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SUMMARY

The object of the research is to predict and confirm
the predicted steady performance of aerostatic compliant surface
thrust bearings. The use of a compressible lubricant (air)
instead of an incompressible lubricant (oil) forms a natural

extension of previous work, on hydrostatic bearings [2°!] to

[205] .

The design of the main experimental apparatus was
assisted by the theory of Dowson and Taylor [2Y!] modified

for compressible lubricants,

A subsidiary experimental apparatus to determine the
bulk modulus of the elastomers to be used was also constructed
and the design was similar in principle of operation to one

described by Rightmire [3°5],

Experiments were first performed on rigid bearings to
develop the rig. A method of predicting load capacity was
developed which was considerably simpler than previous theory
['°®]. The theory lines agreed well with the experiments if
the experimentally determined discharge coefficient and the

roughness of bearing surfaces are taken into account.

Experimental determination of elastomer properties,
i.e. bulk modulus and elastic modulus, indicated that the
former is several orders of magnitude larger than the latter.
This means that the Poisson's ratio of these elastomers is very

close to 0.5 and the governing elastic equations, obtained by
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extending Dowson's theory, had to be modified fturther to

account for nearly incompressible or completely incompressible
elastomers. A mathematical model has therefore been established
and an attempt has been made to solve the equations by finite

difference methods,

The performance of various elastomers bonded to one
rigid surface with varying aspect ratio and hardness was
compared with the performance of unbonded elastomers and to
rigid bearing performance. It was discovered that the unbonded
elastomers have inferior performance to bonded ones, but they
are superior to rigid bearings and they also have advantages

such as quick removal and easy exchange of damaged compliant

layers,



. 16 1 8

" The philosopher may be delighted with
the extent of his views, the artificer with the
readiness of his hands, but let the one remember
that without mechanical performance, profound
speculation is but an idle dream, and the other
that without theoretical prediction dexterity

is little more than brute instinct."

Dr. S. Jdohnsen
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NOTATION
Symbol Name Dimension
A Restrictor area It
A Cross sectional area of the Lz
P perspex tube
Az Parameter -
A Bearing area 1.2
Ch Discharge coefficient -
Cijkz Elastic constants tensor F/L2or M/ (LT?)
D Effective bearing diameter L
E Elastic modulus F/Lzorby%ﬂrzi
E! Equivalent elastic modulus F/L%or M/ (LT ?
in Dowson's theory
F Absolute £ilm pressure squared F2/L* or M2/ (LT "
G Modulus of elasticity in shear F/L? or M/(LT?)
(one of the Lamé constants)
= % Dimensionless film thickness =
o for compliant bearings
H= % Dimensionless film thickness s
o for rigid bearings
I Integral in the expression —
for load
J Integer number —
K Bulk modulus F /L2 orM/ (LT?)
L Bearing parameter in modified e
Dowson's theory
Lo Capillary length L
M Mass flow rate FT/Lor M/T
M Dimensionless mass flow =
P Dimensionless pressure —
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Symbol Name Dimension
Pp Dimensionless port pressure e
PS Dimensionless supply pressure -
Q Volumetric flow L3 /7
Qa Volumetric flow at outer 3 ,T
bearing radius rs /
Q Volumetric flow at inlet
P radius T L/T
R Dimensionless radius -
Rp Dimensionless port radius -
R, Gas constant for air L2 (T2°K)
Re Reynolds number =
S Stiffness F/L or M/T?
[5 Dimensionless stiffness -
Se Elastomer shape factor -
SF Surface roughness effects L
Ta Ambient and film air 8
temperature K
v Elastomer volume L3
W Bearing load F or ML/T?2
W Dimensionless load 3
W Dimensionless load calcu- =
&= lated by error functions
W Dimensionless load calcu- -
8 lated by Sympson's Rule
b Elastomer thickness in a L
contact problem (fig.4)
c Cylinder radius (fig.4) L
. hée
e Dimensionless apparent film S
Pa thickness
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Symbol Name. Dimension
Cu(i) Coetficient of u in finite -

difference expression
cw(i) Coefficient of w in finite =

difference expression
d Diameter of the capillary

or orifice L
do Outer bearing diameter L
dp Inner diameter of perspex tube L
e, Radial strain —
ee Circumferential strain —
e, Axial strain 2
€ o Strain in r, O plane -
€yg Strain in ©, z plane —
e, - Strain in z, r plane el
eij Strain in subscript notation —
gij Strain deviator =
exk (= er+e8+ez) volumetric strain —

Acceleration —

= Film thickness L
h0 Uniform bearing clearance as if

there is no deformation of the

elastomer L
ha Apparent f£ilm thickness L
hm Measured film thickness L
k A factor used to calculate

compression characteristics of —

elastomers
k Capillary coefficient L®
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Symbol Nam= Dimension
2
Py Gauge film pressure F/L? or M/ (LT )
p Absolute film pressure F/L2? or M/(LT?)
P, Ambient pressure =
Pp Absolute port pressure 2
P, Absolute supply pressure .
aq Flow parameter —
q,. Volumetric flow per unit LT
length
Radial coordinate L
rP Port radius L
T, Outer bearing radius L
t Elastomer thickness L
to Initial elastomer thickness L
u Elastomer displacement in
the radial direction L
u, Preload deflection (ref.[?!®]) )
mann Mean flow velocity (= Q/A) 5y dd
Yo Radial velocity of fluid e
Vg Circumferential velocity i
of fluid
v, Axial velocity of fluid i
wg Load parameter —
w Elastomer displacement in
the axial direction L
z Axial coordinate L
QHS Real displacement of water
level under given pressure L
with elastomer in rig
QHD Real displacement of water
level under given pressure
with dummy steel disc in rig L
AHg (T) Theoretical displacement L
AH_ (T) Theoretical displacement L



Symbol Name Dimension
AVS Volume change of the L3
elastomer due to
pPressurization
&Vb Volume change of the steel L3
disc
Ar Radial increment L
Az Axial increment L
At Elastomer compression L
$ Elastic compression of the
bearing liner :
(from Dowson's theory,ref,[2°!] L
Ge Dimensional deflection at exit L
(ref [2 1 9] )
n Film viscosity FT/L2? or M/(LT)
U Coefficient of friction —
A One of the Lamé constants F/L? or M/(LT 2)
Y Poisson's ratio -
e Density of elastomer or fluid FT?2/n% or MA®
o, Radial stress FL%or M/ (LT?)
Tq Circumferential stress 3
¢, Axial stress -
T,0 Shear stress in r, 6 plane "
Toz Shear stress in 8, z plane "
0 Shear stress in z, r plane ;i
Tij : Stress in subscript notation »

Tij Stress deviator ] "
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I INTRODUCTION

Fluid film bearings operate with a layer of liquid or
gas effectively separating the bearing surfaces. The load
capacity derived from the pressure within the lubricating
film may be generated by the relative motion of the con-
verging bearing surfaces, or by external pressurization,
or by a combination of both actions. Friction forces arise

from shearing of fluid between the bearing surfaces.

The purpose of this work is to study the steady perfofm—
ance of externallv pressurized compliant thrust bearings
lubricated by air. One of the surfaces of these bearings
is compliant and the other is of rigid geometry. In order
to see how these bearings behave when compared to bearings
where both surfaces are rigid, Appendix I, "Rigid Bearing

Theory" is presented.

Because of the many engineering applications, circular-
step thrust bearings are an important class of the thrust
bearing tamily and this geometry has been chosen for investi-
gations. Consider a circular thrust bearing geometry, fig.l,
where a rigid bearing ot outside radius ro'and inner radius
rp is shown. The lubricant is supplied to the film at
pféssure pp into the bearing clearance ho' Pressure distri-
bution in the tilm follows a logarithmic law, see egquation
I - 8, Appendix I, falling to ambient pressure P, at outer

radius ro.
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The load capacity of plane thrust bearings can be
determined by summing all pressure forces in the bearing
film within the bearing area, so that for circular thrust

bearings:
r
(o}
W = Inf prar - ©r °P, : (1)
o

In the bearing shown in fig. 1 the load cavacity

: 2 2%
P O

W, =27 / Py rdr + 2'rr] prdy | = fpe

o ¥
P
¥
. o 2
= mr_2p + Zﬂj' prar. . = WL oCp, (2)
r
P

i.e. it is determined by the pressure pp at the inlet of

the bearing film.

Now consider a circular externally pressurized thrust
bearing where the upper surface is compliant, see fig. 2.
Suppose that the same pressure pp is admitted to the bearing
clearance with the mean value hb the same as the rigid f£ilm
thickness. Due to the éompliant surface, the thickness of the
film varies with film pressure and thus with radius. The film

is largest where the largest pressure (pp) exists.

The compliance of one of the bearing surfaces is achieved

by elastomers which adhere to the rigid backing plate. These



materials are almost incompressible i.e. their volume is
nearly constant whilst their profile changes as difterent
inlet pressures are admitted to the tilm. As pressure p
is admitted to the film, parts of the film, in the centre
of the bearingrare larger than the mean film thickness hO
and parts of the film, on the periphery, are smaller than

the mean.

Consider that the mass flow through the compliant
bearing, fig. 2 is the same as in the rigid bearing on

fig. 1. For isothermal flow through the film:

Q Pp =9, P

(3)

a

From (I-3), Appendix I, volumetric flow at any radius r

(ro > > rp) is given by

d

a_ 2y1.3
4 : TE 3% (p“)h 0
12np :
so that mass flow at radius r becomes:
. pQ i a 2viig
v R_T 12nR_T r g7 (P9)h (5)
a a a a

The minus sign in equations (4) and (5) signifies that the

a_
dr

are valid tor rigid and compliant bearings lubricated iso=-

pressure gradient (p*) is negative. Both (4) and (5)

thermically by a perfect gas.

For given mass flow along the compliant bearing radius,
it is clear from equation (5) that at any radius where the

film is smaller than ho (the rigid bearing film), the local



pressure gradient is larger than the corresponding rigid
bearing pressure gradient, Therefore at the film exit,
where the film is smaller than the corresponding rigid
case, the pressure gradient is larger, and at entrance,
where the film is larger than the corresponding rigid case,

the pressure gradient is smaller, see fig. 2.

These two boundary values of pressure gradient
dictate a modified pressure distribution tor compliant
bearings as shown in fig. 2. This is an improved pressure
distribution compared with the rigid case as the area under
the pressure curve is increased. The load capacity as before

is given by

(a

W, = 2 + - 2
2 ‘nrppp 2T prdr TP, (6)
r
P
but now the integral of equation (6) has a larger value than

the integral ot equation (2). Thus
W, > W, (7)

i.e. for the same mass flow rate the load capacity of compliant
bearings is superior to that of rigid bearings. This in turn
implies that the compliant bearing can support the same load as

the rigid bearing but with smaller flow rates.

The superior pertormance as compared with rigid bearings
is a characteristic feature of compliant bearings. This is the

major reason for their investigation. The interest of researchers



and engineers in these bearings is also aroused by other

factors such as:

It some impurities are admitted accidently into the
bearing clearance, this is not so critical as with rigid
bearings, because they can be "accommodated" by the elastomer.

Tolerances of both compliant and of rigid surfaces
in compliant bearings need not be so small as when both

surfaces are rigid.

Consider a compliant thrust bearing geometry, fig. 3.
Tt is convenient to take the origin of the co-ordinate system
at the centre of the elastomer disc and at the noint where
the elastomer is touching its backing plate. This origin
is then stationary relative to the elastomer and the backing
plate. The experimental set-up is such that the z-axis
points downwards. (It is more convenient in the theoretical
analysis to turn the bearing upside down, so that the z-axis

is pointing upwards, see chapter T1171).

After this brief introduction about the compliant
bearings, it is necessary to search the relevant literature
and see what is already known about them so that the gaps in

the knowledge can be discovered.



backing plate

elastomer

/////////////\V///’/’7////// R T

LAY

Vi
N

g

lower bearing
surface o

COMPLIANT CIRCULAR AEROSTATIC
THRUST BEARING GEOMETRY

FiG 3




AR REVIEW OF RELEVANT LITERATURE

2.1 Rigid Bearings

Although this research project does not directly
concern rigid bearings, it is desirable to be aware of the
theoretical backgrcund and performance of such bearings.

A further understanding of compliant surtace bearings may

be achieved by a knowledge of work done with rigid bearings.

Fuller [!°!] gives a concise guide to hydreostatic
and hydrodynamic lubrication and the many examples in his
work give the reader a clear picture about both journal
and thrust bearings lubricated by oil or air. His simple
formula about the one-dimensional flow of visccus ligquid
through a slot is developed at the very peginning of the
book and used repeatedly throughout. The formula states:

Apb _h?3
= 2

12n2

The width of slot bois assumed to be large compared to film
thickness h so that one-dimensional flow Q results. A pressure
difference Ap is the cause of flow Q of the lubricant of

absolute viscosity n.

When this equation is applied to a circular hydrostatic bearing

Of circumference 2mr and length dr there follows:

Gp X Zue . h?

SR




By integrating this expression with respect to r, the
guantity of flow needed to maintain the film h in a circular
bearing of outer radius r, and inner radius rp and using

incompressible lubricant becomes:

(P, =p. ) mh*
Q = —2-2 (1)
6n &n (ro/rp) '

In the same reference ['°!], Fuller shows that for a compressible

lubricant, the volume rate of flow at inlet is

]
Il

.Hha S) 2_p 2
L (2)

6n in(xr /r 2
0/ p) Pp

Equation (1) can be used for air "if the pressures involved are not greater
than a few pounds per square inch. Where greater loads are carried and
unit pressures are higher, the analysis must include the
compressibility effect due to significant changes in volume

as the air passes through the bearing, "so that equation

(2) is then used.

The incompressible flow assumption leads to an underprediction

of the bearing performance.

Elwell and Sternlicht [1°2] analyse circular hydro-
static thrust bearings both experimentally and theoretically
Using incompressible lubricants. Load carrying capacity,
stiffness and flow rate are evaluated for three different types
of flow restrictors. While equations (1) and (2) concern the
bearing film only, equations in [!°2] consider a flow restrictor
and bearing film together as a unique bhearing element, A

reasonable agreement between theory and experiments is achieved.
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Comolet ['°?] studies air flow between parallel flat
plates and unlike the previous references includes inertia
effects. Turbulence for longitudinal flow occurs at Reynolds
number based on film thickness of about 1000 and for radial
flow, laminar flow transforms to turbulent at Re = 550 approx.
In radial flow, supersonic flow can sometimes exist over a
part of a bearing film. This supersonic tlow transtorms to
subsonic through a shock wave. Entrance length is a value of
radius from which the developed formulae apply. This entrance

length is smaller for smaller tilm thicknesses,

Powell, Moye and Dwight [‘°5]study both thrust and
journal air bearings, A linear pressure distribution which
gives an analytic solution for load capacity is assumed for
thrust bearings. It is shown that for the geometry chosen,
validity of this assumption is satisfied. The author of
this thesis cannot use this assumption because, for the
geometry of the experiments, see Appendix I, errors in load
Capacity are as high as 40-50%, Coefficients of discharge
of the feed hole was measured experimentally with varying
supply pressure and keeping the bearing load constant [105].
The agreement between load-clearance experiments and theory
taking experimental discharge coefficients intc account is
good. A simple orifice feed hole of area A= md?/4 (where
d is the feed hole diameter) and annular feed hole Ar = 7dh

(where h is the bearing clearance) are considered.

Grassam and Powell in ['°®] and ['°7] have given design
Procedures of aerostatic thrust and journal bearings for
maximum stiffness assuming incompressible flow through the

bearing element. Their design procedures utilate Kg a gauge
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pressure ratio of film entry and supply pressures.

Gross ['°f] gives a comprehensive theoretical analysis
about hydrodynamic and hydrostatic compressible lubrication.
Laminar viscous flow theory is initially used, but also
inertia effects and supersonic effects, i.e. presence of
shock waves within the bearing film is analysed. Gas bearing
Design Manual of MTI [1°°] consists of similar analysis, given
in more detail and with a lot ot references. Tang and Gross
[1°"] considered orifice and inherently compensated gas thrust
bearings. They presented design graphs of load capacity
assuming laminar viscous flow in the bearing and taking
compressibility of the gas into account. 1In particular Tang
and Gross ['°*] derived a bearing load in terms of two error
functions to evaluate expressions for stiffness. They
assumed a constant value for the discharge coefficient of

the restrictor.

Dudgeon and Lowe [1‘°],[1"],[112]and [2%*] "also
Considered both orifice and inherent compensation. They gave
a design procedure for maximum stiffness assuming compressible
flow through the bearing. Unlike Tang and Gross [1°“] their
value of empirical discharge coefficient is not constant but
depends upon the ratio of film entry pressurs to supply
Pressure [1”“]. The discharge coefficient occurs in their

expression for restrictor flow.

The author of this report has determined the discharge
coefficient of an inherently compensated thrust bearing
experimentally, see Chapter VI. Discharge coefficients of

Other restrictors can be obtained in a similar manner., The
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expression for bearing load given by Gross [!°%] is also
modified. It is shown, see Appendix I, that the load is
given with sufficient accuracy by means of one error function
only. 1In the same appendix the analytic expressions for
bearing stiffness for all three types of restrictor are
presented. Stiffness expressions for the orifice and the
inherent restrictor take into account the variation of the
coefficient of discharge with the ratio of film entry pressure

to supply pressure.

Various authors [''®] to ['2°] have been concerned
with inertia effects(with or without rotation)and super-
sonic flow in aerostatic thrust bearings. It has been shown
in chapter VI that Reynolds numbers rapidly decrease as
bearing radius increases. These effects are therefore
localised and can be neglected for the range of flow rates and

film thicknesses investigated in this project RS R

Lewis ['2!]shows that for incompressible fluids the
flow and load characteristics can be conveniently expressed as
non-dimensional parameters i.e. as shown in Appendix I, a flow

parameter.

on

EIE = o o v g
(pp Pa)h
and load parameter
= W
g
A(pp—pa)

For uniform-film bearings using incompressible lubricants,

load parameter wg and flow parameter g are constant., They do



e A3 -
not depend upon film thickness but only upon bearing

geometry. For the case of a circular step bearing:

™
q =
64n (d_/d)
b [1-(d/a)?]
g 22n (d_/d)

These parameters can be written in terms of bearing geometry
only also for compressible lubricants as shown in section

AI.4 of Appendix I.

Stiffness, which is the change of applied load W with
film thickness h, -%% is another important bearing parameter.
Stiffness depends on the type of compensating element, It is
shown by Lewis [!2!] that tor journal bearings, stiffness can
be expressed in terms of the load and flow parameters w and
q and their derivatives with respect to film thickness h. If
the stiffness is equal to or less than zero, the shaft will
not be able to support any load so that these derived expressicns
show when the bearings are statically unstable. Ling el
Malanoski and Loeb ['??] and Lewis and Scouller [!**] are
concerned with variations of stiffness depending upon the
restrictor used. Wunsch and Scoles [*2°] show how stiffness
can be improved by automatically varying the supply pressure

as bearing load changes.

In ['2%] Kilmister shows that two factors determine the
load that the bearing will support: maximum pressure in the

film and the shape of pressure profile. The relationship
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between the load and the film (i.e. the stiffness) can be improved by
adjusting the relaticnship between the thickness of the film and either the
maximum fluid pressure or the shape of the pressure profile, It is shown
that a certain degree of stiffness will be achieved if bearing
surfaces can be arranged so that pockets will develop on the
bearing surfaces as the load on the bearing is increased.
This can be achieved by a metallic concave profile diaphragm
in one of the bearing surfaces. The operation of this
bearing is thus similar to operation of compliant surface

bearings,

In ['27] a rectangular thrust bearing is analysed.
Dimensionless stiffness is given as a function of dimensionless
bearing parameter and it is shown that stiffness is a maximum

when this parameter is slightly larger than 1.

Effects of non-parallel bearing surfaces are discussed
in [***], ['2%] ana ['2*]. Load and flow rates increase with
tilt but stiffness can increase or decrease according to

geometry [!2%2?].

The effects of surface roughness are discussed in
['3°] ana [!'®!]. Bailey [!®!] claims that the largest gaps
in the separation of the surfaces dominate the flow, i.e,
in case of scraped surfaces the hollows define the surface,
rather than flat portions which may be ground and lapped,
References ['®?] and [!®?] show how a statistical roughness
theory can be applied to various lubrication modes. Papers
[*2*], ['*®] and ['?%] also deal with surface roughness

effects.

The author of this report has shown that it is

necessary to take the roughness of the bearing surfaces into
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account in describing the bearing pertormance, see chapter VI.

2,2 Compliant Bearings

Solutions for tilm pressure and load by Dowson and
Taylor [2°'] are given as pressures and load for rigid
bearings times a corresponding multiplying factor. Although
this is a simplified theory, it has its merits of clearly
showing how compliant bearing solutions depart from rigid
bearing solutions. 1In this way this paper may be thought of
as a crossing between rigid and compliant lubrication and as
an introduction to compliant bearings. Their solution assumés
that elastomer strain is only in the axial direction, i.e..
in the direction of the applied load. As circular sections
are considered, the tneory assumes axial symmetry and also
that elastomer thickness is much smaller than the radius so

that the elastic compression of the liner is given as

t
pg

E!

§ = where
pg is gauge film pressure, t is elastomer thickness and E! is
an equivalent elastic modulus, This means that film pressure

and elastcmer deflection profiles are similar.

Investigations [2°!] had been initiated because of an
interest in aqimal joints. Those joints are a form ot compliant
surface in which the rigid bone is lined with relatively soft
articular cartilage. Experiments were done on a thrust bearing
machine described by Coombs and Dowson ['!®]. An important
feature of this machine is a supporting spherical hydrostatic

bearing connected to the lower thrust surface. Thus, the
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lower thrust surface aligns itself with the upper surface.
Changes of film pressures with radius were measured for
bearings lined with discs of nitrile and polyurethane

rubbers and using oil as lubricant. Comparisons of experi-
mental pressure profiles with rigid theory showed an improved

bearing performance, i.e. increased load capacity.

Dowson's and Taylor's theory [2°!] breaks down for a
completely compliant elastomer with Poisson's ratio of 0.5.
In the author's closure ot [2°!], Dowson and Taylor have
shown that a column model approximation (which is basically -
their theory) agrees well with Castelli's et al theory for

Poisson's ratio values of Uptite) 0245,

Subsequently, Castelli et al [%°2] developed a theory
which is not only suitable for lower values of Poisson's
ratio but also for values near to completely incompressible

Case including 0.5.

In their theory, if the.rubher is deflected due to the
film pressure in the central region of a thrust bearing, radial
strain which was neglected in [?°!] will displace this volume
towards the edges of the bearing. There may be "an undershoot"
and "an overshoot" along the bearing radius; Apart from [2°2]

this theory is also described in [2°%], [2°%], [%°%] and [2°¢].

Interests in experiments [2°2],[203], > %] anani®" 9]
Wwas aroused by initial tests with plastics like nylon and ptfe.
When used on journal bearings, coefficient of friction
appeared to be very low even though the oil flow to bearings

was very small, This low coetficient of friction indicated
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that fluid film lubrication was achieved. Rigid bearings of
the same geometry would have required much higher flow rates

for similar coefficients of Friction,

The theory developed at Columbia University distinguishes
between "finite" and "infinite" elastomers. According to
[*°7] in the case of thrust bearings the boundary conditions
for "infinite" elastomer case will be satisfied in practice
if the elastomer extends about three to five elastomer thick-
nesses beyond the corresponding rigid mating bearing surface.
Experiments of [2°?] were done on a thrust bearing where the
diameter of a rigid lower plate was 101,6mm. and upper
compliant discs were 127mm dia. Neoprene rubbers with thick-
Nesses 3.18mm, 4.87mm and 9.47mm were used. Whilst the first
two cases can be taken as "infinite", the third thickness does
not satisfy the empirical requirement of [2°7], although it
Was reported as an infinite case. 1In [2°2]entrance effects
are neglected and the film entry pressure is taken to be the

measured supply pressure.

In [2°°] an improved version of the test rig is reported
which allows measurements ot the film entry pressure and film
thickness. In both [?°2] and [2°°%] tests are arranged in
order of increasing Compliance - from the thinnest specimen
of the hardest rubber to the thickest specimen of the softest
rubber. In the case of [2°%] discs of butadiene acrylnitrile
(paracril) were used both as "finite" and "infinite" cases,

In [2°?] radial pressure distribution, supply pressure, average
O0il temperature and flow rate were recorded. These results
showed better load capacity when compared to the prediction

of rigid bearing theory. They also related the load
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capacity with thickness and hardness of the compliant layer,
the inverse dependence of load on flow rate and the dependence
6f pressure profile on recess pressure. Reference [2°5]shows
both experimentally and theoretically better load capacity for
the 'infinite' case. For a given recess (port) pressure both
bearings carry several times more load than the equivalent
rigid bearing. The oil flow rate is reported to be less than
for an equivalently loaded rigid bearing. For bearings fed
with o0il, temperature effects are important. Performance of
these bearings depends on the elastomer thermal expansion,
change of the characteristic modulus of the elastomer and

change of o1l viscosity.

In the case of gas compliant lubrication [2°6]
theoryshowed that for constant recess pressure there is an
increased load capacity of compressible films compared to
incompressible films similarly as with rigid bearings. Also,
this is because the gas behaves as a secondary elastomer,
enhancing the beneficial effects derived from the compliant

bearing itself,

References [2°°] and [2°%] develop theoretical

solutioné for the infinite width slider and infinite length
journal bearing. The governing fluid-~tilm equation used is

the incompressible form of the Reynolds equation given in 2]
and [!'%®], ©The elastomer is defined as a linearly elastic
homogeneous isotropic body characterized by equations of motion
in terms ot displacements [2°%] and the equations of stress
equilibrium and a linear viscoelastic stress-strain relation

[2°%]. 1In both cases body forces are neglected,
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According to [2°?] a three eiement linear elastic

model shown in the sketch below, is accurate for elastomers

such as rubbers. This model is also known as a three-parameter

solid [11].

L

L]

Investigations[2!?] ang [22] were set up in order
to prove experimentally theory [2°¢]. Theory [*°¢] does not
Say anything about the effect of compensating elements at
the entrance to the bearing film, and subsequently Lowe's
eXperiments were performed on an inherently compensated
bearing, The diameter of the bearing inlet hole was 6.35mm

and the outside diameter was 101.6mm which corresponds to a



radius ratio of 0.0625. This is one of the radius ratios
investigated by Castelli and Pirvics [zos] theoretically.
Pressure toppings were very near to the inlet hole in order
to establish the pressures immediately after the entrance to
the clearance space. The resulting pressure distribution
(spaced within lmm from the edge of the inlet hole) showed

a@ pressure depression similar in shape as with rigid bearings
[**2] and maybe smaller in magnitude. The pressure ratio at
the edge of the inlet was than extrapolated from those
Pressure readings from the outer tappings where there were no
pressure depressions. The film static pressure immediately
at the entry to the bearing film (after the inherent 'curtain'
area of Zwrph) represents the theoretical recess pressure

of reference [2°¢],

In his experiments Lowe used natural rubber discs
with three hardnesses and four thicknesses.
Lowe's radius/thickness ratios closely corresponded to those
of reference [2°®]. Lowe has showed that there is a reasonable
agreement between theory and experiments at low values of the
equivalent thickness whereas a departure occurred at larger

equivalent f£ilm thicknesses.

Pneumatic hammer instability was also reported by Lowe
who showed ﬁhat the region of stable operation is enlarged when
the elastomer becomes thinner and harder, i.e. when the
behaviour of compliant bearings approaches the behaviour of

inherently compensated rigid bearings.
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It was gencrally concluded [?!°] and [2!'] that the
load capacity increases with supply pressure and with elastomer
thickness and decreases with increasing elastomer hardness.
When compared to rigid bearings not only is the load capacity
increased but the stiffness remains essentially constant which
is not the case with rigid bearings. The tlowrates, however,
are higher than with corresponding rigid bearings. There-
fore there are two reasons for operating these bearings at
low clearances: the first is small flow rates, about the
same or slightly higher than rigid bearings and second is
that at small clearances stiffness is about the same as for
large clearances, whereas for rigid thrust bearings stiffness
approaches zero as film thickness approaches zero. ILowe has
Compared flow rates against film thickness at the same supply
Pressures as rigid bearings and he found that they are higher

for compliant bearings.

Lowe has plotted these flow rates against the apparent
clearance, by using the original elastomer thickness in an
unstressed state. The upper or moving bearing element contains
film thickness probes outside the bearing area, and they
measure distances to parts of the lower rigid bearing element,
also outside the bearing area. In this way the measured
film thickness is an apparent value and it represents the
clearance between the lower thrust pad and the plane of the
undeflected elastomer surface. This apparent value of film
thickness is taken to be positive if the deflection of the
elastomer is smaller than the mean film thickness, and the
apparent value of film thickness is taken to be negative if
the deflection of the elastomer is greater than the mean

film thickness.
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In their paper [?!?] Lou and Horman have analysed
surface roughness effects in compliant bearing both theoretically
and experimentally. They have considered a square slider
bearing with a small round centre recess (port). In their
analysis tilm thickness consists of three parts: the first
is nominal film thickness assuming both surfaces are smooth
and rigid, the second the film thickness contribution resul-
ting from the deflection of the compliant surface and the
third is contribution from surface roughness. The contribution
from the deflection of compliant surface is taken to be
%rx p(x,y) where t is the elastomer thickness in the un-
stressed state, p(x,y) is the film pressure and E! is the
equivalent elastic modules. This modulus can be taken to be
equal to the average slope of the stress-strain curve of the
compliant material for a particular bearing. The contribution
of surface roughness to the film thickness is given by a
random variable considered to be of approximately Gaussian
distribution. This random variable has negligible effect on
pressure gradients in the Reynolds equation because the
roughness is considered to be uniform and two-dimensional.
Bulges of this two-dimensional roughness offer almost no
resistance to flow so that pressure gradients are hardly
affected. The authors indicate however that one-dimensional
roughness offers large flow resistances so that pressure
gradients might be affected. Christensen and Tgnder [!3¢]
have simplified the problem of random analysis through the
introduction of polynomial distribution and because of its
simplicity their formula is used here. The analysis is based

on isoviscous and incompressible lubricants although air



G i PR

is used as a lubricant in experiments, Gauge supply pressure
is low (0.85 bar) and according to [101] this is probably

justified, see the beginning of this chapter.

The purpose of investigations [?!2?] is to study a
potential application of compliant bearings where the rigid
mating surface can have certain uneveness.for example in the
transportation of unmachined castings. The authors give
the example of a guideway that might be used for high speed
ground transportation vehicles. The author of this thesis
has noted that the authors of reference [2!?]have taken only
‘@ rigid bearing member to be rough - a compliant member is

assumed to be smooth.

The purpose of investigations [2!?] and [?!*] is to
develop the "self-caging" spherical bearing for directional
gyroscopes. Caging refers to the ability of the compliant
spherical bearing to hold the rotor when the hydrostatic

bearing pressure is removed.

It was found that it is better to bond the elastomers
to the rotating bearing element because of the undesirable
bearing squeal-high pitched audible frequency - if the
elastomer is bonded to the stator. As the elastomer is
rotating and the load is stationary, an observer positioned
on the elastomer would experience a relative load movement.
Castelli and Pirvics [2°%] and {2°’] have investigated these

situations theoretically,

In investigations [*!?] and [%?'"] silicone rubbers of
various hardnesses and thicknesses between 0.5 and 1l.5mm, are

used. Rotor speeds of 40000 rpm are reported. One test rig
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was designed to study gyroscope rotors moulded with silicone
rubber. The second test rig provided characteristics of

pressure film and flow of silicone rubber.

Theoretically coupled elasticity and hydrodynamic, both
incompressible and compressible’equations are solved for a
Plane externally pressurized bearing consisting of a flat
elastomer bonded to a semi-infinite rigid body. The lift-off
pressure is determined for any given preload deflection,
Pressure and deflection profiles are obtained experimentally
and theoretically, This lift-off pressure is sensitive to
Various values of Poisson's ratio. It is shown that if.the
ratio of a characteristic dimension of a rigid surface (say
radius in égse of circular thrust bearings) and the elastomer
thickness is large, then a simple algebraic relationship
determines the lift-off pressure. This relationship is:

TEu
e

PB=p_ =
P a8  ot(1-v2)s
e
Also for this case the deflection at the centre is twice that

at the edge,

Pressure profiles within the flat bearing were found
to be highly flattened near the supply port and steep at the
bearing edge when the compliant material was soft, the supply
Pressure was high or the initial bearing gap was small. Dis-
Placements were found to contain large dips near the bearing
edge and bulges outside it for these same conditions. It
appears that large pressure gradients near the bearing edge
Correspond to large displacement gradients at these places.

The highest initial gradients occur when the initial gap is
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zero or negative (i.e. prelcaded elastomers).

The authors of references [2'?], [2!%] and [2!?]in
the conclusion about the future work, see a need to investigate
the unbonded elastomers because of the ease or replacement of
the damaged elastomer layers. This author has tested a
number of unbonded elastomers and compared them with the
performance of bonded elastomers and also with the rigid

bearing theory, see chapter VII.

References [?'®] and [2'%®] deal with bearings where
the lubricant is in contact with metal surfaces only. Anderson
[“?®] describes a foil sector shaped pad thrust bearing. This
bearing does not contain any elastomers and it is analysed
as a square slider bearing. Dayson [*!®] describes a stepped
sliding thrust bearing where the step is mounted on an elastic
foundation so that step height can be changed according to
varying loading conditions. Anderson's and Dayson's bearings
are similar to a bearing described by Kilmister [!2¢] where
the compliance effect of the bearing was achieved by a metallic
concave profile diaphragm and the bearing did not contain any
elastomers. This author has, however, chosen to study bearings

lined with various elastomers.

Reference [?'7] refers to a bonded assembly of elastor
meric material and interspersed metal shims which support high
compression loads and allow much more displacement in shear,
Stiffness in compression can be up to 1000 times the stiffness
in shear. These assemblies are successfully applied to heli-
copter rotor systems where oscillating motion is required.

This reference is not related to the author's work but is given
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here for completion of the compliant bearing references

read by the author.

2.3 Elastomer Properties

From compliant bearing references it can be seen that
authors have assumed small deformations of the elastomer,
i.e. the external forces producing deformation do not exceed
a certain limit. With the removal of the forces, deformations
disappear cémpletely i.e. elastomers undergoing external
loading and pressurization in bearings are perfectly elastic.
Théy are also homogeneous (the smallest element of the
elastomer possesses the same physical properties as the bulk
of the elastomer) and isotropic (properties are the same in
all directions), There is only one exception among the
compliant bearing references when Pirvics and Castelli [2°%]
looked theoretically into the viscoelastic effects of the

compliant material,

Materials with the above assumptions are described in
many books and papers concerning the theory of elasticity,
for example, [®°!], [®°2] and [®°?]. From these references
elastic materials are described by five elastic constants
or- properties, which are interrelated. They are: modulus
of elasticity (or Young's modulus) E, bulk modulus K, Lamé's
constants, X and G and Poisson's ratio v. These five constants
are interrelated in such a way that if any two constants are

known, the other three can be determined.

Looking through various equations of compliant bearing
references it can be seen that in order to calculate pressure

distribution and load capacity of such bearings, two elastic
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constants must be known. These two constants are usually A and
G, E and v, or K and ?LJHEhe study [*°"] was undertaken in
order to determine the shape of filler particles on properties
of compounded rubber., Test specimens were mounted in a suitable
stretching frame where elongations up to 300% could be achieved.
Poisson's ratio was calculated with respect to two lateral
dimensions and from the change of volume measurements. It

was found that volumetric Poisson's ratio is approximately

the average value between two lateral Poisson's ratios for

a given rubber. 11 three values of Poisson's ratio

decreased with increasing strain., Poisson's ratio calcu-

lated from volumetric measurements was about 0.5 for strains

Up to 50%.

Higginson [2‘3] quotes values of Poisson's ratio about
0.3 for metals, about 0.35 for perspex and in the range of
0.4 to 0.5 for rubbers. In the discussion of [291] castelld
and Rightmire quote values of Poisson's ratio in the range
0.47 to 0.50 for elastomers of engineering interest. It is
also shown [2°'], [#°2], [2°%] and [2°5] that bearing per-
formance is sensitive to small changes of this elastomer
property, particularly when its value is close to 0.5.
Detailed investigation of this property [?°5] revealed that
its range is between 0.495 and 0.50 for various rubbers. Nylon

sample value was however Y = 0.417.

Rightmire [®°%] has measured bulk modulus K and shear
modulus G of various elastomers for small strains so that
Poisson's ratio could be calculated. He has also done a
comprehensive error analysis of his measurements. Lowe ol

and [2''] has used Rightmire's results of elastomer properties
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when comparing his own experimental results with Castelli's

theory.

Testing of physical properties of rubber is described
in British and American Standards [3*°°] and [3!°]., These
tests are specified at high strains, so it is doubtful it
they are suitable for evaluating rubber properties as encoun-

tered in compliant bearings.

References [?°¢], [®°7] and [*°®] give a lot of
information about elastomer properties,about applications and
general data about various elastomers. Theoretical derivatién
of compression characteristics of bonded rubber blocks as
found in [%'7] and [®°®] is quite useful, when assessing shape
factors of rubbers in a given situation. Because rubbers are
almost incompressible, the compression characteristics are not
the same if one rubber disc is bonded to metal by one side,
or by both sides or, if it is not bonded at all. Also
compression characteristics of an unbonded rubber disc, when
pressed between two metal plates, depend upon the amcunt of
friction between rubber and metal. They depend upon the
extent by which rubber is allowed to flow sideways when com=-

Pressed,

Reference [*®°®] determines bulk modulus and shear
modulus of elastomers and references [*'!] and ['?] describe
the determination of Young's modulus. The theory of the latter
two papers is a modified theory of contacts originally given

by Hertz [12].

Drutowski [*!''] and Finkin [?'2] explain that hardness

is the ability of material to sustain deformation., When talking
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of metals this deformation is permanent i.e., plastic flow
occurs, but in é;se of elastomers it is an elastic deformation.
Finkin states that rubber hardness depends upon a more funda-
mental property Young's modulus’and he develops a formula for
Young's modulus in terms of either indentor penetration or
Ccontact radius of a spherical indentor. Herts's theory
assumes an infinite depth and therefore his equations do not

include elastomer thickness whilst equations of Finkin do.

2.4 Areas of Investigation

The preceding account is a brief guide to the available
knowledge of compliant lubrication. Lines of investigation
in this report should include something that has not been

done so far.

It is noticed that so far theoretical and experimental
work on compliant bearings has been done for steady~-state
Operation. Time-dependent solutions are an exXtension to this
work. These sdlutions exist for rigid bearings, see references
Tl (T8 R [17%] ana [1¥8]_ pvmamte work with compliant
bearings is a large new area of investigation, which apart
from dynamic performance of these bearings should also include
investigations of elastomer properties. Generally the work
rYeported here is limited to steady-state operation though in
chapter VIII (Future work) one set of results of elastomer
broperties under dynamic conditions is included. But dynamic

pPerformance of these bearings remains to be studied,

At the beginning of this research project the steady

Performance of compliant bearings lub ricated by a compressible
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fluid had not been done and this was considered to be a
major new area of investigation. Previous workers [?°!] to

[2°%] have investigated incompressible lubricants only.

In the theory of Castelli the governing equations
are formulated in terms of a stress function. This formula-
tion allows all values of Poisson's ratio to be used including
when v approaches 0.5. This theory is analytic but the

resulting integrals are solved numerically.

At the beginning of this project it was hoped to
aralyse aerostatic thrust bearings under dynamic conditions.
It was thought that a direct numerical solution (rather than
semi-analytic, semi-numerical) is easier for the

mathematical model under dynamic conditions.

For the direct numerical solution the governing
elastic equations are best expressed in terms of displacements,
see chapter IIT and appendices II and III. However, because
of the (1-2v) appearing in this formulation, a modified form
of these equations is required when Poisson's ratio approaches

0.5, see chapter III and Appendix III.

Investigations of elastomer properties,[3°5] and
chapter IV of this thesis,have revealed that these materials
are almost incompressible and that these modified forms of

elastic equations are of engineering interest.

A first step in the direct numerical solution is to
consider steady state operation and completely incompressible

elastomers when v = 0.5.
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It was decided to periorm some experiments with rigid
bearings in order to develcp the experimental apparatus. Once
confidence with the rig had been gained, experiments with the

compliant bearings were to be performed.

So far in the compliant bearing literature elastomers
have been bonded to a rigid backing. 1In ﬁhis project tests
have been carried out with unbonded elastomers. This setup
is attractive because damaged elastomer layers can be easily
and quickly replaced. Although this advantage may not be
vVery significant for a simple circular thrust bearing geometry,
it can be more significant for more complex geometries such

as spherical compliant bearings [%2'*]and [2'?].

It is noticed that throughout the experiments with
compliant bearings, elastomer aspect ratio was varied by
vVarying elastomer thickness. In this report elastomers of
various thicknesses were tested, but also elastomer diameter
was varied for a given thickness. The range of elastomers

investigated was extended to include some plastic material,



JEDL THEORETICAL ANALYSIS

Two basic constituents of the thecretical analysis are
an elasticity problem and a fluid problem., The fluid problem
can be treated as a boundary condition of the elasticity

problem.

Circular thrust bearings and journal bearings are most
important from an engineering point of view. For both geametries
the elasticity problem is described by welli-known general

elasticity equations in cylindrical polar coordinates. They

are 902] :
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It is a very elaborate task to solve this three-dimen-
sional problem. In order to simplify it, various assumptions are
made. The experimental setup of the project is a dominant
factor in determining any departures and simplifications from

equations (1).

The main points to be considered in order to arrive at

simplifying assumptions are:
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1) Whether this is a dynamic or a steady-state problem.

2) Whether body forces can be neglected.

3) Axial symmetry in thrust bearing analysis.

4) Whether the loading arrangement in the bearing is such
that plane strain can be assumed,

5) Whether there are any assumptions in the elastomer

properties that can simplify equations (1).

The project is concerned with steady state work, so that
inertia forces, on the left hand side of equations (1), are

equal to zero.

The project is concerned with a thrust bearing of
Circular geometry and the experimental setup is such that there
is no rotation, Furthermore, bearing load is one or two orders
of magnitude greater than the elastomer weight, This means that
body forces (the last terms on the right hand side of equations

(1)) can safely be neglected.

Axial symmetry is a sound assumption for circular
compliant surface thrust bearings in which tilt is eliminated.
A steady state axisymmetric situation in a solid of revolution
and without body forces has been analyzed by the Columbia group
[202] to [207], and their experimental results as well as those
of Lowe [210] and [211 ] proved it to be a good mathematical model

for circular compliant thrust bearings.

With the first three points considered in order to
arrive at the assumptions of a steady state axisymmetric situation

in a solid of revolution and without body forces, equations (1)
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g (2)

It is often advantageous to express equations (2) in

terms of displacements.

In order to do this, firstly one can

write general equations of strains in terms of displacements., -

After that by Hooke's law, stresses are expressed in terms of

strains and then in terms of displacements so that the stresses

in equations

(2) can be substituted by displacements.

Strains in terms of displacements in cylindrical polar

coordinates can be written as [302]:
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For axial symmetry, equations (3) reduce to:

0]
D

il
Hic

g _ (4)

0
N

1l
NES

D

Il
gka

F

+

5

Q2
N
a2
=

Hocke's law follows from equations (II-9),

Appendix II
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Taking into account equation (4), stresses in terms

of displacements become:
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If strains in terms of stresses are desired, from
equations (II-10) of Appendix II and taking account of (II-11l):
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Equation (7) written in full becomes:
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Rather than in terms of Lamé constants Avand G, 1t s
sometimes convenient to write (7) in terms of Young's modulus E

and Poisson's ratio v. Taking into account equations (II-11),
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equation (7) can be written as:
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Going back to equations (2) it is now possible to
express the stresses therein in terms of displacements u and w,

by means of equations (6). First 0. is differentiated with

TYespect to r, o, with respect to z and Tt both with respect to -

rz
E and to 'z,
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so that the equations of equilibrium (2) in terms of

displacements become :
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Equations (11) can be written slightly differently
as:
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It can be seen that the assumptions of steady-state
operation, of body forces neglected and of axial symmetry
reduce the general equation of equilibrium (1) into equations
(2) in terms of stresses or equations (11) or (12) in terms
of displacements. It is seen that these equations depend
upon coordinates r and z and that both (11) and (12) contain

displacements u and w. They are therefore coupled equations.

In the plane strain situation (point four of assumptions),
forces are applied at the boundary of a thin plate in the plane

of the plate, see sketch.
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These forces are applied normally to the z-axis and are

distributed uniformly along the plate thickness.

If the dimension of the plate in the z-direction is
large and the body is loaded by forces normal to and not
varying with z, then any plane of such a body normal to the
z axis has got the same stress and strain.distribution. This

situation is described as plane strain.

At this point it is convenient to mention that some
authors [314] define planes strain as a state when the axial
displacements in the z-~direction are zero, whilst others
include in this definition the condition when axial displace-
ments are uniform., If the axial displacements are uniform,
this means that there is a uniform loading in the z~direction

also.

A plane strain situation for steady-state operation

and neglecting body forces reduces equations (1) to:

ESE + L 3Tr8 g ’r - % = 0
ar v 26 r
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The problem described by equations (13) is analyzed in

[203], [2:4],[219] 4ng [220].

Incidentally Benjamin [*°?] used an axial wave number K4
defined by Michell ['®]. Benjamin shows that when K=0,
equations (1) reduce to equations (13). This is the first

step in Benjamin's solution and it can be considered as a first
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approximation of the elasticity problem,

Meijers [%2°] examined the contact problem of a rigid
cylinder against an elastic layer of thickness b, bonded to
a rigid base, see fig. 4 , It is assumed that the eylinder
is long enough in the direction normal to the plane of tig.4 ,
It is also assumed that there is no friction between the

Cylinder and the elastomer layer,

Theoretical solutions of Meijers concern various ratios
of halt contact zone ¢ and elastomer thickness b. They also
include situations when c¢/b is very small and when c/b is very
large. The condition that c¢/b +0 means that the prcblém is

near to "a circular disc on a half plane" state.

The condition that c¢/b + « means that the curvature is
very smooth, almost plane, so that one can imagine a plane

or a flat stamp in contact with the elastomer.

In the experimental configuration of Gupta and Smith
[“'*] ana [2?!%], the ratio of c¢/b is large, and they have
taken the condition of c/b » « as a solution to their elasticity

problem,

Their papers concern the transient stage from a complete
elastomer contact until the bearing lift-otf. Just betore
the complete lift-off is achieved, a uniform pressure distri-
bution exists in the bearing film(see fig. 5). This uniform
Pressure distribution means that the axial displacements are
uniform. This situation can then be taken to belong to the
class of plane strain problems, because the same stress and

strain distribution exists in any plane of the elastomer
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s
parallel to the plane of contact, see fig. 5 .
If plane strain and axial symmetry is assumed, equations

(13) reduce to radial equilibrium:

— =0 (14)

Equation (lL4) is a starting point in the solution of
Kinsman [221]. In his solution radial and circumterential

strains e, and e, are given by the first two of equatiocns

8
(4) . As equation (14) does not contain z, Kinsman's solution
assumes that the radial displacement u is not a function of z,
A possible experimental setup for such a theory is that the

elastomer is not bonded to its backing and that it is allowed

to move uniformly radially outwards,

Dowson and Taylor [2°*]take radial and circumferential

strains to be
e =e, =0 (15)

With the axial stress g2 equal to the gauge film
pPressure Pg' radial and circumferential stresses in Dowson

and Taylor's theory reduce to:

3 e (16)

Now, axial displacement § is determined by the equation for the

axial strain, the third equation of (10), as:

P 2
e §t_ i [1_% ] (17)
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It is seen that for values of Poisson's ratio approaching to
v=0.5, the axial displacement in Dowson's and Taylor's
solution approaches zero, no matter what the film pressure is.,
This is understandable because in this theory no allowance is
made for radial displacements., When Poisson's ratio approaches
0.5, elastomers become more and more incompressible, and as
nothing is flowing radially outwards, nothing will flow axially

inwards either.

Clearly, Downson's and Taylor's theory is not suitable
for completely incompressible elastomers. As stated in the
literature survey, this theory can be used for Poisson's
ratio values of up to 0.45,for example for bearings lined

with soft metals.

Rightmire [305] has shown that most engineering elasto-

mers have the value of Poisson's ratio in the range of:

0.495 < v < 0,5 (18)

Equations for stress in terms of strains (II~-y),
Appendix II, are not suitable for these values of Poisson's
ratio because A becomes very large. For a typical value of
elastomer shear modules G=7 bar, reported by Benjamin, Rightmire
and Castelli [2°%], the following table gives an insight into

the possible values of Lamé Constant A

Y 0.4950 0.4975 0.4975 0.4999

A/G 829 199 499 4999

A 693 1393 3493 34993
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Such large values of X\ when Poisson's ratio approaches
0.5 are not desirable when a numerical solution of equations
(11) or (12) is required because they can cause an overflow
in the computer. Equations (11) and (12) have been developed
by starting from (II-9), Appendix II for stresses in terms

of strains.

It is necessary to start from the modified form for
the stress-strain law equation (III-9), Appendix III, and
develop new equations of the type (11) or (12). Written
in full, equations (III-9), Appendix III becomes:

Q.. = Py T G(er + e, + ez) i 2Ger

r 8
By = Py = SR, Figy F ez) + 2G.es
\ (19)
s G(er e F ez) + 2Ge,
e : /
Trz 2Gerz
e reﬂuﬁnufﬁﬂ
If strain-displacement is now used, equation (4),

stresses in terms of displacements become

i —ppol 1 oW Ju )

Gr = pm G(ﬁ- + T + '5-2-) + 2G'§—f
X man fu u

Op = P, "Gle= * =4 =) #1126 = : (261"
L Cront ooab gy qw

O, = Py “Clsgg * ¢ + 537} +26 53

o m GlES o 2
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Substituting these values for stresses into the
equations of equilibrium (2), the equations of equilibrium

in terms of displacements become:

ap 2 2
m 3°u 1l Bw u u &
e Clazz * 7 3x - % 32 piTe,
(21)
ap 2 2
m 3°wW 1l 3w 9w i
e hEgE e sy -0
or
dp E 32u du u 9 %u .
= % P S R
or 2 (1+V) or? T 5; r? 5z°
> (22)
2 2
3P o E (aw_+ i EE 3 3w) =0 |
5z 2(1+vd 2x? r Br dz?

Similarly, starting from (III-14) and using the
condition (ITT-13), Appendix III, the equations for egquilibrium

in terms of displacements for an incompressible elastomer

become:
: 2 A
3Tmean @ E 2%u el i EE " E = d u)_ in
or 3 3L 2 Y ar s 3272
> (23)
B E /3%w 1 3w 92w )
[ Gl T SRl e o )

Equations (22) are the general field equations for an
axisymmetric compliant material for any value of Poisson's

ratio v within its natural limits O0< v < 0.5.
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Equations (23) establish the solution when the elastomer

volume does not change, i.e. when v = 0.5.

Boundary conditions of an axisymmetric solid of
revolution specify either displacements or stresses at a
particular boundary. Consider the arrangement of an incom-

pressible solid of revclution as shown in fig. 6.

Stresses are given as

e au
%% "% Ymgan 26 or
f (24)
or
UL oW u
Or = Tgean — 28105y + 3 J
= u )
98 ™ Tpean T 46 r
\ (25)
or
- - agdu 4 2w
UB Tmean 2G(3r i gzl
9% % Tmean " ZG(%% * %) ,
(26)
5 oW
OF Gy = Thean ' “C 3z
= ou oW
ey T G(az e Va7
Consider fig. 6.
I On this boundary radial stress is zero and because this

is a free surface, shear stress is also zero.
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T Here axial stress o, is determined by the gauge
film pressure PP, Shear stress Tos is calculated
from the requirement that the flow velocity is zero
at z=t, Usual assumptions for the Reynolds equation,
which is the governing equation for the film pressure
distribution, are neglect of body and inertia forces
and sometimes neglect of the presence of compressibility
effects in the Navier-Sto kes equations of motion, from
which Reynolds equation is derived, see Appendix I.
Depending upon the flow conditions, some of these
assumptions may not be true, see for example reference
[140]. Velocity gradient, which figures in the expression

for shear stress is also derived in Appendix I.

Benjamin and Castelli [204] have shown that in the case
of journal bearings shear stresses are negligible
compared to normal stresses. Therefore as a first
approximation these stresses can be taken to be equal

to zero.

i Because of axial symmetry, there is no radial dis-

placement at r=0,

IV On this side there is no axial displacement, but
depending whether the elastomer is free or bonded to
its backing plate, there may or may not be some radial

displacement,

Dowson and Taylor have developed an approximate
analytic solution for pressure distributicn and bearing lcad.
They have shown that if the elastic compression is small this

analytic solution is satisfactory. Otherwise an iterative
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procedure is used,

Castelli et al have solved their compliant bearing prob-
lem by means of Fourier and Hankel transforms. Initially, their
method of solution is analytic, but the resulting integrals

are then solved numerically.

The author has attempted a numerical solution with
the help of the subroutine "soclution of Elliptic Partial
Differential Equations" which is available at the University
of Manchester Regional Computer Centre. This subroutine
consists of 17 "sub-subroutines" out of which the user writes
three for a particular problem. This subroutine is bkased

upon finite central difference methods.

The governing elastic eqguations are transformed into
finite difference schemes with the help of the reference (18).
Consider an incompressible material and assume that‘pm = const.,

Then from (23), the following equations are obtained:

9%u 1 du u ek T
ERTI n aeRheh  aa
(28)
32w 1 3w 32w 3
3c2 T F 3r | 3z2 e
From (24) to (27)
Tx e mean S o By |
G G ar
G G X
Y T o
e USSR - A ) ’ (28]
G G 02z
! A _r'}_t-.); + ,3£
o 3z 5T
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Consider a point O and the four neighbouring points
i{(i=1, 2, 3 and 4), see fig. 6. Distances from O to the
neighbouring points are h(i). Then the following expressions

can be stated [13] :

2
g \
3T T EETEES(HE) DU+ Balsm (b1 + hodu ]
1

1 SR e 2 L 2 T
T T rh1h3(h1+h3):ﬁr [h3 u-'l n, u3 (ha hl )uo]

u £ Ug
o= Tl
9%u 2 |
T = hyQ,; + hyUu=-(h, + hu)u-o

Az%hshy (ha+hy) > (30)

. 2
B = hyw, + hywa-(h; + hg)wO
dr? Ar?hihs (h; + hs)
; 1
1 8w _ [h32wl-hlzwa“(h32“h12)w ]
r or rh,h; (h; + h3)Ar <

y 2
-9_‘.1’. = [hqu'l‘thq“(hz“f‘h!p‘}W ]
9z2 ﬂrzhzhu (h,+hy) 9

and
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2 4 ; :
su : : i
3F hlhB(h1+h3)Ar [h3 ul_hl .113"(}13 _hi )uo]
u
u S
r ¥
i
ow 2 P N S
3z " hahg (D, +hy)Az [ha. wa=hs*wy=(hy?=h, )wo] '
r (31)
: - 2 2
= Rt ¥
%% haohy (hot+hy) Az [h“ uz=hz“uy=(hy“~h, )uo]
ow 1 . L
. B g A 4y
or " hihs(hi+hs)Ar [h3 wi=h,“ws~-(hs3“-h; )Wo] y

Then at any point O within the plane of the elastomer

shown on tig. 6 displacements u and w can be expressed as:

u = Cu(l)ul + cu(z)uz+cu(3)us 1

e Cu(4)Un+cu(5) ! (32)

3
Il

cw(l)w1+cw{2)w2+cw(3)wa

- Cw(4)Wq+Cw(S)

Coefficients cu(i) and cw(i) where i = 1,4 depend
upon h(i), Ar, Az, coefficients cu(5) and cw(S) apart from
h(i), Ar and Az can also depend upon u, w, G and pg = PP,

at boundaries.
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The film pressure p must satisty the Reynolds
equation also. 'This equation is given by equation (1-5),

Appendix I which states

= [r %E(Pz)] 50 (33)

Equation (33) can be modified to read

2P et e s N B (34)
dr? dr h dr r

The film thickness of equation (34) can be described

as

h=h_ +w (35)

where hO is a uniform film thickness without elastomerx

deformation. Now equation (34) can be expressed as

d2%F ar 3 dw 1

A finite difference form of this equation can be

taken to be equal to

F(J+1)-2F (J)+F (J-1) & F(J+1)-F (J=~1)
Ar? 2AY

X BRACK(J)=0 (37)

so that pressure squared at any radial position r=(J-1)Ar

is equal to:



b &

F(J) = F(J+1) (1+BRACK(J) x Ar/2)/2 +

(38)
+ F(J~1) (1-BRACK(J) x Ar/2)/2
Here BRACK (J) is the term in the square bracket
of equation (36). In finite central difrérence form this
term is equal to
3 w(J+1)-w(J-1) %
BHBCEAD) [ Fig + W@ 35T . ?] (39)
Referring to figure (6) a flow diagram of the
solution is shown in figure (7).
The programme available at the Manchester Computer.

Centre is suitable for solving tweo dimensional second order

elliptic partial differential equations with one variatle.

Within the elastomer field the governing equations
have one variable only (either w or u) but at some boundaries

two variables define the problem.

The difficulty lies in modifying the programme to
be used at the boundaries and according to the tlow chart
of fig., 7. Sections 1, 2, and 3 of the flow chart have been
written, see Appendix IV, Although these sections work
individually, more programme development is needed that they

work as a whole unit,

Sections 1 and 2 are written in Fortran and section

3 in Basic.
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IV EXPERIMENTAL ANALYSIS OF ELASTOMER PROPERTIES

4.1 Basic relationships
A literature survey has revealed that elastomers used
in compliant bearings are taken to be perfectly elastic,

homogeneous and isotropic.

In developing stress strain relationships for bearing
elastomers, Appendix II it is seen that for a large group of
materials named Hookeanelastic solids, the stress tensor is
proportional to the strain tensor. For these materials, the;e
are in general 21 coefficients of proportionality or elastic
constants, The number of elastic constants reduces to two

only for perfectly elastic, homogeneous and isotropic materials,

Stress in terms of strain , or vice versa, for these
materials can therefore be expressed in terms of two elastic
constants. If stress is expressed in terms of strain, Lané
constants ) and G are normally used see equation (I1-9) .
Appendix TI, or equations (5), Chapter III , If strain is
expressed in terms of stress, bulk modulus K and shear modules
G can be used, see equation (II-10), Appendix II k or Lamé
constants A and G can be used 6 see equations (7) and (8),
Chapter III , It is even more customary to write strain in
terms of stress by means of elastic modulus E and Poisson's
ratio v, as shown in equation (9) or (10) of Chapter III .
Some of the more important relationships between A G K.E and

Vv are given by equations (II-11}), Appendix II,

In the discussion of Rightmite's paper [305], Dowson
and Taylor have given relationships for evaluating Poisson's

ratio by means of elastic medulus E, shear modulus G and bulk
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The first two of equation (1) follow from elastic
relationships, some of which are given by equations (II-11) ,
Appendix II, whilst in evaluating the third of equations (1)
it has been assumed that the value of Poisson's ratio is close
to 0,5, Rightmire [305] has calculated Poisson's ratio by
means of experimentally determined values of shear modulus G
and bulk modulus K, The third of equations (1) is his first
order solution and in his paper [305] he proved that this
solution is accurate enough for the range of elastomer properties

investigated,

Poisson's ratio is not a property that can be measured
directlyF but it is calculated by means of other properties of

the material,

Rightmire has chosen to measure bulk modulus K and shear

modulus G and then to calculate Poisson's ratio v,

It is not practical to try and measure elastic modulus
E and shear modulus G, because E and G are of the same order of
magnitude and this can result in large errors in Poisson's ratio

¥y

The author has chosen to measure experimentally the

bulk modulus K and the elastic modulus E, Elastic modulus was



chosen rather than shear modulusr because it can be measured

conveniently during the bearing tcsts, see Chapter VIIL.

In order to make an estimate of the errors in Poisson‘'s
ratio v, when working with the second of the equations (1), the

following has been done

The total differential of v can be written as

_ Ay 3V
Av = = AE + AR AK (2)

When eguation (2) is applied to the second equation

of (L)L
el _E
&\) - '-6—1{ AE +6KZ AK
which can be written as
A 1 AE 1 K :
—_— = = + =t (3)
W e B R Ry

From equation (II-11l), Appendix II

e oy
B, T2y

and when this result is substituted into equation (3), this

reduces to

AV _ 1oy AE 11y &K
where'é%ii é% and é% represent errors of v, E and K respectively,

It is seen that for the range of Poissont's ratios for

elastomers 0,495 s v < 0,50, the following can be concluded

For ¥ = 0.5, é% = 0% 3.8, there is no error for all
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possible errors in measuring elastic modulus E or bulk modulus

K,

If the true value of v = 0,495, and supposing that the
errors in determining E and K are 0,10 and 0,20 respectively,

then the error in calculating Poisson's ratio becomes

-‘}%= -0,0l x 0,10 + 0,01 x 0,020 =

=— 0,001 + 0,002 = 0,001

It is shown that even for the relatively large errors
of 10% and 20% in E and K, the error in Poisson's ratio is

only 0,1%,

If the first of the equations (1) was considered and if
similar analysis was performed, it can be shown that the

resulting equation of relative errors is

Av ___ (1+v) AE (L+v) AG
T WS G Bl Ry (3)

For true value of v=0,5 and for.ég = 0,10 and Eg =

0,20, the error in Poisson's ratio is as high as 30%,

Therefore the use of the second of equations (1) is
justified;
4.2 Bulk modulus evaluation
For a body subjected to hydrostatic pressure and from

equation (II-8), Appendix I bulk modulus is given by



B

A
where €;,= é% is volumetric strain. By knowing the
pressure p to which the elastomer sample is subjected and
by knowing the volume change incurred, the bulk modulus K

is obtained.

An experimental apparatus, to measure volumetric strain
and pressure, which is very similar in principle of operation
to that of G.K. Rightmire [305] has been developed in the

University workshops, see fig. 8 and photograph I .

A perspex tube of 6.35 mm. nominal inside diameter is
'welded'to PVC adaptors. This tube-adaptor assembly is then
connected to a container where the elastomer disc is placed.

The container with its cover is shown in photograph II .

The container consists of two parts bolted together and
sealed with an 'O'ring. The upper part has a vent valve
incorporated in its design and this valve is sealed with a
"DOWTY" seal. The lower PVC adaptor of the perspex tube is
sealed with an "O" ring against the top steel part of the
container. The perspex tube-adaptors assembly is secured
to the container by means of a steel adaptor bolted to the

upper part of the container.

Water coloured with red ink is used és a working liquid
in this bulk modulus apparatus. Both the cavity where the
elastomer disc is placed and about 3/4 of the height of the
perspex tube are filled with this liquid. The vent valve in
the upper part ot the container is used to eliminate air
bubbles trapped by the working liquid during filling. In his
apparatus Rightmire [305] has used mercury, but water coloured

with red ink is preferred for safety and sensitivity.
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Once filled, the perspex tube is pressurized by
nitrogen up to 27.5 bar through the upper PVC adaptor.
Differences ot the water levels are read on the graduation
scale of perspex tube. As the whole bulk modulus rig expands
under pressure and as water slightly compresses, it is
necessary to calibrate the rig using a disc made of a material
of known elastic properties, say a steel disc. Fig. 9 shows
the arrangement, and photograph IIl shows two discs and also

the mould used for producing the rubber disc.

The mould was made in the University workshops and discs
of natural rubber were moulded. The Chemistry department at
the University was consulted and the following formula of the

rubber contents was used:

Natural rubber 1000 g

Zinc oxide 50 < mixed together

Stearic acid 30 g and added to

CBS* 10" q natural rubber

PBN** 10 g first in BUNBURY
mix

HAF***hlack 150 g

Sulphur 25 g

The mould was kept for 1% hours at 140°C in the press at
50 tons/in?. Dummy steel discs were made with the same

dimensions as the rubber samples.

The inner diameter of the perspex tube "d; was measured
on a projector in the metrology laboratory at Aston University.

Magnification factor of the projector is ten, and the average

* CBS - Cyclo-hexyl benzthiazyl sylpher@mide
** PBN - Phenyl=-f-naphthylamine
*%** HAF - High abrasion furnace
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result of eight readingé:
dp= 6.449 mm
The corresponding cross sectional area
A, =T X 6.449 ?/4 = 32.661864mm*
For a given pressure, expansion of the container and

compression of the water do not vary, no matter whether

an elastomer sample or the dummy disc is in the container.

Therefore, referring to fig. 9

Ap X ﬁHS - Ap 3% QHS(T) = Ap 3 &HD—Ap X &HD(T)

or

Ap 574 ﬁHS - ﬁvs = Ap X AHD - QVD

where AVg and avD are volume changes of sample and dummy disc

due to pressurization from the nitrogen bkottle. Therefore

volume change of the sample

Avg = avD + Ap X (a.HS - i\HD) (7)

Here AHg and AHD are the measured differences of liquid

levels between the ambient pressure and the given pressure

for the sample and dummy disc respectively.

Dividing by the volume of the rubber disc  (which is
equal to the volume of the dummy steel disc) V equation (7)

becomes:

iy
—e A IR (AH. - AH.) (8)
v v e 0
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The complete procedure for evaluating the bulk modulus
is shown for natural rubber made at Aston University. The
rubber disc when moulded had the following dimensions -
87.376mm dia x 31.496mm thick. The steel dummy disc had the

same dimensions. Experimental results for these two are given

below:
DUMMY STEEL DISC NATURAL RUBBER DISC
water level water level
gauge pressure | at perspex tube |[|gauge pressure at perspex tube
[bar] [own] [bar] [z}
0 311 0 312
5.998 305.5 5.585 306.5
9,791 301 8.412 301
12.169 298 F* 11.052 298
14.548 295.5 12.962 295.5
16.685 294 15.444 293-
19.029 292 i 17.133 291
21.374 289.5 18.823 289.3
23,373 288 r 21.236 287
25.855 286 23.408 284.5
27.096 285 25.510 282.3
26.924 281

Th€rig with a rubber disc inside was "cycled" a few times from
ambient to maximum pressure so that rubber can settle. This is a ccaumon
practice when testing rubber components. The first cycle is not 'typical'
and if stress against strain curves are plotted for each cycle, the

differences between the first few cycles can be large. Then the subseguent
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cycles are almost identical.

Maximum pressure for the perspex tube is recommended not to
exceed 40 bar, but 27.5 bar is chosen for safety. After this

cycling, results for the steel and rubber discs were taken.

Existence of similar conditions when the steel disc is in the
rig is thus achieved. Pressure was read up to 400 lbf /in? on a

Budenberg gauge and the results were then converted to bars.

Fig. 10 shows the results. A polynomial of the first order is
obviously the best fit. A redression analysis programme based on
the least squares method is available on the departmental Hewlett
Packard Computer. This programme was used to fit straight lines
to the two sets of points as shown in Fig. 10 . Results in

steps of 5 bars are shown in the following table:

DUMMY DISC RUBBER DISC
gauge pressure water level gauge pressure water level
[bar] [rom] [bar] . ()
1) 0 310.14 0 311.07
2) 5 305.40 5 305.37
3) 10 300.65 10 299.67
4) 15 295,91 ¢ 15 293.96
5) 20 291 .17 20 288.26.
6) 25 128642 25 282.56

These results were used for calculating differences of

water levels based upon ambient conditions.

From the value of bulk modulus for steel|[307]
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K = 1.76 x 10°bar, the volumetric strain AV/V for the steel

disc can be calculated under various pressures.

The volume of rubber i.e. steel disc under ambient

conditions for this case is:
V=17 x 87.376% x 31.496/, = 188855.,484mm?

Using equation (8) relative volume changes AVS/V of

rubber for various pressures are calculated as follows:

S & : Avqx A
A AH | AH SAH | —= X10° | B(aH £AH )X10 —X10

[par]| ] | [ | [oe) [-] -] -]

5 |4.74| 5.70 | 0.96 2.84 166.03 0.169
10 5.49] 11.40 | 1.91 5.68 330.38 0.336
45 p4.234:37.14 | 2.9) 8.52 503.27 0.512
20 [18.97| 22.81 | 3.84 11.36 664.11 0.675
25 P3.72}1.28.51 | 4.79 14.20 828.41 0.843

These results show that the contribution of compressi-
bility of steel ﬁVD/W? are small compared to the other term
on the right hand side of equation (8). The expansion of

rig fg (AH g-AHJ) is the dominant term. As H¢ and Hj were

D
v
related linearly with pressure see tig. 10 , one would expect
also that 6VS is linear, because the dominant term in the
Vv

expression for Avg/v consists of water-level differences
multiplied by a constant Ap/ﬂﬁ Fig. 11 is the plot of relative
rubber volume change against pressure and confirms that the

relationship is linear.
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Pressure is read on the 400 1bf/in? pressure gauge. This
pressure gauge had been calibrated with a dead weight tester

and it shows almost 1 1bf/in? higher readings.

The graduation scale on the perspex tube is given in
millimetres. It is estimated that the tolerance on a reading

on this scale is *0.25mm. As differences are involved this

tolerance becomes *0.5mm,

Take a value of pressure, say 25 bar and impose *0.5mm
tolerance on water level readings. This results in the
following volumetric strain ﬂVS/V:

AV o

AV, 5 : !
—T?— x 10O 7 (ﬁHS"‘ﬁHD)x1U P —— x 10 K

ﬁHS—ﬁHD

[om] [bar]

4,79 14.20 828.41 0.843 29656
5.29 14,20 914.88 0928 % 12693
4.29 14.20 741.94 0.756 ** {33069

Errors in calculating bulk modulus are

26911 - 29656

errormin = 53658 X 100 = -9,3%
© _ 33069 - 29656 5
errormax = 59C5E X 100 = 11.5%

Errors in calculating bulk modulus due to errors in
pressure reading is:

. 29738 - 29656 X
Error = 55656 X 100 = 0.28%

Errors in bulk modulus due to pressure readings are

much smaller than errors due to water level readings. Errors

* Point A in Fig. 1 ** Point B in Fig.i{
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due to pressure can therefore be neglected and the main

sources of errors are inaccuracies of water level readings.

If calculation of errors is repeated for 5 bar nominal

pressure then points C and D in Fig. 11 are obtained and
error .. = =33.7%
error = 106.1%
max

and error due to pressure is equal to 1.37%.

From Fig. 11 it is seen that AD and BC are lines parallel
to the nominal strain-pressure curve and the whole area repre-
sent a band of errors. It is obviously advantageous to cal-
culate bulk modulus at higher pressures because errors are then
smaller. The pressure of 25 bar is chosen to calculate bulk
moduli for other compliant materials. The procedures is exactly
the same as for this natural rubber just described and the
results of volumetric strain against pressure are given in
figures 12-16 + In each figure the value of bulk modulus
is noted, together with a tolerance for 25 bar pressure.
Photograph IV shows some elastomer discs and dummy steel

discs used in the bulk modulus rig.

For some compliant bearing materials (for example,
certain plastics) which were used in the experiments, additional
discs for bulk modulus testing could not be obtained. An
attempt has been made to relate elastomer hardness to bulk
modulus of the elastomers in figures M- 16 with a view
to using this relationship for other elastomers. A linear
relationship is shown in figure 17 . Usihg the six experi-
mental points, this relationship has been obtained by the

least squares method. Hardness was measured according to the
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specification of the rubber hardness tester manufactured by
H.W. Wallace & Co. Ltd. and showed in photograph V .
Hardness is obtained in units of International Rubber Hardness
Degrees which closely correspond to values of shore "A"

Durometer hardness and British Standard hardness degrees.

The International Hardness Test is based on measurements
of the penetration of a rigid ball into the rubber specimen
under specified conditions. The measured penetration is
converted into IRHD, the scale of degrees being so chosen
that zero represents a material having an elastic modulus of
zero and hundred represents a material of infinite elastic

modulus [310], standard D1415-68.

4,3 Elastic Modulus Evaluation

Elastic modulus of various rubbers was first determined
using a Hounsfield "E type" tensile testing machine. Dumb
bell test pieces were cut with a "D" cutter, the speed of

testing being 20 in/min |309, part A2].

This Hounsfield tester is designed to give Young's
Moduli at 1l00%, 200% and 300% strains. Since strains in
compliant.  bearings are at least two orders of magnitude
smaller, the resulting graphs of forces against elongations
need to be read very near to the origin. Difficulty of
reading force magnitude for such small elongations is in-
creased because the mechanism for rotating the graph paper
does not respond instantly to loading. It was concluded
that these tests are not accurate enough for evaluation of

elastic meduli.
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It is possible to determine the elastic modulus under
compression by measuring the elastomer deflection during
bearing tests. The elastomer disc is then subjected to
compression from the bearing load and from the reaction

of the lower bearing surface, see sketch below:

I bearing load per
f | unit area

7, /// 5 et

SRR 11t reaction from the
lower bearing
surface

During the bearing operation, the elastomer disc is
subjected to compression from the bearing load and Erom the
pressure distribution in the film, as shown in the following

sketch:

bearing load per
unit area

/‘/1’/////:/1/’/1//% elastomer disk

N

X! pressure distribution
iin the bearing film

=

7
7 :
a LA equivalent mean
pressure

If the pressure distribution in the bearing film is
substituted by the equivalent mean pressure (load divided
by bearing area) the loading conditions when evaluating
elastic modulus are the same as the elastomer loading con-

ditions during bearing operations.

During the real bearing operaticn the loading conditions

are predominantly compressive. Elastic modulus is also
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calculated under compression and this is an additional
advantage over the methods of evaluating the elastic modulus

in tension, such as the Hounsfield tester.

The test bearing with a compliant material is screwed
onto a slave journal bearing and the whole unit is placedcon
the lower thrust bearing surface. Deflection of the elastomer
is measured by three mitronic comparators spaced uniformly
around the circumference of the top part of the journal
bearing, see photograph VI . Results of a typical load
test are shown in fig.18 . Material is natural rubber made
in the Chemistry department of the University. The hardness
of this rubber is measured as 54.5 IRHD and dimensions of the
elastomer are 133.82mm dia x 12.28mm. The upper surface
of the élastomer is bonded to a steel backing plate and
together with it, it forms a test bearing pad. The lower
surface of the rubber (128.27mm dia, the same as the lower
test bearing rigid surface), forms the effective bearing sur-

face.

The deflection under the inherent load of 92.67N acting
on the elastomer is not known because it is not possible to

measure this deflection by mitronic comparators.

Once experimental values of load are plotted against
elastomer deflection, see fig. 18 , it is seen that the
relationship is linear, and a first degree polynomial is
fitted through these points by means of a least squares fit.
In order to correct for the deflection under inherent load,
a line is drawn parallel to the fitted line and passing
through the origin. In this way it is observed that the

deflection under the inherent load is 5.5 um. Now, the
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compressive elastic modulus based upon the effective bearing
area and initial rubber thickness can be calculated. It is
equal to Ec = 148.81 bar. Dimensions of the elastomer

were obtained by a vertical travelling microscope taking the
average of a few readings. The accuracy of readings is *1Oum.
Fig. 19 shows the relationship between elastomer load per unit
area and axial strain from which the compressive elastic
modulus is calculated. This is an apparent value of elastic
modulus and it has to be corrected following the procedure given
by Lindley [307]. True elastic modulus of small strains [307]
is given by:

EC
B = (9)

14+2ks 2
e

for rubber bonded between two rigid flat plates.

In the above relationship k is a factor used in the
calculation of compression characteristics of elastomers and

it is given in fig. 20 . For hardness of 54.5 IRHD, k = 0.64.

The elastomer shape factor Se is defined as loaded area

divided by force-free areas, i.e. approximately:

g '= m D? LD
e 4 bt 4t

where D is the effective bearing diameter. Then:

148,81 3
5 Ti2 X 0,64 x el - bax
In developing relationship (9), it is assumed that the

rubber disc is bonded to two rigid flat plates or it adheres

toc them.
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Experimental results of compressive characteristics of
other elastomers are shown in fig. 21 and summarised in table
IVv-1 . It is seen that the ratio of elastic modulus to bulk
modulus is in each case smaller than 0.001 and Poisson's

ratio to four decimal places is at least 0.4999.

From equation (6) compressihility is given as

AV, 0P LB x A(1-2y)
v LA E k199

Based upon the mean pressure (load divided by the effective
bearing area), the compressibility is calculated in the last

column of tablelV-1for a typical bearing load of 322,.5N.

When compared to steel, it is seen that on average these
elastomers compress about 50 times more than steel, which is
more than one order of magnitude. However, absolute values
of compressibility of elastomers are of the order of 107°

which is very small indeed.

4.4 Estimated Errors and Comparison with Rightmire's
Results '

Errors in calculating elastic moduli of the elastomers
can be divided into:
1) errors of compressive characteristics

2) errors due to correction from compressive
modulus to true elastic modulus at small

strains.

In evaluating the compressive characteristics, loads,



- B85 =

1-0

{ elastomer load
per unit area |bar]

l

LY AR ]

!
|

[<l

0-2 0-4 0-6 0-8 axial strain(%l
ELASTOMER LOAD PER UNIT AREA AGAINST
AXIAL STRAIN FOR VARIQUS ELASTOMERS

E 1G24




AV, 103
[bax] | IRD | E/x10°] P Ll
Made or Dimensions E E|bar oisson's S
; = c . Campressibility
Elastamer cgl;fc:;lned [rm ;] [ber] raglo for typical bearity
load of 322.5N
I Natural Aston 133.82 dia 148.81 15.30 54.5 | 0.475 0.499921 0.008
x 12.28
II Natural Aston 126.90 dia 124.9 13.17 54.4 | 0.409 0.499932 0.008
x 12.46
III Natural Aston 102.00 dia 122.9 19.09 56.3 | O.593 0.499901 0.012
x 12.37
v Natural Aston 77.13 dia 105.8 25.91 56.1 | 0.084 0.499866 0.021
x 12.42
v Polyurethane | Sharples 134.00 dia 254.0 2415 60.5 | 0.201 0.499967 0.023
X 3:d1d
VI | Viton(hard) | Du Pont 131.20 dia 190.5 0.89 88.6 | 0.024 0.499996 0.007
3 2,18
VII | Viton(soft) | Du Pont 132.16 dia 95.9 0.74 55 0.039 0.499994 0.013
x 3.20

TABLE IV-1 TO SIMVARIZE; ELASTOMERS OF FIG. 21
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deflections and elastomer dimensions are measured. Errors

due to wrong load readings are negligible because load can

be read within * 0.05N and the minimum loads on elastomers

are more than 90N. Mitronic comparators have been calibrated
against high quality slip gauges and it is known that these
comparators show correct readings. Elastomer dimensions are
measured by a vertical traversing microscope, the accuracy of
which is *1Oum. This is not important for elastomer diameters,
but when measuring small thicknesses of about 2-3mm, the

errors in compressive modulus are of the order of 0.5%.

In order to estimate errors arising from the correction
of compressive elastomer characteristics to true elastic
moduli, it should be remembered that in developing relation-
ship (9) it has been assumed that the elastomer is bonded

between the two rigid flat plates.

In this experimental setup either the upper elastomer
surface is bonded to its metal backing or neither of the
surfaces is bonded. Results in table IV-lrefer to the case
when the upper elastomer surface is bonded to its backing °

plate.

In all cases the other elastomer surface touches the
lower test bearing surface. The elastomer surface and the
lower rigid test bearing surface can be cleaned with " inhibisol",
a cleaning solvent. In that case, it is consideredlthat there
should not be much sliding of these surfaces.

Measurement of any sliding
has not been attempted and it is considered to be negligible,
if test bearing surfaces (elastomer and steel) are cleaned

with inhibisol. Then relationship (9) completely applies to
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the situation. However, possible values of coefficient of

friction have been measured.

If there is perfect sliding between both elastomer sur-
faces and the flat plates, the modulus obtained under com-
pression test would be the true elastic modulus of the
elastomer. However, even if the elastomer is not bonded
to either of the surfaces and both elastomer surfaces are
lubricated, there will always be some friction between the

elastomer disc and flat plates.

A natural rubber disc made at Aston and of dimensions:
128.27mm dia x 12.82mm has been tested in compression under

two conditions:

1) Not bonded to either surface, cleaned with
inhibisol; compression modulus Ec=63.55 bar
obtained.

2) Not bonded, both surfaces lubricated by silicon
0il, compression modulus Ec=34'50 bar obtained.

In the first case the value is about a half of the
corresponding value of E, for a bearing which has one of the

surfaces bonded to a metal backing (see tablelIV-1).

In the second case the value of Ec approaches the true
value of elastic modulus E for natural rubber (see table IV-1),
although it does not quite reach there and it is roughly

about twice as large as this modulus.

In order to estimate coefficient of friction in both
cases, it was assumed that sliding friction of this rubber
disc on the inclined plane is a fair representation of the

situation. A 203.2mm dia (8in dia) optical inclinable (and
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rotary) table, manufactured by Optical Measuring Tools Ltd.,
was used and coefficients of friction based upon tangents of

angles of inclination were obtained.

In the first case when both elastomer and metal surface
are cleaned with inhibisol u=0.271 and in the second case
when the surfaces are lubricated by silicone o0il, u=0.010.
Both results represent average values of more than ten
readings in each case, and the repeatability of readings is

good.

These results confirm that compressive characteristics
of unbonded rubber, cleaned with inhibisol will not be the
same as characteristics of a rubber bonded with one surface.
True elastic modulus E of rubbers, and natural rubbers T
IT, III and IV in particular, should lie between values of E
obtained for these rubbers and the value of 34.5 bar obtained
under compression when using a good lubricant. It is not
possible to say where true values of E are, but the errors

can be large.

At the beginning of this chapter it has been shown
that even relatively large errors in bulk and elastic moduli
bring small errors to values of Poisson's ratio, i.e. to
compressibility characteristics of elastomers. Lowe [210 ]
has used results of Rightmire [305] and has shown that a linear
relationship exists between Poisson's ratio v and shear modulus
G of various elastomers. Results of Rightmire converted to
elastic modulus E are shown in Fig. 22 , The straight line
on this figure is a least squares fit of his experimental

points.
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Even though there is some uncertainty about true
elastic moduli, the author's results compare favourably with
those of Rightmire and they give some more data in the region

close to v=0.5.
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v DESIGN AND DESCRIPTION OF THE MAIN

EXPERIMENTAL APPARATUS

In order to assist in the design of the main experimental
tacility for compliant bearing tests, the available theories
or compliant lubrication are examined, Dowson's and Taylor's

theory [201°] and Castelli's et al theory [202.] to[205}.

Dowson's and Taylor's theory concerns compliant lubri-
cation with an incompressible fluid and pressure distribution
is given in analytic form. This theory has therefore been
modified as follows for compressible lubrication in order to
obtain design information for the rig. Because of its
simplicity, the theory was preferred to the theory of Castelli

et al in the initial stages of the project.

5.1 Modification of Dowson's and Taylor's Theory for

Compressible ILubrication

Reynolds Equation for gas lubrication assuming iso-
thermal conditions and steady-state operations (given by

equation (I.4), Appendix I) states:

From Dowson's and Taylor's theory [201] elastic compression
of the bearing liner is given by:
(p-p_) t
§ = —2— (2)
gl

where t 1is the elastomer thickness in the unstressed state

and
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gl = E (3)

1-2v2/ (1-v)

Film thickness is defined as:

h=_h, .8 = hy + ~B=2alt (4)

El
where h, is the film thickness without elastomer deformation,

Dimensionless film thickness is defined as:

. : (p=p )t
o E ho
=1+ L(P=l) (5)

where bearing parameter
Pyt

3

B Ry

L = (6)
wWith reference to Dowson's and Taylor's theory
[201], it will be assumed that the elastic deflection 6 can
be approximately calculated from the equation for pressure
distribution in rigid bearings with isoviscous compressible
fluids, From equation (I-8), Appendix Iy
£ 27
p2 = 1 3—2— gnR : (7)
AnRy-
From equation (5), film thickness can now be

expressed as

=14+ L [(1 L an)%... 1:| (8)

From (1), Reynolds Equation in dimensionless form

can be written as:
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d |3 d '
= [H3R i (p?)] = 0 (9)

which can be integrated once to give

Al AR

dR(P I = 1R
=~ (ler, (Pe1] (10)
== :

through equation (5), Here A 1is a constant of integration,

Expanding binominally

.._‘1.2:_5_ 2tp 1Y2
ar Pl =3 (1 w 3L(PLl) + 6L (P=l)"- ...) (11)

powers higher than unity can be neglected if the convergence

of successive terms exists, In that case

8 e o N
P %
=2 {1 % 3 - 3L[(1+-9-“:15Lna)’5]}
4nR
o
E P 2
_AQ#3L) _A x 3L et 1 %
B L . [1 e an] (12)

P
which can be directly integrated to give

20rR Pn2 1 3/,
pt= A(1+3L1£nR-—AL(P ) [l + zné] + B (13)

D anp

where B is another constant of integration,

Constants A and B are calculated from boundary

conditions shown in Fig, I1.%., Appendix I and they are
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2AL.4n R
B=l+"P—T_.l
P
¢ pEL ¥
A= P 24nR
Afn R+ L[3zn - e g 3“1)]
P P p 2.1) P
P

When L = O, these constants reduce to

BR=1
b M |
A:.._&__
in R
P

so that equation (13) reduces to equation (7) , the rigid
bearing pressure distribution, The bearing parameter L=0
when elastomer thickness t=0, i,e, when there is no elastomer
in the bearing,

When L # 0, equation (13) becomes

(szél){ﬁn R 3 T £(R)

B =l I R L i) (.3
P P
where
2%n R B~ 3/, \
£(R) = 32n R --;—Z:;E[(l + g: ;anRI 41]
P P L
(16)
£(R_) = 3n R ,:ijgljil (P *al)
P pTE,L=l P )

Tt has been shown in chapter IV that a typical

elastomer used in these bearings has the fellowing properties

20 bar

e
it

<
|

0,4999
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so that
E! = B AU 33800  hay
1-2v2/(1l=-v) 0,0006
Also take
ho = 15 um
t = 12500 um
p, = 1.0039 bar

so that the bearing parameter becomes

1,0039 5% 12500
33342 15

IL, =

= 0,025

From equation (11) comparison of the term in the
binomial expression,of power twowith the term of power unity

for P=4, glves

6L2 (_P"‘ l] 2
3L (P-1]

= 2L(P=1l) = 0,15 << 1

and this means that neglecting the terms with powers higher

than unity is justified,

Consider three typical pOrt pressures given in an
example in Appendix T, fig, I-2, For this example the

corresponding three dimensionless pOrt pressures become

P e o = 1.628644
p = Pp/Pa

IT " = 2.370590

III " = 3.371632

and the dimensionless pressure distribution against dimension-
less radius, equation (7), is drawn on fig, 23 for the case of

rigid bearings,
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Equation (15) is then used to draw the compliant
radial pressure distribution with the value of bearing
parameter I=0,025, For this small value of the bearing
parameter compliant pressure distribution almost coincides
with the rigid pressure distribution i.e, the maximum deviation
from the rigid pressure distribution is only 1,88%, so that
the pressure cannot be shown with the scale used to draw
£ 23% This is understandable when one considers that
Dowson's and Taylor's theory concerns axial displacements only
and radial displacements are assumed to be zero, As there are
no radial displacements for an almost incompressible elastomer
axial displacements are so small that the compliant pressure
distribution reduces to the rigid bearing pressure distribution,
The main experimental apparatus was then designed assuming this

rigid pressure distribution existed in the compliant bearing,

§ 2 Initial Main Rig Design

In order to obtain information about bearing perform-
ance, it is preferred to measure bearing supply pressure;
bearing film pressure at various bearing radial positions;
bearing flow rate, bearing film thickness at various radial
positions and distance between the bearing rigid surface and

the noﬁ-&eformed elastomer,

The compliant ‘thrust b.earing essentially consists of a
rigid member in which pressure transducers and displacement
probes are situated and through which air is admitted to the
bearing film and of a compliant member, It is convenient that
this rigid member has a diameter of 127 mm in order to accommns.
date the necessary transducers, It is also convenient that

this rigid member is the lower (stationary) bearing member
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so that transducers are stationary and that they are not

disturbed during bearing tests;
A ratio of port to outer radius is chosen to be

r 6,35
r

Rp = s = 3.5 = 0,1 (17)

(o]

which is probably smaller than for a conventional design for
bearings operating with oil [10l] | The reason for this choice
is to reduce the volume of the pocket (port), so that pneumatic
Hammer instability is avoided [109]_ 6 Presence of the port
implies orifice or capillary rather than inherent compensation,
because the port curtain area Zwrph is larger than the orifice
cross sectional area, Orifice compensation is chosen because
of smaller dimensions than the long capillary restrictor,
Although this does not matter very much when one bearing is
designed for research purposes, it may matter in practical
applications where size is a dominant factor in a restricted

environment |

Because of choking the operational range of port to

supply pressure is preferred to be,
0,528 <Pp/PS i § (18)

Fig, 2¢ follows from the computer programme described
in Appendix I and it represents dimensionless load against

port pressure for the case of port to outer radius ratio Rp=04.

For supply pressure ps=5,5 bar, orifice diameter d-=
0,330 mm and discharge coefficient Cj = 0,8 [107], and with
reference to section Al,5b of Appendix I, figures 25,26 and

2l are obtained;, It is seen that maximum stiffness at these
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conditions occur at h = 19 ym, At this film thickness

M=79x10"55-g

W= 1230 N \ (19)

=199 7'x 0%
m

0
|

It was the aim in the design that maximum stiffness
occurs at about 20 um, because at this film thickness the air
flow is not excessive, It has been estimated that the labora
tory air supply system is capable of achieving 25 x 10“123
for continuous running, Figure for the mass flow given by
equation (19) is almost three orders of magnitude smaller, If
the design value of film thickness for maximum stiffness is
much smaller than 20um, the surface roughness of both bearing
surfaces may appreciably influence the behaviour of the gas
£ilm and the bearing performance would not then be easily

predictable.

Schematic diagram of main apparatus design is shown
in fig 28. A slave journal bearing was incorporated in order
to control the alignment of the test bearing, Air is fed to
the journal housing at two admission planes, There are six
equispaced holes in each plane but to every second hole in the
upper plane air is admitted through a finely adjustable needle

valve,

Fig,29 shows a cross section of the bearing pad and
the layout of pressure transducers and displacement probes,
Provision has been made, d4f the need arises, to change the
adaptor containing the orifice restrictor at entry to the

bearing film, This adaptor is sealed from the back by an 1W0?
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ring so that there are no leaks via its threads,

Resistive type pressure transducers are selected
because of their versatility: they are suitable for operating
both at steady state and dynamic conditions, This means that
the same transducers could be used to investigate, at a later
date, the dynamic performance of compliant bearings, Through
the four bridge amplifiers pressure signals can be read on an

ultra violet recorder,

Displacements in the thrust bearing were to be
measured by three capacitance probes and a distance meter,
Position of the adaptors of these probes, which were to be
screwed from underneath are shown on fig  29. There were also
three other probes outside the thrust bearing area to be used

for alignment purposes,

The air pressurizing system with the instruments and
controls for measuring pressure and flow rate is shown in
fig, 30. Pressurized air is obtained from the compressor tank,
After a pressure regulator and two filters, one line branches
off to the slave journal bearing and the main line continues
through another pressure regulator and through flowmeters to
the test bearing, Just before the test bearing is reached
there is a branch off for the supply pressure gauge and mano-
meter, If the supply pressures are small they can be read on a
mercury manometer more accurately than on the sﬁpply pressure

gauge so either (or both] can be used,

5,3 Modifications to the Main Rig

Restrictor Change

The bearing of RP = 0,1 was made but the initial
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tests showed that it was highly unstable, even though care was
taken that port volume was kept to a minimum., After these
initial tests, the method of test-bearing compensation was
changed frém orifice to inherent in order that the bearing
became more stable [109]. To achieve this, another adaptor
was made and screwed onto the lower bearing plate. Bearing
in mind that load and stiffness of inherently compensated
bearings are lower than for orifice compensated bearingé,

the diameter of the hole in the middle of this adaptor was

made 0,5715, so that the "port" radius was now equal to:

rp = 0.28575mm (20)

This last dimension was measured on a ten times magnifying
projector in the metrology laboratory. With the outer bearing
radius measured to be:

Ly 64 .135mm

the ratio of these is:

o 028575

Reu S B3t

= 0.004455 (21)

as mentioned in Appendix I.

Modifications due to Difficulties in Assembling the Rig

The journal was initially made of aluminium but subse-

quently sleeved with steel to avoid assembly damage.

Assembly was facilitated by reducing the test bearing
upper plate in diameter to enable it to be passed through the

slave Jjournal housing.

However, three displacement probes now located beyond
the test bearing perimeter could not be used any more, but

mitronic comparators were readily introduced instead. These
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transducers work on a differential transformer principle.
They have magnetic bases and can conveniently be placed on the
journal housing and be locked in position by a magnetic field.
The sensing heads were placed on the top part of the journal
as shown on photograph VII. They check bearing alignment,
measure film thickness during rigid bearing tests and measure
displacement between the bearing rigid surface and the non-

deformed elastomer during compliant bearing tests.

On one of the reduced test bearings it was then possible
to incorporate a pressure tapping in the middle, as shown
below, in order to take readings of inlet bearing pressure

during tests.

NN
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Modifications in order to make the test bearing leakproof

In the thrust bearing area on the upper surface of the
lower bearing plate, there are tour holes tor the pressure
transducers, three holes for capacitance probes' adaptors and
one hole for the air supply adaptor. It is imperative to
ensure that there are no leaks before the air reaches the

outer bearing edge where e 64.135mm.

Threads in the capacitance probes' adaptors were prone
to leaks even though they were sealed from the back by a
solution cf silicone rubber. New adaptors were made to seal
against the lower bearing plate with "O" rings. These adaptors
had to be larger than the previous adaptors in order to make
the holes in the lower bearing plate free of previous threads.
Capacitance probes were sealed against the adaptors by perspex

sleeves with a tight fit.

Pressure transducers were sealed by fibre washers and the

air supply adaptor by an "O" ring.

There should be no leaks anywhere in the supply line after

the flowmeters see fig. 30.

Leaks in the thrust bearing area were tested by intro-
ducing a soap solution or a lighter flame to places of suspected
leaks. These simple methods can be used also in other places

of the supply line.

Another method of testing for leaks in the air pressurizing
system is by a chamber designed to calibrate the pressure
transducers, see photograph VIII. This method was used before

a test was started with the rig dismantled.
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With the pressure chamber in position bolted to the
lower bearing plate and with the chamber vent valve closed,
there should be no flow through the flowmeters. If the
spherical float of the most sensitive flowmeter is resting
on its seat, i.e. if it is in the lowest possible position,
this is an indication that there are neither leaks in the
supply line after the flowmeters nor in the thrust bearing

area.

This pressure chamber was designed for calibr ating
pressure trasnducers in position. Previously it was attempted
to calibrate each transducer in an adaptor outside the main
rig by bringing a known air pressure tc it. However it was
noticed that galvanometer deflections shown on the ultra
violet recorder depend upon the tightness of the transducers
in their adaptors. The pressure chamber itself is sealed with
an "0" ringagainst the bearing lower plate outside the test

bearing area.

Similarly to pressure transducers, capacitance probes
are best calibrated in their respective positions. This can
be achieved with shims or feeler gauges of known thickness.
Also a "bridge" of slip gauges as shown in sketch below was

used.

lower bearing
surface

7 \\ . ‘
7// : & known distance

: ——— _to be compared

Gy //777 1 with probe read-

probe ing(for calibra -
’; y ting purposes)
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The possibility of unknown leaks is reduced if the
instrumentation in the test bearing area is not frequently
disturbed. Performing calibration of this instrumentation

in position prevents their unnecessary disturbance.

Ceneral Examination of the Main Rig

Because of the small size of the clearances in the
thrust bearing during experiments, it is essential that all
dimensions are as near as possible to those specified. It is
also necessary to have test bearing surfaces as flat as
possible so that measured performance can be correlated to a

theoretical prediction.

For example, it is important that the journal housing is
placed vertically on the bottom plate, so that when the
journal is parallel to the journal housing, the surfaces of the
thrust bearing are also parallel to each other. Therefore it
was made sure that the centrelines of the journal housing and
of the journal are as near to each other as possible. After
rectifying the rig in the University workshops, these two
centrelines were measured to be 0,038mm apart. This measure-
ment is done with the journal and the lower plate bolted
together and placed in a lathe chuck, i.e. the centrelines
were in a horizontal pcsition. In this position of the
journal and the lower plate, the centrelines would tend
naturally to the maximum distance between them and during

bearing tests this distance can be smaller.

The journal housing was checked for ovality in three
positions along its bore, and it was found that in the worst
case it was 0.0032mm out. This measurement was done in the

Metrology Laboratory. The journal housing is seen on
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photograph IX. The journal with a compliant bearing screwed
on is shown on the same photograph upside down from its

normal position during bearing tests.

Displacement probes should be as level as possible with
the lower thrust bearing surface, in order to measure true
displacements. Pressure transducers can be a few micrometres
below this surface, so that they are not damaged during any

operation to make this surface flat.

With the instrumentation and the air supply adaptor in
position, the lower test bearing surface was surface ground.
This has been done after consulting the manufacturer of the
displacement probes for approval. Because of the size of the
lower bearing plate, the surface grinding had to be done
outside the University workshops, where a surface grinder

large enough for this operation could be found.

By checking the probes after grinding with an AVO multi-
meter, it was found that they were shorting . This was recti-
fied by cleaning carefully the probes' guard rings of any steel
particles embedded in them after the grinding operation. The
cleaning was done by means of a sharp sewing needle under a ten

times magnifying projector.

After this, the bearing lower plate was checked for

flatness by Tolylin instrument, see photograph X.

Talylin uses a stylus to trace the surface irregularities.
The traversing speed ot the stylus is determined by the
horizontal magnification factor used on the tracing paper. For
the minimum horizontal factor of two, the speed is smallest.

The movement of the stylus is converted by means of an electro-
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magnetic transducer intb electric signals.

As stated earlier, bearing lift-off is measured by
mitronic comparators. The pneumatic film thickness in the
case of rigid bearings is larger than this lift-off for an
equivalent surface roughness. This surface roughness can

be estimated from a Talylin instrument trace.

The checking of the lower test bearing surface on the
Tulyliﬁ was done in five or six directions and across all
adaptors and probes as shown on photograph X. The average
flatness of this bearing surface is estimated to be 3.2 um.
The average flatness of the rigid top bearing surface is

estimated to be 1.5 um as shown below:

1-5um

O

The pneumatic film thickness h could then approximately

be equal to

N 2ot o Leo
hW=h +=22 +=3 hy + 2.35 um (21)

' Flow measurements will show that the film thickness
derived from the measured flow rate is larger than the
measured film. For the rigid bearing experiments this dis-

crepancy is about 2.5 um.
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In the case of an elastic bearing, the top bearing surface
has to be sprayed by some conductive paint if the film profile
is to be measured by conductive probes, because elastomers

are generally non-conductive.

Elastomers need grinding, with the help of chalk dust
before spraying. After sprayving with a type of silver paint,
grinding or lapping is necessary for two reasons:

a) to achieve uniform thickness of the

silver paint

b) to achieve flatness comparable to
the elastomer before spraying.

Generally, flatness of rubbers is of the order of 2-4 um.

Flg. 31 shows two traverses of the Tolylin across the
lower thrust bearing surface. Sharp peaks should be ignored
because of the inertia of the stylus even at its lowest speed
when some probes or adaptors are traversed. Horizontal
magnification is two, and on the vertical scale one division
represents 2.5 uym. Flatness of 3.2 um was estimated after
averaging several traverses along the lower thrust bearing
surface. Flatness of 1.5 um was similarly obtained for the

top rigid thrust bearing surface.

After these modifications, positions of the displace-
ment probes and pressuré transducers were measured in the
Production Engineering Department and they are shown in Fig.32,
Photograph XI represents the top view of the lower bearing

surtace.
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VI RIGID BEARING EXPERIMENTS

Bearing load, mass flow and stiffness were initially
predicted for design purposes in Chapter V . The bearing
performance will not be the same as the predicted performance
primarilf due to modifications of the rig such as the restrictor

change, but also because of the following.

1) In the initial design, bearing surfaces were
represented by two geometric planes. TIn this chapter it is
shown that this simple representation is nct adequate if the
two surfaces are as near to each other as the two thrust bearing

surfaces in the test bearing.

2) The value of discharge coefficient used in predicting

performance is only approximate.

This chapter gives the rigid bearing performance
after taking into account
the complex effects of the geometric texture of bearing surfaces,
Values of experimentally determined discharge coefficient are

also presented,

Either bearing load or supply pressure or film thickness
can be kept constant in turn during rigid bearing tests whilst
the other two quantities are varied, All three types of

experiments were performed for rigid bearings,

For rigid bearings, keeping the bearing lcad mnstant
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means that pressure at the entrance to the bearing

film is kept constant, Coefficients of discharge were determined
experimentally from these tests, Film pressures were measured
and flow versus film thickness relationship was also deduced
from these tests, However relationships of load versus film
thickness and hence stiffness versus film thickness could not

be established by this type of tests,

Experiments where supply pressure is kept constant and
where load is varied are useful in determining bearing perfor.
mance, Here"relationships for mass flow. load and stiffness
versus film thickness can be established both in dimensional

and dimensionless form,

Experiments where film thickness is kept constant and
where both load and supply pressure are varied K serve as a useful
check for the bearing performance determined by the first two

types of tests,

6.1 Discrepancies between measured film thicknesses and

film thicknesses derived from flow measurements

Talylin measurements of the bearing surfaces have
revealed that the average flatness of the lower bearing suriace
is about 3,2 Um and the éverage flatness of the top bearing

surface is about 1.5 um,

The Talylin instrument gives a picture of the surface
texture in two dimensions, i.e, it gives a profile of the
surface, The whole group of instruments which mechanically
analyse surfaces by traversing styluses over them are sometimes
called profilometers

. These instruments usually trace

a small representative sample of the surface, Some of these
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instruments are based upon a very small sample which may not

be representative of the whole area studied, The Talylin
jnstrument does not suffer from this defect. It is capable

of traversing 100 mm, of the total of about 130 mm i. e. about 80%
of the bearing diameter, At the same time this instrument
achieves a high magnification in the vertical direction thus
giving an outstanding capacity for studying the surface geometry

of these bearings.

The average flatness of seven measurements in various
directions over the lower bearing surface gives a value of
3.2 um, The flatness is here defined as the difference between

the highest peak and the lowest valley on a given Talylin trace.

The average flatness of eight measurements for a par-

ticular top bearing surface is obtained as 1.45 um,

If a simple model for the pneumatic film is assumed
such that the pneumatic film h is equal to the measured film

plus a half of both flatnesses, then

bl v e a3, 2 ¥ 1,45
2

= 11m + 2,323 1

so that the surface roughness effects defined in this way are

equal to

SP = 2.325 um (1)

The value of the surface roughness effects from this
simple model is now compared with the values from flow measure

ments,



= 12} =

Equation (I-13) of Appendix I shows that for a given
load (i.e. given film entry pressure), mass flow is proportional
to the cube of film thickness, i.e. f£ilm thickness: | |

l/3
hoo M (2)

fig. 33 shows a plot of measured films versus films
derived from flow measurements, keeping the bearing load con-
stant. Experiments with three different loads were performed.
A least squares fit through the points of all three loads gives
a line parallel to a 45° line drawn from the origin as shown
in Fig., 33 . The two lines are 2,5 um apart. Similar
graphs for porous aerostatic thrust bearings were obtained by
Taylor and Lewis[142]. Measured flow versus measured films
during experiments is shown in Fig. 34, It is seen that for
a given load and a given film, measured flow rate is higher
than the theoretical flow rate, If 2.5 um is added to every
measured film, Fig. 35 is obtained. Here the experimental

points agree much better with the theory lines.

The difference between measured and derived film thick-
nesses was found to be consistent throughout the rigid bearing

tests and it is equal to:

SF = 2.5 0.5 um (3)

The value of 2.5 um with its given tolerénce represents
the equivalent surface roughness effects of the rigid bearingé.
This means that all measured films in the rigid bearing experi-
ments should be corrected by 2.5 um, i.e. the real film thick~
ness

h=h_ + SF (4)
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Measured £ilm h_[um] 20.9 26.7 28.6 31.2 32.4 34.5 37.7
Measured absolute supply | y 91925 | 2.08025 | 2.17800 | 2.36200 | 2.47700 | 2.71275| 3.16126
oressure p_[bar]
Mossuzed st Tlow xate 21 9 e 13 ol Heiie) Siesio i fan, SRR iRler 105,52
M[nglo #
Film derived fram
peemed Fiow | Byl 24.06 29.51 31.33 33.24 35.52 37.01 39.94
Mass flow rate calcu- i
lated from measured 4.804 [10.015 {12.309 |15.981 [17.896 [21.607 | 28,194
film [== x10 °]
.5
Corrected film ) :
h=}'_rn+2.5 [lm:] 23.4 29.2 31.1 33-7 34.9 3!.0 40.2
Mass flow calculated
from corrected film _ 6.742 |13.100 |15.827 |20.138 |22.367 [26.652 | 34.183
[—SﬂXlO ]
Port/sucply preasyre 0.86096 | 0.79433 | 0.75868 | 0.69958 | 0.66710 | 0.60912| 0.52270
ratio P /P (-]
S

Discharge coefficient
Cpl-] calculated from 0.617 0.637 0.654 0.663 0.661 0.659 0.648

corrected film h

TABLE VI-1

RIGID EXPERIMENTS KEEPING LOAD CONSTANT

W = 0.07144[-]

W = 92.67 [N] (MINIMUM POSSIELE LOAD), B 1.62864[-]

SlGET



TABLE VI-2 (FOLLOWING PAGE)

RIGID EXPERIMENTS KEEPING

LOAD CONSTANT

W = 237.52([N]
P, = 2.37053 [-]
W= 0,18309 [-]



corrected film h

Measured £ilm h_[um] 16.8 19.2 21.2 222 23.6 24,5 27.2 30.3
Heasured sheoliie epply 2.85650| 3.04625| 3.23600| 3.45450 3.68450| 3.90875| 4.61600| 5.45550
pressure p_[bar]

Measured mass flow rate

M ]‘_li‘gxlo"“] 10.89 |15.81  }18.99 }23.32 |25.79 129.99 |37.65 |53.39
Film derjved from measured

£1ow (110 €] 19.49 « 122,07 133,46 . [25.12° '|25.98.. ]27.32 [29.47 [33.11
Mass tlow rate calculated_

‘el aultuai e [-‘Sixlo ‘] 6.974 |10.411 |14.015 |16.093 [19.334 |21.631 |29.600 |40.917
Corrected film h=h +2.5[im] 19.3 21,7 23,7 24.7 26.1 27.0 29.7 32.8
Mass flow calculated from

A sl o [_ggxlo ‘] 10.574 |15.030 [19.581 {22.165 [26.152 [28.951 |38.534 |51.904
}P,OZ“/ SLEEﬁ)lY PREGRUED LS ¢ 0.84012| 0.78779] 0.74160| 0.69469| 0.65133| 0.61396] 0.51989 0.43989
P8

Discharge coefticient C,[-]

calculated fram 0.466 | 0.513 | 0.552 | 0.540 | 0.555 | 0.554 | 0.568 | 0.597
neasured film hm i

Discharge coefficient Cj[-] _ :

calculated fram 0.615 | 0.656 | 0.6%0 | 0.669 | 0.679 | 0.673 | 0.678 | 0.699

s GCL =



corrected £ilm h

Measured f£ilm h [m]  [14.1 15.3 16.5 7.5 18.3 19.2 22.2
Measured absolute sUpPly 4 5eany | 4.31700 | 4.60450 | 4.89775 | 5.19100 | 5.58200 | 6.90450
pressure PSLbar
Measured mass flow
rate N[ 2510 ¢ 14,86 18.56 22.54 27.33 28.94 34,49 48.49
Film derived fram .
neasured £low hy | 16.51 17.78 18.97 20.23 20.62 21.86 24.49
Mass flow rate
calculated fraom ey 9.254 11.824 14.830 17.693 20.232 23.366 36.120
measunamr&.tihnﬁ{?ﬂ@
Corrected film
h=h +2.5 [ym] 16.6 17.8 19.0 20.0 20.8 21.7 24.7
Mass flow calculated
if'ic,gm cg%']rected film 15.101 18.618 22,644 26,410 29,708 33.734 49,748
—x10
Port/supply pressure | o gages | 0,78953 | 0.74023 | 0.69591 | 0.65659 | 0.61060| 0.49365
ratio P_/P_ -]
Discharge coefficient

[-] calculated tram| 0.514 0.515 0.524 0.529 0.531 0.531 0.565
measured film hm
Discharge coefficient

[-] calculated fram | 0.712 0.697 0.694 0.692 0.686 0.678 0.700

TABLE VI-3

RIGID EXPERIMENTS KEEPING LOAD CONSTANT

W = 473.96(N)} P = 3.37163[=], W = 0.36536(-]

S 5 S
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where the surface roughness effects SF are given by equation

(3).

It is seen that the simple model proposed gives values
for surface roughness somewhat lower than that obtained by
flow measurements, This is attributed not only to the stylus
diameter, but also to the complex, tri-dimensional nature of
the bearing surfaces and to difficulties in predicting the

behaviour of real surfaces from profilometry measurements.

Data to plot figures 33, 34 and 35 is given in

tables VI-1 , V-2 and VI-3

6.2 Experiments to determine the discharge coefficient

of the bearing restrictor

For the bearing performance to be predicted accurately,
it was necessary to know how the equivalent discharge coeffi-
cient of the inherently compensated bearings varies with the

supply conditions.

Generally, coefficients of discharge for orifices are
dependent upon the Reynolds number [17] . The Reynolds number
is determined by the flow rate and hence the pressure drop
across the orifice. If the bearing load is kept constant, i.e,.
the entrance pressure to the bearing film is kept constant,
coefficients of discharge are then determined by the supply
conditions. Similar reasoning was followed to obtain the
equivalent discharge coefficient for inherent compensation as,
for a constant load, the entrance pressure toc the bearing film

was kept constant.

Thus the equivalent discharge coefficient is best
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determined experimentally, by varying the supply pressure. The
same three loads used previously for investigating surface

roughness effects, section 6.1 , are chosen

The equivalent discharge coefficient is proportional
to the square of film thickness and is inversely proportional
to a function of the ratio of film entry pressure to supply
pressure as shown by equation (I-64), Appendix I, i.e.

h2

C o (5)
D £ (PP/PS)

Discharage coefficients can be calculated from measured
film thicknesses, measured supply pressures and measured loads.
. Then they can be plotted against film entry/supply pressure
ratios for different loads. Fig. 36 1is such a plot for three

different loads.

It is clear from fig. 36 that the discharge coefficients
of the constant load experiments vary.little with the film
entry/supply pressure ratio., The average value of these dis-

charge coefficients is about 0.54.

However,'tne real or pneumatic film thickness is larger
than the measured film by SF, the surface roughness. From

flow measurements it has been found that SF is about 2.5 [um].

When the corrected value of film thickness is used in
equation (5), then larger discharge coefticients are obtained,

see f£ig. 37 ..

The discharge coefficient CD was determined experimentally

for the whole range of rigid bearing experiments, for various
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loads and various supply.pressures. It was found that CD is
almost constant for varying film entry/supply pressure ratio
as shown in fig. I-5 , Appendix I and fig. 37. The average

value for CD for the many rigid bearing experiments is obtained

as:

e = 0,68 (6)

During the rigid experiments C_ varied between 0.65 and 0.71.

D

It is necessary to use this empirical average value
of the coefficient of discharge for inherent compensation so
that theoretical load-film thickness and stiffness film
thickness curves can be obtained and compared with the

experimental data.

6.3 Film Pressure Measurements

There are four pressure transducers spaced at different
radial positions in the bearing area. Their function is to
check experimentally film pressures predicted by the theory.
They are sensitive to bearing tilt and are an additional means

of ensuring that the thrust bearing surfaces are parallel.

One of the tests for pressure measurements was done
with five ditferent loads and for each load the supply pressure
was varied. At every different supply pressure film pressures
were monitored in order to confirm that their values are
independent of the supply pressure in the case of rigid bearings.
The results of this experiment are given in table VI-4, From
this table it follows that errors based upon both minimum and

maximum absolute pressures in the bearing film at a given radial

position (for different supply pressures) are less than 1.5% .
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MEASURED FILM PRESSURES (bars)

R 0.353 0.450 0,599 0.787
W=92,67N
1 1.151y 1.1189 1.0819 1.036y
av. 1:1519 1.1189 1.0819 1,0369
w=152,49
1 1.2419 1,1919 1.1369 1.0589
2 1.2459 1.1969 1,1389 1.0629
3. 1.2449 1,1969 1.,1389 1.0619
4 1.2469 1.2009 1.1419 1.0629
5 1.2479 1.2009 1.1419 1.,0639
av. 1,2455 1.1975 1.1397 1.0621
W=237.52N
A 1.3719 1.2919 v 2099 1..0999
2 1,3789 1.2999 12119 15,0919
3 1.3839 1.3079 221l 1.0919
4 1.3839 1.3099 1.2139 1.0949
av, 1.3796 1.3024 1,2119 1.0946
w=337.05N
1 1.5189 1.4149 1.3019 1.1389
1.5299 1.4219 1.3019 1.1349
11,5339 1,4319 1.3049 1:.1319
av., 1.5276 1.4229 1.3029 1,1352
W=473,66N
1 1.7339 L8739 1.4269 1.2099
2 73339 1.5989 1.4299 1.,1939
3 L1339 1.5869 1.4319 L1939
4 1.7419 1.6039 1.4269 1.1939
av., 1.7358 1:5909 1.4289 1.1974

TABLE VI-4
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Within experimental scatter it seems reasonable to accept the

theoretical prediction that film pressure does not depend upon
supply pressure in the case of rigid bearing experiments with

constant loads. Therefore average values of film pressures

at different radial positions arnd for various supply pressures
were éompared with the theoretical pressures in fig, 38 . A

good agreement is obtained.

From Appendix I mass flow through the bearing film

can be expressed as:

mh? dp
¥ GnRaTa RE dr

M=

Y mh® dp
= TEnr_T, PR =% (7)

It is now possible to fit polynomials of various powers
to the experimental pressure points and obtain values of (pR%%)
exXperimentally. Table VI-5 gives results for powers 2, 3 and
4 and compares them with theory. Errors for each power are
also presented. It is seen that the errors are smallest for

the power n = 2,

Equation (7) is valid not only for rigid bearings but
also for the compliant case and it establishes the pattern of
analysing compliant bearings. If values of pr%%) and M are
obtained experimentally then film thickness h can be calculated

at various radial positions.

6.4 Experiments keeping the measured Film Thickness Constant

The purpose of these experiments is to see if viscous
flow predominates throughout the range of film thicknesses

investigated, so that the viscous flow theory developed in
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R, | (eRED) op | theor-exp x100 .(pﬁgg)exp LRSS x100|  (pRED) 3 theor- 100
ther

P, [par] [bar“] [bar?] [¢] [bar?] [ %] [bar] [ 2]

n=2 n=2 n=3 n=.3.. n=4 =4
1.630 0.15268 0.14881 2.53 0.14662 3.97 0.13584 11.03
1.965 0.26391 0.25673 2872 0.24710 6.37 0.22355 15,29
2.375 0.42771 0.41822 2,22 0.41043 4.04 0.37718 11.81
2.825 0.64437 0.61985 3.81 0.60264 6.48 0.53335 17.23
3.385 0.96556 0.93311 3.36 0.91985 4.73 0.85042 11.93

TABLE VI-5

=UOET =
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Appendix I can be used. In order to discuss this point it is

necessary to introduce Reynolds number to the argument.,

Reynolds number is usually defined as:

AR Ry L
Re mean

n

where Ve &ty is the mean flow velocity and £ is a length that
characterises the flow. It is customary to téke film thickness
h as this characteristic length in thrust bearing analysis
[103] . Substituting the mean velocity by (volumetric flow Q

divided by the flow area A = 27rh), the Reynolds number becomes:

_ poh _ Mn
St D An
oy M
~ 2mrn (8)

These experiments were performed at three measured
film thicknesses 10, 20 and 30 um as shown in table VI-6 , TLoad

and supply pressures were varied during these tests.

The Reynolds numbers defined by equation (8) are also
included in table VI-6 . These Reynolds numbers were calculated
for r(=rp) = 0.28575mm because the Reynolds numbers are highest

at the smallest radius of the film.

In reference [143] it is stated that flow where inertia
forces are predominant in radial thrust bearingé occurs at a
Reynolds number based on film thickness Re > 1900, and Re=1000
is usually used for design purposes. Comolet [1d3] recommends
this design value to be 500. It may therefore be expected
that a local inertial flow may occur near the entry to the

test bearing for large loads, i.e. for large mass flow rates.
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Reynolds
Measurec% ] loeid] mass flow derived nunber
film h_|[um W[N -6k tilm (at r=r )
M
Bl o7 | b o Re[-] P
10 337.05 4,172 12,37 128.3
10 473.96 6,237 12.36 191.8
20 152,49 10,448 22,62 321.2
20 237.52 17,477 22.85 537.4
20 337.05 26,091 22.79 802.2
20 473,96 39.457 22.86 12132
30 152,49 30.961 32.49 951.9
30 237.52 49,319 32.29 1516.4
30 337.05 76.226 32,58 2343,7

TABLE VI-6
- ambient conditions p_ = 1.0019|bar|
T
.}
—- Reynolds number Re calculated for radius rP = 0.286mm,

294.2 ||

i.e. at entry to the bearing film,
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However the Reynolds number drops rapidly as the radius increases.

For example, at r=1lmm the last Reynolds number in Table VI-6

at maximum mass flow becomes Re=669.,7.

These tests show that the viscous flow theory developed
in Appendix I is adequate for the normal working range for rigid

bearing analysis.

Films derived from mass flow measurements are about
2.5 um greater than the measured films, which is in line with
the constant load tests and constant supply pressure tests.
Therefore, apart from showing that the viscous flow theory is
adequate, these tests are a useful check of other types of

bearing tests.

6.5 Experiments keeping the supply pressure constant and

varving the load

. Ambient conditions for these rigid bearing experiments

were

g
Il

4 = 1.0056[bar]
(9)

293.2 [°x]

=]
I

Surface roughness effects were very similar to those
established when the load and film thickness were kept constant.
Measured films versus films derived from flow measurements are

shown on fig. 39, On average the difference is 2.5 [um].

Dimensionless mass flow versus dimensionless f£ilm thick-
ness for four different supply pressures is shown in fig. 40 ,
The four supply .Pressures were chosen so as to cover the range

of supply pressures encountered in the rigid bearing experiments,
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Theoretical lines in fig. 40 have taken into account the

experimentally obtained value of discharge coefficient C_=0.68,

D
By equating the mass flow through the orifice and through the
bearing, equation I-64 , Appendix I, and taking CD=O.68 a
theoretical film can be obtained for a given film entry pressure
(i.e. given load) and a given supply pressure. With this
theoretical film, theoretical mass flow through the bearing is

obtained from equation I-13 , Appendix I, and this is how the

theory lines on fig., 40 are established.

Both dimensionless load and dimensionless stiffness
versus dimensionless film thickness are shown in figures 4
and 42 réspectively. Theory lines on these figures similarly
as for the flow rates have taken into account the experimentally

obtained value of discharge coefficient CD=0.68.

Bearing performance in dimensional form gives more
feeling about the orders of magnitude in question, hence figures
L3 , 44 and 45 are presented for flow, load and stiffness

versus film thickness with dimensions of SI units.

From figures 42 and 45 it is seen that at low values
of film thickness the agreement between theory and experiment
is not good. When film thickness is low the ratio of £ilm
entry pressure to supply pressure approaches unity. Fig. 45 shows
that a departure of coefficient of discharge from its mean value

C.=0.68 is most pronounced in this region. It is because of C

D D

that experiments and theory do not agree well at low values of

film thickness, figures 42 and 45 .

Better agreement could have been obtained by taking into

account the variation of CD with film entry pressure and calcu-

lating theoretical stiffness from equation I-69 , Appendix I,



- 143 -

Wi,

0-81

07 1

067

051
0]
OB
02

01 1

pg [barl
Xp 2882
— theory Sl L6E
A L1406
@ 5537/

p=5 537 lbar]

IDS:L'“»E) [bﬂr]

pP=3-456 [bar]
\\WE
pS=2-892 [(bar]
20 40 60 80 100 {0~

DIMENSIONLESS LOAD V.
DIMENSIONLESS FILM THICKNESS

CONSTANT SUPPLY PRESSURE TESTS

FIG 41




- 144 -

: Sl-] plbar]
x 2-892
© 3-456
e A 4146
® 5.537
8 -
theory
7 L]
Ps= 9537 [bar)
6- _Pg=4146  Ibar]
5_
‘f'__
3..
2-
1 =
Ps =2'892 [bar]

20 40 60 80 100 Hpo)

DIMENSIONLESS STIFFNESS V.

DIMENSIONLESS FILM THICKNESS

CONSTANT SUPPLY PRESSURE TesTs |FIG 42




= 145 -

pslbar]
x 2-892

0 3:456
A L1146
® 57037

——theory

M[10 °ka/s )
}

60 -

404

p.=3-456 [bar]

20-
p.=2:892 Ibar]

107 o a0y kL0 250 Cpdo
FLOW V. FILM THICKNESS
CONSTANT SUPPLY PRESSURE TESTS

FIG 43




= 146 ~

wing |

800 ¢

600 -

400 1

200 1

Q@

DS[bClr]

x 2:892
——theory o 3-456
A 4146

5537

Pe7 953

)

i

@

il

7 |barl

= 4146 [bar]

= 3456 [bad

p =2892 [bar]

10 20 30 40

LOAD V. FILM THICKNESS

h [pm]

CONSTANT SUPPLY PRESSURE TESTS

FIG 44




- 147 -

N

l
140°N/m] pslbar]
x 2:-892
——theory o 3:456
i & A 4146
® 5537
a0 Pe=5537 [bar]
p=4146  [bar]
20
p5:3-456 {bar]
10 A
/PS:2‘892 [bar]
oA

1b Zb 3b (,b I hium)

STIFFNESS V. FILM
CONSTANT SUPPLY PRESSURE TESTS FIG 45




P, = 2.87686 [-]

Measured film h [im]| 36.0 33.0 31.0 25.0 23.5 19,2 18.1 12.1 9.6 3.9
Measured load W [N] | 92.67 | 110.03 | 124.74 167.01 | 181.72 | 224.18 |238.89 | 281.35 |2%0.18 [332.84
: -
| Measireq pans Show {5l 29.22 26.53 20,13 18.21 14.23 13.50 5.52 3.05 | 0.45
| rate M[10 -—g} |
Corrected f£ilm
bty 2.5 [ 85 | 355 33.5 27.5 26.0 21.7 2.6 14.6 12,1 6.4
.{ Film derived
from measured flow | 38.71 35.82 33.16 27.21 25,51 21.73 20.85 14.54 11.79 | 5.93
hd Lu.':ﬂ .
Dimensionless port { ! >
prescure P {_ﬁ” 1.62695 1.72554i 1.80663| 2.02724| 2.10001] 2.30531 | 2.37388| 2.56614 | 2.60521 2.79023
: ; 'i
s A ﬁfrﬁ“‘ss“mi 0.56553] 0.59984| 0.62799| 0.70467| 0©.73028| 0.80133 | 0.82516| 0.89199 | 0.90558 0.96989
ratlio PP/PS _-J i i
Dimensionless _ _ |  9g369! 1.19128| 1.37725| 1.95063| 2.11729| 2.52645 | 2.57957| 2.92534 | 3.25284 2.51625
stiffness 5[-] 1-
|
Stiffnees S[10% %] | 4.382 5.417 6.263 8.870 9.628 11.489 11,731 13.303 14,792 | 11.443
e ‘.‘;;i?f]less | 0.07132] 0.08468] 0.0900| 0.12852| 0.13984| 0.17252 | 0.18384 [ 0.21652 | 0.2233] 0.25614
Dimensionless , 5
o | 4.09 3.90 3.54 2.69 2.43 1.%0 1.80 0.74 0.41 | 0.06
| Dimensicnless |
| fim B[107%] | 134.7 w2 | 1T 96.2 51.0 75.9 72:1 . |s1a ‘32,3 | 22.4
TABLE VI=7 RIGID EXPERIMENTS KEEPING SUPPLY PRESSURE CONSTANT

- 8YT -



Measured film h_ [um] 5 13.5 16.3 18.2 20.1 23 25 28 34,8
Measured load W [N] 469.44 375.30 332.84 303.42 275.66 233.20 211.33 181.91 124,74
Measured mass _ K ;
flow rate M[10 © -g-] 1.29 10.82 15.24 18.47 20.45 23.73 27.52 30.38 38.31
Corrected film c ; _
h = h +2.5 [um] 7.5 16.0 18.8 20.7 22.6 25.5 27.5 30.5 37.3
Film derived from
neasured flow h[um] 7.33 16.27 19.12 21,13 22.68 25.39 27.68 30.24 37.48
Dimensionless port ]
pressure ?_ & 3.34891 | 2.96872 | 2.79023 | 2.66325| 2.54071| 2.34735| 2.24441| 2.10184 | 1.80663
E?ﬁ%su?gl%"resifﬁm 0.97430 | 0.86369 | 0.8117/| 0.77483| 0.73918| 0.68292| 0.65297 | 0.61149 | 0.52561
= S
A 0.24162 | 4,02871 | 3.91500| 3.70181| 3.42035| 2.92867| 2.60928| 2.17401 | 1.36210
stiffness S [-]
Stiffness S [10'3%] 1.099 18.320 17.803 16.834 15.554 13.318 11.866 9.886 6.194
on{; d@ ‘\iic[’ffess 0.36126 | 0.28882 | 0.25614| 0.23350| 0.21214| 0.17946| 0.16263| 0.13999 | 0.09600
Dimensicnless flow

F[107] 0.17 1.44 2.03 2.32 2.73 3.16 3.67 4.05 5.11
Dimensionless
film  H[10 7] 26.2 56.0 65.8 72.4 79.1 89.2 96.2 106.7 130.5

TABLE VI-8 RIGID EXPERIMENTS KEEPING SUPPLY PRESSURE CONSTANT

P_ = 3.43723 [-]
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Measured film h  [un] 25,2 21.8 1919 18.3 16.5 13.5 6.6
Measured load W [N] 252.33 309.50 351.96 397.76 440.22 516.17 652.73
Measured mass il
flow rate M [107° ] 32.18 27.91 27.23 24.63 20.22 15.27 3.91
Corrected film X \
hm b+ 26 T 27.7 24.3 22,4 20.8 19.0 16.0 9.1
Film derived tram s :
reasured low hyfym] 27.28 24.06 22.71 20.92 18.81 16.06 9.25
Dimensionless port 2.43545| 2.68982| 2.8/121| 3.06120 | 3.23288| 3.53100| 4.04538
pressure Pp[—]
Port/supply pressure 0.59064 | 0.65233| 0.69632| 0.74240 | 0.78403) 0.85633| 0.38108
ratio PD/PS (-]
birensionless 3.20437| 4.14174| 4.658%0 | 5.04723 | 5.37277| 5.44693| 0.19308
stiffness S [—]

"F",:'r'\g;c-r-
St;'[:lagdgj 14.981 | 18.83¢ | 21.186 | 22.952 | 24.433 | 24.770 0.878

m

Dmemio“lesswlc[’f‘f* 0.19418 | 0.23818| 0.27085 | 0.30610 | 0.33878| 0.35718| 0.50231
Dimensionless
e B e 4.29 3.73 3.64 3.28 2.70 2.04 0.52
Dimensionless 96.9 ¥5.0 78.4 72.8 65.5 56.0 31.8

film H[10 3]

TABLE VI-S

RIGID EXPERIMENTS KEEPING SUPPLY PRESSURE CONSTANT

P_ = 4.12340 [-]
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Measured £ilm h_ [un] 9.8 12.8 14.9 15.7 17.4 18.3 20.4 73.6
Measured load W [N] 930.95 795.52 696,17 653. 71 574,38 530.15 485.82 397.56
Measured mass

- 9
flow Tate M [107° k%] 13.93 23.20 30.58 51,38 32.70 35.63 42,52 49,02
Corrected f£ilm
heht 2.5[um) 32.3 15.3 17.4 18.2 19.9 20.8 22.9 2651
Film derived from 2
reasured £1ow b [um] 12.12 15.39 17.87 18.51 19.81 21.07 23.16 26.32
Dimensionless T" 5.03385] 4.56065| 4.20421| 4.04895| 3.7345 3.58513| 3.41324| 3.06038
pressure P [~
i Sup?ly pressure o0.91405] o0o.82813] o0.76341] 0.73521| o0.68156] 0.65099{ 0.61378| 0.55571
ratio Pp/ps -]
Dimensionless 7.60674] 9.32088| 9.17246| 8.95016| 8.21686| 7.74090| 6.83817| 5.46070
stiffness = $ [-:[
Sé [ngeﬁ? 34.591 42.386 41,712 40.701 37.366 35.202 31.096 24.832
?giggnai"r[lfi?ss 0.71642| 0.61220] 0.53574| 0.50307| 0.44202| 0.40798| 0.37387| 0.30595
Dirensi owiﬂqr
floy N [10°°] 1.86 3.09 4.08 4.18 4.36 4.75 5.67 6.54
Dimensionless 43.0 53.5 60.9 63,7 69.6 72.8 80.1 91.3

£ilm H [10 7]

TABLE VI-10 RIGID EXPERIMENTS KEEPING SUPPLY PRESSURE CONSTANT

P =
=]

5.50717 [-]

-TST -
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with the term dCD # O. However this has not been carried out
dp
because the P normal operating region of these bearings

is on the right of maximum stiffness where the agreement between

theory and experiment is good.

Data for figures 40~ 45 is shown in tables VI-7 to

Vi-10.

6.6 Comparison with the Designed Performance

It is now possible to compare the bearing performance
with the performance envisaged in the initial rig design for

maximum stiffness as follows:

initial bear:;g ratio

design i | pertormance P/i
Film h [um] 19 19 1
Mass Flow M[107¢ XL ] 79 31 0.39
Load W (N] 1230 530 0.43
Stiffness S[10° I ] 99.7 36.4 0.37

It is seen that primarily because of the change of the
bearing restrictor, the three important bearing parameters: mass
flow, load and stiffness are smaller than designed (for the same

£410 thickness)h

The experiments so far have established a reasonable
agreement with theory and one is now more confident about the rig

performance with compliant bearings.
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VII * COMPLIANT BEARING EXPERIMENTS

7.1 Apparent Film Thickness

Consider three situations of a compliant bearing in
order of increasing load as shown in fig., 46. It is taken
that h0 is a uniform film thickness without elastomer deforma-

tion and that h; and h; are mean film thicknesses.

If the unloaded elastomer thickness with no deforma-
tion is marked as "to“ (case (a)), then mean elastomer thick-

nesses in (b) and (c) are:

Fagl, T = (At)

t2

I

t - [(at)y + (Bt).]

where (At): and (At), are mean elastomer compressions due to

load increments.

Distances Ao' A; and A, take into account both mean
film thickness and mean elastomer thickness. These overall

distances are equal to :

A =+t + h hence A =itz g

e} o (o} o o o)

Ay = t1 + I hence Ay - to = hy - (At),

A, = t, + h, hence A, - t_ = hy -[(At)1+(4t)]

or in general the apparent value of bearing film thickness



w Xo8 =

bl ahth R AR SRy

/I

r
AT R AT LT A S A Al Ll

unloaded

Ao

R S e BB L IR

[/ L)) 4

ty

Ay

/////////////////////

load increased

R R R BRSNS LR

NS LTI LLD 4

i

////’//’////////////7

load increased further

t2

COMPLIANT BEARING
(ot l,_,
h,>h, > h, )

FIG

A




- 135 e

h.=A_ =t =h - I At (1)

This.apparent value of film thickness is by definition
related to the initial elastomer thickness with no deformation
to. It consists of the mean bearing film and of elastomer
total compression due to load increments. They were both

Measured during the compliant bearing tests by means of

mitronic comparators.

This apparent value of film thickness is important tor
bearing parameters such as load and stitfness. How much a
bearing will "give" under a certain load is described by the
Change of distance A (between two surfaces in a compliant
bearing which are rigid). Referring to the cases b) and a)
Oof fig. 46, this distance change is equal to (B2=3 Ve TIf a
Constant value tO is subtracted from both A; and from AO this

distance change is still equal to

A, - K. h0 - h; + At (2)

Therefore for compliant bearings the relative change in axial
distance under an increment of load is described not only by
the change of the bearing film but also by the elastomer

compression.

For parameters like volumetric and mass flow rate,
bearing film is more important than the apparent film, although
if desired they can be plotted against the apparent f£ilm

similarly to bearing load.
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7 - Types of Tests Performed

Constant Load Tests

These tests were performed in order to estimate film
eéntry pressure at zero film thickness i.e. when the film entry

Pressure is equal to the supply pressure.

It was not possible to measure the film entry pressure
€xperimentally in compliant tests. Graphs ot supply pressure
against film thickness were drawn from which supply pressures
at zero film thickness (i.e. film entry pressures at zero

film thickness) were extrapolated.

Whilst with rigid experiments film entry pressures are
uniquely determined by the bearing load, this is not the
Case with the compliant exXperiments, Here difterent film
eéntry pressures correspond to different tilm thicknesses,

i.e. to different supply pressures.

Film Pressure Measurements

These measurements were performed during the constant
load tests in order to see how the tilm pressure is influenced

by the varying supply pressure.

Whilst with rigid bearings supply pressure practically
has no influence on the film pressure distribution, i.e.
for one load there is only one film pressure distripbution,
with the compliant bearing this pressure distribution changes
with the supply pressure so that for the same load there
exist different pressure distributions in the bearing film

depending upon values of supply pressures,
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Polynomials of various degrees were fitted to these
experimentally determined pressure distributions. Then the
load capacity was checked from equation (I-17), Appendix I

which states

- 2 -
W = Ry pp + 2 f PRAR 1 (3)

In each case the calculated load capacity varied with
the supply pressure. The pressure was measured (for bearings
of largest diameter) in the region of 0.353 < R < 0.787. The
curve uniting the measured pressure points did not show a

pronounced change of shape when compared to rigid bearings
except that it was only slightly convex upwards, whilst the
rigid pressure distribution is slightly concave upwards, see
fig. 38 chapter VI. Therefore a second order polynomial was
fitted to the compliant pressure points because this polynomial
showed the best agreement with rigid theory see table VI-§,

chapter VI.

The absolute dimensionless film pressure for compliant

lubrication was therefore determined as:
Pemil 4B % BiRi B,R? : (4)

Here Bo' B, and B; are the second order polynomial coefficients

determined by the least squares method.

Local Film Thickness Measurements

It was hoped to obtain local film thickness measure-
ments by means of three displacement probes spaced radially in

the lower bearing surface. However, the displacement probes
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were shorting after being in contact with the elastomers
.sprayed with silver paint due to paint transfer to them. As
soon as this.had been discovered, a compliant test had to

be stopped in order to clean the probes by means of a sewing
needle under the microscope. In this way the test apparatus
was disturbed during a bearing test and thus the results
obtained were not reliable. Further development remains to

be done.

By differentiating the pressure polynomial with »espect
to radius, the product (film pressure x radius x film pressure
derivative with respect to radius) can be obtained at any radial
position covered by the range of experiments. Bv knowing the
mass flow, the local film thickness can thus be calculated, see

equation (7), chapter VI.

Constant Supply Pressure Tests

These tests enabled the relationships of load and flow
with apparent film thickness (and with film thickness) to be
determined experimentally. They are the most important type
of tests to determine the bearing performance. Rigid theory
lines are plotted on the graphs ot compliant experiments so
that a comparison of rigid and compliant bearing performance

can be made. -

7.3 Constant Load Tests and Film Pressure Measurements

As an example of these types of tests one typical test
will be described. The load, excluding the elastomer weight
of 2,95 N was W = 92,67 N. The elastomer was natural rubber

made at Aston University (referring tc table VII-2, section 7.4



I o B

of this chapter this elastomer s number is I,). Supply
pressures were varied between 1.372 [bar] and 5,758 [bar]

under the following ambient conditions

P 1.006 bar

a

T 295°Kk

a

Under the load of 92.67 N, the elastomer compression was
determined to be 7um. If the apparent fiim thickness is
desired, it can be obtained by subtracting 7um from the
measured film thickness (neglecting surface roughness effects).
However, for this test it is not important because the load

was kept constant.

Apart from film pressures also supply pressures, film

thicknesses and flow rates were monitored.

The results are shown in table VII-1l, Fig. 47 shows
a plot of supply pressure v. tilm thickness. The continuation
of the curve below the minimum film thickness measured gives
an estimate of the value of the film entry pressure at zero

film thickness.

A second order polynomial is fitted to measured
pressure points as given by equation (4). The term (1+B0)
represents the film entry pressure estimated from the condition
that the bearing radius is approximately R=0 at film entry,
Fig. 48 shows a plot of film entry pressure determined in such
a way against the supply pressure. It is seen that there is
a variation of film entry pressure with supply pressure i,e,
with f£ilm thickness. The point estimated from fig. 47 for
zero film thickness is also shown in fig. 48 (for pp = p. =

s
1.006 bar).



Gauge film pressures [bar] |absolute [ measured | measured | estimated [ load calculated
supply film mass flow| film entry| from fitted
pressure | thickness pressure polynamial

el | D | Dotke/d) Clber] | DN
test | R=0.353 | 0.450 | 0.599 [0.787
L |0.200 |0.082|0.097 |0.040 |1.1722 %20.5 5.22 1._00f3.Jsa_mr 67,0
2 0.115 0.095 | 0.095 | 0.040 1'4918. .33 : ll723 .1.0761 1'76fl
3 0.120 0.105 | 0.093 |0.040 | 1.848 ) 43 .29.?0 1'0966. . 78.5
4 0.122 0.108 { 0.096 1 0.040 | 2.308 49 45,78 ; 1.0875 78.3
5 0.130 0.110 | 0.095 {0.042 | 2.883 .54.. 66f56 1.1351 -.86.5
6 0.128 0.112 } 0.095 { 0,043 | 3.458 58 82.l9 1.1241 85.9
7 O b3l 0.114 | 0.095 | 0.043 4.033 61 1sz76 1.1365. ; 87.7
8 D135 0.114 1 0.095 | 0.045 | 4.608 64 122.93 1.1616.. 93.Q
9 Q.l35 0.118 | 0.096 | 0.047 | 5.183 69 .;48°90 1.1554 94f5
10 0.135 0.120 | 0.093 | 0.050 5‘758.. '. ?2. .;172.32... ;'1742ff. _ 93.1|
TAHLE VII-1, W = 92.67[NI]

- UL -
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Using equations (4) and (3) the load capacity can now
be calculated and it is shown in fig, 49, Similarly as film
entry pressure, the load capacity determined by fitting a

polynomial through pressure points,also increases.,

Referring to table VII-1l, other calculations concerning

test 8 are shown in table VIii-2,

fitted
e ap PRI
R Pg s drR h

(-] LB £ LR e A e
0.353 0.13437 | 1.14095 [-0.17030] -0.06859 | 80.82
0.450 0.11730 | 1.12388 |-0.18165| -0.09187 | 73.32
0.599 0.08894 1.09552 |-0.19908 | -0.13064 65,20
10.787 0.04944 | 1.05602 |-0.22108| -018374 | 58.19
L1000 -0.00030 1.00628 |-0.24600 ;0.24754 52.69

TABLE VII-|b

These calculations were performed using equation (7)
of chapter VI. Film thickness profile is thus estimated and
it is shown in fig. 50 (Equation (7) of chapter VI cannot be
used to estimate film thickness profiles at R+0). Measured

mean film thickness h = 64 um is also shown.

Flow rates versus film thickness are plotted on fig, 51;
Neither elastomer compression nor surface roughness have been
taken into account. Comparison with rigid bearing theory shows
that for constant loads flow consumption at a given film

thickness is smaller than for rigid bearings. This has been
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initially predicted in chapter I.

Referring to fig. 49 the reason for the load calculated
from a polynomial to increase with supply pressure is thought

to be as follows:

- As film thicknesses are larger than with rigid
bearings it is possible that some inertial flow exists. Although
for constant load tests (at a given film thickness) mass flows
are smaller than the corresponding rigid theory, the absolute
values of the operating flow rates are much larger. Looking
at the equation (8), chapter VI the corresponding Reynold s
numbers are larger and it is estimated that the local inertial
flow is extended radially outwards further than'with the rigiad

Case,

It is to be noted with these tests that the estimated
film entry pressures are smaller than with rigid bearings. The
comparison of a rigid and compliant pressure distribution for
a constant load would give general shapes ot film pressures
as follows:

P
rigid

compliant
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It has been noted that for harder and thinner specimens
film entry pressure is greater than for the thicker and sotter

ones, see fig, 52.

Determination of film entry pressures is one of the
main obstacles in this experimental work. They could not be
Measured experimentally and it has been tried to fit poly-
nomials to measured pressure distributions and thus extra-

polate for tilm entry pressures.

The author has attempted to make a comparison between
one of his own compliant experiments and the theory ot Pirvics
and Castelli [?%®], Data for the experiment were:

\

W = 0.071 [-]
measured
v = 0.4999 [-] [
: ha'G
e = = 0.033 [-]
£r, J
P =1.15 [-] - estimated from measured pressures
P through polynomials
RP = 0,0045
measured
£ =o0.196
o

is valid for the following conditions

rp
R, = =B = 0.0625



ol X5 B

natural (I,)
albon il b

o hard viton (VI b]
o polyurethane

pp rigid

1
1

(1Vy)

1

2

COMPARISON OF RIGID FILM
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FOR ZERO FILM THICKNESS
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It can be seen that the aspect ratio t/RO and Poisson's
ratio v of the experiments are only slightly different than
those for the theory. For the ratio of the radii, however,
the difference is one order of magnitude. This is considered
not to matter very much because theory [2°%] postulates that
film entry pressure PP is equal to the supply pressure Ps'
i.e. bearing restrictor is not taken into account. Also for
a small ratio of inner to outer radius the contribution of
the term P sz to the load capacity, (equation (3)), is

small,

The difficulty of comparing experiments with theory is
not only because of approximations in obtaining film entry pressures
and the differences in radii ratio’but also because of the

following:

1) Small size of the diagram in reference [2°°]
which is reproduced in fig. 53,

2) Theory is available only for certain values
of film entry pressures and it is not
available for the value estimated in the

experiment.

7.4 Constant Supply Pressure Tests

It has been shown that for compliant bearings it is
possible to sustain the same loads as for rigid bearings with
smaller flow rates, i.e. smaller supply pressures. Therefore
the range of supply pressures for compliant bearings will not
be the same as for rigid bearings. In order to cover the

range ot supply pressures investigated it was found convenient
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to choose the following four nominal values of absolute

supply pressures [bar$} : 1.80, 2.30, 2.90 and 3.%0.

Table VII-2 shows elastomers (various rubbers and
plastics) that have been investigated. Generally two and
sometimes three diameters of the same material had been
tested in unbonded (a) and bonded (b) state., (Elastomers
whose numbers end with (b) are bonded). The range of hard-
ness investigated is 40-90 [IRHD]. Elastomers for the
investigations were either obtained from various suppliers
or made at Aston University. Photograph XII shows a mould
in which elastomers Ia-IIIa and Ib-IIIb were made, Photo-
graph XIII shows some elastomers bonded to steel backing
plates. The bonding adhesive is also shown. Photograph XIV
shows some unbonded elastomers used during the investigations.
A typical test of the bearing IVb is presented in table VII-3
and figures 54 and 55. It is seen that for an elastomer of
medium hardness, load capacity is improved compared to
corresponding rigid locads for a given supply pressure.
Measured flow rates when plotted against apparent film thickness
show an increased flow consumption for compliant bearings (at

a given film thickness).

The performance of the unbonded bearing Iva is shown in
figures 56 and 57. Figure 56 shows that the stiffness is

smaller than with the bonded bearing IV Load is still better

b.
than the rigid case except for the lowest supply pressure,
The characteristics of nearly constant stiffness with film

thickness, typical for bonded bearings, is retained.
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]
‘Iélade at or] Dia x t
Nutber | Elastcmer obtained | Dimensions |t/R[IRHD | E_[bar]
Ia natural Aston 126.90x12,82]0.202 |54.4 | 67.03
IT . # 102.00x12.69}0.249 [56.3 | 59.81
IiT, " % 113%12,7710,331 56.) | 51.21
I natural Aston 126.90x12.46]0.196 [54.4 | 123,62
II.b % = 102,00x12,37}0.243 |56.3 | 123.68
IIT, 5 P 77.13x12,42{0.322 |56.1 | 106.81
v, Polyurethane| Sharples | 128.10x3.35 |0.052 [60.5 | 209,95
Va " i 77.02x3,37 | 0.088 |[61.2 | 148,32
IVb Polyurethane| Sharples | 128.10x3.12 |0.049 |60.5 | 262.44
/R i 2 77.02x3.14 | 0.082 |61.2 § 196,87 .
VI Hard Viton |Du Pont 127.32x2.38 | 0,037 |90.0 | 169,70
VIir, & " 76.80x2.29 | 0.060/89.0 | 121.17 . ..
VI,b Hard Viton |Du Pont 127.32x2,19 | 0.034 {%0.0 | 189.53
VIT i " 76.80x2.19 | ©.057{89.0 | 142.31 .
VIIla Medium Viton|Du Pont 127,83x2,34 | 0.037 |81,0 | 102,57
IXa b = 76.45%2,39 | 0.063|81.0| 81.33.
VIIIb Medium Viton| Du Pont 127,.83%x2,13 | 0,033}81.0 | 111.75
X x g 76.45x%2.15 | 0.056 |81.0 |. 89,37 ..
Xa Soft Viten |Du Pont 128,20x3.20 | 0.050 {56 90.96
XTI i 3 77.05%3.23 | 0.08456.5 | -70.47
Xb Soft Viton {Du Pont 128,20x3.05 | 0.048(58.2 | 107.0L
- XTIy " i 77.05x3.07 | 0.080(57.8 | 82.90.
XIT Natural RRH | Dunlop 126,90x%4.05 | 0.064}78,2 | 132,41
XIIT o 4 - 77.20x4.02 | 0.104|79.0 | 112,38
XL Natural RRH|Dunlop 126.,90%3.95 | 0.062{79.5 | 162,40
XIIID " (o - 77.20%3.97 { 0.103180.0 | 131.06
XIVa Natural RRB| Dunlop 127.30x4.11 } 0.065(39.2 ] 65.40
XV - iR 78.00%3.96 | 0.102{38.7 | 49.31.
}crvb Natural RRB{Dunlop 127,30%3.91 | 0.061{40.6 | 81.30
.XVb _ G M o e 78.00%x3.93 1 0.101}40.1} 60.52

TABLE VII-2
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h_=h-zAt |
W [] h (] (] M[10"°kg/s] | W[-] ¢ [-]
Pg = 1.838  [bar]
92.67 30,1 29,2 29.3 0.072 0.066
152,49 17.0 15.5 16.0 0.118 0.035
194,96 11.0 9.1 7.9 0.184 0.013
237,42 8.2 5.9 3.2 0.184 0.013
Py = 2.299 - [bar]
455,13 8.7 4.5, 10.7 0.353 0.010
410.90 10.7 ° 6.8 17.5 0.319 0.015
322,54 16.1 13.0 24.3 0.184 0.045
237.42 22.3 20.0 32.0 0.184 0.045
152,49 30.1 28.6 39.2 0.118 0.064
Pg = 2.874  [bar]
322,54 24,5 234 45.3 0.250 0.048
455,62 19.7 15.3 41.0 0.353 0.034
592,22 14.8 9.1 35,7 0.460 | 0.020
720.98 10.0 gt 28.2 0.559 0.007
825.11 5.5 -0.6 20.3 0.640 {-0.001
1025,05 2.1 ~10.0 6.1 0.795 |-0.022
P, = 3.449 [bar]
1190, 45 3.3 -11.8 12.5 0.924 |-0.026
1097.95 8.1 -2.4 28.6 0.852 |-0.005
985,47 11.6 2.1 39.6 0.764 0.005
856. 44 14.5 6.2 0.665 0.014
720.98 17.6 10.7 0.559 0.024
592.22 20.3 14,6 0.460 0.033
TARLE VIT-3
BEARING IV,
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With reference to Table VII-2, an investigation
programme has now been set up in order to determine the per-
formance of other elastomers. Usually the same elastomer
sample has been tested as an unbonded specimen and as the
bonded one. First, unbonded elastomers are tested, then they
are bonded and surface ground so that the elastomer surface
is similarly flat as the rigid bearing surface. From table
VII-2 it can be noted that the aspect ratio of the bonded
elastomers is always somewhat smaller than for the correspon-
ding unbonded ones. This is so, because elastomer thickness
of a bonded elastomer is reduced by the grinding process.,
Unbonded elastomers were not ground and they were tested as
obtained (or as made in moulds). Their flatness on a talylin
trace is of the same order of magnitude as flatness of bonded

bearings.

There follow figs. 58-71 of load and flow rates against

the apparent film thickness of Some elastomers in table Vii-2.

7.5 Discussion of Compliant Bearing Results

In order to predict the bearing performance, it is
important to find out how bearing parameters such as hardness,
thickness and diameter influence the load carrying capacity
and mass flow rate. Both bonded and unbonded elastomers are

discussed.

' Hardness and Thickness (Elastomer Diameter is approximately

- constant
Referring to the table VII-2, bearings chosen to discuss
the influence of hardness and thickness upon bearing performance

are VIII, IV and XIV ("a" and "b"). Medium viton (VIII) is
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the thinnest and the hardest elastomer, i.e. its compliance
is the smallest. The compliance of polyurethane (IV) is
increased, and the compliance of soft natural rubber (XIV)
is increased further. Comparisons are made at a nominal

absolute supply pressure Pz ™ 2.90 [bar].

Fig. 72 is a plot of load against apparent film thick-
ness for bonded elastomers. Rigid theory line is also shown,
It is seen that the load of all three bearings is superior
to rigid bearings. A beneficial effect of compliance upon

bearing load carrying capacity is detected.

This compliance effect is seen better if dimensionless
load is plotted against dimensionless apparent film thickness,

£ig. 13,

This is because dimensionless apparent film thickness
c! depends both upon elastomer thickness and upon a characteris-
tic of the material which is related to hardness. Thus this

variable truly describes the compliance of a bearing liner.

Flow rates are shown in fig., 74. Air flow consumption
of all three materials is greater than the rigid bearing flow
consumption for a given apparent clearance. The more a

bearing is compliant, the flow consumption is greater.

The performance of the unbonded bearings (VIII, IV and
XIV) is shown in figures 75 and 76. The load caéacity is
reduced compared to bonded bearings, but it is still superior'
to rigid bearings, particularly at low values of apparent
clearance., Gradients of lines connecting experimental flow
points are smaller than for the bonded bearings. This means

that flow rates of unbonded bearings increase slower with
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film thickness than flow rates of bonded bearings.

Similar deductions can be drawn for other nominal
supply preséures investigated except that at the lowest
pressure of 1.80 bar, rigid bearings are superior to unbonded

compliant bearings.

Referring again to table VII-2 it has been discovered
that elastomer thickness is a major variable to influence
compressive characteristics of elastomers, particularly the
ratio of compressive modulus of unbonded elastomers to
compressive modulus ot bonded elastomers. A plot of this
ratio with elastomer thickness is shown in fig. 77. It
is seen that E, (not bonded) /Ec(bonded) approaches unity
for thin elastomérs but it is 0.54 for elastomers 12,5mm
thick. ' This is of importance when a bearing designer intends
to use thick unbonded elastomers as bearing compliant

materials.

Elastomer Diameter (Hardness and Thickness are approximately

constant

In order to discuss this parameter, bearings I, II and
IIT ("a" and "b") are chosen. They are natural rubber bearings

made at Aston University.

Fig. 78 shows load against apparent clearance for
bonded and unbonded compliant bearings of three diameters. The

corresponding rigid theory lines are also shown.

Bonded bearings are superior than rigid theory, whilst
the load of unbonded bearings is smaller than rigid load for

a given film thickness.
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I+ is to be noted that elastomer thickness of bearings
I, II and III is larger than with any other bearings investi-
gated. Unbonded bearings of these large thicknesses are
inferior because they "give" more under a given load, i.e.
LAt is larger so that apparent film thickness becomes smaller,
Referring also to fig. 77 it is concluded that the use of
unbonded elastomers of large thicknesses is not justified

because of their inferior performance.

Fig. 79 is a plot of flow rates v. apparent clearance
of bonded and unbonded elastomers. Rigid theory (one line
for all three diameters) is also presented. For a given
clearance, flow raﬁes are larger than predicted by rigid theory.
Similarly as with bearings VIII, IV and XIV discussed previously
" gradients of lines drawn through the experimental flow points
are less steep for unbonded bearings, i.e. flow rates of these

bearings increase less rapidly with film thickness.

Fig. 80 shows the influence of the elastomer diameter
upon the compressive elastic modulus. For bonded elastomers of
larger diameters compressive moduli are larger than these moduli

of unbonded elastomers of smaller diameters.

Temperature Eftects

The temperature ot the laboratory where experiments were

o

performed was 21 + 1 C. These small variations of temperature

have an insignificant influence to elastomer properties.

However, certain elastomers were sometimes exposed
to a temperature change when they were taken out of the
laboratory for machining purposes or for profilometry measure-

ments.
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These changes in temperature induced stresses to
elastomers and they made the bonded elastomers become concave
with their unbonded free surface outwards. For example,
for bearing Iy the difference between the elastomer thickness
at the periphery and at the centre was once noticed to be
5-6 um, Elastomers were then ground cnce more and care was
taken that they were exposed to as small temperature changes

as possible.
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VIII CONCLUSIONS AND FUTURE WORK

Pioneering work of Dowson and Taylor [2°'], theoretical
work of the Columbia group [2°2] to [2°¢], experimental work
of Lowe [2!°], work of Smith and Gupta [?!*] and [2'®] and
work of other researchers have made significant contributions
to the available knowledge of steady state compliant lubrica-
tion. However, there are still some areas within the steady
state compliant lubrication that need to be investigated.
Compliant lubrication under dynamic conditions still remains

to be performed.

8.1 Steady Performance

The effect of compensation on the pertormance ot rigid
bearings has been reported [*22]and['?®]. Gas rigid bearings
are investigated with inherent, orifice and slot (or capillary)
compensation, see for example [!®], section 10. Investigation
of the effect of compensation on compliant bearings remains
to be performed. From a practical point of view, inherent or
capillary compensated bearings are better than the orifice
compensated bearings with é port. The port brings instabilities

to the bearing performance and should be avoided.

Work on bearing stiffness is closely connected to studies
of various compensating elements. This property, for rigid
bearings, was studied in ['2'] and [*2%] and some static
stability criteria was given according to the type of compen-

Ssating element used. The author of this thesis has experienced
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very little, if any, instabilities of compliant bearings with
an inherent restrictor. However, Lowe [2!'] has reported some
instabilities and possibilities to extend this work to other
restrictors and to derive a static stability criteria for

various ‘'restrictors should be investigated.

Surface roughness effects have been extensively studied

[12°] to [*?¢] for bearings with rigid surfaces. It is shown
in this thesis that surface roughness effects should be taken
into account in order to obtain agreement with rigid bearing
theory. Lewis and Taylor [139] have investigated the perfonﬁaxn
of an elastic porous thrust bearing and they have taken
roughness of the porous surface into account. Lau and Harman
[2*2] have investigated a smooth compliant pad operating on
a rough moving surface. It may be possible to extend these
studies to the combined roughness effects of the rigid member
and the compliant member. It is thought that the compliant
flatness depends upon local film pressure. A simple model
of estimating flatness from profilometry measurements, proposed

for rigid bearings, cannot thus be used here.

If ambient temperature where tests are performed is
kept constant temperature effects upon the elastomer properties
need not be taken into account. It is envisaged that possible
applications of compliant bearings will be in an environment
with varying temperature. Lowe [2!'] reported thermal expansion
coefficients of natural rubbers of various hardnesses. It
seems worthwhile to extend this work to other elastomers. 1In
connection with thermal effects, a study of ageing of various

compliant materials should be performed.
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Regarding the theoretical work, finite difference scheme
presented in chapter III should be developed further. Finite
elements methods are another possibility. A programme has been
developed in the solid mechanics section of the Mechanical
Engineering Department at Aston University under the super-
vision of Mr. T.H. Richards. This programme analyses axi-
symmetric solids of revolution and some encouraging results
have been reported. A different formulation of this programme
would enable almost incompressible and completely incompressible

materials to be analysed.

8.2 Dynamic Performance

Dynamic operation of compliant air bearings is an
obvious extension beyond steady state working and it is
envisaged to consist of bearing tests under dynamic condi-
tions and of testing elastomer properties under dynamic
conditions. A possible schematic diagram for dynamic bearing
tests is shown in fig. 8l. As a first step, harﬁonic motion
should be imposed on a bearing in order to find out how these
applied sinusoidal movements affect the bearing performance.

At a later date random vibrations, more likely to be encountered

in practical applications could also be investigated.

The author had hoped at the beginning of this research
project to do some dynamic tests but it was soon discovered
that that aim was too ambitious., However, some work to test
elastomer properties under dynamic conditions has been carried

out.

That work has been carried out by using the existing

departmental setup for testing properties of solid propellents
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under dynamic conditions, which is shown in fig. 82,

A mathematical model ot longitudinal vibrations with
end masses was used as a basis for these investigations [315].
The analysis is equally valid for forced vibrations of a
viscoelastic rod except that elastic modulus E is replaced
by a complex modulus E*, Measurements are performed by
keeping the force constant whilst the acceleration and phase
are varied with frequency. The set of results of one
measurement is given in table VIII-1l, Figures 83 and 84 give
plots of elastomer acceleration and phase (between force aﬁd

acceleration) with frequency.

A computer programme developed by the author of reference
[316] is then used to analyse these data. Results are given
as components of the complex modulus (E; - real modulus, E, -
loss modulus) in fig. 85. The material tested was natural
rubber made at Aston University and the mould tor this rubber
is shown in photograph XV. The mould was made at the Univer-

sity workshops.

Figures 83 and 85 show that the first resonant frequency
is around 160 [Hz] and this region should be avoided in
practical applications of compliant bearingg lined with elasto-
mers whose dynamic properties are similar to the natural rubber
investigated. Also for elastomers of this type as a first
approximation it can be taken that the real modulus is indepen-
dent of frequency. This may considerably simplify the theoreti-
cal analysis of compliant surface aerostatic thrust bearings

under dvnamic conditions.
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TEST OF ELASTOMER PROPERTIES UNDER DYNAMIC CONDITIONS =

The force (volts) is kept constant and equal
to 0.4 V

Frequency acc phase
volts g o radians
1000 0.82 1.04 25 -16.14
Y80 0.92 oLl 1 =15,93
960 1.03 3432 344 =15.43
940 1eid 1453 321 -15,03
920 1.39 1.76 299 -14.61
900 1.60 203 277 -14,26
880 1.79 2.27 257 -13591
860 1,88 2.38 236 -13.54
840 1.99 2452 215 -13.18
820 2.02 2.56 199 -12,90
800 Lod2 2.91 180 =12.57
780 2.49 3.16 166 -12,32
760 2.82 357 145 -11.96
740 2.30 4,18 126 -11.62
720 3.85 4,88 101 . -11.19
700 4,10 5.20 71 -10.66
680 4,05 5.13 51 -10,.31
660 3.92 4,84 37 -10,07
640 365 4,63 20 -9 ¥
620 3.80 4,82 10 -9.60
600 4,20 532 355 -9.34
580 5.00 6.34 345 -9,16
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Frequency - acc” phase
volts g e radians
560 6.30 7.98 329 -8.88
540 1.0 9.76 309 -8.53
520 8.90 11.28 268 -7.82
500 7.90 10.01 238 -7.30
480 6.25 7.92 217 -6.93
460 5.50 6.97 206 -6.74
440 5.38 6.82 195 -6.54
420 5.53 7.01 185 -6.37
400 6.02 7.63 178 -6.25
380 7.46 9.46 170 -6.11
360 11.00 13.94 157 -5.88
350 14.90 18.88 145 -5.67
340 20.00 25,35 108 -5.03
330 20.00 25,35 88 -4.68
320 15.60 19,77 56 -4,12
300 9.40 11,91 30 -3.67
280 6.75 8.56 20 -3.49
260 5.50 6.97 16 -3.42
240 5.82 7.38 18 -3.46
220 6.40 8.11 8 -3.28
200 - 8,15 10.33 3 -3.19
180 12.30 15.59 1355 -3.05
170 21.40 212 351 -2.98
160 45,20 57.29 297 -2.04
155 36.8 46.66 244 -] 12
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Freguency acc phase
volts " [T O_ aradia.h's
150 23.00 29.15 221 -0.72
140 10.75 13.62 203 -0.40
120 5.60 1410 197 -0.30
110 4,40 5.58 193 =023

TABLE VIII-1
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APPENDIX T

RIGID BEARING THEORY

Assumptions

The assumptions on which the following analysis
can te stated:
Shear stress in the lubricant is directly
proportional to the rate of shear, i.e. the
lubricant is a Newtonian fluid.
Inertia and body force terms in the equations
of motion are negligible compared to the
pressure and viscous terms.
The variation of pressure across the lubricant
£ilm (in z or axial direction) is negligible.
Purthermore, since axial symmetry is assumed,
film pressure is a function of radius only.
Velocity derivatives across the film thickness
(in z direction) are large compared to all
other velocity gradients.
Air temrerature veries very little during the
operation of theée bearings, and air can be
taken to be isoviscous.
Air is taken to be a perfect gas.
There is no slip at the boundaries of the air
film.
Because of almost isothermal conditions, air

pressure is proportional to air density.
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ol B Volumetric and Mass Flow Rates

Equations of motion (Navier-Stokes equations) in

general state:
Inertia = body force + pressure force + viscous resistance.

Referring to assumptions AI.1l:

v
i < B B -
Qe 0 ar+az(”az)

& ]

B 1
dz® = p dr

which can be integrated twice to give

S I o - -
v, = o7 dr(hz z2) (1-1)

Constants of the above integrations are determined from a
statement of the surface velocities of the solids bounding

the film (no slip flow) .

Volumetric flow per unit length in the radial

direction:

&
- - - 2L dp B® X
ir = f Vi B8 = 2n dr 6 (1-2)
(o]

Total volumetric flow around the circumference of the
bearing at radius r:
e SO
wr dr(p ) he

Q-=2’JTI'Q_P:""-—.—'——2-£F—.E (1_3)
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In order to calculate film pressures, Reynolds
equation is used. This basic equation of fluid film lubric-
ation is derived from equations of motion and continuity.

It represents conservation of mass for the fluid in the

bearing and it states:

Poiseuille flow (pressure flow) =
= Couette flow (velocity flow) + squeeze flow

+ local compression flow.

Couette flow disappears when radial velocity
components of s0lid bearing surfaces are zero. For steady-
state problems resultant squeeze velocity and fluid density
derivetive with respect to time are zero so that both
squeeze flow and local compression flow disappear. Reynolds
equation therefore consists of pressure flow only. In

cylindrical polar coordinates it is equdl to:

2 (phS 3D\ _ | &
ar<l2qr ar) b (I-4)

Following assumptions AI.l1 and for a uniform film

bearing, the above Reynold equation reduces to:

& &(=)]- o (1-5)

This equation describes the film pressure p of
aerostatic thrust bearings in the bearing land, from port

radius rp where pressure p = pp to outer radius r. where

o
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pressure is ambient, p = D, -

It is of'ten advantageous to work in dimensionless
form and the following definitions are introduced, see

filg.I=1.

Rp - I‘p/ro 7
R = I‘/I'o
y 5 (1-6)
D s
b= B/,
P = p/p, J

By me=ns of the above definitions Reynolds equation

can be written as:

s ()] -

which can be integrated twice to give -

8- 1

¢NR
P

i £nR (1-8)

Cons tants of the above integrations are evaluated

from boundary conditions shown on fig.I-1.

From (I-8):

d e A
Eﬁ(Pz) = "Zﬁﬁg— x R (1-9)



_N2e3 >
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In dimensional form equations (I-8) and (I-9)

become:
2 = 2
p? = p2 + & ¢n(r/r) (I-10)
a Znlr 7ro) o]
2 - 2
= B, E Pa &
dr(]_) ) = &n T Po) 4 T (I_ll)

From equations (I-3) and (I-11), the volumetric

flow becomes:

Q = - =E— h3 & 2 (1-12)
12np Z (% /1)
and mass flow
Q | (pz - p2)
M= 2 = - ToRT B Fatara (1-13)
a a g e p/ o

From equation (I-12) it is seen that the product
of volumetric flow and film pressure does not depend upon
bearing radius. This product can be taken at port radius

and outer radius to give:

S x P Q. . n. D =Y tw P

mp® (03 - D3)
3 12n€r(rp/r0) (I=1l)
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From equation (I-13), for given ambient conditions
and bearing geometry, mass flow depends upon the film thick-

ness and port pressure.

Ambient conditions are taken from one of bearing

tests and they are:

1.0039 Dar
29,.15°K

Il

Pg

Ta

the bearing geometry is:

¥ 0.28575mm
Rp = 3§ = i35 mm = 0.004L4455

Three typical values of port pressures corresponding to the
bearing tests are chosen and mass flow is calculated for a
range of film thickness up to 50um, which is the range
encountered during the rigid bearing experiments. Figures
I-2 and I-3 represent plots of mass flow against film

thickness and against port pressure respectively.

ATl.3 Bearing Load

From equation (I-8), film pressure:

(F2 - 1) 3
Pl b +-{%Tﬁr—sn§} (1-15)
: b

a
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Ioad is given as:

w

Consider dimensionless load defined as

I‘O
2 » 2
ﬂfppp + 277 f pr dr Wropa

‘o

i
2 - p2
wr%pp + 2wparo [ PR dR TTYD,

Ry

(1-16)

(1-17)

(I-19)

A r2 p 1
We—p— - 22,2 pRrar-1
TPy TS Py _
R
D
q
= R2P . -1
RP ok fR R dR
D
Take
3 1 1 - p= 3
s j PR dR = (1 = —zﬁﬁ—ﬂ 6HR> Rda R (I-18)
Ry & F
o)
and
1 - P2
J-éa.z __'_-‘E -
2 2¢n R
D
Take
: 3
A,ge= (1 - 222¢nR)

S0 that



IRe 1 il

AZE2 = 1 - 2A24nR (1-20)

and
TS S e
o i e Rl
then
.21_ S
2 2
R
1l - A2c2
Tgﬁgézf_
= —e gag
Limits &, and &, are calculated from:
R = Rp’ 5 = Ei
R=1, & = &a
From (I-20)
1l - P2
2 ~2 L]
AZEY = 1 ZnR 1‘3nRP
so that
o
e r (I-21)
Similarly

£, (1-22)

i



- 230 =

Now

I=f

(1-2424nR) *RaR
R )

=~ Ay i e € e2ag (1-23)

Equation (I-23) can be written slightly differently

by considering

a(e€) = € « -2¢ag,

80 that:
L & ;
I = Ez e ] §d(e § ) .
E1
By integrating partially taking
_Ez
£ =u and dle ) = av

1

— o ' _‘2 fal - :
I = %2 eAz (gze §§-§1e <5 [ e‘§zd§) (I_.QLL)
E1
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Error function between limits &, and Ez 1s defined

as.

i e
erf £, - erf &, = 4% f e €4
€1

so that the last integral of (I-24) becomes:

P :
f e € AE = %?<erf§2 - erf§1> (1-25)
Now, from (I-21) and (I-22):

P2
—_—2 _§2 l iy %22 -_E
Ez€ €2 - 48 2t = Eze Gz

i
o

so that equation (I-24) reduces to:

The second term of the above equation can be written

as
il (1-Pp2) 2¢nR
% A2 3 %1 ;2) ¢
N e 1) =
5 € =3 € D
_P_, ¢rR £nR P
(e Pxe ) =i
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Integral I originally given by equation (I-18)

reduces to:

g e
P e P

I=4- -21*’- RZ + gﬂe A2 e [erf‘(ﬁ) - erf(i)i‘ (1-26)
Now dimensionless load:

W = R2 Pp + 2L - 1
o T
2

- a, et T ’}:-f(fg) - erf(%g) :l 3 (1-27)
N4, )

Clearly this equation contains the expression eAz and this can be shown

to equal R;

P
e(=£)?2 as follows
Az
P2 v 2&n R Pz 24n R
= R%e P = B p x € e P P

1-P2 £nR P2
( p)x21’lp+f’ x2{’pnP.p

D
(1 - P%)

Therefore an alternative expression for the dirension-

less load W

ﬁ:Rze

b

is:

2

@f> A VT [erfc_f> i erfG )] (1-28)
2 Ay
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as shown by Gross [108].

From (I-27) and (I-28) it can be seen that the
bearing load is a function of port pressure. From (I—19),
A, is a function of bearing geometry and port pressure. For

P
a given bearing and a given port pressure (Kf) and (i ) are

Az /8
known. Then, the prouvbability or error functions of (—E>

Ap
and (l ) can be either looked up in the tables or obtained

Az
throﬁgh a computer by calling a corresponding library function.
The disadvantage of the tables is that extrapolation can cause

errors.

An alternative approach to determine bearing load
is to start from the equation (I-17) and determine the
integral I by means of Simpson's Rule. A small BASIC programme
to do this is written and used on the departmental computer.

Programme flow chart is as follows:

Array of port pressures

generated

Dimensionless loads calculated for

each of port pressures by Simpson's

Rule

For a given load (known from a bearing

test, say),a corresponding port pressure

is calculated by linear interpolation
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Linear interpolation is justified by tigure I-4,
'Dimensionless load versus port pressure'. It is seen that
this relationship is nearly a straight line. The bearing
geometry is the same as for calculating flow rates on figures

Three port pressures given on figure I-2 are typical
values for a bearing experiment. These port pressures are
calculated by means of the BASIC programme just described
and they are used as an example throughout this appendix. The
purpose of this example is to show that it is possible to
obtain different expressions for load than given by equations
(I-27) and (I-28), and that for the range of loads in the
experiments erf(gf) can be taken as equal to unity. The
following calculations are now performed to prove this point

(erfc means a complementary error function); and they are

shown in a table.

The error of substituting expression 'C' by a comple-
mentary error function in the expressions for load is small,
as seen in Table AI-l. Clearly for the range of loads,

i.e. port pressures encountered in the experiments, formulae

(I-28) and (I-27) can be substituted by:

P s
s
W = R; e Az X As -—g erfc (Kz) (I-29)

=1
I
-]
N
®
o
L 1]
T
=
1]
H
H
Q
l"_'*\‘
=

(I-30)
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0-71

061

04 1

03

0-2 4

011

1 2 3 4 pF',[bar]_'

DIMENSIONLESS LOAD V.PORT PRESSURE

EIOE . L
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I II I1T
Py 1.6350 2.3796. . 3.3848
b
- 1.6286LL 2.370529 3.371632
O P,
1-P=2
A2 = 53555 0.152622 0.L4266L6 0.95757L
%2 2.559712 1.530968 1.021913
12
Ef L.168860 3.62920L 3.4145513
A, 0.390669 0.653181 0.978557
P
ePf(Ef) 1.00000000 | 0.99999971 | 0.99999890
erf(i) 0.99970537 | 0.96962117 | 0.85159919
P
—erf Ef) erf<ﬂe>0 .00029463 | 0.0303785L4 | 0.14839971

0.000294626

+ 0.0012

0.030378825

0.148400810

|

0.0007

Bearing with

minimum possible

load only

—_—
external load increasing

TABLE

AI-I
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This is convenient, because it is now possible to differentate
expressions (I-30) with respect to film thickness and obtain

an analytic expression for stiffness in terms of dimensionless
load W as shown later (section AI.5). It would not be possible
to obtain an analytical expression for stiffness trom the load
W, computed by numerical methods such as Simpson's Rule., More-
over, long and cumbersome expressions for stiftness would be
obtained when differentiating equations (I-27) and (I-28) with
:espect to film thickness. The simplified equations (I-29) and
(I-30) were found to be adequate by substituting unity for

erf(EE), as verified in Table AI-1.
Aj

In order to compare the values of load calculated by
error function method and by Simpson's Rule, the following

calculations are performed:

¢ s ; III
e
s 700.732014 10.421417 2.841426
1
Aj
Ry % & 273.754275 6.807072 2.780498
ﬁe 0.071479 0.183264 0.365682
ﬁs 0.071436 0.183087 0.365365
v‘ve—ﬁ
—= x 100 0.060 0.096 0.087
W
s

TABLE AI-2
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Here Wé and WS denote dimensionless loads
calculated by means of error functions and by Simpson's

Rule respectively. It can be seen that thq differences

involved are less than 0.1%. Subsequently values of load

were calculated by Simpson's Rule.

AT.L4 Flow and Load Parameters

For uniform film bearings lubricated by an
incompressible fluid, non-dimensional flow and load can

be conveniently expressed as:

it e

B S

W

Wz_(_—)'__
g A Pp Pa

For a circular step bearing

e 55 T
- 66n(rp/r0)

[1-(r/e ™)
g= i 26n(rp/ro)

It can be seen that in the case of incompressible
lubrication these basic parameters depend upon bearing

geometry only.

For gas lubrication and for the same circular step

geometry from (I-13) the flow parameter can be defined as

MrR, T

L Q % 3
q = Esngzggy - EFTEEZEET _ (1-31)

b
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This flow parameter also depends upon bearing
geometry only and it is equal to:

el [ yis
g = 12en(r /7)) = ~ T2¢ng, (1-32)

For the bearing geometry of the experiments:

q = 0.048359

Regarding . a load parameterv%,which is dependent

upon the bearing geometry only,

defined by
r\? .=

w=rge NI _ (—E> i (1-33)
g 3 2 I‘O 2

then through equations (I-29) and (I-17) it follows that

the non-dimensional load is expressed as

W

W o= ( 1-3 L‘-)
o M)
wrgpae

x A, erfc(%g)

For the bearing geometry of the experiments:

[ =
W = 0.00LL552 %g =10, 4759 10
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AT.5 Bearing Stiffness

Apart from bearing flow and bearing load, bearing
stiffness is another importgnt bearing rarameter and it is

defined as:

8 (1-35)

So far the analysis herewith has not included

the bearing compensating element, shown in the sketch.

w

!
‘l/,/,compensating element

This element is included in bearing design so that
the bearing can sustain a sudden change in load. If the
bearing load is . increased, the compensating element
Prevents the collapse 6f the bearing film. Alternatively,
if the load is suddenly removed, the compensating element

avoids excessive fluid flow.

Bearing stiffness depends upon the nature of this

compensation and on the supply conditions.
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Following (I-6) define further dimensionless

quantities as

s g8 } | (i35

From (I-13) the dimensionless mass flow can be

def'ined as
MpR T
— ~Lea = Ha(P%—l) (1-37)

I

From (1“17),(1-35) and (I-36)the dimensionless

stiffness is expressed by:

-t s WG 1-38

= 7p. = " a® (I-38)

From (I-37) _
H = £(2_,H) ' | ‘ (I-39)

Thus,a general expression for evaluating stiffness

can be written as

e ap ~
SR I S e ;
B SRR @, W " aM ° 3H {Eet)
But from (I-17) and (I-29), W = f(Pp) only,
so that :
e o ailian
-85 . =2 (1-41)
e -
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aw i
ap can be obtained from expressions for bearing

load. Fron ?1—22) and (I-30):

W2 ofF erro(s,) (1-12)

Remembering that

S
erfeg, =1 - erfg, = 1 _T.ﬂf e dag

(0]

and (from reference [7] , page 573)
d
A&,

erfe(g,) = - T%fn? e €3,

it can be written:

-éis-_ ¥ d§2 dAa de (I_J—J)

From (I-22) and (I-19)

P
ag. 5 4, _ /-1 PR (g - T 1
A aP, A2 2enR, X 1,
so that:
g e (R 1t
de_dgng%Q«ﬁanxAz _
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B (3) 5 orfn) » () ()]
= e§g<2 = ég>%?erfc<§2> - ézegg X e_fg
Bz - 1) Forrod) -

Mo a8) (1-15)

1l

Now, from (I-LL) and (I-L5):

- = P
8 -G ko
D = A5 P
—  LenR 24nR P
- | W (————P = 1) =3 2 U
—pe 1-P2) 2ZnR
A S (1-P3) o

- [¥ (=2 - 1) - 3] w2 s (1-16)

From (I-L41), dimensionless stiffness can be written

as
<nR ' P ap
S . 5 R (Y - P P =
5 [ﬁ <§_P2 1) 1] =27 x =3 (1-47)
Y b
dp
where EEE depends upon the compensating element and the

supply conditions. Three types of compensating elements
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are used in gas lubrication - capillary, orifice and
inherent compensation. For each type 6f compensating element

dP
(or restrictor) Eﬁg is calculated from the condition of
continuity of mass through the restrictor and through

the bearing.

(a) Capillary Restrictor

Z

ANANANNANANNNNNNN

pp h
K7
//

L

S

Y

7
i

NN

:
|
|
Ps

Assuming laminar feeding, then in accordance with the

Poiseuille equation, the

‘flow through the capillary is given by:

Q- -2 &
128n dz
or
pedz = - 755 pdp
As PQ = P,Q s, for isothermal flow of a perfect gas



o Pp
then .9 dz = =E4Z a
RS = 1289 pap

e Ps

or
B 1 A TN
Pgs = I28T X 2n(ps pp)
-

K.
g? (P%‘Pzp)

where kC is the capillary coefficient. Mass flow through the
capillary is then equal to:

-k
L S - -
¥ - ot (2200 (1-18)

Now equating (I-13) and (I-48) and also taking

into consideration (I-32)

2-=7e 3 2 -2
k,(p2-p2) Lok (p2-p2)
ZnRaTa nR, Tz

and in dimensionless form:

2qgr3 P2 R
—E‘E x H® = ?é:zp (I-L9)
c P
From (I—LL9)I:
2qr3 = 2(13’?5-1) dap
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Rearranging after substituting (L-49) again

dP (P2 —p2) (Pe—]_)
<3 - &, b
ap. = 2(Pg—1)1p X % (I-50)

then through equation (I-47)
the dimensionless stiffness for capillary compensated

circular air bearings is given by
= L£nR P2 -P2
RN e A s 2
¥ [1 . (1-1:% 1)] Zpz-1 * (i550)

(b) Orifice Restrictor

A P e
iz Wz

Mass flow through the orifice is given by

— e 2
M = CDpPA ¥, whe re A = g
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[107]

Assuming isentropic expansion through the orifice

1 1
¥ D Y
SPGRE 1o
j9) S \p RaTa ps
and
Y=l
2yR_T D Y
V3 = ——21 - (2
Z y—-l PS
so that
2 _ (2.2 A2v2
M2 = CDpPA vz
2 y=1
22 oY 2yR_T p
ES(ﬁ)xAgxﬁ[l—
RaTa s

(7]

Equating squares of mass flow through orifice (I-=52)
and through bearing from (I-13) and (I-32) gives

2 y-1
¥ Y
G [L - (2
=5 Pg e
R l) e e 1k Py
T2A% x 2yR T, D =
(o8- o )

and in dimensionless form:



a2 (y-1) p2re

i

&
B
I
§i

(1-53)

Take:

o gy it n (1-56)

Coefficient of discharge is a function of a pressure

drop across the orifice. For a constant supply pressure, it
is a function of port pressure, so it can be stated:

ac, ac, dp, ol
i &, ¢ =

Now (I-53) can be written as

and differentiating
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D
Nox 6H® = 26p gm= [ ] + 03 == [ ]
dCD dap a
:2CDFPXEE[ ]+C%E[] (I-58)

Now from equation (I-56)

CEE S R TR
ag X = X v X PP a0
(p2 —a)t

v [

and from equation (I-55)

(y—_l\ y=1 (}ﬂ
- Yy ) -2\ y %
G i palt %
dH[I_QPp<-y XPP PB .....
v+l P TG dPD
..... X 2')/x P dH
*p
:()X 2de.H
and combining
dP dP
P Lar *
()x2deHx(P‘%l) E}xZ(P%l)xZPpﬁE

%[ ] = ( a 1)2 (P2 l)z
o o
Substituting in (I-58) and rearranging, there follows

taking into consideration (I-53) .
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Gl 1o () s 2 2P By N I
D daH T (P%~l) EVEEHGOH TG
= (a - T§EZET> X 2Pp I % NOH6 (1-59)
where

Ps (x+l>
—_ P - P P
o S D 5 X 2y X D
s I e
PB X Pp - Ps X Pp
-1
Yl o Eﬁ 14
2] P :
P ¥
. — (1-60)
e D et
g G
P 2]
Now from (I-58) and (I-56)
dac dP N HE
1 D D o)
N x 6HF = 2C. x'= Y X To
o} D Pp de P dH CD :
o dP
+ | 06 - % 2P R %« N _HS
( (P%-lj) PoaH @

1l

N

jav!
o]

jol
IO
el (=
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SO that for orifice compensation

dP .
9 e dC X % (1*61)
dH P [ 2 & 3 D
B
p| P2-1 CpPp, P

and the dimensionless stiffness becomes through

equation (I-47)
1 - W( = 1) ?
1-P=
PP

S = ( 1>’— 2 e _ _2 b4 ﬁ
PZ-—- |P2
D LD 1 CD de-

(1-62)

Where the variation of discharge coefficient
with port pressure can be ne glected, the stiffness reduces

to:

(- -y)]

— X H (1-63)

AT

All this is valid for unchoked flow.

For choked conditions:

i
P ¥t
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as shown, for example, by Powell [107]. For y = 1.403,
Pp/Ps = 0.528. The normal operational range of these

beari is P 3
Ia ings is p/Ps > 0.528

If, however, bearings are operating at PP/PB < 0.528,

i.e. choked flow region, the tlow through the orifice and the

stiffness of such bearings can be calculated bf substituting the
the actual value of PP/PS by 0.528, for example, in eqguations

(I-52) and (I-60).

(¢) Inherent Restrictor

v 4

'Inherent area' ié equal to 2vrph and orifice area
to mr 2. Inherent restriction takes place when the inherent
restriction area is smaller than the orifice area, i.e.
when h <;B . For the rigid bearing experiments, rp =~ 0,286mm
and the film thickness h is always smaller "than E£(=O.l43mm).

Therefore inherent restriction takes place during bearing tests.



ER o SR

It will be assumed that the mass flow through this

inherent restrictor can be described by the same expression

as the mass flow ﬁhmugh_the orifice restz:-ictor- except that
values of discharge coefficient CD may . be different. These
values of CD are determined experimentally by equating the
mass flows squared through the inherent restrictor , given f;y
orlfice law-and through the bearing (derlved from Reynold'

Equation). From (I-13), (I-32)

and (I-52) with A=27r h: 3 __E 4 (_E)
P Pq
' a2 (y - 1) he = 2
R R (P% - p2)

and in dimensionless form:

E g(x:l> .2_> y:l) y+1
Y o Y
Qz (y- 1)p21=2 {P 4 w Bl =P x B
2 : = C2 & P g P
no% 8"TVRzaLTa & i (Pzp - 1f
(1-6L)
Take:
q2 (.y_]_) D2 12
N, = 2 X
i~ 77 x BayR. T, (1-65)
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and - []: 2 =

(I-67)

A similar analysis as in the case of orifice

restriction then gives:

ap 3

e TN 2
ad - > 1 40, H
p [%____ o AT _-{]
Pa- P
p P2 i Cp o2
(1-68)

where a is given by (I-60) .

and the dimensionless stiffness similar to (I-62) becomes:

[ 18 44nR
l-w 1 ]
§ = il x % (I-69)
; B 1 dCD ;
G el o
P sz—l D P
Clearly by comparison with equation (I-62) for orifice
compensation it can be deduced that
B, %5 | (I-70)
4 s

In order to obtain experimentally the relationship of
dCD
P and port pressure, bearing load is kept constant and
ap
P
the supply pressure is varied; film thickness, supply pressure

and bearing load are monitored. The plot of C, with Pp/PS
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“CD calculated from measured film (corrected
for surface roughness effects),from
measured load and from measured
supply pressure.

x W=473-96N
o W=237-52N
oy ~ W= 92:67N
0-8 1
0-6 1 - dfe
0-4 1
021

05 0-6 0-7 0-8 09 Py/Ps

COEFFICIENT OF DISCHARGE V.

PORT/SUPPLY PRESSURE RATIO

FIG 1= 9
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ratio is shown in fig, I-5 for three different loads. It is
seen that the discharge coefficient CD does not change with
port pressure for values of Pp/Ps encountered during
experiments. It is approximately equal to CD = 0.68. Thexe=

fore, equation (I-68) can be simplified to read:

ap copdse N 2
el s TIERES H (I-71)
dH Pp [Ppi—l GJ %

Dimensionless stiffness of inherently compensated

circular air bearings then becomes:

[1 - W (gﬂ—l) ]

2 - 2 -
[ o (P, 1]

(I-72)

(]}

Il

®
tas] §.N)
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APPENDIX IT

STRESS—-STRAIN RELATIONSHIPS
FOR BEARING ELASTOMERS

In order to describe stresses acting on a body in
equilibrium, generally three normal components of stress and
six shearing components are necessary. In cartesian coordin-
ates x, ¥y, 2 the state of stress in the body can be

represented by an array as follows:

Ox Txy Txz
T o T
yX Yy yz

Tox "oy “g

In c¢ylindrical polar coordinates r, 6, z, the array

becomes

Gr Trp Trz
o)

Tor Op Toz

Tar Tgsg 93

For the concise representation of general equations,
the so called index Or subscript notation is advantageous
and of'ten used, and so both of the above arrays can be

represented by
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In the last array normal stresses are represented
by 7445 Toe @nd 733, i.e. Wwhen subscript i is equal to
subscript j. Shear stresses are represented by unequality

T4 when i £ j.

T3 represents a tensor of rank 2 because it has
got 32 = 9 components. A vector is a tensor of rank 1 and

in the extreme a scalar is a tensor of rank O.

For comple tion of the above statement scalars,
vectors and tensors can be more rigorously differentiated
according to how the components of the system are defined
in the variasbles Xy and how they are transformed when the

variables are changed to xi'.

By introducing a summation convention:

it is seen that a repeated subscript i means summation with

respect to that subscript over its range.

As an example for a transformation law of vectors a
rotation of coordinates X,, X, by an angle 6 anticlockwise
to coordinates x,', X;' can be described by xi' = o, .X. Where

1479
a.. are the elements of the array:

1J
[ a21 azg ] |: “Sin@ COS@ ]
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This law of transformation can be easily extended to three
dimensions. Tensorstransform according to [302]:

Tag = Coi 653 Tij3

where the summation is first for j and then for i. For

example if we need 7,,', then

Tygh 50,01 31Ty :

= ‘&11(‘&2171 : ‘6227-12 + ‘523713)
= &21(&11711 + 10Ty + 6137'31)

+ 622(‘5117'12 + 15Ty + 4313’1‘32)

&13733)

+

et 623(’511713 + 015703

Consider stresses T,p and Tnhy, 8cting on an element

in the plane 2z, .

Z

Because of the equilibrium of moments Ty must be equal to

T and they are known as complementary shear stresses.



= 260 =

Similarly Tgp =T and 7 so that a stress state of

ré 6z =~ Tzp?
a body generally represented by nine components reduces to

six independent ones.

Strains are also tensors of rank 2 and similarly

because of symmetry the nine strain components reduce to six.

For materials which obey Hooke's law, stress tensor
T 5 is proportional to strain tensor e, [302], [314] and
[315], and the relationship is given as:

Tig = cijk& ey (1I-1)

these materials are some times called Hookean elastic solids.
A tensor of elastic cons tants or moduli Cijk& is a tensor of
rank L and it has got 3% = 81 elements. However because of

and e. ot

= Tji i3 there are only six independent elements

43 €347
in the stress tensor and six in the strain tensor. If each
element of T3 is linearly related to all elements of eij or
vice versa, there will be six equations of six constants each,
j.e. thirty-six constants in total. Therefore after symmetri-
zation a tensor of elastic constants Cijkﬁ reduces to thirty-
six element from eighty-one. From energy considerations

[313] in general there are only twenty-one cons tants.

Further reduction of elastic constants_is caused by
material symmetry and the number of elastic constants in most
models of elastic solids is smaller than twenty-one. Elastic
properties of isotropic materials are the same in all directions

and for these materials the number of elastic constants reduces
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to two from twenty-one.

Any state of stress can be thought of a super-
position of pure shear and a uniform tension (or compression)
all round. This leads to the idea of stress deviation which

is the actual state of stress minus uniform stress all round.

¢ i
Tig S ag = cs‘i;jqr'rruean (1T - 2)
here §ij denotes the array
i, 0 0
513 = 0 i 0]
0] 0 4
1.8, aij =1 when i = j, otherwise it is equal to zero. Also
T ST T e
mesn & . 500X v Z
i
= 3(°r + 0, + oZ)
2( )
= 5\, gy + Faa
T
kk
== . (11 - 3)

The impor tance of the deviator is that it does not produce a

change in volume.

Similarly, the strain deviator is defined as

Coa= 0. = &, .8
ij ij ij mean

(II - L)



where:

mean

@ Wi~ Wi Wi
H
<
]

5
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-

(ITI - 5)

For isotropic materials Hooke's law may be stated

in the. form:

Txic =

,

If the

change of volume per unit volume e

(11%= 8

(1T - 7)

strain were infinitesimal, ekk would be the

AV

o

s S0 that equation

(II - 6) states that the change of volume is proportional to

the mean stress.

In the

T4y =
and

T =
so that

==

special case of hydrostatic compression

oo ="Tgg = =D

=P

3K e
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and the volume strain

AV "kxx  Tpean

=S = =2 (IT = 8)

ot
1k T T X

whe re the elastic constant X is called.buik modulus of the

material.

The strain deviator eij describes a deformation of
shape without change of volume. In the special case where

e;2 # O and other strains are equal to zero

Tiz = 26 €,

the coefficient 2 in the above equation is included, because
before the tensor concept was introduced it was customary to
define engineering shear strain as y,, = 2e,,. Elastic

constant G is called the modulus of elasticity in shear or the

modulus of rigidity.

If definitions (II - 2) and (II - L) are substituted
into (II - 7):

Tig =045 Toean = 290 0 - Al

By using (II - 8) the stress gate is given as:

2
e g e = 0
Ty ﬁiJ Ke, 3G 513 wi + 26 13
and
A e IS =
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where

Alternatively the strain state is given as :

gr ol S dd (.l__ 1)
i3 Xk \26 T 3K

(IT - 10)

Equations (II - 9) represent stresses in terms of strains and

ecuations (II - 10) represent strains in terms of stresses.

Elastic constants A and G are called ILamé's constants,
E is modulus of elasticity or Young's modulus, v is Poisson's
ratio and K is bulk modulus. Four constants have dimensions
of pressure whilst Poisson's ratio v is dimensionless. Some

of the more important interelationships between these constants

ares
w
E ’
2G = T—T—; = 3(K ?\.)
B e o7y im0
Sol=Pyp =
0 R e
26 ~ 3K = 2G(30+20) > (11 - 13)
S B g
Yo mEn. =85
G
A+G T 1-2v
A v i
A+2G 1-p
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"APPENDIX IIg

STRESS-STRAIN RELATIONSHIPS FOR BEARING ELASTOMERS WHEN THEY

ARE ALMOST COMPLETELY OR COMPLETELY INCOMPRESSIBLE

Equation for stress in terms ot strain (II-9),

Appendix II) contains

e v
(1+v) (1-2V)

which is very large when v+0.5 and tor v=0.5 it is not
defined. Therefore, it is necessary to develop special
relationships for stress in terms of strain when v approaches

0.5.

The stress state in an elastomer including temperature
effects (compare (II-9), Appendix II) is given as

T 0

£ 2Ge;, = K x 3@ AT 8 (ITF1)

15 = Aeyx 844 i3 i3

Taking K = 2&_;:_29. and

adding to and subtracting from the equation (III-1l) the

quantity BGG&TGij, equation (III-1l) can be written as:

T [ () ~30AT) - 3GaAT + GaAT] + 2Ge, (III-2)

Using the concept of the mean stress defined by (II-3),

Appendix II

T = e—— (ITII-3)
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Hooke's law including temperature effects can be written as

AT K(ekk - 3aAT) (III-4)
or
3vt
L mean 1
ekk-3aaT e (ITII-5)
so that
3vt 3vT

= mean mean _
Tl [ SN ¢ A Yo = I S R G““]*

+ 2Ge, .

ij
=8 3\’Tmean A+ G < ce + GaAT|+.2Ge, . (ITI-6)
43 kk ] ij
(1+v) A

A+ G 1
a0 A i
equation (III-6) reduces to

3Tmean
Tij = TTIro) aij - Gekksij + Ga&TGij + 2Geij (ITI-7)

If the temperature effects can be neglected (AT=0) and
taking the equivalent mean pressure as

3Tmean

Py & 201 v) (II1I-8)

then the elastomer stress state becomes:

Toa = PG

ia = Ge,.8.. + 2Ce,; (ITII-9)
ij m ij

kk 13 ij

Equation (III-9) is valid for O<v< 0.5.

In order to discuss the situation when v = 0.5 consider

equation of continuity of displacements u and w in cylindrical
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polar coordinates, see sketch below:

z r Sr
W+ ;W
Jz
WI u u+du z
— —

r

udz x 2mr - (u + 8u) 6z x 27 (r + 8r)

+ wér X 21r - (w + 8w) Sr x 27mr = O (III-10)

The term containing (6udréz) can be neglected as a
small guantity when compared to other terms. Dividing the

above equation by 6rdz, it reduces to:

ou u R .

B a= =0 (ITI-11)
which can also be written as

208 i) 4 2w (III-12)

Yo 0z

In passing it can be noted that if the displacement

vector is defined as

a = ul + v} + wf, then

S8 '] g 1 8w , ow
diva = 5 gE(ru) + il B B
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so that the condition of incompressibility means that the

divergance of a given vector is equal to zero.,

The above means that in terms of strains the condition

of incompressibility 1is satisfied when

= = ou u oW -
Sk e + g + Qe T + - + = B 0O (III-13)

For Poisson's ratio v = 0.5, equation (III-9) reduces

to:

Tij = Tmean Gij + 2Geij (ITI-14)

Equation (III-14) describes the stress state for an

incompressible elastomer.



APPENDIX 1IV

COMPUTER PROGRAMMES

(consult Fig. 7)



1. Calculating axial displacements w .
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o7 PRUGRAM SUNCINPUT,QUTPUT,RES, TAPEL=INPUT,

g 1 TAPE2=0UTPUT, TAPE4=RES)
e or i NRE Y TEC2S 1) e
104 FORMAT(13H ENTERING SUN)
Zormse T CALL EPDELS e T e e
A — - ~ ST[.‘P e D - —— =Sz - —
i S Mg e o oy = S

I SUBROUT INE USER]
S EEESEI N IMENS TUN DUMT9)
= DIMENSION HT3(Z288),UT3(/780),NTA(780),HTA(780,4),KT4(780),

INTD (S9V r?]‘vLITm‘!(JZDU),T\IUT“P'I(2‘4!.1{6);“1?(.0{{‘9& v.8),P(12)

S T CORMUN (5,099  NT3,UTS NTA,HTA , KTA,NTHpNE3, NE4, NED; NC,NR, KODJAS:
s B Y JUlmU!‘ UNAT  HEGU NPLA,EWANT  BEINAL,NLITS, NBFREF pDUt‘h
S20PM, LETA,BEEPR,EIGEN, h11,wITP NUMPT,DIFCO ; s e v
‘ LEVELT2,C5 e
'f?;,¢;_ﬂHlTLL?.in)HLJ;NEA,Nbb,[NTJ(IJ.UTJ(I) rI=1.NES)
T O WRITEC2,1ub) (NTACI) s (HTA(1,Jd)ed=1,4),KTA(1),1=1,NEA)
e S wRITE(2,107) (NTH (I, 1)NTH(T,2) 4121, HED)
FURMAT(/Z/Z23115/2//(16,1PE15,71)
FURMAT(///(10,4F1ia0,10))
FORMAT(///7(2106)) Al
SENp s e s T S T

ﬁ;€?“ﬂ;;5URRUUTINL YSERZ: o= mot T e
o e, e i g ST(]'J — i —— —— - - oy - probm Pl —

= _—t ’-.Jl-)- i - s = = _— B - :
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SUBROUTINE GETCOCX, Yo HL oM, KODE,COFF T,JEQU)
CUMMUN DUMMY, DX, DY
DIMENSGIUN HL(A),COFFT(S),DUMMY(7828)
LEVEL 2,DUMMY,KODL,JEQU
C inlTbErIun PUINTS HAVE CUDE 2u8
CPOINTS AT BOUNDARY OUNE HAVE CODE 201
C POINTS AT BOUHDARY 1wW0Q MAVE CUDE 243
CPOINTS AT £ AX]S HAVE CUDE 205
L PUINTCIY,dd)HAS CODRE 202
CPROUIMTC(1.,dJ)00AS CODE 2v4
C INITIAL VALUES OF FIlLM PRESSURES
; AP, ¥ 2
T BP=O,Y
CPz=l 035/ (20,00ADX) /10,0
NPV, 63b/710 .0 - ; 5
L G BARS/Z16 (N/ZMHMAR2)
. (:-'l“ .‘f' 3 : T
f !wnﬁ]lnv OF W ° 5 = T R .
IF(hODE=230)100,306, 106
S CAAY=(2,0/0%3 (HL(3)=HL(1))/X)/ (HL (1) *HL(3)*DX) +
A2,/ (HL(Z23 2l (4)ADYRr2)
‘PFTE1)—Lf2.u/tA+hl(5)/X)/fh{(11*(HL(IJ+HI(3))*DX))/LKAY
COPFTI2)=2(2,0/(HLI2) 2 (HLL2)+HL(4))*0Y£22)) /UKAY
CORFTEI)=((24u/DX=til (1)/X)/(hL (32 (HL (1) +HL(3) ) *DX) ) /CKAY
CIHHEEY (4 ié.u/(UL(dl*(HL(£}+nL(4JJ£n\*13))/LKAY
COrEET A s n.u
TRETUKN SR - : g
C BOUNDARY OHNE OF W i
1B LF(RODE=2U1)114,48d,118
4l CRdy= ?.4/(HL(J)*UXJ**R+Z,6/(HL(R)*HL(4J*UY**2)
ST OO E Y (V) Sid P =2 :
T GOFEY D )s D M/ (HL(2) % (HL(2)+HL(4))xDY222))/CKAY
COFFT(3)=(2.,u/(HL(S)ADX)*2%2)/CKAY
- CUufFT (4 J—(? m/(HL(4J*(hL(£}+HLthJ*DY**Q)J/CKAY
CUtFT(5H)=a,

RETUKN I : :
CAPULNTEET ; Jd) = Ay S
119 IF(ROLE=21W2)128, 34,1206 > ;

s34 CKAY=2,0/(HL(3)*UX)*%x2+2, B/ (HL(4) x0Y) % %2
N CUFFT(1)=4,¥
COrrT(2)200,0 : B Bt et A e =
CQUEET S =02 H/(HL(J)*UXJ**2J/CKAY i A R e :
T COFFT(4)s(2 v/ /(HL(A)*xDY)x%x2) /CKAY TR
"CUFrT(53=d.d E a
i KRETURN Vam o sern 2 S : g g
c HnUunAkY T S NS ] e i - ; =
124 JF(ROGDE~233)130,388,130 E =TT :
3d¥ LN&Y—(Z.H/UK*(HL(SJ-HLtliJ/X)/(HL(l)*Hl( 3)ADX)+-
12,0/ (HL(4)%xDY)xa2
fiU“’T(1)=((Q.LJ/UXHiL[:iJ/XJ/(HL(l)*(HL(]_}.;HL(;?,))*DX))/CKAY
CUFFT(2)20,0
CUF*T(il=((H.M/UX-HL(I)/X)/(HL(S)*(hL(lJ+HL[3})*Ux))/cmhy
CCUFFT(A)=(2,0/(HL(4)4ADY)*%2)/CKAY
PO=APAX . 23+bPxX2x2+CPaX+DP
COFFY(H)=(~ l.h)*Pl/(U*HL{GJ*UY)/CKAY
RETURN
C POINT(1,dd) -
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U139 1F(KUDE=214)141,320,1406
320 CRAYZ2,U0/(HLO1IADX)2x242 B/ (HL(4)RDY)Ar2
COFE Tl 102, 8000 Y*2DXI»x2) JCKAY
COFFT(2)=1,0
COEFE T3 ). 0 : :
COFRFT(A4)=(2,6/(HL(4)*DY)%%x2) /CRAY
Sesa sl o3/ 1AL D
- CUFFT(b)=(~1, AJ*Pb/(b*hL(4)*DY)/ChAY
RETURN
C BUOUNDARY THREEF OF W~
140 IF (RODE=278)416, 36U, 4106
3o CRaY=2,0/(HBLIL)ADX)Ax2+2 B/ (HL(2)AHL(4)*xDY*%2)
: CUFFT(I)=(2,0/(HLC1)*xDX)*x%x2) /CKAY
EOFFT(Z)I=L2, w/(HL(2)*(hL(dJ*HL(d))1DYi*d))/LKA?
e CUPF T3S0
S S GHPE T LA ) {L,w/(HL(G)*(HLCZ)ﬁﬂLtd))*DY**z]J/LKAY
COtPFT(H)=4,0 . :
RETURKN
=il BOUNDARY - FOURSNSE B - 2= - 25
"4l WRITL(2,. azu)r,nUDE ; &
ey S10GP == ; =
TR AR FUh=h1(?Hn PuIrT Io,zﬁh HAS UNDEFINED LUDE NUPPFR,IB)
- Lh[)



2. Calculating radial displacements u
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PROGRAM SON(INPUT,OUTPUT,RES, TAPEL1=INPUT, T i m i aaaoran ey
Wr] TE(2,180) - SonaEEms s e o aae o e
1o FPORMAT(13H ENMTERING SUN) T et S NI
EEE SR OOALL EPDE) e haeamnass s s i nmme e mm e
i - - ST 0}, - wasas e re : = - - e —0 = -, > = I_ v - - . =" - - - -

Tifgffm'tﬂﬁ;:ff%f?§“f3f"*:?:‘ 5
T SURROUTIRE SUSERI S S e e e e e e e

ErEREEE DI MENS TN DUM(Y) S e e B e (e G D S N g e e B e e e
t#*""-'DIMLhﬁlnu NT3(78uw),UT3(780),KTA(7803),HT4(78U,4),KTA(788),:
TIEETTINTO (39U, 2) ,UMAT (320U ), NUMPT (2918) 4DIFLCU(2906,9),P(12)
= oiE CCOMMON 5,095, NT3,UT3, MT4,HT4,KT4, k15, NE3, NEA4, NES,NC, NR, KODBAS ;-
> T IUX A OY L JUBNUM, UMAT ,NEQU,NPIA,EWANT » BF INAL, HLIT&,NBPRtF DUH,
TR CPOPMBE TA BEEPR, katN,NlT.mITP NurPT DIFCU e e
DD 0T e e Y = i R L
R ﬁﬂlrrtz. TUSINEZ,NEA,NES, (NT3CTI),UT3(1),1=1,NE3) e e
: TERRY TR 1ﬁ6)(NTd(1J,(HTd(1 JYsd=1,4),KT4(1),I=1,NE4)
ﬁawR11£{2,1m73(betI.1} NTS(1,2),1=1,NES) == =  cosmo o o0 i
FORMAT(///73115///C16.1PEL1DB,7)) S e & i
FORMAT(///(16,4F18,6,10)) = orr srrmmrmammsrs
URMAT(///[?IOJJ - WA P i S
'7§_:EPH) ;ﬁ%ixrfén,:~;ﬁaﬂ¥-§fﬁa'ﬁ¥i“‘ = e
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SUBROUTINE GETCO(X,Y,HL,M, KODE,CUFFT,JEQU) .
COMMON DUMKMY, DX, Y '
DIMENSIUN HL(4),COFFT(D),DUMMY(7228)
LLVEL 2,DUMMY,KDDE,JEQU
C INTERIOR PCINTS HAVE CUDE 3Jve ; ;
CROINTS AT BUUNDARY ONE HAVE CODE 301 ; S S
C PUOINTS AT BUUKNDARY TKO HAVE CODE 383 R S
C POINT(ILl,JJ)BAS CODE J02 )
= KAz, Uil o d
B2s=il, biE159935
Blas=@, Ad32206u9
£ EEUATIUON OF Jt)
IF(RODE=30A)I510,506,510 - o R e o
500 CRAY= (2, ﬁ/b¥+(HL(di-HLll)J/X)/(HL[IJ*HI(J)tDX)+ ] j '
12 /7 (HL(2)2HL(A)*DA%*2)¢1 @B/ X*%2 e e
COFFTLY)=(2, t/UK+HLl*}/x)/(Ht(1)*(HL(IJ*HL(J})*DY)/CKAY R o
COFFT(2)s2,a/(HL(2)*x(HL(2)+4L (4))xDYx%2) /CRAY SoETTEEDEE
TCRFFETL3)s(2,06/D X Hlil)/x)/(nt(J)*(HL(1)+HL(J)J*Dx)/CKAY "
CUFFT(4)=(2 .0/ (HL(4)x(HL(2)Y+HL(A4))DYx22))/CKAY
EAFE T (b )=, .
L © RETURN = : gk e e
C BOUNDARY ONE OF U : 7 e TR
518 IF(KODE=381)b2¢, 008,528 : ' '
Tody CRAY= 2,/ (HL(3)*xpX) %2242, ﬂ/(Hl(8]*HL£4)*DY**?)+1.H/Xﬂ*?
COFFT(1)=8@.V :
CUFFTI(2)=2, H/(HL(Z]*[Hl(?)iHl(4)]*01**2)/CKAY
COFFT(3)=2,v/(HL(3)*DX)»22/CKAY
COFFT(4)=2, A/[HLE4J»(HL(?J+HL(4})*DY**2)/CHAY
=S COFFET (D)2, 18—

hLTURN v : i ] i £ > Ly
R AUy T SIE AR e e L e e
529 JF (KODE= 343)%3:,/wn H30 ; = | [ Hui ]
_7dd CRAYS2 .0/ (HL (1) 2HL(3)2DX2%x2)+2, 8/ (HL(4)*DY)2x2¢ — =0 =0 o
TOHL(3) =L (1)) 7 (AL L) L (3D 20X )+ q8/ Xx2x2 i S iR TR R
- COFFTCL)=(2,8/PX4HLI3)/X)/Z (HL (1) A (HLCI) +HL(3) ) #DX) /CKAY ==
T COFET(2)=4,9 i
= COFFT(3)=(2,2/D0X»HL(1)/X)/Z(HLC3)2(HLC1)¢MLC3))*DX)/CKAY . = -
CCUFFT(A)=2,9/(HL(4)*DY)x%2/CKAY S
St S DR WSS L AR XA k24 2 ,04B22 X e8]} e e
=R CUPF1(5J—{ e.a*UrwxiﬂLth*qu)/LKAY
C UUUNUAPY THRLE u . ARy NSy A o o )
C..BOUNDARY_FOQUR Us¥ - == ii=si= = ==
C POINT(II,JdJd) : st 8 Sdl MO N RSN
530 1F (KUUE=342)5%40,888,%40° o m TR e S e
BoA CKAYZ2,6/ (HL (3)xDX)2x242, u/(Hlth*DY)**2+1 0/ XH k2 R LT
COFFT(1)= u.n 2Ty i _ o tE e e L et
CUFET(2) %0, : bk : R . e
'CUPFT{jl=tz.ﬁ/(HL(JJiDX)**Q]/CKAY
COFFT(4)=(2 8/ (nL{4)x0Y)2x2)/CRAY
PEWZSOABSAX®%x242 ,0xti22X+B ] o e
CUFFT(D)=(=2,4920Ew/ (PL(4)%2DY))/CKAY ' ¥ RS T Raes- At
RETURN S nae e
549 WRITF(2,554)M,KUDE ; ' i o
STOP
5bu FORMAT (/7 Hu PUlNT.Ib 26k HAS UNDEF INED CODE NUMBER,15)
END




3. Reynolds equation
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DIM W21 1:RBLE21 1sBE21 JeFL 21 15 FL 21 ]
FEM FILE i2 REYMOLDS EQUATION

FEWM F FEEZ SRURAREL«M AXIAL DISP
D=3.175

H=8, 325

FEM RERDIHEG PRESSURES

FOR I=2 TO &

READ FLI]

FEII=FLII=PLI]

HEXT I

FOR I=9 TO 15
READ PLI1]
FLIJ=PLII*PLI1]
HEAT 1

FOR I=16 TOQ 20
RERD PL11]
FCIJ=FLTII#PL[I]
HEXKT 1
PL11=PL21]

FL21 1=8
FLil=FL2]

FL21 I=8

REM RERDIHG DISPLACEMENTS
FOR I=1 TO ¢
FEAD WLIJ

HEXT 1

FOR I=8 T0 14

FEAD WL

HEXT 1

FOrR I=15 TO 21

FEARD WLI

HEKT 1

FOR I=2 TO 28

ELII=I*CI-123

BLIJ=3% Wl I+ =ML I~1 I -+ T J0%2%Ds+1 7RI ]
FLIX=FLI+13#c1+BL 1 1#Ns20024FL =1 J%51-BL I J#D<20-2
FLI1=SaRCFLI 12 : :
FEINT "FP="iPLI]

HEXT 1

FLl1l=PL 2]

FL21 1=8

EEMDATA FOR FRESS

IATH 4. a2 .
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