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Synopsis

The object of the research was to study the effect of forced
harmonic vibration on solid fuel rocket motors. A rocket motor consists
of the motor case (which contains the propellant) and the blast tube
attached to the aft end. The propellant is a viscoelastic material, no
relisble data on the complex modulii of the propellants were available so
a method ﬁaa developed to measure it = the admittance method. This consists
of vibrating a rod longitudinally, the applied force is kept constant
the acceleration at the free end and the phase difference between force
end acceleration are measured. The frequency is varied and a set of
measurements obtained for each frequency. These data are then used in a
computer program to iterate to the complex modulus necessary to give the
particular acceleration and phase at the particuler frequency. Thus
values of complex modulus are obtained for each frequency at which
measurements are made. The modulus thus measured was used to calculate
(i) the acceleration and phase at the forced end of the rod in

longitudinal wvibration
(i) the acceleration and phase at both ends of the rod in

transverse vibration
(iii) the acceleration along the length of the full scale sample,

The calculations compared very well with measured datea.

The rocket motor was then analysed as rigidly connected beams.
The equations used were the Timoshenko beam equations which include the
effect of shear deformation and rotary inertia. The unknown coefficients
were found from the end conditions of the beams. |

Analyses were carried out on four different motor designs,
experimental data were available for three of theme. The calculated
and measured results were in good agreement even though the data were

not detailed enough to give an accurate representation of the constraints.
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Notation

A Area (mz)
&, Maximum acceleration (at frequency fm) (m/ e

31 ,Bzeto Unknown coefficients in the solution of Timoshenko equation (m)

B.j 1/Kj for Kelvin viscoelastic model (m/I)

b yl,varisble used in the iteration routine

'bo Initial estimate for b '

'bn nth iterated value of b

b Y Solution of frequency equation

c Damping constant for a viscous damper (Ns/m)

(:‘j Damping constant for the viscous damper of element j in
viscoelastic model (Ns/m)

Dcrp(t) Creep compliance (mz/N)

D*(w) Dynamic compliance or complex compliance (mz/N)

d.1 Distance of accelerometer from bonded edge.of mass m, (m)

dz Distance of accelerometer from bonded edge of mass m, (m)

E Young's modulus (1/m°)

Erel( £) Relaxation modulus (N/m’)

E*(w) Dynamic modulus or complex modulus (I )

E(s) o(s)/p(s)

E, Real part of E* (/)

E, Imaginary part of E¥ (/a2

Boidl Modulus of B* =Y(E® +E,") (W/n°)

Ez/E1 =n = tan &

F Applied force (IN)

e, Amplitude of applied force, F = Foeiwt ()

£ Frequency (Hz)

f|(’x,t) = Acceleration (m/sz)



fm Frequency where the acceleration is a maximum (Hz)

fh Undamped natural frequency (Hz) |

f‘ Frequency where the acceleration is Pa, or am/f? (Hz)

fz Frequency where the acceleration is am/f2 (Hz)

G* Complex shear modulus G* = E¥*/(2(1 + v*)) (N/mz)

I Moment of inertia (kgmz) and second moment of area (m‘)
- v .

K . Stiffness of elastic spring (N/m)

Kj Stiffness of elastic spring of element j in viscoelastic

model (N/m)

k! Shape factor in Timoshenko equations

L1 Length of masslm1 (m)

L, Length of mass m, © (m)

L3 Distance between point of application of force and free edge (m)

3 Length of rod or beam (m)

M(x,t) Bending moment (Nm)

m, Mass of the block at the forced end of the rod (kg)

m, Mass of the block at the free end of the rod (kg)

N, m1/pAl ratio of end mass : beam mass

N, m,/PAL

P measured acceleration at the free end of the rod in
longitudinal wvibration P = Ip} eie (m/sz)

P_| Acceleration of mass m, at a distance d1 from the bonded edge
(n/52)

P2 Acceleration of mass m, at a distaace d2 from the bonded edge
(n/s%)

ak
P Ei}k ;;k , differential operator used in viscoelastic stress-
strain relations
P(s) Ez%k Sk s DPpolynomial in s with the same coefficients as p

P proportion of 41 , o< p < 1



Py Coefficient of P and P(s)

Q(x,t) Shear force (N) ‘

Q 1/2 € , magnification factor

5K
Q j{}x:—_k s differential operator used in viscoelastic
% stress-strain relations

Q(s) Ei}k < , polynomial in s with the same coefficients as Q

Qe Coefficient of Q and Q(s)

q, Correction factor for the dynamic modulus obtained from the
relaxation modulus

R Parameter of Timoshenko equation solution defined in
Appendix B, equation B(19) (41/m)

S Parameter of Timoshenko equation solution defined in
Appendix B, equation B(20) (1/m)

s Laplace Transform variable

7 Temperature (°K)

To Reference temperature (OK)

t Time (seconds)

U(x,t) Displacement (m)

u(x) Spatial variation of U(x,t) (m)

xn Normal modes of free vibration

x Spatial variasble (along the length of the beam) (m)



Variable in the solution of the Timoshenko equation,
defined in Appendix B, equation B(17) (1/m)
OJ/KJ , "relaxation time" of element j in viscoelastic
model (s)
Attenuation factor associated with frequency @
"Shift factor" used in the superposition principle
Variable in the solution of the Timoshenko equation, defined
in Appendix B, equation B(18) (1/m)
@ Yp/E for elastic materials, ® Yp/E* for viscoelastic
materials (1/m)
tan™" E,/E,
A small quantity
Strain in the x-direction
E,/E,
Phase difference (radians)
Poisson's ratio of elastic material
Complex Poisson's ratio of viscoelastic materiall
Demping ratic € =C/C, = C/2km = 1/
Mass density (kg/m’)
Stress in the x-direction (N/m’)
Generalised coordinate
Slope of the neutral axis of a beam in bending
:E’1/'i‘m
frequency (radians/s)

resonant frequency (radians/s)
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INTRODUCTION




1.1 Rocket Motors and the Problems of Environmental Vibrations

1141 Missiles

The rocket motors manufactured at Summerfield Research Station
(SRS) are used to power guided tactical missiles. SRS motors are used in
most of the British weapon systems e.g. .
British Aircraft Corporation: Thunderbird and Rapier (ground-to-air

missiles)
Swingfire, Vigilant and Hawkswing
(enti-tank)
Hawker Siddeley Dynamics: Seadart and Seaslug (ship-to-air)
SRAAM (air-to-air)
Short Bros. and Harland: Seacat (ship-to-air)
Tigercat (ground-to-air)

Many of these systems have been sold overseas, also a number of
contracts have been won by SRS for motors to power missiles developed in
other countries.

141.2 Rocket Motors

A missile usually has two stages of powered flight - a boost
phase and a sustain phase. The boost is high thrust/short burn for the
initial 1ift off and the sustain is low thrust/long burn time to convey
the missile to its target, rocket motors may be used for both phases.
The missile can have separate boost and sustainer motors or a duvual purpose
motor. Rocket motors can be powered by solid or liquid fuel., Only solid
fuel motors will be considered in the present work since this is the type
manufactured at SRS.

A motor consists of the propellant, the case, an igniter and a
blast tube or nozzle. There are facilities at SRS for the manufacture and
assembly of all the componentis.

§t3 Propellant
The fuel used in the motors manufactured at SRS is cast double

base (CDB)propellant i.e. it is made by a casting process, the basic



ingredients being nitroglycerine and nitrocellulose. There are two types
of CDB propellant, conventional and composite modified, the latter has the
double base matrix with large proportions of aluminium and oxidiser, it
has a higher energy rating than the conventional CDB propellant. Other
proprietary ingredients are added to the fuels to improve ballistic
performance, to ensure it is safe to handle and to inhibit adverse chemical
changes.

The propellant is a viscoelastic material, it has a high
coefficient of expansioﬁ, most properties are temperature dependent,
it is homogeneous, virtually incompressible and the density is about 1/5
that of steel.

1614 Motor designs

There are two types of motor design - cartridge loaded and
case bonded.

With a cartridge loaded motor the propellant is cast into a
cylindrical mould which has a loose lining of inhibitor (a material which
does not burn); as the propellant solidifies the inhibitor bonds to it
on the outer surface (with an end face left free). When removed from the
mould the propellant plus inhibitor is called the 'charge'. The charge
is loaded into the case; it can be loosely inserted (with no restraints),
located in place on spigots or bolted and/or bonded to the case at the
forward end.

With a case bonded motor the propellant is cast directly into
the case (which has a bonded inhibitor lining).

A charge can either be solid or have a central aperture down the
length (called a conduit). A solid charge is ignited at the rear and burns
aleng the length - hence the alternative name of "cigarette burner". The other
type is ignited at the forward end and burns radially outwards along the entire
length. The shape of the conduit is designed to give a variation of burning

surface which results in the specified performance.
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Solid charges are always cartridge loaded but radial burners
can be case bonded or cartridge loaded.

Because there is a larger burning surface, a radial burner
burns more quickly than a solid charge of the same propellant.

The coefficient of expansion of propellant is about 18 times
that of steel (from which the case is usuzlly mede) and the motor must
withstand ambient temperatures from -ho°c to +60°C. As the motor cools the
propellent shrinks more than the case, with a case bonded radial burning
charge deformation of the inner surface helps to alleviate the stress on
the bonded interface. If the bond between the propellant and the inhibited
case is broken then the burning surface is increased and when ignited the
motor will not perform as designed.

If a solid charge was bonded to the case, a drop in temperature
would cause the propellant to pull away from the case or break itself;
this is why solid charges are cartridge loaded and not case bonded. Since
solid charges burn longer, when a long burn time is required the design is
a cartridge loaded motor,

1¢1 5 Qualification tests

Before production begins on a new motor design, it has to pass a
series of customer specified 'qualification tests'. These are to show that
the performance is as required (e.g. burning rate, buwrning time, thrust,
total impulse etc) and to ensure that the motor will withstend environmental
conditions without deterioration of safety or performance standards. The
environmentel tests include temperature cycling, high humidity, drop tests,
bump tests and environmentsel vibration tests. If the motor design does
not pass all these qualification tests then penalties are incurred while
problems are rectified = hence a series of pre-qualification trials are
completed to ensure that the motors will not fail.

1146 Enviponmental vibration tests
These trials are to simulate the transport vibrations

encountered while the motor is being carried on a lorry, plane, ship etc. The



5

actual test is specified by the customer but is usually low frequency
forced vibrations (10 Hz to 1 000 Hz) for a long duration (several hours).
It can consist of random or sinusoidal vibration. The sinusoidal

vibration may consist of forcing the motor at one frequency (usually a
resonance) or sweeping up and down through a specific frequency range.

The whole vibration specification can contaiﬁ Just some or all of these and
usually tests are carried out at several temperatures.

Toadail The problem

In 1970 during *he pre-gualification environmental vibration
trials of one particular motor (A), there were several failures. The
motors were stripped down after the trials to be inspected and it was found
that motors tested at the high temperature (40°C) were damaged. Motor (4)
was a cartridge loaded motor - it was sbout 2.5 m long in total, the
propellant within it about 1.5 m. The propellant was bolted and bonded
to the forward end plate which was rigidly connected to the case, otherwise
the charge was free to move within the constraints of the case. At 20°C
the gap between the charge and the case was 1 mm and at 40°C it was 0.6 mm.
The damage was sbout 1 m from the fixed end and was in the form of a radial
crack in the inhibitor.

Several modifications were made and after about three months
the problem was overcome by supporting the charge along the length with
rubber strips (thus still allowing room for expansion). This was
considered to be a temporary expedient,so in 1971 the tdpic of
'The vibrations of rocket motors' was offered to the University of Aston
as an IHD project. It was hoped to discover how the charge was damaged
and devise a method for detecting and removing problems at the design

stage with future motors.
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1.2 Viggpelggticigz

1241 General
A viscoelastic material is one for which the mechanical behaviour
exhibits viscous and delayed elastic response to stress in addition to instan-
taneous elasticity, the strain being dependent on the rate of loading as well
as the level of load and, in general, not all of the strain being recoverable,
The material displays creep under static loads and the response

to dynamic loads is damped (because of the viscous effects).
If the material is subjected to a constant applied load then

the plot of strain/stress vs time gives the 'creep compliance’ Dcrp(t),
see Figure 1.1(a).
If the material is subjected to a constent strain then stress/
strain vs time gives the 'relaxation modulus' Erel(t)’ see Figure 1.1(b).
There also exists a dynamic modulus E* and a dynemic
compliance D¥:

for a harmonically varying stress and stfain,

stress
B =
strain
strain
and D* =
stress
1
then D# Eap e
E*

E* and D* very with frequency @ since the strain is dependent on the
rate of loading.

As the response is damped the strain is not in phase with the
stress so E¥ and D¥ are complex numbers (the& are also known as the
complex modulus and the complex compliance).

i.e. for a harmonically varying stress,

Ux( t) = erimt



the resulting strain,

-if iwt
€x(t) = € e e

where @ is the phase difference between stress and strain, the strain

always lagging behind the stress.

o_(t) o
then iy X AR eie
ex(t) €

which is complex .

The compliances and moduli are, in general, also temperature dependent.
Note: These moduli apply for simple extension, there are equivalent
moduli for shear deformation, bulk longitudinal deformation and bulk
compression and dilation. The present research deals only with the case
of simple extension so the others will not be discussed here, they are

related to the extension moduli and are fully covered in Ferry (48).

1622 Stress-strain relationships

For a linear elastic material the stressos:is related to the
strain € by Hooke's Law, i.e.

o = Ef 1 02(1 )

X x

where E is Young's modulus.

For & linear viscoelastic material the relation can be
written as

P(o,) = a(e) 1.2(2)

where P and § are differential operators,

m ak.
k=t t

[o7]

r'-l\
2;; atk

see Fligge (4L9).



1.2.3

where

and

i.e. P(s)
P and Q.

and

Then

or

where

124

Viscoelastic moduli and compliances

The Laplace Transform of Equation 1.2(2) is

P(s) o, = Q(s) & 1.2(3)
m\

P(a) B Zpkak
=¢‘

s) =

I "
=1

and Q(s) are polynomials in s with the same coefficients as

'Exand ?xrepresent the Laplace Transforms of ¢ and § respectively.

- Q(s) .
g =
x P(s) x
?x = E(s)'e’x 1.2(4)
Q(s)
E(s) = ——
P(s)

Creep compliance

A constant stress, Ux(t) = 0,, is applied and the variation

of strain with time, € (t), is measured to give the creep compliance

Since

then

end since

then

ex(t)

Dcrp(t) = 3

[
€(t) = Dcrp(t) A
5 Dcrp(s) %
Ux(t) = G'o

.Exz O'O/S

substituting in 1.2(3) gives

o, P(s) 1
Dorp(e) = S0l . aE(s) fasio




4 e2sD Relaxation modulus

A constant strain, € is meintained and the relaxation
modulus is found from the variation of stress with time,
o (+)

€
(o]

Erel(t) i

Since “:;(t) = Eral(t) €
then o = Erel(s) £
and since fxﬂf) A A

then ?x = €o/s

Substituting in1.2.(3),

- Q(s)
Ea() = o, = s - 1.2(6)
1.2.6 Dynamic modulus

If it. is assumed that the stress is varying harmonically

with frequency @ i.e. 0 = 0 eiw*’, then by substitution into 1.2.(2):

n ak n ak
iwt iwt
(y k atl‘ o e k atk 0

k=o

m

therefore Z P, (1)K aoei"’t X Zn qk(i“’)k eoeiwt
= =
i.e. [P(s) :lsz a = [Q(_.,) :l i
(s)
s [:(.o.)]
or q = E* €le

Where B* [E(s)] [ 2l ] 1.2(7)

s=1iw



1247 Elastic and viscoelastic analyses

If we consider the analysis of a continuous medium, there

are three types of equations which formulate the problem:

1. Equilibrium conditions
2. Strain-displacement relationships
3. Stress-strain relationships

and the only difference between an elastic'analysis and that for a
viscoelastic substance is the third, the constitutive equation .

For a linear elastic materiasl this is €

= quand for a linear visco-

elastic material it can be written
Bo) = g(¢)
It has been shown in section 1.2.3 that in the transformed domain

E = E(s)?

x X%

thus it can be seen that the analysis for a viscoelastic material can be
obtained from the solution of the corfesponding elastic problem by
replacing the unknown variable with its Laplace Transform, replacing

E with E(s), and then invertingback into the time domain. This is
known as the 'correspondence principle'. See refs. (11), (48) and (49).

Because of the complicated nature of the viscoelastic
problems, the inversion will probably have to be carried out
numerically. See refs. (8) and (37).

If the stress varies harmonically with time the constitutive

equation is 0 = E*€ (equation 1.2(7)), therefore in dealing with
vibration analysis, the correspondence principle states that:
The solution %t0a viscoelastic problem can be obtained from that of an
elastic material by replacing the elastic constants with the
equivalent complex, frequency-varying functions. (See refs. (35) and
(43)).

fhe present research considers forced vibrations so this

latier form of the correspondence principle is used throughout. The

You ;'s modulus E is replaced by the complex modulus E*(w),.
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If free vibrations are considered, E is replaced with
E* (ﬂn +-ian) since the natural frequencies are complex because
the free Vibrations are damped; @, is the frequency and @ is
the attenuation factor.

12.8 Viscoelastic models

The solutions to most viscoelastic problems that have
been solved, have been arrived at by using simple models = a
combination of elastic springs and viscous dampers. (See refs.
(10), (19), (20) and (50)). The simplest are the Maxwell and
Kelvin elements, refs. (11), (49). |

The Maxwell element is a spring and damper in series
and the Kelvin element is a spring and damper in parallel.

The stress-strain relationship for the Maxwell element is

( Cong: d
1+——>U=(c—'>‘
X s/ " ge S

s
then E(s) = R
1+£-s
K.
Erel(t) = Ke

o
Q
Lz
o
_
ﬂ.
S
1"
T
=lo
+
l'"
R
s

w e /X cw
B (w) e i —o
1+?Er- i+ T

— AN
K c

Maxwell element
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The stress-strain relationship for the Kelvin element is:
(X +0—)
= (K+o—) €
7y at

then B(s) = K+ cs
and Erel(t) = K+ ¢d(%)

whered(t) is the Dirac delta function

D) = = (s

E*(0) = K+ icw

T Kelvin element

Clearly such simple models do not adequately describe the
behaviour of real materials so they have been extended; the'Maxwell
Model 'consists of n Maxwell elements in parallel and the 'Kelvin Model'

consists of n Kelvin clements in series. (11), (49).

L

[ I et

Mazxwell model Kelvin model

The Maxwell Model is used when the relaxation modulus Erel(t)

or the dynamic modulus E* is required as they are easily derived as:
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n

..t/a
Erel(t) = Z Ky e 3
=

a2’ K w K, a
end F(w) Z [—L-‘l + i—‘]—’1 :](See Ferry (48))

1+, W +ma

where Kj is analogous to the stiffness of the spring in element J.
4 is the ratio of the damping factor (cj) of the dashpot in element J
to the spring stiffness Kj'

(t)

The Kelvin Model is used when the creep compliance Dcrp
or the dynemic compliance D* is required since they are simply

expressed as:
n

Dcrp(t) i Z Hs (1-6-1:/“3 )
D*(w) = [—BJ—-piijz]

where Bj = 1/Kj

1.2.9 Fitting viscoelastic models

The method used to find the parameters of these models for a
particular material is to measure one of the moduli and to fit the
model's formula for that modulus to the measured values.
€efe If a Maxwell element is to be used, the relaxation modulus
of the material can be measured and the curve Erel(t) =g e_tK/c
is either fitted to two measured points or a least squares method is
used to fit the curve through several points.

The moduli are all interrelated and, in theory, having

obtained one, the others can be evaluated:
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from equation 1.2(5) _;rp(s) 1/s E(s)
BE(s)/s

from equation 1.2(7) E*(w) = 1/6%(w) =[E(s):|
s=iw

1}

i

from equation 1.2(6) Erel(s)

1re2elO Time-temperature superposition principle(‘Refs.(11) and (AB))

There are diffiiculties in determining the relaxation modulus
and creep compliance in fhat the values chahge so rapidly with time
that it is impractical to measure them accurately. See, for example,
the relaxation modulus in fig.1e2(b),at t=10-9’ Erel(t) = 500 and at

t=40"%, E_.(t) = 18.

rel
This problem is overcome by using the time-temperature

superposition principle:
Erel(t’T) 5 Erel(t/ar’ To) 1.2(8)

where T  is the (arbitrary) reference temperature.

This states that Erel(t) measured at a time t and a temperature T is
equivalent to the modulus at a temperature To with the time axis shifted
by a function @ (called the 'shift factor').

Thus if the relaxation modulus is measured at several
temperatures and plotted against t/aT,a single composite curve will be
formed corresponding to Erel(t) at the temperature To' A considerable
extension to the time renge is achieved in this way.

From the composite curve of the relaxation modulus vs t/a_
at temperature To (fig.1.2(b)L and the graph of at vs T (fig.1.2(a)),
the modulus for any temperature can be found by substituting the
particular value of @  into equation 1.2(8).

A similar process is used to extend the time range of the
creep compliance,
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1¢2441  Frequency-temperature superposition principle

It is difficult to devise an experiment to measure the dynamic
modulus (or compliance) over a large fregquency range; the range can be
greatly expanded by using a similar superposition principle,

the frequency-temperature superposition principle:

E*(0,T)

E* (a0, T )
and D*(v,T) = D*(a,w, To)

where @ is the same as given above.

Thus by making measurements at several temperatures it is
possible to achieve a considerable extension to the frequency range in
this manner.

See Ferry (hB), chapter 141 for a full discussion of the
superposition principles (whichis called the 'method of reduced
varisbles'). Also described are methods for finding @ ; several

empirical formulae are given.
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15 _ Outline of Investigation

The investigation began with experimeﬁts at Aston on a piece
of inert propellant (i.e. containing no explosive constituents).

A rod 0.9 m long with a circular cross section of diameter 0,15 m was
used; it was vibrated longitudinally and transversely. The response
to forced harmonic vibrations was measured and is reported in
section 2.2. Having become familiar with the experimental technique
the equipment was transported to IMI Summerfield and the tests
repeated on live propellant. These experiments are reported in
section 2.3.

The theoretical approach initially used was the lumped
parameter method; this can be used for longitudinal and transverse
vibrations. A continuous beam is approximated as point masses
connected by springs and dampers. It is a useful approximation for
complicated elastic systems with little or no damping end gives good
agreement with an exact analysis when using only a few point masses.
The difficulty was to describe the materi;l properties. It could be
done by using Maxwell, Kelvin or more complicated models, however if
the model was goci enough to describe the material behaviour adequately
it was extremely difficult to solve the ensuing matrix equations, see

Ref. (29). Since forced harmonic vibrations were being considered it

4]

wes pessible to use the simpler correspondenco principle given in
section 1..2.7 i.e, substitute E* for E in the analysis for a similar
elastic system. As the test pieces and rocket motors generally consist
of uniform beams and cylinders the equations are not difficult to
formulate. The difficulty lies not in the shape of the structure but
in the propellant's dynamic properties; thus if graphs of E* vs
frequency and temperature are available then for a specific frequency
and temperature the value of E* can be used to calculate the response.
There is thus no need to actually categorise either the type of damping

or the variation of modulus with frequency and temperature.
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Initially the E¥ graphs were obtained from the relexation
modulus as described in section 1.2.6.

Longitudinal vibrations were analysed using the single degree
of freedom equation for a long thin rod, this assumes a constant stress
over the cross section,

For transverse vibrations the sihgle degree of freedom
Euler-Bernoulli equation was used (see Appendix A). The theoretical
predictions did not agree with the measurements on the test piece, it
was thought that the complex modulus was not accurate so a method was
devised to measure it directly., This is fully discussed in chapter 3,
but essentially it consists of forcing a small rod in longitudinal
vibrations and measuring the acceleration (both magnitude and phase) of
the free end. The complex modulus is obtained from a computer program
which iterates to find a value of E* to give the measured response at
that particular frequency. In this way E* was measured for frequencies
in the range 100-4 000 Hz and temperatures between —40 and +,0°C.

The modulus thus measured was appreciably different from that calculated
from the transform of the relaxation modulus (see fig. 1.3).

The complex modulus was first verified by comparing predicted
and measured values of acceleration at the forced end of the rod in
longitudinal vibrations. There was good agreement throughout the
frequency range. (Section 3.6)

The same rod was then harmonically forced in transverse
vibrations and the measured accelerations compared with calculations, up to
the first resonance they agreed quite well but not at higher frequencies.
The analysis was amended to include the effect of shear deformation and
rotary inertia (i.e. the Timoshenko beam equations)., The discrepancy

between measured and calculated was then within 107 throughout the

frequency range. (Section 3.7)
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The Timoshenko beam equations were solved for the large test
pieces used in the preliminary tests; with these equations and more
accurate values of E¥ the calculated response agreed very well for the
first seven bending modes. After this, secondary resonances (coupled
bending and radial modes, transverse shear modes ete) were excited;
as large displacements cause the problems in rocket motors the low
frequencies are much more important, so the bending theory is quite
adequate. This is fully discussed in section 3.8,

The modulus measurement technique was also used on a sample
of natural rubber, the results are discussed in section 3.9.

The whole motor was then studied, three computer programs
were written to analyse the response of motors to forced harmonic
vibrations:

1. case bonded motors when the applied forces are specified,

2 case bonded motors when accelerations ;t control points

are specified

3 cartridge loaded motors

The case bonded motor was modelled as two rigidly connected
uniform beams (main motor body and blast tube or nozzle). The main motor
body is an elastic/visco-elastic composite structure and the blast tube
or nozzle is assumed to be elastic.

The cartridge loaded motor was considered to be three
rigidly connected uniform beams (motor case, propell&nf and blast
tube or nozzle), the propellant being viscoelastic and the other two
beams elastic. The results from these models show good agreement with
measurements made on actual motors. These three programs should be
adequate for the analysis of all case bonded motors and for all cartridge
loaded motors where the propellant is secured to the case at the forward

end. All the details of this work is given in chapter 4.
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2] Experimental set-up and procedure

The equipment used for these preliminary experiménts was

as follows:

Oscillator - Muirhead 2 phase L.F. D-880-A
Amplifier - Radfoord MA 25

Vibrator - Goodmans %50

Accelerometers - J . Langham-Thompson XA2

Load cell - Endevco 2103-100

Charge amplifier Environmental equipment 6 channel CVA-6
Oscilloscope - Telequipment D33R
Voltmeters - Advance A.C., VM78

A.C. Ammeter 0-2 amps

A block diagram of the system is shown in fig (2.1).

Two test pieceé were manufactured one of inert (or ‘duimy') propellant and
the other of live propellant (No. 1). The dimensions of the two pieces
were the same: -

Circular cross section, diameter = .15m

Length = .9 m
A plate was bonded to each end of the beam so that the specimen could be
suspended at one end from a crane and coupled to the vibrator at the
other end.

Throughout the experiments the force was kept constant and
the accelerations at various points were measured. The phase difference
between two accelcrometer signals (one used as a 'standard' and the
other as the variable) was 'estimated' from the oscilloscope i.e.

anywhere between 270-0-90 was 'in' and anywhere between 90-180-270 was 'out'
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2.2 Inert Propellent

Longitudinal vibrations: The test piece was suspended above
the vibrator which was coupled to the specimen by means of the bottom
plate. An accelerometer could be screwed into either the top or bottom
plate. The measurements from this experiment are given in fig (2.2).

Transverse vibrations: The vibrator was turned through 900, a
Jubilee clip was strapped round the test piece near the bottom plate and
the vibrator push rod was coupled to it. The accelerometers were also
attached to jubilee clips so they could be moved up and down to measure
modal shapes.

The measured responses of 2 points along the beam
(at 0,03 m and 0.9 m from the forced end) are given in fig. (2.3).

Note that the maximum values of the acceleration do not occur at the same
frequency, this is due to the damping in the material. For a lightly
damped material (steel, for example) the natural frequency in free
vibrations, the maximum acceleration end displacement in forced vibrations
all occur at the same frequency, the 'resonant frequency'. Also the
maximum will occur at the same froquency wherever the measurements are
made. It can be seen that when the damping is not negligible there is no
common frequency where all these phenomena occur, hence any allusion to
the 'resonant frequency' of a damped material should be carefully defined.

The modal shapes measured at specific frequencies are given
in fig. (2.4). The effect of damping is clear here too, the displacement
at the forced end is appreciably greater than at the free end, the energy

is absorbed as the wave travels along the bean,

2,3 Live propellant (No. 1)
The above equipment was transported to SRS and experiments
were carried out on the specimen of live propellant. Only transverse

vibrations were studied in this case.
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Acceleration vs frequency plots for three points along
the length of the beam (ﬁt Oel my, 0,2 m and 0.3 m from the forced end)
are given in fig. (2.5); modal shapes at specific frequencies ars
given in fig. (2.6).

It can be seen that the live propellant is much more
heavily damped than the inert materiasl and the comments on the effects
of damping given in the previous section are even more pertinent here,

The main purpose of these preliminary experiments was to
discover if the inert and live propellants had similar dynamic properties.
It was hoped that they would be similar, then experiments would be carried
out using the inert propellant, the results of which could then be used to
predict the response of the live materials.

It was decided that the properties were too dissimilar to
pursue this plan; also, although the relaxation modulus of most of the
live propellants had been measured, there were no similar data for the
dummy sc it was decided to continue with experiments on live propellent

only.
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Chapter 3

MEASUREMENT OF THE CCMPLEX MODULUS
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3,4 Introduction and Literature Survey

The present research deals with forced harmonic vibrations of
viscoelastic materials. In order to analyse these conditions it is
convenient to use the second form of the correspondence principle (see
section 1.2.7) - i.e. the solution to a viscoelastic problem can be
obtained from that of an elastic material by replacing the elastic
constants with the equivalent complex frequency-dependent parameters.

Since the work deals exclusively with beam vibrations, the
elastic constant needed for the analyées is Young's Modulus E. For the
viscoelastic analysis, E is replaced with the dynamic modulus E*().

The relaxation moduli of most of the propellants had previously
been measured so it was decided to use these to calculate the dynamic

moduli with the equation:

@) = [3 rel(s):] | 341.(1)

s=iw

where Y (s) denotes the Laplace Transform of Erel(t).
(see section 1.2.6)

The Maxwell Model in parallel with a spring was used, i.e.
n
-t/a
E. (%) = K°+YKje J 301.4(2)
=

and hence from 3e1.(1) K a L 1K o0

n
E*(M) = K + L 2 ” - 3.1 l(j)
J=1 1+ W aJ

The Kj and aj are found by fitting equation 3.1.(2) to the

measured relaxation modulus, they were then substituted into equation
3.4 .(3) to give B* (w).

E*(w) calculated in this way was used to compute the response
to forced transverse vibrations of the large scale specimen used in the

preliminary experiments. The response calculation was based on the Euler-

Bernoulli equations (see Appendix (A)). The calculated values were
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compared with the measured response (reported in Chapter 2); the
comparison is shown in fig. (3.1), clearly the agreement is not good.
Obtaining E*(w) in this way would be erroneous if the basic assumptions
were not valid., Two of the most important assumptions are:
(1) that the material is linearly viscoelastic,
i.es if a stress 0, produces a strain €,
then a stress no_ will produce a strain of
n €, where n is a constant.
The material was found to be linear for the order of displacements
encountered in the vibration tests; however, the strain specified
for measuring the relaxation modulus is usually 57 and it is thought
that the material is non-linear for such large strains.
(ii) that it is possible to perform the time-temperature
superposition (see section 1.2.10).
By varying the temperature at which the relaxation modulus is measured
it is possible to considerably extend the time range by using the above
principle. A plot of @ vs. T should be a smooth curve passing through
the measured velues of ¢ . Figure (142(b)) shows the graph of log a_
vs. log T for propellant No. 1. It can be seen that thers are quite
large deviations from the smooth curve.
Further doubts arise due to:
(1) the range over which the relaxation modulus is valid;
Ferry (Ref. (48)) advises caution when using values of
modulus obtained at temperatures far removed from the
reference temperature. In this present work the frequency
range of interest is 10 Hz to 1 000 Hz; assuming ® is
approximately equivalent to 1/t then the important time

A | -4 -2
renge on the relaxation curve is 10 = to 10 seconds,
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This implies temperatures of about -12°¢ ana 0°C (from

fig. (1.2(b)), for log a = +4, T = -1200, etec.), assuming

actual measurements begin at t = 1 second. The reference

temperature is 20°%.

(ii) Practical limitations - at extremes of temperature it is
differeht to maintain a constant 57 strain - at high temperatures
the propellant is very soft so the strain will easily increase,
when cold the material is brittle so the specimen could break
before the specified strain level is reached. If the level
cannot be achieved, the stress is calculated assuming that
the material is linear and scaling up or down as appropriate,
i.e, if the strain is 107 and the stress o, then it is assumed
that at 57 the stress would have been 0, /2,

In view of these uncertainties it was decided to devise a
technique for direct measurement of the dynamic modulus. The method is
described in the subsequent sections of this Chapter.

A literature search was conducted to find a method to measure
the dynamic modulus E*; general surveys of the various techniques are given
in References (46), (47), (.8), (52).

There are many established methods, they fall into several
different categories:

(1) The measurement of the shear modulus G* (see References (1),
(%), (9), (23) and (44)), then the use of the eguation

E¥ = ¢* (2(4+v*)) to obtain

e

#s 4t is usually assumed that
v* is constant and equal to %. This method was not used

because of the necessity to make the assumption about v¥*,.



(iii)

(iv)

2l

The measurement of the response of a beam to forced transverse
vibrations and the use of the Euler-Bernoulli equations to find
E*. It is found either by approximation (see reference (53) for
frequencies below the first resonance) or by an iterative technique
(see (5)). Transverse vibrations are inherently more complicated
to analyse than longitudinal vibrations, so difficulties are
introduced without any obvious advantages. References (31)

and (36) describe the limitations on sample geometry for the
Euler-Bernoulli equations to be applicable (i.e. when it is
possible to ignore the effect of rotary inertia and shear
deformation) and i£ is shown thet the equations are valid only
for the first few modes of vibration.

The measurement of resonant frequencies ofla beam, using

either forced or free, longitudinal or transverse vibrations,
(References (54) - (58)). This method is not suitabla if the
material is highly damped (as the propellent is) - free
vibrations are attenuated so rapidly that no useful results

can be obtained and with forced vibrations the response curve
does not show a sharp peek (possibly no peak at gll; see the
result reported in Chapter 2), so it is difficult to distingﬁish
where the maximum velue occurs.

The resonant frequency methods can be utilised when the visco-
elastic material is used in conjunction with an elastic

material in a compound structure. See References (3), (25),
(26), (31) and (36) for techniques using viscoelastic/elastic
layered beams in transverse vibrations. The same comments

apply as in section (ii) with additional complications generated

due to the necessity to extract the complex modulus of the
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viscoelastic material from the measured 'composite modulus',
(v) The longitudinal vibrations of a Viscoelastic rod with an

added end mass also gives measurable resonant frequencies.

References (2) and (30) treat the rod as a complex spring

with no mass, Reference (38) includes the effect of the mass

of the rod. This method as described in the references gives

E* at resonant frequencies only, although by varying the added

mass the resonant frequency can be varied.

These various methods were not suitable for the reasons
specified so the "admittance method" was devised; a free-free rod with
bonded end masses (one to comnect the vibrator and the other to facilitate
suspension of the sample) is forced in longitudinal vibration. The input
force is set at a constant level Fo and the acceleration at the free end

(|P!) and the phase difference between the two (8) are measured, then

IPl eiB
Fo \
to compute E* from these data using an iterative technique. In this

the cross admittance = A computer program has been written

way E* can be measured over a large frequency range and is not dependent
on 'resonant frequencies'.

The values of E* can easily be verified by using them to

e ) d acceleration at the forced end
predict the direct admittance = == . st
o

and comparing with measurements (see section 3.6).

E* can be further proved by calculating the direct and cross
admittances of the rod in transverse vibration and comparing with the
measured responses (see sections 3.7 and 3.8)..

A variation of the "admittance method" is given in Reference (32)
(reference was discovered after the present experiment had been designed).
The Transfer Impedance method of (32) consists of foreing one end of a rod
in longitudinal vibrations, the other end is fixed (i.e. it is attached to a

heavy mass). The variables measured are the force at the fixed end, the
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acceleration at the forced end and the phase between the two. Using
an iterative technique E* is calculated from the transfer impedance:-
_Acoeleration at x = 0 / Force at x = 1. Corrections are necessary to
compensate for the finite end mass.

The admittance method was preferable in that it is easier
to attain a free end rather than a fixed end. The end masses are
incorporated in the present analysis so it is marginally more
complicated than that of Reference (32) but with the use cf a computer

this is unimportant.
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3,2 Theoretical basis of the method

34241 Forced longitudinal vibrations of an elastic rod with

end masses

It is assumed that the rod has a uniform cross section and
that it is long relative to the cross section, then lateral displacements
 can be ignored and it can be assumed that the stress is constant over the

section.

my — x,u M ety

]
]

Mass m, at x

i}
o

Mass m, at x

Force F = Fo emt is applied to mass m,

Differential equation of motion

Consider an element 6x of the rod '
Ag > A(0G+ agx 5‘2)
( ox

The equilibrium equation for this element is:
A(c +ﬂax)—1w = pAsxil-
WL tdn * ot
where o is the stress in the x-dirsction mez)
A is the cross sectional area (m?)
p 1is the density (kg/ms)
u(x,t) is the displacement (m)
then
aox 3%u
el : 3.2.(1)

ox at
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Assuming it is a linear elastic material, then

O‘x = Et’x
where E is Young's Modulus (N/m>)
and Ex is the strain in the x-direction
o€ o%u .
then E——== p oy 3.2.(2)
ox ot

The strain-displacement relation is:
du

€ A . S

= ox

Substituting into 3.2.(2) gives:

azu azu
ax> at?

Since the applied force F = Fo eimt, it is assumed that the displacement

U(x,t) = u(x) %,

then equation 3.2,.(3) becomes

2
du .
E 2 = = pW u
dx
dzu >
or .-...-? +¥Y¥u = 0 3.2-(4)
dx
2 e
where y' = —— 3.2.(5)
E ’

The general solution to 3.2,.(4) is given by

u(x) = B, cos ¥x + B, sin yx 3.2.(6)
Then U(x,t) = (B1 cos yx + B, sin yx)eimt 3.2.(7)
Boundary Conditions

—5 |

T i R WO 1 AR NTEE L [ S Lo PR
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Considering the equilibrium of the end masses, the boundary conditions

are given by:

azu

at x=0, onzmz -5-1:5
azu
at x:l, F—A0x=m1;:2-

Substituting 3.2.(7) into these and solving for B, and B, gives

(ABy cos yx - mzwz sin yx) elwt

BiEy) = =2 3.2.(8)
G O(AEEzyz- m1m2wé)sin Yl + AEsz(mH+-m2) cos yl
Se2s2 Forced longitudinal vibration of a viscoelastic rod with

end _masses

For a linear elastic material the constitutive equation is

by using the second form of the correspondence principle for viscoelastic
materials in forced vibration (see section 142.7), the constitutive
equation can be written as

o, = E* €
where E* is the complex or dynamic modulus.

Hence, to convert the analysis in the preceding section from
an elastic rod to a viscoelastic rod, it is only necessary to replace
E with E¥*,

Therefore for the forced longitudinal vibrations of a
viscoelastic rod with end masses the displacement is given by:
wt

- 24 i
(AE*Y cos yx - m,»" sin yx) e

U g = =p ——— - T - A
( i ) Q (AzE*zyz— m1m2w4)sin vyl + AB*yow (m1+ mz) cos Y1
2 3.2.(9)
2 e
Where y B —— 3.2.(1 0)

E#
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34243 The celculation of E* from measurements

The acceleration f£(x,t) is given by:

£(x,t) ‘= U (x,t) = -0°U(x,t)

F°w2 AE*y eth
then f(o,t) = T - > 3.2.(11)
(A"E*%y - m m )sin Y1 + AE¥yw (m1+ mz)cos vl
But from 3.2.(10)
pu?
E* = ——
Yz
substituting this into 3.2.(41) and lettingyl =D
Fo Apeim’
gives f(o,t) = 3.2.(12)

Y
(A .:: 1. mqlmztD sin b + Ap(m + m,) cos b

In the experiment f£(o,t) is measured, let it equal P ol¥t

where B |P| e:w >
|P| is the magnitude of the acceleration

6 is the phase difference between force and acceleration

FOAP
Defining  g(b) = - o — — -P 3.2.(13)
A pl mmpb \ :
e ) sin b + Ap(n, + mz) cos b
it is necessary to find a 'o' such that g(b) = O
1.0 f(o,t) = P elwt 3.2.{44)
Using the Newton-Raphson iteration (reference (62)):
= 4 g(b,)
P e e
g'(by)
With an initial estimate bo it is possible to find a bn such that
g(bn) < € for any smell €, provided g(b) is single valued in the region
of b and g'(b) and g''(b) are non-zero in the region of b .
Then from 3.2.(10),
pw’1?
BY o omocis 3.2.{15)

b

n
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3.3 Experimental set-up and procedure

34341 Test piece (a)

A test piece of propellant No, 1 was manufactured, the
dimensions were:

Square cross section: 0,025, m x 0,025, m

Length: 0,203 m
The end masses were of aluminium and weighed 0.04L46 kg and 0.0107 kg
respectively.
Figures (3.2) and (3.3) show the experimental set-up.
Figure (3.4) gives a Block Diagram of the system.

3.3.2 The equipuent

The equipment used was:

Sweep oscillator = Spectral Dynamics Corporation SD 104-2

Power Amplifier = Derritron 250 V.L.F.

Vibrator = Derritron VP 5

Force Transducer - Kistler 910 / 14

Accelerometer - Birchall

Charge Amplifier = Environmental Equipment Ltd. CVA 2

Tracking Filters = Spectral Dynemics Corporation. Dynamic Analyser

SD 101A and SD 101AS

Oscilloscope - Telequipment D33R

Voltmeters - Brilel and Kjaer Random Noise Voltmeter Type 2417
Advanced AC Transistorised Voltmeter VM 78
Digitel lMeasurements DM 2001 k.2

Pre-amplifiers - Levell Transistor AC Amplifier Type TA60

Phase leter - Acton Laboratories Inc. 329 BSD

Frequency Counter - Advance Type TC 2A
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NadaD The test procedure

The test procedure was as follows:

1. The oscillator frequency was established using the
frequency counter.

2, The Force was measured with.the digital voltmeter and the
oscillator output was adjusted to give the pre-set force
level Fo.

3. The magnitude of the acceleration was read on the B & K
voltmeter.

L. The phase meter operates on voltages between 0.5 v and
2 v; the Advance voltmeters measured the inputs to the
phase meter - fhe oscillator output and the pre-amplifiers
were adjusted until the phase meter inputs were within the
operating range.

(Note: It is only possible to vary the force without
affecting the phase reading if the material is linear.
See section 3,3.8)

5. The phase difference between force and acceleration was
then measured.

6. The oscillator frequency was changed and the procedure
repected,

Measurements were made at 20 Hz intervals belween 40 Hz and

1 000 Hz. An example of the measurements made on test piece (a) is given
in Teble (3.1) and plotted in fig. (3.5).

363k Test piece (b)

Another sample of propellant Nc. 1 was manufactured to see if
sample size affected the results. The dimensions were:

Square cross section: 0.0254 m x 0,0254 m

Length: 0.3732 m

The aluminium end masses weighed 0,026 kz and 0.020 kg respectively.
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An example of the measurements made with this test piece
is given in Table (3.2) and plotted in fig. (3.6).

Se5eD Temperature dependence

E* is not only dependent on frequency but also on temperature
(reference (48)). Two thermocouples were inserted into the propellant
and an oven was built so that measurements could be made at various
temperatures above ambient. For temperatures below ambient the test piece
was cooled down in a refrigerator then removed and vibration measurements
were made at various temperatures as the sample temperature returned to
ambient,

3.3.6 The_thermocouples

The thermocouples used were chromel/alumel (nickel/chromium
and nickel/aluminium alloys). A Thermos flask containing melting ice
was used for the cold junction and the hot junction was inserted well
into the propellant (to a depth of about 5 mm),

The sensitivity of a chromel/alumel thermocouple is 40 uV/°C;
it has an cperating range of -200°C to 1 100°%.

The output voltages were measured with the digital voltmeter,
this has a minimum resolution of 50 uv, therefore, the minimum temperature
variation that could be measured was 1.2508.

3.5.7 The oven

The oven (see fig. (3.7)) consisted of a wooden box with a
detachable front section, A slit in the top was to allow access to the
elastic suspension system and the accelerometer and thermocouple cables.
A slit in the bottom section was to permit transmission of the vibrator
push rod.

The oven was heated by two 20 watt light bulbs, one on either
side of the sﬁecimen. Aluminium reflector plates shielded the test piece

from direct radiation.
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A thermostat was situated on the back wall of the oven to
maintain a constant temperature by controlling the input to the bulbs.

The experimental results for various temperatures are given
in Table (3.3) and plotted in fig. (3.8).
3.3.8 Material linearity

Tests were carried out to check that the material response
was linear. Trials were conducted with pre-set force levels of F, ZF,
and LF - the corresponding accelerations doubled and quadrupled while
the phase between force and acceleration remained constant; so the
material was linear within the range of displacements reached in these
vibration experiments.
34349 Energy dissipation

As the propellant is highly damped, energy is dissipated
during vibration. This causes a local temperature increase within the
propellant - and hence a change in modulus, The test specimeﬁ was
vibrated at a constant frequency and with a constant force for about
2 hours. At 415 minute intervals the temperature, acceleration and
phase were measured. Table (3.4) and Figure (3.9) give the results of

this ‘hI‘ial.

3:3410 Calibration
(1) Accelerometer

The Birchall accelerometer was calibrated against a Standard
and the sensitivity was measured as 2.63 pc/g.

(i) Force transducer

The sensitivity given on the calibration chart of the Kistler
force transducer was 48.5 pc/kp; this was checked by attaching a solid
mass to the transducer, vibrating it and measuring the acceleration of the
mass - A . Then the force F1 = M A e

Another block of knovm mess (m) was then put on top of the

first mass and the test repeated,
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then F, = (M+m) A,

therefore m = Fz/A2 - F1/A‘ .

the right hand side was calculated using the given sensitivity and it
was exactly equal to m,

Note: The bonded end mass m, of - section 3.2 consists of
the mass of the aluminium block + the mass of the push rod + the
effective seismic mass sbove the piezoelectric element of the force
transducer (m,). The above experiment was also used to determine My
F =HA1=(Mk+mf)A1

1

where Mk was the known attached mass

then mp = F‘/A1 - Mk

For the Kistler transducer mo = 0.015 kg.

(iid) Egécking filters

There were two tracking filters in the system, the acceleration
signal was passed through one and the force signal through the other., The
varigble gains of the filters were set at 10 for the acceleration and 1
for the force,

(iv) Phase meter
The phase meter was calibrated by feeding in
(a) two signals exactly in phase
and (b) two signals 180° out of phase
and adjusting the meter so that it read 0° and 180° respéctively.

Care was taken to ensure that the input voltages were between 0.5 v and 2 v.
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3.4 Computer analysis to obtain the dynamic modulus from

the measurements

Felrod The program

A computer program was written %o iterate to a value of E¥

which satisfied equation 3.2.(14),

#oaY s o
where f(o,t) is given in equation 3.2.(12)
and P is the acceleration measured at x = O,

Thus E¥* was evaluated for each frequency at which P was measured.

The iteration was based on the Newton-Raphson technique, i.e.

b e 3eka(1)
n+ - on g'(bn) s

where g(b) is defined in equation 3.2.(413)

P _
and b = MlJ- ' 3.4.(2)
Et

The program read in the following data:
A cross sectional area (m”)
P density (kg/m’)

1 length (m)

F, amplitude of applied force ()
m, mass of block at forced end (kg)
m mass of block at free end (kg)

then for each frequency:

f frequency (Hz)

|p| magnitude of acceleration at.x =0 (g)

6 phase difference between force and acceleration (radians)
For every frequency an initial estimate for b (bo) was obtained (see
section 3.4.3) then g(bo) and g'(bo) were computed and substituted into

equation 3.4.(1) to give b,. The iteration was repeated until:

Re(g(b,)) < €
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In(g(b,)) < ¢
where € is a small quantity.
Then E* was calculated from equation 3.2.(15), i.e.
E* = pu'2%/v | 3ulka(3)

A FORTRAN listing of the program is given in appendix E.

3ehe2 Accuracy and speed of computation

The program was run with various values of €, for € = 0.1, 0.0,
0,001, 0.0001, the calculated E*'s were equal up to the fourth significant
figure throughout the frequency range.

The number of iterations necessary with the different € values
was also measured, for € = 0.1 3 iterations were necessary

€ = 0,0001 L4 iterations were necessary

Hence the value of € was not signifiicant either for accuracy or speed of
computation. The present version of the program uses € = 0,001.

Sedie3 Initial estimate for b

It is easiest to estimate bo for the frequency where the
acceleration is a maximum, the program then automatically generates bo

for the succeeding frequencies by either:

1) using the final b for one frequency as the initial b
for the next frequency or
2) using ﬁ/fﬁbo as the estimate for frequency fr

where £ is any frequency

fm is the frequency where the acceleration is the maximum

b0 is the initial estimate of b calculated at frequency fm.

1) was found to be convenient with the data for propellant
No. 1 where E* was changing rapidly with frequency, 2) was used with the
natural rubber data where E* was almost constant with frequency. (See

note 3, page 40)
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The initial estimate for bo at the frequency f‘m :

From fm and the shape of the response curve an initial
estimate for b may be obtained as follows:

In general for an elastic beam, at any frequency f,

E = phﬂzlez / b2
where b = yl

At a resonant frequency fn’ b is the solution of the
frequency equation, b S8y e
ol fnzlz
She ot £, ¥ n' e
b
It has been found that for a viscoelastic beam:

PMT: fmzlz

o (PR ot 30 (1)
'b i

where b is the solution of the frequency equation for a similar
elastic beam, and £ is the frequency at which the acceleration is a

meximum,

(a) Free=free beanm
For. a free-free elastic beam in longitudinal vibrations
the frequency equation is:
b = n® (sce reference (59))
then at the first resonsnce b = 7
therefore for a viscoelastic beam at frequency fm from équation 3.h.(4)

Lo RN e Ty 3uhe(5)

(p) Free-free beam with bonded end masses m, and m

2

For a free-free elastic beam with bonded end masses the

frequency equation is:
(N, + N,
tan b = ——————

2
N1Nab - 4

where 1{1 =m, / pAL
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and N, =m, / pAl (see reference (59))

Figure (3.10) gives the solution b for various values of N, end N,

between O and 0,5

(If M and N are larger

3 1745 e 1 ] s
TR RS St et el i ) )
N1 Nz 2 N % N 4 N1N2

Then from equation 3.4.(4)

2.2.9
phm £ 1

|E#] = e 3.k4(6)

Thus |E*l may be calculated from the frequency fm with 3.4.(5) or
3.#.(6). The separate components of E* i.e. E , E, are found from the
shape of the response curve:
If the acceleration at fm is &,
then the frequency f1 is measured where the acceleration is pa_
(where p < 1),

then, if Q=f /£ ,

it may be shown (see section 3.4.4) that € is given by:

2 2 4

p (1-20°+ 0Y)

62=%<1_t\/1- s ) 3.4.(7)
Q- p (20°- 1) /

where £ = L. is the "damping ratio”.

2Q

It may also be shown (see section 3.4.5) that

E,
¢ = '15"_ 304\'(8)
E
1
therefore |8*%]| = \!&12(1 +£;.§2) 3.4.(8)
bl

therefore B =

3.4.(9)
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and B, = 2%E, 3.4.(10)

Having found an estimate for E* at fm, bo at fm is given by:

P

bO =20 fml

3uka(11)

E1 +:I.E2 :

Note 1: if the damping is light then an approximation for & may be
found from the 'half power points' i.e. the two frequencies £, end f,

where the acceleration is

1
V2 i
f el
then TR S
2f
m

Note 2: if the damping is 1lizht the method described above to estimate

E* is often used as a method for actually measuring E* at the frequency fm.

Note 3; if second and hisher acceleration maxima are discernable from
the response curve then an estimate for ]E*l may be obtained for those
frequencies. Using either b = 27, 37 etc. or curves similar to those
in £ig.(3.10) for the higher roots, oud | may be approximated as abovec.,
If estimates can be made for two or more frequencies it will be possible
to choose which of 1) or 2) (page 37) to use.

It has been found that if b is within x 257 of the actual b
then the routine will be convergent, The table below gives the number of
iterations necessary to reach bn = b with different starting values.

(The frequency was 1 000 Hz and the actual value of b was 4.06 = i 1.11):
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Starting wvalue 'bo No. of iterations
5= 2.4 9
3.5 = 2.1 5
L - 0.1 5
b - 5.1 b
L - 2.1 5
5 - 0.1 il
Seliek The derivation of the expression for &

The beam is approximated by a single degree of freedom system:

a point mass and a Kelvin element (a spring and dashpot in parallel).

: ! £ - F;;E.l.h-"

oL

£

ITTT T 7777 777777

Let it be forced with a harmonic force F_ et
then the acceleration is given by:
#* P
a = s R 77 see reference (59) 3..(12)
2
(o) e
‘\‘ f £
n n
vhere F is the applied force

m is the point mass
K. is the stiffness of the spring

¢ is the damping constant of the dashpot
£ is the damping ratio , & = =—=
2 VEm

By differentiating 3-4.(12) and equating to zero it may be shown that

the acceleration is a maximum when

2

Lt 4 ~2 6 ne® sey . 3.44(13)
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where fn is the undamped natural freguency
and fm is the frequency where the acceleration is a maximum.
......1__ E
—2§ m
therefore a 2
m AR
IEE=y =
1-2¢2 =2
~F/m
= . 3.4d14)
2§ V1-¢

Let f1 be the frequency where the acceleration is p 8y P < 1

then from 3.40(1 2) and 3011-0(1}4-)

-p F/m ;f12 F/m
J1 2 R
2
2&6V1-€ fn,\/ _'__1_2_>+4§2r_1_5
4 -
n n

2

substituting fn - (1 -2 52) from equation 3.&.(13), and letting

f1/fm = 1 gives:

p(4 - 20% + 0%

gt - B, e " gy D)
b ' - 4 p?(20®-1)
(1—2Q2 +'Q4)
Lo o J 28 ) 3.4.(15)
12 - 2 \ 1 P 94- pz(znz- 1) / -

3ekeb Derivation of the relationship between & and E*®

As in section 3.4.4 the beam is approximated by a single
degree of freedom system.

For the Kelvin element E*

]

E1 + i E2

n

K + ive 3.4.(16)

(see section 1.2.8)

where K and ¢ are defined in section 3.Lh.k.
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For the spring-mass=-damper system,

c
& =
2VKm
1 K
and e T J— see reference (59)
2N m )

Then by substituting from equation 3.4.(16) it may be seen that:

g & i
LﬂfVE1m
1 E1
and fn = - \/——
2m m
therefore at f = fn
§ = B,/ %,

therefore et the undamped natural frequency fn,

6=E2/2E1;

for the approximation required in section 3.4.3 it is assumed that £ is
not very different from f and that ¢ does not vary appreciably with

frequency.
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3,5 Frequency and temperature dependence of the dynamic modulus

3eDe1 Frequency dependence

Figure (3.5) shows the experimental data for test piece (2)
(0.203 m long). Figure (3.11) shows the dynamic modulus obtained from the
computer program using those data.

Similarly, Figure (3.6) gives the data for test piece (b)
(0.373 m long) and fig. (3.12) gives the E* obtained for those data.

It can be seen that the modulus changes by a factor of L over
the 900 Hz freguency range. |

The temperature was not accurately measured during these tests
so no direct comparison can be made.

In fig. (3.13) are the measured data for test pieces (a) and
(b) at the same temperature.

Figure (3.14) gives the corresponding complex moduli. The
values of E¥* obtained using the 'admittance_ method! are thus not
dependent on specimen length. (Note that the rod must be long in
comparison with the cross section to ensure the assumption that the stress
is constant over the cross section is satisfied).

5.5.2 Temperature dependence

Figure (3.8) shows the measurements made at various temperatures
O~ ~0
between =10 C and 40 °C,

Figures (3415) end (3.46) give E, and E2 resp. vs frequency

1
for the various temperatures.

|E*| vs temperature at a constant frequency (1 000 Hz) is
plotted in fige (3.17). It may be seen that over the 50°C temperature
range the modulus changes by a factor of 40.

Ez/E1 is plotted against temperature in fig. (3.18).
Note 1: It has been shown that

€ = E/2%E (section 3.4.5)
and by definition

Q # /2%
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therefore Q = E1/E2

Experimentally determined values of € (using the relationship given in
section 3.4.4) are given in fig. (3.19) with the graphs of E2/2E1 shown
for comparison. Clearly the approximations of a single degree of freedom
system made in 3.4.4 and 3.4.5 are acceptable, at least for the first
'resonance'.

SeDed Frequency-temperature superposition

The frequency-temperature superposition principle was applied
(see section 1+.2.41). The graphs of E¥* vs frequency for various
temperatures were shifted along the x-axis to give a continuous curve
for a reference temperature T . The amount each was shifted (GT) was
then plotted as log @ vs T. (See fig. (3.20)). Ferry (reference (48))
gives this graph as convex and not concave so it was assumed that the
results obtained at the extremes of temperature were not reliable. A
straight line was drawn through the middle temperature range.

With these values of log @_ the composite graph of E*I{/’I‘O vs
a f was plotted end is given in fig. (3.21).

|E*| at 4 000 Hz for various temperatures were calculated
from this greph and are shown on fig. (3.17) for comparison with the
measured values.

E* cbtained from the frequency-temperature superposition was
not very satisfactory et low frequencies; it was used to predict the
response of the beam to forced transverse vibrations and was not very
successful below 200 Hz. Further tests with more precise control on
temperature would be necessary before any clear conclusions on the

applicability of the superposition principle could be reached,
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3.6 Comparison of predicted and measured response of the

test piece to forced longitudinal vibrations

The experimental set-up was as described in section 3.3.
Two sets of measurements were made:
(1) with the accelerometer at the free end of the rod
(ii) with the accelerometer at the forced end of the rod
The first set of data was used to calculate E¥ for the frequency range
400 Hz - 1 000 Hz; this was used to compute the response at the forced

end (x = 1) with the equation:

Fo w? [AE*Y cosy 1 -—mzwz sin ¥y 1] eimt

f(l’t) % T ] 4 2
(AE*Y-mmw)siny1+AE*Yw(m+m)cosY1
172 4 2

(from equation 3.2.(9) with £(1,t) = [ - o®u(x,t) :]nl)
The calculated response is shown in fig. (3.22) together

with the measured response for comparison. The agreement is very good

throughout the frequency range.
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test piece to forced transverse vibrations

Sstel Experimental procedure

The same equipment was used as described in section 3.3.
Transverse vibrations were excited by turning the vibrator through 900
and coupling the vibrator to the side of the mass bonded to the test
piece (see fig.(3.23)).

Note that a piano wire connection was used, that is, a
coupler which is stiff in tension/compression but very flexible in bending.
This is to obviate the necessity of considering the flexural stiffness
of the push rod as a restraining spring on the test piece.

The force was kept constant and acceleration and phase were
measured at frequencies between 50 Hz and 41 000 Hé. Two sets of
measurements were made:

(1) at the forced end = to give the point admittance

(ii) at the free end - to give the transfer admitbtance

Because of the doubt zbout the freguency-temperature superposition principle,
as mentioned in section 3.5.3, the complex modulus was measured at the

time of the experiment. It was measured before and after the transverse
test and the average was used as that applying at the time of the test.

36742 The calculated response

The theory was based on the Timoshenko equations for a beam
in bending (see appendix (B)).
This gives:

u(x,t) 10ty

(B1cosh ax + B sinh ox + B cosh fx + B, sinh Bx)e

1wt

¢(x,t) (RBzcosh ox + RB sinh 0x - SB cosh Bx + SB,sinh ﬁx)elm

3.7+(1)

o
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where u(x,t) is the displacement of the neutral axis

and ¢(xit) is the slope of the neutral axis

eand @, B, R and S are defined in Appendix B. (Equations B(17) - B(20))
Bi, B,» B; and B, are the unknown coefficients which are found from the
boundary conditions,

Boundary conditions:

E L @, @e
| - T A WESE L
m [ Jme m{ LF Jme ol [ m
R ®, 5 B @(
Ls
—> < pebch ) —~ > e
L., ; Ly
Let u,, u, be the displacements at the C of G of masses m , m, respectively
¢1, ¢2 be the slopes of the C of G of masses m, mé respectively
3 A I2 be the moments of inertia of masses m,, m, respectively
L,y L, be the lengths of inertia of masses m , m, respectively
L3 be the distance between the point of application of F and
the free edge.
Then considering the equilibrium of mass m,
FO - QO = m_‘ ﬂ.1 307.(2)
n
M, +F (L/2-1)+QL/2=~1 ¢ 367+(3)
du
where Q = EQ(x,t)] = E-k'AG —_——y )]
o X=0
ax
X=0
oY
and M, = [u (xt)] _, = |:—-EI "

end o= ¥ (59|
_ X=0
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Similarly considering the equilibrium of mass m,:

Ql = mzﬁz 3 .7. (ll-)
W - L2 = I, 4, 3.7.(5)
where Ql = Q(x,t) -2

M, = M(x,t)x=l
The four equations 3.7.(2) = 3.7.(5) were used to solve for the
coefficients B;, i=t,4

Now u,

y u(1,t) + L;/2¢(1,t), ¢, = ¢(1,t)

u(0,t) - L1/2¢(o,t), o, = ¢(o,t)

u

Substituting for ¥ _, Q,, My, Oy, U §b1 and "bz in equa.t-ions 3e7.(2) =

1’
3.7.(5) gives the equation [A] {B} = {c}

where [A] =
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To Ys0O oUIT =
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T usoa(S 0°T +(S-¢) 7= WaA) | Td qeTs(S n°T +(5-g) 7~ OVaA) | To USOO(H,0 T +(¥-p) 5= DY) To UUTS (Lo T +(E0) 5= DY)
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R - Fooe L ! {
| |
| |
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i
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; | 1 1 T
- m Lo
(@) i
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4 i e .
(S=g) = oVit | (¥0) 5 VA
T ! T
i
!
(s-d) A - S5 0 W = (80) DVsA =~ Y= M T L0 U=
1 %




{Bl = (B, end {C} = F,
B, L1/2 - F
By 0
B4 | €

This equation is solved numerically using the Gauss elimination
technique (see Appendix D).

Then B; , i=1,4 were substituted into equation 3:7e(4) to
give u(x,t) and ¢(x,t).

The acceleration was measured at a distance d1 from the
bonded edge of mass m oo

The acceleration was measured at a distance 4, from the

bonded edge of mass m, .

Let the accelerations be P, and P2 respectively

then P

] -0°(u(0,t) - a,¢(0,t))

and P, = =o"(u(1,t) + a,¥(1,t))

1

A computer program was written to calculate P1 and Pz‘

The input data were:

A area (m?)

p density (kg/m’)
% length (m)

F applied force (IN)

: . 4
second moment of area of the beam cross section (m")

L

k! shape factor (see Cowper (22))

v Poisson's ratio

m, mass of block at forced end (kg)

m, mass of block at free end (kg)

L, length of mess m, (m)

L2 length of mass m, (m)

L distance between the point of application of the force

end the frec edge of mass m, (m)
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I, moment of inertia of mass m, (xg m°)

I2 moment of inertia of mass m,

d.1 distance of the accelerometer on mass m, from the bonded
edge

d, distance of the accelerometer on mass m, from the bonded
edge

P, and P, thus calculated, using the 'averaged' E* is plotted in fig. (3.24)
with the measured values shown for comparison. The agreement is very good

throughout the frequency range.
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3.8 Comparison of predicted and measured response of the

full scale sample to forced transverse vibrations

The preliminary trials reported in section 2.3 were used to
further check the validity of the modulus measuring method.

The ambient temperature at the time of the experiments was
approximately 1800 50 the dynamic modulus measured at that temperature
was used. The computer program.referred to in the previous section was
employed to calculate the response; it was amended slightly to compute
the response at points along the length of the beam and not just at the
end masses., The force was applied directly to the propellant at a
distance of 3 cm from the bonded edge, it was considered reasonably
accurate to assume that it was applied to the bonded edge.

At low frequencies the measured and calculated responses
were very close (see fige (3.25)). The modal shapes agreed well for
the first six bending modes. At higher frequencies the measured response
had a large sustained peak over the range 500 Hz = 41 000 Hz which was not
predicted by the Timoshenko beam theory.

It was thought that the peak could be due to resonances in
the cross section - radial, longitudinal, torsional ete. = coupled with
the bending modes. Armenakas (Reference (60)) tabulated the resonant
frequencies of an infinite solid cylinder based on exact three dimensional
analysis. The results were based on a Poisson's ratio of 0.3 whereas
that of propellant was assumed to be 0.5; the tabulated values were for
elastic materials with a constant real modulus so the tables were not
exactly applicable to the present problem but it was hoped that they would
give an indication.

With a modulus of 100 MN/mz, all the resonances up to 1 000 Hz
were extracted from the tebles (see fig. (3.26)). Also shown ere the
resonant frequencies in bending as given by the Timoshenko theory. (They

do not correspond exactly because the end conditions were considered in the



5

latter whereas the frequencies in reference (60) were based on an
infinite cylinder. It may be seen that there were many resonances
other than bending in the region of the unexplained peak but only
three (torsional) resonances at lower frequencies,

As there was good agreement between measurements and
calculations for the region where the Timoshenko theory was
sufficiently accurate then it was considered as evidence that the
modulus measurements were valid for the large scale sample.,

Note: It will be seen (section 4.3) that when considering
& cartridge loaded motor and the likelihood that the propellant will
impact on the case, the important varisble is "displacement", (if the
relative displacement of the propellant to the case is greater than
the gap between them, then impacting will occur), The maximum gep
between the case and the propellant is 2 mm, displacements of that order
only occur for frequencies below 100 Hz anq as the Timoshenko beam
theory is adequate for those frequencies it was not thought necessary to
do an exact three dimensional analysis. It may be seen in fig. (3.27)
that the measured and calculated displacements agree well over the

region where they are large enough to cause problems.
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3.9 _The measurement of the complex modulus of a sample

of natural rubber

The test piece was of square cross section 0,025 m x 0,025 m,

it was 0.15 m long and m, and m, were equal to 0.0274 kg and 0.0108 kg

1
respectively. The procedure and equipment were as reported in section 3.3.
The measured accelerstion and phase are shown in fig. (3.28) for'frequencies
between 100 Hz and 41 000 Hz. It should be noted that the rubber had much
less damping than propellant No. 1, the first resonance was much lower
end the first five modes were excited within the frequency range.
From the frequency of maximum ecceleration (160 Hz) the
modulus was estimated as described in section 3.4.3:
The density of the rubber was 999.5 kg/m3
therefore pAl = 0,0933 kg
therefore M = 0.294, N = 0.116
From fig. ( 3.10), % = 2.28
therefore from equation B.L.(h),
|e*| = u1® 160° 0.15" 999.5 / 2.28% = 4.37 10° N/n®
Using p = 0.5 gave £, = 150,
since fm =160, then 0 = 0.,9375
therefore from 3.4.(6)
§ = 0,04
then from 3.4.(7)

E = k36, B, = 0.35

b, = 2M6E0 0.5 J 999.5 / (4e36 + i 0.35) = 2.28 - i 0.09
(at 160 Hz)

This was used as the starting value for 460 Hz, the program
automatically generated bo for succeeding frequencies as discussed in
344.3. The output from the program is showm in fig. (3.28). The dynamic
modulus of the natural rubber was s2lso measured using a "Rheovibron" for
four frequencies: 3.5 Hz, 11 Hz, 110 Hz, these are also shown in

fig. (5.29), they compare well with the results obtained from the present methot
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It should be noted that at higher frequencies the modulus
decreases with frequency; this is an unlikely occurrence elthough it
has been reported before (Coote (44)), who also cites three other
references where similar phenomena were noted). However, the rod was
in the fifth mode of vibration at 4 000 Hz so the wave length was of
the same order as the cross section which would invalidate the assumption
that the stress was constant over the cross section.

This conjecture could easily be verified by reducing the
dimensions of the cross section to 0.01 m x 0.01 m say. Since the
resonant frequency is independent of the area, the rod would still be
in the fifth mode at 4 000 Hz but then the wave length would be

approximately twice the cross sectional dimension,
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Table 3.1 _Measurements made on test piece (a) and

resulting complex modulus E*(= E + i Ez)

Frequency (Hz) Acceleration (g) Phase (radians) E, (/) E, (/m?)

1 000 3.95 =3.30 143.55 94,18
980 4,02 -3, 2é 144037 19
960 L.10 =3.22 139.76 89.05
oL0 L8 =317 138454 87.12
920 L4.22 -3413 135.96 85.29
900 L.26 -3.09 133.3 83.50
880 437 -3.03 132,92 82,00
860 b b2 ' -2.96 132410 82.18
840 L.52 -2.90 13149 81 .07
820 4,60 -2.83 130433 81.00
800 .66 -2.77 128,31 - 80.49
780 baT7 ~2.70 127,31 80.05
760 4.86 -2,63 125.7 79.77
740 4.98 -2,56 124,21 79.07
720 5.10 -2.49 122.42 78.2)
700 5.23 -2.42 120.45 7745
680 532 =2.3h 118,22 76.81
660 547 -2.26 116.14 75.70
640 5457 -2.18 113.86 .72
620 5.66 -2.10 111 .07 735
600 5.75 -2,02 108.15 72401
580 5484 “1492 106,02 7 11
560 5.85 -1 .81 103.70 70.83
540 5.8 -1« 100.85 69.86
520 5.75 -1 .60 98.06 6954



1,80
460

420
400
380
360
340
320
300
280
260
240
220
200
180
160
140
120
100

80

5.55
5.30
5.10
4.80
4,60
L.37
4.20
4.00
3.86
373
3460
350
335
3.21
3.08
2.96
2.8,
2.69
2.5k
2.15

2.4
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-1 .39
-1 .28
“1.16
-1 .05
-0.96
-0.87

-0.80

"0-?1

~0,68
=0,62
~0.56
-0.52
-0.49
-0.42
-0.40
=034
~0.30
-0,28
-0,22
-0.19
-0.12

-0.0L

92,42
89435
87.54
84..98
82,04
79426
75457
7374
67.09
63439
59490
54,78
4845k
46.48
3944
36.80
32.41
24 .59
20,93
14..77
16.45
24,97

67464
67.90
67.78
68,60
6751
66.97
64..89
64,00
60.43
57.39
54 .36
50414
47420
L1 .99
14 5k
3891
35.98
33.67
34..07
29.77
27.42

12.2
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Table 3.2 Measurements made on test piece (b) and

) P
resulting complex modulus E¥(= E + i E )

Frequency (Hz) Acceleration (g) Phase (radians) E, (/) E, (ny/n)

1 000 2.2 -6.28 140.47 90.23
980 2.26 -6420 138413 88.39
960 2.3 -6411 136,04 86.86
940 2.37 -6,00 13k .66 85.82
920 2,42 =5.90 132,74 84.59
900 2.47 -5.76 132.01 84.59
880 2.53 -5465 130.36 83.50
860 2.56 -5.52 128,89 83.36
8140 2.65 | -5l 127.42 81.82
820 | 2.69 -5.27 126,22 81.73
800 2.72 -5.13 124.85 81.67
780 2.76 =497 124.21 82.01
760 2,80 -4,..85 122.2) 81.00
740 2,83 =l e 73 120.14 80.01
720 2.8, -1 .57 119.22 80,37
700 2.86 =13 117.77 79N
680 2.89 e 115.75 78463
660 2.90 419 113.55 7754
640 2.90 ~4.,05 112.08 777
620 2.90 -3.93 109.88 76.16
600 2,92 =3.79 108,79 75.55
580 2.9 ~3.67 106.91 Th 32
560 2,95 ~3.56 104.48 72,94
540 2.97 =30k 102,56 71 .86
520 3.0 ~3.28 103.08 71 .80
500 311 -3.19 100,24 69.02

480 3.49 =307 98.7 67.50



460
440
420
1,00
380
360
340
320
300
280
260

220
200
180
160
140
120
100

80

L0

3430
3.40
3.55
3.80
3.87
3.92
3495
3490
3.68
3.78
347
3416
2.89
2.56
2:52
2,07
1.9%
1.77
1.66
1452
1 446
1.46

60

~2495
-2.79
=2.67
-2.51
-2.32
-2.15
-1 9L
175

e

-1 A
1412
-0.96
-0.80
~0,66
~0,58
=015
-0.38
-0.35
0.2
~0.17
=017

-0.18

97.26
96.92
94495
95.07
93 obidi
90 .44
88.52
85.20
82.81
82.25
78.85
Tho62

68.05
60417
57«
50.63
35.72
33.98
1742

1432

0458

65470
66,00
63480
62,2l
63435
62.97
63 ¢34
62,72
61 .05
60411
60,01
59.38
58.23
59.49
58.26
61426
57.28
54..86
5615
62.23
36.98
15.52



Table 3.3

Measurements made on test piece (a) for
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various temperatures

ZQpEeraturegoC) Frequency gggl

=9

+1

1

1

1

822
710
635
526
14,28
819
708
642
582
5,2
12,0

806
726
665
556
493

523
L75
377
289
193
060
997
901

819
715

Acceleration (g)
10.9
11.28
11415
10.46
9.06

951
1014
10.39
10,77
10,58

10.16

8alt3
8459
8.87
9.87
1014

10.08

722
729
7.98
8.56.
8475
729
6.16
532

Lobdy
3.80

Phase (radians)

-2.02
~1.73
-1 .52
147
=0 H

-2.18
-2.30
-2.18
-1 .90
-1 75

-1 450

-2,
~-2.30
~2.09
-1.78
S
-0.91
-0.87
-0.68

"OIE}L“
=042



+6

+9

800
663
543
500
392
287
210
140
094
045
N

811
697
563
405
300
188
096
050
983
943
885

410
287
239
178
103
o0
980
920
90l
883
832

-3416
2,97
-2,78
-2.67
=24
-2,18
=1 95
“1.73
-1 .55
-1 o4
.22

=3.40
=3.25
=305
2,74
-2.51
~2.18
=185
-171
-1 .48
-1 .3k

147

=304
~2.72
-2.6L
-2.48
-2.29
~2.09
-1 .88
A eld
-1 «6L
~1 455
- .38



1

14

19

1 200
N2
1. 045
980
920
820
793
760
690

1 234
1107
1 005
900
800
750
720
700
650
609
501
2,02
308
197
115
73

1 100
1 000
900
800

700

63

5.32
5.5
5.77
6.08
646
7412
712

712

6.6l

5.20
5.07
5.30
5.82
6alils
6469
6.82
6.75
6.57
6410
L4.69
3.56
2.9
2.69
2.47
2.38

3.80
3.80
3483

L.18
L .63

-2.90
-2.67
=2.50
-2.32
213
-1.76
~1 .66
-1 54

=1 3

=3.23
-2,90
-2.62
=-2.32
-1.99
-1.80
-1 .68
~1 .61
-1 o1
-1 .22
-0.77
=0.37
~0.19

-0.0

=3.70
=340
-2.97
-2,6)

-2 . 3"4-
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28

600
550
520
500
400
300
200

100

000
900
800
700
600
500
400
300
200

100

000
900
800
700
600
500
1,00
300
200

100

5.30
5.56
5458
5.45
ke56
3.36
2.66
2.18

331
3.52
3.66
3.95
L.33
547
5.27
4.06
2.99

2451

2.0L
2,29
2.60
2.85
3416
3.56
L.33
L.83
3.78
2.53

-2,08
-1.78
-1 462
1 «52
=091
~0,40

-0.16

=4 .05
=361
-3.30
-2.95
~2.55
-2.11
~1 40
~0,84
=035

~01k

=5439
Lok
=l olt3
-3.86
=3.35
~2.86
~2.39
=157
-0.77

~0.31
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1 000
900
800
700
600
500

300
200

100

900
800
700
600

500

300
200

100

65

=7.33
-6.72
-6.07
=543
=4e78
4,03
=3.32
-2.51
-1 .57
=0.35

-8.90
=843k
=7.59
-6.98
-6,00
=50
=410
=31l
-1 .99
=0 o4y
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Table 3.4 Variation of measurements and E* with time

caused by increase in temperature due to energy dissipation

Time (hours) Acceleration (g) Phase (radians) _E_1(hm/m2) E_z(MN/mz)

0 7.63 ~1 73" 95.03 48,28
0425 749 -1.76 93.46 48,2,
0.62 73k -1.85 89.73 46,65
0.83 716 1 492 86.71 45,59
1.42 729 -2.02 84,07 42,26
1..57 711 =240 82,76 L2.4),

1.68 7611 i -2,06 82.17 44 .87
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FIG. 3.29. DYNAMIC MODULUS OF NATURAL RUBBER.
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L.« Introduction and literature survey

It was observed in section 1.1 that there were two types of
solid fuel rocket motor design - case bonded and cartridge loaded. No
literature pertaining to cartridge loaded motors has been found but
analyses of case bonded motors have been reported. A long viscoelastic
cylinder bonded to a thin elastic case was considered in references (12),
(14), (15), (16), (18), (21), (35).

: The analyses dealt with the cross sectional modes of vibraticn
which are excited during firing. In the references given above it was
assumed that the cylinder was long enough so that displacements along the
length could be disregarded an@ only radigl and tangential displacements
within a cross section were considered.

These methods were not suitasble for the present research since
it is concerned with environmental vibrations when the motor must be
considered as a beam vibrating in flexural and longitudinal modes.

Sowers (reference (29)) suggested a lumped parameter approach
for the analysis of missile vibrations which was equally applicable to rocket
motors, However, as noted in section 1.3, the difficulties were the
representation of the material properties and the solution of the equations.
(The equations with a general damping matrix were given in (29), but not
solved).

The motors were therefore analysed in the present research
as continuous structures. Since a method for measuring the complex modulus
had been develcped and as forced vibrations were under consideration, it
was possible to analyse the assembly as an elastic material then apply
the second form of the correspondence principle (see section 1.2.7) and
replace E with E¥ for the viscoelastic condition.

In the present work only flexural vibrations were considered
but the appreoach for the analysis of longitudinal vibrations is

suggested.
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4.2 Case bonded motors

L.2 This analysis applies to all types of case bonded motor, irrespectis
of charge geometry. The slotted-radial charge design is typical and is
exemplified in fig. (4.1), which shows the general arrangement of a case
bonded motor. The mathematical model is given in fig. (4.2) i.e. two

rigidly comnected uniform beams - the main motor body and the blast tube or
nozzle.

The motor is generally secured to the missile at two points;
when the motor undergoes the environmental vibration trials it is
attached to the vibrator at the same places. It was assumed that the
motor was excited by two sinusoidally vérying forces F1eimt and aniwt
at those two points.

Since the 'direct method' *¥ was used to find the response,
the applied forces had to be at the end of a beam - hence the main motor
body was subdivided at the forcing poSitiOns as shown in fig. (4.2).

e The 'direct method' applies in the case of sinusoidally
varying applied forces. If the force is Fc'ej'mt then it is assumed that
the displacement u(x,t) = uo(x)eiwt. The applied force is considered as
an end condition - thus the need to subdivide the main motor body at the
forcing positions. An alternative method which applies for all types of
applied forces (step functions, moving loads, etc.) is 'model enalysis'.

Here it is assumed that

e B Z_xn ¢

n=1
where [Xn} are the normal modes of free vibration
and [¢n] are the generslised coordinates (dependent on the

applied force)
Appendix C shows that the two methods give the same solution when the

applied florce varies sinusoidally with time,
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The 'direct method' has been used throughout, see sections
3+2 and 3.7 for the analysis of longitudinal and transverse vibrations
resp. of beams; the boundary conditions were obtained by considering
the equilibrium of the end masses, the applied force being one of the

forces acting on one end mass. **

L.2,2 The solution when the applied forces F1, F2 gre knowm
The Timoshenko equations were solved (see Appendix (B))

for each of the four beams shown in fig. (4.2).

The displacement of the neutral axis of beam i is given by

ui(x,t)
end the slope of the neutral axis of beam i is given by
'pi(x’t)
Then for beam 1,
u = (B cosh @ x+ B sinh @ x + B_cosh f,x + B, sinh B, x)el®® )
e 1 1 2 1 3 1 4 1 )
. . iwt
$1 = (RiBzcosh @ x + R1B151nh a x + 3134003h ﬁ1x + 513331nh ﬁ1x)el %
For beam 2, g ke2.(1
: : jwt
u, = (Bscosh @,x + Bysinh @ x + B, cosh £,x + B_sinh B x)e ;
: i jwt
¢2 = (RzBscosh ®,x + R B_sinh @,x + S_B_ cosh f,x + S,B,sinh ﬁzx)e

Similarly for beam 3: u, and ¢, and for beam 4: u, end ¢,
where Bj’ J = 1,16 are the unknown coefficients znd @ f, R and S

are defined in Appendix (B), (Egquations B(17) - B(20)).
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Boundarj conditions:

Y

rigure C C\B

Figure (a) shows the interactive forces and moments between the four
beams, the beams were assumed to be continuous and rigidly connected

therefore the following conditions must be satisfied:

gt x =0, ¥, =0, Q, =0.
at x = 11, u = u, &1{' = 4’2, H1 = Ma, Q-l + F1 = on
et x = 12, u, =u,, '!12 = lﬁz, Mz = HS’ Qz + F2 = Q3.
et x = 13, 113 = ‘I.l" '.ba = 11’4, M3 = M4’ Q3 - Q‘.
at x=1, M,=0,0Q, =0
)
where M, = =B T — is the bending moment of beam i
% 174N\ %

ou.
e e e . a s
Qi = =k " Ai Gi ( o Vi ) is the shear force of beam i.

Then there were 16 equations to solve for Bsy =1, 16.

Substituting for ug, ¢, i =1,k (from equations 4.2.(1)) into
equations 4.2.(2) gave a matrix equation [A] {B} = {c} which was

solved numerically using the Gauss climination technique (see Appendix (D))

to give {B}. The metrix equation is as follows:



i | gl [
0 o- R 0 B,- S, 0 0 0 0 0 0 0 0 0 0 0 0
cosh @ 1, | sinh @ 1 | cos .311 sinh ﬁ111 -cosh @ 1| -sinh @ 1| -cosh ,3211 -sinh ﬁ211 0 0 0 0 0 o 0 0
% R i % e - ~% ~%2 0 0 0 0 0 0 0 0
sinh @ 1 | cosh @ 1 | sinh B,1, | cosh ﬂ‘l‘ sinh @ 1 | cosh @,1 | sinh B 1 | cosh ﬁ211
. 1?38111 ¢ REI, B, 58,1, B3, EI |- REI: |2 Ri_EzIz P81, £.5:8,1, 0 o 0 o 0 o 0 o
cosh a‘l‘ ginh a1l | cosh ﬁ‘11 sinh )311 cosh uzl‘ sinh 3211 cosh .@211 sinh ﬁz'l‘
k1 A‘ G-1 k“A‘ ﬂ-1 k1A1 G-‘ k1A1 G-‘ —kzszz 'szzf;? "szzGe -szsz
(31—31) (u1-R1) (ﬂ1~31) ("91-51} (a,- R‘:} (a,- Rz) (B,- sz) (8, sg} 0 0 0 0 (o] 0 0 0
sinh @, II.1 cosh ﬂ‘l‘ sinh ﬂ‘ 1, | cosh ,3‘1 sinh 0311 cosh tial1 sinh ﬁzl1 cosh ,@211
0 0 0 (¢] cosh 6212 sinh @ 1 | cosh 821: sinh .ﬁ'z,l2 -cosh ualz -sinh G,lz -cosh "Galz -sinh ﬁalz 0 0 0 0
0 0 0 0 By R, 5, S, Ry R, -8, 8 0 0 0 0
sinh ﬂllz cosh “zlz sinh ‘Balz cosh "ﬂzlz sinh a.!lz cosh @1, | sinh ﬂ,lz cosh 5;12
0 0 0 0 EzlzaERR Ezlzaanz E’zIzﬂasz EzIz‘sz"a -EJISESRS -B:Iscxp‘s 'EaIa‘S:sa —ESI“,G;S; 0 0 0 0
cosh @,1 | sinh &1, | cosh f,1, | sinh f,1, | cosh @ 1 | sinh a 1, | cosh f;1,| sinh F 1,
kA, Gy kA, Gy kA, G, kph, Gy kakaG:_ 'k:‘qsgsl -kaAan_ —k:AaG's_
o 0 0 0 (a,=B) | (a,-R) | (B,-8,) | (B-8) | (a,=R)) | (2= R)) | (By- Sp) | (By-Sy) 0 0 0 0
sinh ﬂzlz cosh @ 1 | sinh ﬂzlz cosh ;921=t sinh @,1, | cosh &,1, | sinh .09_,'12 cosh ;9312
0 0 0 0 0 0 0 (o] cosh @ 1, sinh Gals cosh 43‘.’13 sinh ‘6313 -cosh 3‘13 ~sinh a‘l; -cosh ﬁ‘ i =sinh ﬁ‘ls
0 0 0 0 0 0 0 0 e s L S5 ®, Ry =8, Ss
sinh a1, | cosh @ 1. | sinh ‘6313 cosh ,3‘,‘13 sinh @ 1, | cosh @ 1, | sinh B, 1, | cosh ﬂ‘l‘
0 0 0 0 0 0 0 0 "Ealaaans‘ “EJIaaans 'Esla’easa "EaIsﬁass 341'4“434 E4I4“;R4 B 14‘8434 E"I.B‘S‘
cosh aala sinh 05513 cosh ﬁala sinh ;53].3 cosh & 1 | sin} a415 cosh '8413 sinh ,3“1_1
-k;AJGJ —k3A3G3 -k:sA'aGa _klAJGa. k4!x‘ G‘ k‘A“G‘ k‘A‘G4 k‘A‘ G-‘
0 0 0 0 0 0 0 0 (a-r,Y | (0,-R,) | (By=8,) | (By-8,) | (e,-R,) | (e,=R) | (B,-5,) |(B,-5,)
sinh l'-lala cosh “313 sinh pala cosh ﬁ‘?.,“ sinh a‘l; cosh @ 1. | sinh P‘ 13 cosh ﬂ‘l 4
|
a
0 0 0 0 0 0 0 0 0 0 o 0 " i o o o
cosh a‘l‘ sinh ﬂ‘l‘ cosh ﬂll‘ sinh ;941‘
0 0 0 0 0 0 0 0 0 0 0 0 @-r) | (@-R)| (B,-8)| B,-85,)
sinhe 1 | cosh @ 1| sinh ﬂ‘l‘ ooshﬁ4l‘

iL
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Then the displacement and slope of any position (X) on the motor could

be eveluated by substitution of the appropriate B.'s into the

J
appropriate equation of 4.2.(1):
For 0 X € 1, u, (X,t) , ¥,(X,t) were evaluated
1,621, uz(x,t) » ¥,(X,t) were evaluated
18X <1, u,(X,t) , ¥,(X,t) were evaluated
IS8T, ' u4(X,t) » ¥,(X,t) were evaluated

A computer program was written to evaluate the response of a case bonded

motor.
The data required were:
F1’ Fz’
Ay Py li’ Il, k 10 Vio E*i for. I = 1,k
Note: A=A =2A_, P P, = Py, etec. since they all refer to

the main motor body.
A, P,y 1, ete. refer to the blast tube or nozzle.

For values of k', see Cowper (22).

The main motor body was a composite elastic/viscoelastic beam
and the parameters were evaluated as follows (where the subscript c

refers to the case and p refers to the propellant):

Ai = Ac + AP

Py = (A0, + APy EE) / (a, + AP).
c

I =I,+E /B I

(Since for the motors considered, (EI)e = 250 (EI )p it was assumed that



the propellant did not add stiffness to the structure i.e. I.

Note:

be2.3

72

g =1,)

y ¢

11 N

k'i was based on the shape of the propellant + case
vi = 0.5

T Al .
E g = Ec (1 +1 nP)
where the dynamic modulus of the propellant E*P - EP(1 + i np)

since np varied with frequency, E*1(= E"2 = E*a) was input

for the various frequencies required.

The solution when the accelerations at the forcing points are known

Let the acceleration at 11 be a,

and the acceleration at 12 be a,

The Timoshenko equations were solved for the four beams as before

(equations 4.2.(1)).

Bt x = 0,
atx=l1
atx=12
at x = 13
atx=14
where,
and

The boundary conditions were given by:

M.' = 0’ Q1 = 0| )
2
u, =-e /0, u = -a1/w2, by =¥y B =¥, %
u, = -a,/0’, u = -a /0, ¥ =4¢, M, =M. § 4e2.(3)
)
e l‘l':.'. 2 IIba’ o M4’ 9 =Q,: ;
}14 =0 Q4 =0 , ;
oY,
M, = -E.I. (——-‘4)
i = 1§
ox

; aui
Qi = —k'iAiGi ( e S ¢i )

ox

Then substituting 4.2.(1) into 4.2.(3) gave the following matrix

equation which was solved as above with the Gauss elimination technique.



Bl

o, 0 B, s, 0 0 0 0 0 0 0 0 0 0 0 0 o |
|

i

0 g, =R 0 B,-5, (o] 0 0 0 0 o] o] 0 0 0 0 o] j

I

cosh @1 | sinh @ 1| cosh B,1 | sinh B 1 0 0 0 0 0 0 ) ] 0 0 0 o
1

] (!

0 ! 0 0 0 cosh a211 sinh azl‘ cosh .3211 sinh ‘&311 4] 0 0 0 0 0 0 0 .

, |
B e b o % i “ "% 0 0 0 0 0 0 0 o |
sinh @ 1 | cosh @ 1 | sinh B 1 | cosh f, 1 |sinh a1 |cosh @1, |sinh ﬁ211 cosh ﬁ211 |:
ek L B,S, PS5, e <R .5, .5 0 0 0 0 0 0 0 0 |l
cosh @ 1 | sinh @ 1 | cosh ﬁ" 1 | sinh ﬁ1 1, |ocosha& 1 | sinh @,1, | cosh .9,211 sinh .|93211 |
(|
0 0 0 0 cosh @1, | sinh @ 1, | cosh f,1, |sinhf,1, o 0 0 0 0 ] 0 0 |
|
0 o] 0 0 0 0 0 0 cosh@ 1 | sinh @ 1 | cosh ﬂalz sinh ‘lez 0 0 0 0 ::

|
R R S S R R s S3 (!
6 9 Q i sishd . | ocaty @A in.hzﬂl hﬁz:r. mha'ual h:l mgl nE.1 0 0 0 Al
272 27z | 8 gy ||[SOBRELY ) & 3fp | MO8 Pade]| & 3ig | P lityh, :
: -y = :

0 0 0 0 l:'lzlal'z azkz ‘6252 ﬂzsz -a! 3 'aanq - "6: 55 0 0 0 0 ‘
cosh a,1, | sinh &,1, | cosh f,1, |sinhf,1 | cosh @ 1| sinh @1, | coshF,1, | sinh B2, ]

0 0 0 0 0 4] 0 0 cosh a.1,| sinh 0313 cosh ﬂ,la sinh ‘831: -gosh ﬂ413 -sinh @, 15 -cosh ﬁ‘ 13 -sinh ﬂ‘ 1; }

R R S a8 =R =0 =3 ’54
= TS 3 a5 3 4 4 4
D 9 9 0 9 o > X sinh a1,| cosh @ 1 | sinhB 1 | cosh £,1,| sinh @1 | cosha,l | sinh 1| cosh 8,1,
0 0 (¢] 0 0 0 0 o] Falad -331!a3a5 ESISﬁSSJ HEJIJﬁ.!S'-! E‘I‘E‘R" E414“4R¢ E‘I‘,&‘S‘I 3414‘843“_ !
cosh “ala sinh “313 cosh ,331] sinh '8313 cosh ﬁ‘ll sinh alla cosh ﬂ41, sinh ;\'-’.i"‘l3 |
k.SAJGa "k:;A;G; kSA’G’ —kEA’G“ k‘A‘G‘ k‘A‘G‘ k‘A.G-‘ k‘A‘G‘
0 0 0 0 0 0 0 ¢} (ey= Ky) [(a,-R,) [(B,-8S,) (By= 5y) (@, =R,) | (a,=R) | (B,-8,) ®,-5) .
sinh al,| cosh a1 | sinh }9115 cosh 5313 sinh a‘la cosh & 1 | sinh ﬂ‘ll cosh ,3‘1’ |
a Rt a R g5 g8 I
4 4 4 4 4 4 4 |
0 0 0 0 ) 0 0 0 0 »
A i 9 cosh a1 | sinh @l | cosh ,8‘1‘ sinh ﬁ‘l‘ |
: @=Rr) | (e,-r) | (B,-8) | (B,-8,)
0 0 0 0 0 0 0 0 0 0 0 0 LNy Yoy & ks s

sinh &1 | cosh a,1 | sinh A1, cosh f,1 1|

Fitet- ]
B, 0
B, ‘ 0

|
B’ I ‘—al‘/ﬁﬂ

o
B | ""i/u

| |

! .
By | 0

|
B‘ ! 0

|

|

{ 2
B 1 =8/

| |

B' —%/ﬂ%
B, | [0
B,| |0
B" 0
Bu, 0

|
a”! 0

|
'B”i 0

!
B, |0
] I! ;
B“J 0

Ll N |
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Note: The Gauss elimination is only applicable if there is a
non-zero element at every position along the leading diagonal i.e.
‘\Jj £ 0 for j =1,16; for that reason rows 4 and 5 were interchanged

and rows 8 and 9 were interchanged.

L2 Longitudinal vibrations of a case bonded motor

The mathematical model is given by:

=

fe SEE
q._._._.___._.
R
£ . .
< e el - mrE Lo

The solution of the equation for longitudinal vibrations of a long thin

beam is given by (see reference (59)):

u= (B cos ax + C sin ax)eiut
2 w’p
where a = m—
E

Hence the response of beam i is given by:

. iwt
v, = . = 3
1 (B:. cos @;x + C, sin a1x) e
2 2
where ai =W Pi
By
The end conditions are:
at x =0, U1A‘ = -F1 .
et x=1, OA = OA , U o=u, .
&t = 12, 02 = 0 .
du.
: 3
where g, & 5§, o=
i i
dx

Thus flour equations to solve for the four unknown coefficients B,, B,,

R



Tk

Since a sinusoidal applied force is considered then the
correspondence principle may be applied. Beam 1 is a viscoelastic/

elastic composite, therefore E, is replaced by E*1

p
and o = o —
1 B
1
au1
and 0 = E¥ —
1 1
ox
Note: B =204+41m)

where Ec is the modulus of the case

and EP (1 + iﬂp) is the modulus of the propellant.

If the acceleration at the forcing point is known, let it

be e, then the boundary condition at x = 0 is given by:

2
w = -a /@

the other boundary conditions remain the same.

Le.2.,5 Results of computer analysis and comparison with measurement

Motor A

The general arrangement of motor A is shown in fig. (4.1).
Figure (L4.5) gives the mounting position during the transverse vibration
trials. The motor was clamped to the vibrator at each end of the main
motor body. A control accelerometer was connected to each clamp and a
reference accelercmeter was positioned at the centre of gravity of the
motor,

The specification stated that the motor must be subjected to
a constant amplitude vibration of 1.2 mm (peak-to-peak) from 5 Hz to 35 Hz

and to a constant acceleration of L g from 35 Hz to 200 Hz.
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The program used was the one which calculates the response
when the accelerations at the control points are known (described in
section 4.2.3). Acceleration levels of L g were specified at the
foreing points, the response of the centre of gravity was computed and
is plotted against frequency in fig, (4.6). The maximum value is L5 g
which occurs at 124 Hz, .

The program which calculates the response when the applied
forces are given (section 4.2.2) was also used with these data. The
forces were adjusted to-give responses 6f L4 g at the control points;
this program predicted the maximum response as 17.L g at 117 Hz.

The programs gave differing results because the phase
relations between the forces and accelerations were dissimilar:

In the first case the control accelerations were specified
as 4 g and thus were exactly in phase,

In the second case the appiied forces were specified as
1 000 N and 1 050 N, hence they were exactly in phase, the control
accelerations were both 4 g but with a phase difference of about 30°.

As the phase lag between the control acceleration signals
was not measured it was not possible to calculate the response any more
accurately,

Thirty-five sets of measurements were made on motors of
design A, the maximum response and the associated frequency for each
is given in Teble L.1. It may be seen that there are considerable
variations within the data, the averages are shown in the last line of
the table 24.6 g and 117 Hz. The root mean square scatter of the maximum
response is 7.5 g and of the frequency is 11.3 Hz. It is thought that
the variations were due to the clamping arrangement. If the clamps were
loose then the motor would behave as a free-free beamy if the clamps held
the motor so.that no vertical movement was possible but allowed twisting

then it would act as a simply supported beam.
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Thus the computer analysis was in good agreement with
measurements within the bounds caused by uncertainties regarding phase
differences and clamping arrangements,.

Motor B _

The specification states that thé motor must be subjected
to a constant acceleration of 0,5 g (the averége of the signals from
the two control points) for frequencies between 20 and 500 Hz. The
response of the centre of gravity was also to be measured. The trials
were to be carried out at +20°C and -10°C.

The program was run with the motor B data prior to the
vibration trials, the predicted and measured responses of the centre of
gravity are shown in fige. (4.7). It may be seen that the agreement is
very good.

Note: The complex moduli used in these analyses were those obtained
from the relaxation modulus and then modified by a 'correction factor' q,

found empirically for propellant No. 1 at various temperatures.

T

Eia Eza y
where suffix m indicates a measured value
and suffix R indicates a value obtained from the relaxstion modulus

and T indicates a particular temperature
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L.,3 Cartridge loaded motors

Lo341 This analysis applies to cartridge loaded motors where the
propellant is rigidly connected to the case at the forward end. The
motors where the propellant is located on spigots or just loosely
inserted have not been studied.

The general arrangement of a cartridge loaded motor is shown
in fig. (4e3), the mathematical model is given in fig. (L) i.c. three
rigidly connected uniform beams = the motor case, the blast tube and the
propellant,

The motor is generally attached to the vibrator at two points;
it was assumed that the motor was excited by two sinusoidally varying
forces at those positions, Fof the reasons discussed in section L.2.1
(note**), the case is subdivided at the forcing points to give a total
of five beams; where 1,2,3 were the case, 4 was the blast tube, and
5 was the propellant, ‘

L.3.2 The solution when the applied forces F , F,_gre known

The Timoshenko equations were solved (see Appendix (B)) for
each of the five beanms,

The displacement of the neutral axis of beam i is given by

ui(x,t)
The slope of the neutral axis of beam i is given by
tff’(x,t)
Then for beam 1:
u, = (B,cosh @ x + B_sinh @, x + B_cosh f.x% + B sinh B x)eiwt )
e 1 2 1 3 : 4 1 \

e
. ! | iw
v, = (R1Bzcosh @,x + R B sinh a x + S ,B,cosh f x + S,B,sinh ﬁ1x)el t;

Le3.(1)
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For beam 2:
u,= (Bscoah e,x + Bssinh @, X + B7cosh ﬁzx + Basinh ).'5*‘2:is:)eiwb )
1‘2: (RzBscosh @,x + RzBssinh a,Xx + Szascosh Bzx + SzBrsinh ﬁzx)'e:wt)
and similarly for beams 3, 4 and 5.

Bd’ J = 1,20 are the unknown coefficients,

@, B, R and S are defined in Appendix (B), (Equations B(17) - B(20)).

Boundary conditions:

Qs v
@, Q, el
xso 1:C,
atx=0, wu =u, ¢ =
8t x = 1‘, u1 = uz, ¢‘ =
ke3.(2)
at x=1,, u, =u,, 5"2 =
at x =1, u, = u,, (,lla =
et x =1, M, =0, Q, =0.

p—

atx:ls, l.fszo, Q5=0.

where
aybi \

g 5.7 EiIi (——* ) is the bending moment of beam i,
ox

ou,
Q. = .-k‘i.{s.if}i ( - 95'i ) is the shear force of beam i.
o

H

Substituting for u; and wi for i = 1,5 from equations 4.3.(1) into
equations 4.3.(2) gave 20 equations which were:solved nunerically to
give B,, Jj =1,20, using the Gauss elimination technique. (see

Appendix (D)). The matrix equation is as follows:
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Note: Rows 2 and 17 were interchanged and rows 3 and 18 were

interchanged for the reason given in the note of section 4.2.3.

Then the response of any point (X) of the motor could be found

by computing the appropriate u,, ¢i :



Motor case:

0<€X<1 u (X,t), ¢, (X,t) were evaluated
18 X80, u, £xXt), ¥, (X,t) were evaluated
1,§X €1, u, (X,t), ¢, (X,t) were evaluated

Blast tube:
lsXxs<1, u, (X,%), ¢, (X,t) were evaluated
Propellant:

0<€Xs1, u, (X,t), ¢, (X,t) were evaluated

A programme was written to calculate the response of cartridge loaded

motors using this analysis, the data required were:

Ai, pi’ li, Ii’ k'i, vi’ E*i fOI‘ i = 1’5
Note: A1 = Az = Aa’ P, =P, =Py, ete.

since they all refer to the motor case.

A‘, Pys 14 etc. refer to the blast tube

As, Pss ls etc. refer to the propellant

Ei for i = 1,4 was real since the motor case and blast tube were elastic.
E*5 was the complex modulus of the propellant; since it varied with

frequency it was input for the necessary frequencies.

heSed The solution when the accelerations at the forcing points
are known

An analysis similar to that given in section L4.2.3 can be
performed. The boundary conditions at x = 1, and x = 12 will be as
given in equation 4e2.(3) otherwise the end conditions will be as given in

equation L.3.(2).
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L3k Longitudinal vibrations of a cartridge loaded motor

The mathematical model is given by:

Y

The displacement of beam i is given by (see reference (59)):

u, = (Bi cos a.x + ci sin aix)eiwt
p
where aiz - —
E,

L

The boundary conditions are:

at x

1}

0 0'1A1+0'A =-_-F, n =21 s

n
Q
.
B
]
=]

at x

[}

g
1A1

11
&‘t:t:l2 02=0 A
13

aui

where o, =E, =
i s §

ax

i.e. six equations to solve for the unknown coefficienis

€., C

51’ Bz’B C1’ 2 3

3’
Since the applied force varies sinusoidally with time then E3 is

replaced with E*s since the propellant is viscoelastic,

Py
then as =W |[=—
*
E 3
du3
— £ e
and 03 = B %

ax
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If the acceleration at the forcing point is known (a1) then the end

conditions at x = O are given by:

2
u1 — -3,1/01
2
ua = —a,_l/ﬁ.l
L.3.5 Results of computer analyses and comparisons with measurements

Motor C

This was the design of motor which was damaged during the
vibration trials in 1970 (see section 1.{.7). The general errangement
is showm in fig. (4.3) and the motors were mounted for the transverse
vibrations as shown in fig. (4.8). Tests were performed at +40°C and
-20°C. The vibration specificéticn stated that the motor must be
subjected to a sinusoidal vibration test consisting of a double sweep
between 20 Hz and 500 Hz with the level of vibration (the average of
the responses measured at the two clamping points) less than or equal
to 1.5 g.

The motor was also to be subjected to random vibration, then
the sinusoidal test was to be repeated. The 'before' and 'after! plots
were compared for differences which might indicate that the motor had
suffered damage.

The only measuremenls made were the responses of the control
peints; these could have been used to predict the response at any other
point but this was not attempted since there were no experimental results
available for comparison.

The program described in section L.3.2 was utilised to
calculate the responses of the propellant and the case assuming values
for the applied forces (see fig. (4.9)). The relative displacement
between the propellant and the case was then calculated. The system was
gssumed to be linear then the force necessary to cause impact of the

propellant on the case could be calculated. The applied forces were
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assumed to be equal.

The responses at various frequencies are given in
fige. (4.10(a)) for the temperature at +40°C and in fig. 4.10(b) for
the temperature at «2070.

At LOOC it may be seen that impact is likely to occur when
the forcing frequency is 10 Hz and the applied forces are approximately
25 N. The position of the impact is at a distance of 0.98 m from the
bonded end.

Similarly at -20%C contact will occur when the forcing
frequency is 50 Hz at 0.8 m from the bonded end when the applied forces
are about 1 200 N, An estimate was made of the actual applied forces
(based on the mass of the motor and the response at low frequencies
when F = M a), it was calculated to be about 1 200 N, Thus it may be
suggested that the damage would be more likely to occur at the high
temperature than at -2000; also the point of damage at LOOC would be
about 1.0 m from the bonded ends This was in fact the case (see
section 1.41.7).

Note that it has been assumed that the propellant remains
as a straight beam with a constant clearance between it and the case;
in practise when the propellant is warm it is very soft and will not
support its omm weight so will slump onto the case. The motor is
periodically turned to combat this occurrence but it is unlikely tha
it is removed completely.

Motor D

This is a motor design which has not yet been subjected to
vibration trials. The predicted responses at +50°C and -25°C are given
in fig. (4e11). If the applied forces are more than 135 N then damage
is likely to occur caused by the propellant impacting on the case when

the foreing frequency is 90 Hz.
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Note: The complex moduli used in these analyses were
obtained from the relaxation moduli and then modified using the
'correction factor! q, found empirically for propellant No. 1 for
particular temperatures.

E E
ot (_1_:9.,,1&)
E1a Bon 71
where suffix m indicates measured value

suffix R indicates value obtained from relaxation modulus

T indicates a particular temperature
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Table .1

Experimental results on Motor A

Trial No. Frequency where acceleration was Maximum acceleration (g)
2 maximum (Hz)

1 103 . 16
2 120 26
3 122 L0
L 129 2L
5 140 28
6 130 26
7 135 32
8 110 3 30
9 113 2L
10 114 28
5 B 112 30
12 114 3L
13 104 16
14 100 20
15 13 Lo
16 112 2l
121 28
18 124 20
19 105 20
20 128 40
21 12, ) 3k
22 133 1
23 121 18
24 129 16
25 130 30
26 100 16
27 125 25
28 105 20
29 114 25
30 112 26
M 111 23
32 104 19
33 100 12
3 112 15
35 128 22
Average 117 2L..6
Root mean square
scatter:
n
1 e —iy
J— > (- x) 1443 745
i

1=1
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FIG. 4.2 MATHEMATICAL MODEL OF A CASE BONDED MOTOR.
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Chapter 5

CONCLUSIONS AND PROPOSALS FOR FURTHER WORK
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5.4 _Admittance method for measuring the complex modulus E*

The modulus was measured with 2 samples of propellant No. 1.
It was shown that the modulus was dependent on frequency and temperature
but independent of sample length (provided that the sample was long in
relation to the cross section so that it could be assumed that the stress
was constant over the cross section).

The measured complex was used to calculate:

(1) the acceleration and phase at the forced end of the test rod
in longitudinal vibration

(ii) the acceleration and phase at both ends of the test rod in
transverse vibration

(1ii) the acceleration at 9 points along the length of the full
scale sample

These were compared with measured data and were in good
agreement.

The modulus was also measured at several temperatures where
the value of E* ranged from i 242(1 + i 0.33) Mﬂ/mz at 1 820 Hz and -9°C
to 10.74 (4 + i 0.83) MN/mz at 200 Hz and +39°C, so the method works
within that range of modulus at least. The complex modulus of natural
rubber was also measured and was found to be equal to 4.2 (1 + i 0.05) Mmez
at low frequencies. This agreed with the modulus measured by another
technique so the admittance method works for a damping constant (Ez/E1) at
least as low as 0.05. There appears to be no upper limit because if a
material is so heavily damped that no peaks in the acceleration vs
frequency response are discernsble then masses can be added to each end
until the response does show a maximum. From the dimensions of the rod and
ths 2dded masses an estimate for the complex modulus at the frequency of
maximum acceleration may be made. This estimate is used as the initial

guess for the iteration routine.
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The fact that the method can be used for heavily damped
materials is the most importent point as there is no other simple
technique which is applicable. (The other technique which does
exist uses a viscoelastic/elastic beam in transverse vibration., The
Euler-Bernoulli equations for transverse vibration are used, they are
more complicated than the equations for longitudinal vibration and
they are only valid over a limited frequency range when shear
deformation and rotary inertia can be ignored. Then, having found the
"composite" modulus, it is necessary to extract the complex modulus
of the viscoelastic material).

The experimental set up for the admittance method contains
only standard instruments end needs no special equipment; the
experimental procedure is simple and quick (the measurements needed to
calculate thé complex modulus in the range of 100 Hz to 1 000 Hz are
made in about 10 minutes); the rig can be easily sdapted to measure the
complex modulus et specific temperatures by surrounding the specimen
with an oven/refrigerator thus not disturbing any other equipment.

The frequency range over which the method is valid is
about 10 Hz to 5 000 Hz depending on modulus, sample size etc. The
limits for a particular sample are determined by:

(a) The lower limit: When the rod moves as a rigid body
(somewhat below the first "resonance"). The response is
independent of complex modulus so the resuits from the
iteration technique cannot be relied upon.

The lower limit can be reduced by increasing the added

end masses thus decreasing the first "resonance".

(b) The upper limit: When the wave length is of the same
order as the cross section the assumption that the stress

is constant over the cross section is not wvalid,



88

The upper limit can be increased either by reducing the end
masses or reducing the cross section area.

If the frequency - temperature superposition principle may
be applied then the frequency range can be greatly extended.

The computer programme to calculate the complex modulus
from the measurement is short and simple to use. It is easy to obtain
a reasonable estimate of the modulus at the frequency where the acceleration
is & maximum., VWith this as the initial estimate for the iterative process
the programme will calculate E* f'or each frequency at which measurements

were made.
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5.2 Complex moduli of other propellants

It has been shown that the measured complex modulus was
appreciably different from that obtained from the relaxation modulus
for propellant No. 1« It is necessary to have the accurate complex
modulus to give a reasonable prediction of the response of a rocket
motor to forced vibration so the moduli of the other propellant should
be measured too.

It may be found that the "correction factor" - q, used in the
present work (based on only cne material) may be applicable for all
propellants, if not, the complex moduli of each propellant will have to
be measured.

There exist at SRS good facilities for maintaining the specimen
at a constant temperature so it will be possible to determine the modulus
at various temperatures. It will also be possible to assess the applicability

of the temperature - frequency superposition principle for each propellant.
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5.3 _Rocket Motors

The analysis developed for analysing rocket motors have

given very good results for the three of the studied motors for which

experimental data are available (A, B and C).

No special experiments were carried out on a rocket motor

for the present research and much more remains to be done both

experimentally and theoretically. Tests are necessary with a more

extensive monitoring system then conclusions could be reached on the

epplicability of the mathematical models.

(1)

(ii

(1ii)

(iv)
(v)

to include:

(1)

(i1)

(iii)

It is necessary to

measure input forces to the motor by including force
transducers between the motor and the vibrator.

measure the effect of the clamps and specify the
tightening torque to ensure repeatable trials

measure the phase difference between signals (applied
forces, control accelerations etc) to give a more
accurate representation of the constraints

Install more accelerometers along the motor

(With a cartridge loaded motor) include accelerometers
within the propellant to measure its response as well as
the case - then it may be seen if the two are impacting

The theory of rocket motor vibration needs to be extended

the effect of forced random vibration (this is based on the
response at specific frequencies)
the response of cartridge loaded motors when the propellant

is not rigidly connected to the case

"the response when the propellant has slumped onto the case
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54 _Transport vibration specifications

Although the transport vibration trials are specified by the
customer it would seem useful to do some experiments on rocket motors -
both packaged and when connected to the missile - to measure the
vibrations that are encountered during transportation by road, air, sea
etc, If the specifications were based on actual measurements then
reglistic vibration trials could be designed which would ensure
that the motor would be safle to use and would obviate the necessity
of designing a motor to withstand tests many times harsher than

anything it would be subjected to in service,
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5.5 Other applications of the present work

(2) The admittance method can be used to measure the complex
modulus of any viscoelastic material as discussed in 5e1.

(v) The method developed for analysing the motors can be used
to study the effect of a sinusoidal force on any system of
rigidly connected beams - elastic or viscoelastic. The
solution for each beam is standard and the set of end
conditions are put into matrix form which is solved by the
Gauss elimination technique to give the coefficients; the
response of any part of the system can then be evaluated.

(e) The use of viscoelastic materials to damp out unwanted
vibrations has been studied extensively (see references
(17), (28), (33), (39), (40), end (41)). In the present work
it has been shown that the effectiveness of a damping

material is given by:
é = 1-:2/2:&1 (or @ = E1/E2)

so for a viscoelastic material of known modulus it is
possible to predict & (or Q) as ebove.

For en elastic/viscoelastic composite beam a composite E¥
must be evaluated (see references (3) and (é1)), then the
same equations may be used.

If the coating of viscoelastic material is more than five

times the thickness of the elastic beam then

(Ez/E1)composite = (Ez/E1)vi300e1astic
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5.6 The solution to The Problem

As mentioned in the introduction, the problem which
initiated the present research was one particular design of motor which
failed during the vibration trials. It has been shown in the present
work that this was probably caused by the propellant hitting the case
when the motor was subjected to low frequency vibration which excited
the second "resonance" of the propellant. The damage occurred only
at the high temperature because (a) the gap between the base and the
propellant was small due to the high coefficient of expansion of the
propellant and (b) the complex modulus was lower at the high temperature
thus reducing the frequency of the "resonance" to a value where the
displacement was of the same order as the gap.

The problem was overcome by inserting rubber strips along
the length of the propellant thus connecting it to the case.

By connecting the case and the propellant in this way they
are not able to vibrate separately so they become a composite structure
similar to the case bonded motor.

The first "resonance" of the composite occurs between that
of the propellant alone and that of the case alone since the case adds
stiffness to the propellant thus inecreasing its natural frequency and
the propellant adds mass to the case thus reducing its naturel frequency.
The propellant also adds damping so it considerably reduces the
displacement of the case at the natural frequency.

Since the propellant and case cannot move independently no
damage can be caused by vibration, the rubber support is in the form of
strips to allow room for expansion so no thermal stresses are induced.

As this amendment is simple and inexpensive to incorporate

it is probaﬁly the best solution possible,






9%
Appendix A

The Euler-Bernculli Equations

(i) The Euler-Bernoulli eguations for an elastic beam in bending

From elementary bending theory:

Bending moment

M= - El — A(1)

where u = u(x,t) is the displacement of the neutral axis, u

positive down.

Consider an element 8x of the beam:

(/
™ /“

The equilibrium equations are:

oM
I8 i
ax
9Q 2%y
and —=-PA——-;
dx ot
& by substituting for M from A(1), we have
2*u o%u
El —— =« pA —— A(2)

ax ot



Consider the beam in forced vibration with an applied harmonic

force F = Fo eiwt. If it is assumed that the transients have died

away and the beam is in the steady state condition, then it may be

assumed:
u(x,t) = uo(x) o
The equation A(2) becomes:
dfib T u, = 0
dx
where o* = paw?/EI A(3)

Then the solution of A(3) is:

ug = B‘ cos @ x + B2 sina x + B3 cosh @ x.+ B, sinh @ x
A4)

The four unknown coefficients B, B,, B, and B, are found from the end

conditions of the beam.

€e8e consider a free-free beam excited by the force F at the end
x = 1.

< —_ S R F__. -

EAR AR e R |

s T TR

Then the conditions are:

at x =0, Q=0, ¥=0.

at x:l’ Q =F’ }Ii =O.
. 6311 az'u.
where Q=EI — and M = = EI ~—

8x3 ax2
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Solving for the coefficients Bi gives
iwt
)
u = 3 X
2EI¢" (4 - cos @l cosh al)

Fe

(cos @x + cosh @x)(sin @l - sinh @l)+(sin @x + sinh @x)(cos @1 = cosh 1)
A(5)

(11) The Euler-Bernoulli equations for a viscoelastic beam in
bending

The second form of the Correspondence Principle (see

section 1.2.7) is applied, then

u, is as given in equation A(5) except that @ is defined by:

ot = PA!:-'z/E"I
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Appendix B

The Timoshenko Beam Equations

(i) The Timoshenko equations for an elastic beam in bending

From elementary bending theory:
oy

Bending Moment M = -EI 3= ' B(1)
Shear Force Q = - k'AG C%% -¥) B(2)

where u = u(x,t) is the deplacement of the neutral axis, u positive down
end ¢ = ¢(x,t) is the slope of the neutrel axis, ¥ positive clockwise.
E, I, k', A, G do not vary with x or t.

Consider an element 6 x of the beam

X e e e Bl
o

[
|

The equilibrium equations are:

aQ a%u
Q- (Q+—8x) = pASx — B(3)
ox ot
oM 8x aQ &x 2%y
M- (M+—8x) -Q— = (Q+—8x) — = pI 8x—
ox 2 ox 2 ot
B(4)
From B(3)
aQ 3%u
— g PA —-—2- = 0
ox ot
Substituting for Q from B(2):
2%y oy a%u
kAL (v v ) 4 PA == = O B(5)
ox ax ot
From B(%),
M 3%y
— - Q = I —

ox dt
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Substituting for M and Q from B(4) and B(2):

62{0 du 62&0
Bl ~= 4 kU (—=¥) = /T—
ox ax ot

B(6)

B(5) and B(6) are the mixed differential equations of motion in

u and ¢,

From B(5)

therefore

and

oy a%u PA a%u
dx 2x’ kK'AG ot>
as¢ 3*u PA a*u

ox’3t?  x'c ot

3%y o'u pa  d*u

— o — W ——

ax' k'AG 3t2ax°

Differentiating B(6) with respect to x gives

3y a'u Y 3%y
EI — + k'AG -—;-—-—) = ip3 -
0x ox ox dxdt
Substituting B(7), B(8) and B(9) gives
3u EIp v 3% ézu PZI 3*u
RL = o | e PI) + PA +
ax'* \x'e ax°ot? at?  k'¢ at’
From B(6),
au 1 3%y 3%y
— = —— (PI—5 -EL— )+ ¥
3% K'AG ot ax
AT S EI a'y 3%y
therefore = - e
3x° kAR oxtat - x'ac a2’ ax
a°u pT 3%y 1 (IR 3%y
a.nd = - X 2

dxdt’ K'AG ot BUAG Bx ot 3t

B(7)

B(8)

B(9)

I
(&

B(10)

B(11)

B(12)



Differentiating B(5) with respect to x gives

3
d u
PA - k'AG (

dxdt”

3%y
_>=0

axz

then substituting B(11) and B(12) gives

3y 3%y
EIl — + pPA —
axﬁ atz

PEI 'y pi1 3y
—(PI-I- ) + =10

ke / axat. k'e ot

B(13)

B(10) and B(13) are the separated differential equations of motion

in u and ¢. Consider the beam in forced vibration with an applied

iwt

harmonic force F = FO e e If it is assumed that the transients

have died away and the beam is in the steady state condition then it

may be assumed:

u(x,t) &

uo(x) ei

¥(x,t) = ¥ (x) "

Substituting in B(410) gives

' W PEI
(o]
A ik (PI oy ——
dx EI k'G
d‘u dzu
0 0
or = C1 = + Cz u
dx dx
w PEL
where C1 = - (PI o —
EI k'G
: p21w4 :
and C2 = — ( - w PA)
EI k'G

T
o
EI \ k'G

= 0 B(1%)
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Similarly from B(13),

# C¥. =0 B(15)

The general solutions of equations B(414) and B(15) are:

u =B cosh@x + B, sinh ax + B, cosh fBx + B, sinh fx

o
B(16)
'l’o = B, cosh ¢x + B, sinh @¢x + B, cosh l’31w:+}3a sinh Px
B(17)
2. 4 2
where a =3 (-C1 + [C -4 Cz)
B(18)
2 : 2
and B =3 (—01 = JB =l Cz)

Substituting B(16) and B(17) into B(6) gives

EI(fJKZB5 cosh ax + azBs sinh ax + ﬂzBi, cosh fx + ﬁzB8 sinh Bx)
+ pI0° (Bs cosh @x + B, sinh @x + B, cosh fx + By sinh Bx)
+ k'AG( (CIB1 sinh @x + @B, cosh ox -h3B3 sinh Bx + BB, cosh Bx)

- (B, cosh @x + B, sinh @x + B, cosh fx + By sinh fx)) =0

Since x is arbitrary, the coefficients of cosh @x, sinh @x, cosh Bx

end sinh fx must all be independently equal to zero.
2
Therefore (EI @  -k'AG + pIo°) B, + k'AG @ B, = O

5 R B,

o
n

or

where R -k'AG a¢/(EI a® -k'AG + pIw°) B(19)
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Similarly,By = R B,

a.nd B, = .5 B"
B, = 8 B,,
2
where S = -k'AGﬁ/(EIﬁf -k'AG + pI" ). B(20)

Thus there are only four independent unknown coefficients.

therefore u.-.(B‘ cosh @x + B,sinh @x + B cosh Bx + B, sinh ﬁx)elwt

and Y= (I_l}a.2 cosh ¢x + RB, sinh @x + S B, cosh Bx + S B,sinh ﬁ:vc)eimt

The end conditions of the beam give four equations which are used to

solve for B, B,, B, and B,.

279
€.8. for a free-free beam the bending moment and shear force are zero
at x =0 and x =1.

(11) The Timoshenko equations for a viscoelastic beam in bending

The second form of the Correspondence Principle is applied (see

section 1.2.7) then,

uz(B1 cosh @x + B, sinh @x + B cosh Bx + B, sinh ﬁx)eimt

$=(R B,cosh @x + R B sinh @x + 8 B, cosh Bx + 8 B,sinh ﬁx)eiwt
w? PEFT
where C1 = — PI + )
E*I k'G*
4 R
and C, = ( - pA)
E*I k'G*

then o’ and ﬁa are given by equation B(18).
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2
= -k'AG*@ /(E*T a° - k'AG* + pI0 ) ;

and R =
S = -k'AG*B /(E*I B° - k'AG* + pIv")
E*
Note: G* is given by G* =
2(14v*)

It was assumed that the material was incompressible,

then v o= 1
and G* = E¥/3
Note: Figure (B.1) shows a comparison of the responses

calculated using the Euler-Bernoulli theory and the Timoshenko
theory. The dimensions of the beam were:
cross section - 0,025 m x 0,025 n

length - 0.2m
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Appendix C

Comparison of the 'direct' and 'modal znalysis' methods

There are two methods for solving a forced vibration
problem :
(1) The direct method, where the applied forces are used as
bouqdaqy conditions.
(ii) The modal analysis method where the displacement is
expressed as a sum of. the normal modes.

In the following, a problem will be solved using both
methods and it will be shown that the results are the same.

The problem is a free-free beam forced at x =1 in

iwt

transverse vibrations by a harmonically varying force F = Foe *

The differential equation of motion is:

3*u azu
EI i -pA oS ; c(4 )
ox at

The Direct Method

The problem is solved by the direct method in Appendix A,
the solution for the displacement u(x,t) is given by:

jwt

Foe
u = = =
2EIa¢ (1 - cos @l cosh al)

(cos @x + cosh @x)(sin @l = sinh @) + (sin @x + sinh @x)(cos @l-cosh al)

c(2)
4 2
where a” = pA W JEI
Modal Analysis
The solution of equation C(1) is assumed to be:
wi
gkl an 6
‘ n=1
where X, ere the normal functions for a free-free bean,

and ¢n are the generalised coordinates.
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(a) The Normal Functions X of a free-free beam

w
Assume u = X ai nt,
n

then the solution of equation C(1) is given by:

u = Xneiwnt =

iw
(B1n cos an + B2n sin anx + B}n cosh an + th sinh anx) e I
& o 2 c(3)
where @ = pA @ /EI
The boundary conditions are:
azu 3 u
atx=0 <El—— = 0 and EI— = 0 )
dx 9x
a’u 83u C(L)
atix=1 -'EI—; = 0 and EI—S = 0O
9x ox

Substituting C(3) into C(4) gives the frequency equation (from which
©, is celculated) and the Normal Functions:

The frequency equation is

cos ﬂnl cosh an} = 1
2 EI
then w = a4l \j
n n pA12

The Normal Functions are given by:

B.

n

= sinh@ 1 - sinal

(cos @ 1 - cosh anl)(sin @ x + sinh anx)+(sinh @ 1-sin in)(cos @ x+cosh ¢

c(5)

Normal Functions are defined such that

1

fxnzdx=l c(6)

[o)

1
and

[anmd}C:O
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Substituting C(5) into C(6) gives

sinha 1 -sina 1
n n

Bln=sinhalcosal—sinalcoshal
n n n n

(cost_l-coshe 1)(sinea x + sinha x)+(sinha 1-sina 1)(cosa x+cosh !
n I n n n n n

therefore XE ——
i o a - si a
sinh nl cos nl sin crnl cosh n1
It may be shown (see reference 59 , p. 364) that the generalised
coordinates ¢n for forced transverse vibrations of & beam excited at

X =1 by a force F = -Foeimt, are given by

F(Xn)le

=
n P.A.l(wnz—{ﬂz)

o0
1 X (x)
therefore u = ~-F ei""t et z n 21'1 le
..2F°eiﬁ't o xn
therefore u = z = C(?)
EIl a =
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Comparison of the two results

Consider the solution using the direct method, i.e. equation C(2);

Let £(x) = (sinhal -sin@1)(coshax +cos @x)-(coshal -cos @1)(sinhax +sin ax)

£(x)
Then ) —Foalwt :
2EIa" (1-cos @1 cosh al)
Since {x1} is a complete set of orthogonal functions in the range
n

0 to 1, it is possible to express f(x)_ as an infinite sum in terms of

these functions,

L

i.ee f(X) = Z a.n Xn
: n=‘i
1 2 3
2
then a = f £(x) Xndx/ f X, dx
(o] 0
yo
=14/1 (1 - cos @1 cosh &1) ——=
o -0
n

® (1 - cos @l cosh @1) 4a®

therefore f(x) = X
: 4 4 n

n=1 1(an sy

--2}.?09"“"t 5
therefore u = p 2
EI1l o -
n=1 n

which is identical to equation c(7)e



solved then they can be written in matrix form and solved using the

Gauss Elimination technique.

The method consists of manipulating the matrices (A) and {yl vy

equivalence operations to convert (A) into upper triangular form

i.e.

—
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Appendix D

Geuss Elimination

If there are m simultaneous equations in m unknowns to be

(a) {x =iy}

(a") {«} = {y"}

o
1
Ry O . .
1] 1
L 83 ®an o . .
1
0 O 1 a,, 5 . .
0o o 0 1 B Lo .
0 0 0 O ...0 0 1 a 'J
m-1,m
0o O 0 Gr. e A ,J

then {x} is found by back substitution.

(including y1)by a

The procedure is: divide all elements in the first row

11

Let the matrix eguation be

Then the zeros in positions (2,1)(3,1)(4,1) etc are formed by performing

the equivalence operations !
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8.3 =84 8., 8, for i =1,m and for n = 2,m
and T B ¥ a7y forn = 2,m

The first column is then in the form given in equation D(1)
The procedure is then repeated for column 2, i.e. all elements in
row 2 (including yz) are divided by a,,; elements (3,2),(4,2),(5,2), ete

are put equal to zero by the equivalence operations:
S 28 ~8 8, for i =2,m and n = 3,m

3,m

and Y. =7

e 8 ., for n

Similarly for columns 3 to m until the matrix is in the form D(1).

Consider the mth equation: I

th -
" " . n - .
(m=-1) e AT R L hence x__,
th
" " - n v .
(m-2) X2 *®ns net Tt a2 0% Y .pshence x _, etc

A flow diagram for the technique is given on the following pages



ss_elimination technigue

LA

J

|

i i
T

R g A ) :
-
N

T Isi> m? -Ne

e

= Jal



Back substitution
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25:
26:
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29:
38:
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23
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35:
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58
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Appendix E

IMPLICIT REAL*8 (A-H,0-Z)

OPEN (5,INFPUT,PROMPT'FILE 5')

OPEN (6,O0UTPUT*T)

DOUBLE PRECISION COMPLEX BO,BR,AC.A,E,S,C

DOUBLE PRECISION COMPLEX V,D1,D2,F,FD,T

DOUBLE PRECISION COMPLEX X1,X2

REAL*8 1,12

TEN 6=14087.*1088.

PI=L.;§1TAN(1 .)

EP1 e

WRITE(Z,65)

FORMAT(//*INPUT BR')

ACCEPT BR

READ(5,18)AR,R0,EL,EF

WRITE?6,11)

WRITE(6,10)AR,RO0,EL,EF

READ(5,18)11 ,112

WRITE(6,19)

WRITE é,mgm ,M2

WRITE(6, 21

READ(5, 28) R, X,Y

X=X*9,88665

IF(FR)99,99,140

OM=2 ., *PI*FR

A=DCMPLX(X*DCOS(Y),X*DsIN(Y))

21 =1 +112)/ (RO*EL*EL) :

A2=AR¥*AR*RO

C4 =EF/(AR*EL*RO)

C2=AR*RO*EL

X1 =EF*RO*AR

X2=(141 +M2)*AR*RO

X3=AR* AR*ROFRO¥EL

X)=21 *12/EL

s=cns:m(33g

C=CDCOS(BR

T=8/C

V=X2*C+(X3/BR-XL4*BR)*S

BE=X1/V-A

FD=X1 *(X2%5-(X3/2R=XL*BR) *C+(X3/(BR*BR ) +XL)*3) /(V*V)

BR=~F/FD+BR

AC=X1/(X2¥CcDCOS(BR)+(X3/BR-X4*BR ) *CDSIN(BR))

IF(DABS(DREAL(AC)-X*DCOS(Y) )-EP1 )1 28,128,114

IFED&BS(D.LLAG( AC)-X*DSIN(Y))-EP1 )1 38,1 38,118
OM*OM*EL*EL*R0)/(BR*BR)

E=E/TEN6

WRITE(6,50)FR,E

CONTINUE

GO TO 9@

CONTINUE

CLOSE(6)

STOP

Fom.zﬂﬁamﬁ L)

FCRMAT(//3X, 'AREA',5X, 'DENSITY !, X, 'LENGTH' , 2X, "RMS FORCE')

'FO'UAT&//D,{ NIASS 17, 4X, 'NASS 2')

FORMAT (5™ @ 1)
FORMAT(//1X, 'FREQUENCY ' ,1X, *E1 ', 6X, 'E2')

FORMAT(2X, 7584 2)
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