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SUMMARY

The performance of a cascade of two-dimensional, bluff aerofoils
employing circulation control by a tangential blowing jet is investigated.
Expressions for the 1ift and drag of such a cascade are derived to
eliminate the direct effect of the blowing jet on the measured performance.
The cascade characteristics for three cascade geometries over a range of
incidences are presented as graphs of 1ift and drag coefficients and stream
deflection plotted as functions of jet blowing momentum coefficient. All
cascade tests were performed at a Mach number of 0.3. The cascade
performance is found to be influenced strongly by vortex shedding at low
jet blowing rates.

A complete numerical solution procedure for calculating the performance
of circulation controlled aerofoils, either isolated or in cascade, is
presented.  The procedure involves the calculation of a blade surface
pressure distribution using a potential flow model with a representation of
the separated region by the use of a source distribution. Aerofoil surface
boundary layer developments are calculated by a finite-difference solution
of the parabolic boundary layer momentum equation. The blowing jet
development is calculated by the same finite-difference procedure applied
to an angular momentum equation, using an intermittency representation of
the eddy viscosity distribution.

Results of the solution procedure are compared with experimental
results obtained by other workers for an isolated aerofoil and for a cascade.
The agreement is satisfactory and encouraging. The solution procedure is
applied to two of the cascade configurations tested in the present investi-
gation. The agreement between theory and experiment is excellent in one
case, while the poorer agreement in the second comparison is attributed to
the experimentally observed changes in wake flow characteristics with cascade
geometry.

COMPRESSOR CASCADES, CIRCULATION CONTROL, WALL-JETS
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CHAPTER 1

INTRODUCTION

1.1 Origin of Project

The investigation described herein arose from consideration of
the future development of aircraft gas turbine engines. In recent
years the pursuit of efficiency and quietness has resulted in the
design of high bypass-ratio turbofan engines with reduced jet veloci-

ties.

High bypass-ratio engines pose new problems, due primarily to the

large diameter of the fan. Two of these problems are:
1. The variation of blade spacing across the fan radius.
2. The high mechanical loading on the blade root section.

One possible solution to the first problem would be to mount an outer
ring of blades on the tip circumference of an inner ring of fewer
blades, thus maintaining a reasonably uniform blade spacing along the
radius. This solution not only exacerbates the root loading problem
but also increases the overall length of the compressor, as conventional
aerofoils with a long chord have to be used in the heavily stressed

inner row.

The above difficulties could be overcome by using thick, bluff
sections for the inner blades and controlling their aerodynamic
performance by the tangential injection of air through a narrow slot

in the blade surface. This principle is known as circulation control.



Another application of circulation controlled bluff blades might
be to replace the adjustable inlet guide vanes used on some engines.
These vanes create problems of mechanical complexity and alignment.
The use of fixed blades, with a turning angle adjustable by a variable

blowing jet pressure might well prove advantageous.

1.2 The Principle of Incompressible Cascade Analysis

The application of the aerodynamic theory of circulation to the
design of turbomachinery is generally accredited to Griffith who wrote
an unpublished paper in 1926, proposing that turbomachinery rings
should be analysed on the basis of flow around aerofoils, rather than

considering the blades as forming a series of passages(l-sj.

It is still normal practice to analyse the performance of low speed
blading in the same manner as used for isolated aerofoils, the only
difference being the modified pressure distribution around a blade in

a compressor ring due to the influence of the neighbouring blades.

Where compressibility effects are of significance, channel flow

d(4’5). The work considered

analysis techniques are commonly employe
in this dissertation is confined to cascade flows of a substantially
incompressible nature. Much of the discussion on the principles

involved in the present investigation, consequently, is concerned with

the performance of isolated bodies.

A most comprehensive publication on all aspects of cascade flow

analysis has recently become available in the form of a translation by

5)

Klein of a German text by Scholz



1.3 Bluff Bodies and Circulation

In potential flow about a two-dimensional aerofoil, the flow is
indeterminate until the position of one stagnation point is defined:
this amounts to a specification of the circulation and hence the lift,
In the case of a conventional aerofoil with a pointed trailing edge,
the flow is constrained to leave the trailing edge smoothly, an
expression of the Kutta-Joukowski condition, and the circulation is
thus fixed. 1f, however, the aerofoil has a blunt trailing edge there
is no such constraint and movement of the rear stagnation point around

the curved surface causes a variation in the circulation and lift.

Consider a circular cylinder in a uniform stream. (The circular
cylinder is selected merely as a convenience for illustration and the
same arguments apply to any bluff body.) In potential flow with no
circulation, the streamlines take the symmetrical pattern as in Sketch
1.1a, In real flow separation would occur, but at the same chordwise

position on the upper and lower surfaces, as in Sketch 1.1b.

Now consider a wall jet, located at mid-chord on the upper surface.
The action of the jet is to re-energise the upper surface boundary layer
which is approaching separation and to allow the upper surface flow to
remain attached to a point near the 'trailing edge'. The net effect
is to distort the flow pattern around the cylinder as in Sketch 1.1d,
where it is clear that lift is being developed, The new flow pattern
can be approximated by the original potential flow pattern, plus a

circulation, as shown in Sketch 1.lc.

It is seen that tangential blowing is capable not only of suppress-

ing separation but also of generating and controlling lift on sections

which would otherwise generate none.



o 1.1b
Potential Flow Real Flow
No Circulation No Circulation

AN 2O\

O 1.1d
Potential Flow Real Flow
With Circulation With Circulation
Sketch 1.1

Flow About a Circular Cylinder



1.4 Tangential Jets: the Coanda Effect

The success of the principle described above is clearly dependent
upon the tendency of a tangential jet to adhere to a curved surface.
It has long been recognised that jets display an inclination to attach:
and remain attached to a nearby solid surface, even when the surface
curves away from the direction of jet injection. This phenomenon is
usually associated with Coanda (1932) who exploited fluid jet attachment
cffects and the accompanying enhanced entrainment rates in many devices
to produce, for example, improved scavenging of internal combustion
engines and augmented nozzle thrust. However, as early as 1800,

(6)

Young commented on the attractive force between a fluid jet and a
curved body, while in 1890 Reynolds(7) discussed the suspension of a
ball by a jet of fluid, fully recognising that the stability of the

ball was dependent upon the tendency of the flow to remain attached to

the curved surface of the ball.

Newman(g) described the essential features of a jet blown tangent-
ially onto a circular cylinder, Consider Sketch 1.2 which shows a two-
dimensional jet of width t, blowing onto the surface of a cylinder,
radius R, with the surrounding air at rest at pressure P_. Angular
distance, ¢, is measured round the cylinder from the slot lip. 1f the
flow were inviscid and non-turbulent, then just downstream of the slot
exit, the flow would become independent of ¢, the jet width would be
constant, and the jet would remain attached around the whole circumfer-
ence. The pressure distribution through the jet would be independent of

¢, but the pressure at the surface of the cylinder would be less than



Sketch 1.2

Tangential Jet on a Circular Cylinder

P_ because of the curvature. The real jet continuously entrains fluid
from the surroundings, increasing the jet width and reducing the jet
velocity with increasing ¢. Since the fluid near the cylinder surface
is retarded, the surface pressure rises and approaches P_, thus causing
separation. Experiment has shown that for high slot blowing Reynolds
numbers and small values of t/R, the flow can remain attached for

values of ¢ in excess of 180°,

A comprehensive list of references on the Coanda effect may be

(9)

found in the summary report of Willie and Fernholz'™~,

1.5 Boundary Layer Control and Circulation Control

Experiments on the application of the Coanda effect to aerofoil
aerodynamics have been conducted since the 1920's and applications to
full size aircraft have been attempted since the 1930's. Some of the
historical developments in the application of slot blowing to operation-

(10)

al aircraft are described by Attinello In all these applications

blowing was used as a boundary layer control on trailing edge flaps,



enabling large flap deflections to be used without stalling, see
Sketch 1.3, The primary aim of these systems was to allow take off
and landing speeds to be reduced by lift augmentation. Tangential
slot blowing may also be used at the leading edge of a main wing to
suppress leading edge separation when developing high 1lift, Experi-
ments on the application of tangential flap blowing to cascades of

(11)

compressor blades have been performed by Kruger et al. , Miller

(12)

and Chapman and others.

N\ it

:mmn:m-..%

Sketch 1.3

Blown Trailing Edge Flap

Alternative methods to tangential blowing have been devised for
the prevention of separation. For example, considerable work has been
performed on aerofoils using suction to remove deccelerated fluid in

(13) and Thwaites(14)

the boundary layer, see Schlichting , and was first
applied to a circular cylinder by Prandtl in 1904. Blowing is a more
practical proposition in the context of compressor blading, however,
due to the inherent availability of a high pressure air supply.

Slotted sections, as illustrated in Sketch 1.4 have also been employed
to increase aerodynamic loadings on wings and turbomachinery bladesclsqls).
The action of the slot is not simply to create a 'jet' effect on the

upper surface boundary layer, a widely held misconception exposed by



Smith(lg). The true effect of the slot is more subtle and is discussed
in some detail by Smith. In brief, the two sections are better

regarded as individual aerofoils in mutual interference,

Sketch 1.4

Slotted Cascade Blade

The above techniques have all been used primarily to increase
aerodynamic loadings by delaying separation up to a conventional
trailing edge and as such fall into the category of boundary layer
control rather than circulation control; true circulation control by
tangential blowing requires a bluff trailing edge to allow movement
of the rear stagnation point, Investigations into the performance
of isolated sections with true circulation control have been performed

(20)

by Kind and Maull on an elliptical aerofoil and at the National

Gas Turbine Laboratory on elliptical and circular section rotors(21’22).

The only reference which has been found concerning previous experiments
on a cascade of bluff blades, employing tangential blowing for circula-

(23)

tion control, is a paper by Landsberg and Krasnoff Their work

is especially pertinent to the present investigation.



An alternative form of flow control by a jet is obtained by the
injection of fluid from a slot in the aerofoil surface but normal or
at some large angle to the surface, as illustrated in Sketch 1.5.

This arrangement is known as the jet flap and is fundamentally

Sketch 1.5

Aerofoil with Jet Flap

different in its method of operation from the tangential jet, since it
is not dependent upon attachment to a surface and is not a direct form
of boundary layer control: rather it forms a virtual physical extension
of the aerofoil. Since the blowing jet does not act directly on the
boundary layer, a reasonably conventional trailing edge is required.
The principle is one of true circulation control, however, since a
variation in lift or deflection is obtained by a variation in jet
blowing rate. Several authors have reported experimental investi-
gations into the performance of jet flap compressor cascades(23’24).
The theory of the jet flap has proved amenable to approximate analytic-

al treatments(la’zsuso).



CHAPTER 2

SURVEY OF PREVIOUS EXPERIMENTAL WORK

2.1 Performance Characteristics of Circulation Controlled Aerofoils

2.1.1 Introduction

This section is a résumé of the findings of previous workers
who have performed tests on isolated and cascaded circulation controlled
aerofoils. These studies have shown that the lift produced by a
circulation controlled aerofoil in cascade is much less than that of
the same aerofoil in isolation. However, it is to be expected that
general characteristics of isolated circulation controlled sections
will apply in broad terms to individual cascaded aerofoils and so the

results of isolated aerofoil studies are of interest.

Tangential blowing over a bluff trailing edge is effective in
preventing separation in this region and so it might be expected that
leading edge separation is a limiting factor on the maximum 1ift
developed by aerofoils with augmented circulation. In commenting on
observed characteristics of isolated sections, however, several authors
have mentioned the 'saddle' shaped pressure distribution which results
from circulation control and the fact that the resulting leading edge
suction peak is much less than that of a conventional aerofoil at a
corresponding lift coefficient. The effect of circulation control on

the pressure distribution over the front portion of a cascade blade
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would certainly be expected to be substantially less than that on an
isolated aerofoil, a premise supported by numerical examples on a jet

flap cascade presented by Starke(31).

Generally speaking, with an
effectively designed slot and trailing edge, circulation control by
tangential jet is a more efficient method of 1lift production than the

jet flap(szJ (23).

, particularly for cascades
The following sections consider in some detail the reported

effects on aerofoil performance of the geometry of the blowing arrange-

ment and the free-stream Mach number. First of all, the suitability

of certain performance correlating parameters is discussed.

2.1.2 Suitable Correlating Parameters for Circulation

Controlled Sections.

In 1956, Kellytss) analysed the typical blowing parameters
used in the correlation of blowing type boundary layer control. By
considering a control volume encompassing a blowing slot and the up-
stream and downstream boundary layers, he showed that if the direct
effect of the jet upon the external pressure gradient, local skin
friction, and the change in mass of fluid flowing across the upstream
and downstream control surfaces due to entrainment are neglected, the
characteristics of a tangential jet may be defined by a boundary layer

control coefficient C

blc’
p B U U
“1c = < g T kgl erk



= 17 =

where t = blowing slot width

¢ = aerofoil chord length

U, = free-stream flow speed
Uj = jet speed at the nozzle exit
Usj = local surface flow speed
pib it
CQ = a mass flow coefficient defined by CQ = o U.c
P, = mainflow density
pj = jet density
P, = free-stream static pressure
Pj = pressure immediately inside the nozzle
st = aerofoil surface pressure existing at the nozzle exit.
see Sketch 2.1. This equation should correlate the effectiveness of

boundary layer control of different jets under the same geometrical

arrangements.

) Pkl =l e

STTITITTTTT 777

Sketch 2.1

Definition of terms used in equation 2.1
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For subsonic jet velocities, Pj = st, so that

¥, W
= Sr .
Co1c = 26\, - T,

The momentum coefficient, C“, is defined by

U.
s 20. =i
C]_l ZCQ U 242

Certain previous workers have used a quantity U3 in the above equation
instead of Uj’ where U} is the velocity resulting from isentropic
expansion of the jet from the supply duct total pressure to the free-
stream static pressure, rather than the local surface pressure. C

M
can be related to Cblc by

(@]
"
(]
I
ys ]
0
o] ] et
s
(g8}
(2]

blc M Q

for incompressible flow through the nozzle.

This result shows that the momentum coefficient, Cu, will

correlate blowing-type boundary layer control results only to the

extent that changes in the quantity ZCQ ;ii can be neglected. The
influence of a velocity dependent term was also discovered in Dunham's
analysis of the NGTE results(ZI). At high supply duct pressures, the
momentum coefficient is an adequate parameter. Kelly(ss) and
Attinelloilo) showed that good correlationsof experimental results at

low duct pressures are obtained with the parameter C as defined by

blc

equation 2. 3.

For an over-choked convergent nozzle, an approximate jet velocity

ch may be obtained by assuming a non-isentropic free expansion to the



local static pressure. Simple momentum consideration gives for this
velocity:
P. =P .
T
J J i3
if mixing losses at the jet boundary are neglected. The definition

of momentum coefficient, equation 2.2. yields:

which is the same relationship as that given by equation 2.3 for sub-

sonic jets.

It appears, therefore, that the same correlating parameter is
satisfactory for both subsonic and choked blowing nozzle flows. Kelly,
in verifying the suitability of the parameter Cblc by comparison with
experimental data, commented that there was no apparent significance

associated with the attainment of sonic jet velocity.

2.1.3 Application of Blowing Parameters to Cascades

The blowing parameters customarily used for isolated
sections employ the aerofoil chord length as a reference length to

non-dimensionalise the blowing mass and momentum rates.

As Siestrunck(34) pointed out, however, the blade spacing, s,

would seem to offer a more appropriate reference length when applying



the coefficients to a cascade because the momentum coefficient Cu,
for example, would then relate the jet momentum flux to that through
one passage. Such a correlation should give a better guide to the

deflecting effect of blowing.

The blade spacing was used by Krasnoff(zg} as reference length in
dealing with cascade jets but as the majority of workers have retained
the customary chord length, the usual definitions will be retained in
the interests of consistency. For this reason also the blowing co-
efficients, when applied to cascades, are based on upstream values of

flow speed and dynamic pressure.

2.1.4 The Number and Position of Blowing Slots

The purpose of tangential blowing is to prevent separation
of the main boundary layer. It is to be expected, therefore, that the
most efficient location of a blowing slot is just upstream of the point
at which the unblown boundary layer would ordinarily separate. Since
an aerofoil or compressor blade is required to operate efficiently
over a range of incidence, some degree of compromise is inevitably
necessary, so that the blowing slot cannot perform at peak efficiency

under all circumstances.

One obvious extension of the principle of tangential blowing is
the use of two or more slots, each to reinforce the effect of the
previous jet. In such an arrangement, each successive jet would be
so located as to re-energise the boundary layer just before the pre-

ceeding jet was about to lose its effect.



North(ss) performed some numerical computations to compare the
effectiveness of one and two slot blowing arrangements to prevent
separation on the wall of a diffuser. Effectiveness was measured
in terms of the distance to separation, measured from the first slot.
He found that for a given total kinetic energy flux, two slots could
be expected to supress separation for about 1.33 times the distance
achieved with only one jet. This result was obtained by postulating
that 63% of the total kinetic energy flux should be supplied from the
first slot, the apparently optimum distribution. North did not
perform full calculations for larger numbers of slots, but he deduced
that three slots, with the total kinetic energy flux properly
distributed between them, could be expected to give greater separation
lengths than the best two-jet arrangement, Certainly, Newman(sé) was

of the opinion that it may be more economical to blow 'little and often'

if the engineering complexity is tolerable.

Allcock and Dunham(sz)showed that two blowing slots were generally
superior to one in terms of 1lift for a given overall blowing co-
efficient, when applied to a circular cylinder. The first slot was
located at the mid-chord position and the position of the second varied
between 30 and 68 degrees from this first slot. With thirty degrees
separation, the two slot blowing arrangement was superior at all blowing
coefficients. As the jet separation angle was increased so did the
blowing coefficient at which two slots became superior, since the
minimum blowing coefficient to prevent separation between the slots

rose with the separation angle.
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(32)

NGTE tests on elliptic cylinders showed that two slot models
were inefficient compared with single slot models at a free-stream
Mach number of 0.2. However, the two slot models showed a much less
sudden loss of 1ift with blowing coefficient and it seemed that two
slots became more advantageous with increasing Mach number. It

certainly appears that design optimization would show two slots to

have major advantages when applied to elliptical sections.

Another form of multi-slot blowing arrangement may be termed
'opposition blowing', as illustrated in Sketch 2.2. With this slot
configuration, the position of .the rear stagnation point is controlled
by differential blowing rates from the two slots. The obvious
potential advantage of this arrangement is that the stagnation point
position can be controlled while at the same time suppressing separation
on both upper and lower surfaces, thus reducing drag more effectively

than would only one slot.

Kind and Maull(zo), in tests on an ellipse, found that for a given

difference in blowing momentum from the two slots (Cu - CUz)’ both

1

the 1lift and the lift/drag ratio decreased with increasing Cuz' This

effect was observed at all positive incidences and it was concluded

that single slot blowing, in contrast to the opposition type, was more

efficient.
E
M1
£
H2
A 7 =
Sketch 2.2

Trailing edge configuration for
opposition blowing.
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2.1.5 The Effect of Nozzle Shape

Once the pressure of the air supply to the blowing slot
reaches a sufficiently high value, the flow through a convergent nozzle
becomes choked. The ideal nozzle for pressure ratios greater than
the critical should be convergent-divergent, to obtain the maximum
momentum from the emergent jet. Since a different geometry would be
required for different supply and exit pressures and since such a
nozzle would be inefficient for unchoked flows, the convergent nozzle

results in the better performance and fabrication compromise.

Attinello(lo} presented a graph of the ratio of jet momentum co-
efficients for convergent and convergent-divergent nozzle flows. At
a pressure ratio of 10, the momentum coefficient attainable with a
convergent nozzle is 0.93 that which could ideally be obtained with a
convergent-divergent nozzle. At pressure ratios of 2 to 3, the ratio
is as high as 0.99, so that the advantages of convergent-divergent
nozzles are highly marginal, even if the restricted operating pressure

range and fabrication problems were acceptable.

Once the flow through a convergent nozzle becomes choked, a free
expansion occurs at the exit which might be expected to reduce jet
circulation control efficiency and thus undermine the above conclusion.
As commented upon in the earlier section concerning correlating

parameters, such an effect is not observed in practice.

2.1.6 The Effectsof Slot Width and Surface Curvature

The phenomenon of jet attachment to a curved surface, the

Coanda effect, arises because of the normal pressure gradient existing



across a curved flow. For a given blowing jet momentum, an increase
in the ratio of slot thickness to surface radius of curvature, t/R,
implies a reduced pressure difference across the jet and therefore a
decrease in jet attachment effectiveness. However, very thin slots
suffer the disadvantages of greater boundary layer blockage, higher
blowing pressures for the same Cu and an inability to entrain effect-
ively a thick oncoming boundary layer. There would thus seem to be
an optimum slot thickness for any particular application. The
existence of an optimum thickness was demonstrated by Allcock and

Dunham(szJ

when using tangential blowing on a circular cylinder.

The general effect of slot width on the NGTE elliptical cylinders
is illustrated in Figure 1. It is observed that the finest slot
(t/c = 0.003) performed well at low blowing rates, but limited the
maximum lift available. A large slot width (t/c = 0.0118) performed
badly since the thick jet was unable to adhere to the trailing edge.
These results are not entirely consistent, however, because the trailing
edge curvature was not the same for all tests.

Kind and Maull(zo)

reported low speed tests on a blown ellipse,
using slot width ratios t/R of 0.0143, 0.0260 and 0.0520 and commented
that there was no significant difference in section characteristics

over this range of ratios.

Landsberg and Krasnofftzs] performed some tests on an isolated
section to investigate the effect of t/R. They found that for values
of t/R = 0.04, 0.08 and 0.11, the 1ift inducing efficiency reduced with
increasing slot width, while at t/R = 0.166 complete jet detachment

occurred at low blowing coefficients.
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2.1.7 The Effect of Trailing Edge Shape

Most tangentially blown aerofoils have been equipped with

circular trailing edges. Allcock and Dunhamczz)

reported some results
which illustrate the importance of trailing edge shape, even when
perfectly smooth. Figure 2 compares the performance of their ellipses
with circular-arc and elliptical trailing edges at Mach numbers of

0.2 and 0.6. A circular-arc trailing edge was found to be beneficial
at a Mach number of 0.2, above a certain blowing coefficient, but
caused a serious loss of performance at a free-stream Mach number of
0.6. This finding proved consistent on both 10% and 20% ellipse
models. The effect was apparently related to the absolute value of
blowing coefficient, since the CL was better for the elliptical

trailing edge at both M = 0.2 and M = 0.6 at low values of blowing

coefficient,

Clearly, comparisons of different surface shapes are subject to
the direct effect of the local magnitude of surface curvature,
discussed in the previous section. However, it seems likely that an
optimum surface curvature distribution would exist in any particular
case. It is known that boundary layer development exhibits a 'lag'
effect, whereby the shear layer requires a finite downstream travel
distance to react fully to a change in the imposed flow conditions,
e.g. -surface curvature. It may well be possible to enhance jet

turning angles by exploiting this effect.

2.1.8 The Effect of Free-Stream Mach Number

The majority of work on tangentially blown aerofoils

has been performed at low incident Mach numbers, where the applied



blowing momentum coefficient Cu and the generated lift coefficient CL
both reached high values. For example, aerofoils tested by Landsberg

and Krasnoff(23)

reached 1ift coefficients as high as 5 at blowing co-
efficients of 0.8. Under these low speed conditions, no peak to the
lift curve is observed over the range of blowing coefficients reported.
Similarly, cascades tested at low Mach numbers display a continuously
increasing CL with CU'

The NGTE tests on isolated elliptical cylinders in which Mach
number effects were specifically investigated, suggest that Mach number
effects can be considerable. Allcock and Dunhamcsz) found that for an
elliptic cylinder, the slope of 1lift against blowing coefficient
increased substantially with free-stream Mach number while the maximum
attainable Cp fell rapidly. This effect is illustrated in Figure 3.
The phenomenon is clearly due to a characteristic of the jet itself
since the maximum lift on a conventional aerofoil does not fall
appreciably until the critical Mach number is attained. Figure 3 shows
how, at M = 0.6, the CL against CP curve falls sharply after peaking:
it appears that at this Mach number, breakdown of the Coanda effect is

sudden and complete.

2.2 Testing Considerations

2.2.1 Introduction

The purpose of wind-tunnel cascade testing is to obtain
performance characteristics which allow a prediction to be made of how
a particular blade geometry will perform in a turbomachine. Since
the range of application of a particular section is likely to be varied

and not necessarily specified at the time of testing, it is normal
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practice to obtain results under standardized conditions. If required,
corrections can be made to results obtained under these standard
conditions to predict performance, for example, at a different Reynolds
number, although such corrections can only be applied confidently
within the range of empirical vindication, primarily because such

corrections are themselves usually empirical.

Except where the effects of three-dimensionality are specifically
studied, cascade tests are carried out under conditions of two-
dimensional flow and the cascade is taken to represent the performance

of an infinite row of equally spaced blades.

Figure 4 illustrates the usual British cascade terminology which
is used in this work. The performance of a given cascade geometry
is sensitive to the flow conditions, namely the Mach number, Reynolds
number and axial velocity ratio. Mach number effects are not
considered here, because this work deals with flows which can be
considered essentially incompressible. The Reynolds number is an
important parameter in any flow system and can be expected to exert
a considerable influence. In an ideal, incompressible flow, the axial
velocity ratio (AVR) is unity, as dictated by continuity. In practice,
boundary layer development on the junction between the blade ends
and the tunnel wall causes a contraction of the centre-span flow
through the cascade resulting in an AVR greater than unity. This
effect may be countered by applying suction to the end walls of the
wind tunnel to draw off the retarded flow and maintain unit AVR. In

addition to these flow considerations there is clearly a limit on the
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minimum number of blades arranged in a finite cascade for which the
centre blade region adequately represents the performance of an

infinitely long cascade.

The above cascade testing considerations are discussed in the
following sections under appropriate headings. The majority of
results referred to were obtained from extensive investigations by
research workers at Liverpool University under the guidance of

Professor Horlock.

2.2.2 The Effect of Reynolds Number

Observed effects of Reynolds number upon cascade perfor-
mance have been reported by Rhoden(37), Horlock et al.(SS), Pollard
and Gostelow(3gJ, Horlock(dl) and Roberts(42). Rhoden tested three
compressor cascades of camber angles 20, 30 and 40 degrees at Reynolds

numbers of 3 x 104

to:'5 x 105 based on the inlet air velocity and blade
chord. The pitch-chord ratio was maintained at unity and the stagger
angles chosen to give an approximately constant outlet angle. \The
aspect ratio was three and the tests were conducted over a sufficiently
wide range of inlet angles to obtain both positive and negative stalling.
On the convex surfaces at high Reynolds numbers a few cases of turbulent
boundary layer separation occurred, although the turbulent layers were
generally able to sustain high pressure rises. As the Reynolds number
was reduced, the point of transition moved towards the trailing edge
until reaching the point of laminar separation. Further slight
reduction of the Reynolds number caused complete laminar separation,

the position of separation remaining approximately independent of

Reynolds number.
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Horlock et ai.(ss) compared some of Rhoden's results with pre-
dictions based on the data of Howell who gave a correlation of
cascade data for the effect of Reynolds number on deflection.
Howell's data did not compare well with Rhoden's results. The
results of Horlock et al confirmed the findings of Rhoden that the
deviation changes rapidly below a Reynolds number of 1.0 x 105 and
varies only slightly above this value. This Reynolds number appears
to be a critical value below which laminar separation can occur,
although the point of laminar separation is also heavily dependent
upon the blade surface pressure distribution.

(42

More recently, Roberts ) presented the results of varying
Reynolds number tests on NACA 65 profile cascades. The cascades
displayed characteristics similar to those described above. Roberts

proposed a method of predicting shear layers across a laminar separation

bubble, thus allowing the calculation of low Reynolds number flows.

The above findings applied to cascades of conventional, slender
compressor blades. Scholz(s) commented that Reynolds number effects
are considerably less on bluff bodies where pressure drag constitutes
a much greater proportion of the total drag. Nash et al.(ds), in
testing a square ended thin wedge section, found that doubling the
Reynolds number from 2.25 to 4.5 x 106 caused an increase in the base
pressure coefficient of less than one per cent. Since the drag on

such a body is almost entirely pressure drag, the drag coefficient

can be expected to have changed by a very similar proportion.



2.2.3 The Effects of Aspect Ratio and Axial Velocity Ratio

The effects of aspect ratio and axial velocity ratio are
considered together since they are closely related. It is tempting
to suppose that a cascade of high aspect ratio would a) give accurate
two-dimensional results in the centre span plane, and b) yield an
axial velocity ratio very close to unity in this plane. Pollard and

(

Gostelow 9 found that for aspect ratios greater than three, the
centre span region did indeed exhibit two-dimensional flow over a
substantial length of the span. However, even for aspect ratios as

high as five, the axial velocity ratio in the centre plane was greater

than unity.

These effects occur because of secondary flows at the junction of
the tunnel wall and the blade low pressure surfaces. The secondary
flows twist the main flow aggrevating the corner stalls and producing
regions of high loss between the wall and the convex blade surfaces.
Pollard and Gostelow showed that a cascade with an aspect ratio as low
as two, when tested with solid walls, can cause secondary effects to
extend across the whole span, thus invalidating any assumption of two-
dimensionality. At higher aspect ratios, the flow may be two-
dimensional in the centre region, but the blockage effect of the
secondary flows causesa contraction of the flow and an axial velocity
ratio greater than unity. The large contraction of flow occurring in
cascades of low aspect ratio defers stalling in the mid-span plane but
gives a lower deflection than is obtained with two-dimensional results.
Studies of the characteristics and prevention of wall stall in compressor

(44)

cascades have been made by Horlock et al.(40), Hanley and by

Stratford(45).
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(39)

Pollard and Gostelow showed that the effect of an increase
in axial velocity ratio across a cascade is to reduce the static
pressure rise and to cause an increase in deviation. Tests on a
cascade of 10C430C50 profiles at a stagger of 36 degrees and space

chord ratios of 0.875 and 1.0 exhibited a variation of deviation

with AVR which could be approximated by straight lines of the form:

§ =48'" - 10(AVR - 1)
where §' is the deviation at AVR = 1.0, Corrections were made for
the effects of secondary flows in the results for AVR > 1.0. However,
the gradient of d§/d(AVR) is expected to be a function of the blade
surface pressure distribution and hence of the blade section as pointed

(41)

out in the reported discussion on Horlock's paper

d(46’47) that the reason for differences between

It is now accepte
early American and British results on compressor cascades of similar
section was due to the British tests being conducted at axial velocity
ratios in excess of unity, while the American tests were made in a
porous wall tunnel with the AVR maintained at unity,.

The AVR was varied in the tests reported by Pollard and Gostelow(sgj
by use of a porous wall tunnel similar to the NACA tunnel reported by

{4?}. The application of suction to the sidewalls

Erwin and Emery
enabled good, two-dimensional results to be obtained from a low aspect
ratio cascade. The variation of axial velocity ratio through the
upstream, downstream and through-cascade regions was measured and it
was found that nearly all the change in AVR occurred in the cascade

itself, thus validating the practice of setting a cascade to unit AVR

based on measuring stations well upstream and downstream.
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Felix and Emery , using the NACA porous wall tunnel, found
that two-dimensional flow could be established with cascades of
aspect ratios as low as unity, provided the suction was applied

carefully.

2.2.4 Tunnel Configuration

The NACA instigated an experimental programme to investigate
aspects of cascade testing. One of the aspects considered was the
minimum number of blades required to obtain conditions representative
of the performance of an infinite cascade. Erwin and Emery(47)
found that provided the end and side wall suction was correctly set,
the centre blade of a cascade of five blades performed satisfactorily.
They also varied the gap between the sidewalls and the end blades of

the cascade, but found that this variable had no effect on the centre

blade.

2.2.5 The Setting of Blade End Suction Levels

Accepting that suction is necessary to obtain two-
dimensional flow in compressor cascade tunnel tests, the obvious
question that arises is that of how much suction to apply. Suction
on the sidewalls is set to remove the sidewall boundary layers and
thus control the inlet flow distribution, which ideally is uniform,
and may be set by obtaining the most uniform possible distribution
of upstream static pressure, The end suction is applied to remove
boundary layers developing in the corner between the blade ends and
the tunnel wall and ultimately this suction level can only be deter-
mined by trial and error, analysing properties measured downstream

of the cascade until unit AVR is obtained.
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Horlock(48) showed that by assuming incompressible flow through
the cascade and applying Bernoulli's equation to the flow, the

theoretical static pressure rise is given by:

AP

P e 2
ity el
E‘pulz . §-pU12

where &Po is the loss in total pressure across the cascade,

Since the static pressure rise is affected by the amount of
suction applied, the level may be set by use of this formula, Values
of oy and QPO are required, but approximations may be obtained from a

reliminary test with a 'guessed' suction rate.
P g

This procedure was in fact adopted in the present work for some
early tests on a cascade of C4 section blades, performed to gain
familiarity with the equipment, and the relationship expressed in
equation 2.4 was found to be useful and accurate in setting suction
levels. Unfortunately, the procedure is not so simple with a cascade
of blown aerofoils, since the blowing air itself affects the static

rise and the measured AVR. This problem is dealt with in Chapter 3.
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CHAPTER 3

EXPERIMENTAL WORK AND DATA REDUCTION

3.1 Model Blades

3.1.1 Design Considerations

The model blades used in the wind tunnel tests had been
designed and cast before the author became involved with this project.
The basic philosophy of the design is easily deduced, however, and

will be discussed briefly before detailing the blade construction.

The blade profile was based on an ellipse for ease of manufacture.
The twenty percent configuration was probably the thinnest section
which could be fabricated on the required scale, while being slender
enough to avoid critical Mach number effects over a wide range of sub-
sonic incident stream Mach numbers. The slot width was required to
be fine enough not to distort the symmetrical blade profile seriously,
while allowing the necessary range of blowing momentum coefficients at
manageable supply pressures. Consideration of referencesdiscussed
earlier, suggests that the required upper limit on the CU values would
be between 0.1 and 0.2 at an incident Mach number of 0.3. Figure 5
shows the ratios of jet supply pressure to ambien£ pressure to give a
particular blowing coefficient C_ for a series of values of t/c.
The curves of Figure 5 assume full expansion of the jet to the free

stream static pressure, Since the loss of momentum coefficient with



use of a convergent nozzle is only about 7% at a jet pressure ratio

of 10, the curves are reasonably accurate for convergent nozzles.

It is seen that the slot thickness employed (t/c = 0.006) requires

a slot pressure ratio of about 2.5 to give a CLl of 0.2. Such a slot
width is acceptably small from the point of view of profile distortion,
without creating undue problems of fabrication or supplying the slot

blowing air.

3.1,2 Construction

Drawings of the model blades are presented in Figure 6.
The profile was based on a twenty two percent ellipse with a trailing
edge formed by a semi-circle, centred on the origin of the ellipse.
Each blade was cast from mazak and in two halves, as illustrated. The
chord length was 25.4 mm and the geometry of the sections was such
that a slot of nominal thickness 0.102 mm would be formed upon joining

the blade halves.

Three of the blades were equipped with seven static pressure
tappings equally spaced at thirty degree intervals around the trailing
edge. They were distributed about the centre twenty per cent of the
span, as shown in Figure 6. The tappings were formed by drilling
into the trailing edge and inserting lengths of hypodermic stainless-
steel tube, the ends being finished flush with the curved trailing
edge surface. Experience with the performance of these tappings
suggests that it would have been better to leave the ends of the
hypodermic tubes below the surface and to join them to the measuring

stations with a fine, plain hole. The routing of the static pressure
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tubes inside the lower blade halves is shown in Plate 1 on page 32.
Two blades were equipped with a single pressure tapping projecting

into the slot plenum to record the slot supply pressure.

The blades were joined using ordinary, commercial 'Araldite'.
Despite careful surface preparation, the strength of joint obtained
was not consistent and instances of parting blades did occur. Some
of the blades were originally assembled using a special type of
'Araldite' recommended by the manufacturers but even this adhesive

did not prove fully reliable.

Short lengths of stainless-steel tube were inserted into the
ends of the slot supply ducts. The tubes projected about 3 mm
into each end of the blade and served as blade rear mounting pins.
Thin, solid pins were set into the blade ends near the leading edge

to act as forward locating points.

3.1.3 Spanwise Slot Flow Distribution

In compressor cascade tests considerable effort is
directed towards obtaining two-dimensional flow over the centre span
region; hence it was necessary to establish that the flux issuing from
the slots did not exhibit a substantial variation along the span of
the blades. When the slot is supplied from a large plenum, it can be
assumed that a uniform slot width will yield a uniform flux along the
whole length of the slot. In the present case, however, size limit-
ations dictated that the blowing slot of each blade should be supplied
from a circular duct of diameter 3.175 mm, giving a duct diameter/slot

thickness ratio of 20.8 and a ratio of duct diameter/length of 0.125,



PLATE 1: Routing of Static Pressure Tubes Inside Lower Blade Half,




The latter ratio is obtained by using half the blade length: since the
slot supply duct was fed from both ends it can be represented by a

pipe of length equal to half the blade span and closed at one end.

Attempts to investigate the slot flow distribution with a fine
pitot probe in still air proved difficult and inconclusive. It would
have been possible to insert a fine hot-wire anemometer into the slot,
but an accurate traverse along the whole length of each slot would
probably not have been practical. As an alternative, it was decided
to formulate a procedure for predicting the expected flow distribution
and then to test the prediction procedure on a larger scale experimental
rig. The theory of the method and the experimental comparison are
described in Appendix A, together with the application of the procedure
to the model compressor blades., The important result is that the
maximum predicted variation of blowing momentum over the centre half
of the blade span is less than 5% at low blowing pressures and less

than 2% for choked flows.

3.2 Blade Slot Flow Calibration

3.2,1 Introduction

Before assembly of the cascade, the flow from each of the
tangential blowing slots in the blades was calibrated. There were two
reasons for this calibration:

a) To ensure uniformity in blowing between all the blades.
b) To avoid the need for metering the supply air to the cascade when
under test in the wind tunnel, since any small leaks in the supply

apparatus would give false flow readings.
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3.2.2 Calibration Procedure

Each of the blades was held in turn in the frame designed
for use in the tunnel, with all the air supply holes except those
holding the blade blocked off. The air was supplied to both ends of

the blade as when in the tunnel.

A flow meter and pressure tapping were included in the supply
pipe. A sketch of the apparatus is given in Figure 7. When the
fully instrumented blades were tested, the pressure indicated by the
static tapping at the slot exit was recorded. When the two blades
with a tapping in the slot air supply chamber were tested, this

plenum pressure was recorded.

The supply flow was increased in steps over the range of supply
pressures used in the tunnel tests. Pressure P; marked on Figure 7
was used as the reference pressure for which the same flow was to be
expected for all the blades. It was found that all blades could
be brought to display the same calibration curve by fine dressing of
the slot: either polishing out with a piece of shim or by a gentle

rubbing down on the slot lip to close the slot slightly.
Quantitative values for the slot mass flows were obtained by
constructing calibration curves for the flow meter at each of the

supply pressures used.

3,2,3 Application of Calibration to Blades in External Flow

To enable the calibration to be used for the cascade blades when

in the tunnel, it was necessary to express the calibration as a function
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of the pressure ratio between the slot plenum and the slot exit plane.
The static tappings at the slot lip on the fully instrumented blades
were provided to give the exit plane static pressure, but an extra
complication arose: due to the curvature of the jet there existed a
static pressure gradient across the jet, so that the pressure at the
outside of the jet was greater than that at the surface. Thus the
mean slot exit pressure would be less than the local external flow

pressure and the local surface pressure would be lower still.

The detailed treatment of the slot velocity profile and the

static pressure gradient is given in the next section.

3.2.4 Detailed Treatment of the Slot Velocity Profile

The slot exit velocity profile was assumed to conform to
a 'power law' and to be of the form illustrated in Figure 8. For such
a profile, with the density assumed uniform, the coefficient of dis-

charge Cd is given by
n
o= Gop) 51

The pressure distribution across a curved flow is given by

oP _ pu?

dy Rty

Assumption of the profile shown in Figure 8 gives for the pressure

difference across the whole jet

2/n t/2 2/n 2/n
EE_;_EL = ng [ } i@y 4 ft iE:Xl__.dY ] 8.2
p Uj B T % (R+y) (R+y)

t/2
where PE denotes the pressure at the outer jet flow boundary and

PI that at the surface boundary. For n -+ «, equation 3.2 gives
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For other values of n, the integrals are easily

calculated numerically and Figure 9 shows equations 3.1 and 3.2 plotted

as functions of n.

The problem of the spanwise slot flux distribution has already
been dealt with. The work presented here assumes uniform conditions
along the whole of the slot supply plenum chamber and a constant dis-

charge coefficient of 0.85.

In calculating a theoretical mass flux, another problem arises due
to the gradient of static pressure across the slot exit plane. This
outlet pressure gradient is not insignificant: Figure 9 shows that for
a profile with n = 7, the pressure difference across the slot would be
expected to have a value of about 9.5% of the dynamic pressure at the
centre of the jet. Consequently, it is to be expected that better
agreement with experiment would be obtained by assuming the flow to

exhaust to an outlet pressure Pm where

s
Pm = Z(PE + PI) 3.3

Such a solution requires iteration, since PI is itself a function of UE.

3.2.5 Results of Calibration and Comparison with Theory

Figure 10 shows the non-dimensional mass flux from the
blade slots plotted as a function of the ratio of slot exit pressure
over the pressure at the blade centre. Three curves are given:

it The curve obtained from experiment.



2, The curve obtained from the assumption that the pressure at
the blade centre exists as a total pressure throughout the
plenum, and that the flow exhausts to the ambient pressure
existing outside the slot.

3 The curve obtained by calculating the exit velocity Uj as in
case 2, calculating the associated PE - PI, then re-
calculating the exit mass flux taking the exit pressure to be

Pm as defined by equation 3.3.

The predictions of the pressure difference across the jet could
be compared with experimental values obtained from the pressures
indicated by the slot exit tappings, since the pressure at the jet
outer surface was known to be atmospheric during calibration. The
readings from these tappings were not highly accordant, presumably
due to surface inperfections around the ends of the hypodermic tube
inserts and the presence of the slot lips. Average values have been

used consistently in this work. Figure 11 shows the experimental

P. - P
values of . lotted against the same abscissa as Figure 10.
o0, & F
J

The terms used to non-dimensionalise the measured pressure differences
were obtained by considering expansion to Pm, calculated from the

measured pressure difference.

3.2.6 Comments on Calibration of Blades

Figure 10 shows the general agreement between the experi-
mental curve and the theoretical curves. Neither of the theoretical
curves is significantly better than the other in approximating to the
experimental curve, The results suggest that the assumed value of Cd,

0.85, is in fact a little low at pressure ratios below 0.65 and a

little high at pressure ratios above 0.65.



e B B

This variation in Cd is not unexpected, since the exponent n in
the power law is generally a function of Reynolds number for all
boundary layer flows. The slot flow Reynolds number at the highest
blowing rates used in these tests was about 4 x 103. It is also

quite possible that the slot expanded slightly under the influence of

the higher blowing pressures.

Figure 11 shows that the measured values of pressure difference
across the jet are somewhat higher than would be expected for a value
of n in the region of 6. The fact that the PI values are consistently
high, suggests that the phenomenon is probably a result of the presence
of the slot lips: tappings insuch a position might be expected to be
highly sensitive to minute details of the local flow geometry. The
choked flow results showed that the tappings at the slot lip indicated

the local external surface pressure, minus the pressure drop across

the jet thickness, rather than the choked jet pressure.

In all calculations concerning the cascade performance the slot
plenum pressure is assumed uniform at the average of the values indicated
by the two blades with tappings in this duct, and a constant discharge

coefficient of 0.85 is applied.

3.3 The Wind Tunnel

A sketch of the cascade tunnel is shown in Figure 12, It accepted
blades of 57 mm span and 25.4 mm chord. Rows of static tappings were
provided at a half chord length upstream of the inlet plane and one
chord length downstream of the outlet plane. Incidence was varied by

rotation of the turntable and the sidewalls could be adjusted to extend
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right up to the cascade inlet plane at any incidence. The sidewalls
could also be moved inwards, to contract the tunnel width. The
maximum tunnel width (115 mm measured normal to the tunnel axis) was
generally used, inward adjustment of the sidewalls only being necessary
to align the walls with the end blades when testing at stagger and
positive incidence. The sidewalls were extended back to the tunnel
inlet by strips of spring steel so that a smooth inlet would be obtained
when the tunnel was contracted. A set of 10 static tappings were
arranged well upstream of the cascade station to check for flow uni-
formity when setting the sidewalls. Suction slots were provided on
the sidewalls, immediately upstream of the inlet plane, to give control
over the distribution of upstream static pressure. The tunnel end
walls contained recesses into which were fitted manifolds to supply

the blowing air to the cascade. These recesses were used to draw
mainflow air from the blade end region, helping to reduce secondary
flows and to control the axial velocity ratio. Suction was applied

to the blade ends and on the sidewalls by a 30 kW exhauster. The
suction rate from each of the four manifolds could be adjusted independ-
ently but a pressure tapping was provided in each of the suction pipes

from the blade ends so that these two rates of bleed could be equalised.

The general arrangement of the tunnel and some of the associated
equipment is shown in Plate 2, page 40. Plate 3 on page 41 gives a more
detailed view of the cascade and the mechanism used to hold and traverse

the fixed-direction probe, described in Section S5

The tunnel was supplied with air by a cylindrical settling chamber
of 0.46 m diameter and 1.8 m in length. The settling chamber itself

was supplied through a steel hose from a 180 kW radial flow compressor.



PLATE 2:

General Arran

gement of Wind Tunnel and Associated Equipment.
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A conical diffusing centre-body was provided at the inlet end of the
settling chamber. The wind tunnel end of the chamber was fitted
internally with a three-dimensional contraction to smooth the flow

into the tunnel. The tunnel flow exhausted to atmosphere.

3.4 The Cascade Assembly and Blowing Air Supply

The cascade was held in a framework, shown in Plate 4, page 43.
For the unit space/chord tests, 5 blades could be accommodated within
the tunnel width and 7 blades at a space/chord of 0.75. The blowing
air supply tubes, projecting from the ends of each blade located in
the rear frame, while the forward frame held the small pins set into
the blade ends near the leading edge. The cascade stagger could be
varied by pivoting the forward and rear blade mounting frames in a
parallelogram motion. Packing was clamped between the ends of the
two frames to hold the assembly rigid. The blowing air supply mani-
folds fitted into the blade end suction recesses in the tunnel as
sketched in Figure 13. Installation of the cascade necessitated
removal of the top of the tunnel so that the rear blade frame could

be sealed on the blowing air supply manifolds.

The blowing air was taken from a 1000 kN/m? supply‘main and
passed through a 3 kW heating tube, a filter and a regulating valve.
The air was then passed through a drum of silica gel to remove any
remaining moisture or oil droplets before dividing into two streams,

each to supply one end of the cascade.



PLATE 4: Cascade held in frame.




3.5 The Probe Used for Downstream Measurements

Downstream readings of total pressure and flow angle were recorded
by means of a fixed direction probe which was slowly traversed across
the centre-span plane of the cascade. The probe tip was positioned
at one chord length downstream of the cascade exit plane, above the
static tappings in the tunnel floor. A static pressure probe was not
; ; e ; (39)
included in the traversing assembly, since Pollard and Gostelow

found good agreement between probe and wall tapping static pressure

measurements.

The probe was of the clustered tube variety, the centre of the
three tubes having an orifice plane normal to the probe axis for the
measurement of total pressure and the two yaw sensing elements being
raked at an angle of forty five degrees. The probe is sketched in
Figure 14. The tubing used in the probe assembly was stainless
steel and silver solder was used at all joints. The three tubes
comprising the probe tip were first joined with silver solder and
the top and bottom surfaces of the assembly were ground to a fine,
square finish. The cluster was then held in a jig and the tip was
ground carefully to the final shape. After polishing, inspection
under an eye glass showed a very fine finish with clear, sharp edges.
The sharp angles of this type of probe help to maintain independence
of the calibration from Reynolds number over a considerable range(4g}.
The probe tip projected freely for a length of about 35 mm which put
the tip well beyond the minimum acceptable distance from the probe

. : 5
support of about three support d].ametcrs( O).

To avoid the problem
of heat affecting flexible connections, stainless steel tube was used
for the whole probe assembly. Flexible connections were then used

to join the three outlet tubes to the differential pressure transdu-

cers.



The precise volume of the system between the probe tip and the
transducer and the transducer volume itself was unknown. Using
estimated volumes, an approximate settling time based on an expres-

(51)

sion given by Larcombe and Petro suggested that a step change in
pressure from the highest to lowest pressures likely to be encountered
during a cascade scan would give a settling time of about 0.2 seconds.
The x-y plotter traces of the downstream total pressure profiles, for
example Figures 27 and 28, showed that the pressure recording system
was sensitive to local turbulent fluctuations so that mean pressure

settling times were clearly negligible in comparison with the speed

of the probe traverse.

The probe was calibrated by carefully setting the wind tunnel
side walls symmetrically and arranging the probe so that the tip
pointed directly along the tunnel axis. The probe elements were
connected to U-tube water manometers. The yaw elements were
connected differentially across one manometer, while the total
pressure element gave readings relative to atmosphere. A pointer
was attached to the probe support to indicate probe rotation on a
scale which was readable to about § degree. The probe was first
aligned by obtaining a zero reading on the yaw manometer and
adjusting the pointer to indicate zero degrees. The probe was then
rotated in increments of 21 degrees over a range of + 10 degrees.
Since rotation of the probe caused transverse movement of the tip,
the probe carriage was traversed after each yaw increment to bring
the tip back to the tunnel centre line. At each increment readings

were taken from the yaw and total manometers. The readings proved
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consistent and repeatable, The calibration was performed at a
Reynolds number based on blade chord of about 1.5 x 302, The cali-
bration has been plotted as the difference in yaw element pressures,
non-dimensionalised by the dynamic pressure. The original cali-

bration curve and later checks are plotted in Figure 15.

The characteristics and sensitivity of this design of probe have

(50). They concluded that

been investigated by Dudzinski and Krause
flow direction is measurable to within one degree provided that the
probe is individually calibrated. They also found that the centre
tube gives correct readings of total pressure over yaw or pitch angles
of about ten degrees. The calibration performed on the probe used in
the present tests, suggests that the accuracy figure of one degree
quoted by Dudzinski and Krause is conservative, and that flow direction

measurement at a particular flow speed is realisable to an accuracy

better than } degree.

3.6 Instrumentation

All the tunnel static tappings were connected to multitube banks
of water manometers, reading relative to atmosphere. A pressure
tapping in the side of the settling cylinder was connected to a water
manometer in the room from which the main compressor was controlled.
This manometer was taken to indicate the total pressure at the
cascade inlet since tests showed no discernable loss between the
settling chamber and the centre region of the tunnel at the cascade
station. The mainstream flow total temperature was measured by a

thermometer inserted into the settling cylinder,



The centre element of the downstream probe was connected to one
side of a differential, half bridge pressure transducer (* 34.5 kN/m?),
the other side being connected to the settling cylinder. Thus, this
transducer indicated directly the loss in total pressure across the
cascade. The two yaw elements were connected differentially across
a second pressure transducer. The three pressure leads to the
transducers were also connected, through solenoid valves, to water
U-tube manometers. This arrangement allowed easy checks to be made
on the transducer calibrations. The transducers were connected to
a converter unit to give a direct voltage output. Calibration of
the transducers showed a good linear response over the whole range of

pressures encountered during the tests.

The probe traverse was driven by a twelve volt motor. Readings
of probe position were output in terms of a voltage measured across

a multi-turn potentiometer which was driven by the traverse lead-screw.

The total and yaw transducer outputs and the probe position
signal were all input to a data logging system which could scan at the
rate of ten channels per second. Once a probe traverse across the
rear of the cascade was commenced the data logging system would
continuously monitor the input channels, recording the readings on
punched tape. Successive groups of ten input signals were read in
the following format:

4 total pressure readings,
1 yaw reading
4 total readings

1 probe displacement reading.



=4 8L

The reading rate was sufficient to yield approximately 20 such blocks
of data across each blade pitch at a pitch/chord ratio of 0.75. The
output from the total pressure loss transducer was also connected to
an x-y plotter, thus giving an immediate visual record of the downstream
total pressure distribution. This facility proved particularly use-

ful during cascade tests.

The twenty one static pressure tappings arranged around the
trailing edges of the three instrumented blades were connected to multi-
tube manometer banks.  Tappings 1 and 2 on each blade were connected
to a tilting mercury manometer bank and the others to water manometers.
At low blowing pressures, the two tappings provided to measure the
slot plenum pressure were connected to the mercury manometer bank and
at high blowing pressures to gauges. The calibrations of the gauges
were checked on a dead-weight tester. A thermocouple was inserted
into one of the blowing air supply hoses and connected in series with
another in the main settling cylinder. Knowledge of the mainflow
total temperature thus enabled the blowing air supply temperature to

be determined.

3.7 Testing Procedure

Tests were performed at a nominal Mach number of 0.3 The required
settling chamber pressure was set by regulating the proportion of total
compressor flow fed to the tunnel. It has already been mentioned that
the setting of blade end suction levels to attain unit axial velocity
ratio was complicated by the use of blade blowing. In early tests,
readings were taken for two or three different suction rates with the

aim of spanning the unit axial velocity ratio condition. It was found,
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however, that the blade end suction level had little effect on the
results and in later tests, the suction rate was set by judgement

based on experience.

The setting of sidewall suction rates was adjusted by referring
to the distribution of upstream static pressure. The objective was
to obtain as uniform a distribution as possible. The distribution
became more difficult to control with increasing cascade incidence
and blowing rate but the variation in upstream static pressure along
the cascade was generally no greater than 2.5% of the inlet dynamic

pressure.

The probe was aligned with the outlet flow direction at mid-
passage: the centre of a passage flow was most easily found by
obtaining a preliminary downstream total pressure distribution on the
x-y plotter. The data logging system was then started and a traverse
was made across the rear of the cascade in the centre span plane.

All traverses and movements of the probe saddle during probe calibration
were made in the same direction, since there was some backlash in the
traversing system. Immediately after the traverse, readings of
settiing chamber total pressure and temperature, upstream and downstream
static pressure distributions, the blowing air supply pressure and the

trailing edge pressures of the three centre blades were recorded.

After each testing session, spot checks on the transducer
calibrations were made. Such checks never yielded a discrepancy from
the original calibrations of more than 2,5%. It was found that some

degree of zero drift in the transducer converter always occurred during
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a testing session. The total drift at the end of a session was
recorded and a proportion of this total drift was apportioned to
each set of results. The analysis of the total pressure records

allowed this zero drift to be accounted for.
The pressure leads were tested periodically for leakage and
the probe calibration was checked when the cascade was removed from

the tunnel for changes in pitch-chord ratio or stagger.

3.8 Data Reduction

3.8.1 Introduction

It was required to determine the usual cascade performance

parameters, lift coefficient C , drag coefficient CD’ total pressure

L’
loss and static pressure rise for the blown cascade. All these terms
are conventionally inferred by applying energy and momentum consider-
ations to flow through a control volume encompassing one blade. When
blowing is applied, modifications to the standard calculations are
clearly necessary since a proportion of the downstream flow originates
from the blowing slot: otherwise, for example, a negative drag would be
calculated at high blowing rates. The reduction of results, therefore,

was performed with the intention of eliminating the direct contribution

of the blowing jets to the flow measurements recorded behind the cascade.

3.8.2 Standard Analysis Procedure

The downstream total pressure records consisted of many
readings of total pressure at closely spaced positions across the rear
of the cascade. The total pressure profile displays a marked

(39)

periodicity for large downstream distances: Pollard and Gostelow



illustrate the decay of such a profile. The momentum analysis
applied to a control volume assumes uniform flow conditions along
the upstream and downstream boundaries. Thus, the application of
the momentum analysis requires the deduction of properties existing
at some hypothetical station so far downstream that the individual
blade wakes have become fully mixed with the high energy passage

flows.

Consider Sketch 3.1 which shows one pitch length of a total pressure
profile, A, recorded a short distance downstream of the cascade outlet
plane and the equivalent fully mixed profile, B, at a hypothetical

station infinitely far downstream.
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Sketch 3.1

Real and Fully Mixed Total Pressure Profiles

Application of momentum and energy conservation equations yields

the following implicit expression for the Mach number at Station B:
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Numerical integration of the right hand side of equation 3.4, across

one pitch length, with values of M

A calculated from the total pressure

readings allows M, to be found by iteration. The corresponding fully

B

mixed static pressure may then be calculated from the momentum equation.

Having found the fully mixed flow conditions, the expressions
given by Horlock(48) for 1ift and drag may be applied. These formulae,
for a conventional, unblown cascade, may be obtained from those given

in Appendix B if the slot blowing terms are ignored.

3.8.3 Modification for Blowing

It was required to subtract from the experimental results
the direct contribution of slot blowing to the cascade performance
characteristics. The necessary modifications to the results obtained
from the conventional analysis described above are derived from first

principles in Appendix B.

In calculating jet momentum coefficients, a peak jet velocity
was deduced from the measured jet supply pressure and the slot exit
pressure, the latter corrected for the normal pressure gradient across
the jet. The entire jet flow was assumed to emerge with this velocity.
While this definition of jet momentum coefficient is simple and in
accord with previous practice, for example Kindcsz), it may suggest a

poor performance if results are compared with others in which the loss
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of momentum in the slot boundary layer has been accounted for. This
is particularly so in the present case, where the slot discharge co-

efficient is quite low.

3.8.4 The Computer Programmes

Two computer programmes were written to perform the data
reduction described above. The programmes were written in BASIC
computer language and were run on a Hewlett-Packard 9830 computer,
coupled to a tape reader. The first programme read the data from the
cascade outlet traverse directly from the punched tape and other data
were manually supplied. The results output consisted of values of
inlet Reynolds and Mach numbers, outlet angle, lift and drag coefficients,
total pressure loss and axial velocity ratio. The outlet angle was
taken to be the average of all values recorded over a pitch length. It
is recognised that the yaw probe readings would tend to be inaccurate
in regions of total pressure gradient, but as the probe was carefully
aligned with the mid-passage flow, the adjustments to this nominal

outlet angle made by the yaw probe readings were only small.

All the above results were calculated as for a conventional cascade.
Due to computer memory limitations, the total pressure profile integration
was only performed over one pitch length. Such an integration was
generally repeated four times over different sections of the outlet
profile so that good, average results would be obtained, representing

the performance of several blades.

In addition to the fully mixed solutions described earlier, the
programme also calculated results obtained from area and mass flow

averaged values of downstream total pressure.



{8 0CORY PIOREUM Mode Fred ithe iRlly muxed results to take

account of the slot blowing effect, using the expressions presented
in Appendix B.
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CHAPTER 4

RESULTS OF CASCADE PERFORMANCE EXPERIMENTS

4.1 Cascade Characteristics

4.1.1 Lift, Drag and Turning Angle

Table 4.1, page 56, summarizes the cascade geometries
tested. The majority of tests were performed at a space-chord ratio
of 0.75 so that more blades could be accommodated within the tunnel.
With a larger number of blades in the tunnel a better distribution of
flow over the centre passages could be obtained at high blowing rates.
Figures 16 to 26 show the lift and drag coefficients and the turning
angles of the cascade over all the geometries tested. These
characteristics have been plotted against the customary blowing co-
efficient, C“. The values of 1lift and drag coefficient have been
corrected as described earlier, to subtract the direct effect of the

jet on the downstream measurements.

Most of the lift coefficient and turning angle curves display a
characteristic shape. Below a blowing coefficient of about 0.01, the
slope is generally very small or zero. The curves then rise sharply
to a blowing coefficient of approximately 0.03, beyond which the curves
are roughly linear. The most striking characteristic, however, is
the inflexion which occurs in the majority of these curves for the

s/c = 0.75 results at a blowing coefficient of between 0.025 and 0.06.



s/c Stagger §& Inlet Angle o,
1.0 0° 0°, +5°, +10°
0.75 0° -5°, 0°, +5°, +10°
0. 75 35° +25°, +30°, +35°, +40°, +45°
TABLE 4.1

Summary of Cascade Geometries Tested




These inflexions in the 1ift and turning angle curves are accompanied
by a discontinuous fall in drag coefficient by about 50%. This
phenomenon is not observed in the unit solidity results, although the

drag is seen to fall as soon as blowing is applied in these cases.

The discontinuities in the s/c = 0.75 results were generally
associated with the cessation of a loud, piercing whistle which was
heard at low and zero blowing rates. An investigation of this
whistle is described in Section 4.3, the conclusion being that it was
the result of vortex shedding from the bluff trailing edges. The axial
velocity ratio was also found to be influenced strongly by this
phenomenon.  In the unit solidity tests, results spanning the unit
axial velocity ratio condition were readily obtained by varying the
blade end suction rate, at all blowing coefficients. With the cascade
set to s/c = 0.75, however, the low blowing results yielded axial
velocity ratios below unity, even at very low or zero blade end suction
rates. The axial velocity ratio in these cases could be as low as
0.91 with no slot blowing at all. The sudden drop in drag coincided
with a general rise of axial velocity ratio such that varying suction
would allow the unit axial velocity ratio point to be spanned. As
might be expected with such a sudden change in characteristics,
hysteresis in the position of this change was noticed, the blowing co-
efficient at which it occurred being generally higher when increasing
Cu than when reducing Cu. Between these limits the flow was inclined

to jump from one mode to the other.

Any expansion or contraction of the downstream flow between the

trailing edge plane and the probe position, one chord downstream, would



LY

give rise to an inaccurate analysis and erroneous axial velocity ratios.
Inspection of the traverse displacement record and the associated

total pressure profile, however, showed that there was no consistent
expansion or contraction of the distance between total pressure minima.
It would appear that the vortex shedding at low blowing rates causes

a vigorous mixing action behind the cascade, effecting such large

energy losses that the downstream axial velocity is lowered.

Figures 27 and 28 show downstream total pressure profiles
recorded on the x-y plotter. The traces show a very marked change in
total pressure profile with stagger angle. At 35° stagger, Figure 28,
the downstream flow was more fully mixed at all blowing coefficients.
Figure 23 indicates that a discontinuous fall in drag did not occur
for the results at £ = 35°, a; = 40° but at the same stagger where
such a drop did occur, such as at a; = 35’, the total pressure
profiles at low blowing coefficients were very similar to those at
®; = 40: that is, very much more mixed than at zero stagger. This
fundamental difference in total pressure profiles between the two
stagger angles was observed at all incidences. Consequently, it may
be deduced that the wake flow characteristics were substantially
different at the two stagger angles, even though well defined vortex
motion was present in both cases below a certain blowing coefficient.
In general, the whistle accompanying the vortex creation was found to
be more sensitive to the slot blowing rate and to the amount of suction
applied to the blade ends and tunnel walls, at £ = 35°. It was also
observed that under this cascade configuration the whistle sometimes
became slightly higher pitched and displayed a tendency to 'twitter'

intermittently when the slot blowing rate was close to that at which
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the whistle vanished altogether. This region of instability was
associated with an increased local 'jaggedness' of the local pressure
trace, such as in Figure 28b, Comparison of the traces for the two
cascade staggers shows that a slightly more jagged profile is
displayed for all the 35° stagger results, implying a more violent
turbulence structure. This greater turbulence was presumably the

reason for the greater mixing behind the staggered cascade.

The 1ift coefficient and turning angle curves at zero stagger,
zero incidence, do not pass through the origin. At unit solidity
the turning angle is -0.5 deg., with no blowing and at s/c = 0.75 it
is about +1.0 deg. It is accepted that imperfections in the cascade
assembly probably limited the accuracy of individual blade alignment
to about 0.5 deg. Additionally, the typical accuracy of outlet angle
measurement is considered to have been about 0.5 deg. The zero blowing
values of turning angle, therefore, probably represent the general
accuracy limits of the curves. It is likely, however, that the presence
of the slot just before the upper surface boundary layer would ordinarily
separate with no blowing, would cause a slight assymetry of the blade
wakes, so that curves passing exactly through the origin are not necess-

arily to be expected.

It is interesting to observe that the drag coefficient curves all
start at a value of between 0.15 and 0.25 at zero blowing and after the
drop in drag tend to a constant value of about 0.1. This behaviour
is in contrast with the results of Kind and Maull(zo} for an isolated,
tangentially blown ellipse. They also applied an analysis to subtract

the direct effect of the blowing jet from the results of a wake-traverse,
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but obtained drag values which increased continuously with blowing
coefficient. A clue to this behaviour is to be found in the pressure
distributions measured around the trailing edges of the three centre

blades. This will be discussed further in Section 4.1.5.

Certain curves, for example Figure 22 with o; = 45 deg., are
terminated at a blowing coefficient well below 0.15. This is because
the downstream total pressure profile, outlet angle, and the upstream
static pressure distribution varied considerably across the centre
blade passages at high blowing coefficients and the data reduction
was deemed to be unacceptably inaccurate. In no test was there any
evidence of a breakdown of the Coanda effect or stall as would be

signified by a peak in the turning angle and lift coefficient curves.

Figure 29 shows the variation of boundary layer control co-
efficient, Cblc' and jet velocity ratio, Uj/Usj with momentum co-
efficient for one set of results. The point where Uj/Usj = 1.0 is
significant, since it is here that the blowing jet begins to take real
effect. Other workers have found that for values of this ratio below
unity, the jet has little effect and may, under certain circumstances,
be detremental. Reference to Figures 17 and 25 shows that the unit
velocity ratio occurs in the region where the turning angle and lift
are increasing most rapidly, so that the jet is effective even for
ratios less than unity. This is because the boundary layer is very
close to separation at the slot position, so that even low blowing
rates impart more energy to the boundary layer than it would have in
the absence of blowing. The position of unit slot velocity ratio was
found to lie in the region of most rapid turning angle increase for

all the curves.
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4.1.2 Reynolds Number Effects

It was considered desirable to determine whether Reynolds
number variation had a great effect on the cascade performance. It had
been noticed in particular that the position of the discontinuity in
characteristics was sensitive to the inlet total pressure and hence
the test Reynolds number. The Reynolds number could not be varied
very much: evidence discussed earlier shows that conventional cascade
performance becomes sensitive to Reynolds number as the Re is reduced
towards 1.0 x 10° but it was not believed advisable to raise the inlet
velocity due to concern about the strength of the blade joints.

Figures 18, 23 and 26 include points obtained at a Reynolds number of
1.29 % 10°%. The corresponding 'standard' results were obtained at a
Reynolds number of approximately 1.45 x 10°. The associated inlet

Mach numbers were 0.26 and 0.30. The most notable effect of the reduced
Reynolds number is the shift in the position of the discontinuity in

drag to a higher blowing coefficient. Beyond this point, it appears
that the two sets of characteristics tend to converge. On the basis

of this limited evidence, it might be expected that tests conducted

at generally higher Reynolds numbers, say Re > 2 x 10°, would be entirely
free from vortex shedding and the associated inflexions and discontin-
uities in characteristics: it is well known that vortex shedding is a

low Reynolds number phenomenon.

4,1,3 Jet Temperature Effects

Figures 18, 23 and 26 show three sets of experimental
points obtained with the slot blowing air heated to a total temperature
which was within 2 K of the mainstream temperature. These tests were

performed last of all for fear that the high jet temperature in
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combination with a high blowing pressure might cause the blades to part.
It was considered necessary to establish whether the cascade performance
was noticeably affected by the difference in jet and mainstream total
temperatures existing in all earlier tests because certain previous
workers in the wall-jet field have taken trouble to equalise these

temperatures(ss).

The limited number of experimental points was due
to the difficulty in maintaining the jet temperature constant over the

time required to record a full set of readings.

It is seen that the first two sets of results coincide well with
the original results, obtained at a jet total temperature about 60 K
below that of the mainflow. The third result does not correspond so well
but in this one case problems with the punched tape record severely
limited the analysis of the downstream total pressure profile. This
result, therefore, is not expected to be fully consistent with those
obtained from a normal analysis. The important finding is that the
previous results do not appear to have been influenced substantially by

the difference in jet and mainstream total temperatures.

4.2 Trailing Edge Pressure Distributions

Figures 30 and 31 show typical trailing edge pressure distributions
measured at two space-chord ratios and at the same inlet angle and
stagger. It can be seen that in the case of the unit solidity cascade,
at zero blowing, there is no sign of the negative pressure peak which
occurs at 90° on the lesser pitched cascade. Neither did such a peak
manifest itself at low blowing rates. Beyond a low blowing coefficient

the pressure distribution on the smaller pitched cascade becomes similar
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to that on the unit pitch configuration: high negative pressures at
the slot exit and at 30° from this position, then a sudden rise in

pressure to an almost constant value.

It is instructive to compare the corresponding drag curves,
Figures 19 and 20, The relatively flat drag curve at unit pitch
reflects the fact that the static pressure is fairly uniform around
the majority of the trailing edge at all blowing rates, save for the
peak near the blowing slot. At the smaller pitch, a greater drag at
low blowing rates can be predicted from the observed higher negative
pressures. The loss of the suction peak at 90° on this cascade,
with the abrupt increase in trailing edge pressures to an almost
constant value of about-0.45, coincides with the discontinuous fall

in drag.

The observed behaviour of the trailing edge static pressure
distribution explains the marked difference in drag characteristics
between the cascade and the isolated ellipse tested at low speed by
Kind(sz). In the latter case, the drag coefficients rose continuously
with slot blowing momentum because the trailing edge suction peak was

maintained over the whole range of blowing rates.

Unfortunately, the relative sparsity of static tappings between
the slot exit and the 60° station makes it impossible to observe the
changing position of jet separation with blowing coefficient. The
results represented in Figures 30 and 31 indicate that the jet separ-

ated before the 60° station over the whole range of blowing coefficients,
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It was commented earlier that there appeared to be a marked
difference in wake characteristics between the staggered and unstaggered
cascades at a pitch of 0.75. The absence of the negative pressure peak
at 90° on the trailing edge of the unit pitch cascade at low blowing
rates, in contrast with the 0.75 pitch configuration, yet again implies
a substantial dissimilarity in wake characteristics. Clearly, cascade
geometry exerts considerable influence on flow in the trailing edge

region.

4.3 The Nature of Mixing Losses in the Trailing Edge Region

The characteristics of the mixing process and associated losses
in the wall jet flow around the trailing edge of a circulation controlled
aerofoil were considered in some detail by Kind(sz), based on the works
of Stratford(zs_Z?). Stratford showed that the net momentum flux
excess of a jet which mixes with a parallel stream in a region of low
static pressure exceeds that of a jet which does not mix, in a sub-
sequent region of higher static pressure. The converse is true if
the jet mixes in a region of high pressure and flows to a lower pressure
region. Mixing losses also occur if the mixing streams are not

parallel.

Kind argued that over the attached portion of a trailing edge blowing

jet the static pressure is lower than the free stream static pressure
and that the local external flow is reasonably parallel to the jet flow.
Thus, over this attached region, a mixing gain is to be expected. How-
ever, in the region of jet separation, the local velocity is lower than
the free stream velocity and the angle between the jet and the local

external stream becomes large. Thus mixing losses are expected to be



high in the region where the blowing jet separates. These tendencies

were verified experimentally by Kind.

The mixing losses induce drag by two mechanisms: first, the mixing
losses inhibit the ability of the jet sheet to induce an upwash at the
leading edge. In an ideal flow this upwash would counteract the form
drag created by the low pressure region around the trailing edge, which
exists due to the centrepetal acceleration of the wall jet. Second,
the mixing process causes a lowering of the static pressure around the
trailing edge by virtue of the 'sink' effect as discussed by Stratford.
Simply, the mixing effect of the jet requires the drawing of surrounding
flow into the jet mixing region, so creating a suction around the jet

boundary in a manner similar to a sink distribution.

Kind considered that the primary contributor to drag in his tests,

with high jet inclination angles, was the reduced form thrust and this
is likely to be so in the present case, once the blowing jet is

sufficiently strong to close the wake.

4.4 An Investigation of the Cascade Whistle

During the course of tests on the cascade at a pitch chord ratio
of 0.75, a loud, high pitched whistle was sometimes heard. The
appearance and disappearance of this whistle generally accompanied a
notable change in cascade characteristics and so it was decided to

investigate this phenomenon,

At first, it was not entirely clear whether the whistle was caused

by the shedding of vortices at the bluff trailing edges of the blades
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or by the presence of the slot, causing a resonance within the slot
air supply chamber, It was even possible that the presence of the

slots might have caused a standing wave to be set up between blades.

The noise was not created by the jet flow itself, a phenomenon

(54)

treated theoretically by Baker and Manhardt , because it was present
when no slot blowing was applied. It was decided to measure the
frequency of the whistle and determine whether the associated wavelength
or some meaningful aliquot part of the wavelength corresponded to a
physical dimension of the cascade assembly. With the cascade set to
zero incidence, 35° stagger and at a typical test Reynolds number the
blowing air was set to a pressure just above that at which the whistle
disappeared. A tape recording of this background noise was taken as

a reference base. The blowing air supply pressure was then reduced
slightly to produce the whistle, and another recording was taken.

The recording system comprised a Briiel and Kjoar condenser microphone
connected to a Racal Store 4 recorder, giving a frequency response of
up to about twenty kiloHertz. The recordings were analysed on a
Spectral Dynamics Real Time Analyser and the resulting frequency distri-
butions are shown in Figure 32. The effect of the whistle is most
marked, the first harmonic occurring at about 6 kHz. The second and
third harmonics are clearly visible. The wavelength corresponding

to this frequency is about 60 mm which bore no obvious relationship to
any dimension of the cascade except, perhaps, the span (57 mm). This
did raise the possibility of the suction slots at the blade ends being
a cause of resonance, but since the effect was not noticed with a
different blade spacing or, indeed, with variously pitched cascades of

conventional blades, the suction slots seemed an unlikely cause.
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It became clear that the audible frequency was generated by the
shedding of vortices from the bluff trailing edges and this view was
strengthened by the observation that the downstream total pressure
profiles recorded on the x-y plotter displayed high fluctuations from

the mean when the whistle was present as demonstrated in Figure 28b.

The most common manifestation of vortex shedding in the audible
range is the well known Aeolian tone produced by a wind blowing over
a wire. This sound is produced by the formation of a Kirmin vortex
street behind the wire. For circular cylinders vortices continue to
be shed regularly up to a Reynolds number of 4 x 10° to 5 x 10°, beyond

which complete turbulent mixing occurs and vortex formation is suppressed

A dimensionless quantity known as the Strouhal number is used to

characterise vortex shedding phenomena. The Strouhal number, S, is

defined by
_ fd
S = T 4,1
where f = the shedding frequency

d

a characteristic length, usually the maximum width
presented to the oncoming flow.

U = a characteristic flow speed, usually the free-stream speed.

Roshko{SG) studied the shedding frequencies of variously shaped
bluff cylinders and found that by forming a Strouhal number from values
of d and U characteristic of the wake flow and relating this to a
Reynolds number again obtained from wake characteristics, a 'universal'

empirical relationship could be established. The combination of this

[55

]
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result with free streamline theory allows drag to be calculated simply
from a measurement of the shedding frequency for a particular section
shape. The calculation requires a value for the width of the wake
which is a function of the overall shape of the bluff section, so the
calculation procedure is restricted to sections for which empirical

data concerning the wake width is available.

The majority of work on vortex shedding has been performed on
circular cylinders, although square, rectangular, triangular and other

al38:57] et and

geometries of cylinder have also been reporte
Wilandcss) performed tests on isolated elliptic cylinders of two thick-
nesses, 80% and 60%, measuring the fluctuating pressures and vortex
shedding frequencies over a range of incidences. The Reynolds numbers
of their tests varied between 2 x 10" to 10° based on the major ellipse
axis and they found that the Strouhal number varied linearly with flow
speed.  They showed that the variation of Strouhal number with incidence
was much less when based on the projected cylinder height than when

based on the minor axis. At zero incidence, the Strouhal number for
both ellipses was about 0.215 which corresponds to the asyptotic value
given by RosthSG) for circular cylinders in the Reynolds number range
10° to 10“.

Nash et 31(43)

investigated the variation of Strouhal number with
Mach number for a wedge shape of 10% thickness, at zero incidence and
with a square trailing edge. The Strouhal number remained constant

at a value of 0.25 between Mach numbers of 0.2 and 0.9, the corresponding

chord Reynolds numbers being 0.77 x 10° and 2.5 x 10°,
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The Strouhal number obtained from the cascade test using the
measured frequency, the downstream flow speed and the maximum blade
thickness was 0.25. The corresponding Reynolds number based on the
blade chord was about 1.5 x 10°.  This Strouhal number compares well
with the values quoted above, especially as a slightly higher value is
to be expected as a result of the wake contraction caused by the
cascade effect. The tendency for the whistle to disappear with the
application of blowing is easily understood: the jet moves the upper
surface separation point round the trailing edge contracting the wake
and suppressing the formation of vortices. What is not so clear is
the reason for the absence of the whistle during the unit space-chord
ratio experiments. During these tests no whistle was noticed and
none of the downstream total pressure traces displayed the large
fluctuations noticed when the whistle was present in the 0.75 space-
chord tests. However, when the whistle did occur, it was found to be
highly sensitive to the slot blowing rate, the wind tunnel end and
sidewall suction rates and the mainstream flow speed. It is not
altogether surprising, in view of this sensitivity, that the whistle
was not present in the unit space - chord tests. It is to be expected
that the vortex formation would be heavily dependent upon the blade
surface boundary layer development and hence upon the blade pressure

distribution.

None of the previous works studied, concerning the application of
tangential blowing to either cascades or isolated sections, have
mentioned vortex created audible noise. This is most probably because
circulation control tests on circular cylinders have been performed at

higher Reynolds numbers than the tests described here, while the
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elliptical sections previously used have bee

n less bluff, The present

indings are of considerable interest and show the importance of

ossible creation of aerodynamic noise by bluff sections.
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CHARTER b

POTENTIAL FLOW THEORY

5.1 Introduction

Historically, there have been two principal methods of calculating
the incompressible flow past aerofoils or through cascades: the
classical method of transformation and the distributed singularity

approach.

The classical method of transformation is capable of giving
mathematically exact results for certain sections which can be mapped
onto a complex plane by conformal transformation. It is also possible
to accomplish approximate transforms of shapes for which there is no
exact transformation. The primary disadvantage of the application of
this technique to general shapes is the considerable operator inter-
action required with the computations. Where exact transformations
are possible, however, 'reference' results can be obtained with which
other, approximate methods can be compared. This procedure has been

(59)

accomplished by Gostelow who extended the theory of Merchant and

Collar(ﬁo) to obtain a standard for comparison with approximate methods.

The principle now most generally used is that of distributed

singularities. These modern methods are founded upon the works of

(62)

Sch]ichting{ﬁl) and of Martensen The techniques represent the



aerofoil(s) or cascade by a distribution of singularities, which on
being combined with the incident flow, create a streamline which

follows the profile of the desired aerofoil shape.

The Schlichting method involves distributing sources, sinks and

vortices along the chord line of each blade. This method was used by

(59)

Pollard and Wordsworth(ﬁs) and by Gostelow , the distribution of

singularities matching the profile at between fifteen and twenty points.
Some of the assumptions involved in Schlichting's method and the

importance of data presentation have been investigated by Lewis and

(64)

Pennington

A more sophisticated distributed singularity approach was developed

(62)

by Martensen , who distributed vorticity around the profile perimeter.

(65=69) and can be

This method, with variations, is now very widely used
applied to isolated sections, multiple section aerofoils and to cascades

with an accuracy comparable with experimental data.

It is the Martensen distributed vortex method, with an extension to
allow simulation of a wake by the use of sources, which has been used to
calculate the pressure distribution about the aerofoils and cascades

treated theoretically in this dissertation. The distribution of vortex

(69)

elements about the section surface follows the method of Wilkinson

(66)

, while the use of source distributions in

(65)

and of Jacob and Riegels

the trailing edge region is an approach briefly outlined by Geller



5.2 The Governing Equations

5.2.1 Development of the Equations

The section is represented by a continuous distribution of
vortices around the perimeter of strength y(0) per unit length. Where
separation is present at a bluff trailing edge, a source distribution
S(g) is added in this region, (Figure 33). The boundary condition is
that the sum of the effects of the freestream flow, the vortex
distribution and the source distribution should yield zero internal
tangential velocity at all points on the section perimeter. Equating

the sum of these components to zero at a point L= gives:

Y(O-Tl'l) 1 f j Unu
= e e Y(UJKY(Um,U)d0+~2—n—£ §(0) K;(o ,0)do
nL
2 dx . sing 3L
= - U_(cosa a0 + sina dum) 5.1

The first term on the left hand side represents the local velocity
discontinuity, the second the integrated effect of the vortex distribution
and the third the integrated effect of the source distribution between

i : infl ici -
points OnL and Gnu KY(Um,o) and Ks(om,c) are influence coefficients

The right hand side of equation 5.1 represents the contribution of the

free stream resolved parallel to the surface at -

A new variable, ¢, is defined which varies continuously from zero
at the trailing edge to 2m moving anti-clockwise around the complete

perimeter. The section can then be represented in parametric form:

x = x(¢), y = y(9)
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Transformed vortex and source distributioms are defined by

n

Y($)dg

and 5.2

S(¢)d¢o

y(o)do

n

S(o)do

Equation 5.1 becomes

s :
Y(® ) 2m u
T ) 1 ;" 8(9) K6 ,6)dé
u_c * o { Uce KY(¢m’¢)d¢ Y o / e 5w
a0
L
w0 1 3 '
= (cosa B sino y ) B3
where x' = ax y' = dy c is a reference length
¢’ ¢ ° e
and ¢u = ¢ at separation on the upper surface,
¢L = ¢ at separation on the lower surface.

The Y function is represented by 2N discrete points, termed pivotal

points, and the integration in equation 5.3 is performed by the trapezium

rule:
Y(9 ) 2m 2N
1 ST ) i %
e T { Uc I("(((brn’q’)dq’*21\1 E Yn I(*g'rrm a0
o n=1
where
y(o. )
3 n - nm -2
le = Umc £} ¢l’! N N E) (n 031)23 :ZN)

and the local discontinuity term has been absorbed into element Kmm'

In the case of the source distribution, the integration covers

only the points within the separated region:

(n -1)
¢ (51
L sea)k b 80 = e T S K 5.8
T 5P N S B
¢L n—(nL+l) mn
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where
S($ )
S = —0»n
n i
and it is implicit that SnL = Snu = 0, i.e. that the source distribution

vanishes on the separation points.

The influence coefficients are defined by:

= il — L
Py (x=% 0y~ Or-va)%,
ymn (2 =X )24 (y e )& 1

{ | 1 "
K s (xm "m Ym *m ) -
N ¢ 12 12 2

ymm 2 lm + ym

= ! - 1
S &S A e T S R o
Smn (A ey ey '
I\Smm ol

for an isolated section. For the case of an infinite cascade, the

influence coefficients of isolated vortices and sources are replaced

by expressions for the influence of infinitely long rows, spacing s:

1 ﬁ. I | 1 ,%IT,_ []
3 o sinh : {xm—xn])m - sin — (ym—yn)xm
ymn s 2%, i EE " s
cosh ~ (xm xn) cos — (ym yn)
i (i e ¥ g B ' Ry 2 ey - !
n eot =y, yn}[l coth® =(x_ xn]].ym +coth=(x x.) [1+cot™=(y Y ) 1%
“Smn s g Wi . M e
coth S(xm xn) + cot s(ym yn)
50
and Kymm’ KSmm are as for the isolated section.
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The influence coefficients given here are approximate in as much as
the finite vortex and source elements are considered concentrated at a

point.  Other authors(67’68)

, in dealing with multi-element aerofoils
and cascades, have derived expressions which take account of the finite
length of the elements: however, these expressions are considerably

more complicated than those presented here. Experience with the
present solution procedure, applied to single element aerofoils and
cascades, shows that very good accuracy is attainable and there would
seem to be no virtue in adding complexity unless particular circumstances

dictate. the need for such: indeed, Seebohm and Newmancés)

reported that
comparisons of their finite-length element procedure with Wilkinson's
point vortex method(ég) for single aerofoils showed Wilkinson's method

to be the more accurate.

5.2.2 The Equations in Matrix Form

Replacing the integrals in equation 5.3 by the summations
5.4 and 5.5 gives:
2N (1)
oy K + z S K = ~2N(cosa xm' + sing ym') 5.8

p 1 ymn n Smn

n n= (nL+ 1 )

Equation 5.8 applies for each surface point and so represents a set

of simultaneous equations, which can be written in matrix form

n=1 o M
m=1 i
KYmn KSmn Y = R.H.S 59
SN ks .
2N L J 2Nx1
2N x(2N+NS) Sn
L )

(2N+N5)x1



It is important to note that with the presence of source elements,

the coefficient matrix is not square,

5.2.3 Lower Mean Values

The trapezium integration is fairly accurate at all points
except where two vortices lie opposite each other on the upper and
lower surfaces, near a cusped trailing edge. At this point, the
integration curve has a high and narrow peak. Following Wilkinson,

a lower mean value of K is used, derived from the condition of

Ym, 2N-m
irrotationality. Each column, n, of the matrix KYmn represents the
effect of one vortex at each point my, mz, m3,..... sM2y ON the section
surface. From the condition of irrotationality, the integral of the

surface velocity component induced by any one vortex around the closed

section, not including that vortex, is zero:

2N
XU =0
m=1
This allows the K element to be replaced by a lower mean value:
ym,2N-m

2N

Kym, 2N-m f):l Kyp, 2N-m 5.10
p#m

5.2.4 Treatment of Separated Region

The inclusion of source terms in equation 5.9 is to simulate
the separated region and wake of a bluff section. It has been well
established, experimentally, that the surface pressure in a separated
region is uniform and this fact allows a set of relationships to be

deduced between the vortex and source strengths in this region.



At each point on the section surface, the vortex density is identical
with the tangential velocity and the source density is identical with
the normal velocity on the outer edge of the sheet. The condition
of constant pressure, equivalent to the condition that the geometric
sum of tangential and normal velocities should be equal on the surface
in the separated region, therefore gives rise to a set of quadratic
equations of the form:

Y0 ) + 8%(0 ) = A 5.11

where n refers to all points within the separated region and A is a
constant. Since the source distribution vanishes on the separation
points,

LRI LA IR (GRS ) 5.12
and

¥le ) = sylo ]

5.3 The Solution Procedure

5.3.1 Introduction

Two potential flow programmes were constructed. The first
directly follows the work of Wilkinson in dealing with the unseparated
flow about cusped or bluff aerofoils, either isolated or in cascade.

The second programme is an extension of the first, allowing consideration
of the wake effect on the pressure distribution about a bluff section.
Although calculations concerning circulation controlled aerofoils and
cascades require a representation of the wake effect due to the

formation of a separation bubble on the trailing edge, the first of the
two programmes proved useful in verifying the accuracy of the general
procedure. Also, the second programme is applicable, strictly, to

bluff sections only, so that the two programmes together form a package
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capable of calculating flow over two-dimensional sections, isolated
or in cascade, with a cusped or bluff trailing edge and no separation,
and bluff sections with separation, The only restriction placed on

profile shape is that it should be of finite thickness.

The solution of the general matrix, equation (5.9), is quite
different in the two cases and so each is described separately. The
description of the solution for the first case, with no separation,
is brief and affords a useful introduction to an outline of the

second procedure.

5.3.2 The Case with No Separation

Consider equation 5,9 but without the source terms Ksmn
and Sn' The coefficient matrix Kymn is then square. This matrix
is singular, since by equation 5.10 any one row is a linear sum of
all the others. This situation arises due to the well known result
that the potential flow about any body is indeterminate until the
circulation is specified. Wilkinson eliminated row and column 2N
from the system of equations 5.9, implying Yon = 0 and thus that the
trailing edge point is a stagnation point. This is an expression
of the Kutta Joukowski condition that the velocity at the trailing
edge is zero. However, Wilkinson showed that for sections with a
cusped trailing edge the resulting (2N-1)x(2N-1) matrix may still be

singular. This is a consequence of the use of the angular variable

¢ and the fact that setting Limy(¢) = O leaves Limy(o) indeterminate
b >0 g+0

unless the trailing edge angle T = 7, Wilkinson solved this problem

by setting Yon.1 = = M which imposes a 'zero trailing edge loading'.
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By subtracting column 2N-1 of equation 5.9 from column 1 and eliminating
row and column 2N-1 the result is a non-singular matrix of dimensions
(2N-2)x(2N-2) ., This specification of zero loading at the trailing

(67,68)

edge has been used by other workers as a convenient device for

defining circulation.

The matrix in the first programme, POTFLOl, is reduced in the
manner described above. The equations are then solved for two
separate right hand sides, -2Nx' and -2Ny'. Consideration of equation
5.8 shows that these two solutions may be combined after factoring by
cosa and sina respectively, to yield a solution for the vortex
densities at any incidence(s). These values for Yo must then be
converted back into functions of 0 by equation 5.2 to give the local
surface velocities and hence the pressure coefficients:
| p %

T n
ol himE

1]
—
1

5.13
r 2 1 2 %
xl"l +YI'I

When dealing with a cascade, the set of infinite vortex rows
comprising each surface point of the section induce a resultant
velocity at infinity upstream and downstream. This velocity combines
with the specified incident flow to create a net inlet velocity which
is different in both magnitude and direction from the incident flow.
Solutions for the two right hand sides enable an incident flow angle
to be calculated such that the required inlet angle is obtained.

The resultant inlet velocity magnitude may then be determined so that
the pressure and force coefficients can be based upon the required

flow velocity.



5.3.3 The Case With Separation

When source terms are present in equation 5,9 the solution
procedure is complicated by the need to solve simultaneously the
matrix equation and the set of quadratic equations 5.11.  The procedure

adopted is as follows:

Consider equation 5.9 with the left hand side of the coefficient
matrix reduced to an upper triangular form by Gaussian reduction to

produce

=~
%
[~

RHS*

| tn

where the superscript*refers to a quantity modified by the Gauss
reduction. Rearranging and writing out the right hand side in its

two components gives

Y B (-ENXQ)* coso, + (-2Ny$)* sina - K&

|

D 1) | s = L

5.14

Now, for the reason given in consideration of the case with no separation,
the K; matrix is singular with a rank of (2N-1) for a bluff section. A

more general expression of equation 5.14 is given by
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¥ |= (~2Nx$)* coso + (—ZNyé]* sina + | 0 |C- K#* S

@ @ ® @

5.15

where the new term on the right hand side, () represents an homogeneous
system and C is an arbitrary constant, Non-trivial solutions of the
homogeneous system exist by virtue of the singularity of the matrix K;.
In hydrodynamic terms, the homogeneous system corresponds to a pure

circulation.

The solution of the Y vector may be regarded as the sum of the

solutions for the four terms on the right hand side of 5.15:

Y = Yicosa + yzsino + Cys - Yu

Particular solutions to the first two terms, excluding factors cosa
and sino, may be determined immediately by back substitution,having
set Yoy = 0. Similarly, a non-trivial solution to the homogeneous

system (:) is obtained by setting Yon = 1. The remainder of the

solution procedure is an iterative process. A first approximation
to S is made and a solution for y, obtained. Taking a first value
for o, solutions 7Yjcosa, Y,sino and Yy, are summed. It then remains

to determine the factor C by which the circulatory solution Y3 is
multiplied before addition. Factor C is calculated from the condition
expressed by equation 5,12:

(Yacosa + yzsino - Iﬁ]nL+CX}nL = “(ZAC°5”+X?Slna'Iﬁ}nu'CXﬁnu 5.16



Since this relationship expresses equal and opposite surface velo-

cities at the separation points, it is necessary to factor the summed

solution and Y3 by (%%J before applying equation 5.16, thus converting
the vortex densities to speeds. Once the factor C is found, the

full solution is obtained in adding Cys to the existing summation.

Now that a solution for Y has been obtained, the assumed values
of S can be checked by equations 5,11 and 5.12.  If these equations
are not satisfied to the required degree of accuracy, a new approxi-
mation to S can be obtained from them and the above cycle repeated.
If a cascade is considered, the necessary incident flow angle 6 to
produce the required inlet angle, a; is calculated in each cycle,

since this angle a; is a function of the solved set of vortex and

source strengths.

Once convergence to a solution of sufficient accuracy is obtained,
the pressure coefficients are calculated according to equation 5.13

with an allowance for the sources in the separated region.

It was mentioned in Section 5.3.2 that the imposition of Yon = 0
does not necessarily leave the KY matrix non-singular for sections
with a cusped trailing edge. For this reason the procedure here is
applicable, strictly, to bluff sections only. However, it seems
likely that a minor smoothing of the trailing edge point of a cusped
section, with separation just before the trailing edge, would make
little difference to the resulting pressure distribution. The
procedure is probably, therefore, of very general applicability.

A more detailed description of the mechanics of the programme and

a listing are given in Appendix C.
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5.3.4 Calculation of the Incident Flow Angle

It is easily shown that the velocities induced at x = -
by the infinite rows of vortices and sources along the y-axis,

representing the cascade, are

2N
(EI_J = - ;L_%, Ty
e i 2s w8
u
ey =0
L xeo 5.17
g&la =i
Us© X=-
s 1 7
L Rt

Consider such components which, in combination with the incident
flow, are to yield the required inlet angle. The problem is most

clearly expressed by drawing the components in vector form

Sketch 5.1

Composition of Inlet Velocity Vector q



From Sketch 5.1 the following expression for © is obtained

A cosf® - sinf = B 5,18

where A tano;

W
1

V - 1Uu
¥ Stana1

Solutions to equation 5.18 are given by

-B+AY/1-B2+A2

(1+A%)

sinf =

The two solutions for sinf may be substituted back into equation 5.18
to find which is correct, The magnitude of the inlet velocity is

given by

q = /hjs + U cos0)? +(V7+U sing)? 5.19

The magnitude and direction of the outlet velocity is found from

similar expressions in which VY =—VY and U, 57U

X=+40 X=-00 X

1
§

»
il
1
8

5.4 Computer Programme Verification

Since the potential flow programmes are quite complex, it was

decided to test for correct working and accuracy by applying them to

a series of flows for which exact or accurate results were available.
Because most exact or accurate solutions pertain to unseparated flows,
the first potential flow programme, POTFLO1, was used for the majority
of tests. The two potential flow programmes have identical profile
building routines so these tests served as a check of a large part of
both programmes. The cascade nomenclature used in the Figures

referred to below is defined in Figure4.
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Figures 34 and 35 show results for the simplest two-dimensional
cylinder of all; the circular cylinder. Figure 34 shows the exact
and predicted pressure distributionsabout a circular cylinder for two
magnitudes of circulation, zero and 4w, Figure 35 is a comparison of
the variation of lift coefficient with incidence for a fixed rear
stagnation point. With this simple geometry, incidence can be applied
either by varying the position of the rear stagnation point or by
keeping it fixed and varying the true incidence of the free-stream flow.
A comparison of the exact and computed variation of 1ift coefficient
with incidence for a very thin ellipse of only 5% minor chord is given
in Figure 36. Considering the extremely high negative pressure co-
efficients developed around the leading edge at large incidence, these
results are remarkably good and show that very thin sections pose no

problems for this solution procedure.

Figures 37 and 38 show comparisons of predicted results with the
exact values given by Gostelowcsg) for a cascade obtained by conformal
transformation. Thus, this calculation provides a direct test of the
programme against exact results for a conventionally shaped aerofoil
with a finely cusped trailing edge and in cascade. The accuracy of
the prediction is seen to be very good even although the pivotal point
distribution in the trailing edge region was not modified: a closer
point spacing near the trailing edge can be used to reduce inaccuracies

introduced by the zero trailing edge loading assumption.

It is hardly fair to compare directly predictions made by the
potential flow programme alone with experimental results, since the

potential flow programme POTFLOl does not pretend to take account of
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(69)

the viscous effect existing in real flows. However, Wilkinson
found that good predictions of experimental results were obtained for
the flow about cascades of NACA primary turbine blades. These blades
might be expected to give reasonable agreement between theory and
experiment, since the pressure gradient through turbine blades is
favourable and boundary layer development only slight. Figures 39 and
40 show comparisons between theory and experiment for cascades of these

blades at different staggers and agreement is again seen to be good.

A test of the programme POTFLO2 was performed by comparing a

predicted pressure distribution with that measured Pate1(70) on

a
circular cylinder. The reported separation points, which defined

the extent of the source distribution in the computer programme, were

represented to an accuracy of 2°. The comparison is shown in Figure
41. The prediction is seen to be a great improvement on the exact,
unseparated potential flow solution. This example represents an

extreme case with the flow attached over only about 3/5 of the
entire surface. It may be concluded that the use of source distri-
butions to represent separated regions yields a good portrail of the

effect of separation on the surface pressure distribution.

5.5 Possible extensions to the Solution Procedure

The inclusion of a wake effect in the calculation of blade surface
pressure distributions adds considerable realism to the basic, pure
vortex solution whenla bluff section is considered. There are further
ways in which greater flexibility or accuracy might be obtained, but
which have not been attempted in the present work. Two of the more
obvious potential extensions of the calculation procedure are briefly

discussed below.
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Perhaps the most obvious extension of the present method would be
the inclusion of further source elements on the surface points to
simulate the displacement effect of the boundary layer. This procedure
would not necessitate a corresponding increase in the number of unknowns,
since the source strengths could be defined from a knowledge of the
displacement thickness, 6*, at each surface point. These sources would
therefore form an extra right hand side of the matrix equation.

However, it would seem that on bluff bodies in particular, the wake
effect has a greater effect on the pressure distribution than does the

(65)

main surface boundary layer This is why the extra sources have

not been added in the present work.

The second extension would be the inclusion of compressibility
effects. Such effects can be predicted by linear theory, based on the
assumption that all perturbations on the inlet velocity vector are

small(los).

It follows that it is inaccurate for any but very thin
blades at low incidence. The simplest application of this theory is
direct use of the Prandtl-Glauert rule, factoring the pressure co-
efficients obtained from an incompressible flow analysis by 1/v1-M2,
Mikolajczak et alcls) used the Prandtl-Glauert factor to transform the
blade surface coordinates, stagger angle, flow angle and gap between
slotted compressor blades. The incompressible pressure distribution
on the transformed aerofoil was then assumed to be that on the untrans-

(67)

formed aerofoil in compressible flow, Minassian applied the semi-

(106) to include the nonlinear

empirical method of Labrujere et al
influence of surface slopes. This procedure again involves the

calculating of the incompressible flow about transformed profiles. The
resulting surface velocities are related to the compressible flow about

the original profile and isentropic relationships are used to determine

the pressure coefficients from the compressible flow velocities.



The present work is confined to the consideration of flows at or
below a Mach number of 0.3, which is about the upper limit of Mach

 ePEREES may reasonably be neglec
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CHAPTER 6

BOUNDARY LAYER AND WALL JET THEORY

6.1 Introduction

The attempt to model theoretically the cascade performance
required calculation of boundary layer development on the upper and
lower blade surfaces and also of the wall jet blown onto the curved
trailing edge. While the former part of the calculation is
accomplished relatively easily, the wall jet calculation, especially
with severe curvature and pressure gradient effects, represents an

extreme and difficult case.

Wall jets are merely one particular variety of the general
turbulent wall boundary layer; however, they merit particular attention
because they display more extreme variations in flow properties across
the thickness of the boundary layer. When used to suppress separation
of an external flow, the resulting profile incorporates features of a
conventional boundary layer in the outer region with the wall jet
creating a high energy inner region. Figure 42 shows the ways in
which a boundary layer can develop downstream of a blowing slot,
dependence being on the slot geometry, the blowing momentum, the thick-
ness of the upstream boundary layer, the local surface curvature and
the pressure gradient, When a wall jet develops without a minimum

in the velocity profile the wall jet is said to entrain completely the
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upstream boundary layer, The physical properties of wall jets have
been studied by many researchers and various calculation approaches

have been presented(ss’ 71_75).

Integral techniques have been applied frequently to the calculation

£52) used Spalding’s Unified Theory(76}

of wall jets: Allcock and Dunham
for the wall jet calculation in their investigation of a circulation
controlled circular cylinder. Kind(77) followed the approach of
Allcock and Dunham in analysing his circulation controlled ellipse,
but introduced extensive modifications to their method, since the
earlier analysis had proved inaccurate. Gartshore and Newman(78}
described an integral method of calculating a turbulent wall jet in an
arbitrary pressure gradient. Their method involved a two-part
representation of the velocity profile by functions of distance from
the surface and the use of a turbulent viscosity to calculate shear
stresses at three points across the profile. This method, however,

like the majority of wall jet calculation procedures, is applicable to

profiles with a velocity maximum only.

When calculating wall jet development by solution of the usual
boundary layer momentum equation, the problem becomes one of defining
an 'effective' or 'eddy' viscosity. The distribution of eddy viscosity

) attempted

through a wall jet profile is known to be complex. Dvorak{7g
to represent the nature of turbulence by employing an intermittency
model of eddy viscosity, which is described later in this Chapter, in

a finite difference calculation procedure, Using empirical functions,

he deduced expressions for calculating the eddy viscosity distribution



across conventional boundary layers, wall jets with a maximum and
minimum point in the velocity profile and wall jets with a maximum
velocity only. The general shapes of the resulting eddy viscosity

profiles are illustrated in Figure 43.

It is Dvorak's work which has been used in the present study to
calculate the development of blowing jet profiles. For computational
efficiency, main blade surface boundary layer calculations have been
performed using a simple mixing length representation of the eddy

viscosity.

The boundary layer equations, the concept of intermittency and
the eddy viscosity model are described in the following sections. An
outline of the finite-difference procedure used for solving the boundary

layer equations is presented in Section 6.6.

6.2 The Boundary Layer Equations

In calculating boundary layer flows with small longitudinal
curvature most authors have applied a plane surface boundary layer
equation with curvature effects incorporated into a modified mixing
or other length scale. The justification for this is discussed in

Section 6.5.1.

Because it was required to calculate flows with fairly severe
curvature, it was decided to use an angular momentum equation for the

mean motion as well as modifying the Reynolds stress term, This

) (375

approach was adopted by Dvorak[79 , Wilson and Goldstein
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others, The full boundary layer equations for curved flow in curyi-
linear coordinates are giyen by Schlichting(lb), il G The angular
momentum equation used in the present work is
3 (ur) d(ur) _ oP 130 o
SR T S e Rl T el tBy(J]

with the associated continuity and radial equilibrium equations

d (ur) 3(vr)

ax oy R
ap _ pu?
ay T

Distance x is measured along the surface as indicated in Sketch 6.1.

(80)

The above equations are those used by Launder et al. in calculating
curved flows with a kinetic energy model of turbulence, except that
they replaced dx by rd¢.

Once values for the eddy viscosity, p_, are provided, the above

t
equations may be solved., The representation of the eddy viscosity
term and the adopted solution procedure are discussed in the following

sections.

Sketch 6,1

Nomenclature for Flow over a Curved Surface
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6,3 Intermittency

In a fully developed turbulent shear flow the inner region, near
the wall, is generally fully turbulent, while at the free boundary the
flow fluctuates strongly with time between that of a turbulent and
that of a substantially irrotational nature. Hot wire investigations

(81-83) have shown that the outer region

of turbulent boundary layers
turbulence is instantaneously confined within a sharp boundary, termed
the turbulence front. This front is highly irregular in shape and
varies continuously with time. Such turbulence occurs also in jets,

wakes and in pipe flows over the transition region and is a fundamental

feature of turbulent flow.

The degree of intermittency at a point in a turbulent shear layer
is defined by the intermittency factor, Yy, which is a function of
position and represents the fraction of total time during which the
flow is turbulent. Hence, ¥ = 1 corresponds to continuously turbulent
flow and ¥ = 0 to continuously laminar flow. Experiments have shown
that the distribution of intermittency through the thickness of a

boundary layer can be represeﬁted accurately by the expression

e y-y)?2
ov2m ;- el &ga?ﬁ4 5

Yy =

where y is the value of y for which y = 0.5 and represents the mean
position of the turbulent front, The standard deviation of the

measured intermittency profile, o, is a measure of the width of the
intermittency distribution and as such characterizes = the size of

the large eddies. Formally, o is defined by
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where Y is the instantaneous position of the turbulence front.

6.4 The Effective Viscosity Model

6.4,1 Introduction

The model employed is basically that due to Dvorak(7g)

but with slight modifications where the work of other authors suggests

that superior results are obtainable by simple extensions.

In the near wall region, Dvorak applied the very widely used

(84)

Van Driest modification to Prandtl's mixing length theory. The

outer region model is based on the results of an experimental study by
Wygnanski and Fiedlertas). They showed that by considering the

instantaneously turbulent fluid only, an eddy Reynolds number, C,

could be formed where

(]
}
)
=]
—

o

=

tl

V., is the local eddy viscosity in the turbulent fluid only and Ud

tl
is a velocity defect representative of the outer or wake portion of
the boundary layer., Wygnanski and Fiedler found C to lie between

14 and 15 in a zero pressure gradient turbulent boundary layer, while
Dvorak showed that measurements by Bradshaw and Ferrisscgﬁ) in an
adverse pressure gradient gave an eddy Reynolds number in the same
range. He assumed this Reynolds number to be applicable to general

turbulent shear layer flows, including wall jets.
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The values of Ud and ¢ are heavily dependent upon the present
state and the history of the boundary layer. Dvorak proposed three
different correlations for these quantities depending on whether the
boundary layer is of the conventional type, a wall jet profile with
velocity maximum and minimum or a wall jet profile with a velocity
maximum only. An outline of the treatment of each flow is given in

the following sections,

Although the intermittency representation of a conventional
boundary layer is included in the computer programme described in
Appendix D, it has not been used in the present work, since the
classical mixing length approach is able to cope with this relatively
simple case and is considerably more efficient in terms of computer
time. Because part of the wall jet intermittency model uses aspects

of the conventional layer model, however, this latter work is described.

6.4.2 The Near Wall Region

All turbulent boundary layers exhibit a region near to
the wall where the flow is fully turbulent and response to changes in
the energy supply is immediate. Following Dvorak and many other
workers, Prandtl's mixing length theory as modified by Van Driest is

used,

yu
£k Tyq2
B = K*y*[1 - exp{- KG_}]

du

ay
Tw

where . 7;-(Tw = wall shear stress)

K

n

0.435

A = 26,
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While the value of K has been assigned values varying between

0.40 and 0.45 by various authors, it has been found to remain constant

(100’101). The Van Driest parameter

(101)

even in low Reynolds number flows
A has also been shown to be independent of Reynolds number

(102)

although a proposal has been made by Horstman to express A as a

function of pressure gradient,

In the present work, following usual practice, both A and K

are taken to be constants of the values quoted above.

6.4.3 The Outer Region of a Conventional Boundary Layer
A value for o, the standard deviation of the intermit-

tency profile, is calculated from
o/6* = 0,245 + 0,189/(H-1.176) 6.3

which is an empirical relationship for developing boundary layers,
deduced from the results of Fiedler and Head(81}. H is the boundary
layer shape factor, the ratio of displacement thickness, &*, to the

momentum thickness, 0,

The velocity defect, Ud is the difference between the local
freestream velocity and the velocity in the boundary layer at the
point where the mean velocity profile departs from the law of the

wall. ihe point of departure, y = Y, was tabulated as a function

of H and 8* by Dvorak for developing andmildly relaxing flows. This

tabulation is well represented by the following function

Ydfﬁ* = 0,018 + 0.157/(H-1.227) 6.4
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Once O and Ud have been deduced, equation 6.1 may be applied to obtain

the local maximum turbulent viscosity, Vig-

Dvorak applied a diffusion equation to account for the effect
of upstream history on this value of Yy giving a modified value,

Vv .
(7

max avt

max

. X

kALY, o Ve
max

]
s
*

where K; = 0.02, X

1f Vg Were independent of x, then equation 6.5 could be

integrated to show that Ve approached Utl in an exponential manner.

max

In practice a differenceformulation was used to approximate to equation

6.5, so that vt is found from:
max

(vtk -V )+ Vv 6.6

where v_ =V on the previous step.

T
max

The mean position of the turbulent front, y, which is the value

of y where y = 0.5, is found from
y/8* = 2,226 + 0,962/ (H-1.158) 6.7

which Dvorak again deduced from the results of Fiedler and Head.

The intermittency distribution can be calculated from an error

function
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where erf(x) = > { exp(-u®)du,
™

(103)

A tabulation of values of this error function by Kreyszig
shows that the error function can be represented closely by the

polynomial
erf(x)=1.1061x+0,1557x%-0,7635x°+0,44x"-0,1056x°+0.0095x°
Finally, the distribution of turbulent viscosity through the

outer layer is found by factoring the local maximum value by the

intermittency distribution

Velydaemve o yily) 6.9
max

6.4.4 Wall Jets with a Velocity Maximum and Minimum

Wall jets with a maximum and minimum in velocity occur
because the jet is unable to entrain the upstream boundary layer.
Dvorak treated the inner region, marked A in Sketch 6.2 by the same
two layer model as for a conventional boundary layer except that the
effect of intermittency was excluded as the flow is fully turbulent.
Because the calculation of eddy viscosities in area A outside the
'near wall region' by this method is complex and was found to be
computationally time consuming, a conventional mixing length model
was applied in this region, The eddy viscosities thus calculated
were found to be very similar to those computed from Dvorak's more

complex model.
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The outer region, C in Sketch 6.2 represents the remnant of the
upstream boundary layer and has a large value of shape factor, H.
The measurements of Fiedler and Head indicate that the standard deviation
o and the mean position of the turbulent front, y, approach asymptotic
values at large shape factors, Dvorak reported similar behaviour

for the velocity defect Ud- The asymptotic values are

. U
J d_
6/8 = 0.127, )é- 0.93, 7= 0.76 T

Equation 6.6 is applied again to express the effect of upstream history

but the displacement thickness 6* is replaced by the actual boundary

layer thickness & as a more appropriate length scale. The constant
Ky is also changed, to 0.2. The behaviour of v, in region B,
Sketch 6.2, is complex and uncertain. Following Dvorak a cosine

fairing is used to join regions A and C.

y/§

u/U

Sketch 6.2

Division of Wall Jet Profile,
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6.4.5 Wall Jets with a Velocity Maximum Only

Wall jets with only a maximum in velocity occur when the
blowing jet has sufficient momentum to entrain completely the upstream
boundary layer within a short distance of the blowing slot. The
inner region eddy viscosity profile is calculated in the same manner

as described in the previous section.

The velocity defect in this case is simply Ud % el u.
Dvorak plotted profiles of o/x and y/x against a jet shape parameter

(82)

from the measured intermittency profiles of Gartshore However,
the present work has suggested that more general relationships are to
be obtained by non-dimensionalising o and y by a length typical of
the local velocity profile. Theresults of Gartshore suggest the

use of Y the distance to the velocity maximum. The following

representations have been used

¥/y, = 9.53/(UMD + 0.823) - 0.726
o/y_ = 1.35 - 0.281 UMD UMD > 0.5 6.11
o/y, = 1.06 + 0.091/(UMD + 0.104) UMD < 0.5

where UMD = U/(Umax - )

The effect of upstream history is represented by equation 6.5.
A cosine fairing is used as previously to join the inner and outer

region viscosity profiles.
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6.5 The Effects of Surface Curvature

6.5.1 Survey of Previous Findings

Surface curvature has an appreciable influence on the
development of both conventional boundary layers and on wall jets.
Reyleigh(873, in 1916 showed that for flow on a convex surface, an
increase in angular momentum of the fluid with distance from the
centre of curvature is required for stability. By this criterion,
the outer region of a wall jet which does not fully entrain the

upstream boundary layer on a convex surface will be unstable.

Traditionally, boundary layers developing on curved surfaces
have been treated as flat wall layers developing in the appropriate
pressure gradient and the specific effects of curvature have been
neglected. However, it is well known that the entrainment rate of
a wall jet flowing over a surface of convex curvature exceeds that

(88,89) showed that even for values

of a flat wall jet. Bradshaw
of §/R as small as 1/300, turbulence characteristics may be altered
significantly, He pointed out that at such a low degree of curvature,
the static pressure change across a typical boundary layer is less
than one half percent of the free stream dynamic head, so that the
effect of curvature on turbulence greatly exceeds the effect on the
mean motion, Further, in his comprehensive review of experimental
data and theoretical models concerning curved boundary layers,
Bradshaw(Sg) found that the effect of curvature on the turbulent

stresses was greater by a factor of about ten than would be expected

from the addition of curvature terms in the equations of mean motion.



The parameter governing curvature effects is (u/R)/(du/dy) which
is half the Richardson number, Ri, as discussed by Bradshaw, Basically,
curvature increases the turbulent shear stress when Ri < O and decreases
it when Ri > 0, Thus, the effect of curvature depends upon the local

velocity gradient as well as the surface curvature.

Experiments on channel flow round curved ducts have been

(90)

performed by So and Mellor and by Ramaprian and Shivaprasad{ggJ.

The oxrder of the ratio of boundary layer thickness to local surface
radius of curvature (6/R) was 0.1 in the former case and 0.013

in the latter, Both experiments showed that the inner region of flow,
usually characterised by a logarithmic variation of u with y, was
unaffected by convex curvature, although Ramaprian and Shivaprasad
observed that the extent of the region in which the logarithmic law
was valid was reduced by the curvature, They found that the
logarithmic law applied for 25 < Zgl < 250, which is in general
agreement with So and Mellor's upper limit for the logarithmic profile
GZ;E < 200) under stronger curvature, It was found that the outer
region of the boundary layer was affected significantly by wall
curvature, convex curvature increasing the relative strength of the
wake component, Bradshaw suggested that the logarithmic law should

be valid in the inner region of curved wall jets, as well as boundary

layers for all practicable flows.

The concept of a Richardson number correction to turbulent length
scales has been applied by many authors and some have investigated

theoretically the dependence of turbulence parameters on the

(92)

Richardson number, Irwin and Smith deduced that for negative Ri,
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turbulence becomes less sensitive to curvature with increasing
curvature, the shear stress becoming virtually independent of Ri

for Ri < -0,3, For Ri > 0, the opposite was found to be true, there
being an upper limit of Ri = 0.2 beyond which turbulence cannot exist
which can be compared with the experimental findings of So and Mellor,
who obtained a value of Ri = 0,3 as the Richardson number beyond

which turbulence cannot sustain itself.

Richardson number corrections to turbulent length scales have

generally been applied in a linear form

1' = 19(1.0=-B8 Ri)

where 1, is the length scale of the corresponding plane flow. The
1iﬁear form of this correction has been shown by Sawyer(gg) to be
deducible from mixing length arguments. The value assigned to B

has varied somewhat: Bradshaw advocated B = 4.5 for unstable flows
(Ri < 0) and B = 7.0 to 10.0 in stable conditions. He used a value
B=7 to modify a dissipation length parameter in calculating the flow
over the aerofoil of Schauber and Klebanoff(g4}, and obtained better
agreement with experiment than by ignoring curvature effects.,

(95)

Johnson and Eide tried various values of B in modifications to a

mixing length to obtain the best fit with experiment for four sets

of curved wall experimental data. A value of B = 6 was generally

(9

found to give best agreement. Other authors 8,79) have assumed a

direct analogy between the molecular and eddy viscosities, which

G suggest that B = 1 is

yields B8 = 1.0, Wilson and Goldstein
valid only for isotropic turbulence and this value certainly seems

low in comparison with the findings of other authors.
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The effects of curvature cannot be modelled precisely by
application of the simple Richardson number correction: the effects
of curvature are highly complex and any useable correction, especially
in the context of a mixing length can be, at best, only a crude

approximation,

Ramaprian and Shivaprasad described the observed characteristics
of the boundary layer passing over a transition from a straight wall
to a section of uniform curvature. They found that although the
convex wall boundary layer had a strong wake component, the rate of
growth of momentum thickness Reynolds number R8 diminished initially
and then later grew at a faster rate than the corresponding flat
plate layer. The skin friction initially increased, then fell
continuously, being lower than the flat plate value for the majority
of the curved section, They concluded that the effects of curvature
could be divided into three constituents:

14 The initial effect of the application of curvature

("dR/dx effect'").

% The effect of the local normal pressure gradient brought
into existence by curvature ("'dR/dn effect"),
3. The effect of sustained curvature ("R effect").

Constituents 1 and 2 were considered to be dominant in the

region immediately following the start of curvature,

The findings described ahove illustrate the way in which
curvature influences the turbulence structure and thus displays

considerable effects of development history. Bradshaw suggested
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the use of a lag equation of the form

d Ri
eff y .
e S 5 2
X - Ri Rleff 6.12
where Rieff is the effective curved flow Richardson number and Ri
is the calculated local value. X represents the time constant of

the lag effect: Bradshaw recommended X = 106 for a conventional

boundary layer and about 2§ for a wall jet with no external stream.

6.5.2 The Representation of Curvature Effects

The earlier discussion of curvature effects on the
development of shear layers demonstrated the complexity of this
influence. Bradshaw argued that there is little justification in
using any correction to a length scale or eddy viscosity more
sophisticated than a simple linear function, F, of the Richardson
number:

F=1-8Ri 6.13

which was to be considered valid for the approximate range

QUSRS N, For conventional boundary layers, the corresponding
limit of curvature is about |§/R| < 0,015. Following many previous
workers, the F-factor is applied here to flows of considerably more

severe curvature with large values of Ri.

The wide variation of values assigned to 8 has already been
mentioned, If the linear form of equation 6.13 is assumed to apply
up to the point at which turbulence is suppressed, the predicted
results of Irwin and Smith and the experimental results of So and

Mellor give values for B of 5 and 3 respectively. The values of B
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for negative Richardson numbersappear to be generally less than for

positive Ri. In the present work the following values of B have
been used:

B=4 Ri > 0,

B =2 Ri 9.0,

with the obvious limit F 4 0, and the somewhat more arbitrary limit

- &

A lag equation for curvature effects is also applied, as
recommended by Bradshaw. The lag equation used is equation 6.12,
using the same lag constants as were used to express the effects of

£ istor g
low history on Vg

6.6 The Solution Procedure

6.6.1 General Description of the Procedure

The solution procedure adopted is that due to Patankar

(99). Their finite-difference method was specially

and Spalding
developed for the solution of the two dimensional boundary layer
equations and is highly efficient as a result. The cross-stream
variable y is abandoned in favour of a dimensionless stream function
w, which allows the grid to expand with the growth of the calculated
boundary-layer. To allow economy in treating the steep gradients
which occur near walls special 'wall function' formulae are used.
These equations are derived by integrating simplified boundary layer

equations to obtain algebraic expressions relating conditions at the

wall to those in the fluid adjacent to the wall. The finite difference
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equations are obtained by expressing each term of the momentum equation
as an integrated average over a small control volume with the assumption

that the unknown,ur, varies linearly with w between grid points.

Full details of the procedure are provided by Patankar and
Spalding. Their complete procedure allows solution of equations for
conservation of chemical species and stagnation enthalpy in addition
to momentum. The present work is concerned primarily with momentum
calculations, although the equations for conservation of stagnation
enthalpy are included in the solution procedure to allow consideration
of varying jet temperatures. Various other simplifications to the
method presented in reference 99 have been adopted for greater
efficiency: for example, it is assumed that the boundary layer is
always on a solid surface adjacent to a free stream, so that the outer
boundary of the grid can be treated more expeditiously. The central
core of the numerical solution procedure has been taken directly from
the computer programme listing given by Patankar and Spalding. This
section comprises only a small proportion of the whole programme:
the majority is concerned with ancilliary routines for providing the
effective viscosities, calculating the pressure gradient, generating

starting profiles and the like.

6.6.2 Some Particular Details of the Procedure

The wall jet calculation proved to be the most difficult
part of all the computing performed in the present study. Many
problems arose during the development of this procedure and the measures

employed to overcome some of them are outlined below.
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With the type of wall jet flow being considered, the jet usually
entrains the upstream boundary layer rapidly so the profile changes
from being one with both a maximum and a minimum velocity to one with
a maximum only, Once the upstream boundary layer has become almost
fully entrained the profile may be regarded as falling into either
category, In the present work, the change in eddy viscosity

calculation was triggered when the quantity (U - ﬁ)/U fell below 0.1.

Once the upstream boundary layer had become entrained, the
predicted eddy viscosities fell to low values in the outer region
where the velocity gradient was small. It was found that in strongly
adverse pressure gradients a new velocity minimum tended to form in
this outer region and in very strong gradients a stalling of the flow
in the outer region was predicted. This effect was unrealistic
because it was simply a consequence of the definition of the outer
edge of the shear layer which at this stage of the calculation was
quite arbitrary. To correct this behaviour, the velocity-radius
product ur was not allowed to fall below that at the outer edge of
the shear layer once the entrainment criterion given above was

satisfied,

In certain cases, the calculated velocity at the outer edge
of the boundary layer fell to a very low value as separation was
approached, As the outer region flow retarded, so the overall thick-
ness of the calculated boundary layer rapidly increased and it was
felt that the pressure gradients calculated in the inner jet region,
being dependent upon integration from the outer edge, tended to
become inaccurate, To prevent this, the outer edge velocity of the
shear layer was not allowed to fall below one half of the free stream

velocity.
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6.6.3 A Test of the Wall Jet Calculation

It was decided to test the computer programme on the
most complex flow that it would be required to calculate when later
incorporated into the overall solution procedure, namely a wall jet
development. The experimental data of Kind(sz) were the obvious
choice for the test, because his wall jet flows were measured in
detail and it was for the prediction of precisely this type of flow,
involving large pressure gradients and curvature, that the programme

was to be used.

The wall pressure distribution measured by Kind (Flow II) was
supplied as input data and the subroutine used to calculate the
variation in %E— across the layer thickness was accordingly modified,
see Appendix D.  The measured upstream boundary layer profile was
supplied to the programme and the calculation was started at the
blowing slot by allowing the programme to generate a jet profile.

The profile was assumed to be of the form depicted in Figure 8 and
on the basis of jet slot momentum loss curves given by Kind, the

index n of the power law profile was set to 25.

The resulting jet development is compared with the measurements
of Kind in Figure 4 4. The programme predicted rapid entrainment
of the upstream boundary layer which is in agreement with the
measured results. Beyond an angular distance of 32° from the blowing
slot, the predicted profile is seen to develop a rather unrealistically
sharp peak, The shape and size of this peak was found to be sensitive
to the geometry of the fairing used to join the inner and outer jet

regions. Fortunately, gross features of the flow such as separation
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distance, were not found to alter substantially with modification of
the fairing, so no great trouble was taken to prevent the persistence

of this peak. The prediction of negative %% values towards the outer
region of the jet profile is a consequence of preventing the product

ur from falling below that at the outer edge of the profile as discussed

earlier. The measured profiles show that this product actually grows

with increasing r.

Kind does not specify a separation point for his measured flows
but examination of the pressure distribution suggests separation at
about 107° around the trailing edge. The programme predicted an
earlier separation at 101°: experience with the theoretical model shows
that the rate of change of separation distance with blowing coefficient
increases as the 'correct' separation point, corresponding to the
pressure distribution is approached. On the basis of later work,
the 6° difference in separation positions would be reduced to zero by
increasing the blowing coefficient in the computer progfamme by less
than 10%. Thus, for the purpose of predicting a blowing coefficient,
given a trailing edge pressure distribution and an upstream boundary
layer profile, the programme may be considered to have yielded a

satisfactory result for the case considered.

The suitability of the wall jet model will be discussed later in
the light of predictions made by the complete solution procedure. The
example described above served to illustrate that the model would at
least give a qualitatively satisfactory prediction of the gross
features of the type of wall jet flow to which the calculation

procedure was to be applied.
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CHAPTER 7

RESULTS OF THEORY AND COMPARISON WITH EXPERIMENT

7.1 Combination of Potential Flow and Boundary Layer Programmes

The overall solution procedure was constructed so that a full
calculation could be performed for any particular blade geometry without
user interaction. By a '"full calculation'" is meant the prediction of
the blowing coefficient required to produce a particular lift. By
solving for the blowing coefficient at several lift coefficients, the

lift-blowing momentum characteristic could be established.

Figure 45 is a flow chart of the macro used to run the potential
flow and boundary layer programmes. The position of the upper trailing
edge separation point is supplied with the geometrical details of the
section. Iteration between the potential flow and boundary layer
programmes is required to establish the position of the lower separation
point. Once convergence is obtained, the upper surface boundary layer
development is calculated up to the blowing slot lip. A blowing jet
profile is then added below the incident boundary layer, using a first
approximation to the jet momentum coefficient. The jet is calculated
to separation and this point is compared with the position of
separation specified in the potential flow programme. The blowing jet
momentum is altered by an amount dependent upon the distance between
these separation points and the wall jet developmeﬁt re-calculated. The
jet calculation is repeated until convergence to the correct separation

position is obtained.
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The potential flow and boundary layer programmes used in the
solutions presented here are those listed in Appendices C and D
respectively, The macro also ran two small link programmes which
were used to manipulate data files. All computations were performed
on an I.C.L. 1904A digital computer and 64 pivotal points were used to

represent each aerofoil surface in POTFLOZ.

7.2 Comparison of Theoretical Results with Experiment

The solution procedure was tested on the experimental results of
Kindcsz) and of Landsberg and Krasnofftzs) before applying it to the
experimental data obtained in the present investigation. It is
emphasised that the testing of circulation controlled sections and
cascades is extremely difficult and that experimental results should
be viewed with some caution if a quantitative comparison with the
predictions of a theoretical model is to be made. For example, Kind
corrected his results for the effect of downwash induced by three-
dimensional effects. The correction was made by calculating the
effective incidence at which the aerofoil was operating, deduced from
the measured pressure distribution. The difference in blowing co-
efficient required to give a particular lift at the same geometric
and corrected "effective' incidenceswas of the order of fifty percent.
Although Kind considered the effective incidences to be correct to
within about + 4°, the above observation illustrates the magnitude of

inaccuracy that can occur in experimental results.

In Figure 46, predicted values of blowing coefficient are compared
with experimental curves given by Kind. The experimental curves are

those corresponding to Kind's corrected incidences. Although only
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three points were obtained for each incidence, the agreement with
experiment is seen to be good. The changing gradient of the experimental
curves is not reflected but the theoretical points indicate a realistic

average rate of change of C, with CU over the range of CL considered.

L
The theory also predicts realistically the effect of incidence, which
Kind's theory failed to do. An attempt was made to obtain theoretical
results for a lower value of CL at each incidence. However, the
boundary layer model predicted that the upper surface boundary layer
contained insufficient momentum to allow entrainment by the jet and
stalling of the outer region flow was predicted before separation of
the jet. This prediction may have been a true reflection of reality:

Kind did not measure wall jet profiles at such low blowing rates so it

is not possible to expand this point further.

Figure 47 compares computed solutions with the experimental curve
of Landsberg and Krasnoff for a cascade of unstaggered elliptical
aerofoils. Once again, attention is directed to the general accuracy
of the experimental results. For example, Figure 6 in reference 23
shows that the flow deflection varied by 4° or 16% across the outlet
stream of the cascade when operating in the jet flap configuration.

The turning angles of the tangentially blown configuration were
considerably larger and so the corresponding variation in outlet angle
across the width of the cascade was presumably greater. Landsberg

and Krasnoff do not appear to have recorded any static pressures on

the aerofoil surfaces and so it is assumed that the blowing coefficients
were calculated by considering jet expansion to mainstream conditions.
The jet air was metered, however, so the correction made to the computed

Cu values was based on a modified Uj rather than Uj2: in fact, the
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necessary corrections were found to be small. The theoretical
treatment of their tests was additionally complicated by the need to
allow the boundary layer programme to predict transition of the upper
and lower surface boundary layers, since no transition device was used.
Their tests were also conducted at the rather low Reynolds number of
about 1.6 x 10°, These problems were not undesirable, however,
because the same difficulties applied to the prediction of results
obtained in the present research. The computed results are seen to
compare well with experiment and the changing gradient of the curve

is predicted. An effort was made to obtain a result at a blowing
coefficient of about 0.8, but the calculation of pressure gradient
around the trailing edge became unstable due to the extreme variation
in pressure coefficient from point to point in this region at such a
high blowing coefficient, It is believed that this problem could be
overcome simply by increasing the number of pivotal points used in the
potential flow programme. This would be more costly in terms of
computing but is probably inevitable where high lift coefficients and

the associated sharp surface pressure gradients are to be considered.

The solution procedure was applied to two configurations of the
cascade tested in the present investigation. Figure 48 shows a
comparison between theoretical and experimental turning angles for
the staggered cascade at a pitch-chord ratio of 0.75. The agreement
is apparently excellent in this case, in contrast to the much poorer
agreement displayed in Figure 49 for the unstaggered, unit pitch
geometry. These results will be discussed further in the following

section.
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Figure 50 shows a comparison between measured and predicted
pressure distributions around the trailing edge of Kind's ellipse.
The particular case shown was chosen because the theoretical results
happened to coincide reasonably well with specific experimental
conditions under which a full set of surface static pressure readings
were recorded. The sparsity of measured pressures at the outer
boundary of the wall jet, Cp6’ gives a rather ill-defined curve, but
the theoretical curve is seen to be a good approximation to this outer

boundary pressure distribution.

7.3 Discussion

The results presented above illustrate the general suitability of
the calculation procedure for predicting the performance of tangentially
blown aerofoils and cascades, The agreement between theory and
experiment for the results of Kind and of Landsberg and Krasnoff is
probably as good as is possible for a complete solution procedure:
Allcock and Dunham(sz) point out that changes in the shape of the jet
blowing slot can cause changes in lift of as much as fifty percent on
a circular cylinder. In view of this evidence, little more than order
of magnitude agreement with experiment can be expected from any

solution procedure of the flexibility aimed at in the present study.

The agreement between theory and experiment for the cascade tested
in the present investigation is not consistently good. In the
staggered configuration the agreement probably is better than the
accuracy of the theoretical model. For the unstaggered cascade, the

agreement is worse than the previous results would lead one to expect.
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The experimental drag curve, Figure 19, shows that vortex shedding
was a predominant influence at low blowing rates, while the drag
curve for the staggered geometry, Figure 23, indicates that where the
agreement between theory and experiment was good, vortex shedding was
not in evidence even at low Cu. This leads to the suspicion that
even when vortex shedding had apparently been suppressed by the wake
closing effect of the jet, the wake flow of the unstaggered cascade
was still not behaving in a manner similar to that of the staggered
cascade, The fundamental difference in wake flow characteristics
between the staggered and unstaggered cascades has already been
commented upon in Chapter 4. A detailed experimental investigation
of the flow behind circulation controlled bodies of comparable bluff-
ness would be necessary to clarify this point. However, it is
gratifying to reflect that the theoretical model gives grounds for

such surmise.

The comparison of theoretical and experimental pressure distributions
around the trailing edge of Kind's ellipse shows that the potential flow
theory, with the representation of a separation bubble, realistically
models the effect of circulation induced by a tangential jet. It 15
pleasing to note the very accurate prediction of separation pressure
which exists throughout the separation bubble, Figure 50. The develop-
ment of this flexible potential flow model greatly increases the extent
of possible theoretical investigations of circulation controlled aero-
foils or cascades: previous work has been confined to circular or
elliptical sections so that theoretical surface pressure distributions
could easily be calculated. With the present model, this restriction

is lifted.
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The boundary layer calculations on the upper and lower aerofoil
surfaces is considered to be quite adequate: some trials on Kind's
ellipse showed that changes in both the thickness of the starting
boundary layer velocity profile and in the position of the start of
the calculation, made very little difference to the predicted position
of lower surface separation. In this case, however, the boundary
layer was assumed turbulent from the start because Kind used trip wires
near the leading edge of his ellipse. The need to predict transition
in the other cases considered, introduced an extra degree of uncertainty,
particularly in view of the relatively low test Reynolds numbers. The
wall-jet calculation is believed to be the least satisfactory part of
the present theoretical model, although it coped well in the present
study. This section of the model proved by far the most difficult to
commission and it requires relatively large amounts of computing time.
Because the use of an eddy viscosity model or the usual parabolic
boundary layer equation becomes highly dubious in the case of wall-jet
flows, it is believed that a simpler model may well be capable of
yielding comparable results. The employment of an integral technique
for the wall-jet calculation would appear attractive, although the use
of such methods in the past have not met with very great success when
applied to problems of circulation control. Moreover, the current
finite-difference method has the advantage of flexibility, allowing
the calculation of heat transfer and chemical reaction phenomena by
relatively simple extensions of the computer programme. It was largely
because of this potential flexibility that the present model was adopted.
If these extra facilities are not required, then a thoughtfully

constructed integral approach could be more efficient.
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CHAPTER 8

SUGGESTIONS FOR FURTHER WORK AND CONCLUSIONS

8.1 Suggestions for further work

Bl EEEeriment

The purpose in developing any numerical calculation procedure
of the type presented in this dissertation is primarily to avoid the
need for extensive experimentation during aerofoil design stages. Once
sufficient empirical data are available to test new calculation
procedures, attention is better directed to the development of better
theoretical models. At present, there are few data available on the
performance of circulation controlled cascades and further, carefully
obtained experimental results would be of use in testing theoretical
models. Quite apart from the obtaining of general data on such cascades,

it is felt that two distinct investigations are called for.

First, the dependence of vortex shedding phenomena on Reynolds
number for circulation controlled sections. This relationship is a
function of the section bluffness and in the case of cascades, probably
strongly influenced by the cascade pitch and stagger. Secondly, it was
mentioned in Chapter 2 that mainflow Mach number has been found to
influence substantially the performance of isolated circulation controlled
sections: a similar effect is to be anticipated for cascades and may
prove to be of considerable importance since the maximum attainable

turning angle is likely to fall rapidly with increasing Mach number.
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8.1.2 Theoretical Work

The solution procedure developed during the present work
has been only cursorily tested and much computational work is necessary
to determine the full potential of this model. Apart from the testing
of the procedure on further circulation controlled aerofoil experimental
results, it would be of interest to discover how well the model
performs when applied to problems concerning blown trailing edge flaps,
where the large separation bubble present on the bluff trailing edge of
circulation controlled aerofoils does not exist. Additionally, the
capacity of the boundary layer procedure to solve problems of heat

transfer has not yet been explored.

At a more detailed level, the complete solution procedure may be
used to investigate the likely effects of varying the position and width
of the blowing slot(s) on circulation controlled aerofoils, since
substantial improvements in blowing efficiency may be obtained by
optimising these variables. The calculation of the blowing jet devel-
opment, however, is believed to be the least satisfactory part of the
present solution procedure, simply because of its complexity and the
need to generalise several empirical relationships. It may well be
that a simpler model, perhaps of the integral type, could yield

comparably accurate results with considerably reduced computing times.

The usefulness of the potential flow model without a blowing jet
calculation should not be overlooked: the programme can be used to
optimise profile shape by viewing the blade surface pressure distributions
resulting from various geometries, while only a relatively crude boundary
layer calculation is necessary to establish the approximate position of

lower blade surface separation.
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8.1.3 The Practical Application of Circulation Controlled Cascades

The above discussion has centred on the possible direction
of future experimental and theoretical research. Ultimately, the use-
fulness of the principle involved is determined by the feasibility of
applying it to practical situations. The potential applications of
circulation controlled cascades were outlined in Chapter 1. There are
now sufficient experimental data to consider in broad terms the
practicability of using such cascades at low Mach numbers. The deciding
factor is the necessary quantity and supply pressure of the blowing air:
the bleeding of high pressure air from late compressor stages is generally

a wasteful process and requires careful design to minimise power loss.

8.2 Conclusions
The experimental characteristics obtained for the cascades of bluff,

circulation controlled compressor blades were influenced strongly by
vortex shedding at low jet blowing rates. The experimental evidence
suggests that even when a degree of wake closing has been achieved by
the action of the blowing jet, the nature of the wake flow is sensitive
to cascade geometry. This phenomenon is likely to be a common feature
of the low Reynolds number performance of aerofoils with a comparable

degree of bluffness and is thus an important design consideration.

In no test was an upper limit to the turning effectiveness of the
blowing jet reached. The limits in the present investigation, at a
Mach number of 0.3, were imposed by considerations of pitch to pitch

flow uniformity.
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The complete solution procedure has been shown to be capable of
producing realistic predictions of the performance of circulation
controlled aerofoils and cascades. The potential flow model, with
its allowance for the separation bubble which occurs on circulation
controlled sections, is likely to be useful on its own in preliminary

design stages where knowledge of likely surface pressure distributions

is required.
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APPENDIX A

AN INVESTIGATION OF THE DISTRIBUTED PIPE FLOW PROBLEM

NOTE

The nomenclature in this Appendix differs slightly from that

used in the main text. Definitions are provided as necessary.
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Al. Theory

Al.1 The Governing Equations

Consider an element of pipe length, Ax, as illustrated below

in Sketch Al, with some quantity of the pipe flow ﬁyﬁx exhausting

through the element of slot, width h:

Sketch Al

Flow from Slotted Pipe

Application of the energy equation to flow from the interior of

the pipe, "i", to the slot outlet at '"e", gives

BASE Ue2 ~ Ui2
[-— - =] e e

i
Y-1 "0, P

where y is here the ratio of specific heats of the gas in question,

and if the flow through the slot can be considered isentropic:
b o 3
. Y
2y P P

=
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It is assumed that the flow emerging from the slot retains its
momentum in the direction of the pipe axis. Thus, the component of

velocity of the emerging flow, normal to the pipe axis, Uey’ is:

and the mass flow rate per unit length of the slot is:

4
P i P P
e

; Y
2 In-6D ] A2
Fok Ry P

y-1

Consideration of equationsAl and A2 shows that the momentum flux in a

direction normal to thelpipe axis is
p Y p X1

2y PG -G T
¥-1 i i

per unit length of the pipe.

The equation of continuity for flow along the pipe is

W A3
dx y
while the energy equation can be expressed as
- s S L B A4
. ¥=k P

for the main pipe flow.

It is easily shown that provided the main pipe flow is large in
comparison with the local slot flow, an obvious condition in any case,
the momentum equation for pipe flow with friction retains its usual

form: d
dp + 2£pU2 T% = -pUdU AS
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where f is the pipe friction factor, and D is the pipe diameter,

Al,2 Equations in Difference Form

Considering the element of pipe length shown in Sketch Al,
properties at the upstream end of the element are denoted by the
subscript "-'" and the properties at the downstream end by the sub-

script st

The equation of continuity, A3, may then be written as

m
p U, =Y - Tf-ﬂx

where A is cross-sectional pipe area,

The momentum equation, A5, can be expressed as

_ Ax
AP = B ) = MU =4, = 28 7 )

and the energy equation for the main pipe flow, A4:

U2-u?=20 2. L

Quantities which do not specifically pertain to one end or the
other of the element are set to a mean value over the interval.

Denoting mean values by a bar, the continuity and momentum equations

become
M1
K=zl e U) =X
and
= M - Ax
PP @ «U - 280 59 A8
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Al,3 Equations in Functional Form; The Solution Procedure

The unknown "U " may be eliminated by use of equation A7

with A8:
P -P=Q{U—é+(i"—)u-fﬂ[u +l(§-§1- Ul A9
+ TRV T BN R Y A

The quantity p_ is found from equations A7 and A6:

P )
2 = y-1 2+ . Y-1, .2M 2
P iﬁ; +ais s gt - P

* . &
Py = P oA Al10
= = 2
= =0
Now, %?- > p_U_so the expression under the square root is always > P+.

Thus, the negative root solution is of no consequence.

Over a small step, dx, equations A9 and Al0 may be solved
iteratively. Initial assumptions for downstream values are used to
calculate ﬁy’ the flow through the slot over the interval. The
solution for P_ from equation A9 is applied in equation Al0 to give p,-
New mean values over the interval can be calculated and the cycle

repeated to give convergence.

A2. Description of the Computer Programme

The computer programme utilising the expressions presented in the
previous section will solve for any of three cases:
1. It will solve for the exit mass flux, momentum flux and pipe
pressure distributions corresponding to a specified pipe and

slot geometry.
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It will solve for the momentum flux, pressure and slot width
distributions for a specified constant exit mass flux and
pipe geometry,

3, It will solve for the exit mass flux, pressure and slot width
distributions for a specified constant exit momentum flux and

pipe geometry.

The solution procedure is of the forward stepping variety, with
iteration necessary in cases 1 and 3 to establish the mass flow at

inlet to the pipe.

As basic input data, the pipe length, diameter and, where
appropriate, slot width distribution are specified, together with the
inlet static pressure and temperature and the pressure at the slot

exit.

If the ratio of external pressure to the local total prescure
falls below the critical ratio, the local slot flow will be choked.
At each step, the local total pressure is calculated and if the
pressure ratio is below the critical value, the local slot exit

, ) T
pressure is set to (==

Tel times the local total pressure.

The effect of a slot discharge coefficient is included very simply
by multiplying the calculated exit mass flux by the coefficient in the
cases of specified slot width distribution and specified momentum flux,
or by dividing the calculated slot width by the coefficient in the case
of a specified mass flux. The discharge coefficient can be defined

as any function of local conditions or, of course, as a constant.



Units of the Systéme International are used throughout and all
pressures and temperatures are absolute. The computer programme is
written in BASIC and at present up to 50 step lengths can be taken.
The results presented in this Appendix were obtained with either ten

or twenty steps, larger numbers being found to make little difference.

A3. Experimental Method and Results

The slotted pipe, constructed to test the prediction procedure,
was designed to allow variation of the slot width and length, although
only the slot width was varied in the tests described herein.
Illustrations of the slotted pipe and the air supply apparatus are

shown in Figure 51.

The slot width could be varied by the use of different shim
thicknesses and the slot length was defined by the depth of insertion
of the supply pipe and the blanked-off stub pipe. These pipes were
secured with silver solder. In the tests reported here, the slot
length was maintained at 127 mm and slot widths of 0.762 mm and
1.397 mm were used. The slotted pipe was of 15 mm diameter with
a 0.762 mm shim and the slot lip thickness was 0.79 mm. The supply
pipe, of length 1 m to ensure a fully developed turbulent profile at
inlet to the slotted pipe, was chamfered to give a smooth inlet flow,
although some deg;ee of step was inevitable with the larger of the

two shim thicknesses.

Five static pressure tappings were drilled at intervals of
25.4 mm along the slotted pipe and a further tapping was situated in

the blanked-off stub pipe.
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The flow to the settling pipe was supplied through a 50.8 mm
diameter pipework including a Rotameter to allow measurements of flow
rate. A seventh static tapping was provided a short distance from
the rotameteroutlet to allow calibration and a thermocouple for
measurement of total temperature was positioned near the contraction

to the settling pipe.

The seven static pressure tappings were connected to a seven way
pressure switch, enabling each one to be connected in turn to a
0-100 kN/m? transducer, giving an output display on a digital voltmeter.
Static tapping 7 was also connected to a mercury U-tube manometer

allowing calibration of the transducer.

Measurements of flow rate and pipe pressure distribution were
recorded for three different flow rates at each of the two slot thick-
nesses. The slot flow was sonic for the third test on the narrower

of the two slots.

A calibration chart was drawn up for the rotameter at each of the
six supply pressures, and the mass flow rates calculated. It was
suspected, and subsequent examination of the results confirmed, that
the pressure readings given by the first static tapping were all low,
since the end of the supply pipe projected virtually to this hole.

These readings, therefore, have been ignored.

The pressure profiles have been plotted as distributions of

thr_ﬁi against fraction of distance along the pipe, where P]
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represents the pressure at the closed end of the pipe, Thus, the
solid curves of Figures 52 to 57 depict the distribution of pressure

drop across the slot.

A4, Theoretical Results and Comparison with Experiment

The primary difficulty in calculating the theoretical results was
the specification of unknown quantities. In the interests of realism,
the calculation procedure allowed the inclusion of a pipe friction
factor and a slot discharge coefficient, However, these factors are
applied here to a complex flow and it is not altogether reasonable to
assume that they retain their usual relationships with the properties
normally used to non-dimensionalise their characteristics. For
example, the friction factor, normally employed to express the
influence of shear stress at the pipe walls for conventional flow, must
here also represent the effect of redistribution of flow within the pipe
as the main pipe flow is continuously reduced. Similarly, the local dis-
charge coefficient is likely to be a function of the local main pipe flow
velocity as well as the usual parameters of pressure drop across the

slot and slot geometry.

The majority of computing trials were conducted on the first
three sets of results, obtained with the narrower slot width. First
of all, a fourth order polynomial was fitted to the experimental curve,
to give an extrapolated value for the pressure at the start of the
slot. This was the pressure specified in the programme, As a first
approximation, a friction factor was selected, based on the inlet
Reynolds number and a roughness ratio typical of steel, using a

conventional friction factor chart. This gave a value for f of about
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0.007 and it was assumed to be a constant along the whole pipe length.
Having defined the inlet static pressure and friction factor in this
manner, the discharge coefficient was assumed to be constant and was
determined by trial and error, altering the value until the predicted
pressure at the closed end of the pipe corresponded closely with the

measured value.

This procedure yielded the results marked by triangles on
Figures 52, 53 and 54. Although the resulting pressure distributions
are in good agreement with experiment, the predicted mass flows were
of the order of 10% too low, see Table Al, on page13% . As a result,
and because of anticipated effects of flow redistribution on the
effective friction factor, the factor was raised to 0.015 and the co-
efficients of discharge found again by trial and error. The new
distributions are marked by dashed lines on Figures 52, 53 and 54.
The pressure distributions are only marginally worse than those
predicted using the lower value of f but the disagreement between
measured and predicted flow rates was considerably reduced, that at
the highest flow rate being only 2.5%, within the usual limit of

accuracy of the type of flowmeter used.

The comparison of experiment and theory for the larger slot width
is generally less satisfactory. On the basis of the earlier
experienceé, the friction factor was set to 0.015, since the range of
inlet Reynolds numbers covered by all the tests was not large. G
was found that the pressure distribution curves could not satisfactorily
be fitted by a polynomial as before and so the inlet static pressure

together with the discharge coefficient were selected by trial and



Result

q 2 3 4 5 6
Slot Width/Pipe Diameter 0.051 0.051 0.051 0.091 0.091 0.091
Slot Width/Pipe Length 0.0059 0.0059 0.0059 0.011 0.011 0.011
Measured Flow (kg/s) x 10° 11.5 22.0 38.7 11,3 33.3 49.0
Predicted Flow (kg/s) x 103 10.1 20.0 35.8 s 1l -
f = 0.007
Predicted Flow (kg/s) x 103 10.6 21.1 37.7 11.0 34.2 53,3
£ = 0.01S
TABLE Al

Measured and Predicted Mass

Flow Rates in Slotted Pipe Experiments

=RE e
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error to obtain reasonable agreement with the measured values of end
pressure and inlet mass flow rate. It can be seen from Figures 55,
56 and 57 that the resulting predicted inlet pressures appear to be
somewhat high and the general agreement of curve shape is not as good

as for the narrower slot.

A5. Prediction of Blowing Slot Performance of the Cascade Blades

The blowing slot geometry of the model compressor blades was
supplied to the programme and the theoretical pressure, mass flux and
momentum distributions calculated for a range of supply pressures.

A friction factor of 0.010 was specified and on the basis of the
experimental slot flow calibration, the discharge coefficient was

set to a constant 0.85.

Figure 58 shows the slot pressure drop distribution for four
supply pressures while Figure 59 illustrates the corresponding
distributions of momentum deviation. It can be seen that the
uniformity of both the pressure and momentum distributions improves
continuously with increasing supply pressure. Figure 59 forms the
focus of this Appendix. It can be seen that even at the lowest
blowing supply pressure, the maximum predicted variation of blowing
momentum over the centre half of the blade span is less than 5% and

the variation for choked flow is less than 2%.
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B.1. Momentum Considerations

Consider flow through a cascade of bluff aerofoils, as illustrated
in Figure 60a. From the trailing edge of each blade a mass of air, ﬁj’
is ejected. A control volume is drawn, encompassing a full blade, the
blade surface constituting an inner boundary of the control volume.
Stations 1 and 2 indicate planes sufficiently far upstream and downstream
that flow conditions can be considered uniform. The control volume is

considered in more detail in Figure 60b.

Forces X and Y represent the components of force exerted on the
control volume by the blade. Incompressible flow through the cascade
is assumed.

Considering momentum in the x direction gives:

(P1 - P2)s + X

sz;x - mjujx - m1U1x

-
Now, mp = m, + my

=
L

(Py - P3)s + X

m1£U2x - le)— mj(ij - sz) B0

With the addition of the nozzle flow, the axial continuity equation
becomes:

sz = le(1 * R) B2

where

R:_-.-_—j_—
psUa



On substitution of the above in equation B,1, the axial component

of blade force is given by:

u.
X = (P2 - Py)s + [(2+R) - Ugfqpsuisz B3
X

Consideration of momentum in the y direction gives:

Y = mUy. - maUs + m.U,
L Ry

which can be written

L
= | = - - _;.Di 2
¥ psU1x{U1y Ugy] [(1+R) tana, le]psU1x R B.4.

by use of equation B.Z2.

The term (P2 - P;)s in equation B.3. can be replaced by:

30s(U;2 - Uy?)- AP*s B.5.

where AP* represents a loss in total pressure across the cascade and

will be discussed later. Substitution into B.3. gives:

u.
X = ipslez[tanzal -(1+R) %*tan®a, - 2R - R?]-AP*s+[2+R - ﬁffqpsuxxn
X

and if R? can be neglected in comparison with R, then

u,
X = %pslez[tanzal— tan?0, +2R(1-tan’a; - ﬁ%~ costy)]~ AP*s B.6.
X

The term pU; s(U; - Uz ) in equation B.4, can be replaced by
X Y b a

pU;xzs[tanal-(l+R)tana1) to give:
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U,
Y = psUy_?[tana;-(1+R)tanoz]-psRUy [ (1+R)tanas- Hlli]
X
or
U,
Y = psUy *[tana; -(1+2R)tanc + R El— sina, ] BT
1
. ;

by neglecting terms in R? as before.

The expressions derived above, give the total force exerted on the
control volume by each blade, there being an equal and opposite reaction
on the blades. The blade around which the inner control surface of

Figure 60 was drawn is considered in Sketch Bl below

X
XP //}‘
/
7 /l
/
/
A
ﬁ] / Y
Ny
6/ / Total reactions on
\\_’,/ blade surface
(P-R)t /'
Sketch Bl

Forces Acting on Cascade Blades
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The total force acting on this control surface is comprised of
two components; the profile drag (skin friction plus form drag), and
the force resulting from any pressure drop at the blowing slot exit.
This latter force will only occur when the slot flow is choked.

Consideration of Sketch Bl shows that

n

X X - (P -P.)t cosa.
( J) ]

1‘.!

and

=~
n

Y + (P - P.)t sina.
3 ]

where XP and YP are the x and y components of profile drag.

B.2. Coefficients of Lift and Drag

The coefficients of lift and drag are conventionally the lift and
drag forces (perpendicular and parallel to the mean velocity vector)
divided by the mean dynamic pressure and blade chord (%pUmzc). In the
case of blown blades, the "mean velocity'" does not have quite the same
significance, due to the addition of mass from the blade nozzles and
the resulting increased downstream velocity. The "mean velocity' is

here defined as

where tana = 4#(tana; + tanop) as usual.

Using this definition of the mean velocity, the coefficient of
1ift can be written:

1 !
CL = W {XPS.-antm + chosam}



~ TAQ =

AP*s sino, . cos’o
m m

C, = 2§-cosam(tana1 - tang) -

L %pcl, 2cos?q,

S 2 S 3 = e =
+ ZRC cos am[[l tan a2)51nam 2tanoy cosa, le 51n(am aj]}

(P -Pt

. 2
sin(a, -0 _Jcos O
ch1x2 (GJ m) m

and the coefficient of drag

o= ]EEﬁ;? {YP sina, - X, cosam}

AP*s cosaum

D = #pcU;2cos2q,

u.
_ RS 2 i -tan? S k!
2Rc cos am[Ztanag sina_ +(1-tan az]cosum le cos (aj um)]
(P - Pt n
chIx/ cos(aj - um)cos o

These expressions for 1ift and drag are identical with those given

(48)

by Horlock if the terms multiplied by "R" and the slot pressure drop

terms are neglected.

B.3, The Pressure Loss Term

With a conventional cascade, the term AP* equals APy, the loss
in total pressure across the cascade. When blowing is applied, the
term is complicated by the effect of the blowing air. If incompressible

flow is assumed everywhere, including the slot flow, then:
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Po 2
ot it S . . j P Uy
fprR WL = e £ R i e

where Lp is the total pressure energy loss of both the main flow and

the blowing slot flow. Rearranging gives:
L
g, Pep
Bais Py =doly? = U)o RPL E8o— < By ) —
m

where the total pressure loss has been expressed as an energy

loss per unit mass of the mainstream flow. Equation B.8. shows

that the term AP*, introduced in equation B.5., is given by:

2 pL
* L pU2° _ = e
AP R(P, + 5 ng)+ Lm where Lm =

m

Lm is a pressure loss term which absorbs the effects of both the
conventional pressure loss and the extra blowing air mixing losses.
It is not possible to resolve these two components of the pressure

loss in terms of overall cascade characteristics.

B.8.



B.4, Summary of Modifications to Cascade Characteristics

Parameter Usual expression |Modification necessary if blowing
employed
sz
AVR T Divide by (1 + R)
R
Total Pressure
Pressure
loss ;églr Add A
coefficient Pl
s
ZE{tanal-tanqz]czsam
sina_cos“o
& -APg m m .
2 c e
L &pulz P Coszam Add B + SJ.TI(O‘.J ()Lm)
cos o
Apy s m
CD 3pU12 ¢ cos?o, Add -D + Ccos(uj - am)
R(Po. - Po2)
A e -QU12
g 6
) 2 WL : ¥ [y 5] : y
B = ZREcos am[(l tan azJ51nam 2tancip cosa le 51n(am aj)]
(P - Pi)t :
C = ;EEIE;?T_ cos am
s o
= N> 2 2 2 - 5 i - =
D = 2R= cos am[(l tan az)tosam + 2tanay sino i cos(aj am)]
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C.1. Introduction

The theory on which this programme is based was outlined in Chapter 5.
This Appendix presents details of the computer programme written in
FORTRAN 1V, with sufficient information for a potential user to implement

calculations readily and with confidence.

Basically the programme progresses in a stepwise fashion, from
block to successive block, so that the sequence of operations is easily
followed. For this reason, the programme has been divided into Chapters,
each Chapter corresponding to a significant operation. Chapter 10 is
the longest and the only one in which a loop of significant size and

complexity is employed.

C.2. Preliminary Outline

The FORTRAN programme was constructed with maximum flexibility as
a prime objective. Two alternative data input sections are available:
1. The section may be specified by camber and half-thickness values
at various fractions of chord length. This is the form of
profile definition used by the NACA.
2. Alternatively, the section may be defined by providing surface
coordinates of an already cambered section. This method of input
is used, for example, when surface coordinates are generated by

conformal transformation.

All the necessary variable quantities are specified in the input
data, together with the stagger and pitch if a cascade is considered,
and up to twenty incidences/inlet angles. The positions of the upper

and lower separation points are defined,
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For each incidence/inlet angle, the corresponding pressure
coefficients are calculated and the resulting force coefficients, Cx
and C_, are determined by Simpson's integral method. If required,
the programme then calculates distances around the section of each
pivotal point from the forward stagnation position, in preparation for

a boundary layer calculation.

So that all geometrical details concerning a section can be input
together, the geometry of any tangential blowing arrangements are input
to this programme. These details concern the positioning and thickness
of the blowing slots and the position and curvature of the bluff
trailing edge. Up to ten blowing slots on the upper and lower surfaces

can be accommodated.

Figure 61 is an outline flowchart of the whole programme.
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C.3. Description of Programme

Chapter 1

All preliminary data is read in this Chapter. The precise order
and format of the required data is given in Figure 62 and the meaning
of all the terms in Section C4. The input data is also printed out in
Chapter 1 for checking. At the end of the Chapter, various quantities
are defined for use later in the programme. The more important

quantities are defined in Section C.4,

ChaEter 2

In this Chapter, the remainder of the input data is read, this
data comprising the detailed definition of the section shape. Depending
on the value of ICAMB, subroutine CAMPROF or CAMTHIK is called, the
first being used when coordinates of a ready cambered section are
supplied and the latter when a camber-thickness distribution is
specified. These subroutines are described later. On return to the
main programme, arrays XSURF and YSURF contain the 2N surface coordinates
of the unstaggered profile. Using arrays DXDFI and DYDFI for temporary

storage, the surface coordinates are smoothed using

(-, + 4 + 6f, + 4f - £,)

which is equivalent to fitting a least squares parabola through five
points and replacing the centre point by the coordinate of the parabola
at the centre, The surface points corresponding to subscripts -2, -1,
1, 2 are determined by a small subroutine 11234, briefly described later.

The smoothed surface coordinates are then written out,



- 147 -

Chapter 5

If a cascade is being considered, this Chapter staggers the profile

coordinates by an amount STAG (£):

x! Xxcosg - ysing

y' ycosE - xsing

If slots and trailing edge limits have been specified in the input data,
the x-coordinates of these are staggered. The y-coordinates do not
need to be adjusted, since the positions of these points in terms of

distance around the surface are later defined by interpolation in x.

The staggered surface coordinates are output.

Chapter 4
dy d*x 4°

W atea
Arrays containing aa » 36 ° 861-, 3$§ are constructed using:

" .
flamp (£, -8F , +8F - £), b=q

ChaEter 5

An array BOT is built, which contains conversion factors from

vortex and source densities to surface speeds, e.g.

Y
i __‘_EL___ . N dx 2 d)/ 2
Usurface.1 ~ BOT(i) where BOT(i) _./4%6. + (E$

An array NSOU is then constructed, where NSOU(i) contains the number of
the surface point on which source number (i) lies, see Figure 63.

Both of these arrays prove useful in later Chapters.



TR

Chapter 6

At the beginning of this Chapter, the calculation is directed to
one of two blocks, depending upon whether an isolated section or a
cascade is being considered. In the relevant block, the K matrix is
i ' i i .6 for K anc ]
constructed, using the terms defined in equations 5.6 for s and KSmn
The matrix is constructed in the manner depicted in equation 5.9, the

source terms occupying the last NS columns.

Chapter 7

Lower mean values are first substituted for the K matrix
ym, 2ZN-m

elements.

The two incident flow vectors, terms (:) and (:) in equation 5.15,
are added to the K matrix. Their inclusion in the matrix simplifies

the Gaussian reduction implemented in the next Chapter.

Chapter 8

In a very short loop, the left hand side of the K matrix, i.e.
the KY component, is reduced to an upper triangular form by Gaussian
reduction. Equations5.6 show that the Kymm terms are considerably
larger in modulus than the off-diagonal elements, so row interchange

is unnecessary.

Chapter 9
The matrix is solved for the right hand sides (:) = (:) and (:)

in equation 5.15. The back substitution is carried out in Subroutine
SOLVE, described later. On return to the main segment, the three

solution vectors are contained in GAMA(1-2N,i), i = 1,2,3,
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Chapter 10

This is the longest Chapter and the most complex, There is one
"DO" loop covering the whole Chapter, which is repeated for each
incidence. Within this Chapter there is an iterative loop, required
for convergence on a solution at a particular incidence. The Chapter

has been sub-divided into the sections below.

10/A

The incidence/inlet angle ALPH1 is set and preliminary values
are assigned to the outlet angle and the upstream and downstream flow
speeds. All these quantities remain unchanged if an isolated section

is considered.

10/B

This is the start of the iterative lopp. The first approximation
to all the source strengths is zero, so values are not assigned initially
to array SOU. The right hand side (:) of equation 5.15 is constructed

using the latest values contained in SOU.

10/C

Subroutine SOLVE is called to obtain a solution vector GAMA(i,4)

for the right hand side due to the sources, constructed in 10/B.

10/D
Solutions (:), (:) and (:) in equation 5.15 are summed to give a

particular solution to X contained in GAMA(i,5).
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10/E
To impose the condition implied by equation 5.14, solutions
contained in GAMA(i,3), GAMA(i,5) and SOU(i) need to be converted into

surface speeds. This is effected by calling Subroutine SPEED.

10/F
Equation 5.14 is applied to yield a value for C, the factor by
which the circulatory solution is to be multiplied before adding to

the existing sum of solutions, GAMA(i,5). This addition is performed.

At this point, a test is applied to determine whether sufficient
convergence on a solution has been achieved. The test is simply one
of the degree of uniformity of pressure in the separated region. If
all points within the separated region satisfy the limit imposed, the

trigger quantity IENDIT is set to unity.

If convergence has not been attained, new source strengths are

calculated using equations 5.11 and 5.12.

10/1
The values in SQU(i), GAMA(i,3) and GAMA(i,5) at this point still
represent surface speeds. In this section, subroutine SPEED is called

again to re-convert these quantities to source and vortex densities.
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10/J

This section is only traversed if a cascade is being considered.
With every new set of surface vortex and source strengths, the incident
flow angle, 6, necessary to yield the required inlet angle, a,, has to
be re-calculated and thus forms part of the iterative process. The

value of 8 (THETA) is calculated according to equation 5.18 and the

resultant upstream speed by 5.19.

10/K
This is an output section, traversed on every iterative cycle

and it writes out the latest approximations to the source strength.

If IENDIT has not been set to unity, representing convergence,
the programme jumps back to section 10/B.  An upper limit is set on
the allowable number of iterations,. If this limit is exceeded due

to some error, the programme terminates with an appropriate comment.

10/L
This section is encountered once convergence has been achieved,
but is bypassed if an isolated section is being considered.  The

outlet angle, a, (ALPH2) and the downstream speed are calculated.

10/M

The pressure coefficients for the converged vortex solution are
calculated with the source components added in the separated region.
The force coefficients Cx and Cy are then obtained by integrating the

pressure components using Simpson's method.
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The pressure and force components are based on the upstream flow
speed. It would be a very simple matter to arrange for, say, the

mean flow speed to be used as the reference value.

10/N
The flow angles and pressure and force coefficients for the
particular inlet angle/incidence are written out. If the trigger

value NSTOR is set to unity, Subroutine DISTANCE is called to

calculate distances around the section surface.

At the end of this segment, control returns to the start of

Chapter 10 to loop for the next inlet angle/incidence.

Chapter 11

After solving for the last inlet angle/incidence, the programme

is terminated.
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subroutine CAMTHICK

This Subroutine is called in Chapter 2 if the profile is to be
built from a given camber and thickness distribution, The Subroutine

has been divided into segments to aid comprehension.

Since the thickness of a section is added normal to the camber
line, it is necessary to calculate gradients of and distances along
the camber line. To avoid difficulties in gradient calculations at
the ends of the camber line, extra points are added at each end, to

give an odd function about x/L=0 and x/L=1.0.

CT/A

The data is read according to the format detailed in Figure 62.
The values read into arrays CHORD and YCAMB start at element 5, to
allow inclusion of the "dummy" points for gradient calculations.
The four dummy values at each end of arrays CHORD and YCAMB are then
added and the input data is written out.

The data is read starting at the trailing edge point.

CT/B
Gradients of the camber-line at each of the input data points
dyc dyC dxc
are calculated by taking the quotient T a5 / == Second
derivatives are also found, D2YCDX, At the end of this segment, all

arrays to be used in future calculations are arranged such that the
quantity contained in each element pertains to the corresponding

point in the input data,



CT/C

The distance along the camber line, 1, of each input point is
calculated and each distance is then divided by the total camber line

length, L. Distances are measured from the leading edge.

CT/D

Values of ¢ at the input points are calculated, using

1'/L = 3(1 + cos¢)
where
' = 2(1.0+(1.0-k)&(1.0-2))
This latter expression, given by Wilkinson, allows a modification of the
pivotal point spacing near the trailing edge. In general, the value
of k is set to unity which leaves the point spacing unchanged.

Wilkinson suggested that there is a minimum allowable value, k=0.03N.

CT/E

Arrays XFI, YCFI, YTFI, and DYDXFI are constructed for equal
increments of ¢ ; ¢ = %E-, i=20,1,2,....N. For each ¢-value, Sub-
routine LAGINT is called to interpolate in terms of ¢. The first
element of each of the arrays corresponds to the trailing edge point,

so that a total of N+l points are defined.

CT/F
It remains to add the calculated half-thicknesses, YTFI, to the
camber line to yield the final 2N surface coordinates XSURF, YSURF.

This final numbering system corresponds to that shown in Figure 33.

Control returns to the main programme segment.
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Subroutine CAMPROF

This Subroutine is called in Chapter 2 if the profile is input

in a cambered form, that is, as a set of actual surface points.

New surface points are obtained by interpolation, and care is
taken to arrange that points m and 2N-m should lie approximately
opposite each other on the normal to the mean line. This condition
improves the accuracy of the lower mean values calculated in the main

programme segment.

CP/A

The data is read according to the format detailed in Figure 62.
The data consists of pairs of x,y values for the upper and lower
surfaces, starting at the trailing edge point. Although the first
and last pairs of coordinates should be (1,0) and (0,0) respectively,
for both the upper and lower surfaces, it is permissible for these
points to be slightly inexact. This flexibility has been allowed
since profiles obtained by conformal transformation can exhibit small
numerical inaccuracies.

The input data is written out.

CP/B

Equal increments of ¢, %Ey i=1,2,3...N-1 are taken and the
corresponding x-coordinates calculated from x = (1 + cos¢). Inter-
polation for each y-coordinate is performed by a four point Lagrange
interpolation, effected in Subroutine LAGINT. This procedure is

carried out first for the upper surface and then the lower surface to

yield a set of y-coordinates in array YSURF. The x-coordinates are
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stored in XFI but while point 1, at ¢ = corresponds to the first

-
N!
element in YSURF, it corresponds to the third element in XFI.  This
shift is employed to facilitate mean-line gradient calculations. XFI

is treated as an odd function about ¢ = 0 and ¢ = T.

cp/C

Gradients of the mean-line are calculated. Array MEAN is built
to correspond with array XFI, with an extra point at the leading and
trailing edges. Gradients DYDXFI are calculated and the elements in

this array correspond to the surface point numbering system, Figure 33.

CP/D

The x-coordinates of the upper and lower surface points are then
moved by an amount DX to lie opposite each other on the normal to the
mean-line, see Sketch Cl below.

Upper Surface
0ld Poinf
=

New Point £~ ////Meun Line

P

Y Lower Surface

Y 4

-\(\
>\ °
DX = AysinPcosp

Sketch C1

Movement of Surface Points in Section CP/D



The corrected x-values, contained in XSURF, are used to re-
interpolate for y-coordinates, YSURF, using the original input data.
Thus, any inaccuracies introduced in the above sections do not affect
the accuracy of the final profile,

Control is returned to the main programme segment.

Subroutine DISTANCE

This Subroutine calculates distances around the section surface
of each pivotal point in order to create a data file suitable for
access by a boundary-layer programme. The Subroutine is called from

Chapter 10/N if the trigger value NSTOR is set to unity.

Distances are calculated around the upper and lower section
surfaces, starting from points M-1 and M+l respectively, where M is
the point nearest to the position of forward stagnation. If blowing
slots and a curved trailing edge have been specified in the input
data, the positions of these are also recorded in terms of surface

distances.

The "upper'" and "lower" surfaces are defined here as shown in
Figure 63. The geometrical upper and lower surfaces, of course,

are those separated by the camber line.
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The following assumptions are made:

Is Any slot input as lying on the geometrical lower surface,
but which lies on the upper surface as defined above, is
assumed to blow in a clockwise direction.

2. The start of the trailing edge curvature does not lie
between points 1 and 2N,

3. The upper separation point does not lie beyond the start

of the curved trailing edge on the lower surface.

DS/A
The point which lies nearest to the front stagnation position,

M is found.

DS/B

This section is comprised of one large DO loop. The first
half of the loop considers the upper surface, starting at point M-1.
The distance DLU between adjacent surface points is calculated. A
check is made to see whether the start of a curved trailing edge or
a blowing slot has been stipulated to lie between the surface points
being considered. If so, a linear interpolation in x is made to
define their position in terms of surface distance. A similar

procedure is carried out for the lower surface in the second half of

the loop.

To allow accurate pressure gradient calculations in the boundary
layer programme, lower surface distances are calculated as far as the
geometrical trailing edge, point 2N, or to the upper separation point
if this lies below point 2N, The calculations of upper surface distan-

ces is extended as far as the lower separation point.
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DS/C
If the upper separation point lies beyond the trailing edge, in a
clockwise sense as in Figure 63, then some of the geometrical lower
surface points lie on what is, for the present purposes, the upper
surfaces. This section of the Subroutine considers points lying in
this region. Whatever the location of the upper separation point,
this section is necessary to allow the calculation of upper surface
distances right around to the lower separation point. Any slots
that are encountered before the upper separation point, having been
defined originally as lying on the lower surface, are included on

the new "upper surface'.

DS/D

Surface gradients and distances are written out. Data necessary
for a boundary layer calculation are then stored in a data file. The
format of these output data is shown in Figure 64. Control is

returned to the main programme segment.

Subroutine SOLVE

This Subroutine is called in Chapters 9 and 10 to perform back
substitution in matrix K. When called to solve the right hand sides
numbered(:)(:>and(:) in equation 5,15, the right hand side, array RHS,
is transferred from the appropriate column in ARAY. For the source
solution, right hand side 4 in equation 5.15, the RIS array is built

in Chapter 10 and transferred to the Subroutine.
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Subroutine SPEED

This Subroutine converts vortex and source densities into tangential
and normal surface speeds, or vice-versa, according to the value of
subscript NTRIG. The conversion factors are contained in array BOT,

built in Chapter S.

Subroutine LAGINT

This is an interpolation Subroutine employing the standard
Lagrange method, for four points. The Subroutine is called by Sub-
routine CAMTHIK and CAMPROF for interpolation in ¢ or in x respectively.

Hence the use of FIORX for the array name in LAGINT.

Subroutine 11234

This very short Subroutine called to determine the points to be
used for the calculation of surface gradients in Chapter 4. The
routine is only necessary because of the discontinuity in numbering

at the trailing edge.
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C.4. Principal Variables and Arrays Used in the Programme

DEDTE
DSTTE

ICAMB

ISEC

N1

NINC
NS
NSEPL
NSEPU
NSL
NSTOR
NSU
NXL
NXU

RK

STAG

XEDTE
YEDTE

XSTTE
YSTTE

Distance, along lower surface, to start of trailing edge curvature.
Distance, along upper surface, to start of trailing edge curvature.
1 if a cambered section is input,

0 if a camber-thickness distribution is input.

1 for an isolated section, 2 for a cascade.

Surface point lying nearest to leading edge stagnation.

Half the number of pivotal points on the section surface.

Number of chord positions at which data is input in the case

of camber-thickness input, OR,

Number of upper and lower surface points given, in the case

of a ready-cambered section input.

Number of incidences to be solved for.

Number of source elements in separated region.

Lower separation point in terms of final surface point numbering.
Upper separation point in terms of final surface point numbering.
Number of lower surface slots.

1 is data for boundary layer calculation is to be stored, O if not.
Number of upper surface slots,

Number of points on lower surface,

Number of points on upper surface.

Factor to control point spacing at trailing edge. RK<1.0 for
closer spacing.

Cascade stagger (Radians),

Cascade pitch (Fraction of chord).
X-Y coordinates of end of trailing edge curvature.

X-Y coordinates of start of trailing edge curvature.
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Arrays

CHORD  Chord fractions at data input points for camber-thickness data input.
CPL Lower surface pressure coefficients.

CPU Upper surface pressure coefficients.

DSL Distance of lower surface alots along lower surface.

DSU Distance of upper surface slots along upper surface.

GAMA Two-dimensional array containing vortex density solutions.

KARAY Two-dimensional coefficient matrix.

RINC Incidencesfor which the pressure distributions are to be found
(Radians).

Sou Densities of sources in separated region.

TSL Thickness of lower surface slots.

TSU Thickness of upper surface slots.

XL Distances of lower surface points along lower surface.

XU Distances of upper surface points along upper surface.

XLS ; : : !

YLS Lower surface input coordinate for cambered section data input.

XUS : ] . X

YUS Upper surface input coordinates for cambered section data input.

XSL A

YSL X-Y coordinates of lower surface slots.

Xsu :

YSU X-Y coordinates of upper surface slots.

YCAMB  Camber values at data input points for camber-thickness data input.
YTHICK Half-thickness values at data input points for camber-

thickness data input.



MASTER PFLO2
DIMENSION RINC(20),YSUC10),YSL(10)

COMMON XSURp(64),YSURFC64),PT1aN
COMMON/A/NT2M1 1 ARAY (64,900 JNTOTMIsNT2,GAMAC64,8),

" NY2M2 /NSEPU,NSEPL,JP«BOTP BOT(64) sRHS (4D
COMMON/a/NSOUL30) SOU(30)
COMMON/C/CP(64) ,OXDF1(64) ¢DYDFI(E4),D2XADFIC64Y,D2YDFIC44),

i XSuC10),XSLC10),TSLC10).TSUCID) ¢

2 REALN¢NM1XSTTE,XEDTE,TERAD,NSLINSU

PROGmAMME YO SOLVE THE POTENTIAL FLOW
ABOUTY AN ARBITRARY TWO=DIMENSIONAL BODY
EITHER ISOLATED
OR IN CASCADE

THIS PROGRAMME ALLOUS CONSIDERATION OF THE WAKE
CRRATED BY A BLUFF TRAILING EDGE
BY THE USE OF SOURCE DISTRIBUTJIONS

ERR AR F YAk N Rtk Rtk N kA nnnwe e WCHAPTER 1
INPUT OF BASIC DATA AND CONTROLS

DAV OADDOOOD DO DO

READ(1,100)N,RK,NINC,ISEC,NSEPY,NSEPL
100 FORHMAT(I3,F4,00413)
READCT 4105) (RINCCI), 1=, ,NINC)
103 FORMAT(6F12.0)
I1F(ISEC.EQ,4)60T0120
READC(1:110)8TAG, Y
110 FORMAT(2F12.0)
WRITEC2,915)STAG,T/RK
115 FORMAT(VQ' ' CASCADE'/' ',VSTAGGER H',F12,841X,1RAp1/
1 ' 'I'P:TCH .'1‘1208" "'K -'1'614’
GOY0130
1€0 WRITE(2,125)RK
€% FORMAT(10?,vISOLATED SECTION'/! 1,7k =1 ,F6,4)
130 READ(1,135)N1,1CAMB,NSU,NSL,NSTOR

Sut3s1] eunrexsoxd §°D
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135 BORMAT(413)
WRITEC2,150INSEPUINSEPL
150 FORMAT(' ",'SEPARATED REGION BETWEEN PAINTS',14,%,4',14)
TF(NSU,gQ.03G0T0475
READ(19180) ¢XSUCI)sYSUCI),  TSUCY), I39,N§Y)
DO170139,NSU
WRITE(2,188)XsuU(I),YSU(CI),TSUC(D)
170 CONTINUE
175 JF(NSL,EQ.03GOT0184
READC17180) ¢XSLCI)aYSLCI) s TSLCY) T q,NSL)
180 pORMAT(358,0)
0182141 ,NSL
WRITE(2,188)XSL(I).YSL(I),TSLCT)
182 CONTINUE
186 READ(1,1B6)TERAD.XSTTE,YSTTE.XEDTE)YEDTE
186 FORMAT(SFE,0)
188 FORMATCY 1,18L07 AT X=',F8,6,2X.'Y8"',F8,6,4X,"THICKNESS=",FR.6)
WRITE(Z,1P0YTYERAD XSTTE,YSTTE.XEDTE,YEDYE
190 FORMAT(! ', YRAILING EDGE RADIUS s!,F3, 4/
# t Y, 18TARTING AY X &', F8,4s3X,'Y =1,F8.4/
' VLIiENDING AT X s',F8. 43X 'Yu! F8,4/
. ' ',10N UNSTAGGERED SECTION')
REALN=FLOAT(N)
NT2g2#N
NMi=aN=]
NTZM2aNT2=2
RNT2=FLOAT(NT2)
PI=3.141592454
PO3IN=P]/(3,0¢REALN)
ONPI =REALN/PI.
NT2Mi1ENT2=1
NSENSEPU=NSEPL™Y
IFCNSEPU.LT.NINSaNSEPU®NT2M1 =NSEPL
NTOT=NTZeNS
NTOTM13NTOTa1
NTOTPI=NTOTaY
NZMaNTZuNSERU

L 2
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NMPY1=NTOT=NSEPU+1
NMaNT2=NSEPL
NSUM1=NSEPUa1
NSLP1=NSEPLe1

¢

Cotddunbhpuhmpndhpa kRt rnrranrdowwrnannexewCHAPTER 2

.C BUILD Up PRAFILE AND SHOOTH SURFACE CNORDINATES
¢

€

IF(ICAilB EQ, 1)CALL CAMPROF(REALN,NT,RK, NT2)
IFCICAYB.EQ.0)CALL CAMTHIK(REALN.NT,RK,NT2)
C==<USE DXpFl AND DYDF! AS TEMPORARY STORAGE
DO2001®Y NT2
DXDFI(1)=%SURE(L)
DYDFI(¢1)=YSURF(I)
200 CONTINUE
DO2051=q,NT2
CALL I1234(NT2,1+11412.13,14)
XSURF(1)a¢=DXDFIC11044,0enXDF1C12)+6,0%DXDFI(1)

1 4. 0%DXDEICI3)=DXDFICI4))Y /12,0
YSURF(1)S(=DYpFIC11)%4, 0wnyDF1(12)+5,0%DYDFICT)
1 *4,0ehYDFICIS)~DYDFIC14)) /12,0

205 CONTIHUE
WRITE(Z2,210)

210 FORMATC'o', "UNSTAGGERED SURFACE COODRDINATES'//25X,"X'",15%,'Y"'/)
DO215[=9,NT2

YRITE(2,220)1,xSURF(1),YSURF(I)

215 CONTINUE

220 FORMAT(I3,17X.F0.6,8X4F9,0)

E===ADJUSTMENT OF SLOT AT TRAILING EDGE (1p ANY)
IF(NSV,EQ.0YG0T0300
IF(XSUCNSU) _NE.1.0)G60TV300
XSU(NSU)=XSURFINT2)
YSU(NSUY=aYSHRE(NT2)

€

CoropuunmppubpuvdpnntantnankrkasvnanranterdCAdAPTER 3

¢ ARPLY QTAGGER

gyt =



€===ROTATE PROFILp ABSOUY LEADING EDGE FOR STAGGER
€
4
300 IF((ISEC,EQ_1),0R,(S7AG,EQ 0 0))G070400
CSaCOS(STAG)
SNaSIN(STAG)
D030S51a1,NT?
X1aXSURFC1)#Cs=YSURF(I)*SH
Y1aYSURF(y) *»CSeXSURF(IIwSN
XSURF(1)=yx1
YSURF(1)mv1
305 CONTINWE
C===STAGGER SLOT ¥~=COORDS AND TRA!LING EDGE LIMITS
DO310I=39,NSU
ASUCI)=XS(1)weS=YSU(I)wsH
310 CONTIHUE
DO315I=19,NS ¢
XSLCI)aXSLC1)weSnYSLCI)wsSN
315 CONTINUE
XSTTESXSTTE«CS=YSTTE*SN
XEDTE=XEDTE«CS=YEDTE®*SH
C===PRINTQUT STAGGERED SURFACE COORDINATES
340 WRITE(2,325)
325 FORMAT('g','STAGGERED SURFACE CONORDINATES'//25x%,'X',45%,'YV/)
DO3301=39,NT2
WRITE(2,220)! ,XSURF(1) ,YSURF (1)
330 CONTINUE

€

Crvrduntmpprbpanognsvauraarndnevhnnrvsr*onCHAPTER 4
¢ DXODFI,OYDFl/n2XDF12,D2YDFI2
¢
¢

400 DO4OSI=q,NT?
CALL 1123#("‘7201!11!‘2:13'1{0)
DXOFICI)a¢pNPI/12.0)%(XSURF(14)=8, N *XSURF(I2)+8,0%XSURF(I)
1 «XSHRE(14))
DYDFIC12=¢(DNPI/12.0)7(YSURF(11)=3,*YSURF(I2)+8,0*YSURF(I3)
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1 =YSUREC(I4))
409 CONTINUE
004101m1,NT>
CALL I1234(NT2,1411412,13,14)
D2XDFICI)=(DNP1/12.0) #(DXNFI (1928, 0#DXDFI(12)%8 NeDXnEI(13)

1 i =DXDFI(14))
D2YDFICI)=(DNPI/912.0)%(DYDFIC14)9R,0%DYDFIC12)+8,nuDYnel(13)
1 =DYDE1C14))

410 CONTINYE

WhE B Rk AW A AW E R R T AR kv bk kb aanr kv W CHAPTER §
CONVERSJON FACTORS RELATING SOURCE AND VORTEX
DENSITIES TO SURFACE SPEEDS
AND SURFACE POINT IDENTIFICATION OF SOURCES
BUILD ARRAY FOR CONVERSION fpROM VORTEX DENSITIES TO SPEgDS

OO N0

DO500I=9,NT2
BOT(l)aSQRT(DXDFICI)*DXDFI(I)+DYDFICI)*DYDFI (1))
500 CONTINUE

C RECORD pPOSITIONS OF SOURCES IN NSOU

Co**waNOTE ORDERING Of SDURCE ELEMENTS#*¥uw

Cew ACY AROQUND SURFACE: STARTING -

Car Ar POINT 1 e
JE0

DO5101=1,NT?
IF¢l LE.NSEPL.AND,1.GE.NSEPU)YGOTI51D
IFCl GE.NSEPL.AND 1,GE . NSEPU,ANDNSEPU,GT N)GOTOS51)
IF¢l,LE.NSEPL AND 1, LE NSEPU,AND NSEBU,GY NYGOTO51p

NENES
Nsad(yyr=]
310 CONTINUE
€
Cormrnatpppn e at by vV r e A Nk arhknknee* CHAPTER &
¢ MATRIX ELEMENTS
€

e
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GO0y0(600,625),IS5EC

C===ISOLATED SECTION

600

60>

610

615
620

DO620I=1,NT?
JianNT2
PO615Jm14NT2
IFCILEQ_JIGNTO6GS
R1FXSURE(I)=XSURE(J)
REEYSURE (1) =YSURE(J)
1F{J.EQ_NT2=1)GOTUG10
ARAY(1yJ)=s(RY*DYDFI(I)=R2*DXDFI(1))/(R1#Rq14R2*RD)
GOT0610
RIADXDFI (1) *D2YDFI(I)=DYDFI ¢1)*Dp2XDFI(l)
ARAYCT 4 u)=C0.S*R3/CDXDFICI)wDXDFTICI)*DYDFICI)*DYpFI (1))
=REALN
IFCJ.NE. NSOU(JI~NT2+1))GOT0AYS
J13J1+1
IF(1.EQ_J)GOTO0615
ARAY (1,312 (R2*DYDFI(I)4R1wDXDPFI(I))/(R1%RY4R2%R2)
CONTINUE
CONTINUE
GOTO 450

C===INFINITE CASCADE

623

PDT=apl/Y
PONTaP]/(REALNWT)
PDZNT=SPDNT#p,5
PY2DTY=PpT*2 0
P06451=4,NT)
J1aNT2
D640 =T, T2
R13(XSUpFCI)=XSURFCJ))#»pT2DT
R2A(YSUaF(])=YSURF(J)I)«pT2DT
1FCJ.EQ_NT2=1)GOTU63S
IFCI.EQ_J)GOT0630
RIIEXP(RT)
R491.0/23
R580,.5%¢R3"R4)
R680,59¢R3*a4)

= 891 -



630

635

640
6645
65¢

¢

R7HpDT*¢RS*DYDFI(I)~OXDETIC(I)*SINCR2))
ARAY(1,0)=R?7/{R6=COS(R2))
GUT0435
R8E(0.5*¢DXOFI(l)y«D2YDFI¢I1)=DYDFI¢l)=02XNDF1¢1))
ARAY(T 0)=R8/COXOFICI) wDXDFICI)«nYDFICI)*pYDFY (1)) =pEALN
TFCI.NE _NSOU(J1=NT2+4))GOT0ALD
J13J9+1
1F(1.EQ. J)GOT0640
$130.5+*r1
82490, ,5%p2
1FCABS(gIN(S2)) . LT.9.0E~30)82=1,0F=30
§3=gxp(g1)
s4m1 0/g3
§590,5e(§3=54)
IF{ABS(g5),LY.1.0E=30)85=1 0E=30
SAHQ) _Sw¢s3e54)
§7336/85%
§8ug7ws7
$95€0S(g2)/sIN(82)
810=89%g9
§11=pDYa(=59+(1,0~58)#DYDp(1)4s7+(1,0¢510)+DXDp1(1))
ARAY(1,11)=25811/¢S6+510)

CONTINUE

CONTINUE
CONTINUE

C***itt*i**ﬁi*ttt*t*itpn**ttwt**t**t**i*ncHAPTER 7

Cr==LOWER MEAN VALUES

¢

700

DO710Ia1.NT2

REP=0,0

DOPUQI1sI NT2
1PC(1.EQ.NT2),AHD, (11, EQ.NT2))GpnTO700
1FCI9.EQ.NT2=1)G0OTU?00
RERSREPLARAY(11.,1)

CONTINUE

1F¢l.BQ.N72Y60Y0705

= a9l =



IFCI,BEQ,NY2)GOTO0705
ARAY(NTZ2-1,1)2nREP
GOTO 710
705 ARAY(NYZ2)NT2)=a=REpP
710 CONTINUE
¢ BUILD U VECTORS INTO ARRAY
DO7951a1,NT2
ARAYC1,NTAOT*1)= =RNT2*DXDFI1C(1)
ARAYCI,NTOTPi#1)= =RNT2#DYDFI(I)
c715 CONTINUE
Covtvndddunbhbanpopnrtpatwaknnsataankana*dCHAPTER 8
Ce==UPPER TRIANGULARISE LHS OF MATRIX
¢ ROW INTERCHANGE UNNECESSARY SINCE LEADING DIAGONAL
: ALWAYS LARGE

DOB10I=9,NT2NY
IP13]let
POBOSImIPY,NT2
RMULTsARAY(), 1) 7ARAY(I, 1)
DO08)0KI=sl ,NTOTPI«2
ARAY (1 s KT1)=ARAYCJ /K1) mARAY (]I ;K1) oRMULTY
800 CONYINUEg
803 CONTINUE
810 CONTINUE
€
Crovcavtonpddpatdanstanttuaddwadbwrbnan e CHAPTER ©
C=~=SOLVE FOR TWO INCIDENT FLOW RWS'S AND HOMOGENEOQUS §OLN
¢
D090014=1.3
CALL sOoLVe(l4)
9200 CONTINUE
€
Corvevvnntipaunaandunetpnntanndnedunnrnne*vCHAPTER 10
€
DAMP=0,7?
WRITE(2.9503DAMP

UL



950 FORHMATSt ', 1DAMPING FACTOR =1,F6.4)
c .
¢
c--------..-qq_,,,,...---q_.-u_-u---u-------!‘q1 0/A
C===7HIS CHAPYER LOOPED FOR EACH INCIDENCE
£
DUT0881z2=1,NINC

¢
ALPHYI=RINC(I2)
THETASALPHI
ALPH2=ALPHI
VELUS=1.0
VELDS=1.0

¢

1T=Q
¢
c

(rom e rnnnsr qun e lan e e cmnasw==] (/B
1000 ITsIT#1
¢ BUILD RHS pUE TO SOURCES
C===LET FIRST APPROX TO SOURCES BE 2ERO
DO 1010181 ,nT2
RHS(1)=0,0
DUTYOSJIENTY2+1,NTOT
RHS(1)=pHS(1)~ARAY(],J)»sOUCJ-YT2)

1005 CONTINUE
1010 CONTINUE
€
c---"'-"'"'-l"""---9-------'t--"'"-—“--—-----q1 OIC
¢
¢ SOLVE FOR THIS RHS
CALL SOLVE (&)
SNTAsSINC(THETA)
CSTA=COS(THETA)
¢

c-""_'--.--—-'!H--Hﬂ---q----—-liﬂwuﬂ_--—-----!1 GID

c

= Jgy ~



¢ SUM SOLUYIONS 1,2 AND 4
DOY0151=1,N¥2
GAMACI+5)aGAMACTI s 1) YCSTASGAMACT +2) #SNTA®GAMACT 1 4)
1015 CONTINUE

¢

c-------u--ﬂ---u-q-—----ﬂu-ﬂ-------H---“11OIE

€

¢ CONVERY SOLUYIONS 3 AND 5 AND SOyURCES INTO SPEEDS
CALL SPEED(1)

¢

:-"'—-'--v!1-------'—--'--”1--9“'-'--'"‘10’:

4

Ce==FIND CIRCULATION YO BE ADDED
C=={GAMA(NSEPLIS)*GAMACNSEPU,5))Y/(GAMA(NSEPU,3)4GAMA(NSEPL,3))
001020]=a14N7Y2

GAMAC1,5)aGAMACL;5)9C*GAMACT,3)

1040 CONTINUE

€
c' ------ -'------'n.'----ﬂ--"‘--'-ﬂnﬂ---!ﬂ10,5
¢
C===TEST FOR CONVRRGENCE
[ENDITSO
PO10251=9.Ng
IFCABSCGAMAINSOUCT) ¢5) w#2480U(1) %w2=GAMACNSERPU,S5)wx2)
. .G7,0,001)60701030
1045 CONTINUE
IENDIT=1
GOTO1040
€
R L L L T Tt TPy P SPrmrS et e mesass=s] ]/ H
¢ NEW APPRROX Tpn souncs STRENGTHS

1030 DPO10351a1,NS
DIF=GAHA(NSEPU.5)*t2~GAHA<NSOU(I).sittd
JFCDIF.LY.0.0)DIF=0.9
SQUCI)=DAnP=SQUCTI)+(1,0aDAMP)«SQART (D] E)

10355 CONTINUE

€

ELl



c-'91-!91--gn--ns---h--~w----n-a---------1OII
C~~=RECONVERT SOURCES AND GAMAS 3,5 INTO VORTEX DENSITTIES
1040 CALL SPEEDC(2)
C~=~CALCULATE NEW INLET ANGLE
ITF(1SEC.EQ,1)60701050
JB
SSUM=0,0
GSUM=0,0
PO104SI=9,NT2
GSUM=GSUMaGAMA (L, S)
IFCL.NE.NgOUC+1))GOTO1045
NEREL
SSUM®ssUMaSOU(CY)
1045 CONTINUE
VGAMUS=PD2NT«GSUM
USOQUUe=pp2NY*SSUM
TNALY=TANCALPHY)
TNALYS=aTNALq4»TNALY
UTTMVEYGAHU=TNAL1*USOUU
TERM=1,0~UTyMVeyTTHY+THALT S
IF(TERM,GE,0.0)G0TQ1046
THETASTHETA=PI/10.0
[FCTHETA.GY.P1/2.0)G0OT0O10%0
SNTHESINC(THETA)
GOT01049
10646 TERM=TNALIwgQRY(TERN)
SNTH1=(aUTTMVeTERM) /(1. 0+TNALTS)
SNTH2=(mUTTHVeTERM) /(1 ,0+TNALTS)
RESIDISTNALYI*SQRT(T.0~SNTHY «SNTH]1)=SNTHI=UTTMV
RESIDZHTNAL1#SQRT(T,0=SNTH24SNTH2) =SNTH2=UTTMY
IF(ABS(RESINY),GT ,ABSC(RESID2))GNT01047
RESID=RESID1
SNTH=DAMP*SIN(THETA)+(1.0=DAMPY=SNTH1
GOTD1049
1047 RESIp=RESID2
SNTHaDAMP*SINCTHETA) #(1.0-DAMP) #SNT 2
1049 THETASASIN(ENTH)

sl =



¢

CSTHESQRT(Y _0=SNTH*SNTH)
VELUSESQRT((SNTHeVGAMU) w2+ (CSTHeUSQUU) #*2)

c.'--.'-!'-ql---.ﬂu---g---ﬂ--.-----ﬂ-“ﬂ--ﬂ-¢IFQ1 0,‘

¢

1050 WRITE(2,1051)!IT

¢

1059

1055
1060

1062

1063

1064
1066

FORMAT ¢!

1,0 ITERATIONY ,15,5X,1POIANTY 410X, 1SOURCE STRENGTHS!)

001055 a14N8
WRITEC2+s1060)NSOUCI)SQUCT)

CONYINUE
FORMAT (1

1,20X,13,13X4F10,6)

THETAD=THETA**80.0/P1!
WRITE(2,1062)THETAD ,VGANU ,USOUU

FORMAT (1
'

", INCIDENT FLOy ANGLE TYHETA =',F8,4/
'J'VGAHU w!,F8,4,3X,'UsnUY =',F8,4)

WRITE(2,1063)¢C

FORMAT (1

1, CIRCULATION CUNSTANT C =21,F3,4)

1FCIT.GT.305G0T01064
1FC(IENDIT.E0,0)60T04000

60701068

WRITE(2,1066)

FORMAT(
6O0TL1090

1,1MORE THAN THIRTY ITERATIONS ATTEMPTFD')

c-------—-----------u_---------ﬂ---n10/L

¢
¢

¢

QUTLEY ANGLE

1068 [F(I1SEC.EQ,1)60701072
INAL22(SNTHaVGAMU) / (CSTH=USNUU)
ALPH2=ATANCTNAL2)
VELDS=SQRT((SNTH=VGAMU) 2+ (CSTH=USQUU)**2)
WRITEC2,1070n)

10740

FQRMAT ¢!

' ,"¢OFEFFICIENTS BASED ON 1.8, VELOCTTY")

c---- ------ -q-.----—g_--u---ﬂn-—---1GfM

¢

C===SOLVE FOR cP!g AND FJRCES

~ESET =



1072 J=0
PO10761=1,NT2
GAMA(1,5)aGAMA¢1,5)/VELUS
CPFACTYaGAMAC],S)*GANAC(T,S)
IF(NS.EQ,n)GOT01074
JFCI NE.NgOUCJ+1))GOTD1074
NERER
SoUCJI=SOouUCy) /VELUS
CPFACT=CPFACT&SOU(J)*S0U(Y)
1074 CPFACT=CPEACT/(BOT(I)*BOT(1))
CPel)=q,0-~CPFACT
1076 CONTINUE
$1m0_0Q
$é=0,0
§3=0,0
§6=9,0
D01Q781a24Nv2,2
S1=S1«cP 1) «DXDFI(I)
$2=852+CP(1=~1)«DXDFI(I=1)
$3=53aCP(1)wDYDFI(I)
S4=S44CP(1=1)xDYDFI1{l=1)
1078 CONTINUE
CXampDINe(2,0¢5344,0%54)
: CY® pDJINe(2,0%S5144,0%52)
s"---"'""-""'"--"'---""'---"'--"""-"---w--1 0/
C-==WRITE CPIS, FORCES, ANGLES
¢
ALPHID=ALPHY+180,0/P1
ALPH2D=ALPH2+1380.0/P1
WRITE(2,4080)ALPHID,ALPH2D,VELUS.VELDS,CX,CY
1080 FORMATC'O!,'ALPHAT ="', F8.3,1X,"DEGY/"' "+ "ALPHA? =',68,.3,1X,"'DEG'/
* ' 1,V PSTREAH SPEED =',F9 4,5%,'DOWNSTREAM SPEED =!,F0 4/
B V¥ B,0CX FVuF8_ 47" V1,1CY &), 88.4/7)
WRITE(Z,9082)
1082 FURMAT(! ',90X,"POINT! 15X.'CP',16X,"'S(=1=CP)1 /)

=Gl =



§$=21,0=-CP(1)
WRITE(2,1086)1.CP(1),5
1084 CONTINUE
1086 FQRMAT(! ',8Xs15,2C13X,F8.4))
IF(NSTOR.EQ_1)YCALL DISTANCE
1088 EONTINUE
£
1090 STQpP
END
4
¢
4
SUBROUTINE SPEED(NTRIG)
COMMON/A/NTIM1 1 ARAY (646490) JNTOTMT +NT2:GAMA(64.5),
* NY2M2/NSEPUNSEPL/JPsBOTP BAOT(64) IRKHS(44)
COMMON/B/NSAUL30) «SOUC30)
JEQ
p0101=1,NT2
FACT=B0OT (1)
IF¢(HTRIG,nQ,1)FACT=Y,0/FACT
GAMACL .5)aGAMACL4S)*FACT
GAMA(I,3)=GAMA(] ,3)«FACTY
IF¢I,NE, NSOUCJ41))GOTO10
ERRD
SQUCY)=SOCJ)=FACT
10 CONTINUE
RETURN
END

(a W ey

SUBROUTINE SOLVEC(!S)
COMMON/A/NT2MY 1 ARAY (64190) s NTOTMT «NT2:GAMA(S4L.5)
- NT2M2 s NSEPU,NSEPL,JP+BOTPBOTLA4) sRHSLE4)
IF(15.EQ.4)a0T7025

NTYQTaNTOTMY 1
PO20r=%,NT2

= BLT <



RHSC1)mARAY(I,NTOT+15)
20 CONTINUE
¢ SPECIFEY GAMMA VALUE AT POINT 2W
25 GAMA(NT2,15)=20,0
IF(I5.EQ.3,n0R,I5,EQ,4)GAMA(NT2,15221,0
¢ BAeK SUBSTITUTION FOR GAMA VALUES
, PO&ODI=7 ,NT2M1
I1sNT2=l]
SuM=Q.0
DO30I2=11+414NT12
SUM=SUMeARAY(11,12)*GAMAC(]12,15)
30 CONTINUE
SUMSRHS(11)=SuM
GAMACI1.18)=SUM/ARAY(114,11)
40 CONTINUE
RETURN
END
€
+
¢
SUBROUTINE nISTANCE
C==<SUBROQUTINE TO CALCULATE DISTANCES ALONG
gﬂ"!UPPEH AND LOWER SURFACES
DIMENSION XU(60).XL(¢60)+CPUCKO).CPLC&D) DSUCI1N),DSLC10)
COMMON XSURE(64),YSURF(64),PI.N
COMMON/A/NTO>MT 1 ARAY(64490) 4 NTOTHMT4NT2,GAMALEL,5),
* NT2M2/NSEPUJNSEPL,JP+BOTP/BROT(H4) sRHS(64)
COMMON/C/CP(64) ,DXDFICE4) sDYDFI(64),02XDFI(64),D2YDF1(64),

1 XS€10),XSLC10),TSLC10),TSUCIN) »
2 REALN¢NMT+XSTTE,XEDTE, TERAD,NSL/NSU

C--ﬂ! ------ —---ﬂ----‘--"-—-‘-"ﬂ--Ds,ﬂ

NsLC=g
NsuC=0
plstu=0.0

= LLEk =



DISTU=D.0
CISTL=0.0
PO1030OMaNMT ,NT2M?2
TFCCCP(M)  GT CP(H=1)) ,AND, (CP(M),GT,CPCM*1)))60701035
1050 CONTINUE
C===CP(M) 1S NEAREST TO STAGNATION
1033 CPU(q)=cp(Mat)
4 CPL(1)=CP(Mat)
c--‘.---.“'-""--"'.-------“-ﬂ----ﬂ-u-ﬂq-bs,B
E--aUDPER SURFACE
DFI=Pl/REALN
PO1060]=2.M

JUaift=1e1
P1aDXDFICIUI*DXDFICJU)«DXDFI(JUI *p2XDFICJU) wDE]

1 *0.25«D2XDFICJUY#D2XDFICJUIWDFI#DFI
D2=DYDFIC U *pYDFICJU)+DYNDEICJU) #p2YDFICJU) *xpF1

1 #0.85«D2YPFICIUY*D2YDEI (1) wDEleDEl

PLu=DFIw#SarT(D1+D2)

1F¢JU,GT, N)GUTO1050
IFC(TERAD,EQ.0,02.NR.(PSTTE, NE,VU,0))A0T01037
IF¢(XSURF(JU=1), LT . XSTTEIGOITO1037
OSTTE=DISTUS(XSTTE=XSURFCJUI I #pLU/ (XSURFCJU=1)=XSURF(JU))

1037 IF¢NSUC.EQ, NSU)GUTN1050
IF(¢JU,EQ,1)G0TO104N
IFP(XSURFCJU=~T),. LT XSUINSUC+1))60T01050
NSHC=NSUC*4
DSUCNSUC)ADISTU+(XSUCNSUC) =mXSURFC(JUIYwD LU/

1 CXSURE(JU=1)=XSURF(JU))
GOv01037
Locceun. *=DEAL WITH ANy UPPER SURFACE SLOT BETWEEN 1 AND 2N
1040 NSIC=NSUC*1
DSUCNSUC)aDISTUSC(XSUCNSUC) =XSURFLC1))wpLU/
1 (ASURF(NT2)=XSURF (1))
G0Y01037

1080 DISTU=DISTU+DLU
AUCI)=DISTV

=Bl =



TFC(JU.EQ,q)JU=NT 241
CPUCI)=CPe¢JU=1)

C===| OWER SURFACE
JLaMelm]
IF(CJL.GE_NSEPU,AND NSEPU,GT. N).OR.JL.GE,NT2)GO0T01060
D1=DXDFICOL)*DXDFICIL)+DXDFICILI*D2XDFICIL) #pF1

1 *0,2354D2X0FICJIL)*D2XDEI(JL)«DElwDE]
D2=DYDFIC L) *DYDFICJIJL)DYPEICILI*D2YDFICJL) wpF1
1 «0,25«D2YOFICJLY*D2YDFI(JL)*DFI*DF]

DLL=DF1*SaRT(p1+D2)
IF((YERAD,EQ.0,0?.0R.(DEDTE.NE.0,0))60T01053
IF¢(XSUREP(JL#+1) LT XEDTEIGOTO1053
DENRTESDISTL(XEDTE~XSURFCJILID#DLL/C(XSURFLJIL+1)=XSURFCJIL))

1033 IF(NSLC.EQ NSL)GOTN1055
TP e¢XSURFCIL#T) LT, XSL(NSLC+1))GOTO1055
NSLC=NSLC+*1
DS CNSLC)=DISTL+(XSLU(NSLC)=XSURFCJL))wpLL/
1 (XSURF(Ji #+1)=XSURFCJL))Y
GO0y01053
1055 DISTL=pISTLSDLL
XLC(I)apliSTL
CPLCIY=CPCEIL*Y)
1060 CONTINUE
fe==raorcaa el L e L L e P W
NsLU=n
C===CONSIDER 1UPPER SURFACE' BEYOMD T.E.,
P010701=1,NT2-NSEPL

NSashNT2a]l49
D1aDXDEI(NS)*DXDFIC(NS)+DXDFI(NS)*p2XDFI(NS) #nF1
1 *0,25%#D2XDFIUINS)#D2XDFI(NS)«nETIwpF]
D2aDYDEI(NS)®DYDFI(NS)+DYNFIC(NS)*p2YDFI(NS)enF1
1 #0,25«D2YDFI(NS)Y*D2YDFI(NS)*DFIwDEF]
DLUSDFI*SaRT(pq+D2)
1063 IPCNSL.EQ, (NSLC*NSLU))GOTO1065

IF¢(XSURF(NS=1) ,GT xSL(NSLaNSLU)IGOTO1065S

HSUC=NSUC*1
DSUCNSUC)aDISTUSC(XSURFI(NS)wXSL(NSLeNSLU))wp LU/

S



DSUCNSUC)3DISTUS(XSURF(NS) =XSLINSL=NSLU)Ywp U/

. (XSURF(NS)=XSURF(NS=1))

TSUCNSUC)=TSLINSL=NSLU)
NSUaNSU+1

NS _U=Ng LU«

GOy01063

*1065 PISTUaplSvU+DLU

Mo

XUtHe1y8D1STU
CPU(HaI)=pp(N5=1)
1070 CONTINUE
NSL=aNSL=NSLD
NXUsHNTY2aNSEPL
NXLsNT2eM
IF(NSEPU.GT NINXLENSEPU=N
ISEPU=HaNSEPU
IF(NSEPU.GY.N)ISEPU=M#NT2~NSEPU
ISEPLﬂNSEPLnH
WRITE(2.,1080)
1080 FORHMAT(10?,tSURFACE ODISTANCES'/1 ' 448X, AU, 10X, "CPUI 195X,
* TXLt,10%,'CPL!/)
DOT110 =9 ,NxU
WRITE(2,1120) 1, XUC1)CPUCY uXL (D), CPLLTD)
1110 CONTINUE
1120 FORMAT(t 1,2X,13,10X:F8,4s5%:FB.4110X1F3:1415X,F8.4)
WRITECO,113nINXL,NSL.ISEPL
WRITECO, 1140 (XLCI) 411 yNXL) A CCPLCI) I3 e NXL) o (DSLCI) e I=1,NSL),
" (TSL‘:)II=1CNSL}
WRITE(S,1140)TERAD,DSTTE,DEDTE
WRITECG,1130)NXU,NSU,ISEPU
WRITECO,1140)CXUCI) 13T NXUY, CCPUCT) 121 eNXU)L(DSHCTY Tl =q,NSU),
. (Tsull).I=1,NSU)
1130 sO0RMAT(! ',%13)
1140 FORMAT(! ',8F10,6)
RETURN
END

= 081 =
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12u

1
2

SUBROUTINE 11234(NT2,1,11,12,13,14)
IFCCINE.T) AND, ¢CI.NE.2))11 12
IFCI.EQ. 1) 143NT2w1

IFC1.EQ,2)19=NT2

IPC1.HE . 1)12=1=1

IF(I EQ_1)12=NT2

IF(I,EQ . NT2y1339

IFCI.NE.NT2)1331+1

TFCCI L NENT2) AND, (I NE_NT2w1))14=142
IF(1 EQ_NT2y148=2

IPCI.EQ.NT2-1)14=1

RETURN

END

INPyy QF PRNFILES DEFINED By CAMBER AND THICKNESS
SUBROUTINE CAMTHIK(REALN,NT,RK,NT2)
COMMON XSURp(64),YSURF(64),PI N
CIMENSION CHORD(58),YCAHB(58)sYTHICK(50) +DXCONIS54),DYDXFI(33),
DYCDX(54) yn2YCoxX(50)sCAMBLESO) . PHTIINCESN) pYCFTICR3),YTF1(33),
Xe1(33)

= Rl =

NPjaN+1
NI1P2an1a2
N1R4=dTad
N1Po={1ab )
READ(1,110) ¢CHORD(I) I35,NT1P4)
READ(T,110) ¢YCAMB(I), la5,N1pP4)
READCT9110) ¢YTHICKCI) s I=1,N1)
FORI1AT(5¢F12.0)
001201=1.4
CHURD(1)=2 0=CHORD(1U=])
CHURD(NIPLLI)=aCHORD(NTIPG4=T)
YCAMB(1)y==vCAMB(10=1)
YCAMB(NIP4el1)ExyYCAMB(NTIP4=T)
CONTINUE



C===L1IST INPUT COORDINATES
WRITEC2,130)

1350 FORMAT(92X,'X'720X¢'CAMBER" ,8X,14/2=THICKNESS!, /)
00140151, N1
WRITE(2,150)CHORD (T wd) ,YCANB(144) ,¥YTHICKCT)

140 CONTINUE

130 FORHAT(F17,4,P23.6,F17.6)

C===CAMBER GRADIENTS AT INPUT PUINTS
PO1601I=3,N1pé
DXCON(Iw2)a CHORD(1=2)=8*CHORD(I=1)+84CHORD(1+1)=CHORD(1+2)
PYCDN 2 YCAMB(1w2)=8%YCAMB(Im1) 484 YCAMB(Teq)=YCAMB(1+2)
DYCDX(1~2)aDYCDN/DXCON(I=2)

160 CONTINUE
PO1701=3,N102

6= DYCOX(1m2)®8uDYCDXCI=1)%8+DYCDXCI*1)"DYCOX(1I+2)
DAYCOX(I=23=2G/pXCDN(I)
170 CONTINUYE
DO1801=31,N1
DYCDAS1)=DYCDX(1+2)
CHORD(I)=CNORD(1+4)
YCAMBCI)Y=YLAMB(1+4)
180 CONTINJE
Co==CALCULATE LENGTHS ALONG CAMBER LINE AT INPUT POINTS
RL=20.0Q
001901=1,NY
JaNi=]at
IF(J.NE_N1)GOT01383
DX=0.,0
DL’.O.O
GQT0185
185 OX=CHORD(Jy=CRORD(J+1)
DLs1.0+DYCRX(Jaq)ww24DXe DYCDXCJ?])wD2YCDX(Jeq)
DL=DL*.25+DX*DX*D2YCOX(Joq)wD2YCDX(J*+1?
DL=DX®*SQRT¢(DL)
RL=RL+DL

183 CAMBL(J)=RL

190 CONTINUE

= ]



200

D02001=9,N1
CAMHLCI)=cAMBL () /RL
CONTINUE

C==<CALCULATE VALUES OF PHI AT INPUT POINTS

210

220

00220I=1,N1
CAMBLCI)=CaMBLCI)#(1,0%(1,0=RKI*CAMBLCI)*(1,neCAMBL(I)))
CSPHI®2 . QwrAMBL(I)m1,0

IF(CSPHI.NF,=1,0)G0T0210

PHIINCI)=PY

60710220

PHIIN(1)=ATYAN(ABS ((SQRT(1.N=CSPHIYCSPHI))/ (CSPHI+T1,0E=50)))
TFCCSPH1.Ge.0,0)60T0220

PHIINCIY=P1=PHIINC])

CONTINUE

Ce==INTERPOLATE IN PHI FOR YC,YT,DYDX.X

230

240

002551=1,NP1
PHI=FLOAT (I=1)«P]/REALN
D0245114=2 . N1
IFCPHIINCIT=1) . NE,PHI)GOTO230
XFI¢1)=0HORD(IT~-1)
YCFI¢I)=YCAMB(11=1)
YTF1¢1)aYTHICK(11~1)
DYDXFI(1)=DycDX(I]=1)
GUT0255
IFCpHIINC(IT) NE . PAI)GUTN240
XFl(1) sCHORD(11)
YCFIC(1) =YCAMB(11)
YTRIC(1) s=sYrHICK(l9)
DYDXp1(yr)=DycDX(11)
GUTO255
IF(PHIIN(IT). . LT.PHI,OR,PHIIN(11%1),GT,.PHIYGOTYO245
CALL LAGINT(11+PHIIN,PHI,8S9,82/,83+¢54/N1,L)
XFI(1) =S1acHORD(L=4)*S2«CHORD(L"3)*S32CHORD(Lm2)
“54+CHORD(LmT)
YTFIC1) aS7eYTHICK(L=4)4S2aYTHICK(L"3)+S3uyYTHICK(L=2)
*SLeYTHICK(L=1)
YCFIC1) aSt1«YCAMBC(L-4)4S2«YCAMB(L=37+S3*YcaAMB(L=2)

= BBl =



245
2553

j SSL*YCAMEB(LaT)
DYDXFIC(1)sS1#DYCDX(L=4)*52#nYCDX(L=32+S3#pyeOX{L=2)
#S§4%nyCDX(L=1)
6070255
CONTINUE
CONTINUE

C===ADD THICKNESS NORMAL TO CAMBER

¢
¢
¢
¢

260

D02401=22,N
ATN=ATANCAYDXEI(]))
XSURF(Im1)aXF1(I)mYTFICI)WSINCATN)
XSURF(NT2m141)=22,0«XFI(1)aXSURF(I=1)
YSURF(ImTy=YCFRI(I)eYTFIC(I)aCORCATN)
YSURP(NT2n141)32,0aYCFI(1)=YSURF(I=1)

CONTINUE

XSURE(Ny)=0,n

YSURF(N)=0,n

YSURp(NT2)=n,0

XSURF(NT2)m1,0

RETURN

END

==a[NPUT OF CAMBRRED SURFACE CUONORDINATES

10

1

14

]

SUBROUTINE cAMPROF(REALN H1,RK,NTZ)
COMMON XSURg(64),YSURF(A4),PI.N
DIMENSION XuSt€50) 1 YUSCS50) eXLSC(50) ¢ YLS(S0))YMEAN(Z?) ,XFI(35),
DYDXF1(32)
NMYaN=1
READ(T1410)(xUSCI) YUS(I),I=1,N1)
READ(1,10)¢xLSCI),YLSCI),I51,NY)
FORMAT(2F12.0)
WRITE(2,42)
FORMATCYQ' (v INPUT DATAY/ 'O , 41X, " XU 10X e "YU (45X, XL ' ,1aX.'YLY/)
DOT141=1,N1 '
WRITE(2,16)XUsS¢I),YUSCI) XL SCI)daYLSCD)
CONTINUE

S



16

20

39

40

55

60

70

80
90

FORMATC 1 "2‘7XIF10|3C2XIF10.8’)
NPlaN®1
NPR2aNeg
0055131 ,NM1
PHI3FLOAT¢I)»P1/REALN
X20.,5e¢1+20S(PHI))
XF1(la2)=x
D040T1=2,N1
1F{xusS{11=1) NE.X)GOTO20
YSURF(I)syUS(IT1a1)
GOTOS55
IF(XUSC11) NE.X)GUTO30
YSURF(IY=YUS(IT)
GOTOs5
TFCEXUS¢I1). 6T, X)) 0R.(XUSCIT1=1). LT, . X))GOTN4D
CALL LAAINTC(IT1,XUS/XsS1:82,583+84,N1,L)
YSURF(II=SToYUS(LmA) #S24YUSCLm3) +53%YUS(Lw2)#84%vUS( 1)
GQT03S
CONTINUE
CONTINJE
DO901=1,NM1
XaXFI(1+2)
P08011=2,n1
TFEXLSC11~=1).NE.X)GOTO60
YSIRF(NT2el)=YLS(11=1)
GUT090
TF(XLSCI1),NE,X)GOTQ?0
YSURFINY2-1)aYLSC(IT)
GOTN90 :
TRC(XLS ¢11).6ToX)eOR, (XLS(I1=1). LT, ,X))GOTNAgD
CALL LAGINT(I1+XLSsXsS1+52,83,54,N1,L)
YSURF(NTZ'I)=S1-YLS(L"4!+52*YLS(L-3)’SS*Yts(L-2)+sa*VLs(L-1)
GUT090
CONTINUE
CONTINUE
XFlC2)3xus{qy
XFI(NP2)aXUg(NT)

S8



XFI(NP2)=XUS(NT)

XF1¢1)82 Oaxpl(2)=Xp1(3)
XFI(N+3)m2,0eXFI(NP2)=XFI(HP1)
YSURF(NT2)=vUS(1)
YSURF(N)=YUS(NT)

C===MEAN LINE GRAPNIENTS

100

115

001001%4,N
YHEAN(1¢2)=20,5«CYSURF(I)+YSURF(NT2a1))

CONTINUE

YMEANC(N®3)=22 , 0*YMEANCNP2)Y=YMEAN(NPT)

YMEAN(])=2, 0% YMEAN(2)=YHEAN(3)

YMEANC2)aYSIUIRE(NT2)

pO110133,NPy _
DXDONaXFl (1=2)=8,0«XFI(Im1)48,0uXFI¢l4a1)=XFI(]42)
DYDNSYMEAN(I®m2) =3 0*YHEANC(Ie1) 43,00 YMEANCTI®1)=ayYMEAN(]42)
DYDXFI(lm2)=DYpN/pDXDN

CONTINUE

D01201=1 ,NMyq
ALFSATAN(PpYDXFI(I))
DXa (YMEAN(1+2)mYSURFC(NT2m1))wSINCALF)*COSCALE)
XSURF(1)=xF1(1+2)aDX
XSURF(NT2=1)3xXpI(1+2)+DX

C=+<CHECK THAT DX DOES NOT MOVE THKE POINT YOO FAR

14V

TFQ(XSURF(IY, GT XFI(I*3)) AND. (XSURF(I) LT XFI¢1+1)))G60T012N
DX30,75epX

GOTO113

CONTINJE

XSURF(N)=aXUS(NT)

XSURr(NT2)=xUS(9)

Ce==RE«INTERPOLAYE pOR Y'S

130

DO160]1=1,NM1
XaXSURe(l)y
P015011=2,N1
JR¢XUS(ITut) NE.X)GOTO130
YSURF(1)=vUsS(11=1)
GOT0160Q
TREXUS(11)¢NEX)GUTO140

=508 =



C
C
c
C

160

170

180

190
200

YSURr(IYsYUSC(IT)

GOT0160

IFPCEXUS¢I11).6T.X).0R, (XUS(I4=1).LT.X))GOTN150

CALL LAGINTCI1/XUSoXeS91:82,53¢84,8N1,0)
YSURFCI)=SIwYUSCLmL) #S2eYUS(Lm3)¢S3*#YUSCLw2)+S4%YUS( | =1)

G0T0160

ConTINnUE
CONTINUE

00200 I=1,NM4
XaXSUpg(NT2=])
P01901432.N1

1piXLE(11=1) NE, X)GOTO170

YSURF(NT2=2)aYLS(IT1=1)

6070200

IF(XLS(11)NE,X)GOT0180

YSURE(NT2m])sYLSC(IT)

6070200 |

TRCEXLS ¢11).GT X)) O0R, (XLS(I1»1), LT, ,X2)GOTO190

CALL LAGINT(I1+XLS¢eXsS1,82,83,34,N1,L)
YSURFINT2~1)aS1eYLSCL~4)+S2wYLS(L=3)*S3*Y L S(Lm2)eS4uayLS(L~Y)
6070200

g

CONTINUE
CONTINUE
RETURN

END

===LAGRANGE INTERPOLAT!ON FOR DAyA INPUT SECTIONS
SUBROUTINE LAGINTCI1+FIORX,VAR,81+s82,53,544N1,1)
DIMENSION F1ORX(50)

10

M=

1PCI1.NE.2)60T7010

M=3

GOT029Q
IF(I1.NE.N1)YGOT020

Mz1



20

30

32
34
36
40

LA A N ]

$=1,0

$1=1.0

$¢=1.,Q

§3=q1 .0

Sé=1 .0

L211eM

0030J=1,4
Sas*(VAR=FJORX(L*J=3))

CONTINUE

0040J=1.,4
IF(d,.BQ.4YGOTO32
§S1=CF1ORXCL=4)=FIORXS(L~J)) =S
IF¢Jd BEQ,3)GOT034
S2u(FIORX(L=3)=FIORX(L=J))eS2
1F(J,EQ.2)60T036
S3=a(FIORX(L=2)=FIORACL=J))wsS3
IFCJEQ.13G0OT040
S4=(FIORX(L=1)=FlORX(L=d))eS4

CONTINUE

$13(s/S1)/(VAR=FIORX(L=4))

$¢2(8/82)/(VAR=F10RX(L=3))

$3a(S/83)/(vAR=F10RX(L=2))

S6=(s/84)/CVAR=FIORX(L=1))

RETURN

END

FINISH

= 881 =
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D.1. Introduction

This Appendix describes the computer programme constructed to
jmplement the boundary layer calculation method outlined in Chapter 6.
The programme, written in FORTRAN, was constructed specifically to
calculate boundary layer development on aerofoil surfaces, although

the model is flexible and could readily be applied to other flows.

D.2. Preliminary Outline

An outline flowchart of the boundary layer calculation procedure
is given in Figure 65. The FORTRAN programme relies heavily on the
use of subroutines, the section controlling the process depicted in
Figure 65 being quite short. Units of the Systéme International are

used throughout.

All details concerning the surface pressure distribution, starting
conditions, surface curvature and the position of any tangential blowing
slots are input as data. The pressure distribution under which the
boundary layer develops is defined by a set of discrete pressure co-
efficients and the associated distances along the surface. The
calculation of pressure gradients is performed in the programme. If a
tangential blowing slot is present, an iterative calculation is
performed to find the blowing momentum necessary to maintain flow

attachment up to the specified separation point.

A starting velocity profile is generated using the wake function

(107]: values of boundary layer thickness and displacement

of Coles
thickness at the starting position need to be provided in the input
data, although the resulting boundary layer development is not usually

very sensitive to the starting profile.
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When the computer programme was constructed, the facility to
calculate stagnation enthalpies was included. This would enable,
for example, the prediction of heat transfer from a hot boundary or
the effect of using a hot blowing jet. The expressions for wall
functions and the solution of the stagnation enthalpy conservation
equation which are included in the programme have been taken from or
constructed with reference to the text of Patankar and Spalding(gg).
It is stressed, however, that this aspect of the programme has not
been tested and may yet require development. No further reference
to the sections of programme dealing with this calculation will be

made in this Appendix.

The programme controlling segment and the subroutinesare described

in the following sections,
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D.3 Description of Programme

MAIN

This main section controls the overall programme operation as
depicted in Figure 65. Data is read according to the format of
Figure 66 and definitions of the variables are included in Section D4.
Flow conditions in the free-stream are defined by the Reynolds number
(RE), Mach number (RMACH) and total temperature (TO). The Reynolds
number and surface distances contained in array XS are based on unit
chord. The free stream speed on which the pressure coefficients
are based is given by U = M/YRT,and various other gquantities, T_,
Pos P Lare calculated from normal compressible flow expressions. When
interpolating for certain fluid properties from tabulated values,
it is assumed that the flow temperature T_ lies in the range

300 < Te< 400 K. The free-stream laminar viscosity, VISCL, is calcu-

lated from Sutherland's equation, see Schlichting(ls), B339,

The free-stream properties are written out and values are assigned
to the slot blowing momentum coefficient, CMEW (a first approximation),
and the slot air total temperature, SLTTO. The pressure coefficients
are converted into pressures. Headings are then printed to define
quantities printed out on each step forward if these values are required.
The overall thickness and displacement thickness, Y(NM1) and DISPT, of
the starting profile is read. These values are later used in Subroutine
COLES to generate a starting profile. The variable NPOS defines the
current position of the calculation within the set of input data.

Values of distance along the surface have already been input in array
XS and the starting value of x (XST) has been specified. NPOS is the

element of array XS which lies closest to x, with the condition XS(NPOS)=<x.
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The initial value of NPOS is found in MAIN, and is updated in Sub-
routine PGDT when the calculation reaches the next data input point,
The starting value of pressure coefficient, CPST, is calculated by
linear interpolation in XS and CPST is then used to obtain the local

surface flow speed, USTART.

Subroutine COLES is called, to generate a starting profile.
Subroutine DMS is then called to calculate integral profile parameters:

displacement and momentum thicknesses and the shape factor, H.

The next section is looped on each forward step. The step length

DX is governed by a factor DXF provided in the input data:

Y(N-1) DXF
Tw-"Tw

W

dx =

1+10

latest calculated wall stress,

~
1

~
"

previously calculated wall stress.

Thus, the step length is linked to the overall boundary layer thickness,
Y (NM1). This in itself is not sufficient, however, since the layer
thickness increases rapidly near separation where small step lengths

are required because of the rapidly changing layer properties. There-
fore the step length is also factored by a term dependent upon the

magnitude of change in the wall shear stress.

The trigger value IPOINT is set to zero or unity: the latter value

is assigned if the step length is such as to carry the calculation
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beyond the next input data position, XS(NPOS+1).  If IPOINT is unity,
the step length is modified so that the step brings the calculation

to the next input data point.

A test is then made to see if the selected step length brings the
calculation to a blowing slot. If so, Subroutine SLOT is called to
set the new profile. Subroutine PGDT is called to calculate the
longitudinal pressure gradient over the forward step. A test is made
to check if the surface is curved at the downstream station, i.e. if
X + DXzDCURV. If so, Subroutine NORPRES is called to calculate the
variation of pressure and of longitudinal pressure gradient across the
shear layer thickness. A call is made to Subroutine SOLVE which
takes the forward step and sets all the boundary layer properties to
their new values. If the new position of the calculation coincides
with an input data point, i.e. if IPOINT=1, Subroutine DMS is called
to calculate the profile integral parameters. This subroutine is
called on every step if the intermittency representation of effective

viscosity is being used.

The final section comprises a series of tests on whether separation
has occurred and the resulting course of action to be taken. In cases
where high flow accelerations and decelerations occur, such as on the
leading edge of an aerofoil developing high lift, separation may be
predicted in this region. If this occurs, the whole calculation is
re-started at the predicted separation point. This final section is

best described by a flowchart, sketched in Figure 67.



§Eproutinc SOLVE

This subroutine performs the actual forward step, solving the
finite difference equations which govern the boundary layer development.
Before the step, however, various ancillary calculations are performed

and subroutines are called to supply quantities required for the step.

The first section is concerned with predicting transition and is

only accessed if the boundary layer is currently laminar (LT = 1) and

transition is to be allowed (NTRIG3 = 2). The prediction of transition
utilizes data given by Schlichting(ls). First, a shape factor, A

2
(SHAPEA) is calculated A = %ﬁ' %%—. The local critical Reynolds

number, RCRIT, is plotted as a function of this shape factor by
Schlichting. The relationship has been represented by a polynomial

for the present purposes. The actual local Reynolds number, RBL, is
calculated, where RBL = !%i_. The point of laminar instability,

XINST, is taken to be the first point at which RBL2RCRIT. The distance

between the point of instability and transition is represented by the

difference between the momentum thickness Reynolds numbers at the two

stations. Schlichting gives a plot of this difference as a function
of the parameter K where .
T a2
= 1 8< dP
K=—.r _""-_dx,
fer i x, LR
i
X; = XINST and X is the position of transition. The integral K

is added to on each forward step afer the point of instability has
been reached and the corresponding value of momentum thickness Reynolds
number at transition calculated. If the actual local value exceeds

this transition value then transition is assumed to occur.
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Velocity gradients are calculated and the subroutine for
calculating laminar viscosities, LAMFLO, is called. Provided the
flow is turbulent,one of the two effective viscosity routines, MLH or
TURB is called. The viscosities in array EMU are then factored by

r/dy and transferred into array EMURDY.

The entrainment rate, characterised by the quantity rEﬁE” in

the nomenclature of Patankar and Spalding is calculated from the

expression
e, W "N/2 "N/2
B ) B vy I
N “N-1 E N “N/2 “N/2+1 E
which is of a form suggested by the above authors. Since it is

convenient to be able to treat grid line N-1 as characterising
properties at the outer edge of the boundary layer, i.e. where y =8,

the entrainment is factored by

U, - U 2
(0.99 + N_U._..N-_l )
N
This arrangement maintains the conditio U = 0.99 U, fairly well.

N-1 N

A call is made to Subroutine WF which supplies the wall functions
used as boundary conditions to the main calculation. The remainder
of the subroutine deals with the solution of the finite difference
equations. Almost all the nomenclature in this section has been taken
directly from the listing given by Patankar and Spalding who provide

a comprehensive programme description. The only changes of significance



- 197 -

which haye been made to their solution procedure concern modifications
to certain coefficients, These modifications arise because the
equations being solved here concern angular rather than linear momentum
and the unknown radius x velocity pfoduct ur is being solved for,
rather than the velocity u. The necessary changes to the finite-
difference coefficients correspond to those given by Patankar and
Spalding for the solution of the equation governing the swirl velocity
of an axi-symmetrical flow. Other minor alterations occur as a
logical consequence of the change of variable and are best appreciated

by reference to the text quoted above.

Subroutine WF

This subroutine supplies wall functions to be used as boundary
conditions for the main solution procedure. The functions used are
quite simple and pertain to a smooth wall. Two alternative sections
are provided, depending on whether the outer boundary of this wall
region extends into the turbulent flow or if the flow can be considered
wholly laminar. Experience shows that better results are obtained by
grouping the grid lines sufficiently densely near the wall that laminar

functions can be used.

The magnitude of the local couette flow Reynolds number, RE, is
used to decide whether laminar functions are used, or if the logarithmic
law for turbulent flow is to be employed. The expressions used to
calculate the wall functions may all be found in the text by Patankar

and Spalding,
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Subroutine PGDT

This subroutine calculates the longitudinal pressure gradient
from the discrete pressures supplied as input data. The gradient
is calculated from four Taylor expansions about the mean position
over the step, that is at x + #dx. The four data points used are
comprised of two on either side of the station x + 3dx except near
the start or end of the input data, when it becomes necessary to use
three points on one side of x + #dxandone on the other. The
resulting 4 x 4 matrix of the simultaneous equations is solved by

Gauss reduction to give P and dP/dx at x + 3dx.

If IPOINT has been set to unity in MAIN, signifying that the
step will bring the calculation to the next data point, NPOS is

incremented by one.

Subroutine NORPRES

The longitudinal pressure gradient corresponding to the input
pressure data is calculated in subroutine PGDT, described above.
Subroutine NORPRES calculates the distribution of pressure and
longitudinal pressure gradient across a curved boundary layer. The

expressions used are

3P _ pu? ap 9P d u?
e 4 i and Eole (m=) == iy
oy T 9x i Ix . X g T
s SRS
I s pU”
or Pi = PE é = dy

where subscript 'E' refers to conditions at the outer flow boundary.
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On the first occasion that this subroutine is accessed, preliminary
array values are set and the opportunity is taken to set the values or r,
the radius of curvature of each grid line, On the first call to this

subroutine, therefore, no gradient of pressure is calculated.

Subroutine SLOT

This subroutine is provided to generate a tangential blowing jet
profile and to add this profile underneath the oncoming boundary layer.
Because the required blowing rate generally is not known in advance
and this routine is used several times in an iteragive loop, the on-
coming boundary layer profile has to be stored on the first cycle.

This storage is performed in the first section of this subroutine,

the stored values being suffixed by '0'. N2 is the number of grid
lines to be used for the blowing jet profile, so that the total number
of grid lines become N = NO + N2 where NO is the number of grid lines
used to calculate the upstream boundary layer. The grid line numbering

system is sketched below.

Upstream Grid Downstream Grid

N N
L ¢

: N2+ 2

2'51mm=— N2+ ]
N2
&

25
1

Sl

Sketch D1

Grid Line Numbering at a Blowing Slot




The blowing jet profile is set according to a power law, as shown
in Figure 8. In the programme, Q represents the exponent, n, and is
supplied in the input data. The grid spacing across the slot width
is set by a cosine profile to group the grid lines most closely near

the regions of large velocity gradient.

The remainder of the subroutine is concerned with re-assigning
all the variables to their new grid lines. One forward step is
made from within the subroutine so that all the boundary layer
properties are calculated for each grid line ready for the printing

out of properties in the call to Subroutine OUTPUT.

Subroutine COLES

The starting profile is generated in this subroutine. Values of
boundary layer thickness and displacement thickness have already been
read from the input data and the surface speed at the starting position
of the calculation, USTART, has been derived in MAIN. These quantities
are used to generate a starting profile using the function derived

by Cole5(107).

The remainder of the subroutine assigns starting values to all

the necessary variables.

Subroutine MLH

This subroutine calculates an eddy viscosity distribution using a
simple mixing length representation. In the near-wall region, Van Driest's
damping factor is applied, If the surface is curved locally, Subroutine

CURVE is called to factor the eddy viscosities by a curvature correction.
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Subroutine TURB

This subroutine can be used to calculate the distribution of eddy
viscosity across a conventional boundary layer or across a wall jet
profile. At present it is only used for wall jet profiles, since
ordinary boundary layers are coped with quite adequately by the mixing

length model which is also more computationally efficient.

First, the type of velocity profile is identified, JET being set
to 0, 1 or 2 depending on whether the profile is a conventional boundary
layer, a wall jet with a maximum only in velocity or a wall jet with a

maximum and a minimum in velocity.

The velocity defect, Ud’ is then found for the relevant profile.
For a conventional boundary layer, the point of departure from the law
of the wall, YD, is found first. All the expressions used are given
in Chapter 6. The inner region viscosities are calculated using the
mixing length model with the Van Driest damping factor. Values are
assigned to g, SIGMA, the standard deviation of the intermittency profile.
The diffusion equation parameters, K and X in equation 6.5 are set.
These quantities are defined by RK1 and DEL respectively in this sub-
routine, The position of the mean turbulent front, y, is calculated

from the relevant equation, 6.7, 6.10 or 6.11.

The error function defined by equation 6.8 is calculated at each

grid point in the appropriate region. A polynomial representation of
the error function is used. The effective viscosities are then set
according to equation 6.9. If the surface is curved, Subroutine CURVE

is called to factor the calculated eddy viscosities by a curvature

correction,
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If JET = 1 or 2, a cosine fairing is used to join the inner and
outer eddy viscosity profiles., Sketch D2 below illustrates the nomen-
clature used to 'fair' in the JET=2 profile. The procedure used for

the Jet=1 profile is very similar.

Finally, some of the quantities generated in the subroutine are

printed out.

; PER
% .
\ #AMPL
\ FEnua
A
YaMAX) | Y(IMIN) g
YA
A
Ty

Sketch D2

Cosine Profile Used to Join Inner and Outer Eddy Viscosity Regions
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Subroutine CURVE

The curvature correction described in Chapter 6 is applied to a
calculated eddy viscosity when this subroutine is called from MLH or
TURB. A lag equation is applied to the curvature effect, using the
same lag equation constants as are applied in TURB to the development
of the maximum eddy viscosity. The curvature factor itself is
limited to an obvious limit of zero when reducing the eddy viscosity

and a limit of 2.0 when increasing the eddy viscosity.

Subroutine DMS

Integral profile parameters are calculated in this subroutine.
The displacement thickness, DISPT, and momentum thickness, TMTM, are
obtained by numerical integration across the latest profile. The shape

factor, SHAPE, is the quotient of these two quantities.

Subroutine LAMFLO

This subroutine simply assigns laminar viscosities to each grid
point, using Sutherland's equation. The values are then modified so

that EMU(i) represents the mean viscosity between grid points i and i+1.

Subroutine OUTPUT

This subroutine is called from various points within the programme

to provide an output of current variables. If the argument NTRIG is
set to zero, one line of values is output. If NTRIG = 1, a full
output of the current profile properties is given. There is also an

automatic full output every twenty five steps.
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D.4. Principal Variables and Arrays Used in the Boundary Layer Programme

Variables
CMEW Jet momentum coefficients.
CPST Pressure coefficient at starting position of boundary layer
calculation.
DCURV Distance along surface of start of curvature.
DISPT Displacement thickness of boundary layer.
DX Step length,
DXF Factor to control step length.
IENTH 1 for solution of heat transfer equations,
_ 0 for no calculation.
IPOINT 1 if step brings calculation to next data point,
otherwise O.
ISEP Position of specified separation in input data
(for blowing jet calculation).
N Number of grid lines.
NM1 N-1.
NPOS Position of calculation in input data
(see discussion of MAIN),
NS Number of blowing slots
(currently assumed to be 1 or 0).
NTRIG1 1 for use of mixing length representation of eddy viscosity,
2 for intermittency.
NTRIG2 Currently unused.
NTRIG3 1 for calculation of laminary boundary layer only,
2 to allow transition.
NTRIG4 1 for storage of displacement at each data input point,
0 for no storage.
NTRIGS 1 for laminar start to calculation, 2 for turbulent start.
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NX Number of input data points at which pressure coefficients

and surface distances are given.

Q Exponent n in power law representation of blowing jet profile.
RE Mainstream flow Reynolds number.
RMACH Mainstream flow Mach number.

SLTTO(zero) Total temperature of blowing jet.
TO (zero) Mainstream flow stagnation temperature.
TERAD Radius of curvature of surface

(set to zero if no curvature).

USTART Local free-stream flow speed at start of calculation.
VISCL Laminar viscosity in free-stream.

X5 Current x-direction position of calculation.

XST Starting position of calculation.

Arrays

CP Pressure coefficients at data input points.

DPDX Pressure gradient at each grid point.

DS Distance of each slot along surface.

DUDY Velocity gradient at each grid point.

EMU Effective viscosity at each grid point.

HO(H zero) Stagnation enthalpy at each grid point.

oM Omega value at each grid point.

P Static pressure at each grid point.

PREF Effective Prandtl number at each grid point.

R Radius of curvature of streamline at each grid point.
RHO Fluid density at each grid point.

RUR Product of radius of curvature, flow speed and density

at each grid point.
TS Width of each blowing slot.

U Flow speed in x-direction at each grid point.






g MASTER BLAYER
¢
CurnnndtnwanweawBEGMENT MAIN
¢
¢
DIMENSION DS(¢10),TS¢10),X8¢70),pr8(70),

1 PELT(70),CP(70)
COHHON/AiDUbY(753u!HU(?S?;Hﬂt?!).DH!?S):PREF(?!)-lH0(7S).RU(?S)c

TEMPC75) ,UC?5),Y(75) sEMURDY(?5) e TAU(?S) ,R(75) ,UR(75),

¢
C BP]nUHInFEI:TKUI:V!-R?S-KR&DIIRAD
o /B/DPDXCPS),PC7?8) yCAIR/ DX, HOINTT IENTH, LT ¢NsNM1 NPOS,NSTEP,
¢ P1,PR/RUS,TERAD,VISCL /X, DCURV,SLTX,SLTT,NSCAN)LAG
C /C/DISPT,SHAPE,TMTH
C /D/AK/ALMG,FR
C /JE/NTRIGY/NTRIG2,NTRIG3
Crwnvandbundnrpansanrterwwve PROGRAMME CONTROL#*w W F b mhpand bbb hhp e AP rhdw
¢ CONSTANTS AND DATA INPUT
c
(mmm=eeanmdaREYNOLNS NO, BASED ON UNIT CHORD
¢ ASSUMED TEMP RANGE = 300=400 K,
FRm(, 01
&LHG!0.00
AKm(Q,435

C-=-=READ STYORED DATA
READCT /1 7INX,NS,ISEP ?
READ<1;10)(xs<!).l!1INx3.tCPt1).1!1.nx).(03(taila1.Ns).

» (rsCI),I=1,NS)

READCY,10)TERAD,DCURV

READC1,10)XsT

READC1,102DXF,RE,TO,RMACH

IF(NS.NE.O)READC(1,10)Q

10 FORMAT(5F10.6)
NTRIG1=1 gOR MLs 2 FOR INTERMITTENCY

321 POR LAMINAR LAYER ONLYs 2 TO ALLOW TRANSITION
4m=1 EOR STORAGE OF DISPTs, 0 fOR NO STORARE
521 FOR LAMINAR START, 2 FOR TURBULENT START

(s XNl 2]

BUT3ISTT PmweIdoxy S'(

= L0e



READCY /17N, TENTH,NTRIGY ,NTRIG2,NTRIG3I,NTRIG4,NTRIGS

17  FORMAT(713)
NMizNe1 ¥ L " e
TINF=T0/(¢0,2¢RMACH*RMACH#+1,0)
VEL=RMACH*SQRT(1,4%287,0#TINEF)
VISCL=0,00001962«((325,0+4110.0)/CTINF*110,0))e(TINF/325, 0)wx1,5
RO=SVISCLwRE/VEL
RUSGQH=0,5+VeL*YEL*RO
PINF=RO#287 O*TINF
POSPINF*(1,0%0,2%RIACH*RMACH) ww0,2857
PR=2(O,707+(0_6838=0,707)%(TINF=300,0)/7100,0

Ce===w===<eTAKE TURBULENT PRANDTL NO. = 0.0
PRT=0,9
CAIR=1004.9+¢1013,5=1004,9)#(TINF=300.0)/100.0
HOINITSCAIR#TO
EMU(1)=VISCy
WRITEC6,20)RE,TO,RMACH, TINF,VEL,RO,PINF,PR/PRT,.CAIR

20 FORMAT(' ','RE =',¢10,0,/"' ','70 a',F6.,1,/" 1, MACH NO a',f6.3,

= . 80¢ =

1 /Y VLATSTATIC &Y, F6. 1,/ ',"YyoSTREAM VeL =',F6,2,

2 /' ','DENSITY =',F6,.3,/' ',"STATIC PRESSURE =',Fg8.0,
3 /' V,U'PRANDTL NO =',F6.4,5X,'TURBULENT VALUE =',f6.4,
4 IV Y L,VER 8VF8.1)

IF(NTRIG1.E0.2)G0T0D24
WRITE(6.22)
e FORMAT('0','MIXING LENGTH USED FOR TURBULENT FLOW')
GOTQ23
24 WRITEC6,26)
26 FORMAT(' ','INTERMITTENCY USED FOR TURBULENT pLOW!)
Cm===SLOT BLOWING MOMENTUM COEFFICIENT AND TOTAL TEMP
2 CMEW=0_05
SLTT0=TO
 #
C--=CONVERT Cp VALUES INTO SURFACE PRESSURES
PO301=1,NX
IFCI.GT.5 AND, 1,.LT.NX~3)G0T020
PSCI)=PINg+RUSQH*CP(])
_____ GUTO30



29 PSCI)=PINF+RUSQH* (=CP(1=2) ¢4 0O#CP(Im1)*6,0CPC1)44 0nCp(]+1)
* =CP(1+2))/12.0
30 CONTINUE
WRITE(6,35)
35 FORMAT('0"',*SURFACE PRESSURES'//10X,'X"',9X,'P1)
DO401=1,NX
WRITE(6,50)1,XSC1),PS(1)
40 CONTINUE
50 FORHMAT (! Vo12,3X,F704,4X,F10.1)
WRITE(6,55) TERAD,DCURY
55 FORHAT('0',*SURFACE CURVATURE =',F6,4s2Xs AT ,F6.4,2X,
1 '"ALONG SURFACE')
IF(NS.EQ.0)G0TOS8
PO581=1,NS
WRITE(6,62)DS(1),TS(I)
58 CONTINUE

1
6¢  FORMAT('O','SLOT AT X ®',F8.4,5%,"¥I0TH 3',£8,6) :
c
Corsacee ~==JRITE OUT HEADINGS
¢

WRITE(2,65)
65 FORMAT(C'0" »*NSTEP'»5X s "X"48X,'DX"»7X,"TAUL',6x,'DPDX',6X,"'PE!,
1 SXs'SHAPE' ,SX,'DISPTC .,/ " ,554, "JET!, 3%, H!,4x,'un’,
2 SXo'YDC'o3X,"SIGHAC' ,2X.'VYDIC! ,4X,"UDI",4X,"SIGMATC",
3 2x.'H|’:‘Xl'PEI"
c
C===SFET SURFACE STARTING VELOCITY PROFILE
READC(1,10)Y(N)+DISPT
EMU(1)3vrIsC
LT=1
XEXST
1F(X.GE.DCURV)IKRAD=1
RC1)=TERAD
IFC(R(1) . EQ,0,0)R(1)=1,0
IFCNTRIGS5.En.2)LTS2
70 PO?51=2,50
TFCXS(1),6T.X)GOT080



75 CONTINUE
80 NPOS=1=1
CPST=CP(NPOS) +(X=XS(NPOS))w(CP(NPOS+1)=CPINPOS))
1 JU{XS(NPOS+1)=XS(NPOS))
85 USTART=VEL*SQRT(1,.0=CPST)
UCN)sSUSTART
CALL COLESCTINF,PS,NX¢XS)
CALL DiMs
DELT(1)=DISeT
WRITE(2.,90)
90 FORMAT('0'," STARTING PROFILE')
C-==STEP LENGTH T0 COINCIDE WITH SURFACE POINTS

oo e W ok v e W

THIS SECTIUN LOOPED FOR EACH FORWARD STEP
do e 0 e e e e

OOoOo0O0On

95 DXa(Y(N)*DXEF)/(1,0+10,0%ABSC(TAUO=TAUI)/TAUL))Y
IF(NSTEP.EQ.0)DX=DISPT
TAUQ=TAUI
IPOINT=0
TFCCX*DX) . LT . XS(NPOS+1))GUTO0100
DXIXS(NPOS#1) =X
IPOINT=1
100 IF(CISLT.EQ_NS)GOTO105
IP1=1SLT+1
[FC(X+DX),.LT.DSCIP1))GOTO105
SLTA=DS(1PY)
SLTT=TSCIPY)
UJHINSQ.S5*VEL
CALL SLOTC(VEL,CHEW,ISLT,SLTTO,RO,DXF,Q)
105 CALL PGDT(PS,NX,XS,IPOINT)
1F TERAD 1S A FUNCTION OF X+ INSERT FUNCTION HERE

s NN

IF((X+DX).GF,DCURV,AND,TERAD NE.0,0)CALL NORPRES

= 0LE =



CALL SOLVE(D,UJMIN)
IF(NSTEP.EQ_1)CALL QUTPUT(1)
IFCIPOINT.EQ.1.0R.NTRIGT1,EQ.2)CALL DMS
IFCIPUINT.EQ,1)DELT(NROS)SDISPT
IF(TAUI.LE,0,0)G60T0115
CALL YUTPUT(0)
TF(ABS(X=XS(¢(ISEP)).GT.1,0E=DB)GOTO%5
c
v e v W o e e e e
c
(momweemaasDECISION TO BE MADE WUHEN SEPARATION PREDICTED
rrr=memmca==a==anR END OF SURFACE REACHED
WRITEC&,110)
110 FORMAT('0','NO SEPARATION')
IFCISLT.EQ,Nn)GO0TO135
CMEWaCHEW=0_0075
IF(CMEW,LT,.Nn,005)60T0135
X=DsCIsSLT)
ISLT=IsLT=1
GOTO100
115 PSEpsP(1)
DXSEPSXSCISFP) =X
WRITEC6,120)PSEP, X/ NSTEP
120 FORMAT('0','SEPARATION PRESSURE =',F3,4,2X,"AY X =',£8,4,
1 5X,"HSTEP="',14)
CALL QUTPUT(1)
IFCISLT.EQ,N)GOTD1ES
IFCABSC(DXSEp).LT.0,001)060T0D125
CMEYaCMEW*(1,.0+25,0«DXSEP)
XesDsCIsLT)
ISLT=lsLT=~1
GOTO100
125 I1F(DXSEP.LT.0.8 AND.LT,.EQ,2)G60T0135
WRITE(&,130)X
130 FORMAT('0','PREMATURE SEPARATION PREDICTED!',5x,
1 "CALCULATION RESTARTED AT X =',F3,4)
LTs2

e 4



OO0

155

140
130
160

GOTL?70

NDEL=NPOS
IFI(NTRIG4.NF,12G60TO160
WRITEC4,1640)NDEL
WRITECA,150y(DELTCI),I=1,1DFL)

FORMAT(! ',13)
FORMAT(" ',5F10.6)
STUP

END

SUBROUTINE TO TAKE FORWARD STEP

SUBROUTINE SOLVE(NTR,UJMIN)

DIMENSION Au(?5),BU(?5),CUt?5),5Ul75),5D(73),
1 AH(¢75) ,BH(75),CH(TS)
COMMON/AZDUNY(75) ,EMUL?S5) ,HOC?8),0M(?5) ,PREF(78),RHO(75),RU(?5),
c TEMP(75) ,UC?5),Y(75),EMURDY(75) +TAU(?S8),R(75),URrR(75),
c BP1,0HMI,PELI,TAUIY1,R25,KRAD.IRAD
C /B/DPDAC?S),PC?S)CAIR,OX,HOINITSIENTH LT N, NMT,NPOS,NSTEP,
C PI,PR,RUS,TERAD,VISCL/X,DCURV,SLTX,SLTT,NSCAN,LAG
C /C/DISPT SHAPE, THTH
C /E/NTRIGYT/NTRIG2,NTRI1G3

IF(NTR.EQ.1)6G0T0267

e 009 50 e m~====TRANSITION CRITERION
IFCLY.EQ.2,0R.NTRIG3.EQ.1)G0OTO150
CALL Dis

DEL=Y(NM1)

IFCXINST.NE.0,0)60T0134

SHAPEAS=DEL#DEL*DPDXCH) /CUCNIwEMULCT))

RCRITR10.0ww(2,8203+40,2454wSHAPFA#0, 0049*SHAPEAw®2
1 »0,0022+«SHAPEAw»3)

IF(SHAPEA.GT,8,0)RCRIT=12000.0

IFCSHAPEA.LY,=6,.0)RCRIT=100.0

REL=UCN)«DISPT*RRO(N) ZENUCT)

IFC(RBL,LT.RERIT)GOTO138

= Zle



133

136

16V

(mrmrmemmmemmaemmome=ae=mea=a{[SCOSITY AND PRANDTL NO.

WRITEC6,133)X,SHAPEA

FORMATC('0',"START OF INSTABILITY X =',F6+4,3X,1SHAPEA=",F8,.4)
XINST=X

RTHETI=UCN) «TMTM«RHOCN) /ENU(1)
SUMK=SUNK=DX*THTM*THTH®DPOX (N) / CUCN)~ENULT))
IFCXINST.EQ_X)GOT0138

BARKaSUMK/ (X=XINST)
DELTKX=337,1+238%4,2*HBARK+*6R4720.3*BARK*BARK+S L4EO6#«BARKw#3
DELTXSUCN)*TMTH*RHOC(N) /EMUCT1)=RTHET!
IF(DELTX.LT.DELTKX)GOTO138

LT=2
WRITECH,136)X
FORMATC'0' s "TRANSITION AT X =',F6.,4)
CONTINUE
g e g e e Y “==DU/DY.

POY601=2,NM1
PUDYCI)=CCI*1)=UCI)) /(Y 1+1)=y (1))
CONTINUE

o e

C==-=CALCULATE SHEAR STRESSES

DO16SI=2,NM1
TAUCI)=EMUCI) »DUDYCI)

165 CONTINUE
CALL LAMFLO
IFCLT.EQ.1)60T01720
TFC(NTRIGT.EQ.2)CALL TURB(RME)
IFCNTRIGYT.EQ,1)CALL MLHCRME)
(rmessadiionsanmmes s un ===10DIFY EMU ARRAY,
170 DO1801I=2,nNMq
EMURDYCI)=EMUCI)/(YCI+1)myY (1))
EMURDY(CI)=EMURDYCI) w0, 54(R¢I)4R(141))
180 CONTINUE
R e 4 i - mmmmm==ENTRAINMENT CONTROL,

Cuwdkarrawnwwnewrw®x ENTRAINMENT CONTROL SPECIFIED HERPwwhddww

RMESmEMURDY (NM1) =0, S*EMUCN/2)*R(N/2)/(Y(N)=Y(N/2))
RME=RME#(0,00+ABS(CURCN) =UR(NMIDI/UR(H)) I *x2
TFCLTEQ.1)RMEE=EMURDY CNMT ) % (1,99mURCHMTII/UR(NY) #e2



c-----

c---ﬂ-

c-—--—

2035

205

206
C
c-----

mrrmmrmammsem==aUALL FUNCTIONS
CALL WFC(T1,eDIFI,TIF)
IFCIENTH.EQ.0)GOT0206
mermmmmcammm==SOURCE TERHS FOR ENTHALPIES
ermmemenenre.e==={JSE SD FOR TEMPORARY STORAGE
00203!=20NH1

SSaU(CIY»UCY)

S6=U(1+1)wUCI+1)

S DCI)SEMURDY(I)#*(S6=55)
CONTINUE
S D(1)=0.0
D02051=2,NM4

T=¢1.0=1.0/PREF(I))I»0D.5

SUCI)=(S p(I)=8 D(Im1))wT
CONTINUE
D02061=2,HNMq

SD(1)=0.0
CONTINUE

- e e e ~PRELIMINARIES FOR COEFFICTENTS,
PX=pE[/DX

G==RME

PD8=0.,125*PX

PD4=0,25%PX

PGEPX*G

PGDB8m0Q,125wp6

PGD4=PGDB+PGDS

GD4=0,25%0G

BOIPaOM(3)=nM(2)

PCOMPRPGDLwYRONP

PLONPEPDA*BOMP

TPGDL=) , 75#pG

crmcamcmn e ae===BJUNDARY COFFFICIENTS FOR VELACITY,
HLP==GDbLe (OM(2)+0M(3))

AHLpP=ABS(HLR)

THLp=dLP+HLP

TPEEHIRDY(2)

= wlE -



c-u--
c-—--

2ur

TTP=TR4AHLP4ABS(TPmAHLP)

ADETTP# (R25/R(3))*#*2aTHLP=T1#(R(1)/R25)**2=pGMP
BD=2,0#79

COmPAOMP (3. 0*UR(2)+UR(3))mDPDX(2)*0, 52YI*(R(1)+R25)
1 «(R¢1)+R2S5)

DUBTTP# (RES/R(T))*#*2+TT1+THLP+3,0#PGOMP

RPEK25

AUC2)SAD/DU

BUCZ2)=BD/DU

cu(z2y=cop/nu

IFCIENTH.EQ.0)GoT0207

ettt L LB DL ==~BOUNDARY COEFFICIENTS FOR ENTHALPY
e et — .. ————— FOR ZERO ENTHALPY FLUX ACROSS SURFACE
TPF2=TP/PREF(2)

TTPFaTPF2+AHLP+ABS(TPF2=AHLP)
ADFaTTPF=TH| P~PGOMP40,5#SD(2)
PFEADF+PX*BOMP=2, 0+5D(2)
TT=3,0%40(2)+H0(3)
COF=p4OMP»TT+2,0%#S5U(2)
ANC2)=ADF/DE

BH(2)=0.0

CH(2)=CDF/DF
et e e mammn=GENERAL COEFFICIENTS,
e - ——— ~VELOCITIES

DO208I=3,NM1

BOMAA=BONP
BOMP=OM(l+1)=0OM(I)
BOM=BOMM+ROMP
BOMT3=80Mw3.0
PGOMM=PGOMP
FGOMP=pGD4=BOMP
PBOMapPX*BOM
THLHITHLP
HLPS=GDbw ¢(OMCT+1)+001(1))
THLPRHLP#HLP
AHLPSABSC(HLP)

LG s



TTMRTTP
TP=EMURDY (1)
TTPETP+AHLP+ABS(TP=AHLP)
RH=Rp
RPpa0,5w(RCII*R(I*1))
ADaTTP#(RP/RCI1+1))#»2=THLP=RPGOMP
BOaTTH* (RM/R(I=1)) w2 THLM=PGOMH
COuPDAw(BOMTI*URCII*BOMP*UR(I+1)*BOMHM*UR(I=q))=
DPOXCI)*#(YC(I#1)=Y(1m1))*R (1) *R(I)

DUSTTRP#(RP/RETI)) ww 2« TTM*(RM/R(I) ) %w2+THLP=THLM+TPGDAwROM
AJCI)=AD/pU
BUCI)=BD/nU
Cucl)=cD/nu

IFCIENTH.EQ. 0)G0oT0208

----------—---------ENTHALP 1ES

TTMF=TTPF
TPFSEHURDYCI) /PREF (L)
TTPFARTPFHAHLP+ABS(TPF=AHLP)
ADaTTPFE=THLP=~PGOHP
BDSTTHF+THLM=PGOMM
Co=PDAwW(BOMTI*HOCI)»BOMPwHO (1 +1)*#a0MM#HO(TI=1))
CDaCD+2.0x8UC])
DF=AD+RD#PBOM=2 ,0#50(1)
AHC1)=AD/DF
BHCI)=BD/DF
CHCI)=CD/nF

CONTINUE

=I9LeE =

(e emcpaonanacemaannca=a50LVE FOR D/S U'S

210

URCHISURCN) ~DPDXCN)*R(N)wREN)wDX/RUCN)
IFCURCN) LT . UJHMINWR(NIIURCHNISUJMIN®R (i)
BUC2)Y=RUt2)2UR(1)Y+CuU(2)
DO0Z2101=3,NM1
Ta1,.0=BU(1)*AU(CI=1)
AUCI)=AUC1)/T
BuCI)=CBUCI)*»BUuCI=122CcuCIdd /T
CONTINUE
NEGY=a(



p0220J=2.NM1
[aN=J+1
URCI)=AUCT) *URCI+1)+BUC])
1FCUR(T) .GE.O.0.0R.I.EQ,2)60T0220
WRITE(C6,215)1]
21> FORMATC' ','NEGATIVE VELOCITY, 12',13)
NEGV=1
URCI)=URC1+1)
220 CONTINUE
1F(NEGV.EQ,Nn)GOT0240

WRITECG,250)
250 FORMAT('0','TAUI SET NEGATIVE Tn TERMINATE CALEULATION")
TAUI==1,0
240 IF(IENTH.EQ_0)GOTOR265
Conmmus rrammmmamman=mman==n§OLVE FOR D/S ENTHALPIES

BH(2)=RH(2) wHOC1)*CH(2)
DO2501=3,NM1Y
T=1,0=8H(1)*AHCI=1)
AHCL)=AHEL)/T
BHCL)=(BH(I)*BH(1=1)#CH(I))/T
250 CONTIWUE
D026011=2,NM1
J12aN=11+1
HOCI2)=ANCI2) »HO(I2#1)+BH(12)
260 CONTINUE
(memmemmmcemacenman=ADJUST HOC1)
HOC1)SFDIFI«0.5%(HO(2)+H0(3))
265 PE]=pEI=RHME«DX
(ermremcrmrammmnmman=menemaa==(ALCULATE RHOwU#R ¢S
267 DOZ270I=1,N
RUCI)sRHO (1) *URCD)
270 CONTINUE
RU3Z=RUC(S)
DOZ2301=2, NM1
RUCI)I=0.5«(RUCTII*RUCI+1D)

28U CONTINUE
C

st e B



2yu

300

310

32u

IF(RUC2).NE.0.0)60T0300

WRITE(2,290)

FORMATC'O','RUC2)=0,0, JUMP TO END OF SOLVE")
RETURN

CONTINUE

mer A e mmrw e m~mam=ea==NORMAL DISTANCES,

NOTE THAT NORMAL DISTANCES ARE CORRECT WHETHER
ELOW 1S CURVED OR HOT
YI=pEl#OMI/ (BPI*RUC2))
Y(3)aY1+PEI»OM(3)/(RUCZ)+RU3)
Y(2)m2,0%Y]1aY(3)
DO310I=4,N
YCI)aY(1=1)+PEI*(OMCI)=0M(TI=1))/RUCT=T)
COHTINUE
IF(KRAD.EQ,0)G0T0330
DO3201=2,N
RCIYaR(1)ay (D)
CONTINUE
R€5=R(1)+VY]

(rmmeame mmmwmenw==eOLVE FOR D/S TEWPS AND DENSITIES

s N o]

330

340

DU3401I=1.,N
UC1d=ur(IY/RED)
ENTHIHO(1)=0,5«u(1)*U(CI)
TEMPCI)RENTH/CAILIR
RHOCI)=P (1) /€287, 0«TENP(1))

CONTINUE

NSTEPSNSTEP#+1

X=X+DX

RETURN

END

i
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SUBRUUTINE To SUppLY WALL FUNCTIONS

SUBROUJTINE WF(T1,FDIFI,T1F)

COMMON/AZDUDY(75) JEMUC?S5) 4 HOC75) ., 0M(75) +PREF(78),RRO(75),RU(7S),
TEMP(75) +UC75),Y(75),EMURDY(?5) v TAUCZ8)Y ,R(75),Ur(75),

BP1,0M1,PEI,TAUl,Y1,R25,KRAD,IRAD

e Neloele]

PI,PR+RUB,TERAD,VISCL/ X+DCURV,SLTX,SLTT,NSCAN, LAG
C /D/AK,ALMG, FR

DATA SHALF.EWALL/0.04,%2,0/

RHOREF=0.5%RHOC1)+0 25#(RHO(2)#RHO(3))

YREF=Y]

UREF=0,5«(U(¢2)*U(3))

F=0 _ 5«(DPOX(2)*DPDX(3))*Y]I/(RHOREF*UREF*UREF)
REFUREF*RHOREF*YREF/ENUCT)

IFCRE.LT.120.02G60T0195
e ean s mn et anmma| G LAY
ERSREwEWALL
NIT=0
SHALF1=SHALF
SHALFBAK/ALNG(ER*SHALF)
IFCABS(SHALF=SHALF1).LT.0,0001,0R,NIT,GT+10)G0T0192
NIT=N]IT#+1
GOTO191
SESHALF*SHALF
BPI=1,0=SURT(S+*F)/AK
EMURDY (2)20  25%RHOREF*ABS(U(3)mUC2))w (AK/BPI)ww?2
WRITEC6,190)X,NSTEP,RE
FURHATC(' ', 'NON LAMINAR WALL FLOW AT X=' ¢y FO .4, 'NSYEP=', 14,

1 'RE=!,F6,2)

GOTO196
----- e meman AMTHAR FLOW
§$=1.0/RE=0,5+F

lﬂ/DpDX(?SIaP(?S)aCﬂIR:DX:HGIH!Tl‘EHTH:LTrNINH1rNPOS!NSTHp.

=8¢ =



BPI=0,5=RE*F/12.0
IF(KRAD.EQ,1)BP1=0,08333#(3,0+R(1)/R25)
EMURDY(2)REHMUCT) «R25/ABS(Y(3)mY(2))
196 T1=a5«RU(2)
TAUI=T1#»UREF/R(1)
IF(TAUI.6T,0,0)6nT01938
WRITECG,197)YTAUI ,UREF,RE,F
197 FORMAT('0','TAU] NEGATIVE',F8.4,2X,"UREF =2',F8.4+2X,"RE ="' ,F8.4,
1 2!0" -'pFS.k)
----- emmmanmmamm e JALL FUNCTIONS FOR ENTHALPIES
198 IF(IENTH.EQ.0)GOTO0201
HEPREF(2)
1F(RE.LT.120)G60T10200
------ “Hmmnmemmmam===TURBULENT FLOW
PRRAT=PR/PREF(2)
PJAYS=3 . 68% (PRRAT=1,0)/PRRAT##0 25
RES=sAK*AK*RE
SS0=1,0/RES~0.1561/RES*%0,45+0,08723/RES**0.3
1 +0.,03713/RES*%0,18
$S10=S507(1.0+PJAYS»S§50%+0,5)
FO=0,25#RESwF/CAK®AK*(1,0+0,0625«RES))
$S15a(1.725/RES#%0,3333)/(PJAYS+6,8)»wl 165
§51=8510«¢1 _0~Fp)+FD%*S815
S=SSTWAKWAK
FOIFI=(H=1,0)%0 SwUREFw#2
TIF=§#»RU(2)
GO0TL201
------ e m e ammman [ AMINAR FLOW
200  S=1,0/(RE*PR)
FOIFIa(H=1,0)*0 Sw#UREF*UREF
TI1F=§*RU(2)
207  RETURN
END

= 0CC =
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THIS ROUTINE USES THE PUWER LAW TO REPRESENT THr BLAWING PROFILE
AT EXIT FROM THE SLOY

SUBROUTINE SLOTCVEL,CHMEW,ISLT,SLTTO,RO0,DXF,Q)
COHHON/A/DUDV(?S).EHU(?S).HO(?S)-OHt?Sa.PRErtvs).an<75>.nU(75>.
TEHP(TS).U(75).V<?5);Enuanvc?si.TAU(?!).R(?S).unt?S).
BP!:BHI,PEI.TAUIcY!.RZS.KRAD'IRID
fonPnX(?S;.P(?SJ.CAIR.DX,Horuxf.!ENTH.LT.N,~u1.Npos.NSTEP.
PI1,PR,RUZ,TERAD,VISCL/X,DCURVSLTX,SLTT,NSCAN,LAG
/C/DISPT,SHAPE, TMTH
/D/AK, ALMG,FR
JE/NTRIGT,NTRIG2,NTRIG3
DIMENSION HOO(C50),0M0(50) RHOO(S50),
1 RUO(SO)-TEMPO(SO)cUO{SO)rYOtSO).DPDXO(SO).PSI(75)
ISLT=IsSLT*1
NIT=NIT+

OO0

~ Tec ~

IF(NIT.LT.5)GOTOS

WRITE(C6,3)
FORMAT('O' ' ITERATION STOPPED')
§TOp

IF(NIT,GT.1)60T0 13

L7=a2

NPSSaNPOS

DX=SSLTX=X

CALL SOLVE(0D,0.0)

WRITEC2,10)

FORMAT(! ','UPSTREAM PROFILE AT SLOT")

CALL OQUTPUT(1)

POYI51=21,N
HOOCI)=HO (1)
VH0CI)=0M¢I)
RHOOQCIY=RKHOCI)



TEMPOCI)ETEMP(I)
voc(ry=uclly
Yocl)=y(I1)
DPDXOCI)®PPDX(I)
) o CONTINUE

BPIO=BPI

OMIO=0MI

PETIO=PEI

PlO=pPI

YIO=Y]

NO=H

NOMY=aN=1

NOP1 =i+

NOP2ais2

NSTEPU=NSTEP

PEO=pPE

RUJO=RU3

HSLTTS0,5%#SLTT
18 SLTHTM=(0 . 5%#cMEWXRO*VEL*VEL
SLTROSRO
CPSLY=1005.0
SLTHOSCPSLT»SLTTO
SLTUMASSQRT(O0.S5#VEL®VEL*CHEN/SLTT)
NPOSaNPSS
NSLT=NU+40
NENSLT
NMY=N=1
NEaNSLT=NO
NZPTaN2+1
NERZanNle2
Nep3an2+3
NE[11aN2=1
(rrmmmnmmaetmmn=TRANSFER EXISTING VALUES TOo QUTER PART OF NEW GRID
DO201=s2,NUP1
JENUpP2ml
JPN2=J*ii2

= GeC ~
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(er==—ermcam=aeSET VELOCITY PROFILE ACROSS SLOT ACCORDING TO POWER LAW

30

Y{JPN2Y=SYO(J)+SLTT
UCJPN2)YBUNCY)D
RHOCJPN2)=RHOOCJ)
HOCJPN2)=K00(y)
TEMP(JPN2)STEMPO(Y)
DPDXCJPN2)Y=DPDXO(J)
PCJPN2)=PIO
CONTINUE

DO301=3, N2
FACT=0.5%w¢1.0=C0S(3.1416«FL0AT(I)/FLOATIN2PY)))
FACTSFACTw(FLOATCI)/FLOAT(N2P1))%w0,5
Y(I)=FACT»Y(N2P1)

YA=Y (1)

TFCYCI) . GT HSLTTIYASSLTTaY(I)
UC1)=SLTUMX*CYA/HSLTT)»*(1_0/Q)
RHOCI)=SLTRO

DPDXC1)=DpDX(N2PT)

P(1)=p10

HOCI)=SLTHO
TEMP(I)S(SLTHO=0,5#UCI)*UCT))/CPSLY

CONTINUE

YI=aQ 6*Y(3)

U2S=SLTUMX®¢YI/HSLTT)ww(1,0/0)

VALUES AT NEwWw GRID LINES 1 AND 2

Ut2)=2,0%U25=U(3)

RHO(2)=SLTRN

Y(2)=22,0Y]=Y(3)

DPDX(2)=DPDX(NZPT)

P(2)=aPl0

HO(2)sSLTHO

TEMPCE2)=(¢SLTHO~0,.5wu(2)=»U(2))/CPSLT

RHO(1)=SLTRO

PPDXC1)=DPDX(NEP1T)

P{1)=sPl0O

HO(1)=SLTHO

£ce
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36

60

60

74

TEMP(1)=SLTHO/CPSLT
IRAD=Q
KRAD=(
1F(X.GE.DCURV.AND.TERAD.NE.N.0)GOTO36
003"01’1 s N
R¢1)=1.0
CONTINUE
RZ25=1.0
GOTO039
KRAD=1
PO37131,N
R(1)=TERAD+Y(1)
CONTINUE
RZ3=TERAD*YI
RUC2)R0.5%{r(2)#»UC2)*RHO(2)+R{(3)#U(3)»RHOC(3))
CALL WF(T1,¢DIFI,T1F)
wommnmmmman(ALCULATE DISTRIBUTION OF OMEGA VALUES ACROSS WHOLE GRID
PSIIaBPI#YlwlU23+«SLTROWRZS
PSI(3)=0.25#(U25+U(3))w(R23+R(3)Iw(yY(3)=~YI)uS  TRO#PST!
DO4LOIRL, N
PSICI)=PSTCI=1)+0,125%(R()*R(T=1))#{UCD)4UCT=1))e(Y(I)myY(T=1))
*(RHOCI)«rdD(I=1))
CONTINUE
PEl=PSI(N?
DOGOI=AZ, N
OM(1)=apSICI)/PEL
CONTINUE
OMI=0,5+0M(3)
RUC2)S0.5%*(rHOC2)»U(2)#RHO(3)*U(3) ) »R25
pOT741®mY , N
URCIY=UCIY#»R(T)
CONTINUE
DX=0,01=yY(N)

S A
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75

80

CALL SOLVE(1,0.0)

XESLTX

NTRIGI=2

NSCAN®Q

LAG=1

SLYPO=PI/(1.0=0.1429*#SLTUMX*SLTUMX/ (287*#SLTTO0))»*3 5

WRITEC6,75)INIT

FORUMAT(' ','ITERATION',14)

WRITEC6,BO)pMEW,SLTPO,SLTTO,ISLT

FORMAT(!' ','BLOYING COEFFICIENT =',F8.6,/"' ',
VISENTROPIC PO B',F8.0.4X,"'T0 &', F6,1.,41 1V,
'sLOT!,I3)

CALL OMS

CALL QuUTPUTC1)

DXF=0,04

RETURN

END

S A
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SUBRQUTINE TO CALCULATE NORMAL PRESSURE GRANIENT
RESULTING FROM SURFACE CURVATURE

SUBROUTINE NORPRES
DIMENSION OMDIF(?5) ,ARINT(?5),pPs1(75)
COMMON/A/DUDYC?5) ,EHUCTS) /HOC?5),0M(75) ,PREF(75),RHO(75),RU(75),
TEUMPCTS) ,U(?75),Y(75) ,EMURDY(?5) ¢+ TAU(P?S) ,R(75) ,UR(75),
BP1,0M1,PETI,TAUI,Y1,R25,KRAD,IRAD
/B/DPDX(78) ,P(?5) ,CAIR/DX,HOINITIENTH/LT,N,NM1/NPOS,NSTEP,
Pl1.PRsRUS+TERAD,VISCL,X.DCURV,SLTX,SLTT/,NSCAN, LAG
IF(X=SLTX.LT.0.,001)G60T090
NM3zN=3
IFCIRAD.EG,1)GOT025
KRAD=1
I1RAD=1
DO1UI!1!N
RC1)=TERAD*Y (1)
JREI)=Uu(Iy#»Rr(C1)
RUCI)=RrHO(1)*URCI)
CONTINUE
00151=22,NH1
RUCI)=0.5+C(RUCI)*RUCTI*+1))
CONTINUE
RZ25=R(1)+Y]
UeS=0,.5«Cu(2)+U(3))
BP]=0,08333+-(3,0+R(1)/R25)
PSIIaBPI»Y]«U25*«RrHO(2)%R25
PSI(3)=0_25+(U254U(3))w(R25+R(3))*(Y(3)=YI)wRUOC(2)+PSI]
DOL21%4,N
PSICI)=PSTCI=1)#»RUCI=TIw(Y(1)aY(I=1))
CONTINUE
PEI=PSI(N)
DO24131,NM3
JaN=]
OMDIFCJD)mOMCJ+1)=0MCJ)

9zZ
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RM=0,5%«(R(JI*R(J*+1))
RMSQA=RMwRH
ARINTCIISARINT(J+1)+PEI*0 . Se(uUCJ)+ulJ+1))«0OMnTIF())/RMSO

CONTINUE

OMI=0,5+0!(%)

GOT090

IF(DXO,LT.0.000005)60T090

PO301m1,NM3
JEN=]
RM30 ,5#(RCJI*R(JI*1))
RMSUSRMwRH
RINTSARINTC(J*1)+PEI*0, 5+ (11¢J)«UCI+1))*0HMDIFEJ)/RMSA
DPOXJaDPDX(N)=(RINTHARINT(J))/DXO
DPDXCJI=DpDXLY)*(DPOAJ=DPDXCU))*T1000,0%DX0
PCJIapP(N)=RINT
ARINT(J)SRINT

CONTINUE

P(2)aP(3)

DPPX(2)=nPDx(3)

P(1)aP(3)

PPPAC1)=DnPDX(3)

Plap(1)

DXO=pX

RETURN

END

= LG T
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SUBRUUTINE TO CALCULATE LONGITUDINAL PRESSURE GRADIENTS

SUBROUTINE PGDT(PS/NX:XS,IPOINT)
cCOopnon l‘Ba’DpDX(?S)IP(?S)tCklninlHUINITflENTH.LTl”pNH* +NPOS,NSTEP,
C PI1.,PR,RU3, TERAD,VISCL,X+DOURY,SLTX?SLTT,NSPAN,LAG
DIMENSION A(4,53),XS(70),PS(70)
XMz 0 5«4DX
H13XS(NPOS*+1)=XM
TFCHY/ CXSC(NPOS+1)=XS(NPOS)).LT,.0,.015)60T070
P1apS(nNPOS*1)
TFCNPUS.NE,1)G0T029D
H2=AS(NPOS+2)=XH
H3=XS(NPOS+3)=XM
H4=XS (NPOS)Y=XM
PR=PS(NPOSe2)
P3=PS(NPOS+3)
P4LapS(NPOS)
GOTO40
IFCIPOS . NE, (NX=1))GOTU30
H2=XS (NPOS)=XM
HISXS(NPOSw1)=XH
H4=XS(NPOSm2)=XM
P2aPS(NPOS)
P3=PS(NPOS=1)
P4L=PS(NPDS=2)
GOTUA40
H2=AS(NPOSe2) =XM
H3=XS(NPOSY=XM
H4sXS(NPOS=1)aXM

= BCZ -
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70

P2=PS(NPOS*2)
P3=PS(NPOS)
P4=PS(NPOS=1)
D0301=1,4
JEb4m]
Allrl)sH T wwy
A(2s]1)aH2w*y
ACSs])aH3wny
AChrl)mHbuw)
CONTINUE
AC1,5)ap1
AC2,5)=p2
A(3;5)=P!
Al4L,5)=ps
DOGOK=2,4
DOAUI=K:4&
DO&0I=K,5
ACT e dY=ACT ,J)=A(K=1,J)%A(1,K=1)/A(K=T,Ke1)
CONTINUE
PISACGL,5)/A(4L.6)
DPDX13C(A(3,5)=A(3,4)%P])/A(3.3)
DOZ0181.,N
DPDXC1)=DpDX1
P(I)=p1
CONTINUE
IFCIPUINT.EQ,1INPOSaNROSHT
RETURN
END

= 6ce =
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SUBROUTINE FOR GENERATION OF VELOCITY PROFILE USING
cOLES WAKE FUNCTION

SUBROUTINE COLES(TINF,PS,NX.,XS)

DIMENSION PSIL(75),x8(70),P5(¢70)
COMMONZAZDUNY (?5) ,EMUCTS) 4HOC?75),0A4¢75) ,PREF(?75),RHO(7S5),RU(?5),
c Tsupc?sa.uc7s).vt75).snunbv<?5>.ruu(75>.a(?5>.unt?5).
C 8P1,0MI,PELI,TAUI,Y1,R25,KRAD,IRAD
c fBIDPDXt?B).P(?S)uCAIR:DX.Hn!NITaIEHTH;LTaNaNM1.NPOSoNSTEP.
C Pl,PR/RUB,TERAD,VISCL/XsDCURVSLTX,SLTT,NRCAN,LAG
C /C/DISPT+SHAPE,THMTH
C /D/AK,ALNG,FR

WRITE(2,10)

FORMAT(' ' ,'COLES WAKE FUNCTION USED FOR STARTING PROFILE')
XST=aX

NSTEPS0

DX=0,1*Y(NM1)

CALL PGDT(PS,NX,XS,1PUINT)

ROI=pP1/ (237 _0«TINF)

€=5,1

PI1F=0,5

UTAUsS3,0

TRYSUCN) /(4 _598pIF+C#2 . 3%*ALOGC(Y(N)»TAU*ROTI/VISCL))
IFCABSCUTAU=TRY)/TRY.LT.0,001)607030

UTAU=TRY

GOTO235

WRITE(6,50)pIF,UTAU

FORMATC(" '",'PI=' ,F6.4+3X,'UTAUS',F10.38)

RLN=FLOAT(N)

poGL1I=T N

YCI)=Y (W) w(FLOATCI)/RLN) ww2

= DEe ~
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a0

R(1)aR(1)asv(])
1FCKRAD.EQ,0)R(I)=1.0
YopsY(1)/v(IN)
YWALL=Y(I)Y=UTAU*ROI/VISCL
IFCYWALL.GE.T0.0)GOTO53
UCI)=sUTAU=YWALL
GOTU5S
WAKF=0.005298=0,459549+YDD+7,31577+YDD*YDD=4 . R5R16»YDD=YDDeYDD
IFCYDD.GE . 1.0)WAKF=2,0
UCI)auTAUXCCALOGCYWALL) ) 7AK+C+PIF»UIAKF/AK)
RHOCI)=ROT
TEMPCIY®TINF
PREF(1)=Pp
HOCI)=HOINIT

CONTIHUE

YIa(),7#»y(3)

RE3=R(1)+Y1

I1FC(KRAD.EQ,N)R25=1,0

BP1=0.,5

UeS=UC3) w(Y(3)=Y1)/((2,0%BPI+1)aYImY(3))

TF(YIwy25«RN1/V1ISCL.LT.120.0.0R.BPI HE,0.5)G0y080

YI=), 6%Y(3)

BPI=0.8

GUTY?0

Uut13)=0.0

Y¢{1)=0,0

Y(2)=22,0nYlaY(3)

RE2)=R(1)+Y(2)

UC2)=2,0wU25=U(3)

DOB41I=1,N
URCI)=sUCTywR(T)

= Izc =
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RUCTI)=RHOCID)*URCI)

CONTINUE

RU3Z=RU(3)

DO861s2, NMT
RUCI)=0.5«(RUCTII*RUCI+1))

CONTINUE

EMUCY)avISCL

CALL WF(T1,¢DIFI,TIF)

PSI258R0I*Bpl*U25#Y*R25

PSILC3)=pPSIP5+R0OI*0,.25%(R25+R(3)IW(U254U(3)) (Vv (3)myY])

PO901=4,N
PSILCI)SPSILCI=T)+RUCI=1)w(Y(1)mY(TIn1))

CONTINUE

PEI=PSIL(N)

PO1001I=3,N
OMCI)=pSTILCI) /PE]

CONTINUE

CALL PGDT(PS ,NX, XS, IPUINT)

OM]=0,5%01(%)

0M(1)=0.0

OM(2)=0.0

CALL SOLVEC1,0.0)

NSTEP=(

X=XST

RETURN

END



SUBROUTINE TO CALCULATE EDDY VISCOSITIES USIwnG
HIXING LENGTH HYPOTHESIS

SUBROUTINE MLH(RME)
COMMON/AZDUPY(?5) EMUCP?S) 4HOL?5),0M4(¢?5) ,PREF(75),RHO(?S),RU(75),
o TEMP(75) ,U(75) Y(75),EMURDY(75) +TAU(?5),R(75),Ur(75),
c BP1,0MI,PEI,TAULl,YI,R25,KRAD,IRAD
C /B/DPDX(7?5),PC75) ,CAIR DX, HOINTIT,IENTH,LT,N,NM1,NPOS,NSTEP,
C PI:PRlRH3tTERAblVISCLerDCUﬂVlSLTX:SLTT:NSCA“lLAG
C /D/AK,ALMG,FR

NMZ=pNm2

PIF=U(N)~FR

= F%e

( ~=-=====wa=waFInuD POSITION AND INTERPOLATE LINEARLY FOR CHARACTERISTIC LENGTH

110

10

J=N

JsJ=1

UdT=U(N)=uCy)

1FCUJT1.GE.DIF)GOTO120

60T0110

YLayY (J)+ (Y g+ 1) =y (J))*CUCN) =D F=UCIY)Y/CUCI*1)nUtY))



(rm=—- Foumomme==anaCALCULATE EFFECTIVE VIScOSITIES USING MIXING

c ------- W B P U g Py T - LENGTH THEORV
c ----- -----QAPPRDXIHATIOH TO VAN DP!EST FACTOR
Coseiag mm=mEHUCT) ALWAYS LAHINAR

UTAU=SQRTC(TAUI/RKO(1))
DO150I=2,HM
AL=ALMG*Y L
RHOM=0.5% (RHO(CT)*RHU(I+1))
YH=0 S« (Y(I)*Y(I+1))
IFCYM. LT, AL/AKYALSAK*YN
D=(YM*RHOM=UTAU/CEMUCTI)*26.0))
IFCD0,.G6T.5.0)GoT0130
AL=AL*(1,0=EXP(=D))

150 EMUTY=RHOM®AL*AL*ABS(DUDY (1))
Lemmeaan Memmmam==a APPLY CURVATURE CORRECTION TO EMUTS
IF(X.GT.DCURV AND.TERAD.NE.O.0)CALL CURVE(U,Y,RsDUDY(I),
1 EMUTY,1,0.1,Y(NM1))

EMUCTI)=EMUCI)+EMUTY
150 CONTINUE
RETURN
END

- PEC
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SURROUTINE FOR TURBULENT VISCOSITIES
USING DVORAK'S INTERMITTENCY REPRESENTATION

SUBROUTINE TURB(RME)
DIMENSION GAMA(?7S)
COMMON/A/ZDUDY(?5) ,EMUC?S5) ,HO(75),0M(75) ,PREF(75),RHOC(78),RU(?75),
TEMPC(?5) ,U(?5),Y(?5),EMURDY(¢75) +TAUC?S),R(7S),Ur(75),
bplIOHIIPEIITAUI!YIIRZSlKR“DIIRAD
/B/DPDXCTS)Y ,PC75) +CAIR/ DX, HOINTITSIENTH, LT/ N/,NMT1,NPOS,NSTEP,
Pl,PR+RUB,TERAD,VISCL/X+DCURV,SLTX,SLTT,NSCAN, LAG
/C/DISPT.SHAPE, THMTH
/D/AK,ALHG,FR

===mam=agHAPE FACTOR H IS USED IN THIS ROUTINE

NSCANANSCAN+1
HESHAPE

= Ghida=

mrmcamennee.=DETERMINE FORM OF VELOCITY PROFILE
JET 3 0 FOR PLAIN B,L.,
JET ®= 1 FOR MAXIMUM IN PROFILE
JET 8 2 FOR MAXIMUM AND MINIMUM IN PROFILE
NMZ2=nNm2
JET=0
MAX=0
MIN=0
IMAX=0
IMIN=0
pO101=3,NH2
IFCOUDYCIY . LT.0.0.0R.,DUDY(1+1).GE.N.0,
.~ UR.MAX.EQ,1)GO0TO0S3
UMAXsUC(L+1)
MAX=1
IHAX= ] +1
YMAX=Y(1#1)



OMAXsOM(1+1)
5 IF¢OUDY(!Y.GT.0,0,0R,DUDY(1+1),.LE.0,0,
* OR.MIN_.EQ,1)G0T010
IFCI=IMAX_LT,5)G0T010
IMIN=T+1
HINZT
UMIN=U(I+q)
YMIN=aY(I#q)
10 CONTINUE
IF(MAX,EQ.1)JET=1
IF(MAX.EQ.1_AND_MIN.EQ,1)JET=2
IFCIABSCIMAX=IMIN) . LE.3)JET=0
CRITS(UCN)=pyMIN) 7UCN)
IFCJBT.EQ.2 AND . CRIT.LT.0.1)JET=Y
IFCJET,.EQ.2 _AND JETO.EQ,1.AND.NSCAN _NE,12JET=
25 TLAYER=Y (NM1)
Ce==~====CALCULATE VELOCITY DEFECT AND POINT OF DEPARTURE FROM LAW OF WALL
IFCJET.NE.1)YGOT04O
UD=UMAX=UCN)
UMD=U(N) 7LD
IFCUCN) /UDL,GT. 4, 5)JET=0
40 IFCJET.EQ.O3YD=(0,136/(H~1.269))*DIspT
IFCH,GT.2.1 AND JET,.EW,0)YD=0.15«DISPT
IFCH.LT.1.6_AND, JET . EW,0)YD=(6.03574, 212*H)»0D18PT
[FCJET.EQ.2)UD=0,.76%U(N)
JP12JET+1
GOTO(45,78,78) ,uP1
C
C-==PLAIN BOUNDARY LAYER
45 DO50Q1=3,N
IFCY(I).GF,YD)GUTOGU
50 CONTINUE
60 UD=UN) = CUCT1=1)+CUCI)mUCTI=1))w(yDeY(1=1)0/CV(1)uY(]1=1)))
C
(ommnwn memmgeeemme=CALCULATE INWER REGION VISCOSITIES
o e e VAN DRIEST MODEL

2 AR



78 UTAUSSQRT(TAUI/RKO(1))
PIF=UMAX*FR
JEIMAX
80 JEJ =1
U =sUMAX=UC))
IFCUJ1.GE.DIF)GOTO32
GOT0480
82 YLAY(J) # CUMAX=U(J)=DIF)*(YCJa1)=YJ))/CUCIe1)uu(d))
pOBSI=2,NMT
YH=0, 5% (Y (I+1)+Y (1))
RHOM=0 . 5« ¢RHOCTI)*RHO(I+1))
ALIALMG*Y)
IFCCJET.En. 0, AND,YM,GT YD)  OR.(JET NE,O,AND, 1,.GY, IMAX))GOTO90
IFCAL.GT,AK*YM)
* AL=AK*YM* (1, 0~EXPCmYMeRHOM*UTAU/CENUCT)*26,0)))
EMUTY=RHOM*AL»AL*ABSCDUDY (1))
EMUCI)=EMUCI) +EMUTY
IFCEMUCT) _LT.EMUCI=T1))EHUCI)mEMUCT=1)
85 CONTINUE
90 IDEpT=]

(======rw=uSIGMA VALUES
IFCJET.EQ.0)SIGMA=C(0.245+0,189/(H=1,178))*D1SpPY
1FC(JET.EQ.T1 _AND UMD.GT,0,5)81GMA=(1 35=0,281+%uMD) *wYMAX
IFCJET.EQ.T1_AND UMD, LE,0,5)SIG6MASCT 06+0,091/¢umbD*0,104))w

1 YHAX
IFCJET.EQ.2)YSIGMA=D 127»TLAYER
ENUTLSUD*SIGMA/15,0

c LOCATION OF HEAN TURBULENT FRONT

95 IF(JET . EQ.O)YYBAR=(2.226+0,0962/(H=1.158))*DISPY
IFCJET,EQ.1)YBAR=(9 53/ (UMD+0.823)~0.726) *YMAX
1FCJET.EQ.2YYBAR=0,93~TLAYER

(mr=m—=- - GAMMA DISTRIBUTION
C
1G=(
UMP=0,5%(UMAX+U(N))
Crror== “APPROXIMATION TO ERROR FUNCTION AT GRID POINTS

POYOOI=IDEPT,N

= £%C ©
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g="n=

EXmABS(Y{1)=YBAR)/(SIGMA=1.,414)
ERF=1.10861%EX+0, 15S7wEX*EX=0 7635+ Xwn3+0 b4wEXuwd
1 =0, 1056%Ex%x#5+40,0005«FEXwwé
IFCABSCEX),GE, 3,0)ERF=1,0
IFCYCI).LT,YBAR)ERF=mERF
GAMACI)=0_5%(1_ 0mERF)
IFC(GANACI),LT.0.0)GANA(I)=0.0
IF(GAMACIY.GT.1.0)GANACI)=1,0
IFCUCIY.LE, UMP AND.1,GT . IMAX . AND,16,EQ.0)1G=1
CONTINUE
wermmmmmeer=a=N]FFUSION EFFECY
ANp SETTING UF INITIAL TURBULENCE LEVEL
IF(NSCAN.EQ_1.0R, JET.NE.JETO)YENUMXSENUTL
RK1=0,02
DEL=DISPT

~ALTERNATIVE DELTA AND K1 FOR JET=1,2 PROFILES

IFCJET.EQ.0YGOTO105
RK1=0,2
IF(JET.EQ.1YRK1=0.5
DEL=TLAYER
IF(UET.EQ.1)YDEL=2,.0%Y(IG)
ENUMXSRKI*Dxw (ENUTL~ENUMX) /DELSENUMX
------ mmmmmwaeEFFECTIVE VISCOSITY DISTRIBUTION
DO120I=1DEPT,NM1
RHOM=()  S#(RHO(T)+*RHUCTI+1))
GAMN=20 .5« (GAMACI)+GAHAC(I#1))
EMUTYSENUMX*GAMM*RHOM

IFC(X,GT.DoURY AND,TERAD.NE.O.0)CALL CURVE(U,Y,R,pUDY (1),
1 EMUTY, 1 ,RK1/DEL)

C======PREVENT GROWTH OF LAMINAR OUTER LAYER

118
140

TFCURCI) . LY _URCN) . AND.JET.EQ.1.AND, I .GT,IMAX)
* URC1)=URCN)
EMUCI)=EMuCI) +EMUTY
CONTINUE

C=====COSINE FAIRING TO JOIN REGIONS FOR JET=1 OR JET=2

¢

GOTOC150.,126,136) +JP1

= BEL =



146
148

130

13¢

154

156

200

FACT=0,8

YJOINSFACT®(Y(IG)=YMAX) +YHAX

JEIMAX

JEJ+14

TFCY(J).GE,vJOIN)IGOTOT132

6070130

169=
IF(GAMA(CIG1Y,GT . 0.9.0R,FACY.LE,0.1)G60T0134
FACT=FACT=0.1

60T01238

ENUASO, S« (EMUCIGT1)/RHOCIGTY+2, 0«EMUCTIHMAX) /RHOCIMAX))
PER=Y(IG1)=v(IHAX)

YASY(IMAX)*0.5%PER

LIMLaIMAX

LIMU=IG1

AMPL=EMUCIG1)/RHOCIGTIIENUA

GO0TO138

ENUASO,Sw(ENUMX+2, OwEIHUCIMAX) /RHOCTIMAX))
PER=YCIMIN)=Y(IMAX)
YARY(INAX)*0,5%PER
LIML=IMAX
LIMUSIMIN
AMPL=ENUMX=ENUA
DO140I=L 1ML, LINUY
RHOM=Q .5« ¢RHOCI)*RHUCTI*1))
EMUCI)=(ENUA+*AMPL®SIH(3,142%(Y(1)=YA)/PER))wRHAM
CONTINUE
YOC=YD*1000_0
YDICsYDI«1000.0
SIGIC=SIGHAT*1000.0
SIGHAC=sI16HMA#1000,0
WRITE(2,2C0)JET,H,UD.,YPC,SIGMAC,YDIC,UDI¢SIGIC,HI,PEI

FORMATC(' 'y 56X011/F6.2/F7.3,F8.5,F7.4sFBs5/F6.2,F7,4,F5.2,F8.5)

JETOSJET
RETURN
END

= B¢ =
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THIS SUBROUTINE FACTORS EDDY VISCOSITIES BY A
CURVATURE CORRECTION
A LAG EQUATION IS ALSO APPLIED

SUBROUTINE GURVE(U,Y,R,DUDYI,EMUTY,1,RKT1+DEL)
DINENSION U(75),Y(?75),RI10(?5),R(75)
COMMON/B/EPDPDXC75) 4P(?53) +CAIR,DX,HOINTIT,IENTH LY, NsNM1,NPOS,NSTEP,
1 P1,PR+RUS/TERAD,VISCL,X+sDCURV,SLTX,SLTT,NSCAN, LAG
PUDY=DUDYI

UMBQ  S»(u(]y+UC1+1))

RMa0 5« (R(IY+R(1+1))
IFCABS(DUDY), LT, 10,0)DUDY=R10.0

RI=2, 0~(Uti/aM)/DUDY

IF(R1.GT.G,25)R1=0,25

IFCRI,LT.=0_.5)R1=~0,5

IFCLAG,EQ.OYRIO(I)=R!
IF(NSCAN.EQ_1)RI0(I)=0,0
RISRIVCII+(RI=RIOCI)I*DX*RK1/DEL

RIO(CI)=R1

BETA=4,0

IFCRILLT.0,N)BETA=2.0

FAGT=1,0=~BETA*R]

EMUTYSEMUTY#FACT

LAG=1 '

RETURN

END

= Oké =
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10

THIS SUBROUTINE CALCULATES DISPLACEMENT AND MOMENTUM
THICKNESSES AND SHAPE FACTOR

SUBROUTINE pMS
COMMON/AZDUPYC75) EMULTS) +HOC75),0M(75) ,PREF(75),RHO(7S),RU(75),
o TEMPC?E) ,UC?5) ,Y(?5) , FMURDY(75) rTAUC(?S5) ,R(75),URrt?5),
5 BPYlOHIlPEIcTAUIlY!nRZSlKRADIIRAD
C IH/DPDX(?S)aP(75)lCAIR:DK.HnlNITiIENTHfLT!N!NM1lNPﬂSrNSTEP:
C Pl1,PR+RUZ,TERAD,VISCL/X,DCURVISLTX,SLTT,NSCAN,LAG
C /C/DISPT.SHAPE,THMTH
SUM1=0.0
SUM2=0,0
0010153 ,NM1
DYsY(I+1)=Y(I])
RHOM=a0, 5% (RHOCT+T)+RHOC(I))
UM=0 , SwCUCI+T)+U(I))
S1=RHOMwUM=DY
SUMT=suMt«S1
SUM2asuM24+S1*uUM
CONTINUE
RHD2530,5+*(rH0O(2)+RH0O(3))
U25=0,5+Cu(2)+U(3))
SUMTasuUM1+0 . 3334RH025%U25*Y1
SUNZ2aSUM2+RHO25%U25%Udd=Y1Iw0 2
$130,25#(RHN25+*RHO(3) I w(U25+U(3))* Y (3)=YI])
SUMT1aSUMT +81
SUM2=3UM2+S1#(U25+U(3))%0,5
STSRHOC(NY =U(N)
DISPTRY(N)=S5UM1/81
TMTH=SUMT/S1=SUM2/ (ST*U(N))
SHAPE=SDISPT/TMTH
RETURN
END

= e =



DA OOD

100

170

C
C
g
c

LAMINAR vISCOSITIES AND PR FOR CELL BOUNDARIES

SUBROUTINE LAMFLO
COMMON/AZDUPY(75) ,ENMUCTS) ,HOC(75),0M(?75),PREF(75),RHO(75),RUC(7S),
TEMPC(75) 4U(75) ¢ Y(?75) sFMURDY(?5) 1 TAU(?S) ,R(75),0UR(75),
EPr,OM] ,PEI.TAUI ,Y1,R25,KRAD,IRAD
/B/DPDXC?5),PC75) sCAIR DA, HOINTITIENTH,LToN,NM1,NPOS,NSTEP,
PI,PR/RU3B,TERAD,VISCL/X,DCURV+SLTX,SLTT,NQCAN, LAG
EMUCI)=C,00001062% (435, 0/ CTEMPCI)«110,U))+«(TEMP(]) /325 0)»«1.5
PREF(II=0 _707-(¢0,019)«(TEMP(1)=300_.0)/100,0
CONTINUE
001 1 01’.23“”1
EMUCI) =G, S« (EMUCTY)+ENUCTI*1))
PREF(I)=0_ S~(pREF(I1)+PREF(1+1))
CONTINUE
RETURN
END

2 A
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(o 0= 3 o O 5 |

c

SUBROUTINE FOR QUTPUT

SUBRQUTINE NUTPUT(NTRIG)
COMMOW/AZDUDY(75) ,EHUC?5) 4HO(?5) ,0M(?5) ,PREF(75),RHO(7S5),RU(?S5),
TEMP(75),U(75),Y(?5) ,EMURDY(75) ¢ TAU(?S) ,R(?75),UR(?5),
GP1,O0H1 ,PEI,TAUI,Y1,R25,KRAN,IRAD
IB/DPDXCPSY PC?5) +CAIR/DX,HOINIT s IENTH, LT+ N)NM1 ., NPOS/NSTEP,
PI;PR:RI_IS;TERAD.VISCL;X:DCURV:SLTX:SLTT;N!CANaLAG
/C/DISPT,SHAPE, THTH
DISPTCaDpISPT*1000,0
WRITEC2,1C0INSTEP, X, DXy TAUL,DPDX(1),pP1,SHAPE/DISPYC,PE]

100  FORMATC' ',aX,I13,F11,6,F10,6,F8.4,F10.1,F1%.1,88.4,
1 F10,4,36%,F11.5)
(rrmecune wmmmaafUlL) OUTPUT EVERY 25 STEPS
IF(NTRIG.EQ 1)G0T0110
IFCFLOAT(NSTERP) /25.0.EQ.FLOATC(NSTEP)/252)G0T0110
105 RETURHN
170 WRITE(2,115)
115 FORMAT('0' o S5X,"'OMEGA' ;80X "'Y* 1000, 7X,'U"¢3X,"RHO',6X,"'T?,5X,
1 "EMU#10% %6, 3X, "PREF',6X, 'DPDX ', 7?XsTDURY!,7X,'P',8X,
2 tral)
DO1501I=1.,1
YTTC=Y(1)«1000.0
ETTQA=EMU(1)*1000000,0
140 URITE(2,200)1,0MCLY,YTTC,UCI),RHDCI), TEMPCIY,ETTYQ,PREFC(]),
1 DppXCI)DUDYCI),PCI) s TAULT)
150 CONTINUE
2U0  FORMAT(' ', 12,F9.5/F13,6,F9.3,F9.3,F8.1,F11.2,¥%9.54,

o ok o

1

F11|?lF10.1fF10.1!F10.‘,
RETURN
END
FINISH
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FIGURES
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Figure 1
The Effect of Slot Width
on a 20% Ellipse
( Taken from Reference 32 )
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The Effect of Trailing Edge Shape
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on a 20% Ellipse
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0® incidence
Single Slot, t/c = 0.004

| Figure 3

The Effect of Mach Number
on a 20% Ellipse

(Taken from Reference 32)
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Figure 4

Cascade Nomenclature
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Figure 6
Details of
Model Blades
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Blade Calibration
Arrangement
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Treatment of
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Side-wall Suction
Ducting

Turntable

Figure 12
Sketch of the Cascade
Wind Tunnel
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Figure 16
Variation of Lift Coefficient

with Momentum Coefficient
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* Low Reynolds Number Resulfs, ot=35°

L

8 Heated Jet Results, o« =35°

Lift Coefficient C
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Figure 18
Variation of Lift Coefficient

with Momentum Coefficient
s/t =0.05 EadaP
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Variation of Drag Coefficient
with Momentum Coefficient
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Variation of Drag Coefficient

with Momentum Coefficient
s/e=0.05 . E=35°
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% Low Reynolds Number Resulfs
m Heated Jet Results
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Figure 23
Variation of Drag Coefficient

with Momentum Coefficient
s/ce0.19, 5=35°
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Variation of Turning Angle

with Momentumum Coefficient
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Variation of Turning Angle

with Momentumum Coefficient
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(u.) Cy =0.013

(b) C}_I =0.043

ey UL

1 =0.149

Figure 27
Variation of Downstream
Total Pressure Profile
with Blowing Coefficient
" sle=018, 8200, ok =5°



o 2T -

£ &V VAV,

(@) €, = 0.0076

(LUAVANEN

(b) E}j =0.054

W

(c) E)_I =0.115

Figure 28
Variation of Downstream
Total Pressure Profile
with Blowing Coefficient
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Figure 29
Relationships Between
Blowing Momentum Coefficient,
Slot Velocity Ratio
and
Boundary Layer Confrol Coefficient
$/c=015, =0, o(i=5°
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Sound Intensity Spectra

Recorded Behind Cascade
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Lower Surface
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Surface Coordinates of Merchant and Collar Cascade Blade

Used in Computer Programme POTFLOI to Generate Results of

Figure 37.
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X CAMBER 1/2=THICKNESS
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TABLE 2

Camber and Half-thickness Values of Primary Turbine Blade
Used in Computer Programme POTFLOl to Generate Results of

Figures 39 and 40,



