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VIBRATION CIHARACTERLSTICS oF

FABRICATED SPACE IFRAME

by

A.M.0. PESSU
Ph.D. 1978

SUMMARY

This thesis describes an investigation to determine the natural
frequencies and modal shapes of fabricated space frames.

Both theoretical and experimental approaches have been used in
the investigations. Finite Element method have been extensively used
in the theoretical analysis.

Variations between the experimental and theoretical results have
been traced to errors in the assumed joint boundary conditions. Working
on simpler frame structures, a method of joint representation has been
established to take full account of the actual joint boundary conditions,
The joint representation adopted is especially suited for finite element
analysis and very easily applied to any frame analysis. All forms of
joint conditions can easily be taken account of by this type of boundary
condition representations.

Given a suitable size of computer, the vibration analysis of any
space frame can be carried out readily with the computer programme
developed. The method of matrices reduction is recommended to keep

computer core requirement to a minimum.

BOUNDARY VIBRATION CHARACTERISTICS SPACE FRAMIES
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Shape Function constant
Cross sectional area
(subscript) element
Young's Modulus of Elasticity
Local or beam force
Rigidity Modulus

Second moment of area
Identity matrix

Stiffness coefficient
Length of a beam

Lower triangular matrix
Mass

System or Frame displacement
System or Frame force
Transformation matrix
Time in sec.

Kinetic energy

Local or beam displacement
Strain energy

Natural frequency
Distance from the origin
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Axes

Zero matrix
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CHAPTER ONE

INTRODUCTION

1.1 Preamble

A structure can be classified as one-dimensional, two-dimensional or
three-dimensional according to the character of its components. To a first
approximation, a beam is usually analysed as a line structure by
representing it by its centroidal axis. Hence, a beam can be regarded as
a one-dimensional structure even if the line is curved. A shell or plate
is represented by its middle surface for the purpose of analysis. A small
element of it (shell or plate) will therefore be capable of extension in
two dimensions. In reality, most bodies are three-dimensional, but only

a few of them are analysed as such.

A structure whose components are all one-dimensional is usually called
a framed structure. This is the type of structure dealt with in this work.
Such a frame as a whole usually exhibits three-dimensional extension. A
space frame, in particular, has components which span three-dimensional

space. Hence it extends in three dimensions.

Structural analysis spans a broad spectrum of investigations. Some
of the main areas of investigation include: stress distribution, dis-
placement distribution, structural stability, thermo-elasticity, plasticity,

creep, stress concentrations, fatigue and crack propagation, vibration



frequencies and normal modes of vibration. As the title of this thesis

NS
suggests, thejzzégz;e of this work is an investigation of the vibration

frequencies and normal modes.of vibration of space frames.

Recent advances in science and technology have required greater
accuracy and speed of analysis. This requirement has also reflected
itself in structural technology. Greater accuracy and speed will

guarantee that more factors can be taken into account at design stages.

The old practice of ignoring vibration considerations during the
design stages has many disadvantages, The vibration engineer who has to
solve the vibration hazard of completed structures is left with very
little option. Usually, the main choice available is the application of
one type of vibration isolation or another. But in modern structures,
such as long span bridges, tall buildings etc., vibration isolation is

even more difficult to apply.

In recent years, the presence of giant oil rigs has attracted some
attention, Much effort is being put into detailed analysis and checks on
the conditions of the rigs. Owing to the severe wave battering they
receive, 0il rigs are prone to fatigue failure, stress concentrations
occur at the joints giving rise to additional danger. Accurate means of
determining these stresses are always being sought (ref.10). Huge
sums of money are spent each year for diving checks on the several feet

of submerged parts of the oil rigs.

An accurate knowledge of the vibration characteristics of space
frames investigated in this work, would be applicable for checks on oil

rigs in particular and other structures in general,
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1.2 Scope
The work described in this thesis is an attempt to study frame vibration

with simple frames. A space frame was initially chosen for the study.
Although it was expected to be a simple space frame, the results obtained

showed that an accurate analysis of it presented many difficulties.

Theoretical and experimental vibration analysis of the space produced
some differences in the results., Attempts have been made to trace the
sources of error resulting in the differences noticed. The main reason
for the error has been traced to the incorrect prediction and represent-

ation of the joint boundary conditions of the space frame.

In order to overcome this error, attention was paid to one- and two-
dimensional static and dynamic analysis of small component members of the
original framed structure. These analyses were to simulate accurately

the actual effects of the various joints.

A further eight chapters describe the-work done in this project.
Chapter 2 describes the design of the space frame required for this work.
Chapter 3 describes the analytical method used in the theoretical work.
Finite Element methods have been used extensively. Chapter 4 contains
the various computer programmes written for the theoretical analysis, and
Chapter 5 describes the experimental methods used in verifying the theore-

tical results,

Chapter 6 contains the theoretical and experimental vibration analysis
of the space frame as well as some discussion of the results. This leads to
Chapter 7 where the difference in results of the previous chapter are analy-
sed and solutions sought by means of smaller one- and two-dimensional frames.
Chapter 8 contains a further discussion of the results obtained and their

applications. The conclusions are in the final chapter - Chapter 9.
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CHAPTER TWO

FABRICATED SPACE FRAME DESIGN

2.1 Design Objectives

Any structure in general has a primary function of supporting and
transferring externally applied loads to the reaction points. For a civil

engineering structure, the reaction points refer to the points of the

structure which are attached to a rigid foundation.

\Structural design usually involves the analysis of known structural
configurations which are subjected to known distributions of static or
dynamic loads, displacements and temperatures. It is really a structural
synthesis which should lead to the most efficient design (or optimum
design) for the specified load and temper;ture environment. Thus, most
structural design may proceed in steps of (i) a prior very rough
appraisal of the statics of the structures to obtain some measure of the
way the loads are carried, (ii) guessing or estimating the sizes of the
members or components, (iii) analysis of the structure i.e. attempting to
solve for the internal forces, or stresses and the resulting deformations
under the action of the prescribed loading conditions, (iv) checking the
strength of the elements of the strﬁcture and (v) successively modifying

the original guesses for optimum use of the materials and load carrying

capacity of the structure.



In the case of the design of the framed structure required for this
work, most of the above steps in structural design are not necessary.
There is no prescribed load that the structure is expected to carry.
However, some factors have to be borne in mind in the choice of the

structure used for the vibration investigation.

First of all, the structure has to be linear. Hence, its material

as well as the joints have to behave linearly.

Secondly, for ease of construction and low cost of the frame, its
members should be made from standard sized locally available materials.

Also the joints should be of corresponding standard materials.

Thirdly, it is envisaged that the frame will be dismantled and
rebuilt adding more components when necessary. Hence fixed joints are

not recommended. Welded joints in particular should be avoided.

2.2 Design
Fig. 2.2.1 shows the Fabricated Space Frame used in this work. It
is essentially a cube shaped frame standing on four vertical leg members,

where it is clamped to a rigid bed.

All the beam members are made of standard 3/4 inch square tubes -
fig. 2.2.2. Its material is mild steel with Young's Modulus, E, 207 kN/mm?

and Modulud of Rigidity, G, 80 kN/mm?.



The top four corners of the space frame (fig. 2.2.1 joints 1, 2,
3 and 4) are each made from the 3 points joint shown in fig.2.2.3(a).
While the other four corners (joints 5, 6, 7 and 8) are each made from
the 4 points joint shown in fig. 2.2.3(b). Both these joints are
standard 5oiﬂts which take the chosen 3/4 inch square section tubes of
fig. 2.2.2. They are orthogonal and therefore they do not take the
cross-members directly.

'

These joints also contain some plastic padding in order to produce
a tight fitting with the square tube beams. This in turn leads to some
non linear behaviour of the frame at these joints. To overcome this
effect, the joints were further strengthened with small plates shown in

fig. 2.2.4. These plates were bolted on all faces of the corner joints.

In addition to strengthening the joints, the plates became the
points of ‘attachment of the cross-member beam to the corner joints.

Again, the cross-members are bolted to the plates.

The feet of the frame are bratﬁed to plates as shown in fig. 2.2.5.

This forms the means of clamping the frame to the rigid bed.

Treating the fabricated space frame (fig. 2.2.1) as a rigid jointed
frame, the number of joints (j) is 12; the number of members (m) is 22;
and the total number of reactive elements (forces and couples) at the
support (S) is 24. Then the degree of indeterminancy (r) of the space

frame is given by (ref.5).

r 6m ~ 6j + S
132 - 72 % 24

i.e. r = 84 which is greater than zero.

Thus the space frame is rigid and not a mechanism,
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CHAPTER THREE

FINITE ELEMENT METHOD APPLIED TO SPACE

FRAME VIBRATION

3.1 Introduction

Two methods may be said to exist for the analysis of structures.

They include analytical and numerical methods.

The difficulties and limitations associated with analytical methods
are well known and cannot be over-emphasised. Closed-form solutions
are possible only in special cases, and approximate solutions may be
,arrived at for some simple structures. But, generally, analytical

methods cannot be applied to complex structures.

Numerical methods are the most practical methods for the solution
of complex structural analysis. This has been re-enforced by the

advent of the digital coﬁputer.

Numerical methods of structural analysis can be further divided
into two types namely (i) numerical solution of the differential equations

and (ii) matrix methods based on discrete-element idealization.
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(1) Numerical solution of the differential equations is based on
the mathematical approximations of the differential equations. The
process is achieved either by finite-difference techniques or by direct
numerical integration. Again, practical limitations exist in the
application of this method. Hence, .it is mainly restricted to the analysis

of simple structures.

The numerical solution of the differential equations usually ends
up with equations which can be cast into matrix notations. But the
method is still not classified as a matrix method since the original
formulationsdo not entail matrix connotations.

(ii) In the matrix method of structural analysis, matrix algebra
is used throughout all the stages of development of the analysis. First
of all, the structure is idealized into an assemblage of discrete
structural elements. The assumed displacements are then combined into

a matrix equation satisfying the boundary conditions at the joints

of these elements.

Matrix based methods of structural analysis are very suitable for
automation and programming for digital computers. The analysis is
based on very simple steps of numerical work. This method is there-
fore suitable for the analysis of complex structure once there is an

access to a suitably sized digital computer.

Matrix method of analysis has been found to be very suitable for the

analysis of this work.
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The Finite Element method of structural analysis falls into this
category of matrix method of numerical analysis. In frame structural
analysis in particular, the Finite Element method is much preferred to
its other numerical method counterparts (such as the finite Difference
method which is an older method) because of its versatility and

flexibility of usage.

The application of the Finite Element method to frame vibration
involves imagining the frame to be actually broken up into a number of
beam 'elements' of 'finite' lengths. This concept has given rise to
its name. As already discussed in Chapter One, frame structures contain
one-dimensional components (beams). Generally a structure would be
imagined to be actually broken up into a number of 'elements' of 'finite'
dimensions. A structure of n(= 1, 2, 3) dimensions of space will have

to be broken up into a system of n-dimensional finite elements.

The frame is subdivided into finite elements connected by nodes as
shown in fig. 3.1.1. These finite elements may have equal or unequal
lengths. The versatility of the Finite Element method means that
variations in the element lengths can be easily taken into account

without any additional difficulty.

The next step in this method of analysis is the determination of
the "element stiffness and mass matrices" of the individual elements
representing the frame. These are then assembled to form the '"overall
stiffness and mass matrices'" for the entire "discretized' frame by
requiring that the continuity of displacements and equilibrium of forces

prevail at all nodes in the finite element model of the body. This will
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lead to the equation of vibrating motion in matrix form
M1{q} + [K]{q} ={qQ} 3.1.1

where [M] = overall mass matrix of the frame

[K] = overall stiffness matrix of the frame
{Q} = column matrix of exciting force
{q} = displacement column matrix

and {4} = acceleration column matrix

In free vibration {Q} = 0 and {q} is a harmonic function of time. Then

{q} = {u}sin(wt + ¢) 3.1.2a
and {g} = -{ulw?sin(ut + ¢) 3.1.2b

Substituting equations 3.1.2 in equation 3.1.1 yields:

[K]{u} = w?[M]{u} 3.1.3

Equation 3.1.3 represents an eigenvalue problem. The solution of
this eigenvalue problem will yield the eigenvalues wi?, wz?, ws?,.....
hence Wy, W2, W3,..... which corresponds to the natural frequencies of
vibration of the discretized frame whilst the corresponding {u}i, {ula,
{u}s,..... are its natural modes of vibration.

In summary, therefore, the finite element solution of the Free
vibration of a given frame structure retluires the execution of the -
following operatjons in this order:

(i) Discretization or subdivision of the frame into a system of
finite elements.

(ii) Derivation of the "element stiffness and mass matrices" for
each individuél element representing the framed structure.

(iii) Assembly of the "overall stiffness and mass matrices" of the

frame.
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(iv) Solution of eigenvalue problem (equation 3.1.3)
(v) Where necessary, as is most often the case, the eigenvectors
are plotted to get a feel of the modal shape of free vibration of the

frame.

3.2 Consistent mass and stiffness matrices of beam element

It has already been shown that the discretization of a framed structure
should produce beam finite elements. Hence the next step in its
vibration analysis is derivation of the consistent mass and stiffness

matrices of the beam element.

Consider a beam element shown in fig. 3.2.0. Its extremities are
identified by the letters A and B. These represent its points of

connection to the nodes of the finite element discretization of the frame.

The beam element is in three-dimensional space and its orthogonal
axes X, Y, and z, are chosen such that the xe-axis lie on the beam
neutral axis.

If the beam.element is subjected to a set of arbitrary external
forces, then it will give rise to six internal reactive forces at each
extremity of the beam. These will have their associated displacements.
Forces here denote both forces and moments; and displacements include

linear and angular.displacements.

'As shown in fig.3.2.0, these forces include:
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(i) Axial forces F1 and F7
(ii) Shearing forces F2,F3,Fg, and Fq
(iii) Twisting moments Fy and Fyq
and (iv) Bending moments Fs, Fg¢, F11, and F;,

The corresponding displacements are:
(i) Axial displacements u; and uy
(ii) Transverse displacements wup, us, ug, and ug
(iii) Twisting angles uy, and ujg

and (iv) Bending angles us, ug, u11, and ujz

The positive directions of these displacements correspond to the positive

directions of the corresponding forces as shown in fig. 3.2.0.

The consistent mass and stiffness matrices of the beam element is
of order 12 x 12, In this case, since the element axes are chosen to
coincide with the principal axes of the beam cross section, it is now
possible to construct the 12 x 12 matrices from sets of 2 x 2 and 4 x 4
sunmatrices. From the engineering theories of beam bending and torsion,

it is obvious that the axial forces F; and F; are functions of their

corresponding displacements wu; and u; only; the same is true also for
the twisting moments (torques) Fy and F;q in relation to their twisting

angles uy and u;o.

For arbitrarily chosen bending planes, the bending moments and
shearing forces in the XY plane would depend on their corresponding
displacements as well as on the displacements corresponding to the
forces in the XYe plane. But in this case, the choice of axis have been
such that the XoYe and Xz, Planes coincide wifh the principal axes of
‘the cross section. Hence the bending and shearing in these planes can be

considered to be independent of each other.
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All forces acting on the beam elements can then be separated into
four groups and considered independently of each other. With suitable
choice of corresponding displacement patterns within these groups -
expressions can be obtained for the kinetic energy (Te) and strain energy
(Ue) of the beam in terms of the displacements. The consistent mass
and stiffness matrix terms will then be derived from these energy

expressions.

3.2.1 Axial Vibration in x_ axis

Fig. 3.2.1 shows the beam element unéer consideration. The beam
is undergoing an axial deformation or vibration. Elementary mechanics of
materials show that the state of strain varies linearly within the beam
element. Here, vibration is involved, hence the displacement is a

function of time (t) also.

Thus a suitable displacement function is of the form
u(x,t) = ap + aijx = [1 x] agp 5e2al

a1

Applying the element boundary conditions of u(o,t) = u; and

u(%,t) = uz, we have

u; 1 0 ap ' 84242
uz 1 % a;
or {u}=s [H]{a} 3.2.3

Solving for {a} in equation 3.2.2 we have

ag 1 0 =1 uy 1 0 uy
ay 1 A uz -1/.?, 1/2, .l.l7
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Substituting into equation 3.2,1,

u(x;t) = [1 x] 1 0 u;
L

“1f£ 1/ uy

so that  u(x,t) = [(1 - */2) %2 (s | 3.2.4
| o |
or u(x,t) = [Nl(X) Nz(}()] ui 3.2.5
uz

Let A be the cross sectional area of the beam. Then the strain energy

of the beam in axial direction is given by

U=5/ EA(—=) dx | 3.2.6

Substituting equation 3.2.4 in 3.2.6, we have

% ) -
Us=2/ Cfuru,] (172} ear-tz2 703 ] "16)ax 3.2.7
° _1/2 uz ‘

On integration this reduces to the form

1 EA EA | ,
U = '2‘ [ll1 l.l7] T v - -i_ u ’ 3.2.8
EA EA
This is of the form
U= %{u}t[K]{u} : : 3.2.9

Thus comparison of equations 3.2.8 and 3.2.9 shows that
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Ki, i  Ki,7 ' 1 -1

[X] T 3.2.10

K7,1  Kz,7 -1 1

which is the axial stiffness matrix of the beam element.

Similarly, the kinetic energy of the beam in axial motion is given by

2
T=35/ pA(—7—) dx 3.2.11

where p is the mass density of the beam.
Substituting from equation 3.2.4 into 3.2.11 and noting that {u, us}t

is in fact a function of time t, integrating and simplifying gives

roLl{ouw 7% e pm Buy 5.2.12
2 Lot ot 3 6 at e
PAR PAL duy
6 3 ot

This is again of the form

2 31'.3 [m] 3 3.2.13

Thus, from equations 3.2.12 and 3.2.12, the axial mass matrix of the beam

element is given by

[m] = mi,1 my,7

Q= W=
W= OV

mz,1 mz,7 3.2._14
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3.2.2 Twisting about the xe-axis

The beam element under torsional vibration is as shown in fig.

3.2.2. As with the axial case, the angle of twist varies linearly along

the beam in the form

0(x,t)

210 *+ 211X
[1 x] aio
a1

The appropriate boundary conditions are

0(x,t)

6(o,t)=uy, and u(l,t) = ujo

Hence from equation 3.2.15 we have

uy 1 0 )\ aje
Uio0 1 L a1

or {u} = [H]{a}

From equation 3.2.16, we have
i 1 0 -1 i, {1 0 ] {Uk
dyy 1 2 b -1/% 1/% 10
Substituting for {a} into equation 3.2.15, we have

[1 x]§ 1 0 Uy
-1/  -1/2 ujo
o(x,t) = [(L-9 71 | w
uio

=1

0(x,t)

Thus

Let Ix be the polar second moment of area of the beam cross-

section about the xe axis.

3.2.15

3.2.16

L5

3.2.18
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Then the torsional strain energy of the beam is given by

. |
U=270I M) dx 3.2.19
0]

Substituting equation 3.2.18 into 3.2.19, integratiﬁg and simplifying

yields

F
U=l[u o] GI, _ GI_ u
2L 10 2 [) 3.2.20
-GI_x GIx Uio
L 2 %

which is of the form

- %{u}t[K]{u} ' 3.2.21

Hence the torsional stiffness matrix of the beam element is given by

-
Kuss  Ky,10 1 -1

[K] = - T" 3.2.22

Kio,u Klo.lﬂ -1 1

And the torsional kinetic energy of the beam element is given by

L

T=2/ pl (39(" * 4x 3.2.23
0 X

Substituting equation 3.2.18 into 3.2.23, integrating and simplifying

we have

pl & pIXR,-] ” T

X alh;
R 3t
T = 1 Qus Buio, 4 ¥ 3.2.24
217 3t 3t . -
P P X dui0

which is of the form

=3 at} [m 1{3‘;} 3.2.25
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Thus the torsional mass matrix of the beam element is given by

- -
|- 7 I I
My, 4 My, 10 ‘_x _x
3A 6A
[n] = = PAL 3.2.26
I I
Mig,4 Mi0,10 X X
g - LGA 3A

3.2,3 Shearing and bending in the XY plane

The beam under consideration is shown in fig. 3.2.3. Engineering
theory of bar bending indicates that the deformation is characterised by

\\ro.
the deflection curve taken up by the centre time of the bar.

The element has four degrees of freedom, Hence a suitable displace-

ment model is of the form

u(x,t) = azo + az1x + azpx® + az3x’
or u(x,t) = [1 x x* x%] Pa“ 3.2.27
d az1
az2
\ 323

The boundary conditions are

u(o,t) = uz, %(o,t) = Ug

u(t,t) = us, and L(L,t) = up

Substituting the above boundary conditions into equation 3.2.27 we

have:



Substituting equations 3.2.29 and 3.2.

u(x,t) = [1 x

az21

az22

-

0 -

r 320‘1

3.2.28

azs

3. 2. 29

3.2,30

20 in equation 3.2.27, we have

3 2 d

5450 (=

2 1 "

% 2z Q 6

g B 5.2.51
2z 27 Us

l 1_2 u2

[} [ L
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Let Iz be the second moment of area of the cross section about the

z -axis.
e

Then, neglecting the effects of shear deformation, the strain energy
of the beam element under the action of the shearing forces and bending

moments in the XY e plane is given by

2 2
_ 1 9°u(x, t)

Substituting equation 3.2.31 into equation 3.2.32 and simplifying

we have b
f"u;}] 12ET ¥ r )

—FE symmetric uz
1
k) 6EI 4ET
ug < Z ug
22 3 3.2.33
. f o i
12E1 6EI 12EI
z z z
Usg = 13 2T E 13 Us
6EIz ZEIz 6EIz 4EIz
Lu12J 72 T - T2 T uiz

Thus the beam stiffness matrix in flexure in the XY e plane is given by

. . = =
‘ k232 i
symmetric 12 64 =12 6%
k2,6 Ke,o 62 42% -68 282
EI
[x] = Wi
k2,8 ke, s ks,s - 08 | -12 -6 12 -6%
k2,12 ke,12 Kks,12 kiz,12 68 222 -68 482

3.2.34
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Also, the kinetic energy of the beam element in XY e plane due to

shearing forces and bending moments is given by

)
T =%/ 0A b))z gy 3.2.35
(o]

Substituting from equation 3.2.31 into equation 3.2.35 and simplifying

we have
tf = e
_ duz 13pAL . duz

T = 3t 33 symmetric 3t
dus 11pAL? pAL® due
at 210 105 ot P
dug 9pAL 13pA%% 13pA% T dug
at 70 420 35 ot
duiz || 13pA? _ pAs? 11pA%  pAR® duiz
5t ||~ ~420 140 210 105 | \‘ ot |

Thus the beam mass matrix in flexure in the XY plane (neglecting the

effects of shear deformation) is given by

- TR 7]
[ m2,e : L3 symmetric
? symmetric 35
[m]=| m2,¢ mg,s = pAL 112 82
21 105
m2,es Mg, 8 Mg, s 9_ 138 _'._l-_i
20 35
mz,12 Mg,12 Mgy12 M12,12 29 2 “ s
3 - -13 22 18 &
L‘ 420 140 210 105

3.2.36
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3.2.4 Shearing and bending in the xéﬁe plane

Fig. 3.2.4 shows the beam under consideration.

of forces and displacements are as illustrated.

Four degrees of freedom is envisaged and a suitable displacement

model is of the form

u(x,t)

or u(x,t)

a0 + @31X + azaX> + 233X

[1 X KS] r aso

asi
j asz

Laas

3

3.2.37

The geometric boundary conditions as illustrated in fig.3.2.4 are

as follows

u(o,t)

u(f,t)

Hence, equations 3.2.38
us
-~ Us
Ug

-~ U1

us,

Ju
g, 52(L,t)

Wo,t) =

and 3.2.37 give

1 0 0
0 1 o0
1 2 2
0 1 22

= =13

3.2. 38
aso
asl

3.2.39
asl

a33

Positive directions
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Notice the sign of the displacements us and uj; into equations

3.2.38 and 3.2.39.

A comparison of figs. 3.2.4 and 3.3.3 shows that

the positive direction of the bending moments Fs and F,;is opposite

to that of Fg and Fja.

in the XoZg planes are different.

in the above equations.

Thus, from equation 3.2.39, we have

<
aso

asi

a32

a33

and

t_aaa

|

1

0

1

0

1

L

S §1o«varu bﬂ‘”

The directions of the positive bending moments

This has been taken into account

2%

-

|

i e

-

|

Us
-

Ug

k-UIl

F
us

-uS

O 3.2.40

Ug

L -ui11

Substituting equation 3.2.40 into equation 3.2.37 we have

u(x,t) = [1 x

X

2

%21

1

0

lu

L2

[y
rﬂhﬁgpnzﬂ

2 1 ¢ 7

) us

1

[

2 9 p

23 us

1

= uii
J L

3.2.41
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Let Iy be the second moment of area of cross section about the b

axis.

Then, neglecting the effects of shear deformation, the strain
energy of the beam element under the action of shearing forces and

bending moments in the Xz, plane is given by

U——J’EI( ‘”‘t))d 3.2.42

o]

Substituting equation 3.2.41 into equation 3.2.42 integrating and

simplifying, we have

sol 12E1 3
) us —T'z us
_ 6EI 4EI
o us & T Jdu P 3.2.43

_12EI 6EI 12EI
He X ) =
6EI 2B GEL  4EI
i I S A 2z 59 L Ak

From equation 3.2.43, the flexural beam stiffness matrix in the plane
is given by

[K] = k3,3 symmetric -W
k3,s Kks,s

k3,9  ks,s  kg,y

k311 ks,11 ke,11 ki

- s
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= r 12EI .
y symmetric
2
6EI 4EI
- _; _X
I3 3
12EI 6EI 12EI
y y
23 22
6EI 2EI 6EI
. Y y
X [ 22
e

Similarly, the expression for the kinetic energy of the beam is given by

equation 3.2.35.

d 3U3

9t

dus
ot

dug
ot

duyy
| &

Substitution of equation 3.2.41 into 3.2.25 gives
t
| 13082 1 ( 2us
35 ot
_11pAg?  pAg® dus
210 105 ot
9pAL  13pAL°  13pAL dus.
70 420 35 ot
13pAs?  pAL® 11pA22 pAR3 du 1
| 420 T 140 210 105 | |3t |
3.2.45

3.2.44

And from equation 3.2.45, the flexural beam mass matrix in the

XYe plane is given by
[m] = rma,a
M3,5

M3,s

M3,11

symmetric
Ms,s
ms,q Mg,9
Ms,11 Me,y11

mi1,11
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o[ 13 |
=P 3
- 11 2
210 105
3.2.46
9 1% 13 '
70 420 35
132 42 112 82
420 140 210 105

3.2,5 Beam matrices in assembled form

From the above analysis and results, the 12 x 12 consistent mass

and stiffness matrices of the beam element can be obtained.

Assembling equations 3.2.10, 3.2.22, 3.2.34 and 3.2.44, we have
the complete stiffness matrix [Ke] of the beam element given by

equation 3.2.47,

Similarly, assembling equations 3.2.14, 3.2.26, 3.2.36 and
3.2.46, we have the complete mass matrix [Me] of the beam element given

by equation 3.2.48
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3.3 Beam properties in frame coordinate system

The mass and stiffness matrices obtained in section 3.2.5 consist
of 12 x 12 dimensional arrays. These have been derived with respect to
a convenient set of orthogonal axes Xor Yor Zg such that the Xo lies on
the beam neutral ‘axis while the.xeye and XyZg flane coincide with the
principal axis of the beam cross-section. The choice of this coordinate
system has ted to a simplified derivation and results in equations 3.2.47

and 3.2.48.

The set of axes Xos» Yo 2, aTE therefore localised axis or beam
element axes. The beam element considered is one of many beam elements
in the finite element discretization of the space frame in question.
Each element will generally have a different set of axes such that these

axes will not coincide with each other.

BN U T tvhew Nrwm TR

It is therefore necessary to define a global or frame set of
coordinate system to which each beam element properties will have to
be transformed. Fig. 3.3.0 shows a typical beam element in three-
dimensional space. The Xos Ygr Zo aXeS define the beam element
coordinate system as explained in section 3.2. While the X, Y, Z axis
define the global or frame coordinate system. A transformation matrix
should exist which relates the beam element properties (displacements,
forces, stiffhess,’mass etc.) in the element coordinate system XosYgsZ

e

to their frame coordinate counterparts.

2.32.1 Plane axes transformation

It may be helpful to look at the transformation of the beam element
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properties from its local system to the frame system in a plane frame

situation. Here, the process is much easier to derive and understand.

Fig. 3.3.1 shows a beam element connecting two joints A and B in
a plane finite element discretization. The X - and Yy -axes are the
element coordinate axes, while the X- and Y-axes are the frame co-
ordinate axes. Angle a is the angle of rotation from X-axis to xev.axisr
the position direction being the anti-clockwise rotatoon shown in the

figure.
The forces (forces and moments) acting at the two joints A and B
are as shown in the figure in both the element coordinate system and

the frame coordinate system.

The following are the equilibrium of forces equations at the the two

joints.

At joint A,
FXA + erAcosa - FyeA51na =0
FYA + erA51na + FyeAcosa =0
MA * MeA =4

At joint B,
FXB + erBcosa - FyeB51na =0
FYB + Fx6351na + FyeBcosa =0
M, +M =0

B eB
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In matrix notation, we have

At joint A FXD --cosa sina 0.-1 i Fx
eA
FYA b = |-sino -coso O 9 FyeA P 5.3.1
MA . 1 0 0 1_ LMeA il ;
= 3 p— -— -
At joint B FX -cost sina O l Fx j
B _ eB
FYB = |-sina -cosa O < Fyop > 3.3.2
My | 0 0 <1 | \-MeB J

Thus the transformation for a plane beam element is of the form

4 B 0 0 0 (" Fx
el
o [R M] 0 0 0 FyeA
¢ 0 0 MeA k3 3:3:3
< 9 1
0 0 0 | erB
0 0 0 [R M] FyeB
LMB 0 0 0 L MeB
b a—— —
The transformation matrix is therefore a 6 x 6 matrix. The same

matrix will transform the displacement, stiffness and mass matrices.

It should be noted that a plane beam element, as analysed above,
has six degrees of freedom. This in turn requires 6 x 6 transformation

matrix.
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A space beam element has twelve degrees of freedom. Thus a 12 x 12
transformation matrix is expected for effective transformation of the

element properties to the space frame coordinate system.

It will be seen that transformation matrix can be built from 3 x 3

submatrices of the form [R M] above.

In the case of a space frame, there will be three rotations of
axes rather than one rotation in the plane frame just analysed. The
transformation of forces (excluding moments) only will be considered
first., Moments transformation will then be deduced from the results.

The three types of rotations are considered in turn below.

3.3.2 Rotation about the Z-axis
In fig. 3.3.2 the frame-axes system is represented by (X, Y, Z)

at the joint A, A second axes system represented by (xi1, Y1, z1) is
also present at the same joint A, and is different from the frame-axes
system only because of a clockwise rotation of o about the positive

direction of the Z-axis.

Two sets of equilibrating forces (FX, FY, FZ) and (Fxi, Fy:i, Fzi)
act in the frame axes system (X, Y, Z) and x;, yi, zi) respectively as
shown in fig. 3.3.2(b). Equilibrium equations for the two sets of

forces are as follows:

n
o

FX + Fxjcosa - Fy;sina

n
o

FY + Fxjsinoa - Fy;cosa

FZ + Fz, =0
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In matrix notations, we have

FX -cosa sina O Fx
FY ' =|-sina rcosa O Fy 3.3.4
FZ 0 0 -1 Fz

or {F} = [Ra]{F;} 3.3.5

3.3.3 Rotation about the yj;-axis

In fig. 3.3.3, the axes system (X1, y1, z1) defined in section 3.3.2
is shown in addition to a new set of axes system represented by
(x2, Y2, 22). This new set of axes system differs from the previous
one only because of a clockwise rotation of B about the positive

direction of the yj-axis.
The sets of forces (Fxy, Fyi, Fz;) and (Fxz, Fyz, Fzz) are equili-
brating forces acting at the same joint.A in the old (xi1, Y1, z1) and

new (X2, Y2, z2) set of axes systems respectively.

Equilibrium equations for these two sets of forces are as follows:

Fx; + FxpcosB + FzzsinB = 0
Fyp + Fy2 =0
Fz; - FxzsinB + Fzacosf = 0
and in matrix notation
Fx; -cosB 0 -sinB Fx2
Fy1 o -1 0 Fya 3.3.6
Fz, ) sinf 0 -cosB Fz,

or {F1} = [R B]{F;} 3.3.7
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3.3.4 Rotation about the xz-axis

Here (fig. 3.3.4) the set of axes system (X2, Y2, 2z2) is as
defined in the last subsection 3.3.3. The set of axes (xe, Yer ze)
represents the beam element coordinate system as previously defined.
The latter axes defers from the (X2, y2, z2) system only because of a
positive (clockwise) rotation of y about the positive direction of the

X2 axis.

Forces (er, Fye, er) are the final set of forces acting on the
beam element in the beam element coordinate system. These forces,
therefore, equilibrate the former set of forces (Fx2, Fya, Fzz) as

illustrated in fig. 3.3.4(b).

Again, the equilibrium equations for these two sets of forces are

as follows:
Fx, + er =0
Fy, + FyecosY - ersiny =0
Fzp, + FyesinY + ercosy =0
and in matrix notation, we have
o Cp
Fx2 -1 0 0 er
Fy2 0 =-cosy siny Fye ¥ 3.3.8
Fzz ) 0 -siny -cosy er
-

or {F,} = [RY]{Fe} 3.3.9
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3.3.5 Overall transformation matrix

The results of the three step rotation as discussed in subsections
3.3.2, 3.3.3 and 3.3.4 above have the final effect of rotation of the
frame coordinate system (X, Y, Z) into the beam element coordinate

system (xe, Yar %) for the joint A.

Thus from equations 3.3.5, 3.3.7 and 3.3.9 we have
{F} = [Ra] [R B] [R y] {Fe} 3.3.10
or {F} = [R M]{Fe} 3.3:11

where [RM] = [Ra] [RB] [R Y]

or -cosa sing 0 ':cosB 0 -sinB} |-1 0 0
[R M] = |-sina -cosa 0 0 -1 0 0 =-cosa sina
0 0 -1 sinB 0 -cosB| { 0 -sina coso.
3312

So far, only sets of three orthogonal forces (excluding moment)
have been considered. But generally for a space frame, and the beanm
element under investigation, there is the set of three orthogonal

moment also acting on the beam element. These moments will act about

the orthogonal axes.

With the strict adherence made so far to the convention that a
positive moment is a clockwise moment when viewed along its axis, the
operations described above for transformation of forces will also be
applicable to moments transfodmation. Thus equations 3.3.10 and

3.3.11 also hold true for moments.
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Let Qi, Q2, Q3, Qu, Qs, Qs be the forces (and moments) acting on

the beam element at the joint A in the frame coordinate system.

And Q7, Qs, Qv, Qi0, Qi1, Q12 be the forces (and moments) acting on

d
the beam element at the other hoint B in the frame coordinate system.

Also, let Fe;, Fez,.....Feg and Fey, Feg,.....Fejz be the other
set of forces (and moments) acting on the beam element at the joint A

and B respectively in the beam element coordinate system.

Then the 12 equilibrium equations relating actions on the element
in the frame coordinate system and the beam element coordinate system
can be seen to be similar to the results obtained above. In fact, the

transformation in matrix terms is given by:

= = r‘ )
Q F
: gy w o@m m
Q2 Fez
(2] [R M] {z] {z]
jl P = o &, 3.3.13
(2] [z] [R M] (21
(2] [z] (2] [R M]
) {Be |
0 0 0
where fz} = |0 0 0 3.3.14
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and from equation 3.3.12
-cosa. cosB, sina.cosy - coso.sinB.siny, -sina.siny - coso.sinB.cosy
[R M] =|-sina.cosB, -cosa.cosy - sina.sinB.siny , cosa.siny -’ sina.sinB.cosy
sinB -cosB.siny ', -cosB. cosy

(3%3)
3- 3. 15

Equation 3.3.13 is of the form
{Q} = [RI{F} 5.3,16
RM @ (2
[R] = | (2] [RM]  [Z]  [z]
(z] (2] [RM] [Z] 3.3.17
L}ZJ (z1 2] [RM])

All force transformations discussed so far also hold exactly for
displacements. Thus, if the corresponding displacements of the beam

element in frame coordinate system are denoted by qi, Q2,...+.q12,

then equation 3.3.16 can be written for the displacement as follows

{q}

n

[R]{u} 3.3.18

where

{u}t

n
—
e
-
=
(5]
e
w

..... uy2], as defined in section 3.2
represents the displacements of the beam elemented in the beam element

coordinate system.

Now, the strain energy of the beam element is given by

U= {u}t[ke]{u} 3.3.19
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It is worth noting that the transformation matrix [R] is an
orthogonal one. Thus, its inverse is equal to its transpose. Hence,
from equation 3.3.18, we have

{u} = [R1"Hq)

[R]*{q} 3.3.20

And substituting equation 3.3.20 into equation 3.3.19 we have, that the
strain energy of the beam element is given by

U= {q}t[R][ke][R]t{q} 3.3.21

Equation 3.3.21 is of the form
U = {q}*[x1{q} 3.5.22
which is an expression of the strain energy of the beam element in terms

of the displacements qi(i =1,..,.12) in the frame coordinate system.

The matrix [k] is a 12 x 12 matrix and it is the stiffness matrix of
the beam element in the frame coordinate system. From equations

3.3.21 and 3.3.22, it can be deduced that
t
[k] = [R][k.][R]

where the matrix [ke] is given by equation 3.2.47.

Similarly the kinetic energy of the beam element is given by

t
_ rdu Ju

Substituting equation 3.3.20 into equation 3.3.24, we have, that the

kinetic energy of the beam element is given by

-
1= 88 Rl RIFED 3.3.25



o

Again, this is of the form

t
T= {%}_ {m]{%%} 3.3.26

which is an expression of the kinetic energy of the beam element in
terms of the displacements‘qi(i =1,2,....12) in the force coordinate

system,

Comparing equations 3.3.25 with 3.3.26 we have

[n] = [R][m ][R]® 3.3.27
where the matrix [me] is given by equation 3.2.48.

The matrix [m] is a 12 x 12 matrix which represents the mass matrix

of the beam element in the frame coordinate system.

3.4 Assembly of system mass and stiffness matrices

The mass and stiffness matrices obtained after the coordinate
transformation, express the beam element properties in terms of the
system (or global) coordinate system. These need to be assembled into

the overall matrices for the frame. Thus the contribution of the beam

element in question to the frame mass and stiffness matrices are to be
identified and added accordingly. The code number method is utilised

here.

The transformed beam element matrices are each 12 x 12 matrices.
The first 6 rows or colums of these matrices are related to the frame
coordinates at the end A of the beam, which the other 6 (7 - 12) rows

or colums are related to frame coordinates at the other end B of the
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beam element. Thus, the matrices are such that the rows and columms
1,2 and 3 relate to the translated displacement components in the X-,
Y-, and Z-directions of the frame axis system at the end A. The rows
and columns 4, 5 and 6 relate to the rotational displacement components
about the X-, Y-, and Z-axes of the frame axis system at the end A.
Similarly, the rows and columns 7, 8 and 9 relate to the translational
displacement components in the X-, Y- and Z-directions of the frame
axis system at the end B, And the rows and columns 10, 11 and 12
relate to rotational displacement components about the X-, Y-, and X-
axes of the frame axes system at the end B. The idea of the code
number method is to assign to each of these 12 beam element matrix
rows and colums, a number which represents the corresponding frame

coordinate at those points.

Each of the 12 beam element coordinates should have a corresponding
coordinate in the frame coordinate system. Any element coordinate
which does not contribute to the frame coordinate system is assigned a
zero code number. All other element coordinates are given code
numbers equal to the value of the coordinate in the frame coordinate
system. Thus the code number at any point is a positive (including
zero) integer not greater than the total number of degrees of freedom
of the discretized frame structure. It is worth noting that the
inclusion of the zero code number makes it possible to analyse 1~
dimensional and plane frame structures from the general 3-dimensional

beam finite element discretization model.
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As an example, suppose a beam element connects two points A and B
of a frame structure as shown in fig. 3.4.1. The frame coordinates
are as shown at the two ends. After the appropriate transformation,
a 12 x 12 matrix is obtained for both the mass and stiffness matrices
of the beam element. The code numbers for the addition of the beam
element contribution to the frame mass and stiffness can easily be
written down as follows:
local coordinate 1 2 3 4 5 6 7 8 9 10 11 12
frame coordinate 18 820 0 0 7 0 4 2 O 1 3
The 12 integer values representing the frame coordinates constitute the
code numbers for the proper assembly of the beam element contribution
to the frame mass and stiffness matrices. Note that repeated code

numbers (except zeros) for the same beam element is meaningless and

wrong.

In the above example, the frame coordinate 18 corresponds to the
transformed beam coordinate 1. Thus the assembly routine is such that
all beam matrix elements on the rows and columns 1 are to be added to
the appropriate frame matrix elements on the rows and columms 18. A
progressive addition is done in this manner from the rows and columms
1 to 12 of the beam matrix elements marching with the given code

numbers. Zero code numbers imply no beam matrix element contribution

at that point and hence no addition.
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(b)
Forces in equilibrium
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CHAPTER FOUR

DEVELOPMENT OF COMPUTER PROGRAMMES

4.1 Introduction

The digital computer is a very useful modern machine which lends
itself to the perform prodigious feats of arithmetic calculations in small
fractions of a second. To this end, it has become an indispensable tool

to the scientist in general and the engineer in particular,

A proper use of the computer lies in ones ability to translate a
problem into simple repeated steps of operations in a form which lends
itself to the mode of working of the computer. In order to perform a
particular job, the computer must be fed with the set of numbers to

operate upon (data) and the set of operations required (programme).

In this work, as always, the theories and processes of solution of
our problems have to be well represented in the form of computer programmes
and data for the correct results to be obtained. In the previous chapter
the theories for obtaining the mass and stiffness matrices of a beam
element have been developed. The eventual goal of obtaining a computational
dynamic analysis of a space frame structure can then be achieved through

the sensible use of the digital computer.
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Three main computer programmes have been developed in this work.
The first of these programmes is called MASSTIFPROP. As the name tends
to suggest, it produces the overall mass and stiffness matrices
(properties) of a framed structure when supplied with the suitable
properties of the constituent beam elements. The results of the last

chapter are widely used in this programme.

Although the aim of this work is the dynamic'analysis of structures,
it has been found that static consideration becomes useful in the process.
Recalling equation 3.1.1 (section 3.1) the equation of vibrating motion
of a discretized body in matrix form is

[M1{q} + [K]{q} = {Q}

In statics, the acceleration term {4} equals a zero vector {0}. Thus
the static equilibrium equation is of the form

[Kl{q} = {q} 4.1.1

This represents a set linear algebraic equationsfrom which the displace-
ments {q} can be solved for any given force vector {Q} . Here, a programme
called STATICPROB has been developed to solve these systems of linear

algebraic equations.

Thirdly, the programme NAGFEIGNVAL solves the eigenvalue problem of
the form given by equation 3.1.3 (section 3.1) namely
[K1{u} = w?[M]{u}
The results from this programme include the natural frequencies (eigen-
values) and normal modes (eigenvectors) of the system under consideration.

The eigenvectors could be plotted to obtain a pictorial view of the modes

of free vibration of the structure.
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It is to be remarked that the discretization of any structure by
finite elements usually lead to large order overall mass and stiffness
matrices. Most modern digital computers are capable of working with
large order matrices. But even so, the largest computérs available have
limited sizes hence they have limits to the size of matrices that they

can input into them,

Space frames are particularly prone to producing very large order
matrices in finite element discretizations. To reduce the effective
core requirement of the computer programme, it is useful to reduce the
number and size of the arrays declared in the programme to the bearest

minimum.

One useful property of the mass and stiffness matrices of a real
structure is symmetry. Thus, no data is lost by storing only the
matrices as only upper or lower triangular matrices. The corresponding
strict lower or upper triangular matrices then form useful core spaces

for other data in the programme.

Furthermore, the overall mass and stiffness matrices of a structure
are generally sparsematrices. But through intelligent numbering of
the nodes (and nodal displacement coordinates) the actual matrices can be
made to become band matrices with as little b;nd width as possible
(refs. 1 and 5). For efficient use of the computer, advantage should be

taken of the banded nature of the matrices.
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In writing the computer programmes for this work, the factors
discussed above have been put into advantageous use wherever possible.
But in some cases, it has not been practicable to actually save computer
core by using these matrix properties. Hence, inevitable need for large
core storage still exists. This in turn has placed a very high
limitation on the number of degrees of freedom of structures which could

be analysed on the available computer.

All the computer programmes described in this chapter are written
in the Extended FORTRAN language. They have been developed on an
ICL 19045 computer which is in operation at the University of Aston
Computer Centre. The computer is controlled by the GEORGE 3 operating

system,

The computer system carries a large library of standard routines
which can be called for the specific data7manipu1ations. A particular
library on this computer is the NAG FORTRAN LIBRARY (NAG here means the
NOTTINGHAM ALGORITHMIC GROUP). Among the many routines with this NAG

Fortran Library are a large variety of them designed for matrix manipu-

lations.

Some of these routines have been used in two of the computer program-

mes written in this work namely STATICPROB and NAGFEIGNVAL

4,2 Mass and Stiffness matrices programme

The computer programme called into play here is named MASSTIFPROP.

This is a general programme which assembles the mass and stiffness matrices
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of a space frame structure. Strictly speaking, the frame structure does
not have to be a 3-dimensional one. Plain frames as well as one-

dimensional beams are also analysed by this programme.

MASSTIFPROP assumes that the structure is made up of similar
uniform beam elements (all of the same cross section and elastic
properties) with a total of 12 degree-offfreedom per beam element as
discussed in Chapter 3. The 12 x 12 matrices of equations 3.2.47 and
3.2.48 (section 3.2.5), for the beam finite element stiffness and mass
matrices respectively, are used for the analysis. If required, only
a light modification of the programme is needed to adapt it for frame
structures with uniform beam elements of different elastic constants and

cross sections.

The beam finite element properties are transformed from the element
(local) coordinate system into the frame (global) coordinate system.
Through the use of the code method, the contribution of the beam finite

element is added to the appropriate coordinates in frame coordinate system.

The fact that both stiffness and mass matrices are symmetric have
been put into consideration in the assembled matrices for the frame
structure. Both matrices have been stored as upper and lower triangular
matrices in a rectangular array. Thus computer core storage has been

minimized,
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The programme also incorporates the addition of concentrated mass
and stiffness properties to any coordinate of the frame., Thus joint
masses (and other masses) can be added to the appropriate elements of
the mass matrix, while the effect of spring stiffness can be added to

the corresponding elements of the frame stiffness matrix.

4.2.1 Programme MASSTIFPROP

A flow chart of MASSTIFPROP is shown in fig. 4.2.1. Appendix Al

contains a compiled listing of the programme.

The method of modular programming has been used here and the flow
chart is actually a modular flow chart. Modular programming implies a
formal use of segmentation of a computer programme. In a Fortran
programme, this involves the use of a minimum amount of the programme
logic in the MASTER or main segment. The master segment, therefore,
consists mainly of data areas, loops and call statements. The call

statements refer to subroutine segments which carry out the details of

the problem working.

As shown in the flow chart, the first segment in the programme is
the Programme Description Segment., Channel numbers are here associated
with specific unit numbers of the computer peripherals. This allows the
possibility of reading ;he input data from various files (large input data

are envisaged) and also writing the output mass and stiffness matrices

onto computer files for use by latter programmes.
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Array variables and other variables are next declared in a common
statement, since these variables are used in the called subroutine
segments. The most important variable here is the array ASSEMMATRIX.
This is a rectangﬁlar array whose dimensions should at least consist of
one plus the "number-of-degrees-of-freedom'" of the frame rows and
"number-of-degrees-oflfreedom'" (NDOF) columns. The assembled mass and
stiffness matrices are then held in this array as lower and upper
triangular matrices respectively. Thus the stiffness matrix is held
as an upper triangular matrix of the array ASSEMMATRIX starting with the
element ASSEMMATRIX .(1,1) through to the ele@ent ASSEMMATRIX(NDOF,NDOF).
And the mass matrix is held as a lower triangular matrix of the array
ASSEMMATRIX starting with the element ASSEMMATRIX(2,1) through to the

element ASSEMMATRIX (NDOF+1,NDOF).

The number of problems to be analysed is read in to create a loop
all through the remainder of the programme. This enables any number of

systems of framed structure to be analysed in one run of the programme.

The channel number of the data input and output files are also read
from the input card. From now on, all data read statements refer to the

stated input channel number.

Other data elements are then read. These include the number of
degrees of freedom of the frame structure, the number of beam finite
elements of the discretized frame, the Young's and Rigidity modulii of
the component beam elements of frame, the mass per unit length of the

beam, the second moments of area of the beam element cross-section about



- 57 -

its x-, y-, and z-axis, and the area of cross-section of the beam element.

These data are also printed out on paper for checking purposes.

The subroutine segment ZEROASSEM is called to initialize the array
ASSEMMATRIX.  ZEROASSEM set all elements of the ASSEMMATRIX array equal
to zero ready for subsequent adding of the contribution from each beam
finite element to the frame mass and stiffness matrices. Thus sub-
routine also sets to zero two other arrays needed in a latter part of

the programme.

The element code read should have values of 0, 1 or 2. A value of
0 implies that the next beam finite element has both length and orientation
to the frame coordinate system different from the last element considered.
Thus the programme continues with the next statement. A value of 1
implies that the next beam finite element has the same length as the
previous element but at a different orientation. Thus the programme
should skip the next statement which is a call statement. A value of 2
implies that the next beam finite element has the same length and
orientation as the last element considered. Hence, the programme can

skip the next two call statements.

Subroutine ELEMENT reads the length of the beam finite element and
calculates the element mass (EMASS) and stiffness (ESTIF) matrices as
12 x 12 arrays from the equations 3.2.48 and 3.2.47 respectively of sub-

section 3.2.5.
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Subroutine DIRECTN reads the coordinate transformation angles o, B
and Yy (section'3.3) and transforms the element mass and stiffness matrices
from the element coordinate system to the frame coordinate system using
equations 3.3.27 and 3.3.23. The subroutine calls another subroutine
TRANSFORM, which produces the transformation matrix [R M] using equation

3.3.15.

Subroutine ASSEMBLE assembles (or added) the contribution of the
beam finite element properties to the system mass and stiffness matrices.

This is where the code number method is utilised.

The beam finite element length and transformation angles o, B, Y are
also printed on paper as a checking procedure. If all finite elements
of the discretized frame have not been covered, programme control goes

back to read the element code for the next beam finite element.

Subroutine POINTPROP takes care of the presence of point or
concentrated mass and stiffness properties in the nodes of the frame
structure. It reads the row and column coordinates as well as the
corresponding value of the mass and/or stiffness and adds the values

to the appropriate elements of the assembled matrices.

Subroutine STOREMATX writes the rectangular array ASSEMMATRIX into
a specified file for that purpose. This is the file from which future
progtammes (STATICPROB and NAGFEIGNVAL) will read the mass and stiffness
matrices of the structure. It can also be listed on paper for checking

purposes.  But this should be avoided as much as possible except in test
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cases where the mass and stiffness matrices are of very small order of
magnitude. In large structures where the number of degrees of freedom
runs into a hundred or more, large amounts of paper will be required to

list the matrices.

At this point in the programme the loop for the number of problems
to be analysed is completed. This multiple problem loop is useful where
it is required to analyse the same frame structure with varying degrees
of finite element refinement. It is therefore possible to make an
immediate compafison of results of the analysis of a structure with
increasing amount of refinement on the finite element discretization,
and to see if the results justify the increased work in solving the

structure with higher degrees of freedom.

4,2.2 Programme MASSTIFPROP-Input Data

A total of up to 12 input data card types go to produce a complete
combination of input data for successful execution of the programme
MASSTIFPROP. . All,but the first card type, could appear more than once,

in any one job.

The required input data are summarised below.
Card Type 1
Columns 1 - 5 Integer IS5 - Number of problems
Card Type 2.
Columns 1 - 5 Integer I5 - Input file channel number
=1, 8, 9, 10, 11 or 12.
Columns 6- 10 Integer I5 - Output file channel number

=3, 3, 4, 6. 0r'7.




Card Type 3.

Columns 1 - 5 Integer IS5 -

Columns 6 - 10 Integer IS

Card Type 4.

Columns 1 - 10 Real F10.2

Columns 11 - 20 Real F10.2

Columns 21 - 30 Real F10.7

= 60 =

Number of degrees of freedom of the
structure.
Number of beam finite elements in

the structure.

Young's Modulus of elasticity of
the beam element material N/mm’.
Modulus of Rigidity of the beam
element material  N/mm?

Mass per unit length of beam

element Kg/mm,

Cart Type 5.

Columns 1 - 10 Real F10.2

Columns 11 - 20 Real F10.2

Columns 21 - 30 Real F10.2

Columns 31 - 40 Real F10.2

Card Type 6.

Columns 1 - 3 Integer I3

Card Type 7.

Columns 1 - 10 Real F10.2 -

Second polar moment of area of the
beam cross section mm"

- Second moment of area of the beam
cross section about the y-axis mm*
Second moment of area of the beam
cross section about the z-axis mm"
Area of cross section of the beam

element mm?

Element code = 0, 1 or 2.

Length of beam finite element mm.



Card Type 8.
Columns
Columns

Columns
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1 - 10 Real F10.2 - Rotation angle a degrees

11 - 20 Real F10.2 - Rotation angle B degrees

21 - 30 Real F10.2 - Rotation angle 7y degrees

Carduyypg 9.

Columns 1~ 5 Integer I5

n
"

"

"

"

Card Type 10.
Columns

Columns
Card Type 11.

Columns

"

Card Type 12.

Columns

"

"

6-10
11-15
16-20
21-25
26-30
31-35
36-40
41-45
46-50
51-55

56-60

1

1

6

1

6 -

11

1

& =

11

Integer I5 - Code number for finite element

"

1"

5 Integer IS - Number of point masses

10 " 15

5 JInteger I5
10 v 15

20 Real F10.4

5 Integer IS
10 Ly 15

20 Real E10.3

"

"

"

"

"

"

"

Row number of point mass.

Column number of point mass.

"

"

"

"

"

"

"

"

stiffnesses

"

1"

"

Value of point mass Kg.

-~ Code number for finite element coordinate 1.

coordinate 2.

"

"

Row number of point stiffness

Column number of point stiffness.

Value of point stiffness N-mm.

10.

11.

12.
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4.2.3 Input Data Example

It will be useful to give an illustration of the input data required
for the analysis of a frame structure. Fig. 4.2.4(a) shows a simple
space frame structure which is to be analysed with the aid of programme

MASSTIFPROP.

All beam members are of the square cross section as shown in fig.
4,2.4(b). The masses (m; and mz) at the two joints represent concentrated
masses. A linear spring k;, is also present and it represents an axis

connection of the beam member to a fixed base.

The materials of the frame beam components are the same. And it is
to be assumed that all free joints of the frame each have six degrees of
freedom - three linear and three rotational. The two feet fixings each

have zero degrees of freedom, while the spring fixed end has four degrees

of freedom - one linear and 3 rotational.

Fig. (c) and (d) of fig. 4.2.4 show two finite element discretizations
'of the frame structure. Fig. 4.2.4(c) represents a 4 element (3 nodes)
discretization as a first approximation analysis. Fig. 4.2.4 (d)
represents an 8 element (7 nodes) discretization as a second approximation
analysis of the frame structure. Hence the former is a 16 D.O.F. system

and the latter is a 40 D.O.F. system.

Below are the essential figures for obtaining the required data

for the analysis of the structure:



- 63 =

Young's Modulus of beam material E 207 kN/mm?

Rigidity " noon " G 80 kN/mm?

Mass per unit length of beam m

. 3.08 x 10 3kg/mm

Polar second moment of area of beam

cross section I = 26600 mm*

Second moment of area of beam cross

section about the y_-axis Iy = 13300 mm*

Second moment of area of beam cross

section about the z_-axis I, = 13300 mm*
Area of cross section of the beam A = 400 mm?
Mass m; | = 1.25 kg
Mass mjy = 0.75 kg

Spring constant kj 7 x 10° N/mm?
The input data required for the analysis of the above two finite
element discretization models of the frame structure is as shown on the

following two pages of compufer card data layout sheets - Table 4_2.1.

Note that it has been assumed that the mode of input of these data
to the computér programme MASSTIFPROP is via the card reader and that
the resulting mass and stiffness for the 16 D.0.F. and 40 D.O.F. systems

are required to be stored on files assigned to channel numbers 3 and 4

respectively.
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4.3 Static analysis programme

The idea of the static analysis of the frame structure arose at some
stage in the work when it was becoming more and more difficult to under-
stand the reason(s) for the unsatisfactory result of the dynamic analysis
and experimentations. The practical means of the verification of the
dynamic results should involve testing the accuracy of the stiffness
matrix of the structure as obtained by computer programme MASSTIFPROP.
This point will be d;scussed in detail in Chapter Six. But for the
moment, it should be sufficient to note that the problem required to

be solved 'is a static one.

In the static analysis of a structure, the problem involves the
solution of a system of linear equations whose terms include the
stiffness coefficients, structural displacements and the applied force(s).
In matric terms, the system of linear equations is represented by
equation 4.1.1 (section 4.1) namely

[kK1{q} = {Q}
where [K] is the stiffness matrix of the structure.
{q} is the column matrix representing the nodal
displacement of the structure
and {Q} is the column matrix representing the nodal

force vector acting on the structure,

Knowing the applied force vector {Q}, it is usually required to solve
for the resulting displacement vector {q}. Here, the computer programme

STATICPROB has been developed to help solve this problem of statics.
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4.3.1 Programme STATICPROB

A full compiled listing of this programme is shown in Appendix A.Z2.
With the aid of the NAG Fortran Library, the computer programme STATICPROB,
is much simpler. What the programme needs is the assembled stiffness
matrix of the structure as output by the programme MASSTIFPROP plus the
non zero elements of the force vector {Q} representing the magnitude of
the applied force(s) acting on the structure and specified in theaframe

(or global) system of coordinates.

The NAG-Fortran Library routine FO4ASF is called to solve for the
displacements. In its dﬁcumentation, it is described that FO4ASF
calculates the accurate solution of a set of real symmetric positive
definite linear equatiohs with a single right hand side (of the form

[K1{q} = {Q}, by Cholesky's decomposition method.

Given the set of linear equations, [K]{q}= {Q}, the routine FO4ASF
uses Cholesky's method to decompose [K] into triangular matrices such that
T
[K] = [L][L]

where [L] is lower triangular.

An approximation to {q} is found by forward and backward substitution
The residual vector
{r} = {Q} - [Al{q} is then calculated and a correction,
{d} to {q} is found by the solution of [L][L]T{d} = {r}. The vector {q}
is then replaced by ({x} + {d}) and the process repeated until full machine

accuracy is obtained.
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The programme STATICPROB prints out the two vectors - force {qQ} and

displacement {q} - as two separate vectors along side each other.

Here also, the programme can be used to solve more than one set of
matrix equations. It is possible to solve for the displacement vectors
using the same stiffness matrix [K] but different combinations of the force
vector {Q}. The programme has its own Programme Description Segment to
allow the use of multiple files as in programme MASSTIFPROP.  Thus
several problems with different stiffness matrices [K] can be solved in

one run of the programme.

4,3.2 Programme STATICPROB-Input Data

The input data cards for this programme are relatively simple and few.
They include.
Card Type 1

Columns 6 - 10 Integer I5 - Number of problems.

Card Type 2.

Columns 6 - 10 Integer I5 - Problem Indicator = 0 or 1.

1

Columns 11 - 15 ‘Integer I5 - Input file channel number

= 3,4, 5, 6, 7 or 8.

Card Type 3.

Number of non-zero elements

Columns 6 - 10 Integer I5

in the force vector.

Card Type 4.
Columns 1 - 5 Integer I5 - Coordinate of force element

Columns 6 - 15 Real F10.2 - Magnitude of force in Newtons.
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In card type 2, the value of O for the problem indicator implies
that the stiffness matrix is the same as for the last problem solved.
A value of 1 for the problem indicator implies that a new stiffness
matrix is to be.read and used for the computation. Card type 4 is to
be provided for each non-zero element of the force vector specified in

card type 3.

4.4 gigenvalue Programme

The determination of the vibration characteristics of any structure
should involve the solution of an eigenvalue problem of the form given by
eﬁuation 3.1.3 (section 3.1) namely

[K]{u} = w?[M]{u} or [M]{u} = A[K]{u}
The solution of this equation will yield the natural frequencies w of
the structure and the corresponding modal shape (or eigenvector)represented
by {u}. 'In this work a computer programme has been developed to solve

such eigenvalue problems namely Programme NAGFEIGNVAL.

4.4.1 Programme NAGFEIGNVAL

A full compiled listing of this computer programme is shown in

Appendix A.3.

Once again, the NAG Fortran Library have been used extensively in
this programme. The major data required by programme NAGFEIGNVAL comes
from the file produced by programme MASSTIFPROP and containing the mass
and stiffness matrices of the structure in question. The programme has

a built in set of four options of the solution required for any particular
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eigenvalue problem. These options include solving for (i) some (less
than 25%) of the eigenvalues (frequencies) only, (ii) all the eigenvalues
(iii) some (less than 25%) of both eigenvalues and eigenvectors only and
(iv) all eigenvalues and eigenvectors. By so doing, the programme
caters for small problems (where all the eigenvalues and eigenvectors
could easily be computed) as well as large problems (where it would be

undesirable and wasteful to compute all parameters.

Eight main subroutines from the NAG Fortran Library are used in this
programme for the solution of the eigenvalue problem. They include
FO1AEF, FOlAGF, FO2BFF, FO2ADF, FO2BEF, FOlAHF, FO1AFF, and FO2AEF.

Other NAG Fortran Library routines called by this problem include
X01AAF, X02AAF and X02ADF, where XO1AAF fetches the mathematical constant
m and XO02AAF and XO2ADF fetches other machine constants (computer

dependent constants) needed by the above NAG Fortran Library routines.

FOlAEF reduces the eigenproblem [M]{u} = [K]{u} to the standard
symmetric eigenproblem [P]{Z} = A{Z}. [K] being a real symmetric positive
definite matrix it can be factorised using Cholesky's method so that

[K] = [L][L]T. Therefore, [M]{u} = A[K]{u} implies

w1t m et e = Ayl
which is the standard eigenproblem

[P1{z} = A{z}
whiers [Pl = [ iy Y

and {2} [L]MMu}
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Routine FOIAGF gives the Householder reduction of a real symmetric

matrix to the tridiagonal form for use in FO2BFF and FO2BEF.

FO2BFF calculates selected eigenvalues of a real symmetric tri-
diagonal matrix, where, if the eigenvalues are numbered in ascending
order, the numbers of the first and last eigenvalues required are given.

A
Routine FO2ADF calculates all the eigenvalues of the eigenvalue

problem using Householder reduction and the QL algorithm.

Routine FO2BEF calculates selected eigenvalues and eigenvectors of
a real symmetric tridiagonal matrix, where the selected eigenvalues lie

between two given values.

Routine FOIAHF derives the eigenvectors of real symmetric matrix
from the eigenvectors of the tridiagonal form where the tridiagonal matrix

was produced by FOlAGF.

1l

Routine FOLAFF derives the eigenvectors {u} of the problem
M]{u} = [K]{u} from the corresponding eigenvectors {Z} = [L]{u}
of the derived standard symmetric eigenproblem. The eigenvector {u}

is normalized such that

W [K]{u} = 1

Routine FO2AEF calculates all the eigenvalues and eigenvectors of
the eigenvalue problem using Householder reduction and the QL algorithm.

The eigenvectors are also normalised such that

(WK} = 1
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Further details of the mathematical processes and theories used in

the above routines can be obtained from ref.21.

The programme NAGFEIGNVAL also has the facility for mulfiple problems
i.e. solving more than one eigenvalue problem in one computer run. Its
Programme Description Segment allows the assignment of multiple files as
input and output files. Where desired and when both eigenvalues and
eigenvectors are computed,'the results can also be stored on computer

files for possible ‘future use.

4.422 Programme NAGFEIGNVAL-Input Data

Apart from the input file containing the mass and stiffness matrices
from programme MASSTIFPROP, this programme requires very little input data.
Only a maximum of 4 different card types constitutes the set of data
cards required by this programme. They include:

Card Type 1.

1

Columns 6 - 10 Integer IS5 - Number of problems.

Card Type 2.
Columns g - 10 Integer I5 - Input f}lpgfh?nﬁs{lﬂumher = 3,4,5,6 or 7.
Columns 11 - 15 Integer IS5 - Outpﬁt file channel number
=0, 8 9, 10, 11 or 12.

Columns 16 - 20 Integer I5 - Problem indicator = 1, 2, 3 or 4.

Card Type 3.
Columns 6 - 10 Integer I5 - Mode number of the lowest natural
frequency required.
Columns 11 - 15 Integer IS - Mode number of the highest natural

Frequency required.
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Card Type 4.

Columns 6 - 10 Integer I5 - Number of eigenvalues in the

N
required range.

Columns 11 - 20 Real E10.3

Lower bound of the required eigen-

value A _.
min

Columns 21 - 30 Real E10.3

1

Upper bound of the required eigen-
value Amax
In card type 2, the value of zero for the output file channel number
implies that no output file is written. The values of 1, 2, 3 and 4
for the problem indicator corresponding to the respective four problem
options stated earlier. Thus a value of 1 implies that some eigenvalues

only are required etc.
Card type 3 only applies if problem indicator equals 1. Card type 4
only applied when problem indicator equals 3 - i.e. some eigenvalues and

corresponding eigenvectors are required.

4.5 Programme Tests

The greatest problem with computing is the high possibility of
obtaining the wrong results from an otherwise well written computer
programme. Possible sources of error range from the 'serious' cases
of errors in the fundamental theories used in formulating the problem
to the 'trivial' cases of errors in punching of the programme and/or
data. It is, therefore, absolutely essential for all computer programmes

to undergo very rigorous and probing tests before being put into use.
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All three computer programmes described earlier in this chapter have
undergone such extensive tests and the writer has been very satisfied
with the results. It will not be useful to describe and discuss all
the tests here. But two tests stand out here and a presentation of.
these gives some idea of what to expect in using these programmes.

These tests include the analysis of a

(a) Simply supported beam,

(b) Portal frame.

4.5.1 Simply Supported Beam

The simply supported beam is as shown in fig. 4.5.1(a). It has been
analysed using the finite element discretizations of l-element, 2-elements,
4-elements and 8-elements systems producing 2-, 4-, 8-, and 16- D.O.F.
systems respectively. The 8 finite elements (16 D.0.F.) discretization

is shown in fig. 4.5.1.(b).

The beam properties are:

E = 207 kN/mm?

G = 80 kN/mm?

I = 10046 mm"

X

I = 5023 mm*

b4

I, = 5023 mm*

PA = me = 0.00065 Kg/mm

A = 90 mm?

Static displacements of the beam under the action of a central load

Q have been computed.by programme STATICPROB. Fig. 4.5.2(a) shows a
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sketch of this static deflection curve. The deflection curve represents
a half-sine wave as is to be expected from a knowledge of elementary beam
theory. The results with fewer beam element discretizations produce

the same pattern of curve, only with fewer coordinate values.

Table 4.5.1 shows the computed natural frequencies of the beam with
l-element, 2-elements, 4-elements and 8-elements discretized systems.
Also the last column of this table includes the first 8 exact natural
frequencies of the beam. The exact nth natural frequencies of the beam
is given by (Chapter 5 of ref.16)

EI

= e
W = (nm) / gk

where £ is the length of the beam.

As can be seen from the table, the computed natural frequencies of
the beam improves as the finite element model is refined. This is in
keeping with known theoretical prediction, with the freQuencies reducing
and approaching the exact values. The reliability of the finite element
method used here is well illustrated by the fact that the first 5 computed
natural frequencies are within 1% of the exact value. In fact, the first
2 frequencies are exact and the error in the third is only 0.13%. The
table illustrates the degree of finite element refinement required to
obtain reasonable accuracy in the computed frequencies. For example, no
improvement is obtained in the first natural frequency between the 4-
elements and 8-element systems. The 2-elements system gives a very good

value for the first natural frequency.
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Table 4.5.1

Simply Supported Beam Vibration

Computed Natural Frequencies in Hz Exact natural
Mode frequencies
1 element 2-elements 3-elements 8-elements in
2 D.O.F. 4 D.O.F. 8 D.O.F. 16 D.O.F. Hz
1 69.72 63.08 62.84 62.84 62.82
2 319.54 278.91 252.30 251.40 251.28
3 701.12 575.80 566.12 565,38
4 1278.17 1115.68 1008.88 1005.12
5 1773.48 1584.36 1570.50
6 2804.41 2301.32 2261.52
7 4201.36 3171.27 3078.18
8 5112.68 4462.73 4020.48
9 5552.50
10 7089.29

The first 3 modes of the beam vibration have been plotted in fig.4.5.2.

These represent 1/% -1, and 1.1/2 - sine waves as was expected.

4.5.2 Portal Frame

The Portal Frame is shown in fig. 4.5.3(a). Finite element analysis
has been carried out on the portal frame as 3-element (6 D.0.F.), 6-element
(15 D.O.F.) and 12-element (33 D.0.F.) systems with each node having 3 D.O.F.
(2 linear displacements and 1 rotational displacement). The case of the
12 finite element (33 D.0.F.) discretization of the portal frame is shown

»
H

in fig. 4.5.3.(b).
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The properties of the component beams of the portal frame are the

same as for the simply supported beam.

Static displacements of the portal frame under the action of a
horizontal force at its corner have been computed by programme STATICPROB
as well as the static displacements under the action of a vertical central
load. Fig. 4.5.4(a) and fig. 4.5.5(a) show the corresponding static

deflection shapes for these two cases.

Table 4.5.2 gives a direct comparison of the computed natural
frequencies of the portal frame under the various degrees of refinement

of the finite element discretization model.

These are plotted in figs. 4.5.4(b), 4.5.5(b) and 4.5.6 representing
the first, second and third modal shapes of vibration of the portal frame

respectively.

As with the case of the beam the computed frequencies here show a
reducing trend with the improved idealization of the finite element model.
With tﬁis in mind it seems reasonable to assume (Table 4.5.2) that the
first 4 natural frequencies with the 33 D.0.F. system should be very

reliable. In particular, the first two frequencies should be very accurate.

The first two modal shapes plotted in figs.4.5.4(b) and 4.5.5(b)
correspond to the static deflection shapes shown in figs. 4.5.4(a) and
4.5.5(a) respectively. All three modal shapes plotted are in accordance
with expected shapes as obtained by other methods of frequency analysis of

a portal frame (ref.17).
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Table 4.5.2

Plane Frame Vibration

Computed Natural Frequencies in Hz

Mode 3-Elements 6-Elements 12-Elements
: 6 D.O.F. 15 D.O.F. 33 D.0.F.
1 20.43 20.40 20.40
2 96.17 80.93 80.45
3 207.96 132.80 131.42
4 1097.77 14438 142.26
5 1178.10 325.52 287.80
6 . 2004.64 426.09 353,15
7 533.19 408.37
8 832.98 622.75
9 1116.65 743.42

10 - | 1276.38 772.80

11 1303.91 1111.93

12 2377.91 1268.70

13 4078. 30 1328.91

14 4229.74 1342.73

15 | 5149.06 1544, 27

16 1955.12
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Flow Chart - MASSTIFPROP Fig. 4.2.1
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Fig. 4.5.1 continued H
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Fig. 4.2.1 continued
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All dimensions are in mm
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Mode 3

Fig. 4.5.6
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CHAPTER FIVE

EXPERIMENTAL TECHNIQUE

5.1 Introduction

Both static and dynamic experimentations have been involved in this
work. But the main one is the dynamic experimentation where vibration

characteristics are measured.

The relevant static experiments are concerned with the measurement
and verification of the structural stiffness matrices used in the
analytical work. The static experiments have here been restricted to
simple measurements in force-displacement experiments. All that is
required include a suitable arrangement for applying the load at a point
of the structure and some dial gauges for measuring the corresponding
displacements at various points of the structure. Average values of
the force per unit displacement at the various points can then be

calculated and the equivalent stiffness coefficient can be calculated.

The dynamic experimentation is a more involved set up. Basically,
what is required is a means of setting the structure under forced
vibration and measuring the response at various points of the structure.

When the forcing frequency coincides with a natural frequency of vibration
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The sweep oscillator is the basic input instrument while the

accelerometer is the hasic output instrument,

The sweep oscillator is basically a wave signal generator. For
the purpose of this work on vibration analysis, the sweep oscillator is
usea to generate sine wave signals at any required frequency. The
frequency is either set at a fixed value or varied (sweeped) automatically

or manually between any set frequency limits.

The signal from the sweep oscillator is a weak one, and the power
amplifier amplifies it to a reasonable level required by the vibrator.
The vibrator then applies the amplified signal to the structure in the
form of an oscillatory force to set the structure under forced vibration.

The accelerometer picks up the response of the structure at any
point on the structure for eventual measurement. It should be noted
that the accelerometer is an acceleration measuring transducer, not a
displacement transducer as the vibration response is supposed to measure.
However, it is known that the amplitude of vibration is proportional to
the pick value of the corresponding acceleration at that point, and
acceleration transducers are more convenient than displacement trans-
ducers. Moreover, the modal shape of vibration required represents
the relative shape of oscillation of the structure and not the absolute
mggnitude of its amplitude of vibration. Thus the use of the
accelerometer meets all the requirements of the results expected from

the experiment,
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of the structure, resonance occurs. By passing the measuring transducer
round various points of the structure, the pick responses at these points
can be obtained to produce the modal shape of vibration of the structure

at that natural frequency.

For a complicated sfructure (a space frame is a complicated one),
the measurement of the resonant frequencies and the corresponding modal
shapes is not an easy job. An arbitrary choice of the point of
excitation could lead to difficulties in producing the resonance at
certain natural frequencies of the structure. For example, exciting
the structure at a nodal point (point of zero amplitude of vibration) of
a certain natural frequency would result in missing out the resonance
at that natural frequency. In particular, it is very useful to excite
at a point of maximum amplitude of vibration of a given modal natural
frequency. Hence, it is customary to change the point of excitation

of a structure to obtain the different modes of vibration.

The beam members of a frame structure are actually a continua.
As such, measurement of its amplitudes of vibration have to be made at
many closed points in order to produce a true form of the modal shape.
In the theoretical analysis, both linear and angular displacements (or
amplitudes) can be calculated. But experimental measurements are
restricted to linear displacements only. This is an added difficulty

in the experimentation.

5.2 Vibration Instrumentation

A block diagram of the vibration instrumentation used in this work
is shown in fig. 5.2.1. Other components may be included in the actual

instrumentation set up, but the basic ones are shown in the figure.
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Again, the response signal picked up bf the accelerometer is
amplified by the charger amplifier. Owing to some degree of non-
‘linearity in the structure and/or other external interference, the
response signal obtained could be anything but a pure sine wave. The
Dynamic Analyzer receives this impure sine signal and essentially acts
as an inherently frequency-tuned bandpass filter. The concept of its
operation is as illustrated in fig. 5.2.2, The impure sine signal
represents the signal input to the analyzer while the original signal
from the sweep oscillator is fed in as the tuning frequency input.
Output from the analyzer is represented by the filtered output signal

which is a pure sine signal at the tuning frequency.

The valve voltmeter measures the R.M.S. value of the signal whose
values for various points on the structure provides the modal shape of
vibration of the structure at a particular frequency. The XY recorder
can also be used to make a graphical plot of the response over a
frequency range in the form of response (on Y-axis) vs frequency (on X-
axis). The sweep oscillator provides the frequency input to the plotter
on a D.C. scale proportional to log frequéncy or linear frequency.

Points of relatively high response on the plot constitute possible reso-

nance (or natural) frequencies of vibration of the structure.

The C.R.0. (Cathode Ray Oscilloscope) gives a more immediate view
of the response. In addition, a comparison of the response signal and
the original signal from the oscillator gives an instant relative phase
shift of the response signals on the C.R.O. In fact, the in-phase and
out-of-phase positions of the two signals have been used to designate
positive and negative signs respectively to the response of the structure

at any particular point,
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A phase meter could be used for the above purpose, but this is
considered to be too sophisticated and un-necessary for this simple

case of in- and out-phase measurement.

A frequency counter is usually connected to the instrumentation to
give a more reliable reading of the frequency of the signal generated
by the oscillator. As a check, the frequency counter is also used to
know the actual frequency of the output signal from the analyzer.

Both frequencies should read the same.
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Fig. 5.2.1 Block diagram of Vibration Instrumentation




- 95 -

Selectable Bandwidth

Signal /\__/_ Filtered

Output

Input

Tuning Frequency

Input

Fig. 5.2.2 Operation of Dynamic Analyser




CHAPTER SIX



- §6 =

. CHAPTER SIX

ANALYSIS OF FABRICATED SPACE FRAME

6.1 Introduction

The fabricated space frame (fig.2.2.1, Chapter 2) is here analysed.

Both theoretical and experimental vibration analysis are presented here.

The space frame is discretized into the 30 nodes system shown in
fig.6.1.1. This involves using the original 8 joints of fig.2.2.1,
the 4 feet joints and the mid points of each of the long member beams
which makes up the space frame. No midpoint nodes have been included
for the short feet members. The node numbering and the coordinate
numbering which follows it, have been done to reduce to a minimum the
eventual band width (refs.3,5 etc.) of the system mass and stiffness
matrices. This should havg in turn reduced the actual computer
storage space required in the analysis. But unfortunately, efficient
computer routines were not available to solve the Vibration problem

obtained whilst making use of the banded nature of the matrices.

Theoretical and experimental natural frequencies and modal shapes
have been obtained. Plots of the modal shapes for the first three

natural frequencies have been made for both theoretical and experimental
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results for comparison. In the discussion which follows, the theoretical
and experimental results are discussed in detail. Probable reasons for

errors are analysed and possible solutions are suggested.

6.2 Theoretical Vibration Analysis

The discretized form of the fabricated space frame shown in fig.6.1.1
has‘been used in this section. It is assumed here that all eight
corner joints (nodes 6, 7, 8, 9, 18, 19, 20 and 21) are each capable of
6 D.0,F. - 3 translational motion in the X-Y, and Z-axes and 3 rotational
motion about the X-, Y-, and.Z-axes in the YZ, XZ and XY planes
respectively. This assumption implies that these corner joints remain

orthogonal at all times.

The midpoint nodes should naturally have 6 D.0.F. each. This will
guaranteé continuity at these nodes since the beams are originally

continued at these points,

The feet nodes (27, 28, 29 and 30) are assumed to be perfectly
clamped. Thus both translational and rotational displacements at these

nodes are zeroes,

The above type of discretization implies that the structure becomes
a 40 elements, 26 nodes finite element system, With 6 D.O.F. at each

node, the structure is to be analysed as a 156 D.O.F.system.

In fact, the first possible discretization of the space frame

should be as defined above but without the mid point nodes. Thus
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the structure becomes an 8 nodes (22 elements) finite element system

having a total of 48 D.0.F. (see fig.2.2.1 in Chapter 2).

Any further discretization will involve more nodes hence more
D.0.F. This will then make the matrices too large for the available
computer. Thus the theoretical analysis of the fabricated space frame
has been carried out with the 40 elements, 156 D.0.F. system and the

22 elements, 48 D.O.F. system analysis for comparison and check.

The essential data required for the analysis include:
Modulus of Elasticity of beam material, E = 207 kN/mm?

Modulus of Rigidity of beam material, .G 80 kN/mm?

Area of corss-section of beam, A= 90 mm?

Mass per unit length of beam, pA = 6.5 x 10—4 Kg/mm

Second moment of area about X-axis, Ix = 10046 mm"
Second moment of area about Y-axis, Iy = 5023 mm"
Second moment of area about Z-axis, I_ = 5023 mm"

Equivalent concentrated mass at joints 6,7,8 and 9 = 0.269 kg
Equivalent concentrated mass at joints 18,19,20 and 21 = 0.284 kg

And after making allowances for the joint length,

Length of the beam such as 6-8 = 560 mm
Length of cross member beam - = 770 mm
Length of feet beam = 91 mm

Table 6.2.1 gives the computed first 10 natural frequencies of the
fabricated space frame for both the 48 D.O.F. and 156 D.0.F. systems.
It is to be expected, the computed frequencies are lower for the 156 D.O.F.

system than for the 48 D.O.F. system. The former gives a better
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TABLE 6.2.1

Computed Natural Frequencies for the Space Frame

Computed Natural Frequencies

MODE =
48 D.O.F. 156 D.O.F,
1 165.38 146.81
2 . 172.96 151.51
3 215,25 174.82
4 224.08 175.52
5 226.36 180.39
6 252.98 183,86
7 306.21 199,89
8 307.01 201.70
9 308.62 221.07
10 327.62 221,71

representation of the structure than the latter. With further
increases in the number of elements (hence number of D.0.F.), the
computed frequencies should, theoretically, tend to the lower limiting
values equal to the actual natural frequencies. But even with the
156 D.O.F. system, the frequencies should be close enough to the true.

values.

The corresponding computed modal shapes (or eigenvectors) for the

first 10 modes are included in Appendix B as Appendix Bl.
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6.3 Experimental Frequencies and Modes

In the experimental vibration work on the fabricated space frame,
the basic node system used in the theoretical finite element analysis

has been followed.

The space frame is vibrated at a convenient point and the response
is measured at other mode points 1 - 26 shown in fig. 6.2.1, Unlike
the theoretical computations, only a maximum of 3 linear displacement
coordinates could be meaéured for each of the 26 finite element nodes.
The rotational displacements are left out of the modal measurements.
However, apart from these measured displacements, it was sometimes
useful to measure the displacements on a beam between the stated nodes
in order to access the actual shape of vibration along the beam. This
is because, in some cases, the response at the stated 26 nodes on the

structure did not yield enough information required.

Appendix B2 shows the experimentally measured natural frequencies
and corresponding modal responses for the first three modes. No direct
comparison should be made between the listed absolute values of the
responses across the modes. The responses are only to be compared
with each other from point to point on the same mode. This is because
the absolute values of these responses depended on the magnitude and
point of application of the exciting force. In the first place, the
magnitude of the exciting force was kept constant during the response
measurement only for individual mode experimentations. Secondly, the
point of excitation was not fixed for the three mode measurements. To
obtain the best results, a structure should be excited at a point of
possible maximum vibration response for the particular natural frequency

intended to be measured.
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6.4 Theoretical and Experimental Mode Plots

The theoretical and experimental natural frequencies as obtained in
sections 6.2 and 6.3 do not agree. But their corresponding modal shapes

should be plotted for comparison.

The fabricated space frame under consideration is a complicated
one and plotting the modal shapes in 3-dimensional space is even more
complicated. To ease the task, plane plots of the theoretical vibrating
shapes of the structure were first made. The effects of the rotational
displacements are better seen in these 2-dimensional plots. The
complete 3-dimensional plots are built more readily from the plane plots.
The 3—d%mensional plots are difficult to interpret, but in combination
with the 2-dimensional plots, the 3-dimensional mode of vibration is

better visualised.

Six plane plots are required to obtain a complete picture of the
space frame mode of vibration. Hence 6 plane plbts'have been made for
each of the modes plots of vibration. - Appemdix B contains the plane
plots for the first three theoretical modes of vibration of the
fabricated space frame. Figs. C1.1-6 (Appendix Cl) are the plane plots
for mode 1; figs. C2.1-6 (Appendix C2) are the plane plots for mode 23

and figs. C3.1-6 (Appendix C3) are the plane plots for mode 3.

Plots of the theoretical modes of vibration of the space frame in
3-dimensions are shown in fig. 6.4.1(a) for mode 1; fig.6.4.2(a) for
mode 2; and fig; 6.4.3(a) for mode 3. The corresponding plots of the
experimental modes are shown in fig.6.4.1(b) for mode 1; fig.6.4.2(b) for

mode 2; and fig., 6.4.3(b) for mode 3.
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In all three cases, the theoretical and experimental modal shapes
are similar, The third mode of vibration represents the first
symmetric mode of vibration of the space frame (ref.17). Here, there
is relatively no horizontal motion of the tops of the stanchions and
the centres of the top member beams remain horizontal. Each of the
component beams (except the short feet beams) vibrates as if it were an
isolated hinged-hinged beam vibrating at its first mode. The first
and second modal shapes represent anti-symmetric modes of vibration. In

each case, there is a sideways sway of the fabricated space frame.

6.5 Discussion of Results

The results of the theoretical and experimental vibration analysis
of the fabricated space frame is satisfactory only in relation to the
modal shapes obtained. The theoretical analysis used in this work has
produced a very good forecast of the true modal shapes of vibration for
the first three modes analysed. However, the corresponding natural
frequencies have not been so close.

TABLE 6.5.1

/

Natural Frequencies (Hz)

MODE . Computed Experimental
1 146.81 96.00
2 151.51 104.00

3 174.82 114.00
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Table 6.5.1 shows the first three computed and experimental patural
frequencies of the fabricated space frame. The computed frequencies
are an average of about 50% higher than the experimental values. This
is not good enough, and it is necessary to trace the possible source(s)

of error in the theoretical approach.

Of all the parameters used in the analysis of the space, the most
likely source of error is in the derived mass and stiffness matrices,
from which the natural frequencies énd modal shapes were computed.
Errors of up to 50% higher computed natural frequencies should suggest
a possible 125% over-estimation of the frame stiffness matrix or 125%
under-estimation of the frame mass matrix or some combination of factions
of these. Moreover, the close agreement in the corresponding modal
shapes further raises the suspicion of such percentage estimation. But
this line of approach has proved unreasonable upon investigation. Very
extensive checks on the programmes and data have not shown any trace of
such factional possibilities. In addition, tests on other structures
of known solution have produced the correction solutions, with the same

programmes.

Several other lines of investigation have also been followed.
Among these lines is one of reconsideration of the boundary conditions
at the joints of the frame. The initial step in this direction only
involved a reconsideration of the con&itions at the brazed feet of the
frame., It was supposed that the joint at the feet could be capable of
rotation about the three axis, and theoretical analysis was carried out

on such a fabricated space frame.
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This assumption implies an additional 12 D.O.F. to the systems as

analysed in section 6.2,

Thus, referring to fig, 6.1.1; the 48 D.O.F.

and 156 D.0.F. systems now become 60 D.O.F. and 168 D.0.F. systems

respectively.

TABLE 6.5.2

Table 6.5.2 shows the computed natural frequencies

Computed Natural Frequencies (Hz)

MODE
48 D.O.F. 60 D.O.F. 156 D.O.F. 168 D.O.F.
1 165.38 102.09 146.81 98.80
2 172.96 105.65 151.51 101.91
3 215.25 127.06 174.82 122.84
4 224,08 207.17 175.52 167.03
5 226.36 224,31 180. 39 174.68
6 252.98 248.40 183.86 183.08
7 306.21 258,34 199.89 185.77
8 307.01 297.29 éOl.?O 201.66
9 308.62 307.43 221.07 217,72
10 327.62 307.43 221.71 221.35

for the new systems plus the previous results (Table 6.2.1) for the

48 D.0.F. and 156 D.0.F. systems for comparison

The computed natural frequencies with the released feet joint seemed

to give reasonable values to within 8% of the experimental values. But

it can be seen that there

is some degree of inconsistency in the values.
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The assumption involving a complete release of the feet joint as to be
capable of rotational displacement is by far a ﬁild guess of the true
conditions of the space frame. It is most unlikely that the bulk of
the error in the originally assumed joint boundary conditions lies in
the rotational rigidity of the feet joint. As such, the sharp closure
of the gap between the experimental frequencies and these computed
frequencies should give an indication that the feet rotational release

does not represent the real situation.

~ The corresponding modal shapes for the 168 D.0.F. system were also
computed, and it may seem worth while to plot these modal shapes for
comparison with the other modal shapes (experimental and the computed
156 D.0.F. system). But bearing in mind the time and effort it takes
to plot a 3-dimensional modal shape of vibration, this was avoided as

very little usefulness was expected from the results.

Of the mass and stiffness matrices of the space frame the more
practical one to be checked in isolation is the stiffness matrix, This
can be done by considering the statics of the fabricated space frame.
Load-deflection experiments can be performed on the space frame. Also,
the corresponding deflection of the frame can be calculated for a given

load from the stiffness matrix and the static equation of equation 4.1.1.

[kK1{q} = {q} 6.5.1

In fact, this gave rise to writing the static analysis programme of

section 4,3,
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The stiffness matrices for both the 156 D.O,F. and 168 D.O.F. systems
have been used in computing the displacements for applied load at
convenient points. Experimental displacements at the same points were
measured to obtain the average deflections of the frame structure fof
a fixed point load. Two such point load analyses were carried out.
Table 6.5.3 shows the experimental and theoretical displacements at some
points (coordinates) for a load of -2000 N applied at the point 4X
(coordinate 19) of the fabricated space frame. Table 6.5.4 shows the
other set of values for a load of -200 N applied at the point 16X (co-
ordinate 91) of the fabricated space frame.

TABLE 6.5.3

Applied Force = -200 N at point 4X

Frame Displacements (mm)

Coordinates Experimental Theoretical
156 D,O.F, 168 D.O.F.
1Y 2 0.087 0.069 0.067
3X 13 -0.022 -0.005 -0.031
4X 19 -0.400 -0.308 -0.335
5Y 26 -0.132 -0.057 -0.060
10X 55 -0.054 -0.019 -0.059
10Y 56 -0.009 -0.002 X -0.007
12y 68 0.090 0.014 0.012
13X 73 -0.029 -0.007 -0.042
15Y 86 0.049 -0.052 -0.058

16X 91 -0.107 -0.074 -0.113
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The two tables show that there are very great differences between
the experimental and theoretical displacements; The differences are
very complex and no definite pattern of variation can be traced. The
168 D.O.F. system has not produced a closer displacement value to the
experimental ones., Earlier it was seen that the 168 D.0.F. produced
natural frequencies which seem to be closer to the experimental values,

TABLE 6.5.4

Applied Force = -200 N at point 16X

Frame Displacements (mm)

Coordinates Experimental Theoretical
156 D.O.F. 168 D.O.F.
1Y 2 0,091 0.014 0.012
3X 13 -0.036 -0.007 -0.042
4x 19 -0.077 -0.074 -0.113
5Y 26 0.063 -0.052 ~0.058
10X 55 -0.077 -0,027 -0.082
10Y 56 0.013 -0.001 -0.010
12Y 68 0.117 0.037 0.047
13X 73 -0.137 -0.018 =0.065
15y 86 0.060 -0.045 -0.056
16X 91 -1.760 -0.617 -0.685

If these closer frequencies were genuine, then one would have expected
the displacement pattern to be closer also. This is a further
confirmation of the earlier inference that the released feet system

does not represent the real system.
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Also, the general state of the displacement pattern in the two tables
is that the theoretical displacements are lower than the experimental
values. This implies that the theoretical stiffness matrix makes the
space frame stiffer than it really is. This, in turn, should lead to

higher computed natural frequencies as already obtained.

However, the complexity of the space frame means that very little can
be expected in terms of improvement of the theoretical stiffness matrix
from such static deflection tests on the space frame., The prime source
of error in the theoretical stiffness matrix should be as regards’ the
actual boundary conditions at the joints of the fabricated space frame.
These joints include not only the brazed feet joints, but the other

joints at the 8 corner points of the frame.
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Fig. 6.4.2(a)
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. CHAPTER SEVEN

INVESTIGATION OF BOUNDARY CONDITIONS

7.1 Introduction

The results of the experimental and theoretical vibration work on
the space frame discussed in the last chapter have made to necessary to
reconsider the assumed boundary conditions at the joints of the frame.
This chapter describes the various steps taken to access the true boundary

conditions at the joints.

The mass and stiffness matrices of a beam element (equations 3.2.48
and 3.2.47) derived in Chapter 3, represent the beam properties for a
general free-free finite beam element. From these general matrices,
the particular properties for any combination of beam element boundary
conditions can be obtained, In elementary beam theory, the various types
of boundary conditions include free, guided, hinged, and clamped end

conditions.

These types of end conditions represent idealizations of the real
boundary conditions for theoretical convenience. The greatest practical
problems usually involve marching real systems such that the end

conditions coincide exactly with these known ideal end conditions. An
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alternative approach is to find suitable theoretical end conditions which
describe the real end conditions exactly, This alternative approach
has been used here. Some possible methods of such approaches are

illustrated as follows.

The clamped end of a beam represents a joint of zero rotation and
transverse displacement. And the hinged end of a beam represents a
joint of zero bending moment and transverse displacement. Now, a single
span beam may be meant to be a clamped-clamped beam, but its behaviour
could imply that the end conditions lie somewhere between a clamped-
clamped beam and a hinged-hinged beam. Possibly, one first reaction
to the situation is to calculate the fraction of the non-zero rotation
and bending moment to the ideal value with assumed hinged and claﬁped
end condition., A multiplication of the corresponding rows and columns
of the beam properties matrices by this fraction would then be expected
to yield the matrices required to describe the real end conditions
exactly. Unfortunately, this method does not give any reasonable
similation of the real system. Even on the simplest case of a simple
span becam, the static deflection curve obtained from such theoretical

analysis does not compare with the real system.

A second method of representing the real end conditions is given in
ref.6, and is illustrated in fig. 7.1.1. A beam is shown in fig.7.1.1(a)
hinged at the end B but with a non-ideal support at end A.  This method
of represcntation involves imagining the beam to be extended past the
support as shown in fig.7.1.1(b). The elastic stiffness of this hypothetic
extension A'A will determine the degree of end fixity at the support A.

!

The length (lc) of this hypothetical equivalent 'connection span" becomes
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an important parameter in the analysis. It is convenient, with its
method, to assume the same value of flexural rigidity for the actual beam
and the hypothetical equivalent span, thus variations in the degree of

fixity will be fully expressed in terms of varying span length, Ec.

This method looks simple enough for a simple problem but difficulties
do arise when larger structures are being considered. For instance, in
2- and 3-dimensional frame structures, the degree of end fixity at a
joint and hence the length (£c) of the hypothetical equivalent '"connection
span'" will be different in the various directions (X-, Y-, Z-axes).
Therefore, computation of the stiffness of the equivalent system will
become more complicated and undesirable. Moreover, illustration of
such a system on a drawing becomes impossible because of varying 'length'

of the beam element in various axes directions.

A third method of representation seems to avoid the above difficulties,

and gives a logically more satisfying picture of the real system., Here,

it is imagined that an appropriate spring is included at the non-ideal
joint to account for stiffness at that joint, as illustrated in fig.7.1.2.
Fig. 7.1.2(a) shows a propped cantilever beam AB with the end A as a non-
idcal clamping. Fig. 7.1.2(b) shows the equivalent system with a spring
of stiffness Kc at the end A, The stiffness of the spring will be such
that it accounts for the resisting bending moment and the rotation at

the joint A of the real beam System:f

Any type of joint fixity can be represented in this way. The

number of degrees of freedom at the joint does n&t give additional
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difficulties in the represenzétion and the logic of computation. The
method is suited for the analysis of any frame structure by the finite
element method., The actual boundary conditions at the joint are
represented completely by the addition of '"concentrated stiffnesses'" to
the appropriate elements of the assembled stiffness matrix of the
structure. This method of representation of the actual joint boundary

conditions have been used in this work.

The problem of assessing the boundary conditions at the joint is
mainly a static one., As such the estimation of the stiffness K, at the
joint can be done from surely static considerations. Dynamic analysis

can also be used later to confirm the results obtained.

The various types of joint conditions in the space frame are
considered individually (or in small groups) in simple beam and plane
frame configurations. Static tests are carried out on these simple
members to obtain load-deflection relationships for the simple frame
systems. The simple frame systems are then analysed using energy methods
(ref.5) or elcmentary theory of beams to obtain expressions for the
fictitious spring constants (Kc) of the springs in the equivalent systenm,

in terms of the applied load and corresponding deflections.

The values calculated for the spring constants (Kc) at the joint
are then fed into the programme MASSTIFPROP to obtain the mass and
stiffness matrices of the simple frame system under consideration. The
stiffness matrix obtained is tested on the programme STATICPROB to compute
a static deflection shape of the simple frame structure. Computed and

experimental static deflection shapes should be equivalent.
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The simple frame structures are further analysed dynamically both
experimentally and theoretically. Results of the natural frequencies
and modal shapes are indications of the accuracy and reliability of the

method of joint representation used.

Basically, three types of joints are present in the fabricated space
frame of fig.2.2.1. These joints are simulated and analysed in the

remaining part of this chapter to obtain the true boundary conditions.

7.2 Single Leg Member

Here, the brazed feet member is considered to determine its true
boundary condition. This feet joint is supposed to behave like a clamped
joint but this has not been the case. Fig. 7.2.1 shows the beam member

used to investigate the feet boundary condition.

The single leg member, which is in the form of a cantilever, is first
analysed statically. Load deflection shape of the member is obtained
experimentally for both X- and Y-directions as shown in fig. 7.2.1.
Fig.7.2.2 shows the point of application of the force and the other points

1, 2, 3 and 4 where the corresponding beam deflections are measured.

The deflections were plotted (graphs not shown) for all points to
obtain the cquivalent deflections of the beam for a load of 20 N, as
shown in Table 7.2.1. Also, this table contains computed values for
the deflection when the beam is assumed to be an ideal cantilever.
Additional points (or nodes) la, 2a, 3a and 4a (fig. 7.2.2.) have been
used for this computation. Fig. 23_.2.3 shows a graphical comparison

of the deflection shape for the experimental and theoretical results.
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It can be seen from the graphs of fig.7.2.3 that the brazed feet are

not acting like a clamped joint in both X- and Y-directions. Also,

the boundary conditions are different in both these directions. The
beam is analysed to develop a suitable theoretical model to the real

beam boundary conditions, as follows.

Fig. 7.2.4 shows a model simulation of the beam. The condition
at the brazed joint is represented by a spring (of stiffness k) which
resists the bending moment at that point. By the elementary theory of
beam bending the bending moment (M) at a point (x) along the beam is
given by

2
Elj—xl} = M = -Wx 7.2.1

Integrating once, we have

dy _ W 2
Bl = -2x2 4 i 2
Boundary condition, at x = &, g% = 0

Substituting this in equation 7.2.2, we have

Cy = EIB +-"i"-£’
Therefore, equation 7.2.2 becomes

51%--%::’+%12+me, 7.2.3

Integrating again, we have

EIY = - -'g-x’ . %‘- 22x + EIOx + Cs , 7.2.4
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20 N Load at Point 4

Deflections in mm

Point Experimental Computed
X-direction Y-direction
1a 0.049
1 0.50 0.25 0.189
2a 0.406
2 1.30 0.85 0.687
3a 1,020
3 2:35 1.67 1,392
4a 1.789
4 3.45 2.65 2,199
Boundary conditions,
at x = 0, y = =8
and at x = £, y=0

Substituting these boundary conditions, into equation 7.2.4 we have

and

Thus

-EIS$

0 =1;-9.’+Ere£+cz

§

ucz

3ET

13

+

26

7.2.5
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Now, taking moments about the point B, we have

K6 = WL
or 0 3%£ _ 7246

Substituting equation 7.2.6 into 7.2.5, we have

_ N 3 We?
§ = Mt X faked
or I A
w bz 3EI K 7.2.8

Now, for the beam under consideration,

2 = 700 mm, E = 207,000 N/mm?

I = 5043 mm"

In the X-direction,

W=20N and 6x=3.45mm

Substituting the above values into equation 7.2.8, and solving

for the stiffness Kx in the X-direction, we have that

K, = 7.835 x 10% N-mm

In the Y-direction,

W = 20N and 6, = 2.65 mm,
L

Similarly

xy = 2,174 x 107 N-mm
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These values of stiffness constants were used in computing the
beam elastic properties matrices by the computer programme MASSTIFPROP.
The static deflection shapes obtained in both cases (X- and Y-directions)

correspond to those obtained experimentally (fig. 7.2.3).

Having obtained static agreement, the beam was subjected to dynam;c
tests in the X-direction. The first three natural frequencies and
modal shapes were obtained experimentally. The natural frequencies
and modal shapes were also computed, with the beam discretized into 16
elements (33 D.O.F.).

TABLE 7.2,2

Natural Frequencies

Mode Hz
Computed Experimental
1 34.31 33.80
2 237.39 224,60
3 696.82 645.00

The first three natural frequencies of the beam (computed and
experimental) arc shown in Table 7.2.2. These show an agreement to
within less than 10% of cach other. The modal shapes are the same
for both computed and experimental results. The static deflection
curve and the first thrce modal shapes are shown in fig. 7.2.5. It
can be scen that the first modal shape corresponds to the static

deflection curve,
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7.3 Bent Cantilever Structure

The bent cantilever (fig. 7.3.1) considered here represents the
single leg member just analysed plus an additional horizontal member
fixed to its free end. The aim here is to obtain the joint boundary
condition at the point B. The model of the bent cantilever is as

shown in fig. 7.3.2.

Static deflection tests were carried out on the structure. Final
values were obtained for the average deflections §; and §, at the points
B and C for an applied load (W) of 20 N at the free end C. The values

for the joint stiffnesses K; and K; at joints A and B respectively are

Ay
then obtained by theoretical analysis of the structure as follows.

Referring to fig. 7.3.3, the bent cantilever structure can be
analysed as two beam members and the elementary beam theory applied to

each.

For member (2):

Taking point C as the origin, the bending moment of the beam is

given by
d’y
EI 55 = M = -Wx 7.3.1
i.e. EI% = - =x? + C,
d
At x = %5, 3& = 0,
C, =%£22 + EIf,




- 126 -

And
_Zd = - .....i' x? .._..h 2
EI 1 2 + > L2+ EIfB,

Integrating again, we have

%*

Ely = - % x? + 32"- zzz‘i EIf3x + C, 7.3.2

At x=% y=0

and at x =0, y = -6,

Substituting these boundary conditions into equation 7.3.2, we have

W,
Sz = SEi + Q.04 7.3.3

Taking moments about point B for member (2), we have

K2(8y - 62) = W2

or 0y = 22 , g, 7.3.4

Substituting equation 7.3.4 into equation 7.3.3 we have

3 2
.‘;gi . "‘ii + 2,0, 7.3.5

82

For member (1):

Taking point B as the origin, the bending moment of the beam is

given by
2
EI%% = M o= -HR 7.3.6
Th :p 31
us EI ax o -lex + Cg



- 127 -

At x = 0, %& = 6,
C2 = EIf;
And EI 9L = -Wpx + EI6, - 7.3.7
Integrating
EIy = - 2Hl2x? + EI6x + Cs 7.3.8
At x=0, y-= -6
and at x =2, y=0

Substituting these boundary conditions into equation 7.3.8, we

obtain
8y 2182
62 = -; + 2EI 7. 3.9
- dy _ :

Also at x = &, il 8; , and from equation 7.3.7 we have

El10; = -W!.;f.? + EIO; 7.3.10

Now,
K161 = -K2(03 - 6;) = W&, 7.3.11

From equations 7.3.9, 7.3.10 and 7.3.11, we have

_ WL2i1%22  WR4R,
61 = 551 Kl 2.2.12

And from equations 7.3.5 and 7.3.9, we have

ot EL W L
62-(3 + 2 +K2) EI +£1 61 7.3.13
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Now E = 207,000 N/mm?®, I = 5023 mm"*
Ly = 700 mm , 22 = 600 mm
W=20N
§;=4mm , and &, = 8.25 mm

Substituting these values in equation 7.3.12 and 7.3.13, we have
the following values:

K, = 7.165 x 10® N-mm

7.109 x 10° N-mm

and K2

The bent cantilever was discretized into an 8 element 22 D.O.F.)
system as shown in fig. 7.3.4. Using the above values for the stiffness

constants (K and KZ), the system is analysed to obtain the static

deflection shape. The values obtained are in agreement with the

experiment deflections.

Table 7.3.1 shows the experimental and computed values for the
first three natural frequencies of the bent cantilever. These values
are within 5% of each other. The computed and experimental modal shapes
also correspond with each other. These modal shapes as well as the
static deflection shape are plotted in fig. 7.3.5. And as expected,
the modal shape for the first natural frequency takes the form of the

static deflection configuration.
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. ' TABLE 7.3.1 ! :

Natural Frequencies Hz

Mode
Computed Experimental
1 13.3 13.7
2 37.9 38.4
3 193.8 185.1

7.4 Portal Frame

The purpose of this section is to further verify the results of the
previous section. The equivalent joint stiffness constants (K; and K;)
obtained in section 7.3 are here tested on a portal frame where a pair

each of the two types of joints are present. Thus, no experimental

static tests are carried out in this section.

Fig. 7.4.1 shows the model portal frame as a 12 elements (29 D.O.F)
discretized system. Static deflection shapes were computed for two
cases of the portal frame being acted upon by a horizontal sideways

force at coordinate 8 and a central vertical force at coordinate 15.

Experimental and computed natural frequencies and modal shapes were
also obtained. Table 7.4.1 shows the first three natural frequencies
of the portal frame for both experimental and computed cases. These

values are within 10% of each other.
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The experimental and computed modal shapes are also very similar.
The sideways sway static deflection shape and the first three modal
shapes are shown in fig. 7.4.2, The first modal shape is similar to
the sideways sway static deflection shape while the second modal shape
is similar to the static deflection shape under the action of a central

vertical force (not shown in the figure).

‘TABLE 7.4.1

Natural Frequencies Hz

Mode
Computed Experimental
1 27.88 28.5.
2 165.06 157.1
3 206.62 212.6

The agreement obtained above between the computed and experimental
vibration characteristics of the real portal frame are reasonable. Thus,
the values obtained for the joints stiffnesses, as well is the method of
representation of the real system in the computer programmes, are

reliable.
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7.5 Cross Member

In this section, the aim is to determine the actual boundary
conditions for the cross member joints of the space frame structure. As
shown in fig. 7.5.1, the cross member beam is bolted at both ends to the
stiffening plates of the space frame joints. With reference to the axes
notation of fig. 7,5.1, the essential boundary parameters investigated
here are the equivalent joint bending stiffnesses Ky and Kz in the Y-

and Z-axis respectively.

Static deflection tests were carried out on the beam while loaded
at point 4 and deflections measured at points 1 to 7 and Al and Bl as
indicated in fig. 7.5.2. From the measurements taken, the average
deflections at these points have been calculated for 100 N loading and
shown in Table 7.5.1. Also in the same table, are computed static
deflections for the beam assuming clamped-clambed and hinged-hinged end
conditions. Plots of these deflection shapes (not shown) indicate
that the real end conditions of the cross-member beam are neither of a

clamped or hinged nature.

Fig. 7.5.3 shows the model system which represents the real cross-
member beam under flexure in either the Y- or Z-directions of fig.7.5.1.
Here, the beam is assumed to be symmetric, thus the equivalent joint

stiffnesses (K) at both end joints are equal.



- 132 -

TABLE 7.5.1

Deflections in-mm

—— Experimental Theoretical
Y-direction Z-direction Clamped ends Hinged ends

Al 0.025 : 0.135

1 0.067 0.280 0.036 0.336
2 0.175 0.530 0.114 0.629
3 0.280 0.750 0.193 0.836
4 0.340 0.760 0.229 0.915
5 0.290 0.690 0.193  0.836
6 0.190 0.510 0.114 0.629
7 0.080 0.270 0.036 0.336
Bl 0.046 0.135

Now from the elementary theory of beams, the bending moment (M)

is given by
2

M=EI%§-=

=

X + K0 - W[x-%] T 5T

o
~

where the term in square brackets [ ] equals zero when its value is
negative,

Integrating equation 7.5.1, we have

2
EI%=Ex2+Kex-Ex-£ + Dy 7.5.2
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and
=W sy Leox - Mg o &2
Ely = X * EKBx - 6[x - 2] + D1x + D; 7:5:.3

Now, at x = 0, y = 0, and from equation 7.5.3 we have:

and at x = 0, %E = 0, and equation 7.5.2 gives

D; = EI®

Equation 7.5.3 becomes

3
Ely = %513 + %K x> w %{x ~‘%] + EIbx 7.5.4

Also, at x = %3 y = §, and equation 7.5.4 gives

we?

EIS T

+ %&ec%xz + EI) 7.5.5

and at x = %3 dy

O% 0 and equation 7.5.2 gives

2
lo(e + 2e1) = - s 7.5.6

Eliminating © from equations 7.5.5 and 7.5.6 we have

o Wad
= 96EI

3 K& + 4EI

° 2* XL+ 2E0) 287

{1 #
Note that substituting K = 0 and K = «» in the above equation 7.5.7, we
would obtain the standard beam theory central deflection for a hinged-

hinged beam and a clamped-clamped beam respectively.



Now E = 207,000 N/mm?®, I = 5023 mm"
£ = 770 mm , W= 100N

and § = 0.340 mm i Gz = 0,760 mm
y

Substituting these values into equation 7.5.7, gives the following

results

= 1.394 x 107 N-mm

-~
|

5

- and K 7.865 x 10 N-mm

Computations of the static deflections of the cross-member beam
using the above values of stiffness Ky and Kz in the 8 elements system
kfig. 7.5.2) have both produced similar results as the experimental
values in Table 7.5.1. Natural frequencies and modal shapes for both

Y- and Z-directions were computed using the about joint stiffnesses.

Experimental vibration tests have been carried out to verify the
computed results in the z-direction. Table 7.5.2 gives a comparison
of the computed and experimental first three natural frequencies of
vibration. From the table the first natural frequency is very accurate
indeed, the third is within 2% of each other while the second has the
most error of about 10%. However, generally, the correlation between
the computed and experimental natural frequencies are also very close.
Fig. 7.5.4 gives the static deflection and the first three modal
shapes. As expected the first mode is similar to the static

deflection shape.



TABLE 7.5.2

Natural Frequencies Hz

Mode
Computed Experimental
1 117.27 117.60
2 435,96 484.70
3 967.08 984,20

7.6 Torsion Experiments

Basicélly, three types of joints are present in the space frame
analysed in Chapter 6. These joints have been investigated so far only
in terms of their resistance to bending. Thus, the equivalent joint
stiffnesses obtained so far in this chapter refer to bending joint
stiffnesses. In this section, the aim is to obtain the real joint

stiffnesses in relation to torsional forces.

Owing to difficulties in investigating the vibration of non-circular
section bars in torsion, the investigations in this section are very much
restricted. In fact, only static experiments have been carried out.
Theoretical models can be obtained for the joints to describe the real

boundary conditions exactly.

“The three types of joints of interest here include (a) the brazed
feet of section 7.2 (fig. 7.2.1); (b) the corner joint B of fig.7.3.1 and

(c) the bolted joint of the cross-member beam shown in fig. 7.5.1.




In all three types of joints, the theoretical model representing
the torsional boundary conditions are similar . Fig. 7.6.1 gives

such a model.

Applying elementary theory of beams to the beam under torsion, the
torsional equation is given approximately by

dé

T'='G1x ax 761
and
Tx = -GIxB + Do 7.6.2
Now at x =%, 0 = BB
and at x =0, 0 = BA

Thus equation 7.6.2 becomes

T = GIx(GA - BB) 7.6.3
Also
KTBB =T
or BB = T/KT 7.6.4

Equations 7.6.3 and 7.6.4 give

ke ==z

GA =2 -G_I- 7.6-5

a) For the brazed feet, the following datawere obtained

G = 80,000 N/mm?; 1x = 10046 mm"*
L = 695 mm ; T = 600 N-mm
and o = 2:250 _ 4 60625

A 40
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Substituting these in equation 7.6.5 gives

Kp = 1.047 x 10° N-mm

b) For the corner joint B, the following are the relevant data:
G = 80,000 N/mm*; I = 10046 m*
£ = 590 mm ; T = 600 N-mm

and 0.364

BA == - 0.0091 rad

Equation 7.6.5 gives

K, = 6.929 x 10* N-mm

c) For the bolted joints of the cross-member beam, the configuration

is as shown in fig. 7.6.2. Equation 7.6.5 holds with the notation in

the figure.

Here, the relevant data includes:

G = 80,000 N/mm?; I_ = 10046 mm*
L = 385 mm ; T = 300 N-mm
and
_ 0.450 _ _
6, = —70 = 0.01125 rad.

and from equation 7.6.5, we get

Kp = 2.701 x 10* N-mm
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Fig. 7.5.1 Cross Member beam
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CHAPTER EIGHT

DISCUSSIONS

8.1 Introduction

The investigations of the joint boundary conditions have yielded
some positive results which are basic in the accurate analysis of frame
structures., Having taken due account of the true joint boundary
conditions, the computed static deflections, natural frequencies and
modal shapes have all been equivalent to their experimental counter-

parts.

The true joint boundary conditions were not taken into account in
the theoretical analyses of the space frame in Chapter 6. Having
obtained the relevant joint stiffnesses, they should now be applied to

the fabricated space frame.

8.2 Application of joint boundary conditions to Fabricated Space Frames

The three types of joints present in the fabricated space frame
have been analysed in Chapter 7. These joints boundary conditiéns
should be applied to the space frame of fig. 6.1.1 to produce a system
which gives a closer representation of the space frame. Such application
would in turn increase the number of degrees of freedom of the space frame

during analysis.
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Application of these boundary conditions will not affect the
translational displacement coordinates of the space frame. Thus at
each of the 26 finite element nodes of fig. 6.1.1, there will still
exist 3 displacement coordinates. But the rotational coordinate will
defer at all the real joints and remain the same at each of the beam

midpoint finite element joints.

The brazed feet joints will now have 3 rotational coordinates each.
These will defer from the type considered in the case of 168 D.O.F.
system, because the rotational release will only be partial, not .
total as previously analysed. The partial release implies that the
joint behaves in a form somewhere between a hinged and a clamped joint.
The release factor is then accounted for by the fictitious spring as

shown in Chapter 7.

Also,additional displacement coordinates can be deduced at each of
the 8 corner joints. In fact, at these joints, each orthogonal beam

members will contribute 3 rotational displacement coordinates.

Thus the 40 elements, finite element discretization of the
Fabricated space frame (fig. 6.1.1) will yield a total of 228 D.O.F.
system. Of these, 78 will be due to translational displacements, and
150 due to rotational displacements. The estimated computer core to
run the eigenvalue problem programme NAGFEIGNVAL for such a 228 D.O.F.
system is about 240 K. But the ICL 19045 computer Eurrently available

at the University Computer Centre only provide a maximum core size of
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100K - less than half the requirement. The alternative computer at
the Regional Computer Centre in Manchester only provides a maximum

core size of 200K, which is still less then that required.

A practical way of avoiding the need for so much computer core is
the reduction of the working number of degrees of freedom of the system
(refs.l, 9, 15 etc.). This is achieved through some manipulation of
the mass and stiffness matrices to obtain reduced matrices for the
dynamic analysis. This usually involves distinguishing between the
translational and rotational displacements of the structure as discussed

in the next section,

8.3 Eliminating rotational displacements

The declared coordinates of the space frame include translational
and rotational displacements. The experimental modal shape measure-
ments involved only the translational displacement components, Generally,
in dynamic analysis of structures, not all the static displacements are
considered. For example, in the conventional dynamic analysis of
aircraft wing structures only the deflections normal to the wing
midplane are retained. By the same reasoning, it is useful, in this
analysis of space frames, to retain only the translational displacements

of the frame and eliminate the rotational displacements.

The first step in this elimination process is the partitioning of
the stiffness matrix [K] and the displacement vector {q} of the

structure in the form:
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—[K]tst [K]t.r W | 8.3.1
[X] =
[K]I.,t [K]I.,r
and )
{ q} 8.3,2
{q} = t
{ q}r

/4

The vector {q}t refers to all the translational displacements which
are to be retained as the degrees of freedom of the structure for the
analysis. The vector {q}r refers to all the rotational displacements
which are to be eliminated for the dynamic analysis. The stiffness

matrix as partitioned in equation 8.3.1 is such that it is compatible

with the partitional displacement vector,

The static equilibrium equation is given by equation 4,1.1 as

[Kl{q} = {q} 8.3.3

and in its partitioned form, it is given by

-

[(Klg ¢ [Klg »

{Q}
8.3.4

n

[X]

{Q}

r,t [K]r,r

Assuming that the external forces {Q}r corresponding to the rotational

il

displacements are equal to zero, we have from equation 8.3.4:

a, = -[KIJ, (K, . {a}, 8.3.5

T

provided [K]r " is not singular.
]
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Substituting equation 8.3.5 into equation 8.3.4, we have

-1

Qt, = (Kl o - Kl . KT, KDL O).faby 8.3.6
or {Q}, = [K] {q} 8.3.7
where

Kl = K, -[Kl, o (KD KD, 8.3.8

[K]c represents the condensed stiffness matrix of the structure.

Let [M]c be the corresponding condensed mass matrix of the system.

Let virtual displacements {§q} be applied to the structure.

Then it follows from the th€ equivalence of the virtual work of

the two equivalent mass representations of the continuous system that

T
(8q} (-1 g}, = {6a} (-MMI{GH)

or

(8l (G}, = [8q}l{8q}l1MM] (g},  8.3.9

@

Substituting equation 8.3.5 into equation 8.3.9 we have

{Gq}T[M] {q}, = {Gq}T[A]T[M][A] {q} 8.3.10

q- ‘c 't th e c 't U

where

[Al, = (1] © 8.3.11

'[K];Tr [K]r:A

and [I] is an identity matrix.
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Thus from equation 8,3.10, the condensed mass matrix of the

structure is given by

T
M, = [AIL[MIIA] 8.3.12

Equations 8.3.12 and 8.3.8 give the condensed mass and stiffness
matrices respectively for any structure. When these equations are
applied to the 40 elements finite element discretized space frame,
two 78 x 78 matrices will be obtained for the dynamic analysis of the
structure. This will represent a considerable reduction in computer

core required for the dynamic analysis.

However, before arriving at these condensed matrices, large sized
matrices are still to be manipulated. These may yet require more
computer core than is currently obtainable. But there are ways to

avoid the complete use of these large matrices during their manipulation.
Unfortunately, time has also run out for this work. Hence, it
has not been possible to continue with the modifications required to

arrive at the theoretical dynamic analysis required.

8.4 Further Observations

Some interesting observations can be made between the results of
the preliminary investigations and the analysis of the fabricated space
frame. In both cases, the experimental and theoretical modal shapes

are similar,
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In the case of the simple structures investigations, both the
frequencies and modal shapes agree reasonably. Here, the real boundary
conditions at the joints have been taken into account in the computations.

Hence, the agreement between the computed and experimental vibration

characteristics are to be expected.

The modal shapes of vibration obtained for these simple structures
are very similar to the standard shapes where ideal joint boundary
conditions are assumed. (Some of these standard modal shapes can be seen
in ref.17). Thus, assumption.of ideal boundary conditions at the joints
should lead to reasonable theoretical modal shapes approximating the

modal shapes for the real simple structure. The corresponding natural

frequencies show high errors.

A similar pattern of behaviour has been shown by tﬂe fabricated
space frame. The computed modal shapes have been based on assumed
ideal joint boundary conditions. These have agreed reasonably well
with the experimental modal shapes for the first three modes. But the

corresponding computed natural frequencies show errors of up to 50%.

It is therefore expected that the application of the real joint
boundary conditions to the fabricated space frame should lead to better
agreements between the experimental and theoretical natural frequencies.
The corresponding improvement in the overall pattern of the theoretical

modal shapes should be minimal.
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Natural frequencies have also been computed for the simple structures
with assumed ideal joint boundary conditions. These were compared with
the experimental values. The percentage errors in these natural
frequencies have ranged from 10% to 35% in a somewhat random manner.

But the percentage errors in the case of the fabricated space frame (as

stated in section 6.5) is about 50%.

.With the real joint boundary conditions, the percentage error in
the computed first three natural frequencies is less than 10%. There
is no direct interpolation between these percentage errors in the simple
structures which can be applied to the fabricated space frame. The
joint arrangement in the space frame is such that the commulative
effects of the assumption of ideal joint boundary conditions cannot be
deduced from the results of simple structures. But it is at least
expected that application of the real boﬁndary conditions should lead

to very reasonable reductions in the error margin obtained.
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CHAPTER NINE

CONCLUSION AND SUGGESTIONS

9.1 Conclusion

The vibration characteristics of fabricated space frame have been
found both theoretically and experimentally. The modal shapes obtained
theoretically and experimentally are very close. But the corresponding
natural frequencies of vibration show that the theoretical values are as

uch as 50% higher,

Investigations have shown that the errors in the natural frequencies
are not as a result of a direct 125% over-estimation of the theoretical
stiffness matrix. Rather, it is a result of the joint boundary conditions

not being the ideal ones originally assumed in the computations.

Static experiments, theoretical computations and experimental
vibration tests on simpler 1- and 2-dimensional frames have shown that
due account should be taken of the actual joint conditions. Having done
this, the experimental and theoretical natural frequencies and modal

shapes have assumed much closer values for the simpler frame structures.

The method of representation of real joint conditions by the

appropriate spring stiffnesses have been shown to be very effective.
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It provides a practical and diagrammatic representation of the joint.
In finite element methods, such representation is easily incorporated

’
in the analysis.

For the simple frames, the modal shapes obtained are similar to
those obtained when the joints are assumed to be ideal. This gives an
indication that similar results should be obtained for the fabricated
space frame. The theoretical modal shapes of the fabricated space
frame (with ideal joints assumptions) are close to the experimental ones,

Therefore, the theoretical modal shapes should be correct.

With an adequate size of computer the data obtained for the-real
joint boundary conditions can be fed into the MASSTIFPROP programme
developed to obtain the true mass and stiffness matrices of the space
frame. This, in turn, should yield the true vibration characteristics
of the space frame. Alternatively, the suggested method (Chapter 8)

of reducing the size of the matrices would yield the required results.

This work demonstrates the need and means of obtaining a more
accurate assessment of the true joint conditions in vibration analysis
of structures. This is not usually applied by the structural engineer
at the design stages. A factor of safety is usually applied to account
for the difference in the theoretical and real deflections of the
structure. Such practice is unsatisfactory in vibration work. A true
.account of the joint boundary conditions, as shown in this work, should

be preferred.
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9.2 Suggestions for further work

It has been seen that there is an increase in the number of degrees of
freedom of a frame when the real joint boundary conditions are taken into
account in the finite element analysis. In the case of the fabricated
space frame discussed in this work, the resulting problem has become too
big for the available computer. It is possible to reduce the problem,

for the same structure, to the capacity of the computer.

One method of reducing the problem has been discussed in Section 8.3
as the elimination of the rotational displacements from the matrix eigen-
value problem, The condensed mass and stiffness matrices obtained

would be more manageable on the computer.

Another computational investigation relates to the effective use of
the properties of the mass and stiffness matrices. The common
mathematical methods do not take full advantage of the symmetric and
banded nature of the mass and stiffness matrices in the solution of the
eigenvalue problem. In static problems where such matrix properties
are more fully used, problems of far more degrees of freedom can be

solved in computers.

Having obtained better results for the space frame with the real
joint boundary conditions, it will be useful to investigate the
transient vibration response of the space frame. Optimum shock pulse
should be investigated which will result in an optimum transient
vibration response of the frame. Pessu (ref.33) suggests that the
optimum shock pulse be a half sine wave whose duration is related to

the natural frequencies of the structure.
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Such optimum excitation analysis could be extended to situations

where transient vibration response of structures is a parameter for

assessment of the structural condition. ;
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Compiled listing of Programme MASSTIFPROP
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Compiled listing of Programme NAGFEIGNVAL
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APPENDIX B

FABRICATED SPACE FRAME FREQUENCIES
and

MODAL SHAPES DATA



i

MonE

5 0,4572F=03

0|3324F-Uﬁ
o0, 6821F=07
0,4254F =010
" 0,1108F=03
=0,2043F=003

== 0,1530E=03

—0,6601r-13

w0, 67BIE=0?

-0 ,6762F=07

= 0,3837F=04

~0,2816F=03
- 0,2333F=03
=0,1070QF=05

0,1R10F=06
S 0,1810r=06

»0,5472F=03

=0,2071r=04A
: 0,3501F=06
0,7871F=06
0,2968F=0?
-0,7393E=04
0,6356K=04
0,2715r=10
w0, bB45F=06H
-0,&844!-"5
»0,2123F=11
~0,6802r=04
- 0,688XM=04
»0,2071F=0n

1

=m0, 2355F=07

= 0,5473cm03
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Computed modal shape for the 156 D.O.F.

-”AT’hAL FP[NUFNFVi z

JODAL SHAPE

=0, 294%E=03

0,6163E=03
0,793RE=14
=0,6207¢=04A
0,4754LE"UG
0,1103E=03

=0,1330F=03 -

0,1201€"03
w0,14338=05
«0,67835=07

=0, 1183e=05

»0,2210F=04

m0,2332e=03

0,4520r=03
«, 2772e=V4
=0,151%¢=064

n0,4372En07

N.3370c=03

=0, ,43109F=03

0. ,23164£903

0. JH706E=10

0,7372E=U4

- 0.1176ER0%

=0, 2997EaUN
»0.6355£R04
0.6383em04

0,2071E=06

0.9344Fm06
w0, 4045EmU6
0.3400e=04

=0,1347Ea03"

fi.

=D, 1108E=0]

.0 . 60b6CF=03
i ﬂ.29458-03
«N,3R24F=NA

0,629 7F~06

=), A9t E=(064
w0 3R37E=04
=N, {1601F=03%
0,1501F=03%
A,16432F=05%
0,118bE=05
N,3501F=06

T 0,2437F=09

»0,547¢F=03
" 0,5473F=03
,2071F=04

T80, 65T 6En07
=0,1514F~06
=10,3370£=03 :

w0, 2816F=03

EZ0,6850E=04
0,2721¢E=107
7 0,117te=05
T 0,1170E=05
= 0,5773E=05 =
w0, 134TE=03
2 0,1347E=03"
=0,2071F=D6
w0 4045FE=06 =

Fabricated Space Frame
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41
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=0,62906E=N4".
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=0.1572E=N3%:
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N.4254F=06
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-0.1572E-03
N,1572Em03
=0 ,3824Ew06
-0 '11885-05
N ,6782E=07
-0.1825EI09
-0 ,1539E=03
0,2816F=03
=0 4L702F=10
=0 ,4S7LE=OT
-0, 1514F=06
N, 3370E=03
'0.2332F'03
0,4320Ee03
«0,1513Ew06
n,3501E=06
-0 ,5773En05
-N 7393Fn04
6. 7394Ew0k
N, 7009Ew06
n,7B72Em06
0, 9843E=06
-0, 3409Ewld
-0, 6369E=04
0,1347Ew03
0,2071€E=06
N 4BLIE=DH




‘011263"."’03
0,?956F=0h
~0,8153r=07
-0,3731r-06
2168;=04

U , 244 1F =03
“0,1234E-03
=0,12101 =08
=0 ,1410E=06
0,141nu-uﬁ
w0,1845r=038
0,2072F~UT%
S0 24270=03
0.6632F=10

S 0,5308F=07
=l ,5310E=~07
w0 ,28106=05
(0, 6LORT =03
0, 6L6BF=03
0,1015F=04
S0, 2183F~06
(), P010F~=05h
U,3908F~05
T U, 328AF=04
=0,7283FE=04
T0,5087F=06
‘w0 5878F=06
0,5873F=06
w0, 4536T=11
S 0,7795¢=04

TZ0,7794F =04
T m0,1022F=05

MODE 2

HATIPAL FRE

“0,2074Em0L"
0,1 411E90322

- 174 «

QUFRCY =&

TN, 5B78c=06"
Q 26?5:-94

i i)

B

0,1176g=05

=0, 1178F=05=

il
i

vt !

Lk

O 1 T

151,51 42
MODAL. SHAPE . =
0,2469F=U3 =0,9147F=04& 0.7244E=06 = N ,3733Ew06=
7,120%E=03  0,1204F=03  0,1184E=11 =0, ,3152E=07
~0,18258=13 - -0,2441F03 .0,1264E=0% = 1,9168Em04"
=0, 724XE=06  0,29506F=06  0,2441F=0% ~ ,126kFE=03
0, ,3733c~06 w0, ,7243E=06 w0,2950Ew00 g‘n,12635-03$f
0,9167E"04 D, 72L4F=08  0,3733E=N( =0,2956F=06
D,1234E~03 = -0, 18L4F<08" 0,1302E~05"==n,1302Ew05"
0,1200E~D3  0,1290F=03  0,1709E=N" ~ N, 1419ER06
Qs 87»2F 10 D,1200F=03 D,129UE~03 ==0 170PE=05"
~0,1419F~06 =0,R7NYE=40  0,1236E=0% ° (,1234Fn03
0,1502E=05 " »0,1302r=05 . 0,1219E=n5 = 0 ,2972E=03
0,10455-03 w0 7153406 0,2183E=06h = BAATE=06
0,2427E~03 : D,2B81012N5 0,1329Em06 Z=0,1825Ew06"
0,4530e~03% 064081 =03  wpn 3330E=n¢ =0, 5379Ew(é
=0, 1015enU6  D,6HLABL=)] He4589E=03 " 0 ,3536E~03
0,5330F~0A =0,1015r=04 (), 2427E=08% 0 ,2427E=03
Q,1325E406 = w0 71825F w06 =), 6625E~40 = 0 ,45R39E=03
0,3336E~U3 FH'NS?Vlﬂﬂﬁ 0,5303E~(7 N, 1015E=06
pgaﬁaoeiq3_fdn‘1sxbr-03— =035310E~07E 0,53308%06""
0,27972e=VU3 J2972r=03  =(0,1060E=08 =n,2184E=06
10, B667E%YAT Eﬂ ?ZBSF*OAt;;u T283E=N4= 0,2792E=09°
0,9909E=0A w0, SOA7r=08 T (,8285E=n4 N, B2B6E=04"
-ay, 155&E’p5f:ﬁﬁi135ﬁF'05\ = 054506E=40= N ,8285Em04.-
“0,3905E=05" W 1356r=(5  (,1354E=05 " ~n, 4503E~10"
10,723 3FP4z-an 2823F=09=2»039910En06= 0.99095-06¢
O,77P4ERULT TDANIIFER0YT TR0 26T4ERDLT ~0 , 11 76ERQS
=0, 1022E0065 205131152032 = 03, 7795E=04S 0, 2674En04""
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-0 104RE=11
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0, 4337F=05
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0 1402E-06fi
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Zmh O773Ew067 .
‘Fn 387‘ 05
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]

W
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=0 h05SE=11
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fit

sl il

il

it
hfit

il
m
i
i)

il

N .fi
Al

HL
il

I
'

i |

wa
il
]

'l

I

ih
Hey -
i

SiSelss SR SIS
=iF o= emr sy
e T

g il



- 176 -

Rl

H?

_|1|“
“i

4 oH
i Hl.‘;

o
i |

T

il

Gy
1]

o

HODE 4 HATIRAL FREQUFNELY = 175,57
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0,2508F=04  Q,2737F=U3 =),162¢F=03 - (,9719E=0n6= 0,2072E=06
0 ,36441 =060 0,459RE=11 =7,527%F=11 0.1705Em=08 =N ,1345FEw13
=w0,26277T=13 =0,5200F»06 =0,27R/F=03  0,2568E=04 N, ,1422E=03
0,2072F=0p =0 ,0710E~DA Ny X6bbt=Nh =0,27R7E=03 =n_ 256BE=0h
" 0,1622r=03 " 0,2072ERUA == 0,971YE=06 - 0.3A44E=N6= =0,2568Fw04
w0,27871 =07 =0 ,1922F=U3 «0,97219FE=06 =0,2072F=06 0 36LLEwDS
- 0,25987=04 0,2798E~04 w0 ,2R7/F=11 0.1371FE=05" =0, 1371Ew05
=0,20927=05 0,2923F=04 #0,2522F=04 0,1367F=40  0,5A64L6FE=06
0,5646F=06 _0,1228E%05 w0,252¢E~04  0.2528F=04c 0, 1348F=10
-o.ssaar-u& =0,5544E=V5 N, 122bF=05 =0,2593E=n4  =0,2598F=04
“w0,3321r~11 =0,1571E%05  0.,1371E~05 =0.2092F=05° 0,1618E=03
0,1618i:=03 . 0,1932em11  =9,318LF=05 0.3184F=06 =0 1379E=(5
»0,27925=04 0,27926%04  D,T14¢E=11  =0.9541Er07" =0,9541E=07
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=0 ,41041 =06 0,6722E~U7 1,5401F=06 0N,2792F=04 =N _2792E=04
0,9387F=11 -~ 0,9341E807 =0, 19541E=07 T-0.1489FE=05 =N 2368Ew03
~0,81Y8E=03 =0,2189E=U3  0,402¢F=07 =0,4104E=06 Nn,5401Em06
==0,8198F=03 =0, ,2368EnU3 2 0,218YE=03 © 0,4104E=06F =0,4022E=07"
0,5401F=06 =0,1613~03 =0, 1610F=03 " =(,5188E=11" 0,3184Em06
m0,3184F =06 =0, T379E=U5 = 0,91265Fa04 = 0,124YE=04T =0,7734E=12
»0,2777¢=06 0.27?75-06 "0 ,6525F=06  D,96N0E=N5" =0 ,9600E=05
0,2697F=11 +0,2409E=07 - :r0_2h0°5“0?~§go.1?385-05? =N,9600Ew05
0,0600F=05  0,3163E=11 =~ 0,240YE=D7  0,2409E=n7 0,1738Em05
w0,1265Em0b =0, 1240806 :»0,3287E"12 & 0,2777E=Q6: =0,2777E=06
»0,6576F=0A4  0,1108ERV4 ~ G,2021F=03 ° 0,2529E=04 =n,1516Em06
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" w=0,7258E=10 0, 51838n15“f'0;2331s-1¢"-"n 4XBT1E=N6T =0,2021E=03
~0,1106F=04 =0,2520gn04 =0 ,851YE=~07 "~ -o 1516E=06 =0,2175Ew06
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HODE 5 HAT'IRAL FasuusﬁcV = 1&0,39 g}
= MODbAL SwABE : S

0,100NE=03 =0 2ii70F=li3  =wh,99870=04 NW5917E=NE ™ n ,3103E=06
0,2083E=06 0,3401=117 =0, 49961 =19 N.1344F=0R n,5205E=14
0,8487F=14 D,9594Em0A =0 207%:m()3 031000E=0%= 0,99R1E=D4
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- 0,P931F =04 U, 310306 =N, 85917n=n4 0.20B3E=N6= =0,1000E=03
0,2070FE=03 =0 9781f=V4 =0,5917¢=n6 =,3103E=06 0_,20R3E=06
CTE0,0720F=04 0 ,9720p=04 wG,3710E=10  0,1192E=087 «0_ 1192E=0Q5
G,1881r=0% 0,1725F=0% =N ,1025¢=03 0,1305E=40" =N _1361F=07
“w0,13611 =07 -D 5342g~06 =0 ,102%e=03 0,1025E=0%3% N _1393Fn10
N,1361F=07 0.1561;-07 -q.szkic-oﬁ =0,9720F=04 =~ ,9720E=04
»(1,37500=10 =0,1192=~03 V1, 1192F=08 0,1881E=08° 0,2630F«03
0,26300=02 =0 1747F=1) =1,2143r=06 0,2143F=04 ¢,1119E=05
. 0,2165F=03 w0 ,2145F=UY 3, 1205F=10 «n,2202k=04" =0, 2292E=06
=0,3591rm06 0,5512F=V3 #0,3110€=03 =0,4671E=NY N,67B4EmO6
. 0,2565r=07  Q,1410F=05 w1, 3110E=03  (,5512F=n3 N, L671Ew03
=0, 2505F=07 =0 ,6784Fk=0h6 N, 1400LF=05 =0, ,2145F=n% N, 2145Fw03
L 0,7835k=11  C0,2292ewU6 - 0,229¢E=06 =0,3591E=08% =N,5512Em03
0,3118r=03 w0 A671F=U3 w0, 678LE=N6 =0,2585FE=N7" 0,1490Fw05
0 0,3118F=0% mD,55125=U3 T 0,4671F=03 T 0,2585Em075 0, 67BLFm06
0,1410F=05 w0 2530gmu3 "0 263UFm03 w(,2525E=~10" 0 ,2143Fe06
"»0,2143r=04 0,1119€aV5 ~ 0,6047p=04 = 0,6041F~04 «N 6524Fuil
~0,7505rm0h4 0 7568grU6 0 ,347¢kn06  (,7054F=04 =0 7054Fw0i
0,4868¢=11 . 0,1249€mU5 = 0,124YE=05 “ <0, 1808E=067 =0,7054Ew04
0,7054F=04  0,793%6211 =0,424YF=05 =0.1249Em05 ~0,1808E=06
T w0, 6046 Fm04 w0, COA1EUL cmD 4160E=1 i 0,7565E=06" =0,7565Em06
0,3473E=UA 0,6350EmU4 w0 ,5100F=04 =~0,4175E~04 0,2475Fw06
=0 5164Em06 ?05321UE§06 ZrD S5108E=DL = 10, 6559FE=04" N, 4175Ew04
0,5104F=(A =0, 2475E~US 0,3210F=06  =0,1327E~11 =0,2%43E=12
2 0,9224F=10 ~0D,3065gR14 E 0,17235F=13= 0, 1861E~(06: 0,5108Ew04
=0 6550F=04 0, 6175g=04 =0 /5164F=08 ~ 0,2475E-08 0,3210E=06
= wl,6550C=04 - 0;51OHE-ULégdc;}1?5£i0§§§€g,2ﬁ?5E-qg§ 0,5164Ew06
G,3210F=06 o N T =

i)
if]

)
i)

H

|
il

N{!

f
”“l

|
iy

it
i
QI i

o il

- i PR e

= T e vh A e




i

il

HODE &

dm

--0,1538F=04
0,7720r=0d
w0 ,5445F=07
»0,210611 =06
Te0,BLOQT =04
=0,2700f =03
F0,1264F=04
'U.?DhZF-11
w0, 5394F =07
- w0,53967=07
0,1072F =04
0,10421 =03
w0, 28461=04
=0,12017=05
=0, 10571 =04
=0,1057r=Uh
w0, 1624F =110
0,32101 =03
=0;3210r=03
0,2373r=06
w0 ,1340[ =06
w0 ,2033F =04
= U,9423Fm0
0,1390F=04
~»0,1361F=04A
=G,11310=11
T 0,1642r=06
0,1642F =06
25 0.5012F01%
N,1383F=04
“w0,1383F=04
0,1107r=064

- 178 -

HAT JRAL FREQUENCY =
MODA|L SHAPE

»0,2700F=US

D,1182F=02
=0 9170E=14

0,47F4E=04A
~0,2161F=0A.
-Q.BQOQEiUk
*0,1244F=U4 .
0,11248g=04
w0, 2934F%US
»N,5i94F=07
0.,1708E805
=), 6160KE=US
0,25AA=04
wi) 2024F=07%

0,2373F=06h

0,274RE=0QA
=0,2116E=06:
w0,2363E=U3
=“0,2024Fn03:
=),1142g~03
w(, 152%ERT117 -
=) 27135F=UA
=U,4185E406:
=0,1170E-10
“0,1361FE=VA4=
«0,1.583E=04"

=0,3125E=0A

0,B4L0UF=NL
=N, 10Retk=(2

=1 ,2700e=03"

=N, 772%Fr=04

I0,L794E=06

0,4794F =06
?ﬁﬂ 107¢Frm04
id}fhztu—oa
“0,1R2EFE=04
n,293¢er=05
04 100LE=N5
=1, 134 EmNG
D 1387F=10
N,521LF=03
w0, 3210EmD3
*0,2373F=06

CEDR2110Rm06"

T0,2746F=06

Tiﬂ 1 23R EmD3"
0, T04eE=D3

183, 84

“DJAPIAERGET
“-0,3229F=«0
=0,1538E=04=
0,2700F=0%"
'n.7?295'96§
-0, 2161E=pDh "
0,1008E=05"
0,1784F=40

=0.1820FR045

N, 12406F=n4

=0 2086F=117

=0 ,TRaPF=0p
0 .21 1 6E”{J61
02363 = 3
0.2426F=0%"
=0 ,2840Em0¢g
0,1261E=05%=
=N, 105TE=Ng "

im0 V0STE=NGS

0,6060E=05"

w0, 1351s-na’“ o, 1361E-ﬂ§*

N,1127F=11

=0 1399E=(14

,nﬁ“ﬁqﬁbF‘Uﬁ-- 0. 4253Em =06

w1 A182F=00

=0, A1B5E-(6

=0, 13&359&5;:n0f£0355-r53
Tn,838br=nl” T 0, 1749 F =0T
0, 1107ERV6: -0 5364Rm042 S 0,1383E=04T

TT0L,110/F=0&

=0, 1360E=04"

Wz

-0;21615-06
'“-5445E-07
n,B4LN0EwDA
0,1538F=04
=0 7729E=06
0,1008E=08
-N 5306F=07
-0,1630E=10
=N, 1244LF=04
'“-10425-03
15900F=11
0,2116E=06
0,2?&85-06
N 2363E=03
0 L,2RLOERDS
=0 ,2424FEm03
=N 2373E=06
0.2748Em06
- 1349FE=06
=N,1383Ew05
N,1399FE=04
-ﬂr1399£ﬂ04'
=0, 4253Fw0b
=-0,2035Ew06
-N,3125Ew0b6
N, M749Ew04
N 1366E-05

=0, 11??5!06:2:0;11??5-06°ﬁ=3}7678E~16“’-0 5364LEw0b -
-g 1749F=04 ~ 0,1642F=06

=0,3125E=06"
-0, 5»6451p4;::qjg?59F-qugfg;31zsfnnﬁ§

S

~0,1107E=~06
N, 1642Ex06~

— . . -

=t

o i



Al aw

il

HODE

0 ,5716E=U08
w(,18a0Rr=0T
0 ,3015F =07

0,RBB1F=07
F0,4310F=04
wli ,5772F=05%

Z0,6301E=06

T 0,7337F=07

w0 ,64611 =07

0,6401E=07
Z0,1395F=11
=0,2210F=04
(,3831F=06
G,1077F=2
() ,P6E6GF=VT
0,9666F=07
=0,3538C~06
wlU,1250F=03
w0,1250F=03
by 23AT "U{‘l
i, 1564F=06
=1 ,0215F=07
mG, 5449 F=07
(1 4635F =05
0,480 =05
(i,244%F=05
Z20 ,1430F=08
«(,1430E=03
w0 AL4RE=10
0,7078F=05
TEU,T07AF=US5
=0,6481F=06

¥

- 179 -

HATIRAL FREWUENCY =
HODAL SHAPE .

=0,3772E~U5
0,5126e~06
0,6214E=14
0,1764E~04
“0,8BR1E~07 -
-0, 4316FE=U4 "

"D A3167=04
1.5127tm06
Wil 5P72v (8
=), 1868rmn?

D 1?!‘\&; -06

Jh A17A% =04

0,6301€E=Vn = =DF1740r=1]

10,3831 06"

=0, 1117E=U3

=0,1234E405 .
=0,3150g=~09
“0¢3065E07 =

~0,1143E-03
=0,1117£03
=0,2210E7V4

i

i

0,5105p=0A  0,5§051 =6
©0,1501E=12 7 0751001 =06
ﬂU.6461E§U7 uh.18‘6pn12
=D, 415506 0,4155rang
=~0,1721E=11 018564t =06

"D 353Br w06 -

'011250‘-03

wh;1250ra03

w0, 12361 =06

‘o.suﬁbrnn7;

0,3159F=09

TO1143r=03°

ﬁu;2210t~04

199,39

w0 1764E=064

=0 06‘55E"1 0

Ny3716E-06=

=N, 5772E=(\5

0, 1868E=07 =

”“

e

e :"H“

-N,88R1E=~n7 ~

=0,4155E=06=

0.?606&-06 -

T 035105E=0A

NO301E=(4% "

(), 733TE=N7 =

-" L] 1 56“" "("6

=0, 3065E~=n7 =

0, 1143E=n%
“0,1117E~n%
0,3831E=04

=0:1396E=12 =

=0,7666E=(7

S 0.9666E=07=

T =N, ,88B1EwD?

-0 ,39015E=07
-0.431 6En0‘
Nn,5716E=06
N, 5716Em06 -
N, 186BE=07
ﬁ.41555n0ﬁ“
0 |6‘061 EHO?

= =N TA06ERDE"

n.6301E=06
-0,2210En04

C =0 ,1194ER05

0,3065Em07
C.3159E=09

- =0,1143E=03

0|6?54E'13w

=S073071E=08=

D,1194E=05" 079439+ 08 - = 0494B9E~NS=
0,9215=~07 =0, 2449r=08  0,4435E=n5
0 95265507 n0 ;982012072 0J6014E-1 52
N, 5440E=07 n °8)6r3h?‘ =0,9826E~07
0,9430E9057 2056761 w147 ®079215E=07"
0.7078g=08 U 2268F"03‘ " 0.1688E=04
0, 64815!06u:‘0 2268rm03==077(078E=0S=
R0,3074g=0R " 0,6481+=06  0,1160E=02
"0 ; 9311en07““fn CA SRR ?Q§93745-1&§§
0,168RE~UL ™ w0, 1430r=06" =0,3071E=03_
R ¢ s ZEGﬂEiUS’*ED 1538*H06

~f|. w2
| B

=N, 1117E~03 .
0,1236E=06
-0,3158Em09"
N, 1564E=06
'0.4280E-1Z
n,L635E=05"
0,46635Em05:
-F0861 0E-1 3
. 9215Em07"
c.,3071€Ew08
-0 ,1688Ew04::
0,1160E=02
0,2268Em03::
=0 6‘815-06
0, 1530!n03"'




e
i

NODE

-0,R608F~05
=0, ,4819F=07
w0 ,5932r=15
&|5714r‘06
wl,6906F~U4
0,4476F=05
= 1190F~04
;Ul113nr-11
wl 7072F=06
wl,70720=06
'”.?623r-05
w(,1683F=03
1247F=03
140341 =12
0,259 F=06
1, 2890F =06
=(,4306F=06
(0, 2148F=0U3
w0, 29140F=03
(,83621=06
wii,318AF=06
U,2R10F =06
»0,1220F=0C5
=0,14521 =04
P, 76LVF=US
U.SSUZF"13
w0 ,2169FE=06
wl(),29601=08&
. 0, 2684F=03
001112r-n&

_3911112F~D&

FU.6224r10?

gl

a

- 180 -

NATURQAL FRERUFNCY =

MOQ;L

=0,4h76E~U5
0,9V63E=13

=0,2b46E8=12 -

-0,3305¢<0A

“0,5714E=U6 -

=0,0298E~V4&

“0,11998=04 .

0,51%2E=0S

0, 731217
0,7072€~0nh

0,1464E=05%
"0.14515‘35

0,1247E~03"
0,5154=03

=) BIARE=UA"
«() 1733F=Uh

0,1607g=V"
«0,5038E~0%

0. .'i'|51E"'*l.}3‘E

-, 16R8F=0%"
=0;8911g12+
".231¢5-05*

0, BLALE=VEE D 3LLEr=06" -
RIS LAbrmns”T
0, 7069EUB= =m0;2726ER06=
0,1112E7047
0, 6224EMY7 S A0FLET1AFR)SE
D3 6226¢m07"

-0.1?285é05:

“0,13520Em06"

SHADE

D, 59707 =04
=0, 74381 =12
044777 =05
0, ¢B1Vlno?

S 0¢3803F D6 -
"TD.3IB0SF=NG

=0 26231705
T0,5192r =05
=), 5%1902r=(05
n.?sabt-12
N,14A4r=05
Coe3186V =06
wh L3IF6r =06
-r'?1ﬂbfﬂﬁ3
1y2448y=n}-
h.ﬂ}ﬁ(r-n6
w0, 1607Tr=0Y
0'1?Hhrhn6

= ;3038ren3y

N, 1888rmn3"

;tﬁl7§69r-n5_

X315req s

Ny A81Ahrmps”

U, 1037E9133 =07874UTm143

~0,2642F04"

40, 55145305‘:iﬂ 2‘$2E-04§§?

|:-“
Hiugl

il

rm
1

*0.216?=-n6'”*

-l
it

201,70 HY

=0, 3805E=06
0,6773E=07%
”niaﬁﬂds-an
-00‘4775‘01
N GBIPE=~07
=N,3714E=04
=0,1466E=05"%
h}35055-ﬁ€
w1, 5192E=N5 =
=“0.112YE~=04
~0,1189F=11 -
Ne3180F=00n
=0, T60TE0T7 -
=0 5034F=ng
=0,5151E=0%""
-n L] 1 ?ﬁ’F-(\ ‘
'0.42795-12
=0,2599F=n4%
=0;2599E~06 =
=0, 1A51E=(05
=03 T689E=05=
0.1452E=04""
- 037560E~93=
=0 S4LLE=GAT
=072819E=06=
=0 2“2E-n4=:

i

0.5714Em06:
-0 4176E-14

-0.6906E-0a:

“.56085-05
-nt5819E'0?

"0.36056-05-

=0 ,1464E=0Q5"

A.7072Ew06

0,3508E=06

N, 1199E=04
N, 16RBE=03

Tt 7194E=12

01160?8“0?,

-n.1?RBE-06
““.5035Ev03
'"u1247F-03

. =0,5951€=03

f,1788Ewr06-
-0 ,3186E=06

=i 2?2&E-06
0,1452E=04"

-0 1&52E-0‘

0,1120E=12"

-N,2819E=06
-0,1320E=06"

POTTINRE=NL= =0 ,2442Em04: .

% 957?5-10”
- 0V147SE~13=
0,1320E=04""
)3 1320E=06=

Al

0,9531E=10"
0,4514Em05"
0,6224Ew07"

N 2169E=06




NODPE

- D,2820E=U4A
=0 ,1502F=0N
m) ,2202F=13
v, 1R16T=00
o, TL7SF=05

0,28831 =07

T 0,3018F=06

0,256%r=12

e U|319’F-0?

0,31971 =07
w0,2B62F=05
0,AR5R3F=04
T U,2618k=04
0,1851r=13
w(), 81931 =07
vU,3193r=07
99.14?67-05
~0,1253F=03

’ U.1258r-03'

0,1270r=06
»0,2518F=06
=0, A76RF=00
»0,1091F=05
=) 9790 =04
0;6525?-05
—0'15{!?’--11
0,1538F=06
- 0,1538F =06
=0,1525FE=02
=0,2780F=05
0,2780K=05
ﬂ.15?hr-0?

mubag

=0,2880E=07
“0,1507E~11
0,9268E=14
-0, 2264E=U7

0,1416E7UB==20,226Lew07

) 7ATRE=0S

), 3098L~0b~
0,2006F=0A"

-0,3760F=13-
() 3197g=07
0.1701e=07 -
=0),2724F~US5
0,2913F=04-
0,1932F=03
m0,1270F»06-
m0,3130F =07

=0, B469F=07- -

w0, 1446ERDT
0,1432E=03"
0,8383F=04
=0,1993Em1 2.
-0, B76BEmUS

~0,1994E=~US

»0,6525F=V5 -
=0,2780e=U5

- 181 -

0 HATIJRAL FREUUENCY =

SHAPE

w7470V =015

Y Y A AR K|

1, 28Rbr=(7
(1572 =08

Ny 226hr=?

Wiy, 2BEZEmQS .

0,260t r=n6
=0, 2hN0="(1§
O, 420 v=1%
3 1X018=Q7
"!.?516:—'0{\

.0, 4L26E=05.

N,125kFr=n}

‘w0 ,12506F=03

N,1270F =04

Z07,8BAYER07.

0.313%¢=07

o0, 1440E=0T
w0, B5RAF=(04
#0,6525F=05.

N, 118LF=1%
), 279RE"UA T 0,290PEm06 -=(,1166Em3T

0,299LF=0N6

#0,2175F=05 .

N, 525tFm05 "m0, 1133k=n7"

=0,2264E=07 "

=0,6754F=04
=0,2R20E=04

=N, 2AG0F=n? =

0.1592E=08"

0,1316F=08"
=0, 1301E=n7~
=), 17H4E~nS
“Ns2606F=0h -
=0,3018E=(:6 "
=0,3312E=12"7

ﬂ I251?'F-"6
0,38A9F=(?
=N, 1446FmnY
0, 1632Em03
=0 .20 13Empt,
0,3029E=1%3
0.81935E=ii?7 "
0,8193Em073
=0,252hE=NS"

2 0.6525E-057

0 .9?99Eut‘ﬁh

“0),2998F=06
0,8768E=-0n6"

0.1570EmU7 =5r0,5250E=05 © 0, 2780F=08:

=0,5923g=04

w0,157'F=07

=0, 7h16E=17

~0,2059En13 .= 0,150VE=13 7 0,7560E=147

~0,113%ewl0% =0,153bF=08
=0.5256E%05 200, 1135£203 = D, 3023¢-06

i

mil}
vl
i

e N g

Ii‘ni

s
Hiy
It

i
il

il

Wi
i

i

0.,3023E=06

221,07 W2

-n,1B16E=08
"n,1280F=13
«N T4LTSEwOS
n,2820E=06
=0 ,2820E=06"
-0;1592E'08
-0, 1301E=07
«0 3997E=07
N, 1754Ew05
r,3018F=06
-0, 8583E=04
0 L,1508F=12
N, BR6IE=O7
-0,3139E=07
w0 14L6F=03
-0 ,2613E=04
“0,1432Fw03
-0, ,1270Ew06
n,3139£-07'
=0 2518Fe06
-0,2173En05
0,9799Fw06
N, 97900 Ewld:
N,2R04Ew13
0,8768Ew06
-0,5023En06
“N, 113303
-0,8157Fw11
0,5256Ew05
-0,1570E=07
-0, 1538Ew06




's'i!i

MODE 19

0,1640E=D4
0,5060F=C6

0,1240F =06

0,1682F=06

0,1062F=03 ~

0,200%F=03
0,1480E~04
- 1070F=G5
=0 ,1631F=06
O. 1 831 [-['6
0,1391E~00
=0, R50/F=014
C,1R18F=04
0,5160F=11
- () ’ 191()5-”6
0,1914F=0é
"0.3982E~05
U.QRUﬂE-”1
0,4B0RE=03
0,hRARE=UA
wU,1519FnlA
(,1080F=14
0,2883Em035

“wG,3166F=04
" w0,2864FE=0%

~0,5034E=07

0,6843E~N7
-0, HRGlE=0T

= w0, 2220EmUR

ol

~0,1594F=0"%
150 4F=05
0,2057F~07

- 182 -

HATIRAL FPEWUFANCY =
MUODAL SHAPE

0,2093F~03
9,1303FE=04
0,153%F=14 -
0,3517E=06
-D,1682EmUb
=0,104PE=N3

0,1430EmV4.

U,1800E;ua
0,606NE=T

w0 1R31E~UA

“0,8814E=06
=0, 1231E=1D

0,1813Em04 .

“) ,AT33E=UY

0, 4bB3TERUE

0,393RE=~V6
»Q,1317EwU6
w0 L271F w03

=), A1B3E=V3 -
-0, 450RE=UL

0,9866EnU6
=0, 1030E~VA

- 0,1226E=U6

“0,2B3%XE~05

“0,2864E%05 -

=), 13GLE=US

0, 203707 =

=0,1161EmUA
0,1094gm04

ol
IR

i
ﬁ”
il
|““
infli

Sl i_i%i!l
A

vt

N, 1042F=03

0L1ECYE=D4
- _{‘

;2093Fm03
n,500Uk=06

M 351 6;"06

Zmd 71398009
T DJ1BN0F=NG

N,MTBN0UF=04 .
-0.60¢0r~11
ND,EB16EM)6
0,1517F=06
0 ,39Rer=05
0, RNBF=0)
D 4BNBE=DS

T35 T Em06°

N, LREBE=06A -

0;1317Fm06
w0, 8915r-ﬂ6
F‘IZ?TI 0y
(0, RENBF =L

HITN

Fm0 2ROEGF=05

0,5034F=07

7T ﬂ.ﬂ?ﬁf?!10_

221,71

=0, 3515FE=06
=0.,6410F=~11
0, TALHE=DL
0 L,2093E=0%
"0, A060E=06
“0,1682E=06
“0,8310E~Q8
0.506UVE~DS
0.1300E~04
0,1489F=04
0.1970E=0S
=0.1%1%F=06
0,1 1TE=G6
0, 4271E=C3
=0,4180E=N%
N,1T013E=04
“0.3171€=11
=0,17916E=06
0,1916E=08
0,7738E~=40
=0,2R864E=05

C=D0,3145E=06
5“9(12??F'065
N,1220F=06

’—0'69835 0s =

=mQ j6980F=05 =

“30’?U3TF~07“

=m0 1094Fm06 = =p;

o.séoazﬁusf“;n-%atar'0?*"

"0, 698RERVS ==

“36“05‘05

'H

HitH
i
Hiiil
i

il
1

0,4161E~11;
“0,1226E=06
0.1080E-06"

0,34L006E=05
%0.1594E~05:

My

-D.1682E~06
=N 1240E=06
«0,1062E+03
0,1648Ew04
0, 1648En0b
-0. 50605‘06
0,8816E=06
0, 18%31E=06
=0,5060E=05
«N,A5N8E=04
-0,9666E=06
-0,89038F=06
~0,4271E=03
N, TR13E=04
-0,4183E-03
ﬂ.638?5-06
0.8938Em06
N, 1519Em06
=N, 2012F=10
=0, 3146F=06
-0,4170E=11
-0,1080E=06
0.1161E=06
~0.3406E=05
=-0,6555En04
n,2037Ew07



= 183 =

APPENDIX B2

Experimental Natural Frequencies and Modal Shapes for the 26 nodes

Fabricated Space Frame

Response at resonance frequencies

Coordinates

Mode 1 Mode 2 Mode 3
96 Hz 104 Hz 114 Hz

1 X 1 1.73 1.98 0.19
Y 2 -1.68 1.30 ) 0.20

Z 3 -0.24 -1.25 -2,05

2 X 7 2.40 0.97 0.21
Y 8 -2.40 1.60 -0.56

Z 9 0.51 0.48 -7.50

3 X 13 2.20 1.20 -0.44
b 4 14 -1.18 0.88 -0.32

Z 15 -0.34 -0.81 -1.60

4 X 19 2.40 2.60 -0.62
¥ 20 -1.41 1.98 0.21

Z 21 0.38 -1.40 -1.40

L 25 1.40 1.45 -0.46
Y 26 -2.00 3.50 -0.49

Z 27 0.24 -0.80 -1.90

6 X 31 1.63 2.10 0.21
Y 32 -1.05 1.05 -0.34

Z 33 -0.25 -0.30 0.11

7 X 37 1.83 1.85 0.17
Y 38 -1.43 1.85 0.20

Z 39 0.10 -0.28 0.23
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Coordinates 96 Hz 104 Hz 114 Hz
g8 X 43 1.50 0.79 -0.43
Y 44 -1.30 0.70 -0.29

Z 45 0.10 -0.24 0.13

§ X 49 1.30 1.05 -0.48
Y 50 -1.40 2.10 0.22

Z 51 0.08 0.09 -0.10

10 X 55 2.00 3.00 1.00
Y 56 1.00 1.57 -1.80

Z 57 0.03 -0.11 -0.20

11 X 61 1.90 1.55 -1.70
) 4 62 -1.22 1.15 -1.10

YA 63 0.09 -0.21 0.20

12 X 67 -0.61 1.60 1.15
Y 68 -2.75 1.60 -2.40

Z 69 -0.61 -0.53 -0.55

13 X 73 4,02 -1.13 2.00
Y 74 -0.70 1.74 -2.18

Z 75 -0.70 0.88 -1.57

14 X 79 1.60 2.10 1.10
Y 80 -0.96 1.95 1.00

Z 81 0.10 -0.06 -0.02

15 X 85 2.40 3.50 -1.93
Y 86 -3.40 -0.77 2,40

Z 87 1.60 2.70 -1.32

16 X 91 3.65 1.20 -2.00
Y 92 -0.52 1.64 0.93

Z 93 0.52 -0.48 -0.62

17 X 97 1.70 2.10 -1.66
98 -1.34 3.20 0.44

Z 99 -0.07 0.09 -0.10



APPENDIX C

2-DIMENSIONAL ?LOTS OF SPACE FRAME COMPUTED MODAL SHAPES
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APPENDIX C1

Mode 1
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Fig. C.1l.1
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Fig. C.1.2
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Fig. C.1.3
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Fig. C.1.4
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Fig. C.l-s



- 191 -

26

— i

Fig. C.1.6
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APPENDIX C2

Mode 2
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Fig. C.2.5
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Fig. C.2.6
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APPENDIX C3

Mode 3

Fig. C.3.1
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Fig, C.3.4
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Figl Cl 3.5
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