Polyatomic London Dispersion

Forces and NMR Gas—to—-—Liquid

Chemical Shifts

By

Mansur Sultan-Mohammadi, B.Sc., M.Sc. (Tehran), M.Sc. (B'ham)

A thesis presented for the degree of Ph.D of

Aston University,

May, 19B8é.

This copy of the thesis has been supplied on condition that anyone who consults it is understood to recognise that

its copyright rests with its author and that no quotation from the thesis and no information derived from it nay be

published without the author's prior written consent.



A Thesis Presented for the Degree of Doctor of FPhilosophy
By

Mansur Sultan—Mohammadi
May 1986

One of the most recent attempts to characterize inter—-molecul ar
dipersion forces is due to Homer and Percival, who used a
modified Onsager-type reaction field approach coupled with the
"buffeting”" theory which accounts for the intimate effects of
molecular- encounters. In this thesis their overall approach is
evaluated and compared with the theories of other workers that
have been used to characterize NMR gas-to-solution chemical
shifts. It is shown that an extended "buffeting" concept, based
on their approach, renders the reaction field part of their
theorem obsolete.

A completely novel generalized expression for London dispersion
forces is deduced by accounting for all the inter-molecular
atom-atom dispersion interactions. In arriving at this
expression three fundamental problems are rescolved. First, a
general order relationship between the mean squares of the
fluctuating input and output of any system is derived to permit
transformation of electrostatic expressions to electrodynamic
situations. Second, a novel method is presented for
characterizing the ionization potentials and polarizabilities
of bonded atoms in terms of the corresponding properties of the
appropriate inert atoms. Third, the average of the
inverse-six*—power of the inter-molecular atomic separation that
governs dispersion forces is evaluated for molecules that are
subject to random thermal motion in the liquid state; the
explicit analytical expression so obtained is confirmed by the
MONTE CARLO technique.

The principles implicit in resolving the three stated problems
are embodied in a theorem that enables the characterization of
polyatomic inter-molecular mean-square fluctuating fields and
the corresponding potential energies. The resulting equations
are tested exhaustively and shown to enable the precise
characterizations of NMR gas—-to-solution shifts and latent heats
of vaporization. Moreover, the equations are used to explain the
relative solubilities of various gases in selected solvents and
the corresponding activity coefficients.

The limitations of the general approach to slowly rotating

large molecules are recognized and evidence is given for the
fact that for this type of molecules the inter-molecular
potentials can be calculated using a simple solute-(solvent)atom
additivity principle.
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Chapter 1

Generalized Reaction Field Theory

Introduction

The reaction field characterization of the van der Waals
nuclear screening constant brings nﬁt an interesting enigma
concerning the equality of the Onsager ‘s electrostatic reaction

field formula with a corresponding electrodynanic formulation.

This enigma in turn triggers a more general question about the

identity of electrostatic expressions with corresponding

dynamic ones. The question arises whether or not the
dipole-static field potential energy is equivalent to the

dipole-oscillating field potential energy.

This chapter deals with finding the ever-elusive answer to this
enigma, by grafting three pieces of text-book mathematics, the
Breen’'s function or convolution integral solution of a linear
differential equation, the Fourier Transform, and the Hilbert

Space.

Manipulation of these three well-known theories in the time
domain leads to a new general inequality between the mean
squares of the causes (inputs) and effects (outputs), which for
reaction field reads <R®> { g= <m=>. The shortcomings of the
inequality are offset by the simplicity and more importantly

the generality of the method.

The inequality is a direct consequence of working in the time



domain. The frequency domain solution of this problem, which
should result in an equality, is quite a formidable task
considering the fact that integrales involved are quadratic in

» ¢

9’y the tranafer function of the system. This is why Linder,

who pioneered the dynamic reaction field (RF) work, uses the
RF—moment correlation function, <R(t).m(t)>, instead of the RF
auto-correlation function, <R(t).R(t’')>, which results in a

straightforward RF-moment relation.

The stated equality is found by defining a mean potential energy
for dynamic processes, based on the inequality, and eqguating it
to Linder'’'s or London’s potential formula. For RF this procedure

works out as, <R=> = (1/16)g= <m=>.

The factor of 1/16 is the answer to the enigma, in that the use
of Onsager ‘s static RF formula for an oscillating dipole
over-estimates the calculated values of van der Waals screening
constant (. = - B {R®> by a factor of 16. This is a setback

for the RF characterization of (. which is already suffering

a shortfall from the experimental values by about one order of

magnitude.
It is shown that the orthodox supposition that potential energy,
being a static quantity, justifies the use of electrostatic

expressions in place of an electrodynamic one is groundless.

It is also shown that London’s dispersion potential formula can

be derived from two expressins only.

The inequality is used further for some general fluctuation



problems including Brownian motion and thermal noise in

electrical systems.

Note that the vector guantities are not denoted unless the

results could be affected by the absence of a vector sign.

1.1. Historical Background

This section aimes at a non—-mathematical introduction of the

reaction field notion by a chronicle of the developments and

shortcomings of dielectric theories.

1.1.1 Onsager Reaction Field Theory of polar molecules

Btudies and experiments on dielectric materials stimulated
attempts to correlate the dielectric constant, £ > 1, with the

microscopic structure of matter.

In 1836, Mossottilill -after Faraday[2] who considered insulating
materials (coined by him as dielectrics) as conducting spheres
in a non-conducting medium— assumed molecules to be equivalent

* .

to conducting spheres of radius ‘a’. Under the influence of an
applied electrostatic field Eo, the charge on the sphere would
readjust or polarize itself inducing a non-zero electric dipole

moment, H,, = (Es, where (I is the (volume) polarizability.
He derived a relationship between the dielectric constant €,
and the polarizability of molecules, which was derived again in

1879 by Clausius(3,41y

Ve = (K 3) L (O Mossotti-Clausius Eq. L e )



where V and L are respectively molar volume and Avogadro’'s
number. Physically, this expression means that the departure of
£ of materials from unity is caused by the polarization of

their molecules.

. .

A corresponding expression for refractive index, 'n’, given by
Lorenz[2] in Denmark (1880), and Lorentz[2,5] in Holland (1880)
proved its validity by using Drude’s oscillatory model of

electronslé, see sec. 1.813

c PRt s Lorentz-Lorenz Eq. (1.2

Fundamental to the derivation of (1.1) and (1.2) are two

concepts. First the local fieldfl1] or the field ét the site of

a moleculel7,8] in a spherical cavity, E_ (further details of
which are given in the following chapter);

E. = Eo + (4%/3)P (1.3)
where P is the polarization caused by the external field E..
Second, the additivity rule (due to Lorentz) which states that
polarization equals the sum of all the molecular induced
dipoles;

P =L E_Q/V (1.4)

Comparison with the experimental data showed that the right-
hand side of (1.2) is a true constant for a particular molecule,
namely independent of temperature, but the right-side of (1.1)
is not in general a constant and in some cases it depends on
temperaturef4]. Experiments also confirmed the correction term

of (4%/3)P for the local field.

Amongst the proposed suggestions to explain the invalidity of



(1.1) for some compounds, the most useful proved to be Debye's
(1912) idea of attributing a permanent electric dipole moment,
to moleculesf1,2,4,9]1. The electric dipole is not solely due to
the distortion of electrons by Eo, namely H.n, but if the
molecule has a permanent dipole K in the absence of Eo, then
the temperature dependence of (1.1) can be satisfactorily

explained.

A magnetic susceptibility due entirely to the orientation of
permanent dipoles was suggested in 1905 by Langevinii,2]. Debye
took the local field approach and adapted the Langevin formula
for the electric case to arrive atg

R 3
V ——eee = (4%/3)L (4 + K=/3KT)
(L + )

Debye's Eq. (1.%)
We, therefore, deduce the existence of two kinds of

polarizability, namely electronic (, and, orientational due to

the thermal motion of molecules, (lor = K=/3kT.

Quantum mechanical (GM) calculations essentially confirmed
Debye’'s Eq.[1,4,10,111;
GLEETET A
V e = (4K/3)L LA + (H2/3KT) (1 -~ 4TI M Eqg.
(E + 2)

where the correction factor f(T) is negligible except at

extremely low temperatures.

The Debye’'s Eq. did not work for polar liquids in which the
molecules are so close together that the orientation in Eo is
restricted by the mutual interaction of their dipoles. The molar
polarizabilities of Oz and N=: gases, for example, are 3.869

and 4.395 cm®™/mole with the corresponding ligquid state values



of 3.878 and 4.3960[121, whereas they are 4 and 18 for vapour and
liguid water respectively. The discrepancy for water in the two

states is nevertheless only about 10%[1] for Lorentz-Lorenz Eq.

van Arkel and Snoek[13]1 added a term to 3kT in Debye’'s Eq. to

arrive atj;

CE = 1)
v

= (4X/3)L LA + B=/(3kT + CLH=)] (1.646)
(£ + 2)

where C is a constant. This expression was found to agree with
experiments for all concentrationsf4]1. However, it did not work
for a number of compounds supposed to undergo association,

including alcohols, acids, and amines.

In 1936, Onsager[14] explained the deviation of polar liquids
from the original Debye’'s theory by a fundamental change in
(1.1). He assumed that part of the local field (1.3) which acts
on the dipole, is in fact produced by induction in the
surrnunding dielectric by the dipole itself. This part of the

local field which has come to be called the Reaction Field

(RF), R does not act in the direction of the external field E.,
but it acts in the direction of the inducing dipole K. Therefore
it cannot give a torque on the original dipole. In other words
the RF is not effective in the orientation of the permanent
dipole. Therefore the directing or orientating field to be used
in Debye’'s approach is not E_, but Eug;

Eq = E_. - R cos @
where @ is an average angle between K and En. The use of E.

in Debye’'s method now gives;

LB = 13
V e = (AK/3)L B + B2/ (3KT + BR)) (17}
(L + 2)



This is of the same form as (1.6) with HR = CLE=. Onsager
deduced the value of R for a molecule with a rigid permanent
dipole H, in a spherical cavity of radius ‘'a’ (see Chgpter 2)
to bel3,; 41y

R=g# (1.8)

where ‘g’, the RF parameter is given byj;

2{E =~ 1) 1

(28 + 13 4 (1.9)

The formalism of the RF was greatly simplified by using the
continuum model, developed by Martin and Bell[151. In this
model the permanent dipole at the centre of a spherical cavity
interacts with its entire surrounding, which is viewed as a
continuous medium. The field of the dipole polarizes the

continuum giving rise to R which is proportional to the dipole.

1.1.2. Reaction Field Theory of Non-polar Molecules

Finding the RF technique restricted to polar compounds and

therefore restricted to the electrostatic interactions,

Linder(16] in 1960 developed a contipuum model for non-polar
molecules K = O which enabled the RF technique to characterize

dispersion interactions.

He considered a spherical molecule of radius ‘a’ in which the
rapid oscillations of the electrons about the nuclei give rise
to an instantaneous dipole moment m(t), the mean value of which
is zero, <m(t)> = 0. The field associated with m(t) polarizes
the uniform dielectric medium which surrounds the molecule. The
degree of the polarization depends on the dielectric constant £

which is now different for static and time-dependent fields. By



assuming that, m(t) oscillates with frequency w,, the molecules
of the dielectric all oscillate with frequency w,, and the
fields induced in the molecules of the medium are additive

(1.4) Linder foundj

W=

[ Y e g,

R(t) = gamy (t)

(‘I’_jz it mgz)
where g is given by (1.9). The oscillating RF, R(t), has a

vanishing mean value because <m(t)> = 0, but the mean of the

square of R(t), namely <R=(t)>, is finite.

The expression of such a mean—sguare RF for oscillating moment
however is not given by Linder. As Rummens[17] puts it "... one
might ask why Linder, having arrived at (1.10), did not simply
suare it to obtain a useable <R=». The reason appears to be
that averaging over the frequency distributions becomes guite
intractable. It is only in the expression for the work ‘W’ that

a neat trick (Q,gs ~ ®:9:) makes this averaging feasible”.

Linder[16,18,191 arrives at a new unorthodox relationship for
the dynamic potential energy betwwen an oscillating moment and
its induced RF;

W= -(1/2) y <m=> g where vy = 1/4 (1.11)

This result is in sharp contrast to the orthodox view(3,20]
that potential energy as a static quantity justifies the use of

electrostatic potential energy, namely -(1/2) <m=» g.

The interpretation of (1.11) is straightforward. A direct
"mapping" or transformation of an electrostatic expression

(y = 1) into a dynamic one (y < 1) is erroneous.



1.1.3. Reaction Field of Non-polar molecules in NMR

The RF technigue finds its own use in a variety of problems
including the solvent effects studies in NMR, biochemistry[211,
spectral shiftsl(22], and bond intensities(23]. Consequently the
lack of a dynamic R(t)-m(t) relationship, analogous to the

static expression (1.8), is more and more evident.

The lack of such relationship for the RF characterization of
the van der Waals nuclear screening constant according to
0w = — B <R=®> (see Chapter 2) in NMR studies, is circumvented

by either of the two following methods:

(a) Equating Linder ‘s work function (1.11) with the potential
U= —-(1/2) (QE.=

This expression is assumed by Linder to hold for the dynamic
field —-in contradiction of his own result on ‘W'- provided that
Eo,® is disguised as a mean-square field, <E=> to obtain the
erronecus expression <E=> = (1/4) g <m=>/(Q, which is used

in place of <R=3>,

(b) Direct mapping of the static relationship (1.8) into the
dynamic onel26-291; that is <R=) = g= <m=». This is obtained
by squaring (1.8), and using m for K and the averaging sign <>.
As (1.10) shows, such mapping appears to be invalid unless the

mean of the square of the frequency function becomes unity.

The purpose of this chapter is therefore to investigate

rigorously the validity of the direct mapping.



1.2. Generalized Reaction Field Formula

It is well—-known that for any arbitrary variable electric field
the conventional electrostgtic definition of the dielectric
constant, D = EoE., is no longer valid and has to be superseded
by a general expression which accommodates the fact that the
electric polarization of matter cannot keep pace with the
change in the fieldl[3,20,30,311;

D(t) = E(t) + me(T)fit = 3)d7 (1.12)
where the Fourier Transform of f(t) is the frequency-dependent
dielectric constant €(w). This relationship states that the
value of D at any given instant ‘t’ is determined not only by
the value of E(t) at that instant, but depends on the values of

E(t) at every previous instant.

This section is devoted to the derivation of a similiar
relationship for RF, when the moment varies with time. We begin
with the barest essential, a differential equation, and develop

it into a general expression for R.

1.2.1. Linear Systems and Differential Equations

Many physical systems are governed by a class of equations

called Linear Differential Equations with constant coefficients;

dny(t)

L an

™

= X{(t) (1.13)
dtn

Forced oscillations, Y(t), of a body of mass 'm’ on a spring of
spring constant 'k’ and damping ‘h’, for example, can be

written as[{32,331;

HRYCE)  dYt)
m +h + k Y(t) = X(t) (1.14)
dt= dt

10



Further examples are:

d=q(t) dq(t) 1
+ R —— 4+ — q(t) = V(t) (1.14a)
dt= dt e

L

D.Eg. for the charge q in RLC~circuit[33].

d=e(t) doe(t)
G - + mg e(t) = C (1.14b)
(n o dt

ml

D.Eq. for the small oscillations, @, of a simple pendulum[331].

d=X (t) dX (t)
+ h
dt= dt

m + wom Y(t) = pE(t) (1.14c)

D.Eq. for the oscillations, X, of electrons under oscillating

electric field of light E{(t)[32].

If X(t) in (1.13) is regarded as an external force or input,
which drives the system, and Y(t) as the response or output

of the system, the leffwside of the equation embodies the
internal physical properties and charactaristics of the system.
In fact the amount by which the system responds to an external
or driving force is embodied in operator [ a.d™/dt-.

Sometimes sufficient information about the system allows its
accurate modelling by a D.Eq., but more often a system is

between the input and output cannot be so derived.
The back box representations of the continuum (as a system) in

the RF theory and that in (1.13), for example, are depicted in

Fig. 1.1.

11



INPUT SYSTEM OUTPUT

N
pil

e CONT INUUM —

X{t) > [BODY ON SPRING P G 4

Fig. 1.1. Black Box Representation of a System.

1.2.2. Solution of the Linear Differential Eguation

The steady—-state solution of (1.14) in terms of the response or

Breen’s function of the system, G(t), can be written as[35-401;

YiE) = § B(t = TrX(y) ar

where the Green’s function can be thought of as a weighting
factor which describes how much the past input, X(71),

-0 < 7T < t, influences the present output Y(t).

This interpretation is parallel to the one given for (1.12) at
the onset of this section. This Eq. is the integral form of
(1.14) which is particularly useful when the internal elements
and the physical laws that relate them cannot be analysed and
used to derive the D.Eqg. of the system. In other words the

integral or convolution form of a D.Eq. is useful when the

system is known only as a black box, like the continuum system.

A time-varying electric moment, m(t), acts on the continuum as
a driving force or input and results in an output, R(t), which

is therefore of the form:

12



R(t) = J B(t - P)m(¢)dr (1.15)

ot

This type of expression conveys a simple message. It states that
for a time-varying dipole the Onsager’'s RF, in contrast to the
static case (1.8), takes the form of R(t) = g(w) m(t), where

g({w) is the freguency-dependent RF parameter (see sec. 1.8).

This is analogous to an electric system with alternative current
input I(t), in which the Ohm’'s law (equivalent of Onsager’'s RF)
is no longer V = R I, but V(t) = Z(w) I(t), where Z(w) is the

system impedence, Fig. 1.2.

CINPUT SYSTEM OUTPUT
Iit) —————— ELECTRIC SYSTEM T
ac current ac voltage

Vit) = Z(w) I(t)

mit) ~————— CONT INUUM e e R ()
ac dipole ac RF
R(t) = glw) m(t)

Fig. 1.2. Black Box Representation of Electric and Continuum
Systems.

The input-output of any Linear system can be described by 61 15)

which here is the generalized reaction field formula and has

been used by Linder in his RF theory[18,191.

The underlying assumption of this Eq. is the linearity of the
system. That is, the independence of the behaviour of the
system and the magnitude of the input, m(t), which of course is
an idealization but often a good onel341. To proceed further

the Fourier Integrals have to be introduced.

13



1.3. Fourier Transform of the Generalized RF formula

Amongst different definitions of Fourier Integrals[42,43,441,
the Pippard[42] and Lifshitz~Pitaevskiil[43] forms are adopted
here to resolve the time-dependent input, output, and the
Breen’s function into their Fourier Transforms (FT)j

F(t) = (1/2%) § F(w) e **“* duw (1.16)

Flw) = [ F(t) e*wt dt (1.17)

Hereafter, it is understood that the lower and the upper limits
on the intgrals are respectively -o and +o.

Any function like F(t) can be considered as a superposition of
harmonics (e *«* = exp(-iwt) = cos wt - i sin wt) with different
amplitudes, a., and frequencies, w., such that:

F(t) = L a. exp(—iww.t)

where the set of frequencies, ww., is called the spectrum of the
function F(t). Expression (1.16) is the continuous form of this
sum, where F(w)dw represents the amplitude corresponding to the
frequency interval dw. That is why the function F(w) has come

to be called the ‘spectral density’ of F(t).

Now, the FT of R(t), m(t), and G(t) can be written as;

R(t) = (1/2%) | R(w) exp(-iwt) dw (1.18)
R{w) = J R(t) exp(iwt) dt (1.19)
mit) = (1/2%) §f m(w) exp(—-iwt) dw {1200
m{w) = f m(t) exp(iwt) dt (1.21)
G(t) = (1/2%) §f g(w) exp(—iwt) dw (1:22)
glw) = [ B(t) enp(iwt) dt (123}

14



The Onsager 's RF formula can be retrieved from (1.15) by

setting m(t) = K and using (1.23);

R(t) = §f m(T) B(t — 7)) d7y = H§ § B(t - 7T) dT

Letting t — 7 = 8, s0 that d7 = -ds, one gets;

R(t) = H | GB(s) ds

{Note that the integral limits reverse when s changes to 7, because 7 is equivalent to -s)

The integral is g(w = 0), because from (1.23);

g(0) = f B(s) exp(it0) ds = §f B(s)ds (1.24)

s0 that R(t) becomes;

R(t) = R K g(0) = § g

From this result (1.9), in terms of the freguency dependent, and

static dielectric constants can be written asj

2(8c = 1) 2((w) - 1)
g = g(0) = ; glw) = (Y. 28)
(2 + 1) a™= (2E(w) + 1) a=

where g(w), the FT of G(t) according to (1.23), is called the

Transfer Function of the system.

We seek a relationship between the mean squares of R, CR#3-,
and m, <m=3>, which entails the knowledge of the Fourier

Tranasform of these quantities presented in the next section.
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1.4. Concept of Fluctuation

The basic concepts of the mean and mean—-square of fluctuation,
and their FT are outlined here to form the cornerstone of the

R—-m relationship.

1.4.1. Definition of Fluctuation

Experiments demsigned to measure the same physical quantity,
which describes a system in equilibrium, almost always give the
mean value of that guantity. Nevertheless, regardless of the
nature of the measurements there will be devﬁations from, or

fluctuations about the mean value[43,45].

Let us throughout this section, consider the generalized RF,
R(t), as fluctuating or random variable quantity related to

the macroscopic continuum system. At any instance of time R(t)
fluctuates about its mean value, <R», so that;

AR(t) = R(t) - <R> (1.26)
denotes the fluctuations of R . The mean of these fluctuations
<AR(t)> is zero because AR(t) can be both positive and negative.
The square of the fluctuations, (AR(t))=, however, is always
positive, so its mean value, <(AR)®>, forms a suitable measure

of the mean of the fluctuations;

CAR)=2> = { (R(t) = <R>)= » = ¢ R(£)= + <R»= - 2R(t)<R» >

S(AR)=> = <R=> + <(R>® —= 2¢R>{R> = <R®» = <R»= {1277

This mean—-square quantity is an average of second order[46]
which is also called the second moment of R(t) about its mean
because of the analogy between this and the moment of inertia

in mechanics[47,481.
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The mean value of a time function R(t) is defined asj

P
LRCEY S meldn Lm0 RGED) Ok (1.28)
T-3m 2T -

It is simply the area under the R(t)-t curve in the interval;
-T to +T, divided by the length of the interval, 2T, as the
length of the interval becomes infinite. Substituting for R(t)

from (1.15) into (1.28);

o
<R(t)>» = Lim —— [ dt f G(t - T) m(T)d7
THm o7 -7 -

which can be written as (convolution is commutativel341);

e
CR{E)> = Lim = [ dt f G(T) m(t - 7T)dT
T 2T —

The rearranging of the integrals givesy

-
SRAL) > = Lim -~ [ m(t -~ Tidt [ G(¥)dY
T - 2T e

The value of the first integral is <m(t)>», the mean value of
m(t), by analogy with (1.28). This is so because a translation
of m(t) by an amount T does not affect its mean value. The
second integral is the static RF parameter g(0), according to
(1.24), therefore;

CR(t)> = <m(t) > g(O) (1.29)

where <m(t)>» = 0, and as a result, <R(t)> = 0,

According to (1.29) the mean value of the output of a Linear
system equals the mean value of the input times the static

transfer function of the system, or, using electrical

17



Substituting <R>» = 0 into (1.27) gives; <(AR)=3 = “R=>, stating
that for zero mean value the mean of the square of fluctuations

is equivalent to the mean-square value, <R=3.

This, of course, does not mean that in the presence of mean
values the fluctuations lack any physical significance.
Fluctuations in density, and fluctuations in internal energy,
for example, account respectively, for the scattering of light
and the anomalous large specific heats at constant volume

near the critical pointsl49].

1.4.2. Fourier Analysis of Mean—square guantities

The mean-square values of R(t) and m(t) are related to their

spectral densities R(w) and m(w) by[43,471;

s

i)
N

EY
I

(1/2%) f IR{w) = dw

{(1.30)

N
]

(1/2%) J Im(w) 1= dw

A
3

The proof of (1.30), which is avoided here because it entails
the mathematics of Dirac Delta function[36,50~-521, is given by

Lifshitz and Pitavskiil43].

A physical interpretation of (1.30) may be given if R(t) or m(t)
is considered as wave or voltage wave forms. Classically the
energy in a wave is proportional to the square of its amplitude
or as DitchburnlS3] puts it, the energy associated with the
frequency range dw isg

Efw)dw = (1/2%) IR(w)|1® dw

E(w)dw = (1/2%) Im(w)1Z dw {1.31)

18



The integration of (1.31) for all frequencies reproduces (1.30).

Considering R(t) or m(t) as voltage wave forms applied across a
one Ohm resistor; <R=> or <m=®>» are then equivalent to the

mean power dissipated by the resistorf{34]. Note that this
generalized definition of mean power is the same whether R(t)

is accelerator, voltage, displacement, and so forth(541].

The mean-sguare values are also related to their time functions

J IR(E)YI= dt = (1/2%) [ IR(w) = dw

J IR(E)I= dt = (1/2%) f IR(w) |*= dw e hsmaad

Relationships of this form were first used by Rayleigh(S&] in
his study of black-body radiation. Comparison between (1.30)

and (1.32) gives;

CR=> = f IR(EY 1= dt
<m=> = [ Im(t)|= dt (1.33)

to be used in the time-domain analysis in section 1.6. First a

brief account of Hilbert space is required.

1.5. Hilbert Space and the Buniakauski Inequality

In the ordinary 3-dimensional Cartesian space, the scalar
product of two vectors is given byj

Fi.F= = Ir.l Ir=| cos &

where © is the angle between the two vectors. As lcos &) £ 1

one may rewrite this equality in the form of an order relation
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known as Bchwarz’'s inequality[571;
Faerz= < Iral-iral

In terms of the components of the vectors:
Fa = (May Moy MHmd 3 = = {yi1, Y=, Y=l

the inequality reads;

o — o

=
Fiere =00 e Y & ) (a=)rr= % [y, =) 2eR
1 ==l A

Squaring both sides of the last relation givesg

=

[E}tgy; ]z-{;

1

L e
x
[

N
Ll e B
b
-

N

Now in an imaginative n—-dimensional space where vectors r.
and r= have n components, the square of their scalar product
is given by[37,57,581;

(al

R R NI o T i T (1.3 4)
1

i 1

In Hilbert space -an abstract generalization of the ordinary

3-dimensional vector spacelS591- which is defined as an infinite

dimentional space (1.34) becomes;

Every function, in any domain, can be envisaged as a vector in
Hilbert space, like Schrodinger ‘s vector-valued state function
Yet) which assumes values from an infinite-dimensional compl e
Euclidean space bearing the name of Hilbert space. Thus we can
introduce the scalar product of two functions in this space

as[58,601;
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I J £O1) qix) de 1= & §F 1f) 1= dxe f Iq() 1= dxn ¢5.35)

where [1f1= dx and flql= dx < w. This condition implies that

the functions must be square integrablel3S,611, like (1.33).

Expression (1.35), the generalization of the Schwarz’'s order

relation, is called the Buniakauski inequality. It can be

used for estimation of the solution of formidable integrals by
parting them into two simpler forms{&621. It is also used in
guantum mechanics for the derivation of the general uncertainty

relationshiplé&3].

It is worth noting that the equality sign of (1.35) holds if
the guotient f(x)/qg(xs) is & constant everywhere in (~o, +m). In
other words the equality holds if f(x) and q(x) are colinear:
f)/qn)= y, where y is a scalarl(é4,65]. The equality sign is
used for minimum wave packet wave function, coherent states[43]
~linpearly dependent states~, and for matched filter in control
system theory, where the Green’'s function and input are

linearly dependent to maximize the signal to noise ratiol&5].

1.6. The RF-m relationship

Combination of (1.135), (1.24), (1.33), (1.35), and a method due
to Titchmarsh[(S5, p.911, leads to the sought-for <R=2>-<{m=3:

relationship;

R(t) = J B(t - 7) m(T)dT
IR(E) 1= = } f G(t - 7)) miT)dT |I=
dissecting the integral into two parts according to (1.35);:

IR(EY IS & f Im(MI= dY f 16t = M= dr
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& J TekFY ™ G4k = ¥y dY §f Bt = 7)) 47T

a change of argument t - 7 = s, and then ds = -d7 gives;

IR(E)I= L J Im(T)I= B(t - 7) d7 § Gis) ds

rearranging and integrating both sides with respect to t:

JIRME)YI= dt £ J B(s) ds [ B(t - 7) dt f Im(yr)I= dT

replacing the integral on the extreme left by (1.33) and

changing the argument again, t - 7 = s, ds = dt, results in;

R=> & J G(s) ds [ B(s) ds § Im(T)I= dT , or

R=> & [ J B(s) ds 1= f Im(T)|= dT

The first and the second integrals are g(0) and <m=* from

(1.24) and (1.33) respectively;

(R=>» & g=(0) <m=> : (1.36)

This is the sought-for relationship between mean squares of R
and m. As no specific properties of input, output, or the
transfer function, ‘g’, of the RF system are used, (1.3&4)

embodies a gerneral input-output relationship for Linear

systems.

It states that the mean-square of the output can be estimated

from a knowledge of the mean—square of the input and the
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transfer function of the system at zero freguency, g(0), see

Fig. 1.3.

INFUT

TRANSFER FUNCTION

OUTPUT

ELECTRIC FIELD E{t)

ELECTRIC FIELD E(t)

DIPOLE MOMENT m(t)
CURRENT I{t)
FORCE FOED
INCUHING WAVE
Fig. 1.3. The input-

FOLARIZABILITY

A\

s Y4
;

DIPOLE MOMENT m(t)

d=(0). <E=>

{a)

SUSCEPTIRILITY

2

PR3 & XT(0) <E=3>

(b)

-2 | RF PARAMETER

CR=> & g=(0) <m=>

()

et IMFEDANCE

V=20 & I=(0) <1=>

(d)

> COMPLIANCE

X2y & CR(0) <F=3

(e)

o AMFLITUDE

(f)

— POLARIZATION

e )

——=> REACTION FIELD R(t)

e VOLTAGE

Vit)

—-2» DISPLACEMENT X (t)

-2 SCATTERED WAVEL&L]

output relationship based on (1.36).
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It must be emphasised that the generalized RF theory provides
no information on the functional forms of g or <m=3., These
quantities are to be predetermined by other methods, if the

explicit form of the output is required.

As regards the RF theory, (1.36) states that the static and
dynamic RF formulas are not necessarily directly interchangable.
The reminder of this chapter is devoted to the equalization of

(1.36) for special caszes.

1.7. Egqualizing the Order Relation for RF

It is well-known that potential energy between a permanent
electric dipole, K, and a static electric field is given by}

UE"“nEtD

If the induction effect of the field creates the dipole, this
Eq. becomesl2,4,321;
U= - [ E.di (Y. 37

or, using Hi, = (0) Eoj

it

U= - (/@ f'H.di = ~ (1/2) QO) B~ (1.38)

Linder sets off with (1.37) and rightly assumes that the

instantaneous potential between an oscillating dipole m(t) and

its induced RF (RF is zero and reaches R by induction) is of
the same formg

Ulinst.) = - (1/2) m(t).R(t)

By using R(t) = g(w) m(t), this expression becomes:

Ulinst.) = - (1/2) g(w) m{t).m(t) (1.39)

The symbols are persistently indexed to avoid mis—derivations.
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Without indices, (1.39) for example, can_be written asg

U= - (1/2) g m=, which under the disguise of an averaging
sign becomes;

R S (i B B« B K (1.40)
which appears to prove that the potential between a dynamic RF
and a dynamic moment eguals the static potential of;

U= - (1/2) g K=.

Linder ‘s work diverges from this convention by proper averaging
of €(1.39) asj

Uaw= <Ulinst.) > = - (1/2) <giw) m{t).m(t) >

This is the gist of Linder 's generalized RF work[18,191. He
shows that the meam dynamic potential, after all, turns out to

be similar to (1.40), only four times smaller;

Uau= = (1/2)(1/4) g(0) <m=3 (1.41)

This, like (1.36), is a general result independent of the
specific properties of the RF system, and therefore can be used

for other similar cases (see sec. 1.8).

To equalize (1.36) for the RF, one can deduce a mean potential
expression from (1.346) and equate it to (1.41). In terms of the
root-mean-square (rms) moment, Am = <m=:'2, and RF, AR = <{R=:2
such expression reads;

Uau= = (1/2) Am.AR (1.42)
Inequality (1.36) in terms of rms’'s becomes;

AR = y'2 g(0) Am

where y is an equalizing factor. Substituting for AR in (1.42)

from this expression gives;
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Uass = = (L/Z) Y2 glQ) Am.Am, or3

Uav = = (1/2) y'2 g(0Q) <m=» (1.43)
Comparison between (1.41) and (1.4X) shows that, y!? = 1/4,

or vy = 1/16. Therefore (1.368) for the RF becomes;

CR7E> = y g=(0) <m=>, or

“R=> = (1/186) g=(0) <m=» (1.44)

The equalizing factor of 1/16 could be deduced without defining

(1.42) by arguing that the sguare dependence of ‘g’ in (1.36)

demands the square of Linder ‘s factor in (1.41) which is 1/164.

The message of (1.44) is clear, a direct mapping of the static
RF expression into the dynamic situation is invalid and results
in the over-estimation of the calculated values by a factor of
1/16. This is further discussed in the next chapter in the NMR

context.

1.8. Potential Energy of an Induced Moment in a Varvying Field

The dynamic form of (1.37), when an oscillating field induces a
moment can be written asg
Udinst.,) = = (1721 mg, () ELL)

where on using my, = ({{w) E(t), and averaging gives;

Uac= Sltinst. ) = =(1/2) <Qiw) E{t).E(t) >

The outcome of this averaging, in principle, should be similar
to Linder ‘s potential (1.41), as there is no difference in the

treatment of a field, E(t), inducing a moment, m(t), or a moment
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m(t), inducing a field, R(t);

Uav= —(1/2) (1/4) Q(O) <E=: (1.45)

As the survey in the next section shows, with the exception of
London, almost every author, including Linder, has used the

static expression (1.38) for the dynamic situation.

The form of the frequency dependence of polarizability (((w)
can be found using Drude’'sl(2,5,6,32,49] oscillatory model of
light dispersion. In this model the D.Eqg. that governs the
interaction between light —the oscillatory electric field of
light E(t)~ and matter -—-the electrons of matter with natural
frequency we and spring constant k = we,"m— is given by (1.14c).
In other words, the system is not a black box. The workability

of this model has been verified by QMLES3,467,681.

The procedure of deriving the Transfer Function of the system,
X, from its D.Eqg., as given here, will be used later (sec.1.11).
Substituting for the electron’s displacement X(t) its FT from

(1.16) into (1.14c) one obtains;

(1/72%) [—-mw= — ihw + mwe™] [ X(w) exp(—-iwt) dw = e E(t)

or in terms of the original X(t);
[-mw= — ihw + mwe=1 X(t) = e E(t)
where w is the frequency of the oscillations of the driving
field E(t). Therefore the oscillations of the electrons and
conscequently the induced electric moment, m,.(t) = e X(t),

can be written as;
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Ez
mal{t) = & X(t) = El{t) (1.464)
(Mwe® — mw*= — ihw)

where the Transfer function of the system isjg

e=
Alw) =

(Mwoe? = mw= — ihw)
For the static field w = O, one gets the static

polarizability[32,4691;

qA(0) = e/ (mwo™) (1.47)

Expression (1.44) therefore may be cast into the text-book
formL32,701;

mit) = ((w) E(t),

which is the input-output relationship for a Linear system as
was given previously. The polarizability being a complex number
embodies the fact that the induced moment lags behind the
electric field, or it is shifted in phase to some extent. It
will be recalled that this is the interpretation given for

(1.12) and (1.15).

1.9. A Burvey of the Static—to-Dynamic Direct Mapping

It was proved in the preceding section that the static potential
(1.38) and the dynamic one (1.45) are not interchangable without
the mapping factor of 1/4. Nevertheless almost always the static

expression is used for the dynamic situation.

Margenaul71]1 for the time-varying field (thermal fluctuations)
uses (1.38). As is shown in the next section for fluctuations

of thermal origin, this appears be permissible.
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ProsenL721 in treatment of the interaction between molecules
and metallic surfaces, uses (1.38) for the instantaneous

molecular field.

Slater[731, Mott[741, Buckingham(7%51, Bothner-By[76&61,
Yonemotol771, Raynes et all781], Bernstein and Raynesl791,
Rummens and Bernsteinl80], and even Linder[2431, all use (1.38)

for time-varying field.

The crux of the Frohlich[20, pp. 40,42,1771 and Bottcheri3,; Chap.
41 argument in this connection is that potantial energy as a
static entity justifies the use of static potential for any

time—varying field.

The only exception appears to be London, that in his famous
paper on the general theory of molecular forces(811,
distinguishes between the static and dynamic potential by using
U=~ (1/2) (I(w) Fo=, for the latter and (1.38) for the former

where F, is the amplitude of the field oscillating with w.
In the following sections the ineguality is used for the study
of London’s dispersion formula and Brownian motion of electrons

and particles.

1.10. The Ineqgquality and London’'s Potential Formula

lLondon ‘s potential energy between two identical spheres (atoms)
with polarizabilities ({ and fluctuating dipoles m(t), a
distance R épart is given bylé&7,468,811;

U. = = (3/4) hy (I=(0) R~

where the dipolar fluctuations are of guantum origin with
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frequency ¥ and a mean-square value of <m=> = (I/2) hy Q(O)
(see Appendix 1, Eg. Al.4). In terms of the mean—-sguare dipole,

U. becomes;

bhe = = (1/2) QO smeE RS (1.48)

To derive (1.48) using the inequality (1.36) as given in

Fig. 1.3a, the relationship between <E=> and <m=» should be

found first.

The field of a permanent dipole K at a point a distance R away

from the centre of the dipole is given in electrostatics

as[3,70,82,831;

Provided that R is small, electrodynamic calculations show that
the same expression holds for an oscillating dipoeolel70,82,831;
3 (m(t).R) R mit)

E(t) = -
RE R:Z‘J

(1.4%)

Under the same condition the magnetic field of such a dipole
vanishes[B83] justifying the characterization of (. by electric
field only.

Referring to Fig. 1.4, the dipolar oscillations of each atom
produces, according to (1.4%9), an pscillating field at the site
of the other atom, the mean value of which is zero because
<mft) > = 0. The mean—-square field, however has a finite value
which in terms of the mean—sguare dipole is given by (Appendix

2 Eq. A2.1)3



<E=) = 2 <m=» R—® (1.50)
The method of deriving this relation is due to Hirschfelder and
Meath[84]1 and the result agrees with that of Mott[741] arrived at

by a different method.

(s
ait)q

Fig. 1.4. Interaction between two non-polar atoms.

Now, the instantaneous potentials between the field of A and the
moment that it induces in B, Ulinst. ,AR), and that of B on A,

Ulinst. ,BA), can be written as;

Ulinst.) am = ALY M CE Y s BT 5

U(inﬁtn)m‘x = - (1/2) mgn(t)n-E(t)a

U(il‘lEt.) i mln(t)-E(t)

the average of which according to the previous discussions isg
Uav = = y¥2 Q(0) <E=>, where y = 1/14 1. 51)

Substituting for <E®: from (1.50) into (1.51) gives London's
potential (1.48). The ease with which London’'s potential is

obtained using two expressions only, (1.50) and (1.51), is
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noteworthy. Expressions (1.50) and (1.51) have a predominant
role in the generalization of the London potential for

polyatomic molecules at small separations (see Chapter 3).

1.11. The Inequality and Thermal Fluctuations

The egualizing factor of 1/16 was found for fluctuations of
electrons in atoms or molecules which give rise to the time
varying input, m(t). This input in turn produced the outputs

R{t) or E(t) in the RF or dispersion theories respechtively.

This section deals with fluctuations of thermal origin that are
of practical importance. Brownian motion and thermal noise in
electrical systems, known to vacuum tube amplifier technicians

as tube noise, are two examples.

Electrons in a length of copper wire are in random motion like
the molecules of gas confined in a container. They have no net
direct motion along the wire, but because the number of
_electrnns is finite, there will be small fluctuations in the
rate of the basaage of them through a cross—-section of wire.
Therefore, conductors will contain a small rapid fluctuating
current even though, averaged over a long time the net current
is zero. These fluctuations give rise to a fluctuating voltage
across the wire which is called electrical or thermal noise and

can be measuwred by suitable instruments(85].

Johnson discovered[86] and measuredl(87] this electromotive

force (fluctuating voltage) in conductors, which is related in



a simple way to the absolute temperature T and resistance R of
the conductor only. Johnson attributed this voltage to the

thermal agitations of the electrons in conductors(87].

This phenomenon was immediately explained by Nyguist[881, and

the result, known as the Nyquist theorem, is(88,89,901;

“V=x = 4 KT R Gl By

where <V=: is the mean—-square voltage.

The inequality (1.36) for the potential between the two

terminals of a conductor of resistance R reads (Fig. 1.3d)3j

4
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.,
o Wi T =D (1.33)
where y+ is the equalizing factor of thermal fluctuations.

Replacing the explicit form of the mean—-square currentl89,911;:

<I=» = 4 KT/R

into (1.33) and comparing the result with (1.52) gives, yr = 1

ExperimentsiB87] show that agueous solutions of NaCl, KzCrOa,
CuS0a, and Ca(NOx)=, or, a carbon filament of the same
resistance of 1.17%10¢ Ohms generate equal (rms) voltages of

1.14 microvolts at room temperature as (1.52) embodies.

In NMR experiments on living systems[921, which have a fairly
high concentration of ions, for example, the sample itself can
generate a significant amount of thermal noise, thus decreasing

the effective signal~to-noise ratiol93,941].
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1.11.2. Hrownian Motion

The chaotic motion of a macroscopic visible particle, such as
smoke particles in air or a pollen suspended in a drop of
ligquid which reflects the random motion of the molecules of the

medium, is called Brownian motionl%95-971].

A probabilistic description of this phenomenon was first given
by Einstein in 1905[%971, but we use a stochastic approach due
to Langevinl[47,89]1. His method is more akin to the D.Eq. method

given here.

The D.Eg. governing the displacement X(t) of the suspended
particle is given by (1.14) without the restoring force, k = 0.
This Eq. in terms of the velocity of the particle v(t) is known

as Langevin’'s Eqg.:

m dvi(t)/dt + h v(t) = () (1.54)
where h and f are respectively the friction constant and the
random force representing the interactions between the particle

and the molecules of the medium, <f(t)> = O,

The friction or damping constant is related to the viscosity of
the liquid % the radius of the particle ’'r’ and, the diffusion
coefficient D, by Stocke’'s h = &%7r, or Einstein’'s D = kT/h

relationships.

By using the eguipartition theorem{981; m <v=: = kT, and (1.54)

one can readily show that over a long period of time when the
particle undergoes myriads of collisions (t >* m/h) the amount

by which the particle spreads around, <x#:, is given by[47,8%91;
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n=3 = 2 KT t/hy or <x=> = 2 D t (8 et
Now, the inequality (1.34) for (1.54) gives:
SVED> = yo LB) <F53 (1.56)

To compare this with (1.55) the form of the transfer function
L(O), and the mean—-sguare force must be known.
Treating (1.54) according to the procedure of sec. 1.8 for

obtaining the transfer function results ing

L{w) = 1/(h - iwm); or L{O) = 1/h

Substituting for L(0) and y+ = 1, which was found for the
Brownian motion of electrons, into (1.56) gives;

VR = (fRu/hR

For <v=:, kT/m from the equipartition theorem can be used when
the pérticle performs a random walk, that is when t »> m/h.

Therefore, the mean-square force becomes;

“f=x = kT h=®/m
which in terms of the particle’s relaxation time, s = m/h and

the viscosity of the liquid may be written asj
f=r> = 6K rv kT/s (& B g
Reifl[47]1 and Kubol991, using the Fluctuation-Dissipation

theorem (FDT), express the auto-correlation of the force

respectively as:



2T h = [ <f(k)oflt)Y> dlt-t ), andj

2 kT h O(t—t’) = <f(t).F(t )2 (1.58)

where O(t) is the Dirac Delta function. It is intriguing that
the mean-square form of a flutuating gquantity is not explicitly

provided by the FDT.

We note that the ineguality provides the explicit form of the
mean—-square force using the value of unity found for y. from

the thermal noise.

The phenomena of thermal noise and Brownian motion are closely
related, and so the Nyguist theorem can be gfeatly generalized.
Such generalization was first stated by Callen and WaltonL1001.
The generalized theorem is called the FDTL1011, because it
relates the fluctuations of a physical guantity of a system in
equilibrium to a dissipation process, similar to (1.57) where

CE(tYaF(E) > = {£#> iz related to h.

Expression (1.55) has wide variety of uses including the motion
of colloidal particle, chemical reactions, hydrodynamic, and

many-particle systems.

Perrinfi01] in 1910 by measuring <x?> for gamboge particles
found a value of 6.73x10%" mple~! for Avogadro’'s number.
Kapplerf{103] in 1931, by the study of the fluctuations of a
light spﬁt reflected from a galvometer mirror, which responds
to Brownian motion under the action of air molecules no matter
how efficiently evacuated[45]1, found a value of 6.063x10==

for Avogadro’'s number. The accepted value is 6.022%102= gple—*.
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The inequality may be useful in linking the fluctuations of

thermodynamic variables, such as entropy <AS2> = kCe.[104]

and volume <V=2: with the fluctuations of the cause (input).

More subtle problems can also be simplified by the inequality.
For example, the guantum electrodynamic problem of fluctuations
in the position of a free electron, which may be thought of as
Brownian motion of electrons in equilibrium with zero-point
fluctuations of the electric and magnetic fields in empty
spacel1051. The non-relativistic classical Eq. of motion of a
free electron under the electric field E(t) is given by (1.14c)
for k = 0. The transfer function of such system iss

T4w) = 1/{mw=), or , T(O) =0

The ineqgquality between the output »(t) and the input E(t) is
thens

H=> £ T(O) <E=D, Or ,$u=> =

which is in agreement with the Weltonf10&] result. The guantum
treatment of this problem gives finite value for <x®», by which
the zero-point fluctuations in the electric field in empty
space can be easily found using y = 1/16 and the inequality,
without resort to other complicated quantum electrodynamic

methods.

1.12. Reaction Field and the Heat of Vaporization

The equalizing factor of less than unity for guantum effects
can be verified directly by the calculation of heats of

vaporization for non-polar compounds.

Linderf16] has shown that the potential energy between the



moment and RF roughly characterizes the heat of vaporization,

Ho. For one mole of a pure non-polar compound using (1.43) one
can writellé6];

Ho = = (1/2) y%2 L <m=3 g(0); where y = 1/16

By using (Al.4) for <m®»[16,181, (1.25) for g(0), Maxwell's
relation £= n® for dielectric constant, Onsager’'s relation
(4K/3) a® L = V for the cavity size, and Bottcher's relation
d(0) = a= (n® - 1)/(n® + 2) for polarizability, the

expression of H, becomes;

(nﬁnl)“
Ho(KJ/mole) = =144 yi2 [ (py) {1.59)
(2 N2 + 1) (n= + 2)

To avoid duplication, the experimental and calculated heats of
vaporization fraom Linder's work are only graphically compared

iy Figes 1.5

The purppse of this comparison is to reinforce the equalizing
factor of less than unity which gives the right order of
magnitude of the experimental values. We note that for y = 1,
implying the correspondence of static and dynamic relationships
the calculated véluES-mf Ho Qould be four times larger than

those given in Fig. 1.4,

Expression (1.59) has also been used for the heats of
sublimation of selid argon and iodine. For both solids (1.59)
gives values twice larger than the experimental ones: 121.7 and
13.2 Kd/mole as compared to the experimental values of 64.4 and
6.6 for I, and Ar respectively. For y = 1, the discrepancies

increase four—-fold.
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Fig. 1.9 A comparison between the experimental and calcul ated

heats of vaporization by the RF model (from Ref. 16).
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1.13. Conclusions

The dynamic RF formula turned out to be a specific form of a
general inequality . Physically speaking the inequality results
from the fact that the total output energy, <R2Z>, cannot exceed

the total input energy, so that <{R=> & g® <m2:.

A serious criticism of the Onsager’'s static RF that has been
raised concerns the effect of thermal re-orientation of the
solute molecule and as a result the fluctuations of its
permanent dipole K. The direction of # is assumed to be fixed
in Onsager ’'s theory. However, y+ = | for thermal fluctuations
shows that such a criticism is invalid and thermal motion does
not affect Onsager’'s RF, because <R2> = g2 <{=:, This is in

agreement with Linder's findingl191.

It is tempting to add a correction term to (1.2), in the same
line with the Debye correction to (1.1). We may informally, hy
analogy with (1.7), writes

f(n) = [ (Q(gas) + X <m=:/(3/2 hy + <R.m3>) ]

where f(n) is used for all the parameters of (1.2) except for
dy, and ‘X' is a numerical factor to be determined. Note that
(3/2)hY is used as the guantum counterpart of IkTL106,1071, and
Qtgas) for ( to emphasize that it is the gas phase

polarizability.

By using <m=:= (3/2)hY ((gas), Bottcher’'s relation of the last
section for (Q(gas), and Linder’'s relation <R.m> = (1/4) g4im=>:
this expression may be written as:

a:

fin) = [Q(gas) + X ]
N= + 2)/(n= ~ 1) + (n= ~ 1)/(4n2 + 2)
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This is somewhat similar to the Raman and Krishnanl4] correction
term for (1.2) which they added on the grounds that liguids are
really anisotropics

(€ - 1)
o T R R R e oo I L Raman=krishnan Eqg.

(£ + 2)
where © is a molecular constant. This extra term explains why

the (n® - 1)/(n= + 2) factor usually decreases with increase

in density.

Let us see if the informal correction rectifies the slight
discrepancies observed in uwsing (1.2) for water and benzene.
For water (n = 1.3325, V = 18 cm™/mole) the correction term
works out to X1.43 A¥. The polarizability of water is, 1.44 A“,.'
therefore, the 10% discrepancy observed for water{1] would be
explained if X = 1/10. This adds .143 A® to the gas phase

polarizability.

For benzene (n = 1.5, V = 89 cn®/mole) the correction term
gives 1 A*®, for X = 1/10 found from water data, which is 10%

of 10.4 A*, the polarizability of benzene. This exceeds the
observed 3.8%[4] discrepancy . Therefore, judging by these data,
X appears to be a variable and probably a function of molecular

parameters, the exact nature of which reguires scrutiny.

The inequality may prove useful in other fields including the
interaction of micro or ultrasonic wave with matter, the noise
problems in light fibers communication and the rotational
Brownian motion which is related to dielectric and NMR

relaxation processesC1081].
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Chapter 2

Reaction Field Characterization of the wvan der Waals

Screening Constant

Introdution

The study of NMR chemical shifts has revived dormant
electromagnetic problems including the difference between
corresponding electrostatic and electrodynamic guantities which

was studied in the previous chapter.

This chapter deals with the effects of solvent (medium) on the
NMR chemical shift and this again activates problems of the
Lorentz local field, the Lorentz inner field, the Onsager
cavity size, and the demagnetization field (the characteristic

of ferromagnetic materials).

The solvent or the medium nuclear screening constant of a
species is recognized to be caused by at least five effechts;

Om = 0w + 0w + Ow + 0 + 0r + ...

The origin and the meaning of these terms are traced, and the
characterization of the van der Waals term, (w, by the reaction
field technigue is considered.

In the search for a universal reaction field formulation for (w
the Homer and Percival reaction field model is tested on over

200 available splute-solvent *H, *?F, TP, and *2%Xe systems.

It is shown that their reaction field (RF) model overcomes the
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two cardinal problems of any pure reaction field model, namely
the Onsager cavity size and the shortfall from the experimental
values. This is achieved at the expense of prominent intercepts

in the RF-0, relationship.

The existence of the intercepts necessitates the inclusion of
pairwise interactions in the characterization of (w, which
leads to the inference that no pure RF model is capable of an

adequate formulation of (w.

Based on the Homer and Fercival RF model a B value for ', and
that of '2%Xe are calculated in agreement with some theoretical

values.

Moreover , the study of dynamic and static B 'H once more

validates the general inequality of the previous chapter.

2.1, Historical Background

In this section an adaptation of Dickinson’'s work on the time
average magnetic field at a nucleus in a NMR experiment serves
to describe the nature of the van der Waals (vdW) nuclear

screening.

.11, What is the vdW nuclear screening

The first effect of the medium in the chemical shift was
dicovered in 1951 by Dickinsonl[1091. By analogy with the
electrostaticsof a local field (Eg. 1.3), Dickinson argues that
for a macroscopic sample of matter which is used in the NMR

experiment, the effective magnetic field to which the
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resonating nuclei are exposed will not be eractly the same as

the externally applied field. The time average (local) field at

HL et H.l;\ + H" + H" Pt

1- Ho is the external magnetic field.

2= H'y, an intra-molecular field, is the magnetic shielding

field at the nueclews due to the molecule cotaining the
nucleus. According to Dickinsonl1101 this term is
proportional to the external field, pHo. Using the result of
Anderson 'sl111] work on Ha:, he finds that p is negative and
of the order af 10™%, Therefore, hereafter H' is denoted by
Lo 1 P

= H" is the magnetization field due to paramagnetic ions that
might be added to the sample for shortening the spin lattice

relasation time.

Following the Debye’'s method for electric dipolesl9,112]1 he

divides H" into two parts:

H" = (4X/3)M - sM (2.2

where the first term is the famil?ar Lorentz[35] term for local
tfields, namely the contribution of the outer region of a
(semi-)macroscopic spherical cavity on the molecule inside the
cavity. The second term, however, is the demagnetization field
or, the amount by which the field in the sample is less than
the external one. The demagnetization expresses the effects of

magnetic poles on the outer surface of the samplelllZ]l, so it
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depends on the shape of the sample. On combining (2.1) and

(2.2) one gets;
H. = Ho = pHo + (4%/3)M —~ sM {9, 3)

Fig. 2.1 depicts this expression apart from the intra-molecular

term, -pH,.

Demagnetization Field o
A1 WT‘-’ T
(rﬂ q \\/ Sample
A | \
Seni-macroscopic <y , K f
cavity 4 i

_ \ |

N i /

\\4
Outer regian Holecule
Uy ____L_L_LL

Fig. 2.1. The Lorentz local field for a paramagnetic specimen.

rnmn

Note that the electric eguivalent of -pHe, that is -pEs, could
have been included in the expression for E_ (Eq. 1.3) if the
local field at an atom in the central molecule were needed.

Therefore the true difference between the forms of E. and Ho

is in the demagnetization field.

It is worth noting here that in dielectric theories of local
fields there is no mention of a depolarization or shape
dependent fieldl7,8,1141, even when the shape of the sample is
esxplicit in the treatment of the local electric or magnetic

fields for dielectic and diamagnetic materials(49].
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Apparently the demagnetization or shape correction is
characteristic of ferromagnetic materials because of their high
magnetic susceptibilities[118~1201, This correction however has
become quite important for diamagnetic materials in highb
resolution NMR, where shifts of accuracy of less than 1 ppm can

be detected.

Dickinsonll09]1 using spherical and cylindrical (length to
diameter ratio of at least 10:1) sample tubes, for which the
shape factors+* are s = (4%/3) and 2% respectively[1201, found
that the factor (4%/3)M - sM is in general not correct and that
tha_aatuml factor may be several times larger or smaller or may

even be of the opposite signl1217.

A suggested explanation of this anomaly was put forward by
Bloembergen and Dickinsonl1221, and Ayantl[123] who considered
that the contribution to the local field from the region within
the spherical cavity is, in this case, not zero. Therefore, for
the demagnetization or shape factor to be valid another term
must be added to (2.2). This term was assumed to be zero by

Dickinson on the basis of electromagnetisml1247;

H" = (4%/3)M - sM + gM (2.4)

Dickinson defines gq in the gM term as an interaction factor.

This is a familiar and contentious term in electromagnetism

where it is called the inner Lorentz field and arises from the

polarization P, or magnetization M, of the molecules within the

spherical cavity. It was proved to be zerp by Lorentz[3] for a

t: Eperinents show that the shape factor s depends somewhat on the permeability of the specimen as well as
its shapel120],
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cubic lattice or for complete disorder of .the molecules inside
the semi-macroscopic cavity[l8,114,1247, although the assumption
that g = O may be apt for gases, but it is not true for
ligquidsL1251. There have been extensive arguments on this
matter going on for years(?,125,1261, thanks are due ta high

~

resolution MNR for reviving the subject. Expression (2.4) is

depicted in Fig. 2.2.

Lorentz's Cavity:

Nolecule \ L

iTi{HLLLLLLLVP

Fig. 2.2. The Lorentz local field for a diamagnetic material in the high resolution NMR experiment,

The gist of this new term, gM, is that it reflects the

effect of interactions between the central and individual
molecules of the inner region. In this, it. may be regarded as
the genesis of the vdW chemical shift. The expression for the
local field for cylindrical sample shape transverse to Hej

s = 2%, now becomes;

Ho

Ho = pHeo + (4%/3)M - 2X M - gM, or

bh. "2 He = pHo = {E2WLZYH = g (2.5

where for the purpose of this historical introduction -gM is

used (Dickinson finds both positive and negative g values: ses
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table 7 in Ref.L1091). The manipulation of (2.5) results in an

expression for the screening constant, as follows.

The magnetization M similar to the polarization, P = L E_q/V
(Eg. 1.4), is M = % H_, which on substitution for the local

field from (2.5) gives;:

% Hatl — p) n
M = = % Ho 4 for X and p << 1

(1 + (2%/5)% + qX)

replacing this back into (2.5) gives;

Hio = Ho — pHe — (2%/3)% He = gX Ho, ary

He.

i

Ho © 31 = tp % (2R£3¥% + gy 1 (2.6)

A comparison between (2.6) and the general NMR expressions

H = Ho (1 - (0), shows that;

0 =p + (2R/I)% + X (2.7

where (0 is the nuclear screening constant.

It took some ten years for the screening constant to be
recegnized in this form in NMR studies. This came about by
attempts to Justify the cylindrical sample factor of 2%/3 = 2.09
Bothner—Hy and Glick were the first to investigate this factor.
They found excellent linear relationship between chemical

shifts and volume magnetic susceptibilities %., with the
proportionality constant ranging from 2.3 to 3.0 (mean = 2.4)
rather than 2.0901271. Their further work on aromatic solvents

showed that they behave quite differently and this anomaly was
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attributed to the magnetic anisotropy of aromatics(128,1291,
which is the drigin of the neighbowr anisotropy effect,f..

Others also found anomalies in this factorl 130135271,

Mevertheless the faith in 2%/35 was so deep that it was fired at
this value and the anomalies were attributed to other effects

such as vdl interactions by Glick and Ehersonll33].

There was a muddle over the subject for some time during which
the chemical screening was not yet recognized as (2.7) until
finally Bothner—-EByL[1341 made a breakthrough. He determined the
effect of medium for each solute by measuring the solute, first

in the gas phase, so finding the intra-molecular effects, (,

and then at infinite dilution in a solvent, 0. The difference
between the two screening constant (§ -~ (4) is then the
gas—to-solution medium screening of that solute. This was
accepted to be proportional to (2KX/3)%¢ plus another term to

explain the anomalies, namely the vdW interaction term;

0 = g = A2R73)%e + 0 CedW) 5 or,

0 = J, + (2%A/F) %o + Cvdl)

This in fact is re-discovered (2.7) because as Dickinson showed,
pois related to the intra-molecular effects of the solute which
is the same as (., and ((vdW) is the interaction term surmised

by him.

Note the proportionality of the Dickinson interaction term g
with the magnetic susceptibility X. This fact guite puzzled

investigators when they found that the excess of the screening
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corrected for the bulk susceptibility, mnamely:
(0 = 0g) = (2%/3) %o = §(vd)

was still proportional to %o.

Bothner—By found that (0 - (0, - (2%/3)%v) was negative (for

]

non—aromatic solvents with (a 0) namely, the excess screening
is down-field. This was established as the vdW screening
constant (., arising from the interaction between the solute

and the solvent. One can therefore, in the presence of

magnetically anisotropic solvents writes

Uﬂ! - (0- i ch) = Gdl s GI:: 4 (.Tw (2.8)

The purpose of the remainder of this chapter is to show the

characterization of (. by the RF model.

2.1.2, Characterization of (., and the B parameter

An RF formulation of (. entails a knowledoe of some sort of
relationship between this quantity and a (reaction) field. The

work of Marshall and Poplell35] provides such knowledge.

atom that is, (besides Hs) simultaneously subjected to a
uniform static electric field. Their 2nd order perturbation
theory showed that a static field either perpendicular or

parallel to the magnetic field Ho will cause de-shielding

proportional to E.*;

881 as=

0 = - ———— Eo®

2l6 . me=

S0



where an, m, and ¢ are respectively the Bohr radius (.529 A),
the electron mass (9.109%10"=% gr), and the speed of light
(2.998%1022 em/sg). Inserting these values into (2.9);
g = - .%38»10“1m(:m3/erg) Es™

This expression, for the first time, linked the screening with
an external perturber (input) other than Heo. It can be written
ass;

0 ==~ Bs Eo™ . (Z+10)

where Be = .738x107% cm™/erg.

Stephenl136]1 suggested that rapidly fluctuating electric fields
of neighbouring non-polar molecules can give rise to vdW forces
and therefore generate de-shielding that (note the direct
static-to-dynamic mapping) by analogy with (2.10) should bes;

Jw = = Bo <E=k
where 4E®:» is the non-zero mean-square of the fluctuating field
Let us rewrite this asj;

Jw = = B <E2 (Ball)

where B is the dynamic counterpart of Be.

There was no theoretical work on the (L—<E®>* relationship until
Marshall and PoplellZ7] published the result of their study on
two interacting H atoms, a case more akin to the Stephen
suggestion. They found that the vdW forces decrease the
screening (in the absence of overlap forces) so that the

shielding in one H atom caused by the neighbouring one is given

253.86 %= a,"
(o = o e RS L ey

To extract a B parameter from this, which is inexplicit in
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terms of the field, one has to find a field expression as a
function of R— and compare the two. Combining the London
petential Eqg., U. = = (3/4)1 (*® R™ for two interacting H
atoms a distance R apart, with Eg. (1.51), U = - (1/4)Q<E*>
one getsy
<E=» = 3 1  R™® (2.13)

Replacing <E=> in (2.11) by (2. 1303

Ui = =0S0H I8 R 2.14)

and then comparing (2.12) with (2.14) gives the expression for

B
23- 86 'h:‘?é\oq
B o= s i (2. 15)
o mEe 0
Inserting for (0n = .6668 A=, I, = 13.5 eV, and other constants
in this, one obtains, B = .1908x107'Y cn®/erg.

This value for the fluctuating field of H atom is about four
times smaller than Be of the static field. One notes the
energence of the now familiar dynamic—-static relationship as
was discussed in the previous chapter. The static expression
for an observable;

(loutput) = - Ho Es=(input)
can be transposed into its dymamic one (2.11) by a numerical

factor less than unity, y < 13

Uc.ﬂ..lt:put. = 8% yl.f! E{i:' c:E:(t}::".‘ll‘!‘:l.A"‘.‘.
where y'2B, = ,1908x10-'® epguals the dynamic B for yv* ™~ 1/4,
in agreement with y'2 = 1/4 found for guantum effects when the

transfer function of the system is net gquadratic.

The fact that Bo > B is attributed by Rummens[17] partly to the

use of (2.13) which has been derived by Raynes et all781 on the
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bagis of U = - (1/2)Q<E=>, rather than U = - (1/4)Q<E*>», They
arrived at the same expression as (2.13) because of the use of

hay = 21 in the London potential formula (see sec. 2.3.2).

The guantum theory of Kromhout and Linder[1381 on B also
supports the Marshall and Pople value of .19%107*%®, They give

the following B (dynamic) valuess

XeooX interaction H...H  He...He Ne...Ne Kr...Kr Yoi.ide  CHel.CHs  CFa..CFs

Bx10'® ca¥/erg 21 o 4.1 252 914 .39 18

The work of Jameson et alll139]1 on Be of hydrogen and inert
atoms in a static field Eo generally gives lower values
compared to those of Kromhout and Linder. For helium for
esample, their Hs is low by a factor of two, and, the same
factor increases their Beo for H near to the Marshall and Fople

value of .74;

X...Eo interaction H He Ne Ar Kr e

Box10'® ca/erg + 33 075 3.6 41.3 1.7 331.3

According to Rummensl17]1 the nature of the approximations in
the Jameson (et al) procedure makes their Bo values for light
atoms less reliable, though they might be quite good for heavy

atoms.

We infer from the evidence in this section that the link
between the vdW screening and some form of a fluctuating field
is provided by a parameter B which mainly depends on the

resonant nucleus and the interacting solute—solvent system. In
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terms of the RF such a relationship reads;
Owe =~ B CR=%

substituting for <R=» from (1.44) one finds;

Ow = = By g= {m=>, or,

0w =-By Sm= 2. 16)
(2n= + 1)= a®

where 'a’ is the cavity size and y = 1/1&6. Note that there
exists a direct relationship between <m®> = ¥ e®d{r,=> and ¥%.
The molar susceptibility of an atom may be written aslCl1];

X = - (e® L/&6mc™) VR

s0 that (2.16) becomes;

0w = q %, and, PR

where g % is the Dickinson interaction term.

2.2, Problems with the RF model of (.

The argument in the historical background suggests the
interactions between the central molecule and those of the
jnner region as the cause of the vdW shift (see Fig. 2.2). In
other words, it has been recognized thatl76,1361 (. arises from
the interactions between the nearest neighbows. The continuum,
or the RF model, as it is known, characterizes the effects of
interactions between the central molecule and those of the

outer region, the continuum.

2.2.1. The Problem of the First Molecular Shell

Linderl19] believes that the RF model is highly artificial when

used at the molecular level because in this model the molecules
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that surround a specific molecule at the centre of a cavity
must form a uniform dielectric. To achieve this uniformity

the cavity must be of semi-macroscopic 5ize[3,14J as shown in
Fig. 2.2. In other words, suwrounding molecules appear uniform
to the central one at some distance away from the nearest
neighboursl140]. The individuality of the molecules in this
model is "smeared out" by using the refractive index, a bulk
property. The nearest neighbours interaction which identifies
(w is totally nonexistent in this theory. It is therefore

effect.

2.2.2. The Problem of the Cavity size

If the validity of this model is to be tested, by using (2.18),

the true size of the cavity must be known.

A much criticized(4,17,19] expression is what has come to be
called Onsager’'s approximation, (4%/3) L a* = V, which was
used in section 1.11 for finding heats of vaporization. This
exdpression is supported by the fact that it reduces the
Bottcher—~Unsager formulal3] for dipolar ligquids to the
Mossotti-Clausiuss formula which works so well for non-polar

compounds.

Accepting Onsager 's cavity size, however, is tantamount to
shrinking the semi-macroscopic cavity into molecular sizes.
Some authorsli9,80]1 regard this as the root of RF model
problems. Others notably Kirkwood[141] and Chelkowski[1241]
believe that Onsager’'s cavity is a real cavity and differs from

that of Lorentz which is filled with material of the dielectric.
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The most serious defect of this model, Kirkwood continues, lies

in the assumption of a uniform local dielectric which is

identical to the macroscopic dielectric of the medium.

However, not much has been done to improve this so-called
approximation. Linderl191, links ‘a’ to the radial distribution
function, a notorious mathematically untractable quantity
available by experiment. Using »x—-ray scattering data for Xe at

—110 °C, he finds roughly that a = 3.28 A; the Onsager’'s value

is 2.57 A tor V = 42.7 cn”/mole at —110 L.

Jaffelld2] has used the Hertz expression (see sec. 3.3.3) for
random distribution of points to remove tﬁis objectionable
featuwre of Onsager s theory. His work offers no direct
expression that can be used for ‘a’. As it is shown in Chapter 3
the cavity size obtained from the Hertz expression is smaller

than that of Onsager s.

Therefore, we will use Onsager’'s cavity size, and consider the

problem of the first shell of molecules as a serious setback

to the RF model of (w.

-r
R

2.5, Correlational Analysis of <R*:»—(J, relationship

In this section the suitability of the RF model of (. is
analysed by the study of the linear relationship between
calcul ated values of <R®» and experimental values of (J..
For computational purposes (2.16) may be written as;

(i ™ a Ry = T Cena ) o TR

“R=x({erg/cm®) = y &61.2x101= L
(2n.2 + 132 VY Plcm™/mole)

* o

where Onsager’'s expression for ‘a’, Eg. (Al.4) for <m®>, u for
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the solute and v for the solvent are used.

It is customeryl[24,25,27,29,143,144~1471 to use the volume of
solute, or centfal molecule, V., for the cavity size as used

in (2.17). When the tabulated values of I, d, and V are
inserted in (2.17), and the result is multiplied by the value of

B in ppm cm®/erg that is Ex109, (.fcal.) would be in ppm

Jwlcal.) = (e (ppm) = = y Bippm cm®/erg) <R*:(erg/cm™) (2. 18)

For the initial test the experimental (.(expt.) values of

the tetramethyl compounds are used. The calculated values of

RF according to (2.17) for y = 1 are denoted by RFu in table
2.1. The correlation coefficients for the linear relationship
between RFW and Jwiexpt.) with their slopes -showing the R
values according to (2.18)~ are also given at the bottom of the

table.

Note that this analysis is for a given solute in a series of
solvents. This is because the bulk susceptibility correction,
Uy is done on this basis, and as Blick et alll130l1 found the
excellent linear relation between (0., and %+ exists in this

way only. Rummensl[27] says that using a series of solvents will
eliminate at least part of the experimental errors and model

errors.

Table 2.1 shows that on the one hand, the correlations are poor
(the significance level, a measure of the accidental
correlation, is more than 8%), and, on the other hand, the

calculated values on the basis of Boe = .74, would be an order
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Table 2.1, Comparison between Experimental® and calculated {.

(R=3x 1012 Solute
Solvent erg/ca® (2.18) CHe, Siles Getey SnMe, PbMes
CHea RFu 0111 L0109 L0112 L0113 .0129
RFy L1 0123 0123 0127 L0138
SiMes RFu L0118 0115 L0119 0119 137
RFy ,0105 L0115 0116 0119 0130
GeMes  RFu 0133 0130 0134 0135 0154
RFy 0120 0133 0134 0137 L0149
SnMe, RFu 0159 0156 L0160 0161 0185
RFv L0141 L0156 0157 L0161 0175
PbMe,  RFu 0196 .0191 0197 .0198 0227
Rfv 0183 0202 0203 .0208 0227
cc* RFu-0. .878 917 909 923 .925
Slope = B 8.45 9.3 9.27 9.76 .56
cC RFy-( .74 969 . 965 974 977
Slope = B 9.99 9.52 9.71 10,02 9.25
#: Given in table 2.4,

+1 Correlation coefficient.
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of magnitude smaller than the experimental ones. This is
apparent from the slopes of about 10 times larger than
7AN10-1= pag cm™/erg. Note that for the actual value of

y = 1/16 the calculated screenings fall short of the observed

ones by two orders of manitude.

2.3.1. The Idea of the Solvent Cavity Size

The RF-(0. correlation can be improved if the solute cavity

size in (2.17) is changed for a more realistic cavity size.

It is more likely that the solute molecules fit into the empty
sites of the solvent medium. The size of these empty sites or
holes according to the "significant structure model"L[1481 of
liguids is naturally determined by the solvent. On this account
the size of the cavity for binary systems, shouwld be related to
the solvent and not the solute. This idea is tested by finding
the RF values, denoted by RFv, with V. in (2.17) replaced by
Vo

Table 2.1 shows the increase in the correlation coefficients
(with improved significance levels, < 84) of RFv-(.(expt.)
relationship for tetramethyl systems. Table 2.2 highlights the
superiority of the solvent cavity size to that of solute (save
for Pa which shows a negative intercept) by selecting systems

in which the volumes vary by a factor of seven.

Rummens[27]1 on the basis of a "site-factor" RF model,
argues that the cavity size appears to be independent of the
size of the solvent molecules, but on the other hand, he

continues, a simple proportionality between ‘a’ and V.. is not

satisfactory either. The fact that the incorporated site~factor
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Table 2,2, Comparison between the Solute Cavity RF, RFu, and the Solvent Cavity RF, RFy

(R2Hx10-12 ; Solvent - = RF-0.*
Solute  erq/ca® (2.18) SifOEt)a  SifOMe)s  SiEts  SnEts  SnMes  SiCla  CCla iy S
CHa RFu 0630 0570 0730 . 0830 0760 0710 .0810 469
RFy 0014 .0028 0023 . 0024 0044 0058 . 0095 951
CFa RFu 0197 0179 0235, 0262 0240 ,0223  .0256 bbb
RFy 0017 0035 0028 .0029 L0055 .0072  .0118 . 903
Si{0Et)s RFu .0080 L0073 L0096 . 0107 L0098 L0091 0104 014
RFy .0080 0162 0162 L0132 0250  .0330  .0543 934
n-CsHi2 CaH;z Cala CCla €52 Pe
Pa RFu 0442 0563 L0700 L0620 L0944 1700 ok e
REY: . 0152 .0220 L0410 L0301 210 1700 915

#: (. (Expt.) are given in tables 2.5, 2.7, and 2.9.

+1 The intercept is neqative - 6.7 ppa.
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(see Chapters 3 and 4) has a strong effect on the RF model
discredits his conclusion. In practice he finds a cavity size

1l arger thgn the size of the benzene molecule and of the same
size as C(CHsx)a for CHa. This shows that the cavity size of CHa
is more akin to the holes in solvents rather than its molecular

size.

2.3.2. Homer and Percival RF model

In general any RF model is plagued with the two afore—-mentioned
problems, namely the poor correlation, and, the shortfall of

experimental values.

Rummens in his comprehensive RF workl[27] has, to some extent,
circumvented the former by incorporating the solute-site-factor
idea into the RF work frame. The latter shortcoming however,
has not been overcome and different factors for different
solutes have been used to "scale" the calculated values up to
the experimental ones. He has found that the scale factors
range from &6 for CHa to 16 for Ge(CH=)a (this is for Beo = .74
and y = 1). Rummens has made an attempt to relate this

shortcoming to the Onsager’'s approximation for the cavity size.

It is shown in chapter four that the need for a scale factor

partly arises from the lack of the "solvent-site-factor" in his
model. The nature of the RF model, that is the exclusion of the
first molecular shell, chiefly necessitates the use of a scale

factor.

Demontgolfier's RF model (y = 1) for CHa and CsH,o requires

scale factors of 3.40144,149] and 13.50144] respectively.
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Homer and Percivall[29]1 have recently proposed a new RF model
that overcomes the two mentioned problems. The gist of their

argument is as follows.

As the solute moment m,(t) polarizes the continuum and produces
an RF on itself <R=>., likewise an RF can be assigned to every

solvent molecule of the first shell surrounding the solute.

These macroscopic solvent fields <R®:>_, are constant over the
microscopic solvent cavity accommodating the solute molecule,
and will not be diminished in reaching the solute, or at least
its peripheral atoms. Therefore the total RF acting on the
solute at the centre of a cavity, which now includes the first
shell of solvent molecules, is the sum of <R=2:, and » <R=:,
where » denotes the contribution of <R®>. to the total RF.
According to Homer and Percival however, »x = (2%/3) for solutes
and solvents of roughly equal volumes;

<R=» (Total) = RFT = <R=2», + (2%/3) <R=>, (2.19)

Their formulation of the two reaction fields is based on a
polarizable static dipole approach, the mean—-sguare RF of which
is obtained by direct static-~to-dynamic mapping (y = 1) so that

RFT becomes;

la u (g2 +2)2 (p,2 - )2 Io Qv (ne2 + 2% (p,2 -
RFT ferg/cs®) = 13.58x10'2 + (21/3) ST il

Va® (2 0,2 ¢ n 22 V.2 9 .2

(2,20)

The functional forms of the refractive index in (2.17) and
(2.20) differ due to the polarizable dipole assumption in the

latter expression.

In their formulation Homer and Percival approximate hY in the
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oscillating moment expreesion, (Al.4), by 2I. This is twice the
London original approximation. Before the test of (2.20) a
comment on the nature of this approximation appears to be an apt

digression.

This is an empirical approximation [150] based on Pitzer[1851]
work. He treats hy, in the London formula, as an adjustable
parameter to match the experimental data for a number of
many-electron atoms and molecules. He finds that hy/1 ranges
from 1.2 for He, to 2.82 for Cla.. Pitzer[152] attributes the
need for hy » I to the possible partial contribution of more
tightly-bound electrons to the London dispersion energy. Here
some of the hY values given by Margenaul711, and the ionization
potentials are reproduced to show the superiority of the London
approximations;

Species H Ne Ar Kr e H: Nz 0z CHa Clz NH

hy (ev) 24,5 25.7 7.8 147 12,2 W45 15.8 5.5 14,1 1.7 17

I fev) 2,5 21,5 15.7 14,0 12.1 15.4 15.6 13.8 13.0 1.5 10,1

It is shown in Chapter 3 that treating polyatomic molecules as
polarizable spheres causes the low calculated dispersion
energies, for the offset of which the 21 = h) approximation is
resorted to. This can be seen from table 3.7 where the
calculated heats of vaporization for polyatomic molecules by
London formula fall short of the experimental values by a

factor of three, making hy = 21 a preferable approximation.

The Homer and Percival total RF is analysed for the available

Jw data in tables 2.4 to 2.9.
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Table 2.3, Physical Constants of the Species

Species Molar Vol. I a n?
cn*/mole (30 °C) Ref. {ev) Ref. (A*) Ref. £20.°C} __ Ref,
1,2,3 CoHa{CHs)s 139.0 158 8.43 158 15.4 137 2,248 158
p-Cela (CHs) 2 125.2 {35 °C) 27 8.44 16 14,27 16 2,210 a
p-CHsCoHaF 11,0 158 8.80 b 1228 - ¢ 2.1606 158
p-CaHaF2 99.8 (35 °C) 163 9.15 4 10:29 e 2,054 a
(CHs) 2C=C(CHs) 2 118.9 158 8.31 158 11.74 a 1,9943 158
CHsC=CCHs 78.3 158 9.94 158 1.4 ¢ 1.9380 158
51 (0CH2CHs) o 224,0 (35 °C) 163 9.25 d 20.40 ¢ 1.8961 160
Si (0CH3) 4 150.3 (35 °€) 163 9.25 4d i | 1,8301 160
Si (CH=CHs) & 191.3 {35 °€) 163 9.81 159 19.2 159 2.0357 158
Si (CHa)a 146.5 159* 9.80 159 11.9 159 1.8264 143
SiCla 117.2 (35 °C) 183 1.6 16 1.4 159 1,990 158
SiF, 62.7 158 16.94 246 3,33 246 1,464 a
€S2 61.4 (35 °C) 143 10.08 16 8,36 16 2.6631 158
CHa 33,6 (mp.) 69 12.99 16 2.53 16 1.710 3
CFa 6.8 158 17.81 246 2,89 24 1.2863 3
CHzCl2 64.9 157 11.35 158,164 6.82 173,174 2,02937 158,176
CHCl5 8l.1 157 11.42 158,164 B.53 174,177 2.0906 158
CCla 98.3 (35 °C) 163 11.44 16 10.24 16 2,114 158
CHsBr 5b.6 (20 °C) 158 10,33 158 3.61 168,169 2.02151 158
CHzBr2 70.3 157 10.48 158,164 B.68 170,171 2.37715 175
CHBr5 88.22 157 10.4 158,164 11.84 170,172 2.5523 158
CBra 112,0(100 °C) 158 10.4 b 15.07 a 2.54144 158
CHaC1Br 66.9 120 °C) 158 10,77 158 7.58 a 2,20166 158
CHC1Br> 8b.4 178 10.5 b 10.88 a 2,3969 158
CClsBr 99.7 179 10,88 b 1.7 a 2.26894 158
CHs1 63.0 157 9.54 158,164 7.59 164,168 2,34555 176
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(Table 2.3 continued)

CHzl2 B1.3 157 9.3 b 12.9 170,471 3.03143 175
CICHs) 4 131.4 159 10.36 159 10.2 159 1,7902 143
C{CH2CHs) 171.9 27 10.36 e 17.5 C 2.041 a
n=CsH; 2 115.2 (20 °C) 158 10,33 158 10.02 a 1.8428 158
Cyclo-CsHio 96.0 (35 °C} 158 10,33 158 9.1 159 1,978 158
CeHe 90.5 (35 °C) 158 9.24 16 10.39 16 2.242 158
CoFa 117.4 (35 °C) 165 9.%7 158 10.1 257 1.8968 166
Cyclo-CaFa 116.0 (0 °C) 158 13.3 f 7.66 ¢ 1.5136 162*
CoHiz 110.0 (35 °C) 158 9.88 16 10,87 16 2,0264 138
n-CoH1a 130.5 {20 °C) 158 10.18 158 12.9 c 1.8908 158
n-C;He 146.5 (20 °C) 1358 9.9 138 14.96 ¢ 1.9255% 158
Ge(CHs)a 138.2 139 9.17 159 12.8 159 1.9088 143
Sn(CHs)a 138.2 159 8.36 159 14.4 159 2,054 143
Sn{CH2CHs) & 199.2 (35 °C) 163 8.3b e 21.7 C 2,1362 a
Pb(CHs) s 135.9 159 8.24 159 15.9 159 2.2644 143
SFa 7.7 158 19.32 246 4,53 26 1,570 a

Pa 68.1 (20 °C) 138 7,04 f 14,7 a 4,5967 158,167
Bra 51.2 (20 °c) 158 10.535 158,69  b.46% a 2.75892 158
Ie 37,0 (solid) 69 12.13 158 4,04 281 2,15094  a

o

(al

d: Estimated from data on similar compounds by Percival (1601,

et See foot-note "d" to table 3.5.

: Estimated from data on similar compounds.

: Estimated from bond polarizabilities given in Ref.[161].

: Estimated from Lorentz-Lorenz Eq., (1.2), using either  or nZ.

f: Estimated from the "inert-atom additivity rule" given in chapter three., See also table 3.7.

: At variance to his temperature-dependent densities Rummens(159] gives 124.4 and 139.5 ca®/mole for the

volumres of CMe, and SiMe. respectively. The correct volume of 131.4 for CMes is used by him in a

subsequent work[271.

t: This value is calculated by Abraham and Wileman{162].
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Table 2,4, Results of comparison between Expt. - , (ppa) at 30 °CL159] and RFTx107'Z erg/ca® (2.20)

——————————————————— DRIL LI o sl i oo s S s s i
Solvent CMeaq SiMea GeMe.a Snie q FhMe 4
CMe ., <217 . 255 . 260 . 280 . 285
RFET . U8B0 Q77 . 080 L 081 . 0864
SiMea . 185 . 228 L2728 . 250 . 258
RFT #0779 0748 - D80 080 « 085
GeMea 215 L 262 0 S . 2RO . 287
RFT . 098 . Q95 . 099 « 100 106
SnMea R D) b .297 - S02
RET 123 .118 124 128 N i
FPhMe o 277 P e 325 « 350 . 358
RFT w175 L 170 176 . 176 . 188
! 927 7% . 944 . P57 W RET
Slope(B) .774 . 844 832 . 845 .834
Intercept. 137 e « 1764 « 1574 » 178
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Table 2,5, Results of comparison between Expt. - (. (ppa) at 35 °C[163) and RFTx10°'2 erg/ca® (2.20)

_ LT R e R S e
Solvent Si(0CH.CHs)a GilOCHs)a CUCHs)s Si(OCH2CHs)« Si(CHs)a SniCHs)a  CH,

Si (0Et) 4 180 .182 A AR 217 270 L
RFT .059 . 067 070 . 059 067 072 186
. Gi(0OMe)s  .155 .198 ) LT S kS . 252 272 310
RFT 047 074 Q7T 0h7 074 079 181
Si(Et)a A62 170 T A K .250 .292 + 305
RFT .082 091 095,082 090 097 234
Sn{Et) 4 172 192 205 .208 + 260 310 316
RFT .108 118 123 L 108 118 7123 219
SniMe) o 185 187 205 205 . 267 310 322
RFT 107 A6 121 07 Jlb A23 263
SiCl 4 188 . 200 w203 w228 .298 .325 . 346
RFT 142 150 A58 12 150 156 . 286
cCl, . 302 . 332 45 349 373 433 472
RFT . 206 214 22200 | 208 215 223 3713
cc 931 862 941 5 773 974 949
Slope(B) . 940 1.026 1.042  1.041 960 1,037 .800
Intercept .085 ,098 091 109 160 186 A10
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Table 2.6, Results of comparison between Expt. -, (ppm) at 35 °C[17,163,180] and RFTx10-'2 erg/ca® (2.20)

Solvent

Solute SnEt, SiEt, SnHes 5iCls €Cl, CC . Slope(B) Intercept
CsHio 178 . 165 .185 .203 . 295

RFT . 15h 124 «150 . 181 .252 .982 1.047 .024

Cala 273 . 240 277 293 43

RFT 169 ¢ 135 162 .192 . 265 .980 1,578 014
CoHz - . 145 175 .187 . 265

RFT 145 A5 141 AT3 . 242 .989 921 .038
CH3C=CCHs .300 277 . 288 .318 AT7

RFT . 165 132 . 160 . 189 261 .968 1,633 .035

(CHs)2C=C(CHs)=  ,232 .218 230 237 340

RFT 130 . 101 127 « 160 227 »950 .983 105
CHsCaHaCHs « 267 « 242 . 268 . 283 A23
RFT 139 109 435 167 235 970 1,453 .068
CHsCsHaCHs 230 .200 227 . 245 340
RFT 139 109 135 . 167 . 235 .988 1.101 075

1,3,5 CaHs(CHy)s 272 «230 278 «295 A7

RFT 131 102 128 « 161 .228 977 1,333 102
1,3,5 CeHs(CHs)s .202 . 183 205 220 292
RFT JA31 102 .128 . 161 .228 « 989 862 . 092
F-CaHa-F . 287 . 253 290 313 492
RFT . 150 119 145 178 246 979 1,910 . 007
5n(CH2CHs) 4 207 = 187 205 282
RFT .121 .093 119 152 218 956 .872 . 087
S1 (CHaCH) o = 153 153 162 . 257
RFT 113 .08b 112 . 146 211 +722 . 864 + 061
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Table 2.7, Results of comparison between Expt. **F - . (ppm) at 35 °C and RFTx10-'2 erg/ca™ (2.20)

- Solute -
Solvent CFs SF 4 SiFa  p-Me-CaMef  p-CaMafz gp,

81 (OEL) 4 3.97 b.36 B.95* 5.74 b.12 6,31
RFT .082 A10 .108 .087 090 077
Si(DEt) s 5.54 5.96 8.31" 5.21 i 5.16
RFT .088 A13 +1H .092 093 .084
Si(Et) 4 6.00 6.35 9.82* 6.98 71.21 7.16
RFT 109 143 140 115 19 104
Sn(Et) 4 b6.26 6,70 9.12* 7.25 1.43 7.21
RFT .138 A77 A73 146 4500 . 433
Sn(Me) 4 6.82 7.05 10.05 7.61 7.74 7.89

RFT 135 170 167 142 145 130

SiCl, 6.85 7.03 10.10 7.83 7.96 8.45
RFT 167 199 197 73 A76 162
CCl, 7.60 7.98 11.15 8.14 8.27 8.81
RFT 235 273 270 243 246 230
cc 939 957 .882 .830 869 859

Slope(B) 12,40 11.21 14.60 17.29 15,15 20,59

Intercept  4.74 4,849 7.20 4,50 5.00 4,58

+: Raynes and Razall63] give 16.32 and 12.36 ppa respectively for SiFs in Si(DEt). and 5i{0Me)
in variance with their rule that the shifts for SiFa can be found fros those of CF4 by
multiplying by 1.5. The corresponding entries here are according to this rule,

+: Rummens[17] mistakenly quotes 14,37 and 15.97 for SiFs in Si(Et)s and Sn(Et)s respectively.
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Table 2.8. Results of comparison between Expt. '7F - 0w (ppm) at 40 °CU162] and RFTx10-'2 erg/ca® (2.20)

SOlVENL sasasescicara et
Solute CCla CaHa n-Crthis  Cothz n-CeHiy n-CsHiz  c-CuFa  CC  SlopefB) Intercept
CFa 7.60 b.61* 6.08 5.94 9.1 a.44 3.04
RFT* 239 274 120 . 168 122 114 051 B30 15.00  3.45
c-CaFa 6.94 = 9.62 3.49 3,34 4.96 2.87
RFT . 230 = A1 . 161 A16 108 . 049 J14 19,90 2,60
CaFs 9.21® E 7.72 7.62° 7.38 6.90 3.73
RFT 234 = 16 164 118 10 049 086 26,10 3.3

a: Ref(1871; b: Cyr et al(188] give 9.09 and 7.40 ppa for CsFs in CCls and CuH.2 respectively,

: The calculated RFTs are for 30 °C. Tabulated voluee of c-CaFs is used, table 2.3.

Table 2.9, Results of comparison between Expt. >'P" - (. (ppm) at 30 "CL1B1] and RFTx10°'% erg/ca® (2.20)

Solvent ---) n-CsHiz  C,Hiz CaHs CCla LSz Po(White phosphorus) CC _ Slope(B) Inter.
(w 2.1 23.5 30.0* 30.5 40.4 89.8
RFT 207 299 450 .388 .994 2.70 337 2891 16.5%

#: Phosphorus vapour below 800 °C consists almost entirely of P4 (Raman spectroscopy[182],
electron diffraction(183], and, recent laser Raman sectroscopy(1841) with tetrahedral
structu}e; P-P;P angie of 60°, and, P-P bond length of 2.21 + .02 A.
White phosphorus (mp = 44.1 °C) in the liquid has the same structure[185,184],
t1 A correction of .3 ppm has been made for the anisotropy effect. No correction is made for the anisotropy

of CSz. Large (. values however, render the corrections immaterial.
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2.4. Buffeting Interaction

From the results of the regression analysis given in these

tables the following inferences can be made.

1-

Homer and Percival RF model is the only pure RF formulation
for (. that apparently works for nearly all the systems
(with the exception of some of *”F systems) with reasonable

correlation coefficients.

The slopes or B values with the overall average of 1.06 + .3
for 'H shows that the calculated screenings are of the

same order as the data. This overall average is in
agreement with the empirical value of 1.06 found by Raynes
et al[?BJ'far hydrocarbons.

The B values are not constant and vary by a factor of

2.46 (.774 to 1.91). Some of this variation is due to the
site of the H atom in the molecule;y compare the ring and CHs=
hydrogens of 1,2,3~CoH=(CH=)=, for example. Correction

for the site of the resonant nucleus, as Rummens[153] has
shown, reduces this variation to some extent. The B value of
(16.9 + 4.4)x107*= cm™/erg for '"F agrees well with the
Kromhout and Linder[138]1 value of B = 18 for CF4...CFa
interaction. There is no theoretical or empirical B value
available for =P, but B = 27x107'= appears reasonable on
the basis of the Jameson et al B, value, because one would
expect (see Chapter §) the value of TP B to fall somewhere

between those of Ne and Ar.

The distinctive feature of RFT is the existence of positive

intercepts for all the systems as it is typified in Fig. 2.3.
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Fig. 2.3 Typical experimental (. for the labelled solutes as

a function of the Homer and Percival RFT, Eq. (2.20).
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These intercepts led Homer and Percival to the re-discovery
of a well-known effect in ligquid and solid state theories,
namely the interaction between the periphefal atoms of the
nearest solvents and the solute. They coined this effect as

a buffeting interaction according to which the expression

for the characterization of (. must be changed to;

0w — B RFT + Intercept, or;

Ow = Ome + (mz for y = 1 (2o21)
This expression reflects the fact that no pure RF model is
capable of adequate formulation of (fw. In fact the solvent
RF, <R=>., and the BI together embody the pairwise

interactions from which any vdW effect arises as Dickinson’'s

interaction term gM requires

It must be emphasised that (2.20) is based on y = 1. The actual
value of y = 1/16 would nullify the RF part of (2.21) so that;
Ow ™ OUsz for vy = 1/16 (2a22)
Now if (2.22) is true, one might ask, were all the good
correlations between the (. data and RFT fortuitous? The answer
is that the significance levels of mostly < 5% rule out the
accidental nature of the correlations. The Homer and Percival
RFT owes its good correlation with data to the second term in
(2.20). This is the predominant term, except for small solutes
such as CHa, and has the volume of the solvent as the cavity

size, which is the solvent cavity idea.

It is shown by Homer and Percival, and also in the next chapter,
that the functional form of (x: is similar to the second

term in (2.20) without f(n.). It is proportional to I{d of
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the solvent atoms, and has the same a~® dependence. Therefore

some sort of (w:—(w linear relationship would be likely that

edplains the observed correlations between RFT and (..

2.5 The Medium Eeffect Contribution of Permanent Dipoles

When dipolar solutes or solvents are used, the screening
effects of their e)xtra field have to be accounted for by

addition of more terms to (2.8).

For polar solvents there is a direct field contribution E= que
to their permanent dipoles so that (2.8) becomes;

Om = 0a + (0w + O + (= {2°25)

FPolar solutes give rise to a static Onsager ‘s RF contribution
R= according to (1.8 and 1.9), therefore (2.23) may be extended
tos

Gm=0'q+0-h+0-w+a.ﬁ+0‘l“l

Water as a dipolar solute with €o = 87.74 and # = 1.84 D, has
the largest static reaction field value of R = 2x10%, the
square of which (to be used in 0r = — B, R®) .04x10*= erg/cm”

is the smallest amongst those of table 2.4 to 2.9.

Other dipolar splutes have even smaller RF values, for example
R= = 4x%10%" and 8x10” for chloroform (fo = 4.81, K = 1.15 D)
and nitrobenzene (o = 34.82, # = 4.03 D) respectively.

These values show the negligible contribution of the dipolar

effect of solutes.

Concerning the dipolar effect of solvents, Raynes et al[27,78]

have shown that this contribution can be written as;
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2 jHo=
Je = (uw

3 a1

In terms of the expression for the oscillating moment of

solvent, this may be written as;

(e

0w R Z/<m=>. (2.24)

This contribution is also generally negligible because;

<m=x, *» K.=. For the two polar solvents considered here;

81 (0OCH:x) 44, and Si (OCHzCH=)a, it amounts to the maximum values
ofj

[ .00 ppm for H
J= (Bi(OMe)as) = (. (1.8)2/335.22 = ,0096 (. =
- 057 ppm for '”F

. 001 ppm for *H
= (Bi(DEt)a) = (. (1.1)2/497.30 = ,0024 (. =

« 014 ppm for '"F

where the values of <m=> are calculated using the I and (I data
from table 2.3, and the permanent dipoles of C(OMe)a and
C(UEt)s are used by analogy. Their dipoles respectively are

.B0154,1551, or, 1.801761 and 1.1 DL154,15461.

The Homer and Percival RFT is further tested on the data
obtained.by Buckingham et alf22] for methane in polar solvents.
Raynes[157] has re-calculated the Buckingham (et al) excess
screenings, (m — 0o = (w + (0w, because the susceptibility

data they used to find (wn were inaccurate. Table 2.10 gives
these values except for Br= and CBra for which the corrected

values of Rummens(27] are given.

We note that Bra is excluded from the analysis given in this

table, because its point is well off the linear trend which
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Table 2.10, Analysis of - (. { 30 °C) of CH, in Polar Solvents

Dipole moment ergca®x103e

Permanent Transient p* RETx10-*2 - (1, (ppm)
Solvent _pEI161] - (e (a2} erge/ca’ [1571
CHsBr 3.28 141.52 023 .405 e li
CHaCl2 2.56 185,78 014 LAL7 407
CHC1 5 1.02 233.79 . 004 A01 A20
CH2C18r 5.58* 195,93 .028 . 506 475
CHsl 2.62 173.78 015 . 600 515
CHa2Br2 2.04 218.32 009 622 +332
CClBr 3.63° 307.08 012 458 . 342
Bra 0 163.67 . 000 1.052 .556'
CHC1Br= 4.62¢ 274.17 017 .570 . 568
CBra .0 376,15 000 .582 P L
CHBr .98 295.53 003 . 648 . 652
CHal2 4,294 287.93 015 1.026 767
ce* 923
Slope(B) . 973
Intercept . 205

a: Calculated (according to the principle of vectorial additivity of

dipole moments{1&1]; p2 = n,2 + pa? + 2 pypa cos 8 ) using

8(C1-C-Br) = 111° and bond-moment of p(C-Cl) = 1.87 and p(C-Br)

b: Calculated using p(CHCl5) = 1,02, p(C-Br) = 1.8, and 8(Br-C-Cl)

1.8 D611,

1119,

c: Calculated using piCHzBrz) = 2,04, piC-Cl) = 1,87, and B(Br-C-C1) = 111°,

d: Calculated using p(C-I) = 1.640141], and 8(I-C-I) = {13°[1581,

b Ref.[17].; +: Correlation coefficient excluding Brz.
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reduces the correlation coefficient to .3. The RFT (2.20) tends
to calculate too large a value when solute and solvent are

small.

The small ratios of static to dynamic dipoles in the last

[

column of the table justify the use of (2.8) instead of (2.23).
The ratio however may be larger for small molecules with large
K values. Water and CH=CN (# = 3.44 D), for example, have
ratios of .075 and .1185 respectively, giving rise to (= values
about one order of magnitude smaller than their corresponding

Jw. It may therefore be concluded that the electrostatic

contribution to the shift of the medium is generally negligible.

2.6 Conclusion

We saw that the excess screening, ((m — 0w , in the absence
of & magnetic anisotropy effect has been labelled as the vdW
screening constant (w. In this sense (w is interlocked with
the concepts of the local and demagnetization fields, from
which the theoretical 2%/3 factor arises for cylindrical NMR

tubes.

Although the exact value of the 2%/3 factor has not been
confirmed by the classical NMR experiments, the recent work of
Homer and Al-DaffaeellB891, on the determination of %o from
chemical shifts, gives a direct and positive verification of
this theoretical value. Therefore, one may limit the source of
uncertainties in the determination of (w(expt.) by the 2%/3 X.

correction to the inaccuracy in %o values only.

The B parameter is another source of uncertainty for the
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calculated (. values. Tables 2.4-2.10 show the variability

of B and -its dependence on the solute-solvent systems.

The values of B obtained by the Hnmef and Percival RR model for
heavy nuclei are more akin to those of static theoretical ones.
For *=%Xe in solid Xe with (w = 11800 ppm cm™/molel 1901, for
example, one finds RFT = .835 (in units of 10'= grg/cm™) which
gives B = 384.3 (in units of 10-*® cm™/erg), in agreement with
the Jameson et al static value of 337.3. The calculated field
appears to be too high. The revised buffeting theory (Chapter 3)
finds a field value of .404 for this system resulting in

B =787, a value close to the Kramhout and Linder dynamic value

of 914.

The important fact that the same revised buffeting model finds
the right heat of vaporization for Xe verifies B = 787 as a
genuine value.The calculated heat of vaporization by the RF
model for y = 1 and h» = 2I, as has been used by RFT here,
exceeds the experimental value by a factor of 146. The same is
true for P B = 27, it is too small because the calculated

fields are too large (see Chapter & for details).

The Homer and Percival RFT, in accounting for the contribution
of the solvent RF to the central molecule, Funs parallel with
the KirkwoodL141] theory of correcting for the fluctuations in
the local dielectric constant. The Kirkwood correction increases
the calculated value of £ for water from 31 by Onsager’'s theory
to 855 (folexpt.) = 87).The Homer and Percival theory increases

the RF by an order of magnitude.

The crux of the (.-RFT analysis is the discovery of the
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buffeting interaction which has been formulated by Homer and
Percival[29] and is the subject of a rigorous investigation in

the next chapter.
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Chapter 3

Pnlyatbmic London Potential

Introduction

The sphere is an admirable shape, upon which, in hard, soft,
and flexible versions, many molecular theories have been based.
The London dispersion potential or the Lenard-Jones potential
for example, are quantitative expressions for the forces of
attraction (repulsion) between polarizable or flexible spheres

assumed to represent molecules.

The macroscopic properties of ligquids are mainly related to the
properties of the molecules themselves, namely their dynamic
behaviour and their arrangement in the ligquid state, and more
fundamentally, to the nature of their constituent atoms. A
potential function inter-relates macroscopic and microscopic
properties of moleculesy the problem of this inter-relation

has remained largely unsolved.

One might therefore legitimately ask:

1- Is there a connection between the inter-relation problem and
the approximation of using spheres to represent molecules,
as the approximation contradicts their atomic nature?

2= Is it possible to develop a practical potential function for
real molecules which accounts for their atomic nature? and

3~ Does the new potential accomplish much more than the

previous potential? In other words, is mastering the new
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method worth the time and energy when there is only a slight

difference in their numerical results?

The main objective of this chapter is to find a liquid state

molecular pair-potential function and answer these questions.

However, in achieving this, we find that the passage from a

sphere-based potential to a molecular—-based one is hindered by

three main problems as follows:

1-

The conventional problem of determining the inter-molecular
distance R in the liguid state. To solve this relevant
problem, a simple method of estimating R from molar volumes
is adopted here, the validity of which is tested against
some available crystalline, van der Waals, and Lenard-Jones

R distances.

The sé:nnd problem arises from the recognition of atoms in
molecules. The constant thermal rotation of molecules in the
liquid state results in the continuous change of the
atom—atom distance of two interacting molecules. An average
atom-atom distance, as a function of a fixed R and the
structure of molecules, is found to account for this fact.
The analytical method used proves to be arduous and
inadequate. Therefore a simple and efficient numerical
method using random numbers for simulating molecular rotation
(MONTE CARLO METHOD) is developed here, which also helps to
overcome the contentious divergence problem of a series
arising from the analytical method. To maintain the
continuity of the main presentation, the two methods are

relegated to Appendices.
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3- As an atom—atom potential deals with atoms in bonds, an

obstinate problem arises as to what the ionization potential
and the polarizability of the bonded atoms are. The latter
problem is solved by the well-known additivity rule for
polarizabilities. For the bonded-atom ionization potential,
however, a new method based on the "admirable" sphere is
developed in which the atom in a bond is approximated to its
corresponding (spherical) inert atom. The validity of this
supposition is analysed for scores of molecules, and the
outcome is a new additivity rule for predi:ting molecul ar
ionization potentials. This rule is made the basis for the
prediction of the ionization potentials of some systems,

Pay Se, and cyclo-CaFe, that are not apparently

available. The inpert-atom approximation rejuvenates the way
we think about dispersion interaction of molecules by
replacing their molecular formula CiHiz=, for example, by
the inert-atom formula NesHe.=. It is also used for
elucidating the structures of some molecules, and reveals
the ionic character of SiFa, S5F., and CFa, and the

paramagnetism of 0Oz and NO.

The circumvention of the afore-mentioned problems, combined
with an elegant method due to Homer and Percival in which a
text~book field Eq. is converted into a dispersion type field
expression, leads to a new molecular or buffeting pair
potential function. This function reduces to the London
potential formula when the two interacting molecules are
sufficiently small or sufficiently far apart. It is in fact a

generalized London dispersion potential.




The passage from the buffeting pair-potential, or the two-body
potential, to the real liguid is obstructed by the lack of
knowledge of the number of nearest neighbours in the liquid
state Z.. This problem is dealt with objectively and leads to
an expression for Z, by which the heat of vaporization of

liguids in terms of the pair-potential is formulated.

An analysis of the heats of vaporization for some systems
reveals that there is only a small difference between the
predictions of the generalized and the London potentials and
the observed values for small molecules like Ha. For large
molecules such as CCla or C(CH=)a, however, the sphere-based
London potential values fall short of the observed values
by a factor of about three, whereas those of the generalized

one are substantially in agreement with the data.

The result of such an analysis for water is interesting and
unorthodox. The sphere-based potential attributes the standard
value of 19% to the dispersion forces whereas the generalized
one gives about 47%. The remainding 53% arises from other

sources —mainly hydrogen bonding.

3.1. Historical Background

3.1.1. Atom—Atom Interactions and Liguid State Theories

The equilibrium properties (density, thermal expansion
coefficient,...) of simple fluids composed of inert atoms, Ar,
Kr and Xe, have been satisfactorily described by a Lenard-Jones

(6-12) central force potential which is a function of the



distance between the centres of the molecules[1911].

However, measurements on the various physical properties of
symmetric polyatomic molecules such as, CH,, CCla, C(CH) o,
which gain spherical symmetry by their rapid rotation, have
shown that their interactions cannot be interpreted in terms of
the (6-12) central potentiall1921 and the acentric distributicn.
of polarizable electrons necessitates a drastic change of this

potential[193].

Experimental evidence found by Hildebrand[194] in 1947 proves
that the intermolecular forces between polyatomic molecules
arise mainly from the interactions of their peripheral atoms.
This means £hat the effective centres for the interaction
potential are now the atoms, well removed from the centres of

the moleculesl(195-1971.

As London(B1] has pointed out "...only the highly compact
molecules can reasonably be treated simply as force centres.
For the long organic molecules it seems desirable to try to
build up the van der Waals’' attraction as a sum of single

actions of parts of the molecules."

The assumption of a (6-12) potential for the interaction of
atoms belonging to different molecules, for example, results in
a potential function which no longer has the spherical
symmetric form of the inert atoms (spheres) potential but
contains supplementary terms depending on the relative

orientations and the geometric structure of the molecules[192].

The structural parameter of the molecule introduced into the
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potential function shows the marked effect of the structures of

molecules on their physical properties.

Although recent theoretical models of properties of polyatomic
molecules, from diatomic to biopolymers, are based on the
atom—atom interaction between molecules[198-2031, its history
at least dates baéh to the work of Millerf[204] in 1936 on

organic molecular crystals.

3.1.2. Atom—-Atom Interactons in NMR

We saw in the two previous chapters how the study of the vdW
~chemical shift led to the recognition of the difference between
corresponding static and dynamic gquantities, and the
demagnetization field for diamagnetic materials. The same study
forced NMR investigators to a recognition of the polyatomic

nature of molecules.

The two models for the characterization of the vdW chemical
shift are the continuum, and the non-continuum models. In the
continuum or the RF treatment, the solute, a polarizable sphere,

interacts with a polarizable continuum of solvent. In the

non-continuum treatment of vdw effect on the other hand, the
polarizable sphere of the solute interacts with the polarizable

solvent spheres of the first shell (in a binary or cage-model

manner) .

The continuum and non-continuum models of a structureless
solute and solvent failed to explain the simple experimental
fact that different protons in a given solute molecule have

different vdW chemical shifts. After the inspection of the
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experimental data the following explanations were offered.

Bothner-By[L134]1 put forward the argument of the "accessibility"

of the solute proton to the field of the solvent molecules, so

that different protons with different accessibilities will show

different solvent effect.

Raynes and Razallé63] remarked on the "degree of exposure" of the

solute protons to the solvent.

Rummens et allB0,159]1 and Rummens[27] talked about a
"site factor" which corrects for the fact that the nuclei
measured are not normally located at the centre of the mass of

the solute molecule.

De Montgolfierf144,145,2058]1 argued that no molecule is a true
peoint molecule and therefore an atom of the solute molecule in
the Onsager cavity would not only experience the RF but also

the fields of the bond dipoles of the solute itself.

One notes that the common theme of these explanations is the

recognition of the polyatomic nature of the solute.

The effect of solute polyatomicity on (., was quantified in

terms of a factor called the "site factor" by Rummens et al and
Rummens and was incorporated into the continuumi2731 and

non—continuumlB80,159]1 models.

The next natural step, the recognition of polyatomicity and

structure for the solvent molecule, was taken by Raynes[206&1].
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‘By arguing that "... as two molecules approach each other, it
becomes less valid to treat them as point polarizable spheres”.
He guantified the interaction between polyatomic solute and
solvent in terms of a "site-site factor". Raynes’ approach
however, because of mathematical and modelling problems, has

been confined to methane-methane interaction only.

This discrimination between the polyatomic solute and point
structureless solvent persisted until recently, when Homer and
Percival[29] made a breakthrough by an elegant modelling of the
polyatomic interaction between solute and solvent. They argue
that there are two distinct mechanisms involved in the
characterization of (., the :nn£inuum dnp, and the

non—-continuum buffeting action of the peripheral solvent atoms

on the solute atoms, (e: (see sec. 2.4).

The effect of solvent-solute structure in Homer and Percival
theory is formulated in terms of a "steric" factor, which is
more akin to a site-site factor. In their theory of (., unlike
the "site factor" school, there is no need for a scale factor

to cure the shortfall of experimental values.

The objective of this chapter is to give a rigorous derivation

of the Homer and Percival buffeting field expression by which,

on the one hand a general form for the London potential is
derived here, and on the other hand, the physical significance
of their steric factor and its relevance to the site and

site-site factors is explored in the next chapter.
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3.2, Buffeting Interaction, General Theory

In accordance with the general method of the formulation of
chemical screening (2.10), and, (2.11) given in the previous
chapter, (BI in (2.22) should be proportional to some non—-zero
mean—square fields of the "solvent atoms" at the site of the

resonant nucleusC291;

Opzx = — B <E=» i 5B

An evaluation of this mean—square field is intended, for

comparison with the Homer and Percivall29] derivation.

3.2.1. A qualitative description of the Buffeting Field, <E=3»

Let us consider a pair of molecules, solute and solvent, with

a particular mutual orientation as depicted in Fig. 3.1.

As a result of the independent rotations —assuming no special
interactions— of the two molecules at the fixed R, the distance

between a givén pair of atoms, ‘i’ and ‘j’, changes with time,

as is shown in Fig. 3.1a and 3.1b.

At instance to, when i and j are a distance r,(to) apart, the
electron cloud of j "buffets" that of the solute atom i as a
result of which the electron cloud of i expands. This expansion
reduces the shielding of the i’'s nucleus by its electrons. At
instance t,, when the distance between the buffeting atom j

and the "buffeted" atom i has increased to r,,(t,), the strength
of the electronic buffeting of j diminishes. The attraction or
expansion of the electronic cloud of 1 is less and therefore

its pucleus is more shielded compared to instant t..
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(a) A short instantaneous, Faslto), (b) A long instantaneous, ry,(t,),
between two interacting atoms i and between two interacting atoms i and
] results in a strong dispersion j results in a weak dispersion
attraction between their electron attraction between their electron
clouds that could mean high exposure” clouds that could mean low "exposure’
or *accessibility” of i to j, or "accessibility® of i to j.

Figs 3.4 Twp mutual orientations of two interacting molecules.
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Other possible interpretations of situation at tas are the
Mless accessibility" of the solute atom to the solvent atom,
"less exposure" of the resonant nucleus to the field of the
solvent atom, and, as Homer and Percival put it, leas steric
accessibility of the solute resonant nucleus to the encounters

by the solvent atom.

The implication of adopting the afore-mentioned guotations of
different authors as possible interpretations of the situations
(a) and (b)) (Fig 3.1) is that "accessibility",

"degree of exposure", and, "steric accessibility" stem from the

relative rotations of the two polyatomic molecules.

Therefore, it is by the formulation of the effect of these
mutual orientations that a steric factor, a site factor, or a
site-site factor will be incoporated into the effective field

CE=> proguced at ‘1° By 'j‘.

Fixing the intermolecular distance at R while molecules rotate
is tantamount to separating the translational and rotational
motions. The separation of different molecular motions is based
on their relative time scales, which has a key role in the

formulation of the effective field, and is discussed below.

In a magnetic field of .2T, for example, the precessional
period of the nuclei is of the order of 10-7 s, because:
w o= Bo g e/(zh”) = J2 AT)Y 4.79n107 (T rs—1)

w = 9,58%10® g~*, or the period is;

T = 2%/w = §.5601077 g

This is a very much larger period compared to that of
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electronic, vibrational, rotational and translational

motions[2121;g

Motion 1 Electronic 1 Vibrational i Rotational : Translational 1 Precessional

Period sz 10-t& R el I {1t : 10-1e ! 10-7

Therefore, one can assume that these motional effects average
out before the NMR signal is picked up. The very narrow liguid
states NMR lines compared to solids, for example, is a
well-known result of the difference in translational and

precessional (and other) time scales.

To see how the difference in the time scales simplifies the

derivation of the effective field, (1.49) is re-written as:

3 myte). o, ite) m, (te)

Fulta) -
Fua®lte) ridita)

where E(te,ty.) is the oscillating field produced at ‘i’ by the
oscillations of the electrons of 'j’, while they are a distant
Fvalte) apart. Note that the time dependence of the oscillating

moment is electronic (te) and that of r., is rotational, and

the field is a function of both.

According to the relative electronic and rotational time scales,
before r,;(te) can change, the electrons in j have performed

10% opscillations, averaging out j‘'s moment to zero, <m(te)> = O.
This in turn results in a zero average field while the distance
between i and j is still r,,(tw). We know from Chapter 2 that
although the mean moment is zero, its non-zero mean-square

value gives rise to a mean—-square field at i while the distance
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is still ry(tw). Putting this differently, at any rotational

instant of time the buffeted atom experiences a finite field by

(1.50) 3

CE=Z(tnm) > = 2 m™2,5 riy ®(te) (3.3)

Note that the electronic time dependence of the field has been

averaged out while the rotational dependence still exists.

Now the effect of the vibrational motion can be considered.
This motion is about 100 times faster than the rotational one,
and therefore at any r,, distance the corresponding
bond-length (or bond—angle) will average out at their observed
equilibrium values, which are used for the calculations of the
centre-of-mass to the atom distances, d's, in Fig. 3.1. This
averaging is in fact equivalent to the rigidity of molecules

(see sec. 3.5.2).

Likewise, while the inter—-molecular distance R, which is a
function of the translational time, is fixed at R(t:), the two
molecules have assumed at least 100 mutual orientations,
averaging out the pairwise distance r,,(tr). The mean—-square
field in (3.3) therefore becomes;

CEZ> = 2 <m=3, (ri®(tn? (3. 4)

where bars denote the space averaging and the field is a
space—time averaged field independent of both electronic and
rotational time (but still dependent on the translational time

to be discussed later).
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From (3.4) one can see that the difference in the time scales
has reduced the problem of finding the effective field to that
of finding the average of the inverse-si)*"-power distance
between i and j. It is by this averaging that the incorporation
of the molecular structure parameters, d's into the formulation

of the effective field is expected.

Reference to Fig. 3.1 shows that in the limit of dy. = d, = 0
where molecules become points, or equally, when R »>» d, and d,

the averaging reduces to R—e;

gif R *» di. and d,

or de »dy =4

In the absence of such conditions, however, there must be a
factor, F, that accounts for the rotation of the two molecules
such thatg (F::37¥§TE = F R™®., Furthermore, from the condition
of (3.5) the functional form of this factor may conceivably be
given asy F = f(d,,d,,R), and the averaging of (3.4) as;

—————
-

SEZ> = 2 <m®>4y R™® F(d,,dsR) (3.6)

S:2:.2. Average Inver-Six-Power Distance

The mathematical derivation of the functional form of F, by the
existing conventional methods, which has proved an arduous task
detracting from a true understanding of the physics of the

problem, is confined to Appendix 3, according to which F is

given by;
F=fFfo + f2 + f4 + fo + fuu + ..., where (B.7)
£ o = 1
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14 (d.° + d;y®) + 100 dy=d, =

RR

30 (d.* + ds®) + 386 (d,%d;= + di:=d ;*)

fdl =

Rd

95 (di2- % di®) + 6860 (deTdy® + da®ds=) + 1122 d,%d.:7

fma

R ] - |

This analytical form of the F factor or the buffeting factor

is &a function of d, namely the bond lengtha.and bond angles
of the molecules, and R only.

Note that F is a dynamic factor which fully determines the

orientational dependence of any interaction involving free

rotations of polyatomic globular molecules.

The concrete meaning of (3.7) is simply that in general;
{ruy~*> » R™® by a factor of F. For two inert atoms that is,

is d, =d, = 0, F =1 and (3.7) reduces to (1.50).

When the two molecules are identical F reduces to the Raynes

site-site factorl{2061, and when either of the molecules is a

sphere (point) F becomes the Rummens and Bernstein(17,801 site

factor;:

i

Faldy, = ds,R) Raynes site-site factor

Fe(di = 0,d,,R) = Rummens and Bernstein site factor

where F, denotes F until term .

Expression (3.6) formulates the effective field of a single
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at ‘{1, If howaver the solvent molecule consists of X, species

of kind j they would all produce the same effective field at i

and by assuming that their fields are additive (see sec. 3.5.4)

the mean—square effective field at i becomes;
\E=ae = 2 Xy SmT2y; R™ F(i, 1)

The term species is used for identical atoms with identical d’'s.
Identical atomz= with different d values, that is similar atoms
at different locations in a molecule like H of CH<OH in CH=

and OH groups, are different species.

For a spolvent molecule with different buffeting atoms the
effective field, which is a pairwise field between one solvent

molecule and the solute. can be written as:
<E=:(Pair) = 2 R-® % K almT ol Fld g ) (3.8)

The total field of Z. solvent molecules surrounding the

solute at a fixed R, assuming the additivity of the fields (see

sec. 3.9.3) becomesg
CEFy(Total) = 2 Z,_ R™® L X, <m®>, F(i,j) (3.9)
4

Inspection of (3.9) shows that it incorporates three adjustable
parameters and one contentious tactor. These are Z,, the number
of nearest neighbours in the liquid, R, the liquid state

inter—-molecul ar distance, <m=»,, the bonded atom moment, and

the buffeting factor F.
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3.3. Adjustable Parameters of the Buffeting Field

In the liquid state (unlike the solid) the exact number of the

nearest neighbours Z, and the nearest neighbours distance R

is not generally known. Therefore their values can be adjusted

to fit the experimental data for which the theory is given.
This for example, is the case with the Debye-Huckle thoery
where the ionic size and the solvation number Z are often

treated as adjustable parameters[207,208].
The purpose of this section is scrutinization of the parameters
of (3.9), by which it is hoped to fix their values or find

simple expressions for them.

3.3.1. Slow-Convergent Buffeting Factor

As successive f terms of the buffeting factor (3.7) show, this

series is a rapidly increasing function of d/R.

RummensL17] warns about the divergence of series like F.
Raynes[206] combines his site-site factor, Fu, with another
spries (see sec. 3.3.3, and Chapter 4) to quicken its rather

s51ow converdence.

More recently the risk of the divergence of similar series is
avoided by using its first three terms and introducing a

"damping factor"[202,209].

Here we consult the vivid language of numbers for the discussion
of the divergence of the buffeting series. This has been made
possible by the [MONTE CARLO] method developed in Appendix 4,

the results of which are compared with those of the analytical
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series (3.7) in table 3.1. The derivation of the analytical
forms of terms beyond fo, for d. # dy # 0, is a formidable
task because of the host of integrals involved: over 200 for

the f» term alone.

Note that the g ratio is defined as;y g = (d, + d,)/2R. Note
also from the table that, first, the F values are finite, for
the range of g values, and therefore F meets the condition of
the convergent series. Second the error of using the analytic F
increases with the increase in g. Third, the analytic series is
not reliable for g » .36 and a best fit to the [MONTE CARLOIJ
F-g curve must be used, which is given in Appendix 4 (Eg. A4.3)

and is valid for 0 < g < .43,

The g ratios depend very much on the values of R (yet to be
defined). Fig. 3.2 shows the graphs of F.,, Feo, and the
numerical F values as a function of q from table 3.1. It also
shows where typical pure systems lie in terms of their g values,
which are calculated using their largest d values, that is the
peripheral atoms’' d values given in table 3.4, and (3.17) for

their R (see sec. 3.3.3).

The F values in table 3.1 however give the amount by which

fru*ﬁ} is larger than R™®. For g = .428, for example, the former
is about 40 times larger than the latter, stressing the fact
that molecules at short inter—-molecular distances cannot be

mistaken as spheres.
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Table 3.1. Comparison between the Numerical and Analvytical F

[MONTE CARLD]* F =mmemmmmmeeeme Analytical F ~-=-m=mmmemmeee

Number of trials o =81 | Error*
g Sade LR 10000 100000 F f2 fa fa fa 9 o
0 0 - 1,000 1,000 1.000  .000 .000 .000 .000 .000 0
| 1 5 1.576 1,563 1,665 400 . 205 .053 006 ,200 -6
2 2 10 1.595  1.566 1.665 .40 205 053 006 .200 -6
2 2 7 2710 2757 3,239 .Bl6 .853 452 AL7 . 286 -17
3 3 10 42 3% .76 .900 1.037  .b0b A72 .300 -15
2 2 b 4,989 4,873 5230 . LI 1580 LIE 408 ,333 -7
3 3 9 0510 4,639 S50 LAk 15800 LM Laef .333 -13
i 3 6 5.346  5.922 .6 1399 LM L2 S .333 3
4 3 10 6,526 6,224 6,305 1.250  1.912 1.5 Lél0 .350 -
2 3 7 6,649 6,793 b.B64 1326 2,065 1737 735 357 -1
3 3 8 ‘8,012 9.597 8.200 f00 28 L3 ey 3 4
2 4 8 10,886  10.207 8,609 1,562 2,492 2,360  1.193 375 15
3 [ 9 11.790 11,844 9760 LS8 2918 2887 LAY 389 17
4 A 10 20,711 15,103 11,009  1.600  3.277 3408 1725 400 27
3 3 7 48.972 38,386 15308 LE36 . &30 54550 290 o e 50

#; Each numerical integration by the [MONTE CARLO] program for 100,000 trials has taken 100 mins. on the
(9826 HEWLETT PACKARD] computer. For 10% trial it takes about 1B hrs -400 hrs on the Sinclair IX Spectrum-
giving the more accurate results of F {4,4,10) = 15,729, F (3,3,8) = 9.108, F (3,3,7) = 35,267,

+: Error = {Fnu 5 qu]a"Fnu x 100

-

Se3.2. Number of Nearest Neighbours in the Liguid State, Z,

Expression (3.9) shows the influence of Z,. on the calculated
values of any equilibrium property based on the mean—-square

field.
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Fig. 3.2 The convergence of the F series. A comparison between

the numerical and analytical buffeting factors as a

function of g = d/R.
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The number of nearest neighbours in the solid state Ly I8
well—known and depends on the packing of molecules. For example
for face-centred-cubic (fcc) or hexagonal close-packing (hep)

structures Z, = 12, and for body-centred-cubic (bcc) Zm = 8L&9].

Organic molecules are the main concern here for the solid state
of which Kitaigorodsky[210]1 gives the value of Z., = 12 as the
common value. sometimes the specific shape of the molecule
provides packing with Zwm = 14 or 103 like Na{CH=z)es (bcc) and

urea 0O0=C(NHsz).. (tetragonal), respectivelyl[210].

It may be noted that a bcec structure for Na(CHz)s has 14
nearest neighbours compared to Zyw = 8 of inorganic compounds,
and also, a tetragonal structure, which is similar to a simple
cubic structure with Z, = &6, shows Z. = 10. It is not therefore
difficult to accept Z,, = 12 for Sn{CaHaCH:=)a, Sn(CaHm)a,
SN({CaHaOCHx) 2 with tetragonal structures, and, Sn(CoHaOC:Hw) 2

with monoclinic structure.

In fact Zn = 12 is explicitly given for Sn(CaHm)a (tet.) by
Kitaigorodsky. We have drawn a parallel between these
structures and those of C(Et)a, Si(Et)a, Sn(Et)a, and Si (0Et)a

in table 3.2 to arrive at their Ze.

The significance of the knowledge of Z., for predicting Z, is
that there is a simple approximate relationship between the two
given by Moelwyn—Hughes[211]1 as:

e M L (1 = HeZHW) (3.10)
where Hy and H. are the heats of fusion and sublimation

respectively.
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The underlying assumption in the derivation of (3.10) is the
eguality of a "pair potential” -which can be related to H, and
H.— in the solid and liquid states. This implies that it is

the Z that changes in transition from the solid to liquid state,
and not R. This apparently is an experimental fact. For water,
for example, R changes from 2.82 A at 4 °C to 2.94 AL212] at

200 *C, at constant density. X-ray diffraction of liquid white
phosphorus Psa, at 48 and 220 °{ shows that the first P...F
nearest neighbours distance hardly changes-frmm 3.9 AL213] over
this temperature range. This is also the case with Hg (see

below) .

Expression (3.10) may be Fe—%nrmulated in terms of H. and H.
ass

L. ¥ Ia L HoFtH, + Hg) 1 (Faiel G )
The two expressions give similar results. Table 3.2 contains

Zw and the corresponding Z,. found from (3.10) and (3.11).

However Z, depends on the temperature and more on the number
density of the molecules in the fluid. The values given in this
table compare rather well with those found by the x-ray method,
for example, Z,. = 11.4 for liquid methanel214] and 7 for

HgL21471;

X—ray diffraction results for liguid Hg"

Temp. “C ~Jb6 18 150
Z. 7:5 6.0 Vi
R A B 0D 3.00 3. 10

*¥1 The data are obtained by different experimentalists
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The Solid and Liquid States Next Nearest Neighbours

Zem Packing H.e Hs Zy.
Species [&69] Kd/molel215] 011D
He 12 hepl216] . 008 . 084 103D
He a8 becclf2171] . 008 . 084 a5
Hz 3.2 hep v Y77 =716 10.0
Hz 12 fcecl2161] « 177 916 10.0
Ne 12 fee « 330 1.80 10.0
Ar 12 o 1,19 6. 50 10.0
kK 12 fee 1.64 9.05 10.0
Xe 12 y il ed o 229 12.6 10.0
Rn 12 fice 2.89 16.7 10,0
Hg 8 bcc e 5 Tn ik
H=0 4 teth= &0 45.05 Sl W
CHa 12 trel2183 . 241 8.18 10.7
CFa 12 monf2191] 0959 12. 5% 11,5
CO. 12 fec 2201 B.53 P A 8.0
CSx 12 fech 4,39 286.75 10,3
SiFa 8 beeb221] 2.0 26.48 S
8F. 8 bccl2161] .01 2R HT" &3
CCla 12 feef222] 2.47 30,00 11.0
CoHio 12 hex[223] 60601581 3J0.9801581 11.8
CaHa 12 ortl[224] Q.94L1581 42.86 a7
CaHiz 1.2 fecl225] 2.6301581  S2.73E 1583 1.0
C{Me) a 12 fccl226] SL2at 15812306 1580 S 1a0S
C(Me) a 12 hex[2271 Bl 2506 105
Si(Me)a 12 tet= 6.89 24,23 g3
Pb(Me) a 12 tet 10,79 32..93 F.0
C(Et) » 12 tet,bcc* = - =
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(Table 3.2 continued)

Si(Et)a 12 tet. - - -

Si (DEt) 4 12 tetg - - -

a: teth (tetrahedral cubic)ji; mon (mnnﬁ:linic); hex (hexagonal);
ort (orthorhombic); tet (tetragonal).

b: By analogy with CO-.

c: By analogy with Si(C.Hm)a with tet. structurel2i(]

d: By analogy with Pb(CsiHs)a with tet. structurel210]

e: By geometric analogy between C(SCHx)a and C(CH=CH=)al216].
Structure of C(SMe)s is tet. according to Ref.[216]1 and
bce according to Ref.[2101].

f: By analogy with C(Et)a, or, Sn{CsHaCH=) a.

g: By analogy with Sn(CoHaOEt) a.

*31 X-ray experimental value is about 4[0212].

+: Heat of sublimation used with (3.10).

In the light of this table one can examine (3.12) which is
usually used in NMR studies for Z._[17,159,2281;

Ly = S e Y e S (3. 12)

This expression finds Z. = 4% for pure liguids and Z, = X
when the solute is considerably smaller than the solvent,
rv »>» ruwll7l. Derivation of (3.12) is based on the surface

areas of the solute and solvent.

It gives small values for small solutes in large solvents, and
large values for large solutes in small solvents: 6 for CHa in

SnEta, and, 19 for SnEta in CS= or 16 in CCla. Such values
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necessitate the collapse of the solvent structure around the

solute.

It is more likely that the small solute will fit into the
abundant cavities or voids of the solvent. Therefore the Z_
value is determined by the structure of the solvent and not the
solute. For large solutes in small solvents on the other hand,
Z,. > 12 (excess close-packing around solute) means that the
large solute with its low surface charge density is capable of
attracting more solvent molecules around itself and restricting
the exchange of the solvent molecules between adjacent solvent
layers. This is also unlikely, as the solvation number for Cl
(r = 1.81 A) with its strong local ionic field is between & and
7021273, whereas (3.12), based on the difference of the sizes of

the solute Cl and the solvent H=0, gives Z.. = 11.

Comparison between the values of ZIw and Z._ in table 3.2 shows
that one can relate the two in a simple practical way as;

CARE S P (3.13)

This gives the fixed value of 11 for organic compounds
considered here. This approximate rule agrees substantially
with the x-ray data as was mentioned for water, mercury, and
methane, and is observed for nitrogen (Z,. = 10.Q), oxygen

(Z,_ = 10.3) bromine (Z._ = 12)[214] and white phosphorus

(Z,. = 7); see Chapter 5. Evidently the only exception to this

rule is liquid chlorine (I, = 6, Zm = 12); see Chapter 5.

It should be noted that the experimental values for Z. are the

areas under the pair-correlation function g(r) data curves
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(to be exact, the curves of nir) = 4%r=0 g{(r)) which could not
' be obtained with great precision. For Pa, for example, Z_ is

somewhere between six and eight.

J3.3.3. Nearest Neighbours Distance in _the Liguid State

Another adjustable parameter of (3.9) is the ligquid state
intermolecular distance R. The choice of R, because of its
inverse-six power dependence, affects the results of (3.9)

considerably. The scrutiny of this subject is therefore

worthwhile.

The process of the separation of molecular motions was
continued to (3.7) or (3.9), where R was denoted without time
dependence. The time dependence of R is however necessary as
the translational motion is fast enough compared to the
precessional one for R to be averaged out before the MNR signal
is picked up. Therefore (3.7) or (3.9) should have been written

as;
CER(tv) > = 2 Re®({ty) <m=ry Fliyi)
Now there remains one further averaging to be performed on the

mean-square field. This is usually done by the introduction of

the Boltzmann factor;

CE=y = f CER(Er) > enpi=U/kTY d7 (3.14)
where the second bar on <E®» stands for averaging over tr,

the translational time.

This process has been used by Raynes et all781 in their binary
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collision gas model. Tackling this integral entails the

knowl edge of U, the intermolecular potential function, for
which the LJ (6-12) function is used. The solution of (3.14) is
given in terms of yet another polynomial H., as a function of

KT and the emperical LJ parameter € (6 = Unin).

The problems of using such an averaging approach are numerous.
First, the troublesome LJ parameters ro and &, which are
obtained by fitting the LJ potential to other experimental data,
viscosity for example. Second, incorporating the uncertainties
of these parameters into the buffeting field expression. Third,
the loss of the simplicity of <E=»* by incorporation of Ha

series, not to mention the inconsistency of using LJ central

potential function which treats polyatomic molecules as spheres
(see sec.3.1.1). This is in fact the inconsistancy in the
Raynes site-site factor theory. He takes advantage of the
resulting H, series to accelerate the covergence of his

site—-site factor by a factor of about two (see Chapter 4).

Alternatively one can use equations comprising the radial
distribution or pair-correlation function of the solute-solvent
system g(R,.=), with an instantaneous intermolecular distance

of R:L:_-EEZ‘?];

CR™% = 4% [ Riz*"™""= g{(R.=) dRai=

The pair-correlation function may be determined for some simple
ligquids, with serious technical problems (pp B346-854 Ref. 212),
from x-ray or thermal neutron diffraction studiesl{230]. Kielich,

by resorting to the Kirkwood[231] radial distribution function
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for rigid spheres of diameter d and volume v =%d™/& for
which[232]3;
0O for Ri= < d

g(R;:) =
i1 for Rz > d

derives;
4Kp0
{R—M)» = RZGN) = BE
N5
For n = 6 and in terms of molar volumes V this may be written

as; <R7e> = 4%= (L/V)=/18 = 2.2 (L/V)=. This average
inverse-six—power distance, which may be directly used, gives
values about 12 times larger than a realistic intermolecular
distance. For example, (3.1&), written as a function of R =,
gives .182 (L/V)*. Besides, this approach is not suitable for
mixtures., Kielich[233] also uses a radial distribution function
with tha LJ potential to arrive at an average R™® very similar

to that of Raynes et al.

Instead, we resort to the method of obtaining the average R
from molar volumes. This method has been used, by Onsager for
his cavity size, and with minor changes by Bernstein and

Raynes{791, and Rummens et all159].

The effective molecular radius can be deduced from the average
volume available per molecule, Vn, = (M/Q0)L, by the following
expressions;

a: The available volume per moleculel2281:

r= = 238 Vnm (8. 15)

b: The available volume per molecule with a solid like closed

packing structure, with the incorporation of a packing factor
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into (3.189)}
r s = 297 V. [2281

r= = .293 Vn £17,1591 - (3.14)

c: The available volume per molecules in a ligquid with a random
distribution of molecules. A probabilistic approach first
used by Hertsl[2341 in 1909 and later by Jaffe (Chapter 2) to
improve the Onsager’'s cavity size (3.15). The re%ult of thim
method in terms of VYn may be written asj

rFs = .17 Vi (Z.17)

Although based on random packing of particles (3.17) is
equivalent to the effective radius of an orderly fce packing

with r= = 1767 VnL691].

Which is the most suitable expression for the effective radius

and the intermolecular distance given by R = ro + r, ?

Table 3.3 serves to answer this query by giving the values of R
according to (3.15-3.17) using the quoted molar volumes, the
vdW distances R., the empirical LJ distances R.,, and the

experimental solid state distances Ruw.

The vdW distances are found using the vdW radii, r [235];

Atom H F 0 Cl S Hal f-thickness
of aromatic ring

r. A 115" 1.35 1.4 1.8 1.85 17

By This is the in-between value of 1.10235) and 1.2[158]).

and the d values. For CHa for example, using the C-H bond

length of 1.094 A, one finds R. = 2 (1.15 + 1.0%4) = 4,488 A.
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We note that a simple trust in R, = 2 (r_ + d) also fails

for non—globular molecules. For benzene, for example, one finds,
R, = 2 (1.15 + 2.46) = 7.22 A, whereas the solid state

gtructural studies show that aromatics tend to arrange
themselves so that the hydrogens of one molecule are near the
X-electron of ita neighbouring moleculel236]1. Based on this

fact one finds R, = (1.15 + 2.46 + 1.7) = 5.31 A. In the liqguid
state where benzene molecules rotate freely one would expect R
to be in between the two R. valuesy R = (7.22 + 5.31)/2 = 6.26 N.
This is in agreement with Rio, = 6.3, and R = 6.18 A we have

found using its heat of vaporization (see Chapter 95).

The same argument goes for C5. in arrangements (a) and (b):

(a) (i B = A S o = Re = 2 (1.85 % 1,.5858) = 4.81 A
5
(b) e e Re = 2 (1.85 % 1,588 + 1,7 = 512748

S

where r_ = 1.7, by analogy with benzene, is used for the half-
thickness of the X-electron of C=8 bond. The mean of the two
extremes, R, = 5.96 A, is in agreement with 5.86 as found in

Chapter 5 from its heat of vaporization.

For water arrangements (a) and (b) give the R, entries of the

tableg

’,}1 B .958
Hm——U{..U—"ﬁH '“UH——H...Q~"-H
"I'* \\H

R, = 2 r.{0) = 2.8 S R G I TR B R > S e b R S o]

(a) (b)
The value of 2.8 A, agrees with microwave spectroscopy result

ot 2.98 A E2571.
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JTable 3.3. Comparison between Nearest Neighbour Distances

YV ca¥/nole dA Re* R Rus® goe RiCalL )l ===

Species Solid or at 30 C (Expt.) A A A (3.17)  (3.15) (4.18)
[1591 (1611
He 19.43,0240,2121 0 2.971242] 2.4412001  2,8731212,220) 3.53 3.9 A.25
He . 7412171 0 37112171 = = 3.82 427 A0
Ne 14.0,12401 0 3.161217,243) 3,200240) 3.70 L6 LM L8l
Ar 24.12,1240] 0 3.761217,244] 3.8412401 3.89 .79 424 456
Kr 2?.90.[2!6] 0 3.990217,245) 3.9012401 4,05 .98 44 AN
le 36.76a[2401 0 4.33[217,245) 4,36[240) 4,55 4.36  4.BB  5.25
Rn 50.45.1240) 0 r = = i 4.85 5.42 5.81
Ha 23.314169] 37301581 3.78[2401¢ 3.05 3.27 .75 419 A0
H20 19.32.[69]. 9580158 2.82[212] 2.80,3.51 2.97 3.5 391 AQ]
CHa 30.94,169] 1.090158] 4.490212),4.171218] 4.49 4.280159]1 .12~ A 4.96
SiFa 48.004[247) 1.560224] 4.680221] 5.82 3.56(245) §.77 5.8 6.28
CFa 66.800158] 1.331241) - 5.36 5.270241,24b] 5.32 5.9 6
SFa 77.70E158] 1.5702M1 - 5.04 6.631241,245) 5.6 6,26 674
(52 6111581 1.5602351 - 5.11,6.82 4,98 S.16 578 622
CCla B87.904[69] 1.760158) 5.91222) 1.13 6.481159] 5.8 452 7.02
Celly 77.28,16%] 2.46 = 3.31,7.22  6.320159] 5.5 6.2 6.73
Cellya 109.41£159] 2.2« 6.2(225) 6.43 6.890159] 6,21 1.02 7.56
SiCla 116.50159] 2.170158) - 7.94 7.0911591 6,40 7.6 1.1
CeFs 117.41165] 21! $ 3.75,8.1 - 6.2 1.19 1.
CiMels 131.42[159] 2,159 6.2112261 6.53 = 6,67 T.46 8,03
Si(Nelq 146, 521591 2.50 = 1.23 6.780159) 692 1.4 8.33
GetMely 138.1901591 2.53 = .23 6.700159) 6.78 1.5 6.7
Snile),y 139. 5201591 2.73 - 71.69 6.841159] 6.80 7.1 B8.20
Pb(He) s 135.9301591 2.83 - 7.89 6.961159] 674 1.4 8.12
CIEL)s 171.91271 3¢ = 8.3 = 7.30  B.16 8.78
SitEt), 190.400159] 3.2 = 8.73 8.20159] 7.5 8.4 9.09
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Table 3.3 {contipued)

SnfEt) o 198. 11271 3.5¢ = 9.3 = 7.65 _ B.56 9.2l

ar Except for Hz0 and 4.49 A for CHe the quoted R, values are calculated using the cell length, a, data from
quoted Refs. and; Ralfcc) = a 2'/2/2; Rufbcc) = a 3'/2/2; Refcubic) = a/2'/2 from Ref.[69,pp 536-5401.

bt Ria = rasn = 2'/%ro = 1.122 rollbl]. The value of Ry = 1.09 ro is also suggested[2501,

¢t Re = 3.77 A is for a bce He at 0 °C with the quoted voluse.

ds Theoretical values of 3.690248] and 3.49 AL249] froa differential scattering are also available.

e: This is the mean of d = 2.49 (equitorial) and d = 1.93 (axial} hydrogens{159].

t Calculated as explained in Appendix 5.
g: The d values of X{Medy and X(Et)4 systems belong to the peripheral hydrogens.The d values of other atoms

in these molecules cam be found in Appendix 5.

The Ry value of CCla (and SiCla) is not in agreement with the
solid state value, possibly because of special arrangements of
this molecule in the solid state, or over—estimation of r.
value for chlorine. Zimmermann gives parallel (R = 4.7) and
anti-parallel (R = 6.06) arrangements for the liquid state of
CCla after failing to describe its experimental
pair—distribution functionl(2381, the mean of which, 5.4 A (also
given in Ref.[239] as Re.) is considerably smaller than the

solid state experimental value of 5.9 A.

As was mentioned previously the liquid state inter-molecular
distances are similar to the corresponding solid state ones and
the results of table 3.3 show that (3.17) in general, gives a
more realistic estimate of these distances from molar volumes.
Therefore on this basis and also on the basis of the further
evidence found in Chapter S5, where (3.9) is used for the

prediction of (. and heats of vaporization, we choose (3.17).
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It i®s worth noting that the Onsager’'s form (3.15), which has
often been criticised for being a bad approximation, gives

better estimates compared to (3.16) with a packing factor.

3.3.4. Mean—-Square Moment of Bonded-Atom

The corneratone of the buffeting field expression (3.9) is the
bonded—atom moment, <m2>,, without the knowledge of which
(3.9) reduces, at its best, to a semi-empirical expression.
Defining the properties of atoms in bond has proved to be the
main obstacle of developing formulations for polyatomic

molecules.

Raynesl[206]1 in the paper on the interacting CHas molecules
treated bonded atoms as isolated ones whilst realizing that
"...this is a severe approximation since it is well known that
the electronic environments of nuclei that are chemically bound

are substantially different from those of isolated atoms."

Let us use atomic polarizability and ionization potentials in
the expression for the moment, <m=> = 3 IQ/2 (Eq. Al1.4), and
contrast the values so found for molecules with those of the
molecul ar moment, where molecular I and (I are used.

For atomic (isolated) H and C we have;

Species H (5

a A=L2511 . bb67 1.76
I eVI158] 13.6 11:25
<m=>n103e 21.77 47 .52

Hereafter all moments are given in units of 107%® erg ca® , (esu-ca)? or D2
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Treating hydrogen and carbon of methane, for example, as
isolated atoms necessitates the use of these atomic moments in
place of <m=>, in (3.9), and add to give;

<M=3>(CHa) = 4 <M=3p + <M3g = 134.6

The molecular moment using molecular I and (¢ from table 3.4
equals, <m?>(mpl.CHa) = 79.6. The difference of about &9%
signifies the fact that assignment of atomic moments to the

bonded atoms conflicts with the molecular property.

For H= the molecular moment of 30 shows a discrepancy of 45%

compared with the moment of 43.5 for 2 H atoms.

O0f course, the argument presumes the intuitive validity of some
kind of additivity rule, according to which the sum of the

bonded—atom moments balances with the molecular one.

In the search for such an additivity rule one can begin with
the fact that bonded atoms in molecules are electronically

saturated, that is, they obtain the inert atom configuration,
and therefore their electronic environment may be tentatively

apbroximated with that of the corresponding inert atom.

This is consistent with the Kitaigorodsky[210]1 statement that
"...precision x-ray structure studies show that excellent
agreement with experiment can be secured by calculations using
isotropic atomic factors of s—ray scattering, and that the

pattern of electronic density can be represented with

experimental accuracy, as the superposition of spherically

symmetrical atoms", see Fig. 3.3Fa.
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(a)

(a) Cross-section of the contours of a
constant electron-probability
density in C.Hy {carbons) as
determined by x-ray diffraction data

(from Ref.208).

(c) The pi-electron system in CS:,

(e2)

| 24 W

{e) The chlorine anion CI~.

(h)

(b) The inert-atom approximation of the

electron density pattern of CuHs.

KOR

Neﬂll’_ L=

(d) The inert-atom model of (52, Each
pi-electron is equivalent to 1/4 of

the corresponding inert atom.

LD

er.zs @

(f) The inert atom model of Cl-,

Fig. 3.3 Species and their inert atom counterpart.



The supposition of the correspondence of the molecular
electronic environment, or density pattern, with that of inert
atoms is tantamont to approximating a molecule with a

collection of inert atoms, as far as <m=> is concerned. This

supposition is more graphically shown in Fig. 3.3b for benzene,

and gquantitatively may be put as:
‘:mz}g e E ‘im=>'ln-rt (3- 18)

where the summation is over all the corresponding inert atoms.
The validity of the formulation of the inert—atom approximation
(3.18) can be readily checked by using the values of (M3’ qere

given in table 3.4.

For CHa, for example, by corresponding H to He and C to Ne, one

finds from (3.18);

M= = 4 <MP e + <M= ine = 4x12.111 + 20.45 = 6B8.89

in better agreement with the molecular value of 79.46. The error
has reduced from 69%Z, for isolated—-atom additivity, to -13%4, for
inert—atom additivity. This is also the case for Hz where (3.18)
gives; n%im = 2 MTine = 24.22, compared to the molecular
value of 30,03, It is interesting to note that the inert-atom
value compares well with the guantum mechanical value of

<m=3> = 3 a,®e®/z = 13.5, where z = 1.2 is the 'hydrogenic atomic

charge’ for bonded-H compared to z = 1 for isolated H atom{29].

Table 3.5 provides more evidence for the validity of (3.18) by
comparing its results with the molecular (experimental) moments,

(3/2) I(Expt.)Q(Expt.).



Table 3.4. Inert—-Atom Moments

Atom I{eV) A{A=) V| oy (g P
[L252] L2511 erq _cm3y 1035

He 24.587 . 204956 12.111

Ne 21.564 . 3946 20. 450

Ar 15.759 1.64 62.112

Kir 135999 2.48 B8X.436

e 12. 130 4.04 117.773

Rn 10.748 S.44* 140.518

-
-

: (%) lerg ca®), (esu-ca)? or D2 = (3/2) Ilevixl1.6022x10°*2 (erg/ev) { (ca®).

-

t Estimated from a graph given by Gerrard(2331.

Let us focus our attention on the first error column. What does
not escape observation is the presence of large error of
molecules with double bonds, such as, Na, 02, CO, NOm, CO=, and

CS=, the X—electron of which is depicted in Fig. 3.3c.

Accounting for the existence of X-electron system, which

affects the electron density pattern of a molecule, appears as

a natural step in the refinement of (3.18).

The moment of a KX-electron pair appears to be half of the

moment of the corresponding inert atom, so that (3.18) becomes;

M2 = L <M2rsnere + (1/72) L <02 hare 3.19)

Where the summatioms are now over the (—-skeleton and the

X—electron.
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Table 3.5. Comparison between Molecular and Estimated Moments

2

10

i1

12

13

14

15

16

17

14

19

20

21

2

23

24

25

26

---------- Holecular parameters ---------- (%)  Error* (a)e Error
nusber Molecule 4 A3(16] I eviis} (a?) (3.18) 1 §3:19 %
Ha .81 15.43 30.04 24.22 ot 4 E =
Nz 1.74 15.58 65.22 40.90 -37 61.35 -5
02 1.600254] 12.07 46.37 40.90 -10 51.12 10*
Clz 4.5¢ 11.48 127.19% 124.22 -2 a o
co i.ﬁ[b?] 14.010158,255]  64.76 40.90 -37 8112 =
NO 2.991251] 9.250166,255] bb.56 40.90 -38 3l.12 =25*
HCI 2.5b60491 12. 7401581 78.41 .22 3 - -
HBr 3.49069] 11.6201581 97.52 95.55 = e =
oz 2,563 13.79 B7.1b6 61.35 =30 B1.8 -b
€S2 8.56 10.08 207.51 144,67 =30 206.78 0
SHa 3. 64149] 10.420691] 91.25 86.33 -5 = =
NHs 2. 14169) 10, 150255] 52.32 56.78 8 = =
CHs 2,55 12,99 79.6 68.89 -13 = =
CFa 2.890246) 17.8102456,256]1  123.55 102.23 -17 b 3
SiFa 3.331246] 16.940246] 135.36 143.91 b b =}
SFs 4.53024b] 19.3202461 210,10 184,81  -12 b 0
CCla 10.24 11.47 282,35 268.90 -5 = =
SiCls 11. 411591 1.6 317.31 310.56 -2 = =
TiCla 14,99 11.70 421.49 331.88  -21* - |
CaHs 4.39 11,65 122.88 1356 -7 " =
Callyz 10.87 9.88 258.1 258.03 L) = <
Cells 10.39 9.24 230.85 195,37  -IS 226,04 -2
CaFs 10. 102571 9.970158,258] 241,67 245.40 1 276.07 14°
p-Cellio 14.27 B.44 289.40 284,71 -2 315.38 g
tiﬂelg 10.2001591 10, 3601591 253.98 247.58 -2 = =
Si (el 11.900159] 9.8001591 280.27 289.24 3 = s
Geilels 12.80159] 9.170159] 282.09 30.57 10 - -

27
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Table 3.5 {contipued)

28 Sn(Me) 14.4[159] 8.36159] 344,90 .90 19 - .
i) PbiMe)s 15.90159) 8.24(159} 314.87 367.65 17 - .-
30 CIEL)s 17.5¢ 10, 36¢ 435.78 26,21 -2 - -
3l Si (Et)s 19.20159) 9.810159] 452.16 $7.93 3 - -
2 SniEt)s 2.7= 8,369 436,17 523.60 20 - -
3 CHsC=CCHs 7.45¢ 9.94[158) 176.91 154,47 -13 174,92 1

at Error = [<a?)(Est.}) - {w?}{a0l.)]/<a%}{nol.)x100.

b: See the text for the true moments.

cs Calculated using bond polarizabilities given in Ref.[1b1].

d1 Rummens{159] has estimated I of Si(Et)s, by extrapolation from data of related compounds, to be equal
to the [ of Si(Mels, We have assused this to be true for C(Ne)4-C{Et)s and Sn(Me) 4-Sn(Et), pairs.

#; See the text for the real errors.

For CS5=, for example, the inert—-atom counterpart formula would
be NeAr= from (3.18), that is, just the (-skeleton, and NefArs
according to (3.19), see Fig. 3.3d. Therefore, using the data

from table 3.5, one finds;

Table 3.5. Mole. CS= <m=> = 207.5
EQ. (3.18)cncecccnces <M=r = <m2dnulfor C) +2<m=>a~(for 8)
<m=> = 144,67 Error -30%4
EQe. (3:1F) 2 s sininnansse smer = 14447 ® 2 [(1/2) <m*>a-1 (for 2%

“m=> = 206.78 Error Q%L

The corrected values according to (3.19) and their errors are
given in the last two columns of the table. Before

consideration of the other observations of the first error
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column a comment on the meaning and implication of (3.18) and

(3.19) is essential.

The freguent use of words "atom" and "inert atom"” may give the
impression that these e)npressions deal with atoms. On the
contrary there is no implication of atoms in their concrete
sense, but rather, atoms as electronic charges with different
abilities to interact. Some lend themselves to interactions
more easily than others. These are electrons with large
"stretchability" reflected by their large I(l or <m2)» values.
For example, one electron of argon is five times more active

than one electron of heliumi; <2 a-/$M2 P e = 62/12 A 2

When Ne».sHes is given for CaHs, where the number of Ne exceeds
that of C, the existence of some kind of extra electronic

reactivity is acknowledged.

It is not difficult therefore to extend the idea to ions, and
instead of Cl™ write 1.25Ar, as the greater reactivity of this
species with one extra electron than Cl is reflected by 1/4 of

an argon moment; Fig 3.3e and f.

In fact the relationship between the inert—atom moments and the
Yonemoto @ values given in the next chapter verifies this

extension and the value of 1/4 for a single electron.

Discussion of all the informative aspects of the content of this

table necessitates a long digression.

Let us begin with molecules containing a benzene ring. It is
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sometimes argued that molecules with a conjugated X—-electron
system show a particularly strong dispersion attraction due to
the large in-plane polarizability nf-thE'1-electron[259,260].
An error of —154 (table 3.5) for benzene shows that K-electron
system contributes to the buffeting or dispersion interaction
by about 154, and the B85%Z is attributable to the contribution
of the (-skeleton. This is in agreement with the Muler and
Huiszoonf2611 finding that for none of the ﬁblarizability
components does the K-electron contribution really dominate
over the cnntributinn from the (-skeleton while the K-electron

contribution is far from negligible.

For a substituted benzene ring (3.18), with no X-correction,
gives less error compared to (3.19), meaning that the X-electron
mobility or polarizability somehow vanishes. For CsF. this can
be understood, as the X electrons are drawn to the fluorine
atoms. For this reason (3.18) is used in calculations involving

substituted rings (see table 3.7).

The next aspect to consider is the increase in the positive
erraor of XMes and XEta systems with the increase in the

metallic character of the central atom.

The fact that the errors for SnMea—-SnEta pair, and SiMes-SiEta
pair are the same reinforces the presumption that the error may

arise from the use of a full <M2>; wwre fOr the central atom.

This has proved to be the case for mercury where the
corresponding inert—-atom moment, <M®)m. = 140.5, exceeds the

atomic moment of mercury, <m3>ng = 127.66, by 10%.
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However, these errors, because of the low-buffeting site of the
central atom, namely d = 0, have negligible effect on the

eastimation of properties by the buffeting field expression.

Note that the large negative error of —-21% for TiCla, with a
transition central metal distant from inert atoms in the
periodic table, conflicts with the afore-mentioned suggestion
according to which the estimated moment should exceed the
molecular one. The negative error means that the central atom
contributes more than its apparent (—-skeleton. Addition of
another Kr’'s moment for Ti, which is equivalent to the
contribution of 4 electrons, givesj

M2 > = 331.88 + 83.436 = 415.31

with an error nf 1% which is given in the table.

From the evidence of this section we come to the conclusion
that the adjustable bonded—-atom moment <m=3>, in (3.9) may, with
reasonable accuracy, be fixed at the known corresponding inert

atom moment, given in table 3.4.

However, the unexplained large errors of CFs and SF.,, or, CO,
NO, and 0Oz even after X-correction cast doubt on this
conclusion to some extent. The investigation into these
anomalies presented in the next two subsections is motivated by

confidence in the validity of inert atom additivity expressions.

Pe3.4.1. Pauling " 3-Electron Bond"

The inert—-atom additivity expressions (3.18) and (3.19) appear

to be sensitive to the pecularities of the chemical bonds. For
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example, the moments of CO and NO even after X-correction fall
short of the molecular ones by about -22%4. This shortfall
indicates that there is some unaccounted electron density in

the bondings of these molecules.

In 1931, Paulingl[262] introduced the concept of

"S—electron bnndJ, A...B, to help describe the electronic
structures of a number of molecules such as, NO, NO=, and Oz,
the ground states of which are paramagnetic at room temperature.

Harcourt[263] displys the paramagnetic NO and Oz as;

1 N==0: 10202
(a) (b)

The value of 51.12 in the table was found for N=0j3 the
paramagnetic structure (a) demands an extra .79 <@ e for
the three electronsg

(M2>e (N===0) = 51.12 + .75 <M3’pne = &6.45

which is almost exactly the molecular moment of 66.56 found

from the experimental I and (.

For oxygen, Harcourt—-Pauling representation increases the
already positive error of 104 found on the basis of the
conventional 0=0 structure. Instead, we suggest the resonance

structures;

IT-
(mH
o
|
|
1
|
|
I
y
O

=Pt

(c)
according to which the exact molecular moment of 46.37 may be
calculated;

M2 (20...0:) = 2 <M >ne + (1/74) <M= ne = 46.01
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It must be noted that the Harcourt-Pauling form (b) is
challenged here by the form (c). A structure of type (b)
necessitates a much larger polarizability for 0Oz than the
observed value of 1.6 A¥. This can be seen by the comparison
between N=0 and ~C=0* where the former has a polarizability

1.5 times larger than the latter.

Spectroscopy studies provide a more direct proof of the
superiority of (c) to (b). A comparison of the force constants
for Nz (triply bonded), CO (triply bonded, see (d) below), and

0= shows that a structure of type (b)g lﬂééﬂ:, is unlikelys;

Species Nz | co 0=

Force constant N/mL[2&41] 2294 1902 1177

For CO, a diamagnetic at room temperature, a structure of type
(d) is suggested on the ground of its permanent dipole moment,

the direction of which corresponds to (+) on oxygenli263];

i ——18

(d)

This structure also explains the formation of complexes with
transition metals such as Ni(CO)a. If structure (d) as
compared with conventional C=0, for which 51.12 was found, is

used, one finds;

NPl (TiC==0:") = 51.12 + (1/2) <n®ine = 61.34

short of the molecular value of 64.746 by 5% compared with 217%

of the conventional structure.
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3.3.4.2. Fluorine Compounds and "4—-Electron J-Centre bond"

The large negative errors in estimated moments of CFa and SFs
together with the confidence in the reliability of (3.18) for
small molecules forced us to verify the accuracy of the 1 and

d values given by Mohanty and Bernsteinl(246].

Evidently the fluorine derivatives of hydrocarbons have smaller

d than the corresponding hydrocarbons;

Species CHe  (CHaFz, CHF3) CaHe (CzFa) CaHa (CaFa)

ow 2.55 (2.4802011, 2.4012011) 4.471254) (3.9802011) 10.4 (10.1)

Therefore the value of ( = 2.89 for CFa is likely to be in
error. More recent measurements{201]1 give 2.31 as compared to

2.89C2411, and 3.67 ATL265].

By using this new value one finds;
<mZ>(Mol. CFa) = 98.7,

to be compared with,

MZre = 5 <MPine = 102,25,

with 3% error as given in the last column.

For 8Fs, on the other hand, the ionization potential of 19.32
given in the fable appears to be too large as this has the
highest polarizability in the series CFa, S5iFa, and SF4.
Siegbahn[266] gives a more accurate value of 16 &V, therefore;
“m=>(Mol. SFs) = 174, and:

CM2rm = {Mm=ta-(for 8) + &6 <M rnm{for F) = 184.81

with &% error, which equals the error of SiFa.
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The ionic or the "4-electron 3-centre" bonding of these
compounds with structures of type (a), (b)), and (c) is
discussed in detail in Chapter 5, according to which the
electronic charge from the central atom is shifted to the

peripheral high-buffeting ones;

FaC*F~ F=5i*F~ FaS*F~

(a) (b) k)

This fact affects the estimated moments of SiFa and SFa, as the
corresponding inert atoms of the central and the peripheral
atoms are different. It was mentioned that a single non-(
electron is eéuivalent to +(1/4) <m¥®>; ety Where negative

is used for cations (lacking electron) and positive for anions

(evitra electron). Therefore one finds;

MR i>={F=sSi*F) = .75 $<m=2ac(8i*) + 3 <@ inw(F) + 1.25 <mPne(F)
Cm=re = 1335.49, <m=>(Mol.) = 135.36, Error = —-1%
and likewise for SFs&;

M2 = 174.39, <m2:x(Mol.) = 174.00 "Error = Q%

Table 3.6 gives the estimated and the molecular moments of some

more fluorine compounds (asuumed to be covalent).

3.3.4.3. Inert—-Atom Additivity Rule

From the evidence of the last two sections one may express

an additivity rule (omitting the (3/2) factor of <m®)> ) as;

I d(Mol.) = L IQ (inert) + (1/4) E IQ (inert) (3.20)

where the summations are over (- and non—-(-skeleton.
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[able 3.6. Analysis of the moments of Halofluorocarbons

Index Molecule Holecular Paramseters(201] (%3, Error
puaber [ ey qaa (s} {3.18) 1
3 CFs(l 13.0 4.31 134.47 143.91 7
35 CFeClz 12.3 b.56 193.65 185.57 -4
36 CFCl 11.9 8.42 240.47 2228
37 CFabr2 11.2 8.6 231.17 207.72 -1
38 CFBrs 12 11.90 342.72 291.2 -15
39 CF2HC1 12,6 4.6 139.10 138.3b 0
L CFHCl2 12 6.5 187.20 180.02 -4
41 CFH2CL 11.7 4.48 124,95 | 132.8 b
42 CHaClz 1.4 6.51 178.11 170.46 -4
3 (2FsCl 13 b.46 201.55 205.26 2
4 CaF 4Brs 1.4 10.72 293.3 289.81° =}
45 CaFstls 1.8 10,47 296.51 208.58 -3
16 CaF3HCEBr 1.2 9.31 251,86 262,70 3

Non—{J-skeleton includes the X-electron and the anion—-cation

systems.

The implication of the second term is that one can define
ionization potential and polarizability for electrons in

a molecule.

Given the molecular polarizability one can now estimate the
ionization potential (IP) and vice versa from (3.20). The
latter option is not attractive because of the abundance of

methods for estimating molecular polarizability with reasonable
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accuracy, such as bond polarizability, contribution
polarizability, and Lorentz-Lorenz Eq., (1.2), which requires

the refractive index and the density.

The option of estimating IP however, is particularly intersting
as apparently there exists no prediction method for the

molecular (Ist)ionization potential.

The ionization potential is a prime molecular quantity that
measures the ease with which a molecule can be oxidized. The
wide range of uses for this important guantity warrants the

test of (3.20).

Table 3.7 gives the experimental and estimated IP values by
(3.20). The majority of the molecular polarizabilities are
calculated using refractive indices from Ref.[1581 and (1.2)

the equation of which can be given asjy

(n2 - 1)
Qe (A=) = .3964 V ——— (3 21)
(n= + 2)

where the molar volume should be in cm®/mole. Combining this

with (3.20) gives an equation for the estimation of IP from the

refractive index and molar volume as it is used in the table;

(n® - 1)

E 'imz};n-,-t (D 22)
(N2 4+ 2) S.nen-a

le (V) = 1.051 V

Notice that the inert—atom moments as entered in table 3.4 are

to be used in (3.22).
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For the calculations of I for electron rich molecules, Os, S0z

N=0, and HCN, the following structures are used;

%E\:m(m} /u\ t‘fﬁs.\u- . -u/\a

10 10: 0

H'C =N\ N==k=0

{a) {b) {c) (d)

Structure (a) for 0Ox is given by Harcourt. The traditional
Lewis type sructures (e) used in (3.22) gives Ie = 10.47 ev,

in disagreement with the experimental value, signifying the
sensitivity of inert—atom approximation to the structural types
of electron rich molecules. The traditional 0=5=0 structure for

80> gives Ie = 13.6 eV.

10

6 G < 7O\

g0: £ =3 iy gD —

It must be added that Sa, S», and Sa4 are assumed to be purely
covalent, inspite of the belief[2671 that there are delocalized
electrons in Se sulphur ring. This model of delocalized
electrons, or as it is known ‘non-0’ electrons, explains the
colour of sulphur. One could verify the existence of
delocalized electrons in the ring if the experimental I for Se
were available. This subject is further discussed when the

solubility of Sa in CS= is analysed in the last chapter.

Notice the poor agreement between I(Esti.) and I(Expt.) for

AsCls. From the comparison between the experimental ionization
potentials (IP) of entries 74 and 76 together and then between
73 and 75, one can see that I(Expt.) for AsCly is likely to be

erroneous.



Table 3.7 Experimental and Estimated Ionization Potentials

Index  Species an I(Expt.)  I{Esti.) Index Species aas I{Expt.)  I{Esti.)
nuaber {3.21) [158) ev  (3.22) number {3.21) (158] ey (3.22)
LY HF* 813 16.060214]1 16.75 70 CHCl 5 B.53 11.42 10.68
8 HI 5.1990691  10.390161  10.39 71 CH2ClBr 7.58 10.77 10.44
9 Ha0 1.A44169]  12.6 12.87 712 Ps 14.7 = 1.04
50 Ha02 2,336 '11.0 11.61 13 PCls 10.4 9.91 9.94
5l Os 2.8450691 123 11.96 74 PiCaHals 34,66 7.36 7.34
92 CHs0H 3.230491 10.84 11.50 75 AsCls 11.68 i1.1° 9.61
33 502 774069 12,34 11.33 76 As(Cala)s 36,67 7.34 7.18
4 N20 2.9210691  12.8%4 13,11 P A 16,69+ 9.7 9.29
55 CaHal 11.098 8.51 8.10 8 8, 19.47+ Yol 9.29
36 Caiol 11.045 9.14 10.35 19 B5as 23.82 = .48
37 CoHalOz 12,921214] 9.92 8.55 80  PHs 4.1 9.98 10.00
a8 {Me)2NCOH  7.896 9.12 10.4 81  Cyclo-CaFe 6.72 = 15.18
59 (Et)2NCOH 11,455 8.89 10.4 82 CaHaCl 12,250214] 9.07 8.36
50 CaHa2 3.331491 11.4 10.69 83  HCN 2.4871691 13.8 12,99
&1 C2Ha 4.26149] 10.4 9.72 85  CHSCN 27 12.2 11,52
b2 C3Ha 6,291491] 11.1 10.47 86 CHsCHaCN 6.067 11.84 11.18
&3 Colhyo 9.1[159] 10.4401591 10,21 87  NzHa 3.50 8.74 10.6
o4 CHsBr 5.61* 10.53* 10.40 a8 {CHy) 3N 7.767 7.82 10.23
65 CHzbBr2 8.68 10.48 10. 14 89 (EL) SN 13.39 7.5 10,10
bb CHbrs 11.84 10.4 9.94 90 {CaHa)sN 27.24 6.8b 8.72
b7 CHsl 1.59 9.54 9.57 91 CaHsM 12.13 1.7 7.83
48 CHaCl 2 6.82 11.35 10,30 92 CalaN 9.42 9.3 9.34

#1 Refs.[49] and (214] give the erroneous value of 0 = 2.46 A® for HF.

+1 [ and ( of 64 to 71 are from table 2.3,

a1 Estimated using the polarizability contributions of S, P, and H given in Appendix 6.

b: I(Est.) = 10.80 for { = 6.5 from table 3.6.
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The inert—atom approximation that supplies reasonable estimates
for the IP of many systems fails for some of N-containing
molecules. This is where the Koompson approximation (the i-th
IP is given by the negative of the i-th orbital energy) also
fails. In fact this problem is associated with the N-lone pair

and is fully discussed in von Niessen'’'s work[24681].

From the inspection of the IPs of (Me)sN, and (Et)sN, however
it appears as if the ionization is taking place out of the
N—-lone Pair orbitals, because the latter with about twice the
polarizability shows the same IP. When N is attached to
electro—-negative groups there is a better égraement between
I(Esti.) and I(Expt;i. The exploration of these effects is
beyond the scope of this work and reguires guantum mechanical

techniques.

This section ends with the estimation of IP for cyanogen CzNz
and dicyanoacetylene CaNz for which the Koopmans' approximation

fails, and which are considered by von Niessen.

The polarizabilities of these molecules are estimated using
that of (HCN - H) and (HCCH - 2H) from the table. For H, a

polarizability contribution of .43 A™ is used (see the next
section). In this way one finds the approximate values of;

Q(N=C-C=N) = 4.1, (Q(N=C-C=C-C=N) = 7.29 A=,

which using (3.20) give;

C=zN= CalNz
{B 2V o wadniisnwm I({Esti.)eV 12.58 10,52
Buantum Mechanical... I(Theor.)[24681 13.20 - 11.88
I(Expt.)[268] 15.36 11.84
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The substantial agreement between the available experimental
and estimated IPs reinforces the validity of the use of

=2

{M=>s et 1N place of the bonded—atom moment <m#=>,; in
(3.9) and also estabilishes (3.20-3.22) as an approximate

additivity rule for estimation of IP.

A graphical presentation of selected molecular and estimated

moments from the last three tables is given in Fig. 3.4.

3.4. Polyatomic or Generalized London Dispersion Potential

The workability of (3.9), now a combination of reasonably
well—-defined parameters, ZL, <m®>inm~ey F, and R, needs to
be tested. The calculation of heats of vaporization (HY)
provides the most straightforward verification of this field

expression.

This section is devoted to the derivation of a polyatomic

potential function that can be used to find HV.

To convert a mean-square field to a potential form, use is made
of the unorthodox relation (1.51) found in the first chapter;
Usy = = (1/8) (Q.<E=3y + Qa<E®2y)

This shows the mean mputual interaction potential between an
atom i of polarizability (s in the oscillating field of atom

j« In terms of the moment of j, using (3.6), this becomes;

Uyy = — (1/74) R™9F (i, i) LA.<m™=>4 + Qism™3, ] (3.

8}
A

Implicit in this Eq. is the fact that i and j now belong to two
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interacting molecules a distance R apart. Letting F(i,j) = 1
and i = j, it becomes the London dipersion formula (1.48)

between two identical atoms a distance R away.

One immediately realizes the problem that arises when atom 1

becomes part of a molecule; (. becomes the bonded-atom

polarizability.

Fortunately the concept of bonde—-atom polarizability or as it
is called the ‘polarizability contribution’ (Pc) is well-known.
A short list of Pcs and the isolated atom polarizabilities

shows their difference (see Appendix 6 for a fuller list);

tronp)==s=s=r=assomers ) H C C= €= 0 (R-0-H) F €l I
Pe @ AST161] A3 .93 .58 .Bb .99 .38 2.28 5.1
Atomic @ A[212) «bb7 1.76 . = .802 . 557 2.18 3.9

By using the Pcs given here one can find accurate molecular

polarizabilities, for example;

Q(CHa) = 4,43 {—————- atonic ———=> > ((CFa) = 3.16
QlCHL) = 20865 = i A ey e e > Q(CFa) = 2.45
GICHs) = 2,66 S~ Expte ———=r > (Q{CFa) = 2.31

Therefore for (i in (3.23) the Pc values should be used.

For a pair of molecules with X. atoms of the same species i -
(belonging to one molecule) and X; atoms of same species j
{belonging to the other molecule) the pair potential can be
written as;

Ulpair) = - (1/8) R~& XuXsF(i,3) [Q.<m=r, + Q,4m™3, ]

which for two molecule containing different species becomes;
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Ulpair) = « (1/8) R~® vy X.X.F,4) [Qid<m=2s + Qaim™re ]
4 3

This may be regarded as a Polyatomic London Dispersion formula

It reduces to that of London for two interacting atoms.

3.4.1. Heat of Vaporization

Let us derive an expression for the heat of vaporization (HV)
(or sublimation) in terms of the polyatomic pair potential

(3.24) according to a method due to Moelwyn—Hughes[é6?, p-.3151.

In a mole of compound with Z nearest neighbours, the number of
neighbourly pairs that can be formed is (1/2)ZL. If it is
assumed that the greater part of the total potential energy,
that is the molar potential energy, is due to the immediate
interactions between nearest neighbours one can write;
Ulmolar) = (1/2)LZ U{pair)

where U(molar) is the total interaction potential and U(pair)

is the molecular pair potential (3.24).

The U(molar) approximately equals the heat of vaporization when
I is useds
(3.25)

Hotkd/mple) ~ =7.83Z.R™ LT XaXaF(i,3) [Qusm™=2, + Qs<m=2,1]
1

where R in A,  in A®, <m=> in units of 1077 erg cm™ from

table 3.4 give Hy in KJ/mole.

The preliminary analysis of the HVs given in table 3.8 serves
to verify this expression. For R the solid state experimental

values are tentatively used. The H. values according to the
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Table 3.8. Comparisop between experimental and calculated heats of vaporization

Compound I .R£Expt.l A H (Expt.) H, Ki/mole H, Ki/mole Polyatomic H, g*= d/R
Table 3,3  KJ/mole(240]  Polyatomic (3,25) London (l.48) London H.

He lie 3.7 100 .091 091 1.00 0

Ne 11 3.16 1.740 134 1.34 1.00 0

Ar 11 3.76 b.288 5.97 5.97 1.00 0

Kr 11 3.99 9.187 8.49 8.49 1.00 0

fe 11 4.33 12.643 11.96 11.96 1.00 0

Rn i1 4.44e 16.76" 16.53 16.53 1.00 0

Ha i1 3.78 1.05¢ 1.25 1.38 .90 .098
CHa i1 .17 8.8%8< 10.86 6.38 1.70 . 261
CCla 11 5.90 34.52= 34.52 11.34 3.04 .299
Ha0 4 2.82 40,62 19.32 1.55 2.56 . 339
CiMels 11 6.21 22,36 25.46 7.47 3.40 346
CeHyz i1 6,20 32,73 34.77 8.17 4.25 « 336

a: for bece He with 1. = 8, The good agreesent between H,(Expt.) and H,(Cal.) is marred by strong

quantum effects in He.

b: The value of R = 4.44 A is found from an excellent (-R linear relationship for inert atoms without

He. The H, value is froms Ref.[2551.

c: Fros Ref.[158]
d: The centre of mass of water molecule is not at oxygen. For the calculations do = .0045 and

dw = .920 A are used fros Appendix 5. Note that in table 3.3, for simplicity it was assused

that do = 0.

#: The q ratios are for the outer atoms, indicating the size of the molecules.
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London formula are also given by using UL (1.48) for U(pair)

in the derivation of (3.29).

The table, more than anything else, verifies the buffeting
field expression and the main features of its underlvying

assumptions.

There are many noteworthy aspects in this comparison. First,
the departure of the polyatomic values from those of the
sphere-based London values as the number of atoms in the
molecule increases. As the g ratio approaches zero, the factor
F approaches unity and the polyatomic potential becomes the
London potential, in other words, London potential is the
asymptotic form of (3.24). Note that the g values for these
molecules do not exceed the limit at which the analytical F

series is invalid.

The inclusion of water in this table is heuristic. The
calculated value is based on the assumption that the four
nearest neighbours and the central molecule rotate freely. The
table shows that the text-book[49,214] dispersion contribution
of 19% for water originates from the London formula;

7.595/40.6 »100 = 18.46;3 the polyatomic value is about 47%. The
remainder of 21.3 KJ/mole arises from non"d{persinn spurces,

mainly H-bonding.

It is shown in Chapter S that the entire heat of vaporization
for CHsCN (4 = .44 D) is calculable by (3.25) signifying the
negligible contribution of dipolar interactions to the total

cohesion energy.
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The larger value of the London H. compared to the polyatomic
one for Ha is intriguing. It stems from the fact that;

2 <M e € <MB>n2, as the —-19% error of table 3.5 shows. In the
London formula the molecular moment is used, which explains the

anomaly.

It must be emphasised that all the atoms of the two interacting
molecules, as (3.24) shows, contribute to the pair potential,
the d values of which can be found in Appendix 5. In table 3.8
only the largest d values, that is tHe d values of the

peripheral atoms which show the molecular size, are used for g.

3.4.2. A Brief Survey of Polyatomic Potentials

The simplicity and versatilityof the buffeting approach would
be appreciated if similar works on the interaction of
polyatomic are outlined. Let us first recapitulate the main

problems of dealing with polyatomic molecules. These are;

1— Definition of the mean inter-atomic distace for rotating
molecules which was solved by the F factor.
2— Definition of IP for bonded—atom which was solved by the

inert—-atom approximation.

There are two groups of workers, namely those who treat
molecules as polarizable points(269-2711, and those who treat

molecules as polyatomic systeml2Z202-204,21017].

The former group is not plagued with the afore-mentioned

problems but to cure the undercalculated values uses some
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disguised scale factor. Slater and KirkwoodL[270]1 for example,
introduced the z!“= factor into the London formula, where z is
the number of electrons in the outer shell of the molecule,
which for CCla, for example, amounts to 32. This involvement of
32 electrons in the dispersion interaction implicitly
undermines the concept of the first ionization potential used

for approximating h2 in the moment expression.

In the latter group, Muller[2041 has pioneered the polyatomic
interaction for crystals of organic molecules. He could
calcul ate the atom—-atom distances (of n—-CHz chain) from
crystalographic data. To overcome the problem of bnndgd—atom
parameters he took advantage of the Kirkwood[271]1 expression

for the London dispersion in terms of susceptibilities;

U=6 mc= % 1%=/{X21/0x + %=/0=z)
where for I = 4 mc® X/ this expression becomes the London

formula.

Such an expression, therefore, helps define a bonded-atom
ionization potential by using the additivity of the
susceptibility —-already a well-—known concept. The IP values so
cbtained are larger than hv or the ionization potentials, even
for inert atoms (except for He) for which this method should
work best. For Xe for example it is larger than h) or I{(expt.)

by a factor of three.

More recently Claveriel203] avoids the problem of bonded-atom
parameters by considering the dispersion interaction of the

bonds i and j, rather than atoms, of two interacting molecules.

138



Mathematically his formulation involves the Traces of the
polarizability tensors and physically the anisotropy of the
bond polarizability. This approach lacks simplicity and creates
the problem of the ionization potential for bond, the centre

of interaction for bond, and the anisotropy in the bond

polarizability.

Regarding the problem of rotation of the molecules, or bonds in
this case, which involves the bond-bond distances and R, a
series in terms of Legendre’'s polynomial is derived[202]. In
the view of the inverse-Sixt'-Fower dependence of the distance
the series, as it is shown in Appendix 3, should be in terms of
the Gegenbauer polynomial. However, three terms of the series
are used to avoid the risk of divergence, and instead a

damping is introduced[209].

4,%., Implicit Assumptions of the Buffeting Field Expression

The derivation of the total buffeting field expression (3.9)
was based on a number of well-known assumptions which are

outlined in this section.

S.59.1. Multiple Approximation Assumption

The cornerstone expression of the buffeting field is the
dipolar field (3.3) which results in dipole-dipole interaction.
The multipole field expression can be written as;

fE=> = Fligd) RP*A + B R2 + C R % ,.61

where A, B, and C are constants involving respectively,
mean—square dipole, mean-square guadrupole, and mean-sguare

octapole. Margenaul272] has shown, for London dispersion, that
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even constant B is only a relatively small fraction of A, the
term of which is further reduced by R™ to a negligible

contribution, justifying the dipolar approximation.

DeT.2e Rigid Molecule Assumption

This assumption was made on the grounds of the differences in
the time scales of the vibrational and other molecular motions.
It is a valid assumption as the dispersion forces are much
weaker than the forces holding the nuclei together (the bond

forces[2011).

3.5.3. The Inter—-molecular additivity assumption

The pairwise field was converted to the total field for Z

nearest molecules by assuming the additivity of fields.

This is the well—-known additivity problem of the London
digpersion formula. It has been shown, by extending the second
order perturbation theory to the third urdef[E?EJ, that there
would be a 3-body component and so the strict additivity
vanishes. Nevertheless, the effect of the non-additivity was

found to be negligible for crystals of inert gases(273,2741].

More rigorous use of the perturbation theory to a group of
molecules has éhown that the London type potential is
approximately: additivel2751. Quantum mechanical treatment of
non—additivity effects in (H20)3[2761, Hz0...CHsOHL2771,
CHa...CHa[2781 and inert gases[279] show that this effect is
fairly small. This problem is more extensively discussed by

Margenau and Kestner[711, and Claveriel[2031.
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3.5.4. Intra-molecular Additivity Assumption

For a molecule with X, atoms of species j, the field of a
single j atom (3.7) was multiplied by Xs. This is a sort of
intra-molecular additivity rule which is less well-known and it
has been taken for granted by many workers, especially those

dealing with molecular crystals(204,210].

However, recent guantum mechanical computations show that this
approximation works reasonablyl[2023. In the case of CzHa (and
also benzene and azobenzenes(2801), this assumption fitted

to quantum mechanical data, gives fairly realistic results for
the equilibrium structure such as unit cell parameters,
molecular orientations in the celll(281,2821, and the cohesion

energy[283].

These computations for the properties of Nz crystal, such as
equilibrium structure and cohesion energy, show that the
intra-molecular additivity rule works much better for Nz...Ns
than CzHa...CxHa[2841. In general not much is yet known

about this additivity but we may safely assume that it holds as

good as the inter—molecular additivity rule.

3.9.5. Free Rotation Assumption

The derivation of the F series is based on the assumption of
free molecular rotation, so that the atoms fully span their

spherical surfaces.

Work on plasticarystals has made available massive data on the
orientational freedom of the systems considered here. In fact,

the existence of orientational freedom is the property that
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distinguishes plastic crystals —-orientational disordered

crystals— from other molecular solids[210,216,2851.

A possible criterion for the existence of essentially free-—
rotational behaviour in plastic crystals is a nearly spherical,
or globular, molecular formf{2841, which is seen in spherical
methane derivatives[287]. For example, neutron scattering
studies of C{CHs)a, in the liquid crystalline state, show

the presence of isotropic rotational motion in which on a time
average a molecule has no preferred orientationa in space with

rotational period of .4x10722 g ¢ 7 € .84107*2 g[2881.

The isotropic rotational motion of CaHiz= (mp 270 °K) aﬁd
CeHio in the plastic phase has been proved by the same
method with 7 ~ 2)x107*= and 1072 5 respectively[289].

Raman and infra-red line shape methods[290] give a rotational
period of 1.6x10712 g for liguid CoHi= (296 ®PK) slightly

shorter than that of the plastic phase as one would expect.

Studies of fluorinated cyclohexane, CeaFi1:H, and CaFsH=, show
the presence of preferred orientations, and anisotropic

rotational motion in the plastic phasel2%0].

For pivalic acid, (Me)sCCOOH, a combination of NMR, dielectric
and light scattering studies has established that the molecules
are randomly dimerised with one of the 12 nearest neighbours.
The molecules re-orientate themselves by making and breaking
H-bonds with a period of about 107 g in the plastic phasel216&].
These facts justify the assumption of free rotations in the

liquid state, perhaps even for water with strong H-bonding.
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Sab. Conclusions

The general idea that brought together the range of the
problems discussed in this chapter was the atom—atom potential
model. The model is undoubtedly approximate but rather
successfully deals with the problems of structured molecules
and their macroscopic properties. Furthermore the formulations
are simple and require no experimental information except for

the readily accessible density, bond-length and bond-angle.

One of the the major problems of theoretical studies, specially
the new computer simulation technigues of the equilibrium and
dynamic behaviour of molecules, is the statement of the correct
pair—-potential function. It was shown that a sphere-based
potential function is an irrational choice and unlikely to work
for liquids. This fact has forced investigators to introduce
more adjustable parameters into the existing potential
functions to account for the shape and molecular rotation.
Molecules have been categorized as, rigid conve, ellipsoidal,
sphero—cylindrical, oblate sphero-cylindrical, prolate
sphero—-cylindrical, generalized sphero-cylindrical, four—centre
and so forthf491. The buffeting model, according to which the
interactions occur between the spherical inert atoms properly
located in the molecule to account for its shape, supersedes

such artificial classifications.

The buffeting pair—-potential therefore offers itself as
an alternative attraction potential function for the prediction

of macroscopic properties.

The potentiality of gquantifying the interaction between
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electrons, electron lone pairs, and in general any fraction of
the electronic charge, is another important feature of this
potential function. It therefore lends itself to the study of
the aligned forces like hydrogen bonding and chemical

reactivity.

The inert-—atom approximation proved use¥u1_in the prediction of
the molecular first ionization potential. Table 3.7 shows that

the estimated IP values are (on average) within about 5% of the
available experimental values for the majority of the 495

molecules considered.

An important use of the ionization potential additivity rule is

for estimation of the IP of functional groups in molecules.

This is of importance because it links the inert—atom

approximation to the reaction mechanism and chemical activity

studies. A molecular functional group of low IP value is more

reactive and therefore determines mechanism of the reaction.

No explanation for the correspondence of 1/4 <mZ); e-e and a
single non—-0 electron was given as this is strictly a quantum

mechanical matter.

A more extensive use of the buffeting field and potential

functions for the study of the heats of vaporization and vdW

nuclear screenings is deferred until Chapter S.

In the following chapter the connection between the buffeting

field and that of Homer and Percival will be explored.
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Chapter 4

Comparison between the Site-Factor and Buffeting Theories

of the van der Waals Nuclear Screening

Introduction

The sensitivity of the vdW nuclear screening to the site of the
resonant nuclei in the molecule has forced investigators to
recognize structure and polyatomicity of molecules when

developing their theoretical models for (..

Rummens et al, for example, assigned a factor to the molecule
under study as a measure of the off-centricity of each of its
resonant nuclei. The attachment of this factor, a site-factor,
to the body of the existing sphere-based formulations appears
to have improved their theory of (.. To obtain agreement
between theory and observation they bring in yet another factor
with unknown origin. This indispensable factor, called a scale
factor proved to be a variable depending on the solute-solvent
systems, and an irrepressible disadvantage of the site—-factor

theories of (..

In this area of work, the solvent remained a polarizable sphere
until Raynes introduced the concept of atom—atom interactions
for nuclear screening, and therefore regarded both interacting
molecules as polyatomic, a fact reflected in his

SitPeiute—SitEBuivene factor. The Raynes atom—atom interaction
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model unlike the Rummens et al theory was limited to the case
of two interacting methane molecules and for mathematical and

physical problems has not been extended to other systems.

The site—-factor and site-site factor theories have been
succeeded by the buffeting theory of Homer and Percival in
which the structure and polyatomicity of both interacting
molecules are accounted for by a geometric or steric-factor
obtained from simulation of the molecular encounters using
molecular models. This theory supersedes the previous theories
of Uw, due to its independence of the scale factors and its

universality.

The purpose of this chapter is to use the buffeting theory of
the preceding chapter as an intermediary and seek the common

and contrasting features of the three theories of (..

It is shown that the Rummens et al cage model scale-factor is
necessary to account for the effect of the structure of the
solvent (assumed to be point) because the use of our F factor
in place of their site-factor improves this theory and renders

the scale—-factor obsolete.

A critical study of the outlines of the binary gas collision
model of Rummens et al for (. reveals that the use of this
model for the liguid state is unjustified and that its scale
factor is not associated with the polyatomicity of the solvent,

but is an artifact of this model.

Comparing the Homer and Percival buffeting theory with that
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implicit in Chapter 3 shows the close relationship between
their geometric factor and the F factor. This indicates the
fact that all the factors -site, site-site, steric, and F- are

a common feature among the models.

It is further shown that there is almost exact correspondence
between the Homer and Percival semi-empirical K constant and
the inert—-atom moment, and an exxcellent correlation between the
latter and the Yonemoto's quantum mechanical 0 values, which

also correlate with K.

4,1. Homer and Percival Buffeting Theory

The buffeting field derived by Homer and Percivall29,160]1 is
essentially similar to (3.9) given in the previous chapter.
Their approach is uniqgque, compared to the prevalent treatment
of interacting rotating molecules, in the sense that it outwits
the problems of the nearest number of molecules, the number of
peripheral atoms, the intermolecular distance, and the
rotational averaging which gives rise to the F series. This
however, is achieved at the expense of difficulties in defining
and deriving their geometric factor (28 - E)é, by using

molecul ar models.

In the next two sections the relationship between the two

fields is investigated.

4.1.1 The Homer and Percival K constant and <m=>; cwe-s+
The space-time averaged buffeting field derived by Homer and

Fercival (Eq. 38, Ref.29, denoted here by <E=3:) (4.1) has the
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same form as (3.9) which for a solvent containing one species

of buffeting atom may be re-arranged as (4.2);

2 <m=> :
CE®) = mmm——e (28 - E)= (4.1)
re® ;
. 2 <m=3,
g S Fei,j) (4.2)

where r., is the sum of the vdW radii of the buffeting atom j
and the buffeted atom i, and (2 - B)= like F is a geometric
factor. A comparison between (4.1) and (4.2) shows that the
Homer and FPercival field is independent of Z,_, X,, R. Instead,
they realistically have assumed that the buffeting and the

buffeted atoms are at _all times a well defined distance apart,

which is characterized by the sum of their vdW radiij;

gt s el i SR 3 S

This makes the guantitative comparison between the two fields,
as a whole difficult, because r. is fixed but R depends on the
solute-solvent systems. Generally, for the peripherial atoms
one can writej

<E=> T <E=» for R from  (S:16)

LESN 3 CESS for R from (S350 (S.17), cr Re

The comparison between the bonded-atom moments, <m=>, and <m=3>,
and the geometric factors, however is possible. For bonded
hydrogen, as was mentioned in the previous chapter, Homer and

FPercival suggest the guantum mechanical value of <m®)y = 13.5

{in units of (esu-cm)=x10*), which compares well with

For buffeting atoms other than H, they include the bonded-atom
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moment of (4.1) in an adjustable parameter K (or @) and write;
CE=>» = K i,7® (28 - B)= (4.3)

where K is a buffeting constant depending on the buffeting

atoms (of the solvent) only.

It will be remembered from Chapter 3 that different buffeting
atoms differ in their moments by their corresponding inert-atom
moments. The heavier the buffeting atom -the larger its

M= ~w~e— the greater the field it prnduces at the site of

the buffeted or resonant nuclei, and the larger the attraction
or deshielding. This natural outcome of (4.1) or (4.2) has
been proved guantum mechanically by Yonemotol771, Marshall and

Foplelf1371, and Musher[301]1, using perturbation theory.

According to Yonemoto, if the (buffeting) field produced by a H
atom may be assumed to be unity, the field of a heavier atom is
larger by a factor @. He writes " a precise calculation of @ is
difficult because no accurate molecular wave function is
available that describes the state of ionization, hybridization,
or the state of inner and lone-pair electrons of é heavier atom
in a bond". Nevertheless he gives some @ values for halogens

and their ions which are used by Homer and Percival to correlate

with their emperical K or @ values obtained from (4.3).

The Homer and Percival K values are found using the experimental
vdW shifts of (a solute containing) hydrogen in a number of
solvents containing different heavy peripheral atoms such as 0,

F, C1, and Er.
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Table 4.1. Comparison of the (B values and normalized moment

Buffeting B+ Qe Am= 5y et
species L7737 L2711 G
H 1.0 1.0 1.00

F 5.1 = | 1.469

ot 3.6 — 2.11

0 2.8~ bl 1.69

Cl 10. 2% 6.5 e

2} o 12.5 - b.41

By~ 14 a 6. 89

B i8 = B.61
CE* =295 o Z2596

ai This is an extrapolated value froa the Yonemoto @ values by Homer and Percival [29].

b: This is the mean value of single (@ = 3.4) and double (@ = 1.2) bond oxygens given by Homer and Percival.
Strictly speaking, only @ of a singe bond oxygen can be cospared to that of Yonemoto, because the @ values
are sensitive to the bond state of the atom, like moments; (@2} (=0) = 1.5 (8%)uey (82 (-0) = {(8%)ue.

¢t It is not given by Yonemoto, it is estimated from the mean value of 1,22 = §ion/Batons

¥} Correlation coefficient between the @ values and norsalized moments.
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Table 4.1 gives the @ values of Yonemoto, those of Homer and
Percival, and the normalized values of the moments, namely, the
corresponding inert-atom moments divided by the moment of ‘He'.
For the anions, as was mentioned in Chapter three, 1/4 of the
inert—atom moment, equivalent to one electron, is added to that
of the atom. The content of this table is shown graphically in

Fig. 4'1.

The good correlation coefficient of .999 (intercept -.93, slope
2.16) between the @ values of Yonemoto and the normalized
moments once more strengthens the inert-—-atom approximation, and

also the extension of that concept to anions.

This linear relationship between the moments and the @ values,
computed by Hartee-Fock wave functions[77] —the Hartee method
approximates the total wave function of a system of N electrons
T in terms of one electron orbital wave functions @ such that

T M 0202, ..0n0302]- indicates the possible association

of the guantum mechanical approximation with the inert—atom

approximation.

The good relafinnship between the Homer and Percival empirical
. @ values and the normalized moments (CC = .996, interc. = .094
slope = 1.18) on the other hand, signifies their strong

relationship and the fact that K in (4.3) is best equated with

the corresponding inert—atom moment: K ~ <M=, qert -

4.1.2. Comparison between (28 ~ E)* and F

The key to the circumvention of R, Z., and X, in the Homer

and Percival buffeting theory is their method of handling the
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interaction between rotating molecules. This method can be

outlined as follows.

[

Let us consider a particu}ar volume (one octant, for example)
between a solvent and a soclute. The solute atoms are
successively and continuously encountered by the solvent
buffeting atoms. A "snapshot" of the situation, at any instant
of time, shows a solute atom at a finite distance from the
buffeting atom. This distance may be approximated by the sum of
vdW radii of the two atoms. Exactly the same condition exists
for other parts of the solute molecule, because on average it
is in (vdW) contact with other surrounding solvent molecules.
Two parameters B and § are then introduced to describe the
effectiveness of the accessibility of the buffeted atom to the
buffeting one as a result of their pairwise encounters.

Two inert atoms, for example, can maintain full contact in the
referred—-to octant, and the value of unity is assigned to B and
the value of two to £ so that, (28 - §)= = (0, For two bonded
atoms, that is when the atoms are parts of two interacting

molecules, the full contact is no longer possible.

This condition results directly from the formation of bonds by
the atoms in guestion and their consequent polyatomicity. Now
the full penetration or contact of the two atoms is hindered
by the steric hindrance action of the remainder of their

maolecules so that @ ( 1, E € 2, and (28 — )= > O,
One can therefore attribute the values of (28 — E) > 0 to the

polyatomicity of the interacting solute and solvent, and infer

that this factor should increase with the increase in the size
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of the solute-solvent system. This inference about the Homer
and Percival factor is in agreement with the analogous trend in
the values of F as shown in table 3.1.

Concerning the interactions between the inert atoms (4.1) gives
a zero field for (28 -E)=, m-+= 0, and therefore conflicts

with the existence of the dispersion energy between these
systems. This anomaly is justified in the context of the Homer
and Percival buffeting theory in which (4.1) should be used

with the (non-zero) RFT contribution, (2.20),.

In table 4.2 the relationship between F’' = F/10, and the
available (28 - E)= values found by using molecular models, is
analysed. For the values of R in the calculations of F, (3.148)
is used. It can be shown that the choice of the expression for
R; (3.14),(3.18), or (3.17) does not affect the correlation of
the two factors. The values of F divided by 10, F' in this
table, are roughly of the same order of magnitude as (2B - §)=.
The d values of the peripheral atoms used in F expression (3.7)

-

are from table 3.3.

Inspection of this table shows that there are a number of
inconsistencies in the values of (28 - E)*=. First, according
to the concept of this factor, one would expect to find the
smal lest value for the smallest system, that is, CHa in CsHs.
Instead, CFa in CsHiz and SiFa in CCla show the smallest
value of .096. Second, although the values of this factor are
equal for CHa in CoHiz= and CeaHa, this is not observed for

CFa in these solvents. Third, SiFa has different values in
SiEts and SnEta, whereas the corresponding values of C.F. are

equal causing the poor correlation of .75 between the values of
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Table 4.2, Comparison between F'= F/10, and (28 — E)=

Systea Ref, ========m=ee=ca- Solvent or Solute ======-m==cmcaee tc
CeHalv) 29 CHa CNeas SiMea SnMes

(28 - )2 123 230 270 . 285 .97
F’ 24 371 A3 .518

CeHyziv) 29 CH, CHes SilMea SnNea

(28 - §)2 123 230 270 .285 .97
F 91 296 344 404

Meaiv)* 29 CHea Siles Gelea SnMea - PbMe,

{29 - §)* .225 270 273 .295 .300 .97
Fr .324 .383 402 NTH A75

CF 4 (u) 160 CuHy2 SnMea CaHe SiEta SnEta

(20 - §)2 096 102 .09 144 152 95
F’ 214 236 275 430 Abb

SF4lu) 160 CCla SiCla Snies SiEts SnEta

(29 = %)= 360 360 449 918 933 .96
P .201 207 263 469 .51

SiF4lu) 160 CCla §iCla SnMes SiEta SnEts

{26 - )= 096 096 144 76 194 .96
F' 200 209 261 466 305

CoFafu) 160 CCla SiCl4 SnHes Lotz SiEta SnEta

(28 - E)= A77 577 993 . 608 .608 .608 iia
F! 352 377 A77 442 16 844

+: These are the mean values of the two factors for each solute in the series of XMes solvents.
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F* and (28 ~ )=, The equal values of this factor for
different solutes in CiHs and CaHi=, might have been caused
by the difficulties in modelling and simulating the encounters

of these systems accurately by molecular models.

The analyses in this table, in spite of the statisically small
number of data in each case, serve to show that the formula for
F replaces the molecular modelling of (28 - B)=. This is 1in
spite of their apparently different physical interpretations
and the beliefll160] that "... an entirely general formulation

of B and § appears to be impossible...".

One notes from this table the trend of the increase in F' and
(2 — B)= with the increase in the sizes of the solute and
solvent. A guantitative way of depicting this trend is to plot
the valueps of these factors against some guantity representing
the sizes of the solute-solvent system, for example d,.d,,

Fig. 4.2.

The straight lines in this Fig. are only trend lines showing
the direction of the increase in the factors and d.d; more
clearly. Note the smaller scatter of the F’' values compared to
those of (28 — E)=. The point for Hz= in CiHs from the Homer and
Percival work[29] markedly departs from the trend line of their
factor. They have treated hydrogen gas as a unique case. The
value of their factor for this gas is four times larger than
that of CHa in the same solvent, contradicting the fact that as
molecules shrink in size and approach mono-atomicity they may
be mistaken by points for which the value of (28 — E)= eqguals

zero. In other words, this factor should have the lowest value
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for H= after inert atoms, signifying the fact that small
molecules may be approximated by spheres as was shown in

Chapter 3.

The Homer and Percival theory, however, for the first time in
NMR, considers both the solute and the solvent as polyatomic
_mnle:ules and gives a working formula for the effective field
between polyatomic molecules. Their effective field was

re—derived, (3.9), in the previous chapter and the comparison

between them here shows that one can write;

CM2 ey K

m
|2
e
o

i
JIT
e

and ,

a0 v 0. SR A 4 G For R given by (3.16)

4.2. Rummens et al Site~-Factor theory

Inspired by the experimental fact that different hydrogen
species in a given solute molecule have different chemical
shifts, for example, CH=z and CH=x in X (CHzCH=), Rummens and
BernsteinlB80] developed the "solute site factor" model in which
the solute assumes polyatomicity but the solvent remains a
point. In this section a parallelism is drawn between the site

factor and the buffeting factor F.

4.2.1. Rummens et al Site-Factor of the Cage Model

Two solute site factors have been incorporated into the
non—continuum models of (. by Rummens et alll159]1. These are
5% (c for cage and & for dispersion forces only, that is the

& in the LJ (4-12) potential), and 83 (g for gas) for the cage
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model and binary gas collision model respectively. The cage
model is more akin to our approach as the same model was used
in Chapter 3 in the transition of the pair-field to the total
field of Z nearest neighbours. Therefore, this model is

considered first.

The cage model site-factor is given asC159]1;
b= O e gl I Ty W e R s o P
where q = d, /R. The values of this factor and those of F with

their ratios for XMeas systems are given in table 4.3.

Table 4.3. Comparison between 8§ and F

Solute 55 F F/og
C(CH=) a 1.445 325 215
Si (CHx) o 1.59 3.83 2.41
Ge (CHx) a 1.655 4,02 2.47
SN (CH=) a 1LTT7 4,45 250
"Pb{CH:=) 4 1.878 4.75 253
ce « 275 mean = 2.43

As B% is a solute—factor, one has to find the mean value of

Fi E} for a particular seclute in different solvents to be
comparable with Bj. To be consistent with the authors’ approach
their expression for R, namely (3.16), is used throughout this

section.

They have found thatL18%2] all their calculated chemical shifts
fall short of the experimental values by a constant factor of

2.55 for XMeas systems. They called this factor the cage model
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scale factor, Ki = 2.55, with unkown origin. From the table
one can see that the values of S§ are smaller than those of F
by nearly this factor, which is reflected in their ratios. By

using the mean ratio of 2.43 from this table one can write;

F = 2.43 883 or F Ky 5E (4.4)
In other words, the unkown scale factor arises because the
solvent molecules are treated as points, and their scale factor
is indeed a compensating factor for the effects of the solvent

polyatomicity.

The authorsClE59] made an attempt to attribute some sort of
temperature dependence to the scale factor as kg = a + bt,

and thus explain the temperature dependence of (.. They say
that "... K may be temperature dependent since it presumabley
corrects, at least partly, for the absence of an intermolecul ar
potential in the cage model". Table 4.3 (and 4.4) clearly show
that K§ corrects for the absence of structure for the solvent

rather than lack of the potential function.

One might legitimately ask how (w could be found if the
intermolecul ar potential is absent in the expression for (.7
In fact the intermolecular potential exists in their expression

but for a spherical solvent, see (4.5).

When they used S and its scale factor of 2.55 for systems
other than XMeas it was found that the use of a single-valued
scale factor cannot fit all the (. data, see table 4.4. Column
five of this table contains the calculated screenings found by

replacing S5k by the F factor. One notes the marked increase
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Table 4.4, Comparison between the cage models of 8gKg (K§ = 2.55) and F

(. Hz sias|FUiTRl o} e mm

{Expt.) 30 °C[159] [159] === Factors ---

Solvent Solute SEKE F Sg F
" CMe, CHes 12.5, 15.3 14.2 10.7  1.47 2.81
SiMea 1.1, 12.7 13.2 | i1 1.44 3.10
CCla 17.5, 20.2 23.4 15,3 1.50 2,52
§iCla 13.2 20.4 14,6 1.48 2.71
Caﬂx-z 14,6, 11.5 17.6 1.4 149 3.12
CsHio 11.8 19.2 15.4 1.32 2.1
CHeas CeHa 16.9 23.9 I B ¢ 3.34
SiMes 14.6 19.1 15,9 1.12 3.67
CCl, 23.8 40.4 23.;1 1.86 3.33
§iCla 16,7 - 334 4.2 L.1% 3.31
Caliz 15.8 29.3 2030 1,81 3.99
CHes Cathrz 11.2 16.1 H9 183 2.90
SiMes 10.9 13.9 s I T 3.20
CCla 16,90 13.9 1.5 150 2.99
SiCla i1.1 2.7 17.3 1,04 2.87
CeHiz 12.1 20.5 17.6  1.58 3.43
CHes C2Ha 13.8 22.9 . e 2.01
CCl4 2.3 39.2 2.6 1.0 1.91
CeHiz 12.7 29.2 IR 1.97
Callio 13.0 32.0 ke et 2,06
CHe CHa 13.0 23.5 14,0 L.16 1.76
CCla 4.2 39.5 21,8 1.1B 1.65
SiCla 15.8 33.9 19.7 L.lb 1.72
CeHiz - 16.6 29.4 18.8 117 1.96
CoHio 14.7 32.1 18,9 1.18 1,77
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in the agreement between the experimental and the theoretical

values as a result of this replacement.

This table is also represented graphically in Fig. 4.3, where

an ideal line through the origin eases the comparison between

the cage model of F and that of Sgki.

4.2.2. Solute Site-Factor in the Hinary Gas Collision Model

Rummens et alll859]1 have also used the solute site—factor with
binary gas model of Raynes et all78]1 with marked superiority

compared to the cage model.

For the discussion of this model, it is helpful to know that

the binary gas model, as used for the formulation of (w, is &
compendium of conflicting concepts. It is a binary (two-body)
gas collision model and thus misused for liquids where the

interaction is intrinsically many-body and involves at least

the Z nearest neighbours.

In this model, as in the cage one, the general (sphere based)

expressionl781;

(folpmis = — B {E®> = = B 2 <m®>sivesr R~ (4.5)

links the screening with the intermolecular field.

When the R values of (3.16) were used in (4.5) it gave rise to
the scale factor of the cage model, therefore the authors made
an attempt to find smaller R values for (4.5) to remedy this
shortcoming, by using (3.14) as;

0w = J (0w)pair &xp (~U/KTY dT (4.6)

162



\40.4)

(39.2/\ \(39.5)
I
25 2%
& 2, A
: c c
¢ e A: CAGE MODEL S K
§ ® : CAGE MODEL F
|

{5 I.?O !25

-Expt. Qu Hz

Fig. 4.3 A comparison between the Rummens et al cage model of
0w with their site-factor scale-factor 85ks

and our buffeting factor F.

163



where dT is the coordinate space element. Now a gquestion
arises as to the nature of the intermolecular potential U in
(4.6) . They use a LJ (6-12) potential for U and, in doing so,
contradict the important fact that inherent in (4.8) is a
dispersion intermolecul ar potential function. Therefore one
might ask if there are two potential functions . governing the
intermolecular forces. If a LJ potential is used for U in (4.68)
the same function, in the form of a field, should be used in

{(4.3) to characterize (w.

Nevertheless, by incorporating the site—-factor into (4.5) and
using (4.4) a gas model site—factor is obtained that is written

as g

S = 1 + 3.45 Qo= + 7.42 Qo* + 12.9 go® + 19 Qo + ... (4.7)

where go = di/rey and ro is the distance in the LJ potential
at which the repulsion begins, that is, when U = 0. Furthermore

(4.5) is now written in terms of ro. instead of R.

As R > ro (table 3.3 shows that in general ro = R - 1, for
erample, for CHa, ro = 3.8 A, and R = 4.946) the calculated
shifts turn out to be about é6 times larger than those of the
model based on (4.3), therefore the Z nearest neighbours of the
cage model no longer could be used. The new expression without

model .

Of course, there are other conceptual problems in this model.

For example, the LJ potential which is an empirical potential
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function requires the adjustment of its parameters r, and e
to fit the experimental data, and automatically accounts for
the polyatomicity of molecules and therefore renders the use of

a site factor unwarranted.

However this model again requires a scale factor Ki = 1.65,

to improve the calculated values of (. specially for small
solutes. The gas model scale factor unlike the cage model one
is not related to the polyatomicity of the solvent. Apparently
it compensates (together with the stated factor of about &) for

absence of Z; 1.65x6 ™ 10,

It must be mentioned that the values of 8§ are somewhat
larger than the corresponding 5§ values, for CHa in CCla,
for example, using ro = (raofu) + ra.dv)) /2, one finds 53 = 1.222
and 85 = 1.177. The graphs of the two factors given by the

authorsli 1591 show otherwise, namely, 5§ *» 5i.

The solute site-factor in the form of S, = 1/(1 - g=) is also
used in the continuum model of (uw by Rummens[271. The
conceptual and the mathematical problems of using this site
tactor in the RF model are discussed in detail by Homer and

and Percivall29] and need not be reiterated here.

4.3. Raynes Site—-Site Factor

In a paper dealing with the NMR nuclear screening of methane,
Raynesl206] introduced the concept of the atom—atom interaction
and therefore accounted for the polyatomicity of both
interacting methane molecules. It will be remembered from the

preceding chapter that the atom—atom interaction model entails
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the knowledge of the mean inverse—-six power of atom-atom
distance, the mean intermolecular distance, and the properties

of the bonded-atom.

The atom—atom distance averaging process in the Raynes work
results in a geometric factor which is a special case of the F

series; Fa(di=d,;,R), as was mentioned in Chapter 3.

For the average R, Raynes resorts to (4.6) which brings in the
Buckingham and Poplel303]1 H. series as a function of &/kT, and
R becomes in terms of r.. The amalgamation of the Fe series
and H, gives another series with about twice the rate of
convergence of the F., series. This procedure of course is
analogous to that used by Rummens et al in obtaining S3 from
S and replacing R in (4.5) by re. The use of the F factor or
site-site factor, for the interacton of two methane molecules
in the gaseous state, which involves a binary gas collision,

appears to be guestionable for the following reason.

I¥f one assumes that the rotational motion period for molecules
in the gaseous state is similar to that in the liguid state,
and therefore of the order of 10-'= g5, one would expect the
collision of the two methane molecules to last at least about
1071= g for the fulfilment of their full rotations during the
collision. At normal temperature the translational speed of a
methane molecule is about 4x10% m/s. Now if a stationary
methane molecule is approached by another molecule at this
speed, it takes about Ex10-*% 5 to travel a distance of about
2 A during which the attraction forces are operative.

A conservative estimate by Mathesonl304] for a typical
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translational speed of Sx10= p/s and travelling distance of 1 A
puts the collision time at 4%10-*® g, This is a shorter time
than the time a methane molecule requires for full rotation in
order to justify the use of the F or site-site factor for binary
gas collisions. In other words, site or site-site factors are
characteristics of the liguid state where the translation motion
is slower than the rotational one which allows the rotational

averaging while R is fixed.

Regarding the properties of the atoms in bonds, Raynes

acknowl edged the severe approximation of treating bonded-atoms
as isolated ones. To understand his approach it is helpful to
draw a parallel with the buffeting field. The nuclear screening
of the H atom in two interacting CH, molecules in terms of the

buffeting field can be written as;

<E=3> (total field at resonant H} = 4 <E=li4q + <ERXgn (4.8)

The screening parameter B convertsthe field into the screening

s0 that (4.8) becomes (regardless of the signs)j

0 = 4 B {E®»um + B <E=lcni or 0 = 4 0(H,H) + ((C,H) (4.9)
where (J(H,H) and ({(C,H) are respectively the screenings caused
by H and C atoms. Raynes begins with an expression similar to
(4.9) and therefore calculating the screening of H requires the
chemical screening of two interacting H atoms 0(H,H), and that
of a carbon and H atoms ((C,H). For the former he uses the

atoms. For the latter however, Raynes assumes the
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polarizability and writes;

g(C,H) acc)

e

G(H,H)  Q(H)

(4.10)

then by using the theoretical isolated atom polarizability
values of Q(H) = .59, and Q<(C) = .135 A= (Expt. values are
respectively .666 and 1.467), given by Hirschfelder et all491],

arrives at an irrational estimate of ((C,H) = .23 J(H,H).

It is clear that the shielding caused by a carbon atom should

be larger than that by hydrogen atom, because of (4.10) and the
fact that @(C) » @(H) or <m=3c » <m=»4. The correct estimate,
using the bonded—-atom or contribution polarizabilities, is
gC,H) = 2.2 0(H,H). However, because carbon has a low buffeting
location (de = 0), its contribution to the total shielding

does not exceed 154 and the error thus introduced is not

considerable.

Une notes that by assuming (4.10), Raynes implicitly accepts

general proportionality of the screening and the field;

0 = -~ B <{E=> =~ B IQ@ R™®; according to which even (4.10) is

not strictly true because of the involvement of R and I. The

Raynes method lacks the features of a practical generalizable

theory becauses;

1- It depends on theoretical values of (, which is available
Tar Hessrt onlyv;

2= The expression for the F series is useable for the case of
dy = dy only.

3= The problems of bonded—-atom properties are unsolved.

Nevertheless, by using re = 3.8 A and the isolated—-atom
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nuclear screening Raynes calculates the value of - 0L = & to
be compared with the experimental values of 7.6 + 2, 5.6 + 2,

bah * By 7Tu7 £ 1y 94, 5.4 £ 2 ppm enF/molell7].

4,4, Conclusions

It was shown that although the Homer and Percival buffeting and

the buffeting field derived in Chapter 3 are not wholly eqgual

their main parameters are equivalent.

The almost one—-to-one correspondence between the normalized
moments and the K constant is interesting when one notes that
the latter is obtained by the Homer and Percival buffeting
field only, using a shift difference technigue that cancels the

RF contribution[29].

Another important finding here was the considerable correlation
between the 0 values of Yonemoto and the normalized moments
which once more reinforces the "inert—atom bonded-atom"
correspondece from a different theﬁretical view point, for the
fact that @ is a guantum mechanical guantity. This correlation
also suggests that a further scrutiny of the budding concept of
"inert—-atom bonded-atom" relationship by guantum mechanical

techniques could prove fruitful.

The study of the binary gas collision mode bears out the fact
that one could, to the benefit of the buffeting theory, use the
generaiized London potential in place of U in the Boltzmann
factor in (4.6) or (3.14) and combine the kT factor with the
buffeting formulations. This is important as it gives the

generalized London potential and the buffeting field a direct
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temperature dependence through the kT factor. This will remedy
the absence of kT in the buffeting model and enhance its

flexibility.

The nature of the scale factors in the Rummens et al theories
was elucidated and it was shown that the common element in
their models, the Raynes model, and the Homer and Percival

theory is their geometric factors.

In the following chapter the buffeting field expression is used

for calculations of vdW nuclear screenings and heats of

vaporization.
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Chapter 5

Polyatomic Dispersion Field

and van der Waals Nuclear Screening Constant

Intruducfion

The preliminary calculations of the heats of vaporization using
the polyatomic potential function in Chapter 4 verified the

underlying assumptions of the buffeting model.

The key expression in the derivation of this potential function
was the polyatomic or buffeting mean-square field, a direct
verification of which is possible by the calculation of the vdW
screening constant. The passage from the mean—-square field to
nuclear screening is achieved by the operation of the ambiguous

B parameter on the field; (uw = — B <E=>,

A preliminary analysis shows that the experimental wvdW
screenings may be calculated, with accuracies within the
experimental errors, using the polyatomic field and a fixed
value of B *H = .54, without the need for adjustable parameters
or scale factors. This value of B for *H is in agreement with

the guantum mechanical calculations and empirical findings.

At an enswing stage this fixed value of B and experimental (.
are used to find some realistic ligquid state inter-molecular
distances. These distances, used with the polyatomic potential
function, calculate heats of vaporization for the systems which

are in excellent agreement with the experimental values.
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In fact in this chapter the calculations of (. and H. are
concurrent with one verifying the other and together
substantiating the claim that the buffeting theory provides an

authentic liguid state inter—-molecular force function.

The combined use of the field-potential is then applied to

adverse systems, which provides valuable information on the
liguid state molecular structure and dynamicsi in other words,
a major use is found for the vdW site-sensitive screening

effect.

The analysis of the screening constants for CHz in pure
X({CH:CHx)a systems by the polyatomic field leads, to the
mechanism of their behaviour and encounters in the ligquid state.
It is shown that the separation of rotational and translational
motions and the key assumption that the former motion is much
faster than the latter is unrealistic for large systems.

This, together with the fact that the g ratios of these systems
exceed .43 ~beyond which the F series divergé5~ renders the

buffeting model inappropriate.

This limitation however is viewed as a souwrce of information
which could address the fundamental concept of the additivity

of the Iinter-molecular potential.

The satisfactory accord between the experimental screenings and
the calculated ones validifies the use of the polyatomic field
for the cases where more than one solvent effect is present,
namely the solvent magnetic anisotropy, the calculated values

of which for some anisotropic seolvents are found to be in
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agreement with the literature values.

The calculations of the B parameters for 19F 1zwye and =1p

provide a more subtle test for the polyatomic field expression

and give respective values of 11 + 1.6, 786 + 1, and 120 + 3é.

The quantum mechanical predictions of the solvent dependence of
B, although not observed for 'H and *”F, are salient for the H
values of **P and *=7Xe in different solvents, possibly
because of their very large (. values compared to those of *H

=13 7 il

A simple criterion for the order of magnitude estimation of the
B values for any nucleus, based on the B values of the inert

atom nuclei, is also suggested.

Moreover it is shown that liquid state structural information
such as the number of nearest neighbours and inter-molecular
distances can be obtained from the polyatomic field-potential
formul ation and data on (. or H.. The cases of liquid Hg,
liquid Cl=, liquid Pa, 8iCla, CFa, 8iFa, SFe, and CeH:= are

used to exemplify this approach.

3.1. The Polyatomic Field and the vdW Screening Constant

In view of the fact that both cohesion energy and vdW nuclear
screening are manifestations of inter-molecular forces, one
would expect the buffeting model to work for the latter as it
did for the former. The purpose of this chapter is to use (3.9)
for the calculation of 0w and throw light on the nature of the

proportionality constant B between <E*» and (..
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5.1.1. Nuclear Screening Due to the Polyatomic Field

Expression (3.9) according to (2.11) produces a nuclear
screening for the resonant nucleus i in the solute molecule

that can be written as;

T
Il
1
o

o R R < BB e A e SRR K 5P ol o SR ) (5.1)
where (= is the screening due to the Polyatomic field (5.1),

and other symbols have their usual meanings.

Let us expand (5.1) for a specific molecule like FHLCCFHEr as
was done for CHa in (4.8). We note that such a (solvent)
molecule has four kinds of atoms but seven species X5 = 7,
because the centre-of-mass to the atom distances d, for C's,

F's and H's are different;

HiD HD)
e \a‘\
e, e
(I F—C{l)—=dcarst——012] —F2)
e N
S LS
Hil) “Br

which result in different F values for the same atom. Therefore

(5.1) may be expanded as;

Jr = - 2L,BR™® { (@®)c [F(Ci,i) + F(C2yi)}] + <02y [FiHyyi) + FiHz,i)] + (a2)e [F(F,,i) +

F(F2,1)] + (a%)s. F(Br,i)}
We see that the solute resonant nucleus ‘i’ contributes to the
field by its location, d., in the F(d.,d,;,R) factor. The values
of d can be calculated for each species by using the bond
length—-angle and the law of the lever. This is explained in
Appendix § where a table provides all the d values needed in

this work, that can be calculated with reasonable accuracy.

For .4

2

» g » .36 the best-fit polynomial (A4.3) is used in
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place of the analytical F series (3.7). For the moments, the

corresponding inert—-atom moments from table 3.4 should be used.

Equation (5.1) for R in A, <m=3, .. in units of 1072 erg cm®
(that is, just the entries of table 3.4) and B in units of
107*= ppm cm®/erg (that is, Jjust the value of .54, for example)

give (e in ppm.

It is noteworthy that (8.1) differs from the Homer and Percival
Owz: by accounting for the field of all the constituent

atoms of the solvent molecule rather than the peripheral ones.
The contribution of the central atoms, d ™~ 0, affecting the

third decimal places, is negligible in the calculation of the

screening -—-but not in the calculation of the cohesion energies.

9.2. Polyatomic Screening Constant for Pure Compounds

As has been mentioned previously, the accurate calculation of
molecular properties using polyatomic formulations entails the
knowledge of accurate R values. The test of the generalized
London potential (GLP) by the preliminary calculations of H.
was based on Re values. It is instructive to repeat that

procedure here for the test of (5.1).

In table 5.1 are given the results of such a procedure in which
the empirical value of B = .54 found by Rummens{153] is
tentatively used to convert field into screening.

Uncertainties in the experimental values of (. are generally
large as highlighted here and throughout tables in this chapter.
A single entry for (uw in these tables should not imply its

accuracy, but rather the lack of further data; the reason for
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this is two-fold at least.

First, there are experimental difficulties especially in
determining (5. Second, (w are not a direct data but results
from processed data; it is processed in that, from the
experimental gas—to-liquid screenings (m, (g, and (= are
subtracted to obtainj;

o =2 OmiExpta? — (g (Expts) = 2R/3(Theo. )X (Expt.)

Therefore unlike solubility and to some extent H., (. data are

not strictly suitable for a stringent test of a theory.

Nevetheless, from the study of the preliminary analysis of this

table one can draw the following conclusions:

(1) The B value of .54 appears to be suitable for the
preliminary calculations and compares well with the guantum
mechanical values of .59 and .54 found respectively by
Kromhout and Linder[1381 for CHa...CHa and Yonemotol771]

for Hs...H=.

(2) The cal;ulated and experimental screening constants of CMea
and CoHiz= can be matched for larger R values.
The respective values of 6.3 and 6.34 A, intutively more
realistic liguid state inter-molecular distances, give
O = .219, and = = .201 ppm for the two systems. To find
these screening values using the static Bo = .74 (see
Chapter 2), R should be increased to 6.49 A for CMea, for
example. One might ask what ensures the superiority of 6.3
over 6.49 A, and simultaneously that of B = .54 over .747

The confirmation can be found by comparing the cohesion
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Table 5.1. Experimental+ and Preliminary Calculated vdW Screening Constants for Pure systems (I, = 11)

Compound CH, Eallxz C{CHy) &
Rs A (table 3.3) 4.17 6.20 6.21
{bp ~164 °C)
(E=) Egqe 5,17 551 . 457 465
-0~ ppn (B = ,54) »391 246 250
-0« ppa 176 (-106.1 °C) .203 {30 °C) .228 (30 °C)
.230% (-184 °C,amp) .192 {30 °C) 217 (30 °C)

143 (35 °C)

a: The Expt. (. values given in this chapter are from Ref.[17] unless otherwise
quoted.

b: Calculated by extrapolating the gaseous data -.482 0 to liquid methane at its
selting point with voluse Y = 33.6 ce®/mole. Rummens[17,153] argues that such
extrapolation calculates a value for (., which is about a factor of 1.565 too
small. Multiplying .230 by this factor gives .379 in agreesent with r = .351.
This extrapolation is discussed later in this chapter.

#: The fields and B parameter hereafter are given in units of 10'Z erg ca™
and 102 ca® erg* ppa respectively.

+1 For liquid methane,

energies based on these R values with those found
experimentally. Inclusion of more systems will substantiate
such analysis. Therefore we first find the R values of the
remainder of XMes system by treating R in (5.1) as an

adjustable parameter to match (e with (Ou:
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Compound (pure) SilNe,y Geles SnHes PbNes

=0 ppa .228 . 205 . 260 _ 297 310 .358
0~ ppa (5.1) 226 .205 . 260 .294 313 . 360
R (Cal.) A (5.1) 6,72 6.77 6.72 6.94 6.91 1.01

Exclusion of liguid methane from this list is justified by
ambiguous (. data -one for liquid methane at T *» Twa which
may not allow the use of Z,_ = 11, and the other one an

estimation from gaseous data.

Instead R. for methane is found from the more reliable H.
data as given in table 5.2, for which (5.1) calculates;

~( = {(Liquid methane) = .276 ppm (B = .54).

Table (5.2) compares the calculated and experimental heats

of vaporization for which (except for CHa) the above R

values are used.

Table 5.2, Calculated (by Eq. 3.25) and Experimental Cohesion energies H, (I, = [)*

coapound CHa Coliz CHea SiNes Geles SnHes PbMes
H. (Expt.) KJ/mole 8.18 30.05 22.3b 26.91 29.76 33.01 36,96
Ref. (2151 (158] (1581 (158] (158] [158] (1381
Hy(Cal.) Ki/mole 8.0 29.89 22.45 25.12 30.03 33.70 40,75
RA . 4.3 6.34 6.3 6.72 6,72 6.4 1.01

#: The use of I = If is justified by the fact that Is = 12 for these compounds, see (3.13).

The fact that the polyatomic potential using R values
deduced from (. and B = .54, calculates the cohesion
energies in excellent agreement with the data, corroborates

B *H = .54, and at the same time indicates the potential
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of this method in estimation of B for other nuclei. We now

come to the third conclusion.

(3) The R values found here appear to match those of table 3.3
calculated from volumes on the basis of the random

distribution of particles, that is (3.17);

Rise & 2 (.17. VM3 (Eiv2)
where V., is the molecular volume. In the remainder of this
chapter more evidence is provided to support R..-> as a
reasonable estimate of the liguid state intermolecular

distance from density.

The cases of large X(CHzCHx) and solute-solvent systems of

different sizes are examined in the following two sections.

9.2.1. Polvatomic Screening Constant for Tetraethyl Systems

According to the buffeting model the vdW nuclear screening of
a peripheral atom must exceed that of the non-peripheral one
because deret * daon-pers Which results in Fuert * Fren-perr and larger

F values means larger screening by (5.1).

Table 5.3 contains the results of testing (5.1) on pure XEta
systems. As there is no Re for the compounds, the R values are
adjusted so that (= (CH=x) ~ (W(CH=). These values of R are then
used in (5.1) to calculate (- (CHz) for comparison with

Jw(CHz). The d values of the species are given in table (AS.1).
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Table 5.3. Calculated {by Eq. 5.1) and Experisental ((CH;) ppm, for Pure XEt, systess

Compound C(CHaCHs) o SiICHgCH;i. Sn{CHzCHz) o
(. (CHs) . 184 « 145 . 153 197 184 « 207
Ten. °C 38 38 35 30 30 35
=0 (CH2) 139 109 . 1553 .136

Ten. °C 38 38 30 30

~0r (CHs) . 186 146 .198 186 .208
~(r(CH2) .092 076 .093 .080 .086
R {Cal.) A (5.1) 7.7 8.23 8,06 8.48 8.42

a1 Ref.[159]

The considerable disagreement in the experimental data for SiEta
is striking. It could not have been caused by the difference in
the temperature of the measurement because the change in volume
for this compound over 8 “C could hardly change the third
decimal figure of any guantity with R™® dependence;

Ten, °C 30 35 38

Y ca®/nole 190.4 191.3 191.8

We see that tﬁe calculated screenings for CH. are consistently
smaller than the experimental wvalues. The deliberate increase
of dw(CHx), which would increase its F factor, suggests

itself as a possible remedy. This solution proves fruitless for
two reasons. First, dw of CHa cannot be increased far beyond
the corresponding value of dn(CH=) for X(CH=x)a systems, and
second, any increase in dy of CH: affects the calculated R and

Om, resulting in an endless loop of alterations.

Alternatively, one can re-examine the inherent assumptions of

the buffeting model when dealing with large molecules. Let us
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assume that, instead of the "on the spot" rotations of the
molecules according to the buffeting model, the (per;pheral
atoms of) solvent molecule can momentarily penetrate the open
structure of the large solute molecule and buffet the CH=
group to an extent more than the mathematics of the model
allows. As Rummens(17]1 puts it "... for X(CHaxCH=)a in any of
its possible conformations at least one of the CH: groups will

be just as exposed as the CHx groups...".

If this is true one would expect the differencej

A = (L(CH=) — (Jw(CHz)

to increase as the size of the peripheral buffeting atoms of
the solvent increases, or as the sizé of the centrél atom X
decreases, because in both cases the penetration is more

hindered. The data supports this supposition as borne out below;

Experimental & values

Increase in the Size of the Peripheral atom of the solvent -=--=---===-=---}

SMCHSIQ cgﬂrz CBl. SiBr;

lnrreasei CEts 043 . 045 067 075
in size : SiEt,  .034 038 052 053
ofN o ke .07 023 043 040

This effect is also observed for zig-zag—-like molecules.

For 8i(0CHaCH=)a the difference between (=(CHz) = .077 and
0w = .16 ppm is even larger because of its even more open
structure. Therefore one is forced to the conclusion that the
basic assumption of the separation of translational and

rotational motions is invalid for large molecules, in which;
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viTrans.) » v(Rot.). This is because the moment of inertia

I = L md® in v(Rot.) a (kT/I)¥? is much larger than m in
viTrans.) a« (kT/m)!2, Therefore the solvent can "translate"
towards the solute and penetrate it while the latter is still

in one of its rotational conformations.

This effect cannot be incorporated in the mathematics of the
buffeting model at this stage without the introduction of some
sort of factor which accounts for the extra buffeting. However,
one cannot help thinking about an extreme sifuatiun in which a
amall solute can be envisaged to be buffeting all the

constituent atoms of a large molecule independently.

The tentative acceptance of such a situation brings about
far-reaching consequences for the buffeting theory. First, the
concept of the intermolecular distance loses its meaning and
attraction. The R distance, between a small solute and the
atoms in the solvent, would be more like vdW distances almost
always fixed -note the emergence of the Homer and Percival
buffeting model from the argument. Even the solvent d values
lose their importance for the fact that the atoms or groups in
the solvent are fixed to it and appear static during the

interaction with the fast-rotating small solute.

This idea is tested for the solubility of small solute (COz)
in a number of large alcohols in the following chapter with

interesting results which stimulate further investigation.

At this point a serious criticism of one aspect of the Homer

and Percival buffeting theory should be mentioned, but which
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may fortunately be justified in the light of the foregoing

argument.

It will be recalled that the distance r. in their buffeting
field expression (4.1) is defined as the sum of the vdW radii
of the peripheral interacting atoms. This, of course is correct
for the outer atoms, but for the interaction of the peripheral
atom of the solvent and CH: of the solute the distance is
larger by the amount by which the CH: group is away from the

surface of the solute molecule.

Homer and Percival in their successful treatment of the CH=z
shifts of S8iEta, and Si (0Et)a have used the same 2 r. of the
outer situation, which results in larger calculated values.
In other words the assumption of the full penetration of the

buffeting atom into the solute structure is implicit in their

treatment so that 2 . of the outer situation is maintained.

Note that the calculated R values from screenings in table 5.3
disagree with R.,.»> values in table 3.3. For R..» values the

ratio q = dw(CHs=) /R.» exceeds .43 for SiEta and SnEta rendering
even the best-fit F expression inefficient. Comparison between
the available experimental and calculated heats of vaporization

for SiEts shows that the R values of table 5.3 are too large;

H.(Expt.) = 41,350158];  H.(Cal. R = 8.23) = 22.49;  H.(Cal. R = 8.06) = 29.32 KJ/mole

The experimental heat of vaporization can be calculated for
R = 7.85 A, a value still larger than R..»> = 7.55 given in

table 3.3.
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5.3. Polyatomic field screenings of small solutes

In the treatment of the binary mixtures the question of the
cavity size arises. Correlational analyses of the RF model of
Jw in Chapter 2 clearly supported the solvent cavity size
concept, which is tested in this section for the polyatomic

model of (..

It is instructive to test the solvent cavity concept on mixtures
of some similar size molecules first. Table 5.4 gives the
results of such test in which the solvent cavity ideaj;

R = R, if Re > Ruy 15 used.

Table 5.4. Expt. and Calculated (5.1) vdW Screenings (ppm) based on the Solvent Cavity Size(l, = {1)

Solvent--===  CCla (R = 5.9) Ceiz (R = 6.34) Ces (R = 6.3) SiMea (R = 6.72)
Solute (. 0e 0n 0r 0w 0r 0n 0r
CeHa 394 .39 257 2310 .268 291 243 220
(R = 6.18) A20 .203

43
CeHlaz .267 .278 2024 .200 187 .223 .182 175
R = 6,34 . 265 1924

143

CICHs)a .290 273 .230 .233 222 219 185 168
R = 6.3 307 220 207 212

320 187
§i (CHs) 267 210 .233 .239 .20 216 .228 230
(R = 6.72) .299 210 255 205

322 282

.360
a: Ref.[27)
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The R values of CCl, and CuHe given in this table are from

tables 3.3 and 5.9 respectively.

The good agreement between the experimental and calcul ated
values supports the solvent cavity size and B *H = .54, The
solute cavity size for CuiHe in SiMea gives —(e» = .387 ppm,

for example.

Let us now test the solvent cavity size for a small solute like
CHa in a large solvent like CCla for which R = 5.9 A.
Expression (3.1) gives (= = .16 ppm} which compares poorly

with the observed values of —-.473 and -.44Z% ppm.

Clearly the concept of a centre-retained solute for a small
mass like methane with a critical temperature very much lower
than the temperature of measurement (¥ 30 °C) is unrealistic.
However on the grounds of its relatively fast movements;
v(Trans. CHa) ™ 3 v(Trans. CCla), a methane molecule inside the

solvent cavity would have a high collision rate and appear to

be in the vicinity of the surrounding solvent molecules for

most of the time. Fig. 9.1 illustrates this situation.

Fig. 3.1, Solvent cavity concept for small gaseous solute with apparent inter-solecular distance
R™ (R, +R,)/2 and 1. = I_(s0lvent).
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R ¥ (Ru + R ) /2 , (S5.3)

than the solvent size (R, + R.)/2. Note that the size of the
cavity, and therefore Z,, are still governed by the solvent.
Table 5.5 compares the calculated and experimental screening

constants and heats of vaporization for systems of table 2.10.

Table 5.5. Analysis of H. of Pure Solvents and Screenings of CHe in the Solvents (B = .54, 1, = 11)

R.iz A Ho(Expt.) H.{Cal.) -0« ppa -0 ppm
Solvent (5.2)*  Ki/mole Ref. Ki/mole (3.25) 271 (5.1
CHz12 3.48 = 79.04 769, 767 65
CHBr 5 9.83 40.43 158 48.39 6324, .b4b 641
CBra 6.32 45.02 158 45.62 .94 392
Bra 4.82 29.45 215 21.92 . 336 .502
CHs1 5,22 28.16 158,215 b 303, .547* . 562
CBrCls 6.08 = 34.81 © 0033y J 424 . 341
CCla 3.9 34.52 158 34.36 LA43, A472< 340
CHsBr 5.04 24.77 158 b . 353, .445* 486
CHCl 5 3. 67 29.71 215 27.33 407, 4204 458
CHaCl 2 3.27 31.65 138 33.07 . 398, 407+ . 527
SiCla 6.40 28.49 215,255 28,79 301, . 347< .481

-

1 Calculated (except for CCla) using solar volumes of table 2.3 in (5.2),

: Ref.[157]; bs The g ratios for hydrogens exceed .43 (see Appendix § for dw).

! Ref. [171,

(al

The considerable agreement between the calculated values and

the data particularly in view of the fact that no parameter is
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treated as adjustable corroborates, the value of .54 for H,
the ‘inert-atom approximation, R.i» (3.17) or (5.2) for nearest

'neighbour distance, (5.3) for binary mixture of small solutes.

Note that these results are obtained by using the densities and

bond length-angle of the systems only.
The rather poor agreement between (. and (e» for SiCla has
initiated the investigation of section S.6.1 into the liguid

structuwre of this solvent.

Table 5.6 gives the results of similar analysis for three more

gaseous solutes for two of which (. data is available.

Table 5.6, Analysis of vdW Screening Constant and Cohesion Enerqy of Pure Ligquids (I, = 11", B = ,54)

Hz Ref.  CaMa Ref.  CaM Ref.
Mp °C -259.2 158 -88.63 158 -103.71 158
Yol. Ca’/mole 26.15 69 52,57 158 49.56 255
At Tes. °C -259.2 -108 -102
R.i7 A (5.2) 3.89 4.914 4.819
o (Expt.)Ki/aole 903 69,255  14.7 255 14,44 158
.05 158 15.63 158 3,53 255
Ho(Cal.)Ki/mole 1,00 15.66 13.44
0 ppa - 257 153 291 305
219 305
0 ppa (5.1) 092 324 .290

#; The Crystalline structures of fcc, hexagonal(306], and orthorhombic{306]
all with Is = 12, for Ha, CaHs, and CaHe respectively justify
I, = 11 according to (3.13). Note that R.,, for Ha compares well with

Rs in table (3.3)
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The agreement between the data and calculations is impressive in
view of the fact that again no parameter is adjusted to obtain
the results. Note that the magnetic anisotropy effect for CaHa

is assumed to be zero.

The screening constant of liguid hydrogen in the form of;
e = 092xV = .092x26.15 = 2.4 ppm cm®/mole may be crudely

compared with the available gaseous value of 4.6 * 2.

The liguid state dependence of (. on density for CzHs and CxzHa
is given by Gordon and Daileyl305] as .4880 and .515p ppm
respectively, from which the data in table 3.6 are found by

using the volumes at the quoted temperatures.

Rummensl[153] has studied CaH., in the gas and liguid states down
to -55.6 °C at f = .502 gr/cm®. He argues that the liquid state
shifts cannot be found by direct extrapolation from the
carresponding gaseous state. We have checked this by using his
results on CaHe,, which shows that the shift at -55.6 “°C for

(A = ,23% gr/cm™), for example, may be found from the gaseous
shift at 385 °C (p = .233 gr/cm¥) by extrapolation in good

agreement with his experimental value.

Accordingly from his data at -53.6 °C we find -.257 ppm for
the screening constant of CuHe at -108 ©C (0 = .572) which

agrees with the Gordon and Dailey result of .279 ppm.

The gas—to-liguid screening of liguid Hi: cannot be found from
the available gaseous data of Dayan and Widenlocher[307]

because they have not guoted the densities.
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The results of the analysis of the screening constant of these
gases in two available solvents are given in table 5.7. The R, .»

values found in table 5.6 are used in (5.3) to obtain (= values.

Table 5.7. Analysis of the Screening Constants of H , C.H,, and CoHe (B = .54, 1, = 11}

Solvent
CCl4 (R = 5.9) Cathz (R = 6.34)
Solute i P ppa -fr {5.2) ~( ppa ~0r (5.2)
H2 485 AT4 .283, .300 391
CaHe .305, .310 A70 195, .210 A3
CzHa . 345, .370 .500 225, 240 439

Note the correct trend but the rather poor agreement between
the existing data and calculated values, particularly for
cyclohexane. The polyatomic field appears to predict
consistantly large values for small solutes in cyclohexane. For
methane in this solvent it gives —-.475 compared with the data
of —.225, -.285017] and -.270[27] ppm. This anomaly is not

observed for similar size systems of table 5.4.

The possibility of non-zero neighbour anisotropy effect for
CaHyix» as a cause of the anomaly is examined in the following

section.

In spite of the stated anomalies the evidence provided so far
authenticates and proposes the buffeting formulas for more
subtle uses like the study of the magnetic anisotropy, the E
parameter of nuclei other than *H, and molecular structure inthe

ligquid state.
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5.4. Neighbour Anisotropy Screening, (.

The historical introduction to Chapter 2 showed that the
anomaly of aromatic solvents in the experimental verification
of the theoretical shape factor 2%/3, was attributed to the

magnetic anisotropy of the solvent by Bothner—-By and Glick.

The expression for the screening of the medium (2.8) upon (s
correction and re—arrangement becomesj;

Ow = 0(Expt.) - (0w (5.4)
In other words (. comes to existence if the experimental
screening of the medium after correction for the bulk
susceptibility has a residue which either is too small to be a

genuine (. or is a positive value.

Consider the gas—-to-liguid screening of methane in C(NOz)a and
CoMHe 5 for example. In the former, the residue shift is too
small —.083 ppm to be a genuine (w, and in the latter it is

+.124 ppm, & positive value or up-field.

The neighbour anisptropy effect arises as a result of the
secondary magnetic field produced by the solvent at the site of
the resonant nuclei in the solute. The secondary magnetic field
results from the interaction of the external field and the

sol vent.

It is shown by Buckingham et all221 that this secondary field
or its screening constant is proportional to the anisotropy in
the diamagnetic susceptibility AX = Xl - XL of the solvent or

the groups belonging to the solvent.

It is also the orthodox view thatl[22,308-3141 & (. shift is
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positive (high—field) for disk-shaped molecules like C.,H. and
negative (low-field) for rod-shaped ones like CS. or CN group
of CH=CN. The anisotropy screening may be estimated from (5.4)

assuming that (J., ™ O3

Ou > OtExpt.? = Gp (5.5

The results of such estimations are given in table 5.8 for some

anisotropic solvents.

Table 5.8, Neighbour Anisotropy Screenings (ppm) for Anisotropic Solvents (B = .54, 1, = I1)

Solvent---) CoHs CINO2) s ' 05, CHsCN

§(Expt.) 0 f. (Expt.) O» fe 0lExpt.)  gr 0a 0(Expt.)  On 0.
Solute [27] £5.1)  {5.5) (271 {5.1)  15.9) [163] {5.1) {5,5) [163] (5.1) {3.39)

CHa 124 -.432  .50% -,053 -.580 .330 =583 =383 =200  =AlhT =3l =09
CoHa 235 =319 61 120 -M7 327 & =260 - =452 -39 -.058
Calliz 0272 =20 A% 043 -.298 M =398* =183 -213 -285 -1 -,0M
CiCH3)a 2213 =218 431 028 -.292 264 - 426 -J080 - 2A5  -317 -3 <083

SilCHs)s A5 -.229 380 035 -.290 285 w820 =78 = 42 = B8 =257 =104

Nean {, 495 343 -,257 -,078

a: Refal271.

Table 5.9, Calculated R values for Anisotropic Solvents using Heats of Vaporization (I, = 11°)

CS; Ref. CH5CN Ref. CaHy Ref. C(NOz)y  Ref.
R (Cal.) A 3.86 4.80 6.18 6,57
He (Expt.) 26.74 215,315 3135 255,315 30.79 255,315 4L.16 158
28.37 158 30.79 &9
34,05 158
Hy(Cal.) 26.64 31.28 30.33 41.53

#: This value for CHsCN is based on the Kitaigorodsky observation that organic molecules have Is = 12

(see Chapter 3). Appendix & gives the details of the calculations of H,.
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The R values which, when used in (3.25) give the right cohesion
energies for the solvents, ensure the reliability of caculated

U and (m-. These are found in table 5.9 and used in table 5.8.

This results in calculated screenings consistent with the

cohesion energies.

The R values of CHzCN and C(NOz)a compare well with respective
R.ar values of 4.9 and 6.48 A found from their volumes at 20 ©°C.
The R value of 6.57 A for C(NOz)a based on its HL(Expt.) is
less attractive because it exceeds R..» = 6;48 A at 20 “C.
However such a difference in R's has little effect on (e and
He. For example, one finds (= = —-.543 ppm for CHa in this
solvent and Ho(Cal.) = 46.78 KJ/mole for pure solvent when

R.i1» = 6.48B is used.

The values of R for disk-shaped benzene and rod-shaped C5.. are
troublesome. These values do not comply with R.,»> formula
(5.2) as was discussed in Chapter 3. It appears that for
non—-spherical molecules R is best found from the mean

{or the geometric mean) of R, values given in table 3.3. The
geometric means are 6.18 and 5.9 A respectively, which compare

very well with those of table 5.9.

Let us now return to the discussion of the results of table 5.8.
First, the values of (. have the orthodox signs, positive for
benzene and C(NO..) ., and negativg for CSx and CH=CN. Second,

the propcrtianalit? of 0= with AX is borne out below. Third,
Rummensl27]1 finds no evidence for a significant value of (0. for
CS: based on his site-factor RF model of (w, although he finds

a mean value of —-.14 ppm for CH:CN. His findings do not show
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the proportionality of (. with A¥%:

Nolecule CeHo C52 CHCN CHsI CHsBr CHsCl
-i% = %l - %] 9.91= 3.00° 2,28= 1.82= 1.41= feo32=
erg gauss—Zx10=7

Mean (. 495 -, 257 -.078

ar Ref.(314]; b: Ref.[22); c: Ref.[317]

Fourth, the large permanent dipole of CH=CN: K = 3.44 DL3181),
according to (2.24), results in the dipolar screening of;

e = 094 (0., for this solvent. If this value is subtracted
from the anisotropy screenings the average (. reduces to the

smaller value of .o0S51 ppm.

Fifth, the vdW screenings of C(NO=:)as, which because of its
tetrahedral structure is expected to have no anisotropy effect,
are too small to be genuine (w. This molecule, as has been
mentioned in detail by Raynes and Razallé31, on the grounds of
its four disk—-shaped NO= groups, gives rise to substantial
anisotropy shifts. The average value of .345 ppm compares well
with that of Percivalllé01, .35 ppm, found on the basis of the
Homer and Percival buffeting theory. It compares poorly with
Rummens ‘L2771 average value of .239 ppm.

The average (. for benzene is in agreement with those of Homer
and Redhead[3191; .407, Rummens[271; .55, and Becconsalll[Z14]

S50 ppm.

Concerning the shifts of gaseous solutes in cyclohexane, the
evidence in table 5.7 suggest a sizable (. ~ .20 ppm for this
solvent. This however can be supported neither by the evidence

in table 5.4 nor by its presumeably vanishing small AX.
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5.5. Empirical Determination of B

In this section the buffeting model is used for the study of

the B parameters of F, P, and Xe.

5.9.1. Determination of *7F B parameter

The lack of knowledge about *7F B has forced workers to
empirical determination of this parameter. The values so
obtained show outstanding sensitivity to the solute-solvent
system. Empirical values as small as 10 and as nonsensically
large as 782 have been found for '"F B, depending on the

model of <E=», Here the same method is adopted in which (5.1)

and the experimental screenings would be used to find B.

A preliminary calculation of the heat of vaporization for CFa,

a conventional solute of *7F shift studies, showed that the

value of R, .» 4,662 A, found from its molar volume at the mp,

gave H.(Cal.) = 9.15, short of the experimental value by 3.5
Kd/mole. Another conventional solute, SiFa, showed the same

pattern when its Re(Expt.) = 4.68 A was used in (3.25).

As R cannot be decreased beyond the solid state values to
increase the calculated values of H., these shortcomings were
viewed as the reflection of some sort of structural

peculiarities of the compounds.

In fact the special bonding character of them is the root of
the variances. Paulingl318] has shown that CFa, for example, is
best described as a resonance hybrid of 12 structures of type
(a), four of type (b) and one of the traditional covalent type

(c) which was used in the calculation of H. by (3.25);
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(a) (b) ‘e
Recently Maclagan[320] has discussed the bonding for SFs and
has concluded that ionic Lewis structures such as (d) should

have larger weights than type (e);

1Fs F
P i F.\ L F
-~ ‘: /S\,
F7 I NF F7 I NF
F F
(d) ' (e)

n=r

New developments of the Pauling "3-electron bond" theory shows
that a more suitable representation of the ionic structures is
provided by what is called "4~elec£ran J-centre bonding".

For SF. Harcourt[262] gives the following forms where the
"g-~plectron 3-centre bonding” is in resonance with other

locations;

=|.:.'= =12 :F:': -1z :.F.= t=1/2)
F\\'//F -. :
F’/ S:‘\\F F—b%—F 1 =
:F::: t-1/2) ”':.“::-wza :r.:= t-1r2)
(f) (g) (h)

The new representation is also adopted for CFa and SiFa in (g)

and (h).

The existence of ionic character in molecules has a bearing on
the buffeting model, as was clearly shown in Chapter 3 for the

estimated moments <m=je.

The buffeting formulas (3.25) and (3.1), via <m*®im, are capable

of differentiating between the covalent and ionic types.
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One notes that the ionic type, by analogy with inorganic ionic
compounds, should have enhanced inter-molecular forces and

therefore larger cohesion energies.

By accounting for the ionic structure (see Appendix &) the
calcul ated heat of vaporization for CFL., for example, increases
to 11.6 (Exp. = 12.6) KJd/mole with the difference of;

11.6 = 9.15 = 2,45 KJ/mole being due to the ionic character.

Table 5.10 gives the R values of some fluorine solutes found
from their volumes at the gquoted temperatures by (5.2) and by
(Z.25) using the experimental H. values. The agreement between
them is remarkable bearing in mind that for disk-shaped Cu.Fa
realistic R cannot be found from (5.2), as was mentioned
previously. For SF., R = 5.15 A is a better inter-molecular
distance for the liguid state because R.,»> = 5.06 A is
calculated from the volume at -91 °C, well below its melting

point.

Ionic structures equivalent to those of (f) to (h) are also
assigned to CuFs, and CaFw asi Cs*FwF~ and Ca*F»F~ because
there is no reason to believe that they should not have ionic

character.

Table 5.11 contains the results of the analysis of fluorine
screening constants for both polar and non-polar solutes and
solvents. The solute CFzClz (mp —-158 ®C) is also included
simply by using its R.,»> = 5.38 A from V = 469.1 cm=/mole at
—-1152C. Many more solutes including CFzBrs, CF=ClBr, CF=xCl

CFxCCCFx, FClCCFCl from the work of Abraham et alll162] could
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have been analysed if the molar volumes were available.

Table 5.10, Calculated R values fros molar volumes {5.2) and Cohesion Energies (I, = {f)*

Mp °C V (At °C) Ref.  R.17 R (Cal.) A H.{Cal.) H,(Expt.) Ref.
Compound ca*/nole {3.2) {3.25) (3.25) Ki/mole
CFa -184 44,89 (-184) 150 4.66 4.6b 11.460 12,6 158,215
§iFa -90 48.0 (-98) 247 4,77 4,75 18.45 18.6 a
SFs =51 §7:3 VE=91) S8 247 3.06 3. 14 17.717 17.08 253
c-CaFn -38= 116.0 (0) 158 6.39 b.42¢ 23.79 23.32 255
CofFs 3.7 115.8 (23) 214 6,39 6.58 31.42 31.64 255
CFCl5 =110~ 91.94 (17) 225 5.92 5.7 26,26 26.85 158

#: See section 5.6.2. on the I. for SiFs and SFs.
a: It is generally true to nrite.Hv * Ha - He which for SiFs gives H, ™ 26.48 - 9.498 = 16.98.
The same expression gives H, = 23.85 - 5.02 = 18.83 ( data from Ref.[215]) for SF, in agreement
with the experisental values. The experimental value of 18.6 for SiFs is from an unidentified Ref.
b: For R,,7 = 6.39 Eq. {3.25) gives H, = 25.32 Kd/mole still in considerable agreement with the

experimental value. c: Bp = -4 °C; d: Bp = 23.7 °C.

~The rather unorthodox *%F B values found in table S.11, being
lower than what is normally suggested, are interesting in that
they are independent of the solvents and also show small

variations over the range of the solutes considered.

The variations in B values for different solutes however appear
to be genuine. Petrakis and BernsteinC241] argue that in the
series CFa, 8F44, and 8iFa, there is an increasing double bond
character. In other words the increase in the electropositivity
of the central atom from C to 81 guarantees the increased
enrichment or "swelling" of the fluorine bond with electrons.

This increased ionic character means larger shielding of F
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nuclei which in turn necessitates a larger B value.

Table 5.11, Calculated '*F B paraseter from (5.2) and (,(Expt.) of tables 2,7 and 2.8

Solvent

Solute CCla SiCl, CFCly [162] Celiz SnHes Mean B
CFa (EZ) 906 792 816 .197 .B12

B 8.38 8.64 7.50 7.45 8.4l 8.07 + .5
SiFa (EZ> 1.019 .084 890 B899

B 10,93 11.42 ¥ # 11.17 147 ¢ .2
SFs (E*) 751 660 061 b71

B 10.40 10.64 E 3 10.50 10.58 ¢+ .1
CFCl, (EZ) 484 432 429

B 12,60 L 11.85 11.91 ] e
CF2Cl, (EZ) 336 478 ATS

B 11.69 # 11.00 10.77 t {15 ¢ .4
C-CaFn <EZ) b4 950 . 549

B 11.29 ] 10.53 10.00 i 10.60 ¢ .6
CeF s (E*> Lbb0 983 392 423 920

B 13.94 14.50 12.96 12.22 15.17 13.7 ¢ 1.2

Overall Mean B = 11.0 ¢ 1.6

¥: No . available.

Likewise, judging from the large B value of C.F., the fluorine

bond appears to be "glutted" by electrons from the electron-rich
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ring. Overall, these conclusions suggest that one can relate
the B parameter to the ionic character of the bond as shown in

Fig. S.2.

Decrease in the ionic character of bond.

Species CoFs > CFCls )8iFa ™ CF2Cla > SFs * CaFa } CF4

B RE O i 10 |

Decrease in the values of B.

Fig. 5.2, Ionic character of bond and the B value.

Note the consistency in the order of the B values and the ionic
character. For methane derivatives it follows the natural
direction of CFCls » CFaCle *» CFa because as the number of F
atoms increases the charge density per atom decreases.
Judicious use of order relationships such as this help reduce
the error in predicting (. of *”F compounds by finding a
suitable B value rather than indiscriminate use of the overall
average of 11 + 1.6. For example, in the case of CFzBr., Fig
5.2 and the fact that 2Br provide more electrons for F than

2C1, suggests the value of B ™~ 12.

Note that the solvent cavity size for CuFs in SnMea has caused
the large B value of 15.17, otherwise, using (5.3) B equals

10.35.

The average value of 11 in itself merits some discussion. If

the concept of crude proportionality of B with the electron
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charge density is grafted onto the concept of the correspondence
of inert atoms with atoms in bond, a_criterion may be set for
deciding the value of B for different nuclei as follows:

The B value of nucleus falls somewhere between the B values of
its corresponding inert gas nucleus and that of the inert
nucleus of the next row in periodic table. For *°F, for example,
the B value accordingly has to be larger than that of Ne and

smaller than the B value of Ar.

This criterion is based on the fact that fluorine in the bond
appears to have a larger polarizability than Ne, and therefore
is more shielded. The fact that the polarizability of fluorine

in bond is larger than that of Ne is shown below;

Species Ne F—X ==
a A= 395 N T e «285L321 1
¥: This the polarizability contribution of bonded F.

Fig. 9.3 summarizes this criterion.

Species He (H] Ne [C, N, O, F] Ar [85i,P, S Cl1 Kr [ Ge,As, Se, Br 1 Je
B, .075* 5.6 8.3 124.7 337.3

B A7 4.1 ? 252 914

AT CH B¢ A1 (5.6) C (C, N, O, F) B¢ 2(A1.3) ¢ (Si, P, §, C1) B  252(124) ¢ (Be, As, Se, Br) B ¢ 914(337)

Fig. 5.3. A Criterion for the order of magnitude estimation of B for different Nuclei.
¥: This value of Jameson et al is not reliable (see Rummens[i7]).

The B (dynamic) values are from Kroshout and Linder (see Chapter 2),
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The theoretical and empirical B values for H and F follow the
order of Fig. S9.3. Some of the Mohanty and Bernstein[246]
empirical values of B = 262 (CF,,..CF.) and 782 (SF4...SF.) for

example, found from gas phase studies with the inclusion of

repulsion in the inter-molecular potential appear nonsensical

and out of place.

This, together with the fact that any repulsion term for the
poyatomic potential-field formulation must contain empirical
parameters, which cripples the practicality of the model,
justifies the exclusion of a repulsion—type contribution from

this attractive model.

9.5.2. Determination of P H parameter

=ip NMR has been increasingly popular because of its biochemical
applications. There is very little information on *'P solvent

effects and virtually none on its B valuell171].

The =1 NMR solvent effects are very large, about 100 times
larger than for protons and about five times larger than for
LPE, therefore new phenomena may be observable in the analysis

of its data.

For the analysis of the screening data of phosphorus given in
table 2.9, Z4 and R must be known.

Early studies on white phosphorus at -33 “C report a cubic
structure with a = 7.17 AL3I22]. The same structure is reported
in the ‘Handbook of X-ray Analysis’ by Mirkin[3231, with

a = 7.18 A. For a cubic unit cell of this size, one finds;
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Rs = 5.0 A. However later studies on a single crystal [324-326]

categorically reported a bece lattice with a = 18.51 A.

The x=-ray diffraction on liquid white phosphorus at 48 °C by
Thomas and Gingrichl[327] confirms the cubic structure. Their
radial distribution curve shows three peaks at distances 2.23,

~ 3.9, and ™~ 5.9 A from a particular phosphorus atom, with

areas equivalent to I, ™~ 8, and ™ 32 phosphorus atoms.

The first three nearest neighbour atoms are consistent with the
Pa molecular structure of white phosphorus. The second eight
nearest neighbour atoms, have to be viewed in the light of the
fact that x-ray diffraction takes place in t < 10719 g[238]
during which time no translational or rotational motion takes
place. This suggests that the second radial distribution peak
represents 8 nearest P atoms belonging to 8 molecules, namely

Z,. ~ B. This is in agreement with the cubic Zz = B8 and (3.13).

To ease the calculation of the nearest neighbour distance, R,
that is the centre-of-mass of a Pa to the corresponding centres
in the neighbouring molecules, from P...P distance of ™ 3.9 A

the Pa is depicted as a circle in Fig. S.4.

3.90

S

p+————R'390

2P pde————— B ® 4, 50—

R = (3.90 + 6,60)/2 = 5.25 A

Fig. 5.4. An x-ray "snapshot" of the nearest neighbours distance in liquid P,,
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The average value of R = (4.6 + 3.9)/2 = 5.25 A compares well
with R ;> = 5,35 from the volume at 20 °C. Note that 1.35 A is
the de value given in Appendix 5. Also note that the observed
32 P atoms of the third peak can be explained if some molecules
of beyond the second molecul ar shell can momentarily join the

second shell.

This R value is used in table 5.12 for the calculation of H..
The agreement between the data and the calculated value is

impressive.

Table 5.12. Calculated and Experimental cohesion energy for white phosphorus (I, = 8)

Y ca3/mole R.iz A Re A Hv (Expt.) Ki/sole H.(Cal.)
At 20 °C Ref. (5.2) (Fig. 5.3) Ref. (3.25)
67,77 255 5,35 3.25 52.36 158,215 51.95
52,67 328
The usual value of Z. = 11 and R,.1» in (3.25) would give

He = 62 KJ/mole, about 10 KJ/mole larger than the experimental
value. This signifies the sensitivity of the polyatomic

formulas to the liguid state structure (see sec. 9.6.2).

In the absence of x-ray data on liguid P, the over-estimated H.
value could have been used to find a more realistic Z. and via

that surmise, on the ligquid and selid state structures of Pa,.

The buffeting fields and the calculated B values for P. in
five solvents are given in table 5.13. For all the solvents
except LS., because of its small size compared to Pa, the

solvent cavity idea is used. The R values for the solvents are
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those previously given in this chapter.

Table 5.13. Empirical B values of *'P (1, = 8, R = 5.25 A, (. data froa table 2.9)

Solvent <E2) (5.1) B B (I, +1,) I /€1y + Iv)
Pa A79 187 2625 .50
CaHa 236 127 2062 A3
S 386 104 1790 .41
Callyz .238 98 1658 Al
CCl, . 368 84 1549 .38
B =120 ¢ 36 cc = .93

One notes the sensitivity of the B parameter to the solvent.
Mohanty and Bernsteinl246] also observed such a prominent

solvent—-dependence behaviour for their *?F B values.

The Kromhout and Linder theory predicts the solvent—-dependence
of the B parameter asi

B o# e (3 I, & 2 LA/ (Tg & T)=

where c is a constant for a given solute and I, and I. are the
ionization potentials of the solute and the solvent

respectively.

Mohanty and Bernstein, by re—arranging this expression asjg

B (la # L) % ook (1720¢ T.7(Ta + 1.

made an attempt to find the linear relationship that should
exist be@ween B ol + 15 ang Lo/ila s 12 They found po
simple linear relationship.

Table 5.13 shows that a rather good linear relationship exists
between the values of the last two columns. Such solvent

dependence behaviour of B is probably evident for phosphorus
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because of its very large screenings, which magnify the effect.
The average B value of 120 + 36 and the individual B values
are in accord with the inert—atom—-B value criterion shown in

Fig. 9.3.

The B value of Pa/Pa system however is larger than that of
Jameson et al for kr, signifying that the dynamic values of
Kromhout and Linder are probably more realistic. This is checked

for Xe in the following section.

S5.59.353. Determination _of *=7Xe B

In table S.14 are given the screening data for *=%Xe in solid
and liguid states in ppm cm®™/mole which are converted to ppm by
dividing them by the solvent’s molar volume. For solid Xe,

2w = 12 and for the liguid Z.. = 11 are used.

The calculated B values are akin to the Kromhout and Linder
values and in reasonable agreement with the empirical value of
837 foud by Jameson et al in contrast to their theoretical
static value of 337. The B value found here for *=%Xe is, as

one would expect, firxed, because the solvent is constant.

From gas phase studies Jameson et al have found empirical
solvent dependent B values for *#%Xe. In fact we extrapolated
their gas phase data to liquid phase by the crude method of
dividing them by the liguid state volumes of the solvents and
found distinct solvent dependent B values. A correlational
analysis similar to that of Fa in table 5.13 shows a good

correlation coefficient of .98 fo *=%Xe.
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SOl vent e > Solid Xe Liquid Xe
s Zoo= 1

V cm®/mole Y b 42.69" (mp)
R.i7 A 4.37 4.58

0w lExpt.) 11800 (ppm cm™/mole) PTE0
~JtExpt. ) 318 (ppm) 219

sEFr tha1) . 404 s d D

H 787 785

*: Ref.L&69].

5.6. Liguid State Structural Problems

This section typifies the sort of ligquid state problems that can

be studied by the buffeting model.

oubal., 0., for SiCls

Comparison between the (. data of CCla and SiCla shows that
shifts produced by the former are always larger than those of

the latter.

Raynes and Razall163]1 observed this and wrote "... the shifts
produced for CCls are 40-50% greater than those produce by
8iCla. In contrast to this are the polarizabilities, 8iCla has
a polarizability some 10% larger than that of CCla. Thus we are
forced to the conclusion that local effects principally
determine (.. In the present case the chlorine atoms of GiCla
are probably very much less polarizable than those of CCla due

to the presence of structures such as Si=Cl* ...".
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Pauling[318] gives structures of type (a) and (b) for SiCl,;

:Cl=: :C1-:
=§1_~Si==81*: -:*Cl==81==€1*
:él: :@1“:

(a) (b)

These structures do not show the transfer of electronic charge
from the high-buffeting chlorine to the low-buffeting silicon

as Raynes and Raza suggest by Si=Cl~™,

The buffeting model offers the concept of the solvent cavity

as a plausible alternative explanation of the observed effect.
The cavity size provided by SiCls for the solute is larger than
that of CCla; 6.4 A (S8iCla) > 5.9 A (CCla), which explainsthe
the observation. Note also that the inter-molecular forces in
CCla are stronger than those of SiCla, a fact reflected in
their cohesion energies. One therefore should not expect larger
shifts for the latter on the grounds that it has a larger
interactions between molecules determine the inter-molecular
forces and not the molecules as a whole. Table 5.15 contrasts
the buffeting screenings of some solutes in the two solvents to
show that in all cases; (={CCl,) » (0~(8iCls) are in accord

with the observation. The solvent cavity size is used if

e R

Table 5.15. Coaparison between the Screening Constants (ppam) for SiCls and CCls (Z. = 11, B = .54)
Solute ------ ) Caio Cals Cathz HeC=CHe HezC=Clea
R A Ry = 6.00 R = 6.18 R = 6.34 Rz = 5.6 R,uz = b.45
§iCly -0r (-0a) .185 (.203) 236 (.272,.293) .235 (.187) 300 (.318) .302 (.237)
CCly -0 0.0 ,277 (.295) (394 (.394) .278 (,265) 519 (A7) .345 (.340)
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5.6.2. Number of Nearest Neighbours in the Liguid State

It may have been noted that throughout this chapter a fixed

value of 11 (except for P,) has been used for Z..

The crystalline structure of the compounds justifies the value

of 11, as was discussed in Chapter 3. This however is not true

for SiFa and SFs with bcc structures,Z. = 8 (see table Z.2).
For Z. = 7, the cohesion energies calculated by (3.28) fall

short of the experimental values by 7 and 6 Kd/mole
respectively. The fact that (3.25) works so well for so many
compounds by using Z. = 11, suggest that 11 might be a scale
factor rather than a genuine nearest number of neighbours.
Table 9.16 verifies this suggestion in which the calculated
heats of vaporization for two extreme cases of mercury and

liquid chlorine, with known Z,. from x~-ray studies, are given.

Table 5.1, Calculated and Experimental heats of Vaporization for Hg and Cl:

V ca/mole Rz A H{Cal.) Hy (Expt.) I
Ref. (5.2) Ki/nole Ki/nole Ret. Ref.

Hyg 14,65 (mp) 49 5.2 61,60 59.06 235 ™ 214
59.66 &89

CL. 34,75 (solid) 240 4,28 17,20 20,33 215,255,69 6" 214
18.38 240

#: For I_ = 11 one finds H, = 96.8 and 31.52 J/mole for Hg and Clz respectively.

For I = 7, Eq. (3.25) gives H.(Cal.) = 20.05 KI/mole for Cla.

The results of this table rule out the possibility of 11 being
a scale factor, because for such a value the calculated H. are

about twice the experimental ones. The results also reiterate
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the workability of the buffeting model and ratify R_,- as the

best espression for estimating liguid state intermolecular

distances.

It is worth noting that the close-packing orthorhombic

(Zey, = 12) structure of Clz, unlike Br=, is not exhibited

in the liquid statel214]. This makes chlorine a unigque liguid
compared to Nz, 0z and Brz=. Chlorine is also polar in the
liquid state; K = 1.07 D, a peculiarity due to its unique

liguid state structurelf2l4].

However both the liguid state close-packing of Br. (we used
Zo = 11 in table 5.5) and the peculiarity of Clz have been
satisfactorily explained by the polyatomic field-potential

formul as.

Concerning SiFs and SFs,, as table 5.10 shows, a close—-packing
structure in the liguid state (Z, = 11) is required by the

buffeting potential to give H.o(Cal.) ™ H.(Expt.), whereas the

the crystalline structures are becc (Z,. = 8). The calculated H.
values for 8SiFa, with Z. = 7 and Rs = 4,68 A (table 3.3) and

S8iF,, with Z_ = 7 and R..> = 5.06 A (table 5.10), are compared
with the experimental values in Fig. 5.3. The relationship
between the experimental and calculated cohesion energies of

systems for which no adjustable parameter is used (non-refined)

is also shown in Fig. 5.9.

J9a7. Conclusions

The results of this chapter support the conclusion that the
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experimental heats of vaporization.
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polyatomic model provides a genuine and practical intermolecular
attraction force function for the liguid state.

This model, in spite of its simplicity and lack of benefit from
tools of statistical mechanics and thermodynamics, efficiently
explains the vdW screening constant, the heat of vaporization,

and some liguid state structuwral problems.

It is however conceivable that the model, now in its infancy,
can be improved by being subject to further testing in the light

of the wealth of ligquid state experimental facts.

The evidence shows that its critical parameter, namely the
inter—-molecular distance, for pure globular systems, can be

obtained from molar volumes by (5.2) for all practical purposes.

The definition of R for mixtures of small gas molecules in
ligquids, judging by the analysis of table 5.7 however, appears

to be more subtle than the simple characterization by (5.3).

The B values found here are regarded as genuine nuclear
screening parameters because of their inter-—calculations and

consistency with the corresponding cohesion energies.

The inefficiency of the model for large non—globular molecules,
which stems from the invalidity of its assumptions for such
Eystems; initiates the ensuing natural step in the development
of the atom-atom potential function for large molecules.

This subject is touched upon in the last section of the

following chapter.
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Chapter &

The Buffeting Interaction and Solubility of Gases in Liquids

Introduction

The subject of the solubility of gases in liquids has been a
troublesome one. There have been many theoretical and
semi-empirical attempts to cope with this problem.

The multitude of terms invented and used indicate the extent to
which these attempts have comprehensively coped with this vast
subject. Term such as ideaf; non~fdea£, real, regular, active,
Inactive, inert, reactive, non—active, partially active,
physically reactive, chemically reactive, associative,
non—-associative, solvation, hydration, hydrogen bond formation,
positive deviation, negative deviation, activity coefficient,

internal pressure, and many more are prevalent in this field.

The subject therefore affords a test case for the buffeting
idea and its underlying assumptions. In fact the pi-electron
refinement of the inert-atom approximation and the importance
of the centre of mass of asymmetric molecules were obtained
from the correlational analysis of gas solubility in terms of
the pair buffeting field given in this chapter. In other words,
the study of the solubility of gases has been the first test
potential function, different from (3.24), has been derived
here to circumvent the problems of Z_ and polarizability

contribution which were then unsolved.
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The correlational analysis of gas solubility and the heuristic
potential has provided grounds on which to discuss the
contentious subject of chemical reaétfans as a cause of
solubility. A criterion for the concept of "likeness" in the
"like dissolves like" maxim is also found in terms of the

inert—atom moment rather than the conventional structural

likeness concept. The topic of group contribution which

points to the possibility of calculating macroscopic properties
like solubility from the independent contributions of functional
groups in molecules is briefly studied first in terms of the
buffeting field and in the last section by Eq. (3.24) where its

results are compared with those of the UNIFAC method.

The remarkable variety of uses for gas—-liquid solubilities in
medical research, anaesthesiology, pharmacology, oceanography
aerosol practice, biotechnological engineering, chemical
engineering, and, environmental pollution[253] calls for further
in—-depth study of this subject. The correlational analysis given
here is to st{mulate such a careful investigation by the

polyatomic or buffeting method.

6.1. Background Information

Ideal Solutions

In the conventional treatment of the subject of solubility

ideal solutions are those which obey Raoult‘s 1awl2531 at all
temperatures. This means that in a mixture of a gas u (solute)
and a liquid v (solvent) at any temperature the mole fraction

of u, x4, is given by:
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Pu = P3 x{ (6.1)

where P, is the actual pressure of gés u at t °C and P2

is the vapour pressure of u over the liguid u at t °C. This
mole fraction has come to be called the ideal solubility.

Of Course P{ is not a measurable quantity if the critical
temperature of gaé w is above the temperature of the solubility

measurement because gas u cannot exist as pure liquidC2531].

Hildebrand([331,332] however, accepts a fictitious value for P2
by extrapolating the vapour pressure above the critical
temperature which is used for a rough calculation of the ideal
solubilities of gases. Therefore, for all Qases P2 is the
vapour pressure of the ligquified gas, or its equivalent.
Hildebrand’'s ideal solubility of gas is for P, = 1 atm. and

therefore (46.1) becomes[253,3331;
HE = 1/P3 (6.2)

Real Solutions

No known ligquid solutions are ideall(3341, in fact ideal
solutions particularly for gases do not exist[2531, but as the
components of a solution approach one another in molecular
shape, size, chemical type (electronic configuration), and mass,
the behaviour of all components in solution approaches (6.1) as
a limit. In terms of the buffeting concept, this means that when
d'sy, <m=>'s, and V's of the components of a solution are similar
-rare for gas solutions— their behaviour approaches (&4.1).
Solutions of xylene isomers, for example, deviate from the ideal

condition by about 2%Z[335,3361].
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However, great deviations are observed in almost all other
solutions in which the components have an even greater difference
in size, shape, and chemical nature..The deviations from ideal
condition are guantified by the activity coefficient Y as;

where % = 1 if xo = x4

Al T € 1 T+ Wy > NG (e D)
AR UG R 0 L TR

Raoult ‘s law is inseparable from the concept of ideality. If

the mixture is ideal it will then obey this law, otherwise there

is no significant virtue in Raoult’'s lawl[2531.

6.2. Early computational Difficulties

b.2.1. Buffeting Field and Gas Solubilities

From the argument of real solutions a pattern emerges for a
quantitative.discusaion of solubility, namely the assumption
that if u and v have similar intermolecular potentials in their
pure states, then u will exert similar forces on the molecules
of v that it exerts on u resulting in their mutual solubilities.
This is the fundamental idea underlying the Hildebrand[333]1 and
Bradfordl(337] internal pressure (cohesion) theory which leads
to thé :Dncept.of the solubility parameter. There are other
functions of the intermolecular potentials that may be used as
a measure of solubility of u in v. For example, there is the
gain in potential energy, APE, on making one dissimilar pair

"uv" from two isolated pairs "uu" and "vv"[&9]1;
APE = PE(uv) - (1/2) PE(uu) = (1/2) PE(vv) (6.4)

Gerrardl[253] contends that the tendency of a gas u to condense,
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characterized by PE(uuw), is the prime factor to consider with
respect to any liquid. The second factor relates to the
intermolecul ar structure of v, PE(vvf, and the third one
emerges from the inevitable interaction between u and v, PE(uv).
As higher PE(uw) and PE(vv) means higher PE(uv) one might use
only the interaction potential between u and v, PE(uv), as a
measure of their solubility which contains the three factors
mentioned by Gerrard. It may equally well be argued that the
difference between PE(vv) and PE(uv) governs the tendency of v

for u as compared to vj;

APE = PE(uv) - PE(vv) (6.5)

What function of the potential energy is the most suitable as a
measure of the solubility needs further scrutiny.

To see if the buffeting idea in its main features is pertinent
to the solubility problems, use is made of the field expression
(3.8) for the preliminary study of systems given in table 6.1.
The difference between the fields of uv, when u is in the
cavity of v and pure v, as given in (6.6) by analogy with (&6.5)

is used for the correlational analysis of table 6.2;

ACE=)> = (E=),., = <E=2).. (6.6)

The activity coefficients in table 4.2 are found from the ratio
of the ideal and observed solubilities given in table 6.1.

The fields are calculated according to the method explained in
the preceding chapter. The calculation of the d values for some
of the solvent molecules is simplified by taking a suitable atom

as the rough centre-of-mass (CM); carbon atom of the "C=0" group
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Table 6.1, Solubilities of gases (Nole Fraction x10%) at 25 °C and | ata.[333]

Ban =rmem——) €0 Nz0 CHa 02 co Nz Hz
Ideal Solubility ===-- ) 257 202 35 13.2 12.8 10 ]
Splvent u DE16I] 0 o 0.5

(Et)20 () - - 45.3 19.8 16.90 12.52 5.52
Collaz 0 = - 28.3 - = 1.22 3.80
CCla .0 100 - 28,6 12.0 8.86 b.42 3.27
2-CoHa (Me) 2 .36 102 - 25.8 - 9.12 b.14 4.13
CH3COOCHs = = 20.0 9.08 8. 65 5.97 3.07
CH5COCH 2.8 209 185 22.3 9.25 8.54 5.92 2.31
Cala 0 91 - 20.7 8.16 b.63 4.48 2.61
CClsH 1.1 123 182 - 7.38 6.45 4,45 2.20
CoHaCl 1.69 = = 20.8 7.91 6.32 4.31 2.66
CH5OH 1.7 13 53 7.1 3.18 e 20 2.35 1.57
sz .0 2 = = = 2.06 1.45 .93
Ha0 1.9 7 5 .24 .23 .18 A2 18
CoHaN 2,21+ 129 120 - - - - -
CH28r CH2Br 1,10 125 100 = & - - =
CH3COOH 1.73 121 - - - - - -
CeHoCHs 37 107 = - = = - -
CH3CH20H 1.7 70 12 = i~ = - -

at Ref.[3381; b: Ref.[339] at 163 °C
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Jable 6.2. Results of comparison between ¥ and ACE?) in 10-'® erq ca~ frop (4.6)

Gas Co; N20 CHa 02 co Nz Hz

Solvent | 1 A 1 A 1 A 1 A 1 A 1 A 1
H20 175.4 36,7 175.4 40.4 152.4 145.8 49.0 57.3 50.0 7i.1 42,0 83.4 24.8 53.3
(82 30.0 18,7 - - - -~ = = 1.9 62 104 6.9 4.1 B.b
CHs0H 5.2 3.6 452 58 3.3 A9 11 AL 114 39 %1 42 L1 94
CHsCH=0H 4.7 37 W7 2.8 - = ~ = c E ~ = = %

CeHs 7.4 2.8 - = 15.3 1.7 A7 Il.ﬁ 58 LY 39 23 2.0 3.9
CCla 15.2 2.6 - - o (T S o R O TG v 1 T S B 1.5 2.5
a-CoHo(Melz 14,7 2.5 - = 129 14 - - L9 14 32 L6 1.5 1.9
CoHaCHs 165 2.4 -~ - = - * . = = % - = 5

CH3COOH B4 21 - - = - - = = - a: - = “

CCIH &4 A 0 WY - = a4 LB 55 2.0 44 2.2 2.0 3.6
CHaBrCH2Br  29.0 2.1  29.0 2.0 -~ = = = = = = = = =

CaniN 2,0 2.0 20,0 1.7 - » i = = = = * = i

CHsCOCHs 22 12 22 LY " e %8 1459 LY O 4g 17 23 L7
CeHaCl = - - 16,7 1.7 4B 17 50 2.0 40 23 1.8 3.0
Celiz = = - - .00 Sl - = = = 2.7 1.4 1.2 2.1
CHsCOOCHs - " = = 15.9 of v &b L& A7 5§ 5B 117 LT 26
(Et) 20 = = = 10.0 SRR S0 LB 2B 1.0 1.4
cc* .978 990 986 994 .987 .987 999

¥t Correlation coefficient.
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in acetone for example. One notes that the nearly equal values
of d for COz and Nz0 (see Appendix 5) result in the equal
values of field differences given in‘table 6.2. This is in
accord with the Kunerth[3401 argument that "... because they
have the same number and arrangement of electrons, they should
therefore exhibit little if any difference in their
solubilities". Fig 6.1 typifies a graph of the activity
coefficient ¥ against A<E=> for hydrogen gas. The results

of this correlation analysis, and similar ones for reaction
fields <R®>,, ¢R=3a, and RFT, led to the following

findings.

(1) There is no correlation between the activity coefficients
(or solubilities) and either of the reaction fields.

(2) There is no correlation between static dipole H, dielectric
constant, refractive index, polarizability (or any function
of these solvent’'s parameters) and activity coefficients or
solubilities. The lack of linear correlation of the
solubilities with dipole moment and dielectric constant has
been clearly shown by Gerrardl341]1. There appears therefore
to be no relation between the solubility and the bulk
properties of solvents.

(3) The large deviations of CS= and CH=OH from the line
{open circles in Fig. 46.1) led us to the contribution of
double bond electrons in the interactions of the former and
the significance of the CM for the latter. Correction for
the effect of pi-electron in CSz, by assigning half the Ar
moment to each pi-pair, on the one hand enhanced the
buffeting field of this solvent (full circle in Fig. 6.1),

and on the other hand improved the inert-—atom approximation
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Activity Coefficient %

v J/O IZO IJO

Field Difference A<E=>, Eq. 6.6 erg cm—=x101=

Fig. 6.1 Solubility of H=. Relationship between the activity

coefficient and the buffeting field difference.
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as explained in Chapter 3. Correction for the CM in methyl
alcohol, which ariginally Qas assumed to be on the carbaon
atom (de = 0, do = 1.43, dn = 2.05 A) decreased its
buffeting field (full circle in Fig. 6.1) because the right
CM (dg = .73B, do = .668, du = 1.35) lowers the
buffeting power of H{(OH) and "0".

(4) As the calculations of the pair fields involved the atomic
fields, it appeared as if the field contributions of
identical atoms in different solvents were equal. This has

initiated the important topic of group contribution in the

next section.

b.3. Group Contributions

A group is an identifiable structural unit in a molecule such as
CHx in a paraffin hydrocabon or OH in an alcohol. A few kinds of
groups make up a vast variety of molecules of interest.
Langmuir[342]1 suggested the premise that the forces about any
particular group is characteristic of that group and is
independent of the nature of the rest of the molecule. He called

this premise the principle of independent action.

This principle focuses attention on the segments of the
molecules and states that many of these segments in different
molecules behave in much the same way in their contributions to

molecular interactions(334].

According to the buffeting or polyatomic field expression what
makes the field contribution of identical atoms different in
different molecules is their locations, d, and the molecular
volumes. Accounting for these two factors should, in principle,

equalize the field contributions of identical atoms. In table
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6.3 are given the field contributions of similar groups in
different solvents for CO.. These are in fact the uv fields
used in thelcalculatinns for the entries in table 6.2 with and
without corrections for the differences in the molecular

volumes of the solvents.

Table 6.3, Buffeting field <E2),,x10-14 erg ca~> of qroup

¥i20 9k insessnesnana=nmse GF0UD
solvent qr ca”®  [Cl CaHy CHs OH
Ha0 18.9 © 2167
CHC15 80.5 3.3712.62)*
CCl4 96.5 2.19
CoHaCl 101.7 3.86(=(C1)  4.9(5.6)
CeHe 88.8 6.91(7.62)
CoHoN 80.7 8.71
CaHaCHs 106.2 4.40(4,32)  2.98(2.3)
#-CeHa(Me) 2 122.3 3.14 2,00
CHsCOCHs 13.5 3.59
CHsCOOH 37.2 4.75(4.61)  3.83(3.7)
CHsCH20H 98.4 4.53 3.63

#1 Entries in the brackets are the corrected values for the volume differences.
For example, CCl contribution of CHCl5 (3.37) compares with 2.19x96.5/80.5 = 2.62

which is the CCl contribution of CCl4 when it is in the same voluse as CHCls.

As this table shows, correction for volume differences, that is
multiplying the uv field by the volume ratio of the two
solvents with similar groups, improves the agreement between

contributions. However the agreement is poor which stems from
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the approximate nature of the calculations and more importantly
from the fact that fields are used instead of potential
functions to characterize the sclubility. This.subject is
further discussed in terms of the polyatomic potential in the

last section.

b.4. A Heuristic Potential Function

The solute-solvent interaction is best characterized by a
potential rather than a field used in the previous sections.

A potential function like (3.24) would involve the contribution
polarizability which was originally avoided here by using

<m=3» instead qf d. The result is the following heuristic pair
potential analogous to that of Keeson's[811, (2/3)HK,=Ha"R~*/kT

for dipole—-dipole interactions
PE(uv) @€ = LL XueXs <m=3,<m=>4 F(i,j)IR-6 (6.7)

b3

where the symbols have the same meaning as in (3.24).

In the subsequent sections (6.7) is used for the correlational

analysis of the solubility data.

6.5. Significance of the Solubility of Bases as Molecular Probes

Solubility of gases in liquids provides an ideal testing ground
for the underlying assumptions of the polyatomic model.

In other words, the gas can be used as a molecular probe for
the study of the intermolecular forces and processes under
different conditions of pressure and temperature.

We begin with inert gases for which the solubilities, boiling

points —as a measure of their tendency to condense- and PE(uv)
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according to (6.7) are given in table 6.4.

6.4, Solubilities of inert gases at ﬁS °C and 1 atml343]

Solvent ------ ) Hz0 CaHa

Solute bp %K Xux104 Ln %y - PEfuy) XuX10* Ln x4 - PEfuv)
He 4 | 069 -11.884  .458 . 785 -9.452 132

Ne 27 . 083 =11.697 . 72 1,07 -9.142 +222

| Ar a7 . 300 -10.414 2,342 9.66 -6.942 672

Kr 121 470 -9.965 3.148 2.2 5,907 904

fe 166 1,040 -2.071 419 11, -4.500 1,268

Rn 211 1,850 _ -B:595 9483 - . 392, -3.23% 1.574

CC 997 .999

Hereafter solubilities, x,, are in mole fraction.

From this tabie one notes that for a series of solutes in one
solvent there is no linear relationship between ». and either
of PE{uv) or bp. There is however an excellent linear
relationship between the logarithm of x.,, Ln xu, and both
PE(uv) or bp, see Fig. 6.2. The logarithmic relation is more
akin to the thermodynamic methods of estimating the solubility;
as for example by the solubility parameter method of

Hildebrand[3331.

Eley[344] gives a theory of solubility for inert gases in which
two consecutive stages are involved; the formation of a cavity
and the entrance of the gas molecule into the cavity. This is a
theory of making holes and filling holes[345,346]. Eley writes
of the "...anomalous factors in the solubility of the inert

gases in water". Fig. 6.2 shows that there is no significant
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Fig. 6.2 Solubilities of inert gases in water and benzene.
Relationship between the logarithm of solubility and

the buffeting potential energy and boiling point.
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departure from the line for any of the gases in the solvents as
has been found by other workersl347] also. According to (&.7)
water—gas interactions are purely dispersion with no dipolar

effects.

The solubility of 2*?Rn in waters (drinking water, spring

water, rivers and sea) and in biological fluids is of interest
because of its radivactivity. Some spring waters like those at
Hot 8Bprings, Arkansas, have dissolved radon. The solubility of
Rn in heavy water, D»0, the neutron moderator in nuclear
reactors with natural uranium fuel, is also of importance.
Vadovenko et all3481 have found that the solubility of Rn in
D0 is slightly higher than in water. They only give the ratios

of the absorption coefficients K as;

Knn (D20 /Knq (H20) 1.09 1.08 1.07

Tea. °C 6.0 10.0 15.9

The distinguishable features of the two waters are the molar
volumes and the d distances, properties like bond length-angle,
‘I, and ( are the same. In table 6.5 are given the available
volumes at two different temperatures, calculated PE(uv), and

APE (uv) according to (46.4).

Table 6.59. Rn—-D-0 and Rn—-H-0 Potential Functions

Solvent == ¥ Ca®/nole -- - PEfuv) ~4PE (uv) d A

Tea. °C 15 25 15 25 15 25

H0 18,036  18.073 b.177 6,090 .56l . 582 dw = .920; do = .05
020 18.121  18.136 6.013 5.997 .69 . 642 do = ,893; dg = . 117

Nolar voluess are from Ref.[158].
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Judging by the PE(uv) values, Rn should have slightly higher
solubility in water than in heavy water. If however, the values
of APE(uv) are accepted as the charaéterizing potential function

for & solute in a series of solvents the order of the

solubilities reverses. The ratios of the potential differences

can then be used for comparison with the K ratios;

AFE(D=0) /APE (H=0) ka2 1.10
Tem. “C 1% 25
which indicates the decrease in the solubility ratio with
increase in temperature. The ratios compare well with those of
Adovenko et al. The solubility of Rn in T=0, tritium oxide,
would be slightly higher than in Ha0 and D=0 according to
APE. Note that the d values of water given in this table were

used in table 6.4.

The analysis of the splubilities of other gases provides a

still better test for the polyatomic model and would be more
informative compared with the inert gases. Table 6.6 gives the
solubilities of nine distinct gases in three distinct solvents
and the results of their analysis. The d values of the species
are given in Appendix 9. From this analysis one notes the
improvement of the correlation between PE and Ln x. from H=0

to CCla,. Graphical presentation of the PE-Ln x. relationship

in Fig. 6.3 however discloses more subtle facts about the nature

of the interactions.

If one is contented with the statistical analysis of the data

and its good correlation (dashed lines in Fig. &.3) given in

the table, the contribution of the so-called chemical reactions
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of CO. and SOz to their solubilities that so many authors

believe, can not be justified[3I49-355]1;

CO- + 2 Hz0 <=====> COz"H + Hs*0

(6.8)
S50 + 2 Ho0 d=====> 50="H + Hs*0
Table 6.5. Analysis of the Solubility data of gases at 25 °C and 1 atm.[333]
Solvent Ha0 CaHa CCla
solute bp %K x.210%  Inlx, - PEfwv) x.x10* Ln x4 - PE{uv) x,x10" Ln x, - PEfuy)
He 4 067" -11.913  .458 7 -9.471 132 - = 122
Hz 20 L14e -11.176  .968 2.61 -B.251 271 3.27 -8.026  .309
Nz 77 L b -11,330 1.739 4.4 -7.728 A72 b.42 o it W .
co 82 .18 -10.925 2.226 6.463 -7.318 394 8.8 -7.029 547
Ar 87 .25 -10,596 2.342 9.6+ -6.948 .675 3.5 ~6.607  .625
02 90 227, -10.693 2.230 .16 -7.111 .597 12.0 -6.725  .548
CHy 111 .28 ~10.483 3.467 20,7 -b.180 .883 28.6 -5.857  .801
€0z 194 7.0 - 7.264 4.443 95,24 -4.644  1.08 100.0 -4,605  .97b
S0, 263 434.0 - 3,137 &6.844  2300.0° -1.469  1.603  1500.0% -1.897 1.45
cC 940 .990 .995

a: Ref.[343]; b: Ref.[2531; c: Ref.[356] and Ref.[333] give .24, Ref.[343] gives ,225."

However, the intrigue of the deviation of helium in water from
the statistical best-line along with the inspiration from

Fig. &.2 would suggest a physical best—-line based on the inert

atoms which passes through the inert points (solid lines in

Fig. &6.3). The inert-best-line offers a guideline by which the

behaviour of other gases may be judged. Inspection of Fig. &.3

in the light of the inert—-atom guideline reveals the following

points.
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Fig. &.3 Solubilities of the labelled gases in water, benzene

and carbon tetrachloride. Plots of the logarithm of

solubility against the buffeting potential energy.
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(1) The solubilities of COz and 80z in water can partly be
explained by PE(uv) because the inert-line falls below
these pointe imposing the cun:luéiqn that there must be
some kind of specific interaction of type (6.8) to explain
the excess solubilities.

(2) In the absence of reactions of type (6.8) one would expect
the inert-line to coincide with the statistical line. This
is the case in Fig. 6.3 where the two lines approach each
other for CiHs and CCla. We note the departure of S0= from
the inert-line in benzene which indicates the possibility
of S0z-pi-electron interaction. A guestion arises here
about the nature of the reactions resposible for the e)xcess
(on the basis, of caursé, of the inert-line) solubility of
oXxygen cohtaining gases. Data in general and those in table
G ih pafticular show the enhanced solubility of COL in
solvents containing "-0-" and "=0" groups. Compare the
splubility of acetone with that of carbon disulfide,
benzene and ethyl alcohol, for example. Ethyl alcohol and
acetone are isomers and the former offers a smaller cavity
to the gas but still has much lower dissolving power than
the latter. It appears that the rule of like dissolves like
is operative between "=0" of CO. and "=0" of CH-COCH:=x.

This points to some sort of likeness interaction between
like groups distinct from the reactions of type (6.8). Note
that "=0" groups in solute—-solvent system have identical
<m=3 that could be interpreted as identical frequencies

for the motion of electronic charge.

One might ask why such interaction is absent for 0. and CO in

water. It may be recalled from Chapter 3 that the "0" group
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in these gases is different from a typical "=0". The moment of
the former is 1.25 <m=:y. and that of latter equals 1.75 <m®iwnm
whereas the moment of "=0" in CO=, Sﬂx and acetone is more like

1.5 <m®iNewe

Gerrardl253] is a critic of resorting to chemical reactions as
an explanation for the high solubilities of CO. and S0=. He
believes that the high solubilities of these gases is solely
determined by their tendency to condense. In Fig 6.4 a graph of
bp against Ln %, shows the characteristics of Fig. 6.3.

Here again if one is prepared to accept the large deviation of
helium from the statistical line in water, the absence of
chemical reactions or otherwise is justifiable. The presence

or absence of interactions other than dispersion as a cause of
solubility cannot be rigorously verified unless the

proportionality factor of pair potential-solubility is known.

Comparison between Figs. 6.3 and 6.4 shows the superiority of
FE to bp as a measure of solubility. The foregoing prolonged
argument however should not conceal the role of the gas as a

molecular probe for the elucidation of molecular interactions.

b.6. Solubilities of Solids; I., Se, and Snla

In this section the potential function (6.7) is used to analyse
the solubilities of these solids in a series of simple solvents.
Table 6.7 give the solubilities and the PE{(uv) wvalues. The d
values of the systems can be found in Appendix 5. For the moment
of TiCla(V = 110.5 cm™/mole), as was discussed in Chapter 3,

2 <M + 4 <M=ia~ is used in the caculations in this table.

One notes that in this case the good correlation exists between
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Fig. &.4 Solubilities of the labelled gases in water,
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and carbon tetrachloride. Plots the logarithm of

solubility against boiling point.
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PE and the splubilities.

The interesting point to note is the excess solubility of
sulphur in €8, The statistical analysis has again veiled this
aspect of the molecular interaction and should warn of the risk

of unquestioning trust in the use of statistical methods.

The ratio of the PE values for sulphur in benzene and carbon
disulfide is about 2.3 whereas that of splubilities is 21.5,
pointing to the existence of the "likeness" interaction between
"=8" of CBa and "-5" of Se. The like dissolves like maxim
appear operative here. 0f course the likeness is in the moments
of § in €S and that of 8 in Swm. Such a large solubility ratio
is not observed for Snls or I=. It will be remembered from
Chapter I that some experimental evidence support the existance
of double bonds in the Se ring. This kind of likeness can not
be found between Snla and XCla in spite of their structural

similarity which suggest their conventional "likeness" and

therefore, higher solubility.

Table 6.7. Analysis of the Solubility of Solids at 25 °C and | atm.[333]

Solid —) = = Iy = — 8 Snla
Solvent Nolel PEfuv)  MNolek PEfuy)  MoleX PE {uy)
8iCl, 499 2,67 = = 362 12,04
CCla 1.147 3.13 .30 9.86 1.459 14.76
TiCla 2.15 3.9 = = = -
CClsH 2,28 3.81 .57 12.47 1,692 19.19
Cee - = N 11.50 2,181 17.50
(52 5.46 1.558  13.8 27.22 14,64 43.98
cc .991 991 .991
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This section serves to illustrate the possibility of finding

bond lengths from solubility data.

The available solubilities of methane, germane, and stannane
are given in table 6.8, that of silane is estimated from the

Ln ».—-PE linear relationship.

The bond lengths in GeH, and SnHa were not accessible and are
estimated from the linear relationship by adjusting the value
of d in the F factor until the calcuiated PE from (&6.7) matches
the solubility data. These estimated values are in considerable
agreement with those found from covalent radii of H, Ge, and Sn

given in the footnote to the table.

Table 6.8, Analysis of the solubilities of Hydrides of group IVI253]

Solute  bp % dyz-y A xgx104 Ln xy - PEfuv)
CHa i 1.09 . 252 -10,58 3.6b7
SiHa 161 1.48 Sy K -9.73 6,468
GeHa 184 1.51° 733 -9.49 7.400
SnH, 220 1.85* 2.19 -8.4 10.563
£ .999

¥; Estimated values from the covalent radii of H = .3 A, 6e = 1,225 A, and Sn = 1,511 A

one finds; dow-w = 1.525, and dan-w = 1.811 A. The Ge-H bond length in GeHsCl is 1,52 A[1581.

6.8. Additivity of Molecular Potential Energy

The analysis of the chemical screening constants in the

Previous chapter showed that the polyatomic field and potential
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formulations are inadequate for large non-globular molecules
for which the separation of the rotational and translational

motions and also the F series are invalid.

In this section the premise of the additivity of the molecular

potential is tested for the solubility of CO. in large solvents.

Let us assume that the small solute gas buffets, according to
the buffeting model, the constituent atoms of a large molecule
independently. That is the fast rotating small solute interacts
with the relatively stationary atoms of the solvent at a
well-defined distance.’The atoms of the solvent appear static
because they are attached to the relatively slow rotating
solvent molecule. In this situation the centre~to-atom distance
d,, for the atoms of the solvent equals zero, because it is
interacting as a separate spherical entity and the buffeting
factor reduces to the "solute-site-factor"; F(d,=0,d.,R).

This considerably simplifies the calculations of the potential
energy as the evaluation of the d values becomes more difficult
as the size of the solvent increases. The intermolecular
distance of such a system is also independent of the size of
the solvent molecule and depends on the sizes of the solute and
the atom in question. To define R, one can use vdW r values or

calculate it from the volumes of the solute and the atom.

There are a number of additivity methods available for
estimating the molecular volume from the atomic volumes. The
method of Le Bas[3IE571, for example, attributes the following
volume increments to the atoms that may be used for our

preliminary test;
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Species C H 010=) 0(Ne-0-) O0(Et-0-) Ring(b-nesbered)

Vol. Increment ca®/mole 14.8 3T 1.4 9.1 9.9 -15.0

These volumes and the volume of the solute can be used in (5.2)

for example, to find the R for the interacting system.

Table 6.9 gives the potential energies of the COz-atom and
CHa—-atom systems calculated using expression (3.25), according
to the method explained in Appendix &. The volumes of both
solutes are calulated from the Le Bas increments to be 29.6

cm=/mole.

Table 6.9. The Atom—-Solute System Potential Increment

Potential Increment (3.25) Kl/mole

Solute PE(H,u) PE(C,u) PE{C==u) PE{cyclo-C,u) PE(D,u)
€0, .072 041 074 049 063
CHq 039 .025 045 029 036

Now the potential be£ween CO- and CH=0OH, for example, can be
found by adding the atomic increments asj;

FE(uv) = 4 PE(H,u) + PE(c,u) + PE(O,u) = .392 KJ/mole

and for the methyl alcohol homologues, CHx{(CH=z).0H it simply
isy PE(uv) = n PE(CHz,u) + .392 = nx(.185) + .392 kKd/mole
Such an additive method is based on the assumption that all the
constituent atoms of a molecule are equally accessible to the

solute, so that in general one may wtites;

PE(uv) = L FPE(Atom,u) (6.9)

where the summation is over all the atoms of the solvent, with
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Eq. 6.8 KJ/mole

—FE (uv)

A

A

/
C GHJ(C Hzlno H

Y rsiadin /"’:3

f4Y
n=2

n=Q0 a
C6H12(C H hOH
n‘é /

(o)
— n=Q
CH(CH,),0H
7 8

1 L 1 1 l 1 1 A 1 1 ' 1 1

Ha #10% Mole Fraction

Fig. 6.5 The additivity of molecular potential energy.

Relationship between molecular potential energies
and solubilities of COz in the labelled alcohols

estimated by the UNIFAC methodl[2&631.
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equall weighting factor, showing their equall accessibility.
Note that the potential increment of cyclo-carbon is different
from that of benzene ring because of their different
Enlarizability'contributiuns (see Appendix &) and inert-atom

moments.

Fig. 6.5 shows the relationship between the PE(uv) values found
from this table and the solubilities of CO., in a series of
alcohols estimated by a semi—-empirical group contribution

techniquel258-2460]1 called UNIFACL261,2621.
The validity of this potential additivity method, (4.9), cannot

be tested unless the absolute prediction of solubility by

(3.24) is possible.

6.92.Conclusions

Solubility problems have possibly until now eluded satisfactory
explanation, even the simple rule-of-thumb that like dizsolves
Iike. The significant correlations between the solubility

data and the heuristic potential form throughout this chapter
suggests the potentiality of the polyatomic or buffeting

theory in solving these problems.

It appears that the bulk effects, formulated by the reaction
field technigues, have no significant role in determining the

so0lubility.

From the analysis of the solubility-potential relationship it

is evident that such a relationship takes different forms for
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different systems. It is of the form; Ln %.-PE, for different
gases in one solvent, and of the form; ».-FE, for one solid in
different solvents. It might also take the latter form for a

gas in a series of solvents.

The new concept of "likeness" in terms of the likeness of the
inert—atom moments focuses on the likeness of groups between
two molecules rather than the traditional over-all mqlecular
similarity. In this sense it is related to the concept of
reactivity and reaction mechanism discussed in the conclusion

to Chapter 3.

It may be possible to gquantify the concept of likeness when
the proportionality factor between solubility and the pair
potential is known and thus elucidate whether or not
non—dispersion, or chemical reaction type contributions are

important to the solubility of species.

The brief study of the concept of potential additivity points to
the possibility of treating molecular potential energies, like
other additive molecular properties, as an additive gquantitiy.
Further examination of this fundamental concept extends the
versatility of the buffeting model to large molecules for which

by virtue of its inherent assumptions it is inadequate.
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Appendices

Appendix 1  The Mean-Square Moment

The mean fluctuations of an instantaneous dipole moment can be
derived using the semi-classical equation of motion of a

damp—=free harmonic oscillator;

Xo(t) = (2 E/mud) 2 cos w.t {or, sin wot, sinfwuct + @)3
where E. = (v + 1/2) hwe are the quantised energy levels.
The moment is m, (t) = e.x.(t), which for the ground state or

zero-point fluctuations of charge, E...= hwe/2, becomes;
me () = (@ h /mwo) 2 cos woet

The mean and the mean-square values of this moment are;

1 +T
<mit) 2 = (e h/mwe)¥? Lim —— [ cOS wot dt = O
T ~3en 2T -T
T Ve
mPr. = (e® h/mwo) Lim — [ cosPwet dt = (e=h/ mwe).1/2
T -%en :_":IT =T

“m=i.,. = 1/2(e® hwe/mwoe™)

This expression in terms of ((0) from (1.47) becomes;

M=, = (1/2) hwe Q(O) (Al1.1)

For isotropic molecules or atoms one can write;

CMZ5o, = <mBk, = <M3re; and, <m=3: = {MFr, + MR, + <ME3.

Qry, “m@: = 3 dm®k, = F <mPr, = 3 <mPie (Al.2
Combination of the last expression and (Al.1) gives the regquired

mean-—-square moment;

“mEX o= (3/2) hwe Q(O) = (3/2) hve Q(O) (Al.3)
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or using the London approximation hY, = I

Cm=> = (3/2) I J(0) (Al.4)

Appendix 2 The Mean-Sguare Moment-field relationship
Refterring to (1.49) and Fig. 1.4, for the field components

produced at B by A, one may write;

il

E(tiA) = 2 m{t,A)x R™ .... For the fluctuations of moment in the I-direction

E(t,A) . - m(t,A) R™™ .... For the fluctuations of moment in the X-direction

E(t,A), = = m(t,A), R™™ .... For the fluctuations of moment in the Y-direction
The mean—-square components are therefore;

CE=Xa.e = 4 <m™ra,z R™®

CETDXR i = AMT e e RT®

CE=2a.y = <m23a. . RT%

Adding up the mean-square components of the field and using

Egqs. (Al.2) one finds (1.50) as;

SE=ra = 6 <M=3a, R™® = 6 <m™%a,, R™® = & <m33n. . R
o3
CSE23a on » = 2 <m=>a R™* (AZ. 1)

Appendix 3 Average Inverse-Six*"-Power of Distance, (r,,~=}

Since the distance between two interacting atoms i and j, r.,
changes with time, as a result of the molecular rotations, it
has to be averaged in terms of the known molecular parameters R,
dy, and d,.

The averaging procedure given here is an adaptation of a method
usually used in liquid state theories[191,192,199,2911.

Let us fix the centres of two symmetric polyatomic molecules at

the centres of two polar coordinate systems a distance R away ,

241



as is depicted in Fig. A3.1.
X T il 2 x =d sin 6 cos ¢
y = d sin 8 sin ¢

2 =4d cos @

2=l - L2+ =Y 02+ R+1,~-1,)2

b,

cos @ = cos O,.cos 8, + sin 0,,5in 0,.cos B,.cos #; + sin 0,.sin 8,.5in #,.5in 4,

ory cos @ = cos @,,cos 6, + sin 84.5in @j.cos (8, - @)

Fig. AJ.1. A particular sutual orientation of two interacting molecules in a polar coordinate systea.
For asymmetric molecules the centre of mass of the molecules is
at the centre of the coordinate systems.

At some instance of time d, and d; make angles ©,, &,

and, 9,, P, with the axes respectively. The cosine rule for

the triangle with sides r.s, ds and r gives;

o et )
ru = L r+ J.~2rdqust

or

¥k
T, = r[l'-2f_d‘j/r.]cosu.)+(d‘j/TJJ (A3.1)

J

The inverse of any variable may be expressed in terms of some

polynomial, for example, it is well—-known that;

8

1

2 3 "
= Lty kit o, = %
¥x=1 n=0

=13

Let us begin with this simple example and manipulate it to get

2 2 L
the form of (A3.1), by fist writing it as; [(,-1) 1% = [x -2x+1J*
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or in general as; [;_th+1¢:1 and then in the form;

1 ] 0O (6@} 00
= = T ='Zx = )J PnLthn = },Pnt.ljx"
Ex=11) [x=2tx+11} o4 =0 n=0 n=

where P, are the Legendre polynomials with the property P, = 1.
This is why L %™ is arbitrarily expressed as [ P~ (1)x".

Replacing t by cos w in the last expression gives[2921;

1 ¢ @]
[;—EXCGSunqjg =n§$%[cosuﬂx" (A3.2)
l dn 2 "
where Pplx) = Tre :;F- (x=-1)

Therefore, the inverse-first-power of r.s, may be expressed in
terms of the Legendre polynomial (A3.2). Likewise other inverse
powers of ry,,y may be expressed as a function of other
polynomials.

The generalized form of (A3.2) is given asl[291,293-2961]1;

1 Ca

3 = Ecu(cos\,_)]xn S
[x -2xcosw+t]) n=0" (AZ.3)
where Ci are the Gegenbauer polynomials. Comparison

between (A3.2) and (A3.3) shows that;ci[chhn = F (cosw) or in

general [2911;

(P=2122 n+P-3
£ (x) = B, (xJ
n n

Also (A3.3) for u = 0, becomes;

1 0C

n 2 2

z s =1 = Z b %[COSM)J - [:E+xc?+x [,g-f_ e
(x ~2xcossot]]) n=0

from which it may be deduced that; C3(cos w) = 0,

n>a

C8(cos w) = 1, and in generall[2911;

" i (n+u-P-1)10 sae
cUex) = 2 (-1) (2x) (A3.4)
" P PI(u-1)2(n-2P)2
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A list of C¢ polynomials, derived from (A3.4) is given in

table A3.1.

Now the inverse-sixt'—power of r. from (AS.1) according to thosea/
when u = 3, is;
| 1 OC

S e 0 VT r,
- ; — ; 7 C3(cosw) L] T (A3.5)
Tii r[l~2t%/chosw+L%/rJJ =g " L s N

The value of r in (A3.5) is also unkown and has to be written
in terms of R and d, by using the cosine rule, this time for

the triangle with sides Ry di, and r (Fig. A3.1);

2 2 %
(R +di ~2diRcos 6,)

-
1}

Therefore r=* and r™™ of (A3.5), by analogy with (A3.3) may

be written as; co

-8 -6 di

reo& R ZCQLccse 3 (AZ. &)
K=08 R
-DO - d! "

o (cosg JL:— )
= Cm 5 (A3.7)

By replacing (A3.6) and (A3.7) into (A3.5) one obtains the
desirable form of ry,7* at the expense of the daunting
expression;

g
n mK

(A3.8)

C3(cosw) €172 (cos @ ICK(c0s8;)

nreri

R

The space-average of ri,"®, when the two atoms span the whole
surfaces of their two spheres, in accord with the mean-value

theorem of functions may be written as;
7T U 27T 211

F
[
rUdtidH

dge) -4
B @ B8 @9
- (_:3’(;
(T:j] A (2] 7))
¢ 10 270 21T where 4t = singde g
LSRR o
PR B
! | 1
e |
g8 @8
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Substituting for r.,s7* from (A3.8) into this integral,
replacing the denominator with its value of (4%).(4%) = 14%=

and factoring out the constant R one obtains;

-8
: R dKO- dn
.- ] v .
[TLJJ= — jaj,jq z Z z L__i_Catcos\aJC;/Z(CosalJCE[coselldtﬁHJ
n K :

l 6{{ LEAL R n
(A3.10)

Such a formidable expression for expressing a physical fact
shows the unsuitability of the mathematical method. This method
however appears elegant compared to the technique of 4-variable
Taylor ‘s series expansion used by Raynes[2061. An alternative
analytical method is suggested in the following Appendix.

The solution of this integral involves hundreds of integrations
resulting from the expansion of the C,, polynomial and their

subsequent products which are all of the form;

21t 2718 16 2

It "
1T
i . - for n and m even
cos w cos &, dt‘dtJ - (m+1)(n+1)
(A3.11)
a
@ 8 © 0

for n or m odd

This is the generalized form of the numerical integrations
performed by the [MONTE CARLO] program developed in Appendix 4.
For example, the coefficient of term (d/R)*© in the F series

can be found easily using (A3.11) and C.3 from table A3.1;

]

3 67584 126720@ 38640 20168 1680
CIQ(CUSSinHdFJ - - + - B —-21=9]

11 ) o S 3

We note that the factor 16 %= in (A3.11) cancels with that
of (AJ3.10) to give 91 as the coefficient of d*°.

The F series of (3.7) is the result of the integration of
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(A3.10) using this approach. The calculation of the coefficients
of terms beyond d® when d. # ds # O is quite impractical.

This together with the absence of alfernative methods for
handling (A3.10) has given rise to speculations about the
divergence of such series.

In complete contrast to the inefficient analytical technique we
have developed two numerical methods based on random numbers,
which conveniently handle the problem of inverse-six-power

averaging (see Appendix 4).

Table A3.1 Gegenbauer Polynomials (from Egq. A3.4)

Ciix) = 2 x

Cilx) = 4 x

Ciix) = 6 x
Cilx) = 4 %2 - |

C3{x) = 12 x2 - 2

C3(x) =242 -3

Cilx) =8 x% -4y

C3(x) = 32 x3 - 12

C3(x) = B0 x3 - 24 x

Chlx) = 16 x* - 12x2 ¢+ |
C3(x) = B0 x* - 48 x2 +3
CXix) = 240 x* - 120 x* + &
Calx) = 32 x% = 32 x% ¢+ b x

C3(x) = 672 x3 - 480 x> + 40 x

Ciix) = 64 x* - BO x* + 24 x2 - |

CI(x) = 1792 x* - 1680 x* + 360 x% - 10

Cx) = 11520 x® - 16128 x* + 6720 x* - BAO x2 + 15

Cidx) = 67584 x° - 156?20 x® + BOGAO x* - 20160 x* + 1680 x2 - 21
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Appendix 4 MONTE CARLO Methods for Average Inverse—Sixt"-Power

For the numerical averaging of r.,~® one can begin with (A3.9)
in wHich the integrand, r., =, is the instantaneous distance
between i and j on the surfaces of two spheres the radii of
which are fixed at d. and di, but the angles & and @ change
with time, Fig. A3.1. The distance r.s may be formed in terms
of. these angles which can be chosen randomly.

The inverse-six-power distance is then formed and the integral
in (A3.9) solved by approximating it with its arithmetic mean.

This method of integration may be described as[36,297-2991;

b
fixJdx
O >
*Zf[xij e e
Rl (b-a)
b
1
or T [ B (A4.1)
n
a

For multiple integrals (A4.1) becomes;

b:d
(A4.2)
LN ) . l i T
!(x,y’z,...dedydz... = (b-al(d=cl)({-e)... [:—-z 2 Ee Sl e SRR
n J
a c e

In solving multiple integrals no conventional numerical method
rivals the MONTE CARLO technique in accuracy and simplicity.
The method is based on the use of random numbers, in this case
random variation of the angles ® and @ in the intervals [0,%]
and [0Q,2%] respectively.

The program [MONTE CARLO] listed below solves the integral in

(A3.9) according to the algorithm of (A4.2). The program gives
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{ry=*3 directly which upon multiplying by R® the value of F
series can be obtained as given in table 3.1. The accuracy of
the MONTE CARLO method is believed to be of the order of n-\2
where n is the number of trials[300]. Therefore one has to use

large values for n which explains its time—intensive nature.

We note that the concept of integration as given by (A3.9) is

involved in this program. Program [SIMULATION] however, handles

the problem in a more natural way by finding the arithmetic

mean of the values of r.3%

This program takes the following steps in finding the average.

(1) Simulates the rotation of i and j by generating two random
points on the surfaces of the two spheres which are a
distance R away; lines &0 and 80.

(2) Finds the Cartesian coordinates of the two points; lines 70
and 90.

(3) Computes the distance r.,® between the two points; line 100.

(4) Raises this distance to power 3 to give r,,*; line 110.

(5) Adds all the inverse-six-power distances together; line 120

(6) Finally finds the average by dividing the sum by the number

of times in which the addition is made; line 140, and

obtains the F factor:; line 150.

We note that to find points with uniform distribution on the
surface of a sphere cosine of © must be randomized instead of ©
itself as shown in lines &0 and 70. The reason for this is

explained in Ref.[300, p. &01.

Both programs give similar results. The programs were also used

for the numerical integration of (A3.11).
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In Fig. A4.1, are given two best-fit to the F-q data obtained by
the programs. As an alternative to the analytical F series the
simple polynomial of the best~fit (bi, which can also be wtitten

as (A4.3) and is valid for O < g < .43, may be used.

F=rla) = 1 &% 727 q = 17.509 g= + 24.550 g= (A4.3)

where g = (da + d,i)/2R.

It was found, from the programs, that r., values have a normal
distribution with mean value R. This fact can be used for an
alternative analytical method of handling the average
inverse-six—-power distance,‘simply by finding the probability
function of rvesy P(r.s), and then using the mean value
theorem as;

Ly 22 = mn ™ Plrg) dey
This method should, in principle, give an exponential function
in terms of g, or R, du, and di. For the probability function
to be defined only the width or the standard deviation of the
normal distribution has to be found which can be done by the

programs given here.
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10
20
30
40
30
60
70
80
90

[MONTE CARLD]

INPUT "Number of trials ?",n
INPUT "di,dj,R ?",di,dj,R
sup = 0

FORi =1T0n

ti = RND#PI

ti = RND#P]

fi = RND#2#PI

fi = RND¥2%PI

100 x = R + dj*SIN (tj)#COS (fj) - di*SIN (ti)#COS (fi)
110 y = dj#SIN (tj)¥SIN (fj) - di#SIN (ti)¥SIN (fi)

120 z = di*COS (tj) - di#COS (ti)

130 rijé = (x#x + y#y + z#2)43

140 sum = sum + SIN (ti)#SIN (tj)/rijb

150 NEXT i

160 PRINT "av.-inverse-six-power=", sum#PI%PI/4/n

170 PRINT "F series=", sua#PI*PI/4/n#(R*6)

10
20
30
40
50
60
70
80
70

[SIMULATION]

INPUT "Number of trails 7%,n

INPUT *di,dj,R ?",di,dj,R

sum = 0

FORi=1T0n

fi = 2¢RND 1 costi = 26RND - | & sinti = SR (1 - costi*costi)
xi = di#sinti®COS (fi) : yi = ditsinti®SIN (fi) : 2i = ditcosti
£j = 26RND : costj = 2#RND = | 1 sintj = SOR (! - costj*costj)
xj = dj#sintj®COS (fj) & yj = ditsintj®SIN (fj) : zj = dj*costj

100 rij2 = (R # xj - xi)*2 # (yj = yi)*2 + (2j - 2i)"2
10 rijé = rij2*3

120 sum = sum + 1/rijb

130 NEXT i

140 PRINT "AV.inverse-six-power=", sus/n

130 PRINT "F series=", sua/n#(R*b)
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Flgh = (1 + .727 q - 17,509 q% + 25.550 %)~
| 4@
ol 38
2
=
Q)
oy
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| 20
1]
o
b3 Pt 8 o 3
q= (d +d,)/2R
-
f
Fig) = 1,006 + 2,254 q + 7.222x10° g7 + 7.531x10%% ¢*7
1@
3a
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&
b
Q)
oy
LI_’ZB
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o
p 2 v, ¥ é

q= (4 + d,)/R

Fig. A4.1. The best-fit to the F-q data from table 3.1.
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Appendix 5 The Centre-0f-Mass to Atom Distance, d

The distance from the centre—mf—mass of & molecule to the
buffeting, d,, or buffeted, d., atom is the only structural

or molecular shape parameter in the polyatomic formulations.
This distance distinguishes the location of the atom from the
CM of the molecule because the CM is assumed to be the centre of

molecular rotation.

For diatomic molecules X=, d equals half of the X-X bond
length. For diatomic molecules of type XY, of bond length r the

law of the lever gives;

dx dy
S e Jfme s Y My dH = M, = d")
[ CH By
ity vy P e g
from which d,, and d, can be worked out. For CO of r = 1.13 A

for example, this procedure gives the values given in table
table AS.1. The bonds length of the symmetric molecules like
XYa, XY=, XY= equals d, and that of d. equals zero (the values

of dw = 0 are not given in table AS.1).

For molecules like Xa, CXsY and X(CH=)a the d values can be
calculated exactly using bond lengths and bond angles (from

Ref. 138) and a method given by Moelwyn-Hughes[&9,pp. 501-5101.

The d values of more complicated molecules such as X (CHaCHw)
hydrocarbons, and CX:Y: can be found by approximate graphical

methods as depicted in Fig. AS.1 for SnEta.

Table AS.1 gives the d values used in the calculations of He

and (0~, and the simple molecules of Chapter 6.
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Table AS.1. The Centre-0Of-Mass to the Atom Distance,d*

Holecule d, A Holecule de A Hnle;ule de A Holecule de A_

Ha 373 CHsBr CHzBrCl CH0H

N2 549 H 2.19 H 22 H (OH) 1.35

02 604 Br 316 Br .92 H (CHs) 1.32

co C 1.621 €l 2.08 0 . 488

C 546 CHaBr2 C 1.25 c 738

0 484 H 2.25 CHC1Br - CHsCN

Nz0 Br 1.62 H 2.4 H 1.82

N 119 c 1.18 Cl 2.8 C (CHy) 1.28

N .10 CHBra Bbr - 1.8 C (CN) 159

0 1.12 H 1,633 C 1.0 N 1.317

H20 Br 1.834 CC1sBr CIND2) 4

H 92 c + 545 cl 1.97 0 2.3

0 « 065 CHsI Br 1.442 N .47

D20 I H 2,446 C 494 t-Callio

D .892 1 . 231 CF=Cl= H 1.9

0 A7 C 1.899 F 1.38 C 1.54

502 CHzl2 cl .42 Coliz

0 1.30 H 2.3 C 43 H 2,21

§ .358 I 1.8 CFCl5 c 1.54

Cl2 994 C 13 Cl 1,722 CaHs

Bra 1.145 CHzCl= F 1,409 H 2.46

[ 1.331 H 2.2 C 169 E 1.39

Pa 1,353 Cl 1.5 C2Ha c-Cafa

Sa 2.124* c .81 H 250 F 2.48

TiCla 2,425 CHCL 5 C 668 C 1.10

Snla 2.736 H 1.572 CaHs CH5CCCHs

CBra 1.93 €l 1,673 H 1.52 H 2.50
C +502 C 768 (continued)
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Holecule de A Holecule de A Nolecule de A Molecule de A
Me2CCHez CHea Siﬂg. GeMes
H 2,55 C (CHs) 1.54 C 1.865 C 1.98
SnMea PbHes C(CHzCH3) & Si (CHzCHs) o
C 2,143 c 2ekd H (CHs) &3 H (CHs) 3.25
6n (CHzCH) 4 5i (OCHs) o H (CHz) 2.15 H (CHa) 2.5
H (CHs) 3.45 H 3.0 C (CH3) 2.6 C (CHy) 2.85
H (CHz) 2.73 c 2.5 C (CHa) 1,54 C (CHa) 1,865
C (CHs) 3.0 0 1,504 51 (0CH2CHs) &
C (CHz) 2.143 H (CHs) 3.75

H (CHz) 3.0

C (CHs) 3.37

1 Note that the d values of peripheral atoms given in table 3.3 are not reproduced here.

+1 This is the 8-8 bond length from Ref.[3301, which by the syasetry of Se ring also equals da.

5n (CH2CHs) o

dniCHz) = 2,73 A

dw (CH3)

(a)

Fig. AS.1.

(a): A 2-dimentional graphical method

(b) and

{c):

(2.84 + 4,05)/2 = 3.45 A

A geometric method due to Moelwyne—-Hughes.

(b)

The CM to atom distance,
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de = 1,35

d

CHsCN
dw = 1.82
de = .16; dec = 1.28

dw = 1317

(c)

{dotted lines).



Appendix & Attributes of the Interacting Bonded Atoms

According to the atom-atom potential model each species, namely
bonded-atom, X-electron, or lone-pair electron, takes part in
the dispersion interation with three attributes. These are its
location in the molecule d, its moment <M=, ere, and its share
of the polarizability or the polarizability contribution (Pc).
The two former attributes have been previously discussed. The

latter attribute, Pc, however, deserves some amplification.

Let us take the case of P, which has a molecular polarizability
of d = 14.7 A® (found from its refractive index). The share of
the polarizability of each bonded phosphorus atom is obviously
Pc(P) = J.675 A=, This value now can be used with Pc(Cl) =
2.305 found from Q(Clz) = 4.61 A=, for example, to estimate

the molecular polarizability of 10.59 for PCls, in agreement

with ¢ = 10.4 A= (from table 3.46).

Once the Fc of a species is found, it can generally be used for
that species in differentmolecular environments. The Pc values
in table A&4.1 supplement the list given in sec. 3.4 for the
computations of the molecular potentials; For the buffeting
fields, as expressions (3.9) and (S.1) show, there is no need

for Pc’'s.

Note that the values given in this table have been found from
the molecular polarizabilities (with the exception of those
given in sec. 3.4 and those of F-, C-, and 5~; the Pc values of

Cl- and S~ are given for completeness only).

For 8i, Ge, Sn, and Pb, for example, the values of Q(X(CH=)a)
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have been used with the values of Pc for H and C as;
Pc(X) = Q(X(CHs)a) - 4 Pc(C) - 12 Pec (H)

where X = 5i, Ge, Sn, and Fb.

Table Ab.f. Polarizability Contributions of some Species

Species H C C*{CFa) L= b= Mo N N~ 0 (0-H)
fe > A3 .93 . 183 .58 .Bb 1.302 1.03 1,865 57
Species 0 {(R-0-R) 0 {C=0) F k= 5i ai* P S § (£=5) 5*(5Fa)
Pc A3 . b4 ‘ .84 .38 .985* 3.02 1,205 3.675 2.82 3.99 1,645
Species §° €l £l= Ge Br 5n I Pb Hg

Pc A3 8.94* 2.305 3.60* 3.92 3.39 9:52 3. 11 7.02 a.1

¥; Refs.(321,3311; +: Ref.(331]

The Pc of the aromatic carbon (C=*=) is found from Q(CsHs) and
Pc{(H). For ions like C*, Si*, and S* in FsC*F~, F38i*F- and
FoS*F~, the molecular polarizabilities, Pc(F) and Pc(F™)

are used. The Pc of C* in CFa (FsC*F~), for example, can be
found as;:

Pe(C*) = Q(CFa) - 3 Pc(F) - Pc(F™)

Pc{C*) = 2,31 - 3%x.38 - .985 = ,185 A=

The Pc values of the table should be used judiciously for
accurate calculations of H.. The value of Pc(H) = .43 A=, a
reasonable value for hydrocarbon for example, is unsuitable for
H=, because it gives ((Hz) = .86 in poor agreement with the
experimeﬁtal value of .82 A=. In this case (and also for Cl=,

Br=, and CCla) Q(Expt.) is used to arrive at Pc(H) = .41,

The same is true for the Pc(C*) in CaFe and CuoF. in which case
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Pc(C+) = .325 and .655 A® are found respectively.

Calculations of H, and (.

It will be recalled from Chapter 3 that the moment attribute
of a species with ionic character (anion/cation) changes by a

factor of 1/4 for each electron.

For example, F<C*F~ with ‘3 species’ has the following

attributes;

Molecule Species  ——————————— Attributes —————————
L s PR Pc A= d A
CFa B » 2SN X - 185 Q
= 12 2% M= F i « 7285 15353
ke 3EM= 2 . 38 1.33

The attributes for some of the molecules with extra electrons,

along with some comments are given below.

CS. (a) 5 M= . » 23 0

S JILM= e 2299 1.558
Comments: There are 285 atoms plus two pairs of X-electron
equivalent to one <mM2®*a~. Two points should be noted here.
First, the centre of the X-electron is assumed to be at the 8
atom, which explains the use of dx = 1.558 = dw. This is not
strictly correct; for more ac:urqte calculations the centre of

the X-electron should coincide with that of the C-8 bondj

CSx (b) C M= - .93 0
S 24Mm= > e 2.82 1.558
X M= a 1.99 S i A
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where Pc(X) = 1.99 A® is found from ((CSz), Pc(C) and Pc(S).

The second point concerns the moment of X—-electron which for
CS= is assumed to be equivalent to that of Ar. For S0= the
moment of X—-electron is that of the Ne, the outer atom,

because in this way the molecular moment can be calculated with

accuracy from the inert-atom moments.

It therefore appears that the dispersion power of the X-electron

depends on the nature of the atoms in the double bond.

It is interesting to note that (3.25) with the attributes in (b)
for the R value of 5.86 A, found from HU(Expt.) and the
attributes in (a), gives H.o(Cal.) = 12.00 KJ/mole. This is
short of the experimental value by 14 KJ/mole, showing the
importance of the buffeting location of the X-electron system.
The experimental H. can be calculated for the attributes in

(b) and R = 5.3 A, a value close to R.,> = 5.16. This argument
goes equally well for benzene for which the X-electron system

is centred at the cabon atom.

CH=CN H SEM™ P e - 43 1 He
C (CH=) A= - 93 1.28
C (CN) M= 5 - « 93 v 10%
N 2CM= Yy 1.03 1.317

Comments: Here again the X-electron is located at N. The
molecular plarizability of ( = 4.274[691, 4.45[214]1, 4.35
(from refractive index) and I(ev) = 12.2[1581]1 give;
<m=3(Mole.) ™~ 125.14

which compares well with those calculated from inert—-atom rule
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on the basis of structures;

CH=s—-C=N m=r= = 118.13
H*CH==C=N" Un=re = 120,20
Using the above attributes and R = 4.75 or 4.8 A (in agreement

with R..> = 4.9 A from molar volume at 20 “°C) with (3.25)
the exact experimental heat of vaporization can be calculated,
which signifies the minor role of dipolar effects in the

cohesion energy in the absence of hydrogen bonding.

N 4CM™ 1S ) 1.47
u} 11<$m=nu .84 2

Comments: The molecular (! = 12.5 A® (from its refractive index)

and I(ev) = 10.94[1581 give;

<m=>(Mole.) = 328.12
Type (&) <M= = 347.6
Type (c) <M= p = 327.12

where structure (c) with .75<{m®)n. for the X-electron system
gives the exact molecular moment and is therefore suggested as
an alternative to the conventional resonance types (a) and (b)

with 1<{m®>ne. and .5<m=’.. for the X-system respectively;

0 o 0—" o 0. .0
\ / \ / N7/
N {mmmmmem > N+ N
| l I
c C C
(a) (b) (c)
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Cz=Ha c 2aT<M= e 1.72 - 668

Comments: The Pc(C=) = 1.72 A~ for double bond carbon, at
variance with that given in table A&4.1 from Ref.[1611, is found

from the molecular polarizability of 4.26049] using Pc(H) = .43.
For R = 4.82 A the double bond contributes about 2.25 KJ/mole

to the total cohesion energy of CzHa (for X-electron at C).

CaHiz c ECM™ F e « 93 1.54

H 12<4M= 1 1e 43 2,21

Comments: The d value of 2.21 A is the mean of du(Equt.) = 2.49
and dn(Axial) = 1.93. Such attributes for R = 6.34 A give

He = 26.83 KJ/mole, about four units short of the experimental
value. The d attributes assume a flat molecule whereas the

real molecule at any instance of time has the well-known chair
(and boat) conformations with six equatorial hydrogen at a
larger distance from the CM. By accounting for this fact and
treating hydrogens as different species the correct cohesion
energy can be found (29.89 KJ/mole), once again showing the
sensitivity of the polyatomic potential to the liquid state

structure.
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A Simple, General Method for Predicting the Relative

Intensities of First-Order,

NMR Spin-Spin Coupled Multiplets

John Homer and Mansour Sultan-Mohammadi

The University of Aston in Birmingham, Gosta Green, Birmingham B4 7ET, England

Preliminary undergraduate instruction in the principles of
nuclear magnetic resonance spectroscopy normally includes
discussion of the analysis of first-order, spin-spin coupled
multiplets. It is well known that the number of multiplet lines
is given by 2nl + 1 when n magnetically equivalent nuclei of
spin I are adjacent to the resonant nucleus and cause the
splitting of its resonance.! Similarly well known are the
principles for predicting the distribution of line relative in-
tensities in first-order multiplets.! Because these can be te-
dious to implement per se it proves advantageous to have
simple rules that can be used speedily to predict the line rel-
ative intensities. While such rules for spin !4 nuclei are often
referred to, there appears to have been little reference to a
general rule that permits the rapid evaluation of the relative
intensities of the components of first-order multiplets that
arise from coupling with any number of equivalent nuclei of
anly spin. The intention here is to present such a general
rule.

Fundamentally, both the number of multiplet lines and
their relative intensities depend on the possible combinations,
Z; m, of the allowed spins of each nucleus, i; for each nucleus
the quantum number m can adopt the values [, [-1, [-2 . . .,
—1. Consequently, the number of lines arising from coupling
to n equivalent nuclei is 2nf + 1 and the relative intensities
of these is given by the number of times each value of Z; m;
occurs. In the case of coupling to n spin —Y% nuclei the relative
intensities can be generated rapidly from the coefficients of
the binomial series or, probably more popularly, using Pascal’s
triangle. The relevance of the latter (Fig. 1(b)) can be appre-

Number of [ = %
neighbors (n)
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Figure 1. (a) The relative Intensity distribution of first-order multiplet lines caused
by coupling to n nuclei of spin ;. (b) Pascal's "triangle.”
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ciated by reference to Fig. 1(a) which is the result of assuming
that each additional nucleus splits each line in the preceding
pattern into two. This is mirrored in Fig. 1(b) where each of
the elements of any row are obtained by summing the two
numbers directly above it and to its left. This is a specific case
of a general rule.

When first-order multiplets arise from coupling to n nuclei
of spin I the relative intensities of the components can be
deduced by deriving appropriate Pascal-type “triangles”. For
this, each element of a particular row is deduced by summing
the 21 + I numbers above and to the left in the preceding row.
This is illustrated in Figure 2 for the case of I = 3/2. It can be
seen from this that, for example, when n = 3, the 'H resonance
of Na* By Hg™ will occur as a 1:3:6:10:12:12:10:6:3:1 decet due
to coupling with the three ''B nuclei.2

With the availability of multinuclear-pulsed F-T' NMR
spectrometers and the consequent accessibility to a multitude
of resonance spectra it is inevitable that students must be
acquainted with the principles of analyzing spectra involving
a variety of nuclear spins, It is possible that the triangulation
rules outlined above may prove helpful in the analysis of
first-order spin-coupled multiplets.

T Akitt, J. W., "N.M.R. and Chemistry,” Chapman and Hall, New York,
1973.

2 Jesson, J. P, and Muetterties, E. L., "Dynamic Nuclear Magnetic
Resonance Spectroscopy,” (Editors: Jackman, L. M., and Colton, F.
A.), Academic Press, New York, 1975.

=1

-—2nl+1(I=§)
o1 4

1 4 |[+1+1+1 1
n

2 7 123,4]3+2+1+
i ]

6+10+12+12| 10 (6] 3 1
n

4 13 1 4 10 20 31 (40|44 40 31 20 10 4 1

Figure 2, Construction of Pascal-type "triangle” for n nuclel of spin 3/2. In this
example, 2/ + 1 = 4 so that four numbers from the preceding row must be added
to obtain an item for the row below, as indicated.



