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One of the most recent attempts to characterize inter-molecular 
dipersion forces is due to Homer and Percival, who used a 
modified Onsager-type reaction field approach coupled with the 
"buffeting" theory which accounts for the intimate effects of 
molecular encounters. In this thesis their overall approach is 
evaluated and compared with the theories of other workers that 
have been used to characterize NMR gas-to-solution chemical 
shifts. It is shown that an extended "buffeting" concept, based 
on their approach, renders the reaction field part of their 
theorem obsolete. 

A completely novel generalized expression for London dispersion 
forces is deduced by accounting for all the inter-molecular 
atom-atom dispersion interactions. In arriving at this 
expression three fundamental problems are resolved. First, a 
general order relationship between the mean squares of the 
fluctuating input and output of any system is derived to permit 
transformation of electrostatic expressions to electrodynamic 
situations. Second, a novel method is presented for 
characterizing the ionization potentials and polarizabilities 
of bonded atoms in terms of the corresponding properties of the 
appropriate inert atoms. Third, the average of the 
inverse-six*-power of the inter-molecular atomic separation that 
governs dispersion forces is evaluated for molecules that are 
subject to random thermal motion in the liquid state; the 
explicit analytical expression so obtained is confirmed by the 
MONTE CARLO technique. 

The principles implicit in resolving the three stated problems 
are embodied in a theorem that enables the characterization of 
polyatomic inter-molecular mean-square fluctuating fields and 
the corresponding potential energies. The resulting equations 
are tested exhaustively and shown to enable the precise 
characterizations of NMR gas-to-solution shifts and latent heats 
of vaporization. Moreover, the equations are used to explain the 
relative solubilities of various gases in selected solvents and 
the corresponding activity coefficients. 

The limitations of the general approach to slowly rotating 
large molecules are recognized and evidence is given for the 
fact that for this type of molecules the inter-molecular 
Potentials can be calculated using a simple solute~(solvent) atom 
additivity principle. 
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Chapter 1 

Generalized Reaction Field Theory 

Introduction 

The reaction field characterization of the van der Waals 

nuclear screening constant brings out an interesting enigma 

concerning the equality of the Onsager’s electrostatic reaction 

field formula with a corresponding electrodynanic formulation. 

This enigma in turn triggers a more general question about the 

dynamic ones. The question arises whether or not the 

dipole-static field potential energy is equivalent to the 

dipole-oscillating field potential energy. 

This chapter deals with finding the ever-elusive answer to this 

enigma, by grafting three pieces of text-book mathematics, the 

Green's function or convolution integral solution of a linear 

differential equation, the Fourier Transform, and the Hilbert 

Space. 

Manipulation of these three well-known theories in the time 

domain leads to a new general inequality between the mean 

squares of the causes (inputs) and effects (outputs), which for 

reaction field reads <R*> ¢ g= <m=>. The shortcomings of the 

inequality are offset by the simplicity and more importantly 

the generality of the method. 

The inequality is a direct consequence of working in the time



domain. The frequency domain solution of this problem, which 

should result in an equality, is quite a formidable task 

considering the fact that integrals involved are quadratic in 

g’, the transfer function of the system. This is why Linder, 

who pioneered the dynamic reaction field (RF) work, uses the 

RF-moment correlation function, <R(t).m(t)>, instead of the RF 

auto-correlation function, <R(t).R(t’)>, which results in a 

straightforward RF-moment relation. 

The stated equality is found by defining a mean potential energy 

for dynamic processes, based on the inequality, and equating it 

to Linder’s or London’s potential formula. For RF this procedure 

works out as, <R®> = (1/16)g= <m=>. 

The factor of 1/16 is the answer to the enigma, in that the use 

of Onsager’s static RF formula for an oscillating dipole 

over-estimates the calculated values of van der Waals screening 

constant 0., = —- B <R*> by a factor of 16. This is a setback 

for the RF characterization of 0. which is already suffering 

a shortfall from the experimental values by about one order of 

magnitude. 

It is shown that the orthodox supposition that potential energy, 

being a static quantity, justifies the use of electrostatic 

expressions in place of an electrodynamic one is groundless. 

It is also shown that London's dispersion potential formula can 

be derived from two expressins only. 

The inequality is used further for some general fluctuation



problems including Brownian motion and thermal noise in 

electrical systems. 

Note that the vector quantities are not denoted unless the 

results could be affected by the absence of a vector sign. 

1.1. Historical Background 

This section aims at a non-mathematical introduction of the 

reaction field notion by a chronicle of the developments and 

  

shortcomings of dielectric theories. 

1.1.1 Onsager Reaction Field Theory of polar molecules 

Studies and experiments on dielectric materials stimulated 

attempts to correlate the dielectric constant, € > 1, with the 

microscopic structure of matter. 

In 1836, Mossottifil -after Faraday£2] who considered insulating 

materials (coined by him as dielectrics) as conducting spheres 

in a non-conducting medium- assumed molecules to be equivalent 

to conducting spheres of radius ‘a’. Under the influence of an 

applied electrostatic field E., the charge on the sphere would 

readjust or polarize itself inducing a non-zero electric dipole 

moment, Hi, = QEo, where Q@ is the (volume) polarizability. 

He derived a relationship between the dielectric constant €, 

and the polarizability of molecules, which was derived again in 

1879 by Clausius(3,4]) 

2 @ Mossotti-Clausius Eq. (he 1) 

 



where V and L are respectively molar volume and Avogadro's 

number. Physically, this expression means that the departure of 

€ of materials from unity is caused by the polarization of 

their molecules. 

A corresponding expression for refractive index, ‘n’, given by 

Lorenz£2] in Denmark (1880), and Lorentz£2,5] in Holland (1880) 

proved its validity by using Drude’s oscillatory model of 

electrons(4, see sec. 1.8]3 

(AX/3)L Lorentz-Lorenz Eq. 15.2) 

  

Fundamental to the derivation of (1.1) and (1.2) are two 

concepts. First the l 1dfiJ or the field at the site of 

  

a molecule[7,8] in a spherical cavity, Ec (further details of 

which are given in the following chapter); 

EL = Eo + (4%/3)P (1.3) 

where P is the polarization caused by the external field Eo. 

Second, the additivity rule (due to Lorentz) which states that 

polarization equals the sum of all the molecular induced 

dipoles; 

PetLEQsv (1.4) 

Comparison with the experimental data showed that the right~ 

hand side of (1.2) is a true constant for a particular molecule, 

namely independent of temperature, but the right-side of (1.1) 

is not in general a constant and in some cases it depends on 

temperaturel4]. Experiments also confirmed the correction term 

of (4%/3)P for the local field. 

Amongst the proposed suggestions to explain the invalidity of



(1.1) for some compounds, the most useful proved to be Debye's 

(1912) idea of attributing a permanent electric dipole moment, 

to molecules([1,2,4,9]. The electric dipole is not solely due to 

the distortion of electrons by Eo, namely Hin, but if the 

molecule has a permanent dipole HK in the absence of Eo, then 

the temperature dependence of (1.1) can be satisfactorily 

explained. 

A magnetic susceptibility due entirely to the orientation of 

permanent dipoles was suggested in 1905 by Langevinli,2]. Debye 

took the local field approach and adapted the Langevin formula 

for the electric case to arrive at; 

Soot) 

Vim———— = (4AN/S)L CQ + MEY/SkT) 
Coa a2) 

Debye’s Eq. (1.5) 

We, therefore, deduce the existence of two kinds of 

polarizability, namely electronic Q, and, orientational due to 

the thermal motion of molecules, Qor = H=/3kT. 

Quantum mechanical (QM) calculations essentially confirmed 

Debye’s Eq.f1,4,10, 1113 

ree) 
Yom = (AK/S)L CQ + CHE 

(€ + 2) 

  

Cr = FC) a QM Eq. 

where the correction factor f(T) is negligible except at 

extremely low temperatures. 

The Debye’s Eq. did not work for polar liquids in which the 

molecules are so close together that the orientation in Eo is 

restricted by the mutual interaction of their dipoles. The molar 

polarizabilities of O2 and N= gases, for example, are 3.869 

and 4.395 cm*/mole with the corresponding liquid state values



of 3.878 and 4.396[121, whereas they are 4 and 18 for vapour and 

liquid water respectively. The discrepancy for water in the two 

states is nevertheless only about 10%f1] for Lorentz-Lorenz Eq. 

van Arkel and SnoekC1i3] added a term to 3KT in Debye’s Eq. to 

arrive at; 

5 Guarana) 
    v = (4K/3)L CQ + HB (SkT + CLH)I CPs 6) 
tee): 

where C is a constant. This expression was found to agree with 

experiments for all concentrations[4]. However, it did not work 

for a number of compounds supposed to undergo association, 

including alcohols, acids, and amines. 

In 1936, Onsager£14] explained the deviation of polar liquids 

from the original Debye’s theory by a fundamental change in 

(1.1). He assumed that part of the local field (1.3) which acts 

on the dipole, is in fact produced by induction in the 

surrounding dielectric by the dipole itself. This part of the 

local field which has come to be called the Reaction Field 

(RF), R does not act in the direction of the external field Eo, 

but it acts in the direction of the inducing dipole HK. Therefore 

it cannot give a torque on the original dipole. In other words 

the RF is not effective in the orientation of the permanent 

dipole. Therefore the directing or orientating field to be used 

in Debye’s approach is not EL, but Eu; 

Ea = E. - R cos @ 

where @ is an average angle between H and Es. The use of Ey 

in Debye’s method now gives; 

Mee oY) 
Vom 2 CAK/SIL CO} HRP (SkT + RR) I (1.7) 

Cf 4 2)



This is of the same form as (1.6) with HR = CLE. Onsager 

deduced the value of R for a molecule with a rigid permanent 

dipole H, in a spherical cavity of radius ‘a’ (see Chapter 2) 

to bel3,4]); 

Regt (1.8) 

where ‘g’, the RF parameter is given by; 

mee O1.) 1 
9° j 

(2€ + 1) az Wide 2) 

The formalism of the RF was greatly simplified by using the 

continuum model, developed by Martin and Bellfi5]. In this 

model the permanent dipole at the centre of a spherical cavity 

interacts with its entire surrounding, which is viewed as a 

continuous medium. The field of the dipole polarizes the 

continuum giving rise to R which is proportional to the dipole. 

1.1.2. Reaction Field Theory of Non-polar Molecules 

Finding the RF technique restricted to polar compounds and 

therefore restricted to the electrostatic interactions, 

Linderli6é] in 1960 developed a continuum model for non-polar 

molecules # = 0 which enabled the RF technique to characterize 

He considered a spherical molecule of radius ‘a’ in which the 

rapid oscillations of the electrons about the nuclei give rise 

to an instantaneous dipole moment m(t), the mean value of which 

is zero, <m(t)> = 0. The field associated with m(t) polarizes 

the uniform dielectric medium which surrounds the molecule. The 

degree of the polarization depends on the dielectric constant £ 

which is now different for static and time-dependent fields. By



assuming that, m(t) oscillates with frequency w., the molecules 

of the dielectric all oscillate with frequency w,, and the 

fields induced in the molecules of the medium are additive 

(1.4) Linder found; 

oa 
: (1.10) 
  R(t) = gama (t) 
{O24 =o.) 

where gs is given by (1.9). The oscillating RF, R(t), has a 

vanishing mean value because <m(t)> = 0, but the mean of the 

square of R(t), namely <R#(t)>, is finite. 

The expression of such a mean-square RF for oscillating moment 

however is not given by Linder. As Rummens[17] puts it "... one 

might ask why Linder, having arrived at (1.10), did not simply 

square it to obtain a useable “«R=>. The reason appears to be 

that averaging over the frequency distributions becomes quite 

intractable. It is only in the expression for the work ‘W’ that 

a neat trick (Q4gs % Qig:) makes this averaging feasible". 

Linder(£16,18,19] arrives at a new unorthodox relationship for 

the dynamic potential energy betwwen an oscillating moment and 

its induced RF}; 

Wo = -(1/2) y <m=> g where y = 1/4 (1.11) 

This result is in sharp contrast to the orthodox viewl3,20] 

that potential energy as a static quantity justifies the use of 

electrostatic potential energy, namely —(1/2) <m™> gq. 

The interpretation of (1.11) is straightforward. A direct 

“mapping" or transformation of an electrostatic expression 

(y = 1) into a dynamic one (y < 1) is erroneous.



1.1.3. Reaction Field of No olar molecules in NMR 
    

The RF technique finds its own use in a variety of problems 

including the solvent effects studies in NMR, biochemistry{£21], 

spectral shifts[22], and bond intensities{€23]. Consequently the 

lack of a dynamic R(t)-m(t) relationship, analogous to the 

static expression (1.8), is more and more evident. 

The lack of such relationship for the RF characterization of 

the van der Waals nuclear screening constant according to 

Ow = -— B <R*> (see Chapter 2) in NMR studies, is circumvented 

by either of the two following methods: 

(a) Equating Linder’s work function (1.11) with the potential 

energy of a polarizable molecule in a field(24,25]3 

  

U = -(1/2) QE= 

This expression is assumed by Linder to hold for the dynamic 

field -in contradiction of his own result on ‘W’- provided that 

E.* is disguised as a mean-square field, <E=> to obtain the 

erroneous expression <E=> = (1/4) g <m*>/Q, which is used 

in place of <R=>, 

(b) Direct mapping of the static relationship (1.8) into the 

dynamic onel26-29]; that is <R*> = g= <m=>. This is obtained 

by squaring (1.8), and using m for HK and the averaging sign <>. 

As (1.10) shows, such mapping appears to be invalid unless the 

mean of the square of the frequency function becomes unity. 

The purpose of this chapter is therefore to investigate 

rigorously the validity of the direct mapping.



1.2. Generalized Reaction Field Formula 

It is well-known that for any arbitrary variable electric field 

the conventional electrostatic definition of the dielectric 

constant, D = EoEo, is no longer valid and has to be superseded 

by a general expression which accommodates the fact that the 

electric polarization of matter cannot keep pace with the 

change in the field[3,20,30,311]; 

Dit) = E(t) + SEE PGT (1.412) 

where the Fourier Transform of f(t) is the frequency-dependent 

dielectric constant €(w). This relationship states that the 

value of D at any given instant ‘t' is determined not only by 

the value of E(t) at that instant, but depends on the values of 

E(t) at every previous instant. 

This section is devoted to the derivation of a similiar 

relationship for RF, when the moment varies with time. We begin 

with the barest essential, a differential equation, and develop 

it into a general expression for R. 

1.2.1. Linear Systems and Differential Equations 

Many physical systems are governed by a class of equations 

called Linear Differential Equations with constant coefficients: 

dey (t) 
  x an m X(t) (1.15) 
dts 

Forced oscillations, Y(t), of a body of mass ‘m’ on a spring of 

spring constant ‘k’ and damping ‘h’, for example, can be 

written as{32,33]; 

G=V(t) “dV.ct) 
+h— 

dt= dt 
    m +k Y(t) = X(t) (1.14) 

10



Further examples are: 

  

d=q(t) dqi(t) 1 
Ss AO aero ener et em VC) (1.14a) 

dts dt Cc 

D.Eq. for the charge gq in RLC~-circuit£33]. 

d=0(t) det) 
+h — + mg O(t) = Oo (1.14b) 

ats dt 

  
  mi 

D.Eq. for the small oscillations, ©, of a simple pendulum([33]. 

dX (t) dX (t) 
Sut 

ats dt 

    m + wom Y(t) = eE(t) (1.14c) 

D.Eq. for the oscillations, X, of electrons under oscillating 

electric field of light E(t) £32]. 

If X(t) in (1.13) is regarded as an external force or input, 

which drives the system, and Y(t) as the response or output 

of the system, the left-side of the equation embodies the 

internal physical properties and charactaristics of the system. 

In fact the amount by which the system responds to an external 

or driving force is embodied in operator EF agd"/dt". 
8 

Sometimes sufficient information about the system allows its 

accurate modelling by a D.Eq., but more often a system is 

between the input and output cannot be so derived. 

The back box representations of the continuum (as a system) in 

the RF theory and that in (1.13), for example, are depicted in 

PAe Lele 
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INPUT SYSTEM QUTPUT 

  

ioe CONTINUUM ee 

> |RODY ON SPRING 

Fig. 1.1. Black Box Representation of a System. 

  

    X(t) yc ty   

1.2.2. Solution of the Linear Differential Equati    

The steady-state solution of (1.14) in terms of the response or 

Green’s function of the system, G(t), can be written as{35-40]; 

Vet) =f BCE =) T)Xte) ar 

where the Green’s function can be thought of as a weighting 

factor which describes how much the past input, X(7), 

-o < T < t, influences the present output Y(t). 

This interpretation is parallel to the one given for (1.12) at 

the onset of this section. This Eq. is the integral form of 

(1.14) which is particularly useful when the internal elements 

and the physical laws that relate them cannot be analysed and 

used to derive the D.Eq. of the system. In other words the 

integral or convolution form of a D.Eq. is useful when the 

system is known only as a black box, like the continuum system. 

A time-varying electric moment, m(t), acts on the continuum as 

a driving force or input and results in an output, R(t), which 

is therefore of the form; 
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R(t) = f§ Blt - T)mir)dr (1.15) 

This type of expression conveys a simple message. It states that 

for a time-varying dipole the Onsager’s RF, in contrast to the 

static case (1.8), takes the form of R(t) = g(w) m(t), where 

g(w) is the frequency-dependent RF parameter (see sec. 1.9). 

This is analogous to an electric system with alternative current 

input I(t), in which the Ohm's law (equivalent of Onsager’s RF) 

is no longer V=RI, but Vit) = Z(w) I(t), where Z(w) is the 

system impedence, Fig. 1.2. 

  

“INPUT SYSTEM OUTPUT 

CR ener ELECTRIC SYSTEM ar) V0) 

ac current ac voltage 
  

Vit) = Zw) T(t) 

  

saat eet nm 

1 0 reer CONTINUUM ees ES Ct) 

ac dipole ac RF 
R(t) = gw) mt) 
      

Fig. 1.2. Black Box Representation of Electric and Continuum 
Systems. 

The input-output of any Linear system can be described bY WLS LSy 

  

been used by Linder in his RF theoryli8,19]. 

The underlying assumption of this Eq. is the linearity of the 

system. That is, the independence of the behaviour of the 

system and the magnitude of the input, m(t), which of course is 

an idealization but often a good one[34]. To proceed further 

the Fourier Integrals have to be introduced. 
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1.3. Fourier Transform of the Generalized RF formula 

Amongst different definitions of Fourier Integrals[42,43,44], 

the Pippard([(42] and Lifshitz-Pitaevskiil43] forms are adopted 

here to resolve the time-dependent input, output, and the 

Green’s function into their Fourier Transforms (FT): 

F(t) = (1/20) § Fw) e-*e* dw (1.16) 

Flo) = f Ft) ete® dt (1.17) 

Hereafter, it is understood that the lower and the upper limits 
en the intgrals are respectively -m and +o. 

Any function like F(t) can be considered as a superposition of 

harmonics (e7*#* = exp(-iwt) = cos wt - i sin wt) with different 

amplitudes, a., and frequencies, w., such that: 

F(t) = © an exp (-iwnt) 

where the set of frequencies, wx, is called the spectrum of the 

function F(t). Expression (1.16) is the continuous form of this 

sum, where F(w)dw represents the amplitude corresponding to the 

frequency interval dw. That is why the function Fw) has come 

to be called the ‘spectral density’ of F(t). 

Now, the FT of R(t), m(t), and G(t) can be written as; 

R(t) = (172%) f Rw) exp(-iwt) dw (1.18) 

Rw) = f§ R(t) exp liwt) dt (1.19) 

mit) = (1/2%) f m(w) exp (-iwt) dw (1.20) 

mw) = f m(t) exp liwt) dt (1.21) 

Git) = (1/2%) f gw) exp (-iwt) du (1522) 

g(w) = f§ B(t) exnpliwt) dt (1.23) 
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The Onsager’s RF formula can be retrieved from (1.15) by 

setting m(t) = K and using (1.23); 

Rit) =f mt) Blt - Tidy = hf Git = 7) dF 

Letting t - T = 5, so that d? = -ds, one gets; 

R(t) =H f Bs) ds 

(Note that the integral limits reverse when s changes to 1, because 7 is equivalent to -s 

The integral is g(w = 0), because from (1.23); 

g(O) = f§ Gls) exp(itO) ds = f G(s)ds (1.24) 

so that R(t) becomes; 

R(t) = RR gO) = Hg 

From this result (1.9), in terms of the frequency dependent, and 

static dielectric constants can be written as; 

  

2(bo = 1) 2(E(w) -— 1) 
g9 = g(0) = ———__-—__ 3 9(w) = a) (1.25) 

(285 + 1) a® (2E(w) + 1) a& 

where g(w), the FT of G(t) according to (1.23), is called the 

We seek a relationship between the mean squares of R, ¢R 

  

and m, <m=>, which entails the knowledge of the Fourier 

Transform of these quantities presented in the next section. 
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The basic concepts of the mean and mean-square of fluctuation, 

and their FT are outlined here to form the cornerstone of the 

R-m relationship. 

Experiments designed to measure the same physical quantity, 

which describes a system in equilibrium, almost always give the 

mean value of that quantity. Nevertheless, regardless of the 

nature of the measurements there will be deviations from, or 

Ss about the mean valuel43,45]. 

  

Let us throughout this section, consider the generalized RF, 

R(t), as fluctuating or random variable quantity related to 

the macroscopic continuum system. At any instance of time R(t) 

fluctuates about its mean value, <R>, so that; 

AR(t) = R(t) — <R> (1.26) 

denotes the fluctuations of R . The mean of these fluctuations 

<AR(t)> is zero because AR(t) can be both positive and negative. 

The square of the fluctuations, (AR(t))=, however, is always 

positive, so its mean value, <(AR)*>, forms a suitable measure 

of the mean of the fluctuations; 

SCAR) => = < (R(t) - €R>)= > = € R(t)= + CR>Z - 2R(t) ERD > 

< (AR) #> = 2 + ERIS = ZERO = CREY -— <R>= (1.27) 

  

This mean-square quantity is an average of second order[4é6] 

which is also called the second moment of R(t) about its mean 

because of the analogy between this and the moment of inertia 

in mechanics([47,48]. 
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The mean value of a time function R(t) is defined as; 

1 iF 
SRCt) > mein of R¢E) at (1.28) 

Tie 27 —T 

It is simply the area under the R(t)-t curve in the interval; 

-T to +T, divided by the length of the interval, 2T, as the 

length of the interval becomes infinite. Substituting for R(t) 

from (1.15) into (1.28); 

3 
SR(t)> = Lim —— f dt f Git - 7) m(7r)d7 

TI92 9f -T 

which can be written as (convolution is commutativel34]); 

1 wt 
ChE Se Cin = fidt f Gtriamte iT )dT 

Te OT Tr 

The rearranging of the integrals gives; 

1 + 
SRAt) > sim imeem Tt fh B(GT 

Tm OT -T 

The value of the first integral is <m(t)>, the mean value of 

m(t), by analogy with (1.28). This is s0 because a translation 

af m(t) by an amount 7 does not affect its mean value. The 

second integral is the static RF parameter g(0), according to 

(1.24), therefore; 

SR(t)> = &m(t)> g(O) (1.29) 

where <m(t)> = 0, and as a result, «<R(t)> = 0. 

According to (1.29) the mean value of the output of a Linear 

system equals the mean value of the input times the static 

transfer function of the system, or, using electrical 

engineering terminology, the dc gain of the system[34]1. 
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Substituting <R> = 0 into (1.27) gives; <(AR)=> = <R#>, stating 

that for zero mean value the mean of the square of fluctuations 

is equivalent to the mean-square value, <R=>. 

This, of course, does not mean that in the presence of mean 

values the fluctuations lack any physical significance. 

Fluctuations in density, and fluctuations in internal energy, 

for example, account respectively, for the scattering of light 

and the anomalous large specific heats at constant volume 

near the critical points([49]. 

1.4.2. Fourier Analysis of Mean-square Quantities 

The mean-square values of R(t) and m(t) are related to their 

spectral densities R(w) and m(w) byl43,47]; 

“a x B x u (1/2%) f§ IR(w)1* dw 

(1.30) 

A 3 Nu u (1/20) S$ Im(w) 1* dw 

The proof of (1.30), which is avoided here because it entails 

the mathematics of Dirac Delta function£36,50-52], is given by 

Lifshitz and Pitavskiil43]. 

A physical interpretation of (1.30) may be given if R(t) or m(t) 

is considered as wave or voltage wave forms. Classically the 

energy in a wave is proportional to the square of its amplitude 

or as Ditchburn{S3] puts it, the energy assaciated with the 

frequency range dw is; 

E(widw = (1/2%) IR(w) 1* dw 

E(w)dw = (1/2%) Im(w) 1* dw (1.31) 
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The integration of (1.31) for all frequencies reproduces (1.30). 

Considering R(t) or m(t) as voltage wave forms applied across a 

one Ohm resistor; <R*> or <m*> are then equivalent to the 

mean power dissipated by the resistor{[34]. Note that this 

generalized definition of mean power is the same whether R(t) 

is accelerator, voltage, displacement, and so forth(54]. 

The mean-square values are also related to their time functions 

  

J IR(t) 17 dt = (1/2%) f IR(e) 1 do 

§ IR(to 17 dt = (172%) f IR(w) 1* dw (1.32) 

Relationships of this form were first used by Rayleigh{56] in 

his study of black-body radiation. Comparison between (1.30) 

and (1.32) gives; 

SRE> = f IRC) I= dt 

<m=> = § Im(t) I= dt (1.33) 

to be used in the time-domain analysis in section 1.4. First a 

1.5. Hilbert Space and the Buniakauski Inequality 

In the ordinary 3-dimensional Cartesian space, the scalar 

Product of two vectors is given by; 

F..F2 = Ira! Iral cos @ 

where @ is the angle between the two vectors. As Icos 4! <¢ 1 

one may rewrite this equality in the form of an order relation 
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known as Schwarz’s inequality(€57]3 

Faera2 § Iral- Ira 

In terms of the components of the vectors; 

Ms @ (Xa, May Md 9 Fe = fyi, Yay Yo} 

the inequality reads; 

=e a = 
Viera = 2 wa ya SE Ore) 7H ES byes) t-3 

t aaa ame 

  

Squaring both sides of the last relation gives; 

= 
CULexa Ye a> < 

1 w
r
i
 

% 6 N 

h
o
d
 

oe 

Nn 

Now in an imaginative n-dimensional space where vectors ri 

and r2 have n components, the square of their scalar product 

is given by(37,57,581]; 

a . . 
PO Ke aida een Yas ye (1.35 4) 

1 2 1 

In Hilbert space -an abstract generalization of the ordinary 

3-dimensional vector spacelS9]- which is defined as an infinite 

dimentional space (1.34) becomes; 

Every function, in any domain, can be envisaged as a vector in 

Hilbert space, like Schrodinger’s vector-valued state function 

W(t) which assumes values from an infinite-dimensional complex 

Euclidean space bearing the name of Hilbert space. Thus we can 

introduce the scalar product of two functions in this space 

as(5e,60]; 
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1 § F(x) qx) dx I= ¢ 5 If (0d 1F dx SF Iqts) I= dx (1.35) 

where SIfIl* dx and flq!= dx < o. This condition implies that 

the functions must be square integrable(S5,61], like (1.33). 

Expression (1.35), the generalization of the Schwarz’s order 

relation, is called the Buniakauski inequality. It can be 

used for estimation of the solution of formidable integrals by 

parting them into two simpler forms[62]. It is also used in 

quantum mechanics for the derivation of the general uncertainty 

relationship[463]. 

It is worth noting that the equality sign of (1.35) holds if 

the quotient f(x)/q() is a constant everywhere in (-m, +m). In 

other words the equality holds if f(x) and q(x) are colinear; 

FOO /qO0= y, where y is a scalar(64,65]. The equality sign is 

used for minimum wave packet wave function, coherent statesl63] 

-linearly dependent states~-, and for matched filter in control 

system theory, where the Green’s function and input are 

linearly dependent to maximize the signal to noise ratiol65]. 

1.6. The RF-m relationship 

Combination of (1.15), (1.24), (1.33), (1.35), and a method due 

  

to Titchmarsh(S5, p.91], leads to the sought-for <R=>-<m 

relationship; 

R(t) = f Blt - 7) mind 

Reb I= = 1 fF Blt -— 1) mindy 12 

dissecting the integral into two parts according to (1.35)3 

(RCE << fF inti] dy £ 1G = 11> ar 
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SF fatto be Ott =F) ar Ste = 1) da 

a change of argument t - 7 = 5, and then ds = -d7T gives; 

IRCHIIS ¢ fF Im(Ty I= Blt - 7) d7 JS Gls) ds 

rearranging and integrating both sides with respect to t; 

J IR(t12 dt ¢ f Gls) ds f Git - 7) dt fF Imp) I= ar 

replacing the integral on the extreme left by (1.33) and 

changing the argument again, t - 7 = s, ds = dt, results in; 

“R2> ¢ S Gls) ds f Gls) ds f Im(T) 12 dT , or 

“R®> ¢ C f Gls) ds J= Ff Im(r)1= ar 

The first and the second integrals are g(O) and <m=> from 

(1.24) and (1.33) respectively; 

€R*> € g=(O) <m=> (1.36) 

This is the sought-for relationship between mean squares of R 

and m. As no specific properties of input, output, or the 

transfer function, ‘g’, of the RF system are used, (1.36) 

embodies a general input-output relationship for Linear 

systems. 

It states that the mean-square of the output can be estimated 

from a knowledge of the mean-square of the input and the 
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transfer function of the system at zero frequency, g(0), see 

Fig. 1.3. 

INPUT. 

ELECTRIC FIELD E(t) 

ELECTRIC FIELD E(t) 

DIPOLE MOMENT mt) 

CURRENT T(t) 

FORCE F(t) 

INCOMING WAVE 

Fig. 1.3. The input- 

TRANSFER FUNCTION 

  

v POLARIZABILITY 
      

  

A 

(a) 

G iN=(O). E=> 

  

SUSCEPTIBILITY 
  

(b) 

  

P2> < x= (0)! <E 

  

RF PARAMETER     

(ec) 

R#> ¢ g=(0) <m=> 

  

“A 

IMPEDANCE 
  

  

  

COMPLIANCE       

te) 

  

AMPLITUDE   eo $< C=O) <F=> 

    

(Ff) 
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OUTPUT __ 

—> DIPOLE MOMENT m(t) 

i— > POLARIZATION Le 

i—-> REACTION FIELD R(t) 

oe VOLTAGE VCt) 

—> DISPLACEMENT X(t) 

—-> SCATTERED WAVEL46] 

output relationship based on (1.36).



It must be emphasised that the generalized RF theory provides 

    no information on the functional forms of g or <m*>. These 

quantities are to be predetermined by other methods, if the 

explicit form of the output is required. 

As regards the RF theory, (1.36) states that the static and 

dynamic RF formulas are not necessarily directly interchangable. 

The reminder of this chapter is devoted to the equalization of 

(1.36) for special cases. 

1.7. Equalizing the Order Relation for RF 

It is well-known that potential energy between a permanent 

electric dipole, 4H, and a static electric field is given by; 

Us = Hoe Es 

If the induction effect of the field creates the dipole, this 

Eq. becomes(2,4,32]; 

Us - PE.de (1.37) 

or, using Kan = Q(0) Eos 

uU= = (1/0) fed = - (1/2) Q(0) Eo* lisa) 

Linder sets off with (1.37) and rightly assumes that the 

instanta potential between an oscillating dipole m(t) and 

  

its induced RF (RF is zero and reaches R by induction) is of 

the same form: 

Ulinst.) = - (1/2) m(t). R(t) 

By using R(t) = g(w) m(t), this expression becomes: 

Utinst.) = - (1/2) gw) m(t).m(t) (1.39) 

  

tently indexed to avoid mis-derivations. 

24



Without indices, (1.39) for example, can be written as} 

U = — (1/2) g m=, which under the disguise of an averaging 

sign becomes; 

Uo = = 4972) 9g “ma (1.40) 

  

which appears to prove that the potential between a dynamic RF 

and a dynamic moment equals the static potential of; 

U = = (1/2) g Ke. 

Linder’s work diverges from this convention by proper averaging 

of (1.39) as; 

Uav= <UCinst.)> = - (1/2) ¢g(w) m(t).m(t) > 

This is the gist of Linder’s generalized RF workli8,19]. He 

shows that the meam dynamic potential, after all, turns out to 

be similar to (1.40), only four times smaller; 

Uav= - (1/2) (174) g(O) ¢ (1.41) 

  

This, like (1.36), is a general result independent of the 

specific properties of the RF system, and therefore can be used 

for other similar cases (see sec. 1.8). 

To equalize (1.36) for the RF, one can deduce a mean potential 

expression from (1,36) and equate it to (1.41). In terms of the 

   root-mean-square (rms) moment, Am = <m=>'/2, and RF, AR = aa 

such expression reads; 

Uav= - (1/2) Am. AR (1.42) 

Inequality (1.36) in terms of rms’s becomes; 

AR = y'/2 g(O) Am 

where y is an equalizing factor. Substituting for AR in (1.42) 

from this expression gives; 
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Uav = 61/72) y** gt0) Am. Am, oF} 

  

Uay = = (1/2) y'? gO) <m*> (1.43) 

Comparison between (1.41) and (1.43) shows that, y'/? = 1/4, 

or y = 1/16. Therefore (1.36) for the RF becomes; 

€RF> = y g=(O) <m or 3 

@R#> = (1/16) g=(0) <m=> (1.44) 

The equalizing factor of 1/16 could be deduced without defining 

(1.42) by arguing that the square dependence of ‘g’ in (1.36) 

demands the square of Linder’s factor in (1.41) which is 1/16. 

The message of (1.44) is clear, a direct mapping of the static 

RF expression into the dynamic situation is invalid and results 

in the over-estimation of the calculated values by a factor of 

1/16. This is further discussed in the next chapter in the NMR 

context. 

1.8. Potential Energy of an Induced Moment in a Varying Field 

The dynamic form of (1.37), when an oscillating field induces a 

moment can be written as; 

Udinst.) = - (1/2) mat). E(t) 

where on using mn = Q(w) E(t), and averaging gives: 

Uav= <Ulinst.)> = -(1/2) <Q(w) E(t). E(t) > 

The outcome of this averaging, in principle, should be similar 

to Linder’s potential (1.41), as there is no difference in the 

treatment of a field, E(t), inducing a moment, m(t), or a moment 

26



m(t), inducing a field, Rit); 

Unv= —(1/2) (1/4) QO) ¢ (1.45) 

  

As the survey in the next section shows, with the exception of 

London, almost every author, including Linder, has used the 

static expression (1.38) for the dynamic situation. 

The form of the frequency dependence of polarizability (Q(w) 

can be found using Drude’s(2,5,6,32,49] oscillatory model of 

light dispersion. In this model the D.Eq. that governs the 

interaction between light -the oscillatory electric field of 

light E(t)- and matter -the electrons of matter with natural 

frequency Wo and spring constant k = we“m- is given by (1.14¢). 

In other words, the system is not a black box. The workability 

of this model has been verified by QM£53,67,68]. 

The procedure of deriving the Transfer Function of the system, 

Q, from its D.Eq., as given here, will be used later (sec.1.11). 

Substituting for the electron’s displacement X(t) its FT from 

(1.16) into (1.14c¢) one obtains; 

(1/2%) C-mw* — ihw + mwoo=] f X(w) exp (-iwt) dw = e E(t) 

or in terms of the original X(t); 

C-mw= - ihw + mwo=] X(t) = e E(t) 

where w is the frequency of the oscillations of the driving 

field E(t). Therefore the oscillations of the electrons and 

conscequently the induced electric moment, mi(t) = e@ X(t), 

can be written as; 
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ez 

Mees C 0 Me CC) ee ee EE (1.46) 
(mwo= — mw* — ihw) 

where the Transfer function of the system is: 

e2 

Q(w) =   

(we? — mwe* — ihw) 

For the static field w = 0, one gets the static 

polarizability(32,691]; 

Q(O) = eF/ (muo*) (1.47) 

Expression (1.46) therefore may be cast into the text-book 

form€32,701; 

mit) = Qtw) E(t), 

which is the input-output relationship for a Linear system as 

was given previously. The polarizability being a complex number 

embodies the fact that the induced moment lags behind the 

electric field, or it is shifted in phase to some extent. It 

will be recalled that this is the interpretation given for 

(1.12) and (1.15). 

1.9. A Survey of the Static-to-Dynamic Direct Mapping 

It was proved in the preceding section that the static potential 

(1.38) and the dynamic one (1.45) are not interchangable without 

the mapping factor of 1/4. Nevertheless almost always the static 

expression is used for the dynamic situation. 

Margenaul71] for the time-varying field (thermal fluctuations) 

uses (1.38). As is shown in the next section for fluctuations 

of thermal origin, this appears be permissible. 
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Prosenl72) in treatment of the interaction between molecules 

and metallic surfaces, uses (1.38) for the instantaneous 

molecular field. 

Slater(73], Mott(€74], Buckingham(75], Bothner-Byl76], 

Yonemotol77], Raynes et alf78], Bernstein and Raynesl7971, 

Rummens and Bernstein([80], and even Linderf£24], all use (1.58) 

for time-varying field. 

The crux of the Frohlich(20, pp. 40,42,177] and Bottcher(3, Chap. 

4] argument in this connection is that potantial energy as a 

static entity justifies the use of static potential for any 

time-varying field. 

The only exception appears to be London, that in his famous 

Paper on the general theory of molecular forces([@1], 

distinguishes between the static and dynamic potential by using 

U = — (172) Q(w) Fo=, for the latter and (1.38) for the former 

where Fo is the amplitude of the field oscillating with w. 

In the following sections the inequality is used for the study 

of London’s dispersion formula and Brownian motion of electrons 

and particles. 

1.10. The Inequality and London's Potential Formula 

London's patential energy between two identical spheres (atoms) 

with polarizabilities Q and fluctuating dipoles m(t), a 

distance R apart is given byl67,68,81]; 

UL = - (3/4) hy Q=(0) Roe 

where the dipolar fluctuations are of quantum origin with 
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frequency ¥ and a mean-square value of 

  

(3/2) hy ao) 

(see Appendix 1, Eq. A1.4). In terms of the mean-square dipole, 

U_ becomes; 

Ur, = > (3/2) 60)! <m=> RS (1.48) 

To derive (1.48) using the inequality (1.36) as given in 

  

Fig. 1.3a, the relationship between 

  

and < » should be 

found first. 

The field of a permanent dipole M at a point a distance R away 

  

ics 

as{3,70,82,831; 

  

RO R: 

Provided that R is small, electrodynamic calculations show that 

the same expression holds for an oscillating dipole[70,82,831; 

3 (m(t).R) R m¢t) 3 (m(t).R) R 2 m 049) 
    E(t) = 

  

RO 

Under the same condition the magnetic field of such a dipole 

vanishes(83] justifying the characterization of 0. by electric 

field only. 

Referring to Fig. 1.4, the dipolar oscillations of each atom 

Produces, according to (1.49), an oscillating field at the site 

of the other atom, the mean value of which is zero because 

<m(t) >   Oo. The mean-square field, however has a finite value 

which in terms of the mean-square dipole is given by (Appendix 

2 Eq. A2.1)3



  

(1.50) 

The method of deriving this relation is due to Hirschfelder and 

Meath([84] and the result agrees with that of Mott£74] arrived at 

by a different method. 

  

Fig. 1.4. Interaction between two non-polar atoms. 

Now, the instantaneous potentials between the field of A and the 

moment that it induces in B, U(inst.,AB), and that of B on A, 

Utinst.,BA), can be written as; 

UCinst.dam = - (1/2) min(t)e-E(t)a 

Utinst.)ea = — (1/2) minlt) aE lt) i 

The total mutual potential for the identical atoms is thus; 

Utinst.) = - ma(t).E(t) 

the average of which according to the previous discussions is; 

  

Unu = - y'? QO) » where y = 1/16 (2, Se) 

  

Substituting for < from (1.50) into (1.51) gives London's 

Potential (1.48). The ease with which London’s potential is 

obtained using two expressions only, (1.50) and (1.51), is 
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noteworthy. Expressions (1.50) and (1.51) have a predominant 

role in the generalization of the London potential for 

polyatomic molecules at small separations (see Chapter 3). 

  

+The Inequality and Thermal Fluctuations 

The equalizing factor of 1/16 was found for fluctuations of 

quantum nature, that is the zero-point oscillations of   

electrons in atoms or molecules which give rise to the time 

varying input, m(t). This input in turn produced the outputs 

R(t) or E(t) in the RF or dispersion theories respectively. 

This section deals with fluctuations of thermal origin that are 

of practical importance. Brownian motion and thermal noise in 

electrical systems, known to vacuum tube amplifier technicians 

as tube noise, are two examples. 

  

armal or Johnson. Noise 

Electrons in a length of copper wire are in random motion like 

the molecules of gas confined in a container. They have no net 

direct motion along the wire, but because the number of 

electrons is finite, there will be small fluctuations in the 

rate of the passage of them through a cross-section of wire. 

Therefore, conductors will contain a small rapid fluctuating 

current even though, averaged over a long time the net current 

is zero. These fluctuations give rise to a fluctuating voltage 

across the wire which is called electrical or thermal noise and 

can be measured by suitable instruments([89J. 

Johnson discovered(86] and measured[87] this electromotive 

force (fluctuating voltage) in conductors, which is related in



a simple way to the absolute temperature T and resistance R of 

the conductor only. Johnson attributed this voltage to the 

thermal agitations of the electrons in conductors([87]. 

This phenomenon was immediately explained by Nyquist(88], and 

the result, known as the Nyquist theorem, is(88,89,90]; 

AkTR i oe) 

  

    where « is the mean-square voltage. 

The inequality (1.36) for the potential between the two 

terminals of a conductor of resistance R reads (Fig. 1.3d)3 

  

qVES = yr ZE(O) ¢ or, 

CVE> = yr R® (1.53) 

  

where yr is the equalizing factor of thermal fluctuations. 

Replacing the explicit form of the mean-square currentl989,91]; 

<1=> = 4 kT/R 

into (1.53) and comparing the result with (1.52) gives, yr = 1 

Experiments(87] show that aqueous solutions of NaCl, K2CrQ., 

CuSO.,, and Ca(NO=)2, or, a carbon filament of the same 

resistance of 1.17x10¢ Ohms generate equal (rms) voltages of 

1.14 microvolts at room temperature as (1.52) embodies. 

In NMR experiments on living systems[92], which have a fairly 

high concentration of ions, for example, the sample itself can 

generate a significant amount of thermal noise, thus decreasing 

the effective signal-to-noise ratiol93,94]. 
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The chaotic motion of a macroscopic visible particle, such as 

smoke particles in air or a pollen suspended in a drop of 

liquid which reflects the random motion of the molecules of the 

medium, is called Brownian motionl95-97]1. 

A probabilistic description of this phenomenon was first given 

by Einstein in 1905097], but we use a stochastic approach due 

to Langevinl47,891]. His method is more akin to the D.Eq. method 

given here. 

The D.Eq. governing the displacement X(t) of the suspended 

particle is given by (1.14) without the restoring force, k = O. 

This Eq. in terms of the velocity of the particle v(t) is known 

as Langevin’s Eq.;3 

m dv(t)/dt +h vit) = f(t) (1.54) 

where h and f are respectively the friction constant and the 

random force representing the interactions between the particle 

and the molecules of the medium, <f(t)> = 0. 

The friction or damping constant is related to the viscosity of 

the liquid ? the radius of the particle ‘r’ and, the diffusion 

coefficient D, by Stocke’s h = 6X?r, or Einstein’s D = kT/h 

relationships. 

By using the equipartition theorem([98]; m <v=> = kT, and (1.54) 

one can readily show that over a long period of time when the 

Particle undergoes myriads of collisions (t >> m/h) the amount 

  

by which the particle spreads around, <»x#>, is given byl47,89]: 
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Sn   = 2 kT t/hy or “x= 

  

Now, the inequality (1.36) for (1.54) gives; 

SVE = yr LAO) <CHe> (1.56) 

To compare this with (1.55) the form of the transfer function 

L(O), and the mean-square force must be known. 

Treating (1.54) according to the procedure of sec. 1.8 for 

obtaining the transfer function results ing 

Liw) = 1/74h - iwm); or L(O) = t/h 

Substituting for L(QO) and y+ = 1, which was found for the 

Brownian motion of electrons, into (1.56) gives; 

<VF> = 

  

For <v=>, kT/m from the equipartition theorem can be used when 

the particle performs a random walk, that is when t >> m/h. 

Therefore, the mean-square force becomes; 

St 

  

= kT h2/m 

which in terms of the particle’s relaxation time, 5s = m/h and 

the viscosity of the liquid may be written as; 

“fF> = 6K r9 kT/s (1.57) 

Reifl47] and Kubol99], using the Fluctuation-Dissipation 

theorem (FDT), express the auto-correlation of the force 

respectively as;



ZT Wot f SSC ere > a tt-t 5 andy 

2kT bh O(t-t') = CF CE) RCE D> (1.58) 

where O(t) is the Dirac Delta function. It is intriguing that 

the mean-square form of a flutuating quantity is not explicitly 

provided by the FDT. 

We note that the inequality provides the explicit form of the 

mean-square force using the value of unity found for y+ from 

the thermal noise. 

The phenomena of thermal noise and Brownian motion are closely 

related, and so the Nyquist theorem can be greatly generalized. 

Such generalization was first stated by Callen and Waltonfioo]. 

The generalized theorem is called the FDTC1i01], because it 

relates the fluctuations of a physical quantity of a system in 

equilibrium to a dissipation process, similar to (1.57) where 

S#(t).f (t)> = <f*> is related to h. 

Expression (1.55) has wide variety of uses including the motion 

of colloidal particle, chemical reactions, hydrodynamic, and 

many-particle systems. 

Perrinfio1] in 1910 by measuring <x#> for gamboge particles 

  

found a value of 6.73x1 mole~* for Avogadro’s number. 

Kapplerfi03] in 1931, by the study of the fluctuations of a 

light spot reflected from a galvometer mirror, which responds 

to Brownian motion under the action of air molecules no matter 

how efficiently evacuated(45], found a value of 6.063x102> 

for Avogadro’s number. The accepted value is 6.022.102" mole *. 
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The inequality may be useful in linking the fluctuations of 

thermodynamic variables, such as entropy <AS?> = kC,-£104] 

and volume “<V#> with the fluctuations of the cause (input). 

More subtle problems can also be simplified by the inequality. 

For example, the quantum electrodynamic problem of fluctuations 

in the position of a free electron, which may be thought of as 

Brownian motion of electrons in equilibrium with zero-point 

fluctuations of the electric and magnetic fields in empty 

spaceli051]. The non-relativistic classical Eq. of motion of a 

free electron under the electric field E(t) is given by (1.14c) 

for k = 0. The transfer function of such system is; 

Tw) = 1/ (mw), or , TIO) =o 

The inequality between the output x(t) and the input E(t) is 

then; 

<=> © T(O)-SE=>, OF 46x => = @ 

which is in agreement with the WeltonC10S] result. The quantum 

treatment of this problem gives finite value for “x*>, by which 

the zero-point fluctuations in the electric field in empty 

space can be easily found using y = 1/16 and the inequality, 

without resort to other complicated quantum electrodynamic 

methods. 

i.12. Reaction Field and the Heat of Vaporization 

The equalizing factor of less than unity for quantum effects 

can be verified directly by the calculation of heats of 

vaporization for non-polar compounds. 

Linderfi6é] has shown that the potential energy between the



moment and RF roughly characterizes the heat of vaporization, 

HL. For one mole of a pure non-polar compound using (1.43) one 

can writelié]; 

  

Ho = — (1/2) y'? L cm*®> g (Oy where y = 1/16 

  

By using (Al.4) for <m*>C16,18], (1.25) for g(O), Maxwell‘s 

relation €= n® for dielectric constant, Onsager’s relation 

(4K/3) a® L = V for the cavity size, and BRottcher’s relation 

  

QO) = a (n= - 1)/(n* + 2) for polarizability, the 

expression of H. becomes; 

(n®—1) = 

Hu(KJ/mole) = -144 y”? I(ev) 
  CY0S9) 
(2 n= + 1) (reat) 

To avoid duplication, the experimental and calculated heats of 

vaporization from Linder’s work are only graphically compared 

in Fig. 1.5. 

The purpose of this comparison is to reinforce the equalizing 

factor of less than unity which gives the right order of 

magnitude of the experimental values. We note that for y = 1, 

implying the correspondence of static and dynamic relationships 

the calculated Wattes ae Hy would be four times larger than 

those given in Fig. 1.4. 

Expression (1.59) has also been used for the heats of 

sublimation of solid argon and iodine. For both solids (1.59) 

gives values twice larger than the experimental ones; 121.7 and 

13.2 KJ/mole as compared to the experimental values of 64.4 and 

6.6 for Iz and Ar respectively. For y = 1, the discrepancies 

increase four-fold.
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Fig. 1.5 A comparison between the experimental and calculated 

heats of vaporization by the RF model (from Ref. 16). 
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The dynamic RF formula turned out to be a ific form of a 

  

general inequality . Physically speaking the inequality results 

from the fact that the total output energy, <R2>, cannot exceed 

the total input energy, so that “<R*> ¢ g* <m?>. 

A serious criticism of the Onsager’s static RF that has been 

raised concerns the effect of thermal re-orientation of the 

solute molecule and as a result the fluctuations of its 

permanent dipole #. The direction of # is assumed to be fixed 

in Onsager’s theory. However, yr = 1 for thermal fluctuations 

shows that such a criticism is invalid and thermal motion does 

not affect Onsager’s RF, because <R=> = g? <K 

  

This is in 

agreement with Linder’s findingl19]. 

It is tempting to add a correction term to (1.2), in the same 

line with the Debye correction to (1.1). We may informally, by 

analogy with (1.7), writes 

f(n) = C Q(gas) + X <m*3/(3/2 hy + <Rem>) J 

where f(n) is used for all the parameters of (1.2) except for 

Q, and ‘X’ is a numerical factor to be determined. Note that 

(3/2)hY¥ is used as the quantum counterpart of 3kT£106,107], and 

Q(gas) for Q to emphasize that it is the gas phase 

polarizability. 

  

By using <m (3/2)hy Q(gas), Bottcher’s relation of the last 

section for Q(gas), and Linder’s relation ¢R.em> = (1/4) gim=> 

this expression may be written as; 

   a 

f(n) = Cd(gas) + X J 
(n= + 2)/(n® - 1) + (mn? - 1)/(4n2 + 2) 
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This is somewhat similar to the Raman and Krishnanl4] correction 

term for (1.2) which they added on the grounds that liquids are 

really anisotropic: 

Cr ouee 
$i Crumbs GN he fe eee Raman-kKrishnan Eq. 

core) 

where ® is a molecular constant. This extra term explains why 

the (n? — 1)/(n# + 2) factor usually decreases with increase 

in density. 

Let us see if the informal correction rectifies the slight 

discrepancies observed in using (1.2) for water and benzene. 

For water (n = 1.3325, V = 18 cm*/mole) the correction term 

works out to X1.43 A". The polarizability of water is, 1.44 A™, 

therefore, the 10% discrepancy observed for waterfiJ would be 

explained if X = 1/10. This adds .143 A* to the gas phase 

polarizability. 

For benzene (n = 1,5, V = 89 cm?/mole) the correction term 

gives 1 AS, for X = 1/10 found from water data, which is 10% 

of 10.4 A", the polarizability of benzene. This exceeds the 

observed 3.8%(4] discrepancy . Therefore, judging by these data, 

X appears to be a variable and probably a function of molecular 

Parameters, the exact nature of which requires scrutiny. 

The inequality may prove useful in other fields including the 

interaction of micro or ultrasonic wave with matter, the noise 

Problems in light fibers communication and the rotational 

Brownian motion which is related to dielectric and NMR 

relaxation processes[108]. 
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Chapter 2 

Reaction Field Characterization of the van der Waals 

Screening Constant 

The study of NMR chemical shifts has revived dormant 

electromagnetic problems including the difference between 

corresponding electrostatic and electrodynamic quantities which 

was studied in the previous chapter. 

This chapter deals with the effects of solvent (medium) oan the 

NMR chemical shift and this again activates problems of the 

Lorentz lecal field, the Lorentz inner field, the Onsager 

cavity size, and the demagnetization field (the characteristic 

of ferromagnetic materials). 

The solvent or the medium nuclear screening constant of a 

species is recognized to be caused by at least five effects; 

Om = On + Oo + Ow + Oe + On + «oe 

The origin and the meaning of these terms are traced, and the 

characterization of the van der Waals term, Ow, by the reaction 

field technique is considered. 

In the search for a universal reaction field formulation for Ow 

the Homer and Percival reaction field model is tested on over 

200 available solute-solvent 4H, *°F, =*P, and *#?Xe systems. 

It is shown that their reaction field (RF) model overcomes the 
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two cardinal problems of any pure reaction field model, namely 

the Onsager cavity size and the shortfall from the experimental 

values. This is achieved at the expense of prominent intercepts 

in the RF-0, relationship. 

The existence of the intercepts necessitates the inclusion of 

pairwise interactions in the characterization of Ow, which 

leads to the inference that no pure RF model is capable of an 

adequate formulation of (Ow. 

Based on the Homer and Percival RF model a B value for @'P, and 

  

that of *2"Xe are calculated in agreement with some theoreti 

values. 

Moreover, the study of dynamic and static B 4H once more 

validates the general inequality of the previous chapter. 

2. Histord 

  

ackground. 

In this section an adaptation of Dickinson's work on the time 

average magnetic field at a nucleus in a NMR experiment serves 

to describe the nature of the van der Waals (vdW) nuclear 

screening. 

  

the vdW nuclear screening     

The first effect of the medium in the chemical shift was 

dicovered in 1951 by DickinsonCiO9]. By analogy with the 

electrostaticsof a local field (Eq. 1.3), Dickinson argues that 

for a macroscopic sample of matter which is used in the NMR 

experiment, the effective magnetic field to which the 
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resonating nuclei are exposed will not be exactly the same as 

the externally applied field. The time average (local) field at 

a nucleus consists of three significant components; 

H. = Ho + H’ + H" 

  

1- He is the external magnetic field. 

2- H’, an intra-molecular field, is the magnetic shielding 

field at the nucleus due to the molecule cotaining the 

nucleus. According to Dickinsonliio] this term is 

proportional to the external field, pHo. Using the result of 

Anderson’s{itlij work on He, he finds that p is negative and 

of the order of 10°", Therefore, hereafter H’ is denoted by 

—pHo. 

3- H" is the magnetization field due to paramagnetic ions that 

might be added to the sample for shortening the spin lattice 

relaxation time. 

Following the Debye’s method for electric dipolesl9,112] he 

divides H" into two parts; 

H" = (4%/3)M - sM (2.2) 

where the first term is the familiar Lorentz(5] term for local 

fields, namely the contribution of the outer region of a 

(semi-) macroscopic spherical cavity on the molecule inside the 

Cavity. The second term, however, is the demagnetization field 

or, the amount by which the field in the sample is less than 

  

the external one. The demagnetization expresses the effects of    

magnetic poles on the outer surface of the samplel1l13], so it 
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depends on the shape of the sample. On combining (2.1) and 

(2.2) one gets; 

Ho = Ho - pHe + (4%/3)M — sM 

  

Fig. 2.1 depicts this expression apart from the intra-molecular 

term, -pHo. 

Demagnetization Field 

=I 
cavity 

Quter regian HoPecule 

           
Je Sample 

  io — 

    

  

  

     

Fig. 2.1. The Lorentz local field for a paramagnetic specimen. 

Note that the electric equivalent of -pHo, that is -pEo, could 

have been included in the expression for E,. (Eq. 1.3) if the 

local field at an atom in the central molecule were needed. 

Therefore the true difference between the forms of E,. and Hu. 

is in the demagnetization field. 

It is worth noting here that in dielectric theories of local 

fields there is no mention of a depolarization or shape 

dependent field(7,8,1141, even when the shape of the sample is 

explicit in the treatment of the local electric or magnetic 

fields for dielectic and diamagnetic materialsl49]. 
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Apparently the demagnetization or shape correction is 

characteristic of ferromagnetic materials because of their high 

magnetic susceptibilitieslliS-120]. This correction however has 

  

become quite important for diamagnetic materials in high   

resolution NMR, where shifts of accuracy of less than 1 ppm can 

be detected. 

Dickinsonli109] using spherical and cylindrical (length to 

diameter ratio of at least 10:1) sample tubes, for which the 

shape factors” are s = (44/3) and 2% respectivelyli20], found 

that the factor (4x%/3)M - sM is in general not correct and that 

the actual factor may be several times larger or smaller or may 

  

even be of the apposite signli2id. 

4& suggested explanation of this anomaly was put forward by 

Bloembergen and Dickinsonl1l22], and Ayantli23] who considered 

that the contribution to the local field from the region within 

the spherical cavity is, in this case, not zero. Therefore, for 

the demagnetization or shape factor to be valid another term 

must be added to (2.2). This term was assumed to be zera by 

Dickinson on the basis of electromagnetismL124]; 

H" = (4X%/3)M —- sM + qM (2.4) 

Dickinson defines q in the gM term as an interac’ 

  

This is a familiar and contentious term in electromagnetism 

where it is called the inner Lorentz field and arises from the   

polarization P, or magnetization M, of the molecules within the 

spherical cavity. It was proved to be zero by Lorentz(S] for a 

#: Eperiments show that the shape factor s depends somewhat on the permeability of the specimen as well as 

its shapef!20). 
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cubic lattice or for complete disorder of :the molecules inside 

the semi-macroscopic cavity£8,114,124], although the assumption 

that gq = 0 may be apt for gases, but it is not true for 

liquidsfl1253. There have been extensive arguments on this 

matter going on for yearsl9,125,126], thanks are due to high 

2 resolution MNR for reviving the subject. Expression (2.4) is 

depicted in Fig. 2.2. 

  

     

  

Lorentz's es) 

  
Molecule         

Fig. 2.2. The Lorentz local field for a diamagnetic material in the high resolution NMR experinent. 

The gist of this new term, gM, is that it reflects the 

effect of interactions between the central and individual 

molecules of the inter region. In this, it- may be regarded as 

the genesis of the vdW chemical shift. The expression for the 

local field for cylindrical sample shape transverse to Ho; 

S = 2%, now becomes; 

Hi. = Ho ~ pHo + (44/5)M - 2% M = QM, or 

H, il Ho - pHo — (2%/3)M — qM (2.5) 

where for the purpose of this historical introduction -qM is 

used (Dickinson finds both positive and negative q values; see 
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table 7 in Ref.f1909]). The manipulation of (2.5) results in an 

expression for the screening constant, as follows. 

The magnetization M similar to the polarization, P = L ELq/syv 

(Eq. 1.4), is M = ¥ HL, which on substitution for the local 

field from (2.5) gives; 

% Holi - p) 
M= —= %¥ Ho , for Xx and p 

41 + (2K/3)% + qx? 

  

    

replacing this back into (2.5) gives; 

Hu = Ho — pHo — (2%/3)% He - qx Ho, or, 

Hi. = Ho C i - (p + (2K/3)% + Qk) J (2.6) 

A comparison between (2.6) and the general NMR expression; 

H = Ho (1 - 0), shows that; 

0 =p + (2K/3)% + GX (257) 

where 0 is the nuclear screening constant. 

It took some ten years for the screening constant to be 

recognized in this form in NMR studies. This came about by 

attempts to justify the cylindrical sample factor of 2X%/3 = 2.09 

Bothner-By and Glick were the first to investigate this factor. 

They found excellent linear relationship between chemical 

shifts and volume magnetic susceptibilities xv, with the 

proportionality constant ranging from 2.3 to 3.0 (mean = 2.5) 

rather than 2.09(127]. Their further work on aromatic solvents 

shawed that they behave quite differently and this anomaly was 
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attributed to the magnetic anisotropy of aromaticsl1i28,129], 

which is the origin of the neighbour anisotropy effect,On. 

  

Others also found anomalies in this factorl 

Nevertheless the faith in 2X%/3 was so deep that it was fixed at 

this value and the anomalies were attributed to other effects 

  

such as vdW interactions by Glick and Ehersenli1s. 

There was a muddle over the subject for some time during which 

the chemical screening was not yet recognized as (2.7) until 

finally Bothner-ByCl34] made a breakthrough. He determined the 

effect of medium for each solute by measuring the solute, first 

in the gas phase, so finding the intra-molecular effects, (J. 

and then at infinite dilution in a solvent, 0. The difference 

between the two screening constant (0 - 04) is then the 

gas-to-solution medium screening of that solute. This was 

accepted to be proportional to (2%/3)xX. plus another term to 

explain the anomalies, namely the vdW interaction term; 

GO - Og = (2X/35)X0 + Ol(vdW), or, 

0 = 0, + (2K/3)X%0 + O(vdll) 

This in fact is re-discovered (2.7) because as Dickinsen showed, 

pis related to the intra-molecular effects of the solute which 

  

is the same as 04, and O(vdW) is the interaction term surmised 

by him. 

Note the proportionality of the Dickinson interaction term qi 

with the magnetic susceptibility x. This fact quite puzzled 

  

investigators when they found that the excess of the screening 
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corrected for the bulk susceptibility, namely; 

( - 04) - (2%/3) Xo = O(vdW) 

was still proportional to xv. 

Bothner-By found that (0 - 0, - (2%/3)%v) was negative (for 

non~aromatic solvents with Um = 9) namely, the excess screening 

is down-field. This was established as the vdW screening 

constant 0.4, arising from the interaction between the solute 

and the solvent. One can therefore, in the presence of 

magnetically anisotropic solvents write; 

Om = (0 -— Ja) = Oa + Tn + Ow (2.8) 

The purpose of the remainder of this chapter is to show the 

characterization of 0. by the RF model. 

2.1.2. Characterization of (J.. and the B parameter 

An RF formulation of 0. entails a knowledge of some sort of 

relationship between this quantity and a (reaction) field. The 

work of Marshall and Popleli35] provides such knowledge. 

atom that is, (besides Ho) simultaneously subjected to a 

uniform static electric field. Their 2nd order perturbation    

theory shewed that a static field either perpendicular or 

parallel to the magnetic field Ho will cause de-shielding 

proportional to Eo*; 

881 ao® 
Q = - eee Ee (2. Fh) 

216 me 

  

So



where ao, m, and c are respectively the Bohr radius (.529 A), 

the electron mass (9.109x107°"8 gr), and the speed of light 

(2,998%102° cm/s). Inserting these values into (2.9); 

o=- . 738x101" (em? /erg) Eo= 

This expression, for the first time, linked the screening with 

an external perturber (input) other than He. It can be written 

asi 

0 = - Bo Eo* (2.10) 

where Bo = .738x1071*® cm*/erg. 

Stephenli36] suggested that rapidly fluctuating electric fields 

of neighbouring non-polar molecules can give rise to vdW forces 

and therefore generate de-shielding that (note the direct 

static-to-dynamic mapping) by analogy with (2.10) should be; 

  

Ow = — Bo ¢ 

  

where ¢E is the non-zero mean-square of the fluctuating field 

Let us rewrite this as; 

   fs (2.11) 

where B is the dynamic counterpart of Heo. 

  

There was no theoretical work on the Ow- * relationship until 

Marshall and Popleli37] published the result of their study on 

two interacting H atoms, a case more akin to the Stephen 

suggestion. They found that the vdW forces decrease the 

screening (in the absence of overlap forces) so that the 

shielding in one H atom caused by the neighbouring one is given 

23.86 tat 

Qa SS eae Re 
S mc 

  

To extract a B parameter from this, which is inexplicit in 

Si



terms of the field, one has to find a field expression as a 

function of R-* and compare the two. Combining the London 

potential Eq., U. = - (3/4)1 Q* R-® for two interacting H 

  

atoms a distance R apart, with Eq. (1.51), U = — (1/4) Q¢E 

one gets; 

  

CES aes Pid Re (2. 

Replacing <E=> in (2.11) by (2.13)3 

Ow @ 25S 8B T QO k-* 2.14) 

and then comparing (2.12) with (2.14) gives the expression for 

  

Bs 

23.86 
Roe eee 

2.15) 
9 m=c= Qi 

Inserting for Qu = .6668 A*, Im = 13.5 eV, and other constants 

in this, one obtains, B = .1908x107'*8 cm*/erg. 

This value for the fluctuating field of H atom is about four 

times smaller than Bo of the static field. One notes the 

emergence of the now familiar dynamic-static relationship as 

was discussed in the previous chapter. The static expression 

for an observable; 

QCoutput) = - Bo Eo* (input) 

can be transposed into its dynamic one (2.11) by a numerical 

factor less than unity, y «< 13 

  

Douemur = BCE) Fa neue 

where y'/?B. = .1908%10-*9 equals the dynamic B for y'? ¥ 1/4, 

in agreement with y!/ = 1/4 found for quantum effects when the 

transfer function of the system is not quadratic, 

The fact that Bo > B is attributed by Rummensli7] partly to the 

use of (2.13) which has been derived by Raynes et al[78] on the 
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basis of U = - (1/2)Q¢E=>, rather than U = - (1/4)Q<E 

  

They 

arrived at the same expression as (2.13) because of the use of 

hy = 21 in the London potential formula (see sec. 2.3.2) 

The quantum theory of Kromhout and Linderli38] on B also 

supports the Marshall and Pople value of .19x10714%, They give 

the following B (dynamic) values; 

XeeeX interaction HeeH HeseeHE N@sssN@  Kresekr  X@seeX® = CHaseeCHy CFase oF 

Bx10'® cae /erg 21 AT At 252 m4 59 18 

The work of Jameson et all139] on Bo of hydrogen and inert 

atoms in a static field Eo generally gives lower values 

compared to those of Kromhout and Linder. For helium for 

example, their Bo is low by a factor of two, and, the same 

factor increases their Bo for H near to the Marshall and Pople 

value of .74; 

X.seEo interaction H He Ne Ar kr Ne 

Box10*® ca®/erg 35 +075 5.6 NAS 124.7 337.3 

According to Rummensl1i7] the nature of the approximations in 

the Jameson (et al) procedure makes their Bo values for light 

atoms less reliable, though they might be quite good for heavy 

atoms. 

We infer from the evidence in this section that the link 

between the vdW screening and some form of a fluctuating field 

is provided by a parameter B which mainly depends on the 

resonant nucleus and the interacting solute-solvent system. In 

Ss



terms of the RF such a relationship reads; 

Owe - BS 

  

substituting for <R*> from (1.44) one finds; 

  

    

  

Ow = 

(2n® — 2)2 
w= - By oe (2.16) 

(2h=>+°1)4 

where ‘a’ is the cavity size and y = 1/16. Note that there 

exists a direct relationship between <m*> = [ e*<¢r,=> and x. 

The molar susceptibility of an atom may be written asCiJ; 

Ros = (e= L4éme™) Deri =e 

$0 that (2.16) becomes; 

  

Ow = g %, and, 

  

where q X is the Dickinson interaction term. 

2.2. Problems with the RF model of Quy 

The argument in the historical background suggests the 

interactions between the central molecule and those of the 

inner region as the cause of the vdW shift (see Fig. 2.2). In 

other words, it has been recognized thatl76,136] (0. arises from 

the interactions between the nearest neighbours. The continuum, 

or the RF model, as it is known, characterizes the effects of 

interactions between the central molecule and those of the 

outer region, the continuum. 

  

The Problem of the First Molecular Shell 

Linderli9] believes that the RF model is highly artificial when 

used at the molecular level because in this model the molecules 
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that surround a specific molecule at the centre of a cavity 

» To achieve this uniformity 

  

must form a uniforys 

the cavity must be of semi-macroscopic sizefl3,14] as shown in 

Fig. 2.2. In other words, surrounding molecules appear uniform 

ta the central one at some distance away from the nearest 

neighboursli40]. The individuality of the molecules in this 

model is "smeared. out" by using the refractive index, a bulk 

property. The nearest neighbours interaction which identifies 

QO. is totally nonexistent in this theory. It is therefore 

not far from reality to say that the RF models another bulk 

effect. 

2.2.2. The Problem of the 

  

Wity Size 

If the validity of this model is to be tested, by using (2.16), 

the true size of the cavity must be known. 

A much criticized([4,17,19] expression is what has come to be 

called Onsager’s approximation, (4K/3) L a® = V, which was 

used in section 1.11 for finding heats of vaporization. This 

expression is supported by the fact that it reduces the 

Bottcher-Onsager formulaC3] for dipolar liquids to the 

Mossotti-Clausiuss formula which works so well for non-polar 

compounds. 

Accepting Onsager’s cavity size, however, is tantamount to 

shrinking the semi-macroscopic cavity into molecular sizes 

Some authorsli9,80] regard this as the root of RF model 

problems. Others notably Kirkweood[141] and Chelkowskili24] 

believe that Onsager’s cavity is a real cavity and differs from 

that of Lorentz which is filled with material of the dielectric. 
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The most serious defect of this model, Kirkwood continues, lies 

in the assumption of a uniform local dielectric which is 

identical to the macroscopic dielectric of the medium. 

However, not much has been done to improve this so-called 

approximation. Linderli9], links ‘a’ to the radial distribution 

function, a notorious mathematically untractable quantity 

available by experiment. Using x-ray scattering data for Xe at 

“119 °C, he finds roughly that a = 3.28 A; the Onsager’s value 

is 2.57 A for V = 42.7 cm*/mole at -110 °C. 

Jaffeli42] has used the Hertz expression (see sec. 3.3.3) for 

random distribution of points to remove this objectionable 

feature of Onsager’s theory. His work offers no direct 

expression that can be used for ‘a’. As it is shown in Chapter 3 

the cavity size obtained from the Hertz expression is smaller 

than that of Onsager’s. 

Therefore, we will use Onsager’s cavity size, and consider the 

problem of the first shell of molecules as a serious setback 

to the RF model of OU. 

  

2,3. Correlational Analysis of Ow relationship 

In this section the suitability of the RF model of Qu. is 

analysed by the study of the linear relationship between 

  

calculated values of * and experimental values of (uw. 

Fear computational purposes (2.146) may be written as: 

(n= — 1)" Tulev) uta) 

  

  

  

<R®>(erg/em*) = y 61.2x101= —————_- —— (2027) 
(2n.7 + 1)? VuF(em*®/mole) 

where Onsager’s expression for ‘a’, Eq. (A1.4) for <m=s, u for 
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the solute and v for the solyent are used. 

It is customeryl24,25,27,29,1435,144-147] to use the volume of 

solute, or central molecule, V., for the cavity size as used 

in (2.17). When the tabulated values of I, Q, and V are 

inserted in (2.17), and the result is multiplied by the value of 

Bo in ppm cm*/erg that is BxiO®, Owlcal.) would be in ppm 

  

Owlcal.) = Ome(ppm) = - y Bippm cm*/erg) « SCerg/cm*) Aa LER) 

For the initial test the experimental Q.(expt.) values of 

the tetramethyl compounds are used. The calculated values of 

RF according to (2.17) for y = 1 are denoted by RFu in table 

2.1. The correlation coefficients for the linear relationship 

between RFu and Gwilexpt.) with their slopes -showing the & 

values according to (2.18)- are also given at the bottom of the 

table. 

Nete that this analysis is for a given solute in a series of 

solvents. This is because the bulk susceptibility correction, 

Ow», is done on this basis, and as Glick et alfiSo0] found the 

excellent linear relation between (0m and Xv exists in this 

way only. Rummens{27] says that using a series of solvents will 

eliminate at least part of the experimental errors and model 

errors. 

Table 2.1 shows that on the one hand, the correlations are poar 

(the significance level, a measure of the accidental 

correlation, is mere than S%), and, on the other hand, the 

calculated values on the basis of Bo = .74, would be an order 
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Table 2.1. Comparison between Experimental* and calculated §,, 
  

  

  

  

GR Dx 10-12 

Solvent erg/ca® (2.18) Chey Site, Gees Snes PbHe, 

CNey RFu OLE 0109 0112 0113 +0129 

RFy OU +0123 0123 +0127 0138 

SiMe, — RFu 0118 O15 0119 0119 0137 

RFy 0105 OHS 0116 O19 +0130 

GeHe, = RFu 0133 +0130 0134 +0135 0154 

RFY +0120 0133 0134 0137 0149 

SnMe, —-RFu 0159 0156 0160 +0165 0185, 

RFy O14 0156 «0157 0161 +0175 

PoMe, = RFu 0196 O19 0197 0198 +0227 

RFY 0183 +0202 +0203 +0208 +0227 

ect RFu-O4 878 WT +909 +923 925 
Slope = B 8.45 9.35 9.27 9.76 9.56 

cc RFY-Ow 946 +969 +965 974 977 
Slope = B 9.99 9.52 WN 10.02 9.25 

  

#: Given in table 2.4, 
+: Correlation coefficient. 
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of magnitude smaller than the experimental ones. This is 

apparent from the slopes of about 10 times larger than 

7410-22 pom cm*/erg. Note that for the actual value of 

y = 1/16 the calculated screenings fall short of the observed 

ones by two orders of manitude. 

ty Size    
The RF-@., correlation can be improved if the solute cavity 

size in (2.17) is changed for a more realistic cavity size. 

It is more likely that the solute molecules fit into the empty 

sites of the solvent medium. The size of these empty sites or 

holes according to the "Significant structure model"[1481 of 

liquids is naturally determined by the selvent. On this account 

the size of the cavity for binary systems, should be related to 

the solvent and not the solute. This idea is tested by finding 

the RF values, denoted by RFv, with Vu in (2.17) replaced by 

Vou 

Table 2.1 shows the increase in the correlation coefficients 

(with improved significance levels, ¢ 5%) of RFv-Julexpt.) 

relationship for tetramethyl systems. Table 2.2 highlights the 

superiority of the solvent cavity size to that of solute (save 

for Pa which shows a negative intercept) by selecting systems 

in which the volumes vary by a factor of seven. 

Rummens€271 on the basis of a "site-factor" RF model, 

argues that the cavity size appears to be independent of the 

size of the solvent molecules, but on the other hand, he 

continues, a simple proportionality between ‘a’ and Vu is not 

satisfactory either. The fact that the incorporated site~factor 
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Table 2.2. Comparison between the Solute Cavity RF, RFu, and the Solvent Cavity RF, RFy 

  

  

SRO 0 2,0 gee Wet vename ag ce cere on arn een e Solvent -------~--~----~-----~----- RF-* 
Solute erg/ca® (2.18) Si(DEt), SilONe)s _SiEts _SnEt,s _SnMey Sill, CCl w [Mies 

CHa RFu +0630 +0570 +0750 +0830 +0760 +0710 0810 469 

RFy 0014 0028 «0023 0024 = 0044 = 0058 =. 0095 +951 

CF, RFu 0197 0179 20235 = 0262-0240 = 0223. 0256 666 

RFY +0017 +0035 +0028 = 0027-0055 = 0072, O18 +903 

Si(OEt), RFu 0080 +0073 20096 = 0107, 0098 = 0091 =. 0104 514 

RFy +0080 0162 0162 0132-60250 0330. 0543. BA 

n-CsHhi2 = Cate Coe CCl, CS2 Py 

Pa RFu +0442 0563 +0700 = 0620 0944. 1700 Oe 

RFy 0152 +0220 10410 0301 A210 1700 HS 

#: 0. (Expt.) are given in tables 2.5, 2.7, and 2.9. 

> + The intercept is negative - 6.7 ppa. 
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(see Chapters 3 and 4) has a strong effect on the RF model 

discredits his conclusion. In practice he finds a cavity size 

larger than the size of the benzene molecule and of the same 

size as C(CHs)4 for CHa. This shows that the cavity size of CHa 

is more akin to the holes in solvents rather than its molecular 

size. 

2.3.2. Homer and Percival RF model 

In general any RF model is plagued with the two afore-mentioned 

problems, namely the poor correlation, and, the shortfall of 

experimental values. 

Rummens in his comprehensive RF work(27] has, to some extent, 

circumvented the former by incorporating the solute-site-factor 

idea into the RF work frame. The latter shortcoming however, 

has not been overcome and different factors for different 

solutes have been used to "scale" the calculated values up to 

the experimental ones. He has found that the scale factors 

range from 6 for CHa to 16 for Ge(CHs)4 (this is for Bo = .74 

and y = 1). Rummens has made an attempt to relate this 

shortcoming to the Onsager’s approximation for the cavity size. 

It is shown in chapter four that the need for a scale factor 

partly arises from the lack of the "solvent-site-factor" in his 

model. The nature of the RF model, that is the exclusion of the 

first molecular shell, chiefly necessitates the use of a scale 

factor. 

Demontgolfier’s RF model (y = 1) for CH, and CsHio requires 

scale factors of 3.4£144,149] and 13.5€144] respectively. 

61



Homer and Percival[29] have recently proposed a new RF model 

that overcomes the two mentioned problems. The gist of their 

argument is as follows. 

As the solute moment m.(t) polarizes the continuum and produces 

an RF on itself <R*>., likewise an RF can be assigned to every 

solvent molecule of the first shell surrounding the solute. 

These macroscopic solvent fields <R*>. are constant over the 

microscopic solvent cavity accommodating the solute molecule, 

and will not be diminished in reaching the solute, or at least 

its peripheral atoms. Therefore the total RF acting on the 

sOlute at the centre of a cavity, which now includes the first 

shell of solvent molecules, is the sum of 

    

where x denotes the contribution of ¢R*>. to the total RF. 

According to Homer and Percival however, x = (2K%/3) for solutes 

and solvents of roughly equal volumes; 

<R2> (Total) = RFT = ¢R2>u + (24/3) <RB>y (2.19) 

Their formulation of the two reaction fields is based on a 

polarizable static dipole approach, the mean-square RF of which 

is obtained by direct static-to-dynamic mapping (y = 1) so that 

RFT becomes; 

Tu du (nu? + 2)? (ny? - 1)? Ty Oy (ny? + 2)? (ny? = RFT (erg/ce®) = 13, 58x10? + (24/3) eee (2,20) 
Vu? (2 ny? + nu?)? W292 

The functional forms of the refractive index in (2.17) and 

(2.20) differ due to the polarizable dipole assumption in the 

latter expression. 

In their formulation Homer and Percival approximate hy in the 
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oscillating moment expreesion, (A1l.4), by 21. This is twice the 

London original approximation. Before the test of (2.20) a 

comment on the nature of this approximation appears to be an apt 

digression. 

This is an empirical approximation C150] based on Pitzerli51] 

work. He treats hY, in the London formula, as an adjustable 

parameter to match the experimental data for a number of 

many-electron atoms and molecules. He finds that h¥/I ranges 

from 1.2 for He, to 2.82 for Cle. Pitzer([152] attributes the 

need for hy > I to the possible partial contribution of more 

tightly-bound electrons to the London dispersion energy. Here 

some of the h¥ values given by Margenaul71], and the ionization 

potentials are reproduced to show the superiority of the London 

approximation; 

Species H Ne ofr Kr Xe) He Ne Coz CHa Clz NH 

hy fev) 24.5 25.7 17.5 18.7 12.2 145 15.8 15.5 141 12.7 11.7 

I (ev) M5 21,5 15.7 14.0 12.1 15.4 15.6 13.8 13.0 11.5 10, 

It is shown in Chapter 3 that treating polyatomic molecules as 

polarizable spheres causes the low calculated dispersion 

energies, for the offset of which the 2I = hY approximation is 

resorted to. This can be seen from table 3.7 where the 

calculated heats of vaporization for polyatomic molecules by 

London formula fall short of the experimental values by a 

factor of three, making h¥ = 2I a preferable approximation. 

The Homer and Percival total RF is analysed for the available 

0. data in tables 2.4 to 2.9. 
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Table 2.3, Physical Constants of the Species 

  

    

Species Molar Vol. I a nz 

ca*/nole (30 °C) Ref. (ev) Ref. _—(A7)___—Ref, (20°C) Ref. 

1,2,3 CoHs(CHs)s 139.0 158 8.43 158 15.4 137 2.248 158 

prCsHs (CHs) 2 125.2 (35 °C) 27 8.44 16 14,27 16 2.210 a 

p-CHsCoHaF 111.0 158 8.80 b 12528 > Jc: 2.1605 158 

p-CaHaFo 99.8 (35 °C) 165 915 c 10.29 2,054 a 

(CHs) 20=C(CHs) 2 118.9 159 8.31 158 1.74 0a 1.9943 158 

CHsC=CCHs 78.3 158 9.94 158 TAS oc 1.9380 158 

Si(OCH2CHs) 4 224.0 (35 °C) 163 9.25 a 20.40 oc 1,896! 160 

Si (OCHs)4 150.3 (35 °C) 163 9.25 d 12.90 oc 1,830! 160 

Si (CH2CHs) 4 191.3 (35 °C) 163 9.81 159 19.2 159 2.0357 158 

Si(CHs) 4 146.5 159" 9.80 159 11.9 159 1.8266 143 

SiCly 117.2 (35 °C) 163 11.6 16 11.4 159 1,990 158 

SiF, 62.7 158 16.94 246 3.33 246 1,464 a 

CS 61.4 (35 °C) 163 10,08 16 8.56 16 2.6631 158 

CHa 33.6 (a.p.) 69 12.99 16 2.55 16 1.710 a 

CF, 66.8 158 17,81 246 2.89 246 1.2863 a 

CHCl 64.9 157 11.35 158,164 6.82 173,174 2.02937 158,176 

CHC s 81.1 157 11.42 158,164 8.53 9 174,177 2.0906 158 

CCl, 98.3 (35 °C) 163 11.44 16 10.24 16 2.4144 159 

CHsBr 56.6 (20 °C) 158 10.53 158 5.61 168,169 2.02151 158 

CH2Br2 70.3 157 10.48 158,164 8.68 170,171 2.37715 = 175 

CHBrs 98.22 157 10.4 158,164 11.84 170,172 2.5523 158 

CBr, 112,0(100 °C) = 158 10.4 b 15.07 a 2.59144 158 

CHeC1Br 66.9 (20 °C) 158 10.77 158 7.58 a 2.20166 = 158 

CHCIBr2 86.4 178 10.5 b 10.88 a 2.3969 158 

CCl sBr 99.7 479 10,88 b 11.7 a 2.26894 = 158 

CHs1 63.0 157 9.54 150,164 7.59 = 164,168 2.34555 176 
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(Table 2.3 continued) 

  

CHale 81.3 157 9.3 b 12.9 170,171 3.03143 175 

CICHs) « 131.4 159" 10.36 159 10.2 159 1.7902 143 

C(CH2CHs) 4 171.9 27 10,36 e 17.5 c 2,041 a 

n-CsHi2 115.2 (20 °C) 158 10,35 158 10.02) a 1,8428 158 

Cyclo-CsHio 96.0 (35 °C) = 158 10,53 158 Wd 159 1,978 158 

Coe 90.5 (35 °C) = 158 9.24 16 10.39 16 2,242 158 

CoFe 117.4 (35 °C) 165 9.97 158 10.1 257 1,8968 166 

Cyclo-CaFe 116.0 (0 °C) 158 13.3 + 7.66 1,5136 162* 

CoH 2 110.0 (35 °C) = 158 9.88 16 10.87 16 2.0264 158 

n-CoHrs 130.5 (20 °C) 158 10.18 158 12.9 c 1,8908 158 

n-CrHie 146.5 (20 °C) 158 99 158 14.96 oc 1.92559 158 

Ge(CHs)« 138.2 159 GAT 159 12.8 159 1, 9088 143 

Sn(CHs)« 138.2 159 8,36 159 14,4 159 2.054 143 

Sn(CH2CHs) 199.2 (35 °C) 163 8.356 e 21.7 c 2,1362 a 

Pb(CHs) « 135.9 159 8.24 159 15.9 159 2.2644 143 

SFe TT 158 19.352 246 4,53 246 1,570 a 

Pa 68.1 (20 °C) = 158 7,04 f 14,7 a 4.5967 158,167 

Br2 54.2 (20 °C) 158 10.55 158,69 6.464 a 2.75992 158 

Ye 37.0 (solid) 49 12.13 158 4.04 251 2.15094 a 

a: Estimated from Lorentz-Lorenz Eq., (1.2), using either @ or n*, 

c 

ds: 

volumes of CMe, and Side, respectively. The correct volume of 131.4 for CMe, is used by him in a 

subsequent work(27], 

See foot-note "d" to table 3.5. 

Estimated from data on similar compounds. 

65 

Estiaated from bond polarizabilities given in Ref.{161]. 

This value is calculated by Abraham and Wileman{ 162). 

Estimated from data on similar compounds by Percival(140). 

At variance to his temperature-dependent densities Rummens(159) gives 124. and 139.5 c! 

Estimated from the "inert-aton additivity rule" given in chapter three. See also table 3,7, 
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Table 2.4, Results of comparison between Expt. - , (ppm) at 30 °CL159) and RFTx10-*2 erg/ca® (2,20) 

        

  

  

= Salute == _ 
Solvent  CMea ___Gehe.. a SOME 9, 

CMe. «217 n2Do +260 -280 -285 

RFT +080 “O77 .080 O81 .086 

SiMe, .185 -228 +228 .250 .258 

RFT 2079 ©9764 «980 -980 .085 

Gee, aos +262 #260... 4.280 - 287 

RFT 2098 2095 «999 «100 «106 

SnMea 222 270) e275 need «302 

RET ies aL 124 petits uSz 

PbMe. mark eoeo -350 .358 

RET. 2175. 2170 2176 »178 1998 

ce, e927 0963 7944 2957 0963 

Slope(B) .774 944 852 8465 834 

Intercept. 137 «177 «176 2194 «198 
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Table 2.5. Results of comparison between Expt. - 0, (ppm) at 35 °C{163) and RFIx10-*? erg/cm® (2.20) 

Solute ------------------------------ 

Golvent Si(OCHsCHs)s SifOCHs)s C(CHs) Si(OCHsCHs)« Si(CHs)s Sn(CHs)s CHy 

  

  

  

Si(OEt), 160 +182 ATS 193 2M7 +270 +295 

RFT 059 +067 «070.059 +067 +072 «186 

. Si(OMed, 155 +198 7190" e170) +252 +272 +310 

RFT +067 +074 +077 .087 +074 «079 181 

SHIEt) « 162 170 oA97 193 +250 +292 +305 

RFT +082 091 +095 082 +090 097 234 

Sn{Et), +172 192 +205 «208 +260 +310 316 

RFT +108 «118 123 «108 18 +125 +279 

Sn(Me) 4 AGS +187 +205 205 +267 310 +322 

RFT +107 «Alb 121.107 Alb +123 +263 

SiCl, 188 +200 223.228 298 +325 +346 

RFT 142 «150 A5$ 142 «150 156 +286 

CCl, +302 «332 «S45 AD 375 +433 472 

RFT +206 +216 1220206 215 +223 33 

cc 3h +862 «9M 932 973 674 949 

Slope(B) 940 1,026 1.042 1.041 +960 1,037 +800 

Intercept _.085 +098 O91 109 «160 +186 +110 
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Table 2.6. Results of comparison between Expt. ~ G.ippm) at 35 °CL17,163,180] and RFTx10-'? erg/ca? (2.20) 

  

  

ae ee ee Solvent 
Solute SnEt, SiEt, Snkey Sill, Cl, CC. ___Slope(B) Intercept _ 

CsHio «178 165 ASS +203 +295 

RFT +156 124 +150 181 +252 982 1,047 024 

CoHe +273 +240 277 293 443 

RFT 169 +135 +162 192 +265 980 1,578 014 

Coliz = A45 ATS 187 +265 

RFT A45 ANS AML +173 +242 +989 +924 038 

CHsC=CCHs «300 +277 «288 +318 ATT 

RFT +165 132 160 +189 +261 968 1,633 +035 

(CHs)2C=C(CHs)2 232 +218 «230 +237 «340 

RFT +130 «101 127 +160 +227 +950 +983 +105 

CHCaHaCHs +267 +242 «268 +283 AW 

RFT +139 +109 13S +167 235 +970 1,453 +068 

CHsCsHeCHs «230 +200 227 +245 +340 

RFT 139 «109 +135 +167 +235 +988 1,101 075 

1,3,5 CoHs(CHs)s  .272 «250 +278 +295 ANT 

RFT ASL +102 +128 +161 1228 077 1,333 +102 

1,3,5 CoHs(CHs)s «202 183 +205 «220 +292 

RFT ASL +102 128 ofbh +228 +989 +862 092 

F-CoHa-F +287 +253 «290 315 A92 

RFT +150 ANY AAS AT «246 979 1,910 +007 

Sn (CH2CHs) 4 +207 z +187 +205 282 

RFT A2L +093 wll? +152 +218 +956 +872 +087 

Si (CH2CHs) 4 = +153 «153 «162 +257 

RFT M3 086 ll? 146 o2Mt 922 +864 +06! 
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Table 2.7, Results of comparison between Expt. ‘7F - Jy (ppm) at 35 °C and RFTx10-'? erg/cm™ (2.20) 

  

  

  

sores a aee Solute 
Solvent CF, SF Sif, prMe-CaHaE  p-CoHaFz car, 

Si(OEt), 5.97 6,36 8,95" 5.74 6.12 6.31 

RFT 082 Ald 108 +087 +090 077 

Si(DEt), 5.54 5.96 8.31" 5.21 5.77 5.16 

RFT 088 ALS All 092 +095 084 

Si(Et). 6.00 6,35 982° 6.98 7.21 7.16 

RFT +109 «143 140 ALS Al? «104 

Sn(Et), 6.26 6,70 9,12° 7.25 TAS 7.21 

RFT +138 477 ATS +146 +150 «133 

Sn(Me) « 6.82 7.05 10.05 7.61 7.74 7.89 

RFT +135 «170 «167 +142 ASS «130 

SiCl, 6.85 7.03 10.10 7,83 7.96 8.45 

RFT +167 +199 A97 ATS wA7b +162 

CCl, 7.60 7.98 {1.15 8.14 8.27 8.8! 

RFT +235 +273 +270 +243 +246 +230 

cc +939 +957 882 +850 +869 +859 

Slope(B) 12.40 M21 14,60 17,29 15.15 20.59 

Intercept 4.74 4,88 7.20 4,50 5.00 4,58 

  

#: Raynes and Raza(165] give 16.32 and 12.36 ppa respectively for Sif, in Si(OEt), and Si (OMe), 

in variance with their rule that the shifts for Sif, can be found from those of CF, by 

multiplying by 1.5. The corresponding entries here are according to this rule, 

+: Rummens{17] mistakenly quotes 14.37 and 15.97 for Sis in Si(Et), and SniEt), respectively. 
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Table 2.8. Results of comparison between Expt. *7F - J» (ppm) at 40 °C(162) and RFTx10-'? erg/cn® (2.20) 

  

pve connie Aenean toes SOL Vent ieasetae deena se eeceennns, 
Solute CCly CoH n-CrHie  CoHr2 N-CoHiy n-CoHri2  c-CaFe CC __—Slope(B) Intercept 

CF, 7.60 6.61* 6.08 5.94 5.77 5.44 3.04 

RFT* 239 +274 +120 168 +422 M4 051 +830 15.00 3.45 

C-CaFa 6.94 = 5,62 5.49 5.34 4.96 2.87 

RFT +230 2 Ald + lbl AL +108 +049 +914 19.90 2.60 

CFs 9.21" s 772 7.62" 7.38 6.90 3.73 

RFT +234 = M6 +164 +118 110 +049 +886 26.10 3,63 

  

a: Ref(187]; b: Cyr et al(188) give 9.09 and 7.40 ppa for CoFs in CCl, and Caio respectively. 

+ The calculated RFTs are for 30 °C. Tabulated voluae of c-C4Fq is used, table 2.3. 

Table 2.9, Results of comparison between Expt. “'P* - J. (ppm) at 30 °CL181) and RFTx10-'* erg/ca? (2.20) 

  

Solvent ---) n-CsHiz CoHi2 Cate CCle CS. PalWhite phosphorus) CC__Slope(B) Inter. 

50 214 23.5 30.0° 30.5 40.4 89.8 

RFT «207 «299 ASO +388 994 2.70 997 26.91 16.55 

  

#: Phosphorus vapour below 800 °C consists almost entirely of P4 (Raman spectroscopy[182), 

electron diffraction(183], and, recent laser Raman sectroscopy(184]) with tetrahedral 

structure; P-P-P angle of 60°, and, P-P bond length of 2.21 + .02 A, 

White phosphorus (mp = 44,1 °C) in the liquid has the same structure{185, 184). 

#: A correction of .5 ppm has been made for the anisotropy effect. No correction is made for the anisotropy 

of CS2, Large §, values however, render the corrections immaterial. 
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2.4. Buffeting Interaction 

From the results of the regression analysis given in these 

tables the following inferences can be made. 

7 Homer and Percival RF model is the only pure RF formulation 

for 0. that apparently works for nearly all the systems 

(with the exception of some of *”F systems) with reasonable 

correlation coefficients. 

The slopes or B values with the overall average of 1.06 + .3 

for *H shows that the calculated screenings are of the 

same order as the data. This overall average is in 

agreement with the empirical value of 1.06 found by Raynes 

et alf78] for hydrocarbons. 

The B values are not constant and vary by a factor of 

2.46 (.774 to 1.91). Some of this variation is due to the 

site of the H atom in the molecule; compare the ring and CH= 

hydrogens of 1,2,3-C.aHs(CH=)=, for example. Correction 

for the site of the resonant nucleus, as RummensliS3] has 

shown, reduces this variation to some extent. The B value of 

(16.9 + 4.4)»107** cm*/erg for *7F agrees well with the 

Kromhout and Linderf£138] value of B = 18 for CFa...CFa 

interaction. There is no theoretical or empirical B value 

available for **P, but B = 27x107*= appears reasonable on 

the basis of the Jameson et al Bo value, because one would 

expect (see Chapter 5) the value of =*P B to fall somewhere 

between those of Ne and Ar. 

The distinctive feature of RFT is the existence of positive 

intercepts for all the systems as it is typified in Fig. 2.3 
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Fig. 2.3 Typical experimental 0. for the labelled solutes as 

a function of the Homer and Percival RFT, Eq. (2.20). 
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These intercepts led Homer and Percival to the re-discovery 

of a well-known effect in liquid and solid state theories, 

namely the interaction between the peripheral atoms of the 

nearest solvents and the solute. They coined this effect as 

a buffeting interaction according to which the expression 

for the characterization of 0. must be changed to; 

Oy = - B RFT + Intercept, or; 

Ow = Orne + Tor for ye=i (2521) 

This expression reflects the fact that no pure RF model is 

capable of adequate formulation of 0.4. In fact the solvent 

  RF, <R#>., and the BI together embody the pairwise 

interactions from which any vdW effect arises as Dickinson’s 

interaction term qM requires 

It must be emphasised that (2.20) is based on y = 1. The actual 

value of y = 1/16 would nullify the RF part of (2.21) so that; 

Ow % Osx for y = 1/16 (2.22) 

Now if (2.22) is true, one might ask, were all the good 

correlations between the 0., data and RFT fortuitous? The answer 

is that the significance levels of mostly < 5% rule out the 

accidental nature of the correlations. The Homer and Percival 

RFT owes its good correlation with data to the second term in 

(2,20). This is the predominant term, except for small solutes 

such as CHa, and has the volume of the solvent as the cavity 

size, which is the solvent cavity idea. 

It is shown by Homer and Percival, and also in the next chapter, 

that the functional form of Omz is similar to the second 

term in (2.20) without fin). It is proportional to IQ of 
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the solvent atoms, and has the same a~* dependence. Therefore 

some sort of Omz-O0w~ linear relationship would be likely that 

explains the observed correlations between RFT and du. 

2.5. The Medium Eeffect Contribution of Permanent Dipoles 

When dipolar solutes or solvents are used, the screening 

effects of their extra field have to be accounted for by 

addition of more terms to (2.8). 

For polar solvents there is a direct field contribution E= que 

to their permanent dipoles so that (2.8) becomes; 

Om = Oa + Oo + Ow + On (2.23) 

Polar solutes give rise to a static Onsager’s RF contribution 

R® according to (1.8 and 1.9), therefore (2.23) may be extended 

toy 

Om = Om + Or + Ow + Ox + Or 

Water as a dipolar solute with € = 87.74 and H = 1.84 D, has 

the largest static reaction field value of R = 2x10°, the 

square of which (to be used in dn = —- B,R*) .04%107= erg/cm™ 

is the smallest amongst those of table 2.4 to 2.9. 

Other dipolar solutes have even smaller RF values, for example 

R® = 4x10° and 8x10" for chloroform (fo = 4.81, K = 1.15 D) 

and nitrobenzene (€o = 34.82, H = 4.03 D) respectively. 

These values show the negligible contribution of the dipolar 

effect of solutes. 

Concerning the dipolar effect of solvents, Raynes et al[27,781] 

have shown that this contribution can be written as; 
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2 KY? 
Oe = Ow 

3 QiIy 

In terms of the expression for the oscillating moment of 

solvent, this may be written as; 

  

Oe = Ow HY@/Sm 

This contribution is also generally negligible because; 

qm@>, >> RL. For the two polar solvents considered here; 

$i (OCH:s)4, and Si (OCH=CH=)4, it amounts to the maximum values 

of; 

-003 ppm for *H 
Oe (8i(OMe)s) = OG. (1.8)7/335.22 = .0096 Oy = 

»O57 ppm for *7F 

-001 ppm for *H 
Oe (Si (OEt).) = 0. (1.1) 7/497.30 = .0024 gO. = 

+014 ppm for *7F 

  

where the values of <m=> are calculated using the I and @ data 

from table 2.3, and the permanent dipoles of C(OMe),4 and 

C(OEt), are used by analogy. Their dipoles respectively are 

»80154,155], or, 1.8€176] and 1.1 D£154,1546], 

The Homer and Percival RFT is further tested on the data 

obtained by Buckingham et al(22] for methane in polar solvents. 

Raynes{i57] has re-calculated the Buckingham (et al) excess 

screenings, Om — Ob = Ow + Oe, because the susceptibility 

data they used to find 0, were inaccurate. Table 2.10 gives 

these values except for Brz and CBra4 for which the corrected 

values of Rummens{27] are given. 

We note that Br2 is excluded from the analysis given in this 

table, because its point is well off the linear trend which 
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Table 2.10, Analysis of - §. { 30 °C) of CH, in Polar Solvents 

Dipole aoment ergca*x10>¢ 

  

  

Permanent Transient yp? RFTx10-'? =, (ppm) 
Solvent sw E161] <n?) <n?) erge/ca?_ (157) 

CHsBr 3.28 141.52 +023 405 397 

CHaCl2 2.56 185.78 014 ANT 407 

CHCIs, 1.02 233.79 +004 AOL +420 

CH2C1 Br 5.58* 195.93 028 +506 ATS 

CHsI 2.62 173.78 2015 +600 515 

CHaBra 2.04 218.32 009 +622 +532 

CCl 3Br 3.63" 307.08 +012 ASB 542 

Bra 0 163.67 +000 1.052 +556" 

CHCIBr2 4.625 274,47 017 +570 +568 

CBr, 0 376.15 +000 582 594° 

CHBrs 98 295.53 003 668 652 

CHala 4,294 287.93 015 1,026 «767 

cc 923 

Slope (B) 1573 

Intercept +205 

  

a: Calculated (according to the principle of vectorial additivity of 

dipole monents(161}; w? = pi? + po? + 2 paps cos 0) using 

O(C1-C-Br) = 111° and bond-soment of p(C-Cl) = 1.87 and p(C-Br) = 1.8 DE1bi). 

br Calculated using p(CHCls) = 1.02, p(C-Br) = 1.8, and @(Br-C-C1) = 111°, 

3 Calculated using w{CHsBr2) = 2.04, w(C-C1) = 1.87, and O(Br-C-C1) = 111°, 

d: Calculated using p(C-1) = 1.64(161), and O(I-C-I) = 1130158), 

# Ref.(17].; +: Correlation coefficient excluding Bro. 
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reduces the correlation coefficient to .3. The RFT (2,20) tends 

to calculate too large a value when solute and solvent are 

small. 

The small ratios of static to dynamic dipoles in the last 

column of the table justify the use of (2.8) instead of (2.23). 

The ratio however may be larger for small molecules with large 

K values. Water and CHsCN (HK = 3.44 D), for example, have 

ratios of .075 and .115 respectively, giving rise to de values 

about one order of magnitude smaller than their corresponding 

Ow. It may therefore be concluded that the electrostatic 

contribution to the shift of the medium is generally negligible. 

We saw that the excess screening, Um —- 0» , in the absence 

of a magnetic anisotropy effect has been labelled as the vdW 

screening constant 0... In this sense 0. is interlocked with 

the concepts of the local and demagnetization fields, from 

which the theoretical 2%/3 factor arises for cylindrical NMR 

tubes. 

Although the exact value of the 2X/3 factor has not been 

confirmed by the classical NMR experiments, the recent work of 

Homer and Al-Daffaeeli89], on the determination of Xv from 

chemical shifts, gives a direct and positive verification of 

this theoretical value. Therefore, one may limit the source of 

uncertainties in the determination of O.(expt.) by the 2%/3 Xv 

correction to the inaccuracy in Xv values only. 

The EB parameter is another source of uncertainty for the 
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calculated 0. values. Tables 2.4-2.10 show the variability 

of B and-its dependence on the solute-solvent systems. 

The values of B obtained by the Homer and Percival RR model for 

heavy nuclei are more akin to those of static theoretical ones. 

For *#%Xe in solid Xe with J. = 11800 ppm cm*/moleli90], for 

example, one finds RFT = .835 (in units of 1017 erg/cm*) which 

gives B = 384.3 (in units of 107*9 cm™/erg), in agreement with 

the Jameson et al static value of 337.3. The calculated field 

appears to be too high. The revised buffeting theory (Chapter 3) 

finds a field value of .404 for this system resulting in 

B= 787, a value close to the Kramhout and Linder dynamic value 

of 914. 

The important fact that the same revised buffeting model finds 

the right heat of vaporization for Xe verifies B = 787 as a 

genuine value. The calculated heat of vaporization by the RF 

model for y = 1 and h¥ = 21, as has been used by RFT here, 

exceeds the experimental value by a factor of 16. The same is 

true for **P B = 27, it is too small because the calculated 

fields are too large (see Chapter 6 for details). 

The Homer and Percival RFT, in accounting for the contribution 

of the solvent RF to the central molecule, runs parallel with 

the Kirkwoodli4ij] theory of correcting for the fluctuations in 

the local dielectric constant. The Kirkwood correction increases 

the calculated value of € for water from 31 by Onsager’s theory 

to SS (folexpt.) = 87).The Homer and Percival theory increases 

the RF by an order of magnitude. 

The crux of the QOw-RFT analysis is the discovery of the 
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buffeting interaction which has been formulated by Homer and 

Percival(29] and is the subject of a rigorous investigation in 

the next chapter. 
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Chapter 3 

Polyatomic London Potential 

The sphere is an admirable shape, upon which, in hard, soft, 

and flexible versions, many molecular theories have been based. 

The London dispersion potential or the Lenard-Jones potential 

for example, are quantitative expressions for the forces of 

attraction (repulsion) between polarizable or flexible spheres 

assumed to represent molecules. 

The macroscopic properties of liquids are mainly related to the 

Properties of the molecules themselves, namely their dynamic 

behaviour and their arrangement in the liquid state, and more 

fundamentally, to the nature of their constituent atoms. A 

potential function inter-relates macroscopic and microscopic 

properties of molecules; the problem of this inter-relation 

has remained largely unsolved. 

One might therefore legitimately ask: 

1- Is there a connection between the inter-relation problem and 

the approximation of using spheres to represent molecules, 

as the approximation contradicts their atomic nature? 

2- Is it possible to develop a practical potential function for 

real molecules which accounts for their atomic nature? and 

3- Does the new potential accomplish much more than the 

previous potential? In other words, is mastering the new 
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method worth the time and energy when there is only a slight 

difference in their numerical results? 

The main objective of this chapter is to find a liquid state 

molecular pair-potential function and answer these questions. 

However, in achieving this, we find that the passage from a 

sphere-based potential to a molecular-based one is hindered by 

three main problems as follows: 

1- The conventional problem of determining the inter-molecular 

distance R in the liquid state. To solve this relevant 

problem, a simple method of estimating R from molar volumes 

is adopted here, the validity of which is tested against 

some available crystalline, van der Waals, and Lenard-Jones 

R distances. 

2- The second problem arises from the recognition of atoms in 

molecules. The constant thermal rotation of molecules in the 

liquid state results in the continuous change of the 

atom-atom distance of two interacting molecules. An average 

atom-atom distance, as a function of a fined R and the 

structure of molecules, is found to account for this fact. 

The analytical method used proves to be arduous and 

inadequate. Therefore a simple and efficient numerical 

method using random numbers for simulating molecular rotation 

(MONTE CARLO METHOD) is developed here, which also helps to 

overcome the contentious divergence problem of a series 

arising from the analytical method. To maintain the 

continuity of the main presentation, the two methods are 

relegated to Appendices. 
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3- As an atom-atom potential deals with atoms in bonds, an 

obstinate problem arises as to what the ionization potential 

and the polarizability of the bonded atoms are. The latter 

problem is solved by the well-known additivity rule for 

polarizabilities. For the bonded-atom ionization potential, 

however, a new method based on the "admirable" sphere is 

developed in which the atom in a bond is approximated to its 

corresponding (spherical) inert atom. The validity of this 

supposition is analysed for scores of molecules, and the 

outcome is a new additivity rule for predicting molecular 

ionization potentials. This rule is made the basis for the 

prediction of the ionization potentials of some systems, 

Pa, Se, and cyclo-CaFe, that are not apparently 

available. The inert-atom approximation rejuvenates the way 

we think about dispersion interaction of molecules by 

replacing their molecular formula CaHiz=, for example, by 

the inert-atom formula Ne.Hei=. It is also used for 

elucidating the structures of some molecules, and reveals 

the ionic character of SiFa, SFe, and CF4, and the 

Paramagnetism of O2 and NO. 

The circumvention of the afore-mentioned problems, combined 

with an elegant method due to Homer and Percival in which a 

text-book field Eq. is converted into a dispersion type field 

expression, leads to a new molecular or buffeting pair 

potential function. This function reduces to the London 

potential formula when the two interacting molecules are 

sufficiently small or sufficiently far apart. It is in fact a 

generali:z    ed London dispersion potential.



The passage from the buffeting pair-potential, or the two-body 

potential, to the real liquid is obstructed by the lack of 

knowledge of the number of nearest neighbours in the liquid 

state Z.. This problem is dealt with objectively and leads to 

an expression for Z. by which the heat of vaporization of 

liquids in terms of the pair-potential is formulated. 

An analysis of the heats of vaporization for some systems 

reveals that there is only a small difference between the 

predictions of the generalized and the London potentials and 

the observed values for small molecules like Hz. For large 

molecules such as CCl, or C(CHs)4, however, the sphere-based 

London potential values fall short of the observed values 

by a factor of about three, whereas those of the generalized 

one are substantially in agreement with the data. 

The result of such an analysis for water is interesting and 

unorthodox. The sphere-based potential attributes the standard 

value of 19% to the dispersion forces whereas the generalized 

one gives about 47%. The remainding 53% arises from other 

sources -mainly hydrogen bonding. 

Sede   

3.1.1. Atom-Atom Interactions and Liquid State Theories 

The equilibrium properties (density, thermal expansion 

coefficient,...) of simple fluids composed of inert atoms, Ar, 

Kr and Xe, have been satisfactorily described by a Lenard-Jones 

(6-12) central force potential which is a function of the 
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distance between the centres of the molecules{191]. 

However, measurements on the various physical properties of 

symmetric polyatomic molecules such as, CH4, CCl4, C(CHs) 4, 

which gain spherical symmetry by their rapid rotation, have 

shown that their interactions cannot be interpreted in terms of 

the (6-12) central potential£192] and the acentric distribution 

of polarizable electrons necessitates a drastic change of this 

potentialli93]. 

Experimental evidence found by Hildebrand£[194] in 1947 proves 

that the intermolecular forces between polyatomic molecules 

arise mainly from the interactions of their peripheral atoms. 

This means that the effective centres for the interaction 

potential are now the atoms, well removed from the centres of 

the molecules(195-1971]. 

As London{81] has pointed out "...only the highly compact 

molecules can reasonably be treated simply as force centres. 

For the long organic molecules it seems desirable to try to 

build up the van der Waals’ attraction as a sum of single 

actions of parts of the molecules." 

The assumption of a (6-12) potential for the interaction of 

atoms belonging to different molecules, for example, results in 

a potential function which no longer has the spherical 

symmetric form of the inert atoms (spheres) potential but 

contains supplementary terms depending on the relative 

orientations and the geometric structure of the molecules[192]. 

The structural parameter of the molecule introduced into the 
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potential function shows the marked effect of the structures of 

molecules on their physical properties. 

Although recent theoretical models of properties of polyatomic 

molecules, from diatomic to biopolymers, are based on the 

atom-atom interaction between moleculesf[198-203], its history 

at least dates back to the work of Miller£204] in 1936 on 

organic molecular crystals. 

3.1.2. Atom-Atom Interactons in NMR 

We saw in the two previous chapters how the study of the vdW 

_ chemical shift led to the recognition of the difference between 

corresponding static and dynamic quantities, and the 

demagnetization field for diamagnetic materials. The same study 

forced NMR investigators to a recognition of the polyatomic 

nature of molecules. 

The two models for the characterization of the vdW chemical 

shift are the continuum, and the non-continuum models. In the 

continuum or the RF treatment, the solute, a polarizable sphere, 

interacts with a polarizable continuum of solvent. In the 

non-continuum treatment of vdw effect on the other hand, the 

Polarizable sphere of the solute interacts with the polarizable 

solvent spheres of the first shell (in a binary or cage-model 

manner). 

The continuum and non-continuum models of a structureless 

solute and solvent failed to explain the simple experimental 

fact that different protons in a given solute molecule have 

different vdW chemical shifts. After the inspection of the 
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experimental data the following explanations were offered. 

Bothner-Byl134] put forward the argument of the "accessibility" 

of the solute proton to the field of the solvent molecules, so 

that different protons with different accessibilities will show 

different solvent effect. 

Raynes and Razali63] remarked on the "degree of exposure” of the 

solute protons to the solvent. 

Rummens et a1(80,159] and Rummens(27] talked about a 

"site factor" which corrects for the fact that the nuclei 

measured are not normally located at the centre of the mass of 

the solute molecule. 

De Montgolfier([144,145,205] argued that no molecule is a true 

point molecule and therefore an atom of the solute molecule in 

the Onsager cavity would not only experience the RF but also 

the fields of the bond dipoles of the solute itself. 

One notes that the common theme of these explanations is the 

recognition of the polyatomic nature of the solute. 

The effect of solute polyatomicity on 0. was quantified in 

terms of a factor called the "site factor" by Rummens et al and 

Rummens and was incorporated into the continuuml[27] and 

non-continuuml 80,159] models. 

The next natural step, the recognition of polyatomicity and 

structure for the solvent molecule, was taken by Raynes{206]. 
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By arguing that "... as two molecules approach each other, it 

becomes less valid to treat them as point polarizable spheres". 

He quantified the interaction between polyatomic solute and 

solvent in terms of a "site-site factor". Raynes’ approach 

however, because of mathematical and modelling problems, has 

been confined to methane-methane interaction only. 

This discrimination between the polyatomic solute and point 

structureless solvent persisted until recently, when Homer and 

Percival£29] made a breakthrough by an elegant modelling of the 

polyatomic interaction between solute and solvent. They argue 

that there are two distinct mechanisms involved in the 

characterization of Ou, the Continuum Ore, and the 

non-continuum buffeting action of the peripheral solyent atoms 

on the solute atoms, Jer (see sec. 2.4). 

The effect of solvent-solute structure in Homer and Percival 

theory is formulated in terms of a "steric" factor, which is 

more akin to a site-site factor. In their theory of 0., unlike 

the "site factor" school, there is no need for a scale factor 

to cure the shortfall of experimental values. 

The objective of this chapter is to give a rigorous derivation 

of the Homer and Percival buffeting field expression by which, 

on the one hand a general form for the London potential is 

derived here, and on the other hand, the physical significance 

of their steric factor and its relevance to the site and 

site-site factors is explored in the next chapter. 
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3.2. Buffeting Interaction, General Theory 

In accordance with the general method of the formulation of 

chemical screening (2.10), and, (2.11) given in the previous 

chapter, OHI in (2.22) should be proportional to some non-zero 

mean-square fields of the "solvent atoms" at the site of the 

resonant nucleusl29]; 

(Be) 

  

An evaluation of this mean-square field is intended, for 

comparison with the Homer and Percival£€291 derivation. 

3.2.1. A qualitative descript of the Buffeting Field,     
Let us consider a pair of molecules, solute and solvent, with 

a particular mutual orientation as depicted in Fig. 3.1. 

As a result of the independent rotations -assuming no special 

interactions- of the two molecules at the fixed R, the distance 

between a given pair of atoms, ‘i’ and ‘j’, changes with time, 

as is shown in Fig. 3.1a and 3.1b. 

At instance to, when i and j are a distance rij(to) apart, the 

electron cloud of j "buffets" that of the solute atom i as a 

result of which the electron cloud of i expands. This expansion 

reduces the shielding of the i’s nucleus by its electrons. At 

instance t., when the distance between the buffeting atom j 

and the "buffeted" atom i has increased to Fig(ta), the strength 

of the electronic buffeting of j diminishes. The attraction or 

expansion of the electronic cloud of i is less and therefore 

its nucleus is more shielded compared to instant to. 
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(a) A short instantaneous, ry y(t 

Time ty. 

(b) 

(b) A long instantaneous, riy(to), 

between tno interacting atoas i and 

J results in a strong dispersion 

attraction between their electron 

Clouds that could mean high "exposure" 

or "accessibility" of i to je 

between two interacting atoms i and 

j results in a weak dispersion 

attraction between their electron 

clouds that could sean low "exposure" 

or ‘accessibility’ of i to j. 

3.1 Two mutual orientations of two interacting molecules.



Other possible interpretations of situation at ti, are the 

"less accessibility" of the solute atom to the solvent atom, 

"less exposure” of the resonant nucleus to the field of the 

solvent atom, and, as Homer and Percival put it, less steric 

accessibility of the solute resonant nucleus to the encounters 

by the solvent atom. 

The implication of adopting the afore-mentioned quotations of 

different authors as possible interpretations of the situations 

(a) and (b) (Fig 3.1) is that "accessibility", 

"degree of exposure", and, "steric accessibility" stem from the 

relative rotations of the two polyatomic molecules. 

Therefore, it is by the formulation of the effect of these 

mutual orientations that a steric factor, a site factor, or a 

site-site factor will be incoporated into the effective field 

SE=> Produced at ‘i’ by ‘3'. 

Fixing the intermolecular distance at R while molecules rotate 

is tantamount to separating the translational and rotational 

motions. The separation of different molecular motions is based 

on their relative time scales, which has a key role in the 

formulation of the effective field, and is discussed below. 

In a magnetic field of .2T, for example, the precessional 

period of the nuclei is of the order of 107-7 s, because; 

w - Bo gu e/ (2mm) = «2 (T) 4.79107 (T7287?) 

® = 9.58x10° s~*, or the period is; 

Te 2K/w = 6.56x10-7 5 

This is a very much larger period compared to that of 

90



electronic, vibrational, rotational and translational 

motions(212)5 

Motion, + Electronic 1 Vibrational 1 Rotational : Translational 1 Precessional 

Period sy 910-24 “ig; ~ (9-"* Pee l0t ay 19-*2 ' 10-7 

Therefore, one can assume that these motional effects average 

out before the NMR signal is picked up. The very narrow liquid 

states NMR lines compared to solids, for example, is a 

well-known result of the difference in translational and 

precessional (and other) time scales. 

To see how the difference in the time scales simplifies the 

derivation of the effective field, (1.49) is re-written as; 

  

FS Myfted. ras lted . my (te) E (teytre) = —————_______ it) — (252) rite) ratte) es 

where E(te,tre) is the oscillating field produced at ‘i’ by the 

oscillations of the electrons of ‘j’, while they are a distant 

Fia(tre) apart. Note that the time dependence of the oscillating 

moment is electronic (te) and that of ris is rotational, and 

the field is a function of both. 

According to the relative electronic and rotational time scales, 

before ris(tre) can change, the electrons in j have performed 

10% oscillations, averaging out j‘s moment to zero, <m(te)> = 0. 

This in turn results in a zero average field while the distance 

between i and j is still ris(te). We know from Chapter 2 that 

although the mean moment is zero, its non-zero mean-square 

value gives rise to a mean-square field at i while the distance 
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is still ris(te). Putting this differently, at any rotational 

instant of time the buffeted atom experiences a finite field by 

(1.50) 

CEB (tre) > = 2 dmB>4 rise (tre) 

  

Note that the electronic time dependence of the field has been 

averaged out while the rotational dependence still exists. 

Now the effect of the vibrational motion can be considered. 

This motion is about 100 times faster than the rotational one, 

and therefore at any ri, distance the corresponding 

bond-length (or bond~angle) will average out at their observed 

equilibrium values, which are used for the calculations of the 

centre-of-mass to the atom distances, d’s, in Fig. 3.1. This 

averaging is in fact equivalent to the rigidity of molecules 

(see sec. 3.5.2). 

Likewise, while the inter-molecular distance R, which is a 

function of the translational time, is fixed at R(ty+), the two 

molecules have assumed at least 100 mutual orientations, 

averaging out the pairwise distance riy(tre). The mean-square 

field in (3.3) therefore becomes; 

tris Otte) (3.4) 

  

where bars denote the space averaging and the field is a 

Space-time averaged field independent of both electronic and 

rotational time (but still dependent on the translational time 

to be discussed later). 
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From (3.4) one can see that the difference in the time scales 

has reduced the problem of finding the effective field to that 

of finding the average of the inverse-six'*-power distance 

between i and j. It is by this averaging that the incorporation 

of the molecular structure parameters, d’s into the formulation 

of the effective field is expected. 

Reference to Fig. 3.1 shows that in the limit of d. =d, = 0 

where molecules become points, or equally, when R >> dy and d, 

the averaging reduces to R-«; 

erm if R >> da and dy 
<E=> = 2 €92>4 R-* (3.5) 

or d, = d, = 0 

In the absence of such conditions, however, there must be a 

factor, F, that accounts for the rotation of the two molecules 

such that: (ry (te)? = F R°°. Furthermore, from the condition 

of (3.5) the functional form of this factor may conceivably be 

given as: F = f(d.,ds,R), and the averaging of (3.4) as; 

SES> = 2 <m=>4 R-* F(da da5R) (3.6) 

  

Average Inver-Six-Power Distance 

The mathematical derivation of the functional form of F, by the 

existing conventional methods, which has proved an arduous task 

detracting from a true understanding of the physics of the 

problem, is confined to Appendix 3, according to which F is 

given by; 

F = fo + fa + fa + fo + fo + .--, where Bel) 

toned 
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14 <ds* + die) + 100) di=d5= 
  

R* 

SO) (G24 4 d5e) #586 Kdstda= + demas) 
  fe = 

Re 

So, (de" 247059) + 660d. =dae Hidatdsslet 1922 dec-da+ 
  fo = 

RO 

  

This analytical form of the F factor or the bu 

is a function of d, namely the bond lengths and bond angles 

of the molecules, and R only. 

Note that F is a dynamic factor which fully determines the 

orientational dependence of any interaction involving free 

rotations of polyatomic globular molecules. 

The concrete meaning of (3.7) is simply that in general; 

{ris-@} > R-® by a factor of F. For two inert atoms that is, 

isd, =d, = 0, F = 1 and (3.7) reduces to (1.50). 

When the two molecules are identical F reduces to the Raynes 

site-site factor[206], and when either of the molecules is a 

sphere (point) F becomes the Rummens and Bernstein(17,80] site 

factor; 

Falds = ds,R) il Raynes site-site factor 

Fe(di = 0,d,,R) = Rummens and Bernstein site factor 

where F, denotes F until term x. 

Expression (3.4) formulates the effective field of a single ‘j’ 
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at ‘i’. If however the solvent molecule consists of X, species 

of kind j they would all produce the same effective field at i 

and by assuming that their fields are additive (see sec. 3.5.4) 

the mean-square effective field at i becomes; 

  

= 2X, <m@>, R7* FCi,d) 

The term species is used for identical atoms with identical d‘s. 

Identical atoms with different d values, that is similar atoms 

at different locations in a molecule like H of CHs0OH in CH= 

and OH groups, are different species. 

For a solvent molecule with different buffeting atoms the 

effective field, which is a pairwise field between one solvent 

molecule and the solute, can be written as; 

  

rank (ag 3) (3.8) 

  

The total field of Z. solvent molecules surrounding the 

solute at a fixed R, assuming the additivity of the fields (see 

sec. 3.5.3) becomes; 

    *(Total) = 2 Z. R7* £ Xa <m Rtiga) (3.9) 
4 

Inspection of (3.9) shows that it incorporates three adjustable 

parameters and one contentious factor. These are Z,_, the number 

of nearest neighbours in the liquid, R, the liquid state 

  

inter-molecular distance, <m@>,, the bonded atom moment, and 

the buffeting factor F. 
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23. Adjustable Parameters of the Buffeting Field 

In the liquid state (unlike the solid) the exact number of the 

nearest neighbours Z, and the nearest neighbours distance R 

is not generally known. Therefore their values can be adjusted 

to fit the experimental data for which the theory is given. 

This for example, is the case with the Debye-Huckle thoery 

where the ionic size and the solvation number Z are often 

treated as adjustable parameters[207,208]. 

The purpose of this section is scrutinization of the parameters 

of (3.9), by which it is hoped to fix their values or find 

simple expressions for them. 

3.3.1. Slow-Convergent Buffeting Factor 
  

As successive f terms of the buffeting factor (3.7) show, this 

series is a rapidly increasing function of d/R. 

Rummens{i7] warns about the divergence of series like F. 

Raynes(206] combines his site-site factor, Fe, with another 

series (see sec. 3.3.3, and Chapter 4) to quicken its rather 

slow convergence. 

More recently the risk of the divergence of similar series is 

avoided by using its first three terms and introducing a 

"damping factor"£202,209]. 

Here we consult the vivid language of numbers for the discussion 

of the divergence of the buffeting series. This has been made 

possible by the CMONTE CARLO] method developed in Appendix 4, 

the results of which are compared with those of the analytical 

96



series (3.7) in table 3.1. The derivation of the analytical 

forms of terms beyond fo, for di # ds # 0, is a formidable 

task because of the host of integrals involved; over 200 for 

the fe term alone. 

Note that the g ratio is defined as; q = (di + dy)/2R. Note 

also from the table that, first, the F values are finite, for 

the range of q values, and therefore F meets the condition of 

the convergent series. Second the error of using the analytic F 

increases with the increase in q. Third, the analytic series is 

not reliable for gq > .36 and a best fit to the CMONTE CARLOI 

F-q curve must be used, which is given in Appendix 4 (Eq. A4.3) 

and is valid for 0 « qg ¢ .43, 

The q ratios depend very much on the values of R (yet to be 

defined). Fig. 3.2 shows the graphs of F., Fa, and the 

numerical F values as a function of q from table 3.1. It also 

shows where typical pure systems lie in terms of their q values, 

which are calculated using their largest d values, that is the 

peripheral atoms’ d values given in table 3.4, and (3.17) for 

their R (see sec. 3.5.3). 

The F values in table 3.1 however give the amount by which 

(ris 93 is larger than R-*. For gq = .428, for example, the former 

is about 40 times larger than the latter, stressing the fact 

that molecules at short inter-molecular distances cannot be 

mistaken as spheres. 
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Table 3.1. Comparison be an the Numeri 
      

  

CMONTE CARLO" F 

  

Nuaber of trials fo=l ' Error’ 

dy dy R 10000 100000 re fa fa fa fn q ke 

0 0 ie 1,000 1,000 1.000 +000 +000 +000 +000 +000 0 

1 1 5 1.576 1,563 1,665 +400 +205 053 +006 +200 -6 

2 2 10 1.595 1,566 1,665 +400 +205 +053 006 +200 -b 

2 2 7 2771 2.757 3.239 B16 853 A52 AMT 286 +1) 

3 3 10 3.121 3.238 3.716 +900 1,037 +606 72 «300 AS 

Zi 2 6 4,989 4,873 5.234 1att 1,580 14h +401 2333 of 

3 3 9 4.510 4.639 5.234 1AMt 1,580 Laat AOL +333 13 

1 3 6 5.346 5.922 5.746 1,389 1,580 1.214 +563 333 3 

4 3 10 6.526 6.224 6,305 1,250 1.912 1.534 +610 «350 at 

2 3 7 6,649 6.793 6,864 1,326 2.065 1.737 735 2357 -1 

3 3 8 8.012 9.597 8,280 1,406 2.531 2.314 1,029 375 ‘4 

2 4 8 10,886 10.207 8,609 1,562 2.492 2,360 4,193 +375 15 

3 4 9 11.790 11,844 9.760 1.543 2914 2,987 1.415 389 17 

4 4 10 20,711 15,103 11,009 1.600 = 3,277 3.408 1.725 +400 27 

3 3 7 48.972 38,366 15.306 1,836 4.318 5.155 2.994 428 40 

  

#: Each numerical integration by the CHONTE CARLO) program for 100,000 trials has taken 100 wins. on the 

{9826 HEWLETT PACKARD] computer. For 10° trial it takes about 18 hrs -400 hrs on the Sinclair ZX Spectrun- 

giving the sore accurate results of F (4,4,10) = 15,729, F (3,3,8) = 9.108, F (3,3,7) = 39.267. 

+: Error = (Frau ~ Fan)/Fuu x 100 

  

Number of Nearest Neighbours in the Liquid State, Z, 

Expression (3.9) shows the influence of Z. on the calculated 

values of any equilibrium property based on the mean-square 

field. 
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Fig. The convergence of the F series. A comparison between 

  

the numerical and analytical buffeting factors as a 

function of q = d/R. 
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The number of nearest neighbours in the solid state Z., is 

well-known and depends on the packing of molecules. For example 

for face-centred-cubic (fcc) or hexagonal close-packing (hep) 

structures Ze = 12, and for body-centred-cubic (bec) Zm = SL691. 

Organic molecules are the main concern here for the solid state 

of which Kitaigorodsky[210] gives the value of Z4 = 12 as the 

commen value. sometimes the specific shape of the molecule 

provides packing with Zs = 14 or 103 like Na(CH=)., (bee) and 

urea O=C(NH=)s (tetragonal), respectively(2101. 

It may be noted that a bee structure for Na(CHs). has 14 

nearest neighbours compared to Zs = 8 of inerganic compounds, 

and also, a tetragonal structure, which is similar to a simple 

cubic structure with Zs = 6, shows Zw = 10. It is not therefore 

difficult to accept Z. = 12 for Sn{CaHaCHs) a, Sn (Cals) a, 

Sn(CaHaOCH=) 4 with tetragonal structures, and, Sn (CoHalllicHay) 

with monoclinic structure. 

In fact Zs = 12 is explicitly given for Sn(CaHs)« (tet.) by 

Kitaigorodsky. We have drawn a parallel between these 

structures and those of C(Et)a, Si(Et)a, Sn(Et)a, and Si(OEt). 

in table 3.2 to arrive at their Ze. 

The significance of the knowledge of Ze for predicting Z.. is 

that there is a simple approximate relationship between the two 

given by Moelwyn-Hughes(211] as: 

Les Leg) OT = UA He (3.10) 

where He and Ha are the heats of fusion and sublimation 

respectively. 
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The underlying assumption in the derivation of (3.10) is the 

equality of a "pair potential" -which can be related to Hy and 

H.- in the solid and liquid states. This implies that it is 

the Z that changes in transition from the solid to liquid state, 

and not R. This apparently is an experimental fact. For water, 

for example, R changes from 2.82 A at 4 °C to 2.94 AL212] at 

200 °C, at constant density. X-ray diffraction of liquid white 

phosphorus P4, at 48 and 220 °C shows that the first P...P 

nearest neighbours distance hardly changes from 3.9? AC213] over 

this temperature range. This is also the case with Hg (see 

below). 

Expression (3.10) may be re-formulated in terms of HL and Hr 

as; 

Lo Zewt Hof tHS £ Ae) F (3.11) 

The two expressions give similar results. Table 3.2 contains 

Ze and the corresponding Zi. found from (3.10) and (3.11). 

However Z, depends on the temperature and more on the number 

density of the molecules in the fluid. The values given in this 

table compare rather well with those found by the x-ray method, 

for example, Z. = 11.4 for liquid methane[214] and 7 for 

Hgl2143; 

X-ray diffraction results for liquid Hg* 

Temp. °C -36 18 150 

Ze Fos 6.0 Tel 

RA 3.03 3.00 3.10 

*: The data are obtained by different experimentalists 
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Table 3. The Solid and Liquid States Next Nearest Neighbours 

  

Ze Packing He Hy Les 

Species £69] KJ/molel215] (Sudo 

He 12 hepl216] » 008 » 084 10.9 

He 8 becl217] 2008 » 084 7.3 

Ha 12 hep «177 «916 10.0 

Ha 12 PoCk2i¢.) «177 “W16 10.0 

Ne 12 roe «330 1.80 10.0 

Ar 12 wes tal Lear 6.50 10.0 

Kir 12 fcc 1.64 9.905 10.0 

Xe 12 Tie 2.29 12.6 10.0 

Rn 12 hee 2.89 16.7 10.0 

Hg 8 bec 2.29 59.3 Teh 

H20 4 teth* 6.01 45.05 Sak oe 

CHa 12 fecl218] «941 8.18 LOL 

CF. 12 monf219] 2699 12.59 11.3 

co. 12 fecl220] 8.33 25.237 8.0 

CS2 12 foce 4.39 26.73 

SiFs 8 bec (221) 9.50 26.48 5.9 

SF. 8 bee l[216) S.o1 23.85* 6.3 

CCla 12 feel2223 2.47 30.00 11.0 

CoHie 12 hex £223] -606C158] 30.98f158] 11.8 

CoH, 12 ort£224] 9.940158] 42.86 aa 

CaHisx 12 fcecl225] 2.630158] G$2.735£1581 11.0 

CiMe) 4 12 fecl226) 3.25C158] 23.610158] 10.5 

Ci(Me) 4 12 hex£227] 3.25 23.6 10.5 

Si (Me). TZ tet= 6.89 24.235 9.3 

Pb (Me) 4 12 tet* 10. 32.93 9.9 

C(Et) 4 12 tet, bcc™ = = = 
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(Table 3.2 tinued) 

Si(Et)., 12 tet. 7: ii Zz 

Si(OEt), 12 tet, = = = 

  

as teth (tetrahedral cubic); mon (monoclinic); hex (hexagonal); 

ert (orthorhombic); tet (tetragonal). 

be By analogy with CO=. 

c: By analogy with Si(C.Hs), with tet. structurel210] 

d: By analogy with Pb(C.Hs), with tet. structure[210] 

e: By geometric analogy between C(SCHs)4 and C(CH2CH=) 4f2146]. 

Structure of C(SMe)s is tet. according to Ref.[216] and 

bee according to Ref.(210]. 

f: By analogy with C(Et),, or, Sn(C.aHaCH-s) a. 

g: By analogy with Sn(C.HsOEt) 4. 

*: X-ray experimental value is about 4[£212]. 

+: Heat of sublimation used with (3.10). 

In the light of this table one can examine (3.12) which is 

usually used in NMR studies for Z.£17,159,228]; 

Le OK Me eer) asec (3.12) 

This expression finds Z. = 4% for pure liquids and Z_ = % 

when the solute is considerably smaller than the solvent, 

re >> rull7]. Derivation of (3.12) is based on the surface 

areas of the solute and solvent. 

It gives small values for small solutes in large solvents, and 

large values for large solutes in small solvents; 6 for CH, in 

SnEta, and, 19 for SnEts in CS= or 16 in CCl4. Such values 
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necessitate the collapse of the solvent structure around the 

solute. 

It is more likely that the small solute will fit into the 

abundant cavities or voids of the solvent. Therefore the Z_ 

value is determined by the structure of the solvent and not the 

solute. For large solutes in small solvents on the other hand, 

ZL > 12 (excess close-packing around solute) means that the 

large solute with its low surface charge density is capable of 

attracting more solvent molecules around itself and restricting 

the exchange of the solvent molecules between adjacent solvent 

layers. This is also unlikely, as the solvation number for Cl 

(r = 1.81 A) with its strong local ionic field is between 6 and 

7C212], whereas (3.12), based on the difference of the sizes of 

the solute Cl and the solvent H20, gives Zi. = 11. 

Comparison between the values of Zs and Z_ in table 3.2 shows 

that one can relate the two in a simple practical way as; 

Soe fet (3.13) 

This gives the fixed value of 11 for organic compounds 

considered here. This approximate rule agrees substantially 

with the x-ray data as was mentioned for water, mercury, and 

methane, and is observed for nitrogen (Z. = 10.0), oxygen 

(ZL = 10.3) bromine (Z._ = 12)£214] and white phosphorus 

(ZL = 7); see Chapter 5. Evidently the only exception to this 

rule is liquid chlorine (Z. = 6, Za = 12); see Chapter 5. 

It should be noted that the experimental values for Z. are the 

areas under the pair-correlation function g(r) data curves 
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(to be exact, the curves of n(r) = 4Kr=@ gir)) which could not 

be obtained with great precision. For P,, for example, Z_ is 

somewhere between six and eight. 

3.3.3. Nearest Neighbours Distance in the Liquid State 

Another adjustable parameter of (3.9) is the liquid state 

intermolecular distance R. The choice of R, because of its 

inverse-six power dependence, affects the results of (3.9) 

considerably. The scrutiny of this subject is therefore 

worthwhile. 

The process of the separation of molecular motions was 

continued to (3.7) or (3.9), where R was denoted without time 

dependence. The time dependence of R is however necessary as 

the translational motion is fast enough compared to the 

precessional one for R to be averaged out before the MNR signal 

is picked up. Therefore (3.7) or (3.9) should have been written 

as} 

SE=(tx)> = 2 R-*(t-) 

  

Now there remains one further averaging to be performed on the 

mean-square field. This is usually done by the introduction of 

the Boltzmann factor; 

  

aE § SE=(t+)> exp(- U/kT) d7 (3.14) 

  

i 

  

where the second bar on ¢ stands for averaging over tr, 

the translational time. 

This process has been used by Raynes et al[78] in their binary 
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collision gas model. Tackling this integral entails the 

knowledge of U, the intermolecular potential function, for 

which the LJ (6-12) function is used. The solution of (3.14) is 

given in terms of yet another polynomial Hi, as a function of 

KT and the emperical LJ parameter © (@ = Umnan). 

The problems of using such an averaging approach are numerous. 

First, the troublesome LJ parameters ro and e€, which are 

obtained by fitting the LJ potential to other experimental data, 

viscosity for example. Second, incorporating the uncertainties 

of these parameters into the buffeting field expression. Third, 

  the loss of the simplicity of <E=> by incorporation of H, 

series, not to mention the inconsistency of using LJ central 

potential function which treats polyatomic molecules as spheres 

(see sec.3.1.1). This is in fact the inconsistancy in the 

Raynes site-site factor theory. He takes advantage of the 

resulting H, series to accelerate the covergence of his 

site-site factor by a factor of about two (see Chapter 4). 

Alternatively one can use equations comprising the radial 

distribution or pair-correlation function of the solute-solvent 

system g(Ris), with an instantaneous intermolecular distance 

of Razl229]; 

<ROT> = 400 f Rit "=? gtRis) GRas 

The pair-correlation function may be determined for some simple 

liquids, with serious technical problems (pp 836-854 Ref. 212), 

from x-ray or thermal neutron diffraction studies{230]. Kielich, 

by resorting to the Kirkwood[231] radial distribution function 
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for rigid spheres of diameter d and volume v =X%d"/6 for 

whichl232]; 

O for Riz <d 

  

g(Ras) = 

1 for Raz > d 
derives; 

4xp 
<R-"> = (/ OV) (0 - 3003 

ieries 

For n = 6 and in terms of molar volumes V this may be written 

as; <R7@> = 4x7 (L/V)7/18 = 2.2 (L/V)*. This average 

inverse-six-power distance, which may be directly used, gives 

values about 12 times larger than a realistic intermolecular 

distance. For example, (3.16), written as a function of R-*, 

gives .182 (L/V)=. Besides, this approach is not suitable for 

mixtures. Kielich{€233] also uses a radial distribution function 

with tha LJ potential to arrive at an average R~® very similar 

to that of Raynes et al. 

Instead, we resort to the method of obtaining the average R 

from molar volumes. This method has been used, by Onsager for 

his cavity size, and with minor changes by Bernstein and 

Raynes{79], and Rummens et al(159]. 

The effective molecular radius can be deduced from the average 

volume available per molecule, Vm = (M/P)L, by the following 

expressions; 

a: The available volume per molecule[228]; 

re = .238 Va (3.15) 

b: The available volume per molecule with a solid like closed 

packing structure, with the incorporation of a packing factor 
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into (3.15)3 

r3 = .297 Va £2281 

rs oe 2293 Ve £17,159] ' (3.16) 

c: The available volume per molecules in a liquid with a random 

distribution of molecules. A probabilistic approach first 

used by Herts£234] in 1909 and later by Jaffe (Chapter 2) to 

improve the Onsager’s cavity size (3.15). The Peauit of thin 

method in terms of Vu may be written asy 

re = 17 Vn (3.17) 

Although based on random packing of particles (3.17) is 

equivalent to the effective radius of an orderly fee packing 

with r= = .1767 Vnyl69). 

Which is the most suitable expression for the effective radius 

and the intermolecular distance given by R= rv +ru ? 

Table 3.3 serves to answer this query by giving the values of R 

according to (3.15-3.17) using the quoted molar volumes, the 

vdW distances R., the empirical LJ distances Rus, and the 

experimental solid state distances Re. 

The vdW distances are found using the vdW radii, rl(235]; 

Atom H F 0 cl 8 Hal f-thickness 
of aronatic ring 

roa 1.15” 1.35 1.4 1.8 1.85 257 

#1 This is the in-between value of 4.1€235) and 1.20158). 

and the d values. For CH, for example, using the C-H bond 

length of 1.094 A, one finds RY = 2 (1.15 + 1.094) = 4.488 A. 
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We note that a simple trust in RL = 2 (rl +d) also fails 

for non-globular molecules. For benzene, for example, one finds, 

RL = 2 (1.15 + 2.46) = 7.22 A, whereas the solid state 

structural studies show that aromatics tend to arrange 

themselves so that the hydrogens of one molecule are near the 

K-electron of its neighbouring molecule{[236]. Based on this 

fact one finds RL = (1.15 + 2.46 + 1.7) = 5.31 A. In the liquid 

state where benzene molecules rotate freely one would expect R 

to be in between the two RL valuesy R = (7.22 + 5.31)/2 = 6.26 f. 

This is in agreement with Ris = 6.3, and R = 6.18 A we have 

found using its heat of vaporization (see Chapter 5). 

The same argument goes for CS2 in arrangements (a) and (b)¢: 

Ca) $Cs...98 C8 RV = 2 (1.85 + 1.550) = 6.81 A 

S 
(b) C...8 6S Re = 2 (1085 4 1568 4+ 1.7) = 8. 12°48 

$ 

where ry = 1.7, by analogy with benzene, is used for the half-— 

thickness of the X4-electron of C=S bond. The mean of the two 

extremes, RL = 5.96 A, is in agreement with 5.86 as found in 

Chapter 5 from its heat of vaporization. 

For water arrangements (a) and (b) give the Rv entries of the 

tables 

H H. .958 
H—-O,..0—-H NOH OH 

i Nu 

RL = 2rv(Q0) = 2.8 Ry = 1.15 4+ 2.4 40,958) =) 3,508 

(a) (b) 

The value of 2.8 A, agrees with microwave spectroscopy result 

of 2.98 A €237). 
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Table 3.3. Comparison between Nearest Neighbour Distances 

  

Y ce®/aole da Re* R, Rus* conto) Ritak a Aumasee 

Species Solid or at 30 (Expt.) A A A (3.17) (3.15) (4,16) 

1159] (161) 

He 19. 4341240,212] 0 2.971242) 2.44240] 2.8731212,220) 3.53 3.94 4.25 

He 2.762171 0 3.7702171¢ = a 3.8200 4.27 4.60 

Ne 14.0,02403 9 3.16£217,243) 3.201240) 3.70 316 3.54 3.81 

fr 24. 1261240] 9 3, 76£217,244) 3.841240] 3.89 3.79) 4.24 4,56 

kr 27.9051240) 0 3,99(217,245) 3.901240] 4,05 3.98 4.45 4479 

Xe 34. 76u1240] a 4,330217,245) 4,36(240] 4,55 4.36 4.88 5.25 

Rn 50.45.1240] 0 : = = 4.85 5.42 5.81 

He 23.31.0169] 3730158) 3.7812403¢ 3.05 3.27 3.75 419 4.50 

Ha 19.824[69) 69580158) 2.821212) 2,80,3.51 2.97 355 3.97) 4.27 

CHa 30.94.1679) 1.090158) 4.49(212),4.17£218] 4.49 4.280159] 412 4.6 4696 

SiF, 48.00.1247] 1.560224) 4.686221) 5.82 5.561246] 4.77 5.83 6.28 

CF, 66.801158) 1.330241) - 5.36 5.276241 ,246) 5.32 5.95 6.41 

Fe 77, 700158) A.S702411 - 5.84 6.630241, 246) 5.6 6.26 6.74 

(Sa 610158) 1.561235) - 511,682 4.98 5.16 5.78 6.22 

CCl, 97.90.1659] 4.760158) 5.91222) TAS 6.481159) 5.83 6.52 7.02 

Coe 77,28 ,{69) 2.46 iS 5.31,7.22 6.320159) 5.59 6.25 6.73 

Cola 109, 440159) 2.219 6.2(225] 6.43 6.891159) 6.27 7.02 7.56 

SiCl, 416. 50159) 2.170158) - 7.4 7.090159) 6.40 7.46 7.78 

CoFe 117. 40165) 27° = 5.75,8.1 0 - 642 7.49 0 774 

Cite), 131.4201593 2.158 6.211226) 6.53 if 6.67 7.46 8.03 

Si (Med 146,520159] 2.50 = 7.23 6.781159) 6.92 7.74 = 8.33 

Ge(He), 438.1901593 2.55 os 7.23 6.700159) 6.78 7.59 8.17 

Snie), 139.520159) 2.73 ° 7.69 6.840159) 6.80 7.61 8.20 

Pb (Me), 135. 930159) 2.83 - 7.89 6.960159] 6.74 7.548 = 8.12 

ClEt), 171.9127) 3 = 8.3 . 7.30 8.16 8.78 

SiEt), 190. 400159] 3.25 2 8.73 8.20159) 7.55 8.44 9.09



Table 3.3 (continued) 

Sn(Et)s 198.127} 3.5! : 9,3 Ss 7.65 8.55 9.21 

a: Except for H20 and 4.49 A for CHs the quoted Ry values are calculated using the cell length, a, data from 

quoted Refs. and; Ra(fcc) = a 2°/2/2; Re(bcc) = a 3*//2; Rylcubic) = a/2*/? from Ref.[69,pp 536-540). 

br Rus = Fete * 2*/%ro = 1,122 rolibi). The value of Ry = 1.09 ro is also suggested(250]. 

cz Re = 3.77 A is for a bee He at 0 °C with the quoted voluse. 

ds Theoretical values of 3.69(248] and 3.49 AC249] from differential scattering are also available. 

e: This is the mean of d = 2.49 (equitorial) and d = 1.93 (axial) hydrogens{159). 

f: Calculated as explained in Appendix 5. 

g: The d values of X(Mebs and X(Et), systems belong to the peripheral hydrogens. The d values of other atoas 

in these aolecules cam be found in Appendix 5. 

The Ry value of CCl4 (and SiCl4) is not in agreement with the 

solid state value, possibly because of special arrangements of 

this molecule in the solid state, or over-estimation of rv 

value for chlorine. Zimmermann gives parallel (R = 4.7) and 

anti-parallel (R = 6.06) arrangements for the liquid state of 

CCl4 after failing to describe its experimental 

pair-distribution function(238], the mean of which, 5.4 A (also 

given in Ref.£€239] as Re) is considerably smaller than the 

solid state experimental value of 5.9 A. 

As was mentioned previously the liquid state inter-molecular 

distances are similar to the corresponding solid state ones and 

the results of table 3.3 show that (3.17) in general, gives a 

more realistic estimate of these distances from molar volumes. 

Therefore on this basis and also on the basis of the further 

evidence found in Chapter S, where (3.9) is used for the 

Prediction of 0.4 and heats of vaporization, we choose (3.17). 
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It is worth noting that the Onsager’s form (3.15), which has 

often been criticised for being a bad approximation, gives 

better estimates compared to (3.16) with a packing factor. 

3.3.4. Mean-Square Moment of Bonded-Atom 

The cornerstone of the buffeting field expression (3.9) is the 

bonded-atom moment, <m#>4, without the knowledge of which 

(3.9) reduces, at its best, to a semi-empirical expression. 

Defining the properties of atoms in bond has proved to be the 

main obstacle of developing formulations for polyatomic 

molecules. 

Raynesl2061] in the paper on the interacting CH, molecules 

treated bonded atoms as isolated ones whilst realizing that 

",..this is a severe approximation since it is well known that 

the electronic environments of nuclei that are chemically bound 

are substantially different from those of isolated atoms." 

Let us use atomic polarizability and ionization potentials in 

the expression for the moment, <m=> = 3 IQ@/2 (Eq. A1.4), and 

contrast the values so found for molecules with those of the 

molecular moment, where molecular I and Q@ are used. 

For atomic (isolated) H and C we have; 

Species H Cc 

Q AFL2511 667 1.76 

I eVC158] 13.6 11,25 

<Masn 105% 21.77 47.52 

Hereafter all aosents are given in units of 10-** erg ca? , fesu-ce)? or D® 
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Treating hydrogen and carbon of methane, for example, as 

isolated atoms necessitates the use of these atomic moments in 

place of <m*>s in (3.9), and add to give; 

  

<m=>(CHa) = 4 

The molecular moment using molecular I and Q from table 3.4 

equals, <m#>(mol.CHa) = 79.6. The difference of about 69% 

signifies the fact that assignment of atomic moments to the 

bonded atoms conflicts with the molecular property. 

For He the molecular moment of 30 shows a discrepancy of 45% 

compared with the moment of 43.5 for 2 H atoms. 

Of course, the argument presumes the intuitive validity of some 

kind of additivity rule, according to which the sum of the 

bonded-atom moments balances with the molecular one. 

In the search for such an additivity rule one can begin with 

the fact that bonded atoms in molecules are electronically 

saturated, that is, they obtain the inert atom configuration, 

and therefore their electronic environment may be tentatively 

approximated with that of the corresponding inert atom. 

This is consistent with the Kitaigorodsky£210] statement that 

",..precision x-ray structure studies show that excellent 

agreement with experiment can be secured by calculations using 

isotropic atomic factors of x-ray scattering, and that the 

Pattern of electronic density can be represented with 

experimental accuracy, as the superposition of spherically 

symmetrical atoms", see Fig. 3.3a. 
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(a) 

(a) Cross-section of the contours of a 

constant electron-probability 

density in C,H, (carbons) as 

determined by x-ray diffraction data 

(from Ref. 208). 

(c) The pi-electron system in (Sz, 

(e) 

ae 

(e) The chlorine anion Cl”. 

  

(b) 

(b) The inert-atom approximation of the 

electron density pattern of Cas. 

KORE) 
NeAr is 

(d) The inert-atom aodel of C52, Each 

pi-electron is equivalent to 1/4 of 

the corresponding inert atom. 

(fF) 

arin \* KO 
(f) The inert atom aodel of Cl-, 

Fig. 3.3 Species and their inert atom counterpart.



The supposition of the correspondence of the molecular 

electronic environment, or density pattern, with that of inert 

atoms is tantamont to approximating a molecule with a 

collection of inert atoms, as far_as ¢m7> is concerned. This 

supposition is more graphically shown in Fig. 3.3b for benzene, 

and quantitatively may be put as; 

<M? oe = CD <M anert (3.18) 

where the summation is over all the corresponding inert atoms. 

The validity of the formulation of the inert-atom approximation 

(3.18) can be readily checked by using the values Of <m*o,qere 

given in table 3.4. 

For CH4, for example, by corresponding H to He and C to Ne, one 

finds from (3.18); 

<m™ oe = 4 CMe + SME bn = 412.111 + 20.45 = 68.89 

in better agreement with the molecular value of 79.6. The error 

has reduced from 69%, for isolated-atom additivity, to -13%, for 

inert-atom additivity. This is also the case for Hz where (3.18) 

Gives; <m™@>e = 2 <m= ine = 24.22, compared to the molecular 

value of 30.03. It is interesting to note that the inert-atom 

value compares well with the quantum mechanical value of 

<m*> = 3 aete@=/z = 13.5, where z = 1.2 is the ‘hydragenic atomic 

charge’ for bonded-H compared to z = 1 for isolated H atom{29]. 

Table 3.5 provides more evidence for the validity of (3.18) by 

comparing its results with the molecular (experimental) moments, 

(3/2) ItExpt.)Q(Expt.).



Table 3.4. Inert-Atom Moments 

  

Atom I (ev) Q (As) <M? >anert* 

252) £251) erg cm>x 1052 

He 24.587 = 204956 12.111 

Ne 21.564 «3946 20.450 

Ar 15.759 1.64 62.112 

Kr 13.999 2.48 83.436 

xe 12.130 4.04 117.773 

Rn 10.748 5.447 140.518 
  

# 4m?) (erg ca), (esu-ca)? or D? = (3/2) Hevixl.6022x10-'? ferg/ev) @ (ca). 

+: Estimated from a graph given by Gerrard(253]. 

Let us focus our attention on the first error column. What does 

not escape observation is the presence of large error of 

molecules with double bonds, 

CS, the X-electron of which 

such as, Na, Oz, CO, NOs, COs, and 

is depicted in Fig. 3.3c. 

Accounting for the existence of K-electron system, which 

affects the electron density pattern of a molecule, appears as 

a natural step in the refinement of (3.19). 

The moment of a K-electron pair appears to be half of the 

moment of the corresponding inert atom, so that (3.198) becomes; 

(3.19) Smo" = £ <m@>anere + (1/2) £ <m*>anert 
1 

Where the summatioms are now over the 0-skeleton and the 

*K-electron. 
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Table 3.5. Comparison between Molecular and Estimated Moments 

[dee ee eee Molecular parameters ---------- (ae Error* = (?)e Error 
nuaber_Holecule q ASC16) Tevii6) <n?) (3.18) {3519 

i He BL 15.43 30.04 24.22 “19 = S 

2 Na 1.74 15.58 65,22 40.90 vv 61.35 “6 

3 02 1.600254] 12.07 46.37 40.90 10 51.12 10° 

4 Cle 4.bh 11,48 127.19 124.22 -2 im Ka 

5 co 1.930691 14,010158,255] 64.76 40.90 “37 51.12 ea 

6 NO 2.99251) 9, 250166 ,255] 66.56 40.90 38 51.12 -23° 

7 HEL 2.56(69) 12. 740158) 78.41 74,22 5 = 2 

8 HBr 3.49169] 11,620158] 97.52 95.55 me = ca 

9 CO. 2,63 13.79 87.16 61.35 30 81.9 “6 

10 CS2 8.56 10.08 207.51 144.67 -30 206.78 0 

Mt SHa 3.64069) 10.42069] 1.25 86.33 i) = e 

12 Nits 2.14069) 10,15£255) 52.32 56.78 8 2 2 

13 CH, 2,55 12,99 79.6 68.89 -13 2: E 

4 CF, 2.891246) 17,810246,256) 123.55 102.25 -17 b 3 

15 SiF, 3.531246) 16, 940246) 135.36 143.91 6 b oH 

16 SFy 4.531246) 19,320246) 210.10 194,81 9-12 b 0 

17 CCl 10.24 11.47 282.35 268.90 -5 =; = 

18 Sidl, 11,4159] 11.6 37.37 310.56 = -2 os = 

19 TiCl, 14.99 11.70 A2LAD 331.88 9-21" * 1 

20 CoH, 439 11.65 122.88 113.56 9-7 = 

a Cole 10.87 9.88 258.1 268.03 4 = = 

22 Cots 10.39 9.24 230.85 195.37 -15 226.04 = -2 

23 CoFe 10.1257] 9, 970158, 258) 241,67 245.40 1 276.07 44° 

24 p-Cellio 14,27 8.44 289.40 284.71 = -2 315.38 a 

a CiMeby 10. 200159] 10, 360159) 253.96 247,58 = -2 = = 

2 Si (Med, 41.900159) 9.800159) 280.27 289.24 3 = S 

ar Ge(He)s 12, 81159) 9. ATEIS9) 282.09 30.57 10 = =



Table 3.5 (continued) 

28 Sn (He) « 14.41159) 8.361159) 344.90 349019 - - 

9 PbiMels 15.90159) 8.240159) 314.87 367.65 17 - ve 

30 ClEtD, 17.5¢ 10,364 435.78 426.27 -2 - - 

3 SitEt) 19.2159) 9.810159) 452.16 407.933 - - 

32 Sn(Et) 2.75 8.364 436.17 523.60 20 - - 

3B CHsCzCCHs 7.45¢ 9.940158) 176.91 154,47 -13 174,921 
  

as Error = ((m?)(Est.) - <m#>{aol.)J/(m?>{mol.)x100 

bs See the text for the true aosents. 

cs Calculated using bond polarizabilities given in Ref.(161). 

di Ruamens(!57) has estiaated I of Si{Et),, by extrapolation from data of related compounds, to be equa! 

to the I of Si(Mels, We have assumed this to be true for C(Me)«-CiEt), and Sn(Me)q-Sn(Et), pairs. 

1 See the text for the real errors. 

For CS2, for example, the inert-atom counterpart formula would 

be NeAr= from (3.18), that is, just the 0-skeleton, and NeArs 

according to (3.19), see Fig. 3.3d. Therefore, using the data 

from table 3.5, one finds; 

Table 3.5. Mole. CS2 <m?> = 207.5 

Eq. (3.18) en ecccences <M™> = <mM7>nel(for C) +2¢m=>%a-(for S) 

<m?> = 144.67 Error ~-30% 

Eqs (S019) scvcesencee SM™> = 144.67 + 2 £(1/2) <m2>a-] (for 2%) 

<m2> = 206.78 Error On 

The corrected values according to (3.19) and their errors are 

given in the last two columns of the table. Before 

consideration of the other observations of the first error 
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column a comment on the meaning and implication of (3.198) and 

(3.19) is essential. 

The frequent use of words "atom" and "inert atom" may give the 

impression that these expressions deal with atoms. On the 

contrary there is no implication of atoms in their concrete 

sense, but rather, atoms as electronic charges with different 

abilities to interact. Some lend themselves to interactions 

more easily than others. These are electrons with large 

"stretchability" reflected by their large IQ or <m?> values. 

For example, one electron of argon is five times more active 

than one electron of heliumy <m7>ae/<m=>ne_ = 62/12 % 5. 

When Ney.sHe. is given for CaHs, where the number of Ne exceeds 

that of C, the existence of some kind of extra electronic 

reactivity is acknowledged. 

It is not difficult therefore to extend the idea to ions, and 

instead of Cl~ write 1.25Ar, as the greater reactivity of this 

species with one extra electron than Cl is reflected by 1/4 of 

an argon moment; Fig 3.3e and f. 

In fact the relationship between the inert-atom moments and the 

Yonemoto @ values given in the next chapter verifies this 

extension and the value of 1/4 for a single electron. 

Discussion of all the informative aspects of the content of this 

table necessitates a long digression. 

Let us begin with molecules containing a benzene ring. It is 
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sometimes argued that molecules with a conjugated X-electron 

system show a particularly strong dispersion attraction due to 

the large in-plane polarizability of the *-electron(259,260]. 

An error of -15% (table 3.5) for benzene shows that X-electron 

system contributes to the buffeting or dispersion interaction 

by about 15%, and the 85% is attributable to the contribution 

of the Q@-skeleton. This is in agreement with the Muler and 

Huiszoon£2611] finding that for none of the polarizability 

components does the X-electron contribution really dominate 

over the contribution from the 0-skeleton while the t1-electron 

contribution is far from negligible. 

For a substituted benzene ring (3.18), with no K-correction, 

gives less error compared to (3.19), meaning that the X-electron 

mobility or polarizability somehow vanishes. For CaF. this can 

be understood, as the * electrons are drawn to the fluorine 

atoms. For this reason (3.18) is used in calculations involving 

substituted rings (see table 3.7). 

The next aspect to consider is the increase in the positive 

error of XMes and XEt4 systems with the increase in the 

metallic character of the central atom. 

The fact that the errors for SnMes-SnEts pair, and SiMes-SiEt, 

Pair are the same reinforces the presumption that the error may 

arise from the use of a full “mM >anere for the central atom. 

This has proved to be the case for mercury where the 

corresponding inert-atom moment, <m7>Rn, = 140.5, exceeds the 

atomic moment of mercury, <m7™>y4, = 127.66, by 10%. 
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However, these errors, because of the low-buffeting site of the 

central atom, namely d = 0, have negligible effect on the 

estimation of properties by, the buffeting field expression. 

Note that the large negative error of —21% for TiCl4, with a 

transition central metal distant from inert atoms in the 

periodic table, conflicts with the afore-mentioned suggestion 

according to which the estimated moment should exceed the 

molecular one. The negative error means that the central atom 

contributes more than its apparent (-skeleton. Addition of 

another Kr‘’s moment for Ti, which is equivalent to the 

contribution of 4 electrons, gives: 

“m7 >e = 331.88 + 83.4356 = 415.31 

with an error mf 1% which is given in the table. 

From the evidence of this section we come to the conclusion 

that the adjustable bonded-atom moment <m7>, in (3.9) may, with 

reasonable accuracy, be fixed at the known corresponding inert 

atom moment, given in table 3.4. 

However, the unexplained large errors of CF4 and SF.s, or, CO, 

NO, and O2 even after %-correction cast doubt on this 

conclusion to some extent. The investigation into these 

anomalies presented in the next two subsections is motivated by 

confidence in the validity of inert atom additivity expressions. 

3.3.4.1. Pauling " 3-Electron Bond" 

The inert-atom additivity expressions (3.18) and (3.19) appear 

to be sensitive to the pecularities of the chemical bonds. For 
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example, the moments of CO and NO even after X-correction fall 

short of the: molecular ones by about -—22%. This shortfall 

indicates that there is some unaccounted electron density in 

the bondings of these molecules. 

In 1931, Pauling(262] introduced the concept of 

electron bond", A...B, to help describe the electronic 

  

structures of a number of molecules such as, NO, NOz, and Oz, 

the ground states of which are paramagnetic at room temperature. 

Harcourt£263] displys the paramagnetic NO and Oa as; 

    
(a) (b) 

The value of 51.12 in the table was found for N=0; the 

Paramagnetic structure (a) demands an extra .75 <m*>ne for 

the three electrons; 

<m™>—e(N===0) = 51.12 + 275 <m2ne = 66.45 

which is almost exactly the molecular moment of 66.56 found 

from the experimental I and Q. 

For oxygen, Harcourt-Pauling representation increases the 

already positive error of 10% found on the basis of the 

conventional O=0 structure. Instead, we suggest the resonance 

structure; 

    
{c) 

according to which the exact molecular moment of 46.37 may be 

calculated; 

<m7>e(20...02) = 2 <m2> ne + (1/4) <m=>ne = 46.01 
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It must be noted that the Harcourt-—Pauling form (b) is 

challenged here by the form (c). A structure of type (b) 

necessitates a much larger polarizability for O2 than the 

observed value of 1.6 AS. This can be seen by the comparison 

between N=0 and ~Cs0* where the former has a polarizability 

1.5 times larger than the latter. 

Spectroscopy studies provide a more direct proof of the 

superiority of (c) to (b). A comparison of the force constants 

for Ne (triply bonded), CO (triply bonded, see (d) below), and 

Q2 shows that a structure of type (b); 10=20:, is unlikely: 

Species Nez co Oz 

Force constant N/m£264] 2294 1902 BLT 7 

For CO, a diamagnetic at room temperature, a structure of type 

{d) is suggested on the ground of its permanent dipole moment, 

the direction of which corresponds to (+) on oxygen{263]; 

~:Ca=0:* 

(d) 

This structure also explains the formation of complexes with 

transition metals such as Ni(CO),4. If structure (d) as 

compared with conventional C=0, for which 51.12 was found, is 

used, one finds; 

  <m? Se (3 Cee=02*) = 51.12 + (1/2) <m@ine = 61.34 

short of the molecular value of 64.76 by 5% compared with 21% 

of the conventional structure. 
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3.5.4.2. Fluorine Compounds and "4-Electron 3-Centre bond" 

The large negative errors in estimated moments of CF, and SFa 

together with the confidence in the reliability of (3.18) for 

small molecules forced us to verify the accuracy of the I and 

@ values given by Mohanty and Bernstein(244]. 

Evidently the fluorine derivatives of hydrocarbons have smaller 

ad than the corresponding hydrocarbons; 

Species CH, = (CHaF2, CHF) Cots (CoFa) Cola (CoFa) 

aA 2.55 (2.48(201], 2.4012011) 4.470254) (3.982011) 10.4 (10.1) 

Therefore the value of Q@ = 2.89 for CF4 is likely to be in 

error. More recent measurements{201] give 2.31 as compared to 

2.890241], and 3.67 A*[265]. 

By using this new value one finds; 

<m*>(Mol. CFa) = 98.7, 

to be compared with, 

<m73e = 5 <mB one = 102.25, 

with 3% error as given in the last column. 

For SF., on the other hand, the ionization potential of 19.32 

given in the table appears to be too large as this has the 

highest polarizability in the series CFs, SiFa4, and SFa. 

Siegbahn[(266] gives a more accurate value of 16 eV, therefore; 

<m2>(Mol. SFs4) = 174, and; 

Sm? se = (mre (for S) + 6 <m7>ne(for F) = 184.81 

with 6% error, which equals the error of SiFa. 
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The ionic or the "4-electron 3-centre" bonding of these 

compounds with structures of type (a), (b), and (c) is 

discussed in detail in Chapter 5, according to which the 

electronic charge from the central atom is shifted to the 

peripheral high-buffeting ones; 

Fst*F> FsSi*F- FaS*F- 

(a) (b) (c) 

This fact affects the estimated moments of SiF4 and SFa, as the 

corresponding inert atoms of the central and the peripheral 

atoms are different. It was mentioned that a single non-0 

electron is equivalent to +(1/4) <m*>,,4e-<, where negative 

is used for cations (lacking electron) and positive for anions 

(extra electron). Therefore one finds; 

<m@oe(FsSitF-) = .75 <m= >a (Sit) + 3 <m@>ne(F) + 1.25 <mPone (FO) 

Cm? oe = 133.49, <m2>(Mol.) = 135.36, Error = -1% 

and likewise for SFa; 

<m@>e = 174.39, <m?>(Mol.) = 174.00 Error = oO% 

Table 3.46 gives the estimated and the molecular moments of some 

more fluorine compounds (asuumed to be covalent). 

3.3.4.3. Inert-Atom Additivity Rule 

From the evidence of the last two sections one may express 

an additivity rule (omitting the (3/2) factor of <m*> ) as; 

I Q(Mol.) = £ IQ (inert) + (1/74) E Id (inert) (3.20) 

where the summations are over @- and non-@-skeleton. 
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Table 3.6. Analysis of the moments of Halofluorocarbons 

  

Index Molecule Molecular Parameters{201) (a>, Error 

Quaber Ley ge (a?) 43.18) X 

uM CFsCl 13.0 4S 134.47 143.91 7 

35 CFalle 12.3 6.56 193.65, 185.57 -4 

3 CFCls U9 8.42 240.47 227.2300 -5 

v7 CF2Br2 11.2 4.6 231.17 207.72 -10 

38 CrBrs 12 11.90 342.72 291.2 15 

39 CFoHCL 12.6 4b 139.10 138.36 0 

40 CFHCl2 12 6.5 187.20 180.02 -4 

a CHCl M7 4AB 124.95 132.8 6 

42 CHaCle 14 6,51 178.11 170.46 0-4 

43 CaF ofl 13 6.46 201.55 205.26 2 

oh CaF Bro WA 10.72 293.3 289.57 -1 

45 CoFsCls 41.8 10,47 296.51 288.58 = -3 

4 CaF SHI Br 41.2 9.37 251,86 262,70 4 
  

Non-0-skeleton includes the X-electron and the anion-cation 

systems. 

The implication of the second term is that one can define 

ionization potential and polarizability for electrons in 

a molecule. 

Given the molecular polarizability one can now estimate the 

ionization potential (IP) and vice versa from (3.20). The 

latter option is not attractive because of the abundance of 

methods for estimating molecular polarizability with reasonable 
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accuracy, such as bond polarizability, contribution 

polarizability, and Lorentz—Lorenz Eq., (1.2), which requires 

the refractive index and the density. 

The option of estimating IP however, is particularly intersting 

aS apparently there exists no prediction method for the 

molecular (Uisthionization potential. 

The ionization potential is a prime molecular quantity that 

measures the ease with which a molecule can be oxidized. The 

wide range of uses for this important quantity warrants the 

test of (3.20). 

Table 3.7 gives the experimental and estimated IP values by 

(3.20). The majority of the molecular polarizabilities are 

calculated using refractive indices from Ref.{C1581] and (1.2) 

the equation of which can be given as; 

(n2 - 1) 
Oe (A=) = 2.3964 VY ———— (3.21) 

(n= + 2) 

where the molar volume should be in cm*/mole. Combining this 

with (3.20) gives an equation for the estimation of IP from the 

refractive index and molar volume as it is used in the table; 

(ne 2) 
Lo SM* > anerte (3.22) 

(n= 4 2) fenen-a 
Te(ev) = 1.051 V     

Notice that the inert-atom moments as entered in table 3.4 are 

to be used in (3.22). 
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For the calculations of I for electron rich molecules, Os, SOz 

N20, and HCN, the following structures are used; 

H°C-=S=N N==k=0 

AN, hy 7 y /\. we is 10° 20: 

fa) (b) {c) (d) 

Structure (a) for Os is given by Harcourt. The traditional 

Lewis type sructures (e) used in (3.22) gives Ie = 10.47 ev, 

in disagreement with the experimental value, signifying the 

sensitivity of inert-atom approximation to the structural types 

of electron rich molecules. The traditional O=S=0 structure for 

S02 gives Ie = 13.6 ev. 

   
(e) 

It must be added that Se, Sy, and Ss are assumed to be purely 

covalent, inspite of the belief[267] that there are delocalized 

electrons in Se sulphur ring. This model of delocalized 

electrons, or as it is known ‘non-0Q’ electrons, explains the 

colour of sulphur. One could verify the existence of 

delocalized electrons in the ring if the experimental I for Se 

were available. This subject is further discussed when the 

solubility of Se in CSs is analysed in the last chapter. 

Notice the poor agreement between I(Esti.) and I(Expt.) for 

AsCl-s. From the comparison between the experimental ionization 

potentials (IP) of entries 74 and 76 together and then between 

73 and 75, one can see that I(Expt.) for AsCls is likely to be 

erroneous.



Table 3.7 Experimental and Estimated Ionization Potentials 

  

Index Species a Ae T{Expt.)  [(Esti.) Index Species a Ax I{Expt.) — I(Esti.) 
nuaber 43.21) 158) ey (3.22) _nuaber 43.21) O59) ev (3,22) 

Al HF® B13 16.06(214] 16.75 70 CHCl 8.53 11.42 10.68 

48 HI 5.199(69) 10.39f16) = 10.39 71 CHef1Br 7.58 10.77 10.44 

49 HO 1AMMT69) 12.6 12.87 2s 14.7 = 7.04 

50 Haz 2.336 “Who {1.61 73 PLis 10.4 A 9.94 

St Os 2.845(69) 12.3 11.96 TA PACaHta) s 34.66 7.36 7.34 

52 CHSOH 3.23(491 10.84 11.50 75 AsCls 11.68 {1.77 9.61 

53 S02 3.77469] 12.34 11.33 76 As(CoHs) 5 36.67 7.34 7.18 

54 N20 2.92169] 12,894 13.14 Se 16,69* a7 9.29 

55 Coad 41.098 8.51 8.10 78 Sy 19,47* 9.2 9.29 

56 CoHrof 11.045 914 10.35 19° Se 23,82 - 8.68 

37 CoHpNO2 12,920214] 9.92 8.55 80 = -PHs 4.i* 9.98 10.00 

58 (Me)2NCOH = 7.896 9.12 10.4 81 Cyclo-CaFa 6.72 = 15.18 

59 {Et)2HCOH = 11.455 8.89 10.4 82 Catal 12,251214] 9.07 8.36 

60 Colla 3.331491 4 10.69 83 HEN 2.487069) 13.8 12,99 

él Cota 4.2649) 10.4 9.72 95 CHsCH 4.27 12.2 11,52 

62 CsHs 6.29849) Med 10.47 86 © CHsCHACN 6.067 41.84 11.18 

63 Cotto 9.10159) 10.440159] 10,21 87 Nae 3.50 8.74 10.6 

of CHsBr 5.61% 10.53* 10.40 88 = (CHs) sN 7.767 7.82 10.23 

65 CHeBr2 8.68 10.48 10.14 89 (Et) SN 13.39 15 10,10 

bb CHBrs 11,84 10.4 994 90 (Calls) sH 27.24 6.86 8.72 

67 CsI 7.59 9.54 9.57 91 CaN 12.13 17 7.83 

68 CHeCl2 6,82 11.35 10,30" 92 CalaN 942 9.3 9.34 

  

#1 Refs.(49] and (214] give the erroneous value of @ = 2.46 A® for HF. 

+ T and @ of 64 to 71 are fron table 2.3, 

az Estimated using the polarizability contributions of S, P, and H given in Appendix 6, 

bs I(Est.) = 10.80 for d = 6.51 from table 3.4. 
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The inert-atom approximation that supplies reasonable estimates 

for the IP of many systems fails for some of N-containing 

molecules. This is where the Koompson approximation (the i-th 

IP is given by the negative of the i-th orbital energy) also 

fails. In fact this problem is associated with the N-lone pair 

and is fully discussed in von Niessen’s work(268]. 

From the inspection of the IPs of (Me)sN, and (Et)sN, however 

it appears as if the ionization is taking place out of the 

N-lone Pair orbitals, because the latter with about twice the 

polarizability shows the same IP. When N is attached to 

electro-negative groups there is a better agreement between 

I(Esti.) and I(Expt.). The exploration of these effects is 

beyond the scope of this work and requires quantum mechanical 

techni ques. 

This section ends with the estimation of IP for cyanogen CaNoa 

and dicyanoacetylene CaN= for which the Koopmans’ approximation 

fails, and which are considered by von Niessen. 

The polarizabilities of these molecules are estimated using 

that of (HCN - H) and ¢(HCCH - 2H) from the table. For H, a 

polarizability contribution of .43 A* is used (see the next 

section). In this way one finds the approximate values of; 

Q(NsC-C=N) = 4.1, Q(N=C-C=C-C=N) = 7.29 A*. 

which using (3.20) give; 

CaN2 C4N= 

(So 2OV esa nccncene I(Esti.dev 12.58 10,52 

Quantum Mechanical... I(Theor.)£268] 13.20 11.88 

I(Expt.) £268] 13.36 11.984 

130



(e
su

 
c
m
)
 

=x
 1
0
7
2
 

  

    
   

s SOO 

a 
ui 
S 

° % 
a % Hof ™ 
& 
- io 

a = 35 43 
mIeOo af 
ei oe 
N eis 

fal 87 

3 a 
a fo 
& ate 938 
5 0 Yo 

= al 

‘ 
a >| n ‘su = /00 pe 
a "oo 
- 19,06 
a & 

3 

5 3/2 
9 

, 9 

T T O T 

/00 200 J5O0O 

Estimated Moment ¢E">e, Eq. 3.19 (esu cm) *x10%° 

Fig. 3.4 Relationship between the molecular and estimated 

moments of selected molecules as indexed in tables 

3.5, 3.6 and 3.7. 
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The substantial agreement between the available experimental 

and estimated IPs reinforces the validity of the use of 

<M >anere in place of the bonded-atom moment <m*>4 in 

(3.9) and also estabilishes (3.20-3.22) as an approximate 

additivity rule for estimation of IP. 

A graphical presentation of selected molecular and estimated 

moments from the last three tables is given in Fig. 3.4. 

3.4. Polyatomic or Generalized London Dispersion Potential 

The workability of (3.9), now a combination of reasonably 

well-defined parameters, ZL, <m*>inerte, F, and R, needs to 

be tested. The calculation of heats of vaporization (HY) 

provides the most straightforward verification of this field 

expression. 

This section is devoted to the derivation of a polyatomic 

potential function that can be used to find HV. 

To convert a mean-square field to a potential form, use is made 

of the unorthodox relation (1.51) found in the first chapter; 

  

  Urs = — (1/8) (O.6E@>4 + Q1SEFs) 

This shows the mean mutual interaction potential between an 

atom i of polarizability Qi in the oscillating field of atom 

ji. In terms of the moment of j, using (3.6), this becomes; 

   Urs = — (1/4) Re@F Ci, G) CQasmeoy 

Implicit in this Eq. is the fact that i and j now belong to two 
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interacting molecules a distance R apart. Letting F(i,j) = 1 

and i = j, it becomes the London dipersion formula (1.48) 

between two identical atoms a distance R away. 

One immediately realizes the problem that arises when atom i 

becomes part of a molecule; Qs becomes the bonded-atom 

polarizability. 

Fortunately the concept of bonde-atom polarizability or as it 

is called the ‘polarizability contribution’ (Pc) is well-known. 

A short list of Pes and the isolated atom polarizabilities 

shows their difference (see Appendix 6 for a fuller list); 

Broup —-aa--n==a-==- Sh c C= Cs O(R-O-H) =F a I 

Pod APELBLI AB 3 58 Bb 59 138 2:98 Set 

Atomic @ A°1212) ate Ab = - 802 G7 2e 1B a 39 

By using the Pcs given here one can find accurate molecular 

polarizabilities, for example; 

Q<CHa) = 4.43 ¢------ atomic ----- > Q(CF4) = 3.16 

Q(CHa) = 2.65 <------ Pe --------- > QUCFs) = 2.45 

Q(CHa) = 2.66 ¢------ Expt. ------ > Q(CFa) = 2,31 

Therefore for Qa in (3.23) the Pc values should be used. 

For a pair of molecules with X, atoms of the same species i 

(belonging to one molecule) and Xs atoms of same species j 

{belonging to the other molecule) the pair potential can be 

written as; 

U(pair) = - (1/8) R-o XaXaF6i,gg) CQiém2, + Qatme>.] 

which for two molecule containing different species becomes; 
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Ulpeie) = = (1/8) R-o pp XekurG 4d) COnsmtes + admArad 
14 

This may be regarded as a Polyatomic London Dispersion formula 

It reduces to that of London for two interacting atoms. 

3.4.1. Heat of Vaporization 

Let us derive an expression for the heat of vaporization (HV) 

(or sublimation) in terms of the polyatomic pair potential 

(3.24) according to a method due to Moelwyn-Hughesl69, p.315]1. 

In a mole of compound with Z nearest neighbours, the number of 

neighbourly pairs that can be formed is (1/2)ZL. If it is 

assumed that the greater part of the total potential energy, 

that is the molar potential energy, is due to the immediate 

interactions between nearest neighbours one can write; 

U(molar) = (1/2)LZ U(pair) 

where U(molar) is the total interaction potential and U(pair) 

is the molecular pair potential (3.24). 

The U(molar) approximately equals the heat of vaporization when 

ZU is used; 

  

Hotkd/mole) ¥ -7,.53Z.R7° XaXaPi,g) [dad     

where R in A, Q in A*, <m=> in units of 107** erg cm? from 

table 3.4 give H. in KJ/mole. 

The preliminary analysis of the HVs given in table 3.9 serves 

to verify this expression. For R the solid state experimental 

values are tentatively used. The HY values according to the 
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JTable 3.8. Comparison between experimental and calculated heats of vaporization 

  

Compound h RiExpt.) A Hy (Expt.) Hy Ki/aole Hy Ki/aole Polyatomic Hy = q*=-d/R 
Table 3,3 _Ki/mole(240)__ Polyatomic (3.25) London (1.48) London Hy 

He ip 3.77 +100 O71 2091 1,00 0 

Ne Mt 3.16 1.740 1.34 1.34 1.00 9 

fr i 3.76 6,288 5.97 5.97 1.00 9 

kr Mt 3.99 9.187 8.49 8.49 1.00 9 

Xe iM 4,33 12.643 11.96 11.96 1.00 0 

Ro Mt 4.44e 16.76" 16.53 16.53 4.00 0 

He it 3.78 1,05* 1.25 1.38 +90 098 

CHa Mt AAT 8.898° 10.86 6.38 1.70 +261 

CCl, i 5.90 34.52" 34,52 11.34 3.04 299 

H20* 4 2.82 40.62¢ 19.32 7.55 2.56 +339 

CiMe)s, iM 6.21 22.36 25.46 TAT 3.40 346 

Cole it 6.20 32,73¢ 34.77 8.17 4,25 +356 
  

a: For bec He with 2, = 8. The good agreement between Hy(Expt.) and Hy(Cal.) is aarred by strong 

quantua effects in He. 

bs The value of R = 4.44 A is found from an excellent Q-R linear relationship for inert atoas without 

He. The Hy value is from Ref.{255]. 

co From Ref. {158} 

d: The centre of mass of water avlecule is not at oxygen. For the calculations do = .0045 and 

dw = .920 A are used from Appendix 5, Note that in table 3.3, for simplicity it was assused 

that do = 0. 

#: The q ratios are for the outer atoms, indicating the size of the aolecules. 
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London formula are also given by using UL (1.48) for U(pair) 

in the derivation of (3.25). 

The table, more than anything else, verifies the buffeting 

field expression and the main features of its underlying 

assumptions. 

There are many noteworthy aspects in this comparison. First, 

the departure of the polyatomic values from those of the 

sphere-based London values as the number of atoms in the 

molecule increases. As the gq ratio approaches zero, the factor 

F approaches unity and the polyatomic potential becomes the 

Lendon potential, in other words, London potential is the 

asymptotic form of (3.24). Note that the q values for these 

molecules do not exceed the limit at which the analytical F 

series is invalid. 

The inclusion of water in this table is heuristic. The 

calculated value is based on the assumption that the four 

nearest neighbours and the central molecule rotate freely. The 

table shows that the text-book(49,214] dispersion contribution 

of 19% for water originates from the London formula; 

7.55/40.6 »100 = 18.4; the polyatomic value is about 47%. The 

remainder of 21.3 KJ/mole arises from non-dipersion sources, 

mainly H-bonding. 

It is shown in Chapter 5 that the entire heat of vaporization 

for CHsCN (# = 3.44 D) is calculable by (3.25) signifying the 

negligible contribution of dipolar interactions to the total 

cohesion energy. 
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The larger value of the London Hy compared to the polyatomic 

one for Hz is intriguing. It stems from the fact that; 

2 <MP ye < SMB he2, as the -19% error of table 3.5 shows. In the 

London formula the molecular moment is used, which explains the 

anomaly. 

It must be emphasised that all the atoms of the two interacting 

molecules, as (3.24) shows, contribute to the pair potential, 

the d values of which can be found in Appendix 5S. In table 3.8 

only the largest d values, that is the d values of the 

peripheral atoms which show the molecular size, are used for q. 

3.4.2. A Brief Survey of Polyatomic Potentials 

The simplicity and versatilityof the buffeting approach would 

be appreciated if similar works on the interaction of 

polyatomic are outlined. Let us first recapitulate the main 

problems of dealing with polyatomic molecules. These are; 

1- Definition of the mean inter-atomic distace for rotating 

molecules which was solved by the F factor. 

2- Definition of IP for bonded-atom which was solved by the 

inert-atom approximation. 

There are two groups of workers, namely those who treat 

molecules as polarizable points(269-2711, and those who treat 

molecules as polyatomic system[202-204,2101. 

The former group is not plagued with the afore-mentioned 

Problems but to cure the undercalculated values uses some 
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disguised scale factor. Slater and Kirkwood[270] for example, 

introduced the z+’? factor into the London formula, where z is 

the number of electrons in the outer shell of the molecule, 

which for CCla, for example, amounts to 32. This involvement of 

32 electrons in the dispersion interaction implicitly 

undermines the concept of the first ionization potential used 

for approximating hy in the moment expression. 

In the latter group, Muller(204] has pioneered the polyatomic 

interaction for crystals of organic molecules. He could 

calculate the atom-atom distances (of n-CHa chain) from 

crystallographic data. To overcome the problem of bonded-atom 

parameters he took advantage of the Kirkwood[271] expression 

for the London dispersion in terms of susceptibilities; 

U = 6 mc? X¥iXa/(X1/0. + X2/A=) 

where for I = 4 mc? X/Q this expression becomes the London 

formula. 

Such an expression, therefore, helps define a bonded-atom 

ionization potential by using the additivity of the 

susceptibility -already a well-known concept. The IP values so 

obtained are larger than hv or the ionization potentials, even 

for inert atoms (except for He) for which this method should 

work best. For Xe for example it is larger than hy or I(expt. 

by a factor of three. 

More recently Claveriel203] avoids the problem of bonded-atom 

Parameters by considering the dispersion interaction of the 

bonds i and j, rather than atoms, of two interacting molecules. 
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Mathematically his formulation involves the Traces of the 

polarizability tensors and physically the anisotropy of the 

bond polarizability. This approach lacks simplicity and creates 

the problem of the ionization potential for bond, the centre 

of interaction for bond, and the anisotropy in the bond 

polarizability. 

Regarding the problem of rotation of the molecules, or bonds in 

this case, which involves the bond-bond distances and R, a 

series in terms of Legendre’s polynomial is derived[202]. In 

the view of the inverse-Six'-Power dependence of the distance 

the series, as it is shown in Appendix 3, should be in terms of 

the Gegenbauer polynomial. However, three terms of the series 

are used to avoid the risk of divergence, and instead a 

damping is introduced[209]. 

4.5. Implicit Assumptions of the Buffeting Field Expression 

The derivation of the total buffeting field expression (3.9) 

was based on a number of well-known assumptions which are 

outlined in this section. 

3.5.1. Multiple Approximation Assumption 

The cornerstone expression of the buffeting field is the 

dipolar field (3.3) which results in dipole-dipole interaction. 

The multipole field expression can be written as; 

SESS S26 (os) R-MEA 6 BIRDS + GC ORT* Fee ad 

where A, H, and C are constants involving respectively, 

mean-square dipole, mean-square quadrupole, and mean-square 

octapole. Margenaul272] has shown, for London dispersion, that 

139



even constant B is only a relatively small fraction of A, the 

term of which is further reduced by R7-* to a negligible 

contribution, justifying the dipolar approximation. 

Rigid Molecule Assumption 

  

This assumption was made on the grounds of the differences in 

the time scales of the vibrational and other molecular motions. 

It is a valid assumption as the dispersion forces are much 

weaker than the forces holding the nuclei together (the bond 

forces(201]). 

3.5.3. The Inter-molecular additivity assumption 

The pairwise field was converted to the total field for Z 

nearest molecules by assuming the additivity of fields. 

This is the well-known additivity problem of the London 

dispersion formula. It has been shown, by extending the second 

order perturbation theory to the third order(273], that there 

would be a 3-body component and so the strict additivity 

vanishes. Nevertheless, the effect of the non-additivity was 

found to be negligible for crystals of inert gases(273,274]. 

More rigorous use of the perturbation theory to a group of 

molecules has shown that the London type potential is 

approximately: additivel275]. Quantum mechanical treatment of 

non-additivity effects in (H20)5[276], H20...CHs0H[2771 

CHa...CH4l278] and inert gases{€279] show that this effect is 

fairly small. This problem is more extensively discussed by 

Margenau and Kestner(71], and Claverie(2031]. 
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3.5.4. Intra-molecular Additivity Assumption 

For a molecule with X, atoms of species j, the field of a 

single j atom (3.7) was multiplied by X53. This is a sort of 

intra-molecular additivity rule which is less well-known and it 

has been taken for granted by many workers, especially those 

dealing with molecular crystals(204,2101]. 

However, recent quantum mechanical computations show that this 

approximation works reasonably(202]. In the case of CaHa (and 

also benzene and azobenzenes{280]), this assumption fitted 

to quantum mechanical data, gives fairly realistic results for 

the equilibrium structure such as unit cell parameters, 

molecular orientations in the cell[281,2821, and the cohesion 

energy(283]. 

These computations for the properties of Ne crystal, such as 

equilibrium structure and cohesion energy, show that the 

intra-molecular additivity rule works much better for Nea...Na 

than CaH.s...CeHsl284]. In general not much is yet known 

about this additivity but we may safely assume that it holds as 

good as the inter-molecular additivity rule. 

3.5.5. Free Rotation Assumption 

The derivation of the F series is based on the assumption of 

free molecular rotation, so that the atoms fully span their 

spherical surfaces. 

Work on plasticcrystals has made available massive data on the 

orientational freedom of the systems considered here. In fact, 

the existence of orientational freedom is the property that 
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distinguishes plastic crystals -orientational disordered 

crystals- from other molecular solids[210,216,285]. 

A possible criterion for the existence of essentially free- 

rotational behaviour in plastic crystals is a nearly spherical, 

or globular, molecular form{286], which is seen in spherical 

methane derivatives[287]. For example, neutron scattering 

studies of C(CHs)4, in the liquid crystalline state, show 

the presence of isotropic rotational motion in which on a time 

average a molecule has no preferred orientations in space with 

rotational period of .4x107*2 s < 7 < .8x10-'*? sf2988]. 

The isotropic rotational motion of CaHiz (mp 270 °K) ane 

CseHio in the plastic phase has been proved by the same 

method with 7 ™ 2x107*? and 1071? 5 respectively[289]. 

Raman and infra-red line shape methods{290] give a rotational 

period of 1.6x107*? s for liquid CaHie (296 °K) slightly 

shorter than that of the plastic phase as one would expect. 

Studies of fluorinated cyclohexane, CeFiiH, and CaFeHs, show 

the presence of preferred orientations, and anisotropic 

rotational motion in the plastic phasel[290]. 

For pivalic acid, (Me)sCCOOH, a combination of NMR, dielectric 

and light scattering studies has established that the molecules 

are randomly dimerised with one of the 12 nearest neighbours. 

The molecules re-orientate themselves by making and breaking 

H-bonds with a period of about 107? 5s in the plastic phasel216] 

These facts justify the assumption of free rotations in the 

liquid state, perhaps even for water with strong H-bonding. 
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3.6. Conclusions 

The general idea that brought together the range of the 

problems discussed in this chapter was the atom-atom potential 

model. The model is undoubtedly approximate but rather 

successfully deals with the problems of structured molecules 

and their macroscopic properties. Furthermore the formulations 

are simple and require no experimental information except for 

the readily accessible density, bond-length and bond-angle. 

One of the the major problems of theoretical studies, specially 

the new computer simulation techniques of the equilibrium and 

dynamic behaviour of molecules, is the statement of the correct 

pair-potential function. It was shown that a sphere-based 

potential function is an irrational choice and unlikely to work 

for liquids. This fact has forced investigators to introduce 

more adjustable parameters into the existing potential 

functions to account for the shape and molecular rotation. 

Molecules have been categorized as, rigid convex, ellipsoidal, 

sphero-cylindrical, oblate sphero-cylindrical, prolate 

sphero-cylindrical, generalized sphero-cylindrical, four-centre 

and so forth(49]. The buffeting model, according to which the 

interactions occur between the spherical inert atoms properly 

located in the molecule to account for its shape, supersedes 

such artificial classifications. 

The buffeting pair-potential therefore offers itself as 

an alternative attraction potential function for the prediction 

of macroscopic properties. 

The potentiality of quantifying the interaction between 
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electrons, electron lone pairs, and in general any fraction of 

the electronic charge, is another important feature of this 

potential function. It therefore lends itself to the study of 

the aligned forces like hydrogen bonding and chemical 

reactivity. 

The inert-atom approximation proved useful in the prediction of 

the molecular first ionization potential. Table 3.7 shows that 

the estimated IP values are (on average) within about 5% of the 

available experimental values for the majority of the 45 

molecules considered. 

An important use of the ionization potential additivity rule is 

for estimation of the IP of functional groups in molecules. 

This is of importance because it links the inert-atom 

approximation to the reaction mechanism and chemical activity 

studies. A molecular functional group of low IP value is more 

reactive and therefore determines mechanism of the reaction. 

No explanation for the correspondence of 1/4 <m7>4nere and a 

single non-0 electron was given as this is strictly a quantum 

mechanical matter. 

A more extensive use of the buffeting field and potential 

functions for the study of the heats of vaporization and vdW 

nuclear screenings is deferred until Chapter 5. 

In the following chapter the connection between the buffeting 

field and that of Homer and Percival will be explored. 
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Chapter 4 

Comparison between the Site-Factor and Buffeting Theories 

of the van der Waals Nuclear Screening 

Introduction 

The sensitivity of the vdW nuclear screening to the site of the 

resonant nuclei in the molecule has forced investigators to 

recognize structure and polyatomicity of molecules when 

developing their theoretical models for O.. 

Rummens et al, for example, assigned a factor to the molecule 

under study as a measure of the off-centricity of each of its 

resonant nuclei. The attachment of this factor, a site-factor, 

to the body of the existing sphere-based formulations appears 

to have improved their theory of 0... To obtain agreement 

between theory and observation they bring in yet another factor 

with unknown origin. This indispensable factor, called a scale 

factor proved to be a variable depending on the solute-solvent 

Systems, and an irrepressible disadvantage of the site-factor 

theories of Q... 

In this area of work, the solvent remained a polarizable sphere 

until Raynes introduced the concept of atom-atom interactions 

for nuclear screening, and therefore regarded both interacting 

molecules as polyatomic, a fact reflected in his 

Site@ccuce“Site@vorvens factor. The Raynes atom-atom interaction 
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model unlike the Rummens et al theory was limited to the case 

of two interacting methane molecules and for mathematical and 

physical problems has not been extended to other systems. 

The site-factor and site-site factor theories have been 

succeeded by the buffeting theory of Homer and Percival in 

which the structure and polyatomicity of both interacting 

molecules are accounted for by a geometric or steric-factor 

obtained from simulation of the molecular encounters using 

molecular models. This theory supersedes the previous theories 

of 0.1, due to its independence of the scale factors and its 

universality. 

The purpose of this chapter is to use the buffeting theory of 

the preceding chapter as an intermediary and seek the common 

and contrasting features of the three theories of dv. 

It is shown that the Rummens et al cage model scale-factor is 

necessary to account for the effect of the structure of the 

solvent (assumed to be point) because the use of our F factor 

in place of their site-factor improves this theory and renders 

the scale-factor obsolete. 

A critical study of the outlines of the binary gas collision 

model of Rummens et al for 0. reveals that the use of this 

model for the liquid state is unjustified and that its scale 

factor is not associated with the polyatomicity of the solvent, 

but is an artifact of this model. 

Comparing the Homer and Percival buffeting theory with that 
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implicit in Chapter 3 shows the close relationship between 

their geometric factor and the F factor. This indicates the 

fact that all the factors -site, site-site, steric, and F- are 

a common feature among the models. 

It is further shown that there is almost exact correspondence 

between the Homer and Percival semi-empirical K constant and 

the inert-atom moment, and an excellent correlation between the 

latter and the Yonemoto’s quantum mechanical Q values, which 

also correlate with K. 

4.1. Homer and Percival Buffeting Theory 

The buffeting field derived by Homer and Percival[£29,160] is 

essentially similar to (3.9) given in the previous chapter. 

Their approach is unique, compared to the prevalent treatment 

of interacting rotating molecules, in the sense that it outwits 

the problems of the nearest number of molecules, the number of 

peripheral atoms, the intermolecular distance, and the 

rotational averaging which gives rise to the F series. This 

however, is achieved at the expense of difficulties in defining 

and deriving their geometric factor (2p - 82, by using 

molecular models. 

In the next two sections the relationship between the two 

fields is investigated. 

   4.1.1 The Homer and Percival & constant and <m rere 
  

The space-time averaged buffeting field derived by Homer and 

  

Percival (Eq. 38, Ref.29, denoted here by < >) (4.1) has the 
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same form as (3.9) which for a solvent containing one species 

of buffeting atom may be re-arranged as (4.2); 

= ee (4.1) 

    

where ry, is the sum of the vdW radii of the buffeting atom j 

and the buffeted atom i, and (28 - §)* like F is a geometric 

factor. A comparison between (4.1) and (4.2) shows that the 

Homer and Percival field is independent of Z_, Xs, R. Instead, 

they realistically have assumed that the buffeting and the 

buffeted atoms are at_all times a well defined distance apart, 

which is characterized by the sum of their vdW radii; 

ry = rej) + rv lid. 

This makes the quantitative comparison between the two fields, 

as a whole difficult, because ry is fixed but R depends on the 

solute-solvent systems. Generally, for the peripherial atoms 

one can write; 

for R from (3.16) 

  

for R from (3.15), (3.17), or Rv 

The comparison between the bonded-atom moments, <m=>, 

  

and the geometric factors, however is possible. For bonded 

hydrogen, as was mentioned in the previous chapter, Homer and 

  

Percival suggest the quantum mechanical value of <m 

(in units of (esu-cm)*x107*), which compares well with 

For buffeting atoms other than H, they include the bonded-atom 
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moment of (4.1) in an adjustable parameter K (or @) and write; 

SES> = Kk ry © (26 = 93) = (4.3) 

where K is a buffeting constant depending on the buffeting 

atoms (of the solvent) only. 

It will be remembered from Chapter 3 that different buffeting 

atoms differ in their moments by their corresponding inert-atom 

moments. The heavier the buffeting atom -the larger its 

SM? Fanerte— the greater the field it produces at the site of 

the buffeted or resonant nuclei, and the larger the attraction 

or deshielding. This natural outcome of (4.1) or (4.2) has 

been proved quantum mechanically by Yonemotol77], Marshall and 

PopleCi37], and Musher(l301], using perturbation theory. 

According to Yonemoto, if the (buffeting) field produced by aH 

atom may be assumed to be unity, the field of a heavier atom is 

larger by a factor @. He writes " a precise calculation of @ is 

difficult because no accurate molecular wave function is 

available that describes the state of ionization, hybridization, 

or the state of inner and lone-pair electrons of @ heavier atom 

in a bond". Nevertheless he gives some @ values for halogens 

and their ions which are used by Homer and Percival to correlate 

with their emperical K or Q@ values obtained from (4.3). 

The Homer and Percival K values are found using the experimental 

vdW shifts of (a solute containing) hydrogen in a number of 

solvents containing different heavy peripheral atoms such as O, 

FF, 6), and Br. 
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Table 4.1. Comparison of the @ values and normalized moment 

  

  

  

Buffeting Qy Que 

species CFs) £29 

H 1.0 1.9 

Ei 3.1 2a 1.69 

ae 3.6 es Zeit 

0 2.9° 2.3° 1.69 

Cl 10,2 6.5 5.13 

Chm 12.5 a 6.41 

Br 14 8 6.89 

Bros 18 i 8.61 

cc ev 77 = 996 
  

a: This is an extrapolated value from the Yonemoto @ values by Homer and Percival(29]. 

b: This is the mean value of single (@ = 3.4) and double (9 = 1.2) bond oxygens given by Homer and Percival. 

Strictly speaking, only @ of a singe bond oxygen can be compared to that of Yoneaoto, because the @ values 

are sensitive to the bond state of the atom, like soments; <m?)> (=0) = 1.5 (m?>ne, (a2) (-0) = (a?)ne. 

c: It is not given by Yonemoto, it is estisated from the mean value of 1.22 = Qon/Qatone 

#1 Correlation coefficient between the Q values and norsalized soaents. 
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Table 4.1 gives the @ values of Yonemoto, those of Homer and 

Percival, and the normalized values of the moments, namely, the 

corresponding inert-atom moments divided by the moment of ‘He’. 

For the anions, as was mentioned in Chapter three, 1/4 of the 

inert-atom moment, equivalent to one electron, is added to that 

of the atom. The content of this table is shown graphically in 

Fig. 4.1. 

The good correlation coefficient of .999 (intercept -.93, slope 

2.16) between the @ values of Yonemoto and the normalized 

moments once more strengthens the inert-atom approximation, and 

also the extension of that concept to anions. 

This linear relationship between the moments and the @ values, 

computed by Hartee-Fock wave functions{77] -the Hartee method 

approximates the total wave function of a system of N electrons 

W in terms of one electron orbital wave functions ® such that 

y ~ O1.02...0n0302]- indicates the possible association 

of the quantum mechanical approximation with the inert-atom 

approximation. 

The good relationship between the Homer and Percival empirical 

Q values and the normalized moments (CC = .996, interc. = .096 

slope = 1.18) on the other hand, signifies their strong 

relationship and the fact that K in (4.3) is best equated with 

the corresponding inert-atom moment; K ¥ 

  

Pa rte 

4.1.2. Comparison between (28 ~ §)*# and F 

The key to the circumvention of R, ZL, and Xs in the Homer 

and Percival buffeting theory is their method of handling the 
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Fig. 4.1 Relationship between the @ values and normalized 

moment. 
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interaction between rotating molecules. This method can be 

outlined as follows. 

Let us consider a particular volume (one octant, for example) 

between a solvent and a solute. The solute atoms are 

successively and continuously encountered by the solvent 

buffeting atoms. A "snapshot" of the situation, at any instant 

of time, shows a solute atom at a finite distance from the 

buffeting atom. This distance may be approximated by the sum of 

vdW radii of the two atoms. Exactly the same condition exists 

for other parts of the solute molecule, because on average it 

is in (vdW) contact with other surrounding solvent molecules. 

Two parameters 6B and § are then introduced to describe the 

effectiveness of the accessibility of the buffeted atom to the 

buffeting one as a result of their pairwise encounters. 

Two inert atoms, for example, can maintain full contact in the 

referred-to octant, and the value of unity is assigned to g# and 

the value of two to § so that, (28 - §)* = 0. For two bonded 

atoms, that is when the atoms are parts of two interacting 

molecules, the full contact is no longer possible. 

This condition results directly from the formation of bonds by 

the atoms in question and their consequent polyatomicity. Now 

the full penetration or contact of the two atoms is hindered 

by the steric hindrance action of the remainder of their 

molecules so that @ < 1, § “ 2, and (28 - §)*   > Oe 

One can therefore attribute the values of (28 - §) > 0 to the 

polyatomicity of the interacting solute and solvent, and infer 

that this factor should increase with the increase in the size 
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of the solute-solvent system. This inference about the Homer 

and Percival factor is in agreement with the analogous trend in 

the values of F as shown in table 3.1. 

Concerning the interactions between the inert atoms (4.1) gives 

a zero field for (28 -8)Finers= 0, and therefore conflicts 

with the existence of the dispersion energy between these 

systems. This anomaly is justified in the context of the Homer 

and Percival buffeting theory in which (4.1) should be used 

with the (non-zero) RFT contribution, (2.20). 

In table 4.2 the relationship between F’ = F/10, and the 

available (28 - §)= values found by using molecular models, is 

analysed. For the values of R in the calculations of F, (3.14) 

is used. It can be shown that the choice of the expression for 

Rs (3.14),(3.16), or (3.17) does not affect the correlation of 

the two factors. The values of F divided by 10, F’ in this 

table, are roughly of the same order of magnitude as (28 — §)*, 

The d values of the peripheral atoms used in F expression (3.7) 

are from table 3.3. 

Inspection of this table shows that there are a number of 

inconsistencies in the values of (28 - §)*. First, according 

to the concept of this factor, one would expect to find the 

smallest value for the smallest system, that is, CHa in CaHas. 

Instead, CFs4 in CoHie and SiFs in CCla show the smallest 

value of .996. Second, although the values of this factor are 

equal for CHa in CaHis and CaHa, this is not observed for 

CF4 in these solvents. Third, SiFa has different values in 

SiEt, and SnEta, whereas the corresponding values of C.F. are 

equal causing the poor correlation of .75 between the values of 
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Table 4.2. Comparison between F’= F/10, and (268 - §)= 

  

Systes fas gene Solyent or Solute ---------------- cc 

Coa lv) 29° CH, CMe. Sikes Sntey 

(28 - §)? «123 +230 +270 +285 7 

be 244 7 AS 518 

CoH 2{v) 29° CHy Che, Sikes Sntes 

(28 - §)? +123 +230 270 +285 7 

Fy ADL +296 344 +404 

XMeatv)* 29 Chey Sikes Getes Sntey PhHey 

(2p - §)F +225 270 275 295 +300 7 

Fr +324 383 +402 45 ATS 

CF4(u) 160 Coie Snte, Colle SiEts SnEt. 

(2 = Fi 096 102 09 144 152 I 

Pa 24 «236 «275 430 466 

SF, (u) 160 CCl, Sill, Sntey SiEt, SnEt, 

(2p - §)? +360 360 449 +518 +533 +% 

Fe +201 +207 +263 AbD 5h 

SiF,(u) 160 CLle Sitl, Sntes SiEt, SnEt« 

(2g - §)* 096 +096 AM4 A176 AD 96 

FE +200 «205 +261 464 «505 

CoF au) 160 CCl4 Sill, Sntey Cota SiEts SnEt, 

(2p - §)7 +577 +577 +593 +608 608 +608 75 

iz +352 377 ATT 442 778 844 
  

+: These are the mean values of the two factors for each solute in the series of XMe. solvents. 
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with the increase in molecular size, dids. 
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F’ and (28 ~ §)2, The equal values of this factor for 

different solutes in C.4H. and CaHi2, might have been caused 

by the difficulties in modelling and simulating the encounters 

of these systems accurately by molecular models. 

The analyses in this table, in spite of the statisically small 

number of data in each case, serve to show that the formula for 

F replaces the molecular modelling of (28 - §)*. This is in 

spite of their apparently different physical interpretations 

and the beliefCi60] that "... an entirely general formulation 

of 8 and § appears to be impossible...". 

One notes from this table the trend of the increase in F' and 

(28 - §)* with the increase in the sizes of the solute and 

solvent. A quantitative way of depicting this trend is to plot 

the values of these factors against some quantity representing 

the sizes of the solute-solvent system, for example di.ds, 

Fig. 4.2. 

The straight lines in this Fig. are only trend lines showing 

the direction of the increase in the factors and did, more 

clearly. Note the smaller scatter of the F’ values compared to 

those of (26 - §)*. The point for He in CaH.z from the Homer and 

Percival work£29] markedly departs from the trend line of their 

factor. They have treated hydrogen gas aS a Unique case. The 

value of their factor for this gas is four times larger than 

that of CHa in the same solvent, contradicting the fact that as 

molecules shrink in size and approach mono~atomicity they may 

be mistaken by points for which the value of (28 - §)= equals 

zero. In other words, this factor should have the lowest value 
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for Ha after inert atoms, signifying the fact that small 

molecules may be approximated by spheres as was shown in 

Chapter 3. 

The Homer and Percival theory, however, for the first time in 

NMR, considers both the solute and the solvent as polyatomic 

_molecules and gives a working formula for the effective field 

between polyatomic molecules. Their effective field was 

re-derived, (3.9), in the previous chapter and the comparison 

between them here shows that one can write; 

SM Parrett fogehe a eo oe) 3 and, 

Res (10° 2X5) Por For R given by (3.16) 

4.2. Rummens et al Site-Factor theory 

Inspired by the experimental fact that different hydrogen 

species in a given solute molecule have different chemical 

shifts, for example, CH= and CH= in X(CH=aCH=), Rummens and 

Bernstein([80] developed the "solute site factor" model in which 

the solute assumes polyatomicity but the solvent remains a 

point. In this section a parallelism is drawn between the site 

factor and the buffeting factor F. 

4.2.1. Rummens et al Site-Factor of the Cage Model 

Two solute site factors have been incorporated into the 

non-continuum models of 0. by Rummens et alf159]. These are 

St (c for cage and 6 for dispersion forces only, that is the 

6 in the LJ (6-12) potential), and Sa (g for gas) for the cage 
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model and binary gas collision model respectively. The cage 

model is more akin to our approach as the same model was used 

in Chapter 3 in the transition of the pair-field to the total 

field of Z nearest neighbours. Therefore, this model is 

considered first. 

The cage model site-factor is given asCi59iI; 

See Ca GS et Se) 

where gq = d,/R. The values of this factor and those of F with 

their ratios for XMe, systems are given in table 4.3. 

Table 4.3. Comparison between S§ and F 

  

  

Solute SE EF F/S§ 

CCCH). 1.445 Sas 2625 

Si (CHs) 4 1.59 3.83 2.41 

Ge(CHs) 4 1.655 4.02 2.47 

Sn (CHa) 4 vige7, 4.45 2,50 

Pb (CH=) a 1.878 4.75 2.55 

cc 2999. mean = 2.43 
  

As Sf is a solute-factor, one has to find the mean value of 

F; F, for a particular solute in different solvents to be 

comparable with S§. To be consistent with the authors’ approach 

their expression for R, namely (3.16), is used throughout this 

section. 

They have found thatCiS9] all their calculated chemical shifts 

fall short of the experimental values by a constant factor af 

2.55 for XMe, systems. They called this factor the cage model 
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scale factor, Ke = 2.55, with unkown origin. From the table 

one can see that the values of S§ are smaller than those of F 

by nearly this factor, which is reflected in their ratios. By 

using the mean ratio of 2.43 from this table one can write; 

F = 2.43 Si; or Bo Shs se (4.4) 

In other words, the unkown scale factor arises because the 

solvent molecules are treated as points, and their scale factor 

is indeed a compensating factor for the effects of the solvent 

polyatomicity. 

The authors(iS9] made an attempt to attribute some sort of 

temperature dependence to the scale factor as KE = a+ bt, 

and thus explain the temperature dependence of (u. They say 

that "... K may be temperature dependent since it presumabley 

corrects, at least partly, for the absence of an intermolecular 

potential in the cage model". Table 4.3 (and 4.4) clearly show 

that Ks corrects for the absence of structure for the solvent 

rather than lack of the potential function. 

One might legitimately ask how 0. could be found if the 

intermolecular potential is absent in the expression for Jw? 

In fact the intermolecular potential exists in their expression 

but for a spherical solvent, see (4.5). 

When they used Si and its scale factor of 2.55 for systems 

other than XMes it was found that the use of a single-valued 

scale factor cannot fit all the 0. data, see table 4.4. Column 

five of this table contains the calculated screenings found by 

replacing Ssks by the F factor. One notes the marked increase 
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Table 4.4. Comparison between the cage aodels of Ssks (Kg = 2.59) and F 
  

  

  

  

Gn Hz o--- Galcal.) 
(Expt.) 30 °CL159] (159) === Factors --- 

Solvent Solute SéKE F S§ F 

" Che, Chea 12.6, 13.3 14,2 10.7. 1.47 2.81 

Sides AN.d, 12.7 13.2 Ml 3.10 

CCl, 17.5, 20.2 23.6 15.5 1,50 2.52 

SiCl, 13.2 20.4 14.6 1.48 2.74 

Calls2 14.6, 11.5 17.6 44 149 3.12 

CsHio 11.8 19.2 13.4 1.32 274 

CHey Cote 16.9 23.9 17.7 1.76 3.54 

Sides 14.6 19.1 15.9 1.72 3.67 

CCl, 23.8 40.4 28.4 = 1,86 333 

Sil, 16.7 : 33.4 4.20 1479 3.31 

Coiz 15.8 29.3 25.3 1.84 3.99 

Che, Collie 11.2 16.1 1.9 1.53 2.90 

Sikes 10.9 13.9 11.5 1,50 3.20 

CCl, 16.0 13.9 M.5 1,50 2.90 

Sill, Mt 23.7 17.3 1.54 2.87 

Cole 12.1 20.5 17.6 1,56 3.43 

CHe, Coty 13.8 22.9 44.1 1,27 2.04 

CCl, 22,3 39.2 22.6 1.30 1.94 

CoHiz 12.7 29.2 2002 1629 1.97 

Csttio 13.0 32.0 19.7 1,31 2.06 

CHe, CHa 13.0 23.5 14.0 9 1,16 1.76 

CCl, 24.2 39.5 21.8 1.18 1.65 

SiCls 15.8 33.9 19.7 4,46 1.72 

CoHiz * 16.6 29.4 18.8 9 1.17 1.96 

CsHio 14,7 32.1 19.9 1,18 1.77 
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in the agreement between the experimental and the theoretical 

values as a result of this replacement. 

This table is also represented graphically in Fig. 4.3, where 

an ideal line through the origin eases the comparison between 

the cage model of F and that of Séks. 

4.2.2. Solute Site-Factor_ in the Binary Gas Collision Model 

Rummens et alliS9] have also used the solute site-factor with 

binary gas model of Raynes et alf78] with marked superiority 

compared to the cage model. 

For the discussion of this model, it is helpful to know that 

the binary gas model, as used for the formulation of O., is a 

compendium of conflicting concepts. It is a binary (two-body) 

gas collision model and thus misused for liquids where the 

interaction is intrinsically many~body and involves at least 

the Z nearest neighbours. 

In this model, as in the cage one, the general (sphere based) 

expression(78]; 

(Ow emir = — BCEF> = - B 2 <m*Fenvenr R-O (4.5) 

When the R values of (3.16) were used in (4.5) it gave rise to 

the scale factor of the cage model, therefore the authors made 

an attempt to find smaller R values for (4.5) to remedy this 

shortcoming, by using (3.14) as; 

Ge = S (Ow) pare Exp (-U/kT) dr (4.6) 
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where dT is the coordinate space element. Now a question 

arises as to the nature of the intermolecular potential U in 

(4.6). They use a LJ (6-12) potential for U and, in doing so, 

contradict the important fact that inherent in (4.5) is a 

dispersion intermolecular potential function. Therefore one 

might ask if there are two potential functions governing the 

intermolecular forces. If a LJ potential is used for U in (4.6) 

the same function, in the form of a field, should be used in 

(4.5) to characterize 0. 

Nevertheless, by incorporating the site-factor into (4.5) and 

using (4.6) a gas model site-factor is obtained that is written 

ass 

Sa = 1 + 3.45 go= + 7.42 qo* + 12.9 qo® + 19 qo™ + ... (4.7) 

where do = di/ro, and ro is the distance in the LJ potential 

at which the repulsion begins, that is, when U = 0. Furthermore 

(4.5) is now written in terms of ro instead of R. 

As R > ro (table 3.3 shows that in general ro = R - 1, for 

example, for CHa, ro = 3.8 A, and R = 4.96) the calculated 

shifts turn out to be about 6 times larger than those of the 

model based on (4.5), therefore the Z nearest neighbours of the 

cage model no longer could be used. The new expression without 

model. 

Of course, there are other conceptual problems in this model. 

For example, the LJ potential which is an empirical potential 
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function requires the adjustment of its parameters r, and e 

to fit the experimental data, and automatically accounts for 

the polyatomicity of molecules and therefore renders the use of 

a site factor unwarranted. 

However this model again requires a scale factor Kg = 1.65, 

to improve the calculated values of (0. specially for small 

solutes. The gas model scale factor unlike the cage model one 

is not related to the polyatomicity of the solvent. Apparently 

it compensates (together with the stated factor of about 6) for 

absence of Z;. 1.65x6 ¥ 10, 

It must be mentioned that the values of S3 are somewhat 

larger than the corresponding S§ values, for CHa in CCla, 

for example, using fro = (rolu) + relv))/2, one finds S% = 1.222 

and $§ = 1.177. The graphs of the two factors given by the 

authorsllS9] show otherwise, namely, Ss > Gg. 

The solute site-factor in the form of Sco. = 1/(1 - g™) is also 

used in the continuum model of 04 by Rummens€27]. The 

conceptual and the mathematical problems of using this site 

factor in the RF model are discussed in detail by Homer and 

and Percivall29] and need not be reiterated here. 

4.3. Raynes Site-Site Factor 

In a paper dealing with the NMR nuclear screening of methane, 

Raynesl206] introduced the concept of the atom-atom interaction 

and therefore accounted for the polyatomicity of both 

interacting methane molecules. It will be remembered from the 

preceding chapter that the atom-atom interaction model entails 
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the knowledge of the mean inverse-six power of atom-atom 

distance, the mean intermolecular distance, and the properties 

of the bonded-atom. 

The atom-atom distance averaging process in the Raynes work 

results in a geometric factor which is a special case of the F 

series; F.a(di=d4,R), as was mentioned in Chapter 3. 

For the average R, Raynes resorts to (4.4) which brings in the 

Buckingham and Pople(303] H, series as a function of e/kT, and 

R becomes in terms of ro. The amalgamation of the Fe. series 

and H, gives another series with about twice the rate of 

convergence of the F. series. This procedure of course is 

analogous to that used by Rummens et al in obtaining Ss from 

Ss and replacing R in (4.5) by ro The use of the F factor or 

site-site factor, for the interacton of two methane molecules 

in the gaseous state, which involves a binary gas collision, 

appears to be questionable for the following reason. 

If one assumes that the rotational motion period for molecules 

in the gaseous state is similar to that in the liquid state, 

and therefore of the order of 10-** s, one would expect the 

collision of the two methane molecules to last at least about 

107-7= s for the fulfilment of their full rotations during the 

collision. At normal temperature the translational speed of a 

methane molecule is about 410% m/s. Now if a stationary 

methane molecule is approached by another molecule at this 

speed, it takes about Sx1O7-*% s to travel a distance of about 

2 A during which the attraction forces are operative. 

A conservative estimate by Mathesonl(304] for a typical 
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translational speed of 51102 m/s and travelling distance of 1A 

puts the collision time at 4%10-** s. This is a shorter time 

than the time a methane molecule requires for full rotation in 

order to justify the use of the F or site-site factor for binary 

gas collisions. In other words, site or site-site factors are 

characteristics of the liquid state where the translation motion 

is slower than the rotational one which allows the rotational 

averaging while R is fixed. 

Regarding the properties of the atoms in bonds, Raynes 

acknowledged the severe approximation of treating bonded-atoms 

as isolated ones. To understand his approach it is helpful to 

draw a parallel with the buffeting field. The nuclear screening 

of the H atom in two interacting CH, molecules in terms of the 

buffeting field can be written as; 

  

SE=> (total field at resonant H) = 4 “EF oun + <E (4.8) 

The screening parameter Bconvertsthe field into the screening 

so that (4.8) becomes (regardless of the signs); 

    0 = 4B <E*su4 + B <E= 43 or 0 = 4 O(H,H) + O(C,H) (4.9) 

where ((H,H) and 0(C,H) are respectively the screenings caused 

by H and C atoms. Raynes begins with an expression similar to 

(4.9) and therefore calculating the screening of H requires the 

chemical screening of two interacting H atoms ((H,H), and that 

of a carbon and H atoms ((C,H). For the former he uses the 

result of the Maranall and Popleli37] work for two isolated H 

atoms. For the latter however, Raynes assumes the 

proportionality between the shielding and the atomic 
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polarizability and writes; 

(C,H) acc) 
a ae ae ey (4.10) 

0 (H,H) Q‘H) 

then by using the theoretical isolated atom polarizability 

values of Q(H) = .59, and Q(C) = .135 A* (Expt. values are 

respectively .666 and 1.467), given by Hirschfelder et all49], 

arrives at an irrational estimate of ((C,H) = .235 0(H,H).« 

It is clear that the shielding caused by a carbon atom should 

be larger than that by hydrogen atom, because of (4.10) and the 

    fact that Q(C) > Q(H) or <m@=%c > <m@=34. The correct estimate, 

using the bonded-atom or contribution polarizabilities, is 

O(C,H) = 2.2 0(H,H). However, because carbon has a low buffeting 

location (de = 0), its contribution to the total shielding 

does not exceed 15% and the error thus introduced is not 

considerable. 

One notes that by assuming (4.10), Raynes implicitly accepts 

general proportionality of the screening and the field; 

    0 5 - (Bs = - B IQ R-*; according to which even (4.10) is 

not strictly true because of the involvement of R and I. The 

Raynes method lacks the features of a practical generalizable 

theory because; 

1- It depends on theoretical values of (0, which is available 

for H...H only. 

2- The expression for the F series is useable for the case of 

d. = d, only. 

3- The problems of bonded-atom properties are unsolved. 

Nevertheless, by using ro = 3.8 A and the isolated-atom 
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nuclear screening Raynes calculates the value of - 0, = 6 to 

be compared with the experimental values of 7.6 + 2, 5.6 + 2, 

666 & Sy 7e7 1, 924, 5.4 + 2 ppm cm*/moleli7i. 

4.4. Conclusions 
  

It was shown that although the Homer and Percival buffeting and 

the buffeting field derived in Chapter 3 are nat wholly equal 

their main parameters are equivalent. 

The almost one-to-one correspondence between the normalized 

moments and the K constant is interesting when one notes that 

the latter is obtained by the Homer and Percival buffeting 

field only, using a shift difference technique that cancels the 

RF contribution(29]. 

Another important finding here was the considerable correlation 

between the Q values of Yonemoto and the normalized moments 

which once more reinforces the "inert-atom bonded-atom” 

correspondece from a different theoretical view point, for the 

fact that Q@ is a quantum mechanical quantity. This correlation 

also suggests that a further scrutiny of the budding concept of 

“inert-atom bonded-atom" relationship by quantum mechanical 

techniques could prove fruitful. 

The study of the binary gas collision mode bears out the fact 

that one could, to the benefit of the buffeting theory, use the 

generalized London potential in place of U in the Boltzmann 

factor in (4.6) or (3.14) and combine the kT factor with the 

buffeting formulations. This is important as it gives the 

generalized London potential and the buffeting field a direct 
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temperature dependence through the kT factor. This will remedy 

the absence of kT in the buffeting model and enhance its 

flexibility. 

The nature of the scale factors in the Rummens et al theories 

was elucidated and it was shown that the common element in 

their models, the Raynes model, and the Homer and Percival 

theory is their geometric factors. 

In the following chapter the buffeting field expression is used 

for calculations of vdW nuclear screenings and heats of 

vaporization. 
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Chapter §& 

Polyatomic Dispersion Field 

and van der Waals Nuclear Screening Constant 

The preliminary calculations of the heats of vaporization using 

the polyatomic potential function in Chapter 4 verified the 

underlying assumptions of the buffeting model. 

The key expression in the derivation of this potential function 

was the polyatomic or buffeting mean-square field, a direct 

verification of which is possible by the calculation of the vdW 

screening constant. The passage from the mean-square field ta 

nuclear screening is achieved by the operation of the ambiguous 

B parameter on the field; 0. = - B ¢E*>. 

A preliminary analysis shows that the experimental vdW 

screenings may be calculated, with accuracies within the 

experimental errors, using the polyatomic field and a fixed 

value of B +H = .54, without the need for adjustable parameters 

or scale factors. This value of B for +H is in agreement with 

the quantum mechanical calculations and empirical findings. 

At an ensuing stage this fixed value of BH and experimental (du 

are used to find some realistic liquid state inter-molecular 

distances. These distances, used with the polyatomic potential 

function, calculate heats of vaporization for the systems which 

are in excellent agreement with the experimental values. 
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In fact in this chapter the calculations of 0. and HL are 

concurrent with one verifying the other and together 

substantiating the claim that the buffeting theory provides an 

authentic liquid state inter-molecular force function. 

The combined use of the field-potential is then applied to 

adverse systems, which provides valuable information on the 

liquid state molecular structure and dynamics; in other words, 

a major use is found for the vdW site-sensitive screening 

effect. 

The analysis of the screening constants for CH= in pure 

X(CH=CHs)4 systems by the polyatomic field leads, to the 

mechanism of their behaviour and encounters in the liquid state. 

It is shown that the separation of rotational and translational 

motions and the key assumption that the former motion is much 

faster than the latter is unrealistic for large systems. 

This, together with the fact that the gq ratios of these systems 

exceed .45 -beyond which the F series diverges- renders the 

buffeting model inappropriate. 

This limitation however is viewed as a source of information 

which could address the fundamental concept of the additivity 

of the inter-molecular potential. 

The satisfactory accord between the experimental screenings and 

the calculated ones validifies the use of the polyatomic field 

for the cases where more than one solvent effect is present, 

namely the solvent magnetic anisotropy, the calculated values 

of which for some anisotropic solvents are found to be in 
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agreement with the literature values. 

The calculations of the B parameters for 2F,12%x%e, and =P 

provide a more subtle test for the polyatomic field expression 

and give respective values of 11 + 1.6, 786 + 1, and 120 + 36. 

The quantum mechanical predictions of the solvent dependence of 

B, although not observed for *H and *”F, are salient for the B 

values of **P and *=*”Xe in different solvents, possibly 

because of their very large 0. values compared to those of *H 

and *+7F. 

A simple criterion for the order of magnitude estimation of the 

B values for any nucleus, based on the B values of the inert 

atom nuclei, is also suggested. 

Moreover it is shown that liquid state structural information 

such as the number of nearest neighbours and inter-molecular 

distances can be obtained from the polyatomic field-potential 

formulation and data on Oy or Hy. The cases of liquid Hg, 

liquid Cl=, liquid Pa, SiCls, CFa, Sifs, SFa, and CaHis are 

used to exemplify this approach. 

S.1. The Polyatomic Field and the vdW Screening Constant 
  

In view of the fact that both cohesion energy and vdW nuclear 

screening are manifestations of inter-molecular forces, one 

would expect the buffeting model to work for the latter as it 

did for the former. The purpose of this chapter is to use (3.9) 

for the calculation of 0. and throw light on the nature of the 

proportionality constant B between <E*> and Ou. 
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5.1.1. Nuclear Screening Due to the Polyatomic Field 

Expression (3.9) according to (2.11) produces a nuclear 

screening for the resonant nucleus i in the solute molecule 

that can be written as; 

  

Create BIKES eee! CoRTe eS hy Sine eg ok Cis 5 5)) (S.1) 

where Or is the screening due to the Polyatomic field (5.1), 

and other symbols have their usual meanings. 

Let us expand (5.1) for a specific molecule like FH2CCFHEr as 

was done for CHa in (4.8). We note that such a (solvent) 

molecule has four kinds of atoms but seven species X; = 7, 

because the centre-of-mass to the atom distances d, for C’s, 

F’s and H’s are different; 

  

HUD Ht) 
| he, a 

(FC) de C2) —F (2) 
Ch. 

Pas %, 
Hii) “Br 

which result in different F values for the same atom. Therefore 

(S.1) may be expanded as; 

Gr = - 22.BR~* { (m?>_ CFUCayi) + FiCoyid] + (my CF(Hi yi) + FeHoyid) + (m*de CFUF iyi) + 

F(F2yi)) + (m?)e- F(Br yi)? 

We see that the solute resonant nucleus ‘i’ contributes to the 

field by its location, di, in the F(di,ds,R) factor. The values 

of d can be calculated for each species by using the bond 

length-angle and the law of the lever. This is explained in 

Appendix 5S where a table provides all the d values needed in 

this work, that can be calculated with reasonable accuracy. 

For .43 > q > .36 the best-fit polynomial (A4.3) is used in 
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place of the analytical F series (3.7). For the moments, the 

corresponding inert-atom moments from table 3.4 should be used. 

Equation (5.1) for Rin A, <M@3, 40-4 im units of 107-=* erg cm* 

(that is, just the entries of table 3.4) and B in units of 

107** ppm cm*/erg (that is, just the value of .54, for example) 

give Om in ppm. 

It is noteworthy that (5.1) differs from the Homer and Percival 

Oex by accounting for the field of all the constituent 

atoms of the solvent molecule rather than the peripheral ones. 

The contribution of the central atoms, d ¥ 0, affecting the 

third decimal places, is negligible in the calculation of the 

screening ~but not in the calculation of the cohesion energies. 

5.2. Polyatomic Screening Constant for Pure Compounds 

As has been mentioned previously, the accurate calculation of 

molecular properties using polyatomic formulations entails the 

knowledge of accurate R values. The test of the generalized 

London potential (GLP) by the preliminary calculations of HL 

was based on Re values. It is instructive to repeat that 

procedure here for the test of (5.1). 

In table 5.1 are given the results of such a procedure in which 

the empirical value of B = .54 found by RummensliS3] is 

tentatively used to convert field into screening. 

Uncertainties in the experimental values of 0. are generally 

large as highlighted here and throughout tables in this chapter. 

A single entry for Ow in these tables should not imply its 

accuracy, but rather the lack of further data; the reason for 
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this is two-fold at least. 

First, there are experimental difficulties especially in 

determining 0,- Second, Ow are not a direct data but results 

from processed data; it is processed in that, from the 

experimental gas-to-liquid screenings Om, Oa, and 0. are 

subtracted to obtain; 

Ow = Omt(Expt.) - Ogl(Expt.) - 2%/3 (Theo. ) xX ~ (Expt. ) 

Therefore unlike solubility and to some extent HY, 0. data are 

not strictly suitable for a stringent test of a theory. 

Nevetheless, from the study of the preliminary analysis of this 

table one can draw the following conclusions: 

(1) The B value of .54 appears to be suitable for the 

preliminary calculations and compares well with the quantum 

mechanical values of .59 and .54 found respectively by 

Kromhout and Linder(li38] for CHa...CHa and Yonemotol77] 

for Hz...H=. 

(2) The calculated and experimental screening constants of CMeq4 

and C4Hiz can be matched for larger R values. 

The respective values of 6.3 and 6.34 A, intutively more 

realistic liquid state inter-molecular distances, give 

Ore = .219, and Oe = .201 ppm for the two systems. To find 

these screening values using the static Bo = .74 (see 

Chapter 2), R should be increased to 6.49 A for CMes, for 

example. One might ask what ensures the superiority of 6.3 

over 6.49 A, and simultaneously that of B = .54 over .74? 

The confirmation can be found by comparing the cohesion 
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Table 5.1, Experinental* and Preliminary Calculated vdW Screening Constants for Pure systems (7, = 1!) 

  

Corpound CH, Collis C(CHs)« 

Ro A {table 3,3) 4AAT 6.20 6.21 

(bp -164 °C) 

«E> Eq. 5.1° O51 457 Ab5 

Or ppe (B= .54) +351 +246 +250 

“On pp +176" {-106.1 °C) +203 (30 °C) +228 (30 °C) 

+230" {-184 °C,ap) 192 (30 °C) +217 (30 °C) 

143 (35 °C) 

a: The Expt. 0, values given in this chapter are from Ref.{17] unless otherwise 

quoted, 

b Calculated by extrapolating the gaseous data -.482 0 to liquid methane at its 

melting point with volume V = 33.6 ca*/mole. Ruamens{17,153] argues that such 

extrapolation calculates a value for 0, which is about a factor of 1.65 too 

small. Multiplying .230 by this factor gives .379 in agreement with Jp = .351. 

This extrapolation is discussed later in this chapter, 

The fields and B parameter hereafter are given in units of 10** erg caé* 

and 10-'? ca® erg”? ppa respectively. 

+ For liquid aethane, 

energies based on these R values with those found 

experimentally. Inclusion of more systems will substantiate 

such analysis. Therefore we first find the R values of the 

remainder of XMe, system by treating R in (5.1) as an 

adjustable parameter to match Je with Ow; 
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Compound (pure) Sikes Getes Snkes PbHea 

“Ow ppa +228 4205 +260 27310 358 

“Or ppa (5.1) 2 205 +260 ats +360 

RiCal.) A (51) 6.72 bs T7 6.72 94 6.91 1.01 
  

Exclusion of liquid methane from this list is justified by 

ambiguous 0. data -one for liquid methane at T +> To, which 

may not allow the use of Z_ = 11, and the other one an 

estimation from gaseous data. 

Instead Ri for methane is found from the more reliable Hy 

data as given in table 5.2, for which (5.1) calculates; 

—Qr (Liquid aethane) = .276 ppm (BR = .54). 

Table (5.2) compares the calculated and experimental heats 

of vaporization for which (except for CH4) the above R 

values are used. 

Table 5.2. Calculated (by Eq. 3.25) and Experimental Cohesion energies Hy (7, = 1)" 

compound CH, Cote Hes SiMe, Geles Sntey PbHes 

Hy(Expt.) Kd/mole 8.18 30.05 22.36 26.91 29,76 33.01 36.96 

Ref. (215) (158) (158) 158) (158) (158) (158) 

Hy (Cal.) Kd/aole 8.0 29.89 22.45 25.12 30.03 33.70 40.75 

RA 4.3 6.34 4.3 6.72 6.72 6.94 7.01 
  

#: The use of 2. = If is justified by the fact that Z, = 12 for these compounds, see (3.13). 

The fact that the polyatomic potential using R values 

deduced from 0. and B = .54, calculates the cohesion 

energies in excellent agreement with the data, corroborates 

B +H = .54, and at the same time indicates the potential 
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of this method in estimation of B for other nuclei. We now 

come to the third conclusion. 

(3) The R values found here appear to match those of table 3.3 

calculated from volumes on the basis of the random 

distribution of particles, that is (3.17); 

Reve 892 C17, Vin) te (5.2) 

where Vy is the molecular volume. In the remainder of this 

chapter more evidence is provided to support R.iz7 asa 

reasonable estimate of the liquid state intermolecular 

distance from density. 

The cases of large X(CHsCH=) and solute-solvent systems of 

different sizes are examined in the following two sections. 

5.2.1. Polyatomic Screening Constant for Tetraethyl Systems 

According to the buffeting model the vdW nuclear screening of 

a peripheral atom must exceed that of the non-peripheral one 

because Greet > Gnon-peri Which results im Foert > Fron-pert and larger 

F values means larger screening by (5.1). 

Table 5.3 contains the results of testing (5.1) on pure XEta 

systems. As there is no Re for the compounds, the R values are 

adjusted so that Oe (CH=) * O.(CH=). These values of R are then 

used in (5.1) to calculate Oe(CH=) for comparison with 

Ow(CHz). The d values of the species are given in table (AS.1). 
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Table 5.3, Calculated (by Eq. 5.1) and Experisental Q(CH2) ppa, for Pure XEt, systems 

  

Compound C(CHoCHs) » Si (CH2CHs)« Sn(CHeCHs) 

Ju (CHs) 184 45 153 l97* 184 +207 

Tea. °C 38 38 35 30 30 3 

“Ga (CH2) +139 109 155* +156 

Tea. °C 38 38 30 30 

~Or (CHs) 186 146 198 +186 +208 

Gr (CHa) +092 076 093 +080 086 

R(Cal.) A (5.1) 7.7 8.23 8.06 8.48 8.42 
  

ar Ref. (159) 

The considerable disagreement in the experimental data for SiEta 

is striking. It could not have been caused by the difference in 

the temperature of the measurement because the change in volume 

for this compound over 8 °C could hardly change the third 

decimal figure of any quantity with R-@ dependence; 

Tea, °C 30 35 38 

Y ca®/aole 190.4 191.3 191.8 

We see that the calculated screenings for CH» are consistently 

smaller than the experimental values. The deliberate increase 

Of duw(CH=), which would increase its F factor, suggests 

itself as a possible remedy. This solution proves fruitless for 

two reasons. First, dw of CHe cannot be increased far beyond 

the corresponding value of dy(CH=) for X(CHs)4 systems, and 

second, any increase in du of CHa affects the calculated R and 

Oe, resulting in an endless loop of alterations. 

Alternatively, one can re-examine the inherent assumptions of 

the buffeting model when dealing with large molecules. Let us 
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assume that, instead of the "on the spot" rotations of the 

molecules according to the buffeting model, the (peripheral 

atoms of) solvent molecule can momentarily penetrate the open 

structure of the large solute molecule and buffet the CH= 

group to an extent more than the mathematics of the model 

allows. As Rummensfi7] puts it "... for X(CH2CH+)4 in any of 

its possible conformations at least one of the CH» groups will 

be just as exposed as the CHs groups...". 

If this is true one would expect the difference; 

A = Ou (CH) - O4(CH=) 

to increase as the size of the peripheral buffeting atoms of 

the solvent increases, or as the size of the central atom X 

decreases, because in both cases the penetration is more 

hindered. The data supports this supposition as borne out below; 

Experimental 4 values 

Increase in the Size of the Peripheral atom of the solvent ----------------) 

Sn(CHs) 4 Colli2 CCl. SiBr, 

Increaset cet, +043 +045 +067 075 

in size Sift. 034 038 4052 053 

oft of Snfte 027 023 043 040 

This effect is also observed for zig-zag-like molecules. 

For Si(OCH=CH=s)4 the difference between Ore(CH») = .077 and 

0. = .16 ppm is even larger because of its even more open 

structure. Therefore one is forced to the conclusion that the 

basic assumption of the separation of translational and 

rotational motions is invalid for large molecules, in which; 
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viTrans.) > v(Rot.). This is because the moment of inertia 

I= £ m d* in v(Rot.) @ (kT/1)*? is much larger than m in 

v(Trans.) @ (kT/m)'?, Therefore the solvent can "translate" 

towards the solute and penetrate it while the latter is still 

in one of its rotational conformations. 

This effect cannot be incorporated in the mathematics of the 

buffeting model at this stage without the introduction of some 

sort of factor which accounts for the extra buffeting. However, 

one cannot help thinking about an extreme situation in which a 

small solute can be envisaged to be buffeting all the 

constituent atoms of a large molecule independently. 

The tentative acceptance of such a situation brings about 

far-reaching consequences for the buffeting theory. First, the 

concept of the intermolecular distance loses its meaning and 

attraction. The R distance, between a small solute and the 

atoms in the solvent, would be more like vdW distances almost 

always fixed -note the emergence of the Homer and Percival 

buffeting model from the argument. Even the solvent d values 

lose their importance for the fact that the atoms or groups in 

the solvent are fixed to it and appear static during the 

interaction with the fast-rotating small solute. 

This idea is tested for the solubility of small solute (CO ) 

in a number of large alcohols in the following chapter with 

interesting results which stimulate further investigation. 

At this point a serious criticism of one aspect of the Homer 

and Percival buffeting theory should be mentioned, but which 
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may fortunately be justified in the light of the foregoing 

argument. 

It will be recalled that the distance rv, in their buffeting 

field expression (4.1) is defined as the sum of the vdW radii 

of the peripheral interacting atoms. This, of course is correct 

for the outer atoms, but for the interaction of the peripheral 

atom of the solvent and CHa of the solute the distance is 

larger by the amount by which the CH» group is away from the 

surface of the solute molecule. 

Homer and Percival in their successful treatment of the CH= 

shifts of SiEts, and Si(OEt)s have used the same 2 ry of the 

outer situation, which results in larger calculated values. 

In other words the assumption of the full penetration of the 

buffeting atom into the solute structure is implicit in their 

treatment so that 2 ry of the outer situation is maintained. 

Note that the calculated R values from screenings in table 5.3 

disagree with R.iz values in table 3.3. For R.iz values the 

ratio q = du(CHs)/Riz exceeds .43 for SiEt, and SnEta rendering 

even the best-fit F expression inefficient. Comparison between 

the available experimental and calculated heats of vaporization 

for SiEta shows that the R values of table 5.3 are too large; 

Hy(Expt.) = 41.350158]; Hy(Cal. R= 8.23) = 22.49;  Hy(Cal. R = 8.06) = 29.32 Kd/aole 

The experimental heat of vaporization can be calculated for 

R = 7.85 A, a value still larger than R.i7 = 7.55 given in 

table 3.3. 
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5.3. Polyatomic field screenings of small solutes 

In the treatment of the binary mixtures the question of the 

cavity size arises. Correlational analyses of the RF model of 

Ow in Chapter 2 clearly supported the solvent cavity size 

concept, which is tested in this section for the polyatomic 

model of G,,. 

It is instructive to test the solvent cavity concept on mixtures 

of some similar size molecules first. Table 5.4 gives the 

results of such test in which the solvent cavity idea; 

R= RL if RL > Ru, is used. 

JTable 5.4. Expt. and Calculated (5.1) vd Screenings (ppa) based on the Solvent Cavity Size(Z, = 11) 

  

  

Sol vent----~. > CCl, (R= 5.9) CaHi2 (R = 6.34) CMe, (R = 6.3) Sides (R= 6.72 

Solute 6. Oe 6. Or 5. Oe 6. Or 

CoHs 394 3h +257 310 +268 2 +243 +220 

(R = 6,18) 420" +203 

AAS 

CoHa2 267 +278 +2028 +200 +187 +223 +182 ATS 

(R = 6.34) +265 +1928 

143 

CCHS) +290 +273 +230 +233 +222 219 185 +168 

(R = 6.3) +307 +220 +217 «212 

+320 +187 

Si (CHS) 4 267 +270 +233 +239 +240 +216 +228 +230 

(R = 6,72) 299 +270 «255 +205 

+322 +282 

360 

az Ref, (27) 
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The R values of CCl, and CaHe given in this table are from 

tables 3.3 and 5.9 respectively. 

The good agreement between the experimental and calculated 

values supports the solvent cavity size and B +H = .54. The 

solute cavity size for Ca4H. in SiMea gives -0e = .387 ppm, 

for example. 

Let us now test the solvent cavity size for a small solute like 

CH, in a large solvent like CCl. for which R = 5.9 A. 

Expression (5.1) gives -0re = .16 ppm, which compares poorly 

with the observed values of -.473 and —-.443 ppm. 

Clearly the concept of a centre-retained solute for a small 

mass like methane with a critical temperature very much lower 

than the temperature of measurement (¥% 30 °C) is unrealistic. 

However on the grounds of its relatively fast movements; 

v(Trans. CHa) “ 3 v(Trans. CCla), a methane molecule inside the 

be in the vicinity of the surrounding solvent molecules for 

most of the time. Fig. 5.1 illustrates this situation. 

  
Fig. 5.1, Solvent cavity concept for saall gaseous solute with apparent inter-solecular distance 

R* (Ry + Ry)/2 and Ze = Ze (solvent). 
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R™ (Ru + Rv) /2 (5.3) 

than the solvent size (RL + RY)/2. Note that the size of the 

cavity, and therefore Z., are still governed by the solvent. 

Table 5.5 compares the calculated and experimental screening 

constants and heats of vaporization for systems of table 2.10, 

Table 5.5, Analysis of H. of Pure Solvents and Screenings of CHs in the Solvents (B= .54, 2. = 11) 

  

Ruiz A HY(Expt.) Hy(Cal.) “On ppa “Ue ppe 
Solvent 45.2)" _Kd/pole Ref. Ki/mole (5.25) {27} (5.1) 

Chala 5.68 = 79,04 «769, .767* +765 

CHBrs 5.83 40,43 158 48,39 +652*, 646 64d 

CBr, 6,32 45.02 158 45,62 594 592 

Bra 4,82 29,45 215 27.92 556 +502 

CHsI 5.22 28,16 158,215 b «505, .547* +562 

CBrCls 6,08 % 44.81 +533, .542* 54l 

CCl, 5.9 34.52 158 34,36 443, 472° 540 

CHsBr 5.04 24.77 158 b 355, 445° 486 

CHCI 5 5.67 22.74 215 27,33 407, .420* 458 

CHCl 5.27 31.65 158 33,07 398, 407" 527 

SiCl, 5.40 28,49 215,255 28.70 +301, .3A7* 481 
  

# Calculated (except for CCl4) using solar volumes of table 2.3 in (5.2), 

at Ref.(157]; bi The q ratios for hydrogens exceed .43 (see Appendix 5 for du). 

cr Ref. C17]. 

The considerable agreement between the calculated values and 

the data particularly in view of the fact that no parameter is 
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treated as adjustable corroborates, the value of .54 for +H, 

the inert-atom approximation, R.iz (3.17) or (5.2) for nearest 

‘neighbour distance, (5.3) for binary mixture of small solutes. 

Note that these results are obtained by using the densities and 

bond length-angle of the systems only. 

The rather poor agreement between 0. and Oe for SiCl, has 

initiated the investigation of section 5.6.1 into the liquid 

structure of this solvent. 

Table 5.6 gives the results of similar analysis for three more 

gaseous solutes for two of which 0. data is available. 

  

Table 5.4, Analysis of vd Screening Constant and Cohesion 

  

LF Ref. Cots Ref. Coe Ref. 

Mp °C -259.2 158 88.63 158 103.71 158 

Vol. Ca®/aole 26.15 69 52.57 158 49,56 255 
At Tea, °C 259.2 108 102 

Riaz A (5.2) 3.89 ALUN4 4.819 

Hy (Expt. )Kd/aole +903 69,255 14.7 255 14,44 158 

1.05 158 15.63 158 13,53 255 

Hy (Cal. )Ki/aole 1,00 15.66 13.44 

“On ppa = +257 153 2 305 

219 305 

Se ppa (5.1) 2092 324 290 
  

#; The Crystalline structures of fcc, hexagonal(306], and orthorhombic{306) 

all with Zs = 12, for H2, Cots, and CoH, respectively justify 

1. = 11 according to (3.13). Note that R.1z for H2 compares well with 

Re in table (3.3) 

187



The agreement between the data and calculations is impressive in 

view of the fact that again no parameter is adjusted to obtain 

the results. Note that the magnetic anisotropy effect for CaH, 

is assumed to be zero. 

The screening constant of liquid hydrogen in the form of; 

Ore = .092xV = .092%26.15 = 2.4 ppm cm*/mole may be crudely 

compared with the available gaseous value of 4.6 + 2. 

The liquid state dependence of 0. on density for CaH. and CaHa 

is given by Gordon and Dailey(305] as .488A and .SiSA ppm 

respectively, from which the data in table 5.6 are found by 

using the volumes at the quoted temperatures. 

RummensCiS3] has studied C2H. in the gas and liquid states down 

to -5S5.6 °C at @ = .502 gr/cm*. He argues that the liquid state 

shifts cannot be found by direct extrapolation from the 

corresponding gaseous state. We have checked this by using his 

results on CszH., which shows that the shift at -5S5.6 °C for 

(@ = .233 gr/cm*), for example, may be found from the gaseous 

shift at 35 °C (9 = .233 gr/cm™) by extrapolation in good 

agreement with his experimental value. 

Accordingly from his data at -55.6 °C we find -.257 ppm for 

the screening constant of CaH. at -108 °C (@ = .572) which 

agrees with the Gordon and Dailey result of .279 ppm. 

The gas-to-liquid screening of liquid Hz cannot be found from 

the available gaseous data of Dayan and Widenlocher[307] 

because they have not quoted the densities. 
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The results of the analysis of the screening constant of these 

gases in two available solvents are given in table 5.7. The R.ivz> 

values found in table 5.6 are used in (5.3) to obtain Up values. 

Table 5,7. Analysis of the Screening Constants of Hz , CoH», and CzHs (B= .54, 2, = 11) 

  

Cea SOLVONE Swserewo moc onmrerremrn cars 

CCl, (R = 5.9) Coie (R = 6.54) 

Solute ft. ppe Gr (5.2) On ppa Gr (5.2) 

Ha 485 ATA +285, +300 a 

CoHe +305, «310 470 195, «210 AS 

Coa +345, 370 +500 +225, .240 439 
  

Note the correct trend but the rather poor agreement between 

the existing data and calculated values, particularly for 

cyclohexane. The polyatomic field appears to predict 

consistantly large values for small solutes in cyclohexane. For 

methane in this solvent it gives —.475 compared with the data 

of -—.225, -.285017] and -.270£27] ppm. This anomaly is not 

observed for similar size systems of table 5.4. 

The possibility of non-zero neighbour anisotropy effect for 

Ce.Hize aS a cause of the anomaly is examined in the following 

section. 

In spite of the stated anomalies the evidence provided so far 

authenticates and proposes the buffeting formulas for more 

subtle uses like the study of the magnetic anisotropy, the B 

Parameter of nuclei other than +H, and molecular structure inthe 

liquid state. 
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5.4. Neighbour Anisotropy Screening, 1. 

The historical introduction to Chapter 2 showed that the 

anomaly of aromatic solvents in the experimental verification 

ef the theoretical shape factor 2%/3, was attributed to the 

magnetic anisotropy of the solvent by Bothner-By and Glick. 

The expression for the screening of the medium (2.8) upon Op 

correction and re-arrangement becomes; 

On = OC(Expt.) - Ow (5.4) 

In other words Om comes to existence if the experimental 

screening of the medium after correction for the bulk 

susceptibility has a residue which either is too small to be a 

genuine 0. or is a positive value. 

Consider the gas-to-liquid screening of methane in C(NO2)4 and 

CoH. » for example. In the former, the residue shift is too 

small -.053 ppm to be a genuine 0., and in the latter it is 

+.124 ppm, a positive value or up-field. 

The neighbour anisptropy effect arises as a result of the 

secondary magnetic field produced by the solvent at the site of 

the resonant nuclei in the solute. The secondary magnetic field 

results from the interaction of the external field and the 

solvent. 

It is shown by Buckingham et al[22] that this secondary field 

or its screening constant is proportional to the anisotropy in 

the diamagnetic susceptibility AX = XIl- *L of the solvent or 

the groups belonging to the solvent. 

It is also the orthodox view that(22,308-314] a 0. shift is 
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positive (high-field) for disk-shaped molecules like C.H. and 

negative (low-field) for rod-shaped ones like CS» or CN group 

of CHsCN. The anisotropy screening may be estimated from (5.4) 

assuming that 0. ¥ Or: 

0. ~ OCExpt.) - Or (5.5) 

The results of such estimations are given in table 5.8 for some 

anisotropic solvents. 

Table 5,8, Neighbour Anisotropy Screenings (ppm) for Anisotropic Solvents (B = .54, Zs = 11) 

Solvent---> Coe C(NDz) 4 CS2 CHSCN 

GlExpt.) Op . OlExpt.) Or . GUExpt.) Gp Oe GlExpt.) Or Oe 
Solute (27) (5.1) (5,5) (271 (5.1) (5.5) (163) (5.1) (5.5) 0163) (5.1) (55) 

CH, +124 -.432 556 -.053 -.580 530 -.5B3 353-229 = A1b = SHT 099 

Cote «2350-1379 NA 7120-447 327 e ~.2h0 0 = -.452  -.394-.058 

Coz «6272-4225 ADT 1043-1298 SAL -.398° 2185 9.283 =. 285-241-044 

CiCHs)4 «213 -.218 ASL 1028-6292 264 426-181-2245 317-234-083 

Si(CHs), 151-2229 380 035.290. 255 -.520__-.178 _-.342_—-. 343-237-108 

Mean Jy 2495 2343 -.257 -.078 

as Refa(27]. 

Table 5.9. Calculated R values for Anisotropic Solvents using Heats of Vaporization (2, = 11*) 

  

Cs. Ref. CHSCN Ref. Coty Ref. C(NDz)4 Ref. 

R (Cal.) A 5.86 4,80 6.18 6.57 

Hy (Expt.) 26.74 215,315 31.35 255,315 30.79 255,315 AL. 16 158 

28.37 158 30.79 69 

34.05 158 

Hy(Cal.) 26.64 31,28 30.53 41.53 
  

#: This value for CHsCN is based on the Kitaigorodsky observation that organic molecules have Zq = 12 

(see Chapter 3). Appendix 6 gives the details of the calculations of H. 
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The R values which, when used in (3.25) give the right cohesion 

energies for the solvents, ensure the reliability of caculated 

Oe and Oa. These are found in table 5.9 and used in table 5.8. 

This results in calculated screenings consistent with the 

cohesion energies. 

The R values of CHsCN and C(NO=)4 compare well with respective 

Ray values of 4.9 and 6.48 A found from their volumes at 20 °C. 

The R value of 6.57 A for C(NO=),4 based on its HY (Expt.) is 

less attractive because it exceeds Riaz = 6.48 A at 20 °C. 

However such a difference in R’s has little effect on 0m and 

Hy. For example, one finds (re = -.5435 ppm for CHa in this 

solvent and HL (Cal.) = 46.78 KJ/mole for pure solvent when 

Riaz = 6.48 is used. 

The values of R for disk-shaped benzene and rod-shaped CS. are 

troublesome. These values do not comply with R.az formula 

(3.2) as was discussed in Chapter 3. It appears that for 

non-spherical molecules R is best found from the mean 

  (or the geometric mean) of RL values given in table 3.3. The 

geometric means are 6.18 and 5.9 A respectively, which compare 

very well with those of table 5.9. 

Let us now return to the discussion of the results of table 5.8. 

First, the values of 0. have the orthodox signs, positive for 

benzene and C(NO:)4, and negative for CS= and CHzCN. Second, 

the proportionality of O« with AX is borne out below. Third, 

Rummensl27] finds no evidence for a significant value of 0 for 

CS» based on his site-factor RF model of 0.4, although he finds 

a mean value of -.14 ppm for CH=CN. His findings do not show 
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the proportionality of Om with AX: 

Molecule Cote | Sz CHSCN CHsI CHsBr CHSC] 

wAK = XI- XL 9.91" 5.00% 2,24 1,82° 141° 4.322 
erg gauss~?x 107” 

Hean Gx 495 -.257 ~.078 
  

ar Ref. (316); b: Ref.(22]; cz Ref. (317) 

Fourth, the large permanent dipole of CHsCN; K = 3.44 D[318]), 

according to (2.24), results in the dipolar screening of; 

Oe = .094 0. for this solvent. If this value is subtracted 

from the anisotropy screenings the average 0. reduces to the 

smaller value of .oS1 ppm. 

Fifth, the vdW screenings of C(NO2)4, which because of its 

tetrahedral structure is expected to have no anisotropy effect, 

are too small to be genuine 0... This molecule, as has been 

mentioned in detail by Raynes and Razali63], on the grounds of 

its four disk-shaped NOz groups, gives rise to substantial 

anisotropy shifts. The average value of .345 ppm compares well 

with that of Percivalli60], .35 ppm, found on the basis of the 

Homer and Percival buffeting theory. It compares poorly with 

Rummens‘'C27] average value of .239 ppm. 

The average 0. for benzene is in agreement with those of Homer 

and Redhead(£3191; .407, Rummens(27]; .55, and Becconsall([314] 

»SO ppm. 

Concerning the shifts of gaseous solutes in cyclohexane, the 

evidence in table 5.7 suggest a sizable J. ¥ .20 ppm for this 

solvent. This however can be supported neither by the evidence 

in table 5.4 nor by its presumeably vanishing small Ax. 
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5.5. 

  

In this section the buffeting model is used for the study of 

the B parameters of F, P, and Xe. 

5.5.1. Determination of *?F_ B parameter, 

The lack of knowledge about **F B has forced workers to 

empirical determination of this parameter. The values so 

obtained show outstanding sensitivity to the solute-solvent 

system. Empirical values as small as 10 and as nonsensically 

large as 782 have been found for *’F B, depending on the 

5S model of <E*>. Here the same method is adopted in which (5.1) 

and the experimental screenings would be used to find HB. 

A preliminary calculation of the heat of vaporization for CFa, 

a conventional solute of +#”F shift studies, showed that the 

value of R.iz = 4.662 A, found from its molar volume at the mp, 

gave HV (Cal.) = 9.15, short of the experimental value by 3.5 

KJ/mole. Another conventional solute, SiF4, showed the same 

pattern when its Re(Expt.) = 4.68 A was used in (3.25). a 

As R cannot be decreased beyond the solid state values to 

increase the calculated values of H., these shortcomings were 

viewed as the reflection of some sort of structural 

peculiarities of the compounds. 

In fact the special bonding character of them is the root of 

the variances. Pauling£[318] has shown that CFa, for example, is 

best described as a resonance hybrid of 12 structures of type 

(a), four of type (b) and one of the traditional covalent type 

(c) which was used in the calculation of Hy by (3.25)5 
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(a) (b) tes 

Recently Maclagan[(320] has discussed the bonding for SF. and 

has concluded that ionic Lewis structures such as (d) should 

have larger weights than type (e); 

  

(d) (e) 

New developments of the Pauling "S-electron bond" theory shows 

that a more suitable representation of the ionic structures is 

provided by what is called ae cep en S-centre bonding". 

For SF. Harcourt£262] gives the following forms where the 

"4-electron 3-centre bonding” is in resonance with other 

locations; 

    

  

F. F Nae : ‘ 
fa F—O+—F F—Sit—F 

pone eon) ete) 

(f) (gq) (h) 

The new representation is also adopted for CF4 and SiFa in (g) 

and (h). 

The existence of ionic character in molecules has a bearing on 

the buffeting model, as was clearly shown in Chapter 3 for the 

  

estimated moments <m 

  

The buffeting formulas (3.25) and (5.1), via <m » are capable 

of differentiating between the covalent and ionic types. 
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One notes that the ionic type, by analogy with inorganic ionic 

compounds, should have enhanced inter-molecular forces and 

therefore larger cohesion energies. 

By accounting for the ionic structure (see Appendix 6) the 

calculated heat of vaporization for CF,, for example, increases 

to 11.6 (Exp. = 12.6) Kd/mole with the difference of; 

11.6 - 9.15 = 2.45 kJ/mole being due to the ionic character. 

Table 5.10 gives the R values of some fluorine solutes found 

from their volumes at the quoted temperatures by (5.2) and by 

(3.25) using the experimental H. values. The agreement between 

them is remarkable bearing in mind that for disk-shaped C.F. 

realistic R cannot be found from (5.2), as was mentioned 

previously. For SF., R = 5.15 A is a better inter-molecular 

distance for the liquid state because R.i7 = 5.06 Ais 

calculated from the volume at -91 °C, well below its melting 

point. 

Tonic structures equivalent to those of (f) to (h) are also 

assigned to C.4F., and Cafe as; Ca*FeF> and C4*F>F> because 

there is no reason to believe that they should not have ionic 

character. 

Table §.11 contains the results of the analysis of fluorine 

screening constants for both polar and non-polar solutes and 

solvents. The solute CF2Clz (mp -158 °C) is also included 

simply by using its R.i7 = 5.38 A from V = 69.1 cm=/mole at 

“115°C. Many more solutes including CF2Br2, CF2=ClBr, CF-Cl 

CF:sCCCF:s, FCICCFC] from the work of Abraham et alf162] could 
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have been analysed if the molar volumes were available. 

Table 5.10, Calculated R values from solar volunes (5.2) and Cohesion Energies (Z, = j1)* 

  

Mp °C {At °C) Ref. Riaz R iCal.) A Hy{Cal.) Hy (Expt.) Ref. 

Coapound ca®/aole (5.2) (3,25) (3.25) _Ki/aole 

CF, ~184 44,89 (194) 158 4.66 4,66 11.60 12.6 158,215 

SiF, 90 48.0 (-98) 247 4,77 4,75 18.45 18.6 a 

SF, -51 57.3 (-91) 247 5.06 5.14 17.77 17.08 255 

cLaFe -38¢ 116.0 (0) 1586.39 6,42" W317 on 25.32 255 

CoFe Sel 115.8 (25) 2146.39 6,58 3142 Seb 255 

CFCs -110¢ 91.94 (17) 225 «5.92 5.76 26.26 26.85 158 
  

#: See section 5.6.2. on the 1. for SiFs and SF. 

a: It is generally true to write H) * H. - He which for Sif, gives Hy * 26.48 - 9.498 = 16,98. 

The sage expression gives H, = 23.85 - 5.02 = 18.83 ( data from Ref.(215]) for SF, in agreement 

with the experimental values. The experimental value of 18.6 for Sif, is from an unidentified Ref. 

bs For R.17 = 6.39 Eq. (3.25) gives Hy = 25.32 Kd/aole still in considerable agreement with the 

experimental value. c: Bp = -4 °C; d: Bp = 23.7 °C, 

The rather unorthodox *°F B values found in table 5.11, being 

lower than what is normally suggested, are interesting in that 

they are independent of the solvents and also show small 

variations over the range of the solutes considered. 

The variations in B values for different solutes however appear 

to be genuine. Petrakis and Bernstein(241] argue that in the 

Series CF4, SF.4, and SiFa, there is an increasing double bond 

character. In other words the increase in the electropositivity 

of the central atom from C to Si guarantees the increased 

enrichment or "swelling" of the fluorine bond with electrons. 

This increased ionic character means larger shielding of F 
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nuclei which in turn necessitates a larger B value. 

Table 5.11, Calculated ‘°F B parameter from (5.2) and Q,(Expt.) of tables 2.7 and 2.8 

  

scorer a einen arent RYE ep cence sce reecr ce 

Solute CCl, Sill, CFC]; (162) Cote Sntes Mean B 

CF, «E?) +906 1792 +816 797 +812 

B 8,38 8.64 7.50 745 8.41 8.07 + .5 

SiF, «E) 1.019.884 +890 +899 

B 10.93 11.42 ' ' {1.17 W.17 + .2 

SF, <E?) +751 +660 «b61 +671 

B 10.60 10.44 ' ' 10.50 10.58 + 1 

CFCls «E?) 484 432 A29 

B 12.60 ' 11.85 11.91 + 12.11 + .3 

CFaCl2 «E?) +536 A7B ATS 

8 11.69 t 11.00 10.77 ' 11.15 +04 

C-LaFo «ED +14 550 +549 

B 11.29 t 10.53 10.00 ' 10.60 + 6 

CoFe «E> «bb +583 +592 +623 +520 

B 13.94 14.50 12.96 12,22 15.17 13.7402 
  

Overall Mean B= 11,0 + 1.6 

  

#: No 0, available, 

Likewise, judging from the large B value of C.F., the fluorine 

bond appears to be "glutted" by electrons from the electron-rich 
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ring. Overall, these conclusions suggest that one can relate 

the B parameter to the ionic character of the bond as shown in 

Fig. 5.2. 

Decrease in the ionic character of bond. 

Species C.F, > CFCs DSiFs * CFCl2 > Se * CaFe > CFa 

8 AS erin.) Mh) 10 8 

Ses senenecenewaecanaccaanasaamaenenaamanae 

Decrease in the values of B, 

Fig. 5.2. Ionic character of bond and the B value. 

Note the consistency in the order of the B values and the ionic 

character. For methane derivatives it follows the natural 

direction of CFCls > CF2Cla > CF4 because as the number of F 

  

atoms increases the charge density per atom decreases. 

Judicious use of order relationships such as this help reduce 

the error in predicting 0. of +”F compounds by finding a 

suitable B value rather than indiscriminate use of the overall 

average of 11 + 1.6. For example, in the case of CF2Br., Fig 

S.2 and the fact that 2Br provide more electrons for F than 

2C1, suggests the value of BY 12. 

Note that the solvent cavity size for C.F. in SnMe, has caused 

the large B value of 15.17, otherwise, using (5.3) B equals 

10.3. 

The average value of 11 in itself merits some discussion. If 

the concept of crude proportionality of HB with the electron 
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charge density is grafted onto the concept of the correspondence 

of inert atoms with atoms in bond, a criterion may be set for 

deciding the value of B for different nuclei as follows: 

The B value of nucleus falls somewhere between the B values of 

its corresponding inert gas nucleus and that of the inert 

nucleus of the next row in periodic table. For +°F, for example, 

the B value accordingly has to be larger than that of Ne and 

smaller than the B value of Ar. 

This criterion is based on the fact that fluorine in the bond 

appears to have a larger polarizability than Ne, and therefore 

is more shielded. The fact that the polarizability of fluorine 

in bond is larger than that of Ne is shown below; 

Species Ne Py a 

Q A= 2395 - 38" «9850321 

: This the polarizability contribution of bonded F, 

Fig. 5.3 summarizes this criterion. 

Species He fH} Ne CC, N,0,F] Ar [CSi,P,S, Cl] Kr C Ge, As, Se, Br] Ye 

Bo 075" 5.6 41.3 124.7 337.3 

B AT 4.1 2 252 4 

17 CHB 4,4 (5.6) ¢ (C, Ny O, F) B¢ 2441.3) ¢ (Si, Py S, CL) B¢ 2521124) ¢ (Ge, As, Se, Br) B < 914(337: 

Fig. 5.3. A Criterion for the order of aagnitude estiaation of B for different Nuclei. 

#; This value of Jaseson et al is not reliable (see Rumaens{17]). 

The 8 (dynamic) values are from Kromhout and Linder (see Chapter 2), 
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The theoretical and empirical B values for H and F follow the 

order of Fig. 5.3. Some of the Mohanty and Bernstein(246] 

empirical values of B = 262 (CF,.,.CF,) and 782 (SF....SFs) for 

example, found from gas phase studies with the inclusion of 

repulsion in the inter-molecular potential appear nonsensical 

and out of place. 

This, together with the fact that any repulsion term for the 

poyatomic potential-field formulation must contain empirical 

parameters, which cripples the practicality of the model, 

justifies the exclusion of a repulsion-type contribution from 

this attractive model. 

5.5.2. Determination of =*P BH parameter 

=2P NMR has been increasingly popular because of its biochemical 

applications. There is very little information on **P solvent 

effects and virtually none on its B valuef171. 

The *?F NMR solvent effects are very large, about 100 times 

larger than for protons and about five times larger than for 

2E, therefore new phenomena may be observable in the analysis 

of its data. 

For the analysis of the screening data of phosphorus given in 

table 2.9, Zs and R must be known. 

Early studies on white phosphorus at -35 °C report a cubic 

structure with a = 7.17 AL322]. The same structure is reported 

in the ‘Handbook of X-ray Analysis’ by Mirkin([323], with 

a = 7.18 A. For a cubic unit cell of this size, one finds; 
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Re = 5.0 A. However later studies on a single crystal[324-326] 

categorically reported a bec lattice with a = 18.51 A. 

The x-ray diffraction on liquid white phosphorus at 48 °C by 

Thomas and Gingrich(327] confirms the cubic structure. Their 

radial distribution curve shows three peaks at distances 2.25, 

~ 3.9, and ~ 5.9 A from a particular phosphorus atom, with   

areas equivalent to 3, * 8, and * 32 phosphorus atoms. 

The first three nearest neighbour atoms are consistent with the 

P, molecular structure of white phosphorus. The second eight 

nearest neighbour atoms, have to be viewed in the light of the 

fact that x-ray diffraction takes place in t < 107+*9 sf236] 

during which time no translational or rotational motion takes 

place. This suggests that the second radial distribution peak 

represents 98 nearest P atoms belonging to 8 molecules, namely 

Z. ™* 8. This is in agreement with the cubic Zs = 8 and (5.15). 

To ease the calculation of the nearest neighbour distance, R, 

that is the centre-of-mass of a P, to the corresponding centres 

in the neighbouring molecules, from P...P distance of * 3.9 A 

the P, is depicted as a circle in Fig. 5.4. 

<—— 3.90 ——_>«—__— 3.0 ———_3 

  Ps R= 3,90- Pa R= 6,60 >Pe 

R= (3.90 + 6,60)/2 = 5.25 A 

Fig. 5.4. An x-ray "snapshot" of the nearest neighbours distance in liquid P,, 
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The average value of R = (6.6 + 3.9)/2 = 5.25 A compares well 

with R..> = 5.35 from the volume at 20 °C. Note that 1.35 A is 

the de value given in Appendix 5. Also note that the observed 

32 P atoms of the third peak can be explained if some molecules 

of beyond the second molecular shell can momentarily join the 

second shell. 

This R value is used in table 5.12 for the calculation of HY. 

The agreement between the data and the calculated value is 

impressive. 

Table 5.12, Calculated and Experimental cohesion energy for white phosphorus (2. = 8 

  

  

Y ca®/aole Riaz A RLA Hy (Expt. ) Ki/aole Hy (Cal, 

At 20 °C Ref. (5.2) (Fig. 5.3) Ref. (3.25) 

$7.77 255 5.35 5.25 52.36 158,215 51,95 

52.67 328 

The usual value of Z. = 11 and R.izy in (3.25) would give 

HL = 62 KJ/mole, about 10 KJ/mole larger than the experimental 

value. This signifies the sensitivity of the polyatomic 

formulas to the liquid state structure (see sec. 5.6.2). 

In the absence of x-ray data on liquid P, the over-estimated Hv 

value could have been used to find a more realistic Z. and via 

that surmise, on the liquid and solid state structures of Pa. 

The buffeting fields and the calculated B values for Ps in 

five solvents are given in table 5.13. For all the solvents 

except CS2, because of its small size compared to Ps, the 

solvent cavity idea is used. The R values for the solvents are 
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those previously given in this chapter. 

Table 5.13, Empirical B values of 3'P (2, = 8, R = 5.25 Ay Jm data from table 2.9) 

  

  

Sol vent 4&2) (5.1) B Bly + Iy) L/U, + Iv) 

Py 49 187 2625 50 

Coe 236 127 2062 4B 

cs, +386 104 1790 AL 

Cie 238 8 1658 ay) 

CCl, 368 ah 1549 38 

B= 120 +36 cc = .93 

One notes the sensitivity of the B parameter to the solvent. 

Mohanty and Bernstein(246] also observed such a prominent 

solvent-dependence behaviour for their *?F B values. 

The Kromhout and Linder theory predicts the solvent-dependence 

of the B parameter as; 

Boe XS t+ 2 ly tig | 

where c is a constant for a given solute and I, and I, are the 

ionization potentials of the solute and the solvent 

respectively. 

Mohanty and Bernstein, by re-arranging this expression as; 

Bl, + Io) & eo+ G72)e TU/s(Ia + 1.) 

made an attempt to find the linear relationship that should 

exist between B (I, + Iv) and Iu/(Iu + Iv). They found no 

simple linear relationship. 

Table 5.13 shows that a rather good linear relationship exists 

between the values of the last two columns. Such solvent 

dependence behaviour of B is probably evident for phosphorus 
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because of its very large screenings, which magnify the effect. 

The average B value of 120 + 36 and the individual B values 

are in accord with the inert-atom-B value criterion shown in 

Fig. 5.3. 

The B value of Pa/Pa system however is larger than that of 

Jameson et al for Kr, signifying that the dynamic values of 

Kromhout and Linder are probably more realistic. This is checked 

for Xe in the following section. 

In table 5.14 are given the screening data for +*”Xe in solid 

and liquid states in ppm cm*/mole which are converted to ppm by 

dividing them by the solvent’s molar volume. For solid Xe, 

Ze = 12 and for the liquid Z. = 11 are used. 

The calculated B values are akin to the Kromhout and Linder 

values and in reasonable agreement with the empirical value of 

837 foud by Jameson et al in contrast to their theoretical 

static value of 337. The B value found here for *#%Xe is, as 

one would expect, fixed, because the solvent is constant. 

From gas phase studies Jameson et al have found empirical 

solvent dependent B values for ***%Xe. In fact we extrapolated 

their gas phase data to liquid phase by the crude method of 

dividing them by the liquid state volumes of the solvents and 

found distinct solvent dependent B values. A correlational 

analysis similar to that of P, in table 5.13 shows a good 

correlation coefficient of .98 fo ***Xe. 
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Table 5.14. Empirical   J27Xe B value   

    

  

SOLVene was Solid Xe Liquid Xe 

£5 = 12 Zoe eee 

V cm*/mole 37.09" 42.69" (mp) 

Riaz A 4.58 

“Ou (Expt. ) 11800 (ppm cm*/mole) 9360 

=O. (Expt. ) 318 (ppm) 219) 

<E=> (5.1) 2404 2279 

B 787 785 
  

*: Ref.(69]. 

5.6. Liguid State Structural Problems 

This section typifies the sort of liquid state problems that can 

be studied by the buffeting model. 

5.6.1. Oy, for Si€Cla 

Comparison between the 0. data of CCl4 and SiCl, shows that 

shifts produced by the former are always larger than those of 

the latter. 

Raynes and Razalié63] observed this and wrote "... the shifts 

produced for CCl, are 40-50% greater than those produce by 

$iCl4. In contrast to this are the polarizabilities, SiCla has 

a polarizability some 10% larger than that of CCl,. Thus we are 

forced to the conclusion that local effects principally 

determine 0.. In the present case the chlorine atoms of SiCla 

are probably very much less polarizable than those of CCl4 due 

to the presence of structures such as Si=Cl* ...". 
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Pauling£318] gives structures of type (a) and (b) for SiCl,; 

2Cl-; 

3Cl1—Si==Cl+r;: 4 
“ 1 “ 

} 
?Cli 

  

(a) (b) 

These structures do not show the transfer of electronic charge 

from the high-buffeting chlorine to the low-buffeting silicon 

as Raynes and Raza suggest by Si=Cl*,. 

The buffeting model offers the concept of the solvent cavity 

as a plausible alternative explanation of the observed effect. 

The cavity size provided by SiCl4 for the solute is larger than 

that of CCl4; 6.4 A (SiCl4) > 5.9 A (CCl4a), which explainsthe 

the observation. Note also that the inter-molecular forces in 

CCl4 are stronger than those of SiCl4, a fact reflected in 

their cohesion energies. One therefore should not expect larger 

shifts for the latter on the grounds that it has a larger 

interactions between molecules determine the inter-molecular 

forces and not the molecules as a whole. Table 5.15 contrasts 

the buffeting screenings of some solutes in the two solvents to 

show that in all cases; Oe (CClea) * Or (SiCla) are in accord 

with the observation. The solvent cavity size is used if 

  

  

Ry > Rus 

Table 5.15, Comparison between the Screening Constants (ppm) for Sil, and CCl, (2, = 11, B= .54) 

Solute ------ > Coto Colle Collie NeC=CHe Ne2C=CHez 

RA Ruiz = 6.00 R= 6,18 R= 6.34 Rayy = 5.6 Raa = 6.45 

SiC, -Gr (Uw) 185 (.203) +236 (,272,.293) «235 (.187) +300 (, 318) +302 (237 

CCl, Gr (Ou) 277 1.295) +394 (394) +278 (.265) 519 (477) 2345 (340) 
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5.6.2. Number of Nearest Neighbours in the Liquid State 

It may have been noted that throughout this chapter a fixed 

value of 11 (except for P,) has been used for Zi. 

The crystalline structure of the compounds justifies the value 

of i1, as was discussed in Chapter 3. This however is not true 

for SiF,s and SFse with bec structures,Zs = 8 (see table 3.2). 

For Z. = 7, the cohesion energies calculated by (3.25) fall 

short of the experimental values by 7 and 6 KJ/mole 

respectively. The fact that (3.25) works so well for so many 

compounds by using Z. = 11, suggest that 11 might be a scale 

Table 5.16 verifies this suggestion in which the calculated 

heats of vaporization for two extreme cases of mercury and 

liquid chlorine, with known Z, from x-ray studies, are given. 

Table 5.16, Calculated and Experiaental heats of Vaporization for Hg and CI. 

  

V ca®/aole Ruiz A Hy (Cal.) Hy (Expt. ) A 

Ref. (5.2) Ki/aole Ki/aole Ref. Ref. 

Hg 14,65 (np) 69 3.21 61,60 59.06 255 TP 2 

59.66 69 

CL. 34.75 (solid) 240 4,28 17.20 20.33 215,255,679 6" 214 

18,38 240. 
  

#: For 1. = 1 one finds Hy = 96.8 and 31.52 J/eole for Hg and Cl2 respectively. 

For 1, = 7, Eq. (3.25) gives Hv(Cal.) = 20.05 Ki/mole for C2. 

The results of this table rule out the possibility of 11 being 

a scale factor, because for such a value the calculated HL are 

about twice the experimental ones. The results also reiterate 
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the workability of the buffeting model and ratify R.i> as the 

best expression for estimating liquid state intermolecular 

distances. 

It is worth noting that the close-packing orthorhombic 

(Ze = 12) structure of Cle, unlike Br2, is not exhibited 

in the liquid state[214]. This makes chlorine a unique liquid 

compared to Nz, Oz and Brz. Chlorine is also polar in the 

liquid state; HK = 1.07 D, a peculiarity due to its unique 

liquid state structure[214]. 

However both the liquid state close-packing of Br (we used 

Zu = 11 in table 5.5) and the peculiarity of Cle have been 

satisfactorily explained by the polyatomic field-potential 

formulas. 

Concerning SiF4 and SF., as table 5.10 shows, a close-packing 

structure in the liquid state (Z. = 11) is required by the 

buffeting potential to give H.(Cal.) * HV(Expt.), whereas the 

the crystalline structures are bee (Z,.. = 8). The calculated Hy 

values for SiF,, with Z. = 7 and Rs = 4.68 A (table 3.3) and 

SiF,, with Z_ = 7 and R.iz = 5.06 A (table 5.10), are compared 

with the experimental values in Fig. 5.5. The relationship 

between the experimental and calculated cohesion energies of 

systems for which no adjustable parameter is used (non-refined) 

is also shown in Fig. 5.5. 

  

The results of this chapter support the conclusion that the 
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polyatomic model provides a genuine and practical intermolecular 

attraction force function for the liquid state. 

This model, in spite of its simplicity and lack of benefit from 

tools of statistical mechanics and thermodynamics, efficiently 

explains the vdW screening constant, the heat of vaporization, 

and some liquid state structural problems. 

It is however conceivable that the model, now in its infancy, 

can be improved by being subject to further testing in the light 

of the wealth of liquid state experimental facts. 

The evidence shows that its critical parameter, namely the 

inter-molecular distance, for pure globular systems, can be 

obtained from molar volumes by (5.2) for all practical purposes. 

The definition of R for mixtures of small gas molecules in 

liquids, judging by the analysis of table 5.7 however, appears 

to be more subtle than the simple characterization by (5.3). 

The B values found here are regarded as genuine nuclear 

screening parameters because of their inter-calculations and 

consistency with the corresponding cohesion energies. 

The inefficiency of the model for large non-globular molecules, 

which stems from the invalidity of its assumptions for such 

systems, initiates the ensuing natural step in the development 

of the atom-atom potential function for large molecules. 

This subject is touched upon in the last section of the 

following chapter. 
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Chapter 6 

The Buffeting Interaction and Solubility of Gases in Liquids 

Introduction 

The subject of the solubility of gases in liquids has been a 

troublesome one. There have been many theoretical and 

semi-empirical attempts to cope with this problem. 

The multitude of terms invented and used indicate the extent to 

which these attempts have comprehensively coped with this vast 

subject. Term such as pany non-ideal, real, regular, active, 

inactive, inert, reactive, non-active, partially active, 

physically reactive, chemically reactive, associative, 

nen-associative, solvation, hydration, hydrogen bond formation, 

positive deviation, negative deviation, activity coefficient, 

internal pressure, and many more are prevalent in this field. 

The subject therefore affords a test case for the buffeting 

idea and its underlying assumptions. In fact the pi-electron 

refinement of the inert-atom approximation and the importance 

of the centre of mass of asymmetric molecules were obtained 

from the correlational analysis of gas solubility in terms of 

the pair buffeting field given in this chapter. In other words, 

the study of the solubility of gases has been the first test 

potential function, different from (3.24), has been derived 

here to circumvent the problems of Z, and polarizability 

contribution which were then unsolved. 
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The correlational analysis of gas solubility and the heuristic 

potential has provided grounds on which to discuss the 

contentious subject of chemical reactions aS a cause of 

solubility. A criterion for the concept of "likeness" in the 

"like dissolves like" maxim is also found in terms of the 

inert-atom moment rather than the conventional structural 

likeness concept. The topic of group contribution which 

points to the possibility of calculating macroscopic properties 

like solubility from the independent contributions of functional 

groups in molecules is briefly studied first in terms of the 

buffeting field and in the last section by Eq. (3.24) where its 

results are compared with those of the UNIFAC method. 

The remarkable variety of uses for gas-liquid solubilities in 

medical research, anaesthesiology, pharmacology, oceanography 

aerosol practice, biotechnological engineering, chemical 

engineering, and, environmental pollution£€253] calls for further 

in-depth study of this subject. The correlational analysis given 

here is to ari ntiate such a careful investigation by the 

polyatomic or buffeting method. 

6.1. Background Information 

ideal Solutions 

In the conventional treatment of the subject of solubility 

ideal solutions are those which obey Raoult’s lawf253] at all 

temperatures. This means that in a mixture of a gas u (solute) 

and a liquid v (solvent) at any temperature the mole fraction 

of u, xi, is given by; 
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Pu = Pe xs (6.1) 

where Pu is the actual pressure of gas uo at t °C and P? 

is the vapour pressure of u over the liquid u at t °C. This 

mole fraction has come to be called the ideal solubility. 

Of Course Pi is not a measurable quantity if the critical 

temperature of gas u is above the temperature of the solubility 

measurement because gas u cannot exist as pure liquid[253]. 

Hildebrand{£331,332] however, accepts a fictitious value for P? 

by extrapolating the vapour pressure above the critical 

temperature which is used for a rough calculation of the ideal 

solubilities of gases. Therefore, for all gases P2 is the 

vapour pressure of the liquified gas, or its equivalent. 

Hildebrand’s ideal solubility of gas is for Pu = 1 atm. and 

therefore (6.1) becomes(253,333]1; 

xi = 1/P2 (6.2) 

Real Solutions 

No known liquid solutions are ideal(334], in fact ideal 

solutions particularly for gases do not exist{€253], but as the 

components of a solution approach one another in molecular 

shape, size, chemical type (electronic configuration), and mass, 

the behaviour of all components in solution approaches (6.1) as 

a limit. In terms of the buffeting concept, this means that when 

d's, <m=>‘s, and V‘s of the components of a solution are similar 

crare for gas solutions- their behaviour approaches (4.1). 

Solutions of xylene isomers, for example, deviate from the ideal 

condition by about 2%[335,336]. 
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However, great deviations are observed in almost all other 

solutions in which the components have an even greater difference 

in size, shape, and chemical nature. The deviations from ideal 

condition are quantified by the activity coefficient ¥ as; 

where Y= 1 if xu = xh 
AuPS RSL Bt ted ke (6.3) 

YR fh wu < xe 

  

Raoult‘’s law is inseparable from the concept of ideality. If 

the mixture is ideal it will then obey this law, otherwise there 

is no significant virtue in Raoult’s lawl253]1. 

6.2. Early computational Difficulties 

6.2.1. Buffeting Field and Gas Solubilities 
  

From the argument of real solutions a pattern emerges for a 

quantitative discussion of solubility, namely the assumption 

that if u and v have similar intermolecular potentials in their 

pure states, then u will exert similar forces on the molecules 

of v that it exerts on u resulting in their mutual solubilities. 

This is the fundamental idea underlying the Hildebrand[333] and 

Bradford(337] internal pressure (cohesion) theory which leads 

to the concept of the solubility parameter. There are other 

functions of the intermolecular potentials that may be used as 

a measure of solubility of u in v. For example, there is the 

gain in potential energy, APE, on making one dissimilar pair 

"uv" from two isolated pairs "uu" and "vv"C69]; 

APE = PE(uv) - (1/2) PE(uu) - (1/2) PE(vv) (6.4) 

Gerrard[€253] contends that the tendency of a gas u to condense, 
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characterized by PE(uu), is the prime factor to consider with 

respect to any liquid. The second factor relates to the 

intermolecular structure of v, PE (vv), and the third one 

emerges from the inevitable interaction between u and v, PE(uv). 

As higher PE(uu) and PE(vv) means higher PE(uv) one might use 

only the interaction potential between u and v, PE(uv), as a 

measure of their solubility which contains the three factors 

mentioned by Gerrard. It may equally well be argued that the 

difference between PE(vv) and PE(uv) governs the tendency of v 

for u as compared to v; 

APE = PE(uv) — PE(vv) (6.5) 

What function of the potential energy is the most suitable as a 

measure of the solubility needs further scrutiny. 

To see if the buffeting idea in its main features is pertinent 

to the solubility problems, use is made of the field expression 

(3.8) for the preliminary study of systems given in table 4.1. 

The difference between the fields of uv, when u is in the 

cavity of v and pure v, as given in (6.6) by analogy with (6.5) 

is used for the correlational analysis of table 6.2; 

ASE@> = <E2>LL = <E=>.. (6.6) 

The activity coefficients in table 6.2 are found from the ratio 

of the ideal and observed solubilities given in table 64.1. 

The fields are calculated according to the method explained in 

the preceding chapter. The calculation of the d values for some 

of the solvent molecules is simplified by taking a suitable atom 

as the rough centre-of-mass (CM); carbon atom of the "C=0" group 
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Table 6.1. Solubilities of gases (Mole Fraction x10*) at 25 °C and 1 ate.[333] 

  

GIS er > C02 N20 CHa Oz co Nez He 

Ideal Solubility -----) 257 202 35 13.2 12.8 10 8 

Solvent pb DE161]_ 0 °C 0 °C 

(Et) 20 i eS © 45.3 19.8 16.90 12.52 5.52 

Collz 0 = 2 28.3 = E 74.22 3.80 

CCl, 0 100 =o 28.6 12.0 8.86 6.42 3.27 

a-CoHs (He) 2 +36 102 RS 25.8 = 9,12 6.14 4A 

CHsCOOCHS 1.7 = = 20.0 9.08 8.65 5.97 3.07 

CHSCOCHS 2.8 209 185 22.3 9,25 8.54 5.92 231 

Cote 0 a2 - 20.7 8.16 6.63 448 2.61 

CCIsH 1 123 182 + 7.38 6.45 4AS 2.20 

CoH] 1.69 S ee 20.8 TA 6,32 4S 2.66 

CHsOH 17 1 53 VA 3.18 3.25 2.35 1.57 

cs. 0 22 = > = 2.06 1.45 93 

H20 1.9 d 5 2h +23 18 A2 AS 

Coon 2.21 129 120 = 3 = = = 

CH2BrCH2Br 14° 125 100 * = = 2 = 

CHSCOOH 1,73 121 = 7 2 = 2 > 

CoHoCHs 37 107 3 ° 7 = 3 o 

CHSCH2OH 17 70 2 as = = 3 = 

  

a: Ref. £338]; bs Ref.[339] at 163 °C 
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Jable 6.2. Results of comparison between ¥ and ACE*) in 107!° erg ca- from (6.5) 

  

  

Gas co, N20 CHa Oz co Nz He 

Solvent A 1 A 1 4 i A 1 A I A 1 A i 

#20 175.4 36.7 175.4 40.4 152.4 145.8 49.0 57.3 50.0 71.1 42.0 83.4 24.8 53.3 

CS2 50.0 M7 0 - = = = = = 12.9 6.2 10.4 6.9 41 8.6 

CHsOH 45.2 3.6 45.2 38 393 4.9 Md 41 M14 39 OL 4,2 370% 

CHsCH20H 4.7 37 1447 28 - a = S = = e = 2 iS 

Coe 7 Pine eB ze 15.300 1.700 4.7 ‘hb 48 19 3.9 2.3 2.0 3.9 

CCl, 15.20 26 - 3 13.20 1.2 34 tt 39 14 3.2 15 1.52.5 

aCoHa(Mel2 14.7 25 - fe 12:95 (14 = 39 140 3.2 166 1.50 1.9 

CoHaCHs theses ee = = - S = = a oe S 

CHsCOOH Re A = o o * 3 = = Z = = 2 

CCI SH Ql 2.9 al Nh = = 54 468 5.5 2.0 4.4 2.2 2.0 3.6 

CHoBrCHsBr 29.0 2.4 29,0 2.0 - = o z 2 < 7 = be = 

ConSh 20.0 2.0 20.0 1.7 - 7 . = = = = = a = 

CHSCOCHS M2 Ned” 12252) el AIA 16 5.8. 14 59 15 at 23° 3,7 

CoH] = 2 a = 167 1.7 4.8 17 5.0 2.0 40 2.3 1.8 3.0 

Coie = = = > TOR eZ) im S *: * 27° 14 4.2021 

CHSCOOCHs = - bi = = 15.9 oh Ab) UA AG OES OSB LT 1.7 2.6 

(Et) 20 5 = 3 = 10,0 eb 2e est ee | 8 20 8 1.0 1.4 

cce 978 990 +986 94 987 987 +999 

  

#: Correlation coefficient. 
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in acetone for example. One notes that the nearly equal values 

of d for COz and N20 (see Appendix 5) result in the equal 

values of field differences given ane abie 6.2. This is in 

accord with the Kunerth(€340] argument that "... because they 

have the same number and arrangement of electrons, they should 

therefore exhibit little if any difference in their 

solubilities". Fig 6.1 typifies a graph of the activity 

coefficient ¥ against A<E=> for hydrogen gas. The results 

of this correlation analysis, and similar ones for reaction 

fields <R*>,, <R@>2, and RFT, led to the following 

findings. 

(1) There is no correlation between the activity coefficients 

(or solubilities) and either of the reaction fields. 

(2) There is no correlation between static dipole H, dielectric 

constant, refractive index, polarizability (or any function 

of these solvent’s parameters) and activity coefficients or 

solubilities. The lack of linear correlation of the 

solubilities with dipole moment and dielectric constant has 

been clearly shown by Gerrard[(341]. There appears therefore 

to be no relation between the solubility and the bulk 

properties of solvents. 

(3) The large deviations of CS2 and CHs0H from the line 

(open circles in Fig. 6.1) led us to the contribution of 

double bond electrons in the interactions of the former and 

the significance of the CM for the latter. Correction for 

the effect of pi-electron in CS2, by assigning half the Ar 

moment to each pi-pair, on the one hand enhanced the 

buffeting field of this solvent (full circle in Fig. 6.1), 

and on the other hand improved the inert-atom approximation 
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as explained in Chapter 3. Correction for the CM in methyl 

alcohol, which originally was assumed to be on the carbon 

atom (de = 0, do = 1.43, dy = 2.05 A) decreased its 

buffeting field (full circle in Fig. 6.1) because the right 

CM (de = .738, do = .668, du = 1.35) lowers the 

buffeting power of H(OH) and "0". 

(4) As the calculations of the pair fields involved the atomic 

fields, it appeared as if the field contributions of 

identical atoms in different solvents were equal. This has 

initiated the important topic of group contribution in the 

next section. 

6.3. Group Contributions 

A group is an identifiable structural unit in a molecule such as 

CHs in a paraffin hydrocabon or OH in an alcohol. A few kinds of 

groups make up a vast variety of molecules of interest. 

Langmuirl342] suggested the premise that the forces about any 

particular group is characteristic of that group and is 

independent of the nature of the rest of the molecule. He called 

this premise the principle of independent action. 

This principle focuses attention on the segments of the 

molecules and states that many of these segments in different 

molecules behave in much the same way in their contributions to 

molecular interactions(334]. 

According to the buffeting or polyatomic field expression what 

makes the field contribution of identical atoms different in 

different molecules is their locations, d, and the molecular 

volumes. Accounting for these two factors should, in principle, 

equalize the field contributions of identical atoms. In table 
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6.3 are given the field contributions of similar groups in 

different solvents for CO2. These are in fact the uv fields 

used in the calculations for the entries in table 6.2 with and 

without corrections for the differences in the molecular 

volumes of the solvents. 

Table 6.3. Buffeting field (E*),,x10-14 erg ca~® of group 
  

  

¥ 20 °C CRTC CIAD rrr mre 
solvent orca CCl Coils Cy OH 

Ho 18.9 27.67 

CHC] s 80.5 3,3712.62)° 

CCl, 8.5 (2.19 

CoH] 101.7 3.86{=CC1) 4,915.6) 

Coe 88.8 6.91(7.62) 

CoHoN 80.7 8.71 

Cools. 106.2 4,40(4.32) 2.98123) 

a-CoHs (He) 2 122.3 34 2.00 

CHSCOCHs 73.5 3.59 

CHsCOOH 57.2 4.75(4.61)  3,8313.7) 

CHsCH20H 58.4 4,53 3.63 

  

#: Entries in the brackets are the corrected values for the volume differences. 

For example, CCl contribution of CHCls (3.37) compares with 2.19%96.5/80.5 = 2.62 

which is the CCl contribution of CCl, when it is in the sane volume as CHCl. 

As this table shows, correction for volume differences, that is 

multiplying the uv field by the volume ratio of the two 

solvents with similar groups, improves the agreement between 

contributions. However the agreement is poor which stems from 
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the approximate nature of the calculations and more importantly 

from the fact that fields are used instead of potential 

functionsto characterize the solubility. This subject is 

further discussed in terms of the polyatomic potential in the 

last section. 

6.4. A Heuristic Potential Function 

The solute-solvent interaction is best characterized by a 

potential rather than a field used in the previous sections. 

A potential function like (3.24) would involve the contribution 

polarizability which was originally avoided here by using 

<m=> instead of @. The result is the following heuristic pair 

potential analogous to that of Keeson’s(81], (2/3) Ki=H2=RoOs/kT 

for dipole-dipole interaction; 

  

PE(uy) @ - EY XaXs <m*>.¢m 
tee 

ea FCi,j)R-6 (6.7) 

where the symbols have the same meaning as in (3.24). 

In the subsequent sections (6.7) is used for the correlational 

analysis of the solubility data. 

6.5. Significance of the Solubility of Gases as Molecular Probes 

Solubility of gases in liquids provides an ideal testing ground 

for the underlying assumptions of the polyatomic model. 

In other words, the gas can be used as a molecular probe for 

the study of the intermolecular forces and processes under 

different conditions of pressure and temperature. 

We begin with inert gases for which the solubilities, boiling 

points -as a measure of their tendency to condense- and PE (uv) 
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according to (6.7) are given in table 6.4. 

6-4. Solubilities of inert gases at 25 °C and 1 atm{343] 

  

  

Solvent ------ ee eer Hal Soa sanena= Sentiments th 

Solute bp °K Xyx10* Ln Xu = PEtuv) Xurl0* Ln xu = PE(uy) 

He 4 +069 “11.884 458 785 9,452 +132 

Ne 27 +083 11.699 . 4772 1,07 9,142 +222 

Ar 97 +300 “10.414 2.3542 9466 6.942 +672 

kr 121 «470 “9.965 3,148 27.2 5.907 «904 

Xe 166 1,040 “HAT ALAND Mik. ~4.500 1.268 

Rn 2h 1,850 P “8.595 5.483 392. 3.239 1,574 

cc 997 999. 
  

Hereafter solubilities, x,, are in sole fraction. 

From this table one notes that for a series of solutes in one 

solvent there is no linear relationship between xu and either 

of PE(uv) or bp. There is however an excellent linear 

relationship between the logarithm of x4, Ln xu, and both 

PE(uy) or bp, see Fig. 6.2. The logarithmic relation is more 

akin to the thermodynamic methods of estimating the solubility; 

as for example by the solubility parameter method of 

Hildebrand( 333]. 

Eley[344] gives a theory of solubility for inert gases in which 

two consecutive stages are involved; the formation of a cavity 

and the entrance of the gas molecule into the cavity. This is a 

theory of making holes and filling holes(345,346]. Eley writes 

of the "...anomalous factors in the solubility of the inert 

gases in water". Fig. 6.2 shows that there is no significant 
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departure from the line for any of the gases in the solvents as 

has been found by other workers(347] also. According to (4.7) 

water-gas interactions are purely dispersion with no dipolar 

effects. 

The solubility of #*#Rn in waters (drinking water, spring 

water, rivers and sea) and in biological fluids is of interest 

because of its radioactivity. Some spring waters like those at 

Hot Springs, Arkansas, have dissolved radon. The solubility of 

Rn in heavy water, D20, the neutron moderator in nuclear 

reactors with natural uranium fuel, is also of importance. 

Vadovenko et al(348] have found that the solubility of Rn in 

D0 is slightly higher than in water. They only give the ratios 

of the absorption coefficients K as; 

Kn (D20) Kn (H20) 1,09 1.08 1,07 

Tea. °C 6.0 10.0 15.0 

The distinguishable features of the two waters are the molar 

volumes and the d distances, properties like bond length-angle, 

‘I’, and Q are the same. In table 6.5 are given the available 

volumes at two different temperatures, calculated PE(uv), and 

APE(uv) according to (4.4). 

Table 6.5. Rn-D20 and Rn-H20 Potential Functions 

  

Solvent =~ V CaS /aole -- ~ PEtuv) ~APE (uy) df 

Tes, °C 15 25 15 25 15 25 

420 18,036 18,073 6.177 6,090 561 +582 dy = 2920; do = 065 

020 18,121 18,136 6.013 5.997 __ 629 +642 dp = 893; do = 117 
  

Molar volueas are from Ref.(158]. 
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Judging by the PE(uv) values, Rn should have slightly higher 

solubility in water than in heavy water. If however, the values 

of APE(uv) are accepted as the characterizing potential function 

for a solute in a series of    solvents the order of the 

solubilities reverses. The ratios of the potential differences 

can then be used for comparison with the K ratios; 

APE (D220) /APE (H20) 1.12 1.10 

Tem. °C is 29 

which indicates the decrease in the solubility ratio with 

increase in temperature. The ratios compare well with those of 

Adevenke et al. The solubility of Rn in Tz0, tritium oxide, 

would be slightly higher than in HzO and D2O according to 

APE. Note that the d values of water given in this table were 

used in table 6.4. 

The analysis of the solubilities of other gases provides a 

still better test for the polyatomic model and would be more 

informative compared with the inert gases. Table 6.6 gives the 

solubilities of nine distinct gases in three distinct solvents 

and the results of their analysis. The d values of the species 

are given in Appendix S. From this analysis one notes the 

improvement of the correlation between PE and Ln x. from H=0 

to CCl,. Graphical presentation of the PE-Ln xu relationship 

in Fig. 6.3 however discloses more subtle facts about the nature 

of the interactions. 

If one is contented with the statistical analysis of the data 

and its good correlation (dashed lines in Fig. 6.3) given in 

the table, the contribution of the so-called chemical reactions 
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of CO and SO2 to their solubilities that so many authors 

believe, can not be justified(349-355]; 

  

  

  

  

CO, + 2 Os7H + Hs*O 
(6.8) 

sO. + 2 > SO=7H + Hs tO 

Table 6.5. Analysis of the Solubility data of gases at 25 °C and 1 ata.[333] 

Solvent er ag eC ee OCG 

solute bp °K Xuxl0* Ln xy = PEfuv)  xuxl0* Ln xu = PEluy) xuxl0* Ln xy - PEtuy 

He 4 067" “HLS 458 77 “9.471 +132 ce = 122 

He 20 14s wH1.176 £968 2.61 8.251 27h 3.27 “8.025 =. 309 

Ne 7 lL5* 11,330 1.739 4A 7.728 472 6.42 “7.351.432 

co 82 AG 710,925 2.226 6.63 7.318 +596 9.86 7.029.547 

Ar 87 25 710,596 2.342 9.6% 6.948 +675 13.5% ~6.607 625 

o: 90 +2274 10.693 2.230 8.16 “7AM 597 12.0 6.725.548 

CH, = At 285 10.483 3.667 20.7 6.180 883 28.6 5.857 =. 801 

CO, 194 7.0 ~ 7.264 4,643 96.2% “4.644 | 1.08 100.0 “4.005.976 

$0. 263_—434.0 ~ 3.137 6.844 2300.0" 1.469 1.603 1500.0" 1,897 1.45 

cc 940 +990 995 
  

a: Ref. (343); b: Ref.{253]; cs Ref.{356] and Ref.(333] give .24, Ref.[343] gives ,225 

However, the intrigue of the deviation of helium in water from 

the statistical best-line along with the inspiration from 

Fig. 6.2 would suggest a physical best-line based on the inert 

atoms which passes through the inert points (solid lines in 

Fig. 6.3). The inert-best-line offers a guideline by which the 

behaviour of other gases may be judged. Inspection of Fig. 6.3 

in the light of the inert-atom guideline reveals the following 

points. 
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Fig. 6.3 Solubilities of the labelled gases in water, benzene 
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solubility against the buffeting potential energy. 

229



(1) The solubilities of CO2 and SOs in water can partly be 

explained by PE(uv) because the inert-line falls below 

these points imposing the conclusion that there must be 

some kind of specific interaction of type (6.8) to explain 

the excess solubilities. 

(2) In the absence of reactions of type (6.8) one would expect 

the inert-line to coincide with the statistical line. This 

is the case in Fig. 6.3 where the two lines approach each 

other for C.H. and CCl4. We note the departure of SOs from 

the inert-line in benzene which indicates the possibility 

of SOs-pi-electron interaction. A question arises here 

about the nature of the reactions resposible for the excess 

(on the basis, of aurea, of the inert-line) solubility of 

oxygen containing gases. Data in general and those in table 

Oe as particular show the enhanced solubility of COz in 

solvents containing "-O-" and "=0" groups. Compare the 

solubility of acetone with that of carbon disulfide, 

benzene and ethyl alcohol, for example. Ethyl alcohol and 

acetone are isomers and the former offers a smaller cavity 

to the gas but still has much lower dissolving power than 

the latter. It appears that the rule of Iike dissolves like 

  

is operative between "of CO» and "=0" of CHsCOCH:=. 

This points to some sort of likeness interaction between 

like groups distinct from the reactions of type (6.8). Note 

that "=0" groups in solute-solvent system have identical 

  

«m=> that could be interpreted as identical frequencies 

for the motion of electronic charge. 

One might ask why such interaction is absent for O2 and CO in 

water. It may be recalled from Chapter 3 that the "0" group 
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in these gases is different from a typical "=0". The moment of 

the former is 1.25 <m*>,., and that of latter equals 1.75 <m 

  

whereas the moment of "=0" in COz, SO» and acetone is more like 

1.5 <M* Free 

Gerrard(253] is a critic of resorting to chemical reactions as 

an explanation for the high solubilities of CO» and Sm. He 

believes that the high solubilities of these gases is solely 

determined by their tendency to condense. In Fig 6.4 a graph of 

bp against Ln x. shows the characteristics of Fig. 6.3. 

Here again if one is prepared to accept the large deviation of 

helium from the statistical line in water, the absence of 

chemical reactions or otherwise is justifiable. The presence 

or absence of interactions other than dispersion as a cause of 

solubility cannot be rigorously verified unless the 

proportionality factor of pair potential-solubility is known. 

Comparison between Figs. 6.3 and 6.4 shows the superiority of 

PE to bp as a measure of solubility. The foregoing prolonged 

argument however should not conceal the role of the gas as a 

molecular probe for the elucidation of molecular’ interactions. 

6.6. Solubilities of Solids; I, Se, and SnI4 

In this section the potential function (6.7) is used to analyse 

the solubilities of these solids in a series of simple solvents. 

Table 6.7 give the solubilities and the PE(uv) values. The d 

values of the systems can be found in Appendix 5. For the moment 

of TiCl4a(V = 110.5 cm*/mole), as was discussed in Chapter 3, 

  

ne + 4 <m@oear is used in the caculations in this table. 

One notes that in this case the good correlation exists between 
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Fig. 6.4 Solubilities of the labelled gases in water, benzene 

and carbon tetrachloride. Plots the logarithm of 

solubility against boiling point. 
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PE and the solubilities. 

The interesting point to note is the excess solubility of 

sulphur in CS... The statistical analysis has again veiled this 

aspect of the molecular interaction and should warn of the risk 

The ratio of the PE values for sulphur in benzene and carbon 

disulfide is about 2.3 whereas that of solubilities is 21.5, 

pointing to the existence of the "likeness" interaction between 

"eS" of CS2 and "-S" of Se. The like dissolves like maxim 

appear operative here. Of course the likeness is in the moments 

of S in CS= and that of S in Sw. Such a large solubility ratio 

is not observed for SnI, or Iz. It will be remembered from 

Chapter 3 that some experimental evidence support the existance 

of double bonds in the Se ring. This kind of likeness can not 

be found between SnI4 and XCla in spite of their structural 

similarity which suggest their conventional "likeness" and 

therefore, higher solubility. 

Table 6,7. Analysis of the Solubility of Solids at 25 °C and 1 ate.[333] 

  

  

Solid ---) en a eo a Sn ~----~ 
Solvent Holex PE(uy) Molex PE(uy) Molex PE (uy: 

Sil, AID 2.67 - = +382 12.04 

CCl, LAT 3.13 +50 9.86 1,459 14.76 

Till, 215 3.96 < ? = : 

CClsH 2.28 3.81 +57 12.47 1.692 19.19 

Cos I is +64 11.50 2.181 17.50 

C52 5.46 7.558 __ 13.8 27.22 14,64 43.98 

cc 991 991 Ih 
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This section serves to illustrate the possibility of finding 

bond lengths from solubility data. 

The available solubilities of methane, germane, and stannane 

are given in table 6.8, that of silane is estimated from the 

Ln xu-PE linear relationship. 

The bond lengths in GeHs and SnHs were not accessible and are 

estimated from the linear relationship by adjusting the value 

of d in the F factor until the cuieten PE from (6.7) matches 

the solubility data. These estimated values are in considerable 

agreement with those found from covalent radii of H, Ge, and Sn 

given in the footnote to the table. 

Table 6.8. Analysis of the solubilities of Hydrides of group IV{253) 

  

  

Solute bp °K dyn A xyxl0* Ln xy = PEtuv) 

CH, it 1.09 +252 10,58 3.667 

SiH, 161 1.48 593" 9,73 6.468 

Get, 184 1.51° 755 “949 7.400 

Sn, 220 1,85° 219 8.4 10.563 

cc +999 
  

4) Estiaated values from the covalent radii of H = .3 A, Ge = 1.225 A, and Sn = 1,511 A 

one finds; dow-n = 1.525, and den-w = 1.011 A. The Ge-H bond length in GeHsC] is 1.52 AC159), 

6.8. Additivity of Molecular Potential Energy 

The analysis of the chemical screening constants in the 

Previous chapter showed that the polyatomic field and potential 
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formulations are inadequate for large non~globular molecules 

for which the separation of the rotational and translational 

motions and alsa the F series are invalid. 

In this section the premise of the additivity of the molecular 

potential is tested for the solubility of CO» in large solvents. 

Let us assume that the small solute gas buffets, according to 

the buffeting model, the constituent atoms of a large molecule 

independently. That is the fast rotating small solute interacts 

with the relatively stationary atoms of the solvent at a 

well-defined distance. The atoms of the solvent appear static 

because they are attached to the relatively slow rotating 

solvent molecule. In this situation the centre-to-atom distance 

d,, for the atoms of the solvent equals zero, because it is 

interacting as a separate spherical entity and the buffeting 

factor reduces to the "solute-site-factor"; F(d,=0,d,,R). 

This considerably simplifies the calculations of the potential 

energy as the evaluation of the d values becomes more difficult 

as the size of the solvent increases. The intermolecular 

distance of such a system is also independent of the size of 

the solvent molecule and depends on the sizes of the solute and 

the atom in question. To define R, one can use vdW r values or 

calculate it from the volumes of the solute and the atom. 

There are a number of additivity methods available for 

estimating the molecular volume from the atomic volumes. The 

method of Le Bas{357], for example, attributes the following 

volume increments to the atoms that may be used for our 

Preliminary test; 
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Species c H O(O=) Q(He-O-) O(Et-0-) Ring(6-membered) 

Yol. Increrent ca*/aole 14.8 3.7 7A 91 9.9 15.0 

These volumes and the volume of the solute can be used in (5.2) 

for example, to find the R for the interacting system. 

Table 6.9 gives the potential energies of the CO2—-atom and 

CHa-atom systems calculated using expression (3.25), according 

to the method explained in Appendix 6. The volumes of both 

solutes are calulated from the Le Bas increments to be 29.6 

cm*/mole. 

Table 6.9. The Atom-Solute System Potential Increment 

=~ Potential Increment (3.25) KJ/aole -     

  

Solute PE(Hyu) PE(Cyu) PE(C=4,u) PE(cyclo-C,u) PE (Ou) 

co, +072 041 074 049 +063 

CH, 039 025 045 029 036 

  

Now the potential Betusan COz and CHsOH, for example, can be 

found by adding the atomic increments as; 

PE(uv) = 4 PE(H,u) + PE(c,u) + PE(O,u) = .392 Kd/mole 

and for the methyl alcohol homologues, CHx(CHz),0H it simply 

is; PE(uv) = n PE(CHe,u) + .392 = nx(.185) + .392 KJ/mole 

Such an additive method is based on the assumption that all the 

Constituent atoms of a molecule are equally accessible to the 

solute, so that in general one may wtite; 

PE(uv) = Y PE(Atom,u) (6.9) 

where the summation is over all the atoms of the solvent, with 
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Fig. 6.5 The additivity of molecular potential energy. 

Relationship between molecular potential energies 

and solubilities of CO= in the labelled alcohols 

estimated by the UNIFAC method[263]. 
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equall weighting factor, showing their equall accessibility. 

Note that the potential increment of cyclo-carbon is different 

from that of benzene ring because of their different 

polar ieauiiity contributions (see Appendix 6) and inert-atom 

moments. 

Fig. 6.5 shows the relationship between the PE(uv) values found 

from this table and the solubilities of CO» in a series of 

alcohols estimated by a semi-empirical group contribution 

techni quel258-260] called UNIFACE 261,262]. 

The validity of this potential additivity method, (6.9), cannot 

be tested unless the absolute prediction of solubility by 

(3.24) is possible. 

6:2.Conclusions 

Solubility problems have possibly until now eluded satisfactory 

explanation, even the simple rule-of-thumb that Iike dissolves 

dike. The significant correlations between the solubility 

data and the heuristic potential form throughout this chapter 

suggests the potentiality of the polyatomic or buffeting 

theory in solving these problems. 

It appears that the bulk effects, formulated by the reaction 

field techniques, have no significant role in determining the 

solubility. 

From the analysis of the solubility-potential relationship it 

is evident that such a relationship takes different forms for 
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different systems. It is of the form; Ln xu-PE, for different 

gases in one solvent, and of the forms xu-PE, for one solid in 

different solvents. It might also take the latter form for a 

gas in a series of solvents. 

The new concept of "likeness" in terms of the likeness of the 

inert-atom moments focuses on the likeness of groups between 

two molecules rather than the traditional over-all molecular 

similarity. In this sense it is related to the concept of 

reactivity and reaction mechanism discussed in the conclusion 

to Chapter 3. 

It may be possible to quantify the concept of likeness when 

the proportionality factor between solubility and the pair 

potential is known and thus elucidate whether or not 

non-dispersion, or chemical reaction type contributions are 

important to the solubility of species. 

The brief study of the concept of potential additivity points to 

the possibility of treating molecular potential energies, like 

other additive molecular properties, as an additive quantitiy. 

Further examination of this fundamental concept extends the 

versatility of the buffeting model to large molecules for which 

by virtue of its inherent assumptions it is inadequate. 
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Appendices 

Appendix 1. The Mean-Square Moment 

The mean fluctuations of an instantaneous dipole moment can be 

derived using the semi~classical equation of motion of a 

damp-free harmonic oscillator; 

M(t) = (2 EL/mot)*? cos wt for, sin wit, sin(wyt + d)} 

where EY = (v + 1/2) hwo are the quantised energy levels. 

The moment is m,(t) = e.xv(t), which for the ground state or 

zero-point fluctuations of charge, Ev.o= hwo/2, becomes; 

me (bE) = (e# h/mwo) ? cos wot 

The mean and the mean-square values of this moment are; 

Sor 
<m(t) > = (e= h/mwo)? Lim —— f cos wtdt = 0 

ree OT ot 

i , 
<m?>,. = Ce" h/mwoo) Lim — f cos*uotdt = (e@h/muo).1/2 

ree Op ot 

<m@o. = 1/2(e7 two/mwo~) 

This expression in terms of Q(0) from (1.47) becomes; 

  

= (1/2) hwo Qa) (A141) 

For isotropic molecules or atoms one can write; 

   (Al. 2) 

  

Combination of the last expression and (Al.1) gives the required 

mean-square moment; 

<m*@> = (3/2) hwo Q(O) = (3/2) ho QO) 
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oer using the London approximation hi. = I 

<m2=> = (3/2) I Qo) (A1.4) 

Appendix 2. The Mean-Square Moment-field relationship 

Referring to (1.49) and Fig. 1.4, for the field components 

produced at B by A, one may write; 

E(t, A) « i 2 mit,A).{ R-*= .... For the fluctuations of aoment in the Z-direction 

E(t,A)~ = — m(t,A)~ R7* .... For the fluctuations of moment in the X-direction 

E(t,A), = —- m(t,A), R-= .... For the fluctuations of aoment in the Y-direction 

The mean-square components are therefore; 

SE=e.< = 4 <m@>a—,z R-* 

SE@>a.n = m= > ayn ROO 

SE@3—,y = <m@>a,y ROO 

Adding up the mean-square components of the field and using 

Eqs. (Al.2) one finds (1.50) as; 

    SEFoq = 6 <mB>a,. RO = 6 <m = 6 

or3 

SEV 3a on » = 2 <m@>q RoE (A2. 

Appendix 3. Average Inverse-Six'-Power of Distance, (ryy~2} 

Since the distance between two interacting atoms i and a haces 

changes with time, as a result of the molecular rotations, it 

has to be averaged in terms of the known molecular parameters R, 

dj, and dy. 

The averaging procedure given here is an adaptation of a method 

usually used in liquid state theories[191,192,199,291]. 

Let us fix the centres of two symmetric polyatomic molecules at 

the centres of two polar coordinate systems a distance R away, 
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as is depicted in 

  

     Kee x =d sin 6 cos @ 

y=dsin@ sing 

22d cos 0 

Cos w= COS O.cos 0; + Sin O..5in 95.cos B,.cos Gy + Sin O..Sin O5.5in O.Sin Oy 

or, COS # # COS O..cos 0, + sin O..Sin Oj.cos (8, - 95) 

Fig. A3.1. A particular autual orientation of two interacting aolecules in a polar coordinate systes. 

For asymmetric molecules the centre of mass of the molecules is 

at the centre of the coordinate systems. 

At some instance of time d, and ds make angles @:, 4% 

and, 91, ®, with the axes respectively. The cosine rule for 

the triangle with sides ris, ds and r gives; 

2 ee 4 to = Cr+ g72rdjcosw) 

or 

Ty = TUl-2Cdvr Jeosw+Cd7r da! (A3.1) 

The inverse of any variable may be expressed in terms of some 

Polynomial, for example, it is well-known that; 

8 

1 ® 
x 

a 

x 9 
re eee Pode a 

x-1 a 

  

4 
4d 

Let us begin with this simple example and manipulate it to get 

k 
the form of (A3.1), by fist writing it as; ttx-1) 2 = fx “etl 
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or in general as; [x-2xt+1 2, and then in the form; 

  

oO co oO 1 1 ee fe . 
—— _ -——_—_ = 2 k= Dre = Dejciax 
Cx-1) tx-2txtlJi., n=8 naa 0=0 

where P, are the Legendre polynomials with the property P, = 1. 

This is why £ x" is arbitrarily expressed as TL Po(1)x". 

Replacing t by cos w in the last expression gives[292]; 

8 

1 

[x -2keos wth J" n 

1 d a, 
Pytx)) = — (x-1) 

Zng dx 

. 
fekeas 31 (AS.2) 

u
d
 

  

where 

Therefore, the inverse-first-power of ris may be expressed in 

terms of the Legendre polynomial (A3.2). Likewise other inverse 

Powers of ris may be expressed as a function of other 

polynomials. 

The generalized form of (A3.2) is given as{291,293-296]); 

it Cc 

et pee Y Cleoswox’ 
=8 

= u <x 
(x -2xcosw+l) soe 

where Cs are the Gegenbauer polynomials. Comparison 

between (A3.2) and (A3.3) shows thats ch (cosw) = F,Ccosw) or in 

general C291]; 

CP=2)72 ntP-3 
c xo é | Fi Cx) 

a na 

Also (AS3.3) for u = 0, becomes; 

1 oC 
2 

7 a oe Ee U xe Ceosw) = CO+xc8+x Brie. 
@ 1 

(x -2xcoswtlJ n=0 

from which it may be deduced that; C8(cos w) = 0, 
m0 

C8(cos w) = 1, and in general[291]; 

5 : (ntu-P-1)9 ze 
ElGO = 271) (2x) (A3.4) 

e P P9(u-1)2(n-2P)8 
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A list of Ck polynomials, derived from (AS.4) is given in 

table A3.1. 

  

Now the inverse-sixt-power of ris from (AS.1) according toa tA 

when u = 3, is; 

  

1 1 OG ( 
“3 dy 

7 : s 7 Pye (cosw) _ (AS. 5) r (1-2(d,/rJeoswrld7r)] =9” Nes 

The value of r in (A3.5) is also unkown and has to be written 

in terms of R and di by using the cosine rule, this time for 

the triangle with sides R, di, and r (Fig. A3.1)3 

ze . 
r = CR +d/-2d:Reos 6, ) 

Therefore r7~© and r-" of (A3.5), by analogy with (A3.5) may 

be written as; co 
-< ~5 3 qx Te Ro) CetcestoG =) (AS. 6) 

K=6 R 

[oo ee cho 
paee eGo ce Ceosio, C+ — ) os a (A3.7) 

By replacing (A3.6) and (AS.7) into (A3.5) one obtains the 

desirable form of ris~® at the expense of the daunting 

  

expression; 

4, (A3..8) 
vane ee C3ccosw) C8”? (cosa, ICZlcos @,) 
u nmk a 2) teak i 

The space-average of ris~°, when the two atoms span the whole 

surfaces of their ‘two spheres, in accord with the mean-value 

theorem of functions may be written as; 

  

TE Ie 2 276 
Pp 

0 
| | eat 

Lede 
6 @ 6 @ = (AS. 9 

Gao Se A3.9) 

TOE ICRI where dt = Sind ee % 

f 
[ | [ aos 
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Substituting for ras-° from (AS.8) into this integral, 

replacing the denominator with its value of (4%).(4K) = 16%2 

and factoring out the constant R one obtains; 

“0 

Gago Tyl= — = 
: ler 

Such a formidable expression for expressing a physical fact 

   
  

_ C3leoswil” (Cos a, ICglcos 6, dt, dt, 

(AS. 10) 

shows the unsuitability of the mathematical method. This method 

however appears elegant compared to the technique of 4-variable 

Taylor's series expansion used by Raynes(206]. An alternative 

analytical method is suggested in the following Appendix. 

The solution of this integral involves hundreds of integrations 

resulting from the expansion of the C,, polynomial and their 

subsequent products which are all of the form; 

2m 2m 16 2 me ae 7 
2 _ - for n and 

cos w cos 8, dt, dt, 2 Cm+1)¢n+1) ea 
(AS.11) 

a 
@@6@ @ 8 

  

for n or m odd 

This is the generalized form of the numerical integrations 

performed by the [MONTE CARLO] program developed in Appendix 4. 

For example, the coefficient of term (d/R)*° in the F series 

can be found easily using (A3.11) and Cig from table A3.1; 

p 
3 67584 126726 3864928 28168 1680 

Cigleos @ Jdt, dt, = - ——— + 
11 S z 3 3 

  

      =21=31 

We note that the factor 16 ** in (A3.11) cancels with that 

of (AS.10) to give 91 as the coefficient of d*°. 

The F series of (3.7) is the result of the integration of 
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(AS.10) using this approach. The calculation of the coefficients 

of terms beyond d® when ds #4 ds # 0 is quite impractical. 

This together with the absence of alternative methods for 

handling (A3.10) has given rise to speculations about the 

divergence of such series. 

In complete contrast to the inefficient analytical technique we 

have developed two numerical methods based on random numbers, 

which conveniently handle the problem of inverse-six-power 

averaging (see Appendix 4). 

Table A3.1 Gegenbauer Polynomials (from Eq. A3.4) 

Chix) = 2x 

CHx) = 4x 

CHix) = 6x 

Chix) = 4x7 -1 

CBix) = 12 x? - 2 

C3ix) = 24 x? - 3 

Chx) = Bx¥- 4x 

CB(x) = 32 x3 - 12 x 

C3ix) = 80 x3 - 24x 

Chix) = 16 x4 - 12 x7 #1 

C(x) = 80 x* - 4B x? + 3 

CEix) = 240 x* - 120 x7 +6 

Ch(x) = 32 x9 - 32 x5 + bx 

CB (x) = 672 x3 - 480 x5 + 60 x 

Chix) = 64 x® - 80 x4 + 24 x? - 1 

CE(x) = 1792 x& - 1680 x* + 360 x? - 10 

CB(x) = 11520 x® - 16128 x& + 6720 x* - B40 x? + 15 

CEdx) = 67584 x2 - 126720 x® + BOb40 x* - 20160 x* + 1680 x? - 21 
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Appendix 4 MONTE CARLO Methods for Average Inverse-Six'"-Power_ 

For the numerical averaging of ris-* one can begin with (A3.9) 

in which the integrand, ris-*, is the instantaneous distance 

between i and j on the surfaces of two spheres the radii of 

which are fixed at di and ds, but the angles © and @ change 

with time, Fig. A3.1. The distance ris may be formed in terms 

of. these angles which can be chosen randomly. 

The inverse-six-power distance is then formed and the integral 

in (A3.9) solved by approximating it with its arithmetic mean. 

This method of integration may be described asl36,297-2991; 

b 

fCxJdx 

Lek a 
—) tex) ee 
Rely (b-a) 

1 or fod a peas L ay ro | (A4.1) 
n 

a 

For multiple integrals (A4.1) becomes; 

bd 
(A4.2) 

we ORGYs 250 Jdxdydz.... = (b-ajCdoc)li-e)... [Phone 
ace 

In solving multiple integrals no conventional numerical method 

  

rivals the MONTE CARLO technique in accuracy and simplicity. 

The method is based on the use of random numbers, in this case 

random variation of the angles 9 and @ in the intervals LO, %I 

and £0,2%] respectively. 

The program CMONTE CARLO] listed below solves the integral in 

({A3.9) according to the algorithm of (A4.2). The program gives 
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{ri-*3 directly which upon multiplying by R® the value of F 

series can be obtained as given in table 3.1. The accuracy of 

the MONTE CARLO method is believed to be of the order of nv? 

where n is the number of trials{€300]. Therefore one has to use 

large values for n which explains its time-intensive nature. 

We note that the concept of integration as given by (A3.9) is 

involved in this program. Program CSIMULATION] however, handles 

the problem in a more natural way by finding the arithmetic 

mean of the values of ris’ 

This program takes the following steps in finding the average. 

(1) Simulates the rotation of i and j by generating two random 

points on the surfaces of the two spheres which are a 

distance R away; lines 60 and 90. 

(2) Finds the Cartesian coordinates of the two points: lines 70 

and 90. 

(3) Computes the distance rij* between the two points; line 100. 

(4) Raises this distance to power 3 to give ri,°; line i110. 

(5) Adds all the inverse-six-power distances together; line 120 

(6) Finally finds the average by dividing the sum by the number 

of times in which the addition is made; line 140, and 

obtains the F factor; line 150. 

We note that to find points with uniform distribution on the 

surface of a sphere cosine of @ must be randomized instead of @ 

itself as shown in lines 60 and 70. The reason for this is 

explained in Ref.[300, p. 60]. 

Both programs give similar results. The programs were also used 

for the numerical integration of (A3.11) 
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In Fig. A4.1, are given two best-fit to the F-q data obtained by 

the programs. As an alternative to the analytical F series the 

simple polynomial of the best-fit (b), which can also be wtitten 

as (A4.3) and is valid for 0 ¢ q ¢ .43, may be used. 

FS ¢q) = 1 +42727°9 = 27.509 q+ 24.550 q= (A4.3) 

where q = (di + ds)/2R. 

It was found, from the programs, that ri, values have a normal 

distribution with mean value R. This fact can be used for an 

alternative analytical method of handling the average 

inverse~-six-power distance, simply by finding the probability 

function of ris, Plris), and then using the mean value 

theorem as; 

<Pa ee = J tin? Ptr) dria 

This method should, in principle, give an exponential function 

in terms of q, or R, di, and dy. For the probability function 

to be defined only the width or the standard deviation of the 

normal distribution has to be found which can be done by the 

programs given here. 
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10 (MONTE CARLOJ 
20 INPUT "Number of trials ?",n 

30 INPUT "di,dj,R 2" ,di,dj,R 
40 sum=0 
50 FORi=110n 
60 ti = RNDEPI 

70 tj = RND#PT 

80 fi = RNDE2#PT 
90 fj = RND*2#PI 

100 x = R + djeSIN (tj)#COS (Fj) ~ di#SIN (ti)*COS (fi) 
110 y = dj#SIN (tj)#SIN (fj) - dieSIN (ti)#SIN (fi) 
120 2 = di#COS (tj) - di#COS (ti) 
130 rio = (etx + yty + 2#2)43 
140 sum = sum + SIN (ti)#SIN (tj) /rijd 
150 NEXT i 
160 PRINT "av.-inverse-six-power=", sum#PI#PI/4/n 

170 PRINT "F series=", sum#Pl#PI/4/n#(R*6) 

10 [SIMULATION] 
20 INPUT “Nuaber of trails ?",n 
30 INPUT "di,dj,R 2",di,dj,R 
40 sum = 0 
50 FORi=1T0n 
60 fi = 2eRND + costi = 2#RND - 1 : sinti = SOR (1 - costitcosti) 
70 xi = ditsinti#COS (fi) + yi = ditsintitSIN (fi) : 2i = ditcosti 
80) = 26RND : costj = 2*RND - intj = SOR (1 - costjtcostj) 
90 xj = djtsintj#COS (fj) + yj = djtsintj#SIN (fj) + zj = djtcostj 
100 rij2 = (R + xj - xi)*2 + (yj - yil*2 + (aj - 21142 
M10 ri je = rij2*3 
120 sun = sum + L/rijé 
130 NEXT i 
140 PRINT "AV. inverse-six-power=", sua/n 

150 PRINT "F series=", sua/n#(R*4) 
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4 ; 3 : :   
  

Qe (dy + ds)/2R 

Fig. A4.1. The best-fit to the F-q data from table 3.1. 
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Appendix 5S The Centre-Of-Mass to Atom Distance, d 

The distance from the centre-of-mass of a molecule to the 

buffeting, d,, or buffeted, di, atom is the only structural 

or molecular shape parameter in the polyatomic formulations. 

This distance distinguishes the location of the atom from the 

CM of the molecule because the CM is assumed to be the centre of 

molecular rotation. 

For diatomic molecules Xz, d equals half of the X-X bond 

length. For diatomic molecules of type XY, of bond length r the 

law of the lever gives; 

dy dy 
carer eerie v M. de = my Cr — dy) 
cM ch ay 

eet eres ro------ > 

from which d, and dy can be worked out. For CO of r = 1.13 A 

for example, this procedure gives the values given in table 

table AS.1. The bonds length of the symmetric molecules like 

XYa, XY¥=s, XYz2 equals dy and that of d. equals zero (the values 

of dx. = 0 are not given in table AS.1). 

For molecules like Xs, CXsY and X(CH=z)a the d values can be 

calculated exactly using bond lengths and bond angles (from 

Ref. 158) and a method given by Moelwyn—Hughes(69,pp. S01-51i0]. 

The d values of more complicated molecules such as X(CH2CH=) 4 

hydrocarbons, and CXsYs can be found by approximate graphical 

methods as depicted in Fig. AS.1 for SnEta4. 

Table AS.1 gives the d values used in the calculations of HL 

and Oe, and the simple molecules of Chapter 6. 
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Table AS.1. The Centre-Of-Mass to the Atom Distance,d* 

  

Molecule dA Molecule de A Holecule gd. A Molecule de AL 

He 0373, CHsBr CH2BrC} CH30H 

Ne 549 H 2.19 H 2.2 H (OH) 1,35 

Oz «604 Br 316 Br 92 H (CHs) 1,32 

co c 1,621 cl 2.08 0 688 

c +646 CHeBr2 C 1.25 C 738 

0 484 4 2.25 CHC1Br 2. CHSCN 

N20 Br 1,62 H 21 H 1,82 

N Lg c 1.18 Cl 2.8 C (Cs) 1,28 

N a) CHBrs Br 1.8 C (CN) «159 

a 1.12 H 1,633 c 1.0 N 1.317 

He Br 1,834 CC] sBr CINDz) 4 

i 92 c +565 Cl 1.97 0 23 

0 +065 CHsI Br 1.442 N 1.47 

020 H 2.446 c 494 c-Catio 

Dd 892 if 231 CF2Cl2 H 19 

0 ANT Cc 1,899 F 1,38 c 1.54 

S02 CHalz Cl 42 Colae 

0 1,30 H 23 Cc 63 H 2.21 

8 358 I 1.8 CFC15 c 1.54 

Cle 94 c 1,3 cl 1.722 Colle 

Bra 1145 CHaCle F 1,609 oH 2.46 

Iz 1.331 4 2.2 c 169 c 1.39 

Pa 1,353 Cl 15 Cote C-CaFa 

Se 2.124* Cc «BL H +50 F 2,48 

TiCl, 2.426 CHCIs c +668 C 1.10 

Snlq 2.736 4 1.572 Cats CHSCCCHs 

CBr, 1.93 Cl 1.673 H 1,52 H 2.50 

c +502 c +768 (continued) 
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Molecule a A Molecule de A Molecule de A Holecule a. A 

Ne2CCMez Chea Sites Gee, 

H 2.55 C (CHs) 1.54 c 1,865 c 1,98 

SnMes PhHey C(CH2CHs) « Si (CH2CHs) 4 

c 2.143 c 2.29 H (CHS) 29 H (CHS) 3.25 

Sn {CH2CHs) 4 Si (OCHS) 4 H (CH2) 215 H (CHa) 2.5 

H (CHs) 3.45 H 3.0 C (CHs) 2.6 C (CHs) 2.85 

H (CH2) 273 c 2.5 C (CHa) 1.54 € (CH2) 1,865 

C (CHs) 3.0 0 1,504 Si (OCH2CHs) 4 

€ {CH2) 2.143 H (CHS) 3.75 

H (CHe) 3.0 

C (CH) 3.37 
  

i: Note that the d values of peripheral atoms given in table 3.3 are not reproduced here. 

+1 This is the S-S bond length from Ref.(330], which by the symmetry of Se ring also equals de. 

  

Sn(CHoCHs) 4 Py CHsCN 

du (CHa) = 2.73 A dp = 1,35 dy = 1,82 

du(CHs) = (2.84 + 4,05)/2 = 3.45 0 dc = 0163 de = 1.28 

In = 1.3517 

(a) (b) (c) 

Fig. AS.1. The CM to atom distance, d (dotted lines). 

(a): A 2-dimentional graphical method 

(b) and (c): A geometric method due to Moelwyne-Hughes. 
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Appendix 6 Attributes of the Interacting Bonded Atoms 

According to the atom-atom potential model each species, namely 

bonded-atom, X-electron, or lone-pair electron, takes part in 

the dispersion interation with three attributes. These are its 

location in the molecule d, its moment <m=3,,6e-<, and its share 

of the polarizability or the polarizability contribution (Pc). 

The two former attributes have been previously discussed. The 

latter attribute, Pc, however, deserves some amplification. 

Let us take the case of P4 which has a molecular polarizability 

of Q = 14.7 A* (found from its refractive index). The share of 

the polarizability of each bonded phosphorus atom is obviously 

Pe(P) = 3.675 A*. This value now can be used with Pc(Cl) = 

2.305 found from Q(Cla) = 4.461 A*, for example, to estimate 

the molecular polarizability of 10.59 for PCls, in agreement 

with d = 10.4 A® (from table 3.6). 

Once the Pc of a species is found, it can generally be used for 

that species in differentmolecular environments. The Pc values 

in table Aé.1 supplement the list given in sec. 3.4 for the 

computations of the molecular potentials; For the buffeting 

fields, as expressions (3.9) and (5.1) show, there is no need 

for Pc's. 

Note that the values given in this table have been found from 

the molecular polarizabilities (with the exception of those 

Given in sec. 3.4 and those of F-, C-, and S73; the Pc values of 

Cl- and S~ are given for completeness only). 

For Si, Ge, Sn, and Pb, for example, the values of Q(X(CHs) 4) 
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have been used with the values of Pc for H and C as; 

Pe(X) = Q(X(CHs)4) - 4 Pe(C) -— 12 Pc(H) 

where X = Si, Ge, Sn, and Pb. 

Table Ab.1, Polarizability Contributions of sone Species 

Species H c C*(CF4) c= t= C= N No 0 (0-H) 

Pc AS AS 93 185 258 +86 1.302 1.03 1,865 59 

Species 0 (R-O-R) 0 (C=0) F Fe Si Si* P § $ (C=5)  S*{SF4) 

Pc AS +64 84 38 985" 3.02 1,205 3.675 2.82 3.99 1,645 

Species $- Cl Ci- Ge Br Sn I Pb Hg 

Po AS 9.94" 2.305 ___3..60* 3.92 3.39 5.52 5.1 7.02 5.1 
  

#: Refs. (321,331); +: Ref.(331] 

The Pe of the aromatic carbon (C) is found from Q(C.H.) and 

Pc(H). For ions like C+, Si*, and S* in FsC*F-, FsSi*F- and 

FeS*F-, the molecular polarizabilities, Pc(F) and Pc(F7) 

are used. The Pe of C* in CFa (FsC*F-), for example, can be 

found as; 

Pe(C*) = Q(CF4) - 3 Pe(F) - Pc(Fq) 

PetC*) = 2.31 - 3x.38 - .985 = .185 A= 

The Pc values of the table should be used judiciously for 

accurate calculations of HY. The value of Pc(H) = .43 A™, a 

reasonable value for hydrocarbon for example, is unsuitable for 

Hz, because it gives Q(H=) = .86 in poor agreement with the 

experimental value of .82 A*. In this case (and also for Cl=, 

Bra, and CCla) Q(Expt.) is used to arrive at Pc(H) = .41. 

The same is true for the Pc(C*) in CaFe and C.F. in which case 
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Pe(C+) = ,325 and .655 A™ are found respectively. 

Calculations of Hy and Oy 

It will be recalled from Chapter 3 that the moment attribute 

of a species with ionic character (anion/cation) changes by a 

factor of 1/4 for each electron. 

For example, FsC*F- with ‘3 species’ has the following 

  

attributes; 

Molecule Species. ..2--———---—— Attributes —— 

SMF >i ere Peo A= da 

CFs c* + TSCM Se ~185 o 

Fo 1.25<m* Fn -985, 1.33 

re SKM? onto -38 1.33 

The attributes for some of the molecules with extra electrons, 

along with some comments are given below. 

cs. (a) c SMF one 793 Qo 

s SoM? Fae 3.99 1.5598 

Comments: There are 2S atoms plus two pairs of X%-electron 

equivalent to one <m7>—a-. Two points should be noted here. 

First, the centre of the X-electron is assumed to be at the S$ 

atom, which explains the use of dx = 1.558 = dea. This is not 

strictly correct; for more accurate calculations the centre of 

the %-electron should coincide with that of the C-S bond; 

CS2 (b) c <M Pues 93 ° 

s 2.82 1.558 

% 1.99 -779 

 



where Pc(%) = 1.99 A® is found from Q(CS=), Pc(C) and Pc(S). 

The second point concerns the moment of X-electron which for 

CS= is assumed to be equivalent to that of Ar. For SO= the 

moment of K-electron is that of the Ne, the outer atom, 

because in this way the molecular moment can be calculated with 

accuracy from the inert-atom moments. 

It therefore appears that the dispersion power of the X-electron 

depends on the nature of the atoms in the double bond. 

It is interesting to note that (3.25) with the attributes in (b) 

for the R value of 5.86 A, found from HJ(Expt.) and the 

attributes in (a), gives H.(Cal.) = 12.00 KJ/mole. This is 

short of the experimental value by 14 KJ/mole, showing the 

importance of the buffeting location of the X-electron system. 

The experimental HL can be calculated for the attributes in 

(b) and R = 5.3 A, a value close to R.iz = 5.16. This argument 

goes equally well for benzene for which the X-electron system 

is centred at the cabon atom. 

  

CH=CN H 243 1.82 

C (CH) <M? one «93 1.28 

Cc <«CN) <M ne «9S -159 

N 26M? ne 1.03 1.317 

Comments: Here again the X%-electron is located at N. The 

molecular plarizability of Q = 4.274[69], 4.45£214], 4.35 

(from refractive index) and I(ev) = 12.2£158] give; 

<m?>(Mole.) ¥ 125.14 

which compares well with those calculated from inert-atom rule 
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on the basis of structures; 

CHs-C=N 

   H*CH>=C=N7 2 = 120.20 

Using the above attributes and R = 4.75 or 4.8 A (in agreement 

with R.iz = 4.9 A from molar volume at 20 °C) with (3.25) 

the exact experimental heat of vaporization can be calculated, 

which signifies the minor role of dipolar effects in the 

cohesion energy in the absence of hydrogen bonding. 

CINO2) 4 c <M* Fe “9S 9° 

N 4M? oe 1.03 1.47 

oO 1i<m? one -84 2.3 

Comments: The molecular Q = 12.5 A* (from its refractive index) 

and I(ev) = 10.94£158] give; 

<m=>(Mole.) = 328.12 

Type (a) CM? ye = 347.6 

Type (c) <M? ee = 327.12 

where structure (c) with .75<m">n. for the *X-electron system 

gives the exact molecular moment and is therefore suggested as 

an alternative to the conventional resonance types (a) and (b) 

with 1<m*3n—_ and .5<m=>,. for the %-system respectively; 

  

0 Ono 
\7 \4 

No ¢n-e---- > N* 
\ | 
c c 

(a) (b) (c) 

259



CaHa c 2.5 <7 one 1.72 » 668 

H 4K? Pre «43 1.5 

Comments: The Pc(C=) = 1.72 A for double bond carbon, at 

variance with that given in table Aé.1 from Ref.C161], is found 

from the molecular polarizability of 4.26£49] using Pc(H) = .43. 

For R = 4.82 A the double bond contributes about 2.25 KJ/mole 

to the total cohesion energy of CaHa (for X-electron at C). 

CeoHas c Of Fre 

  

H 126M? > r10 743 2.21 

Comments: The d value of 2.21 A is the mean of du(Equt.) = 2.49 

and dw(Axial) = 1.93. Such attributes for R = 6.34 A give 

HL, = 26.83 KJ/mole, about four units short of the experimental 

value. The d attributes assume a flat molecule whereas the 

real molecule at any instance of time has the well-known chair 

(and boat) conformations with six equatorial hydrogen at a 

larger distance from the CM. By accounting for this fact and 

treating hydrogens as different species the correct cohesion 

energy can be found (29.89 KJ/mole), once again showing the 

sensitivity of the polyatomic potential to the liquid state 

structure. 
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A Simple, General Method for Predicting the Relative 
Intensities of First-Order, 

NMR Spin-Spin Coupled Multiplets 
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Preliminary undergraduate instruction in the principles of 
nuclear magnetic resonance spectroscopy normally includes 
discussion of the analysis of first-order, spin-spin coupled 
multiplets. It is well known that the number of multiplet lines 
is given by 2nf +1 when n magnetically equivalent nuclei of 
spin I are adjacent to the resonant nucleus and cause the 
splitting of its resonance.! Similarly well known are the 
principles for predicting the distribution of line relative in- 
tensities in first-order multiplets. Because these can be te- 
dious to implement per se it proves advantageous to have 
simple rules that can be used speedily to predict the line rel- 
ative intensities. While such rules for spin Y nuclei are often 
referred to, there appears to have been little reference to a 
general rule that permits the rapid evaluation of the relative 
intensities of the components of first-order multiplets that 
arise from coupling with any number of equivalent nuclei of 
any spin. The intention here is to present such a general 
tule. 

Fundamentally, both the number of multiplet lines and 
their relative intensities depend on the possible combinations, 
2; mi, of the allowed spins of each nucleus, i; for each nucleus 
the quantum number m can adopt the values [, [-1, 1-2... 
—1. Consequently, the number of lines arising from coupling 
ton equivalent nuclei is 2n/ + 1 and the relative intensities 
of these is given by the number of times each value of 3; m; 
occurs, In the case of coupling to n spin —Y% nuclei the relative 
intensities can be generated rapidly from the coefficients of 
the binomial series or, probably more popularly, using Pascal's 
triangle. The relevance of the latter (Fig. 1(b)) can be appre- 

Number of r= 4 
neighbors (n) 

| + aera 

3] tT | 

(a) (b) 
Figure 1. (a) The relative intensity distribution of first-order multiplet lines caused 
by coupling to n nuciel of spin 2. (b) Pascal's “triangle.” 
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ciated by reference to Fig. 1(a) which is the result of assuming 
that each additional nucleus splits each line in the preceding 
pattern into two. This is mirrored in Fig. 1(b) where each of 
the elements of any row are obtained by summing the two 
numbers directly above it and to its left. This is a specific case 

of a general rule. 
When first-order multiplets arise from coupling ton nuclei 

of spin J the relative intensities of the components can be 
deduced by deriving appropriate Pascal-type “triangles”. For 
this, each element of a particular row is deduced by summing 
the 21 + I numbers above and to the left in the preceding row. 
This is illustrated in Figure 2 for the case of I = 3/2. It can be 
seen from this that, for example, when n = 3, the !H resonance 
of Nat By Hg~ will occur as a 1:3:6: 12:10:6:3:1 decet due 
to coupling with the three ''B nuclei.2 

With the availability of multinuclear-pulsed F-'T NMR 
spectrometers and the consequent accessibility to a multitude 
of resonance spectra it is inevitable that students must be 
acquainted with the principles of analyzing spectra involving 
a variety of nuclear spins. It is possible that the triangulation 
tules outlined above may prove helpful in the analysis of 
first-order spin-coupled multiplets. 

   

* Akitt, J. W., ""N.M.R, and Chemistry,” Chapman and Hall, New York, 
1973. 

2 Jesson, J. P., and Muetterties, E. L., “Dynamic Nuclear Magnetic 
Resonance Spectroscopy," (Editors: Jackman, L. M., and Cotton, F. 
A.), Academic Press, New York, 1975. 
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Figure 2. Construction of Pascal-type “triangle” for n nuctel of spin 3/2. In this 
example, 2/-+ 1 = 4 so that four numbers trom the preceding row must be added 
{0 obtain an item for the row below, as indicated.


