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1 Abstract

Automatically generating maps of a measured variable of interest can be prob-
lematic. In this work we focus on the monitoring network context where obser-
vations are collected and reported by a network of sensors, and are then trans-
formed into interpolated maps for use in decision making. Using traditional
geostatistical methods, estimating the covariance structure of data collected
in an emergency situation can be difficult. Variogram determination, whether
by method–of–moment estimators or by maximum likelihood, is very sensitive
to extreme values. Even when a monitoring network is in a routine mode of
operation, sensors can sporadically malfunction and report extreme values. If
this extreme data destabilises the model, causing the covariance structure of
the observed data to be incorrectly estimated, the generated maps will be of
little value, and the uncertainty estimates in particular will be misleading.

Marchant and Lark [2007] propose a REML estimator for the covariance,
which is shown to work on small data sets with a manual selection of the damp-
ing parameter in the robust likelihood. We show how this can be extended to
allow treatment of large data sets together with an automated approach to
all parameter estimation. The projected process kriging framework of Ingram
et al. [2007] is extended to allow the use of robust likelihood functions, includ-
ing the two component Gaussian and the Huber function. We show how our
algorithm is further refined to reduce the computational complexity while at
the same time minimising any loss of information.

To show the benefits of this method, we use data collected from radiation
monitoring networks across Europe. We compare our results to those obtained
from traditional kriging methodologies and include comparisons with Box–Cox
transformations of the data. We discuss the issue of whether to treat or ignore
extreme values, making the distinction between the robust methods which
ignore outliers and transformation methods which treat them as part of the
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(transformed) process. Using a case study, based on an extreme radiological
events over a large area, we show how radiation data collected from monitoring
networks can be analysed automatically and then used to generate reliable
maps to inform decision making. We show the limitations of the methods and
discuss potential extensions to remedy these.

2 Introduction

Choosing an appropriate overall model is an important part of interpolating
and analysing observations collected from sensor networks. The model should
be based on assumptions about the underlying process that generated the
observations. Practically speaking, it is almost impossible to exactly specify
the correct model which introduces difficulties when attempting to estimate
parameters within the model. In this paper we consider the concept of robust
geostatistics. By applying robust geostatistical methods we aim to limit the
effects of observations that do not correspond to our chosen model. Robust
models are frequently employed with datasets where outliers are present, as
might often be the case in an automatic monitoring scenario.

The idea of robust geostatistics is not new and has been studied in geo-
statistics for many years [Cressie and Hawkins, 1980]. In this paper we avoid
parameter estimation techniques using method–of–moments based estimators
such as those described by Genton [1998] and instead focus on likelihood based
approaches such as those proposed by Marchant and Lark [2007]. In this pa-
per, we show how a fast Bayesian projected process kriging framework can be
used for robust parameter estimation to generate accurate maps of an area
of interest. Using this framework allows the efficient utilisation of most com-
monly used likelihood functions without having to resort to computationally
expensive Markov Chain Monte Carlo (MCMC) sampling techniques as used
in other Bayesian methods [Diggle et al., 1998]. As a result, we can experiment
with a number of robust likelihood models, in an near real-time framework.

In this paper, by applying a variety of non–Gaussian likelihood models that
have heavier tails which help to account for outliers, we compare a number
of robust methods. Specification of an appropriate robust likelihood model
could be specific to the domain to which it is being applied; our results are
particularly relevant to environmental monitoring of radioactivity.

3 Gaussian process

Model based geostatistics makes the assumption that any finite collection of
random variables is jointly Gaussian. Here we assume that the data takes the
form:

(xi, yi) : i = 1, . . . , n, (1)
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where we denote spatial location by xi and observations at the location xi
are denoted by yi. Each observation, yi, is assumed to be a realisation of a
random variable Yi which is dependant on the value of an unobserved random
process S(x) [Diggle, Tawn, and Moyeed, 1998].

We assume observations have the following relationship to the underlying
process:

Yi = S(xi) + Zi, (2)

where Zi is an additive, potentially non–Gaussian, error on the observations
that is assumed to be independent for each observation. Equation 2 defines an
arbitrary likelihood function, p(Yi|S(x)), which we will generally assume has
heavy tails to model the outlying observations.

3.1 Gaussian process approximations

We adopt a Bayesian framework for our iterative algorithm. Our aim is to
infer the posterior distribution of the underlying random process S(x) given
the observed data, Y = {Yi}i=1..n. This has the standard form:

p(S(x)|Y, θ) =
[
∏
i p(Yi|S(x))] p(S(x)|θ)∫

[
∏
i p(Yi|S(x))] p(S(x)|θ)dS(x)

(3)

where the posterior is the product of the likelihood terms and the Gaussian
process prior, divided by a normalising constant, often called the marginal
likelihood, p(Y |θ).

3.2 Parametrisation of posterior moments

Since we allow for arbitrary likelihood models, in this case robust likelihood
models, an exact solution would require the application of MCMC sampling
from this very high dimensional posterior distribution, which will be pro-
hibitively computationally expensive for large datasets in our real-time set-
ting. Our approach is to approximate the true non-Gaussian posterior by the
optimal Gaussian process posterior that minimises the Kullback–Leibler (KL)
divergence measure between the true posterior distribution and the approx-
imating posterior distribution. By minimising the KL divergence, we match
the first two moments of the two distributions [Csató and Opper, 2002].

To enable the use of the arbitrary likelihoods, Equation 2, we represent
the Gaussian process by a parametrisation of the posterior moments. The
posterior mean is parametrised as:

µposterior(x) = µprior(x) +
m∑
i

αic(x, xi), (4)

where c(x, xi) is the (a priori) covariance function between the point x and
the points xi used in the approximation. We write the covariance between two
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spatial locations as c(x, xi) = cov(x, xi). α = {αi}i=1..n is then the vector of
the parameters of the posterior mean of the process. The posterior variance
is parametrised as:

cposterior(x, x′) = cprior(x, x′) +
m∑

i,j=1

c(x, xi)C(i, j)c(xj , x′) (5)

where C = {Ci,j}i,j=1..n is a matrix of parameters for the posterior covariance.
Given the above parametrisation of the posterior moments, we now show

how these parameters α and C can be updated in an iterative algorithm. It
was shown in Csató and Opper [2002] that the parametrisation can be applied
recursively to give an iterative update rule:

µt+1 = µt + qt+1ct(x, xt+1), (6)

ct+1(x, x′) = ct(x, x′) + rt+1ct(x, xt+1)ct(xt+1, x
′) (7)

where t indicates the pseudo–time step in the algorithm or iteration, and xt+1

is the spatial location of the new observation being included at iteration t+1.
The scalar coefficients qt+1 and rt+1, which update the model at each iteration
can be computed analytically or numerically. The analytic update equations
derived in Csató and Opper [2002] are given by:

qt+1 =
∂

∂[S(x)]
log〈p(Yt+1|S(x))〉t, (8)

rt+1 =
∂2

∂[S(x)]2
log〈p(Yt+1|S(x))〉t, (9)

where the derivatives are with respect to the mean function at time t+ 1 and
the expectations, denoted 〈·〉t, are taken with respect to the posterior Gaus-
sian process at algorithm pseudo–time t. These update equations essentially
process the observations one at a time and update the posterior parametri-
sation by matching the moments of the updated parametrised posterior to
the true, potentially non-Gaussian posterior. Further details can be found
in Csató and Opper [2002].

4 Robust likelihood models

Robust likelihood models facilitate the estimation of the variogram parame-
ters in the case where outlying observations are present in the data. If likeli-
hoods which model a ‘robust’ error distribution are used within a traditional
model based geostatistical approach then sampling from a potentially high
dimensional distribution is required and can be very time consuming.

The method we presented earlier in this paper allows for the specification
of arbitrary likelihoods without the large computational overhead that comes
with existing MCMC based model based geostatistics. We now present and
discuss some robust likelihoods that can be used and compare them to some
existing techniques for treating data with outliers.
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4.1 Two component Gaussian

We could assume that the observations come from separate processes: a rou-
tine process and an extreme process. One approach that seems intuitive is
to introduce two components into the likelihood model, one component to
model the routine observations and another component to model the extreme
observations or outliers. We need not necessarily restrict ourselves to a two
component Gaussian likelihood model, but for the purposes of this paper we
employ a mixture of two components. Assuming that the routine observations
follow a Gaussian distribution is a common hypothesis although this is often
an approximation. However assuming that the extreme or outlier observa-
tions follow a Gaussian distribution with a large variance could be debated;
empirically we have found it works well, although there is little theoretical
justification.

The two component Gaussian mixture is constructed by summing two
weighted Gaussian distributions to create the mixture likelihood:

p(Yi|S(xi)) = βNa(Yi|S(xi)) + (1− β)Nb(Yi|S(xi)) (10)

where β gives the weight of the mixture, or the fraction of the observations
that belong to the routine process Na(Yi|S(xi)). We set the variance or noise
σ2
a, of the routine process to model our assumptions about the error in the

observation process. The extreme process is denoted by Nb(Yi|S(xi)) and a
much larger noise σ2

b is defined, which represents our beliefs about the extreme
process. Alternative mixtures of likelihoods could be considered, but in this
paper we will only look at the case where the likelihood models are summed.

4.2 Laplace

A alternative approach which makes yields a cruder robust likelihood model is
to assume that the likelihood function has a Laplace distribution. The Laplace
distribution has the probability density function:

Laplace(x|µ, b) =
1
2b
exp

(
−|x− µ|

b

)
(11)

where µ is the location parameter and b is a scale parameter. The Laplace
distribution is also known as the double sided exponential distribution.

4.3 Huber functions

One approach to determining robust likelihood models was presented by Marchant
and Lark [2007]. Here the Huber function is used in the likelihood term. The
Huber function is given by:

ρ (d) =
{

1
2d

2 if |d| ≤ c
c |d| − 1

2c
2 otherwise (12)
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where c is a constant determining the robustness of the estimator. In the case
c =∞ the model is equivalent to the standard maximum likelihood estimator,
with a Gaussian likelihood model. Rather than optimising the parameter c,
here we choose a number of values for c and see which gives the best results.
Future work will investigate the selection c using alternative methods.

5 Box–Cox transformations

A standard alternative that is commonly used when a dataset is contaminated
with outliers or at least when the dataset is assumed to be non–Gaussian
distributed is that of the Box–Cox transformation Box and Cox [1964]. The
data is transformed to be approximately Gaussian distributed using:

y(λ) =
{
yλ−1
λ ifλ 6= 0

log(y) ifλ = 0
(13)

and thus the effect of outliers can be reduced, but not completely removed.
In this paper we try a number of values for λ to identify which is the most
appropriate for the given data. We should note that the Box–Cox approach is
very different in character to the preceding approaches, since in the previous
methods we have assumed that the outliers arise because of a local corruption
to observations, whereas in the Box-Cox approach we transform the entire
field, albeit in a manner that attempts to maximise the (marginal) Gaussianity
of the observations.

6 Covariance selection

We follow the methodology of Ingram et al. [2005] for determining the co-
variance function used in the experiments. We use a nested covariance model
which has a linear sum of a Gaussian and exponential covariance function
components:

cmix(u) = πσ2
gauexp

(
u2

φ

)
+ (1− π)σ2

expexp

(
u

φ

)
. (14)

We assume that the exponential component models the short range rough
process and that the Gaussian component models the smoother properties of
the process at longer lag separations, which is consistent with a belief that
at short ranges the radioactivity field is dominated by turbulent mixing pro-
cesses, while at longer range large scale weather, soil and geological differences
dominate.



Robust automatic mapping algorithms in a network monitoring scenario 7

7 Datasets

To demonstrate the various methods discussed previously, we will use a radi-
ation data collected over the German monitoring network. Radiation data for
most countries in Europe is available from the EURDEP (EUropean Radio-
logical Data Exchange Platform) website 3. We use a dataset with a simulated
release of radiation into the environment prepared by BfS4, which uses the
real EURDEP observed background radiation with an added deposition gen-
erated from a radiation dispersion model. The simulated release represents
some kind of disaster that could potentially take place. The event in this case
is not a serious disaster, but rather a small release into the environment over
a large area. The release is dispersing in the E–W direction more rapidly than
the N–S direction. Anisotropy in the contamination process will present prob-
lems for the models. In total there are 1900 observations. We divide this into
two sets, a set for estimating the model parameters (1200 observations) and
a prediction set for cross validation (700 observations).

8 Results
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Fig. 1. Contour plot of (left) mean predictions and (right) variance estimates for
default (Gaussian likelihood) model.

Contour maps have been produced to show the mean predictions and es-
timates for the kriging variance. These can be seen in Figures 1–5. The first

3 http://eurdep.jrc.it/
4 German Federal Office for Radiation Protection
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Fig. 2. Contour plot of (left) mean predictions and (right) variance estimates for
mixture likelihood model.

thing to note is that each seems to capture the features of the simulated con-
taminant along the lower middle section of the area. Looking at the Gaussian
range for the default method shows how this parameter has become extremely
large and this effect can be seen as over smoothing the effect of the contam-
ination. The Huber function and Box–Cox transformation model also suffer
somewhat from over estimating the Gaussian range parameter in the E–W
direction, but to a lesser degree. The Gaussian Mixture and Laplace models
further improve, but anisotropy in the estimation is still marked, which is
realistic.

The summary statistics show that the Gaussian Mixture has the lowest
error (both MAE and RMSE) of all the methods investigated. The predic-
tions are also more correlated with the observations. The Huber function,
Laplace and Box–Cox transformation methods all improve on the default
method where no robust assumptions are made, however the improvement
is quite small.

The variance plot for the mixture Gaussian likelihood (Figure 2) indicates
that the parameters estimated are a good model since there are lower kriging
variances than with the other methods, and this is consistent with the observed
errors. The mean plot shows how the contaminant has a distinct pattern which
cannot be observed in the plot using the default model (Figure 1).

All experiments were carried out on a Pentium 4 2Ghz PC. Since the
main difference between these methods was in the specification of the likeli-
hood term, the computational performance was roughly identical across the
methods. The computational time, for parameter estimation and prediction
was approximately 2 minutes per model.
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Table 1. Covariance parameters for the different methods considered. Sill gives the
overall sill, summing both components.

Method Nugget Sill Gaussian range Exp. range MAE RMSE R

Default 0.32 1.35 (530.30, 1.67) (0.23, 0.12) 0.0010 0.0210 0.83
Gaussian Mixture 0.11 0.67 (48.36, 7.60) (0.09,0.07) 0.0004 0.0131 0.87
Laplace 0.16 0.75 (58.23, 5.42) (0.13, 0.19) 0.0006 0.0175 0.86
Huber function 0.22 1.01 (148.37,0.09) (0.43, 0.09) 0.0009 0.0192 0.86
Box–Cox 0.19 0.90 (136.89, 0.60) (0.82, 0.77) 0.0007 0.0190 0.86
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Fig. 3. Contour plot of (left) mean predictions and (right) variance estimates for
Laplace likelihood model.

9 Conclusions

In this paper we have presented four methods for treating outliers in datasets.
We have shown that the projected process kriging framework with robust like-
lihoods can be used in the presence of outliers, and on quite large datasets.
This is based on using maximum likelihood type II estimates of the param-
eters in the covariance functions. The overall computational time is under
two minutes. This is using an unoptimised Matlab implementation and initial
work on a C++ library suggests this can be reduced by an order of magnitude
simply by changing the implementation language. Furthermore in other ex-
periments, not shown here, we have processed over ten thousand observations
in reasonable time. Employing a Bayesian framework, the Gaussian process
prior allows us to make robust inference on the covariance function parame-
ters despite the complex structure in the observations, with possible outliers,
which would not be possible with standard method of moments estimators.
The Bayesian approach taken here should be called an empirical Bayes (or
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Fig. 4. Contour plot of (left) mean predictions and (right) variance estimates for
Huber likelihood model.
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Fig. 5. Contour plot of (left) mean predictions and (right) variance estimates for
Box–Cox transformation based model.

plug-in) method since maximum a-posteriori estimates of covariance function
parameters are used; it would be interesting to assess the impact of sam-
pling from (and then marginalising with respect to) the parameters in the
covariance function. This would require far more computationally expensive
sampling methods, but would give a clear indication of the role of parameter
uncertainty in (posterior) predictive uncertainty.

The radiological dataset that we have used shows that all four ‘robust’
methods offer an improvement over standard kriging results, in terms of some
standard metrics, however the Gaussian mixture likelihood seems to perform
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slightly better that other methods in this example. An explanation might be
that the 2nd Gaussian component of the mixture likelihood seems to better
model the contamination process, although we have not rigorously shown
this. The contamination process is more than a few outlying observations,
but rather a large number of observations from a second process. The other
models may not be able to capture this ‘second process’ since they are based
on heavy tailed distributions which, conceptually at least, arise as the result
of a single process.

There is a difference between the robust likelihood methods and the Box–
Cox transformation. The robust likelihoods all assume an underlying latent
Gaussian process, with observations that are contaminated by heavy tailed,
zero mean, symmetric, noise models; their aim is essentially to represent the
underlying process filtering the noise appropriately. In the Box–Cox approach
the observations are transformed such that their marginal distribution is ap-
proximately Gaussian, by a range of transformations from the identity to the
log transform. Thus the robustness arises from the squashing affect of the
transformation which reduces the impact of large observations (i.e. deals with
the skew of the distribution) – the outliers. The key question to consider
in choosing an appropriate method is probably more related to assumptions
about the form of the noise on the observations together with assumptions
about the distribution of the latent process. Note the Box–Cox transforma-
tion can only transform variables such that they are marginally Gaussian, not
jointly so. In practice, to confirm ones beliefs, it seems that it will always be
necessary to compare a range of methods using validation or cross validation
to select the empirically best method, even when strong prior information is
available.

There are a number of aspects to the modelling process that were only
touched on and require further investigation. The selection of the parame-
ters of the likelihood models, for example, estimating the mixing coefficient
and variances for each component in the Gaussian mixture model, could be
performed automatically rather than being specified a-priori. This would also
be possible for the c parameter for the Huber function. This is not trivial
however, as there is a conceptual difficulty in partitioning the observation er-
rors without additional knowledge, and would probably require a Bayesian
treatment, with the effort being applied to defining appropriate priors. So
called Trans–Gaussian Kriging [Pilz et al., 2004] incorporates a method to es-
timate the Box–Cox transformation parameter, which could be incorporated
into future models. It is interesting to speculate whether other approaches,
such as indicator kriging or copula based methods might also be employed
in circumstances where the underlying process has a skewed or otherwise
non-Gaussian distribution, potentially also using robust likelihood models to
account for the presence of outliers caused by a heavy tailed noise distribu-
tion. Finally, although we have not directly tackled this here, in some cases
it might be preferable to remove the outlier prior to processing, for example



12 Ben Ingram, Dan Cornford, and Lehel Csató

in cases where the outlier represent failure of the observing system or some
other catastrophic error.
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