the clearance space, The resulting pressure distribution 

(spaced within lmm from the edge of the inlet hole) showed 

a pressure depression similar in shape as with rigid bearings 

[**?] and maybe smaller in magnitude. The pressure ratio at 

the edge of the inlet was than extrapolated from those 

pressure readings from the outer tappings where there were no 

Pressure depressions. The film static pressure immediately 

at the entry to the bearing film (after the inherent ‘curtain!’ 

area of 2mrph) represents the theoretical recess pressure 

of reference [?°5], 

In his experiments Lowe used natural rubber discs 

with three hardnesses and four thicknesses. 

Lowe's radius/thickness ratios closely corresponded to those 

of reference [°°]. Lowe has showed that there is a reasonable 

agreement between theory and experiments at low values of the 

equivalent thickness whereas a departure occurred at larger 

equivalent film thicknesses. 

Pneumatic hammer instability was also reported by Lowe 

who showed that the region of stable operation is enlarged when 

the elastomer becomes thinner and harder, i.e. when the 

behaviour of compliant bearings approaches the behaviour of 

inherently compensated rigid bearings.
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It was generally concluded [?'°] and [?!1] that the 

load capacity increases with supply pressure and with elastomer 

thickness and decreases with increasing elastomer hardness. 

When compared to rigid bearings not only is the load capacity 

increased but the stiffness remains essentially constant which 

is not the case with rigid bearings. The tlowrates, however, 

are higher than with corresponding rigid bearings. There- 

fore there are two reasons for operating these bearings at 

low clearances: the first is small flow rates, about the 

same or slightly higher than rigid bearings and second is 

that at small clearances stiffness is about the same as for 

large clearances, whereas for rigid thrust bearings stiffness 

@pproaches zero as film thickness approaches zero. Lowe has 

compared flow rates against film thickness at the same supply 

Pressures as rigid bearings and he found that they are higher 

for compliant bearings. 

Lowe has plotted these flow rates against the apparent 

Clearance, by using the original elastomer thickness in an 

unstressed state, The upper or moving bearing element contains 

film thickness probes outside the bearing area, and they 

measure distances to parts of the lower rigid bearing element, 

also outside the bearing area, In this way the measured 

film thickness is an apparent value and it represents the 

clearance between the lower thrust pad and the plane of the 

undeflected elastomer surface. This apparent value of film 

thickness is taken to be positive if the deflection of the 

elastomer is smaller than the mean film thickness, and the 

apparent value of film thickness is taken to be negative if 

the deflection of the elastomer is greater than the mean 

film thickness,



= 920 = 

In their paper (ear Lou and Harman have analysed 

surface roughness effects in compliant bearing both theoretically 

and experimentally. They have considered a square slider 

bearing with a small round centre recess (port). In their 

analysis tilm thickness consists of three parts: the first 

is nominal film thickness assuming both surfaces are smooth 

and rigid, the second the film thickness contribution resul- 

ting from the deflection of the compliant surface and the 

third is contribution from surface roughness. The contribution 

from the deflection of compliant surface is taken to be 

Ey x p(x,y) where t is the elastomer thickness in the un- 

stressed state, p(x,y) is the film pressure and E! is the 

equivalent elastic modules. This modulus can be taken to be 

equal to the average slope of the stress-strain curve of the 

compliant material for a particular bearing. The contribution 

of surface roughness to the film thickness is given by a 

Yandom variable considered to be of approximately Gaussian 

distribution. This random variable has negligible effect on 

pressure gradients in the Reynolds equation because the 

roughness is considered to be uniform and two-dimensional. 

Bulges of this two-dimensional roughness offer almost no 

resistance to flow so that pressure gradients are hardly 

affected. The authors indicate however that one-dimensional 

roughness offers large flow resistances so that pressure 

gradients might be affected. Christensen and Ténder [1?°] 

have simplified the problem of random analysis through the 

introduction of polynomial distribution and because of its 

simplicity their formula is used here. The analysis is based 

on isoviscous and incompressible lubricants although air
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is used as a lubricant in experiments. Gauge supply pressure 

is low (0.85 bar) and according to (Ao) this is probably 

justified, see the beginning of this chapter, 

The purpose of investigations [222] is to study a 

potential application of compliant bearings where the rigid 

mating surface can have certain uneveness for example in the 

transportation of unmachined castings. Tne authors give 

the example of a guideway that might be used for high speed 

ground transportation vehicles. The author of this thesis 

has noted that the authors of reference [*!?]have taken only 

a rigid bearing member to be rough - a compliant member is 

assumed to be smooth. 

The purpose of investigations [?!*] and [?!*] is to 

develop the "self-caging" spherical bearing for directional 

Syroscopes. Caging refers to the ability of the compliant 

spherical bearing to hold the rotor when the hydrostatic 

bearing pressure is removed. 

It was found that it is better to bond the elastomers 

to the rotating bearing element because of the undesirable 

bearing squeal-high pitched audible frequency - if the 

elastomer is bonded to the stator. As the elastomer is 

rotating and the load is stationary, an observer positioned 

on the elastomer would experience a relative load movement. 

Castelli and Pirvics [?°*] and fos have investigated these 

situations theoretically. 

In investigations [??*] and [?!"] silicone rubbers of 

various hardnesses and thicknesses between 0.5 and 1.5mm, are 

used. Rotor speeds of 40000 rpm are reported. One test rig
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was designed tostudy gyroscope rotors moulded with silicone 

rubber, The second test rig provided characteristics of 

pressure film and flow of silicone rubber, 

Theoretically coupled elasticity and hydrodynamic, both 

incompressible and compressible equations are solved for a 

Plane externally pressurized bearing consisting of a flat 

elastomer bonded to a semi-infinite rigid body. The lift-off 

Pressure is determined tor any given preload deflection, 

Pressure and deflection profiles are obtained experimentally 

and theoretically. This lift-off pressure is sensitive to 

various values of Poisson's ratio. It is shown that if the 

ratio of a characteristic dimension of a rigid surface (say 

radius in ea of circular thrust bearings) and the elastomer 

thickness is large, then a simple algebraic relationship 

determines the lift-off pressure, This relationship is: 

TEU 
e 
  PP 

eae 2t(1-v?) 6, 

Also for this case the deflection at the centre is twice that 

at the edge, 

Pressure profiles within the flat bearing were found 

to be highly flattened near the supply port and steep at the 

bearing edge when the compliant material was soft, the supply 

Pressure was high or the initial bearing gap was small. Dis- 

Placements were found to contain large dips near the bearing 

edge and bulges outside it for these same conditions. It 

appears that large pressure gradients near the bearing edge 

correspond to large displacement gradients at these places. 

The highest initial gradients occur when the initial gap is
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zero or negative (i.e. preloaded elastomers). 

The authors of references [71°], [7!"] ana [?!*]in 

the conclusion about the future work, see a need to investigate 

the unbonded elastomers because of the ease ot replacement of 

the damaged elastomer layers. This author has tested a 

number of unbonded elastomers and compared them with the 

performance of bonded elastomers and also with the rigid 

bearing theory, see chapter VII. 

References [715] and [?!®] deal with bearings where 

the lubricant is in contact with metal surfaces only. Anderson 

[275] describes a foil sector shaped pad thrust bearing. This 

bearing does not contain any elastomers and it is analysed 

as a square slider bearing. Dayson [eu describes a stepped 

sliding thrust bearing where the step is mounted on an elastic 

foundation so that step height can be changed according to 

varying loading conditions. Anderson's and Dayson's bearings 

are similar to a bearing described by Kilmister ['?°] where 

the compliance effect of the bearing was achieved by a metallic 

concave profile diaphragm and the bearing did not contain any 

elastomers. This author has, however, chosen to study bearings 

lined with various elastomers. 

Reference [?'7] refers to a bonded assembly of elastor - 

meric material and interspersed metal shims which support high 

compression loads and allow much more displacement in shear. 

Stiffness in compression can be up to 1000 times the stiffness 

in shear. These assemblies are successfully applied to heli- 

copter rotor systems where oscillating motion is required. 

This reference is not related to the author's work but is given
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here for completion of the compliant bearing references 

read by the author. 

2.3° Elastomer Properties 

From compliant bearing references it can be seen that 

authors have assumed small deformations of the elastomer, 

i.e. the external forces producing deformation do not exceed 

a certain limit. With the removal of the forces, deformations 

disappear completely i.e. elastomers undergoing external 

loading and pressurization in bearings are perfectly elastic. 

They are also homogeneous (the smallest element of the 

elastomer possesses the same physical properties as the bulk 

of the elastomer) and isotropic (properties are the same in 

all directions), There is only one exception among the 

compliant bearing references when Pirvics and Castelli (e8] 

looked theoretically into the viscoelastic effects of the 

compliant material. 

Materials with the above assumptions are described in 

Many books and papers concerning the theory of elasticity, 

for example, [*°'], [#°?] and [?°3]. From these references 

elastic materials are described by five elastic constants 

or properties, which are interrelated. They are: modulus 

of elasticity (or Young's modulus) E, bulk modulus K, Lamé's 

constants, \} and G and Poisson's ratio v. These five constants 

are interrelated in such a way that if any two constants are 

known, the other three can be determined. 

Looking through various equations of compliant bearing 

references it can be seen that in order to calculate pressure 

distribution and load capacity of such bearings, two elastic
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constants must be known. ‘These two constants are usually X and 

G, E and vy, or K and B. | The study (es) was undertaken in 

order to determine the shape of filler particles on properties 

of compounded rubber. Test specimens were mounted in a suitable 

stretching frame where elongations up to 300% could be achieved. 

Poisson's ratio was calculated with respect to two lateral 

dimensions and from the change of volume measurements. It 

was found that volumetric Poisson's ratio is approximately 

the average value between two lateral Poisson's ratios for 

a given rubber. 11 three values of Poisson's ratio 

decreased with increasing strain. Poisson's ratio calcu- 

lated from volumetric measurements was about 0.5 for strains 

up to 50%. 

Higginson ee quotes values of Poisson's ratio about 

0.3 for metals, about 0.35 for perspex and in the range of 

0.4 to 0.5 for rubbers. In the discussion of [?°?] castet14 

and Rightmire quote values of Poisson's ratio in the range 

0.47 to 0.50 for elastomers of engineering interest. It is 

also shown [?°'], [#92], [?°*] ana [2°5] that bearing per- 

formance is sensitive to small changes of this elastomer 

property, particularly when its value is close to O25. 

Detailed investigation of this property [2°5] revealed that 

its range is between 0.495 and 0.50 for various rubbers. Nylon 

sample value was however ) = 0.417. 

Rightmire [*°5] has measured bulk modulus K and shear 

modulus G of various elastomers for small strains so that 

Poisson's ratio could be calculated. He has also done a 

Comprehensive error analysis of his measurements. Lowe ieee} 

and [?1"] has used Rightmire's results of elastomer properties
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when comparing his own experimental results with Castelli's 

theory. 

Testing of physical properties of rubber is described 

in British and American Standards [*°9] ana [°!°]. these 

tests are specified at high strains, so it is doubtful it 

they are suitable for evaluating rubber properties as encoun- 

tered in compliant bearings. 

References [*°°], [*°7] ana [?°*] give a lot of 

information about elastomer properties,about applications and 

general data about various elastomers. Theoretical Gecivacion 

of compression characteristics of bonded rubber blocks as 

found in [27] and (ee3] is quite useful, when assessing shape 

factors of rubbers in a given situation. Because rubbers are 

almost incompressible, the compression characteristics are not 

the same if one rubber disc is bonded to metal by one side, 

or by both sides or, if it is not bonded at all. Also 

compression characteristics of an unbonded rubber disc, when 

Pressed between two metal plates, depend upon the amount of 

friction between rubber and metal, They depend upon the 

extent by which rubber is allowed to flow sideways when com- 

Pressed, 

Reference [*°5] determines bulk modulus and shear 

modulus of elastomers and references [311] ana [°1?] describe 

the determination of Young's modulus. The theory of the latter 

two papers is a modified theory of contacts originally given 

by Hertz [?2]. 

Drutowski [?!?] and Finkin {°??] explain that hardness 

is the ability of material to sustain deformation. When talking
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of metals this deformation is permanent i.e. plastic flow 

occurs, but in ae of elastomers it is an elastic deformation. 

Finkin states that rubber hardness depends upon a more funda- 

mental property Young's modulus, and he develops a formula for 

Young's modulus in terms of either indentor penetration or 

contact radius of a spherical indentor, Herts's theory 

assumes an infinite depth and therefore his equations do not 

include elastomer thickness whilst equations of Finkin do, 

2.4 ° Areas ot Investigation 

The preceding account is a brief guide to the available 

knowledge of compliant lubrication. Lines of investigation 

in this report should include something that has not been 

done so far, 

It is noticed that so far theoretical and experimental 

work on compliant bearings has been done for steady-state 

operation. Time-dependent solutions are an extension to this 

work. These sdlutions exist for rigid bearings, see references 

eee), 128s] 2ana [*3*], Dynamic work with compliant 
bearings is a large new area of investigation, which apart 

from dynamic performance of these bearings should also include 

investigations of elastomer properties. Generally the work 

reported here is limited to steady-state operation though in 

chapter VIII (Future work) one set of results of elastomer 

Properties under dynamic conditions is included, But dynamic 

performance of these bearings remains to be studied, 

At the beginning of this research project the steady 

performance of compliant bearings lub ricated by a compressible
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fluid had not been done and this was considered to be a 

major new area of investigation. Previous workers [?°'] to 

(22) have investigated incompressible lubricants only. 

In the theory of Castelli the governing equations 

are formulated in terms of a stress function, This formula- 

tion allows all values of Poisson's ratio to be used including 

when v approaches 0.5. This theory is analytic but the 

resulting integrals are solved numerically. 

At the beginning of this project it was hoped to 

analyse aerostatic thrust bearings under dynamic conditions. 

It was thought that a direct numerical solution (rather than 

semi-analytic, semi-numerical) is easrer for the 

mathematical model under dynamic conditions. 

For the direct numerical solution the governing 

elastic equations are best expressed in terms of displacements, 

See chapter III and appendices II and III. However, because 

of the (1-2v) appearing in this formulation, a modified form 

of these equations is required when Poisson's ratio approaches 

0.5, see chapter III and Appendix III. 

investigations of elastomer properties, [*°5] and 

chapter IV of this thesis have revealed that these materials 

are almost incompressible and that these modified forms of 

elastic equations are of engineering interest. 

A first step in the direct numerical solution is to 

consider steady state operation and completely incompressible 

elastomers when v = 0.5.
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It was decided to perform some experiments with rigid 

bearings in order to develop the experimental apparatus. Once 

confidence with the rig had been gained, experiments with the 

compliant bearings were to be performed, 

So far in the compliant bearing literature elastomers 

have been bonded to a rigid backing. In this project tests 

have been carried out with unbonded elastomers. This setup 

is attractive because damaged elastomer layers can be easily 

and quickly replaced. Although this advantage may not be 

very significant for a simple circular thrust bearing geometry, 

it can be more significant for more complex geometries such 

as spherical compliant bearings [?!"]anda [?!°]. 

It is noticed that throughout the experiments with 

Compliant bearings, elastomer aspect ratio was varied by 

varying elastomer thickness. In this report elastomers of 

various thicknesses were tested, but also elastomer diameter 

was varied for a given thickness. The range of elastomers 

investigated was extended to include some plastic material.
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Two basic constituents of the theoretical analysis are 

an elasticity problem and a fluid problem, The fluid problem 

can be treated as a boundary condition of the elasticity 

problem, 

Circular thrust bearings and journal bearings are most 

important from an engineering point of view. For both geametries 

the elasticity problem is described by well-known general 

elasticity equations in cylindrical polar coordinates. They 

are [302] 2 
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It is a very elaborate task to solve this three-dimen- 

sional problem, In order to simplify it, various assumptions are 

made. The experimental setup of the project is a dominant 

factor in determining any departures and simplifications from 

equations (1). 

The main points to be considered in order to arrive at 

simplifying assumptions are:
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1) Whether this is a dynamic or a steady-state problem. 

2) Whether body forces can be neglected. 

3) Axial symmetry in thrust bearing analysis. 

4) Whether the loading arrangement in the bearing is such 

that plane strain can be assumed. 

5) Whether there are any assumptions in the elastomer 

Properties that can simplify equations (1). 

The project is concerned with steady state work, so that 

inertia forces, on the left hand side of equations (1), are 

equal to zero. 

The project is concerned with a thrust bearing of 

circular geometry and the experimental setup is such that there 

is no rotation, Furthermore, bearing load is one or two orders 

of magnitude greater than the elastomer weight. This means that 

body forces (the last terms on the right hand side of equations 

(1)) can safely be neglected. 

Axial symmetry is a sound assumption for circular 

compliant surface thrust bearings in which tilt is eliminated. 

A steady state axisymmetric situation in a solid of revolution 

and without body forces has been analyzed by the Columbia group 

[202] to [207], and their experimental results as well as those 

of Lowe [210] ana [211] proved it to be a good mathematical model 

for circular compliant thrust bearings. 

With the first three points considered in order to 

arrive at the assumptions of a steady state axisymmetric situation 

in a solid of revolution and without body forces, equations (1)
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reduce to: 
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It is often advantageous to express equations (2) in 

terms of displacements. In order to do this, firstly one can 

write general equations of strains in terms of displacements... 

After that by Hooke's law, stresses are expressed in terms of 

strains and then in terms of displacements so that the stresses 

in equations (2) can be substituted by displacements. 

Strains in terms of displacements in cylindrical polar 

Coordinates can be written as [302]: 
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For axial symmetry, equations (3) reduce to: 
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Hooke's law follows from equations (II-9), 

Appendix II : 
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Taking into account equation (4), stresses in terms 

of displacements become:
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If strains in terms of stresses are desired, from 

equations (II-10) of Appendix II and taking account of (II-11): 
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Equation (7) written in full becomes: 
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Rather than in terms of Lamé constants dh and G, it is 

sometimes convenient to write (7) in terms of Young's modulus E 

and Poisson's ratio v. Taking into account equations (II=11),
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equation (7) can be written as: 
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Going back to equations (2) it is now possible to 

express the stresses therein in terms of displacements u and w, 

by means of equations (6). First OL is differentiated with 

respect to r, a, with respect to z and Tee both with respect to ~- 

© andsto 2. 
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so that the equations of equilibrium (2) in terms of 

displacements become : 
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Equations (11) can be written slightly differently 

as: 
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It can be seen that the assumptions of steady-state 

Operation, of body forces neglected and of axial symmetry 

reduce the general equation of equilibrium (1) into equations 

(2) in terms of stresses or equations (11) or (12) in terms 

of displacements. It is seen that these equations depend 

upon coordinates r and z and that both (11) and (12) contain 

displacements u and w. They are therefore coupled equations. 

In the plane strain situation (point four of assumptions), 

forces are applied at the boundary of a thin plate in the plane 

of the plate, see sketch. z 
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These forces are applied normally to the z-axis and are 

distributed uniformly along the plate thickness, 

If the dimension of the plate in the z-direction is 

large and the body is loaded by forces normal to and not 

varying with z, then any plane of such a body normal to the 

Z axis has got the same stress and strain distribution. This 

situation is described as plane strain. 

At this point it is convenient to mention that some 

authors [314 ] define plane strain as a state when the axial 

displacements in the z-direction are zero, whilst others 

include in this definition the condition when axial displace- 

Ments are uniform, If the axial displacements are uniform, 

this means that there is a uniform loading in the z-direction 

also. 

A plane strain situation for steady-state operation 

and neglecting body forces reduces equations (1). to: 
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The problem described by equations (13) is analyzed in 

[202], (2s9] [215] ana [220]. 

Incidentally Benjamin fees] used an axial wave number Ky 

defined by Michell ee Benjamin shows that when K=O, 

equations (1) reduce to equations (13). This is the first 

step in Benjamin's solution and it can be considered as a first
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approximation of the elasticity problem, 

Meijers [22°] examined the contact problem of a rigid 

cylinder against an elastic layer of thickness b, bonded to 

a rigid base, see fig. 4 . It is assumed that the Gylinder 

is long enough in the direction normal to the plane of tig.4 , 

It is also assumed that there is no friction between the 

cylinder and the elastomer layer. 

Theoretical solutions of Meijers concern various ratios 

of halt contact zone c and elastomer thickness b, They also 

include situations when c/b is very small and when c/b is very 

large. The condition that c/b +O means that the problem is 

near to "a circular disc on a half plane" state. 

The condition that c/b + <« means that the curvature is 

very smooth, almost plane, so that one can imagine a plane 

or a flat stamp in contact with the elastomer. 

In the experimental configuration of Gupta and Smith 

[+*] ana [2%], the ratio of c/b is large, and they have 

taken the condition of c/b+ « as a solution to their elasticity 

problem, 

Their papers concern the transient stage from a complete 

elastomer contact until the bearing lift-otf. Just betore 

the complete lift-off is achieved, a uniform pressure distri- 

bution exists in the bearing film(see fig. 5). This uniform 

pressure distribution means that the axial displacements are 

uniform, This situation can then be taken to belong to the 

class of plane strain problems, because the same stress and 

strain distribution exists in any plane of the elastomer
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parallel to the plane of contact, see £79.45 

If plane strain and axial symmetry is assumed, equations 

(13) reduce to radial equilibrium: 

ene epee = (14)   

Equation (14) is a starting point in the solution of 

Kinsman foals In his solution radial and circumterential 

strains e, and e, are given by the first two of equations 

(4). As equation (14) does not contain z, Kinsman's solution 

assumes that the radial displacement u is not a function of z. 

A possible experimental setup for such a theory is that the 

elastomer is not bonded to its backing and that it is allowed 

to move uniformly radially outwards. 

Dowson and Taylor [2°+] take radial and circumferential 

strains to be 

é) =e, =0 (15) 

With the axial stress cn equal to the gauge film 

pressure Pg! radial and circumferential stresses in Dowson 

and Taylor's theory reduce to: 

oe Sed (16) 

Now, axial displacement 6 is determined by the equation for the 

axial strain, the third equation of (10), as: 

Pp 
wie é eed: [2-25 | (17)
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It is seen that for values of Poisson's ratio approaching to 

v=0.5, the axial displacement in Dowson's and Taylor's 

solution approaches zero, no matter what the film pressure is. 

This is understandable because in this theory no allowance is 

made for radial displacements. When Poisson's ratio approaches 

0.5, elastomers become more and more incompressible, and as 

nothing is flowing radially outwards, notning will flow axially 

inwards either. 

Clearly, Downson's and Taylor's theory is not suitable 

for completely incompressible elastomers. As stated in the | 

literature survey, this theory can be used for Poisson's 

ratio values of up to 0.45,for example for bearings iined 

with soft metals. 

Rightmire [(y has shown that most engineering elasto- 

mers have the value of Poisson's ratio in the range of: 

O.4954<) y <0).5 (18) 

Equations for stress in terms of strains (II-y), 

Appendix II, are not suitable for these values of Poisson's 

Yatio because } becomes very large. For a typical value of 

elastomer shear modules G=7 bar, reported by Benjamin, Rightmire 

and Castelli [795], the following table gives an insight into 

the possible values of Lamd Constant 

  

v 0.4950 0.4975 0.4975 0.4999 

  

A/G 99 199 499 4999 

  

A 693 £393 3493 34993              



ea ae 

Such large values of i} when Poisson's ratio approaches 

0.5 are not desirable when a numerical solution of equations 

(11) or (12) is required because they can cause an overflow 

in the computer. Equations (11) and (12) have been developed 

by starting from (II-9), Appendix II for stresses in terms 

of strains. 

It is necessary to start from the modified form for 

the stress-strain law equation (III-9), Appendix III, and 

Gevelop new equations of the type (11) or (12). Written 

in full, equations (III-9), Appendix III becomes: 

oC = PT Cle, +e, + en) + 2Ge, 
es 8 

5 =P, Gl, te, te) + 2a, 

(19) 

cme epi Gle, + eg + a) + 2Ge, 

aot 2Ge,, 

te relationship 

If strain-displacement is now used, equation (4), 

stresses in terms of displacements become 

rs —ppeus 4 ou ow du oP Glaze + a + az) + 2655 

eee Ge fe gee a 
Op Pn eee et be TAGS (20) ° 

= riot u ow ow 
Core Pa Gise ete = ste a) + 2G o 

s ou ow cee G(s5 + ar)
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Substituting these values for stresses into the 

equations of equilibrium (2), the equations of equilibrium 

in terms of displacements become: 

    

9p 2 2 m o*u OW u a*u ee 
Bho as Giorz tr or 0 x2 + Fe?) ae 

(21) 

8p, 2 2 ™m ofw 1 3w ofw on 
Den ee Ger ror eae) TO 

or 

8P py E 37u ou u 37u 

or t + ort +r cE Ge + 5 ) = 2 

(22) 

2 2 8Pm : ye ("= = +) a 

az 2(1l+v) ox? ox Or a2 

Similarly, starting from (III-14) and using the 

condition (III-13), Appendix III, the equations for equilibrium 

in terms of displacements for an incompressible elastomer 

become: 

2 

Maen 5. (ate bo et) ars 
ox 3 oct eo ee e oz" 

(23) 

a /92 2 
Sa ses 

oz aN or od oz? 

Equations (22) are the general field equations for an 

axisymmetric compliant material for any value of Poisson's 

ratio v within its natural limits O< v < 0.5.
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Equations (23) establish the solution when the elastomer 

volume does not change, i.e. when v = 0.5. 

Boundary conditions of an axisymmetric solid of 

revolution specify either displacements or stresses at a 

particular boundary. Consider the arrangement of an incom- 

pressible solid of revolution as shown in fig. 6. 

Stresses are given as 

  

ee ou 
Op =) tmean * 2255 

( (24) 

or Ow. 

Sy = Thean ~ 26(3g + yp) 

= me 
ae Tnean + aS Yr 

(25) 

or 

: - 268 4 
% “mean 26 (55 ve oz 

%, = Tnean ~ ac ge S e \ 
r (26) 

| ow 
or o, Tear +126 oo 

= du ow. 
Tr, = S(GZ + 5) vad) 

Consider fig. 6. 

= On this boundary radial stress is zero and because this 

is a free surface, shear stress is also zero.
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ta Here axial stress o, is determined by the gauge 

film pressure P-P,: Shear stress Les is calculated 

from the requirement that the flow velocity is zero 

at z=t. Usual assumptions for the Reynolds equation, 

which is the governing equation for the film pressure 

distribution, are neglect of body and inertia forces 

and sometimes neglect of the presence of compressibility 

effects in the Navier-Sto kes equations of motion, from 

which Reynolds equation is derived, see Appendix I. 

Depending upon the flow conditions, some of these 

assumptions may not be true, see for example reference 

[140]. Velocity gradient, which figures in the expression 

for shear stress is also derived in Appendix I, 

Benjamin and Castelli [204] have shown that in the case 

of journal bearings shear stresses are negligible 

compared to normal stresses. Therefore as a first 

approximation these stresses can be taken to be equal 

to zero. 

EEE Because of axial symmetry, there is no radial dis- 

placement at r=0. 

Iv On this side there is no axial displacement, but 

depending whether the elastomer is free or bonded to 

its backing plate, there may or may not be some radial 

displacement. 

Dowson and Taylor have developed an approximate 

analytic solution for pressure distribution and bearing load. 

They have shown that if the elastic compression is small this 

analytic solution is satisfactory. Otherwise an iterative



=) 29) = 

procedure is used. 

Castelli et al have solved their compliant bearing prob- 

lem by means of Fourier and Hankel transforms. Initially, their 

method of solution is analytic, but the resulting integrals 

are then solved numerically. 

The author has attempted a numerical solution with 

the help of the subroutine "solution of Elliptic Partial 

Differential Equations" which is available at the University 

of Manchester Regional Computer Centre. This subroutine 

consists of 17 “sub-subroutines" out of which the user writes 

three for a particular problem. This subroutine is based 

upon finite central difference methods. 

The governing elastic equations are transformed into 

finite difference schemes with the help of the reference (18). 

Consider an incompressible material and assume that Pi, = const. 

Then from (23), the following equations are obtained: 

37u a du u 98h a7 
Fei eer Sze uence toca i 

(28) 

a2w 1 ow a2w 2 
or7 | tor * Bat a 

From (24) to (27) 

o © 
5 ee mean ju 

Coun G et ar 

0 €, 
8 mean u EEA ios eucen mea ind 
G G “ xr 

o Une ‘ (29) 
a! = mean + 2 ow 
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neighbouring points are h(i). 

Consider a point O and the four neighbouring points 

1, 2, 3 and 4), see fig. 6. 
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Then at any point O within the plane of the elastomer 

shown on tig. 6 displacements u and w can be expressed as: 

uy = o,(1)ur + ¢, (2) uate, (3) us } 

+ C,, (4) uate, (5) (32) 

We = c,(L)wite, (2)wate, (3)w3 

+ ¢,,(4) wate, (5) 

Coefficients ¢, () and c(h) where i = 1,4 depend 

upon h(i), Ar, Az. Coefficients c,, (5) and (5) apart from 

h(i), Ar and Az can also depend upon u, w, G and Py Sgn 

at boundaries.
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The film pressure p must satisty the Reynolds 

equation also. ‘his equation is given by equation (I-5), 

Appendix I which states 

4. [= $0) =0 (33) 

Equation (33) can be modified to read 

shit esi Ne dh Ot 9 a 
dr? dr h dr z 

The film thickness of equation (34) can be described 

as 

h=h.+w (35) 

where ho is a uniform film thickness without elastomer 

deformation. Now equation (34) can be expressed as 

a?F dF 3 dw ale 
fa ae | ee f+ E]-0 (36) 

A finite difference form of this equation can be 

taken to be equal to 

F(J+1) -2F (J) +F (J-1) + Edt) -F(J-1) 

Ar? 2ar 
x BRACK(J)=0 (37) 

so that pressure squared at any radial position r=(J-1)Ar 

is equal to:



3) = 

F(J) = F(J+1) (1+BRACK(J) x Ar/2)/2 + 

(38) 

+ F(d=1) (1-BRACK(J) x Ar/2)/2 

Here BRACK (J) is the term in the square bracket 

of equation (36). In finite central difterence form this 

term is equal to 

  

3 w(Jd+1)-w(J~-1) xf | 

BED) [ Ry + way ThE +s (39) 

Referring to figure (6) a flow diagram of the 

solution is shown in figure (7). 

The programme available at the Manchester Computer 

Centre is suitable for solving two dimensional second order 

elliptic partial differential equations with one variable. 

Within the elastomer field the governing equations 

have one variable only (either w or u) but at some boundaries 

two variables define the problem, 

The difficulty lies in modifying the programme to 

be used at the boundaries and according to the tlow chart 

of fig. 7. Sections 1, 2, and 3 of the flow chart have been 

written, see Appendix IV. Although these sections work 

individually, more programme development is needed that they 

work as a whole unit. 

Sections 1 and 2 are written in Fortran and section 

3 in Basic.
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IV EXPERIMENTAL ANALYSIS OF ELASTOMER PROPERTIES 

4.1 Basic relationships 

A literature survey has revealed that elastomers used 

in compliant bearings are taken to be perfectly elastic, 

homogeneous and isotropic, 

In developing stress strain relationships for bearing 

elastomers, Appendix II it is seen that for a large group of 

materials named Hookeanelastic solids, the stress tensor is 

proportional to the strain tensor, For these materials, there 

are in general 21 coefficients of proportionality or elastic 

constants, The number of elastic constants reduces to two 

only for perfectly elastic, homogeneous and isotropic materials, 

Stress in terms of strain, or vice versa, for these 

materials can therefore be expressed in terms of two elastic 

constants. If stress is expressed in terms of strain, Lamé 

constants 4. and G are normally used. see equation (I1-9), 

Appendix II, or equations (5), Chapter If , If strain is 

expressed in terms of stress, bulk modulus K and shear modules 

G can be used, see equation (II-10) , Appendix II, or Lamé 

constants and G can be used see equations (7) and (8), 

Chapter III } It is even more customary to write strain in 

terms of stress by means of elastic modulus E and Poisson's 

ratio v, as shown in equation (9) or (10) of Chapter III . 

Some of the more important relationships between } ,G,K,E and 

are given by equations (I-11), Appendix IT, 

In the discussion of Rightmite's paper [305], Dowson 

and Taylor have given relationships for evaluating Poisson's 

ratio by means of elastic modulus E, shear modulus G and bulk



Vins e se ipl 

a eoet 
Var 6K q) 

oe ee Ge 
Meee 2. 2K 

The first two of equation (1) follow from elastic 

relationships, some of which are given by equations (II-11) , 

Appendix II, whilst in evaluating the third of equations (1) 

it has been assumed that the value of Poisson's ratio is close 

to 0,5, Rightmire [305] has calculated Poisson's ratio by 

means of experimentally determined values of shear modulus G 

and bulk modulus K, The third of equations (1) is his first 

order solution and in his paper [305] he proved that this 

solution is accurate enough for the range of elastamer properties 

investigated, 

Poisson's ratio is not a property that can be measured 

directly, but it is calculated by means of other properties of 

the material, 

Rightmire has chosen to measure bulk modulus K and shear 

modulus G and then to calculate Poisson's ratio v, 

It is not practical to try and measure elastic modulus 

E and shear modulus G, because E and G are of the same order of 

Magnitude and this can result in large errors in Poisson's ratio 

Ny 

The author has chosen to measure experimentally the 

bulk modulus K and the elastic modulus R, Elastic modulus was



chosen rather than shear modulus . because it can be measured 

conveniently during the bearing tests, see Chapter NID; 

In order to make an estimate of the errors in Poisson's 

ratio vy, when working with the second of the equations (1), the 

following has been done 

The total differential of v can be written as 

av 
on eee (2) 

When equation (2) is applied to the second equation 

of QL 

Sede es =z Di CK AE + G2 AK 

which can be written as 

irs a ae ee 
Ne ewe Eines 

  (3) ak
 

From equation (II-11) , Appendix II 

2 
E 1-2v 

and when this result is substituted into equation (3), this 

reduces to 

BS eee eA ety oA a Sy 1) “r+ Gy) (4) 

where ae a and a ‘represent errors of v, E and K respectively, 

It is seen that for the range of Poissonts ratios for 

elastomers 0,495 <¢ vs 0,50, the following can be concluded 

Fox V = 0,5, ae O¥ £,e, there is no error for all
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possible errors in measuring elastic modulus E or bulk modulus 

K, 

If the true yalue of v = 0,495, and supposing that the 

errors in determining E and K are 0,10 and 0,20 respectively, 

then the error in calculating Poisson's ratio becomes 

we -—0,01 x 0,10 + 0,01 x 0,020 = 

=—0,001 + 0,002 = 90,001 

It is shown that even for the relatively large errors 

of 10% and 20% in E and K, the error in Poisson's ratio is 

only 0,1%, 

If the first of the equations (1) was considered and if 

similar analysis was performed, it can be shown that the 

resulting equation of relative errors is 

dy __ (l+y) AE, (14+v) AG ae ele eh oye re (5) 

For true value of v=0,5 and for ae = 0,10 and = = 

0,20, the error in Poisson's ratio is as high as 30%, 

Therefore the use of the second of equations (1) is 

justified, 

4,2 Bulk modulus evaluation 

For a body subjected to hydrostatic pressure and from 

equation (IF 8), Appendix I bulk modulus is given by 

K = oe (6)
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V 
where e))= av is volumetric strain. By knowing the 

pressure p to which the elastomer sample is subjected and 

by knowing the volume change incurred, the bulk modulus K 

is obtained. 

An experimental apparatus, to measure volumetric strain 

and pressure, which is very similar in principle of operation 

to that of G.K. Rightmire [305] has been developed in the 

University workshops, see fig. 8 and photograph I . 

A perspex tube of 6.35 mm. nominal inside diameter is 

"'welded'to PVC adaptors. This tube-adaptor assembly is then 

connected to a container where the elastomer disc is placed. 

The container with its cover is shown in photograph Il. 

The container consists of two parts bolted together and 

sealed with an 'O'ring. The upper part has a vent valve 

incorporated in its design and this valve is sealed with a 

"DOWTY" seal. The lower PVC adaptor of the perspex tube is 

sealed with an "0" ring against the top steel part of the 

container. The perspex tube-adaptors assembly is secured 

to the container by means of a steel adaptor bolted to the 

upper part of the container. 

Water coloured with red ink is used as a working liquid 

in this bulk modulus apparatus. Both the cavity where the 

elastomer disc is placed and about 3/4 of the height of the 

perspex tube are filled with this liquid. The vent valve in 

the upper part of the container is used to eliminate air 

bubbles trapped by the working liquid during filling. In his 

apparatus Rightmire [305] has used mercury, but water coloured 

with red ink is preferred for safety and sensitivity.
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Once filled, the perspex tube is pressurized by 

nitrogen up to 27.5 bar through the upper PVC adaptor. 

Differences of the water levels are read on the graduation 

scale of perspex tube. As the whole bulk modulus rig expands 

under pressure and as water slightly compresses, it is 

necessary to calibrate the rig using a disc made of a material 

of known elastic properties, say a steel disc. Fig. 9 shows 

the arrangement, and photograph III shows two discs and also 

the mould used for producing the rubber disc. 

The mould was made in the University workshops and discs 

of natural rubber were moulded. The Chemistry department at 

the University was consulted and the following formula of the 

rubber contents was used: 

  

Natural rubber 1000 g 

Zine oxide 505g; mixed together 

Stearic acid 30 g and added to 

CBS* LONG; natural rubber 

PBN** log first in BUNBURY 

mix 
HAF***black 150 g 

Sulphur 20) 9,     
  

The mould was kept for 14 hours at 140°c in the press at 

50 tons/in?. Dummy steel discs were made with the same 

dimensions as the rubber samples. 

The inner diameter of the perspex tube "dy was measured 

on a projector in the metrology laboratory at Aston University. 

Magnification factor of the projector is ten, and the average 

  

* CBS - Cyclo-hexyl benzthiazyl sylpheramide 
** PBN - Phenyl-f-naphthylamine 

*** HAF - High abrasion furnace
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result of eight readings: 

ay= 6.449 mm 

The corresponding cross sectional area 

A, = x 6.449 7 = 32.661864mm? 

For a given pressure, expansion of the container and 

compression of the water do not vary, no matter whether 

an elastomer sample or the dummy disc is in the container. 

Therefore, referring to fig. 9 

eo x AH. 3 on x AHs(T) = AD x See x AH, (T) 

or 

a x AH, a AV, = A x AB, = AVy 

where AVg and AV, are volume changes of sample and dummy disc 

due to pressurization from the nitrogen bottle. Therefore 

volume change of the sample 

AVg = AV, + ay x (AH, — AH,) (7) 

Here AHg and AHS are the measured differences of liquid 

levels between the ambient pressure and the given pressure 

for the sample and dummy disc respectively. 

Dividing by the volume of the rubber disc: (which is 

equal to the volume of the dummy steel disc) V equation (7) 

becomes: 

\ rr A 
—S = — +2 (an, - AH) (8) 

v v
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The complete procedure for evaluating the bulk modulus 

is shown for natural rubber made at Aston University. The 

rubber disc when moulded had the following dimensions - 

87.376mm dia x 31.496mm thick. The steel dummy disc had the 

same dimensions. Experimental results for these two are given 

  

  

below: 

DUMMY STEEL DISC NATURAL RUBBER DISC 

water level water level 

gauge pressure| at perspex tube || gauge pressure at perspex tube 

fax] [mm] [bar] {rea 

° 311 ° 312 

5.998 305.5 5.585 306.5 

S779 301 8.412 301 

12.169 298 11.052 298 

14.548 295.5 12.962 295.5 

16.685 294 15.444 293 

19.029 292 17.133 291 

21.374 289.5 18.823 289.3 

23.373 288 21.236 287 

25.855 286 23.408 284.5 

27.096 285 25.510 282.3 

26.924 281             
  

Thérig with a rubber disc inside was "cycled" a few times from 

ambient to maximum pressure so that rubber can settle. This is a cammon 

practice when testing rubber components. The first cycle is not 'typical' 

and if stress against strain curves are plotted for each cycle, the 

differences between the first few cycles can be large. Then the subsequent
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cycles are almost identical. 

Maximum pressure for the perspex tube is recommended not to 

exceed 40 bar, but 27.5 bar is chosen for safety. After this 

cycling, results for the steel and rubber discs were taken. 

Existence of similar conditions when the steel disc is in the 

rig is thus achieved. Pressure was read up to 400 lbf /in? ona 

Budenberg gauge and the results were then converted to bars. 

Fig. 

obviously the best fit. 

10 shows the results. A polynomial of the £ irst order is 

A regression analysis programme based on 

the least squares method is available on the departmental Hewlett 

Packard Computer. This programme was used to fit straight lines 

to the two sets of points as shown in Fig. 10 . Results in 

steps of 5 bars are shown in the following table: 

  

DUMMY DISC 

gauge pressure water level 

RUBBER DISC 

gauge pressure water level 

  

        

[bar] {mm] [bar] {man} 

1) ° 310.14 ° 321,07 

2) 5 305.40 5. 300)037 

3) 10 300.65 10 299.67 

4) a5 295.91 XS: 293.96 

5) 20 Dol Le. 20 288.26 

6) 25) 286.42 25: 282.56 

  

These results were used for calculating differences of 

water levels based upon ambient conditions. 

From the value of bulk modulus for steel [307] 
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K = 1.76 x 1o*bar, the volumetric strain AV/V for the steel 

disc can be calculated under various pressures. 

The volume of rubber i.e. steel disc under ambient 

conditions for this case is: 

V =m x 87.3767 x 31.496/, = 188855.484mm? 

Using equation (8) relative volume changes 4V</V of 

rubber for various pressures are calculated as follows: 

AV A av 
°: er 6 p on 6 3 AH | 4H |} cAH| —P x10 | 2 (an can.) x10 ap k1o 

Par]} frm] ) fe} | frm) iC a - 
  

5°| 4.74] 5.70 | 0.96 2.84 166.03 0.169 

10 | 9.49} 11.40 | 1.91 5.68 330.38 0.336 

15 {14.23} 17.14 | 2.91 8.52 503.27 0.512 

20 [18.97] 22.81 | 3.84 11.36 664.11 0.675 

25 23.72] 28.51 | 4.79 14.20 828.41 0.843                 

These results show that the contribution of compressi- 

bility of steel AVp /V are small compared to the other term 

on the right hand side of equation (8). The expansion of 

rig AD (AH ~AH)) is the dominant term. As Hg and H, were 
Vv 

related linearly with pressure see tig. 10 , one would expect 

also that avs is linear, because the dominant term in the 
Vv 

expression for AV, /V consists of water-level differences 

multiplied by a constant AD /Y. Fig. 11 is the plot of relative 

rubber volume change against pressure and confirms that the 

relationship is linear.
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Pressure is read on the 400 lbf/in* pressure gauge. This 

pressure gauge had been calibrated with a dead weight tester 

and it shows almost 1 lbf/in? higher readings. 

The graduation scale on the perspex tube is given in 

millimetres. It is estimated that the tolerance on a reading 

on this scale is +0.25mm. As differences are involved this 

tolerance becomes +0.5mm, 

Take a value of pressure, say 25 bar and impose +0.5mm 

tolerance on water level readings. This results in the 

following volumetric strain AV, /V: 

  

AV, A, AV. 
2 aD oe te pai pa) 3 AH AHL v x TO v (AHS AH) *10 Vv x 710: K 

[mn] [bar] 

4.79 14.20 828.41 0.843 29656 

5.29, 14.20 914.88 O.2929) *< Fi269er 

4.29 14.20 741.94 Q.756, ** (338069   
  

Errors in calculating bulk modulus are 

26911 - 29656 
errors, = 35656 x 100 = -9.3% 

— 33069 - 29656 i, 
errort, = = osescn 100 = 11.5% 

Errors in calculating bulk modulus due to errors in 

pressure reading is: 

ee (36 29656 = 
Error = =—Soose a 100 = 0.28% 

Errors in bulk modulus due to pressure readings are 

much smaller than errors due to water level readings. Errors 

  

* Point A inerig. 11 **” Point B in Fig.it
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due to pressure can therefore be neglected and the main 

sources of errors are inaccuracies of water level readings. 

If calculation of errors is repeated for 5 bar nominal 

pressure then points C and D in Fig. 11 are obtained and 

error, 73578 
in 

106.1% i error, 
max 

and error due to pressure is equal to 1.373%. 

From Fig. 11 it is seen that AD and BC are lines parallel 

to the nominal strain-pressure curve and the whole area repre— 

sent a band of errors. It is obviously advantageous to cal- 

culate bulk modulus at higher pressures because errors are then 

smaller. The pressure of 25 bar is chosen to calculate bulk 

moduli for other compliant materials. The procedure is exactly 

the same as for this natural rubber just described and the 

results of volumetric strain against pressure are given in 

figures 12-16 - In each figure the value of bulk modulus 

is noted, together with a tolerance for 25 bar pressure. 

Photograph IV shows some elastomer discs and dummy steel 

discs used in the bulk modulus rig. 

For some compliant bearing materials (for example, 

certain plastics) which were used in the experiments, additional 

discs for bulk modulus testing could not be obtained. An 

attempt has been made to relate elastomer hardness to bulk 

modulus of the elastomers in figures 1i— 16 with a view 

to using this relationship for other elastomers. A linear 

relationship is shown in figure 17 . Using the six experi- 

mental points, this relationship has been obtained by the 

least squares method. Hardness was measured according to the
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specification of the rubber hardness tester manufactured by 

H.W. Wallace & Co. Ltd. and showed in photograph V . 

Hardness is obtained in units of International Rubber Hardness 

Degrees which closely correspond to values of shore "A" 

Durometer hardness and British Standard hardness degrees. 

The International Hardness Test is based on measurements 

of the penetration of a rigid ball into the rubber specimen 

under specified conditions. The measured penetration is 

converted into IRHD, the scale of degrees being so chosen 

that zero represents a material having an elastic modulus of 

zero and hundred represents a material of infinite elastic 

modulus [310], standard D1415-68. 

4.3. Elastic Modulus Evaluation 

Elastic modulus of various rubbers was first determined 

using a Hounsfield "E type" tensile testing machine. Dumb 

bell test pieces were cut with a "D" cutter, the speed of 

testing being 20 in/min [309, part A2]. 

This Hounsfield tester is designed to give Young's 

Moduli at 100%, 200% and 300% strains. Since strains in 

compliant.bearings are at least two orders of magnitude 

smaller, the resulting graphs of forces against elongations 

need to be read very near to the origin. Difficulty ot 

reading force magnitude for such small elongations is in- 

creased because the mechanism for rotating the graph paper 

does not respond instantly to loading. It was concluded 

that these tests are not accurate enough for evaluation of 

elastic moduli.
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It is possible to determine the elastic modulus under 

compression by measuring the elastomer deflection during 

bearing tests. The elastomer disc is then subjected to 

compression from the bearing load and from the reaction 

of the lower bearing surface, see sketch below: 

  
bearing load per 

unit area 
  

elastomer disk 
  

reaction from the 
lower bearing 
surface 

                                                    

  
During the bearing operation, the elastomer disc is 

subjected to compression from the bearing load and from the 

pressure distribution in the film, as shown in the following 

sketch: 

bearing load per 
unit area 

  

            

elastomer disk 

          
                              

T | pressure distribution 
1 * . i 
La Ye in the bearing film 

LL es equivalent mean 
pressure   

If the pressure distribution in the bearing film is 

substituted by the equivalent mean pressure (load divided 

by bearing area) the loading conditions when evaluating 

elastic modulus are the same as the elastomer loading con- 

ditions during bearing operations. 

During the real bearing operation the loading conditions 

are predominantly compressive. Elastic modulus is also
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calculated under compression and this is an additional 

advantage over the methods of evaluating the elastic modulus 

in tension, such as the Hounsfield tester. 

The test bearing with a compliant material is screwed 

onto a slave journal bearing and the whole unit is placedcon 

the lower thrust bearing surface. Deflection of the elastomer 

is measured by three mitronic comparators spaced uniformly 

around the circumference of the top part of the journal 

bearing, see photograph VI . Results of a typical load 

test are shown in fig.18 . Material is natural rubber made 

in the Chemistry department of the University. The hardness 

of this rubber is measured as 54.5 IRHD and dimensions of the 

elastomer are 133.82mm dia x 12.28mm. The upper surface 

of the elastomer is bonded to a steel backing plate and 

together with it, it forms a test bearing pad. The lower 

surface of the rubber (128.27mm dia, the same as the lower 

test bearing rigid surface), forms the effective bearing sur- 

face. 

The deflection under the inherent load of 92.67N acting 

on the elastomer is not known because it is not possible to 

measure this deflection by mitronic comparators. 

Once experimental values of load are plotted against 

elastomer deflection, see fig.18 , it is seen that the 

relationship is linear, and a first degree polynomial is 

fitted through these points by means of a least squares LLes 

In order to correct for the deflection under inherent load, 

a line is drawn parallel to the fitted line and passing 

through the origin. In this way it is observed that the 

deflection under the inherent load is 5.5 um. Now, the
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compressive elastic modulus based upon the effective bearing 

area and initial rubber thickness can be calculated. It is 

equal to Ey = 148.81 bar. Dimensions of the elastomer 

were obtained by a vertical travelling microscope taking the 

average of a few readings. The accuracy of readings is +lOym. 

Fig. 19 shows the relationship between elastomer load per unit 

area and axial strain from which the compressive elastic 

modulus is calculated. This is an apparent value of elastic 

modulus and it has to be corrected following the procedure given 

by Lindley [307]. True elastic modulus of small strains [307] 

is given by: 

Eo E = —— (9) 
1+2ks ? 

e 

for rubber bonded between two rigid flat plates. 

In the above relationship k is a factor used in the 

calculation of compression characteristics of elastomers and 

it is given in fig. 20 . For hardness of 54.5 IRHD, k = 0.64. 

The elastomer shape factor S, is defined as loaded area 

divided by force-free areas, i.e. approximately: 

ak 1 D2 = D 
e 4 x mDt 4t 

where D is the effective bearing diameter. Then: 

148.81 
Tid x 0.64 x a.6i1t = 15-3 bar 

In developing relationship (9), it is assumed that the 

rubber disc is bonded to two rigid flat plates or it adheres 

to them.
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Experimental results of compressive characteristics of 

other elastomers are shown in fig. 21 and summarised in table 

Iv-1. It is seen that the ratio of elastic modulus to bulk 

modulus is in each case smaller than 0.001 and Poisson's 

ratio to four decimal places is at least 0.4999. 

From equation (6) compressihility is given as 

AV, 2) PB = (bx 302y) (10) 
Vv K E 

Based upon the mean pressure (load divided by the effective 

bearing area), the compressibility is calculated in the last 

column of tablelV-1for a typical bearing load of 322.5N. 

When compared to steel, it is seen that on average these 

elastomers compress about 50 times more than steel, which is 

more than one order of magnitude. However, absolute values 

of compressibility of elastomers are of the order of io" * 

which is very small indeed. 

4.4 Estimated Errors and Comparison with Rightmire's 

Results 

Errors in calculating elastic moduli of the elastomers 

can be divided into: 

1) errors of compressive characteristics 

2) errors due to correction from compressive 

modulus to true elastic modulus at small 

strains. 

In evaluating the compressive characteristics, loads,
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AV. 103 

imens [bar] | IRHD | E/,x10*j Poisson" c 
Made or Di ions E E|bar oisson's snag 

xs te c ; Compressibility 
Elastomer ae {m.] [bax] ae for typical bearing 

load of 322.5N 

I Natural Aston 133.82 dia 148.81 15.30 54.5 | 0.475 0.499921 0.008 

x 12.28 

II Natural Aston 126.90 dia 124.9 13.17 54.4 | 0.409 0.499932 0.008 

x 12.46 

CT Natural Aston 102.00 dia 122.9 19.09 56.3 | 0.593 0.499901 0.012 

712.37 

Iv Natural Aston 77.13 dia 105.8 25.091 56.1 | 0.084 0.499866 0.021 

x 12.42 

Vv Polyurethane | Sharples 134.00 dia 254.0 2515 60.5 | 0.201 0.499967 0.023 

x3. 

VI | Viton(hard) | Du Pont 131.20 dia 19025) 0.89 88.6 | 0.024 0.499996 0.007 

x 2.19 

VII | Viton(soft) | Du Pont 132.16 dia 95:9 0.74 55 0.039 0.499994 0.013 

x 3.20                     
  

TABLE IV-1 TO SUMMARTZE; ELASTOMERS OF FIG. 21 

= 
99
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deflections and elastomer dimensions are measured. Errors 

due to wrong load readings are negligible because load can 

be read within + 0.05N and the minimum loads on elastomers 

are more than 90N. Mitronic comparators have been calibrated 

against high quality slip gauges and it is known that these 

comparators show correct readings. Elastomer dimensions are 

measured by a vertical traversing microscope, the accuracy of 

which is +lOum. This is not important for elastomer diameters, 

but when measuring small thicknesses of about 2-3mm, the 

errors in compressive modulus are of the order of 0.5%. 

In order to estimate errors arising from the correction 

of compressive elastomer characteristics to true elastic 

moduli, it should be remembered that in developing relation- 

ship (9) it has been assumed that the elastomer is bonded 

between the two rigid flat plates. 

In this experimental setup either the upper elastomer 

surface is bonded to its metal backing or neither of the 

surfaces is bonded. Results in table IV-lrefer to the case 

when the upper elastomer surface is bonded to its backing ~ 

plate. 

In all cases the other elastomer surface touches the 

lower test bearing surface. The elastomer surface and the 

lower rigid test bearing surface can be cleaned with " inhibisol", 

a cleaning solvent. In that case, it is considered that there 

should not be much sliding of these surfaces. 

Measurement of any sliding 

has not been attempted and it is considered to be negligible, 

if test bearing surfaces (elastomer and steel) are cleaned 

with inhibisol. Then relationship (9) completely applies to
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the situation. However, possible values of coefficient of 

friction have been measured. 

If there is perfect sliding between both elastomer sur- 

faces and the flat plates, the modulus obtained under com- 

pression test would be the true elastic modulus of the 

elastomer. However, even if the elastomer is not bonded 

to either of the surfaces and both elastomer surfaces are 

lubricated, there will always be some friction between the 

elastomer disc and flat plates. 

A natural rubber disc made at Aston and of dimensions 

128.27mm dia x 12.82mm has been tested in compression under 

two conditions: 

1) Not bonded to either surface, cleaned with 

inhibisol; compression modulus E(=63.55 bar 

obtained. 

2) Not bonded, both surfaces lubricated by silicon 

oil, compression modulus E=34.50 bar obtained. 

In the first case the value is about a half of the 

corresponding value of Ey for a bearing which has one of the 

surfaces bonded to a metal backing (see tablelIV-1). 

In the second case the value of Eo approaches the true 

value of elastic modulus E for natural rubber (see table IV-1), 

although it does not quite reach there and it is roughly 

about twice as large as this modulus. 

In order to estimate coefficient of friction in both 

cases, it was assumed that sliding friction of this rubber 

disc on the inclined plane is a fair representation of the 

situation. A 203.2mm dia (8in dia) optical inclinable (and
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rotary) table, manufactured by Optical Measuring Tools Ltd., 

was used and coefficients of friction based upon tangents of 

angles of inclination were obtained. 

In the first case when both elastomer and metal surface 

are cleaned with inhibisol u=0.271 and in the second case 

when the surfaces are lubricated by silicone oil, u=0.010. 

Both results represent average values of more than ten 

readings in each case, and the repeatability of readings is 

good. 

These results confirm that compressive characteristics 

of unbonded rubber, cleaned with inhibisol will not be the 

same as characteristics of a rubber bonded with one surface. 

True elastic modulus E of rubbers, and natural rubbers Ly 

II, III and Iv in particular, should lie between values of E 

obtained for these rubbers and the value of 34.5 bar obtained 

under compression when using a good lubricant. It is not 

possible to say where true values of E are, but the errors 

can be large. 

At the beginning of this chapter it has been shown 

that even relatively large errors in bulk and elastic moduli 

bring small errors to values of Poisson's ratio, i.e. to 

compressibility characteristics of elastomers. Lowe [210] 

has used results of Rightmire [305] and has shown that a linear 

relationship exists between Poisson's ratio v and shear modulus 

G of various elastomers. Results of Rightmire converted to 

elastic modulus E are shown in Fig. 22. The straight line 

on this figure is a least squares fit of his experimental 

points.
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Even though there is some uncertainty about true 

elastic moduli, the author's results compare favourably with 

those of Rightmire and they give some more data in the region 

close to v=0.5.
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Vv DESIGN AND DESCRIPTION OF THE MAIN 
  

EXPERIMENTAL APPARATUS 

In order to assist in the design of the main experimental 

tacility for compliant bearing tests, the available theories 

ot compliant lubrication are examined, Dowson’'s and Taylor's 

theory [201] and Castelli's et al theory [202.] to[205]. 

Dowson's and Taylor's theory concerns compliant lubri- 

cation with an incompressible fluid and pressure distribution 

is given in analytic form. This theory has therefore been 

modified as follows for compressible lubrication in order to 

obtain design information for the rig. Because of its 

simplicity, the theory was preferred to the theory of Castelli 

et al in the initial stages of the project. 

5.1 Modification of Dowson's and Taylor's Theory for 
  

Compressible Lubrication 

Reynolds Equation for gas lubrication assuming iso- 

thermal conditions and steady-state operations (given by 

equation (I.4), Appendix I) states: 

From Dowson's and Taylor's theory [201] elastic compression 

of the bearing liner is given by: 

(p-p,)t 
‘<a oaee, (2) 

gl 

where t is the elastomer thickness in the unstressed state 

and
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pes ents @) 
1-2v*/7 (-v) 

Film thickness is defined as: 

h=h, +6 =h, + (22ealt (4) 
EI 

where h, is the film thickness without elastomer deformation, 

Dimensionless film thickness is defined as: 

a (pep )t 
z= = ee are 

Ro en, 

= 17 Ll) (5) 

where bearing parameter 

es 

(6)   y= 
Eth, 

with reference to Dowson's and Taylor's theory 

[201], it will be assumed that the elastic deflection 6 can 

he approximately calculated from the equation for pressure 

distribution in rigid bearings with isoviscous compressible 

From equation (I-8), Appendix If 

Prot 
p? = 1 +—P— gnr (7) 

ink: 3 

From equation (5), film thickness can now be 

fluids, 

expressed as 
Peo \ 

q. +—P_—_._ gk) 75 1] (8) 
&nR 

f-1+n [| 

P 

From (1), Reynolds Equation in dimensionless form 

can be written as:
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a egal _ it [ir at we) Ae (9) 

which can be integrated once to give 

oO pee ek 
ar ) HR 

a ak “3 
= SR (1+L (P-1) (10) 

through equation (5), Here A is a constant of integration, 

Expanding binominally 

BOs (p?) So= pe ab eel + Gb? (Pel) = 4) (11) 
cn R : . 

Powers higher than unity can be neglected if the convergence 

of successive terms exists, In that case 

eo pezy a ag PL =F Ge BE eld) 
ps2 

=4 fu eL 3p] a+-2=anny 
gnR 

Pp 

_.AQa3n) _ A x 3h Po? 1, a4 = oar aaa a a [2 + Basen] (12) 

which can be directly integrated to give 

3/5 

2 2am, Py a 
pe = A (431) £nR — AL Bey [2 + 3nR nr pra) (13) 

P RB 4 

  

where B is another constant of integration, 

Constants A and B are calculated from boundary 

conditions shown in Fig, 1-1, Appendix I and they are
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2AL.2n R. 

B= ta 

Pp 7.1 
A= = 2knR 

Rn R. + | 3tn R- 
P P 

  

(P “| 
Eh) 2 (P. 1) 

When L = 0, these constants reduce to 

B=l1 

Pp Ag 
aoe 

&n R 
P 

so that equation (13) reduces to equation (7), the rigid 

bearing pressure distribution, The bearing parameter L=0 

when elastomer thickness t=0, i,e, when there is no elastomer 

in the bearing, 

When L # 0, equation (13) becomes 

poe @p2-1) fan R +L x £(R)} (as) 

in RF Lx F(R) 
p 

where 

£(R) = 32n R [a + a anes”? = 
Pp P 

(16) 

° 2 &n R : 
£(Ry) = 32n eas , =1) 

It has been shown in chapter IV that a typical 

elastomer used in these bearings has the following properties 

E = 20 bar 

< a 0,4999
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so that 

a = 39042 bar 
1-2v?/(1-v) 0 ,0006 

Also take 

ho = 15 um 

t = 12500 yum 

Bais 1,0039 bar 

so that the bearing parameter becomes 

Te 130039 12500 ee Oe a eee 

33342 Dey 
= 0.025 

From equation (11) comparison of the term in the 

binomial expression,of power twowith the term of power unity 

for P=4, gives 

6L? (p-1)? 

3L (P-L) 
= 2L(P-1) = 0,15 << 1 

and this means that neglecting the terms with powers higher 

than unity is justified, 

Consider three typical port pressures given in an 

example in Appendix I, fig, I-2, For this example the 

corresponding three dimensionless port pressures become 

IP, = Pp/P, = 1.628644 

Iz " = 2.370590 

III ” = 3,371632 

and the dimensionless pressure distribution against dimension. 

less radius, equation (7), is drawn on fig, 23 for the case of 

rigid bearings,
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Equation (15) is then used to draw the compliant 

radial pressure distribution with the value of bearing 

parameter L=0,025, For this small value of the bearing 

parameter compliant pressure distribution almost coincides 

with the rigid pressure distribution i.e, the maximum deviation 

from the rigid pressure distribution is only 1.88%, so that 

the pressure cannot be shown with the scale used to draw 

LEG 223% This is understandable when one considers that 

Dowson's and Taylor's theory concerns axial displacements only 

and radial displacements are assumed to be zero, As there are 

no radial displacements for an almost incompressible elastomer 

axial displacements are so small that the compliant pressure 

distribution reduces to the rigid bearing pressure distribution, 

The main experimental apparatus was then designed assuming this . 

rigid pressure distribution existed in the compliant bearing, 

§ .2 Initial Main Rig Design 

In order to obtain information about bearing perform 

ance, it is preferred to measure bearing supply pressure, 

bearing film pressure at various bearing radial positions, 

bearing flow rate, bearing film thickness at various radial 

positions and distance between the bearing rigid surface and 

the non-deformed elastomer, 

The compliant ‘thrust bearing essentially consists of a 

rigid member in which pressure transducers and displacement 

probes are situated and through which air is admitted to the 

bearing film and of a compliant member, It is convenient that 

this rigid member has a diameter of 127 mm in order to accommo. 

date the necessary transducers, It is also convenient that 

this rigid member is the lower (stationary) bearing member
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so that transducers are stationary and that they are not 

disturbed during bearing tests, 

A ratio of port to outer radius is chosen to be 

65 

63,5 

w a 

  " =0,1 (17) Fp R =—2 = 
x 

° 

which is probably smaller than for a conventional design for 

bearings operating with oil [101], The reason for this choice 

is to reduce the volume of the pocket (port) , so that pneumatic 

afimer instability is avoided [109], Presence of the port 

implies orifice or capillary rather than inherent compensation, 

because the port curtain area ence is larger than the orifice 

cross sectional area, Orifice compensation is chosen because 

of smaller dimensions than the long capillary restrictor, 

Although this does not matter very much when one bearing is 

designed for research purposes, it may matter in practical 

applications where size is a dominant factor in a restricted 

environment, 

Because of choking the operational range of port to 

supply pressure is preferred to ber 

0,528 SEs oan (18) 

Fig, 24 follows from the computer programme described 

in Appendix I and it represents dimensionless load against 

port pressure for the case of port to outer radius ratio Roe 

For supply pressure P.=9,9 bar, orifice diameter d= 

0,330 mm and discharge coefficient C, = 0,8 {107], and with 

reference to section Al,5b of Appendix I, figures 25,26 and 

2a are obtained; It is seen that maximum stiffness at these
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conditions occur at h = 19 ym, At this film thickness 

m= 79 x 107° 2 

W = 1230 N his) 

Se=99 Thx 10° 
m 

It was the aim in the design that maximum stiffness 

occurs at about 20 ym, because at this film thickness the air 

flow is not excessive, It has been estimated that the labora 

tory air supply system is capable of achieving 25) x 10 2k2 

for continuous running, Figure for the mass flow given by 

equation (19) is almost three orders of magnitude smaller, Tf 

the design value of film thickness for maximum stiffness is 

much smaller than 20ym, the surface roughness of both bearing 

surfaces may appreciably influence the behaviour of the gas 

film and the bearing performance would not then be easily 

predictable. 

Schematic diagram of main apparatus design is shown 

in fig 28. A slave journal bearing was incorporated in order 

to control the alignment of the test bearing, Air is fed to 

the journal housing at two admission planes, There are six 

equispaced holes in each plane but to every second hole in the 

upper plane air is admitted through a finely adjustable needle 

yalve, 

Fig,29 shows a cross section of the bearing pad and 

the layout of pressure transducers and displacement probes, 

Provision has been made, df the need arises, to change the 

adaptor containing the orifice restrictor at entry to the 

bearing film, This adaptor is sealed from the back by an '0?'
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ring so that there are no leaks via its threads, 

Resistive type pressure transducers are selected 

because of their versatility: they are suitable for operating 

both at steady state and dynamic conditions, This means that 

the same transducers could be used to investigate, at a later 

date, the dynamic performance of compliant bearings, Through 

the four bridge amplifiers pressure signals can be read on an 

ultra violet recorder, 

Displacements in the thrust bearing were to be 

measured by three capacitance probes and a distance meter, 

Position of the adaptors of these probes, which were to be 

screwed from underneath are shown on fig, 29. There were also 

three other probes outside the thrust bearing area to be used 

for alignment purposes, 

The air pressurizing system with the instruments and 

controls for measuring pressure and flow rate is shown in 

fig, 30. Pressurized air is obtained from the compressor tank, 

After a pressure regulator and two filters, one line branches 

off to the slave journal bearing and the main line continues 

through another pressure regulator and through flowmeters to 

the test bearing, Just before the test bearing is reached 

there is a branch off for the supply pressure gauge and mano- 

meter, I£ the supply pressures are small they can be read on a 

mercury manometer more accurately than on the supply pressure 

gauge so either (or both) can be used, 

5,3 Modifications to the Main Rig 

Restrictor Change 

The bearing of Ry = 0,1 was made but the initial
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tests showed that it was highly unstable, even though care was 

taken that port volume was kept to a minimum. After these 

initial tests, the method of test-bearing compensation was 

changed from orifice to inherent in order that the bearing 

became more stable (109]. To achieve this, another adaptor 

was made and screwed onto the lower bearing plate. Bearing 

in mind that load and stiffness of inherently compensated 

bearings are lower than for orifice compensated peeing 

the diameter of the hole in the middle of this adaptor was 

made 0.5715, so that the "port" radius was now equal to: 

rp = 0.28575mm (20) 

This last dimension was measured on a ten times magnifying 

projector in the metrology laboratory. With the outer bearing 

radius measured to be: 

r= 64.135mm 

the ratio of these is: 

= 0.28575 
Rp 645135 = 0.004455 (21) 

as mentioned in Appendix I. 

Modifications due to Difficulties in Assembling the Rig 

The journal was initially made of aluminium but subse- 

quently sleeved with steel to avoid assembly damage. 

Assembly was facilitated by reducing the test bearing 

upper plate in diameter to enable it to be passed through the 

slave journal housing. 

However, three displacement probes now located beyond 

the test bearing perimeter could not be used any more, but 

mitronic comparators were readily introduced instead. These
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transducers work on a differential transformer principle. 

They have magnetic bases and can conveniently be placed on the 

journal housing and be locked in position by a magnetic field. 

The sensing heads were placed on the top part of the journal 

as shown on photograph VII. They check bearing alignment, 

measure film thickness during rigid bearing tests and measure 

displacement between the bearing rigid surface and the non- 

deformed elastomer during compliant bearing tests. 

On one of the reduced test bearings it was then possible 

to incorporate a pressure tapping in the middle, as shown 

below, in order to take readings of inlet bearing pressure 

during tests. 
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Modifications in order to make the test bearing leakproof 

In the thrust bearing area on the upper surface of the 

lower bearing plate, there are tour holes tor the pressure 

transducers, three holes for capacitance probes' adaptors and 

one hole for the air supply adaptor. It is imperative to 

ensure that there are no leaks before the air reaches the 

outer bearing edge where ee 64.135mm. 

Threads in the capacitance probes' adaptors were prone 

to leaks even though they were sealed from the back by a 

solution cf silicone rubber. New adaptors were made to seal 

against the lower bearing plate with "O" rings. These adaptors 

had to be larger than the previous adaptors in order to make 

the holes in the lower bearing plate free of previous threads. 

Capacitance probes were sealed against the adaptors by perspex 

sleeves with a tight fit. 

Pressure transducers were sealed by fibre washers and the 

air supply adaptor by an "0" ring. 

There should be no leaks anywhere in the supply line after 

the flowmeters see fig. 30. 

Leaks in the thrust bearing area were tested by intro- 

ducing a soap solution or a lighter flame to places of suspected 

leaks. These simple methods can be used also in other places 

ot the supply line. 

Another method of testing for leaks in the air pressurizing 

system is by a chamber designed to calibrate the pressure 

transducers, see photograph VIII. This method was used before 

a test was started with the rig dismantled.
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With the pressure chamber in position bolted to the 

lower bearing plate and with the chamber vent valve closed, 

there should be no flow through the flowmeters. If the 

spherical float of the most sensitive flowmeter is resting 

on its seat, i.e. if it is in the lowest possible position, 

this is an indication that there are neither leaks in the 

supply line after the flowmeters nor in the thrust bearing 

area. 

This pressure chamber was designed for calibr ating 

pressure trasnducers in position. Previously it was attempted 

to calibrate each transducer in an adaptor outside the main 

rig by bringing a known air pressure to it. However it was 

noticed that galvanometer deflections shown on the ultra 

violet recorder depend upon the tightness of the transducers 

in their adaptors. The pressure chamber itself is sealed with 

an "0" ringagainst the bearing lower plate outside the test 

bearing area. 

Similarly to pressure transducers, capacitance probes 

are best calibrated in their respective positions. This can 

be achieved with shims or feeler gauges of known thickness. 

Also a "bridge" of slip gauges as shown in sketch below was 

used. 

lower bearing 

surface 
  

      

  known distance 
to be compared 
with probe read- 
ing (for calibra - 

LY ting purposes) 

              
  

  Os 
probe —+4 
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The possibility of unknown leaks is reduced if the 

instrumentation in the test bearing area is not frequently 

disturbed. Performing calibration of this instrumentation 

in position prevents their unnecessary disturbance. 

General Examination of the Main Rig 
  

Because of the small size of the clearances in the 

thrust bearing during experiments, it is essential that all 

dimensions are as near as possible to those specified. It is 

also necessary to have test bearing surfaces as flat as 

possible so that measured performance can be correlated to a 

theoretical prediction. 

For example, it is important that the journal housing is 

placed vertically on the bottom plate, so that when the 

journal is parallel to the journal housing, the surfaces of the 

thrust bearing are also parallel to each other. Therefore it 

was made sure that the centrelines of the journal housing and 

of the journal are as near to each other as possible. After 

rectifying the rig in the University workshops, these two 

centrelines were measured to be 0.038mm apart. This measure- 

ment is done with the journal and the lower plate bolted 

together and placed in a lathe chuck, i.e. the centrelines 

were in a horizontal position. In this position of the 

journal and the lower plate, the centrelines would tend 

naturally to the maximum distance between them and during 

bearing tests this distance can be smaller. 

The journal housing was checked for ovality in three 

positions along its bore, and it was found that in the worst 

case it was 0.0032mm out. This measurement was done in the 

Metrology Laboratory. The journal housing is seen on
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photograph IX. The journal with a compliant bearing screwed 

on is shown on the same photograph upside down from its 

normal position during bearing tests. 

Displacement probes should be as level as possible with 

the lower thrust bearing surface, in order to measure true 

displacements. Pressure transducers can be a few micrometres 

below this surface, so that they are not damaged during any 

operation to make this surface flat. 

With the instrumentation and the air supply adaptor in 

position, the lower test bearing surface was surface ground. 

This has been done after consulting the manufacturer of the 

displacement probes for approval. Because of the size of the 

lower bearing plate, the surface grinding had to be done 

outside the University workshops, where a surface grinder 

large enough for this operation could be found. 

By checking the probes after grinding with an AVO multi- 

meter, it was found that they were shorting . This was recti- 

fied by cleaning carefully the probes' guard rings of any steel 

particles embedded in them after the grinding operation. The 

cleaning was done by means of a sharp sewing needle under a ten 

times magnifying projector. 

After this, the bearing lower plate was checked for 

flatness by Tolylin instrument, see photograph X. 

Toalylin uses a stylus to trace the surface Recgelar fica: 

The traversing speed ot the stylus is determined by the 

horizontal magnification factor used on the tracing paper. For 

the minimum horizontal factor of two, the speed is smallest. 

The movement of the stylus is converted by means of an electro-
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magnetic transducer into electric signals. 

As stated earlier, bearing lift-off is measured by 

mitronic comparators. The pneumatic film thickness in the 

case of rigid bearings is larger than this lift-off for an 

equivalent surface roughness. This surface roughness can 

be estimated from a Talylin instrument trace. 

The checking of the lower test bearing surface on the 

Talylin was done in five or six directions and across all 

adaptors and probes as shown on photograph X. The average 

flatness of this bearing surface is estimated to be 3.2 ym. 

The average flatness of the rigid top bearing surface is 

estimated to be 1.5 um as shown below: : > OY SS YARIS Sea ie 
  

  
    

3-
2}
 

um
 

> 2 DDL LES 
Ue   

The pneumatic film thickness h could then approximately 

be equal to 

a Loser h=h_ + oath com ha $22.35 pm (21) 

Flow measurements will show that the film thickness 

derived from the measured flow rate is larger than the 

measured film. For the rigid bearing experiments this dis- 

crepancy is about 2.5 um.
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In the case of an elastic bearing, the top bearing surface 

has to be sprayed by some conductive paint if the film profile 

is to be measured by conductive probes, because elastomers 

are generally non-conductive. 

Elastomers need grinding, with the help of chalk dust 

before spraying. After spraying with a type of silver paint, 

grinding or lapping is necessary for two reasons: 

a) to achieve uniform thickness of the 
silver paint 

b) to achieve flatness comparable to 
the elastomer before spraying. 

Generally, flatness of rubbers is of the order of 2-4 um. 

Pig. 31 shows two traverses of the Talylin across the 

lower thrust bearing surface. Sharp peaks should be ignored 

because of the inertia of the stylus even at its lowest speed 

when some probes or adaptors are traversed. Horizontal 

Magnification is two, and on the vertical scale one division 

represents 2.5 um. Flatness of 3.2 um was estimated after 

averaging several traverses along the lower thrust bearing 

surface. Flatness of 1.5 um was similarly obtained for the 

top rigid thrust bearing surface. 

After these modifications, positions of the displace- 

ment probes and pressure transducers were measured in the 

Production Engineering Department and they are shown in Fig.32, 

Photograph XI represents the top view of the lower bearing 

surtace,
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VI RIGID BEARING EXPERIMENTS 

Bearing load, mass flow and stiffness were initially 

predicted for design purposes in Chapter V. The bearing 

performance will not be the same as the predicted performance 

primarily due to modifications of the rig such as the restrictor 

change, but also because of the following, 

1) In the initial design, bearing surfaces were 

represented by two geometric planes. In this chapter it is 

shown that this simple representation is net adequate if the 

two surfaces are as near to each other as the two thrust bearing 

surfaces in the test bearing. 

2) The value of discharge coefficient used in predicting 

performance is only approximate. 

This chapter gives the rigid bearing performance 

after taking into account 

the complex effects of the geometric texture of bearing surfaces, 

Values of experimentally determined discharge coefficient are 

also presented, 

Either bearing load or supply pressure or film thickness 

can be kept constant in turn during rigid bearing tests whilst 

the other two quantities are varied, All three types of 

experiments were performed for rigid bearings, 

For rigid bearings, keeping the bearing load cnstant
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means that pressure at the entrance to the bearing 

film is kept constant, Coefficients of discharge were determined 

experimentally from these tests, Film pressures were measured 

and flow versus film thickness relationship was also deduced 

from these tests, However relationships of load versus film 

thickness and hence stiffness versus film thickness could not 

be established by this type of tests, 

Experiments where supply pressure is kept constant and 

where load is varied are useful in determining bearing perfor. 

mance, Here, relationships for mass flow. load and stiffness 

versus film thickness can be established both in dimensional 

and dimensionless form, 

Experiments where film thickness is kept constant and 

where both load and supply pressure are varied. serve as a useful 

check for the bearing performance determined by the first two 

types of tests. 

6.1 Discrepancies between measured film thicknesses and 

film thicknesses derived from flow measurements 

Talylin measurements of the bearing surfaces have 

revealed that the average flatness of the lower bearing surface 

is about 3,2 Um and the average flatness of the top bearing 

surface is about 1.5 ym, 

The Talylin instrument gives a picture of the surface 

texture in two dimensions, i.e, it gives a profile of the 

surface, The whole group of instruments which mechanically 

analyse surfaces by traversing styluses over them are sometimes 

called profilometers . These instruments usually trace 

a small representative sample of the surface, Some of these
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instruments are based upon a very small sample which may not 

be representative of the whole area studied, The Talylin 

instrument does not suffer from this defect, It is capable 

of traversing 100 mm, of the total of about 130 mm i.e. about 80% 

of the bearing diameter, At the same time this instrument 

achieves a high magnification in the vertical direction thus 

giving an outstanding capacity for studying the surface geometry 

of these bearings. 

the average flatness of seven measurements in various 

directions over the lower bearing surface gives a value of 

3.2mm. The flatness is here defined as the difference between 

the highest peak and the lowest valley on a given Talylin trace, 

The average flatness of eight measurements for a par- 

ticular top bearing surface is obtained as 1,45 wm, 

If a simple model for the pneumatic film is assumed 

such that the pneumatic film h is equal to the measured film 

plus a half of both flatnesses, then 

32% 45 

2 

  

ho i2, 020 10 

so that the surface roughness effects defined in this way are 

equal to 

SF = 2,325 um Q) 

The yalue of the surface roughness effects from this 

simple model is now compared with the values from flow measure 

ments,
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Equation (I-13) of Appendix I shows that for a given 

load (i.e. given film entry pressure), mass flow is proportional 

to the cube of film thickness, i.e. film thickness: 

l/, 
hoo M (2) 

Fig. 33 shows a plot of measured films versus films 

derived from flow measurements, keeping the bearing load con- 

stant. Experiments with three different loads were performed. 

A least squares fit through the points of all three loads gives 

a line parallel toa 45° line drawn from the origin as shown 

in Fig. 33 . The two lines are 2.5 wm apart. Similar 

graphs for porous aerostatic thrust bearings were obtained by 

Taylor and Lewis[142]. Measured flow versus measured films 

during experiments is shown in Fig. 34. It is seen that for 

a given load and a given film, measured flow rate is higher 

than the theoretical flow rate. If 2.5 mum is added to every 

measured film, Fig. 35 is obtained. Here the experimental 

points agree much better with the theory lines. 

The difference between measured and derived film thick- 

nesses was found to be consistent throughout the rigid bearing 

tests and it is equal to: 

Sho Hie 2 58. 0. 5.em (3) 

The value of 2.5 um with its given tolerance represents 

the equivalent surface roughness effects of the rigid bearings. 

This means that all measured films in the rigid bearing experi- 

ments should be corrected by 2.5 wm, i.e. the real film thick- 

ness 

h=h_ + SF (4)
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corrected film h                   

Yeasured £ilm h_ [um] 20.9 26.7 28.6 1.2 32.4 34.5 37.7 

Measured absolute supply | j 93925 | 2.04025 | 2.17800 | 2.36200 | 2.47700 | 2.71275] 3.16126 
loressure p, [bar] 

Heeroma Eloy Late ee a7 -coman| 13e52ueea |e oy a] 9.2m | 23-55 gee |2e7G7 <8 | ,3.52 
[a0 | 

Film derived from fesoured Flow Haft 24.06 |29.51 31.33 {33.24 35.52 [37.01 | 39.94 

Mass flow rate calcu- 

lated from measured 4.804 [10.015 {12.309 {15.981 |17.896 21.607 | 28.194 
film [= xlo *] 

Ss 

Corrected film q ron 42.5, [on] 23.4 29.2 31k 3307 34.9 37.0 40.2 

Mass flow calculated 

from corrected fjim _ | 6.742 [13.100 [15.827 |20,138 22.367 |26.652 | 34.163 
lo J 

noe eee gee souze 0.86096 | 0.79433 | 0.75868 | 0.69958 | 0.66710 | 0.60912] 0.52270 
ratio P ed [-] 

s 

Discharge coefficient 
Cy[-] calculated from 0.617 0.637 0.654 0.663 0.661 0.659 0.648   
  

TABLE VI-1 RIGID EXPERIMENTS KEEPING LOAD CONSTANT 

W = 92.67 [N] (MINIMUM POSSIBLE LoaD), P_ = 1.62864[-] 
W = 0,.07144[-] S 

Si
Ge

 
T
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TABLE VI-2 (FOLLOWING PAGE) 

RIGID EXPERIMENTS KEEPING 

LOAD CONSTANT 

W = 237.52INI 

= ee | - _ 2.37053 [-] 

W= 0.18309 [-]



  

  

  

  

  

  

  

  

  

  

Measured film h, [um] 16.8 19.2 21.2 22.2 23.6 24.5 27.2 30.3 

Measured absolute supply 
penne p, [bax 2.85650} 3.04625] 3.23600] 3.45450} 3.68450! 3.90875) 4.61600} 5.45550 

Méasured mass flow rate 

M SSa07%] 10789) 35.8el16.99° }23.32.91|25.79 + 129-99" 1.37.65) 4] 53.39 

Film derived from measured 
flow ha [eselo 5] 19,49 22.07 23.46 25.12 25.98 21632 29.47 33.11 

Mass tlow rate calculated_ 
Pea nescered him Peo 5] 6.974 }10.411 {14.015 |16.093 }19.334 |21.631 | 29.600 | 40.917 

Corrected film h=h_+2.5|,m 19.3 2.7 23.7 24.7 26.1 27.0 29.7 32.8 
m 

Mass flow calculated fran 
ee ened aan [xo 5] 10.574 |15.030 |19.581 {22.165 {26.152 [28.951 | 38.534 | 51.904 

ce presere a s° 0.84012] 0.78779] 0.74160] 0.69469] 0.65133] 0.61396 0.51989] 0.43989 
pos 

Discharge coefticient oe 
calculated fran 0.466 } 0.513 0.552 | 0.540 | 0.555 j 0.554 | 0.568 | 0.597 

measured film ha 

Discharge coefficient C,[-] 
calculated from 0.615 | 0.656 | 0.690 | 0.669 | 0.679 | 0.673 | 0.678 | 0.699   corrected film h                   
  

O
C
 l

r 
=



  

Measured film h, [im] 14,1 45.3 16.5 475 18.3 19.2 22.2 

  

Measured absolute suppl; 
pressure P bar, 

4.06400 4.31700 4.60450 4.89775 5.19100 5.58200 6.90450 

  

Measured mass flow 
rate (eo of 

14,86 18.56 22.54 27.33 28.94 34.49 48.49 

  

Film derived from 
measured flow hg|um] 

16.51 17.78) 18.97 20.23 20.62 21.86 24,49 

  

Mass flow rate 
calculated from see 

measurement riln[3a6° 
9.254 11.824 14.830 17.693 20.232 23.366 36.120 

  

Corrected film 
h=h +2.5 [jm] 16.6 17.8 19.0 20.0 20.8 2L.7 24.7 

  

Mass flow calculated 
Eyqu corrected film 
(-2s10 ‘ 

5 

15.101 18.618 22.644 26.410 29.708 33.734 49.748 

  

Port/supply pressure 
ratio PY? - 

0.83868 0.78953 0.74023 0.69591 0.65659 0.61060 0.49365 

  

Discharge coefficient 
Cle] calculated trom 
measured film ho 

0.514 O.51> 0.524 0.529 0.531 0.531 0.565 

  

Discharge coefficient 
[+] calculated fran 

corrected filmh 

0.712       0.697   0.694   0.692   0.686   0.678   0.700   
  

TABLE VI-3 RIGID EXPERIMENTS KEEPING LOAD CONSTANT 

W = 473.96(N}, P= 3.37163[-], W = 0.36536[-] 

e
C
 
a
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where the surface roughness effects SF are given by equation 

(3). 

It is seen that the simple model proposed gives values 

for surface roughness somewhat lower than that obtained by 

flow measurements, This is attributed not only to the stylus 

diameter, but also to the complex, tri-dimensional nature of 

the bearing surfaces and to difficulties in predicting the 

behaviour of real surfaces from profilometry measurements. 

Data to plot figures 33, 34 and 35 is given in 

tables VI-1 , VI-2 and VI-3 . 

6.2 Experiments to determine the discharge coefficient 

of the bearing restrictor 

  

For the bearing performance to be predicted accurately, 

it was necessary to know how the equivalent discharge coeffi- 

cient of the inherently compensated bearings varies with the 

supply conditions. 

Generally, coefficients of discharge for orifices are 

depéndent upon the Reynolds number [17]. The Reynolds number 

is determined by the flow rate and hence the pressure drop 

across the orifice. If the bearing load is kept constant, i.e. 

the entrance pressure to the bearing film is kept constant, 

coefficients of discharge are then determined by the supply 

conditions. Similar reasoning was followed to obtain the 

equivalent discharge coefficient for inherent compensation as, 

for a constant load, the entrance pressure to the bearing film 

was kept constant. 

Thus the equivalent discharge coefficient is best
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determined experimentally, by varying the supply pressure. The 

same three loads used previously for investigating surface 

roughness effects, section 6.1 ,» are chosen 

The equivalent discharge coefficient is proportional 

to the square of film thickness and is inversely proportional 

to a function of the ratio of film entry pressure to supply 

pressure as shown by equation (I-64), Appendix I, i.e. 

he? 

Cre (5) 
D (POEs) 

Discharge coefficients can be calculated from measured 

film thicknesses, measured supply pressures and measured loads. 

Then they can be plotted against film entry/supply pressure 

ratios for different loads. Fig. 36 is such a plot for three 

different loads. 

It is clear from fig. 36 that the discharge coefficients 

of the constant load experiments vary.little with the film 

entry/supply pressure ratio. The average value of these dis- 

charge coefficients is about 0.54. 

However, the real or pneumatic film thickness is larger 

than the measured film by SF, the surface roughness. From 

flow measurements it has been found that SF is about 2.5 [um]. 

When the corrected value of film thickness is used in 

equation (5), then larger discharge coefticients are obtained, 

eee LIG3037' a 

The discharge coefficient cy was determined experimentally 

for the whole range of rigid bearing experiments, for various
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loads and various supply pressures. It was found that Cy is 

almost constant for varying film entry/supply pressure ratio 

as shown in fig. 1-5 , Appendix I and fig. 37. The average 

value for cy for the many rigid bearing experiments is obtained 

as: 

ce = 40.168 (6) 

During the rigid experiments C, varied between 0.65 and 0.71, D 

It is necessary to use this empirical average value 

of the coefficient of discharge for inherent compensation so 

that theoretical load-film thickness and stiffness film 

thickness curves can be obtained and compared with the 

experimental data. 

6.3 Film Pressure Measurements 

There are four pressure transducers spaced at different 

Yadial positions in the bearing area. Their function is to 

check experimentally film pressures predicted by the theory. 

They are sensitive to bearing tilt and are an additional means 

of ensuring that the thrust bearing surfaces are parallel. 

One of the tests for pressure measurements was done 

with five ditferent loads and for each load the supply pressure 

was varied. At every different supply pressure film pressures 

were monitored in order to confirm that their values are 

independent of the supply pressure in the case of rigid bearings. 

The results of this experiment are given in table VI-4. From 

this table it follows that errors based upon both minimum and 

maximum absolute pressures in the bearing film at a given radial 

position (for different supply pressures) are less than 1.5%.
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MEASURED FILM PRESSURES (bars) 

R 0.353 0.450 05599 0.787 

W=92.67N 

a ec og LeiLss 1.0819 1.0364 

av. PELs 19 1.1189 1.0819 1.0369 

w=152.49 

de 1.2419 Le i919 1.1369 1.0589 

2 1.2459 1.1969 1.1389 1.0629 

3. 1.2449 1.1969 1.1389 1.0619 

4 1.2469 1.2009 L1419 1.0629 

5 1.2479 1.2009 1.1419 1.0639 

av. 1.2455 1.1975 1.1397 1.0621 

W=237.52N 

2 1.3719 Le2Z919 1.2099 1.0999 

2 1.3789 1.2999 Le2lLo 1.0919 

3 1.3839 1.3079 1.2119 1.0919 

4 Le3ea9 1.3099 1.2139 1.0949 

av. 1.3796 1.3024 1.2119 1.0946 

W=337.05N 

1 1.5189 1.4149 1.3019 1.2389 

19299, 1.4219 1.3019 1.1349 

125339 1.4319 1.3049 Teus19 

av. 1.5276 1.4229 1.3029 1.1352 

W=473.66N 

z E1339 1.5739 1.4269 1.2099 

2 U573339 1.5989 1.4299 T1939 

5 1.7339 1.5869 1.4319 ELSES 

4 L.7419 1.6039 1.4269 LeL939 

av. L.7359 1.5909 1.4289 1.1974 

TABLE vVI-4 
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Within experimental scatter it seems reasonable to accept the 

theoretical prediction that film pressure does not depend upon 

supply pressure in the case of rigid bearing experiments with 

constant loads. Therefore average values of film pressures 

at different radial positions and for various supply pressures 

were compared with the theoretical pressures in fig, 38 . A 

good agreement is obtained. 

From Appendix I mass flow through the bearing film 

can be expressed as: 

th? dp 
ws Geet. PS as 

aa 

th? q ““gnRt, PR aR (7) 

It is now possible to fit polynomials of various powers 

to the experimental pressure points and obtain values of (pr§B) 

experimentally, Table VI-5 gives results for powers 2, 3 and 

4 and compares them with theory. Errors for each power are 

also presented. It is seen that the errors are smallest for 

the power n = 2. 

Equation (7) is valid not only for rigid bearings but 

also for the compliant case and it establishes the pattern of 

analysing compliant bearings. If values of (pra) and M are 

obtained experimentally then film thickness h can be calculated 

at various radial positions. 

6.4° Experiments keeping the measured Film Thickness Constant 

The purpose of these experiments is to see if viscous 

flow predominates throughout the range of film thicknesses 

investigated, so that the viscous flow theory developed in
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(pry Eee (pr) ag theor-exp x100 (prSB) exp Se x100 (pry et eons «100 
ther 

P, [bar] [bar*] [bar?] [2] [bax?] [2] [bar*] [2] 
n=2 =2 n=3 n=3 n= n=4 

1.630 0.15268 —}0.14881 2.53 0.14662 3.97 0.13584 11.03 

1.965 0.26391 0.25673 2.72 0.24710 6.37 0.22355 15.29 

2.375 0.42771 ~—‘|o.41822 2.22 0.41043 4,04 0.37718 11.81 

2.825 0.64437 —-|0.61985 3.81 0.60264 6.48 0.53335 17.23 

3.385 0.96556 {0.93311 3.36 0.91985 4.73 0.85042 11.93     

TABLE VI-5 

S
e
b
 

=
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Appendix I can be used. In order to discuss this point it is 

necessary to introduce Reynolds number to the argument, 

Reynolds number is usually defined as: 

Sumas & R, mean 

n 

where Vine is the mean flow velocity and 2 is a length that an 

characterises the flow. It is customary to take film thickness 

h as this characteristic length in thrust bearing analysis 

[103]. Substituting the mean velocity by (volumetric flow Q 

divided by the flow area A = 2mrh), the Reynolds number becomes: 

_ poh _ Mh 
Re aan on 

= 
~ arn We) 

These experiments were performed at three measured 

film thicknesses 10, 20 and 30 wm as shown in table VI-6. Load 

and supply pressures were varied during these tests. 

The Reynolds numbers defined by equation (8) are also 

included in table VI-6. These Reynolds numbers were calculated 

for mer) = 0.28575mm because the Reynolds numbers are highest 

at the smallest radius of the film. 

In reference (143] it is stated that flow where inertia 

forces are predominant in radial thrust bearings occurs ata 

Reynolds number based on film thickness Re > 1900, and Re=1000 

is usually used for design purposes. Comolet {103 ] recommends 

this design value to be 500. It may therefore be expected 

that a local inertial flow may occur near the entry to the 

test bearing for large loads, i.e. for large mass flow rates.
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Reynolds 
fue ni ] oil mass flow derived number 
film h_[um w([N = ekg) tilm (at r=r_) 

M 
» i [20 Zl h [um] Re[-] 

10 337.05 4,172 12037) 128.3 

lo 473.96 6.237 12.36 191.8 

20 152.49 10.448 22.62 S212 

20 237252 17.477 22.85 537.4 

20 337.05 26.091 22.79 802.2 

20 473.96 39.457 22.86 1213.2 

30 152.49 30.961 32.49 95129) 

30 237552 49.319 32.29 1516.4 

30 337.05 76.226 32.58 2343.7 

TABLE VI-6 

- ambient conditions p, = 1.0019|bar| 

i Q, T7294 Z| K| 

- Reynolds number Re calculated for radius r = 0.286nm, 

i.e. at entry to the bearing film. 
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However the Reynolds number drops rapidly as the radius increases. 

For example, at r=lmm the last Reynolds number in Table VI-6 

at maximum mass flow becomes Re=669.7. 

These tests show that the viscous flow theory developed 

in Appendix I is adequate for the normal working range for rigid 

bearing analysis. 

Films derived from mass flow measurements are about 

2.5 um greater than the measured films, which is in line with 

the constant load tests and constant supply pressure tests. 

Therefore, apart from showing that the viscous flow theory is 

adequate, these tests are a useful check of other types of 

bearing tests. 

6.5 Experiments keeping the supply pressure constant and 

varying the load 

‘ Ambient conditions for these rigid bearing experiments 

were 

'd
 Ml = 1.0056 [bar] 

(9) 
293.2 [°K] 8 W 

Surface roughness effects were very similar to those 

established when the load and film thickness were kept constant. 

Measured films versus films derived from flow measurements are 

shown on fig. 39, On average the difference is 2.5 [um] . 

Dimensionless mass flow versus dimensionless film thick- 

ness for four different supply pressures is shown in fig. 40 . 

The four supply . pressures were chosen so as to cover the range 

of supply pressures encountered in the rigid bearing experiments.
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Theoretical lines in fig. 40 have taken into account the 

experimentally obtained value of discharge coefficient C,=0.68. 
D 

By equating the mass flow through the orifice and through the 

bearing, equation I-64 , Appendix I, and taking C)=0.68 a 

theoretical film can be obtained for a given film entry pressure 

(i.e. given load) and a given supply pressure, With this 

theoretical film, theoretical mass flow through the bearing is 

obtained from equation I-13 , Appendix I, and this is how the 

theory lines on fig. 40 are established. 

Both dimensionless load and dimensionless stiffness 

versus dimensionless film thickness are shown in figures 4 

and 42 respectively. Theory lines on these figures similarly 

as for the flow rates have taken into account the experimentally 

obtained value of discharge coefficient Cp=0.68. 

Bearing performance in dimensional form gives more 

feeling about the orders of magnitude in question, hence figures 

43, 44 and 45 are presented for flow, load and stiffness 

versus film thickness with dimensions of SI units. 

From figures 42 and 45 it is seen that at low values 

of film thickness the agreement between theory and experiment 

is not good. When film thickness is low the ratio of film 

entry pressure to supply pressure approaches unity. Fig. 45 shows 

that a departure of coefficient of discharge from its mean value 

Cy=0.68 is most pronounced in this region. It is because of Cp 

that experiments and theory do not agree well at low values of 

film thickness, figures 42 and 45 . 

Better agreement could have been obtained by taking into 

account the variation of cy with film entry pressure and calcu- 

lating theoretical stiffness from equation I-69, Appendix I,
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Measured filn h_[im]| 36.0 33.0 31.0 25.0 23.5 19,2 18.1 12.1 9.6 3.9 
tn 

Measured load W [NJ] | 92.67 | 110,03 | 124.74 | 167.01 | 181.72 | 224.18 | 238.89 | 281.35 | 290.18 32.84 

j j 1 
Measured mgs flow | \ 

\zete Mfto "25 j | 3.70 | 29.22 26.53 20.13 18.21 14.23 13.50 5.52 3.05 | 0.45 

Corrected film | rh #2.5 Le (385 | 35.5 33.5 27.5 26.0 21.7 20.6 14.6 Da 6.4 

Film derived | 
from measured flowy | 38.71 35.82 33.16 27.21 25.51 21.73 20.85 14.54 11.79 | 5.93 
hy (orl | | | 

i | | 
Dimensionless port j | 5 Peers Ly | 162695) i 1.80663] 2.02724) 2.10091] 2.30531 | 2.37388| 2.56614] 2.60521| 2.79023] 

| | | 
BOFE/eUELY ae | 0.56553, 0.59984!’ 0.62799| 0.70467| 0.73028 0.80133 | 0.82516] 0.89199 | 0.90558 0.96989 ratio P_/P, [-] | 

Dimensionless i : Pees ]_ | 2862 aa tees] aya || sis 2.11729} 2.52645 | 2.57957| 2.92534] 3.2528q 2.51625 

7 
Stiffness s[10* y | 4.382 | 5.417 6.263 8.870 9.628 11.489 11.731 13.303 14.792 | 11.443 

Ll | 0.07132} 0.08468! 0,09600} 0.12852} 0.13984] 0.17252 | 0.18384] 0.21652 | 0.22331] 0.25614 

{ l 
Dimensionless \ . ae anes | 4.09 | 3.90 3.54 2.69 2.43 1.90 1.80 0.74 0.41 | 0.06 
Dimensioniess 

| fiim_Hf10-4] | 134.7 124.2 | 117.2 96.2 91.0 75.9 72.1 51.1 +42.3 | 22.4 

TABLE VI-7 RIGID EXPERIMENTS KEEPING SUPPLY PRESSURE CONSTANT 

P 
Ss 

= 2.87686 [-] 

i
o
r



  

  

  

  

  

  

  

  

  

  

  

              

Measured film h, {um] 5 13.5 16.3 18.2 20.1 23 25 28 34.8 

Measured load W [N] 469.44 375.30 332.04 303.42 275.66 233.20 211.33 T81.91 124.74 
Measured mass _ k 
flow rate M[lo ° =] 1,29 10.82 15.24 18.47 20,45 23.73 27.52 30.38 38.31 

Corrected film = ; 5 h= h 42.5 [um 75 16.0 18.8 20.7 22.6 25.5 27.5 30.5 a7:3 
m 

Film derived from neacured flow [um 2.33 16.27 19.12 21.13 22.68 25.39 27.68 30,24 37.48 

Dimensionless port 3 pressure P, [- 3.34891 | 2.96872 | 2.79023} 2.66325} 2.54071] 2.34735] 2.24441] 2.10184] 1.80663 

Bort/supp ly prcseure 0.97430 | 0.86369 | 0.8117/] 0.77483] 0.73918| 0.68292] 0.65297} 0.61149 | 0.52561 ratio P/P. [-] 

Dimensionless _ E e See 5] 0.24162 | 4.02871 | 3.91500] 3.70181] 3.42035| 2.92867] 2.60928] 2.17401 | 1.36210 

Stiffness S ho 1.099 18.320 17.803 16.834 15.554 13,318 11.866 9.886 6.194 

ae oa 0.36126 | 0.28882 | 0.25614] 0.23350] 0.21214} 0.17946] 0.16263] 0.13999 | 0.09600 

Dimensionless flow 
[1072] 0.17 1.44 2.03 2.3 2.73 3.16 3.67 4.05 Bell 

Dimensionless film Hf10-?] 26.2 56.0 65.8 72.4 79.1 89,2 96.2 106.7 130.5 
    

TABLE VI-8 RIGID EXPERIMENTS KEEPING SUPPLY PRESSURE CONSTANT 

P. = 3.43723 [-] 
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Measured film h, [um] 25.2 21.8 1919 18.3 16.5 33.5 6G 

Measured load w [nN] 252.33 | 309.50 | 351.96 | 397.76 [440.22 _| 516.17 | 652.73 
asured mass ke 

low rate m [1072 ] 32.18 27.91 B7e23 24.63 20.22 15.27 3.91 

Corrected film 3 hehe 2.5 [ul 27.7 24.3 22.4 20.8 19.0 16.0 9.1 

Film derived trom - ake 5 27.28 24.06 22.71 20.92 18.81 16.06 9.25 

ERE Sea 2.43545] 2.68982| 2.8/121| 3.06120 | 3.23288] 3.53100] 4.04538 
pressure Fale 

P/ Sapa ete a ei 0.59064] 0.65233] 0.69632] 0.74240 | 0.78403] 0.85633] 0.38108 
ratio Bes - 

Danensi tess! 3.29437] 4.14174] 4.65880] 5.04723 | 5.37277| 5.44693] 0.19308 
stiffness Ss [-] 

Or rees } 14.981 | 18.834 | 21.18 | 22.952 | 24.433 | 24.770 0.878 
n 

Ct 0.19418 | 0.23818] 0.27085| 0.30610 | 0.33878] 0.39718| 0.50231 

Dimensionless ge aa 4,29 BET? 3.64 3.28 2.70 2.04 0.52 

SS 96.9 85.0 78.4 72.8 66.5 56.0 31.8 film {10 °]                 
  

TABLE VI-9 RIGID EXPERIMENTS KEEPING SUPPLY PRESSURE CONSTANT 

P, = 4.12340 [-] 

“
O
S
T



  

  

  

  

  

  

  

  

  

  

  

    

Measured tilm h, [yn] 9.8 12.8 14.9 15.7 17.4 18.3 20.4 73.6 

Measured load W [NJ 950.55 | 795.50 | 696.17 | 653.71 | 574.38 | 530.15] 485.62 | 397.56 
Measured mass — : 2 : 9. fey ete ee #3] 13.93 23.20 30.58 31.38 32.70 35.63 42.52 49.02 

Corrected film heh, + 2.5(un 12.3 15.3 17.4 18.2 19.9 20.8 22.9 26.1 

Film derived from 5 neorece ee ae 15.39 17.87 18.51 19.81 21.07 23.16 26.32 

piauaeiones — 5.03385] 4.56065} 4.20421] 4.04895] 3.7345 3.58513] 3.41324] 3.06038 
pressure Po = 

Oe Svea eee 0.91405] 0.82813] 0.76341! 0.73521] 0.68156] 0.65099} 0.61378] 0.55571 
ratio PY? [-] 

Die 7.60674] 9.32088] 9.17246] 8.95016] 8.21686] 7.74090] 6.83817] 5.46070 
stiffness §[-] 

a [io St 34.591 | 42.386 | 41.712 | 40.701 | 37.366 | 35.202 | 31.096 | 24.832 

aaa ls 0.716421 0.61220} 0.53574] 0.50307} 0.44202! 0.40798] 0.37387] 0.30595 

Dimensi poe é : : .67 254 flor [10°] 1.86 3.09 4.08 4.18 4.36 4.75 5.6 6 

Dimensionless 3 Z . f vs film H (10? 43.0 53.5 60.9 63.7 69.6 72.8 80.1 91.3                   
  

TABLE VI-10 RIGID EXPERIMENTS KEEPING SUPPLY PRESSURE CONSTANT 

P= 
s 

5.50717 [-] 

=
 
G
t



= 52)= 

with the term ac5 # O. However this has not been carried out 
dP. 

because the P normal operating region of these bearings 

is on the right of maximum stiffness where the agreement between 

theory and experiment is good. 

Data for figures 40- 45 is shown in tables VI-7 to 

VI-10. 

6.6 Comparison with the Designed Performance 

It is now possible to compare the bearing performance 

with the performance envisaged in the initial rig design for 

maximum stiffness as follows: 

  

initial ay ratio 
Gesign i } performance P/i 

Film h [um] 19 19 1 

Mass flow m[10"* ¥ 79 31 0.39 

Load w [N] 1230 530 0.43 

stiftness s[10* §] 99.7 36.4 0.37       
  

It is seen that primarily because of the change of the 

bearing restrictor, the three important bearing parameters: mass 

flow, load and stiffness are smaller than designed (for the same 

film thickness). 

The experiments so far have established a reasonable 

agreement with theory and one is now more confident about the rig 

performance with compliant bearings.
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vit COMPLIANT BEARING EXPERIMENTS 

7.1 Apparent Film Thickness 

Consider three situations of a compliant bearing in 

order of increasing load as shown in fig. 46. It is taken 

that ho is a uniform film thickness without elastomer deforma- 

tion and that h, and hz are mean film thicknesses. 

If the unloaded elastomer thickness with no deforma- 

tion is marked as co (case (a)), then mean elastomer thick- 

nesses in (b) and (c) are: 

ot tl to (At)i 

t2 = t, - [(at)i + (At)2] 

where (At): and (At)2 are mean elastomer compressions due to 

load increments. 

Distances Aor A, and Az take into account both mean 

film thickness and mean elastomer thickness. These overall 

distances are equal to : 

Ay = ty + ho hence Ay imi te = ho 

A, = ti + hi hence Ai - t, = hi - (At). 

A, = to + he hence A, ~ t, = he ~[ (dt) 1 +(e) 2] 

or in general the apparent value of bearing film thickness
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Sona hee At (1) 

This.apparent value of film thickness is by definition 

related to the initial elastomer thickness with no deformation 

to: It consists of the mean bearing film and of elastomer 

total compression due to load increments. They were both 

measured during the compliant bearing tests by means of 

mitronic comparators, 

This apparent value of film thickness is important tor 

bearing parameters such as load and stitfness. How much a 

bearing will "give" under a certain load is described by the 

Change of distance A (between two surfaces in a compliant 

bearing which are rigid). Referring to the cases b) and a) 

of fig. 46, this distance change is equal to (Ai-A,). Tia 

constant value ty is subtracted from both A; and from Ay this 

distance change is still equal to 

By 2 Ree Des baer Ae (2) 

Therefore for compliant bearings the relative change in axial 

distance under an increment of load is described not only by 

the change of the bearing film but also by the elastomer 

compression. 

For parameters like volumetric and mass flow rate, 

bearing film is more important than the apparent film, although 

if desired they can be plotted against the apparent film 

similarly to bearing load.
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1.2 Types of Tests Performed 

Constant Load Tests ee ee 

These tests were performed in order to estimate film 

entry pressure at zero film thickness i.e. when the film entry 

pressure is equal to the supply pressure, 

It was not possible to measure the film entry pressure 

experimentally in compliant tests. Graphs ot supply pressure 

against film thickness were drawn from which supply pressures 

at zero film thickness (i.e. film entry pressures at zero 

film thickness) were extrapolated, 

Whilst with rigid experiments film entry pressures are 

uniquely determined by the bearing load, this is not the 

Case with the compliant experiments. Here difterent film 

entry pressures correspond to different tilm thicknesses, 

i.e. to different supply pressures, 

Film Pressure Measurements i measurements 

These measurements were performed during the constant 

load tests in order to see how the tilm pressure is influenced 

by the varying supply pressure. 

Whilst with rigid bearings supply pressure practically 

has no influence on the film pressure distribution, i.e. 

for one load there is only one film pressure distribution, 

with the compliant bearing this pressure distribution changes 

with the supply pressure so that for the same load there 

exist different pressure distributions in the bearing film 

depending upon values of supply pressures,



ae Oe 

Polynomials of various degrees were fitted to these 

experimentally determined pressure distributions. Then the 

load capacity was checked from equation (I-17), Appendix I 

which states 

rm 2 es W = Rp P, + 2 f PRAR - 1 (3) 

In each case the calculated load capacity varied with 

the supply pressure. The pressure was measured (for bearings 

of largest diameter) in the region of 0.353 < R < 0.787. The 

curve uniting the measured pressure points did not show a 

pronounced change of shape when compared to rigid bearings 

except that it was only slightly convex upwards, whilst the 

rigid pressure distribution is slightly concave upwards, see 

fig. 38 chapter VI. Therefore a second order polynomial was 

fitted to the compliant pressure points because this polynomial 

showed the best agreement with rigid theory see table VI-§, 

chapter VI. 

The absolute dimensionless film pressure for compliant 

lubrication was therefore determined as: 

Peal + B+ Bik + B2Re : (4) 

Here Bor B, and Bz are the second order polynomial coefficients 

determined by the least squares method. 

Local Film Thickness Measurements 

It was hoped to obtain local film thickness measure- 

ments by means of three displacement probes spaced radially in 

the lower bearing surface. However, the displacement probes
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were shorting after being in contact with the elastomers 

sprayed with silver paint due to paint transfer to them. As 

soon as this.-had been discovered, a compliant test had to 

be stopped in order to clean the probes by means of a sewing 

needle under the microscope. In this way the test apparatus 

was disturbed during a bearing test and thus the results 

obtained were not reliable. Further development remains to 

be done, 

By differentiating the pressure polynomial with respect 

to radius, the product (film pressure x radius x film pressure 

derivative with respect to radius) can be obtained at any radial 

position covered by the range of experiments. By knowing the 

mass flow, the local film thickness can thus be calculated, see 

equation (7), chapter VI. 

Constant Supply Pressure Tests 

These tests enabled the relationships of load and flow 

with apparent film thickness (and with film thickness) to be 

determined experimentally. They are the most important type 

of tests to determine the bearing performance. Rigid theory 

lines are plotted on the graphs ot compliant experiments so 

that a comparison of rigid and compliant bearing performance 

can be made. 

7.3 Constant Load Tests and Film Pressure Measurements 

As an example of these types of tests one typical test 

will be described. The load, excluding the elastomer weight 

of 2.95 N was W = 92.67 N. The elastomer was natural rubber 

made at Aston University (referring to table VII-2, section 7.4
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of this chapter this elastomer’ s number is I,). Supply 

pressures were varied between 1.372 [bar] and 5.758 [bar] 

under the following ambient conditions 

p 1.006 bar 
a 

T 295°K 
a 

Under the load of 92.67 N, the elastomer compression was 

determined to be 7um, If the apparent fiim thickness is 

desired, it can be obtained by subtracting 7um from the 

measured film thickness (neglecting surface roughness effects). 

However, for this test it is not important because the load 

was kept constant, 

Apart from film pressures also supply pressures, film 

thicknesses and flow rates were monitored. 

The results are shown in table VII-l. Fig. 47 shows 

a plot of supply pressure v. tilm thickness. The continuation 

of the curve below the minimum film thickness measured gives 

an estimate of the value of the film entry pressure at zero 

film thickness. 

A second order polynomial is fitted to measured 

pressure points as given by equation (4). The term (14+B,) 

represents the film entry pressure estimated from the condition 

that the bearing radius is approximately R=O at film entry. 

Fig. 48 shows a plot of film entry pressure determined in such 

away against the supply pressure. It is seen that there is 

a variation of film entry pressure with supply pressure i.e, 

with film thickness. The point estimated from fig. 47 for 

zero film thickness is also shown in fig. 48 (for Py = p= 
s 

1.006 bar).



  

  

  

  

  

  

  

  

  

  

  

  

                        
  

Gauge film pressures [bar] absolute | measured | measured estimated load calculated 

supply film mass flow} film entry] from fitted 
pressure | thickness ee pressure polynanial 

fbr} | fim) | [t0%ks/s] © Doar] ta 

test | R=O.353 | 0.450 | 0.599 | 0.787 2 

ohne men escanned anes ee ee 

L 0.100 0.082 | 0.097 } 0.040 {1.1722 20.5 5.22 1.0089 67.0 

2 0.115 0.095 | 0.095 | 0.040 | 1.4918 33 11.23 1.0761 76.1 

3 0.120 0.105 | 0.093 {0.040 | 1.848 43 29.70 1.0966 78.5 

4 0.122 O.108 | 0.096 | 0.040 | 2.308 49 45.78 1.0875 78.3 

5. 0.130 0.110 | 0.095 10.042 | 2.883 54 66.56 1.1351 86.5 

6 0.128 0,112 | 0.095 | 0.043 | 3.458 58 82.19 1.1241 85.9 

7D 0.131 0.114 | 0.095 | 0.043 | 4.033 61 102.76 1.1365 Sieh 

8 0.135 0.114 | 0.095 | 0.045 | 4.608 64 122.93 1.1616 93.0 

a 05135: 0.118 | 0.096 | 0.047 | 5.183 69 148.90 1.1554 94,5 

10 0.135 0.120 | 0.093 | 0.050 | 5.758 72 172.32 1.1742 99.1 

TALE VII-1, W = 92.67[N] 
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Using equations (4) and (3) the load capacity can now 

be calculated and it is shown in fig. 49, Similarly as film 

entry pressure, the load capacity, determined by fitting a 

polynomial through pressure points, also increases, 

Referring to table VII-1, other calculations concerning 

test 8 are shown in table VII-2. 

  

  

fitted 

Reoseure dp pre 
R Pg P aR h 

[-] [bar] (bar] {bar] [bar?] [um] 

0.353 0.13437 1.14095 |-0.17030] -0.06859 80.82 

0.450 0.11730 1.12388 |-0.18165]| -0.09187 T3632 

0.599 0.08894 1.09552 }-0.19908] -0.13064 65.20 

0.787 0.04944 1.05602 |-0.22108 | -018374 58,19 

1.000 -0.00030 1.00628 }-0.24600} -0.24754 52.69                 
TABLE VII-|b 

These calculations were performed using equation (7) 

of chapter VI. Film thickness profile is thus estimated and 

it is shown in fig. 50 (Equation (7) of chapter VI cannot be 

used to estimate film thickness profiles at R+0). Measured 

mean film thickness h = 64 um is also shown, 

Flow rates versus film thickness are plotted on fig, 51. 

Neither elastomer compression nor surface roughness have been 

taken into account, Comparison with rigid bearing theory shows 

that for constant loads flow consumption at a given film 

thickness is smaller than for rigid bearings. This has been
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initially predicted in chapter I. 

Referring to fig. 49 the reason for the load calculated 

from a polynomial to increase with supply pressure is thought 

to be as follows: 

- As film thicknesses are larger than with rigid 

bearings it is possible that some inertial flow exists. Although 

for constant load tests (at a given film thickness) mass flows 

are smaller than the corresponding rigid theory, the absolute 

values of the operating flow rates are much larger. Looking 

at the equation (8), chapter VI the corresponding Reynold s 

numbers are larger and it is estimated that the local inertial 

flow is extended radially outwards further than with the rigid 

case. 

It is to be noted with these tests that the estimated 

film entry pressures are smaller than with rigid bearings. The 

comparison of a rigid and compliant pressure distribution for 

a constant load would give general shapes ot film pressures 

as follows: 

P 

rigid 

  

    compliant 
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It has been noted that for harder and thinner specimens 

film entry pressure is greater than for the thicker and sotter 

ones, see fig. 52, 

Determination of film entry pressures is one of the 

main obstacles in this experimental work. They could not be 

measured experimentally and it has been tried to fit poly- 

nomials to measured pressure distributions and thus extra- 

polate for tilm entry pressures, 

The author has attempted to make a comparison between 

one of his own compliant experiments and the theory ot Pirvics 

and Castelli [?°*], pata for the experiment were: 

  

W = 0.071 [-] 

measured v = 0.4999 [-] 

na G 
ch = —— = 0,033 [-] 

t i 

Peas let [-] - estimated from measured pressures 
P through polynomials 

RS = 0.0045 

measured 

c 
= = 0.196 
Re 

The theory AG is valid for the following conditions 

= 

R_ = —2 = 0.0625 
phe
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It can be seen that the aspect ratio t/R, and Poisson's 

ratio v of the experiments are only slightly different than 

those for the theory. For the ratio of the radii, however, 

the difference is one order of magnitude. This is considered 

not to matter very much because theory [?°*] postulates that 

film entry pressure Po is equal to the supply pressure Por 

i.e. bearing restrictor is not taken into account. Also for 

a small ratio of inner to outer radius the contribution of 

the term Py R,* to the load capacity, (equation (3)), is 

small, 

The difficulty of comparing experiments with theory is 

not only because of approximations in obtaining film entry pressures 

and the differences in radii ratio, but also because of the 

following: 

1) Small size of the diagram in reference eel 

which is reproduced in fig. 53. 

2) Theory is available only for certain values 

of film entry pressures and it is not 

available for the value estimated in the 

experiment. 

7.4 Constant Supply Pressure Tests 

It has been shown that for compliant bearings it is 

possible to sustain the same loads as for rigid bearings with 

smaller flow rates, i.e. smaller supply pressures. Therefore 

the range of supply pressures for compliant bearings will not 

be the same as for rigid bearings. In order to cover the 

range ot supply pressures investigated it was found convenient
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to choose the following four nominal values of absolute 

supply pressures [bars] tye 380 ,.12:80), 2.90. and: 32:50. 

Table VII-2 shows elastomers (various rubbers and 

plastics) that have been investigated. Generally two and 

sometimes three diameters of the same material had been 

tested in unbonded (a) and bonded (b) state. (Elastomers 

whose numbers end with (b) are bonded). The range of hard- 

ness investigated is 40-90 [IRHD] . Elastomers for the 

investigations were either obtained from various suppliers 

or made at Aston University. Photograph XII shows a mould 

in which elastomers Ij-lit, and I-T1t, were made. Photo- 

graph XIII shows some elastomers bonded to steel backing 

plates. The bonding adhesive is also shown. Photograph XIV 

shows some unbonded elastomers used during the investigations. 

A typical test of the bearing Ivy, is presented in table VII-3 

and figures 54 and 55. It is seen that for an elastomer of 

medium hardness, load capacity is improved compared to 

corresponding rigid loads for a given supply pressure. 

Measured flow rates when plotted against apparent film thickness 

show an increased flow consumption for compliant bearings (at 

a given film thickness). 

The performance of the unbonded bearing Iv, is shown in 

figures 56 and 57. Figure 56 shows that the stiffness is 

smaller than with the bonded bearing IV. Load is still better b° 

than the rigid case except for the lowest supply pressure, 

The characteristics of nearly constant stiffness with film 

thickness, typical for bonded bearings, is retained.
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1 

ede at or] Dia x t 
Number | Elastcmer obtained Dimensions t/R, [FRHD EG [bar] 

from [mm a 

I natural Aston 126.90x12.82}0.202 [54.4 | 67.03 

cE w ue 102.00x12.69] 0.249 [56.3 | 59.81 

Tay s ve 77.13x12.77}0.331 [56.1 | 51.21 

in natural Aston 126.90x12.46] 0.196 [54.4 | 123.62 

It, z é 102.00x12.37] 0.243 [56.3 | 123.68 

qt, " a 77,13x12. 42] 0.322 [56.1 | 106.81 

Iv, Polyurethane] Sharples | 128.10x3.35 |0.052 160.5 | 209.95 

We " w 77,02x3.37 | 0.088 |61.2 | 148.32 

Iv, Polyurethane} Sharples | 128.10x3.12 | 0.049 60.5 | 262.44 

Vy “ wy 77.02x3.14 | 0.082 |61.2 | 196.87 

vi. Hard Viton |Du Pont 127.32x2.38 | 0.037 ]90.0 | 169.70 

VIL. = “ 76.80x2.24 | 0.060 {89.0 | 121.17 

Vi, Hard Viton | Du Pont 127. 32x2.19 | 0.034 {90.0 | 189.53 

VI, v " 76.80x2.19 | 0.057 }89.0 | 142.31 

VIII, Medium Viton] Du Pont 127, 83x2.34 | 0.037 ]81.0 | 102.57 

Ix, * : 76.45x2.39 | 0.063|81.0 | 81.33 

VIIL, Medium Viton} Du Pont 127,83x2.13 | 0.033 ]81.0 | 111.75 

m%, te ui 76.45x2.15 | 0.056 81.0 }. 89.37 

x Soft Viton |Du Pont 128.20x3.20 | 0.050 j56 90.96 

xt, ® Ke 77,05x3.23 | 0.084}56.5 | 70.47 

» Soft Viton {Du Pont 128.20x3.05 | 0.048}58.2 | 107.01 

x, " v 77,05x3.07 | 0.080}57.8 | -82.90 

XII Natural RRH | Dunlop 126.90x4.05 | 0.064}78.2 | 132.41 

XIII g 2 77.20x4,02 | 0.104]79.0 }| 112.38 

x11, Natural RRH{| Dunlop 126.90x3.95 | 0.062179.5 | 162.40 

xIII,, x i 77.20x3.97 | 0.103}80.0 | 131.06 

xIV, Natural RRB] Dunlop 127.30x4.11 | 0.065}39.2]} 65.40 

XV, rr id 78.00x3.96 | 0.102}38.7] 49.31 

xIy, Natural RRB} Dunlop 127, 30x3.91 | 0.001}40.6 | 81.30 

My, x Ht 78.00x3.93 |.0.101]40.1} 60.52 
  

TABLE VII-2 
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h =h-ZAt 

w fr] hum] Tum) m[10"*ks/s] | W[-] e'[-] 

Pg = 1.838 [bar] 

92.67 30.1 29.2 29.3 0.072 | 0.066 

152.49 17.0 15.5 16.0 0.118 =| 0.035 

194.96 11.0 9.1 7.9 0.184 | 0.013 

237.42 8.2 5.9 ay 0.184 | 0.013 

p, = 2.299 [bar] 

455.13 8.7 4.3 10.7 0.353 0.010 

410.90 10.7 6.8 17.5 0.319 | 0.015 

322.54 16.1 13.0 24.3 0.184 | 0.045 

237.42 22.3 20.0 32.0 0.184 | 0.045 

152.49 30.1 28.6 39.2 0.118 | 0,064 

P, = 2.874 [bar] 

322.54 24.5 21.4 45.3 0.250 | 0.048 

455.62 19.7 15.3 41.0 0.353 | 0.034 

592.22 14.8 9.1 35.7 0.460 | 0.020 

720.98 10.0 3.1 28.2 0.559 | 0.007 

825.11 5.5 ~0.6 20.3 0.640 |-0.001 

No25.05 201 -10.0 6.1 0.795 |-0.022 

p, = 3.449 [bar] 

190.45 3:3 “11.8 12.5 0.924 |-0.026 

097.95 8.1 2.4 28.6 0.852 |-0.005 

985.47 11.6 21 39.6 0.764 | 0.005 

856.44 14.5 6.2 0.665 | 0,014 

720.98 17.6 10.7 0.559 | 0.024 

592.22 20.3 14.6 0.460 | 0.033 

TABLE VII-3 
BEARING IV, 
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With reference to Table VII-2, an investigation 

programme has now been set up in order to determine the per- 

formance of other elastomers. Usually the same elastomer 

sample has been tested as an unbonded specimen and as the 

bonded one. First, unbonded elastomers are tested, then they 

are bonded and surface ground so that the elastomer surtace 

is similarly flat as the rigid bearing surface. From table 

VII-2 it can be noted that the aspect ratio of the bonded 

elastomers is always somewhat smaller than for the correspon- 

ding unbonded ones. This is so, because elastomer thickness. 

of a bonded elastomer is reduced by the grinding process, 

Unbonded elastomers were not ground and they were tested as 

obtained (or as made in moulds). Their flatness on a talylin 

trace is of the same order of magnitude as flatness of bonded 

bearings. 

There follow figs. 58-71 of load and flow rates against 

the apparent film thickness of Some elastomers in table Vii-2. 

7.5 Discussion of Compliant Bearing Results 

In order to predict the bearing performance, it is 

important to find out how bearing parameters such as hardness, 

thickness and diameter influence the load carrying capacity 

and mass flow rate. Both bonded and unbonded elastomers are 

discussed. 

Hardness and Thickness (Elastomer Diameter is approximately 

constant 

Referring to the table VII-2, bearings chosen to discuss 

the influence of hardness and thickness upon bearing performance 

are VIII, IV and XIV ("a" and "b"), Medium viton (VIII) is
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the thinnest and the hardest elastomer, i.e. its compliance 

is the smallest. The compliance of polyurethane (IV) is 

increased, and the compliance of soft natural rubber (XIV) 

is increased further. Comparisons are made at a nominal 

absolute supply pressure eC, 2.90 [bar]. 

Fig. 72 is a plot of load against apparent film thick- 

ness for bonded elastomers. Rigid theory line is also shown, 

It is seen that the load of all three bearings is superior 

to rigid bearings. A beneficial effect of compliance upon 

bearing load carrying capacity is detected. 

This compliance effect is seen better if dimensionless 

load is plotted against dimensionless apparent film thickness, 

Lig. 33. 

This is because dimensionless apparent film thickness 

ce depends both upon elastomer thickness and upon a characteris- 

tic of the material which is related to hardness. Thus this 

variable truly describes the compliance of a bearing liner. 

Flow rates are shown in fig. 74. Air flow consumption 

of all three materials is greater than the rigid bearing flow 

consumption for a given apparent clearance. The more a 

bearing is compliant, the flow consumption is greater. 

The performance of the unbonded bearings (VIII, IV and 

XIV) is shown in figures 75 and 76. The load capacity is 

reduced compared to bonded bearings, but it is still superior 

to rigid bearings, particularly at low values of apparent 

clearance. Gradients of lines connecting experimental flow 

points are smaller than for the bonded bearings. This means 

that flow rates of unbonded bearings increase slower with
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film thickness than flow rates of bonded bearings. 

Similar deductions can be drawn for other nominal 

supply pressures investigated except that at the lowest 

pressure of 1.80 bar, rigid bearings are superior to unbonded 

compliant bearings. 

Referring again to table VII-2 it has been discovered 

that elastomer thickness is a major variable to influence 

compressive characteristics of elastomers, particularly the 

ratio of compressive modulus of unbonded elastomers to 

compressive modulus ot bonded elastomers. A plot of this 

ratio with elastomer thickness is shown in fig. 77. It 

is seen that Ey (not bonded) /E , (bonded) approaches unity 

for thin Blastonecs but it is 0.54 for elastomers 12.5mm 

thick. ' This is of importance when a bearing designer intends 

to use thick unbonded elastomers as bearing compliant 

materials. 

Elastomer Diameter (Hardness and Thickness are approximately 

constant 

In order to discuss this parameter, bearings I, II and 

III ("a" and "b") are chosen, They are natural rubber bearings 

made at Aston University. 

Fig. 78 shows load against apparent clearance for 

bonded and unbonded compliant bearings of three diameters. The 

corresponding rigid theory lines are also shown. 

Bonded bearings are superior than rigid theory, whilst 

the load of unbonded bearings is smaller than rigid load for 

a given film thickness.
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It is to be noted that elastomer thickness of bearings 

I, II and III is larger than with any other bearings investi- 

gated. Unbonded bearings of these large thicknesses are 

inferior because they "give" more under a given load, i.e. 

LAt is larger so that apparent film thickness becomes smaller. 

Referring also to fig. 77 it is concluded that the use of 

unbonded elastomers of large thicknesses is not justified 

because of their inferior performance. 

Fig. 79 is a plot of flow rates v. apparent clearance 

of bonded and unbonded elastomers. Rigid theory (one line 

for all three diameters) is also presented. For a given 

clearance, flow rates are larger than predicted by rigid theory. 

Similarly as with bearings VIII, IV and XIV discussed previously 

gradients of lines drawn through the experimental flow points 

are less steep for unbonded bearings, i.e. flow rates of these 

bearings increase less rapidly with film thickness. 

Fig. 80 shows the influence of the elastomer diameter 

upon the compressive elastic modulus. For bonded elastomers of 

larger diameters compressive moduli are larger than these moduli 

of unbonded elastomers of smaller diameters. 

Temperature Eftects 

The temperature ot the laboratory where experiments were 

performed was 21 + 1°c. These small variations of temperature 

have an insignificant influence to elastomer properties. 

However, certain elastomers were sometimes exposed 

to a temperature change when they were taken out of the 

laboratory for machining purposes or for profilometry measure- 

ments.
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These changes in temperature induced stresses to 

elastomers and they made the bonded elastomers become concave 

with their unbonded free surface outwards. For example, 

for bearing I, the difference between the elastomer thickness 

at the periphery and at the centre was once noticed to be 

5-6 um. Elastomers were then ground once more and care was 

taken that they were exposed to as small temperature changes 

as possible.
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VIII CONCLUSIONS AND FUTURE WORK death EL AOL SS 

Pioneering work of Dowson and Taylor [2°], theoretical 

work of the Columbia group [?°?] to [?°°], experimental work 

of Lowe [?!°], work of Smith and Gupta [??*] and [2°] ana 
work of other researchers have made significant contributions 

to the available knowledge of steady state compliant lubrica- 

tion. However, there are still some areas within the steady 

state compliant lubrication that need to be investigated. 

Compliant lubrication under dynamic conditions still remains 

to be performed. 

8.1 Steady Performance 

The effect of compensation on the pertormance ot rigid 

bearings has been reported ['??]ana[??3]. Gas rigia bearings 

are investigated with inherent, orifice and slot (or capillary) 

compensation, see for example fase section 10. Investigation 

of the effect of compensation on compliant bearings remains 

to be performed. From a practical point of view, inherent or 

capillary compensated bearings are better than the orifice 

compensated bearings with a port. The port brings instabilities 

to the bearing performance and should be avoided, 

Work on bearing stiffness is closely connected to studies 

of various compensating elements. This property, for rigid 

bearings, was studied in (227) and [1?"] and some static 

stability criteria was given according to the type of compen- 

Sating element used. The author of this thesis has experienced
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very little, if any, instabilities of compliant bearings with 

an inherent restrictor, However, Lowe [711] has reported some 

instabilities and possibilities to extend this work to other 

restrictors and to derive a static stability criteria for 

various ‘restrictors should be investigated. 

Surface roughness effects have been extensively studied 

(23°] to ['8] for bearings with rigid surfaces. It is shown 

in this thesis that surface roughness effects should be taken 

into account in order to obtain agreement with rigid bearing 

theory. Lewis and Taylor (Bey have investigated the performance 

of an elastic porous thrust bearing and they have taken 

roughness of the porous surface into account. Lau and Harman 

fea2] have investigated a smooth compliant pad operating on 

a rough moving surface. It may be possible to extend these 

studies to the combined roughness effects of the rigid member 

and the compliant member. It is thought that the compliant 

flatness depends upon local film pressure. A simple model 

of estimating flatness from profilometry measurements, proposed 

for rigid bearings, cannot thus be used here. 

If ambient temperature where tests are performed is 

kept constant temperature effects upon the elastomer properties 

need not be taken into account. It is envisaged that possible 

applications of compliant bearings will be in an environment 

with varying temperature. Lowe eo] reported thermal expansion 

coefficients of natural rubbers of various hardnesses. It 

seems worthwhile to extend this work to other elastomers. In 

connection with thermal effects, a study of ageing of various 

compliant materials should be performed.
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Regarding the theoretical work, finite difference scheme 

presented in chapter III should be developed further. Finite 

elements methods are another possibility. A programme has been 

developed in the solid mechanics section of the Mechanical 

Engineering Department at Aston University under the super- 

vision of Mr. T.H. Richards. This programme analyses axi- 

symmetric solids of revolution and some encouraging results 

have been reported. A different formulation of this programme 

would enable almost incompressible and completely incompressible 

materials to be analysed. 

8.2 Dynamic Performance 

Dynamic operation of compliant air bearings is an 

obvious extension beyond steady state working and it is 

envisaged to consist of bearing tests under dynamic condi- 

tions and of testing elastomer properties under dynamic 

conditions. A possible schematic diagram for dynamic bearing 

tests is shown in fig. 81. As a first step, harmonic motion 

should be imposed on a bearing in order to find out how these 

applied sinusoidal movements affect the bearing performance. 

At a later date random vibrations, more likely to be encountered 

in practical applications could also be investigated. 

The author had hoped at the beginning of this research 

project to do some dynamic tests but it was soon discovered 

that that aim was too ambitious. However, some work to test 

elastomer properties under dynamic conditions has been carried 

out. 

That work has been carried out by using the existing 

departmental setup for testing properties of solid propellents
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under dynamic conditions, which is shown in fig. 82. 

A mathematical model ot longitudinal vibrations with 

end masses was used as a basis for these investigations [exe 

The analysis is equally valid for forced vibrations of a 

viscoelastic rod except that elastic modulus E is replaced 

by a complex modulus E*. Measurements are performed by 

keeping the force constant whilst tne acceleration and phase 

are varied with frequency. The set of results of one 

Measurement is given in table VIII-1. Figures 83 and 84 give 

plots of elastomer acceleration and phase (between force and 

acceleration) with frequency. 

A computer programme developed by the author of reference 

[28] is then used to analyse these data. Results are given 

as components of the complex modulus (E; - real modulus, E2 - 

loss modulus) in fig. 85. The material tested was natural 

rubber made at Aston University and the mould tor this rubber 

is shown in photograph XV. The mould was made at the Univer- 

sity workshops. 

Figures 83 and 85 show that the first resonant frequency 

is around 160 [Hz] and this region should be avoided in 

practical applications of compliant Deartace lined with elasto- 

mers whose dynamic properties are similar to the natural rubber 

investigated. Also for elastomers of this type as a first 

approximation it can be taken that the real modulus is indepen- 

dent of frequency. This may considerably simplify the theoreti- 

cal analysis of compliant surface aerostatic thrust bearings 

under dynamic conditions.
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Frequency acc phase 

volts g ° radians 

1000 0.82 1.04 25 -16.14 

980 0.92 EL 1 —15- 73) 

960 1.03 13h 344 -15.43 

940 1.21 1553 321 -15.03 

920 1.39 1.76 299 -14.61 

900 1.60 2603 277 -14.26 

880 1.79 2.27 257 cale\c ak 

860 1.88 2.38 236 =13554 

840 1.99 2552 245 =13518 

820 2.02 2.56 199 =12.590 

800 2.22 2n01. 180 12557 

780 2.49 3.16 166 =12.232 

760 2.82 3.57 145 =11.96 

740 3230 4.18 126 -11.62 

720 3.85 4.88 lol. edd 

700 4,10 5.20 TM -10.66 

680 4.05 5.13 Bas =105 31 

660 3.82 4.84 37 -10.07 

640 3565 4.63 20 =9577 

620 3.80 4.82 lo =9..60 

600 4,20 5.32 355 ~9.34 

580 5.00 6.34 345 =9.16 
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Frequency acc™ phase 

volts g cS radians 

560 6.30 7.98 329 -8.88 

540 7.70 9.76 309 =8.53 

520 8.90 11.28 268 =7.82 

500 7.90 10.01 238 =7'530 

480 6.25 7592 217 =6.93 

460 5.50 6.97 206 -6.74 

440 5.38 6.82 195 -6.54 

420 5.03 7.01 185 =6.37 

400 6.02 1663 178 -6.25 

380 7.46 9.46 170 =6.11 

360 11.00 13.94 157 5.88 

350 14,90 18.88 145 =5567 

340 20.00 25535 108 -5.03 

330 20.00 25.35) 88 -4.68 

320 15.60 19 S77 56 -4,12 

300 9.40 11591 30 =3.67 

280 6.45 8.56 20 =3'.49 

260 5.50 6597) 16 -3.42 

240 5.82 2e38 18 -3.46 

220 6.40 8.11 8 -3.28 

200 8215 10.33 3 =3039 

180 12.30 1559 355 -3.05 

170 21.40 Ctee Bo. 2.98 

160 45.20 S729 297 -2.04 

155 36.8 46.66 244 mola            
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Frequency. acc phase 

volts g. S : radians 

150 23.00 29.15 221 -0.72 

140 10.75 13.62 203 -0.40 

120 5.60 Tel) 97, -0.30 

1lo 4,40 5.58 193 -0.23             
  

TABLE VIII-1 
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APPENDIX I 

RIGID BEARING THEORY 

Assumptions 

The assumptions on which the following analysis 

can be stated: 

Shear stress in the lubricant is directly 

proportional to the rate of shear, i.e. the 

lubricant is a Newtonian fluid. 

Inertia and body force terms in the equations 

of motion are negligible compared to the 

pressure and viscous terms. 

The variation of pressure across the lubricant 

film (in z or axial direction) is negligible. 

Furthermore, since axial symmetry is assumed, 

film pressure is a function of radius only. 

Velocity derivatives across the film thickness 

(in z direction) are large compared to all 

other velocity gradients. 

Air temrerature veries very little during the 

operation of these bearings, and air can be 

taken to be isoviscous. 

Air is taken to be a perfect gas. 

There is no slip at the boundaries of the air 

filn. 

Because of almost isothermal conditions, air 

pressure is proportional to air density.
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AI.2 Volumetric and Mass Flow Rates 

Equations of motion (Navier-Stokes equations) in 

general state: 

Inertia = body force + pressure force + viscous resistance. 

Referring to assumptions AI.1: 

ov. 
BA Qu oe Te. we 
aes Sos (hae) 

or 

ore as 
d22 5 7) dr 

which can be integrated twice to give 

= 2 es = v, = 27 Genz z2) (I-1) 

Constants of the above integrations are determined from a 

statement of the surface velocities of the solids bounding 

the film (no slip flow). 

Volumetric flow per unit length in the radial 

direction: 

3 an = | v,as=-2 928 (1-2) 
° 

Total volumetric flow around the circumference of the 

bearing at radius r: 

Q = 2nrq,. = : e -¢ (I-3)
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In order to calculate film pressures, Reynolds 

equation is used. This basic equation of fluid film lubric- 

ation is derived from equations of motion and continuity. 

It represents conservation of mass for the fluid in the 

bearing and it states: 

Poiseuille flow (pressure Glow c= 

= Couette flow (velocity flow) + squeeze flow 

+ local compression flow. 

Couette flow disappears when radial velocity 

components of solid bearing surfaces are zero. For steady- 

state problems resultant squeeze velocity and fluid density 

derivetive with respect to time are zero so that both 

squeeze flow and local compression flow disappear. Reynolds 

equation therefore consists of pressure flow only. In 

cylindrical polar coordinates it is equal to: 

B/oh?,, ap) _ . : 
ee Baia as) 

Following assumotions AI.1 and for a uniform film 

bearing, the above Reynold equation reduces to: 

4 in ad”) | ao (I-5) 

This equation describes the film pressure p of 

aerostatic thrust bearings in the bearing land, from port 

radius r_ where pressure p = Py to outer radius Lo whe re
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pressure is ambient, p = Pa? 

It is often advantageous to work in dimensionless 

form and the following definitions are introduced, see 

fig.I-l. 

Ry = Bee 

Ree =n. ee 

I-6 
Py = PY, 

P =D/D, 

By means of the above definitions Reynolds equation 

ean be written as: 

Afe & (™)]-0 (7) 

which can be integrated twice to give - 

Pt 21 4 see OR (1-8) 

Constants of the above integrations are evaluated 

from boundary conditions shown on fig.I-l. 

From (1-8): 

eee= 1 

Ale) = oR a (1-9) 
Pp 

w
i
n



—q22s! = 

  

  

  

  
        

Pl-] 

Pp/Pa = Pp 
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RI-] 
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Pei, R=1 
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FIG 1-1 
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In dimensional form equations (I-8) and (1-9) 

become: 

2 = p2 p PB pe = pe + TAP) én(r/r,) (I-10) 

2 = ye 
a = Patel ane) = Ente P) x (I-11) 

From equations (1-3) and (I-11), the volumetric 

flow becomes: 

(I-12) 

and mass flow 

CES ee) 
M = 3h = - Tot, © mteye (273) 

ars 127k, 7, tar /P, 

From equation (I-12) it is seen that the product 

of volumetric flow and film pressure does not depend upon 

bearing radius. This product can be taken at port radius 

and outer radius to give: 

Qx p=Q, x_P D =@,xP D a 

my (p2 - p2) 

Ty Tent ; foe) (1-14)
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From equation (I-13) » Tor given ambient conditions 

and bearing geometry, mass flow depends upon the film thick- 

ness and port pressure. 

Ambient conditions are taken from one of bearing 

tests and they are: 

1.0039 bar I 

Pa 

Te 294..15°K 

the bearing geometry is: 

A fe Py _ 0.28575mm 
Dee De ey Ole S5 omnes p50 cae 

Three typical values of port pressures corresponding to the 

bearing tests are chosen and mass flow is calculated for a 

range of film thiclmess up to 30um, which is the range 

encountered during the rigid bearing experiments. Figures 

I-2 and I-3 represent plots of mass flow against film 

thickness and against port pressure respectively. 

AI.3 Bearing Load 

From equation (I-8), film pressure: 

(2 - 2) : p-b-{1+—2 ent | (1-15) 
Dp a
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Load is given as: 

Fo 
= 2 - 2 W= Trey + 27 | prar Tre, 

*p 
J 

es 2 oo 2 = 
= TrED, + Qrp, 12 / PR dR mreD, (I-16) 

Rp 

Consider dimensionless load defined as 

  

2 1 
We ay BE + PR aR -1 

Rp 
1 

= RP) + a PR aR - 1 (ans) 
D 

Take 

z 1 - pe ‘ PR aR = | (2 - art ae) Ra Rate 16) Zak 
R P Rp r 

and 

ties (1-19) 42 = Din : 

Take 

Ages (2 - 2n2 nr) * 

so that



Secon 

Age? = 1 - 2a2enR (1-20) 

and 

oat ok OB = aa 7) 36 

then 

oe eoce 
2 wa OH 6B, Bae 

- 2e2 oie 
= =e dg 

Limits €, and €, are calculated from: 

R= Ry» E= & 

Risa 6 eee 

From (I-20) 

te bs 
Abe? = ie Sree aR, 

Pp 

so that 

=p ei zB (I-21) 

Similarly 

a fe =i, (1-22)
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Now 

roe [’ (1-2a2énR) *RaR 

Rp 

fo IoAge? Aig? 
= i A,ée ae cae eag 

&4 

ale 
=> oe ef crag (1-23) 

S4 

Equation (I-23) can be written slightly differently 

by considering 

d(ess Jue cite x =2ede, 

so that: 

koa es 
I= io e | éa(e € he 

&s 

By integrating partially taking 

-c2 

—E=u and d(e&) = av 

1. : ; ea 

Tae oe ee (Eo0 €F-¢,0 4 | eae) (1-2) 

Ga



cae ska 

Error function between limits €, and € is defined 

as: 

erf €& - erf €, = # | e Sag 

so that the last integral of (1-2) becomes: 

2 
/ ef ag Be ‘F(ertes - errs, ) 

&1 

Now, from (I-21) and (I-22): 

pe 
1 Dp 

=<2 -¢2 lies Ae P. Re es ee ae 2 

so that equation (I-24) reduces to: 

G 
I ee 

(I-25) 

The second term of the above equation can be written 

as 

1 - F2 (1-P2) x 2énR 
P a oO center eee a 
me) epek . ae => e p 

P_, rR énR P
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Integral I originally given by equation (I-18) 

reduces to: 

2 Some) nl o(3,) | (1-26) fe
l Pp. 

Dp 

T=4-PR + Pe 

Now dimensionless load: 

=I
 

UI ROU Pee 2 heme 
PP 

-4,44 & [om(%s) ef) ] (27 L 
Clearly this equation contains the expression es and this can be shown 

2 
2 Ey 2 to equal RS eg as follows 

Oe: Cae P2 yx 2én R 
2¢nR. =D SD — 2 oa 

Rea) + eB Zier s, cue 5 

(1-P2) x 2énR + P2 x 2¢enR ee eee 
Z Pp 

Therefore an alternative expression for the dimension- 

less load W is: 

2 

Dee ae W=re/ . a, [re _ etz,) | (1-28)
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as shown by Gross [108]. 

From (I-27) and (I-28) it can be seen that the 

bearing load is a function of port pressure. From (I-19) 2 

A, is a function of bearing geometry and port pressure. For 
P. 

a given bearing and a given port pressure (Z) and G,) are 
P. 

known. Then, the prubability or error functions of () 

and G,) can be either looked up in the tables or obtained 

through a computer by calling a corresponding library function. 

The disadvantage of the tables is that extrapolation can cause 

errors. 

An alternative approach to determine bearing load 

is to start from the equation (I-17) and determine the 

integral I by means of Simpson's Rule. A small BASIC programme 

to do this is written and used on the departmental computer. 

Programme flow chart is as follows: 

  

Array of port pressures 

    generated 
  

    
Dimensionless loads calculated for 

each of port pressures by Simpson's 

Rule     
  

  
  

For a given load (known from a bearing 

test, say), a corresponding port pressure 

is calculated by linear interpolation     
 



= "234756 

Linear interpolation is justified by tigure I-4, 

"Dimensionless load versus port pressure’. It is seen that 

this relationship is nearly a straight line. The bearing 

geometry is the same as for calculating flow rates on figures 

I-2 and I-3. 

Three port pressures given on figure I-2 are typical 

values for a bearing experiment. These port pressures are 

calculated by means of the BASIC programme just described 

and they are used as an example throughout this appendix. The 

purpose of this example is to show that it is possible to 

obtain different expressions for load than given by equations 

(I-27) and (I-28), and that for the range of loads in the 

experiments exe G2) can be taken as equal to unity. The 

following calculations are now performed to prove this point 

(erfc means a complementary error function); and they are 

shown in a table. 

The error of substituting expression 'C' by a comple- 

mentary error function in the expressions for load is small, 

as seen in Table AI-1. Clearly for the range of loads, 

i.e. port pressures encountered in the experiments, formulae 

(I-28) and (I-27) can be substituted by: 

2 

J e (32 x Ao vn erfc (+) (I-29) 

=!
 " > © © 
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E 
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i
 

nt
s oO K H a 
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.
Y
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(I-30)
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I ni TIT 

1.6350 2.3798 3.3848 

1.628644 2.370529 Geo lose 

Sosa is 0.152622 0.42666 0.957574. 

2.559712 1.530968 1.021915 

4.168860 3.629204 3445515 

0.390669 0.653181 0.978557 

P 

ert(;2) 1.00000000 | 0.99999971 | 0.99999890 

0.99970537 | 0.96962117 | 0.85159919 

b=ert(—2)-er: )p-o00a9463 0.03037854, 0.14839971 

0.000294626 0.03037 8825 0.148400810 

-—— x 100 + 0.0012 = 0.0009 a0 0007 

  

Bearing with 
minimum possible 
load only 

—_—> 
external load increasing 

  

TABLE Alot 
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This is convenient, because it is now possible to differentiate 

expressions (I-30) with respect to film thickness and obtain 

an analytic expression for stiffness in terms of dimensionless 

load W as shown later (section AI.5). It would not be possible 

to obtain an analytical expression for stiffness trom the load 

W, computed by numerical methods such as Simpson's Rule. More- 

over, long and cumbersome expressions for stiftness would be 

obtained when differentiating equations (I-27) and (I-28) with 

respect to film thickness. The simplified equations (I-29) and 

(I-30) were found to be adequate by substituting unity for 

erf (Pp), as verified in Table AI-1. 
Az 

In order to compare the values of load calculated by 

error function method and by Simpson's Rule, the following 

calculations are performed: 

  

  

  

tL =. Til 

z, 
e Az 700.732014 10.421417 2.841426 

i 
Ri 

A, xe 273.754275 6.807072 2.780498 

We 0.071479 0.183264 0.365682 

We 0.071436 0.183087 0.365365 

a -W 
—= x 100 0.060 0.096 0.087 
W 

Ss           
  

TABLE AI-2
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Here W, and W, denote dimensionless loads 

calculated by means of error functions and by Simpson's 

Rule respectively. It can be seen that the differences 

involved are less than 0.1%. Subsequently values of load 

were calculated by Simpson's Rule. 

AI.4 Flow and Load Parameters 

  

For uniform film bearings lubricated by an 

incompressible fluid, non-dimensional flow and load can 

be conveniently expressed as: 

2 = (p-p,) ns De 

W. 
We = AGESp). 

Sc AlDy Py 

For a circular step bearing 

Tr 
2 =~ Gén(r D8) 

[1-(r Jr)" 
we=- 

g 2én(r. ED) 

It can be seen that in the case of incompressible 

lubrication these basic parameters depend upon bearing 

geometry only. 

For gas lubrication and for the same circular step 

geometry from (I-13) the flow Parameter can be defined as 

MyR 7, 
ooo % Es 2 = BSCpe-pEy = BP (pe=pey (1-31)
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This flow parameter @also depends upon bearing 

geometry only and it is equal to: 

= ar TT 

ore T2in(r/rJ) ~~ Ieenk, (1-32) 

For the bearing geometry of the experiments: 

q = 0.048359 

Regarding a load parame ter wy, which is dependent 

upon the bearing geometry only, 

defined by 

fn oN Ge w= 83 °F = (2) a (1-33) sae, 2 r) 2 

then through equations (I-29) and (I-17) it follows that 

the non-dimensional load is expressed as 

W. 
  

We = 
ie P. 

H aeaay x Ap erte(3, ) 

(I-34) 

For the bearing geometry of the experiments: 

Ir is W = 0-00hL55? x m= O-1759 % 10r
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AT.5 Bearing Stiffness ChAT Rican 

Apart from bearing flow and bearing load, bearing 

stiffness is another importent bearing parameter and it is 

defined as: 

Saar (1-35) 

So far the analysis herewith has not included 

the bearing compensating element, shown in the sketch. 

Ww 

compensating element 

  
This element is included in bearing design so that 

the bearing can sustain a sudden change in load. If the 

bearing load is . increased, the compensating element 

Prevents the collapse of the bearing film. Alternatively, 

if the load is suddenly removed, the compensating element 

avoids excessive fluid flow. 

Bearing stiffness depends upon the nature of this 

compensation and on the supply conditions.
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Following (I-6) define further dimensionless 

quantities as 

Pa = Py Pa } 

Ho h/P,, 

From 

defined as 

MyR,T 
Se ee a pe Ha(ps D 32 araPa 

(1-36) 

(I-13) the dimensionless mass flow can be 

(I-37) 

From (I-17), (1-35) and (I-36)the dimensionless 

stiffness is expressed by: 

TIER dH 

From (I-37) 

H= £ (PM) 

(1-38) 

(439) 

Thus,a general expression for evaluating stiffness 

can be written as 

aa. 
ap 

Pp 

But from (I-17) and (I-29), W 

so that 

aP = 
me. dW) eM 4! 

oH “am * 3H tae) 

= £(P onl : ¢ p) YF 

(I-41)
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= can be obtained from expressions for bearing 

load. From {1-22) and (I-30): 

W= = ef “Derte(g,) (1-2) 

Remembering that 

5 Samies 
erfceé, = 1 - erfeé, = 1 - a e § dg 

° 

and (from reference [7] , page 573) 

a. eee mee de, erfe(¢,) = ae ’ 

it can be written: 

=== x GE2 x Gh, (I-43) 

1 a 
ap. ~ dg, * Ag BenR, * A, ag 

From (I-l2)
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B= LA) # ome) 6) sified) 
= 8(2 - 2 Yifenee.) - 2 &2 x e & 

4g) x 
a 
oM(2 - ul Perec, ) ac 

- Hea) - 4, (1-45) 

Now, from (I-44) and (I-45): 

Pica 2enR, P 
= [* (r= = 1) = 2 Ge Pay Bink, 

(1-6)   " =l
 

a
y
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From (I-41), dimensionless stiffness can be written 

as 

£nR. P dP. 
at aciiw fee Be geaRes ee, S = [* Cex 2) 2| mix> (1-7) 

Pp Pp 

ap. 
where a depends upon the compensating element and the 

supply conditions. Three types of compensating elements
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are used in gas lubrication - capillary, orifice and 

inherent compensation. For each type 6f compensating element 
aP. 

(or restrictor) ae is calculated from the condition of 

continuity of mass through the restrictor and through 

the bearing. 

(a) Capillary Restrictor 

  

A SS SO 
p h 

Le   Li 
  

! 
| 

| 
Ps 
d       

Assuming laminar feeding, then in accordance with the 

Poiseuille equation, the 

or 

As 

‘flow through the capillary is given by: 

ae ma dp 
= 128y "> dz 

2 eae padz = 1287 pdp 

PQ= PQ,» for isothermal flow of a perfect gas



° Pp 

th a. | az =e a ST swe = 1287 Pap 
Ie Ps 

or 

_ aaa* L(p2-p2 
Po8, = 1281 * 3 ( Pe 28) 

Cc 

== (n2 = By Pe p) 

where ky is the capillary coefficient. Mass flow through the 

capillary is then equal to: 

k es 1 tas (pe-pa) (I-48) 

Now equating (I-13) ana (I-48) and also taking 

into consideration (I-32) 

k, (p3-p2) 2 ans (8 -p2) 
2nRgTa Rat, 

and in dimensionless form: 

2qr3 p2-pe 
Se oe a =a (I-49). 

c Pp 

From ( I-49) : 

3 - wad 2ar oe 202-1) : ap 

icon & (Pa-1 p aH 
c



-' 246) = 

Rearranging after substituting (1-49) again 

dP. (P2 —p2) (P2-1) 
Dp s 

dH ~~ [2(pe-1 Es x z (I-50) 

then through equation (I-47) 

the dimensionless stiffness for capillary compensated 

circular air bearings ‘is given by 

LénR P2 -P2 
Sis Wel Ss 3. eB ¥ at 2) eee a 

(b) Orifice Restrictor 

  
  

    
SOON 

LEA WLLL 
20) 

      

Mass flow through the orifice is given by 

s = 2 M= Coppa ve whe re A= qr



fa ee 

Assuming isentropic expansion through the orifice 

[107] a 
y p See 

Ppa 2s je) 

and 

R_T 
v2 = = eS 

Zz y-1 

so that 

2 = 2 A2ye2 M2 = © pat ve 

2 D2 . CAP 

Pp Rata 8 

p 2yR_T 
s a 

Se) he ee 

i 
p y 

= G) Rela De 
  

vel 
y 

cea Oey 
. 

(1-52) 

Equating squares of mass flow through orifice (I-52) 

and through bearing from (I-13) and (I-32) gives 

2 (y-1 
nh? x 2yRala 

2 yol 
DL\Y y 

(2) fa -(@ 
pe aie as 

(pz - v2)” oe 2 

and in dimensionless form:
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ot) ME tek eet 
ani mane Ne = sr y 

a (y 1) par _ a Ps ey s xo 

TRE x 2yRatg © = (pees a" 

(1-53) 

Take: 

a? (y-2) pars 
No = 72H x 2yR,T, (1-54) 

y y y Y 
eee OP SP epee (doo) 

NHS 
ae 220) (1-56) 

Coefficient of discharge is a function of a pressure 

drop across the orifice. For a constant supply pressure, it 

is a function of port pressure, so it can be stated: 

ac. ac. aP. 

oe (1-57) 

ie
} 

Now (I-53) can be written as 

and differentiating



=o = 

D a No x 6H = 20) qe 1+ Rae [ J 

ac, ap. a 
= 2tp pe an | 1 +h aa I (1-58) 

Now from equation (I-56) 

Sit x (PD - f } x 2(P2-2) y 2p * aH x D x D x Dp dH 

(eer 
  a1 1- 

and from equation (I-55) 

  

‘¥=1\ vel yol 
AF) Ay i 

a i 8 ie ant } = 2P, G * ue Plot tees 

) +1 oN oP, 
aievers CS xoE ) a 

ae =()« oP) a 

and combining 

ap ap 
ae ay = ay {0% ae * BD Ul 2 (ee i Eras 

2 
ey pe - 1 (Pa yea D , 

Substituting in (I-58) and rearranging, there follows 

taking into consideration (I-53) .
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Cae ee Vee Bip ee Dy ae D dH 7 Pel Begs ACH aun 

~ 6 s = (« TD) x 2P, aH NGF (I-59) 

where 

(o =i) (2) % 2) 
y iy iy, ue z (x) =e Pp = ay x D Ps x By x Po 

eB A y ya va 
2, x PD = PS x Pp 

eal 

yl _ (Ts) y 
2 Po 

= ———___ (1-60) 
Cc P 

S\ ¥ oO Fo 

Now from (I-58) and (1-56) 

ac. aP. N_HE 
Leet) —P 2 Roe sep ee ae Fi *@ 

"1 Ny
 ‘J al
 8 

I 
Q
 a | [S

) 
a Q 

‘g In
o 

i 
(
a
e
 

& ° 
a
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so that for orifice compensation 

  

aP. el 
Bese ac. e 5 (I-61) 

aH Pp [es fees) 
P2—1 2 dP. Bp Corpus 

and the dimensionless stiffness becomes through 

equation (I-47) 

honk, 

eter dl 
1 

Saas age 2 (1-62) 
(re 1) Per te Sh ae | 

Where the variation of discharge coefficient 

with port pressure can be neglected, the stiffness reduces 

to: 

Pee =) | 
S= x 2 (1-63) 

Paes 
All this is valid for unchoked flow. 

  

For choked conditions: 

aes 
ya



eZ 2) 

as shown, for example, by Powell [107]. For y = 1.03, 

B/es = 0.528. The normal operational range of these 

beari i ) a ings is Os > 0.528 

If, however, bearings are operating at PY/P. < 055285 

i.e. choked flow region, the tlow through the orifice and the 

stiffness of such bearings can be calculated by substituting the 

the actual value of B's by 0.528, for example, in equations 

(I-52) and (I-60). 

(c) Inherent Restrictor 

Z 

  
‘Ps Pp h 

LA 
2r, 

"Inherent area' is equal to ara and orifice area 

to mr_2. Inherent restriction takes place when the inherent 

restriction area is smaller than the orifice area, i.e. 

when h <2 . For the rigid bearing exper inentarare = 0.286mm 

and the film thickness h is always smaller ‘than 52 (=0.143mm) « 

Therefore inherent restriction takes place during bearing tests.



(ik) ee SS 

It will be assumed that the mass flow through this 

inherent restrictor can be described by the same expression 

as the mass flow through the orifice restrictor except that 

values of discharge coefficient Cy may . be different. These 

values of Cy are determined experimentally by equating the 

mass flows squared through the inherent restrictor, given by 

orifice law: and through the bearing oe from ae 

Equation): From (I-13), (I-32) 

and (I-52) with A=2inh: pe : [: a: @) F 
gee yee ee he - Se 

nA Larry, x 2yR,T, (pa a v2)" 

and in dimensionless form: 

a2) (y-1) pare 
7 % Ent. 

(1-64) 

Take: 

a? (y-1) p2r2 eee eae 
Nit Wau SiykRT (I-65) 

7 2s (1-66)
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  (I-67) 

A similar analysis as in the case of orifice 

restriction then gives: 

  

In
o x 

Ppt -o- oe | 
Pe=) 2 

elep Srp a 

(1-68) 

where a is given by (I-60). 

and the dimensionless stiffness similar to (I-62) becomes: 

42nR 
[.-% pee -2 | 

Se - 
  

  

p x2 (1-69) 
2 aeaeD eo -ar| oe P Py ot D Pp 

"Clearly by comparison with equation (I-62) for orifice 

compensation it can be deduced that 

we el a S12 5 8, (I-70) 

In order to obtain experimentally the relationship of 

dc, 
and port pressure, bearing load is kept constant and 

dap 
p 

the supply pressure is varied; film thickness, supply pressure 

and bearing load are monitored. The plot of Cy with Cpe



ee 

  

  
1-0 

0-8 

0-6 

0-4 

0:2 

Cy calculated from measured film (corrected 

for surface roughness effects), from 

measured load and from measured 

supply pressure 

x W2=473-96N 

o W=237-52N 

o We "92767 
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COEFFICIENT OF DISCHARGE V. 

PORT/SUPPLY PRESSURE RATIO 

  

flG l= 5 
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ratio is shown in fig. I-5 for three different loads. It is 

seen that the discharge coefficient Cy does not change with 

port pressure for values of Bes encountered during 

experiments. It is approximately equal to cy = 0.68. There- 

fore, equation (I-68) can be simplified to read: 

CoS) 

for
 

a 

he}
 

0 —
 

o 
0 

NI
 

B 

1 2 
L
i
 x 

m
n
 

Dimensionless stiffness of inherently compensated 

circular air bearings then becomes: 

1 -a cy | 
(I=72) ul

 

Ml 

  

x 

I
N
 

2- 2 [ a (Py, 1)J
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APPENDIX IT 

STRESS-STRAIN RELATIONSHIPS 

FOR BEARING ELASTOMERS 

In order to describe stresses acting on a body in 

equilibrium, generally three normal components of stress and 

six shearing components are necessary. In cartesian coordin- 

ates x, y, z2 the state of stress in the body can be 

represented by an array as follows: 

Sy Try Txz 

o T. ax 23, yz 

Toe Tey 9" 

In cylindrical polar coordinates r, 6, z, the array 

becomes 

Sn Tre Tre 

Ter % Tez 

Tor Tg [%% 

For the concise representation of general equations, 

the so called index or subscript notation is advantageous 

and often used, and so both of the above arrays can be 

represented by 

ta.” Tas) (tae) Sa 

T32 T3e T33
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In the last array normal stresses are represented 

bY T14» Tag aNd T33, i.e. when subscript i is equal to 

subscript j. Shear stresses are represented by unequality 

T., when i # j. 
aij 

Ti represents a tensor of rank 2 because it has 

got 32 = 9 components. A vector is a tensor of rank 1 and 

in the extreme a scalar is a tensor of rank O. 

For completion of the above statement scalars, 

vectors and tensors can be more rigorously differentiated 

according to how the components of the system are defined 

in the variables Xy and how they are transformed when the 

variables are changed to a" . 

By introducing a summation convention: 

2 

). A,X, = 81%, + a2Xz + A3Xg = ayX; 

dei 

it is seen that a repeated subscript i means summation with 

respect to that subscript over its range. 

As an example for a transformation law of vectors a 

rotation of coordinates x,, X, by an angle 6 anticlockwise 

to coordinates x,', xX,‘ can be described by X;' = O5 4X5 where 
dod 

a.. are the elements of the array: 
dd 

O14 Aye 2 cosé siné 

[ Ao, Age ] o* cosé ]



20% 

This law of transformation can be easily extended to three 

dimensions. Tensorstransform according to [302]: 

Tap = “ai *3 Tag 

where the summation is first for j and then for i. For 

example if we need 7,2’, then 

Tap’ = 4,5 t,5 Taj ae 

& 4a (teats + fe2Ti2 + £2 sTis) 

u fos (laaTa, + f10Taa + £4 3731) 

- foo(liaT12 + traT22 + £4 sTa2) 

a foa(liiTis + faeT2a + €4 9730) 

Consider stresses Ton and Tae acting on an element 

in the plane z, r. 

Z 

  

      

  = 
r 

Because of the equilibrium of moments Tae must be equal to 

Ty and they are known as complementary shear stresses.
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Similarly Tan = and Tag ah so that a stress state of 
zo? 

a body generally represented by nine components reduces to 

re 

six independent ones. 

Strains are also tensors of rank 2 and similarly 

because of symmetry the nine strain components reduce to six. 

For materials which obey Hooke's law, stress tensor 

733 is proportional to strain tensor ¢,, [302], [314] ana 

[315], and the relationship is given as: 

713 = Cijxe “xe (11-1) 

these materials are sometimes called Hookean elastic solids. 

A tensor of elastic constants or moduli C5 5xe is a tensor of 

rank 4 and it has got 3* = 81 elements. However because of 

Ts = T 34 and &ij = C44? 

in the stress tensor and six in the strain tensor. If each 

there are only six independent elements 

element of ie is linearly related to all elements of es or 
J J 

vice versa, there will be six equations of six constants each, 

i.e. thirty-six constants in total. Therefore after symmetri- 

gation a tensor of elastic constants C5 5xe reduces to thirty- 

six element from eighty-one. From energy considerations 

[313] in general there are only twenty-one constants. 

Further reduction of elastic cons tants | is caused by 

material symmetry and the number of elastic constants in most 

models of elastic solids is smaller than twenty-one. Elastic 

properties of isotropic materials are the same in all directions 

and for these materials the number of elastic constants reduces



OL 

to two from twenty-one. 

Any state of stress can be thought of a super- 

position of pure shear and a uniform tension (or compression) 

all round. This leads to the idea of stress deviation which 

is the actual state of stress minus uniform stress all round. 

nN 

743 = 743 7 TijTmean (1m - 2) 

here O45 denotes the array 

- Oo 0 

O55 = 0 + Oo 

0 0 ak 

i.e. S55 = 1 when i = j, otherwise it is equal to zero. Also 

T = 4G oe no) 
mean” 3°°x y zy 

ty = 5(o, #10, 410,) 

5 ) meas. Vas + 55 

a 
kk a (II - 3) 

The importance of the deviator is that it does not produce a 

change in volume. 

Similarly, the strain deviator is defined as 

an 
Saet= Ch, = 62 2c 
a3 a) ij mean (II - 4)
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where: 

mean — 

I 

o 
U
r
 

G
I
R
 

u
l
e
 

he)
 

QD
 

is 

(II - 5) | uj 

For isotropic materials Hooke's law may be stated 

in the. form: 

Tie = 3K My (II - 6) 

vale =~ 
3 = 20 &, (II - 7) 

if the strain were infinitesimal, Soe would be the 

change of volume per unit volume ey = = » So that equation 

(II - 6) states that the change of volume is proportional to 

the mean stress. 

In the special case of hydrostatic compression 

Cis digo = dss — eel 

and 

Tice ele 

so that
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and the volume strain 

Ki ak) Nien 5K cee (Ir - 8) 

where the elastic constant K is called bulk modulus of the 

material. 

The strain deviator e, describes a deformation of j 
shape without change of volume. In the special case where 

€,2 # O and other strains are equal to zero 

Tig = 2G Go 

the coefficient 2 in the above equation is included, because 

before the tensor concept was introduced it was customary to 

define engineering shear strain as y,. = 2€,5. Elastic 

constant G is called the modulus of elasticity in shear or the 

modulus of rigidity. 

If definitions (II - 2) and (II - 4) are substituted 

into (ik 7): 

ous ony Tnean = ) BGle rs TO sy “mean 

By using (II - 8) the stress state is given as: 

iS ees S Te =O. KS GOs; ey + 2G ig 
dd td kk 3 25) 

T43 =2 S45 Mae + 26 oe (II - 9)
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where 

eS 
ee 3G. 

Alternatively the strain state is given as : 

Pe eke Ske ae Die gece" samrick (3 3K (II - 10) 

Equations (II - 9) represent stresses in terms of strains and 

equations (II - 10) represent strains in terms of stresses. 

Elastic constants } and G are called Lamé's constants, 

E is modulus of elasticity or Young's modulus, v is Poisson's 

ratio and K is bulk modulus. Four constants have dimensions 

of pressure whilst Poisson's ratio vy is dimensionless. Some 

of the more important interelationships between these constants 

  

  

  

are: 

2G = ye = 3(Ka) 

3K = yB5p = 30426 

HR Se (Gut 3 in) 

v= 3 = ag - 1 
nog = a 

ee oe 
A+2G ~ l-y 

n= 3B =k - 3e
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APPENDIX IIt 

STRESS-STRAIN RELATIONSHIPS FOR BEARING ELASTOMERS WHEN THEY 
  

ARE ALMOST COMPLETELY OR COMPLETELY INCOMPRESSIBLE 

Equation for stress in terms ot strain (II-9), 

Appendix II) contains 

ae we v. 
(1+v) (1=29) 

which is very large when v>0.5 and tor v=0.5 it is not 

defined. Therefore, it is necessary to develop special 

relationships for stress in terms of strain when vv approaches 

0.5. 

The stress state in an elastomer including temperature 

effects (compare (II-9), Appendix II) is given as 

= 6 +E2Ge, = KR x OGRA 44 14 (IIF1) ij * *&xx ij 

Taking kK = “<= and 

adding to and subtracting from the equation (III-1) the 

quantity SGgATS i57 equation (III-1) can be written as: 

T13 = O45 [Ale -30AT) - 3GaAT + Gost] + 2Ge,5 (III-2) 

Using the concept of the mean stress defined by (II-3), 

Appendix IT 

= ees (III-3)
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Hooke's law including temperature effects can be written as 

  

eee = Kleyy - 3aAT) (III-4) 

or 
Vt, z mean a ey, 73ahT = Toye (III-5) 

so that 

3vT 
oe mean ‘mean Ti = S55 [ r Sua opment - * caat]+ 

+ 2Ge,5 

= 6,, [2¥'mean A+6 —Ge,, + GaAT]+.2¢e,,  (IIT-6) ee kk | ij 
(1+v) r 

Aa Gd 
oe x ey 

equation (III-6) reduces to 

3T ean Ty = Say S45 = Ge, 5s4 + GaATS, 5 + acer, (III-7) 

If the temperature effects can be neglected (AT=0) and 

taking the equivalent mean pressure as 

3Tean Dea (III-8) 

then the elastomer stress state becomes: 

T15 = Prog - ee + 2Ge,5 (III-9) 

Equation (III-9) is valid for O<v< 0.5, 

In order to discuss the situation when v = 0.5 consider 

equation of continuity of displacements u and w in cylindrical
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polar coordinates, see sketch below: 

z r or 
  

  

we| dw 
&z 

  

w u u+du Zz 
              

r 

uéz x 2nr - (u + 6u) 6z x 2n(r + Sr) 

+ wor x 2mr - (w + 6w) 6x x 2nr =0 (III=-10) 

The term containing (ouéréz) can be neglected as a 

small quantity when compared to other terms. Dividing the 

above equation by éréz, it reduces to: 

du u ow _ 2s pet d+it = o (III=11) 

which can also be written as 

Sean) (TrT=12) ne er Zz 

In passing it can be noted that if the displacement 

vector is defined as 

a = ul + v3 + wk, then 

eeegetly Lov , ow diva = = 3g (ru) + Slag * 55 

which for axial symmetry reduces to: 

3 ow 
5p (ru) + div a= 

K
i
m
e
:
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so that the condition of incompressibility means that the 

divergance of a given vector is equal to zero. 

The above means that in terms of strains the condition 

of incompressibility 1s satisfied when 

= ou u FOW i ae a Cries Cre? Cgnt Cpe s ia caat = 0 (III-13) 

For Poisson's ratio v = 0.5, equation (III-9) reduces 

tos 

Ti5 Fe eon a5 + 2Ge,, (III-14) 

Equation (III-14) describes the stress state for an 

incompressible elastomer.



APPENDIX IV 

COMPUTER PROGRAMMES 

(consult Fig. 7)



1. Calculating axial displacements w.
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S27 -PRUGRAM SUNCINPUT,QUTPUT,RES, TAPEL=INPUT, 
i LTAPEZS0UTPUT, TAPEG=RES) 

=e WRITE (22100) ae 
164 FORMAT(A3H ENTERING SON) : 

Se OALIRET DES = ee 5 
Sas STOR ey or . 

ee NO a ee ee 

  

SS SUBROUTINE USERI 
SSS IMENS TUR DUMC9) 

DIMENSION UT3( 768), UTSC780) NTO 0780) pHT4 (78064) /KT4 (788) 6 
INT5 (39% 62) ,UMNAT(S2d0) ,-NUMPT (2900) -DIFCOC2944,5),P (12) 

S22 = COMMUN CO, COSPNTS UTS ANTS ¢ HTS, KT 42 NTSeNE Se NESe NESS NC,NR, KODBAS, 

10X7, DY, JUBNUM,UNAT,NEQU,NPIA,E WANT BF INAL NLT TS; NBFREF » OUite 

-=20PM, BETA, BEEPR,EIGEN; NIT, NITP,NUMPT?DIFCO = 

  

   
LEVEL 2,05 
WRITE (25105) NES NES) NED, CNTSCL) UT3C I) TS 1/NES) 

“WRITE C2,106) (NTACT) ¢ CHI4 (C1 ed) S104) KT4(1) TEL, NEA) 

-SwRITE (2,147) (NTDSCI, 1) eNTSCT22)¢121, NES) 
; 185 FURMAT(///3119///(16,1PE19.7)) 

S186 FURMAT(/S//(16,4F 1b, 6,10)) 

107 POR MAG (es Bod § 
es ENO. == = 

        

   



C infkrIuR Pulnt 
CPOTIKTS AT GBOUN 
Cc 

c 

~C 

C 

C 

== 270'— 

SUBROUTINE GETCOCX,YeHLe hp KODE, COFFT, JEQU) 
CUNMON DUMMY ,DX%,0Y 

NSLON HL (47, COFFT(5) ,DUMMY (7828) 
2,DUMMY,KODL, JEQU 

HAVE CUBE 248 

ARY UNE HAVE CODE 2a1 

   
   

  

POTNTS AT BOUNDARY TWO HAVE CUDE 2nd 
CPGINTS Al @ AXIS HAVE CUDE 205 
PULWNTCII,¢0) HAS CODE 232 

CPOINTCIis,JIIHAS CODE 2u4 

C INITIAL VALUES OF FILM PRESSURES 
AP 

    

    G.O45/7(20,CADX)/10,0 
OPE4,639/10.0 

G BARS/1%  (N/ Mia 2) 

FQU 

soy 

Buu 
The 
400 

G=n,7 % = 
ATION OF W i = = c 
TF (KODF=240)100, 300,186 
CRAVE C2 .U/0K4 CHL (SD @HL C1) ZX) Z CHL CL) #HL (3) HDX) + 

Le, B/S CHL (Sy aul C4) ADR R2) 
fen 

COPFT CAE C2.U/ (HL C2) 4 CHLC2) 4HL 04) ) #0YR*2))/SCKAY 
COPE Cs 

CUFFTC4)= (2.87 (HL (4) * CHL (2) HL (4) ) 8DYR42)) /CKAY 
CUFFT (Db) su. 
RETURN = 
NDARY UNE UF W 
LFCKODE #261 )114, 44,118 
CaAy= 2240/ (HL (S) DX) #8242,0/ (HL (2) AHL (4) ADYAH2) 

    

  

  

> COFFT(1) 2.0 .=- 
COLE T Ce) =e. @/ (HL (2) * (KL (2) 4HL (4) ) &DY%%2))/CKAY 
CUFF T(3)3(2,U/ (HLS) AUX) A482) /CKAY 
CUFF T(4)5(2,0/ (HL (4) * (HL (2) #HL (4) ) &DY**2) ) /CKAY 
CUFFT(5)50,0 
RETURN 

C PUINTCII,JI) ~~ tee 5 

ic 

c 

114 
340 

IF (KODE=242)128, 544,120 
CKAY=2,0/ (HL (3) *DX) **242,0/ (HL O4) 4DY) #22 
CUFFT(1)=4,¥ 

— COFFT(2)20,6 

BOU 

120 
380 

Por 

CUFF T(3)= 02,67 (HL (3) #0) &42)/CKAY 
. COFFT(4)=(2, SLA ES ASN =a 
 COFFT(5)=u, a 
RETURN Scere 2 E - 

NDARY TWO OF OW es ‘ 
TF (KGODE~293)130,380,136 
CRAYS (2,070 K4 CHL (SRNL OL) ZX) 7 CHL CL) AHL (3) ADK) + 

12, 0/ (HL (4) *DY) «42 
COFFTCIIECCA,W/OXtHLOSI/X)/ CHL C1) * CHL C1) #HL 03) ) DX) )/CKAY 
CUFFTC2)= 

  

0 
CUFF T(S)EC (2 .M/U KHL CLIX) / CHL 3) * CHL C1) HL 032) 0X) /CKAY 
Fee ean CACO RUB Ns 2) AERA 

SAPRXRASEDPRXAKAtCPRXEDP 
care TCS (#108) aPC (NO RDE COI RD YUACKAY, 
RETURN 

NT(1e JJ) 

PFT CIISC (2,70 X4HL (3) 7X CHL CL) * CHL OL) 4HL 03) ) *DX)/CKAY 

BECCA W/D KenL CLIAXI/ CHL CS) * (CHL CL) 4H 03) 8DX))ZCKAY
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13h LF CKGDE#244)140,320,148 

S20 CKAYS2, 07 CHL OL) FOX) AA242,U/ (HL (4) EADY) AK! 
COFFTCAISC2.U/ CHL (1) * DX) **2)/CKAY 
COFFTC2)=4,4 

Hea aes w 
COFFT( 43202, 8/(CHL (4) *DY) *%2) /CKAY 

eh Lose & 

~TGCRER TCS) Ss{e 1. B)APG/(GRHL C4) RDYD/CRAY 
RETURN 

C BOUNDARY THREE OF W 
140 TF (RODE #295) 416,360,416 

Sou CRAYE2,i/ (HL OL) 4DX) 44242, 4/ (HL (2) AHL (4) *DY**2) 
COPREFGL 2. U/ CHL CL) * DX) **2)/CKAY 

COPED Ce 2.07 CHL (29% (HL (2) +HL 04) DADYX*2) )/CKAY 
COFF ICS 4 

—T CGR F EE CUE) oe 
ae CORFI(S) 26,0 

RETURN 
= BOUNDARY FOUR WEE,@ 

“414 WRITL (2-426) KODE 
STOP. == 

42 FOkMATC7NYG POINT, 15,26H HAS UNDEFINED CODE NUMBER, 15) 

EWD. = 

      

  



2. Calculating radial displacements u
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eee PROGRAN SONCINPUT,QUTPUT,RES,TAPELSINPUT, ~— o> = 

JTAPE2S0UTPUT, TAPE 4=RES) 

weRITEC2,144) 
160 FORMAT CLSH ENTERING aay) 

Ser CALL EPDEL . see 
STOR = I 

END 

    

    

    

  

   

  

      

   
== SUBROUTINE USER Lo eee 
DINENSION DUM(9) ; ar 

=== DINENSTUH NPS Guys UNT te aevaNTa reel ee cre ogee nae 
INT (39462), UMAT ($250) -NUMPT (2900) -DIFCO( 2906.5) pP (12) 
COMMON C5,C9S,NTS,/UT3¢NT42HT4,KT4,NTS,NES,NE4,NES,NC, NR, KODBAS) = 

TUX, VY, JUKBNUM-UNAT,NEQU,NPIA-E WANT, BE INAL (NLT TS, NBEREF, POH 
= 2 20PM, BETA, BLEPRe EIGEN, NITNITP,NUNPT, DIFCO a z 

oa WEVEL 2 Aes ' 
BRITE (2+ 1 U5) NESeNESeNESs (NT3CT) (UT3(1)/155 ¢NE3) 
WRITE (24106) (NTACI1) (CHT ACL J) p ded 94) ¢KT4 (1), T=L, NEA 
WRITE (2187) (NTS (Ly 1) NTS C12) 712 1,NE5) = 

105 FORMATC///S115///(16¢1PE1$.7)) 
S186 FURMAT(///(16,4F16,6,16)) - 

107 FORMATC///(210)) read a 

    

    

   
   

      

   
     

  

  



Re 

SUBROUTINE GETCO(X,Y,HL,M,KODE,CUFFT, JEQU) 
CUMMON DUMHY,DX,DY 
DINENSIUN HL(4),COFFT(5))DUMMY (7828) 
LEVEL 2,DUNMY,KODE, JEQU 

C INTERIOR POINTS HAVE CUDE 3ue é 
CPOINTS AT BOUNDARY ONE HAVE CODE 30) : = = 

C PUINTS AT #BUUHDARY THO HAVE CODE 383 oe 
C POINTCIL,JJ)HAS CODE $02 
= HSSU HRYVAV1ORS 

B2E-U,U0H159955 
Blee4,4632256u9 

C EGUATIUN OF U 
IF CKOOE$309)516, 506,518 —~- SS ST =e 

SAO CKAY=(2,8/0Xt (CHL (SI MHLOLII/XI/ CHL CL HL C3) 4DX) + : 

12.47 (CHL C2 FHL CAI ADXAF2D HL BS XR] ==74 aH 

COFFTC1)=(2.0/0K4HL03) 7X) ACHE (1) * CHL G1) #HL (3) ) #DX) /CKAY eae 
COFFT(2)= 7CHL C2) * CHL (2) 4HL (4) )ADYA*2) /CRAY FSET S 
COFFTC3I=(2,/DXHL CL) AXIS CHL (3) * CHL OL) FHL OS) ) *DX) /CKAY ve 
CUFF TC4) 202.67 0HL (4) * (HL (2) HHL (4) )*DYR*2])I/CKAY “a 
CUFF T(9)50,.9 

: RETURN > = z z eae 

C BOUNDARY ONE OF U ii 
519 IF (KODE =301)520, 008,526 
OMY CKAYE2,U/(HL(S) DX) #2242, W/ CHL C2YAHL CAD ADYABDI EL Ku 

COFFTCL)S0.08 
CUFFTC2)22. 4/7 (HL (2) «CHL (2) 4HL (4) ) *OY**2) /CKAY 
COFFT(S)E2.4/ (HL (S)*DX) ARA/CKAY 

COFFT(C4)= 237 CHL CA) # CHL (2) #HL (4) ) #DYA#2I/CHAY 
==5 COFFT (5) 28,0 

RETURN 
=C BOUNDARY “T#O OF U pe eee ee ee 

Seu JF CKOVE*$343)53u,744,536 . 
(7a CKAYS2).U/ (HL CL) AHL (3) ADX442) 42.67 (HL (4) DY) RA 24 

VOHL CS) HAL CLI IZ CALL) FHL (C3) *OXD 41, UsXH KO i 
COPFT CLS (2 .86/DX4HLOSI/ZX) (HL C1) * CHL (3) #HL 03) *4DX) /CKAY 

~ COFFT(2)=9,4 
= COFFT(3)=(2,8/DX"HL (197K) 7 CHL C3) 4 CHL OL) #HLC3) ) DX) /CKAY_ 

CUFF T(C4)=2.9/ (HL, (4) DY) k82/CKAY ar 
DEWSS HABSRKREZES LABOAXHB] 

COFFT(D)=(- BeBAVER/ CHL CADDY) )/CKAY 
~ RETURN 

C BOUNDARY THREE UFO 
C. BOUNDARY FOUR Us == 
C POINTCII,JJ) : 

5$6 LF (KOUE=302)540, 800,546 : == 
BUA CKAY=2.6/ (HL (3) 4X) 24242, B/(HL (4) ADY) #A244, UNE 2 

COFFT(1)=0.8 
CUFF T(2)=6,0 
COFFT(3)=(2,6/ (HL (3) 4DX) #42) /CKAY 
COFFT C4) = 02 U7 0nL (4) DY) **2)/CKAY 
DEWES AB SAKHE2¢2 UeU2aXTB = = we 
COFFT(5)= (#2 ,4*0EW/ (HL (4) *DY) )/CKAY e il ‘i 
RETURN 3 : eS 

544 WRITE (2,550), KODE " i 
SToP 

55u FORMAT(7HM POINT, 15,264 HAS UNDEFINED CODE NUMBER, 15) 
END 

      

   

      

   

        

 



3. Reynolds equation
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DIM WEL IES 
REM FTE 

ROR IsPEeL 
EQUATION 

TAL DISP 

     
   

IIHG PRESSURES 
Ta 3 

READ PEI 
FE Ld PEPASRE IT 

is 

  

READ PL ted 
FEL ISPLY IPE 1d 
HERT I 
FOR i=16 TO 26 
READ PCTI 
FCI J=PC 1 IJ#PC1] 

   
REM READING DISPLACEMENTS 
FOR I=1 70 7 
READ WEI 

et oy 

  

FOR I=5 TO 14 
READ WET] 

1 

  

    

  

   
WEI+4 1-H I-1 

PE Tet dee 1+BL TJ#0 
Dr+1/R01] 
Je=bol Jeue 

    

PRINT 
Cee I 
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