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SUMMARY

The main theme of research of this project concerns the study of neural networks to control uncertain and non-
linear control systems. This involves the control of continuous time, discrete time, hybrid and stochastic
systems with input, state or output constraints by ensuring good performances.

A great part of this project is devoted to the opening of frontiers between several mathematical and engineering

approaches in order to tackle complex but very common non-linear control problems.

The objectives are

I.  Design and develop procedures for neural network enhanced self-tuning adaptive non-linear control
systems.

2. Todesign, as a general procedure, neural network generalised minimum variance self-tuning controller for
non-linear dynamic plants (Integration of neural network mapping with generalised minimum variance
self-tuning controller strategies).

3. To develop a software package to evaluate control system performances using Matlab, Simulink and

Neural Network toolbox.

An adaptive control algorithm utilising a recurrent network as a model of a partially unknown non-linear plant
with unmeasurable state is proposed. Appropriately, it appears that structured recurrent neural networks can
provide conveniently parameterised dynamic models for many non-linear systems for use in adaptive control.

Properties of static neural networks, which enabled successful design of stable adaptive control in the state
feedback case, are also identified.

A survey of the existing results is presented which puts them in a systematic framework showing their relation
to classical self-tuning adaptive control application of neural control to a SISO / MIMO control.

Simulation results demonstrate that the self-tuning design methods may be practically applicable to a
reasonably large class of unknown linear and non-linear dynamic control systems.

Keywords: Feed-forward Neural Network (FFNN), Recurrent Neural Network (RNN), On-line, Off-line, Self-
tuning adaptive control, System Identification, Predictive Control, Linear and Non-linear Dynamic Control
Systems.
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« (alpha) Momentum factor (momentum constant)

n(eta) Learning rate parameter of neural network

e Error

E Error function or cost function
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n Number of output units unless stated otherwise

"y, Number of past plant input signals

ny, Number of past plant output signals

P Covariance matrix
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CHAPTER 1: INTRODUCTION

1.1 Introduction

The aim of automatic control is to influence the controlled process in such a way that its behaviour conforms to
some desired specification. This is usually expressed in terms of different parameters, for example, temperature
in a chemical reactor, speed of a car, global positioning of a satellite (GPS) or the financial cost of running a
plant. Automatic control has developed in the post war period into a scientific discipline in its own right and at

present control systems are applied and are indispensable, in a wide range of industries.

Further developments in the field are fuelled on the one hand by increasing demands on performance of control
systems, expressed in terms of accuracy, speed, cost, reliability, efficiency and so on. On the other hand,
technological advances in other areas result in the emergence of new, complex and challenging systems that
need to be controlled, for example high-performance aircraft, robot manipulators or advanced underwater and

space exploration vehicles and so on.

The so-called classical control theory has been developed for dynamic systems that are described by transfer
functions or in state space form, in continuous or discrete time that are linear. Linear control theory is a mature
area offering effective and well understood techniques and tools for both analysis and design of controllers for

linear systems whose dynamic models are known.

However, most physical systems are to a greater or lesser extent non-linear in nature. The traditional approach
relies on designing the control system based on a local linearised model of a non-linear plant around a given
operating point. For some systems, whose non-linearities are not too severe and the system’s operating point is
confined to a small region, such an approach may give good results. However, for many dynamical systems,
which are significantly non-linear in their operating region, such an approach is not suitable and linear
controllers would yield poor performance or even result in instability. These difficulties are often compounded
by uncertainty regarding process parameters or even the structure of the model, also noise, unavailability of
measurements of some of the variables of the controlled process and variation of the process characteristics

with time.

1.2 Self-tuning Adaptive and Non-linear Control

In response to these challenges and thanks to the ever increasing availability of cheap and rapidly moving
computing technology enabling implementation of more sophisticated algorithms, non-linear and adaptive

control has recently become an area of strong research activity.

The non-linear control laws took explicit account of the known nonlinearities in plant dynamics. One of the

20



first was the scheme proposed in [Blaschke, 1972], which made use of a non-linear, physically motivated,
transformation of state co-ordinates to render the system more simple for the eventual controller design.
Subsequent development of differential-geometric theory of non-linear systems, of which good treatment was
given in [Isidori, 1989] , put many early results in a unified framework. The so-called linearization by feedback
became a very popular non-linear control technique. It consists of a non-linear co-ordinate transformation and

non-linear feedback control, which make the closed loop system linear.

The biologically inspired concept of adaptivity entered the picture and stimulated interest in the development
of control systems that could adapt to changing or unknown characteristics of the plant. Although the concept
appears intuitively understandable, it is quite rich in meaning and it is surprisingly difficult to devise a single
precise definition of adaptivity in the systems theory context, An interesting introduction can be found in
[Narendra and Annaswamy, 1989]. In the context of the work presented in this thesis, it is suitable to describe
an adaptive controller as such which adapts the model of the plant used for control generation or directly the
control law based on the measurement information supplied to it. The overwhelming majority of existing
adaptive designs are formulated as parameter adaptive systems (as opposed to structurally adaptive systems).
That means that a structure of the system model or the control law is fixed and only its parameters are updated.
Self-tuning adaptive control was, at least partially, motivated by non-linear and time-varying systems. It is
often applied to such systems; design of probably stable adaptive controllers even for linear systems with

constant parameters was a major hurdle for the control community.

Two different cases need to be distinguished here. The situation, when the state of the plant is accessible, is a
relatively simple one as the control law utilises state feedback and the output feedback case, when full state
vector of the plant is not available. This is significantly more difficult since the adaptive controller needs to
include a control law which is dynamic (even for constant parameter values). The solutions to this linear
adaptive control problem were finally obtained in the early 80's and these results are summarised in a number

of books [Narendra and Annaswamy, 1989; Astrom and Wittenmark, 1989] and others.

Although a classical adaptive controller is linear for constant values of its parameters, parameter adaptation
makes it altogether a non-linear system. Contrary to early expectations, taking a linear control law, say pole
placement and combining it with an estimation module, containing for example Recursive Least Squares
(RLS), parameter adaptation of the controller is not enough to guarantee the closed loop stability. In the output
feedback case, it turns out that stable adaptation required using specially parameterised, non-minimal in terms

of state dimension, models of linear plants.

Very recently, adaptive control of non-linear systems has been more actively pursued, but despite some
impressive results, [Marine and Tomei, 1995; Krstic e al.,, 1995], the existing systematic techniques are
limited to some specific classes of systems. Particularly the non-linear adaptive output feedback control is still

very much an open problem.
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1.3 Neural Networks

The field of artificial neural networks comprises a vast body of research and practical applications in a wide
range of disciplines. Although origins of artificial neural networks go back to 1940's, only in the last decade or
so has the control community taken a strong interest in the concepts and techniques associated with them.
Neural networks in control became for some time a very active topic which was demonstrated by a profusion
of papers, journals, conferences and books devoted to this subject. As it is usually the case with fashionable
topics, inevitably, some of the proposed applications of neural networks for control were, not based on sound
scientific analysis and were often supported by doubtful anthropomorphic arguments. It is however,
unquestionable that amongst the wide variety of proposed neural control solutions, there were valuable new
concepts, which genuinely benefited the field of automatic control. Gradually, as the initial excitement was

fading away, papers with more rigorous approaches to neural control started to appear.

The most important feature of neural networks, from the control applications point of view, appears to be their
ability to approximate static non-linear mappings and also provide models for dynamic systems. Their ability
to “learn” from data patterns, as the neural network’s literature usually puts it, is directly related to adaptive
systems. Neural networks also exhibit some advantageous features that are related to implementation issues

and which stem from their massively parallel structure.

1.4 Objectives of this thesis

As discussed earlier in Section 1.2, non-linear self-tuning adaptive control remains one of the open challenges.
One of the central problems in the adaptive design is that of finding an appropriate representation of the
controlled system for the purposes of control synthesis. Such application puts different demands on the
representation used compared with pure modelling purposes, i.e., replicating the system’s behaviour with the
model. This point is very well illustrated by the solution to the linear adaptive control problem, which
necessitated special parameterisations of linear plants. Due to the properties of neural networks mentioned

above, their main promise for control systems appears to be in the area of non-linear adaptive control.

The aim of this work is to investigate what neural networks can offer for non-linear self-tuning adaptive
control. The main interest is in their applicability for representation of non-linear systems in adaptive controller
design. The approach taken was to adopt the systems perspective and treat neural networks as a tool for control

systems.

It was mentioned in Section [.2, with reference to linear adaptive control, that the two cases of state
accessibility or inaccessibility are significantly different from the controller design viewpoint with the latter
being more difficult. The same holds for non-linear adaptive control and in particular for control with neural

networks. While in the case of state being accessible, where it is sufficient to use static networks, significant
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progress has already been made. In the output feedback case relatively few results have been published in the

literature, In this thesis, these two cases are treated separately with the emphasis being put on the latter,

This study makes the following contributions:

* non-linear system identification and self-tuning adaptive control using neural network which is based on
incorporation of different methodology, such as identification, predictive and self-tuning adaptive control
(Chapter 4).

e adaptive control and neural network enhanced generalised self-tuning control (Chapter 5 and 6)

e anoverview of neural network (Chapter 2)

e neural network control strategies (Chapter 3)

e Recurrent neural network (Chapter 7 )

Most of the results presented in this thesis have been or will soon be published. The following papers have

been published and the abstracts are included in appendix C.

B.K.Thapa and T.Earthrowl-Gould (1999) “Back-propagation Neural Networks Enhanced Non-linear System
Identification and Control”. IEE Sri Lanka Centre 5 Annual Conference’ Sep.1999. (Refereed and re-
submitted on 18 Aug.2000 for publication for proceeding of IEE Sri-Lanka Centre). To be published

B.K.Thapa, B.Jones and Q.M.Zhu (2000). Nonlinear control with Neural Networks. KES'2000, Fourth
International Conference on Knowledge-based Intelligent Information Engineering Systems & Allied

Technologies. Proceeding Vol.2 pp.868-873.

1.5 Outline of this Thesis

Chapter 1: This chapter introduces the aims, objectives and contribution of the thesis by highlighting the

research background.

Chapter 2: A selective but necessary overview of the wide field of neural networks is presented here. This
touches upon the applicability of concepts and techniques for control systems and in particular, their relevance
to the adaptive control algorithms discussed in the following chapters. Two neural network structures, feed-

forward and recurrent networks, are also discussed.
Chapter 3: This chapter discusses the neural networks control strategies quite intensively. An approach of

classifying neural networks control strategies is presented. The most commonly used two fold classifications of

neural networks are discussed. Some new control structures are also discussed.
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Chapter 4: In this chapter neural network based system identification for linear and non-linear control system

application is proposed. The main attention is drawn to:

* Identification of neural network models for non-linear dynamic systems,

e the network architectures, includes static and dynamic, single and mulit-layer and recurrent type of
networks.

* various types of neural network learning such as, Hebbian, Perceptron, Delta, Widrow Hoff rule and
others.

® Special attention has been paid in this chapter is to develop most efficient learning algorithm for the
multilayer neural network; namely, BP learning in dynamic network.

e Non-linear self-tuning adaptive control

Simulation results are presented to demonstrate the algorithm mentioned in the chapter.

Some part of this chapter has been already published in the conference and proceedings (see section 1.4 above

for details).

Chapter 5: In this chapter, various types of linear adaptive and non-adaptive control schemes and results are
presented so that the techniques described here can be linked directly or indirectly to earlier chapters especially

Chapter 4 and Chapter 6

Chapter 6: This chapter present a neural network enhanced self-tuning controller, which is designed by
amalgamating neural network mapping with a generalised minimum variance self-tuning control (GMVSTC)
strategy. Using this technique, the controller can deal with non-linear plant which exhibits many feature such
as uncertainties, non-minimum phase, coupling effects, unmodelled dynamics (assumed to be globally
bounded). The unknown non-linear plants to be controlled are approximated by an equivalent model, which is
composed of simple linear plus non-linear sub-models respectively. Simulation results are presented to

illustrate the algorithms described in the chapter.

Chapter 7: Recurrent networks are neural networks with one or more feedback loops. The feedback can be of

a local or global type. The objective of this chapter is to study recurrent networks with global feedback.

Chapter 8: This chapter highlights the benefits of neural networks and their application for controls as well as

other scientific fields.

Chapter 9: This thesis concludes with a summary and discussion of some noteworthy points concerning

possible future research directions.
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CHAPTER 2: OVERVIEW OF NEURAL NETWORKS FOR CONTROL SYSTEMS

2.1 Introduction

In this chapter, an overview of techniques and ideas from the field of neural networks is presented. This field
has been an area of tremendous activity in the recent years and by now comprises a vast body of research and
practical applications in many various disciplines ranging from finance to aerospace. It is not the intention here
to provide an exhaustive or even representative survey of this wide field, nor even a full survey of numerous
applications of neural networks in control. Rather some general aspects of neural networks, which are relevant
from the point of view of control systems, are discussed here with the particular emphasis on the issues, which

are directly related to the main topics addressed in this thesis.

The two neural structures, which are of particular relevance to this thesis, are the static feed-forward neural
networks (FFNN) and the continuous and discrete time recurrent neural networks (RNN). A good general
introduction to neural networks is given for example in a book [Haykin, 1994 and 1999] respectively. A broad
surveys of neural networks applications for control and identification are presented in papers [Hunt et al.,
1992; Narendra & Parthasarathy, 1990; Sjoberg et al., 1995] and in the books by [Miller ef al., 1990; Warwick
etal., 1992 & 95].

2.1.1 Motivations behind Artificial Neural Networks

As it is immediately suggested by their name, the artificial neural networks are biologically inspired.
Observations that humans and animals are much better than conventional computers in performing certain
functions, for example image recognition or perhaps more importantly their ability to learn from experience,

led to attempts to understand the ways in which information is processed by living organisms.

In recent years, an ever-intensifying effort has been made to study mechanisms and structures of the brain.
Origins of artificial neural networks go back to the early 1940s when the first structures consisting of

interconnection of elements based on a model of a neurone were investigated [McCulloch and Pitts, 1943].

There are two possible extremes, points of view on what are artificial neural networks and why they could be
useful. One approach is fo treat them as structures, which emulate behaviour of biological nervous systems.
Thus, on the one hand they could help understand functioning of nervous systems in humans and animals and
on the other, their applications in practical systems would exhibit certain attributes of biological systems. This
type of thinking was visible in some, especially early, literature dealing with applications of neural nets in
control systems. Because a control system utilises neural networks, it would therefore, by definition be able to
learn from experience, generalise from examples and so on. The other position is to view artificial neural

networks simply as a class of mathematical algorithms, which are able to produce solutions to a number of
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specific problems. The network structure is just a diagrammatic representation of these algorithms.

Present day knowledge about functioning of the brain and the nervous system is still very limited and one
should be very careful with drawing analogies between biological and artificial neural systems. For example, it
seems rather unlikely that gradient-descent based learning, which is used in most artificial neural networks, is

at least one mechanism underlying learning capabilities exhibited by living organisms.

2.1.2 Applicability to Control Systems

To find out what neural networks can offer to control engineering, it is necessary to compare them with the
existing established techniques and tools for control systems design. Such comparisons and in general
usefulness of neural networks for control have to be judged against criteria applied normally to control
systems, e.g., tracking performance, stability, robustness etc., leaving aside (uncertain) “biological” arguments.
There are a number of good reasons why neural networks can and are useful, for control systems design. The

relevant properties are as follows:

(i) Inherent non-linearity (or non-linear systems): Neural networks have a proven ability to
approximate arbitrary non-linear mappings, that is, they are capable of modelling of both static and of
dynamic systems. Their greatest potential is by far in the area of non-linear control problems. This
issue is investigated in this thesis.

(ii) Learning capability (or adaptive systems): Neural networks have powerful learning capability and
they learn from examples. A network trained on data recorded from a system under study should
produce appropriate behaviour when presented with inputs not appearing in the training data. Such
training can be performed on-line. From the control systems viewpoint, such properties are directly
related to the issues of systems modelling, identification and adaptive control.

(iii) Capability of generalization: Most neural networks exhibit some structural capability for
generalization. In particular, the network will cover many more situations than the examples used to
train it. Therefore, they have the ability to deal with difficulties arising from uncertainty, impression
and noise, in a wide rage of problems [Brown ef al., 1992].

(iv) Massive parallelism: Neural networks have parallel structure, which allows for parallel distributed
implementations. The basic processing element has a very simple structure which, when combined
with parallel processing technology implementations, can lead to very fast processing.

) Hardware implementation: Due to parallelism and simplicity of a single neurone, neural network
algorithms can be implemented in hardware, bringing the benefit of speed and possible large size of
networks used. A number of VLSI hardware implementations are already available on the market
[Ramacher and Ruckert 1991].

(vi) Fault tolerance: Practical neural systems potentially possess a higher degree of fault tolerance than

conventional systems due again to their parallelism. A loss of a single neural cell should not have a
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significant adverse effect on performance. Moreover, if the system is learning on-line or in other
words is adaptive, such loss can be accommodated by appropriate adaptation of other neurones. This
could that provide for a property of so-called graceful degradation, which is very much sought after,
especially in safety critical control systems.

(vii) Data fusion: Neural networks can process both quantitative and qualitative data.

(viii)  Guaranteed stability: Recent theoretical results prove that the certain neural network control

structures are guaranteed to be stable for certain non-linear control problems [Brown ef al., 1992].

These above mentioned properties of neural networks, which are related to the implementation issues, provide
strong arguments for their use in practical control systems and provide motivation for research into the neural

network based control algorithms. In this thesis algorithm implementation issues are addressed.

As far as control algorithm design is concerned, it is certainly the applicability of neural networks for non-
linear and adaptive control, which is of greatest importance. Especially, during the early enthusiasm for
applying neural networks to all possible problems, there were a number of papers proposing control algorithms
based on linear neural models. With the powerful techniques offered by linear control theory and a number of
good linear models traditionally used (e.g. ARX, ARMAX, ARIMAX etc.) there seems nothing new, that
neural networks can offer for parameterisation of linear dynamic systems. On the contrary, such models can
lead to unnecessary over-parameterisation and poor controller performance. This problem is nicely exposed by
[Warwick, 1994].

Control of linear time-invariant plants with unknown parameters and un-measurable states has been an area of
intense effort for the past three decades but now have reached a stage of relative maturity. In the early 1980s,
adaptive algorithms guaranteeing stable control of such systems have been discovered. The choice of a
structure of a model of a controlled system, a crucial element of an adaptive controller, was based on results
from the theory of linear systems. Well-known stability results for linear systems provided guidance in the
choice of adaptive laws governing adjustment of controller parameters. This topic is very well covered in

[Narendra and Annaswamy, 1989; Astrom and Wittenmark, 1989; Sastry and Bodson 1989].

In contrast to this, there is no universal theory of non-linear control and reliable techniques exist yet only for
specific categories of non-linear systems with many non-linear control problems remaining unsolved. This is
especially the case when the dynamics of non-linear systems are inadequately known or are time varying and

state variables are not accessible. This is a situation, which requires some kind of adaptive controller.

Similarly, as in the case of adaptive control of linear systems, a central issue in the suitable representation of a
non-linear system, is the synthesis of an adaptive controller for non-linear plants. Of course, due to a
dramatically bigger variety of possible behaviour in non-linear systems compared to linear ones, it is unlikely

that a universal adaptive non-linear controller can be found. Still, universal approximation property of neural
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networks makes them potentially applicable to various non-linear adaptive control problems. The obvious
question is why neural networks should be better than other more conventional non-linear approximation
schemes. Without attempting to provide an exhaustive answer or a comprehensive comparison, the favourable
properties of neural networks for use in non-linear self-tuning adaptive control will be highlighted in this

thesis.

2.2 Network Architectures

A neural network is defined by the structure of its basic elements, the way these basic elements are

interconnected and by the learning rules.

2.2.1 Neurones

The basic processing element of connectionist architecture is usually called a neurone by rather loose analogy
with biological systems. A general model of a single neurone is presented in Fig. 2.1. It consists of a weighted
summer, a linear dynamic SISO system and a static, usually non-linear, function also called the activation

function and is selected differently in different applications.

Fig.2.1 Model of a neurone

2.2.2 Weighted summer

The weighted summation can be described by
N; M,
s (0 = leijj(r} 4 k):,bmuk (1)+z,
j= =]
Thus signal s; consists of a weighted sum or net outputs y; of all neurones and external inputs wy and of a bias
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term z; . Naturally, the above equation can be represented for the whole network in a vector-matrix notation as:

s=Wy+Bu+z
where y and z are vectors, of dimension #, of outputs from neurones and biases respectively. u is the external

input vector and W, B are weight matrices of appropriate functions.

2.2.3 Linear Dynamics

The linear dynamic system with input.s; and output z; can be either continuous or discrete-time and in general
can be described by either differential or difference equations respectively, or by appropriate transfer functions,
Usually, the system dynamics are quite simple (i.e. low order). A simple inertia is often used, which in

continuous time is described by
TX, +x,=s;
A discrete-time version can be described by
ogx (k+1)+ogx (k)= (k)
where & is an integer time index. A trivial version of the dynamics is a system where the relationship between
input and output is static
Xi =8
This is the case in static neural networks.
Clearly, choice of the dynamics in a neurone is unlimited. Particular application of a neural system can provide

guidance here and there is a lot of space for heuristics. For example, if the network is used for modelling of a

plant and the plant is known to contain time delays, delays can be incorporated into the dynamics of neurones.

2.2.4 Activation Function

The activation function describes a static relationship between the output y; of a neurone and the output of its
dynamic partx;.

yi=f(x)
A number of most common functions used are as shown in Fig. 2.2 (a-c). Two important classifications of

these functions are:

e Differentiable versus non-differentiable functions
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e local versus global functions

1) 1ty) 1§39
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Fig. 2.2 Activation Functions: Threshold (a, b, ¢), Sigmoid (d, e, f, g) and Gaussian (h).

The differentiability of the activation function is needed for all weight adaptation algorithms, which utilise
gradient such as back-propagation. Step functions, which are examples of non-differentiable activation
functions are shown in Fig. 2.2 (a, b). Such functions are used in networks, which need to produce a binary

output. Algorithms discussed in this thesis employ only networks with differentiable activation.

The second classification distinguishes between activation functions, which have significant output only in a

small region of input space and those support covers a large part of the input space.

A differentiable function o(x)is called a sigmoid function e.g. [Sjojberg ef al., 1995] if it has the property that

both limits exist
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lim x)=a

X—y—oa

i o0 =0

and are distinct. Without loss of generality it is usually assumed a < b . Thus, sigmoid functions have global

support. Two common choices of sigmoid functions (shown in Fig. 2.2 (d-g)) are:

-x x -X 2

1 —e e —e x
O (x) =———,0,(x) =——,0; (x) = tanh(x) = ———; 0, (x) = —5sgn(x)
I+e l+e e +e I+x

Gaussian functions as shown in Fig, 2.2 (h).

2.2 2
yze.t.fv ory=e.l‘i'2v

is an example of differentiable activation, which has significant output only locally.
2.2.5 Connections

Although single neurones themselves are very simple, an interconnection of a large number of them allows
obtaining powerful computational capabilities and very rich behaviour. Regarding the choice of a structure of
single neurones, there are many ways, neurones can be interconnected and the choice is normally dependent

upon the application of a neural network.

For example, a common structure is one with all neurones non-dynamic. In such a network all relationships can

be described by a set of algebraic equations

x=Wy+Bu+z
(2.1)
y=Jx)

where f(X) is a vector whose components are f(x;). The network has no memory and the output of its neurones
depends only on the instantaneous value of the input vector u, weight matrices W, B and the bias vector z.
Static networks whose neurones are arranged in layers are by far the most common type in control and

identification applications and will be treated in more detail in a separate section.

If some or all the neurones contain dynamics, the neural network becomes a non-linear dynamic system. If

dynamics are continuous-time, the network can in general be described by a set of differential equations

X =gv,u,6)
y="h(x,0)
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where x is the state vector and vector contains weights of the network. The interconnection structure of the
network is encoded in the function g and relations between its state and output vector are described by the
function A. Discrete-time dynamic networks can be described by a corresponding set of non-linear difference
equations. Again, a separate section is devoted to a certain class of dynamic (recurrent) neural networks;
namely, the Hopfield type networks, since their application to control is the main issue investigated in this

thesis.

2.2.6 Learning Rules

Once the basic structure of neurones and their interconnections are decided and thus the network structure is
fixed, a network exhibits fixed behaviour for constant values of weights. The learning process of the network is
then concerned with determining such values of the weights so that the network behaviour is closest to the
desired one. This can be for example correct classification of input patterns, approximation of a non-linear

function or convergence to a particular equilibrium point in case of a dynamic network,

In the context of learning in static networks, the connectionist literature distinguishes them into two main

classes of learning algorithms: the so-called supervised and unsupervised learning.

In the supervised learning a desired response d is known for every input applied. Thus, an external reference

signal (teacher) is available. The distance between the actual network output y and the desired one o(d, y),

providing a measure of the error, is computed and used to adjust network weights. A training set consisting of

input and output patterns is required in this training mode.

In the unsupervised learning, only very little @ priori information is available - the desired network response is
not known. Thus, explicit information about output error cannot be used to adapt the weights and learning can

only rely on local information and internal signals.

It is mostly the supervised methods that are used for neural networks in control applications. Algorithms
described in this thesis employ only methods falling into this category and therefore unsupervised learning will

not be discussed here.

What in Artificial Intelligence and connectionist circles is understood by learning falls exactly into the
framework of parameter estimation (adaptation), one of the central issues in the control and identification
theory and practice. For example, batch training using a set of input and output measurements of the plant,
aimed to obtain a network providing a good model of the plant, is nothing else but off-line identification. The
so-called on-line learning corresponds in adaptive control to on-line parameter adaptation. Particularly learning
rules or in other words parameter estimation or adaptation techniques will be discussed in the following

sections in the context of specific network architectures: feed-forward and recurrent.
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2.3 Static Multi-layer Feed-forward Neural Networks (MFFNN)

A particularly popular and useful in control and identification applications is a static structure with neurones
arranged in layers. Such structure has illustrated in Fig.2.3. The name feed-forward (or static) refers to the one-
way direction of how in computations when the network output is calculated. This is illustrated by arrows in
Fig.2.3 A feed-forward network with identical sigmoidal activation functions in the nodes of its hidden layers

usually called a Multi-layer Perceptron (MLP).
2.3.1 Multi-layer Perceptron (MLP)

In a MLP, the point of entry for external input is called an input layer. Input layer nodes pass the inputs
unmodified. Inputs xj,....x,, are then multiplied by the first set of weights (contained in the matrix #) and these
weighted sums of inputs, together with biases of the first layer, form inputs to the sigmoid activation functions

of the first hidden layer.

Input I** Hidden 2" Hidden
layer layer layer

Fig, 2.3: General FFNN with two hidden layers.

Thus, in a vector-matrix notation, vector y’ containing outputs of the first hidden layer is given by
1 I I
y=cWx+z)

wherex = [xy,..., x,,,}Tis the input vector and z' is a vector of the biases of the first hidden layer, whose size is
equal to the number of nodes in this layer. The non-linear operator o(x)=[o(x,),..., Olx, )}T. In a similar

fashion, outputs of the first hidden layer are fed into the second hidden layer and so on, (if there are more than

two hidden-layers). The nodes of the output layer contain linear activation (f (x;) =x; and usually no biases and
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thus outputs of the whole network are weighted sums of outputs of the last hidden layer. Naturally, the whole
network can be described by equations of the form (2.1) with an appropriate construction of matrices W and B.
It is however much more revealing to take explicit account of the layered structure when describing
mathematically such networks. With slight abuse of notation, the bias vectors can be included in the weight
matrices by augmenting inputs to a layer with I’s. Then, the p-dimensional output vector y of the network in
Fig.2.3 is given by

y=W oW oc(W'x))

A fundamental property of the multi-layer perceptron is its ability to approximate arbitrary non-linear

mappings.
2.3.2 MLP as a Universal Approximator

The following theorem in [Funahashi, 1989] establishes ability of a network with a single hidden layer to

approximate, arbitrarily well, continuous functions over compact sets:

Theorem 1 [Funahashi, 1989]: Let o(x) be continuos, non-constant, bounded and monotonically increasing
function on R (i.e., sigmoid and monotone). Let K be a compact subset of R" and f (x,,...,.x,) be a continuous

real valued function on K. Then, for an arbitrary €> 0, there exists an integer N, real constants

w2, = Lo N) and w) (i =1,..N; j =1,...2) such that

- N n
SGmxy) =S wi o X wix = z) (2.2)
i=l i=
satisfies

max |/ (xy ., X )—f’(.\', ey X )| <€
ek n n

Of course, formula (2.2) describes nothing else but a single hidden layer network. Similar results were obtained
by [Cybenko, 1989; Hornik et al., 1989]. The above theorem immediately extends to networks with more than
one output. A similar property for networks with more than one hidden layer can be derived from the above
theorem or be shown from scratch [Funahashi, 1989]. The requirements on the activation function are relaxed

to continuous, non-constant and bounded functions in [Hornik, 1991].

In [Leshno ef al, 1993] a universal approximation property is shown for all non-polynomial activation
functions which are locally Riemann integrable (continuity is not required). However, smoothness of the
activation function has the crucial advantage that the derivatives of network outputs with respect to weights

can be computed and thus gradient based parameter estimation methods can be applied.
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The above theorem is an existence result and does not specify the required number N of hidden layer nodes.
There is no prescriptive method to choose an appropriate network size for a given approximation problem and
one has to apply a heuristic method. Although, one hidden layer is enough for a universal approximation of
continuous functions, it appears that use of more hidden layers might result in a more "efficient" approximation
scheme, that is, to achieve the same quality of approximation a smaller total number of hidden nodes is
required. This relation was observed during the simulation studies with static networks reported in this thesis
and similar observations were made for example in [Chen, 1990; Hunt ef al., 1992; Sjoberg et al., 1994]. Also,
it is mentioned in [Sontag, 1993] that in some control applications, where discontinuous control law is
required, a two hidden layer net can stabilise a system which cannot possibly be stabilised with a single hidden

layer network.
2.3.3 Relation to Other Non-linear Approximation Schemes

The universal approximation property of FFNNs is not unique and a natural question is how does this scheme
compare with other more traditional approximation techniques like for example polynomials or orthogonal

expansions. The general problem of the approximation theory is to find a way of describing a true relationship
y= f(x| yeery .'(”) = f(xJ

based on the available set of measurements {x;, yi/}. k is the index of the subsequent input-output pairs and the

total number of them is, say, S. For control systems purposes, function f: R — R" can normally be assumed

continuous, Treating, for simplicity, fas a real valued function does not restrict generality and the argument

naturally extends to functions whose output space is R” rather than R.

Sometimes certain information is available about the original function /. For example, a physical insight can
suggest what type of functional relations exist between variables and the problem is then reduced to finding a
set of parameters like resistance, friction coefficients etc. If such information is not available, general
parameterised families of functions are used which are capable of describing any reasonable function. In
system control and identification applications, this is called a "black-box" approach. Usually, a function

expansion of the following form
. N )
JSxw)= _}ZIW.-j,v(IJ (2.3)
i=

is used, where f; s are functions

Ji iRy 2R
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and w is a parameter vector whose components are w;'s.
A natural requirement is that the set of functions {f; (x)} forms a basis for a class of functions to which f

belongs. Usually, this is a set of real valued continuous functions over a compact subset K of R", denoted by

[ e C(K), with the norm in C (K} defined as
|71 = suptlrcol: v &
thus, for a certain set of suitable parameters w; it should hold that
f(x)= }; w, (%) @2.4)

There are many possible sets of basis functions {fi(x)}, like for example polynomials, Fourier series and
amongst the more recent schemes fuzzy models see [Wang, 1994]. The choice of a basis for a given
application is determined by practical considerations. In system identification the important criteria are

following [Sjoberg et al., 1994]:

I. The approximation error

|

decreases quickly as N increases.

(2.5)

N
JS(x) - EW,f,-(I)

IL There exists a way of excluding “spurious” (not genuine) basis functions from the expansion.

In practice, only a finite number of basis functions can be used and thus it is necessary that a good
approximation can be achieved with a finite number of basis functions and a finite number of parameters. The
smaller number of parameters or the more parsimonious the representation, the better as it limits complexity of
computations. Another important reason for both the above requirements, in system identification applications,
is due to noise. The set of available data for the function approximation task {x, y} usually comes from
measurements of some variables of the plant being identified. These measurements are often contaminated
with noise. A trade-off exists in the choice of the number of basis functions with respect to the overall error of
the approximator estimated from noisy data see [Sjoberg ef al., 1994]. It is a trade-off between the inevitable
approximation error expressed by (2.5), the so-called bias error and a variance error. This variance error
increases with increasing number of estimated parameters. Thus, if there are too many parameters in the

approximator, some of them contribute very little or nothing at all to the achievable quality of approximation
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(2.5) while increasing the variance error. Therefore, there is a need for a method, which allows striking a good

compromise and choosing an "optimal” number of basis functions.
2.3.4 FFNN as a Function Expansion

Comparing equation (2.2) and (2.3), it is apparent that a single hidden layer network can be interpreted as a

function expansion of the form (2.3). Arranging hidden layer weights wl. in vector w} =[w; ,.‘.,w},, ]

J?(:{. w)=12 wfzo(w}x -z;) (2.6)
where w is a vector containing all weights of the network.

The basis functions are of the form f;(x) = G(w}x —z;). They are obtained by scaling and translating one

fundamental function of single variable o{.) . This way of looking at neural network based approximators is

pursued in [Sjoberg ef al., 1994] and some useful properties are pointed out,

Neural networks are quite "efficient” expansions in the sense of requirement I for functions whose non-
linearities are localised, i.e., there is less asymptotic behaviour. Such functions are common in most physical
systems. This property is more precisely illustrated by the following result from [Barren, 1993]. Consider a

class of function {f} on R" for, which there is a Fourier representation F that satisfies Cf = jla)"F(m)ldw < oo

Then, there is a linear combination of sigmoidal function (2.6) such that the following holds

a2
Jo, /(¥) = f (x)dx s @

where B, is a ball with radius r. The important characteristic of the above bound on the approximation error is
that it is dependant on the number N of basis functions but it does not depend on the dimension », of the input
space. A known problem in the non-linear approximation is the so-called “curse of dimensionality . With the
growing dimension n of the input space, for a construction of a general non-linear approximator the number of
parameters needed and the number of data needed to achieve good parameter estimation grows typically in the
power of n. Thus, the problem becomes practically not tractable for larger input dimensions. However, many
functions exhibit in some sense a low-dimensional character, that is, their significant behaviour occurs only in
localised regions of the input space, or data patterns {x,)} are clustered in subspaces. Such property can be

exploited in the construction of the approximator.
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The idea behind adaptive methods in approximation is to use the data also to select the basis functions rather
than work with a rigid basis and only estimate the parameters weighting the summation of basis functions. This
approach is for example used in the projection pursuit regression [Friedman and Stuetzel, 1981] and wavelets

theory.

The neural network expansion (2.6) uses {(I(W}x —z;)} as its basis functions. These radial basis functions

(RBFs) are in fact selected based on data because hidden layer parameters w},zi are estimated from data.

Therefore, neural networks can be interpreted as function expansions where basis functions are chosen

adaptively and which provide an explanation for their good approximation properties.

2.3.5 Redundant Parameters and Over-training

It is shown in [Sjoberg, 1995] that there is a good way of handling requirement II in neural network models is
by explicit or implicit regularisation. Typically in model identification, whether using neural networks or other
schemes, the parameter estimates are obtained by minimising with respect to the parameter vector w a sum of

squared errors over the available data set
s . 3
E= kEI(J’k = J(x,w)

One of the traditional methods, used in system identification and statistics to deal with the problems caused by

excessive number of parameters, is to modify the above criterion by adding a so-called regularisation term
— * 2
E=E+&w-w)

and minimise such criterion with respect to w.w* is usually based on some guess where the correct values of
the parameters are located and & is a positive constant. Regularisation typically reduces the variance error of
the approximator but increases the bias error, as in the minimisation process parameter estimates are "pulled”

towards w which is usually different from the optimal parameter vector.

A well-known problem described in the neural network literature is that of over-training or over-learning. In
the learning process when gradient based minimisation techniques are used, it can happen that with
consecutive iterations, while network is improving a fit to the data set on which it is trained, the generalisation
between the data points is worsening. Thus, at some stage a further decrease of the error criterion used for
training actually results in a poorer quality of the overall approximation of the desired mapping. A good

analysis of this phenomenon is given in [Slotine and Sanner, 1993]. Some heuristic techniques have been

38



proposed to overcome this problem. One is to stop the minimisation procedure before the minimum has been
found. One way of implementing this is to introduce a so-called “dead-zone”. In this scheme the weights
updates are not performed if the error falls below a certain threshold. The idea behind it is that if the overall
approximation error cannot be reduced below a certain inevitable residue value, further weights updates will
not improve the fit anymore but can only make it worse. Another technique used not only for neural networks
but also generally in modelling is to split the available-data record into a training set and a validation set. The
minimisation is performed using the training set data, while monitoring the error for the validation set. After
initial decrease of both training and validation error criteria; at some point the error over the validation set
starts to increase. This is usually a signal that over-training has begun and minimisation can be stopped at this

point.

It is shown in [Sjoberg, 1995], that there is a connection between these two approaches, in the sense, that
stopping the iterations before the minimum is found gives similar results to regularisation and thus can be
interpreted as implicit regularisation. It has to be pointed out here that the regularisation techniques discussed
above do not find direct application in adaptive control. This is because in adaptive control, parameter
adaptation techniques, although also based on reducing some measure of error, are usually designed primarily
with the objective of achieving stability of the overall system. However, there exist strong connections between
the over-training phenomenon and adaptive control with neural networks. It is shown in [Slotine and Sanner,
1993] that the underlying mechanism behind over-training is a growth of some of the network weights in
subsequent iterations. This growth can possibly be unbounded. This problem is known in adaptive control as
the parameter drift instability, described for example in [Narendra and Annaswamy, 1989]. Due to disturbances
or even small discrepancies between the controlled plant and the model used by the adaptive controller,
adaptation of some of the parameters can lead to their unbounded growth. A number of preventive measures

have been developed, use of a dead-zone being one of them.

2.3.6 Some Other Useful Properties of Neural Approximations

The properties of static neural networks discussed so far have been related to general approximation issues,
that is, of obtaining a good model of some mapping describing a relationship between a number of variables.
Such formulation applies directly to identification (on-line or off-line) of dynamic systems. In case of adaptive
control design, construction of the model of the controlled plant used by the controller is usually driven not
only by its approximation capabilities but also by other requirements, the main objective being to achieve a
stability of the overall system. Therefore, certain properties of the approximation scheme, which might not be
relevant for pure identification purposes, might be vital for successful adaptive control design. In this context,

some further properties of neural approximators are presented here.

Sigmoid activation functions are in a sense a quite “mild " type of non-linearity, They are monotone, infinitely

smooth and have all their derivatives bounded. Let us consider a continuous function over a compact subset K
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of R", f € C(K). Due to Theorem 1, this function can be expressed by an approximation realised with a single

hidden layer network (2.2) and a functional reconstruction error € (x)

f(x)=wa(w'x)+e (x) @.7)

where W2, W' are weight matrices and for clarity of notation bias terms are augmented into w' and o is a
diagonal operator. Matrices H?, W contain the theoretical “ideal” weights, that is such which give the best

approximation over K. In a practical approximation problem they are generally unknown. The actual neural

model
f&x)=wlo('x) (2.8)

. . . a2 Al . .
contains the estimates of those weights W™, W , which are different from W, W . The error between the neural

model and the true function it approximates can be expressed as
h(x) = f() = [(x) = w o' x) - ol x)+e (1) 2.9)
The weighting error can be defined as a difference between the current estimate and the ideal value as

~2 2 -
wl=w?—w?;

2
Il
=

I
=»

The error between the function realised by the network using the current weight estimates and the best

attainable approximation can be expressed in the following way:

Wy x) W2t x)
=W )~ W oW )+ W oW ) - W 2ol x)
=o' )+ W (W' x) - W 1)

The Taylor series expansion of o(W'x) can be written as:

o(W'x)y=cW'x)+o' W' )W x+ HWW'x)

where H{(,) denotes higher order terms. Using the above

o(W'x)—o('x)=0' W' W 'x + HW'x)
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The following property can then be shown [Lewisef al., 1993].

Property 1: For the two sigmoid functions (described in Section 2.2.1) the higher order terms of the Taylor

expansion are bounded by

||n(1fr7§r)|l < +Cz””~"lllpli""

||||F denotes a Frobenius norm which for 4 3[%]5 R™ is defined as:
4l = orca™ay = Eﬂ;

The above property is exploited in [Lewis ef al., 1993] in the design of a stable adaptive controller based on a
static network. Some further properties along these lines are shown in [Chang et al, 1996] and again are

crucial in the design of a stable adaptive law described in this paper.
The above mentioned property is essentially based on the fact that higher order terms of the Taylor series of a
sigmoid function can be bounded by a linear function of a norm of its argument. Polynomial models, which are

one of the most popular traditional techniques, do not possess such feature as they consist of unbounded,

exploding terms.

Another related property is that neural networks are capable of arbitrarily accurate approximation not only of
smooth functions but also of their derivatives. This result was shown in [Homik ef al., 1990] and later
improved in [Hornik, 1991]. This ability is due to smooth and bounded nature of their activation functions. It
implies good interpolation capabilities, that is, modelling of function in between data points, which were used
for training. Again, polynomials with their divergent terms provide far worse models in this respect.

2.4 Learning in MLP Networks

Learning is concerned with estimation (or adaptation) of network parameters usually formulated as obtaining

the best fit to the available data within a given network structure.

Consider a discrete-time non-linear dynamic system governed by the following relationship
k)= f(p(k = 1), y(k =2),u(k - 1))

where y (k) is the system output (scalar), (k) is a scalar input to the system and f{*) is a real-valued non-linear
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function. k is the integer index of the discrete time instants. Suppose we are trying to model the above system
using a neural network. Assuming knowledge of the structure of the original mapping, the input to the network

will be constructed as:
x(k) =[Pk =1), y(k = 2),u(k — D]’

and the network will have a single output. After the choice of the number of hidden layers and the number of
neurones has been made, the weights need to be determined. Typically, this would be done by a minimisation

of an error criterion
18 . e
E= -?:} (r(k) = f(x(k), )
k=]

w.r.t the set of weights of the network (for convenience of notation they are placed in a single vector w).

f(.,ﬁ?) denotes the mapping realised by the network. S is the length of the training set.

Since f'(.) is a non-linear function of the estimated parameters W, no analytic solution is available to solve

such problems and minimisation has to be performed numerically using a search procedure. Typically, such

procedure updates the estimates iteratively in the direction of decrease of the error criterion using a formula

W(i) = Wi —1) = AP(@i) - a—‘?
ow
where / is the iteration number. A is the step size or the learning rate. Matrix P is used to modify the search
direction. In the simple case P=I we obtain a pure gradient (steepest descent) algorithm. To improve efficiency,
second order methods, which approximate Newton direction from the curvature information accumulated in
consecutive gradient calculations, can be used, like for example Gauss-Newton, Levenberg-Maquard or

conjugate gradient [Fletcher, 1987].

Identification can be performed in a batch mode (off-line) when the whole data set is immediately available and
parameter updates are based on the whole data record, or recursively (on-line) when data only up to current

measurement is available and parameter estimates are updated as the new data is acquired.
A somewhat different situation arises when the network is used in an adaptive controller with weights updated

on-line. The design of the parameter update law is also based on reducing some measure of error but has to

take into account also the overall stability of the system.
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2.4.1 Calculation of the Gradient-Backpropagation (BP)

Whether the parameter update law is directly based on reducing the network modelling error or is constructed
with stability of adaptive control scheme in mind, in any case it requires calculation of the gradient of some
error measure, involving the network output, w.r.t. the network weights. The BP algorithm is a way of
computing this gradient and it can be derived by applying the chain rule of differentiation to the expression

describing output of the network as a function of its weights.

As an example, let us consider a network with two hidden layers described by
N N n
S (x(k),w) = iwfo‘[ i uﬁc( Ew}, X )J (2.10)
il j=! 1=l

which for clarity of derivation has only one output. The input to the network is x=/x;,....x,]". N; and N, are the

numbers of nodes in the 1*' and 2™ hidden layer respectively, Weight w; is the weight between output of the
™ node of the (k-))™ layer and i™ node in the k layer (the 1*' hidden layer is given the number k=1). Thus, for

example, w;. denotes a weight conncctingﬁh node of the 1°' hidden layer with i" node of the 2™ hidden layer.

The bias parameters are not explicitly written. Let us denote inputs to the Kk layer as xf and outputs as yf .

Thus,
k _ k d for exampl 2 2 Yo
y; =o(x; ) and for example, yl=o(x})= E_I“.gyj

Let us assume a simple error function

1

E= 5 (y—}"(.\', w))2

where y is the desired output for the input x.

For the weights of the output layer the derivatives are given by:

OE (. of . Fmdy’ -
2 (o - L2 - (Fon - ) L2 (G - ety
aw, aw,}. dy; awr‘j

by defining:

& =(Fom-nwidal)
we obtain the expression for the derivative
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The derivative w.r.t. the weights of the 1° hidden layer are give by:

- Ny af 2
oFE U(lv)_y))ﬁaf(lv} dy;

dw f =l awf aw:.,'
. N.
= (f( W) — y)) )3 wfo‘(,t? )w;-cf (_rJ- ),
=i

since
1

J

2
dy o2 2 p ;o
=g (x; }"’ij 5—— =0 (xf‘)w;.c (.\*j. )x,

I
amj. .

1
it

.M
Again we have: 53 = Z@fw;o"(x;) and obtain
il

E
% _ 8
o',

S

.11

(2.12)

Signals 5){‘ are sometimes called the equivalent error signals, From the above derivations it can be noticed,

that calculation of the equivalent error signals invelves propagation back-wards through the net (as opposed to

forward calculation when calculating the network output). That is where the name BP comes from. A useful

feature of BP is that signals xf and yf are already computed in the forward pass through the net. Except for

3‘} signals, which are back propagated, the rest of the derivative calculation involves quantities associated

with a particular node. The computations are further simplified by simple expressions for derivatives of the

two sigmoid functions

X —X

e —-e
o (x) =tanh(x) = ———; 0y (x) = -
()= tanh) = S0y (0= T =
These derivatives are given by
o (x) = 1 - of (x); Oy (x) = Gy ()1 - T (x);



Exploiting the above properties, gradient can be computed in a parallel fashion in a special network adjoin to

the original one. Such a structure was proposed in [Narendra and Parthasarathy, 1990].

2.4.2 Local Minima
Because output of an MLP network (2.10) is a non-linear function of the estimated parameters w, training of

such a network is a non-linear optimisation task and a fundamental problem with those is that the error

function may have many local minima.

X CE Y1

Xn 3 ¥p
Input Hidden Output
laver laver layer

Fig. 2.4: Radial Basis Function network.

Gradient based techniques cannot ensure convergence to the global one. If the training is performed off-line,
the situation is easier as a number of methods can be used to try to overcome this problem. For example, the
minimisation can be restarted from different initial weights or global strategies like genetic algorithms can be
used. In addition, reaching the global minimum is not necessary as some local minima may provide
approximation, which is sufficiently good. If the network is used for on-line control, such techniques cannot be
applied. Very often off-line pre-training is used to get good initial values of weights, To achieve stability of the
controlled system different “fixes” can be applied which do not directly address the problem of convergence to

a minimum but are explicitly concerned with ensuring stability.

2.4.3 Radial Basis Function Networks

Another variant of a static feed-forward architecture is the Radial Basis Function (RBF) network, which is
presented in Fig.2.4. The topology of the RBF network is similar to that of the MLP network but the way
inputs are processed is different. It contains a single hidden layer consisting of an array of nodes. Each of these
nodes has an associated parameter vector called a centre, whose dimension is equal to the dimension of the
input vector. For each of these nodes, an Euclidean distance between the input vector and the centre of the

node is calculated. This distance provides an input to a single variable non-linear function contained in each
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node. Outputs of the whole network are computed as weighted sum of the outputs of the hidden layer nodes.

The overall input-output mapping realised by a RBF network is described by

v, =7, (x)=§wﬂ.¢(||x-z;. v Jolew p 2.13)

N is the number of nodes in the hidden layer. W), are the weights of the weighted summation realised in the

i
output layer. They can be arranged into a matrix w e gP. éi are the centres of hidden layer nodes. "l denotes
an Euclidean norm, #Hov) R = R) are the non-linear functions of the nodes where v; are positive scalar

parameters determining the "width" of the function.

Some possible choices of the node functions are:

¢ a multi-quadric function ¢z,v) =(z, + vz)”2

1

— but the most common in control applications is the Gaussian
!
(z3 +v2)

* inverse multi-quadric g )=

2
form ¢(z,v) =“P[—z—z]

V¥

Similarly as MLP networks, RBF networks also represent a type of function expansion as can be seen from
(2.13). In the case of Gaussian RBF networks they can be viewed as local function expansions. RBF networks
also possess a universal approximation property, which has been proven, for example, in [Girosi and Poggio,

1990; Park and Sandberg, 1991]. That is, an RBF network can uniformly approximate to any desired accuracy

any continuous function 7 : R” — R? over a compact set K R", provided there are a sufficient number of

nodes in the hidden layer. Again, this is an existence result not specifying how the parameters of the network

can be obtained for a particular approximation task.

Centres of the basis functions need to be appropriately densely placed in the input space, which is due to the
fact that, they have significant output only locally. Therefore, the RBF networks suffer from the "curse of

dimensionality". For larger dimensions of the input space, the required number of nodes becomes prohibitively

large.

2.4.4 Learning in RBF Networks

Output of the RBF network (2.13) is a linear function of the output weights wy; but the centres &; and width
parameters v; appears in the output equation nonlinearly. If the learning problem was formulated as a
minimisation of some output error criterion w.r.t the full set of network parameters consisting of wy's, §f- 's and

vi's, the situation would be very similar to learning in MLP networks, that is, due to the output of the network
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being a non-linear function of the estimated parameters, a non-linear minimisation task would involve risk of

local minima and other problems.

However, advantages can be gained by exploiting the specific structure of RBF networks. A common strategy
for the training of RBF networks is first fix to the centres of the hidden nodes. A variety of more or less

heuristic methods has been developed.

One natural approach is to place nodes on a regular mesh in some region of the input space. For example, if the
RBF network is used as a part of the controller, the mesh can cover entire admissible operating range of the
plant. One such method is described the density of the mesh is chosen based on in [Sanner and Slotine, 1992].
In this paper, the density of the mesh is chosen based on the arguments of sampling theory and by making
certain assumptions about the spatial Fourier transform of the unknown approximated function. The general
problem with number of nodes required, which grows rapidly with placing centres on a mesh is the big tile
dimension of the input space. Some other techniques place the centres around the measurement points (for
example [Chen and Billings, 1992]. Such approaches in turn do not appear to be well suited for adaptive

control, as it is difficult to tell ill advance where the operating point of the plant will move.

After the centres and widths have been fixed, the best values of the output weights need to be determined.

Now, the estimated parameters appears linearly in the network output
N .
v, = Ewﬂ.q};(l} J=lL..p

where ¢ (x) are fixed functions of the input. Least Squares formulation of the estimation problems for linear-

in-parameters models gives an objective function, which is a positive definite quadratic form in the unknown
parameters. Therefore, there is a guarantee of finding a global minimum in a reliable manner. For example:
the orthogonal least square algorithm for RBF networks is described in [Chen and Billings, 1992]. This

property is probably the main advantage of RBF networks.
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Fig. 2.5: Dynamic neurone of a Hopfield Neural Network

2.5 Recurrent Networks

Recurrent networks were originally introduced by [Hopfield, 1984] for the pattern recognition purposes
serving as content addressable memories. The equilibrium points of the network are chosen such that they
represent the uncorrupted patterns. A stable equilibrium point is surrounded by a region of attraction; that is, all
initial conditions from a certain neighbourhood will converge to this equilibrium. Then, initial conditions
belonging to this basin of attraction that corresponds to a pattern contaminated with noise will result in a steady

state, which reflects the correct pattern.
2.5.1 Hopfield Networks

A single neurone of a continuous time Hopfield network is shown in Fig.2.5. Dynamics of such neurones are

described by the following set of differential equations

i & .
g=dy +£lafjc(.\‘j)+bfu i=l...n (2.14)

where x; are state variables of neurones, u is the input, d; are negative constants describing linear part of the
neurone dynamics and a;; are the weights of the non-linear part. o(.) is a sigmoid function. The above set of

equations can be described in a matrix-vector form as

X =Dx+ Ao(x)+ Bu (2.15)
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where xe& R"is the state vector and D = diag(d,,....d,), Ae R™" Be R™ are the matrices of weights. A

discrete-time version of the Hopfield-type network is described by

x(k+1)= Dx(k)+ Ao(x(k))+ Bu(k)

nxl

with state vector x € R” and weight matrices 4 € R™ BeR Elements of the diagonal matrix D satisfy

—lSdI- <lI.

2,5.2 Approximation of Dynamical Systems by Recurrent Neural Networks

Most of the theoretical work on dynamic neural networks was motivated by their applications for content
addressable memories and research was focused on stability of equilibrium points and convergence of network
trajectories to the equilibrium. The ways of partitioning the state space into appropriate attraction regions are
actively researched, see for example the paper [Sundharsanan and Sundareshan, 1991]. Only relatively
recently, results showing abilities of dynamic Hopfield-type neural structures to approximate dynamic systems
appeared in the literature [Funahashi and Nakamure, 1993; Sanchez, 1994; Jin ef al., 19951; Delgado e/ al.,
1995].

A natural way to define the approximation ability in the context of modelling of a dynamical system in the

state-space representation is the following. Let the system to be approximated is described by:

g =/(q,u) (2.16)
where ¢ € R® is a state vector, u € R is the input vector. The approximating system is given by
X = g(x,u) (2.17)

where xe R" is its state vector. Dimension n of the state vector x of the approximating system can in general
be larger than s - state dimension of the modelled system. The approximation can be realised by choosing s
states from the state vector of (2.17) to be the ones, which are supposed to model the behaviour of the original
state vector ¢. Thus the s-dimensional dynamical system could be embedded into a higher n-dimensional one.
Let us denote by x; a vector composed of s states of (2.17). Then it is natural to require that for every initial

condition ¢ (0) (in a certain compact set) and input u(f) belonging to some class of signals (for example

bounded), for an arbitrary €> 0 the model (2.17) can be constructed such that max||q(r}—x3(f)[| <e for an
I

appropriate initial condition x(0) of the model, over some time interval 0 << 7.
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The following result in [Hirsch and Smale, 1974] provides a good starting point for constructing such

dynamical models.

Lemma 1: Let £, f: D— R be Lipschitz continuous mappings, where D is an open subset of R®. Let L be a

Lipschitz constant of /. Suppose that for all ¢ € D the following holds

lr@)-ica) <e @.18)

If (1), G(1)q(r) are solutions of

g=/f(q) (2.19)
i=7@ (2.20)

respectively, on some time interval J, such that qlty) = (1) then it holds that

o)~ <% @xp e ~to| -1y @21)

Therefore, over any finite time interval the trajectory approximation (2.21) can be made arbitrarily good by
taking a suitably good approximation of f (i.e., € small enough in (2.18)). Thus, the dynamical model can be
constructed based on the approximation of the static state functionfand using integrators. It would be therefore
natural to build dynamic models by utilising universal approximation capabilities of the static feed-forward
networks with at least one hidden layer (as discussed in Section 2.3). Such a general model of a dynamical

system, including also the output function y = h(x), is shown in Fig.2.8.

u 5: X
S R o o | 5
——P
Static Network Static Network

Fig.2.6: Model of a general dynamic system based on static network

However, for many purposes models of the form shown in Fig.2.6 might not be very manageable because
mathematical analysis of their behaviour appears quite difficult. For example, one of the basic issues would be
a formulation of stability criteria in terms of the weighting values. Due to complexity of a static network with a

number of hidden layers such problem would be extremely difficult. Therefore, it is of significant interest for
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control and identification purposes to try to obtain structurally simpler dynamical models. Hopfield-type
networks present an interesting case because their structure is relatively simple and there are a number of

results concerning their stability.

The first result showing ability of Hopfield-type networks to approximate dynamical systems appears to be the
one given in [Funahashi and Nakamura, 1993]. The paper considers Hopfield networks (2.14) without input

and with the same linear dynamics in all neurones, that is, d;=d, i=l,...,n

% =dx + Ao(x) (2.22)

The sigmoid function is chosen as g(y) = =
l+e

However, in the derivations, there is nothing preventing use of hyperbolic tangent function instead. Some
neurones, whose states provide the states of the modelled system, are called the output units and rest is called

hidden units. The following theorem is shown in that paper

Theorem 2: [Funahashi & Nakamura, 1993] Let D be an open subset of R, R®, f :D — R® be a C' mapping,

and K bea compact subset of D. Suppose that there is a subset K < K such that any solution q(1) is an initial

value g(0O) in K of an ordinary differential equation
q=/f(q), q(0)e K (2.23)

is defined on J =[0,T)(0 < T <o) and q(t) is included in K for any te J. Then, for an arbitrary €>0,
there exists an integer N and a recurrent neural network (2.22) with s output units and N hidden units such

that for a solution q(t) satisfying (2.23) and an appropriate initial of the network, max“q(r) -Xg (r)“ <e holds,
1

where xs (1)=[x,(1),...,xs(1)]" is the state of output units of the network.

The proof of the above theorem is based on the universal approximation capabilities of a static network with a

single hidden layer. Due to Theorem 1, there exists an integer V, a s x /N matrix W' a N x smatrix #° and an

N-dimensional vector z such that on some appropriate compact set: If(q) —Wowiq+ z)l P
q

Now, Lemma | could be readily applied. However, function f(q)=W10{W2q+z) is not in the form

matching the equation (2.22). The essential idea of the proof is to expand the state by defining an extra N-
dimensional state vector ¥ = Wg + z. In this way a recurrent network of the form (2.22) with s+N neurons is
obtained. Thus an s-dimensional dynamical system is embedded into a higher s+N dimensional one. The

network constructed in this way has connections between hidden units and from hidden units to output units
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but no connections from output units to hidden ones.

In the paper [Delgado et al., 1995], a theorem is given stating that a dynamical system

q=/(q,u) (224)
y=nh(q) (2.25)

where ge R ,ue R,ye R, can be approximated by a recurrent network

X =Dx+ Ao(x)+ Bu (2.26)

where xe R",De R"™", 4e R"™" and Be ™. The construction of the network exploits the same idea of
extending the state as proposed in [Funahashi and Nakamura, 1993]. Thus, the state of the network consists of

a part, which is supposed to model the original state ¢ and an extra auxiliary part x” =[47,»7]. The output of

the network is constructed as y = A(q).

There is no rigorous proof given in [Delgado ef al, 1995], but rather a sketch of network construction.
However, as the general idea is very close to that in [Funahashi and Nakamura, 1993] there appears to be no
obstacle in proving such theorem. The network (2.26) has a more general structure than a Hopfield network

(2.15) as its matrix D is full rather than diagonal as in (2.15).

A somewhat different way of using recurrent networks for approximation of dynamical system is presented in
[Sanchez, 1994]. The network used in that paper has a diagonal structure, that is, there is no connections

between neurones,

X=Dx+ Ado(x)+ olu) (2.27)
y=Colx) (2.28)

where D = diag(d,....d)), A = diag(a,,.., a,) and Ce le. The non-linear function is chosen as

o(x) = tanh(x) .

The following condition is imposed: -d;>a

The theorem states that: given a non-linear system represented as a time-invariant, causal and continuous
operator ¥, which has fading memory and for !u' small enough, there exists a set of values (n, D, A, C) such

that
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Yu(t) - Fu(t) <e, Ve> 0, Yu(t)ye U

where F is the operator associated with this neural network.

Unfortunately, the paper does not specify precise conditions for M being small enough which strongly limits

applicability of this result.

A result concerning approximation capabilities of discrete-time recurrent networks is given in [Jin et al., 1995]

for the networks of the form

x(k+1) = dx(k)+ A o(x(k) + Bu(k)) (2.29)
y(k)=Cx(k) (2.30)

n

where xe R is the state vector, ue R™ s the input vector and ye R? is the output vector.

hxn hxm

Ae R ,BeR and Ce RP™ are weight matrices. Scalar d satisfies —1<d <1. The following

theorem is stated in this paper.

Theorem 3: [Jin, Nikiforuk & Gupta, 1995] Let D c & and U = R™ be open sets, K,cDand g, cu be
compact sets, and f:DxU— R® be a continuous vector-valued function which defines the following non-linear

system

g(k+1)= f(q(k),u(k)) (2.31)

where g€ R® and we R™, with an initial state 4(0)e K ,,. Then, for an arbitrary number €>0 and an

integer 0 < I < oo, there exists and integer n and a recurrent network of the form (2,.29), (2.29), (2.30) with an

appropriate initial state x(0) such that for any bounded input u: RY = Ku pux letk) - pik)] <e
o=k =t

First, a discrete-time equivalent of Lemma | is shown in the paper and, similarly as in [Funahashi and
Nakamura, 1993], the proof of the above result takes the approximation capabilities of a static network with a
single hidden layer as a starting point. Again, by extending the state dimension, an approximation of the s-
dimensional dynamical system is obtained by embedding it into a higher dimensional one.

2.5.3 Useful Properties of Dynamic Neural Models

There appears to be a number of reasons why models based on dynamic neural networks can be useful for
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controller design in cases when there is a need for a dynamic model of the controlled non-linear system.
Although Hopfield type networks of the form (2.15) or slightly more general (2.26) are non-linear dynamical
systems, their nonlinearity is, loosely speaking, not too severe. With state equation defined by a combination of
a linear function and a monotone non-linear one, such state space models can be viewed as a first step from
linear to non-linear models. This relative simplicity allows development of mathematical analysis techniques

for the networks themselves and consequently for the control systems based on such models.

For example, some quite mature results exist pertaining to the stability of networks described by (2.15), see
[Perfetti, 1993; Forti et al., 1994; Forti and Tesi, 1994; Fang and Kincaid, 1996b; Fang and Kincaid, 1996a; Jin
et al., 1994a; Jin and Gupta, 1996]. Due to boundedness of sigmoid activation functions, for both (2.15) and
(2.26) it is sufficient for boundedness of solutions that the linear part of the function on the right-hand side of

state equation (i.e. D.) corresponds to a stable linear system. Details of this useful properties can be found

somewhere else.

Hyperbolic tangent function: y = tanh(x) can be expressed in the following way: y=af{x)x

where coefficient a{x) (dependant onx) is defined as

l—=if,x=0

Coefficient axx) has the property that it belongs to a bounded interval «(x)e€ (0,1). The whole non-linear

part of the right-hand side of state equation in (2.15) or (2.26) can thus be represented by

Ao(x)= AQx
where €2 is a diagonal matrix Q = diag(ay,..., @)

In [Suykens ef al., 1995a; Suykens ef al, 1996], it is exploited in derivation of a Linear Fraction
Transformation representation (used in robust control design) of general dynamic neural models. Using this
approach, the neural state space models can be interpreted as nominal linear systems with bounded non-linear

feedback perturbation.

An interesting result, related to the identification of dynamic neural models, is presented in [Albertini and
Sontag, 1993a], where a few variations of the Hopfield type architecture, that input-output behaviour of the
network uniquely determines its weights (up to re-labelling of neurones and sign reversals). This implies

unique identifiability of network parameters with an appropriate choice of an identification experiment.
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2.5.4 Learning in Dynamic Neural Networks

As the recurrent networks incorporate feedback, their learning is qualitatively different from learning in static
networks. The neural network literature distinguishes between two general classes of learning problems in
recurrent networks, The objective of the fixed-point learning is for the network to reach a prescribed set of
equilibria. The steady state matching is required while the only condition on transients is that they die out, that
is, the equilibria are stable. A more general case is that of trajectory learning, when the output of the network
is required to follow some time trajectory. In both cases, whether, it is fixed point or trajectory learning,
modification of weights employs gradient-based algorithms reducing some measure of error. Thus, the basic
issue here is that of gradient calculation in dynamical systems. Many algorithms for recurrent networks

training have been proposed under various neural networks literature, often with quite confusing names.

However, problem of gradient calculation in dynamical systems is not specific to the neural network field and
solutions to it have been in existence for quite some time now. Early adaptive control techniques were based on
updating controller parameters using gradient descent, see for example the introductory discussion in
[Narendra and Annaswamy, 1989]. A very good unifying treatment of different learning algorithms for
recurrent networks, presented in the general context of gradient calculation in dynamical systems, is given in

[Baldi, 1995]. Consider a general dynamic system:

X = f(x, wu

=/ ) 2.32)
y = h(x,w)

where xe R" is the state vector, ye g" the input, ye R? the output and w is the vector of parameters.

Naturally, each of the continuous-time recurrent networks discussed in the preceding sections can be described

in such a form.

2.5.5 Fixed Point Learning

Let us assume that the system (2.32) is stable and that stability is maintained during the learning process. For
fixed initial conditions and fixed input, system (2.32) converges to an equilibrium point X which is a function
of the parameter vector w. The output of the system in steady state is thus also a function of the parameters,

¥ = h(X(w), w). The objective is to modify the set of parameters in such a way that the steady state output y
is as close as possible to the prescribed pointing p*. This is done by minimising some error measure, which is

usually chosen as a quadratic function

I _ -
E=5(y—y*)T(y—y*)
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The equilibrium X point satisfies the steady-state relation
0= f(F,wu) (2.33)

The derivative of the error function with respect to a single weight @2 is given by

X _EY _[aﬁ]r i

dw, j I, dw, Fy %I'

The derivative of the steady state output is obtained as

F _ oh(F,w)  oh(F,w) X
do, do, o o,

J i

The first element in the above sum results from explicit dependence of the output function h on ¢ . The

second element results from influence of a3 on the dynamics of x. In case of recurrent neural networks one of

them is normally equal zero (a weight is either in the output equation or in the dynamical part). Calculation of

o -
the expression a is done by differentiation of the steady-state relation (2.33). Denoting by fj a single

element of the vector-valued function f°, we obtain

N/
dx dw, do,

which in a matrix-vector notation is

i, 3

a0 0

af .
where ai denotes a Jacobian of function f w.r.t x. Thus, from the above we obtain
"

w _[d]' ¥
Tl dw;

[

Finally, the gradient of the error function is given by
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2 o) (o a Yo" o
da; dy do; ax |adx dw;
Expressions o of 9 ang oh are calculated at the equilibrium point X . The weights are usually updated

a_r,aaf ,acq ox

in the direction of steepest descent according to

Derivation of a fixed point learning scheme for a discrete-time recurrent network follows the same principles.

2.5.6 Trajectory Learning

In the trajectory learning, the goal is to obtain such values of weights that the network output y(1) follows a
desired trajectory y*(t), over some interval [#y, ;]. This approach is therefore directly applicable to the problem
of obtaining a model of a dynamic system based on a recurrent network. Rather than following a signal
trajectory, the goal is then to find such values of weights that the network produces the same output trajectories
as the modelled dynamical system when both are excited by the same input. The error function is defined as an

integral of some measure of the instantaneous error, typically a quadratic function.

|
E = [l e(y(t), y* (1)1 = EJ,’; YO =y* @) () -y * ()t

The gradient of the error function is calculated as

T
9 [ﬁ] 94 (2.34)
dag [dy ] Jdg

Similarly as before,

dy _ dh(x,w) . dh(x,w) oF
dw; dw; dx  dw;
but now the expression 5—-" reflects influence of changes in w; on x over a certain time span, not only in the
a

equilibrium point. It is computed from differential equation of the system (2.32), by applying partial derivative
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0
— to both sides of (2.32) (assuming that i and L commute)
GIO] da, dt

iizéiiJri (2.35)
dtdey odxdw Jdmy

Both _9 and the Jacobian matrix ai are evaluated at the current value of state x(7) and thus are time
day dx

dependant. Therefore, the above system can be classified as Linear Time-Varying. If the initial condition x(1,)

in (2.32) does not depend on the parameters w;, as is usually the case, the initial condition for (2.35)

i(‘u) —p- It has to be stressed that the derivation of (2.35) relies on the assumption that parameters wy is
day

constant.
The question is now how to obtain the solution of the differential equation (2.35). It has been shown in [Baldi,
1995] that amongst all learning algorithms proposed in neural literature so far, there are in fact only two

distinct ways of computing this gradient.

One approach is to integrate equation (2.35) forward in time. That means that for every single parameter w; a
set of n differential equations needs to be numerically integrated. This technique is called the sensitivity
method. Its use in the context of neural networks has been well described in [Narendra and Parthasarathy,
1991]. The basic advantage is that this method is readily applicable for on-line systems. The main disadvantage

of this approach is the heavy computational burden.

The other approach is to use the so-called adjoint method. Instead of integrating forward in time one set of
equations (2.35) for each weight w;, solutions of (2.35) can be obtained by using a solution of an auxiliary n-
dimensional system, the adjoint system, integrated backwards in time. This method exploits the fact that for

each of the weights w;, the autonomous part of the corresponding sensitivity equation (2.35) the same, since it

is based on the Jacobian of the original system é This method is well described in [Baldi, 1995]. It is also
dx

shown there that an on-line version of this method can be obtained but it requires inverting ann x n matrix.
Updates of the network parameters can be performed either continuously or after the whole integration time [£,
f1). This point is further elaborated in Section 4.3, where an adaptive control technique using recurrent neural

networks is presented.
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CHAPTER 3: NEURAL NETWORKS CONTROL STRATEGIES

3.1 Introduction

The objectives of the chapter are:

* o present a comprehensive investigation of the various adaptive control schemes using neural networks
trained by supervised learning.

e to classify the control schemes in an organised structure.

* to present discussions and critical reviews of these neural network controllers.

® to propose possible control structures.

* to present an overview of control applications using neural network.

At present there are a number of survey papers and books that exist on using neural network for control. For
examples, in [Hunter al., 1992; Miller et al., 1990; Werbos, 1990b; Warwick et al., 1992; lrwin et al., 1995;
Agarwal, 1994; Sontag, 1993; Brown and Haris, 1994; Hunt ef al., 1995; Pham and Liu, 1995; Balakrishnan
and Weil, 1996; Omidvar and Elliott, 1997; Lewis ef al.,, 1999] and [Haykin, 1994 and 99]. Also a number of
mini-surveys with suggested methods or possible applications can be found in [Tolle, 1994; Narendra
Parthasarathy, 1990; Slotine and Sanner, 1993] and [Special Editions of the neural network control system
Magazine (1990)]. However, most of these surveys are not comprehensive enough to cover the wide and fast
developing scope of this field. For example in [Werbos, 1990b] five methodologies are suggested and [Hunt et

al., 1992] add four more methodologies to the list of Werbos.

Others use twofold classifications, such as direct and indirect controls. Two-fold classifications are standard
methods for classifying conventional adaptive control schemes. However, the innovations of control engineers
have developed beyond the scope of a single unified twofold classification. Nevertheless, some of these

twofold classifications still useful terms to specify control structures. Hence they are discussed here in detail.

The aim of this discussion is to give an overview of all possible control schemes, as well as allowing analysis
and new control schemes that are easily categorised into multi-levels. The first level divides all control
schemes into two broad groups namely; control schemes controlled by the neural networks only and control
schemes where neural networks work with other controllers. The latter group, which are called hybrid
strategies, refer to those control schemes where neural networks are used as an aid to enhance the performance
of conventional control strategies or vice versa. Some conventional control strategies are referred to as
classical control, adaptive control, optimal control, expert control and fuzzy control. The main motivation for
hybrid strategies is that an effective combination of neural network and other controllers might improve the
control performance. The former group, which called non-hybrid strategies, refers to control schemes where

the model and / or the controller are implemented using neural networks only.
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Since neural networks need to be trained by signals, it is appropriate to define the second level of classification

intervals of how the networks are being trained. For example in supervised learning, how is the error generated

to train the neural networks? Then the second level is categorised as a weight updating process based upon:

(a) Control signals

(b) Desired output signals

(c) Feedback controller output signals

These second level categories can be extended to other methods of training neural networks. At the moment

these categories, have captured most of the existing neural network controllers trained by supervised learning,.

To facilitate simple analysis and understanding of the various control schemes in the literature, terms are used

for the classification levels that are already familiar to researchers working in this field. Fig.3.1 shows multi-

level categorisation of neural networks control strategies. Notice that most of these control structures and their

terminologies are borrowed from the field of conventional adaptive control.

This chapter can be divided into four parts. The first part presents all possible twofold classifications of neural

networks for control schemes. The second part discusses the non-hybrid neural networks control strategies.

These are covered in sections 3.3 and 3.4. The third part discusses all hybrid neural networks control strategies.

These are in sections 3.5, 3.6 and 3.7. The fourth part looks into some of the applications in control using

neural networks.

Neural Network
Control Strategies
|

Hybrid
Strategies

Non-Hybrid
Strategies

J

I

l

Control Signal

| Mimic Expert

Desired Output Feedback Controller
Signal Signal
Direct Inverse Feedback

_,_v[imw Conventional
Controller

L y| Indirect Learning
Architecture

A J

Control

Forward Modeling

Inverse Control

Neural Predictive

Control

»| Neural Feedback

Linearisation

Error Learning

Fig.3.1: Multi-level categorisation of neural network control strategies
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3.2 Two-fold Classifications

In the literature there are a number of twofold classifications of neural networks control strategies. Some

suggested possible twofold classifications and those described in the literature are listed below.

(a)

(b)

(c)

(d)

(e)

Goal and not goal oriented [Hunt e/ al., 1992]. The original concept of goal and not goal-oriented
classifications depends on how the neural network is trained. If training is based on the desired signal, it is
known as goal oriented, otherwise it is not goal oriented. It is difficult to draw a strict line on some neural
network controller training approaches as being either goal oriented or not goal oriented. For example,
neural network controllers that mimic human experts or neural networks trained by using the signal output
from the feedback controller, such as feedback error learning, are not very obviously goal or not goal
oriented.

Closed loop and open loop. Closed loop and open loop are common terminology used in conventional
control systems. Most of the neural network control schemes discussed can be designed as either closed

loop or open loop. For closed loop form we refer to the case where the neural network controller inputs

consist of the past errors signaleg (k), eg (k — 1),.., eg (k —n+1). The open loop does not have these

feedback error signals; instead the desired plant output and the past states of the plant are the input to the
neural network. An example of a neural network controller in closed-loop form can be found in [Bleuler
et al., 1990].

Feed-forward and feedback control. Like closed loop and open loop, feed-forward and feedback control
are common terminologies used in conventional control systems. For a neural network feedback
controller, the control structure is connected in a closed-loop form (see Fig.3.6). The inputs to the
networks are the error from the difference between the desired signal and the actual plant output signal and
sometimes include the past plant outputs [Porter and Liu, 1994]. The inputs to the feed-forward confroller
are the desired signal and the past plant output and input values (see Fig.3.5). Technically feed-forward
and feedback control are similar to closed loop or open loop control structure.

Reference model and without reference model control. For reference model control the desired
performance of the system is specified through a stable reference model [Hunt er al., 1992]. Reference
model control has been widely used in linear adaptive control application [Astrom and Wittenmark, 1989].
The control system attempts to make the plant output y,(k) match the reference model output

asymptotically, that is,

lim ”y NORE (k)H <e 3.1)

k —rea
for some specified constant €2 0, However, neural networks control schemes designed for regulation or
servo (trajectory tracking) do not preclude the use of a reference control model.
Direct and indirect control schemes. These two schemes are formulated in the conventional adaptive

control [Astrom and Wittenmark, 1989]. In direct adaptive control, the parameters of the controller are
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]

(g)

(h)

directly adjusted to reduce the output error between the plant and the desired output. In indirect adaptive
control, the parameters of the plant are estimated and the controller is chosen assuming that the estimated
parameters represent the true values of the plant parameters. A direct adaptive control scheme builds an
explicit model of the desired controller, whereas an indirect scheme produces a model of the plant and
synthesises the control law, using a predefined optimisation or inversion calculation. This twofold
classification is used in neural networks control structures such as [Psaltis er al., 1988]’s specialised
learning (SL) structure can be classified as direct control schemes, whereas [Jordan and Jacobs 1990] put
forward and inverse modelling that can be classified as an indirect control schemes.

Hybrid and direct types. This is the method of classification used by [Kojima et al. 1994]. The hybrid
type refers to a control scheme where the neural network is used to tune the parameters of the conventional
controller. The direct type refers to the neural network as a controller constructed by learning the inverse
dynamics of the control target.

Generalised and specialised learning. Off-line training of the neural network model to emulate the plant
is sometimes known as generalised learning (GL). This is because the neural network model is trained to
emulate the plant over a generalised operating range where the controlled variable is expected to perform.
For cases where the neural network model is only trained for a specific path or trajectory where the
controlled variable will perform, it is known as specialised learning (SL).

Inverse and non-inverse control. It is clear that most of the neural networks for control structures
involve implicitly or explicitly training an inverse model of the plant. Fig.3.2 shows an example where the
neural network controller is connected to perform inverse control. Here, the neural feed-forward controller
has to perform inverse dynamic modelling of the non-linear plant. Most of the control schemes discussed
in the following sections involve some form of inverse dynamic modelling of the plant. The disadvantages
of inverse control are:

the plant must be invertible

non-minimum phase plant is inverse unstable [Slotine and Sanner, 1993; Narendra and Parthasarathy,

1990].

vd Plant Inverse

l NN¢

yﬂ
E]

Fig. 3.2: Neural network controller in feed-forward connection

It is clear that the above two fold classifications are not comprehensive enough to cover the increasing

diversity of different neural networks control strategies used. Furthermore some of the twofold classifications

are closely related to one another. However, they may be useful to serve as sub-classifications or terms used

for better understanding of a specific structure.
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3.3 NON-HYBRID STRATEGY-CONTROL SIGNAL

3.3.1 Mimicking the human expert

For control problems, which are poorly defined or involve processes that are difficult to describe analytically, a
human expert often arrives at a reasonable solution based on experience and intuition. The expert’s work can
partly or completely be relieved by storing in a neural network his/her valuable diagnosis and decision-making

know-how. Two different approaches are possible in this domain.

I. The expert looks at the available information and decides an appropriate control action. The neural
network then simply extracts a functional mapping between the used information and the expert’s control
actions.

2. The human expert first translates his/her ‘feel’ for the problem solving into concrete logical rules, which

can then be embodied as a neural network using direct geometric methods,

Mimicking the human expert is essentially similar to the supervised control classified by [Werbos, 1990b]. It
can be seen as a kind of neural expert system, which pays attention to what experts actually do instead of what
they say they do. Werbos also pointed out that if a human can only perform the task at slow speed, in
simulation, a mimicked neural network controller can learn to imitate the human and then operate more

quickly. Further discussion of mimicking the human expert can be found in [Osuka ef al., 1989; Rezeka, 1995].

3.3.2 Mimicking a conventional controller

In this scheme, neural networks mimic a conventional controller [Damle et al., 1994]. The neural network
controller identifies the implicit function underlying the available controller. After learning, the neural network
is applied to replace or support the conventional controller. Willems, 1993 called this scheme an imitation
control (IC). Why should one apply a neural network controller when a controller already exists? Neural

network controller should be applied when:

=  The conventional controller is more computationally intensive than the neural network controller is.
= The conventional controller requires system state information that is difficult to achieve while neural

networks may learn to identify a control rule easily.
To train a network to identity a controller, the network can learn with the system information that is used by

the controller as input and the control signal from the controller output as the desired output. A mimic of a

conventional structure is illustrated in Fig.3.3.
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Fig. 3.3: Mimicked conventional controller

Willems (1993) reported that this type of neural control architecture could be:

1. Performed on-line, therefore the learning of the neural network does not interfere with the industrial
system’s process.
2. Learned without the input information, that is, the error, e that is available to the existing controller. The

System State alone together with the response of the controller is sufficient to train the neural network.
The neural network controller after being trained can also be used as a decision support system. Neural
networks applied in this way are sometimes referred to as implicit expert systems since the knowledge used by
the controller is represented in an implicit sub-symbolic way. The disadvantage is that it delivers only an
approximate control action.

3.3.3 Indirect learning architecture

Fig. 3.4 shows the indirect learning architecture [Psaltis e/ al., 1988]. The input to the neural network is the

plant output and the error is generated by comparing the neural network output and the control signal.

capy

i

4

Ya, ¥
+
—»| NNg Plant
Controller >

Fig. 3.4: Indirect learning architecture




The neural network can be trained on-line or off-line. For an off-line approach a training set can be obtained
by generating inputs i (%) at random and observing the corresponding outputs y,(k). The inverse system is then
trained by attempting to fit the reversed pair (v,(k),u(k)). This is also known as general learning architecture
[Psaltis ef al., 1988]. Once an inverse model is trained, the neural network is used as a controller in the feed-
forward connection. For the on-line approach, after each iteration of training the neural network controller is
merely a copy of the updated neural network model. Andersen ef al. (1995)’s single net indirect learning

architecture is the same as the on-line approach discussed here.

The disadvantages of indirect learning architecture are:

e Mimimizing the difference between actual plant input and the estimated plant input generated from the
neural network inverse model does not necessarily minimise the error between the desired plant output and
the actual plant output. Hence, minimisation of the output error e,(k) is not guaranteed. This problem is
also known as not goal oriented training.

* Robustness problem. Sontag (1993) highlighted that such an approach would suffer serious robustness
problems even for linear systems. For non-linear systems, there are additional difficulties although best
inverse exist locally, so training on incomplete data cannot be expected to result in a good interpolation or
‘generalization’ capability, which after all is the main objective of learning control.

* Cannot be used for plant where a functional relationship does not exist in the input and output data, i.e.,
the relationship between u(k-1) and the signals input to the neural network is not one to many [Slotine and

Sanner, 1993; Jordan and Rumalhart, 1992].

The possible advantages of using this control scheme are ease of implementation and only one neural network

is needed.

3.4 NON-HYBRID STRATEGY - DESIRED OUTPUT SIGNAL

3.4.1 Direct inverse control

Direct inverse control was not popular in the late 80s and early 90s. This is because the unknown non-linear
plant lies between the neural network controller and the system output error e, [Narendra and Parthasarathy,
1990]. Figures 3.5, 3.6 and 3.7 show the possible structures of the direct inverse control scheme. The structure
in Fig.3.7 is sometimes known as feed-forward control or specialised learning. The former name is used
because the controller is placed before the plant with the reference signal input to the neural network
controller; the latter name is used because the neural network controller is learning to control in a specific
desired range. This structure is closely related to model reference adaptive control (MRAC) [Sontag, 1993].
For the closed loop direct inverse control (Fig. 3.6), the neural network controller is acting like a feedback

controller,
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Direct inverse control treats the plant as if part of the neural network output layer. Hence it faces the problem
of an unknown plant Jacobian. Several methods are proposed to overcome this problem. For example, the use
of plant Jacobian’s sign [Saerens and Soquet, 1991; Ng and Cook, 1996c; [Zhang et. al., 1995], calculating the
plant Jacobian from the model [Ng and Cook, 1995], using the Inverse Transfer Matrix Scheme [Chen and

Pao, 1989] and the Alopex algorithm [Venugopal et al., 1994].

Reference %
- .
Model !

. )." N + e i) }'P
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SR Nant N B /
Fig.3.5: Direct inverse control with reference model Fig.3.6: Direct inverse control (closed loop)
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Fig.3.7: Direct inverse control (open loop)
Inverse transfer matrix scheme

This is suggested by [Chen and Pao, 1989)]. In this scheme, the error function to be minimized is chosen as:
! 2
E, (k)= E[Kces (k)] (3.2)

where K. represents the inverse transfer relationship of the dynamics. The neural network updating is done by

estimating the derivative of the error function with respect to the weights, that is,

OBk _ 2, du(k 1)

ayp (k) 2
c S(k)—_‘“ =_Kc E\(k)'j{k)'"—' (3.3)
I (k-1) W (k1) IW(k-1)

When K, = [J’]_l the inverse transfer matrix scheme is obtained. Then

66



BEC(kJ =K ey(k) du(k —1) (3.4)
oW (k - 1) ¢ dW (k- 1)

Equation (3.4) shows that Chen et al.’s approach attempts to minimise the neural network output error. In this
scheme, the inverse differential gain K. is better computed off-line. On-line computation of K, may have

numerical problems such as large change in the network weights,
3.4.2 Forward modelling and inverse control

In this approach, a neural network model is trained to emulate the plant. The neural network model is trained
using the error ey, (k)= Yp (k)= yp, (k). A training set can be obtained by generating inputs u(k) at random
and observing the corresponding outputs y,(k) and y,,(k). Once trained, the neural network controller could be
updated by using the information in the neural network model and the system error, commonly

eg(k)= Ya (k) ~¥p (k), in the following three methods:

Method 1: Back-propagation through the model

This method uses the pre-trained neural network model to back-propagate the system error back to the neural
network controller. The neural network controller then learns the desired control law by the BP algorithm.
Jordan and Jacob called this forward and inverse modelling. As explained in [Jordan Jacobs (1990)], The plant
. . p k) . . .
Jacobian matrix J(k) = ———— can not be assumed to be available a priori, but can be estimated by back-
ou(k—1)
propagation through the forward model. The system error eg(k) = Yq (k) - Yp (k) is back propagated through
the pre-trained model. Hence the method requires an accurate pre-trained neural network model. Furthermore,

it is assumed that plant parameters do not change when the neural network model is trained and fixed.

% u Y%
NN ¢ * Plant |

Fig.3.8: Forward and inverse modelling

The on-line adaptive neural network based controller (OANNC) proposed by [Yang and Link (1994)] is quite
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similar to forward and inverse modelling. One of the differences in [Yang and Linkens, 1994] method is that

the system error for training the neural network controller is obtained from desired output minus the neural

network model instead of the actual plant output, hence the system error is e (k) = Y4 (k)= yy (k). Yang and

Linkens (1994)’s approach of minimising system error may not mean reducing the plant output error. This

could be problematic when the plant parameters change after a period of time.
Method 2: Back-propagation through time (BPTT)
The key differences between BPTT and Jordan’s forward and inverse modelling are:

. The system error at time step k is back propagated through each of the k time steps to update the neural
network controller weights.
2. The neural network controller is trained off-line.

3. The neural network controller weights are updated after k time steps.

The basic concept of BPTT is as follows. The first task is to develop a model of the non-linear plant. The

training of the plant model or neural network emulator consists of applying a sequence of random input u (%) to

the plant and observing the plant output. The neural network emulator is trained using the BP algorithm. After
the neural network emulator is trained, the following procedure is used to train the neural network controller:

(a) The neural network controller receives x(0) and generates u(0). The control u(0) generates the new plant
states x(/). Without updating the weights in both neural networks, the controller receives x(7) and
generates u(/) and so on for a maximum number of steps specified by the designer, say x(k ), where ky is
the specified number of time steps in the trials; or until the plant output states reach the desired states.

(b) The state x(kp) is compared with the desired final state xy(ka). The difference is back propagated through
the neural network emulator to update the weights of the neural network controller. However, instead of
being updated just once, the neural network controller is updated ky times, as if a large network with ky
copies of the neural network emulator and neural network controller were used. The weights of the neural
network emulator are kept fixed. Fig.3.9 shows the neural network controller trained by back-propagation
through time,

(¢) The plant is then initialized at other states and steps | and 2 are repeated.

{ / /
woy [/ ] w0 af et Suey k)
Nﬁ . — N)t R b = e =
/ NN m ) NN m
Backpropagation

Fig. 3.9: Neural network controller trained by back-propagation through time
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When acceptable tracking has been obtained using the neural network controller with the neural network
model, the neural network controller may be brought on-line with the actual process. For BPTT to work well,
the neural network emulator has to be a highly accurate representation of the plant. This has reduced the BPTT
applicability. Fu (1994)’s Temporal Model and [Nguyen and Widrow 1990's] self-learning control systems are
similar to BPTT approach (see Chapter 4).

Method 3: Narendra and Parthasarathy’s approach

Narendra and Parthasarathy (1990) proposed a control structure, which is suitable for plant depending non-
linearly on the control signal. In this approach, three neural networks are required. The identification stage
consists of two neural networks. The third neural network is the controller (NN..). The objective is to determine

a control input so that y,(k) follows the desired output y,(k) or y,(k) asymptotically.

This approach can be summarised as follows:

1. Assume that a first order non-linear system is described by the equation yp(k +1) :f[yp (k)]+ glu(k)]

where fand g are unknown continuous functions and g has an inverse denoted by g’
2. The output of the reference model is y,. (k +1) = B,.[ y,. (k) +r(k) and "ﬁ," <l.

3. Estimate the functionfand g using neural networks NN, and NN, respectively.
5 p(k+1) = NN £y, (k)] + NN g [u(k)] 3.5)

This estimation is carried out off-line using random inputs to the plant.
4, Estimate the inverse of g using NN, to train the NN, (see Fig.3.10).
5. Once NNj; NN, and NN, are known (k) can be computed as:

u(k) = NN.(NN; (v, (k)1+ B, y, (k) +r(k)) (3.6)
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Fig. 3.10: Narendra and Parthasarathy’s (1990) approach

The disadvantages to this approach are:

¢  More than one neural network is required (or just “three neural networks are required™).

e Training of the neural networks has to be done off-line.

* The identification model can only approximate the inverse or forward model of the plant over a specified

finite region.

3.4.3 Neural internal model control

Hunt and Sbarbaro (1991) suggested that neural networks could be incorporated into the conventional internal

model control (IMC) structure proposed by [Economou and Morari, 1986; Morari and Zafirious, 1989].

In IMC, a plant model is placed parallel to the real plant. The difference between the plant and the model
outputs is used for feedback purposes. If the model is a perfect representation of the plant, the feedback signal

will be the plant disturbances and noise.

In neural internal model control (IMC), a neural network is trained to model the plant. Assuming that the
neural network model is an ideal representation of the real plant, hence y,, = y,(k) then the closed loop system
of Fig.3.11 is input-output stable if the neural network controller and plant are input-output stable. This
assumes that the neural network controller has the right inverse of the neural network model. Then perfect
control is achieved, y,(k) = r(k}. IMC is configured in closed loop form. Other papers that look into using
IMC are [Abdulaziz and Farsi, 1993; Sbarbaro er al., 1993].
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Fig. 3.11: Neural internal model control

3.4.4 Neural feedback linearisation

This approach stems from the conventional linearizing feedback control [Isidori, 1989] where the unknown
plant is feedback-linearisable. The idea is to transform a state space model of the plant into new co-ordinates
where non-linearities can be cancelled (fully or partially) by feedback. The major challenge in performing such
cancellation is the need to know precise models of the non-linearities, In this case, the neural networks are used

to model the non-linearities.

To illustrate this, consider an adaptive regulation problem for a SISO relative degree one plant [Chen and
Khalil, 1992]

vkt 1) = fly, (k) y, (k=0 + 1), u(k =Dy u(k —n,)]

3.7)
+81y, (k) v, (k=0 + 1) u(k =)yt (k =0, )Ju(k)
Choosing the state variables as
z“(k)=yp(.-'(—nj_+l) zll(k+l]=212(k)
a k4l =y, 21y (6 1) = ST2(0) + gL2(Ouh)
)
zmy (k)=y,(k) one obtains the state space model |z, (k +1) =z,

2y, (k) =ulk —n,)
. 22.'1'” (k+1)=u(k)

ZZHH ('k) = “('k - l) yp (kJ = zl”y (k)

Then with the feedback control:

|
u(k)=

(=7 (k) +y 4 (k)] (3.9)
glz(k))

the plant takes the following form:

71



z)(k+1) = Az (k) + By ; (k)
2y (k+1) = F(z{ (k),z (k), y 4 ()] (3.10)
yplk)= Cz] (k)

where
10 0
00 1 0 0
a=|: ol e=["ic=[o 0 - 0 1] (3.11)
0 0 1 :
0 0 0 !

are controllable-observable triple. This is provided that the following assumption holds:
. f{z) is smooth and vanishes at the origin.

2. g(z) is smooth and bounded from zero over S, a compact subset of R

3. The plant is minimum phase.

Literature that include neural feedback linearisation are [Braak ef al., 1994; Peel ef al., 1994; Hancock and

Fallside, 1993, Yesildirek and Lewis, 1994; Liu and Chen, 1993; Mccullough, 1992; Delgado et al., 1995].

A

.8
\‘] Y.
NN, + u i
+
yy. T | Control u Plant
law %

Fig.3.12: Neural Feedback linearisation
3.4.5 Neural predictive control
Neural predictive control (NPC) assumes that a neural network model is well trained to emulate the plant. The
neural network model is then fixed. The objective is to calculate the control such that the error over the future

horizon is minimised; that is, we consider the cost function of the following form:

N.

N!f
J = Z;[J’,. (k+ )=y k1% + 3 POtk + j =)=l + j - 2)1 (3.12)
J=N, Ji=1

where y,, represents the output of the reference model (i.e., desired output) and y,, is the output of the neural
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network model. N; is the minimum output prediction horizon. N, is the maximum output prediction horizon

and N, is the control horizon. p(k) is the move suppression factor or control weighting sequence. It is used to

penalise excessive control effort. The first term of the cost function is a measure of the errors the model
predicted and the desired future trajectory. The second term penalises excessive movement of the control
variable. References to NPC can be found in [Saint-Donat ef al., 1991; Hunt et al, 1992; Hunt and Sbarbaro
,1992; Joseph and Hanratty, 1993; Warwick ef al., 1995; Saint-Donat et al., 1994; Willis ef al., 1992; Park and
Cho, 1995; Draeger et al., 1995].

The general NPC steps are as follows:

1. Predict the system output over the range of future times.

2. Assume that the future desired outputs are known.

3. Choose a set of future controls &, which minimize the future errors between the predicted future output and
the future desired output.

4. Use the first element of v as current input and repeat the whole process at the next step.

The optimised control value can then be applied to plant as shown in Fig.3.13. However, using the control

variable to train a neural network controller has also been suggested [Hunt and Sbarbaro, 1992]. Training

neural network controller provides two important options:

e To generate a useful starting value for the optimisation algorithm,

e To act as a stand-alone feedback controller without recourse to the optimisation step. This approach is
similar to training a plant inverse.

Mayne and Michalska (1990) show that this technique is capable of stabilising linear and non-linear systems.

Fig. 3.13: Neural predictive control structure
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3.5 Hybrid Strategy - Control Signal

3.5.1 Indirect learning architecture

The paper by [Morles and Mort, 1994] described a neural network-based control scheme where the neural
network is trained in the indirect learning architecture. The control scheme also has a feedback controller,
which is known as a filter ‘G’ in the article (see Fig. 3.14). The tasks of the feedback controller are to

compensate the effects that an unstable pole may have on the system response and to prevent having an

improper ITO (Inverse transfer operator) " as a result of trying to control a strictly proper unknown dynamic

W,
nr v | Flant -

Fig. 3.14: Neural forward and inverse modelling with fixed controller

system.

3.6 HYBRID STRATEGY - DESIRED OUTPUT SIGNAL

Two control schemes are presented here. The first control scheme is one proposed by [Lightbody and Irwin

,1995] and the second control scheme is suggested here.
3.6.1 Direct inverse control
Direct neural MRAC structure

Lightbody and Irwin (1995) proposed that neural network controller can be connected and used in parallel with
a linear fixed gain controller. The fixed gain controller was first chosen to stabilise the plant and to provide
approximate control. The plant can then be adequately driven over the operating range, with the neural network
tuned on-line to improve the control. Fig. 3.15 shows the direct neural model reference adaptive controller
(DNMRAC) structure. The terms K, and K specify a nominal linear fixed gain state-space control law. The
complete non-linear control provided by the network in parallel with a fixed gain state space controller is

expressed as follows:
u(k) = K,r(k) = K" x (k) +u,, (k)

(k) = NN[x, (k), x,. (k ), (k)]

The neural network is trained using the system error:
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e; (k) =yr(k)'_'yp (k)

back propagated through the plant. The plant Jacobian is estimated through a neural network model as

a)’m (k)

(k) ==——"—=

- ou(k—1)

*1
Ya,r L !-"-;
NN c\\

Fixed
Controller

Fig. 3.15: Direct MRAC neural network

3.6.2  Forward modelling and inverse control

Song et al., (1994) used the forward and inverse modelling technique, working together with a fixed controller
described in Section 3.4.2. This control scheme is shown in Fig.3.16. The neural network controller is designed
to overcome the non-linearities of the aero-engine. The fixed controller is utilised in the feedback loop to help
the neural network training procedure and maintain engine stability. The fixed controller is designed based on
Linear Quadratic Gaussian (LQG/ Loop Transfer Recovery (LTR) approach using information from the
linearised model. The linearised model parameters can be provided by off-line identification. In their

simulation example, the fixed controller is only used in the initial stage to guarantee the stability and safe

~-[_uuf~""""‘*m~r.; ~-

Linearised - :o:
Mndel

operation of the aero-engine

Fixed | Y1y

Yo oo+
'([) Controller{ ¥ Plant

Fig.3.16 Neural forward and inverse modelling with fixed controller

¥o<

If the control strategy of Song ef al. (1994)’s is possible, then the following modification (Fig.3.17) may also

be considered. The neural network controller is connected in a forward loop and the desired output is from a

"'The ITO is estimated by the NN. It is actually an inverse modelling of the plant
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reference model. The neural network input consists of the reference signal, past reference model and plant

states. In this case, the neural network controller is acting like a feed-forward compensator.

Reference
Model

Y +, Feedback | + u
‘“L‘T_T Controller| ™

Fig. 3.17: Neural forward and inverse modelling with feedback controller

In [Omatu ef al., 1996], a neural network is trained in forward and inverse modelling before being applied in a
hybrid structure to control an inverted pendulum. Fig.3.18 shows the hybrid structure proposed by [Omatu et
al., 1996]. Where it is claimed that the neural network controller is able to compensate offset errors due to non-

linearities in the system.

§ i ;a(
¥
a
L
Optlmat + .I o | tevenad y
Controlle | w P o duhams
L___.__H_.._ Mimbm o
1, 4.8 88 Ordes_ Oboerw "

Fig. 3.18: Inverted pendulum system with neural network compensator

[Omatu ef al., 1996] also proposed a self-tuning PID type neural network controller as shown in Fig, 3.19. The
neural networks are trained in the same forward and inverse modelling approach. However, the first neural

network (NN,) is used to determine the PID gains by minimising the cost function £ defined as:

1
E=—e?(k+1).
2
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Fig.3.19: Self-tuning PID type neural network controller
3.6.3 Neural feedback linearisation
e  Gaussian network for direct adaptive control
This architecture, proposed by Sanner and Slotine, 1992), employs a gaussian network or RBFN to compensate

adaptively for plant non-linearities. This class of dynamic systems has the equations of motion expressed in

canonical form as:

)+ 1), 5(0), . X" (0)]= gu(t) (3.13)

where u(?) is the control input, fis an unknown non-linear function and g is the control gain (possibly state

dependent). The structure of the proposed direct adaptive controller is shown in Fig.3.20.

U
20| > siiding ——"m—a@ o P |2

Modulate

x(1)
——3»  Network —-—-—-(U“(') E)

Fig. 3.20: Direct adaptive controller proposed by Slotine and Sanner

By integrating the adaptive and sliding components smoothly into a single control law, together with negative
feedback of the tracking error states, it produces a globally stable strategy, which will asymptotically reduce

the tracking errors to within the region of the origin. The control law used has the general structure as follows:

u(t) =ty () +1=m()u 4q (6) +m(Oug (1) (3.14)
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where upq (1) is a negative feedback term including a weighted combination of the measured tracking error
states, uy(t) represents the sliding component of the control law, w,q (7) is the adaptive component and m() is a
continuous, state-dependent modulation which allows the controller to provide a smooth transition between

sliding and adaptive modes of operation.

The sliding controller is present only as a backup system, meant to stabilize the system during the initial phases
of learning. The sliding controller and modulation can be thought of as a formalization of the heuristic
procedure, often used in neural network learning control applications, of monitoring and ‘restarting’ the

learning process when a prespecified ‘failure condition’ is indicated.

3.7 Hybrid Strategy - Feedback Controller Output Signal

In this control strategy, the neural network is trained by using the feedback controller output signal. The most

popular control structure using this strategy is feedback error learning,

3.7.1 Feedback error learning

The feedback error learning (FEL) method was proposed by [Kawata et al.1988] to train a neural network to
perform dynamical control of a robotic manipulator [Kawato ef al., 1987, Kwato ef al., 1988). The idea is to
combine an already available and tuned conventional feedback controller with neural networks acting as the
feed-forward controller. The feedback controller should at least be good enough to stabilise the plant when
used alone, but it does not need to be optimally tuned. This scheme has some conceptual similarity to the
conventional control structure called feed-forward compensation. The neural network can be said to be a
forward acting compensator, which is external to the closed loop of the basic system and accomplishes error

reduction, by non-feedback means.

The aim is to adapt the neural network in order to minimise the tracking error, e;, defined as difference
between a reference and measured output from the plant. In order to achieve this, Kawato used the output of
the FC as the neural network output error and is therefore called the method the feedback error learning. Using
this method, the problem of back-propagating the control error through the plant is avoided. Furthermore, the
neural network can be trained on-line and the training method is goal oriented. This is because, when the
output tracking error is zero, the output from the feedback controller will also be zero (in reality if there an
integral component in the feedback controller, its output can be a non-zero constant, which case a bias term at
the linear output unit of the neural network can be used to cancel such a constant output). Fig. 3.21 shows the

structure of the FEL method.
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Fig. 3.21: Feedback error learning structure (FEL)

Gomi and [Kawato, 1993] proposed two modifications of FEL for controlling robot arms applications. The first
one is known as inverse dynamics model learning (IDML) where the neural network input is the plant output
trajectory (acceleration, velocity and position). Hence, the neural network ultimately acquires an inverse
dynamics model of the plant. The second modification is known as non-linear regulator learning (NRL). In this
control scheme, the actual plant trajectory is not used as input to the neural network. Instead, the reference
trajectory (acceleration, velocity and position) and the tracking errors less acceleration error are fed to the

neural network.

3.8 Conclusions

This chapter has dealt with the following issues and are corner stone of understanding different types of
methodology for neural network in control community:

=  The discussion of various twofold classifications.

=  Proposed multi-level categorization of various neural networks control strategies.

=  Discussed and critical reviewed various neural network controllers.

=  Suggested some possible control structures.

79



CHAPTER 4: NON-LINEAR SYSTEM IDENTIFICATION USING NEURAL NETWORKS

4.1 Introduction

System identification is the task of inferring a mathematical description, a model, of a dynamic system from a
series of measurements on the system. There can be several motives for establishing mathematical descriptions
of dynamic systems. Typical applications encompass simulation, prediction, fault detection and control system
design. The interest in system identification goes far beyond the application to control hence it will be treated

in a general fashion.

In this chapter the attention is drawn to

» identification of neural network models for non-linear dynamic systems. Apart from an increase in
complexity compared to identification of linear systems, many of the results known from conventional
system identification apply to neural-network-based identification as well. This includes a selection of
material from conventional system identification, optimisation theory, nonlinear regression and the theory
of neural networks.

* Network architectures including static and dynamic, single and multi-layer, and recurrent neural networks.

e The characteristic of neural network learning beginning from the very basic Hebbian, perceptron learning
rule, Delta learning and the Widrow-Hoff rule.

e  Special attention has been paid in this chapter is to develop most efficient learning algorithm for multi-
layer networks; namely, BP learning in dynamic networks.

o Feedforward with inverse models, Internal model, Model reference, Predictive control

e Nonlinear self-tuning adaptive control

The topic of neural networks for identification and control is at present one of the active research areas in the
field of control systems. Neural networks have been proposed by information and neural science as a result of
the study of the mechanisms and structures of the brain. This has led to the development of new computational
models, based on this biological background, for solving complex problems like pattern recognition [Tsypkin,

1971], fast information processing, learning and adaptation so on.

4.1,1 Historical background

In the early 1940s the pioneers of this [McCulloch and Pitts, 1943] studied the potential and capabilities of the
interconnection of several basic components based on the model of a neuron. Others, like [Hebb, 1949], were
concerned with the adaptation laws involved in neural systems. Rosenblatt coined the name Perceptron and
devised an architecture, which has subsequently received much attention. Minsky and Papert introduced a
rigorous analysis of the Perceptron. In the 1970s the work of Grosssberg came to prominence. This work,

based on psychological evidence, proposed several architectures of non-linear dynamic systems with novel
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characteristics. Hopfield applied a particular dynamic structure to solve technical problems like optimisation.
In 1986, the parallel-distributed processing group published a series of results and algorithms [Rummelhart ef
al., 1986]. This work gave a strong impulse to the area and provided the catalyst for much of the subsequent
research in this field. An excellent collection of the key papers in the development of the models of neural
networks can be found in [Anderson and Rosenfeld, 1988]. Many examples of real world applications ranging

from finance to aerospace are explored in [Hecht-Nielsen, 1989].

4.1,2 Neural network and control

In order to provide a rational assessment of new methods it is essential to compare the emerging technologies
with well-established and traditional techniques. With reference to neural networks in control and

identification, the following characteristics and features are important:

(a) Neural networks have the greatest promise in the area of non-linear control problems, This is implied by
their theoretical ability to approximate arbitrary non-linear mappings.

(b) Neural networks have a parallel structure, which lends itself immediately to parallel implementation. Such
an implementation can be expected to achieve a higher degree of fault tolerance and speed of operation
than conventional schemes. Furthermore, the elementary processing unit in a neural network has a very
simple structure. This also results in an increase of the processing speed.

(c) Hardware implementation is closely related to (b). Not only can networks be implemented in parallel, a
number of vendors have recently introduced dedicated VLSI hardware implementations. This improves
speed and increases the scale of networks, which can be implemented.

(d) As far as learning and adaptation is concerned, the networks are trained using past data records from the
system under study. A suitably trained network has the ability to generalise when presented with inputs not
appearing in the training data. Networks can also be adapted on-line.

(e) Data fusion, Neural networks can operate simultaneously on both numerical and symbolic data. In this,
aspect networks stand somewhere in the middle ground between traditional engineering systems
(numerical) and processing techniques from artificial intelligence (symbolic data).

(f) Neural networks have the ability to handle several inputs and several outputs, hence they are readily

applicable to multivariable systems.

From the control systems viewpoint the ability of neural networks to deal with non-linear systems is perhaps
most significant. The networks are used to provide the non-linear system models required by the techniques for
synthesis of non-linear controllers. Neural networks based methods have an immense value for design of non-
linear adaptive controllers for dynamic systems with poorly known and “difficult” dynamics. The learning
algorithms are directly applicable as controller strategies for these controllers. Exactly the same arguments are
applicable to non-linear identification, which is considered here as a component of a general area of control

systems but not as a separate field (in contrast to a traditional setting). An excellent volume, which deals with
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such applications, is found in the IEEE Control Systems Magazine 1990. The compilation books [Miller ef al.,
1990; Warwick et al., 1995; Irwin et al., 1995] provide a broad overview of the ficld of neural networks in
control and identification.

4.2 Network Architecture

The network architecture is defined by the basic processing elements and the way in which they are

interconnected (See Fig.4.1).

Newron plocessing node

Fig.4.1: Basic processing node
4.2.1 Neurons (or processing element)

The basic processing element of the connections architecture is often called a neuron by analogy with neuro-

physiology, but other names such as perceptron [Rosenblatt, 1958] or adaline [Widrow, 1989] are also used.

The basic model of a neuron is illustrated in Fig.4.1. The neuron is composed of following three components:

(i) A weighted summer (ii) A linear dynamic SISO system and (iii) A non-dynamic, non-linear function,
which is also, called the activation function.

The weighted summer is described by:

N M.
5,(0)=Y wiix (1) + Y by, (1) + 2, @.1)
j=l k=1

giving a weighted sum (or net) in terms of the internal inputs x;, external (control) inputs u; and corresponding
weights wy; and by together with constants z; which play a role of standard bias; ¢ denotes a time variable which
can be either continuous or discrete.

Equation (4.1) can be written in a matrix form as:



sp(1) =W x(t)+ Bju(t)+z; (4.2)

The linear dynamic system has input v; and output y;, The variable y; is the i™ neuron output. Its mathematical

model can be written for continuous systems as:

T,y;(t)=v,(t) (An inertia term) (4.3)
or more generally as:
%y, (1) + 0y, (1)=v,(1) (4.4)
The discrete-time model can be represented as:
Ly, +D)+(0=T)y, (t)=v,(t) 4.5)
The non-dynamic non-linear function fi(.) (activation function) gives the signal v;(#) in terms of the summer
output
si():v; = f,(s;) (4.6)

There are different activation functions and their selection depends on the case under consideration. For
example, in pattern recognition a threshold function is typically chosen, while in identification or control

design the sigmoid and radial basis functions seem to be more popular (See Fig.2.2 in Chapter 2).
4.2.2 Static MFNNs

If 7; =0 in (4.3) and (4.5) all neurons, then the network is static. The N static neurons in parallel fed by the
input vector x = (xy,..., .\‘I)Tand producing the output vector y = (y},...,),) T constitute a one-layer feed-forward
network which is illustrated in Fig. 4.2. The one layer network implements a static non-linear mapping relating

the input x and the output y as (Fig. 4.3)

Fig.4.2: One layer feed-forward network  Fig.4.3: Non-linear mapping of a network

y=F(Wx) 4.7)
where
l"Vll H',IE o W]L
w= i i i (4.8)
WNI WNI WNL
and
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F = diag(f,(sy s [y (sy) (4.9)

Therefore, the network together with control inputs can be described with two mappings (linear and non-linear)
as:

y=F(s) and

s=Wx+Bu+z or y=FWx+Bu+z) (4.10)

Connecting the three layers in a cascade, a two-layer feed-forward neural network is obtained which is

illustrated in Fig. 4.4. The first layer is called the input layer and is composed of three neurons. The input layer

output vector y' =(¥15 Y2 yl)r is an input to the next layer, called the hidden layer, which is composed of two

neurons. The third layer is called the output layer, produces the network output vector y* = (Y6 ,y?,ya)’r . The

output layer is fed by the hidden layer output vector y2 = (y4,y5]T .

sl layer

2nd layer ' 3rd layer
Input layer ! Hidden iayer , Output layer

Fig. 4.4: Three-layer feed-forward neural network

The network implements a non-linear mapping relating input x and out y* in the following composed way:

Y =W P F )

where F!, 7, F* and W, W, W are the matrices of activation functions and weights of the layers, respectively.

4.2.3 Approximation properties of the FNNS.

It has recently been shown by [Hornik ef al., 1989] using the Stone-Weierstrass theorem, that a two layer

network with a suitable number of nodes in the hidden layer can approximate any continuous function h() €

C(R”,RN), over a compact subset of RE

This implies that feed-forward neural networks with even one hidden layer are adequate for purposes of

characterisation. Since polynomials and orthogonal expansions can also approximate functions in gt g¥y to

any degree of accuracy, the advantages of neural networks over such representations are less obvious and have

to be justified on the basis of practical considerations. In particular, the following questions have to be
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addressed if representations using neural networks are to be preferred:

Q! Are neural networks a more efficient representation of special classes of continuous functions in that they

need fewer parameters? If so, what are the characteristics of such functions?

Q2 Given a non-linear mapping (") which has to be approximated, what dictates the choice of the number of

layers and the number of nodes in each layer of the network?

These questions, which have received considerable attention, have only partial answers at present. However,
the results obtained by [Albertini and Sontag, 1992; Slotine and Sanner, 1993] and are favourable for neural

networks.

4.2.4 Feedback Networks

The recurrent network, based on the work of [Hopfield, 1982], has been used as a content-addressable memory
and in optimisation problems. One version of the Hopfield network is shown in Fig. 4.5 and consists of a
single-layer neural network in the forward path connected to a delay in the feedback path. The control input in
Fig.4.6 is assumed equal to zero. The network represents a discrete-time dynamic system with the state vector
x. The choice of weights determines the equilibrium states of this non-linear dynamic system and thus the
specific equilibrium to which state trajectory converges depends upon the initial conditions x;(0),...,.xx(0).

The following holds:

yt+1)=F(W(t)y(t)) (@.11)

x(0)=0 y(t+1)
F(W(@)
y, = Instantaneous f—71—»
FFNN E
y, Y
N
(a) Connection scheme (b) Block diagram

Fig.4.5 Single layer feedback network

A two-layer recurrent network is illustrated in Fig.4.6 again with u =0 . A multi-layer recurrent network with

control input u and the corresponding feed-forward neural network implementing a feed-forward gain is
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illustrated in Fig. 4.10. The network represents a non-linear controlled dynamic system,

=0
—O—{n I
[ fe—»

Fig.4.6: Two-layer re-current network Fig.4.7: Multi-layer networks in dynamic systems

4.3 Learning in static networks

The classical formulation offered by approximation theory can be expressed as follows:

Given a continuous multivariable function &(x) to be approximated by another function H(x,w), where w is a

vector of parameters, Let {x} be a set of training examples ofx. Find w'" such that:
plH(x,w*),h(x)] < p[H(x,w)h(x)] (4.12)

For x € {x} and w, where p(.,.) measures a distance between two functions at the training examples,

Typically, pf.,.) is a sum of square differences taken for x e {x}. The process of updating the weights in

order to minimise p© and obtain the best value w* of the parameter w is called learning. The learning may be

supervised or unsupervised as shown in Fig.4.8 and Fig.4.9.

x ﬁdm 'y Adaplive
B W v X Natwork ¥
Leaming signal
Distarce {uamompuq F
pldy) geri % d
Fig 4.8: supervised learning Fig 4.9: Unsupervised learning

4.3.1 Learning rules for a neuron

A general rule is based on work by [Amari, 1990] and is formulated as follows (See Fig.4.10):
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oy

Fig.4.10: Illustration for weight learning (provided only for supervised learning) rules

The weight vector w; increases in proportion to the product of inputx and learning signal »;.
The learning signal r; is in general a function of w;, x and sometimes of d; the reference, or desired signal.
hence:
v =r(wp,xd;) (4.13)
The increment of the weight vector is produced as:
By (0) = 1w (0,30, (OR() (4.14)
Where 7 is a positive number called the learning constant that determines the rate of learning.
The weight vector adopted at time t becomes at the next instant, or learning step,
wi(t+1)=w(1)+ ¥ [wi(r),x(r),dj-(r)]x(r) (4.15)
The superscript convention will be also used to index the discrete-time training steps as in the above equation.

For the k™ step we thus have that

W =kt ol X dl ) k=12, .16)

Continuous-time learning can be expressed as:

dw; (1)
dt

=90y [y (1),x(1),d; (1)] (1) @.17)

4.3.1.1 Learning Rule [ Hebbian Rule, 1949]

T .

;}.g(“? x)= J{I(xil') (4.18)
and

Awp =Y (s;) (4.19)
Thus, the single weight wy; is adapted using

A = ¥i(si)x; (4.20)
This learning requires the weight initialisation at small random values around w;=0 prior to learning. The
Hebbian learning rule represents a purely feed -forward, unsupervised learning. The rule states that if the cross

product of output and input or correlation term f;(s;)x; positive, this rules in an increase of weight wy;, otherwise

the weight decreases.
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4.3.1.2 Perceptron Learning rule [Rosenblatt, 1958]

For the perceptron rule, the learning signal is the difference between the desired and actual neuron response.

Thus, learning is supervised and the learning signal is equal to:

v=d,-y, (4.21)
The zero mean threshold activation function (see Fig 2.2(b) in Chp.2) is used and, therefore,

yi =sgn(s;)= .&‘grr(wl-rx) (4.22)
weight adjustments in this method are obtained as:

A =y[d; -sgn(w;rx)]x (4.23)
and

Aw,;_.- =yld; - sgn(wtrx)]xj , forj=1,2,..,L. (4.24)
because the neuron response is only binary, the (4.24) reduces to

Aw; =25 (4.25)

where a plus sign is applicable if d; =1, and sgn (w”, x)=-1.

4.3.1.3 Delta Learning Rule [Mc Clelland et al., 1986]

The delta rule is applicable only if an activation function is differentiable and in the supervised mode.

The leading signal for this rule is called “delta” and is defined as:

ro= ldf - 'fi (wf‘x)Jf;(w?x) (4.26)

This learning rule can be readily derived from the condition of least squared error (LSE) between y; and d.

Calculating the gradient vector w.r.t. w; of the squared error defined as:

2

2 zé(di ﬁyr_) (4.27)
This is equivalent to
E =~;~[df - fiwl ) (4.28)
we obtain the error gradient vector value
VE=-(d; - yj-j:,-r [’W‘,T.\.’),\‘ (4.29)

Since the minimisation of the error requires the weight changes to be in the negative gradient direction, we take
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Vw; =-nVE (4.30)

where 77 is a positive constant. We then obtain from (4.29) and (4.30)

4.3.1.4 Widrow-Hoff learning Rule

The Widrow-Hoff learning rule is applicable to the supervised training of neural networks. It is independent of
the activation functions of neurons used since it minimises the squared error between the desired output value
d;and the neuron's activation value s;. The learning signal for this rule is defined as:
T
r=df—sf=d’-—w,- X (4.32)
thus, the weighting vector increment under this learning rule is:
Aw; =y(d; —5;)x (4.33)

This rule can be considered as a special case of the delta learning rule if the activation function is simply the

identity function, that is if f; (s;) = s;.

Speed of convergence and the convergence itself of the learning rule depends on the constant . To make the

learning algorithm more reliable and efficient its adaptive version was proposed by [Widrow and Lehr, 1990]

for identity activation function. The constant y is now updated according to the rule:

L

X . T
wx)={ T if x"x=#0, (4.34)

x'x
0, if .\‘Tx;&()

and the corresponding weight increment is

. T
Ay = =y ) I xx#0, (4.35)

! 0, otherwise,

where ¢ is constant reduction factor.

Assume that x # 0 which implies xTx # 0. The error dynamics for the adaline whose weights are adjusted by
the above rule (which is now the delta rule) can be obtained as follows. Using (4.34) we have that at the K

iteration
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E; edf. - ¥ and
k. T
B U B o B,
X X
hence,
X (1- oyl (4.36)

From (4.36) the error Eik converges to 0 atarate (/—o) ifandonly if 0 < < 2.

A generalisation of the above rule to cover case of non-differentiable activation function has been proposed by

[Sira-Ramirez and Zak, 1991). The rule is described as.

k+1 wh +—OEL if Terx)#0
W] I .\'Te(x) (4.37)
wf , otherewise

where 0 < ot< 2,
The error dynamic is described by the (4.36). The generalised rule dynamics is described by (4.37) becomes

the previous one if the generator 6(.) is an identity operator, i.e., if 8(x )= x . If on the other hand

sgn(x;)
&x)= : (4.38)

sgn(x;)

the adaptation algorithms allow non-differentiable activation functions to be considered then convergence is

guaranteed.
4.3.2 Delta learning rule for MFNNs and BP training algorithm

This section is focused on a training algorithm applied to MFNNs. The algorithm is called the error back-

propagation training algorithm, back-propagation (BP) for short.

The BP algorithm allows exponential acquisition of input-output mapping knowledge within multi-layer
networks. Similarly, as in simple cases of the delta learning rule training presented earlier input patterns are
submitted sequentially during back-propagation training. If a pattern is submitted and its classification or
association is determined to be erroneous, the current least mean-square (LMS) classification error is reduced.

We shall assume the error to be expressed as:

E - % E—][dm _y{xm ¥ w)]T [dm _‘y(‘rm’ W}] (439}
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where d" denotes desired output corresponding to the input X, P is the patterns (@, ¥*) and y(x",w) denotes
vector output of the network corresponding to the input ¥ and weight matrix w. Often we take the mean
(expected) value of the error £ is taken if the training patterns are generated randomly from the training set or
if there is a network output measurement error. The delta rule operates then as a stochastic approximation

algorithm. Further simplification is obtained by assuming P=1 and a deterministic case.

During the association (or classification) phase, the trained neural network itself operates in a feed-forward
manner. However, the weight adjustments force the learning rules to propagate exactly forward from the input

layer.

To derive the BP algorithms consider the example of the network illustrated in Fig. 4.7 in section 4.2.2, The

error can be written as:

\
E==(ds= s )2 +(dy = y7)" + (g — yg)° (4.40)

where dg, d7, dg denote the network desired outputs corresponding to the prescribed inputs x;,x2 and x;.

The error is, therefore a function of the weights wyy, wp, wyz, w2y, wa, waz (input layers) and wey, Wes, Wrg, Wag
wys (output layers). By applying gradient descent, the algorithm for adjusting the weights W={w;;} in order to

minimise E(W) can be written as:

‘ (E'(wf,-)

K+ _
H:U = w—’}(

¥>0 (4.41)

vy
where k denotes an iteration number.
Consider a link between neurons 4 and 8 and the corresponding weight wgy. The weight wgy influences £
indirectly according to the following chain:
Wgy = 85 = yg = E (4.42)

Therefore, by applying well-known chain rule we obtain that:

Ewyy) & Ay
gy Py Mgy

=—~(dg = 75)f3 (58 )va (4.43)

lets denote
S (NAWs ~ y5)/5(s5(x) (4.44)
and call &(x) an equivalent error associated with the eighth neuron (or output yy) and corresponding to the

input x and weights /. Notice that the equivalent error becomes just an error if the activation function fz(...) is

an identity function. Therefore, the formula for adjusting the weight wg, can be written as:
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Wey' = wiy 7947, (4.45)

Similarly
k4 kl
Wig = Wiq +907 V4,
kK
Weq = Wy + ’}97 Ygs (4 46}
kel _ Kl '
Wes = Wgs + 905,

kel _ Kl
Wes = Wes +19 s

™ interaction of the training algorithm can be

hence, the output layer adjusted weights as a result of the (k+1)
computed by determining the equivalent errors associated with the network outputs and then by using the

formulas (4.45) and (4.46).

Lets consider now the hidden layer and the link connecting neurons 1 and 4. The corresponding weight wy; is

adjusted according to the error gradient descent as:

£+l a dEws)

Wy =Wq -V o , (4.47)
a1

The weight wy; influences the error E indirectly according to the following chain:

let us denote a relationship between £ and y, as E (yg. Applying me chain rule we obtain:

&‘ &." (3}4 &4 é .
= ==—Salsa)y (4.48)
Ry By By By 4 Jatsan

. E ,
The derivative — can be computed as (sce the above structure diagram)
4

E_E D B K I By & Dy By
Py D B aﬂ; P &7 Dy Py By By
= —~(dg ~y) S e(56)Weq —(dy = 1) 15 (57)W3, — (dg = g ) [ (55 )Wgy (4.49)

=~ Wey — Dy Wy — Jgwyy

now define an equivalent error for the output of the fourth neuron as:
Oy A(DsWes + Py wiq + Kwgy )] 4 (54) (4.50)
Then, due to (4.48), (4.49) and (4.50) the following holds:

—_— = 4J’| (4.51)



and due to (4.47)
Wit = Wi + 19,0, (4.52)

Notice that the rule for adjusting the weight in the hidden layer has the same structure as the rule for adjusting
the weights in the output layer. However, the equivalent error is now described by a more complicated formula
(4.50). In this way the calculations have been organised to determine the hidden layer equivalent errors in a
recursive way. The procedure, which is the merit of BP algorithms, starts from the output layer equivalent

errors and propagates backwards along the network structure to the considered neuron.

The errors are multiplied by the corresponding weights and added. The resulting sum is then multiplied in a

standard way by a derivative of the neuron activation function (4.50).

The BP algorithm is an elegant and effective computational tool for adjusting the network weights.

4.4 Learning in dynamic networks

Now consider dynamic neural networks and also more general dynamic systems containing static neural
networks as their components. The objective is to present a suitable training algorithm if a task of the system is

to follow a desired trajectory over time period [tg, {7 . For simplicity, discrete-time systems will be considered.

The error is defined as:
E(NAd(1) — y(1), t=tg to+l, .. 1 (4.53)

where y(t) denotes the system output at the instant {, The performance criterion is defined as:
LY 7
J= EEE (DE() (4.54)
‘o

If different input-output training patterns are to be considered the summation in (4.54) must be extended to

cover all these patterns as well.

The constant matrix of the weights W is to be found. Again, the gradient descant technique will be employed

and a formula for gradient VJ(W ) will be found in a form of the BP algorithm.

4.4.1 Back-propagation through time (BPTT): [Rummelhar and McClelland, 1986]

A single-layer recurrent network will be investigated which can be described with the following state

equations:

y(t+1)=T(y(t)u(t)) (4.55)
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where I is a non-linear mapping and u is a control input. Fig.4.11 presents a block diagram of a system, which
can be described by (4.55).

The idea of BPTT to unfold the network through time, i.e. replace the one-layer recurrent network with a feed-

forward one with f,layers (Fig.4.12) represented by the same neural network modelling the mapping I"

vik+1)
NN >
]
Fig.4.11: MFNN (z"r is time shift operator)
' layer 2" Jayer 1™ layer
t 1
u(ty) - ufty) T p )’(f
— I
y(ty
»(t)
Fig.4.12: Structure of BPTT
It follows from (4.54) that:
)
_a;W) =$Em ()20 4.56)

Ji '.0 "

25

The derivatives ) of the errors at subsequent time instants with respect to the weight w; can be computed

i
by applying a static BP scheme at each time instant based on the input produced of the previous time instant

and the error corresponding to this time instant.
4.4.2 General dynamic back-propagation

Let us consider the system illustrated in Fig.4.11 and replace the time shift unit z' by a general time shift
operation represented by t.f. D(z). Notice, that

EO) __I0

£ Ew (4.57)
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The following holds:
y(r+1)=N(x(t+1)W),

(4.58)
x(t+1)=u(t)+D(z)y(k+1)
Thus, and
Y +1) = N(u(t +l)+D(z)igA—tl—}-,W) (4.59)
Hence,
d(+1) _ N (x(t+ 1), W) D)yt +1)+ AN(x(t + 1),W)) (4.60)
a" av t.

i i i
where arguments of all mappings and functions are taken at the normal values corresponding to current values

of weights under applied control input,

The operator D(z)y(t+1) is comparable to the output components at time instant ¢, -/, -2,...,1-n. Therefore,

(4.57) constitutes a recursive scheme, which can be used to evaluate the error derivatives at subsequent time

instant (4.57). The derivatives -Tand must be computed separately and evaluated at every time instant.

a Wi

The above approach can be applied to other dynamic systems including static neural networks and linear

dynamics components,
4.5 Identification

The input and output of a time-invariant, causal discrete-time dynamic plant are u() and y,(.), respectively,
where w(.) is a uniformly bounded function of time. The plant is assumed to be stable with a known
parameterisation but with unknown values of the parameters. The objective is to construct a suitable NN
identification model (Fig.4.13) which when subjected to the same input u as the plant, produces an output y"

which approximates 3” in a certain sense.

P
y
Plant -
u(t E@)
—>
NN model
identification ' Y

Fig.4.13: Identification
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4.5.1 Forward modelling

The procedure of training a neural network to represent the forward dynamics of a plant will be referred to as
forward modelling. The neural network model is placed in parallel with system and the error between the
system and the network outputs (the prediction error) as the neural network-training signal. The BP training

algorithm is applied to a MFNN.

Assuming that the plant is governed by a following non-linear discrete-time difference equation:

yP @+ =FlyP),..0 P (t—n+D)ut),...ut —m+1)] (4.61)
Thus, the plant outputyp at time +/ depends on the past #n output values and on the past m values of the input
u. Concentrating, only on the dynamic part of the plant response such that the model does not explicitly

represent plant disturbances. Special cases of the model (4.61) was introduced by [Narendra and
Parthasarathy, 1990].

An obvious approach for system modelling is to choose the input output structure of the neural network to be

the same as that of the system. Denoting the output of the network by y"” we then obtain that

v+ 1) =FryP () y? (1= n+1)u(t )rsu(t =m+1)] (4.62)

In the above, the mapping .:E‘() represents the non-linear input-output map of the network that approximates
the plant mapping /(). Note that the input to the network includes the past values of the plant output but not
the past values of the network output (the network has no feedback). The learning static BP algorithm is used
to find optimal values of the network weights. The structure of the model (4.62) is called series-parallel. The

resulting identification structure is illustrated in Fig.4.13,

If after a suitable training period the network gives a good representation of the plant (i.e., y" ~ »*), then for
subsequent post-training purposes the network output itself and its delayed values can be fed-back and used as
part of the network input. In this way, the network can be used independently of the plant. Such a network is

described as:

m

v D =F[y" ()., YU t—n+ D) u(t ) u(t=m+1)] (4.63)

This structure may also be used during the whole process of learning. The structure of (4.63) is called parallel.
It may be preferred when dealing with noisy systems since it avoids the problem of bias caused by noise on the
plant output. On the other hand, the series-parallel scheme (Fig.4.14) is supported by stability results.

Moreover, the parallel model requires a dynamic back-propagation-training algorithm. Now consider a special
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case of (4.61):

yP U+ = FyP (), yF (t =0+ 1) GLu(t)yy u(t —m + 1] (4.64)

> Plant
i +
D(z) « E
Pak
Ll NN /
d }fn
,| Learning <
Algorithm
Static BP

Fig.4.14: Series-parallel identification structure
Thus, the effects of the input and output values are additive. The structure of (4.64) is illustrated in Fig 4.18.

Clearly, a general approach can be applied as presented before. However, it is reasonable to utilise the additive

feature of the plant structure. Therefore, the model is described by the following series-parallel equations:
(1) = FLp () (=14 D) Gl ) u(t — m+1)) (4+65)
where the mapping Fand G are implemented by using two separate neural networks. The neural networks

weights Wp and W are adjusted independently by static BP algorithm in order to achieve the best

approximation of mappings Fand G.
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Fig.4.15: Structure of the plant dynamics
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The importance of the class of inputs to be used to train learning systems is generally acknowledged. The
training set has to be representative of the entire class of inputs that the system may be subjected to. This will
ensure that the system will respond in the desired fashion even when subjected to inputs not included in the
training data. This concept, referred to as persistent excitation, has been extensively treated in conventional
control theory both in the context of identification and control problems by for example [Astrom and
Wittenmark, 1989]. The concept of persistent excitation is also found to be important while dealing with the

identification and control of non-linear systems using neural networks [Hunt et al., 1992].

4.5.2 Inverse modelling

Weights

J'"

J'ref ' B—
—p Neural Ne(\a.?'h/ !

s

Lcarniné Algorithm

E
l > Plant |

Fig.4.16: Direct inverse modelling
The inverse model of dynamic systems yields_input for given output. The inverse models play a crucial role in
a range of control structures. Some of the structures will be presented in the next section. However, obtaining
inverse models raises several important issues [Hunt et a/.1992]. Conceptually the simplest approach is direct

inverse modelling as shown in Fig.4.16. Here, a synthetic training signal (the plant input) is introduced to the
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system. The system output is then used as input to the network. The network output is compared with the

training signal (the system input) and this error is used to train the network. This structure will clearly force the

network to represent the inverse of the plant. However, there are some drawbacks, which are as follows [Hunt

et al, 1992]:

e the learning procedure is not “goal directed” and the training signal must be chosen to sample over a wide
range of system inputs and the actual operational inputs may be hard to define a priori. The actual goal in
the control context is to make the system output behave in a desired way and thus the training signal in
direct inverse modelling does not correspond to the explicit goal;

e if the non-linear system mapping is not one-to-one, then an incorrect inverse can be produced.

The first point is strongly related with the general concept of persistent excitation; the importance of inputs
used to train learning systems is widely appreciated. Conditions for ensuring persistent excitation, which will
result in parameter convergence are well established [Astrom and Wittenmark, 1989] For neural networks

methods of characterising persistent excitation are highly desirable [Hunt ef al., 1992].

welghts
[ F.i B
yrel Ne;.ud u y
- netw ¥ >
i::&:lni'lclI ar PIC‘n'
ym
Learning Neurol
algorithm newerk >
+ é =-

Fig.4.17: Specialised inverse modelling

A second approach to inverse modelling which aims to overcome these problems is known as specialised
inverse learning [Psaltis & Yamamura, 1988]. The specialised inverse learning structure is shown in Fig.4.17.
In this approach the network inverse model precedes the system and receives as input a training signal which
spans the desired operational output space of the controlled system (i.e., it corresponds to the system reference
signal). This learning structure also contains a trained forward model of the system (e.g. a network trained as
described in the Section 5.1) placed in parallel with the plant. The error signal for the training algorithm in this
case is the difference between the training signal and the system output. It may also be the difference between
the training signal and the forward model output if the system is noisy. It can be shown that using the plant
output we can produce an exact inverse even when the forward model is not exact; this is not the case when the
forward model output is used. The error may then be propagated back through the forward model and then the
inverse model; only the inverse network model weights are adjusted during this procedure. Thus, the procedure
is effectively directed at learning and identity mapping across the inverse model and the forward model. The

inverse model is learned as a side effect.
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In comparison with direct inverse modelling, the specialised inverse learning approach possesses the following

features:

e The procedure is goal directed since it is based on the error between desired system outputs and actual
outputs. In other words, the system receives inputs during training which correspond to the actual
operational inputs it will subsequently receive.

e If the system forward mapping is not one-to-one, a particular inverse (pseudo-inverse) will be found. The

problem of bias can also be handled.

Let us consider the input-output structure of network modelling the system inverse. From (4.61) the inverse

F' leading to the generation of u(#) would require knowledge of the future value y'”(!ﬂ’)‘ To overcome this

problem the future value is replaced with the value yfef (t +1) which is assumed available at time ¢. This seems

to be a reasonable assumption since y:;f is typically related to the reference signal which is normally known

one step ahead. Thus, the non-linear input-output mapping relation of the network modelling the plant inverse

is:

u(t)= F7' 1" () (€= nt D0y (04 D3t = 1)ttt = m+1)] (4.66)

that is the inverse model network receives as inputs the current and past system outputs, the training
(reference) signal and the past values of the system outputs. Where it is desirable to train the inverse without
the plant (see section above) the values of y” in the above relation are simply replaced by the forward model

outputs y".
4.6 Control

Models of dynamic systems and their inverses have immediate use for control purpose. In the control literature
a number of well-established and analysed structures for the control of non-linear systems exist. For this study
structures that have a direct reliance on system forward and inverse models will be focused upon. It is assumed
that such models are available in the form of neural networks, which have been trained using the techniques
outlined above. It is beyond the scope of this work to provide a full survey of all neural network based
architecture available in the literature. The study concentrated upon presenting key directions and descriptions

of the representative control structures.
4.6.1 Model reference control [Narendra and Parathasarathy, 1990]

The desired performance of the closed-loop system is specified through a stable reference model M, which is

defined by its input-output pair {r(1), Y (1)}. The control system attempts to make the plant output y”(r) match

the reference model output asymptotically, i.e., lim ,_,

|J’r(’) -y, )" <e for some specified constant €= 0.
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The model reference control structure for non-linear systems utilising the connectionist model is illustrated in
Fig.4.18.

y
M
lz
ri, | Neural ?
1 M network E. P Y &

controlier
"’ C

Fig.4.18: Model reference structure

In this structure the error defined above is used to train the network acting as the controller. This approach is

related to training of an inverse plant model as presented in the previous section.

In general, the training procedure will force the controller to be a “detuned” inverse, in a sense defined by the

reference model. The overall scheme can be viewed as direct adaptive control.
4.6.2 Internal model control (IMC)

In IMC, the role of system forward and inverse models is emphasised in [Gracia and Morari, 1982]. In this
structure, system forward and inverse models are used directly as elements within the feedback loop. IMC has
been thoroughly examined with the application of standard robustness and stability analysis. Moreover, IMC
extends reality to non-linear systems control. A system model is placed in parallel with the real system. The
difference between the system and model outputs is used for feedback purposes. This feedback signal is then
processed by a controller subsystem in the forward path; the properties of IMC dictate that this part of the
controller should be related to the system inverse. Given a network model for the system forward and inverse
dynamics, the realisation of IMC using neural networks is straightforward [Hunt & Sbarbaro, 1991]. The
system model M and the controller C (the inverse model) are realised using the neural networks as illustrated in
Fig.4.19.

12

5
Neural u
Yoo F £ network C Plant
confroller
Neural
network
plant model

Fig.4.19: Internal model control structure
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The subsystem F is typically a linear filter, which is designed to provide the desirable robustness and tracking
response of the closed-loop system. It should be emphasised that the applicability of IMC is limited to open-

loop stable systems.

4.6.3 Predictive control

In the realm of optimal and predictive control methods, the receding horizon technique has been introduced as
a natural, computationally feasible feedback law. It has been proven that the method has the desired stability

properties for non-linear systems.

In this approach, a neural network model provides a prediction of a plant’s future response over a specified
horizon. The predictions supplied by the network as passed to a numerical optimisation routine, which attempts

to minimise a specified performance criterion in the calculation of a suitable control signal.

Optimisation \ NN Plant ¢y““l
((Iterative Algo.)) —{ Model M |«
Model
ref“rence 7
. !
> NN il yP
» Controller C Flant

Fig.4.20: Neuro Model Predictive Control structure

The control signal I is chosen to minimise the quadratic performance criterion, which compromises between

the tracking error and the control cost [Clark and Gawthroup, 1975].

N N,
J= .E;[y’{f+j)—y"‘(f+j)]2 +X A+ j=l =@+ j-2)? (4.67)
=N, i=

Subject to the constraints and subject to the equality constraints introduced by the dynamic model itself.
Where, the constants Ny, N> and N, define the minimum prediction (or cost), maximum prediction (or cost) and

maximum control horizons respectively over which the tracking error and control increments are considered.

Ais the control weight (or weighting factor penalizing changes in the control).
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Once the iterative optimisation algorithm finds the optimal solution i it is applied to the plant. The actual value
of the plant output ¥ is measured and jointly with the reference signal r and )” is sent to another neural
network. This network is a controller and is trained to produce the same control output u as the optimisation
routine. As the result, the non-linear feedback control law is obtained. An overall control structure is presented
in Fig.4.20.

4.6.4 Self-learning controller [Nguyen and Widrow, 1990]

Consider a discrete-time dynamic system:
y(t+1)=F[y(t)u(t)] (4.68)

where F'is non-linear and unknown function.

A control problem is to provide the correct input vector {u(t)} to drive the plant from an initial state to a
subsequent desired state y". The objective is to design the state-feedback controller. We shall use a NN method
for the controller and derive a suitable “learning™ algorithm to adjust its weights. The resulting controller is

non-linear adaptive. The control system structure is illustrated as in Fig.4.21.

Plant

u(t)
NN controller " Fm.u@)

v

it N

Fig.4.21: Control structure for the self-learning controller
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Fig.4.22: Training with back-propagation,
C- controller (another multi-layered NN, that learns to control the emulator)

E-plant emulator (a multilayer NN, that learns to identify the system’s dynamic characteristics)
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The learning algorithm requires the plant emulator (or competitor) which can be found in the form of NN by

using the techniques presented in early section. The training procedure is as follows:

e The controller learns to drive the plant emulator from an initial state yg to the desired state y* in 7 time
steps.

e Learning takes place during many trials or runs, each starting from an initial state and terminating at a
final state yr.

The objective of learning process is to find a set of controller weights that minimises the error function, which

is an average of |yd _y,(v"Zovcr the set of initial states y,. The training process is illustrated in Fig.4.22, The

training starts with the NN plant emulator set in a random initial state yy. Because the NN controller initially is
untrained, it will produce an erroneous control signal uy, to the plant emulator and plant itself. The plant
emulator will then move to the next state y; = y(1), this process continues for T time steps. At this point the

plant is at the state yy = y(T). The designer should determine the number of time steps T. If weights are

modified in the controller network the square error |y°’ _ yklz will be less at the end of the next run,

To train the controller, the error in the controller output u; for each time step %4 needs to be known.
Unfortunately, only the error in the final plant state, y*-yT is available. However, because the plant emulator is
a neural network, we can propagate back the final error through the plant emulator using standard BP
algorithm to get an equivalent error in the 7' stage. This error can be used to train the controller. The emulator,
therefore, translates the error in the final Plant State to the error in the controller output, The real plant cannot

be used here because the error cannot be propagated through it. This is why the NN emulator is needed.

The error continues to be BP scheme and the controller's weight change is computed for each stage. The weight
changes from all the stages obtained from the BP algorithm are added together and then added to the
controller's weights. This completes the training for one run. The overall scheme can be viewed as a self-
learning controller, However, the controller parameter adjustment algorithm performs off-line and does not use

the data from the real plant.
4.5.6  Non-linear self-tuning adaptive control

Consider a class of SISO feedback linearisable systems described by the discrete-time input (1), output (y)

equation:
yf+1 = F(yf 3 .V;..[ ER yf—p ’Hf‘—l 3oy H.f_p) + G(yf 9)”!—[ ey yf—‘p !uf_l ey “f—p) {4'69)

The functions F(() and G(,) are unknown.

If we knew both 7 and G of (4.69), we could use the following control and the system would exactly track the

desired output ny :
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_EQ | Pu
G(r) G()

Since F(.) and G(.) are unknown, NNs can be used to “learn” to approximate these functions and generate

(4.70)

fo

suitable controls. In order to simplify the problem and focus on the control mechanism, discussion will be
limited to the 1*' order system.

Vi) = F(y )+ Gy Juy (4.71)
Although the function G() is not known, we can assume that the sign of G(y) is known along plant

trajectories. The system (plant) can be modelled by the NN illustrated in Fig.4.23.

G™(.) F(.)

Fig.4.23: The neural network model

where W =[wg,w;,..w,,] and V' =[vg,v,,..v,, ] are the weights of the NNs approximating the function F()

and G(.), respectively (Fig.4.23). Therefore, the plant neural network model is described as:

Viu =F "y W]+ G [y, .V Ok, (4.72)

Notice that the model equation is series-parallel (See sec. 4.5). Notice also that "' (0,W) = wy and G" (0, V)
=vg. The linear neurons are labelled “L". They are able to scale and shift incoming signals. The neurons
labelled “H" are non-linear. Assume that there are enough neurons to approximate sufficiently accurately
(with desired accuracy) the unknown function F () and G (). Although there exist in the literature general
results relating the neuron number and the accuracy of approximation, in practice this number must be found

heuristically.
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The control task is for the plant output to track the command {y, (¢)}. The overall control system is illustrated in

Fig.4.24. At time-step ¢, the following control (4.70) is applied to the plant (4.71):

d
_EM I WL v

4, “.m)

S Gy V)] Gy V()]

| o)
— Ol Py F W e =FO)+Gm L
Gy ¥ ()

Fig.4.24: Neural network self-tuning control system.

In contrast to “open-loop” training, the feedback dramatically changes the role of weights of the neural
network. The output of the plant depends on the weights of the neural network and serves as the desired output

of the neural network:

d
FI”!J’;’W('{)] y;-H'
Yiag =F(30)+Gly)| - ~+ @.74)
t+1 ! t oM [y V(1] G [y V(1)]

If (4.73) is substitute in to (4.72), the output of the neural network is _}v':'f which is independent of W(1) and

F(t). Let us define the output error as:

1
E(t) = ;(y:i. -y (4.75)

Then, W(t) and V(1) are to be adjusted such that E(?) can be reduced. We can easily verify that:
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&E(1)  Gly) [&’”m.wrw

- E(t+1 4.76
av, (1) Gm{’y,,V(r)] an (1) ] (t+1) (4.76)

and

&) Gly,) [c’n”’ [y, V()]

= E(t+1) (4.77)
di(t) G [y V)] () ]”’

The quantities can be calculated by employing the standard BP algorithm.

" [y W] 4 9" [y V()]

(4.78)
dwi(1) My(1)

The quantity G(y) is not known, but its sign is assumed to be known. Therefore, G(y,) is replaced by

sgn[G(y,)] before (4.76) and 4.77) are used in the following gradient descant updating rules:

m
't i
m
1) == 14 ;ﬁ;‘f@;;})[% Iy ;;’UH]H,E(HU )
't i

The positive scalars 73, i  specify the learning rates at time step /. With y,yy, W(t-+1) and V(t+1) available.
(See 4.74, 4.79 and 4.80) the functions values F" [y, W (t+1) and G"[y.4s,, V(t+1)] are calculated by the
neural networks. The F" fy,.;, W (1+1)], G" [y, V(t+1)] and y:iz can be used to generate w4 according to

(4.73) for the next step.
The learning rates can be computed on-line based on current values of the plant output so that it can be shown
by using Lyapunov theory that with these rates the tracking error converges to zero. It is possible to extend the

scheme to more general situation.

The controller derived here uses on-line data from the plant to adjust its parameters and generate the control

signal. It is a truly self-tuning non-linear controller.
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4.7 SIMULATION RESULTS

In order to investigate the performance of the proposed algorithms described in early chapters the following
examples are carried out. To illustrate the characteristics of the different controllers. In some cases simple
system will be repeated in the examples in order to analyse the performance of the different types of

controllers.

Software implementation

The structure of the network can be single, double or triple layered if more layers are to be incorporated by the
user. Such a situation is common for example in BP through time. In principle, the network to be simulated is

static multi-layer feed-forward. Introducing feedback can easily simulate recurrent networks.

BP algorithm modifications made are namely: the momentum method, improvement of initial conditions and
adaptive learning rate, the examples provided could be easily customised to include the Levenberg-Marquardt

learning rule as well as to use radial basis functions,

Off-line identification

The neural net models is not that trivial and efficient using the NN Toolbox, because all data constituting input
and output plant measurements can be collected in matrices of so-called patterns. Learning is thus processing
of the patterns, which is done using simple functions. Certain additional functions help in observation and
evaluation of the progress of the learning as shown in the following examples. However, we should remember
that for a large problem the convergence of learning could be too slow due to the way that MATLAB interprets

its commands.

Off-line neural model identification

Off-line identification is performed by presentation of a predefined number of previously obtained patterns.
The patterns are made up of a series of input and output signals. The approach is much the same as in standard
identification (e.g. least squares) the only difference being that presentations of the data are repeated. One
presentation is called an epoch (also see appendix A). The network consists of one hidden layer and has one
output neuron related to model output y(i). The number of input neurons follows from the assumed structure of
the plant:

e NY : neurones related to delayed output of the plant. (i —1), y(i —2),..., (i = NY)

e NU+k : neurones related to the delayed input of the plant u(i —1), y = u(i =k = 2),.,u(i—k = NU)

The number of hidden neurons nun are chosen by the user. The transfer function of the neuron can be

sigmoidal (non-linear network) or linear (linear network).
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Network structure

It is difficult to discuss the network structure choice if the plant is non-linear because is no general methods

exist for non-linear system models.

Recursive (on-line) Identification

In adaptive control, the model has to be identified on-line in a recursive way. The following example provides
concerning on-line identification of neural models. The structure of the neural model refers to the single layer
discrete-time feedback network described in the main chapter. It is assumed that the discrete dynamical

relation between input v and output y is:

wWi)= Sy, y(i —=2),... (i —nd), u(i =1-k)u(i—2-k),..u(i —nB-k))

where it is discrete time and f'is an unknown, generally non-linear function. The number of input neurons is
then nd + nB. k refers to additional discrete-time delay. One hidden layer consists of nun neurons. One output

neuron refers to y(i).

Example 1: On-line identification of linear neural model. The model has the form of linear feed-forward static
neural network as shown in Fig.4.25 containing one hidden layer, The objective of this example to see how

recursive identification of a linear model performs with neural model recursive identification.

File Edit View Simulation Formal Tools
DSBS %@ || > = |
5
Unit Delay
Signal Gen, o
exitation signal E -
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, @.i. o [ ¢
yp_m <
plant ard el oulput gt o0 M1 ket
[Cle .
¥p 4——[_:;;&' _ A (|
plant output Flant output =
e B — =
¥m | I
a8 odal oulput em_oulpul v
| [ » |—|
Ready [100% \oded45 A

Fig.4.25: Block diagram of on-line identificatin of linear neural model
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¢ |Plant and model output

Fig.4.27: Error convergence of example |

The parameters of the neural network model strutcure (NEMOL) are selected as [NY, NU, k, nun]=[1 1 0 5],
Learning rate (Ir) = 0.01, [offset, sampling time] =[0 1].

A square wave is applied as an input signal and a few simulation experiments are carried out with different
amplitutes and frequencies of the input signal. The plant output and model output tracking response is as
shown in Fig. 4.26. The convergence of identification shown is observed in Fig.4.27. The experiment was
repeated with learning rate but it observed that it does not have any influance on tracking plant change.
However, the improper setting of sampling time for the model and input signal sample and hold results in

significant deterioration of on-line identification.

Example 2: Nonlinear online identification Fig.4.28 Block diagram for nonlinear on-line identification. The

model has the form of sigmoidal feed-forward static neural network containing one hidden layer.
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The nonlinear plant is of the form: ¥(i) =#_l)+ul(;_.l) . This system was previously considered by
1+ y°(i-1)

[Narendara and Parthasarathy, 1990]:
Objectives

This example investigates how the constant learning rate is influenced by on-line nonlinear identification. The
convergence and final approximation is observed (figure 4.31). This is in to identify the effect of learning rate
when it is too high or low. In this way the difference between non-recursive (off-line) and recursive (online)

when learning rate using the same epoch can be compared.
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Fig.4.28: Block system diagarm of non-linear identification
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Fig.4.29: Parameter dialogue box
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Fig. 4.31 Error convergence of example 2.

Figure 4.30 depicts the simulated response of the modeled plant. It demonstrates the convergence over time of
the neural network, producing a close approximation of the plant response. This is also evident in the error

convergence plot of figure 4.31.

The following plant dynamic systems are employed here to demonstrate the efficiency of the approximation
and identification abilities of neural network controller and proposed identification structure. The plants are
modelled using neural networks with 10 layers in both F and G networks as described below. The unknown
non-linear function pjesin( p »(v4)) is modelled by the neural network with two hidden layers. Each hidden layer
contains n (n=10 used here) non-linear neurons. While one non-linear hidden layer is shown to be enough for
approximating non-linear mapping, using more than one hidden layer may have the advantage of significantly

reducing the number of hidden layer neurons needed for the same task. The initial weights, except g(0), and

of the neural network are selected randomly between — 0.1 to 0.1. The specific weight g(0) is chosen between
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0.01 and 0.1 such that it has the same sign as the unknown positive number it is expected to approximate. Since

the inverse of g(k)has a direct effect on the magnitude of wy, g(k)is set to be 0.01 if g(k)<0.0l. It is

desirable to select small initial weights in order to avoid the saturation on non-linear neurons.

The learning rates [ and 7] are chosen to be 0.01 and 0.95 (see below) initially and decreased gradually later
for better convergence. The choice of i and 1) are made after observing the behaviour of the neural network

for a long period of time and enough experienced is accumulated. When U is too large, it is observed that

£ (k) jumps (burst) around the ;f[y(k),W(k}] and hardly learns to approximate [(y,).

So, it is important to select {4 and 1) such that learning takes place at about the same pace in two subparts of

the neural network, i.e., g(k) and J;[yk W],

Example 3: The plant to be considered is described by: Viq = Pysin py(pp )+ pauy

Objecives are:

e to learn how the dynamic behaviour of the nonlinear system model (Example 1) response when
differenent excitation signals such as sin, square are applied

e tolearn how an adaptive GPC controls the system

e to learn how a PI controller performs with nonlinear system

e to compare the quality of PI and GPC control

e to learn how a neural controller performs with the same nonlinear plant. The neural controller uses two
networks ‘f* and ‘g’ to describe two parts of the plant. Each network contains two hidden layers of
neurons.

e To learn how neural predictive control with the same nonliner plant
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Fig.4.32: Block diagram for example 3 without controller Fig.4.33: Representative simulation results example
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Fig.4.34: Block diagram with GPC controller
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Fig.4.35 Representative simulation with GPC
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Fig.4.36: Parameter used in GPC controller
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Fig.4.40: Parameter used in PI controller
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Fig.4.42: Block diagram with NN controller
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Fig.4.44: Parameter used in NN controller Fig.4.45 Control output of NN

The results of these simulations are shown in figure 4.32 through 4.45. Initially figure 4.32 and 4.33 show the
uncontrolled dynamic plant response to which all subsequent controlled responses can be compared. Wild
oscillation occur during peak cycles when a square wave is applied as the input signal. It is undesirable in
practice, therefore each of the candidate adaptive controllers will be evaluated on their ability to compensate

for this alongside their ability to control the plant to track the driving signals. Application of adaptive GPC
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contol to this system results in data presented in figures 4.34 to 4.37, These figures show a good peromance in

terms of controlling plant oscillatory dynamics as well as tracking the demand.

The effect of PI controller on the system (Fig.4.41 through 4.44) shows that this type of controller is unable to
adapt to the nonlinear system dynamic. Neural network reponse of figures 4.45 through 4.48 out-perform the
other two candidate control methodologies under the criteria considered here. As a further demonstration of
validity neural network controller the results data presented in figures 4.45 and 4.47 also include the case when
the demand signal changes to a sinus mid simulation. These figure also demonstrate that the phenomenon of
sudden burst. This can occur eventhough neural network controller performs well initially. This sudden burst

could be due to unknown random error during the learning process.

Similar result but for different nonlinear plant also been reportd in previous paper [Thapa B. et al. 1999, 2000].

4.8 Conclusions

The work presented in this chapter is mostly concerned within a framework of identification and control
problems. The various up-to-date known types of network architectures have been presented, such as static,

dynamic, single, multi-layer and recurrent networks.

The most challenging tasks of great interest to scientists, engineers and others alike are to understand the
characteristic of neural network learning. Hence various types of learning are presented such as a very basic
Hebbian rule, perceptron learning rule, delta learning, Widrow-Hoff rule etc. Special attention has been paid in
this chapter to the development of the most efficient learning algorithm for multi-layer networks; namely, BP

learning in dynamic networks.

Learning algorithms are the basis for an introduction to identification problems, Forward and inverse
modelling have been discussed and proper structure of identification systems has been presented. Neural
models obtained via identification are intended to become a part of the control structure. Model reference
control has been presented. The principle of neural inverse model technique has been applied. The scheme was
characterised by the controller being a network trained as the inverse of the system. “Inverse” was understood
in the sense that the transfer function for the closed-loop system, consisting of controller and system, equalled

the time delay of the system. Two different methods for training the network were presented:

*  Generalised training (off-line): In this scheme the network was trained off-line to minimize the mean
square error between a control signal applied to the system in an initial experiment and the control signal
produced by the neural network. The network could be trained with any of the training methods presented

in Chapter early chapter.
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Specialized training (on-line): The objective is to minimize the mean square error between reference
signal and the output of the system. This is done (on-line) with a recursive training algorithm. The issue of
excitation is important in relation to generalized training. Due to the fashion in which the training set is
collected, it is difficult to avoid that certain regimes of the operating range are not properly represented.
Adding to this the problems with generating inverse models of systems not being one-to-one, it is
concluded that generalized training should be used mainly for initializing the network. The network is
subsequently fine-tuned with specialized training. A complete working procedure for standard problems is

outlined in Table 4.1

Table 4.1: General procedure for training of inverse models

bl

Conduct an experiment to generate a data set.

a “forward” model of the system is identified.

Initialize the inverse model with general training.

Proceed with specialized training “off-line” by using the model of the system instead of the actual
system. Apply a recursive Gauss Newton algorithm with forgetting for rapid convergence but be
careful with “covariance blow-up.”

Conclude the session by on-line specialized training. Terminate the training algorithm when an

acceptable model-following behaviour has been achieved.

The major characteristics of direct inverse control are briefly recapitulated as follows:

Advantages

L]

L]

Intuitively simple.
Simple to implement.
With specialized training the controller can be optimized for a specific reference trajectory.

It is (in principle) straightforward to apply specialized training on time varying systems.

Disadvantages

Does not work for systems with an unstable inverse, which unfortunately often occur when using a high
sampling frequency.

Problems for systems not being one-to-one (generalized training of the inverse models).

Problems with inverse models that are not well damped (local linearized models will have zeros near the
unit circle).

Lack of tuning options,

Generally expected to show a high sensitivity to disturbances and noise.

Pretraining is needed and that limits its application to plants that can be pretrained.

The neural network model needs to be accurately trained to work well. That would mean a long training
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time is required.

Problems with biases may occur if the plant parameters change due to ageing or wear and tear of components

One of the most useful properties of neural networks is prediction ability hence predictive control is the
structure in which this ability is incorporated in a special way. A prime characteristic that distinguish predictive
control from other controllers, is the idea of a receding horizon (see Appendix D); at each sample the control
signal is determined to achieve a desired behaviour in the following N, time steps. This idea is also appealing
because it relates to many of the control tasks that one as a human being carries out on a daily basis, This

intuitive foundation can to some extent accommodate the tuning of the design parameters.

The sclf-learning controller proposed by Nguyen and Widrow has been presented. Non-linear self-tuning
adaptive control has been implemented and a simulation result shown that it is very promising for control of

more complex non-linear plants.

The self-tuning adaptive control is traditionally limited to unknown linear systems. By introducing back-
propagation neural networks into the self-tuning scheme, it is demonstrated that this new technique has the

potential to deal with unknown linearizable non-linear systems.

COMMENTS

Comment 1: The identification of an unknown non-linear plant may be needed for off-line or on-line control.

The nature of the identification in the two cases may be substantially different. The various considerations that

determine the models to be used and the test signals to be applied need to be studied further.

Comment 2: In all the simulation studies, the output error tends to zero rapidly but the convergence of the

weights cannot be assured. Concepts similar to persistent excitation encountered in adaptive systems theory are

needed in this case also to assure convergence.

Comment 3: Control systems based on the results of the identification procedures are simple to implement.

However they require a degree of engineering judgement in their application.

Comment 4: Computation of control Strategies and Implementation

e Can be quite time consuming in particular in the computations are made off-line. It might be necessary to
repeat the procedure if the system dynamics or the characteristics of disturbances are changing, as is often
the case for industrial processes.

* Integration of different techniques are the key role for understanding NN in control application.

e By introducing BPNNs into the self-tuning and identification control scheme, it is demonstrated that the
new control method has the potential to deal with unknown feedback linearisable non-linear systems.

*  The predictive control strategy applied here has many advantages; it is easy to tune flexible and provides a

good controller performance.
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e  Behind the control scheme proposed here, many practical and theoretical questions could be raised.
e To derive a suitable non-linear model from a physical principle is in general much too complex for
controller design and therefore simpler models that represent the non-linear are required.

*  This provides the motivation for considering the use of NN in adaptive control.

Comment 5: Discussion on BP algorithm

Advantages

e the BP algorithm can be simulated on a PC so that no special hardware is required for its implementation.

e Itis well known that pattern recognition is recently advancing towards control applications.

e versatile mapping capabilities from input to output.

e casy to apply using existing software packages e.g., Matlab neural network toolbox. Note: it is not as
straightforward for control application as some have suggested.

*  The researcher has the potential to explore the further capability of handling real complex non-linear

problems.

Disadvantages

e BP learning is heuristic is ad hoc in nature, therefore it is time consuming.
e slow convergence speed (standard BP).

e sensitivity to initial conditions,

e Instabilities occur if the learning rate is too large.

e trapping in local minima.

e difficult to understand what is going on internally.
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CHAPTER 5: ADAPTIVE CONTROL

5.1 Introduction

An adaptive control system uses a control scheme that is capable of modifying its behaviour in response to
changes in process dynamics. Adaptive controllers have been extensively used in several industries including
chemical, aerospace, automotive and pulp and paper industry [Silva, 1999]. However, the main objective of
this chapter is to describe several fundamental concepts and results within the framework of adaptive control
so that the ideas and techniques mentioned here can be linked directly or indirectly to early chapters especially

Chapter 4 and the following Chapters 6.

5.1.1 Adaptive control schemes

A real-world plant can be usually characterised by time-varying dynamical properties most of them as a result

of plant non-stationary, non-linear and random disturbances, which affect the plant behaviour in the following

way:

= the plant is called non-stationary if its dynamics changes in time, e.g., as a result of ageing effects after
being in operation for long time;

= if the plant is non-linear (as every real plant is) then the dynamical properties of its linearised model are
different in the vicinity of various steady-state points; in normal operating conditions the steady-state point
changes;

=  Stochastic models are used to represent the disturbances acting at the plant output because of the large

number and different nature of the factors disturbing the normal plant operation.

It is clear that the control algorithm used in the above circumstances should either be adaptive or should exhibit

some robustness properties with respect to poor plant models and changes in the plant dynamics.

Robustness properties can usually be ensured by the feedback structure of the control system. The feedback
compensates for the deviation of the plant output signal value from its set point, no matter which factor has
caused such deviation:

(a) disturbances affecting the plant,

(b) improper plant model structure or

(c) achange in the plant model parameters.

However, the two latter factors usually cannot be dealt with well enough by the control system feedback
structure alone. Large differences in plant model structure and large changes in the plant dynamics may cause
the natural robustness properties of the control system to be exhausted thus causing unacceptable degradation

of the system performance.
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The adaptive control algorithms can also be used in such complex and difficult environment conditions. The
main object of this type of control algorithms is to ensure such automatic change of the controller structure and
parameters so that they correspond to the current properties of the plant and its environment to improve better
robustness of the control system. According to [Astrom and Wittenmark, 1989], the usual methods of changing
the controller parameters are:

i. programmed changes of the controller parameters, also known as gain scheduling;

ii. Identification of a plant model.

et 2
Identification
Controller parameter
calculation

A N Ty

Plant output
>

Set point

Controller

Fig.5.1 Block diagram of an adaptive control system with plant model identification

This chapter discusses the second type of adaptive control algorithm. The block diagram of such a control
system is illustrated in Fig.5.1. The controller parameters are calculated as a result of recursive identification of

the appropriate plant parametric model, performed on-line.

It is obvious that this control system structure has the potential to capture all changes in the plant parameters no

matter what their origin. However, this scheme also has a rather important drawback:

= Itisextremely complicated with respect to its theoretical analysis.

The complexity of the theoretical analysis results mainly due to non-stationary, non-linearity and stochastic
disturbances. This is one of the primary reasons this research is carried out using MATLAB/SIMULINK and

Tool boxes such as Neural Network, System Identification, Signal processing and Control toolboxes to

investigate such adaptive systems.
Objective of this research is to investigate the following possibilities:
. A model of the plant to be controlled as shown in Fig.5.2 (a). On the basis of the plant model and control

criterion, we can proceed with control synthesis, i.e., calculate the parameters of the controller. This

scheme is called indirect adaptive control, because to find the proper values of the controller parameters
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we have to complete the intermediate model identification of plant.

2. It may be possible to identify the parameters of the controller that we are seeking. This scheme is called
direct adaptive control, because it is possible to obtain directly the required controller parameters through
their estimation in an appropriately redefined plant model. The block diagram of such an adaptive control

system is presented in Fig.5.2 (b).

Control criterion

Controller Synthesis

Controller

parameter estimates Plant model parameter

Controller model
identification

A

| e e

Plant

;-&? l:viz:_.:' T
: Controller

Plant output

>

Set point

(a) an indirect adaptive control system

Control criterion

Controller model

Controller identification

parameter
estimates

BT

B W

Plant output

—>

Set point

Controller

(b) a direct adaptive control system

Fig.5.2 Block diagram of an indirect and direct adaptive control system.

Both methods are known to have several important advantages as well as disadvantages. The main advantages

of the indirect adaptive control scheme include:
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¢ the general usefulness of the plant model obtained from identification;

¢ the model may be used for controller synthesis with several different control algorithms in mind;

s another useful property of this scheme is the possibility of starting identification while the plant is
controlled by virtually any stabilising controller (for direct adaptive control the controller parameter
identification is possible only if the currently tuned controller is working in the feedback channel of the

system).

On the other hand, identification may be performed by simpler and more robust methods in the direct adaptive

control system, as the controller synthesis has to be done only once and can be done off-line.

Assume that direct adaptive control is used for minimum-variance and pole/zero-placement controllers, while

the indirect adaptive control scheme will be chosen for long-range predictive control algorithms,

5.1.2 Plant model

Adaptive control is usually used to cope with an unknown or varying plant to be controlled. Analysis and
synthesis of such a control system is possible only under some assumptions concerning the nature of the plant
and its dynamics. In this chapter only linear, discrete-time plants disturbed in a deterministic or stochastic
manner is considered. The plant chosen is typical in the field of adaptive control and non-standard discrete-

time control algorithms in general [Astrom & Wittenmark 1984; Astrom & Wittenmark 1989].

pi)y=z7* B iy + c: e(i) + d(i) +b ¢
A AV

where, the part -« 8 . referred to as the control channel of the plant. If

7::(;')

e B =B" (only stable factors exist in the B polynomial), the plant is called minimum phase (MP),

e B =B"B" the plant is called non-minimum phase (NMP).

The part %e(:’)+d(ﬁ)+b is called the disturbance channel of the plant, with _€ (i) being stochastic part of
A NJ’
the disturbance d(i) the deterministic part and b a constant bias of the plant output (deterministic in nature); the

three parts represent all disturbances affecting the plant output.

In the discrete-time models of the plants, NMP zeros tend to be very common, mainly because:
o NMP zeros to the left of the unit circle in the z-plane are generated as a result of:
- lack of synchronisation of the plant output sampling and changes in the control signal;
- the presence in the continuous-time model of the plant of a time delay which is not an integer
multiple of the sampling interval;
- choice of too small a sampling interval;

- choice of too large a discrete-model time delay for model parameters estimation;
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- assumption of too large a number of poles compared with the number of zeros in the continuous-time
plant model.

®  NMP zeros to the right of the unit circle in the z-plane are generated as a result of the presence of NMP

zeros in the continuous-time model of the plant, i.e. the plant itself is NMP. (not only its discrete-time

model).

Stochastic disturbances are modelled as the output of a stable, invertible linear filter with the t.f. _C .. The
AV

filter is assumed to be excited with white noise e(i) of variance A%, Such disturbance is stationary for [ = 0.

For /= 1the disturbance is non-stationary, i.e. it exhibits, for example, a changing mean value or ramp with

r’ ]

changing slope, with its /" difference being still stationary.

The following two kinds of C polynomials in the disturbance channel should be treated differently:

1. C polynomials passing the strict positive realness test, i.e.

Re{] 1}| >0 for all 0<swly, =m (5.2)

2. C polynomials violating the strict positive realness condition, i.e.
Rg{%_ zl} <o forall some frequencies 0 < w7y <7 (5.3)

T
= eﬁ‘ 5

The positive realness condition is often essential while proving convergence of estimation schemes in the
adaptive control system, e.g. recursive least squares in direct adaptive control or extended least squares method

in indirect adaptive control.

It is generally agreed that the dynamical model, representing the deterministic disturbance as the response of a
linear filter excited with the Kronecker delta function, assuming zero initial conditions, is the most suitable one

for plant modelling:

d() :Ais(f) (5.4)

&

where, d(i) deterministic disturbance at the output of the plant; 4 disturbance amplitude; A4 = As(z"')

deterministic disturbance generating polynomial;

I for i=0
0 for i#0

Kronecker delta function.

5(F)={

The zeros of the generating polynomial 4, determine the basic properties of the signal:

- zeros on the unit circle in the z-plane imply a non-vanishing disturbance signal;
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- zeros inside the unit circle generate a vanishing deterministic disturbance;

- zeros outside the unit circle produce a bursting disturbance signal.

The constant bias b of the plant output is a special kind of deterministic disturbance; we may alternatively
generate it using the polynomial 4, =1-z'. As the simplest kind of deterministic disturbance it was specially
modelled in (5.1) and some special procedures for damping disturbances of this kind are also used in adaptive
control system synthesis.

5.2 CONTROL ALGORITHMS SUITABLE FOR ADAPTIVE SYSTEMS

In this section some of the most popular adaptive control algorithms will be presented. The spectrum of an
adaptive control algorithm described here does not pretend to be complete, rather some interesting adaptive

control schemes also used in practice have been chosen.

Most control algorithms presented here could be described as difference equation of the form:

R(z"Yu@)+ S ")y - T Yw(i) + h=0 (5.5)

where u(7), y(i) plant control signal and plant output signal respectively, w(i) is set point of the plat output

signal and h is the constant term.

The coefficients of the R{z"’}, S(z"’) and T(z';) polynomials and the / term are chosen by the user before the

simulation experiment and stay constant during the experiment.
5.2.1 Minimum-variance control algorithms

The aim of the minimum-variance control algorithm is the minimisation of the following performance [Astrom

& Wittenmark, 1984; Astrom & Wittenmark 1989]:

BT

2
J= E‘[P(z")%j(—-—;y(i -K)=V(z "‘)w(f)] valoc o] 1 (5.6)

-1
-4

where P(z'), O(z') and V(z') are filter polynomials affecting the minimized performance index signal

components, ¢ is a weighting coefficient for the control signal value u(i), 5_(2"1) is reciprocal polynomial of

the B~ (z™") polynomial, K is the prediction horizon in the performance index.

Minimisation of this performance index leads to a control algorithm of the same structure as (5.5). All
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parameters in the controller equation are identifiable from the prediction model (assuming K=k):

i)~ RB u(i— k) =SB y(i— k) +TB w(i— k)— hB™(l) 5.7)
={1-Cllghi) - Feti)] + Feti)
where
i) = PE‘y(f)+bi+Q8'u(r—k)—VB'w(f—k) (5.8)
0

dR=max(dB+K —1,d0+dC)
dS =max(dA-1,dP+dC-k)
dT=dV+dC

The generalized minimum-variance control algorithm presented above ensurcs that the resulting control system
is stable for the non-minimum phase plant, even without having to use a non-zero ¢ weighting coefficient and
the Q(z”) polynomial, filtering the control signal in the minimised performance index (control signal value
weighting is the standard way of stabilising the minimum-variance control system with NMP plant, but far

from optimum).
Choice of minimum-variance control parameters

The following parameters of the minimum-variance control algorithm specification may be adjusted to

guarantee the desired properties of the control system:

e the weighting coefficient for the control variable of the plant, which allows “soft” saturation of the control
signal value and makes it possible to use this type of central algorithm for some NMP plants;

* the filter polynomial for the plant control signal, which allows the same kind of control signal saturation as
described above, thus making it possible to use the minimum-variance control algorithm for some NMP
systems; it also enables integral action to be introduced into the control system;

* the filter polynomials for the plant output signal and its set point in the performance index, which allow
the introduction of integral action into the control system loop and the possibility of specifying a chosen

model of set point followed by the plant output signal (modified tracking properties).
5.2.2 Pole/ Zero placement algorithms
As an example of pole/zero-placement control algorithms, some basic results for pole/zero-placement control
of a NMP plant will be presented. The control algorithm is synthesized under the assumption that the control

aim is to achieve the following transfer function (relating set point changes to plant output changes, cf.e.g.
[Astrom & Wittenmark 1984; Astrom & Wittenmark 1989; Niederlinski & Moscinski, 1988].
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_,h KB~ ()BT
Ap(z™)

where k,, is the discrete time delay in the desired model of set point following, A,,,(z"r) and By, (z") are the

K, (z™) (5.9)

polynomials determining the desired poles and zeros of the K,,,(z"') transfer function and the scalar coefficient

Km is: Ky = Am(])BmU)
B~

The effect of random disturbances on the plant output may be diminished by using a special form of observer

polynomial Ag(z”'), in the pole/zero placement control synthesis:

Ag(z7)=C ) p(z™)
where, At')(z“t)is the basic observer polynomial, used mainly for adjusting the robustness properties of the

resulting control system.

The parameters of the synthesized controller equation may be identified from the prediction model (assuming

ky=k):

@)~ B Ru(i —k)— B~ Sy(i —k)+ B"Tw(i — k) - B~ ()h=[1 - Clg(i) - R'e(i)|+ R'ei)  (5.10)

where
ng:A{‘)Am}’(f)“ A{I!BiiiKan_H{f"k) (5'“)
dR =k -1+dB"
dR=k-1+db

dS =max( dA—1,dd,, + Ay -k —dB")
dT =dB,, +d4,

Choice of pole/zero placement control parameters

The following parameters of the pole/zero placement control algorithm may be adjusted to achieve the desired

properties of the resulting control system:

e the polynomials defining the poles of the control system transfer function, determining the basic properties
of the transient signals after set point changes and disturbance changes,

e the polynomials defining the zeros of the control system transfer function, modifying the tracking
properties of the plant under control (only the stable part of the original plant B(z'!) related dynamics could

be modified for NMP plants).
5.2.3 Simple self-tuning control algorithms

A simple self-tuning control algorithm has been proposed by [Astrom, 1979]. This is essentially one of the
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pole-placement control algorithms, derived under the assumption that the plant under control may be described

by the following simple model:
wi)= —aly(:' - 1)—a2y(t‘—— 2) +b0u{f - l)+blu(f— 2)+d (5.12)

It is also assumed that the poles of the transfer function relating the changes in the set point signal with the

changes in the plant output signal should be determined with the following formula:
va T
z= eéo r {CD{WOTP\JI -t ]i‘ jsin(wui"p - &2 )]

thus corresponding to the poles of the following Laplace transform transfer function;

5= =Gy + jwo[1-&

where & is the plant-damping ratio, and w,, is the natural oscillation frequency of the plant. The parameters of

this control algorithm may be easily identified from the properly configured prediction model.

This kind of adaptive control algorithm has become quite popular because of its similarity to the well-known,
traditional design procedure for PI/PID controllers based on a simplified model of the plant (first or second
order) and links to the family of pole-placement control algorithms, These two parameters of the simple self-
tuning control algorithm as presented here for the demonstration purposes, while the relative damping and

natural oscillation frequency can easily be interpreted in terms of the plant step-response properties.
Choice of the simple self-tuning controller parameters

The following parameters of the simple self-tuning control algorithm may be changed in order to influence the
basic set-point-following properties of the resulting control system:
e control system damping ratio - allows determination of the damping ratio affecting the amplitude of
the transient signals in the control system, after a set point change or in the presence of disturbances;
e transient signal natural oscillation frequency - allows determination of the frequency of oscillations in
the control system transient signals, after a change of the set point value or in the presence of

disturbances (the oscillation period should be measured in sampling intervals).
5.2.4 Multi-step Model Algorithmic Control (MAC)

Some basic predictive indirect adaptive control algorithms is described, including the multi-step model

algorithmic control (MAC) and the generalized predictive control algorithm (GPC) in the next section.
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The MAC control algorithm derivation is based on the assumption that the plant under control may be
described with a weighting function approximate model and that the plant is undisturbed, i.e. e(i =0. The basic
control system performance assumption, taken into consideration while deriving the MAC algorithm, is that
the response of the plant output signal to a set point change should be the same as the response of the pre-

specified first-order system of the form:

yii)y=z"* »I—TBL.»(;) (5.13)

— Z_I

where y°(i) is the desired trajectory of the plant response to the w(i) set point changes and 3 determines the

speed with which the change is followed.

The control algorithm aims at minimising the following performance index (corresponding to the above control

system performance formulation):
=5 [ﬁ(r‘+ !(+}|r')—y"(r'+k +,s)]2 +u’ Qu
=0

where, J(i+k +j|i) predicted value of the plant output at (i +k + ;) instant predicted at the i* instant;

H plant output prediction horizon;
= [u(:')u(:’ + 1) u(i + H)] Vector of plant control signal values;
Q plant control signal-weighting matrix.

By solving the stated minimization problem, the following control algorithm is obtained;

u@y=-lt 0 - ofc"G+0) ¢"r (5.15)
where

£p 0

G=| % fo | (5.16)
.gH gH-1 - gg

}'T=[r0 yoe i ] (5.17)

r=%¢ gu(i—j+5)- B yM i+ k-1 -1 = BTN () = (i) + wii)) (5.18)
J=s5+l
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m

with g(i) being the ith element of the discrete-time pulse response of the plant and y"(i) the plant model output

(in the form of a finite approximation of the plant weighting function):

M dB
yo)= _Eugju(f— k—J) (5.19)
Jj=

* time instant, the value of the control signal should be

Assuming additionally that, beginning from the (i+k+L)
0 (with L being the control signal predication horizon [Cutler, 1980], the following version of the control

algorithm is obtained:

uiy=-1 o - okelG,+0)"'Glr (5.20)
where
8o 0
& & (5.21)
GL— H : "
g.;, 8;:—1 g_u
Ho BHa Er-1

5.2.5 GPC algorithm

During GPC algorithm derivation we assume that the plant dynamics may be described with the standard

ARIMAX model, with the disturbance channel polynomial C(z”) being equal to I and D(z"")=V=1-z"".
The objective of GPC algorithm is to minimize the performance index:

J=e"e+qyVu' Vu (5.22)
where e is the vector of control error defined as:

e” =[wi + k)= PG + K[}y (i +k + H) = 5(i + k + H|)] (5.23)

with (i + kli} the optimal predicted value of the plant output at the (i+j)" time instant predicted from the i, H

the plant output prediction horizon, g, is the weighting coefficient of the vector of plant control signal values in

the minimized performance index.

Minimization of performance index (5.22) leads to the long-range predictive control algorithm:
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Vu@iy=[l 0 - ONHTH+qol)" H (w—r) (5.24)

where
wl =[w(i+ k)..w(i + k + H)] (5.25)

is the vector of set point values and

y=HVu+r (526)
hy 0
He !.-,*'*' ;;g_“ _ (5.27)

k+H L+ k+ 1
by Iy o hg

VuT =[Vu(i)..Vu(i + H)) (5.28)

pl = ["u o :'HJ (5.29)
4 dABK-1 )

ry = Zug joYi=N+ El hgoj lu(i=j)—u(i-j-1)] (5.30)
J= J=

If we assume that starting from time instant i+k+L the plant control signal u should be equal to 0, with L

known as the control signal prediction horizon; we obtain the following simplified version of the GPC

algorithm:
oo T =lgT .
Vu@=[ 0 - OKH[H, +qq)" H] (w-r) (5.31)
where
g 0
[ o
P (5.32)
H, = L kel s
L L i
R

5.2.6 Adaptive PID control with non-parametric identification

There are several methods for deriving the parameters of a PID controller on the basis of the controlled plant

frequency response parameters. These methods include
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e the Ziegler-Nichols frequency response method,
e the dominant poles design and

e the M, method.

All of them are based on the determination of some points of the controlled plant frequency response, the plant
critical gain and oscillation frequency being the most popular and easiest parameters to obtain. One of the most
popular methods of approximate identification of the plant frequency response is based on the concept of
closing the control loop in the tuning phase with a non-linear element of relay type, preferably with some
hysteresis. During the initial phase of control, the relay in the feedback channel ensures that after some time
oscillations will appear in the control system. The oscillations are continuously monitored and when their
period seems to be constant we can measure it along with the oscillation amplitude. Afterwards the
corresponding fundamental component is calculated. On the basis of such a modified Ziegler-Nichols
experiment, the user knows all the data necessary to calculate the values of the PID controller parameters using
the Ziegler-Nichols formulae. If we use a relay with hysteresis or any other more involved non-linear element
in the feedback channel, we can gather more information about the plant frequency response parameters and

obviously we can use more involved design procedures.

5.3 Identification in Adaptive Systems

In an adaptive control system, identification procedures are used to obtain the estimates of the parameters of
the weighting function, transfer function or prediction model of the plant. The estimates of the prediction
model parameters are either directly used in the adaptive controller equation or e.g., in the case of a NMP

plant, the estimates are further processed to eliminate the influence of the NMP part of the plant model,
B (z™").

The following three estimation schemes are commonly used in adaptive control systems:

(i) recursive least squares (RLS), (ii) recursive least mean squares (LMS), (iii) recursive prediction error

minimization (RPE).

The basic and fundamental RLS and LMS procedures are briefly described below. But the extensive analysis

and implementation techniques are given in [Ljung and Soderstrom, 1983].
5.3.1 Recursive least squares

The RLS method could be crudely implemented on the basis of the recursive equations:

&)= i - 1) + kOlwti) - & (- 0BG~ D (5:33)
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P(i - 1(i- K) (5.34)

k() =
a+oT (i =K)P(i-)p(i-K)
. . T es -
P = Tlx[ PU-1) Pi-Dti - K)p' (i = K)PG - (5.35)
o+ @ (i- K)P(i - )i = K)

where
0(i)  model parameter estimates vector, in the ith identification step,

yAi) model output variable value, in the ith identification step,

th

@)  model regressor vector, in the i identification step,

K prediction horizon (time delay) of the model,

k(i) identification gain vector, in the i identification step,

P(i) identification matrix (proportional to covariance of é(f) , in the i"™ identification step,

o forgetting factor.

Initial values é((}) of the estimates are usually chosen as being equal to 0. The initial identification matrix P(0)

is usually a diagonal matrix with large coefficients on its main diagonal:
P(0)= Pyl Py>>1 (5.36)

If the forgetting factor in the RLS method is equal to I, then the elements of the identification matrix P(i)
decrease with the identification iterations, preventing rapid changes in the estimates after some iterations of the
identification process. The possibility of changes in the estimates may be measured by the scalar gain

coefficient
k= 9" (i = K)P(D)gli - K) (5.37)
Rapid changes of the model parameter estimates are possible if either of the following modifications is used:

(a) covariance (P matrix) resetting, periodically increasing the values of all P(i) matrix elements by such a

factor that the largest element after the increase is equal to P, (or /), where ¥ is some scaling factor);
Y

such a mechanism makes it possible to increase the absolute values of the P matrix elements and the value
of the scalar gain coefficient k,, thus allowing fast (and effective) adaptation in the case of time-varying
plant behaviour;

(b) using a forgetting factor << 1, causing the P(i) matrix elements calculated from (5.35) not to decrease

much during the identification process.
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Using a forgetting factor a<1 (if the controlled plant is not excited enough) causes the (i —K) vector

elements to be small and leads to constant increase of the P(i) matrix elements and the gain vector k(i). As a

result, when a large identification error happen (e.g. because of a sudden, large disturbance) the model
parameter estimates é(f) change quite rapidly and disturb the process of identification. The effect may be

especially disastrous in the direct adaptive control system, in which the estimates are directly used as)
controller equation coefficients. Methods are described in the literature to avoid such unpleasant
identification/control properties. For example, in [Albert and Sittler, 1966; Fortescue ef al, 1981,
Kershenbaum and Fortescue, 1981] an estimator information measure is proposed, calculated as the weighted

sum of the identification errors:

(i) =L (i~ 1) +[1- @' (i~ K@) - @ (i - K)&i — D) (5.38)

The forgetting factor ofi) is adjusted at each identification step to keep the estimator information measure

(5.38) constant, i.e. the user wants

2 (3i) =2(i-1)=..=£(0) (5.39)

where 2,(0) (the initial value of the ¥, ()) may be used for tuning the forgetting factor adjustment, in the

presence of time varying plant behaviour,

th

Under the above assumptions, the forgetting factor for the i step of identification is calculated by

atiy=!—11—0" (= KWOIw @) -¢" (- KB - i)% o (5.40)

Another method used to ensure good properties of the RLS estimation procedure for lengthy experiments is to
keep the trace of P(i) constant and to introduce an identification error dead zone: if the identification error
remains small enough, the update procedures are not activated at all. An adequate sequence of recursive

formulae for this version of the RLS method is

&) = & -1) + ok (Olwti) - & (- K& -1)] (5.41)

k)= P(i- )i — K) (5.42)
1+¢@ (i-K)PG-Dli-K)+2c ¢ (i — K)o
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P(i)=P(i- 1) - ofi) ——— — —
1+ (i-K)PG-)@i -K)+Z¢' (i-K)p

P(i)

where

Py=C ——+Cy/ 5.44)
() =C, e 6 (
oty =% Tor |V)T{I—K)a1—i)l>2f) (5:55)
0 if the-above-conditiondoes—not—hold
C, - specified value of P matrix trace; C; - P matrix diagonalization factor,
o - Identification error dead zone; o - Identification error weighting coefficient,
C - a factor used to maintain sufficiently large values of the P matrix elements.

PG -Dti — K)p (i = K)P(i 1) (5.43)

A so-called improved least squares estimation method is also used. The convergence, stability and speed

properties of this version are achieved by normalization of the regressor vector, scaling of the P(i) matrix to

ensure the minimum condition number, adjusting the forgetting factor and avoiding updating the P(i) matrix

and 6(i) vector during periods of low excitation. The recursive calculations are as follows:

IR

Normalization of the regressor vector:

n (i) = max( 1| ti — K)|) (5.45)
w, () = (i) / n(i) (5.46)
@ (i-K)=qi-K)/n(i) (5.47)
n
Calculating the forgetting factor value to stabilize P(i) matrix trace:
r(i) =1+, (i= K)PG = 1), (i = K) (5.48)
2 1wz
|-, - &) (5.49)

N —1_ " — AT
ao{i)=1-0.9 r(iy—ri)* -4 wPi-1)

Testing the excitation properties

NG)=|PG -y, (i - K)| (5.50)

If N(i) < Ny, (low excitation), the calculation proceed to 7.

Calculation of new value of P.

- ] . P(i =g (i - K)P(i-1)

P =—| Pli-11—- i (55 l)
@ o) | =0 ofi)+ @] (i - K)P(i~1)¢g, (i - K)

P i)y=oi)P i~ 1)+ @, (- K)¢ (i — K) (5.52)
P-PLIL 2

If c[ﬁ}:- Cax (poorly conditioned P), then the calculation proceeds to 6.
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5. Updating the identified parameter vector and P.
P(i)=P(i), P™ () =P (1), S()) = S(i - 1) (5.54)
6()=6(i-1)+ S™ (i =Py (i~ K)*[yn ()~ @] (i = K)BG ~1)) (5.55)
The calculation proceeds to 9.

6. Calculating the elements of the scaling matrices. S is calculated to minimize the condition number SP),
then P (i), and 7~'(j), are updated:
P(i) =5P()S, Pli=5"P'»)s! (5.56)
If C{ﬁ-} <= Cpax (sufficiently well conditioned P), the calculation proceeds to 8.
7. Stopping the estimation
P(i) = P(i-1), Piy=pP -1, SE=S3-1) (5.57)
6(i)=6( -1 (5.58)

8. Updating the identified parameters values and P:

P(iy = P(i), PO =P'(), (5.59)
S()=S3i-DT, 0, (i-K)=5"9,(i-K), (5.60)
(=03 1)+ S~ ()P (i — K)wy () - (i — K)BG ~1)] (5.61)

9. Constraining the parameter estimates to some chosen neighbourhood of the initial guesses é(O). If R
denotes the radius of a sphere in 2} space, in which all parameter estimates have to lie, then the estimates
may be constrained:

0,(1) =6(i)-6(0) (5.62)

a .. R -
= i - i 5.63
6(i) =0(0) + m"{l‘"gv(")l }:tD(;) (5.63)

10. In the improved least squares method, the user may choose the minimum value of the forgetting factor
calculated by (5.49), the minimum value N, of the norm in (5.50), the maximum value C4 of the

condition factor and the maximum radius R in (5.63).

5.3.2 Recursive least mean squares

The recursive least mean squares (LMS) method is much simpler and faster than recursive least squares. The

LMS method may be described by

i b i)-o" G- Kb -1) (564)

6(i)=6(i-1)+o(i-K
O=0G=brel )ak+(or(i—K)¢;a{i—K)

where
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6(i)  Parameter estimates vector, yAi)  Model output, (i)  regressor vector,

K prediction horizon (time delay), * gain coefficient, ok forgetting factor.

5.4 Identification model structure

In indirect adaptive control we must identify the parameters of a “classic” model of the plant, for example the
weighting function or transfer-function model. The choice of model structure and identification scheme has

been examined in details by many authors, see e.g. [Ljung, 1983].

Direct adaptive control needs a plant model in which the R, S and T polynomials and the & term are present,
constituting the controller equation, This is the case for a prediction model of the plant, which is also linear in

the parameters, making it possible to identify them using least squares.

The way in which the prediction model parameters are identified depends on the minimum phase property of

the plant or on how information about the plant being non-minimum phase is incorporated.
5.4.1 Minimum phase plant

If the plant is minimum phase, the only unknown parameters in the prediction model are the resulting control
algorithm parameters (with respect to which the model is linear). This means that the user may identify the
parameters and use them directly as the controller coefficients. This way of implementing the minimum-
variance and pole / zero-placement control algorithms is conceptually easy and numerically effective. Such a

self-tuning control system is valid only for a minimum phase plant.
5.4.2 Non-minimum phase plant

If the plant is non-minimum phase, some elements in the corresponding prediction model will be related to this

(specifically the B polynomial). An example (similar to the one described by (5.7)) is:

i)~ RB u(i—k)-SB™ y(i—k)+TB w(i—k)-hB~ (1) =€ (i) (5.65)

where e (i) is the model error.

The estimation of such model-coefficient values should be effective and result in the controller parameters (R,
S and T polynomials and the /1 term). This prediction model structure suggests at least two ways to achieve the

stated objective:

e Identify jointly the parameters RB™, SB~, TB™ and AB™ (/) in a prediction model
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@) = Lu(i — k) — My(i — k) + Nw(i —k) - hB~ =€ (i) (5.66)
then conclude the controller parameters, R, S, T and A, by dividing L, M and Nby B and 487 ()

e At the beginning of each identification step, filter the regression signals y(i-k) and w(i-k) with B~ and the

constant 1 with B~ (/), leading to the prediction model:
) - Rur (i-k)- SyB_ (i—k) +Tw (i-k)— Irls_ =e (i) (5.67)

Such a model can be directly used to identify the control parameters: R, S, T and h.
These solutions assume that B"(z"‘) is known. This may be so if either

e the user pretends to know B~ 's degree and coefficients on the basis of his/her plant knowledge (maybe as

a result of previous identification); or

* B isidentified jointly with the parameters of the controller; the possible solution is to use the prediction

model:

¢i) = LuG=k)=Sy _(i=k)+Tw _(i=k)=hi__=e (i) (5.68)

At the end of each identification step, the unstable parts of L are grouped and processed further as B, the rest
of the L estimate being treated as a controller polynomial R. In the next identification step, the estimate of B,

serves to filter the regression variables y(7 - k) and w(7 - k) and the constant 1. In the first identification step we

may assume that B~ (z™') =1 .

In specific cases some factors of the R, § and T polynomials may be known and thus need not be identified. If
we denote such terms as Ry, S and T; and with R,,, §, and T,, unknown, then during adaptive control the
known factors of the controller polynomials should be used for filtering the appropriate regressor signals
before the estimation step, while the unknown factors have to be identified (maybe jointly with the B

polynomial).

5.5 Estimation of non-stationary plant parameters.

As is common practice in adaptive control and in CACSD-based adaptive control simulation, the user is free to
choose among at least three estimation schemes:

(a) recursive least squares (RLS), in its standard version, the constant # P version and improved version,

(b) recursive least mean squares (LMS),
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(c) recursive prediction error minimisation (RPE).

The LMS method is considerably faster than both RLS and RPE. However, for many adaptive control systems,

the RLS method is considerably better for parameter-estimate convergence rate and bias.

The basic parameter of weighted RLS is the forgetting factor . The user should choose an equal to 1 for a
plant assumed to be stationary, or 0<< <1 for a plant assumed non-stationary. Any constant a may cause
slow convergence of the parameter estimates or periodic large changes of their values. Usually the forgetting
factor may be continuously varied according to the weighted sum of squares of the model prediction error
[Fortescue ef al., 1981]. The user may choose the lower bound of the adjusted forgetting factor and the gain of
the adjustment procedure. Similar good properties may be obtained when using the constant 7 P version of
RLS [Astrom and Wittenmark, 1989] or the improved (or robust) least squares method [Sripada, 1987]. These
methods ensure fast adaptation after a change of plant parameters and there is no danger related to low

excitation of the plant (no “bursts” in the estimates).

The initial values of the main diagonal elements of P are also important in the RLS method. Initial values that
are too large may cause temporary destabilization of the adaptive control system. On the other hand, small

initial values may cause slow convergence of the parameter estimates.

RLS is especially vigorous in the first few iteration steps. This suggests restarting periodically with the initial
P, and the last vector of the parameter estimates (covariance resetting). Covariance resetting may be also
requested if the user considers that the dynamics of the system have changed. The covariance resetting
procedure makes RLS much faster in tracking changing parameters than the standard weighted RLS method
with forgetting factor less than 1. On the other hand, covariance resetting may cause violent changes in the
parameter estimates. It should be stressed that both the constant f» P version of RLS identification and
improved least squares need no periodical resetting of the covariance, while achieving fast adaptation in the

presence of non-stationary plant behaviour.

5.6 Multivariable Minimum-Variance Adaptive Control

Multivariable versions of the minimum-variance control schemes have appeared in the literature for almost
more than 2 decades now, starting from the early works of [Borisson and Koivo, 1979]. Further work and

extensions have been presented by, among others, [Dugard and Scattolini ef al., 1985].

It is supposed that the multivariable plant to be controlled is described by the linear model:

Az Yy = B Duti- )+ ez He(iy+d (5.69)
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with (i) a p-dimensional control signal, y(i) a p-dimensional output (controlled) signal, e(i) a p-dimensional
white noise sequence with diagonal covariance matrix, and 4 a p-dimensional constant disturbance (bias)
vector. A(z"), B(zJ) and C(zJ) are polynomial matrices, with 4 being monic. Argument (z';) will be omitted

from here on.

It is assumed that the plant is minimum phase in the multivariable sense, i.e. that B is stable in such sense. It is

also assumed that C is stable.
The performance index to be minimized in the multivariable generalized minimum-variance scheme is
il 2 5.70)
min| £ i+ - P | +llwci .
where w(i) denotes a p-dimensional set point vector and P, ¥ and Q are p x p matrices in the z” operator.

The control algorithm resulting from this problem statement is defined by

[FB+EB,;‘"Q{ Q}:(i) +Gy(i)- Cw* () + F(1)d =0 (5.71)
C=AF+z7%G (5.72)
CF=FC (5.73)
FG=GF (5.74)
Pw* (i) = Vw(i) (5.75)

with F and F p xp polynomial matrices of k-/ degree and Gand G also p x p polynomial matrices, of degree

sufficient for the identity (5.72) to be solvable.

It is apparent that the control equation may be rewritten in the following, commonly adopted form:

Ru(i) +Sy()) —~Tw* () + 8 =0 (5.76)

Thus, the control vector could be calculated using

— nR _ nS _ nT _
U, (1) ==Ry hH Rol‘gp; (i-)+ X Syli-p-w+@ X T w(i-j)+d (5.77)
i=1 j= 0 j= 1 J
with
R=FB+CBy Q)0 (5.58)
5=G (5.59)
T=C (5.60)
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&=F(I)d (5.61)

It should be observed that, in the case of no control signal weighting (i.e. O = 0), the assumption concerning

the minimum phase property of the controlled plant becomes active.

It should be observed also that the plant model might be transformed to include the polynomial matrices
appearing in the multivariable minimum-variance control algorithm just given. The appropriate version of the
plant model is
. =m0 T AT Al = e

Wi+k)—[FB+CBy Qg Qi) -Gy +Cw*(i)—q (5.82)

=(C = D)[Fe(i+k)—w(i+k)]+ Fe(i +k)
with

Wi+ k) = y(i + k)= w* (i) + By O Qu(i) (5.83)
The model (5.82) could then be rewritten in the prediction model form (regressor model form):

YA = R, Ryl = k) =S, 8,y = k) + T, = y(i + k)= w* (i) + By Qg Qu i) (5.84)
or, assuming that some factors of the controller polynomial matrices are known, in the form:

W) - R Ru(i—k) =S, S, y(i-k)+T, = yi+k)—w*(i-k)—q=e (i)  (585)

in which only the unknown factors and vectors R, S,, T, and ¢ need be estimated, if this prediction model is
used in the multivariable adaptive control framework. The controller polynomial matrices appearing in (5.85)

are of special structure and different dimensions compared with R, S and T, e.g. R, and Ry are defined as

R 0 - R,IP 0
u, 1l u
! . . 5.86
Ry = . .. (5.86)
0 RyPl 0 Ry, PP
R 0
' 5.87
Ry 0 (5.87)
Ru: H .
0 L
] R
L k pp

Prediction model (5.85) together with the controller equation (5.77) form the basis of the multivariable

adaptive minimum-variance control scheme.

5.7 Multivariable Predictive Adaptive Control
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Below, a multivariable case of generalised predictive control will be considered as a representative of

multivariable versions of long-range predictive control algorithms.

Multivariable versions of the GPC control algorithm emerged as natural generalizations of the basic GPC
control algorithm, their background being traceable to [Dugard et al., 1985; Goodwin ef al., 1980]. The version
presented here resembles that presented by [Shah, ef al.,1987] as well as similar results obtained by [Kinnaert,
1987; Gu et al., 1991].

It is assumed that the plant to be controlled is described by the multivariable model:

AAY(i) = BAu(i — k) + (i) (5.88)

where d denotes the diagonal z/ operator matrix with all diagonal elements difference operators /- z”/, all other

elements of the model having been introduced in the previous section (5.2.5).

The performance index to be minimized in step i of the GPC algorithm is
- 3 - 2, @ e 5.89
KD =E) % [y + =wai+ ) + _}:0||mu(s+;)| + (5.89)
=N J=

where p is the control weighting matrix and Au(i + j) vector serves as a vector of variables with respect to

which the performance index is minimized.

In practice, the following related performance index will be used in subsequent calculations:
. My 'Y agy |2 Na Coal? 5.90
J0= % [+ -+ || + 3 s+ (5.90)
=N J=

where j(i+ j) denotes the vector of optimal predictions of the controlled variables, assuming at time instant i
zero values of all future white noise sequence elements; w(i + ) denotes the vector of set point predictions.

Two cases could be considered:

e Perfect knowledge of the future set point sequence is available, in which case (i + ;1:‘) =w(i + /).
¢ No knowledge of the future set point sequence is available, giving w(i + jli) = w(7) as the only reasonable

solution,

The following observations, concerning the assumptions just imposed, should be made:
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1 Usually, in long-range predictive control, a receding horizon concept is adopted, i.e., the optimization
performed at each instanti gives the whole vector of “optimal” control increments, only the first element
of which is used in practice, the whole calculation procedure being repeated in each step, producing new,
updated values of consecutive u signal increments.

2 Usually we assume that after some specified number of control periods, the increments of the control
signal should be equal to zero, resulting in the upper index of the sum relating to « in (5.90) being N,

instead of N»:
._NZ ~ A ~ L ]2 Ny . w12 5.91
J(i)= % "y(r +J'|f)~ wii +j|:1| + Zﬂ"n Auli + 11| (5.91)
jﬁ I j:

This so-called control horizon may in practice be much less than the controlled variable prediction horizon (or

simply prediction horizon) N, greatly simplifying and accelerating the calculations required.

3. All prediction horizons, N, N> and N, were given as scalars above. However, nothing prevents them from
being defined as appropriate p-dimensional vectors, corresponding to the assumed structure of the
multivariable plant model. In what follows, the scalar version of the presentation relating to the prediction

horizons will be retained, so as not to complicate the notation.

Let us define the following aggregate vectors:

P* @) =[G + N,|f)’" PG +N, |nT P+ N2|r'JT i (5.92)
W (i) =[Wi + N, |r)" V(i + N.]i)T i + N2|f)"]f (5.93)
Au* (i) =[Mu()" Au@ +1) Au(i+ N)TT (5.94)

The performance index to be minimized (5.91) may be rewritten using the new notation as
Iy =[5 iy =i+ G + @) (5.95)
The vector of predicted values of the controlled signal could be shown to be
P* (i) = HAu * (i) + r(i) (5.96)
with  Aw*(i)defined as in (5.94), i.e. including only future increments of the control vector, while the

influence of all past values of the control vector on the vector of predicted values of the controlled signal is

grouped in the vector r(i) vector, of dimension (N; — N} x p. Thus it is clear that the predicted values of the
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controlled signal j * (i) , with the constraint that all the future increments of the control signal are zero (“free”

prediction), would be r(i), giving easy on-line calculation of the elements of vector r(i), if the model of the

multivariable plant is known.

The H matrix appearing in (5.96) is the plant model step response block matrix:

_h”l“ 0
]INE hN]_,
' : (5.97)
H= hN" JIN"_’ Iflc
Myt Iy - by,

with each h; element a p x p matrix of i'" elements of the multivariable plant step response. Incorporating (5.96)

into the performance index (5.91) and completing the minimization results in the final control algorithm:
*
Au,, (i) = (H" H+)p(i) - r(i)) (5.98)

from which the required current control increments Aw,,,, (/) may be extracted.

We can conclude that, for adaptive multivariable GPC control, the following steps can be adopted in each

iteration of the multivariable plant control:

1 Identify the parameters of the plant model in the form of (5.88).

2 Calculate the estimates of the multivariable plant step response H matrix, in the form defined by (5.97), on
the basis of the plant model obtained in step 1.

3 Calculate the estimates of the multivariable plant “free” response prediction vector »(i), as defined by

(5.96), also on the basis of the plant model identification.

4  Calculate the optimal control increments using (5.98) and extract the first p elements of the Au (i) vector.

5.8 Multivariable System Identification

System identification methods are inevitably present in the adaptive control systems and usually affect their
behaviour quite substantially. A lot of work in the adaptive control field in practice is devoted to making the
underlying identification schemes faster, more reliable and more robust. It is agreed that the multivariable

identification case can be even more difficult.
In what follows some concepts concerning multivariable identification methods will be outlined. However, the

coverage does not pretend to be either very elaborate or very thorough. The methods given below follow

closely the standard ones, which may be found for example in [Ljung, 1983], with some numerically oriented
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enhancements as suggested, for example, in [Lawson and Hanson, 1974].

Basically, we can use two different kinds of multivariable plant model:

e aplant-oriented model, also called a transfer-function model (following the SISO case), as described, for
example, by (5.88); this kind of model is used in multivariable GPC;

e a controller-oriented model, also called a prediction model, introduced by (5.82), (5.84) and eventually

(5.85); this kind of model is used for multivariable generalized minimum-variance control.

In both cases, the plant model to be identified is of the general form:

w(i) - 0" d(i) =€ () (5.99)

with yAi) the output of the model, O7 the model parameter matrix, ®(i)the regressors vector, and € (/) the
model error vector. For the plant-oriented model case, yAi)is simply Ay(i), as in (5.88), whereas @ (i) is

formed from the delayed Ayp(i)and Awu(i) signal increment vectors, with A and B polynomial matrices

building er.

Estimation is usually performed through consecutive rows of the (5.99) model, i.e. the p-sub-models of the

form:
v (1)-0 o) =€’ (i) (5.100)
. P -
with 7 (i) the /" output of the model, ®/ the jth row of the parameter estimate matrix © ande” (i) the /™

element of the model error vector. Estimation then proceeds through the well-known formulae, e.g. in weighted
recursive least squares, the calculations during each step are:

&/ =6’/ (f}+k(f}[q/’(f)—(3)f"' (i—])qﬁ(i)] (5.101)

N = P(t_l)qﬁ(‘) 5‘102
MO = T P Do) .10

Py = 1| pii—py- PE=DEOE PG (5.103)
o o+ ¢ () PG - 1))

where k(i) is the identification gain vector, P(i) the identification (covariance) matrix and orthe forgetting

factor.

To enhance the robustness of the estimation scheme as well as the speed of identification / adaptation, many
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improvements have been suggested in the literature. Considering the formulae (5.101)-(5.103), some of the
most promising ones are for example, the constant trace version of the RLS estimation, [Astrom and

Wittenmark, 1989], and the improved (robust) version of it introduced by [Sripada and Fisher, 1987].

One important feature should be observed in these formulae:

e the regressor vector ¢¥i) , the gain vector k(i) and the identification (covariance) matrix P(i) are the same

for all p identification procedures for the p rows of the E parameter matrix. That means that in each
identification step, the updating of P(i) and k(i) has to be performed only once applying (5.102) and

(5.103). This version of P(i} and k(i) updating is sometimes called common regressors estimation.

In the controller-oriented model, the A7) vector is yAi) of the model (5.85), and the regressor vector can be
formed from the delayed and filtered u(i), y(i) and w*(i), as well as from the vector of unity elements. The
parameter matrix E can be formed from the polynomial matrices R,, S, and 7}, as well as the vector ¢. In this

case, identification should proceed as in the plant-oriented model case, i.e. using the common regressor

estimation scheme.

However, it is obvious that the special structure of wunknown and known factors of R, Sand T polynomial
matrices can be utilized, as may be observed in formulae (5.86) and (5.87). Indeed, the number of identified

parameters can be substantially reduced by removing zero elements from the unknown and known factors and
performing the structure compression. However, by doing so, we encounter a situation in which the ¢’ (i)

regressor vectors are different for parameter estimation of the different rows of £, This specialized version of

the multivariable RLS estimation scheme is called independent regressor estimation.
5.9 PERFORMANCE MEASURES FOR ADAPTIVE CONTROL ALGORITHMS

It seems reasonable to work out general and precise performance measures for adaptive control algorithms,
which can be used to compare the results obtained by different adaptive schemes. Using such measures, we

could answer the following typical questions:

Q1 Does the new algorithm offer better performance when compared with existing ones with respect to
adaptive system?
Q2 Which values of existing adaptive control schemes should we choose in order to achieve a stable and

optimal adaptive system?
It is obvious that each stochastic adaptive control algorithm should ensure successful (optimum) control of a

linear time-invariant stochastic plant, if possible. The concept of maximum regulability, as defined below, can

be used to gain performance-related information about the possibly adaptively controlled plant:
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{Uncentrolled plant output signal variance}-{Controlled signal minimum variance)}

Vmax =

{Uncontrolled plant output signal variance}

Maximum regulability is a measure of the relative output variance decrease achievable in the best case, i.e.
when a known plant (minimum phase or not) is controlled by the properly tuned minimum-variance controller.
The maximum regulability indicates how much can be gained by controlling a stochastically disturbed, linear
time-invariant plant. A small value of the maximum regulability index suggests that practically nothing can be
gained by controlling that plant, because the small decrease of the output variance could well be below the

noise variance of the measurement instruments,

The maximum regulability values for minimum phase (MP) plants can be computed using formulae first

presented by [Astrom, 1966]:

[T |

Tmax = 5
A€ -
E [A eli k]]
From the definition of ., leads to draw the following properties:
® g fOr minimum phase (MP) plants depends only on the time delay & and the properties of the disturbance

filter C;
4

®  pqy for NMP plants depends additionally upon the B- polynomial, which could be justified on the basis of
theoretical similarities between time delay and NMP;
®  ruac for NMP plants is generally smaller than for their nearest MP neighbours, which could be concluded

also from the similarities just mentioned;

e ruae for white noise at the plant output we get €=1, G = 0 and ry, = 0 which means a minimum of

A
maximum regulability: the white-noise power spectrum is too broad for any control system to cope with;
®  Iuax is always smaller than 1, because in the best circumstances (i.e. for k = [) the controlled variable is
reduced to the driving white noise e(i);
® e 1S invariant with respect to the white noise variance;

* with increasing time delay £, all other things being equal, . decreases to 0.
Another performance measure for adaptive control algorithms is the price paid for minimizing the output

variance. This measure can be defined as the variance of the plant control signal for minimum-variance control

and can be computed from
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e for MP plants: 2
E{,H,-,}: g“%;-m] }
&

e for NMP plants: E{‘z(i)}:ﬁ-{ G d”}z
BB

[t is also reasonable to define the relative minimum-variance control cost ¢y, as:

{ Control variance for minimum-variance controlled plant }

CMy

{Uncontrolled plant output signal variance}-{Controlled signal minimum variance}

thus relating the increase in the control signal variance to the corresponding decrease of the controlled signal

variance.

All adaptive contro] algorithms are built on the basis of corresponding non-adaptive ones. It seems reasonable
to define a performance measure with respect to perfectly calculated control algorithms of the chosen kind, i.e.
assuming perfect knowledge of the plant structure and parameters as well as plant disturbance characteristics.

Such a measure will be called the obtainable regulability r, and is defined as

{Uncontrolled plant output signal variance }-{ Controlled plant output signal variance }

{ Uncontrolled plant output signal variance }

[t is obvious that

"o S "max
Similarly it is worthwhile to account for control variable changes by introducing the obtainable relative control

cost:

{ Control variance for the controlled plant }

Co=
{ Uncontrolled plant output signal variance }-{ Controlled plant output signal variance }

These performance measures defined above may be evaluated for any control algorithm supposed to be

implemented in the adaptive control system for the given plant.

The last concept concerns the truly adaptive control algorithm and determines its closeness to its non-adaptive

origin, The adaptive regulability (+,) could thus be defined as:

148



{Uncontrolled plant output signal mean square}-{ Adaptively controlled plant output signal mean square}

™=

{Uncontrolled plant output signal mean square}

Adaptive regulability should be determined in the stationary phase of the adaptive control system simulation,

i.e. after the controller has converged. It is obvious that:

Proceeding analogously we can define the relative obtainable control cost as a performance reference value for
adaptive control based on a given non-adaptive control law. The relative adaptive control cost ¢, could be

defined as:

{mean square control signal for the a daptively controlled plant}

{Uncontrolled plant output signal mean square }-{ Adaptively controlled plant output signal mean square}

The rq and ¢, indices referred respectively to r, and ¢, give together an insight into how much are we behind

the non-adaptive control performance in terms of quality and cost.
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5. 10 SIMULATIONS STUDIES

The main objective of simulation studies is to demonstrate the analysis and synthesis of minimum-variance and
predictive adaptive control systems algorithms developed in this chapter using MATLAB and SIMULINK. No
MATLAB toolboxes are directly used for this exercise. All examples provided are user written as MATLAB
m-files. Controllers are elements of the simulated control systems are prepared as S-functions. MATLAB
allows creation of sophisticated software even though elements of this software are “hidden” in the
SIMULINK structure. The S-functions realize all identification and synthesis of controllers. Only a few
function from the ControlToolbox and Signal Processing Toolbox are incorporated within S-functions (See

appendix C).

Adaptive GPC- tracking properties

Adaptive generalised predictive control (GPC) serves as an example of indirect adaptive control (See Fig.5.2
(a) in section 5.1.1). Thus, the common difference from the previously discussed minimum variance control is
the necessity of identification of the plant model and recalculation of the controller parameters. GPC provides
integral action. However, the quality of the reference signal tracking depends heavily on the parameters of the

GPC controller (See Fig.5.4).

The main purpose of the following examples is to show that different control and output prediction horizon can
provide stable behaviour of the system. The examples show the ability to reject both deterministic and

stochastic disturbances.

Example 1: Correct structure of the model:

-pap s

File Edit View Simulation Format Tools
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Fig.5.3 Block diagram of the Plant with Adaptive GPC controller
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Block Parameters: Contioller

Controller (mask)
Adaplive GPC ‘

Parameters
Controller p 4 M1, N2, Ny, 1, alpha:
[37o0]

Delay-time of the model: k
I

Initial value of B polynomial B_init
[[1 a)

Inllial value of A polynomial: A_init
o

HLS paramelers P_inil, forgetting factor
I[‘l 0o01)
Sampling parameters: offsel. Ts
|l0 1]
| OK I Cancel | Help | Al l
Fig.5.4: Adapive GPC parameter block

A constant disturbance affecting the output of the plant to be controlled is one of most typical in practice. The
disturbance is often called a bias. This example shows control quality when the plant is disturbed with a bias
disturbance. Parameters of the controllers are set as: Fig.5.4: r = 0, alpha=0 (i.e., no control weighting and no
feed-forward precompensation. Where control algorithm defines as: N/- minimal horizon of output prediction;
N2- maximal horizon of output prediction; Nu - control prediction horizon; r-weight on control increments;
alpha - tuning parameter for slowing down the reference trajectory; k - assumed delay time of the plant; B_init
- initial value of polynomial B of linear model; 4_init - initial value of polynomial A of linear model; P_init -
initial value on diagonal of covariance matrix (RLS); forgetting_factor - forgetting factor of RLS ; offset, Ts -
offset and sampling time respectively. In this simulation the algorithm parameters were chosen heuristically to

provide the best performance with the second order plant.

The simulated performances of example |, alongside its controller effort are plotted in Figure 5.5 and 5.6
respectively. This demonstrates that adaptive GPC is able to track the set-point reasonably well. The controller
has converged to a stable state and is robust to the bias disturbance. This is however dependent on the selection

of optimal parameters.
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Fig.5.5 Performance plot of Output and Set point

o Lo #B | 8|

Tlime olfset: 0

Fig.5.6 Control output

Example 2: Rejection of stochastic disturbance

The examples compare the quality of stochastic disturbance rejection in three cases:
I. no control
2. GPC control
3. Minimumvariance (MV) control.

It is recommended to wait until transient phase vanishes.
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Generalization of minimum-variance control in the sense of the GPC algorithm causes the quality of stochastic
disturbance rejection to deteriorate compared with MV. However, it is well known that proper performance of
MYV needs an almost perfect model, while predictive control is much more robust. Anyway, it is worth
checking how predictive control can cope with stochastic disturbances. Program is used to check how the
quality of the rejection of stochastic disturbances deteriorates when compared with minimum-variance control.

The block diagram of the overall simulation is in figure 5.7(a) with component sub-functions and parameter
values in figure 5.7(b-e).
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Fig. 5.7(a) Block diagram of plant with adaptive GPC and MV controllers.
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Fig. 5.7(b) Block diagram of noise sub-systems
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Fig. 5.7(c) Block diagram for noise sub-sub-system
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Fig. 5.7(d) Adaptive GPC parameters

Fig. 5.7(e) Adaptive MV parameters
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Fig 5.8(c) Adaptive MV initial response

Figure 5.8(a) shows the plant response to the stochastic disturbance of example 2. This is the target trajectory
for both types of adaptive contoller to follow. In this inital stage of the simulation the adaptive MV controller

output (figure 5.8(c))is less susceptible to the disturbance than that of the the adaptive GPC output of figure

5.8(b).
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AFTER: Only changing following GPC parameters: r =1 (instead of 0), Ts = 2 (instead of 1) improves the
response it indicating that GPC is more robust and flexible than MV. In this part of the experiment the
adaptive GPC controller response of figure 5.9(c) tracks the plant output more closely than the adaptive MV

controller does.

5 210 Al 8]

Fig 5.9(a) Plant response
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Fig. 5.9(b) Adaptive GPC subsequent response
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Fig 5.9(c) Adaptive MV susequent repsonse
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5.11 CONCLUSIONS

In this chapter several concepts and results concerning adaptive control systems were delivered. The field of
stochastic adaptive control has gained a lot of interest among control research and development groups during
the past few years. Several different adaptive control algorithms have emerged, many of which are heuristic
and almost all of which lacking proofs of control system stability and convergence of the parameter estimates.

This is due to complication of the analysis and synthesis of adaptive control. Hence Matlab and SIMULINK is

used for simulation.
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CHAPTER 6: NEURAL NETWORK ENHANCED GENERALISED MINIMUM VARIANCE
SELFTUNING CONTROL FOR NON-LINEAR DISCRETE-TIME SYSTEMS

6.1 Introduction

The main of objective of this chapter is to present a neural network enhanced self-tuning controller, which is
designed by amalgamating neural network mapping with a generalised minimum variance self-tuning control
(GMVSTC) strategy. Using this technique, the controller can deal with non-linear plant that exhibit a variety of
features such as; uncertainties, non-minimum phase, coupling effects and unmodelled dynamics (assumed to be
globally bounded). The unknown non-linear plants to be controlled are approximated by an equivalent model,

which is composed of simple linear plus non-linear sub-models respectively.

The generalised recursive least squares algorithm is used for identifying the linear submodel and a layered
neural network is applied to detect the unknown non-linear submodel where the weights are updated based on

the error between the plant output and the output of the linear sub-model as shown in Fig.6.1.

Since the controller design method is based on the equivalent model, the non-linear sub-model is naturally

accommodated within the control law.

The effectiveness of the control algorithm is illustrated by means of simulation examples.

6.2 Brief Overview of Backpropagation

Backpropagation (BP) was created by generalizing the Widrow-Hoff learning rule to multiple-layer networks
and non-linear differentiable transfer function. Input vectors and the corresponding output vectors are used to
train a network until it can approximate a function, associate input vectors with specific output vectors or
classify input vectors in an appropriate way as defined by you. Networks with biases, a sigmoid layer and a

linear output layer are capable of approximating any function with a finite number of discontinuities.

Standard BP is a gradient descent algorithm, as is the Widrow-Hoff learning rule (See Chapter 4 for detail).
The term BP refers to the manner in which the gradient is computed for non-linear multilayer networks. There
are a number of variations on the basic algorithm, which are based on other standard optimization techniques,

such as conjugate gradient and Newton methods.

Properly trained BP networks tend to give reasonable answers when presented with inputs that they have never
seen. Typically, a new input will lead to an output similar to the correct output for input vectors used in
training that are similar to the new input being presented. This generalization property makes it possible to

train a network on a representative set of input target pairs and get good results without training the network on
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all possible input/output pairs.
6.2 Adaptive control for non-linear system

Most studies on adaptive control for non-linear system [Taylor ef al. 1996; Sastry and Isidori, 1989; Kopoulos
et al. 1992] depend on a common assumption that the non-linear plant under consideration can be represented

by:

0= 65,0 6.1)

i=l
where p(t) is the plant output at discrete time steps #€ 1,2,.n, x;(t) are the known non-linear functions
augmented with delayed plant output signals y(t—1)..y(t—n,) and delayed plant input signals
u(t=1)..u(t —n,) and 6 contains the parameters associated with x,(1). A model of (6.1), which is linear in the

parameters can be estimated on line using a generalised recursive least squares algorithm and the new

controller output (1) can be obtained by solving a set of non-linear equations [Zhu et al., 1999].

MNNs is applied as a tool for modelling non-linear dynamic functions due to their ability to approximate
complex output and input non-linear relationships sufficiently [Irwin et al. 1995]. Using a BP neural network
learning algorithm [Rumalhart et al., 1989], neural network have presented a popular architecture in many
research fields, such as non-linear system identification and control, signal processing, pattern classification
and so on [more details refer to Chapter 4]. Nielsen, 1989, presented analytical results showing the capability
of layered neural networks to approximate non-linear functions, which under certain conditions, give any
£>0, there exists a three layered neural network so that any function can be approximated to with £ mean
squared error accuracy. More recent results shows that such a networks can exactly match input/output

behaviour [Sontag, 1998].

Multilayer neural networks application studies to non-linear discrete-time adaptive control systems can be
found in [Chen 1990; Narendra, 1990], and a convergence result for adaptive regulation using MNN is
presented in [Chen and Khali, 1992], where many restrictive assumptions have been made. To cope with the
problems encountered, a modified scheme with dead-zone was introduced by [Chen and Khalil, 1992].

However some of the following problems still remains unsolved [Zhu et al., 1999]:

(a) It is difficult to generate overall controller convergence when the plant is in nonminimum phase. This is
particularly awkward for discrete time control in which nonminimum phase behaviour can be brought
about by the sampling rate selection,

(b) Only tracking problems can be successfully dealt with.

(¢) Optimum performance cannot be assured, when a performance index is not inherently considered in the

algorithm design.
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(d) The learning rate for MNNs is relatively slow, leading to a failure to deal successfully with rapidly

changing operating points.

In order to tackle these above problems, an enhanced self-tuning controller algorithm is introduced by [Zhu ef
al., 1999] which combines a neural network identification method with a generalise minimum variance (g.m.v)
control strategy. In this control algorithm, an unknown non-linear plant is represented by an equivalent model,
which consists of a simple linear plus non-linear submodel. This type of model seems to be particularly useful
in an adaptive control framework. Standard recursive algorithm technique is applied to identify the parameter
of the linear sub-model and BP network is used to update the weights of the NNs, which is based on the error

between the plant output and linear submodel output (see Fig. 6.1).

o]
u(t
tController 1?1 u()
1 n-input
AR B
| L- sub-model:
_ parametric model
Jetets iR
Ly =
NL sub-model:
BP NN

Y'I'I

Fig.6.1: Block diagram of the control system structure

where: d(.)is the reference, y(.) is the plant output, u(.) is the controller output to the plant inputy, (.} is the

linear sub-model output, y, is the neural network output.
6.4 Controller Design Methodology
The plant being investigated can be described by:

Plant:  yp(r+1)= f(¥,U) (6.2)

where f() — R"; (Ye R UeR";n= ny+ny}isa complicated smooth (i.e., infinitely differentiable)
non-linear function and y(¢)e ¥ and u(f) € U are the plant output and input signals, respectively, at discrete

times 7€ [,2,..n. To control such a non-linear plant, a generalised parametric time varying plant model

structure is used [Zhu ef al. 1999].

Model: A(z"V)y(t + 1) =BG Yu() + £(Y,U) (6.3)
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where A(z') and B{z"r) are ny, and n,, order polynomials, z! is a one step backward shift operator. Also, it is

considered that the parameters associated with polynomial A(z’) and B(z') are either time invariant or are
slowly time varying. Function f() — R" is potentially a non-linear function, therefore the equivalent model

is a combination of a linear time varying plus a non-linear submodel respectively.

In order to calculate a g.m.v.control form, the performance index can be described as [Zhu et al., 1999]:

2
J =|e(t + 1)|2 =15yt +1) = Rd() - 0z i) - HY () (6.4)

where d(1) is a bounded reference input. Further S(z_l )Q(z'1 ), R and H all weighting polynomials ofz!

Now define an auxiliary (secondary) output ¢f + ) =S(z'l}=C{z_l)y{r+ 1) where its optimal predictor is

given by:

¢ (1 +1/0=G M+ e HBE T uw + ez s ) (6.5)
in which G(z') and C(z") satisfy:

S(z_])=C(z_1)A(z_l)+ Z_IG(Z“I); ng =n-1 (6.6)

where 1. and ng are the orders of polynomials C(z') and G(z') respectively. Note that (6.5) can be obtained by

multiplying both side of (6.3) with C(z”).

The solution, which minimises the performance index (6.4), is then found to be:

¢"(t+1/0) = Rd()p(1) + Oz Ju(0)+ Hfy (.,.) (6.7)

From (6.5) and (6.6), the controller output u(t), which satisfies the minimisation requirement can be obtained

from:

Rd (t)+Hf, (.)=G(z" )y(t)=C(z" ) f,(..)
-Q(z”' )+ C(z”' )B(z”")

By substituting the control-input (6.8) into (6.3) the closed loop system can be expressed as:

u(t) = (6.8)

Bz "Hs™Y - 07+ AT e +1) = BLRA() + Hf () - €z D17 () (6.9)
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To obtain desired closed dynamics, a most likely stable polynomial T{z“') is assigned in advance as:

T(z_l)=ro+f]z_]+...+r z (6.10)

The following relationship therefore needs to be accommodated in order to achieve the required action.

Bz"")S(z")- 0" A" )=T(@"); i3

ng=n,=n-kn < 2n-1

So S(z") and Q{z_I ) are found from (6.11) in which, at the time of calculation, Az ),Q(z'1 ) and T(z")

are all known. To cancel the static offset, R may be chosen, most simply as [Zhu et al., 1999]:

Tl
R= Ia) (6.12)
B(1)
Finally, to eliminate the effect, in the steady state of the non-linear part, H can be chosen as:
!
H = 2d) (6.13)
B(1)

The block diagram of the control system structure is shown in Fig.6.1.

If parameters associated with the polynomials A(z') and B(z') and the non-linear function Ju(.s.) are known,

the above algorithm may be directly applied and the system output y(1+k) will exactly track the reference input
signal with satisfactory performance. However, in practice, the parameters and non-linear function are most
likely unknown a priori. Therefore, a recursive algorithm can be used here on line to estimate the linear
submodel parameters and a BP network is used to approximate the non-linear function. The neural network of

the structure is as shown in Fig.6.2.

Fig.6.2: FFNN model to approximate non-linear function f; (.,

The identification of the plant model of (6.3) consists of two parts, linear submodel parameter estimation and
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non-linear function approximation, For the linear submodel parameter estimation a recursive algorithm can be

used based on:
Pt+1)=@(t) 0(t)+ fy(..) (6.14)

where Xt )€ R*"isa data vector, f,(.,.)is the model error and Ois the parameter vector.

It is apparent that f, will later be revealed as a double agent in terms of its role as an approximation to the

non-linear function f; [Zhu et al., 1999].

Thus with:
O(t)=[a,.a,b,.b,] (6.15)
and
Qt)=[y(t),..y(t=n, );u(t),..u(t-n,)J; (6.16)

the updated procedure is:

P(Y@N) Hy(z™")

ar+1)=6(n+ 1+q{r)rP(r)tp(r)v°(Hl) (6.17)

with
T
prvny=F P(t)rp(r)cn;r) P(t)T 6.18)
A1) A (t)+ A (t)@(t) P(t)(t)" P(1)
Here 0 < A (1) S L,0< A (1) <2 and:
-1 T2 ,
vot+D)=Hg(z Iyt +1)- )" &) - () 6.19)

=H, (2" )W6- 601 @)+ () = fo (o)}

in which Hs(z_l ) is a convergent filters, Hs(z_' )=H, (z™h a"Hﬁ(z_j) ;

H, (z"')and H, (z') are stable polynomials with Hy;(0) =1 and Hyy(0) =1.

A BP NN is used to approximate the non-linear model error f‘.J (.,.), which has three layers, the input layer

neurones being n;, the hidden layer ny, sigmoidal neurone. The network is therefore eminently suitable for non-

linear function modelling [Warwick, 1995].

The task in tuning the network is to adjust all variable weights such that the error E; can be reduced where the

error is defined as:

1 -
E, = -2"[f0 () = o ()7 (6.20)
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Alternatively equation (6.14), and the plant model (6.3) can be described as:

T .
Hi+1)=gt)" 0+ fo(.) (6:21)
which is an equivalent model with the same dynamics as the original. As part of the identification exercise in

each sampling period, its linear parameters are estimated by the recursive algorithm. The non-linear function
Jo(.,.) can therefore be numerically detected by:

fy ) =y +1) -0 )" (6.22)

The error training signal of the neural network may be provided from (6.22), whilst the input signal of the
network is given by:

I =[O =yt =Dt =)yt =) (6.23)

where [ € R"';L:nr + n, . Normally, n, and n, are, strictly speaking, unknown. In most cases it is

practically sensible to select small numbers for e.g., 2 or 3 say. The output of the hidden layer is then
constructed as follows:

L
Z Wl p =Py
e\ P!
o j (n=

L
[_ z Wijplp "GIJ]
p1
L
, L Mple Ry

J= Ly M (6.24)
L
[‘PEI“’UP’:J ‘f"u]

- e

+e

where O € R™ |, and the output of the overall network can be obtained by means of the equation:

M M

2 j05Paj | |7 X WP Pai
. ! _el o
o) =

M
j};lwzr'_;""j =Py
e

=1

(6.25)
M
[—j}%wmof_ﬁ“ ]
+e

in which W e REM ang B e RM are the weights and thresholds between the input layer and the hidden

layer respectively and W2 € R and ,82 € R are the weights and the thresholds between the hidden layer and
the output layer respectively. They can updated by the equation set [Chichochi, 1993].
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WUP (t+1)= W];p (1) + njp (S,-Oj({); Jj=L..M;p=1.,L (6.26)

W (t +1) =Wy (1) +1; 8,0, (1), j =1,..., M (6.27)
Bt +1)=B,(0)+A;8;;)j=1..,M; (6.28)
Byt +1)= By (N +4,8,; /=1 (6.29)

The training errors for this set are found simply from:

8 = fo o1 = fo G fy ) = Sk i =1 (6.30)
and
8, =0,1= 0; (O SyWay (1); j= Loy M3i =1 (631)

6.5 Implementation of Self-tuning control algorithm procedure

A self-tuning control method is employed recursively to obtain an up-to-date model of the linear submodel.

The algorithm at each time instant 1 can be outlined as consisting of the following steps (See Fig.3 for flow

chart).

L Sample the plant output y(¢) and establish the data vectors ¢(¢) and /(t) by means of the plant input
u(t) and output y(1) data sequences.

IL. Use the recursive algorithm from equations (6.17) and (6.18) to estimate the parameters of
:4(2_] yand B(z™' ).

II. Calculate the controller parameters from (6.11) to (6.13)

V. Obtain the controller output u(?) through (6.8)

V. Generate the next step training signal from (6.22)

VI Train the BP network for a pre-selected number of times N, using (6.23) to (6.31).

VIL Wait for the sampling clock pulse then go to step I.

Note: Stability analysis of the control algorithm require complex mathematical derivation hence it is not

pursued further here, however algorithms have been investigated elsewhere [Zhu et al. 1999].

6.6 Multivariable decoupling control algorithm
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The single variate self-tuning control algorithm developed earlier has been expanded for multivariable non-
linear systems, which exhibit coupling effects. Consider the following representation for » input and » output

non-linear multivariable plants,

Y({+1)=FF @)U ) (6.32)

n n . . .
where F(Y,U) = R"; {YeR y} and Ue R™";n= n, +nu}arc a complicated non-linear mapping

vectors and a smooth non-linear function vector respectively (i.e., infinitely differentiable). If it was the case

with SISO plants (6.32) can be described by a generalised parametric model:

A(zwl}Y(!+l}= B(z_] W)+ Fy(.r.) (6.33)

in which A(z_l) and B(z_l) are diagonal matrices such that:

A@z")y=diag(l +al'z”" + .. +a]'z")
| ) ; (6.34)
B(z ') =diag(by +b/'z7 +..+byz " )i=1,.,n

m
The equivalent linear and sub model is originated by assuming that no coupling relationships exist. The
coupling effects and the other non-linear relationships are meanwhile accommodated in Fy(¥Y,U):— R™:

n n .
(YeR?”}andUe R"™;n= n, +n,}. The performance index can be defined as:
2
J=[E+ 0 <[y + 1= RDOY - 0 yutn) - HE ()| (635)

where Df(t) is a bounded reference input vector and S(zﬁl).Q(z—] ), R and H are diagonal weighting

polynomial matrices. They are defined as:

S =diag(l+&"z7" + ..+ éfgz""g )
D(z™")=diag(qs +qi'z" +.. + qyz "); (6.36)

R= d:’ag(r“ Y, H =diag(h iy izl

Now we can define an auxiliary output as:
& 1) =S Hre+ (6.37)
In a similar fashion to the single variate case the optimal predictor ¢@*(r+1)/t)for the auxiliary output

@(1 + 1) is described by:
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1

P*(t+1)/0 =G Hra+n+ K HBE hum+kEHE ) (6.38)

where G(z') and K(z') are diagonal polynomial matrices and defined as:

G(z_|)= Gg + ,g:"z_1 +..+ g;;z_"g )%
" " (6.39)
K(z")y=diag(1+ kf'z™ + .+ ki 2™ yi=1,,n
which satisfy
-1 -1 -1 -1 -1
Sz )=K(z )A(z )+z G(z );ng =n-1 (6.40)
The control law, which minimises the performance index of (61), can then be found from:
@* (1 +1)/1)= RD() + Q(z~ YU(t) + HF, (..) (6.41)

in exactly the same way as for the single variate case, arriving at a similar form to (6.8) as a solution,

Substituting for the input signal, the closed loop equation of (6.33) is given by:
[B(z")S(" )+ Q")AG Y + 1) =BG THRD(M)+[QG™") - B(z""YHIF ) (6.42)
To produce satisfactory dynamics, a stable polynomial matrix 7(z") is chosen as:

Tz )= dt'ag(rgh + rl""z”i ot r:rz_m Yi=loon (6.43)

and the following equation must be satisfy by solving for matrix polynomials, E(z_l) and Q(z_l )in:
[B(z")SE™" )+ Q" )A(z ") =T " ysn€=n—Lin, =n—Lin, <2n-1 (6.44)

To cancel the static offset, R can be chosen as:

iy
RY =#;r =l,n (6.45)
B" (1)

Finally, to eliminate the effect of non-linear and coupling actions, H is chosen by:

. ii
LI ORI (6.46)
B )
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It can be seen therefore, that in this type of controller, a multivariable requirement only presents a problem in
terms of extra computational requirements, nothing more. The linear sub-model in (6.33) is initiated without
regard to coupling effects; therefore the unknown linear parameters of A(z') and B(z') can be separately
identified by a recursive algorithm. A neural network can then be used to approximate the non-linear function
including any coupling effects. The main difference of the overall controller when compared with the SISO

algorithm is that the neural network must be structured with n sigmoidal neurones in its output layer.

By disregarding coupling effects, a MIMO plant with » outputs can be viewed as n independent SISO plants,
the self-tuning control algorithm presented based on SISO plants are therefore still applicable in the MIMO

case as is considered here.
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Fig.6.3: Flow chart for self-tuning algorithm
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6.7 SIMULATION STUDIES

Simulation studies have been carried out to investigate a nonminimum phase, non-linear plant with proposed

algorithm,

Example 1: A nonminimum phase, non-linear plant was investigated of the following form [Wellstead and
Zarrop 1991]

1.5sin[y(k = D]y(k - 1)
(k)= 2 2
L+ y(k = 1)* + y(k -2)

+ 1Lk =D+ 1.2u(k - 1)+ 2u(k - 2) (1a)

The equivalent model was selected as:

(14 a,z Y plk +1)=(by + bz " Yu(k)+ £, (.,.) (1b)
and desired dynamic polynomial T(z"') was selected as:

T(z™")=1+05z". (lc)

where k is the time step.

The simulation network parameters was set up as shown in Table 6.1 below.

Network Structure Adjustable Parameters | Figures
Covariance matrix P;,; (RLS initialised as) 10000, Fig.6.4 - Fig.6.7
Input layer (L) 8

Hidden layer (H) 9

Output layer (I) 1

Learning rate ( 77) 0.02 (0.001-0.04)

Momentum Constant alpha () 0.4 (see comment)

Number of iteration 3 (best range 1-4)

Neural network for predicting error set up n; ny, | 15;1 and 2

and n

Table 6.1: Parameter meter structure of example 1.

The network was trained 3 times in each sampling period. From the controlled system simulation output results
(Fig.6.4) along with the reference input signal shows that the above algorithms are quite satisfactory. The
output values from the non-linear sub-model and the back-propagation network as shown in Fig.6.5, indicates
that the non-linear sub-model of the plant can be satisfactorily tracked by using BP neural network. Fig.6.6

represents the results of estimated linear sub-model parameter and Fig.6.7 is the controller output.
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Fig.6.5 The output values from the nonlinear

submodel and BP neural network of example 1.
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Simulation 2: The following multivariable non-linear coupled system was investigated:

¥, (k) = 2y (k= Dy (k- 2) — +0.3u, (k = 1)+ 0.7u, (k = 2)+ 0.2u, (k - 2);
L+ y,(k =)y, (k=1) + y,(k - 2)

1.5y, (k =)y, (k- 2)
T+ y,(k=1)7yy (k =2) + y, (k- 2)
(2a)

The equivalent model was chosen as:

v,y (k)= +0.5u, (k =D+ 1L.2u,y (k= 2) +0.1u, (k - 2);

Az")Y (k)= Bz )U(k) + Fy (...) (2b)
where
A(z™") = diag(1+ a]");
| i (2¢0)
B(z™) :dr'ag(bo +bhyz )
where i =1,2,.n
in this case the desired dynamical polynomial T(z"') was chosen as
T(z" 1) = diag(1+0.527") 2d)

In this simulation experiment, the neural network structure and parameters were set up as shown in Table 6.2.

Network Structure Adjustable Parameters Figures
Covariance matrix P;,; (RLS initialised as) 10000, Fig.6.8 - Fig.6.11
Input layer (L) 8
Hidden layer (H) 9
Output layer (I} 2
Learning rate ( 77) 0.02 (0.001-0.04)
Momentum Constant alpha ( &) 0.4 (see comment)
Number of iteration 3 (best range 1-4)
Neural network for predicting error set up »;; | 15;1 and 2
nyand n

Table 6.2: Parameter structure of example 2.

The network was trained three times in each sample period. The controlled system outputs are shown in
Fig.6.8. They show a good tracking of reference signal, which imply that the respectable decoupling control is
possible to be achieved. The output values from the non-linear submodel and the BP network and the estimated
linear submodel parameters are shown in Fig.6.9 and Fig.6.10 respectively whilst the controller output is

shown in Fig.6.11.
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Fig.6.9: Output values from the nonlinear submodel and the BP neural network of example 2
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6.8 CONCLUSIONS

This chapter has introduced the way in which complex non-linear control system problems can be represented
as a linear system along with a non-linear part. This approach seems to eliminate unwanted elements in the
system. Here an adaptive control strategy is applied to linear systems and this has been modified to
accommodate a non-linear neural network sub-model. This sub-model, is a backpropagation network and is
applied for approximating the modelling errors such as those caused by non-linearities, uncertainties and

coupling effects.

The self-tuning adaptive control is traditionally limited to unknown linear systems. By introducing back-
propagation neural networks into the self-tuning scheme, it is demonstrated that this new technique has the

potential to deal with unknown linearizable non-linear systems.

The main advantages and disadvantages of this non-linear modelling design approach are:

Advantages:
e mathematical problems ordinarily associated with an overall non-linear design can be avoided

e computer implementation effort for on-line real-time can be reduced significantly.

Disadvantages
e  Learning can be slow if sampling time is too long, however, it can be overcome by updating algorithm or

using fast processor

Remarks from simulation observation

®  Successful parameter estimation can be performed with the aid of forgetting a factor of less than unity, but
only if an appropriately changing input is present.

e In practice we have to fix the size of the neural network before it is used in the adaptive control system.
Thus, the modelling error €> 0 is determined.

e A lesson to be learned is that a self-tuning controller must incorporate a check for unreasonable values of
the estimated parameters within its software, so as to avoid blow up.

»  This minimum variance of self-tuning adaptive controller may be limited in the real practical environment

due to noise actuator and output constraints etc,
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CHAPTER 7: DYNAMICALLY DRIVEN RECURRENT NEURAL NETWORKS

7.1 INTRODUCTION

Recurrent networks are neural networks with one or more feedback loops. The feedback can be of a local or

global type. The objective of this chapter is to study recurrent neural networks with global feedback.

Given a mulitlayer perceptron as the basic building block, the application of global feedback can take a variety
of forms. We may have feedback from the output neurons of the multilayer perceptron to the input layer. Yet
another possible form of global feedback is from the hidden neurons of the network to the input layer, When
the multilayer perceptron has two or more hidden layers, the possible forms of global feedback expand even

further. The point is that recurrent neural networks have a rich repertoire of architectural layouts.

Basically there are two functional uses of recurrent networks, which are:
* associative memories and

e [Input-output mapping networks.

The use of recurrent networks as associative memories is found in [Haykin, 1999 Chp.14]. However the aim of

this chapter is to study the input-output mapping networks in the state space form.

By definition, the input space of a mapping network is mapped onto an output space. For this kind of
application, a recurrent network responds femporally to an externally applied input signal hence Haykin calls
this type of network is “dynamically driven recurrent neural network”. The application of feedback enables
recurrent networks to acquire sfate representations, which make them suitable devices for diverse applications
for example non-linear prediction, modelling, adaptive equalisation of communication channels, speech
processing, plant control, and automobile engine diagnostics. As such, recurrent networks offer an alternative

to the dynamically driven feed-forward networks.

Because of the beneficial effects of global feedback, they may actually fare better in these applications. The

use of global feedback has the potential of reducing memory requirement significantly.

Organisation of the Chapter

The chapter is organised in four parts: architectures, theory, learning algorithms and applications.

7.2 RECURRENT NETWORK ARCHITECTURES

As mentioned in the introduction, the architectural layout of a recurrent network takes many different forms,
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This section describes three specific network architectures, each of which highlights a specific form of global
feedback. They share the following common features:
* They all incorporate a static multilayer perceptron or parts thereof.

e They all exploit the non-linear mapping capability of the multilayer perceptron.

7.2.1 Input-Output Recurrent Model

The architecture of a generic recurrent network is shown in Fig.7.1. It is naturally derived from a multilayer

perceptron. The model has a single input that is applied to a tapped-delay-line (TDL) memory of ¢ units. It has

a single output that is fed back to the input via another TDL memory also of ¢ units. The contents of these two

TDL memories are used to feed the input layer of the multilayer perceptron. The present value of the model

input is denoted by u(n), and the corresponding value of the model output is denoted by y(n + 1); that is, the

output is ahead of the input by one time unit. Thus, the signal vector applied to the input layer of the multilayer

perceptron consists of a data window made up as follows:

e Present and past values of the input, namely u(n), u(n-1),...,u(n-g+1) which represents exogenous inputs
originating from outside the network.

e Delayed values of the output, namely, y(n), y(n - 1),..., y(n- ¢ + I), on which the model output y(n-+ 1) is
regressed.

Input
1fn}

ufn-1)

un-2) i—*m-—b

ufn-g+2) —

Output

un-g+1) Multilayer yin+l)

Perceptron >
uin-g+1) ,——P

un-q+2)

win-1)

|

ufn)

Fig.7.1 NARX inputs model.
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Thus, the recurrent network of Fig. 7.1 is referred to as a non-linear auto-regressive with exogenous inputs

(NARX) model. The dynamic behaviour of the NARX model is described by

yin+1)=F(yn),., y(n—q+D,u(n)...u(n—qg+1)) (7.1)

where F(,) is a non-linear function of its arguments. Note that in Fig.7.1 assumed that the two delay-line
memories in the model are both of size g; they are generally different. The NARX model is further extended in
Section 7.4,

7.2.2 State-Space Model

Fig.7.2 shows the block diagram of another generic recurrent network, called a state-space model. The hidden
neurones define the state of the network. The output of the hidden layer is fed back to the input layer via a
bank of unit delays. The input layer consists of a concatenation (connected chain) of feedback nodes and
source nodes. The network is connected to the external environment via the source nodes. The number of unit
delays used to feed the output of the hidden layer back to the input layer determines the order of the model. Let
the m-by-1 vector u(n) denote the input vector, and the g-by-I vector x(n) denote the output of the hidden layer

at time #. The dynamic behaviour of the model in Fig.7.2 can be written by the pair of coupled equations:

x(n+1)= f(x(n),u(n)) (7.2)

y(n) = Cx(n) (7.3)

where [ (,*) is a non-linear function characterising the hidden layer, and C is the matrix of synaptic weights

characterising the output layer. The hidden layer is non-linear, but the output layer is linear.

Bank of

q
unil delays i

Bankof | Y%

Linear
output
layer

x(n) Nonlinear
u(n) I hidden

Input |
. l:d Y layer
vector

single hidden layer

Output
yeclor

P
unit delays

Fig.7.2 State-space model

The recurrent network of Fig.7.2 includes several recurrent architectures as special cases. Consider, for
example, the simple recurrent network (SRN) described in [Elman, 1990] and depicted in Fig.7.3. Elman's
network has architecture similar to that of Fig. 7.2 except for the fact that the output layer may be non-linear

and the bank of unit delays at the output is omitted.
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Elman's network contains recurrent connections from the hidden neurones to a layer of context units consisting
of unit delays. These context units store the outputs of the hidden neurones for one time step, and then feed
them back to the input layer. The hidden neurones thus have some record of their prior activations, which
enables the network to perform learning tasks that extend over time. The hidden neurones also feed the output
neurones that report the response of the network to the externally applied stimulus, Due to the nature of
feedback around the hidden neurones, these neurones may continue to recycle information through the network
over multiple time steps, and thereby discover abstract representations of time. The simple recurrent network is

therefore not merely a tape recording of past data.

Conlext Bank of
units unit delays

Bank of
unil

. Quiput
+1_——"> yeclor

xfn+1)
Output
veclor

Qutput
layer

Hidden

Input layer .
wveclor 1
L et Semmmmmmsoeme oo b e e m—m——————— |
Mulifayer perccptron with Multilayer perceptron with
single bidden layer multiple hidden layers
Fig.7.3 Simple Recurrent Network (SRN) Fig.7.4 Recurrent multilayer perceptron.

Elman 1990 discusses the use of the simple recurrent network shown in Fig.7.3 to discover word boundaries in
a continuous stream of phonemes without any built-in representational constraints. The input to the network
represents the current phoneme. The output represents the network’s best guess as to what the next phoneme is
in the sequence. The role of the context units is to provide the network with dynamic memory to encode the

information contained in the sequence of phonemes, which is relevant to the prediction.

7.2,3 Recurrent Multilayer Perceptron

The third recurrent architecture considered here is known as a recurrent multilayer perceptron (RMLP)
[Puskorius ef al., 1996]. It has one or more hidden layers, for the same reasons that static multilayer
perceptrons are often more effective and parsimonious (sparing) than those using a single hidden layer. Each
computation layer of an RMLP has feedback around it, as illustrated in Fig.7.4 for the case of an RMLP with

two hidden layers.

Let the vector x; (n) denote the output of the first hidden layer, xy (n) denote the output of the second hidden
layer and so on. Let the vector xy(n) denote the output of the output layer. Then the dynamic behaviour of the
RMLP, in general, in response to an input vector wu(n) is described by the following system of coupled

equations:
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x;(n+1)=@, (x;(n),u(n))

X (n+ )=, (x,; (n),x,(n+1) 7.4)

Xo(n+1)=@,(xy(n),x,(n+1))

where @, (.,.), ¢, (.,.), @ (.,.) denote the activation functions characterising the first hidden layer, second

hidden layer,..., and output layer of the RMLP, respectively and / denotes the number of hidden layers in the

network.

The RMLP described herein subsumes the Elman network of Fig.7.3 and the state-space model of Fig.7.2 since
the output layer of the RMLP or any of its hidden layers is not constrained to have a particular form of

activation function,
7.3 STATE-SPACE MODEL

The notion of state plays a vital role in the mathematical formulation of a dynamical system. The state of a
dynamical system is formally defined as a set of quantities that summarises all the information about the past
behaviour of the system that is needed to uniquely described its future behaviour, except for the purely external
effects arising from the applied input (excitation) [Haykin, 1999]. Let the g-by-1 vector x (n) denote the state
of a non-linear discrete-time system. Let the m-by-1 vector (n) denote the input applied to the system and the
p by-l vector y (n) denote the corresponding output of the system. In mathematical terms, the dynamic
behaviour of the system, assumed to be noise fiee, is described by the following pair of non-linear equations

[Sontag, 1996]:

x(n+1) = @(w, x(n) +w,u(n)) (7.5)
y(n) = Cx(n) (7.6)
where W, is a g by ¢ matrix, W, isagq by (m+1) matrix, C is a p-by-g matrix and ¢ :9RY =R is a diagonal

map described by:

A “x2) .7
Xg Pxq)

for some memoryless, component-wise nonlinearity ¢ : M7 — R9. The spaces R , R and R are called the

input space, state space and output space, respectively. The dimensionality of the state space, namely g, is the
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order of the system. Thus, the state space model Fig. 7.2 is an m-input, p-output recurrent model of order q.

Equation (7.6) is the measurement equation. The process equation (7.5) is a special form of (7.7).

The recurrent network of Fig.7.2, based on the use of a static multilayer perceptron and two delay-line
memories, provides a method for implementing the non-linear feedback system described by Eqs (7.5) to (7.7).
Note that in Fig.7.2 only those neurones in the multilayer perceptron that feed back their outputs to the input
layer via delays are responsible for defining the state of the recurrent network. This statement therefore

excludes the neurones in the output layer from the definition of the state.

For the interpretation of matrices W, Wy and € and non-linear function ¢(.) we may say:

e  The matrix W,, represents the synaptic weights of the ¢ neurones in the hidden layer that are connected to
the feedback nodes in the input layer. The matrix W, represents the synaptic weights of these hidden
neurones that are connected to the source nodes in the input layer. It is assumed that the bias terms for the

hidden neurones are absorbed in the weight matrix W,

e The matrix C represents the synaptic weights of the p linear neurones in the output layer that are connected
to the hidden neurones. It is assumed that the bias terms for the output neurones are absorbed in the weight
matrix C.

e  The non-linear function ¢(.) represents the sigmoid activation function of a hidden neurone. The

activation function typically takes the form of a hyperbolic tangent function:

-2x
&) = tanh(x) = —— (7.8)
I+e

or a logistic function:

@x) = (7.9)

-X
I+e

An important property of a recurrent network described by the state-space model of Eqs. (7.5) and (7.6) is that
it can approximate a wide class of non-linear dynamical systems. However, the approximations are only valid
on compact subsets of the state space and for finite time intervals, so that interesting dynamical characteristics

are not reflected [Sontag, 1992].
Controllability and Observability
In the study of system theory, stability, controllability and observability are prominent features, each in its own

fundamental way. Controllability and observability are treated together, in [Levin and Narendra, 1993; Haykin,

1999] therefore only some issues are highlighted below.
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As mentioned earlier, many recurrent networks can be represented by the state-space model shown in Fig.7.2,
where the state is defined by the output of the hidden layer fed back to the input layer via a set of unit delays.
In that context, it is important to know, whether or not the recurrent network is controllable and observable.
Controllability is concerned with whether or not we can control the dynamic behaviour of the recurrent
network, Observability is concerned with whether or not we can observe the result of the control applied to the

recurrent network. In that sense, observability is the dual of controllability.

A recurrent network is said to be controllable if an initial state is steerable to any desired state within a finite
number of time steps; the output is irrelevant to this definition. The recurrent network is said to be observable
if the state of the network can be determined from a finite set of input/output measurements.

7.4 NON-LINEAR AUTOREGRESSIVE WITH EXOGENOUS (NARX) INPUTS MODEL

Consider a recurrent network with a SISO, whose behaviour is described by the state

x(n+1) = @(w,x(n)+w,u(n)) (7.10)

yny=CT x(n) (7.11)

Egs. (7.10) and (7.11). Given this state-space model, we wish to modify it into an input-output model as an

equivalent representation of the recurrent network.

Using (7.10) and (7.11), we may show that the output y(n+q) is expressible in terms of the state x(n) and the

vector of inputs u, (n) as follows:

Hn+q)=o(x(n),u, () (7.12)

where ¢ is the dimensionality of the state space, and ¢:R*¥ — R. Provided that the recurrent network is

observable, we may use the local observability theorem to write

X(2) =Y (3, (n),ity-1 (1)) (7.13)

where y:R%™" - R? . Hence, substituting (7.12) in (7.13) gives

= q) = GUAy,, (1)t (), ()

(7.14)
= F(y,(n), u, (n))

where u,_ (n) =[u(n),u(n+1),..u(n+ q—2)]7' ;
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¥, (m)=[2(n), y(n+1),..9(n+q -]

where u,_;(n) is contained inu, (n) as its first (q”') elements and the non-linear mapping F:R*? > R takes

care of both ¢ and . Using the definition of y,(n) and u,(n), we may rewrite (7.14) in the expanded form:

yin+g)=F(y(n+q —1),.., y(n)un+q —1),.., u(n))

Replacing n with n-g+17, we may equivalently write [Narendra, 1995].

i+ D)= Fyn)., yv(n—g+1),u(i)., y(n—gqg +1)) (7.15)

In words, this can be expressed as some non-linear mapping F : %% — R exists whereby the present value of
the output y(n+1) is uniquely defined in terms of its past values y(n),..., y(n-g+1) and the present and past
values of the input u(n),...,u(n-g+1). For this input-output representation to be equivalent to the state-space
model of Eqs. (7.10) and (7.11). The recurrent network must be observable. The practical implication of this
equivalence is that the NARX model of Fig.7.1, with its global feedback limited to the output neurone, is in
fact able to simulate the corresponding fully connected recurrent state space model of Fig.7.2, (assuming that

m=1] and p=1) with no difference between their input-output behaviour exist.
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Fig. 7.5 NARX network with ¢ = 3 hidden neurones.

7.5 LEARNING ALGORITHMS
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The objective here is to highlight the issue of training recurrent networks. From earlier chapters we recall that
there are two modes of training an ordinary (static) multilayer perceptron: batch mode (off-line) and sequential

mode (on-line).

In the batch mode, the sensitivity of the network is computed for the entire training set before adjusting the free
parameters of the network. In the sequential mode , on the other hand, parameter adjustments are made after
the presentation of each pattern in the training set. Likewise, we have two modes of training a recurrent

network, as described here [Williams and Zipser, 1995]:

l.  Epochwise training. For, a given epoch, the recurrent network starts running from some initial state until
it reaches a new state, at which point the training is stopped and the network is reset to an initial state for
the next epoch. The initial state doesn't have to be the same for each epoch of training. Rather, what is
important is for the initial state for the new epoch to be different from the state reached by the network at
the end of the previous epoch. Consider, for example, the use of a recurrent network to emulate the
operation of a finite-state machine, that is, a device whose distinguishable internal configurations (states)
are finite in number. In such a situation it is reasonable to use epochwise training since we have a good
possibility for a number of distinct initial states and a set of distinct final states in the machine to be
emulated by the recurrent network. In epochwise training for recurrent networks the term “epoch” is used
in a sense different from that for an ordinary multilayer perceptron. In the current terminology, the epoch
for the recurrent network corresponds to one training pattern for the ordinary multilayer perceptron.

2. Continuous training. This second method of training is suitable for situations where there are no reset
states available and / or on-line learning is required. The distinguishing feature of continuous training is
that the network learns while signal processing is being performed by the network. Simply put, the
learning process never stops. Consider, for example, the use of a recurrent network to model a non-
stationary process such as a speech signal. In this kind of situation, continuous operation of the network
offers no convenient times at which to stop the training and begin anew (fresh again) with different values

for the free parameters of the network.
Keeping these two modes of training in mind, there are following learning algorithms exist [Haykin, 1999]:

e The BPTT algorithm, operates on the premise that the temporal operation of a recurrent network may be
unfolded into a multi-layer perceptron. The BPTT algorithm for training a recurrent net work is an
extension of the standard BP algorithmz. It may be derived by unfolding the temporal operation of the
network into a layered feed-forward network, the topology of which grows by one layer at every time step.

*  The real-time recurrent learning algorithm is derived from the state-space model described by Eqgs. (7.5)

and (7.6).

% The idea behind BPTT is that for every recurrent network it is possible to construct a feed-forward network with identical behaviour over
a particular time interval (Minsky and Papert, 1969). BPTT was first describe in the Ph.D thesis of Werbos (1974); see also Webos (1990).
The algorithm was rediscovered independently by Rumelhart er al.. (1986b). A variant of the BPTT algorithm is described in Williams and
Peng (1990). For a review of the algorithm and related issues see Williams and Zipser (1995).
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These two algorithms share many common features, First, they are both based on the method of gradient
descent whereby the instantaneous value of a cost function (based on a squared-error criterion) is minimised
w.r.t the synaptic weights of the network. Second, they are both relatively simple to implement, but can be
slow to converge. Third, they are related in that the signal-flow graph representation of the back-propagation-
through-time algorithm can be obtained from transposition of the signal-now graph representation of a certain

form of the real-time recurrent learning [Haykin, 1999].

Real-time (continuous) learning, based on gradient descent, uses the minimum amount of available
information, namely an instantaneous estimate of the gradient of the cost function with respect to the parameter
vector to be adjusted. This may be accelerate the learning process by exploiting Kalman filter theory which

utilises information contained in the training data more effectively [Haykin, 1999].

Heuristics Learning [Haykin, 1999]

e Heuristics training of recurrent networks that involve the use of gradient-descent methods.

e  The training should begin with a small training sample, and then its size should be incrementally increased
as the training proceeds.

*  The synaptic weights of the network should be updated only if the absolute error on the training sample
currently being processed by the network is greater than some prescribed criterion.

* The use of weight decay during training is recommended; weight decay, a crude form of complexity

regularisation.

The first heuristic is of particular interest. If implementable, it provides a procedure for alleviating the

vanishing gradient problem that arises in recurrent networks trained by means of gradient-descent methods.

7.6 System Identification

System identification is the experimental approach to the modelling of a process or a plant of unknown

parameters °. It involves the following steps. (Also see Chapter 4):
(i) experimental planning, (ii) the selection of a model structure, (iii) parameter estimation and model
validation. The procedure of system identification, as pursued in practice, is iterative in nature in that we may

have to go back and forth between these steps until a satisfactory model is built.

Suppose then we have an unknown non-linear dynamical plant, and the requirement is to build a suitably

parameterised identification model for it. We have the choice of basing the identification procedure on a stare-
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space model or an input-output model. The decision as to which of these two representations are used hinges
on prior information of the inputs and observable of the system. In what follows, both representations are

discussed.

7.6.1 System Identification Using the State-Space Model

Suppose that the given plant is described by the state-space model:

x(n+1)= fix(n)u(n)) (7.16)
y(n)="h(x,un)) 7.17)

where f{,-) and h(*) are vector-valued non-linear functions, both of which are assumed to be unknown; (7.17)
is a generalisation of (7.6). We use two neural networks to identify the system, one for dealing with the

process equation (7.16) and the other for dealing with the measurement equation (7.17), as shown in Fig. 7.6.

Unknown Unknown
syslem

State
x(n}
¥ln)

Error signal g(n + 1) Error signal ey(n)

(a) (b)

Fig. 7.6 State space solution for the system identification problem.

We recognise that the state x(n1) is the one-step delayed version of x(n+1). Let %(n +1 ) denote the estimate of

x(n + 1) produced by the first neural network, labelled network I in Fig.7.6a. This network operates on a

concatenated input consisting of the external input u(n) and the state x(n) to produce ¥(n+17). The estimate

X(n+1) is subtracted from the actual state x(n+1) to produce the error vector

e;(n+l)=x(m+1)-x(n+1)

where x(n+1) plays the role of desired response. It is assumed that the actual state x(n) is physically accessible

for it to be used in this way. The error vector e;(n+1) is in turn used to adjust the synaptic weights of neural

* System identification has an extensive literature, For a treatment of the subject in book form, see Ljung (1987 & 1999), P.Norton (1987)
and Ljung and Glad (1994). For an overview of the subject with an emphasis on neural networks, see Sjoberg er al.. (1995) and Narendra
and Parthasarathy (1990).
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network /, as indicated in Fig. 7.6 (a), so as to minimise the cost function based on the error vector e;(n + [) in

some statistical sense.

The second neural network, labelled network I/ in Fig. 7.6(b), operates on the actual state x(n) of the unknown

plant to produce an estimate j(n)of the actual output y(n). The estimate j(n) is subtracted from y(n) to

produce the second error vector

e, (n)= y(n) _‘);(")

where y(n) plays the role of desired response. The error vector ey(n) is then used to the Euclidean norm of the

error adjust the synaptic weights of network II to minimise vector ey(n) in some statistical sense.

The two neural networks shown in Fig.7.6 operate in a synchronous fashion to provide a state-space solution to
the system identification problem [Narendra and Parthasarathy, 1990]. Such a model is referred to as a series
parallel identification model in recognition of the fact that the actual state of the unknown system (rather than

that of the identification model) is fed into the identification model, as depicted in Fig.7.6 (a).

The series-parallel identification model of Fig.7.6 (a) should be contrasted against a parallel identification

model where the x(n) applied to the neural network 7 is replaced with %(n); the #(n) is derived from the
networks own output £(n + /) by passing it through a unit delay z''J. The practical benefit of this alternative

model of training is that the neural network model is operated in exactly the same way as the unknown system,
that is, the way in which the model will be used after the training is completed. It is therefore likely that the
model developed via the parallel training mode may exhibit autonomous behaviour that is superior to the
autonomous behaviour of the network model developed via the series-parallel training mode. The disadvantage

of the parallel training mode, however, is that it may take longer than the series-parallel training mode.
7.6.2 Input-Output Model
Suppose that the unknown plant is only accessible through its output. To simplify the presentation, let the

system be of a SISO type. Let y(n) denote the output of the system due to the input u(n) for varying discrete-

time n. Then, choosing to work with the NARX model, the identification model takes the form:
yn+1l)=@ y(n)..y(n—qg+1)uin)..ufn—g+1))
where g is the order of the unknown system. At time n+1, the y past values of the input and they past values of

the outputs are all available. The model output j(n+1)represents an estimate of the actual output y(n + 1.

The estimate y(n + 1) is subtracted from y(n +1/) to produce the error signal where yp(n-+1) plays the role of
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desired response. The error e(n+1) is used to adjust the synaptic weights of the neural network so as to
minimise the error in some statistical sense. The identification model of Fig. 7.7 is of a series-parallel form
(i.e., teacher-forcing form) because the actual output of the system (rather than that of the identification model)

is fed back to the input of the model.

—— Actual output
Input | Unknown yn+l)
wintl) | i
sysicm
i}
(2]

ufn-)  ———p]

ufu-g+2) —————————ip

| ; I Qutput
ufn-g+1) isn+!1 'E ] "
Multilayer - +

ufi-g+i} r—“——D Petcoption
Error Signal
efu+i}
L
yin-1) L——D
yin)

yintl)

Fig.7.7 NARX solution for the system identification problem.

7.7 Model Reference Adaptive Control

Another important application of recurrent networks is in the design of feedback control systems where the
states of a plant are coupled nonlinearly with imposed controls [Puskorius and Feldkamp, 1994; Pusk orius ef
al., 1996]. The design of the system is further complicated by other factors such as the presence of unmeasured
and random disturbances, the possibility of a non-unique plant inverse, and the presence of plant states that are

unobservable.

A control strategy well suited for the use of neural networks is the model reference adaptive control (MR.’\C)",
where the implicit assumption is that the designer is sufficiently familiar with the system under consideration
[Narendra and Annaswany, 1989]. Fig. 7.8 shows the block diagram of such a system, where adaptivity is used
to account for the fact that the dynamics of the plant are unknown. The controller and the plant form a closed
loop feedback system, thereby constituting an externally recurrent network. The plant receives an input w.(n)

from the controller along with an external disturbance uun). Accordingly, the plant evolves in time as a

* For early detailed treatment of model reference adaptive control, see the book by Landau (1979)
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function of the imposed. Inputs and the plant’s own state x,(n), the output of the plant, denoted by y,(n+1), is a

function of x,(n). The plant output may also be corrupted by measurement noise.

The controller receives two inputs: (i) an externally specified reference signal r(n), and (ii) y,(n) representing a

one-step delayed version of the plant output y,(n + 1). The controller produces a vector of control signals

defined by:

uc ()= fy (x.(n), y, (n),w)

where x.(n) is the controller's own state and w is a parameter vector that is available valued function f; (.,.,.)

defines the input-output behaviour of the controller.

The desired response d(n +1) for the plant is supplied by the output of a stable reference model, which is

produced in response to the reference r(n). The desired response d(n-+t) is therefore a function of the reference

signal r(n) and the reference model’s own state x,(n), as shown by:

d(n+1)=f, (xr(ri),r(n))

e.(n)

rin) l uc(n)

_““__““" COﬂt!‘O]iEl‘ 1 —’
P xc(n)w —p

Yp(n) ua(n)

Plant
Xp(n)

yp(n+l

Model Reference:

entl

P

Xu(n) Xe(n),w

dntl) |

Fig.7.8 Model reference adaptive control using direct control.

The vector-valued functionf;(,.) defines the input-output behaviour of the reference model.

Let the output error(i.c., the error between the plant and model reference outputs) be denoted by:

e (n+l)=d(n+1)-y (n+1)
¢ p

The design goal is to adjust the parameter vector w of the controller such that the Euclidean norm of the output
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error e, (1) is minimised over time n.

The method of control used in the MRAC system of Fig.7.8 is said to be direct in the sense that no effort is
made to identify the plant parameters, but the parameters of the controller are directly adjusted to improve
system performance. Unfortunately, at present, precise methods for adjusting the parameters of the controller
based on the output error are not available [Narendra and Parthasarathy, 1990]. This is because the unknown
plant lies between the controller and the output error. To overcome this difficulty, we may resort to the use of

indirect control, as shown in Fig. 7.8. In this latter method, a two-step procedure is used to train the controller:

1. A model of the plant P, denoted by P, is obtained to derive estimates of the differential relationships of
the plant output with respect to plant input, prior plant outputs, and prior internal states of the plant. The
procedure described in the previous section is used to train a neural network to identify the plant; the

model P so obtained is called anidentification model.

2. The identification model P is used in place of the plant to derive estimates of the dynamic derivatives of

the plant output with respect to the adjustable parameter vector of the controller.

In indirect control, the externally recurrent network is composed of the controller and input/output

representation of the plant via the identification model P.

The application of a recurrent network to the controller design in the general structure of Fig.7.8 has been
demonstrated in a series of example control problems ranging from the well-known cart-pole and bio-reactor
benchmark problems to an automotive subsystem, namely engine idle-speed control [Puskorius and Feldkamp,

1994; Puskorius ef al., 1996].

efn)

4

Idemification
model, P

eln+ 1)

efn+l)

- f
—— dn + 1)

Fig.7.9 MRA control using indirect control via an identification model.
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7.8 Summary and Discussion

In this chapter has discussed recurrent networks that involve the use of global feedback applied to a static
multilayer perceptron. The application of feedback enables neural networks to acquire state representations
making them suitable devices for diverse applications in signal processing and control. Four main network

architectures belonging to the class of recurrent networks with global feedback are identified:

e  Non-linear auto-regressive with exogenous inputs (NARX) networks using feedback from the output layer
to the input layer.

e  Fully connected recurrent networks with feedback from the hidden layer to the input layer.

e  Recurrent multilayer perceptron with more than one hidden layer, using feedback from the output of each

computation layer to its own input.

In all of these recurrent networks, the feedback is applied via tapped-delay-line memories.

In theory, a recurrent network with global can learn the underlying dynamics of a nonstationary environment
and do so by storing the knowledge gained from the training sample in a fixed set of weights, The network can

track the statistical variations of the environment provided that two conditions are satisfied [Haykin, 1999].

*  The recurrent network does not suffer from under-fitting or over-fitting.

e  The training sample is representative of the non-stationary behaviour of the environment.

3’

The main idea behind the approach described herein is the “generalised recursive neurone,” which is a
structural generalisation of a recurrent neurone (i.e., neurone with local feedback). By using such a model,
supervised learning algorithms such as back-propagation through time and real-time recurrent learning can be

extended to deal with structured patterns.

191



CHAPTER 8:

8.1 Introduction

NEURAL NETWORKS APPLICATIONS AND THEIR BENEFITS

The objectives of this chapter is to highlight the potential benefits and application of neural networks for

engineering, science and other state of the art technology which has been recently becoming very active area of

research.

8.2 Industrial applications

Neural networks applications range from pattern recognition of geophysical features to space applications and

some of which are listed below.

Neural networks have been applied in many other fields since the DARPA 1988 report was written. A list of

some applications mentioned in the literature is as follows:

Industries

Aerospace

Automotive

Banking

Defence

Electronics

Entertainment

Financial

Insurance

Applications

High performance aircraft autopilots, flight path simulations, aircraft control
systems, autopilot enhancements, aircraft component simulations, aircraft
component fault detectors

Automobile automatic guidance systems, warranty activity analyzers

Check and other document readers, credit application evaluators

Weapon steering, target tracking, object discrimination, facial recognition, new
kinds of sensors, sonar, radar and image signal processing including data
compression, feature extraction and noise suppression, signal/image identification
Code sequence prediction, integrated circuit chip layout, process control, chip
failure analysis, machine vision, voice synthesis, non-linear modelling.

Animation, special effects, market forecasting

Real estate appraisal, loan advisor, mortgage screening, corporate bond rating,
credit line use analysis, portfolio trading program, corporate financial analysis,
currency price prediction

Policy application evaluation, product optimization
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e  Manufacturing Manufacturing process control, product design and analysis, process and machine
diagnosis, real-time particle identification, visual quality inspection systems, beer
testing, welding quality analysis, paper quality prediction, computer chip quality
analysis, analysis of grinding operations, chemical product design analysis,
machine maintenance analysis, project bidding, planning and management,
dynamic modelling of chemical process systems

e Medical Breast cancer cell analysis, EEG and ECG analysis, prosthesis design, optimization
of transplant times, hospital expense reduction, hospital quality improvement,

emergency room test advisement

e Oil and Gas Exploration

* Robotics Trajectory control, forklift robot, manipulator controllers, vision systems

e Speech Speech recognition, speech compression, vowel classification, text to speech
synthesis

»  Securities Market analysis, automatic bond rating, stock trading advisory systems

¢ Communications Image and data compression, automated information services, real-time translation
of spoken language, customer payment processing systems
¢  Transportation Truck brake diagnosis systems, vehicle scheduling, routing systems

Aircraft control

A number of aircraft-related control problems have been tackled by using neural network. These include:

(i) Real-time prediction of the unsteady aerodynamics to enhance the aircraft control [Faller and Schreck,
1995].

(ii) 3-dimensionat dynamic reattachment modelling over a broad parameter range [Faller et al., 1995].

(iii) Predicting rotor system component loads during high-speed manoeuvering flight [Haas et al., 1995].

(iv) Amin et al., (1995), applied the neural network controller to control aircraft encountering wind shear
on take-off,

(v) Ha (1995) discussed designing a discrete-time lateral-directional control law for a high performance

aircraft using neural network.

(vi) Control of aircraft flare and landing has also been reported [Jorgensen and Schley, 1990].

Electric Power control

Adaptive control using neural network has been applied to a variety of electric power control problems. For
example:

(a) Maintaining voltage stability for power systems is described in [Jeyasurya, 1994].

(b) Optimal power flow to minimise the cost of power generation is discussed in [Chowdhury, 1992].
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(c) To assess the dynamic security of interconnected power can systems using an integrated neural network
and modern control theory [Marpaka et al., 1994].

(d) Other design methods for neural network control of voltage and power can be found in [Kojima et al.,
,1995; Abdulrahman er al. ,1995; Su and Lin, 1995; Auckland et al. ,1995].

Robotics control

Current industrial robots are limited in their capabilities. The neural network approach has the potential for
adding the ability to learn and adapt and for integrating information from multiple inputs. Most of the robotic

applications are in the following two general classes:

L. Mobile robot control: This refers to a robot learning to navigate to a designated target. Watanabe
et al., (1995) used a hybrid fuzzy-neural network controller for tracking control of a mobile robot
driven by two independent wheels. Controlling a 2 degree-or-free mobile robot in a non-stationary

environment was described by [Zalama et al., 1995] using an unsupervised neural network.

IL Trajectory control: This refers to controlling the robot arm to follow a desired path. In this

area, there are several contributors, each using different techniques.

Process control

Process control refers to controlling a complicated industrial or chemical process. Examples of process control

using neural network are:

(1) Hydrometallurgical processes control by [Aldrich et al., 1995]. In Aldrich’s paper a self-organizing neural
network is used to monitor the behaviour of an industrial platinum flotation plant,

(2) Fed-batch fermentation process control is discussed in [Boskovic and Narendra, 1995].

(3) Using a neural network to model and control a pack distillation column is described in [Macmurray and
Himmelblau, 1995].

(4) Song et al (1994) applied the neural network controller for gas turbine.

(5) Lohetal. (1995) described the control of a pH process.

Temperature control

Industrial temperature control is traditionally done with simple PID controllers. Conventional adaptive
controllers such as the Eurotherm self-tuning controller have been successfully applied to temperature control
recently. Temperature control using neural network, like many other applications, is still in an experimental
state (Ng 1997). Some examples are as follows:

(1) Temperature control of an experimental semi-batch pilot plant reactor equipped with a monofluid heating-
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cooling system.,
Controlling the temperature of a reactor.

In improving the performance of heating, ventilating and air-conditioning (HVAC) control systems.

Other Applications

Listed as follows are some other known applications of using neural network for control.

M

@

&)
@

Induction motor modelling and control, speed control of a field-oriented induction motor, traffic control,
Intelligent traffic management control system, modelling and control of the depth of anaesthesia in the
medical field [Rehman er al. 1993].

Controlling unstable active magnetic bearing system, Controlling general automaton tasks can be found in
[Tolle, 1994].

Spacecraft attitude control [Krishna Kumar, 19947,

Position control in servomechanisms [Lee ef al. 1994].

8.3 Benefits of Neural Networks

Neural networks offer the following benefits:

Ability to tackle new kinds of problems
Neural computers are particularly effective at solving problems whose solutions are difficult, if not
impossible, to define. This has opened up a new range of applications formerly either difficult or

impossible to computerise.

Robustness

Neural networks tend to be more robust than their conventional counterparts. They have the ability to cope
well with incomplete or “fuzzy” data and can deal with previously unspecified or un-encountered
situations. Because data and processing are distributed rather than centralised, neural networks can be very
tolerant of faults if properly implemented. This contrasts with conventional systems, where the failure of

one component usually means the failure of the entire system.

Fast processing speed
Because they consist of a large number of massively interconnected processing units, all operating in
parallel on the same problem, neural networks can potentially operate at considerable speeds. This contrast

to the serial, one step at a time processing used in conventional computers.

Flexibility and ease of maintenance

Neural computers are very flexible in the way in which they are able to adapt their behaviour to new and
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changing environments. They are also easier to maintain, with some having the ability to learn from

experience in order to improve their own performance.

Control of industrial processes
A neural computer learns to control an industrial process such as brewing by being trained that the correct
response to a range of situations, such as temperatures, pressures etc., [DTI]. The network generalises from
the cases that it has been trained with so that it can respond to situations that it has not seen before. It may,
therefore, be controlling the temperature of a furnace, for example. Such applications have demonstrated a

marked increase in accuracy, resulting in cost savings from better control of power and wastage.

forecasting movements in financial markets

A neural computer is trained to identify the links between conditions and subsequent movements in a
particular financial market using historical data. Thereafter, it is able to predict future movements on the
basis of current market conditions. The neural network approach has been shown to give more accurate

predictions than other methods in this field (DTI)

better targeting of mailshots.
A neural computer is trained to recognise the links between offers and responses in a mailing list. On the
basis of what it has learned, the network is better able to target a specific sub-set of the mailing list for any

given new offer. There is a marked increase in the cost-effectiveness of direct mail in such applications.

These following three sample applications have a number of critical factors in common, as well as the potential

that computerisation often holds for a high gain from a small increase in performance, that suggest that an

approach using neural network should be considered DTI:

a complex situation in which the links between inputs and outputs cannot be explicitly specified;
an application, or a degree of performance, that cannot be cost-effectively achieved using conventional
computing methods;

the availability of data to train a neural network.

These applications show how the basic capability of neural computing, to learn their behaviour, has been

successfully applied to complex areas such as monitoring and control and prediction. The following list

summarises the range of neural network application areas that have often proved difficult to tackle using

conventional computing (DTI):

-

classification
- in marketing: consumer spending pattern classification;
- in defence: radar and sonar image classification;

- inagriculture & fishing: fruit and catch grading;
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- in medicine; ultrasound and electrocardiogram image classification;

e recognition and identification;
- ingeneral computing and telecommunications: speech, vision and handwriting recognition;
- in finance: signature verification and bank note verification;

® assessment;

- inengineering: product inspection;

monitoring and control;

in defence: target tracking;

- in security: motion detection, surveillance image analysis and fingerprint matching:

8.4 Conclusions

The applications of neural networks for control community and other field of science and technology certainly
look promising; the breadth of interest in this technology have been growing rapidly; however, most of the
applications presented in the literature are only realized in simulation as case studies. More research is still
needed in neural network theory and its suitability to real practical control applications, which are currently
still lacking. Furthermore, majority of neural networks reported in the literature are often trained off-line before

being applied to control.
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CHAPTER 9: CONCLUSIONS & FUTURE WORK

In this research work, neural network application, in relation to the self-tuning adaptive control of non-linear
systems, have been investigated. This started with an overview of the neural networks prospective and their

relevance to self-tuning adaptive control.

A comprehensive investigation of neural network topology and various learning algorithms, mainly supervised
learning is presented. This thesis is also concerned with the use of efficient algorithms in neural networks for
control system application. From this perspective, their main potential lies in the field of non-linear dynamic
systems. There exist a number of advantageous properties of neural networks, both static and dynamic, from
the viewpoint of non-linear self-tuning adaptive control design and these have been analysed and highlighted in

this work.

Application of dynamic networks for non-linear adaptive control has been investigated. The algorithm utilising
such a network as a model of the controlled non-linear plant has been proposed. Simulation results have been
carried out for specific examples using different methodologies. An extended version of the algorithm has been

applied to MIMO control and simulation shows very encouraging results.

9.1 Feedforward Neural Networks

Universal approximation properties of static networks make them a potentially useful tool for non-linear
control and identification problems. This property is however not unique to neural networks as there are also
other non-linear approximation schemes that exist, e.g., polynomials. A comprehensive comparison of neural
networks with such other schemes from this wide subject area, are beyond the scope of this work. However, a
number of specific advantageous properties, particularly in the context of adaptive control, unique to neural
networks have been emphasised in Chapter 2. Subsequently in Chapter 3, the importance of welknown and up

to date control methodologies for the design of non-linear adaptive control are described.

9.2 Recurrent Neural Networks

The main emphasis here is put on applications of recurrent neural networks in non-linear adaptive control.
Their use as dynamic models of the controlled non-linear and partly unknown systems, for the case of output
feedback, has been advocated in Chapters 4 and 7. Recurrent networks of the Hopfield type have the ability to
provide models of non-linear dynamic systems, as described in Chapter 2, and simultaneously appear quite

“manageable” allowing analytical treatment.

One of the main theoretical issues of a control system, which has direct implications for system performance, is

stability. This is a very complex problem and requires extensive mathematical analysis with much experience
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especially, in case of non-linear adaptive systems. Hence it is left aside for the future studies, However, here
stability strategies have been applied pragmatically. Although some papers have already suggested the use of
recurrent networks for identification and control, very little has so far been done in the adaptive context, in

terms of using neural network in the stability analysis of control systems.

In Chapter 4 neural network based system identification and self-tuning control for non-linear system
algorithms are presented and the effectiveness of the algorithm has been demonstrated by means of simulations
examples. These simulation results indicate that it is very promising for control of more complex non-linear
plants. The self-tuning adaptive control is traditionally limited to unknown linear systems. By introducing
back-propagation neural networks into the self-tuning scheme, it is demonstrated that this new technique has

the potential to deal with unknown linearizable non-linear systems.

Chapter 5 describes various fundamental methodologies of adaptive and nonadaptive control system strategies
such as GPC and MV, These methods are validated and compared using simulations. The techniques described

here are linked directly or indirectly to earlier chapters especially Chapter 4 and Chapter 6

In Chapter 6, neural network enhanced generalised minimum variance control for non-linear system is
presented and demonstrated by means of simulations. Here back-propagation neural networks are introduced
into the self-tuning scheme; it is demonstrated that this new technique has the potential to deal with unknown
linearizable non-linear systems. A neural network enhanced self-tuning controller, which is designed by
amalgamating neural network mapping with a generalised minimum variance self-tuning control (GMVSTC)

strategy is also examined. Simulation results are presented to illustrate the algorithms described in the chapter.

The main advantages of this non-linear modelling design approach are that the mathematical complexity
ordinarily associated with an overall non-linear design can be avoided and computer implementation effort for
on-line real-time can be reduced significantly. The main disadvantage is that learning can be slow if the
sampling time is too long, however, this can be overcome by using an updating algorithm and / or a fast

processor,

A salient point observed during the simulations that this minimum variance of self-tuning adaptive controller
might be limited in the real practical environment amongst other possibilities this may be due to noise actuator
and / or output constraints. A lesson to be learned is that a self-tuning controller must incorporate a check for

unreasonable values of the estimated parameters within its software, so as to avoid blow up,

The potential benefit and applications of neural networks have been presented in Chapter 8 with much focus on

control of nonlinear system application.

This thesis also looks at the requirements of neural network simulations from the standpoint of algorithm
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development and near term application implementations. All the simulation examples carried out in this thesis
are simulated using specialised toolbox developed during this research. In the future these algorithm will be

continuously updated.

9.3 Existing limitations and further research

The neuro-control analysis presented in Chapter 4 and Chapter 5 is based on the assumption that a choice of

the neural model parameters exist which are capable of exactly modelling the plant.

Understanding the use of neural networks with respect to many types of existing model structures and control
strategies seem to be not that complex, however it requires very careful understanding of the terminology used
by different groups of the neural network and general control communities. Table 9.1 gives some idea of the
many theories and methods that are involved with this use of neural networks in identification and control. A
new terminology has emerged in the theory of neural networks, such as: feed-forward networks, recurrent
networks, supervised learning, unsupervised learning, learning set, test set, generalisation etc. The following

links exit between the field of neural networks and control theory.

Neural Networks Control Theory
Feed-forward network Static non-linear model
Recurrent net Dynamic non-linear model
Learning Optimisation

Training set 1/0 data for identification
Test set Fresh data

Generalisation Cross validation

Table 9.1: Neural network versus existing theory

Applications are expanding because neural networks are good problem solvers, not just in engineering, science
and mathematics, but in medicine, business, finance and literature as well (See Chapter 8). Their application to
a wide variety of problems in many fields makes them very attractive. Also, faster computers and faster
algorithms have made it possible to use neural networks to solve complex industrial problems that formerly

required too much computation.
9.4 Direction of Future Research
Although volumes of journals, articles and books on neural networks for control exists, there is still much

research needed especially in the area of self-tuning adaptive control of unknown non-linear systems. The

following areas still needing investigation before significant industrial applications can be achieved are:

200



The control stability is a very complex problem mathematically, especially the discrete form in adaptive
control. Hence the neuro control structure is another ongoing research topic. It is known that the stability
of a closed loop system is not implied by the stability of the open loop system. This situation recurs in a
more complex form in adaptive neuro control: a well-behaved off-line parameter estimation algorithm can
become unstable when operating on-line via a feedback controller. This could happen when the
identification of the actual process contains ‘unmodeled high frequency dynamics” and is thus of higher
order than the control model. For example, when rapidly varying (high frequency) control signal hits the
process or when the plant dynamics are unmodeled resulting in slow response to the output process, etc.
Global convergence and stability, There is a need for theoretical analysis of global convergence and
stability in using NNs for control. Global convergence and stability results are important in gaining the
confidence in industries. One possibility for achieving this is to use the hybrid strategy discussed in
Chapter 3. In the hybrid strategy, the conventional controller such as feedback controller based on some
knowledge of the plant, could be designed, to ensure global stability of the control systems. Using other
conventional controllers in the hybrid strategy such as fuzzy logic, expert control and knowledge based
controllers should also be investigated.

Network topology. Current work assumes that the number of units in the neural network controller is
chosen correctly for the plant to be controlled. However, in practical applications, the necessary prior
knowledge may not be available. Hence learning algorithms which automatically vary the network
topology, such as the number of units required, would be desirable. These may also include determining
the number of relevant past plant inputs and outputs needed when the order of the plant is unknown.
Alternatively, theoretical results have to be established to justify the use of a sufficient number of units for
a NN to represent a plant properly.

Current work also assumes that the order of the plant is known and all plant states are measurable. In
situation where this assumption is not valid, a dynamic unknown plant may have to be controlled using
feed-forward recurrent neural network. FRNN is not popularly used because of high computational cost.
However, initial simulations have shown that it is feasible to use fixed recurrent weights to reduce the
computational cost of FRNN. Nevertheless, more investigations are needed to justify the use of FRNN
with fixed recurrent weights. Single layer RNN should also be investigated.

Supervisory control. This work has demonstrated the use of NNs for direct control of unknown plant.
However, about 90% of industrial applications are still using conventional controllers such as PID
controller [Seborg, 1994], Human supervisors arc often employed for higher level control and decision
making of these conventional controllers. Since neural networks have the capability to mimic a human
expert, the potential for them to be used in place of human supervision for certain tasks are worth

investigating.

9.5 Other points to note

Software development will continue to keep pace with the hardware development with a finite lag time,
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Commercial software available today allows for small network development at low costs. The commercial
marketplace and individual needs will drive further development in both the commercial or private arenas.
One of the reasons for the current advancements in neural networks has been the availability of affordable,
easy-to-use computing facilities. Current applications have exploited these facilities. When the capacity of
these facilities is compared to possible applications in signal processing, robotics, speech and vision the
facilities are deficient.

e Simulations will play an important role in the development of neural network algorithms and applications.
In fact, most short-term applications will be implemented as a simulation.

e Neural network algorithms are presented in numerous mathematical forms. One of the popular forms is as
a set of coupled differential equations. Current hardware accelerators used for neural network simulations
do not easily allow (if at all) the use of such equations. Thus, it is recommended in the DARPA researcher
scientist that the development of hardware and software simulators using the differential equation
descriptions be encouraged [DARPA1988],

e Simulations are primarily used to understand the dynamics of a particular network and for modest
implementations. As the need for high-speed, low-cost, low-power and small size implementations
increases, so will the need to understand the characteristics of the devices used in these advanced
implementations. It will be through simulations that the characteristics of implementations are studied and
understood. Future simulation requirements must, therefore, account for such simulations of
implementations. This type of simulation is more demanding than those chiefly to understand network
dynamics or for small-scale implementations because the later type of simulations much encompasses the
dynamics of both the network and the devices [DARPA].

e The availability of high-end simulation tools to the neural network research community is critical for the
development of near-term applications. Many researchers throughout the study noted that the lack of
inexpensive and easily accessible simulation facilities inhibit their research. Current hardware accelerators

have brought a significant increase in computational power to researchers [DARPA 88].

9.6 What Neural Network Technology can offer?

On the basis of comparison between neural networks and other information processing technologies, the

following conclusions appear to be a fair assessment of neural network technology:

e Neural networks offer significant potential benefits for information processing, such as knowledge
acquisition through learning, fast processing speeds, robustness to implementation defects, and compact
processors.

* The prime candidates for early neural network applications are expected to be in the areas of pattern
classification, simple computational maps for robotic control systems, early vision, signal processing, and
speech recognition.

e Neural network technology is not mature enough at present for widespread practical applications, since
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computer simulations presently are the primary method of implementing neural networks while hardware
implementations remain in the experimental stage.

The first hardware implementations will undoubtedly be functional modules for inclusion in systems using
conventional technologies.

Realising the potential benefits of neural network technology will require basic research to advance the
technology on several fronts, including:

- Theory, including representations, efficient learning algorithms, stability (See section 9.4)

- Modular architectures, overall system control; and

- Implementation techniques for silicon and optics.

The generic application areas to be pursued should be those where success from the unique neural network
approach is likely and would have an important impact. This comparison study indicates that these arcas
are pattern classification, early vision, speech recognition, signal processing, robotic control and so on.
The program should establish a methodology that allows measurement of progress toward goals by
providing specified performance criteria, benchmark problems and databases, and review of unsuccessful
as well as successful projects, to make best use of experience from the program.

A neural network program should assure good coupling to other branches of information processing,
neuroscience, and cognitive science to take advantage of conceptual breakthroughs in the difficult
application areas such as vision and speech and in the understanding of particular simple biological neural

networks, notably invertebrates.

9.7 Important Issues raised within this thesis are:

Determination of combining models as well as the combination process.

The excitement of studying neural nets in regard to their potential in applications for which solutions have
not been found through conventional computing.

Neural network alogrithms show immediate advantages over existing algorithms for certain application
areas.

Successful neural network applications, where correct and knowledgeable representations are crucial.
Algorithmic and symbolic processing elements which will be combined in future systems.

The cases where numerous researchers are giving their attention to the new science but applying neural

networks to simplified problems to test their ideas, rather than solving problems on a realistic scale.

In this thesis neural models obtained using identification are intended to become a part of the control structure

together with self-tuning adaptive controller. According to the simulation results presented in chapter 4, 5 and

6, this shows that by using the BP NN into identification and self-tuning control scheme has the potential to

deal with unknown feedback non-linear system. It is still under investigation to improve the quality of control,

efficiency of speed and stability of the control system. The predictive control strategy applied here has many

advantages. It is easy to tune and provides a good controller performance. It is also able to account for
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constraints on input output etc.

9.8 Final remark

In this research, significant contribution is dedicated to the algorithms and the network topology. Controlling
of unknown complex systems is a very difficult problem, especially when the black-box systems are highly
non-linear. The simulation results have shown that neural networks can overcome this problems and hopes to
have contributed to setting the foundation for the further development of neural network self-tuning adaptive

neural network based control system technology.

System Identification and self-tuning controller of non-linear plant

* Without controller the plant produces wild oscillatory when excitation signal is applied.

* With PI controller, slight reductions of oscillation are observed when compare to the case without

controller. PI controller cannot handle non-linear plants.

* With GPC, oscillations are reduced dramatically and plant output approximates to reference signal.

Quite robust.
e With NN controller
—  better performance is obtained when compared to GPC and PI
— due to learning capabilities plant output closely matched to the reference signal.

— after certain time, however, a sudden burst occurred and neural network stopped learning. It

needs to be retrained.

—  possible improvement - adjust parameters of the neural network controller

Generalised Minimum Variance Self-tuning Control

The network was trained three times in each sample period. The controlled system outputs are shown in
Fig.6.8. They show a good tracking of reference signal, which imply that the respectable decoupling control is
achievable. The output values from the non-linear submodel and the BP network and the estimated linear
submodel parameters are shown in Fig.6.9 and Fig.6.10 respectively whilst the controller output is shown in
Fig.6.11.

Remarks from simulation observation

s Successful parameter estimation can be performed with the aid of a forgetting factor of less than unity,

but only if an appropriately changing input is present.
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In practice we have to fix the size of the neural network before it is used in the adaptive control system.

Thus, the modelling error is determined.

A lesson to be learned is that a self-tuning controller must incorporate a check for unreasonable values

of the estimated parameters within its software, so as to avoid blow up.

This minimum variance of self-tuning adaptive controller may be limited in the real practical

environment due to noise actuator and output constraints etc.

By introducing BPNNs into the self-tuning control scheme, it is demonstrated that the new control

method has the potential to deal with unknown feedback linearisable non-linear systems.

The predictive control strategy applied here has many advantages, it is easy to tune, it is flexible and

provides a good controller performance.

Simulation results indicate that the BP neural learning has the capability to learn arbitrary non-linearities

and show great potential for self-tuning tracking problems in control applications,
The neuro based controller is superior than GPC and PI controllers in handling non-linear problems.

Different types of excitation signals can be applied and performance can be observed in a real time

environment,

There are currently no commercial software packages available exclusively for system identification and
self-tuning adaptive control system design, however, general-purpose neural networks programs are

available,

Programs are easily expandable to incorporate and test new methods. Programs are easy to update

without going through program listing.

The tools have been developed for the MATLAB environment for several reasons: MATLAB is a very
versatile numerical software package that runs on most hardware platforms and it has an extensive

interactive environment for data visualisation,
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APPENDIX A: NEURAL NETWORK GLOSSARY OF TERMS

Activation function; (See Transfer Function)

Adaptive: Adaptive neural networks classify patterns. Input data similar to previously seen patterns are
classified as one of them. Patterns not similar to previous ones have; new class of patterns created for them.
Adaptive Resonance Theory (ART): A type of neural network model trained without supervision, which is
used in pattern classification problems. See [DARPA].

ADALINE: an acronym for a linear neuron: ADAptive LINear Element. (Adaptive Linear Neurone): See also
“Perceptron.” “Multi-layer Perceptron” and “Single-layer Perceptron.”

Adaption: a function that proceeds through the specified sequence of inputs, calculating the output, error and
network adjustment for each input vector in the sequence as the inputs are presented.

Adaptive learning rate: a lcarning rate that is adjusted according to an algorithm during training to minimize
training time.

Adaptive filter: a network that contains delays and whose weights are adjusted after each new input vector is
presented. The network “adapts” to changes in the input signal properties if such occur. This kind of filter is
used in long distance telephone lines to cancel echoes.

Algorithm: A list of rules or equations that determine how a neural network operates and trains.
Architecture: a description of the number of the layers in a neural network, each layer’s transfer function, the
number of neurons per layer, and the connections between layers. (Also see Topology)

Artificial neural networks (ANNs): ANNs are simulations of how it is thought the animal brain operates. It
has been found that these simulations possess powerful pattern recognition and prediction abilities - human-
like qualities.

Association: An associative neural network will recall the closest “stored” training pattern when presented
with a similar, but possibly noisy, input pattern.

Back-propagation (BP) learning: Another way to define BP learning - a learning rule in which weights and
biases are adjusted by error derivative (delta) vectors backpropagated through the network. BP is commonly
applied to feedforward multilayer networks. Sometimes this rule is called the generalized delta rule.
Back-tracking search: linear search routine which begins with a step multiplier of 1 and then backtracks until
an acceptable reduction in the performance is obtained.

Batch: a matrix of input (or target) vectors applied to the network “simultaneously”. Changes to the network
weights and biases are made just once for the entire set of vectors in the input matrix.

Batching: the process of presenting a matrix (batch) of input vectors for simultaneous calculation of a matrix
of output vectors and/or new weights and biases.

Bayesian framework: assumes that the weights and biases of the network are random variables with specified
distributions,

BFGS quasi-Newton algorithm: a variation of Newton’s optimization algorithm, in which an approximation
of the Hessian matrix is obtained from gradients computed at each iteration of the algorithm.

Bias: a neuron parameter that is summed with the neuron’s weighted inputs and passed through the neuron’s
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transfer function to generate the neuron’s output.

Bias vector: a column vector of bias values for a layer of neurons.

Brent’s search: a linear search, which is a hybrid combination of the golden section search and a quadratic
interpolation.

Bi-directional Associative Memory: A type of neural network models, which is an associative version of the
Hopfield Network.

Binary output: An output that can only take one of two values. For example in a control system an output
neuron that indicated a fault had occurred would have a binary output (cf. continuous output).

Boltzmann Machine: A type of supervised neural network learning algorithm in which network states are
determined by “simulated annealing.” Boltzmann machines use noise process to find the global minimum of a
cost function.

Boundary Contour System (BCS): A type of neural network algorithm used in image segmentation
problems.

Cellular Automata: A mathematical formalisation for parallel processes. Specifically a cellular automaton is a
graph whose nodes are finite-state machines (thus the under lying graph or “space” of a given cellular
automaton is considered to be fixed; it cannot be altered by any of its nodes). The operation of a cellular
automaton is determined by information passed between those nodes that are connected (in most cases the
interconnections between nodes pass information bi-directionally).

Classification: an association of input vector with a particular target vector.

Competitive layer: a layer of neurons in which only the neuron with maximum net input has an output of |
and all other neurons output 0. Neurons compete with each other for the right to respond to a given input
vector.

Cochlea Chip: An analogue VLSI circuit modelled after the biological cochlea (a part of mammalian ear).
CMAC (Cerebellar Model Articulated Controller): A type of neural network model adaptively forms complex
non-linear maps and is typically used in motor control problems and defined by a redundant but direct, one-to-
one, feed-forward connection topology. [Barto ef al.]

Competitive learning: An unsupervised learning algorithm in which groups of processing elements in a neural
network compete among themselves to respond to a set of stimulus input patterns. The winner within each
group is the one whose connections make it respond most strongly to the pattern; the winner then adjusts its
connections slightly toward the pattern that it won [Darpa).

Competitive transfer function: accepts a net input vector for a layer and returns neuron outputs of 0 for all
neurons except for the “winner,” the neuron associated with the most positive element of the net input n
[Demuth 1996].

Competitive network: A competitive neural network has neurons, which compete with their neighbours such
that only one neurone will respond to a particular input pattern. See also Kohonen.

Computational Maps: Two-dimensional arrays (often stacked along a third dimension) have locally
interconnected processing elements that represent variables or objects by the position and pattern of activity on

their surfaces, Computational maps exhibit properties of topological self- organisation, self-optimisation and
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fault tolerance.

Confusion matrix: A visual indication of how well the neural network has trained. Two axes represent the
desired and actual responses and a dot is placed for each fact in the training or test set. For a neural network
that is correctly trained the confusion matrix will be a straight line at 45°.

Connection: a one-way link between neurons in a network. (i.e., A path from one neurone to another to
transfer information. Also called synapses, which are often associated with weights that determine the strength
of the signal that is transferred).

Connection strength: the strength of a link between two neurons in a network. The strength, often called
weight, determines the effect that one neuron has on another.

Connection per second (CPS): This is the measure of speed of operating for a neural network. Neural
network simulation software and hardware often state this number for learning mode and run mode.
Manufacturers often exaggerate these numbers and fail to take into account many overheads during actual
processing. However, it is a good indication of performance.

Concurrent input vectors: name given to a matrix of input vectors that are to be presented to a network
“simultaneously.” All the vectors in the matrix will be used in making just one set of changes in the weights
and biases.

Conjugate gradient algorithm: in the conjugate gradient algorithms a search is performed along conjugate
directions, which produces generally faster convergence than a search along the steepest descent directions.
Continuous output: An output neuron that can have any value. For example in a control system an output
neuron controlling the speed of a motor would have to have a continuous output (cf. Binary output).
Connectionism: This term is based on an assumption shared by most massively parallel computational
formalisms: that only a small number of bits of information can be sent from one processor to another. Hence,
an important

conventional computer mechanism i.e., passing complex symbolic structures - cannot be used directly. So
the burden of computation is put on the connection structure of the network. ‘Connectionist’ systems have
become largely synonymous with neural networks [Demuth 1996].

Connectivity: Neural networks exhibit several kinds of patterns of connectivity between their processing
elements depending on the neural network model being used. Processing elements or nodes may be fully
connected locally connected to neighbouring nodes or sparsely connected to a few distant nodes. In addition
networks may be layered and the processing elements or nodes in these layers linked by means of feedback or
feed-forward connections.

See also “Feedback”, “Feed-forward”, “Full Connectivity”, “Local Connectivity”, “Nearest Neighbour
Connectivity”, “Sparse Connectivity” and “Neural Network”.

Conventional computer: A computer that is programmed by sequential instructions as to precisely how to
process inputs to produce outputs. Conventional computers must follow fixed, predefined programmes or rules.
Convergence: A neural network is said to have converged when the training error has reached a pre-set
threshold, which indicates the network has successfully been taught.

Cross talk: The overlap of input patterns in a neural network, which can result when a network does not have
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enough processing elements to allow one element or a group of elements to be reserved exclusively for every
possible input pattern.

Cycle: a single presentation of an input vector, calculation of output and new weights and biases.

Data fitting: Conventional statistics try to fit input data to a fixed equation. This is often slow and can miss
important features. It also tends to smooth out the data. If the training set for a neural network is too small this
can lead to a similar result,

Darwin III Automaton: A type of neural networks model using self-supervised training; this model is a
complex simulated automaton that learns to follow a moving target and touch the target with a multi-jointed
arm. It is an instantiation of a developing theory of brain function called “neural Darwinism”,

Decision boundary: a line, determined by the weight and bias vectors, for which the net input» is zero.
Decision network: The output from a decision network is usually a single value, which indicates the best
choice for the given input data.

Dead neurons: a competitive layer neuron that never won any competition during training and so has not
become a useful feature detector. Dead neurons do not respond to any of the training vectors.

Delta rule: the Widrow-Hoff rule.

Delta vector: the delta vector for a layer is the derivative of a network’s output error with respect to that
layer’s net input vector.

Distance: the distance between neurons, calculated from their positions with a distance function.

Distributed Representation: Each entity or concept is represented by a pattern of activity distributed over
many processing elements and each processing element is involved in representing many different entities or
concepts. As opposed to local or unary representation. See also “Grandmother Cells” and “Local
Representation™ [Darpa , Haykin 1996].

Early stopping: a technique based on dividing the data into three subsets. The first subset is the training set
used for computing the gradient and updating the network weights and biases. The second subset is the
validation set. When the validation error increases for a specified number of iterations, the training is stopped,
and the weights and biases at the minimum of the validation error are returned. The third set is the test set. It is
used to verify the network design.

Epoch: the presentation of the set of training (input and/or target) vectors to a network and the calculation of
new weights and biases. Note that training vectors may be presented one at a time or all together in a batch. (In
short i.e., One complete presentation of the training set to the network during training).

Error jumping: a sudden increase in a network’s sum-squared error during training. This is often due to too
large a learning rate.

Error ratio: a training parameter used with adaptive learning rate and momentum training of BP networks.
Error vector: the difference between a network’s output vector in response to an input vector and an
associated target output vector.

Error: The difference between the network response indicated in the training set and the calculated network
response during training,.

Facts: (See training set)
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Fault tolerance: The ability of a network to operate correctly with noisy data or when part of the network is
damaged or missing.

Features: Within any group of patterns there may be some related data, which represent features.

Feature detector: A group of neurons within a network that are trained to recognise a feature.

Excitation: See “Neurotransmitters” and “Weight”.

Fan-in: The number of processing elements that either excite or inhibit a given unit.

Fan-out: The number of processing elements directly excited or inhibited by a given unit.

Feedforward network: a layered network in which each layer only receives inputs from previous layers.
Fletcher-Reeves update : a method developed by Fletcher and Reeves for computing a set of conjugate
directions. These directions are used as search directions as part of a conjugate gradient optimization
procedure.

Feedback network: Characterised by multi-layer neural networks with recursive connections that iterate over
many cycles to produce an output. An example of a feedback neural network is the Hopfield Network.
Contrasted with ‘feed-forward’. See also “Connectivity” and “Feed-forward”.

Feed-forward network: Characterised by multi-layer neural networks whose connections exclusively feed
inputs from lower to higher layers; in contrast to a feedback network a feed-forward network operates only
until its inputs propagate to its output layer. An example of a feed-forward neural network is the multi-layer
perceptron. It is stable because there is no feedback, the network will produce a result in a single operation,
(See also “Connectivity” and “Feedback”)

Fixed Weight: See “Weight”,

Function approximation: the task performed by a network trained to respond to input with an approximation
of a desired function.

Full Connectivity: All processing elements or nodes in a neural network are connected to all other processing
elements or nodes; also ‘fully connected’. In contrast to local and sparse connectivity. See also “Connectivity”,
“Local Connectivity”, “Nearest Neighbour Connectivity” and “Sparse Connectivity”.

Generalisation: The ability of a network to produce a result (a prediction or guess) uses data on which it has
not been trained.

Generalised predictive control:  belongs to the class of long range predictive control [see appendix below]
Generalized regression network: approximates a continuous function to an arbitrary accuracy, given a
sufficient number of hidden neurons.

Global minimum: the lowest value of a function over the entire range of its input parameters. Gradient
descent methods adjust weights and biases in order to find the global minimum of error for a network.
Gradient descent: the process of making changes to weights and biases, where the changes are proportional to
the derivatives of network error with respect to those weights and biases. This is done to minimize network
error,

Golden section search: a linear search, which does not require the calculation of the slope. The interval
containing the minimum of the performance is subdivided at each iteration of the search, and one subdivision

is eliminated at each iteration.
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Graceful Degradation: In neural networks the notion that no single processing element or neuron is essential
to the network's operation; network performance gradually deteriorates as more and more processing elements
are destroyed but there is no single critical point at which performance breaks down.

Hard limit transfer function: a transfer that maps inputs greater-than or equal-to 0 to 1, and all other values
to 0.

Hebb learning rule: historically the first proposed learning rule for neurons. Weights are adjusted proportional
to the product of the outputs of pre- and post-weight neurons. (Or alternatively: A learning algorithm in which
the repeated excitation of the interconnection between two processing elements causes the strength or weight
of that interconnection to increase.)

Home neuron: a neuron at the centre of a neighbourhood.

Hybrid bisection-cubicsearch - a line search that combines bisection and cubic interpolation.

Hamming Network: A neural network algorithm based on the Hopfield Network, which is used in pattern
classification problems. The feed-forward Hamming Network is notable for requiring fewer connections than
the Hopfield Network. Also called the ‘unary Model’.

Hidden Units /layers: Those processing elements in multi-layer neural network architectures which are
neither the input layer nor the output layer but are located in between these and allow the network to undertake
more complex problem-solving (i.e., non-linear mapping) than networks with no hidden units. Also called
‘hidden layers of processing elements’.

Hopfield Network: A type of neural network model characterised by full connectivity, feedback, and
unsupervised training, which is, used in pattern classification and optimization problems.

Input layer: a layer of neurons receiving inputs directly from outside the network.

Initialization: the process of setting the network weights and biases to their original values.

Input space: the range of all possible input vectors,

Input vector: a vector presented to the network,

Input weights: the weights connecting network inputs to layers.

Input weight vector : the row vector of weights going to a neuron.

Jacobian matrix: contains the first derivatives of the network errors with respect to the weights and biases.
Jog weights: To submit all, or some, of the weights to a random influence. See also local minimum.

Kohonen: Inventor of the self-organising map (Professor T Kohonen)

Indium Bump Bonding: A technology under development for connecting non-silicon infrared detector arrays
to silicon integrated circuit preamplifiers and signal processors. Bump bonding is being proposed as a means of
achieving massively parallel interconnections of neural networks.

Inhibition: See “Neurotransmitters” and “Weight”.

Input: See “Processing Element” and “Weight”.

Interconnect: The links or information channels between a neural network's processing elements. The pattern
of these interconnections must be appropriate to the neural network's application. See also “Connectivity”,
“Neural Network”, “Processing Element” and “Weight”.

Kohonen Self-organizing Feature Map: A type of neural network learning algorithm which does not require
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explicit tutoring of input-output correlation’s and spontaneously self-organizes upon presentation of input
information patterns. It is used in optimization and pattern classification problems. (Inventor of the self-
organising map (Prof, T Kohonen))

Layer diagram: a network architecture figure showing the layers and the weight matrices connecting them.
Each layer’s transfer function is indicated with a symbol. Sizes of input, output, bias and weight matrices are
shown. Individual neurons and connections are not shown.

Layer weights: the weights connecting layers to other layers. Such weights need to have non-zero delays if
they form a recurrent connection (i.e. a loop).

Learning: the process by which weights and biases are adjusted to achieve some desired network behaviour.
(See training)

Learning rate: a training parameter that controls the size of weight and bias changes during learning.
Learning rules: a procedure for modifying the weights and biases of a network.

Learning Algorithms In neural networks the equations which modify some of the weights of processing
elements in response to input signals and values supplied by the transfer function; the learning algorithm(s)
employed in a neural network allow the elements responses to input signals to change over time,

Learning rule: The algorithm used for modifying the connection strengths, or weights, in response to training
patterns while training is being carried out.

Learning mode : Where the neural network is being trained. See Training.

LMS (Least Mean Square) Algorithm: A modification to the perceptron convergence procedure, which can
form the least mean, squared solution in certain problems. This solution, used the Adaline, minimizes the mean
squared error between the desired output of a perceptron-like network and the actual output. See also
“Adaline”.

Local Connectivity: The processing elements or nodes, in one layer of a multi-layer neural network are
connected only to the corresponding nodes in other layers. In contrast full and sparse connectivity. See also
“Connectivity”, “Full Connectivity”, “Nearest Neighbour Connectivity” and “Sparse Connectivity”.
Levenberg-Marquardt: an algorithm that trains a neural network 10 to 100 faster than the usual gradient
descent BP method. It will always compute the approximate Hessian matrix, which has dimensions.

Line search function: procedure for searching along a given search direction (line) to locate the minimum of
the network performance.

Linear transfer function: a transfer function that produces its input as its output.

Link distance: the number of links, or steps, that must be taken to get to the neuron under consideration.
Local minimum: The error is reduced during training to below a pre-set threshold. However, if a local
minimum is encountered then the network may never train successfully. The training algorithm tries to reduce
the error but is prevented from doing so because the current error is only a local minimum. It is difficult to
determine if a minimum it local or global (q.v.) and the usual method to get out of a local minimum is to jog
(q.v.) the weights and continue training.

Local Representation: In neural networks, the use of one processing element to represent each entity or

concept. Also called unary representation; as opposed to distributed representation. See also “Distributed
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Representation” and “Grandmother Cells”.

Log-sigmoid transfer function: a squashing function of the form shown below that maps the input to the

interval (0,1). (The toolbox function is logsig): f(n)=

et}

I+e
Mapping: Transformation of data from one representation to another. For example a Cartesian co-ordinates
pattern might be translated into polar co-ordinates.
Markov Random Field Network: A type of neural network algorithm used in optimisation problems and
closely related to cellular automata.
Maximum performance increase: the maximum amount by which the performance is allowed to increase in
one iteration of the variable learning rate-training algorithm.
Maximum step size: the maximum step size allowed during a linear search, The magnitude of the weight
vector is not allowed to increase by more than this maximum step size in one iteration of a training algorithm.
Mean square error function: the performance function that calculates the average squared error between the
network outputs @ and the target outputs .
Minimum variance Tracking: This strategy concerns the design of a controller ensuring a minimum variance
of the control variable (plant output) around the reference, in the presence of random disturbances [Landau
1998]
Momentum: a technique often used to make it less likely for a BP networks to get caught in a shallow minima.
Momentum constant: A training parameter that controls how much “momentum” is used.
Multi-layer Perceptron: A multi-layer feedforward neural network that is fully connected and which is
typically trained by the back-propagation learning algorithm.
Neighbourhood: a group of neurons within a specified distance of a particular neuron, The neighbourhood is
specified by the indices for all of the neurons that lie within a radius of the winning neuron I
Ni(d)y={j,d; <d).
Nearest Neighbour Connectivity: A type of local connectivity in which a neural network’s processing
elements or nodes are connected to those processing elements or nodes which are physically contiguous. See
also “Connectivity”, "Full Connectivity”, “Local Connectivity” and “Sparse Connectivity”.
Net input vector: the combination, in a layer, of all the layer’s weighted input vectors with its bias.
Neuron: the basic processing element of a neural network. Includes weights and bias, a summing junction and
an output transfer function. Artificial neurons, such as those simulated and trained with this toolbox, are
abstractions of biological neurons.
Neuron diagram: a network architecture figure showing the neurons and the weights connecting them. Each
neuron’s transfer function is indicated with a symbol.
Ordering phase: period of training during which neuron weights are expected to order themselves in the input
space consistent with the associated neuron positions.
Neocognitron: A type of neural network model used in pattern classification problems. The neocognitron
model combines an unsupervised learning algorithm with a multi-layer architecture designed to provide pattern

recognition with tolerance to positional shifts, geometric distortion and scale variation.
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Neural computing: the implementation on a computer of a neural network.

Neural Network: An information processing system, which operates on inputs to extract information and

produces outputs corresponding to the extracted information. Also called “artificial neural networks”,

“connectionist models”, “parallel distributed processing models”, and “neuromorphic systems” [Darpa].

Specifically, a neural network is a system composed of many simple processors fully, locally or sparsely

connected - whose function is determined by the connection topology and strengths. This system is capable of

a high-level function, such as adaptation or learning with or without supervision, as well as lower-level

functions, such as vision and speech pre-processing. The function of the simple processor and the structure of

the connections are inspired by biological nervous systems.

The key attributes of neural networks are

(a) massive parallelism, which results in high-speed decisions and potential fault tolerance and

(b) adaptivity, which means neural networks can be trained rather than programmed in the classical way, and
their performance may improve with experience.

A neural network is described by either an algorithm (which specifies the functional transformation from

inputs to outputs) and/or an implementation (the physical realisation of the processing mechanism that runs the

algorithm). See also “Connectivity”, “Processing Element” and “Weight”.

Neuro-dynamics : The study of the generation and propagation of synchronised neural activity in biological

systems.

Neuron: A single processing element within a neural network. A neuron receives its input from the outputs of

other neurons or signals from the outside world. The neuron uses this information to produce its output using a

simple mathematical formula. This output is then fed to other neurons or directly to the outside world. There

are many different types of neurons. A neuron is also a nerve cell within the brain.

Neurotransmitters: In biological systems, specialised molecules that act across synapses and which open up

neural membrane channels that permit ionic currents (i.e., action potentials) to act. Neurotransmitters and

currents either depolarize the membrane, resulting in neural excitation or hyperpolarize it, resulting in neural

inhibition. Some 50 different neurotransmitters have been identified so far; some appear to play an important

role in determining patterns of neural interconnections. See also “Axon”, “Dendrite”, “Neuron”, “Soma” and

“Synapse” [Darpa].

Optimising network: Some neural network architectures are good at solving problems which require picking

the best combination from a large number of possible combinations (e.g. what is the best route so that one

visits 10 customers in minimum time'). Conventional approaches take a long time to arrive at a solution; neural

networks can solve the problem in a shorter time.

OQutput layer: a layer whose output is passed to the world outside the network,

Output neuron: A neuron within a neural networks whose outputs is the result of the network.

(Also see “Processing Element” and “Weight™.)

Output vector: the output of a neural network. Each element of the output vector is the output of a neuron,

Output weight vector: the column vector of weights coming from a neuron or input. (See outstar learning

rule.)
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Outstar learning rule: a learning rule that trains an neuron’s (or input’s) output weight vector to take on the
values of the current output vector of the post-weight layer. Changes in the weights are proportional to the
neuron’s output.

Overfitting: a case in which the error on the training set is driven to a very small value, but when new data is
presented to the network, the error is large.

Over training: Training in neural networks involves feeding into the network facts about the problem to be
solved. If the network is trained only on this sequence of facts then it becomes less able to generalise. Over
training is the result of training the neural network to respond very accurately to the training set only, The
effects of over training can be reduced by using a test set during the training process.

Paradigm: (See training)

Pattern association: the task performed by a network trained to respond with the correct output vector for
each presented input vector,

Pattern recognition: the task performed by a network trained to respond when an input vector close to a
learned vector is presented. The network “recognizes” the input as one of the original target vectors.
Performance function: commonly the mean squared error of the network outputs, However, the toolbox also
considers other performance functions. Type nnets and look under performance functions.

Perceptron: a single-layer network with a hard limit transfer function. This network is often trained with the
perceptron learning rule. See also “Adaline”, “LMS Algorithm”, “Multi-layer Perceptron” and “Single-layer
Perceptron™.)

Perceptron learning rule: a learning rule for training single-layer hard limit networks. It is guaranteed to
result in a perfectly functioning network in finite time given that the network is capable of doing so.

Positive linear transfer function: a transfer function that produces an output of zero for negative inputs and
an output equal to the input for positive inputs,

Postprocessing: converts normalized outputs back into the same units, which were used for the original
targets,

Powell-Beale restarts: a method developed by Powell and Beale for computing a set of conjugate directions.
These directions are used as search directions as part of a conjugate gradient optimization procedure. This
procedure also periodically resets the search direction to the negative of the gradient.

Preprocessing: Modification of the data before they are applied to the input layer of the neural network. For
example; scaling, FFT, filtering, averaging, etc.)

Post-processing: Modification the results of the neural network before being applied to the real world For
example; scaling, filtering, etc.

Principal component analysis: orthogonalize the components of network input vectors. This procedure can
also reduce the dimension of the input vectors by eliminating redundant components.

Parallel processing A computing technique that carries out multiple tasks simultaneously. Neural computing
is ideally suited to parallel processing because a neural network acts upon all the information provided at the
same time. However, most neural computers use conventional sequential processing due to cost. (Also see

Processing Element)
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Prediction network: A network that produces real-valued outputs as a response to the data fed into it. For
example, a prediction network could be used to predict the stock market results for the following day.

Pattern Classifiers: Mappings that define partitioning of feature space into regions corresponding to class
membership.

Processing Element: The simple processors (also called ‘neurons' after their biological inspiration or simply
'units') that are the essential units of which a neural network is comprised. Every processing element, which is
endowed with only a small amount of local memory, receives one or more inputs from other processing
elements or from external sources; these inputs are then moditfied by some weighted value specific to each
input according to a learning algorithm. The sum of the products of the different weight times their individual
inputs is then computed by the processing element. The processing element generates a single output signal
that depends on these input sums. This single output signal can be fanned out to some number of other
processing elements or be used as output from the network.

See also “Connectivity”, “Neural Network”, neuron and “Weight”.

Quasi-Newton algorithm: class of optimization algorithm based on Newton’s method. An approximate
Hessian matrix is computed at each iteration of the algorithm based on the gradients.

Radial basis networks: a neural network that can be designed directly by fitting special response elements
where they will do the most good.

2
-n

Radial basis transfer function: the transfer function for a radial basis neuron is: radbas(n) = e

Regularization: involves modifying the performance function, which is normally chosen to be the sum of
squares of the network errors on the training set, by adding some fraction of the squares of the network
weights,

Resilient BP: a training algorithm that eliminates the harmful effect of having a small slope at the extreme
ends of the sigmoid “squashing” transfer functions.

Receptive Fields: In some multi-layer neural networks a processing element in the hidden layer(s) may receive
input from a group of neighbouring units called the receptive field.

Reduced Coulomb Energy (RCE) Network: A type of neural network model used in general classification
problems and characterized by a sparse, feed-forward connection topology and supervised training.
Relaxation: In neural networks, the notion that computation proceeds by iteratively seeking to satisfy a large
number of weak restraints; thus connections represent constraints on the co-occurrence of pairs of processing
elements. The network settles into a solution rather than calculating one,

Run mode: When the neural network is being executed.

Saturating linear transfer function: a function that is linear in the interval (-1, +1) and saturates outside this
interval to -1 or +1. (The toolbox function is satlin.)

Scaled conjugate gradient algorithm: avoids the time consuming line search of the standard conjugate
gradient algorithm.

Sequential input vectors: a set of vectors that are to be presented to a network “one after the other.” The
network weights and biases are adjusted on the presentation of each input vector.

Self-organization (map) (SOM): The autonomous modification of the dynamics of a complete neural network
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via learning in some or all of its processing elements to achieve a specified result. See also “Self-supervised
Training”, “Supervised Training” and “Unsupervised Training”.

Self-supervised Training: A means of training adaptive neural networks; self-supervision is used by automata
which require internal error feedback to perform some specific task. For example, automata which learn to
track a moving spot by controlling simulated eye muscles can generate an error signal based on the distance
between the position of the spot on a simulated retina and the centre or fovea of the retina. See also “Self-
organisation”, “Supervised Training” and “Unsupervised Training”.

Serial processing: In which actions are processed sequentially.

Sigma parameter: determines the change in weight for the calculation of the approximate Hessian matrix in
the scaled conjugate gradient algorithm,

Sigmoid: monotonic S-shaped function mapping numbers in the interval ((—eo,)) to a finite interval such as
(-1, +1) or (0,1).

Simulation: takes the network input p, and the network object net, and returns the network outputs a.
Simulation software: Software packages that permit the training and validation of a neural network prior to
implementing it.

Simulated Annealing: A stochastic computational technique derived from statistical mechanics for finding
near globally minimum cost solutions to large optimisation problems.

Single-layer Perceptron: A type of neural network algorithm used in pattern classification problems and
trained with supervision. The single-layer perceptron generated much interest when it was initially developed
in the 1950s by Rosenblatt because of its ability to learn to recognize simple patterns. Connection weights and
the thresholds in a perceptron can be fixed or adapted using a number of different algorithms. See also
“Adaline” and “Perceptron”,

Site Function: In a neural network, a processing element’s inputs are connected to specific sites. A processing
element may have more than one “input site”. Each site has an associated site function which carries out local
computation based on the input values at the site.

Soma: In biological systems, the large, round central body of a neuron which contains the genetic and
metabolic machinery necessary to keep the neuron alive. See also “Axon”, “Dendrite”, “Neuron”
“Neurotransmitters” and “Synapse”.

Sparse Connectivity: The processing elements or nodes in a neural network are connected to only a few
distant other processing elements, or nodes. In contrast to full and local connectivity. See also “Connectivity”,
“Full Connectivity”, “Local Connectivity” and “Nearest Neighbour Connectivity”.

Spread constant: the distance an input vector must be from a neuron’s weight vector to produce an output of
0.5.

Squashing function: a monotonic increasing function that takes input values between and and
returns values in a finite interval.

Star learning rule: a learning rule that trains a neuron’s weight vector to take on the values of the current
input vector. Changes in the weights are proportional to the neuron’s output.

Stochastic: A process involving a randomly determined sequence of observations, each of which is considered
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as a sample of one element from a probability distribution. Stochastic variation implies randomness as opposed
to a fixed rule or relation in passing from one observation to the next in order.

Sum-squared error: The sum of squared differences between the network targets and actual outputs for a
given input vector or set of vectors,

Synapse: In biological systems, the tissues connecting neurons. Synapses are the specialised contacts on a
neuron, which are the termination point for axons from other neurons. Synapses make contact with the
dendrites from other neurons and are capable of changing a dendrite's local potential in a positive or negative
direction. See also “Axon”, “Dendrite”, “Neuron”, “Neurotransmitters” and “Soma” [Darpa].

supervised learning: A learning process in which changes in a network’s weights and biases are due to the
intervention of any external teacher. The teacher typically provides output targets,

Supervised training: A means of training adaptive neural networks, which requires labelled training data and
an external teacher. The teacher knows the desired correct response and provides an error signal when an error
is made by the network. This is sometimes called ‘reinforcement learning’ or ‘learning with a critic’ when the
teacher only indicates whether a response was correct or incorrect but does not provide detailed error
information. Also called “hetero-associative learning”. As opposed to unsupervised training, self-organization
and auto-associative learning. See also “Self-organization”, “Self-supervised training” and “Unsupervised
Training”.

Symmetric hard limit transfer function: a transfer that maps inputs greater-than or equal-to 0 to +1, and all
other values to -1.

Symmetric saturating linear transfer function: produces the input as its output as long as the input i in the
range -1 to 1. Outside that range the output is -1 and +1 respectively.

Tan-sigmoid transfer function: a squashing function of the form shown below that maps the input to the

interval (-1,1). (The toolbox function is tansig.): fn) =

l+e
Tapped delay line: a sequential set of delays with outputs available at each delay output.
Target vector: the desired output vector for a given input vector.
Test set threshold: The test set comprises information about the problem to be solved that the network has not
previously seen. Once training has been completed the network should be validated using a test set.
Topology: The way in which the neurons are connected together determines the topology of the neural
network. Sometimes referred to as architecture or paradigm. Some examples are self-organising map, multi-
layer perceptron.
Topology functions: ways to arrange the neurons in a grid, box, hexagonal, or random topology.
Training: Training is the process by which the neural network connection weights are adjusted so that the
network performs the function for which it is designed.)
Training vector: an input and/or target vector used to train a network.
Transfer function: the function that maps a neuron’s (or layer’s) net output # to its actual output.
Tuning phase: period of SOFM training during which weights are expected to spread out relatively evenly

over the input space while retaining their topological order found during the ordering phase.
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Training set: A neural network is trained using a training set. A training set comprises information about the
problem to be solved as input stimuli. In some computing systems the training set is called the facts file.
Transfer Function: The differential (or difference) equations, which determine each, processing element’s
operation. These equations describe how the output signal evolves in time as a function of the input signals.
Threshold: A function f with values | and —1 is called a threshold function if the inverse image of 1, f'(1),
and of—-l,f"(—l}, are separated by a hyperplane [Wilde 1997].

Turing Machine: (Cambridge mathematician (1912-1953), who described (1936) a theoretical ¢ Turing
Machine’ whose abstract structure must be common to all possible numerical computers. He also considered
the question * Can machine think’ and proposed a critical test for comparing human thought with mechanical
results [John and Litter 1984].

Underdetermined system: a system that has more variables than constraints.

Unsupervised learning: A means of training adaptive neural networks, which requires unlabeled training data
and no external teacher. Data is presented to the network and internal categories or clusters are formed which
compress the amount of input data that must be processed at higher levels without losing important
information. This clustering task is sometimes called ‘vector quantization’. See also “Self-organization”, “Self-
supervised Training” and “Supervised Training”.)

Update: make a change in weights and biases. The update can occur after presentation of a single input vector
or after accumulating changes over several input vectors.

Validation set: (See Test set)

Value Unit Coding: In neural network data representation, the encoding of the value of a variable as the
location of an active processing element, or node. Such nodes are often arranged in an orderly fashion to form
a topographic map of some external variable.

Variable Unit Coding: In neural network data representation, the encoding of the value of a variable as the
amplitude of the output of a processing element or node.

Vector Quntization: See “Unsupervised training”.

Viterbi Network: A neural network architecture, which implements a temporal, decoding algorithm used for
non-linear analogue processing based speech recognition.

Weight: The value associated with a connection between neurons in a neural network. This value determines
how much of the output of one neuron is fed to the input of another.

Weighted input vector: the result of applying a weight to a layer's input, whether it is a network input or the
output of another layer.

Weight matrix: a matrix containing connection strengths from a layer’s inputs to its neurons. The element w;
of a weight matrix W refers to the connection strength from input; to neuron i.

Widrow-Hoff learning rule: a learning rule used to trained single layer linear networks. This rule is the

predecessor of the BP rule and is sometimes referred to as the delta rule.

SPECIFIC DEFINITION

241



A direct control system design. “Direct” means that the controller is a neural network., A neural network
controller is often advantageous when the real-time platform available prohibits complicated solutions. The
implementation is simple while the design and tuning are difficult implying a retraining of the network every
time a design parameter is modified, Often this training has to be performed according to an on-line scheme.

An indirect control system design. This class of designs is always model based. The idea is to use a neural
network to model the system to be controlled. This model is, then employed in a more “conventional”
controller design. The model is typically trained in advance, but the controller is designed on-line. As it will
appear, the indirect design is very flexible; thus, it is the most appropriate for the majority of common control

problems.
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APPENDIX B: ABSTRACTS OF PUBLISHED PAPERS

Back-propagation Neural Network Enhanced Non-linear System Identification and Control.
B. K. Thapa and T. Earthrowl-Gould.
Aston University, School of Engineering and Applied Science, Birmingham B4 7ET (UK)

ABSTRACT

Neural Networks (NN) are the focus of much interest within the control engineering community because they
offer a new analytical approach to solve many complex applications which are often problematic when a
traditional analytical methods are adopted. This paper explores the use of back-propagation (BP) algorithms
in NN learning in the context of applying these solutions to recognisable system identification such as
modelling, predictive, self-tuning and direct NN control applications. BP algorithms are shown to be
applicable to static and dynamic, single and multi-layer as well as recurrent NN architectures. The
architectures and algorithms described here are indicative of on going research on complex non-linear

structures of neural controllers and as such provide an overview of the state of the art.

Simulations examples are presented to demonstrate the algorithm presented in this paper and results indicate

that the identification and self-tuning scheme can possibly deal with a complex unknown non-linearity.

Non-linear Control with Neural Networks
B. K. Thapa, B.Jones and Q.M.Zhu
Aston University, School of Engineering and Applied Science, Birmingham, B4 7ET (UK)

ABSTRACT

This paper is concerned with a non-linear self-tuning tracking problem using back-propagation (BP) neural
learning and system identification techniques. Traditional self-tuning adaptive control technigques can only
deal with linear systems or special non-linear systems. BP neural networks have the capability to learn
arbitrary non-linearities and show great potential for adaptive control applications. A scheme for combining
BP neural networks with self-tuning adaptive control techniques is proposed. Two simple simulation studies
are provided to illustrate the effectiveness of the control algorithm. Simulation indicates that the

indentification self-tuning scheme can possibly deal with a complex unknown non-linearity.
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APPENDIX C

MATLAB, SIMULINK, Toolboxes and S-Functions are for modelling, simulation and implementation. The

objective of this chapter is to highlight and describe the software package used for this research work.

C1: WHAT IS MATLAB?

MATLAB is a high-performance language for technical computing. It integrates computation, visualization,
and programming in an easy-to-use environment where problems and solutions are expressed in familiar

mathematical notation. Typical uses include:

¢  Math and computation, Algorithm development, Modelling, simulation and prototyping
e  Data analysis, exploration and visualisation, Scientific and engineering graphics

*  Application development, including graphical user interface building

MATLAB is an interactive system whose basic data element is an array that does not require dimensioning.
This allows you to solve many technical-computing problems, especially those with matrix and vector
formulations, in a fraction of the time it would take to write a program in a scalar non-interactive language

such as C or Fortran.

The name MATLAB stands for matrix laboratory. MATLAB was originally written to provide easy access to
matrix software developed by the LINPACK and EISPACK projects, which together represent the state-of-the-

art in software for matrix computation [1-4].

MATLAB has evolved over a period of years with input from many users. In university environments, it is the
standard instructional tool for introductory and advanced courses in mathematics, engineering and science. In

industry, MATLAB is the tool of choice for high-productivity research, development, and analysis [4].

MATLAB features a family of application-specific solutions called toolboxes. Very important to most users of
MATLAB, toolboxes allow you to learn and apply specialised technology. Toolboxes are comprehensive
collections of MATLAB functions (M-files) that extend the MATLAB environment to solve particular classes
of problems. Areas in which toolboxes are available include signal processing, control systems, neural

networks, fuzzy logic, wavelets, simulation, and many others [4].

C2: WHAT IS SIMULINK?

SIMULINK is a software package for modelling, simulating and analyzing dynamic systems. It supports linear

and non-linear systems, modelled in continuous time, sampled time, or a hybrid of the two. Systems can also
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be multirate, i.e., have different parts that are sampled or updated at different rates [2].

As an optional extension to the core of MATLAB, SIMULINK provides a graphical user interface (GUI) for
constructing block diagram models of dynamic systems. Large libraries of building blocks are provided such as
sources, linear and nonlnear components and connectors. This makes it possible to create your own blocks and
model a system rapidly, clearly, and without having to write a single line of simulation code. And, because the
models you create are graphical in nature, SIMULINK gives you simulation, documentation and publication-

quality output - all from the same screen.

Models are hierarchical, so you can build models using both top-down and bottom-up approaches. You can
view the system at a high-level, then double-click on blocks to go down through the levels to see increasing
levels of model detail. This approach provides insight into how a model is organized and how its parts interact

see reference for detail [1].

After you define a model, you can simulate it, using a choice of integration methods, either from the Simulink
menus or by entering commands in MATLAB's command window. The menus are particularly convenient for
interactive work, while the command-line approach is very useful for running a batch of simulations (for
example, if you are doing Monte Carlo simulations or want to sweep a parameter across a range of values).
Using scopes and other display blocks, you can see the simulation results while the simulation is running, In
addition, you can change parameters and immediately see what happens, for “what if” exploration. The
simulation results can be put in the MATLAB workspace for post processing and visualisation. See reference

[1] for extra details.

C3: WRITING S-FUNCTIONS AND OVERVIEW OF S-FUNCTIONS

What Is an S-Function?

When to Use an S-Function

How S-Functions Work

Overview of M-File and C MEX S-Functions

S-Function Concepts

C3_1: Introduction

S-functions (system-functions) provide a powerful mechanism for extending the capabilities of Simulink [1].
S-functions allow you to add your own algorithms to Simulink models. You can write your algorithms in
MATLAB or C by following a set of simple rules; you can implement your algorithms in an S-function. After
you have written your S-function and placed its name in an S-Function block (available in the Non-linear

Block sub-library), you can customize the user interface by using masking. You can also customize the code
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generated by the Real Time Workshop for S-functions by writing a Target Language Compiler TM (TLC) [2].

C3_2: What Is an S-Functions?

An S-function is a computer language description of a dynamic system. S-functions can be written using
MATLAB or C. C language S-functions are compiled as MEX-files using the mex utility described in the
Application Program Interface Guide [2]. As with other MEX-files, they are dynamically linked into
MATLAB when needed.

S-functions use a special calling syntax that enables you to interact with Simulink’s equation solvers. This

interaction is very similar to the interaction that takes place between the solvers and built-in Simulink blocks.

The form of an S-function is very general and can accommodate continuous, discrete, and hybrid systems. As a
result, nearly all Simulink models can be described as S-functions. S-functions are incorporated into Simulink

models by using the S-Function block in the Non-linear Block sub-library.

C3_3: When to Use an S-Function

The most common use of S-functions is to create custom Simulink blocks. You can use S-functions for a
variety of applications, including:

*  Adding new general purpose blocks to Simulink

e Incorporating existing C code into a simulation

* Describing a system as a mathematical set of equations

*  Using graphical animations or simulation (e.g. see simulations results as presented in the thesis or see any

demo within Matlab e.g. the inverted pendulum demo etc.)

An advantage of using S-functions is that you can build a general-purpose block that you can use many times

in a model, varying parameters with each instance of the block.

C3_4: How S-Functions Work

Each block within a Simulink model has the following general characteristics: a vector of inputs, u, a vector of

outputs, y, and a vector of states, x, details can be found in User guide [1]

C4: WHAT IS TOOLBOXES?

Application-Specific end Extensible
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MATLAB features a family of application-specific products called Toolboxes. Toolboxes are comprehensive
libraries of MATLAB functions that customise the MATLAB environment for particular classes or problems
and application areas. Here only relevant tooboxes are described which is directly linked with this research

work.

The MATIAB application toolboxes represent the work of some of the worlds top researchers in fields such as
signal processing, automatic control, and neural networks, Toolboxes let you “stand on the shoulders" of

world-class scientists and researchers who are defining the state of the art and implementing it in MATLAB.

Toolboxes combine the advantages of pre-packaged “off-the-shelf " software with the inherent power and

flexibility of a technical computing environment [4]:

e Toolbox is built on top of MATLAB'’s fast and reliable numeric.

e A full complement of graphics and visualisation tools are always available to examine results.

* MALAB’s open system approach gives you access to toolbox source code, so that you can inspect,
customise, and extend the algorithms and functionality of the toolbox to suit your needs.

* All toolboxes are available on the wide variety of computer platforms on which MATLAB runs.

* Because they all share a common basis in MATLAB, toolboxes can be used together in a seamless manner.
For example, you can apply optimisation and neural network tools to advanced signal processing problems

and display the results as colour 3-D graphs -- all in a single environment!

A large family of toolbox products are available from The MathWorks, the highlights of which are listed on the

following pages.

Control System Design: Automatic control system design and analysis tools. Classical and modern
techniques; Continuous- and discrete-time; State-space and transfer function models; System interconnection;
Transformation between models; Model reduction; Frequency response: Bode, Nyquist, Nichols, SVD; Time

response: impulse, step, ramp, general; Root-locus, pole-placement, LQR, LQG

Fuzzy Logic Toolbox: An intuitive graphical environment for designing with fuzzy logic systems based

theory

Image Processing: 2-D filter design and filtering; Image restoration and enhancement; Colour, geometric, and

morphological operations; Two-dimensional transforms; Image analysis and statistics

Non-linear Control Design Toolbox: A revolutionary, interactive approach to computer-aided control system

design
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Optimization Toolbox: Tools for the general optimization of linear and non-linear functions

Neural Networks: Neural network design and simulation tools provide an environment for developing neural

networks within MATLAB. Up to date known functions are as follows:

*  Associative, backpropagation, feature map, Hopfield, Kohonen, self-organising, Widrow-Hoff networks;
Competitive, limit, linear, sigmoid transfer functions; Feedforward, Recurrent architectures; Performance

analysis functions and graphs; Unlimited layers elements, interconnections.

System Identification: Advanced signal processing tools for parametric modelling, system identification, and
time-series analysis.
e Provides a flexible graphical user interface that aids in the building of accurate, simplified models of

complex system from noisy time-series data.

Real-Time Workshop:  Generates fast, target-independent C code from Simulink block diagrams.

Robust Control: Leading-edge robust-control system synthesis tools to deal with systems in the presence of
uncertainty.
e LQG/LTR optimal control synthesis; H and Hoo optimal control synthesis ; Singular-value model

reduction; Spectral factorisation and model building

Signal Processing Toolbox: Powerful tools for algorithm development, signal and linear systems models, in

addition to specialized GUISs for filter design and spectral analysis.

e Digital and analogue filter design and implementation; Spectrum analysis and estimation; Filter response
simulation; FFT, DCT, and other transforms; Parametric modelling; Multi-rate signal processing ;

Modulation and demodulation

For further information of other toolboxes can be found Mathworks [4].

C5: OPEN AND EXTENSIBEL ARCHITECTURE

Extensible, Connectable, and interoperable

The open architecture allows you to extend the simulation environment (See Fig.1 below):

e Create custom blocks and block libraries with your own icons and user interfaces from MATLAB, Fortran,
or C code,

® Link in pre-existing Fortran and C simulation code to preserve your validated models.

e Generate C code from your models, using the optional SIMCLINK C Code Generator.
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Cross-Platform Interoperability

e MATAB is available on industry standard computing platforms, ranging from personal computers and
workstations to minicomputers and supercomputers.

o MATLAB is designed to operate in a multi-vendor heterogeneous network environment, enabling
workgroups to share a common set of data and toolboxes, while using a diverse collection of machines.

e MATLAB supports the industry standard windowing systems: MS-Windows, X Windows, and Macintosh.

e  User-generated applications and data are transferable across the entire range of MATLAB platforms
without modification. Any needed conversions are performed automatically.

e Many MATLAB features and virtually all toolbox features, are implemented in programmable “m-files "
that give you access to the source code and algorithms.

e MATLAB’s pioneering open system approach enables you to inspect algorithms, make changes to existing

functions and add your own new features see Fig. 1.

Software External

Interactive
Interface Facilities

Facilities

Fig.1 Open Architecture of MATLAB

C6: SUMMARY

MATLAB is design, analysis and data visualisation tools where as SIMULINK is system modelling,

simulation and validation.

S-functions allow you to add custom code to your SIMULINK model. You can embed the code directly into
the generated code or, by default, allow the S-function Application Program Interface (API) to call the S-
function. Embedding the S-function code directly into the generated code is called inlining the S-function. The

default is called noninlined [2)

MATLAB offers a unique simulation and prototyping environment. The powerful technical language is both
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concise and descriptive, allowing you to model complex systems with small sections of easy-to-follow code.

The vast library of functions, available as part of the MATLAB code and through the application-oriented

toolboxes, allows you to quickly build simulations and models for a variety of application types. Tools for

modelling range from differential equation solvers in MATLAB, to specialized toolbox functions for statistics

and neural network training and modelling. Built-in animation functions and fast graphics allow you to

visualize model behaviour for analysis, testing and debugging, and presentation purposes.

Advantages

Since MATLAB is an interpreted language, you can modify your models to see the effects immediately,
without the additional overhead of recompilation as in C. Because so many of the low-level and advanced
math algorithms are already developed for you, the code required to build a model in MATLAB is
significantly shorter than the corresponding C or C++ code. This compactness makes MATLAB code easy
to write and to maintain over time,

A Set of Targeted Simulation Approaches where MATLAB offers a familiar programming environment,
Simulink and State-flow provide a graphical, design environment for modelling and simulating complex
control, DSP, and supervisory logic systems. Built on MATLAB, these products can call any MATLAB
function including user-written routines, allowing you to combine the best of both approaches.

Even toolbox functions can be embedded within Simulink block-diagram models. Simulation and
Modelling Products

MATLAB Compiler translates MATLAB code to ANSI standard C and C++ code

Disadvantage:

It is expensive for licensing the product and not easily available like other packages such a C or C++,
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APPENDIX D: DIGITAL CONTROL STRATEGIES

Design of digital controllers for SISO systems described by discrete time models in input-output form.

Comparing the control objectives in the time domain associated with the various control strategies one can

classify these strategies in two categories:

. One step ahead predictive control. In these strategies one computes a prediction of the output at r+d+/1 (d

integer delay of the plant) namely y(¢1+d +1)as a function of u(t), u(t —1),..., ¥(t), ¥(t —1),... and one
computes u(t) such that a control objective in terms of j(f+d +1) be satisfied. This is illustrated in

Fig.1.1

Y2y (2)
u Yt / uft+1), u(t+2)...=0)

Y~ sz /u(h=0) VY (), u(t+1)..=0)

t1 ot t+l 142

Fig.1.1: One step-ahead predictive control

2. Long range predictive control. In these strategies the control objective is expressed in terms of the future
values of the output over a certain horizon and of a sequence of future control values. In order to solve the
problem, one needs to compute:

Pt+d+ 1), pt+d+2),.., p(t+d+ )
which are expressed as:

y(t+d+1) L 0@, y(t =Dy u(t),u(t = 1),...)

I

t+d+ ) SiOA0), y(t = 1)y u(t),u(t - 1),...)
gj(“(t + 1)"--!1'{('{ +JI - l))
To satisfy the control objective the sequence of present and future values the control

u(t), u(t +1),.., u(t + j—1) are computed but only the first one (i.e., u(7)) is applied to the plant and the same

procedure is restarted at /+/, This is called the receding horizon procedure [Landau, 1998].

The principle of long range predictive control is illustrated in Fig.1.2 where the sequence of desired values y*,

of predicted values y and the future control sequence are represented (predicted values are represented for two

different future control sequences).
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Fig.1.2: Long range predictive control

All the control strategies concern linear design in the sense that on the values of the admissible control applied
to the plant are not considered. As a consequence all the control strategies will yield a linear controller of same
structure. The use of one or another strategy corresponds finally to different values of the parameters of the
controller for the same plant model used for design. Another important issue is that the control should be

admissible (realizable) i.e. it should depend only on the information available up to and including time ¢ where

the control u(t) is computed.

The basic System Identification Procedure

St e, Slae e

Validate model
I Not accepted
l Accepted

Fig.1.3: The basic system identification procedure.
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Some Definitions

Because of the terminologies used in adaptive filtering in automatic control and in the literature on neural

networks, are sometimes conflicting therefore the terms that used in this thesis are defined below.

Adaptive vs. non-adaptive training: The training of a network makes use of two sequences, the sequences of
inputs and the sequence of corresponding desired outputs. If the network is first trained (with a training
sequences of finite length), and subsequently used (with the fixed weights obtained from training), we shall
refer to this mode of operation as “ non-adaptive.” Conversely, the term “ adaptive” the mode of operation

whereby the network is trained permanently while it is used (with a training sequence of infinite length).

Performance criterion, cost function and training function: The computation of the coefficients during
training aims at finding a system whose operation is optimal with respect to some performance criterion which
may be either quantitative, e.g., maximising the signal to noise ratio for spatial filtering or qualitative, e.g., the
(subjective) quality of speech reconstruction. Assume that we can define a positive training function, which is
such that a decrease of this function through modifications of the coefficients of the network leads to an

improvement of the performance of the system.

In the case of non-adaptive training, the training function is defined as a function of all the data of the training
set (in such a case, it is usually termed cost function); the minimum of the function corresponds to the optimal

performance of the system. Training is an optimization procedure, using gradient-based methods.

In the case of adaptive training, it is impossible, in most instances, to define a time independent cost function
whose minimization leads to a system that is optimal with respect to the performance criterion. Therefore, the
training function is time-independent. The modification of the coefficients is computed continually from the
gradient of the training function. The latter involves the data pertraining to a time window of finite length,

which shifts in time (sliding window) and the coefficients are updated at each sampling time for instance.

Recursive vs. non-recursive algorithms, iterative vs. non-iterative algorithms: A non-recursive algorithm
makes use of a cost function (i.e., a training function defined on a fixed window). A recursive algorithm makes
use of a training function defined on a sliding window. Therefore, an adaptive system must be trained by a
recursive algorithm, where as a non-adaptive system may be trained either by a non-recursive or by a recursive

algorithm,
An jterative algorithm performs coefficient modifications several times from a set of data pertaining to a given

time window, a non-iterative algorithm does this only once. The popular least mean squares (LMS) algorithm

is thus a recursive, non-iterative algorithm operating on a sliding window of length 1.
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