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Summary

An apparatus was designed and constructed which enabled
materia% to be melted and heated to a maximum temperature
of 1000°C and then flooded with a pre-heated liquid.

A series of experiments to investigate the thermal
interaction between molten metals (aluminium, lead and
tin) and sub-cooled water were conducted. The cooling
rates of the molten materials under conditions of flooding
were measured with a high speed-thermocouple and recorded
with a transient recorder.

A simplified model for calculating heat fluxes and metal
surface temperatures was developed and used.

Experimental results yielded boiling heat transfer in the
transition film and stable film regions of the classic
boiling curve. Maximum and minimum heat fluxes were
observed at nucleate boiling crisis and the Leidenfrost
point respectively.

Results indicate that heat transfer from molten metals to
sub-cooled water is a function of temperature and coolant
depth and not a direct function of the physical properties
of the metals.

Heat transfer in the unstable transition film boiling
region suggests that boiling dynamics in this region where
a stationary molten metal is under pool boiling conditions
at atmospheric pressure would not initiate a fuel-coolant
interaction. Low heat fluxes around the Leidenfrost point
would provide efficient fuel-coolant decoupling by a stable
vapour blanket to enable coarse mixing of the fuel and
coolant to occur without appreciable loss of thermal energy
from the fuel.

The research was conducted by Gareph Boxley and was submitted

for the degree of PhD at the University of Aston in
Birmingham in 1980.

Index: Heat Transfer Molten Metals/Water.
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contact resulting in partial interaction, Page et al (5)
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rainstorm. Many instances have been reported since then,
Morrisen (7) for example quotes the case in the mid 1870's when
a careless workman dropped molten steel into a pit of water
while a U.S. Senator was inspecting the improved Bessemer
process for steel making. The force of the explosion threw

the Senator across the shop. Probably the largest example of

a F.C.I. was the destruction of Krakatoa, Macdonald (8) in 1883
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xplosive yield equivalent to 200M tons of

Industries.

In the Chemical Industry Jennings (9) quotes several examples
wnere hot and cold liquids become intermixed with disastrous
results. [For instance the filling of a road tanker with hot
tar at 1507C the tanker ccntained water and a few seconds after

. - . : a1 o b . 2 L - 5 3 B fal
Tilling commenced the tank erupted due to the interaction of




hot tar and water. Another example quoted, eonoerhed'é&iighgi' \j
oil which contained small quantities of water. The oil was
heated to drive off the water vapour prior to: carrying out a
reaction. Heating was started without agitation and it was
assumed that the stratification of the oil and water resulted
in the oil being heated to above the boiling point of water,
the heating coils were estimated to be at 250°C. Agitation
was finally started but this forcibly mixed the hot oil and
relatively cold water together resulting in a vapour
explosion.

King (10) has suggested that the Flixb rough disaster was
initiated by a F.C.I. in one of the reactor vessels when the

stirrer was turned on, mixing hot cyclohexane and water. The

resulting pressurisation was sufficient to burst-a temporary
connection between two of the reactor vessels allowing cyclohexane
to escape. The damage was then caused by the subsequent

explosion of the cyclohexane/air cloud.

While there have not been many incidents in the 0il and Natural

Gas Industries, Hughes (11) has reported several incidents where

e
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large heavy oil storage tanks have been destroyed by the sudden
vaporisation of water which had become trapped in the hot oil. |
While with natural gas the U.S. Bureau of Mines (12) reported

vapour explosions when investigating the effects of large scale

&

- spillage of liquid natural gas (LNG) onto water. Here the water

was acting as the fuel and the ligquid gas as the volatils
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The Pulp and Paper Industry has a long history of indust r;aW
accidents in the soda recovery operation of the pulp making

3

process which can be attributed to the F.C.I. phenomenon

Nelson and Kennedy (13) and (14) have investigated incidents of
O the green-liquor and concluded that such
explosions were physical and not chemical in nature, and in
1962 as a result of the increased frequency and severity of
recovery boiler explosions the Black Liquor Re 2covery Boiler
Advisory Committee was set up. Taylor and Gardner (15) have
reviewed some 59 accidents resulting from smelt/water explosions
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Explosive incidents resulting from the accidental contact o

XL

and water have occurred for many years in the metal

dry industry. The major incidents have been reviewed by
Vaughan (16) and Buxton and Nelson (17). The most recent major
incident in the U.K. occurred at Scunthorpe in 1975 (18). The
accldent occurred at the British Steel Corporation's plant at
Appleby - Fro.dingham Steelworks, and a total of 11 people were
killed and & injured. The incident occurred because of the

a Dblast furnace cooling pipe and the water found
its way into an insulated rail torpedo containing some 175 to

200 tons of molten steel. When the torpedo was attached to a

,an explosion occurred. It was not

stimates of the amount of water involved were




The F.C.I. phenomenon is of interest to the nuclear reactor
industry and incidents have occurred with small water cooled

m
1

he danger exists that during a power
surge the water filled metal West amdeeng could melt resulting
in the mixing of molten weke\ and water, and/or molten core

material. Such an explosion would severely damage the reactor

and may result in a scenario of a catastrophic nature.
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In general there appear to be three factors necessary for .C.I.

to occur these are; that the fuel or hot material is molten; that
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that its surface area can be greatly increased over a short

time scale thus enabling rapid heat transfer to occur. With

a solid phase fuel such rapid fragmentation is thought not to

be possible, though some materials for example U02 will fragment
due to thermal streséing but such fragmentation is relatively
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coarse mixing with reduced loss of thermal energy due to the
low heat flux associated with stable film boiling. For film

boiling to occur

metal/water interactions then boiling heat transfer would occur.

e thermal conductivity

instantaneous phase change in the coolant, and
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factors to occur in z typical commerclial environment for molten
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Fand C refer to fuel and coolant respectively.
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Boiling Heat Transfer and Pool Boiling

Boiling heat transfer is defined by Tong (21), as a mode of

neat transfer that occurs with a change in phase from liquid
to vapour. The existence of several regimes of boiling was

submerged in a tank of saturated water reported by Farber and

N
~—

Scorah (25) and McAdams et al (26) again verified the boiling
& <5
Consider Fig (2.01) page 8, which is the conventional log-log

representation ol heat flux versus wall superheat.
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subsequently evaporates when it rises to the surface. In reglon
IT bubbles begin to form on the surface of the wire and are
dissipated in the liquid after breaking away from the surface.

This is known as local bolling, that is the bulk of the liquid

is subccoled. The region indicates the beginning of nucleate
boiling and the bgfyvbagaPef wyé 135 increased,further vapour

bubbles form more rapidly and rise to the surface of the liguid

where they are dissipated and bulk boiling is said to occur.
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temperature excess is associated with a laree change in heat
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flux. Vapour bubbles transport the latent heat of the phase
change and also increase the convective heat transfer by
agitating the liquid near the heating surface.

Maximum nucleate boiling heat transfer occurs at point 'a' which
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is known as the boiling crisis or burn-out or D.N.B. (Departure
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from Nucleate Boiling). It is caused by the rapid formation of

vapour bubbles which obstruct
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this point the vapour bubbles coalesce and form a vapour film
which covers the surface. Heat must be conducted through this

1

ilm before it can reach the ligquid and effect the toiling

in heat Tlux, and this phenomenon is illustrated in region IV,
*_Y‘K\&‘;\\.‘t.o\r\
the film boilling region. This region represents a transition
from nucleate boiling to film boiling and is unstable. Stable
film boiling 1s eventually encountered in region V which represents
a minimum heat transfer region where a large change in
temperature excess is associazted with this minimum heat flux awmd
is known as the Leidenfrost temperature The surface temperatures
required to maintaln stable film bolling are high, and once this
condition is attained, a significant porticn of the heat lost
by the surface may be the result of thermal radiaticn, as
indicated in region VI. In many practical situations the

temperature necessary to maintain high heat fluxes in region VI

er, and the heater may melt before




Pool boiling is the type of boiling that occurs when a heater

18 submerged in a pool of initially stagnant liguid. When
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the surface temperature of the heater sufficiently exceed

on the heater surface. The bubbles grow rapidly in the
superheated liquid layer next to the surface until they depart

and move out into the bulk liquid. While rising as the result
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of buoyancy they either collapse or continue their growth,

depending upon whether the liquid is locally subcooled or

saturated. Thus in pool boiling a complex fluid motion

around the heater is initiated and maintained by the nucleation

growth, departure, and collapse of bubbles and by natural

The rate of heat transfer in nucleate pool boiling is usually
very high and Forster and Greif (27) attribute this high flux
to microconvection in the superheated liguid sublayer adjacent
to the heater surface. This motion 1s caused by the dynamics

cf bubbles that nucleate and grow in the superheated film. As
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f much research and Cole (22) gives a good review of the subject.
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molecules which are considered Lo have a distribution of
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eversible collision process.

the maximum free energy of formation is:
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Kutateladze (52) nhas develcped a critical heat flux

correlation in saturated pocl boiling by using dimensional
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analysis, and cbtained the following corredtation.




o=
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Where the average value of (K)% was found by experiment to
be 0.14,

This correlation was extendsd to subcooled liquids by Zuber
(53) who included a conduction term to account for the
intermittent contact of subcooled fluid and heating surface.

This results in the following ratio:

[4 ’ .
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Y U2l
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1
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/[3 2

) (2.15)

Tsat—Tsub

Kutateladze and Schneiderman (54) have found that equakion
(2.15) agrees with the critical flux in pool boiling of

subcooled water and ethanol at less than 142 psia.

Film Boiling

Immediately after critical heat flux is reached, the boiling
mechanism becomes unstable. This regime is called partial
film boiling or transition boiling. Westerwater and

Santangelo (55) have observed from high speed motion pictures
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a phase change

to which a liquid
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fluctuations lead

temperature a given
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by Nakanishi and Reid (59) and Katz

Fauske (20) developed the theory and

other materials,
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surface resulting in high heat flux and r rapid evaporation

and condensation until explosive vaporisation occurs. The

PrOCESS 15 seen as cyclic and leads to a coherent explosion

The splash model assumes that when the interface temperature Z
is above the spontaneousnucleation temperature random local

contacts produce bubbles wihich coalesce into a high pressure

vapour ilm which mav

collapse locally and transmit the

The resulting splash produces further

through the film occurs.

Long (63) has proposed an entrappment theory to explain the }
results of experiments consisting of molten aluminium poured

onte contalners of water In such experiments interaction

appeared to occur as the metal settled to the bottom of the

water container.

if

the molten metal enters the water and

remaing basically in a single body while settling to the
bottom, water may be 'trapped' between the hot molten metal and
the container surface. The thermal energy of the molten metal
¥
vaporises the trapped ceolant, and the vaperised coolant .
?
evpands fragmenting the molten metal. The fragmentation §
nroduces a greatly increased surface area thus enabling high
neat fluxes to develop and so form an explosive
interactiorn.
- N TR s+ onded the work of Long (’/?> by
Hess and Brondyks (64) have extended tne wWork S A4 Y
: £ W oarmoad AROtoSraD! and oreater 1uminiumn
the use of nign s0eeC Drotograbny na greater iuminiwg
superheats. Page (65) working with aluminium and copper has,




] sted that
sugzested that the molten metal i eed not stay as a bolus

N

De coarsely mixed with the coolant

transfer mechanism may then reform
iner base. Interaction may be
nal energy source, with the molten metal
ng through the water, coarsely mixed with the
water, or as a coherent mass on the bottom of the container.
Long (63), Hess and Brondyke (64) and Page (65) have all
reported that coating the base of the container tended to

=

prevent sporitaneous explosions from the base of the

molten metal or fuel, this results in an energetic interaction.
It is thought that such a coolant jet can be formed by the

collapse produced when a vapour bubble condenses

olant. The resultant coolant jet is thought to

penetrate the fuel surt face, vaporise and throw out fuel particles
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into The coolant.
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further bubble to grow and theg sequence is repeated, with

greater energy in an escalating cycle until the fuel cannot
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suse it has cocled, been dispersed

Boiling Cyrnamics




thg, and transition film boiling. Swift (67)

e

1olence associated with nucleate boiling

), o . _— C, e
Ol the molten metal. In transition film

1hereases as the fuel temperature cools,

1

erently unstable situation. It has been

se forces are sufficient to cause disruption
of' the fuel which would lead to an explosion. Board et al

¢ Al (RO Y Lt S VN S 3
(68) and (69) studied tin/water interactions and noted that

the vapour film which separated the molten tin from the water

underwent oscillation. High speed film indicated that the

vapour film collapsed completely onto the hot tin surface.

1 ~
i

he vapour film collapses liguid

he metal surface and is vaporised, {ragmenting

coolant contacts
the molten metal. A refinement of this mechanism 1s Kazimi's

hypothesis (70) that acoustic cavitation was the fragmentation
mechanism for near-spherichal metal droplets cooling in water.

Acoustic cavitation is a phenomenon whereby the molten metal

ions in pressure in response to

an oscillating vapour region adjacent to the fuel. If the

4 I I ~xr k o ooy v PP
ssure was reduced appropriately, cavitation of the molten
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a progressive wave due to kinetic and potential energy is:
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vhers z is the acceleration due to gravity
Mo is the maximum amplitude of the wave.
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and not brittle at
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r systems but bismuth

expands on freezing.,
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(82) and it is based on the assumption that dissolved gasses

in the molten fuel. On rapid cooling the fuel
becomes supersaturated with gas which pressurizes the hot
iquid interior and results in dispersal of small particles
of fuel intc the coolant. The mechanism is applicable to
oxygen dissolved in

that i1t would alzo be

steel. However, many

P.C.T. experiments have been conducted under an inert ga

atmosphere and Johnson and Shuttleworth (84) have pointed out
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that the amounts of inert gas that can be dissolved unde
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such conditions would be very Zma..i.
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Chapter 1V

geometries. [For example Berenson (57) has used a horizontal
plate, Bromley (56) used a vertical plate, Frederking and

)

darola and Ladisch (86) a solid
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cylinder with a spherical lower end, Konuray (87) a solid
sphere and crucibles of molten tin, Dullforce (88) molten
-in cn a thermoccuple junction, and Nelson and
Puxton (89) of Sandia Laboratories melted varicus metals and

flocdable arc-melting apparatus.
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with the tank bottom. A glass sleeve
stainless steel tube, was set round &
sleeve was 1lifted, water from the

of' the molten metal. A high spead th
through the base of the crucible so t
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\pparatus

Teperature Measurement

An exposed junction thin wire chrome

5 Yy N e N - L ]
fibre sheath was &

wires of i

rced the

ceramic tube was circular in cross section and

the metal contained in the crucible, v

to a potentiometer

ermocouple

When the
ank flowed over the
was passed

hat temperature changes

—alumel thermocouple

base of the crucible. The

Jnile the cold junction was

Copper extension leads

purpose

A double pole, double thrcw switceh connected the extension

contained two

the thermocouple through a short

The tube was bonded to the crucible
The hot junction of the thermocouple

low the surface of

A

s

surface

ttached to a small crucible

.




oltered numercus advantag

@

es over other temperature
transducers. Physically, a thermocouple is inherently
simple, being only two wires joined together at the

measuring end. It can be made large or small depending

i

on the life expectancy, drift, and response-time

1

requirements. A thermocouple normally covers a wide

range of temperatures and its output is reasonably linear

over portions of that range. Chromel-alumel thermocouples
are fairly linear especially for a low cost base metal

rhodium counles but these have a smaller Seebeck

coefficient. Table 4.01 overleaf illustrates this.
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4.01 Nominal Seesbeck Coefficients from refer
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ent constructicn material for the

table 4.01 can be found
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ference (90)

X Chromel (+) Constantan (-)
J Iron (+) Constantan (=)

K i Chromel (+) Alumel (-)

B Platinum/30% Raodium (+) Platinum/6% Rhodium (-)

Tn addition., unlike many temperature transducers thermocouples

are nob subject to self-heating problems and in practice
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sup ats were conducted using small nickel crucibles

-2
X 10 "m in diamete

{'F)
3
o
<

- _’) . . 3
2.5 x 10 “m in height.

ror high metal temperatures nickel was found to be

due to liquid metal attack, and quartz

Miller (G1) notes that ligquid-metal corrosion may take

vy several fairly common mechanisms, which include
a relatively uniform solution attack on the solid
surface, and an attack by direct alloying. Attack in a
specific area can be due to intergranular penetration

which results from a selective reaction of the liquid

metal with mincr constituents of the solid. This can

drastically alter the physical properties of a material
without appreciably changing its appearance. Also,
thermal-gradient transfer can occur by the coexistence of a
temperature differential and an appreciable thermal coefficient
of solubility. Even though the actual solubility may be quite
low, appreciable amounts of a solid component may be dissolved

nicher solubility and precipitated in the

filler (91) in a review of containment materials for molten

udes that almost all solid metals and alloys

are severelv attacked and are unsuitable for long-term contact
re seversly attacke
o
1 - sepecizlly ab 10007C -
with molten aluminium. Molten lead especially at 10007C an

sny metals and




solution, and is similar to molten aluminium, though less

sever
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“f—r R 3 . : 3

olten aluminium, lead, and tin were not reported
At oAl i . o~y A : ;

Lo avtack guartz. An oxygen-natural gas torch was used to

ne crucible.

A rectangular tank of base dimensions 2.0 x 10 1 quare and

1.4 x 10 "m high was made. The base of the tank was cut

-2

from Asbestos 2.5 x 10 7 hickness. The centre of the

=]
I_J‘
o

o}
nase was recessed to a depth of 6.0 x 10 “m and to a radiu

m

of 3.5 x 10 “m. The centre was pierced by a hole of radiu

3.0 x 107“m. The top surface of the Asbestos was sealed with

2 P.T.F.E. spray to water proof it.

Perspex of thickness 3.0 X 10"3m was cubt to size and bonded to

top edge of the tank carried an anti-splash lip of perspex

-2
of width 1.0 x 10 “m. This alsc served as bracing to give
the top of the tank added rigidity. Perspex was chosen for
the sides of the tank sc that visual observation could be made,
~nd also that in the event of an experiment belng terminated

teraction, the hazard of debrils

oy a vieorcus sponteneous interactlion, tne€ Raszali O HEbt-
would be minimised

D
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yrophillite collar was recessed to a

<

2
fong =D 3 1 -z
.5 X 10 “m and to a radius of 1.5 % 10 ™ The
centre was pierced by a hole of radius 1.3 x 10*2m. A

ring of pyrophillite 2.3 x 10 m thick and of radius to

12 collar was cemented to the collar.

: . ?
ng vias pierced by a hole of 1.0 x 10
‘his ring then received the crucible. The
pyrophillite was machined in the 'green' state and then
fired according to the manufacturers instructions

The pyrophillite collar and ring were designed to provide

L
L

a sub-assembly which would enable different sized crucibles

me pyrophillite collar by the use of

m

in the tank as was an electrical immersion heater. The

jars

heater was controlled by a rheosta

The zlass slesve was made from a section of thin walled

Purew ‘]‘L‘,D{\. 1 ') A O T“ lo’?f" ’}(](1 8 O X ]_O Tﬂ O.D. The
Iy res LU s

ct
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three "/“‘Q_L v S‘QL e- holes on L




also cushioned the

To stop water seeping along

= (W]
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water-tight seal again

s were made from commercially

available 'U' section rubber strip cut to length and bonded

(o)

The stainless steel carrier consisted of a disc which
formed the top of the glass sleeve and the bottom stop of
L B 5 IR L RN o "’2 .
the compression spring, a tube of 2.0 x 10 "m 0.D. passed
throush the disc and was brazed to it. The tube acted as

the spring and passed through a brass earing.

The tube evhausted the glass sleeve to the atmosphere and

2
lon delivery tube, 5.0 x 10 “m 0.D. of nitrogen.
/ ’ [
+ the assembly lifted in a

norizontal movement, and also
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mocouple was connect

Deck e.m.f. from the couple could

analogue temperature

gauge, or a calibration potentiometer and transient recorder

latter two instruments could be used independently of
e Y 4ol o~y - : < o R . .

cacn other by the use of switches within the respective
instruments.

The Datalab DL 905 transient recorder was used to store the

analogue-to-digital converter (A.D.C.) connected to an 8-bit
t register memory. The variable gain,

wide band amplifier preceded the A.D.C. and a digital-to-
ue converter was used to reconstruct stored data back
into analogue form. Data storage waes permanent until a new
record command was made or until power was removed from the
instrument. The stored input signal from the thermocouple
was displayed as a sustained trace on a cathrode ray

. . i - IR -~ s Y -
oscilloscope monitor and was also outputted to a Rikodenki-

Fay L.
el & 11 s YA e
L.02, pags 4, 15 a schematlc Wirlng diagram of th

=
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that a permanent record of the signal

ed to a double pole, double throw
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Experimanta

less steel carrier were removed
The tank was cleaned and

and ring were cemented to

" the water. VWhen the cemen

S \ 3 1. Falal PN T3
strongly heated to effect a cure. It was

Lo

Juartz crucible was carefully fitted into the

ceramic tube, which

5
a5}
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mented into place so that

ermocouple was a nomina

2.5 x 10 “m below the rim of the crucible. The ceramic

were set in the central vertical
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ible. The cement was neat curred as
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Metal cranules a pre-welgned exeess amount, were

th ~ueible under a nitrogen atmosphere.
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re was measured with a

(4

. The crucible and the contained metal

heated with the torch under an atmosphere of nitrogen.
high temperature experiments two torches were used set
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other. The approximate metal temperature
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rature was recorded in the
DL 905. The stored signal was then outputted to the pen-

recorder, thus converting the given e.m.f. to vertical pen

the experiment would proceed. If

however the reading did not comply, then the experiment would

Wnen the required superheat was reached and the required
stirrer were
coolant subcoo maintained, sTirrer wer

Cy anle e, ut was transferred
svwitohed of'f. The Lh{-}f‘fﬁocodg)ld c.m.t. outpuu was transterr
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nen the recording was made the DL 905 switched to a display
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mode and the experime
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signal was observed on the C.

via an internal

was then outputted,

circuit in the DL 905, into the pen recorder. The

horizont of the pen recorder had been adjusted so

«

) . . . o s
that 2.0 x 1077 m of travel was equivalent to 10 seconds. 1his

tion of 5ms per 1.0 x 107

tal procedure was repeated with different

he above experin

and melt superheats, and with the coolant at different
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information on

i

ard liquids. This
y using molten metal and water systems. In
2cessary experimental data for this
study, an apparatus was successfully designed and built
which enabled molten metel to be flooded with pre-heated
water and the resultant temperature change in the molten
metal to be measured and recorded.

A simple heat transfer mocel, pased on fundamental heat
transfer mechanisms was developed and appnlied to the
experimentally obtained data. This enabled heat fluxes

and also surface temperatures of the cooling metal to be
calculated. The latter was znhieved without the use of

a semi-infinite soild, transient heat flow model. The
experiments produced constant neat fluxes of several seconds
curation and thus improved the reproduceability of the

experiments by not yielding transient neat

The experimental results were rlotted as loglo Heat Flux

1 i _ = _T . This yielded a
against loZ 9 , where C}'- S TC f y

10
~elztion=nlpd wAicn can 02 ccrmared to those derived frcm
1 L =i v el i I .

A1 date cbtaired frowzdﬁar\WQm(\gfesunder

4t atmospheric pressure.

Lszical Dolling CLTVE as rot obtained dug
FoiN IOPR OIS A LY )




]
t

als used for the

R AN N - e Fara ~fP e 3
ine neac translier coefficient was found to be positively
correlated to the depth of t, but {

1 L deptn ol coolant, but not strongly related

s o . ,

015 18 vO be expected as the heat transfer i
~Ha 1 @amt o ! + £ !
coefficient was calculated from the relationship ?

b= = 7.0
and thus contains the coolant temperature. However it is well
worth noting that heat transfer appears to be a function of
T, T and (TSMT ) the latter being the dominant function.

i fficult to control experimentally as 1t was a function

of the molten metal bulk temperature and the coolant temperature f
and the heat transfer rate, which is a dependent variable. & |
Heat transfer, as measured by heat flux, between molten metals
and water was found to be a strong function of temperature and L
a strong function of the thermal and physical properties of i

These physical properties are summarised

Table 7.01 - Summary oOf

—
[
ENESEE ” 2 o) - O
1 N O (a7 Op (7o) KeC T .C
Mot al MOD _L(UC) w(W/mC) Kz/m”) (J/Kg ) ref
raoval o 5
SAn
- 5 2NE )8 00
Aluminium 660 G8.7 2,340 1,080
e -
5 o Ti~te et 500
Lead 327 18.2 10, 45 131
!
- 22 5 897 211 400
Tin 232 33.4 0,071 I
E ___’_’_______f,____n-.,_—»—-w————’,"”—_’_‘__
71




S of' time, temperature and

(]

,'.,r\v\ 1 at 1 - Y j
rental heat flux data are summarised in fisure
feb)

OJ Oxrr\’\La'\“ ks v b ~ T

eal’. It can be seen that heat transfer occurred
] jg - Ay ~A s 3 }
film boiling region, and included both the transition

7 G

e . ‘ . L
ble sub-regions. Maximum heat fluxes occurred in the

poiling crisis. his corresponded to a

hant T £ CRE LT ,”2 =
heat flux of 1.585 k¥Wm — at a value of 1)0 C. A well

heat flux region was found to occur between
cransition film boiling and stable film boiling. This region

O =

neat flux or Leidenfrost point was found to have

PR, [N . £ 1;7'—2 N SR
f approximately 63.1 KWm — and corresponded to a

Boiling dynamics have been advanced as triggering mechanisms

suggested nucleate

transition film

poilin

The result of this research indicates that nucleate bolling
could only be applied to low melting weras and would not be
apolicable to the many commercially used medium and high
melting voint metals. 7.C.I. were not encountered in the many
experiments conducted in £his even at subcooling of
9rOC, i.e. water at an ipitial bulk temperature of 5°C.
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rates, thoug

cooling mode was occasionally

with two or at

AT Throaa syl A oo .
oSt thres ciearly different gradients. Each such eradient

O

was treated as an experiment and was 11
J a @2 al experiment and was processed as outlined

1 Lo

in Chapter VI,

results which indicate that when

looded with water so that no mixing of
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lows from the metal

to the liquid at a steady rate over a time interval of

several The longest time recorded was ten seconds. j

that boiling dynamics did not play,imWese bette, a

triggering role in situations where the fuel is stationary

and only essentially convective forces are acting on a non-
S\/\ a\o w {

The long time intervals and the low heat transfer rates that

oint indicate that

=

were found to occur around the Leidenfrost
very effective coarse mixing of a molten fuel and coolant may
be caused by some external agency, without appreciable loss

.1 eneprzyv from the fuel. This situation if triggered

F.C.I. to
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Dy zsome mec

o are ol factive ]l
that rmolten metal and water are effectively

it would be possible
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From figure 7.01, page 73,

it can be seen th

i at the experiment

results in the transition filp boiling region N med
are s

data from Konuray (87), upported by

obtained by quenching crucibles of
molten tin in water.

The results of Farber and Scorah (25) for a wire heated under

water at atmospheric pressure yield similer maximum and

minimum heat fluxes, though clearly show nucleate boiling to

occur at lower heater temperatures. Both nucleate boiling

regions fall into the temperature range of 100° to 270°C obtained
by Kenrick (41) for the onset of boiling in water. It is suggested
that the higher heater temperature obtained for nucleate boiling
is due to the heater surface being deficient in active nucleation
sites, thus enabling a higher superheat to be obtained. It would
be reasonable to expect a solid surface to be deficient in active
nucleation sites if it had been obtained from a liquid / liquid
interface between molten metal and water. The resultant surface
would be highly deficient in entrapped non-condencable gases due
to the nature of its formation, and therefore from the work of
Cole (28) and Bankoff (44) would be expected to be deficient

in active nucleation sites.

At higher heater temperatures nucleation sites become inactive
due to vapour blanket formation and the differences in the heater
surfase would be expected to be reduced and thus yield similar

heat fluxes, for similar condions. Data trends in the film

boiling region are approximately a factor of three different

from each other, and are similar to the difference in the heat

flux in the Leidenfrost region. The higher heat fluxes of Farber

and Scorah (25) for this region may be due to still active

nucleation sites on their heater surface as compared to the heaters

used by Konuray (87) and the auther.
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