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Synopsis 

The object of the research was to study the effect of forced 

harmonic vibration on solid fuel rocket motors. A rocket motor consists 

of the motor case (which contains the propellant) and the blast tube 

attached to the aft end. The propellant is a viscoelastic material, no 

reliable data on the complex modulii of the propellants were available so 

a method was developed to measure it - the admittance method. This consists 

of vibrating a rod longitudinally, the applied force is kept constant 

the acceleration at the free end and the phase difference between force 

and acceleration are measured. The frequency is varied and a set of 

measurements obtained for each frequency. These data are then used in a 

computer program to iterate to the complex modulus necessary to give the 

particular acceleration and phase at the particuler frequency. Thus 

values of complex modulus are obtained for each frequency at which 

measurements are made. The modulus thus measured was used to calculate 

(4) the acceleration and phase at the forced end of the rod in 

longitudinal vibration 

(ii) the acceleration and phase at both ends of the rod in 

transverse vibration 

(a44) the acceleration along the length of the full scale sample. 

The calculations compared very well with measured data. 

The rocket motor was then analysed as rigidly connected beams. 

The equations used were the Timoshenko beam equations which include the 

effect of shear deformation and rotary inertia. The unknown coefficients 

were found from the end conditions of the beams. 

Analyses were carried out on four different motor designs, 

experimental data were available for three of them. The calculated 

and measured results were in good agreement even though the data were 

not detailed enough to give an accurate representation of the constraints.
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41.41__Rocket Motors and the Problems of Environmental Vibrations 

Ate Missiles 

The rocket motors manufactured at Summerfield Research Station 

(SRS) are used to power guided tactical missiles. SRS motors are used in 

most of the British weapon systems e.g. 

British Aircraft Corporation: Thunderbird and Rapier (ground-to-air 

missiles) 

Swingfire, Vigilant and Hawkswing 

(anti-tank) 

Hawker Siddeley Dynamics: Seadart and Seaslug (ship-to-air) 

SRAAM (air-to-air) 

Short Bros. and Harland: Seacat (ship-to-air) 

Tigercat (ground-to-air) 

Many of these systems have been sold overseas, also a number of 

contracts have been won by SRS for motors to power missiles developed in 

other countries. 

164 02 Rocket Motors 
A missile usually has two stages of powered flight - a boost 

phase and a sustain phase. The boost is high thrust/short burn for the 

initiel lift off and the sustain is low thrust/long burn time to convey 

the missile to its target, rocket motors may be used for both phasese 

The missile can have separate boost and sustainer motors or a dual purpose 

motor. Rocket motors can be powered by solid or liquid fuel. Only solid 

fuel motors will be considered in the present work since this is the type 

manufactured at SRS. 

A motor consists of the propellant, the case, an igniter and a 

blast tube or nozzle. There are facilities at SRS for the manufacture and 

assembly of all. the components. j 

10103 Propellant 

The fuel used in the motors manufactured at SRS is cast double 

base (CDB)propellant i.e. it is made by a casting process, the basic



ingredients being nitroglycerine and nitrocellulose. There are two types 

of CDB propellant, conventional and composite modified, the latter has the 

double base matrix with large proportions of aluminium and oxidiser, it 

has a higher energy rating than the conventional CDB propellant. Other 

proprietary ingredients are added to the fuels-to improve ballistic 

performance, to ensure it is safe to handle and to inhibit adverse chemical 

changes. 

The propellant is a viscoelastic material, it has a high 

coefficient of expansion, most properties are temperature dependent, 

it is homogeneous, virtually incompressible and the density is about 1/5 

that of steel. 

ot oh Motor designs 

There are two types of motor design - cartridge loaded and 

ease bonded. 

With a cartridge loaded motor the propellant is cast into a 

cylindrical mould which has a loose lining of inhibitor (a material which 

does not burn); as the propellant solidifies the inhibitor bonds to it 

on the outer surface (with an end face left free). When removed from the 

mould the propellant plus inhibitor is called the 'charge'. The charge 

is loaded into the case; it can be loosely inserted (with no restraints), 

located in place on spigots or bolted and/or bonded to the case at the 

forward end. 

With a case bonded motor the propellant is cast directly into 

the case (which hes a bonded inhibitor lining). 

A charge can either be solid or have a central aperture down the 

length (called a conduit). A solid charge is ignited at the rear and burns 

along the length - hence the alternative name of "cigarette burner". The other 

type is ignited at the forward end and burns radially outwards along the entire 

length. The shape of the conduit is designed to give a variation of burning 

surface which results in the specified performance.



3 

Solid charges are always cartridge loaded but radial burners 

can be case bonded or cartridge loaded. 

Because there is a larger burning surface, a radial burner 

burns more quickly than a solid charge of the same propellant. 

The coefficient of expansion of propellant is about 18 times 

that of steel (from which the case is usually made) and the motor must 

withstand ambient temperatures from 40°C to +60°C. As the motor cools the 

propellant shrinks more than the case, with a case bonded radial burning 

charge deformation of the inner surface helps to alleviate the stress on 

the bonded interface. If the bond between the propellant and the inhibited 

case is broken then the burning surface is increased and when ignited the 

motor will not perform as designed. 

If a solid charge was bonded to the case, a drop in temperature 

would cause the propellant to pull away from the case or break itself; 

this is why solid charges are cartridge loaded and not case bonded. Since 

solid charges burn longer, when a long burn time is required the design is 

a cartridge loaded motor. 

401 5 Qualification tests 

  

Before production begins on a new motor design, it has to pass a 

series of customer specified ‘qualification tests', These are to show that 

the performance is as required (e.g. burning rate, burning time, thrust, 

total impulse etc) and to ensure that the motor will withstand environmental 

conditions without deterioration of safety or performance standards. The 

environmental tests include temperature cycling, high humidity, drop tests, 

bump tests and environmental vibration tests. If the motor design does 

not pass all these qualification tests then penalties are incurred while 

problems ere rectified - hence a series of pre-qualification trials are 

completed to ensure that the motors will not fail. 

40126 Environm    ntal vibration tests 
These trials are to simulate the transport vibrations 

encountered while the motor is being carried on a lorry, plane, ship etc. The
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actual test is specified by the customer but is usually low frequency 

forced vibrations (10 Hz to 4 000 Hz) for a long duration (several hours). 

It can consist of random or sinusoidal vibration. The sinusoidal 

vibration may consist of forcing the motor at one frequency (usually a 

resonance) or sweeping up and dow through a specific frequency range. 

The whole vibration specification can pontaia just some or all of these and 

usually tests are carried out at several temeratures. 

10167 The problem 

In 1970 during the pre-qualification environmental vibration 

trials of one particular motor (A), there were several failures. The 

motors were stripped down after the trials to be inspected and it was found 

that motors tested at the high temperature (40°C) were damaged. Motor (A) 

was a cartridge loaded motor - it was about 2.5 m long in total, the 

propellant within it about 1.5m. The propellant was bolted end bonded 

to the forward end plate which was rigidly connected to the case, otherwise 

the charge was free to move within the constraints of the case. At 20°C 

the gap between the charge and the case was 1 mm and at 40°C it was 0.64 mm. 

The damage was about 1 m from the fixed end and was in the form of a radial 

erack in the inhibitor. 

Several modifications were made and after about three months 

the problem was overcome by supporting the charge along the length with 

rubber strips (thus still allowing room for expansion). This was 

considered to be a temporary expedient,so in 197i the topic of 

"The vibrations of rocket motors' was offered to the University of Aston 

as an IHD project. It was hoped to discover how the charge was damaged 

and devise a method for detecting and removing problems at the design 

stage with future motors.



Di 

4.2 _Viscoelasticity 

40204 General 

A viscoelastic material is one for which the mechanical behaviour 

exhibits viscous and delayed elastic response to stress in addition to instan- 

taneous elasticity, the strain being dependent on the rate of loading as well 

as the level of load and, in general, not all of the strain being recoverable. 

The material displays creep under static loads and the response 

to dynamic loads is damped (because of the viscous effects). 

If the material is subjected to a constant applied load then 

the plot of strain/stress vs time gives the ‘creep compliance’ Dorp(+)s 

see Figure 1+1(a). 

If the material is subjected to a constent strain then stress/ 

strain vs time gives the 'relaxation modulus' Bnei (t)s see Figure 1.1(b). 

There also exists a dynamic modulus E* end e dynamic 

compliance D*: 

for a harmonically varying stress and strain, 

  

  

stress 
B= 

strain 

strain 
and Dt we 

stress 

4 

then = 
   Et 

E* end D* vary with frequency # since the strain is dependent on the 

rate of loading. 

As the response is damped the strain is not in phase with the 

stress so E* and D* are complex numbers (they are also known as the 

complex modulus and the complex compliance). 

i.e. for a harmonically varying stress, 

o,(%) = Gene



the resulting strain, 

10 iwt 
«,(t) = €& ee 

where § is the phase difference between stress and strain, the strain 

always lagging behind the stress. 

  

o.(t) o 
then eos pee” 

€(¢) en 

which is complex . 

The compliances and moduli are, in general, also temperature dependent. 

Note: These moduli apply for simple extension, there are equivalent 

moduli for shear deformation, bulk longitudinal deformation and bulk 

compression and dilation. The present research deals only with the case 

of simple extension so the others will not be discussed here, they are 

related to the extension moduli and are fully covered in Ferry (48). 

422.2 Stress-strain relationships 

For a linear elastic material the stress%,is related to the 

strain ¢,by Hooke's Law, i.e. 

a Ee, 422(4) 

where E is Young's modulus. 

For a linear viscoelastic material the relation can be 

written as 

P(e) = Q(e) 442(2) 
where P and Q are differential operators, 

m a 

with Pz ) py, 
= a) Rex 

‘ea ot 

n ak 

and Qe a 

=1 ot 

see Fligge (49).
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where 

and 

ise. P(s) 

P and Q. 

and 

Then 

or 

where 

4 20h 

Viscoelastic moduli and compliances 

The Laplace Transform of Equation 1.2(2) is 

P(s) o,, = Qs) €, 42(3) 

= 

P(s) = a 

= 

Us) = de 

and Q(s) are polynomials in s with the same coefficients as 

‘Gand €,represent the Laplace Transforms of Gand ¢ respectively. 

As) 

* p(s) 

al
 

u al
 

  

Q " E(s)é, 402(4) 

re As) 

Ps) 
Creep compliance 

A constant stress, o,,(t) = 9), is applied and the variation 

of strain with time, ft), is measured to give the creep compliance 

Since 

then 

and since 

then 

€,{t) 
  Dorp(*) ae 

° 

€(t) = Dorp(*) °, 

cx Dorp(8) %o 

o(t) = e, 

= o/s 

substituting in 1.2(3) gives 

    0
 (s) = = 4.2(5) erp



402.5 Relaxation modulus 

A constant strain, €,, is maintained and the relaxation 

modulus is found from the variation of stress with time, 

o,,(+) 
£ 

° 

  

Bei 't) im 

Since a(t) = Be (t) € 

then = Ee1(s) a 

and since €(t) ae 

then ic = </s 

Substituting in 1.2.(3), 

eS Qs) 
Beis) = aya" E(s)/s 4.2(6)   

4226 Dynamic modulus 

If it. is assumed that the stress is varying harmonically 

with frequency W i.e. T= 9, Looe then by substitution into 4 e2e(2) 

n ak " n ak 

‘om wt) _ ae wt 
( Dt ay ) (s.¢ ) ( dt atk ) (< ) 

n m 
k iwt sa)* iwt 

therefore 2 Py (40)* o,e = », a,,(40) €e 

=0 =o 

Le. [ *s) jes ain [ as) ‘te a 

a Eales : 

or Ga EFC, . 

mare Be [zo | - [= Heats) | .2(7) 
s=iw



42207 Elastic end viscoelastic analyses 

If we consider the analysis of a continuous medium, there 

are three types of equations which formulate the problem: 

41. Equilibrium conditions 

2. Strain-displacement relationships 

3. Stress-strain relationships 

and the only difference between an elastic analysis and that for a 

viscoelastic substance is the third, the constitutive equation. 

For a linear elastic material this is %,= E¢,and for a linear visco- 

elastic material it can be written 

B,) = 9s) 
It has been shown in section 1.2.3 that in the transformed domain 

o,= Es) ¢,, 

thus it can be seen that the analysis for a viscoelastic material can be 

obtained from the solution of the corresponding elastic problem by 

replacing the unknown variable with its Laplace Transform, replacing 

E with E(s), and then inverting back into the time domain. This is 

know as the ‘correspondence principle’. See refs. (11), (48) and (49). 

Because of the complicated nature of the viscoelastic 

problems, the inversion will probably have to be carried out 

numerically. See refs. (8) and (37). 

If the stress varies harmonically with time the constitutive 

equation is o = E*€ (equation 1.2(7)), therefore in dealing with 

vibration analysis, the correspondence principle states that: 

The solution tOa viscoelastic problem can be obtained from that of an 

elastic material by replacing the elastic constants with the 

equivalent complex, frequency-varying functions. (See refs. (35) and 

(43)). 

The present research considers forced vibrations so this 

latter form of the correspondence principle is used throughout. The 

Yours's modulus E is replaced by the complex modulus E*(w).
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If free vibrations are considered, E is replaced with 

E* (o, + ia,) since the natural frequencies are complex because 

the free Vibrations are damped; o, is the frequency and a, is 

the attenuation factor. 

4.2.8 Viscoelastic models 

The solutions to most viscoelastic problems that have 

been solved, have been arrived at by using simple models - a 

combination of elastic springs and viscous dampers. (See refs. 

(40), (19), (20) and (50)). The simplest are the Maxwell and 

Kelvin elements, refs. (44), (49). 

The Maxell element is a spring and damper in series 

and the Kelvin element is a spring and damper in parallel. 

The stress-strain relationship for the Maxwell element is 

( oc 4a da 
145 = )ae(e—)« 

Keaggy) Nl at 

cs 
then E(s) = aa 

igs 

K- 

s ao Bo gi(*) = Ke 

vo
 

Q 8 s
 = = £ w 

“
=
 

A
l
o
 

ie ct
 

o
m
 

T
S
 

re2/k ae /K co 
B(0) ae te 

Iz i*¥ Kk 

I eae 6 eee 
IK c 

  

Maxwell element
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The stress-strain relationship for the Kelvin element is: 

(K+o—) GQ= (Ktom) & 
iy at 

then E(s) = K+es 

and Bei (t) = K + c8(t) 

whereS(t) is the Dirac delta function 

4 -K/et Dept) = = Ute Eick) 

E*(w) = K+ ico 

Kelvin element 

    
  

      

Clearly such simple models do not adequately describe the 

behaviour of real materials so they have been extended; the'Maxwell 

Model'consists of n Maxwell elements in parallel and the 'Kelvin Model' 

consists of n Kelvin cloments in series. (41), (49). 

ZHI} 
Maxwell model Kelvin model 

  

The Maxwell Model is used when the relaxation modulus B..91(*) 

or the dynamic modulus E* is required as they are easily derived as:
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n 
-t/a 

Ene (t) = he e j 

jest 

wK,a@ 

and E*(w) -) eee + id |] (see Ferry (48)) 
+4, W 140°, 

where K, is analogous to the stiffness of the spring in element j. 

Cy is the ratio of the damping factor (¢5) of the dashpot in element j 

to the spring stiffness K,- 

(+) The Kelvin Model is used when the creep compliance Dorp 

or the dynamic compliance D* is required since they are simply 

expressed as: 

n 

Derp(t) = \ B, Geer! "4:) 

B wo j 
oe ty eas ss" 5” 1 ad 

where B; = 1/K; 

4.2.9 Fitting viscoelastic models 

The method used to find the parameters of these models for a 

particular material is to measure one of the moduli and to fit the 

model's formula for that modulus to the measured values. 

CoB If a Maxwell element is to be used, the relaxation modulus 

of the material can be measured and the curve Bei (+) eke ete 

is either fitted to two measured points or a least squares method is 

used to fit the curve through several points. 

The moduli are all interrelated and, in theory, having 

obtained one, the others can be evaluated:
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from equation 1.2(5) erp(s) = 1/s E(s) 

from equation 1.2(6) Eo (8) = E(s)/s 

from equation 1.2(7) E*(w) = 4/G*(#) = [=2)] 
s=iw 

422.10 Time-temperature superposition principle ( Refs.(41) and (48)) 

There are difficulties in determining the relaxation modulus 

and creep compliance in that the values change so rapidly with time 

that it is impractical to measure them accurately. See, for example, 

the relaxation modulus in fig.1+2(b),at t= Ome, Engi (*) = 500 and at 

+07", Batt) = 48. 

This problem is overcome by using the time-temperature 

superposition principle: 

Bei (tT) = Big (t/4,, ae) 422(8) 

where T, is the (arbitrary) reference temperature. 

This states that E9(t) measured at a time t and a temperature T is 

equivalent to the modulus at a temperature Ty, with the time axis shifted 

by a function a, (called the 'shift factor'). 

Thus if the relaxation modulus is measured at several 

temperatures and plotted against 4/4, 4a single composite curve will be 

formed corresponding to Bnei (t) at the temperature TO A considerable 

extension to the time range is achieved in this way. 

From the composite curve of the relaxation modulus vs t/a, 

at temperature T, (fig.1.2(b)), and the graph of ovat (fig.1.2(a)), 

the modulus for any temperature can be found by substituting the 

particular value of 4 into equation 1 -2(8). 

A similar process is used to extend the time range of the 

creep compliance, 

Darp(tsT) = Doy, (4/2, 7)
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402041 Frequency-temperature superposition principle 

It is difficult to devise an experiment to measure the dynamic 

modulus (or compliance) over a large frequency range; the range can be 

greatly expanded by using a similar superposition principle, 

the frequency-temperature superposition principle: 

E*(w,T) E*(a,0, T)) 

and D*(o,T) D*(a,, we) 

where ¢ is the same as given above. 

Thus by making measurements at several temperatures it is 

possible to achieve a considerable extension to the frequency range in 

this manner. 

See Ferry (48), chapter 11 for a full discussion of the 

superposition principles (whichis called the ‘method of reduced 

variables'). Also described are methods for finding a3 several 

empirical formulae are given.
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4-3 Outline of Investigation 

The investigation began with experiments at Aston on a piece 

of inert propellant (i.e. containing no explosive constituents). 

A rod 0.9 m long with a circular cross section of diameter 0.15 m was 

used; it was vibrated longitudinally and transversely. The response 

to forced harmonic vibrations was measured and is reported in 

section 2.2. Having become familiar with the experimental technique 

the equipment was transported to IMI Summerfield and the tests 

repeated on live propellant. These experiments are reported in 

section 2.3. 

The theoretical approach initially used was the lumped 

parameter method; this can be used for longitudinal and transverse 

vibrations. A continuous beam is approximated as point masses 

connected by springs and dampers. It is a useful approximation for 

complicated elastic systems with little or no damping and gives good 

agreement with an exact analysis when using only a few point masses. 

The difficulty was to describe the pe tenia properties. It could be 

done by using Maxwell, Kelvin or more complicated models, however if 

the model was gocd enough to describe the material behaviour adequately 

it was extremely difficult to solve the ensuing matrix equations, ses 

Ref. (29). Since forced harmonic vibrations were being considered it 

was possible to use the simpler correspondence principle given in 

section 1.2.7 i.e. substitute E* for E in the analysis for a similar 

elastic system. As the test pieces and rocket motors generally consist 

of uniform beams and cylinders the equations are not difficult to 

formulate. The difficulty lies not in the shape of the structure but 

in the propellant's dynamic properties; thus if graphs of E* vs 

frequency and temperature are available then for a specific frequency 

and temperature the value of E* can be used to calculate the response. 

There is thus no need to actually categorise either the type of damping 

or the variation of modulus with frequency and temperature.
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Initially the E* graphs were obtained from the relaxation 

modulus as described in section 1.2.6. 

Longitudinal vibrations were analysed using the single degree 

of freedom equation for a long thin rod, this assumes a constant stress 

over the cross section. 

For transverse vibrations the single degree of freedom 

Euler-Bernoulli equation was used (see Appendix A). The theoretical 

predictions did not agree with the measurements on the test piece, it 

was thought that the complex modulus was not accurate so a method was 

devised to measure it directly. This is fully discussed in chapter 3, 

but essentially it consists of forcing a small rod in longitudinal 

vibrations and measuring the acceleration (both magnitude and phase) of 

the free end. The complex modulus is obtained from a computer program 

which iterates to find a value of E* to give the measured response at 

that particular frequency. In this way E* was measured for frequencies 

in the range 100-1 000 Hz and temperatures between -10 and +),0°C. 

The modulus thus measured was appreciably different from that calculated 

from the transform of the relaxation modulus (see fig. 1.3). 

The complex modulus was first verified by comparing predicted 

and measured values of acceleration at the forced end of the rod in 

longitudinel vibrations. There was good agreement throughout the 

frequency range. (Section 3.6) 

The same rod was then harmonically forced in transverse 

vibrations and the measured accelerations compared with calculations, up to 

the first resonance they agreed quite well but not at higher frequencies. 

The analysis was amended to include the effect of shear deformation and 

rotary inertia (i.e. the Timoshenko beam equations). The discrepancy 

between measured and calculated was then within 10% throughout the 

frequency range. (Section 3.7)
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The Timoshenko beam equations were solved for the large test 

pieces used in the preliminary tests; with these equations and more 

accurate values of E* the calculated response agreed very well for the 

first seven bending modes. After this, secondary resonances (coupled 

bending and radial modes, transverse shear modes etc) were excited; 

as large displacements cause the problems in rocket motors the low 

frequencies are much more important, so the bending theory is quite 

adequate. This is fully discussed in section 3.8. 

The modulus measurement technique was also used on a sample 

of natural rubber, the results are discussed in section 3.9. 

The whole motor was then studied, three computer programs 

were written to analyse the response of motors to forced harmonic 

vibrations: 

4- case bonded motors when the applied forces are specified, 

2 case bonded motors when accelerations at control points 

are specified 

3. ~=cartridge loaded motors 

The case bonded motor was modelled as two rigidly connected 

uniform beams (main motor body and blast tube or nozzle). The main motor 

body is an elastic/visco-elastic composite structure and the blast tube 

or nozzle is assumed to be elastic. 

The cartridge loaded motor was considered to be three 

rigidly connected uniform beams (motor case, propellant and blast 

tube or nozzle), the propellant being viscoelastic and the other two 

beams elastic. The results from these models show good agreement with 

measurements made on actual motors. These three programs should be 

adequate for the analysis of all case bonded motors and for all cartridge 

loaded motors where the propellant is secured to the case at the forward 

end. All the details of this work is given in chapter }.
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PRELIMINARY EXPERIMENTS ON THE FULL SCALE PROPELLANT 

SAMPLES,
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2A Experimental set-up and procedure 

The equipment used for these preliminary experiments was 

as follows: 

Oscillator - Muirhead 2 phase L.F. D-880-A 

Amplifier - Radford MA 25 

Vibrator - Goodmans 50 

Accelerometers - J. Langham-Thompson XA2 

Load cell - Endeveo 2103-100 

Charge amplifier - Environmental equipment 6 channel CVA-6 

Oscilloscope - Telequipment D33R 

Voltmeters - Advance A.C. VM78 

A.C. Ammeter 0-2 amps 

A block diagram of the system is shown in fig (2.4). 

Two test pieces were manufactured one of inert (or ‘dummy') propellant and 

the other of live propellant (No.1). The dimensions of the two pieces 

were the same: 

Circular cross section, diameter = .15m 

Length = .9m 

A plate was bonded to each end of the beam so that the specimen could be 

suspended at one end from a crane and coupled to the vibrator at the 

other end. 

Throughout the experiments the force was kept constant and 

the accelerations at various points were measured. The phase difference 

between two accelerometer signals (one used as a 'standard' and the 

other as the variable) was ‘estimated' from the oscilloscope i.eo 

anywhere between 270-0-90 was 'in' and anywhere between 90-180-270 was ‘out’
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2.2 Inert Propellant 

Longitudinal vibrations: The test piece was suspended above 

the vibrator which was coupled to the specimen by means of the bottom 

plate. An accelerometer could be screwed into either the top or bottom 

plate. The measurements from this experiment are given in fig (2.2). 

Transverse vibrations: The vibrator was turned through 90°, a 

jubilee clip was strapped round the test piece near the bottom plate and 

the vibrator push rod was coupled to it. The accelerometers were also 

attached to jubilee clips so they could be moved up and down to measure 

modal shapes. 

The measured responses of 2 points along the beam 

(at 0.03 m and 0.9 m from the forced end) are given in fig. (2.3). 

Note that the maximum values of the acceleration do not occur at the same 

frequency, this is due to the damping in the material. For a lightly 

damped material (steel, for example) the natural frequency in free 

vibrations, the maximum acceleration and displacement in forced vibrations 

all occur at the same frequency, the ‘resonant frequency'. Also the 

maximum will occur at the same froquency wherever the measurements are 

made. It can be seen that when the damping is not negligible there is no 

common frequency where all these phenomena occur, hence any allusion to 

the ‘resonant frequency' of a damped materiel should be carefully defined. 

The modal shapes measured at specific frequencies are given 

in fig. (2.4). The effect of damping is clear here too, the displacement 

at the forced end is appreciably greater than at the free end, the energy 

is absorbed as the wave travels along the beam. 

2.3_Live propellant (No. 1) 

The above equipment was transported to SRS and experiments 

were carried out on the specimen of live propellant. Only transverse 

vibrations were studied in this case.
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Acceleration vs frequency plots for three points along 

the length of the beam (at 0.1 m, 0.2 m and 0.3 m from the forced end) 

are given in fig. (2.5); modal shapes at specific frequencies are 

given in fig. (2.6). 

It can be seen that the live propellant is much more 

heavily damped than the inert material and the comments on the effects 

of damping given in the previous section are even more pertinent here. 

The main purpose of these preliminary experiments was to 

discover if the inert and live propellants had similar dynamic properties. 

It was hoped that they would be similar, then experiments would be carried 

out using the inert propellant, the results of which could then be used to 

predict the response of the live materials. 

It was decided that the properties were too dissimilar to 

pursue this plan; also, although the relaxation modulus of most of the 

live propellants had been measured, there were no similar data for the 

dummy so it was decided to continue with experiments on live propellant 

only.



  

  

  

    

(Q)_LONGITUDINAL VIBRATIONS 

  

  

  

          

          
  

  

  

  

  

  

  

  

  

    

  

  
  

      

  
    

  

    

  

  

      
              

  
        

  

  

    
  

  

  

  

      

      

        
      

OSCILLATOR] . , 

ACCELEROMETER 

TEST 
| PIECE 

POWER 
AMPLIFIER 

FORCE 
TRANSDUCER 

AMMETER VIBRATOR Fuaee 

CHARGE 
AMPLIFIER 

VOLTMETER VOLTMETER 

t 

2 CHANNEL 

OSCILLOSCOPE 

(b)_ TRANSVERSE VIBRATIONS 

RI OScILLATO Peeinicce 

VR 
POWER 

FORCE 
PMGLIFIER TRANSDUCER 

ACCELEROMETERY 

AMMETER VIBRATOR | 

© CHANNEL 
CHARGE 

AMPLIFIER 

VOLTMETER 

VOLTMETER 
VOLTMETER 

2 CHANNEL 

ISCILLOSCOPE 

  

    
  

SET-UP FOR



ACCELERATION : "ACCELERATION 
    

    

  

  

      
    

    

  

                                            

200 200 400 500 1000 200 =. 300 400 500 eco 
FREQUENCY (H2) FREQUENCY(H#) 

(@) FORCED END. (b) FREE END. 

FIG. 2.2 LonaiTUDINAL VIBRATIONS - INERT PROPELLANT.



ACCELERATION 
  

  

  

  

  

  

  

  

  

  

  

                                    

egy 

= i Fence 
scoot ALLY P| KN 

epee ht. 
At SP OS 

; f i : 
0:04 

pee {Let 
ee y 

0:02 2 

IN LTA NY FREE 
INE END. 

? 50 100 200 300 400 500 {COO 

FREQUENCY 

(Hz) 

FIG. 2.3 TRANSVERSE VIBRATIONS - INERT PROPELLANT.



de 260 HE 

‘ 

ee 740 Hz 

: [Lv 280 Hz 

FIG. 2.4 MODAL SHAPES -TRANSVERSE VIBRATIONS 
INERT PROPELLANT.



ACCELERATION (9) 
  

  

  

  

    
  

  

  
  

    
    

                                      

28: ; N 

/ NY “os 
a 0: 10m 

24 

20: 

lo 

12 

x= 

Y\O-20m 

: NI 

an Xe 

4a —— 0:30m po J. 
es | 

Sete MMC ee 
° 
20 40 6 80 100 200 400 00 800 1000 

FREQUENCY (Hz) 

FIG. 2.5 TRANSVERSE VIBRATIONS - PROPELLANT N2 | 
ACCELERATION MEASURED AT <= 0-1m,O:2m,0-3m 
FROM THE: FORCED END.



=. 40 Hz 

a = Sricoine 

a: 300 Ms 

I 480 Hz 

620 Hz 

FIG. 2.6 MODAL SHAPES - TRANSVERSE VIBRATIONS - 
PROPELLANT N? 1.



Chapter 3 

MEASUREMENT OF THE COMPLEX MODULUS 
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3.4__Introduction and Literature Survey 

The present research deals with forced harmonic vibrations of 

viscoelastic materials. In order to analyse these conditions it is 

convenient to use the second form of the correspondence principle (see 

section 1.2.7) - ise. the solution to a viscoelastic problem can be 

obtained from that of an elastic material by ‘replacing the elastic 

constants with the equivalent complex frequency-dependent parameters. 

Since the work deals exclusively with beam vibrations, the 

elastic constant needed for the analyses is Young's Modulus E. For the 

viscoelastic analysis, E is replaced with the dynamic modulus E*(w). 

The relaxation moduli of most of the propellants had previously 

been measured so it was decided to use these to calculate the dynamic 

moduli with the equation: 

m0) = [2 Farle) | 3e4.(1) 
s=iw 

where Beet (s) denotes the Laplace Transform of E91(t)- 

(see section 1.2.6) 

The Maxwell Model in parallel with a spring was used, i.e. 

  

n 

Bilt) = Ky + Ma, ea od 341..(2) 
a 

and hence from 301-(1) 

Eto) = K+ 304 (3) 

The K j and as are found by fitting equation 3.1 .(2) to the 

measured relaxation modulus, they were then substituted into equation 

3.1.(3) to give B* (w). 

E*() calculated in this way was ‘used to compute the response 

to forced transverse vibrations of the large scale specimen used in the 

preliminary experiments. The response calculation was based on the Euler- 

Bernoulli equations (see Appendix (A)). The calculated values were
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compared with the measured response (reported in Chapter 2); the 

comparison is shown in fig. (3.1), clearly the agreement is not good. 

Obtaining E*(w) in this way would be erroneous if the basic assumptions 

were not valid. Two of the most important assumptions are: 

(4) that the material is linearly viscoelastic, 

ise. if a stress 9, produces a strain €> 

then a stress no, will produce a strain of 

nf, where n is a constant. 

The material was found to be linear for the order of displacements 

encountered in the vibration tests; however, the strain specified 

for measuring the relaxation modulus is usually 5% and it is thought 

that the material is non-linear for such large strains. 

(ii) that it is possible to perform the time-temperature 

superposition (see section 1.2.10). 

By varying the temperature at which the relaxation modulus is measured 

it is possible to considerably extend the time range by using the above 

principle. A plot of @ vs. T should be a smooth curve passing through 

the measured values of a. Figure (4.2(b)) shows the graph of log a 

vs. log T for propellant No. 1. It can be seen that there are quite 

large deviations from the smooth curve. 

Further doubts arise due to: 

(i) the range over which the relaxation modulus is valid; 

Ferry (Ref. (48)) advises caution when using values of 

modulus obtained at temperatures far removed from the 

reference temperature. In this present work the frequency 

range of interest is 10 Hz to 1 000 Hz; assuming 4 is 

approximately equivalent to 1/t then the important time 

range on the relaxation curve is 40°" to 10 ey seconds.
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This implies temperatures of about -1 2°c ana 0°C (from 

fig. (4.2(b)), for log a seh, Ts 42°C, etc.), assuming 

actual measurements begin at t = 1 second. The reference 

temperature is 20°C. 

(44) Practical limitations - at extremes of temperature it is 

differeht to maintain a constant 3% strain - at high temperatures 

the propellant is very soft so the strein will easily increase, 

when cold the material is brittle so the specimen could break 

before the specified strain level is reached. If the level 

cannot be achieved, the stress is calculated assuming that 

the material is linear and scaling up or down as appropriate, 

i.e. if the strain is 104 and the stress o, then it is assumed 

that at 54 the stress would have been o,/2. 

In view of these uncertainties it was decided to devise a 

technique for direct measurement of the dynamic modulus. The method is 

described in the subsequent sections of this Chapter. 

A literature search was conducted to find a method to measure 

the dynamic modulus E*; general surveys of the various techniques are given 

in References (46), (47), (48), (52). 

There are many established methods, they fall into several 

different categories: 

(4) The measurement of the shear modulus G* (see References (1), 

(4), (9), (23) and (4d)), then the use of the equation 

E* = G* (2(44+v*)) to obtain wy *; it is usually assumed that 

v* is constant and equal to 4 This method was not used 

because of the necessity to make the assumption about v*.



(44) 

(444) 

(iv) 

2h 

The measurement of the response of a beam to forced transverse 

vibrations and the use of the Euler-Bernoulli equations to find 

E*, It is found either by approximation (see reference (53) for 

frequencies below the first resonance) or by an iterative technique 

(see (5)). Transverse vibrations are inherently more complicated 

to analyse than longitudinal vibrations, so difficulties are 

introduced without any obvious advantages. References (31) 

and (36) describe the limitations on sample geometry for the 

Euler-Bernoulli equations to be applicable (i.e. when it is 

possible to ignore the effect of rotary inertia and shear 

deformation) and it is shown that the equations are valid only 

for the first few modes of vibration. 

The measurement of resonant frequencies of a beam, using 

either forced or free, longitudinal or transverse vibrations, 

(References (54) - (58)). This method is not suitable if the 

material is highly damped (as the propellent is) - free 

vibrations are attenuated so rapidly that no useful results 

can be obtained and with forced vibrations the response curve 

does not show a sharp peak (possibly no peak at all; see the 

result reported in Chapter 2), so it is difficult to distinguish 

where the maximum value occurs. 

The resonant frequency methods can be utilised when the visco- 

elastic material is used in conjunction with an clastic 

material in a compound structure. See References (3), (25), 

(26), (31) and (36) for techniques using viscoelastic/elastic 

layered beams in transverse vibrations. The same comments 

apply as in section (4i) with additional complications generated 

due te the necessity to extract the complex modulus of the
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viscoelastic material from the measured ‘composite modulus'. 

(v) The longitudinal vibrations of a Viscoelastic rod with an 

added end mass also gives measurable resonant frequencies. 

References (2) and (30) treat the rod as a complex spring 

with no mass, Reference (38) includes the effect of the mass 

of the rod. This method as described in the references gives 

E* at resonant frequencies only, although by varying the added 

mass the resonant frequency can be varied. 

These various methods were not suitable for the reasons 

specified so the "admittance method" was devised; a free-free rod with 

bonded end masses (one to connect the vibrator and the other to facilitate 

suspension of the sample) is forced in longitudinal vibration. The input 

force is set at a constant level Fy and the acceleration at the free end 

(lel) and the phase difference between the two (@) are measured, then 

Ip| a 

s 
to compute E* from these data using an iterative technique. In this 

  the cross admittance = « A computer program has been written 

way E* can be measured over a large frequency range and is not dependent 

on ‘resonant frequencies’. 

The values of E* can easily be verified by using them to 

eA gcceleration at    forced predict the direct admittance SEce ge 

and comparing with measurements (see section 3.6). 

E* can be further proved by calculating the direct and cross 

admittances of the rod in transverse vibration and comparing with the 

measured responses (see sections 3.7 and 3.8). 

A variation of the “admittance method" is given in Reference (32) 

(reference was discovered after the present experiment had been designed). 

The Transfer Impedance method of (32) consists of forcing one end of a rod 

in longitudinal vibrations, the other end is fixed (i.e. it is attached to a 

heavy mass). The variables measured are the force at the fixed end, the
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acceleration at the forced end and the phase between the two. Using 

an iterative technique E* is calculated from the transfer impedance:- 

Acceleration at x = 0 / Force at x =1. Corrections are necessary to 

compensate for the finite end mass. 

The admittance method was preferable in that it is easier 

to attain a free end rather than a fixed end. The end masses are 

incorporated in the present analysis so it is marginally more 

complicated than that of Reference (32) but with the use cf a computer 

this is unimportant.
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3.2 Theoretical basis of the method 

3.261 Forced longitudinal vibrations of an elastic rod with 
  

end _masses 

It is assumed that the rod has a uniform cross section and 

that it is long relative to the cross section, then lateral displacements 

can be ignored and it can be assumed that the stress is constant over the 

section. 

  

      
Mm > ee m™t—> F 

  
  

  

n vw
 

Mass n, at x 

u °o
 Mass nm, at x 

Force F = ES oan is applied to mass nm, 

Differential equation of motion 

  

Consider an element 6x of the rod Ac, | oa A(G+ oh Sx) 

ax 

bx 

The equilibrium equation for this element is: 

a(o Coe ox) - AO, = ae 
Mierax eee ate 

where a, is the stress in the x-dirsction n/n") 

A is the cross sectional area (m*) 

p is the density (kg/m?) 

u(x,t) is the displacement (m) 

then 

do, au 
epi : 3.2.(1) 
ax at?
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Assuming it is a linear elastic material, then 

oC = Ee, 

where E is Young's Modulus (N/m?) 

and is the strain in the x-direction 

de, au - 
then Eee ee 3.2.(2) 

ox ot 

The strain-displacement relation is: 

ou 
qs 
: ox 

Substituting into 3.2.(2) gives: 

37u 37u 
Res 3.2.(3) 

ax at? 
iot 

Since the applied force F = ey e , it is assumed that the displacement 

U(x,t) = u(x) cae ; 

then equation 3.2.(3) becomes 

  

2 
du i 

E ; == pwu 

dx’ 

a7u a 
or = Yd 3.2.(4) 

dx 

2 he 
where Ysr7"°1™ 3.2.(5) 

E 

The general solution to 3.2.(4) is given by 

u(x) = B, cos yx + B, sin yx 3.2.(6) 

iwt Then U(x,t) = (B, cos yx + B, sin yx)e 3.2.(7) 

Boundary Conditions 

ee Me De a tn ein Pe  
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Considering the equilibrium of the end Masses, the boundary conditions 

are given by: 

37a 
at x=0, em ans eal 

a7u 
at xia, rot oe 

Substituting 3.2.(7) into these and solving for B, and B, gives 

EG (AEY cos yx - nw sin yx) ene 
U(x,t) = -F 

-2.(8 ? °(a*e*y*~ m.m,0*)sin yl + aByo"(m,+ m,) cos YI 3-2-(8) 
  

342.2 

  

ibration of a viscoelastic rod with 

end masses 

For a linear elastic material the constitutive equation is 

by using the second form of the correspondence principle for viscoelastic 

materials in forced vibration (see section 122.7), the constitutive 

equation can be written as 

oe &x 

where E* is the complex or dynamic modulus. 

Hence, to convert the analysis in the preceding section from 

an elastic rod to a viscoelastic rod, it is only necessary to replace 

= with E*, 

   Therefore for the forced longitudinal vibrations of a 

viscoelastic rod with end masses the displacement is given by: 

(AE*y cos yx - nw sin yx) enue 
U(x,t) = (x, +) By a ye nn,0 

sin yl + AB*yo” yo" (mm, +m, ) cos yl 

  

4 3.2.(9) 
pu 

where ya 
3.2.(10) E*
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342.3 The calculation of E* from measurements 

The acceleration f(x,t) is given by: 

£(x,t) ‘= U (x,t) = -w°U(x,t) 

  

    

Fw An*y one 

then f(0,t) = ee = F 3-2.(41) 

(A°E**y*- n,n,0 )sin yl + AB*yo" (m+ m,)cos yl 

But from 3.2.(10) 

pu" 
Rte 

y? 

substituting this into 3.2.(41) and letting yl =» 

?, Apet® 

gives f(o,t) = —— — 32.(42) 

o 

22 
(42 - ancl) sin b + Ap(m,+ m,) cos 

In the experiment f(0,+) is measured, let it equal P ere 

where P = Ipl en ’ 

|p| is the magnitude of the acceleration 

6 is the phase difference between force and acceleration 

  

Defining g(b) = -P 3422(13) 

  

e BX mmeb \ sin + Ap(n,+ m,) cos b 

it is necessary to find a 'b' such that glo) = 0 

i.e. f£(0,t) = P en 3.2.(42) 

Using the Newton-Raphson iteration (reference (62)): 

is apa eb) 

g'(b,) 

With an initial estimate be it is possible to find a db, such that 

e(>,,) < € for any small €, provided g(b) is single valued in the region 

of b, and g'(b) and g''(b) are non-zero in the region of b. 

Then from 3.2.(10), 

ao eal 3.2.(45) 
n



34 

3-3__Experimental set-up and procedure 

30301 Zest piece (2) 

A test piece of propellant No. 1 was manufactured, the 

dimensions were: 

Square cross section: 

Length: 

0.025). m x 0,025) m 

0.203 n 

The end masses were of aluminium and weighed 0.0416 kg and 0.0107 kg 

respectively, 

Figures (3.2) and (3.3) show the experimental set-up. 

Figure (3.4) gives a Block Diagram of the system. 

3.3.2 The equipment 

The equipment used was: 

Sweep oscillator 

Power Amplifier 

Vibrator 

Force Transducer 

Accelerometer 

Charge Amplifier 

Tracking Filters 

Oscilloscope 

Voltmeters 

Pre-amplifiers 

Phase Neter 

Frequency Counter 

Spectral Dynamics Corporation SD 40l.-2 

Derritron 250 W.L.F. 

Derritron VP 5 

Kistler 910 / 14 

Birchall 

Environmental Equipment Ltd. CVA 2 

Spectral Dynamics Corporation. Dynamic Analyser 

SD 101A and SD 1014S 

Telequipment D33R 

Briel and Kjaer Random Noise Voltmeter Type 2117 

Advanced AC Transistorised Voltmeter VM 78 

Digitel Measurements DM 2001 Mk.2 

Levell Transistor AC Amplifier Type TA60 

Acton Laboratories Inc. 329 BSD 

Advance Type TC 2A
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3.3.3 The test procedure 

The test procedure was as follows: 

4. The oscillator frequency was established using the 

frequency counter. 

2. The Force was measured with the digital voltmeter and the 

oscillator output was adjusted to give the pre-set force 

level Fo: 

3. The magnitude of the acceleration was read on the B & K 

voltmeter. 

4. The phase meter operates on voltages between 0.5 v and 

2v; the Advance voltmeters measured the inputs to the 

phase meter - the oscillator output and the pre-amplifiers 

were adjusted until the phase meter inputs were within the 

operating range. 

(Note: It is only possible to vary the force without 

affecting the phase reading if the material is linear. 

See section 3.3.8) 

5. The phase difference between force and acceleration was 

then measured. 

6. The oscillator frequency was changed and the procedure 

repeated. 

Measurements were made at 20 Hz intervals between 40 Hz and 

4 000 Hz. An example of the measurements made on test piece (a) is given 

in Table (3.1) and plotted in fig. (3.5). 

Bedok Test piece (b) 

Another sample of propellant No. 1 was manufactured to see if 

sample size effected the results. The dimensions were: 

Square cross section: 0.0254 m x 0,025) m 

Length: 0.373 m 

The aluminium end masses weighed 0.026 kg and 0.020 kg respectively.
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An example of the measurements made with this test piece 

is given in Table (3.2) and plotted in fig. (3.6). 

32305 Temperature dependence 

E* is not only dependent on frequency but also on temperature 

(reference (48)). Two thermocouples were inserted into the propellant 

and an oven was built so that measurements could be made at various 

temperatures above ambient. For temperatures below ambient the test piece 

was cooled down in a refrigerator then removed and vibration measurements 

were made at various temperatures as the sample temperature returned to 

ambient. 

3.3.6 The thermocouples 

The thermocouples used were chromel/alumel (nickel/chromium 

and nickel/aluminium alloys). A Thermos flask containing melting ice 

was used for the cold junction and the hot junction was inserted well 

into the propellant (to a depth of about 5 mn). 

The sensitivity of a chromel/alumel thermocouple is 4.0 uv/°c; 

it has an operating range of -200°C to 4 100°C. 

The output voltages were measured with the digital voltmeter, 

this has a minimum resolution of 50 UV, therefore, the minimum temperature 

variation that could be measured was 425°C, 

3-367 The oven 

The oven (see fig. (3.7)) consisted of a wooden box with a 

detachable front section. A slit in the top was to allow access to the 

elastic suspension system and the accelerometer and thermocouple cables. 

A slit in the bottom section was to permit transmission of the vibrator 

push rod. 

The oven was heated by two 20 watt light bulbs, one on either 

side of the as Aluminium reflector plates shielded the test piece 

from direct radiation.
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A thermostat was situated on the back wall of the oven to 

maintain a constant temperature by controlling the input to the bulbs. 

The experimental results for various temperatures are given 

in Table (3.3) and plotted in fig. (3.8). 

5.3.8 Material linearity 

Tests were carried out to check that the material response 

was linear. Trials were conducted with pre-set force levels of F, 2F, 

and 4F - the corresponding accelerations doubled and quadrupled while 

the phase between force and acceleration remained constant; so the 

material was linear within the range of displacements reached in these 

vibration experiments. 

32309 Energy_dissipation 

As the propellant is highly damped, energy is dissipated 

during vibration. This causes a local temperature increase within the 

propellant - and hence a change in modulus, The test specimen was 

vibrated at a constant frequency and with a constant force for about 

2 hours. At 415 minute intervals the temperature, acceleration and 

phase were measured. Table (3.4) and Figure (3.9) give the results of 

this trial. 

3.35010 Calibration 

(i) Accelerometer 

The Birchall accelerometer was calibrated against a Standard 

and the sensitivity was measured as 2.63 pc/g. 

(44) Force transducer 

The sensitivity given on the calibration chart of the Kistler 

force transducer was 48.5 po/kp; this was checked by attaching a solid 

mass to the transducer, vibrating it and measuring the acceleration of the 

mass - A,e Then the force = MA. 

Another block of known mass (m) was then put on top of the 

first miss and the test repeated,
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then F, = (M+) A, 

therefore m= F/s, - F/A, ; 

the right hand side was calculated using the given sensitivity and it 

was exactly equal to m 

Note: The bonded end mass m, of- section 3.2 consists of 

the mass of the aluminium block + the mass of the push rod + the 

effective seismic mass above the piezoelectric element of the force 

transducer (m,). The above experiment was also used to determine Mp? 

F,=MA, = (ah, + mp) A, 

where M. was the known attached mass 

then Mp = F,/A, ~My, 

For the Kistler transducer Mp = 0.015 kg. 

(434) Tracking filters 
There were two tracking filters in the system, the acceleration 

signal was passed through one and the force signal through the other. The 

variable gains of the filters were set at 10 for the acceleration and 4 

for the force, 

(iv) Phase meter 

The phase meter was calibrated by feeding in 

(a) two signals exactly in phase 

and (b) two signals 180° out of phase 

and adjusting the meter so that it read 0° and 480° resneatey 

Care was taken to ensure that the input voltages were between 0.5 v and 2 v.
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3.4 Computer analysis to obtain the dynamic modulus from 

the measurements 

Boho The program 

A computer program was written to iterate to a value of E* 

which satisfied equation 3.2.(4 4), 

£(0,t) = P ett 

where f(0,t) is given in equation 3.2.(42) 

and P is the acceleration measured at x = 0. 

Thus E* was evaluated for each frequency at which P was measured. 

The iteration was based on the Newton-Raphson technique, i.e. 

e(b,,) 
b. =b-—<— Bele (1) n+ n a'(b,) 

where g(b) is defined in equation 3.2.(13) 

p 

and be a |= Sele(2) 
E* 

The program read in the following data: 

A cross sectional area (m?) 

p density (kg/m) 

pS length (m) 

Fy amplitude of applied force (N) 

n, mass of block at forced end (kg) 

n. mass of block at free end (kg) 

then for each frequency: 

f frequency (Hz) 

lel magnitude of acceleration at x = 0 (g) 

6 phase difference between force and acceleration (radians) 

For every frequency an initial estimate for b (,) was obtained (see 

section 3.4.3) then e(b,) and g'(b,) were computed and substituted into 

equation 3.4..(4) to give b,- The iteration was repeated until: 

Re(g(d,)) < €
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Im(g(v,)) < € 

where € is a small quantity. 

Then E* was calculated from equation 3.2.(15), i.e. 

Ee = pu'"/o,” 3el-e(3) 

A FORTRAN listing of the program is given in appendix E. 

Sole? Accuracy _end speed of computation 

The program was run with various values of €, for € = 0.1, 0.01, 

0.0%, 0.00%, the calculated E*'s were equal up to the fourth significant 

figure throughout the frequency range. 

The number of iterations necessary with the different ¢ values 

was also measured, for € = 0.1 3 iterations were necessary 

€ 0.0001 4 iterations were necessary 

Hence the value of € was not significant either for accuracy or speed of 

computation. The present version of the program uses € = 0,001. 

3oho3 Initiel estimate for b 
It is easiest to estimate be for the frequency where the 

acceleration is a maximum, the program then automatically generates De 

for the succeeding frequencies by either: 

4) using the final by for one frequency as the initial be 

for the next frequency or 

2) using £/f,>, as the estimate for frequency f,. 

where f is any frequency 

fa is the frequency where the acceleration is the maximum 

4, is the initial estimate of b calculated at frequency fae 

4) was found to be convenient with the data for propellant 

No. 1 where E* was changing rapidly with frequency, 2) was used with the 

natural rubber data where E* was almost constant with frequency. (See 

note 3, page 1,0)
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The initial estimate for be at_the frequency f, $ 

From =. and the shape of the response curve an initial 

estimate for se may be obtained as follows: 

In general for an elastic beam, at any frequency f, 

Es pyn?e?1? 7 v2 

where b = yl 

At a resonant frequency fn» b is the solution of the 

frequency equation, D say. 

pin? oe 

then at fy» Es - 

  

It has been found that for a viscoelastic beam: 

pyar 71” 

= Belo (4) 
bd . 

  jel.* 

where b is the solution of the frequency equation for a similar 

elastic beam, and oS) is the frequency at which the acceleration 2858 

maximum. 

(a) Free-free beam 

For a free-free elastic beam in longitudinal vibrations 

the frequency equation is: 

bo = nw (see reference (59)) 

then at the first resonence b = 7 

therefore for a viscoelastic beam at frequency fy from equation 3.l..(4) 

let] = py 272? 3 ete (5) 

(vb) Free-free beam with bonded end masses _m, and m, 

For a free-free elastic beam with bonded end masses the 

frequency equation is: 

  

(N, + .N,)b 
ten b= —~— 5 —- 

NN} -4 

where N, =m, / pAl
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and N, =m, / pAL (see reference (59)) 

Figure (3.10) gives the solution b for various values of N, and N, 

between O and 0.5 

(ze M and N are larger 

  

  

  

Be 4 4 4 

be Soe 
Ne reeaNe 

Then from equation 3.4.(4) 

22.2 
pha PL 

[ze] = i = 3ehe(6) 

Thus |z*| may be calculated from the frequency f with 3.42(5) or 

3.42(6). The separate components of E* i.e. Ey, E, are found from the 

shape of the response curve: 

If the acceleration at fh is ay 

then the frequency f, is measured where the acceleration is Pa, 

(where p <1), 

then, if Xs fy i fae 

it may be shown (see section 3e4e) that € is given by: 

2 2 4 
p (4-20"+ 0°) 

Pats |1- — \ 3ehe(7) 
=p (2-4) 7 
  

where ¢ = 5 is the "damping ratio". 

It may also be shown (see section 3.4.5) that 

  

€ = 3.4..(8) 
Ey 

therefore |z*] = fie +h €*) 3.4-.(8) 

lz*] 
therefore E, = 346(9) 

  

i 2 
fi + he
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and BD = 265, 3.4.(40) 

Having found an estimate for E* at fy oe at f, is given by: 

  bo = arta Bebe (11) ° 

4 +iXe 

Note 1: if the damping is light then an approximation for € may be 

found from the "half power points’ i.e. the two frequencies fy and f, 

where the acceleration is 

4 

v2 if 

ff 
then és At 

oe 
n 

Note 2: if the damping is light the method described above to estimate 

E* is often used as a method for actually measuring E* at the frequency fae 

Note 3; if second and higher acceleration maxima are discernable from 

the response curve then an estimate for |z*| may be obtained for those 

frequencies. Using either b = 2m, 37 etc. or curves similar to those 

in fig.(3.10) for the higher roots, ln*] may be approximated as above. 

If estimates can be made for two or more frequencies it will be possible 

to choose which of 1) or 2) (page 37) to use. 

It has been found that if bo is within + 25% of the actual b 

then the routine will be convergent. The table below gives the number of 

iterations necessary to reach By = b with different starting values. 

(The frequency was 1 000 Hz and the actual value of b was 4.06 - 11.11):



uA 

Starting value bo No. of iterations 

3 - 24 2 

3.5 - 2.1 

k= 0.1 

a= Sed 

wu
 

F
 
w
w
 

tee et 

5 = 0.4 aM 

  

Bebol The derivation of the expres   

The beam is approximated by a single degree of freedom system: 

@ point mass and a Kelvin element (a spring and dashpot in parallel). 

Far iwt 

STTTTTITSTAL AOS 

Let it be forced with a harmonic force Be ee ’ 

then the acceleration is given by: 

  

ez —————=2-_ see reference (59) 3et0(12) 

where Eis ihe applied force 

m is the point mass 

K is the stiffness of the spring 

ce is the damping constant of the dashpot 

€ is the damping ratio, € = —> 
2¥Km 

By differentiating 3.4.(42) and equating to zero it may be shown that 

the acceleration is a maximum when 

2 28/1 -2€7)=£,? soy . 3ob-o(13)
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where fy is the undamped natural frequency 

and fa is the frequency where the acceleration is a maximum. 

& — E 

therefore a a = mae oC as. 

ears 4-26" 4-28 

-F/n ean 
= Bold 

26 v1 -€7 

Let f, be the frequency where the acceleration is p a,» P< 1 

then from 3.4.(12) and 3.4.(14) 

-p ae _ : ae 

264-6? so (us gti a 

— 

substituting f° = 2° (4 - 2 7) from equation 3.4.(13), and letting 

  

£725, = 2 gives: 

8 By a 0 
4, O° - 4 p? (207-4) 

(4-207 +0) 
i.e a Bae: Ee LS" \ aCe i tli {i ay SR 3 4-(15)   

55 Derivation of the relationship between € and B* 

As in section 3.4.4 the beam is approximated by a single 

degree of freedom system. 

For the Kelvin element E* = But i Eo 

1 K + ive 3.4..(16) 

(see section 1.2.8) 

where K and c are defined in section 3.4.4.
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For the spring-mass-damper system, 

  

c 
é = 

avKn 

4 K 

and f == ie see reference (59) 

‘i 2a 

Then by substituting from equation 3.4.(146) it may be seen that: 

  cs E, 

wat Ea 
4 E, 

and fh — { _ 
aa Nm 

therefore atf = z 

oa E, / ee, 

therefore at the undamped natural frequency fn, 

€ = B/ 2, 3 

for the approximation required in section 3.4.3 it is assumed that £.. is 

not very different from fh and that € does not vary appreciably with 

frequency.
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3.5 Frequency and temperature dependence of the dynamic modulus 

305o1 Frequency dependence 

Figure (3.5) shows the experimental data for test piece (2) 

(0.203 m long). Figure (3.11) shows the dynamic modulus obtained from the 

computer program using those data. 

Similarly, Figure (3.6) gives the data for test piece (b) 

(0.373 m long) and fig. (3.1 2) gives the E* obtained for those data. 

It can be seen that the modulus changes by a factor of over 

the 900 Hz frequency range. 

The temperature was not accurately measured during these tests 

so no direct comparison can be made. 

In fig. (3.13) are the measured data for test pieces (a) and 

(b) at the same temperature. 

Figure (3.44) gives the corresponding complex moduli. The 

values of E* obtained using the ‘admittance method' are thus not 

dependent on specimen length. (Note that the rod must be long in 

comparison with the cross section to ensure the assumption that the stress 

is constant over the cross section is satisfied). 

5.562 Temperature dependence 

Figure (3.8) shows the measurements made at various temperatures 

between -10°C and 40°C. 

Figures (3.15) and (3.16) give E, and E, resp. vs frequency 

for the various temperatures. 

lz] vs temperature at a constant frequency (4 000 Hz) is 

plotted in fig. (3.17). It may be seen that over the 50°C temperature 

range the modulus changes by a factor of 40. 

E,/8, is plotted against temperature in fig. (3.18). 

Note 1: It has been shown that 

€ = £/2n. (section 3.4.5) 

and by definition 

Q = 4/26
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therefore Q = E/E, 

Experimentally determined values of € (using the relationship given in 

section 3.4.4) are given in fig. (3.19) with the graphs of E,/28, shown 

for comparison. Clearly the approximations of a single degree of freedom 

system made in 3.4.4 and 3.4.5 are acceptable, at least for the first 

"pesonance’. 

3-505 Frequency-temperature superposition 

The frequency-temperature superposition principle was applied 

(see section 422.11). The graphs of E* vs frequency for various 

temperatures were shifted along the x-axis to give a continuous curve 

for a reference temperature To. The amount each was shifted (a) was 

then plotted as log a, vs T. (See fig. (3.20)). Ferry (reference (48)) 

gives this graph as convex and not concave so it was assumed that the 

results obtained at the extremes of temperature were not reliable. A 

straight line was drawn through the middle temperature range. 

With these values of log ie the composite graph of £1 ty vs 

af was plotted and is given in fig. (3.24). 

lz*| at 4 000 Hz for various temperatures were calculated 

from this graph and are shown on fig. (3.17) for comparison with the 

measured values. 

E* cbtained from the frequency-temperature superposition was 

not very satisfactory at low frequencies; it was used to predict the 

response of the beam to forced transverse vibrations and was not very 

successful below 200 Hz. Further tests with more precise control on 

temperature would be necessary before any clear conclusions on the 

applicability of the superposition principle could be reached.
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3.6 Comparison of predicted end measured response of the 

test piece to forced longitudinal vibrations 

The experimental set-up was as described in section 3.3. 

Two sets of measurements were made: 

(4) with the accelerometer at the free end of the rod 

(ai) with the accelerometer at the forced end of the rod 

The first set of data was used to calculate E* for the frequency range 

400 Hz -1 000 Hz; this was used to compute the response at the forced 

end (x = 1) with the equation: 

F, wo” [as y cosy 1 - m,0" siny 1] eae 
  f(1,t) = 
(a? E*?y?— m,m,0°)sin yl + aBtyo"(m,+ m,)cos yl 

(from equation 3.2.(9) with #(1,t) = [- w*u(x,t) J) 

The calculated response is shown in fig. (3.22) together 

with the measured response for comparison, The agreement is very good 

throughout the frequency range.
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3-7 Comparison of predicted and measured response of the 
  

test piece to forced transverse vibrations 

3-764 Experimental procedure 

The same equipment was used as described in section 3.3. 

Transverse vibrations were excited by turning the vibrator through 90° 

and coupling the vibrator to the side of the mass bonded to the test 

piece (see fig.(3.23)). 

Note that a piano wire connection was used, that is, a 

coupler which is stiff in tension/compression but very flexible in bending. 

This is to obviate the necessity of considering the flexural stiffness 

of the push rod as a restraining spring on the test piece. 

The force was kept constant end acceleration and phase were 

measured at frequencies between 50 Hz and 1 000 Ha. Two sets of 

measurements were made: 

(4) at the forced end - to give the point admittance 

(43) at the free end - to give the transfer admittance 

Because of the doubt about the frequency-temperature superposition principle, 

as mentioned in section 3.5.3, the complex modulus was measured at the 

time of the experiment. It was measured before and after the transverse 

test and the average was used as that applying at the time of the test. 

50702 The calculated response 

The theory was based on the Timoshenko equations for a beam 

in bending (see appendix (B)). 

This gives: 

u(x,t) = QB, cosh @x + B sinh x + B,cosh fx + B,sinh px)et#t ) 

Gt) = (RB, cosh @x + RB, sinh ¢x + SB cosh Bx + SB,sinh px)er”t 

3o7e(4) 

V
w



48 

where u(x,t) is the displacement of the neutral axis 

and (xc, t) is the slope of the neutral axis 

and a, f, R and S are defined in Appendix B. (Equations B(17) - B(20) ) 

Bis B,, B, and B, are the unknown coefficients which ere found from the 

boundary conditions. 

Boundary conditions: 

  
  

          

8 | @ ne Es 

fy [n. nl ia ANS oe se See ; aeee }ime ™ | m, 

@. && 
Ls 
oat ee ee cae 

Let Us Y be the displacements at the C of G of masses my, 0, respectively 

¥,, ¥. be the slopes of the C of G of masses n,, n, respectively 

I, I, be the moments of inertia of masses m,, m, respectively 

Lys L, be the lengths of inertia of masses my, m, respectively 

Ly be the distance between the point of application of F and 

the free edge. 

Then considering the equilibrium of mass mt 

Pohmtcm se {ac 3-72(2) 

My +R, (b,/2 -1,) + O0,/2=-1, & 3.7.(3) ° ° 4 3 o-4 4 1 

ou 
where = C(x, +) ae = (ktac( —.@ YI 

ox 3 

ow 
ana uo = [ue (Gt), = [= peas 

ox 
x=0 

end 2/4 (=) | 
x=0
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Similarly considering the equilibrium of mass m,: 

q = a,8, Be7o(4) 

My - 0,1'/2 = I, 4, 3.7(5) 

where QQ = Q(x, t) 5 

My = (x,t) 

The four equations 3.7.(2) = 3+7+(5) were used to solve for the 

coefficients B,, is, 

Now u. 1 = 2(0,t) - 1,/2H(0,t), ¥, = ¥(0,t) 

u 2 = u(1,t) + L,/2v(1,t), ¥, = ¥(1,+) 

Substituting for My > Re > My Q, u 2 ¥, and, in equations 3e70(2) - 

3.7(5) gives the equation [a] {B} = {c} 

where fl =
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{B} = |B end {oc} = Fy 

B, L,/2 -F 

B 0 

B, 0 

This equation is solved numerically using the Gauss elimination 

technique (see Appendix D). 

Then B, , i =1,4 were substituted into equation 372(1) to 

give u(x,t) and ¢(x,t). 

The acceleration was measured at a distance a, from the 

bonded edge of mass Myo 

The acceleration was measured at a distance d, from the 

bonded edge of mass m+ 

Let the accelerations be P, and . respectively 

then P, = -w*(u(0,t) - a,9(0,t)) 
4 

and Fr -o*(u(1,t) + a,¥(2,t)) 

A computer program was written to calculate 2, and Poe 

The input data were: 

A area (m*) 

p density (xe/m*) 

2 length (m) 

F applied force (N) 

Ir second moment of area of the beam cross section (m*) 

kt shape factor (see Cowper (22)) 

v Poisson's ratio 

a, mass of block at forced end (kg) 

nm, mass of block at free end (kg) 

L, length of mass nm, (m) 

L, length of mass m, (m) 

L distance between the point of application of the force 

and the free edge of mass m, (m)
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a moment of inertia of mass m, (xg m?) 

I, moment of inertia of mass m, 

a, distance of the accelerometer on mass my from the bonded 

edge 

4a, distance of the accelerometer on mass m, from the bonded 

edge 

is and e thus calculated, using the '‘averaged' E* is plotted in fig. (3.24) 

with the measured values shown for comparison. The agreement is very good 

throughout the frequency range.
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3.8 Comparison of predicted and measured response of the 

  

full scale sample to forced transverse vibrations 

The preliminary trials reported in section 2.3 were used to 

further check the validity of the modulus measuring method. 

The ambient temperature at the time of the experiments was 

approximately 18°C SO the dynamic modulus measured at that temperature 

was used. The computer Sena referred to in the previous section was 

employed to calculate the response; it was amended slightly to compute 

the response at points along the length of the beam and not just at the 

end masses. The force was applied directly to the propellant at a 

distance of 3 cm from the bonded edge, it was considered reasonably 

accurate to assume that it was applied to the bonded edge. 

At low frequencies the measured and calculated responses 

were very close (see fig. (3.25)). The modal shapes agreed well for 

the first six bending modes. At higher frequencies the measured response 

had a large sustained peak over the range 500 Hz ~ 1 000 Hz which was not 

predicted by the Timoshenko beam theory. 

It was thought that the peak could be due to resonances in 

the cross section - radial, longitudinal, torsional ete. - coupled with 

the bending modes. Armenakas (Reference (60)) tabulated the resonant 

frequencies of an infinite solid cylinder based on exact three dimensional 

analysis. The results were based on a Poisson's ratio of 0.3 whereas 

that of propellant was assumed to be 0.5; the tabulated values were for 

elastic materials with a constant real modulus so the tables were not 

exactly applicable to the present problem but it was hoped that they would 

give an indication. 

With a modulus of 100 MN/m?, all the resonances up to 4 000 Hz 

were extracted from the tables (see fig. (3.26)). Also shown are the 

resonant frequencies in bending as given by the Timoshenko theory. (They 

do not correspond exactly because the end conditions were considered in the
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latter whereas the frequencies in reference (60) were based on an 

infinite cylinder, It may be seen that there were many resonances 

other than bending in the region of the unexplained peak but only 

three (torsional) resonances at lower frequencies. 

As there was good agreement between measurements and 

calculations for the region where the Timoshenko theory was 

sufficiently accurate then it was considered as evidence that the 

modulus measurements were valid for the large scale sample. 

Note: It will be seen (section 4.3) that when considering 

a cartridge loaded motor and the likelihood that the propellant will 

impact on the case, the important variable is "displacement", (if the 

relative displacement of the propellant to the case is greater than 

the gap between them, then impacting will occur). The maximum gap 

between the case and the propellant is 2 mm, displacements of that order 

only occur for frequencies below 100 Hz and as the Timoshenko beam 

theory is adequate for those frequencies it was not thought necessary to 

do en exact three dimensional analysis. It may be seen in fig. (3.27) 

that the measured and calculated displacements agree well over the 

region where they are large enough to cause problems.
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3.9 The measurement of the complex modulus of a sample 

of natural rubber 

The test piece was of square cross section 0.025 m x 0.025 n, 

it was 0.15 m long and ny and m, were equal to 0.027) kg and 0.0108 kg 

respectively. The procedure and equipment were as reported in section 3.3. 

The measured acceleration and phase are shown in fig. (3.28) for, frequencies 
' 

between 100 Hz and 1 000 Hz. It should be noted that the rubber had much 

less damping than propellant No. 1, the first resonance was much lower 

and the first five modes were excited within the frequency range. 

From the frequency of maximum acceleration (460 Hz) the 

modulus was estimated as described in section 3.4.3: 

The density of the rubber was 999.5 kg/m 

therefore pAl = 0.0933 kg 

therefore M = 0.291, N = 0.116 

From fig. (3-10), b = 2.28 

therefore from equation Bebo (h)» 

lz*] = am? 4607 0.157 999.5 / 2.287 = 4.37 10° N/m 

Using p = 0.5 gave £, =ae05 

since f, = 160, then 9 = 0.9375 

therefore from 3.4..(6) 

€ = 0.04 

then from 3.4.(7) 

Bae .5, eel) 10.35 

b, = 260 0.45 { 999-5 / (036 + 4 0.35) = 2.28 - i 0.09 
(at 460 Hz) 

This was used as the starting value for 160 Hz, the program 

automatically generated by for succeeding frequencies as discussed in 

3.423. The output from the program is shomm in fig. (3.28). The dynamic 

modulus of the natural rubber was also measured using a "Rheovibron" for 

four frequencies: 3.5 Hz, 11 Hz, 110 Hz, these are also showm in 

  

fig. (3.29), they compare w obtained from the present metho:
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It should be noted that at higher frequencies the modulus 

decreases with frequency; this is an unlikely occurrence although it 

has been reported before (Coote (44.)), who also cites three other 

references where similar phenomena were noted). However, the rod was 

in the fifth mode of vibration at 1 000 Hz so the wave length was of 

the same order as the cross section which would invalidate the assumption 

that the stress was constant over the cross section. 

This conjecture could easily be verified by reducing the 

dimensions of the cross section to 0.01 mx 0.01 m say. Since the 

resonant frequency is independent of the area, the rod would still be 

in the fifth mode at 1 000 Hz but then the wave length would be 

approximately twice the cross sectional dimension,
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resulting complex modulus EX(= E+ a E,) 

Frequency (Hz) Acceleration (g) Phase (radians) E, (n/m?) E, (n/m) 

4 000 5.95 3.30 4143..55 9-018 

980 4.02 -3.22 4h 37 AD 

960 4.40 3.22 439.76 89.05 

9,0 4.18 “3.17 138.54 87.12 

920 4.22 3.013 135696 85.29 

900 4026 -3.09 133K 83.50 

880 4.37 -3.03 432.92 82.00 

860 42 -2.96 132.10 82.18 

81.0 4.52 -2.90 15119 81.07 

820 4.60 -2.83 430.33 81 00 

800 4.066 -2.77 428.34 80.49 

780 heT7 -2.70 427.34 80.05 

760 4,86 -2.63 125.71 79.77 

74,0 4.98 -2.56 4224 79.07 

720 5.10 -2.49 422.42 78.24. 

700 5.23 -2.42 420.45 T1A5, 

680 5.32 -2.3h 448,22 76.84 

660 5.k7 -2.26 416614 75-70 

640 5.57 -2.18 413.86 Th 72 

620 5.66 -2.10 411.07 730A 

600 5.75 -2,02 408.45 72.04 

580 58h, “1.92 406.02 TA o14 

560 5.85 1.84 403.70 70.83 

540 58h “167 100.85 69.86 

520 5.15 -1 60 98 06 69.54. 

500 5.65 “1 250 9-089 68.59
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320 

300 

280 

260 

20 
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480 
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140 
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400 

80 

5255 

5.30 

510 

4.80 

4.260 

4637 

4.20 

4.200 

3.86 

3-73 

3.60 

3.50 

5035 

3.24 

3.08 

2.96 

2.8). 

2.69 

2.5h 

2.45 

2.44 

58 

1.39 

~1 228 

1 16 

1.05 

-0.96 

~0.87 

-0.80 

-0.74 

-0.68 

-0.62 

-0.56 

-0.52 

0.49 

0.4.2 

-0.10 

03h. 

0.30 

-0.28 

-0.22 

-0019 

-0.42 

0.04. 

92.42 

89.35 

87.54 

8.98 

82.0). 

79 026 

7557 

73 07h 

67.09 

63.39 

59290 

54678 

4.8.5). 

46.48 

39 hd 

36.80 

32.44 

2h. 059 

20.93 

the77 

16.45 

2h. 97 

67.6), 

67.90 

67.78 

68.60 

67-61 

66.97 

64.689 

64,.00 

60.43, 

57039 

54 36 

50.44. 

4.7420 

44.099 

4A 05h 

38.01 

35.98 

33.67 

34.07 

29.77 

27.42 

42.4
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Table 3.2 Measurements made on test piece (b) and 

resulting complex modulus E*(= E+ i B,) 

Frequency (Hz) Acceleration (g) Phase (radians) E, (0/n”) BE, (anv/m?) 
  

4 000 2.2 -6.28 440.47 90.23 

980 2.26 -6.20 4138.13 88.39 

960 2.4 6614 436.0). 86.86 

91.0 2.37 -6.00 431.66 85.82 

920 2.42 5.90 432.7 84.459 

900 2.47 5.76 432.0% 81.59 

880 2.53 5.65 130.36 83.50 

860 2.56 5.52 428.89 83.36 

81,0 2.65 “Sell 427.42 & 82 

820 2.69 5.27 426.22 &1 73 

800 2.72 5 A3 “4 2085 & .67 

780 2.76 “4.97 42024 82.0 

760 2.80 -t,.85 422.24 81.00 

740 2.83 -h.73 420.1h 80.01 

720 2.84. 4.57 419022 80.37 

700 2.86 behd 117677 790K 

680 2.89 he 415.75 78.63 

660 2.90 hel 9 413.55 T7105 

61,0 2.90 “4.05 112.08 T7117 

620 2.90 -3.93 409.88 76.16 

600 2.92 -3.79 408.79 75-55 

580 269k. -3.67 106.% Mh 032 

560 2.95 -3.56 40h. .48 72.9. 

54,0 2.97 Bob 102.56 Th 86 

520 3.04. 3.28 403.08 71 80 

500 3-14 “3.19 400.24. 69.02 

4.80 3-19 3.07 98.71 67.50
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1712 

4032 
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65.70 

66.00 

63.80 

62.24 

63.35 
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63.34 

62.72 

64 205 

60.14 
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59-38 

58.23 

599 

58.26 

61 26 

57.28 

5h. 686 

56.45 

62.23 

36.98 

15.52



Table 3.3 Measurements made on test piece (a) for 

=9 

-6 

cal 

4 

4 

4 

1 

various temperatures 

Temperature ( 56) Frequency (Hz) 

822 

710 

635 

526 

428 

&9 

708 

64.2 

582 

542 

1440 

806 

726 

665 

556 

493 

450 

523 

475 

377 

289 

4193 

060 

997 

904 

&9 

as 

Acceleration (g) 

10.9 

41.28 

4445 

1046 

9.06 

9.54 

404k 

40.39 

10.77 

40.58 

40.16 

8.43, 

8.59 

8.87 

9.87 

10014. 

40.08 

7222 

7.29 

7-98 

8.56 

8.75 

7029 

6.46 

5.32 

deal 

3.80 

Phase (radians) 

2.02 

1.73 

1 252 

AA7 

0.6K 

-2.2 

1.99 

“1.82 

“1.66 

~1 5h 

1.22 

-2.48 

-2.30 

-2.18 

"1.90 

1.75 

=1 650 

2.44 

2.30 

~2.09 

1.78 

1 h3 

-0.% 

-0.87 

-0.68 

-0. 5h. 

0.4.2



+6 

+9 

800 

663 

5h5 

500 

392 

287 

210 

140 

09h, 

O45 

9M 

84 

697 

563 

4.05 

300 

488 

096 

050 

983 

WS 

885 

440 

287 

239 

178 

103 

01.0 

980 

920 

90h. 

883 

832 

3.16 

-2.97 

-2.78 

-2.67 

2h, 

-2.18 

1695 

“1.73 

71.55 

1 ol 

“1.22 

-3.40 

73.25 

3.05 

-2. 74 

“2.51 

~2.18 

185 

1071 

1 h8 

“Ak 

AAT 

3.04. 

2.72 

-2.64, 

2.18 

-2.29 

~2.09 

~1 88 

1619 

“1 064, 

“1.55 

“1.38
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4112 

4. O15 
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795 
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41 234 

1.107 

900 
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720 
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609 

51 

1,02 

308 

197 

415 

DB 

4 100 

4 000 

900 

800 

700 

63 

5.32 

51 

5.77 

6.08 

6.46 

712 

7412 

712 

6.64. 

5.20 

5.07 

5.30 

5.82 
Goh 
6.69 
6.82 
6.75 
6.57 
6.10 

4.469 
3.56 

2.94 
2.69 
2.17 
2.38 

3.80 

3.80 

3.83 

4.48 

4.063 

-2.90 

-2.67 

-2.50 

2.32 

2.43 

1-76 

~1 66 

A 5k 

“1H 

73.23 

2.90 

2.62 

=2.52 

1.99 

~1 80 

1.68 

1.64 

“A ol 

“22 

-0.77 

-0.37 

0.19 

-0.0 

-3.70 

3.40 

2.97 

2.6). 

2 34.
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28 

600 
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500 

4,00 
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000 

900 

800 
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500 

4,00 
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200 

400 

000 

900 

800 

700 

600 

500 

4,00 
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400 

5.30 

5.56 

5.58 

5.45 

4056 

3.36 

2.66 

2.48 

3.34 

3.52 

3.66 

3.95 

4.633 

57 

5.27 

4.06 

2.99 

2.51 

2.0) 

2.29 

2.60 

2.85. 

3.46 

3.56 

4.633 

4.683 

3.78 

2.53 

-2,08 

1.78 

1.62 

1.52 

0.9% 

-0.40 

-0.16 

-h..05 

3.61 

-3.30 

2.95 

2.55 

“2.14 

“1 40 

-0.84. 

0.35 

O14 

5.39 

ah Dh. 

“hAd 

3.86 

3.35 

~2.86 

2.39 

StS 

-0.77 

0.34
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4 000 
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400 

65 

-7.33 

~6.72 

-6.07 

563 

4.678 

-k..03 

3.32 

2.5 

“157 

0.35 

-8.90 

8.34 

“7059 

~6.98 

-6.00 

510 

“10 

314 

1.99 

0 oh.
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Table 3.4 Variation of measurements and E* with time 

caused by increase in temperature due to energy dissipation 

Time (hours) Acceleration (g) Phase (radians) BE, (a/n") E (Qnv/m?) 

° 7.63 “673° 95005 48,28 

0.25 7h9 1.76 93.046 4.842) 

0.62 73k 1.85 89.73 4.6.65 

0.83 7-16 1692 86.74 45659 

4 h2 7029 2.02 81..07 4.2.26 

4.57 744 —2.0), 82.76 42 hd 

468 744 2.06 82.17 44 287
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DYNAMIC RESPONSE OF SOLID FUEL ROCKET MOTORS
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4.1 Introduction and literature survey 

It was observed in section 1.1 that there were two types of 

solid fuel rocket motor design - case bonded and cartridge loaded. No 

literature pertaining to cartridge loaded motors has been found but 

analyses of case bonded motors have been reported. A long viscoelastic 

cylinder bonded to a thin elastic case was considered in references (12), 

(44), (15), (46), (18), (21), (35)- 

‘ The analyses dealt with the cross sectional modes of vibration 

which are excited during firing. In the references given above it was 

assumed that the cylinder was long enough so that displacements along the 

length could be disregarded and only radial and tangential displacements 

within a cross section were considered. 

These methods were not suitable for the present research since 

it is concerned with environmental vibrations when the motor must be 

considered as a beam vibrating in flexural and longitudinal modes. 

Sowers (reference (29)) suggested a lumped parameter approach 

for the analysis of missile vibrations which was equally applicable to rocket 

motors, However, as noted in section 1.3, the difficulties were the 

representation of the material properties and the solution of the equations. 

(The equations with a general damping matrix were given in (29), but not 

solved). 

The motors were therefore analysed in the present research 

as continuous structures. Since a method for measuring the complex modulus 

had been developed and as forced vibrations were under consideration, it 

was possible to analyse the assembly as an elastic material then apply 

the second form of the correspondence principle (see section 1.2.7) and 

replace E with E* for the viscoelastic condition. 

In the present work only flexural vibrations were considered 

but the approach for the analysis of longitudinal vibrations is 

suggested.
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4.2 Case bonded motors 

be2o1 This analysis applies to all types of case bonded motor, irrespectit 

of charge geometry, The slotted-radial charge design is typical and is 

exemplified in fig. (4.1), which shows the general arrangement of a case 

bonded motor. The mathematical model is given in fig. (4.2) ise. two 

rigidly connected uniform beams - the main motor body and the blast tube or 

nozzle. 

The motor is generally secured to the missile at two points; 

when the motor undergoes the environmental vibration trials it is 

attached to the vibrator at the same places. It was assumed that the 

motor was excited by two sinusoidally varying forces a eo and weit 

at those two points. 

Since the ‘direct method’ ** was used to find the response, 

the applied forces had to be at the end of a beam - hence the main motor 

body was subdivided at the forcing positions as shown in fig. (4.2). 

ae The ‘direct method' applies in the case of sinusoidally 

ivt varying applied forces. If the force is Foe then it is assumed that 

the displacement u(x,t) cS u(xen*, The applied force is considered as 

an end condition - thus the need to subdivide the main motor body at the 

forcing positions. An alternative method which applies for all types of 

applied forces (step functions, moving loads, etc.) is 'modal enelysis'. 

Here it is assumed that 

u(x,t) = ys $, 

n=1 

where ix, are the normal modes of free vibration 

and ig.) are the generalised coordinates (dependent on the 

applied force) 

Appendix C shows that the two methods give the same solution when the 

applied force varies sinusoidally with time.
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The ‘direct method' has been used throughout, see sections 

3.2 and 3.7 for the analysis of longitudinal and transverse vibrations 

resp. of beams; the boundary conditions were obtained by considering 

the equilibrium of the end masses, the applied force being one of the 

forces acting on one end mass. ** 

4.4202 The solution when the applied Ponces Pye Fare knom 

The Timoshenko equations were solved (see Appendix (B)) 

for each of the four beams shown in fig. (4.2). 

The displacement of the neutral axis of beam i is given by 

u, (x,t) 

and the slope of the neutral axis of beam i is given by 

¥, (x,t) 

Then for beam 1, 

uo= (B, cosh a,x + B sinh a,x + B,cosh f,x + B,sinh B,x)et"* } 

¥, = (R,B,cosh a,x + R,B, sinh a,x + SB cosh P,x + S.Bisinh P,x)e*”* ; 

For beam 2, } ba2.(4 

us (B,cosh 4.x + B,sinh a,x + B,cosh Px + B,sinh p,x)er** } 

¥, = (R,B,cosh a,x + R,B.sinh a,x + S.B,cosh fx + S,B sinh Boxe 

Similarly for beam 3: u, and #5 and for beam 4: u, and ue 

where By» j= 1,16 are the unlmown coefficients and a, 8, R and S$ 

are defined in Appendix (B), (Equations B(17) - 3(20)).
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Boundary conditions: 

  

  

    ® 
    

  

  

  

Figure (a) 

Figure (a) shows the interactive forces and moments between the four 

beams, the beams were assumed to be continuous and rigidly connected 

therefore the following conditions must be satisfied: 

at x = 0, My =0, Q, = 0. 

atx=l,, u =u, 4, =%,,M, =M, 0, + F, =0,. 

atx=1,, u, =u,, ¥, = 45, M, =M,, Q +F, = Q;6 

atx=l,, u,su,, ¥, =; Mo =M,, , =Q,- 

atx=1,, M,=0,Q, 50 

ae where My za -E; Ty N =) is the bending moment of beam i 

ou, 
Q. = -k'. Ay Gy ( — . vs ) is the shear force of beam i. 

ox 

Then there were 16 equations to solve for Bis J=a45 16. 

Substituting for Us o, i =4,). (from equations 4.62.(4)) into 

equations 4..2.(2) gave a matrix equation [a] {3} S {c} which was 

solved numerically using the Gauss elimination technique (see Appendix (D)) 

to give {B}. The matrix equation is as follows:



  

  

  

  

  

  

  

  

  

    

  

  

  

  

  

  

  

  

                        
  

a _ F 

° B,- 5, ° ° ° ° ° ° ° ° ° ° ° ° 3, 

cos B,1, | sinh A,1,| -cosh ,1, sinh a,1) -cosh f,1] -sinh f,1,, 0 ° ° ° ° ° ° ° B, 

* 5 * * we ae “8: ae ° ° ° ° ° ° ° ° B 
sinh @,1, | cosh @,2, | sinh f,1, | cosh A,1,] sinh @,1, | cosh @,1, | sinh f,1, | cosh 8,1, ‘4 

ear, (omar, (7,587, [082, [-, fet, Peet [Se | - & . js z Aas 
cosh a,1, | sinh a,1, | cosh A,2, | sinh A,1,| cosh @,1, | sinh a,1, | cosh f,1, | sinh 8,1, 's 

4,6, BAG, KA, 6, AG, |-*A,6,  -,A,G, (RAG, (-KAQG, 

(@,-®,) | (@j-8,) | @,-S,) ](,-3,) | (@,-R,) | (@,-R,) | @-s,) | G-s,) ° ° ° ° ° ° ° ° 
sinh a,1, | cosh @,1, | sinh B,1, | cosh 8,1,] sinh @,1, | cosh @,1, | sinh 6,1, | cosh 1, 

° ° ° ° cosh @,1, | sinh @,1,| cosh 6,1,| sinh 8,1, |-cosh @,1, |-sinh @,1, |-cosh P,1,|~sinh #1, ° ° ° ° B 

° ° ° ° Rs Bs 5, 8, Ry “8, ° ° ° ° B, 
sinh @,1, | cosh @,1,| sinh 6,1, | cosh 8,1, | sinh @,1,| cosh 2,1, | sinh §,1,) coshf,1, 

° ° ° ° BT a Re | BTARe | BTS. | BLP aS82 [Estat ats [BBs [Esty sSs |RSS, ° ° o ° B, 
cosh 4,2, | sinh a1, | cosh #,1, | sinh P,1, | cosh @,1,| sinh @,1, | cosh 8,1,| sinh #1, 

¥,A,S, KAS KAS, AS Pa a liessvcstal | tata sels s ai aace 
° ° ° ° (@,-B,) | (@,-8,) | @-8,) | @- 5,) | (@5- ey) | (@s- RL) | @3- 85) | 5-83) ° ° ° ° Bo 

sinh #1, | cosh @,1,| sinh 6,1, | cosh P,1, | sinh @,1, | cosh a,1, | sinh 6,1,| cosh P,1, 

° ° ° ° ° ° ° ° cosh @,2,| sinh @,1, | cosh B,1,) sinh P,1, |-cosh a,1, |~sinh @,1, |-cosh 6,1, |-sinh F,1, | B,, 

° ° ° ° ° ° ° ° aa es Ly 5S 34 a ans es 5 
sinh 1, | cosh a,1, | sinh #,1,| cosh f,1,| sinh @,1, | cosh @,1,| sinh P,1, | cosh 6,1, | “12 

° ° ° ° 0 ° o oo PBststs®y PETstsBs PETES [BTSs [EUR PEL | LPS, 
cosh @,1,| sinh @,1, | cosh B,1,| sinh f,1,| cosh 4,1, | sinh 4,1, | cosh 6,1, 13 

ater ahs ats Fe oryr heel eae atl 
° 0 ° ° ° ° 0 ° (a,- RY | (@5- R,) | (Ps- 8,) | @- 85) | (@,-R,) | (@,-2,) | G,-5,) By 

sinh @,1,| cosh 4,1, | sinh 8,1,| cosh 8,1, | sinh @,2, | cosh @,1, | sinh 8,1, | cosh B21 , 

| 
° ° ° ° ° ° ° 5 i a 3 6 Oat aR, 8, 8, BS, | 

cosh @,1,| sinh %,1,) cosh 6,1,) sinh #,1,| “15 

° o ° 0 0 0 ° ° ° o 0 0 Cet | Gee) | Cy 8,) 16,8.) 115 
sinh @,1,| cosh @,1,| sinhf,1,| coshf,1,) ‘* 

4            
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Then the displacement and slope of any position (X) on the motor could 

be evaluated by substitution of the appropriate B.'s into the 
Jj 

appropriate equation of 4.2.(1): 

For 0<X<1, uy os 6; (X,t) were evaluated 

1<x<1, u, (x,t) > ¥, (x,t) were evaluated 

84 < 1) u, (X, +) » ¥,(%,t) were evaluated 

4,<X<1, u,(X,t) » ¥,(X,t) were evaluated 

A computer program was written to evaluate the response of a case bonded 

motor. 

The data required were: 

Fy, F,, 

Ags Py2 Lys Ty, Ky, Ys> EFS for i = 1,4 

Note: A, =A, =A,, 0, =P, = P3, etc. since they all refer to 

the main motor body. 

A,, P,, 1, etc. refer to the blast tube or nozzle. 

For values of k', see Cowper (22). 

The main motor body was a composite elastic/viscoelastic beam 

and the parameters were evaluated as follows (where the subscript c 

refers to the case and p refers to the propellant): 

Ay = 80 AG 

Ps = (AQP, + yep aa) / (Ay + A). 

ae 

I, I1,+8,/8, 1, " 

(Since for the motors considered, (BI), = 250 (EI ae it was assumed that
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the propellant did not add stiffness to the structure i.e. I, = I) 

Note: 

40205 

1 

kt was based on the shape of the propellant + case 

vss 0.5 

ere : 
EY, = By (4 +in,) 

where the dynamic modulus of the propellant a = BA +i 7») 

since My varied with frequency, Et (= Be, = Et.) was input 

for the various frequencies required. 

Let the acceleration at 1, be a, 

and the acceleration at 1, be a, 

The Timoshenko equations were solved for the four beams as before 

(equations 4..2.(1)). 

at x 

at x 

at x 

at x 

at x 

where. 

and 

The boundary conditions were given by: 

My =0, Q, =0. 

t =
 2 2 

u, = -a,/o > u, = -a,/w ’ ¥ 

2 2 
u,=rafo,u,=-af/o, 4. 

oe J 4? 3 4? 95 7 Q,- 

" < = " 

D
e
 
e
e
e
 

- : iS} An
 

w ne
e 

H=0, |) @J20). 

du; 

Oy = -k'ASG, ( aor #,) 
ox 

Then substituting 4.2.(4) into 4o20(3) gave the following matrix 

equation which was solved as above with the Gauss elimination technique.



  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

1 aR, ° BS, ° ° ° ° ° ° o ° ° ° ° ° ° | 
| 

| ° | %72, ° B,-5, ° ° ° ° ° ° ° ° ° ° ° ° | 

II 

cosh @,1,| sinh 4,1,"| cosh 8,1, | sinh B,1, ° ° ° ° ° ° ° ° ° ° 0 ° | | 

0 | 0 0 ° cosh @,1, | sinh #,1, | cosh f,1, |sinh 8,1, ° ° ° ° ° ° ° aaa 

i i | 
gia lee eee ‘ a ne es oe ° ° ° ° ° ° ° o | sinh 4,1, | cosh a,1, | sinh ,1, | cosh 6,1, | sinh 2,1, | cosh 2,1, | sinh B,1, |cosh 8,1, | 

an faa [es [a8 [=m [ae [ae [48 i ‘ i . ; a a ae 
cosh @,1, | sinha,1, | cosh 8,1, | sinh #,1, | cosh@,1, | sinh @,1, | cosh A,1, | sinh 8,1, il 

° ° ° 0 cosh @,1, | sinh @,1, | cosh #1, | sinh #1, ° ° ° ° ° ° ° ° 

° o 0 ° o ° 0 ° cosh @,1,] sinh a,1,| cosh 6,1,| sinh A,2, ° ° ° ° | 

R R 8. 8. R, R, 8 5, | 
: S 2 2 inh a2, ha_1, | sinh 6,2 nh B,2 canes ha. rae h ° ° ° Ole Soe Sake | coh Sate | sinh fats [oostF,2,| sinh d,i,| cosh e,1,| sinh 6,1, | cosh, | 
° 0 ° 0 aR, os 6,8, BAS, ais a2, she 4, os ° ° ° ° | 

cosh @,1, | sinh @,1, | cosh #,1, | sinh P,1,| cosh a,1,] sinh 4,1,| cosh f,1,| sinh 6,1, | 
| ° ° ° ° ° oO ° ° cosh @,1,} sinh @,1,| cosh #,1,] sinh P,1,)-cosh ¢,1,|-sinh @,1,|-cosh #,1,|-sinh f, 1. sts sts ats sts ‘ats ats ats ats 

R R, 5, ES R, 2, 3, “8, 
o 2 o 2 2 e 9 g sini @,1,| cosh &,1,] sinnB,1,| cosh P,2,| sinh @,1,| cosh #,1,| sinh £,2,| cosh #2, 
3 . 0 3 5 . a of ststHs [Sts [B38 | Estss8s] BEB | BTstsBe | 2,2,0,84 | B,2,0,84 || 

oosh @,1,] sinh @,1,| cosh P,1,} sinh B,1,] cosh #,1,] sinh 2,1, cosh 6,1,] sinh B,1, 
“KC, KAS, KAS, _‘(I-k,a,G, 4,6, K,A,6, 4,5, KA | 

° ° ° ° ° ° ° ° (@,-R,) [(a,-R,) |(8,- S,) (85-85) (a,-R,) | (@,-8,) | @,-8,) @,- 5) i 

sinh @,1,| cosh a1,| sinh A,1,| cosh 8,1,] sinh @,1,} cosh 4,1,| sinh 6,1,] cosh 6,1, | 

ak ak B.S. 8.5, | ‘ ang Par) ana ° 0 ° ) ° ° ° ° ° ° ° 4 y cosh #,1,] sinh @,1,| cosh 6,1, sinh ,1, | 

(@,-R,) | (¢,- 8, (8,- 8,) ° ° 0 ° ° 0 o ° ‘ cae ‘ 2 : g © | sinna,a] cosh a,2,| sinh 6,2,                                 

we)
 

  

zy 
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Note: The Gauss elimination is only applicable if there is a 

non-zero element at every position along the leading diagonal i.e. 

A453 #0 for j=1,16; for that reason rows 4 and 5 were interchanged 

and rows 8 end 9 were interchanged. 

  

    

eek Longitudinal vibrations of a case bonded motor 

The mathematical model is given by: 

-— 
Ku 

Cs 

5 a 

eon ee Supa Se ST 

ee ee ee 
The solution of the equation for longitudinal vibrations of a long thin 

beam is given by (see reference (59)): 

u= (B cos ax +C sin ax)et* 

2 wp 
where esc 

E 

Hence the response of beam i is given by: 

  

A iwt uy = (B; cos a,x +C, sin a,x) e 

2 2 
where a, = Ps 

By 

The end conditions are: 

at x=0, oA, = cee 

at x=1,, A, = oA, > usu. 

at x= 1,> = QO. 

ou, 

here oo = Bo a Dog nee 
ox 

Thus four equations to solve for the four unknown coefficients B,, B,, 

Graces
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Since a sinusoidal applied force is considered then the 

correspondence principle may be applied. Beam1 is a viscoelastic/ 

elastic composite, therefore zy is replaced by Br, 

p 
and e@ sw /[— 

a 
E 4 

3u, 
2 oo 

1 1 
ox 

zB 

Note: Bos E, Gi 7) 

where E, is the modulus of the case 

and E, G+ in) is the modulus of the propellent. 

If the acceleration at the forcing point is known, let it 

be a, then the boundary condition at x = 0 is given by: 

2 uo= -a,/o 

the other boundary conditions remain the same. 

  

e225 Results of computer analysis and comparison with measurement 

Motor A 

The general arrangement of motor A is shown in fig. (4.1). 

Figure (4.5) gives the mounting position during the transverse vibration 

trials. The motor was clamped to the vibrator at each end of the main 

motor body. A control accelerometer was connected to each clamp and a 

reference accelerometer was positioned at the centre of gravity of the 

motor, 

The specification stated that the motor must be subjected to 

@ constant amplitude vibration of 1.2 mm (peak-to-peak) from 5 Hz to 35 Hz 

and to a constant acceleration of 4 & from 35 Hz to 200 Hz.
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The program used was the one which calculates the response 

when the accelerations at the control points are known (described in 

section 1.2.3). Acceleration levels of 4. g were specified at the 

forcing points, the response of the centre of gravity was computed and 

is plotted against frequency in fig. (4.6). The maximum value is 45 g 

which occurs at 12). Hz. : 

The program which calculates the response when the applied 

forces are given (section 4.2.2) was also used with these data. The 

forces were adjusted to give responses of 4 g at the control points; 

this program predicted the maximum response as 17el: g at 117 Hz. 

The programs gave differing results because the phase 

relations between the forces and accelerations were dissimilar: 

In the first case the control accelerations were specified 

as } g and thus were exactly in phase. 

In the second case the applied forces were specified as 

1 000 N and 1 050 N, hence they were exactly in phase, the control 

accelerations were both 4 g but with a phase difference of about 30°. 

As the phase lag between the control acceleration signals 

was not measured it was not possible to calculate the response any more 

accurately, 

Thirty-five sets of measurements were made on motors of 

design A, the maximum response and the associated frequency for each 

is given in Table 4.1. It may be seen that there are considerable 

variations within the data, the averages are shown in the last line of 

the table 24.6 g and 117 Hz. The root mean square scatter of the maximum 

response is 7.5 g and of the frequency is 11.3 Hz. It is thought that 

the variations were due to the clamping arrangement. If the clamps were 

loose then the motor would behave as a free-free beam; if the clamps held 

the motor SS that no vertical movement was possible but allowed twisting 

then it would act as a simply supported beam.
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Thus the computer analysis was in good agreement with 

measurements within the bounds caused by uncertainties regerding phase 

differences and clamping arrangements. 

Motor B 

The specification states that the motor must be subjected 

to a constant acceleration of 0.5 g (the average of the signals from 

the two control points) for frequencies between 20 and 500 Hz. The 

response of the centre of gravity was also to be measured. The trials 

were to be carried out at +20°C and -10°C. 

The program was run with the motor B data prior to the 

vibration trials, the predicted and measured responses of the centre of 

gravity are showm in fig. (4.7). It may be seen that the agreement is 

very good. 

Note: The complex moduli used in these analyses were those obtained 

from the relaxation modulus and then modified by a ‘correction factor a, 

found empirically for propellant No. 1 at various temperatures. 

E E 

qa, = ( “2,18 ) 
a9 BRT 

where suffix m indicates a measured value 

and suffix R indicates a value obtained from the relaxation modulus 

and T indicates a particular temperature
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423 Cartridge loaded motors 

4304 This analysis applies to cartridge loaded motors where the 

propellant is rigidly connected to the case at the forward end. The 

motors where the propellant is located on spigots or just loosely 

inserted have not been studied. 

The general arrangement of a cartridge loaded motor is shown 

in fig. (4.3), the mathematical model is given in fig. (4.4) ise. three 

rigidly connected uniform beams - the motor case, the blast tube and the 

propellant. 

The motor is generally attached to the vibrator at two points; 

it was assumed that the motor was excited by two sinusoidally varying 

forces at those positions. For the reasons discussed in section 4.2.4 

(note**), the case is subdivided at the forcing points to give a total 

of five beams; where 1,2,3 were the case, 4 was the blast tube, and 

5 was the propellant. 

4302 The sotution when the applied forces Pua Fare know 

The Timoshenko equations were solved (see Appendix (B)) for 

each of the five beams. 

The displacement of the neutral axis of beam i is given by 

u, (xx, t) 

The slope of the neutral axis of beam i is given by 

Then for beam 1: 

$n} iwt wz (8, cosh a,x + Bosinh @.x + Bcosh B,x + B,sinh B,x)e 

swt? . $ ’ wy ¥ = (R,B, cosh a,x + RB sinh a,x + 8,3 ,cosh Bx + S,B,sinh B,x)e~ % 

4036(1)
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For beam 2: 

u,= (B,cosh a,x + B,sinh a,x + B,cosh Bx + Bysinh B,x)et** ) 

#5 (R,B,cosh a,x +RBysinh a,x + S.Bocosh 8.x + S,B,sinh B xe} 

and similarly for beams 3, 4. and 5. 

Bis j = 1,20 are the unknown coefficients, 

a, B, R and S are defined in Appendix (B), (Equations B(17) - B(20)). 

Boundary conditions: 

  

  

         atx=0, u,=u, ) 

) 
atx=1,, usu, 

4034(2) atx=1,, u,=u,, ¥,=%,, Ho ou,, 0,4 F,=0,, 

atx=1,, u,=u,, ¥,2%,, MS=M,, 2, =. 

atx=1,, M, = 0, Q,=0. 

eo x ES ) ei ody, M = 0° 0. = On 

where 
ov. \ 

My =e BT, (= ) is the bending moment of beam i, 

a= ok! ASG, ( a - vs ) is the shear force of beam i. 

Substituting for Uz and vs for i= 1,5 from equations 4.3.(1) into 

equations 4..34(2) gave 20 equations which were’ solved nunericelly to 

give B,, j= 1,20, using the Gauss elimination technique. (see dj 

Appendix (D)). The matrix equation is as follows:
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Note: Rows 2 and 17 were interchanged and rows 3 and 18 were 

interchanged for the reason given in the note of section 4.2.3. 

Then the response of any point (X) of the motor could be found 

by computing the appropriate u,, vs 3



Motor case: 

O<x<e1, u, (Xt), ¥, (X,t) were evaluated 

1<xX<1, u, (x,t), ¥, (X,t) were evaluated 

1,<x<1, u, (x,t), ve (X,t) were evaluated 

Blast tube: 

1j<x<1, u, (X,t), ¥, (X,t) were evaluated 

Propellant: 

o<xXe1, uy (x,t), 4, (X,t) were evaluated 

A programme was written to calculate the response of cartridge loaded 

motors using this analysis, the data required were: 

Fy, F, > 

Ass Pxs lis Tis K'y, My, BF, for 2 = 4,55 

Note: A, =A, = As, P, =P, = P3, etc. 

since they all refer to the motor case. 

A,, ?,,1, ete. refer to the blast tube 

A,» Pss 1, ete. refer to the propellant 

Ey for i = 1,4 was real since the motor case and blast tube were elastic. 

EF, was the complex modulus of the propellant; since it varied with 

frequency it was input for the necessary frequencies. 

403.3 The solution when the accelerations at the forcing points 

are know 

An analysis similar to that given in section 4.2.3 can be 

performed. The boundary conditions at x = 1, and x = 1, will be as 

given in equation 4.2.(3) otherwise the end conditions will be as given in 

equation 4.3.(2).
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Ledok Longitudinal vibrations of a cartridge loaded motor 

The mathematical model is given by: 

  

  

fo ——_—_—_—_————» 
@ 

  

«+ eA, 

  

      

  Lea 
The displacement of beam i is given by (see reference (59)): 

uy = 

p. 
where a =o? [4 

= E 
Z 

The boundary conditions are: 

at x u oO oA, 

atx=1 oA, 

atx=1, a= 

at x=1, o,= 

ou; 
where De aan 

i a 
ox 

i.e. six equations to solve 

Bib zsehs 1 0,9 

(By cos a.x+C, sin a,x)er** 

*02Ay 2-F,o ua) eu. 6 
33 4 3 

= 0, = ah» u, u,- 

CEG 

Ons 

for the unknown coefficients 

C,, ¢, 

Since the applied force varies sinusoidally with time then E, is 

replaced with ate since the 

e, 
then f= [— 

a 
eS 

ou, 

and os a ——- 
ox 

propellant is viscoelastic.
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If the acceleration at the forcing point is known (a,) then the end 

conditions at x = O are given by: 

2 
u, = -a,/o 

u,= -a,/o" 

  

3 

43-5 Results of computer analyses and comparisons with measurements 

Motor C 

This was the design of motor which was damaged during the 

vibration trials in 1970 (see section 1.1.7). The general arrangement 

is shown in fig. (4.3) and the motors were mounted for the transverse 

vibrations as shown in fig. (4.8). Tests were performed at 440°C and 

-20°C, The vibration specification stated that the motor must be 

subjected to a sinusoidal vibration test consisting of a double sweep 

between 20 Hz and 500 Hz with the level of vibration (the average of 

the responses measured at the two clamping points) less than or equal 

to1.5 g 

The motor was also to be subjected to random vibration, then 

the sinusoidal test was to be repeated. The 'before' and ‘after' plots 

were compared for differences which might indicate that the motor had 

suffered damage. 

The only measurements made were the responses of the control 

points; these could have been used to predict the response at any other 

point but this was not attempted since there were no experimental results 

available for comparison. 

The program described in section ..3.2 was utilised to 

calculate the responses of the propellant and the case assuming values 

for the applied forces (see fig. (4.9)). The relative displacement 

between the propellant and the case was then calculated. The system was 

assumed to be linear then the force necessary to cause impact of the 

propellant on the case could be calculated. The applied forces were
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assumed to be equal. 

The responses at various frequencies are given in 

fig. (4.10(a)) for the temperature at +4,0°C and in fig. 4.10(b) for 

the temperature at 2006 6 

At 40°C it may be seen that impact is likely to occur when 

the forcing frequency is 10 Hz and the applied forces are approximately 

25.N. The position of the impact is at a distance of 0.98 m from the 

bonded end. 

Similarly at -20°C contact will occur when the forcing 

frequency is 50 Hz at 0.8 m from the bonded end when the applied forces 

are about 1 200 N, An estimate was made of the actual applied forces 

(based on the mass of the motor and the response at low frequencies 

when F = M a), it was calculated to be about 1 200 N. Thus it may be 

suggested that. the damage would be more likely to occur at the high 

temperature than at -20°C; also the point of damage at 40°C would be 

about 1.0 m from the bonded end. This was in fact the case (see 

section 1.1.7). 

Note that it has been assumed that the propellant remains 

as a straight beam with a constant clearance between it and the case; 

in practise when the propellant is warm it is very soft and will not 

support its ow weight so will slump onto the case. The motor is 

periodically turned to combat this occurrence but it is unlikely tha 

it is removed completely. 

Motor D 
This is a motor design which has not yet been subjected to 

vibration trials, The predicted responses at +50°C and -25°C are given 

in fig. (4.11). If the applied forces are more than 135 N then damage 

is likely to occur caused by the propellant impacting on the case when 

the forcing frequency is 90 Hz.



8), 

Note: The complex moduli used in these analyses were 

obtained from the relaxation moduli and then modified using the 

‘correction factor’ q, found empirically for propellant No. 1 for 

particular temperatures. 

E E 
aoe (= +28 ) 

EAR Boat 

where suffix m indicates measured value 

suffix R indicates value obtained from relaxation modulus 

1 indicates a particular temperature
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Table 1.4 

Experimental results on Motor A 

Drial No. Frequency where acceleration was Maximum acceleration (g) 
@ maximum (Hz) 

  

4 403 : 16 
2 420 26 
3 422 40 
4 129 2h. 
5 440 28 
6 430 26 
7 4135 32 
8 410 3 30 
9 413 2h, 

10 144 28 
4 142 30 
412 ri 3h 
2 404. 16 
44 400 20 

45 An 40 
16 412 2h. 
17 424 28 
48 42) 20 
49 405 20 

20 428 40 
24 42h , 3h 
22 4133 417 
23 44 18 
2h, 429 46 
25 430 30 
26 400 16 
27 425 25 
28 405 20 
29 414 25 
30 412 26 
3 444 23 
32 40h. 45 
35 400 12 
3h 412 15 
55 428 22 

Average 417 2h66 

Root mean square 
scatter: 

4 oa 
d- ) (x,- ¥)? 4103 725 

n —, 
i=1
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86 

5ei Admittance method for measuring the complex modulus. E* 

The modulus was measured with 2 samples of propellant No. 1. 

It was shown that the modulus was dependent on frequency and temperature 

but independent of sample length (provided that the sample was long in 

relation to the cross section so that it could be assumed thet the stress 

was constant over the cross section). 

The measured complex was used to calculate: 

(i) the acceleration and phase at the forced end of the test rod 

in longitudinal vibration 

(ii) the acceleration and phase at both ends of the test rod in 

transverse vibration 

(443) the acceleration at 9 points along the length of the full 

scale sample 

These were compared with measured date and were in good 

agreement. 

The modulus was also measured at several temperatures where 

the value of E* ranged from 1° 242(4 + i 0.33) 1/n? at 1 820 Hz and 296 

to 10.74 (4 + i 0.83) mN/m? at 200 Hz and +39°C, so the method works 

within that range of modulus at least. The complex modulus of natural 

rubber was also measured and was found to be equal to 4.2 es 0.05) unm? 

at low frequencies. This agreed with the modulus measured by another 

technique so the admittance method works for a damping constant (z/3,) at 

least as low as 0.05. There appears to be no upper limit because if a 

material is so heavily damped that no peaks in the acceleration vs 

frequency response are discernable then masses can be added to each end 

until the response does show a maximum. From the dimensions of the rod and 

the added masses an estimate for the complex modulus at the frequency of 

maximum acceleration may be made. This estimate is used as the initial 

guess for the iteration routine.
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The fact that the method can be used for heavily damped 

materials is the most importent point as there is no other simple 

technique which is applicable. (The other technique which does 

exist uses a viscoelastic/elestic beam in transverse vibration, The 

Euler-Bernoulli equations for transverse vibration are used, they are 

more complicated than the equations for longitudinal vibration and 

they are only valid over a limited frequency range when shear 

deformation and rotary inertia can be ignored. Then, having found the 

"composite" modulus, it is necessary to extract the complex modulus 

of the viscoelastic material). 

The experimental set up for the admittance method contains 

only standard instruments and needs no special equipment; the 

experimental procedure is simple and quick (the measurements needed to 

calculate the complex modulus in the range of 100 Hz to 1 000 Hz are 

made in about 10 minutes); the rig can be easily adapted to measure the 

complex modulus at specific temperatures by surrounding the specimen 

with an oven/refrigerator thus not disturbing any other equipment. 

The frequency range over which the method is valid is 

about 10 Hz to 5 000 Hz depending on modulus, sample size etc. The 

limits for a particular sample are determined by: 

(a) The lower limit: When the rod moves as a rigid body 

(somewhat below the first "resonance"), The response is 

independent of complex modulus so the results from the 

iteration technique cannot be relied upon. 

The lower limit can be reduced by increasing the added 

end masses thus decreasing the first "resonance". 

(b) The upper limit: When the wave length is of the same 

order as the cross section the assumption that the stress 

is constant over the cross section is not valid.
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The upper limit can be increased either by reducing the end 

masses or reducing the cross section area. 

If the frequency - temperature superposition principle may 

be applied then the frequency range can be greatly extended. 

The computer programme to calculate the complex modulus 

from the measurement is short and simple to use. It is easy to obtain 

a reasonable estimate of the modulus at the frequency where the acceleration 

is a maximum, With this as the initial estimate for the iterative process 

the programme will calculate E* for each frequency at which measurements 

were made.
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2:2._Complex moduli of other propellants 

It has been shown that the measured complex modulus was 

appreciably different from that obtained from the relaxation modulus 

for propellant No.1. It is necessary to have the accurate complex 

modulus to give a reasonable prediction of the response of a rocket 

motor to forced vibration so the moduli of the other propellant should 

be measured too. 

It may be found that the "correction factor" - q, used in the 

present work (based on only one material) may be applicable for ell 

propellants, if not, the complex moduli of each propellant will have to 

be measured. 

There exist at SRS good facilities for maintaining the specimen 

at a constant temperature so it will be possible to determine the modulus 

at various temperatures. It will also be possible to assess the applicability 

of the temperature - frequency superposition principle for each propellant.
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: ocket Motors Rocket Motors 

The analysis developed for analysing rocket motors have 

given very good results for the three of the studied motors for which 

experimental data are available (A, B and C). 

No special experiments were carried out on a rocket motor 

for the present research and much more remains to be done both 

experimentally and theoretically. Tests are necessary with a more 

extensive monitoring system then conclusions could be reached on the 

applicability of the mathematical models. 

(4) 

(44) 

(4a) 

(iv) 

(v) 

to include: 

(4) 

(34) 

(444) 

It is necessary to 

measure input forces to the motor by including force 

transducers between the motor and the vibrator. 

measure the effect of the clamps and specify the 

tightening torque to ensure repeatable trials 

measure the phase difference between signals (applied 

forces, control accelerations etc) to give a more 

accurate representation of the constraints 

Install more accelerometers along the motor 

(With a cartridge loaded motor) include accelerometers 

within the propellant to measure its response as well as 

the case - then it may be seen if the two are impacting 

The theory of rocket motor vibration needs to be extended 

the effect of forced random vibration (this is based on the 

response at specific frequencies) 

the response of cartridge loaded motors when the propellant 

is not rigidly connected to the case 

“the response when the propellant hes slumped onto the case



aA 

  

5.4 Transport vibration specit 

Although the transport vibration trials are specified by the 

customer it would seem useful to do some experiments on rocket motors - 

both packaged and when connected to the missile - to measure the 

vibrations that are encountered during transportation by road, air, sea 

etc. If the specifications were based on actual measurements then 

realistic vibration trials could be designed which would ensure 

that the motor would be safe to use and would obviate the necessity 

of designing a motor to withstand tests many times harsher than 

anything it would be subjected to in service.



(a) 

i) 

(c) 
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5.5 Other applications of the present work 

The admittance method can be used to measure the complex 

modulus of any viscoelastic material as discussed in 51. 

The method developed for analysing the motors can be used 

to study the effect of a sinusoidal force on any system of 

rigidly comected beams - austis or viscoelastic. The 

solution for each beam is standard and the set of end 

conditions are put into matrix form which is solved by the 

Gauss elimination technique to give the coefficients; the 

response of any part of the system can then be evaluated. 

The use of viscoelastic materials to damp out unwanted 

vibrations has been studied extensively (see references 

G7), (28)5. 3), (39); (40), and (44)). In the present work 

it has been showm that the effectiveness of a damping 

material is given by: 

ena E/2, (or Q = E,/z,) 

so for a viscoelastic material of known modulus it is 

possible to predict ¢ (or Q) as above. 

For an elastic/viscoelastic composite beam a composite E* 

must be evaluated (see references (3) and (61)), then the 

same equations may be used. 

If the coating of viscoelastic material is more than five 

times the thickness of the elastic beam then 

G@/s, D eoanosits . G@,/s, ) ieeseisatie
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5.6 The solution to The Problem 

As mentioned in the introduction, the problem which 

initiated the present research was one particular design of motor which 

failed during the vibration trials. It has been shown in the present 

work that this was probably caused by the propellant hitting the case 

when the motor was subjected to low frequency vibration which excited 

the second "resonance" of the propellant. The damage occurred only 

at the high temperature because (a) the gap between the base and the 

propellant was small due to the high coefficient of expansion of the 

propellant and (b) the complex modulus was lower at the high temperature 

thus reducing the frequency of the "resonance" to a value where the 

displacement was of the same order as the gap. 

The problem was overcome by inserting rubber strips along 

the length of the propellant thus connecting it to the case. 

By connecting the case and the propellant in this way they 

are not able to vibrate separately so they become a composite structure 

similar to the case bonded motor, 

The first "resonance" of the composite occurs between that 

of the propellant alone and that of the case alone since the case adds 

stiffness to the propellant thus increasing its natural frequency and 

the propellant adds mass to the case thus reducing its natural frequency, 

The propellant also adds damping so it considerably reduces the 

displacement of the case at the natural frequency. 

Since the propellant end case cannot move independently no 

damage can be caused by vibration, the rubber support is in the form of 

strips to allow room for expansion so no thermal stresses are induced. 

As this amendment is simple and inexpensive to incorporate 

it is probably the best solution possible.
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Appendix A 

The Euler-Bernoulli Equations 

(3) The Euler-Bernoulli equations for an elastic beam in bending 

From elementary bending theory: 

Bending moment 

M = - EI—> A(1) 

where u u(x, t) is the displacement of the neutral axis, u " 

positive dow. 

Consider an element 5x of the beam: 

F 7 /— 

  

Q £ 

The equilibrium equations are: 

om 

Res Se 
ox 

aq a7 
and == Pi 

ox ot 

a by substituting for M from A(1), we have 

au a°u 
EI — =- pA —— A(2) 

ax ate



Consider the beam in forced vibration with an applied harmonic 

force F =F, e***, If it is assumed that the transients have died 

away and the beam is in the steady state condition, then it may be 

assumed: 

u(x,t) = u, (x) ene 

The equation A(2) becomes: 

au 
= Gat us ° 

dx 

where a* = paw? /EI A(3) 

Then the solution of A(3) is: 

uy = B, cos 4 x+B, sina x+B, cosh@ x.+B, sinha x 

A(4) 

The four unknow coefficients B, ’ Bo» B, end B, are found from the end 

conditions of the beam. 

CeSe consider a free-free beam excited by the force F at the end 

xel. 

Paks) de a . 

DK   

  

  

Then the conditions are: 

atx=0, Q=0, M=0. 

atx=1, Q=F, M=0. 

a? ou 
where QsEl — > and Me - => 

ax ox
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Solving for the coefficients By gives 

iwt 
° 

uz 3 x 

2EIa~(4 - cos @1 cosh #1) 

Fe 
  

(cos ax + cosh @x)(sin @1 - sinh @1)+(sin ox + sinh @x)(cos @1 - cosh @1) 

A(5) 

(a4) The Euler-Bernoulli equations for a viscoelastic beam in 

bending 

The second form of the Correspondence Principle (see 

section 1.2.7) is applied, then 

Uy is as given in equation A(5) except that @ is defined by: 

a* = paw /ET
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Appendix B 

The Timoshenko Beam Equations 

(4) The Timoshenko equations for an elastic beam in bending 

From elementary bending theory: 

oy 
Bending Moment M = -EI 55 7 B41) 

Shear Force Q=- k'aG @ -¥) B(2) 

where u = u(x,t) is the deplacement of the neutral axis, u positive down 

and ¥ = ¥(x,t) is the slope of the neutral axis, positive clockwise. 

E, I, k', A, @ do not vary with x or t. 

Consider an element 5 x of the beam 
+R Orgs ox 

[| ee ems ode 

| a s Q a eee 
The equilibrium equations are: 

   

  

8Q au 

Q= (0+ — dx) = pAsx — B(3) 
ox 8t 

an 3x aQ 8x a*y 
Min (M+ — bx) - Q— - (9 + — dx) — = PI dx —> 

ox 2 ox 2 ot 

B(1,) 

From B(3) 

8Q ou 
— + PA sis 0 
ox at 

Substituting for Q from B(2): 

au ay au 
ok AG) + PA = = 10 B(5) 

ox Ox ét 

From B(i), 
OK ary 

Qi se PTs went 
ox ot
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Substituting for M and Q from B(1) and B(2): 

ary du a7y 
El 4 he ( —— = ) er B(6) 

ox ox ot 

B(5) and B(6) are the mixed differential equations of motion in 

  

  

  

  

  

uand ¥, 

From B(5) 

oy a7u PA a7u 

Sais al eee 3(7) 
ax ax’ K'AG ot 

ay atu pA au 
therefore 2 Se eS B(8) 

dxdt” ax*at? k'aG ot 

ay a‘u PA d*u 3 
and — er B(9 

ax* ax" K'AG dt7ax° 

Differentiating B(6) with respect to x gives 

ay ua ay 
EI —> + k'ac =->) = pt : 

ax ax ax dxdt 

Substituting B(7), B(8) and B(9) gives 

au (= a‘u au pri au 
EL - + et) + pA + = 0 

ax*  \xtg ax" at? at? k'g at* 

B(40) 

From B(6), 

au 4 ay ay 
— = — (pl—=--; j}+¥ 
8x k'AG at ax 

au ply EI 0“y any 
therefore —> = —— a oe ee B(411) 

ax k'AG dxdt” k'aG dx ax 

au pI Ay EI ol “y any 
and = = + B(42)   

axd8" K'AG t* kYAG 8x" at" at



Differentiating B(5) with respect to x gives 

  

  

a°u au a7 
pA - ktag ( —> - =) = 0 

8xdt ox ox 

then substituting B(11) and B(12) gives 

a‘y ay pEI a‘y "rt aty 
eg) Pk ee ia (PT te +— —=0 

ax at? kig/ axat* kta at* 

B(13) 

B(10) and B(13) are the separated differential equations of motion 

in u and #. Consider the beam in forced vibration with an applied 

harmonic force F = a eee If it is assumed that the transients 

have died away and the beam is in the steady state condition then it 

may be assumed: 

u(x,t) = u(x) eve 

¥(x,t) = ¥o(x) ett 

Substituting in B(40) gives 

      

  

  

au ow" RC yagubiee 1 Je" tee 
2+ — (or + — ae - pa) uw, = 0 

dx EI k'G dx EI k'G 

au, au, : 
or + 10. ——— 4 Ch a = 0 BAL — ae 2% 

wo PEL 

where os = (2 eb cacer 
EI k'G 

4 p° Tw" 5 
and c, ee ( -@ oa) 

EI k'G
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Similarly from B(13), 

= 0 B(15) 

  

The general solutions of equations B(14) and B(15) are: 

uy = B, cosh @x +B, sinh ax +B, cosh fx +B, sinh Bx ° 

B(16) 

¥ = B, cosh Gx +B, sinh x +B, cosh Px +B, sinh Ax 

B(17) 
2. 4 2 

where @ sg (-¢, ACL on he c,) 

B(48) 
ee 2 

and B =%(-, - /¢, -46¢,) 

Substituting B(46) and B(17) into B(6) gives 

EI(@"B, cosh @x + aE. sinh x + PB, cosh Bx + p°3, sinh fx) 

+ pIw* (3, cosh %x + B, sinh ¢x + B) cosh Bx+ B, sinh Bx) 

+ ktac( (@B, sinh @x +B, cosh 4x +8B, sinh Px + BB, cosh Bx) 

- (B, cosh @x + B, sinh ax + B, cosh Ax + B, sinh Bx)) =0 

Since x is arbitrary, the coefficients of cosh x, sinh ¢x, cosh Px 

and sinh fx must all be independently equal to zero. 

Therefore (EI @° -k'AG + plu") B, + k'AG a B, = 0 

5 HE, ty
 tt or 

where R = -k'AG@/(EI a -k'AG + plu") B(19)
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Similarly,B, = R B,, 

and B, = 8 B,, 

B, = 5 By, 

2 where § = -k'AGA/(EIP -k'AG + plu’). B(20) 

Thus there are only four independent unknown coefficients. 

therefore u=(B,cosh ¢x + B,sinh &x + B,cosh Px + B,sinh exer. 

and v= (RB, cosh x + RB, sinh ax + SB cosh x +S B,sinh Bx)er”* 

The end conditions of the beam give four equations which are used to 

solve for B,, B,, B, and B,. 

e.g. for a free-free beam the bending moment and shear force are zero 

at x=0 andx=1. 

(44) The Timoshenko equations for a viscoelastic beam in bending 

The second form of the Correspondence Principle is applied (see 

section 1.2.7) then, 

u=(B, cosh @x + B, sinh ¢x + B,cosh Bx + B,sinh exon’ 

¥=(R B, cosh @x +R.B, sinh @x +S B,cosh Px + § B,sinh feo 

2 
w pEFT 

where Ce ( pl + )   

  

E*L k'G* 

ja yee ee 
and C3. sor ( -@ ea ) 

EFI k'G* 

then a? and B° are given by equation B(418).
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2 

= -k'agta /(E*I a” = k'act + plu’); § fs
 

we
 it 

  

S = -k'acts /(E*I ” - ktAaG* + pw") 

E* 

Note: G* is given by G* = 
2(14+*) 

It was assumed that the material was incompressible, 

then ves ft 

and cel eane/ 5 

Note: Figure (B.1) shows a comparison of the responses 

calculated using the Euler-Bernoulli theory and the Timoshenko 

theory. The dimensions of the beam were: 

eross section - 0,025 mx 0.025 m 

length - 0.2m
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Appendix ¢ 

Comparison of the ‘direct' and ‘modal enalysis' methods 

There are two methods for solving a forced vibration 

problem : 

(a) The direct method, where the applied forces are used as 

boundary conditions. 

(44) The modal analysis method where the displacement is 

expressed as a sum of. the normal modes. 

In the following, a problem will be solved using both 

methods and it will be shown that the results are the same. 

The problem is a free-free beam forced at x sl in 

transverse vibrations by a harmonically varying force F = Fe: 

The differential equation of motion is: 

au a-u 
EI— > = -PA —> c(1) 

ox ot 

The Direct Method 

The problem is solved by the direct method in Appendix A, 

the solution for the displacement u(x,t) is given by: 

iot 
F i 

  

Wio= : 
2EIa"(4 - cos 41 cosh a1) 

(cos ax + cosh ax)(sin @1 - sinh @1) + (sin ax + sinh ex) (cos *1-cosh a1) 

(2) 

4 2 
where a” = pA w /EI 

Modal Analysis 

The solution of equation C(4) is assumed to be: 

ey 
. 

ust) = ) %,%, 
5 n=t 

where xX are the normal functions for a free-free beam, 

and en are the generalised coordinates.
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(a) The Normal Functions x, of a free-free beam 

Assume u = x aul 

then the solution of equation C(4) is given by: 

us ae = 

io,t 
cet cos 4.x + B2, sin @.x + B3, cosh 4x + Bh sinh a, x) en 

AS 2 (3) where a = pA WL /EI 

The boundary conditions are: 

au au 
stx=0 -ElI—= = 0 jond SI—=] = 0 ) 

ax ox 

au a°u C(4) 

at x=] = = O and EI —> SOs 
ox ox 

Substituting ¢(3) into C(4) gives the frequency equation (from which 

o, is calculated) and the Normal Functions: 

The frequency equation is 

cos a2 cosh at = 4 

EI 
then @. = a2 eel 

n n par? 

The Normal Functions are given by: 

A. 
n 

  

n : 
sinh @,1 - sin a2 

(cos at - cosh a,1)(sin ax + sinh a x)+(sinh a i-sin a1) (cos a x+cosh ¢ 

c(5) 

Normal Functions are defined such that 

al 
2 

i xX, axel (6) 
° 

1 
end | x Xn dx = 0
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Substituting €(5) into C(6) gives 

sinh @ 1 - sina 1 
n n 

Bl, = Ginh @1 cos @ 1 - sin@ 1 cosha 1 n n n n 

(cost 1-cosha 1)(sine x + sinha x)+(sinha 1-sina 1) (cosa x+cosh ! 
therefore xy = > ~   

inh @ a1 - si a sinh nt cos nn sin an cosh ne 

It may be shown (see reference 59 , p. 364) that the generalised 

coordinates >, for forced transverse vibrations of a beam excited at 

iot 
e x =l by a force F = = » are given by 

#(X,)x=1 
  = 

n pa(w,?~0*) 

therefore u = -F e —_ 

  therefore u = —————— = 3 ¢(7)
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Comparison of the two results 

Consider the solution using the direct method, i.e. equation c(2); 

Let f(x) = (sinhal -sin @1)(coshax +cos ax)-(coshal -cos @1)(sinhax +sin ax) 

  

f(x) 

Then us “Fett si 
2EIa"(4-cos @1 cosh 41) 

Since ix} is a complete set of orthogonal functions in the range 

0 to 1, it is possible to express f(x) as an infinite sum in terms of 

these functions, 

© 

i.e. f(x) = a, X, 

n=1 

z 1 
2 

then a= | f(x) X, dx / | X, dx 

° ° 

  

3 

  therefore f(x) = x 4 4 n 
n=i (a, orca) 

-2 et a 
therefore u= 4 a 

EI1L a -@ 
n=t on 

which is identical to equation C(7).
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Appendix D 

Gauss Elimination 

If there are m simultaneous equations in m unknowns to be 

solved then they can be written in matrix ‘form and solved using the 

Gauss Elimination technique. Let the matrix equation be 

(a) {x} = fy! 

The method consists of manipulating the matrices (A) and {y} by 

equivalence operations to convert (A) into upper triangular form 

(a') txt = ly} 

  

mal 

i.e. 4 ao Bie ae, gts pT 5 x, = vie 

On: Bs' 84! + « : ‘ 7 ¥,' 

Cas0 4 r* & ‘ . > x5 J," 

Ouro 0 4 Gee Ne oak shy =, ¥,' | D( 

| o 0 0 0 wee 040 1,4, Xe! You 

Xa | vn" 

  

(ers 0 Creo On Oy 1 

then {x} is found by back substitution. 

The procedure is: divide all elements in the first row 

(including x6 yoy 84 

Then the zeros in positions (254) (3,1) (451) etc are formed by performing 

the equivalence operations |
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G, = 8.5.8 for i 
ni ni ni S44? 

4,m and for n = 2,m 

and Twin so we for n = 2,m 

The first colum is then in the form given in equation D(1) 

The procedure is then repeated for column 2, i.e. all elements in 

row 2 (including ¥2) are divided by a,,; elements (3,2),(4,2),(5,2), ete 

are put equal to zero by the equivalence operations: 

Sg = Sai ~ Snr 824, for i = 2,m and n = 3,m 

and Vn on viensee for n= 3,m 

Similarly for columns 3 to m until the matrix is in the form D(1). 

Consider the ne equation: =, 

th " " S " s ° (m-1) Xnet + en mt Vent 3 hence x _, 

th " " a " = A (m-2) Xn-2t2, i Xa *2, 2, x Yneg shence Xie etc 

A flow diagram for the technique is given on the following pages
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Appendix 

IMPLICIT REAL*8 (A-H,0-Z) 
OPEN (5,INPUT,PROMPT'FILE 5') 
OPEN (6,0UTPUT*T) 
DOUBLE PRECISION COMPLEX BO,BR,AC,A,E,S,C 
DOUBLE PRECISION COMPLEX V,D1,D2,F,2D,T. 
DOUBLE PRECISION COMPLEX Mi, x2 
REAL*8 M4 ,M2 
TEN 6=1£03.*1 206. 
PI=)..*ATAN(4 «) 
EP( =. 
WRITE(, 65) 
FORMAT(//*INPUT BR!) 
ACCEPT BR 
READ(5,19)AR,RO,EL,EF 
WRITE(6,14) 
WRITE(6,14)AR,RO,EL,EF 
READ(5,14)1M M2 
WRITE(6,19) 

WRITE os M2 
WRITE(6, 24 
READ(5, 28) FR, X,Y 
X=X*9 86665 
IF(FR)99,99,106 
OM=2.*PI*FR 
A=DCMPLX(X*DCOS(Y),X*DSIN(Y)) 
44 =(34 4112)/ (RO*EL*EL) 
A2=AR*AR*RO 
C4 =EF/(AR*EL*RO) 
C2=AR*RO*EL 
X41 =EF*RO*AR 
X2=(14 412)*AR*RO 
X3=AR*AR*RO*RO*FEL 
X04 U2/EL 
cre 

C=CDCOS(BR 
T=8/C 
V=X2*C+(X3/BR-X4*BR)*S 
E=X4/V-A 
FD=X1 *(X2*S-(X3/ER-X4*BR )*C4+(X3/(ER*BR)+XL)*S)/(V*V) 
BR=-F/FD+BR 
AC=%4 /(X2*CDCOS(BR)+(X3/BR-X4*BR )*CDSIN(BR)) 
IF(DABS(DRHAL(AC)-X*DCOS(Y))-EP1 )4 24,128,118 
Se -5P1 )1 34,130,118 
E=( OM*OM*EL*EL*RO)/(BR*BR) 
E=B/TEN6 
WRITE(6,5f)FR,E 
CONTINUE 
GO TO 98 
CONTINUE 
CLOSE(6) 
STOP 
soa G4) 
FORMAT ee » ‘AREA', 5X, ‘DENSITY', 4X, 'LENGTH', 2X, "RMS FORCE’) 

3X, eae IASS 4", 4X, "MASS 2!          

    

es okX, "E41 *, 6X, 'B2*) 
as
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