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SUMMARY 

In this thesis the Semi-Analytic Finite Element Method 

of analysis of laterally loaded rectangular plates is exam- 

ined. A computer program is described in which the eigen- 

functions of free vibration of uniform beams are used as the 

analytic functions. Rectangular plates with any combination 

of simply supported, clamped or tree edges and with any var- 

dation of loading or flexural rigidity, including plates with 

“holes or rigid inclusions, may be solved. 

In developing the computer program, various schemes 

were implemented to reduce the influence of errors inherent 

in the beam eigenfunctions and for the reduction of computer 

storage requirement so that it may, be possible: to preceee the 

program on a relatively small eae tal eoncicane e description 

of these schemes is given in this thesis. 

Using the computer program, the behaviour of the ana- 

lytic functions in respect of numerical stability and con- 

vergence is examined on a comparative basis and the effects 

of load and rigidity variation on these characteristics are 

established. 

Extensive tests are carried out to check the accuracy 

of the method under various conditions of loading and rigid- 

ity variations. Also, the rate of convergence of the semi- 

analytic method is compared with other finite element 

formulations. 

Finally, the results from the semi-analytic method, for 

three plate problems, are compared with those from an experi- 

mental technique, namely the Moire method.



NOTATION 

Length of the strip element. 

Width of the strip element. 

Flexural rigidity. 

Young's Modulus. 

Plate thickness. 

Number of harmonics. 

Bending moments. 

Twisting moment. 

Applied line loads. 

Applied pressure 

Shearing forces 

Displacements. 

Effective shearing forces. 

Deflection. 

Cartesian co-ordinates. 

Beam eigenfunction. 

mth mode of the beam eigenfunction, 

Harmonic deflection parameter on nodal 

Harmonic prescribed displacement. 

Curvatures. 

Twist 

Direct strains. 

Shearing strain. 

Direct stresses. 

Shearing stresses. 

line i. 

Parameter related to the natural frequencies of 

free vibration of uniform beams.
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Poisson's Ratio. 

Rotations. 

Harmonic rotation parameter on nodal line i. 

Products of eigenfunctions and their derivatives. 

Matrices containing functions of position in the 

displacement model. 

Elasticity matrix. 

Defined by D =DOD* , 

Element load vector. 

Harmonic element load vector. 

Overall load vector. 

Harmonic overall load vector. 

Matrices involved in element stiffness matrix. 

Element stiffness matrix. 

Harmonic element stiffness matrix. 

Overall stiffness matrix 

Harmonic overall stiffness matrix. 

Moments vector. 

Generalised co-ordinates. 

Element displacement vector. 

Harmonic element displacement vector. 

Overall displacement vector. 

Strain vector. 

Stress vector. 

Curvatures vector.
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CHAPTER ONE 

INTRODUCTION. 

161 The Plate Bending Problem. 

A plate is a flat structural element whose thickness 

is ‘small when compared to its in-plane dimensions, Plates 

are used frequently in the engineering fields. Ships, air- 

; planes, containers, bridges, architectural structures and 

instruments are but a few types of structures in which plates, 

invariably, sonseitute. a major part. 

The load carrying nature of the plate is categorized by 

four types of plates: 

1. Thin Plates with Small Deflections. This type of plate 

carries the load by internal bending and twisting mom- 

ents and transverse shears in a manner similar to beams. 

2, Membranes. These are thin plates which possess no 

flexural rigidity. They carry the load by axial forces 

and central shears (i.e. shears in the plane of the 

plate). They compare to the plates in type 1 as do 

strings to beams. 

3. Thin Plates with Large Deflections. The load carrying 

nature of this type of plate combines those in 1 and 2. 

4. Thick Plates. The internal forces in a thick plate are 

those relating to a three dimensional body. 

The subject matter which covers each of these types of 

plates is extremely large. It is the first type of plates 

which concerns the study carried out for this thesis. 

The analytic solutions of problems of plates of this 

type, and indeed all other types, is restricted to simple



cases of geometry, loading and boundary conditions, For 

complex problems, various approximate and numerical methods 

are employed. In the event that a digital computer is 

available, the finite element method is, probably, the most 

widely used method for the analysis of plate bending problems, 

pecause of its versatility and high level of accuracy when a 

sufficient number of finite elements is considered. However, 

this method is hampered by the large volume of input data 

which is not only tedious and time consuming, but also prone. 

to human errors. 

The finite strip method was suggested by Cheung eud ‘as 

a semi-analytic finite element method for the analysis of 

laterally loaded rectangular plates, in which computer stor- 

age requirement, solution time and input data ‘are reduced. 

The project described in this thesis was concerned with 

the extension of the finite strip method to deal with more 

boundary conditions than was originally attempted and to exa- 

mine the applicability of the method to plate problems with 

severe loading and rigidity variations. A more detailed 

description of the scope of this investigation will be given 

at the end of the introduction. First, a brief historical 

account of the development of plate theory which leads up to 

the finite element method and the semi-analytic technique, 

will be given here.



1.2 Historical Development. 

An account of the history of the development of the 

mathematical theory of plates. is given in ref.[ iS i} oe 

brief summary from this and other references, [3] and [4], 

are given here. 

The earliest investigations of plates were concerned 

with vibration. Euler, Bernoulli and Germain attempted to 

obtain the differential equation of the vibrating plate and 

although Germain succeeded, with the help of Lagrange, in 

deriving the correct differential equation of the vibrating 

plate, the fundamentals, upon which the derivation of the 

equation is based, were not justified, 

The first satisfactory theory of plate bending was 

developed by Navier. In a paper which he presented to the 

Academy of Sciences, in 1820, Navier arrived at the well-known 

governing differential equation of a laterally loaded plate, 

viz. 

Of es O4y =e D( > + 2 seer ay + pes Pp. 

where p is the applied pressure and D is the flexural rigidity 

of the plate. 

Navier also stated the correct boundary conditions for 

simply supported edges and solved this problem in the form 

of a double sine series, This "exact" solution represented 

the first satisfactory solution to a problem in plate bending. 

Poisson also obtained the differential equation of the 

plate and discussed the boundary conditions, but required 

three conditions to be satisfied for a free edge, viz. the



normal bending moment, the twisting moment and the shear 

force, 

The assumptions upon which the theory of plates is 

based were laid down by Kirchhoff in 1850. His hypotheses 

were (1) that lines normal to the middle plane before bending 

remain so after bending, and (2) that the middle plane does 

not suffer deformation during small deflections. Establishing 

a correct expression for the meter tad energy of the bent 

plate and using the principle of virtual work he arrived at. 

the differential equation governing the bending of a plate. 

Purther, Kirchhoff showed that there must only be two boun—_ 

dary conditions at the edge and not three as Poisson supposed. 

In 1867, Thomson and Tait explained in their "Treatise 

‘on Natural Philosophy" the Stet cunee of the zeguction in 

the boundary conditions thus providing the fiat formal demon- 

stration of St. Venant's principle which replaces one system 

of forces by another one statically equivalent. Thomson also 

explained why Kirchhoff's theory is accurate enough only if 

the deflections are small when compared to the thickness of 

the plate. 

Around the turn of the century structural steel replaced 

wood in the construction of ships and the use of thin plates 

gained impetus bringing about advances in plate theories and 

the methods of solution of the problem, 

In 1899, M. Levy developed a method of solution for 

rectangular plates with two opposite edges simply supported 

and arbitrary boundary conditions on the other two edges. 

Tae study of various geometric forms and loading conditions 

followed. However, rigorous solutions to the plate bending



problem remained limited. Consequently, engineers resorted 

to approximate methods of solutions. Noteable amongst these 

are the methods by Ritz, Galerkin, Vlasov and Kantorovich 

where the solution of the problem is reduced to the evaluation 

of simple integrals. and the solutions of simultaneous alge- 

praic equations. 

' The approximation in these methods is due to the re- 

gleceent of the unknown eave tion wich represents the true 

deflection anywhere on the plate by an assumed one that 

approximates to it. Other methods of approximation are numer- 

ical ones. ‘They involve mathematical and geometric idealis- 

ation. One such method is the finite difference method where 

the partial differential equation of the plate is replaced by 

‘the equivalent difference equation. The latter is applied to 

a discrete number of points on the late necateiet the joints 

of the network called the finite difference mesh, and the 

resulting set of equations together with the difference equ- 

ations representing the boundary conditions are solved yield- 

ing the deflection of the plate at the mesh points. As the 

number of mesh points increases, the resulting number of 

equations becomes too large to solve by hand, even with the 

aid of such techniques as the Relaxation method [5 ]- Thus, 

when extreme accuracy is required, the finite difference mesh 

must be fine and the consequent increase in the number of 

equations necessitates the use of either a pure resistance 

electrical analogue computer [6] or a digital computer. In 

a problem where the use of a digital computer is proposed 

another method of analysis may become more attractive for its 

versatility and higher convergence rate {4] » it is the finite 

element method.



1.3 The Finite Element Method. 

Hrenikoff [ 7] is considered to have made the earliest 

attempt at using a discrete element system to represent a 

continuum. In 1941 he introduced the Framework Method for 

the solution of problems in elasticity. In this method the 

elastic continuum is replaced by a definite pattern of beams 

and bars that possess such elastic properties as to make the 

deformations of the framework at the intersection of the mem- 

bers equivalent to those of the original continuum at the 

same points. The lack of high-speed digital computers at 

that time and some inherent difficulties in the representation 

of arbitrary geometries prevented the wide use of this method. 

In 1956, soon after the invention of high-speed digital 

computers, Turner, Clough, Martin and Topp [ 2] introduced the 

Finite Element Method which later proved to be one of the most 

powerful tools in engineering analysis. 

Tae notion upon which the finite element method was 

based is that no matter what the state of strain in an elastic 

body is, the complexity of the function which describes it can 

be reduced, with good accuracy, by considering small regions 

of the elastic body, and assuming that simple functions 

represent the strains within each region. This concept is 

similar in principle to that in which any function can be 

represented by segments of low order polynomials and if the 

segments are small enough, straight lines can give a good 

representation of what may have been a high degree polynomial. 

On the above basis the finite element analysis involves 

dividing the continuum into a number of finite elements



interconnected at discrete nodes. A function is assumed to 

represent the state of displacement within each element, in 

terms of the nodal displacements (the shape function). A 

stiffness matrix is then obtained for each element either by 

a direct stiffness method which uses the notion of stiffness 

influence coefficients [9], or by using the principle of 

minimum potential energy [10] whereby the assumed displace- 

ments and the consequent erreiae ana stresses are substituted 

into the expression for the potential energy which is then 

minimized with respect to the nodal displacements yielding an 

equilibrium equation with a stiffness matrix and a force 

vector. : 

The equations governing the behaviour of the overall 

structure are obtained by assembling the element stiffness 

matrices and element force vectors into an overall stiffness 

matrix and an overall force vector. For this purpose either 

the equilibrium and compatibility conditions are used directly, 

or the principle of minimum potential energy is applied to the 

overall structure. 

The statements of the boundary conditions are then in- 

corporated into the overall equations and the solution of the 

equations follows. 

Although the final sets of equations resulting from the 

two methods of formulation of the problem are identical, the 

interpretation of the finite element method differs in the 

variational formulation from that in the direct stiffness 

method. In the latter, the continuum is assumed to be made 

up of small structural elements "welded" together at certain 

points and the procedure follows similar lines to those in
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the analysis of framed structures. In the variational form- 

ulation no physical division of the continuum is assumed. In- 

stead, the continuum is partitioned, by imaginary lines, into 

sub-regions and a solution or a displacement model is assumed 

to apply to each sub-region. Thus a pattern of solutions is 

assumed to apply to the overall structure with the proviso that 

the solutions match at certain points on the boundaries of the 

sub-regions. In the variational formulation; the zones are 

also referred to as elements and the term "division into ele- 

‘ ments" is, generally, used regardless of formulation. 

Applying the variational principle to the assumed dis— 

placement models is similar to the Rayleigh-Ritz method of 

solution of ponndary-value problems [I]. “The difference 

being that in the Rayleigh-Ritz method, a smoath continuous 

function is assumed to apply to the ordblem asa whole rather 

than to sub-regions within the continuum, The variational 

formulation of the finite element method is, therefore, a 

piece-wise application of the Rayleigh-Ritz method. 

The variational formulation allowed a more rigorous, 

mathematical study of the method to be carried out. In par- 

ticular a theoretical account of the conditions necessary for 

convergence of the solution was possible [eds With a more 

mathematical approach to the finite element method, the scope 

of application of the method became wider. 

The finite element method was, initially, developed to 

yield structural data of sufficient accuracy to be adequate 

for subsequent dynamic and aeroelastic analyses rea 

However, engineers from various fields, including structural 

mechanics, soon realised the tremendous potential that the



method has and set out to develop it. In structural analysis, 

a great deal of work has been carried out on improving the 

accuracy of the method and its rate of convergence by study— 

ing various formulations, types of elements and functions, 

['3] ana [!4]- 
The finite element problem may now be formulated with 

displacements as basic unknowns (the displacement approach) 

together with an application of the principle of minimum pot— 

ential energy, or it may be formulated with stresses as basic 

unknowns (the equilibrium approach ) in which case the principle 

of minimum complementary energy may be used. Alternatively, — 

a mixed formulation is also possible, whereby bath stresses 

and displacements are basic unknowns. The Hellinger-Reissner 

principle may be applied to the mixed formulation. Each for- 

mulation may be more suitable Pouione orerion then another. 

Ref. [10] gives a detailed description of these approaches and 

their suitability to various problems. 

Attempts at improving the accuracy of the results with 

a reduction in the number of elements have been concentrated 

on testing various types of elements and displacement (or 

stress) models. Amongst the most outstanding contributors in 

this field are Zienkiewicz [15], Irons [!é¢] ana Argyris iva 

Accuracy of the results from a finite element method of 

analysis may be improved by dividing the continuum into a 

larger number of elements. Alternatively, a higher degree 

polynomial may be used for the shape function. Since the 

shape function is a function of the nodal displacements, this 

can be achieved either by increasing the number of nodes on 

each element or by increasing the number of degrees of
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freedom per node. However, the number of elements is some- 

times governed by the nee for a reasonable representation of 

the boundary. In this case, elements with straight edges are 

inefficient. 

Considerable improvement to the formulation of the 

‘finite element method was achieved by the introduction of the’ 

"Isoparametric Element" concept [is]. In this type of elements 

curved-boundary elements are allowed in conjunction with a 

éurvilinear co-ordinate system [18]. The geometry of the ele- 

ment and the shape function are described in terms of the same 

parameters and are of the same order, hence the term "isopara- 

metric element". — : 

In fields of engineering other than structural mechanics, 

the finite element method has, successfully, been applied to a 

variety of problems including soil and rock mechanics, heat 

conduction, seepage, fluid mechanics and hydraulics [io]. 

There are two serious disadvantages of the finite element 

method. The first is the need for a relatively large, high- 

speed computer to perform the calculations, because even the 

most efficient finite element computer program requires a 

large amount of computer storage and time. The second and, 

perhaps, the most serious disadvantage is the large amount 

of data necessary to produce reasonably accurate results. 

The disadvantage here is twofold. Firstly, the process of 

data preparation is tedious and time consuming. Secondly, 

with a large amount of data there is a relatively greater risk 

of making a human error. The erroneous results may be of such 

a nature as to appear acceptable and, therefore, go undetected.
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Attempts have been made to automate the process of dis- 

cretization to some degree [19] but this has not been complete 

ly accomplished because some engineering judgement is often 

necessary when generating the finite element mesh. 

In any problem where a great deal of effort, time and 

cost are necessary for the solution and when all known poss-— 

ibilities for the reduction of these factors, whilst maintain 

ing the generality of the solution method, have been peoiettade 

a further reduction is sought through special techniques. 

Such a reduction is, invariably, achieved at the expense of a 

loss in the generality of the solution method. The Semi- 

Analytic approach, hier is applicable to the finite element 

method, represents one of these special methods. 

1.4 The Semi-Analytic Finite Element Method.’ 

In many rpoblems it is possible to reduce a three di- 

mensional problem into a two dimensional one by assuming that 

stresses or strains in one direction are negligible, as in 

the cases of plane stress or plane strain, provided that there 

are acceptable grounds for making such assumptions. 

In the finite element method of analysis, another, 

entirely different, method of reducing the dimensions is called 

"The Semi-Analytic Technique". In. this method, the displace- 

ments, strains and stresses in one direction are assumed to 

vary according to some known function which satisfies the 

boundary conditions at the extreme points of this direction. 

Consequently, the continuum need not be divided into elements 

in the direction along which the state of displacements is 

specified by the analytic function.
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This technique was applied to axisymmetric solids with 

axisymmetric or non-axisymmetric loads [20] and to axisymmet- 

ric solids with asymmetric properties {a1] . Application of 

the technique to rectangular plate bending problems was 

suggested by Cheung { | who called it the finite strip method. 

‘The plate is assumed to be divided in one direction into 

strips across whose width the deflection is assumed to be in 

the form of a third order polynomial. In the longitudinal 

direction, a set of functions is chosen to represent the var- 

iation of the deflection. The eigenfunctions of free vibration 

of uniform beams were employed. The boundary conditions at 

the edges of the strips being satisfied by the appropriate 

eigenfunctions. 

The method of solution follows a similar procedure to 

that employed for the finite element method. 

In the previous section it was stated that a reduction 

in solution time is usually achieved at the expense of a loss 

in generality. The semi-analytic method is, generally, re- 

stricted to rectangular plate problems, although under certain 

circumstances non-rectangular edges may be treated. However, 

the extensive use of rectangular plates in industry allows 

the method to be a great deal more useful than it would, 

otherwise, be.
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Wee Scope of Investigation. 

Any method which reduces the amount of work, time and 

cost necessary for the solution of a particular problem 

deserves close attention. The finite strip method has been 

presented as such figs This project, therefore, aimed at 

developing the method and examining, more closely, its var- 

ious aspects and exploring its potential. 

Cheung applied the method to rectangular plates with 

two opposite edges simply supported or clamped or. simply 

‘ supported-clamped [22] but, although he pointed-out that 

appropriately selected eigentunotions may, be used to solve 

bending problems of plates with other boundary conditions, any 

formal investigation had been, as far as is known, carried out 

to study the numerical stability, convergence or accuracy of 

the method when applied to boundary conditions other than 

those mentioned above. The applicability of the semi-analytic 

method to problems of plates with severe variation in rigidity, 

such as plates with holes, had not been explored. 

A major part of this project was to develop a computer 

program based on the semi-analytic method. The computer pro- 

gram is to be able to solve problems of rectangular plates 

with any combination of simply supported, clamped and free 

boundary conditions. Also any variation in the applied. load 

or flexural rigidity is to be accomodated. 

In developing the computer program, various ideas have 

been implemented for the reduction of the errors inherent in 

computer-evaluation of some of the eigenfunctions and their 

integrals, and for reducing the computer storage requirement.
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The computer program has been used to examine the 

numerical stability and the rates of convergence of the var- 

ious eigenfunctions for a specific number of strips and the 

effect of load and rigidity variation on these quantities has 

been studied. 

The program was also used to appraise the accuracy of 

the method and to test its capability to represent severe 

foriaeiond in the flexural rigidity. In particular, the 

effect of the singularity of the bending moments, at the cor- 

ners of a rectangular hole, on the solution and the extent of 

error propagation has been eeraae 

The convergence rate of the method, as a function of 

solution time, a compared with other formulations of the 

finite element method. 

The Moire method was used for an experimental analysis 

of some plates, including those with rigidity variations, and 

the results were compared with computer predicitions based on 

the finite strip method. 

The aims of this project were achieved. However, it 

was not possible, in the time given for the project, to test 

the suitability of a number of schemes, which were envisaged 

during the work carried out here. for the analysis of rect- 

angular plates with mixed boundary conditions and for the 

solution of certain types of non-rectangular plates. 

Consequently, a number of suggestions, for further work, were 

made.



 



CHAPTER TWO 

SMALL DEFLECTIONS OF THIN PLATES 

2.1. C ical Theory. 

The so-called classical theory of plates is based 

on the theory of elasticity. A mathematical model which 

describes the physical behaviour of the plate is established > 

after making certain Beeepionaicooecdine this behaviour 

and the material properties of the plate. Compatibility 

conditions provide the means for a displacement-strain 

relationship. Hook's Law, then, relates the stresses to 

the strains. Finally, the equations of pga er iom are 

employed to petess the governing differential equation of 

- the plate. 

2.1.1. Assumptions. 

A plate is, like all other structural elements, strict- 

ly, a three dimensional continuum, the exact analysis of 

which requires the application of three dimensional theory 

of elasticity. The analysis can, however, be reduced to a 

two dimensional one and the development of an appYoximate 

theory of plate bending facilitated by making certain 

assumptions, 

A distinguishing feature of a plate type member is 

that one of its characteristic dimensions -the thickness-— 

is small compared with the other two. Because of this, 

plausible assumptions about its behaviour are: 

1. The middle surface of the plate is not strained. 

This implies that the middle surface during bend- 

ing is a neutral surface,
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2. The stresses normal and tangential to the middle plane 

are small when compared with the other stresses. 

3. lines normal to the middle surface before bending remain 

normal after bending. They merely rotate through the 

same angle as the middle surface. The implication of 

this assumption is that the effect of shear forces on 

‘the deflection of the plate is negligible. 

The first assumption can peehowe to be acceptable toa 

good degree of accuracy if the deflection is small compared 

to the plate thickness (23). The validity of the second and 

the third assumptions - depends to a large extent on the ratio 

of plate thickness to the lateral dimensions of the plate [24] * 

The degree of Toad concentration plays ay amportant part in 

neglecting the effect of shear on deformation. 

The classical theory of plates aloo assumes that the 

material of the plate is elastic, homogeneous and isotropic. 

2.1.2 Derivation of the Governing Differential Equation. 

  

   
Pig. (2.1).
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If the displacement, in the x direction, of a point 

on a normal to the neutral surface at distance z is u(x,y.2) 

then, 

a 
Ox 

similarly, for the displacement in the y direction v(x,y,2): 

eet oe from fig.(2.1.) and assumption 3, 

From theory of elasticity, the conditions for compatibility 

will be given by: 

  

  

hen kas 8*y 
Pena: foe, 
eee os i (ake) 

e OWeaeeOv ke “w 
May = oh x Ae Ox dy 

In the light of the assumptions made, an element is very 

nearly in a state of plane stress, then Hook's Law takes 

  

the form: 

es, fe ney) 0 bx 

ey) 0 Oy Ses | ey 

i-v 
Cx 2 # a ¥ xy 

and substituting for the strains from equations (2.1.), 

the stress vector becomes: 

O*w 

e Ez - O70 Oyt= oor |? 1 0 are (2.2.) 
y a) oy* 

> Ow_| 

Ox Oy, 

om er eno 

25 o 0



ornare 

For equilibrium, these stresses have to satisfy the 

equations: 

Cf 
  

00x : Obey 
i) 

Ox oy dz 

IT yx | doy i OT yg 0 (20509) 
Ox Oy dz : 

Ox Oy Oz 

Although plane stress is assumed in the analysis, the loads 

which have to be in equilibrium are three directional, viz., 

Ox Oy? Ley in the plane of the plate and Pp, the applied 

pressure, normal to the plane of the plate, To equilibrate p, 

the shearing stresses Ze and Toy need to be considered. 

The three dimensional nature of the equations of equilibrium 

must, therefore, be maintained. 

To establish the equilibrium equations for the plate, 

the stresses across the thickness of the plate are examined: 

J ee a Ny 2 

Z,0 

Pig.(2.2) 1
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From Fig.(2.2.) the bending moments and shear forces per 

unit length are given by: 

h/2 

M, -f O, . 2 dz (a) 

-h/2 

h/2 

MS es a / Oy +4 dz (b) 

-h/2 

h/2 

ue -f Tye Zaz = My (ec) > 

-h/2 
We (2.45) 

= [eee te (a) 
-h/2 

n/2 

Qy, -f Ty, a2 (e) 

-h/2 
  

Multiplying the first and second equations (2.3.) by z 

and integrating all three equations w.r.t z from -h/2 to 

  

h/2 gives 

n/2 n/2 an 
. Oo. 202 + Z [ty « * fx deep (a) Ox) % Oy “On -h/2 -h/2 -h/2 
h/2 n/2 h/2 " 

Zt. sar Z fa, ade + [Be 2 as = 0 (b)7(2.5.) 

-h/2 Tae -h/2 

h/2 n/2 h/2 

Beften tt +S tay se +f PR ae -0 (0) 
-h/2 -h/2 -h/2



Substituting equations (2.4.) into equations (2.5.) 

yields the equilibrium equation for the plate 

  

  

Om, ou 
jl a 

Berek Bee Pa 

= - ott Q, =O (b) ed 

da, a 
2) =0 a om P (ce) 

The third term in each of equations (2.5a) and (2.5b) was 

integrated by parts subject to the conditions co = Tye, =0- 

at z=+h/2. The third term of equation (2,50) was sub- 

ject to the condition o, =O at z= n/2, GO, = -P at 

B= =H /2, 

Substituting equations (2.2.) into the first and second 

equations (2.3.) then integrating across the thickness yields 

the expressions for T,, and ce 

r 2 Mie oe ae dw ) 

BETTE) Ox. Ox . 

_ Baz — nh ) pleas ela, ow) 

  

(eae) 

"ye si oo ) dy, “ex = lay 

Substituting into equations (2.4d) and (2.4e) then into 

(2.6¢) gives the differential equation of the deflection 

surface for the plate 

ss ote ae i 
eee 

  (2.3.9 
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or more compactly: 

7 *w = p/D 

En. 
where ) 

TON ey) 

Substituting equations (2.2.) and equations (2.7.) into 

equation (2.4.) gives the expressions for the bending 

moments and shear forces: 

  

    

  

M, SAGES 2 eh) 

a2 Oey 
My, ee Dl get? aa? 

2 
ga agen aa (2.9.) 

2 ) 2. 

engine dy , J2y ) 
    

* oy oy 

From equations (2.2.), (2.7.) and (2.9.) the stresses are 

obtained in terms of the bending moments and shear forces 

  

= 122. alesse lee 
Ox = rw Mea oy a ne My y Txy e we My 

= ag aa ag Gag ee Mig ee eee? (2.10) 

The maximum values of the stresses Q,, Oy and Ty occur 

at 2 = + h/2 and the maximum values of cee and Tae occur 

at z=0. Thus: 

Ox MM, 

6 = eee M 2.11 Oy - y ( ) 

fe M 
xy ) max, xy



and 

Tx Q,. 

= ae, (2.425) 
2h 

Tye Q, 
max 

For a more detailed and general study of the classical theory 

of plates, reference may be made to the well-known classic 

"Theory of Plates and Shells" [23]. 

2.2. Variational Approach. 

Variational Calculus is the mathematical puicens of 

establishing the conditions required for determining a func- 

tional such that another functional is stationary, A func- 

tional is a function which depends on the whole path of one 

or more functions rather than a number of independent variables. 

Most problems which employ the Finite Element Method for 

their solution are based on a variational principle in their 

formulation, However, it is possible to formulate the finite 

element problem on a non-variational basis 

2.2.1. Principle of Minimum Potential Energy. 

This is one of the principles employed in formulating a 

finite element problem. It states: Of all possible displace- 

ment patterns a body can assume which satisfy compatibility 

and geometric boundary conditions, the one which satisfies the 

equilibrium requirement makes the potentail energy a minimum. 

Minimizing a functional, F, implies the vanishing of 

its first variation OF. The variation notation 3 is similar 

to the total differential in calculus, i.e. if F=F(x,w',w"), 

then OF = we Ow + Ze Ow! + GE Ve It also exhibits the 
dw aw! aw" 

commutative property with differentiation and integration, i.e.
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J( MH) = 2 Ow ) ana Ofp ax = f dp ax. 

The variational formulation will now be developed for the 

plate problem, 

It can be shown [es sl that the potential energy of a 

rectangular plate with flexural rigidity D and in plane di- 

mensions a x b, under an applied pressure p(x,y), is given by: . 

  

MF JJ [« ap cae ) 2v ee 3 aye 

#62 ey oe ( eo i]- pw 7 dxdy (2.13.) 

The first variation of V is 

  

ab 

J D d@w O?w _O2w 2 bv = { [B [2 et eos 
oo 

+ 

29 ekan 5 22 dw } dw 

; ox* Lee j oy* : ox” *) 

ee ey 5 Sa | » bu dxdy (2.14.) 

ee 

This Can be regarded as a "virtual" change in V con- 

sequent on letting the plate execute a virtual displacement 

Ow. Integrating the terms in the square brackets, success— 

ively, by parts aiming at reducing the variation of second 

  

2. 

order derivitives such as 3 ( a 2 ) to first order 
x 

derivitives, aC ), and zero order Ow, and tidying up 
% 

gives for the first variation of the potential energy:
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iS : 

a x=b 

2 3*w aw Dafoe 4) ee on (28 + J (i + ay } rw } dy 

° X=0 
b y=a 

A J ofa +2 ou] 3( Ju ax oe ee 8 
° y=o 
a x=b 

d3w a*w - Jf Ft (2-9) oa | ow b ay 

o x=0 
b y=a 

2*w ow - | o{t2 + (2-9) By =| bu} dx 

0 y=o 
F x=b y=a 

+ 21-9) D [2 Ow | 
Ox Oy 

x=0 y=0- 

=O for minimum potential energy (2.15) 

Details of the integration are given i. appendix (1). 

Since the variations Ow, (Bt ~ and oe 3 “) are 
¥ 

arbitrary in the region of the plate and are zero on the 

boundary only if w, and = » respectively, are prescribed, 
x v 

“ then each term in equation (2.15) must vanish independently. 

A fundamental lemma of variational calculus [1/ ] 

states that for any function pc (x) continuous in the interval 

[ame ae i) moo) dx=0, where We) is any continuous 

Rrrareatenie function satisfying nix, )= "(%e.) = = 0, then 

Qe O for x,<x <x,. 

It follows from the above lemma and from equation (2.15) 

that:
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X=0 y=O 

Expression (a) is the familiar differential equation of the 

plate problem. Written more compactly it is 

viw=§- 

Expressions (b) through (f) give the natural and geometric 

boundary conditions which must be satisfied. Thus on the 

edges x=o and x=b it is required that 

either dw is prescribed, hence a 2 ys 
Ox Ox 

2 
or M, = » [24 wy y d?w 4} - O , also 

ox" oy* 

either w is prescribed, hence ow =0 

2 Ww 2*w or Vv, = v [Sy + (2-9) Pe, | = 0. 
x Ox! Ox oy* 

where Vy is the effective shear force,



Similarly, on the edges y=o and y=a it is required that 

Ow 
either” —— is prescribed or m0: and 

vi 

either w is prescribed or V,-0 . 

From expression (f) the corner conditions must be satisfied: 
2 

either w is prescribed or R=2(1-Y )D eee = 0 on each 
Ox Oy 

corner where R is a concentrated reaction at each corner. 

2.2.2. Effective Shear Force and Corner Reactions. 

The natural boundary conditions pertaining’ to the 

normal moments are readily visualized from physical consider-- 

ations. The effective shear force and concentrated corner 

reactions, on the other hand, need some clarification, Along 

the edge of a rectangular plate , three quantities.that are 

relevant to the natural boundary conditions prevail. These 

are the moment normal to the edge, the twisting moment and 

the shearing force. However, only two natural boundary con- 

ditions result from the variational formulation. They are the 

normal bending moment and the "effective" shear force. Ob- 

viously, the two conditions relating to the twisting moment 

and shear force have been reduced to one. Thomson and Tait 

in their treatise "Natural Philosophy" pointed out the sig- 

nificance of this reduction in the number of natural bound- 

ary conditions. 

Because the governing differential equation is of the 

4th order, no more than two boundary conditions may be im- 

posed on each edge, The twisting moment is the result of 

shear forces above and below the neutral axis and parallel to 

it,Fig(2.2.). By Saint Venant's Principle, these forces may



be replaced by forces normal to the neutral axis producing 

the same twisting moment with only a local change to the 

stress distribution field around the upper and lower edges. 

  

Fig. (2.3) 

Considering a small length 2Ax of an edge parallel to the 

x-axis, and representing the variation in the twisting moment 

as a one term Taylor series, the value of the twisting moment 

at two points Ax apart will be as shown in Fig.(2.3a), where 

My is the twisting moment per unit length (i.e. Mey has the 

units of force). These moments are now replaced by forces, 

normal to the neutral axis, whose magnitudes and separation 

are as shown in Fig.(2.3b). It can be seen that the nett 

force acting along the edge due to the twisting moment will be 

Q 
+ Lr per unit length. Adding this to the shear force 

Ox



distribution on the edge, the effective shear force will be: 

aM 
Vy = (Q, + 

Similarly , (2 ote) 

Vee (Q, + “ —L ») 

Using the expressions for Q Le? Qy and My 

forces will be: 

from (2.9.) the 

effective shear 

  

Chan 03 Vv, = -D|—S#, (2-9) —2 
y [ ay? i an ar] 

(2.18) 
23 : oF and V, = -D eae (2.9) eae 

which are identical to the expressions obtained from the 

variational formulation (2.15). 

If there is a discontinuity in the rate of turn of 

the tangent to the edge, as is the case for plates with 

straight edges, then from the preceeding argument regarding 

the representation of the twisting moment by a shear force, 

there will remain a concentrated force at the discontinuity 

(i.e. the corner of the straight edges). The value of this 

force will be 2M Fig.(2.3c) clarifies this point further. xy" 

   am, 
(Mey sh M u “Ox. 

xy 

  

Fig.(2.3c),



Once again if the expression for a is used, the corner 

forces will be given by 

ew 
Res 2. = ie ees as in expression (f). 

Thus a plate with straight edges supported in some way 

along one or more of these edges will have, not only a dis- 

tributed shearing force at the edge, but also a concentrated 

force at the corner, 

Two adjacent, free edges will not have Bich a force 

pecause in this case w is arbitrary and condition (f) will 

only be satisfied if R=0, 

In the case of clamped, adjacent edges, R will also be 

zero because the normal slope ( ee ) along the whole of the 
z n A 

edges is constant (=0) and therefore the rate of change with 

respect to the tangential direction (i.e. — ou) ) is 
32w Ot an 

Ox dy 

The variational formulation yielded the differential 

  zero, thus = 0, hence R=0, 

equation governing the flexure of thin plates with small def- 

lections. It also yielded the natural and geometric boundary 

conditions to be satisfied for the solution of the problem. 

A very important point was also apparent from this 

formulation. If the problem is formulated by using variation- 

al methods, then either the geometric or the natural boundary 

conditions need to be satisfied. For example, if the plate 

was simply supported along the edge x=b and the geometric 

boundary conditions were to be satisfied, then, referring back 

to expression (b), by allowing ex = )| _ to remain arbi- 
Ses 

trary implies [™. ] _»=0 which is the appropriate natural P. x4x=b 

boundary condition,
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2.3. Solution of the Governing Differential Equation. 

The so-called classical theory of plates is based on the 

theory of elasticity. The mathematical model which describes 

the physical behaviour of the plate was established after 

making certain assumptions regarding this behaviour and the 

material properties of the plate. Compatibility conditions 

provided the means for a displacement-strain relationship, 

ten Hook's Law related the eireceen to the strains, The 

equations of equilibrium provided the final means for establish- 

‘ing the governing differential equation of the plate. 

Rigorous solution of the plate bending problem requires 

the solution of the governing differential equation 

yw = p/D (2.19) 

subject to satisfying the boundary Bond bone of the particular 

plate problem. Such solutions are only available for a limited 

number of cases of plate geometry, loading and boundary con- 

ditions. In the majority of cases rigorous solutions are 

either unavailable or extremely cumbersome. A brief survey of 

some of the available "exact", approximate and numerical 

methods will be given here. 

2.3.1. Exact Solutions. 

ae The Circular Plate. 

The circular clamped plate under uniform pressure is one 

of the problems for which a rigorous solution is easily 

obtained [4] - The availability of a simple function, namely 

= C(x +“ -r, j where oo is the radius of the plate and C is 

a constant, which satisfies the differential equation (2.19) 

and the boundary conditions,is the reason for the ease with
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which the solution to this particular Papier is obtained.The 

constant C is evaluated by-substituting the function into the 

differential equation. 

Although somewhat more elaborate, rigorous solutions for 

problems of circular plates with boudary conditions other than 

clamped, and loading other than uniform pressure, may be 

obtained [es]. In these cases, the governing differential 

equation is, usually, stated in polar coordinates (r, ©), viz., 

4 p(r, 6) 
Ww p (2,20) 

where 
ie ioc (SOE Glitoe ele MreOn yy nde Allende) oleedaey) 

= a +> += 
Np Or* or* 08) or Or ér* or’ Of Or Or 

The solution of equation (2.20) may be taken in the form: 

W=W, + Wp Tee uate Seieee i) 

where w, is the solution of the homogeneous differential 

equation 

Vp ¥ = 0 (2,22) 

and w, is the particular solution of equation (2,20). 

The solution as given by equation (2.21) may be inter- 

preted as the superposition of the solution, w, , due to edge 

forces only and the solution, w, , due to the applied load. 

A general solution to equation (2.22) was obtained by 

Clebsch [23] in the form: 

w(r,@) = R,(r) + DRualt) cos me + Dayle) sin me (2225) 

mel 

where Ros Rys Ryoveves Rig’, Rj,.+. are functions of r only. 

Substitution of equation (2.23) into equation (2.22) 

results in a set of ordinary differential equations whose
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solutions give expressions for R,: RR, and BR (m=1p2ine ow )'s 

These expressions contain constants which are determined 

from implementation of the boundary conditions, 

The special case of circular plate problems possessing 

rotational symmetry is simplified by the fact that in this 

case the governing differential equation is reduced to an 

ordinary differential equation, in r only, which ¢an be 

enerer ee directly if the load fel cecnesented as a con- 

tinuous function of r. The constants of integration are 

‘evaluated from the boundary conditions. The case of rotation- 

ally symmetric circular plates with variable rigidity is one 

of the rare cases that can be solved analytically with 

relative ease [23]. The variation in the rigidity (as a 

function of r) has to be considered when the governing 

differential equation is derived. The pecaltice Cra nacy, 

differential equation will have variable coefficients. 

b. Simply Supported Rectangular Plates - Naviers Method. 

Mathematically exact solutions of special cases of 

rectangular plates are also available. The simply supported 

rectangular plate, for example, was solved in 1820 by Navier 

using double sine series [es]. The deflection within the 

plate was expressed as the sum: 
Salt ics 

w(lx,y) =>, . Wan Sin ane Sin SY (2.24) 
m=1 n= 

where W,,, are unknown constants. 

The series in (2.24) satisfies the boundary conditions of 

simply supported edges (at x=o,a and y=o,b). 

The applied load was also expressed as a double sine 

series by use of the usual Fourier methods. Thus:
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p(x,y) = 2, Fm Sin WE gin AY (2.25) 

where Pia are the Fourier coefficients. 

Substitution of equations (2.24) and (2.25) into equation 

(2.19) yields an algebraic equation which can be solved to 

give the unknown constants W, fan? The bending and twisting 

moments, shear forces and stresses can be obtained from 

exuzeccions (2.9) through G2). 

The Navier solution is mathematically exact, though not 

in practice because the series is always truncated to a finite 

number of terms. The deflection aeries) however, converges. 

quite rapidly in the case of distributed loads, For dis- 

continuous or concentrated loads the rate of convergence is 

slower. This is reflected by the relative weakness of the 

Fourier method in representing discontinuous functions. The 

rate of convergence of the series for the moments and shear 

forces is also slow because these quantities involve 

derivatives of expression (2.24) and the truncation error is 

magnified when the function is differentiated. 

c. Levy's Method. 

A more general, though more cumbersome, method for the 

solution of rectangular plates was introduced by Levy [23] . 

For this method to be suitable the plate has to be simply 

supported on two opposite edges (x=0,a say). The deflection 

of the plate is expressed as a single sine series 
= 

w(x.y) =>, ¥, sin ah (2.26) 
m=1 

where Yn is an unknown function of y only. The series
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satisfies the boundary conditions at the simply supported 

edges. The unknown function Y, is determined subject to 

satisfying the governing differential equation and the 

boundary conditions at the other two edges. If the solution 

is taken in the form 

W=Wy t+ Wp 

where w, is the solution to the homogeneous differential 

equation v*w = o and Wp is the particular solution of 

equation (2.19), the series (2.26) can be taken to represent 

Wa- Substitution into y*w = 0 gives a 4th. order ordinary 

differential equation, in Ye whose general solution is 

easily obtained by standard methods fee]. The boundary 

conditions provide the means of determining the constants in 

the general solution. The particular solution can be deter- 

mined easily only if the applied load is the same on all 

sections perpendicular to the simply supported edges (i.e. 

p=p(x)). The assumption is then made that the component W 

of the deflection is independent of y. This assumption 

reduces the governing differential equation. for the plate, 

(2.13), to that of a strip, i.e. 

de = pis), (2:27) 

This equation can be integrated directly and the constants 

of integration can be evaluated using the boundary conditions 

at x=o,a. Alternatively, since wy is in the form of a series, 

the solution to equation (2.27) can be obtained by represent- 

ing wp and p(x) as a single sine Ber ee ren proceeding as in 

the Navier method,
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Mansfield (273 suggests the form of the particular 

integral for a number of loading cases that are functions of 

y as well as x, 

The Navier and the Levy methods are in effect appli- 

cations in the separation of variables technique for the 

solution of partial differential equations, In the first, 

both functions of the variables are of a known form, and in 

the second only one function is ee and the other is 

established by solution of the resulting ordinary: differential 

“equation. 

ad. Rectangular Plates with One or More Edges Clamped. 

Timoshenko (23) introduced a method to deal with 

rectangular plates with one or more clamped edges. The method 

involves solving the problem of a plate under lateral load 

but with all edges simply supported, then superposing the 

solution for a plate bent by a bending moment applied normal 

to the edge which is clamped in the original problem. The 

magnitude of the moment is such that it renders the normal 

slope produced at the relevant edge by the lateral load, 

equal to zero. 

2.3.2. Approximate Methods. 

Rigorous methods for solution of plate problems have 

been shown to deal only with a limited number of relatively 

simple cases of plate geometry, loading and boundary con- 

ditions. As these variables become more complex, the exact 

analysis becomes sometimes difficult and mostly impossible. 

The numerical and approximate methods, Arie become the only 

means for plate stressing,



Variational principles form the basis to a number of 

methods for thé approximate solution of plate problems. The 

Rit2, Galerkin, Vlasov and Kantorovich methods are some of 

the more widely known and used variational methods. 

a. The Ritz Method. 

The Ritz method [4], [ec], (27]+ [24] involves re- 

placing the required deflection function by a set of 

linearly independent functions - assuming that the required 

. function can be represented by such functions - so that the 

assumption is made that 

M UM 

w(x,y) | =, Men ay (ayn (2.28) 

where ee are unknown constants. 

The functions Pan (EY) which are called co-ordinate func- 

tions, must satisfy, at least, the geometric boundary con- 

ditions. These functions are generally taken as the product 

of two functions, i.e, 

Can(*¥) = X (x). L(y). (2.29) 

Various functions for a number of boundary conditions are 

suggested by B.H.Mansfield [27]and R.Szilard [4]. 

If the function (2.28) is substituted into the expression 

for the potential energy (2.13) the latter will be a function 

of the unknown constants Won and the variables x and y. Thus: 

M M 

eS 7S Ps P(WyyXey) ax dy (2.30) 
m=1 n= E
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Applying the principle of minimum potential energy 

IS
 

Ms
 

(section 2.2.1.) implies: 

= [FW,, x7) | dx-dy,=05, (2.51) a - 
pe Py ow 

nn mn 

5 i 3 MW 

m,n = 1,2,...,M 

Equation (2.31) yields ue simultaneous algebraic equations 

from which the unknown constants Wii are determined. 

It can be shown [24] that for the Ritz method, as Moo, 

’V approaches the exact value of the potential energy provided 

that the set of co-ordinate functions is complete in the 

energy space [28]. 

In effect the Ritz method is one whereby successive 

approximations to the true solution are obtained. Generally, 

the number of approximations, M, is predetermined because, 

unless the functions or and Y, (equation 2.29) are orthogonal 

(Appendix A@-2), the value of the constants Wan depends on M. 

Application of the Ritz method is not restricted to plate 

problems. It can be applied to any boundary value problem 

for which a functional, such as V, is available. 

The accuracy of the Ritz solution for a specific value 

of M depends on how Ricaeiy the true function is approximated 

by the assumed function, 

b. The Galerkin Method. 

In the Galerkin method [e+], once again a set of func- 

tions is assumed to represent the deflection of the plate 

(equation 2.28). However, now My, have to satisfy both 

geometric and natural boundary conditions. The constants Men
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are determined in a different way from that employed in the 

Ritz method. The plate is assumed to execute a virtual 

deflection §w. The consequent virtual work done by the 

applied load will be Je Ow dx dy. Now using the differ- 

ential equation (2.19) this virtual work can also be written 

as [f ox+w Ow ax dy. Therefore: 

iin dw ax ay = /fovtw Sw ax ay 

or (Dytw-p) Sw dx dy = 0 (432) 

Equation (2.32) was, in fact, an intermediate result when the 

variational formulation of the plate problem was carried out | 

(equation 2.15). _ 

Strictly speaking equation (2,32) is only valid if w is 

the exact solution to the differential equation, For approx= 

imate solutions the validity of the equation is maintained if 

a term by term variation of deflection is considered [4]. 

Using the assumed functions, the virtual deflection will 

be 

Sve X5u,, @an (519) (2,35) 

Substituting equation (2.33) into (2.32) and remembering that 

the virtual deflection is arbitrary, the following system of 

equations is obtained: 

(twil= -pyD) Gx dy =nOe (myn — freee eee 2eoe) Pan 

where the operator ~* acts on the deflection functions as a 

whole and the functions Pnn are considered for each value 

of m and n individually.
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Substitution of the assumed deflection functions 

(2.28) into equation (2.34) yields a set of simultaneous 

algebraic equations which, when solved, would yield the 

required constants Won (m}n = 1,25%.,) 0 on effect, the 

equality in equation (2.32) is forced by adjusting the ar- 

bitrary constants Wa? 

“fhe reason for the requirement that the assumed 

deflection pattern must satisfy both the geometric and 

natural boundary conditions in the Galerkin method, whereas 

satisfaction of the geonetric boundary conditions is suff- 

icient for the Ritz method, is apparent from equation (2.15). 

In the Ritz method the assumed deflection is substituted into 

the potential energy which is then minimized. Consequently 

the boundary conditions, as given by expressions (b) through 

(£) equation (2.16), are satisfied implicitly if only the 

geometric boundary conditions are satisfied. In the Galerkin 

method, on the other hand, only the first term of equation 

(2.15) is employed, The remaining terms of the equation, i.e. 

those relating to the boundary conditions, are satisfied only 

if both the geometric and natural boundary conditions are 

satisfied. 

As a general method for the solution of boundary value 

problems, Galerkin's method has the advantage over that of 

Ritz in that it does not require the availability of a func- 

tional such as V (equation 2.30). However, for problems in 

the theory of elasticity it can be shown that the coefficients 

obtained from a Galerkin solution are identical to those 

obtained from the Ritz method for the same set of co-ordinate
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functions [2+]. Nevertheless, the set of algebraic 

simultaneous equations in Win are obtained more quickly 

from Galerkin's method [24]. 

ce. Kantorovich Method. 

A major drawback in the Ritz and Galerkin methods is 

their dependence, for accuracy, on the choice of co-ordinate 

functions. An alternative process ’which offers a method less 

dependant on the choice of functions was developed by 

Kantorovich [24], The partial generalisation is, however, 

achieved at the expense of labour. 

Although the derivation of the antormrient geeeed 

is based on the functional (such as V) rather thar on virtual 

displacement, from the resulting equations the method may be 

considered as a generalisation of Galerkin'’s method’in, 

basically, the same way that Levy generalises Navier's method, 

The deflection is assumed to be in the form of equations 

(2.28) and (2.29). However, now only one of the functions, 

say Yy? is chosen such that it satisfies the boundary con- 

ditions at two opposing edges. The other function is obtained 

by solving the ordinary differential equation which arises 

from an analysis similar to that in the Galerkin method, The 

constants that arise from the solution are evaluated by 

inserting the geometric and natural boundary conditions. 

The approximate methods summarised above are based on 

choosing a set of functions which approximates part or the 

whole of the solution, They reduce the solution of the 

problem to the solution of simultaneous algebraic equations. 

Although these methods can be cumbersome and laborious they
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do, nevertheless, provide a useful tool for the solution 

of some plate problems when computers are not available. 

2.3.3. Numerical Methods. 

These are particular approaches to the approximate 

methods. They differ from those mentioned in the preceeding 

section in that the problem is examined for a discrete number 

of. points on the plate rather than.for the continuum, 

a. The Finite Differences Method. 

The approximation in this method { 4] pertains to 

replacing the derivatives in the governing differential 

equation of the problem and its boundary conditions by their 

difference equvelens for a number of chosen points, called 

nodes, located at the joints of the finite difference mesh, 

The central difference equivalent of a derivative ofa 

function f(x) at a point is given by 

-f fin is! 
2h 

  

fix Ot, = 

where A is the difference operator corresponding to D in 

differentiation, ey and fi) are the values of the function 

at points i+! and i-| , a small distance, h, to the right and 

left of point i (Pig.2.4), 

f(x) 

Pig. (2.4). 
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Replacing derivatives by dietsvanees an this way means 

replacing the slope of the tangent at point i by the slope of 

the chord joining points i+1 and i-1. 

Higher differences are used to replace higher deriv- 

atives. Partial difference operators are obtained on the 

same basis as mee eien derivatives, i.e. by operating on each 

variable in turn keeping the others constant each. time. 

The difference equation equivalent to the partial diff- 

erential equation of the plate problem is given by: 

foe 2 Satu {20.4 BW dt Mieted eset te! 

+ 2CWi yy jet t Maas det + Mier, gar * Maen, gt? 

Mae + Wanye + Win 2.J + 2,3} 

= Pi, j /D ; (2535) 

Equation (2.35) assumes that the distance between the 

nodes is the same, h, in both directions. is the applied 
\ Pid 

pressure at node i,j. 

To facilitate the finite difference analysis, a pattern 

is usually drawn showing the factor by which the value of the 

independent variable, which is unknown, is multiplied at each 

relevant node of the dependent variables' mesh. The finite 

difference pattern for the plate problem would be as shown 

qn fie (2.5). 

Toe finite difference analysis starts with the division 

of the plate into a mesh. Generally, a square mesh is used 

but in some cases other types, such as tringular, hexagonal 

or quadrilateral mesh, may be preferable. The finite diff- 

erence equation for these types of mesh[ 5 a will, however, 

be different from equation (2.35).



  

  

  

  

  

          
  

i-2 i-1 i i+) ire 

Fig. (2.5). 

The appropriate finite difference auaeoe eS applied 

to each node in turn. Fictitious nodes may have to be intro- 

duced outside the boundary of the plate, but the deflection 

at these nodes is expressed in terms of the deflection of the 

interior nodes via the boundary conditions. The partial 

differential equations representing the boundary conditions 

are also written in finite difference form. The system of 

similtaneous algebraic equations can, then, be solved to 

give the unknown nodal displacements. 

The finite difference method is computer-programmable, 

but in the absence of a computer, relatively simple cases 

can be solved by hand. The most laborious part of the 

analysis is the solution of the equation, For this purpose 

the Relaxation Method [ 6 J for the solution of linear 

equations is particularly useful. The relaxation method is
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one whereby an initial guess {x°} is made at the solution 

vector of the system of equations 

[4] fx}- {a} =0 (2,36) 
if Tr} # {x} then there will be a residual when {x°} is 

substituted into (2,36). This residual will be given by: 

te} = [a] {x°h - {3} 

Increments are added to the initia guess and to sub- 

sequent approximations until the residuals become negligible, 

The relaxation method, when applied to a finite differ- 

ence analysis, is simplified by the fact that the changes in 5 

the values of the approximation at each node, due to an 

incremental increase (or decrease) in one of the nodal values, 

are known because these changes follow a pattern daeneical to 

the finite difference pattern. Detailea Become of the 

application of the relaxation method to finite difference 

analysis is given by Salvadori and Baron Esa 

Another method for the solution of the finite differ- 

ence equations is an experimental one. It is the electrical 

resistance network method which was developed by S.C. Redshaw 

[©], [ea]. By using the expressions for the bending moments, 

the governing differential equation of the plate may be 

reduced to two second order partial differential equations, 

  

viz. am _o*M _ 
eater 

(2.37) 
dew O?w 

and st EE Ka 

Ox* dy* 

(M, + M,) 
where M is defined as rr
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The finite difference form of equations (2.37) is 

analogous to the equations relating the electrical poten- 

tials to the resistances in an electrical network of a 

specific nature. Details of the network, the derivation of 

the equations and the analogy are given in reference 24]. 

C.T. Harnden and K.R. Rushton [3°] applied the 

electrical resistance method to the analysis of plates with 

vented thickness. The governing differential equation of 

such a plate is given by: 

2°p O% ..50°D 92 
S(osw) - {(1-») [> id Se mia 

0*D _d4w 2 

Siero ai 
Taking the term in the brackets { } to the right-hand 

side, this term together with the applied load are assumed 

to make up a new "external" load which, in the first instance, 

is unknown. Employing the form (2.37) of the equation and 

using the electrical network method, the problem can be 

solved by an iterative process in which the term nat is, 

initially, assumed to be zero, then using the solution, the 

term {} is evaluated and the applied load is modified to 

include this term. The problem is, then, re-solved and the 

process repeated until the difference between two successive 

solutions is acceptably small. 

The method of electrical resistance network has been 

applied, successfully, to other problems such as that of 

thermal stresses in thick-walled tubes by T.H. Richards (31) .



b) Hrenikoff's Method. 

In 1940, Hrenikoff [7 ] developed a method for the 

structural analysis of elastic continuuva, which approximates 

the continuum by a definite, though not unique, pattern of 

beams and bars assembled in a framework. The elastic 

properties of the members in the framework are obtained by 

consideration of the deformations in the framework which are 

equivalent to those in the risine! continuum: In a mod- 

ified form of the method [32], the properties of the members 

for the plate bending problem are obtained by considering a 

rectangular cell with diagonal members and equating the 

rotations at the nodes of the cell with those of a plate 

element of the same dimensions when both are subjected to 

statically equivalent moments and torques. Once these prop- 

erties are obtained the analysis eer follows the Brander 

matrix-displacement method for the solution of the equivalent 

framework. 

Without the aid of a computer this method can be quite 

laborious, particularly in the case of complex problems. If 

a computer is available then the finite element method will 

prove to be more powerful and versatile, 

(c) The Finite Element Method. 

This method is probably the most significant develop- 

ment in structural analysis in recent years. With electronic 

computers continually becoming more powerful the finite ele- 

ment method rapidly gains more popularity amongst engineers 

and already it is being used for the analysis of problems 

other than those relating to structural mechanics [10].
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The method, which will be described in more detail in 

the next chapter, basically involves replacing the actual 

continuum by a structure which consists of a discrete number 

of elements connected at their nodal points. A function is 

then chosen to represent the state of displacements and/or 

stresses within the element. The procedure which then 

follows resembles that of the Ritz method. The difference 

being that the Ritz process is applied to the structure as a 

whole, whereas in the finite element method the analysis is 

‘carried out on each finite element in turn, then the overall 

problem is examined from the point of view of a structure 

comprising the assemblage of these elements. y 

An important feature of the finite element method is 

its ability to deal with arbitrary shape regions and arbitrary 

loading and boundary conditions. However, the number of 

elements into which the overall structure must be divided, 

for a given accuracy, depends to a large extent on the com- 

plexity of the geometry, boundary and loading conditions and 

as the problem becomes more complex so the number of required 

elements must grow. The storage requirement demanded of the 

computer, the amount of work necessary for the preparation of 

the data and the computer time required for processing the 

programme, are linked to the size and complexity of the 

problem. Even with today's high-speed computers the cost of 

processing computer programmes can be considerable, It is 

for this reason that modifications to the finite element 

method are sought in order to deal with particular types of 

problems that possess certain esometric cena; fiona which, when 

taken into account, can reduce the amount of work and cost 

necessary to analyse the problem. One such modification is
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the semi-analytic method of analysis. 

d) The Finite Strip Method. 

in the semi-analytic method of analysis the variation 

of displacements along one direction of the continuum is 

described by a set of continuous functions that satisfy the 

boundary conditions at the extreme points of the body in that 

direction, whilst along the remaining directions the continuum 

is divided into elements and a displacement function is em- 

_ployed to describe the displacements within the elanenua in 

these directions. 

This method of analysis was applied to axi-symmetric 

solids [20], [21], [33]. In this case the displacements are 

assumed to vary in the circumferential direction according 

eG the form of a Fourier series. . There are no ‘boundary con- 

ditions to be satisfied at the extreme points, save for the 

compatibility of the functions at @=0 and O= 2% which 

is satisfied by the trigonometric functions of the Fourier 

series. . 

Y.K. Cheung applied the semi-analytic approach to the 

problems of plates with two opposite edges simply supported 

L\J. and to the problems of elastic slabs [22@]and to the 

problems of folded plate structures [34]. He named the method 

"The Finite Strip Method". 

2.3.4 Concluding Remarks 

In this section various methods for the solution of 

plate bending problems were discussed. It was found that 

analytical solution of the plate problem is very difficult 

and laborious except for cases of relatively simple geometry, 

boundary and loading conditions. For more complex problems,
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approximate methods are necessary. Under this category, 

the methods of Ritz, Galerkin and Kantorovich were outlined. 

All these methods depend, for accuracy of solution, on how 

closely the assumed deflection function approximates the 

actual deflection surface, 

Finally, numerical methods were discussed as the means 

for solving bending problems of plates of arbitrary geometry, 

pourkiaee and loading conditions. i‘ very important feature 

that these methods possess is that they are computer pro- 

grammable. 

The most powerful-and most versatile of these methods . 

is the finite element method. The use of this method reduiees 

the availability ae a computer. Once a peareee programme is 

available the critical factors in the efficiency of the ana- 

lysis, for a given degree of accuracy, ae the amount of data 

required for input into the computer and the cost of process- 

ing the programme. The importance of the first factor is 

twofold. First there is the amount of time spent by the 

programme user to prepare the data, and secondly the vulner- 

ability to human errors increases with an increase in the 

size of the data to be prepared. 

Finally a method for the analysis of rectangular 

plates was mentioned, in which the deflection in one direc- 

tion is expressed as an analytic function satisfying the 

boundary conditions at the extreme points in this direction. 

This results in a reduction in the required amount of data 

and the computer time necessary for processing the programme, 

The method, as applied to rectangular tates) was introduced 

by Y.K. Cheung who called it "The Finite Strip Method", and
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‘applied it to a limited number of cases of boundary conditions 

  

and thickness variation, It was the aim of the project des- 

cribed in this thesis to extend the application of the method 

to a much wider range of boundary and loading conditions and 

: rigidity variation and to make a study of its numerical sta- 

pility, convergence and accuracy. 
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3.1. 

CHAPTER THREE 

THE FINITE BLEMENT METHOD. 

Introduction to the Displacement Approach. 

The use of the Finite Element Method for the solution 

of problems in elastic continuua consists of the following 

steps: 

1. 

2. 

The continuum-is divided by imaginary lines and thus 

replaced by a structure composed of an assemblage of 

a discrete number of elements called "finite elements", 

The mesh of lines intersect at discrete points called 

"nodes". The finite elements may, in general, be of 

triangular, rectangular or quadrilateral shape in the 

case of two dimensional problems. For three dimension- 

al problems, tetrahedra, hexahedra or rectangular 

prisms are used. In some cases, to improve accuracy 

and to reduce the required number of elements, curved 

boundary elements have been used 

A suitable function is chosen to describe the state of 

displacement within each element in terms of general- 

ized co-ordinates. The basis for choosing a displace- 

ment function will be given later. 

By substituting the co-ordinates of the nodes into the 

displacement function and solving for the generalized 

co-ordinates in terms of nodal displacements then sub-— 

stituting back into the displacement function, this 

function will be in terms of the nodal displacements 

and will then be called the "Shape function". It will
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be noted here that in order to be able to obtain the 

shape function in this way, the number of generalized 

co-ordinates must be equal to the number of nodes per 

element, multiplied by the number of displacement 

components per node. It is possible to formulate the 

shape function directly by using interpolation functions 

Using well-known relationships in solid mechanics, the 

strains and stresses, (curvatures and moments in the 

case of plate flexure), and hence, the total potential 

energy of the element may be obtained in terms of the 

nodal displacements. 

Minimizing one total potential energy of the element 

with respect to the nodal displacements, an pou ere 

equation for the element arises, from which an element 

stiffness matrix and an element force vector are recog- 

nised. 

The equilibrium equations for the overall structure are, 

then, stated by adding contributions of element stiff- 

nesses and loads to the appropriate locations in the 

overall stiffness matrix and overall load vector. 

The geometric boundary conditions are imposed, 

The equations are solved yielding the unknown nodal 

displacements. 

Stated mathematically, the above procedure can be 

summarized as follows: 

Let the displacements within the element be given by: 

{uy = [s]ix} (3.1.)
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where {ul} is a vector which contains all possible displace- 

ments, within the element, in the direction of the co-ordin- 

ate axes. {s} are functions of position and {«} are the 

generalised co-ordinates, 

  

Fig.(3.1) A triangular element in a plane 

stress or plane strain region. 

Substituting the values of x and y, at each node, into 

equation (3.1), the nodal displacements will be: 

$d}, = [Alix} (3.2) 

In the case of the element in fig.(3.1), the nodal 

displacements are: 

Vet = [ee Vi Ys Vy Uy v, | 

From equations (3.1) and (3.2), the element displace- 

Dp 

ments will be: 

{uj u [s] [a] ' {4S}, 

i] [w]4 st. (3.3) 

[vw] = [s][a]™ 
where
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Since the matrix [a] has to be square so that it may 

be inverted, it follows from equation (3.2) that {x} must 

pe of the same order as {S}. as stated in section (3.1), 

item (3). 

By appropriate differentiation of the displacements, 

the strains (curvatures, for plate bending) can be deter- 

mined anywhere within the element. Thus: 

{e}= [2}is}, (3.4) 
_where {€} is the strains vector and [B] contains appro- 

priate derivatives of [N]. 

Using the stress-strain relationship, the stresses 

(moments) are obtained from equation (3.4). If no initial 

stresses or strains are assumed then, 

{oy = Cn) {es an (3.5) 

where {a} is the stress vector and [D] is the elasticity 

matrix. Substituting for {€ } from (3.4) into (3.5), the 

stress vector becomes: 

{o}= [0] [et$}, (3.6) 
The strain energy density for a linear elastic system 

is given by: 

au =+{é}lo}av (3.7) 

where y is the volume of the elastic body. 

The total potential energy for the element will, 

therefore, be given by: 

vert [ffteF toy ova fff ws" txyave 
vol. vol. 

¢ [Sty 18} as (3.8)
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where #vol is the volume of the element and s, is the part 

of the surface over which tractions are specified. The 

second integral represents the work done by the body forces 

and the third integral represents the work done by surface 

tractions. 

Now, substituting for {&} from equation (3.4), for {ao} 

from équation (3.6) and for ju} from equation (3:3), the 

Porat energy of the element will be 

Veta WW) {$}.(3] DIB}, dvol 

vol. 

a SS {84,09 124 dvol 

vol. 

- Sfieker tz Rape oa} aa) 

Applying the principle of minimum potential energy to 

the element implies §&V, = 0. 

Therefore, 

Bi = Ss {ShSffer Pielaver {8}, ~ Sffowt paver 

vol. vol. 

ne Sfov #2 ds,) = 0 (3.10) 

T 
Since Sis}, is arbitrary, then: 

ff [BT [p] (B]avo1 { §}, - SSfova tz}avon 
vol. vol. 

a JJorr tas, =O (3.11) 

By
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Comparing equation (3.11) with the characteristic 

relationship of elastic bodies, i.e. k&S=f, where k,& ana f 

are the stiffness, displacement and force parameters for the 

elastic body, the element stiffness matrix will be given by 

ela §JJeet 106) avol (3.12) 
vol 

and the load vector by 

{fhe = Sheva yx) dvol + \Scur'yxy ds, Tate) 

vol 8s, 

Substitution of equations (3.12) and (5.15)! into 

equation (3.9) gives an expression for the potential energy 

of the element in terms of the element stiffness matrix and 

element load vector, i.e. 

a T 

ve = F18},0¢], 83, - {83. {the (3.14) 

Equation (3.14) is the typical form of the potential energy 

of a finite degree of freedom (discrete) system. 

When the stiffness matrix and force vector for the 

overall structure are assembled according to the rules of 

assembly that will be given later, an equilibrium equation 

for the overall problem will be obtained. This will be of 

the form 

[K]i8} = tPF} (3.15) 
After inserting the boundary conditions into equation 

(3.15), they can be solved to yield the unknown nodal dis- 

placements 1s} » The solution to the problem then follows 

from equations (3.3) and (3.6).
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Converzence Requirements —~ Bases for Choosing 

a Displacement Function. 

Dividing a continuum into a discrete number of ele- 

ments implies the reduction of the infinite number of deg- 

rees of freedom to a finite number. As the subdivisions are 

made smaller with a consequent increase in the number of 

degrees of freedom, the discretized structure approaches the 

original continuum. It does not, however, follow that the 

solution approaches the exact solution to the problem unless 

‘the function chosen to represent the displacemerits within the 

elements satisfies certain convergence requirements. Some of 

these requirements are essential, whilst others only acceler- 

ate convergence. These requirements are: 

Sis 

2. 

The displacement function should represent the actual 

displacement pattern as closely as possible. 

The number of generalised co-ordinates in the dis- 

placement function must be equal to the total number of 

degrees of freedom of the element. This is necessary 

for the eventual solution of the equations. 

The function must be continuous within the element, 

Also, if the highest derivative in the energy functional 

, then the displacements and, preferably, their is the n 

derivatives to an order >(n-1) must be compatible along 

common boundaries of the elements. 

The necessity for the first part of this requirement is 

obvious. For the second part, a mathematical justification 

can be presented thus: If a small transition zone is assumed 

at the inter-element boundary and if the (n-1) derivative is
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continuous whilst the n* derivative has a finite discon- 

tinuity at this zone, then, on evaluating the potential 

energy of the structure as the sum of the potential energy 

of all the elements plus the potential energy at the trans- 

ition zones, the contribution of the latter will be zero 

because the actual volume of the transition zone is zero. 

If, on the other hand, the (n-1) derivative has a‘finite dis- 

continu ty then the n* derivative will tend to infinity at 

the discontinuity. Consequently, the contribution of 

“potential energy of the transition zone will be: unknown (an 

infinite potential energy density multiplied by zero volume). 

4. The displacement function and some of its derivatives 

must inelude constant terms, The necessity for this 

requirement becomes clear if the element size is 

imagined to be getting smaller and smaller. “As the 

size becomes infinitesimal, so the displacements and 

strains (curvatures, in the case of plate bending) 

approach constant values. 

The constant terms in the displacement function and its 

derivatives are, in fact, the rigid body modes. Hence, 

this requirement states, implicitly, that the displace- 

ment function must include the rigid body modes, 

Finite Element formulations which satisfy the third 

requirement above are called "conforming" and those which 

satisfy the fourth requirement are called "complete". 

In some cases, such as plate bending problems, it is 

difficult to establish displacement funetions that satisfy



full compatibility of slopes along common boundaries of 

elements, However, functions violating this requirement, 

i.e. non-conforming functions, whilst maintaining contin- 

uity of deflection, and satisfying the completeness re- 

quirement, have been used with satisfactorily converging 

results [35]. It is not possible in these cases to prove 

convergence. 

3.3. The Semi-Analytical Approach, 

In the most general cases of finite element method 

analysis, the continuum has to be divided into ‘elements in 

three directions (or four, if the time dimension is included). 

In these cases, where the total number of degrees of freedom 

(hence unknowns) is large, the major drawback in the finite 

element method is highlighted. The cost.of solution and the 

need for larger, more capable, computers increases dispro- 

portionately with an increased number of degrees of freedom. 

As in analytical methods of analysis, it is often possible to 

reduce a three dimensional problem into a two dimensional one 

simply by assuming that the stress or strain in one direction 

is negligible as in the plane stress or plane strain cases. 

Another , entirely different, method of reducing the 

number of dimensions is called the semi-analytical method. 

In this method, the displacements, strains and stresses in 

one direction are assumed to vary according to a known ana- 

lytical function which satisfies the boundary conditions at 

the extreme points of this direction. It follows, then, 

that the continuum need not be divided -into elements in the 

direction along which the state of displacement is described
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by the analytical function. 

In the finite element method, displacement approach, 

the displacements within the elements are given by an equa- 

tion in the form 

ues IN]{s}. 

where [N] = [N(x,y,z)] " 

If a function, f(z), is chosen to represent the dis- 

_placement along the whole of the length in the 2 i eoraen 

and if this function satisfies the boundary cone aaa at the 

extreme points, then the element may be chosen to cover the 

whole of the length in the z direction (Fig.3.2). ‘The dis- 

placement function would then be of the form 

tut= Mey LS}e. 

7 | 
Vi 

Fig. (3.2) 

18}, are, now, nodal displacement parameters rather then 

nodal displacements, because the "nodes" in this case are 

lines and not points.
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elements of cross sections similar to those used in plane 

stress or plane strain problems. The elements are inter- 

connected at nodal circles (fig.3.3). The displacements 

in all three directions are assumed to vary with 9 accord- 

ing to the form of a Fourier series. In the r and z direc- 

tions the variation is often assumed to be linear. 

     
Pig.(5.3); 

The displacements will, then, be of the form: 

us > ( +b, 0+ ee z)cos me 

1 

i. Z (07 + Des pie z)sin me 

m 

If the problem is symmetric about a plane containing 

the r and z axes, then if QO is measured from this plane, 

use may be made of the symmetry by neglecting the sin m@ 

terms for u and v and the cos mQ terms for w.
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Generally, no one function is sufficient to describe 

the displacement in the z direction. Instead, a system of 

linearly independent functions is chosen so that a closer 

approximation to the true displacement is obtained as more 

functions are taken, This notion is identical to the Ritz 

method for the solution of boundary value problems (section 

D.bea)s 

The number of functions ees ie represent the dis- 

placements in the z direction may be thought of as a number . 

‘of "analytic divisions" of the element in this direction, 

Thus the continuum is divided into a number of "analytical 

elements" in one direction and finite elements in the other 

directions. 

The displacement functions may now be written as 
: eet tial a Beer 

{u} = > Dey) ,(2)] {8}, 
m=1 

where M represents the number of analytic functions (2). 

Both N(x,y) and ©,,(2) have to satisfy the requirements laid 

down in section (3.2). In addition, My, has to satisfy the 

boundary conditions at the ends. Consequently, for va the 

requirement that the function should include rigid body modes 

will be irrelevant except in the cases of free - free and 

simply supported - free end conditions when rigid body de- 

flection and rigid body rotation must be present in the first 

case, and rigid body rotation in the second. 

The semi-analytic approach to the finite element method 

can be applied in axisymmetric solids with non-symmetric 

loading [20]. The solid is divided into axisymmetric
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In the case of axisymmetric material properties, the 

orthogonality property (appendix A2,2) can be employed to 

uncouple the modes. On the other hand, if the material 

properties vary in the circumferential direction, then the 

Fourier expansion can be employed to represent this variation 

[ai]. However, it will not be possible to apply the ortho- 

gonality property in this case. 

The semi-analytic treatment of the plate bending 

problem is given in detail in the next chapter.
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CHAPTER FOUR 

THE SEMI-ANALYTIC TREATMENT OF THE PLATE BENDING PROBLEM. 

4.1 Introduction. 

For the solution of plate bending problems by the 

finite element method, the plate has to be divided into ele- 

ments in both of the in-plane directions. At least three 

nodal parameters per node must prevail in the displacement 

function (one deflection and two rotations). Using a semi- 

analytical technique the plate mead only be divided into 

strips, interconnected at nodal lines (Fig.4.1a). 
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GG 

An analytic function must be chosen to represent the 

deflection in the "long" direction (y-direction). This fun- 

ction must satisfy pre-chosen boundary conditions at the ends 

(y=o and y=a). 

In the x-direction, a polynomial may be used to represent 

the deflection within the strip. The degree of the polynomial 

is established from the number of nodes per element (two nodal 

lines in this case) and the number of displacement parameters 

per node required to describe the problem fully and to ensure 

“inter-element continuity of deflection and slopes (section 3.1 

item 3 and section 3.2,.item 3). 

Although the deflection of the middle surface completely 

defines a plate bending problem, the need for the slope normal 

to the edge of the strip to be uniquely defined in order to 

ensure inter-element compatibility of slopes, necessitates the 

specification of a normal slope parameter in the function. 

Using a cartesian co-ordinate system, this normal slope will 

be given by: 

Ow : (i Fig. 4.1b and c. 
zs Ox 

In the y-direction, if a set of continuous functions 

is employed, then the slope 8, = . will automatically be 

continuous anywhere within the strip, including the edges of 

the strip. Also, if the same number of functions (harmonics 

or modes) are used for each strip then compatibility of the 

slope 8y at common boundaries is assured. 

Thus, the nodal parameters which must be specified in 

the displacement function, to ensure continuity of deflection
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and slopes across common boundaries, are the deflection 

amplitude and the normal rotation amplitude. 

It will be seen, in section (4.4), that the use of a 

continuous function in the y-direction also ensures the con- 

a2 
W 

Ox dy 
tinuity of the twist term along a nodal line. 

4.2 The Displacement Function in the x-Direction. 

Since the number of parameters required to describe the 

problem is four for each strip, one deflection and one rotation 

‘ per nodal line, then the polynomial representing the variation 

of w in the x-direction will be cubic. Thus: 

CC)eoehy + Alor eh mone Ao: ; (4.1) 

Following the procedure outlined in section (3.1) this 

function can be written in terms of the nodal parameters. 

Then: 3 ; ; i 

e(x) = [(1e4e + Bie) ae A 

2 : rt 
(es Sel ORS] ge | h2) 

Ws 

J 

9; 

where Wie 95: Wy and iF are the deflection and rotation 

amplitudes on nodal lines i and j. b is the width of the strip. 

In a more compact form, the function can be written as: 

t(x) = (N] {8}, (4.3) 

4.3 The Analytic Function, 

In principle, any function, or set of functions, that
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satisfies the boundary conditions at the ends of the strip, 

may be employed’ to represent the variation of w in the y- 

direction. However, since numerical stability plays an im- 

portant part in the eventual solution of the equations the 

right choice of analytic functions is important. Orthogonal 

functions have been shown to yield a system of equations that 

is very stable {28]. such functions are the eigenfunctions 

of the free vibration of a uniform bean [36]. These functions 

are known to satisfy the differential equation 

a 4 ; : 
gy Ay (4.4) 
dye cat : 

where W is a parameter related to the natural frequencies of 

free vibration, a is the length of the beam. 

The solution to equation (4.4) has the form: 

y= A sinAl y B cos Hy o oh HL + Don AM (4.5) 

Substitution of the boundary conditions into equation 

(4.5) gives four equations from which a transcendental equat- 

ion in KH is obtained. Three of the constants A, B, C and D, 

are obtained in terms of the fourth. Using the arbitrary 

nature of these constants, one of them is assigned the value 

1 and the rest are evaluated accordingly. Evaluation of these 

constants and the roots of the transcendental equation for 

the clamped-clamped case is given in Appendix(2) . The 

transcendental equation pertinent to a particular set of 

boundary conditions is called "The Characteristic Equation". 

The solution of the characteristic equation gives an 

infinite set of roots He (m=1,2,--.02). Therefore, the
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general solution of equation (4.4) will be in the form: 

    

S ve y 
Y= ? (A, sin Mn + Bh cos & 

m=1 

Mn ¥ Hn ¥ 
an Shoe +0 ch ae) (4.6) 

The Guaeran.S Ay Bo. C, and Dae the characteristic equations 

and a number of their roots, for six sets of boundary con- 

ditions, are given in table (4.1). Fig.(4.2) shows the shape 

Ae the deflection curve along the y-axis for the first three 

modes of the six sets of boundary conditions. 

The deflection anywhere within the strip will now be 

given by: M 

tiie palit layer) wee aie doc re 
m=1 

where £,,(x) is given by equation (4.2), with the nodal dis- 

: ay 
placement amplitudes i Wi Oa ay 9; | replaced by 

Te th 
(“im Gene) Mom Oo. | 3 Y,(y) is the m mode of equation 

(4.6). 

An interesting feature of the beam eigenfunctions is 

that in the cases where the boundary conditions are the same 

at both ends of the beam, the odd modes are symmetric and the 

even modes are skew symmetric. This fact is demonstrated in 

Fig.(4.2). It follows from this , that when the geometry, 

loading and boundary conditions are symmetric about y=a/2, 

then the even terms of the deflection function are zero,
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Fig.(4.2) Shapes of the beam eigenfunctions.
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4.4 Continuity of Deflection, Slopes, Curvatures and Twist. 

In a classical finite element investigation of a plate 

bending problem where four-node rectangular elements are used 

with three parameters specified per node, one deflection and 

two rotations, the deflection is uniquely defined at the 

boundary of the element and continuity of deflection across 

element boundaries is ensured. The normal slopes, on the 

other hand, are continuous at the eee only. Elsewhere at 

common boundaries, the normal slopes are discontinuous [35]. 

‘The curvatures and twist are discontinuous at common nodes 

as well as common boundaries. 

In the semi-analytic approach, the continuity of a 

function at a "node" implies continuity at the whole length 

of the common boundary since the node in this case represents 

the whole of the edge of the strip. A formal investigation 

of the continuity of deflection, slopes, curvatures and twist 

for the semi-analytic approach will be given here. 

A common boundary for two strips is given by x=b for 

element (e) and x=0 for element (e+1) as shown in Fig.(4.3). 

  

  

sa) k 

strip (e-1) 

Fig. (4.3) z 

x J 
strip (e) b 

a ¥       
Using equations (4.7) and (4.2), with the appropriate alter- 

ations to the subscripts of the nodal parameters, to evaluate 

the deflection, slopes, curvatures and twist from the point 

of view of both elements, these Guantities will be as given 

in the table below:
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value at x = 0 value at x = b 
Function 

element (e+1) element (e) 

« Wim Yn Wim Yn 

_. OW 
OF =a Pe 5m Yn 95m Tn 

Ow o.=>— ate y\t ' vey 5 "in Yn 
Ow 6 6 

ee rearn Oe [Fe Wan 7 Wen) Le Wim 7 Win) 

2 2 37S +2 85) %n + 5! ote 8.)| a 

yas O?w ie yu eal 
y ay? ; jn “m jm “m 

o?w P Oh ye 207 y. ' 
*y Ox oy 22 5 : 2050, ne     

where the summation sign has been dropped for convenience, 

es me 2 
= ay, /ay and Y" = 4 ¥,/dy 

Now, bearing in mind that is a continuous differentiable 

function with continuous derivatives, then it is obvious 

that apart from the curvature X, all the functions above 

are continuous across common element boundaries for all 

values of y, i.e. for the whole length of the element bound- 

ary. The curvature me at x = 0 of element (e+1) is a 

function of the displacement parameters of the nodal lines 

j and k , whilst at x = b of element (e) (i.e. along the 

game line) this quantity is a function of the displacement 

parameters of the nodal lines i and j. Therefore, in general, 

the curvature aus is discontinuous across the transition 

zone from one strip to the neighbouring one. However, since 
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the potential energy functional does not contain any 

derivatives higher than that in the curvature term Xe 

the discontinuity of this term. at the transition zone will 

not, in itself, cause any errors to occur in the value of 

the potential energy.of the overall structure (section 3.2), 

It may be observed that the key to the continuity of a 

function, at the common boundary of two elements, lies with 

the parameters which specify the value of the function at 

the common boundary. If these parameters are pertinent to 

no other nodal line but the one in question then continuity 

is inevitable. If, on the other hand, parameters of other 

nodal lines are involved then discontinuity occurs. 

Although, as stated, this discontinuity at the common 

boundary does not in itself affect the potential energy of 

the system, its consequences may appear at a nodal line on 

the boundary of the plate when the function must take a 

specific value, because of boundary conditions, For example, 

at a simply supported edge the curvature uy should be zero. 

However, the parameters which specify this function at the 

simply supported edge also specify the function at other 

points on the element where it is non-zero. It is, then, 

unlikely that the condition Poe) is satisfied because these 

parameters will be chosen, through minimization of potential 

energy, as to give the least error in the potential energy of 

the whole plate. However, if the size of the edge element 

is small, then the error in the value of the function at the 

edge would be small. 

The bending moment is a function of the curvatures oe
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and y- Now, at a simply supported edge, both of these 

functions should vanish. nie will, in fact, be zero at the 

edge, whilst ee will have a non-zero value as has already 

been stated. The residual moment at the simply supported 

edge due to the non-vanishing of X, will be very small as 

will be confirmed in some of the test cases in section(7.8). 

4.5 Rigid Body Modes. 

One of the requirements discussed in section (3.2) 

that the assumed displacement function must satisfy is that 

it should be able to represent the rigid body modes, i.e. the. 

elements must be able to deflect and rotate without being 

strained. In the semi-analytic approach to the plate bend- 

ing problem the function satisfies. this requirement, in the 

x-direction, due to the presence of the constants A, and A, 

(equation 4.1). In the y-directions the analytic function 

satisfies specific boundary conditions and thus, the question 

of rigid body modes arises only in the cases of free-free 

edges where rigid body deflection and rigid body rotation 

should be represented, and simply supported-free edges where 

the rigid body rotation must be present. 

The functions given in table (4.1), cases 3 and 6, do 

not include these modes. The terms 144 - =) and - need to 

be added to the relevant cases to represent rigid body de- 

flection and rotation. Hence the deflection functions for the 

free-free and the simply supported-free cases will be respectively: 
M-2 : 

=e Vee w= £400) YY) moto Ce) ae Vie f(x). (5 =) (4.8) 

m=1



a7 = 

and 

=> #,(2) yw) 2.) . = (4.9) 

where Y 67) is as given in table (4.1) for the respective 

cases. This choice of function for the rigid body modes 

maintains the orthogonality property of the analytic functions 

(Appendix A2.3). 

4.6 Boundary Conditions ~ The Beam and the Plate. 

On two opposing edges of the plate the boundary con- 

ditions must be satisfied by the analytie functions. Now, 

the functions employed are beam functions and the boundary 

conditions they satisfy are those rotating to a beam. The 

validity of application of these functions to a, plate need to 

be examined. ae é : 

The boundary condition of zero deflection is straight— 

forward, for if the beam function satisfies this condition 

then, referring back to the expression for the assumed de- 

flection shape (equation 4.7), the condition is satisfied 

for the whole edge of the plate. The zero normal slope 

condition is similarly satisfied along the whole edge if the 

beam eigenfunction satisfies this condition. 

The condition of zero normal bending moment for the 

beam implies 7c 

io sos oo sy ne 

= 0 and that for the plate implies   

  However, since the supported edge is 

  

  

a 
a Bie ae one then ha = 0. Thus, for the plate, the 

condition to be satisfied is o*w = 0 as. in the beam and 

yx 

the argument follows similar lines to those of the deflec- 

tion. The problem of a free edge condition is a different
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matter. Here, the effective shear force, as well as the 

normal bending moment, must be zero for the plate. Neither 

of these conditions is completely satisfied by the beam fun- 

ection as the expressions below will show: 

For the beam: 

  

3. 

2-0 ana Pw _ 9 
oy _ oy 

For the plate: 

  Ou , y 9Fu - 0 ana Bee led heehee ow 
ay ox ary. dy Ox 

The natural boundary conditions for a free edge are, 

therefore, only Beier nerey satisfied by the beam eigen- 

function. Although the energy formulation allows ae satis- 

faction of geometric boundary conditions tS be surricient 

for convergence in the energy space whilst the natural boun- 

dary conditions are satisfied implicitly (section 2.2.2), 

this will not occur in the case of the free edge beam function. 

This statement is verified by considering the expressions for 

the normal and tangential bending moments, 

In effect, the deflection is assumed to be in the form 

w = X(x).¥(y) 

The tangential bending moment will be given by: 

M = - D(X" Y + y Y" xX) 

Now, if the function Y(y) is the beam eigenfunction, 

then Y"(y=a) = Y"(y=a) = 0 and Y(y=a) # O, where y=a is the 

free edge.
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Therefore, the tangential bending moment at the free edge 

will be 

(My Jyaq = - D(X" Vy, #0 

The normal bending moment My is given by: 

My ome (YN Raa YK AY) 

The value of this moment at the free edge will be 

M = = D( vx" 0 (ly yg (2e" Y) at 

Similar argument applies to the effective shear force. 

Therefore, the normal bending moment and the effective 

shear force are not zero at the free edge. The reason for 

the paradox lies in the. fact that in the energy formulation 

no assumptions are made about the form of the deflection 

function, whereas in the semi-analytic method described here, 

the deflection is assumed to be of a specific form satisfying 

certain conditions, viz. w = X(x).Y(y), Y"(a) = Y™ (a) = 0. 

It is interesting to consider that if, for a free 

edge, the method of Kantorovich (section 2.3.2 c) were used 

to establish the analytic function subject to the satis- 

faction of the boundary conditions, then this function would 

not be the beam eigenfunction employed here. The Kantorovich 

function would, in fact, be of such a form that neither of 

the two terms constituting the normal bending moment, i.e. 

Y" X and VX" Y, is zero at the edge individually, but their 

sum is. It follows, then, that for the Kantorovich function 

Tia) #0. The argument regarding the effective shear 

force is similar 

The implication of the non-satisfaction of the natural 

boundary conditions for a free edge is that there will be a
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residual normal bending moment and a residual shear force at 

the free edge, which may cause the solution to converge to 

one differing slightly from the true solution. The errors 

in the solution would be more pronounced when the bending 

moments and shear forces are evaluated near the free edge. 

Two methods are suggested here to reduce this error. 

The first involves solving the problem, evaluating: the 

residual moment and residual shear force, then re-solving 

the problem with these residuals as applied loads in the 

opposite direction, together with the original esa 

The second method is the one whereby the free edge is 

simulated by imagining the plate to be longer in the y-direc- 

tion than it actually is, and assigning a zero value to the 

flexural rigidity of the additional length (Fig.4.4). 
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The original length of the plate in the y-direction is 

a' and that of the substitute plate is a=a'(1+7] ) where 2 

is a quantity small enough to maintain the general shape of 

the deflection curve of the beam (Fig.4.2) and large enough 

to keep the free edge away from the restrictions imposed by 

-the beam function on its second and third derivatives. 

Various values of "| were tested after the development of the : 

computer program. It was found ae Me =0.2 gives the best 

results from the points of view of convergence rate as well 

‘ as reduction in the value of the residual normal bending 

moment. ‘ 

Effectively, this method replaces the beam function by 

one which, up to 3 point, has the same shape as the beam fun- 

ction, but without the free edge boundary conditions of the 

beam.
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aT The Element Stiffness Matrix. 

From equations (4.3) and (4.7), the deflection within 

each element of the plate will be given by 

  

oo WIS}, % (4.10) 
m=t 

where 

w= [0-25 + 2) (5% 2s x) 

Ge. 2) 2.2 )] 
and 

uk 

Sots im [Ws Oin Wim 9), 

The curvatures and twist of the element are then given by 

  

) apa 
oie “Od, 

{x}, = ow > =) {s"} (4.11) 
ae 

  

fae Ow -2[N'] sae 

where 

- 
gd at a¥mn ata Ni) See IN LN | See eee See, fi ] a Lv] [ J ax? (w] ‘m dy m ay? 

or 

s m=! 

{x}, =>. (Bly, + (Bly, + (Bee 48"), (4.12) 
m™m Il 

Fa
st

en
 

m= 

= foe Sets (4.13) 
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where 5 [Nn] [o | 

[B]= , [BJ = 

[>] [o ] 

[oJ -2[n] (4.14) 

fo] 

[8] =|-() | . (o)=(ely,+Blys+ Bly 

[0] 7 

The element moments are 

M 
x 

iM}. = 4 4, = Dp ]ix}, ie ete 1S) 

Ny 

where 1 yp 0 

3 

eae) a ee 
12(1-9) Te 

Career 
h = thickness of element. 

An expression for the potential energy of a plate under a 

distributed load, alternative to that given in chapter (2) 

can be shown to be 

Vv = + ffimtog dxdy - J q w dxay (4.16) 
area area 

Substituting for {mk, x} and w from (4.15), (4.13) and 

(4.10) the potential energy for the element will be:
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YY» tse") *] [2] 18%} ax ay 
n =

e
 

o
o
 

  

ab 

-{ f AP TLS 6 Ya ox a (4.17) 

Minimizing the potential energy of the element implies 

Ove ae 

ats}. 
Therefore, 

Sg Sun fir m) O18"te fe ees ( * aa + JS Zs" oT ato) 2186 ae 

B18 be roma raat on) yen 
sy p22 He Vy [c iY [o*][c ‘| 1S te) dx dy 

ab m 
at&'Se = N|—— YY dxdy=0 

{JsEia sis, tee 
dae dene weal 

Simplifying: 

ab 

os f foe [istele") bello J 

ab 
+) [03] [o4] [c?] {8"},) ax ay - ier qa (vy. ¥, dx ay 

Weeweage eats 

Transposing the first term, changing the summation 

subscript m to n and the subscript j to m and interchanging 

the summation and integration operations gives:
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oie" [p*][c"] {8°}, ax ay M
 

o
u
 
y
p
 

o
o
 

qa (vy Y, ax ay (4.18) 

oo
 

o
o
 

m= 1,2,...,M 

Equations (4.18) are the equilibrium equations for the element. 

These equations can be stated in the following form 

a [ete enc e=cite ya MA Tee eal (4.19) 
n=1 

where ad 5 i 

{x™"]. = SJ p [c™] [p*][c"] ax ay 

ct ; (4.20) 
aeons -ff a [x]. ¥, ax ay 

4x1 Rug. 

eee vs to and fash will be referred to as the 

harmonic element stiffness matrix, harmonic element nodal 

displacements vector and harmonic load vector respectively. 

Substituting equation (4.20) into equation (4.17), the 

potential energy of the element will be obtained in terms of 

the harmonic element stiffness matrix and harmonic load 

vector: 

= APY, (POD, 18% 7 te hith 2) 

Substituting for [C] from (4.14) into (4.20), and 

neglecting the null matrices that arise on multiplying out
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the matrices [B 7 (p*) [8], fe [p*] [B], 7 [p*] (B] ana 

a * 
(B] [D*] [B], the harmonic element stiffness matrix will be 

given by: 

ba . 
peal x ik Dyers (B] [p*] [B] ax ay 

00 

ba _ 

o JJ» yn ¥, [B] [b*) [8] ax ay 
00 

Dyas . 

- | Dy, Y"(B] D*)L8) ax ay 
00 i 

ba ; . 

“ i f Dv ¥'[B) [p*][B] ax ay 
0 °0 

ba 7 

+f fom (8) DD) ax ay (4.22) 
00 

or 5 ba 

[en], = > 4 D @™(s],, dx ay (4.23) 
r=1 00 5 

where 

Bee a te en ty oe ey 

Swi ee a 
(I-b) ba) 1-18) bab] .P]-bT Pils] 
(a]-[57 (oll). (01 -[87 Als] 

4.7.1 Syinmetry of the Element Stiffness Matrix. 

Expanding equation (4.19), the element equilibrium 

equations can be written as:
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fe" Jefe" Joes Ded,-- be], |. | iste if te 

i], *).. : ir]... [<*"], {She if’te 

‘ . . . . = t (4.24) 

few] fede Dede GD} tte 
‘ ‘ ‘i ; Lars {tte 

B), ],.- Oe"). | dtl Lets 

or 

(e]ei8h =e}. eae 

where [x ae riche and ie \ e are the element stiffness 

matrix, element nodal displacement vector and element load 

vector respectively and are distinct from the harmonic 

element stiffness matrix and harmonic element nodal displace- 

ments and load vectors. 

Now, if the harmonic element stiffness matrix (equation 

4,22) is transposed and the modes m and n interchanged, it 

will be found that: 

2 

fe), - be], 

It becomes apparent, therefore, that the element stiffness 

matrix (equation 4.24) is symmetric. 

4.7.2 Representation of the Flexural Rigidity. 

In general, the flexural rigidity, D, may vary with 

x and y, due to a variation in the thickness or the properties 

of the plate, or both, and since the harmonic element
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stiffness matrix (equation 4.22) involves the evaluation 

of integrals of functions of D, the variation of D with x 

and y has to be taken into account when the integrals are 

evaluated. 

Although it is possible to represent D(x,y) as a 

Fourier series to generalise an arbitrary function D(x,y), 

the error incurred in the inevitable truncation of the Fourier 

cee particularly in the case of step variation, makes an 

alternative method of representation of D more attractive. 

‘This method involves carrying out the integration process in 

the y direction in a discrete, pre-chosen number of steps and 

assuming the variation of D to be linear in both directions 

over each step. Thus, if the number of steps is NS and the 

end limits for each step are yé [asa | (S=1525 sects, 

Ap = Or Ay = a) and x€[o.b], then the flexural rigidity for 

each step will be 

Dy = Dg xt Dis y¥ + Dz  (82112s04+4NS) (4.26) 

and the harmonic element stiffness matrix will be given by: 

5 NS a, b 
on 

x" sh 5 J (ig + Pig ¥ + D5) a. aay 

fi 

S-1 
5 b, NS as 

= J 1, dx Bt Gn" ay 
r=1 ° s=1 a, 8-1 

b NS a 

ce fe dx io Dag y oy ay 

o oe Be.) 
NS a, 

+ oy gn” ay) (4.27) 
s=1
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b b ig 
The matrices J{s].. dx and { x(J],, dx and the integrals of the 

oO oO 

a 
function which constitute if on dy are given in Appendix 

oO 

Gar). 

If the flexural rigidity of the element is uniform then 

the required number of steps is one, and the values of D,; and 

D,, in equation (4.26) are zero. This reduces the ‘expression 

for the harmonic element stiffness matrix to: 

Bale b ; 
mn’ ch mn 5 be ]= a D> fas { wl, ay (4.28) 

r=1 0 ° ‘ 

Now, because of the orthogonality property, appendix (A>->), 

* .mn * mn the integrals § gi ay and af $" dy are zero for mén, 
° ° J = iz 3 

for any combination of simply supported, clamped or free 

boundary conditions. 

fo establish the order of magnitude, 0, of the matrices 

Ea in comparison to that of the matrices Gals the five 

terms in the harmonic stiffnes matrix aes equation (4.23), 

are examined: 

It can be seen from appendix (A2.2), that the order of 
a 

magnitude of integrals if en dy (r=1,2,3,4,5).is given by: 
ic) 

as 

a 

0 f ¢™ ay ) 
° 

a a Hn? 
of om ay) = o(f ge dy) = (=7).e 

° ° 

a 

0 (f gi ay) 
° 

, 
(48). 0 

a 

0 (f gp" ay) 
°
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Values of » for various boundary conditions, are given in ‘m & 

appendix (A4.3). 

From appendix (A3.\), the order of magnitude of elements 

in equivalent locations in the matrices J (2), dx are: 
° 

b 

0 (J [5], ax) = 4, 
oO 

b b a 
0 J [o], ax) = of [oJ], ax) = of [y], ax). =+ 

oO ° ° 

b 
0 (f [y], ax) = b. 

Oo 

Therefore, the order of magnitude of the five terms contri- 

buting to the harmonic element stiffness matrix .will be: 

0 (2) = 4. he 

e 

0 (1,) = 0(2,) = 0(2,) “et ity 
ke 

1 0 (f) “pe 

where a b 

a -Jaemy. | Ul, ax 
O° 0 

etc. 

and 

iat 
Hence o 

© (T) = 0(m) = 0(8,) = a 0(2, )



ae 

Also, 

Hin? Og) = 01) = (4) = pr) (8). 

Therefore, in general, either T, or T, makes the largest con- 

tribution to the stiffness matrix depending on whether (t) 
m 

is greater than or less than 1.0. The case where this ratio 

is equal to 1.0 would, for any particular problem, occur for 

one value of Ha only. 

A procedure IFIFI, which was developed for the computer 
& 3 

program, was used to evaluate the integrals J ee dy (731,2)..5) 
O 

for the various boundary conditions and for a number of values 

of mandn. It was observed, for all boundary conditions that: 

a a a ; 
mn nn plum j BE ay (m>n) Sf Gy ay <j BM ay 1-254. 

° ° ° 

a a 

The ratio J a dy (m#n) / f ono dy was, in many cases 
oO ° 

as low as 0.01. 

Thus, the matrix (x™") ¢ for m#n is small when compared 

with ee) e for two reasons. Firstly, by virtue of the fact 

that the two terms which make the greater contribution to [eels 

are missing from ep and secondly, because the values of the 

a 
integrals f ae dy are smaller than those of f ge dy (r=2,3,4) 

o 0 

LG can pe concluded from the above that equation(4,24), 

though still coupled (i.e. the modes are interdependent), will 

have a coefficient matrix kl, that contains predominant sub- 

matrices (eee on the leading diagonal. The numerical
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stability of the equations will, then, be reinforced. 

The particular case of simply supported-simply supported 

plate is simplified further due to the fact that the orthogon- 
a 

ality property reduces all the integrals J 2.7 dy (T=y46 +5) 
° 

to zero for mn. This is because the function for this case 

of boundary conditions is sin ae which is orthogonal, as 

are:its derivatives. This reduces. the harmonic element 

stiffness matrix (eels to zero when mén, which results in 

.the uncoupling of equations (4.24), i.e. 

pet 1Seta - ite m=1,2,+...M (4.29). 

It follows from equation (4.29) that the equilibrium 

equations for the whole plate are uncoupled. Thus the com- 

plete analysis can be carried out for each mode’ separately 

resulting in a much-reduced solution time. 

In the case where the flexural rigidity of the plate 

varies with x.only, one of two methods may be employed. In 

the first, D is assumed to be piece-wise constant, i.e. D 

does not vary within each element though its value is differ- 

ent from one element to the next. The expression for the 

harmonic element stiffness matrix will then be as in equation 

(4.28). In the second method the variation within the element ‘ 

is approximated by a linear function. In this case, referring 

to equation (4.26), D=D,x + D; and the harmonic element stiff- 

ness matrix will be given by 

5 b a 

pe) =>. ‘ x (21. ax. >, | go dy 

r=1 Lo ° 

b 

+ i (g], ax . o,f gr ay } 
° °
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In both of these methods the preceeding argument re- 

garding the orthogonality property holds. 

If the plate rigidity varies in the y-direction only 

then once again either of two methods may be applied to re- 

present this variation. In both methods the integration has 

to be carried out over a discrete number of steps as described 

earlier in this section, The rigidity for each step may be 

assumed either constant or eee In these cases the har-_ 

monic element ae stiffness matrix will respectively be: 

be"), = ee D5 f one dy . { (1. ax 

o r=1 s= acy 

ene Bab NS fs , 
as inn 

fee = J (v1. dx a Dis Jy OY 

Sain = Beas 
NR ee 

mn + ? De [et ay) 
s=1 Oe 

In both cases the orthogonality property is disturbed because 

the eigenfunctions are orthogonal with respect to a weighting 

function of unity. For varying sections, D is under the in- 

tegral sign and the weighting function is, thus, not unity. 

If the integral is broken up into steps each with a constant 

value for D, then the interval of integration is not the 

correct one for the orthogonality property to apply. 

Tae orthogonality (or quasi-orthogonality) property is 

very important from the point of view of numerical stability. 

The orientation. of the plate problem should be chosen so as 

+o allow this property to be applied whenever possible. Thus, 

for a plate whose flexural rigidity varies in one direction 

only this direction should be made to coincide with the x-axis,
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i.e. the plate should be divided in such a way as to allow the 

strips to have constant rigidities along their y-axis. 

For plates whose rigidities vary in both directions, any 

combination of the previous methods of representation may be 

used. In the computer program which was developed on the 

basis of the theory presented here, the user may choose the 

method of representation of the flexural rigidity by means of 

a code which will be described later. The choice of a linearly 

varying flexural rigidity involves very little additional com-- 

putational time on the part of the computer. This. choice 

should therefore, be madé whenever it involves a reduction in 

the number of strips (in the x-direction) or a reduction in 

the number of steps (in the y-direction) and little additional 

manual effort. igs 

Plates with step-variation in their flexural rigidity 

arise frequently in practice. Typically, plate thickness. is 

increased over part of the plate area as a means of reinforce- 

ment. For such plates, the methods discussed earlier give an 

exact representation of the flexural rigidity. Fig.(4.5) 

shows a strip with step variation in its rigidity. ‘The 

harmonic element stiffness matrix for this strip would be: 

5 ay a. 

in"), “Pj | gl" ay + D, (ar dy 
a, 

r=1 0 

a b 

+ 2D, J g ay) | (7, ox} 

a, 0 

Fourier series representation of this type of variation in the 

flexural rigidity can only be an approximation which may be 

crude unless a large number of terms in the series is taken,



Fig. (4.5) 

  

  

For piece-wise linear representation of dD, (equation 4.26) 

the coefficients Dig? Do,and Dz, are required. These may be, 

at hand in simple cases. However, if the flexural rigidity 

varies with x and y according to some known function, these - 

constants need to be evaluated. A method is employed whereby 

the number of steps and their end limits are decided, then the 

flexural rigidity is evaluated at the four corners of each 

step using the known function, then a plane is chosen to rep- 

resent the variation of Dg Now, since only three values are 

required to define a plane uniquely, it is necessary to obtain 

the optimum plane from the four values of maeidits at the 

corners of each step. For this purpose the method of least 

squares is employed (appendix 5 ). 

In implementing these ideas in a computer program, 

a code is used to differentiate between the various cases.
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A320) The Element Force Vector 

In equation (4.20), the harmonic element force vector 

was found to be 

tie | 
T 

q [N] ¥, dx ay (4.30) 

o
S
 

This expression for the harmonic element force vector was 

obtained, in effect, by differentiating the work cone by the 

applied load with respect to the harmonic nodal displacement 

vector. Although expression (4.30) was obtained: for a dis- 

tributed load over the area of the strip, no pseunetions were 

made regarding the nature of the distribution. The harmonic 

element force vector can be obtained for any typé of load 

simply by considering the work done by the applied load. 

Contrary to many statements on the. subject (207, (33).(1 }. (35) 

etc., the applied load need not be expanded into the same 

series as the analytic function which describes the deflection. 

An expression for the work done can be obtained directly from 

the applied load and the assumed deflection function. Diff- 

erentiation with respect to the nodal displacements, then, 

yields the force vector. Because of the othogonality property, 

the resulting force vector is the same in both cases as will 

be shown for the case of a distributed load. 

4.8.1 Distributed Load Over Part of the Hlement 

The pressure q(x,y) is applied over the shaded area of 

the element (fig. 4.6). The conventional method of obtaining 

the force vector is by expressing the applied load as a series 

of the same form as the assumed deflection, i.e. 

  

M 
a(x,y) = pa a ne) (4.31)
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co cael 

Fig. (4.6) \S 

Multiplying both sides of equation (4.31) by ¥, and integ- 

  

          

rating over the length of the strip, the following will be 

obtained: 

Wy Yn oe dy M
e
 

o
V
_
_
p
 

a 

f a(xsy) Y, dy = 
oO m=1 

Applying the orthogonality property of the beam eigenfunctions 

and neglecting the zero value of the left hand side outside 

the limits y é€ fa,» az], the expression for an will be obtained, 

  

Thus, 

a, 

J a(x.y) ¥, dy 

4, === (4.32) 
2 fee 

oO 

The harmonic element force vector is obtained by considering 

the work done (W.D.) by the applied load and differentiating 

with respect to the harmonic element displacement parameters. 

Thus, 

b 

Wepre ‘ ay ewe y an ay 
° o
u
 

On substituting for q from (4.31) and for w from (4.10), the 

work done will be 

a 

W.D. = ae >) J 

n=1 m=1 0 

a, YO {S't, ¥, ax ay 

o
w
"



S194 = 

On using the orthogonality property, the work done will be: 

0 ob 
m 2 

W.D. = J J 4, 00 48%, 1 ax ay 

m oO 0 

Substituting for q) from equation (4.32), the work done 

becomes: 

a, 
m wv. 7 { acy) % [VIS], ax ay (4.35) 

; m @ oO ; 

The harmonic element force vector will, then, be given 

by: . 
y , aw. a, b i . 

D. 
{ey} Pe ate =f J alex) (w] Yuode dy (4.34) 

e J ast, 4% 
. J=1,2,....M 

It is obvious that expression (4.33) for the work done may be 

obtained directly by considering the work done per unit area, 

i.e. q(x,y) w, and integrating over the area of the strip to 

which the pressure is applied, i.e. xe[o,b], ye[a,,a,]. 

The harmonic element force vector is then obtained as before. 

This direct method is used to obtain the various load vectors 

for all loading conditions that are treated here. 

4.8.2 Representation of an Applied Pressure. 

Similar ideas are implemented, in representing an 

applied pressure which may vary in both the x and y directions, 

to those employed in the representation of the flexural rigid- 

ity. The integration with respect to y (equation 4.30) is 

carried out in a discrete number of steps, NS, over each of 

which the applied pressure is assumed to vary linearly in 

both directions. Thus: 

ir Geet denn te (s=1,2,.+-,NS)
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The harmonic element force vector will then be given by: 

b NS as 
wu 

oaye = jx (Ny ax. ? he J aa 

3 S=1 Ge), 

b NS as NS as 
? 

+ J x | te | ¥ Tn + «J a7} 

9 s=1 as_, s=1 as, 

(4.35) 
; b b : 

The vectors J ny" and J x wy]? are given in Appendix (A3-3), 
° ee 

Evaluation of the coefficients ay q,, and ac is achieved 

in a manner identical to that used for the flexural rigidity. 

4.8.3 Implication of the Element Force Vector. 

Recalling equations (4.19), the equilibrium equations 

for the element were 

Saleem satire es 
n=1 

or, 

mn n m 

Ki, Bio By 1g . ft 

MY | Ko; Koo ko3 og 9, fp 
a = (4.36) 
nat | 31 32 53 ksq i zs 

Hai an 45. a4 % ty 
e 6 e 

It, in equations (4.36), oO, w { > and OQ, were made zero 

then the remaining load-displacement relationship would be 

M 
mn on m 

ky mw =F
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Comparison of this relationship with that for a basic spring 

system would indicate that fy corresponds to an external 

force applied to nodal line 1. Similarly f, corresponds to 
a 

an external force applied to nodal line 2 and f, and fy 

correspond to external moments applied to nodal lines 1 and 2 

respectively, i.e. 

aha |e ae wy 
oe otal 1 a 2 

In effect , the distributed load is replaced by an equivalent 

system of forces and moments applied to the nodal lines of the 

element. 

4.8.4 Other Types of Loading. 

The harmonic element force vector will now be obtained 

for line loads and concentrated loads applied to a nodal line 

of an element. 

When the equilibrium equations of the elements are 

assembled to yield the equilibrium equations of the whole 

plate, the nodal forces and the unknown nodal displacement 

parameters are those relating to the nodal lines of the over- 

all structure, i.e. the global nodal lines. For this reason 

it is more convenient to treat loads applied to the nodal 

lines from the point of view of the overall structure rainer 

than the element. 

a. line Force. 

A uniform line force Q* is applied to nodal line k from 

y=co to y=d (Pig.4.7)
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b. Line Moments Me and M* 
eel 

Uniform line moments M¥ and My applied to nodal line k 

from y=c to y=d (Figs.4.8) 

  

  

  
  

  

    
  
  

  

  

  

    
  

    

k 

Me 

Ay} 

hal a 

Figs. (4.8) 

dae 
ee 

ee | | 2 

{ j Fi } ¥ 

~   
  

The work done in these cases is in rotating through @. 

and OF respectively. 

Doe = BP. -+Z re “2% 

where Qin is the rotation parameter at nodal line k,



ee 

M M 

CO y= By =7. th =>) wa Mh 
m=1 m=1 

The work done by the line moment My is 

d M 

=. a W.D. =| ue 2 Oe eedy 
c m=1 

M da 

ig My ms ven J ta ay. 
m=1 c 

The non-zero value in the harmonic force vector is in the 

location of the bending moment on node k, Therefore, 

a 
J OW.D. lye fg 

My 90,5” be j 
Cc 

  dy j=1,2,-..,.M 

The work done by the line moment My is 

> j 
= * 1 W.D, My en J Yh dy 

m=1 e 

The non-zero value in this case is in the location of the 

force on node k,. 

3 d 

Fd =e Cade - we { ¥! ay jaie2 cael 
Ow, y J 

kj c 

The treatment of line loads in the y-direction has been 

based on uniform distribution. Variable loads, therefore, 

have to be considered by superposing a discrete number of 

piecewise constant line loads (Fig.4.9) 

Fig. (4.9) 
- J 
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Line loads in the x-direction must be replaced by 

concentrated loads applied at the nodal lines. Sufficient 

accuracy is achieved, particularly if the width of the element 

is small, by simply lumping the line load into two concentrated 

loads applied at the nodal lines. Representation of the line 

forces may be improved by applying concentrated moments as 

well as concentrated forces at the nodal lines in such a mag- 

wivude as to make the work done by the representative system 

of loads equivalent to that of the actual load, 

c. Concentrated Loads. 
  

If a concentrated force P* is applied to node k at y=c, 

then the work done by this force will be 

WD. = Ei eee 

=J0m - f(x), qt (y=c) 

m=1 

M 

= pe Wee tn (y=c) 

m=1 

pi - OD. = pe Y. (y=e) J=1421 050M 
Om,; j 

Similarly, for a concentrated moment We and a concentrated 

y? the harmonic load vector will contain non-zero 

values at the following respective locations: 

moment Me 

J 2 My ue ¥,(y=e) , and 

j=1,2,....M. 

i 8 Vem Fy = Mey Y4(y c)
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Having described the behaviour of a single element, 

the behaviour of the overall structure must be investigated 

in relation to the assemblage of stiffnesses and forces of all 

  

the elements. This will be the subject of the next chapter. 

  

 



 



CHAPTER FIVE. 

THE OVERALL STRUCTURE. 

The behaviour of the overall problem may be investigated 

either by considering the compatibility of the displacements 

and the equilibrium of the overall structure in a direct way 

or.by applying the principle of minimum potential energy to 

the overall structure. Since the later method has been applied 

_to the element, it will be used to establish neve om of 

the assemblage of elements. 

5.1 Assembly of the Overall Stiffness Matrix and Overall 

Load Vector. 

5.1.1 General Procedure. 

The potential energy of an element was obtained in terms 

of the element stiffness matrix and load vector (equation 3.14). 

This was found to be: 

Vo =+ (83 (H], 183, - 1816 {fe (541) 
Therefore, if the number of elements in the overall structure 

is NE then the potential energy of the overall structure will 

be: 

NE NE 

v= +2. {o}p [ie], (8h. - 2 fey (4, (5.2) 

The vector 1835 represents the nodal displacements for the 

element e. Thus, for an element with two nodes and one degree 

of freedom per node, the nodal displacement and load vectors 

will be
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i Ste = 4 fat te 
& 

Now, if these vectors are transformed to ones with global 

numbering containing the total number of degrees of freedom, 

‘then the element nodal displacements and element nodal forces 

vectors become 

Der ohiieiss ci OWS | eisiaisiese ei hale 

Ob eveees TOW 2 covvcseh O 

5 e 
©, ficeres LOW © veossvep © 

{8, = iS £ = {t.} OQ fevcees TOW C,evecreeh & 

where e, and e, are the global node numbers which correspond 

to the first and second degrees of freedom of element e. 

The vectors {S.} and 4f,) are distinguished from {s}. 

and {£2 by taking the suffix e inside the brackets to indicate 

that the only non-zero locations in the first pair of vectors 

are those attributed to element e. The same convention will 

be applied to the element stiffness matrix. 

If the general nature of the equilibrium equations 

[k]e {Sb_ = {f}_ is to be maintained, then the element stiff- 

ness matrix has to take the form:



where   

k ene allie sfarale'si] a4 esieve row e 
ee, e,e5 1 

k Dee iliseieieselels atdieverere ene, G55 row 5 

L . . 
col e, col &5 

k k k k 
&) 85 €1&5 11 te 

k k k. k 
| “eo ee 21 ae i 

All other locations in the matrix [ke] are zero. 

If the equation [xe] 1S.) ={#,) is exparided it woulda 

yield the same result as the equation [x], ish, = Raye . 

Therefore, equation (5.2) can be re-written as: 

v= Z, {So} [ke] {Se} Be {Se} teed 

Expanding the summation, the total potential energy becomes: 

Wed eral, Si) ce 1 Sat (i |, Gel ewes 

a {8e}" [*e]} Se} Ge, se 15a} [ivel{ Sac} ) 

mite tty + ABV IES + wears (8, Vita + enn 

= { Sue} {fe}) ; (5.5)
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Now, if, in equation (5.3), the extended element dis- 

placement vectors {Se} are replaced by the overall nodal 

displacement vector {§} which contains all the nodal dis- 

placements of the structure, the equation will not be affected 

pecause the zero locations in the stiffness matrices and force 

vectors will nullify the effect of the displacements added to 

each of the vectors 15.) : 

Hence, i ; 

v= 4({8¥ lis} + {SVR NS) 2 oee day belis} 

tT coos + 18)" belts} ) : 

- (tas) + ASiLat + co + Ate +o tet) 
(5.4) 

Using the distributive law [a] ([B] + (c])(p] = 4) BJD] + 

[a]{c][D]. equation (5.4) becomes: 

v= 3 (ASF) + [ee] + oe + [he] + + + Bead 2183) 

2h Qsrasy + {fib tee + [the -- +{%e}) ) 

v=4 {si le]i{s} - ist} (5.5) 

where 

e=NE e=NB 

[x] = z [x. | and {Fy= Z. tte} 

Minimization of the total potential energy gives:
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ov ue ‘ a 

Sones Re 
or 

i [klis} = {F} 

Thus, [x] and {F} are the overall stiffness matrix and overall | 

force vector. 

From the preceeding discussion, it is easily recognised 

; that knowing the global numbers of the nodes of each element,’ 

the locations, into which the element stiffnesses and loads must 

be inserted in the overall stiffness matrix and load vector, 

are immediately established. 

As some elements will have common global node numbers, 

some locations will contain the sum of the appropriate stiff- 

nesses and loads of these elements, 

If the number of degrees of freedom per node was N, then 

Se, and de, would be replaced by vectors of order N. e, and 

e, would represent N values, the first of which is N x(the 

global node number -1 )+1. For subsequent values, 1 is added. 

This is made clear by the following displacement vector; 

global Vole Cedi cencs aie OWT 
VOUS leiceocgup ce {s, Nx 1 ‘ 

Sh aamisteute sieve ss ee ON 

ore 

Voeeervselices cieeviee LOW Gl 

   row N+1 
NOdE 2 sevesecbose {§ 

v 

row N(e-1)+1 

owsccegee LOW NG 

re] ° a ® o 

a
 

Re
) 

es
se

re
 

Ta
e ae 

w
e
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5.1.2 Assembly of the Harmonic Stiffness Matrices 

and Load Vectors, 
Following a procedure similar to that given in the 

previous section, the overall stiffness matrix can be obtained. 

From equation (4,21), the potential energy of the element 

was given by: 

1 m - on n cin T v= $7 7 {ents fen). ts", - >. te hele te 
m n mn 

Therefore, for the whole structure, the total potential energy 

is given by: 

“ED DST 2 we 
where ay a 

[x""] = ee lel and {Py = 777 fe0} (5.7) 
e=1 

Now, 

xn wy = (5.8) 
ae Ze Hs") we Ce i 

Replacing m by n and j by m, equation (5.8) becomes 

n=M 

Z, eis") = {2°} (5.9) 
n=1 m=1,2,...M 

es Toy and {Fr} are the harmonic overall stiffness matrix, 

harmonic overall nodal displacement parameters and harmonic 

overall load vector.
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Written out in extended form, equation (5.9) becomes: 

Pere Slave oie) pe lyiset {p'} 

(ee est lee saree le) {s} {r*} 

k™) ik] "| eee ee, {F"} 

eli) oe ed} fish} 
or ‘ ‘ (5.10) 

[e]ist= (rh 
Thus, if the harmonic overall stiffness matrices gees] and the 

harmonic overall force vectors te} m,n=1,2,.-.,M are assem- 

bled from the harmonic element stiffness matrices i"). and 

harmonic element force vectors ihe according to the procedure 

given in the previous section, then the overall stiffness 

matrix {x} and overall force vector {Ft can be formed as in 

equation (5.10). 

5.2 General Form of the Harmonic Overall Stiffness Matrix. 

The harmonic element stiffness matrix relates the har- 

monic nodal displacements to the harmonic nodal loads of a 

particular element. The harmonic overall stiffnes matrix has 

been shown to be an assemblage of the harmonic stiffness mat- 

rices of all the elements. It follows, therefore, that in the 

overall structure, when two nodes are not connected by a single 

element, then the locations, in the overall stiffness matrix,
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at the intersection of rows and columns that correspond to 

the degrees of freedom of these nodes, contain zero values. 

In the semi-analytic approach used here, because of the 

nature of the division of the plate, any node will be connected 

by elements to two other nodes at most. In fig.(5.1), node 1, 

with degrees of freedom 1 and 2, is not directly connected to 

node 3, with degrees of freedom 5 and 6. Therefore, the 

locations, in the harmonic overall stiffness matrix, at the 

intersections of row’1 with columns 5 and 6, row 2 with columns 

5 and 6, row 5 with columns 1 and 2 and row 6 with columns 

1 and 2, all contain zero valucse The same applies to the 

degrees of freedom of nodes 4, 5, etc.. 

Accordingly, the general form of the harmonic overall 

stiffness matrix will be as given in fig.(5.2).. 

  

  

  

        

x 

5 9,10 

4 

4 1.8 

5 
5 546 

2 

2 344 

1 

1 12 Ly 
node element d.o.f. 

Pig.(5.1)
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5.3 Grouping of the Harmonics. 

Two major factors in any computer orientated numerical 

analysis are the computer storage requirement and the solution 

time. The nature of the overall stiffness matrix of a finite 

element method of analysis plays an important role in both 

factors. Generally the overall stiffness matrix is of a 

banded nature i.e, it contains zero elements at locations 

above and below a band centred about the leading diagonal, 

obviously, the smaller the bandwidth , the less computer stor- 

age is required and the faster is the polaron The bandwidth 

depends on the particular problem and the sequence in which 

the nodes are numbered.
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In the semi-analytic approach to the plate bending 

problem the most favourable numbering sequence is the obvious 

one (fig.5.1)) however, it will be seen that there is still 

room for improvement. The bandwidth in the overall stiffness 

matrix (equation 5.10) is large because the only zero elements 

in the matrix contributing towards the reduction of the band- 

width are those in the sub-matrices [x'™] ona [Kk] ~.. this 

is illustrated by an example of a hypothetical problem with a 

total of three degrees of freedom and three harmonics, in which 

‘there is no connection between the first and thé third degrees 

of freedom in the sense described in section (5.2). Fig.(5.3) 

shows the form of the overall stiffness matrix for this problem, 

There is a number of zeros in the harmonic matrices within the 

band, which has not been exploited for the reduction of the 

bandwidth. 

The equilibrium equations of the problem can be rearranged 

such that all the zero elements of the sub-matrices [x™] 

(m,n=1,2,3) are collected to the right, above the leading 

diagonal and to the left, below the leading diagonal, result- 

ing in a reduced bandwidth. This is achieved by grouping 

together the harmonic nodal displacements of each node. 

Fig.(5.4) shows the rearranged equations with a more efficient 

form of the overall stiffness matrix. 

In effect all that has been done here is that the 

equations and their various terms have been stated in a diff- 

erent order. For example, the second equation in the original 

set of equations stated:
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‘ MW ‘ A rs 2 a 2 

(ES) eS, KS.) a eke Sy Ke Se) 

ee 3 2 2 
+ (Ky $+ K,S,+ 58, ) =F, 

This equation is now the fourth equation in the rearranged 

set of equations which states: 

sc Mtet fa Us MW ‘ We 2 Bo Ky Sistah Sy tak cei ee Ge wo Ree Ste 

+ KS. + Ke = oF aS, = BR 

which is identical to the original equation. ; 

Symmetry of the overall stiffness matrix, which is 

important for the reduction of computer storage para emente 

and solution time, has been maintained. ; 

Now, returning to the plate bending problem, the re- 

arranged form of equations (5.10) then becomes: - 

[ee], a. ae i], ie [es] : ; 5, {et i, 

ie),, en,, e ler, a ie]. i et, a 

*],. Fs Y ke. F (eel t [*), 

erent Pes ; 
ie?) Est ee Ss kd. x [ks] { a1. {ery 

(5.11) 

where 

Waele ran a 

re ee Ke 

ke], FF : : 5 
gl xe iM 

ij



{8}; = [s aPiai us gM | 

te so FF scan ey 

i,j=1,2,...,N 

= i total number of degrees of freedom. 

M = number of harmonics. 

54 Prescribed Displacements. 

Before equations (5.11) can be solved, the prescribed 

displacements on the boundary edges parallel to the y-axis 

have to be incorporated into the equations. 

In most easee the prescribed isplacensnes are either 

zero deflection, as in the case of a simply supported edge, or 

zero deflection and zero rotation, as in the case of a clamped 

edge, or they may be non-existant , as in the case of a free 

edge. There is no reason, however, why problems with prescribed 

displacements other than zero should not be treated. It should 

be remembered, though , that the function which describes the 

non-zero displacement must satisfy the boundary conditions at 

the other two edges because these are built into the chosen 

eigenfunction. 

The prescribed displacement has to be in a form suitable 

for insertion into the equations. This is achieved by harmon~ 

ic analysis. 

Let the prescribed displacement be §*(%), where & /,- 

This displacement can be represented by a series of the 

same form as the assumed deflection function i.e. 

Stele, 64, (8) (5.12) 
m=1



ia 

where Y65 ) is the beam eigenfunction of the particular 
%, 

problem and &™ is the harmonic prescribed displacement. 

Multiplying both sides of equation (5.12) by ¥,(% ) and 

integrating over the length of the edge gives: 

1 = 1 

j Se yrin) a => S” | Ml S) ¥,(3) ag 
° m=1 ° 

Applying the orthogonality property. of the beam eigenfunctions 

(appendix A2.2), the vight-hand side is non-zero only when m=n,. 

  

Therefore, 1 

J 8(5) Hy 05) ay 
sm =e (5.13): 7 

J mts) 4 Ht Zoe spill 

Tans the harmonic prescribed displacement Scan ..be evaluated 

for m=1,2,...,M. 

In the cases where the prescribed displacement has a zero 

value, the harmonic prescribed displacement Sis zero for all 

values of m (equation 5.13). 

5.4.1 Statement of Prescribed Displacements 

If the displacement is prescribed on the is degree of 

freedom, then 

ish = 188] 921.2 et (5.14) 

where {ss} is obtained using equation (5.13). 

Substitution of equations (5.14) into equations (5.11) yields:
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er Pe RO as dy {oh iF, 

(eee [eels ad [Kr*] Won ieee lets iF’ \> 

. . . 

. . = . 

[o7]ay lor he + ha «+ bin} it] 1 8 

[ee] ny [ee] ++ sad vee LEN ay Shy Ly 

(5.15) 

where [0°] ana [15] are the null matrix and the identity 

matrix respectively, both of order M. 

It is apparent from equations(5. 15) that the peo of 

the overall stiffness matrix has been disturbed. To remedy 

this, each equation 

ae 18h, + BP ]io [Oyo ee + Kr) ,. {Sh tee 

eRe Smee hs 451 ,2, 000M 

ind 

is considered in turn and the term (A) a isn is taken to 

the right hand side after substituting for Neen from equation 

(5.14). Thus the i*® equation becomes: 

(elas 18}, + Klin [Sloe ee + fo), ES be eee 

ie Kr] 1s°$y 5 Fh, * Kr). io



With this process carried out for all, but the ne , of the 

matrix equations in (5.15), these equations become: 

      

te], [e*],o --- [or*],1 «. ey | ish, 

Cer?]5, [*loo 1, fo"? ler .., ["*] oy tS} 

[ori [or] 15 t+ (a9), . -+e Lay teh 

[ee], ys | Lo" Ja fe"? dw tS by 

{F"}, a el iS} 

{Fh fi fe") et 

= ; (5.16) 

thy i fe?) {S*} 

The symmetry of the overall stiffness matrix has, thus, been 

restored.
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ae Solution of the Equations. 

Having modified the equilibrium equations, to include 

the statement of prescribed displacements, they are ready for 

solution. 

There are many methods for the solution of a large system 

of equations each of which may be more suitable for one system 

of equations than for another, One of the more efficient 

methods for the solution of eaeions whose coefficient matrix 

is symmetric and positive definite is the Cholesky Decomposition 

Method (37) . : 

Pung [37] shows, on thermodynamics grounds, that the 

strain energy function of a solid body must be positive defin- 

ite, i.e. it must be non-negative and it is zero only in the 

natural state. The positive definiteness of the strain energy 

implies certain relationships between ane stiffness (or influ- 

ence) coefficients. In the equation U = { s}[K]SY » when 

U>0 for &; # 0 and U=0 for §, = 0, then the sum of the 

coefficients Ki and the determinant [Kis | are both positive. 

Symmetry of the matrix [k] is established on the basis of 

the reciprocal theorem [33]. 

Tous, the coefficient matrices arising from a displace- 

ment (or equilibrium) formulation to the finite element method 

are symmetric and positive definite. Consequently the Cholesky 

Decomposition Method for the solution of equations is applic- 

able here. 

The Cholesky Decomposition Method is based on the follow- 

ing theorem: 

If [K]is a symmetric positive definite matrix, 

then there exists a real non-singular lower triangular matrix
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[L] such that 

[z) (2)? = [x]. 

where 

1;;=0 for i<j 

The elements of {uJ are obtained thus: Modifying the 

usual rules of matrix multiplication to include the symmetric 

property of {k] and triangular property of {1], the following 

equations are obtained. 

x 

Kay = a lip dip 1=1,2,...n 

r=1 

J p ei 
i, = a os hig 1=2,3,...n 

i dele saiat 

where n is the order of the matrix [K]. 

Equation (5.17) may be re-written as: 

i-| : 

Kay = lis lis + pS lin lip from which: 

r=1 

fo Lig a liy) i=2,3,...n 

  

Similarly from equation (5.18) 

j-1 

eujae canary ee 2 tir ir 
r=1 

(5517) 

(5.18) 

(5.19)



Therefore, 

Nee i=2,3,...n 
1,5; = (ky, - a Vie ie J gat. 2aceetor 62020? 

1 J oe 
WS 

Alternat® evaluation of equations (5.19) and (5.20) gives 

all the elements of the matrix [L]. The solution of the 

equations [K]{S} = {Ph, then, proceeds in the following 

steps: 

[K]is} ={F} 

[2] (oY? S}= {rh 

Letting {Y¥} = Lu} {8}, the equation becomes: 

(u]ix} =F} 

Hence {¥}, hence 1s}, 

or 

An element by element process is given by 

i-t 

yy = (>, - > da Se 
r=! ae 

to1,2s 0060 (beet) 

ign ee $) / 
Si a = Pa Yr diy 

This method of solution is easily adapted to take ad- 

vantage of the banded nature of the matrix [kK]. In this 

case, the operations involved in arriving at equations (5.19), 

(5.20) and (5.21) are carried out with the convention that 

a 570 for |i-j|>(B-1) where B is the semi-bandwidth {39]. 

This, in fact, is the statement of a banded matrix,
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5.6 Solution of the Problem. 

The solution of the equations yields the harmonic nodal 

displacement parameters from which all the necessary inform- 

ation for the solution of the plate stressing problem can be 

obtained, 

5.6.1 Deflections and Rotations. 

The deflection and rotations.anywhere on the plate may 

be evaluated by using equation (4.10).4.e. 

zu cree w= 

M & 

ide WW] ts" Xn . : (5.22) 
nm 

5 M 

= Se A N ME aay oe Be = 2.18 to, 

Generally, the deflection and the rotations are evaluated 

at a discrete number of points along each node in order to 

obtain an overall picture of the state of displacement of the 

plate. Thus, substituting the appropriate values of x and y 

into equations (5.22), the displacements on the nodes ave 

given by: 

M 

Mico - Wane aa: 
m=1 

Mw 
a ee Oven gs (y=y,) E15 2s ess poOde (5925) 

M 

( Oy ie = Wen Uh (IVo) 
m=1 

where nnode is the total number of nodes.
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a and Yh are evaluated at the appropriate points, J=¥ 57 00 

the nodes. 

5.6.2 Moments, Shearing Forces and Stresses. 

The bending and twisting moments are evaluated from 

equations (4.11) and (4.15), i.e. 

M,. - [v] x, 
. M 

Madu} -op) > |-fl 2] {eh 
m=1 : 

My 2 (No) era 

The principal moments M, which represent the maximum 

and minimum values of the bending moments, and the’ pertinent 

angle c< at which they occur, and the maximum and minimum 

twisting moments M,, [4]are given by: 

M, + My / snp at 2 2 
(Snax = 2 = 2 (mh, 5 M,) a 4My 

min 

2M. 
ten 2 = 

M - M 
x y 

on enone 
aes ei 2 On, 7 My) * 4aMey 
min 

The shearing forces are obtained from equations (2.9) 

i.e, Q ah, Oe 
{Q} = *=-D iat a oF 

% 
(Bie, 241) 

dy? By 3x 
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Substituting for w from equation (4.10) the shearing forces 

will be: 

Cin] x + (NY 28) 

a= 0 i 
¥ et | (du) vm + [wr] x) 

= 

The effective shearing forces are similarly evaluated from 

expressions (2.18) and (4.10). 

(fir) x, + (2-¥ dor] x) 
v M 

iv} a ae! ae 
Vy m=1 | ([N] y+ (2+ ) [Nv] x!) 

The stresses are evaluated using expressions (2.11). ‘Thus, 

Ox My 
{o } = Oy = & M, 

Txy May 

Similarly, the principal stresses and maximum shearing stress 

are obtained. 

The matrices [w], [1 Jana n') in the expressions above are 

evaluated at the appropriate node, and the functions The Th 

ea and an are evaluated at the appropriate value of y.



    

 



CHAPTER SIX. 

DEVELOPMENT OF THE COMPUTER PROGRAM. 

6.1 Introduction. 

The process, for the analysis of plate bending problems, 

which was outlined in the previous chapters, has to be written 

in the form of a computer program, 

To recapitulate, this process consisted of the following 

‘steps: 

1. The plate is divided, in oe direction, into a suitable 

number of strip elements and a suitable number of modes. 

is decided oom 

-2, Information regarding the dimensions, rigidity and app- 

lied load for each element is made available. 

3. The stiffness matrix and load vector are evaluated for 

each element and for each mode. 

4. The overall stiffness matrix and overall force vector 

are assembled. 

5. The overall stiffness matrix and overall force vector 

are modified to include the statement of prescribed 

displacements. 

6. The equations are solved yielding the harmonic nodal 

displacement parameters. 

7. The deflection, rotations, moments, shear forces and 

stresses are calculated at a discrete number of points 

on the plate. 

Whenever possible and, indeed, whenever it is more 

efficient, the systematic execution of these operations by



ete 

the computer is carried out using self-contained program 

segments called "Procedures". 

Gee Division of the Plate into Strip Elements. 

Once the oerientation of the plate is decided upon with 

respect to the direction in which the analytic function is 

applied, there will be only one way in which the plate may be 

divided into strip elements, and provided that the elements, 

local and global nodal lines and local and global degrees of 

. freedom (a. o.fs) are always numbered in the Bue aeunence: 

fig.(6.1), then many of the required variables may be obtained 

from other variables, ees the input information, for which 

data preparation is required, is reduced. 

  

  

  

      

x 

2 344 4 7,8 
3 

1 1252 
2 3,4 5 5,6 

2 

1 1,2 

2 344 2 344 

1 

node 1 d.O.fe 1 2 node 1 d.o.f. 1,2 y 

local numbering global numbering 

element 

Fig. (6.1) 

The relationship between the global node number and the 

element number will always be: 

ny = e+ nm, -1 

where ae is the global node number , e is the element number
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and ny is the local node number =1,2. 

The relationship between the element member and the 

global d.o.f. will be: 

a, = 2(e-1) + ay 

where a. is the global d.o.f. and ay is the local d.o.f. 

a, = 192.344. 

The local d.o.f. 1,2,3,4 refer to the deflection and rotation 

‘parameters of the first node and deflection and rotation of 

the second node respectively. 

6.5 Plate Flexural Rigidity and Applied Distributed Pressure. 

In this section reference is made to the flexural rigid- 

ity only, but the procedure applies equally toa distributed 

pressure, if any is applied. 

The flexural rigidity may be available in a form suitable 

for direct input into the computer as in the cases of uniform 

rigidity or variable rigidity approximated by step-wise uni- 

formity. On the other hand, it may be available as a function 

of the co-ordinates x and y and the variation is such that it 

requires a better approximation than step-wise uniform, In 

this case, the flexural rigidity may be treated as step-wise 

linear (section 4.7.2). For this purpose, the strip element 

is assumed to be divided into a number of steps over each of 

which the rigidity is assumed to vary according to the equation 

DD, =D E 4g ¥ + Dog ¥ + Ogg (6.1) 

where s is the step number.



35 are readily In some cases the constants Dig? Ds. and D. 

available and may be read-in into the computer directly as in 

the case where the true variation of the rigidity is linear. 

In other cases, these constants may be evaluated from the 

actual values of the rigidity at the corners of each step. To 

this end, a procedure LSTSQR has been written. Referring to 

fig.(6.2), the input parameters to this procedure are: 

5 The step number, 

mee. The element number, 

3, Values of x and y at points 1,23 and 4 

4. Values of D at the same points. 

x 

  

Pig. (6.2) step 1 step 2 step 3 

        1 3h 3h Dil MnGSee 
  

The first three quantities are obtained automatically 

from other input parameters. The values of D must be read in 

the following sequence: four values for the first step, (D), + 

(Dos (D)5 and (D)4 and two values for each subsequent step, 

(D)5 and (D)4- The values of (D), and (D), for step s(>1) 

are taken equal to (D)z and (D)4) respectively, for step 

(s-1). 

The procedure LSTSQR is pased on the theory outlined in 

appendix (5 ). Its output are the coefficients of the linear
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equation (6.1). 

The same procedure is used, when necessary, for variable 

applied distributed pressure, by changing the procedure's 

dummy variables to those relating to the load. This, however, 

is carried out automatically. 

6.4 The Harmonic Element Stiffness Matrix and Harmonic 
  

Element Force Vector. 

To obtain these quantities, equations (4.22) and (4.30) 

.are used. In these equations, integrals of the analytic func- 

tions, integrals of products of these functions and integrals 

of various derivatives of these functions have is be evaluated. 

In chapter seven, section (7.4), a discussion regarding 

the numerical instability of the higher modes of the analytic 

functions will be given and a modification of these functions 

will be suggested. It is the modified form of the analytic 

functions that the computer program processes. 

A real procedure HARM has been written to give the roots, 

Hy: of the characteristic equations for any specified eigen- 

function for all desired modes (r=1,2,...,M). Specification 

of the function is carried out using a variable which denotes 

the boundary conditions of the function, Another variable is 

used to indicate cases of symmetry about y=a/2 in order to 

deal with odd modes only (section 4.3) and reduce computer 

storage requirement and analysis time. 

The procedure IY evaluates the integral of the analytic 

functions, ft. dy , for m=1,2,...,M and for the specified end 

limits. This procedure calls up two other procedures, IFI, 

which evaluates the integrals of the trigonometric and
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exponential functions that constitute the analytic function, 

and CI, which evaluates the coefficients of these functions 

for the specified boundary conditions. 

The procedure IYY evaluates the integral of products of 

the analytic functions and their required derivatives Jam dy 

equation (4.23) for m,n=1,2,...,M and for the specified end 

limits. This procedure also calls up two other procedures, 

IFIFI for integrating products of trigonometric and exponential 

functions, and CI as before. 

The procedures IY and IYY also evaluate the integrals 

Jy Nes dy and a ee dy respectively. These integrals are 

necessary when the distributed pressure and:flexural rigidity 

are assumed to be piece-wise linear, 

6.5 The Variable Bandwidth, One-Dimensional Array Scheme 

for the Storage of the Stiffness Matrix, 

The overall stiffness matrix K contains many zeros 

which would have to be stored if any of the mose widely used 

storage schemes was employed. A method, developed by Alan 

Jennings [40] in conjunction with an equation solving procedure» 

is the variable bandwidth, one-dimensional array scheme for 

symmetric matrices. This method reduces the storage require- 

ment by storing the elements below the leading diagonal in 

sequence by rows with all the elements preceeding the first 

non-zero in each row omitted. 

An address array is used to locate the position of the 

elements in: the leading diagonal for each row. 

In this way, a matrix Kyy such ae shown in Fig.(6.3) 

would be stored as the one-dimensional array ey .



a 

ODO BUMPEOR Oe seo kano 
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OSE) 22a O-Seai te mOn ao 

Oly O18 "2ey 0b aeOg 2 Ose 

Oo fA gees Cean0 
SS 

0 0 OGiGat 3105.0 
= 

0 020,20 = SOs 1068259 
. 

Fig. (6.3) 

The one-dimensional array will be 

Lyfe eet 26 [ie oe pom ee |e (eentOn itt (teal s [ai4 

Is.olo.2l of ol ey I) .olo.sl2.2l0.8l2.711.1 10 Is.1lo.tls.olo.2l o | ole.9   

The address array A will be 

pope 2 34 oie 
ap li 13 15 te lio hh 

The r* integer of the address array, AL » indicates 

that the leading diagonal element of the r®* row of matrix 

K,; (i.e. K,,) is the (A) element of the array Kj (i.e. 

A simple relationship for the correspondence of one 

element in the matrix to the same element in the array is 

K(i,j) = K'(A, - i+ 3). 

This relationship applies only to the elements following the 

first non-zero element in each row of the lower triangle.
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6.5.1 Algorithm for Forming the Address Array. 

Since the division of the plate can only be carried out 

in a unique way from the point of view of arrangement of the 

strip elements, the overall stiffness matrix will always be 

of the same form. Fig.(6.4) shows this form, based on group- 

ing the harmonics together (section 5.3). 

faking advantage of this fact a simplified algorithm for” 

forming the address array can be written. The variables inv- 

olved in the algorithm are: 

NHARM the number of modes (harmonics). 

m current mode number. 

r current row number in the overall stiffness 

matrix. 

OVADD [r] the address of the diagonal élement of the 

no row in the overall stiffness matrix. 

i current node number. 

TNNODE total number of nodes. 

Referring to fig.(6.4), the following relationships are 

obtained: 

The number of rows for the first two nodes 

2 (nodes) x 2 (d.o.f./node) x NHARM 

4NHARM. 

For these rows, the address is 

OVADD [x] = OVADD[r-1]+ r r=1,2,...,4NHARM; OVADD[O]=0. 

For subsequent rows: 

r= (i - 1) 2NHARM + m i = 3,4,.,.,TNNODE 

OVADD[r]= OVADD (r-1]+ 2NHARM + m| m = 1,2,...,2NHARM 

Based on the above relationships, the procedure ADDARRAY 

is written. The flow diagram for ADDARRAY is given in fig. (6.5).



Fig. (6.4) 

  
Typical Overall Stiffness Matrix showing 

non-zero locations, x, and contribution 

of the first element for m=n=1, @, and 

the modification necessary for statement 

of the prescribed displacement on an 

arbitrary degree of freedom 6,



Fig.(6.5). Flow diagram for the procedure ADDARRAY 

Input: NHARM,TNNODE 

  

ovapp [0] =0 
      

r=1(1)4NHARM > 

  

ovapp[r]=ovapp[r-1]+ x} 

< i=3(1)2NNoDE > 

< m=1(1)2NHaRM > 

r=(i-1 ).2NHARM+m 

      

  

      

  

    
OVADD (r]=OVADD[r—1] + 2NHARM+n] 
  

Output: OVADD [r] 

r=1,2,...,TNNODE.2.NHARM 
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6.5.2 Algorithm for the Assembly of the Overall Stiffness 

Array and Overall Force Vector. 

Following the process outlined in sections (5.1.2) and 

(5.3), a procedure ASSEMBLY has been written to form the 

overall stiffness matrix, as a variable bandwidth one dimen- 

sional array, and the overall force vector. 

The variables involved in this algorithm, in addition 

to those previously used, are: 

is3 

s,t 

ay dd 

HEK 

HEP 

OovK 

OvF 

current row and column numbers in the 

overall stiffness matrix. 

current row and column numbers in the 

harmonic element stiffness matrix. 

element number. 

global degrees.of freedom. 

harmonic element stiffness matrix. 

harmonic element force vector, 

location in the overall stiffness array 

corresponding to location ij in the 

overall stiffness matrix. 

overall stiffness array. 

overall force vector. 

From previous considerations and with the aid of fig. (6.4). 

the following relationships are obtained: 

Ja 

i JJ 

Bb 

i 
Wl 

" 

2(k-1) + 8 8 = 1,2,3,4 

Peel) 4 4 a oe 

NHARM (ii-1) +n WS 1254 40q NEM 

NHARM (jj-1) + m m = 1,2,...,NHARM 

OVADD[i] - i+ j



The overall stiffness array.and overall force vector will 

then be given by: 

ovK [1] = ovK [2] + HEK [s,t] ana 
' OvF [i] = OVF [i] + HEF [s] . 

Based on these relationships, the flow diagram for the pro- 

eeduré ASSEMBLY will be as given in fig. (6.6). 

6.6 Algorithm for the Statement of the Prescribed Displacement. 

A procedure GEOMBC has been developed to modify the 

overall stiffness array and the overall force vector to include 

the statement of prescribed displacements on the boundary edges 

normal to the x-axis. The procedure is based on’the theory 

given in section (5.4.1). 

Because it is extremely difficult to develop.a general 

method to deal with any prescribed displacement function, the 

procedure, in its present form, had been written in such a way 

as to accept zero prescribed displacements and allow a simple 

modification, to be carried out by the user, in order to 

accomodate a specific prescribed displacement function, The 

positions on the procedure where a user must carry out these 

modifications are indicated on the flow diagram (fig.6.7). 

Variables not previously used are: 

NPD number of prescribed displacements. 

Pp current number of prescribed dis- 

placement+ 

PD[p] value of prescribed displacement, 

DF[p ] the degrees of freedom on which the 

displacements are prescribed.
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row aumberc of each harmonic 

corresponding to DF [p]. 

total number of rows above and 

below j. 

column number of the first non- 

zero element of the 4eh row = row 

number of the first non-zero element 

A of the 3° ‘column (by symmetry). 

row number of the last non+zero 

iB column. element in the je 

total number of degrees of freedom, 

current location where modification 

to the overall stiffness array is 

taking place. 

Once again referring to fig.(6.4), the following rela- 

tionships may be obtained: 

If DF [p]=1 or 2 or (TOTDF-1) or TOTDF then 

b 4NHARM - 1 , otherwise b = 6NHARM-1. 

(DF [p] - 1) x NHARM +m m=1,2,...,NHARM 

j - (OvaDD [j] - ovapp [j-1]) + 1 

The flow diagram for the procedure GEOMBC is given in fig.(6.7). 

Fig.(6.4) gives an example of the modification to the 

overall stiffness matrix and fig.(6.8) shows a modified force 

vector.



Fig.(6.6). Flow diagram for the procedure ASSEMBLY 

( Input: k,m,n,HEK,HEF,OVADD ) 
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Fig.(6.7). Flow diagram for the procedure GEOMBC 
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OVF [i] =OVF[i] -OVK[1] .PD[p] 
OVK[1] =0.0 

  
  

  

      

  

  

    _ OVK[1]=0.0 
  

  

OvF[J]=PD[p]       
If the prescribed displacement is not zero,then a harmonic 

analysis of the function representing the prescribed 

displacement must be carried out as laid down in section 

(5.4) The resulting harmonic prescribed displacement 

must, then, replace PD{p] at the indicated positions (*),
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global d.o.f. 6 . The original forces are 

designated by x.
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6.7 Solution of the Equations. 

The algorithm used for this purpose is SYMVBSOL which 

was developed by Alan Jennings [41] for the solution of 

variable bandwidth positive definite equations. It is based 

on the Cholesky Factorization Method, a description of which 

was given in section (5.5). 

The algorithm solves the system of equations 

[a] Ox] = (B] where [A] is a symmetric positive definite 

matrix of order N stored in variable bandwidth one dimensinal 

‘form, and [B] is an N x R matrix of R right hand sides, The 

solution [X] overwrites .[B]. 

The algorithm is a generalisation of the fixed band- 

width method developed by Martin and Wilkinson [39]. 

6:8 Solution of the Problem. 

SYMVBSOL yields the harmonic nodal displacement para- 

meters. From these, the deflection, rotation, moments, shear 

forces and stresses are obtained by using the expressions 

developed in section (5.6). 

6.9 The Overall Picture. 

A brief description of the computer program as a whole 

is given in the form of a flow diagram (fig.6.9), The pro- 

cedures which may be called for some of the operations are 

indicated. 

Additional variables are: 

QTYPE type of the applied distributed 

pressure. More detailed description 

of this variable is given in section 

(6.10).



Fig.(6.9). A general flow diagram for the complete 

progran. 
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NLOAD number of concentrated and line 

loads acting simultaneously. 

ep current concentrated or line load. 

yy current value of y at which results 

are required. 

MEY. final value of y at which results 

are required, 

NST#EP number of puede from y=0 to y=YYY at 

which results are required, 

6.10 The Input Data 

A listing of the required input data and the definition ° 

of the variables used for the input will now be given. 

Statements will be made regarding the number of steps 

fate which the elements are divided. Strictly speaking these 

are inaccurate. They refer to the number of steps into which 

the integrals in the analytic function are divided for the 

purpose of evaluation of the clement stiffness matrix and ele- 

ment load vector. If the plate and the applied load are uni- 

form for a particular element, then the number of steps for 

this element should be given as 1. 

No reference is made to Young's Modulus, E, or plate 

thickness, h, because at the time of program development, 

results were checked against analytical results. The latter 

are usually quoted as a function of the flexural rigidity D. 

Therefore, it was felt that it would be more convenient to use 

D directly, It is, now, necessary to evaluate D manually if 

an analysis is required for a specific plate thickness, 

Alternatively, a simple modification to the program would be 

necessary to allow the use of E and h directly.



At the end of the section, a specific example will be 

given to act as'a guide to data preparation should this guide 

be necessary. 

The data must be given in the order in which they are 

listed below. In the case of some array variables, a loop is 

used together with a counter (i, ep or. ik)... ‘The loop is to 

ensure that the variables are read in the correct sequence. 

The eonntena should not be eee ay values. .They are not 

variables. 

In the listing below i 

I refers to integer variable 

R refers to real variable 

A refers to real array 

IA refers to integer array 

‘Variable Zype Definition 

NSETS iE The number of sets of data to be analysed 

in one run. 

BC I The boundary conditions of the analytic 

function. This variable should be assign- 

ed one of the following integers as 

appropriate: 

1 for simply supported-simply supported. 

for clamped-clamped. 

for free-free, 

2 

5 

4 for clamped-free. 

5 for simply supported-clamped, 

6 for simply supported-free .



Variable 

A 

NELEM 

NHARM 

eal Syke 

Type Definition 

R The length of the plate in the direction 

of the analytic function. 

In the case of a free edge function it 

is suggested that, in order to reduce the 

residual moment and shear force at the 

free edge, a rectangular extension of 

width 0.2A should be added to the whole 

Length of the free edge. The rigidity of. 

the extension’ should be assigned a zero 

value. In this case the value of A would | 

be 412, for one free edge and 1.4 for two 

free edges, times the actual value of A. 

The variables DTYPS and QTYPE should then 

be assigned the Pocaaoniate integers for 

variable rigidity and load, The example 

at the end of the section will clarify 

this procedure. 

Number of strips. 

Number of harmonics. 

The results are given for a number of 

points on each nodal line. These points 

start at y=O and go up to y=¥YY in NSTEP 

equal steps. 

Defined above.



Variable 

NPD 

SYMM 

QTYPE 
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Type Definition 

The total number of prescribed displace- 

ments (on the edges not described by the 

analytic function). If there are no pre- 

scribed displacements (when both edges are 

free), then the integer O should be assign 

ed to this variable. 

Maximum number of steps into which any of 

the strips is divided. This integer is 

necessary for reserving the storage re- 

quirement of some of the arrays, 

Poisson's Ratio. 

This variable should be assigned the values 

1 if the problem is symmetric about y=A/2 

O otherwise. 

The type of applied distributed load. One 

of the following values should be assigned 

to this variable. 

QO when no distributed load is applied. 

111 for uniformity throughout the whole plate. 

11 for uniformity throughout each strip. 

1 for uniformity throughout each step. 

no
 linear variation. Required coefficients 

of the linear equation Q=Q, X+Q, y+Q, are 

available. 

5 linear variation. Coefficients of the 

linear equation are to be evaluated 

using the procedure LSTSQR.



i
<
N
P
D
 

Variable 

DIYPE 

NLOAD 

  

    
t= 
  

  

  

pF li] 

  

Type 

TA 

= Oi 

Definition 

Only one of the above integers should be 

read for the whole problem. 

The type of plate rigidity. A convention 

identical to that for the applied dis- 

tributed load is employed here (except, 

of course, for tne integer O. which does 

‘not apply here). 

The total number of concentrated and line 

loads (forces and moments) acting simult--° 

aneously. If none, the ‘integer 0 should 

be assigned. 

The global degree of freedom on which the 

displacements are prescribed. The relat- 

ionship between the global d.o.f. and the 

node number is 

d.o.f.=2 x node number - 1 for deflection 

=2 x node number for rotation. 

If the deflection is prescribed on nodal 

line 1 (simply supported edge) then 

DF[i]=1, and if the rotation is specified 

on nodal line 6 (line of symmetry) then 

DF[iJ=12. If NPD had been read as 0 

(free edges), no values should be assigned 

to DF[i] or PD[i]. 

The value of the prescribed displacement.



ep
 
<
N
L
O
A
D
 

Variable 

If NLOAD 

Type 

= 1 40R= 

Definition 

Only a 0.0 value may be dealt with. A 

simple modification to the program is nec- 

essary to deal with other types of prescr- 

ibed displacements. This modification is 

indicated in section (6.6). 

= 0 then the five sets of variables below are not 

assigned any values, 

  

  
ep=1 

    
  

P[ep] A 

pryPE[ep] Ia 

DP [ep]         
  
ep=ep+1 

    

TA 

Value of the concentrated load or line 

load (per unit length). 

The type of the load above: . 

1 for line force 

21 for line moment M, 

22 for line moment My 

5 for concentrated force 

41 for concentrated moment M. 
x 

42 for concentrated moment MM, 

The global number of the nodal line to 

which the load above is applied. 

The value of y at which the load is applied 

in the case of concentrated loads or the 

lower limit of y for line loads. 

This variable is only assigned a value 

in the case of line loads. It refers to 

the upper limit of y.
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Variable Type Definition 

A The width of the strip. 

IA The number of steps for each strip. 

A The end limit of each step (i.e. the upper 

value of y). All the values (for 

  

es=1,2,...NS[k]) should be given for the 

current strip. These end limits are as 

shown below for the strip k. 

  

        
    
      

= 

step 1 step 2 4" 

EL(k,1) 

EL [ic,2] 
oa 

EL[ic,Ns (ic) ] 

qi Lk, es) The applied distributed load. It is 

Q2 [k, es] A 
Q3 [k, es} assumed to be of the form 

Q=Q, + QQ y + Qs. The values of QI, Q2 

and Q3 depend on QTYPE which has been ass- 

igned a value earlier. 

When QTYPE = O No values are assigned to 

Qi, Q2 or Q3. 

When QTYPE = 111 One value, Q3, has to be 

given here. 

Ve
q
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Variable Type Definition 

M1 il When QTYPE 

When QTYPE = 

‘Woen QTYPE i no
 

When QTYPE = 3 

» NELEM values of Q3 

have to be read in 

succession. 

Pee (iG NSLS Reweees 

NS[NELEM] values of 

Q3 have to be read in 

succession, 

, NS{i],Ns(2],....5 

NS[N#LEM)] values of 

Qi, Q2 and Q3 have to 

be read in succession. 

The values of Q1, Q2 and 

Q3 have ‘to be read to- 

gether Sosa each step of 

each strip 

» values of QI, Q2 and Q3 

will be evaluated using 

LSTSQR. Values of Q 

should be read for each 

step of each strip acc- 

ording to the sequence 

  

      

    

x 4 
below. 

ie) 12 1 16 

strip 2 

9 4 9 15 
2 4 6 8[ yo 

strip 1 

1 5) a 7       
4



(e4ae 

  

Variable Type Definition 

D1 Le8 The rigidity of the plate is assumed to 
pelk,es] A s ; 
D3[k,es] _ be of the form D=D, x + Do y + Ds. The 

values of D1, D2 and D3 depend on DIYPE 

and the convention is identical to the ~ 

oné used for the applied pressure, except 
for does not apply : ;       
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6.10.1.A Sample of Input Data. 

     

  

  

  

      
  
  

  

  

  

            

  

The Problem = 
clamped 

3 uniform ee 
2, paenas 

2 5 rigidity 3 

q D 4 oO 0 

v=0.3 

Za clamped y ; 
QIAAVIIVIIS SDA IITA TI PTA IATA TT J op —— 

te , 

Po 
p=p,(1-y/a) 

The Discretized Plate 

ba D=1.0 =O 

q Ni 

Sq - 8 7 7, 
in ay 7) 

dd 
o i 
a 

i 1 ; y 

iE 1.0 mimeo .27 

Replacing a, Pp, and D, by 1.0 implies that the results will be 

the factors « and A in the following: 

deflection= op, at /D 

2 
0 

moment= 8 Py @ 

Results are required at six equispaced points from the clamped 

edge to the free edge, on all nodal lines
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Values of Q and D. 

For each element 

Q=0.0 x + (1.0) y+1.0 for the first step, 

and 

Q=0.0 x + 0.0 y + 0.0 for the second step. 

Also for each element, 

‘D =11 20 for the first step, 

and 

D = 0.0 for the second step. 

The Input Data 

4 U2 beaten; Ol Gekdayee 0.5 O02 11010 

1) RONG Me oe rOsO Sai 20.0.2 S020) Saas 

Coles Ouatoeu Ones “Olio chee Oetema ce Onsiiee 

OY (meat Out Cunt Ostia? 4 Oumtiee 

0.0 -1.0 1.0 0.0 0.0 0.0 0.0 -1,.0 1.0 

0.0 0.0 0.0 0.0 -1.0 1.0 0.0 0.0 0.0 

0.0 -1.0 1.0 0.0 0.0 0.0 0.0 -1.0 1.0 

0.0 0.0 0.0 

1.0 0.0 1.0 0.0 1.0 0.0 1.0 0.0 1.0 0.0



  
 



CHAPTER SEVEN. 

ASSESSMEND OF ACCURACY. 

Tel Introduction. 

It is practically impossible to assign an "accurate" 

figure to the relative error in the analysis of plates by the 

finite element method. This is bécause of the number of poss- 

ible sources of error and their varying magnitude, 

Inherent errors arise from inaccurate data. Material 

properties and applied loads are known to a limited degree of 

accuracy. Boundary conditions are only an idealization of the 

actual situations as is the geometry of Peesteetace in many 

cases, These errors arise in the solution of most engineering 

problems, even in so-called exact solutions. Other sources of 

errors are due to assumptions made in the development of the 

theory, such as those made in developing the classical theory 

of plates (section 2.1.2). 

In numerical methods of analysis other sources of error 

are introduced. In the finite element method, for example, 

the continuum is divided into a discrete number of elements. 

Increasing the number of elements improves the accuracy 

pecause it brings the discretized structure closer to the con- 

tinuum, but on the other hand, it increases the number of 

equations to be solved, thus increasing truncation and round 

off errors which are inevitable in machine calculations, 

Numerical. stability plays an important role in reducing the 

effects of truncation errors. This factor, or the lack of it, 

is a characteristic of the system of equations, which are 

dependant on the problem and the functions employed to



meat 

approximate the solution of the problem. 

Although the error cannot be quantified in absolute 

terms, it is possible to establish criteria upon which this 

error and its order of magnitude depends, 

Understanding the sources of error and their order of 

magnitude builds confidence in the method of analysis. 

In this chapter a study of the limitations of the 

classical theory of plates, the numerical stability and con- 

vergence of results will be carried out. 

Toa Limitations of the Classical Theory of Plates, 

In chapter two the expressions for the stresses in a 

laterally loaded plate were derived after making certain 

assumptions, regarding the nature of the deformations, based 

on other assumptions about the deflection’ in Potaion to the 

thickness, and the thickness in relation to the in-plane 

dimensions. The conditions under which these assumptions 

can be considered as valid may be established by carrying out 

an order of magnitude analysis. 

It was assumed that the normal stress Oo, and the shear- 

ing stresses To and Tye in the direction normal to the 

plane of the ‘plate are negligible. 

Dym and Shames [24] carried out an order of magnitude 

study on all stresses for comparison purposes. A portion of 

the plate, with an in-plane dimension of length L, was con- 

sidered. 

Consideration of the equilibrium of forces and moments 

on the portion gave the following order of magnitude equations:
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O( a) = 0 o,).= 0 T,,) = O(pt?/n*) 

OCT 2 = OCT 2) = 0(pL/h) (Pei) 

o( o,) = 0(p) 

where 0 is the order of magnitude, p is the applied pressure 

and h is the thickness of the plate. 

From equations (7.1) it can be seen that the transverse shearing 

- stresses te and Tye are smaller than the mid plane shear- 

ing stress or by a factor O(L/h) and the transverse normal 

stress Go, is smaller than the mid plane normal stresses oy, 

and Oy by a factor 0(L2/n?). Therefore, if L/h>10 then the 

assumptions made regarding G, and Tye, being negligible 
Cx 

are valid to a reasonable degree of accuracy. 

The expressions for the strains in the plate were derived 

on the basis that the middle surface is the neutral surface. 

This amounts to neglecting the stress and strain on this sur- 

face. Timoshenko [23] examines the implication of this 

assumption by considering the bending of a circular plate, A 

geometrical investigation of the deflected surface leads to 

an upper limit for the circumferential strain at the edge of 

the plate. Comparison of this strain with the maximum bending 

strain leads to the conclusion that the latter is about = 

times the former, where h is the thickness of the plate and w 

is the maximum deflection. It follows, then, that the equa- 

tions derived in section (2.1.3) on the assumption that the 

middle surface of the plate is its neutral surface, are accept- 

able if the deflection is small when compared to the thickness 

of the plate.
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le? Numerical Instability - General Discussion, 

In section (4.3) the question of numerical stability 

was briefly mentioned. This very important subject will be 

discussed further here, 

Mikhlin [28] demonstrated how the choice of functions, 

in the Ritz procedure for the solution of variational problems, 

can drastically affect the numerical stability of the Ritz 

coefficients. \ 

The problem Mikhlin used for his demonstration was that 

of the variational problem 

| 

P(u) = J Gir - 2 Se u) dx u(0)=0, 

° 

The system of co-ordinate functions chosen to represent 

the solution was that of a polynomial, i.e. 

M 

u=> ay Om - where Q, = x® 

k=1 

The normal Ritz method was followed to establish a set 

of linear equations with unknowns a, (k=1,2...M), (analogous 

to displacements). ‘The use of exact numbers in the coeffic- 

ients of a, (stiffnesses) and in the right-hand sides (forces) 

gave an exact solution for a, which was then rounded to four 

decimal places. The solutions aye for different values of M 

showed the dependence of a, on M though these values tended to 

stabilize non-uniformly. More significant, is the fact that 

when the right hand sides were rounded to four decimal places 

before the equations wene solved, the solutions ay diverged 

as M was increased. So, theoretically, to improve the accuracy 

of the Ritz solution more terms have to be taken (i.e. M should 

be increased) and yet with an increase in M there was a sharp
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increase in the error. 

The reason for this paradox lies in the nature of the 

system of equations, Two or more equations contain coefficients 

that are almost equivalent. This causes ill-conditioning of 

the system of equations and consequently any small error in 

the coefficients or in the right hand sides is magnified many 

times in the solution, 

It is not easy to detect ill-conditioning.. However, the 

stability of the solution vector for a different number of 

‘terms is a good indication. 

It is more difficult to deal with ill-conditioning, once 

it is present and prevention in this case is far better than 

cure! Proventicn is achieved by the right choice of co-ordinate 

functions. If a system of co-ordinate functions is chosen such 

that the solution vector is independent lor almost independent) 

of the number of terms taken, then the stability of the system 

of equations will be ensured. In terms of matrix notation, 

this implies that the off-diagonal terms in the coefficients 

matrix are zeros (or much smaller than the diagonal terms). 

Orthogonal functions satisfy this requirement. These 

functions are defined by the identity 

{ 0 iJ 
J Qi (x) G(x) ax = 855 = het 

1.4 Numerical Instability of the Beam Bigenfunctions. 

The use of orthogonal functions in a boundary value 

problem results in a numerically stable system of equations. 

However, before this stage is reached some integrals of the 

form J Sa (Se) oe (3) dg have to be evaluated for a number of 

values of mand n. It is at this stage that the beam functions



for the clanmped-clamped, free-free and clamped-free cases 

become troublesome. The trouble arises from the algebraic 

operations on the trigonometric functions whose values remain 

in the range +1.0, and the hyperbolic functions whose values 

inerease rapidly as their arguments increase. This, coupled 

with the fact that the computer can work with only a limited 

number of significant figures, causes the beam eigenfunctions 

+o become unstable at high modes. os 

To illustrate ‘this problem, the clamped-clamped function, 

y =sinmg -shmg - (S422=S82) (cos mz - ch my ), will 
m cos m - chm 

be evaluated for the fourth mode, where m=14.137, for 4 =0,70736. 

The function will be evaluated using a floating decimal 

point arithmetic in the way that a computer would carry out 

hue operations. The computer will. be assumed to. be capable of 

storing real numbers to an accuracy of four significant figures, 

Thus, 

2 ea 2 
Y -5440 x a ny Skene Gina (fon. 210 = 6806 It) 
a 1669 x 10’ - 6896 x 102 

4 
x(- 8391 x10 - 1101 x 10’) 

2 
~ 1101 x 10! - (eal) x (- 1101 x 10!) 

- 6896 x 10 

i] 

0000 x 10! 

Clearly, this value is inaccurate because Yn should only be 

zero at §=0 and §=1.0. 

If, on the other hand, the arithmetic operations were 

carried out in a different order, then a different value for 

ly would be obtained, viz.
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1 

" 

-4 =3 -4 
- 5440 x 10 + 1000 x 10 x 8391 x 10 - 1101 x 10 

-5 
+ 1000 x 10x 1101 x 10! 

2951 221-0 = 0.2951 

Although this value is closer to the truth than the first one, 

there ‘is still a little inaccuracy arising from the evaluation 

sin m - sh m 
Coe ne chm because the values of sin m of the factor «x, = 

and cos m are lost when compared with sh m and chm. The in- 

‘accuracy is reduced by using the exponential form. of the hyper- 

polic functions and rearranging the terms thus: 

Y, = Sin m, - shmg - (cos mg - ch my ) 

sin m, - o, cos my = $ [ems Cie %) = 2 (14 om) | 

=m 

sin my - o, cos mg -4 [ems (SoS m= sin m -__) 
cos m- chm 

W 

-m * m g > (gos m+ sin m= ey] 
cos m - chm 

Evaluating the rearranged form of Yn for the same values of m 

and % and working to four significant figures yields 

oe = 2791 x10 = 0.2791 

This value for Xn is undoubtedly more accurate because the 

expression from which it was evaluated is of such a form that 

inherent error sources cause a much less serious round off 

error to take place, The higher degree of accuracy of the 

rearranged form of the beam eigenfunctions can be verified by
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evaluating the original expression to a larger number of 

significant figures. Working to nine figures, the original 

form of the eigenfunction gives: 

2794 29201 ix 10 K 1 

0.2791 

The numerical instability op the beam eigenfunction was 

demonstrated by evaluating the function with an accuracy of 

‘four significant figures. However, when the integral of the 

product of the various modes of the function are evaluated, - 

this numerical instability takes place, even when the working 

accuracy is tnevessed to twelve significant figures, at about 

the fourth mode. This is because the evaluation of the in- 

tegral of the products of the function saret yen! evaldet on of 

trigonometric and hyperbolic functions with arguments composed 

of the sum of the two arguments involved in the original 

product. 

Working with the rearranged form of the eigenfunction 

greatly reduces the round off errors and eliminates numerical 

instability allowing higher mode analysis provided that they 

are within the range of capability of the computer to handle 

real numbers,
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ives) Roots of the Characteristic Equation. 

With emphasis on the effect of the number of significant 

figures on the stability of the beam functions, it becomes 

necessary that the roots of the characteristic equations are 

evaluated to a higher degree of accuracy than that given in 

table (4.1). 

The I.C.L. 1905E computer used for processing of the 

program works with an accuracy of 1 significant figures. The 

roots of the characteristic equations should, therefore, be 

obtained to at least the same degree of accuracy. 

For this purpose a Aaa program NEWTON was written 

on the basis of Newton's Iterative Method for the solution of 

equations [42] with the values in table (4.1) as initial 

guesses. A brief account of the method and a listing of the 

computer program are given in appendix (4 ) Goep then with 

the first ten roots of each equation. 

i Numerical Stability and "Convergence" Tests. 

That the finite element method produces converging 

results as the mesh is made finer has been discussed by many 

authors. Not so in the case of the semi-analytic method. 

Therefore, before the semi-analytic computer program can be 

used with confidence, it needs to be confirmed that numerical 

stability and convergence are assured. Also, the effects of 

load and rigidity variation on numerical stability and con- 

vergence have to be established. 

For this purpose, a series of tests were carried out. 

The computer program was run to solve problems of plates 

having different boundary conditions, loading and rigidities.



- 155 - 

In all cases, the number of strips into which the plate was 

divided and the: boundary conditions on the edges parallel to 

the direction of the analytic functions, were kept the same 

throughout. Therefore, the subjects of examination in these 

tests were the beam eigenfunctions. 

The behaviour of these functions was studied by examining 

the solution vectors (i.e. the nodal displacement parameters) 

for erans values of M, the Ravereee harmonics. 

If in one approximation the analytic function is trun- 

cated to (M-1) harmonics and in a further approximation M har- 

monics are taken, then the optimum in numerical stability, in f 

this context, occurs when the solutions fou Gata. et): 

where the superfix mM signifies the oo mode of a set of M 

harmonics, from the second approximation are identical to the 

1, Mot (m=1,2,...M-1),from the first approximation, solutions § 

i.e. when the solutions (i.e. the displacement parameters) are 

totally independent of the number of harmonics, M, (section 7.3). 

In the event when such independence is lacking, a measure of 

numerical stability is obtained by comparing the solutions 

gi" vith S™™ (m=1,2,,..M-1), It is desirable that the 
relative difference between gaat and saat should be small 

and decreasing, as M increases, until it vanishes (for a 

certain number of significant figures) when M exceeds a reason- 

ably small value. 

The term "rate of convergence" will be used throughout 

the discussions on these tests. It is intended to mean the 

rate at which the deflections and the bending moments approach 

a limiting value. Since no comparison with "exact" deflections 

and moments is made, the term "convergence" is, strictly speak- 

ing, inaccurate. In fact, it will be shown, in a later section,
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that convergence cannot be achieved through a unilateral 

increase in either the number of strips or the number of 

harmonics. 

A measure of the "rate of convergence" is obtained by 

estimating the truncation error. To this end, the maximum 

deflection was evaluated for a number of large values of 

M‘(12, 13 and 14) to ensure that a stable limiting value for 

the deflection is obtained, which is then compared with the 

maximum deflection for a small value of M (say 3 to 7) and a 

“relative error is obtained. This error will be called the 

truncation error, which, together with the truncation error . 

for the bending moment M. 
y 

as a comparative guide to the number of harmonics required for 

obtained on the same basis, serves 

a satisfactory level of accuracy. 

Whilst remembering that the ironcatien errors would be 

somewhat larger for the effective shear force, since this 

force is a function of the third derivatives of the deflection, 

these errors will not be discussed for the individual cases of 

boundary conditions because in the majority of plate problems 

the most important quantities are those pertaining to the 

bending moments, 

7.6.1 Uniform Plates Under Uniform Pressure. 

The first set of tests was on a square uniform plate 

under uniform pressure, with two opposite edges simply supp- 

orted. The boundary conditions at the other two edges being 

described by the various analytic functions. 

In all cases in this set of tests; only half the plate 

was considered by making use of symmetry about x=a/2. The 

appropriate boundary conditions at the line of symmetry being
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zero normal rotation. This half of the plate was divided into 

five equal strips which is equivalent, from the point of view 

of accuracy, to dividing the whole plate into ten strips. 

Symmetry of the problem about y=a/2 was also exploited, when- 

ever possible, by considering odd modes only (section 4.3). 

The dimensions and other necessary information are given in 

fig. (7.1) 
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Pig. (7.1) 

The results which are listed in the form of tables in 

appendix ( 7 ) give the values of the deflection parameters, 

ye on nodal line 6 for a number of values of M and for 

Heb Ar. eesall. The properties exhibited by these results are 

also exhibited, more or less, by the displacement parameters 

on other nodal lines. When this is not the case, the values 

of the displacement parameters will be given for the nodal 

lines which show a marked variation from wn 

The results of the first test will now be discussed, No 

comparison with analytical or other solutions will be carried 

out at this stage.
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(a) Simply Supported - Simply Supported Function. 

The feature that the results of this case (table 7.1) 

highlights is the total independence of the solution vector 

(the displacement parameters We and not the deflection) from 

the value of M. This property was anticipated when the reasons 

for the uncoupling of the modes were discussed in section 

(4.7.2). The case of simply supported - simply supported 

edges is, therefore, the optimum i numerical stability. 

Truncating the series for maximum deflection and maximum 

‘bending moment My» both at the centre of the plate in this 

case, to 3 harmonics results in truncation errors of about 

0.025% and 0.65% respectively. These figures imply an ex- 

cellent "rate of Peeaeence: for both the deflection and the 

bending moment functions, 

It should be considered, fon Gre sake of eoneanrecn with 

other cases, that because of symmetry about y=a/2 in this case 

the computer program neglected the skew symmetric modes (even 

modes) of the function. Consequently, although the program 

dealt with three modes only, effectively the results are 

equivalent to those from a six mode analysis. 

(b) Clamped - Clamped Function, 

The results for this case are given in table (7.2). The 

dependence of the solutions on M is apparent but this depend- 

ence reduces rapidly and the solutions stabilize and become 

independent of M, for the given number of significant figures, 

for M>3. 

The truncation errors in the maximum deflection, at the 

centre of the plate, and the maximum bending moment, M, at 
vs 

the middle of the clamped edge, for M=3 are about 0.5% and
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3.3% respectively. This indicates that the series for the 

deflection converges very rapidly, whereas the bending moment 

series has a comparatively slow rate of convergence. However, 

taking one further harmonic in the series reduces the trun- 

cation error for the bending moment to about 1.9% which is 

quite acceptable. 

‘Once again only symmetric modes are considered and the 

implication is as before. 

(c) Simply Supported — Clamped Function. 

Table (7.3) gives the results for this pacer The solu- 

tions stabilize (in the sense described earlier) uniformly for 

all modes and become virtually independent of M for M>5. 

The "rates of convergence" of the series for the deflec- 

tion and the maximum bending moment are less rapid than the 

previous cases. Truncation of these series to 3 harmonics 

results in truncation errors of about 0.3% for the deflection 

at x=0.5a, y=0.4a and 8.5% for the maximum bending moments. 

Increasing the number of harmonics to seven reduces the trun- 

cation error in the maximum bending moment to 1.5%. 

The problem in this case is not symmetric about y=a/2. 

Consequently, all the harmonics in the function had to be 

considered. 

\ 

(a) Simply Supported - Free Function. 

Numerical stability and "convergence" were examined for 

this case, first by solving the problem as in the previous 

cases, then the method suggested in section (4.6) was employed, 

whereby the free edge was simulated by peplagine the original 

plate by one with an imaginary extension having zero flexural 

rigidity.



- 160 - 

Table (7.4a) gives the results from the "standard" 

method. The dependence of the solution vector on M decreases 

slightly less rapidly than in the previous cases. Neverthe- 

less, the tendency to stabilize is quite apparent in the sol- 

utions. 

The "rate of convergence" for the bending moment My at 

the centre is very low. The truncation error, for M=7, in 

the central bending moment My is about 6% and that for the 

maximum deflection is about 1%. 

The normal bending moment at the middle of the free edge, 

which should have a zero value, — in fact approaching a 

value comparable to that of the bending moment My at the 

centre. This reegeel bending moment is due to the fact that 

the beam eigenfunction for a free edge does not. satisfy the 

natural boundary conditions of a plate exictiy. This point 

was discussed in section (5.5). 

Applying the method of simulated free edge, the results 

of which are shown in table (7.4b), the numerical stability 

is found to be of a similar character to that in the "standard" 

method. The truncation errors, however, are greatly reduced. 

Truncation of the series to 7 harmonics results in a trun- 

cation error of about 0.1% for the maximum deflection and 0.7% 

for the bending moment My at the centre of the plate. Signif- 

icantly, the normal bending at the middle of the free edge is 

now less than Vetn that for the centre of the plate. Moreover, 

this bending moment continues to approach zero. 

Thus, by applying this method, the "rate of convergence" 

was substantially improved whilst the numerical stability of 

the solution was maintained.
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(e) Free - Free Function 

Having established (case d) that simulating the free 

edge condition, rather than applying the function directly, 

improves the "convergence" and maintains the numerical sta- 

bility of the function, the method was applied to this case 

at both edges. The results are given in table (7.5). 

The stability of the solution vector in this case is of 

a similar nature to case (d). 

Tue "rate of convergence" is very good for the maximum 

‘deflection but relatively low for the bending moment My at the 

centre. Truncation of the series to 7 harmonics was necessary 

to obtain results with an acceptable truncation error, in watch 

case the Grancation error for the deflection is about 0.1% and 

for the moment My about 1.2%. 

With M=7, the normal bendine moment. at the free edge is 

small when compared with the maximum bending moment (less than 

Voth) and continuing to approach zero. 

(£) Clamped - Free Punction. 

Once again the free edge was simulated, as before. The 

solutions, which are given in table (7.6), show that numer- 

ical stability of the beam function for this case of boundary 

conditions, is about the same as in case (e). 

The ertor in a seven mode truncation of the series for 

the maximum deflection, which occurs at the middle of the free 

edge, is about 0.1% and that for the maximum bending moment, 

which is the normal moment at the middle of the clamped edge, 

is about 2%, 

"Convergence" of the normal bending moment at the middle 

of the free edge is good. Its value, for M=7, is less than
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yooth the value of the maximum bending moment, 

7.6.2 Uniform Plates Under Varying Load. 

In the previous section, numerical stability and "con- 

vergence" were studied for plate problems under uniform 

pressure which, mathematically, is the most ideal case to deal 

with and consequently it must be the case which would give the 

pest results from the point of view of stability and "converg- 

ence". In this section the effect of variation, in the load, 

on numerical stability and "convergence" is studied. One case 

of boundary conditions is examined, that of a clamped-clamped 

plate under a central point load. Since the latter is the 

most severe type of load variation a liberal estimate of the 

effect of variation in load will be obtained by comparing 

results from this case with those from the clamped-clamped 

plate under uniform pressure. The clamped-clamped plate is 

taken, merely, as an example which is moderate in its behav— 

iour in respect of numerical stability and "convergence". 

The dimensions and divisions of the plate are as given 

in fie Te). The uniform pressure is replaced by a concen- 

trated force, P, applied to the middle of nodal line 6. 

Table (7.7) gives the deflection parameters on nodal 

line 3 which is away from the point of application of the 

concentrated' force. As can be seen from these results, the 

numerical stability and “convergence” rate are excellent. In 

fact, only three harmonics are required to keep truncation 

errors under 0.01% for the deflection at x=0.2a, y=0.5a , 

fig (7.1), and under 1.0% for the bending moment M, at x-0.2a, 

y=0.0.
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The deflection parameters on nodal line 6, where the 

concentrated force is applied, do not exhibit the same high 

level of numerical stability and"convergence"rate, Table 

(7.7b) shows that the solutions become uniformly stable for 

all modes for M>7. Compared with the case of uniform press- 

ure, the stabilization process in this case is inferior. 

‘The rate of "convergence" is also lower than that for 

Re RS of uniform pressure. With three harmonics, the 

truncation error is ‘about 1.4% for the maximum deflection and _ 

“7.5% for the maximum bending moment My compared with 0.05% and 

3.3% respectively for the case of uniform pressure. The number 

of harmonics has to be increased to 9 in order to reduce there 

errors to 0,15% for the deflection and 2.8% for the bending 

moment. Thus, 9 terms are required to maintain a truncation 

error comparable to that produced by the uniform pressure case. 

It should be remembered, though, that the rate of "convergence" 

is very low at the nodal line on which the force is applied. 

Away from this line, the rate of "convergence" is very good. 

Although the solution of the plate problem under a 

concentrated load does not involve an explicit representation 

of the load by a series, nevertheless, the harmonic deflection 

parameters are, in effect, the result of a harmonic forcing 

function. Therefore, the load is implicitly represented by 

a series of the same form as the deflection. The low rate of 

"convergence" near the point of application of the load is, 

thus, a demonstration of the relatively inferior quality of 

the series representation of a unit impulse function,
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7.6.3 Varying Flexural Rigidity, Uniform Load. 

When the plate rigidity varies with y, the computer 

program evaluates the integrals that appear in the element 

stiffness matrix, in a discrete number of steps. Within each 

step the rigidity is either constant or linearly varying 

(section 4.7.2). The consequence of the variation in the 

rigidity is that the orthogonality property of the beam 

eigenfunctions becomes Phepplteabie weesuse the eigenfunctions 

are orthogonal with respect to a weighting function of unity. 

When the rigidity D is a function of the same independent 

variable as the eigenfunctions (i.e. y), it has to go under 

the integral sign. Thus, the weighting function is not unity. 

If the integral is evaluated in steps with a constant value 

for D over each step, then the interval of the integration is 

not correct for the brite conaive iconeniy to apna Since 

the orthogonality property of the beam eigenfunctions is re- 

sponsible for the stability of the solution, this stability 

and the "convergence" of the solutions will have to be examined 

for the cases when it is not possible to apply the orthogonal- 

ity property. 

The most severe case of rigidity variation is abrupt 

step variation in general and that which includes a zero or an 

infinite portion, ( a hole or a rigid inclusion), in particular. 

The problem examined here is that of a square plate of 

side length a, with a central square hole of side length 0.4a 

under uniform pressure p. Two opposite edges are simply 

supported and the other two clamped. The analytic function 

describes the latter conditions. 

Once again, symmetry about two axes is exploited and 

only half the plate is considered, This half is divided into
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five equal strips as shown in fig.(7.2). 
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Table (7.8), appendix ( 7 ) gives the solution vector, 

for various values of M, for the dePlection parameters at 

nodal line 6. The solutions are reasonably stable for small 

values of M, but as M increases the variations in the values 

of the harmonic displacement parameters become large. An 

interesting feature becomes apparent from evaluating the de- 

flection and the bending moment at a number of points for 

various values of M, Although the deflection parameters vary 

appreciably for M=11,12, and 13, the deflection and the bend- 

ing moment M,, which are functions of these parameters,:do not ye 

show the same amount of variation. In fact, they continue to 

"converge". The reason for this, apparently illogical, situa- 

tion lies in the fact that the deflection curve on a section 

of the plate through the hole is not unique. The true deflec- 

tion curve has an undefined portion at the hole. In attempt- 

ing to describe this curve by a set of continuous functions
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the undefined portion may be assigned any arbitrary shape 

which smoothly joins the portions either side of the hole 

(fig.7.3). The function representing curve A will, then, 

differ from that which represents B or 0. Therefore, the de- 

flection parameters for these deflection curves will be 

different. This explanation is verified by evaluating the 

deflection at a point within the region of the hote. It will 

be found that the variation in the deflection for M=11,12 and 

13 is substantial. 

4 hole region 

  

  

Pig. (7-3) 

The arbitrary shape of the deflection curve in the region 

of the hole does not, in itself, affect the value of the poten- 

tial energy of the system because of the zero value assigned 

to the flexural rigidity of that portion. However, it may 

cause the solution to become unstable. In this case the diff- 

iculty is overcome by assigning a very small value to the 

flexural rigidity of the hole region (say 10m times the rigid- 

ity elsewhere) thus making the deflection curve unique. It 

should be mentioned here that in the tests carried out for
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plates with holes, no numerical instability was encountered 

when the value zero was assigned to the hole region, 

Six term truncation of the analytic function results 

in a truncation error of about 0.15% in the deflection at 

x=0.5a, y=0.3a and 1.0% in the bending moement uy at the mid- 

dle of the clamped edge. Since the analytic functions are 

continuous and so are their second derivatives the bending 

moments normal to the edge of the hole cannot be expected to 

have a zero value ag the case should be. However, a value 

“which is amll when compared with the maximum bending moment 

within the plate should be baacniaien In this case the value 

of My at x=0.5a, y=0.3a is about 1% of the value of My at the. 

middle of the clamped edge. 

It is anticipated that numerical stability and "conver- 

gence" would reduce with a redcution in the size of the hole 

relative to the overall dimensions of the plate. This is due, 

once again, to the representation of a discontinuous function 

by a set of continuous functions. This point is made clear by 

the two diagrams in figs.(7.4a) and (7.4b). 

  

hole region 

  

| | y 
eT OR Sean 

¥ are (a) 

hole 

al ie A 
w ee () 

~ 

Pig.(7.4)



- 168 - 

Tne number of harmonics required to represent, accurate- 

ly, the curve in fig.(7.4b) is much greater than those necess- 

ary for the curve in fig.(7.4a), because of the rapid change 

in the slope of the former. Truncation to few terms would 

cause some error near the hole. This error may not be very 

‘large for the deflection but it would be magnified upon 

differentiation. The consequences on the values of the bend- 

ing moments near the hole are tien curious 

The case of a plate with a rigid inclusion has been ex-. 

‘ amined although no results are given here. It is not possible 

to assign an infinite value to the rigidity of the inclusion, 

but a large value (say 10° times the rigidity elsewhere) 

serves the purpose well. For a small rigid inclusion, the 

solution vector is stable and the "convergence" rate is simi- 

lar to that for the plate with a hole. However, the effect of 

the size of the rigid portion on stability and "convergence" 

would be opposite to that for the plate with a hole, i.e. as 

the size of the rigid portion increases relative to the over- 

all dimensions of the plate, stability, "convergence" and 

accuracy are reduced. The self-explanatory diagrams in figs. 

(7.5a) and (7.5b), and a similar argument to that for the 

plate with a hole, confirm this point. 

rigid region 

| | y 

Pigs (7.504)
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7.6.4 Concluding Remarks, 

In the last three sub-sections the beam eigenfunctions 

were tested for numerical stability and "convergence" under 

the favourable conditions of uniformity of load and flexural 

rigidity and under the adverse conditions of load concentra- 

tion and step variation of flexural rigidity. These functions 

proved to be quite stable and "convergent" to varying degrees, 

though "convergence" was not, yet, shown to be towards the 

correct solution. This will, in fact, be the subject of a 

later section in this chapter. 

The results of the tests give a guide to the number of 

harmonics necessary to produce a certain degree of accuracy, 

assuming for the moment that results do converge towards the 

correct solution, when a particular function is used. They 

also give a guide to the choice of function in a problem where 

an alternative is available. For example, if the plate is 

simply supported-simply supported on two opposite edges and 

clamped-clamped on the other two edges then the plate should 

be divided into strips whose y axis is perpendicular to the 

simply supported edges so that the analytic function for the
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simply supported edges is employed, rather than the one for 

clamped edges hecause the former has proved to "converge" more 

rapidly than the latter. 

The statements made in this chapter regarding "conver- 

gence" refer to the convergence of the analytic function when 

applied to the discretised plate rather than the continuum, 

Because the problem is formulated on the basis of minimum pot-' 

ential energy, which is a function of the bending and twisting 

moments, and they, in turn, are functions of the two variables 

(x,y), convergence to the "exact"solution can never be achieved 

by taking more and more harmonics whilst keeping down the num- 

ber of strips and vice versa. This is closely analogous to ‘ 

the division of the continuum into finite elements in the 

standard finite element technique where the mesh has to be made 

finer in both directions for convergence ‘to occur. The number 

of harmonics taken in a semi-analytic technique may be regarded 

as divisions in one of the two directions.
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7.7 Discretization of the Plate. 

In the finite element method, the rate of convergence 

can be seriously affected by the manner of division of the 

continuum into elements. For rectangular elements, it has 

been shown [/0 ] that, if the displacements vary at about the 

same rate in each direction, then the error in the solution, 

for a fixed number of elements, is least when the ratio of 

the lengths of the elements, the aspect ratio, approaches 1.0. 

That is, when the rectangular elements are closest to 

‘squares. This statement assumes that the displacement func-— 

tion employed in the analysis possesses geometric isotropy, 

i.e. it must not have a’ preferential direction. For example, 

if a polynomial is employed, then any term in x (say x) must 

have a counterpart in y (y?) and vice versa. Functions em- 

ployed in a finite element formulation are usually ‘geometric- 

ally isotropic. 

In the semi-analytic method, the function which describes 

the variation of deflection in one direction is entirely diff- 

erent to the one describing the deflection variation in the 

other direction. Thus, the statements made regarding the 

aspect ratio and the geometric isotropy do not apply directly 

here, 

The process of discretization in the semi-analytie method . 

requires two hel glans to be made. The first is with regard 

to the orientation of the plate with respect to the direction 

of the divisions. The second is with regard to the choice of 

the number of harmonics in conjunction with the number of 

strips and a certain degree of accuracy. 

If a problem of a long plate is considered, one may be
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tempted to orientate the plate such that the analytic func- 

tion describes the deflection variation in the long direc- 

tion so that the division into strips may be carried out in 

the short direction “because fewer strips would be required in 

this direction than if the orientation was the other way round , 

It will be shown, here, that this is not necessarily the case. 

In plate bending problems, when the aspect ratio of the plate 

is large the variation of deflection and moments in the long 

direction, away from the edges at the extreme points of this 

‘direction, is very small, whilst that in the short direction 

is large. Timoshenko shows [23 )ithat for a uniformly loaded 

simply supported rectangular plate, the variation is negli- 

gible if the aspect ratio of the plate exceeds 3. In these 

cases, the plate may be considered as an infinite strip with- 

out a serious loss in accuracy. ; ’ ae 

Consequently, when the semi-analytic method is used in 

the analysis, the cubic model which is used to describe the 

deflection variation across the "width" of the strip can give 

as good an accuracy when wide strips are used in the long 

direction as it would when narrow strips are used in the short 

direction. It follows, then, that divisions in the long 

direction of the plate need not imply a larger number of 

strips. To confirm this argument, the problem of a simply sup-. 

ported uniformly loaded rectangular plate with an aspect ratio 

of 4.0 is solved for the two orientations shown in figs.(7.6a) 

and (7.6b) and the deflections and bending moments across the 

centre-lines, figs.(7.7) and (7.8),are compared. In both cases 

the plate is divided into six strips and the series truncated 

to 3 harmonics. Symmetry about the centre lines was not
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exploited so as not to introduce factors outside those in- 

volved in the comparison. 

The graphs of variation of deflection and bending moment 

across the centre lines of the plate, for the two orientations 

show that the results are very nearly the same. In fact, the 

maximum values of deflection and bending moment from the plate 

with the wide short strips (fig.7.6@) are slightly closer to 

the exact values than those from the plate with the narrow 

long strips. This confirms the statements made earlier. 

The question of choice of number of harmonics in conjunc- 

tion with the number of strips is difficult because of the 

number of factors that affect the rate at which the solution 

approaches a limiting value with an increase in the number of 

harmonics (section 7.6). Therefore, no general, rule can be 

established which relates the number of harmonics to the number 

of strips for a given accuracy. However, two points must be 

emphasised. ‘The first is that an increase in the number of 

harmonics has a more adverse effect on computer storage re- 

quirement and solution time than an increase in the number of 

strips because major parts of the total computer storage 

requirement and solution time are proportional to NB and NBO 

[39] respectively, where N is the final number of equations 

to be solved and B is the semi bandwidth, 

N = (NELEM + 1) x 2 x NHARM and 

B = 4 NHARM (fig. 6.4) 

Therefore, 

NB = 8 (NEDEM 41 ) NHARM? and 
2 32(NELEM + 1) NHARM?, NB
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The second point is that a unilateral increase in the 

number of harmonics or the number of strips does not produce 

convergence to the exact solution. To demonstrate this point, 

the problem of a square simply supported plate under a central 

concentrated load was solved for a combination of values of 

NELEM and NHARM. The central deflection was compared with 

that from a series solution [23] and the error in ‘each case 

was evaluated. iy 

Fig.(7.9) shows the lines of constant error: for the 

“various values of NELEM and NHARM. ‘These lines-confirm the 

statements made earlier that eonerncnce to the exact solution 

can never be achieved by increasing the number of harmonics 

without inereseine the number of strips and vice versa. The 

lines also show that, for the case considered, optimum con- 

vergence is obtained when the number of harmonics is equal to 

or one greater than the number of strips. It should be empha- 

sised, however, that if this is to be taken as a guide to the 

discretization process it must be considered in conjunction 

with the findings of section (7.6) which indicated a substan- 

tial variation in the rate of convergence depending on boundary 

conditions, applied load and flexural rigidity. 

Symmetry, or the lack of it, also plays a part in the 

discretization process. In the case considered, for example, 

half the plate and odd modes only were taken. For identical 

accuracy and the same number of harmonics the whole plate 

would have had to be divided into twice the number of strips. 

It follows, then, that for a plate in which one of the edges 

parallel to the y-axis is other than simply supported while



the remaining conditions are the same as before, the optimum 

number of strips must be about twice the number of harmonics. 

Similar argument applies if symmetry about y=a/2 was disturbed 

by, say, shifting the point load slightly along the y-axis. 

In this case the optimum number of harmonics would be about 

. twice the number of strips into which half the plate is divided. 

‘As in any idealization or discretization process, local 

ane where the geometry, applted aead or properties of the 

structure show a sévere variation, the divisions near these 

zones should be made finer. Unfortunately, such local refine- 

ment is not possible in the neatreaiion because it would mean 

an increase in the number of harmonics for the strips near 

the peculiar Denes and this would result in an excess in the 

number of d.o.f. of these strips. Consequently, incompatibil- 

ity.would arise at inter-element boundaries.
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1.8 A Check on Accuracy. 

In section (7.6), the analytic functions were tested 

for convergence for a number of cases of boundary and loading 

conditions and rigidity variation. Although it was establish- 

ed that these functions do converge, this convergence was not 

shown to be towards the correct solution. In this section, 

the results from the semi-analytic method, for a number of 

problems, are compared with results from other methods, some 

of which are analytical and others are numerical. 

The test cases represent all the boundary conditions 

which are described by the analytical functions, The loading 

conditions include uniform pressure, linearly varying oreceare 

and uniform line moment. ‘The problem of ee whose rigidity 

varies according to some known function and that of a plate 

with a hole were also solved. cad es 

The test cases and their solutions are given in figs. 

(7.10) through (7.24) and tables (7.9) and (7.10). 

Whenever possible, symmetry of the plate about one or 

poth centre lines was exploited by considering one half of 

the plate in the x-direction and odd modes only in the y-direc- 

tion, 

In the case of a free edge perpendicular to the y-direc- 

tion the method suggested in section (4.6) was implemented, 

whereby the free edge was simulated by adding a zero flexural 

rigidity extension to the plate at the free edge in order to 

reduce the errors due to the residual normal bending moment at 

this edge. Where the free edge is perpendicular to the 

x-direction, the strip at the boundary was made narrower than 

the remaining strips aiming at the same goal as before.
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Cases (i) and (ii) represent the same problem ina 

differing orientation. It is intended to demonstrate the 

effect of orientation, hence the analytic function used, on 

the accuracy of the results. 

Whenever the solutions are available for a number of 

points on the plate, the comparisons are carried out graph- 

ically, otherwise maximum deflections and maximum bending 

moments are compared. : 

The series solutions for the problems in cases (i) and 

(ii) are from refs. [43], [44] and [45] and are based on the 

analytical methods discussed in section (2.3). For the re-. 

maining cases the references from which the solutions are ob- 

tained are given with the figures. 

The letters designating the boundary conditions are 

self-explanatory. In each case the division of the plate 

and the necessary information regarding the applied load, the 

properties of the plate and the number of harmonics, M, are 

given with the relevant figure. In some of the figures, the 

identifier BM is used to mean either My or My as appropriate,
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Table (7.9) Deflection and Bending Moments for case (v) 
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Table (7.10) Deflections and Bending Moments for’case (vi) 
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7.8.1 Discussion of Results. 

In the preceeding section, a thorough check on the 

accuracy of the semi-analytic method was carried out for a 

number of problems, 

It can be seen that the agreement of the solutions from 

the semi-analytic method with those from other methods, some 

of which are "exact", is excellent in all cases but one and 

for most points on the plate for which the solutions are 

available. The only exception is the bending moement My along 

‘y=0, (fig.7.16), in the solution to the problem of case (iv). 

The discrepency between. the yeine of this moment as obtained 

from the finite differénce method with that from the semi- 

analytic is comparatively large near the sage on which the 

uniform couple is applied. Elsewhere, however, the agreement 

between the solutions from the two methods is very good. 

The accuracy of the results has proven to be, generally, 

extremely good. However, there are a few points which deserve 

particular attention. 

In section (7.6) when the numerical stability and con- 

vergence of the various beam eigenfunctions were tested, it 

was discovered that these properties are superior in the case 

of simply supported-simply supported functions, to those in 

other functions. The problems in cases (i) and (ii) were in- 

tended to confirm this point. They represent the same problem 

in differing orientations. In the first case, the simply 

supported-simply supported function was used and in the second 

case, the clamped-free function was used. Results of compar- 

able accuracy were obtained for both panes. However, the 

plate in the first case was divided into 13 strips and 3
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harmonics, whereas in the second it was necessary to div- 

ide half the plate into 5 strips and 7 harmonics. Now, since 

the computer time required for the solution of the equations, 

which ususally constitutes a considerable proportion of the 

overall time required for the solution of the problem, iS 

proportional to NB? (section 7.7), the values of this quantity 

for the two cases will be 12096 and 65856 respectively. Thus, — 

to obtain similar accuracy from s two functions, the 

clamped-free problem requires considerably more computer time 

‘than does the simply supported-simply supported-problem, 

This confirms the superiority of ine behaviour of the simply. 

supported function, 

Exact eotaeicn for cases (v) and (vi) were only avail- 

able for two points on the plate. Comparison with the solu- 

tions from the semi-analytic method (tables 7.9 and Tl Oo 

shows that the error in the deflection is less than 0.6% and 

the error in the bending moments is less than 2%, for the 

given number of strips and harmonics, An increase in the 

number of strips and the number of harmonics would improve 

accuracy. 

The problem of a plate with a hole (case viii) is of 

particular interest because of its frequent occurrence in 

civil engineering where it is necessary to provide a hole in 

a slab floor for lifts, say. The problem is important, in 

practice, because of the uncertainty about the effect of the 

singularity of the bending moments at the corners of the hole 

and the extent of propagation of any errors this singularity 

may cause.
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Morley [47 ] developed a method of solution, for this 

type of problem, which employs triangular finite elements 

together with eigenfunctions that satisfy, exactly, the homo- 

geneous differential equation of the plate and the boundary 

conditions along the inner edges, The principle of minimum 

‘complementary energy was used in the formulation (i.e. the 

force formulation). The values of bending and twisting mom- 

ents for a simply supported square plate with a*central square 

hole, under uniform pressure are given in fig.(7.23) in which 

a) gives these values from the Morley solution and (b) gives 

the values from the semi-analytic method, 

The agreement between the solutions is excellent on all 

but a few points near the corner. At these points the maximum 

error in the bending moments is 7.0%. Because the semi- 

analytic mathod uses a continuous function with continuous ; 

derivatives, the bending moments at the corners have a finite 

though large values. Acknowledging the singularity of the 

moments at the corners, these values are ignored. 

Thus, the semi-analytic method gave very good results 

for the problem of a plate with a hole, with no special mod- 

ification to the formulation. The strips nearest the edge of 

the hole were made narrower than the rest to reduce the effects 

of error propagation.
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71.8.2 Comparison of the’ Rate of Convergence in the Semi- 

Analytic Approach and Other Formulations of the 

Finite Element Method. 

In the finite element method, the problem may be 

formulated with the displacements, forces or both as unknown 

parameters. In these cases the formulations are called dis- 

placement, force or mixed respectively, With each formulation © 

anieae types of elements and fusesi one may be employed [io], 

(a5]. These yield solutions of varying rates of convergence. 

Desai and Abel Ct 10} compared the rates of ‘convergence 

of a number of types of elements employed in the analysis of. 

a simply supported square plate under a central concentrated 

force. The basis for comparison was the percent error in the 

central deflection as a function of NB, where N is the num- 

ber of equations arising from the analyers of the discretized 

structure and Bis the semi bandwidth of the equations. NB 

is a measure of computer time required for the solution of 

the equations [39]. 

Against some of the elements in Desai and Abel's example, 

the rate of convergence of the central deflection of the same 

problem, obtairied by the semi-analytic method, is compared 

here, 

A brief description of the elements, the formulation 

and comparison of their rates of convergence are given in 

fig.(7.25). This shows that the results from the semi-analytic 

approach converge much more rapidly than any of the other 

elements or formulations given. Cotverenty, for similar 

accuracies, the semi-analytic solution requires considerably 

less computer time .
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Fig.(7.25) also shows that the semi-analytic solution 

represents a lower bound to the exact solution, \ 
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Fig. (7.25) Comparison of the rate of convergence of 

the central deflection; for a simply supp- 

orted square plate with a central point 

load, from the Semi-Analytic approach with 

other approaches to the Finite Element Method.



7.9 Experimental Tests. 

In the previous section, results from the computer 

program, for various cases of loading and boundary conditions 

were compared with known published results in order to test 

the accuracy of the semi-analytic method. It was felt that 

experience in an experimental procedure for the analysis of 

plates would be desireable. At the same time a further check 

on the applicability of the eae method. to plate 

pending problems with rigidity variation, may be obtained 

through the experimental procedure. For these purposes, the 

Moire Technique, which was developed by Ligtenberg {43], for 

the experimental analysis of laterally loaded plates was used. 

7.9.1 The Moire Apparatus. 

The Moire apparatus (fig.7.26) consists of a-steel struc- 

ture on which a curved screen is mounted, The surface of the 

screen, which is in the form of a circular cylinder segment, 

is covered with ruled paper. The lines being equispaced and 

parallel to the axis of the cylinder. The screen can be ro- 

tated so that the lines may be set to any desired angle from 

the vertical, and its position may be adjusted in three direc- 

tions. A camera, which is mounted behind the screen, views, 

through a hole in the screen, a model of the plate which acts 

as a first surface mirror, in front of the screen. The model 

is fixed to the structure by means of G-clamped. Loading of 

the structure is achieved through levers attached to the 

structure behind the model. Illumination of the screen, which 

is necessary for the photography process, is achieved by means 

of photo-flood lamps positioned, on the structure, at such



  
Fig. (7.26) The Moire Apparatus.
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points as to ensure even distribution of light on the screen 

and avoid glare from reaching the camera lens. 

7.9.2 Fundamentals of the Moire Method. 

In this method the model of the slab, which is positioned 

in front of the illuminated, lined screen, acts as a first 

surface mirror reflecting the images of the lines on to the 

photographic plate (fig.7.27). 

         

= 

camera 

3 p
 2 ct
 

@ E 

  
Screen 

Fig, (7.27) 

When a photograph is taken of the unloaded model, this 

photograph will record the undistorted image of the lines as 

In particular a point P on the screen 

cts 

reflected by the model. 

will appear as the image 1 on the Photographic plate, 

then, the model is deflected by the load, the image of a diff- 

' 

erent point P will coincide with I. Now, whenever such 

points as PP’ are a certain constant distance apart, their im- 

ages will coincide at such points on the photographic plate
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as I. These images will form a line called a "fringe", 

On the basis of small deflections theory of plate flex- 

ure, the angle P'OP can be shown to be twide the angle of 

rotation g in the direction normal to the lines of the screen. 

Thus, referring to fig.(7.28), the following relationships can 

be obtained: 

line from Pp 

line from P 

normal to the deflected model 

normal to the un-deflected 

model : 

  

lines. to I 

Fig. (7.28) 

b= B - («-@). 

p= ~+@ 
= 2 where v- a 

n 

Thus, the fringe is the line on which the slope, normal 

to the direction of the lines, has a specific constant value. 

The value of the slope pertinent to a particular fringe is 

established only if the slope is known along a certain line 

on the slab. This situation is often possible as in the case 

of zero slopes due to clamped edges or lines of symmetry.
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Once the fringe pertinent to the zero slope is established, 

it is assigned the integer value 0 called the "fringe order", 

The order of the remaining fringes will, then, be obtained by 

assigning the integer values 1,2,3,... to neighbouring fringes 

on one side of the zero order fringe and -1,-2,-3,... to 

neighbouring fringes on the other side, The sign of the fringe: 

order depends on the sign of the slope. 

Between two consecutive fringes, the values of PP’ will 

differ by an amount, d, equal to the distance between two 

“lines on the screen, and for small deflections, -the slopes, @ ’ 

will differ by an amount d/2a, ere a is the distance from 

the model to the screen (fig.7.27). 

Thus, a graph of the variation of the slope in any direc- 

tion may be obtained from the photograph of the fringe patterns. 

This process will be shown for a specific case later. Fringe 

patterns obtained whilst the lines are in a direction normal 

to the x-axis of the plate model give the slope oa and those 
x 

obtained whilst the lines are in a direction normal to the 

dw 
y-axis of the model give the slope ==. Second derivatives, 

dy 
hence bending and twisting moments, are obtained by graphical 

differentiation and the deflection, w, is obtained by graph- 

ical integration, 

The slope curve may be drawn without actually assigning 

a zero slope axis, and differentiation of the slope curve does 

not require that the line of zero slope be known although the 

correct signs must be established. The curvature curve may 

then be assigned a zero curvature axis to which other values 

of the curvature are related. It is unlikely that neither
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the slope nor the curvature is known at some point on the 

plate. 

7.9.3 Technical Details. 

Ligtenberg [43] showed that a radius of 3,5a for the 

circular cylinder, of which the screen is a segment, gives 

results with acceptable accuracy. The lines on the screen 

were found to give the clearest fringe patterns when the ruling 

was chosen as a/2 white and d/2 black where d is the distance 

between the centres of lines. Also, d should be chosen to be 

between 0.004a and 0,002a. 

Almost any material which can be made reflective on one 

side may be used for the model. However, Perspex was found 

to be very satisfactory. 

7.9.4 Experimental Details. 

The experiences of other users of the Moire Apparatus, 

(49] ana (5°], were taken as a guide for the experimental 

work conducted here. 

5 mm thick black perspex was used for the models of the 

plates which were to be analysed. Sufficient illumination of 

the screen was achieved by using four 500 watt. photo-flood 

lamps. A bellows-type camera with a 1:4.5/13.5 cm lens was 

used to take the photographs of the fringe patterns on:a 

Kodalith Ortho (sheet) Film, Type 3. A diaphragm setting of 

£16 and exposure time of 45 seconds gave very good results, 

The relevant screen dimensions were a=86cem (based on R=3.5a) 

and d/2a = 0.00125.
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7.9.5 Details of the Test Cases, 

The Moire method was used to determine the slopes in 

three different plate problems, namely a square clamped plate 

with uniform rigidity under uniform pressure (fig.7.29a), a 

square clamped plate with a central portion whose thickness 

is twice that of the rest of the plate, also under uniform 

pressure (fig.729b), and a square clamped plate with a cent- 

ral square hole, under two concentrated loads (fies 7.290). 

To simulate the clamped edge condition the perspex 

‘plate was sandwiched between a pair of steel frames and the 

assembly was effectively made rigid at the boundary by a num- 

per of bolts (fig.7.30). 

7.9.6 Experimental Procedure. 

The procedure detailed here was carried out for each 

test case in turn, 

The perspex plate was mounted, in its assembly, on the 

structure of the Moire Apparatus. The screen was adjusted to 

the required distance from the plate, and rotated so that the 

lines were parallel to the x-direction of the plate. The photo- 

flood lamps were directed towards the screen so that the latter 

was evenly illuminated. The camera was, then, adjusted so that 

the image of the ruled lines, as reflected by the perspex plate 

onto the ground glass of the camera, was in focus. The sheet 

film was then placed in the camera, the diaphragm set to f16 

and the film was exposed for 45 seconds. The load was then 

applied to the back of the plate and the same sheet film was 

exposed for the same length of time. The screen was then 

rotated through 90 degrees so that the lines were parallel
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to the y-direction and the process was repeated with a new 

filn. 

To save on loading and unloading time, the procedure for 

the second orientation of the screen was carried out by photo- 

graphing the loaded plate first, then the load was removed and 

the new film was exposed for the zero-load state. 

The exposed films were developed and printed giving con-" 

tours of the slopes ow and ow ie 
Ox oy 

The application of concentrated forces was straight 

"forward. That of the distributed loads, on the other hand, 

required the use of 3" thick foam rubber and a 4" thick plark, 

of wood (fig.7.31). 

pivot 

uA 

er) applied load ” 

foam rubber 

   

  

  perspex 

plate 

  
plank of wood 

Pig. (7-31) 

The load, when applied to the centre of the wooden plank, 

caused the foam rubber to compress appreciably in relation to 

the deflection of the perspex. Thus a state of uniformity in 

the applied load was achieved to a good degree of accuracy. 

7.9.7 Analysis of the Moire Fringes. 

The fringe photographs represent contours of slopes. 

The variation of the slope across a section of the plate may 

be obtained from the photographs thus:
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A line XX (fig.7.32) is drawn on the photograph at the 

required section, This line will intersect with the fringe 

patterns at a number of points, Lines are drawn, on a graph 

paper, normal to XX at the points of intersection of XX with 

the fringes. The points necessary to draw the slope curve are 

obtained by fixing a point P on one of the normal lines and 

fixing other points on other normal lines in increments of 

a/2a (=0.00125 in this case) as in fig.(7.32). The direction 

of the increments relative to the first point is established 

‘on physical grounds. A zero slope axis ox is assigned if a 

point of zero slope is known. When a fringe crosses the line 

XX at more than one point, then the value of the slope at the 

normal lines emanating from these points should be the same 

(because the fringes represent lines of constant slope). 

The scale of photograph governs the scale on the axis ox. If 

the photograph is S$ times smaller than the model of the plate, 

then, the actual distance between the normal lines should be 

multiplied by s to give the distance on the model. 

If the above procedure is carried out for two photographs 

of slopes in directions normal to one another, the bending and 

twisting moments may be obtained by appropriate graphical 

differentiation. The deflection is obtained by graphical 

integration of the slope curve. 

Converting results from the model to those for the 

prototype, then, has to be carried out [48]. However, since 

in this case the experiment is aimed at comparing experimental 

results with those from the computer program, the slopes will 

represent sufficient and convenient quantities for comparison 

as they are obtained directly from both the experiment and the 

computer program. Further, the perspex plate will be assumed
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Fig.(7.32) Method of plotting the slope 

curve from the Moire' Fringes.
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to be the prototype rather than a model. Therefore, no 

further work will be carried out on the experimental slope 

curves after they are plotted. 

7.9.8 Comparison of Results from the Experiment with Tnose 

from _the Computer Program. 

‘The three cases shown in figs.(7.29a), (7.29b) and 

(7-29c) were analysed using the computer program. It was 

necessary to obtain the value of the flexural rigidity of the 

_perspex. To this end, the experimental procedure suggested by 

Ligtenberg [4s] was followed, using the specially designed rig. 

In this procedure a square piece of perspex was simply support- 

ed at three corners and loaded at the fourth by a concentrated 

force. If the x and y axes are taken along the diagonals, the 

bending and twisting moments will be constant everywhere: 

M, = so nUERES P/2, Mey = 0 where P is the applied point load [43]. 

The Moire a ean will, consequently, yield parallel equi- 

spaced diagonal straight fringes from which the flexural rigid- 

ity of the perspex employed in the experiment can be found, 

viz. 

2a 
Ween a 

uo
 

y
e
 

where s is the distance between the fringes. 

Using this procedure and a given value of 0.335 for » [43] 

the value of the flexural rigidity of the perspex used in the 

experiments was found to be 373 N.cm. 

Figs.(7.33), (7.34) and (7.35a) show the photographs of 

fringe patterns for the slopes = for the problems in test 
x



  

Fig. (7.33) Fringe photograph of the slope - for the problem 
Se 

in test case (1). 

Fig. ) 1 sraph of ti 31 — for the problem  



  

Fig. (7.35a) Fringe photograph of the slope Ou for the problem 
Bd 

in test case (3). 

  
Fig. (7.35b) Fringe photograph of the > the problem 

  

in test case (3).
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cases (1), (2) and (3) respectively. Fig.(7.35b) gives the 

fringe pattern for the slope ou for the problem in test case 

(3). z 
These fringe patterns were analysed as described in sec- 

tion (7.8.7) and the variations of the slopes across a section 

of the plate were plotted (figs.7.36, 7.37, 7.38a and 7.38b). 

Because of symmetry of the problems (skew-symmetry of slopes) 

the slopes are given for half eee across the plate. The 

corresponding slopes from the computer program were also in- 

‘@icated. It can be seen that in cases (1) and (2) the agree- 

ment between the experiments and the semi-analytic method on 

the values of the slope ae along y=17.8 cm, is very good. 
. x 

Similar agreement was obtained for the slope ow along y=6.0 cm 

2 Ng 
for case (3). The slope rs along the same section of case = g aes 

(3), on the other hand, shows a relatively large difference 

in the values of the two methods. There is no apparent, 

analytical, reason for the error, particularly since the sec- 

tion for which the slope is plotted is some distance from the 

hole. Therefore, the discrepency can only be attributed to 

experimental errors. A possible source of error is the vulner- 

ability of the perspex to the temperature and the humidity of 

the surroundings. 

7.9.9 Concluding Remarks. 

The experiment was conducted for two reasons. The first 

was to compare results from the computer program with those 

from a source other than an analytical or a numerical one, 

The second reason was to attain a first hand knowledge of the
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Moire technique for the experimental analysis of plates. Both 

aims were achieved successfully. 

It is felt that there are too many inherent sources of 

error and practical difficulties to allow the technique to be 

as simple to apply as it, otherwise, is. Considerable diff- 

iculty was encountered in ensuring that a uniform load is 

evenly distributed over the area of the plate. The levers 

used for the application of the toad and their means of attach- 

ment to the structure of the apparatus were too bulky to allow 

‘the application of more than two, vertically separated levers. 

Te method of applying the uniform load via a plank of wood 

and foam rubber is sound in theory, but in practice it was 

found that serious deviations from uniformity could arise if 

the lever load is not absolutely pons con yet and Gap irelly, 

applied to the wooden plank, Checks had to be carried out to 

ensure that the foam rubber deflected identical amounts at all 

corners around the back of the plate. 

Although a case of simply supported edges was not ana- 

lysed it is anticipated that this would present considerable 

practical difficulties in ensuring that friction, between the 

edge of the model and the steel support, which have to maintain 

contact to prevent deflection, does not inhibit rotation. 

The effects of temperature and humidity on the behaviour » 

of the perspex model were reported by another user of the 

apparatus [50]. These were confirmed when, on a number of 

occasions, the experiment was repeated for the same problem, 

within a short space of time, and was found to give somewhat 

different results.
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CHAPTER BCGHT 

CONC LUSTONS 

8.1 Preliminary Investigations. 

The aim of the project was to develop a computer pro- 

gram, based on a semi-analytic finite element formulation, for 

the: solution of rectangular plate problems with Ee combination 

of simply supported, clamped and free boundary conditions and 

_with any variation in flexural rigidity and loading. The com- 

puter program was to be used to examine verted aspects of the 

semi-analytic method and to explore its potential. 

This method-required that the deflection of the plate in 

one direction be described by a set of continuous functions 

which satisfies the boundary conditions at the extreme points 

in this direction. For these functions, the eigenfunctions of 

free vibration of a beam were used for their orthogonality 

property. This property reduces the amount of work necessary 

for the analysis and ensures numerical stability of the final 

set of simultaneous algebraic equations. 

Preliminary investigations included a study of the app- 

licability of the boundary conditions implied by the beam 

eigenfunctions to the edge of a rectangular plate (section 4.6). 

It was discovered that the free edge beam function does not, 

exactly, satisfy the boundary conditions of a free plate edge. 

There remained, in fact, a residual normal bending moment and 

a residual shearing force at the free edge of the plate. It 

has been shown in section (2.2) that for approximate solutions 

by the principle of minimum potential energy, it is only the
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geometric boundary conditions that must be satisfied exactly. 

However, the inadequate representation of the natural boun- 

dary conditions implies an inherently imperfect satisfaction 

of the equilibrium conditions. Exact satisfaction of the 

natural boundary conditions enhances the approximate solution 

and, thus, improves the rate of convergence of the method, 

A device to reduce the error in the approximate solution was 

developed on the basis of a proposed method of dealing with 

variable flexural rigidity. This device involved adding a 

rectangular extension to the plate at the free edge and assign- 

ing a zero value to ihe lequnaine aida ty of the extension 

thus simulating the frée edge situation, The implementation 

of this idea, after the development of the computer program, 

proved very successful as shown by the results of sub-section 

(7.6.14). ; ; tase 

Another preliminary investigation indicated that the 

eigenfunctions for the cases of clamped-clamped, free-free and 

clamped-free edges are numerically unstable when the integrals 

of their products were evaluated at the fifth and higher modes 

with the 11 significant figure accuracy provided by the 

I.C.L.19058 computer employed for the analysis, This was a 

serious disadvantage for a method of analysis which could, 

otherwise, claim to require only a small computer for process—- 

ing the program. A modification to the representation of 

these functions was envisaged whereby the hyperbolic functions 

which appear in the eigenfunctions were replaced by their ex- 

ponential equivalent and the terms rearranged so that they are 

evaluated, by the computer, in a specific order. When this 

idea was implemented, the numerical instability was eliminated
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and it was possible to include any mode in the analysis 

provided that the numbers involved in this mode were within 

the capability of the computer to handle real numbers. 

The computer used in the analysis had a range of +5.6 x 10/6 

allowing up to twenty-two modes to be included in the analysis. 

8.2 The Semi-Analytic Finite Element Computer Program. 

The computer program, which, was developed a the basis 

of the semi-analytic method, utilized six sets of analytic 

_functions, namely the simply supported-simply supported, 

clamped-clamped, free-free, clamped-free, ainaly, supported- 

clamped and simply supported—free beam eigenfunctions. It was 

necessary to modify the representation of the second, third 

and fourth of these functions in order to eliminate an inher- 

eat numerical instability. 

The analysis of problems of plates with variable flexural 

rigidity D(x,y) requires the evaluation of integrals of pro- 

ducts of the analytic functions and their derivatives, weight- 

ed by the variable quantity D(x,y). To allow for any type of 

rigidity variation, as part of this investigation, these in- 

tegrals are evaluated over a number of steps, which is specified 

by the user of the program, within each of which the rigidity 

is assumed to be either constant or linearly varying as desired. 

A variation in the applied pressure is similarly treated. 

In developing the computer program, a maximum reduction 

in computer storage requirement and solution time was aimed 

at. For this purpose, the bandwidth of the overall stiffness 

matrix was minimized by grouping together all the harmonics 

of each element in corresponding locations in the harmonic 

overall stiffness matrix. The effectiveness of this scheme
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was demonstrated in section (5.3). A compact storage scheme 

was used in which the overall stiffness matrix is stored as 

a one-dimensional variable bandwidth array. 

Efficiency of the program was improved, whenever possible, 

by using self-contained program segments called "Procedures", 

8.3 Burther Investigations. 

Following the development of .the computer piccreat a 

series of tests were carried out to investigate various aspects 

of the semi-analytic method. 

The first of these tests was aimed at maine a compari- 

son between various cases of boundary and loading conditions 

and rigidity variation from the point of view of numerical 

stability of the solution vector and the rate at which the max- 

nae deflection and maximum bending moment approach a limiting 

value (the term "rate of convergence" will be used here 

although the limiting value was not, at that stage, shown to 

be the correct one). 

In this test, all the plates were divided into the same 

number of strips and the boundary conditions at the edges 

parallel to the direction in which the analytic functions app- 

lied were maintained throughout. Thus, the analytic functions 

were, in this test, the subject of scrutiny. 

It was established from the results of this test that, 

for uniform plates under uniform pressure, the "rate of conver- 

gence" of the maximum deflection and maximum bending moment 

varied depending on the eigenfunction used. The simply 

supported-simply supported function gave the highest "rate of 

convergence", The clamped-clamped and simply supported -clamped 

functions were slightly inferior, followed by the free-free,
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simply supported-free and clamped-free functions in that 

order. In all these cases, the solution vectors were 

perfectly stable. 

The effect of load variation on the "rate of convergence" 

was examined in the case of the clamped-clamped function, 

This function was chosen because of its previously established 

moderate behaviour in respect of stability and "éonvergence". 

The uniform pressure in the Piveuiceae was replaced by a 

central point load and the results were compared. Comparison 

indicated that the effect of load concentration was, predict- 

ably, to reduce the "convergence rate" near the applied load 

whilst away from the point of application of the load a high 

“rate of convergence" was maintained. Numerical stability 

was, again, at no risk. 

The effect of rigidity Reread was Mata next, 

through the severe case of a plate with a hole. The function 

for which the results were compared was, again, the clamped- 

clamped eigenfunction. The hole region was assigned a zero- 

value rigidity. The results showed that the effect of the 

hole on the "rate of convergence", for the case considered, 

was small. It was argued, however, that this could well de- 

teriorate if the size of the hole was reduced in comparison 

with the overall dimensions. The solution vector, in ‘this 

case, tended to be unstable at modes higher than the tenth. 

This was explained to be due to the fact that the actual de- 

flection curve is discontinuous across the hole region and in 

attempting to describe this curve by a continuous function, 

the latter would give an arbitrary, non-unique shape at the 

hole region. This did not, however, affect the solution



away from the hole. Although no problems were encountered 

from assigning a zero value to the rigidity of the hole 

region, it is feared that under further accumulative adverse 

conditions (size of hole, load concentration, boundary con- 

ditions), the numerical instability may cause a break-down 

in the solution. If this occurs, it is suggested that rigid- 

ity of the hole region be assigned a small non-zero value 

(say a times the rigidity elsewhere). 4 

The results from these tests gave a guide to the most 

favourable orientation of the plate with respeet to the direc-— 

tion of the analytic function. ‘They also gave a comparative 

guide to the number of harmonics necessary tor various cages 

of boundary and eadiae conditions and rigiauty variation. 

The effect of aspect ratio of the strip and the effect 

of a unilateral increase in the number of harmonics or the 

number of strips on the rate of convergence were examined 

next. If the direction along which the eigenfunctions are 

used specifies the "length" of the strip, while that along 

which the cubic model is used specifies the "width" of the 

strip, then, it was concluded, that a plate with a large 

aspect ratio does not necessarily require more strips if it 

were divided such that the width of the strips was in the 

long direction of the plate than if it were divided the other 

way round. It was argued that this is so because generally 

the variation of the deflection in the long direction of a 

long plate is less severe than in the short direction. 

Consequently, relatively wide strips, whose width is in the 

"long" direction of the plate, could give results as accurate 

as narrow strips whose width is in the short direction.
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The problem of a simply supported square plate under 

a central concentrated force was solved for a combination of 

values of NELEM, the number of strips, and NHARM, the number 

of harmonics. Lines of constant % error in the central de- 

flection were plotted. These demonstrated that for an 

‘ optimum improvement in accuracy, the values of NELEM and NHARM 

must be increased at about the same rate. It was clear that 

an increase in one of these quantities beyond a certain value, 

whilst maintaining the value of the other, would not improve 

accuracy. 

A thorough check on accuracy,i.e. convergence to the: 

"true" answer, followed these tests. Hight ptoblems, for 

which solutions by other methods were available, were solved 

‘by the semi-analytic computer program. They included all the 

eigenfunctions, load variation and rigidity een and the 

severe case of a plate with a hole, Agreement with other 

methods, some of which were "exact", was, generally, excell- 

ent. The results from the case of the plate with a hole were 

particularly interesting because of the singularity of the 

bending moments at the re-entrant corners of the hole. The 

semi-analytic method gave values for the bending and twisting 

moments, a short distance away from the hole, that are in 

close agreement with the results from a modified Rayleigh-Ritz 

finite element solution which takes account of the singulari- 

ties. Thus, the extent of propagation of error due to the 

use of a continuous function to describe a singular one was 

very limited. 

In the test cases considered throughout this project, a 

feature of the semi-analytic method was quite obvious. This



is the remarkably low volume of data necessary for the 

analysis. In the majority of cases, no more than ten minutes 

of manual work was necessary to prepare the data. Another 

feature was the low cost (time) of processing the program. 

To give a figure for the time required to solve a particular 

problem could be misleading if it is not compared with solu- 

tion time from other methods using the same computer. 

However, an idea can be obtained by comparing the rates of 

convergence of the ‘semi-analytic method with other methods 

“ for the solution of the same problem. This was carried out. 

The percentage error in the central deflection of a 

simply supported square plate under a central concentrated 

force was plotted against NB’, where N is the number of equ- 

ations arising from the analysis and B is the semi-bandwidth 

of the overall stiffness (influence) matrix. NB° is propor— 

tioned to the time required by any computer to solve the 

equations. Solution of the equations usually constitute a 

large part of the overall time required to process the pro- 

gram. The convergence curve from the semi-analytic method 

was compared with convergence curves from other formulations 

to the finite ‘element method (section 7.8.2). For any given 

accuracy, the value of NB from the semi-analytic method is 

many times less than that from any of the formulations: con- 

sidered. 

Thus, the semi-analytic method has been shown to obtain 

a solution to simple and moderately complex rectangular plate 

problems with a low computer a and time requirement and 

with very little effort in data preparation, in comparison 

with other finite element formulations for the same accuracy
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of solution. 

It is appreciated that the term "simple and moderately 

complex problems" is imprecise. However, if the development 

of the computer program and the results of the tests are 

considered, a less broad statement may be made regarding 

computer time and data preparation effort. These quantities 

will increase when the plate problem requires the evaluation 

of the integral of the eigenfunctions at a large number of 

steps because of a continuous non-linear change in the rigid~_ 

“ity throughout the plate, or when it is necessary to use a 

large number of harmonics. In these situations the advantages 

of the semi-analytic méthod will be reduced. 

8.4 Experimental Tests. 

The results obtained from the semi-analytic program and 

compared with other methods should have been enough to confirm 

the applicability of the semi-analytic method to various rec- 

tangular plate problems. The experimental tests, therefore, 

were carried out mainly to gain experience in an experimental 

technique which claims to be fast, simple and accurate, rather 

than to confirm the results obtained from the semi-analytic 

method. The main objective was achieved, However, it was 

felt that the results produced by the method were too sensi~ 

tive to factors outside the control of the experimentor, such 

as temperature and humidity. Difficulty was also encountered 

in applying a uniform pressure.



8.5 Suggestions for Further Work. 

Efficiency in the computer program and extensive ex- 

ploration of the capability of the semi-analytic method were 

always aimed at in the given time for this project. However, 

there remains a number of ideas that may warrant attention if 

further improvement of the efficiency of the program and fur-~° 

ther tests on the capability of the method are sought. Some 

of these ideas will be given ees 

The method of simulating a free edge in the cases when 

such an edge is described by the eigenfunctions had been 

successfully implemented. However, in the time given it was 

not possible to modify the computer program to simulate the 

free edge automatically. At present, therefore, if the free 

‘edge is to be simulated in the way described earlier, then 

this has to be carried out by idea wine the eietereite zero 

rigidity extension as a new problem of a plate with step 

variation in its rigidity with what this implies in increase 

of data preparation. Therefore, it is worthwhile, if an 

improvement is sought, to modify the computer program to 

carry out the process automatically. 

Another area of possible improvement in the computer 

program is the method of reading the types of distributed 

load and rigidity. At present only one type of each is allow- 

ed. Thus if on one element the variation in the applied load 

is linear, whilst on all other elements the distribution is 

uniform, then, the variation has to be assumed to be linear 

throughout and consequently zero coefficients of x and y have 

to be read for all elements whose load distribution is uniform.
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It should be possible to modify the program to allow a 

different type of load and rigidity to be read for each 

element. 

The program, in its present form, evaluates the inte- 

grals of the analytic functions and their derivatives for a 

._ number of steps between any limits specified by the user. 

This’ is carried out for each harmonic and for each strip. 

Ii is thought that it may be possible to evaluate, and store 

in a separate file, all the necessary integrals for all boun- 

dary conditions, for a pre-specified number of values of the 

dependent variable so that mueneTee the integrals are required 

petween certain limits, the value can be obtained directly 

(from the file) by subtracting the value of the integral at 

the lower limit from that at the upper limit... Intermediate 

values may be obtained by interpolation. This process, if 

possible, would drastically reduce the time required by the 

computer to evaluate the integrals. 

The method of solution, at present, is based on the 

assumption that the boundary conditions along each edge are 

homogeneous, so that in any one problem, only one set of 

eigenfunctions is used. It is possible, and not too difficult, 

to modify the program such that the choice of boundary con- 

ditions specified by the eigenfunctions are dependent on the 

element number, i.e. to allow mixed boundary conditions to be 

treated. The outcome of this is, however, not known at this 

stage, because the use of different eigenfunctions for two 

neighbouring elements will cause discontinuity of deflection 

as well as slope to occur across the element boundaries, 

Displacement functions with discontinuous slopes have been
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successfully used with convergent results, but no reports 

have been found regarding the use of functions with discon- 

tinuous deflections across plate element boundaries. A poss- 

ible alternative method of treating mixed boundary conditions 

is available with the program as it stands. This method, 

however, applies only to a mixture of clamped and free boun- 

dary conditions along one or two opposite edges.* The method 

involves using the clamped function throughout and adding a 

rectangular extension to the edge and assigning a large value 

to the rigidity of the extension where the edge should be 

clamped and a zero value where he edge should be free. This 

method has not been tested, but on the basis of experience 

with the computer program it is anticipated that simulation 

of the boundary conditions in this way would he successful. 

Another possible area where tests would be useful is the 

application of the method to plates of the form shown in 

fig.(8.1). The boundary conditions on one or two opposite 

edges may, in these cases, be either clamped or free, 

    

      
  

      

Pig. (8.1)



3) 200te. 

This type of problem would be solved by completing the 

large rectangle, using thé clamped function throughout and 

assigning a very large value to the rigidity of the added 

portions (say 10° times that of the plate). 

Thus, the ‘semi-analytic method has been shown to be Bis 
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APPENDIX 1 

Integration of Terms in the Potential Energy Expression (2.15) 
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APPENDIX 2 

A2.1 Bigenfunctions of Pree Vibration of Uniform Beams. 

The eigenfunctions of the free vibration of a homogeneous 

beam are known [3¢] to satisfy the differential equations. 

4 4. ce Ee Y (A2.1) 
ay* a 

whose general solution is in the form 

y=asin #24 B cos HL 4 0 sn AL 4 D cosh HL (8232) : 

where A, B, C and D are arbitrary constants dependent on the 

poundary conditions of the beam, H is a parameter related to ; 

the natural frequencies, a is the length of the beam. 

For the clamped-clamped beam, the boundary conditions 

are ; co 

Yoyo ="0 et y =O “end? y =e 

From these conditions, the four following equations are 

obtained: 

B+eD=0 

A = 0) 

i (42.3) 
A sin pl + B cos + C sh + D chp 

A cosH - B sind + © chM + D sh " o
 

Using the first two of equations (A2.3) to eliminate 

D and C from the third and fourth equations, the following 

relationships will be obtained. 

A (sin p = sh} ) + B(cosM a chy ) 

A (cosH - chp ) - B(sinp + shy ) 
(A2.4) 

i o
O



aha 

For arbitrary values of A and B, the determinant of the 

coefficients in equations (A2.4) has to be zero: 

(sin py oe sh} ) (cosH - chy) 

= 0 (A2.5) 
(cos = chy ) (sin a shf ) 

Equation (A2.5) yields the characteristic equation of the 

system, i.e. 

cosH chy = . (A2.6) 

Equation (A2.6) is a Eronpecnaanae equation neces roots ney 

pe obtained by one of a number of methods [ 51, 

The first four roots of the equation are 

By = 4.73004 , Hz = 7,85320 , bs =.10-9956 5. My, = 14.1372 

for r>4 Mp (2x41) T/2. 

From equation (A2.4) 

sinw - shy ws = chy 
B= - Cos en tT sing sone 

Since the constant A is arbitrary, the value 1.0 can be 

assigned to it. Equation (42.2), after substituting for B, ¢ 

and D in terms of A, then becomes: 

Y= [sin uma = shoe o,(cos HE - ch A) 

sin - sh 
where o,, = He Le 

iS cos M, - ch A, 

  
  

The eigenfunctions for beams with any other boundary conditions 

are similarly obtained.



A2.2. Orthogonality Property of the Beam Eigenfunctions. 

Since the eigenfunctions satisfy the differential 

equation 

Mt BEY 

where 
4 Po oa ae 

a = ay? , a x z 

two modes r and s(r¢s) of the eigenfunction will satisfy the 

equations 

(A2.7) 

Multiplying the first df equations (A2.7) by Ne and the second 

by Y, then subtracting, yields: 

1 \v Vv 
YoY. =—— | 3. VS YO] (A2.8) 
rs 4 4. [: sr eae | Cee 

Integrating both sides of equation (42.8) over the length of 

the beam, the right hand side being integrated twice by parts, 

gives: 

( x = ; You Wee. ee te 
[eee ee gtr 7 tp te ts “pt Ir Fe 
0 r 8 0 

(42.9) 

On substituting the end limits, each of the four products 

on the right hand side of equation (A2.8) reduces to zero. 

The first pair because, either the deflection is zero (simply 

supported or clamped) or the shear force is zero (free). The 

third and fourth terms vanish because either the slope or the 

moment is zero.



Therefore, for a uniform beam: 

a 

\x Yay =0 (r#s) (A2.10) 

oO 

It can be shown, similarly, that 

a 

j vy ¥, dy =0 (rds) (A2.11) , 
°O 

These properties are called the orthogonality properties of 

- the beam eigenfunctions. 

When r=s', let the integral be 
Bi 4 

I= j ¥, ¥, ay (42.12) 

oO 

Substituting for Y, from (42.7), 1 becomes: 

a 
petal Deo |e Yay (42.13) 

ro i 

Integrating by parts and applying the preceeding argu- 

ment regarding the end limits, the integral reduces to: 

. 

a 
os 1 m 

Bia fs way (A2.14) 
¥-2 

and on repeating the process: 

a 
bee ia (42.15) 

x oO 

From equations (A2.12), (A2.14) and (A2.15) the following is 

obtained:



SAG 

a 

he pele Ol) oueettceat a= j on oe Beli ar TA yay (A2.16) 
° r re 

Now, substituting the expression (A2.2), i.e. 

Y,= Asin. y+ Beosti,y+C shu, y+Dechay, into 

equation (2.16) then integrating, gives for the integral: 

2 2 2) Teh Bad D0 (42.17) rol
e 

‘The values of A, B, C and D for various boundary conditions 

are as given in table (4.1) 

The integrals of products of derivatives of the eigenfunctions 

are similarly evaluated. 

A2.3 Orthogonality of the Rigid Body Modes. 

The rigid body displacement and rigid body rotation for 

the free-free beam were taken as 1 and (s - ) respectively. 

Now for the orthogonality property to be maintained, the foll- 

owing conditions have to be satisfied: 

a a a 

Se lente & onal a J 1.¥, ay = j (3 - =) ¥,, dy = J 16(5 - -) dy =0 

QO ° ° 

where Ls is the eigenfunction for the free-free beam. 

It is immediately apparent that the third condition is 

satisfied. For the first and second conditions, Y, is replaced 

1 h 
by ors t from equation (A2.7). 

Xr
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Thus: 
o
u
 

a 

i kierag aes pe ay 
a ~ 94 r Ans 

1 m 2 
aera [zo = 0 since the shear force 

Xr ° 

is zero at both ends. 

a 4 Vv leery, eee (Eee : J (3 =) ¥, dy = Ys, (5 - x, dy. 

0 ° 

Integrating the right hand side by parts gives:. 

a 

ia Sete i aeetyer. Lily gels 
{G a x, a Mr i a) Y ss he av]. 
° : 

eet 1 yu ft te a 

see ler ®) See he a 

O by applying the argument regarding the 

end conditions. 

It can be shown similarly, that for the simply supported- 

free case: 

o
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 ae & " Oo
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APPENDIX 3 

The Constituent Matrices in the Harmonic Element 

Stiffness Matrix en, » Equation (4.27 
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A3.2 The Intezrals j= dy ana fy ca dy in the Harmonic 

ment Stiffness Matrix (Equation 2 Betwee: 

Arbitrary Limits. 

These integrals involve products of the functions sin mg 

mg mg 
cos mg , ©” , and e and sin ng , cos nm , Senin 

where %-=y/a. A total of 16 integrals need to be evaluated. 

The integration of these functions is carried out either - 

by parts or by using well-known relationships between products 

of the functions and functions of the sum or the difference of 

their arguments. The results are: 

For mén 

My ae els : Je 3 sinm, d, = ———s (-m cos mz +n sin mg ) 
m+n 

eS jens cos my dz =-5——y (m sin my +n cos mz ) 
me*#n 

Six more integrals are obtained from the two above simply by 

replacing n by -n and by interchanging m and n. 

  

n ms i 1 ng mg Jem e Oty Ser eS ey):
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Three more integrals are obtained from the one above as 

described before. 

1 Join hg scos my dy = (m sin mz sin ng 
m n 

+n cos mz cos ny ) 

One more integral is obtained from he one above by inter- 

changing m and n. 

Jain ny sin my dg eagles (-0 cos m, sin nz 
m =n 

+n sin mg cos ng ) 

Joos nZ cos mg, dy = sao (m sin mz cos ng 

-n cos my sin ng: ) 

For m=n 

Jsin® mg dy = ears in om ) 20 en Hess 

Joos” my dy = 4 (+ sin 2m, +23) 

Join me cogeme: de vs = i cos 2my . 

Integrals of the form jyer dy are obtained by integrat- 

ing by parts using the relationships already established. 

A3.3 The Vectors Involved in the Harmonic Element Force Vector 

Equation 4.35 Me 

b 
. SUR ve b aoe 

Jima -[2 & 3 Hl] 
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APPENDIX 4 

A4.1 Newton's Iterative Method. 

Newton's Method involves making a guess X,_1 at the 

solution of the equation f(x)=0 then using the tangent to the 

Pune raoe at X,1 to obtain the next approximation and so on 

as shown by fig.(A4.1). 

#(z) 

f(x)=0 

    

  

Fig. (A4.1) 

The recurrence formula will be given by: 

1 ys Ey ) 

  

foc) 
nel fae 

£(x ) 
i.e. Bee |S = te 

2 Cee 

The convergence can be shown to be approximately 

quadratic, i.e. the number of significant figures almost 

doubles with each iteration [42 ].
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A4.2 Listing of the Computer Program NEWTON 

"HEGIN' 
TREACY Fula Ss UME SENG Ole Ts THES UNTEGER”’ Vi MARRAYY ACS E40) 5 

PTr=h4, O*ARCTANC1,0); 
ATV) 221. 475103  AL212=4.094095 ALSISS7, 854765 ALG12510,99555 
AT512216.13722 "FOR! 132667,8.9,10 'DOt ALIV:3C1-0.5) P13 

WRITETEKTC*C8 HN ChQC 175") *ROOTSKUFSCHARACTERISTICKZEQNXXCOS(M) #COSH 
(Mete0'C'1C 175")! 

HOPSC VPS") MOMEXNO.*CHHS*) "ROOTECIIC 175")? 
NEU CRS Ey NL) 
VEOR* F254 “STEP? PV VUNTIL® 10 "N08 

"REGIN' 
NFWTONT: 

FreEXPCALII)? CrmCOSCATTI); SraSINCALTID: CHEBCEST/E) (23 

SHrECE-1/E)/25 Yrs ATL) -CORCHHI)/ CORSH@S*CH) 

"TRY ABSCY-ALT]) > 1.0 8 -9 'THEN' 

"BEGIN! 
ALIV:8Y; "GOTO! NEWTONT? 

"END'S 
PRINTC1+2,0)3 SPACECA)? PRINTCY¢2¢10)3 NEWLINE(2)¢ SPACE(1703 

"END'G 
NEWLINE C203 
AC11:54.730063 ALZ1287,855208 AL3IS=10,99563 ALh12=14,1372F 

AC5)2317.2768; "FOR 1:36¢778,9,10 OO" ALLIreCE+0.5) *PTE 

WRITETEXTCHCE* C810 47S") PROOTSKOFXCHARACTERISTICKEQNXXCOS(M) *COSH 
Qm=1 2090990 1758) Penn w nnn nnnH ed 

“(NFO W799) MODERNOL CHOS*)"RODTICNIC 175") 'emmemnwnKERUEE mw 
UC O26 25S) MES x 3 

"FORt beste "STEPS FOTUNTIL" 10 #008 
"HEGIN' 
NEWTON2: 

SEXPCALIT)? CrSCOSCALI]): S:aSINCALTID CHEBCEFI/ED/2F 

      

  
----- 

  

weceres 

    

SHrSCFH1/E)/22 Vrs All)-(C#CHH1)/(CHSHRS*CH)E 

"1F® ABSOY*ATI1) > 1.0 & -9 "THENS 

"HEGING 

ALTLI:5¥2  'oOTO' NEWTONG? 
FENN? 5 

PRINTC1, 2,013 SPACECK); PRINTCYs2,10)% NFWLINEC2)3 SRACECI7); 

SENDS 

NEWLINFC2)3 
AT1}2=3.926605 AL21:57.068587 AL3)2=10,21025 ALGIS=13.3518% 

AL12510.49%63 8FOR' 1256001869410 'OOF ALTI2B0C1 40.25) Pls 

WRITETEXTOCTCEPC*AC 1784) *ROUTSKOFXCHARACKEQNXXTANC(M) ETHAN CM) 
PAG OVS) hw em aenwin -'C'4C 178") "MODEX 

NOMChas* > ROOT CHIL 17840 t= ERKEKKO RMR CAC APSHVEND DG 
"FOR! T2517 "STEP! 1 FUNTIL' 10 "po? 

"BEGINS 
NEWTONS; 

FrSEXPCALTID? TrSSINCATLII/COSCALTIDG = § 
SCFAI/ED/ CE HI/ED? SHtS2/(E1/ED; 

VssALT I= (TAH) /OS*#S-SHHSH)E 
‘TE ABSCY-ALTI]) > 1,0 & -9 "THEN? 

"HEGING 
ALI1:5Y¥3 "GOTO" NEWTONS; 

"ENDS; 
PRINT(1, 2,003 SPACEC4S); PRKINTCYs2,10)2 NEWLINE(2)% SPACECI7): 

"ENDS: 

'END'; 

      

   

      

V/COSCALIID: 
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A4.3 Roots of the Characteristic Equations for the Various 

Boundary Conditions. 

(a) Roots of the Equation SINM, = 0 

Simply Supported-Simply Supported 

The roots of this equation are readily obtained by 

inspection. 

fig rv P=142, 004509 

i} 3.1415 9265 359 

(b) Roots of the Hawai COS Li, x COSH sheers: 

Clamped-Clamped and Free-Free. 

Mode No. (r) Root (Mp) 

4.7300 4074 48 

7.8532 0462 42 

10.9956 0783 81 

14.1371 6549 14 

17.2787 5965 77 

20.4203 5224 58 

23.5619 4490 27 

26.7035 3755 56 

29.8451 3021 00 

  

o
o
 

© 
2
 

Of 
e
S
 

e
y
 

= 

32.9867 2286 29 

For r>10, = =$+T



(c) Roots of the 

Clamped-Free eae 

Mode No. (r 

1 

oO 
OW 
o
a
 

a
w
 

fF 
W
N
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Equation COS Hy 

Root _( Hy) 

1.8751 
4.6940 
7.8547 
10.9955 
14.1371 
17.2787 
20.4203 
23.5619 

26.7035 
29.8451 

0406 

9113 

5743 

4073 

6839 

5953 

5225 

4490 

3755 
3021 

88 

30 

86 

50 

14 

21 

14 

21 

56 

00 

(d) Roots of the Equation TAN ,, 

Simply Supported—Clamped and 

Mode No. (r) 

1 

o
w
 

O
N
 

O
w
 

fF 
YW 

DW 

Root ( Hy) 

3.9266 

7.0685 

10.2101 

15.3517 

16.4935 

19.6349 

22.7765 

25.9181 

29.0597 

32.2013 

0231 

8274 

7612 

6877 

6143 

5408 

4673 

5959 

3204 

2470 

22 

57 

30 

78 

20 

52 

88 

25 

61 

01 

%* COSH He +_1 

For 

My 

= TANH {(, 

= 0 

r>10, 

ér = iar 

2 

Simply Supported—Free 

For 

My 

r 710, 

Sela 

4
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APPENDIX 5 

The Least Square Method. 

This method is a general one [42] for obtaining the 

coefficients of a specified-order polynomial from a discrete 

number of points, when this number is larger than necessary 

to make the polynomial unique. The notion will become app- 

arent from the application of the.method to the problem at 

hand, i.e. that of obtaining a linear function of two indepen- 

_dent variables from four points. 

The required linear function is given by: 

D=D, x + Dp y+ Ds : i (A5.1) 

Let the four sets of values of D, x and y be given by Dj, xy 

and yz (i=1,2,3,4). Then the error at each of the four points 

arising from using equation (A5.1) will be: 

(D, - D x, - Dp yy - Dz) i=1,2,3,4. 

and the sum of the square of the errors will be: 

a € fone x; - Dy vy - Ds) 

i=1 

Minimizing S implies: 

eke} 2 So = - 2D) (D, - D, x - Dy vy - D5) a0) 

2; 

oss a 2s =- 2) y,(D, - D, %,- Dp ¥y- Dz) = 0 
aD, 

os =--2 >) (,-0 x, - By, - D5) =0 
aD
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Va D, D, >. x i ye ae i> &, (A5.2) 

yee Oe ee ee ee (45.3) 

> 0, = 2, 5) zy = Dy) yy.< 4D, (45.4) 

let’) x, Dy Ti ya NE, ay Sie N zs 

vipets a. dxf es Viv, =8- YR 

The summation.everywhere is for i=1,2,3,4. 

I " i bao
] 

Nl i 8B I 

Equations (A5.2), (A5.3) and (A5.4) become: 

L I MD, +ND, +P Ds 

Q=ND,) +R D+ 8 Dg 

T PD, +S Do +44 Dz. 

These equations can be solved to give: 

  

F 
= 1 o_ EL 1 (ML _ Q) 

ee ean a ete Ow 

eee Alegre, aay 8 F, Ds] 

D, = (b= ND, - PD) /M. 

where 

Tye LoS 7 2 

be}
 | 

=l
45

 

1 wo
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APPENDIX 6 __ 

Listing of the Complete Computer Program 

"BEGIN® 
*PROCEDURE*® LSTSQRCESsKsQ1.02sQ03eXe¥sQ)3 

*JNTEGER® ES»sKs 
"ARRAY" Q1202203sXs¥2Q3 

*BEGIN* 
‘INTEGER’ I3 
*REAL* SX SQ» SXY » SX»s SY SQs SY s FACT 1 sFACTSs SXQs SYQs SOS 
*IF* ESel * THEN’ 

*BEGIN® 
"FOR Is=) *STEP® 1 ‘UNTIL® 4 ‘DO’ 
QCIJ:=READS z 

*‘END® “*ELSE* 
*FOR' Is=1.8 *DO" 

*BEGIN® 
QCLIJssQCi+g)s QCI+2):=READS 

*END'3S : 
SXSQt @SXYs@SXs =SYSQt SY t =SXQ3 =SYQs #SQs "0605 
*FOR® Ise] Xs 1 *UNTIL® 4 *DO* 

*BEGIN* 
SXSO# =SX SQ*XE13#XC195 SXYs=SXY+XCIJ*YCIIs SXs=SX+XC1I5 
SYr=SY+YC1I3 SQ:=SQ+QCI]3 SYSQ:=SYSQ+YCII*YCI Is 
SXQtsSXQ+XClI#Ql1]3 SyQs=SYQrYC1I#aQcl Is 

*END'S 
FACT 12 =SX*SXY /SXSQ~SY3 FACT2$ =SXY* SXY/ SKSQ= SY SQ3 
Q3CK. ESJs=¢SQ- SX SXQ/ SK SQ+FACT1/FACT2*( SXY¥#/SXQ/.SK SQ-SYQ))/ 

CFACTIL*FACTI/FACT2~C€ SX* SX/SXSQ-4) 3 
Q2C Ks ES] t =¢ SXY* SXQ/SXSQ-SYQ-FACTI*Q3(K»s ESI) /FACT23 
QICKsES1:2=¢€ SXQ-SXY*Q2CK » ESJ-SX*Q3(KsESI)/SXSQ3 

*END' OF PRO CEDURE LSTSQR 3 
*PROCEDURE* GEOMBC (NHARM»s TOT DF sNPD» DF sOVADDsOVF sOVKs PD) 3 

*INTEGER* NHARMs TOTDFsNPD3 
*ARRAY* QVF,sOVKsPDs 
*INTEGER*® *ARRAY' DF» OVADDI 

*“BEGIN® 
*REAL® PIs ‘ 
"INTEGER "Ms NolsllsJePs Se TS 
PIs=#4-e0*ARCTAN( 1-075 
*FOR® Pes] *STEP’ 1 *UNTIL® NPD *po° 

“BEGIN® 
*FOR' Mt=l *"STEP® 1 *UNTIL® NHARM ‘DO* 

*BEGIN® 
*FOR* Ilt=1 "STEP* 1 *UNTIL* TOTDF *DO* 

"BEGIN® 
‘FOR’ Nasi *STEP* 1 *UNTIL* NHARM *DO* 

"BEGIN® 
Is#eC 1 1-1)*#NHARM+N3 
Jt=#( DFC PJ~1)*NHARM+MS 
*IF* J<(1-COVADDE13-OVADDE 1-12)+1) 
*OR® I<(J-COVADDC J]-OVADDE J-1))+1) *THEN’ "GOTO" MISS15 
St* ‘IF* I>J "THEN' I "ELSE" J 3 
Tr= *IF* I>J 'THEN’ J 'ELSE* I 3 
QVFC1.133=OQVFC 1+ 13-OVKC OVADDE $3-S+TI*24C1-C-1) 1M) *PDEPIZ 
(PIM) ; 'END'; 

MISSI 
"END" 

OVFC Jo 123 =26¢ 1-1) 1M) #PDEPI/CPI¥MD} 
I1s#¢( DFC PJ~1)*NHARM+ MS
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*FOR* Ite1I+1 *STEP* 1 "UNTIL* NHARM*TOTDF "DO' 
*BEGIN® 

*IF* L1<C1-COVADDCIJ-OVADDE1-13)+1) "THEN' *GOTO* MISSas 
OVKCOVADDE 1 J-1+11)2=0.03 

Misses 
*END'S 

"FOR* Jt=11-COVADDCIII-OVADDCII-1])+1 *STEP’ 1 ‘UNTIL? II-1 
'DO! OVK [OVADD [TT] -II-J}:=0.0; 
OVKC OVADDE 11332" 1 603 

*END*S 
*END* 5 , 
*END' OF PRO CEDURE GEQMBC 3 
‘PROCEDURE’ SYMVBSOL(AsL»S,BsNsRoFAIL)3 

*VALUE' NoRs 
*ARRAY' AsL»B 
* INTEGER" *ARRAY' Ss 
*INTEGER* N»Ré 
*LABEL* FAIL3 
*COMMENT* SOLVES AX=B,» WHERE A IS A SYMMETRIC POSITIVE DEF — 

INITE MATRIX OF ORDER N STORED IN VARIABLE BAND FORM AND 
B IS AN N*R MATRIX OF R RIGHTHAND SIDESeTHE SOLUTION X 

OVERWRITES B- 
REF+ A+ JENNINGS» THE COMPUTER JOURNAL 41971» PAGE 44603 

*BEGIN® 
*INTEGER® GoHol»JeKsMePsQsT»U0V3 
*REAL*® Y3 

~ Heeos 
*FOR* Is=1 *STEP* 1 *UNTIL® N ‘DO! 

*BEGIN' 
TrmI+H-SC1IJ+15 
GteH+ 13 
Pr=SCTI-13 
‘FOR’ Jr=T "STEP* 1 ‘UNTIL* I-1 *DO" 

*BEGIN® 
QteP+is HseH+l3 
PreSCJ)s Kt=J+Q-P3 
VtesH-P3  Ut=Gs 
Ye=alHI3 
‘IF* K>T *THEN' Us=UeK-Ts 
‘FOR’ Ut=sU *STEP* 1 ‘UNTIL® H-1 ‘DO 
Yt=Y-LCUI*LCU-V35 : 
YssY/LCH-VJs LCHJs=Y¥3 
‘FOR’ Mt=1 ‘STEP’ 1 *UNTIL® R ‘DO 
BCI MJ: =BC12M)-BL JsMJ¥Y3 

*END' J 3 
Yt=aCH+1I3 
"FOR* Ur=G ‘STEP’ 1 *UNTIL® H ‘DO! 
Yr=Y-LCUI +23 
‘IF Y *LE* 0 ‘THEN’ 

*BEGIN® 
WRI TETEXT¢ *¢ *CMI21 SENOTZPOSI TIVEXDEFINITE")°)5 
"GOTO* FAILS © 

*END*3 
HisH+13 Ys=SQRTCY)3 
LCHJs =Y3 
‘FOR® Mt=1 "STEP* 1 *UNTIL® R *DO* 
BCIsMJs=Bl1,MI Ys



*END® I 3 s 
*COMMENT® REDUCTION COMPLETES 
*FOR® IteN *STEP* -1 °UNTIL*® 1-*DO* 

*BEGIN® 
Yr=sLCHI3 
"FOR Mt=1 ‘STEP’ 1 *UNTIL® R *DO* 
BCIsMJ]s=BCIsMI/Y3 
*IF* I=] ‘THEN’ ‘GOTO* COMPLETES i 
Jtels “Pr=SCi-123 
*FOR® Ht=H-1 ‘STEP* -1 ‘UNTIL® Pel "DO" 

*BEGIN® 
JreJ-13  Yt=LCHI3 
*FOR® Mt=1 ‘*STEP* 1 *UNTIL® R ‘DO" 

BC JoM)3=BC JoMJ-BCI oMJ*¥3 
*END’ H 3 

He =P3 
COMPLETE: 
*END' I 3 
*END* QF PRO CEDURE SYMVBSOL 3 

*"REAL* *PROCEDURE* HARM( Ns BCs SYMM)3 
*INTEGER* BCs Ns SYMM3 ; 

“ ¢LF* BC=s1 *THEN® HARMt=(*IF* SYMM=1 °THEN® 2#N-1°ELSE’ N)#*3-1415926536 
"ELSE' ' IF*® BC#@ *OR* BC=3 ‘THEN’ , S : 

*BEGIN® 
‘IF* SYMM=1 ‘THEN’ HARMs=(°IF* N=1 °THEN® 467300407448°ELSE® ‘IF* N=@ 
*THEN' 10-995607836°ELSE* °IF* N=3 ‘THEN’ 17+278759658°ELSE* *IF* Na4 
*THEN' 23-561944903 "ELSE® ( 2#N-0+5)%301415926536) ° ELSE*HARM3=¢ *IF "Nel 
*THEN® 467 300407448°ELSE® “IF* Nee = 
*THEN'7-8532046242 “*ELSE* “IF* N=3 *THEN’10-995607838 °ELSE*® *IF* N=4 
*THEN' 140137165491 ‘ELSE’ °IF* N=5 *THEN® 17¢2787596577* ELSE* 
CN#0+5)*3+ 141592653623 3 . 3 

*END® ‘ELSE* 
*IF* BC=4 *THEN® HARMss(°IF* Nel "THEN® 1-8751040688"ELSE* “IF* N=2 
*THEN’ 4-6940911331°ELSE® *‘IF* N=3 "THEN’ 7¢8547574365°ELSE' ‘IF* N=4 
*THEN® 10.995540735 *ELSE® °I1F* Ne#5 *THEN'14¢137168391 "ELSE ‘IF* Ns6 
*THEN'17 278759533 ‘ELSE® “IF* N#7 *THEN’20-420352251 "ELSE® ‘IF* Nas 
*"THEN® 23-561944903 *ELSE* (N-0+5)#3e1415926536) °ELSE* ; 
*IF* BC=5 °"OR' BC=6 *THEN® HARM:=C(°IF*® Nel °THEN® 369266023122*ELSE*: 
*IF* Ne *THEN® 720685827457 °ELSE® ‘IF" Ne3 "THEN® 102210176123 
*ELSE® “IF* Ne4 *THEN® 1363517687778 °ELSE® (N+0¢25)*3-1415926536)3 

*PROCEDURE® MODIFIFICMsNsYs Tol FFs 
*VALUE' MsN3 *REAL* MsNsY3 *INTEGER® TS ‘ARRAY* IFF3 
*BEGIN® i 

’ *INTEGER’® I5J3 “REAL* Ss Ds SMs SNe DMs DNs As Bo XA2 XB3 
*ARRAY® FMsFNC1:4)sFFsIFFDC 18 4s 12 43 ' 
AteM*Y3 Br=N*Y¥3 XAt=EXPCA)3 XBt=EXPCB)S 
FMC 1I¢=COSCA)3 FMC2):=SINCA)S FML3)2=XAs FMC 4)t=1/XA3 
FNC 122=COS(B)3 FNC2):"8SINCB)3 FNC 3]:=XB3 FNC 4): =1/XB3 
*FOR® 13"1522324 °DO" °FOR® Jt=1s2s324 °DO® FFCLsJ1t=FMCII*FNC JIS 
S3=1/(M*M+NeN)3 SMt=S*M3 SNs =S*N3 
IFFC 1.3]:=SM*FFC 2. 334+SN*FFC 12323 IFFC3¢1]2=SM*FFC 3.13+SN*FFC 3,213 
IFFC 22 332 =-SMeFFC 153]+SN*FFC 22323 IFFC 32212 =SM*FFC 3s 2)-SN*FFC 3,133 
IFFCis4)t= SM*FFC2,4)-SN¥FFC124)3 IFFC4s1)28-SM*FFC 4, 11+SN*FFC 4,213 
IFFC 224] 2=-SM*eFFC 1, 4)-SN*FFC2,4)3 IFFC 4.0] 2"-SM*FFC 42 2)-SN*FFC 401 3 

IFFC 3s 3) 8=FFC353)/(M+N)3 IFFC 4¢4)8=-FFC 4s 4)/CM+ND3



*IF* ABSCM-N)>0.1 *THEN' 
"BEGIN : 

Di=1/¢CM*M-N#¥N)3 DMt=D*¥Ms DNt=D*N} 

IFFC 3e4)¢@FFC3s4]/(M-N)3 I FFC4,3)1=-FFC 4s 3)/¢M-N)3 
IFFC 151)2=DM*FFC2s1)-DN*¥FFC 1,213 IFFC2s2]t=-DM*FFC 1.2)+DN*FFC 2.1 

IFFC1s2)¢=DM*FFC2s2)+DN*¥FFC 1,133 IFFC2s1]18-DM*FFC 151)-DN*FFC 2.2 

3; _'BND'' ELSE! 
*BEGIN® 
IFFC3+4) s81FFC4s3)teY¥3 IFFC1s111=SINC2*#A)/C eM) +¥/25 
IFFC2,2)2"-SINCQ*A/CAeM)+Y/23) IFFCLs2)] eI FFC2.1)88-COS( 2ears 

(44M); 'END'; 
SIF te Tek THEN* 

*BEGIN® 
"FOR’ It#12853-4 *DO* *FOR® Jt#1.25324 *DO* IFFDELsJIteIFFCI,JIs 
IFFC hs 3) s@Y*IFFC 1s 3)-SM*IFFDC 2 3)-SN*IFFDC 1,393 i 
IFFC 321) 2=Y*IF FC 3.1)-SM*IFFDC 3s1)-SN*IFFDC 3.23 
IFFC Qs 33 2=8Y*IF FC 2.3)+SM*IFFDC 1» 3]-SN*IFFDC 2s 313 
IFFC 322) 26Y*IFFC 3s23-SM*IFFDC 3,2)+ SN*IFFDE 313} 
IFFC 1s 41]3=8Y*IFFC 154)]-SM*IFFDC 2s4)+SN*IFFDC124)3 — 
IFFC 491) 3=Y*IFFC 4,1)+SM#IFFDC 4s 1]-SN*IFFDC 4,213 
IFFC 2.4) "Y*1F FC 2s4)+ SM*IFFDC 1s 4)+ SN*IFFDC 2.473 
IFFC 42 2) 3 *Y*IF FC 4s2)+SM*IFFDC 4,21+ SN*IFFDE 4513 
IFFC 34 3)3"Y4*1 FFC 353)-1FFDC 3s 3)/(M+N)5 ( 
IFFC 454] 2=Y*IFFC 4, 4)+1 FFD 4s4]/(M+N)3 
‘IF* ABSCM-N)>00«1 *THEN' 

*BEGIN® 
IFFC 304) 8=Y*IFFC 3,4)-1FFDC 3,4)/(M-N)3 
IFFC 4s 3] 28Y*1FFC 4s 3)+1F FDC 453)/(M-N)3 : 
IFFC 1.1) 8=Y*IFFC 1.1)-DM*IFFDC 2, 13+ DN*IFFDE 1,233 
IFFC 2s 2)8 sY*IFFC 2s2)+DM*IFFDE 1,2]-DN*IF FDC 2513 
IFFC 152] s=Y*IFFC 1/2]-DM*IFF DC 222)-DN*IFFDE 15133 
IFFC 221) ¢8Y*1FFC 2, 1)+DM*IFFDC 1, 1)*DN*IFFDC2,2)3 

"END'* ELSE’ 
*BEGIN® 

IFFC 3s 4) 3" IF FC 4.338 =Y*¥/23 IFFC1s1)s8Y*IFFDC1,1)-2/( 4M) #1 FFDC 8s 
\1-¥*¥/a3) 0 IFFC2.2):=Y*IFFC2s2)¢2/( 4*M) *I FFD 2s 1-Y#¥/ 43 

IFFC 1,2) se1F FC Qs1)8 "Ye FFC 2.114 SINC 2*A)/( B*MeM) Ss 
“‘END*S 
*END'S 
*"END* OF PRO CEDURE MODIFIFI3 
*PROCEDURE* MODCI(NsBCsC)s 
*VALUE* N35 * REAL’ NJ ‘INTEGER' BCS ‘ARRAY’ C3 
*BEGIN® 

"REAL* X+sBs Ds Ss RS 
Xt=EXPCN)S Bt=sEVENC(BC+2)°/*2)5 Ds =EVEN(CBC)3 
ClC2.0]2=1.05 
*‘IF*® BC=1l *THEN® CC1,0)2"CC3,0):=CL4,0):=0-0 “ELSE 
‘IF* BC#2 *‘OR* BC#3 'OR’ BC=4 ‘'THEN* 

*BEGIN® 
St=C SINCN) -B¥(X=-1/K)/2)/( COSC N) ~Be (X+1/X)/2)3 
Ri =( CCOSCN)-SINCN) )-B/X) /C2*(COSCN) “Be (X+1/X)72) 3 
CllsOJs=-Ss CL3s0]t=-DeRs CL4, 0): =D¥C 1+S) 723 

“END* *ELSE® 
“BEGIN® 
ClisO]s=0603 CL3,0]8=DeSINCN)/(X-1/X)3 «=CL420)2"-Cl 3.015 

*END'S 
COislIs=N*Cl 2.035 ClAs1)t=-N*¥CL1,033 CL3s1):=NeCC 3,033
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CC4s1)8=-NeCE 45023 CLI>2Is=N*CL2195 CLA+2Is=-NeCl 15193 
CL3s+2]2=NHCL 3193 ClAs2)8 =-N¥CE Ay 113 

*END® OF PROCEDURE MODCI3 
*PROCEDURE* IYY(MsN»ELO,sEL1,sBC+1 13 
‘REAL’ M»N»ELOsEL13 ‘*INTEGER* BCS ‘ARRAY* 115 
"BEGIN' 

‘INTEGER’ IsJsT»T13 ‘ARRAY’ LFF, SIFFIC1%4+114)5C2 SCN» SCML 184208 
2]; MODCI(N,BC,C); 

| *FOR* Is=1226324 "DO" "FOR? Jt=0.1.2 "DO" SCNCI+JJ#=CCI.J23 
MODCI (Ms BC. C3 

*FOR' Ts=0,1 ‘DO? 
"BEGIN! 
MODIFIFICMsNe ELI. Ts IFF)3 
‘FOR’ 1t=1220324 'DO’ *FOR*® Jt=1,2.324 *DO' SIFFACI,JIse1FFCIoJ 

3;MODIFIFI(Ms Ns EL02 Ts IFF)3 
"FOR? Is=1,253e4 *DO* 'FOR' Jt#ls2s3e4 'DO" 
IFFC I J]s=SIFFICIsJI-IFFC12d33 
TiseT#103 *FOR® It=15203,4/5 ‘DO* LICTI+1I5=0603 
*FOR' [281.223¢4 "DO' *FOR* Jt=1s2s3e4 *DO" 

*BEGIN® 
TICTIO LJ seL AC TI+1 I+ LFFC Ls J3* CCI +03" SCNCJ,0I3 
LICTI+2) se 1LICTI+QI+1FFC 1s J3#CC1,2I* SCNE J, 095 
LACTI¥3) s=L IC TA+33+IFFCI + J]* CCI s03* SCNE Jo 2]3 
LICTI¥4) ee 10T1+4)+1F FCI, d)#CCI +1 J* SCNC Jo 133 
LICTIF5 921 IC TI+SIFLFFCI oJI* CC 1+23* SCNE Jo233 

*END'S 
*END*s 
*END' OF PROCEDURE IYY3 
*PROCEDURE' MODIFI (MsYsT»IF)3 
‘VALUE’ Mj * REAL’ MsY3 ‘INTEGER* T3 ‘ARRAY’ IF3 
"BEGIN 
"REAL" AsXK1+X20X3-X4oM25 
At=M#Y3 X11=COSCA)S X2teSINCA)3 X3s"EXPC(A)$ X4t=1/X33 
IFCAJs=XQ/MS IFCQ)28-K1/M5 IFC 338 =X3/M3 IFC AI8=-X4/M5 

‘IF’ Tl ‘THEN 
*BEGIN’ 3 

Mos =MeMs 
IFCA22=Y*IFC12+X1/M25 IFC2)2=¥*1FC2I+X2/M23 
IFC 3)t=Y8IFC 33-X3/M2s3 IFC 421="¥*1FC4)-X4/M23 

*END'S 
‘END’ OFPROCEDURE MODIFIS 
*PROCEDURE' IY (NsELO»EL1,BC212.112)3 
‘REAL’ NJ ELOsEL1121123 ‘INTEGER’ BC 
‘BEGIN 

‘INTEGER® ITs *ARRAY' CL1#4s0:2).SIFsIFC 1:4), 11008193 
MODCI (Ns BC» C)3 

*FOR' Tr=0.1 *DO* 
*BEGIN® 

MODIFICNELI,T»IF)S *FOR* I:=1s25324 "DO" SIFCIIJt=IFC1I5 
MODIFICNELOsTOIF)3 *FOR' [2"152/324 *DO" IFCLIJs=SIFCII-1FCII3 
TICTI£%00¢05 “FOR' Ls=1s20304 "DO" LICTIssIICTIFIFCII*ClI +025 

*END*3 
Teee11C0Is 11es"110195 

‘END'OF PROCEDURE 1Y3 
*PROCEDURE® FI(NsYsBCoFI O»FI1sFI 23 
*REAL* NoYsFIOsFI1sFI23  ‘INTEGER' BCS 
*"BEGIN'



Kot 

*REAL' AS}. ‘INTEGER’ I3 ‘ARRAY® C£L1t4s082)sFC13 433 
At=N*Y3 

FCL]2=COSCA)S FL2@Is=SINCA)S FC3)3=EXPCA)S FC4)8"1/F03)3 
MODCICNsBCsC)S = FIOt=FIis=FI 2220.03 
*FOR' [881522324 *DO* 

*BEGIN® 

FLOs=FIO+FCII*CC1,033 
FILseFI1+FC13*CCIs133 
FI2:=F12+FC 1) *clis233 

*END'S 
*END* OF PRO FI 3 
*REAL*® PIsAsBsEsGsHoYY¥oVs DDsF 1 oFF 1 oF F 52 BAL» BA2sMs Ns CMs CN» CM1,CN1s CME, 
CN@sALFM»ALFN»s EXO» EX14EX105 EX1 1+ EX20 EX21 5 EX 30 EX315 EX 40s EX41 5 SH10> 
MPNsMMNsM2s SDII 1s SD112sSD11 3» SD11 4» SD11 5s SD21 11. SD2112s SD2113.SD211. 
SD21 15» SD31 14 SD31 2s SD31 3» SD31 4s SD3I 5S» SQL 12s SQ21 12s SQ312s125112>PDAs 
FY sX05X 1 »X20X3.X4eX52 EL 0s EL 1 T1»T2sALFMN» DEF» ROTXs ROTY »MX a MY » MXY 2 
BA3sF1 0 Fils FI2sEL115 EL12s EL) 3s ELL As YYYsVXeVYoFFF 1s SBKaXSKs 
FPMs PM1» PM23 

"INTEGER * Ks NNN» MMM» I » Je NELEMs NHARM» MHARMs NN» NASNBs INs IDs 1 Te La» NSETS» 
TOTDFsSsT» NDOF»NPDsNNODEs TNNODEsNSs ESsMNS»MSQsNSQs 
QTYPEs DTYPE, EP » NLOADs BCs HDF » SYMMsNSTEP3 

NSETSt «READS ° 
*FOR*Ls:=1°STEP* 1° UNTIL*NSETS’DO* 
*BEGIN® ° i 
PI2™4+0*#ARCTAN(C 1.093 
BCt"READ3 At=READ3 NELEMt*READ3 NHARMS=*READS YYY?=REA 
NSTEP? = READS 
NPD?=READS MNSt=READS Vt=sREAD3 SYMM:=READS QTYPE!=READ3 
DTYPE:=READ3 NLOAD: =READ3 
NNODEt=NDOF8=23 TNNODE:=NELEM+13 TOTDF:=2*TNNODES 

“COMMENT*® BC#1 REFERS TO SIMPLY SUPPORTED/SIMPLY SUPPORTED 
“2 CLAMPED / CLAMPEDs 3 FREE/FREE 
4 CLAMPED/FREEs 5 SIMPLY SUPPORTED/CLAMPED 
6 SIMPLY SUPPORTED/FREE 3 

*BEGIN® 
“INTEGER* *ARRAY* OVADDC 0:NHARM*TOTDF Js NODEC 1:NELEM, 1sNNODEJ3 
*PROCEDURE* ADDARRAYS 
*BEGIN® 

"INTEGER*® NHARM2sMsloJ3 
OVADDC03%=03 NHARM2:=2*NHARMS 

"FOR Mt=1 "STEP' 1 *UNTIL® NHARM2 *DO* OVADDEMJ:=OVADDEM~-1J+Ms 
"FOR It=2 "STEP* 1 ‘UNTIL’ TNNODE 'DO’ 
*FOR* Mt=1 "STEP* 1 ‘UNTIL® NHARM2 ‘DO* 

*BEGIN® i 3 ‘ 
Jt=(1=-1)*NHARM2+M3 
OVADDE J} s=QV ADDL J-1)+J-( 1-2) *NHARM®3 

*END*3 
*END* OF PROCEDURE ADDARRAY 3 

*FOR* Kt=1 "STEP* 1 *UNTIL* NELEM "DO" 
*FOR* St=1 ‘STEP’ 1 “UNTIL® NNODE *DO* 
NODECK»s S):8K+S-15 ; 

ADDARRAYS 

*BEGIN®



*PROCEDURE*® ASSMBLY(KsNsM)3 
*INTEGER* Ks NsM3 : 
*COMMENT* THIS PROCEDURE CARRIES OUT THE ASSEMBLY OF THE OVERALL 

STIFFNESS MATRIX IN ONE DIMENSIONAL FORM AND THE ASSEMBLY 
OF THE FORCE VECTOR 3 

*BEGIN® 
*INTEGER® SslollsTsJeJJ3 
*FOR* $3=1522324 "DO" 

*BEGIN® i 
Lit#Q*(K-1)+S3 1 t=NHARM*CII-1)+N3 
*FOR® Tt=15223-4 ‘DO’ 

*BEGIN’ 
JJt@2e(K-1)+TS Jt =NHARM#( JJ-1) +5 
*IF® J>I *THEN® *GOTO" KAM 

OVKC OVADDE 13 -1+J)2 =OVKCOVADDE 1 J -1+JI+HEXE S.TI3 
*END‘3 
KAMs 

*IF® M@N ° THEN® 
OVFCIs13s=OVFCI,13+HEFC S33 

*COMMENT* THE HARMONIC FORCE VECTOR VARIES WITH WN ONLY 3 

*END*3S 
*END* OF PROCEDURE ASSMBLY 3 
*"ARRAY* ELC 11NELEM» 02 MNS),D1+D2-D3»01+025Q30 1tNELEMs 1 MNS, 

THEK»HEKC 12 4, 12 4),HEFC124),0VFC 1s TOTDF*NHARM>» 1313, 

é OVKC 1s OVADDE NHARM* TOTDF 3 2,WC 1: TOTDF*NHARMI> 
HWC1tNHARMs 1: TOTDFJs X»¥»DeQC1s4). PDC ItNPDtlJ, 

JLo JQoT3eIAo ISe TI Le JIB JIBe TI As JISC 1440184), J6.S160 184), 

PsCs DPC 1s NLGAD+ 1) e111 Ds110 1820 )sFF2sFF3sFF 4s FF6C 1SNHARMI, 

CIC 1:4, 022),BEl 1:NELEM)3 
‘INTEGER’ * ARRAY* DFC 13:NPD+1)-NSC 13NELEM]»PTYPE,-NODENOL 1 sNLOAD+ 1 33 

*FOR® Is=1 ‘STEP* 1 ‘UNTIL’ NPD *DO* 
*BEGIN* 
“ DFCIJt=READ} PDC1I:=READS 
*END's 

' *FOR* EPi=1 *STEP* 1 ‘UNTIL*® NLOAD ‘DO* 
*BEGIN’® 
PCEP]:=READS PTYPECEPJ:=READJ NODENOCEP]:=READS CCEPJ:=READS 
"IF* PTYPECEPJ=1 ‘OR* PTYPECEP]=21 *OR* PTYPECEPJ=22 *THEN' 

DPC EP): = READS 
*END'3 
*COMMENT’ PTYPE INTEGERS REFER TO THE FOLLOWING: 

1 LINE FORCE 
21 LINE MOMENT MCX) 
22 LINE MOMENT MCY)? 
3 CONCENTRATED FORCE 
41 CONCENTRATED MOMENT M(X) 
42 CONCENTRATED MOMENT MCY) 43 
*FOR® [t=1 *STEP* 1 ‘UNTIL* OVADD(CNHARM*TOTDF) *DO* 
OVKCI3:=0.03 
*FOR® Is=1 "STEP* 1 *UNTIL* TOTDF*NHARM *DO’ 
OVFCI,11:=0-03 
*FOR' Ks=1 ‘STEP' 1 ‘UNTIL' NELEM *DO* 

"BEGIN® 
BECK):=READS NSCKIJ:=READS ELCK»013=0-03 

*FOR* ESi=1 ‘STEP’ 1 ‘UNTIL® NSCKI *DOQ" 
ELCK»s ESJ3=READS 
"END'3
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*"COMMENT’ QTYPE AND DTYPE INTEGERS REFER TO THE FOLLOWING 

111 UNIFO RMITY THROUGHOUT THE WHOLE PLATE -ONE VALUE TO BE READe 
11 UNIFORMITY THROUGHOUT FACH ELEM.e A VALUE FOR EACH ELEM e 
1 UNIFORMITY THROUGHOUT EACH STEP. 
2 NON-UNIFORMITY + VALUES FOR Q1202203 AND / OR DlsD2» AND D3 

TO BE READ 

3 NON -UNIFORMITY . ABOVE VALUES TO BE EVALUATED FROM LSTSQR « 
VALUES OF @ AND / OR D TO BE READ FOR EACH STEP IN SUCH A 
SEQUENCE AS TO MAKE Q£32 AND QC4] OF EACH STEP THE SAME AS 
@C€12 AND Q{2) OF THE NEXT STEP RESPECTIVELY + THUS FOR EACH 
ELEM 4 VALUES SHOULD BE READ FOR THE FIRST STEP AND TWO FOR 
SUBSEQUENT STEPS. 

6 NO DISTRIBUTED LOAD 3 
‘IF* QTYPE=111 ‘THEN* 

"BEGIN® i 
* Q3C1+138=READs ’ ; 

‘FOR’ Kewl 'STEP* 1 "UNTIL" NELEM *DO* 
"FOR' ESt=1 'STEP' 1 "UNTIL" NSCKJ *DO° 

"BEGIN® 4 
QICKSESI¢mQ2CKsESI250003 QSLK-ESIt=Q3C 1.193 

*END!3" 
‘END’ ‘ELSE’ 

‘IF® QTYPH=11 ‘THEN’ 
*"BEGIN® : 

*FOR' Ke=1 ‘STEP’ 1 "UNTIL* NELEM ‘DO! 
‘BEGIN’ — : : 

~ Q30Ks 12 1=READs : 
‘FOR’ ESt=1 ‘STEP’ 1 ‘UNTIL’ NSCKI *DO* 

*BEGIN' : : g 
~ QICKSESI=Q2CK,ES]250-03 Q3CKsESIs=Q3CKs123 teanire . 3 

“ENDS 
‘END’ ‘ELSE! 

*IF* QTYP&=1 ‘THEN’ 
"BEGIN® ; = 
~ "FOR! Kimi *STEP* 1 *UNTIL’ NELEM 'DO° 

*FOR' ESt@l "STEP* 1 "UNTIL" NSCKI *DO* 
*BEGIN® : 
 Q3LKsESI:=READS QICKsESI1=O2CK»ESI1=0603 
*END'S” ; ; 
‘END' ‘ELSE? 

‘IF* QTYPE=2 ‘THEN’ 
*"BEGIN® ; 

‘FOR’ Ktai ‘STEP’ 1 ‘UNTIL’ NELEM *DO* 
"FOR* ESt=1°'STEP* 1 ‘UNTIL' NSCK) *DO* 

*BEGIN® ; rf 
QICKsESIt=READS Q2CK»ESI:=READS Q3LKsES]1=READ} 

*END'3 | ; 
‘END’ ‘ELSE* 
“*IF* QTYPE#3 ‘THEN’ 
"BEGIN® : 
XC13s=XC 332=0603 : 
*FOR' Kr=i *STEP* 1 ‘UNTIL* NELEM 'DO° 

‘BEGIN' 
XC222=XC 4):=BECKIS 
"FOR’ ESt=1 *STEP* 1 ‘UNTIL’ NSCK) *DO* 

"BEGIN ; :
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YC1Is=YCQIt@ELCKsES-133 YC3)0"YC4)tsELCK, ESI 
LSTSQR( ES»KsQ1sQ2sQ3XsY2Q)3 

*END'3 
"END'S 
"END'3 

*IF* DTYPE=#111 ‘THEN’ 
"BEGIN® 

~ D3C 141)1=READS 
"FOR* Kt=1 ‘STEP’ 1 "UNTIL* NELEM *DO* 
*FOR' ESt=1 "STEP" 1 "UNTIL* NSCKJ *DO° 

"BEGIN® 
DICK ES]t=D2(KsESI2:=0603 D3CKsESI:=D3C1.133 

"END*3 i 
‘END' "ELSE* 

‘IF* DTYPE=11 ‘THEN’ 
*BEGIN® 

~ *FOR* Ks=1 *STEP* 1 *UNTIL® NELEM *DO* 
*BEGIN® 

D3C Ks 138 =READS 
*FOR' ESt=1 *STEP*® 1 “UNTIL* NSCKJ *DO’ 

*BEGIN® E 
‘DICKs ES) s=D2CK, ES): =0-05 
D3CKs ESIs=D3CKe1Is © 

*END'S 
"END*3 
*END® *ELSE* 

‘IF* DTYPE=1 *THEN* 
*BEGIN® i 

‘FOR* Kt=1 ‘STEP’ 1 *UNTIL® NELEM *DO* 
*"FOR* ESt=1 "STEP* 1 "UNTIL® NSCKI *DO* 

*"BEGIN® 
D3CKsES]:=READS DICK» ES]: =D2(KsES)3=0-03 

"END'3 
"END® ‘ELSE* 

‘IF* DTYPE=2 "THEN® 
*BEGIN® 

"FOR' Ki=1 "STEP* 1 "UNTIL" NELEM *DO° 
‘FOR’ ESt=1 *STEP* 1 ‘UNTIL® NSCK] "DO" 

*BEGIN* 
DICKsESJt*=READS D2CKsES]t=READS D3CK»ESJ:=READS 

*END'S 
‘END* ‘ELSE* 

‘IF* DTYPE=3 ‘THEN’ 
*BEGIN® 5 
XCL]8=XC 3) 8=60 203 
"FOR’ Ks=1 *STEP* 1 *UNTIL* NELEM *DO* 

"BEGIN® : 
XC2)8=XC 4) :=BECKI3 
"FOR® ESt=1 ‘STEP’ 1 *UNTIL® NSCK) *DO* 

"BEGIN® 
YCLIJesYCQI:sELCK,ES-1)3 YC3)8"¥C4)s sELCK,ES)3 
LSTSQR( ES»K» D1 »D2+D32X2¥2D)3 

*END'S 
‘END'3 
‘END*3 

PDAt=PI /AS
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WRI TETEXT( *(¢ "I ZNSPLULTLIZDLALTLAR’ (°C!) aasanenee 

auoummemem?(°2C")*DATAZSETZNO+*)")3 PRINTCLs20)3 

NEWLINE(2)3 
WRI TETEXT( °C *DATAZOF%PLATE' € °C") Seennennnnnnn-"C° 20") ® 

OVERALL £DIMENSI ONSZAREZZ2A2=2°2")S «= PRINTCAs024)3 

WRITETEXT( "C*2222BR=%")°)3 ; 

SBK:=0-03 °FOR* K:=1 *STEP* 1 ‘UNTIL NELEM "DO" 

SBKt=SBK+BECK]3 PRINTCSBK»024)3 NEWLINEC2)3 

WRITETEXT( °C *NUMBERZOFZSTRIPS%=")')3 PRINTCNELEM»s2,0)3 

WRI TETEXT( *¢ *222%22NUMBERZOF ZHARMONI CS%=°)")3 

PRINTCNHARMs 2,023 NEWLINEC2)3 
WRITETEXTC * ¢ * THESEDGES ZY =0 2ZANDZ2Y AZZARELZZ' ) "D3 

*IF* BC#=1 ‘THEN’ WRITETEXTC '¢ "SIMPLY %SUPPORTED= 

SIMPLY ZSUPPORTED')*) "ELSE* 

*IF® BC#@ *THEN® WRITETEXT(°(*CLAMPED-CLAMPED')*) ‘ELSE’ 

*IF *BC=3 *THEN’ WRITETEXT(‘'(*FREE-FREE')*) "ELSE*~ i 

*IF* BC#4 "THEN' WRITETEXT('(*CLAMPED-FREE")") ‘ELSE* 

*IF® BC#5 ‘THEN’ WRITETEXT( '¢ *SIMPLYZSUPPORTED-CLAMPED® )*) 

“BLSE* “IF* BC=6 *THEN’ WRI TETEXTC*(* SIMPLY ZSUPPORTED- , 

FREE‘ )* 3 
NEWLINEC 2)3 
*IF* NPD=0 *THEN® WRITETEXT( *( *NOZDISPLACEMENTSZAREX 

PRESCRI BEDZONZTHEZOTHERZEDGES-")") * ELSE’ 

*BEGIN® : 
* WRITETEXT(¢ *¢ *DI SPLACEMENTS%PRESCRI BED20N%THEZ0 THERZEDGESS 

AREZZZ")* 93 NEWLINEC2)3 SPACEC15)3 
‘FOR’ It=1 °STEP* 1 *UNTIL® NPD *DO" ‘BEGIN’ iy os s ie 

*IF*® DFCII*/*2=(DFCIIJ-1)°7'2 *THEN® 
"BEGIN® i 
~ WRITETEXT( *( 'ZERO%DEFLECTI ON%PRESCRI BEDZONZ%NODALALINERZ" "D5 
PRINTCCDFCI3419°/'2532023 NEWLINEC2)3 SPACEC15)3 

*END® ‘ELSE’ Erp eH 
"BEGIN® 

" WRITETEXT( *¢ *ZEROZROTATLONZPRESCRI BEDZ0N ZNODAL% 

LINEZ%Z°)*)3) «= PRINTCCDFCIJ4¢12°7°2532025 NEWLINEC2)3 

SPACEC15)3 5 

*END'3 
*END*3 
*END*3 ’ 

~ NEWLINE(2)3 : 

WRI TETEXTC *( * STRIPZNO+%%STRI PAWI DTHSANUMBERZOF ZSTEPS*C 'C*)* 
aeesnne es [fans oesees {feoseseemsamewnm’(* O64) 9") 93 i 

*FOR' Kt=1 "STEP’ 1 "UNTIL’ NELEM 'DO' eS 
"BEGIN® i = 
~ SPACEC3)3 PRINT(K»2,0)3 SPACEC5)3 PRINTCBECKI»0s4)3 

SPACEC7)3 PRINTCNSCKJs2,0)3 NEWLINEC2)3 
*END'} ; 
~ WRITETEXTC'C**C °C") *RZEZSRUSLATZS° C9 C*) 'eaamememenn'(*2C")' 

RAY /ALLLRAK /BULLRIDEFLECTI ONZAAZROTATIONZAZAZROTATIONLAAZZ 

BENDING &MT -%ZBENDING MT o&XTWI STING SMT e ZZPRINCI PAL 2ZMOMENTS 

*C°C 27S") "THETAZXZ2224RTHETAZY "C°11S*)*MX°C 9212S") “MY °C "13S" © 

MXY*C*13S°)°"M1"C°9S*)*MB°C*C*)°R 
Rannnec aa {ZZZI=: Bosse LAA ans LLiua sass sms Ty 
Seeeeeeeenesses CBctre*y* 3 

*POR* Krai "STEP*® 1°°UNTIL* NELEM "DO’ 
*BEGIN® 

    

   

   



at ho as 

Bs=BECKI3 
*FOR® NNNs#1 *STEP*® 1 *UNTIL*® NHARM *DO* 

*BEGIN* 
' *FOR* MMMt=NNN ‘STEP* 1 "UNTIL® NHARM *DO* 
*BEGIN* d 

*IF*BC#1°AND* (DTYPE#111°OR* DTYPE=#11)"THEN® 
*BEGIN® 

‘IF* MMM ° NE* NNN *THEN® 
*BEGIN® 

*FOR® It#1s2s3e4 "DO* *FOR® Jt=ls2.3-4 ‘DO’ 
HEXCIsJ]3=0-03 ‘*GOTO* ORTHO 

*END'3 
*END'S 

Nt =HARM(NNN,s BCs SYMM)3 Ms =HARM(MMMs BC. SYMM)S 
SDIL1s*SDIL2s"=SD1I13:=SDI14s =SDIISs=SD21112=SD2l1es"@Speli3s=Spelias= 
SD2115:=*SD3118=SD3128=SD3I 3s =SD31 4: =SD31 58 #0603 
*FOR* ESt=1 *STEP* 1 *UNTIL*® NSCK) *DO" 

*BEGIN® 
ELOr=ELCKeES-1)/A3 ELIt=ELCKsESI/AS 

*IF* BC=3 ‘OR* BC=6 ‘THEN’ 
*BEGIN® 
ELIIs*ELI-ELOs = ELIQtsELI*ELI-ELO*ELOS § EL13¢=EL1*EL1*EL1~-EL0*ELO*ELO 

5 ELI4s#EL1t4-ELoras i 
*END'S — 

‘IF" BC=3 *THEN® 
*BEGIN® 

*IF* MMM=NHARM-1 ‘AND* NNN#*NHARM~1 ‘THEN’ 
*BEGIN® v : 
“ TACLIs—EL11s = =LIC1L3s=EL12723 
TACAIseL AC WVIsseLACSIeeLACASIemLiCalemLICpads=LiC Sse LiL 153880603 

*GOTO* GLENS 
*END* *ELSE* ‘IF* (MMM=NHARM~1 "AND' NNN*NHARM) *OR* (MMM#=NHARM *AND* 
NNN=WHARM~-1) *THEN* , 

*BEGIN® 
TACLIJs=EL12723) «61101133 =EL13/33 
TACHI LACLSIseLACSIssLACAGIewL iC adsaLACLAlssLiACSIseLiCi1SIss0.03 

"GOTO* GLENS 
*‘END* ‘ELSE* ‘IF* MMM=NHARM-1 * THEN’ 
*BEGINS ae 
IYCNJELOsELIs 3218511293 LiChIsst2s LCi Iis=1ies 
IYONs EL Os EL1oQe120112)5 LIC3It=-N*¥N¥123 11013)2=-NeNel123 
LACQ) es LAC pads LAL Alem LAC 1Adssd ACS )s el 10153350603 

*GOTO* GLEN; 
“END® "ELSE* ‘IF* NNN@NHARM-1 *THEN® 
*BEGIN® "I 

IYCM, ELOsEL1s 3212011295 LCi IssteQs LiICiL)s=1123 
IYCMZELOs EL1,20120112)3 LiCAIs=-MeMeles = 11012)1=s-MeMel 123 
TACSIsHLICABIssLACAIsaL iC iadem1 IC SJseli0iSis=0.03 

"GOTO" GLEN; 
*END*S 
*END*3 

*‘IF* BC=3 *QOR' BC=6 *THEN® 
*BEGIN® 4 

*IF* MMM=NHARM ‘AND' NNN=NHARM ‘THEN’ 
*BEGIN® - 
 TMCLIs=EL137335 LICLLItSEL1474s) LAC Als=EL115 §=11014):"ELI2a7a3 
TICQIesLAC LSdseLACSIssL ACW GIssLACSIseL101533=0.03
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"@OTO* GLEN} 
"END® "ELSE* "IF* MMM=NHARM ‘*THEN® 
"BEGIN’ 
IY(N»ELO-EL1,BC,12,112)3 FICNELI+BCsFIO+FI1sF12)3 11i0C13s"1125 
TICAMs@FIOS LICLAIs=ELISFL 0-125 = 11013]28EL1* EL 14+F11-2*EL14F 10486183 
FICNsELOsBCoFIO+FILsFI2)3 11013)8=01013)-ELO*ELO*FI 1+2*ELO*F1 03 
LiCals=11C4)-F10s = 11014)2811014)-ELO*F 103 
IY(NSELOsEL1-BC-12125112)5 FICNsELIsBC-1oFI0sFI1sF1Q2)3 
TiC1198ELI*ELI*FI1-2*ELI FL 0+2*123 LIC 3)t=-N*N«I 123 
FICNJELOsBC-1sFIOsFILsFI2)3 LACiiJs=-CLiIC11I-ELO*ELO*FI 1+2eELOeFl0)/ 
CN*N)5 ; 
TiCedssLiCtedssLICSIss11015)s90603 

*GOTO' GLENS 
*END® ‘ELSE* *IF' NNN=NHARM ' THEN’ 
*"BEGIN® 
IYCMJELOSELI-+BCo12s112)3 FICMsELILsBCoFIO-FIIsFI2)3 LiCiIis=1123 
TiC AIs=FIOS LACLAssELIeFIO-12s 9 11012):=8EL1* ELI «FI 1-2* ELIF 1 0+241 23 
FICMsELO-BCoFIOsFI1sFI2)3 11012)8=11012)-ELO*ELO*FI1+24ELO*FI 03 
TiC4dssTIC0 4I-FL03 = LiC1Ads=11014]-ELO*FI 03 
1Y(M, ELO+EL1,BC-1e12s112)3  FICMsEL1s,BC-1sF10FI1sFI2)3 
TiCLLI¢ =ELI*ELIeFI1-QeELIeFLO+eeles | «61 IC 2)te-MeMel 123 
FICMSELOJBC-lsFIOsFIIsFI223 LiCl idss-CLiC113]-ELO*ELO*FI 1+2*ELOeFl0)/ 
(MM) 5 F i i 
TICSIs SLAC ASI ssLICSIseLi0 1533-00-03 

"GOTO* GLENs 
"END*S © 

* “ENDS 
TYY(Ms Ns ELOsEL12BCs1193 

GLEN: — 
TiChLJe=1iCid*as LiCAIseLiCeivas LAC3Is=1103I7As 

TiC4ade=LiCaiyzas LACSIs=LIC5IZA133 LICL IseLiC Li l+#Asas 
TiC1SIs=1iC isd scasayrs 
SDILAs=SDILI+DICKsESI*IIC133 SD2Ll11¢=SD2111+D2CKsESIJ*110113 
SDIL2t@SDiIL2+DiCKsESI#11C2I3s Speliear=Sp2l1e+DeCKs ESI*1 101213 
SDII3t=SDII3+DICKsESI*110333 SDN2l13%s=SpD2113+dealKsESI* 1101315 
SDIL4t=SDII4+DICKsESI*#I104I5 SD2114t=Sp2114+D2CKsESI#1101415 
SDIISt=SDII5S+DICKsESI*1I105]33 SDd2I15:*SD2115+D2CKsESI*1 101533 
SD3I 18 =SD311+D3CKsESI*1 10195 
SD3121=SD312+D3CKsESIJ¥110 213 
SD313% ©SD31 3+D3CKs ESI*11C 313 
SD314t=SD314+D3CKsESI* 110 4]3 
SD3151=SD315+D3CKsESI]*1 10513 

*"END*S 

*IF* NNN=1 "AND* MMM=1 *THEN® 
"BEGIN® 

JIC ds LIseJI0 3, 3)2812/BI33 JILA-LiseJIC 4, LiseJL Cis LI s=J1I0 3.338 =6/BIQ3 
JICV-QdamJIC As AlseJliCAodissa/Bs JIC Ge1Ite-JiC12133 Jil 322)38310 4,3) 
seJIIC 3-1) s=-JICQ,193s JIC As QieeJIICQsiie=Q/Bs JLiICSsQlseJLICAsAiewis 
JIICSsQie—-ILIC 2,195 JIC A, 3)te-J1IL 4,125 «110 As 4) = 33 
J2C1e1]28J203539)381-2/B3 JACR-liseJQla,litsJ1ACloliss001s Jel2,2)%= 

Jal aoa)s=2eB/153 J2C3e1]8=-J2C1,133 J2l3.2)2=JL0 4.32 eJ1A0 1, 3185-061 
3 J@l4s2)8=-B/303 JleCis2Is=B/53 JleC1» 4] 2831204, 3)2 8-0-1 sBs 
JL20Qs 1) 2831202, 3)teJ120 As QIteJIAl Asi J2eJ1404.33290-05 Jie2lese)3= 
J14C2Q,211=B¥B/303 9 JlAl2.4]s=-JI202.2)3 Jl2C3,1] 28-113 JILQ03+3]s 1 ols 
J1203,21%=-B/53 J1203,4)8=-0.9*Bs J120 4,1): =J1402,138=B/105 
J1l204, 4) te J140 4,4] 2=BeB/103 SLAC isl)rsJ140353]280665 JI4l 3e1)3=-0463



So Aoi es 

J140322]3=-0-1*Bs Jl40 4,2): =-B*B/603 

JSC io) ] 28350 3.3)3813*B/3953 JH 2e1)s=11*BeB/2105 JSC Sek) 2eI5l 42 4)88 
Bt3/1053 JSC 3.132 59*B/703 JSC 3.233"13*B*B/4203 = J5041)2=-J60 322813 

J5C4e2)2=8-BtI3/1403 JS 4s3)88-11*B¥B/2105 

JISC lol Jt=3eBeB/353 | JI5C251)t8J1503,2)3=8Bt3/603 JISC2,2]t=BI4/eg0s 

J15C 3o133=9%B*B/1403 J150353)2=82*B*eB/73 «9150 451)8=-Bt3/703 

JISC 4,2) 88-3150 25833 J150453]2=-Bt3/283 J150 42413 =B1t4/1683 

*FOR' Is=1 *STEP* 1 *UNTIL® 4 ‘DO’ 
*FOR® Js=sI "STEP’ 1 "UNTIL’® 4 *DO* 

"BEGIN® 
Salles Ji seJaC Jol) ee2eCi-VoesaC Jes JAC Lo J) seJL4C Jol )sseeC i-VoeJl4a 
CJoTI3 JSCIoJ)teJSCIe1I3 JISC -JIseJ1SCJ.113 
JUCTe II eeJICJeT 2s JIC Tad) teJLiCdeT 13 | JBC Ls J) telat Jel J t=-VeJal Jol 3 

*END'S— : 

JAC lo Qlse-loi*Vs JBC34)2=1.1"V3 
*FOR® It=1 ‘STEP’ 1 ‘UNTIL*® 4 ‘DO* 
"FOR' Ji=1 "STEP® 1 "UNTIL® 4 *DO* 

*BEGIN® : 
JIIeIIteJACIsIIs JIC leJ]se-VedlellsJIs JIS Isl JseJielIsJIs 

*END'3 
*END'3 
“ *FOR' Is=1 *STEP*® 1 *UNTIL® 4 *DO' 

*FOR' Jt=1 "STEP" 1 ‘UNTIL® 4 *DO* 
HEKCIs J] 2=(SDILI#J1IC 1» JI+(SD2L11+ SDSL Ld eJICIT ss JI+ 

: “SDI L2eJ1201sJ3+(SD21 12+ SD312)*JaCI»JI+ 
SDII3*J13C 1, J3)+¢€ SD2113+SD31 3)*J3C Io J1+ 
SDIL4*JI4C1,J]+CSD21 14+ SD3LA* JACI JI. 
SDIIS*JISCI,J3+¢( SDB115+SD315)*JSCI+JI)3. 

*IF* MMM=NNN *THEN' ~ 
*BEGIN® i 5 

‘IF* QTYPE "NE* 0 *THEN® 
*BEGIN® Y 
SQ112s=S021123=S031 23 80-05 
*FOR* ESs=s1 "STEP* 1 ‘UNTIL* NSCKI 'DO* 

*BEGIN® 7 
ELOS@ELCKsES-1]/As) ELII@ELCKsESI/AS 

‘IF* BC=3 "AND' NNN=NHARM-1 *THEN® 
*"BEGIN® 
T2teELi-ELOs = 1122=C EL1*EL1-ELO¥*¥EL0)/23 

"END® *ELSE* ‘IF* (BC=3 'OR* BC=6) ‘AND*' NNN=NHARM ‘THEN’ 
*BEGIN® ; f 
les=C(ELI*ELI-ELO*ELO)/23 1128"¢€EL113-EL013)/33 

"END* *ELSE® 
IY(Ns ELO» ELIsBCol 2511293 

l2s=lQeay = Llessl1a*Aeas 
SQiL2r=SQ1L2+Q1I CK ESI*123 SQ2112s=SQRI 18+Q2CK» ESI*¥1123 
SQ312t=SQ312+Q3CKs ES1*1 23 7 

*END'3 
J6CLIs=J603]t=B/2s J6CAIt=BeB/123 «=6\J6C4l2=-J602I3 
JI6C1I2=3*eB*¥B/203 J1602)88BI3/303 J16C3)]:=7*BeB/203 JI604)t=-Bt3/20. 

> °FOR* It=1 *STEP* 1 *UNTIL® 4 *DO" 
HEFCI J: =SQ1l2e*J16C11+¢( SQ2112+SQ31 2)*J6L1 13 

*END® *ELSE* ‘FOR’ It™ls223s4 "DO" HEFCIIJ:=0.03 
"END‘3 

ORTHO: 

ASSMBLY (K » MMM» NNN)3 

*‘IF* MMM>NNN *THEN®



*BEGIN® 
FOR’ [281220324 "DO ‘*FOR* Jt=1520324 "DO* THEKCIsJ]t= HEKCI+JI3 
"FOR" 1891222324 *DO' ‘FOR Jt#120324 "DO* HEKCI,J):=THEXCJ.1I3 

ASSMBLY (K» NNN» MMM) 5 - 
*END'S . 
"END'S 
‘END'S 
*END‘S 

‘FOR’ EPt=1 "STEP’ 1 *‘UNTIL* NLOAD *DO® 
*BEGIN® ‘i 
~ HDF: =(NODENOCEPI*2-(*IF* PTYPECEP]=21 *OR’ PTYPECEPJ=41 "THEN' @ 

*ELSE® 1 ))*NHARM-NHARMS ‘ ’ 
‘FOR’ Mt= 1 ‘*STEP* 1 “UNTIL* NHARM °DO* 

*BEGIN® e ‘i i > 
‘IF* “BC=3 *AND' M=NHARM~1 ‘THEN’ “BEdIN mS z s : 

*IF* PTYPECEPJ=1 ‘OR’ PTYPECEP]=21 'THEN'I2:=(DPCEPJ-CLEPJ)/A ‘ELSE 
*IF*PTYPECEPJ=22 ‘OR’ PTYPECEP]=42 ‘THEN’ 12t=0.0 ‘ELSE’ 128=1,03 

*END' *ELSE*® ‘IF* (BC=3 "OR* BC=6) ‘AND’ M=NHARM *THEN' — 
*BEGIN® : ‘ : ‘ 

*IF*PTYPEL EP}=1°OR'PTYPEL EPJ=21" THEN’ 122 =( DPE EP]*DPL EP1-CC EP3*CC EPI 
/C2KA*AYELSE' "IF" PTYPECEP]=22 "THEN' 123=(DPCEPI-CLEPI)/A 
‘ELSE’ ‘IF* PTYPECEPJ=42 ‘THEN’ 122=1.0 *ELSE’ 12:=CCEPI/A3 

*END' "ELSE a 
"BEGIN’ f 
~ CMs =HARM(Ms BC» SYMM)$ M12 =CC EPI/A3 

‘IF* PTYPECEPJ=1 *OR* PTYPECEPJ=21 *OR* PTYPECEPJ=22 ‘THEN’ 
"BEGIN® 5 ee * - 
~ GM2:=DPCEPIZAS IY(CM»CM1sCM2s,BCsI2112)3 

"IF* PTYPECEPJ=22 ‘THEN’ 12:51 123 
‘END’ *ELSE* i . i 
"BEGIN‘ 
~ FICCMs CM1oBCsFI0sFI1sF12)3 

‘IF* PTYPECEP]=42 "THEN’ [2t=F11 "ELSE* 12t=F103 
*END*S ( ci i : j 
"END'3 
~ OVFCHDF+Ms 133 sOVFCHDF+Ms 13+12*PC EPIS 
"END*3 : i 7 
*END'S : 

"IF" NPD *NE* 0 "THEN 
GEOMBC( NHARM» TOTDF» NPD» DF» OVADDs OVF sOVKsPD)3 
SYMVBSOL( O0VK» OVKs OVADD2 OVFs TOTDF*NHARMs 1 sFAILL)S 

‘FOR’ It=1 "STEP* 1 "UNTIL* TOTDF ‘DO’ 
"BEGIN® cee 
~ *FOR' Tt=1 "STEP* 1 "UNTIL" NHARM *DO* 
"BEGIN® a 5 i i 
HWCTs1 13 sQOVFCC1-1)*NHARM+ To 113 

*END'3 
NEWLINEC2)3 

*END*3 
*FOR' YYt=0e0"STEP' YYY/NSTEP* UNTIL ‘YYY/0+999999 *DO* 

"BEGIN‘ e 
*FOR’ Tr=1 °STEP* 1 *UNTIL® NHARM *DO* 

*BEGIN® Shey f i ew 
*IF*CBC=3 ‘AND’ T=NHARM-1) *OR* (BC#3 *AND® T=NHARM) ‘OR* 
(BC#6 *AND* T=NHARM >) ‘THEN’ ~— 7 : Bees
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"BEGIN® 
~ "IF" CBC#3 ‘OR* BC#6) *AND* T=NHARM * THEN’ 
*BEGIN® fi ate . if Sy . 

" FFSCTIs@YY/A3 FF2CTI2SFF6CTI2=0.03 FFACTI2=1-03 
‘END’ ‘ELSE’ 
*BEGIN’ 7 
~ FFSCTI2=1.03 FFOSCTI:=FFAC TI: =FF6CTI#=0.03 
*END*3 P 
‘END’ ‘ELSE’ 
*BEGIN® i 
~ FIssHARMCTsBCsSYMM)3 FY2=F1*YY/AS X18"EXPCFY)3 
MODCI (F1sBCsC1)3 . 
FF3C T3t=COSCFY)*CIC 1403+ SINCFY )*CIC2s0I+X1*CIC 3s 0I3+CI 04.03 /K13 
FFAC T22 =COSCFY)*CIC 12 1]+SINCFY)*CIC251I+X1*CI£ 3o1I+CI045139/K13 
FF@C T]2 SCOSCFY)*CIC152)4+SINCFY)*CIC2>2I+X1*CIC 32 2I+C1 0 4.283/K13 
FF6C TI2=F1«¢ COSCFY)*CIC 2023-SINCFY)*CIC1.22 : 
+X1* CIC 3s2I-CIL 42 21/7K1) /CAKARA)S 
FF4CTIs@FF4CTI/AS) =FF2CTI2=FF2CTI/CARADS 

*END'3 : 
*END'S 
~ XSX2=0 603 

*FOR® Is=1 *STEP* 1 *UNTIL* TNNODE ‘DO* 
*BEGIN® 4 u - Re 

~ DEF: =ROTX 8 =ROTY 3 =MX3 =MY 8 @MXY 2 =VXs =VYt =0 003 
*FOR® Ts=1 "STEP* | "UNTIL" NHARM *DO* 

*BEGIN® ‘ i 
” DEFt=@DEF+HW(CTs2*1-1)*FF3£TI5 ROTX! =ROTX+HWC Ts 2") JeFFSCTIS 
ROTY t *ROTY+HWE T, 241-13 *FF4C TIS : 

*END*3 
” PRINTCYY/As123)3 PRINTCXS$Xs143)3 
XSXt =XSX+BECI J /SBKs i 
PRINTCDEFs054)3 PRINTCROTXs024)3 PRINTCROTY»054)3 
*IF* I=1 *THEN® fi ; . 

"BEGINS > = 
“Kreis Bt=BECKI3 BAI8=6/B12% BA22=2/B3 BA32=13 
"END *ELSE’ ;. 
‘BEGIN® i 
~ KtsI-13  Bt=BECK]3 BAL!=-6/B123 BA2:=-1/B3 BA38=43 
*END's a 
" *FOR* ESt#1 ‘STEP’ 1 *UNTIL" NSCK) 'pO* 
"BEGIN' or reno nee ane 
" ‘IF* ELCKsES] "GE" YY ‘THEN* 
*BEGIN® ; inaqy E a 
~ DDts€ "IF" I *NE* 1 *THEN® B*¥DICKs ES] "ELSE 0 )+D2CKsESJ*YY+ 

D3[K,ES]; 'GOTO'SAM1; ~ ; * ; 
"END's — 
"END‘$ 
SAMI # 

*FOR® Tz=1 *STEP* 1 *UNTIL* NHARM ‘DO* 
"BEGIN® ~~ i : 
” FFF18=( BAL*CHWE Ts 24K=1 J “HWE T, 2*K+1))+BAQ*( QeHWLE Ts 24K 1+BAS*HV 

[T,2*K+2])); ; 
FF1tsFFF1*FF3C T)3 
FFSt=-FF20 TI*HVCE Ts 2e1-1 93 
MX3 =MX+DD*« (FF 1+YeFFS) 3 
MY =MY + DD*( V#FFI+FF5)3
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MXY 8 =MXY+¢ 1-V)/2* DD*2eFFALTI*HWET,2e1 93 

"END*S 
PRINTC(MX2024)3 PRINTCMYs024)5 PRINTCMXY»s 024)3 

FPMs = SQRT( (MX ~MY ) 124 A¥MXY *MXY D3 

PM1t=(MX+MY+FPM)/23 PM2:=(MX+MY-FPM)/23 

PRINTCPM1,024)3 PRINTCPM2,0+4)3 

NEWLINE(C2)3~ 

"END'S 
NEWLINE( 325 

*END*S 
WRI TETEXTC¢ *( * FORZSTRESSESZTHEZRELEV ANT MOMENT SI SX 
MULTIPLIED&BY%%6/(H*H) °(°C*) *WHERESH&I SZTHEZTHI CKHNESS2 

OF ZTHEZPLAT EXATXTHESPOINT ZUNDERZCONSI DERATION-*)*)3 
*END'3 < " 

*END'3 

FAILs 
NEWLINEC5)3 

*END'S 
"END'3
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